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Resumo

Na primeira parte deste trabalho, estudamos certos difeomorfismos parcialmente hiperbo-
licos de T? com folheacoes centrais bidimensionais compactas, para os quais mostramos
que qualquer medida ergédica de maxima entropia é hiperbdlica e existe no maximo um
nimero finito (diferente de zero) delas. No caso de T*, podemos retirar a condicdo de
compacidade para as folhas centrais e obter hiperbolicidade das medidas ergédicas de

maxima entropia.

Também propomos estudar a desintegracao de medidas ao longo de folheagoes centrais
bidimensionais de uma classe de difeomorfismos parcialmente hiperbélicos de T* isot6picos
a um difeomorfismo de Anosov. Além disso, estudamos estados de equilibrio ergédicos com
relacao a uma classe de potenciais, aproveitando as técnicas desenvolvidas para descrever

a desintegracao. Este é um trabalho em conjunto com Adriana Sanchez e Régis Varao.

Palavras-chaves: Estados de equlibrio, Medidas de maxima entropia, Difeomorfismos

parcialmente hiperbdlicos, Medidas hiperbdlicas, Desintegracao de medidas.



Abstract

In the first part of this work, we study certain partially hyperbolic diffeomorphisms of
T? with compact two-dimensional center foliations, for which we show that any ergodic
maximal entropy measure is hyperbolic and there exists at most a finite number (non-zero)
of them. In the case of T, we can remove the compactness condition for the center leaves

and obtain hyperbolicity for ergodic maximal entropy measures.

We also propose to study the disintegration of measures along two-dimensional center
foliations of a class of partially hyperbolic diffeomorphisms of T* isotopic to an Anosov
diffeomorphism. Moreover, we study ergodic equilibrium states with respect to a class
of potentials, taking advantage of techniques developed for describing the disintegration.

This is a joint work with Adriana Sanchez and Régis Varao.

Keywords: Equilibrium states, Maximal entropy measures, Partially hyperbolic diffeo-

morphisms, Hyperbolic measures, Disintegration of measures.
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Introduction

The study of equilibrium states in dynamical systems was started by Sinai,
Ruelle and Bowen [55, 54, 11] in the 1970s, taking advantage of techniques and results
from statistical mechanics. Given a continuous map f : M — M over a compact metric

space, an equilibrium state for a continuous potential ¢ : M — R, is an f-invariant Borel
probability measure ;¢ that maximizes the quantity h,(f )+J ¢dp among all f-invariant

measures. In the case of uniformly hyperbolic systems, Bowen [10] showed existence and
uniqueness of equilibrium states with respect to Holder continuous potentials. Forty years
later, Climenhaga and Thompson extended Bowen’s techniques for a non-uniform setting

[21] and these results have been applied for other classes of maps [16, 17, 27].

Another interesting class of non-hyperbolic systems very studied in smooth
ergodic theory are partially hyperbolic systems, which are diffeomorphisms over compact
manifolds with an invariant splitting of the tangent bundle in three subbundles E*, E¢, B,
such that vectors in F* are contracted uniformly, vectors in E* are expanded uniformly,
and vectors in E° lie in between those two, not quite as contracting nor as expanding,
respectively (see 2.3.2 for a precise definition). In general the central bundle £ may not be
integrable [51], when it is, the partially hyperbolic diffeomorphism is dynamically coherent.
There are many relevant works about equilibrium states for partially hyperbolic systems,
we will cite some, Climenhaga, Pesin and Zelerowicz [20], Fisher and Oliveira [26] and
Rios and Siqueira [48]; for a more complete study of equilibrium states for non-uniformly

hyperbolic systems, see the survey of Climenhaga and Pesin [19].

When the potential is ¢ = 0, equilibrium states are called mazimal entropy
measures, such measures describe the complexity level of the whole system. In certain
contexts, the existence of maximal entropy measures is not clear, however, it has already
been proven for C* diffeomorphisms on compact manifolds without boundary [42], and for
robust classes of local diffeomorphisms [43]. Recently in [12], Buzzi, Crovisier and Sarig
showed that C' surface diffeomorphisms with positive topological entropy have at most

finitely many maximal entropy measures and exactly one in the transitive case.
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For the setting of partially hyperbolic systems, results in [24] imply that there
exists at least one maximal entropy measure if the center bundle is one-dimensional. For
Ct* accessible partially hyperbolic over 3-manifolds having compact one-dimensional
central leaves, a dichotomy was proved about the number of maximal entropy measures
[50, 58]; Rocha and Tahzibi also obtained a similar dichotomy for partially hyperbolic diffeo-
morphisms defined on 3-torus with compact center leaves [49]. Certain partially hyperbolic
systems with one-dimensional center bundles and isotopic to an Anosov diffeomorphism

(derived from Anosov (DA)), have a unique maximal entropy measure [13, 28, 57].

There are very few works on equilibrium states for partially hyperbolic systems
with central dimension greater than one. Among these studies, partially hyperbolic systems
whose central bundles splits in a dominated way into one-dimensional subbundles, admit
equilibrium states for any continuous potential [25], and partially hyperbolic systems with
two-dimensional center bundles, produced by an isotopy from an Anosov (mized derived

from Anosov) have a unique maximal entropy measure [13].

1.1 Hyperbolic ergodic maximal entropy measures

The Lyapunov exponents are real numbers, which measure the exponential
growth of the derivative of dynamical systems. For every f € Diff" (M) over a compact
m-manifold, and an ergodic probability measure p, by Oseledets’ theorem there are m
numbers A\; < A\g < -+ < Ay, and a splitting T, M = F1(x) D Es(z)®- - -@® E,,(x) such that
for p-almost every x € M and for any v € TM — {0}, we have lim ib log | Dfy(v)]| = A, for
some 1 < i < m. The m-numbers \; are the Lyapunov exponents of (f, ;). An interesting
question is to know under what conditions an ergodic maximal entropy is hyperbolic, that

is, it has non-zero Lyapunov exponents.

In view of the lack of results about maximal entropy measures for partially
hyperbolic systems with two-dimensional center bundles, in this work we propose a scenario
in which every ergodic maximal entropy measure is hyperbolic and there is at most a

non-zero finite number of them.

Let A : T - T? be a linear Anosov admitting a dominated splitting of the
form EY@EY @ EYOEY, with EY = EY* @ EY" and dim EY® = E" = 1. We consider
the set of partially hyperbolic diffeomorphisms isotopic to A, all of them having the same

dimension of stable and unstable bundle, that is,
PHA.u(T?) = {f € PH(T?) : f ~ A, dim E} = dim E’, dim E} = dim E%"}.

Here f ~ A denotes an isotopy between f and A. To simplify notation we will denote
PH4 s (T%) as PHA(T%), where the dimension of the bundles is implicitly understood.
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Given f € PH4(T?) we know from [29, 40] there exists the Franks-Manning
semiconjugacy H : T¢ — T¢. The map H varies continuously with f in the C° topology.
This is a general fact which does not require f to be partially hyperbolic.

Now we consider PH%(T%) to be the connected component of PH4(T?) con-
taining A. If A admits a foliation by tori T? tangent to £, then every f e PH%(T?) has

central foliation with all leaves compact (see [28]).
Let A, : T¢/FS — T?/Fq be the corresponding factor to the linear Anosov A.

In the previous setting, we obtain the following results:

Theorem A ([3]). Let f e PHY(T?) n Diff*(T?) and let ko := hiop(Ac). If p is an ergodic
measure such that h,(f) > ko, then

1. p s hyperbolic, meaning that all its Lyapunov exponents are non-zero. In particular

any maximal entropy measure is hyperbolic, provided that it exists.

B.) > hu(f)—e.

Theorem B ([3]). Let f € PH(T?) ~ Diff>(T%) admitting a dominated splitting of the
form E; @ Ef @ EY @ EY, where E, E? are one-dimensional. Then, f has a finite

number (non-zero) of ergodic maximal entropy measures and all are hyperbolic.

2. For every e > 0, there exists a hyperbolic set Be = M such that b, (f

For d = 4 and dim E"® = dim E*" = 1. We can consider the center foliations

of A compact or not, and obtain hyperbolicity of ergodic maximal entropy measures:

Theorem C ([4]). If f € PHY(T?) ~ Diff*(T%), then every ergodic mazximal entropy

measure of f is hyperbolic.

1.2 Disintegration and equilibrium states

In this work, we are also concerned with equilibrium states in a less explored
context of partially hyperbolic diffeomorphisms with higher dimensional center foliation
(i.e. two-dimensional or higher). Using disintegration techniques of measures along the
center foliation, combined with a quotient process to face the higher dimension problem,

we obtain similar results to those Crisostomo and Tahzibi [22].

For a dynamically coherent partially hyperbolic diffeomorphism, we say an
invariant measure has atomic disintegration if there exists a full measure invariant subset
which intersects each center leaf in at most a countable set. Furthermore, if each of these

countable sets is finite with k points, we say the invariant measure is virtually hyperbolic.

Let f: T¢ — T be a DA partially hyperbolic diffeomorphism satisfying the

following conditions:
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A.1 f is dynamically coherent;

A.2 There exists a splitting F¢ = E' ® E? where each E' is a line-bundle and integrates

to an f-invariant foliation F* (non-compact), for i = 1,2;

A3 If 2,2/ e H ' (x) and 2’ € F'(2) for some 1 < i < 2, then [z, 2']; ¢ H™'(x), where

[2,2']; is the closed interval inside F*(z) with end points z and 2';

A4 For each x € T%, H'(z) is a finite union of rectangles contained in a unique center

leaf of F*;

A5 h(f,H (x)) = 0, for every z € T

The rectangles are considered as in Section 4.1.

The previous assumptions are satisfied by the maps considered by Buzzi, Fisher,
Sambarino and Vasquez [13] and by Carrasco, Lizana, Pujals and Vasquez [14]. In the
spirit of [45, 46], we denote by C' the set where H fails to be injective and we get a result

about disintegration of measures along two-dimensional center foliations:

Theorem D ([5]). Let f: T* — T% be a DA partially hyperbolic diffeomorphism satisfying
A1, A2, A3 and A.4. Assume that f preserves the orientation for F', i = 1,2. Let pu be
an ergodic probability for f:

1. If u(C) =0, then (f, 1) is almost conjugate to an Anosov diffeomorphism.

2. If w(C) =1, then C defines a partition such that p is virtually hyperbolic.

We also get a result about equilibrium states for the same class of potentials
considered in [15, 22]:

Theorem E ([5]). Let f : T* — T* be a DA partially hyperbolic diffeomorphism satisfying
A1, A2, A3, A4 and A.5. Assume that f preserves the orientation of Fi, i = 1,2. Let ¢
be a continuous potential such that (A, @) has a unique equilibrium state with full support

and define the potential o = ¢ o H. For every u ergodic equilibrium state of f with respect
to p:

1. If p(C) =0, then p is the unique equilibrium state.

2. If u(C) =1, then C defines a partition such that p has atomic disintegration with a
finite number of atoms. Moreover, if the semiconjugacy H sends center leaves of f

to center leaves of A and one of the following conditions is satisfied

a) The center direction of A is expanding or contractive.

b) H(F') is some invariant foliation of A, for eachi = 1,2.
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1.3

Then, u is virtually hyperbolic (one only atom per leaf) and is not a unique equilibrium

state for .

Structure of the thesis

The organization of this thesis is as follows:

In Chapter 2, we introduce some concepts and results about equilibrium states, homo-
clinic classes, hyperbolic measures, Pesin theory, partially hyperbolic diffeomorphisms

and disintegration of measures.

In Chapter 3, we study maximal entropy measures for partially hyperbolic diffeo-
morphisms isotopic to an Anosov diffeomorphism, where the isotopy is contained in

the set of partially hyperbolic diffeomorphisms, and prove Theorems A, B, C.

In Chapter 4, we study the disintegration of measures along center leaves and
equilibrium states for a class of partially hyperbolic diffeomorphisms isotopic to an

Anosov diffeomorphism and prove Theorems D, E.
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Preliminaries

The goal of this chapter is to provide results of ergodic theory and partially

hyperbolic systems that are required for the development of this work.

2.1 Equilibrium states

Let (M, dist) be a compact metric space, B be the Borel g-algebra, and u be
a borelian probability measure. Let f : M — M be a measurable transformation, the
probability measure y is called f-invariant if f,u(B) = pu(f~'(B)) = u(B), for all B € B.

We denote by M(f) the set of f-invariant Borel probability measures on M.
By compactness of M, this set is non-empty compact set in the weak*-topology. The
support of € M(f) is the set supp u formed by the points x € M such that u(V) >0
for any neighborhood V' of x.

Definition 2.1.1. An f-invariant probability measure p is said to be ergodic if the only
measurable sets A with f~'(A) = A satisfy u(A) = 0 or u(A) = 1. We denote by M.(f)

the set of ergodic probability measures.

Now, we define the notion of entropy with respect to a finite partition P of M.

Definition 2.1.2. The entropy of P is defined by

H,(P) = Y. —u(P)log u(P).
PeP
Definition 2.1.3. We say that a partition P of M is measurable with respect to  if there
exist a measurable family { A;}ien and a measurable set C' of full measure such that if B € P,
then there ezists a sequence {B;}ien, where B; € {A;, A} such that B n C = ﬂ B, nC.
ieN
Before presenting the notion of entropy for a dynamical system (f, ), we

introduce some notations.
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n—1 n—1
Let P" := \/f_i(P) = \/{f‘i(P) : P e P} for every n = 1. The elements of
P" are of the form 73”1(::;)) = P(x) ml?_l(P(f(x))) Ao TP ().

Definition 2.1.4. Let f : M — M be a measurable transformation preserving a probability

measure (. The metric entropy of f with respect to p and a measurable partition P of M
1s defined by
. 1 n . 1 n
hu(f,P) = lim ﬁHM(,P ) = }nglg EHN(,P ).
The metric entropy of (f, ) is defined by

h,(f) = sup{h,(f,P) : P is a partition of M}.

The ergodic decomposition theorem asserts that every invariant measure is a
convex combination of ergodic measures; in particular, it permits the reduction of the

proof of many results to the case when the system is ergodic.

Theorem 2.1.5 (Ergodic decomposition). Let M be a complete separable metric space,
f: M — M be a measurable transformation and p an f-invariant probability measure.
Then there exist a measurable set My < M with u(My) = 1, a partition P of My into

measurable subsets and a family {up : P € P} of probability measures on M, satisfying

1. pp(P) =1 for fi-almost every P € P;
2. P up(FE) is measurable, for every measurable set £ < M ;

3. pp 1s invariant and ergodic for ji-almost every P € P;

4. uw(E) = f,up(E)d,&(P), for every measurable set E < M.
Proof. See [59, Theorem 5.1.3]. O

We now present the well-known Jacobs’ formula; it generalizes the affine

property of the metric entropy for ergodic decomposition.

Theorem 2.1.6 (Jacobs). Let M be a complete separable metric space, f: M — M be a

measurable transformation and p be an invariant probability measure. If {up : P € P} is
the ergodic decomposition of p, then h,(f) = Jhup(f)dﬂ(P) (if one side is infinite, so is
the other side).

Proof. See [59, Theorem 9.6.2]. O
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Let f: M — M be a continuous transformation over a compact metric space.
Let n € N, e > 0 and K € M a non-empty compact set. A subset £ < K is said to
be (n,e€)-separated, if for x,y € E,x # y, there exists i € {0,1,...,n — 1} such that
dist(f'z, f'y) = e

Definition 2.1.7. The topological entropy of f on the non-empty compact set K < M
s defined by

1
h(f, K) = lir% limsup — logsup{#F : £ < K is (n, ¢)-separated}.
€= n—w T

We denote hioy(f) := h(f, M).

The metric entropy describes the complexity of a dynamical system with respect
to an invariant probability measure, and the topological entropy measures the complexity
level of the whole system. The following result establishes a relationship between the two

types of entropy.

Theorem 2.1.8 (Variational principle). If f : M — M is a continuous transformation

over a compact metric space, then
htop(f) = sup{hy(f) - pe M(f)}.

Proof. See [59, Theorem 10.1]. O

Theorem 2.1.9 (Ledrappier-Walters Variational principle [35]). Let M and N be compact
metric spaces and f: M — M, g: N —- N, m: M — N be continuous transformations

such that m is surjective and wo f = gomw. Then

sup hy(f) = hulg) + fN W7 (y))du(y).

pims p=v
Proof. See [35, Theorem 2.1]. O

Definition 2.1.10. An f-invariant Borel probability measure j is an equilibrium state
for f with respect to a potential ¢ € C°(M,R) if it satisfies

h(f) + j odu = sup{ho () + f odv v e M(f)}.

When ¢ =0, any € M(f) such that h,(f) = sup{h,(f) : v € M(f)} is called mazimal

entropy measure.

Remark 2.1.11. In definition 2.1.10, we can change M(f) by M.(f). This is a conse-
quence of Theorem 2.1.6 and Theorem 2.1.5.

Let f: M — M be a continuous transformation over a compact metric space,
we define the entropy function that is denoted by h : M(f) — [0,00) and defined by

hs) == hy(f).
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Proposition 2.1.12. If the entropy function h is upper semi-continuous, then f has
an equilibrium state with respect to any potential ¢ € C°(M,R). Moreover, the set of
equilibrium states for (f, ¢) is compact and convex subset of M(f).

Proof. See [59, Proposition 10.5.5 and Lemma 10.5.8]. O

Let f : M — M be a homeomorphism over a compact metric space, the

bi-infinite Bowen ball around z € M of size € > 0 is the set
L(z) :={ye M : dist(f"z, f"y) < e for all n € Z}.

Definition 2.1.13. We say that [ is expansive if there is a constant € > 0 such that
L(z) = {x} for all x € M. When f is not expansive, it is useful to consider the tail

entropy of f at scale ¢ > 0:

h;i(e) = sup h(f,Tc(z)).

xeM

Definition 2.1.14. We say that f is h-expansive at scale ¢ if hi(e) = 0. When

lir% h%(e) = 0, we say that f is asymptotically h-expansive.

Theorem 2.1.15 (Misiurewicz [41)). If f: M — M is asymptotically h-expansive, then

the entropy function is upper semi-continuous.

Proof. See [41, Theorem 4.2]. O

Corollary 2.1.16. If f : M — M 1is asymptotically h-expansive, then f has an equilibrium
state with respect to any potential ¢ € C°(M,R).

2.2 Homoclinic classes and hyperbolic measures

For r > 1, we denote by Diff" (M) the set of C" diffeomorphism over a compact
Riemannian manifold. Given f € Dift"(M),z € M, and v € T, M — {0}, the Lyapunov

exponent of f at x in direction v is the exponential growth rate of D f along v, that is,

: 1 n
Ai0) = lim ~log [ Df2(0)]
in case both limits exist and coincide.

Definition 2.2.1. Let f € Diff"(M). A hyperbolic set for f is a compact f-invariant
set A © M with a decomposition T,M = E°(x) ® E"(z) for all x € A such that for some
C>0and A€ (0,1), for allz e A, n >0, v° € E*°(z) and v" € E*(z), we have

D) < CX*[[o] and [Df"(0%)] < CA"[o"].
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When A = M, f is called Anosov diffeomorphism. Given x € M, define

W) i= {y e M : Jim dist(/ " (z), f (1)) = 0}
We(e) = {y & M Jim dist(f"(2), £ (s) = 0}

Recall that if A is a hyperbolic set, these sets are C" sub-manifolds (see [31]), called
unstable and stable manifold, respectively. The periodic orbit of x and period n > 1 for
f is denoted by O := O(x) = {f'(x) :i=0,...,n —1}.

Definition 2.2.2. Let f € Dift"(M). The orbit of a f-periodic point x is hyperbolic of
saddle type O if x has a positive Lyapunov exponent, a negative Lyapunov exponent and

no zero Lyapunov exponents.

We denote by Pery,(f) the set of hyperbolic periodic orbit of saddle type. For
O € Pery(f) we also define the unstable (stable) manifold for a whole orbit as

WH(0) = | W (@) and W*(0) = | W*(x).
e ze©

Definition 2.2.3. Two orbits O;,O; € Pery(f) are called homoclinically related if
fori #j
W O,)AW?*(0;) # &, W (O;)hW*(O;) # .

We write O, S 0;.

Definition 2.2.4. The homoclinic class of O is the set

HC(O) = {O € Pery(f): O L 0}.

Let us present some results about Pesin theory that will be used in some parts
this thesis. For further references, see the book by Barreira and Pesin [8] and Katok’s

paper [33].

Theorem 2.2.5 (Oseledets). Let f € Diff' (M) and € M(f). There exists a set Ry = M
with p(Ry) = 1, such that for every e > 0 it exists a measurable function C, : Ry — (1,0)
with the following properties:

1. For any x € Ry there are numbers 1 < l(x) < dim M, I(z) Lyapunov exponents
M(x) < - < Ny () and a decomposition TyM = Ei(x) @ Ey(2) @ - - - @ Ejz)(2);

2. U(f(x)) = Ux), Ni(f(x)) = Ni(x) and Df,E;(x) = E;(f(x)), for everyi =1,--- ,l(x);

3. For every v e E(x) — {0} andneZ

Ce(2) "' e" Mo < |IDf(v)] < Col)e" o] and Az, v) = Xi(w);
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4. The angle between E;(z) and E;(x) is greater than Cc(x)™", if i # j;

5. Cc(f(2)) < e"Ce(2).

Proof. See [8, Theorem 5.4.1]. O

Remark 2.2.6. Every x € Ry, given by the previous theorem, is called a regular point.

If we M.(f), then the Lyapunov exponents and dim E;(x) are constants pi-a.e.

Given € > 0 and [ € N we define the Pesin block
Re,l = {l’ € Rf : C’e(x) < l}

Note that Pesin blocks are not necessarily invariant. However f(R.;) © R and for each

€ > 0, we have that
Ry =|JRer

leN

Recall that every R, is compact. For all x € Ry we have

T.M= P Ei@)PEz) B Eiz)

Ai(z)<0 Xi(z)>0
where EY(z) is the subspace generated by the vectors having zero Lyapunov exponents.

Definition 2.2.7. An f-invariant probability measure p is called hyperbolic if all its
Lyapunov exponents are non-zero and there exist Lyapunov exponents with different signs.

We denote My, (f) the set of hyperbolic ergodic measures.

Definition 2.2.8. Let u be a hyperbolic ergodic measure. We define the stable index or
s-index (unstable index or u-index) of i as the number of negative (positive) Lyapunov

exponents. Here the exponents are counted with multiplicity.

Definition 2.2.9. For f € Diff"(M) with r > 1, the stable Pesin manifold of the
point x € Ry is

1
Wi(x) = {y e M : limsup — log dist(f"(z), f"(y)) < 0}.
n—oo N
Similarly one defines the unstable Pesin manifold as

Wh(z) — {y e M : limsup ~ log dist(f~"(z), f~"(1))) < 0}.

n—oo T

Remark 2.2.10. Stable and unstable Pesin manifolds of points in Ry are immersed
submanifolds [44, Section 4]. The usual Pesin theory requires a C**® regqularity (o > 0)
of the dynamics [47), in the case of C' reqularity, we can use dominated Pesin theory
developed in [1, 6].
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We denote by W, (x) the connected component of Wp(z) n B(x,r) containing
x, where B(z,r) denotes the Riemannian ball of center x and radius r > 0, which is

sufficiently small but fixed.

Theorem 2.2.11 (Stable Pesin Manifold Theorem [44]). Let r > 1 and f € Dift" (M) be
a diffeomorphism preserving a smooth measure m. Then, for each | > 1 and small € > 0,

Zf xr e REJ N
1. Wi (z) is a disk such that T,W; (z) = P Ei(z);
)\i(x)>0

2. x — Wi (x) is continuous over R, in the C*-topology.
Proof. See [44, Theorem 2.2.1]. O

In particular, the dimension of the disk W} (x) equals the number of negative
Lyapunov exponents of x respect to m. An analogous statement holds for the unstable

Pesin manifold.

Let O € Pery(f) and p € My, (f). We write O 2 1 when Wi(z)hW5(O) # &
and Wp(z)hWgE(O) # & for p-almost every x as in Definition 2.2.2. The previous definition

describes the homoclinic relation between p and O,

Katok’s Horseshoe Theorem [33] gives an important characterization for hyper-

bolic ergodic measures with positive entropy.

Theorem 2.2.12 (Katok, [33]). Suppose f € Dift"(M), r > 1. Let pu be an f-invariant
ergodic and hyperbolic measure such that h,(f) > 0. Then for every e > 0, there exists a
hyperbolic set B € M such that

httm(f

B.) > hu(f) —e.

Proof. See [8, Theorem 15.6.1]. O

Corollary 2.2.13 (Katok, [34]). Let f € Dift"(M) with r > 1, and u € My(f). Then,
there exists O € Pery(f) such that O % u and

HC(O) = U{suppu cve Mu(f), 0Ll

Proof. See [8, Corollary 15.4.9]. O

2.3 Partially hyperbolic diffeomorphisms

In this section M is a compact Riemannian manifold. We begin by presenting

the definition of dominated splitting for a diffeomorphism over M.
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Definition 2.3.1. A diffeomorphism f : M — M has a dominated splitting if there
are an invariant splitting TM = F1 @ -+ @ Ex, k = 2 (with no trivial subbundle), and an
integer | = 1 such that for every x € M, i < j, and unit vectors u € E;(x) and v € E;(z),
one has

D] _ 1

IDfL()] 2
Definition 2.3.2. A diffeomorphism f : M — M is called partially hyperbolic if the
tangent bundle admits a continuous D f-invariant splitting TM = E°*@® E°@® E" such
that there exists N € N and A > 1 wverifying that for every x € M and unit vectors

v? e E%(x) (0 = s,c¢,u) we have

o \IDF (W) < IDf ()| < DL ()], and
o [DEF@I)] <A <A< DL ()]

Remark 2.3.3. For partially hyperbolic diffeomorphisms, it is a well-known fact that there
are foliations F° tangent to the subbundles E° for o = s,u. Not always the central bundle
E° may be tangent to an invariant foliation, but whenever such a foliation exists, it is
denoted by F°.

Definition 2.3.4. A partially hyperbolic diffeomorphism f: M — M is called dynam-
ically coherent if there exist invariant foliations F tangent to E“ = E°@® E° for

o = s,u, respectively.

Fh(z) F(y)

- Yy Fe(x)

[ /

/‘_\\ /}"C(z)
| —

Figure 1 — Holonomies

Definition 2.3.5. 1. For any f : M — M partially hyperbolic diffeomorphism dynam-
ically coherent and any two points x,y with y € F*(x), there exists a neighborhood
U, of x in F°(x) and a homeomorphism Hy  : U, — F°(y) such that Hy (z) =y
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and H} (z) € F*(2) 0 Fi,.(y). The homeomorphism, HY , x € M and y € F*(x), is

$7y,

called local unstable holonomy. Similarly, one may define local stable holon-
omy H; , forve M and y € F*(x).

2. We say that f admits global unstable holonomy if for any y € F*(x) the holonomy
is defined globally Hy , : F°(x) — F(y). Similarly, we define the notion of global
stable holonomy, and f admits global holonomzies when it admits global stable and

unstable holonomies (see Figure 1).

Definition 2.3.6. A foliation F is called quasti-isometric if there exists a constant
@ > 0 such that, after lifting F to the universal cover, for any two points x,y in the same
leaf, one has

distr(x,y) < Qdist(z,y)

where distr and dist are respectively the distance along the leaf and the distance on the

universal cover.

Definition 2.3.7. A C* partially hyperbolic diffeomorphism f : M — M is called derived
from Anosov (DA) if it is isotopic to an Anosov diffeomorphism. In the case M = T¢,
then f is isotopic to its action in the homology A : H(T%) — H(T%). We call A the linear

part of f.

Let f: T? — T? be a diffeomorphism isotopic to a hyperbolic automorphism
A:T? - T% By a classical result due to Franks-Manning [29, 40] there exists a continuous

surjection H : T — T? homotopic to the identity such that
AoH =Hof. (2.3.1)

Moreover, its lift H to R? is a proper function that semiconjugates f with A4, and for some
constant K > 0, we have
|H - Id|co < K.

Remark 2.3.8. Let A : T? — T% be a linear Anosov automorphism admitting a dominated
splitting of the form EX@EVOEY"®EY". We denote as £ = EX®EY, B = EY°QEL"
and EY = EY" ® EY*. We denote by PH 4 4., (T%) < PH(TY) the subset of those which are
isotopic to A and whose splitting verifies dim EY = dim E3” for o € {s,u}, and denote by
PHY(T?) to be the connected component of PH 4., (T?) containing the linear Anosov A.
Note that can also be characterized as the connected component containing a dynamaically

coherent and center-fibered partially hyperbolic diffeomorphism (see [28, Subsection 1.3]).

Theorem 2.3.9 (Fisher-Potrie-Sambarino [28]). Every f € PH(TY) is dynamically co-

herent and different center leaves of f are sent by H to different center leaves of A.

Proof. See [28, Theorem A]. O
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2.4 Disintegration of measures

Let (M,*B, 11) be a probability space and P a partition of M into measurable
subsets. We consider 7 : M — M /P the canonical projection that assigns to each point
x € M the element P(x) of the partition that contains it. This projection map endows
M /P with the structure of a probability space, as follows. We define B = 7,8 and it by
fi = mupt. Then, (M /P, B, i) is a probability space.

Definition 2.4.1. A disintegration of pu with respect to P is a family {up}pep of

conditional probability measures on M such that, for every measurable set E < M :

1. pp(P) =1 for fi-almost every P € P;

2. the function P — R, defined by P — pup(E) is measurable;

3. () = [ nr(B)dn(P).
When it is clear which partition we are referring to, we say that the family {up} disinte-
grates the measure fi.

Proposition 2.4.2. If {up}pep and {jip}pep are disintegrations of p with respect to P,
then up = jip for fi-almost every P € P.

Proof. See [59, Proposition 5.1.7]. O

The previous proposition asserts that disintegrations are essentially unique,

when they exist. Consequently, for an invariant measure it follows that:

Corollary 2.4.3. If f : M — M preserves ji and the partition P, then fiup = pgp)

ji-a.e.

The next theorem guarantees the existence of disintegration with respect to a

measurable partition.

Theorem 2.4.4 (Rokhlin’s Disintegration [52]). Let P be a measurable partition of a
compact metric space M and p a borelian probability measure. Then, u admits some

disintegration with respect to P.
Proof. See [59, Theorem 5.1.11]. O

In the context of partially hyperbolic dynamics the partition by leaves of a
foliation, in general, may be non-measurable (see [18]). Thus, by disintegration of a measure

along the leaves of a foliation we mean the disintegration on compact foliated boxes.
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Definition 2.4.5. We say that a foliation F has atomic disintegration with respect
to a measure p if the conditional measures on any foliated box are sum of Dirac measures.
In other words, there exists a full measurable subset Z such that Z intersects all leaves in

at most a countable set.

Remark 2.4.6. Fven though the disintegration of a measure along a general foliation is
defined in compact foliated boxes, it makes sense to say that a foliation F has a quantity
k € N of atoms per leaf. The meaning of “per leaf” should always be understood as a
generic leaf, i.e. almost every leaf. That means that there is a set A of u-full measure

which intersects a generic leaf on exactly k points.

Definition 2.4.7. Let f € PH(T?) be a dynamically coherence DA. We say that an f-
invariant measure is virtually hyperbolic if there is a full measure set which intersects

the center leaf in at most k points.

Remark 2.4.8. If i is a virtually hyperbolic measure, then the conditional measures along
center leaves are Dirac measures, and the central foliation is measurable with respect to pu,
because the partition into central leaves is equivalent to the partition into points. Ponce,
Tahzibi and Vardo [45] studied examples of DA partially hyperbolic diffeomorphisms on T*

with one-dimensional center foliation and volume measure virtually hyperbolic.
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Maximal entropy measures for diffeomorphisms

isotopic to an Anosov diffeomorphism

Let us consider f € PH%(T?), where A : T — T is a linear Anosov automor-
phism admitting a dominated splitting of the form F%° @ ES @ EY" with ES = EY* @ EY".

3.1 Known results

Our goal is to understand maximal entropy measures for partially hyperbolic
diffeomorphisms under the above conditions. Before that, we present some useful results

for developing the proofs of the main theorems on this chapter.

Theorem 3.1.1 (Fisher-Potrie-Sambarino [28]). If f € PH)(T?) and dim E§ = 1, then f

has a unique maximal entropy measure.

Proof. See [28, Corollary C]. O

Theorem 3.1.2 (Roldén [53]). If f € PHY(T%) and dim E =1, then the unique mazimal

entropy measure of f is hyperbolic.
Proof. See [53, Theorem A]. O

The following results can be found in [56]. Let f : M — M be a C? partially

hyperbolic diffeomorphism over a compact manifold satisfying the following conditions:

H.1 f is dynamically coherent with all center leaves compact;
H.2 f admits global holonomies;

H3 f.: M/F° — M/F¢is a transitive topological Anosov homeomorphism (see [39,
Chapter 1V]), where f. is the induced dynamics satisfying f.om = mo f and

m: M — M/F¢ is the natural projection to the space of central leaves.
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Definition 3.1.3. Let {u2} be the conditional measures on local unstable plaques. In the
above setting, the probability measure p is called a Gibbs;-state if T, = v and for

pu-almost every x € M,
Tably = Vn(a)-

Gibb.(f) denotes the set of Gibbs:.-states of f.

Definition 3.1.4. For every f-invariant probability p, we say that a measurable partition

€ is p-adapted (subordinated) to a foliation F if the following conditions are satisfied:

1. There is ro > 0 such that {(z) < B] (x) for p almost every x where B () is the
ball inside of the leaf F(x);

2. &(x) contains an open neighborhood of x inside F(z);
3. ¢ is increasing; that is, for p almost every £(x) < f(E(f 1 (2))).

Definition 3.1.5. For every f-invariant probability p, the partial entropy of f along
the expanding foliation F* is defined by

Buf.FY) = H(F ) = | = logut (7€) dn(o)
M
where £ is a partition p-adapted to the foliation F*.

Theorem 3.1.6 (Tahzibi-Yang [56]). Let f be a C? partially hyperbolic diffeomorphism
satisfying H.1, H.2 and H.3. Suppose p to be an f-invariant probability measure. Then,
hu(fs F*) < hayu(fe) and equality occurs if and only if € Gibby_,(f).

Proof. See [56, Theorem A]. O

3.2 Proof of Theorem A

Let f € PHY(T?) where A : T — T? is a linear Anosov automorphism with a
foliation by tori T? tangent to £ = E%* @ EY*, dim EY* = dim EY" = 1. By Theorem
2.3.9 f is dynamically coherent and H sends central leaves of f in central leaves of A.
Moreover, in the proof of the main result in [28] it was guaranteed that the semiconjugacy

H is injective on each strong stable and unstable leaves.

Let f € PHY(TY) n Diff*(T?), then all central leaves of f are compact (see
Theorem 2.3.9).

We recall that two transverse foliations F; and F, of T¢ have a global product
structure (GPS) if for any two points x,y € R? the leaves F(z) and Fy(y) intersect in a
unique point. Now, we will recall some essential steps of the proof of following result, from
28, Section 2 and Section 3.
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Lemma 3.2.1. Let f € PHY(T?) be under above conditions. Then, f admits global
holonomies, that is, for every x,y € T with y € F*(x) and every z € F°(z) there is a
unique w such that w e F*(z) n F(y).

Proof. Since f € PHY%(T?) is dynamically coherent, by arguments of the proof in [28,
Theorem 6.1], f satisfies the hypothesis of [28, Theorem 4.1]. Hence the Franks-Manning
semiconjugacy H is injective along strong stable and unstable manifolds, and for any two
points y, z € R? the leaves Fu(z) and JFes(y) intersect in a unique point. Then, we obtain
that F° has a global product structure with F* and F*(z) n F¢(y) is a singleton set. [

The following proposition is contained in the proof of Corollary 2.1 from [56],
where some results of Ledrappier-Young [36], [37] are used. Let us consider the topological
quotient T¢/F¢ and the projection 7 : T — T¢/F¢ such that the transitive topological
Anosov homeomorphism f, : T¢/F¢ — T?¢/F¢ satisfies 7o f = f.om.

Proposition 3.2.2. If i is an ergodic probability with all the central exponents non-positive
almost everywhere, then hy,(f) = bz u(fe)-

Proof. Let h; be the entropy along the i-th Pesin unstable manifold W}, for 1 < i < u (see
[37]). Here
A 1
Wi(z) = {y € T : limsup ~ log dist(f " (x), /(1)) <~
n—oo 1
and \; > Xy > .-+ > )\, are the positive Lyapunov exponents of (f,u). As f is a
partially hyperbolic diffeomorphism with non-positive central Lyapunov exponents, it
follows that Wp coincides with the unstable foliation F*. By Corollary 7.2.2 of [37] we
have that h,(f) = hy (h, is the entropy along Wp), again using ideas of [37] we obtain
that h, = h,(f,F*), and consequently h,(f) = h, = h,(f, F*). On the other hand,
Theorem 3.1.6 implies that h,(f) = h,(f, F*) < hr,u(fe). As fo is factor of f, we have

that hu(f) = hﬂ'*,u(fc>' D
Theorem 3.2.3 (Theorem A). Let f € PHY(T?) n Diff>(T?). For some 0 < ko < hyop(A),

if p is an ergodic measure such that h,(f) > ko, then

1. p is hyperbolic, meaning that all its Lyapunov exponents are non-zero. In particular

any maximal entropy measure is hyperbolic, provided that it exists.

2. For every e > 0, there exists a hyperbolic set B. < M such that hioy(f|B.) > hu(f)—e€.

Proof. Let A\{, A be the central Lyapunov exponents of (f,u). Define ky := hop(Ae)
where A, : T?/F5 — T?/Fq is the corresponding factor to the linear Anosov A, thus
hiop(Ae) < hiop(A). By Ruelle’s inequality [34, Theorem S.2.13] we obtain that

ko < hy(f) < max{{,0} + max{\3,0} + > A, (3.2.1)
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where )\;r s are the positive (unstable) Lyapunov exponents of f. By [28, Theorem B]| f is
leaf conjugate to A, we can define a homeomorphism between central leaves and obtain
that hup(fe) = hiop(Ae). By contradiction suppose max{\{, 0} + max{\3, 0} = 0, that is,

the central Lyapunov exponents are non-positive. From Proposition 3.2.2 it follows that

hu(f) = hu(fafu) = hw*u(fC) < hwp(fC) = htoz)(AC) = kOv

in contradiction with (3.2.1). Then, max{\{, 0}+max{)5, 0} > 0. Analogously, as h,,(f~") =
h,(f) we have that max{—A{, 0} + max{—\3, 0} > 0. Therefore, p is a hyperbolic measure.
The second item follows from Katok’s theorem 2.2.12, because h,(f) > 0. The hyper-

bolicity for any ergodic maximal entropy measure, if it exists, is now immediate since

h’top(AC) < ht()p(A) < htozo(f)- N

Using techniques from symbolic dynamics, it is proved in [12] that:

Lemma 3.2.4. Let f: Dift"(M) with r > 1, and O be a hyperbolic periodic orbit. Then,
there is at most one ergodic hyperbolic mazximal entropy measure homoclinically related

to O. Moreover, when such mazximal entropy measure exists, its support coincides with

HC(0).

Proof. This is explained in [12; Section 1.6]. See also [9] and [12, Corollary 3.3]. O

Corollary 3.2.5. Let f be as in Theorem A.

o Ifh(f,H ' (x)) =0 for every x € T, then there exists a mazimal entropy measure.

o [f 1 is an ergodic maximal entropy measure, then supp p coincides with the homoclinic

class of some hyperbolic periodic orbit.

Proof. When h(f, H'(z)) = 0 for every x € T, Ledrappier-Walters Principle 2.1.9 allows
us to conclude that hy,,(A) = hip(f) and that a lift of the Haar measure, p, for A is a
maximal entropy measure for f. For the second item, by Theorem 3.2.3 i is a hyperbolic
measure. Then, by Corollary 2.2.13 there exists O € Pery,(f) such that O EQ 1, and from
Lemma 3.2.4 follows that supp up = HC(O). O

Remark 3.2.6. One useful reference is Rolddn [53], in which we can find examples
of partially hyperbolic diffeomorphisms f : T* — T* with two-dimensional center bundle
admitting high entropy measures, that is, measures pu such that hy,(f) = hiop(A). Specifically,
Theorem B (resp. Theorem C) of [53] are examples where there exists an open set U of
Diff' (T?) such that any f € U is an absolutely (resp. a pointwise) partially hyperbolic

diffeomorphism with dim ES = 2, and any ergodic mazimal entropy measure is hyperbolic.
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3.3 Proof of Theorem B

Let f € PHY(TY) n Diff*(T?%). We want to understand the maximal entropy
measures for f admitting a dominated splitting of the form E}® EY @ E¥ @ £, dim £ =

dim E¥ = 1. From [25, Corollary 1.3] it follows that f has a maximal entropy measure.

Let T'.(f) be the set of all ergodic maximal entropy measures of f, Theorem
3.2.3 implies that every p € I'.(f) is a hyperbolic measure of saddle type. Recall that R

denotes the set of regular points.

Proposition 3.3.1. Suppose p € U(f) and O € Pery(f). Then, the set
Ho:={zxeRs: Wp(x)NWp(O) # & and Wp(x)hNWE(O) # &},
1s tnvariant and measurable. Moreover,

Ve Mo(f), W(Ho) = 1 == pe My(f) and u 2 O.

Proof. For any x € Hp, by the properties of Pesin blocks ([12, Section 2.3]) there are

positives integers m,m and a Pesin block R, such that
f (@), f™ (@) € Rens Wine(f™ (@) WWE(O) # & and Wi (f~"(2))AWE(0) # &.

For every m,m,n the set of points x satisfying the condition above is measurable, since
the local manifolds vary continuously for the C'-topology on each Pesin block. Therefore,
Hp is measurable. Since the union of Pesin blocks is invariant, it is not difficult to verify

that Hp is f-invariant.

If i is an ergodic hyperbolic measure such that p A O, then by definition of
the homoclinic relation, u(Hp) > 0. From the invariance of Hp follows that u(Hep) = 1.
Conversely, if 1 is an ergodic measure such that u(Hp) = 1, from the properties of the
Pesin blocks g is a hyperbolic measure of saddle type and by definition of Hp we have
that u Lo. [l

Remark 3.3.2. For O € Pery,(f) the sets Ho have the following property:

o Hp = Hp when O is homoclinically related to 0,

o Hon Hp = & when O and O are not homoclinically related.

Indeed, if there exists x € Ho n Hg, then Inclination Lemma [12, Lemma 2.7] implies that
the stable manifolds of © and O contain discs that converge towards the stable manifold
of x for the C*-topology; the same argument is valid for unstable manifolds and these

arguments imply the homoclinic relation between O and O.
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Proposition 3.3.3. Let f be a C? partially hyperbolic diffeomorphism and 1 be a hyperbolic
ergodic probability measure whose Oseledets decomposition Ep ® Ep is dominated. Then
1 1s supported on a homoclinic class: there exists a sequence of hyperbolic periodic orbits
(On)nen whose s-index is equal to dim E}, that are all homoclinically related, that converge
towards the support of u for the Hausdorff topology and such that the invariant measures
supported on the O, converge towards v in the weak™-topology.

Proof. We will argue as in the proof of [23, Proposition 1.4]. Let Ags be the Lyapunov

exponent given by
1
Aps, = hm — | log |Df"|E

n—0o0

and let € > 0 such that Ag; +¢€ <0. Cons1der an integer ng > 1 fixed and large enough so

that for any n > ng we have
1 n
] |0z
n

Here p is ergodic for f, but not necessarily for f"°. Hence, u decomposes as

<

d/L— AE; (331)

DO ™

B},

1
Mzg(/ﬁlJr---Jrﬂq)

where ¢ € N — {0} divides ng and each p; is an ergodic f"°-invariant measure such that
pes1 = fopu for every ¢t (mod ¢). Let Ay U ... U A, be a measurable partition of T? with
respect to p such that f(A;) = Ayyq for every ¢ (mod ¢) and p(A:) = 1. From 3.3.1 follows
that there exists tg € {1,...,q} such that

1 n €
nf(} flog HDf O\E;Hduto < )\Efo + 5 (332)

For [ = 1 and ppy-almost every x, one decomposes the segment of orbit with length [ of

zas (x, f(x), ..., [N @), (f(),. ., U7 @) (e (), f () such
that j < ng, j +rng = [ and all the points f7(z), f*™(x),..., f7*™(z) € A,,. Then,

|Dfoles | < IDFlle

1
D F8y me| ID L7y oy 3 ) - 1D L s |
(z) f f

B}

Hence, for p-almost every point we have that

log || D f%

< 2noKy + 2 log | D f*: FiPrsno(zy
s=0

S S
Ep P

where K is an upper bound for both log | Df| and log | Df™!|. Since f?(x) is a regular
k=1

1
point for the dynamics (f™, ), we obtain that the average -—— Z log | D f7:

J+zn0 (CE ES

1
converges to — Jlog |Dfme
No

B dp,. Thus,

TL()Kf
l

1
hm - Z lOg Hfozl :c)|EISDH <2 + nio JlOg HDfnolE}sDHtho.
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dngK
Now, choosing [ > TR and by the inequality (3.3.2) we obtain that
€

k—1

1 l

Es, < )\E;—FG.

Define —p = Aps + €, then there exists an integer [ > 1 such that for y-almost every ,

the Birkhoff averages

1 k—1 1 k-1 B
EZlog HDleMl(I)|EIS,”7 %Zlog Hfo—lil(a:)|E}‘>||
i=0 =0

converge towards a number less than —p when £ — 0. Then, there exist a set B with

1(B) =1 and a constant C' > 0 such that for every x € B and every k > 0 we have that

k=1 k-1
[ 11D ffalepll < Ce™™. T TIDS gy lopll < Ce™™.
=0 i=0

As p is ergodic, p-almost every point is recurrent. Now, using the previous inequality we

obtain a segments of orbits (x,..., f™(x)) in the support of u such that x, f™(x) € B, the

distance d(x, f™(x)) is arbitrarily small and the non-invariant atomic measure — mzl Ofi(z)
is arbitrarily close to u. In particular for each £ = 0,...m, we have that i
k-1 k-1
[ 11D les | < Ce®, TTIDf gl < Ce™. (3.3.3)
i=0 i=0

This property and the domination E} @ E} allow to apply Liao-Gan’s shadowing Lemma
[30], the segment of orbit (x,..., f™(z)) is -shadowed (see [34, Definition 18.1.1]) by a
periodic orbit O = {y,..., f™(y) = y} where 0 tends to 0 when d(z, f™(z)) decreases. In
particular, O is arbitrarily close to the support of i for the Hausdorff topology and it
supports a periodic measure arbitrarily close to the measure p. Note that the segment
of orbit (y,..., f™(y)) satisfies an estimate like 3.3.3 with constants p ,C" close to p, C.
This way, we have that the orbit O is hyperbolic and has s-index dim E}. Repeating this
argument, one obtains a sequence of such periodic points (¥, )neny With s-index dim E}
which converge to x, whose orbits (O,,),en converge toward to supp p, and whose measures
converge to p in the weak*-topology. By the estimate 3.3.3, the size of the local stable
and local unstable manifolds at y, is uniform. Consequently, the periodic orbits O,, are

homoclinically related for n large. ]

Theorem 3.3.4 (Theorem B). Let f € PHY(TY) n Diff*(T?) admitting a dominated
splitting of the form E} @ Ef' @ EP @ EY, where EY', EY are one-dimensional. Then,

Lo(f) is a non-empty finite set and all its elements are hyperbolic measures.

Proof. T.(f) is a non-empty set and every p € I'.(f) is hyperbolic due to Theorem 3.2.3.

Arguing by contradiction suppose there exists a sequence of measures (i;)ieny < Ie(f).
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By hypothesis of domination the Oseledets decomposition of p; defined by E; @ E}" is
dominated, where E} = E} @ £ and E}' = E? ® E} (for regular points of y;). Arguing
as in the proof of Proposition 3.3.3, we obtain a sequence of orbits (O;)y such that
O; € Pery(f) and the size of the local stable (unstable) manifolds at a point is uniform
(does not depend on measure). Taking an accumulation point of (;);en, we have that
the periodic orbits O; are homoclinically related for ¢ large. Consequently by Remark
3.3.2 there exists j # i such that Ho, = Hp,. Hence, from Proposition 3.3.1 follows that
O; L i and O; A p; for i # j. This is a contradiction with Lemma 3.2.4. Therefore, I'.(f)

is a non-empty finite set. O]

Let T'e(f) = {pu1, ft2, - - -, g} be the set of ergodic maximal entropy measures

of f. The following results are consequences of the previous theorem.

Corollary 3.3.5. Let [ be as in Theorem 3.3.4. Then, every mazimal entropy measure (i

k k
is of the form u = Zti,ui where t; = 0, Zti =1.
i=1 i=1
Proof. Let u be a maximal entropy measure for f. By applying Jacobs’ formula 2.1.6 to
the ergodic decomposition of p, we obtain that pp has maximal entropy for fi-a.e P, and
from Theorem 3.3.4 there exists a finite number (non-zero) of them. Therefore, u is a

convex combination of ergodic maximal entropy measures. O

Corollary 3.3.6. Let f be as in Theorem 3.3.4 and (v;)ien be a sequence of hyperbolic
measures such that lim h,,(f) = hip(f). If vi converges to p in the weak™-topology, then u
1—00

is a combination of elements of I'o(f).

Proof. Theorem 1 from [25] and Theorem 2.1.15 together imply that the function entropy
is upper semi-continuous, then p is a maximal entropy measure for f. Thus, by Corollary

3.3.5 one concludes the proof. O

3.4 Proof of Theorem C

We start by considering f € PH(T?) n Diff?(T?). We define the volume growth
rate of the foliation F* by

Xru(x, f) = limsupilog(VOlfn(Br]:u(x))%

n—0

where B (x) denotes the ball inside of the leaf F*(x). Then, the mazimum volume growth

rate of F* under f is defined by

Xu(f) = Xpu(f) = sup Xpu(, f).

zeTd

The following result provides a refined version of the Pesin-Ruelle inequality:
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Theorem 3.4.1 (Hua-Saghin-Xia [32]). Let f be a C'* partially hyperbolic diffeomor-
phism. Let p be an ergodic measure and X(u) the Lyapunov exponents to E°. Then,

ha(f) < Xu(f) + ) ().

x>0
Proof. See [32, Theorem 3.3]. O

Remark 3.4.2. In the case of T*, the stable and unstable manifolds are one-dimensional,
which is crucial to remove the compactness condition for the center leaves in Theorem

3.2.3.Hence, we obtain the same conclusion about hyperbolic measures.

Let A : T* — T* be a linear Anosov automorphism admitting a dominated
splitting of the form EY°® £ @ EY, EY = E3°® EY" and let H be the Franks-Manning

semiconjugacy between f and A.

Remark 3.4.3. Let us denote by [z] := H ' (x) the class of x € T, and similarly for
i € R? we write [Z] := H™Y(&). For every & € RY, each [%] is a compact set whose diameter
is uniformly bounded from above diam([Z]) < 2K. In particular, since Ho f* = A" o H

for every n € Z we obtain that

diam(f"[7]) < 2K,
for every n € 7.
Theorem 3.4.4 (Theorem C). Let f € PHY(T*) n Diff*>(T*). For some 0 < ko < hyop(A),

if p is an ergodic measure such that h,(f) > ko, then p is a hyperbolic measure.

Proof. Let A{, \; be the central Lyapunov exponents of (f, ) and ko := A% the largest
unstable Lyapunov exponent of A. Observe that X, (f) = X,(f), where f is any lift of f to
the universal cover, and F* is an one-dimensional foliation, then the volume is the length.

Take an strong unstable arc v and since Ho f* = A" o H for every n € Z, we have that
diam f"(y) < 2K + diam A"(H (7)) < 2K + "4 diam H(y), (3.4.1)

where K is a constant that bounds the distance between H and the identity.

On the other hand, by [28, Proposition 7.1] F* and F" are quasi-isometric,
then there is a constant @ > 0 such that distz.(f"(x), f"(y)) < Qdist(f"(z), f"(y)), and
from (3.4.1) it follows that

distza(f™(z), f"(y)) < Qe™adist(H(x), H(y)) + 2QK.
Considering 7 as an arc of B/ () and C := diam H(B/" (x)), we obtain that

1 . 1 1 1 1 2K
“logl (B (%)) < —1 Zlog(Ce™4 +2K) = —1 Zlog(C 4+ =) + N4,
—log en(f"(B; (%)) - ogQ+n og(Ce™4 +2K) - ogQ+n og( +ew)+ A
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Therefore, X,(f) = X,(f) = \%. Now, by Theorem 3.4.1 we have that
A4 < hu(f) < Xu(f) + max{\],0} + max{\3,0} < A% + max{\{, 0} + max{\5, 0}.

Then, max{\{, 0} + max{\3,0} > 0. Analogously, as h,(f~") = h,(f) and F* is quasi-
isometric, we have that max{—A\{, 0} + max{—\3,0} > 0, this concludes the proof. O

The proof above is inspired by ideas of [57]. We also obtain a class of examples
of partially hyperbolic diffeomorphisms where every ergodic maximal entropy measure is

hyperbolic.

Corollary 3.4.5. If f € PHY(T*)nDiff*(T*), then every ergodic maximal entropy measure
1s hyperbolic.

Proof. Since f e Diff(T*), by a classical Newhouse’s result [42] there is an ergodic
maximal entropy measure p for f . If kg := A% is the largest unstable Lyapunov exponent
of A, then ko < hop(A) < hiop(f) = hu(f), and for Theorem 3.4.4 i is a hyperbolic

measure. O

Remark 3.4.6. For find examples of diffeomorphisms satisfying the conditions of the

theorems presented in this chapter, see [28] and reference therein.
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Equilibrium states for diffeomorphisms isotopic to an

Anosov diffeomorphism

Let f : T — T be a DA partially hyperbolic diffeomorphism isotopic to a
linear Anosov automorphism A : T — T% and H a semiconjugacy between f and A. As
we mentioned before the new results presented in this chapter are joint work with Adriana

Sanchez and Régis Varao.

4.1 Known results

Our goal is to understand the disintegration of measures along the center
foliation of certain DA partially hyperbolic diffeomorphisms with two-dimensional center
bundle, and then to study equilibrium states for a particular class of potentials. Before

that, we present some results used in the proofs of the main theorems on this chapter.

4.1.1 Mixed DA examples

Let A:T% — T? (d > 4) be a linear Anosov map with dominated splitting
TTY = E5 @ B ® B4 @ E%* where dim E5 = dim E% = 1, and the contraction/expansion
rate satisfy A\ < Ay < 1 < Ay < Auu. For example, take any linear Anosov By on T2
(center bundle) and take a linear Anosov By on T¢2 such that it contracts and expands
less than Bj, then A = B; x Bj is a linear Anosov map with the properties required.
Notice that A is a strongly partially hyperbolic diffeomorphism when EY = E @ £, and

T has a normally hyperbolic foliation whose leaves are tori T? tangent to EY.

We will proceed as in the classical construction of derived from Anosov intro-
duced by Mané [38]. Let ¢ and p be two different fixed points of A. Let r > 0 be small
(to be determined later) and deform A inside B(q,r) and B(p,r), in the following way:

in B(q,r) we perform a pitchfork perturbation along E% and on B(p,r) we perform a
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pitchfork bifurcation along EY in such a way that the foliation by tori T? tangent to EY it

is preserved. In this way we obtain ¢ that falls into Proposition 4.1 from [13]

Let n,7 be as in shadowing theorem (see [13, Theorem 2.1]) and. We may

assume that ¢ satisfies the following properties:

e ¢ is a strongly partially hyperbolic diffeomorphism with a dominated splitting
TT? = E* @ E® ® E @ E* and each subbundle dominates the previous ones by
a factor a < 1 with dim E* = dim E“ = 1. These subbundles are C°-close to the

respective ones of A;

e deo(g,A) <r;

| DglE“ (@) _ 1

o if d(z,y) < 27, then . <a
| DglE<(y)]

, 1= 8,U;

e Dg

Ees(z) 1s uniformly contracting outside B(q, p) with rate Ag;

e Dg

Beu(z) is uniformly expanding outside B(p, p) with rate A,,.

The above conditions hold in a neighborhood of g (the last two, the rate
expansion/contraction, will be close to Ay and A, respectively). By construction, g is
dynamically coherent and E° = E“ @ E is uniquely integrable, and the same holds in a
neighborhood of g. Moreover, this example is also robustly transitive by similar arguments
as in [31], E%, E® are integrable and the stable and unstable manifolds of this periodic

torus are dense.

Every small C' perturbation of ¢ is called mixed derived from Anosov. We
will denote by W*(x) the arc in the leaf F**(x) of size 2y with z in the middle. We define
W<*(x) analogously. Lemma 5.1 from [13] asserts that for any point 2 € T one and only

one of the following holds:

e H'(x) consist of a single point.

o H!(x) is a segment tangent to E* of length less than 2.
e H'(x) is a segment tangent to E“ of length less than 2.
e H!(x) is a square tangent to £ = £ @ E“ such that

— for each y € H™'(x), we have that W*(y) n H'(x) is a center stable segment
denoted by J*(y), and similarly for E; and

— if y and z are in H *(z), then & # J*(y) n J*(2) e H '(x).

The following proposition asserts that mixed derived from Anosov diffeomor-

phisms do not have entropy along the fibers.



Chapter 4. Equilibrium states for diffeomorphisms isotopic to an Anosov diffeomorphism 40

We(y)

Wecu ( Z)

Figure 2 — [13, Figure 2].

Proposition 4.1.1. h(g, H *(x)) = 0 for all x € T

Proof. See [13, Corollary 5.2]. O

4.1.2 DA with simple center bundle

The following definition was introduced in [14, Definition 1.4]:

Definition 4.1.2. Let f : M — M be a partially hyperbolic diffeomorphism over a compact

boundaryless Riemannian manifold. We say that its center bundle E° is stmple if

1. E=FE'®---@E" withdim E* = 1, for everyi=1,...,1.

2. For every I < {1,...,1} the bundle @Ez integrates to an f-invariant foliation F'

i€l
sense: [ < I = F' subfoliates ]:I/.
We say that E¢ is strongly simple it is simple and furthermore
3. For every i, the lifts of F* := F{& Flle b} o the universal covering of M have

global product structure inside each leaf of the lift of F°.

Recall that [z] := H™!(x), for all z € T?. In a recent work, Carrasco, Lizana,
Pujals and Vésquez [14] proved that for certain DA partially hyperbolic diffeomorphisms
of T¢ with center bundle E° strongly simple, the following properties hold for every z e T¢:

e [z] is contained in a unique center leaf of F*.
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o if 2,2’ € [r] and 2’ € F'(2) for some 1 <i < ¢, then
[Z’Z/]i - [:L‘],
where [z, 2']; is the closed interval inside F*(z) with end points 2 and 2';

e the class [z] is a rectangle in a single leaf of F°.
o h(f,[x]) = 0.

The rectangles mentioned above are compact sets obtained in the following
inductive procedure. Let z, ..., 2z, with 1 < k < ¢ for some 0 < | < d, be points in [z]
such that z; € F'(2). We construct the rectangle (of dimension k and corner zy) by
starting with Ry = [20, 21}, © F(20) (see Figure 3). Taking iy # i; we can define R, as
the trace inside F¢(zq) of the set obtained by sliding R; along [2o, 22]s, = F*2(20), that is,

Ro= | [wyw)l,

we[20,22] i,

where [w, y(w)];, is the image of [z, 21];, by the F*2-holonomy. Continuing this way, we

can define Ry as

R.= |J R"'(w),

we[20,2% )iy
where R*!(w) is a rectangle of dimension k — 1 and corners 2y, ..., z;_; obtained as the

image of R;_; in the corresponding center manifold by the F**-holonomy sending z, in w.

z2

yiw)

‘FEJ_ Z1

Figure 3 — Construction of a rectangle (I = 2) [5].

Theorem 4.1.3 (Carrasco-Lizana-Pujals-Vésquez [14]). Let f : T* — T% be a DA partially
hyperbolic diffeomorphism. Assume further that the lifts of foliations F°*, F* to R? have
GPS, and likewise F, F°. If E¢ is strongly simple, then, hioy(f) = hiop(A).

Proof. See [14, Theorem A]. O
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4.2 Proof of Theorem D

Consider the set where H fails to be injective
C:={rxeT?:#H 'H(z) > 1}. (4.2.1)
Lemma 4.2.1. C is an f-invariant set and H 'H(C) = C.
Proof. Notice that C' = U P(z) where P(z) := H 'H(z). For every y € C there

#P(z)>1
exists x # y such that H(z) = H(y), by semiconjugacy we have

H(f(x)) = A(H(x)) = A(H(y)) = H(f(y))
and f(y) € P(f(x)). Then f(y) € C, because #P(f(z)) > 1 for x # y. Hence f(C) = C.

For the other property, suppose H *H(C) & C. There exists y € H 'H(C)
such that y ¢ C with H(y) = H(x) forz € C. As H(f(y)) = H(f(x)) and f(y) ¢ C we have
that y = 2. This is a contradiction, and consequently it proves that H *H(C) = C. [

Remark 4.2.2. We claim that C' is a measurable set. One may check that by observing
that simply reproducing ipsis litteris the proof of [46, Lemma 3.2] only changing T* by
T and R* by R? one obtains that H(C) is a measurable set. Hence C = H'H(C) is a
measurable set. Moreover, for every ue M.(f), p(C) =0 or u(C) = 1.

Let f: T? — T be a DA partially hyperbolic diffeomorphism satisfying the

following conditions:

A.1 f is dynamically coherent;

A.2 There exists a splitting F¢ = E' @ E? where each E' is a line-bundle and integrates

to an f-invariant foliation F* (non-compact), for i = 1,2;
A3 If 2,2 € H'(z) and 2’ € F'(2) for some 1 <i < 2, then
[2,2]i = H™ (),
where [z, 2']; is the closed interval inside F*(z) with end points z and 2’;

A4 For each x € T%, H'(z) is a finite union of rectangles contained in a unique center

leaf of F*;
A5 h(f,H ' (x)) = 0 for every x € T%.

Remark 4.2.3. Every mized derived from Anosov g : T — T¢ satisfies the assumptions
A1, A2, A3, Ad and A.5. In particular, the center foliation F¢ admits two invariant
one-dimensional sub-foliations F, F* such that H *(z) n Fi(z) and H *(z) n F&(z)

are seqgments in the center foliation. Also, every derived from Anosov f : T* — T* with

strongly simple center bundle satisfies the Assumptions A.1, A.2, A3, A4 and A.5.
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Theorem 4.2.4 (Theorem D). Let f : T* — T* be a DA partially hyperbolic diffeomor-
phism satisfying A.1, A.2, A.3 and A.4. Assume that f preserves the orientation for F,
1 =1,2. Let u be an ergodic probability for f:

1. If w(C) =0, then (f, ) is almost conjugate to an Anosov diffeomorphism.

2. If u(C) =1, then C defines a partition such that j has atomic disintegration with a

finite number of atoms.

Proof. Tf 1(C) = 0, then H is a conjugacy p-a.e. From now on we assume p(C) = 1 and let
us prove that the partition determined by C' has atomic disintegration. That is, consider
the partition:

P :={P(x):=H 'H(z): v e C}.

Let us prove that P is a measurable partition with respect to any measure
considered. Let {A;};,en be a countable basis for the topology of T*. Now for any point

r € T* we have sets B; = B;(z) € {4;, A} such that {z} = ﬂBZ-. Since {H '(4;)} is a
ieN
measurable set (because A; is an open set and H is continuous) notice that

H Y (2) = [V H(B)).

1€EN
Thus proving that P is a measurable partition. Moreover, it is easy to see that P is left

invariant by f, that is, f(P(z)) = P(f(x)).

Assume, without loss of generality, that F' is oriented and f preserves its
orientation. We define another partition Q as the one whose elements are the connected

components of the intersection of elements of P and F' (see Figure 4). That is

Q:={Q(z) = F'(x) nP(x) : x € C}.

Recall that, by assumption A.4, H~'(z) is a finite union of rectangles in F¢, so

we can write for each x € C

Plz) = @Rj(@, (4.2.2)

where n, represents the number of rectangles in the class and R;(x) denotes a rectangle of
dimension 1 < k; = k;(z) < 2 with corners zg, 21, 2o. Moreover, assumption A.3 guarantees
that @(x) has only one connected component, an interval or a point. Therefore, the
foliation of each element of P by F' is similar to a foliation by compact leaves. Thus,
we can consider Q as a measurable partition. Indeed, any foliation with compact leaves
can be considered as a measurable partition, see [7, Proposition 3.7]. Let us denote the
conditional measures on Q by .. It is easy to see that the partition Q is f-invariant and,

therefore, fipt, = fif(z). Consider m: C' — C:=C /Q the canonical projection that assigns
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) F(z)
’:/49;@:)
— —

Z1

(B) R; is a rectangle of dimension 1 contained in a F2leaf

- Fl(2)
z9 \
Fi ) >Ql (2)
Y,
z0 J:Q z1

(¢) Rj is a rectangle of dimension 2

Figure 4 — Partition [5].
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to each point x € C the element Q(x) of the partition that contains it. Denote the quotient

measure as [l = Ty

Lemma 4.2.5. The measure p has atomic disintegration with respect to the partition Q.

Proof. We want to show that the conditional measure y, is a countable linear combination
of Dirac masses for fi-almost every Q(z) € Q. We will prove this by contradiction, assume
there exists a set A = Q with positive ji-measure such that for every Q(x) € A the measure
4 is not atomic. Moreover, by the invariance of the disintegration, A can be assumed to

be invariant and, by the ergodicity, of full measure.

Let Q = Q(zo) € A n supp(22) and let B be a foliated (by F') box around Q.

That is, some image of a topological embedding
¢:D*x D' — T,

where D" is the closed unit disk in R* and, such that every plaque P, = ¢({x} x D')
is contained in a leaf of F'. Let us identify B with the product D* x D' through the
corresponding homeomorphism. Let V be an open neighborhood of () small enough so it
is contained in B. Moreover, since H~!(%) is uniformly bounded we can assume that B

contains P () for every x € D3
Consider the following map
v:D*x[0,1] — B
(z,8) = (2,0.(t))
where (x,0,(t)) is defined as the highest point in the local leaf Q(x) < B such that
pa ([, 02 () ]1) = 2.

Notice that v is an invertible map when restricted to its image. Moreover, since
we are assuming a non-atomic disintegration, ¢! is a continuous map restricted to the
second coordinate and a measurable map when restricted to the first coordinate. Maps
of these type are known as Caratheodory functions and these are measurable maps (]2,
Lemma 4.51]).

Consider the set HY := v (D3 X [O,t]), which is measurable since ! is
Caratheodory. Thus, the set H; = U f"(H?) forms an invariant measurable set. Let

neZ

B be the set given by
B:={Q(x): z € B}.
Remember that B is a foliated box around @ = Q(zy) then, @ € B. Moreover, since

Q € supp(fi), B has positive -measure.

Notice that by the definition of ¢) we have that if 0 <t < 1

p(H,) = f a0 Q)R (Q(2)) > fé o (HO Q) (Q(2)) > fg o ([, 0,0 dR(Q(2)).
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and J pio ([, 0, ()]1)df(Q(z)) = A(B)t > 0, thus pu(H,) > 0. On the other hand, define
B
Gy = (HY)® and the f-invariant set G, = U fM(GY). In a similar way as before we have

w(Gy) = p(B)(1—t) > 0.

Therefore, by the ergodicity, both sets should have full measure. Although, this would
imply that their intersection also should have full measure but we claim this is not the

case. In fact, if it were true, for ji-almost every Q(z)

pe(He 0 Gy 0 Q(x)) = 1.

But if w belongs to H; n Gy n Q(x), without loss of generality, we may assume that for

some n e N, we f"(HY) n GY. Hence, since f preserves orientation, it is easy to see that

t < ([0, w]1) = (f")spteo (f" ([0, w]1)) < Hfn(w) ([Of"(w%fn(w)]l) <t

This is an absurd, which implies that the disintegration of u is atomic for fi-almost every

point. 0

We have proved that p has atomic disintegration with respect the partition Q.
We now want to see that there is a finite number of atoms on the disintegration considered.

In order to do that we first need to prove the measurability of certain sets.

Consider B a foliated (by F') box, as before, and identify B with the product

D? x D' through the corresponding homeomorphism.

Fix 6 > 0, and consider the set
Hy = {w e B p({x}) = o).

Let us see that this is a measurable set. To do so, consider a countable basis V of the
topology of T*. From Rokhlin’s theorem 2.4.4 we know that the map z — p,(V) is
measurable (up to measure zero) for any measurable set V. Therefore, by Lusin’s theorem,
given any ¢ > 0 there exists a compact set K. < D?® such that fi(K.) > 1 — ¢ and
x — (V) is continuous on K, for every V' € V. In particular, x — g, is continuous with

respect to the weak*-topology for any z in K..

Let € > 0 be fixed. For each x € C, let A(x) be the set of atoms of pu,. It is
clear that the set
Ts(x) := {a € A(x) : pa({a}) = 6}, (4.2.3)

is finite, and hence compact. Furthermore, the definition of K. ensures that the function

x +— T's(z) is upper semi-continuous on x € K.. Therefore,

T'(e,6) := {(x,a) : z € K. and a € T's(z)},
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is a closed set. Then, U ['(1/n,0) is a (measurable) full measure subset of Hs. Thus, Hy is
a measurable set (up to measure zero).

Consider {By : k € N} a countable cover of T* by foliated boxes. Proceeding as
before, we obtain the measurable sets HY of atoms of measure bigger or equal to d in each
foliated box Bj. Therefore,

= | JHy = {zeC: pa({z}) = 6}

is also measurable.

Lemma 4.2.6. ji-almost every Q(x) contains only one atom.

Proof. Let z € M and ¢ > 0. Consider the set H as before and notice that

< pa({2}) < fapa({F(2)}) = pp@) ({f(2)})-

Therefore, H; is invariant and, by ergodicity, it has measure zero or one. We know that,
pw(H{) =0 and p(HY) = 1. Let &y be the discontinuity point of the function § — p(Hjy ),
for § € [0,1]. Hence u(H, ) = 1, that means the weight of the atoms are all equal to do.

Therefore there are n = 1/dy atoms on each element of the partition Q.

Let us see that the disintegration of © on Q has one atom per local leaf. Assume
by contradiction that n = 2, as the case of finite atoms is similar. Let a(z) and b(x) be
7

the two atoms of u,. Without loss of generality, let us assume that a(x) < b(z), where “<
is the fixed order in F'. Consider

A:={a(z):xeC}and B := {b(z) : z € C},

the sets of first and second atoms respectively. Since f preserves the orientation in F!, it

is easy to see that A and B are invariant sets.

Let @ = Q(xg) € supp i and let V be an open neighborhood of Q. Consider
the disjoint sets

= | J {#} x Bla(z)) and B(b) :== | ] {a} x B(b(x)),

Q(z)eV Q(z)eV

where B(a(z)) and B(b(z)) are two disjoint closed balls in Q(x) around a(z) and b(z)
respectively. Notice that, following the proof of the measurability of H; by substituting
the set T5(z) in (4.2.3) by B(a(z)), we can prove that B(a) and B(b) are both measurable
sets. By the definition of B(a) and B(b), their saturation by Q coincide, that is, 7(B(a)) =
7w(B(b)). Therefore, B(a) and B(b) have positive p-measure.

Let us define the f-invariant sets

= J " (B(a)) and H(b) := | ] (B

neZ neZ
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We claim that p(H(a) n H(b)) = 0. In fact, if it is not true we have that
0 < u(H(@ A HO) = [ w(H@ 0 HE) o Q)dn

Therefore, there must exist AcCof positive fi-measure such that for every Q(z) € A,
wo(H(a) n H(b) n Q(z)) > 0. Hence, a(x) or b(x) must belong to the intersection of
H(a) n H(b). Without loss of generality, let us assume there exists n € Z such that
a(z) € f*(B(b)) n B(a). Therefore, we have that f~"(a(x)) = b(y) for some Q(y) € V.

However, this contradicts the invariance of A, and our claim follows.

Now, by ergodicity of u, the sets H(a) and H(b) should have full measure and
have zero measure intersection. Absurd, therefore we have only one atom on Q(x) which

proves our claim. O

Let us denote the atom found in Lemma 4.2.6 by a(z), that is,

Mg = 5a(m). (4.2.4)

We now want to see that the disintegration of u on P has only one atom in each connected
component of every element of the partition. Consider C:=C /Q. Define f C—C by
F(2) := f(z), which satisfies 7o f = f o .

Notice that by (4.2.2) we can identify 7§(?) with n, connected components in
the F? foliation. This implies that the space C has now a one dimensional foliation coming
from this quotient. Consider the partition O given by O := {@ :x € C}, where R(x) is
the rectangle in P(x) containing z. Moreover, notice that ]?(;) can be identified with the
interval [co(z), ¢1()]2, where co(x) and c;(z) are the corners of R(z) in the same F*-leaf.
Consequently, proceeding as before, the conditional measures 7}, defined by the partition

e~

Q have at most one atom in each R(z) that we denote by a(z). Thus,
Nz = Oa(a)- (4.2.5)
Combining this with (4.2.4) we have that a;(x) € 7' (a(x)) n R;(z) is the only
one atom per rectangle R;(x). O

Corollary 4.2.7. Under the assumptions of Theorem 4.2.4. Let us assume that v := H,p
has full support and the semiconjugacy H sends center leaves of f to center leaves of A. If

one of the following conditions is satisfied:

1. The center direction of A is expanding or contractive.

2. H(F") is some invariant foliation of A, for each i = 1,2.

Then, p is virtually hyperbolic with one only atom per center leaf (see 2.4.7).
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Proof. We are left with the task of proving that if H sends center leaves of f to center

leaves of A and if one of the conditions 1 or 2 are satisfied, then p is virtually hyperbolic.

First, let us assume 1 is valid. Moreover, we assume that the center direction of
A is expanding, otherwise we work with f~!. By the proof of Theorem 4.2.4, there are at
most countably many elements in P with positive measure, we get a full measurable subset
M < T* which intersects each center leaf in at most countably many points. Furthermore,
we claim that there are finitely many atoms of u per (global) center leaf. In fact, this was
proved in [22, Proposition 3.2]. Although they assume one dimensional center foliation,

under our assumptions their proof could be applied. Let us recall the main steps.

Assume by contradiction that every full measurable subset of M intersects
any typical center leaves in infinitely many points. Define v = H,pu which is an invariant
measure by the linear hyperbolic automorphism. Let R; be the Markov partition for A
(see [39, Chapter IV]), and consider the partition Q := {Fp(z) : x € R; for some i}, where
F5(x) denotes the connected component of F¢(x) n R; containing x. The partition Q
is measurable and we denote v, the disintegration of v along the elements of Q. The
assumption of full support of v guarantees it gives zero mass to the boundary of the

Markov partition.

As H(M) intersects typical leaves in a countable number of points, v, must
be atomic. Moreover, there exists a natural number oy € N such that v, contains exactly
ap atoms for v-almost every z (see [22, Lemma 3.3]). Hence, given a fixed L € R, there
exists N € N such that the number of atoms in any typical center plaque of diameter L is
at most V. We are assuming that H (M) intrinsically intersects center leaves in infinitely
many points (or non-uniformly finite). Taking D < F¢(z) with more than N atoms. By
backward contraction along central leaves by A, there exists n > 0 such that the diameter
of A7™(D) is less than L. As v is invariant and the disintegration is essentially unique, we
get a center plaque with diameter less than L containing more than N atoms, which is

absurd and establishes our claim.

We have proved that the number of atoms is finite and constant by ergodicity
on almost every center leaf. The task is now to conclude that, since f preserves orientation,
the number of atoms is one. In order to do this first consider the set of atoms in each F'-leaf.
Proceeding as in the proof of Lemma 4.2.6, we can prove that there must be only one
atom per F'-leaf. Now consider the space €' := C/ ~, where x ~ y iff y € F'(y). The way
we should see C' is as turning the center foliation (which is a plane) into a one-dimensional
segment. Let us denote this new foliation as Q. Notice that the disintegration of x in the

partition given by Q is exactly the quotient measure 7°.

Since F! has an orientation, we may define a transversal orientation by the
following way: a vector v € T, F,.(x) points in the positive direction if for any positive

vector w € T, F, .(z) we have w,(v,w) > 0, where w, is the restriction of the volume form
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Left extremal ...~ ©
atom '

J”r:l
Figure 5 — Global atom in a center leaf [5].

to Fp.(z).

loc

Now consider the extremal atoms per central leaf. By left extremal atom we
consider the atom whose projection by the map m : C — C' is the left extreme one
(see Figure 5). Since f preserves the orientation in F', then f preserves the transversal
orientation. Once again, proceeding as the proof of Lemma 4.2.6 we conclude that there is

only one atom per global center leaf. Therefore, p is virtually hyperbolic.

On the other hand, if 2 is valid then H(F') must coincides with E% or EY.
Without loss of generality, let us assume H (F*) coincides with EY%. By the proof of Theorem
4.2.4, the set M intersects each F' leaf in at most countably many points. Proceeding as

before, using the F' foliation instead the center one, then i is virtually hyperbolic. [

4.3 Proof of Theorem E

Let f: T? — T be a DA partially hyperbolic diffeomorphism satisfying A.5.

Remark 4.3.1. Toke p any f-invariant measure and let v = Hyp. It is well-known that
hu(f) = hu(A). From Ledrappier-Walters variational principle 2.1.9 and assumption A.5

we have that

Bl f) = hu(A). (4.3.)

Let ¢ € C°(T% R) be a Holder potential for A and consider the potential
¢ :=¢oHeC'(TR) for f.

T¢ L
J{H J{H p:=¢oH

Td_A,Td_? R
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Proposition 4.3.2. Under the above assumptions, the following properties hold:

1. If v is an equilibrium state for (A, @), then every u € M(f) such that Hyp = v is

an equilibrium state for (f, v);

2. If pe M.(f) and p(C) = 0, then u is the unique equilibrium state.

Proof. Let v be an equilibrium state for (A, ¢). By the Riezs theorem and the compactness
of the set of Borel probability measures on T¢, we can guarantee the existence of an
f-invariant measure p such that v = H,p (see for example [11, Lemma 4.3] for a similar

construction). Moreover, by (4.3.1) we have that
sup {1n(1) + [y ne MU | = sup { ey (4) + [t ne )},
< sup {h,;(A) + f¢dﬁ De M(A)} ,
< hy(A) + ngdu.
Therefore, any f-invariant measure p satisfying that v = H,u is an equilibrium state for
(f.o =¢oH).
For proving the second statement, we will argue as in [22, Theorem A]. Let p
be an ergodic equilibrium state such that x(C) = 0 and v be the unique equilibrium state
of (A, ¢). Assume that there exists 7 another equilibrium state for (f, ¢ o H), and by the

uniqueness of v we have that H.pu = H,n. Let ¢ : T — R be any continuous map. Since

H'H(C) = C follows that (C) = 0. Therefore,

deuzf wdu:f ¢oH‘1oHdu:f on_ldH*,uszdn.
Td—C Td—C Td_C
Since 1) is arbitrary, this implies that u = 7. O

Theorem 4.3.3 (Theorem E). Let f : T* — T* be a DA partially hyperbolic diffeomor-
phism satisfying A.1, A.2, A3, A4 and A.5. Assume that [ preserves the orientation of
Fi', i =1,2. Let ¢ be a continuous potential such that (A, $) has a unique equilibrium
state with full support and define the potential ¢ = ¢ o H. For every u ergodic equilibrium
state of f with respect to ¢:

1. If p(C) = 0, then u is the unique equilibrium state;

2. If u(C) =1, then C defines a partition such that p has atomic disintegration with a
finite number of atoms. Moreover, if the semiconjugacy H sends center leaves of f

to center leaves of A and one of the following conditions is satisfied

a) The center direction of A is expanding or contractive.
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b) H(F') is some invariant foliation of A, for eachi = 1,2.

Then, p is virtually hyperbolic and it is not a unique equilibrium state .

Proof. Case 1: u(C') = 0. It follows directly from statement 2 of Proposition 4.3.2.

Case 2: p(C) = 1. Consider the partition:
P = {P(x):= H 'H(z) : v e C},

and denote by p, the conditional measure of p supported on P(x). We proceed as in the

proof of Theorem 4.2.4. Hence, we have that
My = ij(x>5aj(z)7
j=1

for some a;(x) € R;(z). Moreover, if conditions 1 and 2 are satisfied, then p is virtually

hyperbolic. The only thing left to prove is the existence of another equilibrium state.

Lemma 4.3.4. If H sends center leaves of f to center leaves of A and 2b is satisfied,

then the set of extremal points of intervals Q(x) = P(x) n F'(x) forms a measurable set.

Proof. Let us denote F the foliation of the center direction of A induced by the image of
F! by the semiconjugacy H. We will prove the measurability of the lower extremal points

of Q(z). The case of higher extremal points is similar.

Consider ¢ : T* — T* the flow on T* having constant speed one in F. More
precisely, we know that the leaves of F' in the center foliation of A are straight lines and
orientable by assumption. Define ((, z) the unique point in the 7} (x) which has distance

t inside this F}-leaf and in the positive direction from z.

Following the proof of [45, Lemma 3.2, we have that H(C') is a measurable
set. Therefore, p(—1/n, H(C')) is a measurable set. Furthermore, since H is continuous,
the set H ' (p(—1/n, H(C))) is also measurable.

Consider C' = C'/Q where Q := {Q(x) := P(z) n F'(2) : # € C}. Let
n: C = H (o(=1/n, H(C))),
be the function given by the Measurable Choice Theorem [45, Theorem 2.11] applied to

the product ¢' x T* and the measurable set G = H™" (¢(—1/n, H(C))).

Notice that fixing Q(x) € C' we have that ¢, (Q(x)) is an increasing sequence.

Therefore, we can define the function

A

¢:C — T4
Q(z) — lim 6,(Q(x)),
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and by its construction ¢(Q(z)) is the lower extreme of (). Notice that ¢ is a measurable
function since it is the limit of measurable functions. Let m be the canonical projection
and let i = m,u the measure in the quotient space. By Lusin’s theorem for any n € N
there exists a compact set K,, © (' such that (K¢) < 1/n and ¢ is a continuous function
when restricted to K,,. Therefore, qb(f(n) is a compact set. Without loss of generality we
may consider C = U K,. Therefore,

neN
$(C) = | o(Kn),
neN
is a measurable set. Thus, we have proven so far that the base of the intervals from Q

forms a measurable set. O

We have seen that the center foliation is measure theoretically equivalent to
the partition of T? into points, hence measurable. Let us denote (]\Z/ , ft) the quotient space
M:=T* /F¢ equipped with the quotient measure. We denote by f : M — M the induced

map on the quotient space. Therefore, since p if f-invariant then i is f—invariant.

Notice that, by the virtual hyperbolicity proved above, every element & € M
can be identified by the unique Q,(z) < F(x) where its atom belongs to. When Q,(z) is
a collapse interval inside a F'-leaf, we define Q(2) := Q,(z). On the other hand, if Q,(z)
is a point, this means that the rectangle I; containing the atom is one dimensional and

contained in an F*-leaf. In this case, we define Q(%) := R; (see Figure 4).

Now, we will argue as in the final part of [22, Section 3]. Thus, we can write

n= féa(i)dﬂ7

where a(Z) is the atom inside the collapse interval Q(z). Choose b(%) # a(&) the left (or
right) extreme point of Q(%). Let us define

n=f&@@,

which is well-defined because {b(%) : 2 € M} is measurable by Lemma 4.3.4. We claim that
this is an f-invariant ergodic measure satisfying H,n = H,p. In order to see this, consider

any continuous map ¢ and notice that
[weran= [ [ v rdsidn - [ otronan~ [wed@nds
= [wte@)dn = [ van
where the third equality comes from the invariance of collapse intervals and that f

preserves the orientation of the F'-foliations with i = 1, 2. The fourth equality is due to

the f-invariance of iL.
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To see the ergodicity of n, consider any invariant subset D with positive -

measure. Since i is ergodic and f(b(#)) = b(f(Z)), we have that the set {Z : Xp(b(2)) = 1}

is f-invariant. So the ergodicity of /i guarantees it has full measure, which implies (D) = 1.

Notice that, if ¢ = ¢ o H, since H(a(Z)) = H(b(Z)) then

| in = [ etviandn = [ etatendn - [ o

However, by the essential uniqueness of disintegration, we have that 1 # p. It remains
to prove that h,(f) = h,(f). But this is a direct consequence of the fact that (f, 1) and
(f,n) are measure theoretically isomorphic by the map that sends a(%) to b(&). Thus, 7 is

also an equilibrium state form (f, ¢). O

Remark 4.3.5. We remark that the results of Theorem 4.2.4 and Theorem 4.3.3 are
valid for DA partially hyperbolic diffeomorphisms f : T — T% with k-dimensional center
bundle (1 < k < d), provided that they satisfy the assumptions A.1, A.4,A.5 and analogous
assumptions to A.2, A.3. The proof for the higher dimensional case follows in a similar

way as in the two-dimensional case.
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Final Considerations

. Let f € PHY(T?) be as in the setting of Chapter 3. Is f transitive? Is there a unique

maximal entropy measure when f € PHY(T?) is transitive?

. In the setting of Theorem B, is it possible to obtain that there is exactly one maximal

entropy measure?

. An interesting problem is to produce an example of a transitive partially hyperbolic
diffeomorphism (e.g. derived from Anosov) with more than one maximal entropy
measure. Maybe, trying to take two periodic orbits and putting a horseshoe on them

whose entropy exceeds the entropy of the system, it seems that it should be possible.

. There is a lack of examples of partially hyperbolic diffeomorphisms with two-
dimensional center bundle, where the maximal entropy measure (or even, some
measure with large entropy), has one zero center Lyapunov exponent and the other
is different from zero. In the literature there are two known examples, here we give a

brief presentation:

a) Take an example in T* homotopic to Anosov x Id so that it is not extension by
rotations but is accessible, where the main result from [50] guarantees that the
maximal entropy measures have non-zero Lyapunov exponents, and multiply

by identity on unitary circle S*.

b) Take the example of Herman’s cocycle over an irrational rotation in T2, where
the action in the fibers is the linear cocycle which is explained in the Avila-
Bochi Trieste notes (http://www.mat.uc.cl/~jairo.bochi/docs/trieste.

pdf), and multiply by an Anosov diffeomorphism of T?.

Are there examples more interesting than these two?


http://www.mat.uc.cl/~jairo.bochi/docs/trieste.pdf
http://www.mat.uc.cl/~jairo.bochi/docs/trieste.pdf
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