
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Ramon Santos Nepomuceno

Enabling OpenMP Task Parallelism on Multi-FPGAs

Habilitando o Paralelismo de Tarefas do OpenMP em
Multi-FPGAs

CAMPINAS
2021

Ramon Santos Nepomuceno

Enabling OpenMP Task Parallelism on Multi-FPGAs

Habilitando o Paralelismo de Tarefas do OpenMP em
Multi-FPGAs

Tese apresentada ao Instituto de Computação
da Universidade Estadual de Campinas como
parte dos requisitos para a obtenção do título
de Doutor em Ciência da Computação.

Thesis presented to the Institute of Computing
of the University of Campinas in partial
fulfillment of the requirements for the degree of
Doctor in Computer Science.

Supervisor/Orientador: Prof. Dr. Guido Costa Souza de Araújo

Este exemplar corresponde à versão final da
Tese defendida por Ramon Santos
Nepomuceno e orientada pelo Prof. Dr.
Guido Costa Souza de Araújo.

CAMPINAS
2021

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Ana Regina Machado - CRB 8/5467

 Nepomuceno, Ramon Santos, 1991-
 N352e NepEnabling OpenMP task parallelism on Multi-FPGAs / Ramon Santos

Nepomuceno. – Campinas, SP : [s.n.], 2021.

 NepOrientador: Guido Costa Souza de Araújo.
 NepTese (doutorado) – Universidade Estadual de Campinas, Instituto de

Computação.

 Nep1. OpenMP (Programação paralela). 2. Programação paralela

(Computação). 3. FPGA (Arranjo de Lógica Programável em Campo). 4.
Computação heterogênea. I. Araújo, Guido Costa Souza de, 1962-. II.
Universidade Estadual de Campinas. Instituto de Computação. III. Título.

Informações para Biblioteca Digital

Título em outro idioma: Habilitando o paralelismo de tarefas do OpenMP em Multi-FPGAs
Palavras-chave em inglês:
OpenMP (Parallel programming)
Parallel programming (Computer science)
FPGA (Field programmable gate arrays)
Heterogeneous computing
Área de concentração: Ciência da Computação
Titulação: Doutor em Ciência da Computação
Banca examinadora:
Guido Costa Souza de Araújo [Orientador]
Vanderlei Bonato
Nahri Balesdent Moreano
Ricardo dos Santos Ferreira
Ricardo Pannain
Data de defesa: 18-08-2021
Programa de Pós-Graduação: Ciência da Computação

Identificação e informações acadêmicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0002-1115-8722
- Currículo Lattes do autor: http://lattes.cnpq.br/0052907638640970

Powered by TCPDF (www.tcpdf.org)

Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Ramon Santos Nepomuceno

Enabling OpenMP Task Parallelism on Multi-FPGAs

Habilitando o Paralelismo de Tarefas do OpenMP em
Multi-FPGAs

Banca Examinadora:

• Prof. Dr. Vanderlei Bonato
ICMC-USP

• Profa. Dra. Nahri Balesdent Moreano
FACOM-UFMS

• Prof. Dr. Ricardo dos Santos Ferreira
DPI-UFV

• Prof. Dr. Ricardo Pannain
IC-UNICAMP

• Prof. Dr. Guido Costa Souza de Araújo (Advisor)
IC-UNICAMP

A ata da defesa, assinada pelos membros da Comissão Examinadora, consta no
SIGA/Sistema de Fluxo de Dissertação/Tese e na Secretaria do Programa da Unidade.

Campinas, 18 de agosto de 2021

Acknowledgements

The author would like to thank his advisor, Prof. Guido Araujo, for all the support and
guidance throughout his Ph.D. studies.

He would also like to thank all his friends and family for all the support given during
this long and arduous PhD process. In particular, this work is posthumously dedicated
to João Victor, who unfortunately cannot witness this moment.

Finally, the author would like to thank Coordination for the Improvement of Higher
Education Personnel - Brazil (CAPES, financing Code 001 grant #88882.329100/2014-
01), the Brazilian National Council for Scientific and Technological Development (CNPq,
grant #140274/2020-0) and the São Paulo Research Foundation (FAPESP, grant #2018/
21761-3) for financing the project.

Resumo

Os aceleradores de hardware baseados em FPGA têm recebido uma crescente atenção
nos últimos anos. Um dos principais motivos para isso é que seus recursos reconfigurá-
veis facilitam a adaptação do acelerador a diferentes tipos de cargas de trabalho. Em
alguns casos, os aceleradores baseados em FPGA fornecem maior desempenho computa-
cional e eficiência energética. Foi relatado que o offload para FPGA alcança um melhor
desempenho quando comparado GPUs e CPUs para algumas aplicações, como Fast Fou-
rier Transform. Esse desempenho pode ser ainda maior se conectarmos vários FPGAs
criando um cluster Multi-FPGA. No entanto, programar esses sistemas heterogêneos é
um empreendimento desafiador que ainda requer esforços de pesquisa e desenvolvimento
para torná-lo realmente simples. O modelo de programação baseado em tarefas OpenMP
é uma boa escolha para programar sistemas Multi-FPGA Heterogêneos. Isso advém da
capacidade deste modelo de expor um grau mais alto de paralelismo que combina: (a)
offload de computação para aceleradores; (b) dependências explícitas de dados; e (c) de-
finição das regiões de código para cada dispositivo específico. Com base nisso, o trabalho
desta tese estende a infraestrutura LLVM/OpenMP existente, bem como propõe uma
plataforma de hardware para ajudar o programador a expressar facilmente o offload e o
uso de IP-cores disponíveis em um código binário reconfigurável pré-existente (bitstream).
Para isto, foi utilizada uma metodologia de co-design, que implementa a arquitetura de
hardware e software em paralelo. No lado do software, duas modificações principais fo-
ram feitas na implementação do OpenMP: (a) construir um plugin VC709 na biblioteca
libomptarget; e (b) modificar o algoritmo de tempo de execução que gerencia o grafo de
tarefas. No lado do hardware, foi criada uma infraestrutura baseada no Target Reference
Design (TRD) da placa Xilinx VC709. As principais contribuições desta tese são: (a)
um novo plugin Clang/LLVM que entende placas FPGA como dispositivos OpenMP, e
usa a diretiva OpenMP declare variant para especificar IPs-cores de hardware; (b) Um
mecanismo baseado na dependência de tarefa OpenMP e no modelo de transferência de
computação que permite a comunicação transparente de IPs-cores em uma arquitetura
Multi-FPGA; (c) Uma arquitetura em hardware, baseada no Target Reference Design da
placa VC709, capaz de executar tarefas OpenMP utilizando preexistentes IP-cores; (d)
Um modelo de programação baseado em paralelismo de tarefas OpenMP, que torna sim-
ples mover dados entre FPGAs, CPUs ou outros dispositivos de aceleração (por exemplo,
GPUs), e que permite ao programador usar um único modelo de programação para execu-
tar sua aplicação em uma verdadeira arquitetura heterogênea. Resultados experimentais
para um conjunto de aplicações de stencil em OpenMP que executaram em uma plata-
forma Multi-FPGA com 6 placas Xilinx VC709 interconectadas através de links de fibra
ótica, mostraram acelerações quase lineares conforme o número de FPGAs e IP-cores por
FPGA aumenta.

Abstract

FPGA-based hardware accelerators have received increasing attention in recent years. One
of the main reasons for this comes from its reconfiguration capabilities which facilitate the
adaptation of the accelerator to distinct types of workloads. In some cases, FPGA-based
accelerators provide higher computational performance and energy efficiency. It has been
reported that offloading to FPGA achieves better performance when compared with a
GPU and CPU for some applications such as Fast Fourier Transform. This performance
can be even higher if one connect multiple FPGAs creating a Multi-FPGA cluster. How-
ever, programming such heterogeneous systems is a challenging endeavor and still requires
research and development efforts to make it really productive. The OpenMP task-based
programming model is a good choice for programming such Heterogeneous Multi-FPGA
systems. This is indicated by its ability to expose a higher degree of parallelism that com-
bines: (a) computation offloading to accelerators; (b) explicit data dependencies; and (c)
definition of the regions of code for each specific device. Based on that, the work of this
thesis extends the existing LLVM/OpenMP infrastructure as well as a hardware platform
to help the programmer easily express the offloading and use of IP-cores available in an
already existing reconfigurable binary code (bitstream). A co-design methodology was
used, which implements both the hardware and software architectures in parallel. On the
software side, three main modifications to the OpenMP implementation were made: (a)
Insert offload information into the construction of the task; (b) a modification in the task
graph management mechanism; and (c) the design of the VC709 plugin in the libomp-
target library. On the hardware side, an infrastructure based on the Xilinx VC709 board
Target Reference Design (TRD) was created. The main contributions of this thesis are:
(a) a new Clang/LLVM plugin that understands FPGA boards as OpenMP devices, and
uses OpenMP declare variant directive to specify hardware IPs-cores; (b) A mechanism
based on the OpenMP task dependence and computation offloading model that enables
transparent communication of IP-cores in a Multi-FPGA architecture; (c) A hardware
architecture, based on the Target Reference Design of the VC709 board, capable of exe-
cuting OpenMP tasks using pre-existing IP-cores; and (d) A programming model based
on OpenMP task parallelism, which makes it simple to move data among FPGAs, CPUs
or other acceleration devices (e.g. GPUs), and that allows the programmer to use a single
programming model to run its application on a truly heterogeneous architecture. Ex-
perimental results for a set of OpenMP stencil applications running on a Multi-FPGA
platform consisting of 6 Xilinx VC709 boards interconnected through fiber-optic links,
have shown close to linear speedups as the number of FPGAs and IP-cores per FPGA
increase.

Contents

1 Introduction 10

2 Background 14
2.1 OpenMP . 14

2.1.1 OpenMP Task Directive . 17
2.1.2 OpenMP Target Directive . 20
2.1.3 OpenMP Target Depend Directive 22

2.2 The Hardware Platform . 24
2.2.1 Reconfigurable Computing . 24
2.2.2 The FPGAs . 25

2.2.2.1 FPGA Architecture . 27
2.2.3 The VC709 Board . 29

3 The OpenMP Multi-FPGA Infrastructure 33
3.1 Extending OpenMP . 33
3.2 Hardware Infrastructure . 38

4 Experiments 44
4.1 An Stencil Multi-FPGA Pipeline . 44

4.1.1 IP-core Implementation . 46
4.2 FPGA Scalability . 48
4.3 Iteration and IP-core Scalability . 49
4.4 Resource Utilization . 51
4.5 Single FPGA Synthesis . 52

5 Related Works 53

6 Final Remarks and Conclusion 58
6.1 Future works . 59

Bibliography 60

A Software 68
A.1 Clang Front-end . 68

A.1.1 Fat Binaries Generation . 68
A.1.2 Code Generation . 69

A.2 OpenMP Runtime Modifications . 70
A.2.1 Task Structure . 70

A.3 The Libomptarget Library . 71

A.3.1 The Plugins . 73
A.4 Driver Organization . 74

B Hardware 78
B.1 PCIe and DMA . 78
B.2 Configuration Registers . 79
B.3 A-SWT . 81
B.4 The IP-cores . 83
B.5 MFH . 84
B.6 VFIFO . 85
B.7 Network Subsystem . 85

10

Chapter 1

Introduction

With the limits imposed by the power density of semiconductor technology, heteroge-
neous systems became a design alternative that combines CPUs with domain-specific ac-
celerators to improve power-performance efficiency [80]. A modern heterogeneous system
typically combines general-purpose CPUs and GPUs to speedup complex scientific appli-
cations [58]. However, for many specialized applications that can benefit from pipelined
parallelism (e.g. FFT, Networking), FPGA-based hardware accelerators have shown to
produce improved power-performance numbers [50, 74, 90, 87]. Moreover, FPGA’s re-
configurability facilitates the adaptation of the accelerator to distinct types of workloads
and applications. In order to leverage on this, cloud service companies like Microsoft
Azure [33] and Amazon AWS [16] are offering heterogeneous computing nodes with inte-
grated FPGAs.

Given its small external memory bandwidth [43] FPGAs do not perform well for
applications that require intense memory accesses. Pipelined FPGA accelerators [65,
53, 24] have been designed to address this problem but such designs are constrained
to the boundaries of a single FPGA or are limited by the number of FPGAs that it can
handle. By connecting multiple FPGAs, one can design deep pipelines that go beyond the
border of one FPGA, thus allowing data to be transferred through high speed links from
one FPGA to another without using external memory as temporal storage. Such deep
pipelined accelerators can considerably expand the application of FPGAs, thus enabling
increasing speedups as more FPGAs are added to the system [93].

Unfortunately, programming such Multi-FPGA architecture is a challenging endeavor
that still requires additional research [71, 85]. Synchronizing the accelerators inside the
FPGA and seamlessly managing data transfers between them are still significant design
challenges that restrict the adoption of such architectures. The work of this thesis ad-
dresses this problem by extending the LLVM OpenMP task programming model [9] to
Multi-FPGA architectures.

At a higher abstraction level, the programming model proposed in this paper enables
the programmer to see the FPGA cluster as a regular OpenMP device where OpenMP
tasks are executed by IP-cores accelerators (IPs). In the presented approach, the OpenMP
task dependence mechanism transparently coordinates the IP-cores’ work to run the ap-
plication. For example, consider the simple problem of processing the elements of a vector
V in a pipelined fashion using four IP-cores (IPO-IP3) programmed in two FPGAs. Each

11

Figure 1.1: An optical-link interconnected Multi-FPGA architecture running an OpenMP
pipelined application.

IPi (i = 0-3) performs some specific computation foo(V,i). The Multi-FPGA architec-
ture used in this example is shown Figure 1.1 and contains two VC709 FPGA boards
interconnected by two fiber optic links. Each FPGA is programmed with: (a) a module
for communication with the PCIE interface (DMA/PCIE); (b) two IP-cores from the set
IP0-IP3; (c) a NET module for communication with the optical fibers; (d) a Virtual FIFO
module (VFIFO) for communication with memory; (e) a MAC frame handler (MFH) to
pack/unpack data; and (f) a packet switch (A-SWT) module capable of moving data
among the IP-cores, even if they seat on FPGAs from two distinct boards. More details
on the workings and implementation of these modules are given in Chapter 3. As shown
in the figure, the vector is initially moved from the host memory (left of Figure 1.1) and
then pushed through the IP0-IP3 pipeline, returning the final result into the host memory.

The OpenMP program required to execute this simple application uses just a few
code lines (see Listing 1.1). Its simplicity is possible due to the techniques presented in
this thesis, which leverages on the OpenMP task dependence and computation offloading
abstraction to hide the complexity needed to move the vector across the four IP-cores. The
presented techniques extend the OpenMP runtime with an FPGA device plugin which:
(a) maps task data to/from the FPGAs; (b) transparently handles the data dependencies
between hardware accelerator modules (IP-cores from now on) located in distinct FPGAs;
and (c) eases the synchronization of IP-core’s execution.

The main contributions of this thesis are summarized below:

• A new Clang/LLVM plugin that understands FPGA boards as OpenMP devices,
and uses OpenMP declare variant directive to specify hardware IP-cores;

• A mechanism based on the OpenMP task dependence and computation offloading

12

1 #pragma omp dec l a r e var i ant
2 (void do_laplace2d (i n t ∗ , int , i n t)) match (dev i c e=arch (vc709))
3 extern void hw_laplace2d (i n t ∗ , int , i n t) ;
4

5 i n t main () {
6 f l o a t V[h∗w] ;
7 bool deps [N+1] ;
8 #pragma omp p a r a l l e l
9 #pragma omp s i n g l e

10 f o r (i n t i = 0 ; i < N; i++){
11 #pragma omp ta rg e t map(tofrom :V [: (h∗w)]) \
12 depend (in : deps [i]) depend (out : deps [i +1]) \
13 nowait
14 {
15 do_laplace2d(&V, h ,w) ;
16 }
17 }
18 }

Listing 1.1: Offloading task computations to FPGA IP-cores.

model that enables transparent communication among IP-cores in a Multi-FPGA
architecture;

• A hardware architecture, based on the Target Reference Design of the VC709 board,
capable of executing OpenMP tasks using pre-existing IP-cores.

• A programming model based on OpenMP task parallelism, which makes it simple
to move data among FPGAs, CPUs or other acceleration devices (e.g. GPUs), and
that allows the programmer to use a single programming model to run its application
on a truly heterogeneous architecture.

The above contributions have been published in a recognized conference and workshop
of the area, as listed below:

1. R. Nepomuceno, R. Sterle, and G. Araujo, “Enabling Multi-FPGA Clusters as an
OpenMP Acceleration Device,” https://jnamaral.github.io/icpp20/slides/Nepomu
ceno_Enabling.pdf, August 2020, software Stack for Hardware Accelerators Work-
shop (SSHAW)

2. R. Nepomuceno, R. Sterle, G. Valarini, M. Pereira, H. Yviquel, and G. Araujo,
“Enabling OpenMP Task Parallelism on Multi-FPGAs,” in 2021 IEEE 29th Annual
International Symposium on Field-Programmable Custom Computing Machines
(FCCM), May 2021, pp. 260-260.

The author of this thesis also contributed to a publication that was a predecessor of
this work:

1. C. Ceissler, R. Nepomuceno, M. Pereira, and G. Araujo, “Automatic Offloading of
Cluster Accelerators,” in 2018 IEEE 26th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), April 2018, pp. 224–224.

13

In addition, these works were also presented at national and international events:

1. R. Nepomuceno, C. Ceissler and G. Araujo, “Hardcloud: Automatic offloading to
cluster accelerators,” https://indico.cern.ch/event/683620/contributions/3420618/
attachments/1841793/3021386/HardCloud_infieri.pdf, May 2019, iNFIERI: Intelli-
gent signal processing for FrontIEr Research and Industry.

2. C. Ceissler, R. Nepomuceno, M. Pereira, and G. Araujo, “Tutorial III - HardCloud
/ Intel Harp - Automatic Offloading of Cluster Accelerators,” http://www2.sbc.org.
br/ cradsp/eradsp/2018/programa.html#tut3, April 2018, 9ª Escola Regional de
Alto Desempenho (ERAD);

3. C. Ceissler, R. Nepomuceno, M. Pereira, and G. Araujo, “HardCloud: The HARP
as an OpenMP Acceleration Device” http://wscad.facom.ufms.br/whc.html, Octo-
ber 2017, Workshop on Hybrid Computing 2017 (WSCAD);

4. R. Nepomuceno, C. Ceissler and G. Araujo, “Workshop HardCloud” http://wscad
.sbc.org.br/2018/programa-wch.html, October 2018, Simpósio de Sistemas Com-
putacionais de Alto Desempenho (WSCAD);

Finally, this work was also submitted to the IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems journal (TCAD) and is, at the time of writing
this thesis, under review.

The rest of this thesis is organized as follows. Chapter 2 discusses the background
necessary to understand the work. Chapter 3 presents, in details, the main contributions of
this thesis and the methodology used to implement them. Chapter 4 shows the benchmark
used to evaluate the work and the experimental results found. Chapter 5 discusses the
related works found in the literature. Finally, the conclusions of the work are presented
in Chapter 6.

14

Chapter 2

Background

This chapter discusses the technical concepts necessary to better understand the work
presented in this thesis. Section 2.1 describes the main aspects of the OpenMP pro-
gramming model with emphasis on task parallelism and the support for device offloading.
Section 2.2 presents the main concepts about FPGA acceleration, with a focus on the
Xilinx VC709 board and the modules used to assemble the testing platform.

2.1 OpenMP

Although computers are always getting faster, the demand for computing power is also
always increasing. A more powerful machine leads to new kinds of applications, which in
turn fuel the demand for yet more powerful systems. Engineers develop several techniques
to support this demand for performance. Among them is the use of multiple components
and functional units that may be able to operate simultaneously on specific tasks, such
as adding two integer numbers or determining whether a value is greater than zero, for
example. This very low level parallelism approach is often referred to as Instruction-
Level Parallelism (ILP) [21, 86]. To leverage on this kind of parallelism, compiler writers
developed techniques to better organize the instructions to efficiently utilize ILP. Modern
compilers put considerable effort into this kind of optimization. Unfortunately, there is a
limited payoff for extending the hardware support [94, 66].

Back in the 1980s, several vendors produced computers that exploited another kind of
architectural parallelism. They built machines consisting of multiple processors [35] with
a common shared memory. These multiprocessor machines could work on several tasks at
once, by simply executing them on different processors. As a result, they became popular
in the server market, where they have remained important ever since.

Once the vendors had the technology to build moderately priced parallel machines,
they needed to ensure that their computing power could be exploited by individual ap-
plications. This is where things got complicated. Compilers had always been responsible
for adapting a program to make the best use of a machine’s internal parallelism. Un-
fortunately, it is very hard for them to do so for a computer with multiple processors or
cores. The reason is that compilers must then identify independent blocks of instructions
that can be executed in parallel. Techniques to extract such instruction blocks from a se-

15

1

2 #pragma omp d i r e c t i v e −name [[,] c l au s e [[,] c l au s e] . . .] new−l i n e
3 .

Listing 2.1: OpenMP directives for C/C++.

quential program do exist; and, for simple programs, or specific cases (e.g. vectorization)
it may be worthwhile trying out compiler’s automatic parallelization features. However,
the compiler often does not have enough information to decide whether it is possible to
split up a particular program in its parallel components. It also cannot make large-scale
changes to code, such as replacing an algorithm that is not suitable for parallelization.
Thus, most of the time the compiler needs some sort of hints from the programmer [23, 81].

For this reason, vendors of parallel machines in the 1980s [36] provided special notation
to specify how the work of a program was to be divided among the individual processors,
as well as to enforce an ordering of accesses by different threads to shared data. The
notation mainly took the form of special instructions, or directives, that could be added to
programs written in sequential languages e.g. Fortran. The compiler used this information
to create the actual code for execution by each processor. Although this strategy worked,
it had the problem that a program written for one vendor did not necessarily execute on
another one.

During the latter half of the 1990s, a group of vendors joined forces to resolve this
problem by providing a common way for programming a broad range of parallel machines.
This group is known as OpenMP Architecture Review Board (ARB) [1], and they were
responsible for creating an Application Programming Interface (API) to enable a portable
shared memory parallel programming model, called OpenMP [45]. The first version,
consisting of a set of directives that could be used with Fortran, was introduced to the
public in late 1997. OpenMP compilers began to appear shortly thereafter. Since that
time, bindings for C and C++ have been introduced, and the set of features has been
extended. OpenMP ready compilers are now available for almost all computers. The
number of vendors involved in maintaining and further developing OpenMP features has
grown. Today, almost all the major computer manufacturers, major compiler companies,
several government laboratories, and groups of researchers belong to the ARB.

OpenMP can be defined as a set of compiler directives, runtime library routines,
and environment variables to specify parallelism in Fortran and C/C++ programs. An
OpenMP directive is a specially formatted pragma that applies to the sequential code
block/statement immediately following it in the program. These directives let the user
tell the compiler which instructions to execute in parallel and how to distribute them
among the threads that will run the code. An OpenMP directive is an instruction in a
special format that is understood by OpenMP-aware compilers only. They look like a
comment to a regular Fortran compiler or a pragma to a C/C++ compiler, so that the
program may run just as it did beforehand if a compiler is not OpenMP-aware.

Listing 2.1 shows the specification of an OpenMP directive for C/C++. Each directive
starts with #pragma omp. The directive-name is the name of the directive and can
possibly have any directive-level arguments enclosed in parentheses. The clauses are

16

1 #inc lude <omp . h>
2 #inc lude <s td i o . h>
3 #inc lude <s t d l i b . h>
4

5 i n t main (i n t argc , char ∗ argv []) {
6 #pragma omp p a r a l l e l
7 {
8 p r i n t f (" thread number = %d\n" , omp_get_thread_num ()) ;
9 }

10 re turn 0 ;
11 }

Listing 2.2: OpenMP Hello World.

modifiers that can be applied to certain directives.
The first step in creating an OpenMP program from a sequential one is to identify

the parallelism it contains. Basically, this means finding blocks of codes that can be
executed concurrently by different processors. Sometimes, the developer must reorganize
its program to obtain independent instruction sequences. It may even be necessary to
replace an algorithm with an alternative one that accomplishes the same task but offers
more exploitable parallelism.

The second step in creating an OpenMP program is to express, using OpenMP, the
parallelism that has been identified. One of the advantages of using OpenMP is that it can
incrementally create a parallel program from an existing sequential code. The developer
can insert directives into a portion of the program and leave the rest in its sequential form.
Once the resulting program version has been successfully compiled and tested, another
portion of the code can be parallelized. These are characteristics that encouraged the
adoption of OpenMP as the programming model for the development of the work of this
thesis.

The code in Listing 2.2 shows a trivial example of a program parallelized using
OpenMP. The library included in line 1 (#include <omp.h>) has the signatures of
OpenMP functions, such as the function omp_get_thread_num() called in line 8. This
function returns an identifier number of the thread that is running. The #pragma omp
parallel directive on line 6, is the directive responsible for creating the threads that ex-
ecute in parallel. The number of threads to be created can be defined by calling the
omp_set_num_threads function or via the OMP_NUM_THREADS environment vari-
able. So, this simple example shows the use of the three main components of an OpenMP
program: compiler directives, runtime library routines, and environment variables.

OpenMP supports the so-called fork-join programming model [46], which is illustrated
in Figure 2.1. The idea of this approach is to start the program as a single thread of
execution, just like a sequential program. The thread that executes this code is referred
to as the initial thread and it executes the serial region. Whenever an OpenMP parallel
construct is encountered by a thread, it creates a team of threads (this is the fork) and
together they execute the parallel region. At the end of the parallel region, only the
original (initial) thread continues, starting another serial region; all others terminate
(this is the join).

17

Figure 2.1: Fork-Join Programming Model.

OpenMP expects the programmer to give a high-level specification of the parallelism
in the program and the method for exploiting that parallelism. Thus, it provides notation
for indicating the regions of an OpenMP program that should be executed in parallel. It
also enables the provision of additional information on how this is to be accomplished.
The job of the OpenMP implementation is to deal with the low-level details of actually
creating independent threads to execute the code, and to assign work to them according
to the strategy specified by the programmer.

In addition to the classic fork-join model, where all threads in the parallel region
perform the same code, the OpenMP model also allows expressing parallelism using the
concept of tasks, which is presented in the next section.

2.1.1 OpenMP Task Directive

Tasks were first introduced to OpenMP in version 3.0 [8]. Before that, the distribution
of work between tasks was mostly based on directives aimed at array-based applications,
such as the parallelization of for loops using the directive parallel for. There was no
standardized mechanism to express and exploit unstructured parallelism efficiently and
elegantly. The main idea behind tasks is to allow the programmer to expose a more com-
plex degree of parallelism by using the directive task. This was combined with the depend
clause, that makes data dependencies explicit to facilitate parallelization of applications
where units of work are generated dynamically. In the OpenMP specification, a task is
defined as a specific instance of executable code and its data environment (inputs to be
used and outputs to be generated) [11].

Initially, tasks were only implicit in OpenMP. An implicit task is a task generated
when a parallel construct is encountered during execution. A parallel directive builds
implicit tasks, one per thread, and all tasks would execute the same code and synchronize
using a barrier once all tasks are completed at the end of the parallel region. All implicit
tasks, generated when a parallel construct is encountered, are guaranteed to be complete
when the control thread exits the implicit barrier.

With the creation of the task parallelism model, OpenMP started to allow program-
mers to explicitly create tasks, thus providing support for different executions of the code
and enabling more flexibility since now the threads can execute multiple existing tasks.

18

1

2 #pragma omp task [c l au s e [[,] c l au s e] . . .] new−l i n e
3 /∗ st ructured−block ∗/

Listing 2.3: OpenMP Task Directives for C/C++.

1 /∗ some code ∗/
2

3 #pragma omp p a r a l l e l
4 {
5 #pragma omp s i n g l e
6 {
7 #pragma omp task depend (out : A)
8 {
9 A = foo () ;

10 }
11 f o r (i n t i =0; i < 2 ; i++){
12 #pragma omp task depend (in : A) depend (out : B[i])
13 {
14 B[i] = bar (A) ;
15 }
16 }
17 f o r (i n t i =0; i < 4 ; i++){
18 #pragma omp task depend (in : B[i / 2])
19 {
20 fun (B[i / 2]) ;
21 }
22 }
23 }
24 }
25

26 /∗ some code ∗/

Listing 2.4: OpenMP task example

An explicit task is specified using the task directive. Listing 2.3 shows the formalization
of an OpenMP task directive for C/C++. There are several clauses that can be associated
with the task directive. However, this thesis focuses on the depend clause that is used to
express data dependencies.

The task directive defines the code associated with the task and its data environment.
Whenever a thread encounters this directive, a new task is generated. According to the
dependencies of this task, a thread can execute it immediately or defer its execution until
a later time. If the execution is deferred, then the task is placed in a ready queue of tasks
that is associated with the current parallel region. The threads in the current team will
take tasks out of the queue and execute them until it is empty. A thread that executes
a task may be different from the thread that originally encountered it. All explicit tasks
generated within a parallel region are guaranteed to be complete on exit from the next
implicit or explicit barrier within the parallel region.

An example of a program that uses OpenMP tasks is shown in Listing 2.4. Figure 2.3
illustrates, in a simplified way, how task management is done. The actual implementation
is more complicated, but the figure helps to understand the overall idea.

19

Figure 2.2: OpenMP task graph.

Figure 2.3: LLVM/OpenMP Runtime Implementation.

First, as already said, the program creates a pool of worker threads (Figure 2.3). This
is done using the #pragma omp parallel directive (Listing 2.4 line 3). It is with this set
of threads that an OpenMP program runs in parallel.

Next, the #pragma omp single directive (Listing 2.4 line 5) is used to select one of
the worker threads. This selected thread is responsible for creating the tasks, and will be
called control thread (Figure 2.3) from now on.

The #pragma omp task directive (Listing 2.4 lines 7, 12 e 18) is used to effectively
create tasks, while the depend clause specifies the input and output dependencies of a given
task. The control thread of Listing 2.4 creates seven tasks. The dependencies between
these tasks form a dependency graph, which is illustrated in Figure 2.2.

The OpenMP runtime manages the execution of tasks (Figure 2.3). Whenever the

20

1

2 #pragma omp t a r g e t [c l au s e [[,] c l au s e] . . .] new−l i n e
3 /∗ st ructured−block ∗/

Listing 2.5: OpenMP Target Directives for C/C++.

dependencies of a given task are satisfied, that task goes to a ready queue. Once queued,
it can be executed by any worker thread (Figure 2.3).

Another OpenMP directive used in this work is the target directive. The following
section explains how it works.

2.1.2 OpenMP Target Directive

Heterogeneous computing is here to stay [97]. However, much effort will still be required to
create means to facilitate the programming of such systems. OpenMP tackles this problem
by supporting computing offload to acceleration devices through the target directive. This
directive offers a path to more portable device accelerated software. One of the goals of
this standard is to minimize the need for programs to contain device vendor-specific
statements, making the codes portable across different architectures.

OpenMP device offloading is a host-centric model with one host device and possible
multiple target devices attached to it. A device is a logical execution engine with local
storage. The device data environment is an environment associated with a target data or
target region. Target constructs control how data and code are offloaded to a device and
the data is mapped from a host data environment to a device data environment.

The target region is the basic offloading construct in OpenMP. A target region defines
a section of a program that will be offloaded. The OpenMP program starts executing on
the host and when a target region is encountered, the code it contains is executed on a
device.

Listing 2.5 shows the formalization of an OpenMP target directive for C/C++. The
directive starts with the #pragma omp target construct which is followed by some clauses.
Four are more relevant to this work: device, map, depend and nowait clauses. The device
clause receives as an argument an integer that specifies the device to which the offload
will be performed. If this clause is not used, a default device is selected. The map
clause specifies the action that the host must execute with a given data. Some of the
actions available are to, from, tofrom or alloc. The first three of them specify if the data
should move to/from the device and the last one only allocates the space into the device
memory. The depend clause has the effect of turning the offload region into a task as
if the target directive were a task directive. The clause nowait has the effect of making
the host continue its execution without waiting for the target region to be finalized, the
synchronization will occur in the next barrier. More details in the depend an nowait
clauses are given in Section 2.1.3.

An illustrative example of a program that uses OpenMP target directive to offload to
a device is shown in Listing 2.6. In the example, the code under the scope of the target
directive (line 2) will run on an accelerator device. The map clause states which data will

21

1 /∗some code ∗/
2 #pragma omp ta rg e t map(to : X [:N]) map(from : Y [:N])
3 {
4 f o r (i n t i = 0 ; i < N; i++){
5 Y[i] = X[i] ;
6 }
7 }
8 /∗some code ∗/

Listing 2.6: OpenMP target example

Figure 2.4: OpenMP offloading.

be moved to (X) and from (Y) the device.
Figure 2.4 illustrates, in a simplified way, what the code execution would look like.

First, the OpenMP runtime sends the X buffer to the device. It then starts code execution.
And finally, it retrieves the result that was stored into buffer Y.

In the OpenMP implementation for the Clang/LLVM compiler [73], offloading is per-
formed by a library called libomptarget [26]. This library provides an agnostic offloading
mechanism, in which to add a new device to the list of devices that the OpenMP runtime
supports, one just needs to create and add a new plugin to the library. Figure 2.5 shows
how the libomptarget library interacts with the system.

First, Clang generates a fat binary with the host and targets appropriate representa-
tion, (e.g. ELF, PE32+, and Mach-O). At the moment that the program reaches a target
directive, the library checks if the plugin is compatible with the target binary, then maps
the data environment and executes the computation on the device that was specified.

The OpenMP specification enables the user to create dependencies among tasks on
distinct devices, even without a task directive. This is done using the target directive
along with the depend clause. The next section explains how this mechanism works.

22

Figure 2.5: Libomptarget schematic.

2.1.3 OpenMP Target Depend Directive

As already said, the target directive also accepts the depend clause. That way, even
without using the task directive, a programmer can create a task that runs on a device.
The program shown in Listing 2.7 rewrites the program of Listing 2.4 so that tasks are
now executed on an accelerator device.

Notice that the clause nowait also appears in the code of Listing 2.7. This clause is
necessary because, by default, the target directive is blocking. In other words, the nowait
clause allows the control thread to create all seven tasks without waiting for the previous
ones to complete.

The current LLVM/OpenMP implementation of task offloading does not support de-
vices like Multi-FPGA. For this reason, the work of this thesis presents an OpenMP plugin
implementation for Multi-FPGA devices. More details on the implementation are given
in Chapter 3.

The adoption of OpenMP in the work of this thesis can be attributed to a number of
factors. One is its strong emphasis on structured parallel programming. Another is that
OpenMP is comparatively simple to use, since the burden of working out the details of
the parallel program is up to the compiler. It has the major advantage of being widely
adopted, so that an OpenMP application will run on many different platforms. But above
all, OpenMP is timely. The vendors behind OpenMP collectively deliver a large fraction
of the computer machines in use today. Their involvement with this standard ensures
its continued applicability to their architectures. Furthermore, the ARB continues to
work to ensure that OpenMP remains relevant as computer technology evolves. OpenMP
is under cautious, but active, development; and features continue to be proposed for
inclusion into the application programming interface. Applications live vastly longer than

23

1 /∗ some code ∗/
2

3 #pragma omp p a r a l l e l
4 {
5 #pragma omp s i n g l e
6 {
7 #pragma omp ta rg e t nowait \\
8 map(from : A) \\
9 depend (out : A)

10 {
11 A = foo () ;
12 }
13 f o r (i n t i =0; i < 2 ; i++){
14 #pragma omp ta rg e t nowait \\
15 map(to : A) map(from : B[i]) \\
16 depend (in : A) depend (out : B[i])
17 {
18 B[i] = bar (A) ;
19 }
20 }
21 f o r (i n t i =0; i < 4 ; i++){
22 #pragma omp ta rg e t nowait \\
23 map(to : B[i / 2]) \\
24 depend (in : B[i / 2])
25 {
26 fun (B[i / 2]) ;
27 }
28 }
29 }
30 }
31

32 /∗ some code ∗/

Listing 2.7: Tasks in Devices

24

computer architectures and hardware technologies; and, in general, application developers
are careful to use programming languages that they believe will be supported for many
years to come.

The next section explains important concepts regarding the hardware part of the work
of this thesis, that is, reconfigurable architectures, more precisely the FPGA VC709 board
from Xilinx.

2.2 The Hardware Platform

In general, computers can be classified according to their purpose, being either General
Purpose or Specific Application Purpose [31]. A General-Purpose computer is a single
silicon chip, called microprocessor or GPP, that could be programmed to solve many
computing tasks. This means that many applications could share commodity economics
for the production of a single integrated circuit (IC). An Application-Specific Integrated
Circuit (ASIC) is an IC specifically designed to provide unique functions. ASIC chips can
replace general-purpose commercial logic chips, and integrate several functions or logic
control blocks into one single chip. Although the ASIC has the advantages of high perfor-
mance and low power, its fixed resource and algorithm architecture result in drawbacks
such as high fabrication cost and poor flexibility. As a tradeoff between the two extreme
characteristics of GPP and ASIC, there is the Reconfigurable Computing that combine
the advantages of both [52].

2.2.1 Reconfigurable Computing

The work by Compton at al in [42], presents reconfigurable computing as intended to
fill the gap between hardware and software. This gap is filled by achieving potentially
much higher performance than software while maintaining a higher level of flexibility than
hardware. Reconfigurable computing can be used by implementing all of the application
functionalities in hardware. In this case, the hardware implemented on the reconfig-
urable elements covers all the data path from the inputs to the outputs of the application.
The advantage in doing this is that the hardware is easily replaceable by downloading
an appropriate configuration file onto the chip, rather than having the circuit physically
replaced. Therefore, it can be concluded that reconfigurable computing is a trade-off
between general-purpose computing and application-specific computing because it tries
to achieve a balance among performance, cost, power, flexibility, and design effort. Re-
configurable computing has enhanced the performance of applications in a large variety
of domains, including embedded systems [57], SoCs [79], digital signal processing (DSP)
[91], image processing [61, 84, 92], network security [37], bioinformatics [39, 47], super-
computing [51, 72, 49, 56, 63], Boolean SATisfiability (SAT) [82, 20], spacecrafts [48],
and military applications [76]. It can be said that reconfigurable computing will widely,
pervasively, and gradually impact human lives.

25

Figure 2.6: FPGA Development Process Design Flow.

2.2.2 The FPGAs

Although Reconfigurable Computing was first proposed in the 1960s by Estrin [52], it was
only in the 1980s that this type of computing began to gain industrial acceptance with
the advent of the first Field Programmable Gate Arrays (FPGAs) [32].

FPGAs are digital integrated circuits that contain configurable (programmable) blocks
of logic along with configurable interconnects between these blocks. Design engineers can
configure (program) such devices to perform a tremendous variety of tasks. The “field
programmable” portion of the FPGA’s name refers to the fact that its programming
takes place “in the field” (as opposed to devices whose internal functionality is hard-wired
by the manufacturer). This may mean that FPGAs are configured in the laboratory, or
it may refer to modifying the function of a device resident in an electronic system that
has already been deployed in the outside world [77].

Configuring an FPGA means changing its functionality to support a new application,
and it is equal to having some new piece of hardware, mapped on the FPGA chip to
implement a completely new functionality. In other words, FPGAs make it possible to
have custom-designed high-density hardware in an electronic circuit, with the added bonus
of having the possibility of changing it whenever there is the need, even while the whole
application is still running.

A Hardware Design Language (HDL) such as VHDL or Verilog is used to describe the
functionality to be implemented on the device. The design software of the device manu-
facturer, a.k.a. Electronic Design Automation (EDA) tools, translates the description of
the hardware into a configuration file for the device that can be downloaded on it.

EDA tools for FPGAs are analogous to those employed in ASIC chip design, in the
sense that they convert a hardware specification into an actual netlist that can be synthe-
sized, placed, and routed on an actual piece of hardware such as an ASIC or an FPGA.
The tools use a process flow like the one depicted in Figure 2.6. The design begins with

26

Figure 2.7: Simplified FPGA.

design entry, continues to simulation to verify the logic is implemented as expected. And
then the tool performs synthesis, also called mapping, to map the logic to the device
architecture. Next, the tool creates the interconnection between the cells by place and
routing or fitting the design. It is good practice to run another simulation after the fit-
ting is completed. If the design looks good, the next step is to use the tool to create a
programming file, which is then downloaded into the FPGA device for testing. In the
programming model presented in this thesis, all these implementation steps are done for
the IP-cores, in a separate flow from the software development. This way, the hardware
complexity is abstracted from the developer of the final software, easing the design of the
whole system.

The flexibility of having custom, adaptable hardware in an application is the factor
that has determined the popularity of FPGA devices in a broad range of fields. If the
FPGA is paired with a general purpose processor, for example, the most demanding
sections of the software can be translated into hardware cores that accelerate program
execution, yielding notable speedups in the overall execution, especially when software
sections executed serially on the processor can be translated into hardware that can
exploit the parallelism of the algorithm.

The FPGA that was used for the development of the project presented in this thesis
was one produced by Xilinx, namely Virtex-7. For this reason, the architectural details
discussed focus on Xilinx FPGAs, but the main concepts can be applied to the FPGAs
of the most diverse companies.

Figure 2.7 illustrates an FPGA containing CLBs, IO Blocks, BRAM, DSP and Pro-
gramable Interconnected Array (other possible resources have been omitted). The three
main building blocks of a Xilinx FPGA are Configurable Logic Blocks (CLB), IO Blocks,
and Programmable Interconnected Array. These FPGAs also include memory elements
composed of simple flip-flops or more complete blocks of memories. Besides the indis-
pensable programmable logic blocks, modern FPGAs also include other blocks, which are

27

Figure 2.8: CLB schematic.

helpful for the development of large and/or complex designs, such as DSP blocks.

2.2.2.1 FPGA Architecture

Configurable Logic Blocks (CLB) are the main components of a Xilinx FPGA. These
elements are the ones that are going to be configured to implement the logic. They can
be used to implement either combinational or sequential logic. A CLB can be seen as a
prefabric construction that can be customized according to the user’s needs. The same
starting building block can be updated to meet new requirements. As show in Figure
2.8, in Xilinx FPGAs a single CLB is a hierarchical structure composed of a set of slices
which, in turn, are composed of a set of look-up tables.

The number of slices can vary according to the device, but in general a CLB contains
a set of two slices, which is the case for the Virtex-E, V5 or the 7 Series, while four slices
were present in the Virtex II Pro and Virtex 4 devices. A slice, in turn, contains two
look-up tables and the necessary interconnect hardware. The look-up tables are elements
that can be used to implement, in general, 4-input, 1 output functions. However, FPGAs
like the Xilinx 7 Series are composed of look-up tables that can be used to implement
functions characterized by 6-inputs and 2 outputs.

In the Figure 2.8 we can see a 2-slice Virtex-E CLB. This CLB is composed of two slices,
each of them containing 2 lookup tables. Therefore, in the end, the CLB is composed
of 4 look-up tables. Look-up tables (LUT) can implement an arbitrary logic function
according to their configuration. Ultimately, a look-up table, in an FPGA, is nothing
more than a memory containing memory cells to implement a small logic function.

Figure 2.9 illustrates how a LUT works. Take as an example the and combinational
circuit shown in Figure 2.9a, which receives bits A and B as input and produces bit
O as output. Figure 2.9b shows a LUT composed of a 4-position memory, referring to
the possible output values of a circuit with two input bits, and a multiplexer of two

28

(a) An and combinational circuit. (b) A lut configurated to an and circuit.

Figure 2.9: A simple configuration example of a LUT.

values, referring to those same bits. Note that for the values of A equal to ’1’ and B
equal to ’1’, the multiplexer selects the memory position whose value is equal to ’1’,
and for all other combinations of values of A and B, the multiplexer selects a position
in the memory with value 0. What results in an ’and’ operation with values A and B.
Within this context, configuring a LUT means properly store the necessary sequence of
zeros and ones in the 4 memory cells, according to the desired function. Each line is then
connected to a multiplexer which is used to read the output of the function we are looking
for by selecting/connecting the desired memory cell, via the proper configuration of the
multiplexer, set by reading the A and B inputs, to the output signal of the look-up table.

Around the LUT there is interconnect logic (not shown in the figure) that routes
signals to and from the LUT, implemented using standard logic gates, multiplexers, and
latches. Therefore, during the configuration process of an FPGA, the memory inside the
look-up tables is written to implement a required function, and the logic around it is
configured to route the signals correctly in order to build a more complex system around
this basic building block.

The input-output blocks (IOBs) have the function of interconnecting the signals of the
internal logic to an output pin of the FPGA package. There is one and only one IOB
for every I/O pin of the chip package. The IOBs have their own configuration memory,
storing the voltage standards to which the pin must comply and configuring the direction
of the communication on it, making it possible to establish mono-directional links in
either way or also bidirectional ones. The Input-Output Blocks can be seen as a standard
Input-Output interfaces such as a mic input jack, audio output, etc.

The Programmable Interconnect Array within an FPGA allows the arbitrary con-
nection of CLBs, IOBs, BRAM, DSPs and any other resources. The main modes of
interconnections are direct and segmented. Direct Interconnection is made of groups of
connections that cross the device in all its dimensions. Logic blocks put data on the most
suitable channel according to data destination. This implementation usually includes
some additional short-range connections that link nearby blocks. Segmented Intercon-
nection is based on lines that can be interconnected using Programmable Switch Boxes.
Also in this kind of interconnection there are lines that cross the entire device, in order
to maximize the speed of communication and limit signal skew.

The BRAM is a dual-port RAM module instantiated into the FPGA fabric to provide
on-chip storage for a relatively large set of data. The two types of BRAM memories

29

Figure 2.10: VC709 Board componentes. Fonte: [14]
.

available in a device can hold either 18k or 36k bits, and the available amount of these
memories is device specific. The dual-port nature of these memories allows for parallel,
same-clock-cycle access to different locations.

Digital signal Processing (DSP) is often required in applications involving audio or
video, among others. Such processing (FIR/IIR filtering, FFT, DCT, etc.) is accom-
plished by three basic elements: multipliers, accumulators (adders), and registers. To
make this type of application simpler to implement (route) and also faster (less routing
delays), special DSP blocks are included in modern FPGAs, normally containing large
parallel multipliers, MAC (multiply-and-accumulate) circuits, and shift registers

The Virtex 5 FPGA also contains DSP blocks (called DSP48E Slices). Each block
includes a 25 × 18 multiplier, plus MACs, registers, and several operating modes. The
total number of such blocks varies from 32 (in the smallest device) to 192 (in the largest
device), with a maximum frequency of 550 MHz.

The next section describes, in more details, the FPGA board used in the design of
this thesis, called VC709 Board.

2.2.3 The VC709 Board

The Xilinx VC709 Connectivity Kit (Figure 2.10) provides a hardware environment for de-
veloping and evaluating designs targeting the Virtex-7 FPGA. The VC709 board provides
features common to many embedded processing systems, including dual DDR3 memories,
an 8-lane PCI Express interface [28], and small SFP connectors for fiber optical (or Eth-
ernet). In addition to the board’s physical components, the kit also comes with a Target
Reference Design (TRD) featuring a PCI Express IP, a DMA IP, a Network Module, and
a Virtual FIFO memory controller interfacing to DDR3 memory. Figure 2.11 shows the

30

Figure 2.11: VC709 Target Reference Design.

Figure 2.12: PCIe Schematic.

schematic of the main board’s components.
This kit was selected to explore the ideas discussed in this thesis due to its reduced

cost and the fact that the TRD has components ready for inter-FPGAs communication.
Each one of the TRD components is explained in more detail below.
PCIE and DMA: the PCI Express IP (Figure 2.11 and Figure 2.12) provides a wrapper
around the integrated block in the FPGA. The integrated block is compliant with the PCIe
v3.0 specification. It supports x1, x2, x4, x8 lane widths operating at 2.5 Gb/s (Gen1),
5 Gb/s (Gen2), or 8 Gb/s (Gen3) line rate per direction. The wrapper combines the
Virtex-7 XT FPGA Integrated Block for PCIe with transceivers, clocking, and reset logic
to provide for the user interface an industry standard AXI4-Stream interface.

31

Figure 2.13: VFIFO Schematic.

Figure 2.14: Net schematic.

The DMA IP (Figure 2.11 and Figure 2.12) is provided by Northwest Logic. This
DMA controller is configured to support simultaneous operation of four user applications
utilizing eight channels in total. This involves four system-to-card (S2C) or transmit
channels and four card-to-system (C2S) or receive channels. In this work, the front-
end of the DMA connects with the AXI4-Stream interface on the PCIe Endpoint. The
backend of the DMA provides an AXI4-Stream interface as well, which connects to the
user application side.
CONF: The Configuration Registers (Figure 2.11) are used to read and write control/sta-
tus information to/from the FPGA components. This information ranges from configuring
the network module to reading performance, power, and temperature information. There

32

is also a free address range available that is used to store configuration information to the
specific IP-cores used in this work.
VFIFO: The TRD uses DDR3 space to implement a Virtual FIFO (VFIFO Figure 2.11).
It realizes the VFIFO by means of the the following IP cores: (a) AXI Stream Intercon-
nects (AXIS-IC Figure 2.13) that are used for width conversion and clock domain crossing
as well as providing interconnect between the applications and the AXI VFIFO Controller;
(b) AXI VFIFO Controller used for connecting the AXI Interconnect AXI-ST interface to
AXI-MM interface on MIG, while also handling the addressing needs for the DDR3 FIFO;
(c) Memory Interface Generator that provides the DDR3 memory controller for interfac-
ing to external memory. This VFIFO is used to avoid back-pressure to the PCIe/DMA
modules.
Network Subsystem: This subsystem is composed of four NET modules (see Figure
2.11 and Figure 2.14) containing each XGEMAC module and logic required to enable
the physical layer of the Multi-FPGA communication network. Figure 2.14 shows the
schematic for one channel. Each XGEMAC module receives data in the MAC frame
format and sends it to the physical layer. Each NET module is connected to an SFP port
capable of handling 10Gb/s per channel, resulting in a total of 40Gb/s bandwidth for the
board. To receive data, the XGEMAC module receives and delivers to the receive interface
logic (Figure 2.14) that filters the data according to the destination MAC address.

The next chapter shows how all of these components were used to implement the ideas
of the work of this thesis.

33

Chapter 3

The OpenMP Multi-FPGA
Infrastructure

This chapter describes the central idea of this thesis, which is to enable OpenMP Task
Parallelism on Multi-FPGA Clusters. This work has four main goals: (a) to design a
new Clang/LLVM plugin that understands FPGA boards as OpenMP devices, and uses
OpenMP declare variant directive to specify hardware IP-core; (b) to create a mechanism
based on the OpenMP task dependence and computation offloading model that enables
transparent communication of IP-core in a Multi-FPGA architecture; (c) to design a hard-
ware architecture, based on the Target Reference Design of the VC709 board, capable of
executing OpenMP tasks using pre-existing IP-cores; (d) to enable a programming model
based on OpenMP task parallelism, which makes it simple to move data among FPGAs,
CPUs or other acceleration devices (e.g. GPUs), and that allows the programmer to use
a single programming model to run its application on a truly heterogeneous architecture.
The following two sections detail how these goals have been achieved.

3.1 Extending OpenMP

To explain how the proposed system works, please consider the code fragment shown
in Listing 3.1. The code shown is a program that creates tasks to calculate iterations
of stencil operations. Part of the solutions proposed in this thesis uses this application
as a case of study. However, this application also shows some insights for more generic
solutions that are discussed later in the text.

The declare variant directive (line 1), which is part of the OpenMP standard, declares a
specialized hardware (FPGA IP-core) variation (hw_laplace2d, in line 3) of a C function
(do_laplace2d, in line 2), and specifies the context in which that variation should be
called. For example, line 2 of Listing 3.1 states that the variant hw_laplace2d should be
selected when the proper vc709 device flag is provided to the compiler at compile time.
This compiler flag is matched by the match (device=arch(vc709)) clause and when the
call to function do_laplace2d(&V, x, y) (line 15) is to be executed, a call to the IP-core
hw_laplace2d(int*, int, int) is performed instead.

As shown in line 10 of Listing 3.1, the main function creates a pipeline of N tasks.

34

1 #pragma omp dec l a r e var i ant
2 (void do_laplace2d (i n t ∗ , int , i n t)) match (dev i c e=arch (vc709))
3 extern void hw_laplace2d (i n t ∗ , int , i n t) ;
4

5 i n t main () {
6 f l o a t V[h∗w] ;
7 bool deps [N+1] ;
8 #pragma omp p a r a l l e l
9 #pragma omp s i n g l e

10 f o r (i n t i = 0 ; i < N; i++){
11 #pragma omp ta rg e t map(tofrom :V [: (h∗w)]) \
12 depend (in : deps [i]) depend (out : deps [i +1]) \
13 nowait
14 {
15 do_laplace2d(&V, h ,w) ;
16 }
17 }
18 }

Listing 3.1: Offloading task computations to FPGA IPs-cores.

Each task receives a vector V containing h*w (height and width) grid elements that are
used to calculate a Laplace 2D stencil. As the tasks are created within a target region and
the vc709 device flag was provided to the compiler, the hw_laplace2d variant is selected
to run each task in line 15. The compiler then uses this name to specify and offload the
hardware IP-core that will run the task. As a result, at each loop iteration, a hardware
IP task is mapped inside the FPGA. Details of the implementation of the Laplace 2D IP
and other stencil IP-cores used in this work are provided in Section 4.1.

The map clause (line 11) specifies that the data is mapped back and forth to the
host at each iteration. However, the implemented mapping algorithm concludes that
vector V is sent to the IP-core from the host memory and its output forwarded to the
next IP-core in the following iteration. The interconnections between these IP-core are
defined according to the depend clauses (line 12). In the particular example of Listing 3.1,
given that the dependencies between the tasks follow the loop iteration order, a simple
pipeline task graph is generated. A careful comparison of Listing 3.1 with Listing 2.7
reveals that in terms of syntax, the implemented solution does not require the user to
change anything concerning the OpenMP standard, besides specifying the vc709 flag to
the compiler. This gives the programmer a powerful verification flow. He/she can write
the software version of do_laplace2d for algorithm verification purpose, and then switch
to the hardware (FPGA) version hw_laplace2d by just using the vc709 compiler flag.

To achieve this level of alignment with the OpenMP standard, three extensions were
required to the OpenMP runtime implementation: (a) insertion of offloading information
during the construction of the task graph; (b) modification of the task graph management
mechanism; and (c) the design of the VC709 plugin in the libomptarget library. Figure
3.1 shows the stack of software that an application passes through. At the top is the
program, just below the OpenMP runtime where the task graph is built and in the last
two layers the libraries responsible for mapping and offloading. They are detailed below.
Task Graph Creation: Firstly, it was necessary to change the LLVM front-end, called

35

Figure 3.1: OpenMP software stack with VC709 plugin.

clang, so that when creating the task, information related to the offloading was passed on.
This information are the variables to be mapped, the direction of the mapping (to, from
or tofrom), and the size of the variables. Specifically for the work of this thesis, where
the programmer needs to specify the IP-core to be used, it was also necessary to pass
the name of the IP-core on to the runtime for creating the task graph (see Figure 3.1).
As mentioned earlier, this is done using the declare variant directive. At compile time,
the clang front-end captures this information and transmits it to the OpenMP runtime.
Implementations details on this mechanism are given in Appendix A.1.
Managing the Task Graph. Another modification was related to how the OpenMP
Runtime handles the task graph. In the current OpenMP implementation, the graph
is built and consumed at runtime. Whenever a task has its dependencies satisfied, it
is available for a worker thread to execute. After the worker thread finishes, the task
output data is sent back to the host memory, as shown in Section 2.1.1. This approach
satisfies the needs of a single accelerator, but causes unnecessary data movements for a
Multi-FPGA architecture as the output data of one (FPGA) task IP-core may be needed
as input to another task IP-core. To deal with this problem, the OpenMP runtime was
changed so that tasks are not immediately dispatched for execution as they are detected
by the control thread. In the case of FPGA devices, the runtime waits for the construction
of the task graph at the synchronization point at the end of the scope of the OpenMP
single clause (line 17 of Listing 3.1). That is, tasks are created but are not immediately
consumed by worker threads. At the end of the single region, the entire task graph for
the FPGA is available to be processed and executed, which is done by the VC709 plugin.
More details on how this is implemented are given in Appendix A.2.
Building the VC709 Plugin. In the OpenMP implementation of the Clang/LLVM
compiler [73], kernel/data offloading are performed by a library called libomptarget [26]
(see Figure 3.1). This library provides an agnostic offloading mechanism that allows the
insertion of a new device to the list of devices that the OpenMP runtime supports and is
responsible for managing kernel and data offloading to acceleration devices. Therefore, to

36

1 {"#ofnodes " : 2 ,
2 "nodes " :
3 [{ "addr" : " 1 0 . 1 0 . 1 0 . 1 0 " ,
4 " b i t " : " f i l e 0 . b i t " ,
5 "#ip s " : 3 ,
6 " i p s " [{ "mac" : "mac−addr0" , "name" : " ip0 " } ,
7 {"mac" : "mac−addr1" , "name" : " ip1 " } ,
8 {"mac" : "mac−addr2" , "name" : " ip2 "}
9]

10 } ,
11 {"addr" : " 1 0 . 1 0 . 1 0 . 1 1 " ,
12 " b i t " : " f i l e 1 . b i t " ,
13 "#ip s " : 3 ,
14 " i p s " [{ "mac" : "mac−addr0" , "name" : " ip0 " } ,
15 {"mac" : "mac−addr1" , "name" : " ip1 " } ,
16 {"mac" : "mac−addr2" , "name" : " ip2 "}
17]
18 }
19]
20 }

Listing 3.2: JSON file example.

allow the compiler to offload to the VC709 board, it was necessary to create a plugin in
this library. Figure 3.1 illustrates where the plugin is located in the software stack. More
details on how the plugin is implemented are given in Appendix A.3.

As shown in Figure 3.1, the plugin receives the task graph generated by the runtime
and maps these tasks to the available IP-cores in the cluster. The cluster configuration
is passed through a conf.json file (see Listing 3.2), which contains: (a) the number of
FPGAs nodes, (b) the address of the node, (c) the location of the bitstream files, (d)
the number of IP-cores available in each FPGA, and (e) the mac address and name of
each IP-core. In the experiments that were conducted, the FPGAs are connected in a
ring topology as shown in Figure 3.2. Of the four available optical interfaces, two are
being used to connect each FPGA with its two respective neighbors. This organization is
sufficient to execute the stencil applications. However, in a more generic solution, FPGAs
can connect to an optical switch, which would allow complete communication between all
of them.

A round-robin algorithm is used to map the tasks to the IP-cores. Each task is mapped
in a circular order to the free IP-core that is closest to the host computer. The pseudo-code
in Algorithm 1 shows how the mapping of the tasks to the IP-cores is done.

The algorithm starts with the cluster::map function (line 1), which belongs to the
cluster class that contains all the information that was passed in the JSON configuration
file (an example is shown in Listing 3.2), that is, this class holds information on how
many FPGAs are there in the cluster, and how many and which IP-cores are there in
each FPGA. The map function calls the PARSER function with the task graph root (line
2). The PARSER function uses the GETIP function (line 4) to search for an IP-core that
is capable of executing the task that was passed as a parameter. The GETIP function
(line 11) runs through all the nodes of the cluster (for loop in line 13), where each node

37

Figure 3.2: FPGAs organized in a ring topology.

is an FPGA. The CLUSTER variable (line 13) was filled with information from the json
file. For each node, it runs through all the IP-cores available on that node (for loop in
line 14).

As soon as an IP-core that can execute the task in question is found (if condition in
line 15), that task is mapped to that IP-core. The MATCH function of the IP-core (line
15) checks if it is able to perform the task passed as an argument and if it is the least used
IP-core among those that can perform this task. If this condition is true, the function
returns true, otherwise, returns false. The MAP function in line 16 update the data
dependency relationship between the IP-cores, information that will be used to configure
the communication of the IP-cores within the FPGA.

Note that IP-cores can be reused, thus the algorithm also keeps track of the number
of times that the IP-core was used so that the round-robin algorithm is repeated (while
statement in line 12). Back to the PARSER function, on line 5, the variable PT receives
all the parents of task. The foreach loop, in line 6, goes through all these tasks calling
the SETTARGET function to set the destination IP-core that was just found. Right
after that, the variable CT receives all the children of task. The foreach loop of line 9,
goes through all these children calling again the function PARSE, entering into recursion
until the entire task graph is traversed. This implementation of the mapping algorithm
worked well for the tested benchmark. However, it is expected that an algorithm that
treats different cases should be used for more complex task graphs. This could create
opportunities for possible optimizations.

With the information of which IP-cores were used and the dependencies among them,
the VC709 plugin is then able to configure the internal structure of the FPGAs. This
structure is presented in the following section.

38

Algorithm 1 The Round-Robin Mapping Pseudo Algorithm.
1: function cluster::map(graph)
2: parser(graph.root)

3: function parser(task)
4: getIp(task)
5: . Let PT = task.parents
6: for each P ∈ PT do
7: P .setTarget(task.ip)
8: . Let CT = task.children
9: for each C ∈ CT do

10: parser(C)

11: function getIp(tsk)
12: while true do
13: for each ND ∈ CLUSTER do
14: for each IP ∈ ND do
15: if IP .match(tsk) then
16: map(IP ,tsk)
17: return

3.2 Hardware Infrastructure

Besides the extensions to OpenMP, an entire hardware infrastructure was designed to
support OpenMP programming of Multi-FPGA architectures. This infrastructure lever-
ages on the Target Reference Design (TRD) presented in Section 2.2, but could also be
ported to other modern FPGAs. To facilitate its understanding, the design is described
below using two perspectives: Single-FPGA execution and Multi-FPGA execution.
Single-FPGA Execution. As discussed above, when the acceleration device is an
FPGA, OpenMP uses the FPGA IP-cores to run the OpenMP tasks, which are speci-
fied by the name of a predefined variant function. These IP-cores are separately designed
by a standard FPGA toolchain (e.g. Vivado), using the flow shown in Section 2.2.2. To
connect the IP-cores into the infrastructure, the designer just needs to ensure that they
use the AXI4-Stream interface [96].

The AXI4-Stream is one of the many AMBA protocols designed to transport data
streams of arbitrary width in hardware. Generally, 32-bit bus width is used, which means
that 4 bytes get transferred during one cycle. For example, consider an FPGA with
a 250MHz of programmable logic frequency. This yields a throughput of hundreds of
megabytes per second depending on the memory management unit capabilities and con-
figuration. Figure 3.3 shows the schematic of the handshake between two modules, a
master and a slave, that implement the AXI4-Stream protocol. First, valid data is sent
using the TDATA port, which is put together with the TLAST and TUSER control sig-
nals on the bus. Then, the TVALID signal is triggered indicating that valid data is ready
to be sent. This signal is kept high until a response is sent from the slave module via the
TREADY signal. Once this response is received, the data is transmitted in sync with the

39

Figure 3.3: AXI4-Stream handshake.

ACLK clock.
TDATA width of bits is transferred per clock cycle. TLAST signals the last byte of

the stream. It also has additional optional features: sending positional data with TKEEP
and TSTRB ports which make it possible to multiplex both data position and data itself
on TDATA lines; routing streams by TID and TDEST. The latter is used to route data
between IP-cores within the FPGA. The infrastructure can be changed to accept other
interfaces, although for the purpose of this work AXI-Stream suffices.

According to the proposed programming model, FPGA IP-cores can execute tasks
that have dependencies among each other. In order to realize such dependencies an AXI4-
Stream Switch module (A-SWT) was implemented. The A-SWT module is a hierarchy
of switches that allows communication among the IP-cores and other modules within the
FPGA. This enables the IP-cores to communicate directly to each other, based on the
OpenMP dependencies programmed among them, thus avoiding unnecessary communica-
tion through the host memory. Each switch in the hierarchy is a AXI4-Stream Intercon-
nect module [3] that enables the connection of heterogeneous master/slave AXI4-Stream
protocol compliant endpoint IPs. The AXI4-Stream Interconnect routes connections from
one or more AXI4-Stream master channels to one or more AXI4-Stream slave channels.

Figure 3.4 shows the schematic of an A-SWT module that allows the communication
of 4 IP-cores, 4 DMA interfaces and 4 optical fiber interfaces. In the schematic of the
figure, each IP-core only communicates with a neighboring IP-core, 2 DMA interfaces
and 1 optical fiber interface. This topology was chosen because it meets the needs of
the application used and best applied to the amount of resources available in the FPGA.
However, this level of communication can be exploited according to the need and avail-
ability of resources, because the more connections the module has, the more resources
will be used. It is also important to notice that the level of connectivity will also inter-

40

Figure 3.4: Integrated Block for AXI-Stream Interconnect RTL.

fere with the synthesis tool’s place and routing algorithm, as shown in Section 2.2.2. In a
modern FPGA, with more resources, the ideal is to have a switch fully connected allowing
complete communication between the IP-cores.

The VC709 plugin uses the CONF register (Figure 3.5) bank to program the source
and destination ports of each IP-core according to their specified task dependencies. That
is, the registers are connected directly to the TDEST ports of the switches so that the
plugin has full control of the data flow between the IP-cores and the other components of
the FPGA.

Take Listing 3.1 again as example, but now creating 4 tasks (t0, t1, t2 and t3) that
form a pipeline. If the infrastructure is composed of only one FPGA with four IP-cores
capable of performing these tasks, the VC709 plugin, in possession of the graph and the
cluster configuration, would configure the A-SWT module so that the tasks are mapped as
shown in Figure 3.5. It is possible to notice that task 0 executes on IP 0, task 1 executes
on IP 1, and so on, and data flows according to the dependencies specified in the task
graph.
Multi-FPGA Cluster Execution. A Multi-FPGA architecture is composed of one or
more cluster nodes containing at least one FPGA board each. To enable such architecture,
routing capability needs to be added to each FPGA so that IP-cores from two different
boards or nodes communicate through the optical links.

Therefore, to use the optical fibers, a module that can assemble and disassemble MAC
frames is required. A MAC Frame Handler (MFH) module was designed and inserted into
the hardware infrastructure, as shown in Figure 3.6. This module is required because the
Network Subsystem that routes packages through the optical fibers receives data in the
form of MAC Frames, which contain four fields: (a) destination, (b) source, (c) type/length
and (d) payload. Figure 3.7 illustrates a MAC Frame.

41

Figure 3.5: Single node execution.

Figure 3.6: An optical-link interconnected Multi-FPGA architecture running an OpenMP
pipelined application.

The MFH module is responsible for inserting and removing the source and destination
MAC addresses and type/lengh fields whenever the IP-core needs to send/receive data
through the Network Subsystem. MAC addresses are extracted from the dependencies in
the task graph while the type/lengh fields are extracted from the map clause. The VC709
plugin uses this information to set up the CONF registers, which in turn configure the
MFH module.

42

Figure 3.7: MAC Frame format.

Figure 3.8: MAC Frame Handler schematic.

Figure 3.8 shows a simplified schematic of the MFH module. It consists of two pairs of
AXI4-Stream ports, input and output. One pair is used to add the header (ADD_IN and
ADD_OUT), so that the data goes out through the fiber, and the other is used to remove
the header (RM_IN and RM_OUT), after the data arrives from the fiber. Figure 3.9a
shows the simplified state machine for inserting a header. The A_INI state waits for the
configuration that consists of the size of the buffer that will be sent. After receiving this
size, the module is able to manipulate the data. For every 1024 bytes of data, the module
inserts a header, with the size and destination MAC address, and a TLAST signal at the
end of the frame. The header is inserted in the A_MH state, while the A_MB state
bypasses the frame. For frames smaller than 1024, the A_RH state inserts the header
and the A_RB state bypasses the payload.

A similar process occurs in the opposite direction. Figure 3.9b shows the state machine
that performs the operation of removing the header and all the extra TLAST signals that
were added by the dd Header State Machine. The R_MH state removes the header from
the frames, while the R_MB state bypasses the payload removing the TLAST signals
at the end of each payload, leaving only the original TLAST received from the software.
The R_RB state removes the header from frames smaller than 1024 bytes.

With all of these components in place, the proposed VC709 plugin can distribute tasks
to IP-cores across a cluster of FPGAs and map the dependency graph so that FPGA IP-
cores communicate directly.

43

(a) Add Header State Machine.

(b) Rm Header State Machine.

Figure 3.9: MFH State Machines.

Consider again Listing 3.1, when 4 tasks (t0, t1, t2 and t3) are created to build a
pipeline. This time the infrastructure is composed of two FPGAs with two IP-cores each
capable of performing these tasks. The VC709 plugin would configure the A-SWT module
and the MFH module so that the tasks are mapped as shown in Figure 3.6. It is possible
to notice that task 0 executes on IP 0 on Board A, while task 1 executes on IP1 that
seats on Board B; task 2 executes on IP2 still on Board B, and finally task 3 executes on
IP3, now on board A. The data flows according to the dependencies specified in the task
graph.

The next chapter shows, in details, the application of the proposed Multi-FPGA ar-
chitecture and programming model when using stencil applications. It also describes the
results of a set of experiments carried out in the proposed architecture.

44

Chapter 4

Experiments

4.1 An Stencil Multi-FPGA Pipeline

Stencil computation is a method where a matrix (i.e. grid) is updated iteratively according
to a fixed computation pattern [88]. Figure 4.1 shows an example where an element of
iteration T+1 is calculated according to 4 elements of iteration T. Stencil computations
are used in this work to show off the potential of the proposed OpenMP-based Multi-
FPGA programming model. In this thesis, stencil IP-cores are used to process multiple
portions and iterations of a grid in parallel on different FPGAs. There are basically
two types of parallelism that can be exploited when implementing stencil computation in
hardware: cell-parallelism and iteration-parallelism [93].

As detailed below, these two types of parallelism leverage on a pipeline architecture to
improve performance and are thus good candidates to take advantage of the Multi-FPGA
programming model described herein. Five different types of stencil IP-cores have been
implemented for evaluation. The IP-cores were adapted from [93] and their computations
are listed in Table 4.1 in the following order: (1) Laplace 2-D, (2) Diffusion 2-D, (3)
Jacobi 9-pt. 2-D, (4) Laplace 3-D and (5) Diffusion 3-D. The formula in the computations

Figure 4.1: Stencil computation using 4-point 2-D stencil.

45

(a) Cell-Parallel computation.

(b) Iteration-Parallel computation.

Figure 4.2: Types of stencil parallelism. Adapted from [93].

column is used to calculate an element V t+1
i,j,k , where t represents the iteration and the

indices i, j and k represent the axes of the grid. The C∗ values are constants passed to
the IP-cores.
Cell-Parallelism. Figure 4.2a shows an example of cell-parallelism on a stencil compu-
tation, where cell2(1,1) at iteration 2 is computed using the data from its neighboring cells
in the yellow area at iteration 1. This can be repeated for other cells at iteration 2, like
cell2(3,1) which is computed in parallel to cell2(1,1).
Iteration-Parallelism. This occurs when elements of different iterations are calculated
in parallel. Figure 4.2b shows two consecutive iterations (1 and 2) where this happens.
As shown in Figure, cell2(1,1) at iteration 2 is computed using the data from its neighboring
cells in the yellow area at iteration 1 while at the same time, cell1(2,2) from iteration 1 is
also calculated. In this way, the elements of iteration 1 and 2 are calculated at the same
time.

46

(a) Grid Stencil to be computed.

(b) Shift-register and PE implementation.

Figure 4.3: IP implementation. Adapted from [93].

4.1.1 IP-core Implementation

Figure 4.3 shows an overview of a typical stencil IP-core implementation using cell and
iteration parallelism. Figure 4.3a shows the grid to be computed, and Figure 4.3b the
components that implement the stencil, namely: (a) a shift-register that stores the grid
data in processing order; and (b) the processing element (PE), which does the actual
stencil computation. The cells in Figure 4.3a are computed by the architecture in Figure
4.3b from left-to-right and top-to-bottom, one after the other. At each clock cycle, data
in the shift-registers are shifted to the left in Figure 4.3b, and a new cell value is pushed
into the input of the first shift-register (i.e. cellt2,3). The computation starts after all
neighboring data of a cell are available in the shift-register array. In the example of
Figure 4.3, cellt+1

1,1 is computed while input data is stored into cellt2,3. In the next clock
cycle, the data at cellt0,0 at the output of the shift-register is discarded (shifted out), and
the data of cellt2,4 is pushed into the input of the shift-register. Notice that the data at
cellt0,0 is no longer required for any computation at this stage.

47

Kernel Computations
Laplace 2D 0.25(V t

i,j−1 + V t
i−1,j + V t

i+1,j + V t
i,j+1)

Difussion 2D C1.V
t
i,j−1 + C2.V

t
i−1,j + C3.V

t
i,j + C4.V

t
i+1,j + C5.V

t
i,j+1

Jacobi 9-pt C1.V
t
i−1,j−1 + C2.V

t
i,j−1 + C3.V

t
i+1,j−1 + C4.V

t
i−1,j + C5.V

t
i,j+

C6.V
t
i+1,j + C7.V

t
i−1,j+1 + C8.V

t
i,j+1 + C9.V

t
i+1,j+1

Laplace 3D 0.25(V t
i,j−1,k + V t

i−1,j,k + V t
i+1,j,k + V t

i,j+1,k + V t
i+1,j,k + V t

i,j+1,k)

Difussion 2D
C1.V

t
i,j−1,k + C2.V

t
i−1,j,k + C3.V

t
i,j,k−1+

C4.V
t
i,j,k + C5.V

t
i+1,j,k + C6.V

t
i,j+1,k

Table 4.1: Stencil kernels.

Each stencil IP-core has a shift-register and eight processing elements and is thus
capable of processing up to eight elements at a time until the end of an iteration. Each
IP-core works with a 256-bit AXI4-Stream interface, as each cell in the matrix is a 32-bit
float.

The A-SWT switch in the architecture of Figure 1.1 can be configured so that the
IP-cores can be reused, thus expanding the system’s capacity to deal with larger grids
and iteration counts. By doing so, the stencil pipeline can be scaled in both space and
time. Such scaling is required to leverage the processing power of the multiple FPGAs,
and to enable the computation of large-size problems that could not be done by a single
FPGA due to the lack of resources. However, as discussed in Section 4.2, the size and
number of IP-cores in an FPGA is constrained by the ability of the synthesis tool and
designer to make efficient usage of the FPGA resources, and this sometimes can become
a bottleneck.

To evaluate the presented system, four sets of experiments were performed using the
stencil IP-cores described in Table 4.1. The first set (Section 4.2) aimed at evaluating
the scalability of the system concerning the number of FPGAs. For the second set of
experiments (Section 4.3) the scalability concerning the number of IP-cores (i.e. number
of iterations) was evaluated. The goal of the third set of experiments (Section 4.4) was
to evaluate FPGA resource utilization. Finally, in the fourth experiment, the Laplace
2D and Laplace 3D IP-cores were executed on a single FPGA without the VFIFO and
Network Subsystem modules. This experiment was done to verify how the synthesis tool
behaves in a situation with fewer support modules, and thus less placement and routing
restrictions. The goal of this experiment was to evaluate how many IP-cores would be
possible to fit into a modern/larger FPGA.

For all experiments, the board used was the Virtex-7 FPGA VC709 Connectivity Kit
[14]. Compilation of the HDL codes was done using Vivado 2018.3 [12].
Infrastructure issues. The experiments did not aim for raw performance numbers but
to demonstrate the viability and scalability of the proposed programming model. The
infrastructure used in the experiments is not new. It has old Intel Xeon E5410 @2.33GHz
CPUs, DDR2 667MHz memories, and archaic PCIe gen1 interfaces, which caused a con-
siderable loss of performance since the FPGA boards use PCIe gen3. Moreover, as detailed
in Section 4.4, the size of the original TRD kit made it very hard for Vivado to synthesize
more IP-cores per FPGA, thus reducing the number of grid points inside the hardware,

48

Stencil Name Grid Size Iterations # IP-cores
Laplace 2D 4096x512 240 4
Laplace 3D 512x64x64 240 2
Difussion 2D 4096x512 240 1
Difussion 3D 256x32x32 240 1

Jacobi 9-pt. 2-D 1024x128 240 1

Table 4.2: The setup of the stencil IP-cores.

and the number of iterations. This harmed the final FPGA utilization and overall perfor-
mance. However, even under these drawbacks the presented approach still achieved almost
linear speedups. Therefore, we are confident that after using more modern machines and
FPGAs (e.g. U250) the resulting performance will be very competitive to that shown
in the hand-designed solution of [93], which in some cases surpasses the performance of
GTX 980 Ti and P100 GPUs.

4.2 FPGA Scalability

The FPGA’s scalability experiments were conducted with the settings shown in Table
4.2, and varying the number of FPGAs from 1 to 6. The Grid Size column shows the
dimensions of the initial grid for each kernel. The more computation a kernel does,
the more difficult it was for Vivado to synthesize the design under the time constraints.
These constraints are related to performing placement and routing (as described in Section
2.2.2), and aim at ensuring that the three clock domains (250 MHz for user, 200 MHz for
memory access and 156.25MHz for the optical fiber) are distributed among the sources of
the clocks and the modules that need them. For this reason, the dimensions of the grid
at each kernel were adjusted to avoid negative slacks. The Iterations column was set at
240 so that it was possible to execute with all 6 FPGAs. The # IP-cores column specifies
the number of IP-cores at each FPGA. The number of IP-cores varies for the same reason
as the dimensions of the initial grid. The larger the kernel computation, the smaller the
number of IP-cores synthesized. On the other hand, as discussed in Section 4.4 there is
still plenty of hardware to be used before the FPGA runs out of resources, which reinforces
the long term potential of the proposed model.

The graph of Figure 4.4a shows the speedup, concerning the execution on a single
FPGA, achieved by the various stencil kernels, as the number of FPGAs varies on the
x-axis. The speedup grows almost linearly with the number of FPGAs for all five kernels.
This result shows that it is possible to scale applications using Multi-FPGA architectures
by using programming models like the one presented in this work to facilitate the design of
such systems. The graph of Figure 4.4b shows, on the y-axis, the number of floating-point
operations (GFLOPs) for each kernel as the number of FPGA varies on the x-axis. The
Laplace-2D kernel (yellow line) executes more GFLOPs than the other kernels. Although
the computation of this kernel is the simplest one, during synthesis it was possible to insert
more IP-cores (four) per FPGA, which allowed more iteration parallelism as discussed in

49

(a) Speedup scaling with the number of FPGAs.

(b) GFLOPS scaling with the number of FPGAs.

Figure 4.4: FPGA Scalability Experiments.

Section 4.1. Just below the Laplace-2D is the Laplace-3D (green line); with only 2 IP-cores
per FPGA it still managed to sustain a linear performance growth. For the remaining
kernels, as they all have only one IP-core per FPGA, the number of GFLOPs is related to
the number of operations executed and the grid’s dimensions. Notice that Diffusion-3D
(red line) and Diffusion-2D (blue line) perform less computation than the Jacobi 9-pts
(orange line). However, they achieve better GFLOP numbers due to their higher grid
dimensions, thus enabling them to take advantage of the increased iteration parallelism.

4.3 Iteration and IP-core Scalability

A second experiment was performed to evaluate the IP-core scalability concerning the
number of iterations. The Laplace-2D kernel was used as an example, although similar
results have also been achieved for the other kernels. The graph in Figure 4.5a shows, on
the y-axis, the number of GFLOPs produced by the system, as the number of iterations

50

(a) Laplace-2D scaling with the number of iterations.

(b) Laplace-2D scaling with the number of IP-cores.

Figure 4.5: Iteration Scalability Experiments.

Stencil Slice LUTs Block RAM DSP
% # % # %

1 12138 7,5% 8 0,7% 16 0,4%
2 25024 15,4% 8 0,7% 80 2,2%
3 45733 28,3% 8 0,7% 144 4,0%
4 21790 13,5% 65 6,0% 17 0,5%
5 27615 17,1% 23 2,1% 97 2,7%

Table 4.3: IP-cores resource usage.

varies on the x-axis. The yellow, blue, red, and green lines represent executions with 1,
2, 3, and 4 IP-cores, respectively. As shown, the execution with a single IP (yellow line)
remains practically constant.

On the other hand, the execution with 4 IP-cores shows an increase in performance

51

Figure 4.6: Resource usage distribution of the FPGA hardware.

until reaching a plateau. The executions with 2 and 3 IP-cores also show a gradual
performance increase. This experiment reveals that by increasing the number of IP-cores,
it is possible to improve the system’s scalability in terms of iterations.

The graph of Figure 4.5b shows on the y-axis the number of GFLOPs for the Laplace-
2D kernel as the number of IP-cores increase (x-axis). Each line in the graph is a different
number of iterations. The graph reinforces the insight revealed in Figure 4.5a: as more
IP-cores are added to the system, the more significantly the increase in the number of
iterations improves performance. This can be confirmed by looking at the distances
between the lines in Figure 4.5b, which grow larger as the number of IP-cores increase.
This experiment also supports the case for Multi-FPGA architectures.

4.4 Resource Utilization

Regarding resource utilization, the graph in Figure 4.6 shows the percentage of occupancy
of the FPGA main components of the proposed architecture (not considering the IP-
cores). Remarkably, the DMA/PCIe component occupies 30.2% of the available LUTs.
This large utilization comes from the fact that the DMA/PCIe was designed to support a
board with four communication channels, although the proposed approach just requires
one. Components MFH, SWITCH, VFIFO, and Network occupy, respectively, 1.7%,
11.5%, 13.2% , and 6.1% of the available LUTs. BRAMs are used by the DMA/PCIe
(5.5%), VFIFO (18.3%), and NET (2.4%). The most significant usage of BRAMs comes
from VFIFO, which uses it to multiplex and demultiplex the four channels of the virtual
FIFO. DSP is the least used component (1%).

Table 4.3 shows the quantity and percentage of the FPGA components used by each
IP from the free region (gray area) of Figure 4.6. The percentage of the available LUTs
effectively used by the stencil IP-cores varies from 7.5% to 28.3%, depending on the
complexity of the kernel. As for BRAM, the utilization ranges from 0.7% to 6.0%. This

52

Table 4.4: Synthesis without network infrastructure.

Stencil Dimensions # IP-cores GFLOPs
Laplace 2D 4096x8000 16 22.6
Laplace 3D 256x128x1000 10 20.3

is directly linked to the size of the shift-registers, and is impacted by the size of the grid
to be calculated. The number of DSP components used by the IP-cores varies from 0.4%
to 4.0%, and is related to the number of multiplications performed by each kernel. The
small utilization of the FPGA resources by the kernels has been previously discussed in
the beginning of Section 4.2.

4.5 Single FPGA Synthesis

To verify how the synthesis tool would be impacted in a situation with less space restric-
tions on the FPGA, 2D and 3D Laplace stencils were executed on the FPGA infrastructure
without the VFIFO, MFH and Network Subsystem modules. These three modules to-
gether occupied 21% of the LUTs available in the FPGA, a space that, in this experiment,
was left free for the synthesis tool to better accommodate the stencil IP-cores. In this
way, it was possible to synthesize more IP-cores, and compute larger grids. Table 4.4
shows that, for Laplace 2D, it was possible to synthesize 16 IP-cores, each computing
a 4096x8000 dimension grid and reaching 22.6 GFLOPs. While for Laplace 3D, it was
possible to synthesize 10 IP-cores, computing a 256x128x1000 dimension grid and reached
GFLOps of 20.3. These results indicate that, using a more modern/larger FPGA (e.g.
Alveo), the synthesis tool would be less limited by the space restriction, thus allowing
the generation of more IP-cores that, combined with the scalability shown in the previous
experiments, would allow for an improved performance.

53

Chapter 5

Related Works

Table 5.1 summarizes the main works found in the literature that present proposals for
the use of OpenMP in FPGAs. Some of these works are also cited in [78] and in this
section we discuss the characteristics that are most interesting and related to the work of
this thesis. Each table row is a published work and each column lists a certain feature
of the work. The papers are sorted by date published from oldest to newest. The table
columns are:

• HLS: specifies whether or not the proposal uses High Level Synthesis [55], to syn-
thesize high level programming language into hardware description language;

• Compiler ToolKit: specifies which compiler, framework or library the proposal
uses.

• OpenMP Task: specifies whether or not the proposal works with OpenMP tasks.

• Target System: Specifies which platform the proposal was designed for.

• Multi-FPGA: specifies whether or not the proposal targets Multi-FPGA systems.

HLS is a research line widely found in the literature, our approach does not use HLS
but pre-synthesized IP-cores, which in general are more efficient. The Compiler ToolKit
also varies a lot between the works presented, we chose to use LLVM because it is widely
adopted both in the industry and in the academy. The use of the OpenMP task is shown
because we use this feature, along with the depend clause, to orchestrate the execution
of the IP-cores. The System target shows the variety of platforms used in the literature.
Finally, the Multi-FPGA column is the differential of our work which, as far as we know,
is the first to integrate the parallelism of OpenMP tasks with Multi-FPGA systems. The
paragraphs below discuss in more detail each work listed in Table 5.1.

Leow et al [75] proposes to use OpenMP as a hardware description language. Unlike
other proposals, there is no differentiation between host code and device code, everything
is synthesized into a single hardware. The authors use the C-Breeze compiler framework
as a custom high-level synthesis pass to generate both Handel-C [6] and VHDL code
[59]. Using the applications matrix multiplication and sieve of Eratosthenes, the FPGA
versions achieve speedups of 25x and 7x over a symmetrical SMP UltraSPARC III with
8GiB [60]. For Mandelbrot, the FPGA version is slower than the SMP.

54

Table 5.1: Related works

HLS Compiler
Toolkit

OpenMP
Task

Target
System

Multi
FPGA

Leow
2006 NO C-Breeze NO

Celoxica
RC100

Board with
Spartan II

NO

Cabrera
2009 NO

Mercurium,
GCC,
SGI

RASClib

YES
SGI RASC
2.2 Board

with Virtex 4
NO

Cilardo
2013 N.A

Custom
OpenMP
Xilinx
EDK

YES

Board
Supported
by Xilinx
EDK

NO

Choi
2013 NO LLVM

GCC NO
Altera Board

with
Stratix IV

NO

Filgueras
2014 YES Mercurium,

Nanos++ YES

Xilinx
Board
with

Zynq-700

NO

Podobas
2014 NO Custom

C89 Compiler YES Altera ED5
Stratix V NO

Sommer
2017 YES

Clang, LLVM,
libomptarget,

TPC
NO

Xilinx
VC709
Board

NO

Ceissler*
2018 NO Clang LLVM,

libomptarget NO
Amazon
AWS

Intel HARP 2
NO

Bosh
2018 YES Mercurium,

Nanos++ YES
Xilinx Board

Zynq
Ultrascale+

NO

Knaust
2019 YES Clang LLVM NO Intel Board

Arria 10 GX NO

Huthmann
2020 YES Clang/LLVM

and libomptarget NO
Intel FPGA
PAC D5005
and Nymble

NO

Nepomuceno
2021 NO Clang/LLVM

and libomptarget YES Multi-FPGA
VC709 System YES

55

The work of Cabrera et al [29] is based on OpenMP 3.0 with some new extensions
for task and target to ease the offloading of pre-synthesized hardware. There is no HLS,
the hardware accelerator is built in a separate workflow. Their main contribution is that
they provide support for SGI’s RASC platform [10] and a multi-threaded runtime library
layer with a bitstream cache that enables parallel computation on both the host and the
FPGA. Offloading is implemented as a plugin for the Mercurium compiler [25]. The paper
only shows runtimes of a matrix multiplication without any comparisons with CPU codes.
The difference to our proposal is that they do not target multi-FPGAS systems and also
do not deal with dependencies between tasks.

Cilardo et al in [40], uses OpenMP not only as a hardware description language, but
as a language for describing a complete heterogeneous system (Xilinx Zynq [44]). They
map the whole OpenMP program to the FPGA. The Xilinx Embedded Development Kit
(EDK) [18] was used with the MicroBlaze [13] softcore for the sequential parts. The
authors compare their sieve of Eratosthenes implementation with the results from [75]
and they see twice the speedup. Furthermore, a runtime overhead inspection of the
implemented OpenMP directives (private, firstprivate, dynamic, static, and critical) shows
significantly less overhead than the SMP versions on an Intel i7 (6x, 1.2x, 3.1x, 10.5x,
and 2.64x, respectively).

The system by Choi et al [38] aims to use the information provided by pragmas to
generate better parallel hardware. The compiler synthesizes one kernel IP per thread
in the source program. Nested parallelism is possible just in two levels. The extended
LegUp [30] generates parallel hardware for parallel and parallel for and utilizes the other
pragmas (atomic, etc.) to synchronize between the threads. With the best compiler
configuration for the FPGA versions, benchmarks (Black-Scholes option pricing, simulated
light propagation, Mandelbrot, line of sight, integer set division, hash algorithms, double-
precision floating point sine function) show a geometric mean speedup of 7.6x and a
geometric mean area-delay product of 63% compared to generated sequential hardware.

Filgueras et al in [54] proposes an extension to the OmpSs [4] framework to support
the Xilinx Zynq FPGA [15] platform. Their prototype exclusively uses the FPGA’s ASIC
CPUs for the sequential portion of the source code, even so the authors claim any work
distribution to be possible. The task pragma is extended so that it can be used to anno-
tate functions and to specify dependencies between tasks (clauses in, out, or inout). They
implemented their proposal using the Mercurium framework and the Nanos++ OpenMP
runtime. On four numeric benchmarks (two matrix multiplications with different ma-
trix sizes, complex covariance, and Cholesky decomposition) the FPGA version achieves
speedups between 6x to 30x compared to a single ARM A9 core.

In the work proposed by Podobas et al, in [83] the compiler synthesizes an entire
System on a Chip (SoC) based on task-annotated functions. The main program is rewrit-
ten to use such Soc, and the whole system is put into an FPGA using a softcore. The
first implementation proposed by the authors built hardware for each task. However,
they later fuse task kernel IP-cores for resource sharing. To evaluate the proposal they
study three basic benchmarks (pi, Mandelbrot, and prime numbers). For the first two
compute-bound benchmarks, the FPGA version outperforms both CPU-only versions (57-
core Intel Xeon PHI and 48-core AMD Opteron 6172) by a factor of 2 to 3. However, for

56

the memory-bound third benchmark, the CPU versions are about 100 times faster.
Sommer et al [89] uses Vivado HLS to generate hardware from OpenMP target regions

extracted from the source program. The authors use their Thread Pool Composer (TPC)
[69] [19] API (now called TaPaSCo [70]) to implement the host-to-FPGA communication.
The main point of the proposal is that it fully supports omp target (including its map
clause). This project is also the first that integrated libomptarget. To evaluate the
proposal they used six benchmarks from the Adept benchmark suite [95] and compared
the runtime of -O3-optimized i7 CPU code (4 cores) to their FPGA-only version (with
HLS pragmas). The CPU outperforms the FPGA version by 3x to 3.5x (without the HLS
pragmas: 6x to 9x).

Ceissler et al [34] proposes HardCloud, an OpenMP platform that integrates FPGA
acceleration to OpenMP. The authors propose three more clauses to the OpenMP 4.X
standard: use, check and module. The use and check clauses are used to automatically
validate the hardware accelerator, while the module clause specifies the bitstream used
to configure the FPGA. Hardcloud does not use HLS, i.e. there is no outlining of code
blocks. Instead, it makes pre-synthesized functional units for FPGAs easier to use in
existing OpenMP code by automating data transfer and device control. To evaluate the
proposal the authors used nine benchmark programs and achieved speedups on the HARP
2 platform between 1.1x and 135x.

OmpSsFPGA by Bosch et al [27] is based on the work proposed by Filgueiras et al in
[54]. Memory on the accelerator is used for data sharing (streaming). Besides outlining
code to the FPGA, this system also addresses GPU. Moreover, the tasks are dynami-
cally scheduled onto the devices. The authors evaluate the work using three benchmarks:
matrix multiplication, n-body, Cholesky decomposition. They compare the baseline run-
time (measured on a CARM-A52 4 with 4 GB of shared memory) with their FPGA
versions. For the Cholesky decomposition, the performance drops by about 2x. For n-
body, the FPGA version is 15x faster. The matrix multiplication on the FPGA achieves
6x the GFLOP/s. The difference to our proposal is that they use HLS, while we use
pre-synthesized hardware, and they also do not target multi-FPGAs systems.

Knaust’s et al [67] uses Clang [5] to outline omp target regions at the level of the
LLVM IR and feeds them into Intel’s OpenCL HLS [17] to generate a hardware kernel
for the FPGA. For the communication between host and FPGA, the proposal uses Intel’s
OpenCL API [7]. The authors passes the unrolled pragma to the underlying HLS. From
the map clauses of the target pragma, only array sections are unsupported. To evaluate the
proposal Two Sobel filters (unoptimized and optimized for FPGAs) run on a 4096x2160x8
bit matrix. The CPU-only version is compiled without -fopenmp. The pure optimized
kernel for the FPGA is 4x as fast as one CPU core, but this can hardly amortize the cost
of transfer and initialization.

The work by Huthmann et al in [62] presents an approach to OpenMP device offload-
ing for FPGAs based on the LLVM compiler infrastructure and the Nymble HLS compiler.
The automatic compilation flow uses LLVM IR for HLS-specific optimizations and trans-
formation and for the interaction with the Nymble HLS compiler. Parallel OpenMP
constructs are automatically mapped to hardware threads executing simultaneously in
the generated FPGA accelerator and the accelerator is integrated into libomptarget to

57

support data-mapping. The difference to our proposal is that they also do not target
multi-FPGAs systems and uses HLS.

Outside the OpenMP spectrum, there are other alternatives for programming hetero-
geneous systems, such as Intel’s OneAPI [64]. This is a single, unified programming model
that aims to simplify development across different hardware architectures: CPUs, GPUs,
FPGAs, AI accelerators, and more. It is based on the Data Parallel C++ language, or
DPC++ for short. This is a C-based open-source alternative to proprietary programming
languages typically used to code for specific types of hardware, such as GPUs or FPGAs.
However, such alternatives require the programmer to learn a new language and build
solutions from scratch, which in many cases is not feasible.

To the best of our knowledge, and contrary to the previous works, which focused
mostly on the synthesis and single FPGA architectures, this paper is the first to enable
OpenMP task parallelism to integrate IP-cores into a Multi-FPGA architecture.

58

Chapter 6

Final Remarks and Conclusion

The authors in [62] argue that scaling OpenMP onto multiple FPGAs is an open ques-
tion. They suggest that one could rely on OpenMP’s accelerator directives, and treat
each device as a discrete system with little to no access to other systems and create/in-
clude special hardware to (for example) support a shared-memory view across multiple
FPGAs, or use tasks as containers that encapsulate produced/consumed data, that are
exchanged among FPGAs. The work presented in this thesis goes straight to that point.
The implemented architecture was able to provide a complete systematic solution, with
software and hardware support, to run OpenMP tasks in a Multi-FPGA cluster connected
by optical fibers.

The results presented in Chapter 4 shows a promising scalable behavior even with all
the infrastructure drawbacks. Solving these infrastructure issues would allow for improve-
ments in a few points. For example, replacing the interface that implements the AXI-
Stream protocol with an implementation of the AXI Memory Mapped protocol would
make the solution more complete. In the current state, the IP-core plays a passive role
while starting communication with the host application. Thus, this change would permit
the IP-core to start a transfer of data giving more flexibility and increasing the range of
applications that can take advantage of the system.

Another possible improvement in this work would be the adoption of partial reconfig-
uration. This, together with AXI Memory Mapped protocol, would allow the use of more
complex and efficient mapping-scheduling algorithms. Works as the one published in [41],
already propose new models of representation and mapping-schedule algorithms capable
of taking advantage of these partial reconfigurable FPGA environments. Such solutions
can be incorporated into the system presented in this thesis in order to minimize the
dynamic reconfiguration overhead while meeting the communication requirements among
the tasks.

Finally, another direct consequence of this work is the integration of the proposed
model with other types of accelerators, such as GPUs. The OpenMP programming model
is generic enough to allow this straightforward integration. Such systems, that combine
GPUs and FPGAs, are useful to solve problems that can be divided into components which
can benefit from different architecture types. For example, the simulation of the primitive
universe is one such application. The radiation transfer from spotlight and spatially
distributed light strongly affect the birth of the first objects in space. ARGOT [68]

59

is an application that performs such simulation. These two phenomena have distinct
computation characteristics and thus could benefit from the specific architectural features
of GPUs and FPGAs. The method name ART is better suitable for FPGA computing,
while the remaining of the simulation is better performed on a GPU.

Applications like this can greatly benefit from a truly heterogeneous environment and
a programming model such as the one presented in this thesis.

6.1 Future works

As future work we plan to move the entire infrastructure to a cluster of Xilinx Alveo
FPGAs [2]. This will allow us to improve all the bottlenecks found in this work regarding
the resources available in the FPGAs, since the Alveos have more resources. For example,
it is expected that we will be able to implement a fully connected A-SWT module which
will allow more complex communication between IP-cores. In addition to being able to
implement more IP-cores per FPGA. As a result, we also plan to investigate smarter
mapping/scheduling algorithms that can implement optimizations to take full advantage
of the system. Finally, we will connect all FPGAs to an optical switch that will also
contribute to the flexibility and generality of the system.

60

Bibliography

[1] About us - openmp. https://www.openmp.org/about/about-us/. (Accessed on
04/19/2021).

[2] Alveo. https://www.xilinx.com/products/boards-and-kits/alveo.html. (Ac-
cessed on 05/28/2021).

[3] Axi4-stream interconnect v1.1 logicore ip product guide (pg035).

[4] Barcelona supercomputing center: The ompss programming model. https://pm.
bsc.es/ompss. (Accessed on 10/03/2019).

[5] Clang c language family frontend for llvm. https://clang.llvm.org/. (Accessed
on 05/04/2021).

[6] Handel-c synthesis methodology - mentor graphics. https://www.mentor.com/
products/fpga/handel-c/. (Accessed on 10/04/2019).

[7] Intel sdk for opencl applications. https://software.intel.com/en-us/
opencl-sdk. (Accessed on 11/12/2019).

[8] OpenMP 3.0 Specifications. https://www.openmp.org/wp-content/uploads/
spec30.pdf. Accessed on Oct 13, 2019.

[9] OpenMP 4.5 Specifications. http://www.openmp.org/mp-documents/openmp-4.5.
pdf. Accessed on Oct 13, 2019.

[10] Reconfigurable application-specific computing user’s guide. https://irix7.com/
techpubs/007-4718-004.pdf. (Accessed on 10/04/2019).

[11] Tasking terminology. https://www.openmp.org/spec-html/5.0/openmpsu5.html.
(Accessed on 04/19/2021).

[12] Vivado design suite user guide: Release notes, installation, and licensing (ug973).
(Accessed on 11/16/2020).

[13] Xilinx: Microblaze soft processor core. https://www.xilinx.com/products/
design-tools/microblaze.html. (Accessed on 10/04/2019).

[14] Xilinx virtex-7 fpga vc709 connectivity kit. https://www.xilinx.com/products/
boards-and-kits/dk-v7-vc709-g.html. (Accessed on 11/11/2020).

https://www.openmp.org/about/about-us/
https://www.xilinx.com/products/boards-and-kits/alveo.html
https://pm.bsc.es/ompss
https://pm.bsc.es/ompss
https://clang.llvm.org/
https://www.mentor.com/products/fpga/handel-c/
https://www.mentor.com/products/fpga/handel-c/
https://software.intel.com/en-us/opencl-sdk
https://software.intel.com/en-us/opencl-sdk
https://www.openmp.org/wp-content/uploads/spec30.pdf
https://www.openmp.org/wp-content/uploads/spec30.pdf
http://www.openmp.org/mp-documents/openmp-4.5.pdf
http://www.openmp.org/mp-documents/openmp-4.5.pdf
https://irix7.com/techpubs/007-4718-004.pdf
https://irix7.com/techpubs/007-4718-004.pdf
https://www.openmp.org/spec-html/5.0/openmpsu5.html
https://www.xilinx.com/products/design-tools/microblaze.html
https://www.xilinx.com/products/design-tools/microblaze.html
https://www.xilinx.com/products/boards-and-kits/dk-v7-vc709-g.html
https://www.xilinx.com/products/boards-and-kits/dk-v7-vc709-g.html

61

[15] Zynq-7000 soc data sheet: Overview (ds190). (Accessed on 10/03/2019).

[16] Amazon EC2 F1 Instances. https://aws.amazon.com/ec2/instance-types/f1,
Nov 2019. [Online; accessed 25. Nov. 2019].

[17] Intel High Level Synthesis Compiler: Reference Manual, Sep 2019. [Online; accessed
21. Nov. 2019].

[18] Platform Studio and the Embedded Development Kit (EDK), Oct 2019. [Online;
accessed 31. Oct. 2019].

[19] ThreadPollComposer, Oct 2019. [Online; accessed 15. Oct. 2019].

[20] Miron Abramovici and Jose T. De Sousa. Journal of Automated Reasoning,
24(1/2):5–36, 2000.

[21] Alex Aiken, Utpal Banerjee, Arun Kejariwal, and Alexandru Nicolau. Instruction
Level Parallelism. 01 2016.

[22] Samuel Antao, Carlo Bertolli, Andrey Bokhanko, Alexandre Eichenberger, Hal
Finkel, Sergey Ostanevich, Eric Stotzer, and Guansong Zhang. Openmp of-
fload infrastructure in llvm. https://lists.llvm.org/pipermail/llvm-dev/
attachments/20150408/225ab427/attachment.pdf. (Accessed on 04/29/2021).

[23] Brian Armstrong and Rudolf Eigenmann. Application of automatic parallelization
to modern challenges of scientific computing industries. In 2008 37th International
Conference on Parallel Processing. IEEE, September 2008.

[24] M. M. Azeem, R. Chotin-Avot, U. Farooq, M. Ravoson, and H. Mehrez. Multiple
fpgas based prototyping and debugging with complete design flow. In 2016 11th
International Design Test Symposium (IDT), pages 171–176, Dec 2016.

[25] J. Balart, A. Duran, M. Gonzàlez, X. Martorell, E. Ayguadé, and J. Labarta. Nanos
mercurium: a research compiler for openmp. In European Workshop on OpenMP
(EWOMP’04). Pp, pages 103–109, 2004.

[26] Carlo Bertolli, Samuel F. Antao, Gheorghe-Teodor Bercea, Arpith C. Jacob, Alexan-
dre E. Eichenberger, Tong Chen, Zehra Sura, Hyojin Sung, Georgios Rokos, David
Appelhans, and Kevin O’Brien. Integrating gpu support for openmp offloading di-
rectives into clang. In Proceedings of the Second Workshop on the LLVM Compiler
Infrastructure in HPC, LLVM ’15, pages 5:1–5:11, New York, NY, USA, 2015. ACM.

[27] J. Bosch, X. Tan, A. Filgueras, M. Vidal, M. Mateu, D. Jiménez-González, C. Ál-
varez, X. Martorell, E. Ayguade, and J. Labarta. Application acceleration on fpgas
with ompss@fpga. In 2018 International Conference on Field-Programmable Tech-
nology (FPT), pages 70–77, Dec 2018.

[28] Ravi Budruk, Don Anderson, and Ed Solari. PCI Express System Architecture. Pear-
son Education, 2003.

https://aws.amazon.com/ec2/instance-types/f1
https://lists.llvm.org/pipermail/llvm-dev/attachments/20150408/225ab427/attachment.pdf
https://lists.llvm.org/pipermail/llvm-dev/attachments/20150408/225ab427/attachment.pdf

62

[29] D. Cabrera, X. Martorell, G. Gaydadjiev, E. Ayguade, and D. Jimenez-Gonzalez.
Openmp extensions for fpga accelerators. In 2009 International Symposium on Sys-
tems, Architectures, Modeling, and Simulation, pages 17–24, July 2009.

[30] A. Canis, J. Choi, Y.T. Chen, and H. Hsiao. Legup high-level synthesis. http:
//legup.eecg.utoronto.ca/. (Accessed on 10/06/2019).

[31] P. Cappello. Multicore processors as array processors: Research opportunities. In
IEEE 17th International Conference on Application-specific Systems, Architectures
and Processors (ASAP’06), pages 169–172, 2006.

[32] W. Carter, Ic Duong, R. Freman, H. Hsieh, Jason Y. Ja, J. Mahoney, N. Ngo, and
S. L. Sac. A user programmable reconfigurable logic array. In Proceedings of the
IEEE Custom Integrated Circuits Conference (CICC), pages 233–235, 1986.

[33] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers, M. Haselman,
S. Heil, M. Humphrey, P. Kaur, J. Kim, D. Lo, T. Massengill, K. Ovtcharov, M. Pa-
pamichael, L. Woods, S. Lanka, D. Chiou, and D. Burger. A cloud-scale acceleration
architecture. In 2016 49th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pages 1–13, Oct 2016.

[34] C. Ceissler, R. Nepomuceno, M. Pereira, and G. Araujo. Automatic offloading of
cluster accelerators. In 2018 IEEE 26th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), pages 224–224, April 2018.

[35] Luis H. Ceze. Shared-Memory Multiprocessors, pages 1810–1812. Springer US,
Boston, MA, 2011.

[36] Barbara Chapman, Gabriele Jost, and Ruud Van Der Pas. Using OpenMP: Portable
Shared Memory Parallel Programming, volume 10. MIT press, 2008.

[37] Subodha Charles and Prabhat Mishra. Reconfigurable network-on-chip security ar-
chitecture. ACM Trans. Des. Autom. Electron. Syst., 25(6), August 2020.

[38] J. Choi, S. Brown, and J. Anderson. From software threads to parallel hard-
ware in high-level synthesis for fpgas. In 2013 International Conference on Field-
Programmable Technology (FPT), pages 270–277, Dec 2013.

[39] Grigorios Chrysos, Euripides Sotiriades, Christos Rousopoulos, Kostas Pramataris,
Ioannis Papaefstathiou, Apostolos Dollas, Agathoklis Papadopoulos, Ioannis Kir-
mitzoglou, Vasilis J. Promponas, Theocharis Theocharides, George Petihakis, and
Jacques Lagnel. Reconfiguring the bioinformatics computational spectrum: Chal-
lenges and opportunities of FPGA-based bioinformatics acceleration platforms. IEEE
Design & Test, 31(1):62–73, February 2014.

[40] A. Cilardo, L. Gallo, A. Mazzeo, and N. Mazzocca. Efficient and scalable openmp-
based system-level design. In 2013 Design, Automation Test in Europe Conference
Exhibition (DATE), pages 988–991, March 2013.

http://legup.eecg.utoronto.ca/
http://legup.eecg.utoronto.ca/

63

[41] Juan Antonio Clemente, Ivan Beretta, Vincenzo Rana, David Atienza, and Donatella
Sciuto. A mapping-scheduling algorithm for hardware acceleration on reconfigurable
platforms. ACM Trans. Reconfigurable Technol. Syst., 7(2), July 2014.

[42] Katherine Compton and Scott Hauck. Reconfigurable computing: A survey of sys-
tems and software. ACM Comput. Surv., 34(2):171–210, June 2002.

[43] Jason Cong, Zhenman Fang, Michael Lo, Hanrui Wang, Jingxian Xu, and Shao-
chong Zhang. Understanding performance differences of fpgas and gpus: (abtract
only). In Proceedings of the 2018 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, FPGA ’18, pages 288–288, New York, NY, USA, 2018.
ACM.

[44] Louise H. Crockett, Ross A. Elliot, Martin A. Enderwitz, and Robert W. Stewart.
The Zynq Book: Embedded Processing with the Arm Cortex-A9 on the Xilinx Zynq-
7000 All Programmable Soc. Strathclyde Academic Media, UK, 2014.

[45] Leonardo Dagum and Ramesh Menon. Openmp: an industry standard api for shared-
memory programming. Computational Science & Engineering, IEEE, 5(1):46–55,
1998.

[46] Jack B. Dennis and Earl C. Van Horn. Programming semantics for multiprogrammed
computations. Commun. ACM, 9(3):143–155, March 1966.

[47] Apostolos Dollas. Reconfigurable architectures for bioinformatics applications. In
2010 IEEE Computer Society Annual Symposium on VLSI. IEEE, July 2010.

[48] Donohoe, Gregory W., Lyke, and James C. Reconfigurable computing for space.
In Thawar T. Arif, editor, Aerospace Technologies Advancements, chapter 3. Inte-
chOpen, Rijeka, 2010.

[49] T. El-Ghazawi. Reconfigurable supercomputing. In The IEEE/ACS International
Conference onPervasive Services, 2004. ICPS 2004. Proceedings., pages 163–, 2004.

[50] T. El-Ghazawi, E. El-Araby, M. Huang, K. Gaj, V. Kindratenko, and D. Buell. The
promise of high-performance reconfigurable computing. Computer, 41(2):69–76, Feb
2008.

[51] Tarek El-Ghazawi. Is high-performance, reconfigurable computing the next super-
computing paradigm? In ACM/IEEE SC 2006 Conference (SC'06). IEEE, November
2006.

[52] G. Estrin, B. Bussell, R. Turn, and J. Bibb. Parallel processing in a restructurable
computer system. IEEE Transactions on Electronic Computers, EC-12(6):747–755,
1963.

[53] U. Farooq, I. Baig, and B. A. Alzahrani. An efficient inter-fpga routing exploration
environment for multi-fpga systems. IEEE Access, 6:56301–56310, 2018.

64

[54] Antonio Filgueras, Eduard Gil, Daniel Jimenez-Gonzalez, Carlos Alvarez, Xavier
Martorell, Jan Langer, Juanjo Noguera, and Kees Vissers. Ompss@zynq all-
programmable soc ecosystem. In Proceedings of the 2014 ACM/SIGDA Interna-
tional Symposium on Field-programmable Gate Arrays, FPGA ’14, pages 137–146,
New York, NY, USA, 2014. ACM.

[55] Michael Fingeroff. High-Level Synthesis Blue Book. Xlibris Corporation, 2010.

[56] Lin Gan, Ming Yuan, Jinzhe Yang, Wenlai Zhao, Wayne Luk, and Guangwen Yang.
High performance reconfigurable computing for numerical simulation and deep learn-
ing. CCF Transactions on High Performance Computing, 2(2):196–208, June 2020.

[57] Philip Garcia, Katherine Compton, Michael Schulte, Emily Blem, and Wenyin Fu.
An overview of reconfigurable hardware in embedded systems. EURASIP Journal
on Embedded Systems, 2006:1–19, 2006.

[58] Z. Guo, T. W. Huang, and Y. Lin. Gpu-accelerated static timing analysis. In 2020
IEEE/ACM International Conference On Computer Aided Design (ICCAD), pages
1–9, 2020.

[59] Ulrich Heinkel, Wolfram Glauert, and M. Wahl. The VHDL Reference: A Practical
Guide to Computer-Aided Integrated Circuit Design (Including VHDL-AMS) with
Other. John Wiley & Sons, Inc., New York, NY, USA, 2000.

[60] T. Horel and G. Lauterbach. Ultrasparc-iii: designing third-generation 64-bit per-
formance. IEEE Micro, 19(3):73–85, May 1999.

[61] Mingkai Hsueh. Reconfigurable Computing for Algorithms in Hyperspectral Image
Processing. PhD thesis, USA, 2007. AAI3283819.

[62] Jens Huthmann, Lukas Sommer, Artur Podobas, Andreas Koch, and Kentaro Sano.
OpenMP device offloading to FPGAs using the nymble infrastructure. In OpenMP:
Portable Multi-Level Parallelism on Modern Systems, pages 265–279. Springer Inter-
national Publishing, 2020.

[63] Qaiser Ijaz, El-Bay Bourennane, Ali Kashif Bashir, and Hira Asghar. Revisiting the
high-performance reconfigurable computing for future datacenters. Future Internet,
12(4):64, April 2020.

[64] Intel. Intel oneapi: A unified x-architecture programming model. https:
//software.intel.com/content/www/us/en/develop/tools/oneapi.html#gs.
zo72sh. (Accessed on 05/02/2021).

[65] Weiwen Jiang, Edwin H.-M. Sha, Xinyi Zhang, Lei Yang, Qingfeng Zhuge, Yiyu Shi,
and Jingtong Hu. Achieving super-linear speedup across multi-fpga for real-time dnn
inference. ACM Trans. Embed. Comput. Syst., 18(5s):67:1–67:23, October 2019.

https://software.intel.com/content/www/us/en/develop/tools/oneapi.html#gs.zo72sh
https://software.intel.com/content/www/us/en/develop/tools/oneapi.html#gs.zo72sh
https://software.intel.com/content/www/us/en/develop/tools/oneapi.html#gs.zo72sh

65

[66] N. P. Jouppi and D. W. Wall. Available instruction-level parallelism for superscalar
and superpipelined machines. SIGARCH Comput. Archit. News, 17(2):272–282, April
1989.

[67] M. Knaust, F. Mayer, and T. Steinke. Openmp to fpga offloading prototype using
opencl sdk. In 2019 IEEE International Parallel and Distributed Processing Sympo-
sium Workshops (IPDPSW), pages 387–390, May 2019.

[68] Ryohei Kobayashi, Norihisa Fujita, Yoshiki Yamaguchi, Taisuke Boku, Kohji
Yoshikawa, Makito Abe, and Masayuki Umemura. Multi-hybrid accelerated sim-
ulation by GPU and FPGA on radiative transfer simulation in astrophysics. Journal
of Information Processing, 28(0):1073–1089, 2020.

[69] Jens Korinth, David de la Chevallerie, and Andreas Koch. An open-source tool flow
for the composition of reconfigurable hardware thread pool architectures. In Proceed-
ings of the 2015 IEEE 23rd Annual International Symposium on Field-Programmable
Custom Computing Machines, FCCM ’15, pages 195–198, Washington, DC, USA,
2015. IEEE Computer Society.

[70] Jens Korinth, Jaco Hofmann, Carsten Heinz, and Andreas Koch. The tapasco open-
source toolflow for the automated composition of task-based parallel reconfigurable
computing systems. In Christian Hochberger, Brent Nelson, Andreas Koch, Roger
Woods, and Pedro Diniz, editors, Applied Reconfigurable Computing, pages 214–229,
Cham, 2019. Springer International Publishing.

[71] D. M. Kunzman and L. V. Kale. Programming heterogeneous systems. In 2011 IEEE
International Symposium on Parallel and Distributed Processing Workshops and Phd
Forum, pages 2061–2064, May 2011.

[72] Marco Lanzagorta, Stephen Bique, and Robert Rosenberg. Introduction to recon-
figurable supercomputing. Synthesis Lectures on Computer Architecture, 4(1):1–103,
January 2009.

[73] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program
analysis & transformation. In Proceedings of the International Symposium on Code
Generation and Optimization: Feedback-directed and Runtime Optimization, CGO
’04, pages 75–, Washington, DC, USA, 2004. IEEE Computer Society.

[74] S. Lee, J. Kim, and J. S. Vetter. Openacc to fpga: A framework for directive-based
high-performance reconfigurable computing. In 2016 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pages 544–554, May 2016.

[75] Y. Y. Leow, C. y. Ng, and W. f. Wong. Generating hardware from openmp programs.
In 2006 IEEE International Conference on Field Programmable Technology, pages
73–80, Dec 2006.

[76] P. Manet, D. Maufroid, L. Tosi, M. di Ciano, O. Mulertt, Y. Gabriel, J. D. Legat,
D. Aulagnier, C. Gamrat, R. Liberati, and V. la Barba. Recops: Reconfiguring

66

programmable devices for military hardware electronics. In 2007 Design, Automation
Test in Europe Conference Exhibition, pages 1–6, 2007.

[77] Clive Maxfield. The Design Warrior’s Guide to FPGAs: Devices, Tools and Flows.
Newnes, USA, 1st edition, 2004.

[78] Florian Mayer, Marius Knaust, and Michael Philippsen. Openmp on fpgas—a sur-
vey. In Xing Fan, Bronis R. de Supinski, Oliver Sinnen, and Nasser Giacaman,
editors, OpenMP: Conquering the Full Hardware Spectrum, pages 94–108, Cham,
2019. Springer International Publishing.

[79] Hung Kiem Nguyen and Tu Xuan Tran. A survey on reconfigurable system-on-chips.
REV Journal on Electronics and Communications, March 2018.

[80] K. O’Neal and P. Brisk. Predictive modeling for cpu, gpu, and fpga performance and
power consumption: A survey. In 2018 IEEE Computer Society Annual Symposium
on VLSI (ISVLSI), pages 763–768, July 2018.

[81] David Padua. Parallelization, Automatic, pages 1442–1450. Springer US, Boston,
MA, 2011.

[82] Peixin Zhong, P. Ashar, S. Malik, and M. Martonosi. Using reconfigurable computing
techniques to accelerate problems in the cad domain: a case study with boolean
satisfiability. In Proceedings 1998 Design and Automation Conference. 35th DAC.
(Cat. No.98CH36175), pages 194–199, 1998.

[83] A. Podobas. Accelerating parallel computations with openmp-driven system-on-chip
generation for fpgas. In 2014 IEEE 8th International Symposium on Embedded Mul-
ticore/Manycore SoCs, pages 149–156, Sep. 2014.

[84] Reid Porter, Jan Frigo, Al Conti, Neal Harvey, Garrett Kenyon, and Maya Gokhale.
A reconfigurable computing framework for multi-scale cellular image processing. Mi-
croprocessors and Microsystems, 31(8):546–563, 2007. Special Issue on FPGA-based
Reconfigurable Computing (3).

[85] Jing Pu, Steven Bell, Xuan Yang, Jeff Setter, Stephen Richardson, Jonathan Ragan-
Kelley, and Mark Horowitz. Programming heterogeneous systems from an image
processing dsl. ACM Trans. Archit. Code Optim., 14(3):26:1–26:25, August 2017.

[86] B. Ramakrishna Rau and Joseph A. Fisher. Instruction-level parallel processing:
History, overview, and perspective. The Journal of Supercomputing, 7(1-2):9–50,
May 1993.

[87] Marc Reichenbach, Philipp Holzinger, Konrad Häublein, Tobias Lieske, Paul Blinzer,
and Dietmar Fey. Heterogeneous computing utilizing fpgas. Journal of Signal Pro-
cessing Systems, 91(7):745–757, Jul 2019.

67

[88] Gerald Roth, John Mellor-Crummey, Ken Kennedy, and R. Gregg Brickner. Com-
piling stencils in high performance fortran. In Proceedings of the 1997 ACM/IEEE
Conference on Supercomputing, SC ’97, page 1–20, New York, NY, USA, 1997. As-
sociation for Computing Machinery.

[89] L. Sommer, J. Korinth, and A. Koch. Openmp device offloading to fpga accelera-
tors. In 2017 IEEE 28th International Conference on Application-specific Systems,
Architectures and Processors (ASAP), pages 201–205, July 2017.

[90] M. Strickland. Fpga accelerated hpc and data analytics. In 2018 International
Conference on Field-Programmable Technology (FPT), pages 21–21, Dec 2018.

[91] Russell Tessier and Wayne Burleson. The Journal of VLSI Signal Processing,
28(1/2):7–27, 2001.

[92] Miguel A. Vega-Rodríguez, Antonio Gómez-Iglesias, Juan A. Gómez-Pulido, and
Juan M. Sánchez-Pérez. Reconfigurable computing system for image processing via
the internet. Microprocessors and Microsystems, 31(8):498–515, 2007. Special Issue
on FPGA-based Reconfigurable Computing (3).

[93] H. M. Waidyasooriya and M. Hariyama. Multi-fpga accelerator architecture for sten-
cil computation exploiting spacial and temporal scalability. IEEE Access, 7:53188–
53201, 2019.

[94] David W. Wall. Limits of instruction-level parallelism. SIGARCH Comput. Archit.
News, 19(2):176–188, April 1991.

[95] Mirren White. The Adept Benchmark Suite, Jul 2019. [Online; accessed 15. Oct.
2019].

[96] Xilinx. Axi reference guide. https://www.xilinx.com/support/documentation/
ip_documentation/ug761_axi_reference_guide.pdf. (Accessed on 05/02/2021).

[97] Mohamed Zahran. Heterogeneous computing: Here to stay. Queue, 14(6):40:31–
40:42, December 2016.

https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf

68

Appendix A

Software

This appendix shows in details the implementation of the system software. It is organized
in a top-down perspective, from the Front-end Clang to the VC709 card driver. Section
A.1 shows the modifications made to the front-end Clang, Section A.2 the modifications
made to the OpenMP runtime, Section A.3 the modifications made to the libomptarget,
and finally Section A.4 shows the changes performed on the card driver.

A.1 Clang Front-end

Clang is a compiler front-end for the C, C++, Objective-C and Objective-C++ program-
ming languages. It uses the LLVM compiler infrastructure as its back-end and has been
part of the LLVM release cycle since LLVM 2.6.

A.1.1 Fat Binaries Generation

As shown in [22] The code generation follows the following scheme:

1. For each source file provided, the compiler front-end driver spawns the execution
of the pre-processor, compiler and assembler for the host and each available target
device type. This results in the generation of an object file for each target device
type.

2. Target linkers combine dedicated target objects into target shared libraries, one for
each target device type.

3. The host linker combines host object files into an executable/shared library and
incorporates each target shared libraries as is (no actual linking is done between
host and target objects) into a designated section within the host binary. The
format of a binary section for offloading to a specif device is target-dependent and
will be thereafter handled by the target RTL at runtime.

4. a new driver command-line group option fopenmp-targets=Ti, where Ti is a valid
target triples that specify which target device types the user wants to support in
the execution of OpenMP target regions. All options following fopenmp-targets=Ti

69

are forwarded to that device toolchain. The user can specify as many Ti options
as devices he/she wants to support. In our project, an example of invocation of the
compiler would be as follows, for a hypothetical system where the available target
device type is a VC709 board.

clang -fopenmp -fopenmp-targets=vc709-unknown-gnu-linux foo.c -o foo.bin

5. For each source file, the compiler driver will issue commands to create intermediate
files for each possible compilation phase (LLVM IR, assembly, object) and target
(host or device). However, this is not exposed to the user as the driver has the
ability to bundle multiple files generated by different toolchains into a single one.

As for our work the code executed on the FPGA is hardware created in a separate
flow, the front-end just replicates the x86_64 code generation to maintain compatibility
with the entire compiler infrastructure. Therefore, the section in the fat binary reserved
for the FPGA, is actually x86 code.

A.1.2 Code Generation

The clang front-end is also responsible for generating calls to the OpenMP runtime func-
tions. One function that needed to be changed was the task creation function: __kmpc_-
omp_target_task_alloc. This change was focused in adding new parameters related to
the device offloading, as shown in Listing A.1. The parameters are:

1. num_args: specifies the number of arguments that were passed in the map clauses

2. args_base: indicates the offset of the addresses of the arguments passed in the map
() * clauses

3. args: indicates the base address of each argument passed in the map clauses;

4. args_sizes: indicates the size of each argument passed in the map clauses;

5. arg_types: indicates the type of each argument passed in the map clauses;

6. task_fname: indicates the name of the function that specifies the IP-core to be used
which is extracted from the directive variant declare;

All this information is later added to the data structure that represents a task, as
shown in Section A.2.1.

The resulting host executable/shared library will depend on the offload runtime library
libomptarget.so. This library will handle the initialization of target RTLs and translate
the offload interface from compiler-generated code to the target RTL during program
execution. Details of libomptarget are shown in Section A.3.

70

1 KMP_EXPORT kmp_task_t ∗__kmpc_omp_target_task_alloc (
2 ident_t ∗ loc_re f ,
3 kmp_int32 gt id ,
4 kmp_int32 f l a g s ,
5 s i ze_t sizeof_kmp_task_t ,
6 s i ze_t s i zeo f_shareds ,
7 kmp_routine_entry_t task_entry ,
8 kmp_int64 device_id ,
9 void ∗ outl ined_fn_id ,

10 kmp_int32 num_args ,
11 void ∗∗ args_base ,
12 void ∗∗ args ,
13 kmp_int64 ∗ arg_sizes ,
14 kmp_int64 ∗arg_types ,
15 void ∗task_fname) ;

Listing A.1: __kmpc_omp_target_task_alloc.

1 s t r u c t kmp_taskdata {
2 kmp_int32 td_task_id ;
3 /∗ other data . ∗/
4 #i f d e f USE_TARGET_TASK
5 kmp_target_task_data_t ∗ td_target_info ; // Pointer to t a r g e t nowait

data i n f o
6 #end i f
7 } ; // s t r u c t kmp_taskdata

Listing A.2: kmp_taskdata structure.

A.2 OpenMP Runtime Modifications

The OpenMP runtime is a library of routines which help to manage a parallel program.
It also includes routines to manage programs written in a task programming model.

At the time of publishing of this thesis, the LLVM/OpenMP implementation provided
poor support to execute tasks on target devices. For this reason, it was necessary to make
a few modifications.

The first modification made was in the data structure that represents a task. It was
necessary to include data regarding the offloading operation. This data was encapsulated
in a data structure called kmp_target_task_data, as shown in Listing A.3. This structure
was inserted in the data structure of a task, kmp_taskdata, as shown in Listing A.2.

The fields in structure kmp_target_task_data are the same as those needed to be
inserted into the task creation function __kmpc_omp_target_task_alloc. Details on the
meaning of each field can be found in Section A.1.2.

A.2.1 Task Structure

Once this information was inserted into the task structure, it was necessary to create a
communication interface between the runtime and the libomptarget offload library, so that
libomptarget could know when and how to receive the task graph. Two functions were
created for these purposes, and are, respectively, __kmpc_is_master_thread_tasking

71

1

2 s t r u c t kmp_target_task_data {
3 kmp_int64 device_id ; // Device ID
4 void ∗ outl ined_fn_id ; // Target r eg i on / ou t l i n ed func t i on address
5 kmp_int32 num_args ; // Target r eg i on argument addre s s e s and s i z e s
6 void ∗∗ args_base ;
7 void ∗∗ args ;
8 kmp_int64 ∗ arg_s i ze s ;
9 kmp_int64 ∗arg_types ;

10 void ∗task_fname ;
11 } ;

Listing A.3: kmp_target_task_data structure.

1 // Returns t rue i f the master thread o f the cur rent team i s ta sk ing
2 // (thus i f i t i s at a synchron i za t i on po int) .
3 KMP_EXPORT bool
4 __kmpc_is_master_thread_tasking () ;
5

6 // Updates a task map with new task s
7 KMP_EXPORT bool
8 __kmpc_target_task_map_update (kmp_target_task_map_t ∗∗ task_map) ;

Listing A.4: kmp_target_task_data structure.

and __kmpc_target_task_map_update, shown in Listing A.4.
the __kmpc_is_master_thread_tasking function returns false if the control thread

has reached the end of a single region, that is, it has finished creating the tasks and the
graph can now be obtained by libomptarget.

At this point, the function __kmpc_target_task_map_update is used by the libomp-
target to obtain the graph. The function returns true if the graph is successfully obtained
or false if there is a problem. The graph is obtained through the parameter task_map,
which is a pointer to the kmp_target_task_map_t structure that, indirectly, represents
the graph.

A.3 The Libomptarget Library

As previously said, the OpenMP 4.5 specification defines offloading directives that can
be used to take advantage of accelerators devices. OpenMP terminology specifies three
important concepts with respect to offloading, namely:

• Device: an implementation-defined logical execution unit. The execution model is
host-centric such that a host device offloads code and data to target devices.

• Target regions: are structured code blocks that execute on a target device. This
is conditional on the run-time availability of a device, the ability of the compiler to
generate device code.

72

• A mapped variable: are variables in a (host) data environment with a corre-
sponding variable in a device data environment.

The libomptarget is the library that provides the host with an API to map variables
and initiate execution of target regions on a target device.

The target directive creates both a device data environment and a target region. It
may have associated clauses to specify additional details, like the exact device to use if
more than one is present in the system (device clause) or whether the data should be
moved to/from the device or only allocated in the device memory (map clause).

The library utilizes device-specific target runtime libraries (RTLs). At the start of
host code execution libomtarget will do the following:

1. Search for a target RTL that supports the device binary.

2. Verify target RTL interface compliance.

3. Add target RTLs into a list of available target device types.

After libomptarget has verified that suitable target code is present and that a target
RTL is ready to execute a target region, the target RTL is invoked via API routines
(described in Section A.3.1) to execute the region.

The offload library implements several compiler-level runtime library routines. Four
are important for the execution in the FPGA cluster:

• void __tgt_register_lib(__tgt_bin_desc *desc): registers the libomptar-
get.so library and initialize target state (i.e. global variables and target entry points)
for the current host shared library/executable and the corresponding target execu-
tion images that have those entry points implemented. This does not trigger any
execution in any target as any real work with the target device can be postponed
until the first target region is encountered during execution. This function is ex-
pected to appear only once per host shared library/executable in the .init section
and is called before any constructors or static initializers are called for the host.

• int32_t tgt_target_data_begin(int32_t device_id , int32_t num_args,
void** args_base, void** args, int64_t* args_size , int32_t *args_map-
type): Initiates a device data environment. It maps variables from the host data
environment to the device data environment by recording the mapping between the
references of variables used in the host and target into the libomptarget.so inter-
nal structures. The associated variables in the target device data environment are
initialized according to the map-type.

• int32_t tgt_target_data_end(int32_t device_id , int32_t num_args,
void** args_base, void** args, int64_t* args_size , int32_t *args_-
maptype): closes a device data environment. It removes mapped variables from the
current device data environment, releases target memory and destroys the mappings
created by tgt_target_data_begin(..) that initiated the current device environment.
It assigns host variables with the value of the corresponding device data environment
variable according to the map-type.

73

• int32_t tgt_target(int32_t device_id , void *host_addr, int32_t num_-
args, void** args_base, void** args, int64_t* args_size , int32_t *args_-
maptype): Performs the same actions as tgt_target_data_begin in case arg_-
num is non-zero and launches the execution of the target region on the target de-
vice; if arg_num is non-zero after the region execution is done it also performs
the same actions as tgt_target_data_end. If offloading fails, an error coe is
returned, which notifies the caller that the associated target region has to be exe-
cuted by the host. The return code can be used as an error code which will give the
compiler and runtime the freedom to implement optimized behaviors.

The current implementation of this library can be classified into three components:
target agnostic offloading, target specific offloading plugins, and target specific runtime
library.

The target agnostic component is located in the file libomptarget.so and is the com-
ponent that contains the logic to launch the initialization of the devices supported by
the current program. It also creates device data environments and launches executions of
kernels (OpenMP target regions). In order to deal with a specific device this component
detects and loads the corresponding plugin. Details about plugins are in Section A.3.1.

A.3.1 The Plugins

They are loaded at runtime by libomptarget.so to interact with a given device. They all
use the same interface and implement basic functionality like device initialization, data
movement to/from device and kernel launching. Some of the functions that must be
implemented are:

• void __tgt_init_device(): initializes the specified device. In case of success
return 0; otherwise return an error code.

• int32_t __tgt_rtl_load_binnary(int32_t device_id , __tgt_device_-
image *image): passes an executable image section described by image to the
specified device and prepares an address table of target entities. In case of error,
returns NULL. Otherwise, returns a pointer to the built address table. Individual
entries in the table may also be NULL, when the corresponding offload region is not
supported on the target device.

• tgt_target_table* __tgt_rtl_is_valid_binary(__tgt_device_image*
image): returns an integer different from zero if the provided device image can be
supported by the runtime. The functionality is similar to comparing the result of
tgt_rtl_load_binary to null. However, this is meant to be a lightweight query to
determine if the RTL is suitable for an image without having to load the library,
which can be expensive.

• int32_t __tgt_rtl_data_alloc(int32_t device_id, int64_t size): allo-
cates data on the particular target device of the specified size. Returns address of
the allocated data on the target that will be used by libomptarget.so to initialize

74

the target data mapping structures. These addresses are used to generate a table of
target variables to pass to __tgt_rtl_run_region(). This function returns NULL
in case an error occurs on the target device.

• int32_t __tgt_rtl_data_submit(int32_t device_id, void* target_ptr,
void *host_ptr, int64_t size): passes the data content to the target device
using the target address. In case of success, returns zero. Otherwise, returns an
error code.

• int32_t __tgt_rtl_data_retrieve(int32_t device_id, void* target_ptr,
void *host_ptr, int64_t size): retrieves the data content from the target device
using its address. In case of success, returns zero. Otherwise, returns an error code.

• int32_t __tgt_rtl_data_delete(int32_t device_id, void* target_ptr):
deallocate the data referenced by target_ptr on the device. In case of success,
returns zero. Otherwise, returns an error code.

• int32_t tgt_target(int32_t device_id , void *host_addr, int32_t num_-
args, void** args_base, void** args, int64_t* args_size , int32_t *args_-
maptype): Performs the same actions as tgt_target_data_begin in case arg_-
num is non-zero and launches the execution of the target region on the target device;
if arg_num is non-zero after the region execution is done it also performs the same
actions as tgt_target_data_end. If offloading fails, an error code is returned,
which notifies the caller that the associated target region has to be executed by the
host. The return code can be used as an error code which will give the compiler
and runtime the freedom to implement optimized behaviors.

Each plugin must interact with your device by taking the necessary actions to imple-
ment these functions. In our case, the plugin interacts directly with the VC709 board
driver, as shown in Section A.4.

A.4 Driver Organization

Figure A.1 shows the stack of blocks that composes the VC709 board driver. The V709
plugin was inserted at the top of the stack, in the user space, to use the resources of the
drive and consequently the card.

The Kernel Space is composed by the User Driver and the DMA Driver (see Figure A.1)
and provides the DMA engine configuration required to achieve data transfer between the
hardware and the main system memory. The data transmission works as follows: (a) on
the transmit path, data from the application is handed over to the driver for transmission.
The driver then queues up the packet for scatter-gather DMA in the FPGA. The DMA
fetches the packet through the PCIe Endpoint and transfers it to the XGEMAC where it
is transmitted through the Ethernet link into the LAN; (b) on the receive side, packets
arriving on XGEMAC are collected by the scatter-gather DMA. The DMA pushes the
packet to the driver through the PCIe Endpoint. The driver hands off the packet to the
upper layers for further processing.

75

Figure A.1: Driver organization.

Both User Driver and Base DMA driver have a driver entry block with three main
functions (ioctl, read and write) (Figure A.1). The read and write functions are used
for data connectivity and the ioctl function is used for configurations. Standard network
tools use driver entry points for Ethernet configurations. The driver hooks in entry points
configure 10G Ethernet MAC and PHY. The other driver entry points are mainly used in
the data flow for transmitting and receiving Ethernet packets.

The read and write functions are used to exchange data with the FPGA. Since execu-
tion on the FPGA is performed in stream mode, the read function must be called before
the write function, so that the data receiving infrastructure is ready when the FPGA
starts to return the computed data. The ioctl function is used for control signals and it
uses the data structure shown in Listing A.5. The Engine, TestMode, MinPktSize and
MaxPktSize fields are original to the driver and are used for testing purposes. The address
and value fields, on the other hand, needed to be added to make it possible to configure
the modules inserted in hardware. The address and value fields indicate the register to
be configured and the value, respectively. Listing A.6 shows the code that was inserted in
the driver to handle the IOCTL calls regarding the configuration of the registers inserted
in the architecture. Listing A.7 shows an example of how the plugin writes to one of the
registers.

The driver private interface (Figure A.1) enables interaction with the DMA driver
through a private data structure interface. The data that comes from the user application
through the driver entry points is sent to the DMA driver through the private driver
interface. The private interface handles received data and housekeeping of the completed
transmit and receive buffers by putting them in a completed queue.

The Application Layer interface is the block responsible for dynamic registering and
unregistering the user application drivers. The data that is transmitted from the user

76

1 typede f s t r u c t {
2 i n t Engine ; /∗ Engine Number ∗/
3 unsigned i n t TestMode ; /∗ Test Mode − Enable TX, Enable loopback ∗/
4 unsigned i n t MinPktSize ; /∗ Min packet s i z e ∗/
5 unsigned i n t MaxPktSize ; /∗ Max packet s i z e ∗/
6 i n t address ; /∗ used to address c on f i gu r a t i on r e g i s t e r s ∗/
7 i n t va lue ; /∗ used to s e t up con f i gu r a t i on r e g i s t e r s . ∗/
8 } TestCmd ;

Listing A.5: OpenMP tasks in CPUs.

1 xraw_dev_ioctl (s t r u c t f i l e ∗ f i l p , unsigned i n t cmd , unsigned long arg) {
2 switch (cmd) {
3 case ISTART_TEST:{
4 u32 addrs = TXbarbase + (u32) ((TestCmd ∗) arg)−>address ;
5 i n t va lue = (TestCmd∗) arg)−>value
6 XIo_Out32 (addrs , va lue) ;
7 break ;
8 }
9 }

10 }

Listing A.6: IOCTL for configuration.

1 TestCmd cmd ;
2 cmd . address = 0x9470 ;
3 cmd . value = conf ;
4 ret_val = i o c t l (EngineFD , ISTART_TEST, &cmd) ;

Listing A.7: DMA configuration example.

77

application driver is sent over to the DMA operations block.
User application driver sends the received socket buffer packet to DMA driver for

mapping to PCI space and sending it to DMA. On the receiver side buffers are pre-
allocated to store incoming packets. These packets are allocated from networking stack.
The received packets are added to network stack queue for sending it to application for
further processing.

The DMA Operations block works as follow: for each DMA channel, the driver sets
up a buffer descriptor ring. At the beginning of execution, the receive ring (associated
with a C2S channel) is fully populated with buffers meant to store incoming packets, and
the entire receive ring is submitted for DMA while the transmit ring (associated with a
S2C channel) is empty. As packets arrive at the base DMA driver for transmission, they
are added to the buffer descriptor ring and submitted for DMA transfer.

78

Appendix B

Hardware

This appendix shows in details the implementation of the system hardware. It is organized
in the host-fiber sense, that is, starting from the communication with the host machine
until the communication with the optical fiber, covering the main modules used, namely:
(a) Section B.1 shows the PCIE and DMA IP modules; (b) Section B.2 shows the Config-
uration Registers; (c) Section B.3 shows the A-SWT module; (d) Section B.4 shows the
IP-cores implementation; (f) Section B.5 shows the MFH module; (g) Section B.6 shows
the VFIFO module; and (h) Section B.7 shows the Network Subsystem modules.

B.1 PCIe and DMA

The PCIe standard is a high-speed serial protocol that allows transfer of data between
host system memory and Endpoint cards. To efficiently use the processor bandwidth
a bus-mastering scatter-gather DMA controller is used to push and pull data from the
system memory.

The Virtex XT FPGA Integrated Block for PCIe provides a wrapper around the inte-
grated block in the FPGA. The XT Connectivity TRD uses PCIe in x8 Gen3 configuration
and buffering set for high performance applications. Figure B.1 shows a block design for
the Virtex XT FPGA Integrated Block for PCIe. The ports can be organized as follows:

• The ports m_axis_cq_*, s_axis_cc_*, s_axis_rq_*, m_axis_rc_* are used for
AXI stream communication between the PCIe module and the DMA;

• clock and reset interface are used for synchronization;

• pci_exp* are used to connect with the physical pins of the PCI express interface;

• configuration and status ports they are all other ports, are used for configuration
and status reading.

The Scatter Gather Packet DMA IP (DMA IP) is provided by Northwest Logic, Listing
B.1 shows the Verilog IP simplified interface. The front-end of the DMA interfaces with
the AXI4-Stream interface on PCIe Endpoint IP core (ports s_axis_rq_t*, m_axis_-
rc_t*, m_axis_cq_t*, s_axis_cc_t*, fc_* and cfg_* in Listing B.1). The backend of

79

Figure B.1: Integrated Block for PCI Express.

the DMA provides an AXI4-Stream interface as well, which connects to the user applica-
tion side. This DMA controller is configured to support simultaneous operation of four
user applications using eight channels in all. This involves four system-to-card (S2C)
or transmit channels and four card-to-system (C2S) or receive channels (ports s2c* and
c2c* in Listing B.1). The s2c* and c2c* channels implement all the main ports of the
AXI4-STREAM protocol: tdata, tlast, tvalid, tready, tkeep, tstrob and tuser.

The term scatter gather refers to the ability to write packet data segments into different
memory locations and gather data segments from different memory locations to build a
packet. This allows for efficient memory utilization because a packet does not need to
be stored in physically contiguous locations. Scatter gather requires a common memory
resident data structure that holds the list of DMA operations to be performed. DMA
operations are organized as a linked list of buffer descriptors. A buffer descriptor describes
a data buffer.

The DMA IP also has an AXI Lite interface (ports t* in Listing B.1) that is used
to configure modules within the FPGA. Section B.2 shows how this interface is used to
access configuration registers.

B.2 Configuration Registers

Configuration Registers are a set of registers used to configure some internal FPGA mod-
ules. They are addressed by the DMA IP AXI Lite interface. Address offsets from 0x0000
to 0x7FFF are consumed internally by the DMA engine. Address offset space from 0x8000
to 0xFFFF is provided to user. Transactions targeting this address range are made avail-
able on the DMA AXI4 Lite interface.

The design uses the range 0x9000 to 0x9FFF to implement the required user space

80

1 module packet_dma_axi
2 (
3

4 input user_reset ,
5 input user_clk ,
6

7 output s_axis_rq_t∗
8 input [CORE_DATA_WIDTH−1:0] m_axis_rc_t∗
9 input [CORE_DATA_WIDTH−1:0] m_axis_cq_t∗

10 output [CORE_DATA_WIDTH−1:0] s_axis_cc_t∗
11 inout [1 1 : 0] fc_∗
12

13 // PCIe Conf igurat ion I n t e r f a c e
14 inout cfg_ ∗ ,
15

16 //DMA − C2S Engine #0
17 input c2s0_ ∗ ,
18 //DMA − C2S Engine #1
19 input c2s1_ ∗ ,
20 //DMA − C2S Engine #2
21 input c2s2_ ∗ ,
22 //DMA − C2S Engine #3
23 input c2s3_ ∗ ,
24

25 //DMA − S2C Engine #0
26 output s2c0_ ∗ ,
27 //DMA − S2C Engine #1
28 output s2c1_ ∗ ,
29 //DMA − S2C Engine #2
30 output s2c2_ ∗ ,
31 //DMA − S2C Engine #3
32 output s2c3_ ∗ ,
33

34 //DMA − AXI l i t e
35 inout t_∗
36) ;

Listing B.1: DMA IP Verilog Simplified Interface.

81

1 module i t t_ c t r l (
2 //General s i g n a l s :
3 input wire ACLK,
4 input wire RSTN,
5 // Slave AXIS i n t e r f a c e :
6

7 // Slave AXIS i n t e r f a c e :
8 input wire [2 5 5 : 0]S_AXIS_T∗ ,
9

10 //Master AXIS i n t e r f a c e :
11 output wire [2 5 5 : 0]M_AXIS_T∗
12

13 input wire input_conf ,
14 input wire [3 1 : 0] input_size ,
15

16 input wire [3 : 0] init_swt ,
17 input wire [3 : 0] init_sup ,
18 input wire [3 : 0] conf_swt ,
19 input wire [3 : 0] conf_sup ,
20 output reg [3 : 0] output_swt ,
21 output reg [3 : 0] output_sup
22) ;

Listing B.2: Iteration Control IP Simplified Interface.

registers; 0xB000 to 0xEFFF to implement the address space four MACs. Table B.1
shows the configuration registers that are used in the project.

The architecture also uses the 1x5 AXI4LITE Interconnect to route the request to the
right slave.

B.3 A-SWT

The A-SWT is a hierarchy of switches that allows communication between the IP-cores
within the FPGA. Each switch is a AXI4-Stream Interconnect that enables the connection
of heterogeneous master/slave AXI4-Stream protocol compliant endpoint IP. The AXI4-
Stream Interconnect routes connections from one or more AXI4-Stream master channels
to one or more AXI4-Stream slave channels. Figure B.2 shows the interface of module
Integrated Block for AXI-Stream Interconnect RTL which is used as the basic block for
the construction of module A-SWT. The module in question has an input AXI-Stream
interface, S00_AXIS, and two output AXI-Stream interfaces, M00_AXIS and M01_-
AXIS.

The A-SWT module also has a sub-module called itt_ctrl. This sub-module is re-
sponsible for configuring the reuse of the IP-cores. This reuse is done using the switch’s
supports according to the number of iterations to be calculated. Listing B.2 shows the
simplified Verilog interface of the itt_ctrl submodule. The module receives as input the
initial values of the switches and supp ports, the values to be configured, the number
of iterations to be computed, and the dimensions of the grid. With these values, the
sub-module is able to modify the configuration values at run time.

82

Table B.1: Configuration Registers

REGISTER ADDRESS DESCRIPTION
DST_MAC0_ADRS_FILTER 0x9430

Registers referring to the
MAC addresses of the
fiber optic interfaces.

DST_MAC0_ADRS_LOW 0x9434
DST_MAC0_ADRS_HIGH 0x9438
DST_MAC1_ADRS_FILTER 0x943C
DST_MAC1_ADRS_LOW 0x9440
DST_MAC1_ADRS_HIGH 0x9444
DST_MAC2_ADRS_FILTER 0x9448
DST_MAC2_ADRS_LOW 0x944C
DST_MAC2_ADRS_HIGH 0x9450
DST_MAC3_ADRS_FILTER 0x9454
DST_MAC3_ADRS_LOW 0x9458
DST_MAC3_ADRS_HIGH 0x945C
DST_SIZE0 0x9460 Registers referring to the

sizes of the data to be
transported on the fiber
interfaces.

DST_SIZE1 0x9464
DST_SIZE2 0x9468
DST_SIZE3 0x946C
SWT_ADDRS 0x9470 Switch initial value
MTUS_SIZE 0x9474 MTU size
CORE_CONF 0x9478 Set Configuration

SUPPRESS_INIT_ADDR0 0x947C

Initial suppression
value of IP-core 0.
Used for the reuse
of IP-cores.

SUPPRESS_INIT_ADDR3 0x9480

Initial suppression
value of IP-core 3.
Used for the reuse
of IP-cores.

SUPPRESS_CONF_ADDR0 0x9484
IP-core 0 suppression
configured value.
Used for IP-core reuse

SUPPRESS_CONF_ADDR3 0x9488
IP-core 0 suppression
configured value.
Used for IP-core reuse

SWT_INIT_ADDR0 0x948C initial value of the
IP-core 0 switch.

SWT_INIT_ADDR3 0x9490 initial value of the
IP-core 3 switch.

SWT_CONF_ADDR0 0x9494 configured value of
the IP-core 0 switch.

SWT_CONF_ADDR3 0x9498 configured value of
the IP-core 3 switch.

GRID_LENGTH_ADDR 0x949C Grid length
GRID_WIDTH_ADDR 0x94A0 Grid width
GRID_HEIGHT_ADDR 0x94A4 Grid height

ITERATION_CONF 0x94A8 Number of iterations
to be calculated.

83

1 module i p S t e n c i l (
2 //General s i g n a l s :
3 input wire ACLK,
4 input wire RSTN,
5 output wire Error ,
6

7 // Slave AXIS i n t e r f a c e :
8 input wire [Block_Width ∗ ‘ Prec i s i on −1:0]S_AXIS_T∗ ,
9

10 //Master AXIS i n t e r f a c e :
11 output wire [Block_Width ∗ ‘ Prec i s i on −1:0]M_AXIS_T∗ ,
12

13 input wire [3 1 : 0] input_length ,
14 input wire [3 1 : 0] input_width ,
15 input wire [3 1 : 0] input_height
16) ;

Listing B.3: IP interface.

Figure B.2: Integrated Block for AXI-Stream Interconnect RTL.

B.4 The IP-cores

The IP-cores that were designed work in stream mode. For this reason, they communicate
with the infrastructure using an AXI-Stream interface. Listing B.3 shows the simplified
Verilog code interface for an IP-core. Ports S_AXIS_T* is an AXI-Stream Slave interface,
that is, it is the interface through which IP-core receives data. The M_AXIS_T* ports
are the AXI-Stream master interface through which the IP-core transmits the data it
produces. The input_length, input_width and input_height ports specify the dimensions
of the grid that the IP-core computes. Its maximum dimensions are fixed at synthesis
time, but the real limits may be set on at run time.

84

1 module add_header (
2 input wire ap_clk ,
3 input wire ap_rst_n ,
4 input wire ap_start ,
5

6 input wire inStream_T∗ ,
7 output reg outStream_T∗
8

9 input wire [31 : 0] mtus_V,
10 input wire [31 : 0] remainder_V ,
11 input wire [47 : 0] dst_V ,
12 input wire [47 : 0] src_V
13) ;

Listing B.4: MFH add header module.

1 module add_header (
2 input wire ap_clk ,
3 input wire ap_rst_n ,
4 input wire ap_start ,
5

6 input wire inStream_T∗ ,
7 output reg outStream_T∗
8

9 input wire [31 : 0] mtus_V,
10 input wire [31 : 0] size_V
11) ;

Listing B.5: MFH remove header module.

B.5 MFH

The MFH Module is responsible for adding and removing the MAC header of the frames
that are sent and received through the fiber optic link. Listing B.4 shows the simplified
interface of the add_header submodule. The inStream_T * and outStream_T * ports are
AXI Stream ports, all signals are not shown for simplicity. The mtus_V and remainder_-
V ports indicate the size of the data that will be transmitted. The mtus_V port, precisely
informs the count of complete MTUs that will be transmitted, while the remainder_V
port what is left, that is, has not completed an MTU.

The Equation B.1 shows how the mtus_V is calculated, and Equation B.2 shows how
the remainder_V is calculated.

mtus_V = TOTAL/MTU_SIZE (B.1)

remainder_V = TOTAL%MTU_SIZE (B.2)

Listing B.5 shows the simplified interface of the rm_header sub-module. The ports
are similar to those of the add_header sub-module, with the exception that it has no
source and destination, since this module removes the header.

85

1

2 module ax i s_v f i f o_ct r l_ ip #(
3) (
4 //− SODIMM−1
5 output [1 5 : 0] c0_ddr_addr ,
6 output [2 : 0] c0_ddr_ba ,
7

8 //− SODIMM−2
9 output [1 5 : 0] c1_ddr_addr ,

10 output [2 : 0] c1_ddr_ba ,
11 // AXI streaming I n t e r f a c e f o r Write port
12 input [NUM_PORTS−1:0] axi_str_wr_t∗
13

14 // AXI streaming I n t e r f a c e f o r Read port
15 output [NUM_PORTS−1:0] axi_str_rd_t ∗ ,
16

17) ;

Listing B.6: VFIFO interface.

B.6 VFIFO

The XT Connectivity TRD uses DDR3 space as multiple FIFOs for storage. Listing B.6
shows a simplified version of the Verilog interface for this module. The c0* and c1* ports
are the ports that connect with the physical pins of the two memory chips. Whereas the
axi_str_wr_t* and axi_str_rd_t* ports are AXI4-Stream interfaces that the module
provides so that other internal FPGA modules can read and write in the memory chips.

B.7 Network Subsystem

The TRD uses four modules to communicate with the four fiber interfaces. Each of these
modules are called net_ip and the four together form the Network Subsystem. Listing
B.7 shows a simplified version of the Verilog interface of a net_ip module.

The xphy* ports are the ports that connect with the physical pins of the fiber optic in-
terface, whereas the axi_str_wr_t* and axi_str_rd_t* ports are AXI4-Stream interfaces
that the module provides so that other internal FPGA modules can read and write in the
fiber optic interfaces. Finally, the s_axi_l is a AXI4-Lite interface used for configuration.

86

1 module net_ip (
2 // AXI L i t e r e g i s t e r i n t e r f a c e
3 input s_axi_l ∗ ,
4 // AXI Streaming data i n t e r f a c e
5 input [AXIS_TDATA_WIDTH−1:0] axi_str_wr_t ∗ ,
6

7 output [AXIS_TDATA_WIDTH−1:0] axi_str_rd_t ∗ ,
8

9 ‘ i f d e f USE_XPHY
10 input xphy_refclk_n ,
11 input xphy_refclk_p ,
12 output xphy_txp ,
13 output xphy_txn ,
14 input xphy_rxp ,
15 input xphy_rxn
16) ;

Listing B.7: Simplified NET interface.

	Introduction
	Background
	OpenMP
	OpenMP Task Directive
	OpenMP Target Directive
	OpenMP Target Depend Directive

	The Hardware Platform
	Reconfigurable Computing
	The FPGAs
	FPGA Architecture

	The VC709 Board

	The OpenMP Multi-FPGA Infrastructure
	Extending OpenMP
	Hardware Infrastructure

	Experiments
	An Stencil Multi-FPGA Pipeline
	IP-core Implementation

	FPGA Scalability
	Iteration and IP-core Scalability
	Resource Utilization
	Single FPGA Synthesis

	Related Works
	Final Remarks and Conclusion
	Future works

	Bibliography
	Software
	Clang Front-end
	Fat Binaries Generation
	Code Generation

	OpenMP Runtime Modifications
	Task Structure

	The Libomptarget Library
	The Plugins

	Driver Organization

	Hardware
	PCIe and DMA
	Configuration Registers
	A-SWT
	The IP-cores
	MFH
	VFIFO
	Network Subsystem

