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Resumo

O problema do subespaco invariante é um dos mais importantes problemas em aberto da
area de teoria dos operadores, sabemos que o problema do subespago invariante é equivalente
a mostrar que todos subespacos minimais de um operador universal sao unidimensionais.
Sejam D e C, o disco aberto unitario e o semiplano direito respectivamente. Neste trabalho
caracterizaremos quais operadores de composi¢ao induzidos por simbolos lineares possuem
uma translacdo universal nos espacos de Hardy H?*(D) e H*(C,). Em ambos os casos
conseguimos encontrar novos exemplos. O mais proeminente desses é o automorfismo afim
de D definido por
Cy,(2) =bz+1-0

para 0 < b < 1. Neste trabalho também nos dedicamos na analise dos autovetores e

subesbagos minimais de Cy, em H?(D).

Palavras-chave: operadores de composi¢ao. operador universal. problema do subespago

invariante.



Abstract

The invariant subspace problem is one of the most important open problems of operator
theory. We know that the invariant subspace problem is equivalent to the statement that
all minimal invariant subspaces for a universal operator are one dimensional. Let ID and C
be the open unit disk and right half-plane respectively. In this work we characterize which
compositions operators induced by linear fractional symbols have universal translates on
the Hardy spaces H*(D) and H*(C,). In both cases new examples are discovered. The
most prominent of these being the affine self-map of D defined by

op(z) =bz+1—0

for 0 < b < 1. We also dedicate our attention to an analysis of the eigenvectors and

minimal invariant subspaces of Cy, on H*(D).

Keywords: compositions operators. universal operator. invariant subspace problem.
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Introduction

The linear fractional transformations are the automorphisms of the Riemann
sphere C and the composition operators Cy, where ¢ is a linear fractional transformation

are the most studied class of composition operators on both H*(D) and on H*(C,).

The invariant subspace problem is the most important open problem in operator
theory and it is not known who formulate it first. Apparently the problem was formulated
after Beurling’s publication on invariant subspaces of unilateral shift (BEURLING, 1949),

or after the unpublished work of Von Neumann on compact operators.

In this thesis we will show a necessary and sufficient condition for operator
Cy — Al to be universal, where ¢ is a linear fractional transformation, Cy is a composition
operator on H*(D) (or on H*(C,)), and 0 # A € 0(Cy). Furthermore, we will show that
the invariant subspace problem can be solved by analyzing the invariant subspaces of
the operator Cy,, with ¢, : D — D being a non-automorphic hyperbolic linear fractional

transformation. The results of this work have been accepted for publication as:

Joao R. Carmo and S. Waleed Noor, Universal composition operators, J.
Operator Theory (to be published).

In the first chapter we will provide the basic results that will be utilized through-
out the work. We will also define the linear fractional transformations, the concept of Hardy
Hilbert space, the concept of composition operator and the proof of some properties of the
compositions operators. The main reference for this chapter is (MARTfNEZ—AVENDANO;
ROSENTHAL, 2007).

In the first section of Chapter 2, a discussion will be made on the invari-
ant subspace problem. In the first section we will cite the particular cases for which the
problem has a solution. In the second section we will present the concept of universal
operator and we will prove a result that relates the concept of universal operator to the

invariant subspace problem. The main references for this chapter are (ENFLO, 1976),
(LOMONOSOV, 1973), (CARADUS, 1969).

In Chapter 3, we will prove that the operator Cy — Al is universal on H 2(Cy),
for 0 # A in the interior of o(Cy), where ¢ is a certain type of hyperbolic linear frac-

tional transformation. Furthermore, we will prove that this is the only type of linear
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fractional transformation on C, such that C, — Al is universal on H?*(C,) for some
A € C. Also in this chapter, we will prove that if ¢ : D — D is a non-automorphic
hyperbolic linear fractional transformation without fix point in D, the Cy — Al is universal
for all 0 # X € o(C}). This result extends a classic result of (NORDGREN; ROSEN-
THAL; WINTROBE, 1987). Moreover, we also give a sufficient and necessary condition for

Cy—AI to be universal, with ¢ : D — D being a linear fractional transformation and A € C.

In Chapter 4, we will work with the operator Cy,, where ¢y, is a canonical form
of the non-automorphic hyperbolic linear fractional transformation without fixed point in
D. In this chapter we will also prove various properties of eigenvectors of Cy, and will give
results on minimal invariant subspaces of Cy, analogous to results by (MATACHE, 1993),
(CHKLIAR, 1997) for the automorphic case.



12

1 Preliminaries

1.1 Linear Fractional Transformations
This section is based on (SHAPIRO, 1993).

A linear fractional transformation is a mapping of the form

az+b
cz+d

T(z) =

with ad — bc # 0, which is a necessary and sufficient condition for 7" to be non-constant.

We denote the set of all linear fractional transformations by LFT(C).

LFT(C) is a group under composition. Each of its members maps circles

to other circles. Given any pair of circles, there are members of LFT(C) that maps one

onto the other and the same is true for the set of triples of distinct points in C.

Each non-singular 2 x 2 complex matrix gives rise to a linear fractional transfor-

mation T4. Clearly, Ty = T4 for any A € C, for this reason, it is convenient when working

out general properties of LFT(C) to normalize the matrices to have determinant 1.

Definition 1. If ad — bc = 1, we say T is in standard form.

The utility of matrices in dealing with linear fractional transformations comes
az +b

cz+d
fixes the point oo if and only if ¢ = 0, in which case oo is the only fixed point if and only if

from the fact that Ty o T = Typ. Clearly, the linear fractional transformation

a = d and b # 0. Otherwise, the fixed point equation is a quadratic, with solutions

(a —d) £ [(a — d)? + 4bc]*/?

(17 /8 = 2C Y
. az+b . .
the trace, if T'(z) = — sin standard form. It defines the trace of T to be x(7T') =
cz

+(a + d).

T has oo as its only fixed point on the sphere, if and only if 7'(z) = z + b, in
which case |x(T')| = 2. If T has only finite fixed points, then the equations written above

for these fixed points can be at least partially expressed in terms of the trace

(a —d) £ [x(T)* — 4]
2¢ '

a, =
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This equation together with our previous remark about maps with unique fixed

point at oo shows that:

T € LFT(C) has an unique fixed point in C if and only if |x(T)| = 2.

A map T € LFT(C) is called parabolic if it has a single fixed point in C.
Suppose T is parabolic and has its fixed point at o € C. If S € LFT(C) takes « to o0, then
V = SoT oS! belongs to LFT(C) and fixes only the point co. Therefore V() = 2+ for
some non-zero complex number 7. Thus every parabolic linear fractional map is conjugate

to a translation.

If T is not parabolic, there are two fixed points «, 3 € C. Let S be a lin-
ear fractional map that takes o to 0 and 8 to oo. Then the map V = SoT o S~! belongs

to LFT(C) and fixes both 0 and oo, so it must have the form V(z) = Az for some complex
number A\, which is called the multiplier for 7. Thus

T(z) = ST (AS(2)),

by the chain rule,

T'(a) =X and T'(B) = i\

The equation above implies that, if |A| # 1, then one of fixed points of T is
attractive, this is, T,,(z) tends for the attractive fixed point when n tends for +oo. For

example, if |\| < 1, its attractive fixed point is «, and

T.(z) — a.

Note that there is an ambiguity on the definition of multiplier. If the roles of «
and [ are interchanged, so that now S sends f to zero, then 1/\ is the multiplier of the

transformation. The theorem on fixed points and derivatives, shows that

1

Definition 2. Suppose T € LFT(C) is neither parabolic nor the identity. Let X\ # 1 be
the multiplier of T'. Then T is called

1. Elliptic if |\ =1
2. Hyperbolic if A >0

3. Lozodromic if T' is neither eliptic nor parabolic
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1.2 Linear Fractional Transformations in D

This section is based on (SHAPIRO, 1993).

Our interest here is in LFT(D), the subgroup of LFT(C) consisting of selfmaps
of the unit disc D. Those that take D onto itself are called (conformal) automorphisms.
Consideration of normal forms quickly shows that

e Parabolic members of LFT(D) have their fixed point on T.

e Hyperbolic members of LFT (D) must have attractive fixed point in D, with the
other fixed point outside D, and lying on T if and only if the map is an automorphism
of D.

e Loxodromic and elliptic members of LFT(D) have a fixed point in D and a fixed
point outside D. The elliptic ones are precisely the automorphisms in LFT(D) with

this fixed point configuration.

1.3 Hardy Spaces

One of the most familiar Hilbert spaces is [2. This space consisted of the

collection of all sequences of complexes numbers (a,).._,, such that

n=0"
0
D lan]? < oo,
n=0

In this space the vector addiction and vector multiplication by complex numbers

are performed componentwise. The norm of the vector (a,),_, is

" 1/2
[(@n)n—oll = (Z lanlg) :
n=0

where the inner product of vectors f = (a,)p_, and g = (b,)o_, is

<f7 g> = Z ana'
n=0

The space [? is separable, and all infinite dimensional separable complex Hilbert
spaces are isomorphic to each other.
Definition 3. The Hardy-Hilbert space, called H*(D), consists of all analytic function
0 o0
f(z) = Z a,z", such that Z lan|? < o0, this is
n=0

n=0
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(D) = (£() = 3, a,2" : Y laf* < o}

n=0 =

0 o0
For f(z) = 2 a,z" and g(z) = Z b,2", the inner product on H?(D) is defined
n=0 n=0

<fag>:: Z{:angg'
n=0

0
The norm of vector f(z) = Z a,z" is
n=0

f(iaﬁ)m.

n=0

0
The map (a,);—y — Z anz™ clearly is an isomorphism of [* to H?*(D). Partic-
n=0

ularly H?*(D) is a separable Hilbert space.

o0 e¢]

Note that if |z9| < 1, then Z a,zy converges absolutely, because 2 lan|? < o,
n=0 n=0
thus |a,| is bounded, then limsup |a,2}|"™ < |20| < 1. Therefore all functions in H*(ID)

are analytic in the open unit disc D.

Theorem 1. Let f be analytic on D. Then f € H*(D) if and only if

I NE
sup — re')|*df < oo.
S |f(re®)]
Moreover, for f € H*(D),
1 21 )
2 0\ |2
= sup — re')|°do.
117 = sup 5= | Ifre”)

Proof. Let f be an analytic function on ID with power series

Then, for 0 <r < 1,
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Since
1 27

- z(nfm)ade =5
o € n,ms

integrating the expression above for |f(re)|? and dividing by 2 results in

1 27 ) 0
[f(re®)PdO = > |an|*r*".

21 Jo o

o
If f e H*(D), then Z |lan|*r*™ < ||f||* < oo, for every r € [0,1). Thus

n=0

1 2

sup o= [ (e a8 < |1 < o
0<r<1 27 Jo

Conversely, assume that the above supremum is finite. As shown above,

1 27 0

[f(re”)PdO = > |an|*r*".

21 Jo =

f ¢ H*(D), the right-hand side can be made arbitrarily large by taking r close to 1. This

would contradict the assumption that the supremum on the left side of the equation is finite.

Note that, by the above considerations, it also follows that for f € H*(D),

2

1 .
IF1I* = sup — [ |f(re”)[*do.

0<r<1 2T 0

]

Some authors define the Hardy space H?(D) as the space of analytic maps f

on D, such that
1 2m )
sup — |f(re™)|?df < o
0<r<1 27 0

Definition 4. Let zy € D. The function k,,, defined by

= 1
k.. (2) = 20" = —

is in H*(D) and is called reproducing kernel for zy in H*(DD).

a0 a0
We have that for zg € D and f(z) = Z anz" € H*(D), f(z) = Z anzy =
n=0 n=0

0 1/2
1 .
<f, k20> and ||k20|| = TLZO 20‘2n) = W’ and hence, the map f —> f(Zo) 1S a

bounded linear functional.
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Definition 5. Let f be analytic on C,, we say that f belongs to H*(C,), if

1 +00
supJ |f (@ + yi)Pdy < o

By (HOFFMAN, 1962), see also (PARTINGTON, 1988) we have that H?(C, )

is a Hilbert space with norm

+00 1/2
191 = (sup > [ 1ste+ fay )

—Q0

and
W: H*D) — H*(C,)
)
f(U)) = g(z)_ﬁ(l Z)
and
W H*(C,) — H*(D)
o) o flw) = Y0

(1+ w)

is an isometric isomorphism.

Another important isomorphism between the Hardy space H?*(C,) and a
better known Hilbert space is given by
Theorem 2. (Paley-Wiener theorem)
The map P : L*(Ry) — H*(C,), defined by
P: L*(Ry) — H*C,)
Fit) — f(2)= J F(t)e *dt.
Ry

is an isometric isomorphism.

1.4 Composition Operators

Definition 6. For each analytic function ¢ : D — D, we define the composition operator
Co by
(Csf)(2) = f(0(2))

for all f € H*(D).
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For this definition we have that if ¢ : D — D is analytic, then the composition
operator Cy is well defined and bounded on H?(D) with:

1G]l < 4 | LE 100

1—g(0)

Proposition 1. If Cy and Cy are composition operators then Cy o Cy = Cyog.

Proof. Let ¢, 1) be analytic functions that map the unitary disc onto himself, and f €
H?*(D), we have that CyCyf = Cyf otp = forpod = Cpopf. O

The adjoint of a composition operator is in most cases, difficult to describe in

simple terms, but its action on reproducing kernels is known:

Proposition 2. If C; is a composition operator and ky is a reproducing kernel, then

Cokx = Kor)-

Proof. Let f € H*(D). We have that {f,Ciky) = (Cyf,kr) = f(¢())), and also that
(f kgny) = f(@(N)). Thus, we have that Cky = kg(x). O

Proposition 3. If Cy is a composition operator, then

1 2
Vior < e
Proof. By Proposition 2, we have that Cikg = ky(q). Since [|k||* = 1_1|)\|2, we have that
[Koll = 1 and [[kg() | = m- By [[ks) |l = [ICEkoll < |Cs*[l[|koll, we have that
< ¢l = Gl
1—[p(0)?
We know that [|Cy| < ﬂigg;:, and we note that for 0 < r < 1, we have

L+r (1—|—7’)2_ 1+7r B 2
Vi—r NV 1-r2 192  1—1p2

As a result

L 1o0) _ 2
o0) = VI- 60

1Csl <



Chapter 1. Preliminaries 19

Proposition 4. The norm of a composition operator Cy is 1 if and only if $(0) = 0.

1 0
Proof. Assuming that ¢(0) = 0, since ||Cy|| < Hlt;zgoi;, we have ||Cy|| < 1. From

Proposition 3, we have ||Cy|| = 1, thus ||Cys|| = 1.

1
V1=160)]?

Assuming that ||Cy|| = 1. Since
then ¢(0) = 0.

< [|Cy]|, we have

T leF ="

O

Proposition 5. If ¢ is a non-constant analytic function mapping the disk into itself and
satisfying ¢(a) = a for some a € D, and if there is a function f analytic on D that is not

identically zero and satisfies the Schroder equation

f(9(2)) = Af(2)

for some X, then either X = 1 or there is a natural number k such that A = (¢/(a))".

Proof. The equations ¢(a) = a and f(¢(2)) = Af(2) yield f(a) = Af(a). If f(a) # 0, then
clearly A = 1 and the theorem is established in that case.

Suppose f(a) = 0. Since f is not identically zero, f(z) has a power series
expansion
f(2) = bi(z = @) + bpa(z = @)+

with b, # 0 for some k& > 1. It follows that

ﬂﬂ@)z(M@—n)kC%+mﬂw@»—@+bmxww—aﬁ+m>.

z—a b + bkr1(z — @) + bpio(z — a)? + ...

Since ¢(a) = a,
lim dz)—a_ ¢ (a).
e z—q
Also, lim (b + b1 (0(2) — a) + brya(o(2) — a)® + ..) = by and lim (b + b1 (2 — a) +
bk+2(zz— a)® + ...) = by. Therefore

S0G) L (0() —a\" (bt b (@) — a) + bra(é(2) — a) + .
fim flz) l—>a( z2—a ) ( b + bpr1(z — a) + bgya(z —a)? + ... )
= ()1
= (¢(a))".

However, f(9(z) _ A, s0 A= (¢/(a))".
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Corollary 1. If ¢ is a loxodromic or elliptic linear fractional transformation, then oo(Cy)

has empty interior.

Unlike the case of H?*(D), where all analytic ¢ : D — D induce bounded

compositions operators, the space H?(C,) has fewer bounded composition operators.

Theorem 3. The operator Cy is bounded if and only if ¢(0) = © and ¢'(0) < o0, in

which case the following equalities hold

1G]l = 7(Cs) = lICslle = A/¢'(0).
Proof. See Theorems 3.1 and 3.4 of (ELLIOTT; JURY, 2012). ]

Corollary 2. The only bounded composition operators on H?*(C.) induced by linear

fractional transformations are operators Cy with symbol of form
o(w) =aw +b

where a > 0 and Re(b) = 0
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2 The Invariant subspace Problem for Hilbert

Spaces

In the first section of this chapter a discussion will be made on the invariant
subspace problem. We will cite for which particular cases the problem has a solution and
in the second section we will present the concept of universal operator and we will proof a
result that relates the concept of universal operator to the invariant subspace problem.
This chapter is based principally in (CARMO, 2017) and the others mains references of
this chapter are (ENFLO, 1976), (LOMONOSOV, 1973), (CARADUS, 1969).

2.1 The Invariant Subspace Problem

The invariant subspace problem can be stated as the following question: "Do
all bounded linear operators 1" in a Banach space have a non-trivial invariant subspace?".
The term invariant subspace means a closed subspace of H, such that the operator T" maps
the subspace into itself. The term non-trivial means different from {0} and H. This prob-

lem is easily stated, but still is partly open and it is unknown whom was the first to state it.

For a complex Banach space the answer is negative, because Per H. Enflo
proposed a counterexample in 1975 (ENFLO, 1976). The complete article was written in
1981 (ENFLO, 1980), but due to its complexity it was only published in 1987 (ENFLO,
1987).

Proposition 6. Let T be a bounded linear operator on a Hilbert space H. If T has an

eigenvalue X\, then T' has a non-trivial invariant subspace.

Proof. 1If T' = A\I, we have that all closed subspace in H is invariant for 7.

If T # A, then there is x € H, such that Tz # Az, thus z ¢ N(T — \),
therefore N (T — \) is a subspace different from H. The continuity of 7" — X implies that
N(T —)) = (T—X)"*{0} is closed in H. If x € N(T — )), then Tz = Az, and (T — \)z = 0.
By A to be an eigenvalue of T', we have that N (7" — \) # {0}, thus we have that N(7'— \)

is a non-trivial invariant subspace of T'. ]

Corollary 3. If H is a finite dimensional complex space, then any linear operator T' on

H have a non-trivial invariant subspace.
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Proof. Since each linear operator 7' in a finite dimensional complex space with dimension
n is similar to an operator M on C", we have that T" has an eigenvalue, and by Proposition

6, we have that T' has a non-trivial invariant subspace. O

Proposition 7. Any bounded linear operator T in a non-separable Hilbert space has a

non-trivial invariant subspace.

Proof. Let H be a non-separable Hilbert space, and let T" be a bounded linear operator
on H. We pick a non-zero vector x and we consider the closed subspace M generated by
vectors {x, Tz, T?z,...}. Then M is invariant on T and M # {0}. Furthermore, M # H,
because this would contradict the fact of H being non-separable. Thus, any operator 7" on

a non-separable Hilbert space has a non-trivial invariant subspace. O

One of the oldest results on invariant subspace is the Aronszajn and Smith
theorem, published in 1954. That theorem says that all compact operators have a non-trivial
invariant subspace. A stronger result was proved by Lomonosov in 1973 (LOMONOSOV,
1973).

Definition 7. Let X be a Banach space, T' € B(X). A subspace M < X it is said to be
hyper-invariant for T, if M is invariant for all S € B(X), such that ST =TS.

Lemma 1. Let X be a Banach space and A a sub-algebra of B(X), such that

() LatA = {{0}, X}

AeA
Then, for every compact operator K € B(X) — {0}, there is A€ A and xo € X — {0}, such
that K Axy = xg.

Proof. For y € X, we consider Bi(y), the open ball with center y and radius 1. Given

that K # 0, there is a y € X, such that C' = B;(y) does not contain 0. Let z € X, we

consider Az = {Sx : S € A}, since ﬂ LatA = {{0}, X}, we have that Az = X, for all
AeA
x # 0. Given that 0 ¢ C, we have that Az = X, for all z € C, therefore Ax n By(y), for

all x € C. Then

Ce | A (Biy)).

AeA

Given that C' is compact, there are finite sets {A;, As, ..., A,} of A, such that

Cc CJA;%Bl(y)).
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Let r : R, — R, be a continuous map, such that r~*({0}) = [1, +0). We
define f: C — By(y) by

r(l A — )
ZZJ Az — g

The function f is well defined, because for all z € C, there is a i, with 0 < i < n,
such that A;z € By(y), and thus r(||A;x — y||) > 0. We consider F' = K o f. By theorem
1.1.22 of (CHALENDAR; PARTINGTON, 2011), there is 2 € C, such that F(zq) = .
We define A € A by

(|| Aizo — yl|)
Au =
ZZ] (A0 — yll)

Aiu.

We easily see that Azxg = f(x¢) and that KAzy = F(xg) = w9, with zg # 0, because

ZL’()EC.

[]

Theorem 4. (Lomonosov) Let T € B(X)—CI. If there exists a non-zero compact operator

K, such that TK = KT, then T has a non-trivial hyper-invariant subspace.

Proof. Arguing by contradiction, assume that the algebra A = {A e B(X) : AT = T A}

does not have a non-trivial invariant subspace. Then by Lemma there is A € A, such that

Ker(I — KA) # {0}.

Since K A is compact, the dimension of Ker(l — K A) is finite, and for KA € A,
we have that 7" has a non-trivial invariant subspace, thus 7" has an eigenvalue. Given that,

all eigenspaces of T lie in ﬂ LatA, we have a contradiction. O
AeA

To the present moment it is not known that if all bounded linear operator on a
infinite dimensional separable complex Hilbert space have a non-trivial invariant subspace,

thus the invariant subspace problem can be stated as:

Invariant Subspace Problem - Every bounded linear operator 7" in a sepa-

rable Hilbert space has a non-trivial invariant subspace.

2.2 Universal Operators

This section is based on (CARADUS, 1969).
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Definition 8. For any Banach space X, let B(X) be the space of continuous endomor-
phisms of X. An operator U € B(X) is called universal if, for all T € B(X), a non-null
multiple of T is similar to a part of U. That is, there is A€ C, X # 0, a closed subspace
Xo € X, such that UXg < Xg, and a linear homeomorphism ¢ : X — Xq, such that
AT = 671 (U/Xo).

Theorem 5. Let X be a separable Hilbert space and let U € B(X). If U has the following

properties:

o The kernel of U has infinite dimension

o The range of U 1is the space X

Then U s universal.

Proof. We start by building operators, V, W in B(X), such that UV = I, UW =

0, Ker(W) = {0}, R(W) is closed and R(W) L R(V)). We consider U the restriction of

U in Ker(U)* and we define V = U~!. We pick an orthornormal basis {¢/,} for Ker(U)

and we defined We,, = e, where {e,} is an orthornormal basis of X. It is obvious that

V and W have the properties required. Let T' € B(X). We take 0 # A € C, such that
0

IAT|[[|V]] < 1. We introduce ¢ = 2 NVEWTE. By choice of \, this series converge in

k=0
B(X). It is also evident that

1. Up = \oT

2. b= \V¢T + W

By (1), we have that R(¢) is invariant for U. To finish the proof it remains to
show that ¢ is a homeomorphism. We suppose that ¢(z) = 0. Then, based on (2) and the
relation R(W) L R(V), we have that V¢Tx = W(z) = 0. Since W is invertible, it follows
that © = 0, thus ¢ : X — R(¢) is an isomorphism.

Let (x,) be a sequence of elements of X, such that ¢(z,) — y. From (2),
we have A\V¢Tx,, + Wz, — y. Thus Wz, — Py, where P is the orthogonal projection
onto R(W). Since R(W) is closed, there is x, such that Wz,, — Wx. Then z,, — x and
therefore ¢(x,) — ¢(x) = y. Thus R(¢) is a Hilbert space and by Open Map Theorem ¢

is an open map, therefore ¢ is a homeomorphism. O

The next theorem establishes a relation between the concept of universal

operator and the invariant subspace problem.
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Theorem 6. Let X be a Hilbert space and let U € B(X) be a universal operator. Then

the following are equivalent:

1. Every non-null T € B(X) has a non-trivial invariant subspace.

2. For all M < X, such that M is invariant for U, and isomorphic to X, the operator

Uln has a non-trivial invariant subspace.

Proof. Suppose (1) true. If M < X, is an invariant subspace for U, and isomorphic at
X, we have, by (1) that U|y has a non-trivial invariant subspace, because X and M are

isomorphic.

Suppose (2) true. If T € B(X) is non-null, then there is non-null A and
M < X, such that M is invariant for U, isomorphic at X and 7T is similar at AU|;, thus

T has a non-trivial invariant subspace.

]

Proposition 8. Let H be a Hilbert space, if U € B(H) is universal, then oo(U) does not

have empty interior.

Proof. See (SCHRODERUS; TYLLI, 2018). [l

Corollary 4. Let ¢ : D — D be a linear fractional transformation. If for all0 # X € 0¢(Cy),
we have that Cy — X1 is universal in H?*(D), then ¢ is hyperbolic and ¢ has no fized points
on D.

Proof. 1f ¢ : D — D is loxodromofic or elliptic, then ¢ has a fixed point in D, therefore
00(Cyp) has empty interior, thus by Proposition 8, we have that C, — Al is not universal
for all A e C.

If ¢ : D — D is a parabolic non-automorphism, then by (COWEN, 1983)
we have that 0(Cy) has empty interior, thus by Proposition 8, we have that Cy — AI is

not universal for all A € C.

If 9 : D - D is a parabolic automorphism, then by Theorem 5.4.5 of
(MARTINEZ-AVENDANO; ROSENTHAL, 2007) we have that o(C,) has empty in-
terior, thus by Proposition 8, we have that Cy — Al is not universal for all A € C.

Therefore we have that if Cy — Al is universal for all 0 # X € 0¢(Cy), then ¢ is
hyperbolic and ¢ has not fixed points on D.

]
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Corollary 5. Let ¢ : C, — C, be a linear fractional transformation. If for all 0 # X\ €
00(Cy), we have that Cyy — I is universal in H*(Cy), then ¢ is hyperbolic and ¢ is not a

automorphism of C, .

In the next chapter, we will show a sufficient condition for translates of linear

fractional composition operators to be universal.

2.3 Minimal Subspaces

Definition 9. Let H be a Hilbert space and T € B(H). A closed subspace M < H is
minimal if M is invariant under T and T'|yr has not a non-trivial closed invariant subspace.

0

Let H be a Hilbert space, T'e B(H) and = € H, we consider K, = \/T”w,
n=0

a0
where \/ T"z = span{T™z : n € N}. If T is invertible we can consider

n=0

\/T”x = span{T"x : n € Z}.
Proposition 9. Let H be a Hilbert space, T € B(H) and M is a minimal subspace. Then,

if e M, and x # 0, we have that M = K.

Proof. Let x € M, and x # 0, we have that K, is non-trivial invariant subspace of M,

since M is minimal, we have that K, = M.

]

Proposition 10. Let H be a Hilbert space, T € B(H) invertible and K, is a minimal
subspace. Then T 'K, c K,, and

n=-+ao0
K,= \/ T'z.
n=—oo
o0 a0
Proof. Since K, is minimal, we have that Kr, = K,. Thus K, = \/T"z = T"'(\/ T"z) =
n=0 n=1
T'K,. O

Proposition 11. Let H be a Hilbert space and T € B(H). The following are equivalent:

1. If M < H is a finite dimensional subspace and is invariant for T, then T'|yr has a

non-trivial invariant subspace.

2. Let ue H\{0}. K, is minimal if u is an eigenvector of T
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Proof. Suppose that the item (1) is true. Let u € H\{0}, such that K, is minimal, since
K, is invariant to T'; by item (1) we have that K, is finite dimensional, then we have that

K, has dimension 1 and for this reason u is an eigenvector of 7.

Now suppose that the item (2) is true. Let M < H, a finite dimensional
subspace that is an invariant to 7', and let u € M\{0}, if K, # M, we have that K,
is a non-trivial invariant subspace of T'|y, if K, = M; we have that K, does not have
finite dimension, then u cannot be an eigenvector of T, then, by item (2) we have that

T|k, = T|y has a non-trivial invariant subspace.

[]
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3 Universality on Hardy Spaces

The remaining two chapters are based on (CARMO; NOOR, 2021) and high-

light the major new contributions of this thesis.

In this chapter we will prove a necessary and sufficient condition for the
operator Cy — Al being universal, where ¢ : D — D (or ¢ : C; — C) is a linear fractional

transformation.

3.1 Bilateral Weighted Shift

This section is based on (PARTINGTON; POZZI, 2011).

Theorem 7. Let T : I*(Z, L*(to, t1)) — I*(Z, L*(to,t1)) be the weighted right bilateral shift
given by

T <Z .Tnen) = Z knxn—len

nez nez

where each k, is a positive continuous function on [to,t1] such that k, — b uniformly as
n — —o and k, — a uniformly as n — +00. Then for any complex number a < || < b,

the operator T — X is an universal operator.

Proof. Suppose that a > 0. Note that if f = Z gmem, where {e,,} is the standard
meZ
orthonormal basis of 1*(Z), then

1T fl2 < sup [|[kmllol f]l2-
meZ

Let € > 0, mg € Z, A, S [to, 1], pn(Ac) > 0 such that

€
kmolloo = sup [[Kialoo — 3,
meZ

and for z € A,
[Fimo ()| > (K lloo — 5

Also, if we take f = x4, em,, then we have

TN > (Hkmolloo = €)v/ p1(Ae)-

So, we have that ||T|| = sup||km|lw. By an inductive argument, we obtain that for
meZ
ne IN* ||T"|| = sup |kmkm+1---Kmin—1]|w- Since k, converges uniformly to b as n tends
meZ
to 400, it follows that

sup ”kmkm-‘rl---km-i-n—lnéén n—ow b.
meZ
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Since 77! is an unitary equivalent to a bilateral right shift with weights

ky, = E::Z, in the same way, one can show that |7~
the spectrum of T, (T~ ") = o(T)~". For that reason, we have that o(T) S {z€ C:a <

|z| < b}; since o(T*) = o(T'), we obtain

”||1/” —noe 1/a. As 0 does not lie in

o(T*)c{zeC:a<|Z| <b}.

Note that if @ = 0, then we have o(T*) < D(0, b).

Let 0 be with a < |o] < b. If f = Zgnen, in which all n € Z, g, is in
nez

L*(to, 1), the equation T*f = \f gives

400 +0 400
A Z Gn€n = Z gnkn—len—l = Z gn-i-lknen

n=—oo n=—0uo n=—0u

which implies that for all n € Z, g, = k,gn+1. Setting go to be any function of norm 1 in
L*(ty,t1), and defining on (to, ),

_ )\ngo/(kokl...knfl) forn >0
I Argokk ey ki for m <0

we see easily that Z lgnll3 converges.
nez
+o0
Hence, f = Z gneyn is an eigenvector of T* and A € 0,(T*) with infinite

n=—aoo

multiplicity. We conclude that

o(T)=0(T*)={2€C:a<|z] <b}.

It remains to check that for A € (a,b), T'— Al is bounded below. Suppose
towards a contradiction that A\ is an approximate eigenvalue of T'. So, for each i € IN¥,
there is an unit vector f(i) = {f;(i)}jez such that

1T f(i) = Af @) < 1/i.

Suppose first that lim glf | fo(@)]]2 = 0. So, for all € > 0, there is an index i such
that || fo(?)|l2 < € and ||Tf(i) — Af(i)|| < e. Denoting by h(i) = f(i) — fo(i)eq (which is,

setting to zero the component corresponding to j = 0), we have

ITh(E) =A@ < ITF@) =A@+ 1T fo(i)eo — Afol@)eol
< e+ (T[]l +[ADe
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and thus there is an approximate eigenvector h(i) of norm 1 such that ho(i) = 0 and
ITh(i) — Ah(3)]| < e.

We can write h(i) = (i) + (i) where (i) is supported on the negative in-
tegers and (i) is supported on the positive integers. Since their supports are disjoint,
Th(i) — Ah(i) is the orthogonal sum of T'(:) — Al(i) and Tr(i) — Ar(i). Since h(7) is of
norm 1, one of [(7) and 7(¢) has norm bigger than 1/2 and thus, we may find a sequence of
approximate eigenvectors supported entirely on either the positive or negative integers.
We will denote it by p(i), and may suppose without loss of generality that ||p(i) = 1|| and
ITp() — Ap(@)l < 1/i. Now

Tp(i) — N'p(i) = (T" P+ AT" 2 + .. + X" 1) (Tp(i) — Ap(i))

and so ||[T"p(i) — A"p(3)|| < Cy/i, where C,, depends on A\ and the weights but not on 7. If
p(i1) = {p;(7)} is supported on the positive integers, then

1/2
[T"p()]l2 = (Z KK 1 Fjgm 1%()\\3)

> (inf( min K (u)kji1(w). . Kjrn1( >2i [[p; (i ||2> N

J>0 \ uelto,t1] a

_ lmf< min  k;(u )kj+1(u)...kj+n1(u)>]'

7>0 \ue [to tl]

Without loss of generality, we can suppose that b > 1. So, for n sufficiently

large, we have
inf < min _k;(u )kjﬂ(u)...kjml(u)) > |A"| + 2.

7>0 u6[t0 tl]

Choosing i larger than C,, we obtain a contradiction. Applying similar argu-
ments to 77!, we obtain a contraction when 7" has an approximate eigenvector supported

on the negative integers.

Suppose that hm 1nf | fo(?)|l2 = d > 0. Since we have an approximate eigenvec-
tor f(i) = {fu(i)} of norm T such that ||T'f(i) — Af(i)|]] < 1/7, then a simple inductive

argument shows that there are constants {D,,},>o independent of i such that

N koki. Ky . D,
[ frs1(d) — %fo(lﬂb S 0 for neNN.

If || fo(i)]|2 = d/2, then,

. koky...ky . . D,
Ifaa@ls > 1255 fo @)l — =

minue[to’tl] kj (U)k‘j+1 (U)...l{fjJrn,l (U) . Dn
> yreT I fo(@)l = =2
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Since '
Millyefro 0] Ky (WK 11 (1) Fjin1 (1)
|)\n+l|

—p—too— T30,

we may find an index n such that || f,4+1(7)||2 = 2 — D, /i. But, as f(¢) is a vector of norm

1, if we choose 7 larger than D,,, we obtain a contradiction. O]

3.2 Universality on H*(C,)

Lemma 2. Let p € (0,4x), w € C, and ¢ : C. — C, be the hyperbolic symbol

Y(s) = ps + w. Then the composition operator Cy : H*(C,) — H?*(C,) is unitary
1

equivalent to the operator M : L*(Ry) — L*(Ry) defined by (M f)(t) = ;e‘tw/"f(t/,u).

Proof. By the Paley-Wiener theorem, the map P : L*(R.) — H?*(C,) defined by
(Pf)(s)=| ft)e "dt
Ry

is an isometric isomorphism. Let f € L*(R,) and F = P(f) e H*(C,). We get
(CoPf)(s) = CyuF(s)=Flus+w)= | f(t)e =t
Ry
1
= f(t)e e Mo dt = J —f(t/p)e wmetdt
R, R, M
= (PM[)(s).
That is the reason for Cy, on H?(C,) is unitary equivalent to M on L*(R.).
[l

Lemma 3. For p € (0,1) u (1,+0), the operator M : L*(R,) — L*(R,) defined by
1

(Mf)(t) = ;e’tw/“f(t/u) is unitary equivalent to the weighted left bilateral shift T' defined

by

T (Z gnen> = Z Cngn+1€n

nez nez

on I*(Z, L*[1, u]) for u> 1 (resp. *(Z, L*[u,1]) for p < 1), and where

Cn(t) — /Lfl/ZeftRe(w)ufnfl

are positive and continuous functions on [1,u] (resp. [, 1]).
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Proof. Let f e L*(R.) and consider first the case y > 1. Then after a simple change of

variables
Miem,y = dt = dt = T f( dt (3.1
. f (1) éf (1) éf Pt (3.1)
_ ‘fwwtm>w

nez

define a sequence of unimodular functions by

1_[ efitlm(w),u*"C ifn=0

QA 1= —n—1
—q i k.
e itIm(w) H eztlm(w)u ifn <0
k=0

itIm(w)p~""1

and note that a,/a,4; = € for all n. Therefore ¥ : L*(R,) — [*(Z, L*[1, u])

defined by

f):Zhnen

nez

where h,(t) = p~"?a, f(t/u") is an unitary operator. Indeed, the equation (3.1) and the

unimodularity of the a,, gives

NCHIE = D MhalZep g = 1172

nez

for each f e L*(R,). Hence f € L*(R,), we get

(ToM)f = (e ™rf(t/p) = p e *"/Qanf(t/u"“)en
neZ
— —tw —-_n— an 771,7 CLn
_ Z 1 1/26 twp ! n+1€n Z ILL ' hn+1€n
neZ a +1 neZ An+1
= Z ,u ~tRe(w) n+1€n Z Cn n+1€n
nez nez
= T(Z hnen) = (T o W) f.
nez

As a result M is unitary equivalent to 7" when g > 1. The case 0 < p < 1 is
analogous to the only change replacing I?(Z, L*[1, u]) by (*(Z, L*[, 1]) and equation (3.1)

becoming

1
1 2om, = f %—ZJMUW|ﬁ—Z 1 f () Pt
neZ Y K" nezZ YK nez vHm
S Il
= N a2

nez
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The constants a,,, functions h,, and operator ¥ : L*(R,) — (*(Z, L*[u, 1]) are

defined as the previous case and the rest of the proof follows verbatim.

]

Theorem 8. Let p € (0,1) u (1,0), w € C; and the map ¢ : C, — C, be given by
Y(s) = ps +w. For p > 1, the operator Cy, — M is universal on H*(C,) for \ with
0< |\ <pu Y2 If u <1 then Cy — M is universal for all X with 0 < || < Y2 We
have {Ae C: 0 < |\ < u=?} € 0,(Cy) if u > 1 and 0,(Cy) = & if p < 1. In both cases
o(Cy) = e C: A < p 12},

Proof. By Lemma 2 and Lemma 3 we see that Cy, is unitary equivalent to a weighted left
bilateral shift with weights

Cn(t> _ Iu/fl/2eftRe(w),u_"_1.
We first observe that any shift is unitary equivalent to the corresponding right

shift with reversed weights
c (t) :=c_n(t) = u_l/Qe—tRe(w)p,"—17

and its adjoint is unitary equivalent to the right shift with the same weights (¢, )nez. Hence
when g > 1, we see that ¢, — 0 asn — 400 and ¢, — p~ "% as n — —oo uniformly on [1, z].
So Cy, — Al is universal for 0 < |A| < =2 by Theorem 7. For the case u < 1, ¢, — 0
as n — +ow and ¢, — p~Y? as n — —oo uniformly on [y, 1] implies that Cy — M is

~1/2

universal for 0 < |A| < g~ /. The statement on the spectrum and point spectrum follow

the Theorem 7.
O]

Hence we get the following reformulation of the invariant subspace problem.

Corollary 6. Let ¢(s) = pus +w with p > 1 and w € Cy. Then every bounded linear
operator on a separable complex Hilbert space has a proper invariant subspace if and only

if the minimal non-trivial invariant subspaces of Cy, in H*(C,) are all one dimensional.

Proof. By Theorem 8, we have that Cy, — Al is universal. Then by Proposition 11, we
have that for 0 # X € 0(Cy) every bounded linear operator on a separable complex Hilbert
space, has a proper invariant subspace if and only if the minimal non-trivial invariant

subspaces of Cyy — A in H?*(C,) are all one dimensional.

Note that if M is an invariant subspace for Cy, then M is an invariant subspace
for Cy — AI. And if M is an invariant subspace for Cy —AI then M is an invariant subspace

for Cy. Then we have that every bounded linear operator on a separable complex Hilbert
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space has a proper invariant subspace if and only if the minimal non-trivial invariant

subspaces of Cy, in H?(C, ) are all one dimensional.

]

Proposition 12. Let ¢ : Cy — C; be a linear fractional transformation. Then Cy — N :
H?*(Cy) — H*(Cy) is universal for all 0 # X\ € o(Cy), if and only if ¢ is a hyperbolic
linear fractional transformation of form pz + w, with p > 1 and Re(w) > 0. Furthermore
if ¢ is not of form pz + w, with 1 < 1 and Re(w) > 0, we have that Cy, — NI is not

universal for all X € C.

Proof. If ¢ is a parabolic linear fractional transformation, then o(C}) has empty interior,

thus Cp — A is not universal, for all A € C.

If ¢(s) = ps + w, where p < 1 and Re(w) > 0, then by Theorem 8 C,

does not have eigenvectors, thus Cy — AI is not universal, for all A € C.

If ¢(s) = s + w, where Re(w) > 0, we have that o(C,) has empty inte-

rior, then U, does not have eigenvectors, thus Cy — Al is not universal, for all A € C.

By Theorem 8, if ¢(s) = pus + w, with g > 1 and Re(w) > 0, then Cy — AI :
H?*(C,) — H?*(Cy) is universal for all 0 # X € 0(Cy).

]

3.3 Universality in H*(D)

Theorem 9. Let ¢ be a hyperbolic linear fractional selfmap of D. If A # 0 is in the interior
of (Cy), then Cy— NI is universal on H*(D). In particular the ISP has a positive solution

if and only if the minimal non-trivial invariant subspaces of Cy are all one dimensional.

This extends a thirty year old result of Nordgren, Rosenthal and Wintrobe
(NORDGREN; ROSENTHAL; WINTROBE, 1987) where they proved this for hyperbolic
automorphisms. Let ¢ be a non-automorphic hyperbolic self map of D. Hence ¢ fixes one
point x € T and the other outside the closed unit disk D (possibly o). It was shown by
(HURST, 1997) that in this case Cy is similar to Cy, where

op(2) = bz +1—b, with b:= ¢'(x) € (0,1).

It is known that a composition operator Cy, on H?(C,) is unitary equivalent to the

weighted composition operator We on H?(D) defined by
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(Waf)(z) = ——2f(@(2))  (3.2)

1+z2

where ® =y 'ogoy:D — D and v: D — C, is the conformal map (z) = and

z—1
7 (z) = P Via this equivalence Cy, is equivalent to a scalar multiple of an universal
z

composition operators on H*(C.).

Lemma 4. Let be (0,1) and ¢, be the self map of D given by ¢p(z) = bz +1—0b. Then

Cy, on H*(D) is unitary equivalent to b=*Cy, on H?*(C,) where

b

Up(s) = b ts + (b7 —1).

Proof. We only have to determine (3.2) with ® = v~ 04, 0. We get

(7t otion(s) = A7) + (7 - 1) = E; R
B b—1%+b—1—2_bl(1+z) (b1 —2)(1-2)
CbHE T b (14 2) + b (1 —2)

2071 — 2 + 22
= T=b2+(1—b)
= ¢(2),

similarly

1-9(z)  1-ay(2) _ b1 —2) _
1—=2 1—z 1—z

As a result we see that Cy, is unitary equivalent to We = bCy, .

For this reason, we are ready to treat the hyperbolic non-automorphism case
which, together with the automorphism case, (see [([NORDGREN; ROSENTHAL; WIN-
TROBE, 1987), Theorem 6.2]) proves Theorem 9.

]

Theorem 10. Let ¢ be a hyperbolic linear fractional map with one fixed point x € T
and the other outside the closed unit disk D. If b := ¢'(x) € (0,1), then for each X\ with
0 < |\ < b™Y2 the operator Cy — NI is universal on H*(D).

Proof. By Lemma 4 and the discussion before it we see that C;, on H*(ID) is similar to
b~'Cy, on H*(C.). Since y(s) = b~ 's+ (b™" — 1) and b~' > 1, it follows by Theorem
8 that Cy, — I is universal for 0 < |\| < b"/2. Therefore Cy — AT must be universal for
0< |\ <b 2
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Notice that Theorem 10 implies that each point with 0 < || < ¢'(x)™Y?
is an eigenvalue of C,, of infinite multiplicity and that o(Cy) = {A e C: |\ < ¢'(x) 2},
hence arriving at a result of Hurst [(HURST, 1997), Theorem 8] with a different proof. [

Proposition 13. Let ¢ : D — D a linear fractional transformation, then Cy — A\ is
universal for all 0 # X € Int(c(Cy)) if and only if ¢ is hyperbolic and ¢ does not have a
fized point in D. Furthermore if ¢ is not hyperbolic or has fixed point in D, we have that
Cy — M is not universal for all X € C.

Proof. By Corollary 4 we have that if ¢ : D — D is not hyperbolic or has fixed point on
D, then Cy — Al is not universal for all A € C.

By (NORDGREN; ROSENTHAL; WINTROBE, 1987) we have that if ¢ :
D — D is a hyperbolic automorphism, then Cy — A/ is universal for all 0 # \ € Int(a(Cy)).

By theorem 9, if ¢ : D — D is a hyperbolic non-automorphism without
fixed point on D, then C;, — Al is universal for all 0 # X € Int(c(Cy)). O
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4 Minimal invariant subspaces of Cqbb

In this chapter we consider the canonical hyperbolic non-automorphism

op(2) =bz+1—b, 0<b<1.

The operator Cy, on H*(D) was studied by (DEDDENS, 1972) where it was
shown that the adjoint of Cy, is subnormal and where its spectrum was first determined.
An easy inductive argument shows that the formula for the compositions iterates of ¢ is
strikingly simple:

op) ="z + 1= b = gy (2)

for each n € IN. For this reason qﬁl[,"](z) is a convex combination between z and 1 for each

n € IN and QSIEn] — 1 uniformly on D as n — o0. Also note that Cy = C,n) = Cg,,,. For

0"
each non-zero f € H*(D), we denote by K the cyclic subspace defined by

Ky = span{C}, f :n = 0},
In addition to a,b € (0,1), we have that

Ga 0 Pp(2) = Go(bz+1—=0)=abz+a—ab+1—a=abz+1—ab= ¢u(2),

then Cy, 0 Cy, = Cy, 0 Cy, = Cp,,. It is followed by S = {Cyp, : b € (0,1)} being a

multiplicative semigroup of operator.

4.1 Eigenvectors of Cy,

Clearly each one of K is a closed invariant subspace for Cy,. If K; = H*(D),
then f is called a cyclic vector for Cy,. Furthermore K is a proper invariant subspace
precisely when f is non-cyclic. Now if £ is a closed invariant subspace of Cy, then obviously
Ky c Eforall f e E. Butif F is also minimal invariant then in fact K; = E for all f € .
Hence minimal invariant subspaces are necessarily cyclic. Now since dimK; = 1 precisely
when f is an eigenvector for Cy,, the ISP has a positive solution if and only if K is not
minimal whenever f is not an eigenvector of Cy, (see Theorem 9). It suggests that the
problem of eliminating as many functions as possible for which K is non-minimal. Since
such functions must necessarily be not eigenvectors, it is interesting to know the behaviour

of eigenvectors.
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Example 1. The main examples of eigenvectors for Cy, are the functions
fo(z) = (1—2)°
for s e C. In fact for z € D we have

(Co fi)(2) = (1= (b2 +1=0))* = 0°(1 = 2)° = b fs(2).

So Cy, fs = b fs for allbe (0,1) and in Lemma 7 of (HURST, 1997) it was showed that
fs € H? if and only if Re(s) > —1/2.

For any non-zero f € H*(D) we define the subset Ay = (0,1) by
Ar={ae (0,1): f is an egeinvector of Cy, }.

Theorem 11. Let f € H*(D) not be a scalar multiple of f, for any s € C. Then either
Ay is empty or Ay = {c" : n e N} for some c € (0,1).

Proof. First we prove that Ay is closed in (0, 1) and has empty interior. Let

S={zeD: f(z) # 0}

be the open subset of D where f is non-vanishing. Suppose A; in non-empty and there is
a sequence (by)new in Ay that converges to some b € (0,1) with Cy, f = X\, f. Then for

z € Y we have

s T C¢bnf(z) . f(bnz +1- bn) _ C¢bf(z)
S M [E R (O N [

which exists and for this reason be Ay . So Ay is closed in (0, 1). Now suppose A contains
an open interval (s,t). Then let A : (s,¢) — C be the function defined by

fbz +1=b) = Cy, f(2) = Ab) f(2),

for b e (s,t). Then fixing z € ¥ shows that A is continuously differentiable on (s,t). Now

differentiating with respect to b while fixing z gives

N(b)f(2)

fl(bz+1-0b) = o

and doing the same with respect to z while fixing b gives

A ()

fbz +1-b) = =%
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! —s(b b (b
Therefore /) _ sl ) where s(b) = () for all z € ¥ and b e (s,t). This
flz)  1-=z A(b)
implies f # 0 in D, otherwise f’/f would have a pole in D. So f has a holomorphic

logarithm g with €? = f in D. Derivating the equation fe™¥ =1 gives f'e™9 = ¢'fe 9 = ¢
or ¢ = f'/f. For that reason g(z) = s(b)log(l — z) + C for a constant C' and hence
f(2) = K(1 - 2)*® for some constant K. This contradicts our assumption and as a result

Ay has empty interior.

We now prove that Ay = (¢"),en for some c € (0,1) if Ay # &. Note that a € Ay
implies (a")new € Af. If a,be Ay with Cy, f = Ao f and Cy, f = Ao f, then Cyp,, f = Ao f
and if a < b we have that

1

C¢a/bf = >\b

1 Aa
C¢a/b0¢bf = ybc%f = /\7bf7

where ), is non-zero since Cy, is injective. So a,b € Ay implies ab e Ay and also if a < b
then a/b € Ay. Now, since the complement of A; in (0,1) is open and dense, there are
a,b e Ay such that (a,b) n Ay = . We define ¢ := a/b € Ay and hence (¢"),eny < Ay.

N+

Since ¢ > a and ¢ ¢ (a,b) imply ¢ = b. We now claim that a = ¢! and b = N for some

N e IN. Otherwise there is n € IN such that ¢"*!' < a < b < ¢" since (a,b) n Ay = . But
b < ¢" implies a = ¢b < ¢"*! which is a contradiction. So a = ¢V ™. So a = V! and

b =c" for some N € IN. This implies that for all n € N

(Cn+17cn) ﬂAf _ @

otherwise if d € ("™, ") n Ay for some n then ¢ "d € (a,b) N A;. The only case that

remains is if d > ¢ and d € A;. But this is also not possible since ¢ > dc > ¢?. Therefore
Ay = (c")nen-

]
Example 2. Let h = fo+ f, 2xi for someb e (0,1) and R(s) > —1/2. Then Cy,h = b° fs+
bs+%fs+lz% — b°h because st = 1 and hence b € Ay, We will show that Ay, = (b")pen.

If some other a € Ay, then

27i
C¢ah = asfs + as+mfs+fi,i =\

g b

for some X\ € C if and only if abes = it = 1, So loga = nlogb = logb"™ for some

n € Z. Hence a =b" forn =1 since a € (0,1). For this reason A = (b")nen-

Let b e (0,1), the Example 2 leads to an interesting question:

span({fer?ﬂg ckeZ) = Ker(Cy, —b’I)?
og
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For Theorem 11, we have an interesting question "let b e (0,1), and f € H*(D)

an eigenvector of Cy,, if f is not a scalar multiple of f,, for some s, what can we say about

span({Cs, f :a € (0,1)})?"

We know that if f is an eigenvector of Cy, with eigenvalue A, and a € (0, 1),
then

Co,(Co. f) = C,(Cy, ) = A, f,

this is, Cy, f is an eigenvector of Uy, with eigenvalue A, then we have that

span({Cy, f - a € (0,1)}),

is a closed subspace of Ker(Cy, — AI), but we do not know under which condition

span({Cy, f : a € (0,1)}) is finite dimensional, proper or equal to Ker(Cy, — ).
By Example 2 we have if h = aq f_, 2y +oof By + ot anf, Zeni with
a; #0, for j =1,2,...,n, then Dzm(spcm({C%h ae (0, 1)})) n.

Proposition 14. If f € Cy, (H*(D)), then there is a U open, such that D — {1} = U, and
there is fi analytic on U, with f1(z) = f(2), for all z € D.

Proof. Let f € Cy,(H?*(D)), then there is g € H*(D), such that Cy,g = f.

Let D; = {z € C:|z—1+b' < b'}, we have that ¢,(D;) = D, then
g o ¢ is an analytic extension to f and D — {1} = D;.

]

Note that

o If K; is minimal, then Kc%f = Ky is minimal.

o If K¢ 4,/ 18 1Ot minimal, then K is not minimal.

Then, when we work with Cy,-invariants spaces of form Ky, we can assume

that f has an analytic extension to an open subset containing D — {1}.

Theorem 12. If f is an eigenvector of Cy,, then there is fi analytic on {z € C : Re(z) < 1},
such that fi1(z) = f(z), for all z€ D.

Proof. Let zg € C. If Re(zy) < 1, there is n € IN, such that, |20 —1+b7"| < b~", by proof of
Proposition 14 there is f,, analiticon {z € C: |z—1+b""| < b "}, such that f,(z) = f(2),
for all z € D.

]
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Corollary 7. Let f be an eigenvector of Cy, and g the analytic extension on {z € C :
Re(z) < 1}. If f(2z0) = 0, for any zg € D. then g(b"zg+ 1 —b") =0 for all n € Z.

Proof. For n = 0, we have that g(b"zo + 1 —b") = f(és(20)) = N"f(20) = 0.

If n <0, since A\"f o ¢y_, (2) = f(2), for all z € D, we have that A" f o ¢;,_ (2)
is an analytic extension of f on {z € C : |z — 1+ 0"| < b"}, thus g(b"z +1 —0") =
N oy (B2 + 1 — ") = A f(z) = 0.

]
Lemma 5. Let f be an eigenvector of Cy,, with Cy, f = Nf. If f' € H*(D), then f' is an

A
eigenvector of Cy, and Cy, f' = gf’. In particular, if the n-th derivative ™ e H*(D) for

all n € IN then f must be a polynomial.

Proof. We have that M = ), then (M>/ = 0. Thus, we have that
f(2) f(z)
<f(bz +1-— b))’ bz +1-0)f(2) = fbz+1-0)f"(2) _ 0
f(2) f(z)? ’

then

iz bf(2)

fl(bz+1-=0) f(bz+1-0) A
,

Therefore Cy, f'(z) = f'(bz +1—10) = 2]”(7;).

[]

Theorem 13. If f is a non-zero Cy,-eigenvector that is analytic at the point 1, then
f(z) = K(1 —2)" for some n €N and scalar K.

Proof. Since f is analytic at 1 and on {z € C : Re(z) < 1} by Theorem 12, it is in
particular analytic in a neighborhood of D. As a result all derivatives f™ for n € IN are
analytic in a neighborhood of D and in particular belong to H?(D). Therefore f is a
polynomial by Lemma 5. Clearly f has no zeros in C\{1} by Corollary 7. If f(1) # 0 then
f is a polynomial with no zeros in C and hence a constant. Otherwise if f(1) = 0 then
f(z) = K(1 — 2)" for some n € N and scalar K. O

We have just seen that eigenvectors of Cy, are somehow determined by their
behaviour at the boundary point 1. The next result shows how eigenvalues determine the

radial limits at 1 of the corresponding eigenvectors.

Proposition 15. Let f € H*(D) be an eigenvector for Cy, with eigenvalue X. Then
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0, if |\ <1
. ) o0, if [N\ > land f does not have zeros in (—1,1
Py =t py = T o

r—1- L, if f is constant

does not exist otherwise.

Proof. Let X\ be in C, with |A\| < 1 and f € H*(D), such that Cy, f = \f. Fix tg € (-1, 1).

Consider K =  sup (|f(2)]). Let Ny € N, we know that if ¢yn+1(tg) < 2z < 1,
z€[to,¢p(to)]
then there exists zy € [to, dp(to)], With ¢pn(29) = z, for some n > Ny, that implies

1£(2)] = |f © ¢pn(20)| = |Coy f (20)] = [X"f(20)] < [A* K. Therefore f*(1) = 0.

Let A be in C, with [A\| > 1 and f € H*(D), such that Cy,f = \f and f

does not have zeros in (—1,1). Fix tg € (—=1,1). Consider K = _inf (|f(2)]), by f
z€[to,¢b(to)]

does not have zeros in (—1,1), we have that K > 0. Let ¢ > 0, we know that there is
Ny € N, such that, if z € (=1,1) and 1 — z < €, exists n > Ny, and 2y € [to, dp(to)],
with ¢y (20) = 2, that implies [f(2)] = [f © ¢ (20)| = |C, f(20)] = [N"f(20)] > [AVK.
Therefore f*(1) = oo.

If f is constant, it is obvious that f*(1) = L # 0.

Let f € H*(D), such that f has zeros in (—1,1) and Cy, f = Af with A > 1.
Let tg € (—1,1) with f(ty) = 0, and let t; € (—1,1) with f(t;) # 0. We have that
(oo (to)) =0, for all n.e N, and f(gpn(t1)) = A" f(t1), for all n € N. By ¢pn(ty) — 1 and

¢y (t1) — 1, when n — o0, we have that lim f(¢) does not exist.
t—1—

Let f € H*(D), such that is not a constant function and Cy, f = f. There are t,
and ¢y in (—1,1), with f(¢y) # f(t1), and we have f(¢p(to)) = f(to) and f(pp(t1)) = f(t1)
for all n € IN. By ¢y (tg) — 1 and ¢yn(t1) — 1, when n — oo, we have that tlirln_ f(t) does

not exist.

Let f e H*(D), with Cy, f = Af and |\| = 1, with A # 1. Let t € (—1,1),
f(ppn(t)) = A" f(t), it does not converge, then we have that f*(1) cannot exist.

]

Example 3. Recall that f, = (1 — 2)* = ¢*°81=2) where Cy, f, == b°f, for allbe (0,1)
and f, € H*(D) if and only if RE(s) > —1/2. Note also that f, has no zeros in D. If
we write A = b° = 8% then |\| < 1 precisely when Re(s) > 0 in which case clearly
fE(1) = 0. It is similar to |\ > 1 precisely when Re(s) < 0 and in this case fX(1) = 0.

Finally |A| = 1, precisely when Re(s) = 0 in this case f;(1) = lim eI 10e(1=") does not

r—1
exist, unless Im(s) = 0 and in this case A = 1 and fo = 1. Also f, is analytic at 1 if and
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only if se IN. If s ¢ IN and hence f is not a polynomial, then

fr=s(s—1)..(s=n+1)(1- Z)(s—n)

s

does not belong to H*(D) if n > Re(s) + 1/2 in accordance with Lemma 5. Finally we

five an example of an eigenvector with zeros in {z € C: Re(z) < 1}. Let h = f, — f,. 2mi .
og
2mni

Then Cyh = b°h and h(0) = 0. Moreover h(1 —b") = b"* — b"** st = 0 for alln € Z in

accordance with Corollary 7.

By Proposition 15, if f*(1) = L # 0 and f is a non-constant function, then
f cannot be an eigenvector for Cy,. In this case, the next result shows that the cyclic

subspaces K are never minimal invariant.

Theorem 14. Let f € H*(D) with f*(1) = L # 0. Then K; is a minimal invariant
subspace for Cy, if and only if f is the constant L.

If ¢ is some holomorphic self map of D, then the Nevanlinna counting function

for ¢ is defined for all w € D\{¢(0)} by

Ny(w) = >, log—

zedp—H{w} |Z‘

where ¢~ '{w} is the sequence of ¢-preimages of w repeated according to their multi-
plicities. If w ¢ ¢(D) then Ny(w) is defined as 0. We shall need the following change of
variables formula used by Shapiro in his seminal work on compact composition operators
[((SHAPHIRO, 1987), Corollory 4.4]:

ICaf§ =2 | 11/ w) No(w)dA(w) + |F(6(0)F
for any f holomorphic on D and where dA is the normalized area measure on D.
Proof. Since Cg, = Cy,» and ¢pn(0) =1 — 0", we get

IC3 f—LII3 = [Con(f—L)3
_ 2J]D ()N, (w)dA(w) + |f(1 — ") — LI,

We only need to prove that the integral on the right tends to 0 as n — 0.
This is followed by a simple monotone convergence argument. Indeed, first notice that the
images ¢y (D) = 0"D + (1 — b") are open disks of decreasing radii b" with centres 1 — b"
tending to 1. Therefore for each w € D we have w ¢ ¢y (D) and hence Ny, (w) = 0 for

every sufficiently large n. So Ny,, is a monotonically decreasing positive function on D with
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pointwise limit 0. Hence the integral above vanishes as claimed, and with f(1 —b") — L
as n — o0, this implies that Cj f — L in H?(D). Therefore the constant L € K; and K

is minimal if and only if Ky = C, in this case f must be the constant L.

O

As a consequence, we have the following general results which include functions

for which f*(1) is zero or does not exist.

Corollary 8. Let p = 0, q any real number and suppose f € (1 — 2)P* " H*(D) such that

lim f(r)

r—1- (1 — r)ptia

—L#0. (4.1)

Then K; contains the eigenvector (1 — 2)P*" and therefore K is minimal

invariant if and only if f = L(1 — 2)P™",

Observe that p = ¢ = 0 gives Theorem 14, while p > 0 implies f*(1) = 0 and
p =0 but ¢ # 0 implies f*(1) does not exist.

Proof. The hypothesis says that f(z) = (1—2)"""g(z) where g € H*(D) and g*(1) = L # 0.
Hence (1 — 2)P*" € H*(D) and Theorem 14 applied to g gives

as n — oo0. Therefore Cgbf/b"(p”q) tends to the eigenvector L(1 — 2)P** in H*(ID) which
implies (1 — 2)P*" € K; and K is minimal if and only if f = L(1 — 2)P*%.

2

= (L= 2princyg - DB
2

< 2|09~ L3~ 0

Cof

pn(p+iq)

— L(1 — z)Pt

]

Corollary 9. If f € H*(D) is analytic on a neighborhood of 1 with f(1) =0, then K is

minimal if and only if f is an eigenvector.

Proof. There must be an integer k > 0, a neighborhood U of 1 and a function g holomorphic
on U with g(1) = L # 0 such that f = (1 — 2)*g. Now

Copun = V"™ (1 = 2)"(g 0 G4n)

and if n is sufficiently large, say n > ng then ¢y (D) = "D + (1 — b") < U. Hence g o ¢pn
is a bounded holomorphic function on D for n > ng with g o ¢y (1) = L. Now applying
Corollary 8 with h := Cy,, f/ b™ for some n > ng and p + ig = k implies the eigenvector
(1 — 2)F € K}, = K; which concludes the proof.
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]

Finally we consider a class of functions for which condition (4.1) does not hold

for any value of p or q. For a > 0, let E, denote the singular shift-invariant subspace

z+

E, = e"=

T H2(D).

: . el L 241 )
It is clear that £, ¢ E, if @’ < a because e”>=1 divides e“*=1T as an inner

function. Cowen and Wahl (see [(COWEN; WAHL, 2014), Theorem 5]) showed that if
¢ is any self-map of the disk with ¢(1) = 1 and ¢'(1) < 1, then each E, is an invariant
subspace for Cy. In particular Cy, E, < E, for all a > 0. It is clear that f*(1) = 0 for

all f € E, and that no such f satisfies (4.1) for any values of p or ¢. The next result

shows that even in this case we get non-minimality of the corresponding cyclic subspace K.
Proposition 16. For any a > 0 and f € E, non-zero, the cyclic subspace Ky is not
minimal invariant for Cy,.

Proof. First note that

z+1 a bz—a+2

C(z,beaZ*l = eb =2-1 = 6%2*16

which implies that C’nga < Eqpn for all n > 1 and clearly E,» < E,. Then we prove
that for each non-zero f € H*(ID) there is an integer N large enough (depending on f)
such that f ¢ Ey. Otherwise, the inner part of f would be divisible by each of the singular

inner functions I,,(z) := "1 for n e N. But this implies that

2mn = p,({1}) < py({1})

for all n € N, where p,, and iy are the singular measures on T corresponding to I,, and
f respectively (see [(MARTINEZ-AVENDANO; ROSENTHAL, 2007), Theorem 2.6.7)).
Hence pf({1}) = oo which is a contradiction. Now let f € E,\{0} for some a > 0 and
suppose f ¢ Ey for some N > a. Then there is ng such that C§ f € E,pn < Ey for all
n = ng. So if g := C} f, then K, < Ey which implies that f ¢ K,. Therefore K, is a

proper closed invariant subspace of K; under Cy, and hence Ky is not minimal.

O
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