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Resumo

Os criadores de gado frequentemente tomam decisões em um ambiente desafiador, onde
dados objetivos são escassos e ruidosos, enquanto têm de lidar com mudanças climáticas,
diferenças fenotípicas entre animais, bem como outros fatores. O planejamento objetivo
baseado em dados de crescimento animal e previsão de produtividade ainda carece de
instrumentação com tecnologias robustas e escaláveis. Aproveitando as tecnologias cada
vez mais comuns de coleta automatizada de dados, esta pesquisa propõe o uso de técnicas
de assimilação de dados, em conjunto com dados de crescimento animal, para melhorar as
previsões produzidas por modelos de crescimento animal, possibilitando o planejamento
de sistemas pastoris em um sistema de pecuária. Os dados de crescimento animal foram
obtidos usando balanças que medem automaticamente o peso do gado, identificando in-
dividuos por meio de brincos RFID. Espera-se que os resultados obtidos contribuam para
o avanço do estado da arte na previsão de modelos de crescimento animal e auxiliem no
manejo e manutenção de sistemas de produção pecuária.

Palavras-chave: Sistemas dinâmicos, filtragem de Kalman, identificação de sistemas,
RFID, admnistração da produção - processamento de dados



Abstract

Livestock farmers often make decisions in a challenging environment where objective data
is scarce and noisy, while having to deal with climate changes, phenotypical differences
between animals, as well as other factors. Objective planning based on animal growth data
and productivity forecast still lacks instrumentation with robust and scalable technologies.
Taking advantage of the increasingly common technologies for automated data collection,
this research proposes the use of data assimilation techniques, in conjunction with animal
growth data, to improve forecasts produced by animal growth models, thus enabling the
planning of pastoral systems in a livestock system. The animal growth data was obtained
using scales that automatically measure livestock weight several times a day, identifying
individuals through RFID earrings. The results obtained are expected to contribute to
the progress of the state of the art in the forecasting of animal growth models and to
assist the management and maintenance of livestock production systems.

Keywords: Dynamical sytems, Kalman filtering, system identification, RFID, produc-
tion management - data processing



List of Acronyms

DA Data assimilation

KF Kalman filter

EFK Extended Kalman filter

UKF Unscented Kalman Filter

EBKF Empirical Bayesian derivation of the Kalman filter

PF Particle filter

UPF Unscented particle filter

UT Unscented transform

SIS sequential importance sampling

PSO Particle swarm optimization

RE Retained energy concentration

EBW Empty body weigh

LWmat Mature liveweight

EIR Energy input rate

MEI Metabolizable energy intake

SBW Shrunk body weight

Maint Energy required for maintenance and activity

LW Liveweight

NSAF-MAE Mean Absolute Error of N-Step Ahead Forecasts

RSD Rolling standard deviation



MRSD Mean rolling standard deviation

BCS Base case scenario

MSE Mean squared error

i.i.d. Independent and identically distributed

RFID Radio frequency identification



Contents

1 Introduction 12
1.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Literature review 15
2.1 Beef production management . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Animal Growth Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Data Assimilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Data assimilation in animal growth . . . . . . . . . . . . . . . . . . . . . . 19

3 Material and methods 20
3.1 Discrete Space-State models . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Animal Growth Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Richards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 Oltjen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.3 NASEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Data Acquisition and Treatment . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Data Assimilation algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.1 Unscented Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.2 Particle Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.3 Unscented Particle Filter . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.4 Dual Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.5 Growth Model Calibration . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.6 Hyperparameter Optimization . . . . . . . . . . . . . . . . . . . . . 30

4 Results and discussion 34
4.1 Initial Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Hyperparameter Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.1 Richards Model Covariance matrix . . . . . . . . . . . . . . . . . . 35
4.2.2 Oltjen’s Model Covariance matrix . . . . . . . . . . . . . . . . . . . 36
4.2.3 NASEM Model Covariance matrix . . . . . . . . . . . . . . . . . . . 36

4.3 Data Assimilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



4.3.1 Richards Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.2 Oltjen’s Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.3 NASEM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.4 Error Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.5 Overall Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Conclusion 46

Bibliography 48



12

Chapter 1

Introduction

Rational decisions stem from our ability to estimate the future outcomes [12].
In cattle farming, there are several decisions that depend on estimates of animal growth
rates [5, 7, 1, 38]. These include: (a) financial decisions based on forecast of expenses and
revenues; (b) optimal economic slaughter time; (c) times of purchase and sale of animals;
(d) optimal diet formulation; (e) amount supplementary feed to be purchased and offered;
(f) pasture stocking rates; (g) selection of animals for maintenance and disposal, and; (h)
formation of animal batches. Managers of beef cattle production systems are challenged to
make such decisions to maximize the economic return and minimize negative externalities,
while still having to deal with seasonal variations in pasture productivity [7] and significant
genetic heterogeneity between animals [54].

The scarcity of objective information about the production makes it difficult
to efficiently manage it, both in the planning and control phases, leading most farmers to
make decisions based on trial and error, qualitative assessments and successful experiences
of third parties in similar situations [51].

Spatiotemporal data sampling (observations or measurements) of a system can
be used to acquire direct information about the system’s variables. Measurements usu-
ally have low bias, meaning that with enough measurements we should be able to get an
accurate estimate of the system’s state. However, measurements may be expensive, have
too much noise, and often the variable of interest simply cannot be directly measured.
Mathematical models can be used to enhance the data acquired through measurements,
and to obtain further insight about the system’s characteristics and behaviours, such as
estimating variables that cannot be observed and forecasting future states of the system.
Estimates from models, however, may be hindered by poor modeling, poor parametriza-
tion or noisy input data, all of which can, over time, induce estimation bias.

There is a variety of mathematical models that are applied in livestock pro-
duction forecasting based on species, grazing management and meteorological data [5,
45]. Although models of dynamics of cattle production systems have a history of at least
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four decades, it is still frequent to observe bias in the produced forecasts. This bias is
caused by two main reasons: (a) mathematical models are simplifications of processes in
the system of interest. For this reason, mathematical models may not consider several
factors that can impact productivity in the system; (b) parametrization of the models
requires large amounts of measurement data, which are costly to obtain, and are usually
not available in large commercial productions. In addition, different regions and indi-
viduals have different characteristics that affect the forecasts. Calibrating the model for
each situation is much more difficult, due to the small amount measurements that can be
performed, and usual calibration methods are not adequate.

Detailed data collection for individual animals is still rare in livestock produc-
tion systems. Historically, there were high costs and effort associated with obtaining it,
further inhibiting the adoption of mathematical models for livestock growth forecasting.
The recent emergence of automated measurement systems, such as automatic electronic
scales for weighting cattle [15], enables real time monitoring of animal growth in commer-
cial productions. Weight data on its own is still not enough to parametrize animal growth
models such as Oltjen et al. [43] and NASEM [40], especially for calibrating the model
for small populations or short time periods of monitoring. However, the time series data
of an individual animal can be used by data assimilation (DA) techniques to perform an
online (e.g. in real time) correction of the models as the animal grows.

DA is comprised of a set of statistically robust techniques that enable combin-
ing mathematical models, that describe the dynamics within a system, with measurements
taken by monitoring the system’s behavior over time. DA has the main objectives of: (a)
correcting the model’s state and parameters so that their estimates follow the measure-
ments made, reducing model bias; (b) aggregating measurement information obtained
from different sources into a mathematical model in order to obtain more accurate esti-
mates of the system’s actual state; (c) estimate variables that cannot be directly measured
by sensors. Therefore, DA techniques are suitable for identifying the set of parameters
associated with phenotypical dynamics of an animal, such as growth rate and mature
weight, which in turn can improve individual animal’s weight forecast. Studies indicate
that individualizing the growth trajectories of animals can generate significant economic
and environmental gains [1].

This study evaluates the performance of data assimilation algorithms for on-
line correction of productivity forecast models of beef cattle, using data from automated
animal weight sensors. The objective is to select model and algorithm pairs with high
accuracy and robustness, in order to provide the information required for making man-
agement decisions that promote higher bioeconomic and environmental efficiency of beef
cattle production systems.
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1.1 Objective

The overall objective of the research is to determine whether it is possible to
reduce the error of forecasts obtained by animal growth models through the use of data
assimilation techniques in conjunction with animal weight collected through automated
animal scales.

The specific objectives are:

• Evaluate the the error of forecasts obtained by the studied models without perform-
ing DA.

• Compare the errors of forecasts obtained from different associations between the
studied DA techniques and animal growth models.

• Determine the association between the number of days of animal weight data that
the DA techniques utilized and the error of the obtained forecasts.

1.2 Hypothesis

It is possible to reduce the error of forecasts obtained by animal growth models
using DA techniques in conjunction with animal weight data collected through automatic
animal weight sensors.
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Chapter 2

Literature review

2.1 Beef production management

Management of livestock operations involves planning, implementation, mon-
itoring and control in a continuous cycle [23]. According to Parker, Shadbolt, and Gray
[44], the planning phase requires the establishment of target levels of performance, which
should be consistent with the technology and course of actions projected to implement.

Computer simulation may aid managers to compare prospects besides provid-
ing an objective way to define expected levels of performance for each scenario in livestock
production. Several predictive computer models have been successfully delivered as plan-
ning tools for livestock production either through scenario analysis [20, 25] or optimization
[3, 52, 16]. They may provide the best expected trajectories of indicators of a system per-
formance prior to the implementation of the plan but they will rarely be a satisfactory
match to the actual systems behavior, so monitoring and controlling are needed [44].

Deviations of the system in relation to model forecasts may stem from several
factors, including: differences between the planned and implemented controllable input
variables (drivers); uncertainties related to uncontrollable or unobservable model parame-
ters, drivers or other factors, and; structural simplifications of the system in the modeling
process. As a result, systems must be continuously monitored to allow the manager to
take corrective management (control) actions, making sure that the expectations of a
strategy outcome get updated as new evidence arrives. Control actions should be per-
formed whenever deviations from target expectations are identified and expected benefits
exceed control costs [22].

At the operational level, the main controllable drivers for beef animals in
feedlots are the quantity of feed offered and feed energy concentration. For maximum
performance, feed is usually offered for ad libitum levels of intake, ensuring minimum orts
(up to 5% of feed offered in total mixed rations; [26]). Individual feed intake is difficult to
estimate on pasture and is rarely measured in commercial operations, although technology
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is already available and is often used in research experiments [13]. Large feedlot operations
may have pen (batch) estimates of dry matter intake retrieved from automated feeding
wagons, but, in the general case, there are no accurate feed intake (dry matter intake)
estimates. Dealing with uncertainties and corrective actions are usually costly. Therefore,
early access to accurate information will contribute towards the objectives [8].

2.2 Animal Growth Modeling

Conversion of feed to body weight may vary according to the concentration
of energy in tissue gain (RE, retained energy concentration) and, to a lesser extent, the
energy required for maintenance [40]. RE varies with the proportion of fat and protein in
gain. Fat is more energetically dense (ca. 39.6 kJ.g-1) than protein (ca. 23.8 kJ.g-1) and
fat-free body mass (ca. 5.24 kJ.kg-1). Therefore, higher proportions of fat in new tissue
deposition will result in lower rates of liveweight gain at a given energy input rate.

Fat proportion in liveweight gain is strongly associated with the maturity of the
animal. At a given weight, animals with genetics for higher mature liveweight (LWmat)
will have lower proportions of fat in gain. Maturity can be represented in several ways,
some explicit and others implicit. For instance, Oltjen et al. [43] uses an implicit maximum
protein mass that can be derived from its parameters [4], while NASEM [40] uses the
equivalent empty body weight (EBW) to represent the degree of maturity.

Although liveweight gain decreases as the animal matures, monitoring liveweight
alone does not allow to precisely distinguish animals with higher LWmat and standard
intake from animals with higher intake and lower LWmat (associated to higher fat deposi-
tion) in the short term. Fortunately, LWmat has known biological bounds (e.g. a well fed
mature male Nellore bull would weight around 850 and 1300 kg) [9] is usually associated
to a model parameter. Therefore, it would be possible to apply population covariances
between feed intake, fat proportion and liveweight gain so that those variables are kept
within the expected range.

Mechanistic models of animal growth (e.g. Oltjen et al. [43], NASEM [40])
assume energy conservation. In general, energy input (intake) rate (EIR) is calculated
from feed energy concentration and feed intake. Energy available for growth is estimated
by subtracting energy requirements for maintenance from EIR. The usual way to apply
those models is to estimate performance from energy intake. However, the system is
defined as a bijective function, so it is possible to backcalculate energy and feed intake [6,
17, 11]

The partition of the energy above the requirement for maintenance metabolic
efficiency for growth, work and other productive activities vary [40]. The limitations of
this method are related, nevertheless, to variations in efficiency of feed conversion among



Chapter 2. Literature review 17

animals, which may relate to the partition of energy to protein or fat.
Feed energy concentration is usually a major driver of animal performance

as highly fibrous diets reduce feed intake [40], besides providing lower energy per unit
of mass. Typical energy concentrations of feedstuffs are available from several tables of
nutritional values (e.g. NASEM [40], Valadares Filho et al. [56]). After established the
price of purchased animal, growth rate, feed (dry matter) intake and cost of feed (dry
matter) are the most important variables associated with profitability for the stocking
and finishing phases of livestock operations [37].

2.3 Data Assimilation

The idea behind DA is to combine models that describe the dynamics within
a system with observations of this system, where both carry information and have finite
errors. As such, intuitively, aggregating them should increase the information about
the system, improving it’s state estimates [34]. DA algorithms are stochastic frameworks,
where the estimates from the model and observations are represented as random variables,
which are usually described by its mean and variance.

Most commonly, DA algorithms are executed iteratively for each new mea-
surement collected. Each iteration is divided into two main stages, a time update and
a measurement update stages. In the time update step, the model is used to estimate
the state of the system in the next time step. Due to the uncertainties associated to the
model and its drivers, the time update step increases the variance of the state estimate.
The mean and variance of the state estimate at the end of the time update stage are
called prior estimate. In the measurement update step, the algorithm incorporates the
new measurements into the prior, which in turn reduces the variance of the estimate.
The mean and variance at the end of the measurement update step are called posterior
estimate. [33]

The Kalman Filter (KF) [30] is one of the most widely known DA algorithms.
An assumption of the KF is that the estimates of the state of the system and measurements
are random variables with normal distribution that are represented by a mean vector and
a covariance matrix. The mathematical model is represented by two matrices, 𝐹 and
𝐻. 𝐹 is known as the state transition model, and is used to compute the mean of the
prior 𝑥𝑡 = 𝐹𝑥𝑡−1 during the time update stage. The 𝐻 matrix, known as the observation
model, is used to project the state vector into the observation’s vector space during
the measurement update stage. This is essential to compute the difference (residual)
between the mean of the prior and the current measurement, whose dimensions and
measurement units do not always match. Although KF is an optimal estimator for linear
models, nonlinear models break its assumption that the estimate of the model’s state
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will be normally distributed. In order to solve the problem, KF variations for nonlinear
estimation were developed, such as the Extended Kalman Filter (EKF) and the Unscented
Kalman Filter (UKF) [60].

The EKF works through the linearization of the model, expressed through the
Jacobian matrix, which is then used in the KF linear transformations. However, EKF still
suffers from some limitations, such as: (a) because the EKF only uses first order terms of
the Taylor series expansion, it often introduces large errors, and the resulting estimates
may be inaccurate [58]; (b) not all models have a Jacobian, so they cannot be linearized;
(c) the Jacobian calculation can be difficult and is susceptible to errors [29].

The UKF originates from the idea that it is easier to approximate the dis-
tribution of a random variable that undergoes a nonlinear transformation rather than
approximate the nonlinear function. To solve the problem of nonlinearity, UKF uses the
sigma points approach, which are a set of points deterministically computed in order to
accurately represent the distribution of a normal random variable. The model is composed
by two functions, 𝑓 and ℎ, which are analogous to the 𝐹 and 𝐻 transformation matrices,
respectively. A set of sigma points X𝑥 are computed for representing the current system’s
state estimate 𝑥. When X𝑥 undergoes a nonlinear transformation, either by 𝑓 or ℎ, the
resulting sigma points accurately captures true mean and covariance up to the 3rd order
(Taylor series expansion) for any nonlinearity [60]. The UKF is superior to the EKF due
to: (a) the model does not need to be written in matrix form; (b) it is not necessary to
compute the Jacobian; (c) the UKF produces better estimates than the EKF for functions
that have strong nonlinearity [60].

Particle Filters (PF), also known as sequential Monte Carlo methods, are an-
other widely used approach for nonlinear estimation. While previous nonlinear approaches
rely on Gaussian approximations, PFs do not require Gaussian assumptions. The under-
lying concept in PFs is that it is possible to approximate the distribution of any given
function by drawing repeated random samples from it, a process known as Perfect Monte
Carlo Simulation [60]. In PFs a set of points, called particles, are randomly sampled from
a probability distribution. Similarly to the UKF, each particle undergoes nonlinear trans-
formations by 𝑓 and ℎ. The distribution of particles after undergoing the transformation
is called proposal distribution. These particles are filtered by assigning a weight associated
with its probabilistic importance (likelihood) given the observed measurements. Particles
with lower likelihood are then eliminated and particles of great importance undergo a
resampling process. Due to the fact that Monte Carlo approximations usually require
large amounts of samples to produce good approximations [18], PFs usually have a much
higher computational cost than KF variants.

The PF algorithm does, however, suffer from a well known degeneracy problem,
which happens if a sample with high importance weight gets multiplied many times. When
this happens, the particles have a tendency to collapse into a single point, causing the
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PF estimates to deviate from measurements. Thus, the choice of proposal distribution
is critical for avoiding the degeneracy of estimates. Van Der Merwe et al. [58] tackle
this problem using the UKF to filter each particle in order to generate a more accurate
proposal distribution. This technique is called the Unscented Particle Filter (UPF), and
it performs much better than the PF or KF variants in the examples shown at Van Der
Merwe et al. [57].

2.4 Data assimilation in animal growth

The KF had one of its first applications in the space navigation system at the
Apollo Project in 1960 [24]. Ever since then, DA techniques have spread across several
fields of knowledge. DA is prominently used in object tracking systems, such as radars,
GPS (global positioning system), missile navigation, among others [24]. Many other
areas have also found uses for data assimilation, such as atmospheric modeling [31, 63],
oceanography [21], medicine [49], ecology [36], agriculture [62], among many others.

Oltjen and Owens [42] conducted a study on data assimilation in bovine growth
models using an empirical Bayesian derivation of KF (EBKF). The study evaluates the
performance of EBKF by comparing three different methods of bovine growth forecasting:
(a) growth forecasting given by a model, without DA; (b) growth forecasting using the
EBKF to incorporate measurements and adjust the parameters of food consumption (y1)
and weight gain (y2); (c) growth forecasting using the least squares procedure to incor-
porate measurements and adjust the same y1 and y2 parameters. The results show that
the projections made using EBKF present a smaller error when compared to the other
two methods and require a shorter period of observations to present good estimates.

In view of the scarcity of literature on DA applications in cattle growth, and
no literature on its application in conjunction with automatic scales, the aim of this work
is to contribute to the advancement of the state of the art in animal growth estimation
and forecasting.
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Chapter 3

Material and methods

This chapter is organized as follows: 3.1 explains some background about
space-state models, needed in order to understand the rest of the chapter; in 3.2 explains
the Richards’, Oltjen’s and NASEM’s models, which were used in this study; 3.3 explains
how the data used in this study was acquired, and; 3.4 explains the DA algorithms used
in this study, as well as the methodology used in order to apply them to each model.

3.1 Discrete Space-State models

A space-state model is a first order Markov process that can be divided into a
state transition model and a measurement model, as shown below:

𝑝(𝑥𝑡|𝑥𝑡−1)

𝑝(𝑦𝑡|𝑥𝑡)
(3.1)

where 𝑥𝑡 is the state of the model at time 𝑡 and 𝑦𝑡 the output observations.
For the models used in this study, the space-state model can be defined as:

𝑥𝑡 = 𝑓(𝑥𝑡−1) + 𝑣𝑡−1

𝑦𝑡 = ℎ(𝑢𝑡, 𝑥𝑡) + 𝑛𝑡

(3.2)

where 𝑓 is the state transition model, and ℎ is the measurement model. 𝑓 updates the
model’s state from time 𝑡 − 1 to 𝑡, 𝑢𝑡 are the input observations, 𝑣𝑡 the process noise and
𝑛𝑡 the measurement noise. ℎ computes the output observations of the model, a set of
values that correspond directly to the measurements taken from the system.

3.2 Animal Growth Models

In this study, we compare three different models in order to measure their
performance with and without applying DA. These models were implemented using an
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inhouse Python framework for modeling and simulating dynamic systems.

3.2.1 Richards

The Richards function is an empirical model widely used to represent the
growth of animals (e.g., Brown, Fitzhugh Jr, and Cartwright [10] and Fitzhugh [19]).
The literature mentions alternative forms of this equation, thus we specify the functional
form used in this study. In Fitzhugh [19], the Richards model is presented as a generic
function that can be reduced to several other widely used growth functions, including the
monomolecular, logistic, Gompertz and Bertalanffy models. According to the author, the
equation in its differential form is given by:

𝑑𝑌

𝑑𝑡
= 𝑀𝑘𝑌

⎡⎣(︂𝑌

𝐴

)︂−1
𝑀

− 1
⎤⎦ (3.3)

in which,

• 𝑑𝑌
𝑑𝑡

is the instantaneous animal growth rate,

• 𝑌 is the animal’s liveweight,

• 𝑘 is the animal’s maturity index,

• 𝑀 is the inflection parameter,

• 𝐴 is the asymptotic value for the animals’ weight.

The Richards function was used in this study because it is one of the most
flexible functional forms of representing the continuous growth of animals [55], and because
the biological interpretation of its parameters is relatively straightforward. One of the
difficulties in using the Richards function, however, is parameter identification [53, 48].

3.2.2 Oltjen

The bovine growth model of Oltjen et al. [41] and Sainz et al. [47] is a dynamic
model based on a system of three differential equations which compute the mass of DNA
(eq. 3.4), protein (eq. 3.5) and body fat (eq. 3.6).

dDNA
dt = ND × kD × (DNA𝑚𝑎𝑥 − DNA) (3.4)

dProt
dt = NP × kPs × DNA0.73 − kPd × 𝑃 0.73 (3.5)
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dFat
dt =

(FI − M
NEm) × NE_g − dProt

dt × EP
EF (3.6)

The parameter kD from Eq. (3.4) defines the reference the DNA rate of ac-
cretion, and the auxiliary variable ND defines the effect of the feed energy intake on its
variation (Eq. (3.8)). In Eq. (3.5), FI is the feed intake; 𝑀 is the net energy for main-
tenance; NE_g is the feed net energy concentration for liveweight gain; EF is the energy
concentration of fat tissue, and; EP is the energy concentration of protein tissue.

The effect of energy intake is modeled through the ratio of the rate of metab-
olizable energy intake (MEI) of the animal and its reference energy intake rate (MEI𝑟𝑒𝑓 ),
estimated from its physiological condition.

EII = MEI
MEI𝑟𝑒𝑓

(3.7)

ND = 0.7 + 1.7 × EII (3.8)

MEI𝑟𝑒𝑓 = EBW0.73 ×
(︃

MEI0 − MEI1 × EBW
EBWM

)︃
(3.9)

In Eq. (3.9) we compute the reference ingestion of metabolizable energy. MEI0

and MEI1 are linear regression intercepts, with original values of 0.480 and 0.2615, re-
spectively. EBWM is the mature empty body weight.

The rate of protein synthesis, Eq. (3.10), is defined as an affine function of
DNA mass raised to the power of 0.73. The parameter kPs is the protein synthesis
reference rate per unit of DNA0.73, and NP is the effect of energy intake on protein
synthesis. Protein degradation, Eq. (3.11), is a function of the body protein mass raised
to the power of 0.73 and kPd is the protein synthesis reference rate per unit of 𝑃 0.73. The
model assumes that protein degradation is insensitive to nutrition.

Psyn = NP × kPs × DNA0.73 (3.10)

Pdeg = kPd × Prot0.73 (3.11)

NP = 0.83 + 0.2 × EII
0.15 + EII (3.12)

The animal’s empty body weight (EBW ) is estimated as the sum of the ani-
mal’s fat mass and lean mass. The lean mass is estimated from the protein mass, consid-
ering that the protein constitutes 22.01% of the lean mass, as described in the equation
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(3.13)

EBW = 𝐹 + 𝑃

0.2201 (3.13)

The animal’s shrunk body weight (SBW ) is estimated as a proportion of EBW
(3.14). The liveweight, in turn, is computed as a proportion of SBW (3.15).

SBW = EBW
0.91 (3.14)

LW = SBW
0.96 (3.15)

3.2.3 NASEM

Since 1944, the American National Research Council has published a guide on
the nutritional requirements of beef cattle. Now incorporated into the American National
Academy of Sciences, Engineering and Medicine, NASEM’s model [40] is probably the
most widely used for formulating beef cattle diets and performance estimates in Brazil
and in the world. It has been fully or partially incorporated in several decision support
systems used in Brazil, such as RLM, BR-Corte, Invernada, and others.

In NASEM’s model the rate of body weight gain is based on the amount of
energy retained (RE, Mcal/day), according to Eq. (3.16).

EBG = 12.341 × EQEBW−0.6837 × RE0.9116 (3.16)

The retained energy is obtained by the Eq. (3.17) as the difference between
the amount of energy ingested by the animal and the energy costs for maintenance and
activity (Maint, (3.18)). Dry matter intake (DMI ) is the daily consumption of feed dry
matter (kg/day), obtained by Eq. (3.19). NE𝑚 and NE𝑔 are respectively the concentration
of net energy for maintenance and gain of body tissues that can be obtained from feed
composition databases or estimated from feed digestibility according to equations available
at [40].

RE = DMI − Maint
NE𝑚

× NE𝑔 (3.17)

Maint = 𝛼 × SBW0.75 (3.18)

DMI = (0.1493 × NE𝑚 − 0.046 × NE2
𝑚 − 0.0196) × SBW0.75 (3.19)
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NASEM is originally a static model, meaning it does not allow temporal evolu-
tion of variables. The diets are formulated and evaluated considering the average weight
of the animals in a given evaluation period [40]. In this study, NASEM’s model was
adapted into a dynamic model by adding a state variable EBW that maintains the empty
body weight of the animal. The differential equation associated with the state variable
EBW is the EBG, given by Eq. (3.16).

The DMI calculation, Eq. (3.19), also required modification, since in it’s orig-
inal form it does not depend on the animal’s maturity. Therefore, we changed NASEM’s
model to compute DMI using Oltjen’s [43] Eq. (3.9), which computes the reference inges-
tion of metabolizable energy, and then compute the DMI using Eq. (3.20).

𝐷𝑀𝐼 = MEI_ref
MEC (3.20)

where 𝑀𝐸𝐶 is the diet’s metabolizable energy concentration.

3.3 Data Acquisition and Treatment

Estimates of animal weights were provided by the company Coimma. These
estimates are made from measurements carried out by BalPass ® automatic scales. These
scales are installed in locations where animals pass through routinely. Each time an
animal walks across the scale, the animal is identified by a radio frequency identification
(RFID) earring, and its weight is recorded.

The data collected by the scales is processed to estimate a daily reference
weight for each animal, from which it is possible to estimate its growth over time. Since the
weighing process does not require human intervention, it is common for invalid weighings
to occur when an animal does not go through the scale as expected (e.g. jumping, or more
than one animal at the same time). In addition, the animals’ weight varies throughout
the day according to the filling of its digestive tract [15]. To solve this, invalid weights
are detected and removed, after which the reference weight is calculated as the average of
the weight of each animal over each day.

The final dataset consists of the daily reference weights of 151 male animals,
predominantly of the race Angus, in confinement. The time span during which each
animal was observed varies, ranging from 31 to 146 days.

3.4 Data Assimilation algorithms

The DA techniques used in this study were: the Unscented Kalman Filter
(UKF), because it provides better overall results [60] than those of EKF, does not require
individual model linearization and has low computational cost; the Particle Filter (PF),
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because it is able to approximate non-Gaussian distributions; and the Unscented Particle
Filter (UPF) because it generally performs better than the standard PF and avoids the
degeneracy problem, although the UPF has a much higher computational cost than the
PF if the same number of particles is used.

Each filter was implemented as a Python class, which allows applying them
for different models through a standardized code interface.

3.4.1 Unscented Kalman Filter

The UKF [27] is based on the Unscented Transform (UT) technique, which
is used to compute the statistics of a random variable 𝑥 when it undergoes a non-linear
transformation 𝑦 = 𝑔(𝑥). The UT is capable of approximating the average and covariance
up to third order with good accuracy for any non-linearity [60]. For this, 2𝑛𝑥 + 1 sigma
points are chosen deterministically, where 𝑛𝑥 is the dimension of a Gaussian random
variable 𝑥 with variance 𝑃𝑥, with corresponding weights. Each sigma point is represented
by a vector X𝑖 and weighted by a scalar 𝑊𝑖, and is calculated as follows:

X0 = �̄�

X𝑖 = �̄� + (
√︁

𝑛𝑥 + 𝜆𝑃𝑥)𝑖, 𝑖 = 1, ..., 𝑛𝑥

X𝑖 = �̄� − (
√︁

𝑛𝑥 + 𝜆𝑃𝑥)𝑖, 𝑖 = 𝑛𝑥 + 1, ..., 2𝑛𝑥

𝑊
(𝑚)
0 = 𝜆/(𝑛𝑥 + 𝜆)

𝑊
(𝑐)
0 = 𝜆/(𝑛𝑥 + 𝜆) + (1 − 𝛼2 + 𝛽)

𝑊
(𝑚)
0 = 𝑊

(𝑐)
0 = 1/{2(𝑛𝑥 + 𝜆)}, 𝑖 = 𝑛𝑥 + 1, ..., 2𝑛𝑥

(3.21)

where 𝜆 = 𝛼2(𝑛𝑥 + 𝜅) − 𝑛𝑥 is a scaling parameter. 𝛼 determines the "spread" of the sigma
points around �̄�. 𝜅 is a secondary scaling parameter and 𝛽 is used to incorporate prior
knowledge about the distribution of 𝑥. Each sigma point is then propagated through a
non-linear function,

Y = 𝑔(X), 𝑖 = 0, ..., 2𝑛𝑥 (3.22)

The mean and covariance of 𝑦 are calculated as follows:

𝑦 ≈
2𝑛𝑥∑︁
𝑖=0

𝑊
(𝑚)Y𝑖

𝑖 (3.23)

𝑃𝑦 ≈
2𝑛𝑥∑︁
𝑖=0

{Y − 𝑦}{Y𝑖 − 𝑦}𝑇 (3.24)
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Unscented Kalman Filter Algorithm

The UKF is an iterative algorithm that uses the UT to generate estimates that
minimize the mean squared error [28]. The process and measurement noises related to
the system studied in this work are purely additive. Therefore, we use a simplification
of the UKF described by Julier and Uhlmann [28] and Van Der Merwe et al. [58]. The
simplification of the UKF algorithm is described below:

1. Initialization
�̄�0 = 𝐸[𝑥0]

𝑃0 = 𝐸[(𝑥0 − 𝑥0)(𝑥0 − 𝑥0)𝑇 ]

2. For 𝑡 ∈ {1, ..., ∞}

(a) Compute sigma points:

X𝑡−1 = [�̄�𝑡−1 �̄�𝑡−1 ±
√︁

(𝑛𝑥 + 𝜆)𝑃𝑡−1]

(b) Time update

X𝑡|𝑡−1 = 𝑓(X𝑡−1)

�̄�𝑡|𝑡−1 =
2𝑛𝑥∑︁
𝑖=0

𝑊
(𝑚)
𝑖 X𝑖,𝑡|𝑡−1

𝑃𝑡|𝑡−1 =
2𝑛𝑥∑︁
𝑖=0

𝑊
(𝑐)
𝑖 [X𝑖,𝑡|𝑡−1 − �̄�𝑡|𝑡−1][X𝑖,𝑡|𝑡−1 − �̄�𝑡|𝑡−1]𝑇 + 𝑄

Y𝑡|𝑡−1 = ℎ(X𝑡|𝑡−1)

𝑦𝑡|𝑡−1 =
2𝑛𝑥∑︁
𝑖=0

𝑊
(𝑚)
𝑖 Y𝑖,𝑡|𝑡−1

(c) Measurement update

𝑃𝑦𝑡𝑦𝑡 =
2𝑛𝑥∑︁
𝑖=0

𝑊
(𝑐)
𝑖 [Y𝑖,𝑡|𝑡−1 − 𝑦𝑡|𝑡−1][Y𝑖,𝑡|𝑡−1 − 𝑦𝑡|𝑡−1]𝑇 + 𝑅

𝑃𝑥𝑡𝑦𝑡 =
2𝑛𝑥∑︁
𝑖=0

𝑊
(𝑐)
𝑖 [X𝑖,𝑡|𝑡−1 − �̄�𝑡|𝑡−1][Y𝑖,𝑡|𝑡−1 − 𝑦𝑡|𝑡−1]𝑇

𝐾𝑡 = 𝑃𝑥𝑡𝑦𝑡𝑃
−1
𝑦𝑡𝑦𝑡

�̄�𝑡 = �̄�𝑡|𝑡−1 + 𝐾𝑡(𝑦𝑡 − 𝑦𝑡|𝑡−1)

𝑃𝑡 = 𝑃𝑡|𝑡−1 − 𝐾𝑡𝑃𝑦𝑡𝑦𝑡𝐾
𝑇
𝑡

where 𝑄 is the model’s noise covariance matrix, 𝑅 is the measurement covariance matrix
and 𝐾 is called Kalman Gain. Note that the simplification of the UKF assumes that 𝑃 ,
𝑄 and 𝑅 covariance matrices are independent.
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3.4.2 Particle Filter

The Particle Filter is a Monte Carlo simulation method which, unlike the
UKF, do not assume a fixed shape of densities [46]. Monte Carlo simulations use sets of
randomly drawn samples to map integral problems into discrete sums. Thus, it allows
approximating the expectation of a set of samples 𝑥(𝑖) from a distribution 𝑝(𝑥𝑡|𝑦𝑡) that
undergo a nonlinear transformation 𝑔(𝑥(𝑖)), as follows:

E[𝑔(𝑥𝑡)] =
∫︁

𝑔(𝑥𝑡)𝑝(𝑥𝑡|𝑦𝑡)𝑑𝑥𝑡 (3.25)

E[𝑔(𝑥)] = 1
𝑁

𝑁∑︁
𝑖=1

𝑔(𝑥(𝑖)) (3.26)

where the samples 𝑥(𝑖) are assumed to be independent and identically distributed (i.i.d.)
and E[𝑔(𝑥)] 𝑁→∞−−−→ E[𝑔(𝑥)] if the variance of 𝑔(𝑥) is bounded [58].

Sequential Importance Sampling

It is often impossible to sample from 𝑝(𝑥𝑡|𝑦𝑡) directly. To circumvent this, we
can use the sequential importance sampling (SIS) method, which is performed by drawing
the samples from a proposal distribution 𝑞(𝑥𝑡|𝑦𝑡), generally defined as:

𝑞(𝑥𝑡|𝑦𝑡) = 𝑞(𝑥𝑡−1|𝑦𝑡−1)𝑞(𝑥𝑡|𝑥𝑡−1, 𝑦𝑡) (3.27)

The most commonly used distribution for the PF algorithm is the transition
prior, 𝑓(𝑥𝑡−1) [60]. Since the proposal distribution is usually not i.i.d., we must also assign
an importance weight term 𝑤𝑡 to Eq. (3.26),

E[𝑔(𝑥𝑡)] = 1
𝑁

𝑁∑︁
𝑖=1

𝑔(𝑥(𝑖)
𝑡 )𝑤𝑡(𝑥(𝑖)

𝑡 ) (3.28)

where

𝑤𝑡 = 𝑤𝑡−1
𝑝(𝑦𝑡|𝑥𝑡)𝑝(𝑥𝑡|𝑥𝑡 − 1)

𝑞(𝑥𝑡|𝑥𝑡−1, 𝑦𝑡)
(3.29)

Resampling Stage

To avoid degeneracy of particles in the SIS method, in which the variance of
the importance weights increases stochastically over time [58], we can apply a resampling
stage. In this stage, we eliminate particles with lower importance weight and multiply
those with high importance weights. In this study, we use the systematic sampling proce-
dure, introduced by Kitagawa [32] and Crisan and Doucet [14], implemented in python by
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Labbe [33]. In this method, we first create a sampling space by performing the cumulative
sum of the normalized importance weights. We then divide the resampling space into 𝑁

divisions and choose a random offset from which to sample from all divisions, ensuring
each sample is 1/N appart.

Particle Filter Algorithm

Here is presented the pseudo-code algorithm for the Particle Filter, adapted
from Wan and Van Der Merwe [60].

1. Initialization For 𝑖 ∈ {1, ..., 𝑁}, draw the state 𝑥
(𝑖)
0 from the prior 𝑝(𝑥0)

2. For 𝑡 ∈ {1, ..., ∞}

(a) Importance Sampling (Time update)

• Propagate particles through model function 𝑥𝑡|𝑡−1 = 𝑓(𝑥𝑡−1)
• Evaluate 𝑤𝑡

• Normalize importance weights: 𝑤𝑡 = 𝑤𝑡

[︁∑︀𝑁
𝑗=1 𝑤

(𝑗)
𝑡

]︁−1

(b) Resample Step (a.k.a. Selection Step or Measurement update)

• Apply systematic resampling to the particles 𝑥𝑡|𝑡−1

• For 𝑖 ∈ {1, ..., 𝑁}, set 𝑤
(𝑖)
𝑡 = 1

𝑁

3.4.3 Unscented Particle Filter

The choice of proposal distribution is a critical design choice of the PF. If the
proposal distribution does not accurately represent the system’s state distribution, a few
particles might end up getting a disproportionately higher importance weight, leading to
degeneracy of the filter.

As mentioned in subsubsection 3.4.2, in Sequential Importance Sampling, the
transition prior 𝑓(𝑥𝑡−1) is the most popular choice for a proposal distribution. However,
the proposal distribution can be improved if we incorporate to it the newest available
observations. In order to accomplish this, instead of sampling directly from 𝑓𝑡−1, the UPF
samples each particle using the UKF algorithm, which moves the proposal distribution to
a region of higher likelihood [57].

3.4.4 Dual Estimation

Dual estimation is the problem of estimating both the state of a dynamic
system and the parameters that compose the model that describes the system’s dynamics
[61].
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The approach used for solving this problem in this study is concatenating the
model’s state and the parameters to be estimated into a single joint state vector [60]. The
reasoning behind this is that the UKF, PF and UPF essentially view the models as black
box functions. In other words, these filters have no knowledge of what happens inside the
model’s functions, besides their inputs and outputs.

Therefore, it is of no importance to the filter if an element of the joint state
vector is a state or parameter, and both can be estimated simultaneously as long as the
covariance matrices 𝑃 , 𝑄 and 𝑅 are initialized properly (see subsection 3.4.6).

3.4.5 Growth Model Calibration

Initial Calibration

The initial model calibration heavily impacts the performance of the models,
both with and without DA. Thus, it is first necessary to perform an initial calibration
to guarantee that each model performs its best, given the available measurements. To
do this, we use the Nelder-Mead optimization algorithm [35], implemented in Python’s
SciPy [59] package, to minimize the mean squared error between the models’ forecasts
and measurements (Eq. (3.30))

mse = 1
𝐼

𝐼∑︁
𝑖=0

1
𝑇

𝑇∑︁
𝑡=0

(ℎ(𝑓(𝑥(𝑖)
𝑡−1)) − 𝑧

(𝑖)
𝑡 )2 (3.30)

Calibrated Parameters

Given the relatively small size of the dataset used in this study, as well as the
lack of any other variables besides the daily reference weight of each animal, due to the
existence of collinearity in the parameters, not all of them can be calibrated simultane-
ously. Thus, for each model were selected one parameter related to animal growth rate
and another related to maximum expected weight at maturity. It is noted that, although
these parameters have similar roles across the three models, they do not operate iden-
tically. After the initial calibration, both of the selected parameters of each model are
further adjusted by the DA filters.
For the Richards model, the following parameters are calibrated:

• k: animal maturity index

• A: the asymptotic value for the animals’ final weight when t grows indefinitely

For Oltjen’s model [43], the calibrated parameters are:

• kD: reference speed for increasing the DNA mass
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• DNA𝑚𝑎𝑥: maximum amount of DNA reached by the animal in maturity

Finally, for NASEM’s [40] model, the calibrated parameters are:

• MEI : intercept of the metabolizable energy intake

• EBW𝑚𝑎𝑥: maximum empty body weight reached by the animal in maturity

For Oltjen’s and NASEM’s models, all remaining parameters that were not
selected for calibration were kept with the original calibration for cattle growth available
from the literature.

The Richard’s model, as generic growth model, does originally have a cali-
bration for cattle growth. Therefore, the variable 𝑀 , the inflection parameter, had to
be adjusted during the initial model calibration, together with the 𝑘 and 𝐴 parameters.
However, in order to keep the number of adjustable parameters of the three models the
same during filtering, 𝑀 was not adjusted by the DA filters.

Joint State Vector

To perform DA, it is necessary to define the state transition function 𝑓 and
measurements function ℎ for each model, required by the filtering algorithms explained in
section 2.3. The 𝑓 function receives as parameters the joint state vector 𝑥𝑡−1 and estimates
𝑥𝑡. The ℎ function receives 𝑥𝑡 and estimates the liveweight of the animal, which will be
used by the filters to compute the difference between the estimates and measurements.

The joint state vector is composed by each model’s respective state, as well as
the parameters that are going to be adjusted by the filter. In order for the DA algorithms
to work, all the models’ states must be present in the joint state vector. That includes
liveweight (LW) for Richard’s model; DNA, protein (Prot) and fat masses for Oltjen’s
[43] model, and; empty body weight, for NASEM [40].

Besides the state variables, we also wish further adjust the calibrated pa-
rameters of growth rate and maximum weight at maturity to better match the growth
characteristics of each individual animal. To do this, we include the same parameters
used in the initial calibration to each model’s respective joint state vector.

3.4.6 Hyperparameter Optimization

As explained in subsection 3.4.1, subsection 3.4.2 and subsection 3.4.3, all the
filters used in this study have three essential hyperparameters, which determine how the
filters behave: the 𝑃0, 𝑄 and 𝑅 covariance matrices. The 𝑃0 covariance matrix represents
the initial uncertainty of the joint state vector of the system. The 𝑄 covariance matrix
represents the uncertainty added to the joint state vector by in the time update step,
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and it corresponds to the 𝑣𝑡−1 error term in Eq. 3.2 The 𝑅 covariance matrix represents
the uncertainty observations, and it corresponds to the 𝑛𝑡 error term in Eq. 3.2. The
theoretical meaning of 𝑃0, 𝑄 and 𝑅 are common between the UKF, PF and UPF, although,
in practice, their values for obtaining optimal results, while applying each filter to any
particular system, may vary.

Error Function

In order to optimize the hyperparameters of the filters for each model, it is
first necessary to define a function which objectively measures the filter’s performance.
In this study, we subjectively define an optimal result as the forecast the best matches
future measurements. To do so, we use a n-step ahead error function, which measures
the mean absolute error between the estimated joint state model forecast n-steps into the
future at each time step and each measurement, as shown in Eq. (3.31).

𝑒𝑟𝑟𝑜𝑟 = 1
𝐼

𝐼∑︁
𝑖=0

1
𝑇

𝑇∑︁
𝑡=𝑛

|ℎ(𝑓𝑛(𝑥(𝑖)
𝑡−𝑛)) − 𝑧

(𝑖)
𝑡 | (3.31)

where 𝑓𝑛 is the state transition function applied 𝑛 times, ℎ is the measurement
function, 𝑥

(𝑖)
𝑡 is the DA filter estimate of the state of the system for an animal 𝑖 at time

𝑡, 𝑧
(𝑖)
𝑡 are the observations for an animal 𝑖 at time 𝑡, and 𝐼 is the number of animals.

We opted to use the absolute error, instead of the more usual squared error, because at
the beginning of the assimilation process the n-step error tends to be much larger, due
to the parameters not yet being calibrated. Thus, the optimization algorithm prioritizes
adjusting the model in the beginning of the assimilation, leading the filters to perform
more abrupt changes in the model’s parameters, at the expense of making less accurate
forecasts after a more substantial amount of measurements get evaluated and the model’s
parameters converge. Squaring the error further increases this problem.

Function Minimization

The hyperparameters for the DA filters have high dimensionality and the func-
tion has many local minima. To perform this task, we use an implementation of the Par-
ticle Swarm Optimization (PSO) algorithm [50], available in Python’s Pyswarms package
[39], which is good at escaping local minima.

In order to obtain a good result, however, the PSO needs to compute the
error function thousands of times. Therefore, since the PF and UPF are already very
computationally heavy algorithms, it is very impractical to use them to minimize the
error function. Since the UKF is a much faster algorithm, and the covariance matrices
equivalent statistical meaning in all three filters, we use the UKF to minimize the error
function. It is important to note that this affects the comparison of results between the
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filters, since the matrices have a calibration bias towards the UKF.

Initializing the 𝑅 Matrix

The measurements used for this study refer to a single variable, the animal
weight. Therefore, 𝑅 has only one element which corresponds to the variance of the mea-
surements. Since this variance depends on biological characteristics of the animals, as
well as their individual behaviour, and does not depend on the accuracy of the measure-
ment instrument alone, it has to be numerically approximated. To do so, we do a first
pass, using the UKF filter, for each animal with rough guesses of the hyperparameters, in
order to acquire an initial estimate of the system’s state at each time. Then, we compute
the variance of the error between the filter’s estimates and the animal weight measure-
ments. Since this method does not require forecasting the model many steps ahead, it
is not as sensitive to hyperparameter calibration, and, as long as the filters don’t over-
fit the measurement data, the approximation of 𝑅 is not greatly affected by the initial
hyperparameter guesses.

Initializing the 𝑄 Matrix

For the models used in this study, we assume that the noise added by forecast-
ing the system’s state is independent for each variable. Thus, 𝑄 is defined as a diagonal
matrix that contains the noise added by forecasting the joint state vector one step into
the future.

With exception of the state variables, the parameters of the models used in this
study are assumed to be inherent to the system. In other words, although each animal will
have a set of parameters that best describe its growth, these parameters should not change
as time progresses. Thus, it is logical to conclude that the state transition function should
not add any uncertainty to these parameters. As such, instead of allowing the optimizer to
optimize the whole 𝑄 matrix, we fixate the values of 𝑄 which correspond to the inherent
parameters to zero.

The value of 𝑄 corresponding to the state variables, however, cannot be easily
approximated. Thus, we opt to use PSO to find the values which minimize the error of
Eq. (3.31)

Initializing the 𝑃0 Matrix

The 𝑃𝑡 matrix represents the noise in the joint state vector at time 𝑡. As the
system evolves, the filter takes in measurements and updates the joint state vector and
the 𝑃𝑡 matrix. However, the initial value of 𝑃0, before running a filter, must be informed.

Since the initial state of the model corresponds to the initial measurement,
the value of 𝑃0 for the state variables can be approximated numerically using the Monte
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Carlo method. To do this, we sample from a function that determines the growth model’s
initial state from the animal’s initial liveweight. We have the distribution 𝑅 for the
liveweight; therefore we can approximate the model’s state distribution by sampling from
the initialization function.

The values of 𝑃0 corresponding to the parameters in the join state vector are
more difficult to compute, and we chose to calibrate them by minimizing the error function
in Eq. (3.31). However, if the optimizer is allowed to choose any values for the parameters’
variances, it frequently prioritizes giving a high variance to a single parameter, instead of
the filters to proportionally adjust all parameters. As a consequence, the high variance
parameter can reach unrealistic values, such as an impossibly high mature weight or
animal growth rate.

In order to solve this problem, we calibrate the model, a single parameter
at a time, for each animal. This gives us how much a parameter changes in order to
solely explain the differences in growth between each animal, from which we compute
their standard deviations. If this value is used to form 𝑃0, the filters tends to adjust all
parameters proportionally. We then multiply the standard deviations by a scalar, which
is, in turn, what is adjusted by the optimizer.

Finally, all covariances between each element in the join state vector were
calibrated by the optimizer.
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Chapter 4

Results and discussion

The results and discussion of this study are organized as follows: in section 4.1
are presented the parameters obtained by the initial model calibration; in section 4.2 are
presented the covariance matrices produced in the hyperparameter optimization process,
and; in section 4.3 are presented the results obtained for dual estimation and model
forecasting from the DA process for each model.

4.1 Initial Calibration

The values of the parameters after the initial calibration for each model are:

Richard’s Model:

𝑘 = 0.006, 𝐴 = 907, 𝑀 = 15

Note that the value of 𝑀 is not adjusted by the filters, as explained in sub-
subsection 3.4.5.

Oltjen’s Model:

𝑘𝐷 = 0.0073, DNA𝑚𝑎𝑥 = 500

NASEM Model:

MEI = 0.496, EBW𝑚𝑎𝑥 = 903

4.2 Hyperparameter Calibration

As explained in subsection 3.4.6, we must inform the covariance matrices 𝑃0,
𝑄 and 𝑅 of each model to the filters. 𝑅 4.1 is a 1 by 1 matrix, which represents the noise
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in the animal weight data, and is the same for all models.

𝑅 = 3.84𝑒 + 1 𝑘𝑔2 (4.1)

In order optimize the covariance matrices, we use the UKF to produce the
join state estimates of each model and use Eq. (3.31) to obtain the Mean Absolute Error
of N-Step Ahead Forecasts (NSAF-MAE), with 𝑛 = 50. The reason we used 𝑛 = 50 is
that, if the forecast is too short, observation biases pollute the NSAF-MAE too much,
which in turn causes the optimizer to prioritize adjusting the model’s state, rather than
the parameters. However, if 𝑛 is too large, we are left with a time window too small to
compute the NSAF-MAE.

Since not all 151 animals had the same number of observations, with some
having as few as 31 observations, we opted to remove those that had fewer than 130
observations, in order to standardize the analysis. This way, we can compute the NSAF-
MAE from an observation window ranging from day 50 to day 130, for a sample of 81
animals.

In order to speed up the optimization process, we parallelized the PSO exe-
cution to run each particle in a different thread, with a total of 8 threads. Furthermore,
we used a vectorized version of the UKF, which computes all animals simultaneously by
concatenating the sigma points into a single multidimensional array. This reduced the
optimization time of the covariance matrices from several hours to about 15 minutes per
model, in a 4-core (8-thread) CPU.

4.2.1 Richards Model Covariance matrix

The estimated optimal covariance matrices 𝑃0 and 𝑄 for Richards’ model are:

𝑃0 =

⎡⎢⎢⎢⎣
3.84𝑒 + 1 6.47𝑒 + 2 −4.76𝑒 − 3
6.47𝑒 + 2 1.79𝑒 + 4 −1.17𝑒 − 1

−4.76𝑒 − 3 −1.17𝑒 − 1 1.23𝑒 − 6

⎤⎥⎥⎥⎦ (4.2)

𝑄 =

⎡⎢⎢⎢⎣
2.30𝑒 − 1 0 0

0 0 0
0 0 0

⎤⎥⎥⎥⎦ (4.3)
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4.2.2 Oltjen’s Model Covariance matrix

The estimated optimal covariance matrices 𝑃0 and 𝑄 for Oltjen’s model are:

𝑃0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6.5𝑒 − 1 3.63𝑒 − 3 6.29𝑒 − 1 −1.45𝑒 − 3 6.82𝑒 + 1
3.63𝑒 − 3 1.57𝑒 + 1 −2.5𝑒 − 2 6.98𝑒 − 3 3.92𝑒 + 2
6.29𝑒 − 1 −2.5𝑒 − 2 2.70𝑒 + 0 −2.32𝑒 − 3 3.03𝑒 + 0

−1.45𝑒 − 3 6.98𝑒 − 3 −2.32𝑒 − 3 6.22𝑒 − 5 1.21𝑒 + 0
6.82𝑒 + 1 3.92𝑒 + 2 3.03𝑒 + 0 1.21𝑒 + 0 4.31𝑒 + 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.4)

𝑄 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7.61𝑒 − 5 0 0 0 0
0 1.58𝑒 − 3 0 0 0
0 0 2.13𝑒 + 1 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.5)

4.2.3 NASEM Model Covariance matrix

The estimated optimal covariance matrices 𝑃 and 𝑄 for NASEM’s model are:

𝑃0 =

⎡⎢⎢⎢⎣
2.81𝑒 + 1 −7.8𝑒 + 2 3.42𝑒 − 1

−7.8𝑒 + 2 4.12𝑒 + 4 −1.03𝑒 + 1
3.42𝑒 − 1 −1.03𝑒 + 1 4.21𝑒 − 3

⎤⎥⎥⎥⎦ (4.6)

𝑄 =

⎡⎢⎢⎢⎣
7.33𝑒 − 1 0 0

0 0 0
0 0 0

⎤⎥⎥⎥⎦ (4.7)

4.3 Data Assimilation

Below, we present the results obtained from each of the models using different
filters. Although the filters estimate both the state and parameters of the model, we
focus the results on the adjustment of parameters, since it impacts long term forecasts the
most. The parameters of the models are assumed to be intrinsic to each animal, in other
words, the parameter’s value shouldn’t change throughout the animals life. Therefore,
in ideal scenarios, the value of the parameters adjusted by the filters should converge
as more observations are taken in. In order to present the parameter convergence, we
first compute the rolling standard deviation (RSD) of the parameter adjustment of each
animal throughout the execution of each filter, with a rolling time window of 10 days.
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Then, we compute the mean rolling standard deviation (MRSD) by averaging the RSD
of all animals.

We also show the adjustment of model forecasts as the filter receives more
observations, as well as parameter adjustments, using the same animal as an example for
all the models and filters. These images alone cannot be used to evaluate the performance
of the filters, since the results vary from animal to animal, but can visually represent some
characteristics of each filter.

4.3.1 Richards Model

As we can see in Figure 4.1, the parameters 𝐴 and 𝑘 start with high MRSD,
which then decreases in all filters. However, at around day 60, we note that MRSD of
the UKF and UPF start increasing again, indicating that those parameters may not have
stabilized, or that there were higher changes in the observations at the end of the growth
period.
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Figure 4.1: MRSD of Richards’ model parameters with rolling window of 10 days

UKF

Figure 4.2 shows the DA of one animal using the UKF with Richards’ model.
The estimates of the filter successfully match the observations during the whole process,
but the parameters, and consequently the forecasts, take some time to adjust. We also
note that the parameters go through abrupt changes at times. This behavior matches
with the MRSD of the UKF shown in Figure 4.1. The estimates at time 80, however,
closely match the final observations.
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(a) Model forecast with UKF estimates. (b) Parameter adjustment during DA.

Figure 4.2: Data assimilation of Richards’ model using the UKF

PF

In Figure 4.3 we see that the PF estimates correctly follow the observations,
but the forecasts of the estimates have trouble matching future observations. We can also
note that the parameters are adjusted less abruptly then in the UKF, but their overall
trajectory is similar.
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Figure 4.3: Data assimilation of Richards’ model using the PF
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UPF

The estimates using the UPF for Richards’ model, shown in Figure 4.4 are
very similar to the UKF estimates, in Figure 4.2. Although the parameters go through
abrupt changes, the estimates at time 80 closely match final observations.
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(a) Model forecast with UPF estimates. (b) Parameter adjustment during DA.

Figure 4.4: Data assimilation of Richards’ model using the UPF

4.3.2 Oltjen’s Model

For Oltjen’s model we only compare the results obtained by the UKF and
PF, since the UPF could not be executed for Oltjen’s model for most animals using the
calibrated covariance matrices. This is caused because the UKF is numerically fragile, and
some of the particles, when propagated through the UKF during the importance sampling
stage, receive invalid (not a number, nan) or extreme values. Particles with invalid values,
which cause errors in the model or the UKF, were filtered out during resampling. However,
particles with extreme values, which cause the model to misbehave, are more difficult to
identify, and could not be removed. While the covariance matrices could be changed in
order to run the UPF, the initial conditions of the filter would not match those of the
UKF and PF.

In figure 4.5, we see that both the UKF and PF have trouble converging the
parameters. The PF shows an oscilatory behaviour on both parameters, and the MRSD
of the parameter kD converges slowly, while the MRSD of DNA𝑚𝑎𝑥 slowly increases,
indicating poor convergence. The UKF also has oscilatory behaviour and slow convergence
for the 𝑘𝐷 parameter, but appears to converge well for the DNA𝑚𝑎𝑥.
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Figure 4.5: MRSD of Oltjen’s model parameters with rolling window of 10 days

UKF

Figure 4.6 shows that the UKF estimates match the observations, and the
parameters show some sign of converging, but the forecasts of the estimates have trouble
matching future observations. We can see that this is caused by the fact that both
parameters slowly increase as the DA progresses, but never converge.
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Figure 4.6: Data assimilation of Oltjen’s model using the UKF

PF

Figure 4.7 shows that the PF estimates match observations, but the forecast of
the estimates also have trouble adjusting to future observations. The parameter estimates
made by the PF are similar to the estimates made by the UKF, in Figure 4.6, but present
more difficulty to converge.
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Figure 4.7: Data assimilation of Oltjen’s model using the PF

4.3.3 NASEM Model

Figure 4.8 shows the MRSD of adjusted parameters for NASEM’s model, and
we see that both parameters have almost identical adjustment by the three filters, and
seem to converge as time progresses.
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Figure 4.8: MRSD of NASEM’s model parameters with rolling window of 10 days

UKF

Figure 4.9 shows that the UKF estimates follow the observations, and the
forecasts of the estimates match future observations after time 80. The parameters also
show reasonably stable convergence after about 60 observations.
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(a) Model forecast with UKF estimates. (b) Parameter adjustment during DA.

Figure 4.9: Data assimilation of NASEM’s model using the UKF

PF

Figure 4.10 shows that the PF estimates follow the observations, and the fore-
casts of the estimates and parameter adjustment closely resemble those of the UKF, shown
in Figure 4.9
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Figure 4.10: Data assimilation of NASEM’s model using the PF

UPF

Figure 4.11 shows that the PF estimates follow the observations, and the fore-
casts of the estimates and parameter adjustment closely resemble those of the UKF and
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PF, shown in Figures 4.9 and 4.10.
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Figure 4.11: Data assimilation of NASEM’s model using the UPF

4.3.4 Error Comparison

For each model, we represent the error by computing the NSAF-MAE, without
taking the time average, and with 50 steps ahead, according to Eq. (4.8). As a Base Case
Scenario (BCS), we compute the same metric for the forecasts of the models without
performing DA, where each forecast is produced by reinitializing the state of the model
for each observation. This way, we can compare the accuracy of forecasts produced by
a model depending on whether it uses a filter or not, which filter is used and how many
observations have been received by the filters.

𝑒𝑟𝑟𝑜𝑟 = 1
𝐼

𝐼∑︁
𝑖=0

|ℎ(𝑓 50(𝑥(𝑖)
𝑡−𝑛)) − 𝑧

(𝑖)
𝑡 | (4.8)

The figures in 4.12 show the evolution over time of the NSAF-MAE of each
model for the BCS and for each filter. At a glance, we can see that all the filters have
results with significantly lower NSAF-MAE, in comparison to the BCS, across all models,
especially after around 20 days of measurements. We can also see that the three filters
had similar performance for a same model, although the PF results in a slightly higher
NSAF-MAE than the UKF when applied for Oltjen’s model, in figure 4.12b.
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Figure 4.12: NSAF-MAE of each model using different filters. All three graphics have the
same scale. The NSAF-MAE of the UPF filter is not presented for Oltjen’s model, since
it did not perform properly.

Although we expect the forecast errors to get lower as the filters receive more
observations, we can see that, around day 110, there is a rise in the NSAF-MAE for all
three models, with a slightly more pronounced effect in the Richard’s model, in figure
4.12a. This could indicate that some unmodeled conditions have changed in the cattle
feedlot, such as feed quality, management or weather conditions, and the filters did not
have enough time to adjust.

4.3.5 Overall Results

Table 4.1 lists the NSAF-MAE obtained for all models and filters. We can see
that all filters performed better than the model alone (BCS).

BCS UKF PF UPF
Richards 16.79 13.38 13.59 13.76
Oltjen 22.29 14.93 17.25 -

NASEM 16.74 12.41 12.80 12.52

Table 4.1: NSAF-MAE of all models and filters

The best performing model in this study is NASEM’s model. It produced the
lowest NSAF-MAE, with matching results in all filters. With 30 observations, all filters
reduced NASEM’s BCS forecasting error by about 25%. With 60 observations, the filters
reduce NASEM’s BCS forecasting error by about 40%, and the parameters converge to
relatively stable values.
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It is important to note that, for NASEM’s model, instead of directly adjusting
the growth rate, we adjust the MEI0 parameter, which in turn impacts in the diet of the
animal. In Figure 4.8, we can see that the MEI0 parameter converges much faster than
the EBW𝑚𝑎𝑥 parameter. Further study is required in order to determine if the choice of
parameters is what led to better results in NASEM’s model.

This study could not reproduce the results obtained by Van Der Merwe et al.
[57], in which the UPF presents mean squared error (MSE) about 4 to 5 times lower than
both UKF and PF. The difference in performance in comparison to the results in this
study could be related to the characteristics particular to the studied system or model.
The UPF was also the most difficult technique to perform, since it runs multiple instances
of the UKF for different particles, making it vulnerable to numerical approximations and
possible model instabilities.

The UKF presents the lowest NSAF-MAE for Richards’ and Oltjen’s models,
while for NASEM’s model, both UKF and UPF presented the lowest NSAF-MAE, with
almost identical NSAF-MAE. The UKF also achieved the fastest execution time, averaging
26ms single-threaded wall-clock execution time per animal, while the PF averages 225ms
and the UPF averages 800ms. Each filter has similar execution times for the three models.
The execution can be further reduced by vectorizing or parallelizing the filters. Given
these results, the UKF is overall the best performing algorithm in this study.

The best model-filter combination is NASEM’s model with UKF, which has
approximately the same error as the NASEM-UPF combination, but has a much lower
computational cost, which enables scaling the technology for large animal productions or
implementing it in low computational power field equipment.
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Chapter 5

Conclusion

We conclude that it is possible to use DA techniques in order to reduce the error
of animal growth model forecasts, by using the UKF, PF and UPF to adjust Richards’,
Oltjen’s and NASEM models. The UKF and PF successfully improved forecasts of all
three models, with at least a 10% reduction in model forecasting error after incorporating
20 observations, while the UPF only worked for Richard’s and NASEM.

Overall, the best performing DA algorithm was the UKF one, since it has the
lowest computational cost and its estimates presented model forecasting errors which were
among the lowest across all studied models.

Considering the tested models, NASEM’s was the one that achieved the lowest
forecasting errors across the BCS and all tested filters. The NASEM model was also
the only one whose parameters converged to stable values after incorporating about 60
measurements by using the UKF, PF or UPF.

The forecasts with the lowest errors were made by the NASEM model with
the UKF and UPF filters, with almost identical results, and reduced the NSAF-MAE of
the NASEM model by 25% after 30 observations, and 40% after 60 observations.

Furthermore, because the UKF can be executed in just under 4% of the exe-
cution time of the UPF, we conclude that the best performing model-filter combination
is the NASEM model in conjunction with the UKF.

Thus, it was possible to achieve the objective the overall objective of this study,
which was to determine whether it is possible to reduce the error of forecasts obtained
by animal growth models through the use of data assimilation techniques in conjunction
with animal weight collected through automated animal scales.

Further research can be carried out in order to improve the results obtained
in this study, some of which are:

• Study other techniques that can be used to initialize the covariance matrices, such
as Monte Carlo Markov Chain algorithms.
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• Evaluate how the adjustment of other parameters of the animal growth models
might impact the forecast errors.

• Evaluate the performance of other animal growth models in conjunction with DA
algorithms

• Implement other DA algorithms, such as the Cubature Kalman Filter [2] and Moving
Horizon Estimation [46]

• Evaluate the techniques listed in this study with other animal observation data,
possibly including other variables, such as animal diet.
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