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Abstract
Although thousands of DNA damaging events occur in 
each cell every day, efficient DNA repair pathways have 
evolved to counteract them. The DNA repair machinery 
plays a key role in maintaining genomic stability by 
avoiding the maintenance of mutations. The DNA repair 
enzymes continuously monitor the chromosomes to 
correct any damage that is caused by exogenous and 
endogenous mutagens. If DNA damage in proliferating 
cells is not repaired because of an inadequate 
expression of DNA repair genes, it might increase the 
risk of cancer. In addition to mutations, which can be 
either inherited or somatically acquired, epigenetic 
silencing of DNA repair genes has been associated 
with carcinogenesis. Gastric cancer represents the 
second highest cause of cancer mortality worldwide. 
The disease develops from the accumulation of several 
genetic and epigenetic changes during the lifetime. 
Among the risk factors, Helicobacter pylori  (H. pylori ) 
infection is considered the main driving factor to 
gastric cancer development. Thus, in this review, we 
summarize the current knowledge of the role of H. 
pylori  infection on the epigenetic regulation of DNA 
repair machinery in gastric carcinogenesis. 
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Core tip: Considering the relevance of DNA repair 
mechanisms in the maintenance of genome integrity 
and the role of epigenetics in its regulation on gastric 
carcinogenesis, in this review, we highlight the effects 
of Helicobacter pylori  infection on the modulation 



favoring tumorigenesis[2]. 
The vast majority of gastric cancers are sporadic 

and represent approximately 80% of all cases of 
gastric cancers. According to Lauren’s histological 
classification, these neoplasms can be defined as 
intestinal (well differentiated) or diffuse (poorly 
differentiated) types[3]. On the one hand, the more 
frequent intestinal type is characterized by structures 
of united malignant cells that resemble functional 
gastrointestinal glands. Intestinal tumors develop 
through sequential steps, which begin with gastritis 
and progress to atrophic gastritis and are followed by 
intestinal metaplasia and gastric cancer. The tumor 
grows expansively with high vascularization and 
frequently occurs in old people; these tumors are 
strongly influenced by the environment[4]. On the 
other hand, the less common diffuse type comprises 
non-adherent cells that have diffusely infiltrated into 
the gastric stroma with little glandular formation. This 
type of neoplasia is most frequent in young people, 
is typically hereditary and has no preceding steps; it 
comprises more intra- and transmural spread and is 
thus associated with poor prognosis compared with the 
intestinal type[4]. 

Hereditary factors play a strong role in gastric 
cancer development. The most famous familial case 
is that of Napoleon Bonaparte. There is documented 
evidence showing that the Emperor had a malignant 
ulcer and hemorrhage in his stomach. His father, 
Charles Bonaparte, died from scirrhous carcinoma of 
the pylorus, and his grandfather, Joseph Bonaparte, 
also died of gastric cancer. Both of them died at  
approximately age 40. Moreover, one brother and one 
sister died of the same malignancy, which supports 
the hypothesis that genetic factors can increase risk of 
developing malignancy in the stomach[5].

Several proto-oncogenes are activated in gastric 
cancer, depending on the histological type. The c-met 
gene is amplified in 19% of intestinal type and 39% 
of diffuse type cancers[6], whereas the k-sam gene is 
preferentially expressed in advanced diffuse tumors[7]. 
The overexpression of another proto-oncogene, 
c-erbB2, is correlated with poorer prognosis and liver 
metastases[8]. Conversely, it has been demonstrated 
that tumor suppressor genes are frequently lost 
in gastric cancer by LOH (loss of heterozygosity), 
missense mutations, frame shift deletions, promoter 
methylation and post-translational mechanisms[9-11]. 
Additionally, it has been shown that genetic alterations 
in the TP53 gene, such as a high frequency of 
TP53 mutations, LOH, and overexpression of the 
p53 protein, may lead to a consequent loss of p53 
function, which could be an early event in gastric 
carcinogenesis[12,13]. Furthermore, the abnormal 
expression of cell cycle regulators may permit the 
development of gastric cancer. This can be observed in 
the frequent overexpression of cyclin E and E2F genes 
and the down-regulation of p27 that are associated 
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of epigenetics mechanisms regulating DNA repair 
pathways associated with gastric carcinogenesis.
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INTRODUCTION
It is now believed that gastric cancer is a disease 
that has a primarily epigenetic origin. It has been 
shown that Helicobacter pylori (H. pylori) infection 
plays an important role in the development of this 
disease and elicits a pathological progression in the 
gastric mucosa that starts with chronic gastritis and 
progresses to atrophic gastritis, intestinal metaplasia, 
dysplasia and eventually gastric cancer. The H. pylori 
infection initiates an activation of immunologic and 
inflammatory cascades through the host’s immune 
responses. The inflammatory response generated by 
the bacteria causes both oxidative DNA damage and 
changes in cell turnover. In addition, it has been shown 
that the proliferation of gastric cells is associated with 
the appearance of somatic mutations due to errors in 
replication and/or inappropriate DNA repair capacity.

In response to the DNA damage , there are four 
repair systems: (1) base excision repair (BER); (2) 
nucleotide excision repair (NER); (3) mismatch repair 
(MMR); and (4) double-strand break repair (DSBR). 
It is thus believed that repair system failure is an 
important risk factor in carcinogenesis. Epigenetic 
changes are important mechanisms that lead to 
the failure of these repair genes. The most studied 
epigenetic modification is DNA methylation. In this 
review, we address the role of H. pylori infection in 
DNA repair mechanisms, the modulating effect of 
H. pylori on epigenetic mechanisms (such as DNA 
methylation and histone modifications) and DNA repair 
machinery in H. pylori-induced gastric carcinogenesis.

GASTRIC CANCER 
Gastric cancer represents the second highest cause 
of cancer mortality worldwide[1]. Gastric cancer 
develops from the accumulation of several genetic 
and epigenetic changes over the lifetime of a patient, 
which lead to the activation of oncogenes and/or 
the inactivation of tumor suppressor genes. An 
unbalance among cell cycle regulators, alterations 
in growth factors and cytokines, or failures in DNA 
repair machinery might lead to genetic instability, 
cell proliferation and apoptosis reduction. All of these 
factors may be affected by epigenetic mechanisms 
that could lead to an altered gene expression pattern 



with aggressiveness, metastasis and invasiveness of 
the tumor[14].

Gastric cancer is also associated with high levels 
of MSI (Microsatellite instability), which is strongly 
related to the carcinogenic process primarily because 
of its association with defective MMR. In gastric cancer, 
MSI occurs in approximately 15% to 30% of all 
cases[15]. MSI-positive tumors exhibit many differences 
in clinical, pathological, and molecular characteristics 
compared to MSI-negative ones, regardless of their 
hereditary or sporadic origins. MSI leads to a mutator 
phenotype because frameshift mutations accumulate in 
repeated sequences that are located in coding regions 
of target tumor suppressor genes. The cancer with 
a high level of MSI often shows aberrant epigenetic 
alterations, such as promoter hypermethylation of 
MMR genes, which leads to gene inactivation[16].

Although the etiology of gastric cancer is given 
mainly by gene-environment interaction, consuming 
diets that are high in salt and nitrates favors gastric 
malignancy, whereas consuming diets that contain the 
natural antioxidants found in fruits and vegetables may 
prevent tumor emergence[17]. Alcohol and smoking are 
also risk factors for disease, although the main driving 
factor behind gastric cancer development is H. pylori 
infection, which leads to both chronic inflammation 
and molecular alterations that affect epithelial cell 
regulation, ROS levels, DNA damage, mutations 
caused by high MSI landscape and epigenetic 
deregulation[18]. The strong epidemiological association 
between H. pylori infection and the development of 
gastric cancer made the World Health Organization 
to classify the bacterium as a carcinogen class Ⅰ, a 
definite carcinogen, in 1994[19]. 

H. PYLORI A BRIEF HISTORY
The bacterium known as H. pylori has been the subject 
of intense research since its first culture from a gastric 
biopsy in 1982. From the beginning, this microorganism 
has provoked the interest of many health professionals, 
including researchers in the area of oncology. The 
possibility that a bacterium could cause gastritis, 
peptic ulcer and possibly cancer was a difficult 
concept to accept. However, researchers had known 
of evidence for the involvement of a microorganism 
in the development of ulcers in experimental animals 
since the previous century. Bizzozero, in 1893, 
detected the presence of coiled organisms, known 
as spirochetes, in gastric glands and in the parietal 
cells from canine stomachs. Subsequently, in the 
1940s, spirochetes were identified in human gastric 
samples, and most of them were present in patients 
with gastric ulcer. However, the researchers’ interest in 
identifying a bacterium as the causative agent of ulcers 
was decreased by the reports in the literature that 
highlighted a probable association between viruses and 
peptic ulcer. Steer and collaborators renewed interest in 
the association between the development of ulcers and 

the presence of bacteria in 1975 but failed to isolate 
and identify the microorganisms observed[20].

Finally, in 1982, Warren and Marshall reported the 
presence of a spiral bacterium in patients with peptic 
ulcer and chronic gastritis. There were similarities 
in both the morphological and biochemical growing 
conditions between this organism and the genus 
Campylobacter; thus, the researchers named it the 
Campylobacter like organism. Later, the microorganism 
was named Campylobacter pyloridis and was then 
grammatically corrected to Campylobacter pylori[21,22]. 
Further studies, however, showed biochemical and 
molecular differences between this bacterium and the 
genus Campylobacter, and in 1989, it was recognized 
as belonging to a new genus, Helicobacter[21].

The infection caused by H. pylori is considered 
the most frequent chronic infection in humans. It is 
believed that approximately half the world’s population 
is infected with H. pylori, which makes infection by this 
bacterium one of the major pathogens in humans and 
a serious public health problem[23]. Although there is a 
high rate of colonization, the presence of bacteria is not 
always associated with the development of pathologies 
because 70% of the infected population remains 
asymptomatic. However, the colonized individuals may 
develop gastritis, peptic ulcer, gastric cancer and MALT 
lymphoma[23,24].

The prevalence of infection is higher in developing 
countries (greater than 80%) and lower in developed 
countries (less than 50%), with a tendency to decline 
worldwide due to improvements in sanitation[25,26]. 
However, because the socioeconomic levels vary among 
subpopulations within a country, the prevalence in these 
subgroups may be different[27]. It has been shown 
that increased prevalence is directly related to lower 
socioeconomic status, inadequate sanitary conditions, 
contaminated or untreated water, insufficient hygiene 
practices, families with large numbers of individuals 
inhabiting the same household[25,28]. These conditions 
are usually found in developing countries, where there 
is indeed a high prevalence of H. pylori infection[29]. 
In a complementary manner, it was observed that 
improving the general hygiene conditions decreases 
the prevalence of infection. This finding suggests 
the existence of a set of environmental conditions to 
which children are exposed, particularly in developing 
areas[30].

It is known that humans ingest many microor-
ganisms daily, but most of these microorganisms 
cannot colonize the stomach because of its acidic 
pH, which is one of the most important antibacterial 
properties that this organ has. Under fasting conditions, 
the gastric lumen has a pH < 2, which prevents 
bacterial growth. In the mucus layer, which covers 
the gastric epithelial cells, is a pH gradient ranging 
from 2 the luminal surface to 5-6 on the surface of 
epithelial cells[31]. After entering the stomach, H. pylori 
enters the gastric mucous layer, which is a less acidic 
environment[32]. Within the mucosal layer, H. pylori can 
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and inflammatory cascades initiated by immune 
responses[45]. The cellular signaling changes are 
characterized by release of cytokines into the mucosa 
lamina propria to activate macrophages, dendritic cells 
and other inflammatory cells to release inflammatory 
mediators such as interleukin-1 (IL-1), IL-6, IL-8, 
tumor necrosis factor (TNF)-α[46]. IL1-β and TNF-α 
induce the activation of nuclear factor-κB (NF-κB), 
a key regulator of inflammation and other cellular 
cascades that underlie carcinogenesis in epithelial cells, 
which lead to cell proliferation and the suppression of 
apoptosis[47]. The activation of NF-κB can also regulate 
the expression of the pro-inflammatory cyclooxygenase 
(COX-2) enzyme, which induces TNF-α, interferon-γ 
and IL-1 and contributes to maintenance of cell 
proliferation, inhibition of apoptosis, and stimulation 
of angiogenesis in favor of carcinogenesis[48]. It has 
been demonstrated in vitro that strains harboring cagA 
induce the activation of extracellular-signal-regulated 
kinases (ERKs), such as p38, and MAP kinases, such 
as c-Jun N-terminal kinase (JNK). Additionally, it has 
been shown that the exposure of gastric epithelial cells 
to H. pylori induces the activation of the transcription 
factor activator protein 1 (AP1) and both the c-fos and 
c-jun protooncogenes[49,50]. These effects might occur 
through the activation of ERK/MAP kinase pathways, 
which results in the phosphorylation of Elk-1 and an 
increase in the transcription of c-fos[49]. Because MAP 
kinases regulate cell proliferation, differentiation, 
apoptosis, oxidative stress and inflammatory response, 
it has been suggested that the activation of this 
pathway by cagA-positive H. pylori strains seems to be 
essential to induce gastric inflammation and cancer[51].

This inflammatory-related stress also results in the 
increased production of ROS and RNS by neutrophils, 
which causes cell damage by the formation of oxidative 
DNA lesion products, including 8-oxo-7,8-dihydro-2’-
deoxyguanosine (8-oxodG), and an increase in gene 
mutation. In this sense, it is important to note that 
one of the factors that contribute to the development 
of gastric cancer is the generation of oxidative stress. 
Oxidative damage to DNA due to H. pylori infection 
has been well documented in gastric biopsies, and 
it seems to be related to the presence of cagA and 
vacA virulence factors[52-57]. In vitro experiments have 
indicated that the exposure of gastric epithelial cells to 
different H. pylori strains induces the generation of pro-
inflammatory cytokines and ROS[58]. Moreover, it has 
been observed that patients with H. pylori-associated 
gastritis, have increased levels of inducible nitric oxide 
synthase (iNOS) and COX-2. Bearing in mind that 
both products are potentially mutagenic, it is believed 
they could be related to the mutations detected in 
patients with chronic gastritis with an increased risk of 
developing gastric carcinoma[59,60].

The inflammatory response, in addition to inducing 
oxidative DNA damage, can cause changes in cell 
turnover[61]. H. pylori infection is also responsible for 
inducing apoptosis, which stimulates gastric epithelial 

adhere to the apical surface of gastric epithelial cells 
and occasionally be internalized[33]. 

The ability of H. pylori to colonize the human 
stomach can be attributed to the production of 
specific bacterial products, which are collectively 
called colonization factors[34,35]. The bacteria have 
multiple membrane proteins, such as AlpA, BabA, 
SabA, and HopZ, that mediate the adherence of the 
bacteria to the gastric epithelial cells, which results in 
the inactivation of numerous signaling pathways, and 
allow toxins and other effector molecules to enter the 
host cells[36]. Furthermore, the presence of virulence 
factors enables the bacteria to colonize and remain 
in the gastric mucosa of the host, thereby provoking 
an inflammatory response that would lead to a 
progression of events that can lead to gastric cancer. 
H. pylori virulence factors play a role in determining 
the patterns of disease with genetic differences 
affecting the clinical outcome of infection[37]. The most 
characterized virulence factor is cag pathogenicity 
island (cag-PAI), a 40-kb length of chromosomal DNA, 
which contains approximately 31 genes that encode a 
type Ⅳ secretion system[38]. This system allows CagA 
(cytotoxin-associated gene A) protein to be injected 
into the epithelial cell cytosol and then to interact with 
several intracellular signaling molecules, ultimately 
causing morphological alterations and inducing higher 
inflammatory levels[18]. Another virulence factor that 
is also associated with gastric cancer is the VacA 
gene, which induces vacuole formation in the host 
cell, stimulates apoptosis by release of cytochrome 
c from mitochondria and induces inflammation[39,40]. 
In addition, lipopolysaccharide (LPS), is recognized 
as a potent endotoxin capable of increase the 
proinflammatory cytokine production[41].

MOLECULAR MECHANISMS OF GASTRIC 
CARCINOGENESIS INDUCED BY H. 
PYLORI 
H. pylori infection plays a critical role in carcinogenesis, 
in which a long-term interaction between bacterial 
inflammatory factors and epithelium progenitor and 
stem cells of the host culminates in the accumulation 
of mutations and epigenetic modifications that may 
lead to neoplasia. H. pylori infection is usually acquired 
during childhood, persists for several decades, and is 
followed by progressive mucosal damage because of 
continued interaction of H. pylori with the mucosa and 
the consequent chronic inflammatory milieu, which 
leads to mucosal atrophy, intestinal metaplasia, overall 
resulting in an environment with enhanced risk of 
developing dysplasia and carcinoma[42,43]. Additionally, 
this landscape may lead to hypochlorhydria and permit 
the overgrowth of other bacteria that may increase 
carcinogenic potential in the stomach[44]. 

Once infected by H. pylori, the epithelial cells of 
gastric mucosa undergo activation of immunologic 
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cell proliferation in response[62,63]. In addition, it has 
been shown that the proliferation of gastric cells is 
associated with the appearance of somatic mutations 
due to errors in replication and/or inappropriate DNA 
repair capacity[64,65]. Therefore, these changes in cell 
turnover could accelerate the progression to atrophic 
gastritis, thereby increasing the risk of developing 
gastric cancer[64,66]. Additionally, it has been shown 
that LPS is also able to interfere with the DNA repair 
machinery of intestinal cells, thus increasing the risk of 
permanent genotoxic effects[67].

EPIGENETICS, H. PYLORI AND GASTRIC 
CANCER
The host-pathogen interactions are considered to 
be among the most plastic and dynamic systems in 
nature that lead to changes in epigenetic program. 
“Epigenetics”, as introduced by Conrad Waddington in 
1946, is defined as a set of interactions between genes 
and the surrounding environment that determines the 
phenotype or physical traits in an organism. Currently, 
epigenetics is defined as heritable changes in gene 
expression that are not necessarily accompanied 
by changes in the DNA sequence[68]. To date, the 
epigenetic role of different gene expression patterns in 
determining the cellular phenotype has been broadly 
studied. These processes include DNA methylation, 
histone modifications that affect the chromatin structure 
and DNA silencing by noncoding RNAs (ncRNAs)[69-71]; 
ncRNA is not addressed in this review. The combination 
of these modifications has been called the “epigenetic 
code”, and because it is reversible, it has recently 
emerged as a promising area for cancer research. 
Studying the epigenetic pattern shared by different 
cancers provides exciting potential for powerful and 
more specific anticancer therapeutics. 

DNA methylation
DNA methylation is one of the most common epigenetic 
events in the human genome. This modification is 
heritable and reversible; therefore, it is an important 
therapeutic target[72]. DNA methylation is a covalent 
modification of nucleotides, and the most frequently 
methylated nucleotide in the human genome is a 
cytosine that is subsequently followed by a guanine 
in the DNA sequence, which constitutes a CpG 
dinucleotide. The cytosine is methylated in the C-5 
position by a family of DNA methyltransferases 
(DNMTs) using the universal methyl donor S-adenosyl-
L-methionine (SAM). It has been reported that 
5-methylcytosines account for approximately 1% of the 
DNA bases in the human genome and affect 70%-80% 
of the CpG sites in a human somatic cell[73].

The genome of the cancer cell is globally hypome-
thylated in comparison with normal tissue. Hypome-
thylation is related to both chromosomal instability 
and the activation of proto-oncogenes[74]. Although 

the biological significance of this cancer-specific DNA 
hypomethylation has not been fully elucidated, animal 
studies have confirmed a causal connection between 
hypomethylation and tumor formation[75]. On the one 
hand, it has been shown that DNA hypomethylation 
may reactivate genes that are normally silenced 
by DNA methylation[76]. On the other hand, the de 
novo methylation of CpG islands in gene promoters 
is associated with the loss of expression of several 
cancer-related pathways, including BRCA1 (breast 
cancer 1, early onset), CDKN2A (cyclin-dependent 
kinase inhibitor 2A) and MLH1[72].

Currently, the importance of gene promoter 
methylation is well known in the development of 
cancer. Thus, as observed for other tumor tissues, the 
effects of DNA methylation on gastric carcinogenesis 
has been extensively studied. To date, aberrant DNA 
methylation has been described in more than 100 
genes[77]. The hypomethylation of oncogenes and 
cancer-associated genes and the consequent gene 
activation have been associated with tumorigenesis 
and with progression and metastasis of gastric 
cancers[1,77]. In contrast, the hypermethylation of CpG 
islands, which results the in gene silencing of tumor-
suppressor, pro-apoptotic and DNA repair genes, has 
been observed in relation to gastric carcinogenesis[1,77]. 

An aberrant methylation pattern was also associated 
with the presence of H. pylori infection. Maekita et 
al[78] evaluated the effect of H. pylori infection on the 
quantity of methylated DNA in noncancerous gastric 
mucosae and examined its association with gastric 
cancer risk. Those authors observed bacterial infection 
potently induces the methylation of multiple CpG 
islands in noncancerous gastric mucosa associated 
with the risk of gastric cancer in H. pylori-positive 
individuals. Kang et al[79] analyzed the methylation 
profiles of 27 cancer-related genes in samples from 
patients with gastric cancer and chronic gastritis. 
In their study, it was observed that the number of 
methylated genes was significantly higher in samples 
from patients with gastric cancer than in those from 
patients with chronic gastritis. It has been shown that 
the loss of RUNX3 expression was also associated with 
promoter methylation[80]. Additionally, the methylation 
of this gene is a risk factor for the carcinogenesis of 
chronic atrophic gastritis with H. pylori infection[81]. 

Aside from these examples, more than one 
hundred papers have been published associating 
H. pylori infection with an altered DNA methylation 
pattern and the risk of developing gastric cancer[1,77]. 
Thus, it is worth emphasizing the important role 
played by the H. pylori-induced inflammatory process 
on aberrant methylation[82,83]. It has been shown that 
IL-1β  directly induces the promoter methylation of 
E-cadherin and is an important mediator of TGF-β1 
promoter methylation[84-86]. In addition, it has been 
shown that the eradication of the bacteria decreases 
the level of methylation of several genes (CDH1, 
p16, APC, MLH1, and COX2) that are associated with 
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carcinogenesis[87]. A study conducted in a Mongolian 
gerbil model indicated that 5-aza-dC treatment 
prevents the development of H. pylori-induced gastric 
cancer[88]. 

Histone modifications
Histone proteins contribute to the maintenance 
and regulation of the dynamic chromatin structure, 
affecting the activation or inhibition of genes, 
accessibility to the DNA repair machinery and many 
other processes in the cell nucleus. Histones are 
hydrophilic, basic nuclear proteins that are subunits of 
the nucleosomes that constitute one of the structural 
core units of chromatin. Nucleosomes are histone 
octamers that consist of two copies of each of the 
four canonical histone isotypes (H2A, H2B, H3 and 
H4). DNA is wrapped around these octamers, which 
are located along the DNA with a spacing of 177-207 
base pairs, in a pearls-on-a-string manner[89]. The 
N-terminal tails of histones extend outwards from the 
nucleosome and are the sites for regulatory covalent 
modifications, including acetylation, methylation, 
phosphorylation, ubiquitylation, ADP-ribosylation, 
crotonylation and glutarylation[90]. The packaging of 
chromatin defines the gene state: the euchromatin 
represents open and transcriptionally active regions, 
whereas the heterochromatin represents condensed 
regions with high levels of repetitive sequences[91]. 
Histone modifications directly affect the structure 
of chromatin and drive gene regulation with distinct 
functional activities. The architecture of chromatin can 
create binding sites for the recruitment of chromatin-
modifying proteins and alter the stability of the 
interaction between DNA and histones[92]. However, 
these modification patterns are not static entities 
but dynamically changing and complex landscapes 
that evolve in a cell context-dependent fashion, are 
frequently misregulated in cancer and thus represent 
an interesting target for therapeutics. 

The covalent histone modifications are controlled 
by enzymes that are able to add or remove different 
modifications in specialized domains that other 
enzymes recognize to activate or repress the gene 
expression. This is also known as the “histone code”, 
a key factor in the establishment and maintenance of 
epigenetic cellular memory. The best-characterized 
covalent histone modification is the acetylation 
of lysine residues that are regulated by histone 
acetyltransferases (HATs). This modification results in 
a neutralization of lysine charges, in turn weakening 
the interaction between histone and DNA with 
subsequent activation of transcription[93]. In contrast, 
histone deacetylases (HDACs) are enzymes that are 
responsible for erasing this mark and deacetylating 
the lysine residues, which results in a repressive state 
of chromatin and may thus directly influence cancer 
development by silencing tumor suppressor genes[94]. 

Furthermore, the lysine residues of histones can 
be methylated, and depending on the methylation 

level, gene expression is elevated or repressed. This 
epigenetic mark is catalyzed by a different protein 
complex, methyltransferase, which is dependent 
on a specific domain. H3K27me3 is a modification 
that has been found in many types of cancer and is 
regulated by Polycomb proteins, which recognize this 
modification through the chromodomain-containing 
protein CBX1 (chromobox homolog 1) and induce the 
compaction of chromatin, resulting in transcriptional 
repression[95-98]. To maintain a balance between 
histone methylation patterns, there are other enzymes 
(called KDMs) that remove the methyl groups from 
lysine residues and, as in the case of H3K27, upon its 
demethylation by KDM6A (UTX) and KDM6B (JMJD3), 
allow for active transcription[99]. 

The histone modifiers have a key role in the 
development and progression of gastric cancer. Thus, 
these post-translational alterations in chromatin 
are all suggested to be predictors for gastric cancer 
recurrence and survival[100]. There is evidence that 
the overexpression of phosphorylated histone H3S10 
is an indicator of poor prognosis for gastric cancer[101] 
and that hypoacetylation of this histone in the 
p21(WAF1/CIP1) promoter reduces the expression 
of this gene in gastric cancer specimens[102]. Recent 
reports have shown that there is an induction of the 
histone H3K4 demethylase KDM1A (LSD1) in some 
gastric cancer cells associated with more aggressive 
behavior of these cells, whereas the HDAC SIRT1 
(sirtuin 1), which is downregulated in gastric cancer, 
plays a tumor-suppressive role in gastric cancer 
development by inhibiting NF-κB signaling[103,104]. In 
addition, the H3K9/K36 demethylases KDM4B and 
JMJD1C, H3K27 methyltransferase EZH2, and histone 
lysine acetyltransferase KAT5 (TIP60) act as potential 
markers for the malignancy of gastric cancer because 
they are correlated with cell proliferation and lymph 
node metastasis[98,105]. 

To date, few studies are available concerning the 
effects of H. pylori infection on histone modifications. 
It has been shown in vitro that H. pylori causes 
the upregulation of p21WAF1 expression in both a 
gastric epithelial cell line and primary gastric cells. 
The increased p21WAF1 expression is associated with 
increased HDAC1 recruitment from the p21WAF1 
promoter and hyperacetylation of histone H4[106]. In 
addition, it was demonstrated that H. pylori induces the 
dephosphorylation and deacetylation of histone H3 in 
gastric epithelial cells in a cagPAI-dependent manner. 
Such modifications are associated with changes in host 
gene expression, including the upregulation of c-Jun 
and down-regulation of hsp70[107,108].

DNA REPAIR MECHANISMS
The DNA repair machinery plays a key role in main-
taining genomic stability by preventing the appearance 
of mutations. The DNA repair enzymes continuously 
monitor the chromosomes to correct any damage 
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caused by exogenous and endogenous mutagens. The 
following DNA repair mechanisms respond to such 
DNA damage: (1) BER, which is essential for removing 
oxidized or chemically modified bases; (2) NER, which 
repairs pyrimidine dimers; (3) DNA MMR, which is 
required to correct any errors that occur during DNA 
replication (base-base errors, deletions and insertions); 
and (4) DSBR, which is vital for every living organism 
and acts at different stages of the cell cycle[109].

BER
It is estimated that each human cell repairs appro-
ximately 10000-20000 DNA lesions per day[110]. To 
achieve this repair, enzymes involved in the BER 
system recognize damage at DNA bases and catalyze 
the excision and replacement of the damaged 
nucleotide[111]. This repair is initiated by the action of 
specific DNA glycosylases that recognize the DNA base 
damaged and cleave the N-glycosidic bond that links the 
DNA sugar-phosphate backbone[112]. The appearance of 
an abasic site (apurinic/apyrimidinic site or AP site) is 
then processed by an AP endonuclease (APE1 in human 
cells), which cleaves the 5’ phosphodiester bond to the 
AP site, thereby generating a DNA single strand break 
that contains a hydroxyl residue on the 3’ end and a 
phosphate on the deoxyribose 5’ end. This arrangement 
allows the DNA polymerase to incorporate a new 
nucleotide, and the DNA ligase (XRCC1-DNA complex 
ligase Ⅲα) then connects the terminal portion of the 
DNA[112,113].

The BER is involved in the repair of small changes 
in DNA bases, which may occur by both the short path, 
which is required for the removal of one nucleotide, 
and the long path, which removes from 2 to 13 
nucleotides. The most common injuries removed by 
this system are an oxidized base, i.e., 8-oxodG, which 
can pair with either cytosine or adenine, resulting in 
transversions from G:C to T:A[114]. In addition, BER 
is involved in the removal of uracil in DNA formed 
by spontaneous cytosine deamination, which results 
in erroneous matching U:G[115]. A number of human 
pathologies, including cancer, result from oxidative 
DNA damage caused by endogenous and exogenous 
agents. In this sense, many epidemiological studies 
have investigated the association between common 
variants in BER genes and human cancer[116].

In addition, BER proteins may also play an important 
role in epigenetic regulation of gene expression. It 
has been recently demonstrated that BER proteins 
are necessary for both DNA methylation- and histone 
modification-mediated epigenetic regulation separate 
from its main function in maintaining genome stabi-
lity[117]. Regarding the effects of promoter methylation 
controlling gene expression, it has been reported that 
some BER genes such as, MBD4, TGD, and OGG1, are 
significantly methylated in vitro[118-120] and in vivo[120].

NER
Concurrent with the BER repair system, organisms 
have evolved a hierarchy of different pathways to 
handle several injuries caused to DNA to maintain 
genomic stability. Among the mechanisms of DNA 
repair, NER is the most versatile and can repair a 
large repertoire of chemically and structurally distinct 
injuries. There are more than 30 proteins that act in 
a sequential and concerted manner to remove DNA 
damage. During this process, the phosphodiester 
bonds 3’ and 5’ from the DNA damage are hydrolyzed 
by enzyme machinery called “excinuclease”. Then, a 
short oligonucleotide containing the lesion is removed, 
and the resulting gap is filled by a polymerase. In 
summary, this pathway consists of five steps: damage 
recognition, incision, excision, repair synthesis, and 
ligation[121]. In addition, NER can work together with 
transcription. Transcription-coupled repair ensures that 
the strand containing active genes are repaired with 
a higher priority than the rest of the genome, most 
likely because of RNA polymerase Ⅱ (RNAPⅡ), which 
acts as a sensor of injury[122]. Although NER confers 
protection against the accumulation of DNA lesions and 
maintains genome integrity, reducing NER activity may 
be beneficial for cancer patients who are undergoing 
chemotherapy to ensure the efficient action of the 
DNA damage-inducing drugs[123]. Additionally, it is well 
known that genetic defects in NER components cause xero-
derma pigmentosum, an autosomal recessive disorder 
characterized by photosensitivity and predisposition to 
skin cancer[124]. 

It has been described that XPC, a NER gene, is 
highly methylated in different cell lines (Calu-1, H1355, 
and H441)[125]. Among bladder cancer patients, the 
XPC hypermethylation was related with lower mRNA 
levels[126]. In addition, the genes RAD23A and ERCC1, 
are also inactivated through promoter methylation in 
vitro[127,128].

DNA MMR
The primary function of MMR is to eliminate base-base 
mismatches and insertion-deletion loops that arise as a 
consequence of DNA polymerase slippage during DNA 
replication[129]. The MMR system is composed of two 
protein complexes: the MutS, including protein MSH2 
(mutS homolog 2), MSH3 (mutS homolog 3) and 
MSH6 (mutS homolog 6), and the MutL, comprising 
MLH1 (mutL homolog 1), PMS1 (postmeiotic increased 
segregation 1), PMS2 (postmeiotic segregation 
Increased 2) and MLH3 (mutL homolog 3). The 
operation of the MMR system requires that the protein 
complex MutL binds to MutSα (MSH2, and MSH6) 
or MutS-β (MSH2, and MSH3). It is believed that a 
deficiency in this repair system could be responsible for 
the accumulation of mutations[130,131]. Furthermore, the 
DNA repair enzyme MGMT (O-6-Methylguanine DNA 
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methyltransferase) protects the DNA from mutations 
caused by alkylating agents, and the loss of MGMT 
expression can lead to the development of cancer[132]. 

MSI is one hallmark of DNA MMR deficiency that 
is involved in carcinogenesis. Microsatellites are short 
DNA sequence repeats that are scattered throughout 
the human genome. Errors in the DNA MMR me-
chanisms of tumor cells can result in the expansion 
or contraction of these repeated sequences and thus 
MSI. MSI was first described in 1993 in patients with 
hereditary nonpolyposis colorectal cancer (HNPCC), 
and from its discovery to date, it has been described in 
various types of cancer[8,133].

It has recently reported that trimethylated the 
histone modification H3K36 (H3K36me3) plays a 
critical role during initiation of MMR in vivo[134]. In 
this brilliant manuscript the authors showed that 
H3K36me3 interacts with and recruits MutSα to 
chromatin through the MSH6 PWWP domain. The 
abundance of H3K36me3 increases and reaches 
a plateau in late G1/early S, which correlates with 
the most critical need for MutSα on chromatin. In 
contrast, they found that the abundance of H3K36me3 
decreases rapidly in late S and G2, when MMR is no 
longer relevant or helpful.

Additionally, it has been shown that methylation in 
the promoter region of MLH1 is related with a decreased 
activity of the gene in several types of cancer, such 
as: HNPCC[135], in sporadic endometrial carcinoma[136], 
gastric cancers[137], sporadic colorectal cancer[138], 
ovarian tumors[139], non-small cell lung cancer[140], 
oral squamous cell carcinoma[141], neck[142], and acute 
myeloid leukemia[143]. In summary several studies have 
been shown that MLH1 promoter methylation may have 
considerable importance in cancer development and 
as a prognostic factor. In addition, recent evidences 
reported that MSH2, MSH3, and MSH6 are also 
regulated by promoter methylation[144].

DSBR
DNA double-strand breaks are critical injuries to 
the DNA molecule, which can result in cell death or 
a variety of genetic alterations such as deletions, 
LOH, translocations and chromosomal loss that are 
considered hallmarks of cancer development[145]. It 
is believed that such lesions may be attributed to 
the action of exogenous agents (such as ionizing 
radiation, chemotherapy drugs and infectious agents), 
endogenous agents (reactive oxygen species - ROS) 
and mechanical stress acting on chromosomes[146]. 
Two main strategies are employed for DSB repair: 
homologous recombination (HR) and non-homologous 
end-joining (NHEJ). It has been demonstrated that 
failures in any of the repair systems described above 
are important risk factors in carcinogenesis[147]. 
Additionally, several authors have shown that such 
changes could potentially lead to a disruption in the 
cell cycle and/or apoptosis[148,149].

HR initiates with extensive 5′ to 3′ end processing 
at broken ends. XRCC3 (X-ray repair Complementing 
defective repair in Chinese hamster cells 3) and RAD51 
(RAD51 recombinase) are two important members of 
the HR repair pathway. The BRCA2-RAD51 complex is 
the central player for HR and catalyzes the homology 
search and strand exchange reaction, thereby allowing 
for the repair of the damaged region[150]. 

NHEJ starts in a stepwise manner, beginning with 
end processing by the MRE11/RAD50/NBS1 (MRN) 
complex and Ku70 and Ku80 subunits and resulting in 
the activation of ataxia telangiectasia mutated kinase 
(ATM), a member of the phosphatidylinositol 3-kinase-
related kinase family. The association of ATM with 
the MRN complex leads to the activation of serine 
residue 1981 by phosphorylation, which results in the 
phosphorylation of the downstream targets involved 
in DNA repair and cell cycle checkpoints, including 
checkpoint kinase 2 (CHK2) and p53. Activated CHK2 
can inhibit downstream targets, resulting in cell cycle 
arrest. ATM pathways also contribute to stabilization of 
the tumor suppressor protein p53 and lead to cell cycle 
arrest at the G1 phase[145]. 

Among epigenetic changes associated with DSBR, 
it has been shown that the DNA damage repair 
occurs in the context of chromatin. Among chromatin 
modifications linked to DSB response it is clear that pho-
sphorylation of H2AX occurs following the break[151,152]. 
This phosphorylation occurs in a unique conserved 
SQE motif in the C-terminal tail at serine 139 (S139), 
so-called γ-H2AX[153]. Following phosphorylation the 
DNA repair and checkpoint proteins as well as the 
chromatin-remodeling complexes will form foci that 
colocalize with γ-H2AX[154,155]. It has been shown that 
the presence of γ-H2AX is not required for the initial 
signaling and recruitment of DNA repair factors. 
However, it is essential for their accumulation and 
retention at the break site, and subsequent amplification 
of the signal[154-156]. Additionally, methylation of histones 
H3K79 and H4K20 has also been shown to be important 
in the DSBR pathway[157].

Concerning the effects of DNA methylation on 
DSBR, it has been shown that the HR gene, BRCA1, 
was frequently methylated in several types of cancer 
such as breast cancer[158], ovarian cancer[159], gastric 
cancer[160], non-small cell lung cancer[161], uterine 
cancer[162], and bladder cancer[163]. In addition in has 
been reported that DNA methylation of XRCC5, a 
NHEJ gene, was found in patients with non-small cell 
lung cancer and squamous cell carcinoma[161]. High 
ATM methylation rate was also found in brain tumor 
patients[164].

DNA REPAIR, H. PYLORI-INDUCED 
CARCINOGENESIS AND EPIGENETICS
As previously described, the cellular consequences of 
H. pylori infection produce a large number of different 
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types of damage, such as 8-oxodG and AP sites, which 
in turn lead to single- and double-stranded breaks[165], 
DNA crosslinking and mutation[166-168]. Such alterations 
are removed predominantly by BER, which is critical 
for maintaining genome stability during the chronic 
inflammation that occurs during bacterial infection[169]. 

Studying BER-deficient cells, Meira et al[169] showed 
that H. pylori infection enhanced the inflammatory 
response and, as a consequence, increased the 
production of ROS and tumor-promoting cytokines. 
Moreover, the coculture of H. pylori in murine and 
human cancer cell lines increased the DSB levels[170]. 
Finally, a study showed that H. pylori infection induces 
the accumulation of AP sites in DNA that are further 
processed into DSBs, resulting in genomic instability 
and cellular transformation[171]. 

It has been proposed that the ROS generated by 
H. pylori infection, in either epithelial cell lines or cells 
isolated from mucosal biopsy samples, increases APE1 
protein and mRNA levels, which indicates that the 
infected cells have a higher capacity to repair oxidative 
DNA damage[172]. Additionally, Futagami et al[173] 
observed that APE-1 expression is higher in gastric 
tissues from H. pylori-infected subjects compared 
with tissues from uninfected subjects. They also found 
that APE-1 is mainly localized in epithelial cells within 
gastric adenoma samples and in mesenchymal cells 
of gastric cancer tissues. The authors demonstrated 
that APE-1 expression in gastric cancer tissues 

with or without H. pylori was significantly reduced 
compared with that in H. pylori-infected gastric 
adenomas, whereas evidence of DNA damage did not 
differ between these neoplastic tissue types. These 
findings implicated that APE-1 plays a role in H. pylori-
mediated human inflammatory and neoplastic gastric 
diseases. However, Machado et al[174] studied BER 
genes and detected a significant down-regulation of 
APE-1 in infected gastric cells, whereas no changes 
in OGG1 expression were observed. Because in BER 
AP sites are generated by OGG1 and then repaired 
by APE1, the authors postulated that an imbalance 
between the generation and repair of AP sites could be 
mutagenic though the generation of an excess of AP 
sites that could be converted into mutations by DNA 
polymerases or other repair enzymes (Figure 1).

XRCC1, another BER member, has been studied in 
gastric carcinogenesis. Wang et al[175] showed that the 
XRCC1 mRNA levels were lower in tumor tissues than 
in the corresponding adjacent non-tumorous tissues. 
Furthermore, the authors observed that methylation 
of the XRCC1 promoter was more frequent in tumor 
tissues, which indicated that methylation might 
contribute to the regulation of the transcriptional 
inactivation of XRCC1. Although XRCC1 repression 
may be involved in gastric carcinogenesis, there are 
no data available concerning the effects of H. pylori 
on epigenetic modulation of XRCC1. Similarly, further 
studies are necessary to understand the role of H. 
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pylori infection on the epigenetic regulation of APE-1 
and OGG1 (Figure 1). 

MMR is one of the most important DNA repair 
pathways for maintaining genomic stability. MMR 
impairment results in the accumulation of mutations and 
an increased risk of MSI during replication. It has been 
shown that H. pylori infection is associated with the 
reduced efficiency of the DNA repair machinery, which 
favors the accumulation of mutations and genomic 
instability as well as gastric carcinogenesis[168,174,176,177]. 
Over the last several decades, there has been a growing 
body of evidence showing that genomic stability is 
affected by failures in MMR and that H. pylori is able to 
down-regulate the expression of several MMR effectors 
such as MLH1, MSH2, MSH6, PMS1 and PMS2, in vitro 
and in Big Blue transgenic mice[166,167,174,176]. Additionally, 
studies conducted in humans demonstrated that the 
infection reduced the MLH1 levels compared with 
uninfected individuals[178,179]

MLH1 down-regulation has been attributed to 
an increase in CpG methylation of its promoter 
region in vitro[176] and in vivo[87,179,180]. It has been 
reported that MLH1 promoter methylation occurs 
late in the progression of gastric carcinoma and that 
methylation depends partly on the persistence of the 
H. pylori infection[87,179]. Regarding the effects of other 
epigenetic mechanisms regulating MLH1 expression, 
the data from Fahrner et al[181] favor the idea that 
DNA hypermethylation, not a particular combination 
of histone modifications, is the dominant epigenetic 
mechanism involved in maintaining the silencing of 
MLH1. 

Additionally, the presence of MSI in sporadic 
colorectal carcinomas has been significantly associated 
with the loss of MLH1 expression[182,183]. This pheno-
menon was associated with the hypermethylation of 
the MLH1 promoter, which is the underlying mechanism 
that causes MSI in gastric adenomas and early gastric 
cancers[179,184,185]. It is well known that H. pylori 
infection causes an increased rate of cell turnover in the 
gastric mucosa and thus overwhelms the DNA repair 
system. This process might allow for the accumulation 
of mutations that are consequent to H. pylori infection 
and other environmental risk factors[186].

The effects of methylation status on other MMR 
members (MSH2, MSH6 and PMS2) were evaluated 
previously in diffuse- and intestinal-type gastric 
cancer samples[187]. The data presented indicated that 
PMS2 methylation was associated with both diffuse- 
and intestinal-type cancer. Diffuse-type cancer was 
also significantly associated with MSH2 methylation, 
and MSH6 does not seem to be regulated by DNA 
promoter methylation. Although an association of 
MSH2 and PMS2 promoter methylation with gastric 
cancer was shown, the effects of H. pylori infection on 
their methylation has not been evaluated (Figure 1). 

Recently, it was reported that the mRNA levels of 
MGMT, the gene product of which is required for the 
repair of O-6-methylguanine, were reduced in the 

gastric epithelium from patients with gastritis infected 
by H. pylori[188] and in gastric cancer patients[179,189]. 
These results were associated with an increased 
effect of H. pylori infection on MGMT CpG promoter 
methylation compared with uninfected patients[188]. 
Additionally, it has been suggested that the methylation 
of the MGMT promoter in H. pylori-infected patients 
is related to tumor progression[190,191]. The effects of 
histone modifications regulating MGMT expression 
on gastric carcinogenesis were also described. Meng 
et al[192], after treatment with 5-aza-2’-deoxycytidine 
and/or Trichostatin A, described histone H3K9 
dimethylation, H3K4 dimethylation, H3K9 acetylation 
and DNA methylation working in combination to silence 
MGMT. However, the role of H. pylori infection in histone 
modifications regulating MGMT expression have not yet 
been evaluated (Figure 1).

The accumulation of DNA damage has been 
proposed to be a principal mechanism of infection, 
inflammation and cancer. The damaged DNA can 
be repaired through DSBR by either NHEJ or HR. 
ATM and ATR are critical molecules initiating the HR 
repair process, whereas Ku70/80 initiates the NHEJ 
DNA repair process. Therefore, the activation of both 
ATM/ATR and Ku70/80 is important in the DNA repair 
process[145,147,150]. 

It has been reported by Toller et al[170] that in vitro, 
H. pylori infection induces DSBs in a BabA adhesion-
dependent manner. The authors also showed that 
damaged DNA triggers a damage signaling and 
repair response that involves the sequential ATM-
dependent recruitment of 53BP1 and MDC1 and the 
phosphorylation of histone H2AX, a marker of DSB. In 
summary, they propose that H. pylori DSB induction 
contributes to the genetic instability and frequent 
chromosomal aberrations that are a hallmark of gastric 
cancer.

Subsequently, the results described by Hanada 
et al[193] demonstrated that ATM is activated in vivo 
and that this effect is related to H. pylori. They also 
showed that activated ATM and γ-H2AX, a marker of 
DSBs, are both present in H. pylori-infected human 
gastric epithelium. From these results, the authors 
concluded that it is likely that the ATM-dependent 
response occurs in response to H. pylori-induced 
DSBs to prevent or reduce chromosome aberrations. 
Accordingly, it has been shown that damaged DNA 
induces the induction of ATM, ATR, Ku proteins and 
cell cycle transition as well as the activation of p53 
in H. pylori-infected tissues[194]. Studying the DNA-
dependent protein kinase (DNA-PK), which is a 
serine/threonine kinase that consists of a 465-kDa 
catalytic subunit (DNA-PKcs) and the heterodimeric 
regulatory complex Ku [composed of a 70-kDa (Ku70) 
and an 86-kDa (Ku86) polypeptide], Lee et al[195] 
observed an increased expression in DNA-PKcs in H. 
pylori-associated gastritis, which may be associated 
with epithelial hyperproliferation or transcriptional 
changes. They also found that gastric cancers negative 
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for DNA-PKcs are associated with an advanced stage, 
MSI phenotype; a high prevalence of lymph node 
metastasis; and poor patient survival.

A higher number of DSBs have been described in 
infections from H. pylori strains that are positive for 
the cagA virulence factor than from strains that are 
negative for it[193]. Additionally, they found that CagA 
inactivated RAD51, which suggested that higher levels 
of DSBs may be related in part to the reduced activity 
of DSB repair via HR[193]. In a complementary way, 
Bae et al[194] concluded that H. pylori-induced oxidative 
stress mediates a DNA damage response through 
NHEJ and HR repair processes, cell cycle arrest, and 
apoptosis in gastric mucosa of Mongolian gerbils 
(Figure 1).

It is well known that a major aspect of cellular 
response to DSBs occurs through specific interactions 
with chromatin structure and its modulation, 
which implicates highly dynamic post-translational 
modifications of histones that are critical for DNA 
damage recognition/signaling, repair of the lesion and 
release of cell cycle arrest. It has been reported that 
histone modification are disrupted in human cancers, 
implying that altered chromatin structure in tumor cells 
may impact DSB repair, increasing genomic instability 
and contributing to the progression of cancer[157,196]. 
Concerning the role of histone modifications regulating 
DSBR on gastric carcinogenesis, at the moment, there 
are no data available in the literature. Similarly, the 
putative effect of H. pylori infection in this mechanism 
has never been studied. 

CONCLUSION
Over the last decade, the role of epigenetic alterations 
in gastric carcinogenesis has received greater 
attention. As described in this review, the disruption of 
epigenetic processes can lead to altered gene function 
and malignant cellular transformation. Considering 
the data expounded, it is clear that H. pylori plays a 
role in modulating the expression of BER, MMR and 
DSBR. Although aberrant epigenetic modifications are 
now believed to be essential players in DNA repair 
regulation, the epigenetic modulation of the DNA repair 
machinery in H. pylori-induced gastric carcinogenesis 
still requires further study.
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