
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Elisa Dell’Arriva

In-line Packing of Circles

Empacotamento de Círculos em Linha

CAMPINAS
2021



Elisa Dell’Arriva

In-line Packing of Circles

Empacotamento de Círculos em Linha

Dissertação apresentada ao Instituto de
Computação da Universidade Estadual de
Campinas como parte dos requisitos para a
obtenção do título de Mestra em Ciência da
Computação.

Dissertation presented to the Institute of
Computing of the University of Campinas in
partial fulfillment of the requirements for the
degree of Master in Computer Science.

Supervisor/Orientador: Prof. Dr. Flávio Keidi Miyazawa

Este exemplar corresponde à versão final da
Dissertação defendida por Elisa Dell’Arriva e
orientada pelo Prof. Dr. Flávio Keidi
Miyazawa.

CAMPINAS
2021



Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Ana Regina Machado - CRB 8/5467

    
  Dell'Arriva, Elisa, 1993-  
 D38i DelIn-line packing of circles / Elisa Dell'Arriva. – Campinas, SP : [s.n.], 2021.  
   
  DelOrientador: Flávio Keidi Miyazawa.
  DelDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de

Computação.
 

    
  Del1. Empacotamento de círculos. 2. Algoritmos de aproximação. 3. Problemas

de empacotamento. I. Miyazawa, Flávio Keidi, 1970-. II. Universidade Estadual
de Campinas. Instituto de Computação. III. Título.

 

Informações para Biblioteca Digital

Título em outro idioma: Empacotamento de círculos em linha
Palavras-chave em inglês:
Circle packing
Approximation algorithms
Packing problems
Área de concentração: Ciência da Computação
Titulação: Mestra em Ciência da Computação
Banca examinadora:
Flávio Keidi Miyazawa [Orientador]
Cristina Gomes Fernandes
Eduardo Candido Xavier
Data de defesa: 17-06-2021
Programa de Pós-Graduação: Ciência da Computação

Identificação e informações acadêmicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0002-7505-5386
- Currículo Lattes do autor: http://lattes.cnpq.br/3025112976267292  

Powered by TCPDF (www.tcpdf.org)



Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Elisa Dell’Arriva

In-line Packing of Circles

Empacotamento de Círculos em Linha

Comissão Examinadora:

• Prof. Dr. Flávio Keidi Miyazawa
Universidade Estadual de Campinas

• Prof. Dr. Eduardo Candido Xavier
Universidade Estadual de Campinas

• Profa. Dra. Cristina Gomes Fernandes
Universidade de São Paulo

A ata da defesa, assinada pelos membros da Comissão Examinadora, consta no
SIGA/Sistema de Fluxo de Dissertação/Tese e na Secretaria do Programa da Unidade.

Campinas, 17 de junho de 2021



To José Luís, Josiane, Renata and Guilherme.



Acknowledgements

I shall start thanking my family; without them I would not be where I am today. I will be
forever grateful for having them in my life and for the immense support they have always
given me. Growing up, my patents used to tell me that working with what makes you happy
is something valuable. I am grateful for having had such opportunity. I thank my father for
instigating me to pursue something that makes me happy. He certainly loves his profession
and has always set an example for me. I thank my mother for putting so much effort into
ensuring that my siblings and I could go to university. I also thank her for taking me to
classes when I could not have done by myself. I thank my sister, for always being there for
me, showing support and encouragement so that I would keep going and face the difficult
times. Finally, I thank my brother, for all the shared moments (and for the not so little
amount of coffee). José Luís, Josiane, Renata and Guilherme, I truly love you.

Maria Esther, thank you for helping me grow. I am positive that without your influence
in my life, I would not have overcome several of the obstacles in my way.

I thank some special friends who have always been supportive of me during so many
outbursts. Milena, I thank you for caring so much and being there. Mayara, I thank you for
every and each moment of encouragement and for keeping reminding me that I am capable
of achieving my goals. Felipe, I thank you for the constant support. I thank Laura, for
helping me through the very first semester. I thank some friends from undergraduate. I
thank Mariane, who kept instigating me to pursue the so called academic career despite my
fears and doubts. I thank Lucas, for offering me support in a period where I found myself
quite ill. I thank Wilson and Priscilla, for so many times helping me with the bureaucracies.

I thank every teacher that, one way or another, contributed with my education. I want
to specially thank some of them who played crucial roles in my academic path so far. Chris,
I will never forget when, in the very first semester of my undergraduate, you one day made
time to talk to me about my insecurities. You offered me words of encouragement to keep
going. Several semesters ahead, you again showed me support and agreed to be advisor
in undergraduate. Lehilton, I thank you for also being my advisor in undergraduate. You
kept faith in my potential despite my difficulties and you have since then been available
to help me. I thank my advisor, Flávio, for granting me the opportunity of being one of
your students. I remember that, when I contacted you about your projects, I was behind
the expected schedule, but you still agreed to be my advisor. I was quite worried about
changing my research field this late. I worried that I would not be able to follow through
with the research, that I had not a strong enough background and things of sort. Despite
that, you was always patient and attentive. I can easily state that without such supportive
orientation, I would not have concluded my Masters with success. I thank Eduardo and
Cristina, for accepting to compose the evaluation board.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior - Brasil (CAPES) - Finance Code 001.



Resumo

Problemas de empacotamento têm muitas aplicações práticas. Eles podem ser usados para
modelar problemas como corte de materiais, armazenamento e transporte de mercadorias,
escalonamento de processos e alocação de anúncios e propagandas, entre outros. Nesta
dissertação, estamos interessados em problemas de empacotamento em que os objetos a
serem empacotados possuem formas geométricas bidimensionais. Em particular, abordamos
um problema que aqui chamamos de problema do Empacotamento de Círculos em Linha
(In-line Circle Packing (ICP)). Neste problema, temos como entrada uma lista de círculos e
queremos empacotá-los sobre uma linha horizontal de forma que cada círculo toque a linha
por cima em exatamente um ponto, sem causar sobreposição dos círculos. O objetivo é
minimizar o span do empacotamento, isto é, minimizar a distância entre o ponto mais à
esquerda e o ponto mais à direita do empacotamento.

Como acontece com a maioria dos problemas de empacotamento, o ICP é NP-difícil. Isso
significa que não existe algoritmo capaz de produzir uma solução ótima em tempo polino-
mial, a menos que P = NP. Sendo assim, uma forma natural de investigar esses problemas
é obter de forma eficiente soluções cujos valores estejam próximos do valor ótimo. Uma
abordagem nessa direção é a dos Algoritmos de Aproximação. Em termos gerais, algoritmos
de aproximação são algoritmos eficientes que produzem uma solução com garantia de qua-
lidade em relação à solução ótima, para todas as instâncias do problema. Neste trabalho,
estamos particularmente interessados em algoritmos de aproximação que produzem soluções
cujos valores estão dentro de um fator do valor de uma solução ótima. Apresentamos alguns
resultados encontrados na literatura para o ICP, como uma prova de sua NP-dificuldade e
um algoritmo de aproximação de fator constante. Mostramos um PTAS simples para uma
versão restrita do problema ICP, em que todos os círculos têm raio cujo valor é pelo me-
nos uma constante. Além disso, investigamos uma versão do ICP em bins, que chamamos
de problema do Empacotamento de Círculos em Linha em Bins (In-line Circle Bin Packing
(ICB)). Nesta versão, devemos empacotar os círculos dentro de bins e cada círculo deve tocar
o fundo da bin em exatamente um ponto. Mostramos um APTAS para esta variante restrito
a grandes círculos em bins aumentadas.



Abstract

Packing problems have many practical applications. They can be used to model problems
such as cutting stock, storage and transportation of goods, processes scheduling, and allo-
cation of advertisements, among others. In this dissertation, we are interested in packing
problems where the objects to be packed have two-dimensional forms. In particular, we
address a problem we call here In-line Circle Packing (ICP) problem. In this problem we
have as input a list of circles, and we want to pack the circles on a horizontal line in a way
that each circle touches the line from above at exactly one point, without causing overlap
of the circles. The goal is to minimize the span of the packing, i.e., minimize the distance
between the leftmost and the rightmost points of the packing.

As it happens with the majority of the packing problems, the ICP is NP-hard. This
means that there is no algorithm capable of producing an optimal solution in polynomial
time, unless P = NP. That being the case, one natural way to investigate these problems is to
efficiently obtain solutions whose values are close to the optimal value. One approach in this
direction is that of Approximation Algorithms. In general terms, approximation algorithms
are efficient algorithms that produce a solution with a guarantee of quality in relation to
the optimal solution, for every instance of the problem. In this work, we are particularly
interested in approximation algorithms that produce solutions whose values are within a
factor of the value of an optimal solution. We present some results found in the literature for
the ICP problem, such as a proof of its NP-hardness and a constant factor approximation
algorithm. We show a simple PTAS for a restricted version of the ICP problem, where all
circles have radius whose value is at least a constant. In addition, we investigate a version
of the ICP in bins, which we call the In-line Circle Bin Packing (ICB) problem. In this
version, we must pack the circles inside bins and every circle must touch the bottom of the
bin at exactly one point. We show an APTAS for this variant restricted to large circles in
augmented bins.
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Chapter 1

Introduction

The problems exploited in this dissertation are optimization problems of combinatorial na-
ture. We say an optimization problem is a problem where one aims to minimize or maximize
a function, which we call objective function. In this text, we call solution of an optimization
problem a set of attributes that satisfies all the restrictions of the problem, except maybe
by the objective function. We then say a solution is optimal if it satisfies all the restrictions
of the problem, including the objective function.

We are particularly interested in a class of problems referred to as packing problems.
Packing problems are quite useful, since they appear in several contexts in the commonly
said real-world applications. They can model problems from logistics and loading trucks and
shelves, to stock-cutting where large lengths of materials need to be sliced into smaller defined
shapes, to scheduling processes in shared machines or distributing time in commercial breaks
in television or spaces in websites, to resources allocation such as memory allocation, and so
on. It serves well to handle partition problems in general. However, packing problems are, in
majority, problems for which it is not known whether or not there exist efficient algorithms
capable of computing optimal solutions. It does not mean, though, that one should not give
such problems much attention. On the contrary, besides being convenient in applied fields,
they are also interesting problems from the theoretical perspective, in particular to design
and analysis of algorithms.

There are several versions of packing problems appearing in the literature. Here we cite
the bin packing, the strip packing and the knapsack problems. In the bin packing problem,
we have an unrestricted number of recipients, and the goal is to use the minimum number
of recipients to pack all items. In contrast to the bin packing, the strip-packing problem
has one recipient with one dimension not fixed and the goal is to pack every item as to
minimize the length used of the free dimension. Finally, in the knapsack problem, we have
one recipient with fixed dimensions and a function of values on the items, and the goal is
to pack a subset of items inside the recipient maximizing the total sum of the values of the
packed items.

The most classic packing problem is the one dimensional version of bin packing. In this
version the items are one-dimensional bars whose heights are in the interval (0, 1] and the
recipients are unit one-dimensional bars. The decision version of this problem is well known
to be NP-complete, while the optimization version is NP-hard. In fact, the optimization
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versions of all variants of packing problems mentioned above are NP-hard. The reductions
are usually from the partition problem, the subset sum problem or the numerical matching
problem. Therefore, unless P = NP, it is not likely to exist an efficient exact algorithm to
solve such problems. Since it is widely believed that P 6= NP, there are investigations on other
ways to approach NP-hard problems. They are basically four: i) we can focus on designing
exact algorithms that work well for small instances, despite not being polynomial, ii) we can
design algorithms that are exact and polynomial only for particular cases of the problem,
as in the field of parameterized algorithms, iii) we can invest in heuristics that seems to
work well in practice although without any guarantees, or iv) we can sacrifice optimality by
designing efficient algorithms capable of producing not an optimal solution, but a solution
whose value is close to the value of an optimal solution, for any instance of the problem. In
this dissertation, we exploit the last approach, more precisely, the field called Approximation
Algorithms.

Approximation Algorithms refer to algorithms that produce solutions which can be for-
mally compared to optimal solutions. In this dissertation, we work specifically with approx-
imation algorithms that compute solutions whose value is within a factor of the value of
an optimal solution. We refer to such factor as approximation factor. The beginnings of
Approximation Algorithms date to the 1960 decade, through the work of Graham [12] on
multiprocessors scheduling of tasks and factors that might trigger anomalies in the system.
Another work that is related to this theme is one of Erdös [8] on bipartite subgraphs. Latter,
Garey et al. [10] and Johnson [16] offered formal definitions for these ideas. Since then the
field of Approximation Algorithms has been widely studied in combinatorial optimization.
In 1981, Coffman et al. [4] published a survey specifically on approximation algorithms for
the one-dimensional bin packing problem. In 1984, the same authors [5] updated the survey
with many new results. Ideally, we aim to obtain solutions whose value is as close as possible
to the optimal value. That is where the concept of approximation scheme emerges. Given a
positive constant ε, we say an approximation scheme is a family of approximation algorithms
with approximation factor equals to 1 + ε. Traditionally, when speaking of approximation
algorithms, we speak of efficient algorithms, i.e., algorithms that run in polynomial time.
However, we sometimes may obtain algorithms that compute solutions whose value is close
to the optimal value in time greater than polynomial but still less than exponential. One
example is quasi -polinomial-time algorithms. We say PTAS for a polynomial time approxi-
mation scheme and QPTAS for a quasi -polinomial-time approximation scheme. One famous
and important result on approximation algorithms for packing problems is the asymptotic
PTAS proposed by de la Vega and Lueker [9], in 1981, for the one-dimensional bin pack-
ing problem. This work introduced a very useful technique called linear grouping, which is
considered a mark in the history of approximation algorithms for packing problems.

In this dissertation, we consider packing problems where the items are two-dimensional
geometric forms. In 2012, Allen and Iacono [19] showed that the problem of packing copies
of a smaller polygon, the items, inside a larger polygon, the recipient, is NP-hard. That is
an interesting result for its scope is general geometric forms. More specifically, the packing
problems regarded here are somewhat related to the versions of bins and strip. Classically,
the items, the bins and the strips are rectangles. In the two-dimensional bin packing problem,
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we have a list of small rectangles, the items, and an unrestricted number of unit squares, that
we call bins. The objective is to find a packing of all items into the minimum number of bins.
A packing here is a positioning of the rectangles in a way that every rectangle is entirely
contained inside the bins and there is no overlap among items. In the strip packing problem,
we have a list of rectangle as input as well as strip with fixed height and the objective is to
pack all circles minimizing the height of the strip. In 2014, Lodi et al. [17] gathered some
results for the two-dimensional bin and strip packings, though their concern is not only
approximation algorithms but heuristics and exact algorithms as well. In a survey of 2017,
Christensen et al. [3] consider approximation results for several versions and generalizations
of the bin packing problem. Some of these generalizations are the two-dimensional bin
packing, the strip packing and the knapsack problems. For the strip packing problem, there
is one classical result from 1997, which is a 2-approximation due to Steinberg [20]. In 2009,
Harren and van Stee [15] improved this factor to 1.9396. The best known result so far for the
two-dimensional strip packing is a (5/3 + ε)-approximation due to Harren et al. [14] in 2014.
In this dissertation, we are particularly interested in the case where the items are circles. In
2016, Miyazawa et al. [18] showed an asymptotic PTAS for circle packing into augmented
bins. The authors observed that such PTAS can be extended to circle packing into a strip.

The strip packing problem admits a variant where every circle must touch the bottom of
the recipient. Such variant is called level strip packing. Here the strip has fixed width and
free height. The objective then is to minimize the total height used to pack all items. A level
can be interpreted as a horizontal strip inside the strip but vertically bounded from above
and from below. The height of each level is given by the height of the largest item packed in
that level. The height of a level defines its upper bound. The lower bound is defined by the
upper bound of the previous level, that is, the level immediately below. The lower bound of
the first level is defined by the bottom of the strip. This variant can be applied, for instance,
in organization of objects in a shelf.

In this dissertation, we exploit one particular packing problem, which we called in-line
packing problem, that resembles the level strip packing problem. The in-line packing problem
is quite simple to formulate. From a very abstract view, we have a list of items and aim to
organize them over some horizontal surface, avoiding overlaps. We particularly considered
circles as the items and a horizontal line as the surface. Then, we wish to obtain a positioning
of every circle such that each one touches the line from above at exactly one point and there is
no overlaps among circles. The objective is to minimize the length or span of the packing, i.e.,
the distance from the leftmost to the rightmost points of the packing. Note that, although
the items are two-dimensional, this problem resembles a one dimensional packing, since the
position of every circle can be given by one coordinate. Figure 1.1 illustrates one example
of an in-line packing of circles on a horizontal line. Our work is based mainly on two other
works found in the literature. Alt et al. [1] studied the problem they called packing coins
on a shelf, which is basically the in-line packing problem for circles. They show the problem
is NP-hard and propose a greedy algorithm that is an approximation algorithm with factor
4/3. Dürr et al. [7] considered the problem of scheduling processes with different criticality
in a singular machine. As the authors themselves observe, this problem can be interpreted as
an in-line packing of triangles. They even refer to it as the triangle scheduling problem. In



13

Figure 1.1: Illustration of an in-line packing of Circles.

their case, the triangles are right and isosceles. They show the problem is NP-hard and offer
a 3/2 factor approximation algorithm. Furthermore, they show a QPTAS for the problem.

The remaining of this text is organized as follows. In Chapter 2 we introduce some
concepts and notation used further on. In Chapter 3 we present the NP-hardness proof of
the In-line Circle Packing problem, as showed by Alt et al. [1] in their work of 2018. Then, in
Chapter 4, we present some results found in the literature as well as the work of our project.
In the first section, we show the 4/3-approximation proposed by Alt et al. [1] for the in-line
circle packing. In the next section of this chapter, we show the QPTAS for the in-line circle
packing mentioned previously. This QPTAS is based on rounding and dynamic programming
and it is highly based on the QPTAS showed by Dürr et al. [7] for in-line packing of triangles,
also from 2018. In the last section of the chapter, we present an APTAS in augmented bins
for the bin packing version of the in-line circle packing, as well as a simple PTAS for the
in-line packing of circles when the size of the circles is lower bounded. Finally, in Chapter 5,
we offer some final remarks.
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Chapter 2

Preliminaries

In this chapter, we introduce formal definitions of the problems addressed later on this text,
as well as some general results regarding circles. Moreover, we present some basic concepts
of approximation algorithms.

In the context of the problems here discussed, we will use the xy-euclidean plane as refer-
ence. Given two points (x1, y1) and (x2, y2) in the plane we denote by dist((x1, y1), (x2, y2))
the euclidean distance between the points (x1, y1) and (x2, y2), i.e., dist((x1, y1), (x2, y2)) =√
(x2 − x1)2 + (y2 − y1)2. Furthermore, given a circle i, we denote its radius by ri and its

diameter by di. In many contexts along this text, we need to use ordered sets. In such cases,
we represent a set as a list, and so we apply the set notation and operators equally for lists
and sets.

2.1 Problems

If we observe the structure of a packing for the In-line Circle Packing problem, we notice
that the y-coordinate of a circle is given by its radius. Therefore, to represent an in-line
packing it is sufficient to know the x-coordinate of the center of each circle. Then, we offer
a standard notation for such point.

Definition 1. Given a list L of circles and an in-line packing P of L, the base position of
a circle i in P, denoted by P(i), is the point where i touches the x-axis.

In the following, we present a formal definition of an in-line packing. Without loss of
generality, if not mentioned otherwise, the input list will have circles with radius at most 1.

Definition 2. Given a list L of circles, each circle i ∈ L with radius ri, and the x-axis of
the euclidean plane, an in-line packing of L is a function P : L→ Q respecting the following
restrictions:

• P(i)− ri ≥ 0;

• dist((P(i), ri), (P(j), rj)) ≥ ri + rj, for 1 ≤ i 6= j ≤ n.
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Without loss of generality, we consider that the leftmost point of a packing P has its x-
coordinate equals to 0, i.e., min{P(i) − ri : i ∈ L} = 0. Then, we define the size of the
packing P as max{P(i) + ri : i ∈ P}, and we denote it by |P|.

The first constraint guarantees that every circle lies entirely on the non-negative x-axis,
while the second constraint guarantees that there is no overlap between every two circles.
Now we can formally state the optimization version of the In-line Circle Packing problem.

Problem 1 (In-line Circle Packing (ICP)). Given a tuple (L, r) where L is a list of circles
and r a function of their radii, find an in-line packing of L of minimum size.

Although the input list of circles is given together with the radii of the circles, throughout
the text we switch between radius and diameter as it becomes more convenient. In some
occasions, we have two or more lists of circles and we want to unify them. Given two lists L1

and L2 of circles, the concatenation of L1 and L2, denoted by L1‖L2, is the list L containing
all circles of L1 and all circles of L2. Similarly, in some contexts we might have two or more
packings and we wish to join them together, obtaining then one final packing. One way to
do that is to sequentially add one packing to the end of the other.

Definition 3. Given two in-line packings P1 and P2, the concatenation of P1 and P2 is a
packing P obtained by adding P2 at the end of P1 as much to the left as possible without
causing overlaps. We denote P = P1‖P2.

Based on the idea of an in-line packing, we propose a slightly different version of the two-
dimensional bin-packing problem, which we call In-line Circle Bin Packing. In the classic
version of the problem, we have a list of items, in this case we will consider circles, and we
want to pack all the items into bins minimizing the number of bins used in the packing.
For the ICB problem we have the same input and objective as in the classical bin packing,
but there is an additional constraint: every item must touch the bottom of the bin where
it is packed at exactly one point. In the following, we present a formal definition of what
characterizes a packing in this context.

Definition 4. Given a tuple (L, r) where L is a list of n circles and r : L → (0, 1] is a
function of the radii, an in-line bin packing is a partition of L into sublists L1, . . . , Lm, and
in-line packings Pi for each Li such that |Pi| ≤ 2, for i = 1, . . . ,m. We define the size of
the in-line bin packing P, denoted by |P|, as the number of parts m.

Previously, we discussed the In-line Circle Packing problem where the objective is to
obtain an in-line packing of minimum size. In the In-line Circle Bin Packing problem, we
want in-line packings, each one inside one bin. Consequently, each in-line packing must have
size at most two, and instead of touching the x-axis, here the circles must touch the bottom
of the bin. A formal definition of the problem is given below.

Problem 2 (In-line Circle Bin Packing (ICB)). Consider a list L of n circles. Given a tuple
(n, r) where r : [n]→ (0, 1] is a function of the radii of the circles, and bins B of capacity 2,
find an in-line bin packing P of L into bins B that minimizes the size of P.
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Figure 2.1: Illustration of the In-line Circle Bin Packing problem.

Figure 2.1 shows an example of the In-line Bin Packing problem. In some contexts it
might be convenient to use bins of certain size different than 2. In such cases, we add a
parameter W to the problem, which is the width of the bins. Then the instance becomes a
tuple (L, r,W ), where W is the width of the bins.

2.2 Notation and General Results

In this section, we introduce some basic notation that is used throughout this text. We
remind the reader that, although the input list of circles is given together with the radii of
the circles, we switch between radius and diameter as it becomes more convenient. Also,
when convenient, we represent an in-line packing by a list of the circles in the packing sorted
in increasing order of base positions, from left to right. We alert the reader that this is for
the sole purpose of a simpler notation, since we need not only the radii of the circles but
also their base positions in order to reconstruct a packing. A more detailed discussion on
this topic is offered in Chapter 3. Besides the base positions, we might sometimes need to
refer to the two extremes of the packing as well.

Definition 5. Given an in-line packing P, the left (right) boundary of P is the x-coordinate
of the vertical line that crosses the leftmost (rightmost) point of P. We denote the leftmost
point of P by `P and the rightmost point of P by aP .

In Figure 2.2, we illustrate these basic notations. Now suppose we have two consecutive
circles in the packing. Then, there is a space between them where some other circles could
be packed in. We refer to such space as a gap.

Definition 6. Given a list L of circles and an in-line packing P of L, let i and j be two
consecutive circles in P. Then a gap between i and j, denoted by gap(i, j), is a tuple

(ri,P(i), rj,P(j)).

The value of a gap between i and j is the distance between the base positions of i and j, i.e.,

gap(i, j) = dist(P(i),P(j)).

Given two circles i and j, we say a circle k fits in the gap gap(i, j) if k can be packed in
the space between i and j without causing any overlaps nor any increase in the size of the
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i

j
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right boundary
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Figure 2.2: Illustration of some basic notations.

packing. Now before we go further, we need some preliminary lemmas regarding geometric
properties of circles. A sketch of the calculations from the lemmas presented ahead is shown
in Figure 2.3.

Lemma 2.1. If two circles i and j touch each other in an in-line packing, then the distance
between their base positions is 2

√
ri
√
rj.

Proof. If ri = rj then the distance between i and j is 2ri = 2
√
ri

2 = 2
√
ri
√
ri, and the

result follows. Suppose, without loss of generality, that ri > rj and that i is to the left of j.
Consider the right triangle with hypotenuse ri + rj. By the Pythagorean Theorem we have
that the distance between i and j is

√
(ri + rj)2 − (ri − rj)2 =

√
4rirj = 2

√
ri
√
rj.

The following lemma gives us a relation between a gap and the size of the largest circle
that fits in that gap.

Lemma 2.2. Let k be a largest circle that fits between two touching circles i and j. Then
1
√
rk

=
1
√
ri

+
1
√
rj
.

Proof. We know k is the largest circle that fits in the gap between i and j so k must touch
both i and j. Without loss of generality, suppose i is to the left of j. Then the distance
between i and j is equal to the distance between i and k plus the distance between k and j.
By Lemma 2.1 we have 2

√
ri
√
rj = 2

√
ri
√
rk + 2

√
rk
√
rj. From that we obtain the relation

1
√
rk

=
1
√
ri

+
1
√
rj
.

Finally, we consider the case where a circle is touching one of the boundaries of the
packing. The following lemma contemplates the case of the left wall; the case of the right
wall is analogous.

Lemma 2.3. Let k be a largest circle that fits between the left wall and a circle i touching
that wall. Then

√
rk = (

√
2− 1)

√
ri.
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Figure 2.3: Illustration for Lemmas 2.1, 2.2 and 2.3, respectively from left to right.

Proof. We know k must be touching both i and the left wall. Then the distance between
the left wall and the base position of i is its radius. Moreover, the distance between i and k
plus the radius of k is equals to the radius of i. By Lemma 2.1 we have ri = 2

√
ri
√
rk + rk.

From that we obtain the relation
√
rk = (

√
2− 1)

√
ri.

2.3 Approximation Algorithms

In this section, we offer some basic concepts of approximation algorithms. They are neces-
sary to a better understanding of the remaining of the text. In this dissertation we regard
approximation algorithms whose solutions are within a factor of the value of an optimal
solution. Moreover, the problems considered here are minimization problems, so we present
the definitions accordingly. The definitions for maximization problems are analogous.

Definition 7. Let A be an algorithm, and let I be an instance of A. We denote by A(I) the
value of the solution produced by A for I, and by OPT(I) the value of an optimal solution
for the instance I. Then A is an approximation algorithm with approximation factor α ≥ 1

if for any instance I we have A(I) ≤ αOPT(I).

Ideally, we want to be as close to the optimum as possible. There is another type of
approximation algorithms where the approximation factor is not absolute, but instead it
depends on another constant, which we commonly refer to as ε. In this case, the algorithm
has as input an instance of the problem together with a positive constant ε, and the solution
produced has a value within a factor of 1+ ε of the optimal value. Note that, in a sense, we
have not only one algorithm, but a family of approximation algorithms. This concept, of a
family of (1 + ε)-approximation, is known as approximation scheme.

Definition 8. A polynomial-time approximation scheme (PTAS) is a family of polynomial-
time algorithms {Aε}, in which there is an algorithm Aε for every ε > 0 such that, for every
instance I, it holds that Aε(I) ≤ (1 + ε)OPT(I).

Although the definition of a PTAS implies that we have a (1 + ε)-approximation, in
some cases, we might actually prove a (1 + O(ε))-approximation. Despite the fact that
approximation algorithms are defined as polynomial time algorithms, we have found in the
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literature some “approximation schemes” that do not achieve such time complexity. One
example is quasi -polinomial time, i.e., 2O(logc n), for some constant c, algorithms. In this
text, we say approximation algorithms for algorithms that produce a solution whose value
is within a factor of the optimal values, regardless of its time complexity. The same idea
holds for approximation schemes. The motivation behind this abuse of formality is the fact
that logarithmic order is close to polynomial order. It is closer to polynomial order than
it is to exponential order, for instance. In the following, we bring a formal definition of an
approximation scheme in quasi -polinomial time.

Definition 9. A quasi-polynomial-time approximation scheme (QPTAS) is a family of
quasi-polinomial-time algorithms {Aε}, in which, for every ε > 0 and for every instance
I, it holds that Aε(I) ≤ (1 + ε)OPT(I).

In the context of approximation algorithms, we frequently have algorithms with asymp-
totic approximation factors. We say an approximation algorithm has asymptotic approxima-
tion factor α if, for every instance I, it holds that limOPT(I)→∞A(I)/OPT(I) ≤ α. We then
say that A is an asymptotic approximation algorithm. A simpler way to describe an asymp-
totic approximation factor is stating that A(I) ≤ αOPT(I) + λ for instance I, where λ is a
positive constant. We can also have asymptotic approximation schemes, i.e., approximations
of the form (1 + ε)OPT(I)± λ, where λ is a positive constant.

Definition 10. An asymptotic polynomial-time approximation scheme (APTAS) is a family
of polynomial time algorithms {Aε}, in which there is an algorithm Aε for every ε > 0 such
that, for every instance I, it holds that Aε(I) ≤ (1 + ε)OPT(I) + λ, where λ is a positive
constant.

Both schemes we presented so far are good results, however, the running time depends
arbitrarily on ε. Then, as the value of ε decreases, the constant behind the running time
of the algorithm may increase too much. So it is desirable that the running time of the
algorithm could be polynomial not only on the size of the instance, but also on 1/ε.

Definition 11. A fully polynomial-time approximation scheme (FPTAS) is family of algo-
rithms {Aε}, in which there is an algorithm Aε, polynomial on the size of the instance and on
1/ε, for every ε > 0, and such that, for every instance I, it holds that Aε(I) ≤ (1+ε)OPT(I).



20

Chapter 3

NP-hardness

In the first section of this chapter we present a proof of the NP-hardness of the In-line Circle
Packing (ICP) as well as a brief comment about some hints on the difficulty of proving
whether or not it is in NP. In the second section we present a proof of the NP-hardness of
the In-line Circle Bin Packing (ICB), which is heavily based on the proof shown for the ICP.

3.1 NP-hardness of the In-line Circle Packing problem

Here we discuss the complexity of the In-line Circle Packing (ICP) problem. Recall that an
in-line packing is given by a function whose domain is the input list of circles and the image
is a set of rational numbers. Note that the ICP problem may not admit optimal solutions
whose base positions are all rational. For example, if we have only two circles: circle i of
radius 2 and circle j of radius 1. Then there are two possible optimal packing: a packing P1

where i is the first circle and j is touching i, and a packing P2 where j is the first circle and
i is touching j. In the first packing we have P1(j) = 2 + 2

√
2, while in the second packing

we have P(i) = 1 + 2
√
2. This implies that the base positions of optimal solutions may be

irrational, which in turn gives some insight into the difficulty that is to compare the sizes of
two packings, as we still do not know how to perform basic operations and comparisons with
irrational numbers. For instance, suppose we have n circles and a sequence p1, . . . , pn of the
order in which the circles were packed, where pi is the base position of the i-th circle in the
packing, from left to right. Without loss of generality, we refer to the circle at position pi as i,
and therefore it has radius ri. Each base position pi can be written in the form a+b

√
c, where

a, b, and c are rational numbers. By Lemma 2.1, the distance between the base positions of
two touching circles i and j is given by 2

√
rirj. Thus, to obtain the size of a packing, we

could go through the circles of the packing that touch each other, starting from the circle
that defines its left boundary, and repeatedly sum the distance between the previous and the
current circles. We repeat this until we reach the circle that defines the right boundary of
the packing. However, this process descends to a case of the problem of sum of square roots,
which is still an open problem. Although this does not prove that both problems have the
same complexity, it does give us some hints that calculating the size of a packing in the way
we described may be as hard as the sum of square roots. We did not find in the literature
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any works proposing a valid certificate for the problem, therefore we do not know if the ICP
problem is in NP. Nonetheless, Alt et al. [1] proved that the ICP problem is NP-hard. In
the following, we present the reduction they showed.

Problem 3 (CirclesInLine). Given a list C of n circles 1, . . . , n with rational radii and
a rational constant δ > 0, is there an in-line packing of C of span at most δ?

The polynomial reduction is from the 3-Partition Problem [11], described below, to the
ICP problem.

Problem 4 (3-Partition). Given a multiset S of 3m integers s1, . . . , s3m and an integer T
such that

∑3m
i=1 si = mT and T

4
< si <

T
2
, is there a partition of S into m triplets S1, . . . , Sm

such that
∑

s∈Sj
s = T , for j = 1, . . . ,m?

Given an instance (S, T ) of 3-Partition, we construct an instance (C, δ) of CirclesIn-
Line. We create C consisting of some circles whose radii are fixed and other circles whose
radii depends on the values of the elements in S. The idea is to strategically define values
for δ and the radii in a way that, except for symmetry, there is only one packing of span
equal to δ, when considering only the fixed radii circles. Such unique packing presents a
certain pattern that is repeated m times. In each repetition of the pattern it is possible to
pack three circles corresponding to three elements of S. Then each repetition of the pattern
represents a triplet. For the purpose of simplifying some calculations, we define the size of
a circle i as the square root of its radius. Based on (S, T ), we create 9m+11 circles of fixed
size, and a corresponding circle for each si ∈ S, giving us a total of 12m + 11 circles. The
size of the packing must be δ = 2(m+ 1), and the radii are determined as follows, in terms
of their size.

Definition 12. Given an instance (S, T ) of the 3-Partition problem, consider an instance
of the CirclesInLine problem as follows. Set δ equals to 2(m + 1), and create 12m + 11

circles distributed in six different types, as described below.

i) Outer frame circles: m+ 1 circles of size 1;

ii) inner frame circles: 4(m+ 1) circles of size z0 =
33

100
= 0.33;

iii) large filler circles: 2(m+ 1) circles of size z1 =
z0

1 + z0
=

33

133
≈ 0.24812;

iv) small filler circles: 2(m+ 1) circles of size z2 =
z1

1 + z1
=

33

166
≈ 0.198795;

v) end circles: 2 circles of size z3 =
1− z20 − 2z0

4z0
=

2311

13200
≈ 0.175076;

vi) partition circles: 3m circles 1 . . . 3m with sizes ti =
17

99

(
3si
100T

+
99

100

)
.
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a) Outer gap pattern. b) Right end pattern.

c) Example of a packing with m = 3.

Figure 3.1: Illustration of the unique pattern of a packing with span 2(m+ 1).

The purpose of the outer frame circles is to guarantee that we have a packing of size at
least 2(m + 1). The remaining circles are defined so that all of them can be packed in the
spaces between outer frame circles. We also need to assure that between two consecutive
outer frame circles there are exactly three partition circles, and to achieve that we must use
the inner frame, small filler and large filler circles to fill in the spaces between outer frame
circles. Figure 3.1 illustrates this idea. We observe that an instance of CirclesInLine
created as described in Definition 12 is a valid instance and can be obtained in polynomial
time. The construction is linear on m, and all circles in C have rational sizes and δ is also a
rational number. Thus, (C, δ) meets the criteria for an instance of CirclesInLine.

Once we have created an instance of CirclesInLine, it remains to show that (S, T ) is
a YES instance for 3-Partition if and only if (C, δ) is a YES instance for CirclesInLine.
Prior to this, however, we need to present a sequence of lemmas. Let P be an optimal in-line
packing of C. As mentioned previously, an optimal packing follows a very specific structure
(that is proved further on the text). The largest circles in C are the outer frame circles and
they have size 1. Since there are m + 1 of them, the size of P is at least 2(m + 1). Then a
packing of C of size equal to 2(m+1) requires that i) every two consecutive outer frame circles
touch each other, and ii) that all the remaining circles fit into the free spaces between pairs
of consecutive outer frame circles. We call outer gap the space between the base positions
of two consecutive outer frame circles, left end the space to the left of the base position of
the leftmost circle and right end the space to the right of the base position of the rightmost
circle. For the sole purpose of simplicity, whenever regarding the ends we use the right end
as reference. All arguments are analogous for the left end, except if otherwise expressed.
We start by packing only the outer and filler circles. The partition circles will be added to
the packing once the outer and filler circles were already packed. From now on we might
sometimes need to refer to a sequence of circles where the importance lays on their sizes,
not on the circles themselves. For that we define a sequence of sizes as the representation



23
of a sequence of circles by their sizes. For example, suppose we have a list C of circles
c1, c2, c3, c4, c5 with sizes 1, 1, 2, 3 and 2, respectively; if the sequence P = (c1, c4, c2, c3, c5)

represents a packing of C, then (1, 3, 1, 2, 2) is a sequence of sizes of P . We say P has span
α if the size of the packing represented by P is α.

Lemma 3.1. There is only one possible packing of the frame and filler circles of size 2(m+1),
except for symmetries.

Such unique packing consists of all outer frame circles packed side by side so that ev-
ery two consecutive circles touch. Then in each outer gap, there is a sequence of sizes
(z2, z1, z0, z0, z0, z0, z1, z2). In the left end, there is a sequence of sizes (z0, z0, z1, z2), and in
the right end, there is a sequence of sizes (z2, z1, z0, z0). Figure 3.1 illustrates such patterns.
In order to prove that such structure is the same for every packing of span 2(m+1), we show,
through a sequence of claims, that all other possibilities yield a packing of larger span. As
argued previously, the outer frame circles must be packed side by side and such that every
two consecutive circles touch each other. So we suppose the outer frame circles are packed in
this way, and analyze ways to add the remaining (inner frame and filler) circles to a packing
of only the outer frame circles.

Claim. Each outer gap contains four inner frame circles and each end contains two inner
frame circles.

Proof. We show that for an optimal packing to have size 2(m+1), we cannot have more than
four inner frame circles (the ones of size z0) in an outer gap. Since the size of an outer frame
circle is 1, the span of each outer gap is 2. Suppose there is one outer gap containing five
inner frame circles. The span of a sequence of sizes (1, z0, z0, z0, z0, z0, 1) is 4z0+8z20 = 2.1912.
That implies the two outer frame circles forming the outer gap do not touch, a contradiction.
However, the span of the sequence (1, z0, z0, z0, z0, 1) is 4z0+6z20 = 1.9734, implying that we
can pack up to four inner frame circles in an outer gap. Now we consider the left and right
ends. The total span of the inner frame circles packed in each of the ends has to be at most 1,
otherwise the total span of the packing would be greater than 2(m + 1). The spans of the
sequences of sizes (1, z0, z0, z0) and (1, z0, z0) are 2z0 + 5z20 = 1.2045 and 2z0 + 3z20 = 0.9867,
respectively. This in turn implies that we can pack up to two inner frame circles in the right
end. Analogously, the same holds for the left end.

Finally, because there is a total of 4(m+ 1) inner frame circles to be distributed among
m outer gaps and two ends, it can be inferred that each outer gap contains exactly four inner
frame circles and each end contains exactly two inner frame circles.

So far, we have packed the outer and inner frame circles. Now, we add the filler circles
to the current packing. We start with the large filler circles. By definition, a large filler
circle has the radius of a largest circle that fits between an outer frame circle and an inner
frame circle that touch each other. This follows directly from Lemma 2.2. We show that,
in an outer gap, there is only two spaces where packing a large filler circle does not increase
the total span. Moreover, we show that each outer gap must contain exactly two large filler
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Table 3.1: Impossible packings of a large filler circle.

Place Sequence of sizes Span

Outer gap (1, z0, z1, z0, z0, z0, 1) 2.08312
(1, z1, z1, z0, z0, z0, z0, 1) 2.09653

Right end (1, z0, z1, z0) 1.09642
(1, z1, z1, z0, z0) 1.10983
(1, z0, z0, z1) 1.00845

circles. Similarly, in each end, there is only one way to pack a large filler circle without
causing any increase in the total span, and each end contains exactly one large filler circle.

Claim. Each outer gap contains exactly two large filler circles and each end contains
exactly one large filler circle.

Proof. We want to show that the only space where a large filler circle can be packed without
increasing the total span is the space between an outer frame circle and an inner frame
circle. Let us consider the other possibilities. First, suppose a large filler circle is packed
between two inner frame circles. Without loss of generality suppose the large filler circle
was packed between the first two inner frame circles. Then we have a sequence of sizes
(1, z0, z1, z0, z0, z0, 1) which has span 4z0 + 4z0z1 + 4z20 = 2.08312, implying a total span
larger than 2(m+1). Now suppose we pack two large filler circles consecutively. We already
know they cannot be between two inner frame circles, so they must be between an outer
frame and an inner frame. Without loss of generality, we would have a sequence of sizes
(1, z1, z1, z0, z0, z0, z0, 1). Such sequence has span 2z1 + 2z21 + 2z1z0 + 6z20 + 2z0 = 2.09653,
implying a total span larger than 2(m + 1). Lastly, suppose one large filler circle is packed
between an outer frame circle and an inner frame circle. Since a large filler circle fits in this
space, the total span remains the same. Hence this is the only space where we can pack a
large filler circle, entailing that each outer gap contains at most two circles of this type.

The analysis is analogous with the ends. The only space where a large filler circle can
be packed in the ends is between an outer frame circle and an inner frame circle, entailing
that each end can contain at most one large filler circle. Since there are 2(m + 1) large
filler circles, each outer gap must contain exactly two large filler circles, and each end must
contain exactly one large filler circle.

Table 3.1 summarizes the impossible packings of a large filler circle inside an outer gap
and in the right end. Finally, we now analyze the packing of the small filler circles. By
definition of its size, a small filler circle is a largest circle that fits between an outer frame
circle and a large filler circle. We show that this is the only space where a small filler circle
can be packed without increasing the total span. In addition, we ascertain that each outer
gap contains exactly two small filler circles and each end contains exactly one small filler
circle. The proof follows the same reasoning used for determining the packing of the large
filler circles.
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Table 3.2: Impossible packings of a small filler circle.

Place Sequence of sizes Span

Outer gap (1, z0, z2, z0, z0, z0, 1) 2.01801
(1, z1, z2, z0, z0, z0, z0, 1) 2.03949
(1, z2, z2, z1, z0, z0, z0, z0, 1) 2.05244

Right end (1, z0, z2, z0) 1.03131
(1, z1, z2, z0, z0) 1.05279
(1, z0, z0, z2) 1.04852
(1, z2, z2, z1, z0, z0) 1.06574

Claim. Each outer gap contains exactly two small filler circles and each end contains
exactly one small filler circle.

Proof. Firstly, we regard the cases in an outer gap. Suppose a small filler circle is packed
between an outer frame circle and a large filler circle. Since it fits in this space, the total
span does not change. Now we consider the remaining possibilities of how to pack a small
filler circle. Packing a small filler circle between two inner frame circles gives us a sequence
of sizes (1, z0, z2, z0, z0, z0, 1), which has span 4z0 + 4z0z2 + 4z20 = 2.01801, implying a total
span larger than 2(m + 1). Now if we pack a small filler circle between a large filler circle
and an inner frame circle, we obtain a sequence of sizes (1, z1, z2, z0, z0, z0, z0, 1). The span
is 2z1+2z1z2+2z2z0+6z20 +2z0 = 2.03949, also implying a total span larger than 2(m+1).
Lastly, if we pack two small filler circles consecutively, then we have a sequence of sizes
(1, z2, z2, z1, z0, z0, z0, z0, 1), which has span 2z2 + 2z22 + 2z2z1 + 2z1z0 + 6z20 + 2z0 = 2.05244,
again implying a total span larger than 2(m+1). These restrictions impose that each outer
gap must contain at most two small filler circles. For the cases of both the right and the left
ends the proof is analogous, entailing that each end must contain at most one small filler
circle. To conclude, because we have 2(m + 1) small filler circles, m outer gaps and two
ends, we can infer that each outer gap contains exactly two small filler circles and each end
contains exactly one small filler circle.

Table 3.2 summarizes the ways we cannot pack a small filler circle without increasing the
total span. The sequence of three claims presented previously proves Lemma 3.1.

Up to this point we have a packing of the outer and filler circles, of size 2(m+1). It remains
to pack the end and partition circles in the spaces remaining in the packing constructed so
far. In order to know whether or not an end or partition circle fits in a certain gap, we
must analyze their size. The end circles have fixed size equals to 0.175076. The sizes of the
partition circles, however, vary according to the values of the multiset S from the input of the
3-Partition problem. By definition of the problem, we have 1

4
< si

T
< 1

2
for every element

si ∈ S. This restriction gives us bounds on the sizes, given in Definition 12, item (iv), of the
partition circles. Thus, for every i = 1, . . . , 3m, we have

0.17129 ≈ 17

99

(
3

400
+

99

100

)
< ti <

17

99

(
3

200
+

99

100

)
≈ 0.17257.



26
The idea is to pack three partition circles in each outer gap, each one of these three

between two inner frame circles, and to pack one end circle at each end, also between two
consecutive inner frame circles. However, by Lemma 2.2, the largest circle that fits between
two inner frame circles has size z0/2 = 0.165. Hence, neither the end circles nor the partition
circles fit between two inner frame circles. Nonetheless, we may still be able to pack the
circles as described previously by allowing the inner frame circles to be shifted to the right
by a small amount when a partition circle is added. This is possible because the sequence
of sizes (1, z0, z0, z0, z0, 1) has span 1.9734 < 2. Thus, the inner frame circles are not “tight”
in the space between two outer frame circles. The following lemma gives us a bound on the
sum of the size of three partition circles so that they can be packed in an outer gap, each
between two consecutive inner frame circles, without increasing the total size of the packing.

Lemma 3.2. Let i, j and k be three partition circles. Packing i, j and k in a common outer
gap, each between two consecutive inner frame circles does not increase the total size of the
packing if and only if ti + tj + tk ≤ 17

33
.

Proof. Due to its size, a partition circle packed in a gap between two inner frame circles
must touch both circles forming that gap. Then, we have a packing represented by the
sequence of sizes (1, z0, ti, z0, tj, z0, tk, z0, 1) whose span is 4z0 + 4z0ti + 4z0tj + 4z0tk. The
suggested packing does not increase the total span if 4z0(ti + tj + tk + 1) ≤ 2, which implies
ti + tj + tk ≤ 17

33
, proving the lemma.

As for the left and the right end, we wish to pack an end circle, also between two
consecutive inner frame circles, in each end. The following lemma gives us a bound on the
size of a circle so that it can be packed in one of the ends without increasing the total size
of the packing.

Lemma 3.3. Packing a circle i of size zi between two consecutive inner frame circles in the
right or the left end increases the total span if and only if zi > 2311

13200
.

Proof. If zi ≤ z0/2, then i fits between two consecutive touching inner frame circles, hence
the total span does not change. Suppose now that zi > z0/2. Then we have a sequence of
sizes (1, z0, zi, z0) where every two consecutive circles touch each other. For the total span to
increase, we must have 2z0+4z0zi+z

2
0 > 1, which implies zi > 2311

13200
, proving the lemma.

Having knowledge of these bounds, we shall see that if we pack an end circle between two
inner frame circles in the end, then the total size of the packing does not increase. Similarly,
if we pack three partition circles in an outer gap, each between two consecutive inner frame
circles, then the total size of the packing also does not increase. More specifically, we show
that each end can contain up to one end circle and that each outer gap can contain up
to three partition circles. The idea is to analyze all different ways how to pack an end or
partition circle and discard the ones that yield a sequence with span greater than two in the
outer gaps, or greater than one in the ends. Table 3.3 summarizes the impossible packings
of an end circle while Table 3.4 summarizes the impossible packings of a partition circles.

Claim. In each end it is possible to pack at most one end or partition circle without
increasing the total span.
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Table 3.3: Impossible packings of an end circle.

Place Sequence of sizes Span

Outer gap (1, z3, z3, z2, z1, z0, z0, z0, z0, 1) 2.05687
(1, z2, z3, z1, z0, z0, z0, z0, 1) 2.03124
(1, z1, z3, z0, z0, z0, z0, 1) 2.01207
(1, z0, z3, z3, z0, z0, z0, 1) 2.04800
(1, z3, z2, z1, z0, z3, z0, z0, z0, 1) 2.00887
(1, z3, z2, z1, z0, z0, z0, z0, z1, z2, z3, 1) 2.01774

Right end (1, z3, z2, z1, z0, z0) 1.00887
(1, z2, z3, z1, z0, z0) 1.04454
(1, z1, z3, z0, z0) 1.02537
(1, z0, z3, z3, z0) 1.06130
(1, z3, z2, z1, z0, z3, z0) 1.01458
(1, z0, z0, z3) 1.02400

Proof. We analyze every possibility. Let i and j be two partition circles of size ti and tj,
respectively. Then the size of i and j is bounded by 0.17129 < ti, tj < 0.17257. Consider
packing the partition circle i between an outer frame circle and a small filler circle. By
Lemma 2.2, the largest circle that fits in such space has size 33/199 ≈ 0.16583. Hence i does
not fit in this space, so in the packing represented by a sequence of sizes (1, ti, z2, z3, z0, z0),
every two consecutive circles are touching each other. The span of this sequence is at least
0.99977 and at most 1.00286, implying that there might be a partition circle which can be
packed in this space. However, we cannot have two consecutive partition circles, say i and j,
in this space, since the span of the sequence of sizes (1, ti, tj, z2, z3, z0, z0) is at least 1.05844.
Likewise, we cannot have a partition circle followed by an end circle, because the sequence
of sizes (1, ti, z3, z2, z1, z0, z0) has span at least 1.06125.

Now consider packing the partition circle i between two consecutive inner frame circles.
Since i does not fit in this space, then i touches both circles, and so we have a sequence of
sizes (1, z0, ti, z0) whose span is at most 0.99669. Therefore, we can pack i in such space.
Again, we cannot have two consecutive partition circles in this space, since a sequence of
sizes (1, z0, ti, tj, z0) is at least 1.05366. There is still the possibility of packing one partition
circle in each of the two places where it fits, i.e., a sequence of sizes (1, ti, z2, z1, z0, tj, z0). Its
span is at least 1.00806, causing increase in the total size of the packing. See the bottom of
Table 3.4 for the impossible placements of a partition circle in the right end.

For the end circles, the proof follows the same steps, with exception of the fact that a
sequence of sizes (1, z3, z2, z1, z0, z0) yields a span 1.00887, so an end circle cannot be packed
between an outer frame circle and a small filler circle. As a consequence, in both ends, an
end circle can only be packed between two inner frame circles, and we cannot have more
than one end circle. We conclude, then, that in each end it can be packed up to one partition
circle or one end circle, and the result follows.

Claim. In an outer gap it is possible to pack at most three partition or at most two end
circles without increasing the total span.
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Proof. We start the analysis with the partition circles. Let i, j and k be three partition
circles. There are four spaces where we can place i, j and k. We analyze every possibility
dividing in four cases.

Case 1: packing i between an outer frame circle and a small filler circle. Since i does not fit in
this space, it follows that i touches both the outer frame and the small filler circles. Then the
sequence of sizes (1, ti, z2, z1, z0, z0, z0, z0, 1) has span 2ti+2tiz2+2z2z1+2z1z0+6z20+2z0, which
is greater than 1.98647 and lesser than 1.98956. So placing one partition circle in this space
does not cause the total span to increase. However, there cannot be two consecutive partition
circles, say i and j, in this space, because the sequence of sizes (1, ti, tj, z2, z1, z0, z0, z0, z0, 1)
has span greater than 2.04514.

Case 2: packing i between a small filler circle and a large filler circle. The sequence of sizes
(1, z2, ti, z1, z0, z0, z0, z0, 1) has span greater than 2.02784, therefore no partition circle can be
placed in this space.

Case 3: packing i between a large filler circle and an inner frame circle. The sequence of
sizes (1, z1, ti, z0, z0, z0, z0, 1) has span greater than 2.00768, therefore no partition circle can
be placed in this space.

Case 4: packing circle i between two consecutive inner frame circles. In this case, the
sequence (1, z0, ti, z0, z0, z0, 1) has span 4z0 + 4z0ti + 4z20 , which is greater than 1.98169 and
lesser than 1.98339. As a consequence, we can pack one partition circle in this space without
causing increase in the total size of the packing. Again, we cannot place two consecutive
partition circles, say i and j, in this space, because the sequence (1, z0, ti, tj, z0, z0, z0, 1) has
span at least 2.04036. This implies that between two inner frame circles at most one partition
circle can be packed.

Now that we know where one partition circle can be packed we analyze how to pack three
of them. Consider packing one partition circle between an outer frame circle and a small filler
circle, and two partition circles each between two consecutive inner frame circles. This give
us a sequence of sizes (1, ti, z2, z1, z0, tj, z0, tk, z0, z0, 1), which has span greater than 2.00305.
Now consider packing two partition circles between an outer frame circle and a small filler
circle, and one partition circle between two consecutive inner frame circles. The span of
the sequence (1, ti, z2, z1, z0, z0, tj, z0, z0, z1, z2, tk, 1) is greater than 2.00783. Finally, consider
three partition circles, each packed between two consecutive inner frame circles. The span
of the sequence of sizes (1, z0, ti, z0, tj, z0, tk, z0, 1) is at least 1.99823, meaning that there
might exist three partition circles that can be placed in this space without increasing the
total size of the packing. Such sequence has span at most 2.00338, but this does not exclude
the possibility of having three partition circles that can be packed in this space without
increasing the total span. By Lemma 3.2, if ti + tj + tk < 17/33, then the span of the
sequence of sizes (1, z0, ti, z0, tj, z0, tkz0, 1) is at most 2. We then conclude that it is possible
to pack at most three partition circles in an outer gap, and moreover, if we place exactly
three, then each must be between two consecutive inner frame circles.

Finally, we now analyze the end circles. Akin to the case of partition circles discussed
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Table 3.4: Impossible packings of partition circles.

Span

Place Sequence of sizes At least At most

Outer gap (1, ti, tj, z2, z1, z0, z0, z0, z0, 1) 2.04514 2.04912
(1, z2, ti, z1, z0, z0, z0, z0, 1) 2.02784 2.02899
(1, z1, ti, z0, z0, z0, z0, 1) 2.00768 2.00917
(1, z0, ti, tj, z0, z0, z0, 1) 2.04036 2.04295
(1, ti, z2, z1, z0, tj, z0, tk, z0, z0, 1) 2.00305 2.00955
(1, ti, z2, z1, z0, z0, tj, z0, z0, z1, z2, tk, 1) 2.00783 2.01571

Right end (1, ti, tj, z2, z1, z0, z0) 1.05844 1.06242
(1, z2, ti, z1, z0, z0) 1.04114 1.04230
(1, z1, ti, z0, z0) 1.02098 1.02247
(1, z0, ti, tj, z0) 1.05366 1.05625
(1, z0, z0, ti) 1.02018 1.02148
(1, ti, z2, z1, z0, tj, z0) 1.00806 1.01027

previously, one end circle can be packed without increasing the total size of the packing
either between an outer frame circle and a small filler circle, or between two consecutive
inner frame circles. We also cannot have consecutive end circles in either spaces. There are
three different ways to place two end circles, and the only one that does not cause increase
in the total size of the packing is given by sequence of sizes (1, z0, z3, z0, z3, z0, z0, 1). See
Table 3.3 for the impossible placements of an end circle.

Theorem 3.4. There is a partition of S into m triplets S1, . . . , Sm such that
∑

s∈Sj
s = T

for all j = 1, . . . ,m if and only if there is an in-line packing of C of span at most 2(m+ 1).

Proof. (⇒) Suppose S can be partitioned into m triplets S1, . . . , Sm such that
∑

s∈Sj
s = T

for all j = 1, . . . ,m. Let Sl = (si, sj, sk) be one arbitrary triplet, and let i, j and k be the
partition circles associated with elements si, sj and sk, respectively.

Let P be a packing of C. By Lemma 3.1, the frame and filler circles are packed respecting
the pattern shown in Figure 3.1. Moreover, because of the outer frame circles, the size of P
is 2(m+1). It remains to consider the partition and end circles. By Lemma 3.3, packing an
end circle between two inner frame circles in an end does not increase the total size of P .
Since there are two end circles, we can place one in each end. For the partition circles,
consider the sum of their sizes.

ti + tj + tk =
17

99

(
3(si + sj + sk)

100T
+ 3

99

100

)
=

17

99

(
3T

100T
+ 3

99

100

)
=

17

33
.
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Then, by Lemma 3.2, we can pack i, j and k in a common outer gap, each between two
consecutive inner frame circles. Since there are m outer gaps and m triplets, we can pack
the circles corresponding to each triplet in an outer gap without causing the total span of P
to increase. Hence the packing P imposes that C is a YES instance of CirclesInLine.

(⇐) Suppose now that there exists a packing P of C of size at most 2(m + 1). Observe
that, in this case, the packing has size exactly 2(m + 1), imposed by the outer gap circles.
We show that each outer gap contains exactly three partition circles, and furthermore, that
the three circles in an outer gap correspond to one triplet of a 3-partition of S. Each end
contain at most one end or partition circle and each outer gap contains at most three end
or partition circles. Then, because there are 3m+ 2 end and partition circles in total, we
have that each end contains exactly one end or partition circle, and each outer gap contains
exactly three end or partition circles.

By Lemma 3.3, the end or partition circle packed in an end must have size at most 2311
13200

,
which is the exact size of an end circle. Thus, we can assume, without loss of generality, that
each end circle is packed in one of the two ends.

Now consider an arbitrary outer gap. Let i, j and k be the three partition circles packed
there. Let si, sj and sk be the three values of the multiset S corresponding to the circles i,
j and k. Since each of the partition circles must be packed between two consecutive inner
frame circles, we can apply Lemma 3.2 and obtain the following inequality.

ti + tj + tk =
17

99

(
3(si + sj + sk)

100T
+ 3

99

100

)
≤ 17

33
.

From that we conclude that si + sj + sk ≤ T . Since the same holds for every gap, it follows
that we can partition S into m triplets S1, . . . , Sm such that

∑
s∈Sj

s ≤ T , for j = 1, . . . ,m.
In addition, the fact that

∑
s∈S s = mT implies that

∑
s∈Sj

s = T , for j = 1, . . . ,m. Hence,
(S, T ) is a YES instance of 3-Partition.

3.2 NP-hardness of the In-line Circle Bin Packing prob-
lem

We now prove that the ICB problem is NP-hard.

Theorem 3.5. The problem ICB is NP-hard.

Proof. Given an instance for the decision version of the ICP problem, IICP = (L, r, δ), we
can construct an instance IICB = (L, r, δ) for the ICB problem. Note that the parameter δ in
IICB refers to the width of the bins, while, in IICP, δ refers to the size of the in-line packing.
It is straightforward to see that IICB has a solution using only one bin if and only if IICP has
an in-line packing of size at most δ (i.e., IICP is a YES instance for the ICP problem).
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This theorem tells us that deciding if a list of circles admits an in-line bin packing using

only one bin is NP-hard. This leads to the following corollary.

Corollary 3.6. There is no polynomial-time approximation algorithm for the ICB problem
with approximation factor strictly less than 2, unless P = NP.

Proof. The proof is by contradiction. Suppose there exists a polynomial time algorithm A
with approximation factor α < 2 for the ICB problem, i.e., A ≤ αOPT(I), for any instance I.
If the instance (L, r, δ) can be packed in one bin, i.e., OPT(L, r, δ) = 1, then the algorithm A
will use at most α bins to pack L. Since the number of bins is an integer, and α < 2, then A
will use exactly one bin to pack L. Otherwise, OPT(L, r, δ) ≥ 2, and A will use at least 2
bins. Therefore, (L, r, δ) can be packed in one bin if and only if A(L, r, δ) = 1, and so we
could decide an NP-hard problem in polynomial time.
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Chapter 4

In-line Packing of Circles

4.1 A 4/3-approximation

In this section, we present a 4/3-approximation for the In-line Circle Packing problem, shown
by Helmut et al. [1].

In the following, we give an overview of how the algorithm works, as well as some insight
on the proof of the approximation factor. Let L be a list of circles and a packing of L. The
algorithm first sorts L in non-increasing order of radius. Then it packs each circle i ∈ L,
respecting the sorting order and according to the following rules. If i fits into a gap between
two consecutive circles in the current packing, then it packs i in this gap, touching the smaller
circle out of the two circles forming the gap. Otherwise, the algorithm packs the circle i either
in the beginning or in the end of the current packing. If the first circle has radius larger than
the radius of the last circle, then the algorithm packs i touching the first circle from the left;
otherwise, the algorithm packs i touching the last circle from the right. Note that, because
of the sorting, packing the circle i in one of the extremes of the current packing does not
cause overlaps. That happens because the current circle being packed is never larger than
any of the circles that are already packed. So if the previous circle did not caused overlaps,
nor does the current one. For the proof of the constant approximation factor, the authors
introduce a notion of intervals, which they call support intervals, associated to the circles.
Then they consider the length of such intervals to obtain a lower bound on the optimum.
Finally, they show that, in every situation, the sum of the length of the support intervals is
at least 3/4 of the total span, leading to a 4/3-approximation.

As for the algorithm, the authors propose the use of a priority queue that stores the
largest circle that fits in the gap between each two consecutive circles in the current packing.
We present a possible implementation, making use of a max heap, which we call Q, to
maintain the gaps in the current packing. In this way, each element of the heap is a tuple
(ri, xi, rj, xj), where xi and xj are the base positions of the circles forming the gap, and
xi < xj, that is, circle i appears to the left of circle j. To define the priority of each gap, the
heap uses a function that gives the radius of a largest circle that fits in a given gap. This
function, described in function 1, is named max_circle. Such function receives a gap as its
only parameter, and calculates the radius of a largest circle that fits in the gap as shown in
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Lemma 2.2.

Function 1: max_circle
Input: A gap (rl, xl, rr, xr).
Output: The radius of a maximum circle that fits in the gap.

1 return

√ √
rrrl√

rr +
√
rl

We note that, when referring to the operations related to heaps, we are employing the
patterns adopted by Cormen et al. [6] for maximum priority queues. More specifically,
the functions we refer to are named Max-Heap-Insert, Heap-Maximum and Heap-
Extract-Max. Aiming to maintain this text as self-contained as we can, we bring a
brief description of these functions.

Max-Heap-Insert(S, e): adds the element e to the priority queue S.

Heap-Maximum(S): returns an element with maximum value in S.

Heap-Extract-Max(S): removes and returns an element of maximum value in S.

In Algorithm 2, we described the implementation we are proposing. Since we want to
prove that the algorithm Greedy is a constant factor approximation for the ICP problem,
we shall first assure that the algorithm is polynomial. In the first step, the list L is sorted
in non-increasing order of radius. For this purpose it can be used an algorithm with time
complexity O(n log n), where n is the number of circles. Next, steps 2 to 5 all take constant
time. In step 6, it is called the subroutine Max-Heap-Insert, which in turn has time
complexity O(log n). Lastly, the loop in step 7 iterates on n−2 circles, and in each iteration,
it calls the subroutine Max-Heap-Insert, and possibly it also calls the subroutine Heap-
Extract-Max. The first, as we said previously, takes time O(log n) while the latter takes
constant time. Thus, the loop takes time O(n log n). From the analysis of the steps, we can
conclude that the algorithm Greedy has time complexity equals to O(n log n).

Now before we move to proving the approximation factor, we need to introduce some
intermediate results. Without loss of generality, we suppose that the last circle increased
the span of the packing, and we refer to such circle as the n-th circle in the list L. Also, we
consider the circles in L are scaled so that the smallest circle has radius equal to one, i.e.,
rn = 1.

Definition 13. Consider a list L and a packing P of L, and let i be a circle in P. The
support interval of i in P, denoted by Psupp(i), is defined as the interval

[P(i)− 2
√
ri + 1;P(i) + 2

√
ri − 1].

We denote by |Psupp(i)| the length of the support interval of the circle i. The open support
interval of i is the open version of the support interval, i.e., excluding the extremity points
of the interval.
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Algorithm 2: Greedy: a 4/3-approximation for the ICP problem.
Input: A tuple (L, r) where L is a list of circles and r is a function of the radii.
Output: A packing P of L.

1 Sort L = (1, . . . , n) in non-increasing order of radius, i.e., r1 ≥ . . . ≥ rn.
2 Let Q be a max-heap of gaps, using the function max_circle as its priority criteria.
3 Let P be the empty packing.
4 Pack circle 1 in P , with base position P(1) = r1.
5 if |L| ≥ 2 then
6 Pack circle 2 touching circle 1 from the right.
7 Max-Heap-Insert(Q, (r1,P(1), r2,P(2))).
8 for k = 3, . . . , n do
9 if rk > max_circle(Heap-Maximum(Q)) then

10 Let i and j be the leftmost and rightmost circles in P .
11 if ri > rj then
12 Pack k touching i from the left.
13 Max-Heap-Insert(Q, (rk,P(k), ri,P(i))).
14 else
15 Pack k touching j from the right.
16 Max-Heap-Insert(Q, (rj,P(j), rk,P(k))).
17 else
18 (ri,P(i), rj,P(j))← Heap-Extract-Max(Q).
19 Pack k between i and j, touching the smaller one, or the leftmost one in

case of ties.
20 Max-Heap-Insert(Q, (ri,P(i), rk,P(k))).
21 Max-Heap-Insert(Q, (rk,P(k), rj,P(j))).
22 return P

The next lemma addresses some inequalities that will be necessary further on. We stress
that, due to the nature of the content regarded in this lemma, the proof we are presenting
here is quite similar to the proof presented in the original article.
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Lemma 4.1. The following inequalities hold.

x+ y − xy ≤ 1, for 0 < x, y ≤ 1 (4.1a)

x+ y − xy ≥ 3

4
, for 0 < x, y ≤ 1 and x+ y ≥ 1 (4.1b)

x+ y + xy ≥ 7

9
, for

1

3
≤ x, y ≤ 1 (4.1c)

1

x
+

1

y
+ 2

z − 1

xy
≥ 7

9
, for 1 ≤ x, y, z ≤ 3 and (x− z)y ≤ x+ z (4.1d)

3x+ y − 1

2x+ xy + 1
≥ 3

4
, for 1 ≤ x ≤ 3

2
and 1 ≤ y ≤ 4 (4.1e)

Proof. We prove each inequality separately.

(4.1a). Consider the function f(x, y) = x + y − xy. Its partial derivatives are ∂f
∂x

= 1 − y
and ∂f

∂y
= 1 − x, which are positive when x < 1 and y < 1. This implies that the function

f is increasing in both x and y-axis in the interval [0; 1]. Therefore the point f(1, 1) is a
maximum point when considering 0 < x, y ≤ 1, and we have

f(x, y) ≤ f(1, 1) = 1.

(4.1b). Again, consider the function f(x, y) = x+y−xy, in the interval (0; 1]. The constraint
x+ y ≥ 1 implies y ≥ 1− x. Then,

f(x, y) ≥ f(x, 1− x)
= x+ (1− x)− x(1− x)
= x2 − x+ 1

=

(
x− 1

2

)2

+
3

4

≥ 3

4
,

where the first inequality holds because 0 < x ≤ 1 and the function f is increasing in the
interval (0; 1].

(4.1c). Consider the function g(x, y) = x+ y+ xy. Its partial derivatives are ∂f
∂x

= 1+ y and
∂f
∂y

= 1+x, which are positive when x, y > −1. Since x, y ≥ 1
3
, the function g is increasing in

both x and y. Therefore, the minimum point of the function restricted to the interval
[
1
3
; 1
]
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is g

(
1
3
, 1
3

)
, and so we have

g(x, y) ≥ g

(
1

3
,
1

3

)
=

7

9

>
3

4
.

(4.1d). Consider the function h(x, y) =
1

x
+

1

y
+ 2

z − 1

xy
. The partial derivatives of h are

∂h
∂x

= −y−2z−2
x2y

, ∂h
∂y

= −x+2z−2
xy2

and ∂h
∂z

= 2
xy
. Therefore, the partial derivatives for x and y

are negative for x, y, z ≥ 1 and the partial derivative for z is positive for x, y > 0. We
consider two cases. First, suppose y ≤ 9/4. When restricted to the intervals 1 ≤ x, z ≤ 3

and 1 ≤ y ≤ 9/4, the minimum point of h is at h
(
3, 9

4
, 1
)
, and we have

h(x, y, z) ≥ h

(
3,

9

4
, 1

)
=

7

9
.

Now suppose y > 9/4. In this case, we must use the constraint (x− z)y ≤ x+ z, which gives

us z ≥
(
1− 2

y + 1

)
x. Then we write a function h′(x, y) as follows

h′(x, y) = h

(
x, y,

(
1− 2

y + 1

)
x

)

=
1

x
+

1

y
− 2

xy
+

2(y − 1)

y(y + 1)
.

Since the partial derivative of h for z is positive for x, y > 0, and because we have x, y ≥ 1,
the minimum point of h has the coordinate z equals to

(
1− 2

y+1

)
x. Therefore, h(x, y, z) ≥

h′(x, y). Now we analyze h′. Its partial derivative for x is ∂h′

∂x
=

2− y
x2y

, which is negative

for y > 9/4. Then the x coordinate of the minimum point of h′ restricted to the interval
1 ≤ x ≤ 3 is equals to 3. Thus,

h′(x, y) ≥ h′(3, y)

=
1

3
+

1

y
− 2

3y
− 4

y(y + 1)

=
1

3
+

1

3y
+

6(y − 1)

y + 1
.

Finally, consider the partial derivatives of h′(3, y) for y. It is given by ∂h′(3,y)
∂y

= −7y2 − 10y − 5

3y2(y + 1)
,
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which is negative for y > 9/4, and so the minimum point is at h′(3, 3). Substituting x = y = 3

in the constraint (x− z)y ≤ x+ z, we obtain z ≥ 3/2. Thus,

h(x, y, z) ≥ h′(x, y)

≥ h′(3, y)

≥ h′(3, 3)

= h

(
3, 3,

3

2

)
=

7

9
.

(4.1e). The inequality we ought to prove is 3x+y−1
2x+xy+1

≥ 3
4
. For that, consider the function

f(x, y) = 3x+2y− 3xy
2

restricted to the intervals 1 ≤ x ≤ 3
2
and 1 ≤ y ≤ 4. If we fix y, then

the function f(x, y) is linear in x, and so the x coordinate of its minimum point is either 1
or 3

2
. We have f(1, y) = 3 + y

2
≥ 7

2
and f

(
3
2
, y
)
= 9

2
− y

4
≥ 7

2
, entailing f(x, y) ≥ 7

2
. Then

f(x, y)

2
≥7

4
3x

2
+ y − 3xy

4
≥7

4
,

implying
3x

2
+ y ≥ 3xy

4
+

7

4
. From this, we can write

3x+ y − 1 =
3

2
x+

(
3

2
x+ y

)
− 1

≥ 3

2
x+

3

4
xy +

7

4
− 1

≥ 3

2
x+

3

4
xy +

3

4

=
3

4
(2x+ xy + 1),

implying 3x+y−1
2x+xy+1

≥ 3
4
.

The next lemma shows a lower bound on the size of an in-line packing of a list of circles.
This lower bound is based on the lengths of the support intervals of the circles. More
precisely, it is the sum of the length of each support interval. We remind the reader that, for
the analysis of the approximation factor, every circle has radius at least 1, since we scaled
the radii such that rn = 1.

Lemma 4.2. Given a list of circles L, the total sum of the lengths of the support intervals
of all circles is a lower bound on the size of an optimal in-line packing of L.

Proof. We show that, in any feasible packing, the open support intervals of all the circles
are disjoint. Let P be a feasible packing of L, and let i and j be two consecutive circles in
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P . Without loss of generality, we assume that i is to the left of j. The interval between
their base positions is given by B = [P(i);P(j)]. We want to analyze the sub-intervals of the
open support intervals of i and j that are contained in the interval B. So, the sub-intervals
we are considering are[

(P(i);P(i) + 2
√
ri − 1)

]
and

[
(P(j)− 2

√
rj + 1;P(j))

]
.

To prove that the open support intervals are disjoint, we compare the sum of the length
of these two sub-intervals and the length of the interval B. Note that each sub-interval
corresponds to half of the support interval of its respective circle. Then, the ratio we shall
analyze is given by

|Psupp(i)|
2

+ |Psupp(j)|
2

|B|
≤

2(
√
ri +
√
rj − 1)

dist(P(i),P(j))

≤
2(
√
ri +
√
rj − 1)

2
√
rirj

≤ 1
√
ri

+
1
√
rj
− 1
√
rirj

≤ 1,

(4.2)

where the first inequality is valid since |B| ≥ dist(P(i),P(j)) (reaching equality when i and
j touch each other), the second inequality follows from Lemma 2.1, and the last inequality
comes from Lemma 4.1, inequality 4.1a.

From now on we classify a circle as large if its radius is greater than or equal to four, and
as small otherwise.

Lemma 4.3. Given a list of circles L and a packing P of L produced by the algorithm Greedy
(Algorithm 2), if two small circles are consecutive in the packing, they touch each other.

Proof. The proof is by induction on the number m of small circles. If m = 0 or m = 1, the
result follows trivially. So suppose that for any packing produced by the algorithm Greedy
with m− 1 small circles, for m ≥ 2, no two small circles are consecutive and non-touching.
Let P ′ be a packing with m− 1 small circles such that there do not exist two consecutive
non-touching small circles in P ′. We want to show that packing the m-th small circle in P ′
does not violate the hypothesis. Let k be such m-th small circle. If there exist circles i and
j in P ′ such that k fits within their gap, then the algorithm packs k in this gap touching the
smaller circle. If both i and j are small, by Lemma 2.2, the radius of a largest circle that
fits between them must be smaller than one, implying that the gap between i and j cannot
accommodate any circle. Therefore, at least one of the circles i and j is large. Let us say i is
large. Then we have two cases. If j is also large, then k will not be consecutive to any other
small circle and the result follows. Otherwise, if j is small, then j is certainly smaller than i.
Thus, the algorithm packs k touching j and the result follows. Lastly, suppose k does not
fit in any gap of P ′. By the nature of the algorithm, circle k will be packed touching either
the first or the last circle, and the result follows.
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Before we move to further results, we need one more definition concerning the support

intervals.

Definition 14. Given a list L of circles and a packing P, let i and j be two circles in P.
We call support interval density of i and j in P, denoted by SIρ(P , i, j), the total sum of
the lengths of the support intervals and sub-intervals entirely or partially contained in the
interval [P(i);P(j)], divided by the length of the interval [P(i);P(j)], i.e.,

SIρ(P , i, j) =
∑

k∈L

∣∣Psupp(k) ∩ [P(i);P(j)]
∣∣∣∣[P(i);P(j)]∣∣ .

In respect to the boundaries, the support interval density is defined as follows

SIρ(P ,`P , i) =
∑

k∈L

∣∣Psupp(k) ∩ [P(`P);P(i)]
∣∣∣∣[P(`P);P(i)]∣∣ ,

for the left boundary, and as

SIρ(P , i,aP) =
∑

k∈L

∣∣Psupp(k) ∩ [P(i);P(aP)]
∣∣∣∣[P(i);P(aP)]∣∣ ,

for the right boundary.

Finally, we have formally defined all the concepts we need to prove the following lemma,
which says that, given two consecutive circles in an in-line packing, their support interval
density is at least 3/4.

Lemma 4.4. Given a list L with |L| ≥ 2, and a packing P of L produced by the algorithm
Greedy, let i and j be two consecutive circles. Then SIρ(P , i, j) ≥ 3/4 or there exists a
circle k touching i such that SIρ(P , i, k) ≥ 3/4 with j packed between i and k.

Proof. The proof is divided in two cases.

Case 1. Circles i and j touch each other. Then, by definition of the support interval density,
we have

SIρ(P , i, j) =
2
√
ri − 1 + 2

√
rj − 1

dist(P(i),P(j))

=
2(
√
ri +
√
rj − 1)

2
√
rirj

=
1
√
ri

+
1
√
rj
− 1
√
rirj

. (4.3)

In order to reach the desired result, we will apply one of the inequalities of Lemma 4.1, so

we must show that some constraints are respected. First, we assure that 0 <
1
√
ri
,

1
√
rj
≤ 1,

which is true since every circle has radius at least one. Now, consider the radius of a largest
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circle g that would fit between i and j. By Lemma 2.2, it follows that
1
√
rg

=
1
√
ri

+
1
√
rj
.

Since packing the last circle, which has radius one, caused some increase in the span, we
know it was not packed in a gap. As a consequence, rg < 1, implying 1√

rg
> 1, which in turn

implies that
1
√
ri
+

1
√
rj
> 1. That being the case, we can then apply inequality (4.1b), from

Lemma 4.1, obtaining
1
√
ri

+
1
√
rj
− 1
√
rirj
≥ 3

4
(4.4)

and so, together with equation (4.3), the result follows.

Case 2. Circles i and j do not touch. Then, by Lemma 4.3, at least one of them, say i, is
large; otherwise, i and j would touch each other. To assist the calculation of the length of
the interval

[
P(i);P(j)

]
, consider again a largest circle g that fits between i and j. Then g

touches both i and j, hence Lemma 2.1 gives us the following.

dist(P(i),P(j)) = dist(P(i),P(g)) + dist(P(g),P(j))
= 2
√
ri
√
rg + 2

√
rg
√
rj

= 2
√
rg(
√
ri +
√
rj)

≤ 2(
√
ri +
√
rj), (4.5)

where the last inequality comes from the fact that the last circle was not packed between
i and j, therefore rg < 1, entailing √rg < 1. Now we analyze the support interval density
between i and j.

SIρ(P , i, j) =
2
√
ri − 1 + 2

√
rj − 1

dist(P(i),P(j))

≥
2(
√
ri +
√
rj − 1)

2(
√
ri +
√
rj)

= 1− 1
√
ri +
√
rj
. (4.6)

Since i is large, we know that ri ≥ 4. Thus, if ri ≥ 9 or rj ≥ 4, the inequality

1− 1
√
ri +
√
rj
≥ 3

4

holds and the result follows.
It remains to analyze the case where 4 ≤ ri < 9 and 1 ≤ rj < 4. By hypothesis, the

circles i and j do not touch. Then, there must exist a third circle to the right of i, touching i
from the right. We call such circle l. By the nature of the algorithm, the circle j was packed
between the circles i and l. Since j does not touch i, it must be touching another circle that
is to its right. If j is the only circle in the gap between i and l, then j necessarily touches l.
If, on the other hand, there are two or more circles in the gap between i and l, then j is the
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i

l

j

(a) case when j is the only circle between i
and l.

i

l

j

(b) case when there are two or more circles
between i and l.

Figure 4.1: Sketch of the possible scenarios when the circles i and j do not touch. In both
cases, the circle in dotted line is a largest circle that fits between i and j and does not exist
in the packing.

leftmost of them (because i and j are consecutive). See Figure 4.1 for an illustration.
We will now analyze the support interval density of the interval

[
P(i);P(l)

]
. Since we

have two different possibilities, depending on the number of circles packed between i and l,
we divide the remaining of the proof in two sub-cases.

Case 2.1. Circle j is the only circle packed in the gap between i and l, as illustrated in
Figure 4.1a. Since i and j do not touch, j must be touching l. Therefore, rl ≤ ri. Then
we shall consider half of the support interval of i, half of the support interval of l and
the entire support interval of j, obtaining 2

√
ri + 4

√
rj + 2

√
rl − 4. As for the distance,

we have dist(P(i),P(l)) = 2
√
ri
√
rl. Again, we want to use one of the inequalities from

Lemma 4.1, more precisely the inequality 4.1d, and for that we shall show that its two
necessary constraints are respected. The first constraint imposes that 1 ≤ √ri,

√
rj,
√
rl ≤ 3,

and it follows directly from the fact that rj ≤ rl ≤ ri < 9. The second constraint imposes
the following:

√
rl(
√
ri −
√
rj) <

√
ri +
√
rj. (4.7)

To verify this, consider a largest circle g that fits between i and l. According to Lemma 2.1,
it holds that

2
√
ri
√
rl = 2

√
ri
√
rg + 2

√
rg
√
rj + 2

√
rj
√
rl,

which gives us

√
rg =

√
rl(
√
ri −
√
rj)√

ri +
√
rj

.

Since the last circle was not placed between i and j, we know that rg < 1, entailing √rg < 1.
Therefore, we infer the inequality 4.7 and so we can apply inequality (4.1d). At last, we
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calculate the support interval density.

SIρ(P , i, l) =
2
√
ri + 4

√
rj + 2

√
rl − 4

2
√
ri
√
rl

=
1
√
ri

+
1
√
rl

+
2(
√
rj − 1)
√
ri
√
rl

≥ 7

9
(4.8)

>
3

4
,

where inequality (4.8) comes from Lemma 4.1, inequality (4.1d).

Case 2.2. There are two or more circles between i and l, as illustrated in Figure 4.1b. Here
we have m ≥ 2 circles between i and l, and as a consequence of i and j being consecutive, we
know that j is the leftmost circle among the m circles packed between i and l. In addition,
because each circle has radius at least one, the total sum of the lengths of the support
intervals that must be considered is at least

2
√
ri − 1 + 2

√
rl − 1 +m(4

√
1− 2) ≥ 2

√
ri + 2

√
rl + 2. (4.9)

Again, the distance between P(i) and P(l) is given by 2
√
ri
√
rl. Prior to calculating the

support interval density, we must assure that some constraints about ri and rl are respected

in order to apply Lemma 4.1, inequality 4.1c. More precisely, we need to assure that
1

3
≤

1
√
ri
,

1
√
rl
≤ 1. This follows directly from the fact that 1 ≤ rl ≤ ri < 9. Finally, the support

interval density is given by

SIρ(P , i, l) ≥
2
√
ri + 2

√
rl + 2

2
√
ri
√
rl

=
1
√
ri

+
1
√
rl

+
1

√
ri
√
rl

≥ 7

9
(4.10)

>
3

4
,

where inequality (4.10) follows from Lemma 4.1, inequality (4.1c).
Finally, the cases showed cover all possible cases and the result follows.

The result we have just presented handles only the case of consecutive circles. This means
we still need to regard the case of the boundaries. The next lemma shows that, for each of
the two boundaries, the support interval density of the circle touching the boundary and the
respective boundary is at least 3/4.

Lemma 4.5. Given a list L with |L| ≥ 2, and a packing P of L produced by the algorithm
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`P aP

z

y

i

j

Figure 4.2: Sketch of the configuration of the circles near the left and right boundaries.

Greedy, there exist circles s and t such that the following inequality holds.

SIρ(P ,`P , s) + SIρ(P , t,aP) ≥
3

4
.

Proof. Without loss of generality, we assume that the last circle packed, which has radius
one, increased the span, hence it must be touching either the left or the right boundary of
P . Suppose it touches the right boundary.

Let i and j be the two leftmost circles in P , i.e., the first and second circles, in order
of base positions from left to right, and let y and z be the two rightmost circles in P , with
P(y) < P(z), i.e., circle y appears before circle z, considering the order of base positions.
Figure 4.2 shows a sketch of such configuration. From the assumption that packing the last
circle increased the span and that it touches the right boundary, we infer that circle z is the
last circle and so rz = 1. In addition, by the nature of the algorithm, we have ri ≤ ry.

Now we need to represent the positions of the two boundaries as a function of the circles
mentioned so far. It is straightforward that the position of the right boundary is given
by the base position of z plus the radius of z, i.e., P(aP) = P(y) + ry. Similarly, the
position of the left boundary is given by P(`P) = P(i) − ri. Now, let g be a largest circle
that would fit between the circle i and the left boundary. Then the position of the left
boundary can also be written as P(`P) = P(g) − rg. This implies that |

[
P(`P);P(i)

]
| =

|
[
P(`P);P(g)

]
|+ |

[
P(g);P(i)

]
|. From this, we infer that ri = rg+

√
rgri. Because the last

circle was not packed in this space, we know that rg < 1, implying that ri < 1 +
√
ri. The

proof is divided in two cases, depending on the radius of circle i.

Case 1. ri ≥ 9/4. In this case, we do not need to use circle j to help bound the density,
and so we shall proceed with the analysis of the support interval density of the two following
intervals together: [

P(i)− ri;P(i)
]
and

[
P(y);P(z) + 1

]
.

Using Lemma 2.1 to calculate the distance between the base positions of two consecutive
and touching circles, we obtain that the total length of the intervals being analyzed is given
by

|
[
P(i)− ri;P(i)

]
|+ |

[
P(y);P(z) + 1

]
| = ri + 2

√
ry + 1

< 2
√
ri + 2

√
ry + 2.
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In order to calculate the support interval density of the intervals being analyzed, we still
need to know the total sum of the support intervals falling within them. Recall that g is an
imaginary circle, so we must consider only the support intervals of i, y and z. Then, the
sum we are looking for is

2
√
ri − 1 + 2

√
ry − 1 + 4

√
rz − 2 = 2

√
ri + 2

√
ry.

Finally, we can calculate the support interval density of the two intervals, which is shown
below.

SIρ(P ,`P , i) + SIρ(P , y,aP) >
2
√
ri + 2

√
ry

2
√
ri + 2

√
ry + 2

= 1− 1
√
ri +
√
ry + 1

≥ 1− 1

2
√

9
4
+ 1

(4.11)

= 1− 1

4

=
3

4
,

where inequality (4.11) holds because, by hypothesis, ri ≥ 9
4
, and ry ≥ ri.

Case 2. ri < 9/4. Thus, i is small. Here we will need circle j, and so we must know how it
stands in relation to i. If rj < ri, then j is also small, and by Lemma 4.3 it follows that i and
j touch each other. If, however, rj ≥ ri, then j was packed before i. Since i is the leftmost
circle, at the moment it was being packed, it did not fit in any gap, so it was packed in one
of the extremities (in this case in the left one). Therefore, by the nature of the algorithm, i
touches j. From that we can conclude that i and j certainly touch each other.

In this case, since we need circle j to bound the density, we shall analyze the following
intervals: [

P(`P);P(j)
]
and

[
P(y);P(aP)

]
.

While the length of the second interval was already calculated, for the first we must consider
a largest circle g that fits between i and the left boundary. Using Lemma 2.1 to calculate
the distance between the base positions of two consecutive touching circles, we obtain

rg + 2
√
rg
√
ri + 2

√
ri
√
rj + 2

√
ry
√
rz + rz < 2

√
ri + 2

√
ry + 2

√
ri
√
rj + 2, (4.12)

since rg < 1. Before we proceed to the calculation of the support intervals, we shall show how
the square-root of the radius of circle j is bounded, so that we can apply the inequality (4.1e),
from Lemma 4.1. For that, consider the length of the interval between the left boundary
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and the base position of j. Since rg < 1 and ri < 9/4, we obtain∣∣∣[P(`P);P(j)]∣∣∣ = rg + 2

√
rg
√
ri + 2

√
ri
√
rj

< 2
√
ri + 2

√
ri
√
rj + 1

< 2

√
9

4
+ 2

√
9

4

√
rj + 1

= 3
√
rj + 4. (4.13)

We already know that the left boundary is at position P(g) − rg. Obviously, the leftmost
point of j is to the right of the left boundary, so rj ≤ |

[
P(`P);P(j)

]
|, which in turn gives

us rj < 3
√
rj + 4. Solving this inequality, we have

1 ≤ √rj ≤ 4. (4.14)

Now we shall look at the support intervals. In this case, we consider the circles i, j, y
and z, obtaining

4
√
ri − 2 + 2

√
rj − 1 + 2

√
ry − 1 + 4

√
rz − 2 = 4

√
ri + 2

√
rj + 2

√
ry − 2.

Finally, the support interval density of the intervals being analyzed is given by

SIρ(P ,`P , j) + SIρ(P , y,aP) =
4
√
ri + 2

√
rj + 2

√
ry − 2

2
√
ri + 2

√
ry + 2

√
ri
√
rj + 2

=
2
√
ri +
√
rj +

√
ry − 1

√
ri +
√
ry +

√
ri
√
rj + 1

≥
3
√
ri +
√
rj − 1

2
√
ri +
√
ri
√
rj + 1

(4.15)

≥ 3

4
, (4.16)

where the inequality (4.15) holds because ry ≥ ri and the inequality (4.16) comes from
Lemma 4.1, inequality (4.1e), which in turn can be applied because we have the bounds in
(4.14).

Finally, it is important to observe that, to prove the second case, we used the circle j,
adding half of the support interval of j to the total sum of lengths of the support intervals
considered. If, however, this support interval was also needed to help bound the density
between two consecutive circles forming an interval of the form

[
P(i);P(l)

]
where l is larger

than j, l is touching i, and j was packed in the gap between i and l, then half of the support
interval of j would be double counted. According to Lemma 4.4 this happens only when
rl < 9. Though, if ri < 9/4 and rl < 9, then no circle of size at least one would fit between
i and l. This guarantees that the problematic situation actually never happens.

In the following, we show the main result of this section, which is the approximation
factor of algorithm Greedy.
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Theorem 4.6. Algorithm Greedy is a 4/3-approximation for the ICP problem.

Proof. Let L be a list of circles and P? be an optimal packing of L. Let SI(L) be the sum
of the lengths of the support intervals of all circles of L. By Lemma 4.2, we have

SI(L) ≤ |P?| = OPT(L).

Let P be a packing of L produced by algorithm Greedy, and let P = (i1, . . . , in) be the
sequence of the circles in P in order of base positions, from left to right. We want to show
that SI(L) is at least 3/4 of the size of P , i.e.,

SI(L) ≥ 3

4
|P|,

which in turn implies

|P| ≤ 4

3
SI(L)

≤ 4

3
|P?| = 4

3
OPT(L).

If |L| equals to one, there is only one packing P of L, its size is given by the diameter
of the only circle forming L, and the result follows trivially. So suppose |L| ≥ 2. From
lemmas 4.4 and 4.5, we have

OPT(L) ≥ SI(L) ≥ 3

4
|P |,

implying

|P | ≤ 4

3
OPT(L).

4.2 A QPTAS

In their work, Dürr et al. [7] presented a QPTAS for the in-line packing of isosceles right
triangles. As Helmut et al. [1] suggested, such QPTAS can be adapted to a QPTAS for
the case when the items are circles. In this section, we present an implementation of the
suggested adaption. To do so we must first introduce, in the subsection 4.2.1, a restricted
version of the ICP problem, as well as an algorithm which computes an optimal solution for
this restricted version. Next, in the subsection 4.2.2, we present the QPTAS for the general
version of the ICP problem. For the remaining of this section, recall that we denote the
diameter of a circle i as di.
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4.2.1 A Restricted Version of the ICP Problem

Consider a restricted version of the ICP problem where the circles have a logarithmic (on
the number of circles in the input list) number of different diameters and the base positions
are limited to a finite set of points, whose size is polynomial in the number of circles in the
input list. We can take advantage of these two restrictions to design a dynamic programming
algorithm that computes an optimal solution for this restricted version of the problem, in
quasi -polinomial-time. As it happens in the general version of the ICP problem, an instance
of this restricted version consists of a list of circles.

Let L be a list of circles. Then, we enumerate the different diameters of the circles
in L by a sequence (f1, . . . , fk), and we say a circle is indexed by j if it has diameter fj.
We say the demand of each diameter fj is the number of circles indexed by j. We call
configuration a tuple Q = (i1, . . . , ik, p1, . . . , pk) where it is the demand of diameter ft and
pt is the base position of the last packed circle of diameter ft. When we have it = 0, we set
pt = 0, by convention. We say a configuration A = (a1, . . . , ak, q1, . . . , qk) is smaller than a
configuration B = (b1, . . . , bk, p1, . . . , pk) if ai ≤ bi for every 1 ≤ i ≤ k and there exists a j
such that aj < bj. Moreover, we say a configuration is feasible (unfeasible) if it is possible
(not possible) to build a packing with ij circles of diameter fj such that the rightmost one
is packed at position pj, for 1 ≤ j ≤ k. The size of a feasible configuration is denoted
size(Q) = maxj∈{1,...,k}(pj + fj/2). If Q is not feasible, by convention we say size(Q) = 0.
We say Q is empty if all demands are zero. Given a demand ij, if ij = 0 then, by convention,
pj = 0.

As mentioned previously, there is an algorithm which computes an optimal solution for the
restricted version of ICP. Such algorithm is a dynamic programming and it builds a table T
indexed by configurations. Given a feasible configurationQ = (i1, . . . , ij, . . . , ik, p1, . . . , pj, . . . , pk),
T (Q) stores one of the three following values:

i) ∅, if Q is an empty configuration,

ii) a base position p′j, such that the last circle of a packing P with demands (i1, . . . , ik) is
indexed by j, and p′j is the base position of the rightmost circle, if any, indexed by j
that is packed before pj (i.e., p′j < pj) in P ,

iii) ⊗, if there is no such p′j or Q is unfeasible.

The following definition associates a configuration with the packing represented by such
configuration.

Definition 15. Consider table T and a configuration Q = (i1, . . . , ik, p1, . . . , pk). Let p′j =
T (Q). We denote by pck(Q) the packing built as follows. Find the greatest base position in
Q, say it is pj. Then pack a circle indexed by j at base position pj and repeat the process for
the configuration (i1, . . . , ij − 1, . . . , ik, p1, . . . , p

′
j, . . . , pk), until (i1, . . . , ik) = (0, . . . , 0).

In some contexts, we might want to add a circle indexed by j at base position pj in a
packing P .
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Definition 16. Given a packing feasible P and a pair (j, pj), we denote by P|(j, pj) the
packing obtained by adding to P a circle indexed by j at position pj, if such resulting packing
is feasible.

Once the table T is built, the algorithm finds a configuration Q of minimum size and then
builds the packing pck(Q). Next, we present a recurrence formula for the construction of such
table. The value of T (Q) is ∅ if all the demands are zero, ⊗ if the configuration is unfeasible
and, otherwise, the value is the base position p′j of the rightmost circle of diameter fj when
its demand is ij−1. The recurrence formula of the algorithm is as follows. See the algorithm
RestrictedICP (Algorithm 5) for an implementation.

T (i1, . . . , ik, p1, . . . , pk) =



∅ if (i1, . . . , ik) = (0, . . . , 0).

0 if (ij − 1 = 0) and T (i1, . . . , 0, ik, p1, . . . , 0, pk).

p′j if j = argmax
t
{pt : t ∈ {1, . . . , k}}, and

p′j = max
t
{pt : pt ∈ P and 0 < pt < pj such that

T (i1, . . . , ij − 1, . . . , ik, p1, . . . , p
′
j, . . . , pk) 6= ⊗, and

pck(i1, . . . , ij − 1, . . . , ik, p1, . . . , p
′
j, . . . , pk)|(j, pj) is feasible}.

⊗ if there is no such p′j or (i1, . . . , ik, p1, . . . , pk) is unfeasible.
(4.17)

In order to check if two circles overlap, the algorithm RestrictedICP uses the subrou-
tine called overlaps. In addition, given a configuration Q, the algorithm uses a subroutine
called exist_overlap_with_last_circle to check if there exists overlap between the last circle
of Q with of the rightmost circles of each distinct diameter. In the following, we present
implementations for these procedures.

Function 3: overlaps
Input: A tuple (r1, rj, xi, xj) where ri, rj are the radii of two circles and xi, xj are

their respective base positions.
Output: True if the circles overlap, False otherwise.

1 if rirj <
(xi − xj)2

4
then

2 return True
3 return False

By Lemma 2.1, when two circles i and j touch each other, the distance between their base
positions is 2√rirj. The condition in line 1 tests if the difference between the base positions
of the circles is smaller than the distance between two circles that touch each other, and
comes from squaring the inequality 2

√
rirj < |xi − xj| to avoid calculating square-roots,

since they are not rational numbers.
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Function 4: exist_overlap_with_last_circle
Input: A configuration (i1, . . . , ik, p1, . . . , pk).
Output: True if there exists overlap between the last circle and the rightmost

circles of each distinct diameters in the candidate packing corresponding
to the input configuration, False otherwise.

1 Let j = argmax
t
{pt : t ∈ {1, . . . , k}}.

2 for i = 1 to k, i 6= j do
3 if overlaps(fi, fj, pi, pj) then
4 return True
5 return False

In the following, we present the algorithm RestrictedICP.

Algorithm 5: RestrictedICP
Input: A tuple (L,N, P ) where L is a list of k circles, N a list of the k demands of

the circles in L, and P is a list of positions.
Output: An optimal packing of L restricted to P .

1 forall (p1, . . . , pk) ∈ P k do
2 T (0, . . . , 0, p1, . . . , pk)← ∅.

3 for i1 = 0, . . . , n1 do

4
. . .

5 for ik = 0, . . . , nk do
6 if (i1, . . . , ik) 6= (0, . . . , 0) and (p1, . . . , pk) < (f1/2, . . . , fk/2) then
7 forall (p1, . . . , pk) ∈ P k do
8 if exist_overlap_with_last_circle(i1, . . . , ik, p1, . . . , pk) then
9 T (i1, . . . , ik, p1, . . . , pk)← ⊗

10 else
11 j = argmax

t
{pt : t ∈ {1, . . . , k}}.

12 if (ij − 1) = 0 and T (i1, . . . , 0, . . . , ik, pk, . . . , 0, . . . , pk) 6= ⊗ then
13 T (i1, . . . , ik, p1, . . . , pk)← 0

14 else
15 S = {q ∈ P : 0 < q < pj and

T (i1, . . . , ij − 1, . . . , ik, p1, . . . , q, . . . , pk) 6= ⊗ and
overlaps(fj, fj, pj, q) = False}.

16 if S 6= ∅ then
17 T (i1, . . . , ik, pi, . . . , pk)← p′j where p′j = max{S}.
18 else
19 T (i1, . . . , ik, pi, . . . , pk)← ⊗.
20 return ConstructPacking(T )
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The input of the algorithm RestrictedICP is a list of the different diameters together with

their demands, and a finite set of base positions. In a general view, the algorithm checks
all combinations of demands, (i1, . . . , ik), and base positions, (p1, . . . , pk), and determines
whether or not a configuration leads to a packing. The sequence of loops of lines 3 to 5

guarantees that all combinations of demands are considered, and in increasing order. This
means that once a configuration is processed, the result for all the smaller configurations
is already computed. In the next steps, the table T is filled. After obtaining a sequence
(i1, . . . , ik) of demands, from the loops in lines 3 to 5, the algorithm checks whether or
not this sequence corresponds to an empty packing, i.e., if (i1, . . . , ik) = (0, . . . , 0), then
regardless of the base positions, this entry is already filled with the value that indicates
an empty packing (from the initialization of the table, in lines 1 and 2). Otherwise, the
algorithm proceeds to the loop of line 7, where all possible configurations with demands
equal to (i1, . . . , ik) are analyzed.

Let Q = (i1, . . . , ik, p1, . . . , pk) be the current configuration being processed. If there
exists in Q overlap between any of the rightmost circles of each different diameter with the
last circle, then the algorithm fills the table with ⊗, in line 9, indicating that the current
configuration, Q, is not feasible, and proceeds to check the next configuration.

If, on the other hand, there are no overlaps among the rightmost circles of each diameter
in Q, then the algorithm must check if there exists a feasible smaller configuration for the case
where the last circle of the packing associated with Q has not yet been packed. For that, in
line 11, the algorithm first obtains the index of the last circle in the packing corresponding
to Q, say it is j. Then, the algorithm must check the smaller configurations of the form
Q′ = (i1, . . . , ij − 1, . . . , ik, p1, . . . , p

′
j, . . . , pk), i.e., the demand of circles of diameter fj is

decreased by one. There are two cases. First, if the last circle of Q happens to be the last
circle of diameter fj, then the demand of fj in the smaller configurations of the form Q′ is
zero, i.e., ij − 1 = 0. So, if the configuration (i1, . . . , 0, . . . , ik, p1, . . . , 0, . . . , pk) is feasible,
then Q can be obtained from Q′ and, in line 13, the table is filled with the base position 0.
Otherwise, if ij−1 ≥ 1, then the algorithm searches for the set S of the feasible configurations
of the form Q′, such that p′j is smaller than pj, and also such that adding the pair (j, pj) to
the packing pck(i1, . . . , ij − 1, . . . , ik, p1, . . . , p

′
j, . . . , pk) does not cause any overlaps. Finally,

if S is not empty, it means that, for at least one p′j, one can obtain a feasible packing of the
current configuration, Q. The algorithm chooses the greatest p′j, in line 17. Otherwise, if S
is empty, then, in line 19, the algorithm fills the table with ⊗, since Q cannot be built from
any p′j.

Lemma 4.7. Given a configuration A = (a1, . . . , ak, p1, . . . , pk), if A is feasible, then there
exists a pair (j, p′j) such that

i) A′ = (a1, . . . , aj − 1, . . . , ak, p1, . . . , p
′
j, . . . , pk) is feasible,

ii) pj = max
t
{pt : t ∈ 1, . . . , k}, and

iii) pck(A) = pck(A′)|(j, pj).



51
The sequence of nested for’s guarantees that the configurations are processed in increasing

order, so when the current configuration is being processed, all smaller ones were already
processed.

Lemma 4.8. Algorithm RestrictedICP (Algorithm 5) correctly builds the table T .

Proof. For each configuration Q = (i1, . . . , ik, p1, . . . , pk), the value T (Q) must be one of the
following:

i) ∅, if Q represents an empty packing,

ii) p′j, if Q is feasible and can be obtained by adding a circle of diameter fj at posi-
tion pj to a packing corresponding by the smaller configuration Q′ = (i1, . . . , ij −
1, . . . , ik, p1, . . . , p

′
j, . . . , pk),

iii) ⊗, if there is no p′j or Q is unfeasible.

Observe that the loops in lines 3 to 5 guarantee that when one configuration is considered
all the smaller configurations are already processed. So, we prove the lemma by induction.

The base case is when all demands are 0. Then we have an empty packing, and the
algorithm correctly assigns the symbol ∅ to T (Q), in lines 1 and 2.

Now consider a configuration Q and suppose that all configurations smaller than Q are
already correctly computed. We have two cases. If there is overlap between the last circle
of Q and one of the rightmost circles of the other diameters, then Q is unfeasible. In this
case, the algorithm correctly assigns ⊗ to T (Q), in line 9.

Otherwise, if there is not overlap between the last circle of Q and one of the right-
most circles of the other diameters, then there might exist a smaller feasible configuration
Q′ = (i1, . . . , ij − 1, . . . , ik, p1, . . . , p

′
j, . . . , pk) from which a feasible packing corresponding

to Q can be obtained. To verify that, the algorithm checks all possible smaller configu-
rations. If the demand of fj in Q′j is zero, then it suffices to know if the configuration
(i1, . . . , 0, . . . , ik, p1, . . . , 0, . . . , pk) is feasible. If that is the case, then the p′j is 0, and
the algorithm correctly assigns 0 to T (i1, . . . , 0, . . . , ik, p1, . . . , 0, . . . , pk), in line 13. Oth-
erwise, if ij − 1 ≥ 1, then there must exist at least one feasible configuration of the
form (i1, . . . , ij − 1, . . . , ik, p1, . . . , q, . . . , pk) where a circle of diameter fj is packed at some
base position q, 0 < q < pj. Let C be the set of such configurations. If, for any configuration
(i1, . . . , ij − 1, . . . , ik, p1, . . . , q, . . . , pk) in C, it is possible to pack a circle of diameter fj at
base position pj without causing overlap, then one can obtain the current configuration, Q,
from such configuration in C. In this case, the base position q is added to the set S, in
line 15. If S is not empty, then the table is filled with the greatest base position in S, in
line 17. Otherwise, the configuration Q cannot be obtained from a smaller configuration,
and the algorithm correctly fills the table with ⊗, indicating that Q is unfeasible.

Once the table is fully filled, it is possible to construct a feasible packing of minimum
size. The algorithm ConstructPacking does so. First, the algorithm finds one configuration Q
that leads to a feasible packing of minimum size, according to the table produced by the
algorithm RestrictedICP. Then, the packing is constructed in a recursive way. The last
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circle of the packing represented by the configuration Q is indexed by j = argmax{pt : t ∈
{1, . . . , k}}. Therefore, a circle of diameter fj is packed at base position pj. Let T (Q) = p′j.
So Q was build starting from the configuration Q′ = (i1, . . . , ij− 1, . . . , ik, p1, . . . , p

′
j, . . . , pk).

The algorithm then repeats the process for Q′ until it reaches a configuration of the form
(0, . . . , 0, p1, . . . , pk). In Algorithm 6 we present an implementation of this construction
process.

Algorithm 6: ConstructPacking
Input: A list of circles L and a table T produced by algorithm RestrictedICP.
Output: An optimal packing P of L.

1 Let (p1, . . . , pk) = argmin(q1,...,qk)∈Pk:T ((n1,...,nk,q1,...,qk)) 6=0

{
maxj∈{1,...,k}(qj + fj/2)

}
.

2 P ← ∅.
3 (i1, . . . , ik)← (n1, . . . , nk).
4 while (i1, . . . , ik) 6= (0, . . . , 0) do
5 j ← argmaxt∈{1,...,k} {pt}.
6 Pack a circle of diameter fj at base position pj in P .
7 p′j ← T (i1, . . . , ik, p1, . . . , pk).
8 ij ← ij − 1.
9 pj ← p′j.

10 return P

Lemma 4.9. The algorithm ConstructPacking (Algorithm 6) builds an optimal packing.

Proof. Let (f1, . . . , fk) be the tuple of the different diameters in L and let (n1, . . . , nk) be
the corresponding demands. By Lemma 5, the table T is correctly built. Then the list
(p1, . . . , pk), obtained in line 1, represents the base positions of the rightmost circles of
diameters (f1, . . . , fk) such that pck(n1, . . . , nk, p1, . . . , pk) has minimum size. Therefore, the
packing P , constructed in lines 4 to 9, is an optimal packing.

In the first iteration of the loop from lines 4 to 9, the algorithm finds the base position
and the diameter of the last circle of the packing. After packing such circle, in line 6,
the algorithm consider a smaller packing, where the current last circle is not included, and
updates the configuration corresponding to such smaller packing.

The construction is made from right to left, i.e., from the rightmost to the leftmost circle.
We show that, in the beginning of each iteration, the packing P has (n1 + . . .+ nk)− (i1 +

. . .+ ik) circles. Let m be the number of circles in P , i.e., m = (n1+ . . .+nk)− (i1+ . . . , ik).
The loop starts with m = 0. After the execution of the first iteration, the packing P has
only the last circle, and so m = 1. Then, the configuration to be processed next is updated
so that it has one less circle. Thus, at the beginning of the next iteration, we have that
m = m+ 1. Lastly, at the end of the last iteration, we have i1 + . . .+ ik = 0, and therefore
m = (n1 + . . .+ nk)− (i1 + . . .+ ik) = n1 + . . .+ nk.

So far we have shown that both the construction of the table T and the rebuilding of the
minimum packing are correct. It basically remains to analyze the running time.
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Lemma 4.10. There exists an algorithm that computes, in quasi-polinomial time, an op-
timum packing for the ICP problem restricted to the case where the number of different
diameters is logarithmic on the number of circles and the base positions are limited to a
finite set of points, whose size is polynomial on the number of circles.

Proof. By lemmas 4.8 and 4.9, the algorithm RestrictedICP correctly produces an optimal
packing. It remains to argue about the time complexity. Let n be the number of circles
and let k be the number of different diameters. Each configuration is a vector in the space
(0, . . . , n)k × P k. The loop from line 1 runs over all possible vectors in the space P k, so it
contributes with |P |k. The loops from lines 3 to 5 contributes with (n+ 1)k. The loop from
line 7 contributes with |P |k and, inside it, lines 8 and 11 contribute each with k, while line 12
contributes with |P |.

In our context, it suffices to consider the values of |P | and k given by the discretization
proposed in Algorithm 7, presented ahead in the next subsection. Therefore, we have

|P |k + (n+ 1)k|P k|(k + |P |) ≤ dn2/εedlog(n/ε)e+

(n+ 1)dlog(n/ε)edn2/εedlog(n/ε)e(dlog(n/ε)e+ dn2/εe),

implying quasi -polinomial-time complexity.

4.2.2 The General Version of the ICP Problem

Recall that we are trying to build a QPTAS for the general case of the ICP problem. Let L be
a list of circles. We show that Algorithm 7 computes, in quasi -polinomial-time, a packing P
of L, whose size is (1 + ε)OPT(L).

Algorithm 7: Aε: a QPTAS for the ICP problem.
Input: A tuple (L, r) where L is a list of n circles and r is a function of the radii.
Output: An in-line packing of L.

1 Small ← {i ∈ L : di <
εdmax

n
}, where dmax = max{di : i ∈ L}.

2 Large ← L \ Small.
3 Sort Large = (1, . . . , n′) so that di ≥ di+1 for i = 1, . . . , n′ − 1.
4 Scale all diameters in L so that dn′ = min{di : i ∈ Large} = 1.
5 Round the diameters of the circles in Large up to the nearest power of 1 + ε.
6 Let P = (K, 2K, . . . , dn2

ε
eK), for K = εdmax

n
.

7 PLarge ← RestrictedICP(Large, P ) (Algorithm 5).
8 PSmall ← Greedy(Small) (Algorithm 2).
9 return PLarge‖PSmall.

The algorithm partitions the list L into large, list Large, and small, list Small, circles.
Then, in line 7, it obtains an optimal packing of the large circles, and, in line 8, it obtains
an approximated packing of the small circles. Finally, in line 9, it obtains a packing of the
input list L.
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Because of the rounding of the diameters of the large circles, in line 5, and the discretiza-

tion of the base positions, in line 6, the pair (Large, P ) characterizes an instance of the
restricted version of the ICP problem introduced previously. Then, one can use the algo-
rithms RestrictedICP and ConstructPacking to obtain an optimal packing of the list Large
of large circles. We show that the size of an optimal packing for the restricted version of
the ICP problem is at most a factor of 1 + ε of the size of an optimal packing for the ICP
problem. The first aspect we discuss is the rounding of the diameters of the circles in Large.

Lemma 4.11. Given a list L of circles and an optimal packing P of L, rounding the diam-
eters of every circle up to the nearest power of 1 + ε increases the optimal size by at most a
factor of 1 + ε.

Proof. Construct a packing P ′ from P by multiplying each diameter and each base position
by 1 + ε. That only changes the scale of the packing, so P ′ is also feasible. Thus, |P ′| ≤
(1 + ε)|P|. Now round each diameter down to the nearest power of 1 + ε. Since this does
not increase the diameter of the circles, the size of P ′ also does not increase, and the result
follows.

Now recall that dn′ is the diameter of the smallest circle in the list Large. Then, by
construction, dn′ ≥ εdmax

n
and, therefore, we have dmax

dn′
≤ n

ε
. Since all the circles in L where

scaled so that dn′ = 1, we have dmax ≤ n
ε
. Thus, the maximum number of different diameters

is at most dlog1+ε(n/ε)e. After restricting the available base positions to the set P , we might
cause some increase in the size of the packing. We show that such increase is at most a factor
of 1 + ε.

Lemma 4.12. Given an optimum packing P of the large circles, restricting the base positions

to the set P = {K, 2K, . . . , dn2

ε
eK}, where K =

εdmax

n
, increases the optimal size by at most

a factor of 1 + ε.

Proof. Without loss of generality, denote by (1, . . . , n) the sequence of the circles in P ,
ordered from left to right, and in a way that two circles are consecutive in the packing if and
only if they are consecutive in the sequence. Now, consider each circle, starting from the
leftmost to the rightmost circle, and repeatedly shift the current circle to the right, pushing
the subsequent circles, to the next point in P . Each shift increases the size of P by at most
K. Thus the total increase is at most nK ≤ εdmax ≤ ε|P|.

So far, we analyzed the impact of the large circles in the final packing, so it remains
to regard the small circles. Establishing the ratio between the smallest and the greatest
diameters of the large circles imposes an upper bound on the diameter of the small circles.
This is important in order to ensure that the small circles, when concatenated to the packing
PLarge, in line 9, do not cause a big increase in the size of the packing. By construction of
the list Small, the small circles have diameter smaller than εdmax

n
. As a consequence, even if

all the circles in L are small (except the first), they would still not cause a large increase. In
such case, we would have an increase of at most n εdmax

n
, which is at most εOPT.
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Lemma 4.13. Given a list of circles L, an optimal packing P of L and a positive constant ε,
let (Large, Small) be a partition of L such that Large = (i ∈ L : di >

εdmax

n
), where dmax =

max {d1, . . . , dn}, and Small = C \ Large. Then it is possible to obtain a packing PLarge of
Large, constructed from P by removing the circles of Small, and a packing PSmall of Small

such that the packing P ′ = PLarge‖PSmall satisfies |P ′| ≤ (1 + ε)|P|.

Proof. Let PLarge be a packing obtained from removing the circles of Small from P . Since
PLarge ⊆ C, we have that |PLarge| ≤ |P|. Let PSmall be a packing of Small where the circles
are packed side by side and as close as possible one to another without causing overlaps.
Because each circle in Small has diameter at most εdmax

n
and |Small| ≤ n, we have that

|PSmall| ≤ εdmax ≤ ε|P|. Then, when PLarge and PSmall are concatenated to obtain P ′, we
have |P ′| ≤ |PLarge|+ |PSmall| ≤ |P|+ ε|P| ≤ (1 + ε)|P|.

The main result of this subsection is presented in the following theorem.

Theorem 4.14. There exist a QPTAS for the In-line Circle Packing problem.

Proof. We show that Algorithm 7 is a QPTAS for the ICP problem. Let L be a list of circles
and P? be an optimal packing of L. Partition L in two lists as follows. List Small = {i ∈
L : di <

εdmax

n
}, where dmax = max{di : i ∈ L}, and list Large = L \ Small. Now let P?Small

and P?Large be optimal packings of Small and Large, respectively. By lemmas 4.11 and 4.12,
together with Lemma 4.10, we have that |PLarge| ≤ (1 + ε)|P?Large|, and by Theorem 4.6, we
have that |PSmall| ≤ 4

3
|P?Small|. Thus,

|PLarge|+ |PSmall| ≤ (1 + ε)|P?Large|+
4

3
|P?Small|

≤ (1 + ε)|P?|+ 4

3
ε|P?|

≤
(
1 +

7

3
ε

)
|P?|.

The time complexity of the algorithm is determined by the time complexity of the algo-
rithm RestrictedICP, which, by Lemma 4.10, implies quasi -polinomial-time.

4.3 In-line Packing of Large Circles

In this section we consider restricted versions of the In-line Circle Packing (ICP) and the
In-line Circle Bin Packing (ICB) problems, where the values of the diameters of the circles
from the input list are bounded, i.e., the diameters are at least a constant value ε. We
refer to the restricted versions of the problems as ICPε and ICBε, respectively. We start by
showing an APTAS for the ICBε, and subsequently we show a PTAS for the ICPε.

4.3.1 An APTAS for ICB of Large Circles

Here we present an APTAS, using augmented bins, for the ICBε. We remind the reader
that deciding whether or not a list of circles can be packed in only one bin is an NP-hard
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problem. However, given a list of circles, with a constant number of circles, it is possible
to obtain an algorithm that obtains a packing in polynomial time in an augmented bin of
width 1 + δ for such set, for any constant δ > 0.

To do so, we use an algorithm that solves a semi-algebraic system. Let (L, r,W ) be an
instance of the ICB problem, where W is the width of the bins, with |L| = n. Note that
the decision version of the ICB can be formulated as deciding if there are real non-negative
numbers xi, yi, for 1 ≤ i ≤ n, that satisfies the following constraints.

(xi − xj)2 + (yi − yj)2 ≥ (ri + rj)
2 for 1 ≤ i < j ≤ n,

ri ≤ xi ≤ W − r1 for 1 ≤ i ≤ n, and

ri = yi for 1 ≤ i ≤ n.

The first set of constraints guarantees that there is no overlap between every two circles. The
second set of constraints ensures that the circles are entirely contained inside the bin where
it is packed, and the last set of constraints ensures that every circle touches the bottom of
the bin where it is packed. Observe that the set of solutions to the system of the inequalities
presented above is a semi-algebraic set in the field of the real numbers. So, deciding if there
is an in-line bin packing for (L, r,W ) can be interpreted as deciding whether this semi-
algebraic set is empty or not. Thus, we can use an algorithm that solves an algebraic system
to obtain a solution for our problem. We do not go into details of this algorithm, since it is
not in the scope of this work to discuss the algebraic technicalities necessary to perform such
algorithm. Nonetheless, the interested reader may find a more detailed discussion in the
works of Miyazawa et al. [18] and Grigorev and Vorobjov [13]. In the following, we present
a result that lays on the solution of the semi-algebraic system mentioned above.

Lemma 4.15. Given a list L = (1, . . . , n) of circles, with n constant and each circle i ∈ L
with radius ri, a bin of width 1 and a constant δ > 0, then there exists a polynomial-time
algorithm A which decides if L has an in-line packing into one bin of width 1. In the
affirmative case, the algorithm returns rational positions x1, . . . , xn such that the packing of
each circle i at the base position xi yields a feasible packing into one bin of width 1 + δ.

Given, on one side, the difficulty of deciding if a list of circles can be packed into one
bin (see Section 3.1), but, on the other side, the possibility of deciding, in polynomial time,
if a list of circles packable into one bin can be packed in an augmented bin, we design an
APTAS for the case when it is possible to use augmented bins.

Let L be a list of circles, with a constant number of circles. Our approximation scheme
consists of three main steps. One, we must restrict the problem to a version with limited
number of different radii; two, we obtain a packing for the restricted version into augmented
bins using not more than OPT(L) bins; and three, based on the packing obtained in step two,
we build a packing (not-necessarily optimal) for the original list of circles. For the first step,
we use a technique presented by de la Vega and Lueker [9], in 1981, for the one-dimensional
bin packing problem. The technique is known as linear grouping, and the idea is to partition
the list of items into groups and then round each item up to the size of the largest item in
its group. We will use this idea with circles. One of the advantages of this type of rounding
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is to obtain a restricted instance where there is a bounded number of different radii, which is
a type of instance that we wish to have. For the second step, we will use an algorithm that
generates all possible packings in augmented bins and chooses one of minimum size. Finally,
for the third step, we will perform a simple substitution of rounded circles to the original
ones. Later in this section we explore the rounding from the first step. For now we suppose
the instance has a constant number of different radii and analyze the algorithm that obtains
a packing for such instance.

Note that when each circle has radius at least a value given by a constant, as it is in
the case of the ICBε problem, then it is possible to know the maximum number of circles
that fit together in one bin. If, additionally, we also have a constant number of different
radii, then it is possible to compute all possible different ways of how to pack circles inside
one augmented bin. We refer to such ways as configurations. Observe that we can obtain
a packing by selecting a multiset of configurations. So, the idea is to generate all possible
configurations, then generate all possible packings and, among the feasible ones, choose one
of minimum size.

Lemma 4.16. Given a list L of n circles with a constant number z of different radii, each at
least a positive constant ε, then there is a polynomial-time algorithm that produces a packing
of L into at most OPT(L) augmented bins.

Proof. Because we are considering unit bins, the maximum number of items that fit in one
bin is b = b1

ε
c. Let D = {ρ1, . . . , ρz} be the set of different radii in L, and mi be the number

of circles of radius equals to ρi. Then ni = min{mi, b} is the maximum number of circles
of radius i that fits within one bin. We can represent a packing configuration of a bin by a
sequence (c1, . . . , cb) where each ci is a circle.

We first show that the number of all possible configurations is bounded by a constant.
Any configuration cannot have more than ni circles of radius ρi, so it is sufficient to consider
a restricted instance where we have ni circles of radius ρi. That instance has N =

∑z
i=1 ni

items. In order to allow configurations with less than b circles, we add b dummy circles (of
diameter 0) to the restricted instance and always choose exactly b circles among the N + b

circles. This leads to T = (z + 1)b possible configurations, which is constant since both z

and b are constant numbers. Note that one of these T configurations is an empty packing.
We can verify if each one of these T configurations can in fact be packed in an augmented
bin, using algorithm A from Lemma 4.15. Among the T configurations, we discard the ones
that lead to unfeasible packings, obtaining then T ′ valid configurations.

Finally, we can combine the T ′ configurations to obtain possible packings. Let C1, . . . , CT ′

be a combination of the T ′ configurations. Given an arbitrary packing, each configuration
Ci is used from 0 to n times in this packing. As a consequence, the number of possible
packings (already discarding the ones that do not represent a packing for the input list) is
bounded by (n+1)(n+1) . . . (n+1), which gives us (n+1)T

′ . Since T ′ ≤ T is constant, we
have a polynomial-time algorithm to generate all possible packings. Moreover, the number
of possible packings is also polynomial, so we can choose a packing of minimum size also in
polynomial time.
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It is important to notice that an instance of the ICBε satisfies only the restriction of

having a lower bound on the diameter of the circles. So, for the scheme, we first modify
the original instance so that it attends also the restriction of having a limited number of
different radii. Suppose that, for each circle in the original list, we create an equivalent circle
of radius greater than or equal to the radius of the original circle. Now, if we find a packing
for the modified circles, then to obtain a packing of the original list, it suffices to substitute
each modified circle for its corresponding of original radius. To create such modified circles,
we use the technique called linear grouping. Let L be the list of circles from the input. We
first partition the circles of L into m groups. Then, we create a new list L′ where, for each
group, we round the radius of every circle up to the radius of the largest circle of its group.
Formally, given a list G of circles, we denote by G the list obtained from G by equalizing
the radius of each circle to the radius of the largest circle in G. Note that, because of the
rounding, L′ has only m different radii. Since we want an instance with a constant number
of different radii, we must choose the size of the groups so that m is bounded by a constant.
One way to guarantee this is to set the size of each group as a fraction of the number of items
in the input instance. Finally, observe that, since the radii of circles in L′ are greater than
or equal to the radii of the corresponding circles in L, we can obtain a packing P of L using
the base positions of a packing P ′ of L′. However, a priori, the packing P could possibly be
much larger than an optimal packing of L, since the circles in L′ are larger than or equal to
the circles in L. We show that this difference of size between P and an optimal packing of L
is only a factor of 1 + ε. In the following, we present an APTAS for the ICBε.

Algorithm 8: AICBε : an APTAS for the ICBε problem.
Input: A tuple (L, r) where L is a list of circles, r is a function of the radii and ε is

a positive function.
Output: A packing P of L with |P| ≤ (1 + ε)OPT(L).

1 Sort L = (1, . . . , n) in non-increasing order of radius (ri ≥ ri+1 for i = 1, . . . , n− 1).
2 k ← dnε2e.
3 Divide L into sublists such that L = G0‖ . . . ‖Gt, where |Gi| = k, for

i = 0, 1, . . . , t− 1, and |Gt| ≤ k.
4 L′ ← G1‖ . . . ‖Gt.
5 Find a packing P ′ of L′ into bins of width 1 + δ (algorithm from Lemma 4.16).
6 Let P be a packing obtained from P ′ by replacing each copied circle in L′ by its

corresponding circle in L.
7 Obtain a packing P0 by placing each circle in G0 alone in a new bin.
8 return P0‖P.

Theorem 4.17. Algorithm AICBε is an APTAS for the problem ICBε, using augmented bins.
More precisely, AICBε(L) ≤ (1 + ε)OPT(L) + 1.

Proof. We want to show that, given a constant ε > 0 and a list L of circles in which each
circle has radius at least ε, there exists a family {Aε} of algorithms such that, for every value
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of ε, it holds that Aε(L) ≤ (1 + ε)OPT(L) +O(1).

Let (L, r) be an instance of ICBε, where L is a list of n circles, r is a function of their
radii, and ε is a positive constant, and let k = dnε2e. The algorithm first sorts the list in non-
increasing order of radius, i.e., for every i ∈ L, with i = 1, . . . , n− 1, it holds that ri ≥ ri+1.
Then, maintaining the sorting, the algorithm partitions L into m + 1 sublists Gi such that
|Gi| = k, for i = 0, . . . ,m− 1, and |Gm| ≤ k. So every sublist, except possibly the last
one, has exactly k circles. Based on L, the algorithm creates another list L′ = G1‖ . . . ‖Gm,
where Gi is obtained from Gi with every circle’s radius increased to the radius of the largest
circle in Gi. Let J be a sublist of L obtained by excluding the k largest circles from L,
i.e., J = G1‖ . . . ‖Gm. Thus L = G0‖J . The algorithm first finds a packing for J and G0

separately and then merge them together to obtain a packing for L.
To obtain a packing for J the algorithm starts from the packing P ′ for L′, using the

algorithm described in Lemma 4.16. Since L′ is the rounded version of J , every circle in
L′ has radius larger than or equal to the radius of its corresponding circle in J . So, the
algorithm builds a packing PJ of J by replacing each circle of P ′ by its corresponding circle
in J . That way, both P ′ and PJ use the same number of bins and therefore we can conclude
that

|PJ | ≤ OPT(L′). (4.18)

Now we must find a relation between the optimal value of L′ and the optimal value of L so
that we have a relation between OPT(J) and OPT(L).

We show that OPT(L′) ≤ OPT(L). To see this, note that any circle of Gi+1 has radius
smaller than or equal to the radius of a circle in Gi. Let P? be an optimal packing of L.
Then we can build a packing P ′ of L′ as follows: replace the circles of each sublist Gi in P?
by the circles of the sublist Gi+1, and then eliminate the circles from the sublist Gm. This
gives us a feasible packing P ′ that uses the same number of bins of P?. Therefore,

OPT(L′) ≤ |P ′| ≤ |P?| = OPT(L). (4.19)

So, from inequalities 4.18 and 4.19, we have

|PJ | ≤ OPT(L). (4.20)

Lastly, the algorithm packs the circles ofG0 by opening a new bin for each circle, obtaining
the packing P0. Note that the packing P0 uses k bins. From the input, we know each circle
has radius at least ε. If all the n circles have radius equals to ε, then the optimal packing
is given by every circle placed side by side inside the bins, and the number of bins used is
given by the ceiling of 2nε divided by the width of a bin, which is one. Therefore d2nεe is a
lower bound on the optimal value. Since P0 uses k bins, we have

|P0| = dnε2e ≤ ε(εn) + 1 ≤ ε

2
OPT(L) + 1. (4.21)

Finally, when we merge the packings PJ and P0, we obtain a packing PJ‖P0 and, from
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inequalities 4.20 and 4.21, it holds that

|PJ |+ |P0| ≤ OPT(L) +
ε

2
OPT(L) + 1. (4.22)

4.3.2 A PTAS for ICP of Large Circles

We first present an APTAS for the ICPε problem. To accomplish an APTAS for the ICPε
problem, we will use as a subroutine the algorithm AICBε , which is an APTAS for the ICBε
problem, as discussed previously. Without loss of generality, we consider that the largest
circle has radius equal to one.

Algorithm 9: AICPε : an APTAS for the ICPε problem, where ε ≤ 1/8.
Input: An instance (L, r) of the ICPε, where r is a function of the radii and ε is a

positive constant.
Output: An in-line packing P of L.

1 PB ← AICBε(L,W ), where W = 1/ε.
2 Let P be a packing obtained from PB by concatenating the in-line packings inside

each bin of PB.
3 return P .

Since we will refer to the optimum of both the ICPε and the ICBε problems, from now
on we denote by OPTB(L) the value of an optimal in-line bin packing of L and by OPTI(L),
the value of an optimal in-line packing of L.

Theorem 4.18. There exists an APTAS for the ICPε problem. More precisely, there is an
algorithm A for the ICPε problem such that A(L) ≤ (1+ε)OPT(L)+4/ε, for any instance L.

Proof. We show that the algorithmAICPε is an APTAS for the ICPε problem. More precisely,
we show that, given a constant 0 < ε ≤ 1/8 and a list of circles L in which each circle has
radius at least ε, there exists a family {Aε} of algorithms such that, for every value of ε, the
inequality Aε(L) ≤ (1 + ε)OPTI(L) + 1 holds.

The first step of our proof is to find a relation between OPTB(L) and OPTI(L). Given
an optimal in-line packing P?I of L, we construct an in-line bin packing PB of L as follows.
We cut the packing P?I with vertical lines `0, . . . , `m interspaced by a distance W , where the
first line, `0, crosses the origin of the plane, i.e., the leftmost point of the packing. Each
one of the following lines, `1, . . . , `m, might cut a set of circles. We say a vertical line cuts a
circle if it touches the circle in more than one point. We denote by Bi the packing extracted
from P?I of the set of circles cut by line `i, for 1 ≤ i ≤ m, and we refer to each Bi as a block.
Moreover, we denote by B′i the packing extracted from P?I of the set of circles whose interior
is entirely contained between the lines `i−1 and `i, for 1 ≤ i ≤ m. Note that B′i includes the
circles that touches one of the two lines in exactly one point and excludes the circles that
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are part of some block. Then, to pack the circles that are not part of any block, it suffices
to put each packing B′i into one bin, for 1 ≤ i ≤ m. This leads to⌈

|P?I |
W

⌉
bins.

It remains to pack into bins the circles that are part of some block. To do that, we
repeatedly concatenate blocks inside one bin, until the concatenation of the next block
results in a packing of size greater than W . In this case, the last block is packed in a new
bin, which will become the current bin considered from now on. Because the radius of each
circle is at most one, we have that the size |Bi| < 4, for 1 ≤ i ≤ m. Note that ε < 1/8,
so a bin has size at least 2

1/8
= 4 and therefore it can accommodate at least one block.

Furthermore, each bin contains at least
⌊
W
4

⌋
blocks, except possibly the last bin, that may

contain fewer blocks. Since each block comes from a vertical line, we have at most |P
?
I |
W

blocks. Thus, packing the circles which are part of some block as we described above yields
an in-line bin packing using at most 

|P?
I |
W⌊
W
4

⌋


bins.
Let PB be a packing of L obtained as we described above. Because PB is a feasible in-line

bin packing of L, we know that OPTB(L) ≤ |PB|. Therefore, replacing W by 1/ε, we have

OPTB(L) ≤ |PB|

≤
⌈
|P?I |
1/ε

⌉
+


|P?

I |
1/ε⌊
1/ε
4

⌋


≤ |P
?
I |

1/ε
+ 1 +

⌈
ε|P?I |
1/ε
8

⌉
(4.23)

≤ εOPTI(L) + 1 + d8ε2OPTI(L)e
≤ εOPTI(L) + 8ε2OPTI(L) + 2.

(4.24)

Note that the removal of the floors in inequality (4.23) is valid because ε ≤ 1

8
. Now that

we have a relation between OPTB(L) and OPTI(L), we shall analyze the algorithm. First,
it obtains an in-line bin packing PB of L using augmented bins of width W + ε by applying
algorithm AICBε . By Theorem 4.17, we have

|PB| ≤ (1 + ε)OPTB(L) + 1. (4.25)
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Observe that each augmented bin contains an in-line packing. So, from the packing PB,
the algorithm constructs an in-line packing P of L by concatenating the in-line packings
contained in the augmented bins used in PB. Thus, the span of P is at most the number of
augmented bins used in PB times the width of the bins, i.e., |P| ≤ |PB|(W + ε). Therefore,
replacing W by 1/ε, we have

|P| ≤ |PB|
(
1

ε
+ ε

)
≤
(
(1 + ε)OPTB(L) + 1

)(1

ε
+ ε

)
≤
(
(1 + ε)(εOPTI(L) + 8ε2OPTI(L) + 2) + 1

)(1

ε
+ ε

)
=
(
(εOPTI(L) + 8ε2OPTI(L) + 2) + (ε2OPTI(L) + 8ε3OPTI(L) + 2ε) + 1

)(1

ε
+ ε

)
≤ OPTI(L) + 9εOPTI(L) + 9ε2OPTI(L) + 9ε3OPTI(L) + 8ε4OPTI(L) + 3ε+ 2ε2 +

3

ε
+ 2

≤ OPTI(L) + 10εOPTI(L) +
4

ε
,

where the last inequality is valid because ε < 1/8.

Now we propose a PTAS for the ICPε problem. To do that, we must eliminate the
additive constant appearing in the APTAS we have just shown. The idea is to use the
algorithm AICPε as a subroutine, but only in cases where the size of the instance is large
enough so that the additive constant is just a factor of ε of the optimum value. In this case,
the additive constant in the APTAS named AICPε is of the form c

ε
, where c is a positive

integer. The fact that the additive constant depends on ε is why it is possible to reduce it to
a factor of ε of the optimum value. More precisely, we aim to find the size of the instance L
for which it holds that εOPTI(L) ≥ 1

ε
. One size that guarantees this inequality is |L| = 1

ε3
.

Consider the algorithm AICPε
P .



63

Algorithm 10: AICPε
P : a PTAS for the ICPε problem.

Input: A tuple (L, r) where L is a list of circles, r is a function of the radii, and a
positive constant ε < 1

8
.

Output: An in-line packing P of L.
1 if |L| > 1/ε3 then
2 P ← AICPε(L, r).
3 else
4 Run a binary search in the interval [0, |L|maxi 2ri] until the search reaches an

interval [a, b] such that (b− a) ≤ ε2/3, where algorithm A of Lemma 4.15,
cannot pack L in a bin of size a, but can pack L in a bin of size b+ δ, where
δ = ε2/3.

5 Let P be a packing obtained by this binary search procedure.
6 return P .

Theorem 4.19. There exists a PTAS for the ICPε problem.

Proof. We show that the algorithm AICPε
P is a PTAS for the ICPε problem. More precisely,

we show that, given a constant 0 < ε ≤ 1/8 and a list of circles L in which each circle has
radius at least ε, there exists a family {Aε} of algorithms such that, for every value of ε, the
inequality Aε(L) ≤ (1 + ε)OPTI(L) holds.

As it happens in the algorithm, we divide the proof in two cases. The first case is when
the size of the input list is greater than 1/ε3. Since the radius of each circle is at least ε, we
have that OPTI(L) ≥ 2|L|ε. Thus,

OPTI(L) ≥ 2ε|L| > 2

ε2
. (4.26)

From the inequality 4.26, we can conclude that

εOPTI(L) >
2

ε
. (4.27)

The algorithm AICBε
P produces the packing P by applying the algorithm AICPε over (L, r).

Therefore, by Theorem 4.18, we have

|P| ≤ (1 + 10ε)OPTI(L) +
4

ε

< (1 + 10ε)OPTI(L) + 2εOPTI(L), (4.28)

= (1 + 12ε)OPTI(L),

where inequality (4.28) comes from inequality (4.27). Therefore, we have a packing P which
has span at most (1 +O(ε)) of the optimal value, and the result follows.

The second case is when the size of the input list is less than or equal to
1

ε3
. In this case,
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we have at most
1

ε3
circles, which gives us an instance with a number of circles bounded by a

constant, since ε is a constant. Let P be a packing obtained by the binary search procedure
as described in the algorithm AICPε

P . When the search stops, we have the following scenario.
On one side, since algorithmA cannot pack L into a bin of size a, we have OPT(L) ≥ a−ε2/3,
since δ = ε2/3. On the other side, as algorithm A can pack L into a bin of size b+ ε2/3, we
have

|P| ≤ b+ ε2/3

≤ (a+ ε2/3) + ε2/3

= a+ 2ε2/3

≤ OPT(L) + ε2/3 + 2ε2/3

= OPT(L) + ε2

≤ OPT(L) + εOPT(L),

where the last inequality is valid because OPT(L) ≥ ε, as each circle has radius at least ε.
It remains to argue that the algorithm takes polynomial time. In the first case, the

algorithm runs another algorithm over L, which is an APTAS for the ICPε problem, therefore,
it takes polynomial time in this case. In the second case, the algorithm performs a binary
search, which has polynomial time, and at each step of this search, it performs another
polynomial time algorithm, so the total time is also polynomial.
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Chapter 5

Final Remarks

In this dissertation, we considered the In-line Circle Packing (ICP) problem, which we found
to be not yet widely exploited in the literature. To the date of this writing, we have found
only two works in the literature, one regarding triangles and another regarding circles. As
a consequence, we reason that there is still plenty of space left for investigations. For the
triangles, Dürr et al. [7] showed a QPTAS. One natural question is: is there a PTAS for such
problem? If so, could it be generalized for other shapes? The same question is appropriate
for the in-line packing of circles. Although we were not capable to find a PTAS for any of
these two problems, we believe that they admit such approximation scheme. We particularly
studied the version for circles. Our main challenge was determining a convenient lower bound
for the value of an optimal solution. Alt et al. [1] introduced the idea of a so called support
interval of a circle, and then proved a lower bound based on such concept. We tried to use
their lower bound to design an approximation scheme but we did not succeed. The hazard
was that the lower bound was not close enough to the optimal value.

The in-line packing problem (ICP) somewhat resembles the level strip packing problem,
where the items must be packed within a strip but in levels, as if organizing objects in a shelf.
The resemblance lays on the fact that, in the level strip packing, all items packed in a level
must touch the bottom of that level. In this dissertation, we proposed a different version of
the two-dimensional bin packing problem where every item has to touch the bottom of the
bin in which it is packed. The same restriction can be extended to the knapsack problem.
We can also consider recipients of other shapes. For example, consider a problem where
the items are circles and the recipient is an ellipse. We can add the in-line restriction by
requiring that every circle must touch the contour of the ellipse from inside, at exactly one
point. The idea can be extend to basically any regular forms, taken as items and also as
recipients. Another direction of generalizations may be considering higher dimensions. For
instance, we can take spheres and try to pack them over a plane. We believe that, in a sense,
we can consider n-dimensional items and try to pack them over an (n − 1)-dimensional
surface. Finally, despite not being regarded in this work, the ICP problem can be extended
to versions where the items may touch the surface both from above or from below. One
similar problem is the one considered by Buchin et al. [2], which they referred to as ordered
strip packing. In this problem, the input is a maximum width W (representing the strip),
and an ordered list of blocks of rectangles. In each block the rectangles are not horizontally
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aligned and the objective is to pack the blocks into rows no larger thanW , minimizing either
the number of rows or the height of the strip.

As we briefly commented, the ICP problem has a very simple formulation, and admits
several variants and generalization. However, we did not find many works in the literature
about related problems and the investigations seem to be recent. The two works we found
in the literature are both from 2018. The possibilities of exploitation are plentiful, and we
remain interested in the problem.
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