

UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE QUÍMICA

MARILIA SIMÃO DOS SANTOS

A POTENCIALIDADE SINTÉTICA DA REAÇÃO DE MORITA-BAYLIS-HILLMAN EXPLORADA NA SÍNTESE DE COMPOSTOS TRICARBONILADOS VICINAIS E DERIVADOS CICLOPENTA[*b*]INDÓLICOS

DISSERTAÇÃO DE MESTRADO APRESENTADA AO INSTITUTO DE QUÍMICA DA UNIVERSIDADE ESTADUAL DE CAMPINAS PARA OBTENÇÃO DO TÍTULO DE MESTRE EM QUÍMICA NA ÁREA DE QUÍMICA ORGÂNICA

ORIENTADOR: PROF. DR. FERNANDO ANTÔNIO SANTOS COELHO

ESTE EXEMPLAR CORRESPONDE À VERSÃO FINAL DA DISSERTAÇÃO DEFENDIDA POR MARILIA SIMÃO DOS SANTOS E ORIENTADA PELO PROF. DR. FERNANDO ANTÔNIO SANTOS COELHO.

Assinatura do Orientador

CAMPINAS, 2012

FICHA CATALOGRÁFICA ELABORADA POR SIMONE LUCAS - CRB8/8144 -BIBLIOTECA DO INSTITUTO DE QUÍMICA DA UNICAMP

Sa59p	Santos, Marilia Simão dos (1984-). A potencialidade sintética da reação de Morita-Baylis- Hillman explorada na síntese de compostos tricarbonilados vicinais e derivados ciclopenta[b]indólicos / Marilia Simão dos Santos. – Campinas, SP: [s.n.], 2012.
	Orientador: Fernando Antônio Santos Coelho. Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Química.
	 Morita-Baylis-Hillman. 2. Oxidação. 3. Derivados ciclopenta[b]indólicos. 4. Compostos tricarbonilados vicinais. I. Coelho, Fernando Antônio Santos. II. Universidade Estadual de Campinas. Instituto de Química. III. Título.

Informações para Biblioteca Digital

Título em inglês: Exploiting the synthetic potentiality of the Morita-Baylis-Hillman reaction towards the synthesis of vicinal tricarbonyl compounds and cyclopenta[b]indole derivatives

Palavras-chave em inglês:

Morita-Baylis-Hillman Oxidation Cyclopenta[b]indole derivatives Vicinal tricarbonyl compounds

Área de concentração: Química Orgânica

Titulação: Mestre em Química na área de Química Orgânica

Banca examinadora:

Fernando Antônio Santos Coelho [Orientador] Lúcia Helena Brito Baptistella Paulo Roberto Ribeiro Costa

Data de defesa: 28/02/2012

Programa de pós-graduação: Química

Dedido essa dissertação aos meus pais, Marili Simão dos Santos e Alfredo Inocêncio dos Santos. Obrigada pelo incentivo, pelo apoio incondicional e sobretudo pelo amor. Vocês são meus exemplos de vida e os responsáveis também pelas minhas conquistas. Amo vocês!

Dedido essa dissertação

Ao meu irmão Hendrix Simão dos Santos pela torcida e por sempre acreditar em mim, muitas vezes mais do que eu mesma.

Aos meus sobrinhos Helena e Otávio por todo carinho e por me proporcionarem tantos momentos felizes. Vocês realmente são crianças especiais.

AGRADECIMENTOS

A Deus,

Ao Professor Fernando Coelho pela oportunidade de trabalhar ao seu lado, pela confiança, incentivo, disponibilidade e paciência. Tenho muita admiração pelo profissional e pessoa que é.

As minhas amigas queridas Lucimara e Juzinha, obrigada pela amizade e paciência nesses dois anos.

Ao amigo Manoel pela oportunidade de trabalho. Obrigada por toda a sua ajuda!

Ao meu amigo Bruno pelo companheirismo de todos esses anos, saiba que você é muito querido.

Ao meu Amiguinho Lindo (Paula), por estar comigo novamente nessa outra etapa da minha vida, espero sempre que possamos estar perto uma da outra.

A minha amiga Carol pela ótima convivência e compreensão.

Aos amigos e colegas que fazem ou fizeram parte do Laboratório de Sintese de Produtos Naturais e Fármacos: Paty, Paioti, Zé Tiago, Thais, Kristerson, Hamid, Luis Gustavo, André, Nayanne, Daniara, Natália, Hugo, João Paulo, Rodriguinho, Emily e Edson. Obrigado pelas dicussões, aprendizado e pelos momentos de descontração.

Aos demais colegas do Laboratório de Síntese de Produtos Naturais e Fármacos da UNICAMP.

Aos professores Marcos Nogueira Eberlin e João Ernesto de Carvalho pelas colaborações e ao professor Claúdio Francisco Tormena pelas análises de RMN.

Aos professores Lúcia Helena Brito Baptistella e Paulo José Samenho Moran pelas contribuições feitas no exame de qualificação deste trabalho.

Aos demais colegas dos laboratórios dos Prof.(s) Carlos Roque Duarte Correia, Ronaldo Aloise Pilli e Luiz Carlos Dias.

Aos técnicos e funcionários do Instituto de Química.

À Capes e ao CNPq pelas bolsas iniciais do mestrado.

À FAPESP pela bolsa de mestrado (Processo: 2010/04716-2).

Ao Instituto de Química da Unicamp pela infraestrutura.

MARILIA SIMÃO DOS SANTOS

1. Formação Acadêmica

2010-2012 Mestrado em Química Universidade Estadual de Campinas – UNICAMP, Campinas - SP Título: A potencialidade sintética da reação de Morita-Baylis-Hillman explorada na síntese de compostos tricarbonilados vicinais e derivados ciclopenta[*b*]indólicos Orientador: Fernando Antônio Santos Coelho Bolsista:Fundação de Amparo a Pesquisa do Estado de São Paulo

2004-2009 Graduação em Farmácia Universidade Estadual de Campinas Monografia: Desenho e proposta sintética de inibidores de calpaína Orientador: Fernando Antônio Santos Coelho

2. Produção Científica

Santos, M.S.; Coelho, F. Oxidizing Morita-Baylis-Hillman adducts towards vicinal tricarbonyl compounds, *RSC Adv.*, **2012**, *XX*, XXX

3. Trabalhos apresentados em congressos

- Santos, M.S.; Coelho, F. A simple acesss to Vicinal Tricarbonyl Compounds from Morita-Baylis-Hillman adducts. 14th BMOS, Brasília-DF, 2011
- Santos, M.S.; Rodrigues, M.T.J; Ruiz, A.L.T.G.; Costa, D.B.V; Carvalho, J. E.; Coelho, F. Avaliação da atividade citotóxica de ciclopenta[b]indóis derivados do aduto de Morita-Baylis-Hillman. 34ª RASBQ, Florianópolis-SC, 2011
- Santos, M.S.; Ganzella, V.; Coelho, F. Uso da reação de Morita-Baylis-Hillman em síntese orgânica. Síntese da vidalenolona. Congresso Interno de Iniciação Científica da Unicamp, Campinas-SP, 2008.
- Santos, M.S.; Ganzella, V.; Coelho, F. Uso da reação de Morita-Baylis-Hillman em química orgânica. Uma nova abordagem para a síntese total da vidalenolona. 30ª RASBQ, Águas de Lindóia-SP, 2007

RESUMO

A potenciabilidade sintética dos adutos de Morita-Baylis-Hillman foi explorada no desenvolvimento de uma nova estratégia para a preparação de compostos tricarbonilados vicinais e derivados ciclopenta[*b*]indólicos.

Os compostos tricarbonilados vicinais representam um padrão estrutural de grande interesse sintético, pois são empregados na síntese de heterociclos e diversas moléculas com atividade biológica. A metodologia desenvolvida envolve três etapas que constituem na síntese do aduto de MBH e de duas oxidações subsequentes. A rota se mostrou rápida, simples e eficiente, com rendimentos globais variando entre 15-75%. Além da facilidade operacional essa estratégia é quimicamente sustentável já que apresenta um baixo nível de geração de resíduos químicos.

Os núcleos ciclopenta[b]indólicos estão presentes na estrutura de diversos produtos naturais e moléculas bioativas, fato que se torna um estímulo para o desenvolvimento de novas rotas sintéticas. A estratégia baseia-se na oxidação do aduto de MBH seguida de adição de Michael utilizando indol. O produto gerado sofre redução e em seguida é ciclizado em meio ácido levando à obtenção do núcleo de interesse. A síntese se mostrou altamente diastereosseletiva e o mecanismo da etapa de ciclização foi investigado através de espectrometria de massas. Os compostos foram avaliados contra algumas linhagens de células tumorais exibindo atividade citótóxica promissora.

ABSTRACT

The synthetic potential of Morita-Baylis-Hillman adducts was exploited towards the development of a new strategy for the preparation of vicinal tricarbonyl compounds and cyclopenta [b] indole derivatives.

The vicinal tricarbonyl compounds represent a structural pattern of great synthetic interest because they are employed in the synthesis of heterocycles and several biologically active compounds. The three steps methodology involves the the preparation of MBH adducts, followed by two subsequent oxidations. The route proved to be fast, simple and efficient, with overall yields ranging from 15 to 75%. This strategy is operationally ease and sustainable, since a low level of waste is generated.

The nuclei cyclopenta [*b*]indoles are present in the structure of some natural products and bioactive compounds. This has stimulated efforts towards the development of new synthetic routes to prepare this heterocyclic pattern. Our strategy is based on the oxidation of MBH adduct followed by Michael addition using indole as nucleophile to provide a substituted β -ketoester. The keto carbonyl was reduced and the substituted β -hydroxyester was therefore cyclized in acid conditions leading the desired heterocycles. The synthesis was highly diastereoselectivity and mechanism of the cyclization step was monitored by mass spectrometry. The compounds were evaluated against some tumor cell lines exhibiting promising cytotoxic activity.

LISTA DE ESQUEMAS	XIX
LISTA DE TABELAS	XXI
LISTA DE FIGURAS	XXII
1. CONSIDERAÇÕES GERAIS E METODOLOGIA DE TRABALHO	1
1.1. CONSIDERAÇÕES GERAIS	1
1.2. A REAÇÃO DE MORITA-BAYLIS-HILLMAN	1
1.3. ASPECTOS MECANÍSTICOS DA REAÇÃO DE MORITA-BAYLIS-HIL	LMAN.2
1.4. PREPARAÇÃO DOS ADUTOS DE MBH	7
2. SÍNTESE DE COMPOSTOS TRICARBONILADOS VICINAIS	12
2.1. INTRODUÇÃO	12
2.2. PROPOSTA	16
2.3. OBJETIVOS	17
2.4. RESULTADOS E DISCUSSÃO	17
2.4.1. Resultados Preliminares	17
2.4.2. Oxidação da hidroxila do aduto de MBH	19
2.4.3. Reação de clivagem oxidativa do composto α -metileno- β -cetoc	arbonilado
	26
MECANÍSTICO E AVALIAÇÃO BIOLÓGICA	
3.1. INTRODUÇÃO	
3.2. PROPOSTA	43
3.3. OBJETIVO	45
3.4. RESULTADOS E DISCUSSÃO	45
3.4.1. Oxidação e adição de Michael ao aduto de MBH	45
3.4.2. Redução dos compostos 63-74 e avaliação da sequência sintética	a 49
3.4.3. Reação de ciclização: Preparação dos derivados ciclopenta[b]ind	ólicos . 52
3.4.4. Preparação de outros derivados ciclopenta[<i>b</i>]indólicos: reações n cadeias laterais	as 55
3.4.5. Determinação da estereoquímica relativa dos derivados ciclopenta[<i>b</i>]indólicos	60
3.4.6. Investigação do mecanismo da etapa de ciclização	64
3.4.6.1. Aspectos gerais da espectrometria de massas	64
3.4.6.2. Resultados	65

SUMÁRIO

3.4.7. Avaliação da atividade citotóxica7	71
3.5. CONCLUSÃO	74
4. PARTE EXPERIMENTAL	'5
4.1. CONSIDERAÇÕES GERAIS	75
4.2. PROCEDIMENTOS EXPERIMENTAIS, ESPECTROS E DADOS ESPECTRA CORRESPONDENTES AO ITEM 2	\IS 76
4.2.1. Procedimento geral para preparação dos adutos de MBH:	76
4.2.2. Procedimento geral para preparação dos compostos 1,3-dicarbonilados:1	06
4.2.3. Procedimento geral para preparação dos produtos 1,2,3-tricarbonilados:1	28
4.3. PROCEDIMENTOS EXPERIMENTAIS, ESPECTROS E DADOS ESPECTRA CORRESPONDENTES AO ITEM 314	\IS 19
4.3.1. Procedimento geral para preparação dos β-cetoésteres indol substituídos	s: 49
4.3.2. Procedimento geral para preparação dos β-hidroxi-ésteres indol susbstituídos	74
4.3.4. Procedimento geral de preparação do derivado ciclopenta[b]indólico 8919	99
4.3.5. Procedimento geral de preparação do derivado ciclopenta[b]indolico 9020	01
4.3.6. Procedimento geral de preparação do derivado ciclopenta[b]indólico 9120)3
5. ANEXOS	15
5.1. ENSAIO PARA A DETERMINAÇÃO DA ATIVIDADE ANTIPROLIFERATIVA I VITRO ⁹⁶ 20	IN 05
5.1.1. Descongelamento e congelamento das células)5
5.1.2. Repiques celulares)6
5.1.3. Atividade antiproliferativa em cultura de células tumorais humanas20)7
5.1.4. Análise dos resultados20)8

LISTA DE ESQUEMAS

Esquema 1: Padrões estruturais oriundos do aduto de Morita-Baylis-Hillman 1
<i>Esquema 2</i> : Reação de MBH
<i>Esquema 3</i> : Proposta mecanística inicial para a reação de MBH
Esquema 4: Novas evidências mecanísticas para a reacão MBH
<i>Esquema 5:</i> Formação de (CTV) a partir de β-dicarbonílicos 13
<i>Esquema 6</i> : Síntese de CTV a partir de alcenos tetrasubstituídos 14
<i>Esquema 7</i> : Síntese de CTV a partir de benzoquinonas
<i>Esquema 8:</i> Síntese de CTV a partir de diidrocompostos
<i>Esquema 9</i> : Síntese de dicetoésteres via oxidação com 4-BzoTEMPO
Esquema 10: Síntese de dicetoésteres via oxidação com manganês
<i>Esquema 11</i> : Síntese de CTV a partir de monocetonas
Esquema 17: Ornese de OTV a partir de monocetorias.
Esquema 12: Ozoffolise do adulto de MDT
MDU
$I = \frac{1}{2}$
Esquema 14. Sintese do d-celoester 20
Esquema 15. Estrategias para sintese de CTV
Esquema 17. Mecanismo proposto para oxidação de alcoois com IDA
Esquema 17. Mecanismo de oxidação de alcoois mostrando a torsão hipervalente e
Darreiras de energia
<i>Esquema 18</i> : Sintese do α-metileno-β-cetoester 21
<i>Esquema 19</i> : Mecanismo da reação de ozonolise
<i>Esquema 20: Work-up</i> redutivo levando ao produto carbonilado
<i>Esquema 21:</i> Mecanismo da ozonólise na presença de metanol
<i>Esquema 22</i> : Obtenção do composto tricarbonilado via reação de ozonólise 29
<i>Esquema 23</i> : Equilíbrio do composto tricarbonilado vicinal e sua forma hidratada32
<i>Esquema 24:</i> Síntese de núcleos ciclopenta[b]indólicos via S _E Ar
<i>Esquema 25:</i> Síntese de núcleos ciclopenta[<i>b</i>]indólicos via cicloadição [3+2] 40
Esquema 26: Síntese de ciclopenta[b]indólicos funcionalizados via cicloadição [3+2]
Esquema 27: Síntese de núcleos ciclopenta[b]indólicos via síntese de indol de
Fischer
Esquema 28: Síntese de núcleos ciclopenta[b]indólicos via rearranjo sigmatrópico
[3,3] de N-trifluoracetilenehidrazinas
Esquema 29: Ciclopenta[b]indólicos obtidos via condensação tipo Yonemitsu 42
Esquema 30: Síntese de núcleos ciclopenta[b]indólicos reagente de Reformatsky42
Esquema 31: Síntese de núcleos ciclopenta[b]indólicos via ciclização de Nazarov43
<i>Esquema 32:</i> Análise retrossintética da monatina
<i>Esquema 33</i> : Estudo modelo para a viabilização da síntese da monatina
Esquema 34: Análise retrossintética para obtenção dos derivados
ciclopenta[b]indólicos
Esquema 35: Adutos de MBH precursores dos derivados ciclopenta[b]indólicos 45
<i>Esquema 36</i> : Reacão de Michael
<i>Esquema 37:</i> Deslocalização eletrônica no indol
1

<i>Esquema 38</i> : Mecanismo proposto para a reação de oxidação seguida de ad indol	ição do 49
<i>Esquema 39</i> : Síntese dos β-hidróxi-ésteres indol substituídos <i>Esquema 40</i> : Nova estratégia para a síntese de dos β-hidróxi-ésteres indol	50
substituídos	51
Esquema 41: Produtos obtidos após exposição de 77 em meio ácido	52
Esquema 42: Derivatização de análogos de ciclopenta[b]indóis	56
Esquema 43: Hidrólise de éster em meio básico	57
<i>Esquema 44:</i> Mecanismo de redução de ésteres com DIBAL-H	59
Esquema 45: Monitoramento por ÉSI-MS da ciclização do composto 75	66
Esquema 46: Proposta mecanística para a etapa de ciclização	69
Esquema 47: Proposta de modelo para formação do anel de cinco membros	70
Esquerna 48. Proposta para formação do composto 62	70

LISTA DE TABELAS

Tabela 1: Adutos de Morita-Baylis-Hillman sintetizados	8
Tabela 2: Sinais da porção acrílica do aduto nos espectros de RMN	. 11
Tabela 3: Otimização da condição reacional da oxidação do aduto de MBH	. 23
Tabela 4: Oxidação dos adutos de MBH com IBX	. 24
Tabela 5: Condições empregadas para a oxidação de 7	. 26
Tabela 6: Rendimento da reação de ozonólise em diferentes solventes	. 29
Tabela 7: Dados referentes aos compostos tricarbonilados sintetizados	. 30
Tabela 8: Síntese dos β-cetoésteres indol substituídos 63-74	. 47
Tabela 9: Adição do indol catalisada por Ácido de Lewis	. 51
Tabela 10: Otimização das condições para a etapa de ciclização	. 53
Tabela 11: Síntese de derivados ciclopenta[b]indólicos	. 54
Tabela 12: Acoplamento espacial dos hidrogênios do anel de cinco membros	. 62
Tabela 13: Valores de incremento de nOe para os hidrogênios do anel de cinco	C
membros	. 62
Tabela 14: Valores de TGI das amostras frente às linhagens de células tumora	is
humanas, em µg/mL	. 73
Tabela 15: Linhagens celulares utilizadas nos testes de atividade anticâncer	205

LISTA DE FIGURAS

Figura 1: Estruturas obtidas a partir de compostos tricarbonilados vicinais....... 12 Figura 2: Modelo para explicação da tamanho-seletividade de alcoóis na oxidação Figura 3: Espectro de RMN ¹H (CDCl₃, 250MHz) do composto 48 antes da adição de Figura 4: Espectro de RMN ¹³C (CDCl₃, 250 MHz) do composto 48 antes da adição Figura 5: Espectro de RMN ¹H (CDCl₃, 250MHz) de 48 após adição de D₂O..... 35 Figura 6: Espectro de RMN ¹³C (CDCl₃, 250MHz) de 48 após adição de D₂O 36 Figura 7: Exemplos de moléculas com núcleo ciclopenta[b]indólico em sua estrutura. Figura 8: Valores de constantes de acoplamento dos hidrogênios do anel de cinco Figura 9: Espectro de NOESY ampliado do composto 86...... 61 Figura 12: Espectro de massa: MS/MS do íon de m/z 130 67 Figura 13: Espectro de massa: MS/MS do íon de m/z 322 68 Figura 14: Aprisionamento do carbocátion (XVII) e reação com metanol 68 Figura 15: Espectro de RMN de ¹H (CDCl₃, 250 MHz) do aduto de MBH 1 78 Figura 16: Espectro de RMN de ¹³C (CDCl₃, 62,5 MHz) do aduto de MBH 1...... 78 Figura 17: Espectro de RMN de ¹H (CDCl₃, 250 MHz) do aduto de MBH 2 80 Figura 18: Espectro de RMN de ¹³C (CDCl₃,62,5 MHz) do aduto de MBH 2...... 80 Figura 19: Espectro de RMN de ¹H (CDCl₃, 250 MHz) do aduto de MBH 3 81 Figura 20: Espectro de RMN de ¹³C (CDCl₃, 62,5 MHz) do aduto de MBH 3...... 81 Figura 21: Espectro de RMN de ¹H (CDCl₃, 250 MHz) do aduto de MBH 4 83 Figura 22: Espectro de RMN de ¹³C (CDCl₃, 62,5 MHz) do aduto de MBH 4...... 83 Figura 23: Espectro de RMN de ¹H (CDCl₃, 250 MHz) do aduto de MBH 5 84 Figura 24: Espectro de RMN de ¹³C (CDCl₃, 62,5 MHz) do aduto de MBH 5...... 84 Figura 25: Espectro de RMN de ¹H (Acetona-D₆, 250 MHz) do aduto de MBH 6.86 Figura 26: Espectro de RMN de ¹³C (Acetona-D₆, 62,5 MHz) do aduto de MBH 686 Figura 27: Espectro de RMN de ¹H (CDCl₃, 250 MHz) do aduto de MBH 7 87 Figura 28: Espectro de RMN de ¹³C (CDCl₃, 62,5 MHz) do aduto de MBH 7...... 87 Figura 29: Espectro de RMN de ¹H (CDCl₃, 250 MHz) do aduto de MBH 8 89 Figura 30: Espectro de RMN de ¹³C (CDCl₃, 62,5 MHz) do aduto de MBH 8...... 89 Figura 31: Espectro de RMN de ¹H (CDCl₃, 250 MHz) do aduto de MBH 9 90 Figura 32: Espectro de RMN de ¹³C (CDCl₃, 62,5 MHz) do aduto de MBH 9...... 90 Figura 33: Espectro de RMN de ¹H (CDCl₃, 250 MHz) do aduto de MBH 10 92 Figura 34: Espectro de RMN de ¹³C (CDCl₃, 62,5 MHz) do aduto de MBH 10..... 92 Figura 35: Espectro de RMN de ¹H (CDCl₃, 250 MHz) do aduto de MBH 11 93 Figura 36: Espectro de RMN de ¹³C (CDCl₃, 62,5 MHz) do aduto de MBH 11..... 93 Figura 37: Espectro de RMN de ¹H (CDCl₃, 250 MHz) do aduto de MBH 12 95 Figura 38: Espectro de RMN de ¹³C (CDCl₃, 62,5 MHz) do aduto de MBH 12..... 95 Figura 39: Espectro de RMN de ¹H (CDCl₃, 250 MHz) do aduto de MBH 13 96

Figura 40: Espectro de RMN de ¹³C (CDCl₃, 62,5 MHz) do aduto de MBH 13..... 96 Figura 41: Espectro de RMN de ¹H (CDCl₃, 250 MHz) do aduto de MBH 14 98 Figura 42: Espectro de RMN de ¹³C (CDCl₃, 62,5 MHz) do aduto de MBH 14..... 98 Figura 43: Espectro de RMN de ¹H (CDCl₃, 250 MHz) do aduto de MBH 15 99 Figura 44: Espectro de RMN de ¹³C (CDCl₃, 125 MHz) do aduto de MBH 15..... 99 Figura 45: Espectro de RMN de ¹H (CDCl₃, 250 MHz) do aduto de MBH 16 101 Figura 46: Espectro de RMN de ¹³C (CDCl₃, 62.5 MHz) do aduto de MBH 16... 101 Figura 47: Espectro de RMN de ¹H (CDCl₃, 250 MHz) do aduto de MBH 17 102 Figura 48: Espectro de RMN de ¹³C (CDCl₃, 62,5 MHz) do aduto de MBH 17... 102 Figura 49: Espectro de RMN de ¹H (CDCl₃, 250 MHz) do aduto de MBH 18..... 104 Figura 50: Espectro de RMN de ¹³C (CDCl₃, 62.5 MHz) do aduto de MBH 18... 104 Figura 51: Espectro de RMN de ¹H (CDCl₃, 62,5 MHz) do aduto de MBH 19 105 Figura 52: Espectro de RMN de ¹³C (CDCl₃, 62,5 MHz) do aduto de MBH 19... 105 Figura 53: Espectro de RMN¹H (CDCl₃, 250 MHz) do1,3-dicarbonilado 21..... 108 Figura 54: Espectro de RMN¹³C (CDCl₃, 62,5 MHz) do 1,3-dicarbonilado 21 ... 108 Figura 55: Espectro de RMN¹H (CDCl₃, 250 MHz) do1,3-dicarbonilado 22...... 109 Figura 56: Espectro de RMN¹³C (CDCl₃, 62,5 MHz) do1,3-dicarbonilado 22 109 Figura 57: Espectro de RMN¹H (CDCl₃, 250 MHz) do1,3-dicarbonilado 23...... 111 Figura 58: Espectro de RMN¹³C (CDCl₃, 62,5 MHz) do1,3-dicarbonilado 23 111 Figura 59: Espectro de RMN¹H (CDCl₃, 250 MHz) do1,3-dicarbonilado 24..... 112 Figura 60: Espectro de RMN¹H (Acetona-D₆, 62,5 MHz) do1,3-dicarbonilado 23112 Figura 61: Espectro de RMN¹H (CDCl₃, 250 MHz) do 1,3-dicarbonilado 26..... 114 Figura 62: Espectro de RMN¹³C (CDCl₃, 62,5 MHz) do 1,3-dicarbonilado 26 ... 114 Figura 63: Espectro de RMN¹H (CDCl₃, 250 MHz) do 1,3-dicarbonilado 28..... 115 Figura 64: Espectro de RMN¹³C (CDCl₃, 62,5 MHz) do 1,3-dicarbonilado 28 ... 115 Figura 65: Espectro de RMN¹H (CDCl₃, 250 MHz) do 1,3-dicarbonilado 29..... 117 Figura 66: Espectro de RMN ¹³C (CDCl₃, 62,5 MHz) do 1,3-dicarbonilado 29 ... 117 Figura 67: Espectro de RMN¹H (CDCl₃, 250 MHz) do 1,3-dicarbonilado 30..... 118 Figura 68: Espectro de RMN¹³C (CDCl₃, 62,5 MHz) do 1,3-dicarbonilado 30 ... 118 Figura 69: Espectro de RMN¹H (CDCl₃, 250 MHz) do 1,3-dicarbonilado 31..... 120 Figura 70: Espectro de RMN¹³C (CDCl₃, 62,5 MHz) do 1,3-dicarbonilado 31 ... 120 Figura 71: Espectro de RMN¹H (CDCl₃, 250 MHz) do 1,3-dicarbonilado 32..... 121 Figura 72: Espectro de RMN¹³C (CDCl₃, 62,5 MHz) do 1,3-dicarbonilado 32 ... 121 Figura 73: Espectro de RMN¹H (CDCl₃, 250 MHz) do 1,3-dicarbonilado 33..... 123 Figura 74: Espectro de RMN¹³C (CDCl₃, 62,5 MHz) do 1,3-dicarbonilado 33... 123 Figura 75: Espectro de RMN¹H (CDCl₃, 250 MHz) do 1,3-dicarbonilado 34..... 124 Figura 76: Espectro de RMN¹³C (CDCl₃, 62,5 MHz) do 1,3-dicarbonilado 34 ... 124 Figura 77: Espectro de RMN¹H (CDCl₃, 250 MHz) do 1,3-dicarbonilado 35..... 126 Figura 78: Espectro de RMN¹³C (CDCl₃, 62,5 MHz) do 1,3-dicarbonilado 35... 126 Figura 79: Espectro de RMN¹H (CDCl₃, 250 MHz) do 1,3-dicarbonilado 36..... 127 Figura 80: Espectro de RMN¹³C (CDCl₃, 62,5 MHz) do 1,3-dicarbonilado 36 ... 127 Figura 81: Espectro de RMN de ¹H (CDCl₃, 250 MHz) do CTV 37...... 130 Figura 82: Espectro de RMN de ¹H (CDCl₃, 62,5 MHz) do CTV 37...... 130 Figura 83: Espectro de RMN de ¹H (CDCl₃, 250 MHz) do CTV 38...... 132 Figura 84: Espectro de RMN de ¹³C (CDCl₃, 62,5 MHz) do CTV 38...... 132 Figura 85: Espectro de RMN de ¹H (CDCl₃, 250 MHz) do CTV 39...... 134 Figura 86: Espectro de RMN de ¹³C (CDCl₃, 62.5 MHz) do CTV 39...... 134

Figura 87	: Espectro de	RMN de	¹ H (CDCl ₃ , 2	250 MHz) do	CTV 42	136
Figura 88	: Espectro de	RMN de	¹³ C (CDCl ₃ ,	125 MHz) do	CTV 42	136
Figura 89	: Espectro de	RMN de	¹ H (CDCl ₃ , 2	250 MHz) do	CTV 44	137
Figura 90	: Espectro de	RMN de	^{13}C (CDCl ₃ ,	125 MHz) do	CTV 44	137
Figura 91	: Espectro de	RMN de	¹ H (CDCl ₃ , 2	250 MHz) do	CTV 46	139
Figura 92	: Espectro de	RMN de	$^{13}C(CDCI_3,$	62,5 MHz) do	o CTV 46	139
Figura 93	: Espectro de	RMN de	¹ H (CDCl ₃ ,	250 MHz) do	CTV 47	141
Figura 94	: Espectro de	RMN de	¹³ C (CDCl ₃ ,	62,5 MHz) do	o CTV 47	141
Figura 95	: Espectro de	RMN de	¹ H (CDCl ₃ ,	250 MHz) do	CTV 48	143
Figura 96	: Espectro de	RMN de	$^{13}C(CDCI_3,$	62,5 MHz) do	o CTV 48	143
Figura 97	: Espectro de	¹ H (CDC	l ₃ , 250 MHz) do composte	o 48 após a adicá	ão de D ₂ O
		``````````````````		, I	ı 3	144
Figura 98	: Espectro de	¹³ C (CDC	Cl ₃ , 250 MH	z) do compos	to 48 após a adio	cão de D₂O
	, 	`````````````````		, ı	ı 3	, 144
Figura 99	: Espectro de	RMN de	¹ H (CDCl ₃ , 2	250 MHz) do	CTV 49	146
Figura 10	0: Espectro d	e RMN d	e ¹³ C (CDCl	a. 62.5 MHz) (	do CTV 49	146
Figura 10	1: Espectro d	e RMN d	e ¹ H (CDCl ₃ )	250 MHz) do	CTV 50	148
Figura 10	2: Espectro d	e RMN d	e ¹³ C (CDCl	. 125 MHz) d	o CTV 50	148
Figura 10	3: Espectro d	e RMN d	e ¹ H (CDCl ₃	, 250MHz) do	composto 63	151
Figura 10	4: Espectro d	e RMN d	e ¹³ C (CDCI	3. 62.5 MHz) (	do composto 63.	151
Figura 10	5: Espectro d	e RMN d	e ¹ H (CDCl ₃	. 62.5 MHz) d	o composto 64	153
Figura 10	6: Espectro d	e RMN d	e ¹³ C (CDCľ	, 62,5 MHz) (	do composto 64.	153
Figura 10	7: Espectro d	e RMN d	e ¹ H (CDCl ₃	, 250 MHz) do	, composto 65	155
Figura 10	8: Espectro d	e RMN d	e ¹³ C (CDCI	, 62,5 MHz) (	do composto 65.	155
Figura 10	9: Espectro d	e RMN d	e ¹ H (CDCl ₃	, 250 MHz) do	, composto 66	157
Figura 11	0: Espectro d	de RMN c	le ¹³ C (CDC	Í ₃ , 62,5 MHz)	do composto 66	157
Figura 11	1: Espectro d	e RMN d	e ¹ H (CDCl ₃	, 250 MHz) do	composto 67	159
Figura 11	2: Espectro d	e RMN d	e ¹³ C (CDCI	3, 62,5 MHz) (	do composto 67.	159
Figura 11	3: Espectro d	e RMN d	e ¹H (ĊDCl₃	, 250 MHz) do	o composto 68	161
Figura 11	4: Espectro d	e RMN d	e ¹³ C (CDCI	3, 62,5 MHz) (	do composto 68.	161
Figura 11	5: Espectro d	e RMN d	e ¹H (ĊDCl₃	, 250MHz) do	composto 69	162
Figura 11	6: Espectro d	e RMN d	e ¹³ C (CDCI	₃, 62,5 MHz) (	do composto 69.	162
Figura 11	7: Espectro d	e RMN d	e ¹H (CDCl₃	, 250 MHz) do	composto 70	164
Figura 11	8: Espectro d	e RMN d	e ¹³ C (CDCI	₃, 62,5 MHz) (	do composto 70.	164
Figura 11	9: Espectro d	e RMN d	e ¹H (CDCl₃	, 250 MHz) do	composto 71	166
Figura 12	0: Espectro d	e RMN d	e ¹³ C (CDCI	₃, 250 MHz) d	lo composto 71	166
Figura 12	1: Espectro d	e RMN d	e ¹H (CDCl₃	, 250 MHz) do	o composto 72	168
Figura 12	2: Espectro d	e RMN d	e ¹³ C (CDCI	₃, 62,5 MHz) (	do composto 72.	168
Figura 12	3: Espectro d	e RMN d	e ¹H (CDCl₃	, 250 MHz) do	o composto 73	170
Figura 12	4: Espectro d	e RMN d	e ¹³ C (CDCI	₃, 62,5 MHz) (	do composto 73.	170
Figura 12	5: Espectro d	e RMN d	e ¹³ C (CDCI	₃, 62,5 MHz) (	do composto 74.	172
Figura 12	6: Espectro d	e RMN d	e ¹³ C (CDCI	₃, 62,5 MHz) (	do composto 74.	172
Figura 12	7: Espectro d	e 'H RMI	N (CDCl ₃ , 25	50 MHz) do co	omposto 76	173
Figura 12	8: Espectro d	e RMN ¹	H (CDCl ₃ , 25	50 MHz) do ci	clopenta[b]indol 6	61 176
Figura 12	9: Espectro d	e RMN ¹³	C (CDCl ₃ , 6	2,5 MHz) do (	ciclopenta[b]indo	l 61. 176
Figura 13	0: Espectro d	e RMN d	e 'H (CDCl ₃	, 250 MHz) do	composto 62	177
Figura 13	1: Espectro d	e RMN ¹ ł	H (CDCl ₃ , 25	50 MHz) do ci	clopenta[b]indol 7	78 179

## **1. CONSIDERAÇÕES GERAIS E METODOLOGIA DE TRABALHO**

#### **1.1. CONSIDERAÇÕES GERAIS**

Essa dissertação de mestrado tem por objetivo explorar os adutos obtidos na reação de Morita-Baylis-Hillman (MBH) como substrato para a síntese de compostos tricarbonilados vicinais e derivados ciclopenta[*b*]indólicos (*Esquema 1*).



Esquema 1: Padrões estruturais oriundos do aduto de Morita-Baylis-Hillman

Como a reação de Morita-Baylis-Hillman é central para o desenvolvimento dos dois projetos que compõem essa dissertação, iniciaremos discutindo os aspectos gerais e mecanísticos da reação.

### 1.2. A REAÇÃO DE MORITA-BAYLIS-HILLMAN

Em 1968, Morita e colaboradores reportaram uma nova reação, na qual derivados acrílicos juntamente com aldeídos na presença de uma fosfina terciária (triclicloexilfosfina) como catalisador, dariam origem a novos compostos vinílicos.¹

¹ Morita, K., Suzuki, Z., Hirose, H., *Bull. Chem. Soc. Jpn.* **1968**, *41*, 2815.

Quatro anos mais tarde Baylis e Hillman repetiram a reação, porém utilizando um catalisador mais barato e menos tóxico, o DABCO (1,4-diazabiciclo[2.2.2]octano). Surgia portanto, uma importante transformação da química orgânica.²

A reação de Morita-Baylis-Hillman (MBH) é uma reação de condensação entre um carbono eletrofílico  $sp^2$  (geralmente de um aldeído ou imina) e a posição  $\alpha$  de uma olefina, contendo um grupo retirador de elétrons (derivado acrílico), catalisada por uma amina terciária ou fosfina, levando à formação de uma nova ligação  $\sigma$  C-C (*Esquema 2*).



*Esquema 2*: Reação de MBH

A reação de MBH apresenta características que evidenciam sua vantagem como método sintético, tais como: ser quimio- e regiosseletiva originando um novo centro estereogênico. Do ponto de vista estrutural seus adutos são moléculas polifuncionalizadas e podem ser preparados em condições reacionais brandas. Além dessas características, a reação de MBH é uma transformação eficiente no que diz respeito a economia de átomos, pois todos os átomos presentes nos reagentes de partida estão incorporados no produto.³

### **1.3. ASPECTOS MECANÍSTICOS DA REAÇÃO DE MORITA-BAYLIS-HILLMAN**

Embora estudada por muitos grupos de pesquisa, a reação apresenta alguns desafios tais como uma versão enantiosseletiva eficiente.⁴

² Baylis, A.; Hillman, M. ; Patente alemã 2155113 , **1972** (*Chem. Abst.* **1972**, *77*, 34174).

³ a) Coelho, F.; Almeida, W. *Quim. Nova*, **2000**, *23*, 98. b) Basavaiah, D., Rao, A. J., Satyarayama, T., *Chem. Rev.* **2003**, *103*, 811.

⁴ Basavaiah, D.; Reddy, B.S.; Badsara, S.S. *Chem. Rev.* **2010**, *110*, 5447.

Estudos focados no mecanismo da reação foram realizados por diferentes grupos de pesquisa.^{5,6,7,8} e as contribuições culminaram em uma proposta mecanística amino catalisada. O primeiro passo do mecanismo dessa reação é a adição Michael da amina terciária (I) ao alceno ativado (II) gerando o azaenolato *zwitteriônico* (III). Subsequentemente, uma adição aldólica envolvendo o azaenolato (III) e o aldeído (IV) produz o *zwitterion* (V) que após migração interna do próton e eliminação do catalisador fornece o produto  $\beta$ -hidroxi- $\alpha$ -metileno carbonilado (VII) (aduto de MBH) (*Esquema 3*).



Esquema 3: Proposta mecanística inicial para a reação de MBH

Hoffmann e Rabe especularam sobre a possibilidade do intermediário (**V**) estar em equilíbrio entre duas conformações sendo a preferencial aquela que possibilitava menos interações do tipo gauche. A conformação menos estável possibilitaria eliminação antiperiplanar da base.⁵

Hill e Isaacs através de experimentos cinéticos utilizando acrilonitrila deuterada em posição  $\alpha$ , acetaldeído e DABCO, observaram valores de efeito isotópico cinético (EIC) pouco significativo (k_H/k_D 1,03 ± 0,1) para a etapa de abstração de protón. Esses

⁵ Hoffman, H. M. R.; Rabe, J. *Angew. Chem. Int. Ed.* **1983**, *95*, 795.

⁶ Hill, J. S.; Isaacs, N. S. J. *Phys. Org. Chem.* **1990**, *3*, 285.

⁷ Fort, Y., Berthe, M.; Caubere, P., *Tetrahedron* **1992**, *48*, 6371.

⁸ Drewes, S., Ross, G. *Tetrahedron* **1988**, *44*, 4653.

dados levaram os autores a apontar a etapa de adição aldólica como a determinante da velocidade da reação.⁶

A proposta mecanística foi suportada por investigações subseqüentes incluindo a interceptação dos intermediários utilizando espectrometria de massas realizadas pelo nosso grupo de pesquisa⁹ bem como por isolamento e análise de raio-X de intermediários do ciclo catalítico em uma reação de MBH intramolecular.¹⁰

Estudos posteriores, além de novas evidências, permitiram maior elucidação do mecanismo da reação. Drewes e colaboradores reportaram pela primeira vez a formação e isolamento de 2,6-dialquil-5-metileno-1,3-dioxan-4-onas na reação de Morita-Baylis-Hillman. A formação da 1,3-dioxanona indicava que o aldeído poderia reagir com o aduto de MBH *in situ*, fato que não havia sido proposto no mecanismo inicial.¹¹

Em 2005, o mecanismo dessa reação foi revisitado por alguns autores. McQuade e colaboradores, através de estudos cinéticos relataram um efeito isotópico cinético de primeira ordem bastante significativo ( $k_H/k_D$  5,2 ± 0,6, em DMSO) para a abstração do próton em posição  $\alpha$ -carbonila e propuseram portanto que o passo determinante da velocidade não seria a adição aldólica, previamente apontada, mas sim a abstração do próton em posição  $\alpha$ -carbonila (intermediário **V**). Esses resultados são contrários aqueles descritos por Isaacs e Hill, que encontraram valores para o efeito isotópico cinético muito baixos ( $k_H/k_D$  1,03 ± 0,1) para a mesma etapa de abstração de hidrogênio. Outra observação relatada por McQuade era que a reação seria de segunda ordem em relação ao aldeído, o que explicaria a formação das dioxanonas observadas inicialmente por Drewes.¹²

De acordo com o estudo, a reação se inicia de maneira semelhante ao mecanismo proposto, adição de Michael seguida de adição 1,2 (*Esquema 4*), porém um segundo equivalente de aldeído sofre ataque pelo alcóxido (**V**) dando origem ao intermediário hemiacetal. A segunda molécula do aldeído facilita a etapa de

⁹ Santos, L. S.; Pavam, C. H.; Almeida, W. P.; Coelho, F.; Eberlin, M. *Angew. Chem. Int. Ed. Engl.* **2004**, *43*, 4330.

¹⁰ Drewes, S. E. Najamela, O. L.; Emslie, N. D.; Field, J. S. *Synth. Commun.* **1993**, *23*, 2807-2815.

¹¹ Drewes, Emslie, N.D.; Karodia, N.; Khan, A.A.; *Chem. Ber.* **1990**, *123*, **1447**.

¹² a) Price, K. E.; Broadwater, S. J.; Jung, H. M.; McQuade, D. T. *Org. Lett.* **2005**, *7*, 147; b) Price, K. E.; Broadwater, S. J.; Walker, B. J.; McQuade, D. T. *J. Org. Chem.* **2005**, *70*, 3980.

transferência de próton intramolecular, já que o alcóxido resultante da adição 1,2 não poderia agir como base devido a restrições de natureza geométrica (intermediário de quatro membros). O alcóxido (**VIII**) pode abstrair o hidrogênio da posição  $\alpha$ , via a formação de um estado de transição de 6 membros, clivando a ligação C-H e eliminando a base (*Esquema 4*). Outra observação relatada foi o aumento da velocidade da reação na presença de solventes polares, pois estes seriam responsáveis por estabilizar o intermediário hemiacetal.¹²

Posteriormente, Aggarwal e colaboradores através de estudos cinéticos e computacionais apresentaram uma proposta complementar para o mecanismo da reação. O grupo de Aggarwal propôs que dois mecanismos poderiam ocorrer simultaneamente na etapa de transferência de próton: i) adição da segunda molécula de aldeído para a formação do hemiacetal seguido pela tranferência de próton e ii) a auto-catálise da reação, na qual, o próprio aduto de MBH poderia funcionar como catalisador, agindo como fonte de próton. Pela proposta de Aggarwal, o alcóxido (V) abstrai o H do aduto e o aduto abstrai o H  $\alpha$  carbonila gerando o intermediário (XI) via um estado de transição cíclico de 6 membros. De acordo com os cálculos computacionais executados por Aggarwal, esse intermediário apresentou energia mais baixa do que o intermediário proposto por McQuade (*Esquema 4*).¹³

Aggarwal propôs que inicialmente a reação aconteceria pelo mecanismo proposto por McQuade, porém após 20% de conversão, o aduto de MBH funcionaria como fonte de próton e a reação se tornaria auto-catalítica.¹³

¹³ Robiette, R.; Aggarwal, V. K.; Harvey, J. N. *J. Am. Chem. Soc.* **2007**, *129*, 15513.



Esquema 4: Novas evidências mecanísticas para a reação MBH

Recentemente, o nosso grupo de pesquisa em estudos utilizando espectrometria de massas evidenciou estruturalmente a presença das duas espécies (propostas por McQuade e Aggarwal) no ciclo catalítico. Essas evidências nos levam a propor que a reação apresenta um caráter dualístico, ou seja, opera através de dois intermediários diferentes, dependendo do estágio em que se encontra.¹⁴

Novos estudos computacionais utilizando como programa M06-2X, realizados por Cantillo e Kappe¹⁵ possibilitaram uma avaliação mecanística ainda mais profunda. A análise das energias dos intermediários bem como dos dados cinéticos permitiram inferir que as propostas mecanísticas de McQuade e Aggarwal são competitivas. Dependendo da presença de espécies próticas e estágio da reação os dois eventos podem co-existir. Outro dado observado foi que na presença de bons doadores de prótons (alcoóis aromáticos) a etapa determinante da velocidade deixa de ser a transferência de próton.

¹⁴ a) Amarante, G.W.; Milagre, H.M.S.; Vaz, B.G.; Ferreira, B.R.V.; Eberlin, M.N.; Coelho, F. *J. Org. Chem.* **2009**, *74*, 3031. b) Amarante, G.W.; Benassi, M.; Milagre, H.M.S.; Braga, A.A.C.; Maseras, F.; Eberlin, M. N.;Coelho, F. *Chem. Eur. J.* **2009**, *15*, 12460.

¹⁵ Cantillo, D.; Kappe, C.O. *J. Org. Chem.* **2010**, *75*, 8615.

Diante do exposto, fica claro que o mecanismo da reação de MBH não foi ainda completamente elucidado. Grupos de pesquisa têm voltado esforços neste sentido, com o intuito de generalizar uma condição para a reação, diminuir os tempos reacionais e principalmente, estabelecer uma versão assimétrica eficiente.

### 1.4. PREPARAÇÃO DOS ADUTOS DE MBH

A reação de MBH constitui a primeira etapa tanto para a síntese dos compostos tricarbonilados vicinais quanto para a síntese dos núcleos ciclopenta[*b*]indólicos. O aduto de MBH é o precursor comum para ambas sequências sintéticas desenvolvidas neste trabalho. Os adutos foram preparados empregando uma metodologia desenvolvida por nosso grupo de pesquisa em 2002.¹⁶ Nesta o aldeído é colocado na presença de um excesso de acrilato, o qual funciona também como solvente da reação, e DABCO é empregado como catalisador. Após o término da reação é possível recuperar o excesso de acrilato, sob pressão reduzida e posterior a destilação o acrilato pode ser reutilizado.

Diferentes aldeídos (alifáticos, aromáticos, aromáticos com substituintes doadores e retiradores de elétrons) e olefinas ativadas (grupamentos ésteres, cetonas e ciano) foram utilizados permitindo a obtenção de adutos com variados padrões estruturais e de substituição. A tabela 1 exibe todos os dados referentes aos adutos sintetizados.

Os tempos reacionais variam de acordo com a natureza do aldeído e do acrilato. Aldeídos com substituintes retiradores de elétrons reagem mais rapidamente devido à maior eletrofilicidade da carbonila, o que favorece a etapa de adição aldólica (*Esquema 3* – etapa 2). Os maiores tempos reacionais são observados em aldeído substituídos por grupos doadores de elétrons e para contornar esse fator algumas estratégias são utilizadas para aumentar a velocidade dessa transformação como por exemplo, variação na temperatura e emprego de ultrassom.

¹⁶ Coelho, F.; Almeida, W. P.; Veronese, D.; Lopes, E.C.S.; Silveira, G. P. C.; Rossi, R.C.; Pavam, C.H. *Tetrahedron*, **2002**, *58*, 7437.

	$\mathbf{R'} \overset{O}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}}{\overset{H}}{\overset{H}{\overset{H}}}}}}}}}$		I ∭R"
Entrada ^a	Aduto de MBH	Condição [⊳]	Rendimento(%) ^c
1	OH O OMe	<b>3</b> °0	85
2	OH O OMe MeO	)))	71
3	OH O OMe 3	t.a.	66
4	OH O O ₂ N OMe	t.a.	90
5	CN SOH 5	t.a.	93
6	OH O Me	t.a.	62
7	OH N 7	t.a.	90
8		t.a.	95
9	OH O OMe 9	)))	70
10	OH O OMe Br 10	)))	55

Tabela 1: Adutos de Morita-Baylis-Hillman sintetizados

Entrada ^a	Aduto de MBH	Condição [⊳]	Rendimento(%) ^c
11	OH O OMe II CI	t.a.	80
12	OH O OMe 12	t.a.	40
13	MeO MeO MeO OMe 13	)))	71
14	OH O OEt 14	t.a.	83
15	OH OMe OMe 15	t.a.	70
16	MeO MeO OMe 16	t.a.	70
17	OH O OMe 17	)))	77
18	OH O OMe Br 18	t.a.	75
19	OH O 19	t.a.	52

a) 1 eq de aldeído, 5eq de acrilato e 0,65 eq de DABCO (1,4-diazabiciclo[2.2.2]octano). b) O tempo reacional variou entre horas a dias para todos os adutos sintetizados. c) Rendimentos isolados após purificação em coluna cromatográfica de sílica gel ou cristalização.))): Ultrassom

Os rendimentos obtidos foram regulares a excelentes (entre 40-95%) e a formação dos adutos foi comprovada empregando espectroscopia de absorção na região do infravermelho (IV) e ressonância magnética nuclear (RMN) de ¹H e ¹³C.

O espectro de IV de todos os adutos sintetizados evidencia o aparecimento de uma banda larga entre 3230-3511 cm⁻¹ referente ao estiramento O-H da hidroxila. Uma banda entre 1706-1723 cm⁻¹ atribuída ao estiramento da carbonila é observada nos adutos com a porção éster. O composto **6** apresenta uma absorção em 1673 cm⁻¹ atribuída à carbonila do grupamento cetona e o composto **7** uma absorção em 2229 cm⁻¹ atribuída ao estiramento C-N da nitrila.

No espectro de RMN de ¹H observa-se o desaparecimento do sinal em ~10,0 ppm atribuído ao H do aldeído e o aparecimento de sinais característicos a todos os adutos de MBH: dois simpletos na região de 5,72-6,41 ppm atribuídos aos hidrogênios metilênicos da ligação dupla, um dupleto entre 4,07-5,78 ppm referente ao hidrogênio ligado ao carbono carbinólico e outro dupleto entre 2,92-3,35 ppm, atribuído ao hidrogênio da hidroxila. Os sinais referentes aos grupos retiradores de elétrons da olefina (sistema acrílico) também são observados (*Tabela 2*).

Para os adutos com anel aromático na estrutura são observados sinais na região de 6,58-8,20 ppm. Picos na região de 0,87-2,00 ppm são característicos de adutos de cadeia alifática. O espectro de ¹³C caracteriza-se por apresentar sinais nas regiões de 71,2-77,5 ppm e ~125 ppm referentes ao carbono carbinólico e metilênico, respectivamente. O pico referente à carbonila em adutos com a porção éster aparece entre 165,9-172,9 ppm, esse sinal é deslocado para campo mais baixo, aparecendo em 199,3 ppm quando a carbonila corresponde à função cetona (aduto **6**).

10

Entrada ^a	Porção acrílica	¹ H (ppm)	¹³ C (ppm)
1	0	2 26 (c. 3H)	199,3 (C0)
	No.	2,20 (3, 017)	26,7 (C3)
2	_{کو} ⊂C ^Ę N	-	129,1 (C0)
3	° vv 0	~3,7 (s, 3H)	~167 (C0) ~52 (C3)
Δ	<b>O</b>	4,14 (q, 2H)	~167 (C0), ~61 (C2)
-	^م ر <b>0</b>	1,22 (t, 3H)	~14 (C3)
5	No N	1,40 (s, 9H)	165,9 (C0); 34,0 (C0)
			28,1(C3)

Tabela 2: Sinais da porção acrílica do aduto nos espectros de RMN
## 2. SÍNTESE DE COMPOSTOS TRICARBONILADOS VICINAIS

#### 2.1. INTRODUÇÃO

Compostos tricarbonilados vicinais (CTV) são substratos de grande interesse sintético, sendo largamente empregados como precursores de moléculas mais complexas. Uma característica importante desse padrão estrutural é a elevada eletrofilicidade da carbonila central o que favorece a formação de hidratos.

Os compostos policarbonilados vêm sendo empregados na síntese de heterociclos¹⁷ e também de substâncias naturais com atividade biológica, tais como antibióticos¹⁸, compostos com atividade imunossupressora¹⁹, vasodilatadora²⁰, inibidores de protease²¹ e elastase²² (*Figura 1*).



Figura 1: Estruturas obtidas a partir de compostos tricarbonilados vicinais.

¹⁷ a)Nair, V.; Deepthi, A. *Tetrahedron Lett.* **2006**, *47*, 2037 ; b) Adlington, R.M.; Baldwin, J.E.; Catterick, D.; Pritchard, G.J. *J. Chem. Soc.*; *Perkin Trans. 1*, **2001**, 668 .

¹⁸ Wasserman, H.H.; Han, W.T.A. *Tetrahedron Lett.* **1984**, *25*, 3747.

¹⁹ Wasserman, Harry H.; Lombardo, Louis J. *Tetrahedron Lett.* **1989**, 1725.

²⁰ a) Wasserman, H. H.; Huo, G.-H. *Tetrahedron Lett.* **1991**, *32*, 7131.

²¹ Wasserman, H.H.; Ennis, D.S.; Power, P.L.; Ross, M.J.; Gomes, B. *J. Org. Chem.* **1993**, *58*, 4785.

²² a) Wasserman, H. H.; Chen, J. -H.; Xia, M. *J. Am. Chem. Soc.* **1999**, *121*, 1401; b) Wasserman, H. H; Chen, J.-H.; Xia, M. *Helv. Chim. Acta* **2000**, *83*, 2607.

A importância desses substratos justifica o desenvolvimento de novas abordagens metodológicas. O primeiro método geral para preparação dos CTV foi reportado por Sachs²³ em 1907, no qual um composto  $\beta$ -dicarbonilado reagiu na presença de *p*-dimetilaminonitrosobenzeno resultando em uma imina intermediária, que em meio ácido sofreu hidrólise dando origem à carbonila central. A maioria dos métodos desenvolvidos desde então partem de sistemas  $\beta$ -dicarbonilados como sumarizados no esquema 5.^{24,25}



*Esquema 5:* Formação de (CTV) a partir de β-dicarbonílicos

De maneira geral os métodos mostram os substratos monobromados e dibromados sendo oxidados com dimetilssulfóxido (DMSO) e oxigênio singleto. Derivados dimetilaminometilenos, α-diazo-β-dicarbonílicos e ilídeos através de clivagem oxidativa na presença de ozônio ou dimetildioxirana (DMD) dão origem ao padrão estrutural de interesse.^{25,26,27} A oxidação também pode ser realizada diretamente em

²³ Sachs, F.; Harold, V. *Ber.* **1907**, *40*, 2714, conforme ref. 25.

²⁴ Wasserman, H.H.; Baldino, C.M.; Coats, S.J. *J. Org. Chem.* **1995**, *60*, 8231.

²⁵ Rubin, M. B; Gleiter, R. *Chem Rev.* **2000**, *100*, 1121.

²⁶ Wasserman, H.H.; Han, W.T. *J. Am. Chem. Soc.* **1985**, *107*, 1444.

²⁷ Saba, A. Synth. Comm **1994**, *24*, 695.

compostos β-dicarbonilados, empregando como agente oxidante dióxido de selênio ou periodinana de Dess-Martin.²⁸ Em substratos com bons grupos de saída como o *p*-nitrobenzenosulfonil (ONs), reações em meio alcalino possibilitam a obtenção de compostos tricarbonilados vicinais.²⁹

Outros métodos para síntese de CTV partindo de variados substratos também foram relatados.

Reetz e Kyung reportaram a síntese de dicetoésteres envolvendo a reação de cloretos de ácido carboxílico com etilenos tetrassubstituídos, estes dariam origem a intermediários do tipo cetal, que posteriormente poderiam ser hidrolisados. Este método não tem sido empregada até o presente momento para outras aplicações sintéticas. (*Esquema 6*).³⁰



R₁= Ph, p-MeOC₆H₄, CH₃, i-Pr, t-Bu

Esquema 6: Síntese de CTV a partir de alcenos tetrasubstituídos

A ozonólise de benzoquinonas substituídas foi reportada como alternativa a obtenção de CTV, no entanto o método se mostrou limitado e com baixos rendimentos (*Esquema 7*).³¹



 $R_1 = MeO, R_2 = H$ 

Esquema 7: Síntese de CTV a partir de benzoquinonas

²⁸ Dayer, F.; Dao, H.L; Gold, H.; Gowal, H.R.; Dahn, H. *Helv. Chim. Acta* **1974**, *57*, 2201.

²⁹ Hoffman, R. V.; Kim, H.-O.; Wilson, A. L. *J. Org. Chem.* **1990**, *55*, 2820.

³⁰ Reetz, M.T.; Kyung, S. *Tetrahedron Lett.* **1985**, *26*, 6333.

³¹ Logemann, E.; Schill, G.; Zurcher, C. *Chem. Ber.* **1978**, *111*, 1019.

A oxidação de diidrocompostos com DDQ (2,3-dicloro-5,6-dicianobenzoquinona) se mostrou eficiente para a síntese de tricarbonilados. O hidrato da *o*-tropoquinona foi obtido rapidamente após oxidação da diidro-*o*-tropoquinona com DDQ seguido de adição de água (*Esquema 8*).³²



Esquema 8: Síntese de CTV a partir de diidrocompostos

Condições adequadas foram encontradas por Inokuchi e cols. para a oxidação de  $\alpha$ , $\beta$ -diidroxiésteres à dicetoésteres utilizando um reagente derivado do agente oxidante TEMPO. Bons rendimentos foram encontrados na obtenção dos derivados tricarbonilados (*Esquema 9*).³³



Esquema 9: Síntese de dicetoésteres via oxidação com 4-BzoTEMPO

Um método baseado na conversão de acetileno à  $\alpha$ -dicetona na presença de permanganato de potássio forneceria um  $\alpha$ -ceto- $\beta$ -hidroxiéster que em contato com dióxido de manganês daria origem ao dicetoester correspondente (*Esquema 10*).³⁴



*Esquema 10:* Síntese de dicetoésteres via oxidação com manganês

³² Hirama, M.; Itô, S. *Tetrahedron Lett.* **1975**, 1071.

³³ Inokuchi, T.; Liu, P.; Torii, S. *Chem. Lett.* **1994**, 1411.

³⁴ Tatlock, J. H. *J. Org. Chem.* **1995**, *60*, 6221.

Furukawa e cols.³⁵ reportaram a obtenção de uma tricetona hidratada pela reação de monocetonas com iodo em DMSO na presença de ácido sulfúrico. Apenas um exemplo foi reportado na obtenção do CTV a partir dessa metodologia (*Esquema 11*).

$$\begin{array}{c} O \\ Ph \end{array} \begin{array}{c} O \\ Ph \end{array} \begin{array}{c} 10\% I_{2}, H_2SO_4 \\ \hline DMSO, 100^{\circ}C, 5h \end{array} \begin{array}{c} O \\ Ph \\ HO \\ OH \end{array} \begin{array}{c} O \\ Ph \\ HO \\ OH \end{array}$$

*Esquema 11:* Síntese de CTV a partir de monocetonas.

#### 2.2. PROPOSTA

Os resultados obtidos por Doutheau³⁶ e colaboradores na preparação  $\alpha$ -ceto- $\beta$ hidroxicetonas através da ozonólise de adutos de MBH de cadeia alifática, foi um estímulo para que o nosso grupo de pesquisa reiniciasse estudos com o objetivo de obter  $\alpha$ -cetoésteres. Diferentemente de Doutheau, escolheu-se como substrato adutos oriundos de aldeídos aromáticos. A escolha representava um grande desafio, já que esses substratos são passíveis de sofrer reações que levariam à total oxidação do sistema aromático (síntese de muconatos) (*Esquema 12*). Os resultados satisfatórios obtidos por nosso grupo de pesquisa no desenvolvimento desse trabalho foram publicados em 2008.³⁷



**Doutheau e** *cols.* R'= CH₂OTBDMS, CH(CH₃)OTBDMS, C(CH₃)₂OTBDMS. R= CH₃, C₂H₅ **Coelho e** *cols.* R'= Fenil, 4-OCH₃-Ph, 4-NO₂-Ph, 3-Cl-Ph, 6-Br-piperonil. R= OMe *Esquema 12*: Ozonólise do aduto de MBH

³⁵ Furukawa, N.; Akasaka, T.; Aida, T.; Oae, S. *J. Chem. Soc., Perkin Trans.* **1 1977**, 372.

³⁶ Doutheau, A.; Freeza, M.; Soulère, L.; Queneau, Y. *Tetrahedron Lett.* **2005**, *46*, 6495.

³⁷ Abella, C. A. M.; Rezende, P.; Souza, M. F. L.; Coelho, F. *Tetrahedron Lett.* **2008**, *49*, 145.

No nosso entender, o produto oriundo da ozonólise poderia permitir sintetizar com rapidez e simplicidade derivados tricarbonilados vicinais. Baseado nas assertivas acima, uma nova estratégia sintética poderia ser desenvolvida a partir dos adutos de MBH.

A análise retrossintética mostra que os CTV poderiam ser obtidos via oxidação da hidroxila secundária do composto α-ceto-β-hidróxi carbonilado, que por sua vez poderia ser sintetizado via uma reação de clivagem oxidativa da dupla ligação do aduto de MBH. (*Esquema 13*).



*Esquema 13:* Análise retrossintética para obtenção dos CTV a partir dos adutos de MBH

#### 2.3. OBJETIVOS

Desenvolver uma nova abordagem para preparação de compostos tricarbonilados vicinais utilizando adutos de Morita-Baylis-Hillman como substrato inicial, seguidamente de uma sequência simples de oxidações. Uma variedade estrutural em relação aos adutos foi empregada a fim de testar a eficiência e a generalidade da metodologia.

#### 2.4. RESULTADOS E DISCUSSÃO

#### 2.4.1. Resultados Preliminares

Há na literatura uma variedade de métodos disponíveis para clivagem oxidativa de duplas ligações, empregando, por exemplo, RuCl₃ e Oxone[®], OsO₄, etc.³⁸ A

³⁸ a) Yang, D.; Zhang, C. *J. Org. Chem*, **2001**, *66*, 4814. b) Shoair, A.G.F.; Mohamed, R.H. *Synth. Commun.* **2006**, *36*, 59. c) Thottumkara, K.V.; Vinod, T.K. *Org. Lett.*, **2010**, *12*, 5640. d) Henry, J.R; Weinreb, S.M. *J. Org Chem.* **1993**, *58*, 4745. e) Travis, B.R.; Narayan, R.S.; Borhan, B. *J. Am. Chem. Soc.* **2002**, *124*, 3824.

metodologia de escolha para essa etapa foi a ozonólise, devido a sua facilidade operacional e experiência já acumulada pelo nosso grupo de pesquisa.³⁷

O aduto **1** foi dissolvido em metanol e exposto a um fluxo de ozônio, a -78°C. O acompanhamento por cromatografia de camada delgada mostrou o consumo total do material de partida após 15 minutos de reação e o aparecimento de várias manchas.

A reação foi submetida a um *work-u*p redutivo na presença de dimetilssulfeto (DMS) e em seguida purificada pelos métodos cromatográficos tradicionais (coluna de sílica flash). Observou-se a degradação do produto em coluna e isolamento de uma mancha apolar. A caracterização espectroscópica por RMN de ¹H revelou tratar-se do benzaldeído, evidenciando a ocorrência de uma reação de retro Morita-Baylis-Hillman.

Em virtude da dificuldade de purificação do α-cetoéster **20**, o bruto reacional da ozonólise de **1** foi exposto a uma condição para oxidação de alcoóis, no entanto não foi possível obtenção do produto tricarbonilado (*Esquema 14*).



**Reagentes e condições:** a') i. O₃, MeOH, -78 °C, 10 min; ii. S(CH₃)₂, 2h. b') IBX, Acetato de etila, 80 °C, 3,5h

Esquema 14: Síntese do α-cetoéster 20

A falta de sucesso na purificação do α-cetoéster **20** resultou em uma inversão da sequência sintética. Ao invés de clivagem oxidativa do aduto e oxidação da hidroxila benzílica tentamos promover primeiro, oxidação na hidroxila benzílica inicialmente e posteriormente realizar a reação de ozonólise (*Esquema 15*).



Esquema 15: Estratégias para síntese de CTV

#### 2.4.2. Oxidação da hidroxila do aduto de MBH

De acordo com a nova estratégia proposta, os adutos deveriam ser expostos a condições reacionais para oxidação da hidroxila. Frente a várias opções de agente oxidante, o ácido 2-iodoxibenzóico (IBX) foi o reagente de escolha. Reagentes de iodo hipervalente são utilizados extensivamente em síntese orgânica como opção de metodologia branda, segura além de uma alternativa econômica aos agentes oxidantes baseados no uso de metais.³⁹

O ácido 2-iodoxibenzóico (IBX) é um reagente eficiente para a oxidação de alcoóis primários e secundários aos correspondentes compostos carbonilícos, bem como para uma variedade de outras transformações oxidativas.³⁹

O mecanismo proposto pode ser observado no esquema 16. Inicialmente ocorre uma troca de ligantes em torno do átomo de iodo, ou seja, o par de elétrons do oxigênio da hidroxila do álcool faz um ataque nucleofílico no iodo com concomitante liberação de uma molécula de água. O intermediário IBX-álcool (**XII**) tem seu próton metínico (caso o álcool seja secundário) abstraído pelo oxigênio ligado ao iodo possibilitando a

³⁹ a) Zhdankin, V.; Stang, P. *Chem. Rev.* 2008, *108*, 5299. b) Zhdankin, V.K. *J. Org. Chem.* 2011, *76*, 1185. c) Ishihara, K.; Uyanik, M. *Chem. Comm.* 2009, 2086. d) Stang, P.J. *J. Org. Chem*, 2003, *68*, 2997. e) Wirth, T. *Angew. Chem. Int. Ed.* 2005, *44*, 3656. f) Nicolaou, K.C.; Mathison, C.J.N.; Montagnon, T. *J. Am. Chem. Soc.* 2004, *126*, 5192. g) Nicolaou, K.C.; Baran, P.S.; Zhong, Y.L. *J. Am. Chem. Soc.* 2001, *123*, 3183. h) Nicolaou, K.C.; Montagnon, T.; Baran, P.S.; Zhong, Y.L. *J. Am. Chem. Soc.* 2002, *124*, 2245; i) Nicolaou, K.C.; Baran, P.S.; Zhong, Y.L.; Vega, J.A. *J. Am. Chem. Soc.* 2002, *124*, 2233. j) Duschek, A.; Kirsch, S. F. *Chem. Eur. J.* 2009, *15*, 10713.

eliminação do produto carbonilado e de uma molécula de ácido 2-iodosobenzóico (IBA). 40, 41

Santagostino e *cols*. monitoraram reações de oxidação de alcoóis com IBX por meio de RMN de ¹H e puderam detectar a presença de um pico transiente consistente com o intermediário IBX-álcool. A concentração deste está diretamente relacionada com a concentração de água, diminuindo com o aumento da mesma.⁴¹

Estudos cinéticos também realizados pelos mesmos autores mostraram que a primeira etapa é representada por um rápido pré-equilíbrio sendo a segunda, a etapa lenta da reação.⁴¹



Esquema 16: Mecanismo proposto para oxidação de alcoóis com IBX

Goddard e colaboradores⁴², através de estudos computacionais e cinéticos, propuseram um mecanismo em que a etapa limitante da reação seria o então denominado *hipervalent twisting*. Segundo os autores, a torsão hipervalente é um movimento coordenado de ligantes dirigido pela necessidade de gerar uma forma planar estável do subproduto da reação IBA (*Esquema 17*).

⁴⁰ Frigerio, M.; Santagostino, M.; Sputore, S.; Palmisanos, G. *J. Org. Chem* **1995**, *60*, 7272.

⁴¹ Munari, S.; Frigerio, M.; Santagostino, M. *J. Org. Chem.* **1996**, *61*, 9272.

⁴² Goddard, W.A.; Su, J.T. *J. Am Chem. Soc.* **2005**, *127*, 14146.



*Esquema 17*: Mecanismo de oxidação de alcoóis mostrando a torsão hipervalente e barreiras de energia.

Para formar o produto de oxidação, o intermediário (XIII) deveria sofrer uma torsão movendo o grupo oxo para o plano do anel e o álcool para fora do plano formando o complexo (XIV). Somente após passagem pela barreira torsional (12,1 kcal/mol) seria possível eliminar IBA na sua forma planar e o produto oxidado. Este mecanismo pode explicar a propensão do IBX em oxidar alcoóis maiores de maneira mais rápida quando comparado a similares menores. Alcoóis maiores têm uma baixa barreira torsional, pois a torsão é dirigida pela repulsão entre o ligante alcóxi e o hidrogênio orto (*Figura 2*).



*Figura 2*⁴³: Modelo para explicação da tamanho-seletividade de alcoóis na oxidação com IBX.

⁴³ Figura adaptada da referência 42.

Outra inferência da proposta diz respeito às modificações estruturais. A inserção de ligantes volumosos na posição *orto* da molécula de IBX seria uma alternativa para aumentar a velocidade dessas reações, já que a presença do ligante facilitaria a etapa de torsão.

O IBX é insolúvel na maioria dos solventes orgânicos, tais como etanol, acetonitrila, acetona, clorofórmio, acetato de etila, etc, no entanto isso não impede que oxidações sejam realizadas nesses solventes a temperaturas mais elevadas. A exceção é o DMSO (dimetilssulfóxido), onde o IBX é solúvel.

O solvente de escolha para as reações foi acetato de etila, visto que dados da literatura revelavam ser a melhor opção em relação a rendimento e a pureza dos produtos.⁴⁴ O aduto **1** foi exposto às condições de oxidação de acordo com a metodologia desenvolvida por Finney⁴⁴ empregando três equivalentes de IBX e acetato de etila como solvente, a 80 °C (*Esquema 18*). O α-metileno-β-cetoéster **21** foi obtido após 3 horas de reação em 92% de rendimento. Devido ao alto grau de pureza do bruto reacional, observado pelos espectros de RMN de ¹H e ¹³C, não houve necessidade de purificação adicional.



Reagentes e condições: 3 eq. de IBX, AcOEt, 80°C, 92%

Esquema 18: Síntese do α-metileno-β-cetoéster 21

As primeiras reações foram realizadas empregando as condições do Esquema 18, todavia com o intuito de diminuir a quantidade de IBX utilizada, as mesmas condições foram repetidas (solvente e temperatura), porém empregando dois equivalentes do agente oxidante. O término da reação não foi observado após longo período. Mudanças no solvente do meio reacional também foram efetuadas, a substituição de acetato de etila por acetonitrila resultou na otimização esperada

⁴⁴ More, J.D.; Finney, N.S. *Org. Lett.* **2002**, *4*, 3001.

reduzindo o consumo de IBX em 50% (*Tabela 3*). Nos dois solventes a reação se processa em meio heterogêneo. Após o término e resfriamento à temperatura ambiente, o meio reacional foi filtrado e o solvente evaporado.

Entradaª	Eq. de IBX	Solvente	Aduto de Partida
1	3,0	Acetato de etila	Consumo total
2	2,0	Acetato de etila	Consumo parcial
3	3,0	Acetonitrila	Consumo total
4	2,0	Acetonitrila	Consumo total
5	1,5	Acetonitrila	Consumo total

Tabela 3: Otimização da condição reacional da oxidação do aduto de MBH

a) Testes realizados com o aduto de MBH 1.

Todos os adutos de MBH preparados (*Tabela 1*) foram submetidos às condições de oxidação com IBX exceto **9**, **15** e **16** (adutos utilizados na segunda parte do trabalho que compõe essa dissertação). A reação apresentou altos rendimentos e alto grau de pureza para a maioria dos sistemas testados fornecendo os produtos 1,3-dicarbonilados de interesse (*Tabela 4*).

|--|

QН

			איי <mark>ושא וייי</mark> ושא אייי ששייי		R"	
Entrada	Produto	R'	<b>R</b> "	Tempo (h)	Condição	Rend. ^d (%)
1	21	Ph	CO ₂ Me	3,0	а	90
2	22	4-OMe-Ph	CO ₂ Me	3,0	а	94
3	23	4-Isopropil-Ph	CO ₂ Me	2,0	а	>95
4	24	4-NO ₂ -Ph	CO ₂ Me	5,0	b	90
5	25	Tiazolil	CO ₂ Me	2,0/ 4,0	a/b	-
6	26	Ph	COMe	5,0	b	93
7	27	Ph	CN	5,0/7,0	a/b	RMP [℃]
8	28	<i>n</i> -Propil	CO ₂ Me	4,0	b	73
9	29	6-Br-Piperonil	CO ₂ Me	4,0	а	>95
10	30	3-Cl-Ph	CO ₂ Me	5,0	а	>95
11	31	Cicloexil	CO ₂ Me	1,5	а	>95
12	32	3,4,5- (OMe) ₃ -Ph	CO ₂ Me	1,5	а	>95
13	33	Ph	CO ₂ Et	1,5	а	>95
14	34	<i>t</i> -Butil-Ph	CO ₂ Me	1,0	а	>95
15	35	4-Br-Ph	CO ₂ Me	2,5	а	95
16	36	4-Isopropil-Ph	CO ₂ - <i>t</i> -Butil	1,5	а	>95

a) 1,5 eq. de IBX, acetonitrila, 70°C; b) 3 eq. de IBX, acetato de etila, 80°C; c) RMP: recuperação d o material de partida; d) Rendimentos isolados sem purificação prévia; -) não observação do produto de interesse.

As modificações observadas no espectro de IV desses compostos referem-se ao desaparecimento da banda larga em 3230-3511 cm⁻¹ correspondente ao estiramento do grupo hidroxila e o aparecimento de uma banda em 1665 a 1714 cm⁻¹, atribuída à nova carbonila cetônica formada.

O espectro de RMN de ¹H dos compostos  $\alpha$ -metileno- $\beta$ -cetocarbonilados evidencia o desaparecimento dos dupletos no intervalo de 4,07-5,78 ppm e 2,92-3,35 ppm correspondente às regiões onde aparecem os hidrogênios carbinólico e da hidroxila do aduto de MBH, respectivamente.

O espectro de RMN de ¹³C mostra o desaparecimento do sinal entre 71,2-77,5 ppm o qual correspondia ao carbono carbinólico e aparecimento de um sinal entre 191,5-203,6 ppm, atribuído à carbonila de cetona formada.

Os espectros de RMN de ¹H dos compostos **28**, **29** e **31** brutos não apresentaram alto grau de pureza como ocorreu para a maioria dos compostos. Portanto estes foram submetidos à purificação por cromatografia empregando como fase estacionária sílica gel e também alumina, contudo não foi obtido resultado satisfatório. Foi constatado que esses compostos sofriam degradação em coluna, logo os mesmos foram utilizados brutos para a etapa seguinte.

Apesar do sucesso do método para a maioria dos adutos, **5** deu origem a uma mistura de produtos de difícil separação e caracterização (*Tabela 4-* entrada 5) e **7** não reagiu permitindo a recuperação total do material de partida (*Tabela 4-* entrada 7). Outros métodos de oxidação foram testados para o aduto **7**, no entanto os mesmos resultados insatisfatórios foram encontrados (*Tabela 5*). Estes poderiam ser justificados ou pelo forte efeito indutivo retirador de elétrons do grupo nitrila ( $C \equiv N$ ) diminuindo portanto, a nucleofilicidade do oxigênio ou pela presença de um átomo de nitrogênio mais nucleofílico que o oxigênio na estrutura (*Tabela 5*).

Tabela 5: Condições empregadas para a oxidação de 7

	$\bigcup^{OH} \stackrel{N}{\longrightarrow} \bigcup^{O} \stackrel{N}{\longrightarrow} N$	
Entrada	Condições	Rendimento(%)
<b>1</b> ⁴⁵	TEMPO ^b /Fe(NO) ₃ .9H ₂ O/NaCl, DCE, O ₂ , t.a., 8h	<b>RMP</b> ^a
<b>2</b> ⁴⁶	PCC ^c , DCM ^d , 40 ^o C, 7h	<b>RMP</b> ^a
<b>3</b> ⁴⁷	TPAP ^e , NMO ^f , DCM,Å, t.a., 10h	<b>RMP</b> ^a
<b>4</b> ⁴⁸	DMP ⁹ , NaHCO ₃ , DCM, t.a., 12h	$RMP^{a}$
5 ⁴⁹	MnO ₂ , THF ^h , Å, refluxo, 24h	<b>RMP</b> ^a

a) RMP: Recuperação do material de partida; b) TEMPO: *N*-oxil-2,2,6,6-tetrametilpiperidina;

c) PCC: clorocromato de piridina; d) DCM: diclorometano; e) TPAP: tetrapropilamônio perrutenato, f) *N*-metilmorfolina *N*-óxido; g) DMP: Periodinana de Dess-Martin; h) THF: Tetraidrofurano

#### 2.4.3. Reação de clivagem oxidativa do composto α-metileno-β-cetocarbonilado

A clivagem oxidativa dos compostos  $\alpha$ -metileno- $\beta$ -cetocarbonilados constitui a última etapa da sequência reacional. A metodologia de escolha foi a ozonólise, que permite a clivagem de compostos insaturados na presença de ozônio. De acordo com Criegee, o mecanismo para essa reação ocorre em três etapas, sendo estas reações de cicloadição 1,3-dipolar direta e reversa.⁵⁰

Reações de cicloadição são reações períciclicas que ocorrem através da participação dos orbitais moleculares de fronteira das espécies envolvidas. As moléculas de partida reagem entre si e através de uma reorganização dos seus elétrons  $\pi$  dão origem a um produto cíclico como conseqüência da formação de duas novas

⁴⁵ Ma, S.; Liu, J.; Li, S.; Chen, B.; Cheng, J.; Kuang, J.; Liu, Y.; Wan, B.; Wang, Y.; Ye, J.; Yu, Q.; Yuan, W.; Yub, S. *Adv. Synth. Catal.* **2011**, *353*, 1005.

⁴⁶ Nicolaou, K.C.; Montagnon, T.; Vassilikogiannakis, G.; Mathison, C. J. N. *J. Am. Chem. Soc.* **2005**, *127*, 8872.

⁴⁷ Ley, S.V.; Norman, J.; Griffith, W.P.; Marsden, S.P. *Synthesis*, **1994**, *7*, 639.

⁴⁸ Anderson, E.; Bolton, G. L.; Ferguson, D. A.; Xin, J.; Kral, R. M.; O'Brian, P. M.; Visnick, M. *WO2009US41177*, **2009**, 125.

⁴⁹ Hirano, M.; Yakabe, S.; Chikamori, H.; Calrk, J.H.; Morimoto, T. *J. Chem. Research*, **1998**, 770.

⁵⁰ Criegee, R. Angew. Chem. Int. Ed., **1975**, 14, 745.

ligações  $\sigma$ . O mecanismo dessa transformação ocorre por processo concertado, porém não necessariamente sincronizado.⁵¹

A cicloadição 1,3-dipolar ou [3+2] tem a participação de um componente carregado, mais especificamente cargas opostas em uma relação 1,3, denominado 1,3-dipolo e de outro componente denominado dipolarófilo.⁵¹ Na reação de ozonólise o 1,3-dipolo e o dipolarófilo são representados pelo ozônio e pelo alceno, respectivamente.

Inicialmente, a extremidade nucleofílica da molécula de ozônio ataca a extremidade mais eletrofílica da dupla ligação enquanto que a outra extremidade nucleofílica ataca a região eletrofílica da molécula de ozônio (*Esquema 19*). Essa etapa representa uma cicloadição 1,3-dipolar direta gerando um intermediário instável de cinco membros denominado molozonídeo ou ozonídeo primário (**XV**). Os ozonídeos primários, são em geral, 1,2,3-trioxalonas que caracterizam-se por ser lábeis termicamente. Em seguida ocorre a decomposição do ozonídeo primário através de uma cicloadição 1,3-dipolar reversa resultando em um composto carbonílico (no caso dos nossos sistemas será o formaldeído) e óxido de carbonila (**XVI**), que reagem entre si dando origem ao ozonídeo (**XVII**) (*Esquema 19*).



Esquema 19: Mecanismo da reação de ozonólise

⁵¹ Carey, F.A.; Sundberg, R.J. *Advanced Organic Chemistry – Part A*, 5th ed, Springer, 2007

A maior instabilidade do molozonídeo frente ao ozonídeo está relacionada com a maior quantidade de ligações O-O presentes na estrutura, já que a ligação O-O é mais fraca (34 kcal/mol) que a ligação C-O (79 kcal/mol).

O composto carbonilado só é gerado após o *work-up* redutivo com dimetilssulfeto (DMS), por exemplo, que através de um processo concertado gera como subproduto dimetilssulfóxido (DMSO) (*Esquema 20*).



Esquema 20: Work-up redutivo levando ao produto carbonilado

Um ponto importante também para se destacar é o solvente. A utilização do metanol assim como de outros solventes nucleofílicos levam a formação de intermediários hidroperóxidos, na qual há incorporação da molécula do solvente ao óxido de carbonila.⁵⁰ (*Esquema 21*)



Esquema 21: Mecanismo da ozonólise na presença de metanol

O primeiro composto 1,3-dicarbonilado a ser exposto às condições de ozonólise foi **21**, que foi dissolvido inicialmente em metanol e exposto a fluxo de ozônio a -78°C. A reação foi acompanhada por cromatografia de camada delgada e após 30 minutos observou-se o término e a formação de manchas mais polares e apolares que o material de partida. À reação foram adicionados 10 equivalentes de DMS e esta permaneceu sob agitação magnética por 2h. Após esse período, o solvente foi retirado sob pressão reduzida e o conteúdo restante foi purificado em coluna cromatográfica de sílica utilizando uma razão isocrática de hexano:acetato (85:15). O composto tricarbonilado **37** foi obtido em 57% de rendimento (*Esquema 22*).



*Reagentes e Condições*: i. O₃, MeOH, -78°C; ii. 10 eq. (CH₃)₂S, -78°C, 57% *Esquema 22*: Obtenção do composto tricarbonilado via reação de ozonólise

A reação foi repetida nas mesmas condições, porém utilizando como solvente diclorometano o que acarretou melhora no rendimento reacional (*Tabela 6*).

Entrada	Solvente	Ozonólise	Redução	Rendimentos (%) ^a
1	MeOH	30 min	2h	57
2	$CH_2CI_2$	30 min	2h	78

*Tabela 6*: Rendimento da reação de ozonólise em diferentes solventes

a) Rendimentos obtidos após purificação em coluna cromatográfica.

Os rendimentos para os outros sistemas testados apresentaram variação significativa, sendo que para alguns o espectro do bruto mostrou grau de pureza elevado, não necessitando de purificação adicional (*Tabela 7*).

Entrada	СТV	R'	<b>R</b> "	Tempo (min)	Solvente	Rend. ^a (%)
1	37	Ph	CO ₂ Me	30	$CH_2CI_2$	78
2	38	4 OMa Ph		20	MeOH	20
۷	30	4-OME-F11		12	CH ₂ Cl ₂	77
3	39	4-Isopropil-Ph	CO ₂ Me	45	MeOH	76
4	40	4-NO ₂ -Ph	CO ₂ Me	45	(CH ₃ ) ₂ CO	traços
5	41	Ph	COMe	10	MeOH	-
6	42	<i>n</i> -Propil	CO ₂ Me	20	CH ₂ Cl ₂	22
7	43	6-Br-Piperonil	CO ₂ Me	50	MeOH	-
8	44	3-Cl-Ph	CO ₂ Me	30	$CH_2CI_2$	65
9	45	Cicloexil	CO ₂ Me	30	CH ₂ Cl ₂	traços
		3,4,5-		20	MeOH/CH ₂ Cl ₂	10
10	46	(OMe)-Ph	CO ₂ Me (OMe) ₃ -Ph		5:10	
		(ONE)3-FT		30	CH ₂ Cl ₂	67
11	47	Ph	CO ₂ Et	12	$CH_2CI_2$	>95 ^b
12	48	<i>t</i> -Butil-Ph	CO ₂ Me	18	$CH_2CI_2$	>95 ^b
13	49	4-Br-Ph	CO ₂ Me	35	CH ₂ Cl ₂	75
14	50	4-Isopropil-Ph	CO ₂ t-Butil	25	CH ₂ Cl ₂	61

Tabela 7: Dados referentes aos compostos tricarbonilados sintetizados

a) Rendimentos isolados após purificação em coluna cromatográfica de sílica gel; b) Rendimento isolado sem purificação prévia; -) não observação do produto de interesse.

Os resultados contidos na tabela mostram que para a maioria dos sistemas testados, rendimentos bons a excelentes foram obtidos a partir dessa metodologia. A presença de duas carbonilas vizinhas à dupla ligação dos derivados 1,3-dicarbonilados diminui a energia de LUMO do sistema, aumentando o coeficiente dos carbonos. O ataque nucleofílico do ozônio no carbono da dupla, que constitui a primeira etapa da cicloadição 1,3-dipolar, é mais facilitada nesses sistemas quando comparado ao aduto de MBH também empregado como substrato da reação de ozonólise.

Devido à baixa solubilidade dos compostos **22** e **32** em diclorometano a reação de ozonólise foi realizada em metanol, o que levou em baixos rendimentos para esses sistemas (*Tabela 7* – entradas 2 e 10). Com o objetivo de melhorar os rendimentos e

com o conhecimento que para os sistemas avaliados diclorometano foi o melhor solvente, realizou-se a reação de ozonólise em diclorometano, porém em condições diluídas o que acarretou bons resultados.

Devido à dificuldade de solubilizar o composto **24** em diferentes solventes, este foi dissolvido parcialmente em acetona, porém apenas traços do composto tricarbonilado foram detectados através de RMN de ¹H e ¹³C.

Os  $\alpha$ -metileno- $\beta$ -cetoésteres de cadeia alifática não forneceram compostos tricarbonilados em bons rendimentos (*Tabela 7* – entradas 6 e 9). Aparentemente, a metodologia apresentada aqui é restrita para esses substratos.

Durante a ozonólise de **26**, o produto de oxidação **41** pareceu ter sido formado, no entanto não foi possível isolá-lo e purificá-lo. O produto isolado obtido após purificação cromatográfica foi o ácido benzóico, composto esse também isolado na formação do CTV **50**. O ácido carboxílico pode ser oriundo da clivagem do composto tricarbonilado.²⁵

A alta eletrofilicidade da carbonila central é uma das características dos compostos tricarbonilados vicinais que os torna muito reativos frente a diferentes tipos de nucleófilos. Comumente os CTV são encontrados em equilíbrio com a sua forma hidratada, pois a exposição ao ar é suficiente para convertê-los em *gem*-diols. Há na literatura alguns procedimentos disponíveis para desidratação desses compostos como aquecimento a vácuo, destilação, cristalização, tratamento em solução com peneira molecular ou agentes dessecantes, todavia desde que haja uma pequena quantidade do composto tricarbonilado, a hidratação não acarretará em problema para as reações subseqüentes.^{25,52}

A água age como nucleófilo fazendo um ataque na carbonila central e posteriormente age tanto como base quanto ácido de Brönsted (*Esquema 23*).

⁵² a) Dei, T.; Morino, K.; Sudo, A.; Endo, T. *J.Polymer Science*, **2011**, *49*, 2245. b) Lepley, A.R.; Thelman, J.P. *Tetrahedron*, **1966**, *22*, 101. c) Silva, M.T.; Braz-Filho, R.; Netto-Ferreira, J.C. *J. Braz. Chem. Soc*, **2000**, *11*, 479.



Esquema 23: Equilíbrio do composto tricarbonilado vicinal e sua forma hidratada

Todos os  $\alpha$ -metileno- $\beta$ -cetocarbonilados submetidos à reação de ozonólise apresentaram o mesmo padrão espectral, ou seja, a presença de dois compostos representados pelo produto tricarbonilado de interesse juntamente com sua forma hidratada.

Através do espectro de IV observa-se o aparecimento de uma banda larga no intervalo entre 3407-3468 cm⁻¹ atribuída às hidroxilas da forma hidratada. Analisando os espectros da maior parte dos compostos, não é possível visualizar as três bandas correspondentes às carbonilas, sugerindo sobreposição entre elas ou mesmo maior presença da forma hidratada.

O espectro de RMN de ¹H evidencia o desaparecimento dos dois simpletos na região de 5,72-6,41 ppm atribuídos aos hidrogênios metilênicos da dupla ligação.

Por meio do espectro de RMN de ¹³C pode-se observar em alguns casos (por exemplo com o CTV **42**) a presença de cinco carbonilas entre 160,0-200,0 ppm referentes às do CTV juntamente com às da forma hidratada. A maior parte dos compostos tricarbonilados vicinais sintetizados nesse trabalho encontram-se quase que totalmente na forma hidratada, o que impossibilita a visualização de todas as carbonilas. Outro sinal característico observado no espectro de RMN ¹³C encontra-se entre 86,5-92,1 ppm. Esse sinal é atribuído ao carbono diidroxilado (gem-diol) da forma hidratada.

O comportamento do CTV **48** frente à água e a confirmação da presença da forma hidratada foram verificados através da realização de um experimento simples

32

empregando RMN. Água deuterada ( $D_2O$ ) foi adicionada à amostra e os espectros de ¹H e ¹³C foram comparados antes e após a adição desse solvente (*Figuras 3 a 6*)

Os espectros antes da adição de água deuterada apresentam duplicação de todos os sinais. Na região dos aromáticos (7,49-8,01 ppm) observam-se quatro dupletos referentes a dois padrões de substituição *para*, dois simpletos em 3,76 e 3,95 ppm referente aos hidrogênios da metoxila e dois simpletos quase totalmente sobrepostos em 1,34 e 1,35 ppm. Já no espectro de ¹³C, além da duplicação dos sinais de quase todos os carbonos, é possível observar as 5 carbonilas na região de 159,0-191,0 ppm. Esses dados sugerem a presença do tricarbonilado e seu hidrato (*Figuras 3 e 4*).



*Figura 3:* Espectro de RMN ¹H (CDCl₃, 250MHz) do composto **48** antes da adição de D₂O



*Figura 4:* Espectro de RMN ¹³C (CDCI₃, 250 MHz) do composto **48** antes da adição de D₂O

Após a adição de D₂O observa-se nos espectros o desaparecimento quase que completo dos sinais duplicados visualizando a presença de um único produto. No espectro de ¹³C também é possível constatar o desaparecimento dos sinais em 189,8, 183,8 e 161,1 ppm correspondentes às três carbonilas do CTV (*Figuras 5* e *6*).



Figura 5: Espectro de RMN ¹H (CDCl₃, 250MHz) de **48** após adição de D₂O



Portanto, o experimento possibilitou observar o comportamento do CTV frente à água, além de corroborar com a idéia de que o segundo produto presente no espectro correspondia ao hidrato.

#### 2.5. CONCLUSÃO

Esta é a primeira abordagem para síntese de compostos tricarbonilados vicinais a partir de adutos de MBH. A estratégia consiste apenas de três etapas: síntese do aduto de MBH e duas sequências simples de oxidação.



A metodologia se mostrou rápida e eficiente, dando origem aos compostos tricarbonilados vicinais em rendimentos variando entre 15% a 75%. Outro ponto importante foi a baixa geração de resíduos oriundos dessa seqüência sintética.⁵³

Como os CTV podem ser utilizados na preparação de heterociclos, essa metodologia pode vir a ser uma alternativa bastante útil para a síntese também de diferentes tipos de moléculas bioativas.

⁵³ Santos, M.S.; Coelho, F. *RSC Adv.* **2012**, no prelo (DOI 10.1039/C2RA01267G)

# 3. SÍNTESE DE DERIVADOS CICLOPENTA[*b*]INDÓLICOS: ESTUDO MECANÍSTICO E AVALIAÇÃO BIOLÓGICA

### 3.1. INTRODUÇÃO

O núcleo ciclopenta[*b*]indólico (estrutura em vermelho- *Figura 7*) encontra-se presente no esqueleto de vários produtos naturais com atividade biológica⁵⁴. A Paspalina (**52**), uma micotoxina tremorgênica⁵⁵, e o alcalóide monoterpenóide Yuehchukene (**51**) que possui atividade abortiva, além de afinidade com o receptor de estrógeno⁵⁶, são alguns exemplos. Outras funções biológicas como antagonista do receptor de prostaglandina D2⁵⁷, agonista do receptor de progesterona⁵⁸, ação antioxidante⁵⁹ e inseticida⁶⁰ vêm sendo descritas em compostos que apresentam esse padrão estrutural.

⁵⁴ a) Ritcher, J.M.; Baran, P.S. *J. Am. Chem. Soc.* **2005**, *127*, 15394. b) Richter, J. M.; Ishihara, Y.; Masuda, T.; Whitefield, B. W.; Llamas, T.; Pohjakallio, A.; Baran, P. S., *J. Am. Chem. Soc.* **2008**, *130*, 17938.

⁵⁵ Uhlig,S,; Botha,C.J.; Vra Istad,T.; Role, E.; Miles, C.O. *J. Agric. Food Chem.* **2009**, *57*, 11112

⁵⁶ a) Wong, D.C.C.; Fong, W.P.; Lee, S. S.T.; Kong, Y.C.; Cheng, K.F.; Stone, G. *.Eur. J. Pharmacol.* **1998**, *362*, 87; b) Ishijura, M.; Imaizumi, K.; Katagiri, N. *Heterocycles* **2000**, *53*, 553.

⁵⁷ a) Sturino C.F.; O'Neill, G.; Lachance, N.; Boyd, M.; Berthelette, C.; Labelle, M.; Li, L.; Roy, B.; Scheigetz, J.; Tsou, N.; Aubin, Y.; Bateman, K.P.; Chauret, N.; Day, S.H.; Levesque, J.; Seto, C.; Silva, J.H.; Trimble, L.A.; Carriere, M.; Denis, D.; Greig, G.; Kargman, S.; Lamontagne, S.; Mathieu, M.; Sawyer, N.; Slipetz, D.; Abraham, W.M.; Jones, T.; McAuliffe, M.; Piechuta, H.; Nicoll-Griffith, D.A.; Wang, Z.; Zamboni, R.; Young, R.N.; Metters, K.M. *J. Med. Chem.* **2007**, *50*, 794. b) Lévesque, J.F. *Bioorg. Med. Chem. Lett.* **2007**, *17*, 3038. c) Nicoll-Griffith, D.A.; Seto, C.; Aubin, Y.; Levesque, J.F.; Chauret, N.; Day, S.; Silva, J.M.; Trimble, L.A.; Truchon, J.; Berthelette, C.; Lachance, N.; Wang, Z.; Sturino, C.; Braun, M.; Zamboni, R.; Young, R.N. *Bioorg. Med. Chem. Lett.* **2007**, *17*, 301.

⁵⁸ Roll, D.M.; Barbieri, L.R.; Bigelis, R.; McDonald, L.A.; Arias, D.A.; Chang, L.; Singh, M.P.; Luckman, S.W.; Berrodin, T.J.; Yudt, M.R. *J. Nat. Prod.* **2009**, *72*, 1944.

⁵⁹ Talaz, O.T.; Ilhami, G.; Goksu, S.; Saracoglu, N. *Bioorg. Med. Chem.* **2009**, *17*, 6583.

⁶⁰ Qiao, M.F.; Ji, N.Y.; Liu, X.H.; Li, K.; Zhu, Q.M.; Xue, Q.Z. *Bioorg. Med. Chem. Lett.* **2010**, *20*, 5677.



*Figura 7*: Exemplos de moléculas com núcleo ciclopenta[*b*]indólico em sua estrutura.

Há na literatura alguns métodos disponíveis para a síntese desses triciclos. As metodologias consistem basicamente em reações de substituição eletrofílica em indóis, síntese de Fischer e suas variações.

Em 1993, Heathcock e colaboradores utilizaram o aminoácido triptofano para a síntese do núcleo ciclopenta[*b*]indólico através de uma reação de substituição eletrofílica (*Esquema 24*).⁶¹



*Reagentes e condições:* a) i. CICO₂Et, MeOH (aq); ii. LiAlH₄, THF,  $\Delta$  b) H₂C=CHCO₂t-Bu, MeOH,  $\Delta$  c) MsCl, Et₃N, CH₂Cl₂, t.a.

Esquema 24: Síntese de núcleos ciclopenta[b]indólicos via S_EAr

Moody e colaboradores reportaram uma síntese baseada na cicloadição formal [3+2] entre um cátion estabilizado derivado do indol-2- ou 3-metanol e alcenos na

⁶¹ Heathcock, C.L.; Ganesan, A. *Tetrahedron Lett.* **1993**, *34*, 439.

presença de um ácido de Lewis. A metodologia se mostrou limitada para alcenos altamente substituídos (*Esquema 25*).⁶²



Esquema 25: Síntese de núcleos ciclopenta[b]indólicos via cicloadição [3+2]

Posteriormente Katritzky e colaboradores complementaram a metodologia de Moody funcionalizando o indol-3-substituído através de litiação seguida de reação com eletrófilo permitindo a funcionalização da posição 1 dos ciclopenta[*b*]indóis (*Esquema 26*).⁶³



Bt= benzotriazol

Esquema 26: Síntese de ciclopenta[b]indólicos funcionalizados via cicloadição [3+2]

Esses compostos também podem ser obtidos pela síntese de Fischer, via uma ciclização entre fenilidrazina e a ciclopentanona, bem como através de uma variação organometálica que emprega sais de arenodiazônio e reagentes alquilzinco funcionalizados (*Esquema 27*).⁶⁴ Todavia a síntese de indol de Fischer apresenta como desvantagens condições reacionais drásticas bem como a mistura de regioisômeros no caso de cetonas não simétricas.

⁶² Harrison, C.; Leineweber, R.; Moody, C.J.; Williams, J. M. J. *J. Chem Soc. Perkin Trans.* **1995**, 1127.

⁶³ Katritzky, A.R.; Zhang, G.; Xie, L.; Ghiviriga, I. J. Org. Chem. **1996**, *61*, 7558.

⁶⁴ Haag, B.A.; Zhang, Z.G.; Li, J.S.; Knochel, P. Angew. Chem. Int. Ed. **2010**, 49, 9513.



Esquema 27: Síntese de núcleos ciclopenta[b]indólicos via síntese de indol de Fischer

Myata e colaboradores reportaram a obtenção de indolinas e indóis via rearranjo sigmatrópico [3,3] e ciclização de N-trifluoracetilenehidrazinas (*Esquema 28*).⁶⁵





Outros protocolos utilizando reações multicomponentes e ciclização de Nazarov vêm sendo utilizados como forma de acesso a esse tipo de padrão estrutural. A condensação tipo Yonemitsu empregando heterociclos aromáticos, aldeídos e derivados metilenos ativos na presença de Ti(IV)/Et₃N dão origem aos derivados tricíclicos em maiores tempos reacionais (*Esquema 29*).⁶⁶

⁶⁵ a) Myata, O.; Takeda, N.; Kimura, Y.; Takemoto, Y; Tohnai, Myata, M.; Naito, T. *Tetrahedron*, **2006**, *62*, 3629; b) Myata, O.; Naito, T. *Chem. Comm.* **1999**, 2429.

⁶⁶ Gérard, S.; Renzetti, A.; Lefevre, B.; Fontana, A.; Maria, P.; Sapi, J. *Tetrahedron*, **2010**, *66*, 3065.



Esquema 29: Ciclopenta[b]indólicos obtidos via condensação tipo Yonemitsu

A reação tri-componente entre derivados sulfonil indóis, α-halocarbonil e zinco metálico permite a geração do reagente de Reformatsky, que por sua vez age como nucleófilo. Os compostos funcionalizados gerados são substratos para a condensação de Dieckmann que podem ser obtidos na presença de NaH sob refluxo (*Esquema 30*).⁶⁷



Esquema 30: Síntese de núcleos ciclopenta[b]indólicos reagente de Reformatsky

A metodologia desenvolvida por Frontier e colaboradores possibilitou que heteroaromáticos pouco reativos pudessem ser empregados como substratos na ciclização de Nazarov, dando origem ao produto anelado. Os substratos foram tratados a fim de fornecer  $\beta$ -cetoésteres e posteriormente via uma condensação de Knovenagel  $\alpha$ -metileno- $\beta$ -cetoésteres. Estes, por sua vez, sofreram ciclização na presença de quantidades catalíticas de um ácido de Lewis (*Esquema 31*).⁶⁸

⁶⁷ Palmieri, A.; Petrini, M. *J.Org Chem*, **2007**, *72*, 1863.

⁶⁸ Malona, J.A.; Colbourne, J.M.; Frontier, A.J. Org. Lett. **2006**, *8*, 5661.



Esquema 31: Síntese de núcleos ciclopenta[b]indólicos via ciclização de Nazarov

#### 3.2. PROPOSTA

Durante o desenvolvimento do projeto de pós-doutorado do pesquisador colaborador Manoel Trindade Rodrigues Júnior objetivando a síntese da Monatina (**58**), substância natural com potencial dulcífico⁶⁹, este propôs que a mesma poderia ser obtida através de um éster  $\alpha$ , $\beta$ -insaturado indol substituído (**59**) (*Esquema 32*).



Esquema 32: Análise retrossintética da monatina

Avaliando a possibilidade da proposta, um estudo modelo foi realizado utilizando como precursor o aduto de MBH **11**, no entanto a metodologia empregada não possibilitou a formação do composto **60** de interesse e sim de vários subprodutos (*Esquema 33*). Dois destes foram isolados e caracterizados por RMN de ¹H e ¹³C e

⁶⁹ Vleggaar, R.; Ackerman, L. G.; Steyn, P. S. *J. Chem. Soc. Perkin Trans I*, **1992**, *22*, 3095.

concluiu-se que um deles correspondia a um produto de ciclização (61) e o outro correspondia ao produto de uma possível reação de eliminação (62).



Esquema 33: Estudo modelo para a viabilização da síntese da monatina

O produto ciclizado contém na sua estrutura o núcleo ciclopenta[*b*]indólico, padrão estrutural bastante importante devido ao fato de estar presente no esqueleto de diversas moléculas com atividade biológica, logo despertou-se interesse em explorar a síntese de novos derivados.

No nosso entender derivados ciclopenta[*b*]indólicos poderiam ser obtidos de acordo com a análise retrossintética representada abaixo (*Esquema 34*).



Esquema 34: Análise retrossintética para obtenção dos derivados ciclopenta[b]indólicos

O sistema ciclopenta[*b*]indólico poderia ser preparado a partir de uma reação de alquilação tipo Friedel-Crafts de um carbocátion obtido pelo tratamento em meio ácido de um β-hidroxi-éster adequadamente substituído. Este poderia ser obtido diretamente de um aduto de Morita-Baylis-Hillman via uma reação de adição de Michael com um indol.

#### 3.3. OBJETIVO

O núcleos ciclopenta[*b*]indólicos estão presentes em uma grande variedade de moléculas biologicamente ativas. Essa premissa justifica o desenvolvimento de rotas alternativas para a preparação desse heterociclo. Baseado nas assertivas acima, este projeto tem como objetivo sintetizar derivados ciclopenta[*b*]indólicos a partir de adutos de MBH.

## 3.4. RESULTADOS E DISCUSSÃO⁷⁰

#### 3.4.1. Oxidação e adição de Michael ao aduto de MBH

A rota proposta iniciou-se pela síntese dos adutos de MBH, previamente discutidos nas páginas iniciais dessa dissertação. O esquema abaixo exibe os adutos que foram utilizados nessa parte do trabalho (*Esquema 35*).



*Esquema 35*: Adutos de MBH precursores dos derivados ciclopenta[*b*]indólicos

⁷⁰ O trabalho foi realizado em colaboração como aluno de pós-doutorado Manoel Trindade. Este teve participação na síntese de seis dos quatorze derivados ciclopenta[*b*]indólicos obtidos, todavia todos os resultados obtidos foram incorporados nessa dissertação.

A metodologia desenvolvida por Yadav⁷¹ na qual de maneira *one-pot*, os adutos de MBH são oxidados e em seguida participam como aceptores em uma adição de Michael com indol, nos pareceu ser uma alternativa interessante para dar prosseguimento à proposta de trabalho.

A adição de Michael é uma das mais eficientes e populares reações de formação de ligação C-C em síntese orgânica (Esquema 36). Também chamada de adição 1,4 ou adição conjugada, esta reação consiste na adição de nucleófilos estabilizados a sistemas  $\pi$  ativados como compostos carbonílicos  $\alpha,\beta$ -insaturados. O primeiro relato da adição de carbono a um alceno eletrodeficiente foi relatado por Komnenos que observou a adição do ânion dietilmalonato ao malonato de etilideno.^{72,73} A reacão só veio а se popularizar próxima aos anos 1900. após estudos realizados por Michael, que observou a possibilidade de usar não apenas olefinas ativadas, mas também triplas ligações.⁷⁴



Esquema 36: Reação de Michael

O indol é um heterociclo comum no esqueleto de moléculas como o aminoácido triptofano, do neurotransmissor serotonina, além diferentes produtos naturais como alcalóides, metabólitos de fungos e produtos naturais marinhos. Em virtude desses fatos, o indol tem sido muito utilizado em síntese como bloco na construção de estruturas biologicamente ativas. A densidade eletrônica provida pelos elétrons  $\pi$ , faz com que esses sistemas sofram mais caracteristicamente reações de substituição eletrofílica preferencialmente no carbono C3, o qual constitui o centro mais nucleofílico

⁷¹ Yadav, J. S.; Reddy, B. V. S.; Singh, A. P.; Basak, A. K. *Tetrahedron Lett.* **2007**, *48*, 4169.

⁷² Komnenos, T. Justus Liebigs Ann. Chem. **1883**, 218, 145, conforme ref. 72

⁷³ Kurti, L; Czakó, B. *Strategic Applications of Named Reactions in Organic Synthesis*, 1st ed, Elsevier, **2005**.

⁷⁴ a) A. Michael, *Am. Chem. J.* **1887**, *9*, 112, conforme ref 72. b) Tokoroyama, T. *Eur. J. Org. Chem.* **2010**, *10*, 2009.

da molécula (*Esquema 37*)⁷⁵. Adições de Michael empregando indol como nucleófilo já vêm sendo bastante exploradas.⁷⁶



Esquema 37: Deslocalização eletrônica no indol

Os adutos de MBH foram dissolvidos em acetonitrila, colocados na presença de 1,2 equivalentes de IBX, 1,0 equivalente de indol e mantidos sob refluxo. Ao término os  $\beta$ -cetoésteres indol substituídos **63-74** foram obtidos em bons rendimentos para todos os casos (*Tabela 8*).

Tabela 8: Síntese dos β-cetoésteres indol substituídos 63-74



Entrada	Produto	R ₁	R ₂	R ₃	Rendimento ^a (%)
1	63	3-Cl-Ph	Me	Н	87
2	64	4-OMe-Ph	Me	Н	88
3	65	4-OMe-Ph	Me	OMe	79
4	66	Piperonal	Me	Н	61
5	67	Br-Piperonal	Me	Н	71
6	68	Ph	Me	Н	75
7	69	4-NO ₂ -Ph	Me	Н	90
8	70	Tiazolil	Me	Н	74

Reagentes e condições: 1,2 eq. de IBX, CH₃CN, refluxo

⁷⁵ Sundberg, R.J. *The Chemistry of Indoles*,1st ed, Academic Press, **1970**.

⁷⁶ a) Gupta, P; Paul, S. *J. Mol. Cat A: Chem* 2012, *352*, 75. b) Ye, M.C.; Zhou, B.L.J.; Sun, X.L.; Tang, Y. *J. Org. Chem.* 2005, *70*, 6108. c) Shiri, M.; Zolfigol, M.L.; Nasrabadi, R.A. *Tetrahedron Lett.* 2010, *51*, 264. *d*) Schätz, A.; Rasappan, R.; Hager, M.; Gissibl, A.; Reiser, O. *Chem. Eur. J.* 2008, *14*, 7259.
#### Continuação da Tabela 8

Entrada	Produto	R ₁	R ₂	R ₃	Rendimento ^a (%)
9	71	Ph	Me	OMe	71
10	72	4-OMe-Ph	Me	OBn	72
11	73	3,4,5-OMe-Ph	Et	Br	>95 ^b
12	74	n-hexil	Me	OMe	62

a) Rendimentos isolados após purificação em coluna cromatográfica. b) Rendimentos isolados sem purificação prévia

A formação de **63-74** foi confirmada através da análise dos espectros de infravermelho, ressonância magnética nuclear de ¹H e ¹³C e espectrometria de massas.

O IV mostra o desaparecimento da banda larga em 3230-3511 cm⁻¹ atribuída ao estiramento O-H da hidroxila do aduto de MBH e o aparecimento de uma banda mais fina em 3404-3445 cm⁻¹ correspondente ao estiramento N-H do indol. Há também o aparecimento de uma banda entre 1670-1711 cm⁻¹ devido à nova carbonila cetônica do composto formado.

O espectro de RMN de ¹H evidencia um aumento de sinais na região entre 6,76-8,21 ppm, devido à inclusão do sistema aromático indólico na estrutura. Um sinal sendo exibido na maioria dos casos como um tripleto na região de 4,67-5,13 ppm correspondendo ao hidrogênio  $\alpha$ -carbonilas também está presente no espectro. Os hidrogênios metilênicos aparecem como dupleto de dupletos ou somente dupletos em 3,44-3,57 ppm. Observa-se também o desaparecimento dos hidrogênios olefínicos (dois simpletos em 5,72-6,41 ppm) e do hidrogênio carbinólico do aduto de MBH (simpleto entre 4,07-5,78 ppm).

O espectro de RMN de ¹³C mostra o aparecimento de um sinal entre 188,9-196,9 ppm referente à carbonila de cetona do composto, há uma aumento de picos na região de 110-140 ppm referente aos carbonos do sistema aromático incorporado na estrutura. Há desaparecimento do sinal entre 71,2-77,5 ppm referente ao carbono carbinólico e aparecimento de um sinal em 54,2-58,1 ppm atribuído ao carbono  $\alpha$ -carbonilas. Outro sinal observado é o que aparece entre 24,6-25,1 ppm correspondente ao carbono metilênico.

48

O mecanismo proposto para essa etapa pode ser observado a seguir (*Esquema 38*). Inicialmente o par de elétrons do grupamento hidroxila presente no aduto de MBH faz um ataque nucleofílico no IBX, concomitante à liberação de uma molécula de água. O próton metínico é abstraído pelo oxigênio presente no agente oxidante possibilitando a eliminação do produto 1,3-dicarbonilado e de uma molécula de IBA. Em seguida o  $\alpha$ -metileno- $\beta$ -cetoéster (**XX**) age como aceptor de Michael sofrendo um ataque 1,4 do indol.



*Esquema 38*: Mecanismo proposto para a reação de oxidação seguida de adição do indol

#### 3.4.2. Redução dos compostos 63-74 e avaliação da sequência sintética

Em posse dos compostos **63-74** devidamente caracterizados estes foram expostos a condições para redução da carbonila cetônica. O agente redutor de escolha foi o NaBH₄, que reduz com boa seletividade carbonilas de aldeídos e cetonas aos seus respectivos alcoóis. O mecanismo dessa reação inicia-se pelo ataque do par de elétrons da ligação B-H do ânion BH₄⁻ ao carbono eletrofílico da carbonila dando origem ao alcóxido (**XXII**), que na presença de um solvente prótico é protonado resultando no álcool de interesse (*Esquema 39*).



Reagentes e condições: 3 eq. NaBH₄, MeOH, 0ºC.

#### Esquema 39: Síntese dos β-hidróxi-ésteres indol substituídos

Empregou-se 3 equivalentes de NaBH₄ e metanol como solvente para se obter uma mistura diastereisomérica dos β-hidroxiésteres indol substituídos (**XXII**).

Como não havia interesse em separar os diastereisômeros e a reação não mostrou formação significativa de subprodutos quando acompanhada por cromatografia de camada delgada, os produtos obtidos foram utilizados sem purificação prévia, como substratos para a etapa seguinte e a caracterização feita apenas para o produto ciclizado.

Avaliando a sequência sintética inicialmente proposta, acreditou-se que os  $\beta$ hidróxi-ésteres indol substituídos poderiam ser obtidos através da adição conjugada direta do indol ao aduto de MBH, eliminando assim uma etapa do processo (*Esquema* 40).

50



*Esquema 40*: Nova estratégia para a síntese de dos β-hidróxi-ésteres indol substituídos

Alguns relatos encontrados na literatura⁷⁷ referentes à adição conjugada de indol em olefinas eletrodeficientes na presença de ácidos de Lewis tornaram-se um estímulo para que esses testes fossem realizados. O aduto de MBH **2** foi avaliado frente a quatro diferentes ácidos de Lewis (*Tabela 9*).

MeO	OH O OMe +	$\underset{H}{\overset{N}{\longrightarrow}} \longrightarrow _{Me}$	он он о о Х 75	OMe N H MeO	O O Me 76
Entrada ^a	Ác de Lewis	Eq do ácido	Solvente ^b	Tempo (h)	75:76 (%)
1	BF ₃ .Et ₂ O	20 mol%	DCM	1	0:0
2	$Cu(OSO_2CF_3)_2$	20 mol%	DCM	2	0:15
3	$ZrCl_4$	20 mol%	DCM	2	0:26
4	InBr ₃	15 mol%	DCE	5	0:8

Tabela 9: Adição do indol catalisada por Ácido de Lewis

a) As reações foram realizadas a t.a., exceto para a entrada 4 que foi a 80ºC; b) DCM: diclorometano, DME: dicloroetano; c) Rendimentos obtidos após purificação em placa preparativa.

⁷⁷ a) Liu, P.; Chen, Rei.; Ren, K; Wang, L. *Chin. J. Chem*, **2010**, *28*, 2399. b) Yadav, J.S.; Abraham, S.; Reddy, B.V.S.; Sabitha, G. *Synthesis*, **2001**, *14*, 2165.

Os resultados exibidos na tabela mostram a falta de sucesso da metodologia testada frente a diferentes ácidos de Lewis, no entanto foi observada a formação de um produto de substituição (**76**), que poderia ser resultante do ataque do indol no carbono benzílico.⁷⁸ Dessa forma a estratégia inicialmente proposta foi mantida e os compostos **63-74** foram reduzidos na condição já mostrada anteriormente.

#### 3.4.3. Reação de ciclização: Preparação dos derivados ciclopenta[b]indólicos

Os β-hidróxi-ésteres indol substituído, obtidos via redução com NaBH₄, em meio ácido, possibilitariam a ciclização e consequentemente, a obtenção dos núcleos ciclopenta[*b*]indólicos. Essa observação foi feita inicialmente durante a síntese da monatina, como mostrado previamente no item **3.2**. Naquela ocasião o derivado **77** foi dissolvido em tolueno e colocado na presença do ácido *p*-toluenossulfônico (APTS), sob refluxo. A formação **61** e **62** foi observada e estes foram isolados e caracterizados por RMN (*Esquema 41*).



Reagentes e condições: APTS, tolueno, refluxo, 5h

*Esquema 41*: Produtos obtidos após exposição de **77** em meio ácido

Através do valor da constante de acoplamento dos hidrogênios metínicos ( ${}^{3}J=$  16,0Hz) pode-se concluir que **62** apresenta a dupla ligação com estereoquímica *E*.

Como o rendimento encontrado para o produto ciclizado foi baixo, fez-se necessário tentar otimizar essa etapa testando outras condições reacionais, variando a fonte prótica (ácidos fortes, fracos, resina ácida, sal ácido e ácido de Lewis) e o solvente. A Tabela 10 resume todas as condições investigadas.

⁷⁸ Wu, C.; Liu, L.; Wang, D.; Chen, Y.J. *Tetrahedron Lett.* **2009**, *50*, 3786.

Entrada	Reagente ^a	Solvente	Temp. (ºC)	Tempo (h)	61:62 (%) ^f
1	APTS [▷]	Tolueno	25	48	RMP℃
2	APTS	Tolueno	refluxo	5	10:20
3	APTS	Tolueno	50	12	6:11
4	APTS	CH₃CN	refluxo	7	7:8
5	APTS	Xileno	refluxo	0,5	0:5
6	APTS	DMF	80	12	RMP℃
7	APTS	$CH_2CI_2$	refluxo	6	0:6
8	APTS	Benzeno	refluxo	5	13:10
9	$H_2SO_4$	Tolueno	t.a.	0,5	0:15
10	$H_2SO_4$	CCl ₄	t.a.	0,5	0:17
11	ác. acético	Tolueno	refluxo	12	RMP℃
12	amberlist	Tolueno	refluxo	3	0:14
13	ác. tríflico ^d	Tolueno	t.a.	4	18:13
14	KHSO ₄	Tolueno	refluxo	60	3:10
15	InCl ₃ ^e	CH₃CN	t.a	12	0:0
16	Sc(SO ₃ CF ₃ ) ₃ ^e	CH₃CN	t.a	10	0:0

T I I I A A	<u><u> </u></u>	1 11	~		· · · ~
I ahola 111	()timizacac	dae condia	nac nara a	a otana da	ACCEZITOR (
	Olimização	uas conuiç	2000 para d	a clapa uc	

a) Reação feita com 2 equivalentes de ácido; b) PTSA: ácido p-touenosulfônico; c) RMP: recuperação do material de partida; d) Reação feita com 20 mol% de ácido tríflico; e) Reação feita com 10 mol%; f) Rendimento para duas etapas.

Durante o estudo de otimização foi verificado que a melhor condição encontrada empregava quantidades catalíticas de ácido tríflico (CF₃SO₃H) em tolueno, à temperatura ambiente (*Tabela 10* – entrada 13). Essa condição reacional foi aplicada aos outros  $\beta$ -hidróxi-ésteres indol substituídos que forneceram os derivados ciclopenta[*b*]indólicos em rendimentos variáveis (*Tabela 11*).

Tabela 11: Síntese de derivados ciclopenta[b]indólicos



Entrada **Produto R**₁ Rendimento^c (%)  $\mathbf{R}_2$ R₃ 4-OMe-Ph^a 1 78 Me Н 62 4-OMe-Ph^a 2 79 Me 4-OMe 67 3 80 Piperonal^a Me Н 71 Br-piperonal^a 4 81 Me Н 70 Ph^b 5 82 Н 12 Me 4-NO₂-Ph^b 6 83 Me Н 10 Tiazolil^b 7 84 Me Н 5 Ph^b 8 85 Me OMe 8 9 4-OMe-Ph^a 52 86 Me OBn 3,4,5-OMe-Pha Et 70 10 87 Br n-hexil^b RMP^d 11 88 Me Н

Reagentes e condições: ácido tríflico, tolueno, t.a.

a) Reação feita com 20 mol% de ácido tríflico. b) Reação feita com 3 eq. de ácido tríflico.
c) Rendimentos obtidos para duas etapas (redução e ciclização) após purificação em coluna cromatográfica de sílica gel. d) RMP: recuperação do material de partida

A formação dos compostos **61, 78-87** foi confirmada por análises de ressonância magnética nuclear de ¹H e ¹³C, espectroscopia de infravermelho e espectrometria de massas, indicando a presença de um único diastereoisômero, sendo a estereoquímica relativa desse produto discutida posteriormente no item 3.4.5.

Ao comparar os espectros de IV dos compostos **63-74** com **61**, **78-87**, observase o desaparecimento da banda entre 1670-1711 cm⁻¹ referente à carbonila cetônica.

Através do espectro de RMN de ¹H observou-se desaparecimento do tripleto em 4,67-5,13 ppm e dos sinais (duplos dupletos ou somente dupletos, dependendo do derivado) em 3,44-3,57 ppm correspondentes ao H α-carbonilas e metilênicos

respectivamente. Houve aparecimento de um dupleto em 4,75-5,23 ppm correspondendo ao hidrogênio benzílico, um multipleto (algumas vezes aparecendo como dupletos de tripletos sobrepostos) na região entre 3,56 a 3,76 ppm referente ao hidrogênio  $\alpha$ -carbonila e dois sistemas aparecendo ora como multipletes ora como dupletes de dupletes ora como duplete de dupletes de dupletes em 3,02-3,19 ppm e 3,28-3,42 ppm referentes aos hidrogênios metilênicos.

O espectro de RMN de ¹³C mostra o desaparecimento do pico em 188,9-196,9 ppm referente ao carbono da carbonila da cetona e aparecimento de um sinal em 47,7-48,1 ppm referente ao carbono benzílico do anel de cinco membros.

Avaliando os dados da tabela 11 observa-se que compostos com grupos retiradores de elétrons em R₁ (Entradas 6 e 7) levam a baixos rendimentos, nesses casos quantidades estequiométricas de ácido foram empregadas. Ao passo que grupos doadores em R₁ dão origem aos compostos ciclizados com os maiores rendimentos (Entradas 1-4, 9 e 10). Especificamente para R₁= tiazolil, houve uma grande dificuldade em isolar o produto devido ao baixo rendimento, o qual pode ser atribuído a uma provável decomposição do anel tiazólico pela condição fortemente ácida utilizada. Para o substrato com R₁= alquila, não foi observada a formação do produto, sendo o material de partida recuperado parcialmente. Essas observações experimentais levantaram suspeitas sobre a formação de um carbocátion como intermediário da reação.

## 3.4.4. Preparação de outros derivados ciclopenta[b]indólicos: reações nas cadeias laterais

Reações nas cadeias laterais dos derivados ciclopenta[*b*]indólicos foram realizadas para obtenção de novos análogos (*Esquema 42*). As derivatizações foram conseqüências de desproteção por hidrogenólise do grupo benzila (Bn), hidrólise do grupo éster com KOH e redução do éster com hidreto de diisobutilalumínio (DIBAL-H).

55



Esquema 42: Derivatização de análogos de ciclopenta[b]indóis

A necessidade de executar várias reações para chegar ao objetivo final faz com que seja preciso proteger algumas funções orgânicas presentes nos substratos contornando assim possíveis eventos indesejados. Para contornar esse problema, os sintéticos corriqueiramente lançam mão de grupos de proteção, para o nosso caso em questão partiu-se já de um indol protegido. O grupamento benzil é um dos mais utilizados devido a sua estabilidade e por ser facilmente retirado da estrutura via reação de hidrogenólise, a qual consiste na inclusão de hidrogênio entre ligações simples acarretando na clivagem de grupos funcionais.^{79,80} A clivagem da ligação C-O é possível utilizando hidrogênio molecular e metais nobres como catalisadores. O paládio é o metal mais comumente utilizado devido aos seus bons rendimentos.⁸¹

⁷⁹ Sajiki, H.; Kuno, H.; Hirot, K. *Tetrahedron Lett.*, **1998**, *39*, 7127.

⁸⁰ Johnstone, R.A.W.; Wilby, A.H.; *Chem. Rev.*, **1985**, *85*, 129.

⁸¹ Frija, L.M.T.; M. Cristiano, M.L.S; Guimarães, E.M.O.; Martins, N.C.; Loureiro, R.M.S.; Bickley, J.F. *J. Mol. Catal. A: Chem.*, **2005**, 241. b) Araújo, N.C.P.; Brigas, A.F.; Cristiano, M.L.S; Frija, L.M.T.;Guimarães, E.M.O.; Loureiro, R.M.S. *J. Mol. Catal. A: Chem.*, **2004**, 113. c) Rao, V.S.; Pernin,

O composto **86** foi dissolvido em metanol, Pd/C foi adicionado em quantidades catalíticas e a reação foi mantida à atmosfera de H₂ à 1 atm. A evolução da reação foi acompanhada por cromatografia de camada delgada e após o término foi filtrada em coluna de sílica gel fornecendo o composto **89** em 94% de rendimento. De maneira geral, a adsorção da fonte de hidrogênio (H₂) bem como do composto a ser clivado na esfera de coordenação do paládio é que possibilita a transferência de hidrogênio e consegüentemente clivagem da ligação C-O. ^{80,82}

O espectro de IV do composto **89** mostra o aparecimento de uma banda larga em 3465 cm⁻¹ referente ao grupamento hidroxila livre. O espectro de RMN de ¹H mostra o desaparecimento do simpleto em 5,13 ppm referente aos hidrogênios metilênicos do grupamento benzil (Bn) e uma simplificação dos sinais na região de 6,5-8,0 ppm devido a perda dos cinco hidrogênios do anel benzênico. O espectro de ¹³C evidencia o desaparecimento de um sinal abaixo de 90,0 ppm e uma redução na quantidade de picos na região de 130,0-190,0 ppm referentes ao carbono metilênico e aos carbonos do anel aromático. A precisão em relação aos deslocamentos dos picos não foi dada devido ao fato dos espectros de **86** e **89** serem realizados em solventes diferentes (CDCl₃ e acetona-D₆ respectivamente), logo os carbonos comuns em ambos compostos aparecem em deslocamentos distintos.

O grupamento éster do composto **79** permitiu a formação de mais dois derivados, o ácido carboxílico e o álcool correspondente. O ácido carboxílico foi obtido através da hidrólise do éster em meio básico (KOH) (*Esquema 43*).



Esquema 43: Hidrólise de éster em meio básico

A.S.; *Can. J . Chem.* **1983**, *61*, 652. d) Felpin, F.X.; Fouquet, E.; *Synthesis*, **2011**, 2893. e) Felpin, F.X.; Fouquet, E.; *Chem. Eur. J.* **2010**, *16*, 12440.

⁸² Musolino, M.G.; Scarpino, L.A.; Mauriello, F.; Pietropaolo, R. *ChemSusChem.* **2011**, *4*, 1143.

O espectro de IV do composto **90** mostra o aparecimento de uma banda larga em 3353 cm⁻¹ correspondente ao grupamento hidroxila e o deslocamento da banda referente à carbonila de 1731 cm⁻¹ para 1704 cm⁻¹ já que carbonilas de ácido carboxílico aparecem em freqüências menores comparadas às de ésteres. O espectro de RMN de ¹H exibe o desaparecimento do simpleto em 3,74 ppm correspondente aos hidrogênios do grupamento metoxila. O espectro de ¹³C evidencia o desaparecimento do pico em 51,9 ppm referente ao carbono da metoxila e o deslocamento do pico em 174,9 ppm para 180,2 ppm referente à mudança de função da carbonila.

O álcool **91** foi obtido por meio de redução utilizando DIBAL-H. Este redutor é utilizado em sistemas carbonilados  $\alpha,\beta$ -insaturados e pode participar também de reduções parciais de carbonila de ésteres, levando diretamente ao aldeído correspondente. O mecanismo para a redução com DIBAL-H inicia-se pela complexação do átomo de alumínio que age como ácido de Lewis com o par de elétrons do oxigênio da carbonila. Em seguida, o par de elétrons da ligação  $\sigma$ Al-H faz um ataque nucleofílico ao carbono carbonílico dando origem a um intermediário tetraédrico (**XXIII**). Esse passo é favorecido pela complexação do metal com o oxigênio, pois esta possibilita a aproximação do reagente bem como o aumento da eletrofilicidade da carbonila em virtude do abaixamento da energia de LUMO da ligação  $\pi_{C-O}$ . O aldeído gerado, oriundo da decomposição do intermediário tetraédrico, reage com uma segunda molécula de DIBAL dando origem ao álcool de interesse (*Esquema 44*).⁸³

⁸³ a) Winterfeldt, E. *Synthesis* **1975**, 617. b) Bruckner, R. *Advanced Organic Chemistry: Reactios Mechanisms*, 1st ed, Elsevier, **2002**.



Esquema 44: Mecanismo de redução de ésteres com DIBAL-H

O espectro de IV do composto **91** exibe o desaparecimento de uma banda em 1731 cm⁻¹ referente à carbonila e o aparecimento de uma banda larga em 3404 cm⁻¹ correspondendo ao estiramento do novo grupamento hidroxila. O espectro de RMN de ¹H evidencia o aparecimento de um simpleto em 3,85 ppm referente aos dois hidrogênios metilênicos e desaparecimento do simpleto em 3,74 ppm correspondente aos três hidrogênios do grupamento metoxila. No espectro de ¹³C observa-se o desaparecimento dos sinais em 51,9 ppm e 174,9 ppm referentes aos carbonos da metoxila e da carbonila respectivamente e aparecimento de um pico em 65,9 ppm sendo este do carbono metilênico.

## 3.4.5. Determinação da estereoquímica relativa dos derivados ciclopenta[*b*]indólicos

Em relação à estereoquímica dos compostos sintetizados (**78-87, 89, 90** e **91**), sistemas semelhantes ao estudado foram encontrados na literatura,⁸⁴ no entanto os valores de constante de acoplamento para os hidrogênios *syn* e *anti* em anéis de cinco membros não apresentaram uma tendência que pudesse inferir por análise comparativa, de forma confiável, a estereoquímica relativa da estrutura (*Figura 8*).



*Figura 8*: Valores de constantes de acoplamento dos hidrogênios do anel de cinco membros em diferentes sistemas

Experimentos de RMN bidimensionais foi a alternativa empregada para a obtenção de dados que possibilitassem inferir a estereoquímica relativa do diastereoisômero formado. O composto **86** foi submetido a experimento de NOESY. A Figura 9 exibe a amplificação do espectro correspondente à região onde aparecem os hidrogênios do anel de cinco membros.

⁸⁴ a) Kokke,W.C.M.C; Varkevisser, F.A. *J. Org. Chem.* **1974**, *39*, 1535. b) Hanselaer, R.; Samsom, M.; Vandewalle, M. *Tetrahedron*, **1978**, *34*, 2393. c) Fischer, J.; Savage, P.; Coster, M.J. *Org. Lett.* **2011**, *13*, 3376. d) Cheng, K.F.; Cheung, M.K.; Kong, Y.C. *Aust. J. Chem.* **1997**, *50*, 349. e) Fujita, T.; Kuwahara. S.; Harada, N. *Eur. J. Org. Chem.* **2005**, 4533. f) Fernandez, R.; Ros, A.; Magriz, A.; Dietrich, H.; Lassaletta, J.M. *Tetrahedron*, **2007**, 6755.



Figura 9: Espectro de NOESY ampliado do composto 86

Através do espectro de NOESY foi possível extrair informações sobre o acoplamento espacial, estas se encontram resumidas na Tabela 12.

Hd VS CO ₂ Me Hd VS Sw Hb Ha N H 86 OMe							
	На	Hb	Нс	Hd			
На	-	А	NA	А			
Hb	А	-	А	А			
Нс	NA	А	-	А			
Hd	А	А	А	-			

Tabela 12: Acoplamento espacial dos hidrogênios do anel de cinco membros

A: acopla

NA: não acopla

Ao analisar os dados compilados na tabela observa-se que Ha acopla com Hb, logo inferiu-se em um primeiro momento que ambos hidrogênios estariam para o mesmo lado portanto o composto apresentaria estereoquímica relativa *syn*. Observouse também um acoplamento entre Ha e Hd não esperado, porém possível já que anéis de cinco membros tanto na conformação envelope quanto na meia cadeira apresentam seus substituintes em posições pseudoxial e pseudoequatorial, possibilitando essa interação. Valores de incremento de nOe também foram determinados para todos os hidrogênios estudados a partir do NOESY (*Tabela 13*).

Tabela 13: Valores de incremento de nOe para os hidrogênios do anel de cinco membros



A tabela mostra que o hidrogênio benzílico (Ha) interage pouco com o hidrogênio metilênico Hd, todavia como eles encontram-se distantes espacialmente acredita-se que para que essa interação ocorra, eles devam estar para o mesmo lado. O hidrogênio  $\alpha$ -carbonila (Hb) tem maior valor de incremento de nOe com Hc (5,3%) comparado com Hd (1,6%), logo acredita-se que Hb esteja do mesmo lado que Hc e contrário a Hd. Baseado nessas inferências, foi proposto portanto que Ha e Hb estão em lados opostos e portanto a estereoquímica relativa do sistema seria *2,3-anti*.

A figura a seguir exibe o efeito nOe quando irradiou-se o hidrogênio benzílico ( $\delta$  4,75 ppm).



Figura 10: Efeito nOe do composto 86

Outro fato que corrobora com a proposta é que para sistemas semelhantes 1,2syn são encontrados na literatura valores de incremento de nOe de 9,1%.⁸⁵

⁸⁵ Han, B.; Xiao, Y-C.; Yao, Y.; Chen, Y-C. Angew. Chem. Int. Ed. 2010, 49, 10189.

Uma tentativa de equilibração para a obtenção do outro diastereisômero foi relizada empregando DBU (1,8-diazabiciclo(5.4.0)undec-7-eno), a fim de obter dados que permitissem comparação. Contudo, mesmo após longo tempo reacional a presença unicamente do diastereoisômero inicial foi detectada.

#### 3.4.6. Investigação do mecanismo da etapa de ciclização

A tendência nos resultados mostrados na tabela 11, ou seja, maiores rendimentos para sistemas que possuiam substituintes doadores de elétrons no anel aromático, resultou em especulações sobre um possível mecanismo via um intermediário carbocátion. Visando obter maiores evidências que permitissem esclarecer tal questão, decidiu-se realizar um estudo mecanístico monitorado por espectrometria de massas com ionização por *electrospray*. Esta parte do trabalho foi realizada em colaboração com o Prof. Dr. Marcos Nogueira Eberlin, do laboratório ThoMSon de espectrometria de massas do IQ-UNICAMP.

#### *3.4.6.1.* Aspectos gerais da espectrometria de massas

O conceito de espectrometria de massas basicamente consiste na idéia de que um composto é ionizado, através de um método de ionização, e os íons gerados são separados baseados na sua relação massa/carga.⁸⁶

Em sua forma mais simples o espectrômetro de massas têm cinco componentes. O primeiro componente é a *unidade de entrada da amostra* a qual leva a amostra até *fonte de íons* onde as moléculas presentes são transformadas em íons em fase gasosa. Os íons são, então, acelerados por um campo eletromagnético e a seguir o *analisador de massa* separa-os baseado na sua relação massa/carga (m/z). Posteriormente os mesmos são contados por um *detector* e o sinal é processado e registrado por meio de um *sistema de dados*.^{86,87}

Nas décadas de 1980 e 1990 graças ao desenvolvimento de técnicas de ionização para compostos de altos pesos moleculares e amostras biológicas, a

⁸⁶ Silverstein, R.M.; Webster, F.X.; Kiemle, D.J. *Spectrometric Identification of Organic Compound* 7th ed. John Wiley and Sons, **2005**.

⁸⁷ Pavia, D.L.; Lampman, G.M.; Kriz, G.S.; Vyvyan, J.R.; *Introdução à Espectroscopia,* 4th ed, Cengage Learning, **2010**.

espectrometria de massas sofreu uma grande revolução ampliando seu espectro de aplicações. A ionização por eletrospray (ESI) possibilitava que moléculas com alta massa molecular e espécies instáveis termicamente antes não possíveis de serem analisadas, pudessem ser estudadas a partir de então. ^{87,88}

Na ESI, uma solução contendo moléculas da amostra é borrifada através de um tubo capilar fino, que contém potencial de alta voltagem em sua superfície, para dentro de uma câmara aquecida. Pequenas gotículas carregadas são expulsas para dentro da câmara de ionização e através da evaporação do solvente das mesmas, estas tem sua densidade de carga muito aumentada até o ponto que se subdividem em gotículas menores (limite Rayleigh). Esse processo continua até que os íons da amostra, livres de solvente, são deixados na fase gasosa.

O desenvolvimento deste modo de ionização associado a um analisador de massas, despertou o interesse de vários grupos de pesquisas na utilização dessa ferramenta no estudo de mecanismos de reações.^{14, 89, 90,91}

O monitoramento por ESI-MS permite visualizar de uma forma rápida e eficiente reagentes, intermediários e/ou produtos em suas formas iônicas ou protonadas diretamente do meio reacional.

Visto a possibilidade da técnica em interceptar e caracterizar intermediários fundamentais de reações em fase gasosa bem como a experiência do grupo¹⁴, decidiuse estudar a etapa de ciclização visando buscar mais evidências estruturais que permitissem propor um mecanismo para a reação.

#### 3.4.6.2. Resultados

A investigação iniciou-se pela seleção do substrato de partida. O composto escolhido para a realização do experimento foi **75** devido à presença, em sua estrutura, de um grupo metoxila em posição *para* ao anel aromático. Esse grupo doador seria um

⁸⁸ a) Niessen, W. M. A.; Tinke, A. P.; *Journal of Chromatography A* **1995**, *703*, 37. b) Cech, N. B.; Enke, C. G. *Mass Spectrometry Reviews* **2001**, *20*, 362.

⁸⁹ Sabino, A. A.; Machado, A. H. L.; Correia, C. R. D.; Eberlin, M. N. *Angew. Chem. Int. Ed.* **2004**, *43*, 2514.

⁹⁰ Santos, L. S.; Rosso, G. B.; Pilli, R. A.; Eberlin, M. N. *J. Org. Chem.* **2007**, *72*, 5809.

⁹¹ De Souza, R. O. M. A.; Penha, E. T.; Milagre, H. M. S.; Garden, S. J.; Esteves, P. M.; Eberlin, M. N.; Antunes, O. A. C. *Chem. Eur. J.* **2009**, *15*, 9799.

fator de estabilização para um possível carbocátion formado, proporcionando a essa espécie intermediária um tempo de meia-vida superior, comparado aos derivados semelhantes com substituintes retiradores de elétrons. Em seguida, a reação foi montada de acordo com as condições já mostradas (*Tabela 10-* entrada 13) e acompanhada. Para isso, alíquotas do meio reacional foram tiradas, diluídas em acetonitrila e em seguida, injetadas diretamente na fonte ESI.

Uma vez que, tanto o composto ciclizado (**XXVIII**) quanto o carbocátion (**XXVII**) apresentam a mesma relação massa/carga (*m/z* 322)⁹² (*Esquema 45*) foi necessário tomar medidas que possibilitassem a distinção das espécies.



Esquema 45: Monitoramento por ESI-MS da ciclização do composto 75

A técnica de captura de íon consiste na seleção de um ânion através da sua relação *m/z* e este agora pode ser isolado temporariamente na câmara de colisão. Essa técnica permitiria manipular a espécie de interesse de modo que fosse possível distinguir entre o carbocátion e o produto ciclizado. A alternativa empregada foi a adição de um composto nucleofílico que pudesse interceptar o carbocátion.

Após 5-10 minutos de reação foi possível observar íon (**XXVI**) com relação *m/z* 130 e o íon (**XXVII**) de interesse com relação *m/z* 322 (*Figuras 11 a 13*).

⁹² Simulação feita utilizando o programa ChemDraw Ultra 10.0



Figura 11: ESI(+)-MS da reação de ciclização do composto 75



Figura 12: Espectro de massa: MS/MS do íon de m/z 130



Figura 13: Espectro de massa: MS/MS do íon de m/z 322

Em seguida a espécie catiônica m/z 322 foi selecionada na câmara de colisão e metanol foi injetado com a função de agir como nucleófilo capturando o carbocátion (**XXVII**) via uma reação S_N1. A Figura 14 mostra o resultado desse monitoramento.



Figura 14: Aprisionamento do carbocátion (XVII) e reação com metanol

O espectro exibiu um sinal m/z 354 (**XXIX**) atribuído ao produto oriundo da reação do carbocátion com metanol. A baixa intensidade do sinal foi atribuída à pequena concentração da espécie transiente.

Baseado nos dados obtidos, pode-se sugerir um mecanismo para a ciclização. A protonação em meio ácido da hidroxila do β-hidróxi-éster indol substituído seguido da eliminação de água daria origem ao carbocátion benzílico que por sua vez sofreria o ataque nucleofílico do C2 do indol via uma reação intramolecular, tipo Friedel-Crafts (*Esquema 46*).



*Esquema 46:* Proposta mecanística para a etapa de ciclização

Um possível modelo para a etapa de ciclização pode ser sugerido. O indol inicialmente se aproximaria do carbocátion pelo lado oposto ao grupo carbometóxi já que esta confere menor impedimento estérico. A sobreposição do orbital cheio do C2 do indol com o orbital p vazio do carbocátion resultaria na formação do anel de cinco membros bem como induziria a carboxila e o grupo fenil a ficarem em lados opostos explicando a estereoquímica *anti* do produto ciclizado (*Esquema 47*).



Esquema 47: Proposta de modelo para formação do anel de cinco membros

Outra observação em relação à etapa de ciclização foi a formação e isolamento do éster  $\alpha$ , $\beta$ -insaturado (**62**), justificada pela possível ocorrência de uma retroadição [3+2] na estrutura do produto ciclizado (*Esquema 48*). A observação do cátion indólico (*m*/z 130) nos espectros de massas forneceu suporte para essa proposta, além disso, há precedentes na literatura da formação de ciclopenta[*b*]indóis via adição formal [3+2].⁶²



Esquema 48: Proposta para formação do composto 62

#### 3.4.7. Avaliação da atividade citotóxica

Câncer é o nome dado a um conjunto de mais de 100 doenças que têm em comum o crescimento desordenado de células, que invadem tecidos e órgãos. Dividindo-se rapidamente, estas células tendem a ser muito agressivas e incontroláveis, determinando a formação de tumores malignos, que podem espalhar-se para outras regiões do corpo. As causas de câncer são variadas, podendo ser externas ou internas ao organismo ou mesmo estando inter-relacionadas. As causas externas referem-se ao meio ambiente e aos hábitos ou costumes próprios de uma sociedade. As causas internas são, na maioria das vezes, geneticamente pré-determinadas, e estão ligadas à capacidade do organismo de se defender das agressões externas.^{93,94}

Ele foi amplamente considerado como uma doença dos países desenvolvidos. Há aproximadamente quatro décadas, a situação vem mudando, e a maior parte do ônus global do câncer pode ser observada em países em desenvolvimento.^{93,94}

Assim, nas últimas décadas, o câncer ganhou uma dimensão maior, convertendo-se em um evidente problema de saúde pública mundial. A Organização Mundial da Saúde (OMS) estimou que, no ano 2030, podem-se esperar 27 milhões de casos incidentes de câncer, 17 milhões de mortes por câncer e 75 milhões de pessoas vivas, anualmente, com câncer. O maior efeito desse aumento vai incidir em países de baixa e média renda.^{93,95}

No Brasil, as estimativas para o ano de 2012 serão válidas também para o ano de 2013 e apontam a ocorrência de aproximadamente 518.510 casos novos. Os tipos mais incidentes serão os cânceres de pele não melanoma, próstata, pulmão, cólon e reto e estômago para o sexo masculino; e os cânceres de pele não melanoma, mama, colo do útero, cólon e reto e glândula tireóide para o sexo feminino.⁹³

O avanço da ciência e da tecnologia possibilitou a melhoria dos meios de diagnóstico e de tratamento que, aliada ao desenvolvimento sócio-econômico, contribuiu para um declínio das taxas de mortalidade por enfermidades controláveis. Os motivos que levam ao crescimento da incidência do câncer são o aumento da

⁹³ http://www.inca.gov.br/estimativa/2012/estimativa20122111.pdf

⁹⁴ Almeida, V. L.; Leitao, A.; Reina, L. C. B.; Montanari, C. A.; Donnici, C. L.; Lopes, M. T. P. *Quim. Nova*, **2005**, *28*, 118.

⁹⁵ <u>http://www.who.int/topics/cancer/en/index.html</u>

expectativa de vida da população em geral, associada à maior exposição a fatores de risco.

A busca por diagnósticos mais precisos bem como por compostos mais eficientes ao combate destas neoplasias tem sido de grande valia, fato que estimulou o interesse em avaliar atividade dos compostos sintetizados.

Essa parte do trabalho foi realizada em colaboração com o Prof. Dr. João Ernesto de Carvalho do Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA) da Unicamp focada em ensaios de avaliação da atividade antiproliferativa *in vitro* contra linhagens de células tumorais humanas.

Os derivados ciclopenta[*b*]indólicos **61, 78-87** e **89-91** foram testados contra as seguintes linhagens de células tumorais humanas: U251 (glioma), UACC-62 (melanoma), NCI-ADR/RES (ovário com fenótipo de resistência a múltiplas drogas), 786-0 (rim), NCI-H460 (pulmão tipo não pequenas células), PC-3 (próstata), OVCAR-3 (ovário), HT-29 (colorretal) e K562 (leucemia).

A técnica empregada para realização dos testes foi o ensaio colorimétrico com sulforrodamina B⁹⁶. Este corante protéico se liga apenas a proteínas de células viáveis, logo a presença de células vivas é avaliada ao final do experimento através de leitura espectrofotométrica da absorbância. Como controle positivo empregou-se a doxorrubicina que é um medicamento utilizado no tratamento do câncer. As concentrações dos compostos testados variaram entre 0,250-250  $\mu$ g/mL e a porcentagem de crescimento foi determinada após 48h de encubação daqueles com as células.

Os resultados referentes às atividades antiproliferativas destes compostos estão sintetizados na tabela 14 sendo representados por valores de TGI, que representa a concentração mínima que causa a inibição total do crescimento.⁹⁷

⁹⁶ Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, S.; Langley, J.; Cronise,

P; Vaigro-Wolff,A.; Goodrich ,M.G.; Campbell, H.; Mayo,J.; Boy, M. J. Nat. Can. Inst. 1991, 11, 757.

⁹⁷ Holbeck, S. L. *Eur. J. Cancer*, **2004**, 40, 785.



Compostos	2	U	а	7	4	р	0	h	k
Doxorrubicina	0,97	0,66	>25	7,3	0,25	0,18	1,9	0,32	>25
61	6,6	9,7	>250	34,6	72,5	14,8	9,8	92,8	>250
78	24,0	11,9	>250	170,9	>250	13,7	8,3	8,3	>250
79	>250	>250	>250	>250	>250	>250	>250	23,2	>250
80	5,2	6,7	>250	>250	12,8	64,8	19,4	12,0	>250
81	27,6	>250	>250	>250	7,9	>250	>250	78,8	31,4
82	14,1	14,7	>250	40,9	20,4	19,0	28,9	5,8	0,96
83	128,9	205,7	>250	>250	35,6	>250	>250	29,9	>250
84	27,6	37,1	>250	53,2	20,3	37,2	35,0	51,4	>250
85	5,0	18,5	113,8	219,3	6,8	23,0	17,8	0,91	<0,25
86	>250	>250	>250	>250	>250	>250	>250	13,1	>250
87	19,1	>250	>250	>250	10,9	28,3	11,6	10,8	2,7
89	2,0	1,5	2,3	16,0	2,8	3,8	0,93	2,3	6,4
90	129,9	75,9	>250	>250	142,4	>250	114,4	>250	30,8
91	13,4	41,8	>250	38,2	11,1	17,7	13,7	11,5	>250

2 = U251 (glioma, SNC); u = UACC-62 (melanoma); a = NCI-ADR/RES (ovário, com fenótipo de resistência a múltiplas drogas); 7 = 786-0 (rim); 4 = NCI-H460 (pulmão, tipo não pequenas células); p = PC-3 (próstata); o = OVCAR-3 (ovário); h = HT-29 (colorretal); k = K562 (leucemia).

*Tabela 14*: Valores de TGI das amostras frente às linhagens de células tumorais humanas, em µg/mL.

Os derivados **82**, **85**, **87** e **89** apresentaram efeito antiproliferativo para as linhagens K562 (leucemia), OVCAR-3 (ovário) e NCI-ADR/RES (ovário multiresistente) e o derivado **85** mostrou alta atividade contra a linhagem K562 (leucemia), sendo 100 vezes mais ativo que o controle.

Como conclusão dessa parte do trabalho, verificamos que os derivados ciclopenta[*b*]indóis apresentaram promissora atividade antiproliferativa.

## 3.5. CONCLUSÃO

A partir dos adutos de Morita-Baylis-Hillman foi possível através de uma sequência sintética de três etapas sintetizar com alta diastereosseletividade derivados ciclopenta[*b*]indólicos com rendimentos globais variando entre 3-46%.



O núcleo está presente na estrutura de diversas moléculas com atividade biológica, fato que se tornou um estímulo para a avaliação dos compostos sintetizados, sendo que alguns deles mostraram atividade antiproliferativa promissora. Novos estudos para avaliação da atividade biológica serão realizados. O estudo de espectrometria de massas permitiu propor um mecanismo para a última etapa da rota sintética, a qual tem como intermediário uma espécie carbocátion possibilitando assim a ciclização via uma reação intramolecular tipo Friedel-Crafts.

## 4. PARTE EXPERIMENTAL

## 4.1. CONSIDERAÇÕES GERAIS

Os aldeídos utilizados nas reações de Morita-Baylis-Hillman são comerciais e foram adquiridos da Aldrich Chemical Company. Os demais reagentes foram obtidos de fornecedores especializados sendo usados sem tratamento prévio.

Todos os solventes anidros utilizados nas reações foram tratados previamente, seguindo procedimentos específicos para cada tipo de solvente. Os solventes etéreos foram inicialmente destilados sob hidreto de cálcio e redestilados sob sódio/benzofenona. O diclorometano e tolueno anidros utilizados foram destilados sob hidreto cálcio e sódio respectivamente. O sistema de ultrassom empregado nas reações de Morita-Baylis-Hillman foi de 1000W e 25 KHz.

Para as purificações dos compostos foi utilizada cromatografia de adsorção em coluna, utilizando sílica gel como fase estacionária (70-230 mesh) e flash (230-400 mesh). O monitoramento das reações foi realizado por cromatografia de camada delgada (CCD) em cromatoplacas Merck, utilizando lâmpada de UV (400-700 nm) e solução reveladora de fosfomolibdato de amônio 5% em etanol e vanilina sulfúrica.

As caracterizações por espectroscopia de RMN de ¹H e RMN de ¹³C foram realizadas nos espectrômetros Bruker 250 MHz para ¹H e 62,5 MHz para ¹³C; Bruker 400 MHz para ¹H e 100,0 MHz para ¹³C; e Varian Inova 500 (500 MHz para ¹H e 125 MHz para ¹³C). Os deslocamentos químicos ( $\delta$ ) foram expressos em ppm utilizando como padrão interno: Clorofórmio deuterado (CDCl₃), com  $\delta$  7,27 ppm para ¹H e  $\delta$  77,23 ppm para ¹³C. Benzeno deuterado (C₆D₆), com  $\delta$  7,16 ppm para ¹H  $\delta$  128,39 ppm para ¹³C. Acetona deuterada [(CD₃)₂CO)], com  $\delta$  2,05 ppm para ¹H e  $\delta$  29,92 e 206,68 ppm para ¹³C.

As multiplicidades dos picos de hidrogênio foram indicadas seguindo a convenção: s (simpleto); d (dupleto); dd (duplo dupleto); dd (duplo dupleto de dupleto); t (tripleto); dt (duplo tripleto); sl (simpleto largo); q (quarteto) e m (multipleto).

Os espectros de absorção no infravermelho (IV) foram obtidos em espectrofotômetro de FT-IR Bomem MB series, modelo B100, com as freqüências

75

expressas em cm⁻¹, sendo as amostras aplicadas em uma cela de NaCl ou pastilha de KBr.

Os espectros de massa de alta resolução foram obtidos em um aparelho Micromass (Manchester-UK) instrumento Q-Tof de configuração ESI-QqTof com resolução de 5.000 e 50.0 ppm de precisão no analisador de massas TOF.

Os pontos de fusão foram obtidos por meio do aparelho Electrothermal 9100, com um termômetro não aferido.

A nomenclatura dos compostos foram fornecidas pelo programa MarvinSketch 5.5.0.1. correspondendo à nomenclatura oficial da IUPAC.

# 4.2. PROCEDIMENTOS EXPERIMENTAIS, ESPECTROS E DADOS ESPECTRAIS CORRESPONDENTES AO ITEM 2.

4.2.1. Procedimento geral para preparação dos adutos de MBH:



O aldeído de partida (10 a 30 mmol – 1 equivalente) foi dissolvido em 5 equivalentes de acrilato (Notas 1 e 2) e posteriormente adicionou-se 0,65 equivalentes de 1,4-diazabiciclo[2.2.2]octano (DABCO). A reação permaneceu sob agitação magnética e foi monitorada por cromatografia em camada delgada (CCD). Observou-se o aparecimento de uma mancha mais polar referente ao aduto de MBH. Ao término da reação, o acrilato foi removido sob pressão reduzida e o resíduo foi dissolvido em acetato de etila (50 mL). A solução foi extraída com água destilada (2 x 50 mL) e com solução saturada de NaCl (1 x 50 mL). A fase orgânica foi separada, seca em Na₂SO₄ anidro e concentrada sob pressão reduzida. O produto bruto foi purificado em coluna

cromatográfica de sílica gel utilizando-se como eluente uma mistura de hexano: acetato de etila variando entre 85:15 a 50:50 (V:V) (Nota 3).

## Notas:

- Dois equivalentes foram utilizados quando o acrilato correspondia a metilvinilcetona (R"= COMe) e acrilonitrila (R"= CN).
- 2. Dimetilformamida (DMF) foi utilizado como solvente da reação quando o acrilato utilizado foi a metilvinilcetona.
- 3. O aduto de MBH com R' = 4-NO₂Ph foi purificado por recristalização Procedimento para a recristalização do aduto de MBH R= 4-NO₂-Ph: O produto bruto foi dissolvido na menor quantidade possível de acetato de etila pré-aquecido, em seguidas gotas de hexano foram adicionadas lentamente até ocorrer turvação do meio. A mistura foi colocada em geladeira e a cristalização completa ocorreu após 5 dias à 8º C.

## Composto 1: 2-[hidroxi(fenil)metil] propen-2-enoato de metila



Tempo reacional: 13 dias; Rendimento: 85%; Característica: óleo viscoso incolor.

**IV (filme,** *v*_{max}): 3422, 2956, 1718, 1630, 1198, 720, 699 cm⁻¹.

**RMN de** ¹**H (250 MHz, CDCl₃), \delta ppm:** 3,14 (d, ³*J* = 5,5Hz, 1H); 3,71 (t, 3H); 5,56 (d, ³*J* = 5,5 Hz, 1H); 5,84 (s, 1H); 6,33 (s,1H); 7,29-7,33 (m, 5H).

**RMN de** ¹³**C (62,5 MHz, CDCl₃), δ ppm:** 52,1; 73,3; 126,2; 126,8; 128,0; 128,6; 141,5; 142,2; 166,9.



Figura 15: Espectro de RMN de ¹H (CDCl₃, 250 MHz) do aduto de MBH 1



Composto 2: 2-[hidroxi(4-metoxifenil)metil] prop-2-enoato de metila



Tempo reacional: 28 dias; Rendimento: 71%; Característica: sólido branco PF: 60-63 ℃

**IV (KBr,** *v*_{max}): 3482, 2954, 2838, 1721, 1611, 1175, 1149, 830, 734 cm⁻¹.

**RMN de** ¹**H (250 MHz, CDCl₃), \delta ppm:**  $\delta$  2,93 (d, ³*J* = 5,2Hz, 1H); 3,71 (s, 3H); 3,79 (s, 3H); 5,52 (d, ³*J* = 4,8Hz, 1H); 5,85 (s, 1H); 6,32 (s, 1H); 6,87 (d, ³*J* = 8,7Hz, 2H); 7,28 (d, ³*J* = 8,6Hz, 2H).

**RMN de** ¹³**C (62,5 MHz, CDCl₃), δ ppm:** δ 52,1; 55,5; 73,0; 114,0; 125,8; 128,1; 133,7; 142,4; 159,4; 170,0.

#### Composto 3: 2-{hidroxi[4-(propan-2-il)fenil]metil}prop-2-enoato de metila



**Tempo reacional:** 20 dias; **Rendimento**: 66%; **Característica:** óleo fluido incolor **IV (filme, \nu_{max}):** 3451, 2960, 2871, 1723, 1631, 1149, 822 cm⁻¹

**RMN de ¹H (250 MHz, CDCl₃), \delta ppm: 1,25 (d, ³J = 6,9Hz, 6H); 2,91 (m, ³J = 6,9Hz,** 

1H), 2,98 (d,  ${}^{3}J = 5,5$ Hz, 1H); 3,73 (s, 3H); 5,55 (d,  ${}^{3}J = 5,4$ Hz, 1H); 5,87 (s, 1H); 6,34 (s, 1H); 7,21 (d,  ${}^{3}J = 8,3$ Hz, 2H); 7,30 (d,  ${}^{3}J = 8,3$ Hz, 2H).

**RMN de** ¹³**C (62,5 MHz, CDCl₃), δ ppm:** 24,1; 34,0; 52,1; 73,3; 126,0; 126,7; 126,8; 138,9; 142,3; 148,7; 167,0.



*Figura 18:* Espectro de RMN de ¹³C (CDCl₃,62,5 MHz) do aduto de MBH **2** 



Figura 19: Espectro de RMN de ¹H (CDCl₃, 250 MHz) do aduto de MBH 3



Composto 4: 2-[hidroxi(4-nitrofenil)metil]prop-2-enoato de metila



**Tempo reacional:** 5h; **Rendimento:** 90%; **Característica:** sólido amarelo **PF:** 71-73^oC⁹⁸

IV (KBr, v_{max}): 3230, 2995, 1723, 1633, 1503, 1331, 1154, 1050 cm⁻¹

**RMN de** ¹**H (250 MHz, CDCI₃), \delta ppm:** 3,35 (d, ³*J* = 6,2Hz, 1H); 3,75 (s, 3H); 5,63 (d, ³*J* = 6,0Hz, 1H); 5,88 (s, 1H); 6,40 (s, 1H); 7,57 (d, ³*J* = 8,6Hz; 2H); 8,20 (d,

³*J* = 8,8Hz; 2H).

**RMN de** ¹³**C (62,5 MHz, CDCl₃), δ ppm:** 52,4; 72,9; 123,8; 127,5; 127,5; 141,2; 147,7; 148,8; 166,6.

## Composto 5: 2-[hidroxi(1,3-tiazol-2-il)metil]prop-2-enoato de metila



**Tempo reacional:** 3h; **Rendimento:** 93%; **Característica:** óleo viscoso amarelado **IV (filme,**  $\nu_{max}$ ): 3511, 1698, 1519, 1106, 1044 cm⁻¹.

**RMN de** ¹**H (250 MHz, CDCl₃), \delta ppm:** 3,72 (s, 3H); 4,96 (sl, 1H); 5,78 (s, 1H); 6,02 (s, 1H), 6,41 (s, 1H); 7,29 (d, ³*J* = 3,25Hz, 1H); 7,67 (d, ³*J* = 3,28Hz, 1H).

**RMN de** ¹³**C (62,5 MHz, CDCl₃), δ ppm:** 52,3; 71,2; 119,9; 128,0; 140,9; 142,4; 166,5; 172,9.

⁹⁸ Cai, J; Zhou, Z.; Zhao, G.; Tang, C. *Org. Lett.*, **2002**, 4723




Composto 6: 3-[hidroxi(fenil)metil]but-3-en-2-ona



Tempo reacional: 10 dias; Rendimento: 62%; Característica: óleo levemente castanho

**IV (filme,** *v*_{max}**):** 3423, 3063, 3031, 1673, 1192, 841 cm⁻¹

**RMN de** ¹**H (250 MHz, Acetona-D₆), δ ppm:** 2,26 (s, 3H); 4,57 (sl, 1H); 5,66 (s, 1H); 6,19 (s, 1H); 6,27 (s, 1H); 7,18-7,38 (m, 5H).

**RMN de ¹³C (62,5 MHz, Acetona-D₆), δ ppm:** 26,7; 71,6; 125,0; 127,8; 128,0; 128,9; 144,4; 152,6; 199,3.

Composto 7: 2-[hidroxi(fenil)metil]prop-2-enenitrila



Tempo reacional: 48h; Rendimento: 90%; Característica: óleo incolor

**IV (filme,** *v*_{max}**):** 3440, 2229, 1495, 1454, 1050 cm⁻¹

**RMN de** ¹**H (250 MHz, CDCl₃), \delta ppm:** 2,92 (d, ³*J* = 3,5Hz, 1H); 5,25 (s, 1H); 6,01 (d, ³*J* = 1,1Hz, 1H); 6,08 (d, ³*J* = 1,5Hz, 1H); 7,38 (s, 5H).

**RMN de** ¹³**C (62,5 MHz, CDCl₃), δ ppm:** 74,3; 117,1; 126,4; 126,7; 129,1; 129,1; 130,1; 139,3.



Figura 25: Espectro de RMN de ¹H (Acetona-D₆, 250 MHz) do aduto de MBH 6





#### Composto 8: 3-hidroxi-2-metilidenoexanoato de metila



**Tempo reacional:** 17 dias; **Rendimento:** 95%; **Característica:** óleo incolor **IV (filme, ν_{max}):** 3427, 2959, 2874, 1720, 1631, 1440, 1290, 1111 cm⁻¹

**RMN de** ¹**H (250 MHz, CDCl₃), \delta ppm:** 0,87 (t, ³*J* = 7,2Hz, 3H); 1,34 (m, 2H); 1,54 (m, 2H); 2,95 (d, ³*J* = 6,3Hz, 1H); 3,71 (t, 3H); 4,36 (q, ³*J* = 6,4Hz, 1H); 5,76 (s, 1H), 6,16 (s, 1H).

**RMN de** ¹³**C (62,5 MHz, CDCl₃), δ ppm:** 13,9; 19,1; 38,5; 51,9; 71,2; 124,8; 142,9; 167,2.

## Composto 9: 2-[2H-1,3-benzodioxol-5-il(hidroxi)metil]prop-2-enoato de metila



Tempo reacional: 30 dias; Rendimento: 70%; Característica: óleo incolor

IV (filme, v_{max}): 3457, 1716, 1629, 1502, 1487, 1440, 1246.

**RMN de** ¹**H (250 MHz; CDCl₃), \delta ppm:** 3,03 (d, ³*J* = 5,1Hz, 1H); 3,71 (s, 3H); 5,46 (d, ³*J* = 4,5Hz, 1H); 5,85 (s, 1H); 5,93 (s, 2H); 6,31 (s, 1H); 6,84 - 6,73 (m, 3H).

**RMN de** ¹³**C (62,5 MHz; CDCl₃), δ ppm:** 51,9; 72,9; 101,0; 107,2; 108,1; 120,2; 125,8; 135,3; 142,0; 147,2; 147,7; 166,7.





Figura 32: Espectro de RMN de ¹³C (CDCl₃, 62,5 MHz) do aduto de MBH 9

#### Composto 10: 2-[(6-bromo-2H-1,3-benzodioxol-5-il)(hidroxi)metil]prop-2-enoato de



Tempo reacional: 30 dias; Rendimento: 55%; Característica: sólido levemente castanho

**PF:** 101-102ºC

IV (filme,  $\nu_{max}$ ): 3444, 2953, 2903, 1722, 1632, 1478, 1235, 1038 cm⁻¹. **RMN de** ¹**H (250 MHz, CDCl₃), δ ppm:** 3,19 (d, ³*J* = 4,2Hz, 1H); 3,79 (s, 3H); 5,63 (s, 1H); 5,86 (d, ³*J* = 3,8Hz, 1H); 5,99 (s, 2H); 6,34 (s, 1H); 7,00 (s, 1H); 7,02 (s, 1H). **RMN de** ¹³**C (62,5 MHz, CDCl₃), δ ppm:** 52,3; 71,6; 102,1; 108,5; 112,8; 127,0; 133,4; 140,9; 147,9; 148,2; 167,2.

Composto 11: 2-[(3-clorofenil)(hidroxi)metil]prop-2-enoato de metila



Tempo reacional: 24h; Rendimento: 80%; Característica: óleo incolor

**IV (filme,** *v*_{max}): 3451, 2953, 1717, 1630, 1152, 884 cm⁻¹.

**RMN de** ¹**H (250 MHz, CDCl₃), \delta ppm:** 3,25 (d, ³*J* = 5,8Hz, 1H); 3,72 (s, 3H); 5,51 (d, ³*J* = 5,7Hz, 1H); 5,84 (s,1H); 6,35 (s, 1H); 7,25 (s, 3H); 7,37 (s, 1H).

**RMN de** ¹³**C (62,5 MHz, CDCl₃), δ ppm:** 52,1; 72,5; 124,9; 126,6; 126,9; 128,0; 129,8; 134,4; 141,6; 143,6; 166,6.



Figura 33: Espectro de RMN de ¹H (CDCl₃, 250 MHz) do aduto de MBH 10



Figura 34: Espectro de RMN de ¹³C (CDCl₃, 62,5 MHz) do aduto de MBH 10



Composto 12: 2-[ciclohexil(hidroxi)metil]prop-2-enoato de metila



Tempo reacional: 20 dias; Rendimento: 40%; Característica: óleo fluido incolor IV (filme,  $\nu_{max}$ ): 3479, 2928, 2853, 1720, 1629, 1440, 1280, 1157 cm⁻¹. RMN de ¹H (250 MHz, CDCl₃), δ ppm: 0,89-1,28 (m, 5H); 1,50-1,78 (m, 5H); 2,58 (d, ³J = 8,0Hz, 1H), 3,77 (s, 3H); 4,07 (t, ³J = 7,6Hz, 1H); 5,72 (s, 1H); 6,24 (s, 1H). RMN de ¹³C (62,5 MHz, CDCl₃), δ ppm: 26,1; 26,3; 26,6; 28,5; 30,2; 42,6; 52,1; 77,5; 126,4; 141,2; 167,3.

#### Composto 13: 2-[hidroxi(3,4,5-trimetoxifenil)metil]prop-2-enoato de metila



**Tempo reacional:** 30 dias; **Rendimento:** 71%; **Característica:** óleo fluido amarelado **IV (filme, v_{max}):** 3488, 2942, 2839, 1721, 1593, 1233, 1127 cm⁻¹.

**RMN de** ¹**H (250 MHz, CDCl₃), \delta ppm:** 3,21 (d, ³*J* = 5,2Hz, 1H); 3,73 (s, 3H); 3,81 (s, 3H); 3,82 (s, 6H); 5,48 (d, ³*J* = 4,8Hz, 1H); 5,83 (s, 1H); 6,31 (s, 1H); 6,58 (s, 2H). **RMN de** ¹³**C (62,5 MHz, CDCl₃), \delta ppm:** 52,1; 56,2; 60,9; 73,3; 103,7; 126,2; 137,1; 137,6; 142,1; 153,3; 167,0.





Figura 40: Espectro de RMN de ¹³C (CDCl₃, 62,5 MHz) do aduto de MBH 13

Composto 14: 2-[hidroxi(fenil)metil]prop-2-enoato de etila



**Tempo reacional:** 10 dias; **Rendimento:** 83%; **Característica:** óleo incolor **IV (filme,**  $\nu_{max}$ ): 3456, 3032, 2983, 2906, 1714, 1629, 1148, 1113, 864, 839 cm⁻¹. **RMN de** ¹**H (250 MHz, CDCI₃), \delta ppm:** 1,22 (t, ³*J* = 7,1Hz, 3H); 3,34 (d, ³*J* = 5,3Hz; 1H); 4,14 (q, ³*J* = 7,1Hz, 2H); 5,53 (d, ³*J* = 5,2Hz, 1H); 5,83 (s, 1H); 6,32 (s, 1H); 7,26-7,38 (m, 5H).

**RMN de ¹³C (62,5 MHz, CDCl₃), δ ppm:** 14,1; 61,0; 73,1; 125,7; 126,8; 127,8; 128,4; 141,6; 142,4; 166,4.

Composto 15: 3-hidroxi-2-metilidenenonanoato de metila



Tempo reacional: 20 dias; Rendimento: 70%; Característica: óleo incolor

**IV (filme,** *v*_{max}): 3452, 2929, 2855, 1707, 1290, 1155 cm⁻¹.

**RMN de** ¹**H (250 MHz, CDCl₃), δ ppm:** 0,87 (m, 3H); 1,27-1,36 (m, 8H); 1,63 (m, 2H); 3,78 (s, 3H); 4,38 (t, 1H); 5,79 (s, 1H); 6,22 (s, 1H).

**RMN de** ¹³**C (62,5 MHz, CDCl₃), δ ppm:** 14,2; 22,8; 26,0; 29,3; 31,9; 36,4; 52,0; 72,0; 125,1; 142,7; 167,3.



Figura 41: Espectro de RMN de ¹H (CDCl₃, 250 MHz) do aduto de MBH 14





Figura 44: Espectro de RMN de ¹³C (CDCI₃, 125 MHz) do aduto de MBH 15

Composto 16: 2-[hidroxi(3,4,5-trimetoxifenil)metil]prop-2-enoato de etila



Tempo reacional: 30 dias; Rendimento: 70%; Característica: sólido branco

**IV (KBr,** *v*_{max}): 3478, 2982, 2935, 1717, 1593, 1055 cm⁻¹.

**RMN de** ¹**H (250 MHz; CDCI₃), \delta ppm:** 1,89 (t, ³*J* = 7,1Hz,3H); 3,17 (d, ³*J* = 5,5Hz,1H); 3,81 (s, 3H); 3,83 (s, 6H); 4,19 (q, ³*J* = 7,1Hz,2H); 5,48 (d, ³*J* = 5,3Hz,1H); 5,80 (s, 1H); 6,32 (s, 1H); 6,59 (s, 2H).

**RMN de** ¹³**C (62,5 MHz; CDCl₃), δ ppm:** 14,6; 56,2; 61,0; 61,2; 73,4; 103,7; 126,1; 137,2; 137,6; 142,3; 153,4; 166,6.

Composto 17: 2-[(4-tert-butilfenil)(hidroxi)metil]prop-2-enoato de metila



Tempo reacional: 25 dias; Rendimento: 77%; Característica: sólido branco PF: 64-66  $^{\circ}$ C

**IV (KBr,** *v*_{max}): 3454, 2962, 2905, 2869, 1723, 1630, 1270, 1149, 1042, 854 cm⁻¹.

**RMN de ¹H (250 MHz, CDCl₃), \delta ppm:** 1,32 (s, 9H); 3,02 (d, ³*J* = 5,5Hz, 1H); 3,73 (s, 3H); 5,56 (d, ³*J* = 5,4Hz, 1H); 5,88 (s, 1H); 6,34 (s, 1H); 7,30 (d, ³*J* = 8,5Hz, 2H); 7,38 (d, ³*J* = 8,5Hz, 2H).

**RMN de ¹³C (62,5 MHz, CDCl₃), δ ppm:** 31,5; 34,7; 52,1; 73,2; 125,6; 126,0; 126,5; 138,5; 142,2; 150,9; 167,0.





Composto 18: 2-[(4-bromofenil)(hidroxi)metil]prop-2-enoato



**Tempo reacional:** 6 dias; **Rendimento:** 75% **Característica:** sólido branco **PF:** 63-66 °C

**IV (KBr,** *v*_{max}): 3342; 2959; 1717; 1635, 1274, 1160, 812 cm⁻¹.

**RMN de** ¹**H (250 MHz, CDCl₃), \delta ppm:** 3,22 (d, ³*J* = 5,7 Hz, 1H); 3,71 (s, 3H); 5,49 (d, ³*J* = 5,6 Hz, 1H); 5,83 (s, 1H); 6,33 (s, 1H); 7,24 (d, ³*J* = 8,4 Hz, 2H); 7,46 (d, ³*J* = 8,4 Hz, 2H).

**RMN de** ¹³**C (62,5 MHz, CDCl₃), δ ppm:** 52,2; 72,8; 121,9; 126,5; 128,5; 131,7; 140,5; 141,7; 166,8.

Composto 19: 2-{hidroxi[4-(propan-2-il)fenil]metil}prop-2-enoato de tert-butila



**Tempo reacional:** 30 dias; **Rendimento:** 52% **Característica:** óleo amarelo **IV (filme, ν_{max}):** 3441, 2962, 2931, 1716, 1630, 1150, 893, cm⁻¹.

**RMN de** ¹**H (250 MHz, CDCl₃), \delta ppm:** 1,24 (d, ³*J* = 6,9 Hz, 3H); 1,40 (s, 9H); 2,90 (m, 1H); 3,09 (d, ³*J* = 5,4 Hz, 1H); 5,48 (d, ³*J* = 4,4 Hz, 1H); 5,74 (s, 1H); 6,24 (s, 1H); 7,19 (d, ³*J* = 8,2 Hz, 2H); 7,28 (d, ³*J* = 8,3 Hz, 2H).

**RMN de** ¹³**C (62,5 MHz, CDCl₃), δ ppm:** 24,2; 28,1; 34,0; 73,5; 81,7; 125,1; 126,6; 126,7; 139,2; 143,8; 148,5; 165,9.

**EMAR (ESI/+;** *m/z*): Calculado para C₁₇H₂₃O₂ 259,1698 [M+H]⁺. Encontrado: 259,1674



Figura 49: Espectro de RMN de ¹H (CDCl₃, 250 MHz) do aduto de MBH 18



Figura 50: Espectro de RMN de ¹³C (CDCl₃, 62,5 MHz) do aduto de MBH 18



Figura 51: Espectro de RMN de ¹H (CDCl₃, 62,5 MHz) do aduto de MBH 19



Figura 52: Espectro de RMN de ¹³C (CDCl₃, 62,5 MHz) do aduto de MBH 19

## 4.2.2. Procedimento geral para preparação dos compostos 1,3-dicarbonilados:



O aduto de MBH (0,5 a 3,0 mmol – 1 equivalente) foi dissolvido em acetonitrila, em volume suficiente para obter uma concentração final de 0,14mol/L. Em seguida 1,5 equivalentes de ácido 2-iodóxi-benzóico (IBX) foram adicionados à solução (Nota 1). A reação permaneceu sob agitação magnética à 70°C por um período variando entre 1-5h. O avanço foi monitorado por cromatografia de camada delgada (CCD) e observouse a formação de um produto menos polar referente ao aduto de MBH oxidado. Ao término da reação, a mesma foi resfriada a temperatura ambiente, filtrada e concentrada sob pressão reduzida. O produto resultante apresentou, na maioria dos casos, pureza suficiente para ser utilizado na próxima etapa não necessitando de qualquer purificação adicional (Nota 2).

## Notas:

1. Quando acetato de etila foi usado como solvente da reação empregou-se 3,0 equivalentes de IBX.

2. Os compostos 1,3-dicarbonilados que não apresentaram alto grau de pureza foram levados brutos para a próxima etapa reacional, já que após tentativas de purificação utilizando sílica ou alumina os mesmos sofreram degradação.

Composto 21: 2-benzoilprop-2-enoato de metila



Tempo reacional: 3h; Rendimento: 90%; Característica: óleo amarelado

**IV (filme,** *v*_{max}): 3004, 2954, 1732, 1675, 1449, 817, 807 cm⁻¹.

**RMN de** ¹**H (250 MHz, CDCl₃), δ ppm:** 3,75 (s, 3H); 6,04 (s, 1H); 6,70 (s, 1H); 7,42-7,49 (m, 2H); 7,55-7,62 (m, 1H); 7,86 (d, 2H).

**RMN de** ¹³**C (62,5 MHz, CDCl₃), δ ppm:** 52,6; 128,8; 129,6; 131,7; 133,8; 136,2; 141,1; 164,9; 193,2.

**EMAR (ESI/+;** *m/z*): Calculado para C₁₁H₁₁O₃ 191,0708 [M+H]⁺. Encontrado: 191,0734

# Composto 22: 2-[(4-metoxifenil)carbonil]prop-2-enoato de metila



**Tempo reacional:** 3h; **Rendimento:** 94%; **Característica:** óleo viscoso amarelo **IV (filme, ν_{max}):** 2954, 2842, 1729, 1666, 1599, 1262, 1152, 847 cm⁻¹.

**RMN de** ¹**H** (250 MHz, CDCl₃),  $\delta$  ppm: 3,77 (s, 3H); 3,88 (s, 3H); 5,99 (d, ³*J* = 0,8Hz, 1H); 6,68 (d, ³*J* = 0,7Hz, 1H); 6,95 (d, ³*J* = 9,0Hz, 2H); 7,87 (d, ³*J* = 9,0Hz, 2H).

**RMN de** ¹³**C (62,5 MHz, CDCl₃), δ ppm:** 52,6; 55,8; 114,1; 129,3; 130,9; 132,2; 141,3; 164,3; 165,1; 191,9.

**EMAR (ESI/+;** *m/z*): Calc. para C₁₂H₁₃O₄ 221,0814 [M + H]⁺; Encontrado: 221,0830







Tempo reacional: 2h; Rendimento: >95%; Característica: óleo amarelo

IV (filme, v_{max}): 2962, 2873, 1731, 1673, 1604, 1144, 852 cm⁻¹

**RMN de ¹H (250 MHz, CDCl₃), \delta ppm:** 1,27 (d, ³*J* = 6,9Hz, 6H); 2,98 (m, ³*J* = 6,9Hz, 1H); 3,77 (s, 3H); 6,01 (s, 1H); 6,69 (s, 1H); 7,32 (d, ³*J* = 8,2Hz, 2H); 7,82 (d, ³*J* = 8,3Hz, 2H).

**RMN de ¹³C (62,5 MHz, CDCl₃), δ ppm:** 23,8; 34,5; 52,6; 127,0; 130,1; 131,2; 134,1; 141,3; 155,6; 165,1; 192,9.

**EMAR (ESI/+;** *m/z*): Calc. para C₁₄H₁₇O₃ 233,1178 [M+H]⁺; Encontrado: 233,1200

Composto 24: 2-[(4-nitrofenil)carbonil]prop-2-enoato de metila



Tempo reacional: 5h; Rendimento: 90%; Característica: sólido amarelo

**IV (KBr,** *v*_{max}): 2955, 1737, 1690, 1604, 1525, 1240, 702 cm⁻¹.

**RMN de** ¹**H (250 MHz, CDCl₃), \delta ppm:** 3,78 (s,3H); 6,21 (s, 1H), 6,80 (s, 1H); 8,00 (d, ³J = 9,0Hz, 2H); 8,32 (d, ³J = 9,0Hz, 2H).

**RMN de** ¹³**C (62,5 MHz, Acetona-D**₆), δ ppm: 51,9; 123,8; 130,3; 132,7; 140,5; 140,9; 150,6; 164,1; 191,5

EMAR (ESI/+, *m/z*): Calc. para C₁₁H₁₀NO₅ 236,0559 [M+H]⁺; Encontrado: 236,0579





Figura 59: Espectro de RMN¹H (CDCI₃, 250 MHz) do1,3-dicarbonilado 24



Figura 60: Espectro de RMN¹H (Acetona-D₆, 62,5 MHz) do1,3-dicarbonilado 23



Tempo reacional: 5h; Rendimento: 93%; Característica: óleo amarelado

IV (filme, v_{max}): 3065, 2930, 1671, 1597, 1232, 1123 cm⁻¹

**RMN de** ¹**H (250 MHz, CDCl₃), \delta ppm:** 2,41 (s, 3H); 6,02 (s, 1H); 6,57 (s, 1H); 7,47 (m, ³J = 7,2Hz, 2H); 7,60 (m, ³J = 7,2Hz, 1H); 7,84 (m, ³J = 7,1Hz, 2H).

**RMN de** ¹³**C (62,5 MHz, CDCl₃), δ ppm:** 27,7; 128,9; 129,7; 130,1; 133,9; 136,5; 148,4; 195,4; 196,7.

EMAR (ESI/+; *m/z*): Calc. para C₁₁H₁₀O₂Na 197,0578 [M+Na]⁺; Encontrado: 197,0619

## Composto 28: 2-metileno-3-oxohexanoato de metila



Tempo reacional: 4h; Rendimento: 73%; Característica: óleo incolor

IV (filme, v_{max}): 2962, 2876, 1750, 1714, 1630, 1435, 1269, 1096 cm⁻¹

**RMN de ¹H (250 MHz, CDCl₃), \delta ppm:** 0,91 (t, ³*J* = 7,4Hz, 3H); 1,62 (m, ³*J* = 7,4Hz, 2H); 2,71 (t, ³*J* = 7,3Hz, 2H); 3,79 (s, 3H); 6,32 (d, ³*J* = 0,8Hz, 1H); 6,40 (d, ³*J* = 0,8Hz, 1H); 1H);

**RMN de ¹³C (62,5 MHz, CDCl₃), δ ppm:** 13,8; 17,4; 43,2; 52,5; 132,6; 142,0; 165,5; 199,6.

EMAR (ESI/+, *m/z*): Calc. para (C₈H₁₃O₃)₂H 313,1652 [M + H]⁺; Encontrado: 313,1682





# Composto 29: 2-[(6-bromo-2H-1,3-benzodioxol-5-il)carbonil]prop-2-enoato de



Tempo reacional: 4h; Rendimento: >95%; Característica: óleo castanho

**IV (filme,** *v*_{max}): 2954, 2911, 1729, 1678, 1480, 1245, 1113 cm⁻¹.

**RMN de** ¹**H (250 MHz, CDCI₃), δ ppm:** 3,77 (s, 3H); 6,03 (s, 2H); 6,25 (s, 1H); 6,66 (s, 1H); 6,98 (s, 1H); 7,00 (s, 1H)

**RMN de** ¹³**C (62,5 MHz, CDCl₃), δ ppm:** 52,6; 102,7; 110,5; 113,3; 113,8; 132,8; 134,7; 141,7; 147,6; 151,0; 164,8; 191,7.

**EMAR (ESI/+;** *m/z*): Calc. para C₁₂H₁₀O₅Br 312,9712 [M + H]⁺; Encontrado: 312,9768.

#### Composto 30: 2-[(3-clorofenil)carbonil]prop-2-enoato de metila



Tempo reacional: 5h; Rendimento: >95%; Característica: óleo amarelado

**IV (filme**, ν_{max}): 2954, 1737, 1690, 1591, 1238, 898 cm⁻¹.

**RMN de** ¹**H (250 MHz, CDCI₃), \delta ppm:** 3,78 (s, 3H); 6,09 (s, 1H); 6,74 (s, 1H); 7,41 (t, ³*J*=7,8Hz, 1H); 7,57 (ddd, ³*J*=1,1Hz; 2,0Hz e 8,0Hz); 7,72 (dt,³*J*=1,5 e 7,7Hz); 7,84 (t, ³*J*=1,7Hz, 1H)

**RMN de** ¹³**C (62,5 MHz, CDCl₃), δ ppm:** 52,8; 127,8; 129,5; 130,1; 132,4; 133,8; 135,2; 137,9; 140,7; 164,7; 191,9.

EMAR (ESI/+, *m/z*): Calc. para C₁₁H₁₀ClO₃ 225,0318 [M+H]⁺; Encontrado: 225,0396



Figura 66: Espectro de RMN ¹³C (CDCl₃, 62,5 MHz) do 1,3-dicarbonilado 29



Composto 31: 2-ciclohexanocarbonilprop-2-enoato de metila



Tempo reacional: 1,5h; Rendimento: >95%; Característica: óleo incolor

**IV (filme,** *v*_{max}): 2933, 2855, 1735, 1619, 1449, 1086 cm⁻¹.

**RMN de ¹H (250 MHz, CDCI₃), \delta ppm:** 1,23-1,37 e 1,67-1,87 (m, 9H); 2,84-2,93 (m, 1H); 3,81 (s, 3H, ³J = 0,7Hz), 6,20 (d, 1H); 6,41 (d, 1H, ³J = 0,7Hz)

**RMN de ¹³C (62,5 MHz, CDCl₃), δ ppm:** 25,7; 26,0; 28,7; 48,3; 52,5; 131,8; 141,9; 165,4; 203,6.

**EMAR (ESI/+;** *m/z*): Calculado para C₁₁H₁₇O₃ 197,1178 [M+H]⁺; Encontrado: 197,1136

Composto 32: 2-[(3,4,5-trimetoxifenil)carbonil]prop-2-enoato de metila



**Tempo reacional:** 1,5h; **Rendimento:** >95%; **Característica:** óleo turvo

**IV (filme,**  $v_{max}$ ): 2959, 2840, 1723, 1665, 1584, 1416, 1129 cm⁻¹.

**RMN de** ¹**H (250 MHz, CDCl₃), δ ppm:** 3,79 (s, 3H); 3,89 (s, 6H); 3,93 (s, 3H); 6,03 (s, 1H); 6,70 (s, 1H); 7,13 (s, 2H).

**RMN de ¹³C (62,5 MHz, CDCl₃), δ ppm:** 52,7; 56,5; 61,2; 107,3; 131,2; 131,3; 140,9; 143,5; 153,3; 165,0; 192,1.

EMAR (ESI, *m/z*): Calc. para C₁₄H₁₇O₆ 281,1086 [M+H]⁺; Encontrado: 281,1025


Figura 69: Espectro de RMN ¹H (CDCl₃, 250 MHz) do 1,3-dicarbonilado **31** 



Figura 70: Espectro de RMN ¹³C (CDCl₃, 62,5 MHz) do 1,3-dicarbonilado 31



## Composto 33: 2-benzoilprop-2-enoato de etila



**Tempo reacional:** 1,5h; **Rendimento:** >95%; **Característica:** óleo viscoso incolor **IV (filme,**  $\nu_{max}$ ): 3062, 2983, 1729, 1679, 1597, 1237, 1153 cm⁻¹.

**RMN de** ¹**H (250 MHz, CDCl₃), \delta ppm:** 1,17 (t, ³*J* = 7,1Hz, 3H); 4,20 (q, ³*J* = 7,1Hz, 2H); 6,04 (s, 1H); 6,67 (s, 1H); 7,71-7,47 (m, 2H); 7,54-7,60 (m,1H); 7,82-7,86 (m, 2H).

**RMN de** ¹³**C (62,5 MHz, CDCl₃), δ ppm:** 14,0; 61,6; 128,7; 129,5; 131,4; 133,7; 136,4; 141,6; 164,5; 193,3.

**EMAR (ESI/+,** *m/z*): Calculado para C₁₂H₁₃O₃ 205,0864 [M + H]⁺; Encontrado: 205,0892

## Composto 34: 2-[(4-tert-butilfenil)carbonil]prop-2-enoato de metila



Tempo reacional: 1h; Rendimento: >95%; Característica: sólido amarelo PF: 42-44 °C

**IV (KBr,** *v*_{max}): 2963, 2906, 2871, 1731, 1673, 1603, 1239, 1156, 1145, 852 cm⁻¹.

**RMN de** ¹**H (250 MHz, CDCI₃), \delta ppm:** 1,35 (s, 9H); 3,77 (s, 3H); 6,01 (s, 1H); 6,69 (s, 1H); 7,48 (d, ³*J* = 8,6Hz, 2H); 7,82 (d, ³*J* = 8,6Hz, 2H)

**RMN de ¹³C (62,5 MHz, CDCl₃), δ ppm:** 31,2; 35,4; 52,6; 125,8; 129,8; 131,2; 133,6; 141,2; 157,8; 165,1; 192,8.

**EMAR (ESI/+,** *m/z*): Calculado para C₁₅H₁₉O₃ 247,1334 [M+H]⁺; Encontrado: 247,1342



Figura 73: Espectro de RMN¹H (CDCl₃, 250 MHz) do 1,3-dicarbonilado 33



Figura 74: Espectro de RMN ¹³C (CDCl₃, 62,5 MHz) do 1,3-dicarbonilado 33



Figura 75: Espectro de RMN¹H (CDCl₃, 250 MHz) do 1,3-dicarbonilado 34



Figura 76: Espectro de RMN ¹³C (CDCl₃, 62,5 MHz) do 1,3-dicarbonilado 34

Composto 35: 2-[(4-bromofenil)carbonil]prop-2-enoato de metila



Tempo reacional: 2,5h; Rendimento: 95%; Característica: óleo amarelo

**IV (filme,**  $v_{max}$ ): 2954, 1731, 1674, 1584, 1193, 816 cm⁻¹.

**RMN de** ¹**H** (250 MHz, CDCl₃),  $\delta$  ppm: 3,77 (s, 3H); 6,07 (s, 1H); 6,70 (s, 1H); 7,61 (d, ³J = 8,7 Hz, 2H); 7,72 (d, ³J = 8,7 Hz, 2H).

**RMN de** ¹³**C (62,5 MHz, CDCl₃), δ ppm:** 52,7; 129,2; 131,1; 132,2; 135,1; 140,8; 164,7; 192,2.

**EMAR (ESI/+,** *m/z*): Calculado para C₁₁H₁₀O₃Br 268,9813 [M+H]⁺; Encontrado: 268,9836





Tempo reacional: 1,5h; Rendimento: >95% Característica: óleo levemente amarelado

**IV (filme,** *v*_{max}): 2965, 2933, 2873, 1724, 1674, 1570, 1149, 1055, 847 cm⁻¹.

**RMN de** ¹**H (250 MHz, CDCl₃), \delta ppm:** 1,27 (d, ³*J* = 6,9 Hz, 6H); 1,37 (s, 9H); 2,97 (m, 1H); 5,99 (s, 1H); 6,55 (s, 1H); 7,30 (d, ³*J* = 8,3 Hz, 2H); 7,77 (d, ³*J* = 8,3 Hz, 2H).

**RMN de** ¹³**C (125 MHz, CDCl₃), δ ppm:** 23,8; 28,0; 34,5; 82,3; 126,7; 129,7; 130,2; 134,7; 143,6; 155,2; 163,8; 193,5.

**EMAR (ESI/+,** *m/z*): Calculado para C₁₇H₂₂O₃Na 297,1467 [M + H]⁺; Encontrado: 297,1505



Figura 77: Espectro de RMN ¹H (CDCl₃, 250 MHz) do 1,3-dicarbonilado 35





Figura 79: Espectro de RMN ¹H (CDCl₃, 250 MHz) do 1,3-dicarbonilado 36



Figura 80: Espectro de RMN ¹³C (CDCl₃, 62,5 MHz) do 1,3-dicarbonilado 36

### 4.2.3. Procedimento geral para preparação dos produtos 1,2,3-tricarbonilados:



O produto 1,3-dicarbonilado (1,5 mmol) foi dissolvido em 15 mL de metanol e/ou diclorometano e transferido para um sistema apropriado para reações de ozonólise (Nota 1). A este sistema foi acoplado uma mangueira de silicone a qual permite a passagem de ozônio produzido por um ozonizador. A solução foi resfriada e mantida a - 78°C, sob agitação magnética e fluxo moderado de ozônio. O avanço da reação foi acompanhado por cromatografia de camada delgada (CCD) e observou-se a formação de uma mancha mais polar referente ao produto tricarbonilado. Após o término, foi adicionado à reação 10 equivalentes de dimetilssulfeto (DMS) permanecendo sob agitação magnética por 2h. A temperatura da reação foi removida sob pressão reduzida e o produto foi purificado em coluna cromatográfica de sílica gel utilizando como eluente uma mistura de hexano:acetato de etila variando entre 90:10 a 50:50 V/V (Nota 2).

#### Notas:

- 1. Para os substratos **22** e **32** a ozonólise também foi realizada em condição diluída (0,5 mmol de substrato em 30 mL de solvente).
- Em todos os espectros são observados a mistura do composto tricarbonilado com a sua forma hidratada. Nem sempre é possível verificar todos os sinais tanto de hidrogênios quanto de carbonos das duas formas, todavia todos os sinais do composto majoritário são observados.



Tempo reacional: 30 minutos; Rendimento: 78%; Característica: óleo amarelo.

**IV (filme,** *v*_{max}): 3426, 2958, 1755, 1696, 1598, 1131, 911 cm⁻¹.

Mistura do composto tricarbonilado vicinal com a sua forma hidratada (3:7)

# RMN de ¹H (250 MHz, CDCl₃), $\delta$ ppm:

*Composto tricarbonilado*: δ 4,0 (s, 3H); 7,5-7,7 (m,3H), 9,0-8,0 (m, 2H).

*Hidrato*: δ 3,74 (s, 3H); 5,4 (sl, 2H); 7,5-7,7 (m, 3H); 8,1 (m, 2H)

# RMN de 13 C (62,5 MHz, CDCl₃), $\delta$ ppm:

*Composto tricarbonilado*: 53,7; 129,4; 130,2; 131,6; 135,8; 161,0; 183,6.

*Hidrato*: 53,9; 91,9; 129,0; 130,4; 131,4; 134,9; 170,6; 191,6.

**EMAR (ESI/+,** *m/z*): Calculado para C₁₀H₉O₄ 193,0500 [M+H]⁺; Encontrado: 193,0487



Composto 38: 3-(4-metoxifenil)-2,3-dioxopropanoato de metila



Tempo reacional: 12 minutos; Rendimento: 77%; Característica: óleo amarelo

**IV (filme,**  $\nu_{max}$ ): 3407, 2954, 2844, 1747, 1682, 1602, 1254, 1175, 1128, 845 cm⁻¹. Mistura do composto tricarbonilado vicinal com a sua forma hidratada (1:3).

## RMN de ¹H (250 MHz, CDCl₃), $\delta$ ppm:

*Composto tricarbonilado*: 3,94 (s, 3H); 3,98 (s, 3H); 7,00 (d,  ${}^{3}J = 9,0Hz$ , 2H); 7,98 (d,  ${}^{3}J = 9,0Hz$ , 2H).

*Hidrato*:  $\delta$  3,74 (s, 3H); 3,90 (s, 3H); 5,47 (s, 2H); 6,94 (d, ³*J* = 9,0Hz, 2H); 8,07 (d, ³*J* = 9,0Hz, 2H).

## RMN de ¹³C (62,5 MHz, CDCl₃), $\delta$ ppm:

*Composto tricarbonilado*: 53,6; 55,9; 114,8; 124,6; 132,9; 161,4; 165,8; 183,7; 188,3. *Hidrato*: 53,8; 55,8; 91,8; 114,3; 124,2; 133,1; 165,0; 170,9; 189,8.

**EMAR (ESI/+,** *m/z*): Calculado para C₁₁H₁₁O₅ 223,0607 [M+H]⁺. Encontrado: 223,0678





Tempo reacional: 45 minutos; Rendimento: 76%; Característica: óleo amarelo

**IV (filme,** *ν*_{max}): 3413, 2959, 2876, 1749, 1691, 1606, 1185, 854 cm⁻¹.

Mistura do composto tricarbonilado vicinal com a sua forma hidratada (1:3).

# RMN de ¹H (250 MHz, CDCl₃), $\delta$ ppm:

*Composto tricarbonilado:* 1,29 (d,  ${}^{3}J$  = 6,9Hz, 6H); 2,98 (m, 1H); 3,96 (s, 3H); 7,40 (d,  ${}^{3}J$  = 8,3Hz, 2H); 7,93 (d,  ${}^{3}J$  = 8,4Hz, 2H)

*Hidrato*: 1,27 (d,  ${}^{3}J$  = 6,9Hz, 6H); 2,98 (m, 1H); 3,76 (s, 3H); 5,42 (br, 2H); 7,33 (d,

 ${}^{3}J = 8,4$ Hz, 2H); 8,02 (d,  ${}^{3}J = 8,4$ Hz, 2H)

# RMN de 13 C (62,5 MHz, CDCl₃), $\delta$ ppm:

*Composto tricarbonilado:* 22,9; 33,6; 52,7; 125,8; 126,6; 129,6; 154,4; 156,9; 170,0; 182,8

*Hidrato*: 22,7; 33,8; 52,9; 90,8; 126,2; 128,1; 129,8; 155,9; 169,8; 190,1.

**EMAR (ESI/+,** *m/z*): Calculado para C₁₃H₁₅O₄ 235,0937 [M+H]⁺; Encontrado: 235,0970



### Composto 42: 2,3-dioxohexenoato de metila



**Tempo reacional:** 20 minutos; **Rendimento:** 22%; **Característica:** óleo incolor Mistura do composto tricarbonilado vicinal com a sua forma hidratada (1:1).

**RMN** de ¹H (250 MHz, CDCl₃),  $\delta$  ppm: 0,92 (t, ³J = 7,4Hz, 3H); 0,99 (t, ³J = 7,4Hz, 3H); 1,54-1,76 (m, 4H); 2,40 (t, 1H); 2,53 (m, 1H); 2,68 (t, 1H); 2,86 (t, 1H); 3,76 (s, 3H); 3,87 (s, 3H).

**RMN de** ¹³**C (125 MHz, CDCl₃), δ ppm:** 13,7; 16,9; 18,4; 27,3; 33,9; 35,9; 40,8; 53,3; 86,5; 161,1; 167,8; 172,3; 192,3; 202,7.

Composto 44: 3-(3-clorofenil)-2,3-dioxopropanoato de metila



**Tempo reacional:** 30 minutos; **Rendimento:** 65% **Característica**: sólido amarelado **PF:** 66-67^oC

**IV (KBr,** *v*_{max}): 3468, 3421, 3073, 2959, 1755, 1743, 1701, 1110, 912 cm⁻¹.

**RMN de ¹H (250 MHz, CDCl₃), \delta ppm: 3,77 (s, 3H); 5,25 (s, 2H); 7,43 (t, ³J = 8,0 Hz, 1H); 7,61 (dt, ³J = 1,0 Hz, ³J = 8,0 Hz, 1H); 7,96 (d, ³J = 7,9 Hz, 1H); 8,08 (s, 1H).** 

**RMN de** ¹³**C (125 MHz, CDCl₃), δ ppm:** (mistura do composto tricarbonilado com a forma hidratada) 53,8; 54,1; 92,0; 128,4; 128,5; 129,9; 130,4; 130,7; 133,1; 134,9; 135,4; 135.7; 135.8; 160.9; 1170,2; 182,8; 188,8; 190,7.

EMAR (ESI/+, *m/z*): Calculado para C₁₀H₈ClO₄ 227,0111 [M+H]⁺; Encontrado: 227,0189









**Tempo reacional:** 30 minutos; **Rendimento:** 67%; **Característica:** óleo amarelo **IV (filme,**  $\nu_{max}$ ): 3418, 2954, 2843, 1747, 1693, 1585, 1127 cm⁻¹.

**RMN de** ¹**H (250 MHz, CDCl₃), δ ppm:** δ 3,79 (s, 3H); 3,91 (s, 6H); 3,97 (s, 3H); 5,35 (sl, 2H); 7,40 (s, 2H).

**RMN de ¹³C (62,5 MHz, CDCl₃), δ ppm:** δ 54,0; 56,5; 61,2; 91,9; 108,0; 126,2; 144,3; 153,3; 171,0; 190,2.

**EMAR (ESI,** *m/z*): Calculado para C₁₃H₁₅O₇ 283,0818 [M+H]⁺; Encontrado: 283,0807





Tempo reacional: 12 minutos; Rendimento: >95%; Característica: óleo amarelo esverdeado

**IV (filme,** *v*_{max}): 3415, 2985, 1750, 1695, 1235, 1133, 1101, 1015 cm⁻¹.

Mistura do composto tricarbonilado vicinal com a sua forma hidratada (4:5).

# RMN de ¹H (250 MHz, CDCl₃), $\delta$ ppm:

*Composto tricarbonilado*: 1,36 (t, ³*J* = 7,1Hz, 3H); 4,40 (q, ³*J* = 7,1Hz, 2H); 7,41-8,10 (m, 5H)

*Hidrato*: 1,05 (t, ³*J* = 7,1Hz, 3H); 4,17 (q, ³*J* = 7,1Hz, 2H); 7,41-8,10 (m, 5H)

Pico em 2,60 ppm corresponde ao DMSO.

## RMN de ¹³C (62,5 MHz, CDCl₃), $\delta$ ppm:

*Composto tricarbonilado*: 14,1; 63,4; 129,3; 130,1; 131,6; 135,7; 160,6; 183,9; 190,4. *Hidrato*: 13,8; 63,0; 92,1; 128,8; 130,3; 131,7; 134,6; 169,9; 192,2

Pico em 40,7 referente ao DMSO

**EMAR (ESI/+,** *m/z*): Calculado para C₁₁H₁₁O₄ 207,0657 [M+H]⁺; Encontrado: 207,0660



*Figura 94:* Espectro de RMN de ¹³C (CDCl₃, 62,5 MHz) do CTV **47** 

## Composto 48: 3-(4-tert-butilfenil)-2,3-dioxopropanoato de metila



Tempo reacional: 18 minutos; Rendimento: >95%; Característica: sólido branco PF: 56-59 °C

**IV (KBr,** *v*_{max}): 3416, 2962, 1748, 1688, 1604, 1250, 1127 cm⁻¹.

Mistura do composto tricarbonilado vicinal com a sua forma hidratada (1:3).

## RMN de ¹H (250 MHz, CDCI₃), $\delta$ ppm:

*Composto tricarbonilado*: 1,35 (s, 9H); 3,95 (s, 3H); 7,56 (d,  ${}^{3}J$  = 8,5 Hz, 2H); 7,93 (d,  ${}^{3}J$  = 8,5 Hz, 2H).

*Hidrato*: 1,34 (s, 9H); 3,76 (s, 3H); 7,49 (d,  ${}^{3}J$  = 8,6 Hz, 2H); 8,01 (d,  ${}^{3}J$  = 8,6 Hz, 2H).

## RMN de ¹³C (62,5 MHz, CDCl₃), $\delta$ ppm:

*Composto tricarbonilado*: 31,1; 35,5; 53,9; 126,1; 128,7; 130,5; 160,1; 161,1; 183,8; 189,8.

*Hidrato*: 31,1; 35,7; 53,6; 91,8; 126,4; 129,1; 130,3; 159,1; 170,8; 191,0.

EMAR (ESI, *m/z*): Calculado para C₁₄H₁₇O₄ 249,1127 [M+H]⁺; Encontrado: 249,1104



Figura 96: Espectro de RMN de ¹³C (CDCl₃, 62,5 MHz) do CTV 48

160 150 140 130 120 110 100 90 80 70 60

190 180 170

50

40

ppm

0 1.00 0



Figura 97: Espectro de ¹H (CDCI₃, 250 MHz) do composto **48** após a adição de D₂O



Figura 98: Espectro de ¹³C (CDCl₃, 250 MHz) do composto **48** após a adição de D₂O

## Composto 49: 3-(4-bromofenil)-2,3-dioxopropanoato de metila



Tempo reacional: 35 minutos; Rendimento: 75%; Característica: sólido branco PF: 99-100 °C

**IV (KBr,** *v*_{max}): 3421, 1756, 1738, 1694, 1585, 1133, 803 cm⁻¹.

Mistura do composto tricarbonilado vicinal com a sua forma hidratada (1:6).

## RMN de ¹H (250 MHz, CDCl₃), $\delta$ ppm:

*Composto tricarbonilado*: 3,97 (s, 3H); 7,70 (d, ³*J* = 8,7 Hz, 2H); 7,88 (d, ³*J* = 8,7 Hz, 2H).

*Hidrato*: 3,75 (s, 3H); 5,28 (s, 2H); 7,62 (d,  ${}^{3}J = 8,7$  Hz, 2H); 7,94 (d,  ${}^{3}J = 8,7$  Hz, 2H).

**RMN de ¹³C (62,5 MHz, CDCl₃), δ ppm:** 54,2; 92,0; 130,3; 130,6; 131,8; 132,5; 170,3; 190,8.

**EMAR (ESI/+,** *m/z*): Calculado para C₁₀H₈BrO₄ 270,9606 [M+H]⁺; Encontrado: 270,9649





Tempo reacional: 25 minutos; Rendimento: 61%; Característica: óleo amarelado

**IV (filme,** *ν*_{max}): 3432, 2965, 2933, 2873, 1738, 1692, 1606, 1571, 1128, 85 cm⁻¹.

Mistura do composto tricarbonilado vicinal com a sua forma hidratada (1:10).

# RMN de ¹H (250 MHz, CDCl₃), $\delta$ ppm:

*Composto tricarbonilado*: 7,38 (d,  ${}^{3}J$  = 8,3 Hz, 2H); 7,92 (d,  ${}^{3}J$  = 8,3 Hz, 2H).

*Hidrato*:  $\delta$  1,26 (d,  ${}^{3}J$  = 6,9 Hz, 6H); 1,32 (s, 9H); 2,97 (m, 1H); 5,36 (s, 2H); 7,31 (d,  ${}^{3}J$  = 8,4 Hz, 2H); 7,99 (d,  ${}^{3}J$  = 8,4 Hz, 2H).

## RMN de ¹³C (125 MHz, CDCl₃), $\delta$ ppm:

*Composto tricarbonilado*: 23,7; 28,0; 34,7; 86,0; 127,5; 129,9; 130,4; 157,5; 160,2; 185,0; 190,7.

*Hidrato*: 23,7; 27,6; 34,6; 84,8; 91,8; 127,0; 129,6; 130,5; 156,5; 169,2; 191,9.

Marilia MS173A CDCl3 250MHz set21mssH



# 4.3. PROCEDIMENTOS EXPERIMENTAIS, ESPECTROS E DADOS ESPECTRAIS CORRESPONDENTES AO ITEM 3.

## 4.3.1. Procedimento geral para preparação dos β-cetoésteres indol substituídos:



O aduto de MBH (1,0 mmol – 1 equivalente) foi dissolvido em acetonitrila (5 mL), em seguida adicionou-se 1 mmol de indol (1 equivalente) e 1,2 mmol de IBX (1,2 equivalentes). A mistura resultante foi mantida sob refluxo e agitação magnética por um período entre 8-14h. O andamento da reação foi monitorado por cromatografia de camada delgada (CCD) e observou-se a formação de uma mancha mais polar correspondente ao produto de interesse. Ao término, a mistura foi filtrada e o solvente removido sob pressão reduzida. O resíduo resultante foi purificado em coluna cromatográfica de sílica gel utilizando como eluente uma mistura hexano:acetato de etila (80:20).

### Composto 63: 3-(3-clorofenil)-2-(1H-indol-3-ilmetil)-3-oxopropanoato de metila



Tempo reacional: 6h; Rendimento: 87%; Característica: óleo amarelo

**IV (filme,** *v*_{max}): 3411, 1738, 1688, 1221, 743 cm⁻¹.

**RMN de** ¹**H (250 MHz, CDCI₃), \delta ppm:** 3,48 (d, ³*J* = 7,6 Hz, 2H), 3,65 (s, 3H), 4,71 (t, ³*J* = 7,6 Hz, 1H), 6,96 (d, ³*J* = 2,4Hz, 1H), 7,10-7,18 (m, 2H), 7,21-7,33 (m, 2H), 7,47 (ddd, ³*J* = 1,0, 2,0 e 8,2Hz, 1H), 7,59-7,63 (m, 1H), 7,73-7,77 (m, 1H), 7,87 (t, ³*J* = 1,8 Hz, 1H), 8,04 (sl, 1H).

**RMN de** ¹³**C (62,5 MHz, CDCl₃), δ ppm:** 24,7; 52,6; 54,9; 111,2; 112,0; 118,3; 119,6; 122,1; 122,8; 126,6; 126,9; 128,6; 129,9; 133,4; 135,0; 136,1; 137,7; 169,8; 194,0.

**EMAR (ESI/+,** *m/z*): Calculado para C₁₉H₁₆CINO₃Na 364,0717 [M+H]⁺. Encontrado: 364,0686.



Composto 64: 2-(1H-indol-3-ilmetil)-3-(4-metoxifenil)-3-oxopropanoato de metila



Tempo reacional: 7h; Rendimento: 88%; Característica: óleo marrom;

**IV (filme,** *v_{max}*): 3404, 1735, 1670, 1599, 1260, 744 cm⁻¹.

**RMN de** ¹**H (250 MHz, CDCI₃), \delta ppm:** 3,50 (dd, ³*J* = 5,0 e 7,6 Hz, 2H), 3,65 (s, 3H), 3,84 (s, 3H), 4,75 (t, ³*J* = 7,2 Hz, 1H), 6,89 (d, ³*J* = 9,0Hz, 1H), 7,00 (s, 1H), 7,10-7,26 (m, 2H), 7,40-7,46 (m, 1H), 7,63 (d, ³*J* = 8,3Hz, 1H), 7,96 (d, ³*J* = 9,0 Hz, 2H), 8,03 (sl, 1H).

**RMN de ¹³C (62,5 MHz, CDCl₃), δ ppm:** 25,0; 52,7; 54,7; 55,7; 111,4; 112,8; 114,1; 118,7; 119,7; 122,02; 123,0; 127,4; 129,5; 131,3;136,4; 164,1; 170,6; 193,7.

**EMAR (ESI/+,** *m/z*): Calculado para C₂₀H₁₉NO₄Na 360,1212 [M+Na]⁺. Encontrado: 360,1165.



# Composto 65: 2-[(5-metoxi-1H-indol-3-il)metil]-3-(4-metoxifenil)-3-oxopropanoato de metila



Tempo reacional: 6h; Rendimento: 79%; Característica: óleo marrom;

**IV (filme,** *v_{max}*): 3407, 2929, 1741, 1711, 1216, 797 cm⁻¹.

**RMN de** ¹**H (250 MHz, CDCl₃), \delta ppm:** 3,46 (m, 2H), 3,65 (s, 3H), 3,83 (s, 3H), 3,87 (s, 3H), 4,73 (t, ³*J* = 7,2 Hz, 1H), 6,81-6,90 (m, 3H), 6,96 (d, ³*J* = 2,3 Hz, 1H), 7,06 (d, ³*J* = 2,3 Hz, 1H), 7,19 (d, ³*J* = 8,8 Hz, 1H), 7,95 (d, ³*J* = 8,8 Hz, 2H), 8,10 (sl, 1H).

**RMN de ¹³C (62,5 MHz, CDCl₃), δ ppm:** δ 24,8; 52,4; 54,4; 55,4; 55,8; 100,3; 111,9; 112,1 112,2; 113,8; 123,5; 127,5; 129,2; 131,0; 131,3; 154,0; 163,8; 170,4; 193,5.

**EMAR (ESI/+,** *m/z*): Calculado para C₂₁H₂₁NO₅Na 390,1317 [M+Na]⁺. Encontrado: 390,1294.


# Composto 66: 3-(2H-1,3-benzodioxol-5-il)-2-(1H-indol-3-ilmetil)-3-oxopropanoato de metila



Tempo reacional: 36h; Rendimento: 61%; Característica: óleo marrom;

**IV (filme,** *v_{max}*): 3407, 1734, 1672, 1443, 1258, 743 cm⁻¹.

**RMN de** ¹**H (250 MHz, CDCI₃), \delta ppm:**  $\delta$  3,49 (dd, ³*J* = 2,7 e 7,1 Hz, 2H), 3,66 (s, 3H), 4,70 (t, ³*J* = 7,1 Hz, 1H), 6,00 (s, 2H), 6,77 (d, ³*J* = 8,7 Hz, 1H), 7,00 (d, ³*J* = 2,2 Hz, 1H), 7,13-7,19 (m, 2H), 7,32 (d, ³*J* = 7,1 Hz, 1H), 7,44 (d, ³*J* = 1,7 Hz, 1H), 7,54 (dd, ³*J* = 1,7 e 8,2 Hz, 1H), 7,63 (d, ³*J* = 8,2 Hz, 1H), 8,07 (sl, 1H).

**RMN de** ¹³**C (62,5 MHz, CDCl₃), δ ppm:** δ 24,8; 52,5; 54,6; 101,9; 107,9; 108,3; 111,2; 112,4; 118,4; 119,4; 122,0; 122,8; 125,2; 127,1; 131,0; 136,1; 148,3; 152,2; 170,2; 193,0.

**EMAR** (**ESI**/+, *m*/*z*): Calculado para C₂₀H₁₈NO₅ 352,1185 [M+H]⁺. Encontrado: 352,1190.



Figura 110: Espectro de RMN de ¹³C (CDCl₃, 62,5 MHz) do composto 66

### Composto 67: Metil 3-(6-bromo-2H-1,3-benzodioxol-5-il)-2-(1H-indol-3-ilmetil)-3-

### oxopropanoato



Tempo reacional: 12h; Rendimento: 71%; Característica: óleo marrom

**IV (filme, v_{max}):** 3409, 1738, 1698, 1479, 1244, 743 cm⁻¹.

**RMN de** ¹**H (250 MHz, CDCl₃), \delta ppm:** 3,46 (d, ³*J* =7,3 Hz, 2H), 3,66 (s, 3H), 4,69 (t, ³*J* = 7,3 Hz, 1H), 5,99 (s, 2H), 6,76 (s, 1H), 6,99 (s, 1H), 7,04 (d, ³*J*= 2,3 Hz, 1H), 7,11-7,18 (m, 2H), 7,33 (d, ³*J*= 7,6 Hz, 1H), 7,58 (d, ³*J*= 7,6 Hz, 1H), 7,99 (sl, 1H).

**RMN de** ¹³**C (62,5 MHz, CDCl₃), δ ppm:** 24,6; 52,5; 58,1; 102,4; 109,1; 111,1; 112,0; 112,1; 113,9; 118,5; 119,5; 122,1; 122,9; 127,0; 133,3; 136,1; 147,2; 150,3; 169,5; 196,9.

**EMAR (ESI/+,** *m/z*): Calculado para C₂₀H₁₆BrNO₅Na 452,0110 [M+Na]⁺. Encontrado: 452,0200.





Tempo reacional: 8h; Rendimento: 75%; Característica: óleo amarelo

**IV (filme**, *v_{máx}*): 3409, 1737, 1682, 1596, 1231, 744 cm⁻¹.

**RMN de** ¹**H (250 MHz, CDCl₃), \delta ppm:** 3,53 (dd, ³*J* = 1,9 Hz e ³*J* = 7,2 Hz, 1H), 3,63 (dd, ³*J* = 1,8 Hz e ³*J* = 4,9 Hz, 1H), 3,67 (s, 3H), 4,81 (t, ³*J* = 7,2 Hz, 1H), 7,02 (d, ³*J* = 2,3 Hz, 1H), 7,12-7,24 (m, 2H), 7,32-7,47 (m, 3H), 7,53-7,56 (m, 1H), 7,64-7,67 (m, 1H), 7,93-7,98 (m, 1H), 8,08 (sl, 1H).

**RMN de** ¹³**C (62,5 MHz, CDCl₃), δ ppm:** 24,9; 52,7; 55,0; 111,4; 112,6; 118,6; 119,7; 122,2; 123,0; 127,3; 128,8; 128,9; 133,7; 136,3; 136,4; 170,4; 195,3.

**EMAR (ESI/+,** *m/z*): Calculado para C₁₉H₁₇NO₃Na 330,1107 [M+Na]⁺. Encontrado: 330,1068

Composto 69: 2-(1H-indol-3-ilmetil)-3-(4-nitrofenil)-3-oxopropanoato de metila



Tempo reacional: 8h; Rendimento: 90%; Característica: óleo marrom

**IV (filme,** *ν_{máx}*): 3414, 1736, 1692, 1524, 1346, 745 cm⁻¹.

**RMN de** ¹**H (250 MHz, CDCl₃), \delta ppm:** 3,54 (d, ³*J* =7,3 Hz, 2H), 3,56 (s, 3H), 4,78 (t, ³*J* = 7,3 Hz, 1H), 7,00 (d, ³*J* = 2,3 Hz, 1H), 7,12-7,24 (m, 2H), 7,33 (d, ³*J* = 6,6 Hz, 1H), 7,62 (d, ³*J* = 8,4 Hz, 1H), 8,00 (d, ³*J* = 8,9 Hz, 3H), 8,21 (d, ³*J* = 8,9 Hz, 2H).

**RMN de** ¹³**C (62,5 MHz, CDCl₃), δ ppm:** 24,7; 52,8; 55,2; 111,3; 111,8; 118,3; 119,7; 122,3; 122,8; 123,8; 126,9; 129,5; 136,1; 140,8; 150,3; 169,4; 194,1.

**EMAR (ESI,** m/z): Calculado para C₁₉H₁₆N₂O₅Na 375,0957 [M+Na]⁺. Encontrado: 375,0995



Figura 114: Espectro de RMN de ¹³C (CDCI₃, 62,5 MHz) do composto 68



Composto 70: 2-(1H-indol-3-ilmetil)-3-oxo-3-(1,3-tiazol-2-il)propanoato de metila



Tempo reacional: 10h; Rendimento: 74%; Característica: óleo amarelo;

**IV (filme**, *v_{máx}*): 3411, 1736, 1685, 1435, 744 cm⁻¹.

**RMN de** ¹**H (250 MHz, CDCI₃), \delta ppm:** 3,57 (m, 2H), 3,68 (s, 3H), 5,13 (t, ³*J* = 7,3 Hz, 1H), 7,06 (d, ³*J* = 2,1 Hz, 1H), 7,11-7,21 (m, 2H), 7,30-7,37 (m, 1H), 7,66 (d, ³*J* = 3,0 Hz, 1H), 7,75-7,72 (m, 1H), 8,01 (d, ³*J* = 3,0 Hz, 1H), 8,06 (sl, 1H).

**RMN de ¹³C (62,5 MHz, CDCl₃), δ ppm:** 24,6; 52,7; 54,9; 111,3; 112,4; 119,0; 119,7; 122,2; 123,2; 127,1; 127,3; 136,3; 145,2; 166,0; 170,1; 188,9.

**EMAR (ESI/+;** *m/z*): Calculado para C₁₆H₁₅N₂O₃S 315,0803 [M+H]⁺. Encontrado: 315,0811



Composto 71: 2-[(5-metoxi-1H-indol-3-il)metil]-3-oxo-3-fenilpropanoato de metila



Tempo reacional: 10h; Rendimento: 71%; Característica: óleo amarelo;

**IV (filme,** *v_{máx}*): 3409, 2999, 1737, 1683, 1596, 1216, 737 cm⁻¹.

**RMN de** ¹**H (250 MHz, CDCI₃), \delta ppm:** 3,48 (dd, ³*J* = 2,6 Hz, ³*J*= 7,2 Hz, 2H), 3,67 (s, 3H), 3,88 (s, 3H), 4,77 (t, ³*J* = 7,2, 1H), 6,86 (dd, ³*J* = 2,4 Hz, ³*J*= 8,8 Hz, 1H), 7,00 (d, ³*J* = 2,3 Hz, 1H), 7,07 (d, ³*J* = 2,3 Hz, 1H), 7,22 (d, ³*J* = 8,8 Hz, 1H), 7,41-7,46 (m, 2H), 7,53-7,59 (m, 1H), 7,92-7,98 (m, 3H).

**RMN de** ¹³**C (62,5 MHz, CDCl₃), δ ppm:** 25,0, 52,8, 54,9, 56,1, 100,6, 112,1, 112,4, 112,5, 123,7, 127,7, 128,86, 128,9, 131,5, 133,8, 136,5, 154,3, 170,4, 195,4.

**EMAR (ESI/+,** *m/z*): Calculado para C₂₀H₁₉NO₄Na 360,1212 [M+Na]⁺. Encontrado: 360,1165.



## Composto 72: 2-{[5-(benziloxi)-1H-indol-3-il]metil}-3-(4-metoxifenil)-3oxopropanoato de metila



Tempo reacional: 8h; Rendimento: 72%; Característica: óleo marrom

**IV (filme,** *v_{máx}*): 3410, 1736, 1673, 1265, 1175, 737 cm⁻¹.

**RMN de** ¹**H (250 MHz, CDCl₃), \delta ppm:** 3,49 (dd, ³*J* = 3,6 Hz, ³*J* = 7,1 Hz, 2H), 3,67 (s, 3H), 3,83 (s, 3H), 4,74 (t, ³*J* = 7,2 Hz, 1H), 5,13 (s, 2H), 6,87-6,97 (m, 4H), 7,19-7,54 (m, 7H), 7,95 (d, ³*J* = 8,9 Hz, 2H), 8,15 (sl, 1H).

**RMN de** ¹³**C (62,5 MHz, CDCl₃), δ ppm:** 24,8; 52,4; 54,2; 55,4; 70,9; 102,0; 111,9; 112,0; 112,7; 113,8; 123,6; 127,4; 127,6; 127,7; 128,4; 129,1; 131,0; 131,4; 137,6; 153,1; 163,8; 170,4; 193,6.

**EMAR (ESI/+,** *m/z*): Calculado para C₂₇H₂₅NO₅Na 466,1631 [M+Na]⁺. Encontrado: 466,1533



## Composto 73: 2-[(5-bromo-1H-indol-3-il)metil]-3-oxo-3-(3,4,5trimetoxifenil)propanoato de etila



Tempo reacional: 12h; Rendimento: >95%; Característica: óleo marrom;

**IV (filme,** *v_{máx}*): 3445, 1727, 1671, 1584, 1127, 730 cm⁻¹.

**RMN de** ¹**H (250 MHz, CDCl₃), \delta ppm:** 1,18 (t, ³*J* = 7,1 Hz, 3H), 3,44 (dd, ³*J* = 1,9 Hz e 7,0 Hz, 2H), 3,80 (s, 6H), 3,89 (s, 3H), 4,15 (q, ³*J* = 7,1 Hz, 2H), 4,67 (t, ³*J* = 7,3 Hz, 1H), 7,01-7,29 (m, 6H), 7,77 (s, 1H), 8,12 (sl, 1H).

**RMN de** ¹³**C (62,5 MHz, CDCl₃), δ ppm:** 14,3, 25,1, 54,8, 56,4, 61,1, 61,8, 106,2, 112,2, 113,0, 113,1, 121,2, 124,6, 125,2, 129,2, 131,8, 135,0, 143,0, 153,2, 169,8, 194,4.

**EMAR (ESI/+,** m/z): Calculado para C₂₃H₂₄BrNO₆Na 512,0685 [M+Na]⁺. Encontrado: 512,0497



### Composto 74: 2-(1H-indol-3-ilmetil)-3-oxononanoato de metila



Tempo reacional: 10h; Rendimento: 60%; Característica: óleo incolor

**RMN de** ¹**H (250 MHz, CDCI₃), \delta ppm:** 0,81 (t, ³*J* = 3,5Hz, 3H); 1,21 (m, 5H); 1,48 (m, 2H); 1,63 (s, 1H); 2,33 (m, 1H); 2,51 (m, 1H); 3,30 (d, ³*J* = 7,6 Hz, 2H); 3,70 (s, 3H); 3,87 (s, 3H); 3,92 (t, ³*J* = 7,5Hz, 1H); 6,85 (dd, ³*J* = 2,4 e 8,8Hz, 1H); 6,98 (dd, ³*J* = 2,3 e 14,6 Hz, 2H); 7,23 (d, ³*J* = 8,8 Hz, 1H); 7,34 (sl, 1H).

**RMN de** ¹³**C (62,5 MHz, CDCl₃), δ ppm:** 13,9; 22,4; 23,2; 24,0; 28,5; 31,4; 42,8; 52,4; 55,9; 59,1; 100,4; 112,0; 112,3; 123,3; 127,4; 131,3; 154,1; 170,0; 205,5.





Tempo reacional: 1-5h; Rendimento: 0-26%; Característica: óleo incolor **RMN de** ¹H (250 MHz, CDCl₃), δ ppm: 3,73 (s, 3H); 3,81 (s, 3H); 5,38 (s, 1H); 5,57 (s, 1H); 6,39 (s, 1H); 5,57 (s, 1H); 6,62 (d, ³*J*= 1,8Hz, 1H); 6,87 (d, ³*J* = 8,7Hz, 2H); 7,05-7,11 (m, 1H); 7,21 (d,  ${}^{3}J$  = 8,7Hz, 2H); 7,16-7,23 (m, 3H); 7,34 (d,  ${}^{3}J$  = 8,1Hz, 1H); 7,45  $(d, {}^{3}J = 7,8Hz, 1H); 8,02 (sl, 1H).$ 

**EMAR** (ESI/+, m/z): Calculado para C₂₀H₂₀NO₃ 322,1443 [M+H]⁺. Encontrado: 322,1425



Figura 127: Espectro de ¹H RMN (CDCl₃, 250 MHz) do composto **76** 

4.3.2. Procedimento geral para preparação dos β-hidroxi-ésteres indol susbstituídos



Os compostos indólicos **63-74** (1,0 mmol – 1 equivalente) foram dissolvidos em 10 mL de metanol. A solução foi resfriada a 0ºC e em seguida adicionou-se 3,0 mmol (3,0 equivalentes) de boroidreto de sódio (NaBH₄) em pequenas porções. A reação foi mantida sob agitação magnética, à temperatura ambiente durante 1h. O avanço foi acompanhado por cromatografia de camada delgada (CCD) e observou-se a formação de duas manchas mais polares. Ao término a reação foi concentrada sob pressão reduzida, o bruto foi dissolvido em acetato de etila e extraído sucessivamente com solução saturada de NH₄Cl (1 x 20 mL), água destilada (2 x 20 mL) e solução saturada de NaCl (1 x 20 mL). A fase orgânica foi separada, seca sob Na₂SO₄ anidro e o solvente foi retirado a pressão reduzida para obtenção do β-hidroxiesterindólico.

#### 4.3.3. Procedimento geral de preparação dos derivados ciclopenta[b]indolicos



Sob atmosfera inerte, 0,8 mmol do  $\beta$ -hidróxi-éster indol substituído (1,0 equivalente) foi dissolvido em 10 mL de tolueno anidro. O sistema foi resfriado a 0°C e em seguida 0,16 mmol de ácido tríflico (CF₃SO₃H) (0,2 equivalentes) foi adicionado com auxílio de uma seringa. A reação permaneceu sob agitação magnética a temperatura ambiente por um período entre 4 a 24h. O avanço foi acompanhado por cromatografia

de camada delgada e observou-se a formação de uma mancha menos polar referente ao produto ciclizado. Ao término, a reação foi diluída em acetato de etila e extraída com solução saturada de NaHCO₃ (1 x 30 mL), água destilada (2 x 20 mL), solução saturada de NaCl (2 x 30 mL) e seca sob Na₂SO₄ anidro. O solvente foi removido sob pressão reduzida e o resíduo resultante foi purificado em coluna cromatográfica de sílica gel utilizando como eluente uma mistura de hexano:acetato de etila (80:20).

# Composto 61: 3-(3-clorofenil)-1H,2H,3H,4H-ciclopenta[b]indol-2-carboxilato de metila



Tempo reacional: 4h; Rendimento: 18%; Característica: óleo marrom

**IV (filme,** *v_{máx}*): 3394, 2950, 1731, 1434, 1264, 742 cm⁻¹.

**RMN de ¹H (250 MHz, CDCI₃), \delta ppm:** 3,13 (ddd, ³*J* = 1,5, 6,8 e 14,4 Hz, 1H); 3,38 (ddd, ³*J* = 1,5, 6,8 e 14,4 Hz, 1H); 3,58-3,67 (m, 1H); 3,75 (s, 3H); 4,82 (d, ³*J* = 6,7 Hz, 1H); 7,11-7,15 (m, 3H); 7,22-7,30 (m, 4H); 7,48-7,51 (m, 1H); 7,72 (sl, 1H).

**RMN de** ¹³**C (62,5 MHz, CDCl₃), δ ppm:** 28,7; 48,0; 52,1; 58,3; 111,8; 118,3; 118,9; 120,0; 121,6; 124,1; 126,1; 127,5; 127,8; 130,1; 134,7; 141,2; 141,9; 144,7; 174,5.

**EMAR (ESI/+,** *m/z*): Calculado para C₁₉H₁₇CINO₂ 326,0948 [M+H]⁺. Encontrado: 326,1037.





Tempo reacional: 4h; Rendimento: 13%

**RMN de ¹H (250 MHz, CDCI₃), \delta ppm: \delta 3,81 (s, 3H), 6,43 (d, ³J= 16,0 Hz, 1H), 7,26-**7,38 (m, 2H), 7,50 (s, 1H), 7,60 (d,  ${}^{3}J$  = 16,0 Hz, 1H).

**EMAR** (ESI/+; m/z): Calculado para C₁₀H₁₀ClO₂ 197,0369 [M+H]⁺. Encontrado: 197,0122.



Figura 130: Espectro de RMN de ¹H (CDCl₃, 250 MHz) do composto 62

### Composto 78: 3-(4-metoxifenil)-1H,2H,3H,4H-ciclopenta[b]indol-2-carboxilato de



Tempo reacional: 0,5h; Rendimento: 62%; Característica: óleo marrom

**IV (filme,** *v_{máx}*): 3393, 1731, 1512, 1265, 738 cm⁻¹.

**RMN de** ¹**H (250 MHz, CDCI₃), \delta ppm:** 3,13 (ddd, ³*J* = 1,5, 7,0 e 14,3 Hz, 1H); 3,37 (ddd, ³*J* = 1,5, 9,0 e 14,3 Hz, 1H); 3,58-3,67 (m, 1H); 3,75 (s, 3H); 3,80 (s, 3H); 4,79 (d, ³*J* = 6,8 Hz, 1H); 6,84-6,87 (m, 2H); 7,11-7,23 (m, 4H); 7,25-7,28 (m, 1H); 7,48-7,52 (m, 1H); 7,73 (sl, 1H).

**RMN de** ¹³**C (62,5 MHz, CDCl₃), δ ppm:** 28,7; 47,7; 52,0; 55,3; 58,6; 111,7; 114,2; 117,7; 118,7; 119,8; 121,3; 124,3; 128,8; 134,6; 141,1; 143,1; 158,8; 174,9.

**EMAR (ESI/+,** *m/z*): Calculado para C₂₀H₂₀NO₃ 322,1443 [M+H]⁺. Encontrado: 322,1431.



## Composto 79: 7-metoxi-3-(4-metoxifenil)-1H,2H,3H,4H-ciclopenta[*b*]indol-2carboxilato de metila



Tempo reacional: 2h; Rendimento: 67%; Característica: óleo marrom

**IV (filme,** *v_{máx}*): 3372, 2951, 1731, 1511, 1247, 1214, 735 cm⁻¹.

**RMN de** ¹**H (250 MHz, CDCl₃), \delta ppm:** 3,10 (ddd, ³*J*= 1,3, 7,0 e 14,2 Hz, 1H); 3,29-3,39 (m, 1H); 3,56-3,65 (m, 1H); 3,74 (s, 3H); 3,78 (s, 3H); 3,86 (s, 3H); 4,75 (d, ³*J* = 6,7 Hz, 1H); 6,76-6,82 (m, 3H); 6,98 (d, ³*J* = 2,3 Hz, 1H); 7,11-7,16 (m, 3H); 7,76 (sl, 1H).

**RMN de** ¹³**C (62,5 MHz, CDCl₃), δ ppm:** 28,6; 47,7; 51,9; 55,2; 55,9; 58,4; 101,1; 110,9; 112,2; 114,1; 117,3; 124,5; 128,8; 134,6; 136,1; 144,0; 154,1; 158,7; 174,9.

**EMAR (ESI/+,** *m/z*): Calculado para C₂₁H₂₁NO₄Na 374,1368 [M+Na]⁺. Encontrado: 374,1420.



## Composto 80: 3-(2H-1,3-benzodioxol-5-il)-1H,2H,3H,4H-ciclopenta[*b*]indol-2carboxilato de metila



Tempo reacional: 4h; Rendimento: 71%; Característica: óleo marrom

**IV (filme**, *v*_{máx}): 3403, 1731, 1484, 1248 cm⁻¹.

**RMN de ¹H (250 MHz, CDCl₃), \delta ppm: 3,11 (dd, ³J = 6,9 e 14,3 Hz, 1H), 3,36 (dd,** 

 ${}^{3}J = 6,9 \text{ e } 14,3 \text{ Hz}, 1\text{H}$ ), 3,56-3,65 (m, 1H), 3,75 (s, 3H), 4,76 (d,  ${}^{3}J = 6,9 \text{ Hz}, 1\text{H}$ ), 5,92 (s, 2H), 6,69-6,74 (m, 3H), 7,11-7,15 (m, 2H), 7,25-7,28 (m, 1H), 7,48-7,51 (m, 1H), 7,80 (sl, 1H).

**RMN de** ¹³**C (62,5 MHz, CDCl₃), δ ppm:** 28,6, 48,1, 52,0, 58,5, 101,0, 108,0, 108,3, 111,7, 117,8, 118,8, 119,8, 120,9, 121,3, 124,2, 136,4, 141,1, 142,7, 146,7, 148,0, 174,8.

**EMAR (ESI/+,** *m/z*): Calculado para C₂₀H₁₈NO₄ 336,1213 [M+H]⁺. Encontrado: 336,1236.



Figura 136: Espectro de RMN¹³C (CDCl₃, 250 MHz) do ciclopenta[b]indol 80

## Composto 81: 3-(6-bromo-2H-1,3-benzodioxol-5-il)-1H,2H,3H,4Hciclopenta[*b*]indol-2-carboxilato de metila



Tempo reacional: 2h; Rendimento: 70%; Característica: óleo marrom

**IV (filme,** *v_{máx}*): 3399, 3055, 1730, 1478, 738 cm⁻¹.

**RMN de ¹H (250 MHz, CDCl₃), \delta ppm:** 3,17 (dd, ³*J* = 5,6 e 14,4 Hz, 1H), 3,28-3,37 (m, 1H), 3,50-3,58 (m, 1H), 3,76 (s, 3H), 5,23 (d, ³*J* = 5,2 Hz, 1H), 5,91 (s, 2H), 6,41 (s, 1H), 7,04 (s, 1H), 7,11-7,15 (m, 2H), 7,24-7,26 (m, 1H), 7,49-7,52 (m, 1H), 7,84 (sl, 1H).

**RMN de** ¹³**C (62,5 MHz, CDCl₃), δ ppm:** 28,6, 47,8, 52,2, 57,2, 101,8, 108,4, 111,7, 112,7, 114,3, 118,6, 118,8, 119,8, 121,5, 124,1, 134,8, 141,3, 142,1, 147,4, 147,9, 174,9.

**EMAR (ESI/+,** *m/z*): Calculado para C₂₀H₁₇BrNO₄ 414,0341 [M+H]⁺. Encontrado: 414,0378.





Tempo reacional: 24h; Rendimento: 12%; Característica: óleo amarelo

**IV (filme,** *v_{máx}*): 3396, 1730, 1169, 742 cm⁻¹.

**RMN de** ¹**H (250 MHz, CDCl₃), \delta ppm:** 3,15 (ddd, ³*J* = 1,3 Hz, ³*J*= 6,9 Hz, ³*J* = 14,4 Hz, 1H); 3,40 (ddd, ³*J* = 1,3 Hz, ³*J*= 9,1 Hz, ³*J*= 14,4 Hz, 1H); 3,67 (dt, ³*J* = 7,0 Hz, 1H); 3,76 (s, 3H); 4,85 (d, ³*J* = 6,7 Hz, 1H); 7,10-7,18 (m, 2H); 7,29-7,37 (m, 6H); 7,50-7,53 (m, 1H); 7,75 (sl, 1H).

**RMN de** ¹³**C (62,5 MHz, CDCl₃), δ ppm:** 29,0; 48,6; 52,2; 58,6; 111,9; 118,2; 119,0; 120,1; 121,6; 124,5; 127,5; 128,0; 129,0; 141,3; 142,8; 143,0; 175,1.

**EMAR (ESI/+;** *m/z*): Calculado para C₁₉H₁₇NO₂Na 314,1157 [M+Na]⁺. Encontrado: 314,1237.



# Composto 83: 3-(4-nitrofenil)-1H,2H,3H,4H-ciclopenta[b]indol-2-carboxilato de metila



Tempo reacional: 24 h; Rendimento: 10%; Característica: óleo amarelo;

**IV (filme,** *v_{máx}*): 1732, 1519, 1346 cm⁻¹.

**RMN de** ¹**H (250 MHz, CDCl₃), \delta ppm:** 3,19 (ddd, ³*J* = 1,6 Hz, ³*J* = 6,8 Hz, ³*J* = 14,3 Hz, 1H); 3,42 (ddd, ³*J* = 1,5 Hz, ³*J* = 8,8 Hz, ³*J* = 14,5 Hz, 1H); 3,65 (dt, ³*J* = 6,6 Hz, 1H); 3,78 (s, 3H); 4,99 (d, ³*J* = 6,6 Hz, 1H); 7,13-7,22 (m, 2H); 7,30-7,34 (m, 1H); 7,44 (d, ³*J* = 8,7 Hz, 2H); 7,53 (m, 1H); 7,75 (sl, 1H); 8,19 (d, ³*J* = 8,7 Hz, 2H).

**RMN de** ¹³**C (62,5 MHz, CDCl₃), δ ppm:** 28,9; 48,3; 52,5; 58,5; 112,1; 119,2; 119,3; 120,5; 122,2; 124,4; 129,0; 141,1; 141,5; 147,5; 147,9; 150,5; 174,4.

**EMAR** (**ESI/+**, *m/z*): Calculado para C₁₉H₁₇N₂O₄ 337,1188 [M+H]⁺. Encontrado: 337,1151.



# Composto 84: 3-(1,3-tiazol-2-il)-1H,2H,3H,4H-ciclopenta[b]indol-2-carboxilato de metila



Tempo reacional: 24 h; Rendimento: 5%; Característica: óleo marrom

**IV (filme,** *v_{máx}*): 3405, 1733, 1384, 1094 cm⁻¹.

**RMN de ¹H (250 MHz, CDCl₃), \delta ppm:** 3,15 (ddd, ³*J* = 1,4 Hz, ³*J* = 6,9 Hz, ³*J* = 14,3 Hz,1H); 3,39 (ddd, ³*J* = 1,5 Hz, ³*J* = 9,0 Hz, ³*J* = 14,4 Hz, 1H); 3,67 (dt, ³*J* = 6,9 Hz, 1H); 3,76 (s, 3H); 4,86 (d, ³*J* = 6,6 Hz, 1H); 7,10-7,54 (m, 6H); 7,74 (sl, 1H).

**RMN de ¹³C (62,5 MHz, CDCl₃), δ ppm:** 29,1; 48,6; 52,3; 58,6; 111,9; 119,0; 120,1; 121,6; 127,5; 128,1; 128,3; 129,1; 141,4; 142,8; 143,0; 175,1.

**EMAR (ESI/+;** *m/z*): Calculado para C₁₆H₁₄N₂O₂SK 337,0413 [M+K]⁺. Encontrado: 337,0504



²⁰⁰ 180 160 140 120 100 80 60 40 20 0 ppm *Figura 144:* Espectro de RMN ¹³C (CDCl₃, 62,5 MHz) do ciclopenta[*b*]indol **84**
#### Composto 85: 7-metoxi-3-fenil-1H,2H,3H,4H-ciclopenta[b]indol-2-carboxilato de



Tempo reacional: 19h; Rendimento: 8%; Descrição: óleo marrom

**IV (filme,** *v_{máx}*): 3411, 1733, 1214, 735 cm⁻¹.

**RMN de** ¹**H (500 MHz, CDCI₃), \delta ppm:** 3,12 (ddd, ³*J* = 1,5 Hz ³*J* = 6,8 Hz, ³*J* = 14,3 Hz, 1H); 3,36 (ddd, ³*J* = 1,2 Hz ³*J* = 6,9 Hz, ³*J* = 14,3 Hz, 1H); 3,66 (dt, ³*J* = 6,8 Hz, 1H); 3,75 (s, 3H), 3,87 (s, 3H); 4,83 (d, ³*J* = 6,6 Hz, 1H); 6,80 (dd, ³*J* = 2,4 Hz, ³*J* = 8,8 Hz 1H); 6,98 (d, ³*J* = 2,3 Hz, 1H); 7,17 (d, ³*J* = 8,8 Hz, 1H); 7,23-7,37 (m, 5H); 7,62 (sl, 1H).

**RMN de** ¹³**C (125 MHz, CDCl₃), δ ppm:** 29,0; 48,7; 52,3; 56,2; 58,6; 101,5; 111,3; 112,5; 118,1; 124,8; 127,5; 128,1; 129,1; 136,4; 142,8; 144,0; 154,5; 175,1.

**EMAR (ESI/+,** *m/z*): Calculado para C₂₀H₂₀NO₃ 322,1443 [M+H]⁺. Encontrado: 322,1394



# Composto 86: 7-(benziloxi)-3-(4-metoxifenil)-1H,2H,3H,4H-ciclopenta[b]indol-2carboxilato de metila



Tempo reacional: 5h; Rendimento: 52%; Característica: óleo amarelo

**IV (filme,** *v_{máx}*): 3374, 1731, 1585, 1247, 1176, 736 cm⁻¹.

**RMN de** ¹**H (250 MHz, CDCl₃), \delta ppm:** 3,10 (ddd, ³*J* = 1,2 Hz, ³*J* = 7,1 Hz, ³*J* = 14,2 Hz, 1H); 3,33 (m, 1H); 3,60 (dt, ³*J* = 7,0, 1H); 3,75 (s, 3H); 3,80 (s, 3H), 4,77 (d, ³*J* = 6,8 Hz, 1H); 5,13 (s, 2H); 6,84-7,51 (m, 12H); 7,63 (sl, 1H).

**RMN de** ¹³**C (62,5 MHz, CDCl₃), δ ppm:** 28,9; 47,9; 52,2; 55,5; 58,7; 71,2; 103,0; 111,9; 112,4; 114,4; 117,8; 124,8; 127,8; 128,0; 128,7; 129,0; 134,8; 136,5; 138,0; 144,3; 153,7; 159,0; 175,1.

**EMAR (ESI/+,** *m/z*): Calculado para C₂₇H₂₅NO₄Na 450,1681 [M+Na]⁺. Encontrado: 450,1541.





Figura 149: Espectro de NOESY do composto 86



Figura 150: Expansão do espectro de NOESY do composto 86



Figura 151: nOe do do composto 86 (irradiação do H benzílico)

# Composto 87: 7-bromo-3-(3,4,5-trimetoxifenil)-1H,2H,3H,4H-ciclopenta[*b*]indol-2carboxilato de etila



Tempo reacional: 5h; Rendimento: 70%; Característica: sólido marrom

PF: 181-183 °C

**IV (filme,** *v_{máx}*): 3340, 1728, 1593, 1128, 795 cm⁻¹.

**RMN de** ¹**H (250 MHz, CDCl₃), \delta ppm:** 1,31 (t, ³*J* = 7,1 Hz, 3H); 3,02-3,11 (m, 1H); 3,30-3,40 (m, 1H); 3,58-3,67 (m, 1H); 3,75 (s, 6H); 3,83 (s, 3H); 4,22 (q, ³*J* = 7,1 Hz, 2H); 4,76 (d, ³*J* = 7,0 Hz, 1H); 6,40 (s, 2H); 7,16-7,26 (m, 2H); 7,63 (s, 1H); 8,32 (sl, 1H).

**RMN de** ¹³**C (62,5 MHz, CDCl₃), δ ppm:**14,5; 28,9; 48,8; 56,3; 58,6; 60,9; 61,1; 104,7; 113,1; 113,3; 117,4; 121,6; 124,2; 126,1; 137,0; 138,3; 140,0; 144,5; 153,6; 174,4.

**EMAR (ESI/+;** *m/z*): Calculado para C₂₃H₂₅BrNO₅ 474,0916 [M+H]⁺. Encontrado: 474,0917.



## 4.3.4. Procedimento geral de preparação do derivado ciclopenta[b]indólico 89

## Composto 89: 7-hidroxi-3-(4-metoxifenil)-1H,2H,3H,4H-ciclopenta[*b*]indol-2carboxilato de metila



O composto **86** (0,12 mmol – 1 equivalente ) foi dissolvido em 10 mL de metanol, em seguida foi adicionado Pd/C 10% (10 mg). A mistura reacional foi mantida sob agitação magnética, a temperatura ambiente e atmosfera de H₂ por 3h. O avanço foi acompanhado por cromatografia de camada delgada (CCD) e observou-se a formação de uma mancha mais polar. Ao término, a mistura reacional foi filtrada em plug de sílica gel para fornecer o produto puro em 94% de rendimento.

# Tempo reacional: 3h; Rendimento: 94%; Característica: sólido cinza

**PF**: 91-92 ^⁰C.

**IV (filme,** *v_{máx}*): 3465, 3397, 1716, 1512, 1245, 736 cm⁻¹.

**RMN de** ¹**H (250 MHz, Acetona-D₆), \delta ppm:**  $\delta$  3,11 (ddd, ³*J* = 1,2 Hz, 6,5 Hz e 14,3 Hz, 1H); 3,30-3,41 (m, 1H); 3,56-3,71 (m, 1H); 3,80 (s, 3H); 3,87 (s, 3H); 4,76 (d, ³*J* = 6,2 Hz, 1H); 6,53 (sl, 1H); 6,72 (dd, ³*J* = 2,4 e ³*J* = 8,7 Hz, 1H); 6,93-7,01 (m, 3H); 7,19-7,26 (m, 3H); 8,79 (sl, 1H).

**RMN de** ¹³**C (62,5 MHz, Acetona-D₆), \delta ppm:**  $\delta$  57,6; 77,4; 81,1; 84,5; 87,6; 132,6; 139,9; 141,8; 143,6; 145,8; 146,9; 154,5; 158,3; 164,6; 165,9; 174,3; 180,1; 188,3.

**EMAR (ESI/+,** *m/z*): Calculado para C₂₀H₂₀NO₄ 338,1392 [M+H]⁺. Encontrado: 338,1337.



## 4.3.5. Procedimento geral de preparação do derivado ciclopenta[b]indolico 90



Composto 90: 7-metoxi-3-(4-metoxifenil)-1H,2H,3H,4H-ciclopenta[b]indol-2-ácido carboxílico

O composto **79** (0,2 mmol – 1,0 equivalente) foi dissolvido em 5 mL de metanol, em seguida adicionou-se 0,8 mmol de hidróxido de potássio (4,0 equivalentes). A mistura reacional foi mantida sob agitação magnética por 19h a temperatura ambiente. O avanço foi acompanhado por cromatografia de camada delgada (CCD) e observou-se a formação de uma mancha mais polar referente ao ácido carboxílico formado. Ao término, a reação foi concentrada, o resíduo dissolvido em acetato de etila e extraído sucessivamente com solução de HCl 10% (1 x 25 mL), água destilada (2 x 25 mL) e solução saturada de NaCl (1 x 25 mL). A fase orgânica foi separada, seca sob Na₂SO₄ anidro e o solvente foi retirado sob pressão reduzida. O produto foi obtido puro sem necessidade de purificação adicional.

# Tempo reacional: 19h; Rendimento: 93%; Característica: sólido marrom PF: 97 °C

IV (filme, v_{máx}): 3353, 1704, 1606, 1248, 736 cm⁻¹.

**RMN de** ¹**H (250 MHz, CDCI₃), \delta ppm:** 3,15 (dd, ³*J* = 6,7 Hz e 14,2 Hz, 1H); 3,31-3,41 (m, 1H); 3,59-3,58 (m, 1H); 3,78 (s, 3H); 3,86 (s, 3H); 4,75 (d, ³*J* = 6,5 Hz, 1H); 6,77-6,85 (m, ³*J* = 8,6 Hz, 3H); 6,97 (s, 1H); 7,15 (d, ³*J* = 8,5 Hz, 3H); 7,65 (sl, 1H).

**RMN de ¹³C (62,5 MHz, CDCl₃), δ ppm:** 28,7; 47,8; 55,5; 56,2; 58,4; 101,4; 111,3; 112,5; 114,5; 117,7; 124,8; 129,0; 134,6; 136,4; 144,1; 154,5; 159,1; 180,2.

**EMAR** (ESI, m/z): Calculado para C₂₀H₁₉NO₄Na 360,1212 [M+Na]⁺. Encontrado: 360,1165.



# 4.3.6. Procedimento geral de preparação do derivado ciclopenta[*b*]indólico 91 Composto 91: [7-metoxi-3-(4-metoxifenil)-1H,2H,3H,4H-ciclopenta[b]indol-2il]metanol



O composto **79** (0,11 mmol – 1,0 equivalente) foi dissolvido em 5 mL de diclorometano anidro. A mistura reacional foi resfriada e mantida à -78 °C e em seguida adicionou-se lentamente 3,0 equivalentes de solução 1,5 M de DIBAL-H em tolueno. A mistura reacional foi mantida sob agitação magnética e atmosfera inerte durante 2h. O avanço foi acompanhado por cromatografia de camada delgada e observou-se a formação de uma mancha mais polar. Após o término, o banho foi retirado e adicionou-se 5 mL de solução saturada de acetato de sódio. A mistura foi transferida para um béquer contendo 6 mL de éter etílico e 1 mL de solução saturada de NH₄CI e o conteúdo resultante foi agitado por 1h até ocorrer a formação de um gel. Posteriormente a fase aquosa foi separada da orgânica e extraída com acetato de etila (3 x 10 mL). A fase orgânica foi recolhida, seca sob Na₂SO₄ e o solvente foi retirado sob pressão reduzida. O produto foi obtido puro sem necessidade de purificação adicional

# Tempo reacional: 19h; Rendimento: >95%; Característica: óleo marrom

**IV** (filme, *v_{máx}*): 3404, 1610, 1246, 735 cm⁻¹.

**RMN de** ¹**H (250 MHz, CDCl₃), \delta ppm:** 1,58 (sl, 1H); 2,66 (dd, ³*J* = 5,6 Hz e 14,1 Hz, 1H); 2,89-3,01 (m, 1H); 3,13 (m, 1H); 3,79 (s, 3H); 3,85 (s, 2H); 3,87 (s, 3H); 4,20 (d, ³*J* = 5,5 Hz, 1H); 6,78 (dd, ³*J* = 2,5 Hz e 8,8 Hz, 1H); 6,84 (d, ³*J* = 8,6 Hz 2H); 6,98 (d, ³*J* = 2,1 Hz, 1H); 7,09-7,16 (m, 3H); 7,59 (sl, 1H).

**RMN de** ¹³**C (62,5 MHz, CDCl₃), δ ppm:** 27,4; 47,5; 55,3; 56,0; 57,6; 65,9; 101,2; 110,7; 112,1; 114,1; 118,5; 124,9; 128,7; 135,8; 136,0; 145,1; 154,2; 158,5.

**EMAR (ESI/+,** *m/z*): Calculado para C₂₀H₂₂NO₃ 324,1600 [M+H]⁺. Encontrado: 324,1647.



*Figura 159:* Espectro de RMN ¹³C (CDCl₃, 250 MHz) do ciclopenta[*b*]indol **91** 

# 5. ANEXOS

# 5.1. ENSAIO PARA A DETERMINAÇÃO DA ATIVIDADE ANTIPROLIFERATIVA IN VITRO⁹⁶

As linhagens celulares cedidas pelo NCI (National Cancer Institute), utilizadas na triagem da atividade anticâncer (*Tabela 15*), são cultivadas em 5mL RPMI 1640 (Gibco[®]) suplementado com 5% de soro fetal bovino (SFB – Gibco[®]) e antibióticos (penicilina/streptomicina) a 37ºC em atmosfera úmida com 5% CO₂. Quando a monocamada celular atinge cerca de 80% de confluência, as linhagens são repicadas sob condições estéreis. Rotineiramente dois frascos de cada linhagem celular são sempre mantidos em cultura.

Tipo Celular	Nome
Glioma	U251
Melanoma	UACC-62
Pulmão	NCI-H460
Ovário Resistente	NCI-ADR/ RES
Renal	786-O
Próstata	PC-3
Ovário	OVCAR-3
Cólon	HT-29
Leucemia	K-562

Tabela 15: Linhagens celulares utilizadas nos testes de atividade anticâncer

## 5.1.1. Descongelamento e congelamento das células

Como todas as linhagens celulares foram enviadas congeladas para o laboratório, o primeiro passo a ser realizado foi o descongelamento das células e a propagação das mesmas. Estas células são fotografadas para uma avaliação geral de sua morfologia.

O criotubo que contém as células é mantido à temperatura ambiente para descongelamento sendo seu conteúdo transferido para um tubo de centrifuga de 15 mL. O volume é completado para 10 mL com RPMI/SFB e o tubo centrifugado a 2000 rpm e 4 °C por 4 minutos. Aspira-se o sobranadante e o "pellet celular" é ressuspendido cuidadosamente para evitar a formação de grumos com 5 mL de RPMI/SFB. Tranfere-se a solução celular para frascos de 25cm² (T25) com 5 mL de RPMI-1640 /SFB que é incubada a 37 °C em atmosfera de 5% de CO₂ e 100 % de umidade.

As células da suspensão a ser congelada são contadas e transferidas para um tubo de centrífuga de 50 mL. O tubo é centrifugado a 4 °C e 2000 rpm por 4 minutos, o sobrenadante aspirado e o "pellet celular" ressuspendido em RPMI/SFB acrescidos de 10% de glicerol a 4°C, resultando numa suspensão de concentração final equivalente a 1 x 10⁶ cel/mL. Mantém-se o frasco a 4 °C e transfere-se 1 mL da suspensão celular para criotubos rotulados que são armazenados na fase gasosa do nitrogênio líquido por 24 horas. Após este período, os criotubos são submersos no nitrogênio líquido.

#### 5.1.2. Repiques celulares

Retira-se um volume previamente determinado do frasco de manutenção e transfere-o para outro frasco, sendo completado o volume para 5 mL no caso de frascos de culturas de 25 cm² (T25) e 10 mL para os frascos de 75 cm² (T75). Estes frascos serão incubados a 37 °C em atmosfera de 5% de CO₂ e 100% de umidade. A diluição utilizada depende das características de cada linhagem celular.

Quando a monocamada celular atingir cerca de 80% de confluência, as células são repicadas, sendo mantidas sempre em dois frascos.

Faz-se necessário realizar a tripsinização, ou seja, o desprendimento das células do frasco através de ação enzimática, devido ao crescimento em monocamada. Então, após a aspiração do meio de cultura, adiciona-se 0,5 mL de tampão de Hank's banhando toda a monocamada celular por 10 vezes consecutivas. Este líquido será aspirado e então adicionado 0,5 mL de tripsina a 37 °C. O frasco é incubado de 25 a 30 segundos. Quando as células se desprenderem da parede do frasco de cultura, este será banhado com RPMI/SFB.

206

#### 5.1.3. Atividade antiproliferativa em cultura de células tumorais humanas

Com as células em suspensão, os frascos são agitados delicadamente e retira-se uma alíquota que é colocada na Câmara de Newbauer para contagem. Os quatro quadrantes externos são contados e determina-se a média aritmética. Este valor será multiplicado pelo fator de correção da câmara, equivalente a 104, estipulando assim o quanto de células e meio de cultura deverá ser inoculado nas placas de 96 compartimentos para a avaliação da atividade antiproliferativa.

As amostras são diluídas em dimetilssulfóxido (DMSO) na concentração de 0,1g/mL. Para a adição na cultura de células, estas soluções são diluídas pelo menos 400 vezes em RPMI/SFB/penicilina-streptomicina, evitando-se assim a toxicidade do DMSO. O DMSO, além de ser um bom diluente, esteriliza a amostra.

Para o teste de atividade, são plaqueados 100 µL/compartimento de células em meio RPMI/5% SFB/penicilina-streptomicina, nas suas respectivas densidades de inoculação, em placas de 96 compartimentos que a seguir são incubadas por 24 horas a 37ºC em atmosfera de 5% de CO₂ e ambiente úmido. Uma placa controle é inoculada com todas as linhagens celulares. Depois de 24 horas (período de adaptação das células) as células contidas na placa controle (T₀) são fixadas através da adição de 50 μL/compartimento ácido tricloroacético a 50% (p/v) para determinação da guantidade de proteínas (células viáveis) no momento da adição das drogas, assim é possível saber a quantidade de células no tempo T0 (que corresponde à linha 0 do gráfico). Nas demais placas, as amostras são adicionadas nas concentrações de 0,25; 2,5; 25 e 250 µg/mL, 100 µL/compartimento e em triplicata, e a seguir incubadas por 48 horas. Como controle positivo utiliza-se o quimioterápico doxorrubicina, nas concentrações de 0,025; 0,25; 2,5 e 25 µg/mL, 100 µl/compartimento e em triplicata. Após este período, as células são fixadas com 50 µl de ácido tricloroacético a 50% (TCA). Para completar a fixação celular, as placas são incubadas por 1 hora a 4ºC e, em seguida, submetidas a quatro lavagens consecutivas com água destilada, para a remoção dos resíduos de TCA, meio, SFB, metabólitos secundários e células mortas. Após lavagem, as placas são mantidas em temperatura ambiente até a secagem completa.

As células são então coradas pela adição de 50µL/compartimento do corante protéico sulforrodamina B (SRB) a 0,4 % (peso/volume), dissolvido em ácido acético a

207

1% e incubadas a 4 °C, durante 30 minutos. Após esse período, as placas são lavadas por 4 vezes consecutivas com solução de ácido acético 1%. Após secagem à temperatura ambiente, o corante ligado às proteínas celulares é solubilizado com solução de Trizma Base (10μM, pH 10,5) por 5 minutos. A leitura espectrofotométrica da absorbância é realizada em 540 nm em leitor de microplacas.

A sulforrodamina B é um corante protéico que se liga aos aminoácidos básicos das proteínas de células que estavam viáveis no momento da fixação. Por isso, quanto maior a quantidade de SRB ligada ao compartimento, mais colorido, maior a absorbância, menor a atividade citotóxica da amostra em teste.

## 5.1.4. Análise dos resultados

Para análise dos resultados, são calculadas as médias das absorbâncias dos compartimentos contendo células + amostras descontando-se seus respectivos brancos (compartimentos contendo apenas amostra) e a porcentagem de crescimento (%C) foi calculada segundo as seguintes fórmulas:

Se  $T_A > T_1 \rightarrow$  estímulo de crescimento celular

Se  $T_A \ge T_0 < T_1 \rightarrow \text{atividade citostática: } C = 100 \times [(T_A - T_0)/(T_1 - T_0)]$ 

Se  $T_A < T_0 \rightarrow$  atividade citocida: %C = 100 x [( $T_A - T_0$ )/  $T_1$ ]

Onde:

T_A = média da absorbância da célula tratada – absorbância amostra sem célula

T₁ = absorbância do branco de células (células crescendo sem amostra)

 $T_0$  = absorbância do controle de células na placa  $T_0$  (quantidade de células no momento de adição das amostras)

Com esses valores, são construídos gráficos relacionando a porcentagem de crescimento com a concentração da amostra teste, tendo-se como controle positivo o quimioterápico doxorrubicina. Os valores abaixo de 50 e acima de zero representam inibição de crescimento (atividade citostática), sendo que os valores que atingem o zero representam inibição total de crescimento (TGI – total growth inibition). Os valores negativos (abaixo de zero) representam morte celular (atividade citocida), pois a quantidade de células (aferida pela absorbância no final do experimento), nesse caso, é menor do que o que iniciou o experimento (absorbância do  $T_0$ ).