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Resumo
O objetivo desse trabalho é a determinação de estruturas espaciais de proteínas. Para
atingir esse objetivo, o caso Não Associado do Problema de Geometria de Distâncias será
apresentado. Em sua forma original, os dados de entrada do Problema de Geometria de
Distâncias são um conjunto de vértices (pontos) e uma lista de distâncias associadas a
pares desses vértices.

Soluções para instâncias do Problema De Geometria de Distâncias Associado podem
ser encontradas através do algoritmo Branch-and-Prune (BP), apresentado na referência
(LAVOR et al., 2018). Nesse trabalho, a contribuição principal é uma versão modificada
desse algoritmo com o objetivo de atacar o caso Não Associado do problema. Com o
objetivo de diminuir cálculos é utilizada uma estratégia de dividir e conquistar baseada no
trabalho de Hendrickson na referência (HENDRICKSON, 1995).

Palavras-chave: geometria de distâncias. ressonâcia nuclear magnética. combinatória.
branch-and-prune



Abstract
This work aims to determine the spatial structures of proteins. In order to achieve this
goal, the Unassigned case of the Distance Geometry Problem (uDGP) will be presented.
In its original form, the Distance Geometry Problem has its input data as a set of vertices
(points) and a list containing distances associated to vertex pairs.

Solutions for instances of the Assigned Distance Geometry Problem can be found using the
Branch-and-Prune (BP) algorithm, presented in reference (LAVOR et al., 2018). In this
work, the main contribution is a modified version of this algorithm developed aiming to
tackle the Unassigned case of the problem. In an attempt to diminish calculations is used
an approach of divide-and-conquer based on the work made by Hendrickson in reference
(HENDRICKSON, 1995).

Keywords: distance geometry. nuclear magnetic resonance. combinatorics. branch-and-
prune
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Introduction

Proteins are a class of nitrogenous organic compounds responsible for many
essential activities in living organisms. These molecules can be found in the form of
antibodies, enzymes and structural components that support cell structures and fibers
that constitute human body muscles, among others.

An example is the prion protein (or PrPc), which acts on the cells of some
animals. When its spatial structure is altered it can generate a modified protein called
prion scrapie (or PrPSc), as described in reference (LANSBURY; CAUGHEY, 1996) and
shown in figure 1. This altered protein has the same composition as its original counterpart,
but due to this structural change it causes a disease denominated Bovine Spongiosiform
Encephalopathy, also known as the Mad Cow Disease.

Figure 1 – Isomers of the Prion protein (reference (EDUCATION; (MFMER), )).

This example demonstrates the importance of determining proteins’ spatial
structures. It is a major problem in biochemistry, since the function of a protein is related
not only to its chemical composition but is also strongly linked to its spatial structure
(as stated in references (MUCHERINO; LAVOR; LIBERTI, 2010), (CRIPPEN; HAVEL,
1988)). Pursuant to this idea, this study is focused on the problem of determining 3D
protein structures using data obtained by Nuclear Magnetic Resonance (NMR) data.

The determination of structures through NMR measures inter-atomic distances
of hydrogen atoms present in molecules, providing a list of distances that can be used as
input data when trying to find its spatial configuration. It allows proteins to be studied
in solution, unlike X-ray crystallography (reference (LAVOR et al., 2018)). This last
mentioned technique was the first method developed for the determination of protein
structures, and as its name states, it reveals spatial structures of solid crystals.

Proteins are molecules composed by chains of amino acids, forming a pattern
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(as seen in figure 2) which will be explored when trying to find its spatial structure. An
example of a protein structure can be seen in figure 3.

Figure 2 – Protein and its amino acid chain (reference (LAVOR et al., 2012)).

Figure 3 – Example of a protein (reference (UNCCH, 2018)).

In order to achieve this goal the Unassigned case of the Distance Geometry
Problem (uDGP) will be presented. In its original form, the Distance Geometry Problem
(also referred in this context by the Assigned Distance Geometry Problem or aDGP) has
its input data as a set of vertices and a list containing distances associated to vertex pairs.
These two elements refer, respectively, to the atoms of the analyzed protein and real, non
negative numbers coupled with the atom pairs to which they belong to. Its objective is to
find the spatial coordinates of a set of points (also called a realization).

Solutions for instances of the Assigned Distance Geometry Problem can be
found using the Branch-and-Prune (BP) algorithm, presented in reference (LAVOR et
al., 2018). In this work, the main contribution is a modified version of this algorithm is
developed aiming to tackle the Unassigned case of the problem. The major modification
is done by testing all possible available distances of the input data and the respective
candidates they generate for the coordinates of the protein atoms.
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This modified version also associates the input distances to pairs of atoms as
the atoms themselves are given coordinates. The process of associating coordinates to
elements (in this case, atoms) of the problem is also called realization (as described in
reference (LAVOR et al., 2018)).

The strategy of testing distances generates a larger number of candidates and
extends the search space of the Unassigned problem (compared to its Assigned counterpart).
In an attempt to diminish calculations is used an approach of divide-and-conquer based
on the work made by Hendrickson in reference (HENDRICKSON, 1995). In that work,
the idea was to identify rigid substructures in molecules and group its atoms. A rigid body
has six degrees of freedom in R3, but considered independently each vertex has three -
therefore, by treating a set of vertices collectively the original problem can be simplified.

Disregarding rotations, translations and reflections, this approach makes it
possible to get the coordinates of only one atom in each said substructure and use it as
a reference to place all atoms of its group. Using this idea, rigid substructures of the
problem’s graph are detected in this work in a way that they can all be realized at once
instead of one by one, therefore making calculations shorter.

In chapter 1 characteristics of proteins’ structures and a model will be presented.
In chapter 2 the Distance Geometry Problem will be formally introduced along with the
concept of rigidity and their relations to each other. In chapter 3 the definition of a vertex
order will be given and it will be shown how it is applied to the problem in this work.
In chapter 4 the instance generation process will be presented. In chapter 5 the original
Branch-and-Prune algorithm will be presented, and finally, in chapter 6 the modified
version of the Branch-and-Prune algorithm will be explained, and results related to its
implementation will be shown in chapter 7.
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1 Structures and Modeling of Proteins

In this chapter proteins’ characteristics will be presented in order to introduce
the model that will be used further in the work. The concept of graphs will also be
introduced, along with the Backbone Graph, which will be used to model proteins,
generate instances for the Unassigned Distance Geometry Problem and appliance of the
Branch-and-Prune algorithm.

1.1 Proteins’ Structure
Proteins are molecules composed by structures called amino acids. These amino

acids are linked to each other, creating a pattern. They are constituted by two types of
chains: a main chain that is common to every structure of this type and a side chain that
is unique to each particular type of protein. The main chain is composed of atoms of
Hydrogen, Carbon, Nitrogen and Oxygen. The side chain has up to 15 atoms linked to
each other (as explained in reference (A VALADARES NF, 2006)).

In figure 4 H, N , C and O represent, respectively, hydrogen, nitrogen, carbon
and oxygen atoms. GSC represents the side chain distinguishing different amino acids,
Cα is the carbon atom connected to GSC and Hα is the hydrogen atom connected to
Cα. The links represent bonds between atoms, in line with reference (LAVOR; LIBERTI;
MUCHERINO, 2013).

In figure 5 a protein is shown with its chain of three amino acids, where GSCi ,
i “ 1, 2, 3 represent their respective side chains and in figure 6 two amino acids are shown
with its side chains highlighted.

Figure 4 – Amino acid structure (reference (LAVOR; LIBERTI; MUCHERINO, 2013)).
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Figure 5 – Protein consisting of three amino acids and their side chains.

Figure 6 – Representation of two amino acids with their side chains highlighted.

As was also explained in reference (LAVOR et al., 2018), in this work the amino
acids’ side chains are disregarded and the focus will be the main chain. This way, it is
still possible to get a good result while the model remains relatively simple in terms of
execution time and computational complexity. This results in the parts regarding GSC in
figure 4 and GSC1 , GSC2 and GSC3 in figure 5 being removed from the model. In figure 7
the main chain of a protein is shown.
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Figure 7 – Representation of a protein’s main chain (reference (LAVOR et al., 2018)).

An important characteristic in a protein structure is the peptide plane, shown
in figure 8. The atoms in this section all lie in the same plane in space due to the peptide
bond (highlighted in the figure) that occurs between one of the carbons of one amino acid
and the nitrogen of the next amino acid. This is a very stable covalent double bond, which
causes the atoms in the peptide plane to be linked in a stronger way than the other atoms
in proteins (reference (SCIENCE, 2008)).

Figure 8 – Detail of a peptide plane in a protein chain.
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1.2 Graphs

Definition 1. (WEST, 2001) A graph G “ pV,Eq is a composition of two sets: V ‰ H
(its vertices) and E “ tvi, vju|vi, vj P V, i, j ď |V | (its edges).

In this work a protein is considered as a set of atoms linked by segments,
originally introduced in reference (BROWN, 1865) and also described in reference (LAVOR
et al., 2018). While what will be visualized as the end result will be the main chain of the
protein and the chemical bonds of its atoms, another type of graph is needed to model
these molecules.

1.2.1 The Backbone Graph

The Backbone Graph is a particular kind of graph used to model a protein
chain. This model is assembled as chains of atoms constituting a graph G “ pV,E, dq

composed of:

• A set of vertices V representing the atoms

• A set of edges E “ tvi, vju|vi, vj P V representing pairs of atoms related to known
distances

• A function d : E Ñ r0,8q associating elements from E to non negative real numbers
(distances)

In addition, the following concepts will also be used, illustrated in the figures 9
and 10:

• rvi,vj : distance between atoms vi and vj having a covalent bond

• θvi,vk : angle between three atoms vi, vj, vk where vi, vj and vj, vk have a covalent
bond

• ωvi,vl : angle between the planes formed by the atoms vi, vj, vk and vj, vk, vl where vi
e vl are separated by three covalent bonds

• xvi : spatial coordinates of atom vi

In order to associate values to rvi,vj , θvi,vk and ωvi,vl the Geometric Rigidity
Hypothesis is used in the model for this work. This hypothesis, presented in reference
(GIBSON; SCHERAGA, 1997), states that it can be assumed that rvi,vj and θvi,vk are
fixated without having the complexity of the problem altered.
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By fixating these values the atoms’ coordinates in this model are determined
solely by the torsion angles ωvi,vj . From here on out, the following variables and values will
be used for all vi, vj, vk: r “ 1.526 Å and θ “ 1.91 rad. In line with reference (LAVOR;
LIBERTI; MUCHERINO, 2013), the Backbone Graph’s edges will be defined for all amino
acids in the protein chain i P t1, ..., pu (where p is the number of amino acids that compose
the protein).

Figure 9 – Distances and angles in a protein’s main chain.

Figure 10 – Illustration of distances and angles in the Backbone Graph (reference (LAVOR
et al., 2018)).

Continuing in line with reference (LAVOR; LIBERTI; MUCHERINO, 2013),
the process of protein synthesis where a sequence of amino acids bind together will be
described by the following graph operations: let

• H, N , C and O be - respectively - hydrogen, nitrogen, carbon and oxygen atoms
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• GSC the subgraph representing an amino acid side chain

• Cα be a carbon atom bound to GSC

• Hα be the hydrogen atom bound to Cα

• G11 be the graph associated to the first amino acid

• G12 be the graph associated to the second amino acid

• G12 “ pV12, E12q be the graph representing two bound amino acids as a result of the
following operations (depicted in figure 11):

– the contraction of G11rtC,O, Ō, H̃us to a vertex labelled C1 resulting in a
modified graph G1 “ pV1, E1q

– the contraction of G12rtH̃,Nus to a vertex labelled N2 resulting in a modified
graph G2 “ pV2, E2q

– V12 “ V1
ď

V2

– E12 “ E1
ď

E2
ď

tC1, N2
u

Figure 11 – The binding of two amino acids (reference (LAVOR; LIBERTI; MUCHERINO,
2013)).

As was also stated in reference (LAVOR; LIBERTI; MUCHERINO, 2013),
replacing G1 by G12 makes clear the fact that the same operation can be carried out
again recursively any finite number p P N of times. If this operation is repeated for all the
amino acids forming a protein, the resulting graph G12...p with edge set E12...p encoding
the covalent bonds represents the whole protein.

It is not uncommon to have more information (i.e., more distances) than what
was presented until now, which facilitates the resolution of the original problem. For the
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moment, however, only the minimum set of edges needed in the model will be used, and
the method to create the Backbone Graph shown ahead can be extended in case more
distances are available.

Each symbol tH i, Ci, N i, Oi, Ci
α, H

i
αu represents the respective atom in the ith

amino acid (i “ 1, ..., p). This will be the vertex set:

VPB “ tH
0, H1, N1, C1

α, H
1
α, C

1, ..., H i, N i, Ci
α, H

i
α, C

i, ..., Hp, Np, Cp
α, H

p
α, C

p, Op, Op`1, Hfu

The pair composed by two symbols (tCi
α, H

i
αu for example) represents an edge

in the graph. Using this nomenclature, the following edge sets can be defined:

• E
i

T “ ttH
i, Ci

αu, tN
i, H i

αu, tN
i, Ci

u, tH i
α, C

i
uu @i P t1, ..., pu

• E1
T “ E

1
T Y ttH

0, H1
u, tH0, C1

αu, tC
1
α, N

2
u, tC1, H2

u, tC1, C2
αuu

• Ep
T “ E

p
T Y ttC

p
α, O

p
u, tCp

α, O
p`1
u, tCp, Hfu, tO

p, Op`1
u, tOp`1, Hfuu

• Ei
T “ E

i

T Y ttC
i
α, N

i`1
u, tCi, H i`1

u, tCi, Ci`1
α uu

The first item defines the edge set for all amino acids, except for one extra
hydrogen in the beginning and one extra oxygen at the end of the chain. The second item
includes this hydrogen, the third, the oxygen, and the last item makes the connections
between consecutive amino acids. Lastly, the entire edge set can be determined as

EPB “ E12...p Y
ď

iďp

Ei
T

and with all these definitions at hand the Backbone Graph GPB of a protein,
shown in figure 12, can be represented as

GPB “ pVPB, EPBq

Figure 12 – Backbone Graph associated with a protein composed of three amino acids
(minimum set of edges - reference (LAVOR; LIBERTI; MUCHERINO, 2013)).
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2 The Distance Geometry Problem

According to reference (LAVOR et al., 2018), Distance Geometry (DG) inves-
tigates problems related to the concept of distance from a geometric perspective. This
area currently focuses on determining a set of coordinates in a geometric space given a set
of known distances.

In reference (MENGER, 1928), Menger characterized several geometric concepts
based on the notion of distance in 1928, and this is considered the offset of the area. In
1953 Distance Geometry became officially a new research field with the work of Blumenthal
(reference (BLUMENTHAL, 1970)).

Initially focused on the determination of whether symmetric matrices are
distance matrices, this area had the first explicit expression of its main problem defined
in the first paragraph of reference (YEMINI, 1978), and the first work relating Distance
Geometry to protein conformation is described in reference (CRIPPEN; HAVEL, 1988).

The following definition for the Distance Geometry Problem (DGP) can be
found in references (LAVOR et al., 2018) and (LIBERTI et al., 2014a):

Definition 2. Distance Geometry Problem (DGP) Given an integer K ą 0 and a
simple, non-directed graph G “ pV,E, dq whose edges weights are given by a non-negative
function d : E Ñ r0,8q, find a function x : V Ñ RK such that

@tvi, vju P E, ||xvi ´ xvj || “ dvi,vj (2.1)

where xvi “ xpviq, xvj “ xpvjq, dvi,vj “ dptvi, vjuq and ||xvi´xvj || is the Euclidean distance
between xvi and xvj .

Since the focus of this work is protein conformation, here K is set to 3. In
reference (SAXE, 1980) it is proved that the problem in an Euclidean space of dimension
K is NP-Hard by reducing this problem to the problem known as 3-Satisfability Problem.

There is still a very important part in the definition of DGP that was not
properly explained: the x function. This function maps the vertices of the graph in a
Distance Geometry Problem to coordinates in the RK (R3 in this work) space.

Definition 3. (LAVOR et al., 2018) Given a graph G “ pV,E, dq, the associated function
x : V Ñ RK is denominated a realization of G in RK

Definition 4. If x satisfies all the equations in system 2.1, then x is a valid realization.

Definition 5. The pair pG, xq, where x is a valid realization, is a framework.
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The most intuitive approach is to solve the set of equations 2.1 in definition 2.
Unfortunately, this process is relatively difficult to do, since this system is not linear and
there is evidence that a closed form for its solution may not exist for all cases (reference
(BAJAJ, 1988)).

Another common approach is to formulate the Distance Geometry Problem
as a global nonlinear optimization problem. In order to do this the decision variables are
defined as being the coordinates of the vertices of the structure, so that the coordinate of
vertex vi is given by xvi . The term to be minimized will then be the difference between
the distances of xvi and xvj , tvi, vju P E and the “true” distances dvi,vj given as part of
the input data of the problem. The model is then given by the following formulation:

min
xv1 ,...,xvnPR3

ÿ

tvi,vjuPE

p||xvi ´ xvj ||
2
´ d2

vi,vj
q

2, |V | “ n (2.2)

However, this approach does not perform well due to the presence of many
local minima, as seen in references (LAVOR; LIBERTI; MACULAN, 2006) and (LIBERTI
et al., 2014a).

2.1 Rigidity and Distance Geometry
Rigidity plays an important role in the process of finding solutions for DGP

instances and asserting the cardinality of its solution set (reference (LAVOR et al., 2018)).
Due to its importance, a brief introduction to this subject will be given in this section.

Initially, for the purpose of describing how Rigidity and Distance Geometry
are connected, it is necessary to introduce concepts related to frameworks in a Distance
Geometry Problem. This is due to the fact that analyzing the (different types of) rigidity
of frameworks relates to comparing frameworks having the same graph but different
coordinates. Intuitively speaking, such comparison will analyze the distance between the
vertices of both frameworks and verify if they are the same, no matter what the coordinates
are.

Definition 6. (GRAVER; AMERICA, 2001) Two frameworks pG, xq and pG, yq are
isometric, denoted by pG, xq „ pG, yq, if

@tvi, vju P E, ||xvi ´ xvj || “ ||yvi ´ yvj || (2.3)

Definition 7. (GRAVER; AMERICA, 2001) Two frameworks pG, xq and pG, yq are
congruent, denoted by pG, xq ” pG, yq, if

@vi, vj P V, ||xvi ´ xvj || “ ||yvi ´ yvj || (2.4)
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Definition 8. (GRAVER; AMERICA, 2001) pG, xq is a rigid framework if there is a
real number ε ą 0 such that

pG, yq „ pG, xq and ||xvi ´ yvi || ă ε, @vi P V ñ pG, yq ” pG, xq (2.5)

Equation 2.5 in definition 8 says that a rigid framework has no continuous
deformations other than rotations and translations, as stated in reference (GRAVER;
AMERICA, 2001). In this sense, each deformation would count as a different framework
having the same originating graph.

Solutions for the DGP constitute a set that will be denoted by X and can be
rotated and translated in R3, implying that this set is infinite and uncountable. Using
algebraic geometry it is also possible to prove that the cardinality of X (assuming it is
not an empty set) is either finite or uncountable (as was done in reference (BENEDETTI;
RISLER, 1990)), a result strongly related to rigidity (explained in reference (GRAVER;
AMERICA, 2001)).

For the next definition the following will be considered: G “ pV,Eq, a graph
with |V | “ n and |E| “ m, and pG, xq a framework in R3. Let also Rλ “ 0 be a linear
system where λ P R3n and R is a mˆ 3n matrix where each row with index tvi, vju has
exactly 6 nonzero entrances given by

xkpviq ´ xkpvjq (2.6)

and
xkpviq ´ xkpvjq (2.7)

for all tvi, vju P E and k “ 1, 2, 3, with x1pviq, x2pviq and x3pviq being the px, y, zq Cartesian
coordinates of xvi in R3.

Definition 9. (LIBERTI et al., 2014a) The framework pG, xq is infinitesimally rigid if
the only solutions for Rλ “ 0 are translations and rotations.

Theorem 1. (GRAVER; AMERICA, 2001), (CONNELLY, 1987) Infinitesimal rigidity
implies rigidity.

If it is assumed that the input data is accurate (that is, the given distances
are real numbers and not intervals), the DGP solution set will contain all solutions to the
problem that are compatible with the input distances. This means that the more distances
are available, the smaller the number of solutions is (excluding rotations, translations and
reflections) since more constraints to the solutions are added. If all distances between vertex
pairs are given there is only one solution, which can be found in linear time (reference
(DONALD, 2011)).
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In this work and in many others the concept of a rigid graph will be used in the
sense of a graph G having a rigid framework pG, xq. A characterization of all rigid graphs
in R2 is given by Laman in reference (LAMAN, 1970) but unfortunately the problem of
characterizing all rigid graphs in dimension 3 and above is still open. However, there are a
few conjectures available, some of which (specially regarding graphs with frameworks in
R3) can be found in reference (JACKSON; JORDÁN, 2008).

2.2 The Assigned and Unassigned Classes
The Distance Geometry Problem (DGP) is divided into two subcategories:

Assigned (aDGP) and Unassigned (uDGP) ( as stated in references (LIBERTI et al.,
2014a), (DUXBURY L. GRANLUND, 2016)). In the Assigned case the distances are given
assigned to vertex pairs, and in the Unassigned case only the distances are given, without
the vertex pairs to which they belong to.

Therefore, in the Unassigned case it is also necessary to associate the input
distances to vertices pairs (in addition to finding the realization for the vertices). In the
case of distances given by NMR it is not known which pairs of vertices they belong to,
which implies that the problem in this work falls into the Unassigned case. The formal
definitions for these two classes are given below.

Definition 10. Assigned Distance Geometry Problem (aDGP) (DUXBURY et
al., 2021) Given an integer K ą 0 and an undirected simple graph G “ pV,E, dq whose
edges have weights given by a non-negative function d : E Ñ r0,8q, determine whether
there exists a function x : V Ñ RK such that

@tvi, vju P E, ||xvi ´ xvj || “ dvi,vj (2.8)

where xvi “ xpviq, xvj “ xpvjq, dvi,vj “ dptvi, vjuq and ||xvi´xvj || is the Euclidean distance
between xvi and xvj .

Suppose now that only a list of distances d̂ of size m is given and let L be the
index set of d̂, ie, L “ t1, 2, ...,mu Ă N. Then d̂ “ pdl, d2, ..., dmq P Rm

` .

Definition 11. The Unassigned Distance Geometry Problem (DGP) (DUXBURY
et al., 2021) : given a set of vertices V and a list of distance values d̂ “ d1, ..., dm, find
an injective function g : t1, ...,mu Ñ V ˆ V and a function x : V Ñ R3 such that,
@ti, ju P gpt1, ...,muq,

||xvi ´ xvj ||2 “ dvivj (2.9)

and
dvivj “ d̂g´1pti,juq (2.10)
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As it was previously mentioned, in the case approached in this work the input
does not have a graph since it is not possible to get its edges. This is due to the fact
that NMR only provides distances, not the atoms related to these distances. Therefore, at
the same time that the vertices are realized they are also associated with the distances
received in the input data of the problem, composing the problem graph.
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3 Vertex Orders

As stated in reference (BODLAENDER et al., 2012; MUELLER; MARTIN;
LUMSDAINE, 2007; HENNEBERG, 1886), problems related to graphs and its vertex
orders are intimatelly related subjects. The problem of determining a graph rigidity based
on an order for its vertices was originally introduced in reference (HENDRICKSON, 1992).

Given a vertex v P V in a graph G “ pV,Eq its adjacent vertices have a strong
influence on the cardinality of the solution set of the DGP: as it was previously said, if there
is a small number of adjacent vertices the number of solutions can become uncountable.

An example of the importance of vertex orders are graph instances having all
vertices starting from the fifth being adjacent to at least four already realized vertices
(called a trilateration order). A graph whose vertices can form an order having this property
is not only globally rigid but also has an unique incongruent solution which can be found
in linear time (references (LAVOR et al., 2018), (GIBSON; SCHERAGA, 1997), (LIBERTI
et al., 2014a)).

According to references (LAVOR et al., 2012), (LAVOR et al., 2018), although
instances for the DGP do not usually have a trilateration order, information related to the
chemistry of proteins can be used to find a different order. This new order has close ties
to the way the problem is resolved, specially with the Branch and Prune algorithm.

In the next chapters it will be seen that in each iteration of this algorithm the
coordinates of a vertex are found using three vertices prior to it who have already been
realized. In order for this to be feasible, a vertex order that guarantees that every instance
for the problem can have its vertices ordered in such way is necessary.

The vertex order ultimately used in the BP algorithm is called the hand-crafted
order, introduced in reference (LAVOR et al., 2018). The purpose of this chapter is to
present this order, starting with precursory concepts necessary for its grasp: the more
general formal definition of vertex orders, the discretizable distance geometry problem class
deriving from instances having such order, and a specific type of vertex order denominated
re-orders.

Definition 12. (LAVOR et al., 2012), (LAVOR et al., 2018) A vertex order for a graph
G “ pV,E, dq is a sequence r : N Ñ V of length |r| P N such that

• The first three vertices of G constitute a clique:

tv1, v2u, tv1, v3u tv2, v3u P E (3.1)
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• All vertices starting from the fourth are adjacent to at least three predecessors:

@i ą 3, Dj, k, l | j ă i, k ă i, l ă i : tvj, viu, tvk, viu, tvl, viu P E (3.2)

Instances with the properties just described in definition 12 define a subcategory
of the Distance Geometry Problem:

Definition 13. (LAVOR et al., 2018), (LAVOR et al., 2012), (GONÇALVES; MUCHERINO,
2014) The instance class whose elements have vertices that follow the order described in def-
inition 12 is denominated the Discretizable Distance Geometry Problem (DDGP)

In reference (LAVOR et al., 2012) an algorithm to find all incongruent solutions
of instances was presented called Branch and Prune. This algorithm is the starting point
of the Branch-and-Prune algorithm developed in this work, which will be presented ahead.

3.1 Re-Orders
The natural idea for an order in the vertex set of a graph is to trace a simple

path with no cycles. Unfortunately, this strategy won’t satisfy the second part of definition
12 for DDGP instances. It is possible, however, to satisfy this order definition if vertex
repetitions are allowed, and in reference (LAVOR; LIBERTI; MUCHERINO, 2013) the
concept of repetition orders is introduced:

Definition 14. Given a graph G “ pV,E, dq a repetition order (re-order) is a sequence
r : NÑ V of length |r| P N such that

• The first three vertices of G constitute a clique:

tv1, v2u, tv1, v3u tv2, v3u P E

• All vertices as from the fourth are adjacent to at least three predecessors:

@i ą 3, Dj, k, l | j ă i, k ă i, l ă i : tvj, viu, tvk, viu, tvl, viu P E

• For all i P t4, ..., |r|u either vi´3 “ vi or tvi´3, viu P E.

In practical terms the first property means that the distances dv1,v2 , dv1,v3 , dv2,v3 P

p0,8q - that is, these distances are real numbers greater than zero. The second property
translates to dvi,vi´1 , dvi,vi´2 P p0,8q for i “ 4, ..., |r|, ie, these distances must also be real
numbers greater than zero (and cannot be intervals, as it is otherwise permitted in some
points in these definitions).

For the third property there are three possibilities:
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• dvi,vi´3 “ 0 - there is a vertex repetition

• dvi,vi´3 P p0,8q - that is, vi´3 and vi are separated by one, two or three chemical
bonds and the given distance for the pair is exact

• dvi,vi´3 “ rdvi,vi´3 , dvi,vi´3s|0 ă dvi,vi´3 ă dvi,vi´3 - the distance is not exact, but an
interval

In this work there will only be used instances that have exact distances. An
algorithm to find solutions for instances of the DMDGP having inexact distances can
be found in reference (LAVOR; LIBERTI; MUCHERINO, 2013) and approaches for this
instance class of the problem utilizing Clifford Algebra were also develped in references
(ALVES; LAVOR, 2017), (R. et al., 2017).

Repetitions are a way to access the input data in a way that all vertices of
the problem can be realized. The initial clique guarantees that all solutions found are
incongruent and the strict triangular inequality assures that the cardinality of the solution
set is countable, according to reference (LAVOR et al., 2018).

Defining repetition orders also sets a minimum necessary quantity and form
of input data for the problem that agrees with the way the data is extracted since NMR
usually not only provides the minimum set of distances but also extra distances that can
be used to accelerate the search for a solution. The coordinates of a repeated vertex can
also be recalculated in order to prevent numerical instabilities.

Whereas repetition is a great tool for finding solution for instances of the
DMDGP, one has to be careful when using it. Even with the assurance of the strict
triangular inequality, it is still possible to find infinite possibilities for the following vertex
to be realized. One example of such case is three consecutive vertices in the sequence
where two of them are equal.

The geometrical correspondence of a case like this is a triangle having one of
its sides equal to zero, drifting away from the idea of restricting its possible positions to
points in space (reference (LAVOR et al., 2018)). In order to prevent this issue, repetitions
can only occur in vertices tvi, vju such that |i´ j| ě 3, as stated in the third restriction in
definition 14.

In the construction process for the backbone graph it can be seen that it has
repetitive parts that represent the amino acids composing a protein: all backbone graphs
have characteristic initial and final structures and a middle structure that repeats itself
according to its size.

With this in mind, it was formulated an order that can be used in any graph
of this type called re-orders, developed in reference (LAVOR; LIBERTI; MUCHERINO,
2013). Here the already familiar denomination is being used once more, where a protein
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atom is a vertex of the backbone graph and its exponent indicates its correspondent amino
acid: C2, for example, indicates the carbon atom of the second amino acid.

Firstly, an order is associated to the first half of the first amino acid in the
GPB graph (denoted by r1

PB). This assures the first requirement of a re-order is satisfied,
since N1, H1 and H0 constitute a clique. Moreover, all following vertices have their three
predecessors already realized. This is illustrated in figure 13:

r1
PB “ tN

1, H1, H0, Cα, N
1, H1

α, C
1
α, C

1
u

Figure 13 – Order r1
PB (reference (LAVOR; LIBERTI; MUCHERINO, 2013)).

The following part of the order (denominated r2
PB) corresponds to atoms of

the first amino acid’s second half. Again, the repetition of atoms N1 and C1
α (and atoms

N i and Ci
α in the next part) assures the fulfillment of the second and third requirements

in definition 14. It is shown in figure 14:

r2
PB “ tN

1, H1, H0, C1
α, N

1, H1
α, C

1
α, C

1
u

Figure 14 – Order r2
PB (reference (LAVOR; LIBERTI; MUCHERINO, 2013)).
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As described in reference (LAVOR; LIBERTI; MUCHERINO, 2013), this atom
sequence is used to construct a bridge between the first and second parts of the first amino
acid. From this point on the following order (shown in figure 15) repeats itself, in line with
the characteristic pattern of the backbone graph:

riPB “ tN
i, Ci´1, Ci

α, H
i, N i, Ci

α, H
i
α, C

i, Ci
αu

Figure 15 – Generic order riPB (reference (LAVOR; LIBERTI; MUCHERINO, 2013)).

The chain’s last amino acid also has a different structure in its last half, having
a few extra atoms. In this case the corresponding order is the following (shown in figure
16):

rpPB “ tN
p, Cp´1, Cp

α, H
p, Np, Cp

α, H
p
α, C

p, Cp
α, O

p, Cp, Op`1
u

Figure 16 – Last part of the re-order rpPB (reference (LAVOR; LIBERTI; MUCHERINO,
2013)).
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3.2 The Hand-Crafted Vertex Order
The hand-crafted vertex order is introduced in reference (LAVOR et al., 2018),

where it is presented following a formal definition of a protein graph and the backbone of
a protein.

For the latter, let p be the number of amino acids in a protein and, for
k “ 2, ..., p´ 1:

• Nk the nitrogen atom in the kth amino acid

• Ok the oxygen atom in the kth amino acid

• Ck
α the α-carbon atom bonded to the Hk

α atom in the kth amino acid

• Ck the carbon atom bonded to Ok atom in the kth amino acid

• Hk
α the α-hydrogen atom in the kth amino acid

• Hk the hydrogen atom bonded to Nk in the kth amino acid

And since the extremities of the chain have each one atom more, with an extra
hydrogen atom at the beginning and an extra oxygen atom at the end, they are labeled
H1˚ and Op˚ respectively. In the hand-crafted order both of these atoms will always appear
after their counterpart, with H1˚ right after H1 and Op˚ being placed last. An example
of a protein backbone is shown in figure 17 for p “ 3. In figure 18 the same structure is
presented with its respective atoms labeled according to this denomination.

Figure 17 – Protein backbone (reference (LAVOR et al., 2018)).
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Figure 18 – Protein backbone labeled according to the protein’s backbone denomination
(reference (LAVOR et al., 2018)).

With these denominations, a protein’s backbone can be defined as

tNk, Ck
α, C

k
u (3.3)

and the graph associated to this protein backbone will be denoted as

G “ pV,E, dq (3.4)

where, as stated in reference (LAVOR et al., 2018), k “ 2, ..., p´ 1.

The final result is the following order:

hc “ tN1, H1, H11 , C1
α, N

1, H1
α, C

1, C1
α, ...,

H i, Ci
α, O

i´1, N i, H i, Ci
α, N

i, H i
α, C

i, Ci
α, ...,

Hp, Cp
α, O

p´1, Np, Hp, Cp
α, N

p, Hp
α, C

p, Cp
α, O

p, Cp, Op1
u

(3.5)

and an example for an instance having three amino acids is available in figure 19.

In reference (LAVOR et al., 2018) it is proven that the hand-crafted order is
a re-order. This is achieved, firstly, observing the fact that since it is assumed that all
bond lengths and bond angles are fixed at their equilibrium values (in line with definition
1.2.1 - the rigid geometry hypothesis), the first and the second requirements of a re-order
(definition 14) are satisfied.

Lastly, it has to be shown that the hand-crafted order fulfills the third require-
ment in the definition of re-orders. This last requirement is equivalent to stating that
either the distances between vertices vi and vi´3 are always known or vertices vi and vi´3

are the same.

Since this order repeats itself, it is easy to isolate all possible atom pairs for
vertices vi and vi´3. Using chemical and structural properties such as the rigid geometry
hypothesis and the peptide plane, it is shown that these distances can always be calculated
and therefore the demonstration that the hand-crafted order is a re-order is concluded.
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Figure 19 – Hand-crafted order (reference (LAVOR et al., 2018)).
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4 Instance Generation

The process of instance generation is a useful tool for testing the Branch-and-
Prune algorithm. It also helps understanding in-depth how proteins are modeled, since
the closer to the reality the model used is, better are the results obtained.

An instance in the context of this work is regarded as the input data for both
the original version and the modified version of the Branch-and-Prune algorithm. In the
original version, after the protein’s atoms are given labels (usually like 1, 2, 3, ... etc) a
distance value is associated to atom pairs. In the modified algorithm version of this work,
only a distance list of real nonnegative values is provided.

4.1 Lavor Instances
In order to facilitate further descriptions (and as was done in reference (PHILLIPS;

ROSEN; WALKE, 1994)), the following sets regarding atoms in a protein will be defined:

• M1 is the set of all pairs of consecutive atoms vi, vj

• M2 is the set of all pairs of atoms separated by two covalent bonds vi, vk

• M3 is the set of all pairs of atoms separated by three covalent bonds vi, vl

• M4 is the set of all pairs of atoms separated by more than two covalent bonds vi, vj

The Lavor Instance’s model, introduced in reference (LAVOR, 2006), considers
each atom pair vi, vj PM1 as having a bond length rvivj corresponding to the Euclidean
distance between xvi and xvj . Every vi, vj, vk P M2 has a bond angle θvivk . This bond
angle is measured according to the relative position of atom vk with respect to the line
γ containing atoms vi and vj. Similarly, every vi, vj, vk, vl PM3 has a torsion angle ωvivl
measured according to the angles between the planes constituted by atoms vi, vj, vk and
vj, vk, vl.

In line with the Rigid Geometry Hypothesis (definition 1.2.1), in reference
(LAVOR, 2006) all bond lengths and bond angles are fixed as rvivj “ 1.526 Å @vi, vj PM2

and θvivk “ 109.5˝ (or 1.91 rad) @vi, vk PM3. Let S be the edge set for the protein graph,
defined according to a cut-off value (often being set as 5Å due to the fact that NMR data
values are usually less than or equal to it).

Given this cut-off value, the instances are generated and only the values less
than or equal to it are taken. This is made so this simulated data becomes more similar to
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a possible NMR data. The members of S will then be the pairs of atoms associated to
these distances in the instance.

The first step is to obtain the Cartesian coordinates for the atoms. In order to
do that, the following equations are used:

»

—

—

—

—

–

xvi1
xvi2
xvi3
1

fi

ffi

ffi

ffi

ffi

fl

“ B1, B2, ..., Bi

»

—

—

—

—

–

0
0
0
1

fi

ffi

ffi

ffi

ffi

fl

@i “ 1, ..., n

B1 “

»

—

—

—

—

–

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

fi

ffi

ffi

ffi

ffi

fl

B2 “

»

—

—

—

—

–

´1 0 0 ´dv1,v2

0 1 0 0
0 0 ´1 0
0 0 0 1

fi

ffi

ffi

ffi

ffi

fl

B3 “

»

—

—

—

—

–

´ cos θv1,v3 ´ sin θv1,v3 0 ´dv2,v3 cos θv1,v3

sin θv1,v3 ´ cos θv1,v3 0 dv2,v3 cos θv1,v3

0 0 1 0
0 0 0 1

fi

ffi

ffi

ffi

ffi

fl

Bi “
»

—

—

—

—

–

´ cos θvi´2,vi ´ sin θvi´2,vi 0 ´dvi´1,vi cos θvi´2,vi

sin θvi´2,vi cosωvi´3,vi ´ cos θvi´2,vi cosωvi´3,vi ´ sinωvi´3,vi dvi´1,vi sin θvi´2,vi cosωvi´3,vi

sin θvi´2,vi sinωvi´3,vi ´ cos θvi´2,vi sinωvi´3,vi cosωvi´3,vi dvi´1,vi sin θvi´2,vi sinωvi´3,vi

0 0 0 1

fi

ffi

ffi

ffi

ffi

fl

@i “ 4, ..., n

where n is the number of atoms in the molecule. Once these coordinates are calculated, the
distances between each pair of atoms are measured, the ones less or equal to the cut-off
value are added to a list. This distance list will be the instance and the input data for the
Branch-and-Prune algorithm.

In the case of the Assigned Distance Geometry Problem this list also contains
the atom pairs related to these distances. An example with 8 atoms is shown in figure 20,
and its set S (given by the vi and vj columns) along with the associated distances is in
equation 4.1. The cut-off value used was 4Å.
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Figure 20 – Example of a protein backbone generated in reference (LAVOR, 2006).
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(4.1)
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5 The Branch-And-Prune Algorithm

The goal of the Branch-And-Prune (BP) algorithm is to find a valid realization
x : V Ñ R3 (from definition 3) for the atoms of a protein modeled as a backbone graph
G “ pV,E, dq, where the elements of d frequently have a maximum value defined by a
cutoff value c. This happens due to the fact that NMR experiments usually perceive
distances smaller than a given value (most of the times this value being equal to 5 Å).

The vertices are realized according to the hand-crafted vertex order defined in
chapter 3 so that it can be guaranteed that, at every step, there will be enough information
to not only find coordinates for these vertices but also find a finite number of possibilities
for them.

5.1 Initialization
Assuming the vertices are ordered according to the hand-crafted order, the first

step is to realize the first three elements of the sequence (figure 19). This guarantees that
these three first vertices form a clique and therefore all distances between pairs of these
elements are available.

Since this is all the available information, it is necessary to define deliberately
the coordinate of the first vertex v1, which in this case is the origin of the Euclidean space.
A similar argument places the second vertex v2 at the axis x and the third vertex v3 at
the plane xy. Applying this to system 6.2 the result is:

x1 “ p0, 0, 0q
x2 “ p´dv1,v2 , 0, 0q

x3 “ p´dv1,v2 ` dv2,v3 cos θv1,v3 , dv2,v3 sin θv1,v3 , 0q
(5.1)

where dvi,vj P d, tvi, vju P E|vi, vj P V .

5.2 General Procedures
The process continues by realizing the following vertices in the hand-crafted

order (presented in section 3.2). This assures the distances between every vertex vi P V ,
i ě 4 and its three immediate predecessors vi´1, vi´2 and vi´3 are available. Hence, it
is possible to use equations from system 6.2, substituting the respective distances. This
makes possible for the algorithm to find coordinates for the remaining vertices.
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According to the hand-crafted order, it can also be assured that not only there
will always be a solution to system 6.2 but also that the number of solutions for the
coordinates of any given vertex in a branch of the search tree will be at most two and
therefore every vertex has two possible positions. As a consequence, a binary tree is formed
associating possible coordinates for the set of atoms in the protein chain (shown in figure
21).

Figure 21 – Binary tree representing the possible solutions for an instance containing 6
vertices.

5.2.1 Prune

As was previously said in section 1.2.1 there is also frequently more information
given in the input data than only the distances related to the three immediate predecessors
of a vertex. In this case it is possible to use this extra distance to compare to the distance
between the points realized regarding these two vertices and verify if they are equal.

In case the distances do not agree, the current structure is not a solution for
the instance and therefore there is no need to continue to explore that branch of the binary
tree and realize the remaining vertices regarding this specific candidate. This procedure is
called pruning.

For the cases where the is a cutoff value c for the distances, there may not
be comparisons available since the distance between the current realized vertex ans past
vertices can be greater than c. When this is the case, nothing is done and the algorithm
continues.

The pseudocode for the Branch-and-Prune algorithm is given in algorithm 1.
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Algorithm 1 Branch-and-Prune algorithm.
Require: Number of amino acids p and distance function d

1: Find the coordinates for the first three vertices (section 5.1)
2:
3: Priority line = r s

4: while A solution is not found do
5: Generate candidates
6: Prune
7: if There is at least one candidate then
8: Add corresponding rigid substructure to existing chain
9: Put last generated candidates at the front of priority line

10: Explore next candidate in priority line

5.3 Symmetries
In reference (LIBERTI et al., 2014b) it was shown that the number of solutions

for DGP instances is not only even but a power of two. This is related to the fact that
these solutions are partially symmetric. The characteristic rigidity of the backbone graph
implies that the search space is finite and has a cardinality multiple of 2n´3, with n being
the number of vertices in the graph (as stated in reference (LAVOR et al., 2018)).

At each point in the BP tree the two points obtained as solutions of system 2
are symmetric. The symmetry plane I (figure 22) is defined by the three predecessors used
to realize these points. That way, all points realized from there on will also be symmetric
regarding I, and given the fact that distances are preserved in symmetric structures, they
will also be pruned in a symmetric manner when viewed as points in the BP tree.

In reference (FIDALGO et al., 2018) a strategy to find all incongruent solutions
for an aDGP instance using this property is presented. This way, the Branch-and-Prune
algorithm only has to find one solution and keep track of prunes in the partial tree (depicted
in figure 23). The remaining solutions are found by partial reflections, giving the result
shown in figure 24).
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Figure 22 – Plane I.

Figure 23 – BP partial tree after the original solution is found (reference (LAVOR, 2014)).
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Figure 24 – BP tree symmetries (reference (LAVOR, 2014)).
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6 The Modified Branch-And-Prune Algo-
rithm

The original Branch-and-Prune algorithm was developed to find solutions
for instances of the Assigned Distance Geometry Problem. Since this work treats the
Unassigned version of the problem, it is necessary to take the differences between these
versions into consideration. This approach resulted in a modified version of the original
Branch-and-Prune algorithm that will be discussed ahead.

While both versions of the Distance Geometry Problem have the same final
objective (ie, finding the coordinates for a set of points given distances between pairs of
these points), assigning these distances to actual pairs in the set of points is a detail that
changes almost every aspect of the problem’s approach. The fact that the Unassigned case
requires distances and not which edges these distances belong to implies that there is not
a graph in the problem input, but a set of vertices (the atoms, in the case of this work’s
application) and a set of edge weights, but not the edges themselves.

Consequently, addressing this problem includes defining the associated graph,
that is, defining the function that associates pairs of vertices (ie the edges). Moreover, it is
necessary to associate these edges to the input d̂. In practical terms, this means that when
the vertices are realized the distances are associated to pairs of vertices, thus defining the
edges of the graph.

In figure 25 two instances corresponding to the same solution are depicted.
As it can be seen, the Unassigned problem instance contains only distances, while the
Assigned problem instance contains distances associated to hydrogen atom pairs (as a
reference, figure 26 depicts the solution for these instances along with the reference for
these pairs). Since the Assigned problem provides these atom pairs, it also defines the
problem graph.

One thing to take into consideration when analyzing these examples is that,
while only hydrogen distances are given, the distances between other atom pairs not
composed by two hydrogens in the same rigid part (as will be explained ahead in section
6.1.1) are known. This is due to the fact that, as the name states, these sections are rigid
and hence their atoms and structure are always the same. It is also the case that, other
than the first part of the protein, all rigid substructures have only one hydrogen, therefore
making the determination of all distances in each rigid subpart possible.
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Figure 25 – Example of two instances (Assigned and Unassigned problems) having the
same solution.

Figure 26 – Corresponding protein structure and hydrogen references for the two instances
depicted in figure 25.

In this version of the BP algorithm, a map of the used distances and to which
pair of vertices these distances belong to is kept (along with the realization to which that
map belongs), for each node of the BP tree. At each iteration all unused distances between
the minimum and maximum possible distance values are taken and a list of possible points
for the next hydrogen is generated.

6.1 Instance Generation in This Work
In reference (HENDRICKSON, 1995) Hendrickson developed an algorithm

based on global optimization that uses the strategy of divide and conquer in order to find
the solution for what he defined as the molecule problem. This problem seeks to find the
localization of a set of objects in the Euclidean space given a set of distances associated to
pairs of these objects, which is a definition very similar to the Assigned Distance Geometry
Problem.



Chapter 6. The Modified Branch-And-Prune Algorithm 49

The Hendrickson algorithm analyzes the input graph and divides it into rigid
substructures. This way, only one atom of each rigid substructure has to be realized (in
order to be used as an anchor) and the other atoms can be placed according to its relative
position regarding the other elements of the set, what can save calculating time.

6.1.1 Rigid Substructures

In line with the original idea of the BP algorithm a modified version was created
where one of the objectives was to focus only on the calculation of its hydrogen coordinates.
This was possible due to the fact that, according to the premises of the DDGP (from
definition 3), the hand-crafted vertex order (section 3.2), properties of the peptide plane
(figure 8) and the chirality of the molecule (explained ahead in 6.1.2), all other atoms of a
protein have only one possible position.

As was stated in section 2.1, rigid frameworks don’t have any continuous
deformations other than rotations and translations. Another way to state this is saying
that, in a rigid framework, all vertex distances are maintained constant throughout any
movement or force applied to it. This implies that, given a rigid framework and all of
its vertex pairs’ distances, if the position for one of its vertices is fixed then all of the
remaining vertex positions can be found (excluding rotations).

In section 1.1 the general structure of proteins is presented, where the peptide
plane is explained and shown to have strong atom bonds. These strong bonds allied to the
atom placements and the fact that all of these atoms lay in one plane imply that this is a
rigid structure. The other structures, being tetrahedrons, naturally have a rigid nature in
the Euclidean 3D space.

The model for a protein in this work disregards its side chains, leaving only its
main chain. This main chain has a pattern where three substructures (peptide plane and
two types of tetrahedrons) are repeated. These substructures will be explained in detail in
the next section, and are also rigid. This, along with the assumptions that the instances
for the uDGP will have an order like the one described in definition 12 and that the values
of the bond angles θ and bond distances r are known and set to their equilibrium values
(as the Geometric Rigidity Hypothesis in definition 1.2.1 states) will be the main base for
this work development hereon now.

Each rigid substructure described ahead has exactly one hydrogen, except for
the first tetrahedron that has two hydrogens. Since the first tetrahedron appears only once
at the beginning of the resolution, the calculations will not be affected by this and the
algorithm can focus in realizing only the hydrogens and sing its coordinates as an anchor
to place multiple atoms at a time in the structure.

The reasons for focusing on the placing of rigid substructures to form the
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final backbone are related to an attempt to reduce significant rounding errors as well as
decreasing the number of iterations for the algorithm. The idea is to save time, since it is
no longer necessary to calculate the coordinates of each atom separately.

Although this approach may seem different from the hand-crafted order, this
tool is still being used. For each of the rigid substructures containing exactly one hydrogen,
the first element to be accessed using that order is precisely that hydrogen. The difference
here is that instead of placing just the hydrogen in its position the entire rigid substructure
is placed. This way, all atoms that are not hydrogens can be skipped.

6.1.2 Rigid Substructures Applied to Lavor Instance Generation

Starting from the model proposed by the Lavor Instances (presented in section
4.1) and taking into consideration the Hendrickson approach introduced in reference
(HENDRICKSON, 1995) (as was stated in section 6.1), it can be seen that there are three
kinds of rigid substructures:

• A tetrahedron formed by two hydrogen atoms, one nitrogen atom and one α-carbon
atom (figure 27 and circled in green in figure 30)

• A tetrahedron formed by one hydrogen atom, one nitrogen atom and two carbon
atoms (figure 28 and circled in pink in figure 30)

• A peptide plan formed by one hydrogen atom, one nitrogen atom, three carbon
atoms and one oxygen atom (figure 29 and circled in blue in figure 30)

Figure 27 – First tetrahedron.

These substructures have parts in common, and it is precisely what is used when
linking them, as seen in figure 31. In figure 30 these rigid substructures are highlighted:
the blue circle highlights the peptide plane, the green circle highlights the first tetrahedron
and the pink circle highlights the second tetrahedron. It should also be noticed that the
amino acids that constitute the molecule are formed by the union of (second) tetrahedron
HNCC and the peptide plane, repeating themselves throughout the protein structure.
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Figure 28 – Second tetrahedron.

Figure 29 – Peptide plane.

It is also valid to introduce, at this point, the concept of chirality. According
to references (DONALD, 2011), (CRIPPEN; HAVEL, 1988), it is a geometrical property
of some types of molecules where, given the same composition and atomic connectivity,
there are differences in their spacial arrangement of atoms. These different structures are
mirrored to each other but are not superimposable. As a comparison, an object such as
a sphere doesn’t have this property since it is equal to its mirror image. An example of
chiral structures if shown in figure 32.

Since a protein’s function is heavily associated to its geometry, the ones who
can be found in different chiralities often cannot be accounted as being the same protein.
For the purpose of this work, the term “positive chirality” will be used for the “right”
molecule and “negative chirality” will be used otherwise.

Using the bond length r “ 1.526Å and bond angle θ “ 1.91 rad values (both
given by the Rigid Geometry Hypothesis in definition 1.2.1), the notions of the rigid
structures that compose the model (peptide plane, tetrahedrons) and knowing which
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Figure 30 – Highlighted rigid substructures in an instance. Hydrogen atoms are in white,
carbon in gray, nitrogen in blue and oxygen in red.

Figure 31 – Common parts in rigid substructures. In green there is the link between the two
tetrahedrons and in pink there are the links between the second tetrahedron
and the peptide plane.

mirrored molecule it is desired to be found (chirality), it is possible to generate an instance.

The atoms’ coordinates of each rigid substructure can be found by ordering
said atoms according to the hand crafted order and placing the first atom at the origin, the
second in the yz plane and the third in the z line in space (this ordering is shown in figures
35, 36 and 38). After that, the ith atom can be found finding the interception of three
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spheres centered in atoms vi´1, vi´2 and vi´3 and with radii dvi,vi´1 , dvi,vi´2 and dvi,vi´3

respectively. After that, it is merely a question of fitting them into the right positions to
construct the protein backbone.

Figure 32 – Chiral structures (reference (FLORENCIO, 2016)).

The configuration of each tetrahedron can be found by placing the first atom
in the origin, the second in the x axis, and the third in the xy plane. The coordinates of
the fourth atom are given by the intersection of three spheres, each centered on one of
the preceding atoms and with radii given by the distance between these atoms and the
fourth atom, as shown in figures 33 and 34. The intersection of these spheres gives us two
solutions and we choose the correct one using the property of chirality.

Still analyzing the structure of the two types of tetrahedra, there is one atom in
the center (nitrogen for the first tetrahedron and α-carbon for the second tetrahedron) and
the other three atoms are all the same distance from that center. Thus, these three atoms
form an equilateral triangle of side r2 and angles θ2 “ 2π{3. Using the values r “ 1.526Å
and θ “ 1.91 radians, the sides of this equilateral triangle (which are the distances between
atoms around the center of the tetrahedron) can be calculated using the cosine law:

r2 “ p2r2
p1´ cos θqq1{2 “ 2.49139 (6.1)

Finally, the coordinates of the atoms can be calculated by placing the first atom
at the origin, the second atom in the coordinate pr, 0, 0q, the third atom in the coordinate
pr cos θ, r sin θ, 0q and the coordinate p of the fourth atom is found by solving the system

|p0, 0, 0q ´ p| “ r

|pr, 0, 0q ´ p| “ r2

|pr cos θ, r sin θ, 0q ´ p| “ r2

(6.2)
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Figure 33 – Distances and angles in the first tetrahedron.

Figure 34 – Distances and angles in the second tetrahedron.

The system 6.2 results in two solutions for the point p and the final so-
lution is chosen according to the chirality of the molecule, such solution being p “

p0.522434, 0.732271,´1.23269q. This is the model for the origin-centered tetrahedra, and
from now on it is only needed to rotate and translate them in alternation with the peptide
plane to form the chain of the molecule.

The coordinates of the first tetrahedron are given by:

xN “ p0, 0, 0q
xC “ p´r, 0, 0q

xH1 “ p´r cos θ,´r sin θ, 0q
xH2 “ p

(6.3)

and the coordinates of the second tetrahedron are given by:

xC1 “ p0, 0, 0q
xN “ p´r, 0, 0q

xH “ p´r cos θ,´r sin θ, 0q
xC2 “ p

(6.4)

and the respective atoms to which those denominations refer to are schematized in the
figures 35 and 36.
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Figure 35 – Reference for the first tetrahedron.

Figure 36 – Reference for the second tetrahedron.

The first atom of the peptide plane (the central carbon denominated by C1)
is again placed at the origin. The rest of the initial procedure of placing the first three
atoms is similar to the procedure done in the tetrahedra. The second atom (the nitrogen
denominated by N) is placed on the line yz “ 0, resulting in coordinates equal to p´r, 0, 0q
(given the fact that it has a covalent bond with C1 and therefore its distance to C1 is equal
to r).

The third atom (the carbon that the peptide plane shares with the next
tetrahedron denominated C2) is placed in the z “ 0 plane. This restrain added to the fact
that its distances to N and C1 and the bond angle between C1, N e C2 are equal to equal
to r, r2 and θ respectively results in coordinates equal to p´rp1 ´ cos θq,´r sin θ, 0q. A
reference illustration for these atoms is shown in the figure 37.
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In order to allocate the remainder of the atoms it is used the fact that the
variables r and θ have known values along with the fact that atoms in a peptide plane are
all in same plane. It can then be deduced that, since the third carbon C3 is bonded to
C1 which in turn is bonded to N , the angle C3 ´ C1 ´N is equal to θ. Thus the triangle
formed by these three atoms is isosceles (since the distance between C3 and C1 equals the
distance between C1 and N given by r). Therefore, the angle N ´C3´C1 can be deduced
to be β “ pπ ´ θq{2. The details are shown in the figure.

Figure 37 – Distances, angles, and references to the peptide plane.

The list of all the coordinates of the peptide plane centered in the origin is
given by:

C1 “ p0, 0, 0q
N “ p´r, 0, 0q

C2 “ p´rp1´ cos θq,´r sin θ, 0q
O “ p´r cos β,´r sin β, 0q
C3 “ p´r cos θ, r sin θ, 0q

H “ p´rp1´ cos βq, r sin β, 0q

(6.5)

The description for instance generation is shown in algorithm 2.

In the process there is a cutoff value c inserted in order to mimic the NMR
data collection process, which calculates the distances between nearby hydrogens and
provides those having value up to c. This value is typically equal to 5 Å in experiments.
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Figure 38 – Reference to the peptide plane.

Algorithm 2 Instance generation algorithm
Require: Number of amino acids p, cutoff value c and distances d̂

1: Set up rigid substructures
2: Place tetrahedron 1
3: for i “ 2 to 2p do
4: Randomly generate torsion angle ω
5: if i is even then
6: Add tetrahedron 2 to existing chain
7: else Add peptide plane to existing chain
8: Rotate the last placed rigid substructure ω rad around the common axe with

previous structure

6.2 Initialization (Modified Algorithm)
In order to initiate the algorithm it is firstly necessary to set up the chain’s

rigid parts. The coordinates for the elements of these rigid substructures with relative
positions at the origin are again calculated:

• First tetrahedron NCHH (figure 35)

xN “ p0, 0, 0q
xC “ p´r, 0, 0q

xH1 “ p´r cos θ,´r sin θ, 0q
xH2 “ p

(6.6)
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Figure 39 – Example of a representation of the main backbone of a protein containing
three amino acids.

• Second tetrahedron CNHC (figure 36)

xC1 “ p0, 0, 0q
xN “ p´r, 0, 0q

xH “ p´r cos θ,´r sin θ, 0q
xC2 “ p

(6.7)

• Peptide plane CNCOCH (figure 37)

C1 “ p0, 0, 0q
N “ p´r, 0, 0q

C2 “ p´rp1´ cos θq,´r sin θ, 0q
O “ p´r cos β,´r sin β, 0q
C3 “ p´r cos θ, r sin θ, 0q

H “ p´rp1´ cos βq, r sin β, 0q

(6.8)

With the rigid substructures well defined, what is left is to find the torsion
angle ωvi between them so that they can be correctly placed. More specifically, this is
the angle between the two planes defined by txvi´3 , xvi´2 , xvi´1u and txvi´2 , xvi´1 , xviu, as
shown in figure 40 for i “ 8.
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Figure 40 – Planes xv8xv7xv6 and xv7xv6xv5 .

6.3 General Procedures
Using again the hand-crafted order to label the protein atoms it can be extracted

a subset pertaining only to its hydrogens th1, h2, ..., hmu, where m is the number of
hydrogens in the original order, and the general procedure of the algorithm will be to
generate candidates for the realization hw of the wth hydrogen (the ith atom in the original
order). But instead of solving only one system like in the previous case, multiple systems
having the form of system 6.2 will be solved. This happens due to the fact that the only
information regarding distance dvi,vi´3 is that it is one of the distances in the input list d̂
and therefore all available distances must be tested. Each system will have the form

|xvi´1 ´ xid̂l
| “ dvi,i´1

|xvi´2 ´ xid̂l
| “ dvi,i´2

|xvi´3 ´ xid̂l
| “ d̂l

(6.9)

where d̂l is the list of unused distances at that point of the algorithm and l varies between
the elements of d̂l.

Since the previous atoms have a determined position and the molecule structure
has rigid substructures, the placement of an hydrogen will always have a restrained circle
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determined by the torsion angle of the current substructure being placed, as seen in figure
10.

For the second structure to be placed (that is, a second tetrahedron) the torsion
angle will be around the axis that passes through atoms C and N (figure 41). For the third
structure to be placed (peptide plane) and all following structures of this type, the torsion
angle will be around the axis that passes through atoms C and C (figure 42). Finally, for
the forth structure to be placed (that is, again a second tetrahedron) and all following
structures of this type, the torsion angle will be around the axis that passes through atoms
N and C (figure 43).

Figure 41 – Highlighted C-N axis (in green) regarding the rotation for the placement of
atom H3.

From equations 4.1 the coordinates for atom i are

´dvi´1,vicosθvi´2,vi

dvi´1,visinθvi´2,vicosωvi´3,vi

dvi´1,visinθvi´2,visinωvi´3,vi

(6.10)

6.3.1 Prune

The pruning process is very similar to the prune performed in the classic BP
algorithm described in the previous section, but there are a few differences. Firstly, if
there is a cutoff value c and a distance calculated in a candidate is greater than c there is
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Figure 42 – Highlighted C-C axis (in green) regarding the rotation for the placement of
atom H4.

nothing to be done and the prune does not occur. If this calculated distance is less than
or equal to c it can then be analyzed and a corresponding value can be looked for in the
input data.

The number of distances associated to edges is closely monitored in the prune
process. The reason for this is so that, if only a small number of them is associated and
it is not possible to associate all distances by the last amino acid of that candidate, the
candidate cannot be the correct one.

For example, consider an instance having 21 distances and three amino acids.
If a candidate for the first two amino acids has only seven distances used, there is no way
for all of the remaining 14 distances to be associated to pairs of atoms by the time the last
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Figure 43 – Highlighted C-N axis (in green) regarding the rotation for the placement of
atom H5.

amino acid is placed in this structure. Hence, there is no point in continuing to explore
this branch of the search tree of the algorithm, and this candidate can also be pruned.
The pseudocode for the modified Branch-and-Prune algorithm is shown in algorithm 3.

6.4 Correctness of the Modified Branch-and-Prune Algorithm
Although the modified BP algorithm has been explained, it still needs to be

certified that it works. This is called the correctness of the algorithm, which will be done
in two parts: the first will assume that the algorithm ends and prove that it produces the
correct answer. The second part will prove that it will always end.
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Algorithm 3 Modified Branch-and-Prune Algorithm
Require: Number of amino acids p, cutoff value c and distance list d̂

1: Set up rigid substructures
2: Priority line = r s

3: while A solution is not found do
4: Generate candidates from available distances
5: Prune
6: if There is at least one candidate then
7: Add corresponding rigid substructure to existing chain
8: Put last generated candidates at the front of priority line
9: Explore next candidate in priority line

There are some hypotheses here: since all instances are taken from an existing
protein structure model, there will always be a solution. Also, the instances have a minimum
number of available distances: for the realization of each hydrogen it is necessary that the
distance of this hydrogen to the previous hydrogen in the order of the atoms of the protein
is available.

It is known that the initial part of the structure (the amino acid composed of
the first and second tetraheda) has three hydrogens (two in the first tetrahedron and one
in the second) and after that each amino acid has two hydrogens (one from the second
tetrahedron and one from the peptide plane). Thus, an instance containing p amino acids
has 2p` 1 hydrogens.

In order to realize the hydrogen i (where i ě 3) at least one distance within
the threshold of possible values has to be available. Therefore, given an instance with p
amino acids it is necessary at least 2p distances. It will be assumed from now on that the
input data agrees with this, as well as the fact that this distance list belongs to an existing
structure.

In the first part of the proof there are three cases when realizing parts of a
structure:

• The part of the structure trying to be realized is the first tetrahedron (figure 27)

• The part of the structure trying to be realized is the second tetrahedron (figure 28)

• The part of the structure trying to be realized is a peptide plane (figure 29)

The initial part of the demonstration regarding the realization of the first
tetrahedron is trivial since it does not depend on the instance and therefore it will always
be correct. Moreover, if H1 and H2 are defined as the two hydrogens in tetrahedron 1, the
hydrogen H3 will be the one in the next second tetrahedron and the hydrogen after, H4,
will be the one in the next peptide plane - as in figure 44.
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Using this logic, for the following hydrogens H4, H5, ..., H2p`1 (where p is the
number of the molecule’s amino acids), the hydrogens pertaining to the second tetrahedron
will be regarded as H2i`1 and hydrogens pertaining to the peptide plane will be regarded
as H2i, for i “ 2, ..., p.

Figure 44 – Labeling of the hydrogens in a protein, associated with the rigid substructures
they belong to.

The second tetrahedron and its following peptide plane are realized firstly by
generating candidates for the position of the two hydrogens belonging to each of these
structures, H3 and H4 respectively (as seen in figure 44). For this, as explained previously,
distances not yet utilized from the input list are taken.

After generating all possible candidates it is necessary to fit the new structure
in the amino acid chain, using the coordinates of the candidates as an anchor point. For
the second tetrahedron, the other reference is the segment initiating in the Nitrogen and
ending in the α-Carbon which is placed in the corresponding segment that already exists
in the chain, and this plus the hydrogen coordinates makes the structure to be completely
locked in.

Meanwhile, for the peptide plan, this part corresponds to the segment initiating
in the α-Carbon and ending in the second Carbon of the previous tetrahedron. Since it is
assumed that the instance originates from an existing structure it can be said that there
is a distance in the available distances list that will generate the “correct” candidate.
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Let it then be assumed that the algorithm is in its nth step. The structure
to be realized is either a peptide plane (when n is odd and greater than 1) or a second
tetrahedron (when n is even). Assuming that this routine always ends, it will find the
right partial solution (that is, the right structure up to the n ´ 1 step) at some point,
and since all possible available distances are used to generate the next candidate, one of
these distances will generate the right one. Therefore, the first n parts of the structure are
correct. Since n is generic, this argument can be applied to all iterations and therefore it
is shown by induction that the right solution will be found.

In order to prove the second part one has to analyze the solution set of the
problem. Since the algorithm walks through a search tree, the number of possible solutions
is equal to the number of leafs this tree possesses. Each node that is not a leaf has a
degree of 2|d̂| ` 1 at most (where |d̂| is the cardinality of elements in the list given as the
input). If the number of amino acids is p, the search tree will have a height of equal to
2p´ 1. Therefore, according to results from reference (WEST, 2001), it will have at most
p2|d̂| ` 1qp2p´1q leafs. This shows that the search space is finite, and therefore the algorithm
will finish.

6.5 Symmetries
As it was previously mentioned in chapter 5, the original Branch-and-Prune

algorithm constructs a symmetric tree when used to find solutions for the Assigned Distance
Geometry Problem’s instances. Although a formal proof is yet to be provided, there is
empiric evidence to support the fact that this is also the case with the Unassigned class.
In figure 45 the search tree for the modified branch-and-prune algorithm, where the input
of an instance was provided, is shown.

Figure 45 – Search tree of an uDGP intance.
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The fact that the modified BP tests a greater number of distances than its
original counterparts (with the “correct” distance among this set) implies that the solution
set for the Unassigned class contains the solution set of the Assigned class. This conclusion,
drawn from previous arguments and an original contribution in this work, can also be
stated as:

Remark 1. Let :d be an instance for the Assigned Distance Geometry Problem and :d2 the
list having the same values but no vertex pairs (ie, its Unassigned counterpart). If S is the
solution set for instance :d and S2 is the solution set for instance :d2,

S Ď S2 (6.11)

It can also be easily concluded that, if solutions for the aDGP are also solutions
for the uDGP, their branches are also in the uDGP search tree and hence its properties
are present:

Remark 2. Remark 1 implies that the search tree of the Modified Branch-and-Prune
Algorithm is partially symmetric

These partial results added to empirical observations are evidence of the
following:

Remark 3. The search tree constructed by the Modified Branch-and-Prune Algorithm is
(almost always) symmetric

Research conducted about the Assigned Distance Geometry Problem (found in
reference (LIBERTI et al., 2014b)) concluded that the cardinality of the solution set is
a power of two. More specifically, it is equal to 2n´3, where n is the number of atoms in
the instance. Although there is evidence to support a similar result for the Unassigned
Distance Geometry Problem, it is likely this quantity is greater than a power of two -
possibly a power of a list of the size of the instance |d2|.

The reason for this to be almost always the case rises from the nature of the
problem when given a cutoff value, as shown, for instance, in figure 61. It can be the
case, depending on the cutoff value c, that the calculated distance in the prune process
is greater than c and less than c in the corresponding symmetric side of the tree. The
distance smaller than c, when not found in the problem instance, results in the prune
of one branch of the tree, while its symmetric counterpart cannot be pruned due to the
absence of information for distances greater than c.

In the previous section an upper limit for the cardinality of the solution set
was calculated as p2|d̂| ` 1qp2p´1q, where p is the number of amino acids of the instance.
The interval between this number and the size of the solution set for the Assigned problem
is where |S2| lies, leading to a theorem originated from conclusions in this work:
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Theorem 2. Using the terminology stated in remark 1, the cardinality of the solution set
S2 is in the following interval:

2n´3
ď |S2| ď p2|d̂| ` 1qp2p´1q (6.12)
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7 Computational Results

This chapter treats more practical aspects from this work (hence why points
discussed in the sections ahead are grouped together). Firstly, the modified BP algorithm’s
procedures will be presented for examples of instances of the problem. Both instances
in these examples have three amino acids - a small size but sufficient to illustrate the
algorithm iterations.

Secondly, three instances derived from the same structure with different cutoff
values are depicted and their search trees and solutions are analyzed. The goal of this
example is to explore the possible symmetries that the search trees depict, and how
different cutoff values have an effect in both the search trees and algorithm solutions.

Finally, computational results from tests who were run in instances having
different combinations of sizes and cuts will be shown and commented, as well as suggestions
for future actions regarding the subjects treated here.

7.1 Example 1
In this section it will be shown an example of the first iterations of the Modified

Branch-and-Prune algorithm. The instance is derived from a structure with two amino
acids and is given by

d̂ “ r0.6972, 2.4913, 2.6464, 3.1882, 3.7331, 3.9363, 4.3073, 4.9666, 6.1670s

In this example, there is no cutoff value for the instance distances.

The algorithm begins calculating the first tetrahedron’s coordinates, which
are given in figure 46. The distance used to calculate this structure is equal to 2.4913 Å
and is deleted from the available distances from this point on. For the next iteration the
coordinates of the second tetrahedron will be calculated, starting from its hydrogen.

In order to find the coordinates for this hydrogen it is necessary to solve systems
of the form

||xH3 ´ xN1 || “ dH3,N1

||xH3 ´ xCα1 || “ dH3,Cα1

||xH3 ´ xH2 || “ d̂H3,i,H2

(7.1)

where d̂H3,i,H2 is an unused distance from the input list (with i going from 1 to 10 since
there are 10 possible distances to be used at this point). This means that, for every distance
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Figure 46 – Tetrahedron 1.

other than 2.4913 Å, a system of this form will be solved substituting the distance value.
The candidates found are shown in table 1.

The next step is to eliminate candidates having complex coordinates. After

Distances Coordinates
0.6972 no real solutions

2.6464 p0.2779, 2.3169, 0.872697q
p´1.0202, 2.2548, 0.2856q

3.1882 p0.6619, 1.5307, 1.8508q
p´1.9434, 1.4062, 0.6726q

3.2582 p0.6307, 1.4145, 1.9514q
p´1.9891, 1.2893, 0.7666q

3.7331 p´0.1858, 0.5305, 2.4271q
p´1.7388, 0.4563, 1.7248q

3.9363 no real solutions
4.3073 no real solutions
4.9666 no real solutions
6.1670 no real solutions
Table 1 – Candidates for iteration 2
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Distances Coordinates

2.6464 p0.2779, 2.3169, 0.872697q
p´1.0202, 2.2548, 0.2856q

3.1882 p0.6619, 1.5307, 1.8508q
p´1.9434, 1.4062, 0.6726q

3.2582 p0.6307, 1.4145, 1.9514q
p´1.9891, 1.2893, 0.7666q

3.7331 p´0.1858, 0.5305, 2.4271q
p´1.7388, 0.4563, 1.7248q

Table 2 – Candidates for iteration 2 having only real coordinates

that, the distances between H3i and H1 must be calculated and the prune process begins:
if the calculated distances are not in the unused distances list, the associated structure
can be discarded. The results are given in table 2.

Candidate Calculated Distance Is the Distance
In the List

p0.2779, 2.3169, 0.8726q 3.2582 Yes
p´1.0202, 2.2548, 0.2856q 3.7648 No
p0.6619, 1.5307, 1.8508q 2.6922 No
p´1.9434, 1.4062, 0.6726q 3.7932 No
p0.6307, 1.4145, 1.9514q 2.6464 Yes
p´1.9891, 1.2893, 0.7666q 3.7661 No
p´0.1858, 0.5305, 2.4271q 2.6095 No
p´1.7388, 0.4563, 1.7248q 3.3265 No

Table 3 – Prune at the second iteration

And now there are two candidates left (as shown in table 1). For each one of
them a second tetrahedron will be placed with the first tetrahedron using their coordinates
as an anchor, forming two new structures. They will form the corresponding nodes at level
two in the search tree, as shown in figure 47.

Taking one of these structures (shown in figure 47) and moving forward, it is
necessary to generate the next candidates. The list of available distances at this point is
d2 “ r0.6972, 2.6464, 3.1882, 3.7331, 3.9363, 4.3073, 4.9666, 6.1670s and the algorithm moves
forward in a similar fashion as it was shown in iteration 2.
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Figure 47 – Search tree at the end of iteration 2.

7.2 Example 2
In this second example an instance regarding a protein with three amino acids

will be analyzed. This instance also has a cutoff value of 5.2 Å for all of its distances and
is depicted below:

d̂ “ r0.671034, 2.13928, 2.49139, 2.62566, 3.16099, 3.29366,
3.77662, 3.88612, 3.76679, 4.24744, 4.70957, 5.10945s

As it was previously stated, the first thing to do is to calculate the coordinates
for the first tetrahedron’s coordinates, which are given in figure 46. The distance used to
calculate this structure is equal to 2.4913 Å and is deleted from the available distances. For
the next iteration the coordinates of the second tetrahedron will be calculated, starting
from its hydrogen and using equations 7.1. The distance list for this iteration is given by

d̂2 “ r0.671034, 2.13928, 2.62566, 3.16099, 3.29366,
3.77662, 3.88612, 3.76679, 4.24744, 4.70957, 5.10945s

In order to find the coordinates for this hydrogen it is necessary to solve systems
of the form

||xH3 ´ xN1 || “ dH3,N1

||xH3 ´ xCα1 || “ dH3,Cα1

||xH3 ´ xH2 || “ d̂H3,i,H2

(7.2)

where d̂H3,i,H2 is an unused distance from the input list (with i going from 1 to 9 since

there are 9 possible distances to be used at this point). This means that, for every distance
other than 2.4913, a system of this form will be solved substituting the distance value. The
candidates found are shown in table 4, and the next thing to do is to exclude candidates with
coordinates having imaginary numbers. These candidates and their respective distances
are seen in table 5.
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Distances Coordinates
0.67103 no real solutions
2.13928 no real solutions

2.62566 p0.222477, 2.34212, 0.81975q
´0.946107, 2.28627, 0.291307q

3.16099 p0.669752, 1.57524, 1.81027q
p´1.9217, 1.45139, 0.638392q

3.29366 p0.608639, 1.35442, 2.00053q
p´2.00663, 1.22943, 0.817883q

3.76679 p´0.329331, 0.459582, 2.42639q
p´1.63838, 0.39702, 1.83442q

3.77662 p´0.378128, 0.438376, 2.42319q
p´1.60223, 0.379873, 1.86964q

3.88612 no real solutions
4.24744 no real solutions
4.70957 no real solutions
5.10945 no real solutions

Table 4 – Candidates for iteration 2

Distances Coordinates

2.62566 p0.222477, 2.34212, 0.81975q
´0.946107, 2.28627, 0.291307q

3.16099 p0.669752, 1.57524, 1.81027q
p´1.9217, 1.45139, 0.638392q

3.29366 p0.608639, 1.35442, 2.00053q
p´2.00663, 1.22943, 0.817883q

3.76679 p´0.329331, 0.459582, 2.42639q
p´1.63838, 0.39702, 1.83442q

3.77662 p´0.378128, 0.438376, 2.42319q
´1.60223, 0.379873, 1.86964q

Table 5 – Candidates for iteration 2 (excluding complex solutions)

Going ahead, it is time to execute the pruning process. For the third iteration
on, one way to look at the procedures is the following: the two candidates who were not
pruned are put in a pile that prioritizes the last element to be placed, providing a way to
span the tree of possibilities for the algorithm. Since newer elements are taken first and
these elements are put in the order they are generated for the distances, the algorithm
goes deep in the tree until a prune occurs or it reaches a leaf.

The highest candidate in the pile (coordinates p0.608639, 1.35442, 2.00053q)
is taken for the next iteration. The previous list of available distances is upgraded ac-
cording to this candidate, excluding from the list the distance that generated this can-
didate and the calculated distance to hydrogen 1. This makes this list take the form
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Candidate Calculated Distance Is the Distance
In the List

p0.222477, 2.34212, 0.81975q 3.29366 Yes
p´0.514075, 2.40691, 0.386684q 3.74843 No
p´0.438819, 2.41725, 0.413977q 3.62693 No
p´1.55595, 1.91207, 0.360587q 3.80207 No
p´1.49154, 1.96672, 0.338142q 2.62566 Yes
p´0.148336, 2.42507, 0.551391q 3.74985 No
p0.144582, 2.37072, 0.752206q 2.64919 No
p´0.84655, 2.32335, 0.304009q 3.25664 No
p´1.36977, 2.05819, 0.307555q 2.66414 No
p´0.0167806, 2.40969, 0.63255q 3.23301 No

Table 6 – Prune at the second iteration

Figure 48 – Pile at the end of iteration 2 having coordinate candidates for the third
hydrogen in the structure.

r0.671034, 2.13928, 3.16099, 3.76679, 3.77662, 3.88612, 4.24744, 4.70957, 5.10945s. These dis-
tances are each used to generate the next candidates that can be seen in table 7. Excluding
complex solutions, the candidates are as shown in table 8.

And now the prune can be applied, with its results in table 9. From hereon now,
when a distance can’t be found in the distance list (meaning it can’t be used to prune a
candidate) the notation “´” will be used. Since this is the fourth hydrogen realized (using,
among other elements, the coordinates of the third hydrogen), there are two available
hydrogens (hydrogen 1 and hydrogen 2) to be used in order to compare the distances from
them to these candidates and check them against the list of available distances. Hence,
there are two distances displayed in the column for the calculated distances and two checks
are made for whether they are in the distance list or not.

A solution candidate is not pruned only if the following requirements are
satisfied: both calculated distances are in the list, if this distance pair has one distance
being larger than the cutoff value (what would result in these distances being excluding
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Distances Coordinates
0.67103 no real solutions

2.13928 p´0.3679, 1.4683, 3.9004q
p0.1671, 0.1808, 3.7338q

3.16099 p´2.0328, 3.0148, 2.5082q
p´0.0594,´1.7333, 1.8936q

3.76679 p´2.7615, 2.8623, 1.2543q
p´0.7965,´1.8657, 0.6423q

3.77662 p´2.7716, 2.8528, 1.2313q
p´0.8124,´1.8612, 0.6211q

3.88612 p´2.8775, 2.7266, 0.9682q
p´0.9995,´1.7920, 0.3833q

4.24744 p´3.0953, 1.9162,´0.0008q
p´1.8081,´1.1811,´0.4017q

4.70957 no real solutions
5.10945 no real solutions

Table 7 – Candidates for iteration 3

Distances Coordinates

2.13928 p´0.3679, 1.4683, 3.9004q
p0.1671, 0.1808, 3.7338q

3.16099 p´2.0328, 3.0148, 2.5082q
p´0.0594,´1.7333, 1.8936q

3.76679 p´2.7615, 2.8623, 1.2543q
p´0.7965,´1.8657, 0.6423q

3.77662 p´2.7716, 2.8528, 1.2313q
p´0.8124,´1.8612, 0.6211q

3.88612 p´2.8775, 2.7266, 0.9682q
p´0.9995,´1.7920, 0.3833q

4.24744 p´3.0953, 1.9162,´0.0008q
p´1.8081,´1.1811,´0.4017q

Table 8 – Candidates for iteration 3 (excluding complex solutions)

from the comparison) and the distance smaller than the cutoff value (if this distance
exists) is in the list or if both calculated distances are larger than the cutoff value. For this
iteration all of the calculated distances being below the cutoff value of 5.2 Å are compared
against the list of available distances.

Since all of the candidates have been pruned, the algorithm goes ahead on
the pile (figure 50) and tests the other candidate for the third hydrogen: the coordinates
p0.2224, 2.3421, 0.8197q. At this point the list of available distances also changes, going back
to the beginning of iteration 2 with the modification that the distance that generated this
candidate (equal to 2.62566) and the calculated distance of the prune (equal to 3.29366)
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Candidate Calculated Distances Are the Distances
(hydrogen 1, hydrogen 2) In the List

p´0.3679, 1.4683, 3.9004q t4.26895, 5.26155u {No, ´ }
p0.1671, 0.1808, 3.7338q t3.40778, 5.00964u {No, No}
p´2.0328, 3.0148, 2.5082q t5.31494, 5.07284u { ´ , No}
p´0.0594,´1.7333, 1.8936q t1.96697, 4.02388u {No, No}
p´2.7615, 2.8623, 1.2543q t5.39268, 4.63759u { ´ , No}
p´0.7965,´1.8657, 0.6423q t2.19184, 3.46488u {No, No}
p´2.7716, 2.8528, 1.2313q t5.3908, 4.62805u { ´ , No}
p´0.8124,´1.8612, 0.6211q t2.20355, 3.45617u {No, No}
p´2.8775, 2.7266, 0.9682q t5.36058, 4.51459u { ´ , No}
p´0.9995,´1.7920, 0.3833q t2.35243, 3.36162u {No, No}
p´3.0953, 1.9162,´0.0008q t5.07006, 4.00098u {No, No}
p´1.8081,´1.1811,´0.4017q t3.13079, 3.127827u {No, No}

Table 9 – Prune for iteration 3

are removed. This distance list is now equal to

r0.671034, 2.13928, 3.16099, 3.76679, 3.77662, 3.88612, 4.24744, 4.70957, 5.10945s (7.3)

and the corresponding partial structure at this point is shown in figure 49.

Using the available distances, the next candidates are generated as seen in table
10. In table 11 the remaining candidates after the exclusion of imaginary numbers are shown.
The next step is to test these candidates in the pruning process: having two candidates that
have not been pruned, the algorithm stores them again in a pile and proceeds to extract the
highest candidate, in this case the one related to the coordinate p1.3170,´1.2625, 1.08709q.
The distance list now is equal to r2.13928, 3.76679, 3.88612, 4.24744, 4.70957, 5.1094s, the
related candidates generated by them are in table 13 and the candidates having only real
numbers are shown in table 14. The corresponding partial structure at this point is shown
in figure 51.

The prune process now compares the distances between the candidates and
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Figure 49 – Partial structure at the beginning of iteration 3.

Figure 50 – Pile at the end of iteration 3 having one last coordinate candidate for the
third hydrogen in the structure.

hydrogens 1, 2 and 3, with its results shown in table 15. Only one candidate (the one having
its coordinates equal to p´0.2853,´1.0350, 4.6201q) is not pruned, so for the next iteration
this candidate will be regarded as the fifth hydrogen in the structure. The candidate for
the fourth hydrogen shown is position 1 in the pile of figure 52 will remain there waiting
to be checked. The corresponding partial structure at this point is shown in figure 53.
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Distances Coordinates
0.67103 no real solutions

2.13928 p0.5971, 3.0467, 2.8046q
p1.7269, 2.354, 2.3405q

3.16099 p´1.9910, 2.4712, 3.0726q
p2.1756,´0.0835, 1.3613q

3.76679 p´2.8112, 1.2983, 2.7934q
p1.3378,´1.2456, 1.0894q

3.77662 p´2.8197, 1.2739, 2.7860q
p1.3170,´1.2625, 1.08709q

3.88612 p´2.8998, 0.9879, 2.6957q
p1.0655,´1.4433, 1.0672q

4.24744 p´2.8566,´0.2119, 2.2467q
p´0.1386,´1.8785, 1.1303q

4.70957 no real solutions
5.10945 no real solutions

Table 10 – Candidates for iteration 4

Distances Coordinates

2.13928 p0.5971, 3.0467, 2.8046q
p1.7269, 2.354, 2.3405q

3.16099 p´1.9910, 2.4712, 3.0726q
p2.1756,´0.0835, 1.3613q

3.76679 p´2.8112, 1.2983, 2.7934q
p1.3378,´1.2456, 1.0894q

3.77662 p´2.8197, 1.2739, 2.7860q
p1.3170,´1.2625, 1.08709q

3.88612 p´2.8998, 0.9879, 2.6957q
p1.0655,´1.4433, 1.0672q

4.24744 p´2.8566,´0.2119, 2.2467q
p´0.1386,´1.8785, 1.1303q

Table 11 – Candidates for iteration 4 (excluding complex solutions)

For the next iteration, the updated list of available distances is

d̂6 “ r2.13928, 3.76679, 4.70957s

and the generated candidates are shown in table 16 and the subset of candidates
having no imaginary numbers is shown in table 17. The corresponding partial structure at
this point is shown in figure 53. In this instance of the prune, there are two candidates
that have all of their calculated distances larger than the cutoff value. Hence, there is no
way to compare and prune them and so they both are considered as candidates for the
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Candidate Calculated Distances Are the Distances
(hydrogen 1, hydrogen 2) In the List

p0.5971, 3.0467, 2.8046q t4.47092, 4.65427u {No, ´ }
p1.7269, 2.354, 2.3405q t3.65762, 4.10476u {No, No}
p´1.9910, 2.4712, 3.0726q t5.15403, 5.27992u { ´ , No}
p2.1756,´0.0835, 1.3613q t1.47796, 3.18242u {No, No}
p´2.8112, 1.2983, 2.7934q t4.97221, 5.25777u { No, ´ }
p1.3378,´1.2456, 1.0894q t0.66786, 3.15741u {No, No}
p´2.8197, 1.2739, 2.7860q t4.96541, 5.25495u { Yes, ´}
p1.3170,´1.2625, 1.08709q t0.67103, 3.161u {Yes, Yes}
p´2.8998, 0.9879, 2.6957q t4.8781, 5.21633u { No, ´}
p1.0655,´1.4433, 1.0672q t0.770748, 3.21215u {No, No}
p´2.8566,´0.2119, 2.2467q t4.34667, 4.94127u {No, No}
p´0.1386,´1.8785, 1.1303q t1.72912, 3.58293u {No, No}

Table 12 – Prune for iteration 4

Distances Coordinates
2.13928 no real solutions

3.76679 p1.4704,´0.0596, 4.6533q
p´0.3550,´1.5277, 4.4519q

3.88612 p0.95614,´0.03670, 4.7571q
p´0.2853,´1.0350, 4.6201q

4.24744 no real solutions
4.70957 no real solutions
5.10945 no real solutions

Table 13 – Candidates for iteration 5

Distances Coordinates

3.76679 p1.4704,´0.0596, 4.6533q
p´0.3550,´1.5277, 4.4519q

3.88612 p0.95614,´0.03670, 4.7571q
p´0.2853,´1.0350, 4.6201q

Table 14 – Candidates for iteration 5 (excluding complex solutions)

Calculated Distances
Candidate (hydrogen 1, hydrogen 2, Are the Distances

hydrogen 3) In the List
p1.4704,´0.0596, 4.6533q t4.11744, 6.01428 {No, ´, No }

4.69284u
p´0.3550,´1.5277, 4.4519q t4.1692, 6.18005, {No, ´, ´}

5.33875u
p0.95614,´0.03670, 4.7571q t4.21297, 6.05452, {No, ´, No }

4.65832u
p´0.2853,´1.0350, 4.6201q t4.24744, 6.167, {Yes, ´, Yes}

5.10945u

Table 15 – Prune for iteration 5
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Figure 51 – Partial structure at the beginning of iteration 4.

Figure 52 – Pile at the end of iteration 4 having two coordinate candidates for the fourth
hydrogen in the structure.

next iteration. One of them is taken for the next step of the algorithm while the other
is placed into the pile previously mentioned, that now has the configuration as shown in
figure 55.

The next iteration generates only one candidate after the pruning process, and
since this is the last part of the protein structure, the first solution has been found. The
algorithm now goes back to the same configuration it had at the beginning of iteration 6
with the addition of the peptide plane containing the remaining candidate at the pile. The
distance list is also modified to the distance list at iteration 7 minus the distance that
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Figure 53 – Partial structure at the beginning of iteration 5.

Distances Coordinates

2.13928 p0.4344,´0.3888, 6.5282q
p0.0749, 0.7347, 5.7666q

3.76679 p2.9546,´2.8953, 5.0999q
p1.6345, 1.2308, 2.3031q

4.70957 no real solutions

Table 16 – Candidates for iteration 6

generated this candidate and, potentially, distances paired to this candidate in the pruning
process (which in these case are none since all calculated distances for this candidate were
larger than the cutoff value, so only the distance that generated this candidate is removed).

At iteration 8, after the candidates are generated (table 22) and those having
only real coordinates are filtered (table 23), the prune is performed and only one candidate
remains not pruned (table 24). Since this is the last hydrogen to be added in the structure,
another solution has been found. Without other candidates left to analyze, the algorithm
terminates at this point. The corresponding final solutions are shown in figures 56 and 57.
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Figure 54 – Partial structure at the beginning of iteration 6.

Distances Coordinates

2.13928 p0.4344,´0.3888, 6.5282q
p0.0749, 0.7347, 5.7666q

3.76679 p2.9546,´2.8953, 5.0999q
p1.6345, 1.2308, 2.3031q

Table 17 – Candidates for iteration 6 (excluding complex solutions)

Figure 55 – Pile at the start of iteration 7 having two coordinate candidates for the fourth
hydrogen in the structure.
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Calculated Distances
Candidate (hydrogen 1, hydrogen 2, Are the Distances

hydrogen 3, hydrogen 4) In the List
p0.4344,´0.3888, 6.5282q t5.96353, 7.84202, {´, ´, ´, ´}

6.33171, 5.5811u
p2.9546,´2.8953, 5.0999q t5.26419, 7.69274, {´, ´, ´, No}

7.29497, 4.63157u
p0.0749, 0.7347, 5.7666q t5.47733, 7.01364, {´, ´, ´, ´}

5.20359, 5.23739u
p1.6345, 1.2308, 2.3031q 2.69902, 3.74001, {No, No, No, No}

2.33009, 2.79223u

Table 18 – Prune for iteration 6

Distances Coordinates

3.76679 p3.7245, 0.3943, 6.6345q
p3.5191, 2.0251, 4.9534q

4.70957 no real solutions

Table 19 – Candidates for iteration 7

Distances Coordinates

3.76679 p3.7245, 0.3943, 6.6345q
p3.5191, 2.0251, 4.9534q

Table 20 – Candidates for iteration 7 (excluding complex solutions)

Calculated Distances
Candidate (hydrogen 1, hydrogen 2, Are the Distances

hydrogen 3, hydrogen 4, In the List
hydrogen 5)

t6.66137, 8.50069,
p3.7245, 0.3943, 6.6345q 7.06192, 6.27024, {´, ´, ´, ´, Yes }

4.70958u
6.33171, 5.5811u

p3.5191, 2.0251, 4.9534q t5.70703, 6.99426,
5.29675, 5.53231, {´, ´, ´, ´, No}

4.89385u

Table 21 – Prune for iteration 7
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Distances Coordinates

3.76679 p4.1816,´0.0456, 6.3570q
p3.2250, 1.9553, 5.5765q

4.70957 no real solutions

Table 22 – Candidates for iteration 8

Distances Coordinates

3.76679 p4.1816,´0.0456, 6.3570q
p3.2250, 1.9553, 5.5765q

Table 23 – Candidates for iteration 8 (excluding complex solutions)

Calculated Distances
Candidate (hydrogen 1, hydrogen 2, Are the Distances

hydrogen 3, hydrogen 4, In the List
hydrogen 5)

t6.54384, 8.46165,
p4.1816,´0.0456, 6.3570q 7.21377, 6.12041, {´, ´, ´, ´, No }

4.89385u
p3.2250, 1.9553, 5.5765q t6.05361, 7.42736,

5.63847, 5.84381, {´, ´, ´, ´, Yes}
4.70958u

Table 24 – Prune for iteration 8
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Figure 56 – First solution.

7.3 Analysis of Different Cutoff Values
One of the most important results related to the Branch-and-Prune algorithm for

the Assigned Distance Geometry Problem, found in reference (MUCHERINO C. LAVOR,
2012), is about the symmetric characteristic of its search tree. With this in mind, it is easy
to realize the importance of analyzing possible symmetries for the Unassigned case.

The idea here is to use a single structure (shown in figure 58) as an example
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Figure 57 – Second solution.

for the analysis and take a closer look at the search tree generated by the BP algorithm
when given the instances generated by this structure as input data. This process is to be
repeated with different cutoff values so that their impact on the number of solutions and
on the format of the search tree can be verified.



Chapter 7. Computational Results 86

Figure 58 – Real solution that generates the instances for the symmetry analysis.
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The cutoff values shown ahead will be listed in increasing order. Starting with
the smallest value shows a fuller search tree and, consequently, a higher number of solutions.
This happens due to the fact that a smaller cutoff value implies a smaller number of
distances available in the instance and also a smaller number of viable prunes, since the
chance of creating a candidate with distances to the other hydrogens of the structure being
over this cutoff value increases as the cutoff value gets smaller.

For this example three cutoff values will be considered: 4.5 Å, 4.6 Å and 4.9
Å. With the original structure (figure 58) in hands, the distances between its hydrogens
are calculated and the result is the following:

2.49139 2.53149 2.65238 3.43621 3.52491 3.59369 3.6266
4.58485 4.62605 4.91384 5.09236 5.28422 5.4983 5.58578
6.47463 6.59986 6.91666 7.00581 7.39289 7.576 8.30219

The next step is to filter this distance list according to each cutoff value,
selecting all values less than or equal to these cutoff values and generating the instances
for each test. The result is shown ahead:

cutoff equal to 4.5 Å:

$

’

&

’

%

2.49139 2.53149 2.65238
3.43621 3.52491 3.59369
3.6266

cutoff equal to 4.6 Å:

$

’

&

’

%

2.49139 2.53149 2.65238
3.43621 3.52491 3.59369
3.6266 4.58485

cutoff equal to 4.9 Å:

$

’

&

’

%

2.49139 2.53149 2.65238
3.43621 3.52491 3.59369
3.6266 4.58485 4.62605

In figures 59, 60 and 61 the search trees for each analyzed cutoff value are
depicted. With the addition of distances as the cutoff values are increased no new branch
is created since the added distances did not result in strict real number coordinates for
these candidates. Instead, these distances were used in the prune part of the algorithm,
selecting or pruning candidates when some extra calculated distance in the prune is less
than or equal to the cutoff value. Hence, when this threshold increases the search tree
diminishes.

From these examples it is possible to see some symmetry: both sides of the tree
are symmetric (or almost symmetric in the case of the cutoff value equal to 4.6 Å). As the
cutoff values change, so does the search tree - but these changes are also almost always
symmetric. When they are not, as it happens in the case of the search tree in figure 61
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where the node 48 is pruned but the node 106 is not, it usually happens due to the extra
calculated distances.

Indeed, it can happen that, with the increase of the cutoff value, some calculated
distances in the prune operation can be checked when they could not have been before. In
the particular case of figure 61, at least one of the calculated distances of the structure’s
coordinates regarding node 48 are between 4.5 Å and 4.6 Å (while the corresponding
calculated distances from node 106 are larger than 4.6 Å), and can now be pruned since
they are not found in the list of available distances. As for node 106, nothing can be done
since their calculated distances can not be compared to what’s available in the distance
list.

In figures 77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67, 66, 65, 64 and 63 all solutions
for the instance having the cutoff value of 4.5 Å are depicted. The solutions for the cutoff
values of 4.6 Å and 4.9 Å are subsets of this set of solutions and can be identified by the
remaining leafs in the trees from figures 60 and 61.

Each solution par is shown side by side as to illustrate their similarity. They
are essentially identical except for their last part, highlighted in blue in each picture. This
part is of the type of the second tetrahedron presented in figure 36, and the coordinates
for their atoms are generated by the same distance.

These structures are the symmetric solutions resulted from the equation of the
intersection of three spheres (equation 7.1) for the determination of the last hydrogen in
the protein: the hydrogen coordinates are symmetric and, consequentially, the placement
of each structure becomes symmetric to each other.

Interestingly, although these solution pairs are almost the same (having the
differences just previously explained), one element of these pairs can be pruned when the
cutoff value increases. For instance, in the pair 54 and 55 (figure 68) the solution 55 is
pruned when the cutoff value goes from 4.6 Å to 4.9 Å. This happens due to the fact that
a larger cutoff value implies more information (that is, more available distances for testing
in the prune process).

In order to better analyze the behavior of the selected solutions according to
the cutoff value, attached to each figure of the solution pairs (and cited in their caption)
are the distances used in each structure, along with their respective hydrogen pairs. In
black are the distances that were never analyzed in any of the three cutoff value’s tests
due to the fact that they were greater than 4.9 Å.

In light blue are the distances analyzed when the cutoff vale is equal to 4.5 Å,
while in green are the additional distances used when the cutoff value is equal to 4.6 Å
(and when the solutions are still present when the cutoff value is increased). This same
rational is repeated for the distances in dark blue, which are used when the cutoff value
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increases to 4.9 Å. In the pruning process, these distances can be calculated and compared
to the list of available distances from the instance, and the candidate can be either pruned
or not.

It can be seen that, although the distances are the same in the solutions,
different solution pairs use these distances in different orders. Moreover, the different
calculated distances from hydrogen i to hydrogen j, j ď i´ 3, determine which solutions
remain viable as the cutoff value increases and there is more information for the pruning
process.

Although it can happen that all these additional calculated distances still
remain above the cutoff value and can’t be pruned, if by the end of the algorithm the
situation arises where there is still some distance that remained without use, it it easy to
conclude that this candidate cannot be the right solution and hence it is pruned at this
stage.

In tables 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37 and 40, the distances
are presented in the order they were used. In black are the distances used when the cutoff
vale is equal to 4.5 Å, while in green are the additional distances used when the cutoff
value is equal to 4.6 Å (and when the solutions are still present when the cutoff value is
increased). The distances in blue are used when the cutoff value increases to 4.9 Å.

Figure 59 – Search tree for the instance with cutoff value equal to 4.5 Å.
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Figure 60 – Search tree for the instance with cutoff value equal to 4.6 Å.

Figure 61 – Search tree for the instance with cutoff value equal to 4.9 Å.

Figure 62 – Solutions for vertices 26 and 27 of the search tree. Distance list for vertex 26
is found in 7.4 and distance list for vertex 27 is found in 7.5
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Vertex 26 Vertex 27
Hydrogen Pair Distance Hydrogen Pair Distance

(H1,H2) 2.49139 (H1,H2) 2.49139
(H2,H3) 3.52491 (H2,H3) 3.52491
(H1,H3) 3.59369 (H1,H3) 3.59369
(H3,H4) 2.65238 (H3,H4) 2.65238
(H4,H5) 3.6266 (H4,H5) 3.6266
(H3,H5) 4.58485 (H3,H5) 4.58485
(H2,H5) 4.85149 (H2,H5) 4.85149
(H5,H6) 2.53149 (H5,H6) 2.53149
(H6,H7) 3.43621 (H6,H7) 3.43621

- (H5,H7) 4.62605

Table 25 – Comparison of distances between solutions 26 and 27 (shown in figure 62). The
distances used in the prune are underlined. Distances used for the cutoff value
of 4.6 Å are in green and additional distances used for the cutoff value of 4.9 Å
are in blue.

pH1, H2q Ñ 2.49139 pH2, H3q Ñ 3.52491 pH3, H4q Ñ 2.65238 pH4, H5q Ñ 3.6266
pH5, H6q Ñ 2.53149 pH6, H7q Ñ 3.43621 pH1, H3q Ñ 3.59369 pH2, H4q Ñ 5.0736
pH3, H5q Ñ 4.58485 pH4, H6q Ñ 5.58578 pH5, H7q Ñ 5.20159 pH1, H4q Ñ 5.28655
pH2, H5q Ñ 4.85149 pH3, H6q Ñ 6.91666 pH4, H7q Ñ 6.88515 pH1, H5q Ñ 6.53009
pH2, H6q Ñ 6.45938 pH3, H7q Ñ 8.34712 pH1, H6q Ñ 8.18851 pH2, H7q Ñ 7.32582
pH1, H7q Ñ 8.43563

(7.4)

pH1, H2q Ñ 2.49139 pH2, H3q Ñ 3.52491 pH3, H4q Ñ 2.65238 pH4, H5q Ñ 3.6266
pH5, H6q Ñ 2.53149 pH6, H7q Ñ 3.43621 pH1, H3q Ñ 3.59369 pH2, H4q Ñ 5.0736
pH3, H5q Ñ 4.58485 pH4, H6q Ñ 5.58578 pH5, H7q Ñ 4.62605 pH1, H4q Ñ 5.28655
pH2, H5q Ñ 4.85149 pH3, H6q Ñ 6.91666 pH4, H7q Ñ 7.00581 pH1, H5q Ñ 6.53009
pH2, H6q Ñ 6.45938 pH3, H7q Ñ 7.576 pH1, H6q Ñ 8.18851 pH2, H7q Ñ 5.5569
pH1, H7q Ñ 7.22468

(7.5)
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Figure 63 – Solutions for vertices 30 and 31 of the search tree. Distance list for vertex 30
is found in equation 7.6 and distance list for vertex 31 is found in equation 7.7

pH1, H2q Ñ 2.49139 pH2, H3q Ñ 3.52491 pH3, H4q Ñ 2.65238 pH4, H5q Ñ 3.6266
pH5, H6q Ñ 2.53149 pH6, H7q Ñ 3.43621 pH1, H3q Ñ 3.59369 pH2, H4q Ñ 5.0736
pH3, H5q Ñ 5.20287 pH4, H6q Ñ 5.32866 pH5, H7q Ñ 5.20159 pH1, H4q Ñ 5.28655
pH2, H5q Ñ 5.14169 pH3, H6q Ñ 7.16445 pH4, H7q Ñ 6.02986 pH1, H5q Ñ 6.11035
pH2, H6q Ñ 7.16653 pH3, H7q Ñ 8.00764 pH1, H6q Ñ 8.51733 pH2, H7q Ñ 9.07461
pH1, H7q Ñ 10.4737

(7.6)

pH1, H2q Ñ 2.49139 pH2, H3q Ñ 3.52491 pH3, H4q Ñ 2.65238 pH4, H5q Ñ 3.6266
pH5, H6q Ñ 2.53149 pH6, H7q Ñ 3.43621 pH1, H3q Ñ 3.59369 pH2, H4q Ñ 5.0736
pH3, H5q Ñ 5.20287 pH4, H6q Ñ 5.32866 pH5, H7q Ñ 4.62605 pH1, H4q Ñ 5.28655
pH2, H5q Ñ 5.14169 pH3, H6q Ñ 7.16445 pH4, H7q Ñ 5.51024 pH1, H5q Ñ 6.11035
pH2, H6q Ñ 7.16653 pH3, H7q Ñ 8.02456 pH1, H6q Ñ 8.51733 pH2, H7q Ñ 9.346
pH1, H7q Ñ 10.1544

(7.7)
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Vertex 30 Vertex 31
Hydrogen Pair Distance Hydrogen Pair Distance

(H1,H2) 2.49139 (H1,H2) 2.49139
(H2,H3) 3.52491 (H2,H3) 3.52491
(H1,H3) 3.59369 (H1,H3) 3.59369
(H3,H4) 2.65238 (H3,H4) 2.65238
(H4,H5) 3.6266 (H4,H5) 3.6266
(H5,H6) 2.53149 (H5,H6) 2.53149
(H6,H7) 3.43621 (H6,H7) 3.43621

- (H5,H7) 4.62605

Table 26 – Comparison of distances between solutions 30 and 31 (shown in figure 63). The
distances used in the prune are underlined. Distances used for the cutoff value
of 4.6 Å are in green and additional distances used for the cutoff value of 4.9
Å are in blue.

Figure 64 – Solutions for vertices 34 and 35 of the search tree. Distance list for vertex 34
is found in equation 7.8 and distance list for vertex 35 is found in equation
7.9.
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Vertex 34 Vertex 35
Hydrogen Pair Distance Hydrogen Pair Distance

(H1,H2) 2.49139 (H1,H2) 2.49139
(H2,H3) 3.52491 (H2,H3) 3.52491
(H1,H3) 3.59369 (H1,H3) 3.59369
(H3,H4) 2.65238 (H3,H4) 2.65238
(H4,H5) 3.43621 (H4,H5) 3.43621
(H3,H5) 4.63118 (H3,H5) 4.63118
(H5,H6) 2.53149 (H5,H6) 2.53149
(H6,H7) 3.6266 (H6,H7) 3.6266

- (H5,H7) 4.59207
- (H2,H7) 4.82612

Table 27 – Comparison of distances between solutions 34 and 35 (shown in figure 64). The
distances used in the prune are underlined. Distances used for the cutoff value
of 4.6 Å are in green and additional distances used for the cutoff value of 4.9
Å are in blue.

pH1, H2q Ñ 2.49139 pH2, H3q Ñ 3.52491 pH3, H4q Ñ 2.65238 pH4, H5q Ñ 3.43621
pH5, H6q Ñ 2.53149 pH6, H7q Ñ 3.6266 pH1, H3q Ñ 3.59369 pH2, H4q Ñ 5.0736
pH3, H5q Ñ 4.63118 pH4, H6q Ñ 5.54401 pH5, H7q Ñ 5.15025 pH1, H4q Ñ 5.28655
pH2, H5q Ñ 5.24949 pH3, H6q Ñ 6.89193 pH4, H7q Ñ 6.79579 pH1, H5q Ñ 6.80928
pH2, H6q Ñ 6.54821 pH3, H7q Ñ 7.84724 pH1, H6q Ñ 8.29267 pH2, H7q Ñ 6.34348
pH1, H7q Ñ 7.65004

(7.8)

pH1, H2q Ñ 2.49139 pH2, H3q Ñ 3.52491 pH3, H4q Ñ 2.65238 pH4, H5q Ñ 3.43621
pH5, H6q Ñ 2.53149 pH6, H7q Ñ 3.6266 pH1, H3q Ñ 3.59369 pH2, H4q Ñ 5.0736
pH3, H5q Ñ 4.63118 pH4, H6q Ñ 5.54401 pH5, H7q Ñ 4.59207 pH1, H4q Ñ 5.28655
pH2, H5q Ñ 5.24949 pH3, H6q Ñ 6.89193 pH4, H7q Ñ 6.77707 pH1, H5q Ñ 6.80928
pH2, H6q Ñ 6.54821 pH3, H7q Ñ 7.00579 pH1, H6q Ñ 8.29267 pH2, H7q Ñ 4.82612
pH1, H7q Ñ 6.82534

(7.9)
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Figure 65 – Solutions for vertices 38 and 39 of the search tree. Distance list for vertex 38
is found in equation 7.10 and distance list for vertex 39 is found in equation
7.11.

pH1, H2q Ñ 2.49139 pH2, H3q Ñ 3.52491 pH3, H4q Ñ 2.65238 pH4, H5q Ñ 3.43621
pH5, H6q Ñ 2.53149 pH6, H7q Ñ 3.6266 pH1, H3q Ñ 3.59369 pH2, H4q Ñ 5.0736
pH3, H5q Ñ 5.26684 pH4, H6q Ñ 5.27419 pH5, H7q Ñ 5.15025 pH1, H4q Ñ 5.28655
pH2, H5q Ñ 5.52935 pH3, H6q Ñ 7.15038 pH4, H7q Ñ 5.84691 pH1, H5q Ñ 6.39121
pH2, H6q Ñ 7.27334 pH3, H7q Ñ 7.43193 pH1, H6q Ñ 8.6303 pH2, H7q Ñ 8.4402
pH1, H7q Ñ 10.0327

(7.10)

pH1, H2q Ñ 2.49139 pH2, H3q Ñ 3.52491 pH3, H4q Ñ 2.65238 pH4, H5q Ñ 3.43621
pH5, H6q Ñ 2.53149 pH6, H7q Ñ 3.6266 pH1, H3q Ñ 3.59369 pH2, H4q Ñ 5.0736
pH3, H5q Ñ 5.26684 pH4, H6q Ñ 5.27419 pH5, H7q Ñ 4.59207 pH1, H4q Ñ 5.28655
pH2, H5q Ñ 5.52935 pH3, H6q Ñ 7.15038 pH4, H7q Ñ 5.12442 pH1, H5q Ñ 6.39121
pH2, H6q Ñ 7.27334 pH3, H7q Ñ 7.43193 pH1, H6q Ñ 8.6303 pH2, H7q Ñ 9.0596
pH1, H7q Ñ 10.0546

(7.11)
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Vertex 38 Vertex 39
Hydrogen Pair Distance Hydrogen Pair Distance

(H1,H2) 2.49139 (H1,H2) 2.49139
(H2,H3) 3.52491 (H2,H3) 3.52491
(H1,H3) 3.59369 (H1,H3) 3.59369
(H3,H4) 2.65238 (H3,H4) 2.65238
(H4,H5) 3.43621 (H4,H5) 3.43621

- (H3,H5) 4.63118
(H5,H6) 2.53149 (H5,H6) 2.53149
(H6,H7) 3.6266 (H6,H7) 3.6266

- (H5,H7) 4.59207

Table 28 – Comparison of distances between solutions 38 and 39 (shown in figure 65). The
distances used in the prune are underlined. Distances used for the cutoff value
of 4.6 Å are in green and additional distances used for the cutoff value of 4.9
Å are in blue.

Figure 66 – Solutions for vertices 46 and 47 of the search tree. Distance list for vertex 46
is found in equation 7.12 and distance list for vertex 47 is found in equation
7.13.
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Vertex 46 Vertex 47
Hydrogen Pair Distance Hydrogen Pair Distance

(H1,H2) 2.49139 (H1,H2) 2.49139
(H2,H3) 3.52491 (H2,H3) 3.52491
(H1,H3) 3.59369 (H1,H3) 3.59369
(H3,H4) 2.53149 (H3,H4) 2.53149
(H4,H5) 3.6266 (H4,H5) 3.6266
(H3,H5) 4.59207 (H3,H5) 4.59207
(H2,H5) 4.76188 (H2,H5) 4.76188
(H5,H6) 2.65238 (H5,H6) 2.65238
(H6,H7) 3.43621 (H6,H7) 3.43621

- (H5,H7) 4.63118

Table 29 – Comparison of distances between solutions 46 and 47 (shown in figure 66). The
distances used in the prune are underlined. Distances used for the cutoff value
of 4.6 Å are in green and additional distances used for the cutoff value of 4.9
Å are in blue.

pH1, H2q Ñ 2.49139 pH2, H3q Ñ 3.52491 pH3, H4q Ñ 2.53149 pH4, H5q Ñ 3.6266
pH5, H6q Ñ 2.65238 pH6, H7q Ñ 3.43621 pH1, H3q Ñ 3.59369 pH2, H4q Ñ 5.03461
pH3, H5q Ñ 4.59207 pH4, H6q Ñ 5.56355 pH5, H7q Ñ 5.26684 pH1, H4q Ñ 5.33484
pH2, H5q Ñ 4.76188 pH3, H6q Ñ 6.98832 pH4, H7q Ñ 6.82448 pH1, H5q Ñ 6.49867
pH2, H6q Ñ 6.61767 pH3, H7q Ñ 8.28216 pH1, H6q Ñ 8.30505 pH2, H7q Ñ 7.46832
pH1, H7q Ñ 8.4855

(7.12)

pH1, H2q Ñ 2.49139 pH2, H3q Ñ 3.52491 pH3, H4q Ñ 2.53149 pH4, H5q Ñ 3.6266
pH5, H6q Ñ 2.65238 pH6, H7q Ñ 3.43621 pH1, H3q Ñ 3.59369 pH2, H4q Ñ 5.03461
pH3, H5q Ñ 4.59207 pH4, H6q Ñ 5.56355 pH5, H7q Ñ 4.63118 pH1, H4q Ñ 5.33484
pH2, H5q Ñ 4.76188 pH3, H6q Ñ 6.98832 pH4, H7q Ñ 7.04444 pH1, H5q Ñ 6.49867
pH2, H6q Ñ 6.61767 pH3, H7q Ñ 7.70401 pH1, H6q Ñ 8.30505 pH2, H7q Ñ 5.83569
pH1, H7q Ñ 7.41799

(7.13)
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Figure 67 – Solutions for vertices 50 and 51 of the search tree. Distance list for vertex 50
is found in equation 7.14 and distance list for vertex 51 is found in equation
7.15.

pH1, H2q Ñ 2.49139 pH2, H3q Ñ 3.52491 pH3, H4q Ñ 2.53149 pH4, H5q Ñ 3.6266
pH5, H6q Ñ 2.65238 pH6, H7q Ñ 3.43621 pH1, H3q Ñ 3.59369 pH2, H4q Ñ 5.03461
pH3, H5q Ñ 5.15025 pH4, H6q Ñ 5.37946 pH5, H7q Ñ 5.26684 pH1, H4q Ñ 5.33484
pH2, H5q Ñ 5.19592 pH3, H6q Ñ 7.11798 pH4, H7q Ñ 5.98868 pH1, H5q Ñ 6.17555
pH2, H6q Ñ 7.12289 pH3, H7q Ñ 7.88446 pH1, H6q Ñ 8.58179 pH2, H7q Ñ 8.93543
pH1, H7q Ñ 10.4408

(7.14)

pH1, H2q Ñ 2.49139 pH2, H3q Ñ 3.52491 pH3, H4q Ñ 2.53149 pH4, H5q Ñ 3.6266
pH5, H6q Ñ 2.65238 pH6, H7q Ñ 3.43621 pH1, H3q Ñ 3.59369 pH2, H4q Ñ 5.03461
pH3, H5q Ñ 5.15025 pH4, H6q Ñ 5.37946 pH5, H7q Ñ 4.63118 pH1, H4q Ñ 5.33484
pH2, H5q Ñ 5.19592 pH3, H6q Ñ 7.11798 pH4, H7q Ñ 5.61175 pH1, H5q Ñ 6.17555
pH2, H6q Ñ 7.12289 pH3, H7q Ñ 8.01035 pH1, H6q Ñ 8.58179 pH2, H7q Ñ 9.34248
pH1, H7q Ñ 10.289

(7.15)
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Vertex 50 Vertex 51
Hydrogen Pair Distance Hydrogen Pair Distance

(H1,H2) 2.49139 (H1,H2) 2.49139
(H2,H3) 3.52491 (H2,H3) 3.52491
(H1,H3) 3.59369 (H1,H3) 3.59369
(H3,H4) 2.53149 (H3,H4) 2.53149
(H4,H5) 3.6266 (H4,H5) 3.6266
(H5,H6) 2.65238 (H5,H6) 2.65238
(H6,H7) 3.43621 (H6,H7) 3.43621

- (H5,H7) 4.63118

Table 30 – Comparison of distances between solutions 50 and 51 (shown in figure 67). The
distances used in the prune are underlined. Distances used for the cutoff value
of 4.6 Å are in green and additional distances used for the cutoff value of 4.9
Å are in blue.

Figure 68 – Solutions for vertices 54 and 55 of the search tree. Distance list for vertex 54
is found in equation 7.16 and distance list for vertex 55 is found in equation
7.17.
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Vertex 54 Vertex 55
Hydrogen Pair Distance Hydrogen Pair Distance

(H1,H2) 2.49139 (H1,H2) 2.49139
(H2,H3) 3.52491 (H2,H3) 3.52491
(H1,H3) 3.59369 (H1,H3) 3.59369
(H3,H4) 2.53149 (H3,H4) 2.53149
(H4,H5) 3.43621 (H4,H5) 3.43621
(H3,H5) 4.62605 (H3,H5) 4.62605
(H5,H6) 2.65238 (H5,H6) 2.65238
(H6,H7) 3.6266 (H6,H7) 3.6266
(H5,H7) 4.58485 (H5,H7) 4.58485

Table 31 – Comparison of distances between solutions 54 and 55 (shown in figure 68). The
distances used in the prune are underlined. Distances used for the cutoff value
of 4.6 Å are in green and additional distances used for the cutoff value of 4.9
Å are in blue.

pH1, H2q Ñ 2.49139 pH2, H3q Ñ 3.52491 pH3, H4q Ñ 2.53149 pH4, H5q Ñ 3.43621
pH5, H6q Ñ 2.65238 pH6, H7q Ñ 3.6266 pH1, H3q Ñ 3.59369 pH2, H4q Ñ 5.03461
pH3, H5q Ñ 4.62605 pH4, H6q Ñ 5.54055 pH5, H7q Ñ 5.20287 pH1, H4q Ñ 5.33484
pH2, H5q Ñ 5.15635 pH3, H6q Ñ 6.96997 pH4, H7q Ñ 6.74999 pH1, H5q Ñ 6.78496
pH2, H6q Ñ 6.65475 pH3, H7q Ñ 7.79182 pH1, H6q Ñ 8.36265 pH2, H7q Ñ 6.43289
pH1, H7q Ñ 7.62596

(7.16)

pH1, H2q Ñ 2.49139 pH2, H3q Ñ 3.52491 pH3, H4q Ñ 2.53149 pH4, H5q Ñ 3.43621
pH5, H6q Ñ 2.65238 pH6, H7q Ñ 3.6266 pH1, H3q Ñ 3.59369 pH2, H4q Ñ 5.03461
pH3, H5q Ñ 4.62605 pH4, H6q Ñ 5.54055 pH5, H7q Ñ 4.58485 pH1, H4q Ñ 5.33484
pH2, H5q Ñ 5.15635 pH3, H6q Ñ 6.96997 pH4, H7q Ñ 6.82054 pH1, H5q Ñ 6.78496
pH2, H6q Ñ 6.65475 pH3, H7q Ñ 7.15323 pH1, H6q Ñ 8.36265 pH2, H7q Ñ 5.03576
pH1, H7q Ñ 6.94711

(7.17)
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Figure 69 – Solutions for vertices 58 and 59 of the search tree. Distance list for vertex 58
is found in equation 7.18 and distance list for vertex 59 is found in equation
7.19.

pH1, H2q Ñ 2.49139 pH2, H3q Ñ 3.52491 pH3, H4q Ñ 2.53149 pH4, H5q Ñ 3.43621
pH5, H6q Ñ 2.65238 pH6, H7q Ñ 3.6266 pH1, H3q Ñ 3.59369 pH2, H4q Ñ 5.03461
pH3, H5q Ñ 5.20159 pH4, H6q Ñ 5.34811 pH5, H7q Ñ 5.20287 pH1, H4q Ñ 5.33484
pH2, H5q Ñ 5.57526 pH3, H6q Ñ 7.10513 pH4, H7q Ñ 5.80997 pH1, H5q Ñ 6.46344
pH2, H6q Ñ 7.1768 pH3, H7q Ñ 7.33043 pH1, H6q Ñ 8.64839 pH2, H7q Ñ 8.24638
pH1, H7q Ñ 9.94343

(7.18)

pH1, H2q Ñ 2.49139 pH2, H3q Ñ 3.52491 pH3, H4q Ñ 2.53149 pH4, H5q Ñ 3.43621
pH5, H6q Ñ 2.65238 pH6, H7q Ñ 3.6266 pH1, H3q Ñ 3.59369 pH2, H4q Ñ 5.03461
pH3, H5q Ñ 5.20159 pH4, H6q Ñ 5.34811 pH5, H7q Ñ 4.58485 pH1, H4q Ñ 5.33484
pH2, H5q Ñ 5.57526 pH3, H6q Ñ 7.10513 pH4, H7q Ñ 5.22397 pH1, H5q Ñ 6.46344
pH2, H6q Ñ 7.1768 pH3, H7q Ñ 7.44546 pH1, H6q Ñ 8.64839 pH2, H7q Ñ 9.00778
pH1, H7q Ñ 10.1394

(7.19)
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Vertex 58 Vertex 59
Hydrogen Pair Distance Hydrogen Pair Distance

(H1,H2) 2.49139 (H1,H2) 2.49139
(H2,H3) 3.52491 (H2,H3) 3.52491
(H1,H3) 3.59369 (H1,H3) 3.59369
(H3,H4) 2.53149 (H3,H4) 2.53149
(H4,H5) 3.43621 (H4,H5) 3.43621
(H5,H6) 2.65238 (H5,H6) 2.65238
(H6,H7) 3.6266 (H6,H7) 3.6266

- (H5,H7) 4.58485

Table 32 – Comparison of distances between solutions 58 and 59 (shown in figure 69). The
distances used in the prune are underlined. Distances used for the cutoff value
of 4.6 Å are in green and additional distances used for the cutoff value of 4.9
Å are in blue.

Figure 70 – Solutions for vertices 84 and 85 of the search tree. Distance list for vertex 84
is found in equation 7.20 and distance list for vertex 85 is found in equation
7.21.
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Vertex 84 Vertex 85
Hydrogen Pair Distance Hydrogen Pair Distance

(H1,H2) 2.49139 (H1,H2) 2.49139
(H2,H3) 3.52491 (H2,H3) 3.52491
(H1,H3) 3.59369 (H1,H3) 3.59369
(H3,H4) 2.65238 (H3,H4) 2.65238
(H4,H5) 3.6266 (H4,H5) 3.6266
(H3,H5) 4.58485 (H3,H5) 4.58485
(H5,H6) 2.53149 (H5,H6) 2.53149
(H6,H7) 3.43621 (H6,H7) 3.43621

- (H5,H7) 4.62605

Table 33 – Comparison of distances between solutions 84 and 85 (shown in figure 70). The
distances used in the prune are underlined. Distances used for the cutoff value
of 4.6 Å are in green and additional distances used for the cutoff value of 4.9
Å are in blue.

pH1, H2q Ñ 2.49139 pH2, H3q Ñ 3.52491 pH3, H4q Ñ 2.65238 pH4, H5q Ñ 3.6266
pH5, H6q Ñ 2.53149 pH6, H7q Ñ 3.43621 pH1, H3q Ñ 3.59369 pH2, H4q Ñ 5.0736
pH3, H5q Ñ 4.58485 pH4, H6q Ñ 5.58578 pH5, H7q Ñ 5.20159 pH1, H4q Ñ 5.28655
pH2, H5q Ñ 4.85149 pH3, H6q Ñ 6.91666 pH4, H7q Ñ 6.88515 pH1, H5q Ñ 6.53009
pH2, H6q Ñ 6.45938 pH3, H7q Ñ 8.34712 pH1, H6q Ñ 8.18851 pH2, H7q Ñ 7.32582
pH1, H7q Ñ 8.43563

(7.20)

pH1, H2q Ñ 2.49139 pH2, H3q Ñ 3.52491 pH3, H4q Ñ 2.65238 pH4, H5q Ñ 3.6266
pH5, H6q Ñ 2.53149 pH6, H7q Ñ 3.43621 pH1, H3q Ñ 3.59369 pH2, H4q Ñ 5.0736
pH3, H5q Ñ 4.58485 pH4, H6q Ñ 5.58578 pH5, H7q Ñ 4.62605 pH1, H4q Ñ 5.28655
pH2, H5q Ñ 4.85149 pH3, H6q Ñ 6.91666 pH4, H7q Ñ 7.0058 pH1, H5q Ñ 6.53009
pH2, H6q Ñ 6.45938 pH3, H7q Ñ 7.576 pH1, H6q Ñ 8.18851 pH2, H7q Ñ 5.5569
pH1, H7q Ñ 7.22468

(7.21)
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Figure 71 – Solutions for vertices 88 and 89 of the search tree. Distance list for vertex 88
is found in equation 7.22 and distance list for vertex 89 is found in equation
7.23.

pH1, H2q Ñ 2.49139 pH2, H3q Ñ 3.52491 pH3, H4q Ñ 2.65238 pH4, H5q Ñ 3.6266
pH5, H6q Ñ 2.53149 pH6, H7q Ñ 3.43621 pH1, H3q Ñ 3.59369 pH2, H4q Ñ 5.0736
pH3, H5q Ñ 5.20287 pH4, H6q Ñ 5.32866 pH5, H7q Ñ 5.20159 pH1, H4q Ñ 5.28655
pH2, H5q Ñ 5.14169 pH3, H6q Ñ 7.16445 pH4, H7q Ñ 6.02986 pH1, H5q Ñ 6.11035
pH2, H6q Ñ 7.16653 pH3, H7q Ñ 8.00764 pH1, H6q Ñ 8.51733 pH2, H7q Ñ 9.07461
pH1, H7q Ñ 10.4737

(7.22)

pH1, H2q Ñ 2.49139 pH2, H3q Ñ 3.52491 pH3, H4q Ñ 2.65238 pH4, H5q Ñ 3.6266
pH5, H6q Ñ 2.53149 pH6, H7q Ñ 3.43621 pH1, H3q Ñ 3.59369 pH2, H4q Ñ 5.0736
pH3, H5q Ñ 5.20287 pH4, H6q Ñ 5.32866 pH5, H7q Ñ 4.62605 pH1, H4q Ñ 5.28655
pH2, H5q Ñ 5.14169 pH3, H6q Ñ 7.16445 pH4, H7q Ñ 5.51024 pH1, H5q Ñ 6.11035
pH2, H6q Ñ 7.16653 pH3, H7q Ñ 8.02456 pH1, H6q Ñ 8.51733 pH2, H7q Ñ 9.346
pH1, H7q Ñ 10.1544

(7.23)
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Vertex 88 Vertex 89
Hydrogen Pair Distance Hydrogen Pair Distance

(H1,H2) 2.49139 (H1,H2) 2.49139
(H2,H3) 3.52491 (H2,H3) 3.52491
(H1,H3) 3.59369 (H1,H3) 3.59369
(H3,H4) 2.65238 (H3,H4) 2.65238
(H4,H5) 3.6266 (H4,H5) 3.6266
(H5,H6) 2.53149 (H5,H6) 2.53149
(H6,H7) 3.43621 (H6,H7) 3.43621

- (H5,H7) 4.62605

Table 34 – Comparison of distances between solutions 88 and 89 (shown in figure 71). The
distances used in the prune are underlined. Distances used for the cutoff value
of 4.6 Å are in green and additional distances used for the cutoff value of 4.9
Å are in blue.

Figure 72 – Solutions for vertices 92 and 93 of the search tree. Distance list for vertex 92
is found in equation 7.24 and distance list for vertex 93 is found in equation
7.25.
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Vertex 92 Vertex 93
Hydrogen Pair Distance Hydrogen Pair Distance

(H1,H2) 2.49139 (H1,H2) 2.49139
(H2,H3) 3.52491 (H2,H3) 3.52491
(H1,H3) 3.59369 (H1,H3) 3.59369
(H3,H4) 2.65238 (H3,H4) 2.65238
(H4,H5) 3.43621 (H4,H5) 3.43621
(H3,H5) 4.63118 (H3,H5) 4.63118
(H5,H6) 2.53149 (H5,H6) 2.53149
(H6,H7) 3.6266 (H6,H7) 3.6266

- (H2,H7) 4.82612
- (H5,H7) 4.59207

Table 35 – Comparison of distances between solutions 92 and 93 (shown in figure 72). The
distances used in the prune are underlined. Distances used for the cutoff value
of 4.6 Å are in green and additional distances used for the cutoff value of 4.9
Å are in blue.

pH1, H2q Ñ 2.49139 pH2, H3q Ñ 3.52491 pH3, H4q Ñ 2.65238 pH4, H5q Ñ 3.43621
pH5, H6q Ñ 2.53149 pH6, H7q Ñ 3.6266 pH1, H3q Ñ 3.59369 pH2, H4q Ñ 5.0736
pH3, H5q Ñ 4.63118 pH4, H6q Ñ 5.54401 pH5, H7q Ñ 5.15025 pH1, H4q Ñ 5.28655
pH2, H5q Ñ 5.24949 pH3, H6q Ñ 6.89193 pH4, H7q Ñ 6.79579 pH1, H5q Ñ 6.80928
pH2, H6q Ñ 6.54821 pH3, H7q Ñ 7.84724 pH1, H6q Ñ 8.29267 pH2, H7q Ñ 6.34348
pH1, H7q Ñ 7.65004

(7.24)

pH1, H2q Ñ 2.49139 pH2, H3q Ñ 3.52491 pH3, H4q Ñ 2.65238 pH4, H5q Ñ 3.43621
pH5, H6q Ñ 2.53149 pH6, H7q Ñ 3.6266 pH1, H3q Ñ 3.59369 pH2, H4q Ñ 5.0736
pH3, H5q Ñ 4.63118 pH4, H6q Ñ 5.54401 pH5, H7q Ñ 4.59207 pH1, H4q Ñ 5.28655
pH2, H5q Ñ 5.24949 pH3, H6q Ñ 6.89193 pH4, H7q Ñ 6.77707 pH1, H5q Ñ 6.80928
pH2, H6q Ñ 6.54821 pH3, H7q Ñ 7.00579 pH1, H6q Ñ 8.29267 pH2, H7q Ñ 4.82612
pH1, H7q Ñ 6.82534

(7.25)
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Figure 73 – Solutions for vertices 96 and 97 of the search tree. Distance list for vertex 96
is found in equation 7.26 and distance list for vertex 97 is found in equation
7.27.

pH1, H2q Ñ 2.49139 pH2, H3q Ñ 3.52491 pH3, H4q Ñ 2.65238 pH4, H5q Ñ 3.43621
pH5, H6q Ñ 2.53149 pH6, H7q Ñ 3.6266 pH1, H3q Ñ 3.59369 pH2, H4q Ñ 5.0736
pH3, H5q Ñ 5.26684 pH4, H6q Ñ 5.27419 pH5, H7q Ñ 5.15025 pH1, H4q Ñ 5.28655
pH2, H5q Ñ 5.52935 pH3, H6q Ñ 7.15038 pH4, H7q Ñ 5.84691 pH1, H5q Ñ 6.39121
pH2, H6q Ñ 7.27334 pH3, H7q Ñ 7.43193 pH1, H6q Ñ 8.6303 pH2, H7q Ñ 8.4402
pH1, H7q Ñ 10.0327

(7.26)

pH1, H2q Ñ 2.49139 pH2, H3q Ñ 3.52491 pH3, H4q Ñ 2.65238 pH4, H5q Ñ 3.43621
pH5, H6q Ñ 2.53149 pH6, H7q Ñ 3.6266 pH1, H3q Ñ 3.59369 pH2, H4q Ñ 5.0736
pH3, H5q Ñ 5.26684 pH4, H6q Ñ 5.27419 pH5, H7q Ñ 4.59207 pH1, H4q Ñ 5.28655
pH2, H5q Ñ 5.52935 pH3, H6q Ñ 7.15038 pH4, H7q Ñ 5.12442 pH1, H5q Ñ 6.39121
pH2, H6q Ñ 7.27334 pH3, H7q Ñ 7.43193 pH1, H6q Ñ 8.6303 pH2, H7q Ñ 9.0596
pH1, H7q Ñ 10.0546

(7.27)
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Vertex 96 Vertex 97
Hydrogen Pair Distance Hydrogen Pair Distance

(H1,H2) 2.49139 (H1,H2) 2.49139
(H2,H3) 3.52491 (H2,H3) 3.52491
(H1,H3) 3.59369 (H1,H3) 3.59369
(H3,H4) 2.65238 (H3,H4) 2.65238
(H4,H5) 3.43621 (H4,H5) 3.43621
(H5,H6) 2.53149 (H5,H6) 2.53149
(H6,H7) 3.6266 (H6,H7) 3.6266

- (H5,H7) 4.59207

Table 36 – Comparison of distances between solutions 96 and 97 (shown in figure 73). The
distances used in the prune are underlined. Distances used for the cutoff value
of 4.6 Å are in green and additional distances used for the cutoff value of 4.9
Å are in blue.

Figure 74 – Solutions for vertices 104 and 105 of the search tree. Distance list for vertex
104 is found in equation 7.28 and distance list for vertex 105 is found in
equation 7.29.
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Vertex 104 Vertex 105
Hydrogen Pair Distance Hydrogen Pair Distance

(H1,H2) 2.49139 (H1,H2) 2.49139
(H2,H3) 3.52491 (H2,H3) 3.52491
(H1,H3) 3.59369 (H1,H3) 3.59369
(H3,H4) 2.53149 (H3,H4) 2.53149
(H4,H5) 3.6266 (H4,H5) 3.6266
(H2,H5) 4.76188 (H2,H5) 4.76188
(H3,H5) 4.59207 (H3,H5) 4.59207
(H5,H6) 2.65238 (H5,H6) 2.65238
(H6,H7) 3.43621 (H6,H7) 3.43621

- (H5,H7) 4.63118

Table 37 – Comparison of distances between solutions 104 and 105 (shown in figure 74).
The distances used in the prune are underlined. Distances used for the cutoff
value of 4.6 Å are in green and additional distances used for the cutoff value
of 4.9 Å are in blue.

pH1, H2q Ñ 2.49139 pH2, H3q Ñ 3.52491 pH3, H4q Ñ 2.53149 pH4, H5q Ñ 3.6266
pH5, H6q Ñ 2.65238 pH6, H7q Ñ 3.43621 pH1, H3q Ñ 3.59369 pH2, H4q Ñ 5.03461
pH3, H5q Ñ 4.59207 pH4, H6q Ñ 5.56355 pH5, H7q Ñ 5.26684 pH1, H4q Ñ 5.33484
pH2, H5q Ñ 4.76188 pH3, H6q Ñ 6.98832 pH4, H7q Ñ 6.82448 pH1, H5q Ñ 6.49867
pH2, H6q Ñ 6.61767 pH3, H7q Ñ 8.28216 pH1, H6q Ñ 8.30505 pH2, H7q Ñ 7.46832
pH1, H7q Ñ 8.4855

(7.28)

pH1, H2q Ñ 2.49139 pH2, H3q Ñ 3.52491 pH3, H4q Ñ 2.53149 pH4, H5q Ñ 3.6266
pH5, H6q Ñ 2.65238 pH6, H7q Ñ 3.43621 pH1, H3q Ñ 3.59369 pH2, H4q Ñ 5.03461
pH3, H5q Ñ 4.59207 pH4, H6q Ñ 5.56355 pH5, H7q Ñ 4.63118 pH1, H4q Ñ 5.33484
pH2, H5q Ñ 4.76188 pH3, H6q Ñ 6.98832 pH4, H7q Ñ 7.04444 pH1, H5q Ñ 6.49867
pH2, H6q Ñ 6.61767 pH3, H7q Ñ 7.70401 pH1, H6q Ñ 8.30505 pH2, H7q Ñ 5.83569
pH1, H7q Ñ 7.41799

(7.29)
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Figure 75 – Solutions for vertices 108 and 109 of the search tree. Distance list for vertex
108 is found in equation 7.30 and distance list for vertex 109 is found in
equation 7.31.

pH1, H2q Ñ 2.49139 pH2, H3q Ñ 3.52491 pH3, H4q Ñ 2.53149 pH4, H5q Ñ 3.6266
pH5, H6q Ñ 2.65238 pH6, H7q Ñ 3.43621 pH1, H3q Ñ 3.59369 pH2, H4q Ñ 5.03461
pH3, H5q Ñ 5.15025 pH4, H6q Ñ 5.37946 pH5, H7q Ñ 5.26684 pH1, H4q Ñ 5.33484
pH2, H5q Ñ 5.19592 pH3, H6q Ñ 7.11798 pH4, H7q Ñ 5.98868 pH1, H5q Ñ 6.17555
pH2, H6q Ñ 7.12289 pH3, H7q Ñ 7.88446 pH1, H6q Ñ 8.58179 pH2, H7q Ñ 8.93543
pH1, H7q Ñ 10.4408

(7.30)

pH1, H2q Ñ 2.49139 pH2, H3q Ñ 3.52491 pH3, H4q Ñ 2.53149 pH4, H5q Ñ 3.6266
pH5, H6q Ñ 2.65238 pH6, H7q Ñ 3.43621 pH1, H3q Ñ 3.59369 pH2, H4q Ñ 5.03461
pH3, H5q Ñ 5.15025 pH4, H6q Ñ 5.37946 pH5, H7q Ñ 4.63118 pH1, H4q Ñ 5.33484
pH2, H5q Ñ 5.19592 pH3, H6q Ñ 7.11798 pH4, H7q Ñ 5.61175 pH1, H5q Ñ 6.17555
pH2, H6q Ñ 7.12289 pH3, H7q Ñ 8.01035 pH1, H6q Ñ 8.58179 pH2, H7q Ñ 9.34248
pH1, H7q Ñ 10.289

(7.31)
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Vertex 108 Vertex 109
Hydrogen Pair Distance Hydrogen Pair Distance

(H1,H2) 2.49139 (H1,H2) 2.49139
(H2,H3) 3.52491 (H2,H3) 3.52491
(H1,H3) 3.59369 (H1,H3) 3.59369
(H3,H4) 2.53149 (H3,H4) 2.53149
(H4,H5) 3.6266 (H4,H5) 3.6266
(H5,H6) 2.65238 (H5,H6) 2.65238
(H6,H7) 3.43621 (H6,H7) 3.43621

- (H5,H7) 4.63118

Table 38 – Comparison of distances between solutions 108 and 109 (shown in figure 75).
The distances used in the prune are underlined. Distances used for the cutoff
value of 4.6 Å are in green and additional distances used for the cutoff value
of 4.9 Å are in blue.

Figure 76 – Solutions for vertices 112 and 113 of the search tree. Distance list for vertex
112 is found in equation 7.32 and distance list for vertex 113 is found in
equation 7.33.
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Vertex 112 Vertex 113
Hydrogen Pair Distance Hydrogen Pair Distance

(H1,H2) 2.49139 (H1,H2) 2.49139
(H2,H3) 3.52491 (H2,H3) 3.52491
(H1,H3) 3.59369 (H1,H3) 3.59369
(H3,H4) 2.53149 (H3,H4) 2.53149
(H4,H5) 3.43621 (H4,H5) 3.43621
(H3,H5) 4.62605 (H3,H5) 4.62605
(H5,H6) 2.65238 (H5,H6) 2.65238
(H6,H7) 3.6266 (H6,H7) 3.6266

- (H5,H7) 4.58485

Table 39 – Comparison of distances between solutions 112 and 113 (shown in figure 76).
The distances used in the prune are underlined. Distances used for the cutoff
value of 4.6 Å are in green and additional distances used for the cutoff value
of 4.9 Å are in blue.

pH1, H2q Ñ 2.49139 pH2, H3q Ñ 3.52491 pH3, H4q Ñ 2.53149 pH4, H5q Ñ 3.43621
pH5, H6q Ñ 2.65238 pH6, H7q Ñ 3.6266 pH1, H3q Ñ 3.59369 pH2, H4q Ñ 5.03461
pH3, H5q Ñ 4.62605 pH4, H6q Ñ 5.54055 pH5, H7q Ñ 5.20287 pH1, H4q Ñ 5.33484
pH2, H5q Ñ 5.15635 pH3, H6q Ñ 6.96997 pH4, H7q Ñ 6.74999 pH1, H5q Ñ 6.78496
pH2, H6q Ñ 6.65475 pH3, H7q Ñ 7.79182 pH1, H6q Ñ 8.36265 pH2, H7q Ñ 6.43289
pH1, H7q Ñ 7.62596

(7.32)

pH1, H2q Ñ 2.49139 pH2, H3q Ñ 3.52491 pH3, H4q Ñ 2.53149 pH4, H5q Ñ 3.43621
pH5, H6q Ñ 2.65238 pH6, H7q Ñ 3.6266 pH1, H3q Ñ 3.59369 pH2, H4q Ñ 5.03461
pH3, H5q Ñ 4.62605 pH4, H6q Ñ 5.54055 pH5, H7q Ñ 4.58485 pH1, H4q Ñ 5.33484
pH2, H5q Ñ 5.15635 pH3, H6q Ñ 6.96997 pH4, H7q Ñ 6.82054 pH1, H5q Ñ 6.78496
pH2, H6q Ñ 6.65475 pH3, H7q Ñ 7.15323 pH1, H6q Ñ 8.36265 pH2, H7q Ñ 5.03576
pH1, H7q Ñ 6.94711

(7.33)
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Figure 77 – Solutions for vertices 116 and 117 of the search tree. Distance list for vertex
116 is found in equation 7.34 and distance list for vertex 117 is found in
equation 7.35.

pH1, H2q Ñ 2.49139 pH2, H3q Ñ 3.52491 pH3, H4q Ñ 2.53149 pH4, H5q Ñ 3.43621
pH5, H6q Ñ 2.65238 pH6, H7q Ñ 3.6266 pH1, H3q Ñ 3.59369 pH2, H4q Ñ 5.03461
pH3, H5q Ñ 5.20159 pH4, H6q Ñ 5.34811 pH5, H7q Ñ 5.20287 pH1, H4q Ñ 5.33484
pH2, H5q Ñ 5.57526 pH3, H6q Ñ 7.10513 pH4, H7q Ñ 5.80997 pH1, H5q Ñ 6.46344
pH2, H6q Ñ 7.1768 pH3, H7q Ñ 7.33043 pH1, H6q Ñ 8.64839 pH2, H7q Ñ 8.24638
pH1, H7q Ñ 9.94343

(7.34)

pH1, H2q Ñ 2.49139 pH2, H3q Ñ 3.52491 pH3, H4q Ñ 2.53149 pH4, H5q Ñ 3.43621
pH5, H6q Ñ 2.65238 pH6, H7q Ñ 3.6266 pH1, H3q Ñ 3.59369 pH2, H4q Ñ 5.03461
pH3, H5q Ñ 5.20159 pH4, H6q Ñ 5.34811 pH5, H7q Ñ 4.58485 pH1, H4q Ñ 5.33484
pH2, H5q Ñ 5.57526 pH3, H6q Ñ 7.10513 pH4, H7q Ñ 5.22397 pH1, H5q Ñ 6.46344
pH2, H6q Ñ 7.1768 pH3, H7q Ñ 7.44546 pH1, H6q Ñ 8.64839 pH2, H7q Ñ 9.00778
pH1, H7q Ñ 10.1394

(7.35)
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Vertex 116 Vertex 117
Hydrogen Pair Distance Hydrogen Pair Distance

(H1,H2) 2.49139 (H1,H2) 2.49139
(H2,H3) 3.52491 (H2,H3) 3.52491
(H1,H3) 3.59369 (H1,H3) 3.59369
(H3,H4) 2.53149 (H3,H4) 2.53149
(H4,H5) 3.43621 (H4,H5) 3.43621
(H5,H6) 2.65238 (H5,H6) 2.65238
(H6,H7) 3.6266 (H6,H7) 3.6266

- (H5,H7) 4.58485

Table 40 – Comparison of distances between solutions 116 and 117 (shown in figure 77).
The distances used in the prune are underlined. Distances used for the cutoff
value of 4.6 Å are in green and additional distances used for the cutoff value
of 4.9 Å are in blue.

7.4 Computational Results
In this section the results regarding computational times for the modified

Branch-and-Prune algorithm to find its first solution will be given. These tests were made
for instances having 3, 5, 8, 10, 12, 15, 20, 25, 30 and 40 amino acids and cuts of 4.5 Å,
5 Å, 5.5 Å, 6 Å, 6.5 Å and no cuts. For each cut/size combination 10 tests were made
with randomly generated samples and the average computation time was calculated. All
tests were run in Mathematica, using a Aspire F5-573 computer with Intel core i5 7th

generation processor and 8 GB of RAM.

# Amino acids 3 5 8 10 12 15 20 25 30 40
Time (in seconds) 0.36 1.03 3.30 5.71 9.01 15.96 47.58 63.44 85.46 190.67

Table 41 – Execution time for instances having all hydrogen pair distances (no cuts)

# Amino acids 3 5 8 10 12 15 20 25 30 40
Time (in seconds) 0.27 0.81 2.29 3.89 5.16 10.86 16.26 29.37 78.98 85.09

Table 42 – Execution time for instances having a cut of 4.5Å

# Amino acids 3 5 8 10 12 15 20 25 30 40
Time (in seconds) 0.28 0.88 2.48 4.07 5.49 8.79 15.48 26.96 35.19 75.42

Table 43 – Execution time for instances having a cut of 5Å

The fact that the computational time in all cut cases is very similar is rather
surprising. However, the cases not having all distances were tested already knowing what
the solution was, and this test was halted as soon as this solution was found. This way, the
test didn’t necessarily stopped when the first solution was found, but it didn’t necessarily
run until all solutions were found and the whole algorithm decision tree was spanned.
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# Amino acids 3 5 8 10 12 15 20 25 30 40
Time (in seconds) 0.26 0.80 2.36 3.41 7.29 9.38 17.87 26.90 49.05 85.19

Table 44 – Execution time for instances having a cut of 5.5Å

# Amino acids 3 5 8 10 12 15 20 25 30 40
Time (in seconds) 0.30 0.88 2.27 4.06 6.45 9.96 17.14 29.43 40.84 80.88

Table 45 – Execution time for instances having a cut of 6Å

# Amino acids 3 5 8 10 12 15 20 25 30 40
Time (in seconds) 0.26 0.85 2.76 4.76 5.99 10.10 17.83 40.28 41.35 91.36

Table 46 – Execution time for instances having a cut of 6.5Å

Figure 78 – Comparison between execution times with different cutoff values and sizes.

Since the cases having cuts (ie, where not all distances are provided) have less
prunes, small instances in these tests tend to run on a smaller computational time. This
also happens due to the fact that, the smaller the instance, the smaller the cardinality of
the solution set is. Hence, the right solution tends to be found more quickly.

In the cases where all available distances are provided it can be considered that
the computational times shown are the actual algorithmic computational time. As was
previously said for the cases having cuts, these tests also were programmed to halt as soon
as the correct solution was found, but from chapter 6 it is known that, when all distances
are provided, the solution for this problem is unique.

These cases having no cuts also take longer in average. One reason for this
could be that, with all distances provided, more restrictions are given and hence the
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situation where the algorithm descends in a branch until a node next to a leaf but a prune
occurs probably happens more often, augmenting the execution time. On the other hand,
for practical situations (were the right solution is not known), the fact that the solution is
unique makes these cases more reliable in terms of correct solutions.

In figure 78 all data regarding these tests is put into a single graph so that all
combinations of sizes and cutoff values can better be visualized and compared. It can be
clearly seen that the computation time seems to increase exponentially, proportional to
the number of amino acids in the protein.

For the cases where there are distance cuts it takes too long to find all solutions
in order for them to be compared. The tests made with an instance with size 3 took more
than 5 minutes to be completed and in the case of an instance of size 5, after computing
the results for a whole night, it still hadn’t found all solutions. It is imperative, therefore,
that we look for alternatives to solve this specific problem.
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8 Conclusion

In chapter 1 a description of the structures of proteins and how they are used
in this work was presented. Along that, the concept of graphs - and more specifically, the
graph used to model these proteins for the Unassigned Distance Geometry Problem - was
introduced. This introductory chapter laid part of the foundation for the concepts that
permeated the entire work, such as the disregard for the proteins’ side chains (and why
this is a valid action to be taken) and the variables used in the protein model:

• rvi,vj : distance between atoms vi and vj having a covalent bond (equal to 1.526 Å)

• θvi,vk : angle between three atoms vi, vj, vk where vi, vj and vj, vk have a covalent
bond (1.91 rad)

• ωvi,vl : angle between the planes formed by the atoms vi, vj, vk e vj, vk, vl where vi
and vl are separated by three covalent bonds

• xvi : spatial coordinates of atom vi

Chapter 2 introduced important definitions: the Distance Geometry Problem,
concepts of rigidity and its connection to this problem and its Assigned and Unassigned
classes, explaining why this work’s category falls into the Unassigned class. It also brings
a general historical view of the progressions in the area and important primary results,
such as the problem being NP-Hard.

In chapter 3 vertex orders were presented. This concept has ties to both
theoretical concepts (such as the Discretizable Distance Geometry Problem and the fact
that all instances for this class can be ordered according to definition 12) and more practical
concepts as well, like its important role in the Branch-and-Prune algorithm.

In chapter 4 the process of instance generation was explained, in order to lay
the path for the introduction of instance generation in this work (presented in a chapter
ahead). As with the Branch-and-Prune algorithm, the process of instance generation used
here is a modification from what can be seen in the Lavor Instances. Also in line with the
modifications made in the Branch-and-Prune algorithm, this part of the work is based
in what is described in section 4.1 and takes advantage of the rigid substructures in the
molecule’s models for speeding up the process.

The original Branch-and-Prune algorithm was presented in chapter 5 and its
main procedures were explained, which ties the previous chapters and shows how each of
the definitions presented before are applied to the resolution of the Distance Geometry
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Problem. It starts with an instance such as it was described in chapter 4 whose distances
are used to realize the proteins’ coordinated according to the hand-crafted vertex order
(chapter 3). This algorithm was conceived as a way to find a solution for the associated
Distance Geometry Problem, and is the foundation for the modified algorithm described
ahead that aims to resolve the Unassigned Distance Geometry Problem.

Chapter 7 takes the theory developed in the previous chapters and applies it
to examples to better illustrate the results of this work. Firstly, a basic example with
the first iterations of the modified branch-and-prune algorithm is shown with no cutoff
value for the instance distances. Following this, a more complete example of the modified
branch-and-prune algorithm is fully described, including all of its iterations.

After these two examples of the algorithm’s iterations an analysis of the
algorithm search tree’s variations is conducted with three instances generated from the
same solution and varying cutoff values. Finally, in the last section of this chapter a
comparison of different cutoff values and molecule sizes is made in line with the assumption
that the algorithm’s execution time is exponentially proportional to its instance’s size,
which is, in turn, related to its’ proteins’ sizes (that is, the size of the solutions looked for
the algorithm).

Results regarding the use of symmetries in the original Branch-and-Prune
algorithm in order to diminish the computation time and find all solutions of a given
instance are already available in the literature (as seen in references (MUCHERINO
C. LAVOR, 2012) and (LAVOR et al., 2017)). Given the fact that both the MDGP and
the DMDGP are NP-hard problems (reference (MUCHERINO C. LAVOR, 2012)), the
computation time can increase exponentially with the increase of the instance’s size, and
this continues to be the case for the Unassigned problems discussed in this work.

Indeed, not only the problem continues to be exponential (given the fact that
the original BP tree is a subtree in the modified BP algorithm), but it can have more
solutions to be found - making the calculations even longer. With this in mind, a valid
path for following works is, starting with the ideas exploring symmetries in the original BP
algorithm, identifying ways to make faster calculations to find all solutions for instances of
the Unassigned case.

Observations about the possible symmetries for the Unassigned DMDGP were
made in chapter 7, at the same time that it was observed that they do not appear always
(depending on the cutoff value set in the problem). Therefore, using symmetries in this
case would have to be preceded by a more in-depth analysis of cases where the cutoff value
could imppose a complication for the full symmetry to appear.

Nevertheless, some symmetry does seem to exist and a possible way to tackle
cases where the cutoff value is an impediment for a fully symmetric tree would be to
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perform a post-check in all distances for the solutions found and compare them to the
instance’s distance list, excluding those solutions whose distances don’t match.

Another way to make calculations faster is to extend the approach made in
this work using rigid substructures, attempting to incorporate larger structures at each
iteration of the algorithm. A possibility for this would be, for instance, incorporating a
full amino acid instead of half at each stage.



120

Bibliography

A VALADARES NF, N. d. S. O. e. a. B. Protein Structure, Modelling and
Applications. Bethesda (MD): National Center for Biotechnology Information
(US), 2006. (Gruber A, Durham AM, Huynh C, et al., editors. Bioinformatics in
Tropical Disease Research: A Practical and Case-Study Approach). Disponível em:
ăhttps://www.ncbi.nlm.nih.gov/books/NBK6824/ą. Citado na página 19.

ALVES, R.; LAVOR, C. Geometric algebra to model uncertainties in the
discretizable molecular distance geometry problem. Advances in Applied Clifford
Algebras, v. 27, n. 1, p. 439–452, Mar 2017. ISSN 1661-4909. Disponível em:
<https://doi.org/10.1007/s00006-016-0653-2>. Citado na página 33.

BAJAJ, C. The algebraic degree of geometric optimization problems. Discrete &
Computational Geometry, v. 3, n. 2, p. 177–191, Jun 1988. ISSN 1432-0444. Disponível em:
<https://doi.org/10.1007/BF02187906>. Citado na página 27.

BENEDETTI, R.; RISLER, J. Real algebraic and semi-algebraic sets. Hermann,
1990. (Actualités mathématiques). ISBN 9782705661441. Disponível em: <https:
//books.google.com.br/books?id=6\_\_uAAAAMAAJ>. Citado na página 28.

BLUMENTHAL, L. Theory and applications of distance geometry. Chelsea Pub. Co.,
1970. ISBN 9780828402422. Disponível em: <https://books.google.com.br/books?id=
QdcPAQAAMAAJ>. Citado na página 26.

BODLAENDER, H. L.; FOMIN, F. V.; KOSTER, A. M. C. A.; KRATSCH, D.;
THILIKOS, D. M. A note on exact algorithms for vertex ordering problems on graphs.
Theory of Computing Systems, v. 50, n. 3, p. 420–432, Apr 2012. ISSN 1433-0490.
Disponível em: <https://doi.org/10.1007/s00224-011-9312-0>. Citado na página 31.

BROWN, A. C. On the theory of isomeric compounds. J. Chem. Soc., The
Royal Society of Chemistry, v. 18, p. 230–245, 1865. Disponível em: <http:
//dx.doi.org/10.1039/JS8651800230>. Citado na página 22.

CONNELLY, B. Chapter 2: Basic concepts. In: . [s.n.], 1987. Disponível em:
<http://www.math.cornell.edu/~connelly/rigidity.chapter.2.pdf>. Citado na página 28.

CRIPPEN, G.; HAVEL, T. Distance geometry and molecular conformation. v. 15, 01
1988. Citado 3 vezes nas páginas 16, 26, and 51.

DONALD, B. R. Algorithms in Structural Molecular Biology. [S.l.]: The MIT Press, 2011.
ISBN 0262015595, 9780262015592. Citado 2 vezes nas páginas 28 and 51.

DUXBURY L. GRANLUND, S. G. P. J. S. B. P. The unassigned distance geometry
problem. Discrete Applied Mathematics, v. 204, p. 117 – 132, 2016. ISSN 0166-218X.
Disponível em: <http://www.sciencedirect.com/science/article/pii/S0166218X15005168>.
Citado na página 29.

DUXBURY, P.; LAVOR, C.; LIBERTI, L.; SALLES-NETO, L. L. de. Unassigned
distance geometry and molecular conformation problems. Journal of Global Optimization,

https://doi.org/10.1007/s00006-016-0653-2
https://doi.org/10.1007/BF02187906
https://books.google.com.br/books?id=6\_\_uAAAAMAAJ
https://books.google.com.br/books?id=6\_\_uAAAAMAAJ
https://books.google.com.br/books?id=QdcPAQAAMAAJ
https://books.google.com.br/books?id=QdcPAQAAMAAJ
https://doi.org/10.1007/s00224-011-9312-0
http://dx.doi.org/10.1039/JS8651800230
http://dx.doi.org/10.1039/JS8651800230
http://www.math.cornell.edu/~connelly/rigidity.chapter.2.pdf
http://www.sciencedirect.com/science/article/pii/S0166218X15005168


Bibliography 121

2021. Disponível em: <http://www.lix.polytechnique.fr/Labo/Leo.Liberti/jogo21d.pdf>.
Citado na página 29.

EDUCATION, M. F. for M.; (MFMER), R. How prions fold. Disponível em:
<https://www.mayoclinic.org/diseases-conditions/creutzfeldt-jakob-disease/multimedia/
normal-and-diseased-prions/img-20007478>. Citado 2 vezes nas páginas 9 and 16.

FIDALGO, F.; GONÇALVES, D. S.; LAVOR, C.; LIBERTI, L.; MUCHERINO, A. A
symmetry-based splitting strategy for discretizable distance geometry problems. Journal
of Global Optimization, v. 71, n. 4, p. 717–733, Aug 2018. ISSN 1573-2916. Disponível em:
<https://doi.org/10.1007/s10898-018-0610-9>. Citado na página 44.

FLORENCIO, A. Para que serve a quiralidade? 2016. Disponível em: <https://
universidadedaquimica.com.br/wp-content/uploads/2016/01/diasteroisomeros-825x444.
jpg>. Citado 2 vezes nas páginas 10 and 53.

GIBSON, K. D.; SCHERAGA, H. A. Energy minimization of rigid-geometry polypeptides
with exactly closed disulfide loops. v. 18, p. 403 – 415, 02 1997. Citado 2 vezes nas
páginas 22 and 31.

GONÇALVES, D. S.; MUCHERINO, A. Discretization orders and efficient computation of
cartesian coordinates for distance geometry. Optimization Letters, v. 8, n. 7, p. 2111–2125,
Oct 2014. ISSN 1862-4480. Disponível em: <https://doi.org/10.1007/s11590-014-0724-z>.
Citado na página 32.

GRAVER, J.; AMERICA, M. A. of. Counting on Frameworks: Mathematics
to Aid the Design of Rigid Structures. Mathematical Association of America,
2001. (Dolciani Mathematical Expositions). ISBN 9780883853313. Disponível em:
<https://books.google.com.br/books?id=0MCpQx5wJ74C>. Citado 2 vezes nas páginas
27 and 28.

HENDRICKSON, B. Conditions for unique graph realizations. SIAM Journal on
Computing, v. 21, n. 1, p. 65–84, 1992. Disponível em: <https://doi.org/10.1137/0221008>.
Citado na página 31.

. The molecule problem: Exploiting structure in global optimization.
SIAM Journal on Optimization, v. 5, n. 4, p. 835–857, 1995. Disponível em:
<https://doi.org/10.1137/0805040>. Citado 5 vezes nas páginas 7, 8, 18, 48, and 50.

HENNEBERG, L. Statik der starren Systeme. A. Bergstraesser, 1886. (Lehrbuch der
technischen Mechanik). Disponível em: <https://books.google.com.br/books?id=
z4pNAAAAYAAJ>. Citado na página 31.

JACKSON, B.; JORDÁN, T. On the rigidity of molecular graphs. Combinatorica,
v. 28, n. 6, p. 645–658, Nov 2008. ISSN 1439-6912. Disponível em: <https:
//doi.org/10.1007/s00493-008-2287-z>. Citado na página 29.

LAMAN, G. On graphs and rigidity of plane skeletal structures. Journal of Engineering
Mathematics, v. 4, n. 4, p. 331–340, Oct 1970. ISSN 1573-2703. Disponível em:
<https://doi.org/10.1007/BF01534980>. Citado na página 29.

http://www.lix.polytechnique.fr/Labo/Leo.Liberti/jogo21d.pdf
https://www.mayoclinic.org/diseases-conditions/creutzfeldt-jakob-disease/multimedia/normal-and-diseased-prions/img-20007478
https://www.mayoclinic.org/diseases-conditions/creutzfeldt-jakob-disease/multimedia/normal-and-diseased-prions/img-20007478
https://doi.org/10.1007/s10898-018-0610-9
https://universidadedaquimica.com.br/wp-content/uploads/2016/01/diasteroisomeros-825x444.jpg
https://universidadedaquimica.com.br/wp-content/uploads/2016/01/diasteroisomeros-825x444.jpg
https://universidadedaquimica.com.br/wp-content/uploads/2016/01/diasteroisomeros-825x444.jpg
https://doi.org/10.1007/s11590-014-0724-z
https://books.google.com.br/books?id=0MCpQx5wJ74C
https://doi.org/10.1137/0221008
https://doi.org/10.1137/0805040
https://books.google.com.br/books?id=z4pNAAAAYAAJ
https://books.google.com.br/books?id=z4pNAAAAYAAJ
https://doi.org/10.1007/s00493-008-2287-z
https://doi.org/10.1007/s00493-008-2287-z
https://doi.org/10.1007/BF01534980


Bibliography 122

LANSBURY, P. T.; CAUGHEY, B. The double life of the prion protein.
Current Biology, v. 6, n. 8, p. 914 – 916, 1996. ISSN 0960-9822. Disponível em:
<http://www.sciencedirect.com/science/article/pii/S0960982202006243>. Citado na
página 16.

LAVOR, C. On generating instances for the molecular distance geometry problem. In:
. Global Optimization: From Theory to Implementation. Boston, MA: Springer US,

2006. p. 405–414. Disponível em: <https://doi.org/10.1007/0-387-30528-9_14>. Citado
3 vezes nas páginas 9, 39, and 41.

LAVOR, C.; LIBERTI, L.; DONALD, B.; WORLEY, B.; BARDIAUX, B.; MALLIAVIN,
T. E.; NILGES, M. Minimal nmr distance information for rigidity of protein
graphs. Discrete Applied Mathematics, 2018. ISSN 0166-218X. Disponível em:
<http://www.sciencedirect.com/science/article/pii/S0166218X18301793>. Citado 19
vezes nas páginas 7, 8, 9, 16, 17, 18, 20, 21, 22, 23, 26, 27, 31, 32, 33, 36, 37, 38, and 44.

LAVOR, C.; LIBERTI, L.; MACULAN, N. Computational experience with the molecular
distance geometry problem. In: . Global Optimization: Scientific and Engineering
Case Studies. Boston, MA: Springer US, 2006. p. 213–225. ISBN 978-0-387-30927-9.
Disponível em: <https://doi.org/10.1007/0-387-30927-6_9>. Citado na página 27.

LAVOR, C.; LIBERTI, L.; MACULAN, N.; MUCHERINO, A. The discretizable
molecular distance geometry problem. Computational Optimization and Applications,
v. 52, n. 1, p. 115–146, May 2012. ISSN 1573-2894. Disponível em: <https:
//doi.org/10.1007/s10589-011-9402-6>. Citado 2 vezes nas páginas 31 and 32.

LAVOR, C.; LIBERTI, L.; MUCHERINO, A. The interval branch-and-prune algorithm
for the discretizable molecular distance geometry problem with inexact distances. Journal
of Global Optimization, v. 56, n. 3, p. 855–871, Jul 2013. ISSN 1573-2916. Disponível em:
<https://doi.org/10.1007/s10898-011-9799-6>. Citado 9 vezes nas páginas 9, 19, 23, 24,
25, 32, 33, 34, and 35.

LAVOR, C.; MACULAN, N.; SOUZA, M.; ALVES, R. Theory and applications of distance
geometry. 2017. Citado na página 118.

LAVOR, C.; MUCHERINO, A.; LIBERTI, L.; MACULAN, N. The Discretizable
Molecular Distance Geometry Problem. 2012. Disponível em: <http://www.inf.ufrgs.br/
elavio2012/elavio2012/Downloads_files/slides_elavio_carlile_1.pdf>. Citado 2 vezes
nas páginas 9 and 17.

LAVOR, L. L. C. Um Convite à Geometria de Distâncias. [S.l.]: SBMAC, 2014. v. 71.
(Notas em Matemática Aplicada, v. 71). ISBN 978-85-8215-050-4. Citado 3 vezes nas
páginas 9, 45, and 46.

LIBERTI, L.; LAVOR, C.; MACULAN, N.; MUCHERINO, A. Euclidean distance
geometry and applications. SIAM Review, SIAM, v. 56, p. 3–69, 2014. Citado 5 vezes nas
páginas 26, 27, 28, 29, and 31.

LIBERTI, L.; MASSON, B.; LEE, J.; LAVOR, C.; MUCHERINO, A. On the number
of realizations of certain henneberg graphs arising in protein conformation. Discrete
Applied Mathematics, v. 165, p. 213 – 232, 2014. ISSN 0166-218X. 10th Cologne/Twente
Workshop on Graphs and Combinatorial Optimization (CTW 2011). Disponível em:

http://www.sciencedirect.com/science/article/pii/S0960982202006243
https://doi.org/10.1007/0-387-30528-9_14
http://www.sciencedirect.com/science/article/pii/S0166218X18301793
https://doi.org/10.1007/0-387-30927-6_9
https://doi.org/10.1007/s10589-011-9402-6
https://doi.org/10.1007/s10589-011-9402-6
https://doi.org/10.1007/s10898-011-9799-6
http://www.inf.ufrgs.br/elavio2012/elavio2012/Downloads_files/slides_elavio_carlile_1.pdf
http://www.inf.ufrgs.br/elavio2012/elavio2012/Downloads_files/slides_elavio_carlile_1.pdf


Bibliography 123

<http://www.sciencedirect.com/science/article/pii/S0166218X13000449>. Citado 2
vezes nas páginas 44 and 66.

MENGER, K. Unterschungen über allgemeine metrik. v. 100, p. 75–163, 12 1928. Citado
na página 26.

MUCHERINO, A.; LAVOR, C.; LIBERTI, N. M. L. Strategies for solving distance
geometry problems with inexact distances by discrete approaches. In: . Proceedings
of Toulouse Global Optimization 2010 (TOGO10). [S.l.: s.n.], 2010. p. 93–96. Citado na
página 16.

MUCHERINO C. LAVOR, L. L. A. Exploiting symmetry properties of the discretizable
molecular distance geometry problem. Journal of Bioinformatics and Computational
Biology, v. 10, n. 3, 2012. Citado 2 vezes nas páginas 84 and 118.

MUELLER, C.; MARTIN, B.; LUMSDAINE, A. A comparison of vertex ordering
algorithms for large graph visualization. In: 2007 6th International Asia-Pacific
Symposium on Visualization. [S.l.: s.n.], 2007. p. 141–148. Citado na página 31.

PHILLIPS, A. T.; ROSEN, J. B.; WALKE, V. H. Molecular structure determination by
convex global underestimation of local energy minima. In: DIMACS Series in Discrete
Mathematics and Theoretical Computer Science. [S.l.]: American Mathematical Society,
1994. p. 181–198. Citado na página 39.

R., A.; C., L.; C., S.; M., S. Clifford algebra and discretizable distance geometry.
Mathematical Methods in the Applied Sciences, v. 0, n. 0, 2017. Disponível em:
<https://onlinelibrary.wiley.com/doi/abs/10.1002/mma.4422>. Citado na página 33.

SAXE, J. Embeddability of Weighted Graphs in K-space is Strongly NP-hard.
Carnegie-Mellon University, Department of Computer Science, 1980. (CMU-CS-80-102).
Disponível em: <https://books.google.com.br/books?id=vClAGwAACAAJ>. Citado na
página 26.

SCIENCE, G. Molecular Biology of the Cell, 5th Ed, 2008: Cell. [s.n.], 2008. (Molecular
Biology of the Cell). Disponível em: <https://books.google.com.br/books?id=
4ARfDwAAQBAJ>. Citado na página 21.

UNCCH. Protein Structure and Function. 2018. Disponível em: <https://biophysics.unc.
edu/faculty/protein-structure-and-function/>. Citado 2 vezes nas páginas 9 and 17.

WEST, D. B. Introduction to Graph Theory. Second. Upper Saddle River, N.J.: Prentice
Hall, 2001. ISBN 0130144002 9780130144003. Citado 2 vezes nas páginas 22 and 65.

YEMINI, Y. DTIC ADP003801: The Positioning Problem - A Draft of an Intermediate
Summary. [s.n.], 1978. Disponível em: <https://archive.org/stream/DTIC_ADP003801/
DTIC_ADP003801_djvu.txt>. Citado na página 26.

http://www.sciencedirect.com/science/article/pii/S0166218X13000449
https://onlinelibrary.wiley.com/doi/abs/10.1002/mma.4422
https://books.google.com.br/books?id=vClAGwAACAAJ
https://books.google.com.br/books?id=4ARfDwAAQBAJ
https://books.google.com.br/books?id=4ARfDwAAQBAJ
https://biophysics.unc.edu/faculty/protein-structure-and-function/
https://biophysics.unc.edu/faculty/protein-structure-and-function/
https://archive.org/stream/DTIC_ADP003801/DTIC_ADP003801_djvu.txt
https://archive.org/stream/DTIC_ADP003801/DTIC_ADP003801_djvu.txt

	First page
	Title page
	Catalographic data
	Approval
	Dedication
	Acknowledgements
	Resumo
	Abstract
	List of Figures
	�stlistalgorithmcfname
	Contents
	Introduction
	Structures and Modeling of Proteins
	Proteins' Structure
	Graphs
	The Backbone Graph


	The Distance Geometry Problem
	Rigidity and Distance Geometry
	The Assigned and Unassigned Classes

	Vertex Orders
	Re-Orders
	The Hand-Crafted Vertex Order

	Instance Generation
	Lavor Instances

	The Branch-And-Prune Algorithm
	Initialization
	General Procedures
	Prune

	Symmetries

	The Modified Branch-And-Prune Algorithm
	Instance Generation in This Work
	Rigid Substructures
	Rigid Substructures Applied to Lavor Instance Generation

	Initialization (Modified Algorithm)
	General Procedures
	Prune

	Correctness of the Modified Branch-and-Prune Algorithm
	Symmetries

	Computational Results
	Example 1
	Example 2
	Analysis of Different Cutoff Values
	Computational Results

	Conclusion
	Bibliography

