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1 | INTRODUCTION

Hepatic glycogen storage diseases (GSDs) are a group of in-
born errors of metabolism that include 11 different diseases

1,27

Abstract

Background: Hepatic glycogen storage diseases (GSDs) are a group of rare genetic
disorders in which glycogen cannot be metabolized to glucose in the liver because of
enzyme deficiencies along the glycogenolytic pathway. GSDs are well-recognized
diseases that can occur without the full spectrum, and with overlapping in symptoms.
Methods: We analyzed a cohort of 125 patients with suspected hepatic GSD through
a next-generation sequencing (NGS) gene panel in Ion Torrent platform. New vari-
ants were analyzed by pathogenicity prediction tools.

Results: Twenty-seven new variants predicted as pathogenic were found between
63 variants identified. The most frequent GSD was type Ia (n = 53), followed by Ib
(n = 23). The most frequent variants were p.Arg83Cys (39 alleles) and p.GIn347*
(14 alleles) in G6PC gene, and p.Leu348Valfs (21 alleles) in SLC37A4 gene.
Conclusions: The study presents the largest cohort ever analyzed in Brazilian pa-
tients with hepatic glycogenosis. We determined the clinical utility of NGS for di-
agnosis. The molecular diagnosis of hepatic GSDs enables the characterization of
diseases with similar clinical symptoms, avoiding hepatic biopsy and having faster

results.
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caused by defects in glycogenolytic pathway. These defects
are caused by pathogenic variants that result in enzymatic
deficiencies for glycogen breakdown or synthesis, or prob-
lems in proteins that regulate glycogen metabolism. The
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consequence is accumulation of glycogen in tissues, espe-
cially in liver (Chen & Zhong, 2013).

The general GSD frequency is 1 in 2,000-43,000 and
their distribution is pan-ethnic (Ozen, 2007; Vega et al.,
2016). Some forms of GSDs are underestimated due to mild
symptoms, rare occurrence, or difficult diagnostic methods.
Symptoms may range from neonatal to almost asymptomatic,
and the age of onset, severity, morbidity, mortality, and prog-
nosis are dependent of causal variants (Kishnani et al., 2014,
2010; Laforét, Weinstein, & Smit, 2012; Ozen, 2007; Wang
et al., 2012). The main clinical symptoms are hypoglycemia
and hepatomegaly, and long-term complications are frequent
(Burda & Hochuli, 2015).

Different types of GSDs can be clinically indistinguish-
able and need liver biopsy, an invasive method. In this aim,
the molecular diagnosis using blood samples generates an ac-
curate diagnosis and allows prognosis and genetic counseling
(Choi et al., 2017; Davit-Spraul et al., 2011). Similar diseases
in clinical symptoms, metabolic routes, or genetic features
are a challenge to diagnose. In this aim, next-generation se-
quencing (NGS) is an important tool to determine the cause
of the disease with accuracy and efficacy, allowing a more
suitable treatment.

Only two previous studies have characterized 13 patients
with GSD Ia and Ib in Brazilian population (Carlin, Scherrer,
Tommaso, Bertuzzo, & Steiner, 2013; Reis et al., 2001).

In the present study, we describe the results of variant
analysis in a cohort of 125 patients with hepatic GSD sus-
pected diagnosis by NGS.

2 | MATERIAL AND METHODS

This study was approved by the Research Ethics Committee
of Hospital de Clinicas de Porto Alegre (project no. 15-0556),
and all patients and guardians provided written informed
consent for participation.

Were analyzed 125 patients with clinical symptoms of he-
patic GSD. Blood samples were collected in EDTA vacuum
container. DNA was extracted with Easy-DNA Purification
kit (Thermo Fisher). DNA samples were quantificated in
NanoDrop 1000 (Thermo Fisher) and through Qubit dsDNA
HS Assay Kit (Thermo Fisher).

The gene panel amplicon was designed with Ion Ampliseq
Designer software (Thermo Fisher), and included the exons
and flanking 40 bp into introns of 11 genes involved in he-
patic GSD (Table 1). The sequencing was performed in Ion
Torrent PGM platform (Applied Biosystems), based in PCR
amplification with minimal coverage of 200X. Base calling
and sequence read quality assessments were performed using
Torrent Suite 5.0.5. Alignment of the sequence reads to a ref-
erence human genome (GRCh37.p13) was performed using
IonStates alignment.

The softwares Enlis Genome Research (LLC), Variant
Effect Predictor (Ensembl), Ion Reporter (Thermo Fisher)
and Varstation® (Varstation) were used to detect and clas-
sify variants. To determine the variants causing disease, the
following were considered: ACMG guideline (Richards et
al., 2015); allele frequency under 1% in the 1,000 Genomes
Project (Sabeti, 2015); location in exon or borderlines; im-
pact in the protein (missense, nonsense or splicing sites);
and pathogenicity by predictors SIFT and Polyphen 2.
For score of pathogenicity predictions in missense novel
variants were used the softwares Polyphen 2 (Adzhubei et
al., 2010), SIFT (Vaser, Adusumalli, Leng, Sikic, & Ng,
2016), PROVEAN (Choi, Sims, Murphy, Miller, & Chan,
2012), Mutation Teaster (Schwarz, Cooper, Schuelke, &
Seelow, 2014), Pmut 2017 (L6pez-Ferrando, Gazzo, Cruz,
Orozco, & Gelpi, 2017), SNP&Go (Profiti, Martelli, &
Casadio, 2017), PhDSNP (Capriotti & Fariselli, 2017),
Panther (Thomas et al., 2003), SNAP2 (Hecht, Bromberg,
& Rost, 2015) and MutPred (Pejaver et al., 2017). For
splice site variants, Genescan (Burge & Karlin, 1997) and
MaxEntScan were used (Yeo & Burge, 2003).

Validations of NGS results were realized by Sanger se-
quencing in patients and in parents when the sample was
available. The unbiased capture and deep coverage of each
coding exon and adjacent intronic region of all genes in this
panel ensure accuracy of variant detection.

3 | RESULTS

We analyzed 125 patients with clinical suspicion of hepatic
GSD. All samples were successfully sequenced. We found
63 different variants in 110 families, and 27 of those were
new variants (Tables 2 and Appendix S1).

Seventy-five patients are men. The patients included in
the study are from all Brazilian regions: 63 from the south-
east (SPn=48,RIn=2, MG n =10, ES n = 3), 50 from the
south (RS n = 46, SC n = 4), eight from the northeast (BA
n=2,CEn=3,PBn=3), two from the Midwest (DF =1,
MT n = 1) and two from the north (PA n = 2) (Appendix S1).

Both pathogenic variants were identified in 118 patients
confirming the molecular diagnosis of hepatic GSD. For two
patients, only one variant was found (patients 84 and 85).
In five patients, no variant was identified (Appendix S1).
All identified variants were confirmed by Sanger sequenc-
ing and investigated in literature or databanks (Tables 2 and
Appendix S1).

Eight families included in this study had multiple affected
individuals. For patients 5, 11, and 12 (11 and 12 are sisters),
their parents reported consanguinity (Appendix S1). These
information were considered while counting alleles.

Sixty-three alleles were identified, in which 26 are mis-
sense variants (41.2%), 16 are nonsense variants (25.3%), six
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Genes and diseases diagnosed in gene panel

TABLE 1

Mutations in

Hypoglycemia Hepatomegaly Hyperlipidemia HGMD

Main clinical symptoms

GSD
type

0

Incidence

Enzyme deficiency Inheritance

OMIM  Location

Gene

18 (19)
106 (111)

No No

Yes

AR
1in 50,000-100,000 Yes

glycogen synthase

12p12.2

138571
232200

GYS2

Yes

Yes

Glucose-6-phosphatase AR

17q21

G6PC

Ta
Ib
11T

v

101 (110)

155 (239)

Yes Yes

Yes

AR

Glucose-6-phosphate transporter

11¢23.3
1p21

SLC37A4 232220
AGL

Yes Yes Yes

1 in 100,000
1 to 500,000

AR

glycogen debranching enzyme

232400
232500
232700
306000
261750
613027

SLC2A2 612933

50 (69)
31 (43)
80 (104)
18 (24)
19 31)
66 (78)
7(8)

Yes No

No

AR

glycogen branching enzyme

3pi2.3

GBEI

Yes Yes

Yes

liver glycogen phosphorylase AR 1 in 65,000-85,000

14g21-g22

PYGL

VI

Yes No

Yes

X-linked
AR

phosphorylase kinase o subunit

Xp22.2-p22.1
16q12-q13

PHKA2
PHKB

Xla
XIb
Xlc
XI

Yes No

Yes

phosphorylase kinase § subunit

Yes Yes

Yes

AR

16p12.1-pl11.2  phosphorylase kinase y subunit

3q26.1-926.2
16¢22-g24

PHKG2

Yes Yes

Yes

AR

facilitated glucose transporter

aldolase A

Yes No

No

AR

ALDOA 611881
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are splice site variants (9.5%), 11 deletions (17.4%), three in-
sertions (4.7%) and one duplication (1.5%) (Table 2).

Among the 125 patients analyzed, 53 were genetically di-
agnosed with GSD Ia (42%), 23 with GSD Ib (18%), 14 with
GSD I (11%), two with GSD VI (1.6%), 16 GSD IXa (12%),
six with GSD IXb (4.8%), six with GSD IXc (4.8%), and five
were not diagnosed (4%) (Appendix S1).

The most frequent variants in patients were p.Arg83Cys,
observed in 39 alleles (18.5%), and p.GIn347* present in
14 alleles (6.6%), both in G6PC gene, causing GSD Ia. The
other frequent variant, p.Leu348Valfs in SLC37A4 gene, was
observed in 10% of alleles causing GSD Ib.

Variants not described in the literature were evaluated
for protein impact by nine in silico pathogenicity predic-
tion algorithms. All new missense variants were predicted
as pathogenic. In the bioinformatics analyses of new splice
site variants, all were confirmed to modify the exon—intron
structures in different forms importantly, showing sufficient
entropy forces to perform the incorrect splicing.

4 | DISCUSSION

This is one of the largest screening of variants causing the
different forms of GSDs in patients, including 125 patients
and describing 63 different variants, of which 27 are novel.

The GSD Ia and GSD Ib represent 60% of the analyzed
patients. In other analyzed cohorts, Vega et al. (2016) re-
ported more than three-quarters of patients who had GSD III
or GSD IXa (39% of each type), and Ozen (2007) found GSD
type IXa as the most common form of the disease. These data
reflect the differences among populations, the existence of
private pathogenic variants, and the differences in prevalence
of variants in GSDs.

GSD type Ia is the most widely distributed. The most
frequent pathogenic variant found in this work was p.Arg-
83Cys, present in 18.5% of all patients and 39% of alleles in
GSD Ia patients. This is one of the most important variant
found around the world in patients with GSD Ia (Chou &
Mansfield, 2008; Matern, Seydewitz, Bali, Lang, & Chen,
2002). This variant in G6PC is in the active center of the
enzyme G6Pase and presented no detectable activity in tran-
sient expression assays (Lei, Shelly, Pan, Sidbury, & Chou,
1993). p.Arg83Clys is present in 50% of alleles in French and
Tunisian patients (Barkaoui et al., 2007; Trioche et al., 2000),
80% of Sicilian and 100% of alleles in Ashkenazi Jewish
patients (Ekstein et al., 2004; Stroppiano et al., 1999). This
variant is found in genomAD in a frequency of 0.0005 (Lek
et al., 2016) and appears to be in a hotspot since two other
variants are observed in the same position (p.Arg83His and
p-Arg83=). There are another eight variants in amino acids
80, 81, and 82, six of them being pathogenic. In the same
gene, the variant p.GIn347* was in 6.9% of all alleles or in
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TABLE 2

ExAC

ACMG

Frequence

Reference

Location

Protein

Allele

Gene GenBank

Medicine

SPERB-LUDWIG ET AL.

Open Access,

Uncertain

BS1, PVS1

PM2

0.000008

E6 New*

p-GIn191Hfs

c.1972-2A > G

¢.2081C > G
c.2181delT

¢.572_576del AGATT
c454C>T

PHKB NM_000293

Uncertain

New

120

Probably pathogenic

PM2, PVS1
PM2, PVS1

E22 New

p-Ser694*
p-Leu728fs

p-Argl52*

Probably pathogenic

New

E22
E6

Pathogenic

PM1, PM2, PVS1

0.000008
0.00001

New*

PHKG2 NM_000294

Pathogenic

PMI1, PM2, PVS1

Davit Spraul et al. (2011)

E6

p-Argl68*

c.502C>T

Probably pathogenic

PM1, PM2, PP2, PP3

PM2

New

p.-Arg279Cys

c.835C>T

Uncertain

New

19

c.927 + 1G>A

Note: E: Exon; I: Intron; New*: New mutation related to hepatic GSDs, however presented in data banks; #discordance between literature nomenclature and HGVS rules.

15% of alleles in GSD Ia. They both represent approximately
54% of variants found in GSD Ia patients.

The second most frequently found variant among all pa-
tients was p.Leu348Valfs in SLC37A4 gene, present in 10%
of patients, and 47.7% of alleles (21/44 alleles) in GSD Ib.
This variant was present in 39% of Serbians patients (Skakic
et al., 2018) and 31% of White patients reviewed in Chou,
Jun, and Mansfield (2010).

Twenty-seven novel variants were identified among the
125 patients, observed mainly among patients with GSD type
IIT and type IX. AGL, that causes GSD III, is one of the larg-
est genes, and has the highest number of variants reported
in HGMD - The Human Gene Mutation Database (Stenson
et al., 2003), which proves its heterogeneity. The increased
number of variants in type IX patients can be justified by
their lower characterization.

Some of the novel variants have already been detected in
database projects involving the search for variants in a large
number of individuals but never related to patients. We inves-
tigate the variants in “The Exome Aggregation Consortium”
— ExAC — composed of 60,706 unrelated individuals, and the
Online Archive of Brazilian Mutations — AbraOM — composed
of 609 elderly individuals, as in other databases (Lek et al.,
2016; Naslavsky et al., 2017; Sabeti, 2015). Seven of 27 novel
variants were in EXAC, all in very low frequencies (Table 2).

Seven different types of GSDs were found. Only types 0,
IV, XI and XII were not observed among the 125 patients.
The type IX represented 22.4% of the patients (12.8% of
type 1Xa), since GSD type IX had never been described in
Brazilian patients.

In two patients, only one variant was found (patients 84
and 85) instead of two. Both patients presented variants in
AGL. This gene has the highest number of gaps in coverage of
NGS and is one of the biggest genes in panel, with 36 exons.
However, the gaps were analyzed by Sanger sequencing and
no variant was found. The results obtained from these patients
are contradictory, since the variants found in both cases are
described for GSD type III; however both patients presented
inconsistent clinical findings. One of them has Down syn-
drome and liver histology similar to GSD III, but no biochem-
ical results are compatible with the disease and the patient
does not present any clinical symptoms. The other patient
presented hypoglycemia from birth, however, currently asso-
ciated with hyponatremia and metabolic acidosis. The liver bi-
opsy was inconclusive and not suggestive of GSD. Therefore,
it is possible that variants or technical artifacts are eliminating
the amplification of the mutated allele or the variants are in
regulatory regions, not covered by the panel, but the absence
of disease is a possibility (Hedell, Dufva, Ansell, Mostad, &
Hedman, 2015; Inokuchi et al., 2016).

In five patients with no identified variants, the clinical
suspicions are mild or inconclusive, once they did not have
clear clinical indications or laboratory findings supporting
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the diagnosis of GSD, besides hypoglycemia and/or hepato-
megaly. The NGS was a diagnostic exclusion test; therefore,
it was an expected result. These patients probably do not have
GSD, once hepatomegaly and hypoglycemia are difficult to
distinguish from other metabolic storage disorders without
more clinical findings. Another possibility is the presence of
variants in nontargeted deep intronic and regulatory regions
(Wang et al., 2013).

Relationships of synergistic heterogeneity should be
considered for GSDs, since the disease-causing deficient
enzymes share metabolic pathways, however it was not ob-
served in the present study (Vockley, Rinaldo, Bennett,
Matern, & Vladutiu, 2000).

The patient 120 is possibly a GSD patient because he pre-
sented clinical symptoms such as hypoglycemia and keton-
uria but no other clinical signs, however only synonymous
variants were found in GYS2 (that causes GSD type 0), which
does not justify the disease.

This variety of results reflects the profile of an extremely
large country with an interesting and important mix of peo-
ple from all over the world. The presence of immigrants
from the most diverse origins, such as Africans, Asians, and
Amerindians justifies the variability of alleles found in a
highly mixed population. Genetic analyses indicate that Latin
Americans trace their ancestry mainly in the intermixing of
Native Americans, Europeans, and Sub-Saharan Africans.
Historically, Latin America has a continuous, differential,
and diverse intra- and intercontinental migration events, and
presents higher prevalence of metabolic diseases (Adhikari,
Chacon-Duque, Mendoza-Revilla, Fuentes-Guajardo, &
Ruiz-Linares, 2017; Chacén-Duque et al., 2018; Giolo et al.,
2012; Quinto-Sanches et al., 2017; Resque et al., 2016).

Among the advantages of NGS diagnosis, patients
undiagnosed by traditional means were investigated and
correctly diagnosed in the present study. This method is
especially promising for mixed populations with high level
of heterogeneity. This method also allows the identification
of unexpected diagnoses in the supposed typical pheno-
types. Rare genetic diseases can be a diagnostic challenge,
sometimes an odyssey. The NGS technologies can provide
a fast diagnosis, advantages for treatment management, in
reproductive choices, genetic counseling, and fertility ser-
vices (Schofield et al., 2017). The GSD traditional diag-
nosis methods involve liver biopsy, an invasive and risked
method, that can be avoided with a well-established mo-
lecular method (Bali, Chen, Austin, & Goldstein, 2016;
Lévesque et al., 2016).

This diagnosis is an important advancement for patients
with nontypical forms of disease, especially for those who
need agile actions, since it evaluates 11 genes at the same
time.

This was an important step to increase the knowledge
about the genetics of the different types of hepatic GSDs
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in Brazilian patients, since they have a genetically het-
erogeneous origin, and it is reflected in the variability of
types and variants (Vega et al., 2016; Wang et al., 2013).
The evaluation by NGS also allows to detect cases of syn-
ergic heterogeneity that cannot be perceived by Sanger
sequencing.

Differentiated therapeutic management among GSD justi-
fies the population characterization of patients. If NGS anal-
yses are not available or expensive, the molecular diagnosis
should be conducted first through the search for the patho-
genic variants p.Arg83Cys and p.GIn347* in G6PC in case
of GSD Ia or p.Leu348Valfs in SLC37A4 for GSD Ib. Sanger
sequencing approach is the most cost-effective to solve up
to 40% of the cases. However, for the cases without preva-
lent mutations or without suspected type of GSD, NGS is the
most effective solution.

This study emphasizes that molecular genetic analysis is a
reliable and convenient alternative to the assay of enzymatic
activity in a fresh liver biopsy specimen for the diagnosis of
GSDs. This type of study is an important tool for the estimation
of disease progression, since different types of GSDs present
variations in their clinical course and treatment, besides serv-
ing as a basis for genetic counseling and prenatal diagnosis.

The discovery of a significant number of new mutations
reinforces the allelic variability of different GSDs and
proves that the diagnosis of GSDs in Brazil can be chal-
lenging, showing the validity of NGS gene panel use for
diagnosis.
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