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Resumo

Na primeira parte deste trabalho, estudamos certos difeomorfismos parcialmente hiperbó-

licos de Td com folheações centrais bidimensionais compactas, para os quais mostramos

que qualquer medida ergódica de máxima entropia é hiperbólica e existe no máximo um

número finito (diferente de zero) delas. No caso de T4, podemos retirar a condição de

compacidade para as folhas centrais e obter hiperbolicidade das medidas ergódicas de

máxima entropia.

Também propomos estudar a desintegração de medidas ao longo de folheações centrais

bidimensionais de uma classe de difeomorfismos parcialmente hiperbólicos de T4 isotópicos

a um difeomorfismo de Anosov. Além disso, estudamos estados de equiĺıbrio ergódicos com

relação a uma classe de potenciais, aproveitando as técnicas desenvolvidas para descrever

a desintegração. Este é um trabalho em conjunto com Adriana Sánchez e Régis Varão.

Palavras-chaves: Estados de equĺıbrio, Medidas de máxima entropia, Difeomorfismos

parcialmente hiperbólicos, Medidas hiperbólicas, Desintegração de medidas.



Abstract

In the first part of this work, we study certain partially hyperbolic diffeomorphisms of

Td with compact two-dimensional center foliations, for which we show that any ergodic

maximal entropy measure is hyperbolic and there exists at most a finite number (non-zero)

of them. In the case of T4, we can remove the compactness condition for the center leaves

and obtain hyperbolicity for ergodic maximal entropy measures.

We also propose to study the disintegration of measures along two-dimensional center

foliations of a class of partially hyperbolic diffeomorphisms of T4 isotopic to an Anosov

diffeomorphism. Moreover, we study ergodic equilibrium states with respect to a class

of potentials, taking advantage of techniques developed for describing the disintegration.

This is a joint work with Adriana Sánchez and Régis Varão.

Keywords: Equilibrium states, Maximal entropy measures, Partially hyperbolic diffeo-

morphisms, Hyperbolic measures, Disintegration of measures.



List of symbols

A´B difference of two sets

Bpx, rq open ball centered at a point

BF
r pxq open ball on the leaf at a point

C0
pM,Rq space of continuous functions

dC0 metric on the space of continuous functions

diamA diameter of a set

distσ intrinsic metric in the corresponding leaf

DiffrpMq space of Cr diffeomorphisms

Diff8pMq space of C8 diffeomorphisms

f „ A isotopy between two diffeomorphisms

Fσ
pxq leaf containing a point (σ “ s, c, u)

Fσ
locpxq local leaf containing a point (σ “ s, c, u)

Γεpxq bi-infinite Bowen ball at a point

HµpPq entropy of a partition

H1pMq first homology group

HCpOq homoclinic class of a orbit

hµpf,Pq metric entropy of a partition

hµpfq metric entropy



hµpf,Fq partial entropy along a foliation

htoppfq topological entropy

h˚f pεq tail entropy at scale ε

Id identity map

Oi
h
„ Oj orbits homoclinically related

Mpfq space of f -invariant probability measures

Mepfq space of ergodic probability measures

Mhpfq space of hyperbolic ergodic probability measures

P _Q sum of partitions

Pn iterated sum of a partition

Perhpfq set of hyperbolic periodic orbit of saddle type

PHpMq set of partially hyperbolic diffeomorphisms

supp µ support of a measure

TxM tangent space at a point

TM tangent bundle

Td d-dimensional torus

W σ
pOq stable/unstable manifold of a orbit (σ “ s, u)

W σ
P pxq Pesin stable/unstable manifold (σ “ s, u)

W σ
locpxq local Pesin stable/unstable manifold (σ “ s, u)

XD characteristic function of a measurable subset

XFpx, fq the volume growth of a foliation at a point

XFpfq maximum volume growth rate of a foliation f -invariant
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1
Introduction

The study of equilibrium states in dynamical systems was started by Sinai,

Ruelle and Bowen [55, 54, 11] in the 1970s, taking advantage of techniques and results

from statistical mechanics. Given a continuous map f : M ÑM over a compact metric

space, an equilibrium state for a continuous potential φ : M Ñ R, is an f -invariant Borel

probability measure µ that maximizes the quantity hµpfq+

ż

φdµ among all f -invariant

measures. In the case of uniformly hyperbolic systems, Bowen [10] showed existence and

uniqueness of equilibrium states with respect to Hölder continuous potentials. Forty years

later, Climenhaga and Thompson extended Bowen’s techniques for a non-uniform setting

[21] and these results have been applied for other classes of maps [16, 17, 27].

Another interesting class of non-hyperbolic systems very studied in smooth

ergodic theory are partially hyperbolic systems, which are diffeomorphisms over compact

manifolds with an invariant splitting of the tangent bundle in three subbundles Es, Ec, Eu,

such that vectors in Es are contracted uniformly, vectors in Eu are expanded uniformly,

and vectors in Ec lie in between those two, not quite as contracting nor as expanding,

respectively (see 2.3.2 for a precise definition). In general the central bundle Ec may not be

integrable [51], when it is, the partially hyperbolic diffeomorphism is dynamically coherent.

There are many relevant works about equilibrium states for partially hyperbolic systems,

we will cite some, Climenhaga, Pesin and Zelerowicz [20], Fisher and Oliveira [26] and

Rios and Siqueira [48]; for a more complete study of equilibrium states for non-uniformly

hyperbolic systems, see the survey of Climenhaga and Pesin [19].

When the potential is φ ” 0, equilibrium states are called maximal entropy

measures, such measures describe the complexity level of the whole system. In certain

contexts, the existence of maximal entropy measures is not clear, however, it has already

been proven for C8 diffeomorphisms on compact manifolds without boundary [42], and for

robust classes of local diffeomorphisms [43]. Recently in [12], Buzzi, Crovisier and Sarig

showed that C8 surface diffeomorphisms with positive topological entropy have at most

finitely many maximal entropy measures and exactly one in the transitive case.
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For the setting of partially hyperbolic systems, results in [24] imply that there

exists at least one maximal entropy measure if the center bundle is one-dimensional. For

C1`α accessible partially hyperbolic over 3-manifolds having compact one-dimensional

central leaves, a dichotomy was proved about the number of maximal entropy measures

[50, 58]; Rocha and Tahzibi also obtained a similar dichotomy for partially hyperbolic diffeo-

morphisms defined on 3-torus with compact center leaves [49]. Certain partially hyperbolic

systems with one-dimensional center bundles and isotopic to an Anosov diffeomorphism

(derived from Anosov (DA)), have a unique maximal entropy measure [13, 28, 57].

There are very few works on equilibrium states for partially hyperbolic systems

with central dimension greater than one. Among these studies, partially hyperbolic systems

whose central bundles splits in a dominated way into one-dimensional subbundles, admit

equilibrium states for any continuous potential [25], and partially hyperbolic systems with

two-dimensional center bundles, produced by an isotopy from an Anosov (mixed derived

from Anosov) have a unique maximal entropy measure [13].

1.1 Hyperbolic ergodic maximal entropy measures

The Lyapunov exponents are real numbers, which measure the exponential

growth of the derivative of dynamical systems. For every f P DiffrpMq over a compact

m-manifold, and an ergodic probability measure µ, by Oseledets’ theorem there are m

numbers λ1 ď λ2 ď ¨ ¨ ¨ ď λm, and a splitting TxM “ E1pxq‘E2pxq‘¨ ¨ ¨‘Empxq such that

for µ-almost every x PM and for any v P TM ´t0u, we have lim
nÑ8

1
n

log }Dfnx pvq} “ λi, for

some 1 ď i ď m. The m-numbers λi are the Lyapunov exponents of pf, µq. An interesting

question is to know under what conditions an ergodic maximal entropy is hyperbolic, that

is, it has non-zero Lyapunov exponents.

In view of the lack of results about maximal entropy measures for partially

hyperbolic systems with two-dimensional center bundles, in this work we propose a scenario

in which every ergodic maximal entropy measure is hyperbolic and there is at most a

non-zero finite number of them.

Let A : Td Ñ Td be a linear Anosov admitting a dominated splitting of the

form Ess
A ‘E

ws
A ‘Ewu

A ‘Euu
A , with Ec

A “ Ews
A ‘Ewu

A and dimEws
A “ Ewu

A “ 1. We consider

the set of partially hyperbolic diffeomorphisms isotopic to A, all of them having the same

dimension of stable and unstable bundle, that is,

PHA,s,upTdq “ tf P PHpTdq : f „ A, dimEs
f “ dimEss

A , dimEu
f “ dimEuu

A u.

Here f „ A denotes an isotopy between f and A. To simplify notation we will denote

PHA,s,upTdq as PHApTdq, where the dimension of the bundles is implicitly understood.
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Given f P PHApTdq we know from [29, 40] there exists the Franks-Manning

semiconjugacy H : Td Ñ Td. The map H varies continuously with f in the C0 topology.

This is a general fact which does not require f to be partially hyperbolic.

Now we consider PH0
ApTdq to be the connected component of PHApTdq con-

taining A. If A admits a foliation by tori T2 tangent to Ec
A, then every f P PH0

ApTdq has

central foliation with all leaves compact (see [28]).

Let Ac : Td{F c
A Ñ Td{F c

A be the corresponding factor to the linear Anosov A.

In the previous setting, we obtain the following results:

Theorem A ([3]). Let f P PH0
ApTdq XDiff2

pTdq and let k0 :“ htoppAcq. If µ is an ergodic

measure such that hµpfq ą k0, then

1. µ is hyperbolic, meaning that all its Lyapunov exponents are non-zero. In particular

any maximal entropy measure is hyperbolic, provided that it exists.

2. For every ε ą 0, there exists a hyperbolic set Bε ĂM such that htoppf |Bεq ą hµpfq´ε.

Theorem B ([3]). Let f P PH0
ApTdq X Diff2

pTdq admitting a dominated splitting of the

form Es
f ‘ Ec1

f ‘ Ec2
f ‘ Eu

f , where Ec1
f , E

c2
f are one-dimensional. Then, f has a finite

number (non-zero) of ergodic maximal entropy measures and all are hyperbolic.

For d “ 4 and dimEws
“ dimEwu

“ 1. We can consider the center foliations

of A compact or not, and obtain hyperbolicity of ergodic maximal entropy measures:

Theorem C ([4]). If f P PH0
ApT4

q X Diff8pT4
q, then every ergodic maximal entropy

measure of f is hyperbolic.

1.2 Disintegration and equilibrium states

In this work, we are also concerned with equilibrium states in a less explored

context of partially hyperbolic diffeomorphisms with higher dimensional center foliation

(i.e. two-dimensional or higher). Using disintegration techniques of measures along the

center foliation, combined with a quotient process to face the higher dimension problem,

we obtain similar results to those Crisostomo and Tahzibi [22].

For a dynamically coherent partially hyperbolic diffeomorphism, we say an

invariant measure has atomic disintegration if there exists a full measure invariant subset

which intersects each center leaf in at most a countable set. Furthermore, if each of these

countable sets is finite with k points, we say the invariant measure is virtually hyperbolic.

Let f : Td Ñ Td be a DA partially hyperbolic diffeomorphism satisfying the

following conditions:
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A.1 f is dynamically coherent;

A.2 There exists a splitting Ec
“ E1

‘ E2 where each Ei is a line-bundle and integrates

to an f -invariant foliation F i (non-compact), for i “ 1, 2;

A.3 If z, z1 P H´1
pxq and z1 P F i

pzq for some 1 ď i ď 2, then rz, z1si Ă H´1
pxq, where

rz, z1si is the closed interval inside F i
pzq with end points z and z1;

A.4 For each x P Td, H´1
pxq is a finite union of rectangles contained in a unique center

leaf of F c;

A.5 hpf,H´1
pxqq “ 0, for every x P Td.

The rectangles are considered as in Section 4.1.

The previous assumptions are satisfied by the maps considered by Buzzi, Fisher,

Sambarino and Vásquez [13] and by Carrasco, Lizana, Pujals and Vásquez [14]. In the

spirit of [45, 46], we denote by C the set where H fails to be injective and we get a result

about disintegration of measures along two-dimensional center foliations:

Theorem D ([5]). Let f : Td Ñ Td be a DA partially hyperbolic diffeomorphism satisfying

A.1, A.2, A.3 and A.4. Assume that f preserves the orientation for F i, i “ 1, 2. Let µ be

an ergodic probability for f :

1. If µpCq “ 0, then pf, µq is almost conjugate to an Anosov diffeomorphism.

2. If µpCq “ 1, then C defines a partition such that µ is virtually hyperbolic.

We also get a result about equilibrium states for the same class of potentials

considered in [15, 22]:

Theorem E ([5]). Let f : T4
Ñ T4 be a DA partially hyperbolic diffeomorphism satisfying

A.1, A.2, A.3, A.4 and A.5. Assume that f preserves the orientation of F i, i “ 1, 2. Let φ

be a continuous potential such that pA, φq has a unique equilibrium state with full support

and define the potential ϕ “ φ ˝H. For every µ ergodic equilibrium state of f with respect

to ϕ:

1. If µpCq “ 0, then µ is the unique equilibrium state.

2. If µpCq “ 1, then C defines a partition such that µ has atomic disintegration with a

finite number of atoms. Moreover, if the semiconjugacy H sends center leaves of f

to center leaves of A and one of the following conditions is satisfied

a) The center direction of A is expanding or contractive.

b) HpF i
q is some invariant foliation of A, for each i “ 1, 2.
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Then, µ is virtually hyperbolic (one only atom per leaf) and is not a unique equilibrium

state for ϕ.

1.3 Structure of the thesis

The organization of this thesis is as follows:

• In Chapter 2, we introduce some concepts and results about equilibrium states, homo-

clinic classes, hyperbolic measures, Pesin theory, partially hyperbolic diffeomorphisms

and disintegration of measures.

• In Chapter 3, we study maximal entropy measures for partially hyperbolic diffeo-

morphisms isotopic to an Anosov diffeomorphism, where the isotopy is contained in

the set of partially hyperbolic diffeomorphisms, and prove Theorems A, B, C.

• In Chapter 4, we study the disintegration of measures along center leaves and

equilibrium states for a class of partially hyperbolic diffeomorphisms isotopic to an

Anosov diffeomorphism and prove Theorems D, E.
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2
Preliminaries

The goal of this chapter is to provide results of ergodic theory and partially

hyperbolic systems that are required for the development of this work.

2.1 Equilibrium states

Let pM,distq be a compact metric space, B be the Borel σ-algebra, and µ be

a borelian probability measure. Let f : M Ñ M be a measurable transformation, the

probability measure µ is called f-invariant if f˚µpBq “ µpf´1
pBqq “ µpBq, for all B P B.

We denote by Mpfq the set of f -invariant Borel probability measures on M .

By compactness of M , this set is non-empty compact set in the weak˚-topology. The

support of µ P Mpfq is the set suppµ formed by the points x PM such that µpV q ą 0
for any neighborhood V of x.

Definition 2.1.1. An f -invariant probability measure µ is said to be ergodic if the only

measurable sets A with f´1
pAq “ A satisfy µpAq “ 0 or µpAq “ 1. We denote by Mepfq

the set of ergodic probability measures.

Now, we define the notion of entropy with respect to a finite partition P of M .

Definition 2.1.2. The entropy of P is defined by

HµpPq “
ÿ

PPP
´µpP q log µpP q.

Definition 2.1.3. We say that a partition P of M is measurable with respect to µ if there

exist a measurable family tAiuiPN and a measurable set C of full measure such that if B P P,

then there exists a sequence tBiuiPN, where Bi P tAi, A
c
iu such that B X C “

č

iPN
Bi X C.

Before presenting the notion of entropy for a dynamical system pf, µq, we

introduce some notations.
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Let Pn :“
n´1
ł

i“0
f´ipPq “

n´1
ł

i“0
tf´ipP q : P P Pu for every n ě 1. The elements of

Pn are of the form Pn
pxq “ Ppxq X f´1

pPpfpxqqq X . . .X f´n`1
pPpfn´1

pxqqq.

Definition 2.1.4. Let f : M ÑM be a measurable transformation preserving a probability

measure µ. The metric entropy of f with respect to µ and a measurable partition P of M

is defined by

hµpf,Pq “ lim
nÑ8

1
n
HµpPn

q “ inf
nPN

1
n
HµpPn

q.

The metric entropy of pf, µq is defined by

hµpfq “ supthµpf,Pq : P is a partition of Mu.

The ergodic decomposition theorem asserts that every invariant measure is a

convex combination of ergodic measures; in particular, it permits the reduction of the

proof of many results to the case when the system is ergodic.

Theorem 2.1.5 (Ergodic decomposition). Let M be a complete separable metric space,

f : M Ñ M be a measurable transformation and µ an f-invariant probability measure.

Then there exist a measurable set M0 Ă M with µpM0q “ 1, a partition P of M0 into

measurable subsets and a family tµP : P P Pu of probability measures on M , satisfying

1. µP pP q “ 1 for µ̂-almost every P P P;

2. P ÞÑ µP pEq is measurable, for every measurable set E ĂM ;

3. µP is invariant and ergodic for µ̂-almost every P P P;

4. µpEq “

ż

µP pEqdµ̂pP q, for every measurable set E ĂM .

Proof. See [59, Theorem 5.1.3].

We now present the well-known Jacobs’ formula; it generalizes the affine

property of the metric entropy for ergodic decomposition.

Theorem 2.1.6 (Jacobs). Let M be a complete separable metric space, f : M ÑM be a

measurable transformation and µ be an invariant probability measure. If tµP : P P Pu is

the ergodic decomposition of µ, then hµpfq “

ż

hµP pfqdµ̂pP q (if one side is infinite, so is

the other side).

Proof. See [59, Theorem 9.6.2].
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Let f : M ÑM be a continuous transformation over a compact metric space.

Let n P N, ε ą 0 and K Ă M a non-empty compact set. A subset E Ď K is said to

be pn, εq-separated, if for x, y P E, x ‰ y, there exists i P t0, 1, . . . , n ´ 1u such that

distpf ix, f iyq ě ε.

Definition 2.1.7. The topological entropy of f on the non-empty compact set K ĂM

is defined by

hpf,Kq “ lim
εÑ0

lim sup
nÑ8

1
n

log supt#E : E Ď K is pn, εq-separatedu.

We denote htoppfq :“ hpf,Mq.

The metric entropy describes the complexity of a dynamical system with respect

to an invariant probability measure, and the topological entropy measures the complexity

level of the whole system. The following result establishes a relationship between the two

types of entropy.

Theorem 2.1.8 (Variational principle). If f : M Ñ M is a continuous transformation

over a compact metric space, then

htoppfq “ supthµpfq : µ P Mpfqu.

Proof. See [59, Theorem 10.1].

Theorem 2.1.9 (Ledrappier-Walters Variational principle [35]). Let M and N be compact

metric spaces and f : M Ñ M, g : N Ñ N, π : M Ñ N be continuous transformations

such that π is surjective and π ˝ f “ g ˝ π. Then

sup
µ:π˚µ“ν

hµpfq “ hνpgq `

ż

N

hpf, π´1
pyqqdνpyq.

Proof. See [35, Theorem 2.1].

Definition 2.1.10. An f -invariant Borel probability measure µ is an equilibrium state

for f with respect to a potential φ P C0
pM,Rq if it satisfies

hµpfq `

ż

φdµ “ supthνpfq `
ż

φdν : ν P Mpfqu.

When φ ” 0, any µ P Mpfq such that hµpfq “ supthνpfq : ν P Mpfqu is called maximal

entropy measure.

Remark 2.1.11. In definition 2.1.10, we can change Mpfq by Mepfq. This is a conse-

quence of Theorem 2.1.6 and Theorem 2.1.5.

Let f : M ÑM be a continuous transformation over a compact metric space,

we define the entropy function that is denoted by h : Mpfq Ñ r0,8q and defined by

hpµq :“ hµpfq.
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Proposition 2.1.12. If the entropy function h is upper semi-continuous, then f has

an equilibrium state with respect to any potential φ P C0
pM,Rq. Moreover, the set of

equilibrium states for pf, φq is compact and convex subset of Mpfq.

Proof. See [59, Proposition 10.5.5 and Lemma 10.5.8].

Let f : M Ñ M be a homeomorphism over a compact metric space, the

bi-infinite Bowen ball around x PM of size ε ą 0 is the set

Γεpxq :“ ty PM : distpfnx, fnyq ă ε for all n P Zu.

Definition 2.1.13. We say that f is expansive if there is a constant ε ą 0 such that

Γεpxq “ txu for all x P M. When f is not expansive, it is useful to consider the tail

entropy of f at scale ε ą 0:

h˚f pεq :“ sup
xPM

hpf,Γεpxqq.

Definition 2.1.14. We say that f is h-expansive at scale ε if h˚f pεq “ 0. When

lim
εÑ0

h˚f pεq “ 0, we say that f is asymptotically h-expansive.

Theorem 2.1.15 (Misiurewicz [41]). If f : M ÑM is asymptotically h-expansive, then

the entropy function is upper semi-continuous.

Proof. See [41, Theorem 4.2].

Corollary 2.1.16. If f : M ÑM is asymptotically h-expansive, then f has an equilibrium

state with respect to any potential φ P C0
pM,Rq.

2.2 Homoclinic classes and hyperbolic measures

For r ě 1, we denote by DiffrpMq the set of Cr diffeomorphism over a compact

Riemannian manifold. Given f P DiffrpMq, x P M, and v P TxM ´ t0u, the Lyapunov

exponent of f at x in direction v is the exponential growth rate of Df along v, that is,

λpx, vq :“ lim
nÑ˘8

1
n

log }Dfnx pvq}

in case both limits exist and coincide.

Definition 2.2.1. Let f P DiffrpMq. A hyperbolic set for f is a compact f-invariant

set Λ ĂM with a decomposition TxM “ Es
pxq ‘ Eu

pxq for all x P Λ such that for some

C ą 0 and λ P p0, 1q, for all x P Λ, n ě 0, vs P Es
pxq and vu P Eu

pxq, we have

}Dfnx pv
s
q} ď Cλn}vs} and }Df´nx pvuq} ď Cλn}vu}.
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When Λ “M , f is called Anosov diffeomorphism. Given x PM , define

W u
pxq :“ ty PM : lim

nÑ8
distpf´npxq, f´npyqq “ 0u,

W s
pxq :“ ty PM : lim

nÑ8
distpfnpxq, fnpyqq “ 0u.

Recall that if Λ is a hyperbolic set, these sets are Cr sub-manifolds (see [31]), called

unstable and stable manifold, respectively. The periodic orbit of x and period n ě 1 for

f is denoted by O :“ Opxq “ tf ipxq : i “ 0, . . . , n´ 1u.

Definition 2.2.2. Let f P DiffrpMq. The orbit of a f -periodic point x is hyperbolic of

saddle type O if x has a positive Lyapunov exponent, a negative Lyapunov exponent and

no zero Lyapunov exponents.

We denote by Perhpfq the set of hyperbolic periodic orbit of saddle type. For

O P Perhpfq we also define the unstable (stable) manifold for a whole orbit as

W u
pOq “

ď

xPO
W u
pxq and W s

pOq “
ď

xPO
W s
pxq.

Definition 2.2.3. Two orbits Oi,Oj P Perhpfq are called homoclinically related if

for i ‰ j

W u
pOiq&W

s
pOjq ‰ H, W u

pOjq&W
s
pOiq ‰ H.

We write Oi
h
„ Oj.

Definition 2.2.4. The homoclinic class of O is the set

HCpOq “ tÔ P Perhpfq : Ô h
„ Ou.

Let us present some results about Pesin theory that will be used in some parts

this thesis. For further references, see the book by Barreira and Pesin [8] and Katok’s

paper [33].

Theorem 2.2.5 (Oseledets). Let f P Diff1
pMq and µ P Mpfq. There exists a set Rf ĂM

with µpRf q “ 1, such that for every ε ą 0 it exists a measurable function Cε : Rf Ñ p1,8q
with the following properties:

1. For any x P Rf there are numbers 1 ď lpxq ď dimM , lpxq Lyapunov exponents

λ1pxq ă ¨ ¨ ¨ ă λlpxqpxq and a decomposition TxM “ E1pxq ‘ E2pxq ‘ ¨ ¨ ¨ ‘ Elpxqpxq;

2. lpfpxqq “ lpxq, λipfpxqq “ λipxq and DfxEipxq “ Eipfpxqq, for every i “ 1, ¨ ¨ ¨ , lpxq;

3. For every v P Eipxq ´ t0u and n P Z

Cεpxq
´1enpλipxq´εq}v} ď }Dfnx pvq} ď Cεpxqe

npλipxq`εq}v} and λpx, vq “ λipxq;
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4. The angle between Eipxq and Ejpxq is greater than Cεpxq
´1, if i ‰ j;

5. Cεpfpxqq ď eεCεpxq.

Proof. See [8, Theorem 5.4.1].

Remark 2.2.6. Every x P Rf , given by the previous theorem, is called a regular point.

If µ P Mepfq, then the Lyapunov exponents and dimEipxq are constants µ-a.e.

Given ε ą 0 and l P N we define the Pesin block

Rε,l “ tx P Rf : Cεpxq ď lu.

Note that Pesin blocks are not necessarily invariant. However fpRε,lq Ă Rε,eεl and for each

ε ą 0, we have that

Rf “
ď

lPN
Rε,l.

Recall that every Rε,l is compact. For all x P Rf we have

TxM “
à

λipxqă0
Eipxq

à

E0
pxq

à

λipxqą0
Eipxq

where E0
pxq is the subspace generated by the vectors having zero Lyapunov exponents.

Definition 2.2.7. An f-invariant probability measure µ is called hyperbolic if all its

Lyapunov exponents are non-zero and there exist Lyapunov exponents with different signs.

We denote Mhpfq the set of hyperbolic ergodic measures.

Definition 2.2.8. Let µ be a hyperbolic ergodic measure. We define the stable index or

s-index (unstable index or u-index) of µ as the number of negative (positive) Lyapunov

exponents. Here the exponents are counted with multiplicity.

Definition 2.2.9. For f P DiffrpMq with r ą 1, the stable Pesin manifold of the

point x P Rf is

W s
P pxq “ ty PM : lim sup

nÑ8

1
n

log distpfnpxq, fnpyqq ă 0u.

Similarly one defines the unstable Pesin manifold as

W u
P pxq “ ty PM : lim sup

nÑ8

1
n

log distpf´npxq, f´npyqq ă 0u.

Remark 2.2.10. Stable and unstable Pesin manifolds of points in Rf are immersed

submanifolds [44, Section 4]. The usual Pesin theory requires a C1`α regularity pα ą 0q
of the dynamics [47], in the case of C1 regularity, we can use dominated Pesin theory

developed in [1, 6].
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We denote by W s
locpxq the connected component of W s

P pxq XBpx, rq containing

x, where Bpx, rq denotes the Riemannian ball of center x and radius r ą 0, which is

sufficiently small but fixed.

Theorem 2.2.11 (Stable Pesin Manifold Theorem [44]). Let r ą 1 and f P DiffrpMq be

a diffeomorphism preserving a smooth measure m. Then, for each l ą 1 and small ε ą 0,

if x P Rε,l:

1. W s
locpxq is a disk such that TxW

s
locpxq “

à

λipxqą0
Eipxq;

2. x ÞÑ W s
locpxq is continuous over Rε,l in the C1-topology.

Proof. See [44, Theorem 2.2.1].

In particular, the dimension of the disk W s
locpxq equals the number of negative

Lyapunov exponents of x respect to m. An analogous statement holds for the unstable

Pesin manifold.

Let O P Perhpfq and µ P Mhpfq. We write O h
„ µ when W u

P pxq&W
s
P pOq ‰ H

andW s
P pxq&W

u
P pOq ‰ H for µ-almost every x as in Definition 2.2.2. The previous definition

describes the homoclinic relation between µ and O,

Katok’s Horseshoe Theorem [33] gives an important characterization for hyper-

bolic ergodic measures with positive entropy.

Theorem 2.2.12 (Katok, [33]). Suppose f P DiffrpMq, r ą 1. Let µ be an f-invariant

ergodic and hyperbolic measure such that hµpfq ą 0. Then for every ε ą 0, there exists a

hyperbolic set Bε ĂM such that

htoppf |Bεq ą hµpfq ´ ε.

Proof. See [8, Theorem 15.6.1].

Corollary 2.2.13 (Katok, [34]). Let f P DiffrpMq with r ą 1, and µ P Mhpfq. Then,

there exists O P Perhpfq such that O h
„ µ and

HCpOq “
ď

tsupp ν : ν P Mhpfq, O h
„ νu.

Proof. See [8, Corollary 15.4.9].

2.3 Partially hyperbolic diffeomorphisms

In this section M is a compact Riemannian manifold. We begin by presenting

the definition of dominated splitting for a diffeomorphism over M .
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Definition 2.3.1. A diffeomorphism f : M Ñ M has a dominated splitting if there

are an invariant splitting TM “ E1 ‘ ¨ ¨ ¨ ‘ Ek, k ě 2 (with no trivial subbundle), and an

integer l ě 1 such that for every x PM, i ă j, and unit vectors u P Eipxq and v P Ejpxq,

one has
}Df lxpuq}

}Df lxpvq}
ă

1
2 .

Definition 2.3.2. A diffeomorphism f : M Ñ M is called partially hyperbolic if the

tangent bundle admits a continuous Df-invariant splitting TM “ Es
‘ Ec

‘ Eu such

that there exists N P N and λ ą 1 verifying that for every x P M and unit vectors

vσ P Eσ
pxq pσ “ s, c, uq we have

• λ}DfNx pv
s
q} ă }DfNx pv

c
q} ă λ´1

}DfNx pv
u
q}, and

• }DfNx pvsq} ă λ´1
ă λ ă }DfNx pv

u
q}.

Remark 2.3.3. For partially hyperbolic diffeomorphisms, it is a well-known fact that there

are foliations Fσ tangent to the subbundles Eσ for σ “ s, u. Not always the central bundle

Ec may be tangent to an invariant foliation, but whenever such a foliation exists, it is

denoted by F c.

Definition 2.3.4. A partially hyperbolic diffeomorphism f : M Ñ M is called dynam-

ically coherent if there exist invariant foliations F cσ tangent to Ecσ
“ Ec

‘ Eσ for

σ “ s, u, respectively.

F c
pxq

F c
pzq

Fu
pxq Fu

pyq

x

z

y

Figure 1 – Holonomies

Definition 2.3.5. 1. For any f : M ÑM partially hyperbolic diffeomorphism dynam-

ically coherent and any two points x, y with y P Fu
pxq, there exists a neighborhood

Ux of x in F c
pxq and a homeomorphism Hu

x,y : Ux Ñ F c
pyq such that Hu

x,ypxq “ y
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and Hu
x,ypzq P Fu

pzq X F c
locpyq. The homeomorphism, Hu

x,y, x PM and y P Fu
pxq, is

called local unstable holonomy. Similarly, one may define local stable holon-

omy Hs
x,y for x PM and y P F s

pxq.

2. We say that f admits global unstable holonomy if for any y P Fu
pxq the holonomy

is defined globally Hu
x,y : F c

pxq Ñ F c
pyq. Similarly, we define the notion of global

stable holonomy, and f admits global holonomies when it admits global stable and

unstable holonomies (see Figure 1).

Definition 2.3.6. A foliation F is called quasi-isometric if there exists a constant

Q ą 0 such that, after lifting F to the universal cover, for any two points x, y in the same

leaf, one has

distFpx, yq ď Qdistpx, yq

where distF and dist are respectively the distance along the leaf and the distance on the

universal cover.

Definition 2.3.7. A C1 partially hyperbolic diffeomorphism f : M ÑM is called derived

from Anosov (DA) if it is isotopic to an Anosov diffeomorphism. In the case M “ Td,
then f is isotopic to its action in the homology A : H1pTdq Ñ H1pTdq. We call A the linear

part of f .

Let f : Td Ñ Td be a diffeomorphism isotopic to a hyperbolic automorphism

A : Td Ñ Td. By a classical result due to Franks-Manning [29, 40] there exists a continuous

surjection H : Td Ñ Td homotopic to the identity such that

A ˝H “ H ˝ f. (2.3.1)

Moreover, its lift H̃ to Rd is a proper function that semiconjugates f̃ with Ã, and for some

constant K ą 0, we have

}H̃ ´ Id}C0 ď K.

Remark 2.3.8. Let A : Td Ñ Td be a linear Anosov automorphism admitting a dominated

splitting of the form Ess
A ‘E

ws
A ‘E

wu
A ‘Euu

A . We denote as Es
A “ Ess

A ‘E
ws
A , Ec

A “ Ews
A ‘E

wu
A

and Eu
A “ Ewu

A ‘ Euu
A . We denote by PHA,s,upTdq Ă PHpTdq the subset of those which are

isotopic to A and whose splitting verifies dimEσ
f “ dimEσσ

A for σ P ts, uu, and denote by

PH0
ApTdq to be the connected component of PHA,s,upTdq containing the linear Anosov A.

Note that can also be characterized as the connected component containing a dynamically

coherent and center-fibered partially hyperbolic diffeomorphism (see [28, Subsection 1.3]).

Theorem 2.3.9 (Fisher-Potrie-Sambarino [28]). Every f P PH0
ApTdq is dynamically co-

herent and different center leaves of f are sent by H to different center leaves of A.

Proof. See [28, Theorem A].
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2.4 Disintegration of measures

Let pM,B, µq be a probability space and P a partition of M into measurable

subsets. We consider π : M ÑM{P the canonical projection that assigns to each point

x P M the element Ppxq of the partition that contains it. This projection map endows

M{P with the structure of a probability space, as follows. We define B̂ “ π˚B and µ̂ by

µ̂ “ π˚µ. Then, pM{P , B̂, µ̂q is a probability space.

Definition 2.4.1. A disintegration of µ with respect to P is a family tµP uPPP of

conditional probability measures on M such that, for every measurable set E ĂM :

1. µP pP q “ 1 for µ̂-almost every P P P;

2. the function P Ñ R, defined by P ÞÑ µP pEq is measurable;

3. µpEq “

ż

µP pEqdµ̂pP q.

When it is clear which partition we are referring to, we say that the family tµP u disinte-

grates the measure µ.

Proposition 2.4.2. If tµP uPPP and tµ̃P uPPP are disintegrations of µ with respect to P,

then µP “ µ̃P for µ̂-almost every P P P.

Proof. See [59, Proposition 5.1.7].

The previous proposition asserts that disintegrations are essentially unique,

when they exist. Consequently, for an invariant measure it follows that:

Corollary 2.4.3. If f : M Ñ M preserves µ and the partition P, then f˚µP “ µfpP q

µ̂-a.e.

The next theorem guarantees the existence of disintegration with respect to a

measurable partition.

Theorem 2.4.4 (Rokhlin’s Disintegration [52]). Let P be a measurable partition of a

compact metric space M and µ a borelian probability measure. Then, µ admits some

disintegration with respect to P.

Proof. See [59, Theorem 5.1.11].

In the context of partially hyperbolic dynamics the partition by leaves of a

foliation, in general, may be non-measurable (see [18]). Thus, by disintegration of a measure

along the leaves of a foliation we mean the disintegration on compact foliated boxes.
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Definition 2.4.5. We say that a foliation F has atomic disintegration with respect

to a measure µ if the conditional measures on any foliated box are sum of Dirac measures.

In other words, there exists a full measurable subset Z such that Z intersects all leaves in

at most a countable set.

Remark 2.4.6. Even though the disintegration of a measure along a general foliation is

defined in compact foliated boxes, it makes sense to say that a foliation F has a quantity

k P N of atoms per leaf. The meaning of “per leaf” should always be understood as a

generic leaf, i.e. almost every leaf. That means that there is a set A of µ-full measure

which intersects a generic leaf on exactly k points.

Definition 2.4.7. Let f P PHpTdq be a dynamically coherence DA. We say that an f-

invariant measure is virtually hyperbolic if there is a full measure set which intersects

the center leaf in at most k points.

Remark 2.4.8. If µ is a virtually hyperbolic measure, then the conditional measures along

center leaves are Dirac measures, and the central foliation is measurable with respect to µ,

because the partition into central leaves is equivalent to the partition into points. Ponce,

Tahzibi and Varão [45] studied examples of DA partially hyperbolic diffeomorphisms on T3

with one-dimensional center foliation and volume measure virtually hyperbolic.
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3
Maximal entropy measures for diffeomorphisms

isotopic to an Anosov diffeomorphism

Let us consider f P PH0
ApTdq, where A : Td Ñ Td is a linear Anosov automor-

phism admitting a dominated splitting of the form Ess
A ‘E

c
A‘E

uu
A with Ec

A “ Ews
A ‘Ewu

A .

3.1 Known results

Our goal is to understand maximal entropy measures for partially hyperbolic

diffeomorphisms under the above conditions. Before that, we present some useful results

for developing the proofs of the main theorems on this chapter.

Theorem 3.1.1 (Fisher-Potrie-Sambarino [28]). If f P PH0
ApTdq and dimEc

f “ 1, then f

has a unique maximal entropy measure.

Proof. See [28, Corollary C].

Theorem 3.1.2 (Roldán [53]). If f P PH0
ApTdq and dimEc

f “ 1, then the unique maximal

entropy measure of f is hyperbolic.

Proof. See [53, Theorem A].

The following results can be found in [56]. Let f : M ÑM be a C2 partially

hyperbolic diffeomorphism over a compact manifold satisfying the following conditions:

H.1 f is dynamically coherent with all center leaves compact;

H.2 f admits global holonomies;

H.3 fc : M{F c
Ñ M{F c is a transitive topological Anosov homeomorphism (see [39,

Chapter IV]), where fc is the induced dynamics satisfying fc ˝ π “ π ˝ f and

π : M ÑM{F c is the natural projection to the space of central leaves.
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Definition 3.1.3. Let tµuxu be the conditional measures on local unstable plaques. In the

above setting, the probability measure µ is called a Gibbsuν-state if π˚µ “ ν and for

µ-almost every x PM ,

π˚µ
u
x “ νuπpxq.

Gibbuνpfq denotes the set of Gibbsuν-states of f .

Definition 3.1.4. For every f -invariant probability µ, we say that a measurable partition

ξ is µ-adapted (subordinated) to a foliation F if the following conditions are satisfied:

1. There is r0 ą 0 such that ξpxq Ă BF
r0pxq for µ almost every x where BF

r0pxq is the

ball inside of the leaf Fpxq;

2. ξpxq contains an open neighborhood of x inside Fpxq;

3. ξ is increasing; that is, for µ almost every ξpxq Ă fpξpf´1
pxqqq.

Definition 3.1.5. For every f-invariant probability µ, the partial entropy of f along

the expanding foliation Fu is defined by

hµpf,Fu
q “ Hµpf

´1ξu|ξuq “

ż

M

´ log µuz pf´1ξpzqqdµpzq,

where ξu is a partition µ-adapted to the foliation Fu.

Theorem 3.1.6 (Tahzibi-Yang [56]). Let f be a C2 partially hyperbolic diffeomorphism

satisfying H.1, H.2 and H.3. Suppose µ to be an f-invariant probability measure. Then,

hµpf,Fu
q ď hπ˚µpfcq and equality occurs if and only if µ P Gibbuπ˚µpfq.

Proof. See [56, Theorem A].

3.2 Proof of Theorem A

Let f P PH0
ApTdq where A : Td Ñ Td is a linear Anosov automorphism with a

foliation by tori T2 tangent to Ec
A “ Ews

A ‘ Ewu
A , dimEws

A “ dimEwu
A “ 1. By Theorem

2.3.9 f is dynamically coherent and H sends central leaves of f in central leaves of A.

Moreover, in the proof of the main result in [28] it was guaranteed that the semiconjugacy

H is injective on each strong stable and unstable leaves.

Let f P PH0
ApTdq X Diff2

pTdq, then all central leaves of f are compact (see

Theorem 2.3.9).

We recall that two transverse foliations F1 and F2 of Td have a global product

structure (GPS) if for any two points x, y P Rd the leaves F̃1pxq and F̃2pyq intersect in a

unique point. Now, we will recall some essential steps of the proof of following result, from

[28, Section 2 and Section 3].
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Lemma 3.2.1. Let f P PH0
ApTdq be under above conditions. Then, f admits global

holonomies, that is, for every x, y P Td with y P Fu
pxq and every z P F c

pxq there is a

unique w such that w P Fu
pzq X F c

pyq.

Proof. Since f P PH0
ApTdq is dynamically coherent, by arguments of the proof in [28,

Theorem 6.1], f satisfies the hypothesis of [28, Theorem 4.1]. Hence the Franks-Manning

semiconjugacy H is injective along strong stable and unstable manifolds, and for any two

points y, z P Rd the leaves F̃upzq and F̃ cspyq intersect in a unique point. Then, we obtain

that F cs has a global product structure with Fu and Fu
pzq XF c

pyq is a singleton set.

The following proposition is contained in the proof of Corollary 2.1 from [56],

where some results of Ledrappier-Young [36], [37] are used. Let us consider the topological

quotient Td{F c and the projection π : Td Ñ Td{F c such that the transitive topological

Anosov homeomorphism fc : Td{F c
Ñ Td{F c satisfies π ˝ f “ fc ˝ π.

Proposition 3.2.2. If µ is an ergodic probability with all the central exponents non-positive

almost everywhere, then hµpfq “ hπ˚µpfcq.

Proof. Let hi be the entropy along the i-th Pesin unstable manifold W i
P for 1 ď i ď u (see

[37]). Here

W i
P pxq “ ty P Td : lim sup

nÑ8

1
n

log distpf´npxq, f´npyqq ď ´λiu

and λ1 ą λ2 ą ¨ ¨ ¨ ą λu are the positive Lyapunov exponents of pf, µq. As f is a

partially hyperbolic diffeomorphism with non-positive central Lyapunov exponents, it

follows that W u
P coincides with the unstable foliation Fu. By Corollary 7.2.2 of [37] we

have that hµpfq “ hu (hu is the entropy along W u
P ), again using ideas of [37] we obtain

that hu “ hµpf,Fu
q, and consequently hµpfq “ hu “ hµpf,Fu

q. On the other hand,

Theorem 3.1.6 implies that hµpfq “ hµpf,Fu
q ď hπ˚µpfcq. As fc is factor of f , we have

that hµpfq “ hπ˚µpfcq.

Theorem 3.2.3 (Theorem A). Let f P PH0
ApTdq XDiff2

pTdq. For some 0 ă k0 ă htoppAq,

if µ is an ergodic measure such that hµpfq ą k0, then

1. µ is hyperbolic, meaning that all its Lyapunov exponents are non-zero. In particular

any maximal entropy measure is hyperbolic, provided that it exists.

2. For every ε ą 0, there exists a hyperbolic set Bε ĂM such that htoppf |Bεq ą hµpfq´ε.

Proof. Let λc1, λ
c
2 be the central Lyapunov exponents of pf, µq. Define k0 :“ htoppAcq

where Ac : Td{F c
A Ñ Td{F c

A is the corresponding factor to the linear Anosov A, thus

htoppAcq ă htoppAq. By Ruelle’s inequality [34, Theorem S.2.13] we obtain that

k0 ă hµpfq ď maxtλc1, 0u `maxtλc2, 0u `
ÿ

λ`i,f (3.2.1)
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where λ`i,f are the positive (unstable) Lyapunov exponents of f . By [28, Theorem B] f is

leaf conjugate to A, we can define a homeomorphism between central leaves and obtain

that htoppfcq “ htoppAcq. By contradiction suppose maxtλc1, 0u `maxtλc2, 0u “ 0, that is,

the central Lyapunov exponents are non-positive. From Proposition 3.2.2 it follows that

hµpfq “ hµpf,Fu
q “ hπ˚µpfcq ď htoppfcq “ htoppAcq “ k0,

in contradiction with (3.2.1). Then, maxtλc1, 0u`maxtλc2, 0u ą 0. Analogously, as hµpf
´1
q “

hµpfq we have that maxt´λc1, 0u`maxt´λc2, 0u ą 0. Therefore, µ is a hyperbolic measure.

The second item follows from Katok’s theorem 2.2.12, because hµpfq ą 0. The hyper-

bolicity for any ergodic maximal entropy measure, if it exists, is now immediate since

htoppAcq ă htoppAq ď htoppfq.

Using techniques from symbolic dynamics, it is proved in [12] that:

Lemma 3.2.4. Let f : DiffrpMq with r ą 1, and O be a hyperbolic periodic orbit. Then,

there is at most one ergodic hyperbolic maximal entropy measure homoclinically related

to O. Moreover, when such maximal entropy measure exists, its support coincides with

HCpOq.

Proof. This is explained in [12, Section 1.6]. See also [9] and [12, Corollary 3.3].

Corollary 3.2.5. Let f be as in Theorem A.

• If hpf,H´1
pxqq “ 0 for every x P Td, then there exists a maximal entropy measure.

• If µ is an ergodic maximal entropy measure, then suppµ coincides with the homoclinic

class of some hyperbolic periodic orbit.

Proof. When hpf,H´1
pxqq “ 0 for every x P Td, Ledrappier-Walters Principle 2.1.9 allows

us to conclude that htoppAq “ htoppfq and that a lift of the Haar measure, µ, for A is a

maximal entropy measure for f . For the second item, by Theorem 3.2.3 µ is a hyperbolic

measure. Then, by Corollary 2.2.13 there exists O P Perhpfq such that O h
„ µ, and from

Lemma 3.2.4 follows that suppµ “ HCpOq.

Remark 3.2.6. One useful reference is Roldán [53], in which we can find examples

of partially hyperbolic diffeomorphisms f : T4
Ñ T4 with two-dimensional center bundle

admitting high entropy measures, that is, measures µ such that hµpfq ě htoppAq. Specifically,

Theorem B (resp. Theorem C) of [53] are examples where there exists an open set U of

Diff1
pT4
q such that any f P U is an absolutely (resp. a pointwise) partially hyperbolic

diffeomorphism with dimEc
f “ 2, and any ergodic maximal entropy measure is hyperbolic.
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3.3 Proof of Theorem B

Let f P PH0
ApTdq X Diff2

pTdq. We want to understand the maximal entropy

measures for f admitting a dominated splitting of the form Es
f‘E

c1
f ‘E

c2
f ‘E

u
f , dimEc1

f “

dimEc2
f “ 1. From [25, Corollary 1.3] it follows that f has a maximal entropy measure.

Let Γepfq be the set of all ergodic maximal entropy measures of f , Theorem

3.2.3 implies that every µ P Γepfq is a hyperbolic measure of saddle type. Recall that Rf

denotes the set of regular points.

Proposition 3.3.1. Suppose µ P Γepfq and O P Perhpfq. Then, the set

HO :“ tx P Rf : W u
P pxq&W

s
P pOq ‰ H and W s

P pxq&W
u
P pOq ‰ Hu,

is invariant and measurable. Moreover,

@µ P Mepfq, µpHOq “ 1 ðñ µ P Mhpfq and µ
h
„ O.

Proof. For any x P HO, by the properties of Pesin blocks ([12, Section 2.3]) there are

positives integers m, m̃ and a Pesin block Rε,n such that

fmpxq, f m̃pxq P Rε,n, W
s
locpf

m
pxqq&W u

P pOq ‰ H and W u
locpf

´m̃
pxqq&W s

P pOq ‰ H.

For every m, m̃, n the set of points x satisfying the condition above is measurable, since

the local manifolds vary continuously for the C1-topology on each Pesin block. Therefore,

HO is measurable. Since the union of Pesin blocks is invariant, it is not difficult to verify

that HO is f -invariant.

If µ is an ergodic hyperbolic measure such that µ
h
„ O, then by definition of

the homoclinic relation, µpHOq ą 0. From the invariance of HO follows that µpHOq “ 1.
Conversely, if µ is an ergodic measure such that µpHOq “ 1, from the properties of the

Pesin blocks µ is a hyperbolic measure of saddle type and by definition of HO we have

that µ
h
„ O.

Remark 3.3.2. For O P Perhpfq the sets HO have the following property:

• HO “ HÕ when O is homoclinically related to Õ,

• HO XHÕ “ H when O and Õ are not homoclinically related.

Indeed, if there exists x P HO XHÕ, then Inclination Lemma [12, Lemma 2.7] implies that

the stable manifolds of O and Õ contain discs that converge towards the stable manifold

of x for the C1-topology; the same argument is valid for unstable manifolds and these

arguments imply the homoclinic relation between O and Õ.
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Proposition 3.3.3. Let f be a C2 partially hyperbolic diffeomorphism and µ be a hyperbolic

ergodic probability measure whose Oseledets decomposition Es
P ‘ E

u
P is dominated. Then

µ is supported on a homoclinic class: there exists a sequence of hyperbolic periodic orbits

pOnqnPN whose s-index is equal to dimEs
P , that are all homoclinically related, that converge

towards the support of µ for the Hausdorff topology and such that the invariant measures

supported on the On converge towards µ in the weak˚-topology.

Proof. We will argue as in the proof of [23, Proposition 1.4]. Let λEsP be the Lyapunov

exponent given by

λEsP “ lim
nÑ8

1
n

ż

log }Dfn|EsP }dµ

and let ε ą 0 such that λEsP ` ε ă 0. Consider an integer n0 ě 1 fixed and large enough so

that for any n ě n0 we have
ˇ

ˇ

ˇ

ˇ

1
n

ż

log }Dfn|EsP }dµ´ λEsP

ˇ

ˇ

ˇ

ˇ

ď
ε

2 (3.3.1)

Here µ is ergodic for f , but not necessarily for fn0 . Hence, µ decomposes as

µ “
1
q
pµ1 ` . . .` µqq

where q P N ´ t0u divides n0 and each µt is an ergodic fn0-invariant measure such that

µt`1 “ f˚µt for every t (mod q). Let A1 Y . . .Y Aq be a measurable partition of Td with

respect to µ such that fpAtq “ At`1 for every t (mod q) and µtpAtq “ 1. From 3.3.1 follows

that there exists t0 P t1, . . . , qu such that

1
n0

ż

log }Dfn0 |EsP }dµt0 ď λEsP `
ε

2 (3.3.2)

For l ě 1 and µN -almost every x, one decomposes the segment of orbit with length l of

x as px, fpxq, . . . , f j´1
pxqq, pf jpxq, . . . , f j`pr´1qn0´1

pxqq pf j`pr´1qn0pxq, . . . , f l´1
pxqq such

that j ă n0, j ` rn0 ě l and all the points f jpxq, f j`n0pxq, . . . , f j`rn0pxq P At0 . Then,

}Df lx|EsP } ď }Df
j
x|EsP } ¨ p}Df

n0
fjpxq|EsP } ¨ ¨ ¨ }Df

n0
fj`pr´2qn0 pxq

|EsP }q ¨ }Df
l´pj`pr´1qn0q

fj`pr´1qn0 pxq
|EsP }.

Hence, for µ-almost every point we have that

log }Df lx|EsP } ď 2n0Kf `

r´2
ÿ

s“0
log }Dfn0

fj`sn0 pxq|E
s
P
}

where Kf is an upper bound for both log }Df} and log }Df´1
}. Since f jpxq is a regular

point for the dynamics pfn0 , µt0q, we obtain that the average
1
kn0

k´1
ÿ

i“0
log }Dfn0

fj`in0 pxq|E
s
P
}

converges to
1
n0

ż

log }Dfn0 |EsP }dµt0 . Thus,

lim
kÑ8

1
kl

k´1
ÿ

i“0
log }Df lf ilpxq|EsP } ď 2n0Kf

l
`

1
n0

ż

log }Dfn0 |EsP }dµt0 .
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Now, choosing l ą
4n0Kf

ε
and by the inequality (3.3.2) we obtain that

1
lk

k´1
ÿ

i“0
log }Df lf ilpxq|EsP } ă λEsP ` ε.

Define ´ρ “ λEsP ` ε, then there exists an integer l ě 1 such that for µ-almost every x,

the Birkhoff averages

1
lk

k´1
ÿ

i“0
log }Df lf ilpxq|EsP },

1
lk

k´1
ÿ

i“0
log }Df´lf´ilpxq|EuP }

converge towards a number less than ´ρ when k Ñ 8. Then, there exist a set B with

µpBq “ 1 and a constant C ą 0 such that for every x P B and every k ě 0 we have that

k´1
ź

i“0
|Df lf ilpxq|EsP } ď Ce´kρ,

k´1
ź

i“0
}Df´lf´ilpxq|EuP } ď Ce´kρ.

As µ is ergodic, µ-almost every point is recurrent. Now, using the previous inequality we

obtain a segments of orbits px, . . . , fmpxqq in the support of µ such that x, fmpxq P B, the

distance dpx, fmpxqq is arbitrarily small and the non-invariant atomic measure
1
m

m´1
ÿ

i“0
δf ipxq

is arbitrarily close to µ. In particular for each k “ 0, . . .m, we have that

k´1
ź

i“0
|Df lf ilpxq|EsP } ď Ce´kρ,

k´1
ź

i“0
}Df´lf´ilpxq|EuP } ď Ce´kρ. (3.3.3)

This property and the domination Es
P ‘ E

u
P allow to apply Liao-Gan’s shadowing Lemma

[30], the segment of orbit px, . . . , fmpxqq is δ-shadowed (see [34, Definition 18.1.1]) by a

periodic orbit O “ ty, . . . , fmpyq “ yu where δ tends to 0 when dpx, fmpxqq decreases. In

particular, O is arbitrarily close to the support of µ for the Hausdorff topology and it

supports a periodic measure arbitrarily close to the measure µ. Note that the segment

of orbit py, . . . , fmpyqq satisfies an estimate like 3.3.3 with constants ρ
1

, C
1

close to ρ, C.

This way, we have that the orbit O is hyperbolic and has s-index dimEs
P . Repeating this

argument, one obtains a sequence of such periodic points pynqnPN with s-index dimEs
P

which converge to x, whose orbits pOnqnPN converge toward to suppµ, and whose measures

converge to µ in the weak˚-topology. By the estimate 3.3.3, the size of the local stable

and local unstable manifolds at yn is uniform. Consequently, the periodic orbits On are

homoclinically related for n large.

Theorem 3.3.4 (Theorem B). Let f P PH0
ApTdq X Diff2

pTdq admitting a dominated

splitting of the form Es
f ‘ Ec1

f ‘ Ec2
f ‘ Eu

f , where Ec1
f , E

c2
f are one-dimensional. Then,

Γepfq is a non-empty finite set and all its elements are hyperbolic measures.

Proof. Γepfq is a non-empty set and every µ P Γepfq is hyperbolic due to Theorem 3.2.3.

Arguing by contradiction suppose there exists a sequence of measures pµiqiPN Ă Γepfq.
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By hypothesis of domination the Oseledets decomposition of µi defined by Es
i ‘ Eu

i is

dominated, where Es
i “ Es

f ‘ E
c1
f and Eu

i “ Ec2
f ‘ E

u
f (for regular points of µi). Arguing

as in the proof of Proposition 3.3.3, we obtain a sequence of orbits pOiqiPN such that

Oi P Perhpfq and the size of the local stable (unstable) manifolds at a point is uniform

(does not depend on measure). Taking an accumulation point of pµiqiPN, we have that

the periodic orbits Oi are homoclinically related for i large. Consequently by Remark

3.3.2 there exists j ‰ i such that HOi
“ HOj

. Hence, from Proposition 3.3.1 follows that

Oi
h
„ µj and Oj

h
„ µj for i ‰ j. This is a contradiction with Lemma 3.2.4. Therefore, Γepfq

is a non-empty finite set.

Let Γepfq “ tµ1, µ2, . . . , µku be the set of ergodic maximal entropy measures

of f . The following results are consequences of the previous theorem.

Corollary 3.3.5. Let f be as in Theorem 3.3.4. Then, every maximal entropy measure µ

is of the form µ “
k
ÿ

i“1
tiµi where ti ě 0,

k
ÿ

i“1
ti “ 1.

Proof. Let µ be a maximal entropy measure for f . By applying Jacobs’ formula 2.1.6 to

the ergodic decomposition of µ, we obtain that µP has maximal entropy for µ̂-a.e P , and

from Theorem 3.3.4 there exists a finite number (non-zero) of them. Therefore, µ is a

convex combination of ergodic maximal entropy measures.

Corollary 3.3.6. Let f be as in Theorem 3.3.4 and pνiqiPN be a sequence of hyperbolic

measures such that lim
iÑ8

hνipfq “ htoppfq. If νi converges to µ in the weak˚-topology, then µ

is a combination of elements of Γepfq.

Proof. Theorem 1 from [25] and Theorem 2.1.15 together imply that the function entropy

is upper semi-continuous, then µ is a maximal entropy measure for f . Thus, by Corollary

3.3.5 one concludes the proof.

3.4 Proof of Theorem C

We start by considering f P PHpTdq XDiff2
pTdq. We define the volume growth

rate of the foliation Fu by

XFupx, fq “ lim sup
nÑ8

1
n

logpV olfnpBFu

r pxqqq,

where BFu

r pxq denotes the ball inside of the leaf Fu
pxq. Then, the maximum volume growth

rate of Fu under f is defined by

Xupfq :“ XFupfq “ sup
xPTd

XFupx, fq.

The following result provides a refined version of the Pesin-Ruelle inequality:
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Theorem 3.4.1 (Hua-Saghin-Xia [32]). Let f be a C1`α partially hyperbolic diffeomor-

phism. Let µ be an ergodic measure and λcipµq the Lyapunov exponents to Ec. Then,

hµpfq ď Xupfq `
ÿ

λcią0
λcipµq.

Proof. See [32, Theorem 3.3].

Remark 3.4.2. In the case of T4, the stable and unstable manifolds are one-dimensional,

which is crucial to remove the compactness condition for the center leaves in Theorem

3.2.3.Hence, we obtain the same conclusion about hyperbolic measures.

Let A : T4
Ñ T4 be a linear Anosov automorphism admitting a dominated

splitting of the form Ess
A ‘E

c
A ‘E

uu
A , Ec

A “ Ews
A ‘Ewu

A and let H be the Franks-Manning

semiconjugacy between f and A.

Remark 3.4.3. Let us denote by rxs :“ H´1
pxq the class of x P Td, and similarly for

x̃ P Rd we write rx̃s :“ H̃´1
px̃q. For every x̃ P Rd, each rx̃s is a compact set whose diameter

is uniformly bounded from above diamprx̃sq ď 2K. In particular, since H ˝ fn “ An ˝H

for every n P Z we obtain that

diampf̃nrx̃sq ď 2K,

for every n P Z.

Theorem 3.4.4 (Theorem C). Let f P PH0
ApT4

q XDiff2
pT4
q. For some 0 ă k0 ă htoppAq,

if µ is an ergodic measure such that hµpfq ą k0, then µ is a hyperbolic measure.

Proof. Let λc1, λ
c
2 be the central Lyapunov exponents of pf, µq and k0 :“ λuA the largest

unstable Lyapunov exponent of A. Observe that Xupfq “ Xupf̃q, where f̃ is any lift of f to

the universal cover, and Fu is an one-dimensional foliation, then the volume is the length.

Take an strong unstable arc γ and since H̃ ˝ f̃n “ Ãn ˝H for every n P Z, we have that

diam f̃npγq ď 2K ` diam ÃnpH̃pγqq ď 2K ` enλ
u
A diam H̃pγq, (3.4.1)

where K is a constant that bounds the distance between H̃ and the identity.

On the other hand, by [28, Proposition 7.1] F s and Fu are quasi-isometric,

then there is a constant Q ą 0 such that distFupfnpxq, fnpyqq ď Qdistpfnpxq, fnpyqq, and

from (3.4.1) it follows that

distFupfnpxq, fnpyqq ď Qenλ
u
AdistpH̃pxq, H̃pyqq ` 2QK.

Considering γ as an arc of BFu

r pxq and C :“ diam H̃pBFu

r pxqq, we obtain that

1
n

log lenpf̃npBFu

r px̃qqq ď
1
n

logQ` 1
n

logpCenλuA ` 2Kq “ 1
n

logQ` 1
n

logpC` 2K
enλ

u
A
q`λuA.
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Therefore, Xupf̃q “ Xupfq “ λuA. Now, by Theorem 3.4.1 we have that

λuA ă hµpfq ď Xupfq `maxtλc1, 0u `maxtλc2, 0u ď λuA `maxtλc1, 0u `maxtλc2, 0u.

Then, maxtλc1, 0u ` maxtλc2, 0u ą 0. Analogously, as hµpf
´1
q “ hµpfq and F s is quasi-

isometric, we have that maxt´λc1, 0u `maxt´λc2, 0u ą 0, this concludes the proof.

The proof above is inspired by ideas of [57]. We also obtain a class of examples

of partially hyperbolic diffeomorphisms where every ergodic maximal entropy measure is

hyperbolic.

Corollary 3.4.5. If f P PH0
ApT4

qXDiff8pT4
q, then every ergodic maximal entropy measure

is hyperbolic.

Proof. Since f P Diff8pT4
q, by a classical Newhouse’s result [42] there is an ergodic

maximal entropy measure µ for f . If k0 :“ λuA is the largest unstable Lyapunov exponent

of A, then k0 ă htoppAq ď htoppfq “ hµpfq, and for Theorem 3.4.4 µ is a hyperbolic

measure.

Remark 3.4.6. For find examples of diffeomorphisms satisfying the conditions of the

theorems presented in this chapter, see [28] and reference therein.
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4
Equilibrium states for diffeomorphisms isotopic to an

Anosov diffeomorphism

Let f : Td Ñ Td be a DA partially hyperbolic diffeomorphism isotopic to a

linear Anosov automorphism A : Td Ñ Td, and H a semiconjugacy between f and A. As

we mentioned before the new results presented in this chapter are joint work with Adriana

Sánchez and Régis Varão.

4.1 Known results

Our goal is to understand the disintegration of measures along the center

foliation of certain DA partially hyperbolic diffeomorphisms with two-dimensional center

bundle, and then to study equilibrium states for a particular class of potentials. Before

that, we present some results used in the proofs of the main theorems on this chapter.

4.1.1 Mixed DA examples

Let A : Td Ñ Td pd ě 4q be a linear Anosov map with dominated splitting

TTd “ Ess
A ‘E

s
A‘E

u
A‘E

uu
A where dimEs

A “ dimEu
A “ 1, and the contraction/expansion

rate satisfy λss ă λs ă 1 ă λu ă λuu. For example, take any linear Anosov B1 on T2

(center bundle) and take a linear Anosov B2 on Td´2 such that it contracts and expands

less than B1, then A “ B1 ˆ B2 is a linear Anosov map with the properties required.

Notice that A is a strongly partially hyperbolic diffeomorphism when Ec
A “ Es

A ‘E
u
A, and

Td has a normally hyperbolic foliation whose leaves are tori T2 tangent to Ec
A.

We will proceed as in the classical construction of derived from Anosov intro-

duced by Mañé [38]. Let q and p be two different fixed points of A. Let r ą 0 be small

(to be determined later) and deform A inside Bpq, rq and Bpp, rq, in the following way:

in Bpq, rq we perform a pitchfork perturbation along Es
A and on Bpp, rq we perform a
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pitchfork bifurcation along Eu
A in such a way that the foliation by tori T2 tangent to Ec

A it

is preserved. In this way we obtain g that falls into Proposition 4.1 from [13]

Let η, r be as in shadowing theorem (see [13, Theorem 2.1]) and. We may

assume that g satisfies the following properties:

• g is a strongly partially hyperbolic diffeomorphism with a dominated splitting

TTd “ Ess
‘ Ecs

‘ Ecu
‘ Euu and each subbundle dominates the previous ones by

a factor a ă 1 with dimEcs
“ dimEcu

“ 1. These subbundles are C0-close to the

respective ones of A;

• dC0pg, Aq ă r;

• if dpx, yq ă 2η, then
}Dg|Ecipxq}

}Dg|Ecipyq}
ă a´1{4, i “ s, u;

• Dg|Ecspxq is uniformly contracting outside Bpq, ρq with rate λs;

• Dg|Ecupxq is uniformly expanding outside Bpp, ρq with rate λu.

The above conditions hold in a neighborhood of g (the last two, the rate

expansion/contraction, will be close to λs and λu, respectively). By construction, g is

dynamically coherent and Ec
“ Ecs

‘ Ecu is uniquely integrable, and the same holds in a

neighborhood of g. Moreover, this example is also robustly transitive by similar arguments

as in [31], Ecs, Ecu are integrable and the stable and unstable manifolds of this periodic

torus are dense.

Every small C1 perturbation of g is called mixed derived from Anosov. We

will denote by W cs
γ pxq the arc in the leaf F cs

pxq of size 2γ with x in the middle. We define

W cu
γ pxq analogously. Lemma 5.1 from [13] asserts that for any point x P Td one and only

one of the following holds:

• H´1
pxq consist of a single point.

• H´1
pxq is a segment tangent to Ecs of length less than 2η.

• H´1
pxq is a segment tangent to Ecu of length less than 2η.

• H´1
pxq is a square tangent to Ec

“ Ecs
‘ Ecu such that

– for each y P H´1
pxq, we have that W cs

γ pyq XH
´1
pxq is a center stable segment

denoted by J cspyq, and similarly for Ecu; and

– if y and z are in H´1
pxq, then H ‰ J cspyq X J cupzq P H´1

pxq.

The following proposition asserts that mixed derived from Anosov diffeomor-

phisms do not have entropy along the fibers.
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Figure 2 – [13, Figure 2].

Proposition 4.1.1. hpg,H´1
pxqq “ 0 for all x P Td.

Proof. See [13, Corollary 5.2].

4.1.2 DA with simple center bundle

The following definition was introduced in [14, Definition 1.4]:

Definition 4.1.2. Let f : M ÑM be a partially hyperbolic diffeomorphism over a compact

boundaryless Riemannian manifold. We say that its center bundle Ec is simple if

1. Ec
“ E1

‘ ¨ ¨ ¨ ‘ E` with dimEi
“ 1, for every i “ 1, . . . , l.

2. For every I Ă t1, . . . , lu the bundle
à

iPI

Ei integrates to an f -invariant foliation F I

(in particular, Ec
“ Et1,...,lu is integrable). Furthermore, there is compatibility in the

sense: I Ă I
1

ñ F I subfoliates F I
1

.

We say that Ec is strongly simple it is simple and furthermore

3. For every i, the lifts of F i :“ F tiu,F t1,...,̂i,...,lu to the universal covering of M have

global product structure inside each leaf of the lift of F c.

Recall that rxs :“ H´1
pxq, for all x P Td. In a recent work, Carrasco, Lizana,

Pujals and Vásquez [14] proved that for certain DA partially hyperbolic diffeomorphisms

of Td with center bundle Ec strongly simple, the following properties hold for every x P Td:

• rxs is contained in a unique center leaf of F c.
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• if z, z1 P rxs and z1 P F i
pzq for some 1 ď i ď `, then

rz, z1si Ă rxs,

where rz, z1si is the closed interval inside F i
pzq with end points z and z1;

• the class rxs is a rectangle in a single leaf of F c.

• hpf, rxsq “ 0.

The rectangles mentioned above are compact sets obtained in the following

inductive procedure. Let z0, . . . , zk, with 1 ď k ď ` for some 0 ď l ď d, be points in rxs

such that zj P F ijpz0q. We construct the rectangle (of dimension k and corner z0) by

starting with R1 “ rz0, z1si1 Ă F i1pz0q (see Figure 3). Taking i2 ‰ i1 we can define R2 as

the trace inside F c
pz0q of the set obtained by sliding R1 along rz0, z2si2 Ă F i2pz0q, that is,

R2 “
ď

wPrz0,z2si2

rw, ypwqsi1 ,

where rw, ypwqsi1 is the image of rz0, z1si1 by the F i2-holonomy. Continuing this way, we

can define Rk as

Rk “
ď

wPrz0,zksi2

Rk´1
pwq,

where Rk´1
pwq is a rectangle of dimension k ´ 1 and corners z0, . . . , zk´1 obtained as the

image of Rk´1 in the corresponding center manifold by the F ik-holonomy sending z0 in w.

Figure 3 – Construction of a rectangle (l “ 2) [5].

Theorem 4.1.3 (Carrasco-Lizana-Pujals-Vásquez [14]). Let f : Td Ñ Td be a DA partially

hyperbolic diffeomorphism. Assume further that the lifts of foliations F cs,Fu to Rd have

GPS, and likewise F cu,F s. If Ec is strongly simple, then, htoppfq “ htoppAq.

Proof. See [14, Theorem A].
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4.2 Proof of Theorem D

Consider the set where H fails to be injective

C :“ tx P Td : #H´1Hpxq ą 1u. (4.2.1)

Lemma 4.2.1. C is an f -invariant set and H´1HpCq “ C.

Proof. Notice that C “
ď

#Ppxqą1
Ppxq where Ppxq :“ H´1Hpxq. For every y P C there

exists x ‰ y such that Hpxq “ Hpyq, by semiconjugacy we have

Hpfpxqq “ ApHpxqq “ ApHpyqq “ Hpfpyqq

and fpyq P Ppfpxqq. Then fpyq P C, because #Ppfpxqq ą 1 for x ‰ y. Hence fpCq “ C.

For the other property, suppose H´1HpCq Ę C. There exists y P H´1HpCq

such that y R C with Hpyq “ Hpxq for x P C. As Hpfpyqq “ Hpfpxqq and fpyq R C we have

that y “ x. This is a contradiction, and consequently it proves that H´1HpCq “ C.

Remark 4.2.2. We claim that C is a measurable set. One may check that by observing

that simply reproducing ipsis litteris the proof of [46, Lemma 3.2] only changing T3 by

Td and R3 by Rd one obtains that HpCq is a measurable set. Hence C “ H´1HpCq is a

measurable set. Moreover, for every µ P Mepfq, µpCq “ 0 or µpCq “ 1.

Let f : Td Ñ Td be a DA partially hyperbolic diffeomorphism satisfying the

following conditions:

A.1 f is dynamically coherent;

A.2 There exists a splitting Ec
“ E1

‘ E2 where each Ei is a line-bundle and integrates

to an f -invariant foliation F i (non-compact), for i “ 1, 2;

A.3 If z, z1 P H´1
pxq and z1 P F i

pzq for some 1 ď i ď 2, then

rz, z1si Ă H´1
pxq,

where rz, z1si is the closed interval inside F i
pzq with end points z and z1;

A.4 For each x P Td, H´1
pxq is a finite union of rectangles contained in a unique center

leaf of F c;

A.5 hpf,H´1
pxqq “ 0 for every x P Td.

Remark 4.2.3. Every mixed derived from Anosov g : Td Ñ Td satisfies the assumptions

A.1, A.2, A.3, A.4 and A.5. In particular, the center foliation F c admits two invariant

one-dimensional sub-foliations F cu,F cs such that H´1
pxq X F cu

locpxq and H´1
pxq X F cs

locpxq

are segments in the center foliation. Also, every derived from Anosov f : T4
Ñ T4 with

strongly simple center bundle satisfies the Assumptions A.1, A.2, A.3, A.4 and A.5.
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Theorem 4.2.4 (Theorem D). Let f : T4
Ñ T4 be a DA partially hyperbolic diffeomor-

phism satisfying A.1, A.2, A.3 and A.4. Assume that f preserves the orientation for F i,

i “ 1, 2. Let µ be an ergodic probability for f :

1. If µpCq “ 0, then pf, µq is almost conjugate to an Anosov diffeomorphism.

2. If µpCq “ 1, then C defines a partition such that µ has atomic disintegration with a

finite number of atoms.

Proof. If µpCq “ 0, then H is a conjugacy µ-a.e. From now on we assume µpCq “ 1 and let

us prove that the partition determined by C has atomic disintegration. That is, consider

the partition:

P :“ tPpxq :“ H´1Hpxq : x P Cu.

Let us prove that P is a measurable partition with respect to any measure

considered. Let tAiuiPN be a countable basis for the topology of T4. Now for any point

x P T4 we have sets Bi ” Bipxq P tAi, A
c
iu such that txu “

č

iPN
Bi. Since tH´1

pAiqu is a

measurable set (because Ai is an open set and H is continuous) notice that

H´1
pxq “

č

iPN
H´1

pBiq.

Thus proving that P is a measurable partition. Moreover, it is easy to see that P is left

invariant by f , that is, fpPpxqq “ Ppfpxqq.

Assume, without loss of generality, that F1 is oriented and f preserves its

orientation. We define another partition Q as the one whose elements are the connected

components of the intersection of elements of P and F1 (see Figure 4). That is

Q :“ tQpxq “ F1
pxq X Ppxq : x P Cu.

Recall that, by assumption A.4, H´1
pzq is a finite union of rectangles in F c, so

we can write for each x P C

Ppxq “
nx
ď

j“1
Rjpxq, (4.2.2)

where nx represents the number of rectangles in the class and Rjpxq denotes a rectangle of

dimension 1 ď kj “ kjpxq ď 2 with corners z0, z1, z2. Moreover, assumption A.3 guarantees

that Qpxq has only one connected component, an interval or a point. Therefore, the

foliation of each element of P by F1 is similar to a foliation by compact leaves. Thus,

we can consider Q as a measurable partition. Indeed, any foliation with compact leaves

can be considered as a measurable partition, see [7, Proposition 3.7]. Let us denote the

conditional measures on Q by µx. It is easy to see that the partition Q is f -invariant and,

therefore, f˚µx “ µfpxq. Consider π : C Ñ pC :“ C{Q the canonical projection that assigns
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Figure 4 – Partition [5].
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to each point x P C the element Qpxq of the partition that contains it. Denote the quotient

measure as µ̂ “ π˚µ.

Lemma 4.2.5. The measure µ has atomic disintegration with respect to the partition Q.

Proof. We want to show that the conditional measure µx is a countable linear combination

of Dirac masses for µ̂-almost every Qpxq P Q. We will prove this by contradiction, assume

there exists a set Λ̂ Ă Q with positive µ̂-measure such that for every Qpxq P Λ̂ the measure

µx is not atomic. Moreover, by the invariance of the disintegration, Λ̂ can be assumed to

be invariant and, by the ergodicity, of full measure.

Let Q “ Qpx0q P Λ̂ X supppµ̂q and let B be a foliated (by F1) box around Q.

That is, some image of a topological embedding

φ : D3
ˆD1

Ñ T4,

where Dk is the closed unit disk in Rk and, such that every plaque Px “ φptxu ˆ D1
q

is contained in a leaf of F1. Let us identify B with the product D3
ˆ D1 through the

corresponding homeomorphism. Let V̂ be an open neighborhood of Q small enough so it

is contained in B. Moreover, since H̃´1
px̃q is uniformly bounded we can assume that B

contains Ppxq for every x P D3.

Consider the following map

ψ : D3
ˆ r0, 1s Ñ B

px, tq ÞÑ px, θxptqq

where px, θxptqq is defined as the highest point in the local leaf Qpxq Ă B such that

µxprx, θxptqs1q “ t.

Notice that ψ is an invertible map when restricted to its image. Moreover, since

we are assuming a non-atomic disintegration, ψ´1 is a continuous map restricted to the

second coordinate and a measurable map when restricted to the first coordinate. Maps

of these type are known as Caratheodory functions and these are measurable maps ([2,

Lemma 4.51]).

Consider the set H0
t :“ ψ

`

D3
ˆ r0, ts

˘

, which is measurable since ψ´1 is

Caratheodory. Thus, the set Ht “
ď

nPZ
fnpH0

t q forms an invariant measurable set. Let

B̂ be the set given by

B̂ :“ tQpxq : x P Bu.

Remember that B is a foliated box around Q “ Qpx0q then, Q P B̂. Moreover, since

Q P supppµ̂q, B̂ has positive µ̂-measure.

Notice that by the definition of ψ we have that if 0 ă t ă 1

µpHtq “

ż

µxpHtXQpxqqdµ̂pQpxqq ě

ż

B̂
µxpH

0
tXQpxqqdµ̂pQpxqq ě

ż

B̂
µxprx, θxptqs1qdµ̂pQpxqq,
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and

ż

B̂
µxprx, θxptqs1qdµ̂pQpxqq “ µ̂pB̂qt ą 0, thus µpHtq ą 0. On the other hand, define

G0
t “

`

H0
t

˘c
and the f -invariant set Gt “

ď

nPZ
fnpG0

t q. In a similar way as before we have

µpGtq ě µ̂pB̂qp1´ tq ą 0.

Therefore, by the ergodicity, both sets should have full measure. Although, this would

imply that their intersection also should have full measure but we claim this is not the

case. In fact, if it were true, for µ̂-almost every Qpxq

µxpHt XGt XQpxqq “ 1.

But if ω belongs to Ht XGt XQpxq, without loss of generality, we may assume that for

some n P N, ω P f´npH0
t q XG

0
t . Hence, since f preserves orientation, it is easy to see that

t ă µωpr0ω, ωs1q “ pfnq˚µω pfnpr0ω, ωs1qq ď µfnpωq
`“

0fnpωq, fnpωq
‰

1

˘

ď t.

This is an absurd, which implies that the disintegration of µ is atomic for µ̂-almost every

point.

We have proved that µ has atomic disintegration with respect the partition Q.

We now want to see that there is a finite number of atoms on the disintegration considered.

In order to do that we first need to prove the measurability of certain sets.

Consider B a foliated (by F1) box, as before, and identify B with the product

D3
ˆD1 through the corresponding homeomorphism.

Fix δ ą 0, and consider the set

Hδ “ tx P B : µxptxuq ě δu.

Let us see that this is a measurable set. To do so, consider a countable basis V of the

topology of T4. From Rokhlin’s theorem 2.4.4 we know that the map x ÞÑ µxpV q is

measurable (up to measure zero) for any measurable set V . Therefore, by Lusin’s theorem,

given any ε ą 0 there exists a compact set Kε Ă D3 such that µ̂pKεq ą 1 ´ ε and

x ÞÑ µxpV q is continuous on Kε, for every V P V . In particular, x ÞÑ µx is continuous with

respect to the weak*-topology for any x in Kε.

Let ε ą 0 be fixed. For each x P C, let Apxq be the set of atoms of µx. It is

clear that the set

Γ̃δpxq :“ ta P Apxq : µxptauq ě δu, (4.2.3)

is finite, and hence compact. Furthermore, the definition of Kε ensures that the function

x ÞÑ Γ̃δpxq is upper semi-continuous on x P Kε. Therefore,

Γpε, δq :“ tpx, aq : x P Kε and a P Γ̃δpxqu,
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is a closed set. Then,
ď

n

Γp1{n, δq is a (measurable) full measure subset of Hδ. Thus, Hδ is

a measurable set (up to measure zero).

Consider tBk : k P Nu a countable cover of T4 by foliated boxes. Proceeding as

before, we obtain the measurable sets Hk
δ of atoms of measure bigger or equal to δ in each

foliated box Bk. Therefore,

H`
δ :“

ď

kPN
Hk
δ “ tx P C : µxptxuq ě δu

is also measurable.

Lemma 4.2.6. µ̂-almost every Qpxq contains only one atom.

Proof. Let x P M and δ ě 0. Consider the set H`
δ as before and notice that

δ ď µxptxuq ď f˚µxptfpxquq “ µfpxqptfpxquq.

Therefore, H`
δ is invariant and, by ergodicity, it has measure zero or one. We know that

µpH`
1 q “ 0 and µpH`

0 q “ 1. Let δ0 be the discontinuity point of the function δ ÞÑ µpH`
δ q,

for δ P r0, 1s. Hence µpH`
δ0q “ 1, that means the weight of the atoms are all equal to δ0.

Therefore there are n “ 1{δ0 atoms on each element of the partition Q.

Let us see that the disintegration of µ on Q has one atom per local leaf. Assume

by contradiction that n “ 2, as the case of finite atoms is similar. Let apxq and bpxq be

the two atoms of µx. Without loss of generality, let us assume that apxq ă bpxq, where “ă”

is the fixed order in F1. Consider

Â :“ tapxq : x P Cu and B̂ :“ tbpxq : x P Cu,

the sets of first and second atoms respectively. Since f preserves the orientation in F1, it

is easy to see that Â and B̂ are invariant sets.

Let Q “ Qpx0q P supp µ̂ and let V̂ be an open neighborhood of Q. Consider

the disjoint sets

Bpaq :“
ď

QpxqPV̂

txu ˆBpapxqq and Bpbq :“
ď

QpxqPV̂

txu ˆBpbpxqq,

where Bpapxqq and Bpbpxqq are two disjoint closed balls in Qpxq around apxq and bpxq

respectively. Notice that, following the proof of the measurability of H`
δ by substituting

the set Γ̃δpxq in (4.2.3) by Bpapxqq, we can prove that Bpaq and Bpbq are both measurable

sets. By the definition of Bpaq and Bpbq, their saturation by Q coincide, that is, πpBpaqq “

πpBpbqq. Therefore, Bpaq and Bpbq have positive µ-measure.

Let us define the f -invariant sets

Hpaq :“
ď

nPZ
fnpBpaqq and Hpbq :“

ď

nPZ
fnpBpbqq.
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We claim that µpHpaq XHpbqq “ 0. In fact, if it is not true we have that

0 ă µpHpaq XHpbqq “

ż

µxpHpaq XHpbq XQpxqqdµ̂.

Therefore, there must exist Λ̂ Ă Ĉ of positive µ̂-measure such that for every Qpxq P Λ̂,

µxpHpaq X Hpbq X Qpxqq ą 0. Hence, apxq or bpxq must belong to the intersection of

Hpaq X Hpbq. Without loss of generality, let us assume there exists n P Z such that

apxq P fnpBpbqq X Bpaq. Therefore, we have that f´npapxqq “ bpyq for some Qpyq P V̂ .

However, this contradicts the invariance of Â, and our claim follows.

Now, by ergodicity of µ, the sets Hpaq and Hpbq should have full measure and

have zero measure intersection. Absurd, therefore we have only one atom on Qpxq which

proves our claim.

Let us denote the atom found in Lemma 4.2.6 by apxq, that is,

µx “ δapxq. (4.2.4)

We now want to see that the disintegration of µ on P has only one atom in each connected

component of every element of the partition. Consider pC :“ C{Q. Define f̂ : pC Ñ pC by

f̂pẑq :“ yfpzq, which satisfies π ˝ f “ f̂ ˝ π.

Notice that by (4.2.2) we can identify zPpxq with nx connected components in

the F2 foliation. This implies that the space pC has now a one dimensional foliation coming

from this quotient. Consider the partition pQ given by pQ :“ tzRpxq : x P Cu, where Rpxq is

the rectangle in Ppxq containing x. Moreover, notice that zRpxq can be identified with the

interval rc0pxq, c1pxqs2, where c0pxq and c1pxq are the corners of Rpxq in the same F2-leaf.

Consequently, proceeding as before, the conditional measures η̂x defined by the partition
pQ have at most one atom in each zRpxq that we denote by âpxq. Thus,

η̂x “ δâpxq. (4.2.5)

Combining this with (4.2.4) we have that ajpxq P π
´1
pâpxqqXRjpxq is the only

one atom per rectangle Rjpxq.

Corollary 4.2.7. Under the assumptions of Theorem 4.2.4. Let us assume that ν :“ H˚µ

has full support and the semiconjugacy H sends center leaves of f to center leaves of A. If

one of the following conditions is satisfied:

1. The center direction of A is expanding or contractive.

2. HpF i
q is some invariant foliation of A, for each i “ 1, 2.

Then, µ is virtually hyperbolic with one only atom per center leaf (see 2.4.7).
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Proof. We are left with the task of proving that if H sends center leaves of f to center

leaves of A and if one of the conditions 1 or 2 are satisfied, then µ is virtually hyperbolic.

First, let us assume 1 is valid. Moreover, we assume that the center direction of

A is expanding, otherwise we work with f´1. By the proof of Theorem 4.2.4, there are at

most countably many elements in P with positive measure, we get a full measurable subset

M Ă T4 which intersects each center leaf in at most countably many points. Furthermore,

we claim that there are finitely many atoms of µ per (global) center leaf. In fact, this was

proved in [22, Proposition 3.2]. Although they assume one dimensional center foliation,

under our assumptions their proof could be applied. Let us recall the main steps.

Assume by contradiction that every full measurable subset of M intersects

any typical center leaves in infinitely many points. Define ν “ H˚µ which is an invariant

measure by the linear hyperbolic automorphism. Let Ri be the Markov partition for A

(see [39, Chapter IV]), and consider the partition Q :“ tF c
Rpxq : x P Ri for some iu, where

F c
Rpxq denotes the connected component of F c

pxq X Ri containing x. The partition Q
is measurable and we denote νx the disintegration of ν along the elements of Q. The

assumption of full support of ν guarantees it gives zero mass to the boundary of the

Markov partition.

As HpMq intersects typical leaves in a countable number of points, νx must

be atomic. Moreover, there exists a natural number α0 P N such that νx contains exactly

α0 atoms for ν-almost every x (see [22, Lemma 3.3]). Hence, given a fixed L P R`, there

exists N P N such that the number of atoms in any typical center plaque of diameter L is

at most N . We are assuming that HpMq intrinsically intersects center leaves in infinitely

many points (or non-uniformly finite). Taking D Ă F c
pxq with more than N atoms. By

backward contraction along central leaves by A, there exists n ą 0 such that the diameter

of A´npDq is less than L. As ν is invariant and the disintegration is essentially unique, we

get a center plaque with diameter less than L containing more than N atoms, which is

absurd and establishes our claim.

We have proved that the number of atoms is finite and constant by ergodicity

on almost every center leaf. The task is now to conclude that, since f preserves orientation,

the number of atoms is one. In order to do this first consider the set of atoms in each F1-leaf.

Proceeding as in the proof of Lemma 4.2.6, we can prove that there must be only one

atom per F1-leaf. Now consider the space rC :“ C{ „, where x „ y iff y P F1
pyq. The way

we should see C̃ is as turning the center foliation (which is a plane) into a one-dimensional

segment. Let us denote this new foliation as Q̃. Notice that the disintegration of µ in the

partition given by Q̃ is exactly the quotient measure η̂x.

Since F1 has an orientation, we may define a transversal orientation by the

following way: a vector v P TxF c
locpxq points in the positive direction if for any positive

vector w P TxF c
locpxq we have ωxpv, wq ą 0, where ωx is the restriction of the volume form
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Figure 5 – Global atom in a center leaf [5].

to F c
locpxq.

Now consider the extremal atoms per central leaf. By left extremal atom we

consider the atom whose projection by the map π : C Ñ rC is the left extreme one

(see Figure 5). Since f preserves the orientation in F1, then f preserves the transversal

orientation. Once again, proceeding as the proof of Lemma 4.2.6 we conclude that there is

only one atom per global center leaf. Therefore, µ is virtually hyperbolic.

On the other hand, if 2 is valid then HpF1
q must coincides with Es

A or Eu
A.

Without loss of generality, let us assume HpF1
q coincides with Eu

A. By the proof of Theorem

4.2.4, the set M intersects each F1 leaf in at most countably many points. Proceeding as

before, using the F1 foliation instead the center one, then µ is virtually hyperbolic.

4.3 Proof of Theorem E

Let f : Td Ñ Td be a DA partially hyperbolic diffeomorphism satisfying A.5.

Remark 4.3.1. Take µ any f -invariant measure and let ν “ H˚µ. It is well-known that

hµpfq ě hνpAq. From Ledrappier-Walters variational principle 2.1.9 and assumption A.5

we have that

hµpfq “ hνpAq. (4.3.1)

Let φ P C0
pTd,Rq be a Hölder potential for A and consider the potential

ϕ :“ φ ˝H P C0
pTd,Rq for f .

Td f //

H
��

Td

H
��

ϕ:“φ˝H

��
Td A // Td φ // R
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Proposition 4.3.2. Under the above assumptions, the following properties hold:

1. If ν is an equilibrium state for pA, φq, then every µ P Mpfq such that H˚µ “ ν is

an equilibrium state for pf, ϕq;

2. If µ P Mepfq and µpCq “ 0, then µ is the unique equilibrium state.

Proof. Let ν be an equilibrium state for pA, φq. By the Riezs theorem and the compactness

of the set of Borel probability measures on Td, we can guarantee the existence of an

f -invariant measure µ such that ν “ H˚µ (see for example [11, Lemma 4.3] for a similar

construction). Moreover, by (4.3.1) we have that

sup
"

hηpfq `

ż

ϕdη : η P Mpfq

*

“ sup
"

hH˚ηpAq `

ż

φdH˚η : η P Mpfq

*

,

ď sup
"

hν̂pAq `

ż

φdν̂ : ν̂ P MpAq

*

,

ď hνpAq `

ż

φdν.

Therefore, any f -invariant measure µ satisfying that ν “ H˚µ is an equilibrium state for

pf, ϕ “ φ ˝Hq.

For proving the second statement, we will argue as in [22, Theorem A]. Let µ

be an ergodic equilibrium state such that µpCq “ 0 and ν be the unique equilibrium state

of pA, φq. Assume that there exists η another equilibrium state for pf, φ ˝Hq, and by the

uniqueness of ν we have that H˚µ “ H˚η. Let ψ : Td Ñ R be any continuous map. Since

H´1HpCq “ C follows that ηpCq “ 0. Therefore,

ż

ψdµ “

ż

Td´C
ψdµ “

ż

Td´C
ψ ˝H´1

˝Hdµ “

ż

Td´C
ψ ˝H´1dH˚µ “

ż

ψdη.

Since ψ is arbitrary, this implies that µ “ η.

Theorem 4.3.3 (Theorem E). Let f : T4
Ñ T4 be a DA partially hyperbolic diffeomor-

phism satisfying A.1, A.2, A.3, A.4 and A.5. Assume that f preserves the orientation of

F i, i “ 1, 2. Let φ be a continuous potential such that pA, φq has a unique equilibrium

state with full support and define the potential ϕ “ φ ˝H. For every µ ergodic equilibrium

state of f with respect to ϕ:

1. If µpCq “ 0, then µ is the unique equilibrium state;

2. If µpCq “ 1, then C defines a partition such that µ has atomic disintegration with a

finite number of atoms. Moreover, if the semiconjugacy H sends center leaves of f

to center leaves of A and one of the following conditions is satisfied

a) The center direction of A is expanding or contractive.
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b) HpF i
q is some invariant foliation of A, for each i “ 1, 2.

Then, µ is virtually hyperbolic and it is not a unique equilibrium state ϕ.

Proof. Case 1: µpCq “ 0. It follows directly from statement 2 of Proposition 4.3.2.

Case 2: µpCq “ 1. Consider the partition:

P :“ tPpxq :“ H´1Hpxq : x P Cu,

and denote by µx the conditional measure of µ supported on Ppxq. We proceed as in the

proof of Theorem 4.2.4. Hence, we have that

µx “
nx
ÿ

j“1
pjpxqδajpxq,

for some ajpxq P Rjpxq. Moreover, if conditions 1 and 2 are satisfied, then µ is virtually

hyperbolic. The only thing left to prove is the existence of another equilibrium state.

Lemma 4.3.4. If H sends center leaves of f to center leaves of A and 2b is satisfied,

then the set of extremal points of intervals Qpxq “ Ppxq X F1
pxq forms a measurable set.

Proof. Let us denote F1
A the foliation of the center direction of A induced by the image of

F1 by the semiconjugacy H. We will prove the measurability of the lower extremal points

of Qpxq. The case of higher extremal points is similar.

Consider ϕ : T4
Ñ T4 the flow on T4 having constant speed one in F1

A. More

precisely, we know that the leaves of F1 in the center foliation of A are straight lines and

orientable by assumption. Define ϕpt, xq the unique point in the F1
Apxq which has distance

t inside this F1
A-leaf and in the positive direction from x.

Following the proof of [45, Lemma 3.2], we have that HpCq is a measurable

set. Therefore, ϕp´1{n,HpCqq is a measurable set. Furthermore, since H is continuous,

the set H´1
pϕp´1{n,HpCqqq is also measurable.

Consider Ĉ “ C{Q where Q :“ tQpxq :“ Ppxq X F1
pxq : x P Cu. Let

φn : Ĉ Ñ H´1
pϕp´1{n,HpCqqq ,

be the function given by the Measurable Choice Theorem [45, Theorem 2.11] applied to

the product Ĉ ˆ T4 and the measurable set G “ H´1
pϕp´1{n,HpCqqq.

Notice that fixing Qpxq P Ĉ we have that φnpQpxqq is an increasing sequence.

Therefore, we can define the function

φ :Ĉ Ñ T4

Qpxq ÞÑ lim
nÑ8

φnpQpxqq,
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and by its construction φpQpxqq is the lower extreme of Qpxq. Notice that φ is a measurable

function since it is the limit of measurable functions. Let π be the canonical projection

and let µ̂ “ π˚µ the measure in the quotient space. By Lusin’s theorem for any n P N
there exists a compact set K̂n Ă Ĉ such that µ̂pK̂c

nq ă 1{n and φ is a continuous function

when restricted to K̂n. Therefore, φpK̂nq is a compact set. Without loss of generality we

may consider Ĉ “
ď

nPN
K̂n. Therefore,

φpĈq “
ď

nPN
φpKnq,

is a measurable set. Thus, we have proven so far that the base of the intervals from Q
forms a measurable set.

We have seen that the center foliation is measure theoretically equivalent to

the partition of T4 into points, hence measurable. Let us denote pM̂, µ̂q the quotient space

M̂ :“ T4
{F c equipped with the quotient measure. We denote by f̂ : M̂ Ñ M̂ the induced

map on the quotient space. Therefore, since µ if f -invariant then µ̂ is f̂ -invariant.

Notice that, by the virtual hyperbolicity proved above, every element x̂ P M̂

can be identified by the unique Qxpzq Ă F c
pxq where its atom belongs to. When Qxpzq is

a collapse interval inside a F1-leaf, we define Qpx̂q :“ Qxpzq. On the other hand, if Qxpzq

is a point, this means that the rectangle Rj containing the atom is one dimensional and

contained in an F2-leaf. In this case, we define Qpx̂q :“ Rj (see Figure 4).

Now, we will argue as in the final part of [22, Section 3]. Thus, we can write

µ “

ż

δapx̂qdµ̂,

where apx̂q is the atom inside the collapse interval Qpx̂q. Choose bpx̂q ‰ apx̂q the left (or

right) extreme point of Qpx̂q. Let us define

η “

ż

δbpx̂qdµ̂,

which is well-defined because tbpx̂q : x̂ P M̂u is measurable by Lemma 4.3.4. We claim that

this is an f -invariant ergodic measure satisfying H˚η “ H˚µ. In order to see this, consider

any continuous map ψ and notice that
ż

ψ ˝ fdη “

ż ż

ψ ˝ fdδbpx̂qdµ̂ “

ż

ψpfpbpx̂qqqdµ̂ “

ż

ψpbpf̂px̂qqqdµ̂

“

ż

ψpbpx̂qqdµ̂ “

ż

ψdη,

where the third equality comes from the invariance of collapse intervals and that f

preserves the orientation of the F i-foliations with i “ 1, 2. The fourth equality is due to

the f̂ -invariance of µ̂.
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To see the ergodicity of η, consider any invariant subset D with positive η-

measure. Since µ̂ is ergodic and fpbpx̂qq “ bpf̂px̂qq, we have that the set tx̂ : XDpbpx̂qq “ 1u
is f̂ -invariant. So the ergodicity of µ̂ guarantees it has full measure, which implies ηpDq “ 1.

Notice that, if ϕ “ φ ˝H, since Hpapx̂qq “ Hpbpx̂qq then

ż

ϕdη “

ż

ϕpbpx̂qqdµ̂ “

ż

ϕpapx̂qqdµ̂ “

ż

ϕdµ.

However, by the essential uniqueness of disintegration, we have that η ‰ µ. It remains

to prove that hηpfq “ hµpfq. But this is a direct consequence of the fact that pf, µq and

pf, ηq are measure theoretically isomorphic by the map that sends apx̂q to bpx̂q. Thus, η is

also an equilibrium state form pf, ϕq.

Remark 4.3.5. We remark that the results of Theorem 4.2.4 and Theorem 4.3.3 are

valid for DA partially hyperbolic diffeomorphisms f : Td Ñ Td with k-dimensional center

bundle (1 ď k ă d), provided that they satisfy the assumptions A.1, A.4,A.5 and analogous

assumptions to A.2, A.3. The proof for the higher dimensional case follows in a similar

way as in the two-dimensional case.
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5
Final Considerations

1. Let f P PH0
ApTdq be as in the setting of Chapter 3. Is f transitive? Is there a unique

maximal entropy measure when f P PH0
ApTdq is transitive?

2. In the setting of Theorem B, is it possible to obtain that there is exactly one maximal

entropy measure?

3. An interesting problem is to produce an example of a transitive partially hyperbolic

diffeomorphism (e.g. derived from Anosov) with more than one maximal entropy

measure. Maybe, trying to take two periodic orbits and putting a horseshoe on them

whose entropy exceeds the entropy of the system, it seems that it should be possible.

4. There is a lack of examples of partially hyperbolic diffeomorphisms with two-

dimensional center bundle, where the maximal entropy measure (or even, some

measure with large entropy), has one zero center Lyapunov exponent and the other

is different from zero. In the literature there are two known examples, here we give a

brief presentation:

a) Take an example in T3 homotopic to Anosovˆ Id so that it is not extension by

rotations but is accessible, where the main result from [50] guarantees that the

maximal entropy measures have non-zero Lyapunov exponents, and multiply

by identity on unitary circle S1.

b) Take the example of Herman’s cocycle over an irrational rotation in T2, where

the action in the fibers is the linear cocycle which is explained in the Avila-

Bochi Trieste notes (http://www.mat.uc.cl/~jairo.bochi/docs/trieste.

pdf), and multiply by an Anosov diffeomorphism of T2.

Are there examples more interesting than these two?

http://www.mat.uc.cl/~jairo.bochi/docs/trieste.pdf
http://www.mat.uc.cl/~jairo.bochi/docs/trieste.pdf
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[3] C. F. Álvarez. Hyperbolicity of maximal entropy measures for certain maps isotopic

to Anosov. arXiv, preprint arXiv:2011.06649, 2020.
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