Uso do interferômetro de Lloyd para a caracterização de cristais fotorrefrativos

Discente - Karoline Ferreira Tornisiello Orientador - Prof. Dr. Ivan de Oliveira

Laboratório de Óptica Faculdade de Tecnologia/UNICAMP-Limeira

Uso do interferômetro de Lloyd para a caracterização de cristais fotorrefrativos

 ${\bf Discente} \ {\bf -Karoline} \ {\bf Ferreira} \ {\bf Tornisiello}$

Orientador - Prof. Dr. Ivan de Oliveira

Trabalho de Conclusão de curso apresentado como recurso parcial para obtenção do título de Bacharel em Engenharia de Telecomunicações pela Faculdade de Tecnologia da Universidade Estadual de Campinas.

Agradecimentos

Agradeço ao Criador do Universo, porque sem ele nada seria possível.

Gratidão Parceiro, sua presença e amor incondicional na minha vida. Avante!

Agradeço aos meus avós José e Geralda e ao meu irmão por compreenderem as várias horas em que estive

 $ausente\ por\ causa\ do\ desenvolvimento\ deste\ trabalho.$

Ao meu orientador o Prof. Dr. Ivan de Oliveira pelas valiosas contribuições dadas durante todo o processo.

Aos meus amigos da vida e aos amigos conquistados nesse curso, pela amizade e atenção dedicadas quando

sempre precisei.

Sou grata a todo corpo docente da Faculdade de Tecnologia/Unicamp que sempre transmitiram seu saber

 $com\ profissionalismo.$

Também agradeço aos funcionários da Faculdade de Tecnologia/Unicamp que contribuíram direta ou

 $indiretamente\ para\ a\ conclus\~ao\ deste\ trabalho.$

Contents

1	Introdução			2
2 Objetivos				
3	Teoria			
	3.1	3.1 Interferometria		5
	3.2	3.2 Formação do holograma		5
		3.2.1 Eficiência de difração		6
	3.3	3.3 Modelo de dois centros		7
4	Exp	Experimentos		9
	4.1	1.1 Gravação holográfica utilizando a geometria de transmissão		9
		4.1.1 Resultados		10
	4.2	1.2 Gravação holográfica utilizando o interferômetro de Lloyd		11
		4.2.1 O Interferômetro de Lloyd		11
		4.2.2 Resultados		12
5	Die	Discussões e Conclusões		15

List of Figures

3.1	Processo de excitação e recombinação	6
3.2	Processo de Registro de Hologramas	6
4.1	Montagem experimental	9
4.2	Movimento do padrão de franjas	10
4.3	Eficiência de difração (η) durante a gravação do holograma em função do tempo para diferentes	
	potências dos feixes de escrita. A linha tracejada é o ajuste com a Eq. (3.11) com os seguintes	
	parâmetros obtidos: A_f =0.39, A_s =0.11, τ_f =0.8 s e τ_f =8.44 s, já alinha contínua é o ajuste	
	com uma única exponencial	11
4.4	Interferômetro de Loyd	12
4.5	Evolução da eficiência de difração (η) durante o processo de gravação do holograma. A linha	
	contínua é o ajuste com a Eq.(3.11)	13
4.6	Inverso da constante de tempo da rede rápida $(1/\tau_f)$ versus intensidade da luz. A linha	
	contínua é o ajuste com a Eq.(3.9)	13
4.7	Inverso da constante de tempo da rede lenta $(1/\tau_s)$ versus intensidade da luz. A linha contínua	
	é o ajuste com a Eq.(3.9)	14

Resumo

Este trabalho de conclusão de curso tem como finalidade estudar o processo de registro holográfico em materiais fotorrefrativos da família das Selenitas, tais como $\mathrm{Bi}_{12}\mathrm{TiO}_{20}$ (BTO) nominalmente puro, utilizando o Interferômetro de Lloyd.

Na primeira parte do trabalho realizamos um estudo sobre o processo de gravação holográfica em BTO utilizando a geometria de transmissão. Os resultados obtidos mostraram que o interferômetro da geometria de transmissão é bastante instável, ou seja, susceptível a perturbações externas.

Afim de contornamos este problema montamos um interferômetro com um espelho de Lloyd. Utilizando esse sistema estudamos o processo de gravação em função da intensidade da luz. Verificamos que o interferômetro é bastante estável diminuindo as perturbações de fase causadas pelo ambiente. A partir da comparação dos dados experimentais com a teoria (modelo de dois centros) determinamos vários parâmetros que caracterizam o material.

Abstract

In this work we study the holographic recording process in photorefractive materials of the Selenite family, such as $Bi_{12}TiO_{20}$ (BTO) nominally pure, using the Lloyd Interferometer. In the first part of the work, we carried out a study on the process of holographic recording in BTO using transmission geometry. The results obtained showed that the transmission geometry interferometer is very unstable, that is, susceptible to external disturbances. To get around this problem we set up an interferometer with a Lloyd's mirror. Using this system, we study the recording process according to the light intensity. We found that the interferometer is very stable, reducing the phase disturbances caused by the environment. From the comparison of the experimental data with the theory (two-center model), we determined several parameters that characterize the material.

Introdução

Os cristais fotorrefrativos são materiais fotocondutores e eletro-ópticos. Sob determinadas condições podese gravar um holograma de fase no volume desses materiais[1, 2]. Os materiais fotorrefrativos fazem parte daquilo que conhecemos como materiais fotossensíveis. Os materiais nos quais as propriedades modificadas pela ação da luz são permanentes são chamados de irreversíveis, já aqueles que, por ação da luz ou por outro processo retomam suas propriedades originais são chamados de reversíveis. Dentre esses materiais fotossensíveis está o cristal Bi₁₂TiO₂₀, da família das sillenitas, que é um material, fotocondutor e eletro-óptico, rápido que pode ser utilizado para processamento de sinais, imagens, e medida de vibrações [2]. Outro material condutor e eletro-óptico amplamente utilizado para o processamento de imagens [2] e para o armazenamento de informações [3, 4, 5, 6] na forma de uma modulação de índice de refração é o cristal LiNbO₃:Fe, que é um cristal fotovoltaico e que dependendo do seu estado de oxidação pode ter seu tempo de resposta modificado, ou seja, o cristal pode tornar-se ser lento ou rápido.

A rede (holograma) gravada nos materiais fotorrefrativos é uma combinação dos efeitos da fotocondutividade e do efeito eletro-óptico. Com luz de determinado comprimento de onda, elétrons são excitados, pela luz, de centros doadores para a banda de condução, onde se difundem ou são arrastados por ação de um campo elétrico externo. Após múltiplas excitações e recombinações há a formação de uma modulação de carga que da origem a um campo elétrico que modula o índice de refração do material via o efeito eletro-óptico. O holograma gravado dessa maneira pode ser apagado incidindo sobre a amostra um feixe de luz uniforme. Após o apagamento do holograma a amostra pode ser utilizada novamente para um novo registro. No entanto para certas aplicações a reversibilidade passa a ser um efeito indesejado e para contornar o efeito indesejado da reversibilidade há várias técnicas para fixar hologramas no volume do material [5, 7, 8, 9, 10]. Uma técnica muito eficiente consiste em gravarmos um holograma (rede eletrônica) a temperatura ambiente e aquecimento posterior da amostra a altas temperaturas (80-200°C) ou realizando o processo de gravação a temperatura elevada (120°C). Quando a amostra é aquecida íons de cargas pos-

itivas (H⁺) presentes no volume do material se movimentam devido aos efeitos térmicos e compensam a rede eletrônica. Após a compensação a amostra é iluminada com luz uniforme a temperatura ambiente. A luz uniforme redistribui os elétrons pelo volume do material, ficando dessa forma uma rede de cargas positivas que não é sensível a luz. O material que apresenta um ótimo desempenho no processo de fixação de hologramas é o cristal LiNbO₃:Fe que é um material fotovoltaico. Esse cristal permite gravarmos e fixarmos redes altamente eficientes [5, 11, 12]. A origem centros fotoativos que dão origem as redes gravadas nos materiais fotorrefrativos são os defeitos intrínsecos causados durante o processo de crescimento das amostras ou por efeito de dopagem. Em materiais como LiNbO₃ a dopagem com Fe produz um aumento no efeito fotorrefrativo. Já em materiais como o Bi₁₂TiO₂₀ (BTO) a dopagem tem se mostrado como um fator que diminui o efeito fotorrefrativo. A diminuição do efeito devido à dopagem nos cristais do tipo BTO se deve ao fato da dopagem criar centros capazes de gerar buracos, entretanto amostras nominalmente puras do cristal do tipo BTO também tem apresentado centros doadores de buracos [13].

Vários pesquisadores [14, 15, 16] têm utilizados as redes gravadas em materiais fotorrefrativos do tipo $Bi_{12}XO_{20}$ (X=Ti,Si,Ge) para a medida de vibrações e deformações. As redes lentas gravadas em materiais como LiNbO₃:Fe tem sido utilizadas para o armazenamento de informações e fabricação de dispositivos difrativos [17].

A gravação de redes holográficas utilizando técnicas de interferometria holográfica é bastante sensível a perturbações de fase originadas pelo ambiente. Vários pesquisadores [18, 19, 20, 21] tem utilizado técnicas estabilizadas para a gravação de redes holográficas. No entanto essas técnicas apresentam grande complexidade operacional e além disso requer equipamentos especiais e caros. Como alternativa as técnicas estabilizadas o uso de interferômetros compactos pode diminuir as perturbações de fase. Um desses interferômetro que vem sendo utilizado sobretudo na gravação de estrutura em 2D e em escala micrométrica é interferômetro de Lloyd [22, 23, 24]. Esse tipo de interferômetro tem como principais características a simplicidade da montagem, ou seja, uso de um único feixe de luz, poucos elementos ópticos, braço do interferômetro extremamente pequeno e grande estabilidade quando comparado com outras geometrias.

Neste projeto utilizamos o interferômetro de Lloyd para a caracterização dos cristais fotorrefrativos em especial o cristal Bi₁₂TiO₂₀. Estudamos a estabilidade do processo de gravação holográfica, ou seja, a escrita do holograma (rede), diferentemente do trabalho da Ref.[25] onde os autores estudam o apagamento da rede. Comparamos os resultados obtidos com o interferômetro de Lloyd com o interferômetro dado pela geometria de transmissão. Os resultados obtidos mostram que o interferômetro de Lloyd é mais estável que o interferômetro dado pela geometria de transmissão. Isso se confirmou através da qualidade dos dados obtidos.

Objetivos

Os objetivos de trabalho são:

- Estudo da formação de redes holográficas gravadas em cristais fotorrefrativos do tipo $\mathrm{Bi}_{12}\mathrm{TiO}_{20}$ (BTO) nominalmente puro utilizando técnicas de holografia interferométrica;
- Estudo da estabilidade do processo de registro holográfico utilizando a geometria de transmissão e o espelho de Loyd;
- Comparação dos resultados entre os diferentes processos de gravação;
- Comparação dos resultados com a teoria.

Teoria

3.1 Interferometria

A gravação de hologramas em cristais fotorrefrativos é baseada na incidência sobre o material de um padrão de interferência. Um padrão de interferência pode ser descrito matematicamente da seguinte forma,

$$I_T = I_S + I_R + 2\sqrt{I_S I_R} \cos \varphi \tag{3.1}$$

onde I_S e I_R são as intensidades dos feixes que sofrem a interferência e φ a diferença de fase entre eles. A Eq.(3.1) pode ainda ser escrita da seguinte maneira,

$$I_T = I_0(1 + m\cos\varphi) \tag{3.2}$$

com

$$m = \frac{2\sqrt{I_S I_R}}{I_S + I_R} \tag{3.3}$$

onde m é a visibilidade do padrão de franjas e $I_0 = I_S + I_R$. A visibilidade das franjas determina o contraste do padrão e pode assumir os valores $0 \le m \le 1$.

3.2 Formação do holograma

Incidindo sobre um cristal fotorrefrativo um padrão de franjas como o descrito pela Eq.(3.1) portadores de cargas, elétrons e/ou buracos, são excitados de centros doadores para a banda de condução (elétrons) ou banda de valência (buraco) onde eles se difundem ou são arrastados por ação de um campo elétrico externo. Após esse processo os portadores de cargas recombinam-se em centros aceitadores. Como o processo de excitação se dá nas regiões claras do padrão de franjas e a recombinação nas regiões escuras ocorre a

formação de uma distribuição de cargas de um sinal na região clara e de sinal contrário na região escura. Essa modulação de carga gera um campo elétrico que modula o índice de refração do material via o efeito eletro-óptico. Nas Figs.3.1 e 3.2 mostramos o processo de formação do hologramas em cristais fotorrefrativos.

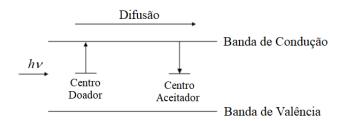


Figure 3.1: Processo de excitação e recombinação.

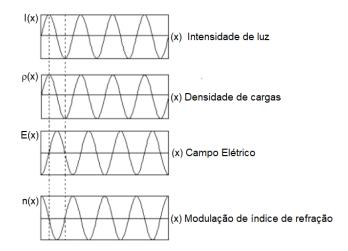


Figure 3.2: Processo de Registro de Hologramas.

A modulação de índice de refração dessa maneira é o que chamamos de holograma. A amplitude dessa modulação de índice é dada por,

$$\Delta n = -\frac{\pi n^3 r |E_{sc}|}{2\lambda \cos \theta} \tag{3.4}$$

com n, r, λ e E_{sc} sendo o índice de refração, o coeficiente eletro-óptico, o comprimento de onda da luz dos feixes que incide sobre o cristal com o ângulo (2θ) entre eles e o campo espacial de cargas respectivamente.

3.2.1 Eficiência de difração

Um parâmetro importante da formação do holograma é a eficiência de difração. A eficiência de difração determina o quanto de luz a rede holográfica gravada no volume é capaz de difratar a luz. A eficiência de

difração é dada por,

$$\eta = \sin^2(\Delta nd) \tag{3.5}$$

onde Δn é a amplitude de modulação do índice de refração dado pela Eq.(3.4) e d a espessura do cristal.

3.3 Modelo de dois centros

O modelo de dois centros assume a presença de centros doadores de elétrons e de buracos. Os centros doadores de elétrons e buracos estão presentes entre a banda de condução e de valência. Os elétrons são excitados para a banda de condução já os buracos para a banda de valência. Na presença de elétrons e buracos o campo elétrico que modula o índice de refração do material se da pelo acoplamento elétrico entre duas redes, uma rápida e outra lenta. Uma delas, a rápida, é formada majoritariamente por elétrons e a lenta por elétrons e buracos. Na presença de elétrons e buracos a evolução do campo elétrico no volume do material pode ser escrito como sendo [1],

$$E_{sc} = E_{\rm f}(1 - e^{-t/\tau_{\rm f}}) + E_{\rm s}(1 - e^{-t/\tau_{\rm s}})$$
(3.6)

onde $E_{\rm f}$ e $E_{\rm s}$ são as amplitudes das redes rápida e lenta respectivamente com as constante de tempo $\tau_{\rm s}$ e $\tau_{\rm f}$.

$$\frac{1}{\tau_{\rm f}} = \frac{1}{\tau_{\rm mf}} \frac{1}{1 + K^2 L_{\rm Df}^2} \tag{3.7}$$

$$\frac{1}{\tau_{\rm s}} = \frac{1}{\tau_{\rm ms}} \frac{1}{1 + K^2 L_{\rm Ds}^2} \tag{3.8}$$

onde $K = 2\pi/\Lambda$ com Λ sendo o período do padrão de franjas, $\tau_{\rm mj}$, com j = s e f os tempos de relaxação de Maxwell para as redes rápida e lenta, $L_{\rm Dj}$ o comprimento de difusão dos elétrons e dos buracos respectivamente. Os parâmetros $\tau_{\rm j}$ e L_{Dj} dependem da intensidade da luz é são dados por [26],

$$\tau_{\rm j} = \frac{C}{L_{\rm D_{\rm j}}^2 I_0} \tag{3.9}$$

com

$$LD_{j} = \frac{L_{D0j}}{\sqrt{1 + r_{j}f_{j}}}$$
 (3.10)

onde C é uma constante que depende apenas dos parâmetros intrínsecos do cristal, $L_{\rm D0}$ o comprimento de difusão, $r_{\rm j}=N_{Dj}/N_A$, $f_j=I_0/I_{\rm sat}$ e $I_{\rm sat}=\gamma_R N_A/s_j$ s endo N_D a concentração total de centros, N_A a concentração de centros não fotoativos que mantém equilibro elétrico no escuro, γ_j a constante de recombinação e I_0 a intensidade da luz.

Utilizando a Eq.(3.6) podemos escrever que a eficiência de difração, Eq.(3.5), na presença de elétrons e buracos como,

$$\eta = |A_{\rm f}(1 - e^{-t/\tau_{\rm f}}) + A_{\rm s}(1 - e^{-t/\tau_{\rm s}})|^2$$
(3.11)

onde $A_{\rm f}$ e $A_{\rm s}$ são as amplitudes das respectivas redes.

Experimentos

4.1 Gravação holográfica utilizando a geometria de transmissão

Na geometria de transmissão os feixes ($I_R e I_S$) que geram padrão de interferência incidem do mesmo lado da amostra como mostra a Fig.4.1. Nesse tipo de interferômetro o caminho percorrido (braço do interferômetro) pelo feixe de luz até a interferência na amostra é relativamente grande, como é possível perceber pela figura.

Com o objetivo de estudarmos o processo de gravação holográfica em cristais fotorrefrativos, como o $Bi_{12}TiO_{20}$ (BTO), utilizando a geometria de transmissão montamos o interferômetro mostrado na Fig.4.1. O interferômetro montado possui os seguintes elementos: **Laser**, fonte de luz de comprimento de onda 532 nm; **BS**, divisor de feixes; **PBS**, divisor polarizante de feixe; **M**, espelho plano; **OBJ**, lente objetiva; $\lambda/2$ e $\lambda/4$, lâminas de retardo; **P**, Polarizador e **PZT**, espelho piezoelétrico; **Det-1** e **Det-2**, fotodetectores.

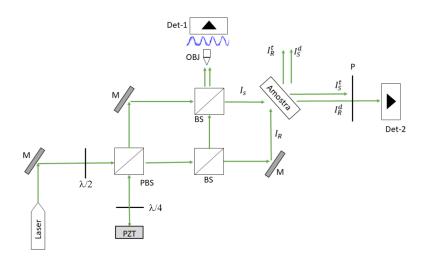


Figure 4.1: Montagem experimental.

As polarizações dos feixes de escrita foram escolhidas de modo que na saída os feixes transmitido e

difratado tenham polarizações ortogonais [27] e devido a essa escolha podemos utilizar o polarizador \mathbf{P} para bloquear o feixe transmitido (I_S^t) e deixando incidir sobre o fotodetector ($\mathbf{Det-2}$) apenas a intensidade (I_R^d) de luz do feixe difratado.

O processo de gravação de hologramas em cristais fotorrefrativos é fortemente dependente da qualidade do padrão de interferência. Afim de determinarmos a qualidade do nosso padrão de interferência medimos a visibilidade (m). A visibilidade determine a qualidade do padrão de franjas. Com auxílio da lente **OBJ** expandimos o padrão de franjas sobre o fotodetector **Det-1** e com o espelho **PZT** provocamos o movimento do padrão de franjas e o resultado é mostrado na Fig.4.2.

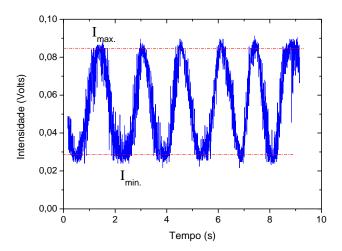


Figure 4.2: Movimento do padrão de franjas.

A visibilidade foi determinada a partir de [28],

$$m = \frac{I_{max} - I_{min}}{I_{max} + I_{min}} \tag{4.1}$$

onde I_{max} e I_{min} estão representados na Fig.4.2 e o resultado obtido para a visibilidade foi $m \approx 0.6$.

4.1.1 Resultados

Utilizando a montagem experimental mostrada na Fig.4.1 medimos a evolução temporal da luz difratada (η) para diferentes intensidades dos feixes de escrita durante o processo gravação. O holograma foi gravado utilizando luz de comprimento de onda 532 nm e o cristal utilizado foi o Bi₁₂TiO₂₀ (BTO) nominalmente puro. A medida foi realizada da seguinte maneira: Com o shutter (sh) bloqueávamos o feixe I_S e deixamos o feixe I_R incidindo sobre a amostra, isso era necessário para que diminuíssemos a influência do efeito fotocrômico. Após isso, abríamos o shutter e mediamos a evolução temporal da luz difratada (η) para

diferentes potências de luz. Na Fig.4.3 mostramos a evolução temporal da luz difratada durante a gravação. Nessa figura a linha tracejada é o ajuste com a Eq.(3.11) e a linha contínua o ajuste realizado com uma única exponencial.

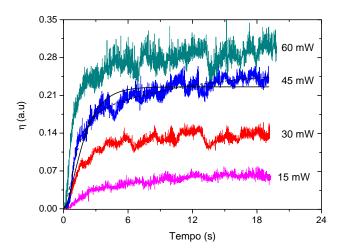


Figure 4.3: Eficiência de difração (η) durante a gravação do holograma em função do tempo para diferentes potências dos feixes de escrita. A linha tracejada é o ajuste com a Eq.(3.11) com os seguintes parâmetros obtidos: A_f =0.39, A_s =0.11, τ_f =0.8 s e τ_f =8.44 s, já alinha contínua é o ajuste com uma única exponencial.

4.2 Gravação holográfica utilizando o interferômetro de Lloyd

O processo de gravação holográfica em materiais fotossensíveis pode ser realizado utilizando diferentes tipos de interferômetro, entretanto dependendo das características do interferômetro, como o tamanho dos braços do interferômetro, o processo de gravação pode ser extremamente sensível a perturbações de fase. A seguir descreveremos o interferômetro de Loyd, que é interferômetro que tem como uma das características possuir os braços do interferômetro pequenos.

4.2.1 O Interferômetro de Lloyd

O interferômetro de Lloyd é um interferômetro como o mostrado na Fig.4.4. Nesse interferômetro o feixe de luz laser é expandido com auxílio uma lente objetiva (\mathbf{OBJ}) e colimando pela lente (\mathbf{L}). O feixe colimado possui área suficiente para iluminar o espelho (\mathbf{M}) e a amostra ($\mathbf{cristal}$). A amostra e o espelho formam entre si um ângulo de 90°.

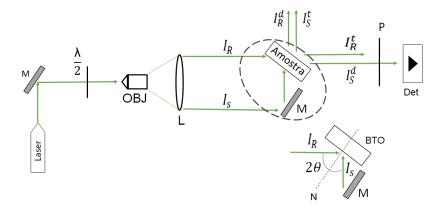


Figure 4.4: Interferômetro de Loyd.

Parte do feixe colimando incide na amostra e a outra parte incide no espelho. Aquela que incide no espelho é refletida pelo mesmo e incide na amostra. Na Fig.4.4 o feixe refletido pelo espelho (I_S) interfere com o feixe direto (I_R) dando origem ao padrão de interferência na face do cristal. O interferômetro de Lloyd apresenta uma simplicidade muito grande em comparação aquele interferômetro mostrado na Fig.4.1.

4.2.2 Resultados

O interferômetro de Lloyd foi utilizado para a gravação de redes holográficas no cristal Bi $_{12}$ TiO $_{20}$ (BTO). O holograma (rede de difração) foi gravado utilizando luz de comprimento de onda 532 nm. Como a amostra e o espelho formam um ângulo de 90° isso permite que a rede gravada tenha um período igual a Λ =0.376 μ m. O período da rede gravada é determinado por $\Lambda = \lambda/(2\sin\theta)$, com θ sendo o semi-ângulo entre os feixes I_S e I_R .

Utilizando o interferômetro de Lloyd medimos a eficiência de difração (luz difratada) durante o processo de gravação da rede holográfica para diferentes intensidades. Os resultados obtidos são mostrados nas Fig.4.5.

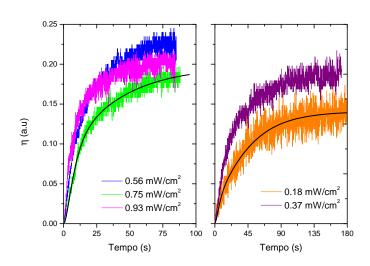


Figure 4.5: Evolução da eficiência de difração (η) durante o processo de gravação do holograma. A linha contínua é o ajuste com a Eq.(3.11).

Na Fig.4.5 a linha continua é o ajuste com a Eq.(3.11). Do ajuste determinamos as constantes de tempo τ_f e τ_s das redes rápida e lenta respectivamente. Com os resultados obtidos para constantes de tempo um gráfico do inverso dessas constantes $(1/\tau_f)$ e $(1/\tau_s)$ em função da intensidade da luz foi feito e os resultados são mostrados nas Figs.4.6 e 4.7. Nessas figuras a linha contínua é o melhor ajuste com a Eq.(3.9) com \mathbf{f} e \mathbf{s} indicando as redes rápida e lenta. Desse ajuste conseguimos determinar alguns parâmetros que caracterizam o material e que são mostrados na tabela 4.1. Na Tab.4.1 o parâmetro Φ é a eficiência quântica, que determina a transformação de luz em portador de carga excitado.

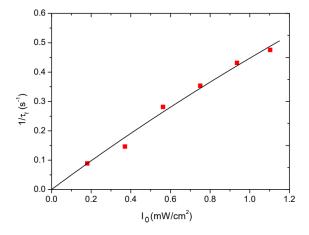


Figure 4.6: Inverso da constante de tempo da rede rápida $(1/\tau_f)$ versus intensidade da luz. A linha contínua é o ajuste com a Eq.(3.9).

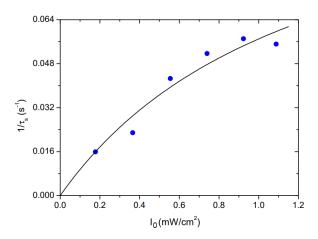


Figure 4.7: Inverso da constante de tempo da rede lenta $(1/\tau_s)$ versus intensidade da luz. A linha contínua é o ajuste com a Eq.(3.9).

Parâmetros	Rede rápida	Rede lenta
$L_{D0} (\mu m)$	0.179	0.33
$I_{sat} \frac{N_A}{N_D} (W/m^2)$	8.3	0.395
Φ	0.40	0.077

Table 4.1: Parâmetros que caracterizam as redes rápida e lenta determinados pelo melhor ajuste com a Eq.(3.9).

Discussões e Conclusões

Neste projeto de conclusão de curso utilizamos o interferômetro de Lloyd para o estudo processo de gravação de redes holográficas em materiais fotorrefrativos em especial no cristal nominalmente puro $\mathrm{Bi}_{12}\mathrm{TiO}_{20}$ (BTO). O processo de gravação utilizando o espelho de Lloyd como parte do interferômetro se mostrou extremamente eficiente na redução das perturbações de fase em comparação com a geometria de transmissão. Isso fica claro quando comparamos os resultados mostrados nas Fig.4.3 e Fig.4.5 para a evolução da eficiência de difração durante a gravação da rede.

A estabilidade no processo de registro holográfico das redes com o interferômetro de Lloyd permitiu obter dados confiáveis e reprodutíveis. Isso se traduz na gravação da rede lenta, uma vez que essa rede na presença de perturbações de fase torna-se difícil sua detecção. Por conta disso foi possível determinar alguns parâmetros que caracterizam as redes. O valor para o comprimento de difusão, $L_{\rm D0}^{\rm f}=0.179\mu{\rm m}$, obtido utilizando o interferômetro de Lloyd é o mesmo encontrado na ref.[26] utilizando a técnica do registro auto-estabilizado. Para a rede lenta a literatura mostra um valor de $0.485\mu{\rm m}$ porém para o comprimento de onda 514 nm [29]. A eficiência quântica determinada para a rede rápida $\Phi_{\rm f}=0.4$ é o valor típico desses materiais [30] já o valor para rede lenta $\Phi_{\rm s}{=}0.077$ é um pouco maior se comparado com o encontrado na ref.[29] ($\Phi_{\rm s}{=}0.011$) porém o valor obtido nessa referência é para o comprimento 514 nm. Já o parâmetro $I_{sat}N_A/N_D{=}8.3~{\rm W/m}^2$ para a rede rápida é ligeiramente maior ao encontrado (5.7 W/m²) na literatura [31].

Bibliography

- [1] J. Frejlich. Photorefractive Materials: Fundamental Concepts, Holographic Recording, and Materials Characterization. Wiley-Interscience, New York, 2006.
- [2] P. Günter. Photorefractive Effects and Materials Topics in Applied Physics: Photorefractive Materials and Their Applications I and II, ed. by P. Günter, J.-P. Huignard. Volume 61 and 62, Springer-Verlag (Berlin, Heidelberg), 1988.
- [3] S. Breer, K. Buse, and F. Rickermann. Improved development of thermally fixed holograms in photorefractive LiNbO₃ crystals with high-intensity laser pulses. *Opt. Lett.*, 23:73–75, 1998.
- [4] L. Arizmendi, A. Méndez, and J. V. Álvarez-Bravo. Stability of fixed holograms in LiNbO₃. Appl. Phys. Lett., 70:571–573, 1997.
- [5] J. Frejlich, I. de Oliveira, L. Arizmendi, and M. Carrascosa. Fixed holograms in iron-doped lithium niobate: simultaneous self-stabilized recording and compensation. *Appl. Opt.*, 46:227–233, 2007.
- [6] Jan Bassewitz, Ivan de oliveira, and Jaime Frejlich. Self-stabilized recording of fixed gratings at high temperature in LiNbO₃:Fe. Appl. Opt., 47:5315–5320, 2008.
- [7] M. Carrascosa and F.Agullo-Lopez. Theoretical modelling of the fixing and developing of holographic gratings in linbo₃. J. Opt. Soc. Am. B, 7:2317–2322, 1990.
- [8] K. Buse, A. Adibi, and D. Psaltis. Non-volatile holographic storage in doubly doped lithium niobate crystals. *Nature*, 393:665–668, 1998.
- [9] Ivan de Oliveira, Jaime Frejlich, Luis Arizmendi, and Mercedes Carrascosa. Nearly 100% diffraction efficiency fixed holograms in oxidized iron-doped LiNbO₃ crystals using self-stabilized recording technique. Opt. Commun, 247:39–48, 2005.

- [10] Ivan de Oliveira, Jaime Frejlich, Luis Arizmendi, and Mercedes Carrascosa. Holographic phase shift measurement during development of a fixed grating in lithium niobate crystals. Opt. Lett, 28:1040–1042, 2003.
- [11] Ivan de Oliveira, Jaime Frejlich, Luis Arizmendi, and Mercedes Carrascosa. Self-stabilized holographic recording in reduced and oxidized lithium niobate crystals. *Opt. Commun*, 229:371–380, 2004.
- [12] Vladimir Jerez, Ivan de Oliveira, and Jaime Frejlich. Fixed photorefractive hologram with maximum index-of-refraction modulation in LiNbO₃:Fe. J.Appl.Phys., 106:063116, 2009.
- [13] J. Frejlich and P.M. Garcia. "Quasipermanent Hole-Photorefractive and Photochromic Effects in Bi₁₂TiO₂₀ Crystals". Appl. Phys. A, 55:49–54, 1992.
- [14] J. P. Huignard, J. P. Herriau, and T. Valentin. Time average holographic interferometry with photo-conductive electrooptic $Bi_{12}SiO_{20}$ crystals. *Appl. Opt.*, 16:2796–2798, 1977.
- [15] J. Frejlich and P.M. Garcia. Advances in real-time holographic interferometry for the measurement of vibrations and deformations. *Optics & Lasers Engineering*, 32:515–527, 1999.
- [16] Ph. Lemaire and M. Georges. *Photorefractive materials and their applications 3*, volume 115 of *Springer Series in Optical Sciences*, chapter Dynamic holographic interferometry: Devices and applications, pages 223–251. P. Günter and J-P. Huignard, 2007.
- [17] R. Müller, M. T. Santos, L. Arizmendi, and J. M. Cabrera. A narrow-band interference filter with photorefractive LiNbO₃. J. Phys. D: Appl. Phys., 27:241–246, 1994.
- [18] L. Cescato and G.F. Mendes and J. Frejlich. Stabilized holographic recording using the residual real-time effect in a positive photoresist. *Opt. Lett.*, 12:982–983, 1987.
- [19] P. A. M. dos Santos, L. Cescato, and J. Frejlich. Interference-term real-time measurement for self-stabilized two-wave mixing in photorefractive crystals. Opt. Lett., 13:1014–1016, 1988.
- [20] Cédric Thizy, Marc Georges, Philippe Lemaire, Yvan Stockman, and Dominic Doyle. Phase control strategies for stabilization of photorefractive holographic interferometer. In Pierre Slangen and Christine Cerruti, editors, Speckle06: Speckles, From Grains to Flowers, volume 6341, pages 364 369. International Society for Optics and Photonics, SPIE, 2006.
- [21] J. P. von Bassewitz, I. de Oliveira, and J. Frejlich. Self-stabilized recording of fixed gratings at high temperature in LiNbO₃:Fe. *Appl. Opt.*, 47:5315–5320, 2008.

- [22] Lin yong Qian, Bin Sheng, Yuan shen Huang, Jin zhong Ling, Rui jin Hong, Da wei Zhang, Bang lian Xu, Bai cheng Li, Zheng ji Ni, and Song lin Zhuang. Tilted and axis-shift lloyd's mirror system for recording low-density and large-area holographic grating. Optik, 125(3):1287 1291, 2014.
- [23] C. Lu and R.H. Lipson. Interference lithography: a powerful tool for fabricating periodic structures.

 *Laser & Photonics Reviews, 4(4):568–580, 2010.
- [24] Ishan Wathuthanthri, Weidong Mao, and Chang-Hwan Choi. Two degrees-of-freedom lloyd-mirror interferometer for superior pattern coverage area. *Opt. Lett.*, 36(9):1593–1595, May 2011.
- [25] Yuri Alexandre Meyer. Dissertação de Mestrado: Medida de auto difração de materiais fotossensíveis utilizando um espelho piezoelétrico num interferômetro de Lloyd. Faculdade de Tecnologia-UNICAMP, 2017.
- [26] Ivan de Oliveira, J.F. Carvalho, and Jaime Frejlich. Resonance running hologram velocity nonlinearity dependence upon light intensity in photorefractive crystals. Appl. Phys. Lett., 102:251913-1-251913-3, 2013.
- [27] S. Mallick, D. Rouède, and Apostolidis. Efficiency and polarization characteristics of photorefractive diffraction in a Bi₁₂SiO₂₀ crystal. *J. Opt. Soc. Am. B*, 4:1247–1259, 1987.
- [28] Grant R. Fowles. Introduction to Modern Optics. Holt, Rinehart and Winston, N. York, Chicago, Montreal, Toronto, London, 2nd. edition, 1975.
- [29] I. de Oliveira and Agnaldo A. Freschi and Igor Fier and J. Frejlich. Stabilized photorefractive running holograms, with arbitrarily selected phase shift, for material characterization. *Opt.Mater.Express*, 2:228–234, 2012.
- [30] L. Mosquera and I de Oliveira and J. Frejlich and A. C. Hernandes and S. Lanfredi and J. F. Carvalho. Dark conductivity, photoconductivity and light-induced absorption in photorefractive sillenite crystals. J. Appl. Phys., 90:2635–2641, 2001.
- [31] I. de Oliveira and J. Frejlich. Light intensity dependendent Debye screening length in undoped photorefractive titanosillenite crystals. *J.Appl.Phys.*, 112:113523, 2012.