
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Valdomiro Luis Scannapieco Neto

Failure Detectors: Testbed and Comparative Study

Detetores de Falhas: Plataforma de Testes e Estudo
Comparativo

CAMPINAS
2021

Valdomiro Luis Scannapieco Neto

Failure Detectors: Testbed and Comparative Study

Detetores de Falhas: Plataforma de Testes e Estudo Comparativo

Dissertação apresentada ao Instituto de
Computação da Universidade Estadual de
Campinas como parte dos requisitos para a
obtenção do título de Mestre em Ciência da
Computação.

Dissertation presented to the Institute of
Computing of the University of Campinas in
partial fulfillment of the requirements for the
degree of Master in Computer Science.

Supervisor/Orientador: Prof. Dr. Luiz Eduardo Buzato

Este exemplar corresponde à versão final da
Dissertação defendida por Valdomiro Luis
Scannapieco Neto e orientada pelo Prof. Dr.
Luiz Eduardo Buzato.

CAMPINAS
2021

Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Valdomiro Luis Scannapieco Neto

Failure Detectors: Testbed and Comparative Study

Detetores de Falhas: Plataforma de Testes e Estudo Comparativo

Banca Examinadora:

• Prof. Dr. Luiz Eduardo Buzato (Orientador)
Universidade Estadual de Campinas - UNICAMP

• Profa. Dra. Regina Lucia de Oliveira Moraes
Universidade Estadual de Campinas - UNICAMP

• Profa. Dra. Eliane Martins
Universidade Estadual de Campinas - UNICAMP

A ata da defesa, assinada pelos membros da Comissão Examinadora, consta no
SIGA/Sistema de Fluxo de Dissertação/Tese e na Secretaria do Programa da Unidade.

Campinas, 21 de janeiro de 2021

Acknowledgements

To my family, who always supported me and helped me to reach my goals.
To Prof. Dr. Luiz Eduardo Buzato for the opportunity and for all the support and
participation in this work.

Resumo

Há quase trinta anos atrás, entre 1991-1992, Chandra, Toueg e Hadzilacos introduziram
o conceito de detetores de falhas e mostraram como usá-los para resolver consenso em
sistemas distribuídos assíncronos sujeitos a falhas parciais. Durante os anos seguintes, a
abstração de detetores de falhas provou ser uma ferramenta essencial para a engenharia
de sistemas distribuídos de alta disponibilidade. Resumidamente, os detetores de falhas
representam uma ferramenta elegante que permite aos projetistas de sistemas distribuí-
dos fatorar as suposições de tempo usadas para detetar falhas em algoritmos de consenso
distribuído. Atualmente, um número significativo de algoritmos de deteção de falhas já
foi publicado; cada um deles trazendo, supostamente, uma melhor solução para deteção
de falhas; geralmente com base em uma avaliação ad hoc do algoritmo proposto. A falta
de um benchmark ou plataforma de testes comum para detetores de falhas representa um
obstáculo extra para engenheiros de sistemas quando eles precisam escolher um detetor
de falha adequado para sua aplicação. Nesse contexto, parece razoável fazer a seguinte
pergunta: qual o melhor detetor de falhas para uma determinada aplicação, executada
em um determinado sistema distribuído? Neste trabalho, uma aplicação é um sistema
de replicação ativa desenvolvido sobre transmissão de difusão totalmente ordenada base-
ada em consenso (DTOC). DTOC é o denominador comum para um grande número de
aplicações reais. Chen, Toueg e Aguilera (CTA) propuseram métricas para caracterizar a
qualidade do serviço prestado por um detetor de falhas. As métricas quantificam: i) quão
rápido um detetor de falhas deteta falhas reais e ii) quão bem ele evita falsas deteções.
Esta dissertação propõe, implementa e avalia uma plataforma de testes para detetores
de falhas com base nas métricas amplamente aceitas de CTA. Em seguida, utiliza essa
plataforma para buscar uma resposta para a questão feita acima. As contribuições desta
pesquisa são: (i) a proposta de um método experimental para avaliar uniformemente o
comportamento dos detetores de falhas, (ii) a implementação de uma plataforma de tes-
tes para apoiar o método, e (iii) um estudo comparativo de quatro detetores de falhas
conhecidos.

Abstract

Almost thirty years ago, during the years of 1991-1992, Chandra, Toueg and Hadzilacos
introduced the concept of failure detectors and showed how to use them to solve consensus
in asynchronous distributed systems subject to partial failures. During the following
years, the failure detector abstraction proved to be a key tool for the engineering of
highly available distributed systems. Briefly, failure detectors represent an elegant tool
that allows designers of distributed systems to factor out the timing assumptions used to
detect failures in distributed consensus algorithms. Today, a substantial number of failure
detection algorithms have already been published; each one of them supposedly bringing
a better solution for the detection of failures; usually based on an ad hoc assessment of
the failure detector proposed. The lack of a benchmark or common testbed for failure
detectors represents an extra hurdle for system engineers when they have to choose a
failure detector that is well suited for their application. In this context, it seems reasonable
to ask the following question: what is the best failure detector for a given application,
executed on a given distributed system? In this work, an application is an active replicated
system developed atop a consensus-based total order broadcast (CTOB). CTOB is the
common denominator for a large number of practical applications. Chen, Toueg, and
Aguilera (CTA) have proposed metrics to characterize the quality of service provided by
a failure detector. The metrics quantify: i) how fast a failure detector detects actual
failures and ii) how well it avoids false detections. This dissertation proposes, implements
and evaluates a testbed for failure detectors based on the extensively accepted CTA
metrics. Then, it uses the testbed to seek an answer for the aforementioned question.
The contributions of the research are: (i) the proposal of an experimental method to
uniformly assess the behavior of failure detectors, (ii) the implementation of a testbed
to support the method, and (iii) a comparative evaluation of four well-known failure
detectors.

Glossary

• λM: Average mistake rate (accuracy quality of service metric).

• ACT: Aguilera et al. failure detector [14].

• CTA: Chen et al. failure detector [30].

• CTOB: Consensus-based total order broadcast.

• DTOC: "Difusão totalmente ordenada baseada em consenso".

• FAPESP: "Fundação de Amparo à Pesquisa do Estado de São Paulo".

• FD: Failure detector.

• FLP: Fischer, Lynch and Paterson [45].

• IP: Internet protocol.

• LAN: Local area network.

• LFA: Larrea et al. vanilla failure detector [59].

• LFAe: Larrea et al. epoch failure detector [73].

• LG: Load generator.

• LSD: "Laboratório de Sistemas Distribuídos".

• ms: milliseconds.

• NTP: Network Time Protocol.

• QoS: Quality of Service.

• RTT: Round-Trip Time.

• TCP: Transmission Control Protocol.

• TDm: Detection time (speed quality of service metric).

• TEm: Stabilization time (speed quality of service metric).

• TG: Good period duration (accuracy quality of service metric).

• UDP: User Datagram Protocol.

• WAN: Wide area network.

Contents

1 Introduction 11

2 Distributed Systems 14
2.1 Definition . 14
2.2 Consensus . 15
2.3 Impossibility of Consensus . 15

3 Failure detectors 17
3.1 Definition . 17
3.2 Quality of service . 19
3.3 Failure detectors studied . 21

3.3.1 Larrea et al. vanilla (LFA) . 21
3.3.2 Larrea et al. epoch (LFAe) . 23
3.3.3 Aguilera et al. (ACT) . 25
3.3.4 Chen et al. (CTA) . 25
3.3.5 Algorithms complexity . 29

4 A Testbed for Failure Detectors 30
4.1 Load generator . 31
4.2 Treplica . 32
4.3 Failure detector . 32
4.4 Opponent . 33

5 Comparative Failure Detection 35
5.1 Materials and methods . 35

5.1.1 Platform . 35
5.1.2 Software . 36
5.1.3 Data Management . 36

5.2 Experiments . 40
5.2.1 FD speed assessment . 40
5.2.2 FD accuracy assessment . 41
5.2.3 Consensus performance assessment 43
5.2.4 FD δ . 43

5.3 Results . 43
5.3.1 Bootstrapping . 44
5.3.2 FD speed results . 45
5.3.3 FD accuracy results . 45
5.3.4 Consensus performance results . 47

6 Related Work 51

7 Conclusion 54

Bibliography 56

A Testbed Manual 63

11

Chapter 1

Introduction

Distributed consensus is a fundamental problem that is at the core of several fault-tolerant
distributed applications. A system is fault-tolerant if it maintains itself available in the
presence of partial component failures. Availability is only achievable via redundancy.
A well-established form of redundancy is replication, that is, the maintenance of several
functionally equivalent copies (replicas) of a critical component.

Unfortunately, merely having several replicas of a certain component is not enough to
achieve availability. To be useful the replicas must work with each other by making each
correct replica act the same. If all replicas start identical, are deterministic and go through
the same computational steps, then any correct replica can accept inputs and provide the
outputs. Solving replication, therefore, is reduced to feeding all replicas exactly the same
inputs and in the same order. In brief, all replicas have to agree on what is the next input
they are going to consume. So, agreement, or consensus, is a key algorithmic component
of replication.

Suppose a set of processes that can propose values. A consensus algorithm ensures
that a single one among the proposed values is chosen. Consensus is trivially solvable in
the absence of failures, but is very difficult to solve in asynchronous distributed systems
prone to failures. In fact, Fischer, Lynch and Paterson (FLP) [45] proved that consensus
is impossible to solve in an asynchronous system - system in which there is no bound
on the time it takes for either a process to execute a computation step or for a message
to go from its sender to its receiver - subject to a single process failure. FLP’s proof
formalizes the idea that it is not possible to determine whether a process has indeed
failed or is just very slow. To circumvent the FLP impossibility, Chandra and Toueg [28]
created an abstraction, called failure detector (FD), which encapsulates the minimum
synchrony required to achieve consensus in asynchronous distributed systems. A FD is
often implemented by an object local to each process (on the same computer) that runs
a failure-detection algorithm in conjunction with its counterparts at other processes. It
provides some information on which processes have crashed, typically given in the form
of a list of suspects, that is not always up-to-date or correct: a failure detector may
take a long time to start suspecting a process that has crashed, and it may erroneously
suspect a process that has not crashed (in practice this can be due to message losses and
delays). It is important to note that the mistakes made by unreliable failure detectors
should not prevent any correct process from behaving according to its specification, even

12

if that process is erroneously suspected to have crashed by all the other processes.
As depicted in section 3.1, Chandra and Toueg specifies FDs in terms of their even-

tual behavior (e.g., a process that crashes is eventually suspected). Such specifications
are appropriate for asynchronous systems, in which there is no timing assumption what-
soever. However, as highlighted by Chen et al. [30], many applications have some timing
constraints, and for such applications, failure detectors with eventual guarantees are not
sufficient. In order to be useful, a failure detector has to be reasonably fast and accurate
and that’s why [30] propose a set of metrics for the Quality of Service (QoS) specifica-
tion of failure detectors (section 3.2). In general, these QoS metrics should be able to
describe the FD’s speed (how fast it detects a failure) and its accuracy (how well it avoids
mistakes).

Given that the literature offers a large set of FD algorithms, see chapter 6, it is essen-
tial to know which of them is the most suitable one for a certain application. Suitable not
only in terms of speed and accuracy but also in terms of complexity of implementation,
debugging and maintenance. The failure detector capable of delivering the application’s
required accuracy and speed for the least software engineering effort should be selected.
Gumerato [49], for instance, presents a comparative study of the implementation of well-
known failure detection algorithms on Local Area Network and shows no significant dif-
ference in the speed QoS of the studied algorithms. Therefore, based on this work results,
the simplest algorithm could be selected. This dissertation tackles the research problem
of how to select the best failure detector for building a highly available distributed appli-
cation. To solve the problem a method and testbed have been proposed, developed and
assessed. The assessment of the testbed is carried out by determining, out of four known
failure detector algorithms, which one is the best to implement a consensus-based (Paxos)
replicated application.

The contributions of this dissertation are three. Firstly, it proposes an experimental
method to uniformly assess the behavior of failure detectors (see chapter 4). Secondly,
based on the proposal, a testbed for failure detectors is implemented. The testbed is
designed to run on a commodity computer cluster and, when assessing FDs performance,
system engineers can: (i) check if the FD they want to assess is available in the testbed
and, if not, implement it in conformance with the expected interface, (ii) parameterize the
testbed to reproduce a specific network behavior and/or processes failures, (iii) couple the
FD under assessment with the appropriate FD δ, taking into account the average latency
of the network, (iv) configure a load generator and (v) run the experiments making use of
an active replication toolkit that implements Paxos. The testbed could represent a step
towards the increasing use of labscale environments for uniform FDs assessment, since it
provides researchers with a complete framework to assess failure detectors performance.
Thirdly, this work performs a comparative study of four known failure detection algo-
rithms with different detection mechanisms (the same algorithms adopted by Gumerato):
Larrea et al. [59] vanilla and epoch, Aguilera et al. [14], and Chen et al. [30]. We analyse
(i) their speed metrics (detection and stabilization time) on both crash-stop and crash-
recovery environments, (ii) their accuracy metrics (average mistake rate and good period
duration) on a failure-free environment with the testbed emulating distinct network con-
ditions and (iii) we assess how these different environment conditions influence consensus

13

using a consensus-based replication library. In terms of speed metrics, for instance, our
results concluded that, differently than Gumerato, there is a FD algorithm that performs
better than the others.

It is worth mentioning that, since the beginning of this work, we took a special care
with two important aspects of a research: data management and experiments automa-
tion (section 5.1.3). As recognized by FAPESP [9], the appropriate data management
facilitates the reproducibility of the results and allows the promotion of new research. In
addition, it helps to carry out new analyzes, with the execution of other tests or methods
of analysis. Regarding experiments automation, giving we dealt with a cluster of machines
and several possible experiment settings, this approach was essential to the progress of
the work.

14

Chapter 2

Distributed Systems

2.1 Definition

A distributed system is a collection of autonomous computing processes that communicate
and coordinate their actions via message exchanges and seek to achieve some form of
cooperation [46]. Processes are deterministic sequence of events, where an event can be
either an instruction execution or the sending/receiving of a message. This definition
leads to the following significant characteristics of distributed systems: concurrency of
processes, lack of a global clock and autonomous failure of processes [32]. One of the
most important differences between distributed and centralized systems is that the first
ones may tolerate partial failures, that is, failures of one or more components of the system
do not necessarily imply the failure of the whole system [44].

Distributed systems, hence, can be used to build highly available services. Avizienis
et al. [17] define availability as readiness for correct service and fault tolerance as avoid
service failures in the presence of faults. A way of building a highly available system out
of less available components is to use redundancy, so that the system can work even when
some of its parts are broken. A well-established form of redundancy is replication: the
maintenance of copies of data at multiple computers.

A general technique for replication, that prioritizes consistency and has been widely
adopted ([25], [51], [52], [63]), is active replication [68]. It’s a method that consists in
replicating data at different components and then applying the same set of operations to
all replicas in the same order. More precisely, all processes sharing the same state, called
replicas, behave as deterministic state machines: the transition relation is a function from
(state, input) to (new state, output). Basically, several processes that start in the same
state and see the same sequence of inputs will do the same thing, that is, end up in the
same state and produce the same outputs. Thus, in order to implement active replication,
we need to ensure that all replicas see the same inputs [58].

One of the most common ways of ensuring this is to employ total order broadcast [36].
Total order broadcast is a reliable broadcast communication abstraction which ensures
that all processes deliver the same messages in a common global order. Sometimes it’s
also called atomic broadcast, because the message delivery occurs as if the broadcast were
an indivisible “atomic” action: the message is delivered to all or to none of the processes
and, if the message is delivered, every other message is ordered either before or after this

15

message [26]. It’s known that total order broadcast is equivalent to consensus, explained
in section 2.2, in asynchronous systems [28, 38].

An asynchronous system, which corresponds to most of the actual distributed systems,
is characterized by the fact that there is no bound on the time it takes for either a process
to execute a computation step or for a message to go from its sender to its receiver.
That’s why these systems are usually called time-free systems [66]. In a synchronous
system, timing assumptions can be made and one shall assume that bounds exist. This
synchronous assumption allows us to use timeouts to detect process crashes [32].

2.2 Consensus

Consensus is a fundamental problem of distributed systems that is at the core of sev-
eral algorithms for fault-tolerant distributed applications such as atomic broadcast [45].
Basically, consensus allows processes to reach a common decision despite the failure of
some processes [28]. In this algorithm every correct process pi proposes a value vi and
all correct processes have to decide on some value v, in relation to the proposed values
[66]. The requirements of a regular consensus algorithm are that the following conditions
should hold for every execution of it [26]:

• Termination: Every correct process eventually decides on some value.

• Validity : If a process decides on v, then v was proposed by some process.

• Integrity : No process decides twice.

• Agreement : No two correct processes decide differently.

As highlighted by Lampson [58], consensus has more applications than only general
replicated state machines. It can also be used (i) in distributed transactions where all the
processes need to agree on whether a transaction commits or aborts and (ii) to elect a
leader of a group of processes without knowing exactly what the members are.

2.3 Impossibility of Consensus

Fischer, Lynch and Paterson (FLP) [45] prove the impossibility of solving both consensus
and atomic broadcast deterministically in an asynchronous system subject to even a single,
unannounced, process failure. Their proof involves showing that there is always some
continuation of the processes’ execution that avoids consensus being reached [32]. FLP’s
proof formalizes the idea that it’s not possible to determine whether a process has indeed
crashed or is just very slow.

To circumvent the FLP impossibility, previous research focused on the use of ran-
domisation techniques [31], on the definition of some weaker problems and their solutions
[16, 22, 24, 39] or on the study of several models of partial synchrony [38, 40]. Never-
theless, the impossibility of deterministic solutions to many agreement problems remains

16

a major obstacle to the use of the asynchronous model of computation for fault-tolerant
distributed computing [28].

Chandra and Toueg [28] propose an alternative approach to work around FLP and
to broaden the applicability of the asynchronous model of computation. Since this im-
possibility result stem from the inherent difficulty of determining whether a process has
actually crashed or is very slow, Chandra and Toueg propose to augment the asynchronous
model of computation with a model of an external failure detection mechanism that can
make mistakes. In particular, they introduce the concept of unreliable failure detectors
for systems with crash failures.

Failure detectors are the focus of this dissertation and will be covered in detail in the
next chapter.

17

Chapter 3

Failure detectors

3.1 Definition

A failure detector (FD) is a basic building block of distributed systems that are designed
to provide reliable and continuous services despite the failures of some of their components
[30]. The failure detector abstraction is an elegant way to solve consensus in a modular
manner by defining high-level properties that encapsulate synchrony assumptions [41]. A
FD can be seen as a distributed oracle that signals the ocurrence of processes’ failures
and is often implemented by an object local to each process (on the same computer) that
runs a failure-detection algorithm in conjunction with its counterparts at other processes.

A failure detector can be either reliable or unreliable. A reliable failure detector,
which requires a synchronous system, is always accurate in detecting a process’s failure
whereas an unreliable failure detector, which does not require a synchronous system, is
not necessarily accurate. Reliable failure detectors answer processes’ queries with either
Unsuspected or Failed, the latter meaning that the monitored process has indeed crashed,
whilst unreliable failure detectors answer queries with either Unsuspected or Suspected.
These results returned by unreliable failure detectors are hints, that may or may not
accurately reflect whether the process has actually failed [32]. It is important to note that
the mistakes made by unreliable failure detectors should not prevent any correct process
from behaving according to its specification, even if that process is erroneously suspected
to have crashed by all the other processes.

Chandra and Toueg [28] analyze the properties that a failure detector must have in
order to solve consensus and atomic broadcast in an asynchronous system. Classes of FDs
are formalized and classified according to the properties of completeness and accuracy.
Completeness requires that a failure detector eventually suspects every process that
actually crashed, whereas accuracy restricts the mistakes that a failure detector can
make. There are two degrees of completeness and four degrees of accuracy, resulting in
eight classes of FDs as shown in Figure 3.1 and listed below:

• Strong Completeness : eventually every process that crashes is permanently sus-
pected by every correct process.

• Weak Completeness : eventually every process that crashes is permanently suspected
by some correct process.

18

Figure 3.1: Eight classes of failure detectors defined in terms of accuracy and completeness
[28].

Figure 3.2: Failure detectors equivalence [28].

• Strong Accuracy : no process is suspected before it crashes.

• Weak Accuracy : some correct process is never suspected.

• Eventual Strong Accuracy : there is a time after which correct processes are not
suspected by any correct process.

• Eventual Weak Accuracy : there is a time after which some correct process is never
suspected by any correct process.

Regarding the accuracy properties, given that even the Weak Accuracy could be diffi-
cult to achieve (at least one correct process is never suspected), two weaker properties were
defined, requiring that strong accuracy or weak accuracy are only eventually satisfied.

Chandra and Toueg introduce the concept of reducibility among failure detectors: a
FD a is reducible to a FD b if there is a distributed algorithm that can transform b into
a. Basically, two failure detectors are equivalent if they are reducible to each other. By
employing the concept of reducibility, the equivalence shown in Figure 3.2 was proved,
reducing the eight classes of failure detectors to four (Figure 3.3) and identifying how
consensus could be solved for each one.

Figure 3.3: Four classes of failure detectors after reducibility [28].

19

In [27], Chandra et al. proves that �W is the weakest failure detector that can be
used to solve consensus in asynchronous systems with a majority of correct processes. In
the same work, it’s defined the class Ω, equivalent to �W, that acts as a leader elector by
providing a correct process as output. This class is essential to this work because the de-
veloped testbed is built using Treplica [73], an active replication toolkit, that implements
Paxos [56] as consensus algorithm and whose liveness is determined by Ω. The failure
detectors studied in this dissertation are detailed in section 3.3.

3.2 Quality of service

Chandra and Toueg specifies FDs in terms of their eventual behavior (e.g., a process that
crashes is eventually suspected). Such specifications are appropriate for asynchronous
systems, in which there is no timing assumption whatsoever. However, as highlighted
by Chen et al. [30], many applications have some timing constraints, and for such ap-
plications, failure detectors with eventual guarantees are not sufficient. In order to solve
consensus, for instance, it’s expected that the Ω associated with each replica will indicate
the leader for periods long enough for the resolution of consensus instances [58]. If con-
sensus cannot progress then the application built upon it will not progress as well. In this
work, we say that a FD (or leader elector) stabilizes when it indicates a leader for a long
enough period of time to guarantee consensus’s liveness.

Hence, in order to be useful, a failure detector has to be reasonably fast and accurate
and that’s why Chen et al. [30] propose a set of metrics for the QoS specification of failure
detectors. In general, these QoS metrics should be able to describe the FD’s speed (how
fast it detects a failure) and its accuracy (how well it avoids mistakes). Three primary
metrics were proposed [30] for the QoS of failure detectors:

• TD (detection time): the time interval between the crash of the process and the time
in which the failure detector starts to suspect the process in a permanent way; this
metric quantifies the delay of the failure detector.

• TM (mistake duration): the time the failure detector takes to correct a mistake; it
measures the time interval between an erroneous detection and its correction.

• TMR (mistake recurrence time): the time between two successive mistakes.

As it can be noted, TD quantifies the completeness, whereas TM and TMR quantify
the accuracy of a failure detector. Figures 3.4 and 3.5 illustrate the operational meaning
of the primary metrics. Consider a system of two processes p and q connected by a lossy
communication link and suppose that the failure detector at q monitors process p and
that q does not crash. Figure 3.4 shows how TD is computed by analysing when process
p crashes and when process q starts to suspect p permanently. Figure 3.5, on the other
hand, exemplifies TM and TMR. In this case process p never crashes, however, q can make
mistakes indicating p as suspected. Therefore, the output of the failure detector at q is
either S, "I suspect that p has crashed", or T, "I trust that p is up". A transition occurs

20

Figure 3.4: Detection time TD [30].

Figure 3.5: Mistake duration TM and mistake recurrence time TMR [30].

when the output of the FD at q changes: a S-transition occurs when the output at q
changes from T to S ; a T-transition occurs when the output at q changes from S to T.

In addition to the primary accuracy metrics TM and TMR, Chen et al. [30] also propose
four derived metrics:

• λM (average mistake rate): measures the rate at which a failure detector make
mistakes, i.e., it is the average number of S-transitions per time unit. This metric
is important to long-lived applications where each failure detector mistake (each
S-transition) results in a costly interrupt.

• PA (query accuracy probability): probability that the failure detector’s output is
correct at a random time. This metric is important to applications that interact
with the failure detector by querying it at random times. A Treplica process, for
instance, queries its FD periodically.

• TG (good period duration): measures the length of a good period. More precisely,
TG is a random variable representing the time that elapses from a T-transition to the
next S-transition. Many applications can make progress only during good periods -
periods in which the failure detector makes no mistakes.

• TFG (forward good period duration): this is a random variable representing the
time that elapses from a random time at which q trusts p, to the time of the next
S-transition. This random variable is a predictor of future behavior and, as in our
study we are mainly interested on what actually has happened, we have decided not
to compute it.

21

Figure 3.6: λM (average mistake rate) and TG (good period duration) [30].

Two of these metrics, λM and TG, are very relevant to the current work specially
when assessing the impact of FD’s accuracy on consensus. Consensus-based applica-
tions, like the replication library adopted to assess consensus performance in this work
(Treplica [73]), may rely on good periods to make progress and failure detector mistakes
can be costly. Figure 3.6 illustrates how both metrics work: TG indicates the time that
elapses from a T-transition to the next S-transition while λM is the average number of
S-transitions per time unit.

In large scale systems, maintaining QoS guarantees for failure detectors is a challenging
task due to size and geographical scalability [65]. In some situations, we cannot assume
that the probabilistic behavior of the network doesn’t change. For instance, a corporate
network may have one behavior during working hours and a completely different one
during lunch time or at night. Such networks require a failure detector that adapts to
the changing conditions, i.e., that dynamically reconfigures itself to meet some given QoS
requirements [30].

3.3 Failure detectors studied

This work assess four failure detectors (the same algorithms adopted by Gumerato [49]):
Larrea et al. [59] vanilla (LFA) and epoch (LFAe), Aguilera et al. [14] (ACT) and Chen
et al. [30] (CTA).

These algorithms were selected due to the fact that each of them focus on a different
failure detection strategy as described in the next sections. Besides that, originally, the
chosen algorithms belong to different classes of FDs as defined by Chandra and Toueg
[28] and mentioned in section 3.1. Larrea et al. [59] and Chen et al. [30] belong to Ω,
while Aguilera et al. [14] originally belongs to �S, although it was adapted to be an Ω in
this work.

3.3.1 Larrea et al. vanilla (LFA)

Larrea et al. vanilla (LFA) [59], algorithm 1, is the simplest algorithm studied. LFA
uses a mechanism of message broadcast and a mechanism of local timing that do not
depend upon any global clock synchronization mechanism. The goal of this FD is to
return to the upper-layer components a trusted process, by definition, the process with

22

Figure 3.7: LFA timing schema [49].

the lowest identifier. Each process has a unique system identifier, its id (line 2), which can
be ordered in a global and non-decreasing order. During the system initialization (line 3),
each process considers itself the system’s leader (lines 4 and 5) and starts to send messages
periodically to the other processes (line 17). When a process p receives a message from a
process q, whose id is lower than p’s id (line 8), p automatically considers q as the leader
(line 9). All processes follow the same logic and, this way, the process with the lowest
identifier will stabilize as the leader. After the election of a process q as the leader, only
q keeps sending periodical heartbeats (line 17). If a process p stops receiving messages
from the current leader, a new leader election process takes place, with p attempting to
be elected (lines 19 and 20).

Figure 3.7 illustrates this dynamic. The leader P1 sends periodical heartbeats to
processes P2 and P3 every δ units of time. At a certain moment, P3 stops receiving
P1 messages due to, for instance, a temporary network issue. After at most 2δ units of
time since the last P1 message received, P3 considers itself as leader and starts sending
heartbeats to the other processes in an attempt to be elected as the system leader. Even-
tually, P1 messages are delivered to P3 again that, in turn, recognizes P1 as leader and
stops broadcasting messages. The single timing parameter δ must be chosen carefully in
order to be a FD, at the same time, reasonably fast and accurate as portrayed in the QoS
section 3.2.

LFA presents message exchanges complexity of O(n), when a stable leader in is place,
and O(n2) during a leader election process.

23

Algorithm 1 Larrea et al. vanilla (LFA)
1: local process p variables
2: id, δ, leader, leaderTimestamp
3: upon initialization:
4: leader ← id
5: leaderTimestamp ← now
6: set timeout with δ time units
7: upon receive message mq:
8: if mq.id < leader then
9: leader ← mq.id

10: endif
11: if mq.id = leader then
12: leaderTimestamp ← now
13: endif
14: upon timeout δ:
15: set timeout with δ time units
16: if id = leader then
17: broadcast message mp = {id}
18: else if (now - leaderTimestamp) > δ then
19: leader ← id
20: broadcast message mp = {id}
21: endif

3.3.2 Larrea et al. epoch (LFAe)

This variation of the LFA algorithm, algorithm 2, was designed, implemented and used in
the work that presents Treplica [73], an active replication toolkit that implements Paxos
[56] as consensus algorithm. The motivation for creating a new FD came from the fact
that LFA vanilla doesn’t apply any stability mechanism for the elected leader, so that
any process that suspects it could initiate a new election process. That behavior is not
desirable because leader changes are costly and must be avoided whenever possible.

In order to avoid unnecessary leader changes a mechanism of epoch numbers was
introduced (lines 6 and 7) to work along with the timing one inherited from LFA. This
mechanism makes use of local non-decreasing counters in each process, that indicate the
epoch of the current process (myEpoch) and the epoch of the leader (leaderEpoch). In
case of a temporary communication failure among the leader and the other processes, the
leader keeps increasing its epoch number (line 21) since messages are still being sent (line
23). This way, when the communication is reestablished, the original leader is reelected
because it has the highest epoch number. In LFAe, therefore, the elected leader is either
the process with the highest epoch number or, in case of more than one replica with the
very same epoch, the one with the lowest identifier.

LFAe, like LFA, presents message exchanges complexity of O(n), when a stable leader
in is place, and O(n2) during a leader election process.

24

Algorithm 2 Larrea et al. epoch (LFAe)
1: local process p variables
2: id, δ, myEpoch, leader, leaderTimestamp, leaderEpoch
3: upon initialization:
4: leader ← id
5: leaderTimestamp ← now
6: leaderEpoch ← 0
7: myEpoch ← 0
8: set timeout with δ time units
9: upon receive message mq:

10: if (mq.epoch > leaderEpoch ∧ mq.id 6= leader) ∨
11: (mq.epoch = leaderEpoch ∧ mq.id < leader) then
12: leader ← mq.id
13: endif
14: if mq.id = leader then
15: leaderEpoch ← mq.epoch
16: leaderTimestamp ← now
17: endif
18: upon timeout δ:
19: set timeout with δ time units
20: if id = leader then
21: myEpoch++
22: leaderEpoch ← myEpoch
23: broadcast message mp = {id,myEpoch}
24: else if (now - leaderTimestamp) > δ then
25: leaderEpoch ← myEpoch
26: leader ← id
27: broadcast message mp = {id,myEpoch}
28: endif

25

Figure 3.8: ACT timing schema [49].

3.3.3 Aguilera et al. (ACT)

Aguilera et al. [14], algorithm 3, is an algorithm based on a mechanism of periodical
heartbeats. Each process has a unique system identifier (line 2) which can be ordered
in a non-decreasing way. As output, the algorithm provides a vector (line 3) with the
number of heartbeats received from each process of the system (line 13). The authors
don’t specify any timing mechanism in the original article so that the algorithm doesn’t
determine which processes failed or not. For this reason, ACT was modified in [49] to
turn it into a leader elector and have its performance assessed when coupled to our active
replication toolkit that implements Paxos and whose liveness is determined by an Ω FD.
Basically, a timing mechanism was introduced (line 17) so that the FD algorithm could
point out if a process is correct (process p received a message from process q in less than
δ time units ago) or not and the leader among them (process with the lowest identifier,
line 27).

Figure 3.8 presents how ACT works when some messages aren’t delivered, leading a
process p to suspect a process q temporarily. The messages are exchanged periodically
between p and q (although the image only shows messages sent from q to p) with the
failure detection triggered after, at most, 2δ cycles.

ACT presents message exchanges complexity of O(n2) during its whole execution be-
cause all processes keep broadcasting messages to the other processes even with a stable
leader elected.

3.3.4 Chen et al. (CTA)

Chen et al. [30] propose a new FD considering two undesirable characteristics of common
failure detection algorithms. FDs commonly used in practice (like LFA) work as follows:
at regular time intervals, process p sends a heartbeat message to q ; when q receives a
heartbeat message it trusts p and starts a timer with a fixed timeout value δ; if the timer
expires before q receives a newer heartbeat message from p, then q starts suspecting p.
This algorithm has two undesirable characteristics:

1. There is a dependency on past heartbeats: the timer for message mi, with mi being
the i-th heartbeat, is started upon the receipt of mi-1, and so if mi-1 is “fast”, the

26

Algorithm 3 Aguilera et al. (ACT)
1: local process p variables
2: id, δ, η, leader
3: Vi: {id, counter, previousCounter, trustable} ∀i ∈ p
4: upon initialization:
5: leader ← id
6: for each Vi:
7: Vi.counter ← 0
8: Vi.previousCounter ← 0
9: Vi.trustable ← false

10: set timeout with δ time units
11: set timeout with η time units
12: upon receive message mq:
13: Vq.counter++
14: upon timeout η:
15: set timeout with η time units
16: broadcast message mp = {id}
17: upon timeout δ:
18: set timeout with δ time units
19: for each Vi:
20: if (Vi.counter - Vi.previousCounter) > 0 then
21: Vi.trustable ← true
22: else
23: Vi.trustable ← false
24: endif
25: Vi.previousCounter ← Vi.counter
26: leader ← Vq.id where
27: Vq.trustable = true ∧ {6 ∃r → (V r.id < V q.id ∧ V r.trustable = true)}

27

Figure 3.9: CTA timing schema [49].

timer for mi starts early and this increases the probability of a premature timeout
on mi.

2. Suppose p sends a heartbeat just before it crashes, and let d be the delay of this
last heartbeat. In the commonly used algorithms, q would permanently suspect p
only d + δ time units after p crashes. Thus, the worstcase detection time for this
algorithm is the maximum message delay plus δ. This is impractical because in
many systems the maximum message delay is orders of magnitude larger than the
average message delay.

As can be noted the source of the above problems is that even though the heartbeats
are sent at regular intervals, the timers to “catch” them expire at irregular times and the
algorithm proposed by Chen et al. eliminates this problem.

Chen et al. FD, algorithm 4, is also based on periodic messages at fixed intervals,
however it uses a mechanism of pre-defined timing windows to receive messages and to
detect whether a process is correct or not. The system has a fixed number n of processes
and each of them sends indexed messages mi to the other processes (line 21). Each process
of the system has a unique id which can be ordered in a non-decreasing way (line 2). A
process p considers a process q correct in the interval [ti, ti+1] if the message mi sent
by q is received within the interval [ti, ti+1] (lines 16 and 17). The timing windows are
built locally on each replica and must be synchronized accordingly so that the failure
detection/leader election is coherent in the entire system.

Figure 3.9 illustrates how Chen et al. (CTA) works. The processes keep a local clock
that always advances, used to calculate the moments of sending messages and intervals
[ti, ti+1]. Upon receiving a message mi from process q, process p checks if it was received
within the time interval [ti, ti+1]. If so, the process q is considered correct by the process
p; otherwise, it’s considered as a failure. The leader is chosen as the process with the
lowest id among the correct processes.

CTA also presents message exchanges complexity of O(n2) during its whole execution
since all processes broadcast messages to the other processes even with a leader elected.

28

Algorithm 4 Chen et al. (CTA)
1: local process p variables
2: id, δ, η, sequenceNumber, leader
3: Vi: {id, sequenceNumber, τ i, trustable} ∀i ∈ p
4: upon initialization:
5: leader ← id
6: sequenceNumber ← 0
7: for each Vi:
8: Vi.sequenceNumber ← 0
9: Vi.τ i ← now

10: Vi.trustable ← false
11: set timeout with δ time units
12: set timeout with η time units
13: upon receive message mq:
14: update Vq.τ i

15: Vq.sequenceNumber ← mq.sequenceNumber
16: if now ∈ Vq.τ i then
17: Vq.trustable ← true
18: endif
19: upon timeout η:
20: set timeout with η time units
21: broadcast message mp = {id, sequenceNumber + +}
22: upon timeout δ:
23: set timeout with δ time units
24: for each Vi:
25: if now /∈ Vi.τ i then
26: Vi.trustable ← false
27: endif
28: leader ← Vq.id where
29: Vq.trustable = true ∧ {6 ∃r → (V r.id < V q.id ∧ V r.trustable = true)}

29

3.3.5 Algorithms complexity

In terms of complexity of implementing, troubleshooting and maintaining each failure
detector algorithm, the order is the following as detailed in [49]:

LFA < LFAe < ACT < CTA

with LFA being the simplest FD whereas CTA is the most complex one, as demon-
strated in their corresponding pseudocodes.

Algorithm Original Class Implementation Class Message Exchanges Complexity
LFA Ω Ω O(n)
LFAe Ω Ω O(n)
ACT �S Ω O(n2)
CTA Ω Ω O(n2)

Table 3.1: FD Properties [49].

Table 3.1 presents the main properties of the studied failure detectors. Originally,
ACT doesn’t belong to Ω class, however, as described in section 3.3.3 a modification was
introduced to turn it into a leader elector. Therefore, all FD algorithms belong to the Ω

class. Regarding message exchanges complexity, LFA and LFAe present linear complexity
when a stable leader is in place, since only it keeps sending messages to the other replicas.
ACT and CTA, on the other hand, present quadratic complexity, since messages are
exchanged among all processes during the whole algorithm execution.

30

Chapter 4

A Testbed for Failure Detectors

Given that the literature offers a large set of FD algorithms (chapter 6), it’s essential to
know which of them is the most suitable one for a certain application. Nonetheless, the
lack of a benchmark or testbed for failure detectors represents an extra hurdle for system
engineers when they have to choose a FD that is well suited for their application. In order
to support system engineers in their quest for a suitable FD algorithm for their fault-
tolerant system, this dissertation proposes and implements a testbed for failure detectors.
The testbed is designed to run on a commodity computer cluster and the procedure an
engineer has to follow to test failure detectors is comprised of the following steps:

1. Check if the FD the engineer wants to assess is available in the testbed. If yes,
check the current implementation. Otherwise, implement it in conformance with
the testbed failure detector programming interface.

2. Parameterize the testbed to reproduce a specific network behavior and/or processes
failures.

3. Couple the FD under assessment with the appropriate FD δ, taking into account
the average latency of the network.

4. Configure a load generator.

5. Run the experiments making use of an active replication toolkit that implements
Paxos.

The testbed could represent a step towards the increasing use of labscale environments
for uniform FDs assessment, since it provides researchers with a complete framework to
assess failure detectors performance. Figure 4.1 presents a high-level software architecture
of the testbed. The software architecture comprises four major parts:

• In red: an application responsible for load generation making use of a Replicated
HashMap.

• In yellow: an active replication toolkit, Treplica [73], that implements Paxos
and Fast Paxos with its main components represented: Replicated State Machine
and Distributed Consensus.

31

Figure 4.1: Testbed software architecture.

• In green: a failure detector (explained in 3.1).

• In blue: a process and network opponent running on the transport layer.

Next, each of the main components is described in further details.

4.1 Load generator

The load generator application (LG), represented in red in Figure 4.1, instantiates a
Replicated HashMap that uses the state machine’s interface from Treplica to replicate
the generated operations among a couple of replicas. In terms of workload, the LG only
performs write operations by attempting to add, per second, a specific number of key:value
pairs to the map via method put(key: string, value: string). We mention "attempt to
add" because all write operations on the Replicated HashMap are blocking and only return
when they indeed complete. The number of puts per second is defined in a config file and
the actual value during the experiments of this dissertation, along with the number of
replicas, is depicted in section 5.2.

It’s important to highlight that all replicas are responsible for executing the workload
over the HashMap. Therefore, if we have X replicas and Y puts/second configured, each
of the X replicas will keep calling put during the experiments in an attempt to meet the
Y write rate.

32

Finally, the data pattern applied in this work is from applications that implement
distributed consensus to solve data replication. Treplica [73] is adopted in this project,
nonetheless, other similar applications can be found in the literature such as Google
Chubby [25], Amazon Dynamo [35] and Apache Zookeeper [3].

4.2 Treplica

Treplica [73], represented in yellow in Figure 4.1, is an active replication library de-
veloped atop a consensus-based total order broadcast. It simplifies the development of
high-available applications by making transparent the complexities of dealing with repli-
cation and persistence. Treplica implements at its core a replication protocol that gives
applications the ability of tolerating crashes and recoveries of a subset of their components
without having to worry about the consistency of the replicated data. The tool proposes
the idea of handling and presenting to the application programmer a unified programming
abstraction for replication and persistence. It proposes the use of consensus as a founda-
tion for construction of such unified replication tool. Treplica implements two consensus
algorithms, Paxos [56] and Fast Paxos [57], although only the first one was used in this
current work since Fast Paxos does not depend on a coordinator (Ω) as Paxos does.

Figure 4.1 presents a high-level view of Treplica’s components:

• Replicated State Machine: interface used to program the routines of Treplica’s ap-
plications. The distributed HashMap is implemented using this interface.

• Distributed Consensus : considered Treplica’s core, implements the functions of or-
dering the State Machine’s operations execution.

• File System: used to store all Treplica’s persistent data. This component keeps the
data saved even in case of a process crash.

• Transport / Network : transport layer used by Treplica to exchange messages with
other processes. UDP is the transport layer protocol adopted.

The testbed architecture follows Gumerato’s [49] important discoveries and adopts a
dedicated physical network for Treplica, isolated from the failure detector’s network, so
that there is no interference between the algorithms since both rely on message exchanges
among the replicas.

4.3 Failure detector

Four failure detectors were implemented and compared making use of the testbed: Larrea
et al. [59] vanilla and epoch, Aguilera et al. [14] and Chen et al. [30]. Other FDs can be
implemented and coupled to Treplica, in our testbed, by implementing the IFailureDetec-
tor interface provided which requires two straightforward functions:

1. Return the current leader by implementing the int getLeader() method. The
integer to be returned indicates the leader process unique system identifier.

33

Figure 4.2: Opponent’s software architecture.

2. Call a callback method, void leaderChange(int newLeader), whenever the
leader changes. The parameter expected is also the leader process identifier.

With this two functions the upper-layer algorithms that rely on failure detectors build-
ing blocks can obtain the identifier of the current leader proactively and reactively and
progress accordingly.

In this work all FDs were developed in Java and, the choice of using this language, was
oriented by the fact that Treplica is also written in Java. By using the same language, the
task of coupling the component is simplified and, moreover, it makes possible the reuse of
components such as the transport layer used by both Treplica and the failure detectors.

4.4 Opponent

An opponent, represented in blue in Figure 4.1, was proposed and developed to provide a
way of abstracting (i) the inherent behavior of diverse networks and (ii) processes failures.
A modification on Treplica’s transport layer was performed to couple the opponent as
depicted in Figure 4.2. The opponent was implemented as a single instance responsible
for dictating three possible actions to be performed over each sending/receiving packet:

• Pass : No action is performed and the packet is sent or received without any inter-
ference.

• Drop: The packet is discarded.

• Delay : A delay is applied, asynchronously by dedicated threads, to the packet before
sending or receiving it.

In order to abstract a process failure, the opponent has a mechanism that emulates a
total failure in the process communication by dropping all the packets sent/received by the
failing process. On the other hand, to reproduce distinct network behaviors, the selection
of which action to be applied follows a probability distribution. In this work, the library
Apache Commons Mathematics [2] was imported to provide commonly used distributions
[13] and its EnumeratedIntegerDistribution and NormalDistribution classes were the ones

34

adopted in our experiments. In the EnumeratedIntegerDistribution [5], an equiprobable
distribution, values are assigned probability based on their frequency. For example, [0, 1,
1, 2] as input creates a distribution with 25% of chance to return the value 0, 50% of chance
to return 1 and 25% of chance to return 2. In the NormalDistribution [7], or Gaussian
distribution, we define a mean (expectation of the distribution) and a standard deviation,
leading to a curved flaring shape. In our work negative values mean drop, zeroed values
mean pass and positive values represent the amount of delay in milliseconds.

This opponent can be tuned to reproduce different network behaviors. Other distri-
butions other than the ones adopted in this work, for instance PoissonDistribution [8]
or ExponentialDistribution [6], can be easily coupled to the experimental environment by
implementing the OpponentStrategy interface provided.

35

Chapter 5

Comparative Failure Detection

This dissertation, performs a comparative study of four known failure detection algorithms
with different detection mechanisms: Larrea et al. [59] vanilla and epoch, Aguilera et al.
[14], and Chen et al. [30]. We analyse (i) their speed metrics (detection and stabilization
time) on both crash-stop and crash-recovery environments, (ii) their accuracy metrics
(average mistake rate and good period duration) on a failure-free environment with the
testbed emulating distinct network conditions and (iii) we assess how these different envi-
ronment conditions influence consensus using a replication library that implements Paxos.

The next sections will cover materials and methods, the experiments performed and
their respective results.

5.1 Materials and methods

5.1.1 Platform

All experiments were executed in the LSD laboratory ("Laboratório de Sistemas Distribuí-
dos") from IC/UNICAMP. The testbed environment consisted of a cluster of 5 machines,
each one equipped with two Intel-Xeon quad-core processors of 2.40 GHz and 12 GB of
memory RAM. Two switches 3Com 4200G Gigabit Ethernet with 24 ports and Round-
Trip Time (RTT) of less than 1 ms connected the machines. All machines run Gnu/Linux
Debian 6.0 with kernel Linux 2.6.32 SMP 64-bit as operating system and a Java virtual
machine OpenJDK version 1.8.

Clock synchronization

The clock synchronization among the machines was performed through NTP (Network
Time Protocol) [64], a networking protocol for clock synchronization between computer
systems over packet-switched, variable-latency data networks. NTP is built over UDP/IP
protocols and uses a probabilistic mechanism to implement synchronization. This mech-
anism is based on message exchanges among synchronization computers distributed in
different hierarchy levels. The 64-bit timestamps used by NTP consist of a 32-bit part
for seconds and a 32-bit part for fractional second, giving a theoretical resolution of 2−32

seconds (233 picoseconds).

36

The clock precision in the cluster, estimated by the NTP protocol itself, was of
4.76x10−7 s, whereas the message exchanges among the machines used to occur in about
1 ms (10−3 s). For this reason, when assessing the experiments output, we considered
that the clocks of all machines present in the cluster were synchronized [49].

5.1.2 Software

The implemented testbed for failure detectors is adopted to run the experiments. The
setup was the following:

• Load generator: it uses a Replicated HashMap with 5 replicas; each replica calling
500 puts per second. Each experiment consisted of 60 executions/iterations of 600
seconds each. The load generator started at 40 seconds, after 30 seconds of warm
up.

• Treplica: the consensus algorithm adopted is Paxos, also with 5 replicas. It follows
Gumerato’s [49] discoveries by using a dedicated physical network, isolated from
the FD’s network, in order to avoid interference between the consensus and failure
detector algorithms given both rely on message exchanges among the replicas.

• Failure Detector: the algorithms used were LFA, LFAe, ACT and CTA with δ

equals to 1 ms, 4 ms, 16 ms, 50 ms, 100 ms, 200 ms and 300 ms, depending on
the experiment performed (see section 5.2.4). As mentioned above, the FD uses a
dedicated physical network.

• Opponent: when assessing FD speed metrics (detection and stabilization time),
the opponent was configured to introduce processes failures (crash-stop and crash-
recovery models) via a mechanism that emulates a total failure in the process com-
munication, by dropping all the packets sent/received by the failing process. When
assessing FD accuracy metrics (average mistake rate and good period duration)
the opponent was configured to emulate distinct networks conditions on a failure-
free environment. It emulates distinct conditions by dropping and delaying packets
based on two distributions: EnumeratedIntegerDistribution [5] and NormalDistri-
bution [7]. All details on how the opponent was configured for each experiment can
be seen in section 5.2.

5.1.3 Data Management

The appropriate data management, as recognized by FAPESP [9], facilitates the repro-
ducibility of the results and allows the promotion of new research. Besides that, it helps
to carry out new analyzes, with the execution of other tests or methods of analysis. Since
the beginning of this work, we focused on following data management good practices by
structuring the research in a way that:

1. All relevant files were in a version control system, Git [10], in a safe web-based
repository, Bitbucket [4], accessible to any interested part (Figure 5.1).

37

Figure 5.1: Source code in Bitbucket/Git.

Figure 5.2: Experiments automation via Jenkins and Ansible.

38

2. All experiments, although we were dealing with a cluster of several machines and a
dozen of tunable settings, were simple to setup, run and analyse by making use of
tools such as Jenkins [11] and Ansible [1] (Figure 5.2).

3. All experiments settings and results were stored in both Jenkins and Git making
the research transparent to all collaborators.

More specifically regarding experiments automation, this approach was essential to the
progress of the work since it reduced significantly the complexity of running all experi-
ments variations and measuring their performance accurately.

Experiments automation

Jenkins [11] is the leading open source automation server. It mainly helps to automate
the non-human part of the software development process, with continuous integration and
facilitating technical aspects of continuous delivery. We used Jenkins in our experiments
automation to execute the following steps:

1. Setup the experiment settings via Jenkins interface (Figure 5.3).

2. Download the latest source code and config file from Bitbucket/Git.

3. Run unit tests to guarantee the current source code is stable, compile and package
the solution in a JAR file (by calling the Apache Maven [12] tool).

4. Make sure that all machines on the cluster are ready to run the experiments by (i)
terminating all Java process currently in execution, (ii) cleaning up all Treplica and
FDs residual files, (iii) verifying if NTP is up and running and (iv) checking current
CPU and memory usage. All the steps above were executed via Ansible [1] before
each experiment iteration.

5. Distribute the package and config file among all machines, execute the experiments
and gather the results.

6. Run statistical analysis over the aggregated results.

The Ansible [1] automation tool was the chosen one to manage the cluster machines
since it’s agentless (connecting remotely via SSH) which is a great feature, meaning that
the nodes crucial to our experiments weren’t overloaded.

Jenkins and Ansible ran in a dedicated machine, other than the nodes used in the
experiment. Basically, after setting up the tunable settings, the experiment could be
started by clicking on a "play" button and, minutes/hours later (depending on the number
of iterations and duration) the results were ready to be analyzed.

39

Figure 5.3: Jenkins experiment settings.

40

5.2 Experiments

In order to proceed with the comparative study of failure detectors, experiments were
built to measure (i) the failure detector speed - how fast it detects a failure - (ii) the
FD accuracy - how well it avoids mistakes - and (iii) how the different network/process
environment conditions influence consensus performance.

5.2.1 FD speed assessment

Based on Chen et al. [30] work, two important metrics were defined to compare the FDs
speed:

• TDm (majority detection time): moment after the leader failure in which the ma-
jority of correct processes detect that the leader process has failed.

• TEm (majority stabilization time): moment after the leader failure in which the
majority of correct processes stabilize on the new leader.

The metrics were defined considering the majority of processes because Paxos [56]
requires a simple majority of correct processes to work and, this way, we focused on
metrics more appropriate to the system under test.

Figure 5.4 explains how TDm and TEm metrics work. It depicts an LFA execution with
three processes P1, P2 and P3, whose identifiers are ordered in a global and non-decreasing
order with ID(P1) < ID(P2) < ID(P3). In the beginning of the execution, all three
processes are correct, with P1 as the leader (lowest id), sending messages periodically
to P2 and P3. At time T0, process P1 fails and stops sending heartbeats. After T0,
the first process to detect the failure is P3 at time T1. According to the LFA algorithm,
from this instant on, P3 starts sending heartbeats to the other processes in an attempt
to become the new leader. At time T2, process P2 also detects P1 failure and, like P3,
tries to become the new leader by also sending heartbeats. At T3, process P3 receives the
first message from P2 and starts considering P2 as leader (ID(P2) < ID(P3)). From T3
on, the FD algorithm is stable again, with P2 as the new elected leader. The detection
time TDP2 and TDP3 are, respectively, the amount of time demanded for P2 and P3 to
detect P1 failure. TDm is the amount of time all correct processes took to detect the
leader failure, whereas TEm is the amount of time all correct processes took to stabilize,
agreeing on a new leader.

To obtain the FD speed metrics, tests exploring failures on the leader process were
implemented. Process failures were injected via a mechanism of the developed opponent
that emulates a total failure on the leader process communication. When enabled, the
mechanism prevented this process from sending/receiving any network message for a pe-
riod of time. For practical purposes, network failures, when taking efect for a period of
time, are indistinguishable from process or machine failures [45]. Both the crash-stop
and crash-recovery models were adopted in the experiments, in other words, the oppo-
nent mechanism either disabled the message exchanges permanently or switched between

41

Figure 5.4: Larrea et al. [59] algorithm execution with leader failure.

enabled and disabled periodically. Furthermore, the cluster network is considered
perfect, giving that the opponent was only acting on the packets of the leader process.

During the crash-recovery experiments the leader switched between periods of crash
and periods of recovery. The periods adopted were 5, 10, 15, 20, 25 and 30 seconds.
Therefore, for each iteration (600 seconds), several process failures/recoveries occurred
resulting in several TDm and TEm values. On the stop-crash experiment the leader
crashed at 450 seconds, not recovering anymore. The failure detector δ was equal to 50
ms.

5.2.2 FD accuracy assessment

Two important metrics were used to measure the FDs accuracy as detailed in the QoS
section 3.2 and highlighted below:

• λM (average mistake rate): measures the rate at which a failure detector make
mistakes, i.e., it is the average number of S-transitions per time unit. This metric
is important to long-lived applications where each failure detector mistake (each
S-transition) results in a costly interrupt.

• TG (good period duration): measures the length of a good period. More precisely,
TG is a random variable representing the time that elapses from a T-transition to the
next S-transition. Many applications can make progress only during good periods -
periods in which the failure detector makes no mistakes.

42

These metrics are relevant to the current work when assessing the impact of FD’s
accuracy on consensus. Consensus-based applications like Treplica, the replication library
adopted to assess consensus performance in this work, may rely on good periods to make
progress and failure detector mistakes can be costly. It’s important to notice that, since
we’re are dealing with a cluster of several machines, we understand that a T-transition
happens when a majority of processes trust in the leader and that a S-transition occurs
when a majority of processes does not trust in the leader.

Based on Chen et al. [30], all accuracy metrics were obtained in failure-free runs
(processes are considered perfect). In order to achieve that, the opponent mechanism
that emulates a total failure on the leader process communication, used to obtain the speed
metrics, was disabled. Nevertheless, the opponent acts here by injecting network failures
via packets delays and drops following equiprobable and normal distributions.

Equiprobable experiments

Seven equiprobable network strategies, making use of the EnumeratedIntegerDistribution
class, were arbitrarily chosen to test the FDs accuracy under distinct network conditions:

1. (1)P(1)10DL: 50% of chance to pass and 50% of chance to have 10 ms of delay.

2. (1)P(1)40DL: 50% of chance to pass and 50% of chance to have 40 ms of delay.

3. (1)P(1)60DL: 50% of chance to pass and 50% of chance to have 60 ms of delay.

4. (1)P(1)DR: 50% of chance to pass and 50% of chance to be dropped.

5. (4)P(1)DR: 80% of chance to pass and 20% of chance to be dropped.

6. (19)P(1)DR: 95% of chance to pass and 5% of chance to be dropped.

7. (16)P(1)40DL(1)50DL(1)60DL(1)DR: 80% of chance to pass, 5% of 40 ms of
delay, 5% of 50 ms of delay, 5% of 60 ms of delay and 5% to be dropped.

Distinct FD δs were adopted for the equiprobable experiments: 1 ms, 4 ms, 16 ms and
50 ms.

WAN conditions experiments

Another set of experiments were chosen based on Amir et al. [15] work. [15] shows that
the average single link latency between two distant sites - from Mae East and UCSB, a
Wide Area Network (WAN) - was of 136 ms with, roughly speaking, 20 ms of standard
deviation. Based on it, the following strategies were also added:

1. (NOR-136-20)DL(0%)DR: 0% of chance to be dropped and delay following a
normal distribution with mean of 136 ms and standard deviation of 20 ms.

2. (NOR-136-20)DL(5%)DR: 5% of chance to be dropped and delay following a
normal distribution with mean of 136 ms and standard deviation of 20 ms.

43

3. (NOR-136-20)DL(10%)DR: 10% of chance to be dropped and delay following a
normal distribution with mean of 136 ms and standard deviation of 20 ms.

4. (NOR-136-20)DL(20%)DR: 20% of chance to be dropped and delay following a
normal distribution with mean of 136 ms and standard deviation of 20 ms.

Distinct FD δs were also adopted for the WAN conditions experiments: 50 ms, 100
ms, 200 ms and 300 ms.

5.2.3 Consensus performance assessment

In this dissertation, we also assessed how both process and network failures influenced
consensus performance. In order to measure it on the developed testbed using Treplica
we analyzed how many entries were added to the distributed HashMap stable storage
(load generator) at the end of each iteration. Since each map entry demands a consensus
instance, we were able to infer consensus rate (number of consensus instances per second).
For instance, let’s suppose that at the end of an iteration that lasted 600 seconds (40 sec-
onds of warm up plus 560 seconds of load), 1,120 map entries were put into the HashMap.
Taking into account this information, plus the fact that we know that the system keeps
a linear behavior along the entire experiment execution, we can infer that the consensus
rate was 2, meaning that 2 consensus instance were achieved per second in this scenario.

Per experiment, since we have 60 iterations, 60 λM and consensus rate were collected.
The number of TG, and respective durations, varied significantly depending on the exper-
iment settings.

5.2.4 FD δ

As explained in section 3.3, the failure detector δ has to be chosen carefully since a small
δ could lead to frequent searches for new trusted processes whereas a big δ could delay a
failure detection and, as can be noted, δ is a system parameter that must be regulated
according to the average latency of the network.

Given that, we considered (i) the cluster Round-Trip Time (RTT) of less than 1 ms
among the machines and (ii) the average packet delay of the opponent on the experiments
to define the following values for δ: 1 ms, 4 ms, 16 ms and 50 ms for the equiprob-
able experiments and 50 ms, 100 ms, 200 ms and 300 ms for the WAN conditions
experiments.

It’s very important to note that in this work we didn’t focus on finding the best value
for δ in each experiment, however it’s expected that system engineers execute this step
when setting up the testbed for failure detectors.

5.3 Results

In this section we show the results of our comparative study of four known failure detec-
tors: LFA, LFAe, ACT and CTA. Firstly, we explain how Bootstrapping was adopted to

44

compare the results with 95% confidence interval. Then we cover, respectively, FD speed,
FD accuracy and consensus instances performance results.

5.3.1 Bootstrapping

After carrying out the experiments, a mass of data was obtained that should be analyzed.
The main problem found in this part of the work was the lack of knowledge of the statistical
distribution of data from the results of the experiments. In addition, even assuming that
the data is distributed in a normal distribution (an assumption that in itself can already
be completely wrong, leading to false results), the test execution time makes it impossible
to collect a large number of data. It is also known that performing a normal statistical
analysis with a volume of data that is not sufficiently large can generate wrong conclusions,
as demonstrated and exemplified in [29]. The solution found was to use the Bootstraping
method [42] to compare the results of the metrics found.

Booststrapping was essential to understand whether the obtained metrics means (TDm,
TEm, λM and consensus rate) among the four FDs assessed were indeed significantly
different or happened by chance. Booststrapping basically takes a given sample and either
creates new samples by randomly selecting values from the given sample with replacement,
or by randomly shuffling labels on the data. Below, two scenarios are exemplified.

Example 1: after an experiment, LFA TDm mean was 49.05 ms whereas LFAe TDm

mean was 45.39 ms. Thus, the difference of these two means was only 3.66 ms. By
running bootstrapping (random sampling with replacement) 100,000 times, the result
was the following:

61 out of 100000 experiments had a difference of two means greater than or equal to 3.66.
The chance of getting a difference of two means greater than or equal to 3.66 is 0061.

Since the probability of getting a difference of two means, greater than or equal to
3.66 ms, was only 0.061%, we can affirm, considering a 95% confidence interval, that the
difference between means was real. Therefore, in this experiment, LFAe indeed presents
a better TDm (45.39 ms).

Example 2: after another experiment, LFAe TDm mean was 45.39 ms while ACT TDm

mean was 45.82 ms. Thus, the difference of these two means was only 0.43 ms. By running
bootstrapping 100,000 times, the result was the following:

36272 out of 100000 experiments had a difference of two means greater than or equal to
0.43. The chance of getting a difference of two means greater than or equal to 0.43 is
0.36272.

Since the probability of getting a difference of two means, greater than or equal to 0.43
ms, was 36.2%, we can affirm, considering a 95% confidence interval, that the difference
was not real. Therefore, in this experiment, LFAe and CTA present similar TDm.

In order to analyse all of the results below, we run bootstrapping 100,000 times and
considered a confidence interval of 95%.

45

5.3.2 FD speed results

Table 5.1 presents FD speed results. Based on the QoS metrics means and bootstrapping
results (present on the official repository, see Appendix A) the conclusion was:

• TDm (majority detection time): on crash-recovery, LFA, LFAe and ACT presented
the best and equivalent TDm performance, with a variation of less than 2 ms among
them (very small compared to the δ of 50 ms). On crash-stop, ACT had the best
detection time with a significant difference when compared to the other FDs. CTA
showed the worst performance in terms of speed metrics.

• TEm (majority stabilization time): ACT presented the best TEm on both crash-stop
and crash-recovery. CTA presented the worst stabilization time.

Therefore, when considering exclusively FD speed results, ACT is the best choice. It’s
one of the FDs with message exchanges complexity of O(n2) during its whole execution
and since each replica maintains an updated local vector with the number of heartbeats
received from each process of the system, it’s able to detect a leader change (TDm) and
stabilize (TEm) on the new leader at the same time.

LFA and LFAe non-leader processes only start sending heartbeats when the leader
failure is detected what increases TEm. CTA, on the other hand, presents a more so-
phisticated detection mechanism (indexed messages and timing windows) what ends up
approximating the detection and stabilization time to 2δ.

TDm (ms) TEm (ms)
Leader Process Strategy Network Strategy FD δ (ms) LFA LFAe ACT CTA LFA LFAe ACT CTA

crash 450 sec / stop Perfect 50 43.08 45.78 36.10 105.48 58.98 62.88 36.10 105.48
crash 5 sec / recover 5 sec Perfect 50 50.08 48.55 50.29 110.56 68.44 68.89 50.88 110.62

crash 10 sec / recover 10 sec Perfect 50 54.14 52.05 54.39 114.74 73.43 71.07 55.48 114.75
crash 15 sec / recover 15 sec Perfect 50 53.17 53.35 54.41 113.15 70.18 71.01 54.54 113.29
crash 20 sec / recover 20 sec Perfect 50 52.50 50.16 50.44 111.29 69.95 67.45 50.44 111.29
crash 25 sec / recover 25 sec Perfect 50 51.60 51.22 48.50 111.22 68.05 67.76 48.50 111.22
crash 30 sec / recover 30 sec Perfect 50 49.47 49.50 47.76 109.94 67.35 66.05 48.83 109.94

Table 5.1: FD speed results (detection and stabilization time).

5.3.3 FD accuracy results

Tables 5.2 and 5.3 present λM (average mistake rate) results for the equiprobable andWAN
conditions accuracy experiments. Based on this QoS metric means and bootstrapping
results (present on the official repository, see Appendix A), we identified that:

• among all FD algorithms, CTA consistently presented the best accuracy perfor-
mance (lowest mistake rates) when the network was subject to packets delays and/or
drop, whereas ACT consistently showed the worst performance in terms of accuracy
metrics.

• the more aggressive (lower) the δ, the higher the mistake rate was for LFA, LFAe
and ACT in such networks.

46

λM (per second)
Leader Process Strategy Network Strategy FD δ (ms) LFA LFAe ACT CTA

Perfect (1)P(1)10DL 1 29.47 36.48 122.75 0
Perfect (1)P(1)10DL 4 20.60 19.67 51.98 0
Perfect (1)P(1)10DL 16 5.92 6.63 10.80 0
Perfect (1)P(1)10DL 50 0.07 0.11 0.19 0
Perfect (1)P(1)40DL 1 31.53 29.62 123.52 0
Perfect (1)P(1)40DL 4 27.46 27.20 52.12 0
Perfect (1)P(1)40DL 16 6.53 6.20 14.41 0.05
Perfect (1)P(1)40DL 50 3.15 3.02 4.08 0.12
Perfect (1)P(1)60DL 1 30.82 32.18 123.09 0
Perfect (1)P(1)60DL 4 25.72 28.19 52.05 0
Perfect (1)P(1)60DL 16 6.82 6.98 14.32 0.86
Perfect (1)P(1)60DL 50 2.64 2.74 5.54 2.41
Perfect (1)P(1)DR 1 104.39 103.68 44.09 0
Perfect (1)P(1)DR 4 35.98 33.00 37.32 0
Perfect (1)P(1)DR 16 8.73 9.09 13.22 3.19
Perfect (1)P(1)DR 50 3.17 2.96 4.43 3.30
Perfect (4)P(1)DRL 1 42.45 42.78 125.79 0
Perfect (4)P(1)DR 4 36.89 34.50 56.41 0
Perfect (4)P(1)DR 16 10.54 10.16 13.90 0.03
Perfect (4)P(1)DR 50 3.50 3.44 4.40 0.91
Perfect (19)P(1)DR 1 3.16 2.19 52.54 0
Perfect (19)P(1)DR 4 6.50 5.09 12.36 0
Perfect (19)P(1)DR 16 3.41 3.25 3.05 0
Perfect (19)P(1)DR 50 1.13 1.17 0.97 0.04
Perfect (16)P(1)40DL(1)50DL(1)60DL(1)DR 1 26.53 23.35 111.79 0
Perfect (16)P(1)40DL(1)50DL(1)60DL(1)DR 4 26.40 25.70 46.50 0
Perfect (16)P(1)40DL(1)50DL(1)60DL(1)DR 16 8.69 8.58 11.80 0
Perfect (16)P(1)40DL(1)50DL(1)60DL(1)DR 50 3.07 3.02 4.08 0.19

Table 5.2: Average mistake rate for the equiprobable experiments.

λM (per second)
Leader Process Strategy Network Strategy FD δ (ms) LFA LFAe ACT CTA

Perfect (NOR-136-20)DL(0%)DR 50 1.50 1.39 4.81 0
Perfect (NOR-136-20)DL(0%)DR 100 0.24 0.26 0.92 0
Perfect (NOR-136-20)DL(0%)DR 200 0.09 0.09 0.24 0
Perfect (NOR-136-20)DL(0%)DR 300 0 0 0 0
Perfect (NOR-136-20)DL(5%)DR 50 2.15 2.18 6.01 0
Perfect (NOR-136-20)DL(5%)DR 100 0.66 0.66 1.67 0
Perfect (NOR-136-20)DL(5%)DR 200 0.32 0.33 0.61 0
Perfect (NOR-136-20)DL(5%)DR 300 0.16 0.16 0.19 0.01
Perfect (NOR-136-20)DL(10%)DR 50 2.93 2.91 6.92 0
Perfect (NOR-136-20)DL(10%)DR 100 1.11 1.12 2.36 0
Perfect (NOR-136-20)DL(10%)DR 200 0.55 0.54 0.92 0
Perfect (NOR-136-20)DL(10%)DR 300 0.30 0.30 0.40 0
Perfect (NOR-136-20)DL(20%)DR 50 4.32 4.30 8.04 0
Perfect (NOR-136-20)DL(20%)DR 100 1.91 1.94 3.39 0
Perfect (NOR-136-20)DL(20%)DR 200 0.96 0.95 1.54 0
Perfect (NOR-136-20)DL(20%)DR 300 0.55 0.55 0.81 0

Table 5.3: Average mistake rate for the WAN conditions experiments.

47

Figure 5.5: TG histograms for (1)P(1)40DL (δ equals to 50 ms).

The same CTA good performance can be seen when considering the TG (good pe-
riod duration) accuracy metric. Figures 5.5, 5.6 and 5.7 show the TG histograms for (i)
(1)P(1)40DL (δ equals to 50 ms), (ii) (4)P(1)DR (δ equals to 50 ms) and (iii) (NOR-
136-30)DL(20%)DR (δ equals to 300 ms) respectively. In order to plot these histograms
we created BINs of 75 ms, time normally enough to complete a consensus instance in our
environment (based on the crash 450 sec / stop experiment, Table 5.4).

By analysing the histograms, it’s clear that LFA, LFAe and ACT good periods
are more concentrated on shorter durations, whereas CTA TG, is more sparsed or con-
centrated on longer durations. Lower λM and higher TG, as with CTA (the FD with
most elaborated detection mechanism, by making use of indexed messages and timing
windows), can benefit applications in which leader changes are costly and rely on good
periods to progress. That significantly influenced consensus instances performance as
shown in section 5.3.4.

LFA and LFAe present the two undesirable characteristics mentioned in 3.3.4 that
CTA attempts to tackle (specially the dependency on past heartbeats), what compromises
their performance in case of delays and/or drops. Finally, ACT is the most sensitive FD,
capable of great speed performance (see 5.3.2) but with poor performance in terms of
accuracy.

5.3.4 Consensus performance results

Tables 5.4, 5.5 and 5.6 present consensus performance results. Table 5.4 presents the
consensus performance results for crash-stop and crash-recovery whereas tables 5.5 and 5.6

48

Figure 5.6: TG histograms for (4)P(1)DR (δ equals to 50 ms).

Figure 5.7: TG histograms for (NOR-136-30)DL(20%)DR (δ equals to 300 ms).

49

present the results for the equiprobable and WAN conditions accuracy experiments.

Consensus Rate
Leader Process Strategy Network Strategy FD δ (ms) LFA LFAe ACT CTA

crash 450 sec / stop Perfect 50 15.12 15.17 15.37 15.29
crash 5 sec / recover 5 sec Perfect 50 14.38 14.28 14.05 14.15

crash 10 sec / recover 10 sec Perfect 50 14.75 14.73 14.85 14.78
crash 15 sec / recover 15 sec Perfect 50 14.98 14.97 14.98 14.96
crash 20 sec / recover 20 sec Perfect 50 15.03 15.00 15.19 14.83
crash 25 sec / recover 25 sec Perfect 50 15.06 15.01 15.19 15.06
crash 30 sec / recover 30 sec Perfect 50 15.20 15.00 15.33 15.33

Table 5.4: Consensus rate: crash-stop and crash-recovery strategy.

Consensus Rate
Leader Process Strategy Network Strategy FD δ (ms) LFA LFAe ACT CTA

Perfect (1)P(1)10DL 1 0 0 0 12.53
Perfect (1)P(1)10DL 4 0 0 0 12.41
Perfect (1)P(1)10DL 16 0.01 0.01 0.08 12.41
Perfect (1)P(1)10DL 50 4.92 5.32 9.06 12.36
Perfect (1)P(1)40DL 1 0 0 0 7.44
Perfect (1)P(1)40DL 4 0 0 0 7.40
Perfect (1)P(1)40DL 16 0 0 0.01 6.43
Perfect (1)P(1)40DL 50 0.17 0.22 0.62 5.77
Perfect (1)P(1)60DL 1 0 0 0 5.80
Perfect (1)P(1)60DL 4 0 0 0 5.69
Perfect (1)P(1)60DL 16 0 0 0.01 3.08
Perfect (1)P(1)60DL 50 0.03 0.05 0.04 1.41
Perfect (1)P(1)DR 1 0 0 0 0
Perfect (1)P(1)DR 4 0 0 0 0
Perfect (1)P(1)DR 16 0 0 0 0
Perfect (1)P(1)DR 50 0 0 0 0
Perfect (4)P(1)DR 1 0 0 0 1.03
Perfect (4)P(1)DR 4 0 0 0 1.02
Perfect (4)P(1)DR 16 0 0 0 0.78
Perfect (4)P(1)DR 50 0.04 0.04 0.01 0.18
Perfect (19)P(1)DR 1 0 0 0 9.58
Perfect (19)P(1)DR 4 0 0 0.04 9.56
Perfect (19)P(1)DR 16 0.85 0.90 1.74 9.52
Perfect (19)P(1)DR 50 3.98 4.07 4.51 9.05
Perfect (16)P(1)40DL(1)50DL(1)60DL(1)DR 1 0 0 0 7.01
Perfect (16)P(1)40DL(1)50DL(1)60DL(1)DR 4 0 0 0 7.01
Perfect (16)P(1)40DL(1)50DL(1)60DL(1)DR 16 0 0 0.02 6.89
Perfect (16)P(1)40DL(1)50DL(1)60DL(1)DR 50 0.28 0.28 0.33 5.30

Table 5.5: Consensus rate: equiprobable experiments.

Based on consensus rate means and bootstrapping results it was possible to observe
that, for both crash-stop and crash-recovery models (network considered perfect),
there was no relevant difference in consensus rate among the different FDs. Moreover, as
expected, the more crashes during an experiment the lower the consensus rate was, given
the time it takes for the system to stabilize on the new leader.

On the other hand, there was a different scenario on the failure-free model, in which
the leader process is perfect but the opponent is actively acting on the network. It was
observed that Treplica consistently presented the best consensus rate performance when
the underlying FD was CTA, except in a few scenarios of the WAN conditions exper-
iments. CTA also presented positive consensus rate in the majority of experiments -
different from LFA, LFAe and ACT which present several zeroed rates - meaning it’s a
FD algorithm capable of progressing despite the network conditions, what is in line with
the great accuracy QoS metrics (λM and TG) we observerd in section 5.3.3 .

50

Consensus Rate
Leader Process Strategy Network Strategy FD δ (ms) LFA LFAe ACT CTA

Perfect (NOR-136-20)DL(0%)DR 50 0 0 0 0.17
Perfect (NOR-136-20)DL(0%)DR 100 0.04 0.02 0.22 0.19
Perfect (NOR-136-20)DL(0%)DR 200 0.38 0.37 0.88 0.20
Perfect (NOR-136-20)DL(0%)DR 300 1.18 1.19 0.70 0.14
Perfect (NOR-136-20)DL(5%)DR 50 0 0 0 0.17
Perfect (NOR-136-20)DL(5%)DR 100 0.01 0.01 0.04 0.19
Perfect (NOR-136-20)DL(5%)DR 200 0.17 0.16 0.45 0.21
Perfect (NOR-136-20)DL(5%)DR 300 0.83 0.82 0.38 0.12
Perfect (NOR-136-20)DL(10%)DR 50 0 0 0 0.15
Perfect (NOR-136-20)DL(10%)DR 100 0 0 0.01 0.17
Perfect (NOR-136-20)DL(10%)DR 200 0.07 0.07 0.15 0.18
Perfect (NOR-136-20)DL(10%)DR 300 0.41 0.41 0.15 0.09
Perfect (NOR-136-20)DL(20%)DR 50 0 0 0 0.09
Perfect (NOR-136-20)DL(20%)DR 100 0 0 0 0.10
Perfect (NOR-136-20)DL(20%)DR 200 0.02 0.02 0 0.10
Perfect (NOR-136-20)DL(20%)DR 300 0.09 0.09 0.01 0.04

Table 5.6: Consensus rate: WAN conditions experiments.

51

Chapter 6

Related Work

The related work mentioned in this section illustrates part of the current effort employed
to propose new failure detection algorithms and assess them, along with existing ones, in
distinct networks.

Gumerato [49] presents a comparative study of the implementation of four known
failure detection algorithms on Local Area Network. The compared FDs were the same
of this current dissertation: Larrea et al. [59] vanilla and epoch, Aguilera et al. [14], and
Chen et al. [30]. While [49] analyses FD’s speed metrics (detection and stabilization time),
also using Treplica, on a crash-stop environment, our work firstly proposes an experimental
method and testbed to analyse the behavior of FDs under distinct network conditions and
processes failures and secondly, with this testbed, assesses (i) FD’s speed on both crash-
stop and crash-recovery environments, (ii) FD’s accuracy metrics (average mistake rate
and good period duration) on a failure-free environment and (iii) how these different
environment conditions indeed influence consensus performance in terms of consensus
rate.

Gumerato’s results for FD’s speed show no significant difference in the QoS of the
studied algorithms. However, our results concluded that ACT - one of the FDs with mes-
sage exchanges complexity of O(n2) during its whole execution - is the most recommended
one since it presents the best TDm (along with LFA and LFAe) and the best TEm. In our
understading, due to a misinterpretation of bootstrapping output, the author concluded
that the FD’s TDm and TEm means were not significantly different, however, by analysing
Gumerato’s experiments data (not included in [49]) we confirmed that there were impor-
tant differences among the QoS means and these differences were indeed being confirmed
by bootstrapping. This current work, therefore, contributes by recommending ACT as
the best algorithm in terms of speed.

Chen et al. [30] propose several FD implementations relying on the probabilistic
behavior of the network systems. The protocol uses arrival times sampled in the recent
past to compute an estimation of the arrival time of the next heartbeat. However, a
timeout that is set according to this estimation, plus a constant safety margin, does
not match the dynamic network behavior well [20]. Bertier FD [20, 21] provides an
optimization of the safety margin for Chen FD. It uses a different estimation function,
combining Chen’s and Jacobson’s estimation of the Round-Trip Time (RTT). Bertier FD
is primarily designed to be used over LANs, where messages are seldom lost [50]. The ϕ

52

FD [50, 37] proposes an approach where the output is a suspicion level on a continuous
scale, instead of providing information of a binary nature (trust or suspect) [33]. These
three FDs dynamically predict new timeout values based on observed communication
delays to improve the performance of the protocols [75].

Falai and Bondavalli [44] assess and compare the QoS provided by a large family
of failure detectors on Wide Area Network. It’s known that WANs are more hostile
environments than LANs, environment adopted by Gumerato [49], making more difficult
to realize an accurate and complete failure detection mechanism. Designing applications
on a LAN generally takes advantage of a deeper knowledge of the infrastructure and a
higher controllability. WANs are characterized by longer transmission delays and higher
loss probability. WAN connections show also bigger variability of both delay and loss
probability due to the many hops traversed in today packet switching WAN technology.

Several other works propose new failure detectors for LANs and WANs. Tomsic et al.
[69] propose the Two Windows Failure Detector (2W-FD) an algorithm which, according
to the authors, provides QoS and is able to react to sudden changes in network conditions.
Veron et al. [72] study reputation systems as a mean to detect failures. The reputation
mechanism allows node cooperation via the sharing of views about other nodes. For
instance, if one node has a good connection to the other nodes, it can share its view to
slowly connected nodes and this prevent wrong views about failures. Moraes Rossetto et
al. [33] propose a FD which takes into account the relevance of each node, for instance,
differentiating low impact and redundant nodes from high impact ones when reporting
failures.

Xiong et al. [75], Wang et al. [74], Liu et al. [62] and Sahoo et al. [67] study failure
detectors for cloud computing systems. Cloud computing is an increasingly important
solution for providing services deployed in dynamically scalable cloud networks. Services
in the cloud computing networks may be virtualized with specific servers which host
abstracted details. Some of the servers are active and available, while others are busy or
heavy loaded and the remaining are offline for various reasons. Xiong et al. [75] propose
a self-tuning failure detector which uses a general non-manual analysis method to self-
tune its corresponding parameters and satisfy its expected QoS requirements. Wang
et al. [74] also present a FD for cloud systems which, in turn, uses a layer-based failure
detection mechanism. This layer mechanism divides the FD into three layers - application,
operating system and hypervisor - with one specific monitor each. If one layer fails, the
corresponding monitor will indicate it. Liu et al. [62], designWD-FD, an accrual FD based
on Weibull distribution. By using the Weibull distribution to estimate the distribution of
heartbeat interarrival time, the WD-FD can adapt well to changing network conditions
and the requirements of any number of concurrently running applications. Finally, Sahoo
et al. [67] propose RT-PUSH, a Virtual Machine (VM) fault detector based on timeout
and deadline for cloud system running real-time tasks. The RT-PUSH failure detector
adopts a distributed approach where fault can be detected by both participating VMs
and the hypervisor.

On the Internet side, Turchetti et al. [70], propose a FD for Internet applications
that is capable of managing different applications with varying QoS metrics. It adjusts
the fresh point interval either by tuning it to maximum requirement or by equating it

53

with the greatest common division (GCD) of all freshpoints for all the components. The
former assumption works best for remote applications while the later one is more suited
for local applications.

The failure detection in wireless networks incur greater computational overhead as a
non-responding node does not necessarily indicate failure but, rather, that it could have
moved out of range. Nevertheless, some FD construction methods have been published
for wireless networks. Elhadef and Boukerche [43], Jin et al. [54], Benkaouha et al. [18]
and De Vit et al [34] propose FDs for Mobile Ad-hoc Networks (MANETs). Liu et al.
[61] propose a FD for Vehicular Ad-hoc Networks (VANETs), networks in which vehicles
can suddenly quit or enter the network and the communication links among them may
suffer from signal degradation due to obstacles, changes in vehicle densities, etc. The
proposed failure detector employs a detection-result sharing mechanism and groups the
nodes according to the architecture of VANETs. Liu and Payton [60] and Greve et al.
[48] also present interesting results regarding FDs in mobile environments.

Finally, failure detectors are also studied on Software-Defined Networking (SDN) envi-
ronments as in Turchetti and Procopio Duarte [71] and Yang et al. [77], IoT environment
and Wireless Sensor Network (WSN) as in Yang et al. [76] and Benkaouha et al. [19],
respectively, Ambient Assisted Living as in Junior et al. [55] , High-Performance Com-
puting (HPC) platforms as in Bosilca et al. [23] and Zhong et al. [78] and unknown
dynamic networks as in Jeanneau et at. [53] .

Assessment methodologies

The above-mentioned work adopt different assessment methodologies to evaluate FDs in
diverse networks. Some work [33, 69, 72, 75] use real trace files to assess their FDs in a
WAN system. Others [49, 69, 71, 72, 74, 75, 55, 70, 23, 78] use an experimental methodol-
ogy, setting up machines and their respective networks, to evaluate FDs in LANs, Ambient
Assisted Living, Internet Applications and HPC. [47, 61, 19, 76] adopt network simula-
tors such as OMNeT++, NS2 and NS3 and, finally, other studies employ an analytical
methodology to perform this assessment.

54

Chapter 7

Conclusion

This work presents three contributions. Firstly, given that the literature offers a large
set of failure detector algorithms but there was not a benchmark or testbed to assess
them uniformly, an experimental method is proposed to assess the behavior of FDs under
distinct network conditions and processes failures. Secondly, based on the method pro-
posed, a testbed for failure detectors is implemented. The testbed is designed to run on
a commodity computer cluster and provides researchers with a complete framework (pro-
cess/network opponent, failure detector, active replication library and load generator) to
assess FDs performance. Thirdly, it performs a comparative study of four known failure
detection algorithms: Larrea et al. vanilla and epoch, Aguilera et al., and Chen et al..
FDs speed (detection and stabilization time), FDs accuracy (average mistake rate and
good period duration) and consensus rate were the metrics evaluated.

Our results show the following: in terms of speed, we concluded that ACT - one
of the FDs with message exchanges complexity of O(n2) during its whole execution - is
the most recommended one since, in general, it presents the best TDm and TEm. This
result is different from Gumerato’s one which concludes that there was no significant
difference in the speed QoS of the studied algorithms. We understand that there was a
misinterpretation of bootstrapping output in Gumerato (see chapter 6) and that ACT is
in fact the most recommended algorithm to detect actual processes failures. In terms of
QoS accuracy, CTA - the FD with the most elaborated detection mechanism, by making
use of indexed messages and timing windows - consistently presents the best λM and
TG under distinct network conditions. This CTA behavior was significantly positive for
consensus performance (measured in terms of consensus rate), evidencing the impact of
FD QoS at the application level.

Based on the results above, if researchers have an environment subject to packets
delays and drops and few processes failures, the CTA failure detector should be selected.
On the other hand, if researchers have an environment in which the network is stable and
processes failures can happen, the ACT FD would be the most recommended one.

Future Work

An interesting work that could be performed futurely is (i) the assessment of the failure
detectors studied under other distributions representing networks such as cloud comput-

55

ing systems and wireless systems and (ii) the adoption of adaptive failure detectors as
described by Chen et al., since in this current work the FD δ was static.

56

Bibliography

[1] Ansible. https://www.ansible.com/. Accessed: 2021-01-07.

[2] Apache commons mathematics library. http://commons.apache.org/proper/commons-
math/index.html. Accessed: 2021-01-07.

[3] Apache zookeeper. https://zookeeper.apache.org/. Accessed: 2021-01-07.

[4] bitbucket. https://bitbucket.org/. Accessed: 2021-01-07.

[5] Class enumeratedintegerdistribution. http://commons.apache.org/proper/commons-
math/javadocs/api-3.6/org/apache/commons/math3/distribution/ EnumeratedIn-
tegerDistribution.html. Accessed: 2021-01-07.

[6] Class exponentialdistribution. https://commons.apache.org/proper/commons-
math/apidocs/org/apache/commons/math4/distribution/ ExponentialDistribu-
tion.html. Accessed: 2021-01-07.

[7] Class normaldistribution. http://commons.apache.org/proper/commons-
math/javadocs/api-3.6/org/apache/commons/math3/distribution/ NormalDis-
tribution.html. Accessed: 2021-01-07.

[8] Class poissondistribution. https://commons.apache.org/proper/commons-
math/apidocs/org/apache/commons/math4/distribution/ PoissonDistribu-
tion.html. Accessed: 2021-01-07.

[9] Fapesp. https://fapesp.br/gestaodedados. Accessed: 2021-01-07.

[10] git. https://git-scm.com/. Accessed: 2021-01-07.

[11] Jenkins. https://jenkins.io/. Accessed: 2021-01-07.

[12] Maven. https://maven.apache.org/. Accessed: 2021-01-07.

[13] Probability distributions. https://commons.apache.org/proper/commons-
math/userguide/distribution.html. Accessed: 2021-01-07.

[14] Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. Heartbeat: A timeout-free
failure detector for quiescent reliable communication. In Distributed Algorithms,
pages 126–140. Springer, 1997.

57

[15] Yair Amir, Claudiu Danilov, and Jonathan Stanton. A low latency, loss tolerant archi-
tecture and protocol for wide area group communication. In Proceeding International
Conference on Dependable Systems and Networks. DSN 2000, pages 327–336. IEEE,
2000.

[16] Hagit Attiya, Amotz Bar-Noy, Danny Dolev, Daphne Koller, David Peleg, and Rudi-
ger Reischuk. Achievable cases in an asynchronous environment. In Foundations of
Computer Science, 1987., 28th Annual Symposium on, pages 337–346. IEEE, 1987.

[17] Algirdas Avizienis, J-C Laprie, Brian Randell, and Carl Landwehr. Basic concepts
and taxonomy of dependable and secure computing. IEEE transactions on dependable
and secure computing, 1(1):11–33, 2004.

[18] Haroun Benkaouha, Abdelkrim Abdelli, Jalel Ben-Othman, and Lynda Mokdad. To-
wards an efficient failure detection in manets. Wireless Communications and Mobile
Computing, 16(17):2939–2955, 2016.

[19] Haroun Benkaouha, Abdelkrim Abdelli, Mohamed Guerroumi, Jalel Ben-Othman,
and Lynda Mokdad. Eafd, a failure detector for clustered wsn. In 2016 IEEE Inter-
national Conference on Communications (ICC), pages 1–6. IEEE, 2016.

[20] Marin Bertier, Olivier Marin, and Pierre Sens. Implementation and performance
evaluation of an adaptable failure detector. In Dependable Systems and Networks,
2002. DSN 2002. Proceedings. International Conference on, pages 354–363. IEEE,
2002.

[21] Marin Bertier, Olivier Marin, and Pierre Sens. Performance analysis of a hierarchical
failure detector. In null, page 635. IEEE, 2003.

[22] Ofer Biran, Shlomo Moran, and Shmuel Zaks. A combinatorial characterization
of the distributed tasks which are solvable in the presence of one faulty processor.
In Proceedings of the seventh annual ACM Symposium on Principles of distributed
computing, pages 263–275. ACM, 1988.

[23] George Bosilca, Aurelien Bouteiller, Amina Guermouche, Thomas Herault, Yves
Robert, Pierre Sens, and Jack Dongarra. Failure detection and propagation in hpc
systems. In SC’16: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 312–322. IEEE, 2016.

[24] Michael F Bridgland and Ronald J Watro. Fault-tolerant decision making in totally
asynchronous distributed systems. In Proceedings of the sixth annual ACM Sympo-
sium on Principles of distributed computing, pages 52–63. ACM, 1987.

[25] Mike Burrows. The chubby lock service for loosely-coupled distributed systems. In
Proceedings of the 7th symposium on Operating systems design and implementation,
pages 335–350. USENIX Association, 2006.

58

[26] Christian Cachin, Rachid Guerraoui, and Luís Rodrigues. Introduction to reliable and
secure distributed programming. Springer Science & Business Media, second edition,
2011.

[27] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure
detector for solving consensus. Journal of the ACM (JACM), 43(4):685–722, 1996.

[28] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable
distributed systems. Journal of the ACM (JACM), 43(2):225–267, 1996.

[29] Tianshi Chen, Qi Guo, Olivier Temam, Yue Wu, Yungang Bao, Zhiwei Xu, and
Yunji Chen. Statistical performance comparisons of computers. IEEE Transactions
on Computers, 64(5):1442–1455, 2014.

[30] Wei Chen, Sam Toueg, and Marcos Kawazoe Aguilera. On the quality of service of
failure detectors. Computers, IEEE Transactions on, 51(5):561–580, 2002.

[31] Benny Chor and Cynthia Dwork. Randomization in byzantine agreement. Advances
in Computer Research, 5:443–497, 1989.

[32] George F Coulouris, Jean Dollimore, Tim Kindberg, and Gordon Blair. Distributed
systems: concepts and design. Pearson, fifth edition, 2012.

[33] Anubis Graciela de Moraes Rossetto, Carlos O Rolim, Valderi Leithardt, Guilherme A
Borges, Cláudio FR Geyer, Luciana Arantes, and Pierre Sens. A new unreliable
failure detector for self-healing in ubiquitous environments. In Advanced Information
Networking and Applications (AINA), 2015 IEEE 29th International Conference on,
pages 316–323. IEEE, 2015.

[34] Antônio Rodrigo D De Vit, César Marcon, and Raul Ceretta Nunes. Signal strength
as support to mobility detection on failure detectors. In Proceedings of the Symposium
on Applied Computing, pages 647–650. ACM, 2017.

[35] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: amazon’s highly available key-value store. ACM
SIGOPS Operating Systems Review, 41(6):205–220, 2007.

[36] Xavier Défago, André Schiper, and Péter Urbán. Total order broadcast and multicast
algorithms: Taxonomy and survey. ACM Computing Surveys (CSUR), 36(4):372–
421, 2004.

[37] Xavier Défago, Péter Urbán, Naohiro Hayashibara, and Takuya Katayama. Definition
and specification of accrual failure detectors. In Dependable Systems and Networks,
2005. DSN 2005. Proceedings. International Conference on, pages 206–215. IEEE,
2005.

[38] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On the minimal synchronism
needed for distributed consensus. Journal of the ACM (JACM), 34(1):77–97, 1987.

59

[39] Danny Dolev, Nancy A Lynch, Shlomit S Pinter, Eugene W Stark, and William E
Weihl. Reaching approximate agreement in the presence of faults. Journal of the
ACM (JACM), 33(3):499–516, 1986.

[40] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of
partial synchrony. Journal of the ACM (JACM), 35(2):288–323, 1988.

[41] Dacfey Dzung, Rachid Guerraoui, David Kozhaya, and Yvonne-Anne Pignolet-
Oswald. Never say never probabilistic & temporal failure detectors (extended).
IPDPS, 2016.

[42] Bradley Efron. Bootstrap methods: another look at the jackknife. In Bootstrap
methods: another look at the jackknife, pages 1–26. The annals of Statistics, 1979.

[43] Mourad Elhadef and Azzedine Boukerche. A failure detection service for large-scale
dependable wireless ad-hoc and sensor networks. In The Second International Con-
ference on Availability, Reliability and Security (ARES’07), pages 182–189. IEEE,
2007.

[44] Lorenzo Falai and Andrea Bondavalli. Experimental evaluation of the qos of failure
detectors on wide area network. In Dependable Systems and Networks, 2005. DSN
2005. Proceedings. International Conference on, pages 624–633. IEEE, 2005.

[45] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of dis-
tributed consensus with one faulty process. Journal of the ACM (JACM), 32(2):374–
382, 1985.

[46] Hector Garcia-Molina. Elections in a distributed computing system. Computers,
IEEE Transactions on, 100(1):48–59, 1982.

[47] Carlos Gomez-Calzado, Mikel Larrea, Iratxe Soraluze, Alberto Lafuente, and Roberto
Cortinas. An evaluation of efficient leader election algorithms for crash-recovery
systems. In Parallel, Distributed and Network-Based Processing (PDP), 2013 21st
Euromicro International Conference on, pages 180–188. IEEE, 2013.

[48] Fabíola Greve, Pierre Sens, Luciana Arantes, and Véronique Simon. A failure detector
for wireless networks with unknown membership. In European Conference on Parallel
Processing, pages 27–38. Springer, 2011.

[49] Péricles Pompermayer Gumerato. Detetores de falhas em aglomerados: um estudo
comparativo. Dissertação de Mestrado, 2015.

[50] Naohiro Hayashibara, Xavier Defago, Rami Yared, and Takuya Katayama. The ϕ
accrual failure detector. In Reliable Distributed Systems, 2004. Proceedings of the
23rd IEEE International Symposium on, pages 66–78. IEEE, 2004.

[51] Felix Hupfeld, Björn Kolbeck, Jan Stender, Mikael Högqvist, Toni Cortes, Jonathan
Martí, and Jesús Malo. Fatlease: scalable fault-tolerant lease negotiation with paxos.
Cluster Computing, 12(2):175–188, 2009.

60

[52] Michael Isard. Autopilot: automatic data center management. ACM SIGOPS Op-
erating Systems Review, 41(2):60–67, 2007.

[53] Denis Jeanneau, Thibault Rieutord, Luciana Arantes, and Pierre Sens. Solving k-set
agreement using failure detectors in unknown dynamic networks. IEEE Transactions
on Parallel and Distributed Systems, 28(5):1484–1499, 2016.

[54] Ruofan Jin, Bing Wang, Wei Wei, Xiaolan Zhang, Xian Chen, Yaakov Bar-Shalom,
and Peter Willett. Detecting node failures in mobile wireless networks: a probabilistic
approach. IEEE Transactions on Mobile Computing, 15(7):1647–1660, 2015.

[55] Airton Jesus Junior, Tarcísio da Rocha, and Edward David Moreno. A failure de-
tector for ambient assisted living. In 2018 IEEE Symposium on Computers and
Communications (ISCC), pages 1–4. IEEE, 2018.

[56] Leslie Lamport. The part-time parliament. ACM Transactions on Computer Systems
(TOCS), 16(2):133–169, 1998.

[57] Leslie Lamport. Fast paxos. Distributed Computing, 19(2):79–103, 2006.

[58] Butler W Lampson. How to build a highly available system using consensus. In
International Workshop on Distributed Algorithms, pages 1–17. Springer, 1996.

[59] Mikel Larrea, Antonio Fernández, and Sergio Arévalo. Optimal implementation of
the weakest failure detector for solving consensus. In Reliable Distributed Systems,
2000. SRDS-2000. Proceedings The 19th IEEE Symposium on, pages 52–59. IEEE,
2000.

[60] Dingxiang Liu and Jamie Payton. Adaptive fault detection approaches for dy-
namic mobile networks. In Consumer Communications and Networking Conference
(CCNC), 2011 IEEE, pages 735–739. IEEE, 2011.

[61] Jiaxi Liu, Fei Ding, and Dengyin Zhang. A hierarchical failure detector based on
architecture in vanets. IEEE Access, 7:152813–152820, 2019.

[62] Jiaxi Liu, Zhibo Wu, Jin Wu, Jian Dong, Yao Zhao, and Dongxin Wen. A weibull
distribution accrual failure detector for cloud computing. PloS one, 12(3):e0173666,
2017.

[63] John MacCormick, Nick Murphy, Marc Najork, Chandramohan A Thekkath, and
Lidong Zhou. Boxwood: Abstractions as the foundation for storage infrastructure.
In OSDI, volume 4, pages 8–8, 2004.

[64] David L Mills. Internet time synchronization: the network time protocol. IEEE
Transactions on communications, 39(10):1482–1493, 1991.

[65] Marcia Pasin, Stéphane Fontaine, and Sara Bouchenak. Failure detection in large
scale systems: A survey. In Network Operations and Management Symposium Work-
shops, 2008. NOMS Workshops 2008. IEEE, pages 165–168. IEEE, 2008.

61

[66] Michel Reynal. A short introduction to failure detectors for asynchronous distributed
systems. ACM SIGACT News, 36(1):53–70, 2005.

[67] Sampa Sahoo, Bibhudatta Sahoo, and Ashok Kumar Turuk. Rt-push: a vm fault
detector for deadline-based tasks in cloud. In Proceedings of the 3rd International
Conference on Communication and Information Processing, pages 196–201. ACM,
2017.

[68] Fred B Schneider. Implementing fault-tolerant services using the state machine ap-
proach: A tutorial. ACM Computing Surveys (CSUR), 22(4):299–319, 1990.

[69] Alejandro Z Tomsic, Pierre Sens, Joao Garcia, Luciana Arantes, and Julien Sopena.
2w-fd: A failure detector algorithm with qos. In Parallel and Distributed Processing
Symposium (IPDPS), 2015 IEEE International, pages 885–893. IEEE, 2015.

[70] Rogério C Turchetti, Elias P Duarte, Luciana Arantes, and Pierre Sens. A qos-
configurable failure detection service for internet applications. Journal of Internet
Services and Applications, 7(1):9, 2016.

[71] Rogerio C Turchetti and Elias Procopio Duarte. Implementation of failure detec-
tor based on network function virtualization. In Dependable Systems and Networks
Workshops (DSN-W), 2015 IEEE International Conference on, pages 19–25. IEEE,
2015.

[72] Maxime Véron, Olivier Marin, Sébastien Monnet, and Pierre Sens. Repfd-using rep-
utation systems to detect failures in large dynamic networks. In Parallel Processing
(ICPP), 2015 44th International Conference on, pages 91–100. IEEE, 2015.

[73] Gustavo MD Vieira and Luiz E Buzato. Treplica: ubiquitous replication. In SBRC:
Proc. of the 26th Brazilian Symposium on Computer Networks and Distributed Sys-
tems. Citeseer, 2008.

[74] Fengwei Wang, Hai Jin, Deqing Zou, and Weizhong Qiang. Fdkeeper: A quick
and open failure detector for cloud computing system. In Proceedings of the 2014
International C* Conference on Computer Science & Software Engineering, page 14.
ACM, 2014.

[75] Naixue Xiong, Athanasios V Vasilakos, Jie Wu, Y Richard Yang, Andy Rindos,
Yuezhi Zhou, Wen-Zhan Song, and Yi Pan. A self-tuning failure detection scheme for
cloud computing service. In Parallel & Distributed Processing Symposium (IPDPS),
2012 IEEE 26th International, pages 668–679. IEEE, 2012.

[76] Rui Yang, Shichu Zhu, Yifei Li, and Indranil Gupta. Medley: A novel distributed
failure detector for iot networks. In Proceedings of the 20th International Middleware
Conference, pages 319–331, 2019.

[77] Tsai-Wei Yang and Kuochen Wang. Failure detection service with low mistake rates
for sdn controllers. In 2016 18th Asia-Pacific Network Operations and Management
Symposium (APNOMS), pages 1–6. IEEE, 2016.

62

[78] Dong Zhong, Aurelien Bouteiller, Xi Luo, and George Bosilca. Runtime level failure
detection and propagation in hpc systems. In Proceedings of the 26th European MPI
Users’ Group Meeting, pages 1–11, 2019.

63

Appendix A

Testbed Manual

The official repository resulted from this work containing both the testbed for failure detec-
tors and the experiment results is the following https://bitbucket.org/scannapieconeto/
testbedfailuredetectors as illustrated in Figure A.1.

The technical details on how to (i) generate the testbed JAR file, (ii) edit the testbed
config file, (iii) setup the machines that’ll be used and (iv) run the experiments using the
testbed is also present in the reposity README.md file and shown in Figures A.2, A.3
and A.4 respectively.

The experiment results were also added to the repository as illustrated by Figure A.5.

64

Figure A.1: Official testbed for failure detectors repository.

Figure A.2: How to generate the testbed JAR file.

65

Figure A.3: How to edit the testbed config file.

66

Figure A.4: Machines setup and commands to run the testbed.

Figure A.5: Experiment results in the repository.

	Introduction
	Distributed Systems
	Definition
	Consensus
	Impossibility of Consensus

	Failure detectors
	Definition
	Quality of service
	Failure detectors studied
	Larrea et al. vanilla (LFA)
	Larrea et al. epoch (LFAe)
	Aguilera et al. (ACT)
	Chen et al. (CTA)
	Algorithms complexity

	A Testbed for Failure Detectors
	Load generator
	Treplica
	Failure detector
	Opponent

	Comparative Failure Detection
	Materials and methods
	Platform
	Software
	Data Management

	Experiments
	FD speed assessment
	FD accuracy assessment
	Consensus performance assessment
	FD

	Results
	Bootstrapping
	FD speed results
	FD accuracy results
	Consensus performance results

	Related Work
	Conclusion
	Bibliography
	Testbed Manual

