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Resumo
O problema do subespaço invariante é um dos mais importantes problemas em aberto da
área de teoria dos operadores, sabemos que o problema do subespaço invariante é equivalente
a mostrar que todos subespaços minimais de um operador universal são unidimensionais.
Sejam D e C` o disco aberto unitário e o semiplano direito respectivamente. Neste trabalho
caracterizaremos quais operadores de composição induzidos por símbolos lineares possuem
uma translação universal nos espaços de Hardy H2

pDq e H2
pC`q. Em ambos os casos

conseguimos encontrar novos exemplos. O mais proeminente desses é o automorfismo afim
de D definido por

Cφbpzq “ bz ` 1´ b

para 0 ă b ă 1. Neste trabalho também nos dedicamos na analise dos autovetores e
subesbaços minimais de Cφb em H2

pDq.

Palavras-chave: operadores de composição. operador universal. problema do subespaço
invariante.



Abstract
The invariant subspace problem is one of the most important open problems of operator
theory. We know that the invariant subspace problem is equivalent to the statement that
all minimal invariant subspaces for a universal operator are one dimensional. Let D and C`
be the open unit disk and right half-plane respectively. In this work we characterize which
compositions operators induced by linear fractional symbols have universal translates on
the Hardy spaces H2

pDq and H2
pC`q. In both cases new examples are discovered. The

most prominent of these being the affine self-map of D defined by

φbpzq “ bz ` 1´ b

for 0 ă b ă 1. We also dedicate our attention to an analysis of the eigenvectors and
minimal invariant subspaces of Cφb on H2

pDq.

Keywords: compositions operators. universal operator. invariant subspace problem.
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C Set of complex numbers
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RpT q Range of operator T
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T ˚ Adjoint of operator T
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H2
pDq Hardy space of analytic functions on the open unit disc

H2
pC`q Hardy space of analytic functions on the right half-plane

Cφ Composition operator induced by analytic function φ
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Introduction

The linear fractional transformations are the automorphisms of the Riemann
sphere C and the composition operators Cφ, where φ is a linear fractional transformation
are the most studied class of composition operators on both H2

pDq and on H2
pC`q.

The invariant subspace problem is the most important open problem in operator
theory and it is not known who formulate it first. Apparently the problem was formulated
after Beurling’s publication on invariant subspaces of unilateral shift (BEURLING, 1949),
or after the unpublished work of Von Neumann on compact operators.

In this thesis we will show a necessary and sufficient condition for operator
Cφ ´ λI to be universal, where φ is a linear fractional transformation, Cφ is a composition
operator on H2

pDq (or on H2
pC`q), and 0 ‰ λ P σ0pCφq. Furthermore, we will show that

the invariant subspace problem can be solved by analyzing the invariant subspaces of
the operator Cφb , with φb : DÑ D being a non-automorphic hyperbolic linear fractional
transformation. The results of this work have been accepted for publication as:

João R. Carmo and S. Waleed Noor, Universal composition operators, J.
Operator Theory (to be published).

In the first chapter we will provide the basic results that will be utilized through-
out the work. We will also define the linear fractional transformations, the concept of Hardy
Hilbert space, the concept of composition operator and the proof of some properties of the
compositions operators. The main reference for this chapter is (MARTÍNEZ-AVENDAÑO;
ROSENTHAL, 2007).

In the first section of Chapter 2, a discussion will be made on the invari-
ant subspace problem. In the first section we will cite the particular cases for which the
problem has a solution. In the second section we will present the concept of universal
operator and we will prove a result that relates the concept of universal operator to the
invariant subspace problem. The main references for this chapter are (ENFLO, 1976),
(LOMONOSOV, 1973), (CARADUS, 1969).

In Chapter 3, we will prove that the operator Cφ ´ λI is universal on H2
pC`q,

for 0 ‰ λ in the interior of σpCφq, where φ is a certain type of hyperbolic linear frac-
tional transformation. Furthermore, we will prove that this is the only type of linear
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fractional transformation on C` such that Cφ ´ λI is universal on H2
pC`q for some

λ P C. Also in this chapter, we will prove that if φ : D Ñ D is a non-automorphic
hyperbolic linear fractional transformation without fix point in D, the Cφ´ λI is universal
for all 0 ‰ λ P σpCφq. This result extends a classic result of (NORDGREN; ROSEN-
THAL; WINTROBE, 1987). Moreover, we also give a sufficient and necessary condition for
Cφ´λI to be universal, with φ : DÑ D being a linear fractional transformation and λ P C.

In Chapter 4, we will work with the operator Cφb , where φb is a canonical form
of the non-automorphic hyperbolic linear fractional transformation without fixed point in
D. In this chapter we will also prove various properties of eigenvectors of Cφb and will give
results on minimal invariant subspaces of Cφb analogous to results by (MATACHE, 1993),
(CHKLIAR, 1997) for the automorphic case.
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1 Preliminaries

1.1 Linear Fractional Transformations
This section is based on (SHAPIRO, 1993).

A linear fractional transformation is a mapping of the form

T pzq “
az ` b

cz ` d

with ad´ bc ‰ 0, which is a necessary and sufficient condition for T to be non-constant.
We denote the set of all linear fractional transformations by LFT pCq.

LFT pCq is a group under composition. Each of its members maps circles
to other circles. Given any pair of circles, there are members of LFT pCq that maps one
onto the other and the same is true for the set of triples of distinct points in C.

Each non-singular 2 x 2 complex matrix gives rise to a linear fractional transfor-
mation TA. Clearly, TA “ TλA for any λ P C, for this reason, it is convenient when working
out general properties of LFT pCq to normalize the matrices to have determinant 1.

Definition 1. If ad´ bc “ 1, we say T is in standard form.

The utility of matrices in dealing with linear fractional transformations comes
from the fact that TA ˝ TB “ TAB. Clearly, the linear fractional transformation az ` b

cz ` d
fixes the point 8 if and only if c “ 0, in which case 8 is the only fixed point if and only if
a “ d and b ‰ 0. Otherwise, the fixed point equation is a quadratic, with solutions

α, β “
pa´ dq ˘ rpa´ dq2 ` 4bcs1{2

2c ,

the trace, if T pzq “ az ` b

cz ` d
is in standard form. It defines the trace of T to be χpT q “

˘pa` dq.

T has 8 as its only fixed point on the sphere, if and only if T pzq “ z ` b, in
which case |χpT q| “ 2. If T has only finite fixed points, then the equations written above
for these fixed points can be at least partially expressed in terms of the trace

α, β “
pa´ dq ˘ rχpT q2 ´ 4s1{2

2c .
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This equation together with our previous remark about maps with unique fixed
point at 8 shows that:

T P LFT pCq has an unique fixed point in C if and only if |χpT q| “ 2.

A map T P LFT pCq is called parabolic if it has a single fixed point in C.
Suppose T is parabolic and has its fixed point at α P C. If S P LFT pCq takes α to 8, then
V “ S ˝T ˝S´1 belongs to LFT pCq and fixes only the point 8. Therefore V pzq “ z` τ for
some non-zero complex number τ . Thus every parabolic linear fractional map is conjugate
to a translation.

If T is not parabolic, there are two fixed points α, β P C. Let S be a lin-
ear fractional map that takes α to 0 and β to 8. Then the map V “ S ˝ T ˝ S´1 belongs
to LFT pCq and fixes both 0 and 8, so it must have the form V pzq “ λz for some complex
number λ, which is called the multiplier for T . Thus

T pzq “ S´1
pλSpzqq,

by the chain rule,
T 1pαq “ λ and T 1pβq “

1
λ
.

The equation above implies that, if |λ| ‰ 1, then one of fixed points of T is
attractive, this is, Tnpzq tends for the attractive fixed point when n tends for `8. For
example, if |λ| ă 1, its attractive fixed point is α, and

Tnpzq Ñ α.

Note that there is an ambiguity on the definition of multiplier. If the roles of α
and β are interchanged, so that now S sends β to zero, then 1{λ is the multiplier of the
transformation. The theorem on fixed points and derivatives, shows that

λ`
1
λ
“ χpT q2 ´ 2.

Definition 2. Suppose T P LFT pCq is neither parabolic nor the identity. Let λ ‰ 1 be
the multiplier of T . Then T is called

1. Elliptic if |λ| “ 1

2. Hyperbolic if λ ą 0

3. Loxodromic if T is neither eliptic nor parabolic
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1.2 Linear Fractional Transformations in D
This section is based on (SHAPIRO, 1993).

Our interest here is in LFT pDq, the subgroup of LFT pCq consisting of selfmaps
of the unit disc D. Those that take D onto itself are called (conformal) automorphisms.
Consideration of normal forms quickly shows that

• Parabolic members of LFT pDq have their fixed point on T.

• Hyperbolic members of LFT pDq must have attractive fixed point in D, with the
other fixed point outside D, and lying on T if and only if the map is an automorphism
of D.

• Loxodromic and elliptic members of LFT pDq have a fixed point in D and a fixed
point outside D. The elliptic ones are precisely the automorphisms in LFT pDq with
this fixed point configuration.

1.3 Hardy Spaces
One of the most familiar Hilbert spaces is l2. This space consisted of the

collection of all sequences of complexes numbers panq8n“0, such that
8
ÿ

n“0
|an|

2
ă 8,

In this space the vector addiction and vector multiplication by complex numbers
are performed componentwise. The norm of the vector panq8n“0 is

‖panq8n“0‖ “

˜

8
ÿ

n“0
|an|

2

¸1{2

,

where the inner product of vectors f “ panq8n“0 and g “ pbnq8n“0 is

xf, gy “
8
ÿ

n“0
anbn.

The space l2 is separable, and all infinite dimensional separable complex Hilbert
spaces are isomorphic to each other.

Definition 3. The Hardy-Hilbert space, called H2
pDq, consists of all analytic function

fpzq “
8
ÿ

n“0
anz

n, such that
8
ÿ

n“0
|an|

2
ă 8, this is
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H2
pDq “ tfpzq “

8
ÿ

n“0
anz

n :
8
ÿ

n“0
|an|

2
ă 8u

For fpzq “
8
ÿ

n“0
anz

n and gpzq “
8
ÿ

n“0
bnz

n, the inner product on H2
pDq is defined

by

xf, gy “
8
ÿ

n“0
anbn.

The norm of vector fpzq “
8
ÿ

n“0
anz

n is

‖f‖ “

˜

8
ÿ

n“0
|an|

2

¸1{2

.

The map panq8n“0 ÞÑ

8
ÿ

n“0
anz

n clearly is an isomorphism of l2 to H2
pDq. Partic-

ularly H2
pDq is a separable Hilbert space.

Note that if |z0| ă 1, then
8
ÿ

n“0
anz

n
0 converges absolutely, because

8
ÿ

n“0
|an|

2
ă 8,

thus |an| is bounded, then lim sup |anzn0 |1{n ď |z0| ă 1. Therefore all functions in H2
pDq

are analytic in the open unit disc D.

Theorem 1. Let f be analytic on D. Then f P H2
pDq if and only if

sup
0ără1

1
2π

ż 2π

0
|fpreiθq|2dθ ă 8.

Moreover, for f P H2
pDq,

‖f‖2
“ sup

0ără1

1
2π

ż 2π

0
|fpreiθq|2dθ.

Proof. Let f be an analytic function on D with power series

fpzq “
8
ÿ

n“0
anz

n.

Then, for 0 ă r ă 1,

|fpreiθq|2 “
8
ÿ

n“0

8
ÿ

m“0
anamr

pn`mqeipn´mqθ.
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Since
1

2π

ż 2π

0
eipn´mqθdθ “ δn,m,

integrating the expression above for |fpreiθq|2 and dividing by 2π results in

1
2π

ż 2π

0
|fpreiθq|2dθ “

8
ÿ

n“0
|an|

2r2n.

If f P H2
pDq, then

8
ÿ

n“0
|an|

2r2n
ď ‖f‖2

ă 8, for every r P r0, 1q. Thus

sup
0ără1

1
2π

ż 2π

0
|fpreiθq|2dθ ď ‖f‖2

ă 8.

Conversely, assume that the above supremum is finite. As shown above,

1
2π

ż 2π

0
|fpreiθq|2dθ “

8
ÿ

n“0
|an|

2r2n.

f R H2
pDq, the right-hand side can be made arbitrarily large by taking r close to 1. This

would contradict the assumption that the supremum on the left side of the equation is finite.

Note that, by the above considerations, it also follows that for f P H2
pDq,

‖f‖2
“ sup

0ără1

1
2π

ż 2π

0
|fpreiθq|2dθ.

Some authors define the Hardy space H2
pDq as the space of analytic maps f

on D, such that

sup
0ără1

1
2π

ż 2π

0
|fpreiθq|2dθ ă 8

Definition 4. Let z0 P D. The function kz0, defined by

kz0pzq “
8
ÿ

n“0
zn0 z

n
“

1
1´ z0z

is in H2
pDq and is called reproducing kernel for z0 in H2

pDq.

We have that for z0 P D and fpzq “
8
ÿ

n“0
anz

n
P H2

pDq, fpz0q “

8
ÿ

n“0
anz

n
0 “

xf, kz0y and ‖kz0‖ “

˜

8
ÿ

n“0
|z0|

2n

¸1{2

“
1

p1´ |z0|2q1{2
, and hence, the map f ÞÑ fpz0q is a

bounded linear functional.
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Definition 5. Let f be analytic on C`, we say that f belongs to H2
pC`q, if

sup
xą0

1
π

ż `8

´8

|fpx` yiq|2dy ă 8

By (HOFFMAN, 1962), see also (PARTINGTON, 1988) we have that H2
pC`q

is a Hilbert space with norm

‖f‖ “
ˆ

sup
xą0

1
π

ż `8

´8

|fpx` yiq|2dy

˙1{2

.

and

W : H2
pDq Ñ H2

pC`q

fpwq ÞÑ gpzq “
fp1´z

1`z q?
πp1` zq

and

W´1 : H2
pC`q Ñ H2

pDq

gpzq ÞÑ fpwq “
2
?
πgp1´w

1`w q

p1` wq

is an isometric isomorphism.

Another important isomorphism between the Hardy space H2
pC`q and a

better known Hilbert space is given by

Theorem 2. (Paley-Wiener theorem)

The map P : L2
pR`q Ñ H2

pC`q, defined by

P : L2
pR`q Ñ H2

pC`q

F ptq ÞÑ fpzq “

ż

R`

F ptqe´tzdt.

is an isometric isomorphism.

1.4 Composition Operators

Definition 6. For each analytic function φ : DÑ D, we define the composition operator
Cφ by

pCφfqpzq “ fpφpzqq

for all f P H2
pDq.
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For this definition we have that if φ : DÑ D is analytic, then the composition
operator Cφ is well defined and bounded on H2

pDq with:

‖Cφ‖ ď

d

1` |φp0q|
1´ |φp0q| .

Proposition 1. If Cφ and Cψ are composition operators then Cφ ˝ Cψ “ Cψ˝φ.

Proof. Let φ, ψ be analytic functions that map the unitary disc onto himself, and f P
H2
pDq, we have that CφCψf “ Cφf ˝ ψ “ f ˝ ψ ˝ φ “ Cψ˝φf.

The adjoint of a composition operator is in most cases, difficult to describe in
simple terms, but its action on reproducing kernels is known:

Proposition 2. If Cφ is a composition operator and kλ is a reproducing kernel, then

C˚φkλ “ kφpλq.

Proof. Let f P H2
pDq. We have that xf, C˚φkλy “ xCφf, kλy “ fpφpλqq, and also that

xf, kφpλqy “ fpφpλqq. Thus, we have that C˚φkλ “ kφpλq.

Proposition 3. If Cφ is a composition operator, then

1
a

1´ |φp0q|2
ď ‖Cφ‖ ď

2
a

1´ |φp0q|2
.

Proof. By Proposition 2, we have that C˚φk0 “ kφp0q. Since ‖kλ‖2
“

1
1´ |λ|2 , we have that

‖k0‖ “ 1 and ‖kφp0q‖ “
1

a

1´ |φp0q|2
. By ‖kφp0q‖ “ ‖C˚φk0‖ ď ‖Cφ˚‖‖k0‖, we have that

1
a

1´ |φp0q|2
ď ‖C˚φ‖ “ ‖Cφ‖.

We know that ‖Cφ‖ ď

d

1` |φp0q|
1´ |φp0q| , and we note that for 0 ď r ă 1, we have

c

1` r
1´ r “

c

p1` rq2
1´ r2 “

1` r
?

1´ r2 ď
2

?
1´ r2 .

As a result

‖Cφ‖ ď

d

1` |φp0q|
1´ |φp0q ď

2
a

1´ |φp0q|2
.
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Proposition 4. The norm of a composition operator Cφ is 1 if and only if φp0q “ 0.

Proof. Assuming that φp0q “ 0, since ‖Cφ‖ ď

d

1` |φp0q|
1´ |φp0q| , we have ‖Cφ‖ ď 1. From

Proposition 3, we have ‖Cφ‖ ě 1, thus ‖Cφ‖ “ 1.

Assuming that ‖Cφ‖ “ 1. Since 1
a

1´ |φp0q|2
ď ‖Cφ‖, we have

1
1´ |φp0q|2 ď 1,

then φp0q “ 0.

Proposition 5. If φ is a non-constant analytic function mapping the disk into itself and
satisfying φpaq “ a for some a P D, and if there is a function f analytic on D that is not
identically zero and satisfies the Schröder equation

fpφpzqq “ λfpzq

for some λ, then either λ “ 1 or there is a natural number k such that λ “ pφ1paqqk.

Proof. The equations φpaq “ a and fpφpzqq “ λfpzq yield fpaq “ λfpaq. If fpaq ‰ 0, then
clearly λ “ 1 and the theorem is established in that case.

Suppose fpaq “ 0. Since f is not identically zero, fpzq has a power series
expansion

fpzq “ bkpz ´ aq
k
` bk`1pz ´ aq

k`1
` ...,

with bk ‰ 0 for some k ě 1. It follows that

fpφpzqq

fpzq
“

ˆ

φpzq ´ a

z ´ a

˙k ˆ
bk ` bk`1pφpzq ´ aq ` bk`2pφpzq ´ aq

2 ` ...

bk ` bk`1pz ´ aq ` bk`2pz ´ aq2 ` ...

˙

.

Since φpaq “ a,

lim
zÑa

φpzq ´ a

z ´ a
“ φ1paq.

Also, lim
zÑa
pbk ` bk`1pφpzq ´ aq ` bk`2pφpzq ´ aq2 ` ...q “ bk and lim

zÑa
pbk ` bk`1pz ´ aq `

bk`2pz ´ aq
2
` ...q “ bk. Therefore

lim
zÑa

fpφpzqq

fpzq
“ lim

zÑa

ˆ

φpzq ´ a

z ´ a

˙k ˆ
bk ` bk`1pφpzq ´ aq ` bk`2pφpzq ´ aq

2 ` ...

bk ` bk`1pz ´ aq ` bk`2pz ´ aq2 ` ...

˙

“ pφ1paqqk ¨ 1
“ pφ1paqqk.

However, fpφpzqq
fpzq

“ λ, so λ “ pφ1paqqk.
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Corollary 1. If φ is a loxodromic or elliptic linear fractional transformation, then σ0pCφq

has empty interior.

Unlike the case of H2
pDq, where all analytic φ : D Ñ D induce bounded

compositions operators, the space H2
pC`q has fewer bounded composition operators.

Theorem 3. The operator Cφ is bounded if and only if φp8q “ 8 and φ1p8q ă 8, in
which case the following equalities hold

‖Cφ‖ “ rpCφq “ ‖Cφ‖e “
a

φ1p8q.

Proof. See Theorems 3.1 and 3.4 of (ELLIOTT; JURY, 2012).

Corollary 2. The only bounded composition operators on H2
pC`q induced by linear

fractional transformations are operators Cφ with symbol of form

φpwq “ aw ` b

where a ą 0 and Repbq ě 0
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2 The Invariant subspace Problem for Hilbert
Spaces

In the first section of this chapter a discussion will be made on the invariant
subspace problem. We will cite for which particular cases the problem has a solution and
in the second section we will present the concept of universal operator and we will proof a
result that relates the concept of universal operator to the invariant subspace problem.
This chapter is based principally in (CARMO, 2017) and the others mains references of
this chapter are (ENFLO, 1976), (LOMONOSOV, 1973), (CARADUS, 1969).

2.1 The Invariant Subspace Problem
The invariant subspace problem can be stated as the following question: "Do

all bounded linear operators T in a Banach space have a non-trivial invariant subspace?".
The term invariant subspace means a closed subspace of H, such that the operator T maps
the subspace into itself. The term non-trivial means different from t0u and H. This prob-
lem is easily stated, but still is partly open and it is unknown whom was the first to state it.

For a complex Banach space the answer is negative, because Per H. Enflo
proposed a counterexample in 1975 (ENFLO, 1976). The complete article was written in
1981 (ENFLO, 1980), but due to its complexity it was only published in 1987 (ENFLO,
1987).

Proposition 6. Let T be a bounded linear operator on a Hilbert space H. If T has an
eigenvalue λ, then T has a non-trivial invariant subspace.

Proof. If T “ λI, we have that all closed subspace in H is invariant for T .

If T ‰ λI, then there is x P H, such that Tx ‰ λx, thus x R NpT ´ λq,
therefore NpT ´ λq is a subspace different from H. The continuity of T ´ λ implies that
NpT ´λq “ pT ´λq´1

t0u is closed in H. If x P NpT ´λq, then Tx “ λx, and pT ´λqx “ 0.
By λ to be an eigenvalue of T , we have that NpT ´ λq ‰ t0u, thus we have that NpT ´ λq
is a non-trivial invariant subspace of T .

Corollary 3. If H is a finite dimensional complex space, then any linear operator T on
H have a non-trivial invariant subspace.
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Proof. Since each linear operator T in a finite dimensional complex space with dimension
n is similar to an operator M on Cn, we have that T has an eigenvalue, and by Proposition
6, we have that T has a non-trivial invariant subspace.

Proposition 7. Any bounded linear operator T in a non-separable Hilbert space has a
non-trivial invariant subspace.

Proof. Let H be a non-separable Hilbert space, and let T be a bounded linear operator
on H. We pick a non-zero vector x and we consider the closed subspace M generated by
vectors tx, Tx, T 2x, ...u. Then M is invariant on T and M ‰ t0u. Furthermore, M ‰ H,
because this would contradict the fact of H being non-separable. Thus, any operator T on
a non-separable Hilbert space has a non-trivial invariant subspace.

One of the oldest results on invariant subspace is the Aronszajn and Smith
theorem, published in 1954. That theorem says that all compact operators have a non-trivial
invariant subspace. A stronger result was proved by Lomonosov in 1973 (LOMONOSOV,
1973).

Definition 7. Let X be a Banach space, T P BpXq. A subspace M Ă X it is said to be
hyper-invariant for T , if M is invariant for all S P BpXq, such that ST “ TS.

Lemma 1. Let X be a Banach space and A a sub-algebra of BpXq, such that

č

APA

LatA “ tt0u, Xu.

Then, for every compact operator K P BpXq ´ t0u, there is A P A and x0 P X ´ t0u, such
that KAx0 “ x0.

Proof. For y P X, we consider B1pyq, the open ball with center y and radius 1. Given
that K ‰ 0, there is a y P X, such that C “ B1pyq does not contain 0. Let x P X, we
consider Ax “ tSx : S P Au, since

č

APA

LatA “ tt0u, Xu, we have that Ax “ X, for all

x ‰ 0. Given that 0 R C, we have that Ax “ X, for all x P C, therefore AxXB1pyq, for
all x P C. Then

C Ă
ď

APA

A´1
pB1pyqq.

Given that C is compact, there are finite sets tA1, A2, ..., Anu of A, such that

C Ă
n
ď

i“1
A´1
i pB1pyqq.
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Let r : R` Ñ R` be a continuous map, such that r´1
pt0uq “ r1,`8q. We

define f : C Ñ B1pyq by

fpxq “
n
ÿ

i“1

rp‖Aix´ y‖q
řn
j“1 rp‖Ajx´ y‖q

Aix.

The function f is well defined, because for all x P C, there is a i, with 0 ď i ď n,
such that Aix P B1pyq, and thus rp‖Aix´ y‖q ą 0. We consider F “ K ˝ f . By theorem
1.1.22 of (CHALENDAR; PARTINGTON, 2011), there is x0 P C, such that F px0q “ x0.
We define A P A by

Au “
n
ÿ

i“1

rp‖Aix0 ´ y‖q
řn
j“1 rp‖Ajx0 ´ y‖q

Aiu.

We easily see that Ax0 “ fpx0q and that KAx0 “ F px0q “ x0, with x0 ‰ 0, because
x0 P C.

Theorem 4. (Lomonosov) Let T P BpXq´CI. If there exists a non-zero compact operator
K, such that TK “ KT , then T has a non-trivial hyper-invariant subspace.

Proof. Arguing by contradiction, assume that the algebra A “ tA P BpXq : AT “ TAu

does not have a non-trivial invariant subspace. Then by Lemma there is A P A, such that

KerpI ´KAq ‰ t0u.

Since KA is compact, the dimension of KerpI´KAq is finite, and for KA P A,
we have that T has a non-trivial invariant subspace, thus T has an eigenvalue. Given that,
all eigenspaces of T lie in

č

APA

LatA, we have a contradiction.

To the present moment it is not known that if all bounded linear operator on a
infinite dimensional separable complex Hilbert space have a non-trivial invariant subspace,
thus the invariant subspace problem can be stated as:

Invariant Subspace Problem - Every bounded linear operator T in a sepa-
rable Hilbert space has a non-trivial invariant subspace.

2.2 Universal Operators
This section is based on (CARADUS, 1969).
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Definition 8. For any Banach space X, let BpXq be the space of continuous endomor-
phisms of X. An operator U P BpXq is called universal if, for all T P BpXq, a non-null
multiple of T is similar to a part of U . That is, there is λ P C, λ ‰ 0, a closed subspace
X0 Ď X, such that UX0 Ď X0, and a linear homeomorphism φ : X Ñ X0, such that
λT “ φ´1

pU{X0qφ.

Theorem 5. Let X be a separable Hilbert space and let U P BpXq. If U has the following
properties:

• The kernel of U has infinite dimension

• The range of U is the space X

Then U is universal.

Proof. We start by building operators, V, W in BpXq, such that UV “ I, UW “

0, KerpW q “ t0u, RpW q is closed and RpW q K RpV q. We consider Û the restriction of
U in KerpUqK and we define V “ Û´1. We pick an orthornormal basis te1nu for KerpUq
and we defined Wen “ e1n, where tenu is an orthornormal basis of X. It is obvious that
V and W have the properties required. Let T P BpXq. We take 0 ‰ λ P C, such that

|λ|‖T‖‖V ‖ ă 1. We introduce φ “
8
ÿ

k“0
λkV kWT k. By choice of λ, this series converge in

BpXq. It is also evident that

1. Uφ “ λφT

2. φ “ λV φT `W

By (1), we have that Rpφq is invariant for U . To finish the proof it remains to
show that φ is a homeomorphism. We suppose that φpxq “ 0. Then, based on (2) and the
relation RpW q K RpV q, we have that V φTx “ W pxq “ 0. Since W is invertible, it follows
that x “ 0, thus φ : X Ñ Rpφq is an isomorphism.

Let pxnq be a sequence of elements of X, such that φpxnq Ñ y. From (2),
we have λV φTxn `Wxn Ñ y. Thus Wxn Ñ Py, where P is the orthogonal projection
onto RpW q. Since RpW q is closed, there is x, such that Wxn Ñ Wx. Then xn Ñ x and
therefore φpxnq Ñ φpxq “ y. Thus Rpφq is a Hilbert space and by Open Map Theorem φ

is an open map, therefore φ is a homeomorphism.

The next theorem establishes a relation between the concept of universal
operator and the invariant subspace problem.
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Theorem 6. Let X be a Hilbert space and let U P BpXq be a universal operator. Then
the following are equivalent:

1. Every non-null T P BpXq has a non-trivial invariant subspace.

2. For all M Ă X, such that M is invariant for U , and isomorphic to X, the operator
U |M has a non-trivial invariant subspace.

Proof. Suppose (1) true. If M Ă X, is an invariant subspace for U , and isomorphic at
X, we have, by (1) that U |M has a non-trivial invariant subspace, because X and M are
isomorphic.

Suppose (2) true. If T P BpXq is non-null, then there is non-null λ and
M Ă X, such that M is invariant for U , isomorphic at X and T is similar at λU |M , thus
T has a non-trivial invariant subspace.

Proposition 8. Let H be a Hilbert space, if U P BpHq is universal, then σ0pUq does not
have empty interior.

Proof. See (SCHRODERUS; TYLLI, 2018).

Corollary 4. Let φ : DÑ D be a linear fractional transformation. If for all 0 ‰ λ P σ0pCφq,
we have that Cφ´ λI is universal in H2

pDq, then φ is hyperbolic and φ has no fixed points
on D.

Proof. If φ : D Ñ D is loxodromofic or elliptic, then φ has a fixed point in D, therefore
σ0pCφq has empty interior, thus by Proposition 8, we have that Cφ ´ λI is not universal
for all λ P C.

If φ : D Ñ D is a parabolic non-automorphism, then by (COWEN, 1983)
we have that σpCφq has empty interior, thus by Proposition 8, we have that Cφ ´ λI is
not universal for all λ P C.

If φ : D Ñ D is a parabolic automorphism, then by Theorem 5.4.5 of
(MARTÍNEZ-AVENDAÑO; ROSENTHAL, 2007) we have that σpCφq has empty in-
terior, thus by Proposition 8, we have that Cφ ´ λI is not universal for all λ P C.

Therefore we have that if Cφ ´ λI is universal for all 0 ‰ λ P σ0pCφq, then φ is
hyperbolic and φ has not fixed points on D.
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Corollary 5. Let φ : C` Ñ C` be a linear fractional transformation. If for all 0 ‰ λ P

σ0pCφq, we have that Cφ ´ λI is universal in H2
pC`q, then φ is hyperbolic and φ is not a

automorphism of C`.

In the next chapter, we will show a sufficient condition for translates of linear
fractional composition operators to be universal.

2.3 Minimal Subspaces

Definition 9. Let H be a Hilbert space and T P BpHq. A closed subspace M Ă H is
minimal if M is invariant under T and T |M has not a non-trivial closed invariant subspace.

Let H be a Hilbert space, T P BpHq and x P H, we consider Kx “

8
ł

n“0
T nx,

where
8
ł

n“0
T nx “ spantT nx : n P Nu. If T is invertible we can consider

ł

T nx “ spantT nx : n P Zu.

Proposition 9. Let H be a Hilbert space, T P BpHq and M is a minimal subspace. Then,
if x PM , and x ‰ 0, we have that M “ Kx.

Proof. Let x P M , and x ‰ 0, we have that Kx is non-trivial invariant subspace of M ,
since M is minimal, we have that Kx “M .

Proposition 10. Let H be a Hilbert space, T P BpHq invertible and Kx is a minimal
subspace. Then T´1Kx Ă Kx, and

Kx “

n“`8
ł

n“´8

T nx.

Proof. SinceKx is minimal, we have thatKTx “ Kx. ThusKx “

8
ł

n“0
T nx “ T´1

p

8
ł

n“1
T nxq “

T´1Kx.

Proposition 11. Let H be a Hilbert space and T P BpHq. The following are equivalent:

1. If M Ď H is a finite dimensional subspace and is invariant for T , then T |M has a
non-trivial invariant subspace.

2. Let u P Hzt0u. Ku is minimal if u is an eigenvector of T .
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Proof. Suppose that the item (1) is true. Let u P Hzt0u, such that Ku is minimal, since
Ku is invariant to T ; by item (1) we have that Ku is finite dimensional, then we have that
Ku has dimension 1 and for this reason u is an eigenvector of T .

Now suppose that the item (2) is true. Let M Ď H, a finite dimensional
subspace that is an invariant to T , and let u P Mzt0u, if Ku ‰ M , we have that Ku

is a non-trivial invariant subspace of T |M , if Ku “ M ; we have that Ku does not have
finite dimension, then u cannot be an eigenvector of T , then, by item (2) we have that
T |Ku “ T |M has a non-trivial invariant subspace.



28

3 Universality on Hardy Spaces

The remaining two chapters are based on (CARMO; NOOR, 2021) and high-
light the major new contributions of this thesis.

In this chapter we will prove a necessary and sufficient condition for the
operator Cφ´λI being universal, where φ : DÑ D (or φ : C` Ñ C`) is a linear fractional
transformation.

3.1 Bilateral Weighted Shift
This section is based on (PARTINGTON; POZZI, 2011).

Theorem 7. Let T : l2pZ, L2
pt0, t1qq Ñ l2pZ, L2

pt0, t1qq be the weighted right bilateral shift
given by

T

˜

ÿ

nPZ

xnen

¸

“
ÿ

nPZ

knxn´1en

where each kn is a positive continuous function on rt0, t1s such that kn Ñ b uniformly as
nÑ ´8 and kn Ñ a uniformly as nÑ `8. Then for any complex number a ă |λ| ă b,
the operator T ´ λI is an universal operator.

Proof. Suppose that a ą 0. Note that if f “
ÿ

mPZ

gmem, where temu is the standard

orthonormal basis of l2pZq, then

‖Tf‖2 ď sup
mPZ
‖km‖8‖f‖2.

Let ε ą 0, m0 P Z, Aε Ď rt0, t1s, µpAεq ą 0 such that

‖km0‖8 ě sup
mPZ
‖km‖8 ´

ε

2 ,

and for x P Aε,
|km0pxq| ą ‖km0‖8 ´

ε

2 .

Also, if we take f “ χAεem0 , then we have

‖Tf‖ ą p‖km0‖8 ´ εq
a

µpAεq.

So, we have that ‖T‖ “ sup
mPZ
‖km‖8. By an inductive argument, we obtain that for

n P N˚, ‖T n‖ “ sup
mPZ
‖kmkm`1...km`n´1‖8. Since kn converges uniformly to b as n tends

to `8, it follows that
sup
mPZ
‖kmkm`1...km`n´1‖1{n

8 ÑnÑ8 b.



Chapter 3. Universality on Hardy Spaces 29

Since T´1 is an unitary equivalent to a bilateral right shift with weights
kn “ k

´1
´n, in the same way, one can show that ‖T´n‖1{n

ÑnÑ8 1{a. As 0 does not lie in
the spectrum of T, σpT´1

q “ σpT q´1. For that reason, we have that σpT q Ď tz P C : a ď
|z| ď bu; since σpT ˚q “ σpT q, we obtain

σpT ˚q Ď tz P C : a ď |Z| ď bu.

Note that if a “ 0, then we have σpT ˚q Ď Dp0, bq.

Let σ be with a ă |σ| ă b. If f “
ÿ

nPZ

gnen, in which all n P Z, gn is in

L2
pt0, t1q, the equation T ˚f “ λf gives

λ
`8
ÿ

n“´8

gnen “
`8
ÿ

n“´8

gnkn´1en´1 “

`8
ÿ

n“´8

gn`1knen

which implies that for all n P Z, λgn “ kngn`1. Setting g0 to be any function of norm 1 in
L2
pt0, t1q, and defining on pt0, t1q,

gn “

#

λng0{pk0k1...kn´1q for n ą 0
λng0knkn`1...k´1 for n ă 0

we see easily that
ÿ

nPZ

‖gn‖2
2 converges.

Hence, f “
`8
ÿ

n“´8

gnen is an eigenvector of T ˚ and λ P σppT
˚
q with infinite

multiplicity. We conclude that

σpT q “ σpT ˚q “ tz P C : a ď |z| ď bu.

It remains to check that for λ P pa, bq, T ´ λI is bounded below. Suppose
towards a contradiction that λ is an approximate eigenvalue of T . So, for each i P N˚,
there is an unit vector fpiq “ tfjpiqujPZ such that

‖Tfpiq ´ λfpiq‖ ă 1{i.

Suppose first that lim inf
iÑ8

‖f0piq‖2 “ 0. So, for all ε ą 0, there is an index i such
that ‖f0piq‖2 ă ε and ‖Tfpiq ´ λfpiq‖ ă ε. Denoting by hpiq “ fpiq ´ f0piqe0 (which is,
setting to zero the component corresponding to j “ 0), we have

‖Thpiq ´ λhpiq‖ ď ‖Tfpiq ´ λfpiq‖` ‖Tf0piqe0 ´ λf0piqe0‖
ă ε` p‖T‖` |λ|qε



Chapter 3. Universality on Hardy Spaces 30

and thus there is an approximate eigenvector hpiq of norm 1 such that h0piq “ 0 and
‖Thpiq ´ λhpiq‖ ă ε.

We can write hpiq “ lpiq ` rpiq where lpiq is supported on the negative in-
tegers and rpiq is supported on the positive integers. Since their supports are disjoint,
Thpiq ´ λhpiq is the orthogonal sum of T lpiq ´ λlpiq and Trpiq ´ λrpiq. Since hpiq is of
norm 1, one of lpiq and rpiq has norm bigger than 1{2 and thus, we may find a sequence of
approximate eigenvectors supported entirely on either the positive or negative integers.
We will denote it by ppiq, and may suppose without loss of generality that ‖ppiq “ 1‖ and
‖Tppiq ´ λppiq‖ ă 1{i. Now

T nppiq ´ λnppiq “ pT n´1
` λT n´2

` ...` λn´1IqpTppiq ´ λppiqq

and so ‖T nppiq ´ λnppiq‖ ă Cn{i, where Cn depends on λ and the weights but not on i. If
ppiq “ tpjpiqu is supported on the positive integers, then

‖T nppiq‖2 “

˜

8
ÿ

j“1
‖kjkj`1...kj`n´1pjpiq‖2

2

¸1{2

ě

˜

inf
ją0

ˆ

min
uPrt0,t1s

kjpuqkj`1puq...kj`n´1puq

˙2 8
ÿ

j“1
‖pjpiq‖2

2

¸1{2

“

„

inf
ją0

ˆ

min
uPrt0,t1s

kjpuqkj`1puq...kj`n´1puq

˙

.

Without loss of generality, we can suppose that b ą 1. So, for n sufficiently
large, we have

inf
ją0

ˆ

min
uPrt0,t1s

kjpuqkj`1puq...kj`n´1puq

˙

ą |λn| ` 2.

Choosing i larger than Cn, we obtain a contradiction. Applying similar argu-
ments to T´1, we obtain a contraction when T has an approximate eigenvector supported
on the negative integers.

Suppose that lim inf
iÑ8

‖f0piq‖2 “ d ą 0. Since we have an approximate eigenvec-
tor fpiq “ tfnpiqu of norm 1 such that ‖Tfpiq ´ λfpiq‖ ă 1{i, then a simple inductive
argument shows that there are constants tDnuně0 independent of i such that

‖fn`1piq ´
k0k1...kn
λn`1 f0piq‖2 ď

Dn

i
, for n P N.

If ‖f0piq‖2 ě d{2, then,

‖fn`1piq‖2 ě ‖k0k1...kn
λn`1 f0piq‖2 ´

Dn

i

ě
minuPrt0,t1s kjpuqkj`1puq...kj`n´1puq

|λn`1|
‖f0piq‖2 ´

Dn

i
.
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Since
minuPrt0,t1s kjpuqkj`1puq...kj`n´1puq

|λn`1|
ÑnÑ`8“ `8,

we may find an index n such that ‖fn`1piq‖2 ě 2´Dn{i. But, as fpiq is a vector of norm
1, if we choose i larger than Dn, we obtain a contradiction.

3.2 Universality on H2
pC`)

Lemma 2. Let µ P p0,`8q, w P C` and ψ : C` Ñ C` be the hyperbolic symbol
ψpsq “ µs ` w. Then the composition operator Cψ : H2

pC`q Ñ H2
pC`q is unitary

equivalent to the operator M : L2
pR`q Ñ L2

pR`q defined by pMfqptq “
1
µ
e´tw{µfpt{µq.

Proof. By the Paley-Wiener theorem, the map P : L2
pR`q Ñ H2

pC`q defined by

pPfqpsq “

ż

R`

fptqe´tsdt

is an isometric isomorphism. Let f P L2
pR`q and F “ P pfq P H2

pC`q. We get

pCψPfqpsq “ CψF psq “ F pµs` wq “

ż

R`

fptqe´tpµs`wqdt

“

ż

R`

fptqe´twe´tµsdt “

ż

R`

1
µ
fpt{µqe´tw{µe´tsdt

“ pPMfqpsq.

That is the reason for Cψ on H2
pC`q is unitary equivalent to M on L2

pR`q.

Lemma 3. For µ P p0, 1q Y p1,`8q, the operator M : L2
pR`q Ñ L2

pR`q defined by
pMfqptq “

1
µ
e´tw{µfpt{µq is unitary equivalent to the weighted left bilateral shift T defined

by

T

˜

ÿ

nPZ

gnen

¸

“
ÿ

nPZ

cngn`1en

on l2pZ, L2
r1, µsq for µ ą 1 (resp. l2pZ, L2

rµ, 1sq for µ ă 1), and where

cnptq :“ µ´1{2e´tRepwqµ
´n´1

are positive and continuous functions on r1, µs (resp. rµ, 1s).
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Proof. Let f P L2
pR`q and consider first the case µ ą 1. Then after a simple change of

variables

‖f‖2
L2pR`q “

ż

R`

|fptq|2dt “
ÿ

nPZ

ż µ´n`1

µ´n
|fptq|2dt “

ÿ

nPZ

ż µ

1
µ´n|fpt{µnq|2dt p3.1q

“
ÿ

nPZ

ż µ

1
|µ´n{2fpt{µnq|2dt

define a sequence of unimodular functions by

an :“

$

’

’

’

&

’

’

’

%

n
ź

k“0
e´itImpwqµ

´k if n ě 0

e´itImpwq
´n´1
ź

k“0
eitImpwqµ

k if n ă 0

and note that an{an`1 “ eitImpwqµ
´n´1 for all n. Therefore Ψ : L2

pR`q Ñ l2pZ, L2
r1, µsq

defined by

Ψpfq “
ÿ

nPZ

hnen

where hnptq “ µ´n{2anfpt{µ
n
q is an unitary operator. Indeed, the equation (3.1) and the

unimodularity of the an gives

‖Ψpfq‖2
l2 “

ÿ

nPZ

‖hn‖2
L2r1,µs “ ‖f‖2

L2pR`q

for each f P L2
pR`q. Hence f P L2

pR`q, we get

pΨ ˝Mqf “ Ψpµ´1e´tw{µfpt{µqq “
ÿ

nPZ

µ´1e´twµ
´n´1

µ´n{2anfpt{µ
n`1
qen

“
ÿ

nPZ

µ´1{2e´twµ
´n´1 an

an`1
hn`1en “

ÿ

nPZ

µ´1{2e´twµ
´n´1 an

an`1
hn`1en

“
ÿ

nPZ

µ´1{2e´tRepwqµ
´n´1

hn`1en “
ÿ

nPZ

cnhn`1en

“ T p
ÿ

nPZ

hnenq “ pT ˝Ψqf.

As a result M is unitary equivalent to T when µ ą 1. The case 0 ă µ ă 1 is
analogous to the only change replacing l2pZ, L2

r1, µsq by l2pZ, L2
rµ, 1sq and equation (3.1)

becoming

‖f‖2
L2R` “

ÿ

nPZ

ż µn

µn`1
|fptq|2dt “

ÿ

nPZ

ż 1

µ

µn|fptµnq|2dt “
ÿ

nPZ

ż 1

µ

|µn{2fptµnq|2dt

“
ÿ

nPZ

‖hn‖2
L2rµ,1s.
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The constants an, functions hn and operator Ψ : L2
pR`q Ñ l2pZ, L2

rµ, 1sq are
defined as the previous case and the rest of the proof follows verbatim.

Theorem 8. Let µ P p0, 1q Y p1,8q, w P C` and the map ψ : C` Ñ C` be given by
ψpsq “ µs ` w. For µ ą 1, the operator Cψ ´ λI is universal on H2

pC`q for λ with
0 ă |λ| ă µ´1{2. If µ ă 1 then C˚ψ ´ λI is universal for all λ with 0 ă |λ| ă µ´1{2. We
have tλ P C : 0 ă |λ| ă µ´1{2

u Ă σppCψq if µ ą 1 and σppCψq “ H if µ ă 1. In both cases
σpCψq “ tλ P C : |λ| ď µ´1{2

u.

Proof. By Lemma 2 and Lemma 3 we see that Cψ is unitary equivalent to a weighted left
bilateral shift with weights

cnptq “ µ´1{2e´tRepwqµ
´n´1

.

We first observe that any shift is unitary equivalent to the corresponding right
shift with reversed weights

c1nptq :“ c´nptq “ µ´1{2e´tRepwqµ
n´1
,

and its adjoint is unitary equivalent to the right shift with the same weights pcnqnPZ. Hence
when µ ą 1, we see that c1n Ñ 0 as nÑ `8 and c1n Ñ µ´1{2 as nÑ ´8 uniformly on r1, µs.
So Cψ ´ λI is universal for 0 ă |λ| ă µ´1{2 by Theorem 7. For the case µ ă 1, cn Ñ 0
as n Ñ `8 and cn Ñ µ´1{2 as n Ñ ´8 uniformly on rµ, 1s implies that C˚ψ ´ λI is
universal for 0 ă |λ| ă µ´1{2. The statement on the spectrum and point spectrum follow
the Theorem 7.

Hence we get the following reformulation of the invariant subspace problem.

Corollary 6. Let ψpsq “ µs ` w with µ ą 1 and w P C`. Then every bounded linear
operator on a separable complex Hilbert space has a proper invariant subspace if and only
if the minimal non-trivial invariant subspaces of Cψ in H2

pC`q are all one dimensional.

Proof. By Theorem 8, we have that Cψ ´ λI is universal. Then by Proposition 11, we
have that for 0 ‰ λ P σpCψq every bounded linear operator on a separable complex Hilbert
space, has a proper invariant subspace if and only if the minimal non-trivial invariant
subspaces of Cψ ´ λ in H2

pC`q are all one dimensional.

Note that ifM is an invariant subspace for Cψ, thenM is an invariant subspace
for Cψ´λI. And ifM is an invariant subspace for Cψ´λI thenM is an invariant subspace
for Cψ. Then we have that every bounded linear operator on a separable complex Hilbert
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space has a proper invariant subspace if and only if the minimal non-trivial invariant
subspaces of Cψ in H2

pC`q are all one dimensional.

Proposition 12. Let φ : C` Ñ C` be a linear fractional transformation. Then Cφ ´ λI :
H2
pC`q Ñ H2

pC`q is universal for all 0 ‰ λ P σpCφq, if and only if φ is a hyperbolic
linear fractional transformation of form µz ` w, with µ ą 1 and Repwq ą 0. Furthermore
if φ is not of form µz ` w, with µ ă 1 and Repwq ą 0, we have that Cφ ´ λI is not
universal for all λ P C.

Proof. If φ is a parabolic linear fractional transformation, then σpCφq has empty interior,
thus Cφ ´ λI is not universal, for all λ P C.

If φpsq “ µs ` w, where µ ă 1 and Repwq ą 0, then by Theorem 8 Cφ

does not have eigenvectors, thus Cφ ´ λI is not universal, for all λ P C.

If φpsq “ s ` w, where Repwq ą 0, we have that σpCφq has empty inte-
rior, then Cφ does not have eigenvectors, thus Cφ ´ λI is not universal, for all λ P C.

By Theorem 8, if φpsq “ µs ` w, with µ ą 1 and Repwq ą 0, then Cφ ´ λI :
H2
pC`q Ñ H2

pC`q is universal for all 0 ‰ λ P σpCφq.

3.3 Universality in H2
pDq

Theorem 9. Let φ be a hyperbolic linear fractional selfmap of D. If λ ‰ 0 is in the interior
of σpCφq, then Cφ´λI is universal on H2

pDq. In particular the ISP has a positive solution
if and only if the minimal non-trivial invariant subspaces of Cφ are all one dimensional.

This extends a thirty year old result of Nordgren, Rosenthal and Wintrobe
(NORDGREN; ROSENTHAL; WINTROBE, 1987) where they proved this for hyperbolic
automorphisms. Let φ be a non-automorphic hyperbolic self map of D. Hence φ fixes one
point χ P T and the other outside the closed unit disk D (possibly 8). It was shown by
(HURST, 1997) that in this case Cφ is similar to Cφb where

φbpzq “ bz ` 1´ b, with b :“ φ1pχq P p0, 1q.

It is known that a composition operator Cψ on H2
pC`q is unitary equivalent to the

weighted composition operator WΦ on H2
pDq defined by
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pWΦfqpzq “
1´ Φpzq

1´ z fpΦpzqq (3.2)

where Φ “ γ´1
˝ ψ ˝ γ : DÑ D and γ : DÑ C` is the conformal map γpzq “ 1` z

1´ z and

γ´1
pzq “

z ´ 1
z ` 1. Via this equivalence Cφb is equivalent to a scalar multiple of an universal

composition operators on H2
pC`q.

Lemma 4. Let b P p0, 1q and φb be the self map of D given by φbpzq “ bz ` 1´ b. Then
Cφb on H2

pDq is unitary equivalent to b´1Cψb on H2
pC`q where

ψbpsq “ b´1s` pb´1
´ 1q.

Proof. We only have to determine (3.2) with Φ “ γ´1
˝ ψb ˝ γ. We get

pγ´1
˝ ψb ˝ γqpzq “ γ´1

pb´1γpzq ` pb´1
´ 1qq “ b´1γpzq ` pb´1 ´ 1q ´ 1

b´1γpzq ` pb´1 ´ 1q ` 1

“
b´1 1`z

1´z ` b
´1 ´ 2

b´1 1`z
1´z ` b

´1 “
b´1p1` zq ` pb´1 ´ 2qp1´ zq
b´1p1` zq ` b´1p1´ zq

“
2b´1 ´ 2` 2z

2b´1 “ bz ` p1´ bq
“ φbpzq,

similarly

1´ Φpzq
1´ z “

1´ φbpzq
1´ z “

bp1´ zq
1´ z “ b.

As a result we see that Cφb is unitary equivalent to WΦ “ bCφb .

For this reason, we are ready to treat the hyperbolic non-automorphism case
which, together with the automorphism case, (see [(NORDGREN; ROSENTHAL; WIN-
TROBE, 1987), Theorem 6.2]) proves Theorem 9.

Theorem 10. Let φ be a hyperbolic linear fractional map with one fixed point χ P T
and the other outside the closed unit disk D. If b :“ φ1pχq P p0, 1q, then for each λ with
0 ă |λ| ă b´1{2 the operator Cφ ´ λI is universal on H2

pDq.

Proof. By Lemma 4 and the discussion before it we see that Cφ on H2
pDq is similar to

b´1Cψb on H2
pC`q. Since ψbpsq “ b´1s ` pb´1

´ 1q and b´1
ą 1, it follows by Theorem

8 that Cψb ´ λI is universal for 0 ă |λ| ă b1{2. Therefore Cφ ´ λI must be universal for
0 ă |λ| ă b´1{2.
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Notice that Theorem 10 implies that each point with 0 ă |λ| ă φ1pχq´1{2

is an eigenvalue of Cφ of infinite multiplicity and that σpCφq “ tλ P C : |λ| ď φ1pχq´1{2
u,

hence arriving at a result of Hurst [(HURST, 1997), Theorem 8] with a different proof.

Proposition 13. Let φ : D Ñ D a linear fractional transformation, then Cφ ´ λI is
universal for all 0 ‰ λ P IntpσpCφqq if and only if φ is hyperbolic and φ does not have a
fixed point in D. Furthermore if φ is not hyperbolic or has fixed point in D, we have that
Cφ ´ λI is not universal for all λ P C.

Proof. By Corollary 4 we have that if φ : DÑ D is not hyperbolic or has fixed point on
D, then Cφ ´ λI is not universal for all λ P C.

By (NORDGREN; ROSENTHAL; WINTROBE, 1987) we have that if φ :
DÑ D is a hyperbolic automorphism, then Cφ´λI is universal for all 0 ‰ λ P IntpσpCφqq.

By theorem 9, if φ : D Ñ D is a hyperbolic non-automorphism without
fixed point on D, then Cφ ´ λI is universal for all 0 ‰ λ P IntpσpCφqq.
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4 Minimal invariant subspaces of Cφb

In this chapter we consider the canonical hyperbolic non-automorphism

φbpzq “ bz ` 1´ b, 0 ă b ă 1.

The operator Cφb on H2
pDq was studied by (DEDDENS, 1972) where it was

shown that the adjoint of Cφb is subnormal and where its spectrum was first determined.
An easy inductive argument shows that the formula for the compositions iterates of φb is
strikingly simple:

φ
rns
b “ bnz ` 1´ bn “ φbnpzq

for each n P N. For this reason φrnsb pzq is a convex combination between z and 1 for each
n P N and φrnsb Ñ 1 uniformly on D as n Ñ 8. Also note that Cn

φn “ C
φ
rns
b

“ Cφbn . For
each non-zero f P H2

pDq, we denote by Kf the cyclic subspace defined by

Kf “ spantCn
φb
f : n ě 0u.

In addition to a, b P p0, 1q, we have that

φa ˝ φbpzq “ φapbz ` 1´ bq “ abz ` a´ ab` 1´ a “ abz ` 1´ ab “ φabpzq,

then Cφa ˝ Cφb “ Cφb ˝ Cφa “ Cφab . It is followed by S “ tCφb : b P p0, 1qu being a
multiplicative semigroup of operator.

4.1 Eigenvectors of Cφb

Clearly each one of Kf is a closed invariant subspace for Cφb . If Kf “ H2
pDq,

then f is called a cyclic vector for Cφb . Furthermore Kf is a proper invariant subspace
precisely when f is non-cyclic. Now if E is a closed invariant subspace of Cφb then obviously
Kf Ă E for all f P E. But if E is also minimal invariant then in fact Kf “ E for all f P E.
Hence minimal invariant subspaces are necessarily cyclic. Now since dimKf “ 1 precisely
when f is an eigenvector for Cφb , the ISP has a positive solution if and only if Kf is not
minimal whenever f is not an eigenvector of Cφb (see Theorem 9). It suggests that the
problem of eliminating as many functions as possible for which Kf is non-minimal. Since
such functions must necessarily be not eigenvectors, it is interesting to know the behaviour
of eigenvectors.
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Example 1. The main examples of eigenvectors for Cφb are the functions

fspzq “ p1´ zqs

for s P C. In fact for z P D we have

pCφbfsqpzq “ p1´ pbz ` 1´ bqqs “ bsp1´ zqs “ bsfspzq.

So Cφbfs “ bsfs for all b P p0, 1q and in Lemma 7 of (HURST, 1997) it was showed that
fs P H

2 if and only if Repsq ą ´1{2.

For any non-zero f P H2
pDq we define the subset Af Ă p0, 1q by

Af “ ta P p0, 1q : f is an egeinvector of Cφau.

Theorem 11. Let f P H2
pDq not be a scalar multiple of fs for any s P C. Then either

Af is empty or Af “ tcn : n P Nu for some c P p0, 1q.

Proof. First we prove that Af is closed in p0, 1q and has empty interior. Let

Σ “ tz P D : fpzq ‰ 0u

be the open subset of D where f is non-vanishing. Suppose Af in non-empty and there is
a sequence pbnqnPN in Af that converges to some b P p0, 1q with Cφbnf “ λnf . Then for
z P Σ we have

λ :“ lim
nÑ8

λn “ lim
nÑ8

Cφbnfpzq

fpzq
“ lim

nÑ8

fpbnz ` 1´ bnq
fpzq

“
Cφbfpzq

fpzq

which exists and for this reason b P Af . So Af is closed in p0, 1q. Now suppose Af contains
an open interval ps, tq. Then let λ : ps, tq Ñ C be the function defined by

fpbz ` 1´ bq “ Cφbfpzq “ λpbqfpzq,

for b P ps, tq. Then fixing z P Σ shows that λ is continuously differentiable on ps, tq. Now
differentiating with respect to b while fixing z gives

f 1pbz ` 1´ bq “ λ1pbqfpzq

z ´ 1

and doing the same with respect to z while fixing b gives

f 1pbz ` 1´ bq “ λpbqf 1pzq

b
.
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Therefore f
1pzq

fpzq
“
´spbq

1´ z where spbq “ bλ1pbq

λpbq
for all z P Σ and b P ps, tq. This

implies f ‰ 0 in D, otherwise f 1{f would have a pole in D. So f has a holomorphic
logarithm g with eg “ f in D. Derivating the equation fe´g “ 1 gives f 1e´g “ g1fe´g “ g1

or g1 “ f 1{f. For that reason gpzq “ spbqlogp1 ´ zq ` C for a constant C and hence
fpzq “ Kp1´ zqspbq for some constant K. This contradicts our assumption and as a result
Af has empty interior.

We now prove that Af “ pcnqnPN for some c P p0, 1q if Af ‰ H. Note that a P Af
implies panqnPN P Af . If a, b P Af with Cφaf “ λaf and Cφbf “ λbf , then Cφabf “ λaλbf

and if a ă b we have that

Cφa{bf “
1
λb
Cφa{bCφbf “

1
λb
Cφaf “

λa
λb
f,

where λb is non-zero since Cφb is injective. So a, b P Af implies ab P Af and also if a ă b

then a{b P Af . Now, since the complement of Af in p0, 1q is open and dense, there are
a, b P Af such that pa, bq X Af “ H. We define c :“ a{b P Af and hence pcnqnPN Ă Af .
Since c ą a and c R pa, bq imply c ě b. We now claim that a “ cN`1 and b “ cN for some
N P N. Otherwise there is n P N such that cn`1

ă a ă b ă cn since pa, bq X Af “ H. But
b ă cn implies a “ cb ă cn`1 which is a contradiction. So a “ cN`1. So a “ cN`1 and
b “ cN for some N P N. This implies that for all n P N

pcn`1, cnq X Af “ H

otherwise if d P pcn`1, cnq X Af for some n then cN´nd P pa, bq X Af . The only case that
remains is if d ą c and d P Af . But this is also not possible since c ą dc ą c2. Therefore
Af “ pc

n
qnPN.

Example 2. Let h “ fs`fs` 2πi
log b

for some b P p0, 1q and Rpsq ą ´1{2. Then Cφbh “ bsfs`

bs`
2πi
log bfs` 2πi

log b
“ bsh because b

2πi
log b “ 1 and hence b P Ah. We will show that Ah “ pbnqnPN.

If some other a P Ah then

Cφah “ asfs ` a
s` 2πi

log bfs` 2πi
log b

“ λh

for some λ P C if and only if a
2πi
log b “ e2πi log a

log b “ 1. So log a “ n log b “ log bn for some
n P Z. Hence a “ bn for n ě 1 since a P p0, 1q. For this reason Ah “ pbnqnPN.

Let b P p0, 1q, the Example 2 leads to an interesting question:

spanptfs` 2kπi
log b

: k P Zq “ KerpCφb ´ b
sIq?
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For Theorem 11, we have an interesting question "let b P p0, 1q, and f P H2
pDq

an eigenvector of Cφb , if f is not a scalar multiple of fs, for some s, what can we say about
spanptCφaf : a P p0, 1quq?"

We know that if f is an eigenvector of Cφb with eigenvalue λ, and a P p0, 1q,
then

CφbpCφafq “ CφapCφbfq “ λCφaf,

this is, Cφaf is an eigenvector of Cφb with eigenvalue λ, then we have that

spanptCφaf : a P p0, 1quq,

is a closed subspace of KerpCφb ´ λIq, but we do not know under which condition
spanptCφaf : a P p0, 1quq is finite dimensional, proper or equal to KerpCφb ´ λIq.

By Example 2 we have if h “ α1fs` 2k1πi
log b

` α2fs` 2k2πi
log b

` ... ` αnfs` 2knπi
log b

, with
αj ‰ 0, for j “ 1, 2, ..., n, then DimpspanptCφah : a P p0, 1quqq “ n.

Proposition 14. If f P CφbpH2
pDqq, then there is a U open, such that D´ t1u Ă U , and

there is f1 analytic on U , with f1pzq “ fpzq, for all z P D.

Proof. Let f P CφbpH2
pDqq, then there is g P H2

pDq, such that Cφbg “ f .

Let D1 “ tz P C : |z ´ 1 ` b´1
| ă b´1

u, we have that φbpD1q “ D, then
g ˝ φb is an analytic extension to f and D ´ t1u Ă D1.

Note that

• If Kf is minimal, then KCφbf
“ Kf is minimal.

• If KCφbf
is not minimal, then Kf is not minimal.

Then, when we work with Cφb-invariants spaces of form Kf , we can assume
that f has an analytic extension to an open subset containing D ´ t1u.

Theorem 12. If f is an eigenvector of Cφb, then there is f1 analytic on tz P C : Repzq ă 1u,
such that f1pzq “ fpzq, for all z P D.

Proof. Let z0 P C. If Repz0q ă 1, there is n P N, such that, |z0´1`b´n| ă b´n, by proof of
Proposition 14 there is fn analitic on tz P C : |z´ 1` b´n| ă b´nu, such that fnpzq “ fpzq,
for all z P D.
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Corollary 7. Let f be an eigenvector of Cφb and g the analytic extension on tz P C :
Repzq ă 1u. If fpz0q “ 0, for any z0 P D. then gpbnz0 ` 1´ bnq “ 0 for all n P Z.

Proof. For n ě 0, we have that gpbnz0 ` 1´ bnq “ fpφbpz0qq “ λnfpz0q “ 0.

If n ă 0, since λnf ˝ φb´npzq “ fpzq, for all z P D, we have that λnf ˝ φb´npzq
is an analytic extension of f on tz P C : |z ´ 1 ` bn| ă bnu, thus gpbnz0 ` 1 ´ bnq “

λnf ˝ φb´npb
nz0 ` 1´ bnq “ λnfpz0q “ 0.

Lemma 5. Let f be an eigenvector of Cφb, with Cφbf “ λf . If f 1 P H2
pDq, then f 1 is an

eigenvector of Cφb and Cφbf 1 “
λ

b
f 1. In particular, if the n-th derivative f pnq P H2

pDq for
all n P N then f must be a polynomial.

Proof. We have that fpbz ` 1´ bq
fpzq

“ λ, then
ˆ

fpbz ` 1´ bq
fpzq

˙1

“ 0. Thus, we have that

ˆ

fpbz ` 1´ bq
fpzq

˙1

“
bf 1pbz ` 1´ bqfpzq ´ fpbz ` 1´ bqf 1pzq

fpzq2
“ 0,

then
f 1pbz ` 1´ bq

f 1pzq
“
fpbz ` 1´ bq

bfpzq
“
λ

b
.

Therefore Cφbf 1pzq “ f 1pbz ` 1´ bq “ λ

b
f 1pzq.

Theorem 13. If f is a non-zero Cφb-eigenvector that is analytic at the point 1, then
fpzq “ Kp1´ zqn for some n P N and scalar K.

Proof. Since f is analytic at 1 and on tz P C : Repzq ă 1u by Theorem 12, it is in
particular analytic in a neighborhood of D. As a result all derivatives f pnq for n P N are
analytic in a neighborhood of D and in particular belong to H2

pDq. Therefore f is a
polynomial by Lemma 5. Clearly f has no zeros in Czt1u by Corollary 7. If fp1q ‰ 0 then
f is a polynomial with no zeros in C and hence a constant. Otherwise if fp1q “ 0 then
fpzq “ Kp1´ zqn for some n P N and scalar K.

We have just seen that eigenvectors of Cφb are somehow determined by their
behaviour at the boundary point 1. The next result shows how eigenvalues determine the
radial limits at 1 of the corresponding eigenvectors.

Proposition 15. Let f P H2
pDq be an eigenvector for Cφb with eigenvalue λ. Then
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f˚p1q :“ lim
rÑ1´

fprq “

$

’

’

’

’

&

’

’

’

’

%

0, if |λ| ă 1
8, if |λ| ą 1and f does not have zeros in p´1, 1q
L, if f is constant

does not exist otherwise.

Proof. Let λ be in C, with |λ| ă 1 and f P H2
pDq, such that Cφbf “ λf . Fix t0 P p´1, 1q.

Consider K “ sup
zPrt0,φbpt0qs

p|fpzq|q. Let N0 P N, we know that if φbN0`1pt0q ă z ă 1,

then there exists z0 P rt0, φbpt0qs, with φbnpz0q “ z, for some n ą N0, that implies
|fpzq| “ |f ˝ φbnpz0q| “ |Cφbnfpz0q| “ |λ

nfpz0q| ă |λ|
N0K. Therefore f˚p1q “ 0.

Let λ be in C, with |λ| ą 1 and f P H2
pDq, such that Cφbf “ λf and f

does not have zeros in p´1, 1q. Fix t0 P p´1, 1q. Consider K “ inf
zPrt0,φbpt0qs

p|fpzq|q, by f

does not have zeros in p´1, 1q, we have that K ą 0. Let ε ą 0, we know that there is
N0 P N, such that, if z P p´1, 1q and 1 ´ z ă ε, exists n ą N0, and z0 P rt0, φbpt0qs,
with φbnpz0q “ z, that implies |fpzq| “ |f ˝ φbnpz0q| “ |Cφbnfpz0q| “ |λ

nfpz0q| ą |λ|
N0K.

Therefore f˚p1q “ 8.

If f is constant, it is obvious that f˚p1q “ L ‰ 0.

Let f P H2
pDq, such that f has zeros in p´1, 1q and Cφbf “ λf with λ ą 1.

Let t0 P p´1, 1q with fpt0q “ 0, and let t1 P p´1, 1q with fpt1q ‰ 0. We have that
fpφbnpt0qq “ 0, for all n P N, and fpφbnpt1qq “ λnfpt1q, for all n P N. By φbnpt0q Ñ 1 and
φbnpt1q Ñ 1, when nÑ 8, we have that lim

tÑ1´
fptq does not exist.

Let f P H2
pDq, such that is not a constant function and Cφbf “ f . There are t0

and t1 in p´1, 1q, with fpt0q ‰ fpt1q, and we have fpφbnpt0qq “ fpt0q and fpφbnpt1qq “ fpt1q

for all n P N. By φbnpt0q Ñ 1 and φbnpt1q Ñ 1, when nÑ 8, we have that lim
tÑ1´

fptq does
not exist.

Let f P H2
pDq, with Cφbf “ λf and |λ| “ 1, with λ ‰ 1. Let t P p´1, 1q,

fpφbnptqq “ λnfptq, it does not converge, then we have that f˚p1q cannot exist.

Example 3. Recall that fs “ p1 ´ zqs “ es logp1´zq where Cφbfs ““ bsfs for all b P p0, 1q
and fs P H2

pDq if and only if REpsq ą ´1{2. Note also that fs has no zeros in D. If
we write λ “ bs “ es log b then |λ| ă 1 precisely when Repsq ą 0 in which case clearly
f˚s p1q “ 0. It is similar to |λ| ą 1 precisely when Repsq ă 0 and in this case f˚s p1q “ 8.
Finally |λ| “ 1, precisely when Repsq “ 0 in this case f˚s p1q “ lim

rÑ1´
eiImpsq logp1´rq does not

exist, unless Impsq “ 0 and in this case λ “ 1 and f0 ” 1. Also fs is analytic at 1 if and
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only if s P N. If s R N and hence fs is not a polynomial, then

fns “ sps´ 1q...ps´ n` 1qp1´ zqps´nq

does not belong to H2
pDq if n ě Repsq ` 1{2 in accordance with Lemma 5. Finally we

five an example of an eigenvector with zeros in tz P C : Repzq ă 1u. Let h “ fs ´ fs` 2πi
log b

.

Then Cφbh “ bsh and hp0q “ 0. Moreover hp1´ bnq “ bns ´ bns`
2πni
log b “ 0 for all n P Z in

accordance with Corollary 7.

By Proposition 15, if f˚p1q “ L ‰ 0 and f is a non-constant function, then
f cannot be an eigenvector for Cφb . In this case, the next result shows that the cyclic
subspaces Kf are never minimal invariant.

Theorem 14. Let f P H2
pDq with f˚p1q “ L ‰ 0. Then Kf is a minimal invariant

subspace for Cφb if and only if f is the constant L.

If φ is some holomorphic self map of D, then the Nevanlinna counting function
for φ is defined for all w P Dztφp0qu by

Nφpwq “
ÿ

zPφ´1twu

log
1
|z|

where φ´1
twu is the sequence of φ-preimages of w repeated according to their multi-

plicities. If w R φpDq then Nφpwq is defined as 0. We shall need the following change of
variables formula used by Shapiro in his seminal work on compact composition operators
[(SHAPHIRO, 1987), Corollory 4.4]:

‖Cφf‖2
2 “ 2

ż

D

|f 1pwq|2NφpwqdApwq ` |fpφp0qq|2

for any f holomorphic on D and where dA is the normalized area measure on D.

Proof. Since Cn
φb
“ Cφbn and φbnp0q “ 1´ bn, we get

‖Cn
φb
f ´ L‖2

2 “ ‖Cφbn pf ´ Lq‖
2
2

“ 2
ż

D

|f 1pwq|2Nφbn pwqdApwq ` |fp1´ bnq ´ L|2.

We only need to prove that the integral on the right tends to 0 as n Ñ 8.
This is followed by a simple monotone convergence argument. Indeed, first notice that the
images φbnpDq “ bnD` p1´ bnq are open disks of decreasing radii bn with centres 1´ bn

tending to 1. Therefore for each w P D we have w R φbnpDq and hence Nφbn pwq “ 0 for
every sufficiently large n. So Nφbn is a monotonically decreasing positive function on D with
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pointwise limit 0. Hence the integral above vanishes as claimed, and with fp1´ bnq Ñ L

as nÑ 8, this implies that Cn
φb
f Ñ L in H2

pDq. Therefore the constant L P Kf and Kf

is minimal if and only if Kf “ C, in this case f must be the constant L.

As a consequence, we have the following general results which include functions
for which f˚p1q is zero or does not exist.

Corollary 8. Let p ě 0, q any real number and suppose f P p1´ zqp`iqH2
pDq such that

lim
rÑ1´

fprq

p1´ rqp`iq “ L ‰ 0. (4.1)

Then Kf contains the eigenvector p1 ´ zqp`iq and therefore Kf is minimal
invariant if and only if f “ Lp1´ zqp`iq.

Observe that p “ q “ 0 gives Theorem 14, while p ą 0 implies f˚p1q “ 0 and
p “ 0 but q ‰ 0 implies f˚p1q does not exist.

Proof. The hypothesis says that fpzq “ p1´zqp`iqgpzq where g P H2
pDq and g˚p1q “ L ‰ 0.

Hence p1´ zqp`iq P H8
pDq and Theorem 14 applied to g gives

wwwww Cn
φb
f

bnpp`iqq
´ Lp1´ zqp`iq

wwwww
2

2
“ ‖p1´ zqp`iqpCn

φb
g ´ Lq‖2

2

ď 2p‖Cn
φb
g ´ L‖2

2 Ñ 0

as nÑ 8. Therefore Cn
φb
f{bnpp`iqq tends to the eigenvector Lp1´ zqp`iq in H2

pDq which
implies p1´ zqp`iq P Kf and Kf is minimal if and only if f “ Lp1´ zqp`iq.

Corollary 9. If f P H2
pDq is analytic on a neighborhood of 1 with fp1q “ 0, then Kf is

minimal if and only if f is an eigenvector.

Proof. There must be an integer k ą 0, a neighborhood U of 1 and a function g holomorphic
on U with gp1q “ L ‰ 0 such that f “ p1´ zqkg. Now

Cφan “ bnkp1´ zqkpg ˝ φbnq

and if n is sufficiently large, say n ą n0 then φbnpDq “ bnD` p1´ bnq Ă U . Hence g ˝ φbn
is a bounded holomorphic function on D for n ą n0 with g ˝ φbnp1q “ L. Now applying
Corollary 8 with h :“ Cφbnf{b

nk for some n ą n0 and p` iq “ k implies the eigenvector
p1´ zqk P Kh Ă Kf which concludes the proof.
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Finally we consider a class of functions for which condition (4.1) does not hold
for any value of p or q. For a ą 0, let Ea denote the singular shift-invariant subspace

Ea “ ea
z`1
z´1H2

pDq.

It is clear that Ea Ă Ea1 if a1 ă a because ea1
z`1
z´1 divides ea

z`1
z´1 as an inner

function. Cowen and Wahl (see [(COWEN; WAHL, 2014), Theorem 5]) showed that if
φ is any self-map of the disk with φp1q “ 1 and φ1p1q ď 1, then each Ea is an invariant
subspace for Cφ. In particular CφbEa Ă Ea for all a ą 0. It is clear that f˚p1q “ 0 for
all f P Ea and that no such f satisfies (4.1) for any values of p or q. The next result
shows that even in this case we get non-minimality of the corresponding cyclic subspace Kf .

Proposition 16. For any a ą 0 and f P Ea non-zero, the cyclic subspace Kf is not
minimal invariant for Cφb.

Proof. First note that

Cφbe
a z`1
z´1 “ e

a
b
bz´a`2
z´1 “ e

a
b
z`1
z´1 e

a
b
pb´1q

P Ea{b

which implies that Cn
φb
Ea Ă Ea{bn for all n ě 1 and clearly Ea{bn Ă Ea. Then we prove

that for each non-zero f P H2
pDq there is an integer N large enough (depending on f)

such that f R EN . Otherwise, the inner part of f would be divisible by each of the singular
inner functions Inpzq :“ en

z`1
z´1 for n P N . But this implies that

2πn “ µnpt1uq ď µf pt1uq

for all n P N, where µn and µf are the singular measures on T corresponding to In and
f respectively (see [(MARTÍNEZ-AVENDAÑO; ROSENTHAL, 2007), Theorem 2.6.7]).
Hence µf pt1uq “ 8 which is a contradiction. Now let f P Eazt0u for some a ą 0 and
suppose f R EN for some N ą a. Then there is n0 such that Cn

φb
f P Ea{bn Ă EN for all

n ě n0. So if g :“ Cn
φb
f , then Kg Ă EN which implies that f R Kg. Therefore Kg is a

proper closed invariant subspace of Kf under Cφb and hence Kf is not minimal.
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