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Resumo

Convolução é uma operação crucial para aplicações de Deep Learning. Como tal, ela
tem sido o foco de muitos esforços de otimização neste domínio de aplicação. Image-to-
column (Im2col) e column-to-image (Col2im) são transformações amplamente utilizadas
para mapear convolução para multiplicação de matrizes. Essas transformações reorgani-
zam as entradas da convolução para evitar seu padrão de acesso não contínuo à memória,
fornecendo assim um arranjo de dados mais amigável para CPUs e GPUs. Em aceleradores
de inteligência artificial (IA), essas transformações permitem que a convolução seja exe-
cutada em unidades multiplicadoras de matriz. Implementadas em software, no entanto,
elas impõem um aumento significativo em tempo de computação que deve ser compensado
pelos ganhos de eficiência dos multiplicadores de matriz. DaVinci é uma arquitetura de
acelerador de IA que apresenta instruções para otimizar Im2col e Col2im, reduzindo assim
a sobrecarga de execução da convolução em seu multiplicador de matriz. Outra camada
central para redes neurais convolucionais que apresenta um padrão de acesso semelhante
à convolução é pooling. A execução de pooling é tipicamente direcionada para unidades
de computação vetorial. Contudo, implementações baseadas nas transformações Im2col e
Col2im podem ser utilizadas para melhorar a sua execução. Este trabalho explora o uso
das instruções Im2col e Col2im do DaVinci para acelerar camadas de pooling. A abor-
dagem proposta usa uma unidade de computação vetorial de propósito geral e instruções
projetadas principalmente para convolução. Uma avaliação experimental revela que as
implementações de pooling propostas podem produzir ganhos de velocidade de até 5,8
vezes em comparação com implementações base que não usam essas instruções especiali-
zadas. Os ganhos de velocidade são obtidos a partir de uma melhoria no arranjo de dados
das entradas do pooling, pois esse arranjo leva à melhor vetorização de suas instruções.



Abstract

Convolution is an operation crucial to Deep Learning applications. As such, it has been the
focus of many optimization efforts on this application domain. Image-to-column (Im2col)
and column-to-image (Col2im) are data transformations extensively used to map convolu-
tion to matrix multiplication. These transformations rearrange the inputs of convolution
to avoid its strided memory access pattern, thus providing a friendlier data layout for
CPUs and GPUs. In artificial intelligence (AI) accelerators, these transformations allow
convolution to be computed in matrix-multiplier units. Implemented in software, however,
they impose a significant overhead that must be compensated by the efficiency gains of
matrix-multipliers. DaVinci is an AI accelerator architecture that introduces instructions
to optimize Im2col and Col2im, thus lowering the overhead of executing convolution in
its matrix-multiplier. Another core layer of convolutional neural networks that presents
a similar memory access pattern to convolution is pooling. The execution of pooling is
typically targeted to vector computational units. Nevertheless, implementations based
on the Im2col and Col2im transformations can be leveraged to improve its execution.
This work explores the use of Im2col and Col2im instructions of DaVinci to accelerate
pooling layers. The proposed approach uses a general-purpose vector computational unit
and instructions primarily designed for convolution. An experimental evaluation reveals
that the proposed pooling implementations can yield up to 5.8x speedup compared to
baseline implementations that do not use these specialized instructions. The speedups
follow from an improved memory layout in the inputs of pooling, as this layout leads to
better vectorization of its instructions.
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Chapter 1

Introduction

With the increasing adoption of convolutional neural networks (CNNs) in everyday appli-
cations, high-efficiency CNN execution has become fundamental. Convolution has been
the main target of optimization because it is the most used and computationally expen-
sive layer in CNNs architectures [36]. Targeting convolutions led to special computing
units in GPUS (Tensor Cores) and hardware accelerators based on systolic arrays to be
designed. This type of accelerator has become one of the most efficient ways to execute
CNNs training and inference.

DaVinci [31] is a hardware accelerator architecture that implements scalar, vector, and
matrix-multiplier units. The matrix-multiplier unit allows efficient computation of convo-
lution and other CNN layers, such as the fully connected, that can be mapped to matrix
multiplication [23]. Convolution is mapped to matrix multiplication through the Im2col
and Col2im data transformations. These transformations are memory-intensive and add
significant performance overhead to convolution. However, highly optimized solutions for
matrix multiplication both in software (e.g ., OpenBLAS [54] and Eigen [17] libraries) and
in hardware (e.g ., matrix-multipliers) overcome this overhead. Still, DaVinci introduced
instructions to optimize Im2col and Col2im. First, Im2col is performed during a load
instruction (Im2Col) just before data reaches the memory buffers close to DaVinci’s com-
putational units. As such, this operation uses no temporaries and its memory overhead is
only seen in these buffers. Second, Col2Im is a vector instruction capable of better vector-
izing over the scattered access pattern of Col2im. By using these instructions, convolution
is computed in the matrix-multiplier unit of DaVinci at a low overhead.

For modern CNN architectures, however, solely optimizing convolutional and fully con-
nected layers is not enough. Many other operations are required and they should be able to
run in hardware accelerators such as DaVinci to avoid transferring computation between
devices. Some of these operations are activation and loss functions, batch normalization,
and pooling. Pooling layers are present in most CNNs to extract translation-invariant fea-
tures and to perform subsampling of images. Max-pooling is the main variant of pooling
that subsamples using the maximum value. While the performance impact of pooling is
low compared to convolution, a naive implementation can hinder the overall performance
of a CNN [30].

Max-pooling has strided memory access patterns similar to convolution, however, the
calculation of a maximum value cannot take place in a matrix-multiplier. Even so, its
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implementation can leverage specialized Im2Col and Col2Im instructions. Thus, this work
proposes two key ideas to accelerate pooling: to produce an improved data layout by ap-
plying Im2Col instructions to the input of forward pooling, and to apply Col2Im instruc-
tions to backward pooling instead of traditional vector instructions. Previous attempts
to accelerate CNNs using FPGAs proposed pooling-specific instructions and computa-
tional units [16, 45]. In contrast, the proposed approach uses a general-purpose vector
computational unit and instructions primarily designed for convolution. Earlier work on
improving pooling also overlooked its backward implementation [16,27,42], which is essen-
tial for training. Many previous works on pooling focus on improving network accuracy
and avoiding overfitting by improving the sampling quality of pooling. Stochastic Pool-
ing [57] and Fractional Pooling [14] are examples of these works. However, such works
are not as practical as Max-pooling and neglect execution performance. Lastly, operation
fusion, which effectively improves pooling paired with convolution [42,46], is independent
of the Im2col/Col2im based implementation presented in this work. Both optimizations
can be applied in conjunction.

The main contributions of this work are:

• A description of DaVinci’s Im2Col and Col2Im instructions, showing how they are
executed and how they integrate into DaVinci’s datapaths.

• An approach to accelerate pooling with an Im2col-based forward implementation
and a Col2im-based backward implementation using Im2Col and Col2Im instruc-
tions.

• A rigorous evaluation of multiple pooling implementations in DaVinci, revealing
speedups of up to 5.8 times on the Im2col/Col2im based implementations.

The remaining chapters are organized as follows: foundational concepts for this work
appear in Chapter 2. Chapter 3 presents an overview of the DaVinci architecture, focusing
on its Im2Col and Col2Im instructions, and the software stack used to implement pooling
operators for DaVinci through the TVM framework. Chapter 4 describes the Im2col and
Col2im based pooling implementations showing details of their high-level and low-level
code. Chapter 5 presents a performance comparison of implementations of pooling and
discusses the results. Finally, Chapter 6 presents related works, and Chapter 7 concludes
this work.

The work developed in this thesis has been submitted for publications as Caio S.
Rohwedder, João P. L. de Carvalho, José Nelson Amaral, Guido Araújo, Giancarlo Col-
menares, and Kai-Ting Amy Wang, "Pooling Acceleration in the Davinci Architecture Us-
ing Im2col and Col2im Instructions", Proceedings of the Thirty-Fifth IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW), in May 2021.
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Chapter 2

Background

2.1 Deep Learning

Artificial intelligence (AI) is a computer science field that studies algorithms capable
of learning and modeling tasks that commonly would require human intelligence to be
done. Machine learning (ML) is a sub-field of AI that studies learning algorithms, such
algorithms learn patterns in datasets. A neural network is a technique of ML that tries to
mimic the processing patterns of human brains with neuron structures organized in layers
to learn patterns. Deep neural networks are neural networks composed of many layers,
they are capable of learning more complex patterns [3]. Convolution is a filtering operation
used in image processing. Deep convolutional neural networks (CNNs) are networks that
use the convolution operation as their main building block, to better process image inputs.
These deep networks are part of the subfield of ML called Deep Learning.

Deep learning (DL) started to regain attention in 2012 when the ImageNet [40] classi-
fication competition was won by a group that used a deep CNN called AlexNet [24] that
obtained error rates considerably better than the previous state-of-the-art models. To-
day, big tech companies, such as Google, Apple, Tesla, and others employ CNNs in many
applications, from self-driving cars to smartphone cameras that can identify what they
are seeing. CNNs have two distinct modes of operation: training and inference. Training
is the act of tuning weights to minimize an error function, it takes a tremendous amount
of data and it is usually computed on computer clusters [47]. Inference is the use of an
already-trained network to produce an output. Usually, inference is the only focus of edge
devices but there are areas such as Reinforcement Learning where inference and training
are intertwined on edge devices. Regardless of the mode of operation, the increased use
of CNNs highlights the need for hardware and software solutions to optimize them, and
their main operation, convolution, is at the center of such solutions.

2.2 Convolution and Im2col

CNNs use convolutional layers to process images as their inputs. They are used because
they explore the spatial nature of images and obtain a built-in invariance against small
changes in images [28]. Convolutional layers also process images more efficiently as they
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use shared weights, rather than having a weight for each pair of input and output ele-
ments. This allows CNNs to have pixels as inputs so that they learn to extract features
themselves, rather than needing preprocessed features as inputs [28]. Such advantages re-
sult in convolutional layers being the main operation utilized to process images in neural
networks.

Although numbers vary due to the utilized hardware and CNN architecture, several
studies demonstrate that the convolutional layer is the most computationally expensive
layer in a CNN. Park et al . [36] show that convolution accounts for at least 40% of
computation in multiple CNNs during training in a GPU, at least 60% in most cases.
Jung et al . [22] show similar results for training in a CPU, however, their work indicates
that non-convolutional layers are gaining importance for newer CNN architectures. Li et
al . [30] also show at least 40% of computation is spent on convolution during inference
on different CNNs in mobile CPUs. But similar to the previous work, they point out
that non-convolutional layers can be obstacles for mobile CPU execution time. CNNs
can be composed of many operations besides convolution, such as batch normalization,
pooling, fully connected layers, activation functions, concatenation, etc., but due to its
computational impact, convolution is the main focus for optimization.

Convolutional layers work by repeatedly applying a kernel — a multi-channel filter
composed of trainable weights — over patches of the input image. Patches are regions
of the input that have the same size as the kernel. They are selected based on stride
parameters, and given these parameters may or may not overlap. In an application of
a kernel, its weights multiply a patch of the input. The multiplied results are summed
together to generate a single output. A kernel is applied over each patch of the input
to generate a two-dimensional output, which is called a feature map. Convolution uses
multiple kernels to produce multiple feature maps that are stacked as channels into a
three-dimensional output. The memory layout for the input of a convolutional layer is
commonly described as NCHW , where each character represents a dimension of a four-
dimensional input: the number of images stacked together (N), channels (C), height
(H), and width (W ). The character’s order specifies the order in which each dimension is
arranged in memory. For simplicity, the dimensionN has a length equal to one throughout
this work. One of the challenges in convolution is its memory access pattern because the
kernel has a strided movement in the height and width of an input while accessing all of
the input’s channels. Such access pattern can lead to cache misses and poor vectorization
in CPUs, and it can cause uncoalesced memory accesses in GPUs.

Convolution unrolling, also known as Image-to-Column (Im2col1), is a data trans-
formation that allows the mapping of convolution into matrix-matrix multiplication [5].
This transformation, illustrated in Figure 2.1, consists of creating two matrices, OutIn
and OutKer , based on the input image and the kernels, respectively. Each row of matrix
OutIn contains all the input needed to compute one element of an output feature map
linearized into one dimension. Each column of matrix OutKer contains the weights of a
kernel similarly linearized. Thus, multiplying OutIn and OutKer is equivalent to perform-

1The transformation of the input image can also be an image-to-row transformation if the multipli-
cation is transposed (AB)T = BTAT [51]. The Im2col name will be used to refer to all variants of this
transformation.
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Figure 2.1: Im2col: In (C, Ih, Iw) is transformed into matrix OutIn (Oh×Ow, C×Kh×Kw)
and a single kernel (C,Kh, Kw) is transformed into the matrix OutKer (C ×Kh ×Kw, 1),
where Oh and Ow represent the number of patches in the height and width of the input.
The bold squares (2, 2) in In represent patches of the image to which the kernel is applied.
Col2im: the backward operator of Im2col, from OutIn to In.

ing convolution with its original inputs. This is one of the main optimizations used to
implement convolution.

The stride parameters Sh and Sw define how many elements must be moved in height
and width after the kernel is applied on a patch of the input. First, the kernel will
move Sh elements to the right until it reaches the end of the row, then, it moves Sh

elements down and starts from left to right again. If the stride sizes (Sh, Sw) are smaller
than the kernel’s height and width (Kh, Kw), patches will overlap during convolution.
The overlapping elements will be copied to multiple rows of matrix OutIn , resulting in
a bigger memory footprint. This is the main drawback of the Im2col technique when
contrasted with direct-convolution based approaches. An example with a single channel
is shown in Figure 2.2. The two patches are highlighted and they overlap on the elements
{3, 8, 13}. As a result, these elements appear in both rows of the output of Im2col (on
the right). Nonetheless, Im2col is used across AI frameworks to implement convolution
because matrix multiplication offers an input with a friendlier memory layout to CPUs
and GPUs, making it easier to apply vectorization techniques [5]. Such advantages of
matrix multiplication are discussed in more detail in the next section.

2.3 Matrix Multiplication

General matrix-matrix multiplication (GEMM) is the term used to refer to the matrix
multiplication of matrices A and B resulting in matrix C in the form described in Equa-
tion 2.1, where α and beta are constants. The most common form of matrix multiplication
(C = AB) is contained in this definition (α = 1, β = 0).

C = α ∗ AB + β ∗ C (2.1)

As seen in Listing 2.1, matrix multiplication can be implemented with ease, how-
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Figure 2.2: Im2col and Col2im performed on two overlapping patches. Im2col: patches
overlap on the elements 3, 8, 13, these elements are present in both rows of the output of
Im2col. Col2im: Duplicated elements need to be summed when returning to the original
shape.

1 for(i=0; i<M; i++)
2 for(j=0; j<N; j++)
3 for(k=0; k<P; k++)
4 C[i][j] += A[i][k]*B[k][i];

Listing 2.1: Naive matrix multiplication

ever, this is a naive implementation that misses on many opportunities for improvement.
The structure of this computation is very flexible, it has loops with no dependencies be-
tween iterations, known as DOALL loops [53]. As a consequence, these loops can easily
be interchanged and transformed to optimize execution targeting specific hardware. For
cache-based CPUs, GEMM can obtain improved performance by using techniques such
as blocking, optimal loop ordering, and packing. Loop ordering and blocking work to-
gether to break the input matrices into smaller chunks of data, and packing takes these
chunks and reorders them in memory to optimize the memory accesses of the compu-
tation. Architecture-specific inner computations are used to operate on these chunks
of data, they are often implemented in a lower-level language. Such optimizations im-
prove cache hits, lower pressure on the Translation Lookaside Buffer (TLB), and allow
architecture-specific tuning depending on cache size, number of cache levels, and vector-
ization features. These optimizations on GEMM have been extensively studied [13], and
linear algebra libraries such as OpenBLAS [54], ATLAS [52], and Eigen [17] implement
highly optimized versions of GEMM. These libraries are based on Basic Linear Algebra
Subprograms (BLAS) [4], which is the most used standard for linear algebra routines
in computer programs. GEMM is a key routine in these libraries because most other
matrix-matrix routines can be implemented based on it with simple modifications [12].

Other types of hardware, such as GPUs also have highly optimized implementation of
GEMM in libraries as cuBLAS [35]. Newer models of GPUs even have Tensor Cores [33]
units that perform matrix-matrix multiply-accumulate of small matrices. As a conse-
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quence of these hardware and software based optimizations, and given the possibility to
map convolution to GEMM, GEMM is often used to implement convolution. The re-
cent advances of AI accelerators that are designed around matrix-multiplier units further
incentivize such a transformation.

2.4 AI Accelerators

Google’s Tensor Processing Unit (TPU) [21] was one of the first examples of a new trend of
specialized AI accelerators. The TPU was designed to meet the computational demands
of Google’s data centers, which were being overwhelmed with AI applications [20]. Many
other companies built their own AI accelerators for their specific targets, such as Apple’s
Bionic and Amazon’s Inferentia chips. The Ascend 910 and Ascend 310 chips are Huawei’s
AI accelerator designs based on the DaVinci architecture [31].

Both Google’s and Huawei’s AI accelerators were designed around a core processing
unit based on a systolic array architecture that executes matrix and tensor operations.
Such a unit is called Matrix-Multiplier Unit (MXU) on the TPU core and Cube Unit on
the DaVinci architecture. A systolic array is an architecture designed to simultaneously
exploit pipelined spatial/temporal parallelism and data reuse to achieve high through-
put [26]. This architecture works by passing its input through an array of processing
elements before storing it back to memory [25]. As defined by Kung, "In a systolic sys-
tem, data flows from the computer memory in a rhythmic fashion, passing through many
processing elements before it returns to memory, much as blood circulates to and from
the heart" [25]. The structure of this array can be multidimensional, thus enabling the
processing of two-dimensional inputs, such as matrices. Both the MXU and the Cube
Unit implement matrix multiplication by creating an array of processing elements capa-
ble of performing multiply-accumulate operations [21]. Convolutional and fully connected
layers, which are core components of CNNs, can be easily implemented through matrix
multiplication [23].

Even though the matrix-multiplier is the core of AI Accelerators, CNNs may require
many other operations besides convolution. To avoid expensive offloading operations
from a host to an accelerator, operations such as pooling, batch normalization, activation
functions should also be supported by accelerators. Further, backpropagation is needed
for training in an accelerator, and thus, backward operators should also be supported.

2.5 Backward Operators and Col2im

To train a neural network, the input values are first propagated in a forward pass to pro-
duce an output. Then, the error between this generated output and the expected output
is calculated through a loss function. The gradient of this loss function is propagated
backward towards the input so that the network can be tuned. To propagate the gradient
towards the input on a backward pass, every forward operator must have a dual-operator,
namely its backward operator [39].

The gradient is a vector of partial derivatives that points to the steepest ascend on
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the loss function. In order to minimize the loss, the tunable parameters of a network, its
weights, are updated in the opposite direction of the gradient. This process is known as
gradient descent [38]. The gradient descent uses the gradient of the loss function with
respect to the weights. But the gradient of the loss function is initially calculated with
respect to the output layer of the network. The backpropagation algorithm [39] is used
to propagate the initial gradient backward, one layer at a time until it reaches all the
weights. Reaching a weight x means that the gradient is computed with respect to x.
Backpropagation explores the chain rule of derivatives to calculate and propagate the
gradient to every layer. Backward operators are essentially the implementation of the
partial derivatives to propagate the gradient from the outputs of one layer to its inputs.

The backward operator of Im2col is called Col2im, and it is also illustrated in Fig-
ure 2.1. Col2im is used in the backward propagation pass of convolutional layers im-
plemented with Im2col. The incoming gradients in the shape of the matrix OutIn are
propagated back to the original NCHW layout. If there is no overlap, as in the example
of Figure 2.1, Col2im simply returns the matrix to its original shape. But when patches
do overlap, gradients that refer to the same position in the output are summed, as shown
in Figure 2.2. Note that the term Col2im may be used to refer to a reshape operation
that is applied to the resulting matrix of forward convolution implemented with GEMM.
In this case, overlapping elements are not summed, however, in this work Col2im refers
only to the backward operator of Im2Col.

2.6 Pooling Operators

Spatial feature pooling subsamples images to obtain translation-invariant feature maps in
computer-vision architectures [11]. Similar to convolution, pooling is one of the building
blocks of CNNs. Pooling layers are commonly used in modern CNN architectures such as
Resnet [18], Inception [50], and Xception [7]. Pooling also applies a kernel over patches of
its NCHW input. But unlike convolution, a pooling kernel has no weights, it only selects
patches based on the stride parameters. A reduction function is applied to the selected
patches to subsample the input. This reduction is typically applied to the height (H) and
width (W ) dimensions of the input, operating on the channels independently. As a result,
the output of pooling has the same number of channels as the input. Different reduction
functions can be chosen: the max function selects the maximum value (Maxpool), and the
avg function computes the average of the patch (Avgpool). Maxpool is preferred among
CNNs as it looks at the maximal activation of features, rather than diluting them with
an average [9].

2.6.1 Maxpool

Figure 2.3 (on top) shows an example of Maxpool forward where 13 is the maximum value
of the first patch, and 19 is the maximum of the second patch. This figure also shows
an example of Maxpool backward on the same overlapping patches. The implementation
of backward pooling depends on the reduction function. For Maxpool backward, each
input is multiplied by its corresponding Argmax mask. In this mask, the position of the
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Figure 2.3: Forward and backward computation of Maxpool for two overlapping patches.
Forward: the output is the maximum value of each patch. Backward: the gradients are
propagated only to the position of the maximum value of their corresponding patch.

maximum element in the original patch is set to 1 and all the other positions are set to
0. Next, as with Col2im, the masks are returned to their original NCHW shape and the
overlapping elements are summed together. The output correlates how much a change in
each input element of Maxpool forward affects its output elements [2]. In summary, the
gradients are only propagated backward to the maximum elements, as they are the only
elements that affect the output [41].

While Figure 2.3 shows the intuition of backward Maxpool, Figure 2.4 shows a deeper
look into the working of this backpropagation step in a single patch. As shown in Fig-
ure 2.4, the inputs to Maxpool backward are the gradients with respect to the output of
Maxpool forward ( ∂L

∂Yj
). The desired output of Maxpool backward is a matrix containing

the gradients of the loss function with respect to the inputs of Maxpool forward ( ∂L
∂Xi

). The
chain rule ∂L

∂Xj
= ∂Y1

∂Xj
∗ ∂L

∂Y1
(Argmax multiplied by the input) is used to obtain the output,

where Y is the max function [39]. Equations 2.3 and 2.4 show the partial derivatives of
max based on its definition in Equation 2.2. These equations can be applied to calculate
∂Y1

∂Xj
in the same way, the only difference is that Maxpool’s max takes multiple inputs. The

results for these derivatives are shown below the Argmax matrix in Figure 2.4.

max(x, y) =

{
x, if x ≥ y

y, if x < y
(2.2)

∂max(x, y)

∂x
=

{
1, if x > y

0, if x < y
(2.3)
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Figure 2.4: Forward and backward computation of a single patch where X4 is the maxi-
mum element. The backward pass shows its derivatives and their resulting values below
them.

∂max(x, y)

∂y
=

{
0, if x > y

1, if x < y
(2.4)

The derivatives of max (Equation 2.2) are undefined when x = y. Equation 2.5 demon-
strates that the left and right one-sided limits of the derivatives have different values when
calculating the derivative of Equation 2.3. This is also the case for Maxpool when there
are multiple maximum values in a single patch. In the case of an undefined derivative, it
is up to the system designer to define a reasonable behavior. Most popular AI frameworks
assign 1 to the first maximum in a patch and 0 to the others, regardless if they are also
maximum values. Two other implementations are possible: (i) assign 1 to all maximum
values in a patch and (ii) assign 1/m to all m maximum values in a patch (e.g ., 0.5 for
2 maximum values). There are no studies, as of the time of writing, that compare these
different implementations and their impact on a network’s performance. The Maxpool
implementations in this work assign 1 to all maximum values in a patch as this is the
simplest option and it is enough for the goal of the comparisons presented in Chapter 5.
The other options would need an extra computation to identify the position of the first
maximum value or to count how many maximum values exits in a patch.
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lim
h→0+

max(a, a+ h)−max(a, a)
h

= 1

lim
h→0−

max(a, a+ h)−max(a, a)
h

= 0

(2.5)

2.6.2 Avgpool

For Avgpool, the forward computation can be divided into two steps. First, a summation
of the elements of each patch. Second, the division of the results by the patch size (number
of elements in a patch). Avgpool backward starts by propagating the division step, which
requires dividing all input gradients by the patch size. This is a trivial case because the
division of a patch of size 2 for example, f(x) = 0.5∗x, has a derivative of 0.5. Hence, the
constant value is multiplied by the gradient to complete the chain rule. The summation
step is similar to Maxpool but changing the max function for a sum. Equation 2.6 defines
the sum function of two values and Equations 2.7 and 2.8 define its partial derivatives.
As opposed to max, in which only the maximum element contributes to the output, sum
utilizes all of its input elements, thus, it propagates back to all elements. Thus, the same
scheme in Figure 2.4 can be used, however, the masks for sum have the value 1 in all its
positions.

sum(x, y) = x+ y (2.6)

∂sum(x, y)

∂x
= 1 (2.7)

∂sum(x, y)

∂y
= 1 (2.8)

2.6.3 Global Pooling

Another type of pooling present in the CNNs discussed in this work is Global Pooling [32],
which is often implemented as Global Average Pooling. Table 2.1 shows a few CNNs
and their use of this type of pooling with its input sizes. The implementation does not
change from Avgpool, however, Global Average Pooling averages the whole height and
width dimensions to a single value, that is, every channel has only one patch. This layer
was proposed to substitute the fully connected layers at the end of CNNs so that the
resulting vector is fed directly to the softmax layer. It can be advantageous to make
this substitution because Global Pooling has no trainable parameters and thus has no
possibility of overfitting. Another good outcome is that a relation is enforced between the
final features of the network and classification categories. This type of pooling has a much
simpler implementation than traditional Pooling because there is no strided reduction
function, but only a 2-dimensional single reduction.
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Table 2.1: Global Avgpool Input Sizes in CNNs (height, width, channels).

CNN Input 1
InceptionV3 8,8,2048
Xception 10,10,2048
Resnet50 7,7,2048
VGG16 -
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Chapter 3

The DaVinci Architecture

DaVinci [31] is an AI accelerator architecture used by Huawei’s Ascend chips. Its main
computational component, the AI Core, has a scalable design that tailors resources such as
memory size, matrix-multiplier throughput, and the interconnection bandwidth to meet
the requirements of multiple application domains, from wearable devices to DL training
clusters. The following sections describe components of the Ascend 910 chip along with
its software stack.

3.1 AI Core

Figure 3.1 shows a closer view of DaVinci’s main component, the AI Core, and its corre-
sponding datapaths. The AI Core is composed of three processing units (Cube, Scalar,
and Vector Unit), a set of private buffers (L0A, L0B, L0C, L1, and Unified Buffer), and a
Storage Conversion Unit (SCU). Outside of the AI Core sits the Double Data Rate (DDR)
and High Bandwidth Memory (HBM) memories and an L2 Buffer, all of which are shared
among the AI Cores of a chip.

Both Scalar and Vector Units operate on data loaded from/stored to the Unified
Buffer. The Vector Unit performs basic arithmetic and logic vector operations (e.g .,
subtracting two vectors). It uses a 128-bit mask register in which each bit represents one
element of a vector instruction that may be processed or not. The Scalar Unit has both
general and special-purpose registers, which are used to execute control-flow and scalar
arithmetic operations, as well as index and address calculations.

The Cube Unit is based on a multidimensional systolic array [26], it implements matrix
multiplication using an array of processing elements that perform multiply-accumulate
operations. This unit acts similarly to the Matrix-Multiplier Unit (MXU) of Google’s
Tensor Processing Unit [21]. Buffers L0A and L0B store the inputs of the Cube Unit, and
the L0C buffer stores its output. While the operands for the Vector Unit are vectors, the
Cube Unit receives data-fractals from its input buffers. A data-fractal is a small matrix
of a constant size of 4096 bits. The Cube Unit can multiply two data-fractals per clock
cycle.

The private buffers of the AI Core (L0A, L0B, L0C, L1, and Unified Buffer) are or-
ganized as scratch-pad memories [19]. Data movement between these buffers must be
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Figure 3.1: Data paths of the AI Core.

explicitly managed by the application, and thus, the programmer needs to specify which
data should be brought to each buffer, and also needs to maintain data consistency. In
contrast, hardware-managed caches are transparent to the application and ensure consis-
tency by hardware protocols. In a scratch-pad memory, each buffer has its own address
space, which is separated from the address space of the memory. With this organization,
more complexity is placed upon the application’s code, but it comes with the benefit of
not requiring tag bits, dirty bit, and the comparison logic that transparent caches need
in the hardware. From the AI Core’s perspective, all shared memories (DDR, HBM, and
L2) are considered global memory and are represented as 1 in Figure 3.1. Given that
their datapaths are the same, they are drawn only once.

The Storage Conversion Unit (SCU) may perform many data-layout transformations
when data is transferred between buffers. This unit implements Im2col, Col2im, and other
transformations, out of the scope of this work, such as padding, matrix-tile transposition,
and sparse-matrix decompression. The SCU enables instructions, such as Im2Col, to
perform fast layout transformations while data is transferred between buffers. As a result,
the memory overhead that these transformations may introduce appears only on the target
buffers. Such instructions were specifically designed to operate on the memory layout
described next.
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3.2 Fractal Memory Layout

To avoid memory alignment and padding problems in the Cube Unit, DaVinci includes
the constant-length dimension C0 in the representation of an input image. As a result,
a slight variation of NCHW is used, called the fractal memory layout. This format is
represented by NC1HWC0, in which C0 represents part of a split in the channel dimension
(C) of NCHW . To make the conversion from NCHW to NC1HWC0, C is split into C1

and C0, where C1 = dC/C0e. If the original number of channels (C) is not divisible by C0,
the C0 dimension must be zero-padded to reach its required length. Given a data type,
the length of C0 makes the inputs of the Cube Unit (data-fractals) always have 4096 bits
of data. A data-fractal has 16 ∗ C0 elements, thus, C0 has a length of:

• 16, for Float16

• 32, for Unsigned8

The data type Float16 is adopted in this work.

3.3 Im2Col Instruction

Im2Col is a data-transformation instruction executed in the SCU that acts as a load
instruction. It may be applied to a data-fractal that is loaded from L1 to L0A 2→ 4

and L0B 2→ 5 , so as to prepare data for computation in the Cube Unit. It may also be
applied to a data-fractal that is loaded from L1 to the Unified buffer 2→ 8 , to prepare
data for computation in the Vector and Scalar Units.

There are two main differences when comparing the Im2Col instruction to the Im2col
transformation shown in Figure 2.1. First, Im2Col is a single instruction, it is only able
to load and transform one fractal of an image at a time. Even if it could operate on a
whole image, its target buffers (L0A, L0B, Unified Buffer) may not be capable of storing
the transformed image. For this reason, Im2Col instructions can be used to load and
transform a tile of an input. Second, Im2Col is designed to load an input that is in the
fractal memory layoutNC1HWC0. Therefore, its output will also have a different memory
layout when compared to the one shown on the right of Figure 2.1. The advantage of
performing Im2col during a load instruction is that the increase in memory overhead from
duplicated elements only appears in the target buffers (L0A, L0B, and Unified buffer),
which are the buffers closest to the Cube and Vector Units.

Im2Col needs the following parameters related to the input image (or tile), which are
constant for all instructions loading the same input:

• Height (Ih) and width (Iw) of the input image;

• Left (Pl), right (Pr), top (Pt), and bottom (Pb) zero padding;

• Stride in the height (Sh) and width (Sw) directions;

• Kernel height (Kh) and width (Kw).
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Based on these parameters, the number of patches (Oh, Ow) in the input’s height and
width can be calculated by Equation 3.1. Furthermore, each Im2Col instruction needs
the three following positional parameters to choose which elements of the input it will load,
in which the parameters (x, y) are coordinates in the height and width (HW ) dimensions
of the input.

• The starting position in the image (x, y);

• Relative position inside of a patch (xk, yk);

• Access index of the C1 dimension (c1).

Oh =
⌊Ih + Pb + Pt −Kh

Sh

⌋
+ 1

Ow =
⌊Iw + Pl + Pr −Kw

Sw

⌋
+ 1

(3.1)

To load a fractal (16 rows of C0 elements) to a buffer, Im2Col performs the following
tasks: (i) process each element of dimension N individually; (ii) access the element c1 of
dimension C1; (iii) select the next 16 consecutive patches starting from position (x, y);
(iv) select the elements in the (xk, yk) position, relative to each of the 16 patches; (v) load
the C0 dimension for the 16 selected elements; (vi) store the loaded elements as a fractal
into the target buffer.

Figure 3.2 exemplifies a small image loaded using four Im2Col loads. The input image
is in the fractal layout NC1HWC0, but the lengths of N and C1 are 1, so they are not
shown. The parameters used in this example correspond to: (Ih, Iw) = (8, 8), (Kh, Kw) =

(2, 2), (Sh, Sw) = (2, 2), and (Oh, Ow) = (4, 4). Notice that there is no padding. The
input has exactly 16 patches (bold squares), so (x, y) is set to the first position (0, 0)

and is not changed afterward. For the first Im2Col (blue squares), (xk, yk) = (0, 0), while
for the second (orange squares), (xk, yk) = (0, 1). Two more Im2Col instructions are
issued, corresponding to (xk, yk) equal to (1, 0) and (1, 1). This results in four fractals
concatenated side by side. If there were more patches in the image, (x, y) would be
changed to another position to create a new row of fractals in the output. Bigger inputs are
loaded by issuing multiple Im2Col instructions while iterating the positional parameters
sequentially. This iteration can be seen as if it composed a triple-nested loop with iterator
vector in the form of [(x, y), c1, (xk, yk)], from the outermost to the innermost loop.

As with most instructions in the DaVinci architecture, Im2Col supports a repetition
parameter that causes an instruction to be reissued automatically. For Im2Col there are
two possible repetition modes. Mode 0 repeats Im2Col for the next positions inside the
kernel (xk, yk), from (0, 0) to (0, 1), for example. If the length of C1 is bigger than 1,
Im2Col in repetition mode 0 will continue to the next c1 index and iterate over (xk, yk)

again. This repetition mode acts as the loops of [c1, (xk, yk)], but multiple Im2Col are
needed to also change (x, y). Therefore, the input in Figure 3.2 can be fully loaded by
issuing a single Im2Col starting at (xk, yk) = (0, 0) with repeat mode 0 to repeat four
times, changing (xk, yk) from (0, 0) to (0, 1), (1, 0) and (1, 1). Mode 1 reissues Im2Col for
the next (x, y) position after skipping the 16 currently selected patches. In this mode,
one Im2Col instruction acts as the loop of [(x, y)], and multiple instructions are needed to
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Figure 3.2: Four Im2Col loads. The input is HWC0. At the bottom, are the four resulting
fractals of size 16 × C0. The difference between the loads is the position relative to the
patch (xk, yk), which is (0, 0) for the first load (highlighted in blue) and (0, 1) for the
second (highlighted in orange), (1, 0) for the third, and (1, 1) for the fourth. The resulting
fractals are concatenated in the output buffer.

change c1 and (xk, yk), thus, (x, y) becomes the innermost loop of the iterator vector. If
the nesting order of these loops changes, so does the order in which fractals are stored in
memory. By changing the order from [(x, y), c1, (xk, yk)] to [c1, (xk, yk), (x, y)] in mode
1, Im2Col will store fractals in a transposed order resulting in an output matrix of shape
(C1×Kh×Kw×16, (Oh×Ow)/16×C0). This shape can also be considered as a tensor of
dimensions (C1, Kh, Kw, Oh, Ow, C0), which is the shape used in the accelerated forward
pooling implementation in Chapter 4.

3.4 Col2Im Instruction

Col2Im is an instruction that is used as the backward operator of Im2Col. It acts as
a vector instruction that loads data from and stores data to the Unified Buffer 8→ 8

(Figure 3.1). Col2Im takes fractals as inputs and stores them in the NC1HWC0 format.
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Figure 3.3: Single Col2im load with parameters (x, y) = (0, 0) and (xk, yk) = (0, 0).

Because of this, Col2Im receives the same parameters as Im2Col referring to its output.
Besides the change in memory layout, if two patches overlap in the output, input elements
that refer to the same output position need to be summed. This sum is shown in Fig-
ure 2.2, but it is performed at an instruction level. For that, Col2Im requires its output
to be initialized with zeros.

Figure 3.3 shows how a single Col2Im instruction works with an already initialized
output. This example uses the same parameters as the first (blue) Im2Col shown in
Figure 3.2. In Figure 3.3, Col2Im loads the initialized output 1 in an Im2Col manner 2 .
Then, it sums the loaded fractal with the input fractal 3 . Finally, it stores the resulting
fractal 4 back to its corresponding positions in the output 5 . This example could not be
loaded using a repetition because the only repetition mode available for Col2Im is mode
1. It works as in Im2Col by changing the (x, y) parameters and thus requires an input
with more than 16 patches.

3.5 Software Stack

A C-like language called CCE (Cube-based Compute Engine) C is used to write code
for DaVinci chips. Because it is a very low-level language, implementing and optimizing
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multiple AI operators manually is a cumbersome and error-prone task. The Automatic
Kernel Generator (AKG), a tool for operator design and also a library of operators,
enables code generation for DaVinci. AKG uses TVM’s [6] domain-specific language
(DSL) to design its operators, which are lowered to CCE C by its compiler passes. For
every operator that is defined with AKG, its backward operator is also needed to allow
training.

3.5.1 Scheduling for DaVinci

TVM’s DSL is based on the Halide language [37]. The main idea of both languages
is to decouple the execution definition (the algorithm) from the execution strategy (the
algorithm’s schedule). With this separation, the programmer is free to test multiple
optimization strategies by rewriting a schedule without changing the algorithm. The
schedule allows the use of techniques such as function inlining and loop transformations
(e.g ., tiling, fusion, unrolling, and loop vectorization). The decoupling of the algorithm
from its schedule is possible because Halide’s and TVM’s DSLs are tailored respectively for
image processing and deep learning algorithms. There is a high degree of data parallelism
in applications from these fields [37] as their algorithms are mainly composed of DOALL
loops. In this scenario, the loop transformations previously mentioned are trivial.

TVM allows code generation for other backends besides CPUs. Hence, schedules can
explicitly refer to a backend-specific construct. For example, schedules allow binding loops
in the algorithm to blocks and threads, which are constructs found in GPUs. AKG uses
the same principle to generate code for DaVinci devices. A DaVinci-specific schedule is
responsible for controlling the movements of data between the scratch-pad buffers and
for specifying computations that are local to a buffer. Together with the backend-specific
schedule primitives, it is possible to apply other optimization techniques (e.g ., tiling) to
improve the locality of memory accesses. Between all the possible primitives, two are
handled automatically by AKG: vectorization and parallelization. First, the inner loops
of computations are vectorized (minimally on the C0 dimension) so that the Vector Unit
is utilized automatically. When possible, the vector instructions are also issued with
repeat factors. Second, the outer loops are parallelized between the AI Cores available
on the target device. These default behaviors are similar to those taken by Halide’s
auto-scheduler [34]. AKG also has a polyhedral framework that automatically schedules
computation on DaVinci, but it does not support all instructions (e.g ., Col2Im).

Listing 3.1 shows an example of TVM’s DSL computing the sum of two tensors and
scaling them by a factor of two. The variables m and n define the shape of the tensors A
and B, which is (m,n). Lines 3 and 4 define the tensors A and B. Line 5 defines a new tensor
C with the same shape of A that will store the result of a computation. This computation
is defined by a lambda function in Line 6, where every C[i,j] in C should be calculated
as a sum of A[i,j] and B[i,j]. Line 8 defines a second computation that scales every
element of C by a factor of 2 and stores the result in D. Listing 3.2 exemplifies a schedule
that allows code generation of the algorithm defined in Listing 3.1 for a DaVinci device.
Inputs and outputs start in the global memory. In Listing 3.2, Lines 2 and 3 create a copy
of the tensors A and B in the Unified Buffer ("local.UB"), these local copies are inputs to
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1 m = var("m")
2 n = var("n")
3 A = placeholder ((m,n), name=’A’)
4 B = placeholder ((m,n), name=’B’)
5 C = compute (A.shape ,
6 lambda i,j: A[i,j] + B[i,j],
7 name="C")
8 D = compute (C.shape ,
9 lambda i,j: 2 * C[i,j],

10 name="D")

Listing 3.1: Example of computation with TVM’s DSL

1 s = create_schedule (D.op)
2 A_ub = s. cache_read (A, "local.UB", [C])
3 B_ub = s. cache_read (B, "local.UB", [C])
4 s[C]. set_scope ("local.UB")
5 D_ub = s. cache_write (D, "local.UB")

Listing 3.2: Example of schedule for the DaVinci architecture

the computation of tensor C. Line 4 defines that tensor C is created as a temporary in the
Unified Buffer. Lastly, Line 5 has two effects, first, it defines that tensor D is also local
to the Unified Buffer, and second, it stores D back to the global memory. Looking at
Figure 3.1, the inputs are loaded from the global memory 1→ 8 , the computation takes
place mostly in the Vector Unit 10 , which loads data from the Unified Buffer 8→ 9 .
After the output is computed, it is stored back to the global memory 8→ 1 .

3.5.2 Backward Operators for DaVinci

As previously mentioned, backward operators are needed to train a neural network. AKG
has an Automatic differentiation (AD) module that works as a source-to-source compiler
from an operator definition to its backward operator, both in TVM’s DSL. AD is also
known as algorithmic differentiation [15], it is a set of techniques that can be applied to
functions to obtain their derivatives. A computation, like the one shown in Listing 3.1, is
received as input to the AD module and its backward operator is the output. AD allows
new operators to be added to Mindspore without requiring their manually implemented
backward counterpart. However, manually writing backward computations may be nec-
essary for unsupported operators or to improve their performance. Such is the case of the
backward operators described in the next Chapter.
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Chapter 4

Im2col/Col2im Based Pooling

This Chapter describes the Im2col/Col2im based pooling implementations in comparison
to their standard implementations in TVM. To use the Im2Col and Col2Im instructions
in TVM, they are declared and manually added to the code as custom intrinsics through
TVM’s decl_tensor_intrin function and appear in the following listings as im2col()
and col2im(). These intrinsics act in TVM’s DSL as an inline assembly section in a C
source. Instead of implementing a single instruction call, the custom intrinsics were de-
fined to issue instructions multiple times and to use repetition parameters, thus operating
on a full tile of the input. The Listings in this chapter show a simplified version of the
implementations used in Chapter 5 for better readability, they start with the computation
in the top part and are followed by their schedule.

The Vector Unit computes pooling in DaVinci, its utilization by vector instructions is
key for the following implementations. The performance of vector instructions running in
it depends mostly on two factors. First, the vector mask should be saturated so that all
vector lanes are utilized and parallelism is maximized. Second, the repetition parameter
should be employed, thus removing loops and barriers around vector instructions, and
taking pressure off instruction fetching. Ideally, a single instruction should operate over
an entire tensor (or tile) present in the Unified buffer. Lowered CCE C code is used to
highlight the above-mentioned factors in each implementation presented.

4.1 Maxpool Forward

A standard TVM implementation of Maxpool forward is represented in Listing 4.1. The
input and output tensors and their shapes ((N,C1, Ih, Iw, C0) and (N,C1, Oh, Ow, C0)) are
defined in Lines 4 and 11, respectively. Next, the reduction axes are defined in Lines 7
and 8, together, they range from (0, 0) to the size of a patch (Kh, Kw). Finally, Lines 12
to 17 defines Maxpool by computing each output element as a max reduction of a patch of
the input. In each reduction, the patches of the input are accessed (in height and width)
by their base address (h∗Sh, w∗Sw), which is the height and width position of the output
multiplied by the stride of the operation. To access all elements within a reduction, this
base address is then summed to red_h (from 0 to Kh) in height, as well as red_w in width
(from 0 to Kw). This computation simply defines Maxpool as it was shown in Chapter 2.
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1 # Computation -------------
2
3 # input shape
4 input = placeholder ((N, C1 , Ih , Iw , C0))
5
6 # max reduction dimensions
7 red_h = reduce_axis ((0, Kh), " patch_height ")
8 red_w = reduce_axis ((0, Kw), " patch_width ")
9

10 # maxpool computation
11 output = compute ((N, C1 , Oh , Ow , C0),
12 lambda n, c1 , h, w, c0:
13 max(input[n, c1 ,
14 h*Sh+red_h ,
15 w*Sw+red_w ,
16 c0],
17 axis=[red_h , red_w])
18 )
19
20 # Schedule ----------------
21
22 # input: global memory -> unified buffer
23 input_ub = cache_read (input , "local.UB", [ output ])
24
25 # output : unified buffer -> global memory
26 output_ub = cache_write (output , "local.UB")
27
28 # get computation axes and reorder them
29 b, c1 , h, w, c0 = output_ub .op.axis
30 kh , kw = output_ub .op. reduce_axis
31 s[ output_ub ]. reorder (b, c1 , kh , kw , h, w, c0)
32
33 # tile computation in c1
34 b, c1 , h, w, c0 = output .op.axis
35 s[ output_ub ]. compute_at (s[ output ], c1)
36 s[ input_ub ]. compute_at (s[ output ], c1)

Listing 4.1: Maxpool in TVM’s DSL

The schedule section of code in Listing 4.1 allows code generation for DaVinci by
issuing the necessary memory movement and the loop reordering of the Maxpool compu-
tation. It also tiles the computation so that the input and output can fit in the Unified
Buffer, and achieve parallel execution on multiple AI Cores. As described in the previous
chapter, the directives cache_read and cache_write move the input and output between
memory buffers in the schedule. In Lines 23 and 26, these directives move the input from
global memory to the Unified Buffer of an AI Core, and they move the output com-
puted in the Unified Buffer back to global memory. Lines 29 to 31 get a reference to
all the axes of the Maxpool computation in the Unified Buffer (its loops) and reorder
them from the default ordering (b, c1, h, w, c0, kh, kw) to (b, c1, kh, kw, h,
w, c0), from outermost to innermost axis. This ordering is necessary to allow CCE C
code generation for DaVinci, as c0 has to be the last dimension. It also yields the best
vectorization for this computation, which will be discussed later by mentioning the gen-
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erated CCE C code. Lines 34 to 36 tile the computation. Again, this code section takes
a reference to the computation axes, but now from output instead of output_ub. The
variable output_ub is a reference to the Maxpool computation in the Vector Unit that
utilizes the Unified Buffer, and output is a reference to the memory movement operation
that stores the results in the Global Memory. In the same way, input_ub is a reference to
the memory movement that loads the input to the Unified Buffer. The last two lines of
the schedule tile the computation by directing it to occur inside of the c1 axis of output
with the compute_at directive. In other words, an input tile of size (Ih, Iw, C0) is loaded,
Maxpool is computed and a tile of size (Oh, Ow, C0) is stored at a time. The two outer
axes (N,C1) are automatically parallelized if multiple AI Cores are available. This sched-
ule accommodates smaller inputs, large inputs may need further tiling of the height and
width dimensions to fit the (Ih, Iw, C0) tile the Unified Buffer.

Note that as AKG utilizes an auto-vectorizer instead of a vectorization directive in
the schedule, later vectorization may modify the axes of a computation. The reordering
in Line 31 is utilized to allow the compiler to vectorize the computation in concordance
with the rest of the schedule. This implementation is lowered to CCE C code by AKG’s
compiler where, among other instructions, vmax is executed. The vmax instruction com-
putes the maximum between elements of the output and input tiles and writes back to
the output tile. For that, the output tile is initialized with the minimum value of the data
type in use. In the vmax execution of this computation, only 16 of 128 elements of the
vector mask are set, accounting for the innermost dimension C0 of the tiles. Additionally,
each vmax uses repetition to obtain the maximum value across the width Kw of a patch
(the innermost reduction axis redw). The vmax instruction is issued Oh ∗Ow ∗Kh times to
complete the computation. These suboptimal parameters result from the strided access
pattern seen in Lines 14 and 15 of Listing 4.1.

The Im2col based implementation is described in Listing 4.2, where the main differ-
ences compared to the previous implementation are highlighted. It has an extra load
of the input tiles with Im2Col instruction through the im2col intrinsic. The schedule
has different memory movements, as Im2Col instructions require their input to be in the
L1 Buffer. The last change happens on the Maxpool computation, it operates on the
input transformed by Im2Col instructions. In Listing 4.2 input is loaded by the sched-
ule in Line 32 to the L1 Buffer. This allows the computation in Line 10 that generates
input_im2col by loading input from the L1 Buffer to the Unified Buffer through im2col
intrinsic calls. This intrinsic utilizes Im2Col instructions with repeat mode 1, resulting
in the shape (N,C1, Kh, Kw, Oh, Ow, C0) shown in Line 7. The Maxpool computation
operates on this shape and the max reduction now occurs in the (Kh, Kw) dimensions,
as shown in Lines 23 and 24. The schedule also does the same reordering operation for
output_ub and tiling for the whole computation in the C1 dimension of output, as in the
previous implementations. The tiles loaded by Im2Col instructions have a resulting shape
of (Kh, Kw, Oh, Ow, C0) in the Unified buffer. Considering the input and output tiles,
(Kh, Kw, Oh, Ow, C0) and (Oh, Ow, C0) respectively, the lowered CCE C code is able to set
all 128 elements of the vector mask, and, in conjunction with the repetition parameter,
a single vmax computes the max between the entire output tile and the three innermost
dimensions of the input tile, which are identical. This instruction is only issued Kh ∗Kw
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1 # Computation -------------
2
3 # input shape at global memory and L1 buffer
4 input = placeholder ((N, C1 , Ih , Iw , C0))
5
6 # input shape at unified buffer
7 im2col_shape = (N, C1 , Kh , Kw , Oh , Ow , C0)
8

9 # im2col load intrinsic
10 input_im2col = compute ( im2col_shape ,
11 lambda n, c1:
12 im2col (input[n, c1 , :, :, :])
13 )
14
15 # max reduction dimensions
16 red_h = reduce_axis ((0, Kh), " patch_height ")
17 red_w = reduce_axis ((0, Kw), " patch_width ")
18

19 # maxpool on im2col shape
20 output = compute ((N, C1 , Oh , Ow , C0),
21 lambda n, c1 , h, w, c0:
22 max( input_im2col [n, c1 ,
23 red_h ,
24 red_w ,
25 h, w, c0],
26 axis=[red_h , red_w])
27 )
28
29 # Schedule ----------------
30

31 # input: global memory -> L1 buffer
32 input_l1 = cache_read (input , "local.L1", [ input_im2col ])
33
34 # output : unified buffer -> global memory
35 output_ub = cache_write (output , "local.UB")
36
37 # set as local to unified buffer
38 s[ input_im2col ]. set_scope ("local.UB")
39
40 # get computation axes and reorder them
41 b, c1 , oh , ow , c0 = output_ub .op.axis
42 kh , kw = output_ub .op. reduce_axis
43 s[ output_ub ]. reorder (b, c1 , kh , kw , oh , ow , c0)
44
45 # tile computation in c1
46 b, c1 , h, w, c0 = output .op.axis
47 s[ data_im2col ]. compute_at (s[ output ], c1)
48 s[ data_l1 ]. compute_at (s[ output ], c1)
49 s[ output_ub ]. compute_at (s[ output ], c1)

Listing 4.2: Maxpool with Im2Col in TVM’s DSL

times to finish the computation, effectively improving upon the standard implementations
of Listing 4.1.

For training, it is useful to save an additional result in the forward implementation
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of Maxpool to avoid redundant computations: the Argmax mask. This mask is used by
Maxpool’s backward operator as it stores the position of the maximum element of each
patch (shown in Figure 2.3). This result is obtained by comparing each patch of the
input with its maximum value. Saving this mask is independent of the use of Im2Col
instructions. Still, the Im2Col output shape of Line 7 in Listing 4.2 is used to store it,
as it keeps overlapping patches separated. This shape also enables Maxpool backward to
use Col2Im instructions, which is described next.

4.2 Maxpool Backward

Maxpool backward receives two inputs: the Argmax mask and the incoming gradients.
Listing 4.3 shows its implementation. The inputs are first initialized, then, Line 12 defines
a computation that multiplies the patches in the Argmax mask with their corresponding
gradients. This multiplication is represented at the bottom of Figure 2.3. Having the
Argmax mask as an input simplifies this computation as the only other step needed is to
merge the multiplied patches back to the original (N,C1, Ih, Iw, C0) shape by summing
values in the overlapping areas. Critical for performance, this merge step is depicted
on the bottom-left of Figure 2.3. The Col2im based implementation comes from the
observation that this merge step computes exactly the Col2im operation, details on the
implementation without Col2im are explained later. In Listing 4.3 Lines 19 to 22 show
this computation using the col2im intrinsic. All instructions in this implementation use
the Unified Buffer including Col2Im, thus, the schedule section loads both inputs from
the global memory to the Unified buffer and writes the result back to global memory.
The computation is also tiled on the C1 dimension. For brevity, only the Col2im-based
implementation is shown.

To implement this operation without Col2Im instructions, TVM requires expanding
mask_gradient to a shape of (N,C1, Ih, Iw, Oh, Ow, C0), where each patch is copied only
once in its correct position in Ih and Iw, and other elements are set to zero. The ex-
panded representation then must be reduced with sum on dimensions Oh and Ow, effec-
tively summing up the overlapping areas in every patch and obtaining the final shape of
(N,C1, Ih, Iw, C0). This expansion would be incredibly costly due to its size, however,
TVM allows it to be inlined by the schedule, effectively bypassing the expansion while
retaining the sum reduction operation. As a consequence, the patches are merged, and
the overlapping regions are summed directly to the final output shape (from the shape
(N,C1, Kh, Kw, Oh, Ow, C0) to (N,C1, Ih, Iw, C0)). Besides the mentioned inlining for the
implementation without Col2Im instructions, the schedule is the same for both implemen-
tations.

The lowered code uses vmul for the multiplication step and depending on the imple-
mentation, vadd or Col2Im for the merge step. Instructions vadd and vmul work in the
same way as vmax, but for multiplication and addition. While vmul works well in multi-
plying tiles of the gradient with the mask, the scattered access pattern of the merge step
leads to very poor usage of the Vector Unit. That is because the vadd instructions only
set 16 elements of the vector mask (vectorizing on C0) and repetition is not used. The
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Col2Im instruction can substitute the vadd instruction as it is able to load and store to the
scattered elements of the output, summing two fractals at a time, as shown in Figure 3.3.
In comparison with vadd that had 16 (C0) elements of the vector mask set, Col2Im enables
vectorization over 16 ∗ 16 elements (a fractal) at a time, and its repetition mode can be
used to operate over the entire tile in the Unified buffer. A Col2Im instruction needs to
be issued Kh ∗Kw times to complete the merge step of a tile. Therefore, switching vadd
for Col2Im presents a good opportunity for performance gains.

4.3 Avgpool

The forward and backward operators of Avgpool are similar to those described before.
The forward implementation, however, applies a reduction to each patch with sum instead
of max. Consequently, its CCE C code uses vadd instead of vmax. A new operation is also
needed to compute an element-wise division before saving the final output. Regardless
of these changes, the access pattern is the same for the sum computation and it has the
same benefits as Maxpool by loading its input with Im2Col instructions. For training,
there is no need to save any additional results as the Argmax mask in Maxpool. In the
backward operator of Avgpool, the equivalent mask contains 1 in all its positions, given
that all input elements contribute to the output of a sum. Besides the mask, the backward
implementation is the same and it can also use Col2Im instructions for its merge step.
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1 # Computation -------------
2
3 im2col_shape = (N, C1 , Kh , Kw , Oh , Ow , C0)
4
5 # first input
6 argmax_mask = placeholder ( im2col_shape )
7
8 # second input
9 gradients = placeholder ((N, C1 , Oh , Ow , C0))

10
11 # multiply each patch by its gradient
12 mask_gradient = compute ( im2col_shape ,
13 lambda n, c1 , kh , kw , oh , ow , c0:
14 argmax_mask (b, c1 , kh , kw , oh , ow , c0)
15 * gradient (b, c1 , oh , ow , c0)
16 )
17
18 # col2im intrinsic
19 backprop_output = compute ((N, C1 , Ih , Iw , C0),
20 lambda n, c1:
21 col2im ( mask_gradient [n, c1 , :, :, :]

)
22 )
23
24 # Schedule ----------------
25
26 # argmax mask: global memory -> unified buffer
27 argmax_mask_ub = cache_read ( argmax_mask_ub ,
28 "local.UB",
29 [ mask_gradient ])
30
31 # gradients : global memory -> unified buffer
32 gradients_ub = cache_read (gradients ,
33 "local.UB",
34 [ mask_gradient ])
35
36 # backpropagation output : unified buffer -> global memory
37 backprop_output_ub = cache_write ( backprop_output ,
38 "local.UB")
39
40 # tile computation in c1
41 b, c1 , h, w, c0 = output .op.axis
42 s[ argmax_mask_ub ]. compute_at (s[ backprop_output ], c1)
43 s[ gradients_ub ]. compute_at (s[ backprop_output ], c1)
44 s[ backprop_output_ub ]. compute_at (s[ backprop_output ], c1)

Listing 4.3: Maxpool backward with Col2Im in TVM’s DSL
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Chapter 5

Experimental Evaluation

This evaluation compares the performance of the Im2col/Col2im based Maxpool with
the standard TVM Maxpool implementation described in Chapter 4. Maxpool was run
in isolation from other CNN layers receiving random input values. All the experiments
ran on an Ascend 910 chip, which contains 32 AI Cores. The cycle count numbers were
obtained using the hardware performance counters of the chip, and they refer to the on-
chip execution time running at a frequency of 100 MHz. Each evaluation was repeated
ten times, and the graphs show the average value and a 95% confidence interval. The
cycle count is currently the only metric that could be obtained from the chip.

5.1 InceptionV3 Comparison

To display how complex and large modern CNN architectures are, an overview of the
InceptionV3 architecture is shown in Figure 5.1. In this figure,the first layer of the CNN
is the leftmost block, and the final layer is the rightmost block. Each block corresponds to
an individual layer, where the layer type is identified by its color. Among the many layers
of InceptionV3, four Maxpool layers are identified in green, and ten Avgpool layers are
identified in blue, excluding the auxiliary classifier exit represented outside of the dashed
box. The last Avgpool layer (rightmost) is, in fact, a Global Avgpool layer. Tables 5.1,
5.2, and 2.1 display the input sizes of these pooling layers along with examples from other
CNN architectures. Table 5.1 shows the input sizes of Maxpool layers, Table 5.2 shows
input sizes of Avgpool layers, and Table 2.1 shows input sizes of Global Pooling layers. In
these tables, input sizes are shown in the HWC layout. Input sizes were gathered from
the Keras framework [8].

For the Maxpool layers represented in Table 5.1, all configurations use a kernel size
of (3, 3) and a stride of (2, 2), except for VGG16 [43], which has a kernel size and stride
of (2, 2). To test the proposed implementations of Maxpool, three configurations were
selected from InceptionV3 [49] (highlighted in bold in Table 5.1). The selected layers are
represented in Figure 5.1 as the three rightmost green blocks. No padding is needed for
their implementation, however, it is also possible to add padding during the Im2Col load,
as the other CNNs would require. Given AKG’s current limited support for Im2Col and
Col2Im, these configurations were chosen to display the effects of different input sizes



41

Figure 5.1: Overview of the InceptionV3 architecture [1].

Table 5.1: Maxpool Input Sizes in CNNs. Configurations selected for experimental eval-
uation are highlighted in bold.

CNN Input 1 Input 2 Input 3 Input 4 Input 5
InceptionV3 147,147,64 71,71,192 35,35,288 17,17,768 -
Xception 147,147,128 74,74,256 37,37,728 19,19,1024 -
Resnet50 112,112,64 - - - -
VGG16 224,224,64 112,112,128 56,56,256 28,28,512 14,14,512

while using the most common parameters for kernel and stride.
The graphs in Figure 5.2 show the cycle count of the selected Maxpool configurations

in the NC1HWC0 layout. Figure 5.2a shows both Maxpool forward implementations. The
step of saving the Argmax mask is added in Figure 5.2b. This step adds to the computation,
as shown by the different ranges in the graphs. For the evaluation in Figure 5.2b, AKG’s
polyhedral framework schedules the computations, as it can better handle computations
with multiple outputs of different shapes. Lastly, Maxpool backward is evaluated in
Figure 5.2c. In the largest input, the accelerated implementations achieve speedups of
3.2x, 5x, and 5.8x on the graphs in Figure 5.2, respectively. The best improvement is on
Maxpool backward. Its large speedup is expected, given the scattered access pattern of
its merge step and how Col2Im can be used without any extra computations.

5.2 Stride Tests

This experiment investigates further different Maxpool forward implementations, and their
interaction with the stride parameter, as shown in Figure 5.3. The stride size changes
the amount of duplicated elements in Im2col. The kernel size was set at a constant size
of (3, 3). Given this kernel size, there is no duplication of data for the (3, 3) stride, and
the maximum duplication occurs for the (1, 1) stride. In this experiment, Maxpool and
Maxpool with Im2col are the same implementations shown in Figure 5.2a. The input’s
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Table 5.2: Avgpool Input Sizes in CNNs.

CNN Input 1 Input 2 Input 3 Input 4 Input 5 Input 6
InceptionV3 35,35,192 35,35,256 35,35,288 17,17,768 (x4) 8,8,1280 8,8,2048
Xception - - - - - -
Resnet50 - - - - - -
VGG16 - - - - - -

height and width increase in steps of two until the tiling threshold is reached, where this
threshold is the maximum size before tiling is required. Bigger sizes would need individual
tiling parameters and would trigger parallelization between AI Cores, which is out of the
scope of this experiment. Moreover, dimensions N and C1 are set to 1 so that only one
AI Core is utilized.

In the Maxpool with expansion implementation, regular vector instructions — in-
stead of Im2Col instructions — transform the input to the Im2Col output shape. This
transformation happens when the input is already in the Unified buffer, before computing
Maxpool. Maxpool with Im2col and Maxpool with expansion achieve superior perfor-
mance in Figures 5.3b and 5.3c. These graphs confirm that the Im2col memory layout
allows more efficient usage of the Vector Unit, producing speedups that compensate for
the overhead of transforming the data. Maxpool with Im2col has the best performance
in comparison to Maxpool with expansion due to Im2col occurring while the data is
loaded into the Unified buffer, rather than in a separate step.

Figure 5.3a shows different results for a stride of (1, 1). With this parameter, elements
in consecutive patches of the original input appear consecutively in memory. This allows
the vmax instruction to improve its use of the Vector Unit, combining the mask register
set with all 128 elements and its repeat parameter to compute the max between the
(Ow, C0) dimensions of the input and the initialized output. By also having no overhead
to transform the data, and no data duplication, the direct Maxpool implementation is the
fastest in this case.

Pooling can also be implemented with an X-Y split by first calculating the reduc-
tion function on the width and then on the height of each patch. As a result, the first
reduction is reused while computing the second. Lai et al . [27] use the X-Y split as a
performant alternative to direct pooling. In their work, the (undesirable) intermediate
results are avoided by computing the result in-place. In TVM, all computations generate
a new tensor, and thus the in-place approach is not possible. However, this experiment
increases input sizes only until the tiling threshold is reached, thus avoiding extra tiling
steps needed because of the increase in memory use. Figure 5.3b shows the performance
of a TVM version of the X-Y split (with intermediate results) compared to the other
Maxpool implementations. Even though the X-Y split has a lower computational cost, it
underperforms other implementations that use Im2Col because it does not overcome the
scattered memory problems of pooling.
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(a) Maxpool

(b) Maxpool and Argmax Mask

(c) Maxpool Backward

Figure 5.2: Comparison of Maxpool implementations with and without Im2Col and
Col2Im instructions. The graphs show the cycle count in the Ascend 910 chip by the
size of the input. The input sizes are from InceptionV3. All tests use a kernel size of (3,3)
and a stride of (2,2) with no padding.
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(a) Stride = (1,1)

(b) Stride = (2,2)

(c) Stride = (3,3)

Figure 5.3: Comparison of different Maxpool implementations. The graphs show the cycle
count in the Ascend 910 board and the height and width of the input. In all tests, the N
and C1 sizes are 1, kernel size is (3,3), with no padding. The x-axis goes up to the tiling
threshold. An additional implementation of the X-Y split is shown for the stride of (2,2).



45

Chapter 6

Related Work

Convolutional layers have been the focus of extensive literature in optimizing CNN layers
because they are responsible for most of the computation time of CNNs. Other layers such
as pooling receive less attention. Many works focus on improving pooling and subsampling
layers to avoid overfitting and to improve the accuracy of CNNs, instead of improving
their performance. But when left unoptimized, these layers can become obstacles that
lead to slowdowns in CNNs [30].

FPGA implementations for CNNs. In their implementation of CNN layers for
OpenCL-based FPGA accelerators, Suda et al . propose to unroll pooling at the hardware
level so that multiple outputs are computed in a single cycle [45]. However, their optimizer
chooses an unrolling factor of 1 for the CNNs evaluated, which is equal to no unrolling.
Given an (FPGA, CNN) pair, Sharma et al . automatically synthesize a CNN accelerator
where the computation of pooling modules overlaps with convolution modules. This
overlap is used to hide latency and to take advantage of the fact that a pooling layer usually
follows convolutional layers [42]. Sharma et al . do not consider the backward operators
used in training. In contrast to these pooling-specific hardware solutions, Im2col/Col2Im
based pooling in DaVinci leverages a general-purpose vector unit and the Im2Col and
Col2Im instructions, which are primarily designed for convolution. The improvements to
the pooling layer afforded by Im2col/Col2im could be combined with fusion in DaVinci,
but this is not yet supported by AKG.

Kernel acceleration for CNNs. LightNet is a Matlab-based framework for Deep
Learning [55]. Its Maxpool implementation uses Im2col to transform pooled regions into
vectors to benefit from vector instructions. Their proposition is similar to the Im2col
based forward pooling, however, no performance results are presented to justify their im-
plementation. CMSIS-NN is a collection of efficient neural network layers targeting IoT
edge devices that uses X-Y splitting for pooling [27]. However, the results in Figure 5.3b
show that the X-Y split is not the best alternative for DaVinci. Additionally, CMSIS-NN
does not consider backward operators because its target edge devices only perform infer-
ence. The Im2col/Col2im based pooling accelerates both inference and training devices,
as DaVinci edge chips also feature Im2Col instructions.

Li et al . use two optimizations for pooling [29]. First, the use of the CHWN layout
instead of NCHW to prevent un-coalesced strided memory accesses caused by HW as the
innermost dimensions. Second, the reduction of the off-chip memory requests by tuning
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the number of outputs calculated by each thread during pooling. The memory layout used
in DaVinci (NC1HWC0) is a variant of the NCHW layout. However, the Im2col-based
pooling transforms this layout into NC1KhKwOhOwC0, where the accesses can also be
performed consecutively in memory, thus resulting in the performance speedups shown in
Chapter 5. The outer loops are automatically parallelized in DaVinci among the available
AI Cores, where each core calculates a share of the output.

Suita et al . focus on fusing convolution with pooling in GPUs [46]. They only consider
Avgpool because it can be mapped to convolution where the kernel’s weights are equal to
1/(Kh∗Kw), and then further fused with its preceding convolution. As a result, the Im2col
transformation can also be used to implement the fused convolution-pooling. However,
CNNs tend to use Maxpool, which cannot be fused in the same way.

Other Pooling Methods. Although Maxpool and Avgpool are the two most com-
monly used subsampling layers in CNNs, many works try to improve this type of layer
with different types of pooling. One of the techniques is to add randomness to address
overfitting and to improve accuracy resulting from subsampling. Mixed Pooling randomly
combines Maxpool and Avgpool in a single layer [56]. Stochastic Pooling randomly sam-
ples features from regions based on a probability distribution given to each element to
allow non-maximal elements to be utilized [57]. Fractional Pooling randomizes how pool-
ing regions are generated, as opposed to the fixed regions defined by kernel size and stride
size in traditional pooling [14]. However, methods as batch normalization and dropout
are more utilized to avoid overfitting together with the simpler Maxpool and Avgpool
implementations that can be optimized by methods such as the Im2col/Col2im based
implementations described in this work.

Springenberg et al . propose to eliminate pooling layers by performing a strided convo-
lution (stride greater than 1) to subsample the input in an All Convolutional Network [44].
LEAP (LEArning Pooling) proposes a method to use a shared kernel for each channel of
the input to act as their subsampling layer [48]. The weights of this kernel can be learned
by the networks and Avgpool is a special case of this method where all the weights are
equal. Forcen et al . use the Ordered Weighted Average (OWA) as an aggregator function
to perform pooling, where the weights can be learned and Maxpool and Avgpool can be
implemented with specific weights [10]. Such methods provide more flexible subsampling
layers, however, the All Convolutional Network increases complexity and parameter num-
ber in CNNs and it does not operate on channels separately as Maxpool. LEAP and
OWA improve upon the All Convolutional Network by having a learning component to
their subsampling with fewer parameters and operating on channels independently. These
solutions can improve network accuracy and avoid overfitting, but they are still more com-
plex solutions than Maxpool and Avgpool. Even though LEAP claims to have the same
complexity as Maxpool, it is only compared to the strided convolution method in their
study.
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Chapter 7

Conclusion

This work presented the current scenario of high demand for Deep Learning applications,
CNNs in particular, which require tremendous amounts of data and computation to run.
AI Accelerators are a solution for efficient execution of convolution and matrix multipli-
cation, operations that contribute with a substantial part of the computation required for
these applications. Still, many other operations are needed in modern CNNs and their
lack of optimization can hinder the overall performance of a CNN. This work focused on
the optimization of one of the building blocks of CNNs, pooling layers.

DaVinci’s AI Accelerator architecture was described in great detail along with its ded-
icated Im2Col and Col2Im instructions. Such instructions are designed to optimize convo-
lution by mapping it to matrix multiplication and enabling its computation in DaVinci’s
matrix-multiplier unit, the Cube Unit. It is shown that these instructions can be used
to implement not only convolution, targeting the Cube Unit, but also pooling, targeting
memory layout improvements, and improved execution in the Vector Unit. This is shown
for the Im2col/Col2im based pooling implementations, which were described for the for-
ward and backward operators of Maxpool and Avgpool. An experimental evaluation was
run on the Ascend 910 chip to compare the proposed accelerated implementations to
baselines that do not use the Im2Col and Col2Im instructions. The parameters and three
input sizes used in InceptionV3 were used to represent common pooling configurations,
and the results show speedups of up to 5.8x for the Im2col/Col2im based Maxpool imple-
mentations. Although the stride parameter can impact the Im2col and Col2im operations
drastically, the proposed acceleration approach achieved improved performance for all but
(1, 1) stride. The Im2col/Col2im based pooling also proves superior to other strategies of
optimization, such as the X-Y split.

The evaluation of this work targets the DaVinci architecture. However, the techniques
presented to optimize pooling may benefit other architectures, even without the support
of the Im2Col and Col2Im instructions. Future work could evaluate Im2col/Col2im based
pooling in CPUs, GPUs, and other types of AI Accelerators. Such work would require a
deep study of the characteristics of each architecture to adapt these pooling implementa-
tions.

For example, in CPUs, memory buffers are organized as a cache hierarchy instead of
scratch-pad memories, and the memory layout of the input of pooling is not enforced. For
pooling implementations in CPUs, the memory requirements for the Im2col and Col2im



48

transformations need to be carefully analyzed as duplicated elements would go through
the entire cache hierarchy. Furthermore, the memory layout of the input could lead
to slightly different Im2col and Col2im transformations. Such differences could affect
the performance overhead of Im2col and Col2im, and how well the code is vectorized.
Additionally, a direct version of pooling would also need to be optimized for a proper
comparison. The best implementation can also be highly dependant on the parameters
used, as shown in this work for a stride of (1, 1). GPUs present another set of challenges
such as memory offloading overhead, coalescing memory accesses, and their massively par-
allel hardware design. However, in more traditional architectures without computational
units specialized for convolution, pooling can take many hints from the existing research
in optimizing convolution.
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