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Resumo

No contexto de oscilações de neutrinos e física de neutrinos, visamos estudar implicações
fenomenológicas em experimentos de neutrinos produzidos em aceleradores e detectados
a curta distância, de modo que a razão da distância percorrida pela energia do neutrino
fique em torno de 1 km/GeV (ou 1 m/MeV). Especificamente, escolhemos dois tópicos
de trabalho: neutrinos em Grandes Dimensões Extras (LED) e decaimento de neutrinos
pesados. Analisamos os efeitos do modelo LED no futuro experimento Short-Baseline
Neutrino Program. Mostramos que o experimento tem sensitividade competitiva à ma-
nifestação de dimensões extra e tem potencial de discriminar sinais da hipótese de LED
daqueles do modelo 3+1. Em se tratando de decaimento de neutrinos, mostramos que o
modelo escolhido acomoda razoavelmente os resultados da chamada Anomalia do Short-
baseline, conduzida pelos experimentos LSND e MiniBooNE, e evade vínculos fortes da
busca pelo sinal de desaparecimento de neutrinos muônicos em experimentos com neutri-
nos de aceleradores detectados a curta distância.

Palavras-chave: grandes dimensões extras, decaimento de neutrinos, oscilação de neu-
trinos



Abstract

In the context of neutrino oscillations and neutrino physics, we aimed to study phe-
nomenological implications in short-baseline neutrino experiments. Specifically, we chose
two work subjects: neutrinos in Large Extra Dimensions (LED) and heavy neutrino de-
cay. We analyzed the effects of the LED model in the future Short-Baseline Neutrino
Program experiment. We showed that the experiment has a competitive sensitivity to
LED manifestation and can discriminate LED hypothesis from the 3+1 oscillation model.
Regarding the studies with neutrino decay, we showed that the chosen model reasonably
accommodates the short-baseline anomaly, led by LSND and MiniBooNE results, and
evades strong constraints from muon neutrino disappearance searches in short-baseline.

Key-words: large extra dimensions, neutrino decay, neutrino oscillations
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Chapter 1

Introduction to Neutrinos

Neutrinos are neutral elementary particles produced via weak interactions by the unstable
particle and radioactive element decays. They belong to the lepton class, fermions that
do not interact via strong force and - as far as we know - there are three different neutrino
types, or “flavors”, each one associated with a charged lepton as shown in Table (1.1) [1].

Neutrino was first postulated in 1930 by Wolfgang Pauli to address an explanation to
the beta decay energy spectrum [2]. In a letter to the Physical Institute of the Federal
Institute of Technology, Zurich [3], Pauli proposed that a neutral, very light, and spin-half
particle was carrying away the missing energy and angular momentum of the particles in
the nuclear reaction. Incorporating Pauli’s neutrino hypothesis, Enrico Fermi formulated
in 1934 the mathematical theory of weak interactions, in which a neutron converts into a
proton and simultaneously creates an electron and an antineutrino.

Neutrino Charged Lepton
νe Electron (e)
νµ Muon (µ)
ντ Tau (τ)

Table 1.1: Neutrino flavors associated to their charged-lepton partners.

Besides successfully predicted the correct shape of the energy spectrum of the emitted
electrons in beta decay, Fermi’s theory of the weak force also suggested a reaction by
which a free neutrino would interact with matter producing detectable products: the
inverse beta decay process. However, due to the interaction’s weak character, neutrino’s
first experimental detection occurred twenty-five years later its postulation. In 1956,
Reines and Cowan reported in Ref. [4] the preliminary observation of neutrino inverse
beta decay reactions in a liquid scintillator detector. “For the detection of the neutrino”,
Reines won the Nobel prize in 1995.

In 1962, Leon M. Lederman, Melvin Schwartz, and Jack Steinberger reported the
existence of a second neutrino type with the first detection of the muon neutrino (νµ) [5].
When the tau lepton (τ) was discovered in 1975 [6] in the Stanford Linear Accelerator
(SLAC), it was expected that there would be a third type of neutrino associated with tau.
The first evidence of tau neutrino came from observations of the initial and final particles’
energy and momentum differences in the tau decay - similar to the beta one. The tau
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neutrino detection was announced in the summer of 2000 by the DONUT collaboration
at Fermi National Accelerator Laboratory (Fermilab) [7].

The idea of neutrino masses and oscillations was suggested by Bruno Pontecorvo in
1957 [8] using as an analogy the neutral kaons system. In 1967, he generalized the oscilla-
tion formalism employing the hypothesis of Z. Maki, M. Nakagawa, and S. Sakata [9] that
the states of flavors νe and νµ (the ντ had not yet been discovered) were mixtures of two
states of neutrino masses. Neutrino oscillation is essential because it directly implies non-
zero neutrino masses and lepton number violation, both phenomena not contemplated by
the Standard Model of particle physics.

In 1985, Stanislav Mikheyev and Alexei Y. Smirnov expanded the Lincoln Wolfenstein
work from 1978 [10] by remarking that flavor oscillation could be modified when neutrinos
propagate through matter [11]. This effect, called MSW, is important to study neutrinos
that cross the earth layers (for example, in MINOS [12], Super-Kamiokande [13] and
DUNE [14] experiments) and electron neutrinos that are produced and oscillate inside
the dense sun interior to reach the earth eventually. The deficit of electron neutrinos
coming from the sun was reported by many experiments [15, 16, 17] until being addressed
as the neutrino oscillation phenomenon by the Sudbury Neutrino Observatory (SNO)
experiment [18, 19] in 2002. In 2015, Arthur McDonald, the director of SNO, won the
Nobel Prize “for the discovery of neutrino oscillations, which shows that neutrinos have
mass”.

In 1994, LSND (Liquid Scintillator Neutrino Detector) Collaboration reported the
evidence of anomalous neutrino oscillation in short-baseline regime [20]. Only in 1998, the
Super-Kamiokande experiment detected neutrino oscillations for the first time with great
statistical significance [13], making use of atmospheric neutrino data. T. Kajita, scientific
leader of Super-Kamiokande, shared the Nobel Prize with McDonald in 2015. Reactor
neutrino experiments as Double Chooz [21], Daya Bay [22] and RENO [23], together
with Super-Kamiokande, completed the three neutrino oscillation framework by showing
that all oscillation channels are possible: νe, νµ, ντ → νe, νµ, ντ . All the information
brought by the mentioned experiments showed, for the first time, experimental evidence
that the Standard Model of elementary particles [24, 25, 26] could not predict: neutrino
oscillations.

1.1 Neutrinos in the Standard Model

Although the Standard Model does not contemplate the neutrino oscillations, some of the
neutrino properties are well described by this gauge theory. Figure 1.1 shows the particles
that compose the Standard Model, along with their masses1, electric charges and spins.
The fermions of the Standard Model are subdivided into quarks and leptons. They are
allocated in three generations or families, where particles in the same row share identical
properties, except for the masses. The gauge bosons intermediate the strong (gluon),

1It is important to mention that quark mass measurements are related with hadron properties, once
quarks do not exist as free particles. Neutrino masses limits are given by charged lepton decays and
cosmology.
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Figure 1.1: The elementary particles of the Standard Model. The fermions in the same
position of each generation share the same properties, except the masses. Observe the
mass values grown hierarchically with the generation. Gauge bosons mediate the fun-
damental forces (except the gravity), and the Higgs boson is related to the elementary
particle masses. Particle masses, electric charge, and spin were taken from Ref. [27].
Figure based on Ref. [28].

weak (Z0 and W±), and electromagnetic (photon) interactions, while the Higgs boson is
responsible for the Yukawa couplings that give mass to the particles.

Neutrinos are found in the lepton category in the Standard Model. As they are neutral
particles, they can only interact via weak forces. The component of the Electroweak
Lagrangian that concerns neutrinos is:

Lν =
∑

α=e,µ,τ

iναL/∂ναL−
gW√

2

∑
α=e,µ,τ

ναLγ
µlαLWµ + H.c.− gW

2 cos θw

∑
α=e,µ,τ

ναLγ
µναLZµ (1.1)

where ν̄ ≡ ν†γ0, gW is the coupling constant of the weak interaction and θw is the Weinberg
angle. The first term of the Lagrangian in the Eq. 1.1 describes the kinetic terms of the
neutrino fields; the second one denotes the charged-current interaction of the neutrino να,
its charged-lepton partner lα, and the boson W . The third term is the neutral-current
interaction among neutrinos and the Z boson.

The weak interactions are the key point to describe neutrino production, like beta
decay (n→ p+ + e−+ ν̄e), and neutrino interaction, like the inverse beta decay (ν̄e + p→
n+ e+), for example. Also, the terms in Eq. 1.1 lead the neutrino coherent charged- and
neutral-current scattering processes as illustrated in Figure 1.2. These interactions are
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Figure 1.2: Feynman diagrams describing the coherent charged-current (mediated by
W−) and neutral (mediated by Z0) current neutrino scattering and the coherent charged-
current antineutrino scattering. N represents the nucleons.

fundamental in the description of the neutrino propagation in the matter.
In the Standard Model, the fermion mass terms are build through Yukawa couplings

of the left- and right-handed fermion fields with a scalar doublet via Higgs mechanism [29,
30, 31]. Strictly, neutrinos do not have mass in the Standard Model once its right-handed
component νR is not included. If we want to build neutrino mass terms in a similar
way, assuming neutrino are Dirac particles, we can introduce the νR field and write the
neutrino Yukawa coupling with the neutral scalar boson through the Lagrangian

Lνmass = −
∑

α,β=e,µ,τ

ναLM
αβνβR + H.c. (1.2)

where Mαβ are the neutrino mass matrix elements in the flavor basis. In the case of the
charged-leptons, we assumed the mass matrix is already diagonal and can be written as
diag{me,mµ,mτ}, respectively, with the electron, muon, and tau masses. For neutrinos,
we rewrite the flavor states on a basis where M matrix is diagonal. In this way, we
introduce two unitary matrices UL and UR such as

ναL(R) =
3∑
i=1

Uαi
L(R)νiL(R), (1.3)

where U †LMUR = diag{m1,m2,m3} and mi (i = 1, 2, 3) are the neutrino masses. If we
plug the term in Eq. 1.3 in the second term of the Eq. 1.1, we obtain the following

LCC = −gW√
2

∑
α=e,µ,τ

(
3∑
i=1

U∗αiLνiLγ
µlαLWµ + UαiLlαLγ

µνiLW
†
µ

)
. (1.4)
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The Eq. 1.4 says that in the charged-current processes, superposition of the neutrino
mass eigenstates is produced with the charged-lepton. We will see how these states evolve
with the neutrino propagation in the Sec. 1.2. Notice that neutral-current processes are
not sensitive to neutrino mixing. Just a reminder that the Standard Model does not
contemplate the neutrino mass term in the Lagrangian in Eq. 1.2.

Since neutrinos are neutral, they can also be Majorana particles. In this case, the
neutrino mass terms are given through the Langrangian

LMaj
mass = −mM

2
(νcLνL + νLν

c
L), (1.5)

where νc ≡ Cγ0Tν∗, C being the operator of charge conjugation and mM the Majorana
mass. Majorana neutrinos follow the condition ν = νc, which implies that chiral fields
obey the relation νR = νcL. To generate the Majorana mass terms in Eq. 1.5, it is necessary
to introduce new couplings that are not contemplated by the Standard Model, like the
SU(2) doublets with at least one scalar triplet.

1.2 Neutrino Oscillations

Flavor neutrinos are produced via weak interaction processes as a superposition of the
mass eigenstates, each one with a specific mass eigenvalue2. Because of the tiny mass
differences, the mass eigenstates will propagate coherently, leading to flavor oscillations.
In this way, an electron neutrino can transmute in a muon neutrino, for example, after
traveling a certain distance. Each mass state’s contribution in the neutrino’s flavor com-
position is proportional to the element of a unitary matrix U , which connects both mass
and flavor states. In this Section, we will revise the standard oscillation scenario with
three - massive and flavored - neutrinos and the efforts of some neutrino experiments in
measuring the oscillation parameters.

1.2.1 The Three Neutrino Oscillation Scenario

We will proceed with the derivation of the standard theory of neutrino oscillations [32,
33, 34]. The unitary matrix U is introduced in the charged-current interactions of the
lepton doublets and associates flavor neutrinos with massive neutrinos states. The three
neutrino oscillation scenario involves the mixing among the three SM flavor neutrinos
with three mass eigenstates as

|να〉 =
3∑
i=1

U∗αi|νi〉 (α = e, µ, τ ; UU † = 1) (1.6)

or

|νi〉 =
∑

α=e,µ,τ

Uαi|να〉, (i = 1, 2, 3) (1.7)

2This superposition of mass states is due to the energy and momentum uncertainties of the particles
that participate in the neutrino production process.



21

where να are the neutrinos flavor eigenstates and νi are the neutrino mass eigenstates.
Both flavor and mass eigenstates establish an orthogonal basis. If we consider the an-
tineutrinos, we need to change U → U∗ in both Eq. 1.6 and Eq. 1.7. The matrix U ,
also called PMNS (Pontecorvo-Maki-Nakagawa-Sakata) matrix in this scenario, can be
parameterized as [35]

U =

 Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 (1.8)

=

 1 0 0

0 c23 s23

0 −s23 c23

 c13 0 s13e
−iδ

0 1 0

−s13e
−iδ 0 c13

 c12 s12 0

−s12 c12 0

0 0 1

 eiα1/2 0 0

0 eiα2/2 0

0 0 1


=

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 eiα1/2 0 0

0 eiα2/2 0

0 0 1

 ,

where cij = cos θij and sij = sin θij, and θij is the mixing angle between the mass eigen-
states i and j (i, j = 1, 2, 3 and i 6= j). The phase factor δ measures the violation of
the charge-parity (CP) symmetry, i.e. the difference between the particle and antiparticle
behaviors in production and propagation. If neutrinos are Majorana particles, the phases
α1 and α2 contribute in CP violation, although here they represent a global phase and do
not interfere in the oscillation phenomenon.

The mass neutrino states |νi〉, in vacuum, are eigenstates of the Hamiltonian

H|νi〉 = Ei|νi〉 (1.9)

with the energy eigenvalues given by

Ei =
√
|~pi|2 +m2

i (1.10)

where ~pi is the three-component momenta and mi is the mass of the neutrino state |νi〉.
The evolution of the mass states in time is described by Schrodinger’s Equation

H|νi(t)〉 = i
d

dt
|νi(t)〉, (1.11)

which the solution are plane waves

|νi(t)〉 = e−iEit|νi〉, (1.12)

and we consider |νi〉 = |νi(t = 0)〉. Applying the relations in Eq. 1.7 on the mass states in
the right side of Eq. 1.12 and making use of the Eq. 1.6, the time evolution of the neutrino
flavor state |να(t)〉 is given by

|να(t)〉 =
∑
i

U∗αi e
−iEit

∑
β=e,µ,τ

Uβi|νβ〉. (1.13)
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The expression in Eq. 1.13 says that the time evolution of a neutrino flavor state, which
is pure |νβ〉 in t = 0, is a superposition of different flavor states at time t > 0. In this
way, to compute the transition probability of a neutrino νβ being detected as a specific
neutrino να, after travelling a time t > 0, we evaluate

Pνβ→να(t) = |〈να(t)|νβ〉|2 =
∑
ij

Uαi U
∗
βi U

∗
αj Uβj e

−i(Ej−Ei)t. (1.14)

For ultrarelativistic neutrinos, we can approximate the energy eigenvalues in Eq. 1.10
as

Ei ' E +
m2
i

2E
(1.15)

and

Ej − Ei '
m2
j −m2

i

2E
. (1.16)

where E = |~p|. The approximation in Eq. 1.16 says that all the mass eigenstates are
produced and travel with the same energy E. Also, in the ultrarelativistic limit, we can
approximate t = L. We do not have access to the time when the neutrinos are produced,
but the distance they propagate from the neutrino source to the detector. Therefore, the
time-dependent oscillation probability in Eq. 1.14 finally becomes

Pνβ→να(E,L) = |〈να(L)|νβ〉|2 =
∑
ij

Uαi U
∗
βi U

∗
αj Uβj e

−i
m2
j−m

2
i

2E
L. (1.17)

We can expand the Eq. 1.17 in a more explicit form as follows:

Pνβ→να(E,L) =
∑
ij

Uαi U
∗
βi U

∗
αj Uβj e

−i
m2
j−m

2
i

2E
L

=
∑
ij

Uαi U
∗
βi U

∗
αj Uβj

(
e−i

m2
j−m

2
i

2E
L + 1− 1

)
=
∑
ij

Uαi U
∗
βi U

∗
αj Uβj

(
e−i

m2
j−m

2
i

2E
L − 1

)
+
∑
ij

Uαi U
∗
βi U

∗
αj Uβj

=

(∑
i<j

+
∑
i>j

)
Uαi U

∗
βi U

∗
αj Uβj

(
e−i

m2
j−m

2
i

2E
L − 1

)
+
∑
i

Uαi U
∗
βi

∑
j

U∗αj Uβj

=
∑
i>j

Uαi U
∗
βi U

∗
αj Uβj

(
e−i

m2
j−m

2
i

2E
L − 1

)
+
∑
i>j

U∗αi Uβi Uαj U
∗
βj

(
ei
m2
j−m

2
i

2E
L − 1

)
+ δαβδαβ
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=
∑
i>j

(
Uαi U

∗
βi U

∗
αj Uβj + U∗αi Uβi Uαj U

∗
βj

) [
cos

(
m2
j −m2

i

2E
L

)
− 1

]

−
∑
i>j

(
Uαi U

∗
βi U

∗
αj Uβj − U∗αi Uβi Uαj U∗βj

) [
i sin

(
m2
j −m2

i

2E
L

)]
+ δαβ

= δαβ − 4
∑
i>j

Re
(
Uαi U

∗
βi U

∗
αj Uβj

)
sin2

(
m2
j −m2

i

4E
L

)
(1.18)

+ 2
∑
i>j

Im
(
Uαi U

∗
βi U

∗
αj Uβj

)
sin

(
m2
j −m2

i

2E
L

)

The oscillation phase in Eq. 1.18 can be expressed as (reinserting c e ~3)

(m2
j −m2

i ) c
4 L

4 ~cE
=

1

4 ~ c
×

∆m2
ji c

4

eV2

L

m
MeV
E
× 1eV2 1 m

1 MeV

=
1

4 (197.327) MeV fm
× 10−12 MeV2 1015 fm

1 MeV
×

∆m2
ij c

4

eV2

L

m
MeV
E

' 1.27×
∆m2

ij c
4

eV2

L

m
MeV
E

(1.19)

where ~ c = 197.327 MeV fm and (m2
j − m2

i ) ≡ ∆m2
ji. When the oscillation phase in

Eq. 1.19 is equal π, the terms dependent of sines in Eq. 1.18 vanish and the probability
is 1. We have in this situation, the first oscillation peak where the neutrino is again in its
initial flavor να. Hence, we can define the oscillation length Losc as

Losc =
π E

1.27 ∆m2
ji

. (1.20)

Many neutrino experiments with different designs were set to measure the parameters
of the three neutrino oscillation scenario. They made use of the oscillation length and
other features in the oscillation probability to reach the best sensitivities to some of these
parameters. We will point some of the neutrino experiment aspects to observe the aimed
oscillation parameters.

Three Neutrino Oscillation Parameter Measurements

The current values of the oscillation parameters considering the three neutrino scenario
are compiled in the Particle Data Group (PDG) latest review [27]. We will divide them
by sectors and briefly comment about each one as follows:

1) ∆m2
21 and sin2 θ12: The values of these parameters are obtained substantially with ex-

3All the expressions we have employed in this thesis are in natural units (c = ~ =1). We applied c e ~
in Eq. 1.19 to justify the units of energy E, baseline L and the mass-squared differences m2

j −m2
i in the

oscillation phase.
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periments that detect solar neutrino and the KamLAND (Kamioka Liquid Scintillator
Antineutrino Detector) experiment, which records reactor neutrinos. In the sun, elec-
tron neutrinos are mainly produced via proton-proton collisions and travel through dense
solar environment until they reach earth detectors. These experiments, which include
Super-Kamiokande [36, 37, 38], SNO [39], Borexino [40, 41, 42], search for electron neu-
trino disappearance (Pνe→νe) due to electron neutrino oscillation to muon or tau neutrinos.
KamLAND experiment detects electron antineutrinos from nuclear reactions, mainly Ura-
nium and Plutonium fission chains, occurring in the power reactor units surrounding the
detector. Kamland searches for electron antineutrino disappearance (Pν̄e→ν̄e). The current
values of ∆m2

21 and sin2 θ12 are

sin2 θ12 = 0.307+0.013
−0.012 Ref.[43] ∆m2

21 = 7.53± 0.18× 10−5 eV2 Ref.[44].

For illustrative purposes, let’s consider the averaged baseline of KamLAND L ≈ 180

km and the energy window with range E = [1, 8] MeV. Figure 1.3 shows the probability
of electron antineutrino disappearance (Pν̄e→ν̄e) in function of KamLAND energy and
baseline. The other oscillation parameters were obtained from Nu-FIT 5.0 in Ref. [45].
Observe that for this configuration, the mass-squared difference ∆m2

31 (magenta curve)
leads to fast oscillations, which cannot be solved by the detector resolution and is averaged-
out (sin2(∆m2

31L/4E)→ 0.5). Only the oscillation ruled by ∆m2
21 (black curve) appears

to be relevant to KamLAND energy and baseline.

Figure 1.3: Pν̄e→ν̄e in function of KamLAND energy and averaged baseline. In the magenta
curve, all the oscillation parameters contribute, while in the black curve the mass-squared
difference ∆m2

31 was averaged-out. The oscillation parameters were obtained from Nu-FIT
5.0 in Ref. [45].

In addition, the oscillation probability of the electron neutrino disappearance when
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we average-out the fast oscillations driven by ∆m2
31 is approximately

P avrg−out
ν̄e→ν̄e ' 1− cos4 θ13 sin2 2θ12 sin2

(
1.27

∆m2
21L

E

)
− 1

2
sin2 2θ13, (1.21)

which means that the survival probability also depends on θ13 parameter. This angle, on
the other hand, is better constrained by other experiments as we can see in the following.

2) sin2 θ13: The value of the θ13 comes mainly from the reactor neutrino experiments
with baseline L ' 1 km and energies of units of MeV. These experiments also search
for electron antineutrino disappearance (Pν̄e→ν̄e), but the energy and baseline are now
relevant for oscillations driven by ∆m2

31 and the combination |∆m2
32| ≡ |∆m2

31 −∆m2
21|,

both dependent of sin2 2θ13. The data from the Daya-Bay [46], Double-Chooz [47] and
RENO [48] experiments constraints θ13 value in the form

sin2 θ13 = 2.18± 0.07× 10−2 (PDG average). (1.22)

3) sin2 θ23,∆m
2
32 and δ: Currently, this sector attracts more attention from the point of

view of the three neutrino oscillation phenomenology, once their measurements can give
us hints about open questions inside neutrino physics: among them, the correct neutrino
mass ordering and CP-violation in the leptonic sector.

There are two options for the neutrino mass ordering: normal and inverted as we can
see in Figure 1.4. The mass-squared difference ∆m2

21 > 0 is a positive number due to
solar neutrino results. If ∆m2

32 > 0, we have the normal mass ordering which means that:
m3 > m2 > m1. If ∆m2

32 < 0, we have the inverted mass ordering and m2 > m1 > m3.
Each neutrino mass ordering is associated with theories that provide neutrino masses.
Determining the correct one is an important contribution in the studies of the elementary
interactions. From the point of view of neutrino oscillations, the neutrino mass ordering
can be obtained by measuring the true sign of ∆m2

32.
The CP-violation phase δ determines the different behaviors between neutrino and

antineutrino probabilities. If δ = 0 or δ = π, then Pνα→νβ = Pν̄α→ν̄β . In this way, a good
way to establish the CP-violation parameter is comparing the performance of the neutrino
and antineutrino oscillations.

Accelerator and atmospheric neutrino experiments made meaningful progress in deter-
mining the neutrino mass ordering and the CP-violation phase δ. Atmospheric neutrino
experiments like IceCube [50] and Super-Kamiokande [51] detected neutrinos produced
from cosmic ray interactions in the earth’s atmosphere. The baseline for atmospheric neu-
trinos varies from dozens to thousands of kilometers if we consider the neutrinos produced
on the other side of the earth, that cross its inner layers and reach up-going the detector.
Typical energies of atmospheric neutrinos cover hundreds of MeV to dozens of GeV.

The accelerator neutrino experiments, like NOνA [52], T2K [53] and MINOS [54, 55],
detect neutrinos produced in particle accelerator complexes. Usually, protons are accel-
erated and impinge in a target, producing unstable particles that decay into neutrinos.
These neutrinos have energies from dozens of MeV to units of GeV. The required baseline
to study the parameters of this sector is from hundreds to thousands of kilometers.
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Figure 1.4: Two options for the neutrino mass ordering. Normal: ∆m2
32 > 0 and Inverted:

∆m2
32 < 0. Observe that the contributions of νµ and ντ neutrinos in ν1 and ν2 depend on

the value of the δ. Figure taken from Ref. [49] with modifications.

The oscillation probability channels that atmospheric and accelerator experiments
mainly search are:

P(−)
νµ→

(−)
νµ

P(−)
νµ→

(−)
νe

P(−)
νe→

(−)
νµ

For the mentioned energy and baseline configurations, the experiments cannot solve the
oscillation phase leading by ∆m2

21, which means that (1.27∆m2
21L/E) < 1. In this way,

the oscillation probability for the channels above are, approximately

P(−)
νµ→

(−)
νµ
' 1− 4 cos2 θ13 sin2 θ23(1− cos2 θ23 sin2 θ13) sin2

(
1.27∆m2

32L

E

)
(1.23)

P (−)
νµ↔

(−)
νe
' sin2 2θ13 sin2 θ23 sin2

(
1.27∆m2

32L

E

)
∓
(

1.27∆m2
21L

E

)
cos θ13 sin2 2θ12 sin2 2θ23 sin2 2θ13 sin δ sin2

(
1.27∆m2

32L

E

)
(1.24)

where in the Eq. 1.24, we expand P(−)
νµ↔

(−)
νe

in the first order of (1.27∆m2
21L/E). Also, the

∓ sign that goes along with the CP-violation term δ in Eq. 1.24 indicates the difference
between neutrino and antineutrino probabilities: the sign is negative for neutrinos and
positive for antineutrinos. Thus, the capability of studying neutrino and antineutrino
probabilities enable to these experiments, mainly the accelerator ones, the measurement
of the CP-violation phase δ.
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We also can see that the probabilities in Eq. 1.23 and Eq. 1.24 are dependent of sin2 θ23

for atmospheric and accelerator experiments. However, once they cannot solve ∆m2
21, the

change of the sign of ∆m2
32 on the oscillation phases does not modify the probabilities

in the Eq. 1.23 and Eq. 1.24. So, how to determine the neutrino mass ordering? Via
modifications in the oscillation probabilities due to matter effects.

Neutrinos that travel through the sun, the earth’s crust or the entire planet experience
matter effects. Matter effects are given by the presence of electrons, neutrons, and protons
as the components of matter. Due to charged and neutral current interactions of the
neutrinos and antineutrinos with electrons and nucleons (see Sec. 1.1), we need to add
terms that define the potential of these interactions in the neutrino Hamiltonian from
Eq. 1.11. The energy eigenvalues, as well as the neutrino mass eigenstates, change because
of the new Hamiltonian diagonalization. In this way, the new oscillation amplitude and
phase have dependency with the matter potential and this dependency is sensitive to the
mass ordering. For example, the leading order term in Eq. 1.24 becomes, in the presence
of matter effects and constant density,

P(−)
νµ↔

(−)
νe
' sin2 2θM

13 sin2 θ23 sin2

(
1.27∆m2

32,ML

E

)
, (1.25)

where

sin2 2θM
13 =

sin2 2θ13

sin2 2θ13 + (A− cos 2θ13)2
, (1.26)

∆m2
32,M = ∆m2

32

√
sin2 2θ13 + (A− cos 2θ13)2, (1.27)

and

A = ±
√

2GFNeE

∆m2
32

, (1.28)

where GF is the Fermi’s constant and Ne is the electron density. The +(−) sign in Eq. 1.28
is for neutrinos (antineutrinos). Notice now that a change of the ∆m2

32 sign in Eq. 1.26
and Eq. 1.27 will modify the oscillation probability and this effect can be solved by the
mentioned atmospheric and accelerator neutrino experiments.

The current values of the sin2 θ23, ∆m2
23 and δ are given by IceCube [50], Super-

Kamiokande [51], NOνA [52], T2K [53] and MINOS [54, 55] analysis:

sin2 θ23 = 0.545± 0.021 for normal ordering

= 0.547± 0.021 for inverted ordering

∆m2
32 = 2.453± 0.034× 10−3 eV2 for normal ordering

= −2.546+0.034
−0.040 × 10−3 eV2 for inverted ordering

δ = 1.36± 0.17 π.

The future accelerator and atmospheric neutrino experiments DUNE [56] and Hyper-
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Kamiokande [57] come to improve the measurements on this sector. With their high
statistics, it is expected from both to give a final answer about the still opened questions
inside the three neutrino scenario parameters. Also,

In the end, we summarize in Table 1.2 the characteristic baseline L and neutrino energy
E for the mentioned experiments with different neutrino sources. Also, the mass-squared
differences in which the experimental configuration has the most sensitive are also shown.

Experiment L (m) E (MeV) ∆m2 eV2

Atmospheric 104 − 107 102 − 105 10−1 − 10−4

Reactor 102 − 103 or 104 − 105 1 10−2 − 10−3 or 10−4 − 10−5

Accelerator 105 − 106 103 − 104 10−2 − 10−3

Table 1.2: Values of L and E for neutrino experiments with different sources and the
ranges of the ∆m2 eV2 which they can be most sensitive to oscillations in vacuum. Table
taken from Ref. [58].

1.3 The Short-Baseline Anomalies

As we could see in the previous Subsection 1.2.1, the neutrino experiments can be designed
in terms of the neutrino source and the baseline to observe oscillation parameters leaded
by a specific oscillation frequency, that depends on ∆m2. Essentially, the two independent
mass-squared differences, ∆m2

21 ' 7.5× 10−5 eV2 and |∆m2
32| ' 2.5× 10−3 eV2, from the

three neutrino scenario develop oscillations when the phase is

1.27
(∆m2

ij/eV2)(L/m)

(E/MeV)
∼ O(1). (1.29)

In this context, experiments that operate in the L/E ' 1 m/MeV (or km/GeV) regime
should not expect signals of flavor transitions due to three neutrino oscillation mechanisms.
These neutrino experiments are so-called short-baseline experiments and were designed
to search for oscillations driven by a mass-squared splitting of ∆m2 ' 1 eV2 or larger.
Hence, the short-baseline experimental results that cannot be accommodated in the three
neutrino scenario define the short-baseline anomalies. Some of them are in the following:

1. the positive signal or excess of electron (anti)neutrino candidates in the LSND [20]
and MiniBooNE [59, 60, 61] experiments. Both experiments that collect neutrinos
produced in accelerators reported signals of electron neutrino appearance above the
expected background. We will come back to these results in Chapter 3;

2. the deficit of detected electron neutrinos in Gallium-based experiments, like GALLEX
[62, 63, 64] and SAGE [65, 66, 67, 68]. These neutrino experiment have Gallium in
their target composition. Nuclear sources that emit electron neutrinos with well-
defined decay branching ratios were used to calibrated SAGE and GALLEX detec-
tors. When electron neutrinos interact with Gallium, Germanium is produced and
is measurable. Nevertheless, the observed Germanium rate production is around
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15% lower if compared with the expectation rate. This deficit is so-called Gallium
anomaly [69, 70].

3. the deficit of detected electron antineutrinos in short-baseline reactor experiments,
like ILL [71], Gösgen [72], Krasnoyarsk [73, 74, 75], Rovno [76, 77], Bugey-3/-
4 [78, 79], SRP [80], NEOS [81] and DANSS [82]. The expected flux of electron
antineutrinos is computed in the studies of the Uranium and Plutonium decay chains
inside the nuclear reactors. The observed number of electron antineutrino events in
these reactors if compared with the predictions is in average 6% lower. This deficit
is so-called Reactor anomalies [83].

In the context of neutrino oscillations, a way to address these unexpected results is to add
an extra neutrino mass state along with an extra neutrino non-flavored state that could
participate in oscillations, but without weak interactions, i.e. a sterile neutrino4. We will
introduce this new model, named 3+1, in the next Subsection.

1.3.1 Adding an Extra Neutrino in the Mixing: the 3+1 Model

Following the same procedure as done in Subsection 1.2.1, in the 3+1 model, we add a
fourth neutrino νs that does not interact via weak forces, but participate in the neutrino
mixing. Also, we add a fourth neutrino mass state ν4 so that

|νγ〉 =
4∑

m=1

U ′ ∗γm|νm〉 (γ = e, µ, τ, s; U ′U ′ † = 1) (1.30)

or

|νm〉 =
∑

γ=e,µ,τ,s

U ′γm|νγ〉, (m = 1, 2, 3, 4) (1.31)

and the unitary mixing matrix U ′5 will be parameterized with six mixing angles ωmn,
(m,n = 1, 2, 3, 4 and m 6= n) and three Dirac CP-violation phases εi (i = 1, 2, 3)6. One
choice to explicitly write U ′ is shown in Eq. 1.32.

4The mandatory sterile characteristic of the extra neutrinos in the neutrino mixing comes from exper-
imental bounds due to Z boson decay width in the LEP Collider at CERN. The number of neutrinos that
participate in the weak interaction was constrained to three [84, 27]. Hence, the three Standard Model
neutrinos are so-called “active neutrinos”

5We will use the U ′ to denote the 4× 4 unitary matrix to distinguish it of the three neutrino scenario
UPMNS one. In the next Chapters, we will write the matrix U ′ as U .

6For Majorana neutrinos, we will also have three Majorana phases in the mixing, but once they do
not participate in the oscillations, we will not explicit them here.



30

U ′ =


U ′e1 U ′e2 U ′e3 U ′e4
U ′µ1 U ′µ2 U ′µ3 U ′µ4

U ′τ1 U ′τ2 U ′τ3 U ′τ4

U ′s1 U ′s2 U ′s3 U ′s4

 (1.32)

=


1 0 0 0

0 1 0 0

0 0 cosω34 sinω34

0 0 − sinω34 cosω34




1 0 0 0

0 cosω24 0 sinω24

0 0 1 0

0 − sinω24 0 cosω24

×

×


cosω14 0 0 sinω14e

−iε3

0 1 0 0

0 0 1 0

− sinω14e
iε3 0 0 cosω14




1 0 0 0

0 cosω23 sinω23 0

0 − sinω23 cosω23 0

0 0 0 1

×

×


cosω13 0 sinω13e

−iε2 0

0 1 0 0

− sinω13e
iε2 0 cosω13 0

0 0 0 1




cosω12 sinω12e
−iε1 0 0

− sinω12e
iε1 cosω12 0 0

0 0 1 0

0 0 0 1


Equivalently the Eq. 1.18, the probability of a neutrino produced with energy E and

an initial flavor νρ be detected as a neutrino νγ after traveling a distance L is

Pνρ→νγ (E,L) = δγρ − 4
∑
m>n

Re
(
U ′γm U

′ ∗
ρm U

′ ∗
γn U

′
ρn

)
sin2

(
m2
n −m2

m

4E
L

)
(1.33)

+ 2
∑
m>n

Im
(
U ′γm U

′ ∗
ρm U

′ ∗
γn U

′
ρn

)
sin

(
m2
n −m2

m

2E
L

)
.

In the short-baseline configuration, as we discussed before, the oscillation frequencies
driven by ∆m2

21 and |∆m2
32| do not develop significant oscillations, i.e., 1.27(∆m2

21L/E) <

1 and (1.27|∆m2
32|L/E) < 1, and can be ignored. This is known as the short-baseline

approximation. In this regime, the oscillation probability in Eq. 1.33 is dramatically
reduced in

P SB
νρ→νρ(E,L) = 1− 4|U ′ρ4|2(1− |U ′ρ4|2) sin2

(
m2

4 −m2
1

4E
L

)
(ρ = γ) (1.34)

P SB
νρ→νγ (E,L) = 4|U ′ρ4|2|U ′γ4|2 sin2

(
m2

4 −m2
1

4E
L

)
(ρ 6= γ) (1.35)

where the new oscillation phase should be driven by ∆m2
41 ' 1 eV2 or larger. We will

go back to the Eq. 1.34 and Eq. 1.34 again in Chapter 2 and Chapter 3. The addition
of the new, larger oscillation frequency can induce flavor transition in both appearance
and disappearance channels in short-baseline experiments. In the 3+1 model, the short-
baseline anomalies described in Sec. 1.3 may be explained in terms of muon (anti)neutrino
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conversion to electron (anti)neutrino (P SB
(−)
νµ→

(−)
νe
) - explaining the excess of events observed

in LSND and MiniBooNE - and the electron (anti)neutrino disappearance (P SB
(−)
νe→

(−)
νe
) -

accounting for the Gallium and reactor anomalies. Taking a look at these oscillation
probabilities, we have

P SB
(−)
νµ→

(−)
νe

(E,L) = 4|U ′µ4|2|U ′e4|2 sin2
(
1.27∆m2

41L/E
)

(1.36)

P SB
(−)
νe→

(−)
νe

(E,L) = 1− 4|U ′e4|2(1− |U ′e4|2) sin2
(
1.27∆m2

41L/E
)

(1.37)

P SB
(−)
νµ→

(−)
νµ

(E,L) = 1− 4|U ′µ4|2(1− |U ′µ4|2) sin2
(
1.27∆m2

41L/E
)
. (1.38)

If we have νµ → νe appearance at short baselines, it implies both nonzero U ′µ4 and U ′e4
values to explain the flavor transition. In addition, U ′µ4 and U ′e4 also control electron a
muon neutrino disappearance. Hence, 3+1 model also expect to have muon and electron
neutrino disappearance at short-baseline. The reactor and Gallium anomalies can handle
electron neutrino disappearance [85], but what about muon neutrino disappearance?

Currently, there are no significant signals to muon neutrino disappearance in the short-
baseline regime. In particular, the data from MINOS/MINOS+ [86], IceCube [87] and the
Super-Kamiokande [88, 89] experiments put severe constraints in U ′µ4, provoking a a strong
tension between appearance and disappearance measurements in the 3+1 framework [90].

In this manner, we introduced the main topic of this Thesis: the neutrino phenomenol-
ogy in the short-baseline experiments. Motivated by the short-baseline anomalies, we will
explore two new physics scenario involving sterile neutrinos:

1. The manifestation of Large Extra Dimensions (LED) in the neutrino mixing that
leads new, infinite oscillation frequencies. We studied the capability of the future
Short-Baseline Neutrino Program experiment to discriminate the effects of the LED
model parameters in Chapter 2;

2. An alternative solution to the short-baseline anomalies is given by introducing the
neutrino decay phenomenon. We reevaluate the LSND and MiniBooNE data from
the point of view of the decay model as well as the constraints from muon neutrino
disappearance in short-baseline. In addition the sensitivity of the Short-Baseline
Neutrino Program was also estimated. This study is in Chapter 3.

Finally, we make our final conclusions in Chapter 4.
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Chapter 2

Large Extra Dimensions

Neutrino oscillations successfully explain the flavor transitions observed in neutrinos pro-
duced in natural sources like the sun’s center and the earth’s atmosphere and human-made
sources like reactors and accelerators. These oscillations are driven by two mass-squared
differences, ∆m2

21 and ∆m2
32, at the sub-eV scale. However, longstanding anomalies at

short-baselines might imply the existence of new oscillation frequencies at the eV-scale
(see Subsec. 1.3.1) and the possibility of this sterile state(s) to mix with the three active
neutrinos. One of the many future neutrino programs that are expected to provide a final
word on this issue is the Short-Baseline Neutrino (SBN) Program at Fermilab.

In this Chapter, we will describe the main results of our work involving a specific
model of Large Extra Dimensions (LED) and its phenomenological consequences in the
SBN Program [91]. Large Extra Dimensions arise as an elegant solution to the hierarchy
problem [92, 93] and later as a natural explanation of the smallness of neutrino masses if
compared to the other Standard Model (SM) fermions.

The hierarchy problem consists of the large discrepancy between aspects of the Elec-
troweak energy scale MEW ∼ 103 GeV and the Planck scale MPl ∼ 1019 GeV, where
gravitational force start being relevant. In other words, there is no consensus why gravity
is much weaker than Strong, Weak and Electromagnetic forces. The LED model assumes
only the existence of one energy scale MEW, where gravity would have the same intensity

Figure 2.1: Masses of the Standard Model fermions. There is a disparity from six to
twelve orders of magnitude between the neutrino and the other fermion masses. LED
model arises to address an explanation for the smallness of neutrino masses. Figure taken
from Ref. [94].



33

than the other forces, but it would be suppressed by the presence of extra dimensions.
Unlike other particles of the SM, the supposed graviton (mediator of gravitational force)
is not constrained in the usual four dimensions space but can freely propagate in these
extra dimensions, provoking a dilution of gravity strength.

In analogy to what happens with gravity, we can use the LED model to naturally
explain the smallness of neutrinos masses if compared to the other fermions in the
SM [95, 96, 97, 98] (Figure 2.1). As already mentioned about the LED model, we have
particles with SM gauge symmetries which are associated with a “charge” that needs to
be conserved in four dimensions. One example is the electric charge. Hence, these parti-
cles: charged leptons, active neutrinos, quarks, gauge bosons and Higgs are confined in a
four-dimensional “brane”, which is part of a (4 + d) - dimensional space, where d is the
number of the (closed, or compacted) extra dimensions. We will refer to the (4 + d) space
as “bulk”. Singlets under this symmetry group do not depend on charge conservation and,
therefore, can propagate freely through the bulk. They are: the graviton (weakness of
gravity) and, now, three bulk neutrinos without mass, each coupling to a flavor of the
active neutrinos (see Figure 2.2).

Moving to context of neutrinos, we will consider the LED model from Ref. [99] (which
is based on previous works in Refs. [96, 98, 100]). In summary, the Yukawa couplings
between the right-handed bulk neutrinos and the active ones are suppressed by the radius
of the extra dimension and neutrinos acquire a Dirac mass that is naturally small. We will

Figure 2.2: Standard Model particles confined in the 4-dimensional “brane” embed in a
(4 + d)-dimensional “bulk”, where gravitons and bulk neutrinos Ψα can freely propagate.
Here, d is the number of the extra dimensions.
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describe the formalism of this process in Sec. 2.1. The phenomenological consequence of
the extra dimension compactification is the manifestation of infinite neutrino mass states
that are connected with flavor states via neutrino mixing (see Sec. 1.2.1). Thus, Large
Extra Dimensions would interfere in neutrino oscillations and we can test its effects with
neutrino experiments. Previous works were done in this circumstances in the Refs. [101,
102, 103, 104, 105, 106, 107].

Our goal is to establish the sensitivity of the SBN program to neutrino oscillations in
the LED model. We started re-creating sensitivity analyses for sterile neutrinos in the
3+1 scenario (see Subsec. 1.3.1), previously done by the SBN collaboration, by simulating
neutrino events in the three SBN detectors for both muon neutrino disappearance and
electron neutrino appearance. Then, we implemented neutrino oscillations as predicted in
the LED model and also we have performed sensitivity analysis to the LED parameters.
Finally, we studied the SBN power of discriminating between the two models, the 3+1
and the LED. We have found that SBN is sensitive to the oscillations predicted in the
LED model and have the potential to constrain the LED parameter space better than any
other oscillation experiment for mD

1 < 0.1 eV. In case SBN observes a departure from the
three active neutrino framework (see Subsec. 1.2.1), it also has the power of discriminating
between sterile oscillations predicted in the 3+1 framework and the LED ones.

2.1 Formalism

In general, it is assumed the bulk neutrinos [99] can propagate in more than four di-
mensions while the active, left-handed neutrino νL and the SM Higgs H are confined to
the four-dimensional brane. It is also assumed an asymmetric space where one of the
extra dimensions is larger than the others so that effectively it is enough to consider
five dimensions in total [98, 96, 99]. We will follow the model with three bulk neutrinos
Ψα (α = e, µ, τ) couple via Yukawa interactions to the three active brane neutrinos, the
so-called (3, 3) model in Ref. [99]. The action in the (3, 3) model is given by:

S =

∫
d4x dyΨα(x, y)ΓA i∂AΨα(x, y)

+

∫
d4x dy λαβ Lα(x) Φ̃(x)ψβR(x, y) δ(y)

+

∫
d4x dy ναL(x)γµi∂µν

α
L(x) δ(y) + H.c. (2.1)

where y is the coordinate of the extra dimension, ΓA are the five-dimensional Dirac ma-
trices for A = 0, ..., 4, which Γ4 = iγ5 and ∂4 = ∂y. λαβ are the Yukawa couplings,
L̄α(x) = (ν̄αL(x) ᾱL(x)) are left-handed doublets and Φ̃(x) is the Higgs doublet. The
Dirac fermion Ψα in five dimensions is a four-component spinor which can be decomposed
in two component spinors (Weyl fermions), ψαL and ψαR, where

Ψα(x, y) = ψαL(x, y) + ψαR(x, y). (2.2)
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To avoid implications in Newton constant GN , which is the gravity coupling we do
observe, it is imposed that the extra spatial dimension should be closed or compactified.
In our case, we assume that the extra dimension is limited in a circle of radius RED.
In this way, the bulk fields (as well as the decomposed Weyl fields) have a periodicity
Ψα(x, y) = Ψα(x, y + 2πRED) and can be expanded in Fourier series:

Ψ(x, y) =
1√

2πRED

ψ0(x) +
1√
πRED

∞∑
n=1

[
ψn(x) cos

(
ny

RED

)
+ ψ̂n(x) sin

(
ny

RED

)]
(2.3)

The modes ψn(x) and ψ̂n(x) in Eq. 2.3 are called Kaluza-Klein (KK) modes. In order
to evaluate the effects of the bulk fields in four dimensions, we integrate the action in
Eq. 2.1 in the 5-th component dy. This process is called dimensional reduction and
brings important LED consequences, which can be summarized in the following:

1. First term of Eq. 2.1, the bulk kinetic term: decomposing the bulk field Ψα(x, y)

in Weyl components ψαL(x, y) and ψαR(x, y) (Eq. 2.2), expand them in Fourier series
of Eq. 2.3 and integrate in dy, we will obtain

∫
d4x

[
KK kinetic terms +

(
∞∑

n=1

n

RED

ψαn,L(x)ψαn,R(x) + H.c.

)]
, (2.4)

where we consider that the KK modes from even and odd fermionic fields from
Fourier expansion are not distinguishable: ψn(x) = ψ̂n(x). The second term of
Eq. 2.4 has the form of Dirac masses of the excited modes. So the first conse-
quence of LED manifestation is the creation of infinite neutrino mass states in our
4-dimensional world;

2. Second term of Eq. 2.1, the Yukawa interaction between bulk and active
neutrinos: notice that the active neutrinos from the left-handed doublet Lα(x)

only couples with right-handed Weyl component ψαR(x, y) of the bulk neutrinos.
Performing the dimensional reduction and considering the Higgs doublet in the
unitary gauge

Φ̃(x) =
1√
2

(
v +H(x)

0

)
(2.5)

where v is vacuum expected value (VEV), the second term of Eq. 2.1 becomes

∫
d4x

(v +H(x))√
2

λαβ√
2πRED

ναL(x)

(
ψβ0,R(x) +

√
2
∞∑
n=1

ψβn,R(x)

)
+ H.c. (2.6)

In this interaction, the Yukawa coupling λαβ has dimension of energy−1/2. To ensure
the dimensionless Yukawa coupling, we introduce the quantity hαβ = λαβ

√
MEW in
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function of the only mass scale MEW in the LED model. Finally, the Dirac mass
terms arising from the interaction between bulk and active neutrinos are:

∫
d4xmD

αβ ν
α
L(x)

(
ψβ0,R(x) +

√
2
∞∑
n=1

ψβn,R(x)

)
+ H.c. (2.7)

where the coupling mD
αβ = v√

2

hαβ√
2πREDMEW

are the Dirac neutrino masses (in flavor
basis). Notice another important result from LED model: both the mass terms from
Eq. 2.7 and Eq. 2.4 are suppressed by the radius of the extra dimension RED;

3. Third term of Eq. 2.1, the active neutrino kinetic term: as active neutrinos only
populate the brane, we obtain the usual kinetic term by performing the dimensional
reduction: ∫

d4x ναL(x)γµi∂µν
α
L(x) + H.c.. (2.8)

Therefore, the Lagrangian mass terms that result from Eq. 2.1 are given by:

Lmass =
∞∑
n=1

n

RED

ψαn,L ψ
α
n,R +mD

αβ ν
α
L

(
ψβ0,R +

√
2
∞∑
n=1

ψβn,R

)
+ H.c. (2.9)

Notice that the mass Langrangian in Eq. 2.9 is not diagonal, which means that we will
need to find the true neutrino mass states from LED model. We will proceed in two steps:
first, we consider a basis in which the Dirac mass is diagonal [99] U †mD r = diag{mD

i }
by defining the following transformations

ναL = UαiνiL (2.10)

ψαn,L = rαiψin,L, n = 1, ...,∞ (2.11)

ψαn,R = rαiψin,R, n = 0, 1, ...,∞ (2.12)

where U and r are unitary matrices and (i = 1, 2, 3). Notice that in Eq. 2.10 we have the
standard neutrino mixing among flavor and mass states, i.e., U ≡ UPMNS (see Sec. 1.2.1).
Hence, the Lagrangian in Eq. 2.9 becomes

Lmass =
∞∑
n=1

n

RED

ψin,L

[(
r†
)iα

rαj
]
ψjn,R

+ νiL

[(
U †
)iα

mD
αβ r

βj
](

ψj0,R +
√

2
∞∑
n=1

ψjn,R

)
+ H.c., (2.13)

in which we have
[(
r†
)iα

rαj
]

= δij and
[(
U †
)iα

mD
αβ r

βj
]

= mD
i δij. Second, we organize

the resulting states from Eq. 2.13 in the matricidal form ν ′iRM
iν ′iL (plus H.c.), where
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ν ′iR =
(
ψi0,R ψi1,R ψi2,R ...

)T
(2.14)

ν ′iL =
(
νiL ψi1,L ψi2,L ...

)T
(2.15)

M i =


mD
i

√
2mD

i

√
2mD

i

√
2mD

i . . .

0 1/RED 0 0 . . .

0 0 2/RED 0 . . .
...

...
...

... . . .

 . (2.16)

Obviously, the states we just defined ν ′inR, ν ′inL (n = 0, 1, ...,∞) are not the true neutrino
mass states in the LED model. However, this “pseudo” mass basis is directly related with
neutrino flavor basis, in which neutrino experiments can search for mechanisms of flavor
transition. If we rewrite Eq. 2.10 (with explicit sum)

ναL =
3∑
i=1

Uαiν ′i0L (2.17)

it is possible to express the flavor states in terms of the true, KK neutrinos masses. To
do this, we will define the following linear combination

ν ′ikL =
∞∑
n=0

SiknN i
nL (2.18)

where N i
nL are the KK neutrino mass eigenstates predicted by the LED model and Si is

an unitary matrix. We can find the true mass eigenvalues by diagonalizing M iM i† in the
form SiM iM i†Si†. Appealing for linear algebra, the characteristic equation obtained in
the determinant calculation det[M iM i† − (λi/RED)2] = 0 is [97]

λ
(n)
i − π

(
REDm

D
i

)2
cot
(
πλ

(n)
i

)
= 0 , (2.19)

where λ(n)
i /RED (n = 0, 1, ...∞) are the mass eigenvalues. The roots λ(n)

i from Eq. 2.19
are constrained such that they belong to the range [n, n + 1/2] [96]. We can obtain the
elements of Si matrix by calculating

∞∑
k′=1

∞∑
m′=1

∞∑
n′=1

(Si)kk′(M
i)k′m′(M

i†)m′n′(S
i†)n′n =

λ
(k)
i

RED

δkn (2.20)

and comparing each element of the left-side matrix to the eigenvalues in the diagonal of
the right-side matrix. We find the subsequent relations

(
Si0n
)2

=
2

1 + π2 (REDmD
i )

2
+
[
λ

(n)
i / (REDmD

i )
]2 (2.21)

Sikn =
k
√

2REDm
D
i

(λ
(n)
i )2 − k2

Si0n. (2.22)
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Effectively, the active neutrino flavor states can be finally written in terms of the mass
eigenstates (as composed of the KK n-modes of the fermion field), as follows:

ναL =
3∑
i=1

Uαiν ′i0L =
3∑
i=1

∞∑
n=0

Uαi Si0nN i
nL (2.23)

In order to make a physical sense of the formalism, one should assume that the most
active state is obtained for n = 0. Additionally, if we go to the limit REDm

D
i � 1 then

λ
(0)
i /RED → mD

i , and following Eq. (2.21) Si00 → 1, therefore recovering the standard
result in Eq. 2.10 where Uαi is the lepton mixing matrix that is usually parametrized
by three rotations, through the three mixing angles θij, and the Dirac CP phase δ (see
Sec. 1.2.1). The Figure 2.3 illustrates the behavior of the S1

0n in function of mD
1 with RED

fixed in 0.5 eV−1: for values of mD
1 RED � 1, the flavor transition effects depend mostly

of the usual active states. When mD
1 RED ≈ 1, the higher-order states affect the mixing

democratically.

Figure 2.3: The behavior of the S1
0n as a function of mD

1 , assuming RED = 0.5 eV−1.
Considering the terms of order n = 0 as the most active states, the higher orders of the
Kaluza-Klein modes will considerably affect the mixing when mD

1 RED ≈ 1.

Assuming the mostly active mass state is related to the lightest mass state in the
KK-tower, it implies a relation among the eigenvalues of this LED framework, obtained
by Eq. 2.19, with the mass-squared differences obtained in the three-neutrino case. This
relation can be written, considering the normal mass ordering, as:(

λ
(0)
k

)2

−
(
λ

(0)
1

)2

R2
ED

= ∆m2
k1 (2.24)

with ∆m2
k1 (k = 2, 3) the mass-squared differences. Therefore, the existing values on the
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mass-squared differences of the active neutrino mass eigenstates ∆m2
k1, Ref. [108, 109],

constrain the parameter space (mD
i , R

−1
ED) of the LED model. Thus, a good strategy is

to use this information before scanning the parameter space. Basically, λ(0)
1 is fixed by

the mD
1 in Eq. 2.19, and using Eq. 2.24 for k=2,3 we determine λ(0)

k and with this last
result mD

k is determined, from the use of Eq. 2.19, while compatible with Eq. 2.24 as
done in Ref. [103]. With these constraints, we have now only two independent parameters
mD

1 and RED that we will rename from now on as mD
1 → m0 for normal mass ordering.

Figure 2.4 illustrates the three most active neutrino masses λ(0)
i in function of Dirac

mass mD
1 , with RED = 0.5 eV−1. Notice that when mD

1 RED ≈ 1, the masses become
degenerated. Similarly, one can follow the same procedure for the inverted mass ordering,
and this case, the two independent parameters are mD

3 → m0 and RED. In the cases
where the condition in Eq. 2.24 is not fulfilled by the (m0, R

−1
ED) combination, we quoted

the excluded region as excluded by mass-squared differences constraints. We will come
back to this point in Section 2.2.

Figure 2.4: The three most active neutrino masses λ(0)
i in function of Dirac mass mD

1 ,
with RED = 0.5 eV−1 for the normal mass ordering. When mD

1 RED ≈ 1, the mass values
become degenerated.

In the LED framework the neutrino mixing matrix elements Uαi Si0n, as defined in
Eq. 2.23, is in general different to the standard three neutrino mixing matrix UPMNS.
To avoid spoiling the neutrino oscillations observations, condensed in part as constraints
on the mixing angles θij (i, j = 1, 2, 3) in scenario of three-neutrino scheme (with values
in Ref. [110, 108, 109]), the mixing angles in the LED framework have to be redefined.
Following the procedure from Ref. [106] we have defined new mixing angles φij (i, j =

1, 2, 3) in the LED scenario such that the lowest mass state in KK tower, n = 0, have the
Uαi Si00 amplitude equal to the numerical value of the standard PMNS matrix elements
(see Sec. 1.2.1). From this relation we can get the mixing angles in the LED framework,
φij, related with the mixing angles, θij. Explicitly, we have used the mixing matrix
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elements |UPMNS
e2 |, |UPMNS

e3 | and |UPMNS
µ3 | such that

sinφ13 =
sin θ13

(L00
3 )

cosφ13 sinφ12 =
cos θ13 sin θ12

(L00
2 )

cosφ13 sinφ23 =
cos θ13 sin θ23

(L00
3 )

. (2.25)

From now on, the mixing angles φij in the LED formalism are given by the values in
Eq. 2.25. For some values ofmD

i and RED the Si00 value can be smaller than the numerator
in Eq. 2.25 such that sinφij > 1 and thus unphysical. In this way, values of mD

i and RED

that result in this unphysical φij will be disregarded and we have quoted them as excluded
by mixing angle constraints. We will comeback to this point in Section 2.2.

In the presence of LED, the relations in Eq. 2.24 and Eq. 2.25 give the mass-squared
differences and the mixing angles in terms of the standard oscillation parameters. When
simulating neutrino event rates to perform the different studies along this Chapter, we used
the best-fit values for the oscillation parameters in the standard three-neutrino framework
presented in Nu-Fit 3.2 (2018) [108, 109]. Despite the complex formalism, the LED model
has only two extra parameters that control the mixing among all the infinite mass states.
They are the lightest neutrino mass m0 (for normal ordering m0 = mD

1 while for inverted
ordering m0 = mD

3 ) and the radius of extra dimension RED.

2.2 The Short-Baseline Neutrino Program

The Short-Baseline Neutrino Program, or SBN, experimental proposal will align three
liquid Argon detectors in the central axis of the Booster Neutrino Beam (BNB), located
at Fermilab [111]. Table 2.1 gives the SBN detector names, active masses, and their
distances from BNB target. The neutrino detection occurs via charged-current (CC)
interactions with liquid Argon, where charged particles (µ± and e±) and scintillation light
are produced. Such charged particles ionize the argon, and the created charges are drifted
by an uniform electric field to the anode plaques and collected by wire planes. Depending
on the time of arrival of the charges to the wires, and the amount of charge produced in
liquid Argon along the path of µ± and e±, it is possible to reconstruct the topological
profile of the interactions generated by the neutrinos, i.e., it is possible to recognize which
particles participate in such interactions. Figure 2.5 illustrates the SBN layout and the
event display from an electron ‘shower’ or a muon ‘track’ inside the detectors.

Detector Active Mass Distance from BNB target

SBND 112 t 110 m
MicroBooNE 89 t 470 m
ICARUS-T600 476 t 600 m

Table 2.1: SBN detector active masses and distances from the local of the neutrino pro-
duction.
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Muon-like events have ‘track’ topology because they are massive enough to not suffer
considerable deflections during the liquid Argon ionization process. Electron-like events,
on the other hand, suffer multiple deflections and form the ‘shower’ pattern. Photons
produced as the result of neutrino neutral-current interactions also hold the shower topol-
ogy. These photons constitute the main source of the neutrino events’ background. To
select electron-like events among all the induced showers in the target, the SBN detectors
are capable to record the energy deposition of the particles and discriminate them via
calorimetric analysis.

According to the proposal [111], the SBN Program is designed to address several
anomalies in neutrino physics and will test, with the most sensitivity, the oscillation-
interpretation to LSND and MiniBooNE data (see Subsec. 1.3 and Sec. 3.3). SBN will
start taking data on its full configuration (MicroBooNE is an active detector and ICARUS
installation is already completed) on late 2021/beginning of 2022. Based on that, we want
to investigate the potential of SBN to search for hints of flavor oscillation leaded by the
KK mass modes from LED model. Therefore, considering the mixing among the neutrino
flavor states and KK mass states from Eq. 2.23, the probability of a neutrino α-flavored
να with energy Eν be detected as a neutrino β νβ, (α, β = e, µ, τ) after travels a distance
L is given by

P LED
να→νβ = |〈νβ(L)|να〉|2 =

∣∣∣∣∣
3∑
i=1

UαiUβi∗
∞∑
n=0

(Si0n)2 exp

[
i
λ

(n)2
i L

2EνR2
ED

] ∣∣∣∣∣
2

(2.26)

In Figure 2.6, the behavior of the oscillation probability for differentm0 and RED values
is shown, considering an L/Eν of 1.2 km/GeV in both appearance and disappearance

Figure 2.5: SBN layout with the three liquid Argon detectors placed along the central
axis of BNB complex plus the event display of electron or muon interaction inside the
liquid Argon.
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channels for both normal and inverted neutrino mass ordering. The L/Eν value was
calculated using the ICARUS baseline L = 0.6 km and the energy Eν = 0.5 GeV, which
corresponds to the region in the neutrino energy spectrum where most of the events
are expected [111]. We noticed that for all LED parameters in the R−1

ED − m0 plane,
the appearance probability is not larger than 10−3 and almost all survival probability is
larger than 0.9. The gray shaded region is excluded by neutrino oscillation data, with the
relations Eq. 2.24 and Eq. 2.25, as described in Section 2.1.

Figure 2.6: Probability regions for different values of LED parameters, m0 and RED. In
the left (right) panels we have νµ → νµ (νµ → νe). In the top (bottom) panel we show the
normal (inverted) ordering. We chose here a typical short-baseline L/Eν of 1.2 km/GeV,
see text for details, and we compute probabilities using the first 40 KK modes. The gray
shaded region is excluded due to neutrino oscillation data (see Sec.2.1).

In order to perform the SBN sensitivity analysis under LED assumption, we computed
the expected number of events at the SBN facility by implementing the detectors in the
GLoBES [112, 113] c-library, following the proposal description. In this way, consider a
neutrino experiment that searches for flavor transition mechanism in a channel c (νµ → νe
or νµ → νµ, for example) and the energy range of data acquisition of this experiment is
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divided (or binned) in η intervals or bins. The number of neutrino events per energy bin
a (a = 1, ..., η) in channel c is given by:

nca = N εca

∫ Ea+∆Ea/2

Ea−∆Ea/2

dE ′
∫ ∞

0

dE φc(E) P c(E) σc(E)Rc(E,E ′), (2.27)

where E is the true neutrino energy, E ′ is the reconstructed neutrino energy by the
detector, N is a normalization factor related to unit conversions, εca is the bin energy
efficiency, φc(E) is the predicted neutrino flux of the initial flavor at the detector, P c(E)

is the model dependent neutrino flavor transition probability, σc(E) is the total cross-
section of the neutrino interaction with the detector target material, Rc(E,E ′) describes
the energy response of the detector. It is also called energy resolution function and Ea is
the central value of the ath energy bin and ∆Ea is the bin size.

The SBN facility will search for oscillations in two channels: electron neutrino ap-
pearance from muon neutrino conversion (νµ → νe) and 2) muon neutrino disappearance
(νµ → νµ) from muon neutrino survival. We will define the components of Eq. 2.27 for
each one of the SBN oscillation channels as follows:

1. Muon neutrino disappearance channel:

• Signal: Survival of muon neutrinos (νµ → νµ) from the beam which interact
with liquid argon through weak CC producing muons in the detectors. The
event rate for this channel sign is given by

nνµ→νµa = Nµ ε
νµ
a

∫ Ea+∆Ea/2

Ea−∆Ea/2

dE ′
∫ ∞

0

dE φνµ(E) P LED
νµ→νµ(E)

× σνµ→Ar(E)Rµ(E,E ′) (2.28)

where (a = 1, ..., 19), the fluxes φνµ(E) for the three detectors was taken
from Ref. [114] and the neutrino-argon cross section σνµ→Ar(E) was taken
from inputs to GLoBES prepared for Deep Underground Neutrino Experiment
(DUNE) simulation [115], with the cross section inputs originally generated us-
ing GENIE 2.8.4 [116]. P LED

νµ→νµ(E) is given in Eq. 2.26 and the energy resolution
function Rµ(E,E ′) is a Gaussian in the form

Rµ(E,E ′) =
1

σ′(E)
√

2π
e
− (E−E′)2

2σ′2(E) (2.29)

with width of σ′(E) = 6%/
√
E[GeV], according to Ref. [117]. The energy

range for the neutrino event reconstruction extends from 0.2 GeV to 3 GeV
where each channel has different bin widths, as described in the Table 2.2.
After event reconstruction, we included an efficiency factor for each bin in
order to mimic event rates from the SBN technical draft [111] as following



44

Detector SBND MicroBooNE ICARUS-T600
Nµ 5.39×10−5 4.39×10−4 1.61×10−3

ενµ [0.17, 0.13, 0.12, 0.10, 0.09, [0.06, 0.05, 0.04, 0.04, 0.03, [0.05, 0.04, 0.03, 0.03, 0.03,
0.08, 0.08, 0.07, 0.06, 0.03, 0.03, 0.03, 0.02, 0.03, 0.02, 0.02, 0.02,
0.06, 0.05, 0.05, 0.04, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02,

0.04, 0.04, 0.03, 0.03, 0.03, 0.03] 0.02, 0.02, 0.01, 0.01, 0.02, 0.02] 0.02, 0.01, 0.01, 0.01, 0.01, 0.02]

• Background : The only background contribution considered by the collabora-
tion comes from neutral-current (NC) charged pion production, where the pion
interacts with argon and can be mistaken for a muon [111]. This contribution
is small due to the track length cutting imposed in the event selections and we
did not consider it in our simulations.

2. Electron neutrino appearance channel:

• Signal: electron neutrinos coming from muon neutrino conversion (νµ → νe)
which interacts through CC producing electrons in the detectors. The event
rate for this channel sign is given by

nνµ→νea = Ne ε
νe
a

∫ Ea+∆Ea/2

Ea−∆Ea/2

dE ′
∫ ∞

0

dE φνµ(E) P LED
νµ→νe(E)

× σνe→Ar(E)Re(E,E ′), (2.30)

where (a = 1, ..., 11), the fluxes are the same as muon disappearance channel
and the neutrino-argon cross section σνe→Ar(E) was also taken from Ref. [115].
P LED
νµ→νe(E) is given in Eq. 2.26, now with β = e and the energy resolution func-

tionRe(E,E ′) is the Gaussian from Eq 2.29 with width of σ′(E) = 15%/
√
E[GeV],

following to Ref. [117]. The energy range for the neutrino event reconstruction
are in the Table 2.2. After event reconstruction, the efficiency parameters are
as follows

Detector SBND MicroBooNE ICARUS-T600
Ne 5.39×10−5 4.39×10−4 1.61×10−3

ενe 0.042 0.0159 0.0163

• Background : The main background contribution comes from the survival of
intrinsic electron neutrinos (νe → νe) in the beam, i.e. beam contamination.
The event rates for this background component have the same form as Eq. 2.30,
with the changes φνµ(E) → φνe(E) (from same reference) and P LED

νµ→νe(E) →
P LED
νe→νe(E). The post-reconstruction efficiencies are the following

Detector SBND MicroBooNE ICARUS-T600
ενe 0.029 0.0156 0.0122

We also considered muons (muon neutrinos from the CC interaction), which
can be mistaken for electrons. NC photon emission, cosmic particles, and
dirty events were not considered in our simulation, which correspond to a
background reduction of 8.4% for Lar1-ND, 14% for MicroBooNE and 13% for
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Electron Neutrino Appearance Channel Muon Neutrino Disappearance Channel

Energy Bin Size (GeV) Energy Range (GeV) Energy Bin Size (GeV) Energy Range (GeV)
0.15 0.2-1.10 0.10 0.2-0.4
0.20 1.10-1.50 0.05 0.4-1.0
0.25 1.50-2.00 0.25 1.0-1.5
1.00 2.00-3.00 0.50 1.5-3.0

Table 2.2: Energy range and energy bin size of the electron and muon sample used in this
analysis.

ICARUS-T600, respect to the total number of background events expected by
the collaboration in the electron neutrino channel [111].

The information on the neutrino fluxes, neutrino cross section, energy resolution of
leptons and backgrounds used in the analysis were compiled to be used with the GLOBES
c-library, in order to perform the different sensitivity analysis of SBN program at Fermilab.
We simulated three years of operation for the neutrino beam in Lar1-ND and ICARUS-
T600 detectors and six years in MicroBooNE detector. It is important to emphasize that
the detectors do not make a distinction between neutrinos and anti-neutrinos, so neutrino
and antineutrino events are added in our simulations.

In the presence of LED, the relations in Eq. 2.24 and Eq. 2.25 give the mass-squared
differences and the mixing angles in terms of the standard oscillation parameters. When
simulating neutrino event rates to perform the different studies along with this Chapter,
we used the best-fit values for the oscillation parameters in the standard three-neutrino
framework presented in Nu-Fit 3.2 (2018) [108, 109]. The LED parameters are the lightest
neutrino mass m0 (for normal ordering m0 = mD

1 while for inverted ordering m0 = mD
3 )

and the radius of extra dimension RED.
We present results based on different sensitivity analysis in the following Sections,

using both muon disappearance and electron appearance channels unless otherwise stated.
We studied three cases assuming a given event energy spectrum for ‘data’ (or ‘true’
events) and we have performed a hypothesis testing based on a chi-squared χ2 function
for the different models: 1) ‘data’ simulated assuming an energy spectrum defined by
the three-neutrino case an testing the LED hypothesis, i.e., the usual sensitivity analysis,
2) ‘data’ simulated assuming an energy spectrum distributed with the LED model and
also testing the LED scenario. Here we investigated the SBN potential of measuring the
LED parameters RED and m0. Finally, 3) ‘data’ simulated assuming an energy spectrum
distributed with the 3+1 model (see Subsec. 1.3.1), where we evaluated the discrimination
power of SBN to distinguish LED hypothesis from other models accommodating light
sterile neutrino oscillations. We also performed sensitivity calculations for the 3+1 model
in appearance and disappearance channels in order to explore relations between LED and
3+1 signatures. The results are shown in the next Section.
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2.3 Results

As we mentioned before, we will develop three different analysis with the simulated SBN
event rates. In order to perform the statistical test between the events we expected
from LED model and the events from other hypothesis, we will perform a chi-squared χ2

calculation. As SBN has three detectors that will record neutrino events, we will employ
the following chi-squared function

χ2
SBND =

3∑
d=1

11∑
a=1

(
Oe
a,d −

[
(1 + s)Sea,d + (1 + b)Be

a,d

])2

Oe
a,d

+
s2

ρ2
s

+
b2

ρ2
b

(2.31)

+
19∑
a′=1

(
Oµ
a′,d −

[
(1 + s′)Sµa′,d + (1 + b′)Bµ

a′,d

])2

Oµ
a′,d

+
s′2

ρ2
s′

+
b′2

ρ2
b′

(2.32)

where Oe
a,d represents the ‘true’ events in the a-th energy bin from the detector d in the

electron neutrino appearance channel and Oµ
a′,d are the ‘true’ events in the a′-th energy bin

from the detector d in the muon neutrino disappearance channel. Se,µ(a,a′),d and B
e,µ
(a,a′),d are,

respectively, the simulated signal and background events for a chosen set of parameters
from a test hypothesis. In case of LED hypothesis, the set of parameters would be
(m0, RED). The parameters s, s′, b, b′ are called nuisance parameters that would describe
signal and background fluctuations due to systematic errors in the flux normalization,
detector fiducial mass, etc. The χ2

SBND will be minimized over these nuisance parameters.
Finally, ρ are the systematical errors.

In case of an experiment that already recorded real neutrino events, the entries of O
would be filled with the real data in each bin for both channels. In our case, SBN has not
recorded real data yet so we simulated ‘pseudo’ data and considered them as the observed
events. For the analysis, the total normalization errors in signal and background (ρs, ρ′s, ρb
and ρb′) were set to 10%, and all parameters that were not shown in the plots were fixed
to their best-fit values. The first analysis we performed is the sensitivity analysis, i.e. the
‘true’ rates assume an energy spectrum defined by the three-neutrino case an the testing
rates by the LED hypothesis. The aim of sensitivity analysis is to investigate in which
set of parameters (m0, RED) SBN would produce significant signal that departs from the
standard three neutrino scenario with considerable confidence level. We tested that our
sensitivity results are independent of the δCP value. For simplicity, we set δCP = 234o for
normal ordering and δCP = 278o for inverted ordering, according to Ref. [109].

Figure 2.7 shows SBN sensitivity limit with 90% of confidence level (C. L.) in the
green curve for normal (left panel) and inverted ordering (right panel), compared with
other limits: Sensitivity limits at 95% of C. L. for DUNE experiment (black-dashed
curve) presented in Ref. [106], as well as IceCube-40 data and IceCube-79 data (dot-
dashed magenta and blue curves, respectively) from Ref. [104], and the combined analysis
of T2K and Daya Bay data (dot-dashed gold curve) presented in Ref. [105] are shown.
The preferred region (in pink) at 95% C. L. by Gallium and Reactor anomalies from the
analysis in Ref. [102] is also included. Finally, sensitivity limits for KATRIN at 90% C.
L. (dashed brown curve) due to kinematic limits in beta decay estimated in Ref. [103]
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Figure 2.7: Left (Right) panel: Sensitivity limits for the LED parameters, RED and
m0, considering normal (inverted) ordering of neutrino masses. The regions for LED
sensitivity, considering muon disappearance and electron appearance channels, are to the
top-left of the curves. Here, we show our 90% C. L. line from SBN limit (green), the 95%
C. L. lines from DUNE (black) [106], IceCube-40 (magenta) and IceCube-79 (blue) [104],
and 95% C. L. from combined analysis of T2K and Daya Bay (gold) [105]. The 90% C. L.
line from KATRIN sensitivity analysis is also shown (brown) [103] and the pink regions
are preferred at 95% C. L. by the reactor and Gallium anomaly [102]. The light and dark
gray regions are excluded due to neutrino oscillation data.

are shown. The gray shaded regions are the parameters excluded by measurements of the
mass-squared differences ∆m2

21 and ∆m2
31 (light gray) and of mixing angles θ12, θ13 and

θ23 (dark gray). It is important to mention that the excluded region due to mixing angle
measurements also covers excluded region due to mass-squared differences. An additional
constraint to the LED parameters comes from MINOS analysis in Ref. [107] where a
similar restriction curve to the one from IceCube was obtained. When m0 → 0, MINOS
constrains RED < 0.45µm (or R−1

ED > 0.44 eV) for normal ordering.
We can see that the SBN program is sensitive to the LED parameters and this sen-

sitivity is very competitive, respect to other facilities shown in the plot. This happens
specifically for the lower m0 region and particularly for normal ordering. Compare to
constraints from other experiments, the SBN sensitivity to the oscillations predicted by
the LED mechanism is better than any other limits in the region when m0 < 2× 10−1 eV
for normal ordering, and in this region, the maximum sensitivity of our analysis for RED is
better than any other oscillation experiment which we trace to the fact that we are testing
LED in a short-baseline experiment for the first time, all other sensitivity results corre-
sponds to long-baseline experiments. Concerning the reactor and gallium anomaly allowed
regions, the SBN program has the potential to ruled out completely this anomaly for any
value of m0 < 2 × 10−1 eV. For higher values of m0, the DUNE experiment [106] have
the potential to exclude the reactor and gallium anomaly allowed regions, complementing
SBN.
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Figure 2.8: Left (right) panel: Allowed regions for the ‘true’ LED parameters m0 =
0.05 eV and 1/RED = 0.398 eV and assuming as test model the LED scenario for normal
(inverted) ordering. All the other oscillation parameters were fixed to their best fit val-
ues. The dashed green (dashed brown) curve shows the SBN sensitivity to both muon
disappearance and electron appearance channel (only electron appearance channel). The
region denoted by Blind region (νe Ch. Blind region) is the region with no sensitivity to
the muon neutrino disappearance (electron neutrino appearance).

2.3.1 Sensitivity to a non-zero LED oscillation effect on SBN

In order to investigate the potential of SBN to measure the LED parameters, neutrino
events were calculated in the same fashion than for the previous sensitivity analysis, but
assuming now the LED model with m0 = 0.05 eV and 1/RED = 0.398 eV as the ‘true’
values, and testing the LED scenario. All the standard oscillation parameters (which are
included in the LED parameters) were fixed to their best-fit values from Refs. [108, 109]
as described in Section 2.1. Figure 2.8 shows the allowed regions consistent with the
computed events with the true value (black dot) at 68.3% of C. L. (blue curve), 95% of C.
L. (orange curve) and 99% of C. L. (purple curve) for both normal ordering (left panel)
and inverted ordering (right panel).

We also included in Figure 2.8 the sensitivity result obtained in Figure 2.7 (dashed
green line), which we called Blind Region, i.e., the region that agrees with the standard
three-neutrino scenario, being in this way, ‘blind’ to LED effects. Any point inside the
Blind Region will have a null result either for the muon disappearance channel or for the
electron neutrino appearance channel. The νe Ch. Blind Region presented in Figure 2.8
(dashed brown line) is the result of the sensitivity analysis performed only with the com-
puted events from electron neutrino appearance channel. Any point inside the νe Ch.
Blind Region will have a null result for the electron neutrino appearance channel. The
‘true’ LED parameters were chosen around the νe Ch. Blind Region, but outside the
Blind Region for both mass orderings.

It is worth noticing that since the electron neutrino appearance probability is smaller
than 10−3 for LED, as shown in Figure 2.6, one might not expect a sensitivity exclusion
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limit from the appearance channel, i.e., all the obtained sensitivity shown in Figure 2.7
would come from the muon disappearance channel. However, when we computed the
sensitivity curve only considering electron appearance channel, we obtained the exclusion
limit showed in Figure 2.8 (dashed brown line). In fact, we have a sensitivity curve from
electron appearance channel when we consider changes in background profile due to LED
effects. The electron neutrino survival probability induced by the LED parameters de-
creases the intrinsic electron neutrinos from the beam, which is the majority contribution
to our background. In other words, we have sensitivity due to the decrease in the num-
ber of backgrounds and not by the increase in the signal. A similar effect was found in
Ref. [117].

Although not shown in Figure 2.8, we repeated the same analysis with other LED true
values located inside the exclusion region for both electron and muon neutrino channels
(outside the Blind Region and the νe Ch. Blind Region). In this case, we have a non-
null result in both muon disappearance and electron neutrino appearance channels, and
therefore the LED parameters that explain this results are unique. As a consequence of
this, and due to the logarithmic scale in the plot, we obtained small and concentrated
regions around the chosen ‘true’ values, which results in a precision of SBN experiment
to the LED parameters below 1%.

2.3.2 3+1 scenario at SBN: sensitivity and accuracy of the mea-
surement

In the standard three-neutrino scenario, we expect no oscillations in SBN due to its short-
baseline regime. Now, if SBN ‘sees’ an oscillation, it will corresponds to a beyond the
standard three-neutrino scenario signal that might be interpreted as an sterile neutrino
oscillation. In the 3+1 scenario, the neutrino probabilities for short-baseline distances are
given by [118]:

P 3+1
νµ→νe = sin2 2θµe sin2

(
∆m2

41L

4Eν

)
, (2.33)

P 3+1
νµ→νµ = 1− sin2 2θµµ sin2

(
∆m2

41L

4Eν

)
, (2.34)

P 3+1
νe→νe = 1− sin2 2θee sin2

(
∆m2

41L

4Eν

)
, (2.35)

where sin2 2θαα ≡ 4 (1− |Uα4|2) |Uα4|2, with α = e, µ and sin2 2θµe ≡ 4|Ue4|2|Uµ4|2 are the
oscillation amplitudes, defined by the elements of the 4 × 4 generalized PMNS matrix
elements Ue4 and Uµ4, and ∆m2

41 is the mass-squared difference between the fourth mass
state m4 (which is dominantly made of the sterile component in the neutrino flavor basis)
and the first mass state m1. The probabilities in Eqs. 2.33, 2.34, 2.35 at short-baselines
depend on the three parameters Ue4, Uµ4. and ∆m2

41 [119].
We now test the two following cases in the 3+1 scenario:

1. Assuming the ‘true’ event energy distribution as compatible with the three-neutrino
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Figure 2.9: Left (Right) panel: Sensitivity limit at 90% of C.L. for the 3+1 model for
the muon neutrino disappearance channel (electron neutrino appearance channel), in the
parameter space which depends on sin2 2θµµ (sin2 2θµe ) and ∆m2

41. Exclusion (sensitivity)
regions are to top-right of the black dashed curves in both panels. The solid black curve
(solid blue curve) shows our sensitivity (the SBN sensitivity was taken from Ref. [111]).

scenario and testing the 3+1 model. This gives the sensitivity of SBN to the 3+1
scenario that can be seen in Figure 2.9. Exclusion regions are to the right of the black
curves for both appearance (right panel) and disappearance (left panel) channels.
We have a very good agreement with the SBN sensitivity, comparing the blue and
solid curves in Figure 2.9.

2. Assuming as the ‘true’ event energy distribution as compatible with the 3+1 scenario
and testing the 3+1 model. This will give the accuracy of SBN facility to the
parameters of the 3+1 scenario that can be seen in Figure 2.10. For illustration
purposes, we show the sensitivity as dashed black curves for the 3+1 model at the
SBN from Figure 2.9. The allowed regions assuming the ‘true’ 3+1 parameters
sin2 2θµµ = 0.02, sin2 2θµe = 0.01 and ∆m2

41 = 1 eV2 and also fitting 3+1 hypothesis.
Notice that SBN is very sensitive to the mass-squared difference around 1 eV2 and
the precision that we can get for this value is very good and below 1%. Even though
not shown in the figure, large values of sin2 2θµµ and sin2 2θµe gets more precise
determined than the lower values shown in the plot. The fast oscillations ∆m2

41 >

10 eV2 were handled assuming a low-pass filter in our analysis using GLoBES 3.2.17
[112, 113], otherwise we will have spurious results in our sensitivity for 3+1 model.

2.3.3 Discrimination power between LED scenario and the 3+1
scenario

One question that remains is that if SBN finds a departure from the three neutrino
framework, is it possible to identify which of the two scenarios analyzed in this Chapter
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Figure 2.10: Left (Right) panel: Allowed Regions considering the ‘true’ neutrino event
spectrum given by the 3 + 1 model with the values sin2 2θµµ = 0.02 and ∆m2

41 = 1 eV2

( sin2 2θµe = 0.01 and ∆m2
41 = 1 eV2) in the muon neutrino disappearance channel (the

electron neutrino appearance channel). The dashed curve in both plots is the sensitivity
curve for the respective channels.

would be responsible for the new signal (assuming is not something else)? In the following,
we analyze the discrimination power of the SBN experiment comparing both the LED
and the 3+1 scenarios. Regarding the 3+1 fit to the LED scenario, we calculated events
with the ‘true’ LED parameters m0 = 0.05 eV and 1/RED = 0.398 eV assuming normal
ordering. With this ‘true’ events, both appearance and disappearance channels were fitted
separately, fixing the parameters not shown in the plots. Figure 2.11 shows the result of
the fit in the disappearance channel, i.e. the χ-squared function will be only Eq. 2.32 (left
panel) with allowed curves of 68.3% of C. L. (blue), 95% of C. L. (orange) and 99% of
C. L. (purple). The number of degrees of freedom (d.o.f.) was equal to 17 (19 energy
bins minus 2 free parameters). The best-fit of the test values is represented in the black
dot and has values of sin2 2θµµ = 0.1 and ∆m2

41 = 0.5eV2. We have not found a good fit,
where ∆χ2 = χ2

3+1 − χ2
LED = 8 for the best-fit point, giving more than 2σ of deviation

between the two models.
We have also checked that when using the new set of parameters m0 = 0.316 eV and

1/RED = 1 eV for the muon disappearance case, we have obtained a ∆χ2 ≈ 104 for the
best-fit (of the test values) point, implying a bad fit. This result can be explained due
to the fact that for some values of the LED parameters, as in this case, more KK states
start to contribute in the oscillation probability and the 3+1 model cannot emulate the
LED model.

Following a similar procedure, this time fitting the LED model for some ‘true’ values
for the 3+1 parameters, we could not obtain good fits. The analysis is shown in the right
panel of Figure 2.11. In fact, if we consider the amplitude sin2 2θµµ = 0.01 and the same
∆m2

41 = 0.5 eV2, the allowed regions would be almost entirely inside the Blind Region
(bottom-right part from the dashed green curve in the right panel of Figure 2.11). From
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Figure 2.11: Left panel, sensitivity results fitting the 3+1 model parameters assuming
the ‘true’ LED parameters m0 = 0.05 eV and 1/RED = 0.398 eV, for normal ordering.
Right panel, sensitivity results fitting the LED parameters for the ‘true’ 3+1 parameters
sin2 2θµµ = 0.1 and ∆m2

41 = 0.5 eV2, also for normal ordering. The allowed sensitivity
regions correspond to the 68.3% of C. L. (blue), 95% of C. L. (orange) and 99% of C. L.
(purple), the best-fit points appear as black dots.

this analysis, we obtained the value ∆χ2 ≈ 187. We also considered the case of larger
mixing with true values sin2 2θµµ = 0.1 and ∆m2

41 = 3 eV2 and we obtained the value
∆χ2 ≈ 149 for the best-fit point.

In the case of the electron neutrino appearance channel, we repeated the same pro-
cedure done for the muon channel: we calculated events for a given ‘true’ values for the
LED parameters and we fitted the electron neutrino appearance parameters in the 3+1
model using Eq. 2.31. The summary of the results are the following:

• For m0 = 0.05 eV and 1/RED = 0.398 eV, the best-fit and the allowed regions were
located outside the Sensitivity Region with the value ∆χ2 ≈ 78.3 for the best-fit
point, implying a very poor fit.

• For m0 = 0.316 eV and 1/RED = 1 eV, the best-fit and allowed regions were located
outside the sensitivity region, with ∆χ2 ≈ 538 for the best-fit point, implying a very
poor fit.

The previous results (for the electron appearance case) were somehow expected since we
could only obtain LED sensitivity from electron neutrino channel in Figure 2.8 with effects
of the LED parameters in the background. Then, we should not expect that the signal of
the electron neutrino conversion can be fitted with the 3+1 parameters. In other words,
evidence of electron appearance in short-baseline experiments as the recent MiniBooNE
analysis in Ref. [120] are inconsistent with the LED hypothesis. Similar conclusion was
made in Ref. [121].

The right panel of Figure 2.11 also shows the LED fit for a given set of ‘true’ parameters
of the 3 + 1 model considering only muon disappearance. We fixed the 3+1 parameters
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νµ Disappearance νe Appearance
hhhhhhhhhhhhhhhhhhTest model

True hypothesis LED (m0, 1/RED) LED (m0, 1/RED)

3+1 (sin2 2θµµ or sin2 2θµe,∆m2
41)

True: (0.05 eV, 0.398 eV) True: (0.05 eV, 0.398 eV)
best-fit point: (0.1, 0.5 eV2) -
∆χ2 ≈ 8 ∆χ2 ≈ 78

3+1 (sin2 2θµµ or sin2 2θµe,∆m2
41)

True: (0.316 eV, 1 eV) True: (0.316 eV, 1 eV)
- -
∆χ2 ≈ 104 ∆χ2 ≈ 538

hhhhhhhhhhhhhhhhhhTest model
True hypothesis 3+1 (sin2 2θµµ,∆m

2
41) 3+1 (sin2 2θµe,∆m

2
41)

LED (m0, 1/RED)
True: (0.1, 0.5 eV2)
best-fit point: (0.017 eV, 0.22 eV) *
∆χ2 ≈ 6.8

LED (m0, 1/RED)
True: (0.01, 0.5 eV2)
- *
∆χ2 ≈ 187

LED (m0, 1/RED)
True: (0.1, 3 eV2)
- *
∆χ2 ≈ 149

( - ) The best-fit point is outside Exclusion Region, ( * ) It is not expected a positive signal of νe appearance in SBN within LED model.

Table 2.3: Discrimination power of SBN facility for 3+1 model and LED model.

sin2 2θµµ = 0.1 and ∆m2
41 = 0.5 eV2 and fitted the LED parameters for normal ordering.

The allowed curves corresponds to the 68.3% of C. L. (blue), 95% of C. L. (orange) and
99% of C. L. (purple). The best-fit point obtained was m0 = 0.017 eV and 1/RED =

0.22 eV. Following the same procedure, we found ∆χ2 ≈ 6.8 for the best-fit point.
As we discussed in Section 2.3.1, with information of the electron neutrino appearance

channel (and not the muon disappearance) one can discriminate the LED scenario from
the standard three-neutrino case only if changes in the background (i.e. the electron
neutrino disappearance from the intrinsic νe of the beam) are considered. In this way,
LED is not contributing to the signal (νe conversion) in the electron neutrino channel.
Therefore, when regarding the LED fit under 3+1 scenario on these conditions, we would
not expect to accommodate LED parameters for any set of ‘true’ parameters of the 3 + 1

model considering only the signal of electron neutrino appearance channel.
Finally, all the results obtained for the discrimination power of LED and the 3+1

model are summarized in Table 2.3.

2.4 Conclusions

In the dawn of the new era of high precision neutrino experiments, the search for Beyond
Standard Model (BSM) physics will bring an understanding of the mechanism beyond
neutrino masses and neutrino mixing. The possibility to have in nature the presence of
large extra dimension is intriguing and it has several consequences for the phenomenology
of neutrino physics, such as the existence of infinite tower of Kaluza-Klein mass states
of neutrinos. The Short-Baseline Neutrino Program SBN at Fermilab will fully test the
presence of large extra dimension in neutrino oscillations.
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We have developed GLoBES simulation files [122] that include the three detectors at
SBN facility where information of the two main channels of SBN program, the νµ muon
neutrino disappearance channel and the νe electron neutrino appearance channel, are
included. In the paradigm of three neutrino oscillation, we expect to see no oscillation in
any of SBN detectors. With the assumption that we measure no oscillations in any of SBN
detectors, we can put bounds on the LED scenario. In the LED scenario, the non-standard
oscillations are accounted for with two parameters, the lightest Dirac neutrino mass m0

and the radius of large extra dimension RED. We have shown in Figure 2.6 the regions
with sizable muon neutrino disappearance probability and electron neutrino appearance
probability in the presence of LED, for either normal or inverted hierarchy of active states.
The typical values that we can test are P (νµ → νµ) ∼ 0.90 and P (νµ → νe) ∼ 10−4−10−3

for a L/Eν = 1.2 km/GeV.
We showed in Figure 2.7 the sensitivity plot for the LED scenario that is the main result

of this work, based on the simulation details described in Section 2.2. The solid green curve
is the sensitivity of LED scenario, the other dashed curves are the constraints/sensitivities
from other experiments to the LED scenario and the pink region is the allowed region
to explain the reactor neutrino anomaly. We notice that SBN sensitivity curve has, for
normal ordering, the strongest bound for almost all parameter region, with exception of
the values of m0 > 2 × 10−1 eV and 1/RED > 3 eV. From Figure 2.7, we have learned
that all sensitivity to LED scenario came from the muon disappearance channel and that
electron neutrino appearance channel plays a marginal role.

Any positive signal of a neutrino oscillation in the SBN facility will be a departure of
the present three neutrino paradigm. The main goal of the SBN facility is to test the hint
of neutrino oscillation from LSND, MiniBoone and reactor anomaly. This hint is more
usually discussed in the context of the 3+1 scenario with one additional sterile neutrino.
Then, we first reproduced the sensitivity region for both channels considered in this Thesis,
under the 3+1 framework with the assumptions described in detail in Section 2.2. Then,
we computed the sensitivity region and compared it with the official sensitivity region of
the SBN proposal, reaching a good agreement as shown in Figure 2.9. In Figure 2.10, we
showed the precision that we can have for a given choice of the parameters in a true 3+1
oscillation scenario. We found that the two channels provide sufficient information to get
a few percent of accuracy in the oscillation parameters.

Finally, regarding the discrimination power of the SBN facility, the remaining ques-
tion: Can the SBN be able to discriminate different physics scenarios when it has a clear
departure from the three-neutrino paradigm in the data?, was answered. Table 2.3 sum-
marizes our results. It is possible to discriminate between both models at 3σ − 10σ. The
worst scenario was shown in Figure 2.11, where we get a 2σ − 3σ discrimination using
the muon disappearance channel only. For other choices of parameters, as detailed in
Table 2.3, we can easily discriminate the source of new physics in the SBN experiment,
either the large extra dimension or the 3+1 scenario.
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Chapter 3

A Heavy Neutrino Decay

Over the last several decades, a variety of revolutionary neutrino puzzles evolved into
our current understanding of the neutrino sector of fundamental particle physics. A few
of these puzzles, however, remain unresolved. Among them are data from the Liquid
Scintillator Neutrino Detector (LSND) and MiniBooNE experiments. LSND observes a
very significant excess of ν̄e-candidate events [20], while the MiniBooNE collaboration
reported a combined 4.7 sigma excess of νe- [59, 61] and ν̄e-candidate events [60]. If both
the LSND and MiniBooNE data are a consequence of the same unexplained phenomenon,
the combined evidence is at the 6 sigma level [61].

Under the assumption that there are no unaccounted for “mundane” explanations
to these two excesses – unidentified background processes, problems with modelling the
neutrino scattering process, detector-related effects, etc – these so-called short-baseline
anomalies (see Subsec. 1.3)1 translate into new more physics – on top of nonzero ac-
tive neutrino masses – in the neutrino sector. The simplest new physics interpretation
to the data from LSND and MiniBooNE is to postulate that a νµ (ν̄µ) produced at
the experiment beam complexes has nonzero probability of being detected as a νe (ν̄e).
Neutrino oscillations can lead to this phenomenon by introducing the 3+1 Model (see
Subsec. 1.3.1), in which a fourth eV-scale neutrino mass eigenstate ν4 associated to a
mass-squared difference ∆m2 ∼ 1 eV2. The data point to new mixing parameters such
that |Ue4|2|Uµ4|2 ∼ 10−3 [61]. In this scenario, the new flavor eigenstate is postulated to
have no gauge quantum numbers and is hence dubbed a sterile neutrino νs.

While the 3+1 hypothesis fits all data associated with searches for νµ → νe appearance,
it is in conflict with other data, including neutrino disappearance data at short-baselines
once there is no incontrovertible evidence for neutrino disappearance at short-baselines.
These failed searches constrain |Ue4|2 and |Uµ4|2 to be less than several percent and hence
fail to satisfy |Ue4|2|Uµ4|2 ∼ 10−3 from appearance searches. More quantitatively, global
fits to the world’s neutrino data indicate that the 3+1 hypothesis is not a satisfactory
explanation for the short-baseline anomalies. See, for example, Refs. [123, 90, 124, 125]
for recent analyses and discussions.

In this Chapter, we revisit a different solution to the LSND and MiniBooNE puzzle,
1The short-baseline anomalies also include the reactor and gallium anomalies. For recent summaries

of these data, see, for example, Refs. [123, 90, 124, 125]. We will not account for either of them in this
work.
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presented in Ref [126]. Instead of assuming that a fourth eV-scale neutrino is produced
coherently in the neutrino source, we postulate that a heavier fourth neutrino mass eigen-
state is produced and that this new neutrino state decays into an electron-type neutrino
and a new, effectively massless scalar particle [127]. The decay is prompt enough such
that, a significant portion of the time the daughter neutrino can interact in the detector
and lead to an excess of νe- and ν̄e-candidate events. We perform the analysis of the LSND
and MiniBooNE experiments, and ask whether the heavy-neutrino decay hypothesis is a
good fit to the data. We explore two different decay scenarios with Majorana neutri-
nos and Dirac neutrinos. We comment the heavy-neutrino decay hypothesis constraints
from disappearance searches and precision measurements of leptonic meson decays, that
constraints the new interaction. Finally, we also perform the Short-Baseline Neutrino
Program (SBN) sensitivity under this heavy-neutrino decay hypothesis.

3.1 Formalism

We postulate the existence of a fourth neutrino mass eigenstate. Since we want to ex-
plain the data from LSND and MiniBooNE, the fourth neutrino must have a nonzero νµ
component. We don’t need a nonzero ντ or νe component so we set these to zero. A
very small νe or ντ component would not modify our results in a significant way. In other
words, Ue4 = Uτ4 = 0 and νµ = Uµlνl, l = 1, 2, 3, 4, Uµ4 6= 0.

We further introduce a new interaction that allows ν4, with mass m4, to decay into
a new, very light scalar field φ and a light neutrino νi, with mass mi (i = 1, 2, 3). We
will assume that the new scalar field φ is a standard model gauge singlet and that it
carries zero lepton number. We will also assume that the new interaction violates parity
maximally and, like the weak-interactions, only couples to left-chiral light neutrinos. At
low-energies, the interaction that mediates the heavy neutrino decay is

L = −
3∑
i=1

g4i νC4L νiL φ+ H.c. . (3.1)

where g4i (i = 1, 2, 3) are the coupling constants between ν4 and the each one of the
active neutrinos νi, νC4L = C (γ0)T ν∗4L and C is the charge-conjugation matrix. In the
Dirac representation of gamma matrices, C = iγ2γ

0. If neutrinos are Dirac particles, the
interaction in Eq. 3.1 enables the process ν4L → νiL + φ, while for Majorana particles, it
is possible to have both ν4L → νiL + φ and ν4L → ν̄iR + φ. Since we are interested in the
limit where the light neutrino masses are negligible, it is meaningful and convenient to
talk about νi – always left-handed – and ν̄i – always right-handed.

The decay amplitudeM for the considered interaction can be given by

M = g4i νC4 (p4, s4)νi(pi, si) , (3.2)

where p4, s4 and pi, si are the four momenta and the spin of ν4 and νi, respectively. The
squared module of the amplitude in Eq. 3.2 is

|M|2 = |g4i|2 νi(pi, si) νC4 (p4, s4) νC4 (p4, s4) νi(pi, si). (3.3)
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Taking into account that νC4 (p4, s4) νC4 (p4, s4) = ν4(p4, s4) ν4(p4, s4) [128], we proceed with
|M|2 calculation in the following:

|M|2 = |g4i|2 Tr

[
( /p4 + m4)

(1 + γ5 /s4)

2
(/pi + mi)

(1 + γ5 /si)

2

]
= |g4i|2 [(p4 · pi +m4mi)(1− s4 · si) + (p4 · si)(pi · s4)] . (3.4)

Considering that all the neutrinos taking part in this decay are relativistic, we can
define the neutrino chiral states in terms of the helicity states. In this way, if a neutrino
is produced in the final state, sµ4 = sµi and if a antineutrino is produced in the final state
(only for the Majorana case), sµ4 = −sµi (µ = 0, 1, 2, 3), where

sµj =
1

mjβj
pµj −

√
1− β2

j

βj
ηµ0 (j = i, 4) (3.5)

where βj = pj/Ej and
√

1− β2
j = mj/Ej, Ej being the particle energy and ηµ0 being

the first column elements of the metric tensor η. The squared amplitude in Eq. 3.4 when
ν4 → νi + φ (|M(ν4 → νi + φ)|2) and when ν4 → ν̄i + φ (|M(ν4 → ν̄i + φ)|2) are given,
respectively, by

|M(ν4 → νi + φ)|2 = |g4i|2
1

β4βi

[
(p4 · pi)

(
βiβ4 − 1− mim4

EiE4

)
+mim4βiβ4

− m2
im

2
4

EiE4

+mim4 +m2
4

Ei
E4

+m2
i

E4

Ei

]
(3.6)

and

|M(ν4 → ν̄i + φ)|2 = |g4i|2
1

β4βi

[
(p4 · pi)

(
βiβ4 + 1 +

mim4

EiE4

)
+mim4βiβ4

+
m2
im

2
4

EiE4

−mim4 −m2
4

Ei
E4

−m2
i

E4

Ei

]
(3.7)

In the relativistic approximation, β4 ≈ βi → 1 and m4 � E4. Also, doing p4 · pi =

m2
4/2 (mi, mφ = 0), we finally obtain

|M(ν4 → νi + φ)|2 = |g4i|2m2
4

Ei
E4

(3.8)

and
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|M(ν4 → ν̄i + φ)|2 = |g4i|2m2
4

(
1− Ei

E4

)
(3.9)

The transition rates for the considered decay channels is determined by the ampli-
tudes obtained in Eq. 3.8 and Eq. 3.9 and the phase space according to Fermi’s “Golden
Rule” [129]. Therefore, the differential decay rates of the (ν4 → νi + φ) and (ν4 → ν̄i + φ)

processes are, respectively

dΓ(ν4→νi+φ)(E4)

dEi
=

1

16πE2
4

|M(ν4 → νi + φ)|2 (3.10)

and

dΓ(ν4→ν̄i+φ)(E4)

dEi
=

1

16πE2
4

|M(ν4 → ν̄i + φ)|2 (3.11)

For relativistic neutrinos andmi = 0, the integration limits of the final neutrino energy
are 0 < Ei < E4, and hence, the total decay width for (ν4 → νi + φ) and (ν4 → ν̄i + φ) in
the laboratory reference frame are

Γ(ν4→νi+φ)(E4) = Γ(ν4→ν̄i+φ)(E4) =
|g4i|2m2

4

32πE4

. (3.12)

The same expressions, of course, holds for the decay of ν̄4. In this way, the total decay
width is, respectively, for Dirac and Majorana neutrinos

ΓDirac
4 =

3∑
i=1

Γ(ν4→νi+φ) (3.13)

ΓMajorana
4 =

3∑
i=1

Γ(ν4→νi+φ) + Γ(ν4→ν̄i+φ) . (3.14)

Notice that ΓMajorana
4 = 2 ΓDirac

4 . The relation between massive and flavor neutrinos can
be parameterized in terms of the 3+1 mixing. Thus, a given neutrino mass state νl
(l = 1, 2, 3, 4) can be written as a linear combination of the flavor states να as follows

νl =
∑

α=e,µ,τ,s

Ulα να . (3.15)

If we plug the mass eigenstates from Eq. 3.15 into the Lagrangian in Eq. 3.1, we can
redefine the coupling constants g4l in the flavor basis gαβ (α, β = e, µ, τ, s) according to
the relation

gαβ = Uα4

4∑
l=1

g4l Ulβ = Uα4 gβ , (3.16)
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in which we defined

gβ =
4∑
l=1

g4l Ulβ . (3.17)

As we mentioned in the beginning, we set Ue4 = Uτ4 = 0, in such a way that

ge =
3∑
i=1

g4i Uie and gτ =
3∑
i=1

g4i Uiτ (3.18)

The squared module of gαβ in Eq. 3.16 is given by

|gαβ|2 = |Uα4|2 |gβ|2 = |Uα4|2
4∑
l=1

4∑
k=1

g4l Ulβ g
∗
4k U

∗
kβ . (3.19)

Summing |gαβ|2 in Eq. 3.19 in β for all flavors, we have

∑
β=e,µ,τ,s

|gαβ|2 = |Uα4|2
∑

β=e,µ,τ,s

|gβ|2 = |Uα4|2
4∑

=1

4∑
k=1

g4l g
∗
4k

∑
β=e,µ,τ,s

Ulβ U
∗
βk (3.20)

= |Uα4|2
4∑
l=1

4∑
k=1

g4l g
∗
4k δlk (3.21)

= |Uα4|2
4∑
l=1

|g4l|2 . (3.22)

where in Eq. 3.20 we used the unitary relation of the U matrix. Comparing Eq. 3.20 with
Eq. 3.22, we finally obtain

∑
β=e,µ,τ,s

|gβ|2 =
4∑
l=1

|g4l|2 ≡ |g|2 . (3.23)

As we are working with decay, the energy distributions of the daughter particles are
not the same than mother particles, in the way we need to work with the differential
probability of transition per daughter particle energy interval. From this point, we will
discriminate the calculations for Dirac and Majorana neutrinos. Therefore, we will have
two cases:

• Dirac neutrinos: The differential probability that a (anti)neutrino of flavour να
with energy Eνα is converted into an (anti)neutrino of flavor νβ with energy in the
interval [Eνβ , Eνβ + dEνβ ] after travelling a distance L is:
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dPDirac
(−)
να→

(−)
νβ

(Eνα)

dEνβ
=

∣∣∣∣∣
3∑
i=1

UαiU
∗
βi exp

(
−im

2
iL

2Eνα

)
+

+ Uα4U
∗
β4 exp

(
−im

2
4L

2Eνα

)
exp

(
−ΓDirac

4 L

2

)∣∣∣∣∣
2

δ(Eνα − Eνβ) +

+GDirac(Eνα , Eνβ)
(

1− e−ΓDirac
4 L

)
(3.24)

The first two terms in Eq. 3.24 describe the oscillations among neutrino mass states.
Notice that the oscillation term of the heavy neutrino is weighted by the probability
that they do not decay. The third term describes the appearance of decay prod-
ucts, where GDirac(Eνα , Eνβ) is the normalized energy distribution of the daughter
particles νβ, given explicitly by

GDirac(Eνα , Eνβ) = 2 |Uα4|2
|gβ|2∑

β=e,µ,τ,s

|gβ|2
Eνβ
E2
να

= 2 |Uα4|2Rβ

Eνβ
E2
να

, (3.25)

where Rβ ≡ |gβ |2∑
β=e,µ,τ,s

|gβ |2
is the branching ratio of the decay resulting in a neutrino

with flavor beta. The expression in Eq. 3.25 is valid only in the case the daugh-
ter particles are stable and do not oscillate along the distance L. To ensure this
condition, we will impose the short-baseline (SB) regime where L/Eνα ∼ 1 MeV/m
(GeV/km) such that ordinary neutrino oscillations, driven by m2

2−m2
1 and m2

3−m2
1,

do not have time to modify neutrino flavor evolution (see Subsec. 1.2.1). With this
assumption and also evidencing that m4 � m1,m2,m3, the oscillation probability
in Eq. 3.24 becomes

dPDirac
(−)
να→

(−)
νβ

(Eνα)

dEνβ


SB

=

(
|Uα4|2|Uβ4|2 (α 6= β) or (1− |Uα4|2)2 (α = β) +

+ |Uα4|2|Uβ4|2e−ΓDirac
4 L

)
δ(Eνα − Eνβ) +

+GDirac(Eνα , Eνβ)
(

1− e−ΓDirac
4 L

)
, (3.26)

which we will explicitly write

ΓDirac
4 (Eνα) =

∑
β=e,µ,τ,s

|gβ|2
m2

4

32πEνα
= |g|2 m2

4

32πEνα
. (3.27)

• Majorana neutrinos: There are four decay options for Majorana neutrinos: να →
νβ, ν̄α → ν̄β, which we will point with a ‘+’ index in the probability expression, and
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να → ν̄β, ν̄α → νβ, which we will point with a ‘-’ index. Assuming the same
conditions of energy and baseline described in the previous item, the differential
probabilities that an (anti)neutrino of flavour να with energy Eνα is converted into
an (anti)neutrino of flavor νβ with energy in the interval [Eνβ , Eνβ + dEνβ ] after
travelling a distance L is:

dP
Majorana
(−)
να→

(−)
νβ

(Eνα)

dEνβ


+

SB

=

(
|Uα4|2|Uβ4|2 (α 6= β) or (1− |Uα4|2)2 (α = β) +

+ |Uα4|2|Uβ4|2e−ΓMajorana
4 L

)
δ(Eνα − Eνβ) +

+GMajorana
+ (Eνα , Eνβ)

(
1− e−ΓMajorana

4 L
)

(3.28)

or

dP
Majorana
(−)
να→

(−)
νβ

(Eνα)

dEνβ


−

SB

= GMajorana
− (Eνα , Eνβ)

(
1− e−ΓMajorana

4 L
)

(3.29)

where

GMajorana
+ (Eνα , Eνβ) = 2 |Uα4|2

1

2
Rβ

Eνβ
E2
να

=
1

2
GDirac(Eνα , Eνβ) (3.30)

and

GMajorana
− (Eνα , Eνβ) = 2 |Uα4|2

1

2
Rβ

Eνα − Eνβ
E2
να

, (3.31)

explicitly writing

ΓMajorana
4 (Eνα) =

∑
β=e,µ,τ,s

|gβ|2 2
m2

4

32πEνα
= |g|2 m2

4

16πEνα
. (3.32)

Figure 3.1 illustrates the behavior of the energy distributions described in GMajorana
±

functions. If we have a helicity-conserving process (left panel), the energy spectrum
will be proportional to Eνβ/Eνα , leading the daughter particles to populate energies
around the mother particle one. Notice this also happens in GDirac. If we have a
helicity-flipping process (right panel), the energy spectrum will be proportional to
1 − Eνβ/Eνα , which means the daughter particles will populate very low energies
(around zero). The suppression of helicity-flipping process, mainly in the relativistic
regime, is due to the angular momentum conservation.
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Figure 3.1: Behavior of the energy distribution functions described in GMajorana
± . The

helicity-conserving process (left panel) is described by GMajorana
+ , while helicity-flipping

process (right panel) is decsribed by GMajorana
− .

As we mentioned before, the transition probabilities in Eq. 3.26, Eq. 3.28 and Eq. 3.29
work in short-baseline regime, in which LSND and MiniBooNE experiments operate. In
order to maximize the effect of the heavy-neutrino decay at these experiments, we choose
Re = 1, i.e., all the decay products from ν4 decay are electron (anti)neutrinos. We are
also interested in ν4 masses below a few MeV and neutrino energies characteristic of
the MiniBooNE and LSND experiments. This means that all produced and the decay
neutrinos are relativistic and emitted in the forward direction and inherit the angular
distributions of the parent.

3.2 Heavy-Decay versus 3+1 Model

Qualitatively, it is easy to see why this hypothesis can outperform the standard (3+1)-
oscillation hypothesis [123, 90, 124, 125]. In the (3+1)-oscillation scenario, considering
the short-baseline limit:

[
P 3+1
νµ→νe

]SB

= 4|Uµ4|2|Uµe|2 sin2

(
∆m2

41L

4Eν

)
(3.33)[

P 3+1
νµ→νµ

]SB

= 1− 4|Uµ4|2(1− |Uµ4|2) sin2

(
∆m2

41L

4Eν

)
, (3.34)

[
P 3+1
νe→νe

]SB
= 1− 4|Ue4|2(1− |Ue4|2) sin2

(
∆m2

41L

4Eν

)
, (3.35)

where ∆m2
41 ≡ m2

4−m2
1. A sizable Pνµ→νe requires both a non-negligible |Uµ4|2 and |Ue4|2

which, in turn, are constrained by disappearance searches [119, 86, 87, 88, 89] . In the
heavy-decay (HD) scenario (with Re = 1, Rµ = 0 and Ue4 = 0),
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[
PHD
νµ→νe

]SB

=

∫
G(Eνe)

(
1− e−Γ4L

)
dEνe (3.36)[

PHD
νµ→νµ

]SB

= (1− |Uµ4|2)2 + (|Uµ4|2)2e−Γ4L (3.37)[
PHD
νe→νe

]SB
= 1 . (3.38)

In the limit where ν4 is very long-lived, Γ4L� 1, PHD
νµ→νµ = 1− 2|Uµ4|2(1− |Uµ4|2). This

agrees with the νµ survival probability assuming there is a stable ν4 and it is produced
incoherently or, equivalently for the purposes of this setup, the new mass-squared differ-
ence is very large, ∆m2

41L/E � 1, and the oscillations average out. Instead, in the limit
where the decay is fast Γ4L� 1, PHD

νµ→νµ = (1− |Uµ4|2)2.
In terms of electron neutrino appearance, the role of |Ue4|2 in Eq.3.33 is played by

G
(
1− e−Γ4L

)
, with G ∝ |Uµ4|2 in the heavy-decay scenario. It is important to mention

that even for small values of |Uµ4|2 it is possible to produce enough electron neutrino
appearance in SB (see Sec. 3.3). So, limits on muon neutrino disappearance will not
necessarily put strong constraints in electron neutrino appearance searches. In addition,
Γ4 is not constrained by νe-disappearance. Instead, it is constrained by non-oscillation
experiments, as we quickly summarize in the Subsection 3.2.1, and we find that reasonably
large values of Γ4L are allowed for the L/Eν values of interest.

3.2.1 Constraints on New Neutrinos and Neutrino–Scalar Inter-
actions

There are several bounds on the new-physics parameters we are introducing here: m4,
g and |Uµ4|. We will discuss oscillation-related bounds in the Section 3.3 and here we
summarize non-oscillation results.

Searches for neutral heavy leptons constrain |Uµ4|2 as a function of m4. Keeping in
mind that we are interested in constrains assuming ν4 decays, as far as non-neutrino-
oscillation experiments are concerned, invisibly, |Uµ4|2 . 10−2 for m4 & 1 MeV (see
Refs. [130, 131] for recent quantitative analyses). The bounds are significantly weaker
for smaller values of the m4. For m4 ' 1 MeV, the strongest bounds come from precision
measurements of pion (π → µ + ν) and kaon (K → µ + ν) decays. Bounds from νµ
disappearance, as we will discuss in Sec. 3.3, are around |Uµ4|2 . 10−2 for m4 & 10 eV
and hence will dominate for m4 . 1 MeV.

The couplings g of neutrinos to other neutrinos and a scalar particle, in the region
of parameter space of interest here, are also best constrained by leptonic meson decays,
especially the decays of pions and kaons (e.g. K → µνφ). The bound on g depends on
both the nature of the decay and on |Uµ4|2. Here, conservatively, we use the results from
Ref. [132], which translate into

g2|Uµ4|2 < 1.9× 10−7. (3.39)

As far as short-baseline experiments, we are sensitive to |Uµ4|2 and Γ4 ∝ (gm4)2, see
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Eq. 3.13 and Eq. 3.14. As will be discussed in great detail in the next couple of sections,
we will be interested in (gm4)2|Uµ4|2 ∼ 1eV2 or

g2|Uµ4|2 ∼
(

1 eV

m4

)2

, (3.40)

so the constrain in Eq. 3.39 can be easily satisfied for m4 & 10 keV. In summary, for
1 MeV & m4 & 10 keV, we expect to avoid all non-oscillation bounds with relative ease.
We return to these in Sec. 3.3.

3.3 Simulations and Results

Here we provide details of the data we analyse and discuss how well they fit the heavy-
neutrino decay hypothesis. We also discuss the details of our simulation of data from the
SBN program and how sensitive it is to the heavy-decaying-neutrino hypothesis.

3.3.1 LSND

The Liquid Scintillator Neutrino Detector, or LSND experiment [133] ran at the Los
Alamos Neutron Science Center (LASCE) from 1993 to 1998. The experiment was de-
signed to look for ν̄e from a pion-decay-at-rest neutrino source [20]. LSND consisted of
a cylindrical tank filled with 167 tons of mineral oil doped with a low concentration of
liquid scintillator. This combination allows the detection of both Cherenkov and scin-
tillation light, which are collected by 1220 photo-multiplier tubes (PMT) that surround
the detector inner wall. Neutrinos are produced by the interaction of a 798 MeV proton
beam with a production target, where positive pions stop at the beam dump and decay
at rest into positive muons (π+ → µ+ + νµ). The distance between the beam dump and
the longitudinal center of LSND is 30 meters. The positive muons also decay at rest
(µ+ → e+ + νe + ν̄µ). The Michel ν̄µ would lead to a ν̄e signal in the presence of neutrino
oscillations or other flavor-changing mechanism. The ν̄e are detected via inverse beta de-
cay (IBD), ν̄e + p→ n+ e+, where the positron leads to Cherenkov and scintillation light
inside mineral oil. The outgoing neutron manifests itself as subsequent scintillation light
as it is captured on proton (n+p→ d+γ) and a 2.2 MeV photon is emitted [118]. LSND
makes use of this two-component signal to select a ν̄e-candidate event sample. Figure 3.2
summarizes LSND layout, neutrino beam production and expected signal of ν̄e event from
flavor transition.

In 2001, LSND collaboration reported an excess of 87.9 ± 22.4 (statistical uncertain-
ties) ± 6.0 (systematical uncertainties) events above the expected background [20]. In the
point of view of 3+1 Model (see Subsec. 1.3.1), those events are consistent with neutrino
oscillations in the 0.2 - 10 eV2 ∆m2

41 range. In order to validate our analysis procedure,
we first fit the same 3+1 oscillation hypothesis and compare our results with those pre-
sented by the LSND collaboration [20]. In the same way as described in Section 2.3,
we computed the expected number of events at the LSND detector implementing it in
the GLoBES [112, 113] c-library. We calculate the event rates using the same compo-
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Figure 3.2: Layout of LSND and scheme of the neutrino beam production and the expected
ν̄e event signal from flavor transition mechanism inside the detector.

nents from Eq. 2.27. The LSND experiment only searches for neutrino flavor transition
in the electron neutrino appearance channel. We will define the components of Eq. 2.27
as follows

• Signal: electron antineutrinos coming from muon antineutrino conversion (ν̄µ → ν̄e)
which interacts through IBD producing positrons in the detectors. Notice that for
the heavy-decay neutrino hypothesis, we also need to consider the reaction (νµ → ν̄e)
in case of Majorana neutrinos. For 3+1-oscillation, the event rate per energy bin a
for this channel sign is given by

[nν̄µ→ν̄ea ]3+1 = Ne ε
e
a

∫ Ea+∆Ea/2

Ea−∆Ea/2

dE ′
∫ ∞

0

dE φν̄µ(E) P 3+1
ν̄µ→ν̄e(E)

× σν̄e+p→n+e+(E)Re(E,E ′), (3.41)

where (a = 1, ..., 11), the flux φν̄µ(E) from muon decay at rest in LSND was taken
from Ref. [20], and we use the IBD cross-section from Ref. [134]. P 3+1

ν̄µ→ν̄µ(E) is
given in Eq. 3.33 (with sin2 2θ = 4|Uµ4|2|Ue4|2) and the energy resolution function
Re(E,E ′) is a Gaussian in the form

Re(E,E ′) =
1

σ′(E)
√

2π
e
− (E−E′)2

2σ′2(E) (3.42)

with width of σ′(E) = 17%/E[MeV]. The energy range for the neutrino event
reconstruction extends from 20 MeV to 75 MeV with bin widths ∆Ea as described
below. After event reconstruction, we included an efficiency factor in order to mimic
best-fit spectrum obtained by the LSND collaboration (Figure 24 of Ref. [20]) as
follows
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Detector LSND
Ne 1.92× 10−4

εe 0.42
∆Ea (MeV) [1.4, 1.7, 1.9, 2.3, 2.7, 3.3, 4.2, 5.3, 7.2, 10, 15]

• Background: The LSND background sources come mainly from intrinsic beam ν̄e
and ν̄µ events and are summarized in Table VIII of Ref. [20]. We considered these
fixed values for background composition.

In order to perform the statistical test between the events we expected in LSND from
3+1 model and the LSND data, we will perform the Log Likelihood Ratio ` calculation.
The function ` we used for LSND is given by

`LSND =
11∑
a=1

2

[ (
[(1 + s)S ēa + (1 + b)B ē

a]−DLSND
a

)
−

DLSND
a log

DLSND
a

[(1 + s)Sea + (1 + b)B ē
a]

]
+
s2

ρ2
s

+
b2

ρ2
b

(3.43)

where DLSND
a represents the LSND data and S ēa is the the simulated signal for a chosen

set of parameters from a test hypothesis (in our case, the 3+1 model) in the a-th energy
bin. The B ē

a is the estimated background by the LSND collaboration and was taken
from Figure 24 of Ref. [20]. The nuisance parameters s, b denotes, respectively, signal
and background fluctuations due to systematic errors in the flux normalization. Finally,
ρs and ρb are, respectively, the signal and background standard deviations. Table 3.1
summarizes the LSND data and background expectation.

LSND data [1.28, 0.02, -0.53, 4.55, 3.43, 6.39, 7.80, 8.24, 6.67, 9.64, 3.51]
LSND background [0.06, 0.47, 0.93, 1.57, 1.72, 1.20, 2.59, 2.78, 2.54, 1.77, 0.46]

Table 3.1: LSND antineutrino neutrino events data and background expectation. The
numbers were taken from Figure 24 of Ref. [20].

We perform a likelihood ` analysis, including an overall normalisation error of 25%
for signal and background. Our best-fit oscillation spectrum (green histogram), in 11
bins of L/Eν , is depicted in Fig. 3.3, along with the data and backgrounds published
by the collaboration; the best-fit point for the oscillation analysis is

(
sin2 2θ, ∆m2

)
=(

0.0063, 7.2 eV2
)
and the minimum value of χ2 is χ2

min = 10.19. Given the eleven bins
we included in our analysis (and hence nine degrees of freedom), we conclude that two-
flavor-oscillations are a good fit to the LSND data, as expected. The allowed regions of
the (sin2 2θ, ∆m2) parameter space match well with those published by the LSND collab-
oration. With this agreement, we are confident we are capable of faithfully reproducing
the data-analysis of LSND well enough to repeat the procedure for the heavy-decaying-
neutrino hypothesis.

In the case of heavy-neutrino decay (HD), the parameters of the event rate expression
will be the same as previously described, except with the transition probability. Therefore,
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Figure 3.3: Best-fit ν̄e spectra at LSND as a function of L/Eν for the oscillation hy-
pothesis and for the different heavy-decaying-neutrino scenarios discussed here. The data
points and the background spectrum are from the LSND collaboration report, presented
in Ref. [20].

the neutrino event rate per energy bin a for LSND considering HD model will be given
by

[nν̄µ→ν̄ea ]
Dirac
HD = Ne ε

ν̄e
a

∫ Ea+∆Ea/2

Ea−∆Ea/2

dE ′
∫ ∞

0

dE σν̄e+p→n+e+(E)Re(E,E ′)

×
∫ ∞
E

dEν̄µ φν̄µ(Eν̄µ)

[
dPDirac

ν̄µ→ν̄e(Eν̄µ)

dE

]
SB

, (3.44)

for Dirac neutrinos and

[
n

(−)
νµ→ν̄e
a

]Majorana

HD
= Ne ε

ν̄e
a

∫ Ea+∆Ea/2

Ea−∆Ea/2

dE ′
∫ ∞

0

dE σν̄e+p→n+e+(E)Re(E,E ′)

(∫ ∞
E

dEν̄µ

× φν̄µ(Eν̄µ)

[
dPMajorana

ν̄µ→ν̄e (Eν̄µ)

dE

]+

SB

+

∫ ∞
E

dEνµφνµ(Eνµ)

[
dPMajorana

νµ→ν̄e (Eνµ)

dE

]−
SB

)
(3.45)

for Majorana neutrinos. Notice that Eq. 3.44 and Eq. 3.45 have an extra integration
on the mother particle energies. The fluxes φνµ(Eνµ) and φν̄µ(Eν̄µ) come, respectively,
from pion and muon decays at rest. We generate neutrino event spectra for each set of
decay parameters (|Uµ4|2, gm4) and attempt to fit them to the LSND data, using a Log
Likelihood Ratio fit. The best-fit spectra in the case of Dirac and Majorana neutrinos
are depicted, respectively, in black and blue in Fig. 3.3. We will denote gM for Majorana
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neutrinos and gD for Dirac ones in the allowed region plots. The results for the two
hypotheses are very similar. The Majorana and Dirac cases are, in practice, identical,
except for the fact that GMajorana

+ = 0.5 GDirac (see Eq. 3.30). In the Majorana case,
there is an antineutrino signal from ν4 → ν̄eφ decays, but these are too low-energy and
do not contribute significantly to the number of events. Since the effect of the decay
is proportional to G, the Majorana case can compensate Dirac case by changing |Uµ4|2
by a factor of two. The ν4 produced in DAR are monochromatic, with energy around
30 MeV. Hence, the ν̄e produced in ν4 → ν̄eφ have very low energies and only populate
the highest L/Eν-bins. The situation is made worse by the fact that the energy spectrum
of the daughter ν̄e from the neutrino decay is soft, peaking (linearly) at zero energy (see
Fig. 3.1). The overall result is that most ν̄e from ν4 → ν̄eφ have too low energy to
significantly contribute to the LSND excess.

The best fit point falls in the region where the decay is fast so that, to zeroth order,
all ν4 decay between production and detection. We estimate the goodness-of-fit by com-
paring χ2

min=19.53 (20.17) in the Dirac (Majorana) cases with nine degrees of freedom
and conclude the fit is acceptable (p-value around two percent). The quality of this fit is
worse than that of the oscillation fit. This is due to fact that the energy spectrum of the
daughter ν̄e is distorted towards lower energies compared with the energy spectrum of the
parent ν̄4. The allowed regions of the parameter space, along with the best-fit points, are
depicted in Fig. 3.4. Solid, dashed and dotted lines represent, respectively, the 99%, 95%
and 68% C.L. curves. As advertised, the results of the two decay scenarios are similar
once one rescales the value of |Uµ4|2 by a factor of 2.

Figure 3.4: Allowed regions of the (|Uµ4|2, gm4) parameter space when the heavy-neutrino
decay hypothesis is matched against the LSND data assuming Majorana (left) or Dirac
neutrinos (right). The dots indicate the best-fit-point and the lines represent the 99%
(solid), 95% (dashed) and 68% (dotted) confidence level (C.L.) curves.
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3.3.2 MiniBooNE

The MiniBooNE experiment was designed to test the oscillation interpretation of the
LSND data [135]. It consisted of a spherical tank filled with 800 tons of mineral oil and
internally covered with 1280 PMTs to collect, mostly, Cherenkov light. The MiniBooNE
detector is located 540 meters downstream from the neutrino source. In order to gen-
erate a neutrino flux, the booster neutrino beam (BNB), located at Fermilab, delivers
8.89 GeV protons that interact with a beryllium target. Charged mesons, like pions and
kaons, are then produced and decay predominantly into muon neutrinos and antineu-
trinos. A magnetic focusing horn was used to sign-select the charged mesons, allowing,
depending on the polarity of the horn, two neutrino-beam configurations: 1) neutrino
mode: positively-charged mesons are focused to create a high-intensity flux of neutrinos;
2) antineutrino mode: negatively-charged mesons are focused to create a high-intensity
flux of antineutrinos. MiniBooNE measures both νe and νµ, plus their antiparticles, and
is sensitive to νe and ν̄e appearance and νµ and ν̄µ disappearance. νµ,e and ν̄µ,e are iden-
tified as they scatter through the charged-current quasielastic (CCQE) process, yielding
µ±, e±, respectively. These particles emit Cherenkov and scintillation light inside the de-
tector, and muon-candidates are distinguished well from electron-candidates due to the
light topology of the events inside MiniBooNE detector: muon-like events form solid ring
patterns, while electron-like events form ‘smeared’ rings. This occurs because electron
trajectory suffers deflections while it propagates through mineral oil.

A summary of neutrino production in neutrino mode configuration and the topologies
of µ± and e± events inside MiniBooNE detector can be found in Figure 3.5. Since 2007,
MiniBooNE collaboration has reported the searches of electron (anti)neutrino appearance
and muon (anti)neutrino disappearance [59, 136, 137, 60, 138, 61, 120] in which a total ex-
cess of 638.0± 132.8 (statistical and systematical errors) electron-like events were recorded
in the detector. Although MiniBooNE excess can support LSND results in terms of signs
of electron (anti)neutrino appearance, the absence of significant muon (anti)neutrino dis-
appearance reported in Ref. [136] put limits in the disappearance searches.

We analyse MiniBooNE appearance data collected when the neutrino-beam was run-
ning in both neutrino and antineutrino modes [61, 139]. The MiniBooNE data set corre-
sponds to 12.84× 1020 protons on target (POT) in neutrino mode and 11.27× 1020 POT
in the antineutrino mode. We analyse the different data sets separately and combined. As
in the LSND case, we first fit the MiniBooNE neutrino-mode and antineutrino-mode data
with the 3+1 oscillation hypothesis, although we will skip this analysis description and
directly describe the event rates and analysis using the heavy decay scenario. We simulate
MiniBooNE events in GloBES, where we calculate the event rates with the same compo-
nents from Eq. 2.27. For both beam configurations, we define the signal and background
constituents for MiniBooNE as follows

• Signal: electron (anti)neutrinos coming from muon (anti)neutrino conversion (νµ →
νe) which interacts through CCQE producing electrons and positrons in the detector.
The event rate for this channel signal per energy bin a is given by
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Figure 3.5: Illustration of neutrino production in BNB facility for neutrino mode config-
uration and event topologies inside MiniBooNE detector. After colliding with Beryllium
target, positive charged mesons are selected by the magnetic focusing horn and they decay
into muon neutrinos in Decay region. µ− and e− from CCQE neutrino interactions in min-
eral oil produce Cherenkov light which is recorded by PMTs that surround MiniBooNE
detector.

[nνµ→νea ]Dirac
HD = N ′e ε

′ e
a

∫ Ea+∆Ea/2

Ea−∆Ea/2

dE ′
∫ ∞

0

dE σCCQE
νe→oil(E)R′ e(E,E ′)

×
∫ ∞
E

dEνµ φνµ(Eνµ)

[
dPDirac

νµ→νe(Eνµ)

dE

]
SB

, (3.46)

and

[nν̄µ→ν̄ea ]
Dirac
HD = N ′e ε

′ e
a

∫ Ea+∆Ea/2

Ea−∆Ea/2

dE ′
∫ ∞

0

dE σCCQE
ν̄e→oil(E)R′ e(E,E ′)

×
∫ ∞
E

dEν̄µφν̄µ(Eν̄µ)

[
dPDirac

ν̄µ→ν̄e(Eν̄µ)

dE

]
SB

, (3.47)

for Dirac neutrinos and
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[
n

(−)
νµ→νe
a

]Majorana

HD
= N ′e ε

′ e
a

∫ Ea+∆Ea/2

Ea−∆Ea/2

dE ′
∫ ∞

0

dE σCCQE
νe→oil(E)R′ e(E,E ′)

(∫ ∞
E

dEνµ

× φνµ(Eνµ)

[
dPMajorana

νµ→νe (Eνµ)

dE

]+

SB

+

∫ ∞
E

dEν̄µφν̄µ(Eν̄µ)

[
dPMajorana

ν̄µ→νe (Eν̄µ)

dE

]−
SB

)
(3.48)

and

[
n

(−)
νµ→ν̄e
a

]Majorana

HD

= N ′e ε
′ e
a

∫ Ea+∆Ea/2

Ea−∆Ea/2

dE ′
∫ ∞

0

dE σCCQE
ν̄e→oil(E)R′ e(E,E ′)

(∫ ∞
E

dEν̄µ

× φν̄µ(Eν̄µ)

[
dPMajorana

ν̄µ→ν̄e (Eν̄µ)

dE

]+

SB

+

∫ ∞
E

dEνµφνµ(Eνµ)

[
dPMajorana

νµ→ν̄e (Eνµ)

dE

]−
SB

)
(3.49)

for Majorana neutrinos, where (a = 1, ..., 11). The fluxes φνµ(Eνµ) and φν̄µ(Eν̄µ) were
taken from Ref. [140], the CCQE cross-section information was pre-implemented
in GLoBES and the energy resolution function R′ e(E,E ′) is a Gaussian in the
form of Eq. 3.42 with width of σ′(E) = 30%/

√
E[GeV]. The energy range for the

neutrino event reconstruction extends from 0.2 GeV to 3 GeV with bin widths ∆Ea
as described below. After event reconstruction, we included the signal detection
efficiencies for electron-like events from Ref. [141] and a normalisation factor as
follows

Detector MiniBooNE
N ′e 8.87× 1016

ε′ e Ref. [141]
∆Ea (GeV) [0.1, 0.075, 0.125, 0.125, 0.15, 0.15, 0.15, 0.15, 0.15, 0.25, 1.5]

• Background: Background events are summarized in Table 1 and Figure 1 of Ref. [61].
Neutral current events are, strictly speaking, impacted by the ν4 decay, but the
effect is negligible in the region of the parameter space in which we are interested.
Changes to the neutral current (NC) event rate in this scenario are proportional to
the maximum muon neutrino to sterile neutrino transition probability Pmax

νµ→νs , i.e
when Γ4L� 1, given by

Pmax
νµ→νs ≤ 1−

[
PHD
νµ→νµ

]SB

−
[
PHD
νµ→νe

]SB

−
[
PHD
νµ→ν̄e

]SB

∼ |Uµ4|2(1− |Uµ4|2) (3.50)

using Eq. (3.37) and (3.36). This is small when |Uµ4|2 or 1− |Uµ4|2 is small which,
as we discuss in subsequent sections, is constrained to be small. Hence, we do not
include decay effects in the background events.
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Details on the MiniBooNE analysis

In our χ2 analysis for neutrinos and anti-neutrinos, we take statistical and systematic
errors into account by using the official MiniBooNE covariance matrices, available in
Ref. [139]. These include correlations among νe (ν̄e) signal and background events and
νµ (ν̄µ) events for the neutrino (antineutrino) mode. In the combined analysis, the corre-
lations among all neutrino and antineutrino samples are considered. Here, we are going
to describe the neutrino-only analysis, but the step works to antineutrino-only and com-
bined analysis as well. In order to perform MiniBooNE analysis to heavy-neutrino decay
model (or 3+1 model, to validade our implementation), we generated an event spectrum
correspondent to each set of parameters of the model. After simulating the events, we
analyse our “pseudo” data with the χ2 function defined by

χ2
MiniBooNE =

Ne+Nµ∑
i,j=1

(Di − Pi)M−1
ij (Dj − Pj) (3.51)

where:

• Ne is the number of the energy bins related to the observed electron neutrino CCQE
events;

• Nµ is the number of the energy bins related to the observed muon neutrino CCQE
events;

• Di is the element of a vector D that contains Ne + Nµ entries. The first Ne entries
correspond to the number of observed electron neutrino CCQE events in each of
the Ne energy bins. The followed Nµ entries correspond to the number of observed
muon neutrino CCQE events in each of the Nµ energy bins;

• Pi is the element of a vector P that contains Ne entries of our predicted signal Si
plus the estimated background Bi for the electron neutrino events, followed by Nµ

entries of the estimated muon neutrino events Mi at MiniBooNE detector;

• M−1
ij is the inverse of the total (Ne + Nµ) × (Ne + Nµ) covariance matrix Mij,

which includes all systematic and statistical uncertainties for the predicted events
at vector P , and bin-to-bin systematic correlations.

The information about the number of the energy bins, the full content of the vectorD, and
the estimated electron neutrino background Bi as well as muon neutrino CCQE events
Mi presented in vector P were given by MiniBooNE collaboration at Ref. [139]. The
covariance matrix Mij must be obtained from vectors D and P and from the available
fractional systematics-only covariance matrix also given by the collaboration at Ref. [139].

To derive Mij, we followed the step-by-step description available in Ref. [142]. We
are going to define the fractional systematics-only covariance matrix asMfrac

kl . It consists
of a (Ne + Ne + Nµ) × (Ne + Ne + Nµ) block matrix which has the form (full νµ → νe
conversion, νe BG, νµ), where
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Figure 3.6: Color scheme to collapse the matrixMsys+stat (left) into the matrixM (right)
by overlapping blocks with the same color. Observe that the final matrix M is divided
in the sub-blocksMee,Mµµ,Meµ andMµe, which will be useful in the performance of
electron neutrino appearance analysis.

• full νµ → νe conversion: full νe transmutation events from νµ flux. It consists of
the initial νµ a hundred percent converted in νe and then reconstructed and selected
according to νe selection cuts;

• νe BG: estimated background Bi for the electron neutrino events.;

• νµ: estimated muon neutrino CCQE events Mi.

First, we need to scale the matrixMfrac
kl bin-by-bin to include the conversion proba-

bility correspondent to our signal. The resulting matrix M sys
kl is given by:

Msys
kl =Mfrac

kl · (P ′k · P ′l ), (3.52)

with k, l = 1, ...(Ne +Ne +Nµ). The vector P ′ contains Ne entries of our signal events Si,
followed by Ne entries of the estimated electron neutrino background Bi and Nµ entries
of the estimated νµ events Mi. Note that while P ′ has dimension (Ne +Ne +Nµ), P has
dimension (Ne +Nµ).

The statistical error from our signal prediction is included by adding the elements Si
to the diagonal elements of theMsys

k′l for k
′ = 1, ..., Ne:

Msys+stat
k′l =Msys

k′l + δk′lP
′
k′ (3.53)

Finally, we need to collapse the matrixMsys+stat
kl intoMij and invert it toM−1

ij . In
order to collapse Msys+stat

kl , we follow the color pattern presented in Figure 3.6, where
we have Msys+stat in the left and M in the right. Each block with the same color has
the same dimension. The collapse of the matrix M sys+stat means to overlap the blocks
with the same color by summing the elements with the correspondent positions among
the blocks.
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Once we obtained the correct covariance matrix to perform our analysis, we want to
select the portion of the χ2 function that is related with the electron neutrino sample.
Here, we are ultimately interested in the region of the parameter space where the impact
of the new physics on νµ-disappearance is very small, thanks to strong bounds from other
experiments, discussed in Sec. (3.3.4). Hence, the only impact of the νµ part of the
data is to provide information concerning the neutrino flux and the neutrino scattering
parameters. In other words, we are interested in gauging the impact of fitting the νe and
ν̄e appearance data assuming the same new physics does not impact the νµ and ν̄µ data. In
order to achieve this, we followed the prescription, discussed in Appendix E.4 of Ref. [143],
of considering only the contribution of electron neutrino and antineutrino events (signal
and background) in the fit, along with an extra component related to the uncertainty
in the overall normalization of the spectrum. To do this, we define the appearance χ2

app

function as:

χ2
app = χ2 − C (3.54)

where χ2 contains all the information of matrix M and C = (Dµ − Pµ)M−1
µµ(Dµ − Pµ)

includes only the systematic and statistical errors among muon neutrino events. The
sub-block matrix Mµµ is defined in Figure 3.6 (purple sub-block). The quantity χ2

app is
what we consider as a final result to our analysis and removes the “pure” muon neutrino
correlations, although is important to mention that correlation among electron an muon
neutrino events is still taken into account in our MiniBooNE appearance analysis. We
will use the minimum value of the χ2 in order to gauge the goodness-of-fit, using the 11
bins to compute the number of degrees of freedom.

For the neutrino-mode data, our best-fit 3+1 oscillation spectrum (green histogram),
in bins of Eν , is depicted in Fig. 3.7, along with the excess data published by the collabo-
ration; the best-fit point for the oscillation analysis is

(
sin2 2θ, ∆m2

)
=
(
0.83, 0.036 eV2

)
and the minimum value of χ2 is χ2

min = 9.46. Given the eleven bins we included in our anal-
ysis (and hence nine degrees of freedom), we conclude that 3+1 oscillations are a good fit
to the MiniBooNE neutrino data, as expected. The allowed regions of the (sin2 2θ,∆m2)

parameter space match very well those published by the MiniBooNE collaboration. We
obtain similarly satisfactory results with the MiniBooNE antineutrino-mode data. With
this agreement, we are confident we are capable of faithfully reproducing the data-analysis
of MiniBooNE well enough to repeat the procedure for the heavy-neutrino decay hypoth-
esis.

We generate neutrino event spectra for each set of decay parameters (|Uµ4|2, gm4)

and attempt to fit them to the MiniBooNE data, using a χ2-fit. The best-fit spectra to
neutrino-mode data, in the case of Dirac and Majorana neutrinos are depicted, respec-
tively, in black and blue in Fig. 3.7.

For both neutrino-mode and antineutrino-mode data, the best fit point falls in the
region where the decay is relatively slow. Hence, to zeroth order, a lower-energy ν4 decay
more often than a higher-energy ν4. For the neutrino mode, we estimate the goodness-
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Figure 3.7: Best-fit νe spectra at MiniBooNE, neutrino-mode, as a function of Eν for the
oscillation hypothesis and for the different heavy-neutrino decay scenarios discussed here.
The data points are from the MiniBooNE collaboration report, presented in Ref. [61].
The last bin corresponding to [1.5, 3.0] GeV is not shown here.

of-fit by comparing χ2
min=11.08 (11.56) in the Dirac (Majorana) cases with nine degrees

of freedom and conclude the fit is acceptable. For the antineutrino-mode, we estimate
the goodness-of-fit by comparing χ2

min=7.71 (6.66) in the Dirac (Majorana) cases with
nine degrees of freedom and conclude the fit is also acceptable. The quality of these fits
is similar to that of the oscillation fit. The allowed regions of the parameter space are
depicted in Figs. 3.8 (neutrino mode), 3.9 (antineutrino mode), and 3.10 (neutrino and
antineutrino modes combined).

Unlike the LSND case, as advertised, the results of the two decay scenarios are similar
for roughly similar values of |Uµ4|2. There is no obvious factor of two map between the
Dirac and Majorana hypotheses, especially in the case of the antineutrino mode. This
can be understood from the following. For the Majorana case, the channels which can
in principle contribute to the observed event rates, for both neutrino and antineutrino
runnings, are νµ → νe, νµ → ν̄e, ν̄µ → νe and ν̄µ → ν̄e (keeping in mind the facts that there
is wrong-sign contamination2 in both the fluxes and that the MiniBooNE detector cannot
distinguish an e− from an e+). For the Dirac neutrinos, the helicity-flipping channels
are irrelevant. For Majorana neutrinos, in the case of neutrino-running, the wrong-sign
contamination in the neutrino flux is tiny and therefore, there is negligible ν̄µ → νe or
ν̄µ → ν̄e contribution to the event rates even if the transition probabilities for the helicity-
flipping channel in Eq. (3.29) is comparable to the helicity-conserving one Eq. (3.28). For
the antineutrino running, all four channels are relevant as the wrong-sign contamination
in the antineutrino fluxes is rather large. In addition to the above arguments, one needs
to take into account that the helicity-flipped daughter neutrinos peak softly; and the

2Presence of ν̄µ in νµ-flux and νµ in ν̄µ-flux.
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Figure 3.8: Allowed regions of the (|Uµ4|2, gm4) parameter space when the heavy-neutrino
decay hypothesis is matched against the MiniBooNE neutrino-mode data assuming Ma-
jorana (left) or Dirac neutrinos (right). The dots indicate the best-fit-point and the lines
represent the 99% (solid), 95% (dashed) and 68% (dotted) C.L. curves.

scattering cross-sections are different for neutrinos and antineutrinos. Thus, although
GDirac = 2GMajorana

+ , the Majorana case surplus decay channels and/or increased scattering
cross-sections balance-out the situation and ultimately, we observe that similar values of
the parameters yield similar-quality fits for the Majorana and Dirac hypothesis, especially
in the case of antineutrino-mode data.

3.3.3 LSND and MiniBooNE Combined

Next, we evaluate how well the heavy-neutrino decay hypothesis fits both LSND and
MiniBooNE data by summing the χ2

MiniBooNE and `LSND obtained in the two indepen-
dent analyses. The LSND-only and MiniBooNE-only allowed regions of the parame-
ter space are depicted in Fig. 3.11 to facilitate comparisons, along with the combined
LSND+MiniBooNE allowed regions of the parameter space. The combined best-fit point,
for the Dirac-neutrino scenario, is at (|Uµ4|2, gDm4) = (0.063, 1.17 eV) and χ2

min = 45.33.
For 31 degrees of freedom (11+11+11-2), we estimate a p-value of several percent, which
we deem to be reasonable. The event rates corresponding to the combined best-fit, for
the Majorana-neutrino case are depicted in Figs. 3.3, for LSND (gold color) and 3.7,
for MiniBooNE (neutrino-mode) (magenta). Note that the best-fit slightly undershoots
the LSND data, and slightly overshoots those from MiniBooNE. The situation of the
Majorana-neutrino scenario is similar; the quality of the fit is a little worse: χ2

min = 48.34.

3.3.4 Disappearance searches: KARMEN and MINOS/MINOS+

Among the null-results presented in muon neutrino disappearance searches, the experi-
ments KARMEN and MINOS/MINOS+ offer the most restrictive results in the parameter
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Figure 3.9: Allowed regions of the (|Uµ4|2, gm4) parameter space when the heavy-neutrino
decay hypothesis is matched against the MiniBooNE antineutrino-mode data assuming
Majorana (left) or Dirac neutrinos (right). The dots indicate the best-fit-point and the
lines represent the 99% (solid), 95% (dashed) and 68% (dotted) C.L. curves

.

space of interest. We will briefly comment about the KARMEN and MINOS/MINOS+
experimental features and their impact in the analysis of the heavy-neutrino decay hy-
pothesis.

The Karlsruhe Rutherford Medium Energy Neutrino, or KARMEN, ran at the spal-
lation neutrino source ISIS of the Rutherford Laboratory in the UK. The experiment
impinges 800 MeV protons on a water-cooled Ta−D2O target where π+ per incident
proton are produced. These π+ are stopped completely and decay with a lifetime of
τπ = 26 ns within the heavy target producing µ+ and νµ. The µ+ produced also de-
cays at rest within the target with a lifetime τµ = 2.2 µs giving e+, νe, ν̄µ. Due to this
large time separation the νµ induced events can be cleanly separated from the ν̄µ or νe
induced events. The ν̄µ and νe from the muon decay have a continuous spectra with the
endpoint energy of 52.8 MeV. The data set corresponds to the experimental run from
February 1997 to March 2001 [144], which gives a total of Nν = 2.71× 1021 neutrinos for
each flavor. The KARMEN detector consists of a liquid scintillation calorimeter situated
at a mean distance of 17.7 m from the ISIS target and has a high energy resolution of
11.5%/

√
E (MeV). KARMEN observed a total of 15 inverse beta decay events compared

against a background expectation of 15.8. Thus, it observed a null result for the ν̄µ → ν̄e
oscillations for L/Eν ∼ 0.3− 0.9 m/MeV.

The analysis of the KARMEN data for the heavy-neutrino decay scenario is presented
in Ref. [126] for both Dirac and Majorana case. The results were compiled in Fig. 3.11.
KARMEN data set put constraints on the helicity-conserving ν̄µ → ν̄e decay channel as
the events due to the helicity-flipping νµ → ν̄e channel are not included in this sample
due to a precise information regarding the timing of the events.

MINOS [145] is a long-baseline superbeam experiment based at Fermilab. The source
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Figure 3.10: Allowed regions of the (|Uµ4|2, gm4) parameter space when the heavy-
neutrino decay hypothesis is matched against the combined MiniBooNE neutrino-mode
and antineutrino-mode data assuming Majorana (left) or Dirac neutrinos (right). The
dots indicate the best-fit-point and the lines represent the 99% (solid), 95% (dashed) and
68% (dotted) C.L. curves.

of neutrinos is the NuMI beam facility at Fermilab [146]. The experimental setup consists
of a 1 kton near detector situated 1.04 km downstream and a 5.4 kton far detector situated
735 km away, on-axis in the Soudan underground laboratory. The primary goal of the MI-
NOS experiment was to confirm, with an accelerator-based νµ-beam, the evidence for νµ-
disappearance first seen in atmospheric experiments, measure the oscillation parameters
sin2 2θ23 and |∆m2

32|, and look for the subleading long-baseline νe-appearance signal. For
these purposes, MINOS looked at charged-current νµ-disappearance and νe-appearance
events in both neutrino and antineutrino modes [147]. It also measures neutral current
events that are helpful in sterile-neutrino searches. Initially, MINOS operated with the
low-energy tune of the NuMI beam that peaks at neutrino energies around 3 GeV. This
was followed by running, referred to as MINOS+, with the medium-energy tune of the
NuMI beam, where the flux peaks at neutrino energies around 7 GeV. The most recent
sterile neutrino searches were presented in [86]. These results correspond to an exposure
of 10.56× 1020 POT for MINOS and 5.80× 1020 POT for the MINOS+ experiment. As-
suming the neutrino mass-eigenstates are stable, for m4 � 10 eV, the collaboration claims
that the data constrain |Uµ4|2 < 2.3 × 10−2 at the 90% C.L. Here, we take this result at
face value and apply it to the heavy-neutrino decay scenarios of interest.

Strictly speaking, the analysis presented in [86] does not apply if the ν4 is unstable,
for two reasons. One was already discussed in Sec. 3.2. If one ignores the daughters of
the neutrino decay, the νµ survival probability depends on the ν4 lifetime, see Eq. (3.37).
However, the difference between a stable (Γ4L � 1) and unstable ν4, as far as this
contribution is concerned, is proportional to |Uµ4|4, a factor |Uµ4|2 smaller than the leading
contribution. Since MINOS(+) is sensitive to |Uµ4|2 values of order 10−2, the fact that
ν4 can decay is irrelevant for this contribution to the disappearance analysis. The other
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Figure 3.11: Allowed regions at 99% (lighter purple), 95% (medium purple) and 68%
(darker purple) C.L. of the (|Uµ4|2, gm4) parameter space when the heavy-neutrino decay
hypothesis is matched against the combined LSND data and MiniBooNE neutrino-mode
and antineutrino-mode data assuming Majorana (left) or Dirac neutrinos (right). The
dots indicate the best-fit-point. The region to the right of the vertical line is excluded by
MINOS+ at the 90% C.L. [86]. The green shaded region on the top-right of the green
line is excluded by KARMEN at the 99% C.L.

potential impact of the decay is that the daughter νe of the ν4 decay can oscillate into
a νµ by the time it reaches the far detector. This extra contribution to the νµ survival
probability is, relative to the leading |Uµ4|2-effect, suppressed by |Ue3|2 ∼ 0.02 and hence
very small (see Sec. 1.2.1).

For the reasons discussed above, we take the constraint from the νµ disappearance
data to be |Uµ4|2 < 2.3 × 10−2 at the 90% C.L. for all values of gm4 of interest. This is
represented by a vertical line in Fig. 3.11. This constraint rules out the region of parameter
corresponding to small gm4 but leaves behind a healthy portion of the parameter space,
including values of gm4 small enough that the decay of ν4 is not necessarily prompt for
the energies of interest. Since the Dirac hypothesis points to relatively smaller values of
|Uµ4|2, the allowed region of parameter space is “larger” in this case.

One final note before proceeding. Given that, for large gm4, we require |Uµ4|2 .
10−2 (and independent of gm4), the bounds from meson leptonic decays on g and |Uµ4|2,
discussed in Sec. 3.2.1, translate into gm4 . 1 keV, saturated as m4 approaches 1 MeV.

Finally, we joined the null-disappearance results obtained by MINOS and KARMEN
with the appearance results by LSND and MiniBooNE in one combined fit. The analysis
was done by summing the χ2 functions of LSND, MiniBooNE and KARMEN and adding
an penalty factor of χ2

penalty = 4.6 (|Uµ4|2/2.3× 10−2)
2 to describe the MINOS/MINOS+

constraint. The combined LSND+MiniBooNE+KARMEN+MINOS allowed regions of
the parameter space are shown in Fig. 3.12. The combined best-fit point for Dirac case
is at (|Uµ4|2, gDm4) = (0.0086, 3.41 eV) with χ2

min = 56.42 and for Majorana case is at
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(|Uµ4|2, gMm4) = (0.0086, 2.93 eV) with χ2
min = 58.45. Considering we have 40 degrees

of freedom (11+11+11+9-2), we estimate a reasonable fit for both physics scenarios.

3.3.5 SBN

Finally, we want to explore the potential of the Short-Baseline Neutrino (SBN) Program
(see Sec. 2.2) to test the heavy-decay neutrino model scenarios discussed here. Accord-
ing to the proposal [111], the SBN Program is designed to address several anomalies in
neutrino physics and will test, with the most sensitivity, the oscillation-interpretation to
LSND and MiniBooNE data.

We performed a sensitivity analysis considering only the neutrino-mode running for the
BNB. The decay rates for heavy-neutrino decay in SBN have the same format of Eq. 3.46
and Eq. 3.48, and all the components of SBN signal and background are described in
Sec. 2.2 as well as the χ2

SBND function. We are considering only the νe-appearance channel
in order to estimate the sensitivity of the SBN Program. The uncertainty related to the
flux normalization was set to 15%.

The sensitivity of the SBN Program is depicted in Fig. 3.12. The regions of the
parameter space preferred by combined LSND and MiniBooNE are also depicted in order
to facilitate comparisons. The SBN program can definitively test the heavy-neutrino to
the LSND and MiniBooNE data.

Figure 3.12: Allowed regions at 99% (lighter purple), 95% (medium purple) and 68%
(darker purple) C.L. of the (|Uµ4|2, gm4) parameter space when the heavy-neutrino decay
hypothesis is matched against the combined LSND, MiniBooNE and KARMEN data and
MINOS constrains assuming Majorana (left) or Dirac neutrinos (right). The dots indicate
the best-fit-point. In the same context, the orange regions indicate the sensitivity of the
SBN Program at 99% (solid line), 95% (dashed line) and 68% (dotted line) C.L. for
Majorana (left) and Dirac neutrinos (right).
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Sensitivity to non-zero neutrino decay effect on SBN

Assuming the considered hevay-neutrino decay model has a positive signal in SBN Pro-
gram, we want to investigate now the capability of the experiment to measure the decay
parameters (|Uµ4|2, gm4). To perform this analysis, we generated neutrino events in the
same “experimental” configuration of SBN previous sensitivity analysis (see Sec. 2.2), but
assuming now the data is given by non-zero values to (|Uµ4|2, gm4) parameters. For con-
venience, we will set the true values of the parameters at the correspondent best-fit points
from LSND, MiniBooNE, KARMEN and MINOS combined analysis for Majorana and
Dirac cases. The results we obtained are shown in Figure 3.13: we have the allowed
regions consistent with the computed events at the best-fit point for both Majorana (left
panel) and Dirac (right panel) assumptions at 68.3% of C. L. (dotted curve), 95% of C. L.
(dashed curve) and 99% of C. L. (solid curve).

Figure 3.13: SBN allowed regions for non-zero decay scenario parameters (|Uµ4|2, gm4) at
99% (solid line), 95% (dashed line) and 68% (dotted line) C.L. for Majorana (left) and
Dirac neutrinos (right). The dots indicate the best-fit-point from the LSND, MiniBooNE,
KARMEN and MINOS combined analysis.

3.4 Conclusions

The excess of νe- and ν̄e-candidate events at MiniBooNE and LSND remains unexplained.
The, arguably, simplest solution – 3+1 neutrino-oscillation with a new mass-squared
difference around 1 eV2 – is, however, severely constrained. If these data are indeed
pointing to more new physics in the neutrino sector, it is likely that the new physics
contains more ingredients than new neutrino mass-eigenstate that mix slightly with the
active neutrinos. Here, we explored the hypothesis that there is a new neutrino mass-
eigenstate ν4 and a new very light scalar particle φ. ν4 and φ interact in such a way
that ν4 → νeφ. Here, the excess of νe- and ν̄e-candidate events at MiniBooNE and LSND
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are the daughter νe and ν̄e from ν4 and ν̄4 decay. This hypothesis was first proposed in
Ref. [127] in order to address the LSND anomaly.

We find a reasonable fit to the data of MiniBooNE and LSND, albeit the quality of
the fit to only MiniBooNE and LSND data is not as good as the one obtained with the
3+1 neutrino-oscillations hypothesis. The heavy-neutrino decay hypothesis, however, can
cleanly evade data from νµ-disappearance searches, which constrain |Uµ4|2 . 10−2, and
is immune to searches involving νe-disappearance. We find that precision measurements
of meson leptonic decays can also be satisfied as long as 1 MeV & m4 & 10 keV. The
SBN program at Fermilab should be able to definitively test the heavy-neutrino decay
hypothesis. We considered two different decay scenarios, one with Majorana neutrinos,
one with Dirac neutrinos. The MiniBooNE and LSND data are such that both models fit
the data with very similar efficacy.

While the heavy-neutrino decay hypothesis explored here is not an excellent fit to both
data sets – especially the LSND data – it seems to provide an interesting possibility. We
hope the results presented here will inspire the collaborations – they are the only ones
capable of performing a proper fit to their data – to investigate this possibility.

Other manifestations of the sterile-neutrino decay hypothesis have been, very recently,
discussed in the literature, including [148, 149, 150]. The work presented here share several
similarities with these efforts but we explore, for the most part, a different region of the
– very large – space of heavy-neutrino decay models.
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Chapter 4

Final Conclusions

The short-baseline experiments are very interesting tools to explore physics beyond the
three neutrino oscillation scenario and beyond Standard Model. The introduction to a
sterile neutrino in the neutrino mixing, enables a new oscillation phase that can handle
with the short-baseline anomalies. However, severe constraints from muon neutrino dis-
appearance in the short-baseline experiments challenge the consistence of the dubbed 3+1
model. In this Thesis, we look for models that also predict sterile neutrinos, but in other
contexts.

First, we search for the manifestation of large extra dimension in the neutrino mixing.
As right handed neutrinos are Standard Model singlets, they can freely propagate in the
extra, compacted dimension. The consequences of having a 5-dimensional fermion field
is the production of an infinite number of neutrino mass terms. These new mass states
mix with the active flavors and interfere in the usual oscillation. We showed that the
Short-Baseline Neutrino Program can entirely test the presence of large extra dimension
in neutrino oscillations.

Second, we postulated that the fourth neutrino mass eigenstate of the 3+1 model
mixing is unstable and decay into the three usual light neutrinos plus a masseless scalar.
We added an effective Yukawa interaction that leads this decay and test the model under
the data of the LSND and MiniBooNE short-baseline detectors. We assume Dirac or Ma-
jorana nature for the neutrinos. We obtained reasonable fits for both cases and evaluate
the constraints from precise leptonic decay measurements and from muon neutrino dis-
appearance searches. We obtained a healthy region of parameters from the decay model
that are consistent and can address the short-baseline anomalies. Finally, we could see
that the SBN can fully test the allowed parameter region from decay model in the future.
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