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Resumo

Nesta tese, uma nova classe de esquemas semi-discretos Lagrangianos-Eulerianos (SDLE) com a propriedade
positivity preserving foi projetada e rigorosamente analisada para a resolucdo de problemas de valor inicial
multidimensionais para modelos escalares e sistemas de leis de conservacdo. A construcao desta classe de
esquemas é baseada na regido espago-temporal no-flow surface, que fora apresentada anteriormente para
esquemas totalmente discretos. A implementagao do esquema no caso de sistemas é uma aplicagao direta de
componentes do caso escalar multidimensional, mas, mais importante, a nova abordagem semi-discreta nao
requer estratégias de divisido dimensional (i.e., dimensional splitting). A prova de convergéncia para solugéo
entropica para o caso escalar multidimensional é fornecida por meio de uma anélise assintética fraca.
Também foi provado que o novo esquema bidimensional Lagrangiano-Euleriano satisfaz o principio do
méximo (caso escalar) junto com estimativas relevantes, o que também implica a unicidade da solugédo fraca
satisfazendo a condicdo de entropia de Kruzhkov. Vale ressaltar que também destacamos a possibilidade
do uso das no-flow curves como uma nova técnica de analise de dessingularizagao para construgao de
fluxos numéricos, localmente conservativos, e computacionalmente estaveis, para a resolucao de problemas
hiperbélicos nao lineares, nos casos escalares e de sistemas. Além disso, foi provada também que o
novo esquema semi-discreto Lagrangiano-Euleriano, no contexto mais geral de sistemas hiperbdlicos
multidimensionais de leis de conservagao, satisfaz o principio de positividade introduzido por P. Lax e X.-D.
Liu (1996, 2003). De fato, usando as propriedades das no-flow curves, ndo é necessério obter os autovalores
associados ao fluxo hiperbdlico para garantir a positividade fraca do novo esquema numérico semi-discreto
proposto. Também usamos estimativas adequadas das no-flow curves para calculos numericamente estaveis
- para resolver equagdes escalares e sistemas multidimensionais - de uma forma semelhante a da conhecida
condigao de estabilidade de Courant - Friedrichs - Lewy (CFL), mas sem a necessidade de empregar os
autovalores (valores exatos ou aproximados) do Jacobiano relevante das fungoes de fluxo hiperbdlico.
Outra caracteristica interessante da construgdo semi-discreta no-flow curves Lagrangiana-Euleriana é que
as matrizes sdo simétricas por construcao (na verdade, sdo diagonais), o que é independente e aplicavel
para uma classe geral de fluxo hiperbdlico para problemas escalares e sistemas. Também demonstramos
a aplicacao do esquema semi-discreto para problemas hiperbdlicos escalares e sistemas bidimensionais
ndo triviais que exibem intrincadas interagoes de ondas. O esquema SDLE multidimensional mantém a
simplicidade, com uma resolucdo muito boa, é eficiente em termos de custo computacional e de memoria,
e também é simples de implementar, pois nenhum problema de Riemann (local) é resolvido; portanto, os
calculos de tipo field-by-field type decompositions no caso de sistemas hiperbdlicos sdo totalmente evitados.
Todas essas propriedades sao significativas e garantem a simplicidade e o poder dessa classe de esquemas

semi-discretos positivos.

Palavras-chave: Leis de conservagao hiperbdlicas, Método Lagrangiano-Euleriano, Anélise de dessin-
gularizagdo (Blow—up analysis), Esquema semi-discreto, Variacdo total nao crescente (Total variation
nonincreasing—TVNI), Andlise assintética fraca, Solugao de entropia de Kruzhkov, Principio de positivi-

dade.



Abstract

In this thesis, we design and analyze a new class of positive Semi-Discrete Lagrangian-Eulerian (SDLE)
schemes for solving multidimensional initial value problems for scalar models and systems of conservation
laws. The construction of the schemes is based on the space-time no-flow surface region, previously
presented and analyzed for fully discrete schemes. The implementation of the scheme in the case of systems
is a straightforward componentwise application of the multidimensional scalar case, but, importantly,
the new semi-discrete approach does not require dimensional splitting strategies. Entropy-convergence
proof for the multidimensional scalar case is provided via weak asymptotic analysis. We also prove that
the new two-dimensional Lagrangian-Eulerian scheme satisfies the scalar maximum principle along with
relevant estimates, which also implies the uniqueness of the weak solution satisfying Kruzhkov entropy
condition. It is worth pointing out that we also highlight the possibility of the use of the no-flow curves as
a novel desingularization analysis technique for construction of computationally stable numerical flux,
in locally conservative form, for numerically solving nonlinear hyperbolic problems. Moreover, we show
that the new semi-discrete Lagrangian-FEulerian scheme, in the more general context of multidimensional
hyperbolic systems of conservation laws, also satisfies the positivity principle introduced by P. Lax and
X.-D. Liu (1996, 2003). Indeed, by using the properties of the no-flow curves, it is not necessary to obtain
the eigenvalues associated with the hyperbolic flux to guarantee the positivity in a weak sense of the
new proposed semi-discrete numerical scheme. We also use suitable estimates on the no-flow curves for
numerically stable computations — for solving scalar equations and multidimensional systems — in a fashion
similar to that of the well-known stability condition by Courant-Friedrichs-Lewy (CFL), but without the
need to employ the eigenvalues (exact or approximate values) of the relevant Jacobian of the hyperbolic
flux functions. Another interesting feature of the semi-discrete no-flow Lagrangian-Eulerian construction is
that the matrices are symmetric for free (actually, they are diagonal), which is independent for a general
class of hyperbolic flux for scalar problems and systems as well. We also demonstrate the application of
our semi-discrete scheme to nontrivial two-dimensional scalar problems and systems that display intricate
wave interactions. The multidimensional SDLE scheme retains simplicity, with a very good resolution, is
efficient in terms of computational and memory cost, and is simple to implement as well since no (local)
Riemann problems are solved; hence, time-consuming field-by-field type decompositions are avoided in the
case of systems. These features are significant and ensure the simplicity and power of this class of positive

semi-discrete schemes.

Keywords: Hyperbolic conservation laws, Lagrangian—FEulerian method, Blow—up analysis, Semi—discrete
scheme, Total variation nonincreasing (TVNI), Weak asymptotic analysis, Kruzhkov entropy solution,

Positivity principle.



Figure 1

Figure 2

Figure 3

Figure 4

List of Figures

Possible geometric representations of the Lagrangian-Eulerian space-

time control volume D;L’"H (and no-flow curves o7 (t) and o7, (t)) and

its first-order approximation (straight lines) from time level " to time

tn+1

level . On the uniform grid we denote Az = Tj1 = T and

J
Ti1 = (j + 1/2)Ax, for j € Z. ii denotes the outward normal vector.
For illustration purposes, we present the approximation of the quantities

involved in the control volume D?’"H(:B, t), from time step " to t"*!;

H(u? Hu"

the no-flow curves f}' := # and f}', = #; the inflow
j+1

and outflow balance, namely v} and u},, as well as its corresponding

derivatives (u,)} "1 and

J J
n+1 : n+1

u;ilpattime £77T L L L

Numerical solution computed using the semi-discrete Lagrangian-Eulerian

and (u,)7 ,; and, finally, the final values u

scheme (left), with @ = 2, ( = 1 and ¢ = 2, and numerical solution
computed using the Lax-Friedrichs scheme (right) at time 7" = 1. L',
L*, and L*—norms of the errors estimated with SDLE (o =2, ¢ =1,

and 0 = 2) using second-order Runge-Kutta method. . . . .. ... ..

TOP: Approximate solutions computed with the Semi-Discrete Lagrangian-

Eulerian (SDLE) scheme at times 7" = 0.15 (left) and 7" = 0.25 (right),
with 256 grid cells, « = 2 , ( = 2 and § = 1.5. MIDDLE: The
corresponding L', Lz’p,— norms of the errors between numerical approxi-
mations u and exact solution U computed with the SDLE scheme using
the second-order Runge-Kutta method. BOTTOM: The corresponding
Log-Log plots for the Lip’ — norm of the error versus cell sizes at times
T = 0.15 (left) and 7' = 0.25 (right), with a = 2, ( = 2 and 0 = 1.5.
The error obtained with the SDLE scheme for these cases is similar to
that obtained with the high-resolution Godunov scheme and better than
those obtained with the classical Rusanov and Lax-Friedrichs schemes.
The SDLE scheme is also designed to produce better results when
compared to first-order L' or second-order Lip — (former fully-discrete
Lagrangian-Eulerian schemes). The red dotted line indicates the first

order and the blue dotted line the second order. . . . . . . . . . . ...

29



Figure 5 —

Figure 6 —

Figure 7 —

Figure 8 —

Figure 9 —

Figure 10 —

Figure 11 —

Figure 12 —

Figure 13 —

Figure 14 —

A numerical diffusion study by the two-dimensional Lax-Friedrichs
scheme (left column) and the two-dimensional semi-discrete Lagrangian-
Eulerian scheme (3.3)-(3.4) (right column, a = 2, ( = 1 and 6 = 1.5)
with several time steps. Black contour represents the simulation of the
exact solution. . . . . . . . . L
3D-plot’s view angle (left column) and the corresponding 2D contour
views (right column) of the numerical approximations for model (3.139)-
(3.140) computed using the SDLE scheme with a« =2, ( =2, 0 = 1.5
and CFL = 0.12. . . . . . . . . e
The corresponding approximations for model (3.139)-(3.141) computed
using the SDLE scheme with o =1, ( =3, § = 2, and CFL = 0.12.

A mesh refinement study of the numerical approximations for the two-
dimensional hyperbolic problem (3.142)-(3.144) (3D-plot’s view angle,
left column and 2D contour, right column), which were computed using
SDLE with a =2, ( =5,60 =1, and CFL = 0.07 at time T'=0.5. . . .
3D-plot’s view angle (left column) and 2D contour view (right column)
of the numerical approximations for the 2D model (3.145)-(3.146), which
is computed using the SDLE scheme with . =1, ( = 2, §# = 2, and CFL

Geometric representation of the Lagrangian-Eulerian space-time control
volumes DZ;”H (and no-flow curves oy, ;(t) and oy, ;,,(t), | = 1,2) and
its first-order approximation (straight lines) from time level " to time

level t"*!,

Numerical approximation of the shallow-water equation with 640 grid
cells at times 7' = 0.5 (left) and 7" =1 (right), and with a = 1, { = 2

Approximated solutions computed by the semi-discrete Lagrangian-
Eulerian scheme (2.17)-(2.19) (o« =2, ( =1, # = 2 and CFL=0.13) at
time T = 1 (right column) and approximated solutions computed by
the Godunov scheme affected by the entropy glitch in the vicinity of
the sonic point (left column) at time 7'=1. . . . . ... ... .. ...
Numerical approximations of the Euler of gas Dynamics problem com-
puted with the semi-discrete Lagrangian-Fulerian scheme at time T' =
0.15witha=1,{(=3,0=2and CFL=0.13. . .. ... ... .....
A numerical convergence study for three-phase model (4.73) linked to

(4.74) with a superimposed approximation corresponding to the 1D

% 4 0 fo(Sw,S4) = 0 (solid

Euler System: Cw + %fw(sw,sg) =0, = + P

ot

95



Figure 15 — A numerical convergence study for three-phase model (4.73) linked to

(4.74) with a superimposed approximation corresponding to the 1D
0Sw 0
Euler System: % + %fw(sw, sq) = 0, at + %fg(sw, sq) = 0 (solid
Figure 16 — A numerical convergence study for three-phase model (4.73) linked to

(4.74) with a superimposed approximation corresponding to the 1D
Euler System: 6;; + %fw(sw, sg) =0, == + ;xfg(sw, s4) = 0 (solid
Figure 17 — Numerical refinement study with SDLE scheme (o = 2, ( =2, 6 = 1.25,
and CFL = 0.03); for Riemann problem I at time 7" = 0.23: 5.66 s (200
x 200 grid cells) and 49.04 s (400 x 400 grid cells) and for Riemann
problem IT at time 7" = 0.2: 4.89 s (200 x 200 grid cells) and 43.27 s
(400 x 400 grid cells) are consistent with the reference solution (1600 x
1600 grid cells). . . . . oo oo
Figure 18 — Numerical approximation of the density (left column) and the pressure
(right column) contours for the double Mach reflection test with 480
x 120 grid cells (229 s) and 720 x 180 grid cells (761 s). In this case,
stable, consistent computational experiments with finer mesh grids show
good evidence of numerical convergence for 1080 x 270 grid cells and
1620 x 405 grid cells as observed in [65, 66, 84]. . . . . . . ... .. ..
Figure 19 — “2D-plot’s view angle” of the density (left column) and the pressure
(right column) contours with 240 x 180 grid cells (139.25 s or 2 minutes),
360 x 120 grid cells (428.03 s or 7 minutes), 540 x 180 grid cells (1411.25
s or 24 minutes) and 810 x 270 grid cells (21062.19 s or 5 hours) at
time T'=4. . . . . ..
Figure 20 — Time evolution of the Mach 3 wind tunnel with our semi-discrete scheme
using a uniform grid Az = Ay = 1/80. The contours of density (left)
and of pressure (right) are shown at several times (from top to bottom)
T=0.5, 2, 3 and 4. This is in agreement with [65, 66, 84]. . . . . . . ..
Figure 21 — The summary of numerical parameters in the SDLE scheme (4.10)-(4.11)
for numerical approximation of the shallow water system (4.80)-(4.81) is:
In the first column, time T =1 with 4.17 s (128 x 128 grid cells) and
30.48 s (256 x 256 grid cells) and (a« =1, (=4, 0 =1, CFL=0.05).
In the second column, time T' = 1 with 5.64 s (128 x 128 grid cells)

128

and 49.08 s (256 x 256 grid cells) and (a« =1, ( =4, 0 =1, CFL=0.05).131



Figure 22 — The summary of numerical parameters in the SDLE scheme (4.10)-(4.11)
for numerical approximation of the shallow water system (4.80)-(4.81)
is: In the first column, time T' =1 with 3.3 s (128 x 128 grid cells) and
26.2 secs (256 x 256 grid cells) and (o =1, ( =4, 0 =1, CFL=0.06).
Finally, in the second column, time T" = 2.5 with 8.4 s (128 x 128
grid cells) and 70 s (256 x 256 grid cells) and (o =1, ( =4, 0 =1,
CFL=0.06). . . . . 132



Table 1
Table 2

Table 3

Table 4

Table 5

Table 6

Table 7

Table &8

List of Tables

Riemann Initial conditions for the Euler equations of gas dynamics.
L'-norms of the relative errors (e;); between the numerical approximations
and the exact solution by SDLE (3.3)-(3.4) with @« =2, ( =1 and 6 = 1.5 for
the problem (3.137).. . . . . . . . .. Lo
L'-norm of the relative error (e;); between the numerical successive approxi-
mations obtained with SDLE (3.3)-(3.4) (v = 2, ( = 2, and 6 = 1.5) using the
classical second-order Runge—Kutta method for solving the scalar 2D inviscid
Burgers’ model (3.139)-(3.140) as displayed in Figure 6. . . . . . . . . . ..
L'-norm of the relative error (e;)1 between the numerical approximations, U,
and the analytic solution, u, obtained with SDLE scheme (3.3)-(3.4) (a =1,
¢ = 3, and 6 = 2) using the classical second-order Runge-Kutta method
for solving the scalar inviscid Burgers’ equation with the oblique Riemann
problem (3.139) and (3.141) as displayed in Figure 7. . . . . . . . . . .. ..
L*-norm of the relative error (e;); between the numerical successive approxi-
mations obtained with SDLE (3.3)-(3.4) scheme (o = 2, ( =5, and 6 = 1),
along with the classical second-order Runge-Kutta method with scheme, for
solving non-convex Buckley-Leverett with gravity (3.142), (3.143) and (3.144)
as displayed in Figure 8. . . . . . . . ..o
L'-norm of the relative error (e;); between the numerical successive approxi-
mations obtained with SDLE (3.3)-(3.4) (o =1, ( = 2, and 6 = 2) using the
classical second-order Runge-Kutta method for solving the nonlinear equation
(3.145) and (3.146) with non-convex fluxes as displayed in Figure 9. . . . . .
L'-norm of the relative error (e;); between the numerical successive approxi-
mations obtained with SDLE scheme (4.10)-(4.11) (a = 2, { = 2, and 6 = 1.25)
at time T' = 0.23 using the classical second-order Runge-Kutta method for
solving 2D compressible Euler equations (4.76) (with Riemann problem I at
time T' = 0.23) and (with Riemann problem IT at time 7" = 0.2) as displayed
in Figure 17. . . . . . . . L oL e
L'-norm of the relative error (e;); between the numerical successive approx-
imations obtained with with SDLE (4.10)-(4.11) (« =1, ¢ =4, 6 = 1, at
time 7" = 0.5 (left) and at time 7" = 1 (right)) using the classical second-order
Runge-Kutta method for solving the shallow-water equations: dam break over
a flat bottom - the hyperbolic case (4.80)-(4.81) and topography (4.82) as
displayed at the top in Figure 21, left column. . . . . . . . . . . .. .. ..

. 122



Table 9 — L'-norm of the relative error (e;); between the numerical successive approx-
imations obtained with SDLE (4.10)-(4.11) (o« = 1, ( = 4, and 6§ = 1) at
time 7" = 0.5 (left) and at time 7" = 1 (right) using the classical second-order
Runge—Kutta method for solving shallow-water equations: dam break over
a discontinuous bump (4.80)-(4.81) and topography (4.83) as displayed in
Figure 21, right column. . . . . . . . . . . . . . .. ...

Table 10 — L'-norms of the relative error (e;); between the numerical successive approxi-
mations with the SDLE (a« =1, { =4, § = 1) for the dam break flood model
(4.80)-(4.81) with topography (4.84) at time 7" = 1 (left column) as well as
the same model with topography (4.85) at time 7' = 2.5 (right column) as
displayed in Figure 22 using the SDLE along with a classical second-order
Runge-Kutta method. . . . . . . . . . .. ..o



1.1
1.2
1.3
1.4
1.5

2.1

2.1.1
2.2

221
2.2.2
2.2.3
224
2.25
2.3

3.1

3.2

3.2.1
3.2.2
3.2.3
3.2.4
3.25
3.3

Contents

INTRODUCTION . . . . . . e e e e e e e e s 18
Motivation and significance of the thesis . . . . . . . .. .. .. ... 18
Aims and main features . . . . . . .. ... 23
Highlights of this thesis . . . . . . . .. ... ... .. .. ....... 25
Scientific contribution . . . . . ... ... o000 25
Organization of the thesis . . . . . . . .. .. ... .. .. ....... 26

SEMI-DISCRETE LAGRANGIAN-EULERIAN SCHEME FOR SCALAR
HYPERBOLIC CONSERVATION LAWS IN ONE SPACE DIMEN-
SION . . . e e e e e e e e e e e e e e e 28
Construction of the new class of semi-discrete Lagrangian-Eulerian
schemes in one space dimension . . . . . . ... .. ... ... .... 28
Properties of the no-flow curves and the new semi-discrete scheme . . . . . 32
Convergence proof of the proposed SDLE via weak asymptotic anal-

YSIS . . e 33
Stability conditions and weak asymptotic solution . . . . . . .. ... ... 35
Conditions for Total Variation Non-increasing (TVNI.) . . . . .. ... .. 40
The maximum principle and the entropy solution . . . . .. ... .. ... 44
The pre-compactness of sequence u(x,t,€) . . . . . ... ... ... ... 51
Weak solution of an auxiliary problem . . . . . .. .. ... ... ... 53
Numerical experiments . . . . . . . . . . ... ... ... 53

SEMI-DISCRETE LAGRANGIAN-EULERIAN SCHEME FOR SCALAR
HYPERBOLIC CONSERVATION LAWS IN TWO-SPACE DIMEN-
SIONS . . e e e e e e 58
2D semi-discrete Lagrangian-Eulerian scheme for scalar hyperbolic
conservation laws . . . . . . ... Lo 58
Convergence proof of the semi-discrete Lagrangian-Eulerian scheme

via weak asymptotic analysis . . . . .. .. ..o o000 60
Stability conditions and weak asymptotic solution . . . . . . . ... .. .. 61
Conditions for Total Variation Non-increasing (TVNI.) . . . ... ... .. 69
The maximum principle and the entropy solution . . . . .. ... ... .. 76
The pre-compactness of sequence u(x,t,€) . . . . ... ... ... .... 85
Weak solution of auxiliary problem . . . . . .. .. ... ... 88

Numerical experiments for scalar hyperbolic conservation laws in 2D 89



4.1

4.2

421
4.3

431
4.3.2
4.3.3
434

5.1
5.2

THE SEMI-DISCRETE SCHEME FOR SYSTEMS OF HYPERBOLIC
CONSERVATION LAWS IN ONE DIMENSION AND TWO SPACE
DIMENSIONS . . . . . . . . e e e e e e e e e 97
1D semi-discrete Lagrangian-Eulerian scheme for systems of hyper-
bolic conservation laws . . . . . . . ... ... ... L. 97
2D semi-discrete Lagrangian-Eulerian scheme for systems of hyper-
bolic conservation laws . . . . . . . .. ... ... L. 99

Positivity principle of the semi-discrete scheme for multi-dimensional systems100

Numerical Experiments . . . . . . . . .. ... ... ... ..., 109
One dimensional systems of hyperbolic conservation laws . . . . . . . . .. 110
The sonic point glitch effect . . . . . . . . . ... ... ... ... .... 112
Multidimensional systems of hyperbolic conservation laws . . . . . . . . .. 115

On the robustness on the no-flow curves on the models: experimental

convergence order and error history . . . . .. ..o 133

CONCLUDING REMARKS AND PERSPECTIVES FOR THE FU-

TURE . . . . . e e e e e e e e e e e e 138
Concluding remarks . . . . . . .. ... 138
Perspectives for future work . . . . . . ... ..o 139

BIBLIOGRAPHY . . . . . e e 143



18

1 Introduction

In this work, we present a new class of semi-discrete Lagrangian-Eulerian
schemes for solving multidimensional initial value problems for models of scalar and
systems of conservation laws. The construction of the scheme is based on the novel concept
of no-flow curves recently introduced in the literature [13], which has been presented and
analyzed successfully for fully-discrete schemes in a solid mathematical foundation. The
space-time no-flow construction as in [13], per time step, is the key ingredient for our
two-dimensional semi-discrete formulation and to produce an accurate approximation of
the local speeds of wave propagation in control volumes. By the use of weak asymptotic
theory, the scheme shows good properties such as maximum principle along with relevant
estimates, which also implies the uniqueness of the weak solution satisfying Kruzhkov
entropy condition and property of being Total Variation Non-Increasing (TVNI, for scalar

case) and satisfying a positive principle.

To illustrate the viability of our method, we present a set of significant compu-
tational aspects with numerical experiments related to linear and nonlinear hyperbolic
conservation laws, subject to convex and non-convex flux functions (scalar and systems in

one-space dimension and two-space dimensions).

1.1 Motivation and significance of the thesis

A large variety of efficient numerical methods like finite volume methods, fi-
nite difference methods, as well as Eulerian-Lagrangian methods, Discontinuous Galerkin
method, and central schemes type, have been of great importance to approximate hyper-
bolic system of conservation law problems in recent past years. First, in the context of
the accurate approximation transport equations, J. Douglas Jr and T. Russell introduced
in 1982 the “Modified Method of Characteristics” (MMOC) [44], which is based on an
Eulerian-Lagrangian framework for temporal discretization of convection-dominated diffu-
sion equations. This method provides computational efficiency with no spurious effects on
numerical solutions, and allows to use long time steps without loss of accuracy for linear
and non-linear transport problems [36, 44|, but fails to preserve the local mass of fluids.
The local conservation of the mass is of great importance for many important physical
problems in the literature. This lack of conservation gives rise to several well-known
methods written in an Eulerian-Lagrangian framework, such as, the “Fulerian-Lagrangian
Localized Adjoint Methods” (ELLAM) (27, 28], the “Modified Method of Characteristic with
Adjusted Advection” (MMOCAA) [42] and the “Locally Conservative Eulerian-Lagrangian
methods” (LCELM) [43].
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The ELLAM scheme developed by Micheal Celia, Thomas Russell, Ismael
Herrera and Richard Ewing in 1990 [27, 28] has the fluid mass locally conservative, but
with high computational cost. In 1998, J. Douglas Jr, F. Furtado, and F. Pereira proposed
the MMOCAA method [42] based on the MMOC framework. This method conserves
globally the mass of fluids (in space) at all time levels and keeps the computational
efficiency of the original MMOC procedure. The MMOC and MMOCCA procedures
consist of writing the partial differential system (or, at least, the parabolic-type equations
in the system) in a non-divergence form and make use of the characteristics associated
with the first-order transport part of the system in a fractional step procedure that splits

the transport from the diffusive part of the system.

In the LCELM paper [43] 2000, the authors applied an innovative and distinct
procedure from the one used by MMOC and MMOCCA (writing the transport equation in
a divergent form), which results in a fast, stable, accurate, and locally conservative scheme
for the problem of two-phase flow, immiscible, incompressible flow in porous media. This
scheme is very competitive from a computational point of view, but suffers from some
numerical diffusion. To be precise in the description, here we quote the work (LCELM)
[43] “In contrast [to the previous works MMOC, MMOCAA and ELLAM techniques],
the LCELM method will relate to the divergence form of the equations and then will
split the transport from the diffusion. It is the use of the divergence form that allows
the localization of the transport so that the desired conservation property can also be
localized.” To the best of our knowledge, the LCELM [43] procedure was the first work
in the literature to introduce such local conservation relation, in a space-time divergence
form, but only for scalar parabolic convection-diffusion models in porous media transport
problems, which was coined at that time as integral curves, (see Eqs. (5.4a)-(5.4b) in
the LCELM paper [43]). Moreover, as described the work (LCELM) [43], the so-called
integral curves used in the discrete LCELM procedure were associated with points on the
boundary (usually vertices) of the finite elements in that framework of locally conservative

Eulerian-Lagrangian numerical methods.

To eliminate numerical diffusion and also to be able to use long time steps,
the authors J. Aquino, A. S. Francisco, F. Pereira, and H. P. Amaral Souto present in
2008 a geometric construction of a distinct Eulerian-Lagrangian formulation linked to
the integral tube concept, named the Forward Integral-Tube Tracking (FIT) scheme. This
scheme inherits the local conservation property of the LCELM with no numerical diffusion
and aiming at minimizing spurious effects in the numerical solutions [21]. This scheme
has been presented for multi-dimensional advection-dominated radionuclide transport
problems, different from the schemes mentioned above, which are for multi-dimensional
scalar non-linear convection-diffusion equations. This Lagrangian approach provides a very
accurate solution to pure advection problems with no rigorous mathematical proofs of

convergence [20, 21].
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In the same line of the FIT scheme, the authors E. Abreu, W. Lambert, J. Pérez,
and A. Santo have put in evidence a locally conservative and divergence space-time finite
control volume in a fully-discrete Lagrangian-Eulerian framework from 2015 to 2019, but
for scalar and system of hyperbolic conservation laws linked to a no-flow curves concept,
then extended to balance problems and two-dimensional problems (see [13, 15, 74, 75]).
The relevance of this formulation has been put in evidence with success in several non-
trivial problems and also developed theoretically linked to several transport models such
as the Burgers’ equation with Greenberg-LeRoux’s [51] and Riccati’s source terms [48],
the shallow-water system [52], Broadwell’s rarefied gas dynamics [73], Baer-Nunziato’s
system [35], linear, non-linear convex and non-linear non-convex 2D scalar conservation
laws [13], and the 2D Buckley-Leverett equation with gravity [10, 13].

The first key idea behind the construction of the fully-discrete Lagrangian-
Eulerian scheme for two-dimensional nonlinear hyperbolic conservation laws is to transform
the hyperbolic problem into a convenient form of balance laws [74]; see also [13]. Following
the works [13, 74], the authors in [6] developed the first genuinely multidimensional fully-
discrete Lagrangian-Fulerian scheme in the sense that the scheme does not require the use
of dimensional splitting strategies. It is worth mentioning that the work [6] (see also [11])
also gives additional theoretical foundations to the Lagrangian-Eulerian framework as
well as provides a key building block for the design of the multidimensional semi-discrete
Lagrangian-Eulerian scheme introduced in this thesis. Another feature of the Lagrangian-
Eulerian method is the flux separation strategy and its impact on being well-balanced. For
instance, the numerical tests in [13] show that the discretizations resulting from the flux
separation strategy seem to be of good quality when applied to two-by-two shallow-water
and five-by-five Baer—Nunziato’s systems. Moreover, such strategy appears to be very
appropriate to deal with convex and nonlinear non-convex two-dimensional (2D) scalar

conservation laws.

On other hand, over the past decades original and extremely innovative studies
into advances in semi-discrete schemes have been developed to numerically solve problems
associated with systems of hyperbolic conservation laws and related convection-dominated
problems. Some of these schemes include the Runge-Kutta Discontinuous Galerkin method
[33], the semi-discrete central scheme [57, 59] and the Godunov-type semi-discrete central
scheme [58], spectral methods for hyperbolic problems [50], semi-Lagrangian methods [71],
and Arbitrary Lagrangian-Eulerian methods [67], just to name a few. The integration of
semi-discrete approximations in time-dependent problems is encountered in a variety of
applications. In addition, it can be regarded as a way to reduce excessive diffusion effects.
Such formulations, in general, lead to Ordinary Differential Equation (ODE) systems
called methods of lines, which can then be numerically solved in time through different
strategies, such as the first-order Euler method and the Runge-Kutta-type schemes [63].

Separating the time and space discretization processes in the semi-discrete approach allows
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enormous flexibility and is a well-suited strategy to derive very high-order schemes, such as
the families of Uniformly Non-Oscillatory (UNO) and Essentially Non-Oscillatory (ENO)
schemes (see [54]). One of the advantages of the semi-discrete formulation is that we
can separately increase the order of spatial and temporal accuracy and, thus, it can be

efficiently used time steps as small as required [59].

Moreover, for our particular purposes, it is worth mentioning the study of
Tadmor and Kurganov (2000) [59] (see also [57]), who came up with an ingenious and
effective idea to develop an interesting landmark in the field of semi-discrete schemes.
Their proposed scheme retains the simplicity of being independent of the eigenstructure
of the problem, yet enjoys a much smaller numerical viscosity (of the corresponding
order O(Az)* !, where r is the formal order of the scheme, which is also related to
the reconstruction of a piecewise polynomial interpolant of degree r — 1 [58]). The main
idea behind the construction of semi-discrete central schemes is the use of more precise
information on the local propagation speeds in such a way that these methods maintain their
high-resolution independent of O(1/At), and letting At | 0, they provide a particularly

simple semi-discrete formulation (see, e.g. [57, 58, 59] for more details).

In this thesis, the semi-discrete formulation is based on the new concept no-flow
curve [13]. This new concept allows us to replace a quantity of numerical dissipation
of the type O([Az]/[At]) appearing in the numerical flux function of the fully-discrete
Lagrangian-Eulerian scheme with stability estimates of the type O(H (u)/u) where u and
H (u) are as defined in model problem (2.1). This simple and interesting technique is the key
(and natural) ingredient of the Lagrangian-Eulerian framework that provides information
about the local (and global) wave propagation speed. Thus, the use of the no-flow curve
reveals to be a desingularization analysis tool for the construction of computationally
stable numerical flux in conservative form when the limit At — 0 is taken. In other words,
in our semi-discrete scheme, the so-called integral curves as in [43], or the no-flow curves,
with a reinterpretation of an anti-diffusion coefficient into the viscosity coefficient as in
[13] for fully-discrete Lagrangian-Eulerian schemes, are defined by the quantity H(u)/u. In
addition, a key hallmark of such method is the dynamic tracking forward of no-flow curves,
per time step. This is a considerable improvement compared to the classical backward
tracking over time of the characteristic curves over each time step interval, which is based
on the strong form of the problem. Indeed, in the case of systems and multi-D problems,
we can say that backward tracking is not understood (see [55]). Here, we are interesting in

designing a novel semi-discrete scheme based on the new concept of no-flow curves subject
A
to [O(H (u)/u)]oc lAjf] — 0, which is substantially different in theory foundations from

the previous and seminal LCELM paper [43].

An advantage of our proposed Lagrangian-Eulerian scheme is its simple imple-

mentation: no (local) Riemann problems are solved and, hence, time-consuming field-by-
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field decomposition to trace the direction of the wind (particularly in the case of systems)
is avoided. An important hallmark of our Lagrangian-Eulerian method is the dynamic
forward tracking of the no-flow region (per time step). This represents a considerable
improvement compared to the classical backward tracking in time of the characteristic
curves over each time step interval, which is based on the strong form of the problem. In
fact, since our approach avoids the need of using Riemann solvers, we develop the pro-
posed Semi-Discrete Lagrangian-Eulerian (SDLE) scheme for multidimensional (multi-D)
problems (scalar equations and systems) by implementing the scalar framework presented
in this work (currently under investigation [7]) in a simple fashion but without any di-
mensional splitting and whose approximate solution is the Kruzhkov entropy solution (in
the scalar multi-D problem). The 2D semi-discrete scheme is a straightforward, but non-
trivial extension of the one-dimensional case, that is, a dimension-by-dimension approach.
The no-flow space-time construction [13], per time step, is also a key ingredient for the
semi-discrete formulation and to produce an accurate approximation of the local speeds of
wave propagation in the control volumes. In the case of systems, the latter approach is
a straightforward componentwise application of the multidimensional scalar space-time
no-flow recipe. This formulation is also valid for higher dimensions. We also use suitable
estimates on the no-flow curves for numerically stable computations — for solving scalar
equations and multidimensional systems — in a fashion similar to that of the well-known
stability condition by Courant—Friedrich-Lewy (CFL), but without the need to employ
the eigenvalues (exact and approximate values) of the relevant Jacobian of the hyperbolic

flux functions.

In addition, we use the weak asymptotic theory [2, 3| to prove the convergence
of the semi-discrete Lagrangian-Eulerian scheme introduced in this thesis to the weak
(Kruzhkov) entropic solution. Various weak asymptotic methods have been introduced
by V. Danilov and collaborators: D. Mitrovic, G.A. Omel’yanov and V.M. Shelkovich
[38, 39, 40, 41] (see also [2, 3] and the references cited therein) within the framework
of the Maslov—Whitham asymptotic analysis [37]. These methods have proven to be an
efficient mathematical tool to study the creation and superposition of singular solutions to
various nonlinear PDEs, such as o-waves and the more general o™_waves. In particular,
the authors in [3] used the weak asymptotic method for scalar equations and systems in
multi-D problems (see also [2]) to deal with entropy solutions of degenerate parabolic and
hyperbolic equations in several space variables under rather weak regularity hypothesis on
the flux and diffusion functions (see [19, 68] for other methods to approximate this class of
hyperbolic and parabolic equations). In [2, 3], the authors employed the construction based
on weak asymptotic methods to prove the compactness of the approximate solutions and
their convergence to an entropy solution, which is, moreover, unique. The weak asymptotic
solution consists in reducing the PDEs to a family of ODEs for variable ¢ by substituting

the differences in space variable using a parameter €. From the theory of ODEs, the
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existence and stability of the solution can be proven, and taking ¢ — 0 results in the
weak solution of the original PDE. Therefore, the proposed weak asymptotic solution
analysis when applied to the SDLE framework fits suitably within the classical theory, as
it improves the mathematical formulation for the construction of new accurate numerical
schemes. A weak asymptotic method for hyperbolic problems was recently developed in
8, 9]. The authors of such studies made some contributions to prove the convergence of
the scalar fully-discrete Lagrangian-Eulerian scheme linking the theoretical development
to the computational approach within solid ODE theories. Using the weak asymptotic
analysis, together with the SDLE scheme, constitutes a useful tool to conduct numerical

studies into hyperbolic-transport problems.

The SDLE approach allows us to combine the no-flow curves with a piecewise
linear approximation to deal with variable u and the (numerical) flux terms in a robust
fashion. Also, by means of a suitable semi-discrete formulation, we are capable of giving
sufficient and robust conditions for Total Variation Non-Increasing (TVNI), or Total
Variation Diminishing (TVD) (see [53]). In addition, we can obtain the maximum principle
and the entropy (Kruzhkov) solution for the hyperbolic model thanks to a proper and
suitable interpretation of the (numerical) approximate solutions resulting from the weak
asymptotic analysis. Although such piecewise linear approximation poses several technical
challenges, it also opens up new possibilities to apply the weak asymptotic theory in a
large range of new methods. Moreover, we present in this study a general way to deal with

reconstructed variables in the numerical method.

An entropy-convergence proof for the multidimensional scalar case is given
via weak asymptotic analysis [2, 3, 8]. We also prove that the new two-dimensional
Lagrangian-Eulerian scheme satisfies the scalar maximum principle along with pertinent
estimates, which also imply uniqueness of weak solution satisfying Kruzhkov’s entropy
condition. Moreover, we show that the new semi-discrete Lagrangian-Eulerian scheme, in
the more general context of multidimensional hyperbolic systems of conservation laws,
also satisfies the positivity principle in the sense of the papers [X.-D. Liu and P. D. Lax,
positive schemes for solving multi-dimensional hyperbolic systems of conservation laws,
CFD Journal, 5 (1996) 1-24] [66] and [X.-D. Liu and P. D. Lax, Positive schemes for solving
multi-dimensional hyperbolic systems of conservation laws II, Journal of Computational
Physics 187 (2003) 428-440] [65], but the class of positive semi-discrete Lagrangian-Eulerian

method presented and analyzed in this work does not use field by field decompositions.

1.2 Aims and main features

The main objective of this thesis is to obtain a semi-discrete formulation for

scalar and systems of hyperbolic conservation law problems in one space dimension and
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two space dimensions. Below, we summarize the main aspects of our work:

o The SDLE scheme is based on the novel concept of no-flow curves recently introduced
in the literature [13]. This new concept allows us to replace a numerical coefficient
dissipation of the type O([Az]/[At]) appearing in the numerical Lagrangian flux
function of the fully-discrete Lagrangian-Eulerian scheme with stability estimates
of the type O(H (u)/u) where u and H(u) are linked to the differential equation
u + H(u), = 0.

o We also highlight the possibility of the use of the no-flow curves as a new blow-up
numerical analysis technique. For concreteness, we show how to use the no-flow curve
as a new desingularization analysis tool for the construction of computationally

stable numerical flux in conservative form.

e The two-dimensional semi-discrete scheme is a natural, but non-trivial extension
of the one-dimensional case with technical challenges when it comes up to prove
convergence of approximate solutions generated by the scheme to the unique entropy

solution.

o The extension to system is naturally a straightforward componentwise application
of the multidimensional scalar case (1D and 2D). No (local) Riemann problems are
solved and, hence, time-consuming field-by-field decompositions are avoided. Our
approach does not require dimensional splitting strategies, but only the available easy
information of the quantities v and the flux functions. Therefore, the foundations
for the construction of the parametric no-flow equations and their corresponding
numerical flux for the class of Lagrangian-Eulerian schemes in several dimensions
(scalar and systems) preserve the same simple approximation features as in the 1D

and 2D cases.

o Weak numerical asymptotic analysis is used to prove that solutions obtained by
the novel semi-discrete scheme satisfy maximum principle property and a Kruzhkov
entropy solution, as well as robust conditions for TVNI (scalar case), and positivity
principle for multidimensional system of hyperbolic conservation laws [8, 9]. The
latter is a suitable designing principle for solving multidimensional hyperbolic systems

of conservation laws.

o Thanks to the no-flow concept, we have no need of the eigenvalues associated with
the hyperbolic flux to guarantee the weak positivity of our numerical scheme. This
concept (weak positivity) is introduced in this thesis to prove that the solution

conserved the L! norm, even for systems.

« The extension of the general result of the stability conditions in L'-bound, in two

space dimensions, is made dimension-by-dimension. For concreteness, such extension
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results in that the stability condition by Courant—Friedrichs-Lewy (CFL) becomes

more restraint.

e The main difference in the extension of the one-dimensional scheme to the multi-
dimensional formulation lies in the fact that the approach used for total variation
non-increasing is completely different from the one used in one-dimensional case.
The proof of total variation non-increasing in one-dimensional case is made using
Harten’s lemma, which works with the linearized form of the scheme. When it comes
to a higher dimension, the proof of the TVNI condition is made in a non-linear
conservative form. The line of this proof is different in relation to Harten’s lemma, it

is not an extension or a reformulation of that lemma.

« We discuss and detail convincing robust numerical results in order to verify that
this new positive scheme is easy to implement and capable of capturing accurate

solutions for hyperbolic problems.

1.3 Highlights of this thesis

Here, we highlight some interesting points from the sequel of novel results

obtained through the development of this thesis, as well as the new semi-discrete method.

« No-flow curves and novel semi-discrete TVNI Lagrangian-Eulerian scheme (SDLE).
o A blow-up numerical weak asymptotic analysis; Kruzhkov entropy solution.

o SDLE is Riemann-solver free and does not require field-by-field type decompositions.
o No dimensional splitting strategy is required.

e The 2D SDLE scheme satisfies a positivity principle for systems.

o No need for eigenvalues to guarantee the weak positivity of the numerical method.
e Non-trivial 1D and 2D hyperbolic-transport models - scalar and systems.

o Entropy glitch effect is well resolved.

1.4 Scientific contribution

During the course of this thesis, the following scientific developments have been

achieved

Submitted manuscripts under review:



Chapter 1. Introduction 26

o E. Abreu, J. Francois, W. Lambert, J. Pérez, “A Lagrangian-Fulerian semi-discrete

scheme for hyperbolic-transport models.”

o E. Abreu, J. Francois, W. Lambert, J. Pérez, “A class of positive semi-discrete
Lagrangian-Fulerian schemes for multidimensional systems of hyperbolic conservation

laws.”
Presentations in conferences:

o Workshop on Numerical Analysis and Applications. “A semi-discrete Lagrangian-
FEulerian approach for hyperbolic conservation laws”. IMECC-UNICAMP, March
2019

o Virtual congress, E. Abreu, J. Francois, W. Lambert, J. Pérez, “A class of semi-

discrete Lagrangian—FEulerian schemes for hyperbolic-transport models in porous

media”, WCCM-ECCOMAS CONGRESS, January 2021.

o Minisymposium, E. Abreu, J. Frangois, W. Lambert, J. Pérez, P. Ferraz “ A Lagrangian-
Fulerian Scheme for Numerical Modeling and Simulation of coupled Transport Sub-
surface Flow Systems with Discontinuous Coefficients”, GS21 STAM, June 2021.

o 8° Congreso Metropolitano de Modelado y Simulacién Numérica 2021, Virtual
Congress, 5-7 de mayo, 2021, Schedule in México by Universidad Nacional Auténoma
de México, Joint work with: E. Abreu, J. Francois, W. Lambert, J. Pérez.

1.5 Organization of the thesis

All that remains in the thesis is organized as follows: In Chapter 2, we present
the constructed new class Semi-Discrete Lagrangian-Eulerian (SDLE) schemes linked to
the concept of no-flow curve. We rigorously test the convergence (via the weak asymptotic
solution theory) of the approximations provided by the proposed semi-discrete scheme
towards the unique entropy solution to a general initial value problem for a conservation
law with convex and non-convex flux. Additionally, we prove that the scheme satisfies
some kind of Kruzhkov entropy solution, as well as some robust conditions for TVNI
properties including the precompactness of the sequence of solutions constructed with
the semi-discrete scheme. Then we present and discuss robust numerical examples for
scalar linear and non-linear hyperbolic problems to verify the theory and application of the
method in one-dimensional hyperbolic models, including a short review of the Wasserstein
distance. In Chapter 3, we introduce the SDLE scheme for scalar two-dimensional hyper-
bolic conservation laws and via the weak asymptotic solution theory we provide rigorous

proof of the entropy-convergence of the approximations produced by the semi-discrete
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scheme to the unique solution for a general scalar multidimensional initial value problem
of a conservation law with convex and non-convex flux including conditions for Total
Variation Non-increasing TV NI. Further, we prove that the scheme satisfies a maximum
principle property and a Kruzhkov entropy solution well as. We also prove the precompact-
ness of the sequence of solutions constructed with the semi-discrete scheme. Finally, we
present significant application aspects with numerical experiments for non-trivial nonlinear
hyperbolic problems arising in physics of fluids, engineering, and applied sciences. In
Chapter 4, we detail the extension of the scalar semi-discrete scheme (1D, 2D) to (1D,
2D)-systems of hyperbolic conservation laws. Next, we show that in the more general
context of multidimensional hyperbolic systems of conservation laws, the scheme satisfies
the positivity principle. We implement a set of robust numerical examples to verify the
theory and illustrate the capabilities of the SDLE method. Lastly, our conclusion and

perspectives for the future are presented in Chapter 5.
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2 Semi-Discrete Lagrangian-Eulerian scheme
for scalar hyperbolic conservation laws in

one space dimension

In this chapter, we introduce a new class of Semi-Discrete Lagrangian-Eulerian

(SDLE) schemes based on the same framework of the fully-discrete Lagrangian-Eulerian
scheme presented in [74], to solve initial value problems that involve hyperbolic conservation
laws of the form,

ou  0H(u)

—+

ot ox
Here, H € C*(2), H : 2 — R, ug(z) € L°(R), and u = u(z,t) : R x RY — Q2 c R.

The proposed semi-discrete method is based on the novel concept of Lagrangian-Eulerian

=0, zeR, t>0, u(z,0) = up(x). (2.1)

no-flow curves (per time step), which has been previously implemented for fully-discrete
Lagrangian-Eulerian schemes [8, 9, 10, 11, 13, 14, 15, 74, 75]. Hyperbolic conservation
laws such as model (2.1) appear in applications arising in several areas of study such as
physics of fluids, engineering, and applied sciences (see e.g., [6, 10, 13, 32] and references
cited therein). The analysis tool presented in this chapter (also presented in the next
chapter for two-dimensional problems) is based on a recent weak asymptotic analysis
introduced in [2, 3], in which we have improved our understanding of the mathematical
analysis for its application to numerical approximation of differential equations. We also
present significant application aspects with numerical experiments for non-trivial nonlinear
hyperbolic problems arising in physics of fluids, engineering and applied sciences, aiming

to support general assumptions about the scheme related to real examples.

2.1 Construction of the new class of semi-discrete Lagrangian-

Eulerian schemes in one space dimension

To construct the semi-discrete scheme, we first consider the scalar one-dimensional
Cauchy problem (2.1). As in [9, 10, 13, 14], let’s DI = {(2,t) / o7(t) < = <
(t), t" <t < t"™'} be the cell-centered finite volume within a Lagrangian frame-

work, where o7 (t) and o7, (t), t € [t",¢""'] are two no-flow curves such that o7 (t") = z

and o7, (t") = 2%, i.e., the space-time local control volume, DT-L’"H, (see Figure 1) is

the set contained between [7, 27,,] (bottom) and [Z/*", Z7}]] (top). At the next time

level (t = t"*!), we define o7 (t"*") = ;™" and o7, ,(t"*!) = Z}| as the endpoints of the

n
Oj+1

no-flow curves.
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tn+1

ho-flow curve

"

Tj+3 EAR Tj+j

Zj Tl Ti+1 Tjts

=

Figure 1 — Possible geometric representations of the Lagrangian-Eulerian space-time con-
trol volume D?’"H (and no-flow curves o7 (t) and o}, (t)) and its first-order
approximation (straight lines) from time level t" to time level ", On the
uniform grid we denote Az = ;1 —x; 1 and z;,1 = (j + 1/2)Ax, for j € Z.

_1 1
2 2

11 denotes the outward normal vector.

Let us first write (2.1) in its divergent form (along with u(x,0) = ug(x) for
zeR),

V- [ H(u) ] =0, t>0, zeR, u(z,0) = up(z), xzelR. (2.2)

Applying the divergence theorem in (2.2) over D;”’”H results in (s = é‘D}q”"H)

H v-[Hi“) dv = jg [H(“)]-ﬁds and 3@ [H(u)]-ﬁdsz(). (2.3)

u Uu
n,n+1 n,n+1
Dj 6Dj 0

Given the importance of local conservation in many nonlinear hyperbolic problems arising
in physics of fluids, engineering and fundamental applied sciences, to name but a few
fields with increasing research activity and their solutions, the numerical scheme is thus
naturally expected to satisfy some kind of local conservation property in the space-time

local control volumes D;.’“’"H from time ¢" in the space domain [27, 2" ;] to future time

Jjo i+l
in the space domain [Z7*!, Z"7]. Let us suppose that there is no-flow through curves

n+1
t J i+l

0(t) and o7 (t) over the control volumes D?’"H. This means that the space-time local

control volumes D;L’"H will be satisfied in different meshes given by

—n+1

Tj+1 Tt
f u(z, " Ndr = J u(x, t")dx. (2.4)

—n+1 n
xX . X
J J

Now, the impervious zero-flur (no-flow curves) family of curves o (t) governing the (local)

no-flow regions D;"’”H, with p = j, j + 1, must be defined. Thus, let 7,(t) = [0, (1), t]" be a
) ) , ) dr,(t) doy (1)

parameterized curve with respect to Figure 1 and its tangent vector = Tt

dt
dTg}Et) 1 1 if slope d%it) matches the slope of vector

17

For t" < t < t", we obtain
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[H(u),u]” over curves o)(t) for p € Z, where, as a result of Eq. (2.3), the normal

vector 1 is orthogonal to vector [H(u),u]". Therefore, there exists a @ # 0 such that

. don(t) 10 .. _ . .
[H(u),u]” =w prat 1| , which results in an equivalent set of initial value problems

in the weak (distributional) sense for the underlying conservation law to deal with the

dynamic forward tracking of (2.2),

do?(t H Mt),t
) _HOO00) e
dt u(on(t),t) (2.5)

on(i") = !

, where 0)(t°) = ), along with u(oy(t°), ") = ug(z),

for all the indexes p in the mesh grid. u(op(t°), ) = ug(x) is the initial data at the initial
time. It should be noted that the system of ODEs (2.5) applying to each level of time is

the mathematical formula of what we call the no-flow curves.

We are going to discuss an explicit scalar semi-discrete Lagrangian-Eulerian
method in one-dimensional space, which will be extended in two-dimensional spaces in the
next chapter. Thus, assuming that we have already computed an approximation of the
solution at time level t = t" and at each time level (for ¢ = 0 we have the initial datum),

we reconstruct a piecewise linear approximation of the form,

<z < (2.6)

1
-3

Li(x,t) = ui(t) + (ug); () (x — 2;), x,_

NI

where (u,);(t) is an approximation to the exact derivative, u,(v;,t); and u} is the average
of the solution over the uniform grid (see Figure 2). For example, we obtain a scalar TVD

reconstruction via the slope limiter,

()" = MM1 <“j i, uj) , (2.7)

where MM1 is the usual minmod limiter defined by
1, . . .
MM1(Py,Py) = 5 [sign(Pq) + sign(P2)] min (|P1], |P2]) ;
and sign(®,), the signal of variable @;. In the numerical experiments (see Section 2.3), we

will use the following slope limiter to approximate the numerical derivatives:

ur — u”
(ux)? = MM2 (Oz@ 1 ijfl,a

n n

n n
j—1 aeuj+1 — Uy
2Ax

J 1<60<?2 2.
AfE )7 9 ) (8)

where « is an adjusted parameter in the numerical experiments and the minmod limiter
MM2(@1, @2, (pg) is given by

MM2(&,, By, 3) = MM1 (MM1(®y, by), Bs) .

Thus, considering the local conservation relation given by (2.4), and the piecewise linear
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Figure 2 — For illustration purposes, we present the approximation of the quantities in-
; the inflow and outflow balance,

volved in the control volume D;L’”H(:z:, t), from time step " to t"*'; the no-flow

n n
o H(u) 0 H (uj)
curves fI' := and fI', :=
j j+1 u
j j+1
711, as well as its corresponding derivatives (u,); and (ug)7,;
nilat time ¢

J+1
n+1
and uj g

n
namely u; and u
J

and, finally, the final values u

1 ijr% n AR n
| [ e [ e
iL‘j T,

approximations (2.6), we are able to determine the cell average on the nonuniform grid as
1
2

n+1 —

1 Ti+l n+1
u(£7t )d€7 U’J+%
Tj

2
P = (Ux)?—i-l

uﬁé - T% :
((uz)] )] . (2.9)

Thus, by a straightforward calculation, we obtain
Az, . Ax
5 (uf +uj) +

'y =
defines a new mesh width in the x variable at the next time

Ay — =n+1  —n+l
Here, Az; = 777 — T}
n+1 : —n+1 —n+l . .
" on interval [7}", 77 ] and is given by
n —n+1 _ _n n
. T = 2 4 fr AL (2.10)

level ¢t =
(x}‘H —i—f;‘HAt) — (:v?—lr ffAt) = Az +( ;ﬂrl —f] VAL,

A_ZL‘]‘ =
where f;" is a local approximation of the no-flow curves in (2.5) defined by
(2.11)

H(u? H
() _ H) for each j € Z.

n — ~
/; ul? u
In this work, we will focus on this simplest approximation, which leads to a very good and
P = A t) /o) <@ <

robust scheme. The same is done over the no-flow region, D
ol (t), " <t <t"*'}, to obtain the cell average on the nonuniform grid over the interval

7711, as follows:

:|, A_l‘j_l =Ax + (fjn -

[T?j11> Z;
1 Az Ax?
n+1 n n n
ujf%_jxj } [2 (uj_1+uj)+—8 ((ua)j_1 — (ua)})
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Finally, through a projection over the original uniform grid, the local approximation

solution, u}‘“, for all j € Z is given by (notice that the control volumes D;WH

naturally self-adaptive with zero cost of implementation in the design of the scheme,

are

yielding a better local approximation),

1
u?“ = [mmu 1+ mgﬂu”“] , (2.12)

A A
where m, ; = Tx + Atf} and my; = Tx — Atf}" are the projection coefficients [10, 13].

These coeflicients can be rewritten according to the nonuniform grid as m; ; = Az;_; —

ma j—1 and ma; = A_Ij — Mij+1 to obtain
1, 1,
mig =g (Azj_y + Atfl + Atf]”_l) and mgy; = 3 (Az; — Atfl — Al ]”H) (2.13)

Then, substituting (2.13) in (2.12) results in the fully-discrete Lagrangian-FEulerian scheme

with reconstruction in its conservative form ([6, 10, 13]),

Wt e — 2 F )~ F ()], 214
linked to the related numerical flux,
" Ax fr+ fr W
F (uj , u]H) =1l ar (u - U]+1) + A:L‘JTWJH (uj + ujﬂ)
j
Ax? f7 + [} . Ax? N .
+ 1 Ar. L ((um)y (ur)JH) + ANL ((um)g + (Uw)jﬂ) . (2.15)

J

It should be noted that (2.14) and (2.15) do not admit a semi-discrete form because the
numerical flux function blows up when At — 0. Therefore, in the next subsection, we will
show that the no-flow curves (2.5) might actually be an effective solution and a new tool,
to circumvent the nature of the blow-up singularity, thus yielding a new class of explicit

semi-discrete Lagrangian-Eulerian schemes.

2.1.1 Properties of the no-flow curves and the new semi-discrete scheme

A dimensionless analysis (see also [13]) of the system of ODEs (2.5) which
dol'(t)
p

models the no-flow curves reveal us that l o

- ) Ax
is in agreement with yat and

therefore we obtain

[d"gt(t)] o< [O(H (u) /)], (2.16)

where v and H(u) are as in (2.1). From (2.16) we remove the blow-up singularity of

the numerical flux (2.15) by replacing Zf with a stability condition that depends on
O(H (u)/u) (this result will be proved in Section 2.2 below).

Formally, the explicit SDLE scheme is constructed as follows. First, we replace

Ax . . . .
A as some approximation function to the local speeds in the control volumes

n,n+1
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b1 = b..1(f, fis1), into the scheme (2.14)-(2.15), where, by (2.11 A CIN
i+d = b1 (fi; fi+1), into the scheme (2.14)-(2.15), where, by (2.11) f; = o

j
H{(u)

for each j € Z per time step. This can be simply evaluated at each time interval

Az
[t", t"™']. For concreteness, we will replace o with some suitable function b,
HG) B hanks to the ¢ ick” provided by (2.16). Thus, th
i1 R thanks to the “no-flow trick” provided by (2.16). Thus, the
j j+1
explicit semi-discrete approximation for (2.1) can be written as

N

b.

J

d _uftt =t
at' ) = it At
which leads to the new class of numerical semi-discrete schemes given by

d 1

%Uj(t) T T Ar [F (uj, wjen) — F (wj—1, uy)], (2.17)
where
1 — + — +

is the associated new Lagrangian numerical flux function, with

Ax Ax

U = T(ux)j and u;% = Ujy1 — T(ux)jﬂ. (2.19)

The proof of the entropy-convergence of the proposed explicit semi-discrete
scheme (2.17)-(2.19) via the weak asymptotic analysis will be presented and discussed in

details in the next section.

2.2 Convergence proof of the proposed SDLE via weak asymptotic
analysis

We consider the 1D problem (2.1) and z € S* = R/Z. We also consider variable
te R", thus u = u(z,t) : S' x RT — 2 < R, and the flux function H = H(u) : 2 — R.
We assume that function H(u) is locally Lipschitzian function in w in that,

Assumption 1 - For all ¢ > 0, 3L > 0 such that

lt| < ¢, |u] < e lug| < — |H(ur) — H(ug)| < Llug — ugl. (2.20)

The weak asymptotic solution is a sequence of solutions (u.). = (u(z,t,€)), of
class C' in ¢ and class L* and is piecewise continuous in x such that, for all ¢ = ¥(z) €
CX(R) (smooth with compact support) and for all ¢,

lim | ((ue)) — H(ue)py)de =0 and  u(x,0) = up(z). (2.21)

e—0 R
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The weak asymptotic method consists of first proposing a PDE with a special flux (using
parameter €). Then, for each fixed €, we obtain an ODE for variable ¢. From the theory of
ODEs, we prove the existence and stability of the solution. Finally, we demonstrate that,
when taking € — 0, the limit satisfies (2.21).

In our approach, we use an auxiliary function, f(u) = H(u)/u (i.e., the no-flow
curve). To simplify the following exposition (and without loss of generality), we assume

that there exists a a > 0 such that v > a > 0.

Remark 2.1. If initial data ug(x) € L*(R) in Eq. (2.1) can assume negative, positive,

and null values, we consider N = sup |ug(x)| + B for B a positive constant. Then, we
zeR

consider the following auziliary problem:

?Z—F&H(g;m =0, zeR, t>0, u(z,0) = uo(x) + N. (2.22)
Note that the new initial data for (2.22) assume only positive values. Under a suitable
hypothesis (see Proposition 2.3), we demonstrate that the numerical method satisfies
the maximum principle, i.e., solution u(x,t) takes its values between the mazximum and
minimum values of the initial data. Then, since the solution to (2.22) assumes only positive
values, the u > a > 0 assumption is valid. In 2.2.5, we prove that if u(zx,t) is the (weak

and entropy) solution to (2.22), then u(x,t) — N is the solution to (2.1).

Remark 2.2. From Remark 2.1, given any Cauchy problem for (2.1), we can define
auxiliary problem (2.22), which assumes only positive values. This auziliary problem
satisfies the uw > a > 0 hypothesis, and the convergence proof is valid for the solution
to (2.22), which is u(z,t), and for that to (2.1), which is u(x,t) — N. The v > a > 0
assumption helps us to avoid several technical details in such proofs. In addition, through
Remark 2.1, we guarantee the convergence of the numerical method for (2.1) without
using any technical details. This is a more elegant strateqy to deal with problems of the

Lagrangian-Eulerian type via the no-flow curve, which requires H(u)/u to be defined.

In summary, for the sake of concreteness and simplicity, and without loss of
generality, the proof of convergence of the SDLE scheme via the weak asymptotic analysis
covers all initial data ug(x) € L*(R) in Eq. (2.1) for negative, positive, and null values,

which is necessary for industrial and real world problems.

Notice that, in this case, f(u) is a locally Lipschitz function in u in that, for

all ¢ > 0, 3K > 0 such that

it < ¢ |ui] e fug| < e — |f(ur) — flug)| < Kluy —uy| VaxeSh (2.23)



Chapter 2. Semi-Discrete Lagrangian-Eulerian scheme for scalar hyperbolic conservation laws in one

space dimension 35

Indeed we have

Uy Uz
H - H H
< ‘ (u1) (uz2) (u2) sy — s
(751 Uo2U1
which results
M
— < _l’_ —
|f(u1) = f(ua)] ] |1 — s — |1 — s
< K |U1 — 'LL2|
- L M, o
where K = | — + — |, M, = I|n|ax H(u) and L Lipschitz constant of H.
c c ul<e

2.2.1 Stability conditions and weak asymptotic solution

From numerical method (2.17)-(2.19), we obtain the following PDE:
Or(u,) = —=[Flu,u,,)— Flu_,,u)], (2.24)

where function F(u_, u_,,) is defined by

) = 7 [bes (4 S, = (s = St ) +
s [0 + ) (o S+ (e — S (2.25)

with initial condition wu.(z,0) = ug(z, 0).

Remark 2.3. We are interested in studying the ODE in variable t obtained from FEjq.

(2.24) by fizing € and considering x to be a parameter. We define ucy; and (uy)cr; as
Ueri = u(x + i€t e)  and  (ug)eri = (ug) (T + i€, L, €). (2.26)

Here, we are using that u, = (u,)(z,t,€) is the approrimation to the partial derivative of
function u(z,t,€) with respect to x. Generally, we use a minmod function. Thus, there is
a bounded function M such that

v — M(u(x —pe,te),u(zr — (p—1)e, t,€),- - ,ulr + (p—1)e, t, €),u(x + pe,t, 6))’ (2.27)

€

where p is an integer that depends on the particular function used to approximate u,. We
notice that applying approximation (2.26) in Eq. (2.24) we will obtain an ODE in time

and a discrete parameter in space x.

In what follows, for any approximation of u, = (u,)(z,t,¢€), we assume that

there exist a > 0 and a; = 0 for ¢ = —p, --- | p, for which (u,)(x,t,€) satisfies
a p
T ;t7 < - 1 —1 ,t7 . 228
() (2, 8 ) < > ailu(z —ie t, )l (2.28)

i=—p
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We mention the variable b, 1/, that depends on the no-flow curves is important because it
comes naturally from the original problem (2.1). Thus, we will obtain rigorous estimates
over bey1/o for the stability of the semi-discrete scheme (2.17)-(2.19). The quantity bei1/
generally depends on function f(u) which is evaluated with some suitable values. Since we

use estimates for b we assume that there exists a o > 0 such that

e+1/27

| < oM, where M = sup |f(u)] < o0. (2.29)

be+1/2
u€ef2,te[0,T],xeSt

Based on these conditions and definitions, we state our first result concerning

the existence and stability of the solution provided by the numerical method:

Proposition 2.1. There exists a solution to (2.24), a family of functions (z,t) — u(x,t,¢€) :
S' x R* — R for a small enough €, which, for a fized €, are of class C* and class L™ for
x e S' and satisfy (2.21). Moreover, if

beyie 2 |(f(w) + f(u,))], (2.30)

dt
— (0, +(f () + flu))]) < 2, and (2.31)
u,| = i(ux)e, (2.32)

then the family {u(-,t,€)}. is bounded in L*(S") uniformly in €. In fact, ||u(.,t,€)||p1 sty <
|wol| L1 sty for all t. Furthermore, if initial condition ug(x) and H(u) are continuous, then

u(z,t,€) is also continuous in x.

Proof. First, we fix € and obtain an ODE from (2.24) for variable ¢ and for a

parameter x as follows:
u'(z,t €) = F(u(x, te)), u(0,x) = up(z). (2.33)

Notice that z is also a parameter in Eq. (2.33). By using notation u(z) = u(x,t,¢€), we

define F, : L*(S") — L*(S') as
F.(u(z)) = —= [F(u(z),u(z + €)) — F(ulx — €),u(z))]. (2.34)

From Eq. (2.25), we write F(u(z),u(x + €)) =

i[bm (u(x) + i(ux)(x, te) — (u(m 1) - i(%)(x Fet, e))) +

{(f(u(x), z,t) + flu(x +€),x, t))[u(x) N
+ (u(:r +€) — i(ux)(x +e,t, e)) ]}] (2.35)

(ug)(x,t, €)+

W
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The flux function F, defined in Eq. (2.34), is a Lipschitz function in variable u
because f(-) and (u;)(x,t,¢€) are Lipschitz functions, and F, is a combination of these two
functions (in a very simple way). Based on the classical theory of ODEs in Banach spaces,
in the Lipschitzian case, there is a local solution for ¢ € [0, d(¢)| for some J(¢) that depends
on €. For the global solution, since f is bounded (because H is assumed to be bounded),
we can extend the solution to d(e) — oo. From Assumption 1 in Eq. (2.20), the Lipschitz
constants of each F, can be chosen uniformly on bounded sets L*(S'). To demonstrate the
existence of solution (2.33) globally (in time), it suffices to prove that, for fixed ¢, there
exists a ¢ (t) < oo such that ||u(-,t,€)||o < c(t) < o0. Here, ¢, is a continuous function on

[0, 0), with no uniformity in e. We also have that H(u) is a bounded function; thus, if

u = a >0, then f is also bounded. Using the estimates for |(u,)(z,t,¢)| and [b_,, ,| from
Egs. (2.28) and (2.29), the ODE, given by (2.24), satisfies
1
[0 (u(z, 8, )] < —[ul- 1, €)l0M, (2.36)

where M is given by (2.29),

< Z |a;] ) 0+2), and ||lu(-t€)|lo = esssup|u(x,t, e

szp zeS!
Solving (2.36), we obtain
e, £, < o)l + 2 J [[u(:, 7, €)l|wdr.
From Gronwall formula, we obtain that
OMt
l|lu(-,t,€)||0 < ce(t), where c.(t) = ||uo(:)||w exp <6> . (2.37)

Bound (2.37) indicates the existence of a global solution to ODE (2.24) for each fixed e.
However, note that there is no uniformity in €. To demonstrate that the solutions to the
ODEs provide a weak asymptotic solution to (2.1), we will prove that the solution is L'
bounded uniformly with respect to €. To that end, let T"> 0 for ¢t + dt < T and dt > 0,
where dt satisfies some Courant—Friedrichs-Lewy (CFL) condition. From the mean value

theorem, we write (2.24) as

(.t + dte) =, — & (bm( + ). - ( ~Sw)))
_ z ((f( u.,,) (u + - (u€+1 - i(ux)eﬂ)))

A <ux~< )

() + 7)) (o + S+ (= S).))) + ot e an),

(2.38)
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where ||r(-, ¢, €,dt)||s — 0 (or ||r(-, , €, dt)||c — 0), uniformly in ¢ € [0, 7] and fixed € (with
no uniformity in €) when dt — 0. This behavior results from the continuous differentiability
of map t —> wu(-,t,€), [0,00) —> L*(S") for fixed e. After some algebraic steps, we

rearrange (2.38) as

ot = (o o) (= 57) + (050 (5 57)
" (“H + i(ux)efl) (A€4€1dt> + (um - i(ux)m) (Bjeldt) : (2.39)

for which, for all € > 0, we define

Ac=b o+ (flu) + flu,,)) and Beyy = b, — (f(u) + f(u..,)- (2.40)

Since we are interested in obtaining the L' bound, we take the absolute value,

€ 1 Adt € 1 Bt
t+dte) < ST | —— R T
|u(x7 + 7€)| ue + 4(“’ )e 2 46 ‘ ue 4(“’ )e 2 46
€ Ae_ldt € B€ 1dt
o St [P+ fos = S| [P (2.41)
Since (2.30) and (2.31) are satisfied, we have that, for all €,
1 Adt| 1 Adt 1 Bdt| 1 Bt
2 de | 2 de’ 2 de | 2 de’
and A, and B, are non-negative values. From (2.32), we obtain that
€ , € € _ €
ue + Z(ul’)e = ue + Slgn(ue)Z(ux)e and ue - Z(ux)e - ue - Szgn(ue)z(um‘)e7

where sign(a) is the sign of value a. Thus, (2.41) reduces to

1 Addt
lu(x,t +dt,e)| < (|u€| + Sign(ue)i(uz)e) ( — ) +

2 4e
) € 1 B.dt
(Il = stgn(u)§u).) (5 - 55

+ (u{_l‘ + sz’gn(ug_l)i(ux)eq) <A642dt> + (

. € Be 1dt
ol = signtu ). ) (P,

(2.42)

This proves that conditions (2.30)-(2.32) provide stability to the method be-

cause, by integrating (2.42) and the appropriate translations of +¢, we obtain
||u(-,t + dt,e)||, = J |u(z,t + dt,e)|de < | |u(z,t,€)|dx + dt r1(t, €, dt). (2.43)
st st

Here, remainder value (¢, €,dt) = ||r(-, ¢, €,dt)||1 is bounded, and (¢, €,dt) — 0 when

dt — 0, uniformly in ¢ € [0,T] for each fixed e. Notice that, for each T > 0 given,
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T

we can divide interval [0,7] into n sub-intervals [jdt,, (j + 1)dt,|, where dt,, = — and
n

0 <j <n—1. Applying this in (2.43), we get

f |u(z, T, €)|dx < f |u(x, T — dty, €)|dz + dt,, m (T —dt, e, dt). (2.44)
st st

Applying recursively for all intervals, we obtain
f lu(z, T, €)|dx < f Juo(z)|da + dt, Y ri(T —idt, e, dt). (2.45)
st st i=1

Note that

4 T
dt, | Y ri(T —idt, e, dt)| < —nmax |ry(T — idt, e, dt)| = T max |y (T — idt, e, dt)].
i=1

Thus, taking the limit dt — 0 and using that r(¢, €, dt) — 0, when dt — 0 we obtain
a0l = [ JuteToolde < [ fuids = fuoC)fs 246
st st

which gives us the L' bounds uniform in e.

To complete the proof of the proposition, we must demonstrate that the solution

to (2.24) satisfies the definition of weak solution (2.21). To prove this, we define integral as

e [l (o e o= 00.)))
() + Fu) (o + ), + (v = F).00 )
(o (s S (- S))) 247

() + 1)) (s + S+ (= S, ))) ] ) — Hya @)
Changing the order in the integration variable, we get
o3 G o (= )))
() + F) (S, + (e = S).0)))] C ez — ()

— H(ue)wm(x)}dx (2.48)

Using that (¢(z + €) —(x))/e = . (x) + O(e), that u, and (u, ) are bounded, and that
function u(x,t,€) is continuous minus a set of null measure (their discontinuities are in a

set of null measure), we have that

[ (s (= S )| (5222 Y a

1
< limo (J Zb€+1/2 u, —u_, |y (x)dx + (O)(e)> =0, (2.49)
€E—> Sl
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and using that H(u) = uf(u),

i 31000 00 (o350 = . )) | 102

=0 Jg1 4 €

(2.50)
oo =t [ (G100 + ) (o 0.0)] = (0 ) vate)ds + 00
iy [ 0 0) = )+ )y =0 e ) = 0 (0) )
+0(e). (2.51)

Defining J as the integral in (2.51) and using that f is a Lipschitz function with constant

K [Eq. (2.23)],

1 _
Tl < tim | 7 (K] + M+ L)

u,,, —u]) Y. (z)de, (2.52)

where M is given by (2.29) and L Lipschitz constant of H. Using that w,_ is continuous
(up to a set of null measure), i.e., 1128 lu_,, —u.| =0, thus 113(1)] = 0. Finally, from Egs.
(2.51) and (2.52), we prove that I — 0 when € — 0, i.e., u_ satisfies (2.21), and the proof

is completed. o.

Remark 2.4. Egs. (2.30) and (2.31) represent the conditions for the stability of the
method. However, we can obtain some particular (and useful) estimates for (2.31). If, in
condition (2.30), we use that

Oere = I(f(ue) + flu))l,

then condition (2.31) reduces to

dt
)+ fu) <1 (2.53)
Moreover, we can obtain a global estimate for (2.53) if we consider bei1yo is two times the
maximum of f from (2.29). In this case, the global CFL condition for (2.53), which is

linked to the proposed SDLE scheme (2.17)-(2.19), becomes

b =2M — @M<
€

e+1/2

;. (2.54)

2.2.2  Conditions for Total Variation Non-increasing (TV N1,)

We can now prove some further results regarding the scheme described by ODEs
of type (2.24). The scheme has a total variation non-increasing property that depends on

€. This enables us to define a kind of total variation useful for this study.
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We say that a numerical scheme is € total variation non-increasing, denoted as
TV NI, if
TV (u(-t+dtye)) <TV(ul-t,e), (2.55)

where

TV (u(-,t€)) = . lu(z + €,t,€) —u(z, t,€)|d. (2.56)

Notice that the total variation for fixed € can be obtained by TV (u(-,t + dt,€))/e.

Using a similar idea from Harten (see [53]), we can prove the following result:

Lemma 2.1. If the numerical scheme can be written in the semi-discrete form,

Cx cAcu z,t, —Dm,sA,Eu z,t,
(u(z,t, ), = Sz 201 7 DamgAgulw ) (2.57)

€

with Cypyc and Dy_< as the arbitrary values satisfying

Cx+% 2 O, Dx,

€
2

dt

>0and — (Cpyg+ Dyrc) <1, (2.58)
€

then the system is TV N1, and satisfies

TV (u(-,t,€)) < TV (up(-)), Vte|0,T]anduo(x)is the initial condition. (2.59)

In Eq. (2.57), we define
Aicu(z,t€) = u (x + (i + 1)%,75, 6) —u (ac + (1 — 1)%,75,6) for i € Z. (2.60)
Note that by using (2.60), we can define TV, (u(-,t,€)) as
TV (u(-,t,€)) = . |Acu(x,t,€)|dz. (2.61)
Proof of Lemma 2.1. From the mean value theorem (for fixed €), we can write (2.57) as
u(z,t+dt,e) = ue + d: (Cx+§A%U(I,t, €) = Dy A_cu(w,t, €)) +dtr(z,t,e,dt) (2.62)

for ||r(-,t,e,dt)||y — 0 (or ||r(-,t,€,dt)||e — 0), uniformly in ¢ € [0,7], and fixed €

when dt — 0.

Subtracting u(z, t+dt, €) from u(z +€,t+dt, €), both given by (2.62), we obtain

dt
Acu(z,t +dit,e) = Asu(w,t,¢€) (1 - —

€

(Davs + Cw+;)>

dt dt
+ ?Dx,éAﬁ%u(x, t,e) + ?CH%AH%u(x, ty€) + dtAcr(z,t, €, dt), (2.63)

where Acr(z,t,€,dt) = r(x,t + € 6dt) — r(z,t,€,dt). Due to (2.58), all coefficients of
(2.63) are non-negative; therefore, we have that
dt
|Acu(z,t+dt,e)| < |Acu(z,t,e)| (1= — (Dpse + Cois)
2 2 € 2 2

dt

dt
+ ?DI,% Aﬁ%u(a:, t,e)| + ?Cx+37e

A%eu(a:,t,eﬂ +dt|Acr(z,t e, dt)].  (2.64)
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Integrating (2.64) in z € S', we notice that, due to translations of +e¢, there is a two-by-two
simplification of the terms of (2.64) as in Eq. (2.43). Thus, we get

TV (u(x,t + dt,e)) = J |Asu(z,t + dt, e)|dx
Sl
< J Asu(z, t,e)|dz + dtJ |Asr(a,t,e, dt)|dz
St St

=TV (u(z,t,€)) + dtf |Acr(z,t, €, dt)|dz. (2.65)
St

Since f |Acr(z,t, e, dt)dx| < QJ |r(z,t, €, dt)|dx = ||r(-, t, € dt)||; — O when dt — 0
st st
and using an argument similar to that we used to prove (2.46), we obtain (2.59). o

To demonstrate that our scheme satisfies the TV N1, property, we must prove
that our method satisfies the hypothesis of Lemma 2.1. We assume some conditions on

function (u,) and that there exists (a). and ()., which depend on z, such that

(Uz)ex1 + (Uz)e = (@) e(teqy1 —ue) and (2.66)
(Ur)err = (Uz)e = (V) e(Uer1 — ue)- (2.67)

Thus, we can prove the following proposition on the T'V NI, condition of our method:

Proposition 2.2. Let us assume that the approzimation to the derivatives satisfies (2.66)
and (2.67), and that b and b are chosen to satisfy

s and b,
b (1= 5@)) = (F) + S () (1= 500) = 20, (0)esn) 2 0 (2.68)
quﬁ—i&m4>+Uﬂa0+f@»(l+gwﬁﬂ+2mfwwa>0 (2.69)
T (b (1= S@)) + S0 () + Fl,,) + ﬁfwif«@hn)si.eﬂm

Then, numerical scheme (2.24) is TVNI,. Here, (03)es1 is a value between u, and u,_,

Proof. We must write our numerical scheme in the form of (2.57). We can
write the Right Hand Side (RHS) of Eq. (2.24) (disregarding 1/4¢) as

RHS == b, (1,4 S(0), = (1) = S(w).00) )
= (F) + f) (1 ), + (= S).00))
b (s + Fl) = (= F(w),))
() + F)) (uo + )+ (u - W) @7
Using that

(f (u) + flug ) (u +u,) = (Flucy) + flu)(u, +u) =
(f (u) + fu ) Asu+ (flu_y) + Flu))Aogu + 2u, (f (u.,,) — flu.,),
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we can rearrange (2.71) as

€

RHS =b,,,,, (Agu = S((0), + ().0) = by (A= () + (u:))

— (f() + Fu) (Agu = S(w),. = (w)))
— (fl,) + @) (Amgu+ S, = (w).)) =20, (Fu.) = fu,))
(2.72)
Using the mean value theorem, we can write
f(ueﬂ)_f(usﬂ):f(ueﬂ) f( )+f(u) f( — 1)
= f/((ex)e-&-l)A%u + f ( 6)17) ) —£U, (273>

where (6,)+1 is a value between u,_ and u_,,. Using (2.73), (2.66), and (2.67), we obtain

RHS =b_,, ,Asu (1 — i(a)g) —b_,,Acu (1 = i(a)e_l)
— () + flu))Asu (1= 200 ) = (Fu) + Fu)Agu (1+ (7))
= 2u, (J((B:)es) Agu + [((6)) A 5u). (2.74)

Rearranging (2.74) in the form of (2.57), we get

€

1(00) = (70) + Fu)) (1= F0)) =20 (0)er) ) Agu

(b (1= @)+ () +700)) (1+ S0 ) +20,£((82)0) A-gu
(2.75)

RHS = (b€+1/2 (1 -

Comparing (2.75) with (2.57), we have that

€

Covg = by (1= 5(0)) = () + flu)) (1

€
20)) = 20,1 (6:)es).
€ €
Dag =b_ (1= F(@)c1) + (Flu) + @) (14 2(0e 1) + 20, £((6.).).
Thus, if conditions (2.68)-(2.70) are satisfied, then the numerical scheme is TV NI.. o

Example 2.1. Here, we give an example of approxzimations (2.66) and (2.67). For function

u, = u(z,t,€), approximation (2.8) can be written as

(uz)e = minmod (2au6 ~ Y ,au‘“ 2_ Yeor , 2au‘+1 _ ue) (2.76)
€ € €

for (ug), = (uz)(x,t,€) and 0=2. From (2.76), notice that (u,). is smaller (or equal to)

any expression inside the minmod function. Thus, we have, for instance, that

€

(Ug)e = <2(§1)a) (u,, —u) with —1<& <1 (2.77)
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Using a similar argument, we have that

(Us)esr = (2(52)0‘) (u,, —u) with —1<&< 1, (2.78)

€

From Egs. (2.77) and (2.78), we obtain (2.66)

€

() (wdeer = (ZEE) =) = @l — )

Since —1 <& <1 and =1 <& < 1, then —2 < & + & < 2, which leads to

4o 4o
—— < ((1/)5 < —.
€ €
Using a similar argument, we prove that
. 4o 4o
(Ug)er1 — (Uz)e = (V)e(uy, —u.),  with — - < (7)e < —

Based on this estimate, it is necessary that o = 1 to achieve global stability. However, for

some numerical experiments, we are able to consider larger values for a in (2.8).

The idea in Example 2.1 could also be used for different approximations to the

derivative of u,, and Proposition 2.2 would still be valid.

In the next subsection, we prove two very important results: the maximum

principle property and the Kruzhkov entropy solution.

2.2.3 The maximum principle and the entropy solution

Here, we obtain an abstract proposition that can be used for any numerical
method satisfying the hypothesis of Lemma 2.1. In this case, we show that our numerical

scheme satisfies the maximum principle.

In the next proposition, we use ug(x, €) as a continuous approximation of ug(x),
the initial data for (2.1).

In the following proposition, we use this approximation and state our result as

follows:

Proposition 2.3. Let us assume that numerical method (2.24) can be written in the form
of (2.57) and satisfies the hypothesis of Lemma 2.1. Then, any local solution on[0,T), for

T > 0of (2.1) using scheme (2.24) takes its values between range [mlSIll uo(:v),ng( uo(z)].
xE TE

Proof. We consider z € S'. First, we take values ¢ (for example ¢ can be
rational values) so that {ne},ez forms a dense set in S'. By contradiction, we assume that
there exists a ¢y > 0 satisfying, for 7' > 0,

sup u(x,t,€e9) > sup up(z,€y) for some ¢ € [0,T]. (2.79)

zeS! zeSt
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Since ug(z, €) is continuous, we can choose a small enough €y and n > 0 so that for all

(2,t), {u(z,t, €)} = [minug(z,e) — 7, Iax up(z, €) + n]. Given that wug(z, €) is smooth,
X TE

then solution u(z,t, €y) from Eq. (2.24) is also smooth because this space can be considered

the Banach space C(S) in the L™ norm. Thus, there exists ¢y, x¢ such that sup u(z,t, ) =
zeSt
u(zo, to, €). Since (xg,tp) is a maximum, solution wu(z,t, €)) satisfies

6tu(:t0, to, 60) = 0. (280)

Remark 2.5. Note that if the point (xo,to) s (internal) critical we have dyu(xg,to, €9) = 0.
On the other hand, if the point (xo,to) lies on the boundary, the function is increasing until

it reaches this extremum point, then dyu(xg,to, €9) > 0 follows. In any case (2.80) is true.

Moreover, if scheme (2.24) can be written in the form of (2.57) satisfying the

hypothesis of Lemma 2.1, we obtain

1
atu(l'o,to,eo) = ; (Czo_i_%oﬂ%ou - D _%OA_%OU) s (2.81)
0

zo

where C

Z

o+ = 0 and on_%o > 0. We also have that A%ou = u(xo + €o,t,€0) — u(xg, t,€)

and Af%ou = u(wo, t, €0) — u(xo — €0, 1, €). Using the previous notation, we have that
u(zo — €0, to, €0) < u(xo,to, €0) — A_wuz=0

and

u(zo + €9, to, €0) < u(xg, to, €) — A%ou <0.

Therefore, from Eq. (2.81), we have that
@u(mo, to, E()) < 0. (282)

From inequalities (2.80) and (2.82), we obtain that d,u(xg, to, €g) = 0. Thus, the second
member of (2.81) is null. This means that u(xo— €, to, €0) = u(zo + €9, to, €0) = u(xg, to, €o),
which, by recursion, results in u(zq + neo, to, €9) = u(xo, to, €0) for all n. In other words, u
is constant because u is (at least) continuous and Ney is dense in S' module 1 (because €
is taken as irrational). From ODE (2.24), u is constant, and the solution is trivial, leading
to a contradiction by the assumption. The same argument can be used by substituting

sup by inf in Eq. (2.79), and the proof is completed. ©

Proposition 2.3 yields the following Corollary:

Corollary 2.1. Let us assume that numerical method (2.24) satisfies the conditions of
Proposition 2.2. Then, it also satisfies the maximum principle, i.e., the solution satisfies

u e [I;éigl} up(x), max ug (x)].
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The next step of our construction is to prove that the proposed scheme satisfies

a kind of entropy condition. In this thesis, we use the Kruzhkov entropy solution.

We say that a solution u(x,t) € L*(S' x [0,T)) satisfies the Kruzhkov entropy

solution if

Jo Ll (|u(x,t) — K| gi(x,t) + sign(u(z,t) — K)|u(x,t) f(u(z,t)) — Kf(K)]gm(w,t))dxdt

T L o) — K| g(z,0)dz > 0 (2.83)

for all g(z,t) € CP(S' x [0,T)).

For this proof, we assume that the sequence generated by scheme (2.24) is

pre-compact. Here, we assume that

p = [Juo(2)|]eo-

Proposition 2.4. (Kruzhkov entropy solution) Let us assume that the conditions of
Proposition 2.2 are satisfied. Then, u(x,t,€) —> u(x,t) when ¢ — 0 in L, (S' x [0, 00)),
when u(x,t) is the only entropy solution to (2.1).
Proof. We consider a (fixed but generic) constant K € [—, ju] and beyq/0 = M
for all €. For almost (7,t) € S' x (0,00) and fixed  and then using (2.24), we get
d

L fufa.t,6) ~ K| = sign(u, — ) u(z, 1,0

A

= —leesign(ug - K) [M u, + i(um)e - (ueJrl - Z(uf)eﬂ))
() + fu) (o + ), + (v = F0).00)))

= (A1 (u + ) = (= Sw),))) +

€

~ (@) + @) (e + f) o+ (u = Fw).)))] @89)

Rearranging the terms, we obtain

d d
R— R f— y R R—
t|u(x,t, €) — K| = sign(u, — K) tu(ac,t, €)

A A

1 A N
= ISign(ue - K) [ue+1BE+1 tu_ Acr—u (B + AE)] +
€

A A

— —signun, — 1) [(u2) o Bt — (), Ay — (w). (B~ 4|, (2.85)

where

A= M+ f(ud) + f(uepr) and Beyy = M — (f(ue) + fluer))- (2.86)
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To prove that our method satisfies the Kruzhkov entropy solution, we rewrite (2.85) as

c(l1t|u(x’ t,e) — K| = sign(u, — K)jtu(x,t, €)

1 N
= le—gsz'gn(ue — K) [quBeH +u,
€

Ay = KN =2 (K) + N + 2/ (K)]

— iesz'gn(ue - K) (UE(Be—i_AE) — K(M - 2f(K) +M+2f(K)))

A A

— wosignu, — 1) [(u2). 0, Bt — (). Ay — (). (B~ )] (287)

Now, we analyze
sign(u, — K) (u(]%’6 — K(M - 2f(K))) =
= sign(u, — K)((u, = K)M + (K f(K) = ucf(uc1) + (K f(K) = ucf(ud))-  (2.88)

We are interested in studying (2.88). We have the following possibilities between K and

Ue:

1. K = wu_. In this case, since the numerical method is TV NI, according to the
hypothesis of the numerical scheme, the set for which K = u, # u_, has null

measure in S* x R*. Thus, if K = u_, then
((u, = E)M + (K f(K) =uc f (tem) + (K f(K) = ucf (ue)) = (K f(K) =ucf(ue) # 0
only in a null measure set.

2. K # u_. Since f is a Lipschitz function, we have that

|Kf(K) = uef (uer) + Kf(K) = uef(uc)|

< [Kf(K) = uef (uer)| + [Kf(K) — uef (ue)|

< 2(M + Luo)|K — ue| + ucLue — weq| < 2(M + Lp))| K — ue| + pLlue — te_q].
(2.89)

Here, we use that K f(K)—ucf(ue) = (K —ue) f(K)+uc(f(K)— f(ue) and K f(K)—
Uef(ue 1) = (K —ue) f(K) + ue(f(K) — f(ue)) + ue(f(ue) — f(ue1)) and L is the
Lipschitz constant of f. The states for which u(z, ¢, €) is discontinuous is a set of null
measure. In the case of the states for which u(x,t, €) is continuous, we can choose a

small enough € such that |u, — u_1| < |K — ul.

Thus, up to a null measure set, and for a small enough € and M >2M + 3L, we have

sign(u, — K)(M(u, — K)) = Mu, = K| = 2K f(K) = uc(f(uc1) + f(uc).



Chapter 2. Semi-Discrete Lagrangian-Eulerian scheme for scalar hyperbolic conservation laws in one

space dimension 48

This leads to

sign(u, — K) (u.B. — K(T = 2/(K))) =
= sign(u, — K)((u, ~ K)NI + (2K J(K) = u((ue-s) + f(u)
= [(u, = KON+ (2K F() = el () + F(u0)] = (4T 27 (K))]. (2:90)

The same argument can be used for
sign(u, — K) (ufl6 — K(M + 2f(K))) =
= sign(u, — K)((u, = K)M — 2K f(K) = uc(f(uc1) + f(uc))), (2.91)
and, for a small enough € and up to a null measure set, we can write
sign(u, — K) (uefle ~K(M + 2f(K))) -

= sign(u, — K)((u, = K)M — (2K f(K) = uc(f(ue) + f(uc)))
= |(u, = K)M — (2K f(K) = u(f(uc—) + f(ud))] = (M +2f(K))|. (2.92)

Using (2.90), (2.92) and applying the modulus in (2.87), we have that, for a small enough

e and up to a null measure set,

1
L lu(e,t,6) — K| < —(
g M@t e) — K <

ey By — KV = 2 (K))| - (M = 2f(K))

— (b A= KO+ 27 ()] = Ju,_ Ay — KOT +2f(K))])

A A

— cosignu, — 1) [(ue) o Bt — (), Ay — (w). (B~ 4] (2.99)

Multiplying inequality (2.93) by the non-negative test function g = g(x,t) € C°(S' x
[0,7)), T > 0, and integrating by parts, we obtain (notice that the null measure set does
not modify the value of the integral)

_J |uo(z) — Al g(z,0) dw—f |u(z, t,€) — A| gi(x, t)dxdt

<J LG
— (A= KT+ 2550 -

- 116sz'gn<u5 — K) | ()i Ber = () Ly Ac s = (). (B = Ad) | fgdwar. (2.0

By = KN = 2f ()| = Ju, B = K(3 = 2 (K))])

u Ay — KT+ 2£(K))))

Note that if we take € —> € — 1 in the index, we have that |u,_,, Bepy — K(M — 2f(K))]
g(z,t) — |u B, — K(M — 2f(K))| g(z — €,t); and if we take e —> ¢ + 1 in the index,
we have that |u,_ A1 — K(M + 2f(K))| g(z.t) — |u Ac — K(M + 2f(K))| g(z + €, t).
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Inequality (2.94) is written as

[ o) = Ao, 000 - f [ttt = Al
<[4 N e L

€

_ 16 LT L {sign(u, = K) | () o, Bevr = ()., Ay = () (B — 4| }odoa.
(2.95)

" LTL i(luefle - K(M+2f(K))|) (9<“6’t> _9@’”) ddt

Since g € C°(S' x [0,7)), Eq. (2.95) becomes

T

_ |UO( ) — Al g(x,0)dx — fo . lu(z,t,€) — Al g(x, t)dxdt
LTLI{I (01 + 25(5)] - (31— 2 £ g 1))
_ 16 OT Ll sign(u, — K) [(ux)sﬂém — (ug), ,Ac 1 — (up), (B _;16)] }gdxdt
+ I(€). (2.96)

Here, I(¢) — 0 when ¢ — 0. Considering that (2.90) and (2.92) are valid, we obtain
[u, Ac — K (M + 2f(K))| - (M —2f(K))| =
sign(u, — K) [u, A = KV + 2f () = (u, B = K(V = 2 (K)))| =
sign(u, — K) [u, (2f (u,) + f(u.,) + f(u._,) = 4K f(K)]. (2.97)

By substituting (2.97) in (2.96), we get
T

 Juofa) = Algle O)d:zc—f (o, t,€) — Al gy(a, t)dadt
0 St

J Ll sign(u, — )[u5(2f(ue)+f(ue+1)+f(u€_1)—4Kf(K)])gx($’t))dxdt

6J0 Ll sign(u, — K) [(ux)e+1ée+l — (ux)e_lfle,l — (ua,)(f)’6 — fle)] }gdxdt.
(2.98)

To complete this proof, we must analyze

16 LT Ll {gz'gn(m - K) [(U;p)€+1§e+1 — (ug),_,Acy — (ug), (Be — Aﬁ)] }g(:t:,t)d:cdt.
(2.99)

Considering previous arguments, we know that, since the scheme is TV NI, for each fixed

t, there exists only a finite number of x such that u.(x,t,¢) — K changes the signal. Then,



Chapter 2. Semi-Discrete Lagrangian-Eulerian scheme for scalar hyperbolic conservation laws in one

space dimension 50

we split S' =S U'S, U S such that

r €S, — sign(uc(z,t,e) — K) <0, (2.100)
xr € Sy — sign(uc(z,t,e) — K) >0, (2.101)

and S has null measure. Here, S; and Sy consist (each) of a finite number of sub-intervals.

We rewrite the spatial integral on S in (2.99) as
= {0 B = () Ay = () (B = A0] Yot dnat
+J {kmmﬂéﬁy—mgﬁﬁﬁy—mgiéfn&ﬂ}¢%w¢Mt (2.102)
Sa

Now, notice that due to translations of +¢, we have that

because the terms inside the integral cancel out (actually, they do not only cancel out at
the extremes of the sub-intervals of S;). The same argument is valid for the integral on S.

Since the argument is valid for any ¢t € [0, 7], we have that (2.99) is equal to zero.

Then, Eq. (2.98) is written as

T

|u0( ) — Al g(z,0)dx + f |u(z,t,€) — A| gi(x, t)dxdt+

0 Jst

j f {5 (st = B [0, 2 ) + Flu) + F () = ()] ) gale, 1)) dd
(2.103)

Here, u, = u(z,t,€). In Subsection 2.2.4, we show that family u(x,t,¢) for
€ > 0 is a pre-compact sequence in L'(S' x [0, 7). Let u(z,t) be an accumulation point
of family wu(z,t,€). Thus, for a sub-sequence ¢,, we have that u(x,t,€.) — u(x,t) when
r — oo in L(S' x [0, T]). In other words, notice we have u(z,t, €, + 1) —> u(z,t) and
u(z,t, e, —1) —> u(x,t) except in a set of null measure. Now, by taking the limit as
e = ¢, — 0 in (2.103), we obtain the entropy relation. Remember that I(¢) — 0 and
notice that f(u.) — f(u) and f(u_,) — f(u), we get

T
| [ (latet) = Kl o, 0) + sign(ute. ) = K)lute. ) (ule ) = K F)gala 1)) dode
0 Jst
+ | Juo(x) — K| g(z,0)dx = 0. (2.104)
St
In Eq. (2.104), K € [—u, u]. However, for |K| > pu, notice that the inequality that is Eq.
(2.104) reduces to the equahty (weak solution),

f ng u(z, t)gi(x,t) + u(x, t) f(u (x,t)gx(x,t)) dxdt —i—J uo(z)g(x, 0)dx = 0.

Sl
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From these results, we obtain that (2.104) holds for all K € R. Since " > 0 and g =
g(x,t) € CF(S' x [0,T)) are arbitrary, inequality (2.104) leads to solution u(z,t), which
is the (unique) entropy solution to (2.1). In particular, an accumulation point u(x,t) of
u(z,t,€) using (2.24) is what is unique about it. This implies that u(z,t,€) converges to

u(z,t) as e — 01in Ly, (S' x [0,0)) because T is arbitrary, which completes the proof. o

The previous results prove that the proposed method (2.24)-(2.25) obtained
from the SDLE scheme (2.17)-(2.19) converges to the entropy solution to (2.1).

2.2.4  The pre-compactness of sequence u(x,t,€)

To prove that sequence u(x,t,€) is pre-compact, we used some of the results

reported in [2]. The first result we need is Lemma 1 in [2].

Lemma 1. Suppose that u(x) € L'(T™), h > 0. Then

| o) (signa’ (o) — fute) o < 207 (b,

where

w*(h) = sup Jn lu(x + Az) — u(z)|dx

|Az|<h JT

is the continuity modulus of u(z) in L*(T™).

Here, T" is the n-dimensional torus. In this study, we are interested in a one-
dimensional problem. For n = 1, T" reduces to S'. Since the proof of the previous Lemma

does not depend on the scheme, we refer to [2].

Notice that w®(h) is a measure of TV NI, as described in Eq. (2.56). Thus,

under the same hypothesis of Proposition 2.2, we can prove the following Corollary:

Corollary 2.2. Let us assume that u(z,t,€) is given by scheme (2.24) and satisfies the
hypothesis of Proposition 2.2, then, for allt > 0, Ax € R, we have that

|u(x + Az, t,e) —ulx, t,e)|de < | |ug(z + Az, t,€) —up(z, t, €)|dr < w*(|Ax|),
st st
where

w*(|Azx]) < sup J |up(x + Az, t, €) —up(x,t,€)|dx
|Az|<h JS1

is the continuity modulus of initial data ug(x) in S'.

The proof of Corollary 2.2 follows from Proposition 2.2 and the supremum
properties of a function. Now, we prove the result to obtain the pre-compactness of

sequence u(x,t, €). The first useful result, similar to that obtained in [2], is:
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Lemma 2.2. Let us assume that ¢(z) € C*(SY). Then YAt > 0,

Ll (u(e,t + At,€) — ulz, £, €)d(x)dz < N||[Vo||lou(SH AL (2.105)

Here, u(S*) is the measure of S' and
M
N = (2—1—]\/[) (,u—i—%v) and = ||uol|eo-

Proof. Let us denote I(t) = J u(z,t, €)p(x)dz. Differentiating I(t) from ¢ and using
St
(2.24), we have that

10 = (s (0 o (0~ 00.0))) 5
() + 7)) (w4 ), + (v = w)0))

(b (s ) = (= S, )) ) +
~ () + @) (s + )y + (v = Sw),)) ) [ o@)dz. (2:100)

Changing the order in the integration variable, we obtain

70 = [ {2 [(re (54 S0 (1~ ) +

() + T (1 + S, + (= S, ))) | LA g,
(2.107)

Since I'(t) = G(t) implies that |I(t + At) — I(t)| < max G(t)At, we can estimate the RHS
of Eq. (2.107) as

1 € €
mﬂﬁ<{4ﬁan@a+4K%x+sz+gwa$D)+
€ € o+ €) — P(x)

(01 1 (fn]+ § lad + (jual = ) ]| 25522 s
(2.108)

Using that

bprfy = M, [|(u2)]]o = v, [|u(z,t,€)]|e = p, and M given by (2.29), condition (2.105) is

satisfied. )

Since we obtained similar estimates in [2], we used Lemma 3 reported in [2].

Lemma 3. For every t = 0, At > 0

lu(z,t + At,€) — u(x, t,€)|dr < w'(At),
St
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where w'(At) = }ilng(élwx(h) + cNAt/h), and c is a universal constant.
>

Note that, in w’(At), since this parameter is the infimun, w’(At), for fixed At,
reduces to inf (4w®(h)).
h>0

Moreover, since w”(h) — 0 as h —> 0 and does not depend on € (based on
previous results), family u(x, t, €) is uniformly bounded and equicontinuous in L' (S* x [0, T])
for every T' > 0. Thus, u(z, ¢, €) is a pre-compact sequence in L*(S' x [0, T"]), which implies
that we can extract a sequence ¢, —> 0 such that ug(z,t) = u(z,t,e) — u(z,t) as
k —> oo in L (S" x [0, o0]).

2.2.5 Weak solution of an auxiliary problem

Here, we give the proof considering the classical weak solution defined in R x R*.
The proof is similar for different domains. First, we consider the weak solution to (2.22)
to be

fw JR (upr + H(u — N)p,) dedt + JR(uo(:c) + N)p(z,0)dz =0, (2.109)

where ¢ = ¢(z,t) is a test function. By substituting v — N = U in (2.109), we obtain

fR+ JR (U + N)py + H(U)p,) dedt + JR(uo(x) + N)p(x,0)dr =

fw JR U + H(U)py) dvdt + JR(uo(x) + N)p(z,0)dz + Lﬁ JR Ngdrdt = 0. (2.110)

Using Fubini’s theorem for the integral and assuming that ¢(z,t) has compact support,
then

J j Nopdxdt = —J No(x,0)dx. (2.111)
R+ JR R

By substituting (2.111) in (2.110), we get

JR+ JR (Upy + H(U)p,) dxdt + JR uo(z)p(x,0)dx =0, (2.112)

which is the solution to (2.1). The previous calculations are reversible, i.e., (2.112) to
(2.109). Thus, if u(x,t) is the solution to (2.1), then u(z,t) — N is the solution to (2.22),

and the reciprocal is true.

A similar calculation can be performed to prove that the entropy solutions are
the same.
2.3 Numerical experiments

We start with a simple linear advection problem, but with an important

accuracy test to prove that the proposed SDLE scheme (2.17)-(2.19) does not deteriorate
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as time step At decreases when used with several time steps. Next, we consider an inviscid
Burgers’ model associated with the Wasserstein distance. It should be noted that, by
means of stability conditions (2.30) and (2.31) in Proposition 2.1, we can use the no-flow

stability estimate b; 1 in the new Lagrangian numerical flux function (2.18) as follows:
b1 :gm?x{|fj+fj+1|}, 1<¢<2 (2.113)
subject to CFL-type stability condition (2.54).

Example 2.2. Accuracy test - Linear advection-transport problem

The new SDLE approach is designed to avoid excessive numerical diffusion
when several time steps are used in computational studies (e.g., see such spurious effect
in the experiments produced by the classical Lax-Friedrichs scheme in the right column
in Figure 3). This situation also occurs in real-life and industrial problems such as those
related to the spreading of contaminants (or tracers) in subsurface formations, which is

modeled using the linear advection model.

Let us consider the initial value problem associated with Eq. (2.1), where
H(u) = u and periodic initial data u(z,0) = senz. This problem admits a global smooth
solution computed using our semi-discrete scheme at time 7' = 1 in a mesh refinement
study, as shown in Figure 3. The frames on the left (from top to bottom) present a
computational analysis conducted with the novel SDLE scheme when several time steps
are used in a reduced manner to mimic a concrete situation that allows us to test if the
computed solution is affected by excessive numerical diffusion. The resulting numerical
solutions are convincing in verifying the theory and illustrating the capabilities of the
approach presented here because of their excellent resemblance with the exact solution.
We notice that a high-resolution and second-order (L' — norm) rate of convergence is

achieved in the smooth linear case, as reported in the table of Figure 3.

Example 2.3. Inviscid Burgers’ equation with Wasserstein distance

In [45], a class of monotone schemes (Lax-Friedrichs, Enquist-Osher, and
Godunov schemes) for scalar conservation laws was proven to be Wj-contractive and
converge at a rate of order O(Ax?) in the Wasserstein distance. The Wasserstein distance
between two probability measures (1 and v) on R can equivalently be defined as
Wi(u,v) == sup J e(x)d(p —v)(x). (2.114)
llellLip<t JR

Here, the supremum is taken over all functions ¢ : R — R with Lipschitz semi-norm

||90||sz ‘= sup So(y) B SO(I)
T#Y y—x

satisfying the analogous properties, we have (see [45])

JR(u —v)(x)dr =0, JR |z||u — v|[(x)dx < . (2.115)

‘ at most 1. Given Borel measurable functions u,v: R — R
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CFL =0.47, DeltaT = 0.075, 14 TIME STEPS WITH 40 CELLS | CFL=0.68, DeltaT = 0.106, 10 TIME STEPS WITH 40 CELLS
,-1 ) w
CFL =0.18, DeltaT = 0.028, 36 TIME STEPS WITH 40 CELLS
"
| N [[lU-u|[n| Rate [[U-u|]l,~] Rate [|[U—-ul;2] Rate |
40 | 2.6234e-02 - 1.1898e-02 - 1.3313e-02 -
80 | 6.5036e-03 | 2.0121e+00 | 5.1802e-03 | 1.1997e+00 | 3.8495e-03 | 1.7901e+4-00
160 | 1.5472e-03 | 2.0716e+00 | 1.9706e-03 | 1.3944e4-00 | 1.1327e-03 | 1.7648e+00
320 | 3.8130e-04 | 2.0207e+00 | 8.5002e-04 | 1.2131e+00 | 3.4145e-04 | 1.7301e+00
640 | 9.5181e-05 | 2.0022e+4-00 | 3.6783e-04 | 1.2085e+00 | 1.0386e-04 | 1.7171e+400
1280 | 2.3618e-05 | 2.0108e+4-00 | 1.4220e-04 | 1.3711e+00 | 3.1954e-05 | 1.7005e+4-00

Figure 3 — Numerical solution computed using the semi-discrete Lagrangian-Eulerian
scheme (left), with a = 2, ( = 1 and 0 = 2, and numerical solution computed
using the Lax-Friedrichs scheme (right) at time 7= 1. L', L*, and L*—norms
of the errors estimated with SDLE (o = 2, ( = 1, and 6 = 2) using second-order
Runge-Kutta method.

The Wasserstein distance (also known as the Lip —norm) is defined as (in its discrete

form)

Wi(u,v) = S JR o(x)d(u —v)(x), Wi(upaz, vag) = Z

sup
€N

Dy — ;)

7<i

The Wasserstein error (W;) must be well-defined and finite by measuring the amount
of work that goes into moving the surplus of mass to behind the shock, where there is
a shortage of mass. We will reproduce numerical experiments reported in [45] using the

following monotone schemes: Lax-Friedrichs, Godunov, Rusanov and the fully-discrete
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Lagrangian-Eulerian Finite Volume (LEFV) scheme [11, 13] and the Lagrangian-Eulerian
Nonstaggered scheme (LENS) [10] and compare with our SDLE scheme. Although our
scheme is not monotone, we see from the results presented in Figure 4 a very good evidence
that our scheme also exhibits the desire result to be O(Az?) in the Lip -norm (in the
Wasserstein distance).

u2

Let us consider initial value problem (2.1) with flux function H(u) = - on

interval |0, 1], with initial data containing two jumps defined as follows:

2, x < 0.25,
up(z) =< 1, 0.25 <z < 0.5, (2.116)
0, x = 0.5.

The exact solution to this problem is divided into two parts as follows, when ¢ < 0.25 (left)
and ¢ = 0.25 (right):

2, z < 0.25 + 1.5t
2, x<3/8+t,
w(z,t) =< 1, 025+ 1.5t <z <05+0.5t, u(x,t)=
0, z>3/8+t.
0, x = 0.5+ 0.5¢.

According to Figure 4, the SDLE scheme (even though is mot monotone) is able to
numerically solve the shock interaction (£ < 0.25 on the left frame) in the Lip -error with
O(Az?) and in the L' — error with O(Aw), as stated in [45]. The situation is similar after
the two shocks interact at ¢ > 0.25 (right frame).
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15[

0.5 -

Semi-Discrete Lagrangian-Eulerian Semi-Discrete Lagrangian-Eulerian

SCHEME

SCHEME | | 2

EXACT

EXACT \

1.5

0.5

02 03 04 05 06 07 0383 09 1 0 0.1 02 03 04 05 06 07 08 09 1

X x
| N [|[U-u|l: | Rate Lip Rate || N [[U—u|l,2| Rate | Lip | Rate
32 | 4.524e-02 - 1.844¢-03 - 32 | 5.5346-02 - 4.197¢-03 -
64 | 241502 | 9.0546-01 | 1.175e-03 | 2.042e+00 || 64 | 2.500e-02 | 1.145e+00 | 9.517e-04 | 2.141e+00
128 | 1.1826-02 | 1.030e+00 | 2.3426-04 | 2.327e+00 || 128 | 1.265e-02 | 9.822e-01 | 2.331e-04 | 2.029e¢+00
256 | 5.978¢-03 | 9.838¢-01 | 5.803e-05 | 2.013e+00 || 256 | 6.699¢-03 | 9.179¢-01 | 5.882e-05 | 1.986e+00
512 | 2.614e-03 | 1.192e+00 | 1.692e-05 | 1.777e+00 || 512 | 3.044e-03 | 1.137e+00 | 1.404e-05 | 2.066e+00
1024| 1.493e-03 | 8.085e-01 | 4.209¢-06 | 1.976e+00 || 1024 | 1.560e-03 | 9.640e-01 | 3.538¢-06 | 1.088e+00
2048 | 7.144e-04 | 1.0636+00 | 8.749e-07 | 2.206e+00 || 2048 | 8.317e-04 | 9.079e-01 | 9.059¢-07 | 1.965e+00
1096 | 3.377e-04 | 1.080e+00 | 2.170e-07 | 2.011e+00 || 4096 | 3.792e-04 | 1.132e+00 | 2.178¢-07 | 2.056e+00
W-error W-error
102
107
10 107
107
10® 10°®
107
107 1072 10 107

Figure 4 — TOP: Approximate solutions computed with the Semi-Discrete Lagrangian-

Eulerian (SDLE) scheme at times 7" = 0.15 (left) and 7" = 0.25 (right), with 256
grid cells, « = 2, ¢ = 2 and 6 = 1.5. MIDDLE: The corresponding L', Lip —
norms of the errors between numerical approximations u and exact solution U
computed with the SDLE scheme using the second-order Runge-Kutta method.
BOTTOM: The corresponding Log-Log plots for the Lip —norm of the error
versus cell sizes at times 7" = 0.15 (left) and 7" = 0.25 (right), with o = 2,
¢ =2 and 0 = 1.5. The error obtained with the SDLE scheme for these cases is
similar to that obtained with the high-resolution Godunov scheme and better
than those obtained with the classical Rusanov and Lax-Friedrichs schemes.
The SDLE scheme is also designed to produce better results when compared to
first-order L' or second-order Lip — (former fully-discrete Lagrangian-Eulerian
schemes). The red dotted line indicates the first order and the blue dotted line
the second order.
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3 Semi-Discrete Lagrangian-Eulerian scheme
for scalar hyperbolic conservation laws in

two-space dimensions

In the previous chapter, the scalar semi-discrete Lagrangian-Eulerian scheme
has been analyzed and presented to approximate solutions of hyperbolic conservation laws
connected to a convergence proof via weak asymptotic theory in one space dimension. Now
on, we shall describe and analyze the two-dimensional scalar semi-discrete scheme, which is
a natural (non-trivial) extension of the one-dimensional case in the sense that is obtained
using a dimension-by-dimension approach and in all coordinate directions the numerical
flux function in one-dimensional case is straightforwardly applied, but with significant
differences in relation to the one-dimensional case when it comes to the weak asymptotic
theory. This approach is completely determined once the intercell numerical fluxes are
specified and a choice of mesh has been made. The 2D semi-discrete Lagrangian-Eulerian
scheme is genuinely multidimensional in the sense that the scheme does not require the
use of dimensional splitting strategies, but only the available information of the quantities
u and fluxes H(u) and G(u) in Eq. (3.1).

3.1 2D semi-discrete Lagrangian-Eulerian scheme for scalar hyper-

bolic conservation laws

Considering the previous discussions, we now construct the new 2D semi-
discrete Lagrangian-Eulerian scheme to solve Cauchy problem for the following scalar

conservation law,

ou  0H(u)  0G(u) _
St Y =0, u(z,y,0)=uo(x,y), (3.1)

where H, G € C?, ug(z,y) € L. (R?).

loc

Prior to evolving the computed approximate solution, u(z;, y, t"), in time from
t" to "1 we first reconstruct a piecewise-linear approximation of v as follows for all cells

in the computational mesh grid (in the same fashion as in the 1D case),

Lix(z,y, t") = ufy + (uz)y (v — 25) + (u)7) (y — yr) (3.2)

with z € [z;_1, ;1] and y € [y,_1,y, 1], where (ug)) and (uy)j) denote an (at least

first-order) approximation to the z-and y-derivatives of u at the cell centers (x;,yx). In
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other words, u(x;, yi,t") := L;ji(x;, yx, t") in the mesh grid point values (z;, yx) such that
w(xj, yp, t") = u), when (um)?k =0 and (uy)?k =
The formal 2D extension of the semi-discrete scheme is straightforward (notice

that it does not require dimensional splitting strategies) and given by

d B ]:j+1/2,k — Fj-12k _ Gjkr1sz = Gikrs2

dt gt = Ax Ay (3.3)

where following the “no-flow” property (2.16), the constructed corresponding (coupled)

multidimensional numerical fluxes in the z— and y—directions are, respectively, given by

1 T — +
}-J'Jr%Jf 4 [bj+2,k ( Uiple — uj+%,k> + (fin + i) ( Uitlk T ug+27k)] and
gj7k+% = |:b‘:l]/,k‘+ ( ;k-ﬁ-% _u;:k_"_%) (g]k+g] k+l) ( 1 +uj k+l >:| (34)
along with the discretized multidimensional (2D) no-flow curves,

H .
i = H () and g = M, (3.5)
Ujk Ujk

in a straightforward manner. The Lagrangian-Eulerian framework for semi-discrete schemes

can be extended to several dimensions following the same simplicity.

We analyze the convergence of the SDLE scheme for scalar 2D hyperbolic
conservation laws through a discretization on a uniform Cartesian grid in Section 3.2, this
analysis (entropy-convergence proof, scalar maximum principle, and a kind of Kruzhkov
entropy solution) confirms that the blow-up singularity of the numerical fluxes in 2D is
also removed by the two-dimensional no flow equations in (3.5). The intermediate values

are given by

Az B Az

Uy = k(t) — — (Ua)i1a(?), and gy = wge(t) + = () (1),
Ay - Ay

Ulprge = (1) — T(Uy)j,kﬂ(t), and Wypyrsp 7= Wik(t) + T(“y)yyk(t))

(3.6)

where numerical derivatives (u,);x(t) and (uy);x(t) were computed using the slope limiter

approximations,

(us),, (£) =minmod <a9uj,k(t) —u1k(®) | Wrk(t) —wk(®) uien(t) — Uj,k(t))

Ax ’ 2Ax - Az
o wik(t) — wje—1(t)  wika(t) —wjp1(t) ujera(t) —u;n(t)
(uy);, (¢) =minmod <a9 Ay e 22y , Ay :
(3.7)

with @ = 1,2 and 1 < 6 < 2. The slope limiter approximations (3.7) will be used in

numerical experiments (see Section 3.3).
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y
jkt3’
powerful key ingredients for this class of semi-discrete schemes given in general form by

(3.3) and (3.4), along with (3.5)-(3.7), and subject to the following CFL stability condition
(to be discussed and proved in details in what follows; see Eqgs. (3.20), (3.21) and (3.50)):

The no-flow parameters, bﬁ%,k and b linked to the no-flow curves, are

At At <1 38
i\ g s Mok 3 ol ) < (38)

Notice that the no-flow parameters b;? L1, and b‘;’, p1 can be viewed in the same fashion of
27 ’ 2

slope limiters in the sense of a novel powerful tool to suppress numerical spurious oscillations
as well as to achieve very good resolution for efficient computations. In computing practice
(Section 3.3), we have observed stable solutions when only using the control volume over
the no-flow equations (3.5), which is consistent with the results of our rigorous analysis
(Sections 3.2, 3.2.2, and 3.2.3).

3.2 Convergence proof of the semi-discrete Lagrangian-Eulerian

scheme via weak asymptotic analysis

Here, we consider a 2D problem. However, the n-multidimensional case is
similar, and the proof can be adapted for any n € N. We consider (z,y) € T = R?/Z*.
Here, we choose in (x,y) € T to avoid technical problems with the boundary conditions,
since the implementation of numerical schemes are given in finite domains, however the
proofs given in this work are very similar if we consider (z,y) € R? and they are easily
adapted; the variable t € R, thus u = u(x,y,t) : T x Rt — 2 < R; and flux functions
H=H(u):2—->Rand G =G(u): 2 —-R

We assume that functions H(u) and G(u) are locally Lipschitzian functions in

u in that,

Assumption 1 - for all ¢ > 0,3 L; > 0 and Ly > 0 such that |u;| < ¢, |ua| < ¢,

we have that

|H(U1) — H(U2)| < L1|'Ll,1 — U2| and |G(U1) — G(U2)| < L2|U1 — U2|. (39)

The weak asymptotic solution is a sequence of solutions (ue)e = (u(x,y,t, €)).
of class C' in t and class L* and is piecewise continuous in (r,y) such that, for all
Y = (x,y) € C*(R?) (smooth with compact support) and for all ¢,

e—0

lim JR JR((ue)tz/J — H(ue)0y — Glue)0yp)drdy = 0 and  ue(z,y,0) = ug(x,y). (3.10)

The weak asymptotic method, as in the one dimensional case (Section 2.2), consists in
first proposing a Partial Differential Equation (PDE) with a special flux (using parameter
€). Then, for each fixed €, we obtain an Ordinary Differential Equation (ODE) for variable
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t. From the theory of ODEs, we prove the existence and stability of the solution. Finally,
we demonstrate that, when taking e — 0, the limit satisfies (3.10).

In our approach, we use two auxiliary functions, f(u) = H(u)/u and g(u) =
G(u)/u (i.e., the no-flow curves). To simplify the following exposition (and without loss of
generality), we will assume that there exists a a > 0 such that v > a > 0. In Remark 3.4,

we discuss the general case.

Notice that, in this case, f(u) is a locally Lipschitzian function in « in that,
for all ¢ > 0, 3K, > 0, such that

lur| < ¢ Jug| < e — | f(ur) — flug)| < Kilug — usl, (3.11)
r Ll Mcl . .
where Ky = | — + —— |, Mg = 1|n‘ax H(u) and L, Lipschitz constant of H.
c c ul<c

Function g(u) is a locally Lipschitzian function in u in that, for all ¢ > 0,
3K, > 0, such that

luy| < e, ug| < ¢ — |g(ur) — g(ug)| < Kaoluy — usl, (3.12)
_ Ly My . .
where Ky = | —+ —~ |, M = I|n‘ax G(u) and Ly Lipschitz constant of G.
& C ul<e

3.2.1 Stability conditions and weak asymptotic solution

To obtain the scheme used in weak asymptotic theory, we use the numerical
method (3.3)-(3.7). From this numerical method, we derive the following PDE in the weak

asymptotic framework:

1 1
at(ue) = - [f(uEl;EQ ? u€1+1;62) - ’F(uel—l;ez ’ U’el;eg)] - [g(uel;eg ’ u61;62+1) - g(u61;62—17u51;52)]7

€1 €2
(3.13)
u ) is defined by

where function F(u, .. .4, ..,

17,, € €1
‘F(uel;527uel+1;62) = Z |:b€1+1/2?52 (u€1;€2 + Z(ur)el;eg - (u61+1;62 - Z(u$)51+1;62)):|
1 €1 €1
+ Z I:(f(uel;eg) + f(u51+1;52)) (U’el;eg + Z(ux)el €9 + (uelJrl €9 Z um)61+1;62)):| ’ (314)

and function G(u, . ,u, .., .,) 18

1 €2 €2
g(u€1;527u61;62+1) = 1 I:b?:l§62+1/2 (u€1;€2 + Z(uy)q;q - (u51;52+1 - Z(uy)el;ngrl)):l

1 €2 €2
+ 1 I:(f(uel;eg) + f(u61;62+1)) (uel;EZ + Z(uy)el;eg + (u61;€2+1 - Z(uy)sl;eerl)):l ) (315)
with initial condition u.(z,y,0) = ug(z,y,0). We would like to stress that b7 1o, B0
bY depend on z and y.

€1;ea+1/2
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Remark 3.1. We are interested in studying the ODE in variable t obtained from FEjq.
(3.13) by fizing €1 and €3 and considering x and y to be parameters. We define e, +i.ep+;

and (Ug)e +isez+j 0
Uey +i3e0+) = U($ + 7:61, y+ jEQa t7 E)a (u:(;)61+i;62+j = (UI)([B + iely Y+ j627 ta 6)- (316>

Here, we are using that u, = (uz)(z,y,t,€) and u, = (u,)(x,y,t,€) are the approzimations
to the partial derivative of u(x,t, €) with respect to variables x and y, respectively. Generally,

we use minmod type functions. Thus, we have bounded functions My and My such

Ml(u(J" _pelayyta 6)7 e ,U(l‘ + (p_l)ehyata 6),U(I +p€17y7t7€>)

v = and
€1
(3.17)
— t —1)eq, t t
uy:MZ(U(-T,y geo, 76)7 ﬂi(x?ye—; (q )617 76),U(ﬂf,y+q€2a 76))7 (318)

where p and q are integers that depend on the particular functions used to approrimate u,
and u,. Hence, along of text, after applying approzimation (5.16) in Eq. (3.13), we will

obtain an ODE in time, as well as the discrete parameter in spaces x and y.

In what follows, for any approximations of w, = (u,)(x,y,t,€) and u, =
(uy)(x,y,t,€), we assume that there exist d > 0 and d; > 0 for i = —---9, where

¥ = max(p, q), for which (u,)(z,y,t,€) and (u,)(x,y,t, €) satisfy,

Uy | < — di|lu(x — 1€, y,t, € and  |u,| < — dilu(x,y — €9, t,€)|. 3.19
|tz | 512»;79 Ju( 1 )| |y | 621';9 Ju( 2.t €). (3.19)

In Eq. (3.19), since u, and u, are bounded, we obtain a global estimate for |u,| and |u,|.

Y
€1;€2+1/2

chosen from original problem (3.1) so that we can obtain the stability for the resulting

No-flowvariables b |, J2;e, A0 D are important because they are naturally

semi-discrete numerical method (3.3)-(3.7).

This quantity generally depends on functions f(u) and g(u), which are evaluated

Yy
€1;62+1/27

global bounded estimate for these two quantities. To that end, we assume that there exists

in some suitable values. Since we use estimates for 07 .., and b we obtain a

a o > 0 such that

|b§1+1/2;62| < QMl and |b21;62+1/2| < QMQ’ where (320)
M, = sup |f(u)] <o and My = sup lg(u)| <o0.  (3.21)
u€ef2,te[0,T],(z,y)eT u€ef2,te[0,T],(z,y)eT

Based on these conditions and definitions, we state our first result concerning

the existence and stability of the solution obtained from the numerical method:
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Proposition 3.1. There exists a solution to (3.13), a family of functions (x,y,t) —
u(z,y,t,€) : T x RT — R for a small enough ¢, which, for a fived ¢, are of class C* and
class L™ for (z,y) € T and satisfy (3.10). Moreover, if

bfﬁ-l/Q;eg = |(f(u61;52) + f(u€1+1;62))|7 b21;52+1/2 = |(g(u€1;52) + g(u€1;52+1))|7 (3 22)
dt dt
g( e1+1/2;e2 + |(f(u61;52) + f(u€1+1;62))|) < 17 g(bgl;€2+1/2 + |(g(u€1§62) + g(u€1§€2+1))|)
(3.23)
€1 €2
€1;€9 = Z(uz)el;EQ and u51;52 ; Z(uy)sl;e27 ( 4)

then family {u(-,t,€)}c is bounded in L'(T) uniformly in e. In fact, |[u(.,t,€)||rim <
\[wol|1(ry for allt. Furthermore, if initial condition ug(x,y), H(u) and G(u) are continuous,

then u(x,y,t,€) is also continuous in (z,vy).

Proof. First, we fix € = (¢, €5) and obtain an ODE from (3.13) for variable ¢

and for parameters  and y as follows:

u'(z,y,t€) = Fo(u(z,y, t,e),z,y,t), ulx,y,0)=ue(z,y). (3.25)

Notice that (z,y) are also a parameters in Eq. (3.25). By using notation u(z,y) =
u(z,y,t,€), we define F, : L(T) x T x [0,00) — L*(T) as

Fﬁ(u(xay)>xay>t) = 611 []—"(u(m,y),u(w + el,y),a?,y,t) - ]:(U(I - el,y),U(fL‘7y),lL‘7y,t)]
- Gl y)uley + )2, 1)  Gluley — ) ule ). .5.0)].
(3.26)

From Egs. (3.14) and (3.15), we write
,F(U((L’, y)u u(x + €1, y)7 T, Y, t) =

1 . €1 €1
4[661“,2 o () + Gyt = (ule +a,y) = ) o+ e te) )+

(Flue,y) e, y.0) + Flula + e,y),2.9.0)|uley) + F ) @10
+ (u(:c +ey) = )@+ ay.te) ]}] (3.27)

and G(u(z,y), u(z,y + €),z,y,t) =

€

i[bi;ézﬂ/z (u(x, y) + %(uy)(x, y,t,€) — (u(x, Y+ €, y) — Zz(uy)(x,y + €9,1, e))) +
{(otu(a.y).z,9.0) + glule,y + o). 2.9, 0) | ule,y) + 5 () @y, 1,0)

+ (u(x, Y+ €) — %(uy)(x, Y + €, 1, e)) ]}] (3.28)
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Flux F,, defined in Eq. (3.26), is a Lipschitzian function in variable u because
f), 9(4), (uz)(z,y,t,€), and (uy)(z,y,t,€) are Lipschitzian functions, and flux F, is a
combination of these Lipschitzian functions (in a very simple fashion). Based on the
classical theory for ODEs in Banach spaces, in the Lipschitzian case, there is a local
solution for ¢ € [0, d(¢e)] for some §(¢) that depends on e. For the global solution, since f
and ¢ are bounded (because H and G are assumed to be bounded), we can extend the
solution to d(e) — co. From Assumption 1 in Eq. (3.9), the Lipschitz constants of each F.
can be chosen uniformly on the bounded sets L*(T) x T x [0,00). To demonstrate the
existence of solution (3.25) globally (in time), it suffices to prove that, for fixed € = (€1, €2),
there exists a c.(t) < oo such that ||[u(-,t,€)||lwo < c(t) < o0. Here, ¢, is a continuous
function on [0, c0), with no uniformity in €. We also have that H(u) and G(u) are bounded

functions; thus, if © > a > 0, then f and g are also bounded. Let M; and M, satisfying

(3.21). Using the estimates for |(u,)(z,y,t,€)|, |(uy)(z,y,t,¢€)|, §1+1/2;62‘ and bi’l;eﬁm‘
from Egs. (3.19) and (3.20), the ODE, given by (3.13), satisfies
1
|6t(U(ZE,y,t, 6))| < E||u(7t7€)||009M7 (329>
where € = min(e;, €2) and M = max(M;, Ms),
g
0=|(2+= Z |di| | (0 +2) and |ju(-t,€)|le = ess sup |u(x,y,t,e)l. (3.30)
2 i1=—1 (.Z‘,y)ET
Solving (3.29), we get
oM (*
[luC 8 €)oo < lluoelleo + — J [luf-, 7, €)]|od.
0
From Gronwall formula, we obtain that
OMt
llu(-,t,€)||lo < c(t), where ¢(t) = ||ug.|| exp ( R ) . (3.31)
¢

Bound (3.31) indicates the existence of a global solution to ODE (3.13) for each fixed e.
However, notice that there is no uniformity in e. To demonstrate that the solutions to the
ODEs provide a weak asymptotic solution to (3.1), we will prove that the solution is L'
bounded uniformly with respect to €. To do so, let T' > 0 for t + dt < T and dt > 0, where
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dt satisfies some CFL condition. From the mean value theorem, we write (3.13) as

u(z,y,t +dt,e) =

dt €1 €1
X
Uey e 4e; <b51+1/2;52 (uﬁwz + 4 (ux)q;ez (u€1+1162 4 (u$>€1+1,62>))

i () F0 ) (e + 0+ (00— F0),00)))
(1 (e 0= (5~ H000...))
() + ) (s + )y (0 = F), L))
0 (e 20 (e~ F0),))
_ f; ((g(uel,eg) +9(u, 1)) (UGLE? + %Q(Uy)eb62 + (UENQH — %(Uy)€1,62+1)))
f; (bfﬁsrl/? (uq‘?‘l + Zj(uy)fl’fz—l - (u51v62 - %(uy)51,52)>> +
(600 + 00 ) (s + 20+ (0~ Z),0))
+ r(x,y,t, € dt), (3.32)

where ||7(-, t, €,dt)||oc — 0, uniformly in ¢ € [0, 7] and fixed € (with no uniformity in €) when
dt — 0. This behavior results from the continuous differentiability of map t — wu(-,t, €),

[0, 00) — L*(T) for fixed €. After some algebraic manipulation, we rearrange (3.32) as

u(z,y,t +dt,e) =

€1 1 A6 J€ dt €1 1 Be J€ dt
(uel,EQ + Z(uﬂf)el,ez) (4 - leej) + <u51,52 - Z(uw)61,62> <4 - 4117;
€1 Ae —1,e dt €1 Be l,e dt
(uel—l,eQ + Z(ux)sl—l,EQ) (14612) + (u51+1,62 - Z(UI)€I+17€2) (121612
€9 1 CE J€ dt €9 1 D6 J€ dt
(i + 20000) (57 S5 + (0 - T (5 252
€2 Ceep—1dt €2 D¢, cyi1dt
(uel,EQ—l + Z(Uy)el,ez—l) (14262) + (u€1,62+1 - Z(uy)61,52+1) (142;’_

+
+ r(z,y,t € dt), (3.33)

for which
Acie, = sz/Q;eQ + (f(Ueyier) + f(Ue+1:02))s Berrize, = bfﬁl/z;q — (f(Ueysen) + f(Uey415e2))-
(3.34)
Coeo =" 0+ (9teer) + 9(Ueiier+1)), Deviegsr =8 = (9(Uesier) + 9(Ueyiar1))-

(3.35)
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Since we are interested in obtaining the L' bound, we take the absolute value,

|U(.T,y7t + dta 6)| <

€1 1 AE J€ dt €1 1 B6 J€ dt
uel,ez + Z(ux)el.ﬁQ Z - 4116?‘ €1,€9 - Z(ul’)el €9 Z - 417;
€1 A 1,6,dt €1 Be, 1,6, dt
+ uEl—l,EQ + Z(ux)el—l,ez 461 uel+1 €2 Z(U’x)elﬁ—l €2 T
€9 1 Ce € dt €9 1 De J€ dt
i+ L0 |~ 52 i = [ - P
€2 Ceyep—rdt €2 Dy, ey+1dt
+ u51,62—1 + Z(U/y)el,e2—l 14262 ‘ u51,€2+1 - Z(uy)el,62+1 ﬁ
+[r(z,y,t, € dt)|. (3.36)
Since (3.22) and (3.23) are satisfied, we have that, for all € = (¢, €2),
1 A edt 1 Ag, o, dt 1 B edt 1 B, o, dt
4 e | 4 4eq 4 e | 4 deg
1 Cgedt 1 Ce, epdlt 1 D cdt 1 D¢, ¢, dt
4 dey | 4 4e, 4 dey | 4 4e,

and A, ., Beye, and Cy, ., and D, ., are non-negative values. From (3.24), we obtain that

€1 . €1

u61;62 i Z(ux)el;EQ = u61;62 i szgn(uel;EQ)Z(ux)el;ez’
€2 . €2

€1;€9 i Z(uy)el;eg = u61;62 i Szgn(uel;ez)Z(uy)el;Q?

where sign(a) is the signal of value a. Thus, (3.36) reduces to

|u(z,y,t + dt,e)| < (

u61;62

. €1 L Aqodt
+ szgn(uém)z(“r)q;ez) (4 B éllej)

+ (ud*“@ + Sign(ueﬂ@)%(“f)evlfz) (Aq;f?dt)

(el 50,0 0,0) ()

+ ( Uy — sign(uq;ez)%(“y)em (411 - lﬂ)

(s sionti )G 0),) (S5

+ (uqm“‘ — sign(uel;€2+1)%(Uy)el;e2+1) (Dq;:dt) (@, e, di)] (337
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Due to translations of +e¢, after integrating (3.37) we obtain
u(-,t +dt, e)||, = J lu(w,y,t + dt, e)|dxdy < J \u(z,y,t,€)|dedy + dt ri(t, e, dt) (3.38)
T T
< Ju(-, t, €l + dt m(t, €, dt), (3.39)

with r1(t,€,dt) = J |r(z,y,t, €, dt)|dedy and the integral over T is a double integral. Here,
T
remainder that the value ry(¢, €, dt) is bounded, and r1(¢, €, dt) — 0 when dt — 0, uniformly

in ¢t € [0,T] for each fixed e. Notice that, for each 7" > 0 given, we can divide interval

T

[0, T] into n subintervals [jdt,, (j + 1)dt,], where dt, = — and 0 < j < n — 1. Applying
n

this in (3.39), we get

J lu(z,y, T, €)|dedy < J lu(z,y, T — dt,, €)|dxdy + dt,, (T — dt, €, dt). (3.40)
T T

Applying recursively for all intervals, we obtain

f |u(z,y, T, €)|dedy < J |uo(x, y)|dxdy + dt,, Zrl — idt, €, dt). (3.41)
T

=1

Note that

< T
dt, | Z r(T —idt, e, dt)| < —nmax |r (T —idt, e, dt)| = T max |ri(T — idt, €, dt)|.

n

Thus, taking the limit dt — 0 and using that r(¢, €, dt) — 0 when dt — 0, we obtain
JuC. Tl = [ fuCe.y. T ldedy < | ool ldody = fuoC)se (342)
T T

which gives us the L' bounds uniform in e. This proves that conditions (3.22)-(3.24)
provide stability to the method.

To complete the proof of the proposition, we must demonstrate that the solution
to (3.13) satisfies the definition of weak solution (3.10). To prove this, we define the integral
as [ := I, + I, where

I €1 €1
Ix - J:]l' { l_% (b61+1/2;62 (u61,62 T Z(um)elvq - (u51+1’52 N Z(u$)51+1,52)))

<

1 €1 €1
+ 4761 (b:—l/Q;eg (Uq,LSZ + Z(uﬂ?)elﬂ,eg o el.ea Z(um)€1762)>>

€1

b e () 4 70 ) (4 G (1 = G00,)) |
2.8) = H(1)2,(6)(,1)} dady (3.43)

=
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and

1 €2 €2
Iy = L { l 4 (b§1;52+1/2 (u€1,62 + Z(uy)sl,eg - (u61,62+1 - Z(uy)51,62+1)))
1 €2 €2

47 (( 61 62 61 62+1)) ( €1,€9 Z( )61 €9 ( €1,e0+1 - Z(uy)el,62+1))>
1
- Y
462 <b€1 jep—1/2 < €1,62—1 + E1 e2—1 < €1,€2 61 62)))
( €2

oy )+ 000,) (uq ot )t (u - 2w).))))
(o) — Gu)a, () )} oy, (3.44)

We analyze integral I,,. The analysis of integral I, is very similar. Changing the order in

1
Tl
(

the integration variable of I, we obtain

- - ()
T €1+1/2 € Uepien 61 €2 Uey t1iey 4 Uz )e) 41569

+ (( (W) + S (0 ) (1 ( i F 00+ (U = T ) )|
(P =D g, o) ) sy (3.8

Using that (¢ (z+e1,y) =¥ (z,y))/e1 = Yu(r,y) +O(e1) and u, ¢, and (u,), .., are bounded,

and that function u., .., is continuous minus a set of null measure, we obtain

1/, €1
L l4 (b61+1/2;€2 (uel;52 B ue1+1;62 + Z((um)q;q * (um)€1+1;62)))]

(Hran=ven),,)|.
€1
. 1
< 611%0 (L Zbel+1/2;52 u

and using that H(u) = uf(u),

iy [ 100+ 0 00)) (v + S )+ (i = )0,
<¢(:p +6y) —v(,y)

lim

€1 —0

€1;€9 - u61+1;€2

0 (V) (x, y)dxdy + @(61)) =0, (3.46)

 Hu, ). () (x. y>) drdy =

€1
=i (G000 P00 (i 000)] = 10,0 ) 200y
+ @(61)
1
= i [ 5 P )~ P )+ S, )0y — )
1 T
oy (0 ) =t £ 0,) 20 (0) @, ) dody + O(e). (3.47

Defining J as the integral in (3.47) and using that f is a Lipschitzian function with
constant K, [Eq. (3.11)],

1. -
|J| < lim Z((Kl

e—0 T

+M1+L1)U

) (0, y)dwdy, (3.48)

u51§52 €1+15en - 51 €
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where M is given by (3.21) and L, is given by (3.9). Using that u,_.  is continuous (minus

uel +15e0 - uel;sz

a set of null measure), i.e., lim
e1—0

(3.47) and (3.46), we prove that I, — 0 when ¢; — 0. From a similar calculation, we

= 0, thus lir%J = 0. Finally, from Egs.

demonstrate that I, — 0 when e; — 0. Since I = I, + I, we have that ] — 0 when

€ = (e1,€2) = (0,0) i.e., ug,, satisfies (3.10), and the proof is completed. o.

Remark 3.2. Egs. (3.22) and (3.23) represent the conditions for the stability of the
method. However, we can obtain some particular (and useful) estimates for (3.23). If in

condition (3.22), we consider

b?1+1/2;€2 = |(f(u61;62) + f(u61+1;62))| and b§1;52+1/2 = |(g(u61;62) + g(u61;62+1))|7

then condition (3.23) reduces to
dt 1 dt 1
g|(f(uel;52) + f(u61+1;€2))| < 5 and g|(g(u€1;62) + g(u€1;62+1))| < 5 (349)

Y
€1;62+1/2

to be two times the mazimum of f and g. In this case, the global CFL conditions for (3.49),
which are linked to the proposed SDLE scheme (3.3)-(5.7), become

§ dt 1 dt 1
b51+1/2;62 = 2M1 —_— ng < Z and 621;62-"-1/2 = 2M2 —_— gMQ < Z

Moreover, we can obtain a global estimate for (3.49) if we consider b, 1., and b

(3.50)

3.2.2  Conditions for Total Variation Non-increasing (T'V N1,)

Now we will prove some further important results regarding to the scheme
described by ODEs of type (3.13). The first property is that the scheme has a total
variation non-increasing that depends on ¢, as it was done in the scalar one dimension

case, but here with a completely different approach.

We say that a numerical scheme is € total variation non-increasing, denoted as
TV NI, if

TV (u(-,t +dt,e)) < TVe(u(-t,e), (3.51)
where
TK(u(-,t, 6)) = (T‘/;(u('ﬁt? 6)))35 + (T‘/;(u("t> 6)))1/7 (3'52)
with
(TV(u(-t,€)))e = L lu(x + €1,y,t,€) —u(z,y,t, e)|dedy and (3.53)
(TVe(u(-,t,€)))y = L |u(x,y + €, t,€) —u(z,y,t, e)|dxdy. (3.54)

Notice that the total variation for fixed € = (€1, €5) can be obtained as follows:

(T‘/e(u(v 12 6))):6 + (T‘/;(u(, t 6)))y.

€1 €2
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Here, we extend the result obtained in Section 2.2 to a nonlinear form.

Using the following definitions:
Ai%u(x,y,t, €) =u <ZE + (i + 1)%,y,t, e) —u (m + (i — 1)%1,y,t, e) for i€ Z (3.55)
and
Al-%zu(w,y,t, €) =u (x,y + (i + 1)%2,25, e) —u (x,y + (i — 1)%2,75,6) for i e Z, (3.56)
we can prove the following result:

Theorem 3.1. Let us consider that the numerical scheme is written in the form of (3.13),
that is,

1

675(“6) = - g I:F(uel;Q’uélJrl;eg) - f(u6171;62’u61;€2)j|
1
- [g(u61;627u61;62+1) - g(u61;52—17 u51;52):| :
€2
If conditions
dt (oF oF dt (oG oG
il e =y Y ) <1 ,
(G- G+ 2 (G- S (357
and OF oG OF oG
7..27 7.’.2’ 7.’.<’ 7.’.< .
=00 STy z00 S <0 ad SIS0 (@5

are satisfied, then the numerical scheme is TVNI,, i.e.,

TV (u(-,t,€)) < TVi(ug(-,€)), andug(z,y) is the initial condition. (3.59)

oF oG
In Theorem 3.1, W and W represent the derivatives with respect to the
x x
oF

first argument of functions F and G, while ™ and o represent the derivatives with

respect to the second argument of functions F and G.

Proof. First, we obtain the estimate for (T'V.(u(-,t,€)),. A similar calculation
is performed for (T'V.(u(-,t,¢€)),. From the mean value theorem (for fixed € = (ey, €2)), we

can write (3.13) as

u(x7 y? t + dt? 6) = U’el,ez - I:‘F(uel;eg Y uel+l;62) - f(uel—l;eg ) U’el;eg )]

- g [g(uel;eQ Y uel;52+1) - g(uel;62—17uel;s2)] + dtr(x’ y7 t’ 67 dt)
(3.60)
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for ||r(-,t,€,dt)|| — 0, uniformly in ¢ € [0,7], and for fixed € = (€1, €2) when dt — 0.
Subtracting u(x,y,t + dt, €) from u(z + €, y,t + dt, €), both given by (3.60), we obtain

A%u(x7 y7t + dt? 6) = A%U(ZE y7t7€ [‘F 51+1 €g) 61+2;62) - ‘F(uel;627uel+1;62):|

[‘F El €p) 61+1 62) - ‘F(uel—l;SQ ? u€1;62 )]

Q

51+1 HHW €1+1 E2+1) - g(u€1+1;62—17u51+1;52):|

[
[g el €g? 51 52+1) - g(u61;62717u€1;52)]
+ dtr(x y,t, e, dt), (3.61)

where 7(z,y,t,e,dt) = r(x + €,y,t,€,dt) —r(z,y,t, € dt). Now, we analyze each term of
dt
the right hand side of (3.61). Term — [F(u

€1+15e9? u61+2;62) - “F(uel;eg ? uel +15e9 )] 18 ertten

€1
dt
as ?1 [‘F(uel +15e9? uel +2;62) - F(uel;eg Y uel +15e0 )] =:
dt
= ?1 [‘F(uel+l;52 Y uel+2;€2) - ‘F(u€1+1;62 Y uel+1;52) + ‘F(u51+1;£2 ) u51+1;e2) - ‘F(uel;eg Y uel+1;52 )]

dt (OF oF
= ?1 (&y(ueﬁl;ez ) ‘951+1;52 )A&Tlu(x7 y; t; 6) + 6737(061;62 ) u61+1;€2 )A%U/(ﬂj, y, t, 6)) 5 (362)

where 0_ . are states between u__. —and u ... for i = 0,1. Here, we are using
1+i5€0 €1+i5€n €1+1+1i;e0 ) )

the mean value theorem and assuming enough smoothness of function F. Using similar

calculations, we can write

dt
a [F(uel;eg ) u61+1;62) - ‘F(uel—l;eg ) uel;eg )] =:
dt oF ~ oF -
<5y (u,,, 52,«961;62)A%u(x, y,t,€) + a—x(é’qfl@,uq;sz)ﬂ?u(x, y,t, e)> . (3.63)
where 0 5., are states betweenu_,, andwu_, .. fori= —1,0. Now, the terms involving
€1 tijen €1 t+ieg €1 ;€9

function G should be rewritten as

" dt
_g [g(u€1+1;62’u61+1;62+1) — g(u€1+1;52_17u61+1;62)] + g I:g(uél;€27u€1§€2+1) - g(ue1;62—17u61;62)]
dt
= _g [g(u51+1;62’ue1+1;52+1) - g(uq:@’ufl@“)]
dt
+ g [g(uqﬂ;ezﬂauqﬂ;ez) - g(uq;ezfl’ u51?€2)] ' <3.64)

Now, we can write

dt
— [g(uel+1;e2’uél+1;62+l) - g(u51;627u€1;€2+1)] =

€2

dt oG dt 0G
YAau(x,y + €, t,€) + ———
2 €y OX

( 61+1;627T]61+1;62+1 (n£1;€27u61;62+1)A%u(x7 y7t7 6) (365)

€2 6y
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and
dt dt oG
g [g(u61+1;6271, u61+1;52) - g(u61;62717u61;62)] - €5 ay ( 61+1;62717n61+1;52)A%u('r’ y7 t’ 6)
dt oG
+— € O (7761 6271,u€1;62)A%u(x, Yy — €, t, 6)7
(3.66)
where 7, . .. are states between v, and uw . .., fori=—-1,0;and 7, ., states
between u_ ., ., and u,_ ., .., fori=0,1
Using (3.63) to (3.66) in (3.61), we obtain
dt (OF oF ~
A% (I y7t + dt 6) A%u(gj? y? t? E) |:]‘ - <az.(9€1;627u€1+1;62) - ay(u€1;6279€1+1;62)>
oG oG
- ax ( 61 €g) uel;62+l) - aiy(uel+l;62—1? 77€1+1;€2
dt oF
- a&iy(u€1+1352 ) €1+1;62)A3%u('r7 y’ t’ 6)
dt oF , ~ dt oG
+ a%(961_1;62 ? u51;52 )A%qu(x7 y? t? E) - gaiy(uel-f—l;eQ Y 77€1+1;€2+1)A%u($7 y + 627 t? 6)
dt oG _
- S uq;ez)A%u(x, Yy — €, t,€) + ditr(z,y,t, €, dt). (3.67)

From conditions (3.57) and (3.58), all coefficients of (3.67) are non-negative; therefore, we
have that

oF oF
|A%U($,y,t + dt? €)| = |A%U($, y7t 6)| |:1 - (5:6 (061;62’u€1+1;62) - &!/(us1;62’961+1;62))

) — G
ax 51 €g ) Tepsen+l 6y 61+1;62—177761+1;€2

dt oF
61 6y( €1 +15e0) 61+2 52)|A3€1 (x7y7 t? €)|
dt oF dt 0G
+ ga(eq—l;ez ) uq;eQ)A_Telu(l'? y,t,€) — gaiy(uelﬂ;eg ) 7761+1;eg+1)|A%1u(x7 Y+ €t ¢
dt 0G
- g%(ﬁq@_l,u61;52)|A%u(33, Yy — €, t,€)| + dtr(z,y,t, € dt). (3.68)

Integrating (3.68) in (z,y) € T, we notice that, due to translations of +e = %(ey, €2), there
is a two-by-two simplification of the terms of (3.68). Thus, we get

(TVe(u(z,y,t + dt,e) J |Acu(x,y,t +dt,e)|dzdy = (TVc(u(z,y,¢€))))s
+ dt||F(z,y, t, €, dt)||1. (3.69)
A similar situation occurs for the variation of y, which leads to
(TVe(u(z,y,t + dt,e)), J|A u(z,y,t + dt,e)|dedy

= (TVe(ul(z,y,€)y + dt||?(z,y,t, €, dt)]]1, (3.70)
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where ||7(z,y,t, €, dt)||; = J |r(z,y+ €, t,dt, ) —r(x,y,t,dt, €)|dedy — 0 when dt — 0.
T
Thus, from (3.69) and (3.70), we obtain that

TVe(u(z,y,t + dt,e)) < TVe(u(z,y,t,€)) + dt (|[F(z, y, 1, €, db)|[s + [[F(z,y,t, €. dt)]|1) .
(3.71)

Using the same argument employed to prove (3.42), condition (3.59) is true. o.

To demonstrate that our scheme satisfies the TV NI, property, we must prove
that our method satisfies the hypothesis of Theorem 3.1. We assume some conditions
on functions (u,) and (u,) and that there exists (01)e;:e0, (@2)erienr (V1) ersens ANA (V2) 605

which belong to a set of indices A, such that
(uz)61+1;62 - (u:v)€1;62 = (al)euez (u€1+1;62 - ueuﬁz)
(u1)61+1;62 + (u$)61;62 = (a2)61;62 (u€1+1;62 - u61;62)7 (372)

and

(uy)€1§€2+1 - (uy)q;Ez = (71)61;52 (u61;62+1 - u61;62)
(uy)61;€2+1 + (uy)€1;62 = (72)61;52 (u61;62+1 - u61;62)' (373)

Thus, we can prove the proposition below on the TV NI, condition of our method. In the

next result, we give a global estimate for b* e and b? e However, less restrictive
€1 ;€0 €1;€Q

conditions could be obtained by locally analyzing the conditions for TV NI..

Proposition 3.2. Let us assume that the approzimation to the derivatives satisfies (3.72)
and (3.73) and that b* = b* is chosen to satisfy

€1+1/2;5e0

b (1= Faw) = =f(@n) (01 + 3+ Foalor =) = (Fla) + F) (1+ Fan) (374)

and

b* (1 — %042) > f'(y1) (951 + oy + 6*1041(5751 — y1)) + (f(z1) + f(n) (1 - %m) ; (3.75)

4
and b¥ = b§1~52+1/2 is chosen to satisfy
€ , € €
b (1 - f%) = —g' (1) (952 + Y2 + 2271(@ - y2)> — (9(z2) + g(12) <1 + f’h) (3.76)
and
€ , € €
g (1 - 2272) = g'(y2) (952 +y2 + f'yl(:ﬂz - yz)) + (9(22) + 9(y2) (1 - f%) . (3.77)
with dt, €1, and €y satisfying
dt € , € , €
o [be (1 - Zlaz) + fz)(z + oy + Zlal(ﬂfl —y1)) — ['(x3) (563 + Y3 + 21041(553 - Z/3))
€1 €1
F(flan) + o) (1+ Fan) = (Flas) + flu)) (1+ Fou) |

dt

€ € €
+€* [Qby (1 - f%) + 9'(5’32)(952 + Y2 + 1271(552 —Ya)) — 9/($4) <5U4 +Ys + 1271(374 - ?J4)>
2

+g(w2) +9(m) (1+ Fm) = (9l@a) + 9(wn) (1+ Fm) | < 4. (3.78)
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Then, numerical scheme (3.13) is TV NI..

In Proposition 3.2, z; and y; represent any value of variable u(z,y,t) in {2 for

1 =1,2,3,4. Similarly, aq, as, 71, 72 are values in the set of indices A.
Proof. We first consider F(u, ., ,u, ,,.,), Which is given by (3.14), and using

(3.72), for the sake of clarity, we denote u, ., =z and u = ;. Thus, we get

el+1;€2
1
Flany) =7 [br(l’l —y1) (1 - %042) + (f(@1) + (1) (l‘l +u+ %Oél(xl - yl))] :
(3.79)
Differentiating F(x1,y;) from z; and y;, we, respectively, obtain
oF _
(31:1 N
Ir,. €1 , €1 _ €
: [b (1 - Zag) + () (xl £+ ol yl)) + (f(a1) + flyn) (1 + alﬂ
(3.80)
and
oF _
Y1
1 x €1 / €1 €1
2o (1= Fa2) + £ (o0 + 91+ Fonlor—y0)) + (Flan) + £o) (1= Fau) |-
(3.81)

To obtain a global condition for b, we consider (z1,y;) to be all values between

(min ug, max ug). From conditions (3.58), we choose b* in Egs. (3.80) and (3.81) such that

F F
or > 0 and or < 0, which leads to (3.74) and (3.75).
61‘1 5y1

For G(u,, .., u, .., .,), which is given by (3.15), and using (3.73), for the sake of

clarity, we denote u_. = xo and u = 7. Using similar calculations, we get

el;e2+1
1 €2 €2
G(x2,2) =1 [by(% — 1) (1 - Z%) + (g(w2) + 9(y2) ($2 + Y2 + Z%(@ - 92))] .
(3.82)
Differentiating G(z2, y2) from xo and ys, we, respectively, obtain
G _
65(]2 N
1 € € €
1 [by (1 - f%) + ¢ (22) (xz o+ s — yz)) + (g(z2) + (1) (1 - f%)]
(3.83)
and
G _
Y2

i [—by (1 — %’72) + 4 (1) (952 +y2 + %2041(%2 — 3/2)) + (9(w2) + 9(y2) (1 - 971)] :



Chapter 3. Semi-Discrete Lagrangian-Eulerian scheme for scalar hyperbolic conservation laws in

two-space dimensions 75

To obtain a global condition for bY, we consider (z2,y2) to be all values between

(min ug, max ug). From conditions (3.23), we choose 0¥ in Eqs. (3.83) and (3.84) such that
oG oG
o > 0 and E < 0, which leads to (3.76)-(3.77).

Condition (3.57) is more restrictive and is obtained by choosing dt, €;, and €,

to satisfy (3.78). o.

Example 3.1. Here, we give an ezample of approxzimations (3.72) and (3.73). For function

u, = u(z,t,€), such approximation can be written as

. Ueieg ™ Uy, U, t15eg = Uy, Ue h15ey — Uy,
(te)erses = minmod (Za WL g —ani g e ) (385)
€1 €1 €1

for (uz).,.., = (uz)(w,y,t,€) and 0=2. From (3.85), notice that (u,). is smaller (or equal

to) any expression inside the minmod function. Thus, we have, for instance, that

2
(Us)eqren = ((fl)a) (U iy = Uepy),  with —1 <& <1 (3.86)

€1

Using a similar argument, we have that

(U )er 4156 = (2(§z)a

€1
From Eqs. (3.86) and (3.87), we obtain (3.72.D)

261 + &)a
(uz)€1§52 + (u$)51+1§€2 = (12 (u61+1;52 - uel;ez) = (a2)5(u61+1;62 - uel;eg)' (388>

€1

> (Upgriey = Ueyiey)y  With =1 <& <1 (3.87)

Since —1 <& <1 and =1 <& <1, then —2 < & + & < 2, which leads to

- = €160 X 389
€ ( 2) 1;€2 € ( )
Using a similar argument, we prove that
. o 4o
(Uz)er+ 1o = (Ua)erser = (1) ersen (u51+1;62 - u61;52)> with — Z < (A1) < Z (3.90)

If for (uy)., .., = (uy)(x,y,t,€), we consider

u._ . . w. .. u,_ . —Uu, . __ u., . —Uu,..
(uy)eugz _ mznmod (26 €1;:€2 €1;€2 175 €1;ea+1 €1;€Q 1,26 e1,€2+1€2 51,52) , (391>

€9 2€9
we get
. 4p
(et = s = Oy — e WD = 2 < () < 0, and
(3.92)
(uy)61;62 + (uy)euezﬂ = (72)erie0 (u61;62+1 _uel;EQ)v with _th < (12)erier < f (3.93)

From this estimate, it is necessary that o < 1 and f < 1 to achieve global
stability. However, for some numerical experiments, we are able to consider larger values
for ain (3.85).



Chapter 3. Semi-Discrete Lagrangian-Eulerian scheme for scalar hyperbolic conservation laws in

two-space dimensions 76

The idea in Example 3.1 can also be used for different approximations to the

derivative of u,, and Proposition 3.2 would still be valid.

In the next section, we prove two very important results: our numerical method

satisfies the maximum principle and the Kruzhkov entropy solution.

3.2.3 The maximum principle and the entropy solution

Here, we obtain an abstract proposition that can be used for any numerical
method satisfying the hypothesis of Theorem 3.1. In this case, we show that our numerical
scheme satisfies the maximum principle. Since the initial data in (3.1) satisfies uy(z,y) €
L*(T), we are able to obtain a smooth approximation to ug(x,y), denoted as ug(x,y,€) €
C™(T), such that ug(x,y, €) uniformly converges to ug(x,y). In the following proposition,

we use this approximation and state our result as follows:

Proposition 3.3. Let us assume that numerical method (3.13) satisfies the hypothesis of
Theorem 3.1. Then, any local solution on [0,T), for T > 0, of (3.1), using scheme (3.13),

takes its values between range [min ug(x,y), max ug(z,y)].
z€T €T

Proof. We consider (z,y) € T. First, we take values € (not fixed, for example
e can be rational values) so that {ne},cz forms a dense set in T. By contradiction, we

assume that there exists a ¢y > 0 satisfying, for 7' > 0,

sup u(x,y,t,e) > sup up(z,y,€) for some t € [0,7]. (3.94)
(z,y)eT (z,y)eT
Since wug(z,y,€) is continuous, we can choose a small enough ¢, and n > 0 so that
{u(z,y,t,e)} < [(rginT uo(z,y,€)—n, (?% uo(z,y, €)+n|. Given that ug(x, y, €) is smooth,
then solution u(x,y,t,¢) from Eq. (3.13) is also smooth because this space can be
considered a Banach space using the L® norm. Thus, there exists xg, 39, and tg such that

sup u(x,y,t,€e) = u(xg, Yo, to, €0). Since (xg, Yo, o) is a maximum, solution u(zx,y,t, €y)
(z,y)eT
satisfies

5tu(5(]0,y0,t07€0) = 0. (395)

Remark 3.3. Note that, in the proof if the point (xq,yo, o) s (internal) critical we have
oo, Yo, to, €0) = 0. On the other hand, if the point (xo,yo,to) lies on the boundary,
the function is increasing until it reaches this extremum point, then dyu(xg, yo, to, €0) > 0

follows. In any case (5.95) is true.
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Moreover, if scheme (3.13) satisfies the hypothesis of Theorem 3.1, we obtain

at(u(l‘Oa Yo, t07 60)) =
1
(61)0
—F (u(xo — (€1)0, Yo, to, €0), u(zo, Yo, to, €0))]
1
(62)0

—G(u(zo, yo — (€2)0, tos €0), u(Zo, Yo, to, €0))] -

[F (u(z0, Yo, to, €0), u(zo + (€1)o, Yo, to, €0)

[G (w0, Yo, to, €0), w(To, Yo + (€2)o0, to, €0)

(3.96)

We can rewrite (3.96) as

at(u(lbv Yo, t07 EO)) =
1

- (61)0
1

(61)0
1

(62)0
1

(62)0

[F (u(xo, yo, to, €0), w(xo + (€1)0, Yo, to, €0) — F (u(xo, Yo, to, €0), u(To, Yo, to, €0) ]

[ F (w0, Yo, to, €0), u(o, Yo, to, €0) — F (u(zo — (€1)o0, Yo, to; €0), u(To, Yo, to, €0))]

[G(u(z0, Yo, to, €0), u(o, Yo + (€2)0, o, €0) — G(u(Zo, Yo, to, €0), u(Zo, Yo, to, €0)]

(G (u(zo, Yo, to, €0), u(xo, Yo, to, €0) — G(u(xo, Yo — (€2)0, to, €0), u(xq, Yo, to, €0))] -
(3.97)

From the mean value theorem, (3.97) becomes

Or(u(o, Yo, to, €0) =:
1 [oF
—— (w0, Yo, to, €0), 0 u(xo + (€1)o, Yo, to, €0) — w(xo, Yo, to, €0))

. (02, (o, Yo, to, €0)) | (u(zo, Yo, to, €0) — w(xo — (€1)0, Yo, to, €0))

(w(o, Yo, to, €0), 1M ))]( (20, Y0 + (€2)o, to, €0) — (w(zo, Yo, to, €0))

oy
0
| ox
1 [oG
ay
0g
afx(ﬁm u(zo, Yo, Lo, 60))] (u(o, Yo, to, €0) — (w(wo, Yo — (€2)o0, to, €0)), (3.98)

(e2)o |
where 6 is a state between u(zg + (€1)o, Yo, to, €0) and u(xg, yo, to, €0); b2, a state be-
tween u(xo, Yo — (€1)o, to, €0) and u(xg, yo, to, €0); M1, a state between u(xo, yo, o, €9) and
u(zo, Yo + (€2)0, to, €0); and 79, a state between u(xg, yo — (€2)o, to, €0) and u(xg, Yo, to, eo).
Since u(zo, Yo, to, €0) is a maximum and conditions (3.58) are valid, from Eq. (3.98), w

have that
atU(l'o, Yo, to, 60) < 0. (399)

From inequalities (3.95) and (3.99), we obtain that d:u(zo, yo, to, €0) = 0. Thus, the right
hand side of (3.98) is null. This leads to u(xy — (€1)0, Yo, to, €0) = u(xo + (€1)0, Yo, to, €0) =
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u(zo, Yo, to, €0) and u(zo, yo — (€2)o, to, €0) = u(zo, Yo + (€2)o0, to, €0) = u(zo, Yo, to, €0). By re-
cursion, we obtain that w(zg +n(e1)o, Yo, to, €0) = u(zo, Yo + m(€2)o, to, €0) = u(xo, Yo, to, €o)
for all n and m, i.e., u is constant because u is (at least) continuous and N(e;)o x N(ez)o
is dense in T modulus 1 (because (€1)g and (€3)o are taken as irrational numbers). From
ODE (3.13), u is constant, and the solution is trivial, which leads to a contradiction by
the assumption. The same argument can be used by substituting sup by inf in Eq. (3.94),

and the proof is completed. o.

Proposition 3.3 yields the following Corollary:

Corollary 3.1. Let us assume that numerical method (3.13) satisfies the conditions of

Proposition 3.2. Then, it also satisfies the maximum principle, i.e., the solution satisfies
u € | min ug(z,y), max upl(z,y)|.
[(x’y)eT oz, y) (ma)eT o(z,y)]

In Section 3.2, we make the hypothesis that there exists a a > 0 such that

u > a > 0. From the Corollary (3.1) we can verify that this hypothesis is not restrictive to

our method.

Remark 3.4. If initial data uy(z,y) € L°(T) in Eq. (3.1) assumes negative, positive,

and null values, we consider N = sup |ug(x,y)| + 5 for 5 a positive constant. Then, we
(z,y)eT
consider the following auxiliary problem.:

ou 6H(u—N)+8G(u—N)

o o By

=0, (z,y)eT, t>0, u(z,y,0) = ug(x,y)+ N,

(3.100)
Notice that the new initial data for (3.100) assume only positive values. Under a suitable
hypothesis (see Proposition 3.3), we demonstrate that the numerical method satisfies the
mazximum principle, that is, solution u(x,y,t) takes its values between the maximum and
minimum values of the initial data. Then, the solution to (3.100) assumes only positive

values; hence, the u > a > 0 assumption is valid. In 3.2.5, we prove that if u(x,y,t) is the
(weak and entropic) solution to (3.100), then u(z,y,t) — N is the solution to (3.1).

Remark 3.5. From Remark 3.4, given any Cauchy problem for (3.1), we can define
auxiliary problem (3.100), which assumes only positive values. This auxiliary problem
satisfies the uw > a > 0 hypothesis, and the proof of convergence is valid for the solution to
(3.100), which is u(x,y,t), and for that to (3.1), which is u(x,y,t) — N. The u > a >0
assumption helps to avoid several technical details in such proofs. In addition, by means
of Remark 3.4, we guarantee the convergence of the numerical method for (3.1), without
using any technical details. This is a more elegant strategy to deal with problems of the
Lagrangian—FEulerian type using the no-flow curve, which requires H(u)/u and G(u)/u to

be defined. In summary, for the sake of concreteness and simplicity, and without loss of
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generality, the proof of convergence of the SDLE scheme via the weak asymptotic analysis
covers all initial data ug(z,y) € L”(R x R) in Eq. (3.1) for negative, positive, and null

values, which is necessary for industrial and real world problems.

The next step of our construction is to prove that the proposed scheme satisfies
some kind of entropy condition. In this work, we use the Kruzhkov entropy solution. We

say that a solution u(z,y,t) € L™(T x [0,T)) satisfies the Kruzhkov entropy solution if
[ [ (1ot = Kl signtute,.6) = K0t 0 .00 = KD
+ sign(u(z,y,t) = K)[u(z,y, 1)g(u(z, y,1)) = Kg(K))lpy(2,y, t))dxdde
+ L |uo(z, y) — K[ ¢(z,y,0)dzdy = 0 (3.101)
for all ¢ = @(z,y,t) € C°(T x[0,T)). In Eq. (3.101), the subscripts in function ¢ represent

the partial derivatives.

In this proof, we use that the sequence generated by scheme (3.13) is pre-

compact. Here, we assume that

p= {luo(, y)|loo- (3.102)

Proposition 3.4. (Kruzhkov entropy) Let us assume that the conditions of Proposition
3.2 are satisfied. Then, u(x,y,t,€) —> u(x,y,t) when ¢ —> 0 in L;,.(T x [0,00)), when
u(z,y,t) is the unique entropy solution to (3.1).

Proof. We consider a (fixed but generic) constant K € [—u, u] , b7 4 1/0.., = M,

and b, 1 = M, for all e. For almost (z,,t) € T x (0,0) and fixed z and ¥, and then

using (3.13),

d d
£|u(aj,y,t, €) — K| = sign(u,,.. — K)gu(ﬂc,y,t, €)
1 . ~ €1 €1
= _TE]_SZgn(UEUEQ - K) |:M1 <u61;62 + Z(ux)el;eg - <u51+1;52 - Z(ux)él+1;€2))

€1
+ <(f(u€1;62) + f(u61+1;52)) (uel;Ez + Z(um)el;eQ + (u51+1;62 - Z(ux)el+l;62)))
~ €1 €1
- <M1 (u61,1;52 + Z(ux)elfl;eQ - (uel;eg - Z(um)el;eg)))

~ () + ) (1 g + G0, + (0 = F )00 ) )]
= s, = ) [V (g + )y~ (e~ 2@,
(0001 + 900 ) (s + )y + (W0 = T ) ) ) )
= (8 (t s + T ), s = (0 = 0,00 )))

€9

= (0001 901)) (s + T ), + (10 = Fw),,,))) |- (3:103)
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Rearranging the terms, we obtain

ol

d
= — K| =si
(e, t,6) = K| = sign(u Sl y,1,6)

€1;€9

1 N A N N
476132971( crien K) [u61+1;€2 Be i1z, + uel_l;GQAqfl;ez T Uiy (Beyses + Aq;ez)]
1 A N .
- 176829”( €1;€ ) [( )51+1 e E1Jr1;62 - (ux)6171;62A5171§€2 - (um)el;eQ (B€1;62 - A61;€2)]
1 A N N
+ 476252971 €1;€2 uel jea+1 61 e2+1 + 61 62—1061;6271 - u51;62 (D51§62 + CEI§62):|
1 A N N
- 17681971( €1;e ) [(uy)el jeo+1 E1 e2+1 (uy)el;egflc":l?EZ_l - (uy)el;ez (D61;€2 - 061;62)] )
(3.104)
where

A

Afl;€2 = Ml + f(uel;ez) + f(u€1+1;62) and B€1+1;€2 = Ml - (f(uel;eg) + f(u51+1;52))’
(3.105)

C\’€1§€2 = M2 + g(uel;eg) + g(uel;€2+1) and ﬁ51§52+1 = M2 - ( ( €13 52) + g( €1; 52+1))'
(3.106)

To prove that the method satisfies the Kruzhkov entropy solution, we rewrite (3.104) as

d
— K)—u(z,y,t,€)

d .
£|U(ZL’, yvtu 6) - K| = Slgn(u dt

€1;€9

A A

. 1
= S/Lgn(uel;GQ - K) {461 I:u51+1;62 Bel+1§€2 + u61,1;62 A€1_1§52
—K (M, — 2f(K) + M, + 2f(K))

_<u€m (Beyiey + Acriey) — K(My — 2f(K) + My + 2f(K)))]

1 ~ ~ A ~
1z I:(ux)€1+1;e2 Be i1z, — (ux)el—n@Aerl;EQ - (ux)el;eQ (Beyses — Aq;ﬁz)]}

. 1 R R
+ Szgn(u£1;€2 - K) {462 I:uel;62+1D51;62+1 + u51;5271061;6271

—K (M, — 2g(K) + My + 2g(K))
(1t Deses + Cea) = K (0 = 29(K) + 8Ly + 29(K))) |

1 A A . R
16 [(uy)€1;62+1D€1§62+1 - (uy)el;62_1061;6271 - (uy)el;EQ (Deyzer — 061;62)]} . (3.107)

Now, we analyze
Sign(uélm B K) (u€1§€2 éﬁl;@ o K(Ml o 2f(K))) =
— K)((u, ., — K)My + (K f(K) =, f(u, ..)
+ (Kf(K) —u,,.,, fu,,,)) (3.108)

We are interested in studying (3.108). We have the following possibilities between K and

u .
€15€2
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1. K = u,_, . In this case, since the numerical method is TV NI, according to the

hypothesis of the numerical scheme, the set for which K =u_. # u, . has null

€1;€9

measure in T x R*. Thus, for K = u,  , we obtain

(eyey = BN+ (K F(K) =y [l ) + (KFE) =g, ) =
= Kf(K) —u,, fu, ) #0

only in a null measure set.

2. K #u_,,. Since f is a Lipschitzian function, we have that

[KFK) =t f(ug ) + KFK) —ug, flug,,)] <
SKS(K) = uey o f (ug o I+ IKFK) =, fu,)]
< QM+ Lip)| K = u, [+ ply

uel;EQ - u61—1;62

€15€2

Here, we use that

Kf(K) = ug, o f(u,.,) = (K —u ) f(K) +u,, (F(K) = f(u,.,));

Kf(K) =, fu, ) =(K =u ) F(K) +ug, (FK) = fu,,,,)
+ (flug) = fu, )i

L, is the Lipschitzian constant of f; and M; denotes the sup of the modulus of f
given by Eq. (3.21) and of u given by Eq. (3.102). Here, we also use that the solution
satisfies the maximum principle. The states for which u(x,y,t,€) is discontinuous is
a set of null measure. In the case of the states for which u(z,y,t,€) is continuous,
<|K —u

we can choose a small enough € such that |u_. . —u

) €1—1sen

€13i€9Q

Thus, up to a null measure set, and for a small enough € and taking M; >

2M; + 3Lypu, we have
_K)) = Ml

Uy = K 2 2K F(K) =, (f (0 1) + T (0 )-

sign(u ey
(3.109)

This leads to
€1;€2 - K) <u61;62 BGHEQ - K(M]- - 2f(K))> =
= Sign(uél;éz - K)((u€1;62 - K)Ml + (ZKf(K) - u51;52 (f(uelflgez) + f(uel;é2)))

= |(u,,., = K)My + QK F(K) —u, ., (F(u, )+ Flu,))]
u, . B, — K(M, —2f(K))|. (3.110)

€1;€9

sign(u

The same argument can be used for
Sign(uel;EQ - K) (uel;eg 12151;52 - K(Ml + 2f(K>>> =

= sign(u,,., — K)((u,,., — K)My = (f(K) = ., f(u, _.,) = (F(K) —u,, f(u,.,)),
(3.111)
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and, for a small enough € and up to a null measure set, we can write

AeuEz - K(Ml + 2f(K))|
(3.112)

sign(u,, = K) (1, Aca = KV + 2f(K) ) = [u

€1;€2

Performing similar calculations and taking My > 2Ms + 3Lop, where M, is given by (3.21),

for a small enough € = (€1, €2), we also have

A

U, Cerer — K(Mz +29(K))|
(3.113)

sign(t, ., = K) (., Ceves = K (I + 29(K)) ) =

and

u, .. D

€1;€9 €1;€2

— K(NM, + 29(K))|.
(3.114)

sign(tt, ., = ) (. Desses = K (1 +29(K) ) =

Now, consider a small enough ¢, and except on a null set. Thus, we use equations
(3.110), (3.112), (3.113) and (3.114) in (3.107) to obtain

%|U(LE, Y, t,€) — K| < Weiiey + Octies (3.115)
where
1 A A N N
Weuéz = E( usl+1;ezB€1+l;62 - K(Ml - Qf(K))‘ - uel;egB€1§€2 - K(Ml - 2f(K))‘>
1
1 o ~ ~ ~
= e (s Acis = KO 4 20 ()| = 1y Aey s = KO, 2 () )
1 , ) ) .
- T63@gn(uel;62 - K) [(UI)SIH;Q Bei 11, — (u$)6171;62A51_1;62 - (ux)el;eg (Beyer — Aeu@)]
(3.116)
and
1 N ~ ~ ~
Ouvir = G ([t Desar = K (N = 29())| = |, ., Devy = K (3 —29(K)| )
1 ~ ~ ~ ~
= 10 ([t s s = B+ 295N | = Ju - Coreamn — K (N + 20(K))) )
1. A A . R
- TGSZQn(uel;eQ - K) [(uy)51;62+1D61;62+1 - (uy)el;62—1061§62*1 - (uy)61;62 (Deyser — 061;62)] :
(3.117)
In other to simplify our calculations, we prove our next result for
d
%|u(x,y,t, €) — K| <V, .. (3.118)

Multiplying inequality (3.118) by the non-negative test function ¢ = @(x,y,t) €
CP(T x [0,7)),T > 0, and integrating by parts, we obtain (notice that the null measure
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set does not modify the value of the integral)
T
~ | funte) = Kt 0oy = | [ Jute.9..0) = Koy t)dadyde <
0 Jr
f J 461
(0 Aeges — KT, 42 (5|~
46 1i€2

- P(K) [(ur)elﬂ;ez BEl+1;62 - (ur)6171;62A6171§52 - (ux)el;sz (E€1;62 - A€1§€2):| }gdm dy dt7
(3.119)

61 €9 €1+1 €2 K(Ml - 2f(K))| -

oy Beses = K (N = 2/ (K))])

vy At = K (VL + 2£(K))])

1
where P(K) = 1—6$z'gn(uq;e2 — K). Note that if we take e, —> €; — 1 in the index, we have
that

vy Bt = KV = 20 (K)o —

u51;52B€1§52 - K(M1 - 2f ‘SD xr — 617 y7 )7

and that if we take e, —> €; + 1 in the index, we have that

Uy Acs s = K (VL + 2/ ()| —

uel;ezﬁel;ez - K(Ml + 2f ‘90 T+ €1,Y, )
Thus, inequality (3.119) is written as

- J [uo(,y) — K|p(r,y,0)drdy — LT L lu(z, y,t,€) — K| p(x,y, t)dedydt <

f J U, o Beyey — K(V — 2f(K))D (w(x’y’t) - Z(x - El’y’t)> dadydt+
J f Uy Ay 1 — KV + 2f(K))D (*O(x Tyt = ‘p(x’y’t)) drdydt
[P [0 B = ) Aacrcs = ) B = )] oy

€1
(3.120)

Since p € C°(T x [0,T)), Eq. (3.120) becomes

T
_ f o, y) — K| o(z,y, 0)dady — j f e,y t,¢) — K| oo, y, t)dadydt <
0 T

I REI

+[€1

oy Acies = K (N + 2 (K))| =

Ueieq Beuez - K(Ml - 2f(K))‘ )901") dxdydt

f f 61+1 o Bei 156, — (uz)erhez Ae—1e, — (UCC)el;sQ (Beyier — Aeueg)] pdxdydt.

(3.121)
Here, I(¢) — 0 when ¢ — 0. Considering that (3.110) and (3.112) are valid, we obtain

u61;62A61;62 - K(Ml + 2f(K))| T U e 61 e K(M - Qf(K))| =
— 16P(K) [t Acyes = K (N + 2 (K)) = (,,,,, Beyies = K (V1 = 2/ (K))) |

= 16P(K) [u,,., (2 (uy) + [ (U n) + F (0, ) — 4K K] (3.122)
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By substituting (3.122) in (3.121), we have that
T

~ | oty — Koty 0oty — || fute.t,0) — K pudadyat <
0 Jr

[ (6P [y 20 + ) 500, 1) = A SGO] ) )
+I 61

f f 51+1 €2E€1+1;62 o (ux)6171;52A5171§€2 - (uz)el;EQ (§€1§52 o A51§€2):| SOdJCdydf-
(3.123)
To complete our proof, we must analyze
f f 61+1 52B61+1;62 o (uw)el—l;sgAﬁlfl;Gz o (ur)el;e2 (361;62 o AEI;GZ)] Qdedydt-
(3.124)

Considering previous arguments, we know that, since the proposed scheme is TV NI, for
each fixed t, there exists only a finite number of (x,y) such that u.(x,y,t,¢) — K changes
the signal. Then, we split T = S; U Sy U S3 such that
(z,y) € Sy —> sign(u(z,y,t,e) — K) <0 and (3.125)
(ZL’, y) € S? - sign(ug(:v, Y, t, E) - K) > 0, (3126)

and S3 has null measure. Here, S; and S, consist (each) of a finite number of subintervals.
We rewrite the spatial integral on T in (3.124) as

_J { I:(ux)61+1;62 §€1+1§52 - (uw)el—negleerlm - (ux)el;eQ (361;62 - ‘2161;62)] }Sﬁ(xayat)dxdydt
S1

A

+J { [(ux)qﬂ;eQ §€1+1§€2 - (uz)el—n@‘qerl;w - (UI)EI;EQ (Beyses — 12161;62)} }Spd$dydt-
Sa

Now, notice that, due to translations of +¢, we have that

L { [(uﬂﬁ)elﬂ;ez 361+1;62 - (uz)sl—l;eQAﬂ*l%EZ - (uiv)el;eg (361;62 - ‘2161;62)] }@dxdydt = @(61)
1

(3.127)
because the terms inside the integral cancel out (actually, they do not cancel out only at

the extremes of the subintervals of S;). The same argument is valid for the integral on Ss.

Given that the argument is valid for any ¢ € [0, T'], we have that (3.124) is O(e;).
Then, Eq. (3.123) is written as

T
f |uo(z, y) — K| (z,y,0)dxdy + f f u(z,y, t,€) — K| (2, y, t)dxdydt
0 T

f |G (PO [0 )+ F ) + F0 1) = AKF)] Yyt >
I(e1) + O(er). (3.128)
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Using (3.115) and performing similar calculations, we obtain

r

T

ol ) — K| (e, y, 0)dady + j f (e, y,t,6) — K| u(e, . t)dadydi+
0 T

rT

L {i (16P0) [ty (1) + [l ) + (1) = AKF(K)] ) oy ) dudydt+

[

0

rT 1
| (0P [ 0tu,) + a0, ) + s, ) = 4] ) 2, )y >

JO

= —1I(e) + O(e). (3.129)

Here, u, ., = u(x,y,t,¢) and I(€) = I(e1) + I(€2). In 3.2.4, we show that family
u(z,y,t,€) for e, > 0and €3 > 0 and € = (e, €2) is a pre-compact sequence in L*(T x [0, T]).
Let u(z,y,t) be an accumulation point of family w(z,y,t,€). Thus, for a sub-sequence
€, we have that u(x,y,t,¢.) — u(z,y,t) when r — oo in L*(T x [0,7]). In other
words, u(z,y,t, €. + 1) — u(z,y,t) and u(z,y,t, e, — 1) — u(z,y,t) when point-wise
up to a set of null measure. Taking the limit as € = ¢, —> 0 in (3.128), we obtain the
entropy relation, remembering that I(e) + Q(e) — 0 and noticing that f(u, . ) — f(u),
Fltpins) — F0), 9lu,y.,) —> g(w), and glu,,,,.,) —> glu). Thus, u(w,y, ) satisfies
Eq. (3.101).

In Eq. (3.101), K € [—p, ). However, for |K| > u, note that the inequality
that is Eq. (3.101) reduces to the equality (weak solution),

[ [ (0006000 5 00,0000 ,.0) . 000 00,y
L uo(z,y)g(x,y,0)dr = 0.

From these results, we obtain that (3.101) holds for all K € R. Since 7" > 0 and ¢ =
o(x,y,t) € C°(T x [0,T)) are arbitrary functions, inequality (3.101) leads to solution
u(z,y,t), which is the (unique) entropy solution to (3.1). From the above, it is easy to
see from (3.13) that an accumulation point u(z,y,t) of u(z,y,t,€) is unique. This implies
that u(x,y,t,€) converges to u(z,y,t) as € — 0 in L (T x [0,00)) because T is arbitrary,

which completes the proof. o.

Therefore, we prove that the SDLE method (3.3)-(3.7) obtained from (3.13)-
(3.14) converges to the entropy solution of (3.1).

3.2.4 The pre-compactness of sequence u(x,t,€)

Here, for Lemma 1 and Corollary 3.2 below, we use the same notation employed
in [2], i.e., z = (z,y) for the 2D case.

To prove that sequence u(x,t,€) is pre-compact, we used some of the results

reported in [2]. The first result we need is Lemma 1 in [2].
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Lemma 1. Suppose that u(x) € L'(T"), h > 0. Then

where

w*(h) = sup Jn lu(x + Az) — u(z)|dx

|Az|<h JT

is the continuity modulus of wu(z) in L'(T™).

Here, T" is the n-dimensional torus. In this study, we are interested in a one-
dimensional problem. For n = 1, T" reduces to T. Since the proof of the previous Lemma

does not depend on the scheme, we refer to [2].

Notice that w®(h) is a measure of TV NI, as described in Eq. (3.52). Thus,

under the same hypothesis of Proposition 3.2, we can prove the following Corollary:

Corollary 3.2. Let us assume that u(z,t,€) is given by scheme (3.13) and satisfies the
hypothesis of Proposition 3.2. Then, for allt > 0, Ax € R, we have that

f lu(z + Az, t,€) —u(x, t,e)|dr < J |up(x + Az, t, €) —ug(z, t, €)|dr < w™(]Az|), (3.130)
T T
where

w*(]Az|) < sup f |ug(x + Az, t,€) — up(z,t,€)|dx
|Az|<h JT

is the continuity modulus of initial data ug(x) in T.

The proof of Corollary 3.2 follows from Proposition 3.2 and the supremum
properties of a function. Now, we prove the result to obtain the pre-compactness of

sequence u(x,y,t, €). The first useful result, similar to that obtained in [2], is

Lemma 3.1. Let us assume that ¢(x,y) € C*(T). Then YAt > 0,

L(u(w, t+ At e) —u(z,t, e)p(x)dr < N||V|lo((T)At. (3.131)

Here, ((T) is the measure of T and

N M.
N (21 * Ml) (e Gw) + <2 : M2> (e 5ee)  and p=huole
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Proof. Let us denote I(t) = J u(z,t, €)p(x)dx. Differentiating I(t) from t and using
T
(3.13), we have that

2 €1 €1
0= [ ([0 #5000 (0= 500,.)
E1 €1
+ ((f 51 €9 + f el+1 62)) ( €1;€2 + Z )61 ;€9 <u€1+1 €9 - Z(ux)51+1;52>))
x 61
bel 1/2;e9 ( €1—Liez + 61 Lieg < €13€2 6162))) +
L a
4

-(
—{u&ug+ﬂqgw%u2 <LHQ+@M—%W¢WDH
i [0 (s + S0y = (e — F),))) +

+ ((9( s 62) + g(u o e2+1)) (“51;62 n €2

€2
Z(uy)el;EQ + (u61;62+1 - Z(uy)el;62+l)))
€2 €2
- (631;62,1/2 (u61;6271 + Z(uy)sl;6271 - (uel;ez - Z(uy)el;EQ))) +

€2
- ((g(u61;6271) + g(uel;€2)) (uel;egfl +

2 (y)ns + (s = )., ) ) |} odady.

Changing the order in the integration variable, we obtain

1 . €1 €1
(t) J\ {4 |:<b51+1/2;€2 (uel;EQ + Z(ul’)el;ez - (u51+1;52 - Z(u$)el+1;52>>) +
+

(f%@+ﬂqﬁyw%@

n
(cb(fv €1,y) — o(z, y))
n

immm@m F 2~ (1 — D)) ) ) +
(0000 + 9000 (s + 20+ (s = 20,1 ) )]
(szﬁ(fﬂ Y+ e) — 9, y)) } dady. (3.132)

Since I'(t) = G(t) implies that |I(t+ At)—I(t)] < max G(t) At, we can estimate
the right hand side inside of the integral of Eq. (3.132) as

st < {3 (7 (1 (= F0)0)))

() + Fu) (Ja # (sl + G 10 ])))]
( ¢(x +e1,y) — ¢(x,y) D

(2% ] (el + S0

1
il
(o) + 190y )) (J
¢$y+€2 ¢(:U7y))

€T
€1+1/2;e9

+ Z ( )61;62

€1
+ Z ‘(ux)el;ez

61 €2

uel+1;52

€1;€9

Y
€1;e0+1/2

([ |+ 2@ ) ) ) +

€ €
+fwwm2+(qu+j\ Deaa])))]

€1;€9

61 €2

(5
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Using that

o(x + €,y) — o(x) <Vl and oz, y £ €) — d(z)

€1 €2

< [V,

Foze = My B = Mo, [[(wa)lle < v, [[(wy)llo < 0s, [Ju(e,t,€)]le = p, and M,
and M, are given by (3.21), condition (3.131) is satisfied. o

Since we obtained similar estimates in [2], we used Lemma 3 in [2].

Lemma 3. For everyt =0, At >0
J u(z, ¢ + At,€) — ulx, £, €)|dr < w'(A),
T

where w'(At) = }ilng(llw"”(h) + cNAt/h), and ¢ is a universal constant.
>

Note that in w’(At), since this parameter is the infimun, w'(At), for fixed At,
reduces to iilng(élcu””(h)).
>

Moreover, since w®(h) — 0 as h — 0 and does not depend on ¢ (based on
previous results), family u(z, ¢, €) is uniformly bounded and equicontinuous in L' (T x [0, T7)
for every T' > 0. Thus, u(z, t,€) is a pre-compact sequence in L'(T x [0,T]), which implies
that we can extract a sequence ¢, — 0 such that ui(x,y,t) = u(x,y,t, &) — u(x,y,t)
as k —s oo in L}, (T x [0, o0]).

3.2.5 Weak solution of auxiliary problem

Here, we give the proof considering the classical weak solution defined in
R? x RT. The proof is similar for the domain T x RT. First, we consider the weak solution

to (3.100) to be

[ ] ek mw= Mg+ Glu— Nypy) dodyit + [ (o) + N)gudody =
R+ JRxR

RxR
(3.133)
where g = ¢(x,9,0), and ¢ = ¢(z,y,t) is a test function with support in R* x R". If we

consider the domain T x R, the support of ¢ lies in domain T x R™.
By substituting u — N = U in (3.133), we obtain

fw J}R . (U+ N)pe + HU)p, + G(U)p,) dedydt + f (uo(z,y) + N)p(x,y,0)drdy =

RxR

Lﬁ JR . (Upr + H(U)p, + G(U)gy) dedydt + JR (uo(z,y) + N)p(z,y,0)dzdy

xR

+ J Nppdxdydt = 0. (3.134)
R+ JRxR
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Using Fubini’s theorem for the integral and using that ¢(z,y,t) has compact support,
then
J Nopdzdydt = — No(z,y,0)dzdy. (3.135)
R+ JRxR

RxR
By substituting (3.135) in (3.134), we get

JW JR . (Ugpr + HU)p, + G(U)p,) dudt + JR uo(z,y)p(r,y,0)de =0,  (3.136)

xR

which is the solution to (3.1). The previous calculations are reversible, i.e., (3.136) in
(3.133). Thus, if u(x,y,t) is the solution to (3.1), then u(z,y,t) — N is the solution to
(3.100), and the reciprocal is true.

A similar calculation can be performed to prove that the entropic solutions are

the same.

3.3 Numerical experiments for scalar hyperbolic conservation laws
in 2D

We provide robust numerical examples for verifying the theory and illustrating
the capabilities of the semi-discrete approach. We present and discuss the application of
the proposed semi-discrete scheme to nontrivial two-dimensional nonlinear scalar problems
whose solutions lead to intricate wave interactions (e.g., 2D Inviscid Burgers’ equation:
Oblique Riemann problem, Buckley-Leverett equation with gravity and non-linear equation
with non-convex fluxes). We will use hereafter “s” as the usual abbreviations to Seconds to
report the elapsed time for each numerical experiment presented. The 2D SDLE scheme
(3.3)-(3.7) only employs the available easy information of quantities v and fluxes H (u)
and G(u), along with the no-flow CFL-type constraint (3.8) supported by the analysis
summarized in the Egs. (3.20), (3.21) and (3.50). In Section 4.3.4, numerical analysis are
conducted with an Experimental Order of Convergence (EOC) in the L' norm of the relative
error by the aid of our 2D semi-discrete method (3.3)-(3.7) to show numerical robustness
of the no-flow curves, which are natural mathematical objects from the differential models

under consideration.

Example 3.2. Numerical diffusion test [6/]

In order to investigate the numerical behavior of our two-dimensional semi-
discrete method when several time steps are used, we consider the two-dimensional linear

hyperbolic problem,

ou oOu Ou
74‘7"‘7:0, Z, 7t€0712><0’1’
ot  odr 0y (z,y,8) € [0.1] 0.1} (3.137)

'U/(.'L', Y, 0) = Uo(SU, y)7
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where periodic initial datum and exact solution are given by
up(w,y) = sen?(rz)sen®(ry) and wu(w,y,t) = sen®(w(z —t))sen®(w(y —t)), (3.138)

respectively. The numerical solutions displayed on the right column of Figure 5 (from
top to bottom) present a computational analysis linked to the novel SDLE scheme when
several time steps are used in order to respond to a concrete situation that allows us to
test if the numerical solution computed by the semi-discrete scheme is affected by excessive
numerical diffusion. The new SDLE framework is capable to avoid excessive numerical
diffusion in computational studies (e.g., see such effect in the experiments produced with
the two-dimensional classical Lax-Friedrichs scheme in the left column in Figure 5). The
resulting numerical solutions are convincing in verifying the theory and illustrating the
capabilities of the semi-discrete Lagrangian-Eulerian scheme because of their excellent

resemblance with the exact solution (black contour).
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Figure 5 — A numerical diffusion study by the two-dimensional Lax-Friedrichs scheme (left
column) and the two-dimensional semi-discrete Lagrangian-Eulerian scheme
(3.3)-(3.4) (right column, o =2, ( =1 and § = 1.5) with several time steps.
Black contour represents the simulation of the exact solution.

Example 3.3. Two-dimensional inviscid Burgers’ equation [32]

In this example, we focus on numerically studying the scalar 2D fundamental

inviscid Burgers’ equation with an oblique shock on the unit square as follows:

ou 0 [u® 0 [u? 9
o2 (2> 2 <2> ~0. (2y.t) € 0.1 x (0,05], (3.139)

along with the following Riemann initial condition:
, xr <0.25, y<0.25

2
u(z,y,0) =<3, x>025 y>025 (3.140)
1

, otherwise,
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in conjunction with an exact boundary condition on the inflow portions of df2. In fact, it
is well known the solution for (3.139)-(3.140) is composed of two shock waves and two
rarefactions that meet at the middle of the domain to form a cusp. As observed in Figure
6, we performed a mesh refinement study by the aid of our SDLE scheme (3.3)-(3.4) for
several different grid cells at time 7' = 1/12 and with the following computational times:
0.46 s (64 x 64 grid cells), 3.24 s (128 x 128 grid cells) and 31.90 s (256 x 256 grid
cells). The SDLE scheme, in its simplest form, proved to be computationally efficient and
exhibited no spurious oscillations in sharp-front regions, no grid orientation difficulty with

very good resolution.

Example 3.4. Two-dimensional inviscid Burgers’ equation: oblique Riemann
problem [32]

Let us consider the two-dimensional scalar hyperbolic equation given by (3.139)
in domain (z,v,t) € [0,1]* x (0,0.5] subject to the following “oblique” Riemann initial
condition:

—1.0, =>0.5  y>0.5,
—0.2, x<0.5, y>0.5,
u(z,y,0) = (3.141)
+0.5, x<0.5, y<0.5,

+0.8, z>05 y<0.5

\

in conjunction with an exact boundary condition on the inflow portions of 0f2. As in the
previous, the SDLE scheme captured the moving fronts and no spurious oscillations have
been observed with very good resolution as we can see in Figure 7 at time 7" = 0.5 and
with efficient computations 0.22 s (64 x 64 grid cells), 1.58 s (128 x 128 grid cells) and
14.39 s (256 x 256 grid cells).

Example 3.5. The Buckley-Leverett equation with gravity [52]

Let us consider the non-convex Buckley-Leverett model, which is motivated by
the classical immiscible incompressible two-phase (e.g., water and oil) flow system with

gravity for the reservoir water-flooding problem in oil recovery

08y | O(f(Sw)) | A(g(Sw))
ot * or * oy

=0, (z,y,t) € [-1.5,1.5]% x [0,0.5], (3.142)

where g(S,) = f(Sw)(1 — Cy(1 — S,)?) is non-convex Buckley-Leverett fractional flow

function of water with )
S

f(5w) = o %(“i —5. (3.143)

where 1, and pg are the viscosities of the water and oil phases, respectively. For the sake

of simplicity, in the simulations discussed here, we have chosen Ho 1, Cy = 5 and initial

Ho
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Figure 6 — 3D-plot’s view angle (left column) and the corresponding 2D contour views (right
column) of the numerical approximations for model (3.139)-(3.140) computed
using the SDLE scheme with o =2, ( =2, = 1.5 and CFL = 0.12.

condition,
1, 2+ < 0.5,
u(z,y,0) = Y (3.144)
0, otherwise.

Again, the corresponding numerical approximations for model (3.142)-(3.144)
are displayed in Figure 8 with very good resolution with efficient computations: 0.17 s (64
x 64 grid cells), 1.34 s (128 x 128 grid cells) and 11.12 s (256 x 256 grid cells). As before,
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Figure 7 — The corresponding approximations for model (3.139)-(3.141) computed using
the SDLE scheme with a =1, ( =3, 6§ =2, and CFL = 0.12.
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the SDLE scheme captured the sharp-front regions with no spurious oscillations.

Example 3.6. A nonlinear equation with non-conver fluxes [32]

Let us consider the following 2D initial value problem with non-convex fluxes

H(u) and G(u) such that H"(u) and G"(u) change signs, given by:

ou  OH(u) 0G(u)
St e =0 wnel220x 2515 x[01],  (3145)
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Figure 8 — A mesh refinement study of the numerical approximations for the two-
dimensional hyperbolic problem (3.142)-(3.144) (3D-plot’s view angle, left
column and 2D contour, right column), which were computed using SDLE with
a=2,(=5,0=1,and CFL = 0.07 at time T" = 0.5.

with H(u):=sen(u) and G(u):=cos(u), subject to initial datum,

3.5m, v+ <1,
u(z,y,0) = Y (3.146)

0.25, otherwise,

in conjunction with an exact boundary condition on the inflow portions of 0f2. In this
model problem (3.145)-(3.146), the flux in the z-direction of (3.145) has three inflection
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points, while that in the y-direction has four. Figure 9 shows the resulting solution to the
Riemann problem, which is computed with the SDLE scheme (o =1, ( = 2, and 6 = 2)
at time 7" = 1. Again, we can see the shock capturing scheme SDLE (3.3)-(3.4), along
with (3.5)-(3.7), provides numerical approximations that are total variation non-increasing
(Section 3.2.2) and good resolution of the discontinuous features with computational

efficiency: 0.36 s (64 x 64 cells), 2.83 s (128 x 128 cells) and 22.87 s (256 x 256 cells).

64x64 CELLS 64x64 CELLS

128x128 CELLS

256x256 CELLS 256x256 CELLS

[N w S o @~ @ ©

Figure 9 — 3D-plot’s view angle (left column) and 2D contour view (right column) of the
numerical approximations for the 2D model (3.145)-(3.146), which is computed
using the SDLE scheme with a =1, ( =2, § = 2, and CFL = 0.075.
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4 The semi-discrete scheme for systems of
hyperbolic conservation laws in one dimen-

sion and two space dimensions

The implementation of the semi-discrete scheme in the case of systems is a
straightforward component-wise application of the multidimensional scalar case (1D, 2D)
presented in the previous chapters, with no need of any dimensional splitting strategies,
since no (local) Riemann problems are solved; hence, time-consuming field-by-field type
decompositions are avoided. The component-wise extension of the Lagrangian—Fulerian

framework systems is greatly facilitated via the no-flow curves as well.

4.1 1D semi-discrete Lagrangian-Eulerian scheme for systems of

hyperbolic conservation laws

Here we deal with N x NN system of hyperbolic problems, but for the sake of
simplicity and with no loss of generality we will present the procedure of the semi-discrete
scheme for a 2 x 2 system of hyperbolic conservation laws (applying it to 3 by 3 systems

and 4 by 4 as well) given by

6U1 X 5H1(u1,u2) 6u2 I 6H2(U1,U2)

vt — i = h H, H 2, 4.1
at oz 0 & oz 0, where f, HzeC (41)

The system (4.1) can be written in a simple compact form as follows,

oU  H(U)

(%+ . =0, U=(u,u)’, H=(H,H)", (4.2)

and for systems of N equations it could be defined as

oU  oH(U)

525 + 61} - O’ U = (u17u27. o 7uN)T7 H = (Hl,HQ, T 7HN)T.

As before, we consider the space-time control finite volumes for each variable

uy and usy as follows (see Figure 10);

DIt =A(a,t) fop () Sz <oy (), r<t<t"™, =12 (43)

Here oy, ;(t) are parameterized curves and define the “lateral boundaries” of the no-

flow region for each primitive variable u; and uy. Formally, writing the Eq. (4.2) in its
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two space dimensions
divergent form for each variable as in scalar case and apply the divergence theorem over

the space-time finite volumes D;’; " we have
(4.4)

H
Z(U)] ids =0, S=oD}", 1=1,2.

Uy

9D;f;."+1
Applying the same procedure used in the scalar case, Section 2.1, we obtain the no-flow

curves expression as a system of ordinary differential equation given by
H, t),1 t),t
(0t 0.0) 000,00

doy;, 7p(t)
dt ul(ajjl p(t) t)
ul 7p(tn) = Z’

(4.5)
where o (t°) = 2 along with u (07, ,(t),t°) = uo(x) for all the indexes p in the mesh
grid, which is simply the initial data at the initial time. Using the fact that the integrals

, vanish in the line integral over the boundary of the region D;’; 1 we

over the curves o},
have the local conservatlon relation in different meshes

RERS n+1 1‘?+1 n
w(x, t")dr = w(x, t")dzx, 1=1,2.
fn+1' "
ug,Jj
As the framework of finding the scalar semi-discrete scheme (see Section 2.1) is naturally
Tz Ty, Tuyj+1 Tusjt1 g+l
Vo Y
n i \ v :
Tz (8 ! v Tui+1(t)y A on
‘1," "I L :ng 1+1(t)
1 ' g ]
v : ! 1 :
{ n,n+1 g 1 :
Ny N U
anod o ’ Pfoan
g
' | ,’: [Ino-flow curves
1 i 1!, :
! : L :
¥ i yn,nt1l N
: '1;, I, .‘D2 o7 + :'I'l,l
no-ﬂow curves ,'," & s
u1 ](t) e
I ! :
e - 5
Zj mg+§ Ti+1 Tj+i

e
Figure 10 — Geometric representation of the Lagrangian Eulerian space-time control vol-
umes D;’; " (and no-flow curves o () and oy ;1 (t), 1 = 1,2) and its
first- order approximation (straight hnes) from time level t" to time level ",

ol

similar for systems, then our semi-discrete Lagrangian-Eulerian formulation for systems of

(4.6)

hyperbolic conservation laws is given by the equation
l=1,2,

d 1
—— [Fuy (g, wr 1) — Fuy (o1, urg)],

i) =—— 1

which shall be extended in the next section to multi-dimensional systems of hyperbolic

problem. Here the numerical flux function for each variable is given by

Ful (ul,ja Ul,j+1) =
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: Az 7 Az
with u:j% = Ut~ ((w)a); 1 5 Uy = Ut ((w)); and ((w).); denotes

the numerical derivatives for each variable, i.e., [ = 1,2, and can be expressed as in (2.8).

Based on the no-flow estimates for numerically stable computations given
in Proposition 2.1, we use in a similar fashion of the well-known stability condition by
Courant—Friedrichs-Lewy the no-flow estimates b, ;.1 = (max {[fu; + fu.j+1[}, with ¢

’ J

(1 < ¢ < 3) a parameter that depends on the problem to be treated along the CFL
At

1
condition max{|fy, j|, | f"2’j|}A7 <3 without the need to use the eigenvalues (exact and
j x

approximate values) of the pertinent Jacobian of the numerical flux functions (see Eq.

H(U; H,(U
2.54). Here the no-flow curve approximation is given by f,, ; = (Us) A 1) for each
Uuy,; uy

variable.

4.2 2D semi-discrete Lagrangian-Eulerian scheme for systems of

hyperbolic conservation laws

In the sequel, we turn our attention to the construction of the semi-discrete

Lagrangian-Eulerian scheme for systems of hyperbolic conservation laws in 2D of the form,

é‘ul é‘Hl (Ul, UQ) 6G1 (Ul, UQ) . é‘uz 6H2 (Ul, UQ) 8G2 (Ul, Ug)
at T m T e Y o o oy

=0, (4.8)

where H;, G; € C?, 1 = 1,2. The semi-discrete scheme can be formally extended to the
case of N x N systems of conservation laws in a multidimensional component-wise fashion,
as presented in Section 3.1. It is well-known that the theory for such general situation
and related fundamental questions for entropy solutions to multidimensional conservation
laws remains an open problem and is still in active progress (see, e.g., [24, 72, 78] and
references cited therein). Therefore, we will present the scheme for the case of the 2 x 2
system (4.8) and apply it to 3 x 3 and 4x4 systems as well, for which results can be found

in the literature. System (4.8) can be written in a compact form as follows:

ou N JH(U) N 0G(U)
ot or oy

= 0, U= (Ul,UQ)T, H= (Hl,HQ)T, G = (Gl,Gg)T. (49)

As the framework for finding the semi-discrete scheme in 2D is naturally a straightforward
component-wise application of the two-dimensional scalar case (although coupled and
genuinely multidimensional), we simultaneously apply the procedure to each variable (i.e.,

u1, uz). The 2D SDLE scheme for systems of conservation laws is given by

d _‘Fjl'-&-l/Q,k - ~7:Jl'—1/2,k B g;,k+1/2 - g]l’,k—l/2

%um,k(t) = A:L‘ Ay s l = 1,27 (410)
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with the corresponding multidimensional numerical fluxes in the z— and y—directions,

which are, respectively, given by

! e - —ur , , - +

Firin = 1 [bm w (g = o) + Guan + fugions) (gt ooy )| and
l Y - _ 7t . . - -
ik+d T [b Lik+} (“z,j,m% “m,m%) + (Guijk & G jksr) (“m‘,mé + ul,j,k+%>] » (411)

along with the discretized multidimensional (2D) no-flow curves,

H .
_ AilUix) and gy, ik = M, l=1,2. (4.12)

fUl,] k=
ulv]vk ulv]vk

As before, the intermediate values and the numerical derivatives are given by Egs. (3.6) and
(3.7), respectively, for each variable (u,us), again in a straightforward component-wise

application of the two-dimensional scalar case.

4.2.1 Positivity principle of the semi-discrete scheme for multi-dimensional

systems

It is well known that system of hyperbolic equations, generically, do not exhibit
TV NI solutions. These T'V NI schemes exist only for scalar conservation laws, and for

linear hyperbolic systems in one space variable [65, 66].

On the other hand, Liu and Lax introduced in [65, 66], the notion of Positivity
that can be applied for nonlinear systems of hyperbolic equations of multi-dimensional
type. Systems that exhibits these property present evidence of stability and have bounded

increasing for the time steps.

Here, we consider the system of following form:

U, + = 4.13
! Z &BS ( )
where U = (u1,ug,--- ,uy)’ € RY is the vector of conserved quantities and z =
(z1, 29, ,24) € R?is the spatial multi-D vector. The flux function is H = (Hy,--- , Hy)",

notice that we have d vectors H. We also define:

H; :
Fy=~—, wherei=1,---,N forall s={1,---,d} and F=(F,---,Fy)".
Us
(4.14)
We say that a numerical scheme used to solve (4.13) is positive if it can be written in the

following form:

= Z CixUjsik, (4.15)
K

with the coefficient matrices C; i satisfying the following properties:
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(i) Cjg is symmetric and semi-positive definite,

Z Cjx = I, where [ is the identity matrix, (4.16)

(17i) Cyr =0 except for a finite set of K.

If in addition to conditions (7)-(zii) of (4.16), the numerical scheme satisfies
(iv) Cjk depends Lipschitz continuously on z (4.17)
the scheme (4.15) satisfies for the discrete [* norm, see [65, 66]:

U™ |y < (14 constA)||U"||,  where  ||U]| = Z(UJ,UJ), (4.18)
J
here (Uy,Uy) is the canonical inner product of R" and A is the variation on the variables

x.

The first two properties in (4.16), for the scalar case, imply that the solution
in U™ is a convex combination of the solution U™, which leads to a local maximum -
minimum principle be satisfied. The third property echos the fact that the propagation
speed of waves is finite for hyperbolic systems. The positivity principle presented above is
used to obtain the stability of numerical solutions of general multi-dimensional hyperbolic

systems.

Here, we prove that our numerical scheme satisfies the properties of positivity
(4.16)-(4.17). The extension of the numerical scheme (3.13) for systems of form (4.13) is

written as:

d
1
Z - U67 Ue+es) - FS(UefesQ Ue)] ) (4'19)
— €
where
Ue+ies = U(l’l, crr X1, Ts T+ i€s> Lst1, ", Xd, t)? (420)
and the numerical flux functions F = (Fy,--- ,Fy) foreach s =1,--- ,d.

FoUs Upie,) =i [B;:% (U’ - U+E+%s) 4 (FJ(UD) + Fy(Ues) (U;i n U+€+%s)]

E+7 e+ 5
(4.21)
where F' is given by (4.14) for each s = {1,2,--- ,d} and the product between F' and U is
taken term by term, i.e., FU = (Fiuy, Foug, - - - ,FNuN)T, B6+55 is the diagonal matrix
() 0 0
0 b3). s 0
Bl = (B2)e : (4.22)
0 0 0
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and U"  and U Lo, are the functions

2 2
1 1
+ [ _ Zpt — - = P -
Ut =Uem 305 (U =0 and U7 = Uit 105, (U= Uss)  (423)
¢ . and §_ .. are diagonal matrices
2 2
o ((01)._¢ ) 0 0
@+ o = 0 ¢s ((0;)6—%3> 0
o 0 0 0
; o e ()

45;-63 = 0 (f ((95)E+575> 0
’ 0 0 0
0 0 o ((00).0s)
These matrices depend on (0:r )E_LS and (9[ )e e that are

U.—~U..)
0+ L= ( € €—€s )i
( ‘ )6_7 (UE+€5 - Ue)

(2

— Ue es_Uei .
and (01 )6+575 = W, fOI' 1 = 1’ ’N, (424)

The original flux limiter functions ¢°, see [80], satisfy 0 < ¢*(0;) < 2 for 1 <i < N and
1 <i<dand ¢°(1) = 1. However, for our modelling, and for stability, we require that

0<¢°(f) <4 that implies that 0< P <4 and 0<P_ .. <4I. (4.25)
2

2

In smooth regions (except at extrema), for each s and 7, we have that (9?)6_E = 1+ 0(Ae,),
from (4.25) and (4.23)

1 — 1
Ut . =Uc— 4UE+€SU€€S + O(A¢) = U — Z(Uzs)ees + O(4e,), (4.26)
T €s

here (U,,) is the approximation for the partial derivative of U with respect to x,. Notice

that (4.26) recovery the original form proposed for U™ . The same is valid for U e for
e— e+

2
all s.

Remark 4.1. Because of the form of approrimation of the derivatives, we can obtain

Ut and U~ as
s €+5i

- 2

14 1~
Ur. =U— ZsZ5€+_LS(U6 —Ue.,) and U;S =U. + Z@;-LS(UFFGS —-U)  (4.27)
€5 2 et 2

with @:_675 and @;_,’_675 defined (and with the same properties) as ¢ . and D e
2 2 2 2
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Now, we are able to prove that our numerical method (4.19) satisfies the
positivity principle. First, we notice that to obtain the solution of (4.19) we need to solve
a ODE in the variable ¢ for the parameter €. To achieve second order accuracy in time we
use the following second order accurate Runge-Kutta method and we prove also that in
this case the numerical method (4.19) is bounded if the method satisfies the positivity.

This 2nd order is written as:

d
At
Ut =Ue= ), — [FolU6 Uete,) = FolUeees U], (4.28)
s=1 S
4 At
Ue** = Ue* - Z ? [FS(U:7 UE*+ES) - ‘FS(U:L&S; Ue*)] ) (429)
s=1 %
1
urtt = 3 (U* +U*). (4.30)

Thus, we obtain conditions to prove that (4.28) and (4.29) satisfy the positivity conditions.

In the next theorem, we define the diagonal matrices P, and @), :

pe 0 -+ 0 g 0 - 0
0 p. --- 0 0 g. - 0

P, = P and @, = 4 : (4.31)
0o . 0 0o 0 . 0
0 - p, 0 0 - g

with P;+ Qs =21 ¢ = 0,ps = 0. In the proof of the next theorem, F; represent the
matrix F,I, for I being the identity matrix.

We also use that the matrix A, is the Jacobian of F, and with eigenvalues

denote as (7;)s and the maximum eigenvalue of matrix A, we denote as ;.

We state our result as:

Theorem 4.1. The numerical scheme (4.19), solved by 2nd order Runge-Kutta method
(4.28)-(4.30) is positive if the following conditions are satisfied for alli = {1,--- N} and

s={1,---,d}
O b)) (o +0,)

A (D) + (B0 + (F)s(Uese,) + ma |

Ve (A)

(F)s(U0) + (F)s(Uese,) + maz {
4
Vs (A) s (ﬁe_l) ‘} (UZ_% + Uj_%) < % (4.34)
U

v (3. (0 (B} (0 07+ (0 (0, 4) 0 (00)..)

2
< 8¢s. (4.35)

Y

)

max {

Y
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Proof: We consider the numerical method (4.19) using the approximation
(4.28). For the numerical scheme using the approximation (4.28) and the flux (4.21), we
obtain:

U* =U, — 1§d] s [B;;Ls (U‘T - U+5+%> + (Fy(U) + Fy(Usse,)) (U— _+ U+6+%)]

et 5

s=1
(4.36)
PSU€ SUE . .
where \; = At/e;. Now, we decompose U, = ( ;Q ), with Py and @ diagonal
matrices given by (4.31) and we write (4.36) as
1 &
=32 |[(PUA+QUY =M By (U7, —UF i)
+(BUD) + FulUee) (U, + U )
1
C P+ QU + A By (UZ, —U*g)
* 4 ;1 [ +@ ) + ) —% 2
- +
+(F(U.-) + E(U.)) (Uﬁ +U )} (4.37)
Using (4.23), we can write, for each s = {1,--- , N}, U, as adequate combination of U™
S
or U™ _:
5+7‘5

2

1&G( 1, 13/ 1
Ue = dszl (UF_GS +1¢67%(UE+65 _Ue)) or Ug = gz (U€+€23 _4@6+625(U6_U6_€s)> .
Substituting U, by (4.38) in (4.37), we obtain:

1 &G [P 1
Ut =12 [d (U S A *)> L

A Bl (U, ~U'cs) + (RU)) + FuUa)) (U, + U5 ) |

£s
et

P, 1
|: <U+ €s + 4¢2_ (U€+55 - UE)) + QSUE
e~ 5 2
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Rearranging the terms and using that Q,U. = sQsU./s, Eq. (4.39) becomes

Y [(’; N N CARN S <Ue+gs>}) U

€s
e+ =
s=1 2

X, (B: g — (FU) + . (Ues) ) U

5+€73
P + P s +
20s = F 05 — P Ut (2= N, {Be_;s (F(U_.) +F, (Ue)} Ut
2 -5
s _ P P
Yy (BE,LS + (F(U._.) + F, (U. )) U, + 20 U + 20 Uiy (4.40)
2 4d - ¢ 4d -~
Notice that each matrix multiplying U , U :63 , Ut U +75 and U, is diagonal, thus

symmetric. However, to prove that (zz) of (4 163 is satzlsﬁed is necessary to manipulate
the expression in order to linearize each nonlinear F;. To do so, in Eq. (4.39), after some

calculations, we can write:

(FUD) + FUac)) (U, + U ) = (B0 ) + R0 (U + U 5))

€
e—5 2

= (Fs(Ue) + FS(UE+1)) (U; o - U_e—s—“" +U", - U+5—%5) +

€+€2S

+ (BUes)) = B(U) + F(U)) = F(U-0)) (U, +U* ). (4.41)

2

Here, in the last term of (4.41), we utilize the Roe’s matrix expansion, where we write:
Fs(Ue-i-eS)) - Fs(Ue) = As (ﬁe) (Ue—i-es - Ue) ) (442>

where A, is the Jacobian matrix of F; and (76 is a value that belongs to a curve connecting
Ue and U,y.,. By substituting (4.42) in (4.41), we obtain:

(FUD) + FuUere) (U, + U r) = (RUece)) + BAUD) (U2, + V"))
= (AU + FUee) (U U o + U7, —UF ) +
+ (AS (ﬁ) (Uere, — U.) + A, (UHS) (U, — UHS)) (U; LUt ) . (4.43)
Now, we can write,
(AS ((7) (Uere, — U.) + A, (ffﬂs) (U, — UHS)) (U’ Ut ) -
A, (ﬁ) (UE‘_ U 7) (Uese, — U.) + A, ((76_63) (U:_ U ) U. - U._.),
(4.44)

where the product of the matrix A ((75) with the column vector (U_ LU ) is taken
e—5 e—3

multiplying the i-th row of matrix with the i-th element of column vector.

Now, in (4.44), using (4.23) and (4.27), we write
1/~
Usres = Ue = Ug =Ules + 7 (Bl =Py ) (Uere, = V) (4.45)
~ - Ly o ~
Ue — UefEs = Ue-&-% - Ue—%s - Z (dse-&-%s + dse—%s) (UE o U€*€s) : (446)
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Substituting (4.45) and (4.46) in (4.44) and then in (4.43), we obtain:

£s
2

(
Uere)) (U + Ut ) = (B0 + R0 (U, +U% )
U) + Fy(Use,) + A, (U) (U;LS LUt )) (U+€ Ut 7) N
A

2 ot +5
+ (FS(UE) + FS(U€+ES) + As (ﬁﬁ Es) (U:_%s - U:g)) (U;% B U_gf%s) +

" (U* LU ) (q%;ﬁ — ot ) (Ueie, — UL
e—% e~ 2
As Ae—ss
- (4> U- . +UJ:73) (cp— ot B ) (U~ U._). (4.47)

By substituting (4.47) in (4.40), we obtain:

(G -a g+ (R0 + BOL + AL (00) (U7, +02,))}) U0,

67625 e—5 e~ 5
1 PS _ PS T - + +
{20 Dany - Bar o ([ (0) (84 - 01 )
+A, (ﬁg_gé) (qs—w +q3;%s>] (U‘e +U- ))} .
=3 -2

P As (ﬁe) + Ht+ +

78@7 €g S ( n ) (@ €g _¢ 65) €E—e€
| P — A U, U ) (Phg -2 U. ..

P n As (f}efes) "

L) 63—57<— )(gb I ) 4.4
+ ales A 1 UE_%S+U€_%S cpe T Ucse, (4.48)

Moreover, if the conditions (4.32)-(4.35) are satisfied each matrix is semi-positive definite.
All conditions guarantee that (i)-(iii) of (4.16) are satisfied, and the numerical scheme

(4.19) is positive. o

Remark 4.2. The conditions (4.32)-(4.35) are very restrictive. In general, it is not

necessary to obtain the eigenvalues to guarantee the stability of the method. Notice that if
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the conditions

As ((bf)e+% + ((F)s(Ue) + (E)S(Ue+es)) < % foralli={1,--- N} and s = {1,--- d},

(4.49)

(F)sU) + (F)s(Uere,) < )y forall i={1,--- N} ands={1,---,d} and
(4.50)

¢° (((9;)67%3) + ¢ ((0;)e+%s) < Spq: forall i={l,--- N} ands={1,---,d}.
(4.51)

are satisfied U; > 0, and €; are small enough such that (U;)™ = 0 and (U;)~ = 0 for all
i, thus the conditions (i) and (iii) are satisfied in (4.16), since each matriz in (4.40) are
symmetric and definite positive, but, to obtain the condition (it) is necessary to linearize
the fluxz of function as we perform in the previous proof. However, in the most part of
numerical simulations the conditions (4.49)-(4.51) are enough to quarantee the stability of
the method, thus we say that the method satisfy the positivity in the weak sense if (i)
and (iii) of (4.16) are satisfied. Moreover, we can prove that if (4.49)-(4.51) are satisfied,

thus each coordinate satisfies the L' norm.

Proof: In the proof of Theorem 4.1, we show that the numerical method satisfies
(4.40). Notice that from the construction of the numerical method and the no-flow curve,

we can decouple the equations in the system, thus from (4.40), we can write for each U;,
fori=1,--+- N, of U= (Uy,---,Uy):

(G- {<bf>e+%s+<<ﬂ->< )+ (F ><em>}) -

5+2

(20— B ((00),5) = 220" ((ez- ), ) ),

B {00y = (B Ue) + (R U} U,
A (00)ecg + (F)Uie) + (R).(U)) (U,

2o (0)0) @ s 5 (00), )

By considering that the numerical scheme satisfies (4.49)-(4.51) and U; > 0, i.e., |U;| = U,
and €5 are small enough such that (U;)" =0 and (U;)~ = 0 for all i and integrating (for

2

(U)ese.. (4.52)

€s
2
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each spatial dimension), we obtain:

| wyeae = | {i S = {0y + (B + (BN W) }) W0

s=1

o (20 =D ((0),4) - Bor (00), ) @0
(B ooy - (mUe) + ) W)

+)\5 <(bls)ef%5 + ((Fi)s(UEfes) + (Fz)s (UE)) (Ul);%s
+%¢S ((91_)6-5-%3) (Ui)e—es + Zi;¢s ((0:_)5—%3 (U’i)e—i-es} dx. (453)

Due to mutual cancellations and using that

(@ (@) )+ 07 (00).s) ) @ = [ 0 ((00),.) U
¢ ((e;r)g,%s) (Ui)ee dz, (4.54)

we obtain that

L(Ui):‘dx - (ps ( L(Ui)jda: i L(Ui);dx>) + 2 L(Ui)gdx _ L (Uedz.  (4.55)

(U Fdo + f (U dz = 2 L (U)edz and (4.31).
and (U;)7.

€

In the last equality of (4.55), we use that J
T T
In addition, the equality (4.54) is true, from the definition of (U;).

€

Since we assume that each Fy is a Lipschitz continuous function and B, <
can be chosen such that is also Lipschitz continuous. In this case the numerical method
satisfies (4.18).

As observed in [65, 66], the same conditions are valid also for (4.29), thus we
obtain, using (4.18), that

|UZ*|]2 < (1 + constA)||U*||2 < (1 + constA)||U"|]a. (4.56)
Applying to (4.18) and (4.56) in (4.30), we obtain:

1
102 ]e < 5 (UL + [[U2]l2) < (14 const A)[U™]]. (4.57)

In the proof of Theorem 4.1, we use the matrices Ps; and @), because this
theorem is general for multi-D system of (4.13) and for numerical methods with our

without reconstruction, and we can choose the parameters depending of our problem.
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Example 4.1. As example of the weak positivity criterion to be satisfied, we consider the
2 — D system of hyperbolic equations. In this case d = 2. Applying this to the conditions
(4.32)-(4.35), we obtain:

flt ((bl)ar% (F)1(Ue) + (F)1(Uese,) ) < %’
it ((bf) Lo+ ((F)2(Ue) + (FZ)Q(U%)) < %7 .
(Fz)l(Ue) + (E)l(Ue+€1) < (bzl)e.g-%l ) (E)Q(UE) + (Fi)Q(Ue+es) < (bg)a-% , (459>

O (0) )+ 0 (0) ) <020 0 ((00)g) + 0 ((0) ) < 02 (460)

If we assume that (4.25) is true, we obtain from (4.60) that p1 = ¢ =1 and py = 2 = 1,
since p; + q; = 2, for all 1.

If we consider fori={1,--- , N} and j = {1,2}
(D)., = 2masy|(F),(0)] = M, (1L61)

then the condition (4.59) is satisfied and if we get

At 1 At 1
—M!<> and —M] <

- 4.62
€1 8 €1 8’ ( )

then the condition (4.58) is also satisfied and the numerical scheme (4.19) is positive.

If on the other hand, we disregard the reconstruction such that @+ = @ =0,
we take q¢; = 0, and thus p; =2 for allt = {1,--- ,d}. For the 2 — D scheme, the scheme
is positive if we substitute (4.62) by:

At
and —M} <
€1

ﬁMil <
€1

(4.63)

o | =
o | =

4.3 Numerical Experiments

In order to illustrate the performance of our semi-discrete scheme, we present
a set of numerical experiments for hyperbolic system of conservation laws starting with a
shallow-water flow system linked to a fluz separation strategy, then we numerically analyze
the entropy glitch effect on our scheme by treating the Burgers’ equation and the Euler
equations of gas dynamics. Finally, we verify the theory and illustrate the capabilities of
the semi-discrete approach in three cases (1) a 4x4 system of compressible Euler flows
(Double Mach reflection and Wind tunnel problems), (2) a 3x3 shallow-water system of
equations with and without bottom discontinuous topography, and (3) 2x2 non-strictly
hyperbolic three-phase flows with a resonance point. For instance, the numerical tests
show that the discretizations resulting from the flux separation strategy seem to be of

good quality when applied to two-by-two shallow-water and two-dimensional compressible
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Euler equations. In computing practice (Section 3.3), we have observed stable solutions
when only using the control volume over the no-flow equations (3.5), which is consistent
with the results of our rigorous analysis (Sections 3.2, 3.2.2, and 3.2.3). In fact, this is also
the case of the systems addressed in Section 4.2.1 because the SDLE scheme also satisfies
the positivity principle. This is a substantial advantage for multidimensional systems as

presented in Section 4.3.3.

4.3.1 One dimensional systems of hyperbolic conservation laws

Example 4.2. Shallow-water equations and the flux separation strategy

We consider the following model (see, e.g., [10, 13]):

2
ht—i—(hv)z:(), Ut+(v+<P) :07
) 1, or 2 e (4.64)
(hv); + (v*h + §h Jo =0, o+ (0p)s = 0,

where ¢ = h; the horizontal velocity, v = v(z,t), is roughly constant across any cross-
section of the channel; and h = h(z,t) denotes the height. The quantity hv is often referred
to as the discharge in shallow water theory because it measures the flow rate of water
past a point, where h is the height of the free surface; and v, the averaged horizontal

velocity. This system models the flow of water downing in a channel with a rectangular
H,y ('Uv 90)

cross-section. In model (4.64.b), one observes that the nonlinear no-flow curve liII(l]
v— v

2
v
where Hy (v, ) = 5 + ¢, is not well defined. To overcome this situation, we will employ

a suitable fluz separation strategy along with the SDLE scheme. Such strategy was also
successfully implemented in [10, 13] for fully-discrete Lagrangian-Eulerian formulations.
This approach consists in transforming hyperbolic equation v, + Hy(v, ), = 0 into a
suitable form that resembles a balance law model given by v, + (HY), = —(H?Y)z, where
formally H, = H® + H?. It should be noted that such flux separation strategy is admissible

and retains all the properties of the original hyperbolic model.

Considering the proposed SDLE scheme (2.17)-(2.19) discussed in Section 2.1,

the average of variable s in the similar balance law model (s, + H{(s), = —H%(s),) as

mentioned above over interval [7/ zh ! x’]t“ll] is given by
+1 1 T +1 b
"= —= t")d —H{(s);)dx dt.
Sirl Az; Ja, s(&, )d€ + f )z)da

Dn ;n+1

Thus, we obtain the approximate cell average in time as follows:

" 1 Ax , n Ax? n
sj:; " Asj [2 (57 + s511) t 5 ((s2)7 = (s2)na } J (HY(s)z)dzdt | . (4.65)

Dn ,n+1
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In addition, if we denote G(s(x,t)) = —H?(s(z,t)), apply the fundamental theorem of

calculus to the integral over the control volume, we have

tntl

H G(s(z,t)).dz dt _J [G(s(al 1 (), 1)) — G(s(a7(t),1))] dt (4.66)
A [G(5(07 (), 17) — G} (), )] (467
Therefore, Eq. (4.65) can be written as
- |5 ) S (e~ )| + T

where A; is the approximation of the RHS of Eq. (4.67) and is given by
Aj = At[G(s74,) — G(s7)] -

n+1

Through a projection over the original grid, the local approximation, s}, for

all j € Z is given by

1
1 1
7 = g s -
where projection coefficients my; and my; are given by (2.13) for variable s. Using the
same procedure presented in Subsection 2.1.1, our SDLE scheme can be written in a

conservative form as

d 1
2510 = =7 [P (s, 8501) = P (s5-1.85)] (4.68)
where
P (s5,8541) = F (85, 8501) — 0.5(G(s5) + G(sj41)), (4.69)

F (sj,8;+1) is the Lagrangian numerical flux function (2.18) for variable s, and f,; ~
Hi(s;)

S

the new no-flow curve approximation.

By means of the flux separation strategy, system (4.64.b) can be written as

02
T ( 2 ) T (4.70)
¢t + (vp)e =0,

with initial velocity vy = 1.699, while the initial height of the free surface consists in

a triangular perturbation of the uniform flow level, ho(x) = = + 1.5, —=0.5 < = < 0,

ho(z) = —z + 1.5, 0 < 2 < 0.5, and 1 elsewhere. The quantities shown in this numerical

experiment include the height (h) and the velocity (v), with G(v;) = —p; and G(g;) = 0,

j € Z. Figure 11 compares a reference numerical solution with 2560 grid cells with the

numerical solutions obtained with our semi-discrete method on a grid having 640 grid

cells at a given output time and with CFL number Corr, = 0.23. As expected from the
analysis in [61], we have two waves moving in opposite directions. Therefore, the proposed
scheme is also able to accurately capture the correct qualitative behavior for hyperbolic

shallow-water problem (4.64).
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—«— SCHEME —— SCHEME
REFERENCE REFERENCE
125 g 1.25 ¢ i

Ta 0.5 0 0.5 1 15 2 25 3 3.5 4 Ta 0.5 0 0.5 1 15 2 25 3 3.5 4

T T T T T T
—— SCHEME ———SCHEME
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181

1.7 1

Figure 11 — Numerical approximation of the shallow-water equation with 640 grid cells at
times T' = 0.5 (left) and 7" = 1 (right), and with « =1, ( =2 and 0 = 2.

4.3.2 The sonic point glitch effect

Recently, many efforts have been made to design numerical schemes to capture
shock waves and contact discontinuities, included the resolution of rarefaction wave, which
can be resulted in a non-physical phenomenon around the sonic point (A point where a
sign change in the wave speeds is observed). Such phenomenon arises in the presence of
sonic rarefaction waves due to the change in signal of the wave speeds and it is called the
“sonic glitch or entropy glitch” [81] (e.g., see such un-physical effect in the experiments
produced by the classical Godunov scheme in the left column in Figure 12). Here we will

analyze numerically the glitch effect in our semi-discrete scheme considering the inviscid
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Burgers’ equation and the Euler equations of gas dynamics.

Example 4.3. Inviscid Burgers’ equation with discontinuous initial data.

Here we shall investigate numerical evolution of the sonic rarefaction wave by
2

considering Eq. (2.1) with Burgers’ flux function given by H(u) = % along with initial
data u(z,0) = =1,z < 0 and u(x,0) = 1,z > 0. In Figure 12 are shown snapshot graphs
at time T = 1 of simulation for a moving rarefaction wave, where the rarefaction wave
is spreading out correctly and matching with the exact solution using our semi-discrete
scheme (2.17)-(2.19) with @ = 2, ¢ = 1 and 6 = 2 in a mesh grid refinement study
composed with 80 cells, 160 cells and 320 cells. We notice that our semi-discrete scheme
handles correctly the well-known spurious entropy glitch effect in the sonic rarefaction
fan and with no need of any numerical technique to eliminate the glitch effect (Figure 12,

right column).

Example 4.4. Euler equations of gas dynamics [79].

Let us consider the one-dimensional Euler System in the form

pr + (pv), = 0, (conservation of mass),
(pv); + (pv* + p)s = 0, (conservation of momentum), (4.71)
Ei+ (v(E + p)). =0, (conservation of energy).

Here p is the mass density, v is the velocity while £ = (p/p)(y — 1)™' + (v?/2) is the total
specific energy, v > 1. The system is closed by a constitutive relation of the form p = p(p, e),
giving the pressure as a function of the density and the internal energy e. The particular
form of p depends on the gas under consideration [70, 79, 82]. Let’s denote the conserved
quantities as ¢ = (p,m, E)” and the flux vector function is H(q) = (m, pv* + p,v(E + p))

where m = pv. We solve this system subject to the Riemann initial data

qr, if x<0.5,
q(z,0) =
qr, if x>0.5
where q;, = (1,0,2.5) and gg = (0.125,0,0.25) presented in Figure 13. Thus, using the fluz

separation approach in Eq. (4.71) componentwisely we obtain

pr + my =0, (conservation of mass),
(pv): + (pv?) s = — pa, (conservation of momentum), (4.72)
Ei+ (vE); = — (D), (conservation of energy).

In our current numerical approximation for this one dimensional Euler system,

we use our semi-discrete Lagrangian-Eulerian scheme (4.68)-(4.69) with s = p,m, E and
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Figure 12 — Approximated solutions computed by the semi-discrete Lagrangian-Eulerian
scheme (2.17)-(2.19) (o = 2, ¢ = 1, # = 2 and CFL=0.13) at time 7" = 1
(right column) and approximated solutions computed by the Godunov scheme
affected by the entropy glitch in the vicinity of the sonic point (left column)
at time 7' = 1.

G(p;) =0, G(m;) = —pj;, G(E;) = —(vp);. The quantities shown in this experiment are
the mass density p = p(z,t), the velocity v = v(x,t) and the pressure p = p(z,t). The
solution of this Riemann problem consists of a right shock wave, a right traveling contact
wave and a left sonic rarefaction wave (Figure 13); this example is very useful in assessing

the entropy satisfaction property of numerical methods.
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Figure 13 shows comparison between exact solution and numerical solution at
a given output time obtained by our semi-discrete method with 320 and 1280 grid cells.
One positive feature of our numerical approximation of the discontinuities is that our
no-flow estimate b, 1 gives the correct speed of propagation. The rarefaction wave is a
smooth flow feature and is reasonably well approximated by our method and with no
spurious entropy glitch effect in the sonic rarefaction [81]. It appears that the numerical
solution given by the aid of our method converge to the exact entropy solution as the grid

is refined.

4.3.3 Multidimensional systems of hyperbolic conservation laws

We turn our attention to discuss the application of the semi-discrete schemes
given in general form by (4.10)-(4.11) for multidimensional systems of hyperbolic con-
servation laws. Firstly, recall our scheme satisfy the positivity principle in the sense of
the papers of Lax and Liu [65, 66]. We provide robust numerical examples to verify the
theory and illustrate the capabilities of the semi-discrete approach in three cases (1) a
4x4 system of compressible Euler flows (the cases with Double Mach reflection as well as
Wind tunnel), (2) a 3x3 shallow-water system of equations (with and without bottom
discontinuous topography), and (3) a 2x2 non-strictly hyperbolic three-phase flow (with a

resonance point).

The multidimensional (2D) no-flow curves in (4.12) allow us to construct a
positive SDLE scheme (Section 4.2.1) which does not use field-by-field decompositions,

i.e., our scheme does not make use of the Jacobian and the matrix of eigenvectors.

Thanks to the no-flow curves in (4.12), we also devise a CFL-type constraint
(3.8), which does not require the need to employ the eigenvalues (exact and approximate
values) of the relevant Jacobian of the numerical flux functions. Another interesting feature
of the no-flow Lagrangian-Eulerian construction is that the matrices are symmetric for free
(actually, they are diagonal), which is independent for a general class of hyperbolic flux
for scalar problems and systems as well. The component-wise extension of the Lagrangian-
Eulerian framework is facilitated with the no-flow curves and the same positive SDLE
scheme (3.3)-(3.4) is applied as a straightforward manner and with the same simplicity for

the above mentioned model of multidimensional systems of hyperbolic conservation laws.

The positive semi-discrete Lagrangian-Eulerian scheme handles quite easily the
issue of boundary conditions (as in the case with Double Mach reflection as well as Wind
tunnel for compressible Euler flows as well as in the injection problem for a non-strictly
hyperbolic three-phase flow with a resonance point. As we will see in what follow, the SDLE
scheme is able to capture steep gradients as well as regions with shocks with very good
resolution with efficiency. For all numerical experiments there is no spurious oscillations

nor any numerical noise and much less stringent computing limitations, since the CFL
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Figure 13 — Numerical approximations of the Euler of gas Dynamics problem computed
with the semi-discrete Lagrangian-Eulerian scheme at time 7" = 0.15 with
a=1,(=3,0=2and CFL=0.13.

condition and the SDLE scheme do not need the eigenvalues (exact and approximate

values). From the numerical test, we observed the non-classical solution in the three-phase

flow model, the weak oblique shock is resolved in the Wind tunnel model as well as the

curved reflected shock and the reflecting wall in the Double Mach reflection and the case

of bottom discontinuous topography in shallow-water system of equations are well resolved

with all the physics of the problems at hand preserved in the simulations.
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Example 4.5. A non-strictly hyperbolic three-phase flow model in porous me-
dia [1, 69]

The nonlinear wave structure in a non-strictly hyperbolic three-phase flow model
in porous media is very rich and intricate (for more details see [26, 69] and references
cited therein). Various studies into fluid flow in porous media have been reported in the
literature in a wide range of application fields, including oil production and groundwater
treatment and remediation (see, e.g., [1, 4, 26] and references cited therein). Let us consider
a horizontal flow in a homogeneous (2D) porous medium caused by the simultaneous
injection of two immiscible fluids (water and gas) to displace the in-situ oil. The porous
medium and the fluids are assumed to be incompressible; and the permeability of the
medium, isotropic. We assume that there are no internal sources or sinks. Mass transfer
between the phases, as well as the thermal and gravitational effects, are neglected. This

three-phase flow model is given by

05w 0
O Fulswn50)) + o (fulswn 59)) =0,
Y
s, a (4.73)

0
ot + aix(fg(swv Sg)) + aiy(fg(sw’sg)) =0,

and s, = 1 — s,, — 54, and is subject to two Riemann problems (RP1 and RP2), which

are, respectively, given by

= 0.613 and s = 0.05,
= (0.387 and s = (.15,

=0.721 and s = 0.05,

= (0.279 and s = 0.15,
(4.74)

where the phases are referred to as gas, oil, and water and are denoted by subscripts g,

L <L
RP1= S and RP2= i
oL ok
59 g

o, and w, respectively. Fractional flow functions fi, (s, s,) and f,(sy, s,) are defined in
terms of relative permeability functions k., k4, and k, and fluid viscosities ji,, g, and p,

and are, respectively, given by

fu = Fu/ b and f, = ko/ 1t :
K/ tw + kg/11g + Ko/ o K/ tw + kg/11g + Ko/ o

for each variable. Following [1, 4, 26, 69], we use the quadratic model developed by
Corey-Pope, which has been extensively employed for phase relative permeabilities k,, =
sfv, k, = s2, and ky = 55. In addition, we consider the following viscosity values:
= 1.0, pty = 0.5, and py = 0.3. The injection at x = 0 is specified at time zero as the
s¥) from Riemann data (4.74) such that f, (s, s)) and fy(s, s)) on the
spatial interval, where the reservoir initial state is given by saturation values (s, s

w? g
Riemann data (4.74).

1n1t1al state ( Su Sg

2 from

In immiscible three-phase flow model (4.73) with the Corey-Pope and the
Riemann Problem (4.74.b), the leading oil moving front can split into two, a Buckley-

Leverett shock wave followed by a new type of shock wave and composite wave comprising
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a shock wave and adjoining rarefaction. The same three-phase flow model (4.73) along
with the Riemann Problem (4.74.a) leads to a Buckley-Leverett shock wave followed by
composite wave comprising a shock wave and adjoining rarefaction, that is, there is no

occurrence of the non-classical transitional shock in the case (4.74.a).

The simulations are numerically calculated in a bounded 2D reservoir, {2 =

[0, X] x [0, Y], with aspect ratio X/Y=1, by discretizing in a uniform mesh with 512 x 512
grid cells. As mentioned, the injection imposed by f, (s, 35) and fg(si,sg) on the at
sk sj) from Riemann

data (4.74). No-flow is allowed across the boundaries with y = 0, y =Y, and = € [0, X]|

and production of the three-phase mixture take place at x = L and y € [0, Y].

x =0 and y € [0,Y] is specified at time zero as the initial state (

Figures 14, 15 and 16 describe the Riemann solution for the injection of a
mixture of water and gas into a reservoir with high initial oil content for Riemann Problems
(4.74.a) and (4.74.0). From [1, 69], one can recognize the expected correct structure of
the solutions in the non-classical three-phase model under consideration. A transitional
shock wave is present in the solution to RP2 but not in that to RP1. Moreover, in Figures
14, 15 and 16 are shown a grid refinement study conducted using RP1 (left column) and
RP2 (right column). We obtain evidence of the numerical convergence with SDLE scheme
with computational times 6 s (128 x 128 grid cells), 61.1 s (256 x 256 grid cells) for RP1
as well as 3.3 s (128 x 128 grid cells), 36.7 s (256 x 256 grid cells) for RP2, along with
numerical parameters a = 1, ( = 2, and § = 1.5. On the third row (to the bottom) is
shown the corresponding numerical solutions in a very fine computational mesh, which
the solution structures are good agreement with those reported in the available literature
1, 69].
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Figure 14 — A numerical convergence study for three-phase model (4.73) linked to (4.74)
with a superimposed approximation corresponding to the 1D Euler System:

Osw | O
ot

—+ %fw(swasg) = 07

0 -
%fg(sw, sg) = 0 (solid line).
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Figure 15 — A numerical convergence study for three-phase model (4.73) linked to (4.74)
with a superimposed approximation corresponding to the 1D Euler System:
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Figure 16 — A numerical convergence study for three-phase model (4.73) linked to (4.74)
with a superimposed approximation corresponding to the 1D Euler System:
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E + a—xfg(sw, sg) = 0 (solid line).
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Example 4.6. Two-dimensional compressible Fuler equations: cases involving

slip line initial data

We will apply the SDLE scheme (4.10)-(4.11) with [ = 1,2, 3,4, to numerically

solve a 2D Euler system for cases involving slip line initial data given by

pe + (pu)e + (p Y )

v), =0
] (et (pu® +p)a + (puv), =0
(pv)i + (puv), + (pv* + p), =0
(B + (uw(E +p))e + (0(E+p))y =0

)

(4.75)

?

Y

Y

where p is the mass density; v = u(z,y,t) and v = v(z,y,t), the z- and y-components of
1

the velocity, respectively; and E = pe + 3 p(u? + v?) the total energy per unit volume. For

a perfect gas, p = pe(y — 1), where constant v denotes the ratio of specific heats; and e,

the internal energy of the gas. In all tests, we consider v = 1.4.

We solve the Euler system (4.75) subject to the slip line initial data for the

two Riemann data in Table 1 as follows:

~

x>05, y>0.5,
r < 0.5, y>0.5,

P1, U1, V1, P1

N

U7U7
(s u,v,p)" (2,9,0) = 3 Pt B 2

!

r <05, y<0.5,

(( )
( )
(p3, uz,v3,p3)
( ) x>0.5 y<0.5,

~

P4, Ug, Vg, P4

where

‘ Riemann Problem I ‘ Riemann Problem II ‘
(p1,u, 01, p1)" = (+1,-0.75,-0.5,+1) " (pl,ul,vl,pl) — (+0.5313,+0.1, +0.1, +0.4) "
(P2, uz, v, )" = (+2,-0.75,+0.5,+1)" (pQ,ug,vz,pQ) — (+1.0222, 06179, +0.1, +1)"
(ps,us, vs,p3)" = (+1,40.75,40.5,+1)" | (ps, ug,v3,p3)" = (+0.8,+0.1,+0.1,+1)"
(pasus,va,pa) = (+3,+0.75,—05,+1)" | (ps,us,va,p1)" = (+1,+0.1,+0.8276, +1) "

~

S

Table 1 — Riemann Initial conditions for the Euler equations of gas dynamics.

For Riemann Problem I, we have slip lines that entering in a subsonic area and
end in a spiral (in the center) as shown in Figure 17 (left column), while for Riemann
Problem II, we have four slip lines in subsonic area that bend and end in two spirals as
shown in Figure 17 (right column); see [76, 77] and references cited therein for more details
on the complex structure of solutions to the Riemann problem to two-dimensional gas

dynamics.
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To apply our SDLE scheme, we use the fluz separation approach (see [13])
componentwisely in the 2D Euler system given by (4.75) to obtain

pe+ (pu)s + (pou)y =0,
(pu)i + (pu®)s + (puv)y = —(p)a, (476)
(p0)e + (puv)s + (pv*)y = —(p)y,

By + (uE), + (vE)y = —(up)s — (vp)y-

Roughly speaking, the flux separation strategy is as follows. Consider a model problem
as u; + H(u), = G(u). A flux separation strategy transforms the later equation in the
equivalent form u; + Hy(u), = G(u) — Ha(u),, with H = H; + Hs. This simple trick allows
construction numerically stable Lagrangian-Eulerian no-flow curves. This strategy is very
robust and efficient for both two-dimensional systems discussed in this work, namely, the

compressible Fuler flows and the shallow-water equations.

From the numerical solutions presented in Figure 17 (Riemann Problem I, left
column and Riemann Problem II, right column) for model problem (4.76), the SDLE
scheme has proven to be stable and accurate these problems in capturing true physical

behavior, which is containing strong shock waves with very good resolution.

The quantity shown in these experiments is the mass density (p) presented in
Figure 17, for the two Riemann problems, as the contour curves. In both 2D Riemann
problems for gas dynamics, we considered initial data to be constant in each quadrant in
a (z,y)-plane domain [0, 1] x [0, 1] with a center located at position (z,y) = (1/2,1/2), as
observed for each of the two configurations. For each configuration, the numerical solution
is analyzed and illustrated by means of a “2D-plot’s view angle (displayed in Figure 17).
We show a numerical refinement study conducted with 200 x 200 grid cells, 400 x 400 grid
cells, 800 x 800 grid cells, and 1600 x 1600 grid cells with the help of our semi-discrete
scheme at times 7' = 0.23 (Figure 17, left column) and 7" = 0.2 (Figure 17, right column).

The component-wise application of the SDLE scheme is effective in capturing
all the main characteristics of the wave patterns appearing in the corresponding problems
as seem from the available literature (see, e.g., [62, 65, 66]). In addition, we did not use any
dimensional splitting strategy, and no (local) Riemann solvers had to be applied and hence,

time-consuming field-by-field type decompositions are avoided in the case of systems.
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Figure 17 — Numerical refinement study with SDLE scheme (o =2, ( = 2, § = 1.25, and
CFL = 0.03); for Riemann problem I at time 7" = 0.23: 5.66 s (200 x 200 grid
cells) and 49.04 s (400 x 400 grid cells) and for Riemann problem II at time
T =0.2: 4.89 s (200 x 200 grid cells) and 43.27 s (400 x 400 grid cells) are
consistent with the reference solution (1600 x 1600 grid cells).
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Example 4.7. Two-dimensional compressible Euler equations: Double Mach
reflection [65, 66, 8]

This test problem, originally proposed by Woodward and Colella [84] is initiated
with a right-moving Mach 10 shock in air (v = 1.4) positioned at (z,y) = (1/6, 0) and
makes a 60° angle with the r—axis. We display numerical approximations for the two-
dimensional Euler equations (4.76) on a rectangular 2D domain of size [0, 4] x [0, 1] by the
aid of our positive semi-discrete Lagrangian-Eulerian scheme along with the pre-and-post

shock initial condition

(1.4,1,0,0)", 2 > x,(0),
(0,0, u,0)" (w,9,0) = . (4.77)
(8,116.5,4.125v/3, —4.125)",  otherwise,

where z4(t) = 10t/sen(n/3) + 1/6 + y/tg(m/3) is the shock position.

The bottom boundary condition on 0 < z < 1/6 at y = 0 (the post-shock state)
is fixed in time with the initial values so that the reflected shock is attached to the bottom
surface. Typical reflecting boundary condition is specified on the rest of the bottom surface.
On the upper boundary y = 1, we make that the pre-shock and the post-shock state
move exactly as a function of time (z4(t) = 10t/sen(w/3) + 1/6 + 1/tg(n/3)) such that the
numerical simulation of the dynamics follows the oblique shock propagation without any
planar distortion, capturing the tronts without introducing too much artificial dissipation,
nor spurious oscillations as presented in Figure 18. At x = 0, we impose an inflow boundary
condition, and the outflow /Neumann boundary condition at # = 4. In Figure 18, numerical
simulations are performed with the new semi-discrete Lagrangian-Eulerian scheme (o = 2,
¢ =3, 0 =16, CFL=0.033) using a standard second order Runge-Kutta method through
a mesh grid refinement 480 x 120 grid cells, 720 x 180 grid cells, 1080 x 270 grid cells and
1620 x 405 grid cells at time 7' = 0.2. In each plot 30 equally spaced contours are shown.
Our method has proved to be robust and easy to implement. In addition, our semi-discrete
method captures well shocks propagation in all directions and the main aspects of the

simulation, such as the formation of the jet and the incident shock.

Example 4.8. A Mach 3 wind tunnel with a step [65, 66, 8]

In another test problem for our semi-discrete Lagrangian-Eulerian scheme, we
solve numerically the two-dimensional Euler system (4.75) written as (4.76) linked to
the two dimensional Cartesian shock reflection problem on the computational domain
consisting of a box [0, 3] x [0, 1] along with a forward step at x = 0.6, of a height of
0.2. The step, the upper and lower walls of the channel are reflecting boundaries. For the
right-hand z-boundary, we use an outflow/Neumann boundary condition, while on the

left-hand side we use an inflow boundary condition. The initial condition throughout the
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Figure 18 — Numerical approximation of the density (left column) and the pressure (right
column) contours for the double Mach reflection test with 480 x 120 grid
cells (229 s) and 720 x 180 grid cells (761 s). In this case, stable, consistent
computational experiments with finer mesh grids show good evidence of
numerical convergence for 1080 x 270 grid cells and 1620 x 405 grid cells as
observed in [65, 66, 84].

channel is:

(1.4,1,3,0)", <06 and y =0,

(p,p,u,v)" (2,9,0) = { (0,0,0,0)", 2>06, y>0 and y<0.2 (4.78)
(14,1,3,0)", 2>06 and y> 0.2,

where p is the mass density, u = u(x,y,t) and v = v(z,y,t) are z—and y—components of

the velocity, respectively. For a perfect gas the pressure p = pe(y — 1) where the constant

v is the ratio of specific heats and e is the internal energy of the gas. In Figure 19, a mesh
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grid refinement study is presented with 240 x 80 grid cells, 360 x 120 grid cells, 540 x 180
grid cells and 810 x 270 grid cells for density (left) and pressure (right) distributions at
time T = 4 by the aid of our 2D semi-discrete Lagrangian-Eulerian scheme (o =2, ( = 2,
0 = 1.65, CFL.=0.022) using second order Runge-Kutta method. All the main features of
the wave patterns appearing in the corresponding simulations presented in [65, 66, 84] are
reproduced by our semi-discrete scheme with good resolution of the solution and with no
particular treatment at the singular point. The contact discontinuities are well resolved by
our semi-discrete scheme and they are in the correct position. The time evolution, up to
time T = 4, of the density distribution (left column) and the pressure distribution (right
column) in the wind tunnel are displayed in Figure 20. At the bottom surface the reflected
shock is well captured and has reflected from the top of the step moving leftward to the

singular point over time.

Example 4.9. The SDLE scheme for 2D shallow water systems with non-flat

bottom and discontinuous topography

Let us consider the following balance law form of the 2D system of shallow-water
equations ([83, 85]):

hi + (hu), + (hv), =0,
(hu); + (hu2 + gh2/2)x + (huv), = —ghZ,, (4.79)
(hv)e + (huv), + (hv2 + gh2/2)y = —ghZ,,

or

H,+ (Hu), + (Hv)y = (Zu)y, + (Zv),,
(huw); + (hu? + gh*/2), + (huv), = —ghZ,, (4.80)
(hv); + (huv), + (hv* + gh*/2), = —ghZ,,
where h = H — Z and which includes the continuity and momentum equations. We
follow [83] to write (4.79) in the form (4.80). Quantity h = h(z,y,t) denotes the water
height measured from the bottom topography, Z = Z(x,y), with the total height given by
H = h + Z. Additionally, constant ¢ is the gravitational acceleration. The fluid velocities
are given by u = u(z,y,t) in the z-direction and v = v(z,y,t) in the y-direction. We shall
study the 2D system (4.80) subject to the initial condition
3.5 — Z(z,y), x <5,
h(z,y,0) = (4.81)
2.5 — Z(x,y), x>,
along with fluid velocities u(z,y,0) = v(z,y,0) = 0 on the square domain 2 = [0, 10] x
[0,10]. The gravitational constant is set to g = 1. We perform a study of the SDLE
scheme (4.10)-(4.11) for numerical approximation of the shallow water system (4.80)-(4.81)
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Figure 19 — “2D-plot’s view angle” of the density (left column) and the pressure (right
column) contours with 240 x 180 grid cells (139.25 s or 2 minutes), 360 x
120 grid cells (428.03 s or 7 minutes), 540 x 180 grid cells (1411.25 s or 24
minutes) and 810 x 270 grid cells (21062.19 s or 5 hours) at time 7" = 4.

considering several non-flat bottom and discontinuous topographies Z(z,y) motivated by

applications (see, e.g., [11, 13, 25, 83, 85]). This is a prototype dam-break flood system.

We have two waves traveling in opposite directions: (i) a shock wave moving to the right in

the a-direction, and (ii) a rarefaction wave moving to the left in the z-direction. In Figure

21, we see the SDLE scheme is able to resolve the expected behavior in the solutions of

the dam-break flood with several topographies Z(z,y) with no spurious noises or some

undesired numerical artifacts.

In Figures 21, 22 we provide numerical approximations with good resolution for

solving the shallow water system (4.80)-(4.81) performed on relatively coarse grids (first
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Figure 20 — Time evolution of the Mach 3 wind tunnel with our semi-discrete scheme
using a uniform grid Az = Ay = 1/80. The contours of density (left) and of
pressure (right) are shown at several times (from top to bottom) T=0.5, 2, 3
and 4. This is in agreement with [65, 66, 84].

and second row of plots) allowing verify the capabilities of the SDLE scheme (4.10)-(4.11)
and to show numerical robustness of the flux separation strategy for the correct treatment
of non-flat bottom and discontinuous topography of distinct types. In the last (third row)
in Figures 21, 22 we provide the corresponding solutions for each model considered in each
column, but in a very fine mesh computed with the SDLE scheme aiming a twofold purpose
1) to show numerical evidence of convergence and 2) to display that we are computing the

main features of the expected solutions.

The computational times and parameters are presented in the caption of Figures

21, 22. In the first column of Figure 21, we consider purely hyperbolic shallow-water
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equation (4.80)-(4.81) (no bottom topography),

Z(x,y) = Zy = 0. (4.82)

In the second column of Figure 21, we consider the shallow water system
(4.80)-(4.81) subject to the initial condition with bottom topography

2—(x—57%=(y—>5)%, if |[xr—5|<1 and |y—5|<1,
Zloy) = 7, = ( )" —(y—5) | | ly — 5] (4.83)
0, otherwise.

In the first column of Figure 22, we consider (4.80)-(4.81) with bottom topog-
raphy

2—(x—6)7—(y—4)7*, if |[x—6/<05 and |y—4| <0.5,
Z(x,y)=Zo=X2—(x—6)"—(y—8)%, if |z —6| <05 and |y—8| < 0.5,

0, otherwise,
(4.84)

and finally in the second column of Figure 22, we consider the same model (4.80)-(4.81)

with topography

)
2—(x—3)°—(y—6)°, if |[z—3]<0.5 and |y— 6| <0.5,
2—(x—6)>—(y—6)*, if |[x—6/<0.5 and |y—6] <0.5,

Z(xvy)EZ3:< 9 9
2—(x—-9)7—-(y—-6)", if |[+—9/ <05 and |y—6]<0.5,

0, otherwise.
\

(4.85)
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Figure 21 — The summary of numerical parameters in the SDLE scheme (4.10)-(4.11) for
numerical approximation of the shallow water system (4.80)-(4.81) is: In the
first column, time T' =1 with 4.17 s (128 x 128 grid cells) and 36.48 s (256
X 256 grid cells) and (a« =1, ( =4, 0 =1, CFL=0.05). In the second column,
time T =1 with 5.64 s (128 x 128 grid cells) and 49.08 s (256 x 256 grid
cells) and (. =1, ( =4, 6 =1, CFL=0.05).
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Figure 22 — The summary of numerical parameters in the SDLE scheme (4.10)-(4.11) for
numerical approximation of the shallow water system (4.80)-(4.81) is: In the
first column, time T =1 with 3.3 s (128 x 128 grid cells) and 26.2 secs (256
X 256 grid cells) and (o =1, ( =4, 0§ =1, CFL=0.06). Finally, in the second
column, time T = 2.5 with 8.4 s (128 x 128 grid cells) and 70 s (256 x 256
grid cells) and (o« =1, ( =4, 0 =1, CFL=0.06).
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4.3.4 On the robustness on the no-flow curves on the models: experimental

convergence order and error history

The objective of this section is to present a representative set of numerical
studies for several hyperbolic systems and balance law models under consideration in this
work (Example 3.2, Example 3.3, Example 3.4, Example 3.5, Example 3.6, Example 4.6,
Example 4.9), aiming to show the numerical robustness of the multidimensional no-flow
curves (3.5). First, it is worth remembering the CFL stability estimate as established in

this work is based on the coeflicients b}” L1, and bY which are constructed from the
27

1y
j7k‘+§
no-flow curves. In short, no special choice of numerical parameters at the multidimensional

numerical fluxes F; 1, and G+ 1in (3.4) is necessary. Additionally, as shown in Tables

2-10, we verified that for any simple choice of parameters into the stability estimate
ﬁ%,k
and therefore confirming and verifying the developed theory in this work as well as

coefficients and b]y,k 41 e obtain very good results along with accurate resolution,
yielding the robustness of the proposed semi-discrete approach. In addition, Tables 2-10
show the error history via a representative set of numerical study of convergence, in
which the Experimental Order of Convergence (EOC) remains robust and consistent as
the mesh grid is refined, that is, the numerical results obtained are shown to be very
satisfactory even with relatively coarse mesh discretizations. From Tables 2-10, we can
also find the desired residual error is monotonically decreasing as it would be expected
under mesh grid refinement, which is another way to confirm evidence of the robustness
of the approximations obtained through our semi-discrete scheme. For concreteness, the
quantities b; Lk and bg’k ! appearing in multidimensional numerical fluxes 1k and
Gjkel in (3.4) are written in terms of the corresponding 2D no-flow curves (3.5), for which,

in this study, we used the following simple formulas:
b aa = Cmax (fie + frrial) and b7, 1 = (max (jgjx + gixrl), 1< <5 (4.86)

Notice that the above no-flow CFL-type constraint (3.8) does not require the need to
employ the eigenvalues as the eigenvectors as well (exact and approximate values) of
the relevant Jacobian of the numerical flux functions. This advantage is very relevant
in practical problems. The 2D SDLE scheme (3.3)-(3.7) only employs in a direct way
the available easy information of quantities u and fluxes H(u) and G(u), along with the
no-flow CFL-type constraint (3.8) supported by the analysis summarized in the equations
(3.20), (3.21) and (3.50). It should be recalled that the implementation of the scheme in the
case of systems is a straightforward component-wise application of the multidimensional
scalar case, but, importantly, the semi-discrete approach does not require dimensional
splitting strategies nor time-consuming field-by-field decompositions. The SDLE scheme
seems to fit well for treatment of with boundary conditions, based on the evidences in the

numerical solutions of the specific models: the cases with Double Mach reflection as well
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as Wind tunnel for the system of compressible Euler flows and the porous media injection

problem for a non-strictly hyperbolic three-phase flow with a resonance point.

To complement some good evidences that we are computing the correct quali-
tative structure of the solutions (as presented in Section 4.3.1 and in Section 4.3.3, we also
have numerically evaluated the accuracy of the SDLE scheme (3.3) and (3.4), along with
(3.5)-(3.7), by computing the decay at which the residual-based discrepancies approaches
zero when the step sizes (time and space) approaches zero. In what follows, we present this
numerical study for some multidimensional problems presented and discussed in Section
3.3 and in Section 4.3. In this regards, we present a numerical study conducted with
an Experimental Order of Convergence (EOC) in the L'— norm of the relative error.
To analyze the numerical convergence rate using our semi-discrete scheme (3.3)-(3.4) or
(4.10)-(4.11) for systems, we use the relative norm of the errors. In what follows, we have

an Experimental Order of Convergence (EOC) in the L'— norm of the relative error,
(€)1 = Bl /Ul where [[E| = Az x Ay Y > Byl -
ik

Here, E is the difference between the analytic solution U (whenever available) and the
approximate solution. When the analytic solution is not known, we employ the relative

norm of the errors as follows:

(€)1 = |wit1 — will 2 / |wisa] 1, with 4, ¢+ 1 as the consecutive refinement numbers.

log((e)1/(€iv1)1)
log(Ai41/4:)

number of elements and ¢ defines the refinement number.

The EOC is given by the following relation: FOC = , where 4; is the

In the captions of each table are displayed informations about the model
problem and the numerical parameters. We would like to mention that we are using the
same classical second-order Runge-Kutta method for all simulation without any type of

additional stability constrain.

Table 2 — L'-norms of the relative errors (e;)1 between the numerical approximations and the
exact solution by SDLE (3.3)-(3.4) with a = 2, ( = 1 and 6 = 1.5 for the problem
(3.137).

A; ‘ Az x Ay ‘ (ei)1 ‘ EOC ‘
32x32 9.7656e-04 | 4.57188e-02 -
64x64 2.4414e-04 | 1.27859e-02 | 0.91912

128x128 | 6.1035e-05 | 3.33203e-03 | 0.97004
256x256 | 1.5259e-05 | 8.44300e-04 | 0.99029
512x512 3.8147e-06 | 2.12240e-04 | 0.99603
1024x1024 | 9.5367e-07 | 5.30599e-05 | 1.00000
2048x2048 | 2.3842e-07 | 1.32754e-05 | 0.99943

| o ot | wo| o] k|| .
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Table 3 — L'-norm of the relative error (e;); between the numerical successive approximations
obtained with SDLE (3.3)-(3.4) (o = 2, ¢ = 2, and # = 1.5) using the classical
second-order Runge-Kutta method for solving the scalar 2D inviscid Burgers’ model
(3.139)-(3.140) as displayed in Figure 6.

‘ i ‘ A ‘ Az x Ay ‘ (€)1 ‘ EOC ‘
1 64x64 2.4414e-04 | 1.60488e-02 -
2| 128x128 | 6.1035e-05 | 8.50289e-03 | 0.45822
3| 256x256 | 1.5259e-05 | 4.30923e-03 | 0.49026
4 | b512x512 | 3.8147e-06 | 2.17945e-03 | 0.49173
5 | 1024x1024 | 9.5367e-07 | 1.09448e-03 | 0.49686
6 | 2048x2048 | 2.3842e-07 | 5.48519e-04 | 0.49832

Table 4 — L'-norm of the relative error (e;); between the numerical approximations, U, and the
analytic solution, u, obtained with SDLE scheme (3.3)-(3.4) (¢ =1, { = 3, and 6 = 2)
using the classical second-order Runge-Kutta method for solving the scalar inviscid
Burgers’ equation with the oblique Riemann problem (3.139) and (3.141) as displayed

in Figure 7.
‘ 1 ‘ A; ‘ Az x Ay ‘ (ei)1 ‘ EOC ‘

1 32x32 9.7656e-04 | 7.99226e-02 -

2 64x64 2.4414e-04 | 4.58331e-02 | 0.40111
3| 128x128 | 6.1035e-05 | 2.58630e-02 | 0.41275
4 | 256x256 | 1.5259e-05 | 1.40135e-02 | 0.44204
5| 512x512 | 3.8147e-06 | 7.71611e-03 | 0.43043
6 | 1024x1024 | 9.5367¢-07 | 4.16194e-03 | 0.44531
7 | 2048x2048 | 2.3842¢-07 | 2.26866¢-03 | 0.43771

Table 5 — L'-norm of the relative error (e;); between the numerical successive approximations
obtained with SDLE (3.3)-(3.4) scheme (o = 2, ( = 5, and § = 1), along with
the classical second-order Runge-Kutta method with scheme, for solving non-convex
Buckley-Leverett with gravity (3.142), (3.143) and (3.144) as displayed in Figure 8.

i | A; | Az x Ay | (ei)1 | EOC |
1 64x64 2.1973e-03 | 1.44642¢-01 -

2| 128x128 | 5.4932e-04 | 7.69098e-02 | 0.45562
3| 256x256 | 1.3733e-04 | 4.40846e-02 | 0.40145
4| 512x512 | 3.4332e-05 | 2.45543e-02 | 0.42215
5 | 1024x1024 | 8.5831e-06 | 1.38692e-02 | 0.41205
6 | 2048x2048 | 2.1458e-06 | 7.49800e-03 | 0.44365

Table 6 — L'-norm of the relative error (e;); between the numerical successive approximations
obtained with SDLE (3.3)-(3.4) (o« = 1, ¢ =2, and 0 = 2) using the classical second-
order Runge-Kutta method for solving the nonlinear equation (3.145) and (3.146)
with non-convex fluxes as displayed in Figure 9.

1 A; ‘ Az x Ay ‘ (ei)1 ‘ EOC ‘
1 64x64 3.9063e-03 | 7.56655e-02 -

2 128x128 9.7656e-04 | 4.61182e-02 | 0.35715
3| 256x256 | 2.4414e-04 | 2.73861e-02 | 0.37594
4| 512x512 | 6.1035e-05 | 1.62218e-02 | 0.37776
5 1 1024x1024 | 1.5259e-05 | 9.60208e-03 | 0.37826
6 | 2048x2048 | 3.8147e-06 | 5.84318e-03 | 0.35830
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Table 7 — L'-norm of the relative error (e;); between the numerical successive approximations
obtained with SDLE scheme (4.10)-(4.11) (o = 2, {( = 2, and 6 = 1.25) at time
T = 0.23 using the classical second-order Runge—Kutta method for solving 2D
compressible Euler equations (4.76) (with Riemann problem I at time 7" = 0.23) and
(with Riemann problem II at time 7" = 0.2) as displayed in Figure 17.

‘ 7 ‘ Al ‘ Az x Ay ‘ (ei)l ‘ EOC[ ‘ (ei)l ‘ EOCH ‘
1| 100x100 | 1.0000e-04 | 2.20290e-02 - 9.02320e-03 -
2| 200x200 | 2.5000e-05 | 1.65190e-02 | 0.20764 | 5.45930e-03 | 0.36246
3| 400x400 | 6.2500e-06 | 1.21600e-02 | 0.22099 | 3.07470e-03 | 0.41414
4 | 800x800 | 1.5625e-06 | 9.00920e-03 | 0.21634 | 1.69800e-03 | 0.42830
5 | 1600x1600 | 3.9063e-07 | 7.15900e-03 | 0.16582 | 9.62720e-04 | 0.40932
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Table 8 — L'-norm of the relative error (e;); between the numerical successive approximations

obtained with with SDLE (4.10)-(4.11) (e« =1, ( =4, 6 = 1, at time 7" = 0.5 (left)
and at time 7' = 1 (right)) using the classical second-order Runge-Kutta method for
solving the shallow-water equations: dam break over a flat bottom - the hyperbolic
case (4.80)-(4.81) and topography (4.82) as displayed at the top in Figure 21, left

column.
‘ 1 ‘ A; ‘ Az x Ay ‘ (ei)1 ‘ EOC H 7 ‘ A; ‘ Az x Ay ‘ (ei)1 ‘ EOC ‘

1 64x64 2.4414e-02 | 3.56222¢-03 - 1 64x64 2.4414e-02 | 5.03379e-03 -

2| 128x128 | 6.1035e-03 | 2.51747e-03 | 0.25040 || 2 | 128x128 | 6.1035e-03 | 3.14375e-03 | 0.33958
3| 256x256 | 1.5259e-03 | 1.57188e-03 | 0.33974 || 3 | 256x256 | 1.5259¢e-03 | 2.05770e-03 | 0.30573
4 | 512x512 | 3.8147e-04 | 1.02885e-03 | 0.30573 || 4 | 512x512 | 3.8147e-04 | 1.33462¢-03 | 0.31230
5 | 1024x1024 | 9.5367e-05 | 6.67311e-04 | 0.31230 || 5 | 1024x1024 | 9.5367e-05 | 8.36654e-04 | 0.33686
6 | 2048x2048 | 2.3842e-05 | 4.18327e-04 | 0.33686 || 6 | 2048x2048 | 2.3842e-05 | 5.07923e-04 | 0.36001

Table 9 — L'-norm of the relative error (e;); between the numerical successive approximations

obtained with SDLE (4.10)-(4.11) (« =1, ( =4, and 6 = 1) at time 7" = 0.5 (left)
and at time 7' = 1 (right) using the classical second-order Runge—Kutta method for
solving shallow-water equations: dam break over a discontinuous bump (4.80)-(4.81)
and topography (4.83) as displayed in Figure 21, right column.

‘ 1 ‘ A; ‘ Az x Ay ‘ (e ‘ EOC H i ‘ A; ‘ Az x Ay ‘ (€)1 ‘ EOC ‘
1 64x64 2.4414e-02 | 3.02769e-03 - 1 64x64 2.4414e-02 | 4.18225e-03 -
2| 128x128 | 6.1035e-03 | 2.13303e-03 | 0.25266 || 2 | 128x128 | 6.1035e-03 | 3.07023e-03 | 0.22297
3| 256x256 | 1.5259e-03 | 1.54533e-03 | 0.23249 || 3 | 256x256 | 1.5259e-03 | 2.25068e-03 | 0.22399
4| 512x512 | 3.8147e-04 | 1.12766e-03 | 0.22729 || 4 | 512x512 | 3.8147e-04 | 1.57979e-03 | 0.25531
5 | 1024x1024 | 9.5367e-05 | 7.76564e-04 | 0.26908 || 5 | 1024x1024 | 9.5367e-05 | 1.03887e-03 | 0.30236
6 | 2048x2048 | 2.3842¢-05 | 5.10131e-04 | 0.30312 || 6 | 2048x2048 | 2.3842¢-05 | 6.48133e-04 | 0.34033

Table 10 — L'-norms of the relative error (e;); between the numerical successive approximations

with the SDLE (v =1, { = 4, § = 1) for the dam break flood model (4.80)-(4.81)
with topography (4.84) at time 7' = 1 (left column) as well as the same model with
topography (4.85) at time 7" = 2.5 (right column) as displayed in Figure 22 using
the SDLE along with a classical second-order Runge-Kutta method.

‘ 1 A; ‘ Az x Ay ‘ (€)1 ‘ EOC H i ‘ A; ‘ Az x Ay ‘ (€)1 ‘ EOC ‘
1 64x64 4.7852e-02 | 6.06308e-03 - 1 64x64 4.7852e-02 | 5.94887¢-03 -
2| 128x128 | 1.1963e-02 | 4.90050e-03 | 0.15356 || 2 | 128x128 | 1.1963e-02 | 4.77183e-03 | 0.15904
3| 256x256 | 2.9907e-03 | 3.42405e-03 | 0.25861 || 3 | 256x256 | 2.9907e-03 | 3.32779-03 | 0.25999
4| 512x512 | 7.4768e-04 | 2.45496e-03 | 0.24000 || 4 | 512x512 | 7.4768e-04 | 2.35739¢e-03 | 0.24869
5 | 1024x1024 | 1.8692e-04 | 1.54043e-03 | 0.33618 || 5 | 1024x1024 | 1.8692¢-04 | 1.44833e-03 | 0.35140
6 | 2048x2048 | 4.6730e-05 | 9.71881e-04 | 0.33224 || 6 | 2048x2048 | 4.6730e-05 | 9.18119e-04 | 0.32882
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5 Concluding remarks and perspectives for
the future

5.1 Concluding remarks

In the course of this thesis, we designed and analyzed a new class of positive
semi-discrete Lagrangian-Eulerian schemes for solving multidimensional scalar and systems
of initial value problems for models of conservation laws. The scheme is based on a dynamic

space-time parametric no-flow equations, which allowed:

o To circumvent the nature of the blow-up singularity in the numerical flux functions,
thus yielding a new class of explicit semi-discrete Lagrangian-Eulerian schemes. The
no-flow curves are used as a new desingularization analysis tool for construction of

computationally stable numerical flux in conservative form (Subsection 2.1.1).

o The one-dimensional scalar semi-discrete Lagrangian-FEulerian scheme is extended in
a natural, but non-trivial way to two-dimensional semi-discrete scheme (Chapter 3).
This extension brings technical challenges when it comes up to prove convergence
of approximate solutions generated by the scheme to the unique entropy solution
(Section 3.2).

o The extension to systems is made by a straightforward componentwise application of
the multidimensional scalar case (1D and 2D) with no need to use any dimensional
splitting strategies, as well as to solve (local) Riemann problems and, hence, time-

consuming field-by-field decompositions are avoided (Sections 4.1, 4.2).

o The weak asymptotic analysis is applied to the semi-discrete scheme to prove that
our scheme satisfies the maximum principle along with relevant estimates, including
robust TVNI conditions (scalar case), which also imply the uniqueness of the weak
solution satisfying Kruzhkov entropy condition (Sections 2.2, 3.2). We found from
the weak asymptotic analysis that the numerical stability condition (CFL) becomes
more restraint in more than one-dimensional space (Eq. (3.8)) and the proof for
Total Variation Non-Increasing (TVNI) is based on a completely different approach

from that used in one-dimensional space (Subsection 3.2.2).

As a new tool in the formulation of the semi-discrete method, the no-flow

estimates permit:
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e The new semi-discrete Lagrangian-Fulerian scheme, in the more general context of
multidimensional hyperbolic systems of conservation laws, also satisfies the positivity

principle (Subsection 4.2.1).

o To find a CFL-type stability condition of multidimensional systems, for robust simu-
lations, but without the need to employ the eigenvalues (exact and/or approximate
values) of the relevant Jacobian of the numerical flux functions to guarantee the

stability of our numerical scheme (Eq. (4.63)).

o The conditions for the weak positivity and the fact that each equation can be
decoupled (using the no-flow construction) with U; > 0, (U;)* = 0 and (U;)~ = 0 for
all 7 ensure that the integral L' is conserved. In particular, this result does not need
any calculation of eigenvalues (exact and/or approximate values) of the relevant

Jacobian matrix associated to the hyperbolic flux functions (Remark 4.2, Example
4.1).

o The positivity condition does not guarantee convergence, but it is a quantity idealized
by Liu and Lax [65, 66], so it may be stronger than necessary. however, the positivity
condition is more restrictive than the weak positivity, which does not need to
calculate eigenvalues to guarantee the stability of numerical solutions of general
multi-dimensional hyperbolic systems (see Theorem 4.1 and Remark 4.2). Our SDLE
scheme satisfies the positivity properties under more restrictive assumptions, but
effectively, numerical experiments are done under hypothesis of novel conditions of

the weak positivity (Section 4.3).

o The no-flow curves permit to use the scheme in its simplest form, providing convincing
numerical computations for multidimensional systems and scalar equations whose
solutions exhibited non-trivial fronts and rarefaction—shock interactions. Neither
difficulties regarding the treatment of the (numerical) boundaries and the initial

data nor spurious oscillations were observed (Sections 2.3, 3.3, 4.3).

o In addition, the multidimensional semi-discrete Lagrangian-Eulerian scheme retains
simplicity with a very good resolution and efficiency. These features are significant
and ensure the feasibility of this class of positive semi-discrete schemes in a wide

range of applications.

5.2 Perspectives for future work

Previous results obtained from the first class of semi-discrete scheme writing
in a Lagrangian-Eulerian framework for hyperbolic problems allow us to consider several

paths for further development of this work. Here we will mention the most important at
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the moment, considering the evolution of the state of the art, to be able to mention for

example;

e Model with discontinuous flux function in space:

Consider an immiscible and incompressible displacement two-phase flow model of
water and oil (denoted by w and o, respectively) in heterogeneous porous media with
2 a domain in R?. The governing equations are of great importance in petroleum

engineering [1, 6, 12], and they are giving by
Vv=0, v=-\Nu)Kx)V:-p, xe, t>0, (5.1)
ou+V-(Huv)=0, xef2, t>0, (5.2)

with the effects of capillarity and gravity neglected. Here v is the total seepage
velocity, u is the water saturation, K(x) is the absolute permeability, H(u) is water
fractional flow function and p is the pressure. The total mobility, A\(u) is defined in

terms of the relative permeabilities k,;(u) and phase viscosities u; by
krw(u) - Krolu
Au) = () + ( )
Pl Iho
In this work, our multidimensional semi-discrete scheme (1D and 2D) was used

to deal numerically with a set of problems in porous media, such as the Buckley-
Leverett-type model (Section 3.3, Example 3.5) and a 2x2 non-strictly hyperbolic
three-phase flow model (Subsection 4.3.3, Example 4.5), which is the first approach
for the multidimensional case without considering the forced convection dictated by
a velocity-pressure problem. In this context, new perspectives are now opened to
revisit other models in porous media with applications, such as the elliptic-pressure-
velocity model 5.1. We intend to treat the hyperbolic-transport model 5.2 more
efficiently, in that instead of the hyperbolic flux being treated with a fully-discrete
scheme [6], it will be treated with our semi-discrete Lagrangian-Eulerian scheme.
Here we will consider the generic flux function in the model 5.2 to be discontinuous,
i.e., H = H(x,u). Recently, a large number of conservation law problems with
discontinuous flux functions in the context of the model 5.2 have received a lot of
attention in the literature, such problems arise in oil trapping phenomenon [18], a

Whitham model of car traffic flow on a highway [22, 56], just to name a few.

e Models with Non-local flux function:

The model of conservation laws with non-local flux aims to describe the behavior
of drivers that adapt their speed to what happens in front of them. Such models
have been very important in the recent past years in many fields of application as
sedimentation [23], conveyor belts [49], granular flows and crowd dynamics [30, 34].

The general form of non-local conservation laws can be represented by

op+V-H=0, H=HXtpwxp) t>0, xeR (5.3)
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where p(x,t) € RY and w(x,t) € R". The term “non-local” refers to the dependence
of the flux function H on the convolution term w * p, where w is a properly chosen
matrix of kernel functions and p is the vector of conserved quantities. Consider the

following scalar conservation law with non-local flux function;
Op + Ou(H(p)v(wy x p)) =0, zeR, >0, (5.4)

her
where i

wy * p(, ) = f wy(y — 2)p(y, )dy, n >0, (5.5)

xT

with the following hypothesis:

HeCYI,RT), I=][a,b]<R",
ve C*(I,R")st. v <0,

wy € C'([0,7],RT) st. w! <0,

!
1
1

J wy(x)dr = Jo, ¥n >0, limown(()) =0. (5.6)
0 =

The integral Jy is the interaction strength. The physical meaning of p in Eq. (5.4) is

density, so it makes sense that it is positive.

Many schemes in the literature have been used to approximate problem of conserva-
tion laws with non-local flux, such as Lax-Friedrichs-type numerical scheme [16, 17],
Godunov-type numerical scheme [47], Lagrangian-Anti-diffusive Remap schemes
[31], discontinuous Galerkin [29], finite volume WENO schemes [46]. Recently in the
literature, the fully-discrete Lagrangian-Eulerian scheme has been applied to this
model, see [5]. Now on, as a continuation of this work we intend to use and analyze

our semi-discrete scheme to approximate the non-local conservation laws linked to
Egs. (5.4)-(5.6).

e Relaxation model:

An example of hyperbolic balance laws is the shallow water systems with non-
flat bottom and discontinuous topography (Example 4.9), which has been well
approximated by our semi-discrete scheme. We intend to go further and clarify our
knowledge on the theory in the study of the partial differential-algebraic equation

(PDAESs) with diffusive, dispersive, and source terms of the form:

0G(u) + 0, F (u) = 0, [B(u)d,u] + R(u) (5.7)
H(u) =0, with initial conditions wu(z,0) = ug(x), (5.8)
where the variables v = (uj,ug,--,u,) : Q € R x R"Y — ¥ < R" The

space ¥ is the phase space; the accumulation and the flux functions are G =
(Gl(u)a T 7Gk‘(u))T VR — Rk? F = (Fl(u)7 T )Fk(u))T ¥R — Rk
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Here R = (Ry(u),--- , Rp(u))” : ¥ < R" — R¥ is the source terms. The algebraic re-
lationships are represented by the vector function H = (Hy(u), Hy(u),- -+ , Hy(u))" :
¥ < R* — R?, where n = p + k. In [60], the authors substitute the system of

algebraic equations with uncertainties (5.8) by the relaxed system:
1
OH(u) = ——H(u), 7> 0 with initial conditions u(z,0) = ug(x) (5.9)
T

to obtain the system of equations (5.7)-(5.9) with relaxation terms. We assume
that the functions G, F, H are sufficiently smooth. Here B(u) is an operator. The
matrix B(u) is a not positive definite matrix, but in [60] it has been handled in such
a way to find a positive definite sub-matrix that depends only on u (and none of
them derivatives), the above system is a convective-diffusive system. The Eq. (5.8)
is proposed in such a way that the manifold defined by H(u) = 0 (for which the
conditions defined by H are satisfied) is an attractor. This condition allows that the
solution “relaxes” on the phase space ¥ for a region for which the algebraic condition
is not satisfied. We intend to use our novel semi-discrete scheme to solve numerically
the system (5.7)-(5.8) and (5.7)-(5.9) in the same spirit as in [60].
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