EFEITOS TERMICOS E RADIOLÍTICOS EM CRISTAIS DE ${\rm K_2Cro_4}$ DOPADOS COM $^{51}{\rm Cr}$

TESE DE DOUTORAMENTO

JOÃO CARLOS DE ANDRADE - 1980

UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE QUÍMICA

Suff.

EFEITOS TĒRMICOS E RADIOLĪTICOS EM CRISTAIS DE

K2Cr04 DOPADOS COM ⁵¹Cr

TESE DE DOUTORAMENTO

Autor: João Carlos de Andrade

Orientador: Prof. Dr. KENNETH E. COLLINS

1980

Aos meus pais por tornarem possível a minha existência e por terem me acompanhado passo a passo nesta caminhada.

À Liliana pela compreensão e incentivo nas horas mais difíceis.

Aquele que em breve conhecerei e que desde $j\bar{a}$ amo.

AGRADECIMENTOS

- Ao Prof. Dr. Kenneth E. Collins, pela amizade e dedicação na tarefa de orientar esta tese.
- À Profa. Dra. Carol H. Collins e ao colega Fernando M. Lanças, pelas sugestões e discussões que foram de grande valia na realização deste trabalho.
- A todos os colegas e amigos do Instituto de Química da UNICAMP, em especial aos do Grupo de Radioquímica, pelo excelente ambiente de trabalho.
- Ao Aparecido e à Dna. Iraídes, pela inestimável ajuda no laboratório.
- A todos os amigos da Universidade de São Paulo em Piracicaba (CENA), em particular ao Elias, Osório e Virgilio, pelos valiosos préstimos, sem os quais a irradiação das amostras não seria possível.
- À direção do Instituto de Química da UNICAMP, pelas facilidades que me foram concedidas.

O AUTOR DESTA TESE QUER EXTERNAR OS SEUS AGRADECIMENTOS ESPECIAIS AO GRUPO DE DOSIMETRIA E PROTEÇÃO RADIOLÓGICA DA UNIVERSIDADE DE SÃO PAULO EM PIRACICABA (CENA) PELO USO DO IRRADIADOR DE 60 CO GAMMABEAM 650, SEM O QUAL ESTE TRABALHO NÃO SERIA REALIZADO.

APRESENTAÇÃO

Esta tese visa essencialmente encontrar possíveis caminhos pelos quais possa-se explicar os vários fenômenos que ocorrem no estado solido e que ainda são motivo de muita controversia, dada a falta de conhecimentos existentes nesta área. O composto químico escolhido para o desenvolvimento destes estudos foi o cromato de potássio, que é bem estável e sobre o qual muitos outros trabalhos já foram realizados, facilitando pois eventuais comparações de da dos.

O texto apresentado encontra-se basicamente dividido em quatro capitulos e três apêndices. Cada capitulo contém sua propria bibliogra-fia, de modo que o leitor não necessita recorrer ao final do texto para procurar pelas referências citadas mas, por outro lado, deverá ter em mente que uma mesma referência poderá ser citada em mais de um capitulo. Os apêndices foram colocados com o objetivo de dinamizar a leitura, evitando que muitas tabelas e definições importantes fossem intercaladas no texto ou colocadas em rodapes, o que poderia dificultar o seu entendimento e a sua datilografia.

No apêndice I encontram-se descritas as simbologias utiliza das para descrever os cristais de $K_2 \text{CrO}_4$ dopados com ^{51}Cr e os tratamentos físicos a que foram submetidos. O apêndice II apresenta um conjunto de tabelas referentes aos gráficos descritos pelas figuras contidas no capitulo IV, numeradas do mesmo modo que as figuras para evitar confusões e para facilitar a comparação das curvas. Todos os gráficos apresentados foram feitos pelo próprio autor. Finalmente, o apêndice III constitui-se em um glossário de termos utilizados contentemente em radioquímica, a maioria com referência na tese, cujas interpretações são muitas vezes ambiguas e/ou confusas em outros textos e que, pretende-se, sejam normalizadas para uso no presente trabalho.

Ensim, procurou-se dar acesso ao leitor aos resultados colhidos e as suas interpretações da melhor maneira possível, mas o autor recebera bem quaisquer tipos de comentarios, sugestões ou criticas que tenham como objeti vo aprimorar o seu trablaho aqui apresentado. As distribuições fracionadas das várias espécies aquosas de cromo marcadas com ⁵¹Cr foram determinadas por cromatografia de troca catiônica, após a dissolução de cristais de K₂CrO₄ contendo ⁵¹Cr como dopante. Estas distribuições foram relacionadas com espécies precursoras contidas na fase sólida.

O comportamento dos cristais de $\rm K_2CrO_4$ dopados com $\rm ^{51}Cr$, quando irradiados com fótons $\rm \gamma$, é bastante dependente de tem peratura de irradiação e do método de dopagem. Os resultados numé ricos obtidos para a distribuição das várias espécies em solução, marcados com $\rm ^{51}Cr$, não são consistentes com aqueles encontrados na literatura para amostras de histórico similar e são diferentes daqueles obtidos após a irradiação de cristais de $\rm K_2CrO_4$ com nêutrons, indicando que o ambiente químico no interior dos cristais dopados deve ser diferente daquele existente em cristais ativados por irradiação neutrônica.

Algumas sugestões de mecanismos, baseadas em reações que envolvem espécies eletrônicas no estado sólido, desenvolvidas inicialmente para explicar o comportamento de alguns sólidos
irradiados com nêutrons, são apresentadas para explicar os produtos
observados. As medidas de atividade foram interpretadas em termos
da formação de defeitos e suas interações no estado sólido. As rea
ções destes defeitos com átomos dopantes no momento da dissolução
em um meio aquoso, produzem as espécies detectadas em solução.

ABSTRACT

Fractional distributions of the various 51 Cr labelled aqueous species were determined by cation exchange chromatography, after dissolution of ${\rm K_2CrO}_4$ crystals containing dopant atoms of 51 Cr. These aqueous distributions are related to precursors species in the solid phase.

The behavior of 51 Cr(III)-doped K_2 CrO $_4$ crystals, when irradiated with gamma-ray photons, is strongly dependent on the temperature of irradiation and on the method used for doping. The numerical results obtained for the distribution of the various solution phase species labelled with 51 Cr are not consistent with those found in the literature for samples having a similar history and are different from those obtained after the irradiation of K_2 CrO $_4$ crystals with neutrons, indicating that the chemical ambient inside doped crystals must be different from that in crystals activated by neutron irradiation.

Some mechanistic suggestions, based on reactions which involve solid state electronic species, developed initially to explain the behavior of some neutron irradiated solids, are presented to account in a general way for the observed products. The measured activities of the species are interpreted in terms of the formation of defect species and their interactions in the solid state. The reactions of these defect species with dopant atoms at the moment of the dissolution in a aqueous medium give the detected solution phase species.

INDICE

	pāg.
CAPTTULO I	
INTRODUÇÃO	1
BIBLIOGRAFIA	5
CAPTTULO II	
REVISÃO DA LITERATURA	7
1. O recuo nuclear e suas consequências químicas	7
2. A ação da radiação ionizante em solidos inorgânicos	16
3. A quimica dos cristais dopados	20
4. Os processos de recozimento em solidos	28
5. O elemento cromo	32
6. O sistema cromato de potassio	37
7. Os metodos de análise	43
BIBLIOGRAFIA	54
CAPTTULO III	
PARTE EXPERIMENTAL	66
1. Os metodos de dopagem	66
2. Tratamentos físicos do solido dopado	73
3. A anālise quīmica	77
BIBLIOGRAFIA	103
CAPITULO IV	
RESULTADOS E DISCUSSÃO	104
1. Apresentação dos resultados	105
2. Discussão	141
BIBLIOGRAFIA	156
APËNDICE I	158
APËNDICE II	159
APÊNDICE III	168

CAPITULO I

INTRODUÇÃO

CAPITULO I

INTRODUÇÃO

A química da radiação pode ser definida como o estudo dos efeitos químicos produzidos em um sistema pela absorção de radiação ionizante. Esta definição inclui os efeitos químicos produzidos por radiações de pequeno comprimento de onda (raios-X, raios γ) (*), por partículas carregadas com alta energia cinética (eletrons, protons, dêuterons, partículas α e partículas de recuo) e por neutrons rapidos, que são partículas sem carga elétrica.

Interagindo com a matéria, todas estas radiações podem produzir moléculas excitadas eletronicamente e/ou ionizadas as quais, subsequentemente, podem sofrer rupturas de ligações químicas, como consequência da dissipação da energia de excitação acumulada em energia vibracional (e/ou térmica). Estes eventos químicos podem resultar na formação de radicais livres altamente reativos, que poderão se combinar entre si e/ou reagir com outras espécies do meio, dependendo da distância entre as partículas excitadas e/ou das energias de ativação das possíveis reações químicas, que são competitivas entre si.

Por outro lado, um átomo, ao sofrer uma transformação nuclear, a ge sobre as espécies químicas contidas no seu ambiente externo imediato gerando vários efeitos diferentes. A transformação nuclear, processo interno do núcleo, cria regiões de alta energia no sistema que, ao ser liberada, pode ser dissipada sob a forma de radiação (fotons γ ou partículas) ou ser transferida diretamen te a um dos eletrons mais internos do átomo envolvido (conversão interna), resul

^{(*) -} As radiações nas regiões do visível e do ultra-violeta podem também inici ar reações químicas, mas nestes casos não ocorrem processos de ionização e as reações se dão via especie excitadas eletronicamente no estado ligado (bounded state). Estas reações são estudadas no campo da fotoquímica.

tando em perturbações eletrônicas (processo Auger) muito diferentes daquelas associadas à absorção de radiação externa. Ainda, além de ser excitado e/ou ionizado pela transformação nuclear, o átomo transformado pode também adquirir uma energia cinética considerável, como consequência do recuo nuclear (*), muito superior às energias envolvidas com as ligações químicas.

Entretanto, apesar dos processos primários serem diferentes, os efeitos químicos das transformações nucleares podem ser, de algum modo, relacionados com a química das radiações.

Comparando-se as energias de recuo dos vários processos nucleares com as energias de ligação, espera-se que praticamente todas as ligações químicas das moléculas envolvidas no processo nuclear se rompam e que o átomo quente (**) se projete no ambiente que o rodeia, provocando ainda várias outras perturbações no sistema.

Várias experiências realizadas com gases (1-4) e líquidos (5-7) confirmaram as previsões teóricas (8,9), pois observou-se que a fração de moléculas que se rompe durante o evento nuclear em tais sistemas ultrapassa a 99%, quan do os efeitos observados dependem tão somente das energias de recuo e de ligação.

Ao contrário do que acontece nos sistemas gasosos, os percursos dos átomos de recuo nos sólidos e líquidos são muito curtos, da ordem de lnm (10Å). Entretanto, durante o trajeto destes átomos através do cristal, inúmeros defeitos são criados no retículo do sólido(com tempos de vida variaveis) e além disso, no final da trajetoria, podem acontecer reações ainda destes átomos com as espécies químicas situadas ao redor deles, produzindo o chamado rendimento das especies (**).

Nos solidos, para a fragmentação molecular ocorrer, é necessário que energias mínimas de recuo, entre 30 e 60 eV (10-12), sejam liberadas no processo. Estes valores, no entanto, são facilmente superados pela maioria das transformações nucleares, razão pela qual seria de se esperar, também nos solidos, um elevado grau de fragmentação molecular apos um evento nuclear.

Em muitos casos estudados, entretanto, especialmente em sólidos,

^{(*) -} vide cap. II.1.

^{(**) -} vide glossário.

observa-se que, no final, frações significativas do sistema em estudo são constituidas por moléculas indistinguíveis das originais. Estes fatos sugerem a existên cia de outros fatores que causam a alta retenção (*) na forma do composto original, como por exemplo, as reações que os átomos de recuo sofrem durante a sua trajetoria ou, posteriormente, sob a ação de vários agentes.

Por esta razão o estudo de sólidos ativados por reações nucleares (**) ē bastante complexo porque, de um modo geral, a química dos átomos quentes produzidos na matriz irradiada é uma função do recuo e dos processos de recozimento (***) induzidos por radiação (ex.: raios γ) e/ou pelo calor, durante o bombardea mento do alvo.

As evidências de que se dispoem até o momento nos leva a crer que as reações dos átomos quentes em sólidos ocorrem em função do recuo nuclear pelo menos primariamente, seria o processo de maior significância na formação das especies detectadas, por medidas de radioatividade, apos a análise quimica do alvo.

Considerando-se estas evidências pode-se pensar que um solido irra diado com neutrons seria composto por uma matriz, contendo impurezas e defeitos de estrutura, que teria sido submetida concomitantemente a processos de recozimento por radiação e/ou calor. As impurezas a que se refere seriam os atomos de recuo re tidos em posições intersticiais no retículo e os radicais, ions e/ou moléculas for mados ao longo da trajetoria de recuo.

Este quadro permite supor que uma situação parecida poderia criada ao se dopar (****) um solido, de preferência com a especie que sofreria o re cuo se este solido fosse ativado nuclearmente, sem a presença dos danos criados pe lo recuo e sem os efeitos indesejaveis provocados na matriz pelo calor e/ou radiação.

Também, ao se considerar que o átomo de recuo está obrigatoriamen te envolvido nas reações químicas subsequentes ao processo nuclear pode-se,

^{(*) -} vide glossário.

Apesar do texto ser genérico, pretende-se focalizar somente as reações

^{(***) -} vide cap. II.4.

^{(****)-} vide cap. II.3.

princípio mas com reservas, comparar os resultados encontrados na análise destes dois sistemas.

O sistema cromato tem sido sistematicamente investigado sob este aspecto ja ha alguns anos mas, apesar da sua aparente simplicidade, muito ain da tem que ser feito para explicar os fenômenos observados no estado solido.

Esperava-se que os ions de ⁵¹Cr(III) introduzidos em uma matriz de K₂CrO₄ por cocristalização a partir de uma solução aquosa (13-18) e por recristalização de K₂CrO₄ irradiados com neutrons (19-21) estivessem presentes como diferentes espécies em diferentes sítios do retículo do sólido e que, assim sendo, pou ca ou nenhuma similaridade com respeito à reatividade das espécies de ⁵¹Cr frente ao recozimento térmico fosse encontrada.

Entretanto, em temperaturas relativamente altas (T > 150°C) o recozimento destes sistemas mostrou que, em ambos os casos, as velocidades de produção de Cr(VI) eram indistinguíveis, apesar de existirem diferenças marcantes quando recozidas a temperaturas mais baixas (14,15,21). As especies existentes ou que seriam formadas em baixas temperaturas, bem como os precursores destes processos, não são conhecidos e a situação ainda é totalmente obscura.

Também não são bem conhecidos ainda os processos envolvidos no recozimento de sólidos por radiação e, sob este ponto de vista, crê-se que um estudo envolvendo cristais dopados por processos químicos diferentes e irradiados com fotons γ em várias temperaturas (-196 « T « 150°C), submetidos ou não a ativações térmicas posteriores, poderia esclarecer alguns pontos confusos e/ou contraditórios com respeito dos processos químicos no estado sólido. Apesar das várias publicações a respeito do comportamento químico de sólidos dopados (complexos (22-24) ou oxi-sais (13,14,19,25-29)), nada de definitivo pode-se afirmar ainda sobre os fenômenos químicos que ocorrem nestas matrizes, no estado sólido.

Os estudos realizados por Stamouli sobre o comportamento químico dos atomos de ⁵¹Cr em oxi-sais dopados com ⁵¹Cr(III) e submetidos à ação de fotons y (30-32) foram os precursores deste trabalho, porquanto esta pesquisadora não sugere interpretações para os resultados encontrados os quais, em parte, mostraram-se ainda diferentes daqueles obtidos durante o desenvolvimento experimental desta tese.

CAPITULO I

BIBLIOGRAFIA

- 1 G.P. GENNARO e Y.-N.TANG, J. Inorg. Nucl. Chem., 35(1973) 3087.
- 2 G.W. STEWART e C.O. HOWER, J. Inorg. Nucl. Chem., 34(1972) 39.
- 3 C.M. WAI e F.S. ROWLAND, J. Phys. Chem., 74(1970) 434.
- 4 A.A. GORDUS e C. -H. HSIUNG, J. Chem. Phys., 36(1962) 955.
- 5 G.P. GENNARO e K.E. COLLINS, J. Phys. Chem., 74(1970) 3094.
- 6 R.M. IYEV e J.E. WILLARD, Radiochim. Acta, 7(1967) 175.
- 7 U. ZAHN, Radiochim. Acta, 7(1967) 170.
- 8 H.C. SCHWEINLER, em "Chemical Effects of Nuclear Transformations", vol. 1, International Atomic Energy Agency, Viena, p. 63, 1961.
- 9 C. -H. HSIUNG e A.A. GORDUS, J. Chem. Phys., 36(1962) 947.
- 10 K. YOSHIHARA, A. FUJITA e T. SHIOKAWA, J. Inorg. Nucl. Chem., <u>39</u>(1977) 1733.
- 11 K. YOSHIHARA e T. MIZUSAWA, Radiochem. Radioanal. Lett., 9(1972) 263.
- 12 K. YOSHIHARA e H. KUDO, J. Chem. Phys., <u>52</u>(1970) 2950.
- 13 D.J. APERS, K.E. COLLINS, C.H. COLLINS, Y.F. GHOOS e P.C. CAPRON, Radiochim.
 Acta, 3(1964) 18.
- 14 C.H. COLLINS, K.E. COLLINS, Y.F. GHOOS e D.J. APERS, Radiochim. Acta, 4(1965)
 211.
- 15 C.H. COLLINS, R.E. ACKERHALT e K.E. COLLINS, Radiochim. Acta, 17(1972) 73.
- 16 C.H. COLLINS, K.E. COLLINS e R.E. ACKERHALT, J. Radioanal. Chem., 8(1971)
 263.
- 17 B. MAHIEU, D.J. APERS e P.C.CAPRON, Radiochim. Acta, 16(1971) 100.
- 18 B. MAHIEU, D.J. APERS e P.C. CAPRON, J. Inorg. Nucl. Chem., 33(1971) 2857.
- 19 T. ANDERSEN e G. SORENSEN, Trans. Faraday Soc., 62(1966) 3427.

- 20 R.E. ACKERHALT, C.H. COLLINS e K.E. COLLINS, Trans. Faraday Soc., 67(1971) 1459.
- 21 C.H. COLLINS e K.E. COLLINS, Nature (Phys. Sec.), 232(1971) 109.
- 22 G.K. WOLF e T. FRITSCH, Radiochim. Acta, 11(1969) 194.
- 23 A. NATH, S. KHORANA, P.K. MATHUR e S. SARUP, Indian J. Chem., 4(1966) 51.
- 24 S. KHORANA e D.R. WILES, Radiochim. Acta, 12(1969) 111.
- 25 S. KAUCIC'e M. VLATKOVIC', Croat. Chim. Acta, 35(1963) 305.
- 26 G.E. BOYD e Q.V. LARSEN, J. Am. Chem. Soc., 90(1968) 254.
- 27 G.E. BOYD e Q.V. LARSEN, J. Am. Chem. Soc., 91(1969) 4639.
- 28 A.V. BELLIDO e D.R. WILES, Radiochim. Acta, <u>12</u>(1969) 94.
- 29 S. KHORANA e D.R. WILES, J. Inorg. Nucl. Chem., 33 (1971) 1589.
- 30 M.I. STAMOULI, Radiochim. Acta, 22(1975) 83.
- 31 M.I. STAMOULI, Radiochim. Acta, 23(1976) 6.
- 32 M.I. STAMOULI, Radiochim. Acta, 26(1979) 37.

CAPITULO II

REVISÃO DA LITERATURA

- 1. O recuo nuclear e suas consequências químicas.
 - a A desexcitação nuclear.
 - b Os efeitos primários do recuo.
 - c Modelos de reações imediatas em sólidos.
- 2. A ação da radiação ionizante em solidos inorgânicos.
- 3. A quimica dos cristais dopados.
 - a Os processos de dopagem.
 - b 0 fenômeno da transferência de radioatividade
 - c Os mecanismos de reação.
- 4. Os processos de recozimento em solidos.
 - a Recozimento por irradiação.
 - b Recozimento térmico.
 - c Outros tipos de recozimento.
- 5. 0 elemento cromo.
 - a Algumas características físicas e químicas.
 - b A quimica em solução aquosa.
 - c As espécies hidrolíticas mononucleares.
 - d As espēcies hidroliticas polinucleares.
- 6. O sistema cromato de potássio.
 - a Algumas propriedades dos cromatos.
 - b O comportamento do $\mathrm{K_2CrO_4}$ frente à radiação $\gamma.$
 - c A qumica dos atomos quentes.
- 7. Os metodos de análise.
 - a generalidades.
 - b Os métodos físicos.
 - c Os métodos quimicos.

CAPITULO II

REVISÃO DA LITERATURA

1. O recuo nuclear e suas consequências químicas (*) (1-4)

a - A desexcitação nuclear

Os efeitos químicos diretos que se seguem às transformações nucleares podem ser provocados pelo recuo nuclear, pela ionização do átomo sob desintegração e pela excitação eletrônica orbital que acompanha tais eventos.

A desexcitação de um núcleo composto (2) (vide fig. II.1)

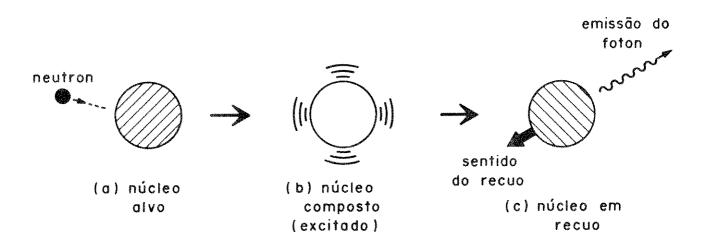


Figura II.1 - Ilustração bastante simplificada mostrando a ativação e desexcitação de um núcleo, com emissão de um único fóton γ de captura (2).

^(*) Apesar de se procurar escrever um texto genérico, pretende-se focalizar sobremaneira as reações (n.γ), provocadas por neutrons térmicos.

pode ocorrer pela emissão de partículas, quando este processo \tilde{e} energeticamente possível, ou pela emissão de fotons γ , geralmente em cascata (vide fig. II.2), denominados fotons γ de captura.

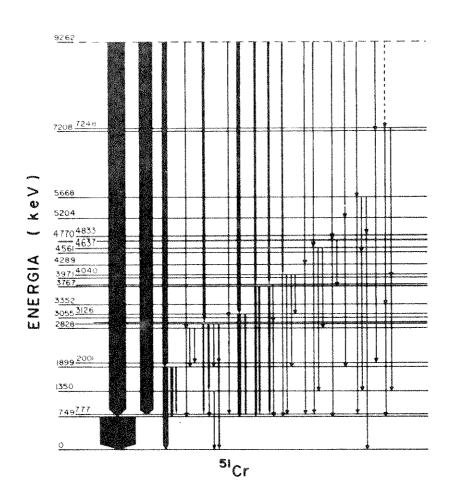


Figura II.2 - Cascata de fótons γ de captura emitidos na desexcitação de núcleos de 51 Cr ativados por neutrons térmicos (2). Modificado de Kopecky (5).

Associado a estas emissões (partículas ou fotons) tem-se uma quantidade de movimento, P, que para ser conservada durante a desexcitação nuclear requer que o núcleo submetido a este processo sofra um recuo, que geralmente provoca fragmentações moleculares no sólido.

O conhecimento detalhado do processo de desexcitação do núcleo composto é essencial para o cálculo do espectro de energia de recuo, pois quanto maior for o número de fotons γ de captura emitidos, maior será a probabilidade de cancelamento da quantidade de movimento envolvida, podendo inclusive

levar à não-ruptura das ligações químicas do átomo ativado nuclearmente (6). Sob estas considerações é fácil perceber que o cálculo da energia de recuo exigiria um conhecimento detalhado do número, energia e correlação angular dos fótons γ de captura emitidos durante a desexcitação nuclear, mas os espectros γ de captura são bem conhecidos somente para alguns nuclídeos, tais como ³⁶Cl (7), ³²P (8) e ⁵¹Cr (5), fato que dificulta uma interpretação quantitativa mais detalhada des te fenômeno.

No caso de emissão de partículas pesadas, energias de recuo da ordem de dezenas ou centenas de keV podem ser atingidas, mas as energias de recuo devidas a processos de decaimento com emissão de elétrons (β^-) ou positrons (β^+) são tipicamente mais baixas (2) que as envolvidas com a captura neutrônica (sempre com uma partição de momentos entre as partículas β e os neutrinos), se bem que elas não possuem valores definidos, mas distribuem-se espectralmente. Por exemplo, supondo-se diferentes interações β -neutrino, calculou-se o espectro de energia de recuo induzido pela emissão β do 14 C (9); determinou-se também que para o sistema 125 Sn $^{\beta}$ 125 Sb (10) a energia máxima de recuo é de 35 eV e que a maior parte dos átomos recuam com uma energia menor que 10-15 eV.

Sabe-se também que as transformações nucleares resultan frequentemente na ionização do átomo sob desintegração, criando assim um segundo mecanismo pelo qual as mudanças no sistema químico podem ocorrer. Se o núcleo sob desintegração emite partículas carregadas, a ionização pode ser produzida pela interação entre a partícula emitida e os elétrons orbitais do átomo em questão. A ionização induzida pela emissão de fotons tem geralmente poucas possibilidades de ocorrer, a menos que processos de conversão interna estejam envolvidos. Sob estas circunstâncias no entanto, o que existe é uma interação direta entre o núcleo e os elétrons orbitais, de tal modo que a ionização acontecerá sem a participação do foton emitido.

Baixas energias de desintegração, grandes diferenças no mo mento angular entre os núcleos pai e filho e um alto número atômico são fatores

^(*) Vide glossário.

que favorecem o processo de conversão interna. A lacuna eletrônica formada após a conversão ocorre geralmente nas camadas K ou L do átomo, mas esta vacância é rapidamente preenchida por elétrons mais externos com a criação de vacâncias mui to mais numerosas nas camadas de valência (processo Auger). Estas ionizações subsequentes, experimentalmente confirmadas por medidas da carga elétrica adquiri da por átomos que sofrem transição isométrica (*) (11-13), provocarão a decomposição molecular imediatamente após a estas ionizações, ou quando ocorrer neutralização das cargas elétricas.

Se a variação da carga do núcleo, ocorrida durante um even to nuclear, se dá mais rapidamente que o reajustamento das camadas eletrônicas, o átomo transformado pode sofrer excitação em seus elétrons orbitais. As excitações eletrônicas, que levam às reações químicas, ocorrem em processos que envolvem emissão de partículas (se o nuclideo-filho difere do nuclideo-pai em número atômico), mas podem ocorrer também durante a neutralização da carga adquirida como resultado da transformação nuclear.

b - Os efeitos primários do recuo.

Do ponto de vista químico, a ativação nuclear pode fornecer aos átomos marcados energia cinética, carga elétrica e energia de excitação eletrônica suficientes para promover suas reações com espécies existentes em suas vizinhanças. A energia cinética pode variar de alguns eV (emissão β) a centenas de keV para reações com partículas incidentes rápidas e a perda de elétrons pode ser um processo suave, produzindo espécies com cargas de + 2 unidades ou pode ser um processo violento, causando a perda de 8 a 20 elétrons, como no caso de fissão ou de conversão interna (fig. II.3)

^(*) Vide glossário.

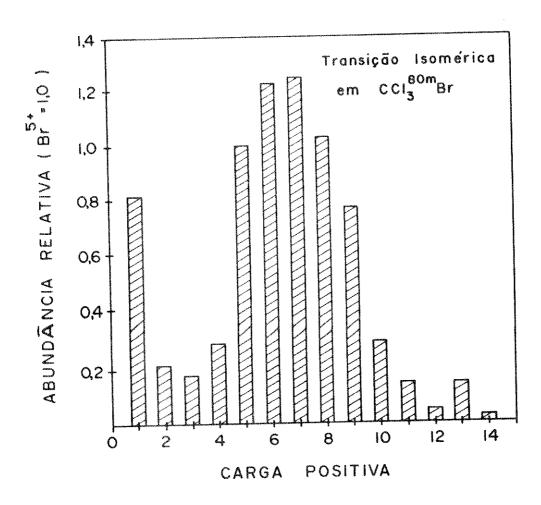


Figura II.3 - Distribuição de ions bromo após a ocorrência de proces sos Auger induzidos por transição isomérica com conversão interna em CCl₃ ^{80m}Br (2) - Modificado de Wexler (14).

que poderia resultar, em alguns casos, em uma "explosão coulômbica" (2,15) (fig. II.4). Os processos de excitação eletrônica, provocados pela emissão de particulas (ou de fotons em alguns casos) podem exceder consideravelmente ao primeiro e ao segundo potenciais de ionização do átomo.

Em fases condensadas, a perda de energia cinética por parte da espécie de recuo se da através de colisões elásticas e inelásticas com atomos ou moléculas contidos em seu ambiente, ou por interação com elétrons do meio em que o recuo ocorre.

Nestas condições, se a velocidade de recuo é muito maior

Figura II.4 - Esquema da "explosão coulômbica" sofrida por uma molécula de $\mathrm{CH_3I}$ em fase gasosa (2).

que a velocidade orbital dos elétrons, V_e , do átomo com o qual a espécie de recuo colide, quase toda a energia perdida pelo átomo recuado se transforma em ionização ou excitação eletrônica no átomo que sofre a colisão. Em velocidades consideravelmente menores que V_e torna-se predominante no processo de frenagem as colisões elásticas e inelásticas. Em qualquer caso, o átomo de recuo deixa ao longo da sua trajetória um rastro de íons, moléculas e/ou radiciais energéticos, prontos para reagirem entre si, com o átomo de recuo ou com outras espécies químicas existentes no ambiente de reação.

O mecanismo exato de dissipação de energia depois das colisões provocadas por um átomo de recuo em solidos é ainda incerto. Além disso, as investigações teóricas e experimentais mais detalhadas a respeito de deslocamentos em solidos têm sido feitas para metais (16, 17), dando-se pouca atenção aos processos de deslocamentos que ocorrem em solidos poliatômicos, geralmente utili

zados nas investigações dos efeitos químicos associados com as reações nucleares.

A ausência de conhecimentos detalhados a respeito destes processos de dissipação de energia (frenagem do átomo de recuo) em sólidos provoca o surgimento de vários modelos para explicar as consequências químicas observadas após as transformações nucleares.

c - Modelos de reações imediatas em solidos

As reações químicas que se seguem à ativação nuclear podem ocorrer durante a termalização do átomo de recuo^(*) (i.e, imediatamente apos ao recuo), como resultado dos choques elásticos e inelásticos destes átomos energéticos com os componentes do retículo cristalino, ou apos a sua termalização, atra vés de reações de recozimento (vide cap. II.4). Com respeito aos fenômenos químicos observados apos a ativação nuclear em solidos, vários modelos tentam explicar os resultados encontrados experimentalmente.

Um dos primeiros foi o modelo da perda de ligantes, sugerido por Libby (18) inicialmente para oxiânions e posteriormente aplicado a complexos, que supõe a perda de ligantes pelo átomo central e a consequente fragmentação molecular. Por este modelo, a perda de ligantes seria uma função da diferença de eletronegatividade entre o átomo central (ativado) e os ligantes, de tal modo que se o átomo central fosse um metal, os ligantes seriam eliminados na forma de ions.

$$MnO_4^- \xrightarrow{-O^2^-} MnO_3^+ \xrightarrow{-O^2^-} MnO_2^{3+} \xrightarrow{-O^2^-} MnO^{5+} \xrightarrow{-O^2^-} Mn^{7+}$$

e se fosse um não metal, na forma atômica

$$Br^{V}o_{3}^{-} \xrightarrow{-0} Br^{III}o_{2}^{-} \xrightarrow{-0} Br^{I}o^{-} \xrightarrow{-0} Br^{-}$$

Maddock e de Maine utilizaram estas ideias para explicar

^(*) Vide glossário

os fragmentos formados na irradiação do K_2CrO_4 com neutrons térmicos (19)

$$51_{\text{Cr0}_{4}^{2-}} - \frac{-0^{2-}}{2}$$
 $51_{\text{Cr0}_{3}} - \frac{-0^{2-}}{2}$ $51_{\text{Cr0}_{2}^{2+}} - \frac{-0^{2-}}{2}$ $51_{\text{Cr0}_{4}^{6+}} - \frac{-0^{2-}}{2}$ $51_{\text{Cr}_{6}^{6+}}$

Segundo estes autores, o número de oxidação (VI) do cromo seria mantido no processo de perda e que, ao se dissolver a amostra, as espécies $^{51}\text{Cr0}_3^2 = ^{51}\text{Cr0}_2^{2+}$ gerariam $^{51}\text{Cr0}_4^{2-}$ (retenção) enquanto que os ions $^{51}\text{Cr0}^{4+}$ e Cr^{6+} produziriam $^{51}\text{Cr}(III)$ por reações com a água, usada como solvente.

Este modelo foi aplicado durante muito tempo a um grande número de compostos diferentes, mas falha em alguns aspectos, principalmente nos relacionados com as reações entre o solvente e as espécies de recuo geradas no solido durante a ativação nuclear (1).

O chamado modelo da substituição direta é essencialmente o modelo da bola de bilhar (20) (usado para gases) aplicado aos sólidos, o qual sugere que o rendimento na forma do composto pai é devido ao deslocamento de um átomo inativo do retículo pelo átomo de recuo, que ocuparia o sítio anteriormente ocupado pelo átomo ejetado (21, 22). Embora a probabilidade de ocorrência de substituição direta seja pequena, devido a fatores geométricos, este processo pode ocorrer e contribuir para a retenção inicial (*), nos casos onde a energia do átomo de recuo é da ordem de 30 a 60 eV.

O modelo da zona quente proposto por Harbottle e Sutin (23) foi desenvolvido com base no conceito dos "deslocamentos atômicos" (displacement spikes) de Seitz e Koehler (24) para explicar os danos provocados por radiação em sólidos. De acordo com ele, o átomo de recuo provocaria muitos deslocamentos durante o seu "resfriamento" (**), provocando o aquecimento de uma pequena zona da rede cristalina, até provocar a fusão desta diminuta região do retículo, que permaneceria no estado fundido por um tempo muito pequeno (~10⁻¹¹s). Durante este período ocorreriam reações químicas. Os fragmentos que não reagissem durante este tempo seriam "congelados" com o seu resfriamento, mas poderiam participar de outras reações posteriores, após a ativação dos cristais (recozimento).

^(*) Vide glossário.

Outro modelo proposto é o do centro de desordem, sugerido por Müller (25-27) com base em cálculos e observações feitas por Vineyard (16). Segundo esta proposição o átomo de recuo perderia rapidamente a sua energia cinética através de colisões com o retículo e ficaria em repouso somente a alguns diâmetros interatômicos do seu ponto de partida, sem envolver no processo uma zona fundida ou um grande número de fragmentos. Se logo após a primeira colisão ele transferir a maior parte desta energia ao outro átomo envolvido no choque, o qual, por sua vez, poderá também transferir a maior parte desta energia a algumas moléculas bem distantes, através das chamadas colisões focalizadas (" focussons") (28, 29), tem-se uma situação onde o átomo recuado permanecerá quase na posição primitiva, com capacidade de reformar suas ligações iniciais (retenção).

Se por outro lado, o átomo de recuo se deslocar através do cristal, o resultado será a formação de uma região densa, composta de átomos em posições intersticiais, adjacente a uma zona quase vazia. O dano provocado no cristal seria pequeno e o átomo de recuo poderia ficar em um estado metaestável em relação a sua vizinhança e, sob a forma de átomo metaestável, ficar em disponibilidade para reações posteriores (ex: recozimento, dissolução, etc.).

Finalmente, um outro modelo, sugerido por Yoshihara et al. (30), descreve a posição do átomo de recuo em um solido em termos de três domínios ou esferas concêntricas ao ponto de origem deste átomo, cada um com um raio maior que o anterior (fig. II.5).

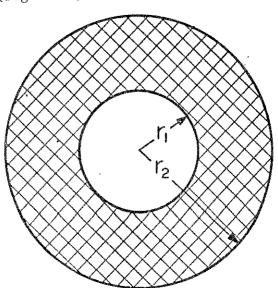


Figura II.5. Esquema do modelo dos três domínios (3) - Modificado de Yoshihara et al (30)

Um átomo com percurso de recuo menor que r_1 permaneceria no primeiro domínio e poderia recombinar-se com os seus ligantes originais, enquanto que para um percurso maior que r_2 sua reação com os seus ligantes originais seria improvável e, como consequência, o átomo marcado não seria detectado na forma do composto pai. Entretanto, se o átomo de recuo se localizar no domínio intermediário, r_2 - r_1 , tanto a sua recombinação com os ligantes originais , reformando o composto pai, como a sua interação com outros fragmentos, seriam possíveis.

Baseando-se na concordância entre as descrições teóricas e as observações experimentais, verifica-se que os modelos que sugerem menor desor dem no sistema químico (i.é, o do centro de desordem e o dos três domínios) são, até o momento, os que melhor explicam a maior parte dos resultados acumulados na literatura.

2. A ação da radiação ionizante em sólidos inorgânicos

Investigações detalhadas a respeito dos defeitos gerados em cristais irradiados podem informar como a energia absorvida pelo solido é utilizada na formação destes defeitos reticulares.

Em geral tais estudos são feitos em sólidos "simples"como os haletos de metais alcalinos, mas outros sólidos inorgânicos como nitratos(31) e oxihaletos (32, 33) são também estudados, provavelmente por causa da estabilidade térmica e/ou outras propriedades favoráveis que estes compostos exibem.

A maior parte dos defeitos reticulares observados pode geralmente ser detectada in situ, por medidas de espectroscopia óptica, condutividade térmica e/ou ressonância (ex: R.P.E.), depois da interação deles com um elétron ou um "buraco" (vide fig. II.6) (*). Sendo assim, a partir do estudo destes centros radiolíticos, pode-se somente deduzir a natureza dos defeitos que são criados pela radiação.

^(*) Vide glossário.

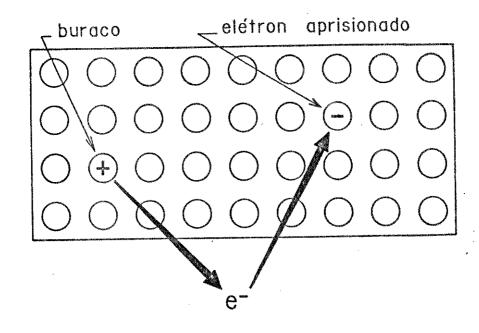


Figura II.6 - Esquema de uma região de um cristal mostrando a formação de um buraco e o correspondente aprisionamento de um elétron (3).

Não se possui ainda uma compreensão clara a respeito do mecanismo de formação de defeitos nos sólidos inorgânicos até agora estudados, por causa da complexidade dos processos que ocorrem.

Estudos envolvendo haletos de metais alcalinos (34-73) e nitratos (31) a 4 K sugerem que os mecanismos mais importantes na absorção de energia por um sólido, em ordem crescente de energia, são:

- Formação de exciton
- Ionizações simples
- Ionizações multiplas

A formação de excitons é o processo menos energéticos dos três. O exciton pode ser descrito como uma excitação de um dos elétrons de valência a um estado excitado ligado ("bound excited state"). A desexcitação des te estado pode ocorrer por meio da emissão de calor ou da emissão conjugada de fotons óticos e calor e, pode ser acompanhada de deslocamento de fons das suas posições originais, de reações de decomposição química e/ou de processos de cap tura eletrônica. Como a desexcitação acompanhada de reações de deslocamento

apresenta uma eficiência muito baixa (38), parece que, neste caso, os processos mais importantes a serem considerados são a captura eletrônica e a decomposição química.

A ionização simples corresponde à remoção de um elétron de um ion em um retículo, induzindo a formação de um átomo, molécula ou ion e um elétron livre. A remoção de um elétron de um ion pode causar a relaxação do retículo ao redor da posição excitada. Se a espécie resultante é suficientemente pequena, pode ocorrer a sua difusão térmica através do cristal, para longe do sítio ativado, até ela ocupar um sítio intersticial. Por outro lado, o elétron removido poderia ser aprisionado ("trapped") na vacância (*) deste ion (vide fig. II.7). Os processos de ionização simples podem ser acompanhados de reações de decomposição se moléculas ou ions complexos são formados como conseuqência da radiação incidente.

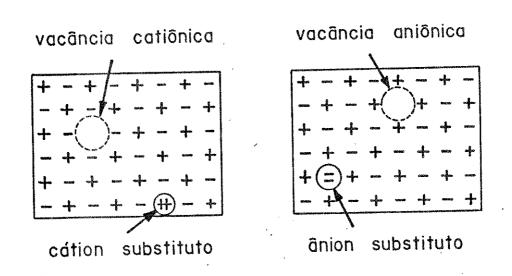


Figura II.7 - Esquema de regiões de um cristal iônico mostrando a formação de vacâncias catiônicas e aniônicas(3).

Entretanto, uma espécie (átomo, molécula ou ion) gerada pe lo processo de ionização simples pode também recapturar o elétron ejetado antes dele se difundir através do cristal. reformando o ion original em um estado excitado. Como a energia de recombinação do elétron com a espécie radiolítica é maior

^(*) Vide glossário.

que aquela resultante do decaimento do exciton, a probabilidade de ocorrência de reações de deslocamento pode ser apreciávelmente maior no caso da ionização do que no da formação de exciton.

Já houve quem sugerisse que a ocorrência de ionizações simples de dois ions idênticos em posições vizinhas no retículo poderiam ter um papel predominante na produção de defeitos retículares em solidos ionicos (39, 40). Dados experimentais posteriores (37) mostraram alguma evidência de que a formação de defeitos em haletos de metais alcalinos, na temperatura do hélio líquido, envolve a ionização simultânea de dois ions vizinhos de halogênio.

O processo de ionização multipla é o mais energético de todos. Este fenômeno pode ocorrer pela ejeção simultânea de elétrons de valência por um fotoelétron rápido, por um evento de simples ionização seguido de uma segunda ionização independente ou pela remoção de um elétron das camadas mais internas por um foton ou fotoelétron, seguida da remoção de um elétron de valência através do processo Auger.

Segundo Varley (41) existe uma probabilidade razoável de se observar um processo de dupla ionização de um ion haleto, quando um haleto de metal alcalino é irradiado com raios-X. Como resultado deste fenômeno, o ion haleto ficaria carregado positivamente, mas, como resultado da forte afinidade eletrônica desta espécie química, ocorreria rapidamente o aprisionamento de um elétron por este ion, com a consequente formação de um átomo neutro.

Entretanto, apesar da grande quantidade de informações de que se dispõe, pouco ainda se conhece a respeito dos detalhes dos processos que levam à formação dos produtos radiolíticos.

Os processos de excitação e de simples e múltipla ionização podem explicar uma grande quantidade dos dados publicados, mas uma compreensão mais detalhada do mecanismo de formação destes produtos radiolíticos poderia incluir também a influência de íons estranhos ao sistema sob estudo e os processos de deslocamentos que, supõe-se, ocorrem dentro do retículo, durante a ativação da amostra.

3. A quimica dos cristais dopados.

As investigações sobre o comportamento de agentes dopantes introduzidos em cristais hospedeiros são de considerável importância no estudo da química do estado sólido.

Os sólidos dopados, quando ativados, podem sofrer reações chamadas reações de recozimento por transferência (vide cap. II.3.b e II.4)
cuja sensibilidade varia com a composição e estrutura do sólido, com número e ti
pos de defeitos da estrutura cristalina e com a identidade e distribuição espacial das impurezas.

A reação de recozimento por transferência é definida (42, 43) como um processo global pelo qual a atividade de um radiotraçador, contido em um cristal hospedeiro em micro-quantidades, muda a sua forma química. Este fenômeno estaria associado a vários processos individuais como reações de troca, de substituição, de combinação, de dissociação, de adição, ou à uma combinação deles.

a - Os processos de dopagem

O processo de dopagem pode ser definido como um método de se introduzir concentrações controladas de um ou alguns tipos de impurezas (pontuais) no retículo cristalino de um sólido. Uma dopagem ideal seria aquela através da qual as impurezas estariam difundidas mais uniformemente dentro do cristal hospedeiro, sem causar danos adicionais ao retículo. A distribuição das especies dopantes no sólido pode ser bastante variada, como mostra a fig. II.8.

Basicamente as dopagens podem ser feitas por:

- *Cocristalização*: resfriamento rápido (geralmente a 0°C para soluções aquosas)
 de uma solução (geralmente saturada) quente (T variável) do composto hospedeiro contendo uma alíquota da espécie dopante dissolvida.
- Coprecipitação: adição de um agente precipitante a uma solução do hospedeiro.

 Neste caso a solução não precisa ser saturada, o agente precipitante pode ser

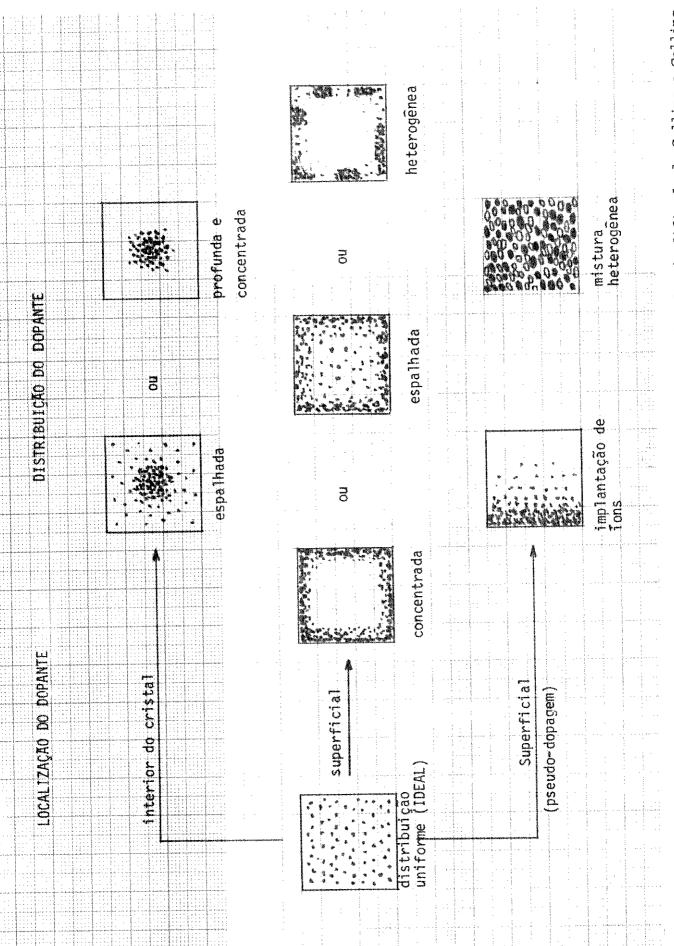


Figura II.8 - Possibilidades de distribuição do dopante em cristais dopados (modificado de Collins e Collins

(43)).

tão somente uma substância que diminua a solubilidade do hospedeiro na solução original e a temperatura da experiência pode ser escolhida e mantida constante durante todo o processo.

- Evaporação do solvente: eliminação do solvente sob vácuo e/ou calor. Neste caso as espécies dopantes podem se situar tanto na superfície como no interior do cristal. Quanto menos solúvel for o hospedeiro no solvente utilizado, mais superficialmente serão distribuídas as impurezas no cristal. Também neste caso a temperatura para o processo pode ser escolhida e mantida constante.

Além destes, existem ainda outros meios de se introduzir impurezas em um sólido, chamados métodos de pseudo-dopagem. O uso destes procedimentos não permite um controle mais rígido do número de defeitos, pois envolvem processos mais energéticos, que geralmente fragmentam o retículo. São eles:

- Irradiação do sólido: este processo pode envolver a irradiação do alvo com neu trons, fótons, elétrons e íons acelerados. Em qualquer destes casos pode estar associada uma fragmentação reticular de extensão não controlada, gerando defeitos vários no interior do cristal. Muitas fezes, na tentativa de se eliminar estes defeitos adicionais indesejáveis, procede-se a recristalização do sólido irradiado (44), mas este procedimento pode eventualmente não ser eficiente. Logicamente o grau de fragmentação molecular dependerá da energia do processo e do sólido que está sendo irradiado.
- Sistemas estequiométricos: quando um composto é preparado de modo a conter dois (ou mais) isotopos de um de seus elementos como componentes estequiométricos

Ex.:
$$[C_0 en_2 Cl_2]^{36}Cl$$

$$[^{60}C_0(H_2O)_2] [C_0 EDTA] . 4H_2O$$

Um outro método pelo qual pode-se introduzir quantidades macroscópicas de impurezas, externamente aos cristais, mas que a rigor não se pode considerar como um método de dopagem, é a mistura mecânica de dois (ou mais) sólidos, que envolve simplesmente a mistura (e/ou trituração) de duas (ou mais) substâncias solidas diferentes, formando uma mistura heterogênea, pelo menos ao nível microscópico.

b - 0 fenômeno da transferência de radioatividade (3, 43)

Até o início da década de 60 as investigações na área da química dos átomos quentes em sólidos estavam relacionadas somente com a verificação da distribuição dos átomos de recuo entre duas ou mais frações, após trata mentos físicos do sólido irradiado.

Entretanto, em 1963, foi publicado um trabalho relatando que radioiodato é produzido quando iodato de cálcio dopado com ions iodeto (131 I) é aquecido em temperaturas superiores a 200°C (45). As curvas cinéticas descrevendo a transferência de atividade da forma do dopante para a forma do hospedeiro, sob aquecimento, mostram similaridade com as curvas de recozimento do átomo de recuo (128 I), produzido pela transformação nuclear (n,γ), em cristais similares.

Muitos outros exemplos sobre o fenômeno da transferência de atividade de uma forma química para outra (normalmente de um estado de oxidação menor para um maior) têm aparecido na literatura (42, 46-50). Dentre os vários compostos estudados estão incluídos aqueles usualmente estudados na química do recuo, ou seja, oxiânions, hexahaletos de metais e vários complexos de cromo cobalto, ferro e outros metais. Frequentemente mostra-se que, em cristais similares, o comportamento do átomo dopante é quase idêntico ao do átomo de recuo.

Um exemplo claro deste fato foi descrito por Khorana (51) que observou um comportamento idêntico para os cristais de perclorato de trispiridilcobalto trihidratado, $\left[\text{Co(dipy)}_3\right](\text{ClO}_4)_3.3\text{H}_2\text{O}$, dopados superficialmente com fons de $^{57}\text{Co(II)}$ e os irradiados com neutrons, $(^{59}\text{Co(n,\gamma)}^{60}\text{Co)}$, após serem recozidos isotermicamente a 30°C .

Outros trabalhos mostram que a transferência, praticamente, não depende da matriz. Desta maneira, o átomo dopante não precisa ser idêntico a um átomo do cristal para se obter a transferência. Estudos com hexaclorore-

niato de potássio dopado com brometo radioativo (82 Br) mostram que, após o aquecimento do cristal, a presença de pentaclorobromoreniato é observada (52). De maneira análoga, quando cromatos, sulfatos, nitratos e outros oxiânios são dopados com 51 Cr $^{3+}$, uma nova forma química (51 Cr $^{2-}$) é obtida após o tratamento térmico (53-55).

Quando experiências de recozimento são feitas com átomos de recuo e átomos dopantes em cristais essencialmente idênticos, notam-se importantes diferenças na velocidade de formação do composto-pai, que podem ser relacionadas às respectivas estruturas dos sítios dos dois tipos de átomos na rede do cristal. As velocidades de formação do composto-pai são mensuráveis e têm sido determinadas em uma larga faixa de temperatura para os átomos de recuo. Os átomos dopantes apenas sofrem recozimento, em velocidades significativas, acima de certas temperaturas (44, 55, 56). Entretanto, nas faixas em que o recozimento do átomo dopante ocorre, as velocidades de recozimento são parecidas com aque las sofridas pelos átomos de recuo correspondentes. Estes fatos não informam sobre o estado dos átomos dopantes (ou de recuo) ou dos seus vizinhos, mas certamente refletem o ambiente do cristal, que é diferente para os dois casos.

Vale a pena ressaltar ainda, que a faixa de temperatura onde o recozimento dos átomos dopantes são similares ao dos átomos de recuo varia para cada sistema cristalino. Isto é também um reflexo do ambiente químico nos sítios de recozimento.

c - Os mecanismos de reação (3, 43)

Para se provocar um recozimento em um solido dopado e necessário que a amostra seja ativada de alguma maneira. Esta ativação irá gerar espécies (elétrons, buracos, vacâncias, excitons, fonons ou uma combinação delas) que induzirão o aparecimento das espécies químicas detectadas apos a análise.

No momento, são três os mecanismos mais aceitos para explicar os processos de recozimento em sólidos dopados.

O primeiro é uma "troca ativada", pela qual todas as ligações do dopante ativado são transferidas, em uma única etapa, para uma única molécula do hospedeiro (48, 57-59).

Em contraposição a este mecanismo, desenvolveu-se um outro pelo qual o processo de transferência poderia envolver várias etapas, utilizando vacâncias anionicas ou cationicas (52), buracos (46, 47) ou outras espécies móveis (60, 61) e uma transferência de ligante (ex: transferência de oxigênio) com oxidação do átomo dopante.

$$*_{M}^{a+} + \bigoplus \qquad *_{M}^{a+1}$$
 $*_{M}^{a+1} + \text{reticulo} \qquad *_{M}^{a-1} + \bigsqcup^{2-}$

O terceiro mecanismo proposto sugere uma transferência de ligantes envolvendo espécies polinucleares como intermediários (62, 63). As novas ligações do átomo dopante (ou de recuo) seriam adquiridas das moléculas vizinhas.

Estes mecanismos generalizados têm sido usados para explicar a maioria dos recozimentos de sólidos dopados que foram registrados na literatura. Para alguns sistemas que envolvem a troca de ligantes com uma cinética de primeira ordem, o processo de uma única etapa é tentador, a exem plo co sistema * Br $^-/$ K $_2$ ReCl $_6$

$$\left[\text{C1}_{5}\text{ReC1}\right]^{2-} + \frac{82}{8}\text{Br}^{-} \longrightarrow \left[\text{C1}_{5}\text{Re}^{82}\text{Br}\right]^{2-} + \text{C1}^{-}$$

apesar das objeções de Rössler, Stöcklin et al (52) que propuseram um mecanismo de multiplas etapas envolvendo a difusão de vacâncias de ligantes.

Os processos múltiplos parecem também razoáveis para explicar os resultados obtidos com iodatos e periodatos dopados com ¹³¹I (64), particularmente porque intermediários têm sido observados em alguns casos e porque o uso do mecanismo de troca ativada levaria a produtos não observados.

Para os cromatos os três processos são aplicáveis.

i) Troca Ativada (58)

$$51_{\text{Cr}^{3+}} + e^{-}/ \oplus - [51_{\text{Cr}^{3\mp 1}}]^{\ddagger}$$

$$[^{51}\text{Cr}^{3+1}]^{\frac{1}{7}} + \text{Cro}_{4}^{2-} \longrightarrow \text{Cr}^{3+1} + ^{51}\text{Cro}_{4}^{2-}$$

ii) Oxidação passo a passo (46)

iii) Transferência de oxigênio/rearranjo (62, 63) (para maior simplicidade, o balanceamento de cargas foi omitido).

A oxidação passo a passo, por meio de buracos, seguido de transferência de oxigênio, ou a formação de um intermediário polinuclear ou, talvez, uma combinação de ambos os processos, parecem ser os mecanismos que melhor explicam o fenômeno da transferência em cromatos, de modo que a transferência de ⁵¹Cr da forma analisa da como ⁵¹Cr(III) para a forma analisada como ⁵¹Cr(VI), nestes compostos poderia envolver o processo (3):

$$\begin{bmatrix} 0 & 0 \\ 0 & Cr \end{bmatrix}^{2-} + \begin{bmatrix} 51 \\ Cr \end{bmatrix}^{n+} + \begin{bmatrix} 0 & 0 \\ 0 & Cr \end{bmatrix}^{2-} - \Delta - \begin{bmatrix} 0 & 0 \\ 0 & Cr \end{bmatrix}^{0} + \begin{bmatrix} 51 \\ 0 & Cr \end{bmatrix}^{0} - \begin{bmatrix} 0 \\ 0 & C$$

Entretanto, qualquer que seja o mecanismo de transferência, e cada um deles encontra apoio em resultados experimentais, é possível que o processo de transferência seja mecanisticamente similar (ou idêntico) ao processo

de recozimento do atomo de recuo, acima de uma temperatura definida.

Aceitando esta suposição, o processo de recozimento, acima desta temperatura, não é especificamente sensível aos fragmentos produzidos pelo recuo ou à estrutura da zona desordenada. Ao invés disto, estes processos de recozimento podem ser relacionados com as propriedades do cristal como um todo e/ ou as refletem.

4. Os processos de recozimento^(*) em solidos.

Quando um sólido contendo especies metaestáveis de alta energia potencial como impurezas (ex: átomos e/ou moléculas excitados, defeitos pontuais de diferentes tipos, incluíndo agregados destas especies e radicais, e outras especies químicas reativas, diferentes de radicais) é convenientemente ex citado através de tratamentos físicos adequados (ex: calor, radiação, etc), observa-se geralmente o retorno ao seu estado de equilíbrio inicial, frequentemente em um estado químico indistinguível daquele encontrado no sistema cristalino não perturbado. As reações que provocam este fenômeno são chamados "reações de recozimento".

Os sistemas químicos nos quais os processos de recozimento são observados podem ser estudados tanto por métodos físicos como por métodos químicos e podem ser produzidos por diferentes modos. Um dos mais extensivamente estudados envolvem a irradiação de solidos com radiação ionizante ou com neutrons rápidos. Estes tratamentos mudam frequentemente as propriedades físicas mesmo dos solidos mais simples, como os metais, mas estas mudanças podem ser revertidas completamente ou parcialmente (é a maior parte dos casos) por recozimento termico provocado após a irradiação do solido.

^(*) O termo recozimento é muito usado na literatura técnica e/ou científica para significar a eliminação de defeitos e a reconstituição de uma estrutura organizada, regenerando suas propriedades físicas e químicas originais. Esta palavra é usada em engenharia e metalurgia exclusivamente com o significado de tratamento térmico, mas em radioquímica e em estudos da física e/ou química do estado solido o seu significado é bem mais amplo.

De modo particular tais efeitos são estudados em sólidos ativados nuclearmente, em especial por meio da captura radiativa de neutrons.

a - Recozimento por irradiação.

Muitos sistemas contendo fragmentos radioativos metaestáveis foram recozidos por influência de radiação ionizante (65, 66), sendo Williams (65) o primeiro a observar tal fenômeno, durante a irradiação de pentafluoreto de antimônio em um reator nuclear. As investigações subsequentes (66, 67-83) mostraram que este tipo de recozimento pode também ser iniciado por partículas α, elétrons, raíos γ e raios X.

Este processo é muito estudado em sistemas químicos contendo átomos de recuo os quais, em geral, estão sujeitos a reações de oxidação e/ou formação de fragmentos poliméricos. Quando complexos contendo íons metálicos são utilizados, as possíveis reações de rearranjo envolvendo ligantes devem ser também consideradas. Processos de redução são observados somente para aque les sistemas que se decompõem facilmente quando irradiados (84).

O recozimento por irradiação é bastante influenciado pela presença de outros defeitos no cristal. Por exemplo, fons ${\rm Ca}^{2+}$ (79) usados como dopantes em cristais de ${\rm K_2CrO_4}$ reduzem o efeito do recozimento. Um aumento na sensibilidade deste fenômeno é também observado quando cristais deste mesmo com posto, irradiados com neutrons, são aquecidos (recozidos termicamente) antes da exposição ao campo de radiação γ (78). O aquecimento durante a irradiação também aumenta a velocidade do recozimento por irradiação (66, 70, 78).

Este fenômeno é dependente da temperatura. Para uma dada velocidade de absorção de energia por unidade de massa ("dose rate") a velocida de de recozimento, em geral, diminui com o abaixamento da temperatura. Em temperaturas muito baixas (ex: 77K), nenhum recozimento foi detectado para K_2Cr_{04} (85, 86), K_2Cr_{207} (86) e C_2Br_{6} (87) irradiados com neutrons. Esta observação é consistente com o ponto de vista que o processo de recozimento por irradiação possui etapas ativadas termicamente (88).

Para alguns compostos foi observado o chamado efeito de intensidade (66, 70, 89), onde o recozimento por irradiação aparentemente se comporta como uma função da velocidade de absorção de energia por unidade de massa para a mesma dose recebida, fato que deve ser considerado na proposição de mecanismos (3).

b - Recozimento térmico.

O recozimento térmico é feito por tratamento isotérmico ou isocrônico da amostra, e tem sido estudado exaustivamente em muitos sólidos inorgânicos e em alguns sólidos orgânicos. O processo global consiste em reações rápidas e lentas (3) e as curvas de recozimento são sensíveis a outros tratamentos físicos (ex: trituração, irradiação com fótons γ, etc) que induzem defeitos adicionais ao sólido (90, 91).

mento térmico em sólidos inorgânicos irradiados com fótons energéticos ainda é relativamente pequeno, ao se considerar que estudos sobre a radiólise destes sólidos vêm sido feitos há vários anos. A complexidade dos produtos formados pela radiólise em sólidos inorgânicos é muito grande, mesmo para compostos simples como haletos de metais alcalinos, razão pela qual as informações sobre as reações de recozimento térmico em sistemas mais complexos, como os oxiânions, é ainda muito limitado.

Para os oxiânions, as reações de recozimento termico poderiam envolver reações de difusão, de decomposição e/ou reações iniciadas pela liberação de "carregadores de cargas" como elétrons aprisionados (trapped electrons) e buracos.

A presença de outras impurezas no cristal irradiado pode influenciar sensivelmente as reações de recozimento térmico destes sistemas, tanto participando diretamente destas reações como diminuindo a energia de ativação destas reações de recozimento (92).

Os conhecimentos de que se dispõem a respeito dos proces sos de recozimento térmico de espécies de recuo geradas em sólidos por transformações nucleares são ainda limitados, apesar do grande número de dados experimentais disponíveis na literatura, principalmente porque a maior parte dos resultados foram obtidos a partir de análises químicas realizadas após a dissolução das amostras irradiadas.

Apesar de todos estes problemas no entanto, parece que a decomposição de fragmentos de recuo diméricos e/ou poliméricos, os rearranjos na distribuição de ligantes e os processos de oxidação são os fenômenos geralmente aceitos para explicar os processos de recozimento térmico observados em oxi-ânions e complexos irradiados com neutrons.

Da mesma forma que no caso do recozimento por irradiação, as reações de recozimento térmico envolvem a redução do estado de oxidação dos átomos radioativos presentes no retículo cristalino somente quando o sistema químico usado como alvo possui baixa estabilidade térmica e sofre decomposição, cujos fragmentos competiriam também nos processos de recozimento (93). Evidências para a influência de defeitos de cristal nas reações de recozimento térmico de átomos de recuo foram obtidas introduzindo-se diferentes tipos de defeitos em cristais de K₂CrO₄, antes e depois do bombardeamento de neutrons. Trituração (91), pré e pos irradiação com elétrons (72, 75, 94) e dopagem com cátions divalentes (ex: Ca²⁺, (79, 91)) mostraram o mesmo efeito, isto é, um aumento na susceptibilidade de sofrer reações de recozimento.

c - Outros tipos de recozimento.

Além do recozimento térmico e por irradiação, demonstrouse também a ocorrência deste fenômeno por ação da pressão, à temperatura ambiental, quando cromatos, fosfatos e outros compostos foram submetidos a pressões acima de 500 kg/cm² (95-97). Observou-se também o "recozimento por explosão", obtido quando a amostra é exposta às ondas de choque provocadas por uma explosão (95).

Fenômenos similares podem ser induzidos por radiações u.v. (77, 90, 98, 99) e por ultra-som (95, 98, 100). Além disso, mudanças na estrutura do solido (ex: desidratação), por si so, podem provocar o seu recozimento (101, 102).

O assunto é sem dúvida muito extenso para ser bem resumido em algumas páginas. Entretanto, com base no texto acima apresentado, sugere-se aos interessados, a leitura dos vários textos de revisão disponíveis a respeito do assunto ora focalizado (1, 3, 4, 103, 104).

5. 0 elemento cromo (105-110)

a - Algumas características físicas e quimicas.

O elemento cromo é um metal branco, lustroso, duro e que -bradiço, de densidade 7,2088 g/cm³ e ponto de fusão (1903 ± 10) °C, que se apre -senta na forma cúbica.

Este metal é extremamente resistente aos agentes corrosivos comuns, mas dissolve-se em ácidos minerais não oxidantes como HF, HCl, HBr, HI, H₂SO₄, etc. Por causa da sua estabilidade é usado como agente anticorrosivo sobre outros metais (via eletrodeposição), sendo a sua passividade próxima à da platina. Raramente é encontrado na natureza na forma de metal e possui um comportamento muito similar ao do urânio, tungstênio e molibdênio (108). Em tempera turas elevadas este elemento pode se ligar diretamente a halogênios, enxofre, si lício, boro, nitrogênio, carbono e oxigênio.

O cromo possui isótopos cujos números de massa variam de 45 a 57 (o ⁴⁷Cr não tem ainda as suas propriedades nucleares determinadas) (111-113), sendo os isótopos 50, 52, 53 e 54 os naturais, com abundâncias relativas de 4,35%, 83,79%, 9,56% e 2,36%, respectivamente. Destes, o isótopo de maior interesse em radioquímica é o ⁵¹Cr (vide cap. III.3).

b - A química em solução aquosa.

Pode-se encontrar compostos de cromo com o metal nos estados de oxidação II, III, IV, V e VI. Os compostos de Cr(IV) e Cr(V) são relativamente raros, sendo os de Cr(IV) (ex: Sr₂CrO₄) um pouco mais numerosos e estáveis que os de Cr(V) (ex: CrOF₃). O estado V não é ainda bem conhecido em compostos simples, mas dados de ressonância paramagnética eletrônica (R.P.E.) suge rem que muitos retículos de óxidos de cromo podem conter Cr⁵⁺, quando adequada mente oxidados ou reduzidos (105). Em água, no entanto, somente os estados de oxidação II, III e VI são observados.

Os ions Cr(II), instaveis em solução aquosa, são rapidamente oxidados pelo ar e, em pH proximo de 6, precipitam como Cr(OH)₂, que também é facilmente oxidavel.

O estado de oxidação (III) para o cromo é bastante comum e existem centenas de compostos sob esta forma. Os fons Cr^{3+} , com poucas exceções, apresentam-se hexacoordenados. Os complexos de $\operatorname{Cr}(\operatorname{III})$ (ex: F̄, NH₃, CN̄, SCN̄, SO_4^{2-} , etc.) são bastante estudados porque são muito úteis nos estudos da teoria do campo ligante e da ligação química (110). O fon hexaáquo $\left[\operatorname{Cr}(\operatorname{H}_2\operatorname{O})_6\right]^{3+}$, que possui uma geometría de octaedro regular, ocorre em solução aquosa e em numero sos sais, tais como os hidratos (ex: $\left[\operatorname{Cr}(\operatorname{H}_2\operatorname{O})_6\right]\operatorname{Cl}_3$ - cor violeta).

0 Cr(VI) é hidrolizado extensivamente em água, gerando especies neutras ou aniônicas. As especies hidrolíticas, muito bem estabelecidas, são os ions HCrO_4^7 , CrO_4^{2-} e $\text{Cr}_2\text{O}_7^{2-}$. Existem evidências da formação de H_2CrO_4 em meio ácido concentrado. Os equilíbrios envolvidos são:

$$H_2CrO_4$$
 \longrightarrow $HCrO_4^- + H^+$
 $HCrO_4^ \longrightarrow$ $CrO_4^{2^-} + H^+$
 $2HCrO_4^ \longrightarrow$ $Cr_2O_7^{2^-} + H_2O$

As soluções ácidas de Cr(VI) são oxidantes fortes,

$$\operatorname{Cr}_{2} \operatorname{O}_{7}^{2-} + 14 \operatorname{H}^{+} + 6 \operatorname{e}^{-} = 2 \operatorname{Cr}^{3+} + 7 \operatorname{H}_{2} \operatorname{O}$$
 $\operatorname{E}^{O} = 1,33 \operatorname{V}$

mas em meio básico o seu poder oxidante é muito reduzido

$$\text{Cro}_{4}^{2-} + 4\text{H}_{2}\text{O} + 3\text{e}^{-} \leftarrow \text{Cr(OH)}_{3(s)} + 5\text{OH}^{-} \qquad \text{E}^{\circ} = -0,13\text{V}$$

c - As espécies hidroliticas mononucleares.

As reações de hidrólise mononucleares para o ion hexaaquocromo (III) ocorrem rapidamente. Rich et al (114), usando técnicas de relaxação, estudaram a cinética do primeiro estágio da hidrólise do Cr³⁺ e encontraram que a constante de velocidade para a perda de um próton

$$Cr(H_2O)_6^{3+} + H_2O \leftarrow Cr(H_2O)_5(OH)^{2+} + H_3O^+$$

é de 1,4x10⁵s⁻¹. Esta reação é muito rápida se comparada com a eliminação de uma molécula de água da esfera de coordenação,

$$Cr(H_2O)_6^{3+}$$
 $Cr(H_2O)_5^{3+} + H_2O$

que tem uma constante de velocidade da ordem de 10^{-5} a 10^{-6} s⁻¹ (115).

Também o primeiro quociente de hidrólise (*), Q11, para ion hexaaquo foi determinado por varios pesquisadores (116-122), mas sem uma boa precisão (109),

$$(H_2O)_6Cr^{3+} + H_2O = (H_2O)_5Cr(OH)^{2+} + H_3O^{4+}$$

onde M é o metal envolvido no processo, x e y são os indices estequiométri-cos do produto da hidrólise e z a carga do ion metálico em equilibrio.

^(*) O quociente de formação global para um produto formado por reação com a água, chamado quociente de hidrólise, é definido por: $Q_{xy} = \frac{\left[M_x(OH)_y^{(xz-y)+}\right]\left[H^+\right]^y}{\left[M^{z+}\right]^y}$

enquanto que o da segunda reação de hidrólise

$$(H_2O)_6 Cr^{3+} + 2H_2O \longrightarrow (H_2O)_4 Cr(OH)_2^+ + 2H^+$$

foi bem determinado por Schwarzenbach (119), usando um metodo de fluxo ($\log Q_{12} = -9,7$ em NaClO $_4$ 0,1M e a 20° C).

d - As espécies hidrolíticas poliméricas.

 $0~ion~\left[\text{Cr(H}_2\text{O)}_6\right]^{3^+}~possui~um~comportamento~hidrolítico~em\\solução,~caracterizado~por~reações~de~polimerização~cineticamente~lentas.$

N. Bjerrum (123, 124) foi o primeiro a demonstrar que solu ções hidrolisadas de ${\rm Cr}^{3+}$ contém uma certa quantidade de espécies poliméricas. Também foi ele (124) quem demonstrou, através de estudos de equilíbrio, que um dos produtos desta hidrólise poderia ser o dímero ${\rm Cr}_2({\rm OH})_2^{4+}$.

Este mesmo composto foi descrito em artigos de Ardon, Plane et al (125, 127), como o resultado da oxidação do Cr(II) pelo oxigênio molecular em solução ácida diluída, apesar do espectro da solução oxidada pelo oxigênio (125) mostrar-se diferente daquele obtido para uma solução de Cr(II) oxidada com ${\rm H_2O_2}$ (126). A observação de uma mudança na condutividade da solução indicou a ocorrência de polimerização, a carga por átomo de cromo foi determinada como sendo 1,97±0,04 por titulação condutométrica e o comportamento desta espécie con tendo cromo em uma coluna de troca iônica, indicou que a carga total mais provável para este complexo seria + 4 (127).

Estas conclusões foram confirmadas por medidas crioscópicas, que mostram ser dimérica a espécie em questão (128), com duas estruturas possíveis, $[(H_2O)_5Cr]_2O^{4+}$ e $[(H_2O)_4Cr(OH)]_2^{4+}$. Estudos envolvendo troca de mostram que a estrutura $[(H_2O)_4Cr(OH)]_2^{4+}$ é a correta (129).

O mesmo complexo pode ser obtido por meio da polimerização direta do fon monohidroxocromo (III), durante o aquecimento de uma mistura equi-

molar de NaOH e $Cr(NO_3)_3$. O produto deste aquecimento possui um espectro muito similar aquele do dimero proposto por Ardon (125).

Polímeros são também obtidos quando sais de hexaaquocromo (III) são aquecidos refluxados em água (sem a adição de base) por algumas horas.

Laswick e Plane (130), apos o resfriamento da solução de refluxo, conseguiram separar, por troca catiônica, três espécies contendo cromo: ${\rm Cr}^{3+}$ (eluída com ${\rm HClO}_4$ 1M), um polímero azul-esverdeado (eluído com solução 0,02M em ${\rm La}^{3+}$ mas não com ${\rm HClO}_4$ 1M) e um polímero verde (eluído com solução 0,2M em ${\rm La}^{3+}$).

Em coluna de troca iônica o polímero aul-esverdeado mostra um comportamento correspondente ao do dímero $\operatorname{Cr}_2(\operatorname{OH})_2^{4+}$ (127), resultados estes confirmados por Finholt (131).

Ainda segundo Finholt (131), o dímero $\text{Cr}_2(\text{OH})_2^{4+}$, que estruturalmente apresenta duas pontes OH, decompõe-se com uma velocidade mensurável em soluções ácidas moderadas (ex: 6M HC1O_{Δ}), segundo a reação

$$Cr_2(OH)_2^{4+} + 2H^+ \longrightarrow 2Cr^{3+} + 2H_2O$$

Esta conclusão advém do fato do espectro de absorção destas soluções mostrarem uma pequena, mas relativamente rápida, mudança seguida de uma alteração muito lenta, correspondente à geração de ${\rm Cr}^{3+}$. Da investigação deste efeito estabeleceu-se a existência de especies dímeras de cromo com uma só ponte OH, ${\rm Cr}({\rm OH}){\rm Cr}^{5+}$, e o mecanismo de decomposição do dímero ${\rm Cr}_2({\rm OH})^{4+}_2$, descrito por:

$$H_{2}O + \left[(H_{2})_{4}Cr \Big|_{OH} Cr (H_{2}O)_{4} \right]^{4+} + H^{+} \rightarrow \left[(H_{2}O)_{5}Cr - OH - Cr (H_{2}O)_{5} \right]^{5+}$$

$$H_{2}O + \left[(H_{2}O)_{5}Cr - OH - Cr(H_{2}O)_{5} \right]^{5+} + H^{+} - 2\left[Cr(H_{2}O)_{6} \right]^{3+}$$

Thompson (132) em estudos posteriores, muito mais completos e cuidadosos, concluiu em seu trabalho que as duas espécies dímieras propostas

são realmente diméricas, que os átomos de Cr(III) estão realmente ligados por pontes hidroxilas e que a espécie polimérica verde apresenta uma estequiometria consistente com a fórmula $\operatorname{Cr}_3(\operatorname{OH})_4^{5+}$. As estruturas possíveis para estas espécies são mostradas na fig. II.9.

Medidas de momentos magnéticos (132) apontam o arranjo

Muitos outros complexos polinucleares de cromo são conhecidos, como o composto

$$\left[(H_2O)_4 Cr \left(\frac{OH}{NH_2} Cr (OH_2)_4 \right) \right]^{4+}$$
 (133)

ou

que não serão aqui discutidos por fugirem ao contexto deste trabalho.

Em qualquer caso, os estudos relativos aos processos de polimerização envolvendo ions Cr³⁺ são muito dificultados pelas cinéticas extremamente lentas por eles apresentados, mesmo quando envolvem baixos graus de polimerização (i. é, pequenos polímeros).

6. O sistema cromato de potassio.

Uma das classes de compostos mais estudada no campo da qu $\tilde{1}$ mica dos átomos quentes \tilde{e} a dos oxi-sais, em especial os cromatos. Os cromatos têm sido muito estudados devido \tilde{a} relativa simplicidade estrutural do $\tilde{1}$ on $\text{CrO}_4^{\ 2-}$

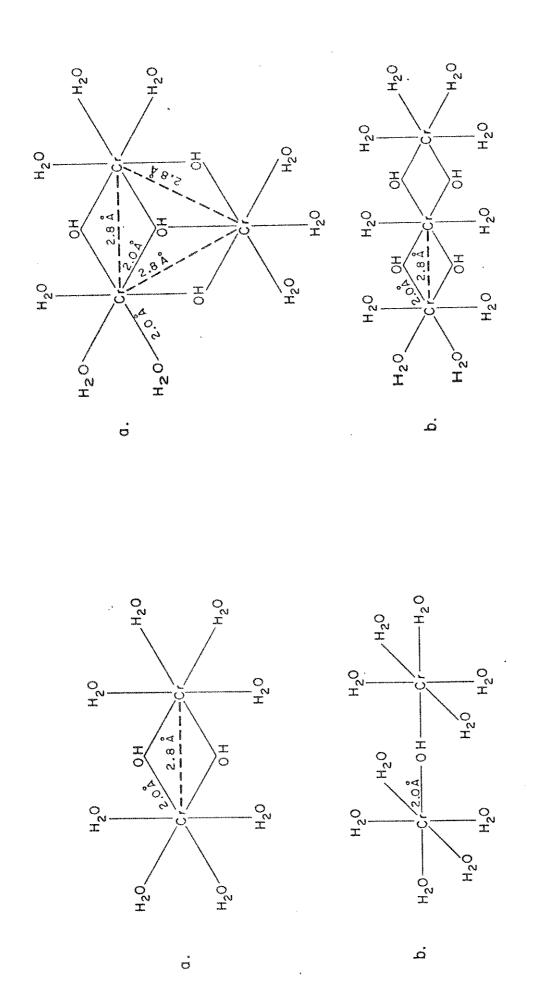


Figura II.9 - Estruturas possíveis para os compostos diméricos e triméricos de Cr(III) (132).

ESTRUTURAS DIMERICAS

ESTRUTURAS TRIMERICAS

e por causa das propriedades nucleares favoráveis do ⁵¹Cr (vide cap. III.3),além da estabilidade térmica e à radiação que este sistema químico apresenta.

a - Algumas propriedades dos cromatos (135)

O cromato de potassio tem seu ponto de fusão em 960°C e sua estabilidade térmica é suficiente para se preparar monocristais (136) ou cristais dopados (137-140) a partir do sal fundido. As principais transições de fase no estado sólido, à pressão atmosférica, ocorrem a 663°C para o K2CrO4 (141) e em 392°C e 424°C para o Na2CrO4 (142).

0 dicromato de potássio é estável pelo menos até 800°C (143) mas os compostos de amônio, tais como (NH₄) 2CrO₄ e (NH₄) 2Cr₂O₇ sofrem decomposição em temperaturas menores que 200°C (54, 144, 145).

Para os cromatos de metais alcalinos observa-se a ocorrência de trocas de átomos de oxigênio de ânion ${\rm Cr0}_4^{2^{-}}$ com os átomos de oxigênio da atmosfera que envolve os cristais, em temperaturas acima de $600^{\rm O}{\rm C}$ (146).

De um modo geral os cromatos são também inertes quando expostos a um campo de radiação externa, sendo o $\rm K_2CrO_4$ incomumente estável. Várias tentativas de se observar uma decomposição radiolítica do $\rm Cr(VI)$ em $\rm Cr(III)$ em cristais de $\rm K_2CrO_4$ irradiados em reator e analisados por titulação potenciome trica do $\rm Cr(III)$ após a dissolução da amostra resultaram infrutíferas (63, 69, 147).

b - 0 comportamento do $K_2 \text{CrO}_4$ frente \tilde{a} radiação γ .

Mesmo quando o K₂CrO₄ é irradiado por longos períodos não se observa a liberação de gases (oxigênio) como produto de decomposição (147).

Cristais de cromato de potássio irradiados em reator (alta dose absorvida; >10 4 MRad) apresentaram um valor G[Cr(III)] \sim 10 $^{-4}$ (*), segundo Gütlich et al (63), enquanto que medidas da quantidade total de radicais presen

^(*) Vide glossârio.

tes apos a irradiação γ de cristais deste composto, na temperatura ambiente (doses até 100 MRad) indicaram um valor $G[radicais] = 10^{-4}$ (148). Quando cristais de $K_2^{-51}CrO_4$ são irradiados com doses de radiação relativamente pequenas (\leq 10 MRad) e a determinação da quantidade de $^{-51}Cr(III)$ envolve a dissolução da amostra, maiores valores de G[Cr(III)] (da ordem de 10^{-2}) são encontrados (149).

Este estudo (149) revelou também que a produção radiolítica de Cr(III) era muito maior ao redor da temperatura ambiente (0°C - 17°C) do que em temperaturas mais elevadas (96°C) ou mais baixas (-78°C), e que a produção total de Cr(III) radiolítico é menor em presença de ar do que na sua ausência.

Estes resultados foram interpretados (149) em termos de uma competição entre a produção radiolítica de Cr(III) e o recozimento por radiação da amostra, que causaria a reformação do Cr(VI) a partir do Cr(III) radio lítico. As moléculas de oxigênio teriam um importante papel no processo, afetan do a velocidade de radiólise primária e/ou a velocidade de recozimento.

O rendimento radiolítico do 51 Cr(III) obtido a partir do 51 CrO $_4$ irradiado em um campo de radiação γ (irradiador de 60 Co) foi também determinado como uma função da temperatura de irradiação, do gás que circunda os cristais e do pré-tratamento a que foram submetidas as amostras (150). Os valores encontrados foram maiores para temperaturas intermediárias (0°C > 20°C > $^{-78}$ °C > 100 °C) e na ausência de oxigênio (N 2 > V acuo > A 3 > O 4). O pré-aquecimento das amostras sob as atmosferas gasosas por 4 horas e a 350 °C acentuam estas diferenças.

Várias outras investigações, utilizando espectroscopias no infravermelho (151) e ressonância paramagnética eletrônica (148, 152-156), foram feitas, na tentativa de se identificar, in situ, espécies produzidas pela ação da radiação γ sobre o $K_2\text{CrO}_4$ sólido, sendo que várias destas observações são muito significativas para o estudo da química dos átomos quentes deste composto. Por exemplo, verificou-se que se a irradiação for realizada em baixas temperaturas (-196°C), existem evidências somente para a produção de espécies que não sofreram quebra de ligações Cr-O, tais como CrO_4^- e CrO_4^{3--} (148, 154), enquanto que a ação dos fotons γ à temperatura ambiente produziu pelo menos mais quatro ou-

tras espécies, além das duas citadas anteriormente. Dentre elas identificaramse como fragmentos do fon CrO_4^- as espécies CrO_3^- (151), CrO_3^- (152, 156) e CrO_2^- (148). Algumas delas sobrevivem a temperaturas superiores a 100°C (148, 151, 153).

Deve-se entretanto ressaltar que, apesar dos estudos por dissolução indicarem a presença de quantidades significantes de espécies contendo Cr(III) marcadas, estas não foram observadas pelos métodos físicos de análise. Esta fato poderia ser uma consequência das próprias limitações destes métodos (ex: RPE detecta somente centros paramagnéticos; IV precisa muitas vezes de concentrações razoáveis do composto, dependendo dos coeficientes de absorção das bandas) ou, talvez seja uma forte indicação de que o processo de dissolução das amostras altera realmente a distribuição das espécies.

c - A quimica dos átomos quentes.

O número de estudos a respeito da química dos átomos quentes no estado sólido envolvendo o cromato de potássio supera qualquer outro composto químico, devido às suas características físicas e porque a química analítica utilizada na detecção de microquantidades de espécies de cromo marcadas com 51 Cr tem sido bastante estudada (vide cap. II. 7c), o que facilita o trabalho de laboratório.

Estes estudos, no entanto, mostraram que a química do recuo em cromatos (e também para outros sistemas químicos) é bastante complexa, e esta compexidade é refletida pelos vários mecanismos e hipóteses já apresentados na tentativa de se explicar os fenômenos que ocorrem no estado sólido para esta (e outras) classe(s) de compostos.

A reação nuclear mais utilizada na investigação das consequências químicas das transformações nucleares em cromatos é $^{50}{\rm Cr}({\rm n},\gamma)$ $^{51}{\rm Cr}$. Segundo cálculos feitos, no processo de desexcitação, quase todos os átomos de $^{51}{\rm Cr}$ formados (> 98%) devem adquirir energias de recuo maiores que 50 eV (4, 157), sendo que, destes, cerca de 55% desexcitariam-se com emissões de fótons

com energias maiores ou iguais a 8,5 MeV, os quais produziriam energias de recuo maiores que 700 eV (157), que seriam suficientes para romper todas as ligações químicas do átomo de recuo de cromo e ainda provocariam desordens considera veis e defeitos de vários tipos no cristal. No entanto, por várias razões (excascata de desexcitação - vide cap. II.1; processos de reformação de ligações (recozimento) - vide cap. II.4) a retenção é bem maior do que a esperada.

Em princípio, o comportamento químico dos cromatos irradia dos com neutrons deveria ser simples, porquanto este sistema é composto por apenas cromo e oxigênio, mas o caráter multivalente do cromo, que permite a formação de espécies polinucleares ligadas por pontes de oxigênio (vide cap. II.5.b), as desordens reticulares provocadas pelo recuo e a dependência dos resultados com outros parâmetros, tais como as condições de irradiação (tempo e temperatura da exposição neutrônica, dose de radiação γ e fluxo dos neutrons térmicos e/ou rápidos), a introdução deliberada de defeitos nos cristais (dopagens), o tempo de estocagem das amostras, os tratamentos físicos pré e pos-irradiação, etc..., difícultam a interpretação dos resultados obtidos, criando algumas vezes, confusões com respeito às conclusões.

A sistemática de estudo da química dos átomos quentes em cromatos envolve a análise da distribuição relativa (%) das várias espécies de cromo marcadas com ⁵¹Cr. A maior parte, entretanto, dos artigos científicos publicados a respeito, analisam somente a retenção (%Cr(VI)) a partir das curvas de recozimento térmico isocrômico ou isotérmico, não considerando a participação das espécies de Cr(III), monômero, dímero e polímero, nos mecanismos de reação propostos. Com algumas exceções, o que se encontra na literatura é uma interpretação dos fenômenos que teriam ocorrido no estado sólido, baseados tão somente nos valores de retenção encontrados.

Por estas razões, o uso, a manipulação e/ou a comparação de dados obtidos pelos vários grupos de pesquisa atuantes neste campo torna-se muito difícil e requer algum cuidado.

Este aspecto da química dos cromatos foi revisado recentemente por Nath (58) e Collins (135). Estas revisões são muito críticas e comple tas, abrangendo o assunto sob todos os aspectos, razão pela qual não caberia aqui uma outra revisão sobre o mesmo assunto. O texto apresentado objetiva forne cer um breve roteiro sobre a matéria, que poderá ser consultada nas duas referências citadas, se maiores detalhes forem necessários ao leitor.

7. Os metodos de analise.

a - Generalidades.

O maior problema encontrado nos estudos da química do estado sólido relaciona-se com a maneira de se separar e analisar ultra-microquantida des (geralmente cerca de 10⁸ a 10¹² átomos, íons e/ou moléculas) de determinadas espécies químicas contidas em uma matriz no estado condensado, porque a concentração destas espécies, quase sempre, encontra-se aquém dos limites de detecção dos aparelhos de análise convencionais. Além disso, muitas vezes, é necessário determinar ultra-microquantidades de um certo elemento, sob uma dada forma química, em uma matriz composta por este mesmo elemento em outra forma química e/ou outro estado de oxidação. É por esta razão que neste campo de pesquisa, quase sempre, utilizam-se medidas quantitativas de radioatividade (detecção de raios γ ou partículas β (β ou β)) (158a).

Os métodos de investigação podem ser físicos ou químicos.Os métodos chamados físicos, que analisam as espécies de interesse "in situ", falham muitas vezes por causa de suas próprias limitações (ex: limite de detecção), enquanto que os métodos químicos, por outro lado, envolvem geralmente uma etapa de dissolução da amostra, a qual pode produzir alterações drásticas na natureza e/ou composição química das espécies criadas no estado sólido, por interações destas com o solvente.

Devido a estes aspectos, pretende-se apresentar em seguida, de um modo sucinto, alguns metodos de análise mais relevantes (tanto físicos como químicos), usados em radioquímica. Obviamente, considerando-se que o enfoque des

ta tese prende-se ao estado sólido, a revisão sumária proposta deverá focalizar este estado da matéria, relacionando os métodos analíticos, sempre que possível, com o elemento cromo.

b - Os métodos físicos.

Estes procedimentos analíticos podem ser divididos em dois grandes grupos, quais sejam, os métodos nucleares e os não-nucleares.

Os vários métodos físicos não fundamentados nas propriedades dos radionuclideos, tais como a Espectroscopia Óptica (158b, 159), Ressonância Paramagnética Eletrônica (22, 160-163), Ressonância Nuclear Quadrupolar (164, 165) e Condutividade Elétrica (136) são de considerável utilidade em química e nos estudos envolvendo o estado sólido, incluindo estudos radioquímicos. Da mes ma forma que outros métodos de análise, eles possibilitam relacionar o efeito dos "defeitos" com a química do recuo. Entretanto, por serem métodos bem estabe lecidos e por estarem bem referenciados acima, entendeu-se que se deva dar uma maior ênfase descrita aos métodos nucleares, geralmente menos conhecidos.

Os métodos nucleares fazem uso das propriedades nucleares de um radionuclídeo - sonda presente na amostra, o qual poderá ser nela introduzido por marcação química, dopagem ou, alternativamente, por uma reação nuclear. Obviamente as limitações destes métodos estão relacionados com os próprios radionuclídeos a serem estudados.

Um dos mais relevantes atualmente é a espectroscopia Mössbauer que, sem dúvida, é a mais conhecida e aplicada técnica de análise "in situ" em radioquímica. Ela consiste basicamente na absorção (emissão) ressonante de fótons γ de baixa energia ("sem recuo") por um absorvedor (emissor) (166). O uso deste efeito na química (ex: estudos de estrutura e ligação química) é muito comum (167, 168), mas sua aplicação em radioquímica, especialmente no estudo das consequências químicas geradas pelas transformações nucleares é muito importante e também jã foi objeto de revisões críticas (169-172).

Os nuclideos mais estudados em espectroscopia Mössbauer são o $^{57}\text{Co}(\text{CE})$ (*), $^{119\text{m}}\text{Sn}(\text{TI})$, $^{125}\text{I}(\text{CE})$, $^{125\text{m}}\text{Te}(\text{TI})$, $^{83}\text{Br}(\beta)$, $^{237}\text{U}(\beta)$ e $^{241}\text{Am}(\alpha)$, mas atualmente algumas investigações interessantes têm sido feitas também com $^{197}\text{Hg}(\text{CE})$, $^{197}\text{Pt}(\beta)$, $^{153}\text{Gd}(\text{CE})$ e $^{153}\text{Sm}(\beta)$ (172). Infelizmente não se pode aplicar esta técnica para o ^{51}Cr .

Basicamente o espectro Mössbauer fornece informações químicas através dos parâmetros: deslocamento isomérico (ou deslocamento químico = chemical isomer shift), desdobramento quadrupolar, desdobramento magnético, largura das linhas (abertura das bandas de ressonância), grandeza do efeito de ressonância, e a área ou a intensidade da banda.

O deslocamento isomérico, δ , é determinado pelo estado de valência ou carga efetiva do átomo Mössbauer e, em uma extensão menor, pelo número e caráter químico dos ligantes.

O desdobramento quadrupolar, Δ, é determinado pela assimetria do campo elétrico no núcleo Mössbauer e depende, em parte, do estado de valência e spin do átomo e em parte das espécies de maior carga situadas em posições mais longinquas no retículo. Assim sendo, Δ é também afetado pelo estado de oxidação e pelo número, caráter e simetria dos ligantes e outros componentes do retículo.

Um campo magnético permanente no núcleo Mössbauer produzira um espectro desdobrado magneticamente, a partir do qual a grandeza do campo no núcleo e o seu ângulo com o eixo principal do gradiente do campo elétrico podem ser calculados.

A largura da banda [, e a grandeza do efeito Mössbauer, f, são também parâmetros importantes, apesar destas quantidades não serem medidas frequentemente. A assimetria da banda e o coeficiente de temperatura de todos esparâmetros (dependência com a temperatura) também fornecem informações químicas importantes a respeito do sistema estudado.

^(*) Os simbolos entre parêntesis indicam o modo de decaimento do nuclideo citado.
CE = Captura Eletrônica e T.I = Transição Isomérica.

Várias referências sobre o uso desta técnica em radioquímica, principalmente em química dos átomos quentes e de cristais dopados, podem ser facilmente encontradas na literatura (169, 172-174).

As medidas de espectroscopia Mössbauer, apesar de restritas a alguns nuclídeos, podem ser comparadas e relacionadas com os resultados analíticos obtidos apos a dissolução das amostras (175-177). Estas comparações são fundamentais para uma melhor compreensão dos fenômenos que ocorrem no estado sólido.

Entretanto, muitos radionuclideos importantes em radioquimica não podem, até o momento, ser analisados por métodos nucleares, como é o ca
so do ⁵¹Cr, por causa das suas características nucleares desfavoráveis.

Em 1975 no entanto, Shiokawa e colaboradores (173) propuseram um metodo para obter indicações sobre o estado químico do 51 Cr em varios compostos, baseado em medidas da razão entre as intensidades das linhas de raios -X, K β /K α (ou K α /K β) (*), emitidas pelo 51 V apos o decaimento do 51 Cr.

0 ⁵¹Cr, como se sabe, decai por captura eletrônica orbital (vide cap. III.3), gerando no decaimento uma vacância em uma das camadas eletrônicas mais internas do átomo (a maior probabilidade é para a captura de um elétron K). Esta vacância poderá ser preenchida por elétrons das camadas superiores com emissão de raios-X (ex: linhas Kα e Kβ) ou emissão de elétrons Auger. Estes dois processos de estabilização eletrônica são competitivos entre si e podem provocar várias perturbações eletrônicas nas ligações químicas envolvidas com o átomo radioativo. Estes processos ocorrem depois da captura eletrônica e devem ser vistos, portanto, como uma desexcitação do nuclídeo filho, ⁵¹V.

As experiências pioneiras de Shiokawa e colaboradores

(178) foram baseadas em medidas anteriores de várias razões Κα/Κβ (179-181) e na

comparação destes resultados experimentais com cálculos teóricos das velocidades

de decaimento radiativo Κ (182, 183) e buscam encontrar possíveis variações

desta razão com o estado de oxidação e as ligações químicas do átomo sonda. Es-

^(*) Atualmente, prefere-se descrever a razão entre as intensidades das linhas como K β /K α , porque K α \acute{e} constante e possui intensidade maior que K β .

tudos de fluorescência de raios-X (184) comprovam que ocorrem alterações nas bandas e nas intensidades dos raios-X em função do estado químico dos compostos alvo.

De acordo com os resultados obtidos por Shiokawa (178, 185, 186) e, segundo ele, confirmados por excitação com raios-X (185, 186), a razão entre as intensidades das linhas Kα/Kβ emitidas em processos de captura eletrônica depende do estado químico do átomo radioativo e do seu estado de oxidação formal (vide fig. II.10). Além disso, esta técnica, ainda segundo Shiokawa, pode

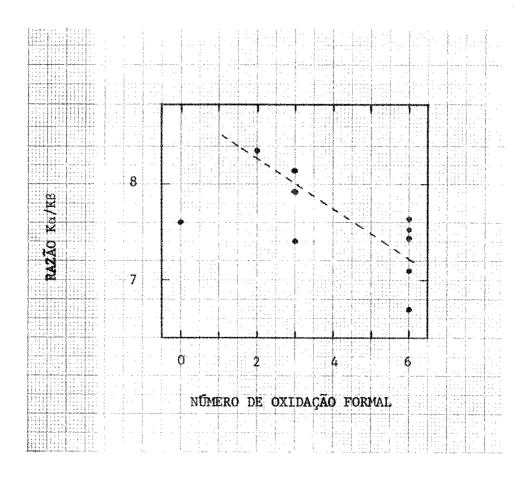


Figura II.10 - Efeitos químicos refletidos pelas razões ${\rm K}\alpha/{\rm K}\beta \ {\rm em} \ {\rm compostos} \ {\rm de} \ {\rm cromo} \ {\rm marcados} \ {\rm com}$ ${\rm 5l}{\rm Cr} \ (186\ ,\ 187) \ .$

ser aplicada na identificação do estado de oxidação de nuclideos em sólidos irradiados (187).

Lazzarini e colaboradores (188) criticaram os resultados de Shiokawa indicando que somente a primeira conclusão seria válida, pois a dis persão dos resultados encontrados invalida a conclusão de que a razão $K\alpha/K\beta$ de ve refletir o estado de oxidação do átomo radioativo.

Os resultados de Lazzarini e Shiokawa (178, 185, 186, 188) foram obtidos, no entanto, fazendo-se medidas com pastilhas dos compostos a serem testados, que absorveriam uma boa parte dos raios-X liberados pelos núcleos sonda. Desta forma, a obtenção dos valores Kβ/Kα reais devem envolver vários cálculos, que podem gerar erros nos resultados finais.

Por esta razão, Collins et al (189) refizeram, recentemente, as experiências $K\beta/K\alpha$ depositando um filme fino de $^{51}Cr(III)$ (usando técnicas de microquímica e de eletrodeposição) em suportes de platina, vidro e PTFE (Teflon) ou sobre cristais de K_2CrO_4 , usando como dopante $^{51}Cr(III)$ nas formas cloreto, nitrato e perclorato.

Dos resultados obtidos (sumarizados na tab. II.1) concluiram que realmente existe uma relação entre Kβ/Kα e os estados de oxidação dos núcleos sonda.

Tabela II.1 - Relações entre K β /K α e o estado de oxidação do 51 Cr, obtidas por Collins et al (189)

Número de Oxidação	Relação Kβ/Kα	а д аннуу жазу метуратуу
0	0,131 ₆	
III	0,1382	
VI	0,146 ₇	

Estes resultados foram comparados com os obtidos via análise química, incluindo experiências de recozimento, verificando-se uma concordância razoável entre os resultados encontrados (189a).

Um outro método nuclear de análise influenciado por efeitos eletrônicos é o que envolve medidas da alteração das velocidades do decaimento nuclear. A influência do ambiente químico na probabilidade de decaimento de um nuclideo radioativo é um fenômeno bem conhecido e já foi revisado por Vargas (190) e Emery (191).

O processo de decaimento por captura eletrônica (C.E.) é o que sofre maior influência das ligações químicas (como no caso das medidas Kβ/Kα). Os elétrons K ou L são os mais prováveis a serem capturados pelo núcleo, mas os elétrons mais externos, que participam das ligações químicas, também possuem um certo grau de contribuição na densidade eletrônica no núcleo. Obviamente quanto mais leve for o elemento, maior será a contribuição destes elétrons mais externos.

As variações nas meias-vidas relativas, $\Delta\lambda/\lambda$, atingem até 0,1% (em compostos de 7 Be) e este parece ser o limite máximo da perturbação química em uma velocidade de decaimento, exceto para o 90 Nb, que é considerado uma notável exceção pois variações de até 3,5% foram mencionadas para este nuclídeo (172).

A ocorrência da alteração da velocidade de decaimento por captura eletrônica com a estrutura química já foi verificada em definitivo através de medidas sofisticadas, mas permanece ainda a dúvida com respeito à possibilidade de se poder determinar o estado químico de um átomo através de medidas de $\Delta\lambda/\lambda$.

Os primeiros requisitos para esta medida ter sucesso \tilde{e} a pureza radioquímica da amostra e a identidade química de todos os átomos radioativos, requisitos estes que dificilmente serão preenchidos em estudos da química dos átomos quentes. Apesar destes problemas, medidas de $\Delta\lambda/\lambda$ jã foram feitas em ftalocianina de cobre (64 Cu) (192).

A alteração da velocidade de decaimento por transição isomérica (T.I.) pode ser usada da mesma forma e com os mesmos propositos que no caso anterior, mas os efeitos observados foram da ordem de 0,1% a 0,01% (191) e, até o momento, nenhuma aplicação desta medida no campo da quimica dos átomos quentes foi relatada na literatura.

As medidas de Correlação Angular γ-γ Perturbada, CAP, apesar de estar em desuso atualmente, foram consideradas no passado como um método de análise "in situ" muito promissor, apesar das suas limitações. Hoje em dia, no entanto, apenas alguns poucos laboratórios ainda o utilizam. A Correlação Angular Perturbada é usada principalmente em física nuclear e física do estado só-

lido, sendo escassos os trabalhos publicados relativos à química dos átomos quentes.

Para o leitor interessado, os princípios e aplicações químicas deste método foram revisados por De Benedetti (193) e Vargas (190). Este último autor enfatiza a aplicação desta técnica na área da química dos átomos quentes.

Dois outros métodos nucleares que devem ser ainda menciona dos são a Fluorescência Nuclear Ressonante (172, 194) e a Excitação Óptica em decaimentos β (172). Estes métodos não serão aqui discutidos porque apresentam vários problemas técnicos e ainda são considerados métodos de vanguarda, de uso muito restrito. Além disso, as referências citadas podem dar aos interessados uma idéia muito razoável sobre estas técnicas e suas limitações.

c - Os métodos quimicos (*)

Dos métodos químicos usados na análise dos sólidos irradia dos, a maior parte envolve a dissolução da amostra em um solvente adequado, antes da separação e análise das espécies marcadas. Alternativamente, em alguns casos, ao inves da dissolução, pode-se liberar uma fase gasosa por aquecimento do sólido ou extrair as espécies marcadas em um solvente no qual o sólido original seja pouco solúvel.

O comportamento químico aparente das especies presentes em concentrações ultra-baixas, como é o caso dos produtos radioativos obtidos apos a ativação nuclear de compostos químicos, pode diferir bastante daquele usualmente observado em escala macroscópica. Isto significa que procedimentos usados com sucesso na separação de gramas ou miligramas de uma substância podem não ser satisfatórios ao nível de nano ou picogramas.

^(*) Subentende-se por método químico aquele que envolve uma operação que destrui rã, de alguma forma, o reticulo original do sólido submetido à irradiação (ex: dissolução, aquecimento, etc.). Os métodos de determinação quantitativa das espécies de interesse, no entanto, podem envolver fenômenos puramente fi sicos (ex: espectrofotometria, espectrometria γ ou de massa, absorção atômica, etc).

Em radioquímica, geralmente os procedimentos cromatográficos são os mais empregados, mas outros como precipitação, eletrodeposição, extração, etc., também são utilizáveis quando adicionam-se carregadores à amostra, antes da análise, para ajudar nas separações e identificações.

Os métodos químicos podem ser convenientemente empregados, em princípio, para qualquer elemento químico, ao contrário dos métodos físicos, em especial os nucleares.

Entretanto, para não se alongar demasiadamente neste tópico, visto que o método analítico usado na parte experimental desta tese encontra-se bem descrito e referenciado no capítulo III, pretende-se apenas apresentar em seguida um pequeno resumo para os métodos químicos de análise, focalizando-se os procedimentos mais utilizados e/ou estudados na separação do ⁵¹Cr em radioquímica. Este radionuclídeo, se por um lado não é bem estudado através dos métodos físicos, por outro lado pode ser analisado por vários métodos químicos.

A determinação radioquímica de cromo é geralmente feita por espectrometria γ, detectando-se os fótons de 0,320 MeV emitidos pelo ⁵¹Cr (vide cap. III), apos a separação das frações de Cr(VI) das de Cr(III). Estas separações podem envolver vários procedimentos analíticos bem conhecidos como a extração, precipitação e cromatografia.

O método de extração, não muito usado atualmente, foi desenvolvido por Deptula (195) e posteriormente adaptado por Apers e colaboradores (196) para uso na separação das espécies de ⁵¹Cr em cromatos irradiados. Este método evita precipitações inconvenientes que ocorrem em pH>6, porque a extração é feita em meio ácido.

Dentre as várias substâncias orgânicas capazes de extrair o cromo destaca-se a tri-n-octilamina (TNOA), uma amina terciária. A TNOA, em benzeno, é tratada com $\rm H_2SO_4$ para formar o sal $\rm (R_3NH)_2SO_4$ que, ainda na fase orgânica, troca o seu ânion $\rm SO_4^{2-}$ com o $\rm Cr_2O_7^{2-}$, produzindo o sal $\rm (R_3NH)_2Cr_2O_7$, também solúvel em benzeno. Desta forma separa-se o $\rm Cr(VI)$ do $\rm Cr(III)$, porquanto o $\rm Cr(III)$ permanece em solução aquosa.

Em meio H₂SO₄ 1M tem-se

$$\operatorname{Cr}_{2} \operatorname{O}_{7}^{2-} + 2 \operatorname{R}_{3} \operatorname{NH}^{+} \longrightarrow (\operatorname{R}_{3} \operatorname{NH})_{2} \operatorname{Cr}_{2} \operatorname{O}_{7}$$

porem, em meio acido mais concentrado, a reação

$$HCr_2O_7^- + R_3NH^+ \rightarrow R_3NH_2Cr_2O_7$$

também participa do processo de extração (195).

Baseados em métodos gravimétricos convencionais e em experiências de coprecipitação (107), foram também desenvolvidas várias técnicas de precipitação (e coprecipitação) para a análise de cromatos irradiados com neutrons, dentre os quais destacam-se a precipitação do Cr(III) como Cr(OH)₃ (69) e como Cr₃(PO₄)₂ (69), a precipitação do Cr(VI) como PbCrO₄ (69,197) e a coprecipitação do Cr(III) com Fe(OH)₃ (198) e com Zn(OH)₂ (199).

Em estudos da química dos atomos quentes, o método de precipitação do Cr(VI) como PbCrO₄, desenvolvido por Green, Harbottle e Maddock(69) foi o mais citado na literatura, até ser modificado por Ackerhalt e Collins(197), devido a problemas de reprodutibilidade. Além disso, esta técnica foi parcialmente abandonada porque ela permite somente a separação das frações Cr(VI) e Cr(III) total.

É no entanto a cromatografia, de um modo geral, o mais estudado e melhor método de separação em radioquímica, pelo menos para o ⁵¹Cr. A separação das espécies marcadas com ⁵¹Cr (Cr(VI), Cr(III)M, Cr(III)D e/ou Cr(III)P) podem ser feitas por cromatografia solido-líquido, usando Fe(OH)₃ como fase estacionária (42), cromatografia de camada delgada (placa) (200) ou de adsorção em papel de filtro (201) e em alumina (42, 46, 53, 54), e cromatografia de troca ionica (202, 203), tanto cationica (81, 85, 204) como aniônica (205,206).

A cromatografia de troca cationica é a que, pelo menos no caso do ⁵¹Cr, apresenta maior reprodutibilidade e eficiência na separação das especies de cromo (Cr(VI), Cr(III)M, Cr(III)D e Cr(III)P) em solução, sendo vários os procedimentos usados nesta separação (127, 129-132, 207-209).

A dissolução da amostra é feita em pH baixo (204, 210) para minimizar as reações de hidrólise de várias espécies de Cr(III) (129, 130),

mas o pH real na interface dos cristais no momento da dissolução é, sem dúvida maior. Este fator, como também os efeitos da mudança de outros parâmetros da dissolução na distribuição medida das espécies de Cr(III), precisam ser ainda me lhor estudados.

Em qualquer caso, as relações entre as espécies (ex: marca das com ⁵¹Cr) no estado sólido com as encontradas em solução, ainda não são conhecidas. Tanto isto é verdade que muitas dificuldades têm sido ainda encontradas para se explicar os resultados analíticos, quando dados espectroscópicos são comparados com dados radioquímicos obtidos por via úmida, talvez indicando que, realmente, mudanças químicas são provocadas pelo solvente no processo de dissolução da amostra.

Por exemplo, Nath e Klein (175) observaram espectros Mössbauer similares para [57 Co(dipy) $_3$](ClO $_4$) $_3$.3H $_2$ O e para o mesmo composto dopado com 57 Co $^{2+}$ e submetido a um recozimento (t = 4 dias; T = 25°C), resultados estes plenamente consistentes com aqueles obtidos por análises químicas (100% de transferência). Para oxinatos, [Co(Ox) $_3$] e pentaciononitrosil ferratos, Na[Fe(CN) $_5$ NO] dopados com 57 Co $^{2+}$ e 57 Co(OH) $_3$ (176, 177), no entanto, o espectro Mössbauer não mostra a formação do composto hospedeiro marcado, após o recozimen to dos sólidos dopados, mas a análise via úmida indica a formação de uma fração considerável desta espécie química, marcada.

Estes fatos reforçam o pensamento de que as análises destes sistemas devem ser feitas meticulosamente e os resultados analisados com cui dado e prudência.

CAPTTULO II

BIBLIOGRAFIA

- 1 G. STÖCKLIN, "Chimie des Atomes Chauds Réactions Chimiques Consécutives aux Transformations Nucléaires", Masson et Cie Éditeurs, 1972 (Tradução do original alemão por J.P. Adloff).
- 2 C.H. COLLINS, F.M. LANÇAS, J.C. DE ANDRADE e K.E. COLLINS, "Química Nova", 2 (1979) 4.
- 3 C.H. COLLINS, F.M. LANÇAS, J.C. DE ANDRADE e K.E. COLLINS, "Química Nova", 2 (1979) 148.
- 4 T. ANDERSEN, "Experimental Investigations of Chemical Effects Associated with Nuclear Transformations in Some Inorganic Solids", Tese de Doutoramento, Universidade de Aarhus, Dinamarca, 1968.
- 5 J. KOPECKY, "Neutron Capture Gamma Ray Spectroscopy", International Atomic Energy Agency, p. 155, 1975.
- 6 H.C. SCHWEINLER, Proc. Symp. Chemical Effects of Nuclear Transformations, Vol. I, International Atomic Energy Agency, p. 63, 1961.
- 7 C.-H. HSIUNG, H.-C. HUSIUNG, e A.A. GORDUS, J. Chem. Phys., 34 (1961) 535.
- 8 J. CIFKA, Radiochim. Acta, $\underline{1}$ (1963) 125.
- 9 D.L. BAULCH e J.F. DUNCAN, Quart. Rev., <u>12</u> (1958) 133.
- 10 T. ANDERSEN, F. CHRISTENSEN e K. OLESEN, Trans. Faraday Soc., 62 (1966) 248.
- 11 S. WEXLER, Proc. Symp. Chemical Effects of Nuclear Transformations, Vol. I, International Atomic Energy Agency, p. 115, 1961.
- 12 A.H. SNELL e F. PLEASONTON, J. Phys. Chem., <u>62</u> (1958) 1377.
- 13 A.H. SNELL, F. PLEASONTON e T.A. CARLSON, Proc. Symp. Chemical Effects of Nuclear Transformations, Vol. I, International Atomic Energy Agency, p.147, 1961.

- 14 S. WEXLER, J. Chem. Phys, 36 (1962) 1992
- 15 T.A. CARLSON e R.M. WHITE, Proc. Symp. Chemical Effects of Nuclear Transformations, Vol. I, International Atomic Energy Agency, p. 23, 1965.
- 16 J.B. GIBSON, A. N. GOLAND, M. MILGRAM e G.H. VINEYARD, Phys. Rev., <u>120</u> (1960) 1229.
- 17 G.H. VINEYARD, Discus. Faraday Soc., 31 (1961) 7.
- 18 W. F. LIBBY, J. Am. Chem. Soc., 62 (1940) 1930.
- 19 A.G. MADDOCK e M.M. DE MAINE, Can. J. Chem., 34 (1956) 275.
- 20 W.F. LIBBY, J. Am. Chem. Soc., 69 (1947) 2523.
- 21 M. HILLMAN, C.K. KIN, E. SHIBATA e A.J. WEISS, Radiochim. Acta, 9 (1968) 212.
- 22 G. DUPLÂTRE e J. I. VARGAS, J. Inorg. Nucl. Chem., <u>39</u> (1977) 1.
- 23 G.HARBOTTLE e N. SUTIN, J. Phys. Chem., 62 (1958) 1344.
- 24 F. SEITZ e J.S. KOEHLER, "Solid State Physics", Vol.II, editado por F. Seitz e B. Turnbull, Academic Press, p. 305, 1956.
- 25 H. MULLER, Proc. Symp. Chemical Effects of Nuclear Transformations, Vol. II, International Atomic Energy Agency, p. 359, 1965.
- 26 H. MULLER, J. Inorg. Nucl. Chem., 27 (1965) 1745.
- 27 H. MÜLLER, Angew. Chem. Internat. Ed., <u>6</u> (1967) 133.
- 28 R.H. SILSBEE, J. Appl. Phys., <u>28</u> (1957) 1246.
- 29 G. LEIBFRIED, J. Appl. Phys, 30 (1959) 1388.
- 30 K. YOSHIHARA, A. FUJITA e T. SHIOKAWA, J. Inorg. Nucl. Chem., <u>39</u> (1977) 1733.
- 31 J. CUNNINGHAM, J. Phys. Chem., 66 (1962) 779.
- 32 L.A. PRINCE e E.R. JOHNSON, J. Phys. Chem., 69 (1965) 359.
- 33 L.A. PRINCE e E.R. JOHNSON, J. Phys. Chem., <u>69</u> (1965) 377.
- 34 W.H. DUERIG e J.J. MARKHAM, Phys. Rev., 88 (1952) 1043.
- 35 W.D. COMPTON e C.C. KLICK, Phys. Rev., 110 (1958) 349.

- 36 H. RABIN e C.C. KLICK, Phys. Rev., <u>117</u> (1960) 1005.
- 37 V.H. RITZ, Phys. Rev., 133 (1964) 1452.
- 38 J. KINGSLEY, Tese de Doutoramento, Universidade de Illinois, 1960 (citado da ref. 4).
- 39 C.C. KLICK, Phys. Rev., 120 (1960) 760.
- 40 F.E. WILLIAMS, Phys. Rev., 126 (1962) 70.
- 41 J.H.O. VARLEY, Nature, 174 (1954) 886.
- 42 D.J. APERS, K.E. COLLINS, Y.F. GHOOS e P.C. CAPRON, Radiochim. Acta, <u>3</u> (1964)
- 43 K.E. COLLINS e C.H. COLLINS, "Transfer Reactions in the Solid State", 8th
 International Hot Atom Chemistry Symposium, Spa. Belgica, 1975.
- 44 R.E. ACKERHALT, C.H. COLLINS e K.E. COLLINS, Trans. Faraday Soc., 67 (1971) 1459.
- 45 S. KAUCIĆ e M. VLATKOVIĆ, Croat. Chim. Acta, <u>35</u> (1963) 305.
- 46 C.H. COLLINS, K.E. COLLINS, Y.F. GHOOS e D.J. APERS, Radiochim. Acta, <u>4</u> (1965) 211.
- 47 A.V. BELLIDO e D.R. WILES, Radiochim. Acta, 12 (1969) 94.
- 48 A. NATH, S. KHORANA, P.K. MATHUR e S. SARUP, Indian J. Chem., 4 (1966) 51.
- 49 E. LAZZARINI e A.L. FANTOLA LAZARINI, J. Inorg. Nucl. Chem., 38 (1976) 657.
- 50 G. DUPLATRE, J. Inorg. Nucl. Chem., <u>38</u> (1976) 1769.
- 51 S. KHORANA, J. Inorg. Nucl. Chem., 30 (1968) 2595.
- 52 R. BELL, K. RÖSSLER, G. STÖCKLIN e S.R. UPADHYAY, J. Inorg. Nucl. Chem., <u>34</u> (1972) 461.
- 53 J. KHORANA e D.R. WILES, J. Inorg. Nucl. Chem., 33 (1971) 1589.
- 54 B. MAHIEU, D.J. APERS e P.C. CAPRON, Radiochim. Acta, <u>16</u> (1971) 100.
- 55 C.H. COLLINS, R.E. ACKERHALT e K.E. COLLINS, Radiochim. Acta, 17 (1972) 73.
- 56 C.H. COLLINS, e K.E. COLLINS, Nature (Phys. Sci.), <u>232</u>, (1971) 109.

- 57 J.L. BONTE e D.S. MARTIN, J. Inorg. Nucl. Chem., 39 (1977) 1481.
- 58 A. NATH, em Specialist Periodical Reports Radiochemistry, Vol. II, editado por G.W.A. NEWTON, The Chemical Society, p. 74, 1975.
- 59 E. LAZZARINI e A.L. FANTOLA LAZZARINI, J. Inorg. Nucl. Chem., <u>39</u> (1977) 1233.
- 60 K.S. VENKATESWARLU, "Rethinking in Recoil Chemistry of Cobalt (III) Complexes:
 a New Interpretation", Government of India, Atomic Energy Commission Report
 B.A.R.C. 446, 1969.
- 61 J. SHANKAR, "Hot Atom Chemistry: Annealing of Recoil Damage and Solid State
 Isotopic Exchange in Cobalt Complexes", Government of India, Atomic Energy
 Commission Report B.A.R.C. 348, 1968.
- 62 A.G. MADDOCK e K.E. COLLINS, Can. J. Chem., 46 (1968) 3924.
- 63 P. GÜTLICH, K. FRÖLICH e S. ODAR, J. Inorg. Nucl. Chem., 33 (1971) 621.
- 64 Y.-C. LIN e D.R. WILES, Radiochim. Acta, 13 (1970) 43.
- 65 R.R. WILLIAMS, J. Phys. Colloid. Chem., 52 (1948) 603.
- 66 J.W. COBBLE e G.E. BOYD, J. Am. Chem. Soc., 74 (1952) 1282.
- 67 G.E. BOYD, J.W. COBBLE e S. WEXLER, J. Am. Chem. Soc., 74 (1952) 237.
- 68 R.E. CLEARY, W.H. HAMILL e R.R. WILLIAMS, J. Am. Chem. Soc., 74 (1952) 4675.
- 69 J.H. GREEN, G. HARBOTTLE e A.G. MADDOCK, Trans. Faraday Soc., 49 (1953) 1413.
- 70 G. HARBOTTLE, J. Chem. Phys., 22 (1954) 1083.
- 71 H. RAUSCHER e G. HARBOTTLE, J. Inorg. Nucl. Chem., 4 (1957) 155.
- 72 A. G. MADDOCK e H. MULLER, Trans. Faraday Soc., 56 (1960) 509.
- 73 D.J. APERS e A.G. MADDOCK, Trans. Faraday Soc., <u>56</u> (1960) 498.
- 74 A.G. MADDOCK e J.I. VARGAS, Trans. Faraday Soc., 57 (1961) 992.
- 75 R.F.C. CLARIDGE e A.G. MADDOCK, Trans. Faraday Soc., 57 (1961) 1392.
- 76 P.DIMOTAKIS e A.G. MADDOCK, Proc. Symp. Chemical Effects of Nuclear Transformations, International Atomic Energy Agency, Vol. I, p. 365, 1960.

- 77 R.F.C. CLARIDGE e A.G. MADDOCK, Trans. Faraday Soc., <u>59</u> (1963) 935.
- 78 A.G. MADDOCK, F.E. TRELOAR e J.I. VARGAS, Trans. Faraday Soc., 59(1963) 924
- 79 T. ANDERSEN e A.G. MADDOCK, Trans. Faraday Soc., <u>59</u> (1963) 2362.
- 80 J.S. BUTTERWORTH e I.G. CAMPBELL, Trans. Faraday Soc., 59 (1963) 2618.
- 81 P. DIMOTAKIS e M.I. STAMOULI, J. Inorg. Nucl. Chem., 26 (1964) 2045.
- 82 K.E. COLLINS, Proc. Symp. Chemical Effects of Nuclear Transformations, Vol.
 I, International Atomic Energy Agency, p. 421, 1964.
- 83 A.G. MADDOCK, Proc. Symp. Chemical Effects of Nuclear Transformations, International Atomic Energy Agency, Vol. I, p. 435, 1965.
- 84 N. GETOFF e A.G. MADDOCK, Radiochim. Acta, 2 (1963) 90.
- 85 F. BAUMGARTNER e A. G. MADDOCK, Trans. Faraday Soc., 63 (1968) 714.
- 86 M.I. STAMOULI, "Effect of Radiative Neutron Capture in Chromates", Tese de Doutoramento, Universidade de Cambridge, Inglaterra, 1971.
- 87 I. GAINAR e A. PONTA, Rev. Roumaine Phys., 13 (1968) 887.
- 88 F.R. AL-SIDDIQUE e A.G. MADDOCK, J. Inorg. Nucl. Chem., 34 (1972) 3007
- 89 K.E. COLLINS e G. HARBOTTLE, Radiochim. Acta, 3 (1964) 29.
- 90 R.F.C. CLARIDGE e A.G. MADDOCK, Trans. Faraday Soc., 57 (1961) 1.
- 91 T. ANDERSEN e A.G. MADDOCK, Nature, 194 (1962) 371.
- 92 T. ANDERSEN, H.E. LUNDAGER MADSEN e K. OLESEN, Trans. Faraday Soc., 62 (1966) 2409.
- 93 N. GETOFF, Nature, 192 (1961) 61.
- 94 A. G. MADDOCK e J.I. VARGAS, Nature, 184 (1959) 1931.
- 95 T. ANDERSEN e A.G. MADDOCK, Trans. Faraday Soc., <u>59</u> (1963) 1641.
- 96 T. ANDERSEN, Trans. Faraday Soc., <u>59</u> (1963) 2625.
- 97 V. KACENA e A.G. MADDOCK, Proc. Symp. Chemical Effects of Nuclear Transformations, Vol. II, International Atomic Energy Agency, p. 255, 1965.
- 98 N. GETOFF, Proc. Symp. Chemical Effects of Nuclear Transformations, Vol. II,

- International Atomic Energy Agency, p. 279, 1965.
- 99 J.C. MACHADO, R.M. MACHADO e J.I. VARGAS, Proc. Symp. Chemical Effects of Nuclear Transformations, Vol. II, International Atomic Energy Agency, p. 195, 1965.
- 100 A. GETOFF, Nature, 199 (1963) 593.
- 101 J.R. BOLTON e K.J. McCALLUM, Can J. Chem., 35 (1957) 761.
- 102 J. SHANKAR, A. NATH e S.P. VAISH, Radiochim. Acta, 4 (1965) 162.
- 103 A.G. MADDOCK, "Chemical Annealing Reactions in Solids", em "Physical Chemistry, an Advanced Treatise, Vol. VII, editado por H. Eyring, Academic Press, p. 473, 1975.
- 104 J.I. VARGAS e A.G. MADDOCK, "Retention and its Components", em "Chemical Effects of Nuclear Transformations in Inorganic Systems", editado por G. Harbottle e A.G. Maddock, North-Holland Publishing Co., p. 461, 1979.
- 105 F.A. COTTON e G. WILKINSON, "Advanced Inorganic Chemistry", 3^a edição, Interscience Publishers, p. 830, 1972.
- 106 Handbook of Chemistry and Physics, $58^{\frac{a}{2}}$ edição, The Chemical Rubber Co., CRC press, 1977/1978.
- 107 W.H. HARTFORD, em "Treatise on Analytical Chemistry", Parte II, Secção A,
 Vol. VIII, editado por I.M. Kolthoff e P.J. Elving, Interscience Publishers,
 p. 273, 1963.
- 108 J. PIJCK, "Radiochemistry of Chromium", Nuclear Science Series, USAEC NAS NS 3007, 1964.
- 109 C.F. BAES, JR. e R.E. MESMER, "The Hydrolysis of Cations", John Wiley Sons Inc., p. 211, 1976.
- 110 J.E. EARLEY e R.D. CANNON, "Transition Metal Chemistry A series of advances", Vol. I, editado por R.L. Carlin, Marcel Dekker, Inc., p. 33, 1965.
- 111 Chart of the Nuclides, Knolls Atomic Power Laboratory, U.S. Department of Energy, 12^a edição, 1977.

- 112 Table of Isotopes, editado por C.M. Lederer e V.S. Shirley, John Wiley & Sons Inc., 7^a edição, 1978.
- 113 G. ERDTMANN e W. SOYKA, "Die γ-Linien der Radionuklide", Band 1, K.F.A., Jülick, 1974.
- 114 L.D. RICH, D.L. COLE e E.M. EYRING, J. Phys. Chem., <u>73</u> (1969) 713.
- 115 M. EIGEN e R.G. WILKENS, "Mechanisms of Inorganic Reactions", em Advances in Chemistry Series, nº 49, editado por R.F. Gould, American Chemical Society 1965.
- 116 W.H. HARTFORD, Ind. Eng. Chem., 34 (1942) 920.
- 117 N. BJERRUM, Z. Phys. Chem., <u>59</u> (1907) 336.
- 118 E. JORGENSEN e J. BJERRUM, Acta. Chem. Scand., 12 (1958) 1047.
- 119 G. SCHWARZENBACH, Pure Appl. Chem., <u>5</u> (1962) 377.
- 120 K. EMERSON e W.M. GRAVEN, J. Inorg. Nucl. Chem., 11 (1959) 309.
- 121 R. TSUCHIYA e A. UMAYAHARA Bull. Chem. Soc. Japan, 36 (1963) 554.
- 122 T.W. SWADDLE e P. KONG, Can. J. Chem., 48 (1970) 3224.
- 123 N. BJERRUM, Z. Physik. Chem., 73 (1910) 724 (citação ref. (110)).
- 124 N. BJERRUM, "Studier orer Basike Kromiformbindelser", Inalgural Dissertation, Copenhagen, Dinamarca, 1903 (citação ref. (110)).
- 125 M. ARDON e G. STEIN, J. Chem. Soc., (1956) 2095.
- 126 H. TAUBE e H. MYERS, J. Am. Chem. Soc., 76 (1954) 2103.
- 127 M. ARDON e R.A. PLANE, J. Am. Chem. Soc., 81 (1959) 3197.
- 128 M. ARDON e A. LINENBERG, J. Phys. Chem., 65 (1961) 1443.
- 129 R.W. KOLACZOKOWSKI e R.A. PLANE, Inorg. Chem., <u>3</u> (1964) 322.
- 130 J.A. LASWICK e R.A. PLANE, J. Am. Chem. Soc., 81 (1959) 3564.
- 131 J.E. FINHOLT, "Chemistry of Some Hydrolysed Cr(III) Polymers", Tese de Doutoramento, Berkeley, UCRL Rep. nº 8879, 1960.

- 132 G. THOMPSON, "Hydrolytic Polymerization in Cr(III) Solutions", Tese de Doutoramento, Berkeley, UCRL Rep. nº 11410, 1964.
- 133 M. ARDON e B.E. MAYER, J. Chem. Soc., (1962) 2816.
- 134 M. YEVITZ e J.A. STANKO, J. Am. Chem. Soc., 93 (1971) 1512.
- 135 C.H. COLLINS e K.E. COLLINS, "Hot Atom Chemistry of Crystalline Chromates" em Chemical Effects of Nuclear Transformations in Inorganic Systems, editado por G. Harbottle e A.G. Maddock, North-Holland Publishing Co., p. 161, 1979.
- 136 T. ANDERSEN e K. OLESEN, Trans. Faraday Soc. <u>61</u> (1965) 781.
- 137 T. ANDERSEN e A.G. MADDOCK, Trans. Faraday Soc., <u>59</u> (1963) 2362.
- 138 T. COSTEA e G. PODEANU, J. Inorg. Nucl. Chem., 29 (1967) 2102.
- 139 S.M. MILENKOVIĆ e S.R. VELJKOVIĆ, Radiochim. Acta, 8 (1967) 146.
- 140 S. M. MILENKOVIĆ e A.G. MADDOCK, Radiochim. Acta, 8 (1967) 222.
- 141 C.W.F.T. PISTORIUS, Z. Physik. Chem., 35 (1962) 109.
- 142 H. MARCHART e F. GRASS, Monats. Chem., 96 (1965) 1117.
- 143 V.I. SPITSYN, N.S. AFONSKII e V.I. TSUIEL'NIKOV, Zh. Neorg. Klim., <u>5</u> (1960) 1505 (C.A. - <u>57</u>: 1848g).
- 144 K. FISCHBECK e H.S. SPINGLER, Z. Anorg. Allgen. Chem., 235 (1938) 183 (C. A. 32: 3716⁴).
- 145 J. SIMPSON, D. TAYLOR e D.M. ANDERSON, J. Chem. Soc., (1958) 2378.
- 146 B.Z. SHAKHASHIRI, e G. GORDON, J. Inorg. Nucl. Chem., 27 (1965) 2161.
- 147 G. HARBOTTLE e A.G. MADDOCK, J. Inorg. Nucl. Chem., 5 (1958) 249.
- 148 R. DEBUYST, D. J. APERS e P.C. CAPRON, J. Inorg, Nucl. Chem., <u>34</u> (1972) 1541.
- 149 M.H. YANG, J.C. WEI, J.T. CHUANG, S.J. YEH, C.H. COLLINS e K.E. COLLINS, Radiochem. Radioanal. Lett., 13 (1973) 173.
- 150 K.E. COLLINS, C.H. COLLINS, M.H. YANG, J.T. CHUANG, J.C. WEI e S.J. YEH, Radiat. Phys. Chem., 11 (1978) 103.

- 151 G.M. BANCROFT, K.G. DHARMAWARDENA e A.G. MADDOCK, Int. J. Radiat. Phys. Chem., 2 (1970) 45.
- 152 O. CONSTANTINESCU, I. PASCARU e M. CONSTANTINESCU, Rev. Roum. Phys., 13 (1968) 607.
- 153 M. SCHARA, M. SENTJURC, S.M. MELENKOVIĆ e S.R. VELKOJOVIĆ, J. Inorg. Nucl. Chem., 32 (1970) 369.
- 154 D.H. LISTER e M.C.R. SYMONS, J. Chem. Soc. (A), (1970) 782.
- 155 R. DEBUYST, J. LADRIÈRE, D.J. APERS e P.C. CAPRON, J. Inorg. Nucl. Chem., 34 (1972) 2705.
- 156 R. DEBUYST, J. LADRIÈRE e D.J. APERS, J. Inorg. Nucl. Chem., 34 (1972) 3607
- 157 G.A. BARTOLOMEW, E.D. EARLE e M.R. GUNYE, Can. J. Phys., 44 (1966) 2111.
- 158a- G.F. KNOLL, "Radiation Detection and Measurement", John Wiley & Sons, 1979.
- 158b- H.-H. SCHMIDTKE, "Electronic Absorption Spectroscopy" em Physical Methods in Advanced Inorganic Chemistry, editado por H.A.O. Hill e P. Day, Interscience Publishers, p. 107, 1967.
- 159 L. PROSS, K. RÖSSLER e H.J. SCHENK, J. Inorg. Nucl. Chem., 36 (1974) 317.
- 160 E. KÖNIG, "Electron Paramagnetic Ressonance", em Physical Methods in

 Advanced Inorganic Chemistry, editado por H.A.O. Hill e P. Day, Interscience Publishers, p. 266, 1967.
- 161 A. GOODMAN e J. B. RAYNOR, "ESR of Transition Metal Complexes" em Advances in Inorganic Chemistry and Radiochemistry, editado por H.J. Emeléus e A.G. Sharpe, Vol. XIII, Academic Press, p. 136, 1970.
- 162 R.W. FESSENDEN e R.H. SCHULER, "ESR Spectra of Radiation Produced Radicals" em Advances in Radiation Chemistry, editado por M. Burton e J.L. Magee, Wiley Interscience, p. 1, 1970.
- 163 M. COGNEAU, G. DUPLÂTRE e J.I. VARGAS, J. Inorg. Nucl. Chem., 34 (1972) 3021.
- 164 H. SILLESCU, "Nuclear Quadrupole Ressonance", em Physical Methods in Advanced Inorganic Chemistry, editado por H.A.O. Hill e P. Day, Interscience Publishers p. 434, 1967.

- 165 H. VARGAS, C. DIMITROPOULOS, O. CONSTANTINESCU e D. DAUTREPPE, Rad. Eff., 18(1973) 9.
- 166 J. DANON, "Mössbauer Spectroscopy", em Physical Methods in Advanced Inorganic Chemistry, editado por H.A.O. Hill e P. Day, Interscience Publishers, p. 380, 1967.
- 167 E. FLUCK, "The Mössbauer Effect and its Application in Chemistry", em Advances in Inorganic Chemistry and Radiochemistry, editado por H.J. Emeléus e A.G. Sharpe, Vol. VI, Academic Press, p. 433, 1964.
- 168 G.M. BANCROFT e R.H. PLATT, "Mössbauer Spectra of Inorganic Compounds", ibidem, Vol. XIV, p. 59, 1972.
- 169 A. G. MADDOCK, "Mössbauer Spectroscopy in the Study of the Chemical Effects of Nuclear Reactions in Solids", em MTP International Review of Science, Vol. VIII, Radiochemistry, editado por A.G. Maddock, Butterworths, p. 213, 1972.
- 170 J.P. ADLOFF e J.M. FRIEDT, "Mössbauer Effects and its Applications",
 International Atomic Energy Agency, p. 301, 1972.
- 171 G.K. WERTHEIM, Acc. Chem. Res., 4 (1971) 373.
- 172 J.P. ADLOFF, "Physical Methods in Hot Atom Chemistry", em Hot Atom Chemistry

 Status Report, International Atomic Energy Agency, p. 61, 1975.
- 173 G.W.A. NEWTON, "Chemical Effects of Nuclear Transformations", Specialist
 Periodical Report, Radiochemistry, Vol. I, The Chemical Society, p. 1, 1972.
- 174 J.P. ADLOFF, Radiochim. Acta, 23 (1976) 137.
- 175 A. NATH e M.P. KLEIN, Nature, 224 (1969) 794.
- 176 V. RAMSHESH, M.C. ANTHONY e K.S. VENKATESWARLU, Radiochem. Radioanal. Lett.

 11 (1972) 93.
- 177 A. CALUSARU, M. MORAIU, D. BARB e A. RUSI, Radiochim. Acta, 19 (1973) 203.
- 178 Y. TAMAKI, T. OMORI e T. SHIOKAWA, Radiochem. Radioanal. Lett., 20 (1975) 255.

- 179 V.M. SLIVINSKY e P.J. EBERT, Phys. Rev., A5 (1972) 1581.
- 180 S.I. SALEM, J.H. FALCONER e R.W. WINCHELL, Phys. Rev., A6 (1972) 2147.
- 181 H. TAWARA, K. ISHII, S. MORITA, H. KAJI, C.N. HSU e T. SHIOKAWA, Phys. Rev.,

 <u>A9</u> (1974) 1617.
- 182 J.H. SCOFIELD, Phys. Rev., 179 (1969) 9.
- 183 J.H. SCOFIELD, Phys. Rev., <u>A9</u> (1974) 1041.
- 184 D.S. CHURCH, Quart. Rev., <u>25</u> (1971) 343.
- 185 Y. TAMAKI, T. OMORI e T. SHIOKAWA, Proc. International Conference on X-Ray and XUV Spectroscopy, Japanese Journal of Applied Physics, <u>17</u> (1978) 425.
- 186 Y. TAMAKI, T. OMORI e T. SHIOKAWA, Radiochem. Radioanal. Lett., 37 (1979)
- 187 T. SHIOKAWA, "Dependence of Kα/Kβ Intensity Ratio of X-Ray Emitted by EC-Decay of Atoms on Chemical States", X International Hot Atom Chemistry Symposium, Loughborough, Inglaterra, 1979.
- 188 E. LAZZARINI, A.L. FANTOLA LAZZARINI e M. BETTONI, Radiochim. Acta, 25 (1978) 81.
- 189 K.E. COLLINS, C. HEITZ e J. CAILLERET, J. Chem. Research, submetido a publicação (1980).
- 189a- K.E. COLLINS, C.H. COLLINS e C. HEITZ, Radiochim.Acta, submetido a publicação (1980).
- 190 J.I. VARGAS, "The Chemical Applications of Angular Correlations and Half-Live Measurements", em MTP International Review of Science, Radiochemistry, Vol. VIII, Radiochemistry, editado por A.G. Maddock, Butterworths, p. 45, 1972.
- 191 G.T. EMERY, Ann. Rev. Nucl. Science, 22 (1972) 165.
- 192 P. AURIC e J. I. VARGAS, Chem. Phys. Lett., 15 (1972) 366.
- 193 J. DE BENEDETTI, F. DE BARROS e G.R. HOY, Ann. Rev. Nucl. Science, <u>16</u> (1971) 31.

- 194 J.P. ADLOFF, Radiochim. Acta. 15 (1971) 135.
- 195 C. DEPTULA, J. Inorg. Nucl. Chem., 30 (1968) 1309.
- 196 B. MAHIEU, M. PRENDEZ e D.J. APERS, Radiochem. Radioanal. Lett., <u>25</u> (1976) 67.
- 197 R.E. ACKERHALT, C.H. COLLINS e K.E. COLLINS, Radiochim. Acta, 14 (1972) 49.
- 198 N. IKEDA, Radiochim. Acta, 1 (1963) 129.
- 199 K.E. COLLINS, C.H. COLLINS, M.H. YANG, C.N. KE, J. M. LO e S.J. YEH, J. Radioanal. Chem., 10 (1972) 197.
- 200 Y. GALETEAM, J. Chromatog., 19 (1965) 208.
- 201 C. BIGHI, Ann. Chim., 45 (1955) 1087.
- 202 J.E. SALMON, "Ion Exchange Chromatography" em Progress in Nuclear Energy, Series IX, Analytical Chemistry, Vol. II, editado por C.E. Crouthamel, Pergamon Press, p. 338, 1961.
- 203 J.X. KLYM, "Analytical Ion Exchange Procedures in Chemistry and Biology", Prentice-Hall Inc., 1974.
- 204 C.H. COLLINS, K.E. COLLINS e R.E. ACKERHALT, J. Radioanal. Chem., 8 (1971)
 263.
- 205 D. BRUNE, Acta Chem. Scand., 21 (1967) 2087.
- 206 P. DIMOTAKIS e M. STAMOULI, J. Inorg. Nucl. Chem., 30 (1968) 23.
- 207 T. ANDERSEN e G. SORENSEN, Trans. Faraday Soc., 62 (1966) 3427.
- 208 P. GÜTLICH e G. HARBOTTLE, Radiochim. Acta, 5 (1966) 70.
- 209 L.S. HEGEDUS e A. HAIM, Inorg. Chem., 6 (1967) 664.
- 210 R.E. ACKERHALT, C.H. COLLINS e K.E. COLLINS, Trans. Faraday Soc., <u>65</u> (1969) 1927.

CAPITULO III

PARTE EXPERIMENTAL

- 1. Os metodos de dopagem.
 - a Dopagem por cocristalização.
 - b Dopagem por coprecipitação.
 - c Dopagem por evaporação do solvente.
 - d Preparo das amostras.
- 2 · Tratamentos físicos do solido dopado.
 - a As irradiações com fotons gama.
 - b Ativação térmica do sólido irradiado.
 - c Outros tratamentos físicos.
- 3 · As analises quimicas.
 - a A separação das espécies marcadas com ⁵¹Cr.
 - As colunas cromatográficas.
 - O pre-tratamento químico da resina de troca iônica.
 - A dissolução das amostras.
 - O procedimento analítico.
 - b As medidas de radioatividade.
 - Correção das contagens das frações Cr(III)P.
 - c Variāveis que afetam a distribuição das espécies marcadas com $^{51}{
 m Cr.}$

CAPTTULO III

PARTE EXPERIMENTAL

1. Os metodos de depagem

Todas as manipulações foram realizadas usando-se reagentes de qua lidade P.A. e agua bidestilada. O cromato de potassio (Carlo Erba - RPE/ACS) foi ainda purificado por meio de três recristalizações sucessivas a partir de soluções aquosas, antes do seu uso.

O ⁵¹Cr usado com dopante foi adquirido da New England Nuclear (N. E.N.), na forma química ⁵¹CrCl₃ (em HCl 0,5M) e com purezas radionuclídica e radio química > 99,0% (informes do fabricante). Todas as porções recebidas foram diluídas a 2,00ml com água bidestilada (antes do seu uso) e analisadas por cromatografia de troca iônica (vide cap. III, 3.a). As quantidades relativas das várias especies de ⁵¹Cr eluídas foram determinadas por medidas de radioatividade (vide cap. III, 3.b). Além disso, a pureza radionuclídica de cada remessa foi também analisa da em um sistema multicanal Northern Econ II Series, operando com 1024 canais, a coplado a um detector de cintilação de NaI(Tl) de 3x3 polegadas, tipo poço.

Por cromatografia verificou-se que o teor de cromo-51 no estado de oxidação III, monomerico, apresentava uma variação de 84% a 97%, dependendo do lote recebido.

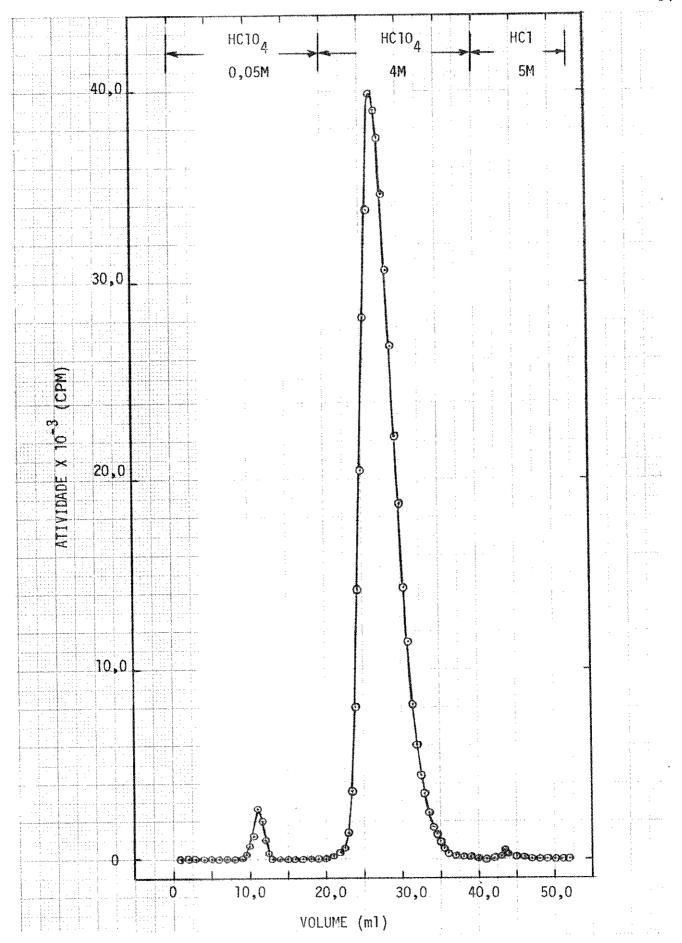


Figura III.1 - Cromatograma típico obtido na análise do $^{51}\mathrm{Cr}$ recebido da NEN.

Tabela III.1 - Resultados encontrados na análise cromatográfica das remessas de 51_{Cr}.

	Lote nº 1	Lote nº 2	Lote nº 3	Lote nº 4
*)	1,7	1,2	0,3	2,7
%M	97,6	97,5	92,6	84,0
%D	0,1	0,4	6,4	12,6
%P	0,6	0,6	0,8	0,7

A \tilde{u} ltima remessa apresentou uma pureza radionucl \tilde{i} dica diferente daquela fornecida pelo fabricante. O analisador multicanal acusou, trinta dias apos o recebimento do lote de 51 Cr, a presença das seguintes especies emissoras de fotons γ :

Energia (MeV)	t _{1/2} (dias)	Porcentagem (%)
0,32 (⁵¹ cr)	27,7	93,8
0,47 (?)	14,9	0,3
0,64 (?)	14,7	5,8
0,77 (?)	7,8	0,1
1,30 (?)	2,8	traços

Obviamente que com o decorrer do tempo a porcentagem de ⁵¹Cr vai aumentando, de vido ao decaimento das outras espécies de t_{1/2} menores. Isto significa que, decorridas algumas meias-vidas do ⁵¹Cr, o lote apresentará uma certa quantidade de impurezas não detectáveis.

Considerando-se sugestões de Collins e Collins (1) considera-se VI,M,D,P, co mo abreviações para as espécies de Cr(VI), Cr(III)M, Cr(III)D e Cr(III)P encontradas em solução aquosa e VI,M,D,P, como simbolos para identificar os respectivos precursores no estado solido.

^(*) Notação : (vide também cap. II, 5.b)

Cr(VI) - ions contendo cromo no estado de oxidação (VI). ex.: CrO_4^2 , $Cr_2O_7^{2-}$, etc.

Cr(III)M - ions monoméricos de cromo, no estado de oxidação (III). ex.: $Cr(H_2O)^{3+}_6$, $Cr(H_2O)^{5}_5Cl^{2+}$, etc.

 $^{{\}it Cr(III)D}$ - espécies diméricas contendo cromo no estado de oxidação (III). $ex.: {\it Cr_2(H_2O)}_4(OH)_2^{4+}.$ ${\it Cr(III)P}$ - espécies poliméricas contendo cromo no estado de oxidação (III).

Cr(III)P - espécies poliméricas contendo cromo no estado de oxidação (III). $ex.: \ Cr_3({\rm H_2O})_{10}({\rm OH})_4^{5+}.$

Além disso, ao se cromatografaruma alíquota da solução de ⁵¹Cr recebida, verificou-se que a resina retêm a maior parte destas impurezas, afetan do mais, portanto, a fração polímero. Entretanto, estes fatos não interferem sobremaneira nos cálculos das espécies de ⁵¹Cr porque, felizmente, a incorporação destes radionuclídeos no sólido dopado é mínima.

As quantidades de 51 Cr utilizadas em cada dopagem foi calculada de tal modo que, no final, o solido dopado apresentasse uma atividade específica de 2 x 10^3 a 5 x 10^3 cpm por miligrama de ${\rm K_2^{CrO}_4}$.

Em qualquer método de dopagem, após a secagem, os cristais foram manipulados (ex.: selagem e rotulação das amostras individuais) na tempera tura ambiente (17° C \leq T \leq 22° C), por tempo variável ($8h \leq t \leq 48h$) e estocados sob gelo e água até o momento da irradiação, quando então cada conjunto de amos tras era colocado nas condições de irradiação e estocagem programadas previamen te. Também, todas as análises foram feitas à temperatura ambiente.

a - Dopagem por cocristalização

Preparou-se soluções aquosas saturadas de K_2 CrO₄ purificado a T= 70° C (Solubilidade a 70° C, S⁷⁰ = 72,5g/100ml) ou a T = 100° C (S¹⁰⁰= 79,2g/100ml) e deixou-se a temperatura estabilizar em $\pm 1^{\circ}$ C.

Adicionou-se então, na temperatura escolhida e sob forte agitação, 0,15ml da solução diluída de ⁵¹Cr, deixando-se a solução radioativa nestas condições por aproximadamente 15 segundos.

Apos este tempo, a solução foi resfriada em um banho de gelo e $agua (\sim 0^{\circ}C)$, inicialmente ainda sob forte agitação (t = 5 min.) e depois em repouso por 25 minutos.

Em seguida a mistura foi filtrada em placa porosa e os cristais dopados lavados com uma quantidade mínima de uma solução saturada de ${\rm K_2^{CrO}}_4(2)$ e deixados sob sucção na placa porosa por cerca de 10 minutos. Decorrido este tempo, os cristais foram levados a secar em uma linha de vácuo (P \leq militorr) por, no mínimo, 5 horas.

Quando a temperatura inicial do processo de dopagem é de 100°C,

observa-se um rendimento de ~20% em cromato de potássio, enquanto que para T=70°C o rendimento cai aproximadamente à metade.

b - Dopagem por coprecipitação

Dissolveu-se 5,0g do cromato de potassio purificado em 10,0 ml de agua bidestilada e deixou-se esta solução atingir o equilibrio térmico em um banho de gelo e agua. O mesmo procedimento foi adotado para uma solução de ⁵¹Cr (8-10 gotas) em 4,0 ml de metanol (J.T. Baker - PA/ACS).

Ainda a 0°C adicionou-se, com um conta-gotas, a solução de 51 Cr em metanol à solução aquosa de K_2 CrO $_4$, sob agitação forte e constante e com uma velocidade de adição de aproximadamente 2 m1/min.

A mistura foi deixada sob agitação a 0° C por 3 minutos e, em seguida, separada por filtração em placa porosa, sob sucção. O sólido separado foi lavado com duas porções de 5,0 ml de metanol e deixado secar ao ar, ainda sob sucção, por mais 5 minutos, apos o que foi revolvido e posto sob vácuo ($P \leqslant 1$ militorr) por uma hora.

Decorrido este tempo o sólido foi desagregado em particulas meno res com uma espátula de aço inox e colocado novamente sob vácuo por mais uma hora.

Observou-se que a eficiência da dopagem é bastante sensível à ve-locidade de adição da solução metanol/⁵¹Cr. Quanto maior for a velocidade de adição, menor é a incorporação da atividade no sólido precipitado.

Além disso, verifica-se também que a distribuição VI-M-D-P altera-se. Este fato é ilustrado pela Tab. III.2, que mostra os valores das porcentagens de Cr(VI), Cr(III)M, Cr(III)D e Cr(III)P encontrados em cristais com diferentes preparações.

O rendimento deste processo, em relação à recuperação do sólido dopado, é de cerca de 40%.

O etanol pode também ser usado na preparação de cromato de potás sio dopado com ⁵¹Cr por coprecipitação, mas o isopropanol mostrou-se inadequado como agente precipitante para o K₂CrO₄, porque verificou-se que este composto pos sui uma solubilidade razoável em misturas de isopropanol/H₂O, fazendo com que o

Tabela III.2 - Distribuição das espécies de ⁵¹Cr no solido K₂CrO₄/⁵¹Cr, dopado por coprecipitação, em função da velocidade de adição da mistura metanol/⁵¹Cr.

Veloc. de adição (ml/min.) Espécies de Cromo-51	~1	~2	solução adicionada de uma só vez
%VI	0,3	0,5	1,3
7M	84,7	73,6	70,8
%D	11,5	20,2	22,2
%P	3,5	5,7	5,7

rendimento e a eficiência deste processo de dopagem seja reduzido a valores míni

A acetona também já foi usada como agente precipitante (3) sem resultados satisfatórios, devido a formação aparente de Cr(VI) que ela induz.

c - Dopagem por evaporação de solvente.

Cerca de 3,5g do cromato de potássio purificado, finalmente dividido, foram colocados em um sistema evaporador a vácuo (vide fig. III.2) que foi evacuado por 5 minutos à temperatura ambiente ($P \le 1$ militorr; $17^{\circ}C \le T \le 22^{\circ}C$) e, em seguida, colocado em um banho de gelo e água até atingir o equilíbrio térmico.

Igualmente, resfriou-se, no mesmo banho, 2,5ml de metanol (J.T. Baker - PA/ACS) contendo uma quantidade adequada da solução diluída de ⁵¹Cr (~15 gotas).

Apos a termostatização, abriu-se o sistema de evaporação, adicio nou-se aos cristais de ${\rm K_2CrO_4}$ a solução de $^{51}{\rm Cr}$ em metanol (solubilidade do cromato em metanol: ${\rm S^{20}}=0$,19 g/100ml), agitou-se a mistura ${\rm K_2CrO_4}-{\rm CH_3OH}-^{51}{\rm Cr}$ por um minuto e, ainda sob o banho de gelo e água, fez-se vácuo no sistema.

Decorridos 15 minutos sob P < 1 militorr, abriu-se o evapora-

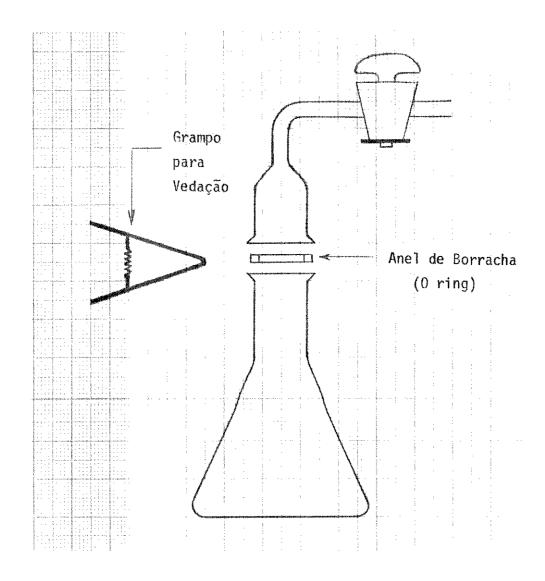


Figura III.2 - Esquema de evaporador usado na dopagem do ${\rm K_2CrO_4\ com}\ ^{51}{\rm Cr.}$

dor e revolveu-se o cromato com uma espátula. Neste estágio, quase todo o meta nol já havia sido eliminado. Fez-se vácuo novamente e a cada 15 minutos, ainda sob vácuo e a $T = 0^{\circ}C$, o sistema era agitado para o desagregamento dos cristais.

Após 45 minutos sob pressão reduzida e a 0°C, o evaporador foi agitado e deixado à temperatura ambiente, até que fossem completados 60 minutos de secagem. O rendimento do processo foi de aproximadamente 90%.

Sendo, no caso, o solido muito pouco soluvel no líquido de dopagem, a atividade foi incorporada superficialmente nos cristais.

Este processo pode, a priori, utilizar qualquer líquido, mas deve-se dar preferência àqueles que possuem um baixo ponto de ebulição e uma boa estabilidade na presença do agente oxidante forte, Cr(VI). Por exemplo, ten tativas de dopagem em solução aquosa a 0°C e à temperatura ambiente mostraram-

-se ineficientes devido ao tempo necessário para a evaporação do solvente.

Além disso, verificou-se também que quanto menor a solubilidade do sólido no líquido usado na dopagem, mais superficialmente serão depositados os átomos radioativos nos cristais hospedeiros.

d - Preparo das amostras.

Após cada dopagem, amostras de aproximadamente 55 mg do material dopado eram encapsuladas em tubos de vidro de 2 mm de diâmetro interno e se ladas sob ar. Somente algumas amostras dopadas por cocristalização a $T = 100^{\circ}$ C foram seladas sob vácuo ($P \leqslant 1$ militorr).

Cada tubo era então convenientemente marcado (com tinta a prova d'agua), embrulhado em papel alumínio, marcado novamente e, por fim, vedado com fita adesiva transparente.

Todas as amostras rotuladas eram então agregadas ao seu conjunto e estocadas sob uma mistura de gelo e agua em equilibrio à pressão ambiente, até serem submetidas à radiação γ, conforme o programa pré-estabelecido.

2. Tratamentos Físicos do Sólido Dopado.

a - Ac irradiações com fotons gama.

Todas as amostras foram irradiadas com um irradiador de ⁶⁰Co Gammabeam 650, no Centro de Energia Nuclear na Agricultura (CENA), Seção de Do simetria e Proteção Radiológica, em Piracicaba, S.P.

O modelo Gammabeam 650, tipo IR-31, é um irradiador construido pela Atomic Energy of Canada, Ltd., com atividade nominal de 29080 Ci em 19 de abril de 1974 (15738 Ci em janeiro de 1979).

Basicamente, este irradiador é constituido de 12 tubos metáli—
cos para exposições, numerados no sentido horário e dispostos radialmente, for
mando um "cilindro" de diâmetro variável. Cada um destes 12 tubos expositores
contem 3 cápsulas de 60 Co que são elevadas da blindagem de chumbo até a posi-

ção de irradiação (a posição de irradiação é considerada como a posição média das fontes, que fica situada a 32 cm acima da plataforma de irradiação) por meio de ar comprimido gerado por dois compressores de ar situados na base do aparelho, e de 12 tubos pneumáticos.

As amostras podem ser irradiadas através de exposições panorâmicas (amostras colocadas externamente ao "cilindro" formado pelos tubos de irradiação) ou em cavidade interna (amostras irradiadas na região interior do "cilindro" formado pelos tubos de irradiação). Em ambos os casos, as diferentes taxas de exposição (taxas de dose) podem ser obtidas através da combinação entre a abertura do círculo formado pelos tubos, que pode ser previamente selecio nada entre 10 e 84 cm relação ao centro geométrico do irradiador, através de um sistema eletro-mecânico de rotação, e o número de tubos ativos selecionados para a exposição. Um estudo dosimétrico detalhado deste irradiador foi o objeto de uma tese recente (4).

As amostras de cromato de potássio dopado com ⁵¹Cr foram posicionadas nas paredes internas de um recipiente apropriado (um frasco Dewar ou um bequer, conforme o caso), que por sua vez foi colocado no centro da plataforma de irradiação, de modo que o sólido a ser irradiado ficasse em uma posição per pendicular e na mesma altura das fontes durante a exposição, ou seja, a 32 cm de altura em relação à plataforma de irradiação.

Para cada conjunto submetido à irradiação, as doses recebidas pelas amostras foram cumulativas, segundo uma programação previa, e para as varias irradiações semelhantes manteve-se os mesmos parâmetros geométricos (distância, número e posições das fontes) usados durante a exposição do primeiro conjunto irradiado.

Os tempos de irradiação foram calculados para cada caso levando-se em conta a taxa de dose (MRad/h) escolhida, em função do número e da distância das fontes em relação ao eixo central do irradiador.

Para as irradiações feitas sob nitrogênio líquido (-196°C), gelo seco (-78°C) e sob uma mistura de gelo e água em equilíbrio (0°C) usou-se co
mo recipiente, para conter as amostras, um frasco Dewar de 8 cm de diâmetro interno, enquanto que para as irradiações em T > 0°C usou-se um béquer de mesmo

diâmetro envolvido em material isolante (fitas de asbestos), contendo glicerina (usada nas irradiações a 78°C) ou õleo Regal R&O 46 da Texaco (usado nas irradiações a 153°C).

Os banhos utilizados nas irradiações a T > 0°C foram preparados aquecendo-se a glicerina ou o óleo até a temperatura de interesse (T = 78°C e T = 153°C, respectivamente), sob agitação magnética constante. Após sua estabilização, a temperatura foi monitorada periodicamente e era anotada após cada lei tura, adotando-se o valor médio como o valor mais provável para este parâmetro. Os desvios assinalados ($T=78 \pm 1$ °C e $T=153 \pm 5$ °C) indicam os desvios máximos observados durante todo o tempo de controle. As irradiações foram feitas à pressão ambiente.

Todas as amostras, após a dopagem, ficaram estocadas sob uma mistura de gelo e água em equilíbrio (0°C) até o momento de serem irradiadas. Após qualquer irradiação a T \leq 0°C as amostras ficaram estocadas na mesma temperatura de irradiação, até serem analisadas, enquanto que as amostras irradiadas em T > 0°C ficaram estocadas sob gelo e água. Em todos os casos, as amostras foram acondicionadas na temperatura de irradiação, pelo menos uma hora antes de serem expostas ao campo de radiação γ .

Alguns conjuntos receberam doses logaritmicas, de 1.0×10^{-4} a 8.0 MRad, enquanto que outros foram irradiados com doses lineares de 1.0×10^{-1} a 1.0MRad. Em todos os conjuntos irradiados foi sempre separada uma amostra de controle, a qual possui o mesmo histórico das demais, incluindo os tratamentos físicos, mas que não foi irradiada (chamadas amostras 0 MRad).

b - Ativação térmica do sólido irradiado.

Alguns conjuntos de amostras ou amostras isoladas foram submetidos a tratamentos térmicos após a irradiação, segundo uma programação prévia. Foram feitos recozimentos isocrônicos eisotérmicos, além de recozimentos pulsados em T = 150° C e T = 282° C, para amostras irradiadas e não-irradiadas e de históricos diferentes.

Os tratamentos térmicos até $T = 104^{\circ}C$ foram realizados em um

banho circulador Haake, modelo NB-22, com oleo Regal R&O 46 da Texaco, enquanto que para T > 104°C usou-se o forno de um cromatografo a gas Varian, modelo 1400. As temperaturas foram lidas com uma precisão de ± 1°C. Todas as amostras relativas a uma dada temperatura foram igualmente aquecidas.

Os recozimentos isotérmicos foram feitos a 150° C com um tempo variável entre 0 < t < 180 min., enquanto que os isocrônicos foram efetuados en tre 0 < T < 284 $^{\circ}$ C, com um tempo de aquecimento constante de 60 minutos.

Em todos os casos, as amostras só eram colocadas sob aquecimento após uma perfeita estabilização da temperatura.

c - Outros tratamentos físicos.

Amostras dopadas por cocristalização e por evaporação do solvente e não irradiadas foram, separadamente, submetidas ainda à trituração, calor e/ou expostas à umidade, para se verificar quais seriam os efeitos destes agentes físicos, em conjugação, na distribuição das espécies de cromo detectada apos a análise cromatográfica.

A trituração foi feita em almofariz e pistilo de porcelana per feitamente limpos e secos, até que um po bem fino fosse obtido.

Algumas das amostras, trituradas e não trituradas, foram então seladas sob ar, enquanto que outras foram colocadas, em tubos abertos, dentro de tubos de vidro maiores, contendo agua destilada no seu interior, que foram em se guida selados. (Fig. III.3 - vide cap. III,3.c.)

Exceto as amostras que foram mantidas a 0° C até o momento da análise, todas as outras foram ativadas em T = 150° C ou T = 282° C e, em seguida, analisadas.

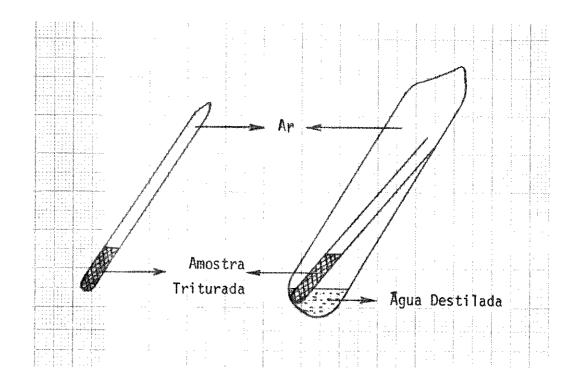


Figura III.3 — Encapsulamento das amostras usando no estudo da influência da trituração e/ou umidade e/ou calor na distribuição das espécies de ⁵¹Cr.

3. As Analises Quimicas.

As separações das espécies de cromo marcadas com 51 Cr foram e fetuadas por cromatografia de troca iônica, e cada fração eluída foi analisada medindo-se a atividade do cromo-51 em um analisador gama monocanal. O desvio médio relativo, (\bar{d}/\bar{X}) x 100, dos resultados encontrados foi estimado em 3%, onde \bar{d} é o desvio médio, \bar{d} = $(\Sigma | X_i - \bar{X}|)/N$, e \bar{X} a média do conjunto de medidas.

a - A separação das espécies marcadas com $^{51}{\rm Cr.}$

As espécies de cromo em solução, marcadas com ⁵¹Cr e especificadas como Cr(VI), Cr(III)-monômero, Cr(III)-dimero e Cr(III)-polimero (abre-

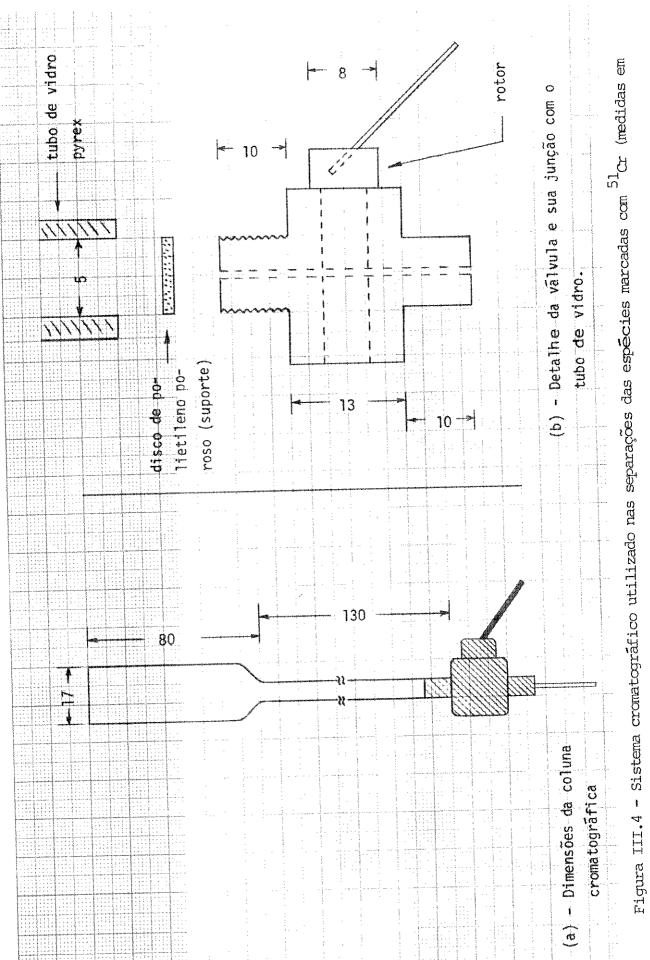
viadamente VI, M, D e P) foram separadas por meio de cromatografia de troca catiônica, usando-se a resina Bio Rad AG 50W-X8 (*) na forma H⁺, 100-200 mesh.

As colunas cromatograficas.

As colunas e as valvulas utilizadas na separação cromatográfica das espécies marcadas com ⁵¹Cr foram totalmente desenvolvidas e construídas no Instituto de Química da Universidade Estadual de Campinas. (Fig. III.4).

Estas colunas foram empacotadas com 1,5 ml da resina Bio Rad AG 50W-X8 pré-tratada (úmida), medidas com uma proveta. Como suporte foram utilizados discos de polietileno poroso. O empacotamento foi feito adicionando-se uma suspensão da resina em água à coluna contendo cerca de 1,5 ml de HClO4 0,05M, sob vibrações laterais na coluna, para um perfeito assentamento da resina.

O pré-tratamento químico da resina de troca iônica.


A resina usada nas separações foi submetida a um pré-tratamento químico (modificado de Collins e Ackerhalt (6)). Este pré-tratamento foi fei to da seguinte maneira:

^{(*) -} A resina AG 50W éum trocador de ions fortemente ácido, composto de grupos de troca de ácido sulfônico (\emptyset -SO₃-H †) ligados ao polímero estireno-divinibenzeno.

AG significa "Analytical Grade" e X8 indica que 8% das ligações cruzadas do divinilbenzeno foram incorporadas ao polimero antes da sua ligação com os grupos iônicos.

A variação do tamanho das partículas do copolimero seco é de 100 a 200 Mesh (unidade padrão americana), significando que o diâmetro das partículas estão compreendidos na faixa de 0,147 (100 Mesh) a 0,075 (200 Mesh) mm.

A fabricação da resina é feita pela Dow Chemicals, e a purificação e distribuição da resina chamada AG é feita pela Bio Rad Laboratories.

milimetros) (5).

Lavou-se ~300g da resina com água destilada por 3 vezes e, em seguida, adicionou-se a ela 300 ml de NaOH lM (Matheson, Colleman & Bell, MC&B) sob agitação constante e 1,0 ml de peróxido de hidrogênio (perhydrol Merck, 30% v/v). Sob agitação magnética constante aqueceu-se a mistura até a temperatura atingir 50°C, quando então o aquecedor foi desligado e, ainda sob agitação, deixou-se o sistema resfriar lentamente até T = 30°C (t = 100 min.). Neste estágio e por decantação, lavou-se a resina dez vezes com porções de 50ml de NaOH lM, agitando-se a mistura, cada vez, por 5 minutos. Observou-se um escurecimento da resina.

Procedeu-se, em seguida, à sua lavagem com agua destilada (cer ca de 5 vezes, V_{H2}0 = 300 ml) até que a fase líquida apresentasse valores de pH entre 8 e 9. Neste ponto o teste de peróxido na fase líquida (I em meio sulfúrico) resultou negativo. Caso seja detectado peróxido na agua de lavagem, devese continuar lavando a resina com agua até se eliminar toda a H₂0₂, detectavel com I.

A resina foi então tratada, sequencialmente e por 15 minutos, com 100 ml de solução 0,1M de HClO₄ e 100 ml de HClO₄ 4M, pela ordem e sob agitação em ambos os casos e, logo a seguir, foi lavada com agua destilada até pH 5-6 (3 lavagens com 300 ml de agua foram suficientes) e estocada em um refrigerador com o dobro do seu volume de agua destilada. Com este tratamento eliminam-se possíveis impurezas (agentes redutores) presentes na resina.

Pode ocorrer entretanto que a resina, durante o seu tempo de estocagem, sofra oxidação com traços de H_2O_2 não eliminada (i.e., não detectada com o teste do I¯), formando espécies redutoras que, durante a eluição (em meio ácido) poderiam reduzir Cr(VI) a Cr(III); além disso, traços de H_2O_2 adsorvidos na resina também poderiam provocar a redução do Cr(VI) durante a eluição da amostra.

Assim, para evitar estas reações colaterais indesejaveis durante a separação das espécies de cromo marcadas com ⁵¹Cr (lembrar que trabalha-se com o ultra-micro quantidades de ⁵¹Cr) e para assegurar um maior grau de reprodutibilidade dos resultados analíticos, submeteu-se ainda a resina a um outro tratamento (na columa), momentos antes da injeção das amostras. Este tratamento adicio-

nal consiste em passar 0,5 ml de uma solução 0,2M de $\mathrm{Na_2Cr_20_7}$ através da coluna cromatográfica e eluir o $\mathrm{Cr}(\mathrm{VI})$, na forma de $\mathrm{Cr_20_7^{2-}}$, com 10,0 ml de $\mathrm{HClo_4}$ 0,05M.

A dissolução das amostras.

As amostras foram dissolvidas em uma solução de dissolução contendo 0,005M de $\mathrm{Cr_n(III)}^{(*)}$ total em $\mathrm{HC10_4}$ 0,05M, segundo a sugestão de Collins e Ackerhalt (6). Verificou-se em estudos de cromatos irradiados com neutrons que a dissolução destes compostos em pH baixo confere \tilde{a} análise química, resultados mais reprodutíveis (2).

A presença de espécies de cromo inativo no estado de oxidação III na solução de dissolução tem como função evitar a adsorção dos ions de cromo na resina e nas paredes de vidro das colunas cromatográficas, além de servir como indicador durante a eluição das espécies pois, durante a eluição do Cr(VI), a presença de uma banda verde retida no topo da coluna indica que as espécies de Cr(III) não estão sendo eluídas.

Assim sendo, preparou-se uma solução estoque de $\mathrm{Cr_n}(\mathrm{III})$ (~0,1M) dissolvendo-se 11 g de $\mathrm{Cr(NO_3)_3.9H_20}$ (Merck-P.A.) em 250 ml de água destilada e refluxando-se a solução por 6 horas (7, 8). A partir desta solução estoque foi preparada a solução de dissolução mencionada acima.

As amostras de K₂CrO₄ (~55mg) foram dissolvidas em 7,00ml (medidas com pipeta graduada de 10,00 ml) da solução de dissolução. Destes, 4,00 ml (medidos com pipeta graduada de 5,00ml) foram injetados na columa e os restantes 3,00 ml, guardados como padrão.

O pH da solução de dissolução foi medido antes e depois da adição do $K_2^{CrO}_4$ em um medidor de pH, com precisão de ± 0 ,1 unidades. Os resultados encontrados mostram que antes da adição do cromato o pH era 1,4 e depois 2,3.

^{(*) -} $Cr_n(III)$ indica que a solução contém as espécies Cr(III)M, Cr(III)D e Cr(III)P em equilibrio (7,8); $Cr_n(III)$ total está indicando que a concentração de 0,005M engloba todas as espécies.

Adotou-se e fixou-se o uso desta solução de dissolução porque verificou-se que a utilização de diferentes soluções de dissolução produzem resultados diferentes nas percentagens relativas de ⁵¹Cr encontrados apos a análise. Esta verificação foi feita usando-se cristais dopados por cocristalização e por evaporação do solvente (vide cap. III, 3.c.).

O uso do HClO₄ como eluente é justificado por ser o ion ClO₄ bastante inerte. (i.e.,agente não complexante).

O procedimento analítico.

Após dissolvidas apropriadamente, alíquotas das soluções das amos tras foram injetadas na coluna e eluidas com soluções de HClO₄ e HCl. As frações foram recolhidas em tubos de vidro de 20ml de capacidade, adequados para a conta gem da radioatividade. O programa de eluição seguido

Volume (ml)	Eluente	Fração eluida
14,0	HC10 ₄ 0,05M	$Cr(VI)$, como $Cr_2O_7^{2-}$
18,0	HC10 ₄ 4M	Cr(III)-monômero
18,0	HC1 5M	Cr(III)-dimero

foi proposto por Collins e Ackerhalt (6).

A fração Cr(III)-polímero fica retida na coluna. Aqui, por questão de tempo e maior flexibilidade operacional, ao inves de se adotar os procedimentos usuais descritos na literatura para a eluição da fração polímerica (dei xar a resina em contato com HCl 5M por 24 horas e então passar 18,0 ml de HCl equimolar através da coluna (9,10)), optou-se por recolher cuidadosamente a resina no frasco de contagem para posterior determinação da sua atividade.

Em todos os tubos, os volumes de líquido neles contidos foram ajus tados a 18,0 ml, incluindo o do padrão e o da fração Cr(III)P, que tiveram seus volumes elevados com água destilada.

Antes das atividades das frações serem medidas, todos os tubos eram agitados para homogeneização. 0^{-51} Cr é um radionuclideo muito conveniente para se medir a sua atividade porque, em geral, obtém-se 51 Cr com uma alta pureza radioisotópica e radionuclidica.

0 ⁵¹Cr decai por captura eletrônica para o ⁵¹V com uma meia vida de 27,70 dias (11), sendo que 90% destes eventos levam o ⁵¹Cr diretamente ao estado fundamental do ⁵¹V, com a emissão de 752 KeV (12) de energia, na forma de eletrons Auger ou fotons pouco energéticos (Raios-X), os quais geralmente não são utilizados nas contagens de radioatividade. Por outro lado, 10% dos eventos de decaimento ocorrem via estado 5/2 do ⁵¹V que, ao decair para o estado fundamental, emite fotons γ de 0,320 MeV. Esta radiação e a mais adequada e conveniente para medir o decaimento do ⁵¹Cr.

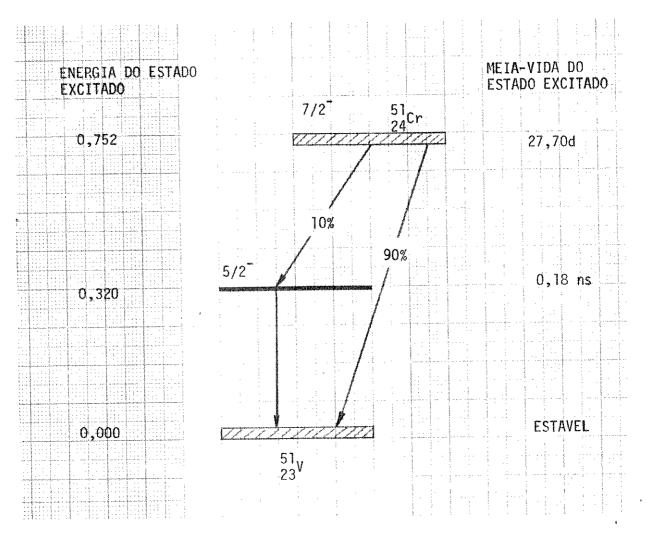


Fig. III.5 - Esquema de decaimento do ⁵¹Cr(11)

As medidas de radioatividade foram feitas em um analisador gama automático (monocanal) Philips PW 4520, conjugado a um detetor de cintilação so-lido de NaI(T1) 3x3", tipo poço, envolvido em blindagem de chumbo e acoplado a uma impressora para o registro das contagens.

0 espectro gama do ⁵¹Cr foi obtido (Fig. III.6) e a partir dele determinou-se as condições de medidas para este radioisotopo a serem adotadas em trabalho de rotina. Tais condições de operação são:

Atenuação = X = 4,0 ; Y = 0,5.

Nível Inferior = Posição 4,50.

Janela = Posição 4,00.

Voltagem = 800 Volts.

Cada fração foi contada 3 vezes consecutivas utilizando-se o modo de contagem diferencial (somente pulsos com uma amplitude entre os limites in ferior e superior são contados) e, para cada contagem o ruido de fundo (background) foi descontado automaticamente pelo analisador e impresso em seguida em contagens por minuto (cpm). O tempo de contagem utilizado foi de 1 ou 2 minutos, conforme a atividade da amostra.

0 rendimento (%) de cada espécie foi calculado através da expressão Rx (%) = ($A_x/\Sigma A$) x 100, onde Rx é o rendimento da espécie (VI,M,D ou P) sob consideração, A_x é a atividade corrigida (cpm) da espécie X de uma certa amostra, e ΣA é o somatório das atividades, corrigidas, das várias frações de uma determinada amostra (cpm).

Correção das constantes das frações Cr(III)P.

As espécies de cromo designadas por Cr(III)P ficam retidas na resina, que por sua vez fica depositada no fundo do frasco de contagem. Desta forma, a eficiência de contagem destas frações é diferente das demais, cujas atividades

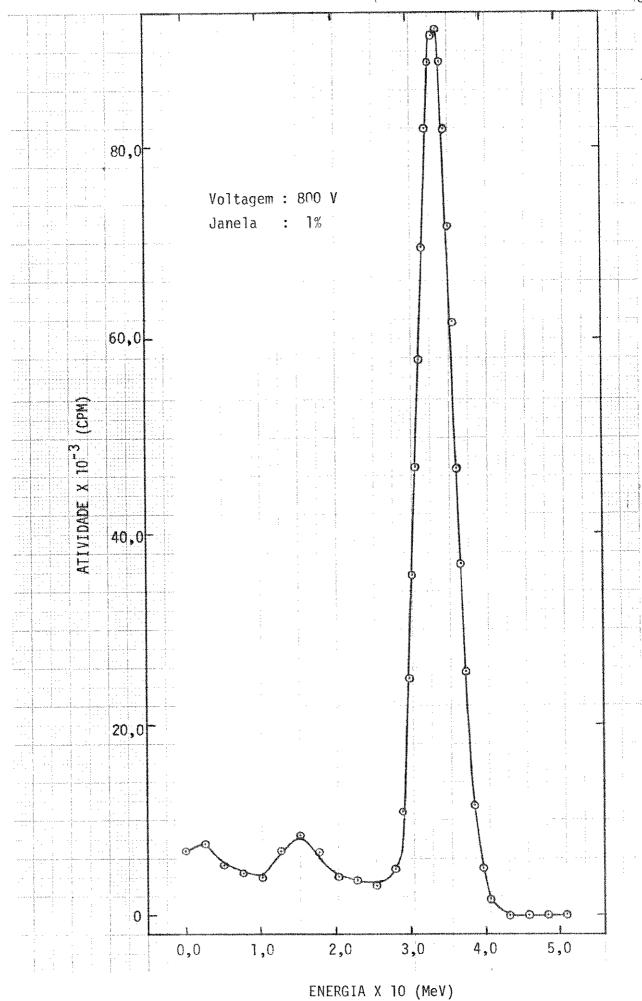


Figura III.6 - Espectro de energia do ⁵¹Cr obtido com o analisador gama automático Philips 4520.

estão uniformente distribuidas por todo o volume de líquido. Devido a este fato torna-se imperativo corrigir as contagens das frações polímero, de modo que os resultados finais não se mostrem distorcidos.

O fator de correção para estas frações foi calculado utilizandose 7 amostras dopadas por cocristalização ($T=100^{\circ}C$) e irradiadas com doses entre 1.0×10^{-4} e 6.0 MRad. Usou-se este intervalo de dose tão amplo para se levar em conta todos os fatores que as amostras estão sujeitas em todo o intervalo de dose. O procedimento adotado foi o seguinte.

Após a separação e contagem das frações Cr(III)P, retirou-se com muito cuidado os líquidos sobrenadantes à resina, transferindo-os para outros frascos de contagem e completando os volumes a 18,0 ml.

À resina restante em cada tubo, adicionou-se 1,5ml de KOH 4M (Carlo Erba, RPE/ACS) e 6 gotas de ${\rm H_2O_2}$ a 30% v/v (perydrol-Merck), aquecendo-os até a reação

$$Cr(III)P \xrightarrow{KOH/H_2O_2} Cr(VI) + outras espécies solúveis de Cr$$

se completar. A coloração amarela (CrO₄⁻²) que se forma indica a ocorrência da reação acima descrita. Cada frasco foi novamente contado, e uma síntese dos resultados obtidos é indicado na tab. III.3.

Tabela III.3 - Cálculo do fator de correção das contagens referentes à fração Cr(III)P.

	CL(TII)L*					
DOSE RECEBIDA (MRad)	CONTAGEM INICIAL (falsa) (cpm)	CONTAGEM A TAMENTO SOBRE- NADANTE (cpm)	RESINA TRATADA (cpm)	Σ (cpm)	ERRO (%)	FATOR DE MUL TIPLI- CAÇÃO
1.0×10^{-4}	5937	41	4680	4721	-25,8	0,80
$3,0 \times 10^{-4}$	5485	8	4251	4259	-28,7	0,78
3.0×10^{-3}	6009	7	4655	4662	-28,9	0,78
1.0×10^{-2}	4428	10	3427	3437	-28,8	0,78
1.0×10^{-1}	4756	24	3630	3654	-30,2	0,77
1,0	3154	23	2411	2434	-29,6	0,77
6,0	3146	19	2352	2371	-32,7	0,75

Os fatores de multiplicação encontrados foram submetidos ao teste estatístico Q (13) ao nível de confiança, onde todos os valores encontrados foram aceitos. Com esta segurança determinou-se que o valor médio destes fatores, F = 0,78, representa bem o seu valor real.

Considerando-se F calculou-se o desvio padrão do conjunto (s = 0.02) e, usando-se a distribuição de Student, determinou-se que a média verdadei ra (valor verdadeiro) do fator de multiplicação, $\mu_{\rm F}$, deve estar entre os valores 0.78 ± 0.02 , com 99% de probabilidade. Assim, com esta segurança, todos os valores de Cr(III)P foram corrigidos pelo fator 0.78.

c) Variáveis que afetam a distribuição das espécies marcadas com $^{51}{\it Cr}.$

Verificou-se que a distribuição das várias espécies do cromo mar cadas com ⁵¹Cr (VI, M, D, P), observadas após a dissolução das amostras de K₂CrO₄ dopadas com ⁵¹Cr, pode ser bastante afetada por diversos fatores físicos e químicos.

Um dos fatores químicos de fundamental importância na análise destas espécies é a solução utilizada na dissolução dos cristais pois, dependendo dela e do método de dopagem utilizado, diferentes valores podem ser encontrados para as quantidades relativas de Cr(VI), Cr(III)M, Cr(III)D e Cr(III)P, (vide tab. III.4).

Para as amostras cocristalizadas observou-se que a presença de $\mathrm{Cr}_n(\mathrm{III})$ como carregador na solução de dissolução estabiliza a distribuição das espécies de cromo, independentemente da concentração e do ácido utilizados nos testes. Quando se usa $\mathrm{HC1O}_4$ 0,05M como solução de dissolução, sem carregador, ocorre a formação de uma maior quantidade de dimero às expensas da fração monômero, enquanto que as frações VI e P quase não se alteram; o comportamento é similar, mesmo quando a concentração do ácido é dobrada. O uso de água como solvente para os cristais dopados de $\mathrm{K_2CrO}_4$ altera totalmente a distribuição das espécies de cromo, possivelmente como consequência do pH elevado da solução.

Observa-se também que, para os solidos cocristalizados de um modo geral, em pH baixo (pH < 2,5), as frações VI e P não são muito afetadas pela

Tabela III.4 - Variação da distribuição das espécies marcadas com ⁵¹Cr para diferentes soluções de dissolução. As amostras não sofreram irradiação y nem aquecimento.

SOLUÇÃO DE DISSOLUÇÃO	AMOSTRA (*)	pH(**)	(p) _{Hd}	ZVI	%W	7.0	%P
HNO, 1,6M + Cr (III) 0,005M	CPC	8,0	1,3	0.1	43,2	46,3	9,4
HC10, 0,05M + Cr (III) 0,005M	CPC	767	2,3	6,0	43,9	45,0	10,3
HC10, 0, 1M + Cr_(III) 0,005M	CPC	7,0		1.92	43,0	46,2	7,6
нс10, 0,05м	CPC	1, 2	2,1	1,6	37,2	52,1	9,1
HC10, 0,1M	CPC	0,5	1,6	p	37,0	53,2	8,7
HO	CPC	5,9	9,2	3,3	20,5	57,2	19,0
HNO, 1,6M + Cr (III) 0,005M	CPS	8,0	1,3	7,4	29,9	48,3	14,4
HC10, 0,05M + Cr (III) 0,005M	CPS	1,4	2,3	6,3	37,6	35,5	20,6
HC10, 0,1M + Cr (III) 0,005M	CPS	0,7	1,5	7,5	34,4	43,1	15,1
HC10, 0,05M	CPS	1,2	2,5	5,9	29,4	49,5	15,3
HC10, 0,1M	CPS	0,5	1,6	5,7	26,8	52,4	15,1
H ₂ 0	CPS	5,9	9,2	6,9	22,9	48,7	21,6
7							

(*) - As amostras utilizadas nesta experiência foram dopadas por cocristalização (CPC) a partir de T = 70°C e por evaporação do sol vente (dopagem superficial, CPS) \ddot{a} T = 0°C.

 $(**)-p_{\rm H}_{(a)}$ = pH da solução de dissolução antes da dissolução do ${
m K_2Cr0_4}$.

 $p_{(d)} = p_H da solução final, apos a dissolução do <math>K_2 Cr_{0_4}$.

solução de dissolução, mas que as frações M e D podem se alterar bastante se ${\rm Cr}_{\rm n}({\rm III})$ não for usado como carregador.

As amostras dopadas superficialmente, por outro lado, mostram-se muito mais sensíveis à solução de dissolução que as cocristalizadas, pois os reresultados encontrados são os mais variados. Pelos dados listados na tab. III.4, parece que existe uma similaridade razoável, somente entre os resultados obtidos com HClO, 0,05M e 0,1M.

É razoavel pensar que o pH na interface dos cristais com a solução, durante o processo químico de dissolução do sólido, é diferente (maior) que o do restante da solução e sob este aspecto pode-se esperar o comportamento apresentado pelas amostras dopadas por evaporação do solvente, pois a atividade, nestes casos, é depositada na superfície dos cristais. Nas dopagens por cocristalização a atividade está localizada mais no interior dos cristais (14) e por esta razão, talvez, o distúrbio provocado pela solução de dissolução seja menor.

Um comportamento parecido é também observado quando amostras similares são trituradas e/ou submetidas à uma atmosfera de vapor de água e/ou aquecidas (vide tab. III.5). Surpreendentemente as amostras cocristalizadas são pouco sensíveis ao processo de trituração, mesmo quando submetidas a um aquecimento posterior. Os resultados indicam também que estas amostras sofrem uma pequena alteração na composição das espécies em solução, somente quando aquecidas a 150°C sob vapores de água, e sugerem que neste caso, a trituração é um fator que acentua esta alteração.

As amostras dopadas superficialmente, por outro lado, mostraram-se também muito sensíveis a estes processos físicos e/ou químicos, porquanto os resultados apresentados, mais uma vez, são bem variados (tab. III.5).

Para explicar tais fenômenos razoavelmente deve-se considerar no vamente a distribuição da atividade nos cristais dopados. Os cristais cocrista—lizados, por exibirem a atividade distribuída no seu interior, se fragmentados, continuariam a mostrar o mesmo comportamento, porquanto a ruptura do retículo,a—lém de alguns defeitos, geraria tão somente muitos outros cristais menores, com características similares as dos que lhes deram origem. Por outro lado, se a dopagem e superficial, os cristais, ao serem triturados, formariam varios fragmen—

S1 Tabela III.5 - Variação da distribuição das especies marcadas com "Cr com a trituração, umidade e/ou aquecimento do sólido dopado. As amostras não sofreram irradiação Y

AMOSTRA (*)) TRATAMENTO (**)	IA%	ZM	ZD	T.C.	AMOSTRA (*)	${ t TRATAMENTO}^{(**)}$	ZVI	%W	ZD	ZZ
CPC	Δ_0 (NT)	6,0	43,9	6,44	10,3	CPS	Δ_0 (NT)	6,3	37,5	35,5	20,6
CPC	Δ ₀ (T)	1,9	44,8	42,9	10,4	CPS	Δ ₀ (T)		48,9	29,0	10,9
CPC	(L	23,1	2.1.3	43,5	12,31	CPS	$\Delta_{150}^{\mathrm{lh}}$ (NT)	10,6	24,9	38,1	26,4
CPC	Δ_{150}^{1h} (T)	21,4	22,3	0,44	12,3	CPS	Δ_{150}^{1h} (T)	9. E	24,6	32,3	<u>-</u>
CPC	Δ282 (NT)	88,9	1,7	4,4	5,0	CPS	$^{ m 1h}_{ m 2282}$ (NT)	8,09	2,5	18,4	18,3
CPC	1h ^282 (T)	87,7	2,1	5,7	4,5	CPS	$^{1h}_{282}$ (T)	78,7	T 6 7	10,4	6,8
CPC	(U) Δ_{150}^{1h} (NT) 27,0	27,0	16,2	40,4	16,5	CPS	(U) Δ_{150}^{1h} (NT)	31,2	5,8	36,8	26,2
	(U) Δ_{150}^{1h} (T) 22,1	22,1	13,3	34,7	29,9	CPS	(U) Δ_{150}^{1h} (T)	18,5	11,9	22,4	47,1
The state of the s		Designation of the last of the		White the second	STANKE ST						

(*) - As amostras utilizadas nesta experiência foram dopadas por cocristalização (CPC) a partir de 70°C e por evaporação do solvente (dopagem superficial, CPS) $\ddot{a} T = 0^{\circ}C$.

(**) - Códigos usados para descrever os tratamentos físicos submetidos às amostras:

 Δ - Simboliza aquecimento - o subscrito indica a temperatura e o superscrito o tempo de aquecimento.

(T)- Significa que a amostra foi triturada e (NT) que ela não foi triturada.

(U)- Indica que a amostra foi submetida a um ambiente contendo vapor de água.

tos, menores contendo uma grande quantidade de dopante e inúmeros outros quase sem atividade.

Esta suposição, se verdadeira, explicaria os resultados encontrados, porquanto a interação do dopante com o solvente seria desigual nos dois casos considerados. Os cristais cocristalizados, triturados ou não, por se rem similares, sofreriam uma ação mais uniforme do solvente, enquanto que as amostras dopadas superficialmente se comportariam de modo irregular, gerando di ferentes gradientes de concentração de ⁵¹Cr na região de dissolução (interface dos cristais). Este comportamento estaria sendo refletido na insensibilidade do sólido cocristalizado e a variação das composições das espécies de ⁵¹Cr apresentada pelo sólido dopado por evaporação do solvente.

Obviamente isto não explica o porque do aumento da retenção (%Cr(VI)) e a diminuição das quantidades relativas das outras frações, mas devese considerar que ninguém sugeriu ainda mecanismos para explicar tais fenômenos e que estas experiências não buscam explicações detalhadas para estes fatos, por não serem o objetivo desta tese.

Da mesma forma, a ação da umidade observada sobre estes sólidos (tab. III.5) requer ainda uma interpretação que não é possível ser sugerida com os dados de que se dispõem no momento. Neste sentido, para ambos os casos, faltam elementos essenciais para uma discussão mais aprofundada no assunto, sendo necessárias a realização de várias outras experiências mais detalhadas e precisas.

Observou-se também que os cristais dopados por cocristalização e irradiados com doses logarítmicas de radiação γ apresentavam, quando aquecidos a 150° C por uma hora, uma inflexão nas curvas (ou uma alteração mais sensível nos valores das tangentes) Rendimento vs $-\log|\mathrm{DOSE}|$, no ponto correspondente à dose $3.0 \times 10^{-2} \mathrm{MRad}$ e que somente cristais assim dopados mostraram tal comportamento (vide cap. IV).

Como a exposição das amostras a doses γ logaritmicas, situadas no intervalo 0 - 8 MRad, exigiram uma variação drástica na velocidade de emissão de energia (Taxa de Dose), suspeitou-se inicialmente que este parâmetro seria de relevância neste estudo e o responsável pelo comportamento das curvas acima men-

cionado.

Por esta razão irradiou-se algumas amostras dopadas por cocristalização (T = 70°C) com doses idênticas, mas com diferentes Taxas de Dose, (vide fig. III.7,8 e 9 e tab. III.6) e verificou-se realmente a existência de uma variação no rendimento das espécies de cromo com a Taxa de Dose quando es tas amostras solidas eram irradiadas e aquecidas a 150°C, antes da análise.

Tabela III.6 - Verificação da influência da Taxa de Dose na distribuição das <u>es</u> pecies marcadas com ⁵¹Cr.

Amostras dopadas por cocristalização ($T = 70^{\circ}C$)

DOSE (MRad)	-Log DOSE	$_{\text{TD}}^{\text{(*)}}$ (kRad x h ⁻¹)	número de fontes	ZVI	ZM	%D	%Р
		24,0	3	39,6	18,7	32,7	9,0
$1,0x10^{-2}$	2,00	85,5	6	39,4	14,9	35,8	10,8
		192,0	6	38,8	14,8	35,6	10,8
Wertendamen glant of Signate of Street Sinth Annual Management glant of St		580,0	6	39,3	12,9	37,2	10,6
		24,0	3	47,0	16,6	29,1	7,4
$3,0 \times 10^{-2}$	1,52	85,5	6	46,6	14,7	30,2	8,5
		192,0	6	46,5	12,9	31,6	9,0
the body and the second state of the second	There is the state of the state	580,0	6	47,5	11,7	31,9	8,9
		85,5	6	54,4	12,3	26,1	7,3
$1,0x10^{-1}$	1,00	192,0	6	54,7	10,7	26,9	7,7
Million of African Company States and African State		580,0	6	50,7	10,1	30,7	8,5

^{(*) -} TD significa Taxa de Dose ou velocidade de emissão de energia ("dose rate").

Entretanto, como somente o sólido cocristalizado, quando irradia do e aquecido apresenta estas alterações (amostras mantidas a 0° C ou aquecidas a 282° C não exibem estas inflexões nas curvas Rendimento vs $-\log|\mathrm{DOSE}|$; vide cap. IV), pode-se pensar também que fatores térmicos estariam agindo sobre o sistema $\mathrm{K_2CrO_4}/\mathrm{^{51}Cr}$ e que eles seriam, talvez, mais relevantes que aqueles possivelmente devidos à variação da Taxa de Dose.

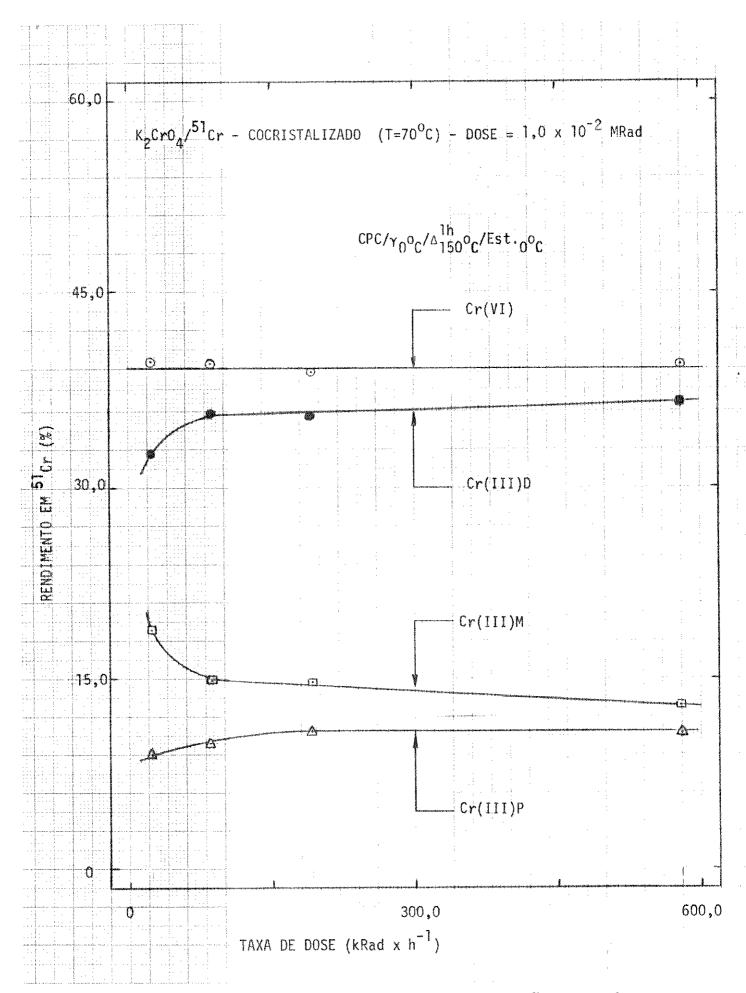


Figura III.7 - Influência da Taxa de Dose na distribuição das espécies marcadas $\cos^{-51} {\rm Cr.}$ ${\rm Dose} = 1.0 {\rm x} 10^{-2} {\rm MRad.}$

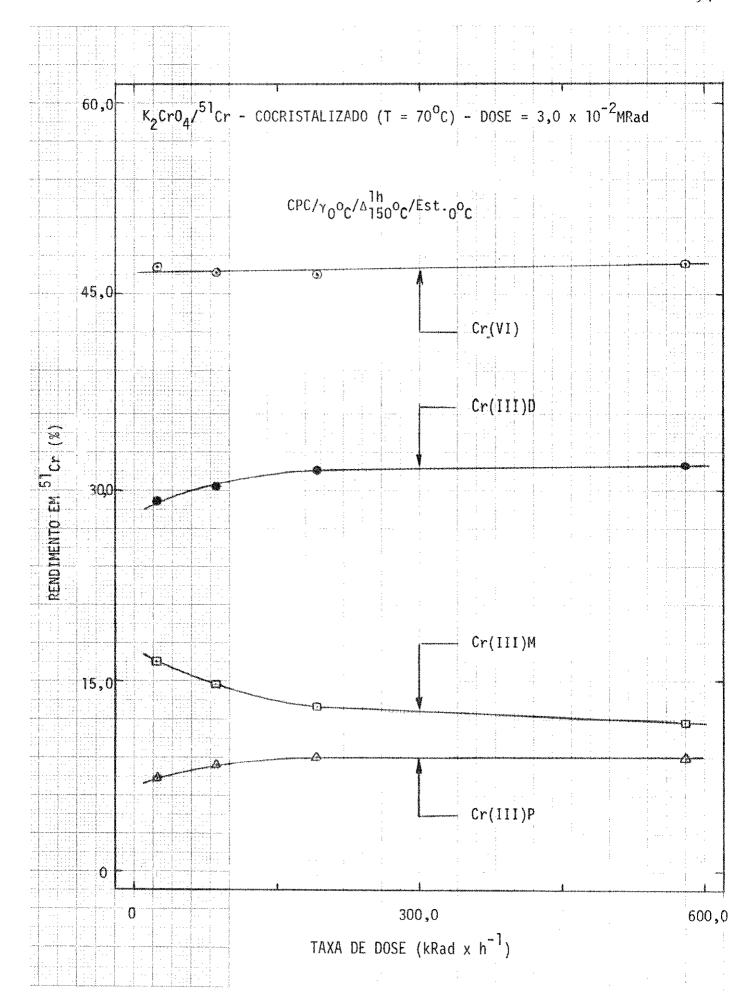


Figura III.8 - Influência da Taxa de Dose na distribuição das espécies marcadas $\cos^{51} \text{Cr.}$ $\text{Dose} = 3.0 \times 10^{-2} \text{MRad.}$

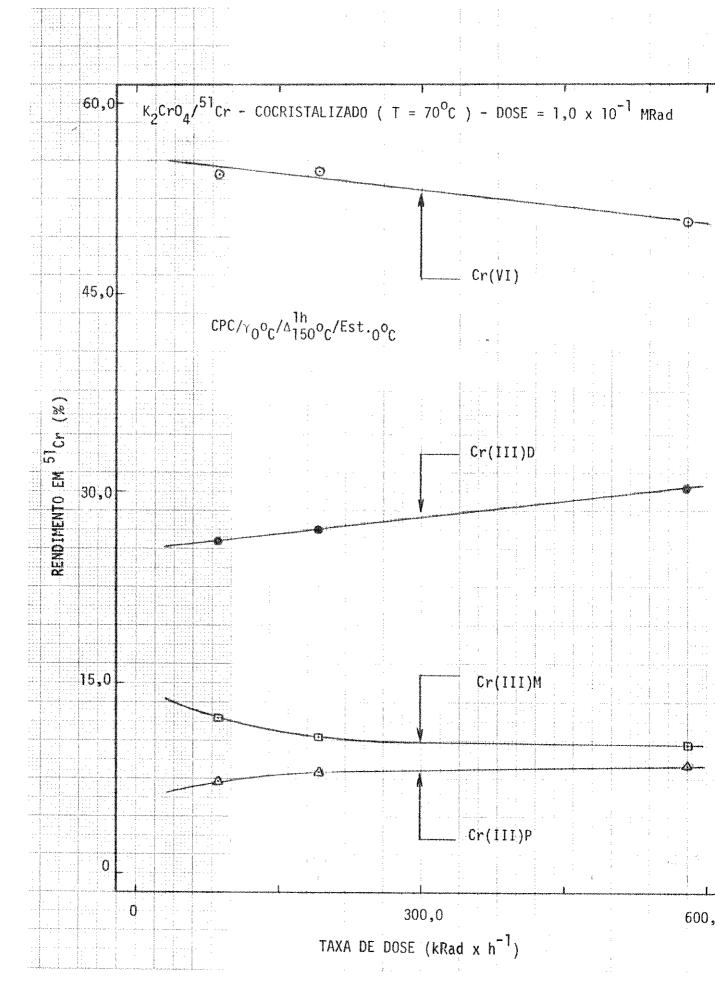


Figura III.9 - Influência da Taxa de Dose na distribuição da espécies marcadas com $^{51}{\rm Cr.}$ Dose = $1.0{\rm x}10^{-1}{\rm MRad.}$

Tabela III.7 - Distribuição das espêcies marcadas com 51 Cr em amostras dopadas por cocristalização (T = 100° C) e irradiadas com fotons γ .

Temperatura de irradiação = 0° C; amostras sob ar.

er en	makes a distribution of the following constitution of the following distribution of the followin	months to the continue of the	**************************************		·	Avegan topics with the section of th			*******
DOSE	-log DOSE	No. 1 to 2 William Physical Street, Spiriter Street, April 200 Apr	pH =	7,7	energia.com teatre en sistem en en el de de entre energia.	pl-	1 = 2,3	- non-	Newson of the last
(MRad)		%VI	%M	%D	%P	ZVI	ZM	%D	%P
0	eca.	3,2	9,8	47,3	39,7	2,6	13,1	65,1	19,3
8,5x10 ⁻⁵	4,07	3,0	10,3	47,8	39,0	2,9	13,5	65,1	18,5
$3,0x10^{-4}$	3,52	3,1	10,3	48,2	38,4	3,0	13,1	64,9	19,1
1,0x10 ⁻³	3,00	3,6	10,3	48,4	37,7	****	MANAGE STATE OF THE STATE OF TH	_	-
$3,0x10^{-3}$	2,52	4,6	9,9	48,9	36,6	4,7	12,8	64,6	18,0
1,0x10 ⁻²	2,00	7,4	8,7	47,9	36,0	7,9	12,4	62,3	17,4
$3,0 \times 10^{-2}$	1,52	11,0	9,6	44,8	34,6		****		-
1,0x10 ⁻¹	1,00	14,7	9,9	42,7	32,7	15,9	11,9	56,3	16,8
$3,0x10^{-1}$	0,52	21,4	8,5	38,5	31,7	Broken	W194	-	
1,0	0,00	28,8	9,0	34,4	27,8	29,4	11,1	45,3	13,1
6,0	-0,78	48,7	6,3	25,3	19,7	48,9	9,3	31,6	10,3
8,0	-0,90	Plane	A4494		*COMPA	53,6	8,0	28,5	10,0

Tabela III.8 - Distribuição das espécies marcadas com 51 Cr em amostras dopadas por cocristalização (T = 100° C) e irradiadas com fotons γ .

Temperatura de irradiação = 0° C; amostras sob vácuo.

marrow engines and other free control of the significant of the signif	Charles with the second	general management of the second	lender recommendation and appropriate			***	enchicos augustos de Carroque, allegan		
DOSE	-log DOSE	pH = 8,0				pH = 2,3			
(MRad)		%VI	2M	ZD	%P	%VI	7M	%D	%P
0	terre	3,0	9,7	47,8	39,5	2,8	12,6	64,3	20,2
8,5x10 ⁻⁵	4,07	3,5	8,7	48,2	39,6	2,9	12,3	63,1	21,7
$3,0x10^{-4}$	3,52	3,8	9,5	47,7	39,0	3,1	13,0	63,6	20,9
$1,0x10^{-3}$	3,00	4,2	9,7	47,0	39,1		-	a) ann	-
$3,0x10^{-3}$	2,52	5,3	*uzsu	-	MANY	5,2	12,4	61,8	20,6
$1,0x10^{-2}$	2,00	8,4	****	_	36,9				Loan.
$3,0 \times 10^{-2}$	1,52	· inne		-	v ano	12,9	11,4	56,5	19,2
1,0x10 ⁻¹	1,00	16,4	8,3	41,0	34,3			-	
$3,0x10^{-1}$	0,52	*****	***	Rest	E/Wh	23,0	10,9	48,6	17,5
1,0	0,00	30,9	6,4	34,9	27,8		****	***	Media
2,0	-0,30	A4444	ender.	eneral.	More	37,6	9,9	38,0	14,5
6,0	-0,78	51,0	4,9	23,9	20,2			***	-
8,0	-0,90	Nove.			SUL.	53,9	8,0	27,0	11,2

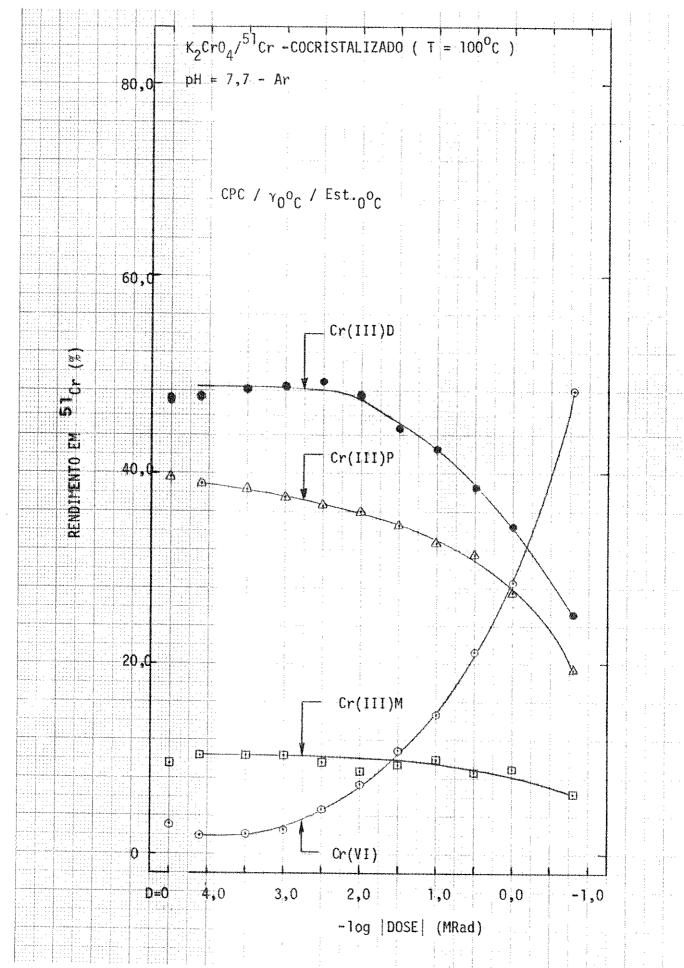


Figura III.10 - Distribuição das espécies de cromo em ${\rm K_2CrO_4/^{51}Cr}$, irradiado com fotons γ a 0 $^{\circ}$ C. pH = 7,7 / Ar

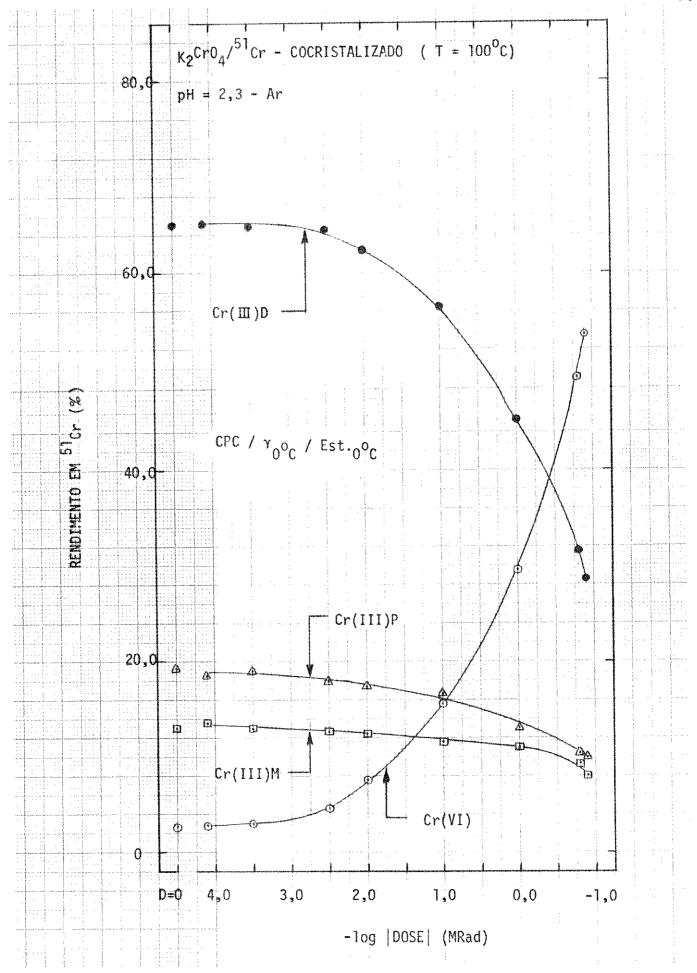


Figura III.ll - Distribuição das espécies de cromo em ${\rm K_2 Cro_4/^{51} Cr}$, irradiado com fotons γ a 0°C. pH = 2,3 / Ar

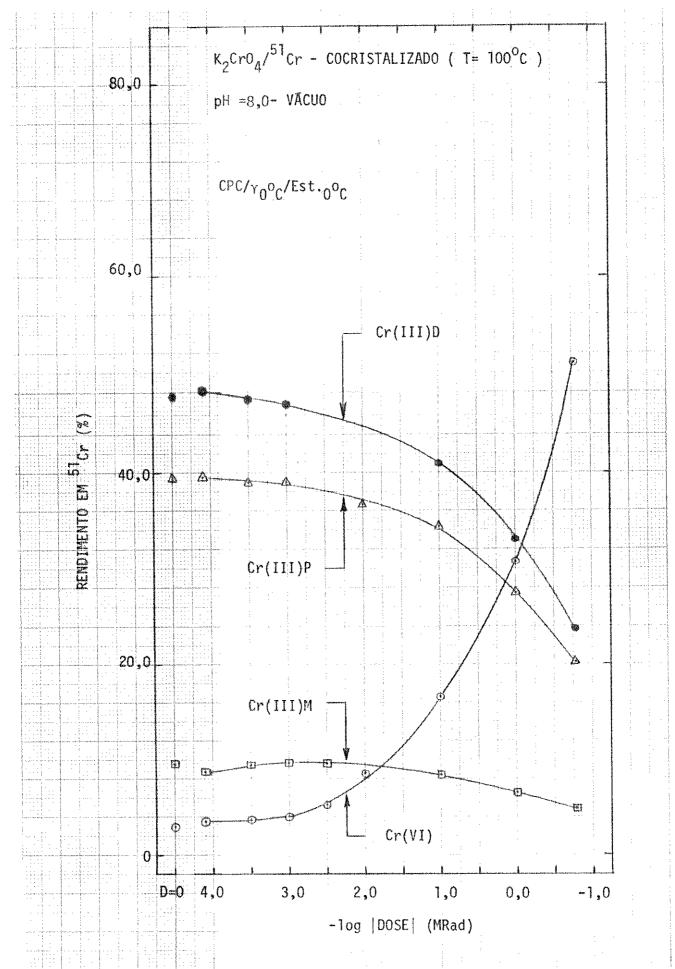


Figura III.12 - Distribuição das espécies de cromo em ${\rm K_2CrO_4/^{51}Cr}$, irradiado com fotons γ a $0^{\rm O}{\rm C}$. pH = 8,0 / VÁCUO

UNICAMP BIBLIOTECA CENTRAL

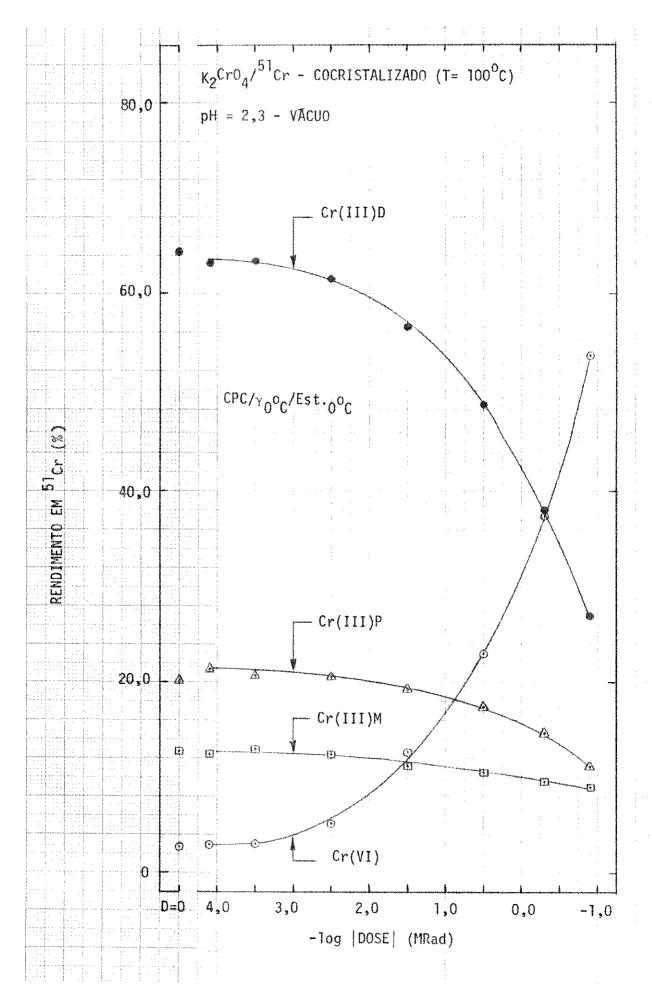


Figura III.13 - Distribuição das espécies de cromo em ${\rm K_2CrO_4/^{51}Cr}$, irradiado com fotons γ a $0^{\rm O}{\rm C}$. pH = 2,3 / VÁCUO

Para finalizar, estudou-se ainda o efeito do pH (da solução de cromato injetada na coluna) e do ambiente gasoso ao redor do sólido, na distribuição das especies de cromo marcadas, quando varias amostras cocristalizadas ($T = 100^{\circ}$ C) eram irradiadas com fotons γ , a 0° C (tab. III.7 e 8; fig. III. 10, 11, 12 e 13).

Os resultados indicam que a distribuição das espécies não é alterada pela presença ou ausência de ar ao redor dos cristais durante a irradiação, mas é bastante afetada pelo pH da solução de cromato injetada na coluna, resultado este que era esperado, pelo que se observou nos estudos sobre a influência da solução de dissolução sobre os resultados analíticos. As amostras com pH alto foram obtidas dissolvendo-se as amostras em água, e as em pH baixo numa solução de HClO₄ 0,05M, contendo Cr_n(III) como carregador, na concentração de 0,005M.

De um modo geral observa-se que, em todo o intervalo de dose, a variação do pH não afeta muito as distribuições relativas de Cr(VI) e Cr(III)M, mas provoca variações relevantes nas frações dimero e polimero.

Todos estes estudos foram levados em consideração na escolha do metodo analítico descrito no item a deste capítulo.

CAPTTULO III

BIBLIOGRAFIA

- 1 C.H. COLLINS e K.E. COLLINS, "The Hot-Atom Chemistry of Crystalline Chromates" em "Chemical Effects of Nuclear Transformations in Inorganic Sistems editado por G. Harbottle e A.G. Maddock, North-Holland Publishing Co., p.16 1979.
- 2 R.E. ACKERHALT, "Thermal Annealing Reactions of Chromium(51) Species in New tron Actived Potassium Chromate", Tese de Doutoramento, Universidade de Nov Iorque (Buffalo), 1970.
- 3 K.E. COLLINS, trabalho não publicado.
- 4 J.F. ESCOBEDO, "Dosimetria do Irradiador de ⁶⁰Co-Gammabean 650", Tese de Metrado, Centro de Energía Nuclear na Agricultura (CENA), 1978.
- 5 K.E. COLLINS e J.C. DE ANDRADE, manuscrito em preparação.
- 6 C.H. COLLINS, K.E. COLLINS e R.E. ACKERHALT, J. Radioanal. Chem., 8(1971) 26
- 7 J.A. LASWICK e R.A. PLANE, J. Am. Chem. Soc., 81(1959) 3564.
- 8 R.E. ACKERHALT, C.H. COLLINS e K.E. COLLINS, Radiochim. Acta 14(1970) 49.
- 9 M.C. SILVA, "A Química dos Átomos Quentes em Cromato de Zinco", Tese de Mestrado, UNICAMP, 1978.
- 10 M.F.R.DA ROCHA, "Análise do Cromo-51 em Cromatos", Tese de Doutoramento, UNICAMP, 1979.
- 11 Table of Isotopes Editado por C.M. Lederer e V.S. Shirley, John Wiley & Sons, Inc., $7^{\frac{a}{2}}$ ed., 1978.
- 12 J. PIJCK, "Radiochemistry of Chromium", Nuclear Science Series, NAS-NS-3007 USAEC, 1964.
- 13 E.M. PUCH e G.W. WINSLOW, "The Analysis of Physical Measurements", Addison-Wesley Publishing Co., 1966.
- 14 R.E. ACKERHALT e K.E. COLLINS, trabalho não publicado.

CAPITULO IV

RESULTADOS E DISCUSSÃO

- 1. Apresentação dos resultados.
- 2. Discussão.

CAPITULO IV

RESULTADOS E DISCUSSÃO

O comportamento dos cristais de K₂CrO₄ dopados com ⁵¹Cr, submetidos e alguns agentes físicos, conjugados ou não, foram estudados e os resultados obtidos serão apresentados e discutidos em seguida. Antes porêm, pretende-se tecer algumas considerações, julgadas relevantes, sobre o assunto a ser apresentado.

Basicamente foram utilizados apenas três métodos de dopagem (vide cap. III) mas, devido ao grande número de resultados e ao fato de que
o método de dopagem, por si so, altera a distribuição das espécies de cromo marcadas com ⁵¹Cr, resolveu-se agrupar os dados colhidos em conjunto, de modo a facilitar a compreensão do trabalho experimental.

É necessário esclarecer ainda, que, devido à extensão e complexidade do assunto, houve necessidade de se limitar o conteúdo do trabalho experimental, de modo que, somente as amostras dopadas por coprecipitação a 0°C e as dopadas por cocristalização a partir de uma solução saturada de K₂CrO₄ em agua a 70°C tiveram todo o programa de experiências realizado. As experiências com amostras dopadas por evaporação do solvente (dopagem superficial) foram preteridas porque as curvas Rendimento vx -log Dose obtidas, de início traram-se pouco sensíveis à radiação, enquanto que as amostras dopadas por cocristalização a partir de uma solução saturada de K_2CrO_4 a $70^{\circ}C$ tiveram pre ferência sobre as dopadas por cocristalização a 100°C porque observou-se que, quanto menor a temperatura inicial da solução de dopagem, maior era a quanti dade de Cr(III)M incorporada ao cristal. Entretanto, por serem importantes muitos dos resultados obtidos com estas amostras, resolvem-se incorporá-los na apresentação e discussão deste trabalho de tese. Além disso, devido a vários fatores limitantes, algumas experiências, muitas delas secundárias, foram deixadas para ocasiões posteriores.

Todos os resultados a serem apresentados foram colhidos a partir das análises de amostras de cerca de 55 mg de sólido, seladas sob ar e dissolvidas em 7,00 ml de uma solução de dissolução constituída por $\rm HC1O_4$ 0,05M e $\rm Cr_n(III)$ total 0,005M, usado como carregador. O pH da solução final (antes de ser injetada na doluna), em cada caso, era de 2,3±0,1 unidades.

Os resultados analíticos serão apresentados sob a forma de gráficos, agrupados em conjuntos, de acordo com as experiências realizadas. A descrição resumida de cada gráfico será apresentada em uma sequência, suposta como a mais adequada pelo autor. O leitor que se interessar poderá encontrar os dados utilizados no traçado de cada curva, sob a forma de tabelas, no apêndice II. A numeração das tabelas segue a mesma ordem daquela apresentada nas figuras que contém os gráficos.

1. Apresentação dos resultados.

As amostras dopadas por cocristalização a partir de uma solução saturada de ${\rm K_2Cr0_4}$ a T = $100^{\rm O}$ C foram irradiadas com doses logarítmicas a $0^{\rm O}$ C, e estocadas na mesma temperatura. Um conjunto destas amostras foi analisado sem ter sido submetido a qualquer aquecimento posterior à irradiação, enquanto que outro foi analisado logo após a um período de ativação térmica ($150^{\rm O}$ C por uma hora).

As amostras não ativadas termicamente (fig. IV.1) exibem predominantemente a transformação química D \rightarrow VI, mas as contribuições M \rightarrow VI e P \rightarrow VI também ocorrem, apesar de modestas. Quando ativadas pelo calor (fig.IV.2) nota-se que D \rightarrow VI e P \rightarrow VI são os processos mais importantes, parecendo ser D \rightarrow VI o que mais contribui na formação de Cr(VI), principalmente quando a dose recebida é maior que 3.0×10^{-3} MRad. Entre 10^{-4} e 10^{-3} MRad a produção de VI

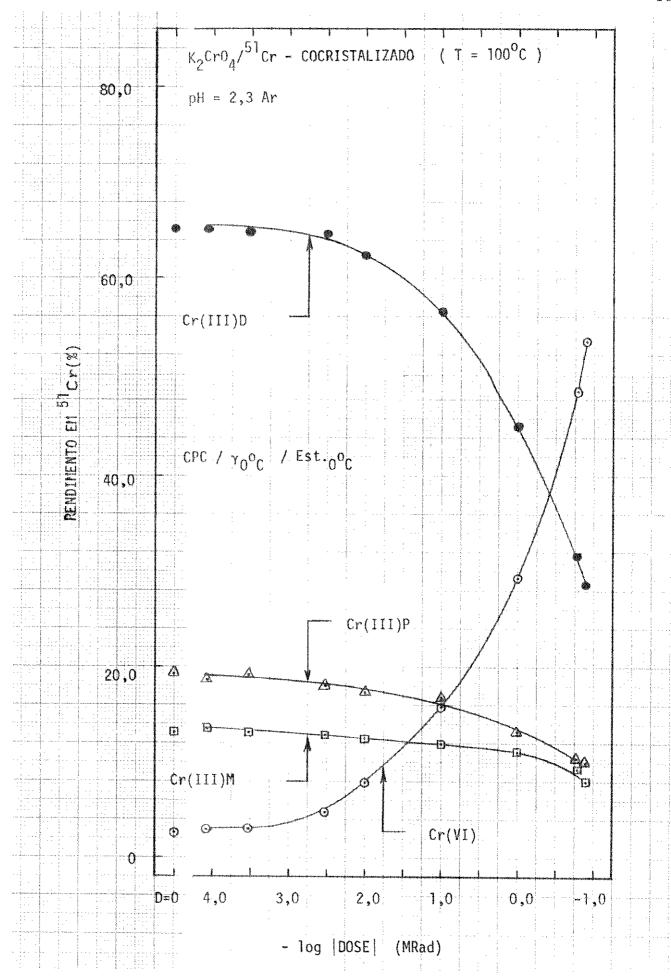


Figura IV.1 – Ação da radiação γ sobre cristais de $\rm K_2CrO_4$ dopados com $\rm ^{51}Cr$ – CPC(100°C)/ $\rm ^{7}0^{\circ}C$.

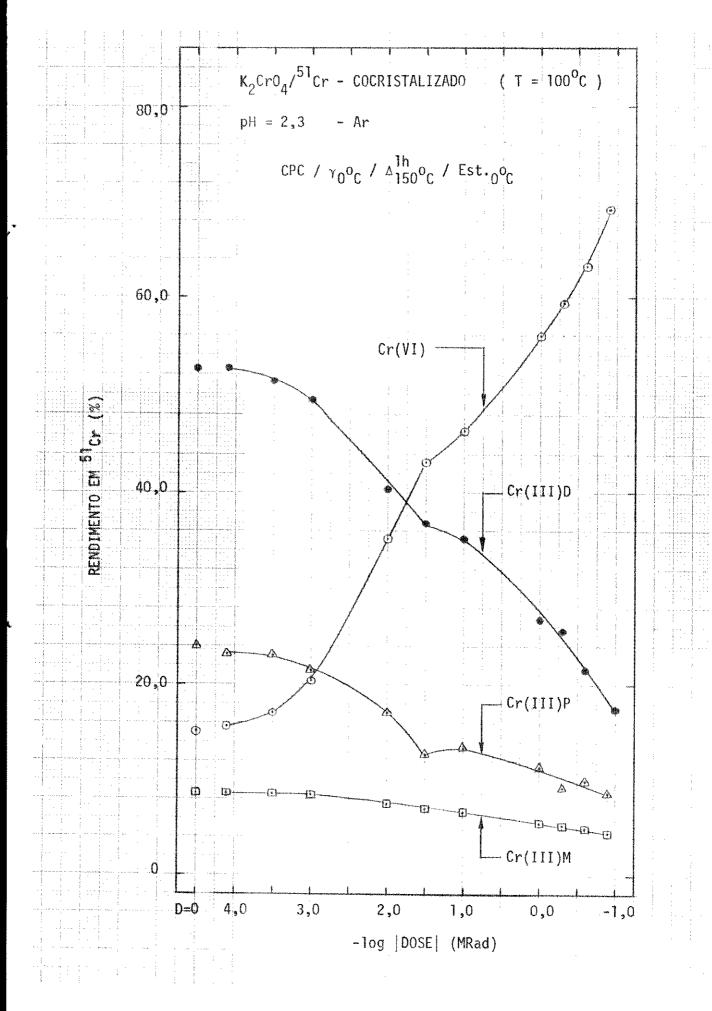


Figura IV.2 – Ação da radiação γ sobre cristais de K₂CrO₄ dopa dos com 51 Cr – CPC(100°C)/ γ_0 O_C/ Δ_{150}^{1h} O_C.

ocorre somente via Cr(III)D e Cr(III)P (Cr(III)M ~ constante). Observa-se em Dose = 3,0x10⁻² MRad um ponto de inflexão nas curvas que descrevem o comportamen to das frações VI, D e P frente à dose recebida, mas M não mostra tal inflexão. Levantou-se a hipótese da existência de uma contribuição do fator de taxa de dose ("dose rate") neste interessante fenômeno, mas não se pode atribuir somente a este fator o comportamento exibido por estas curvas, por várias razões, algumas delas mencionadas no cap. III. Também, de um modo geral, parece que o aquecimento induz o aumento da contribuição do processo P → VI.

Os cristais dopados por cocristalização a partir de uma solução saturada de $K_2\text{CrO}_4$ a T = 70°C mostraram um comportamento diferente, quando submetidos aos mesmos tratamentos físicos, porque houve alterações na distribuição das espécies Cr(VI), Cr(III)M, Cr(III)D e Cr(III)P marcadas com Cr(Fig. IV.3). Os cristais analisados apos a irradiação γ a 0°C mostraram M \rightarrow VI e D \rightarrow VI como transformações predominantes sendo que, para Dose $> 3,0 \times 10^{-3}$ MRad, uma pequena contribuição da fração polímero, P \rightarrow VI, $\tilde{\text{e}}$ também observada.

Se as amostras irradiadas forem aquecidas a 150°C por 1 hg ra (fig. IV.4), nota-se um comportamento parecido com aquele exibido pelo sólido dopado a partir de T = 100°C . Observa-se uma variação bem mais suave na tam gente das curvas de Cr(VI) e Cr(III)M, ao invés do ponto de inflexão, mas, ainda assim, os resultados concordam com as conclusões tiradas no cap. III. Esta é ou tra razão pela qual não se pode atribuir a existência da inflexão exclusivamente ao efeito da taxa de dose. Sem dúvida, a produção de Cr(VI) neste caso é devida aos processos M \rightarrow VI, D \rightarrow VI e P \rightarrow VI, sendo a contribuição de D \rightarrow VI a mais acentuada em todo o intervalo de dose. A partir de 3,0x10 $^{-3}$ MRad as frações dímero e polímero aumentam sensivelmente suas contribuições no processo de forma ção de Cr(VI).

A ativação térmica do sólido dopado a 282°C por 1 hora (fig. IV.5) mostra que o calor induz a formação de Cr(VI) às expensas de Cr(III)M, Cr(III)D e Cr(III)P, de um modo quase total. A forma da curva de Cr(VI) possui uma correspondência muito pronunciada com as curvas de Cr(III)D e Cr(III)P, possivelmente indicando que o rendimento de Cr(VI) tenha muito a ver com as frações D e P, jã que M e constante.

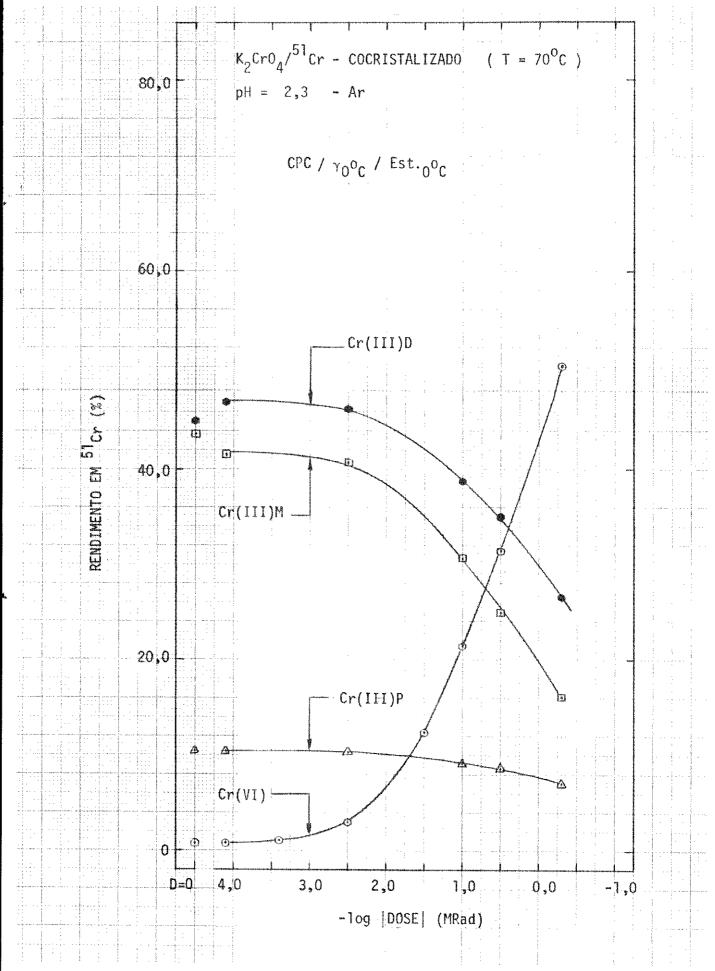


Figura IV.3 – Ação da radiação γ sobre cristais de K₂CrO₄ dopa dos com 51 Cr – CPC(70°C)/ γ_0 O_C.

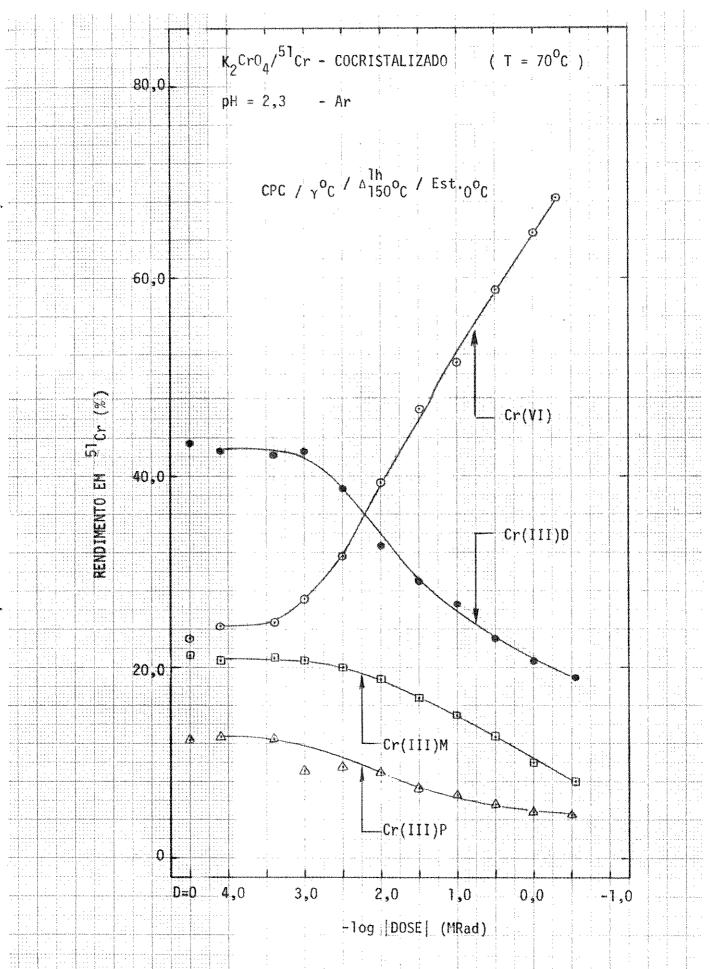


Figura IV.4 – Ação da radiação γ sobre cristais de K_2CrO_4 dopados com ^{51}Cr – $CPC(70^{O}C)/\gamma_0$ ^{O}C $^{1h}_{150^{O}C}$.

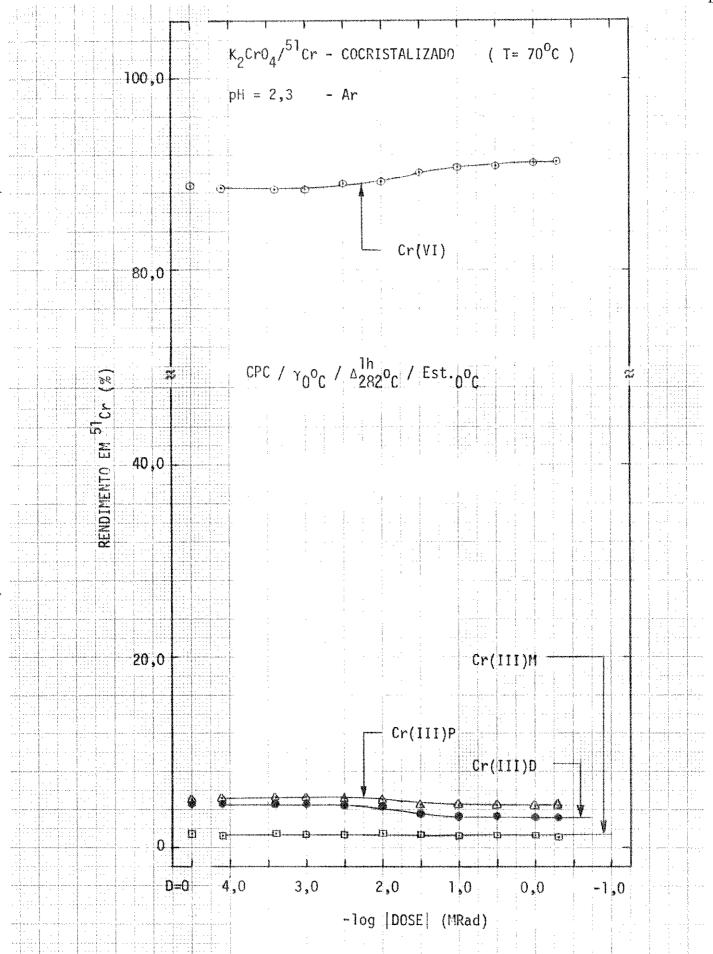


Figura IV.5 – Ação da radiação sobre cristais de $\rm K_2CrO_4$ dopados com $\rm ^{51}Cr$ – $\rm CPC(70^{O}C)/\gamma_0^{O}C/\Delta_{282}^{1h}C_{C}$.

Quando o método de dopagem é totalmente modificado, nota-se que o comportamento das curvas de recozimento por irradiação é também modificado drasticamente. Este fato pode ser bem observado ao se analisar o comportamento das curvas obtidas quando da análise das amostras dopadas por coprecipitação e irradiadas com fótons γ a 0° C (fig. IV.6). Indiscutivelmente todas as espécies marcadas com 51 Cr são geradas a partir da espécie Cr(III)M, ou seja, M \rightarrow VI, M \rightarrow D e M \rightarrow P. O processo de formação de polímeros contribui muito pouco no processo global.

Ao serem aquecidos a 150° C por 1 hora (fig. IV.7), estes cristais mostraram um comportamento um pouco diferente do anterior. Praticamente a unica transformação química observada é M \rightarrow VI.

Como nos casos analisados até aqui, após a ativação dos cristais dopados a 282ºC por 1 hora (fig. IV.8), observa-se a diminuição do rendimento do Cr(III) monômero, dímero e polímero em favor do Cr(VI). Todas estas espécies contendo ⁵¹Cr parecem possuir pouca ou nenhuma sensibilidade com respei to a dose y recebida, em todo o intervalo de dose estudado.

As amostras dopadas por evaporação do solvente (dopagens superficiais) a $T = 0^{\circ}$ C mostraram uma sensibilidade muito menor à radiação γ (fig. IV.9). As curvas que descrevem o comportamento das espécies marcadas com 51 Cr não indicam qualquer variação do rendimento em 51 Cr com a dose recebida, até 10^{-1} MRad. Acima deste valor de dose observam-se as transformações M \rightarrow D e M \rightarrow VI, esta última em menor escala. Cr(III)P apresenta-se essencialmente constante em todo o intervalo de dose.

Quando o sólido assim dopado é aquecido a 150° C por uma hora (fig. IV.10), nota-se mudanças muito pequenas com respeito às formas das curvas, mas os rendimentos em Cr(VI), Cr(III)D e Cr(III)P aumentaram sensivelmente, logicamente em detrimento ao rendimento da fração Cr(III)M. Como no caso das amostras não ativadas termicamente, acima de 10^{-1} MRad tem-se M \rightarrow D, mas a fração Cr(VI) permanece constante em todo o intervalo de dose.

O aquecimento dos cristais dopados superficialmente em 282°C por 1 hora (fig. IV.11) mostrou variações quantitativas nos rendimentos de

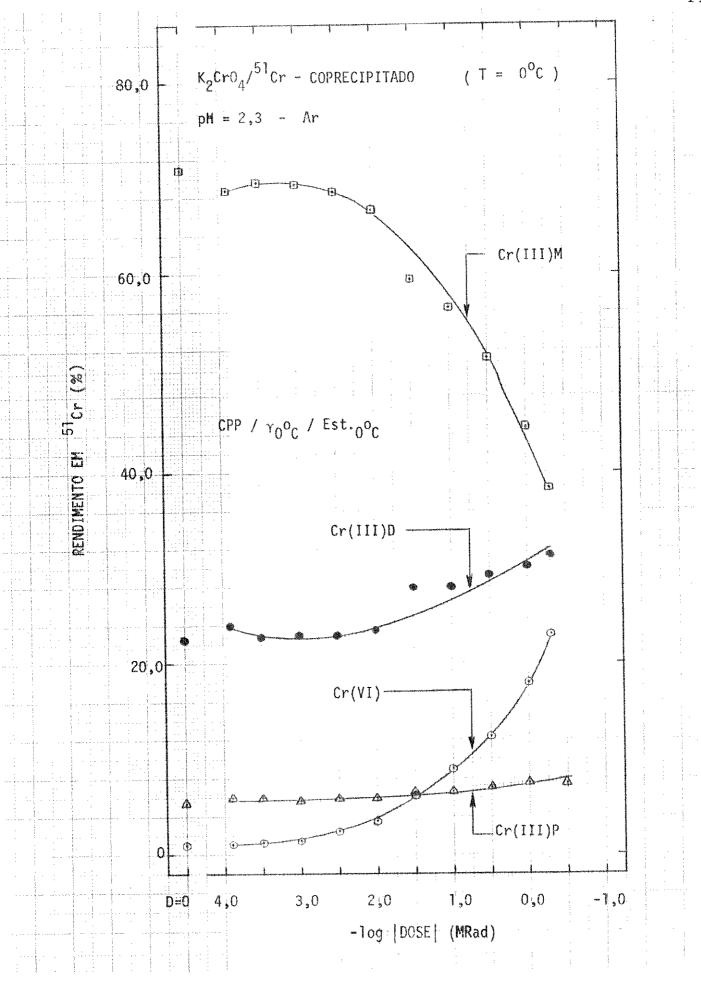


Figura IV.6 – Ação da radiação γ sobre cristais de ${\rm K_2CrO_4}$ dopados com $^{51}{\rm Cr}$ – CPP/ ${\gamma_0}{\rm o_C}$.

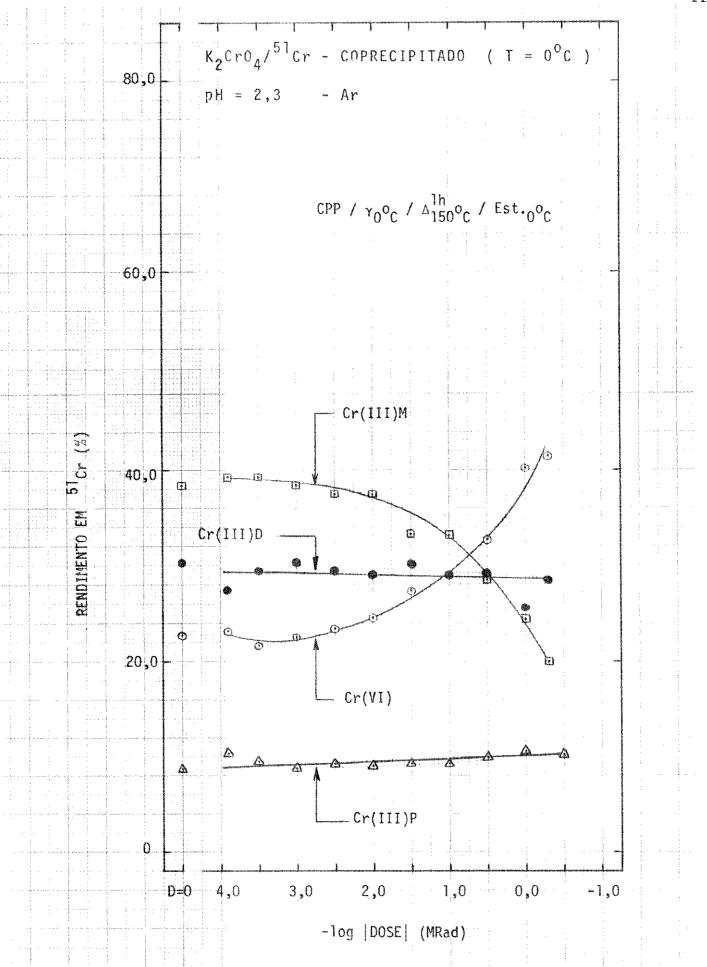


Figura IV.7 – Ação da radiação γ sobre cristais dopados com $^{51}{\rm Cr}$ $^{\rm CFP/\gamma}{}_0{}^{\rm o}{}_{\rm C}/^{\Delta}{}_{150}{}^{\rm o}{}_{\rm C}.$

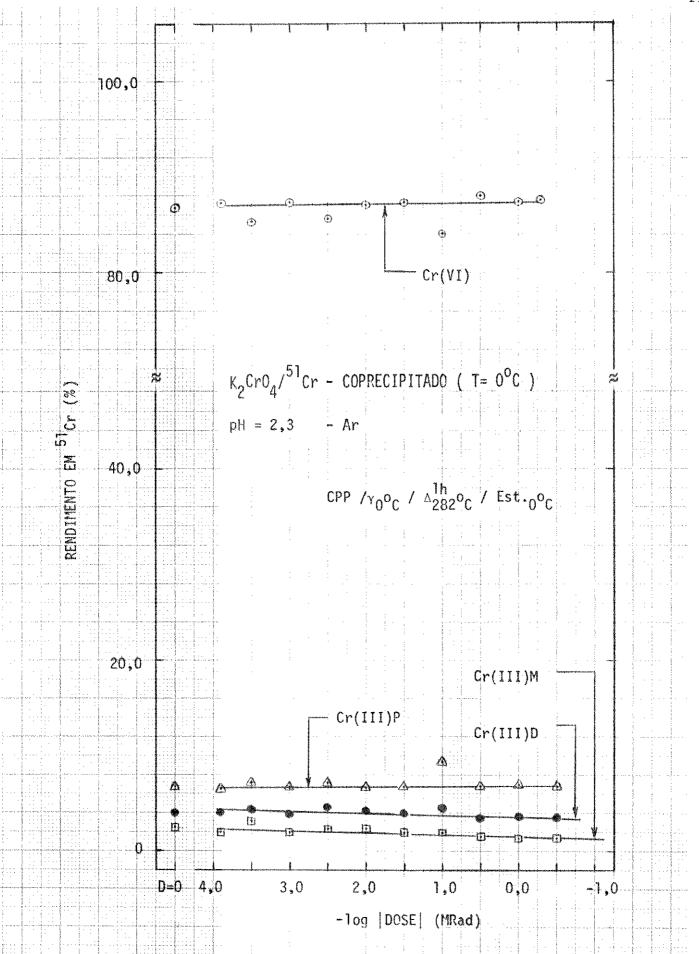


Figura IV.8 – Ação da radiação γ sobre cristais de K_2CrO_4 dopados com $^{51}{\rm Cr}$ – CPP/ $\gamma_0{\rm o}_{\rm C}/\Lambda_{282}^{\rm lh}{\rm o}_{\rm C}$

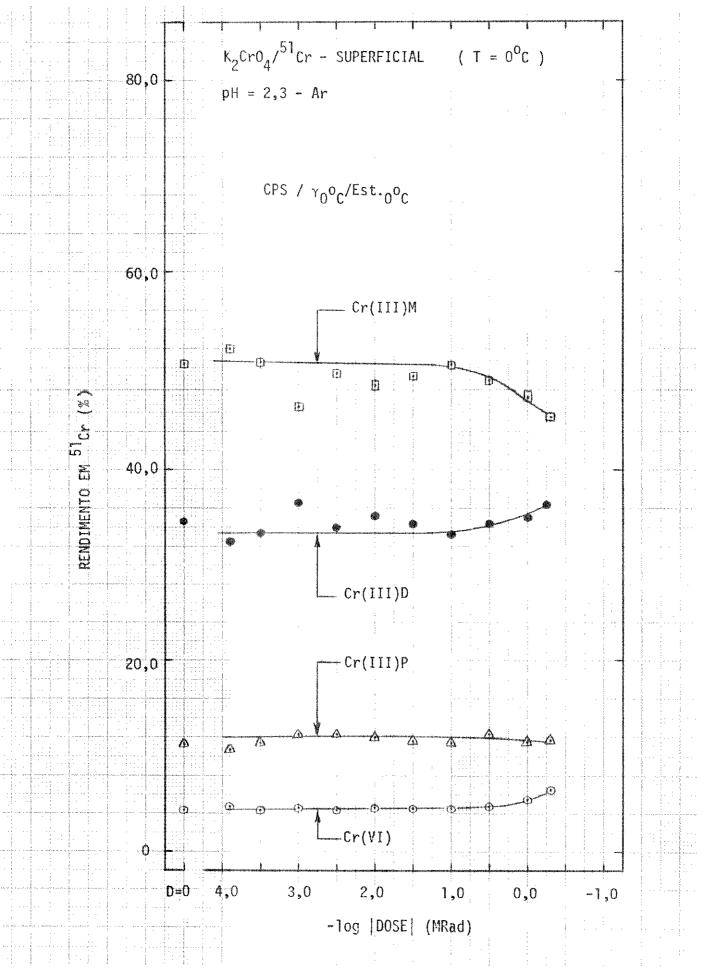


Figura IV.9 – Ação da radiação γ sobre cristais de $\rm K_2CrO_4$ dopados com $\rm ^{51}Cr$ – CPS/ $\rm \gamma_0o_C$

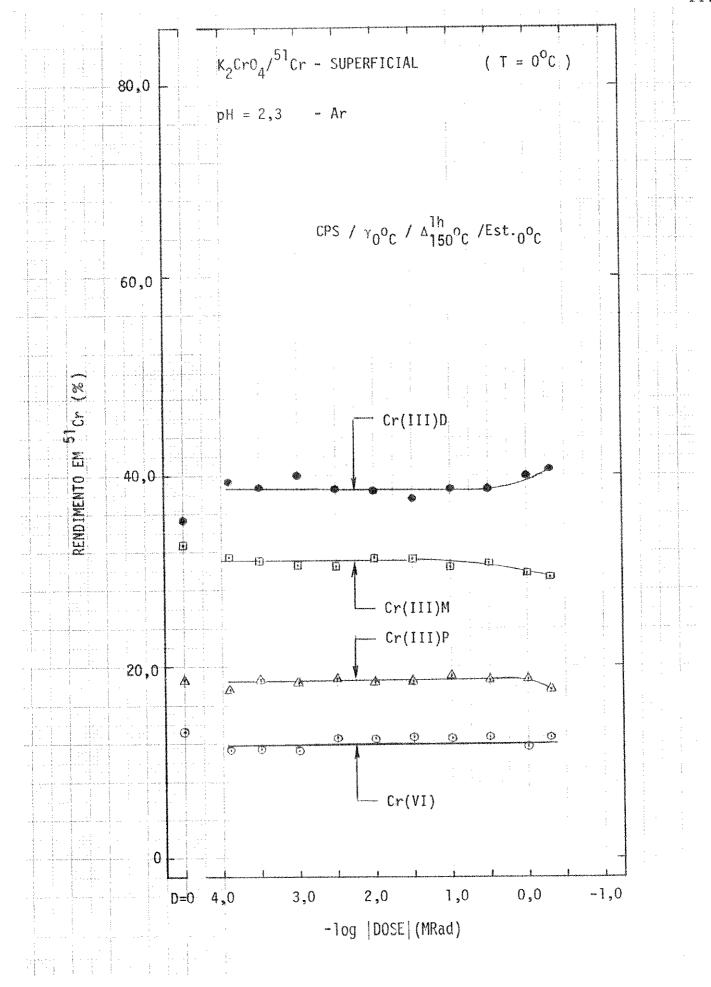


Figura IV.10 – Ação da radiação γ sobre cristais de K_2CrO_4 dopados com $^{51}{\rm Cr}$ – CPS/ γ_0 O_C/ $^{1h}_{150}$ O_C

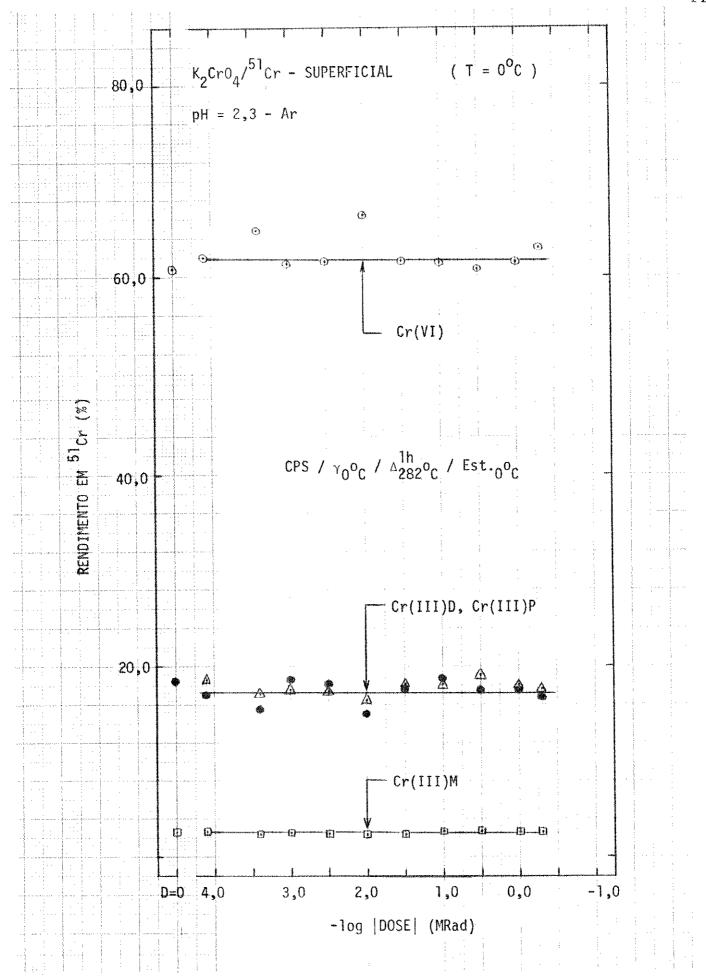


Figura IV.11 – Ação da radiação y sobre cristais de $\rm K_2CrO_4$ dopados com $\rm ^{51}Cr$ – CPS/ $\rm \gamma_0o_C/\Delta_{282}^{lh}o_C$

cada espécie marcada mas nota-se também aqui a insensibilidade das espécies con tendo 51 Cr frente a dose recebida. O rendimento da fração polimérica foi pouco afetada pelo aquecimento, em relação às amostras aquecidas a T = 150° C.

A influência da temperatura de irradiação na produção e na distribuição das várias espécies de cromo marcadas com ⁵¹Cr foi estudada usando-se os sólidos dopados por cocristalização (T = 70°C) e por coprecipitação (T=0°C) no intervalo de temperatura entre -196°C e +153°C. Este estudo é relevante ao se pretender sugerir qualquer mecanismo de reação para estes sistemas químicos dopados.

Quando dopado por cocristalização, o K2CrO, apresenta, baixas temperaturas (T = -196° C; T = -78° C - figs. IV.12 e IV.13), um unico processo de produção de Cr(VI), qual seja, M - VI. As frações M e P mostram-se pra ticamente constantes com as doses recebidas nestas temperaturas, inclusive no que diz respeito aos valores encontrados para o rendimento destas espécies (variação muito pequena com a temperatura). O rendimento da fração VI aumenta pouco em função do decrescimo do rendimento de Cr(III)M. Para temperaturas de irradiação maiores (no caso, T > 0°C), o comportamento das curvas em função da dose recebida (figs. IV.14, IV.15, IV.16) é notadamente alterado. Em T = 0°C (fig. IV.14) a fração polímero quase não se modifica com a dose, mesmo em termos do rendimento observado para as curvas obtidas em T < 0°C, mas o aumento do rendimento do Cr(VI) em função da dose recebida passa agora a ser uma função do decrescimo da quantidade das especies monoméricas e dimericas, ou seja, o cromo-VI e formado através das transformações M → VI e D → VI. Observou-se que para cristais dopados por cocristalização estas são as transformações químicas maior importância quando o solido é irradiado em T > 0°C, pelo menos no interva-10 de temperatura estudado (0 < T < 153° C). Em T = 78° C e T = 153° C observou-se também, além dos processos M → VI e D → VI, uma pequena contribuição P → VI, especialmente entre 0 e 4.0×10^{-1} MRad. Quando irradiadas em T = 153° C (fig. IV.16) as amostras cocristalizadas mostram um deslocamento muito grande no em Cr(VI) para o ponto 0 MRad (R = 2,7% em T = 78° C e R = 20,5% em T = 153° C) , possivelmente devido a fatores termicos. Surpreendentemente, no entanto, os demais pontos não apresentaram rendimentos alterados com a mesma intensidade (fig.

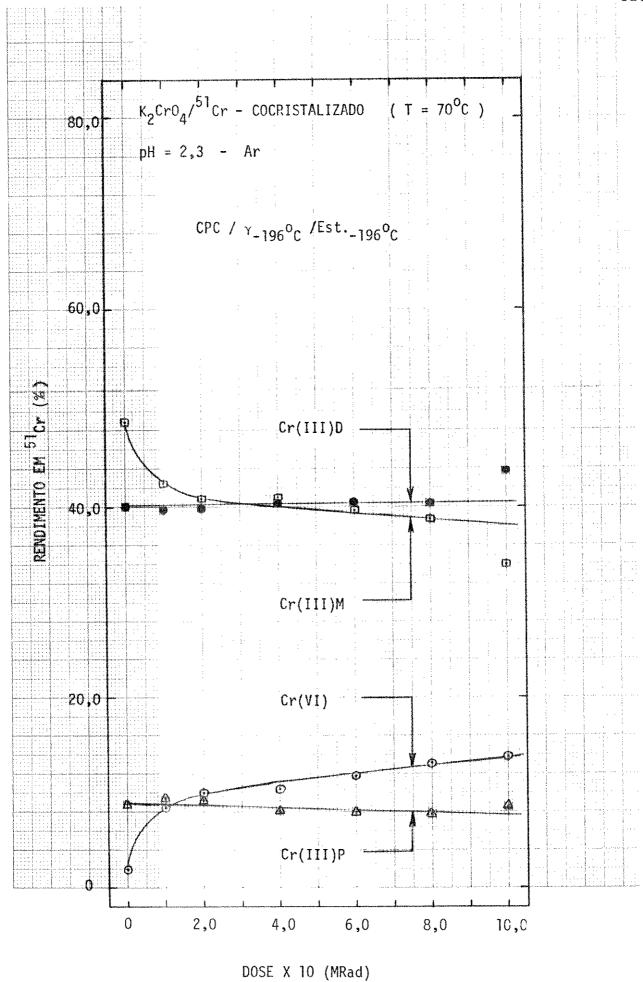


Figura IV.12 - Efeito conjugado do calor e radiação γ sobre cristais de ${\rm K_2CrO_4}$ dopados com ${\rm ^{51}Cr}$ - CPC(70°C)/ $\gamma_{-196}{\rm ^{o}C}$

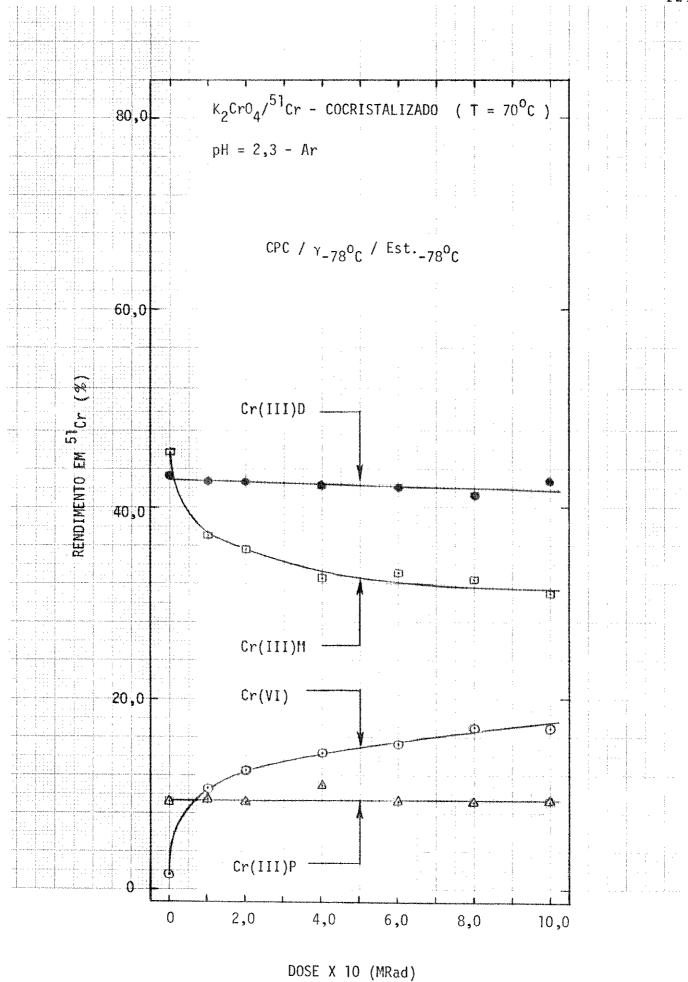
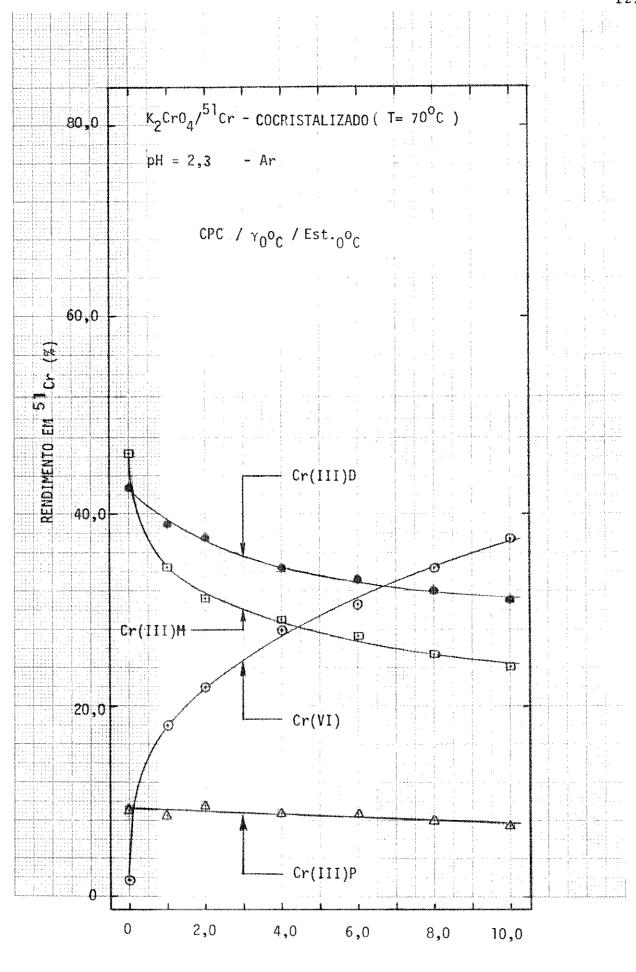



Figura IV.13 - Efeito conjugado do calor e radiação γ sobre cristais de K₂CrO₄ dopados com 51 Cr - CPC(70°C)/ γ_{-78} °C

DOSE X 10 (MRad)

Figura IV.14 - Efeito conjugado do calor e radiação γ sobre cristais de K₂CrO₄ dopados com 51 Cr - CPC(70°C)/ γ_0 °C

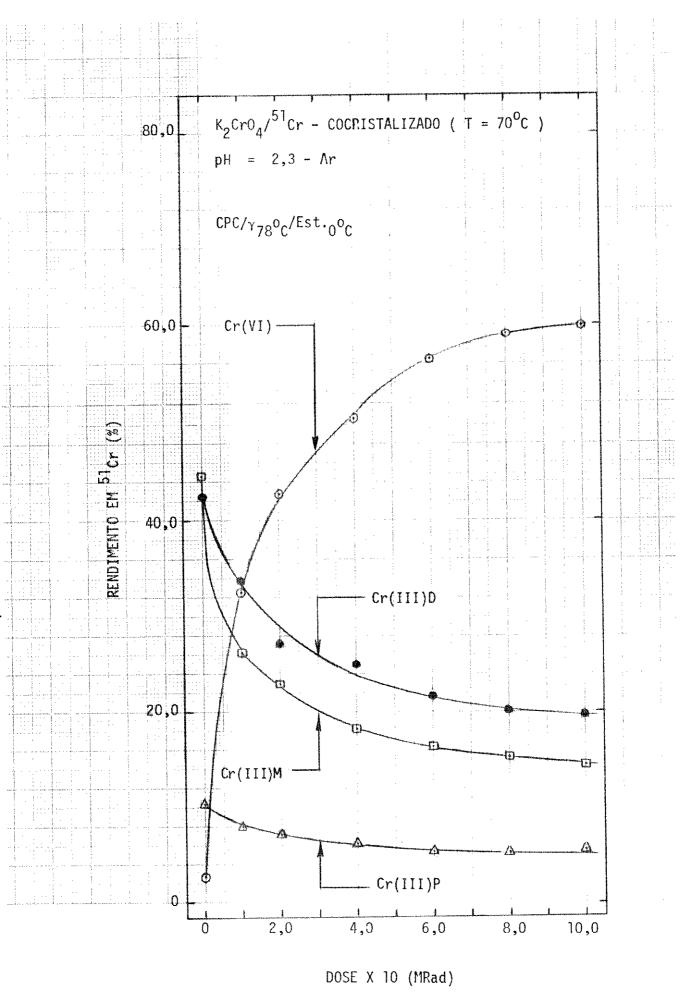


Figura IV.15 — Efeito conjugado do calor e radiação γ sobre cristais de K $_2$ CrO $_4$ dopados com 51 Cr — CPC(70 $^{\circ}$ C)/ $\gamma_{+7\hat{6}}$ $^{\circ}$ C

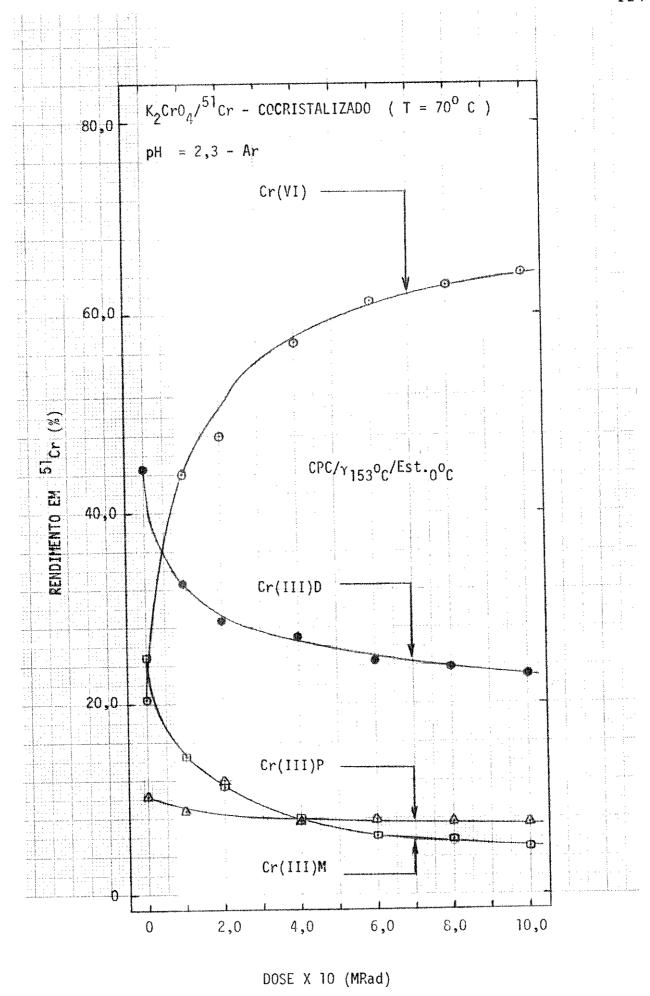


Figura IV.16 - Efeito conjugado do calor e radiação γ sobre cristais de ${\rm K_2CrO_4}$ dopados com $^{51}{\rm Cr}$ - CPC(70 $^{\rm O}{\rm C}$)/ $\gamma_{+153}{}^{\rm O}{\rm C}$

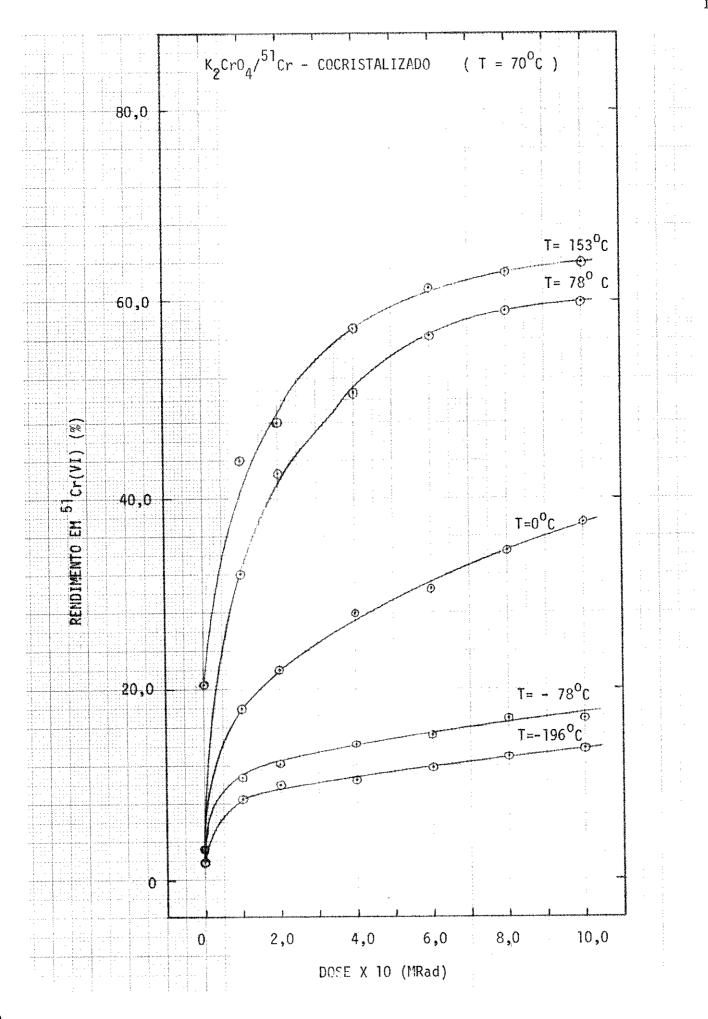


Figura IV.17 - Comportamento das curvas de formação de 51 Cr(VI) quando da irradiação, em várias temperaturas, de cristais de ${\rm K_2CrO_4}$ dopados com 51 Cr(III) por cocristalização.

IV.17), significando talvez a aproximação de um ponto de saturação ou a presença sensível de fatores térmicos no processo de ativação γ . Observando-se a fig. IV.17 nota-se que a maior diferença nos rendimentos do Cr(VI) foram observados entre 0° C e -78° C e 0° C e $+78^{\circ}$ C.

O solido dopado por coprecipitação a 0° C exibiu um comportamento totalmente diferente daquele apresentado pelos cristais dopados por cocristalização (T = 70° C), a começar pelos valores dos rendimentos (bem menores) encontrados para o Cr(VI) nas varias temperaturas de irradiação.

Quando as amostras deste solido são irradiadas na temperatura do nitrogênio líquido (T = -196°C), nota-se a formação de Cr(VI) e de Cr(III)D a partir do Cr(III)M (i.e., $M \rightarrow VI$; $M \rightarrow D$) no intervalo 0 < DOSE < $4,0x10^{-1}$ MRad (fig. IV.18). Acima de $4,0x10^{-1}$ MRad observa-se apenas o processo $M \rightarrow VI$, mas em uma escala muito pequena. Estes processos $(M \rightarrow VI \ e \ M \rightarrow D$ 4,0x10⁻⁴ MRad e M → VI acima desta dose) são observados em todo o intervalo de temperatura entre -196°C e 78°C, respeitadas logicamente as variações nos rendimentos das espécies (figs. IV.18, IV.19, IV.20 e IV.21), que são bem sensíveis para as frações Cr(VI) e Cr(III)M, porque a contribuição da reação M → VI na-se cada vez mais acentuada com o aumento da temperatura. Entre -196°C≤T≤78°C nota-se também que as variações dos rendimentos para Cr(III)D são pequenas e que a forma da curva desta espécie não se modifica sensivelmente em todo o intervalo de temperatura considerado.

Em T = 78° C (fig. IV.21), o processo D \rightarrow P começa a se manifestar. Este processo pode ser claramente observado em T = 153° C (fig. IV.22), onde as curvas das frações dímero e polímero apresentam-se alteradas em relação às curvas observadas em temperaturas menores. Em T = 153° C, além das reações D \rightarrow P, tem-se presente o processo principal M \rightarrow VI, como em todas as outras temperaturas estudadas (fig. IV.22). A fração P apresentou-se como uma reta em todo o intervalo de dose estudado, mas a sua inclinação aumenta com a temperatura de irradiação. Os rendimentos relativos ao Cr(VI) em função da dose, para cada temperatura, é mostrada em conjunto na fig. IV.23.

Como em geral as transformações mais drásticas foram observadas para os valores de doses mais baixos, resolveu-se estudar também o com-

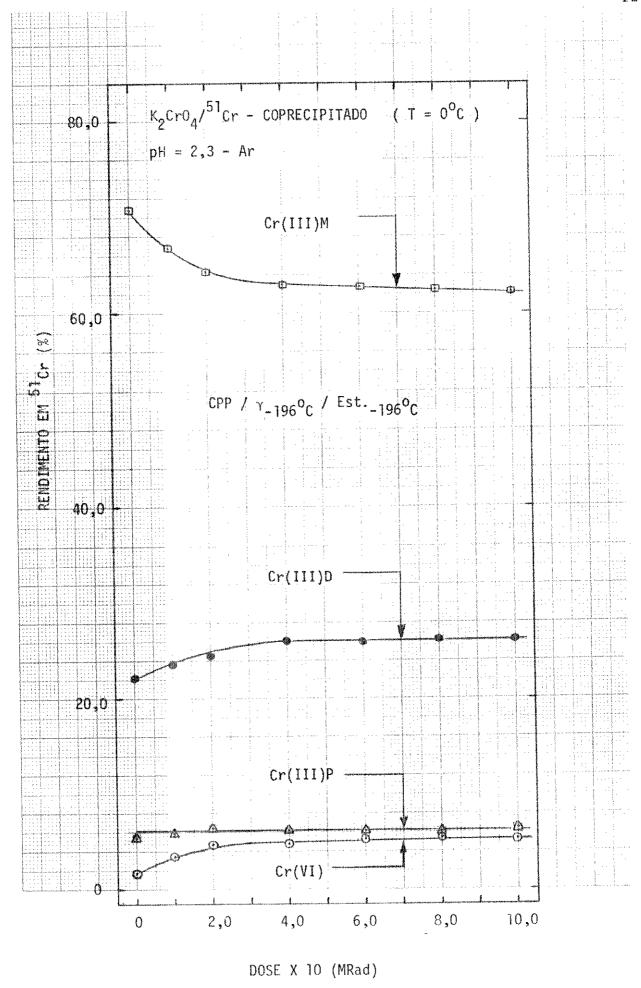


Figura IV.18 - Efeito conjugado do calor e radiação γ sobre cristais de K₂CrO₄ dopados com 51 Cr - CPP/ γ_{-196} O_C

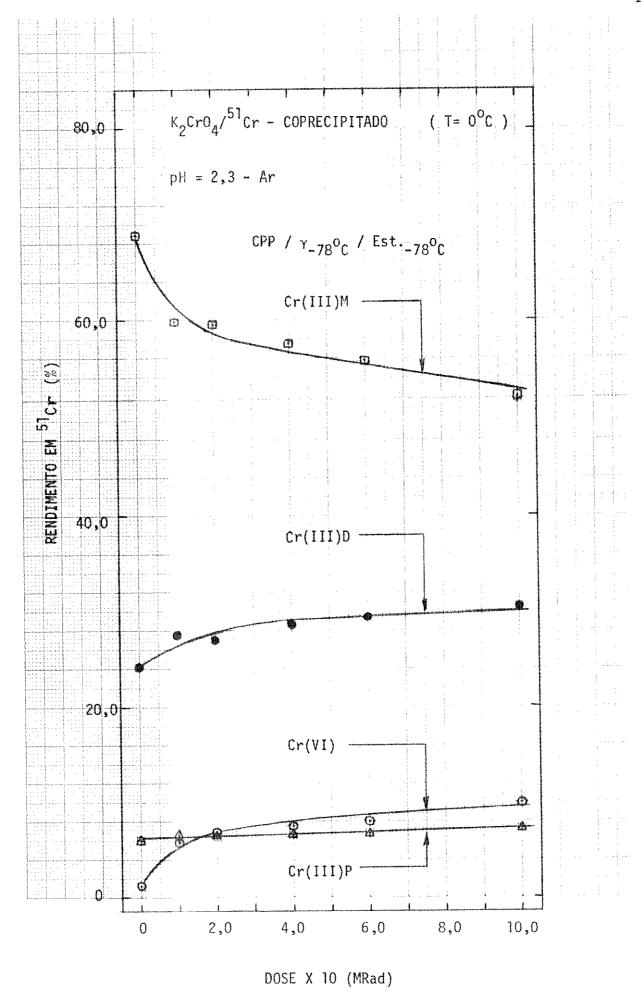


Figura IV.19 - Efeito conjugado do calor e radiação γ sobre cristais de K_2CrO_4 dopados com $^{51}{\rm Cr}$ - CPP/ $\gamma_{-78}{\rm ^{O}C}$

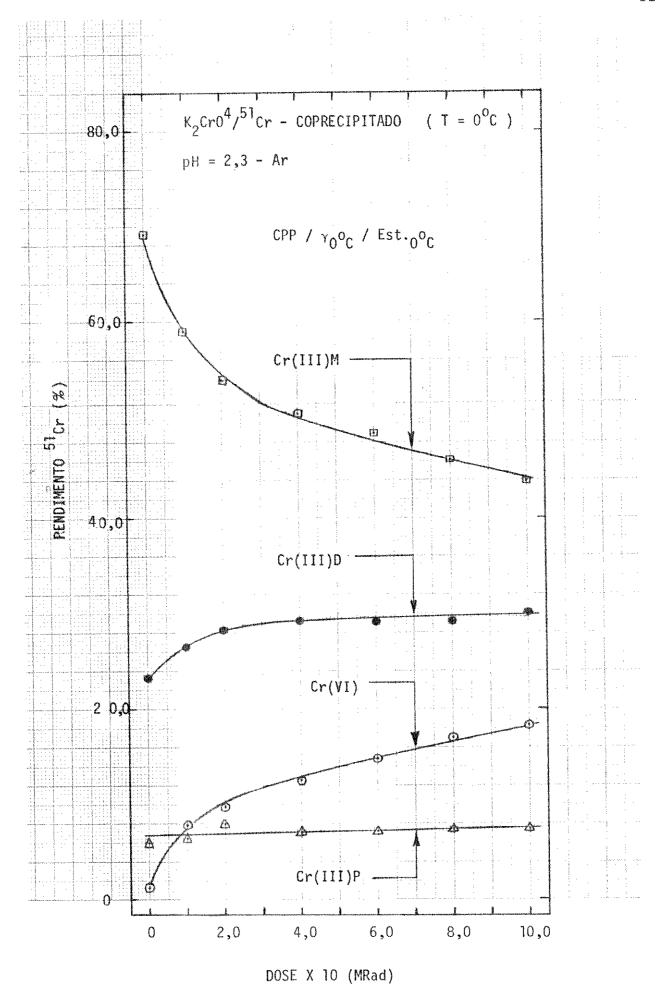


Figura IV.20 - Efeito conjugado do calor e radiação γ sobre cristais de $\rm K_2CrO_4$ dopados com $\rm ^{51}Cr$ - CPP/ $\rm ^{7}O_{C}$

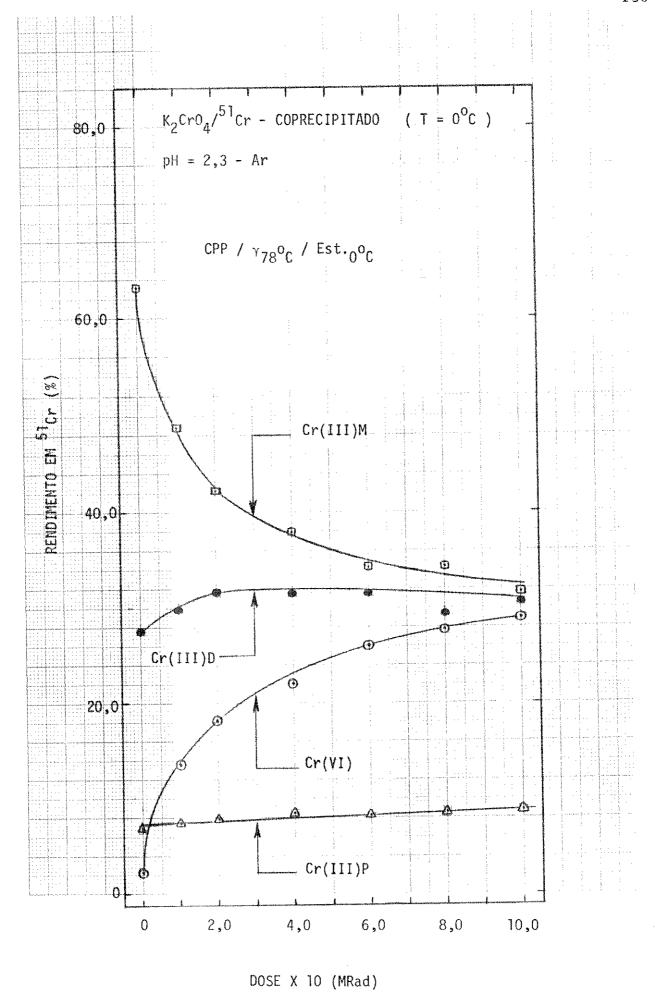


Figura IV.21 — Efeito conjugado do calor e radiação γ sobre cristais de K2CrO4 dopados com 51 Cr — CPP/ γ_{+73} OC

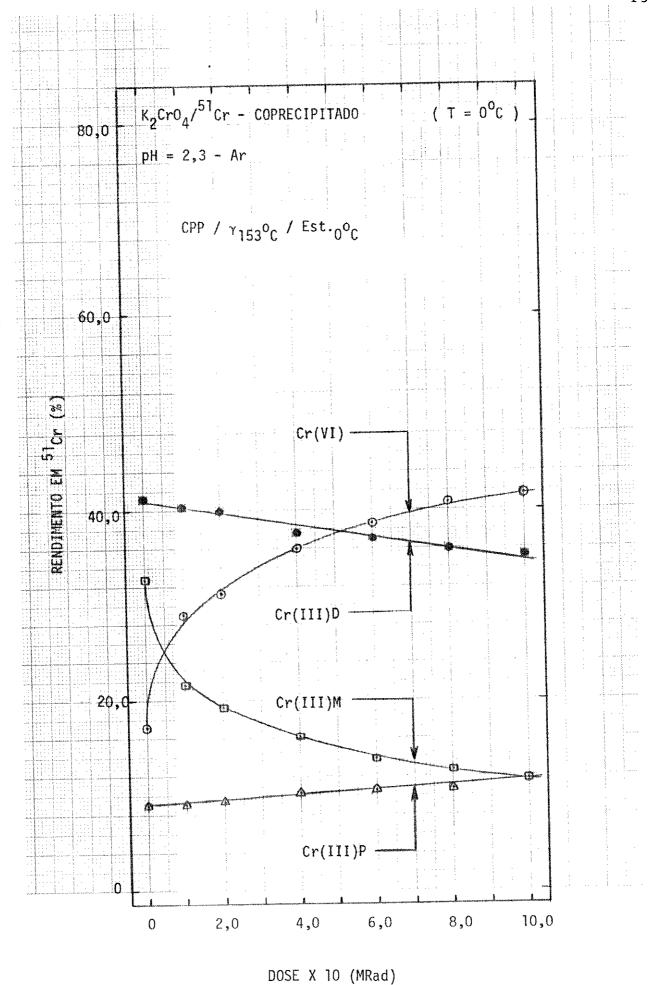


Figura IV.22 - Efeito conjugado do calor e radiação γ sobre cristais de ${\rm K_2CrO_4}$ dopados com $^{51}{\rm Cr}$ - ${\rm CPP/\gamma_{+153}o_C}$

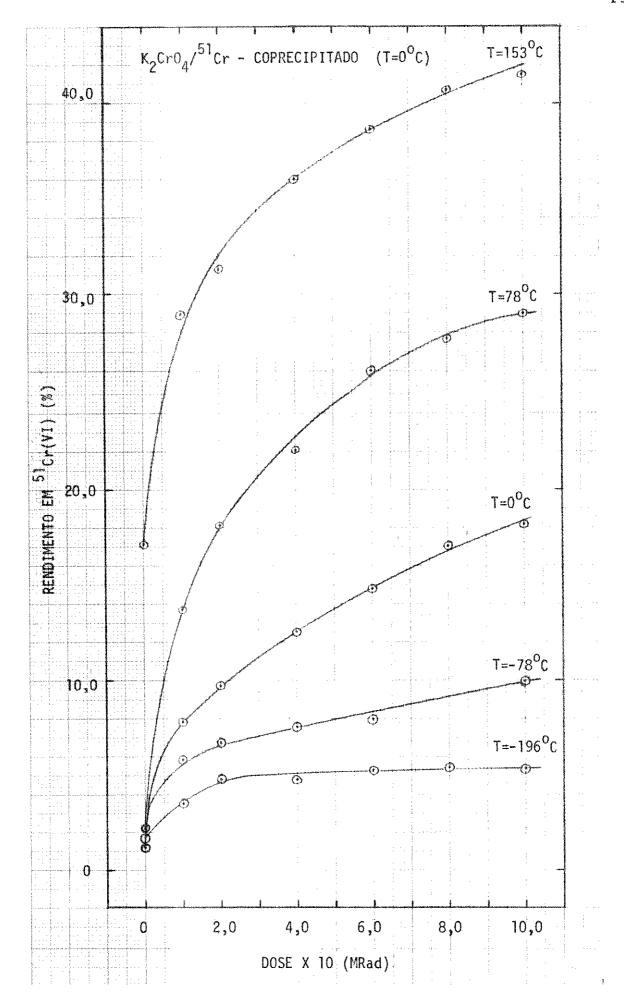


Figura IV.23 - Comportamento das curvas de formação de 51 Cr(VI) quando da irradiação, em várias temperaturas, de cristais de ${\rm K_2CrO_4}$ dopados com 51 Cr(III) por coprecipitação.

portamento das curvas relativas ao recozimento isocrônico para as amostras cocristalizadas ($T = 70^{\circ}\text{C}$) e coprecipitadas ($T = 0^{\circ}\text{C}$), após receberem em uma dose γ de 1,0x10⁻¹ MRad. A temperatura de aquecimento escolhida foi $T = 150^{\circ}\text{C}$ porque muitas amostras foram ativadas nesta temperatura e, consequentemente, tem-se um maior número de resultados para possíveis comparações.

Em ambos os casos (cristais cocristalizados e coprecipitados), as curvas mostraram-se muito similares aquelas obtidas quando amostras semelhantes foram aquecidas a T = 153° C, durante a irradiação γ (comparar as figs. IV.16 e IV.24 e as figs. IV.22 e IV.25). As amostras cocristalizadas confirmaram, por meio deste estudo, as transformações M \rightarrow VI e M \rightarrow D, se bem que neste caso as quantidades encontradas para o Cr(VI) foram um pouco menores. Os cristais dopados por coprecipitação evidenciaram também a existência de uma correspondência entre o recozimento isotérmico a 150° C e a curva de recozimento por irradiação a 153° C (figs. IV.25 e IV.22), visto que as transformações M \rightarrow VI (mais pronunciada) e D \rightarrow P (mais suave) foram observadas nos dois casos. Nota-se, de um modo geral, que as transformações químicas ocorrem mais rapidamente no intervalo de tempo $0 \le t \le 60$ min.

0 trabalho foi completado fazendo-se o recozimento isocrônico (t = 60 min) dos solidos cocristalizado (T = 70° C e coprecipitado (T= 0° C) em 0 MRad (amostras não irradiadas) e 1,0x10⁻¹ MRad.

As curvas resultantes mostram-se bastante complexas e indicaram a existência de diferentes transformações químicas em diferentes intervalos de temperatura. Curiosamente as amostras coprecipitadas não exibiram diferenças marcantes entre as curvas obtidas para as amostras irradiadas e não irradiadas (indicando, talvez, a existência de fenômenos térmicos no processo de recozimento por radiação γ), mas diferenças marcantes foram observadas para as curvas relativas ao solido dopado por cocristalização.

No sólido cocristalizado não irradiado (fig. IV.26) parece ser dominante o processo M \rightarrow D em 0° C < T < 80° C, mas Cr(III)P e Cr(VI) variam muito pouco neste intervalo de temperatura. Entre 80° C e 130° C a fração dímero continua a aumentar, mas o rendimento do Cr(VI) também aumenta neste intervalo. Possivelmente os processos envolvidos nesta região de temperatura sejam M \rightarrow VI

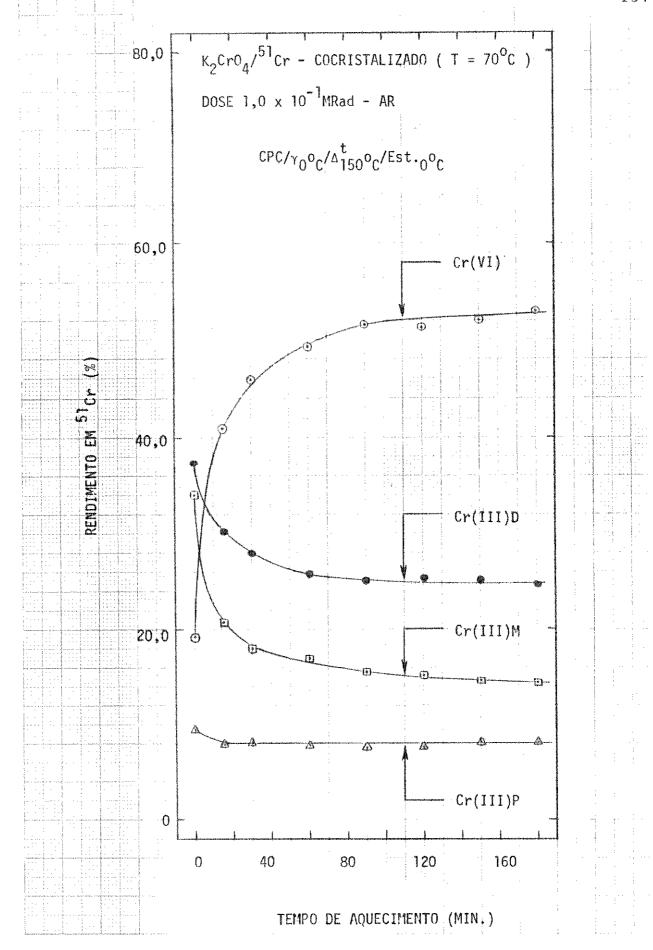


Figura IV.24 - Recozimento isotérmico de amostras de ${\rm K_2CrO_4}$ dopados com $^{51}{\rm Cr(III)}$ por cocristalização. Dose γ recebida pelos cristalis: 1,0x10⁻¹ MRad.

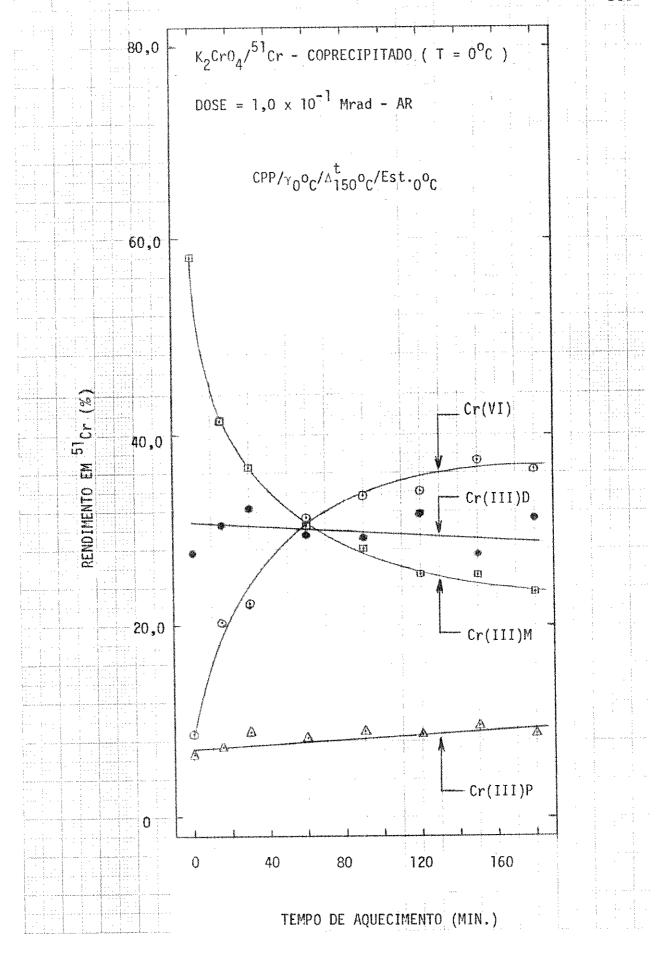


Figura IV.25 - Recozimento isotérmico de amostras de ${\rm K_2CrO_4}$ dopados com ${\rm ^{5l}Cr(III)}$ por coprecipitação. Dose γ recebida pelos cristais: 1,0x10 $^{-1}$ MRad.

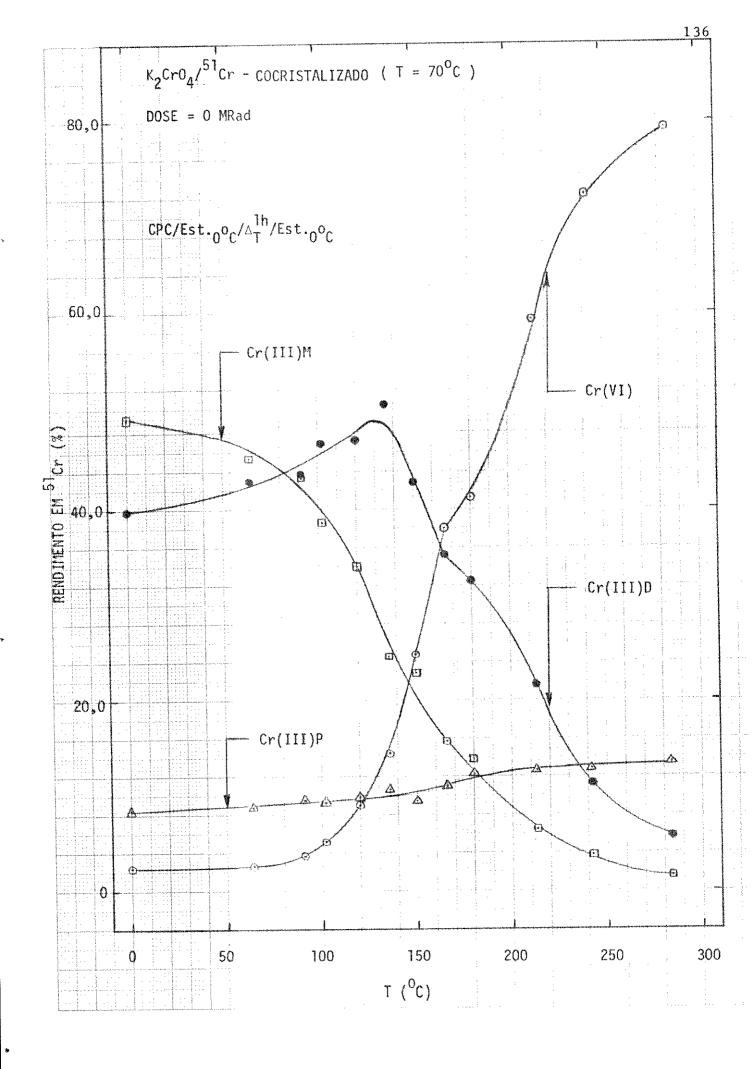


Figura IV.26 - Recozimento isocrônico de amostras de ${\rm K_2CrO_4}$ dopados com $^{51}{\rm Cr(III)}$ por cocristalização. Cristais não irradiados.

Figura IV.27 - Recozimento isocrômico de amostras de $K_2\text{CrO}_4$ dopados com $^{51}\text{Cr}(III)$ por cocristalização. Dose γ recebida pelos cristais: $1,0\text{x}10^{-1}$ MRad.

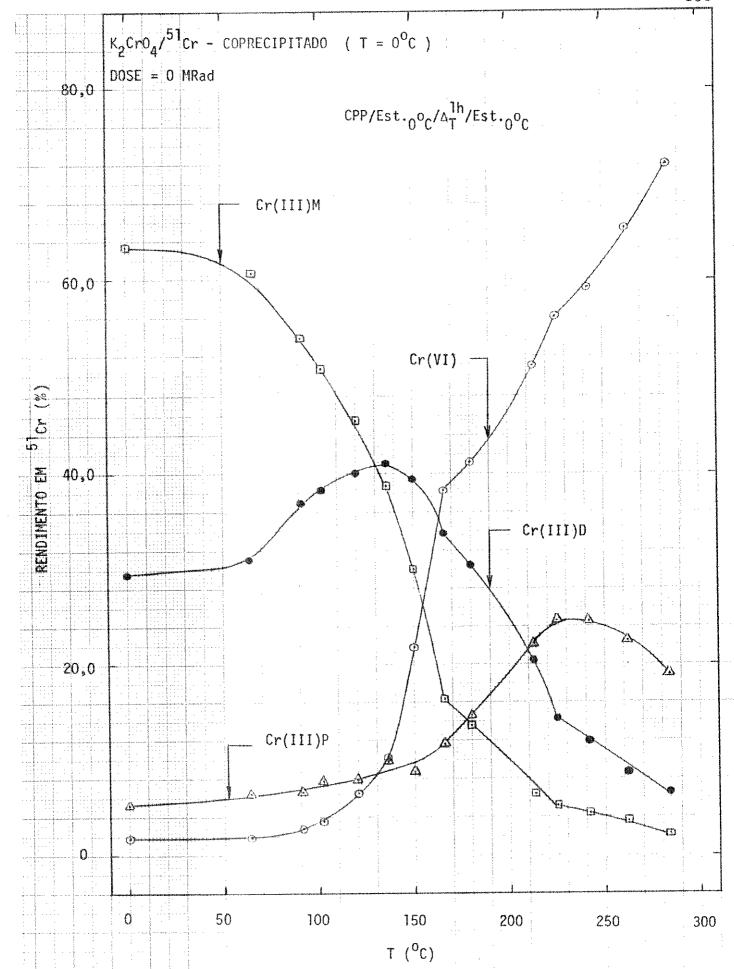


Figura IV.28 - Recozimento isocrônico de amostras de ${\rm K_2CrO_4}$ dopados com $^{51}{\rm Cr}({\rm III})$ por coprecipitação. Cristais não irradiados.

Figura IV.29 - Recozimento isocrônico de amostras de ${\rm K_2CrO_4}$ dopados com $^{51}{\rm Cr\,(III)}$ por coprecipitação. Dose γ recebida pelos cristais: 1,0x10⁻¹ MRad.

e M \rightarrow D porque o rendimento de Cr(III)M cai acentuadamente acima de 80° C. A partir de $\sim 130^{\circ}$ C a fração dimérica passa a contribuir substancialmente na formação de Cr(VI) (talvez na de Cr(III)P também), de modo que, acima desta temperatura os processos importantes seriam M \rightarrow VI e D \rightarrow VI.

Um ponto de inflexão na curva do rendimento de Cr(VI) foi observado em $166^{\circ}C$, possivelmente devido à fração dímero, porquanto a curva que descreve o comportamento desta espécie é a única que também apresenta inflexão nesta temperatura, além de se mostrar bastante simétrica com a curva do Cr(VI). Pela análise destas curvas, parece provável que a produção de Cr(VI), acima de $166^{\circ}C$, seja devida aos processos $M \rightarrow VI$ e/ou $M \rightarrow D$ e $D \rightarrow VI$. O rendimento da fração polímero não se mostra muito alterado em todo o intervalo de dose estudado e talvez sua produção seja devido a $M \rightarrow D$, $D \rightarrow P$ e/ou ambas, não se tendo meios para apontar qual seria o processo real.

A irradiação das amostras cocristalizadas altera bastante o comportamento do sólido frente a ativação térmica (comparar as figs. IV.26 e IV.27). Assim, após serem irradiados, tem-se a transformação M \rightarrow VI como a única ocorrendo, até ~130°C. A partir desta temperatura nota-se que, sem dúvida alguma, a produção de Cr(VI) é devida às frações monômero e dímero (M \rightarrow VI e D \rightarrow VI), equitativamente. Acima de 150°C observa-se um aumento na produção de Cr(III)P que poderá ser, como no caso do sólido não irradiado, uma consequência das reações M \rightarrow P, D \rightarrow P e/ou ambas.

As curvas de recozimento isocrônico obtidas para o sólido dopado por coprecipitação e não irradiado (fig. IV.28) indicam que, até ~90°C, o processo dominante é a transformação M \rightarrow D (os rendimentos de VI e P aumentam muito pouco nesta região). Entre 90°C e 140°C começa a aumentar bastante a quantidade de Cr(VI), além da de Cr(III)D, de modo que os processos M \rightarrow VI e M \rightarrow D seriam os mais relevantes. Acima de 140°C a fração dímero participa atuantemente na formação de Cr(VI) e/ou Cr(III)P, juntamente com Cr(III)M, mas para temperaturas maiores que 225°C a fração polimérica também apresenta a sua contribuição na produção de Cr(VI) (isto é, para T > 225°C tem-se M \rightarrow VI, D \rightarrow VI e P \rightarrow VI). O rendimento em Cr(III)P aumenta entre 0 \leq T \leq 225°C, mas não se pode precisar quais os processos estariam envolvidos na sua produção (M \rightarrow P, D \rightarrow P e/ou ambos).

De resto deve-se destacar a ocorrência de dois pontos de inflexão nas curvas VI, M e D, em 166°C e 225°C.

De um modo geral as curvas não se alteram muito com a irradiação das amostras com fótons γ (fig. IV.29). Até ~120°C o processo dominante é M \rightarrow D, mas acima desta temperatura a fração D atua diretamente na produção de Cr(VI) e/ou Cr(III)P. Observa-se também neste caso a existência de dois pontos de inflexão (T = 166° C e T = 225° C) e o aumento do rendimento do Cr(III)P entre 0° C e 225° C, quando então a fração polímero começaria a contribuir na produção de Cr(VI).

As curvas e os rendimentos de Cr(III)D e Cr(III)P praticamente não são afetados pela radiação, mas nota-se que Cr(VI) aumenta sensivelmente o seu rendimento entre 0 e 166°C. A influência da radiação na produção de Cr(VI) é pequena entre 166 e 225°C e quase não existe acima de 225°C. Em qualquer caso deve-se observar que as variações no rendimento do Cr(VI), induzidas pela radiação, são, sem dúvida alguma, devidas quase que exclusivamente à fração Cr(III)M, cujo rendimento diminui nas amostras irradiadas.

2. Discussão.

Apesar de todos os esforços feitos no sentido de se elucidar os processos primários físicos e químicos que se seguem à captura neutrônica em solidos, nada pode ser dito de definitivo a respeito deste fenômeno porque $v\bar{a}$ rios parâmetros, aparentemente importantes, permanecem ainda sem controle.

Com o objetivo de se propor soluções para este problema ainda não resolvido, muitos outros estudos foram desenvolvidos nos campos da quimica e da física do estado sólido, em especial da química de cristais dopados (1-11), que teve um impulso muito grande após a descoberta do fenômeno da transferência de radioatividade feita por Kausić e Vlatković (1), em cristais de Ca(IO₃)₂ dopados com ¹³¹I⁻.

Após o anúncio desta descoberta verificou-se que alguns

outros solidos, quando dopados e convenientemente ativados, apresentavam cinéticas de transferência de atividade, da forma química do dopante para a forma química do hospedeiro, muito semelhantes às de recozimento dos átomos de recuo produzidos por reações nucleares, geralmente reações (n, γ), em cristais similares.

Dentre os sistemas químicos já estudados neste campo encontram-se aqueles cujo átomo dopante possui a mesma identidade que o átomo central do ânion que constitui o cristal hospedeiro, tais como $^{51}\text{Cr}^{3+}$ - K_2CrO_4 (2, 3, 12), $^{131}\text{I}^-$ - $\text{Ca}(\text{IO}_3)_2$ (1), $^{80}\text{Br}^-$ - KBrO_3 (13), ^{131}I - KIO_3 (14, 15) e $^{131}\text{I}^-$ - $\text{NaIO}_3 \cdot \text{H}_2\text{O}$ (15), ou átomos dopantes completamente estranhos ao cristal hospedeiro, tais como os sistemas $^{131}\text{I}^-$ - KC1O_4 (16), $^{51}\text{Cr}^{3+}$ - KXO_3 (X = I,N) e $^{51}\text{Cr}^{3+}$ - K_2SO_4 (7, 11) e $^{M^{n+}}$ - K_2SeO_4 (17), onde $^{M^{n+}}$ = Al^{3+} , In^{3+} e Ca^{2+} .

Aquecendo-se cristais de $K_2\text{CrO}_4$ dopados com $^{51}\text{Cr}(\text{III})$, observou-se a conversão de uma certa quantidade de $^{51}\text{Cr}(\text{III})$ em $^{51}\text{Cr}(\text{VI})$ (2, 3). As curvas de recozimento isotérmico para estes cristais também assemelham-se aquelas obtidas por aquecimento de cristais de $K_2\text{CrO}_4$ dopados com $^{51}\text{Cr}(\text{III})$ e irradiados com fótons γ e cristais de $K_2\text{CrO}_4$ dopados com Cr(III) inativo e irradiados com nêutrons, os quais teriam recebido doses similares de radiação γ (3). Além disso, a velocidade de formação de Cr(VI) em cristais de $K_2\text{CrO}_4$ irradiados com nêutrons e recristalizados antes do recozimento, mostram-se semelhantes aquela observada para uma outra porção dos mesmos cristais, mas não recristalizados (5, 18).

Considerando-se as semelhanças observadas entre as cinéticas de recozimento térmico dos átomos de cromo-51 em cristais de $\rm K_2CrO_4$ irradiados com nêutrons, em cristais de $\rm K_2CrO_4$ dopados com $\rm Cr(III)$ inativo e em cristais de $\rm K_2CrO_4$ dopados com $\rm Cr(III)$ por cocristalização, após receberem doses idênticas de radiação $\rm \gamma$ (2, 3, 4), pode-se, em princípio, pensar que o mesmo mecanismo de recozimento seria o responsável pelo comportamento destes sólidos o que, à primeira vista, estaria sugerindo a existência de ambientes químicos similares nestes sólidos de históricos completamente diferentes.

A influência da radiação γ sobre os cristais de oxi-sais dopados com ⁵¹Cr(III) também já foi parcialmente estudada (7, 10, 11), mas estes resultados não foram comparados com aqueles que descrevem o comportamento de

cromatos irradiados com nêntrons (19, 29).

Baseando-se em resultados obtidos por Stamouli (10), observou-se que as transformações mais drásticas e relevantes exibidas pelo sistema $K_2\text{CrO}_4$ dopado com $^{51}\text{Cr}(III)$ por cocristalização e irradiados com fótons γ ocorriam em regiões de baixas doses absorvidas (~1 MRad), fato que deixava em aberto um campo de trabalho totalmente inexplorado, visto que qualquer tentativa de elucidação destes processos químicos e físicos no estado sólido deveria começar a ser estudada inicialmente nesta região de dose, a qual serviu então de base para este trabalho.

De início verificou-se que estes resultados (10) não coincidem com os apresentados nesta tese. Considerando-se o solido ${
m K_2Cro_4/^{51}Cr}$, dopado por cocristalização e irradiado na temperatura do nitrogênio (~196°C), observa-se uma similaridade, quanto à forma das curvas representativas de Cr(VI) e Cr(III)M, com aquelas contidas na literatura (10), indicando que processo M → VI, nestas condições, e o principal. Os resultados numéricos no en tanto são totalmente diferentes e a principal diferença está no fato de Stamouli (10) indicar que o rendimento de D+P é aproximadamente 22%, dados estes contestados pelos números apresentados nesta tese, os quais indicam o total D+P como situado ao redor de 49% (vide fig. IV.12). Além disso, Stamouli (10) indicou tamtém que as curvas obtidas à temperatura ambiente teriam uma forma semelhante encontrada quando da irradiação na temperatura do nitrogênio líquido, variando apenas os valores dos rendimentos de Cr(VI) e Cr(III)M, permanecendo D+P = 22%. Outra vez seus resultados mostraram-se totalmente inconsistentes com os apresentados (vide fig. IV.14), porque em temperaturas em redor ou maiores 0°C observa-se a existência de uma contribuição marcante da fração dímera na pro dução de Cr(VI) (vide figs. IV.14, IV.15 e IV.16) em cristais de K_2 Cr 0_4 / 51 Cr dopados por cocristalização.

Levando-se em conta que os métodos de dopagem, a temperatura de dopagem e o método de análise são quase idênticos em ambos os trabalhos, não se pode atribuir estas diferenças a erros acidentais. Sendo assim, ou considera-se a presença de um erro sistemático de análise em um dos trabalhos ou atribuem-se as diferenças observadas ao ⁵¹Cr(III) utilizado nas dopagens, visto que a forma química do agente dopante pode influir nos mecanismos de reação e, consequentemente, nos resultados finais.

A análise dos resultados obtidos durante a execução da parte experimental desta tese mostrou-se, no entanto, totalmente consistente (vi de cap. IV.1 e apêndice II), apesar da necessidade de se dopar e irradiar várias porções do solido em ocasiões diferentes, segundo uma programação prévia, o que mostra um bom grau de confiabilidade nos resultados colhidos. Estes resultados contestam alguns outros (10), mas permitem a elaboração de algumas outras ideias por parte do autor.

Logo de início, ao se considerar as diferenças observadas no comportamento das curvas de recozimento térmico para os cristais dopados por cocristalização e para os cristais irradiados com nêutrons (vide fig. IV.24 e refs. 10, 20), deve-se deduzir imediatamente que alguma influência estaria sendo exercida nos resultados pelos diferentes tipos de ambientes químicos.

Todas as curvas de recozimento (isotérmicas e por irradiação com fotons γ) encontradas por Stamouli para cristais de K₂CrO₄ irradiados com nêutrons (20) mostraram formas e rendimentos completamente diferentes daqueles encontrados para os cristais de K₂CrO₄ dopados com ⁵¹Cr(III) por cocristalização (vide fig. IV.24 e ref. 20), mas deve-se levar em consideração que os tempos de aquecimento e as doses γ utilizadas por ela em suas experiências são muito grandes, se comparadas com as usadas nesta tese. Na verdade, o histórico químico de ambos os conjuntos de amostras considerados são diferentes entre si, e talvez por isso não devam ser comparados.

Entretanto, se por um lado os resultados encontrados por Stamouli podem não ser comparáveis com os desta tese, as curvas de recozimento isocrônico encontradas por Ackerhalt (18, 19, 21) para cristais de K₂CrO₄ irradiados com nêutrons podem, porque as condições de aquecimento (recozimento) e o histórico químico das amostras, exceto pelo fato de terem sido irradiadas com nêntrons, são quase idênticos entre si.

Também aqui, no entanto, diferenças marcantes foram encontradas. As curvas de recozimento isocrônico e isotérmico são totalmente diferentes, tanto quanto a forma quanto aos valores numéricos do rendimento químico (%) para as várias espécies de cromo marcadas com 51 Cr (vide figs. IV.24, IV.26 e IV.27 e refs. 19 e 21). As diferenças maiores foram encontradas nas curvas de recozimento isocrônico, porquanto este tipo de recozimento, quando utilizado para o ${\rm K_2CrO_4}$ irradiado com nêutrons, mostrou a existência da chamada "região de cruzamento" (cross-over region - refs. 19 e 21), caracterizada pela conversão D e/ou P \rightarrow M, fato não observado para os cristais dopados, nem por Stamouli (10), nem pelo autor deste trabalho. Estas informações são consistentes com outros dados da literatura (22) que mostram a não existência de tais reações em cristais de ${\rm K_2CrO_4}$ dopados por cocristalização, irradiados ou não com fótons γ .

Collins et al (4) verificaram também que acima de uma certa temperatura (para cromatos, possivelmente acima de 150° C) o comportamento das curvas de formação de Cr(VI) é idêntico tanto para ${\rm K_2CrO_4}$ dopado como para ${\rm K_2CrO_4}$ irradiado com nêutrons, mas nada indicaram a respeito do comportamento das outras espécies marcadas com 51 Cr.

Enfim, analisando-se os resultados experimentais observa dos para os recozimentos de cristais de K₂CrO₄ irradiados com nêutrons e cristais de K₂CrO₄ dopados com ⁵¹Cr(III), ou consideram-se fortuitas as similaridades observadas na formação de Cr(VI) durante o recozimento (2,3,5,21), ou estas similaridades estariam indicando que a estrutura detalhada ao redor do sítio de recozimento não e um fator dominante na produção de Cr(VI), pelo menos acima de 150°C, e que as reações de recozimento seriam cineticamente controladas pelas populações de defeitos e/ou fenômenos de transporte que estariam ocorrendo dentro do cristal, considerado como um todo, no momento do recozimento. Como a primeira hipótese parece ser inviável, visto que a idéia da existência de ambientes químicos similares nestes sólidos de históricos totalmente diferentes não parece ter consistência suficiente para ser levada em consideração, a segunda proposição deve ser analisada com bastante atenção.

Observando-se ainda os outros resultados apresentados neste capítulo (item 1), verifica-se que o metodo ou as condições de dopagem do sólido influi sebremaneira na forma das curvas Rendimento vs Dose obtidas, indicando, provavelmente, a ocorrência de fenômenos diferentes.

O calor parece influenciar de modo similar as amostras coprecipitadas (CPP), irradiadas ou não, mas o comportamento de solido cocristalizado (CPC) mostrou-se bastante sensível ao aquecimento, indicando que os processos de difusão são muito importantes para as amostras cocristalizadas mas não pa
ra as coprecipitadas (vide figs. IV.26 a IV.29).

A razão deste comportamento talvez seja devida ao próprio metodo de dopagem. O processo de precipitação utilizado para coprecipitar 51 Cr(III) $ilde{ ilde{e}}$ realizado pela adi $ilde{ ilde{a0}}$ do agente precipitante (metanol + 51 Cr(III)) a uma solução aquosa não saturada de K₂CrO₄ (vide cap. III), de modo que o dopante, 51 Cr, não seria introduzido dentro da rede cristalina do sólido, mas tão somente ficaria depositado ou adsorvido na superfície de pequenos cristais, os quais, ao se aglomerarem, reteríam o dopante na interface de pequenas partículas do sólido. Por outro lado, a cocristalização é um processo pelo qual os cristais são formados em um meio (aquoso) que ja contem o dopante, de modo que este, durante processo de cocristalização, seria introduzido diretamente no retículo dos cristais, ocupando posições do próprio retículo e produzindo vacâncias catônicas. Sob estas considerações pode-se compreender as diferentes sensibilidades apresentadas pelos diferentes tipos de cristais dopados. Um outro fato a ser mencionado, que pode vir a confirmar as suposições acima descritas, é que as amostras dopadas por evaporação do solvente (dopante localizado ainda em posições mais superficiais) apresentam-se bem menos sensíveis ao calor e a radiação γ (vide figs. IV.9 e IV.10).

Deve-se considerar ainda que, além das diferentes distribuições do dopante nos cristais, as formas químicas iniciais destas impurezas seriam também diferentes. No caso da coprecipitação, o agente precipitante é uma solução de ⁵¹Cr(III) em metanol, o que implicaria em uma solvatação do íon de cromo diferente daquela que seria encontrada em uma solução aquosa. Além disso, os traços de metanol existentes no sólido sofreriam um processo de radiólise e/ou termólise diferente daquele sofrido pelos traços de água que possam estar presentes no cristal.

A temperatura de dopagem também influencia os resultados

encontrados, conforme pode ser visto ao se comparar as figuras IV.1 e IV.3. Experiências complementares (23) mostram que quantidades relativas de 51 Cr(VI) , 51 Cr(III)M, 51 Cr(III)D e 51 Cr(III)P diferentes são encontradas quando quantidades semelhantes de 51 Cr(III), em solução aquosa, são adicionadas em soluções qua se saturadas de 51 Cr(III), em solução aquosa, são adicionadas em soluções qua para uma mesma temperatura de aquecimento, quanto maior o tempo de aquecimento, maiores são as concentrações das frações VI, D e P e menores a de M. Quantidades idênticas de 51 Cr(III) em água, submetidas paralelamente ao mesmo esquema de aquecimento, mostraram que o agente provocador da polimerização dos fons cromo é o fon 51 Cr $^{2-}$ presente na solução.

Estes dados são consistentes com os descritos pelas curvas das figuras IV.1 e IV.3 pois, ao serem comparadas, observa-se um aumento na fração dimera, em detrimento à fração monomérica, para a temperatura de cocristalização de 100°C (fig. IV.1). Estas ideias são conclusivas somente para os sólidos cocristalizados, mas têm-se evidências que permitem deduzir variações semelhantes quando a temperatura de dopagem é modificada em outros métodos de dopagem.

Estas experiências também são importantes porque suportam a hipótese de que, ao se dopar os cristais de K₂CrO₄ com ⁵¹Cr(III), jã se estã introduzindo as espécies VI, M, D e P no cristal (Cr(VI) em pequena quantidade, dependendo do meio de dopagem). Isto significa que, ao contrário do pensamento de alguns pesquisadores, estas espécies estariam sendo incorporadas ao cristal no momento da dopagem (razão pela qual preferiu-se utilizar a solução de dissolução descrita no cap. III) e que a radiação γ e/ou o aquecimento, agindo isoladamente ou em conjunto, apenas alterariam a composição relativa destas espécies, devido à oxidação delas a Cr(VI). Com os dados de que se dispõem (vide figs. IV.6, IV.7, IV.9 e IV.10), observa-se que quanto mais superficial for a dopagem, menores são as alterações verificadas.

Sendo assim, os mecanismos de reação para o recozimento de solidos dopados dependem basicamente do modo com que foram dopados (método e tem peratura de dopagem), de modo que descarta-se a ideia de um mecanismo de reação

generalizado, segurindo-se que cada caso deva ser estudado em separado. Os fenômenos no estado sólido, processos primários que ocorreriam no cristal durante a sua ativação, seriam os mesmos em qualquer situação (ex: transferência de elétrons, criação de buracos e excitons, efeitos provocados pelas vacâncias, etc), mas as reações químicas que formariam os produtos finais ocorreriam somente no momento da dissolução e poderiam ser diferentes para cada sólido. Esta suposição pode ser bem visualisada observando-se as figuras IV.1/IV.3 e IV.2/IV.4. Para cristais dopados a 100° C e irradiados com fótons y a 0° C (fig. IV.1) o processo principal é D \rightarrow VI, mas para os dopados a 70° C e irradiados a 0° C (fig. IV.3), o Cr(VI) é formado a partir de Cr(III)M e Cr(III)D. Quando aquecidos a 150° C, após a irradiação y a 0° C, os dopados a 100° C mostram principalmente as transformações D,P \rightarrow VI e os dopados a 70° C, M,D,P \rightarrow VI.

O comportamento dos cristais coprecipitados e cocristalizados frente a radiação γ e/ou calor é, sem dúvida, bastante complexo, fato que pode ser facilmente verificado observando-se as figuras IV.12 a IV.16, IV.18 a IV.22 e IV.26 a IV.29. Os recozimentos isocrônicos (figs. IV.26 a IV.29) mostram uma dependência bastante acentuada do sólido dopado, irradiado ou não, com a temperatura. As amostras dopadas, e não irradiadas sofrem a ação do calor de modo semelhante (figs. IV.26 e IV.28), mas a ação combinada radiação γ / calor(Dose = 1,0x10⁻¹ MRad) tem um efeito marcante sobre o sólido cocristalizado (figs. IV.26 e IV.27), enquanto que quase não altera as curvas do sólido coprecipitado (figs. IV.28 e IV.29). Este fato, por si só, vem confirmar a idéia de que os processos de difusão são realmente importantes para o sólido cocristalizado mas provavelmente são de importância secundária para os cristais coprecipitados.

Além da complexidade das curvas de recozimento isocrônico, que refletem o comportamento do sólido dopado nas condições das experiências, observam-se ainda regiões onde, ou se verifica a ocorrência de pontos de inflexão, ou uma mudança mais sensível no valor da tangente das curvas descritas nos gráficos. A existência destas inflexões deve ser mencionada com muita cautela, principalmente por se considerar que a natureza, na maioria das vezes, não exibe processos descontínuos. Entretanto resolveu-se deixar estes pontos explicitamen te descritos nas curvas porque os resultados obtidos foram considerados totalmen

te confiaveis pelo autor e porque experiências independentes (ex: Rend. vs -log | Dose |, fig. IV.2 e IV.4) mostraram comportamentos semelhantes.

Ademais, este comportamento estaria de acordo com a hipótese de que as reações de recozimento térmico para a produção de Cr(VI) seria o resultado do incitamento ("triggering") dos centros de recozimento por carregadores de cargas (elétrons ou buracos) que se difundiriam até os sítios de ⁵¹Cr, apos serem liberados das suas armadilhas ("traps") pela ação do calor.

Curiosamente Andersen e Olesen (24) verificaram que, durante o recozimento térmico de cristais de K₂CrO₄ irradiados com nêutrons, a termoluminiscência e a condutividade térmica observada nestes cristais eram par ticularmente importantes, isto é, apresentavam um máximo, em temperaturas ao redor de 150°C, entre 200 e 250°C e entre 300 e 350°C. Coincidentemente, as duas primeiras regiões de temperatura são exatamente aquelas onde ocorrem as inflexões nas curvas de recozimento isocrônico (fig. IV.26, IV.28 e IV.29).

A ação conjunta da radiação γ e do calor alteram sobremaneira as curvas de recozimento isocrônico do solido cocristalizado porque, como jã foi discutido, os processos de difusão seriam mais efetivos em cristais deste tipo.

A proposição de mecanismos de reação para estes sistemas e realmente uma tarefa muito difícil, visto que ainda não se tem informações su ficientes que assegurem um bom grau de certeza nas proposições. Entretanto, con siderando-se alguns dados já disponíveis na literatura e os resultados apresentados nesta tese, pode-se sugerir algumas hipóteses razoáveis que certamente de vem ser consideradas.

Pretende-se focalizar de um modo especial os modelos de reação que envolvem ativações por uma espécie incitadora, a qual se difundiria dentro do cristal durante o processo de recozimento. Nestes casos a velocidade de recozimento deve estar relacionada com o número e a distribuição espacial das espécies incitadoras, bem como com as velocidades de produção e difusão destas espécies.

Os modelos envolvendo especies eletrônicas, desenvolvidos para explicar o comportamento de alguns sólidos irradiados com neutrons, na

opinião do autor, são também os mais adequados para explicar os comportamentos observados para os sólidos dopados, visto que as espécies incitadoras, por serem pequenas e leves, poderiam se movimentar dentro do cristal, mesmo em baixas temperaturas. Tais espécies seriam, principalmente, elétrons (5, 24, 25), buracos (3, 15, 26-28) e excitons (29), cujos processos de difusão através do sólido se dariam com relativa facilidade e sem a necessidade de aplicação de altas quantidades de energia, de modo que a cinética de recozimento dependeria apenas presença de defeitos no cristal (ex: dopante), capazes de aprisionar estas espécies moveis em armadilhas. O eletron e uma especie muito adequada para ser arma zenada, que ao ser liberada por processos de ativação, poderia reagir com o meio produzindo outras espécies reduzidas altamente excitadas. O exciton, uma espécie excitada eletronicamente, é um outro tipo de espécie movel que pode provocar ou induzir o processo de recozimento no solido, ao depositar energia em um sitio contendo o dopante. Os buracos, entidades oxidantes, podem interagir com o meio fornecendo energia suficiente para provocar a reação do dopante com atomos grupamento de atomos reticulares (vide cap. II).

Como tem-se evidências de que todas as espécies de cromo, VI, M, D e P, marcadas com $^{51}{\rm Cr}$ e em equilíbrio, são introduzidas ou depositadas no cristal de K $_2{\rm CrO}_4$ no momento da dopagem, e considerando-se as diferenças entre os vários processos de dopagem, pode-se descrever o sólido dopado por cocristalização como sendo um retículo composto por ions K $^+$ e ${\rm CrO}_4^{2-}$, contendo como impurezas ions ${\rm [^{51}Cr}_n{\rm (H}_2{\rm O)}_x{\rm (OH)}_y{\rm (C1)}_m{\rm]^{3n-y-m}}$ em posições retículares, substituindo K $^+$ e gerando vacâncias catiônicas no cristal. O sólido dopado por coprecipitação (ou no caso extremo, por evaporação do solvente) poderia ser descrito como um retículo composto pelos ions K $^+$ e ${\rm CrO}_4^{2-}$ e impurezas do tipo ${\rm [^{51}Cr}_n{\rm (H}_2{\rm O)}_x{\rm (MeOH)}_z{\rm (OH)}_y{\rm (C1)}_m{\rm]^{3n-y-m}}$ adsorvidas na superfície de microcristais de K $_2{\rm CrO}_4$, os quais posteriormente formariam aglomerados $^{(*)}$.

^(*) A estequiometria do dopante depende de vários fatores mas, na falta de outras informações adicionais a respeito da sua identidade, considera-se genericamen te n=1,2,...n; z e x = quantidades suficientes para completar a coordenação do(s) átomo(s) de Cr(III); y=0,n-1,n,n+2,...etc e m=0,1,2 (os mais prováveis), Considera-se a presença de Cl- porque inicialmente os ions de ⁵¹Cr encontravam-se em meio HCl 0,5M. Considera-se possível a presença de moléculas de me tanol (MeOH) na esfera de solvatação do ion Cr(III), quando da dopagem por coprecipitação e por evaporação do solvente, porque esta substância é utilizada nestes procedimentos. Por fim, a presença de OH- ligados a ions Cr(III) são também considerados porque trabalhos anteriores mostram esta situação co mo sendo real em solução aquosa (vide cap. II).

As evidências mostram que quanto menor a temperatura de do pagem maior a quantidade de 51 Cr(III)M retido no cristal, onde 51 Cr(III)M indica indistintamente a presença de espécies monoméricas contendo 51 Cr, tais como 51 Cr(H₂O) $_{6}^{3+}$, 51 Cr(H₂O) $_{5}^{C1^{2+}}$, 51 Cr(H₂O) $_{4}^{C1^{2+}}$, 51 Cr(H₂O) $_{4}^{4}$ OHCl $^{+}$, etc.

Entretanto, na opinião do autor, as transformações no esta do sólido são induzidas por ativações das espécies componentes do retículo normal e não por ativação das impurezas (apesar de possíveis), pois a quantidade de 51°Cr no cristal é muito pequena (traços), já que sua função é apenas a de uma sonda.

A ativação com fotons γ deve provocar primariamente a formação de espécies reticulares (e/ou impurezas) excitadas, tais como

$$\left[\operatorname{Cro}_{4}^{2-} \right] + \gamma \longrightarrow \left[\operatorname{Cro}_{4}^{2-} \right]^{\frac{1}{7}} \text{ (formação de excitons)}$$

$$\left[\operatorname{Cro}_{4}^{2-} \right] + \gamma \longrightarrow \left[\operatorname{Cro}_{4}^{2-} \right]^{\frac{1}{7}} + e^{-} \text{ (ionização reticular)}$$

que são as mais prováveis. As várias espécies excitadas formadas poderiam se rearranjar no cristal, estabilizando-se de alguma forma até o momento da dissolução

$$\left| \left[\operatorname{Cro}_{4}^{-} \right] \right|^{\frac{1}{4}} - \left[\operatorname{Cro}_{4}^{-} \right] + \operatorname{energia}$$

$$\left| \left[\operatorname{Cro}_{4}^{2-} \right] \right|^{\frac{1}{4}} - \left[\operatorname{Cro}_{4}^{2-} \right] + \operatorname{energia}$$

ou provocando outras excitações como

e

onde energia = fonons, calor, etc.

Todas estas especies teriam vidas medias razoavelmente lon gas e ficariam retidas no cristal até o momento da análise, quando então, ser dissolvido, reagiriam entre si formando as varias especies marcadas detectadas por cromatografia. Esta hipótese é perfeitamente viável porque a possibilidade de se encontrar um sítio no cristal contendo espécies reticulares excitadas tais como $\left| \left[\operatorname{Cro}_{4}^{2-} \right] \right|^{\frac{1}{7}}$, $\left| \left[\operatorname{Cro}_{4}^{-} \right] \right|^{\frac{1}{7}}$, etc, juntamente com, por exemplo, $\left[{}^{51}\mathrm{Cr}_{n}(\mathrm{H}_{2}\mathrm{O})_{x}(\mathrm{OH})_{y}(\mathrm{C1})_{m}\right]^{3n-y-m}$, excitados ou não, é muito maior que no caso inver so, onde somente a excitação do dopante levaria a formação dos produtos finais. Na verdade, considera-se que a excitação do dopante seria um processo muito menos efetivo, dada a sua pequena quantidade contida no cristal. Outra boa eviden cia, que deve-se levar em conta ao se considerar a existência deste mecanismo, é a detecção, por Ressonância Paramagnética Eletrônica, das espécies paramagnéticas CrO_{Λ}^{-} e CrO_{Λ}^{-} em $K_{2}CrO_{4}$ irradiado com fotons γ , mesmo a -196°C (30, 31), além de outras espécies que envolveriam a quebra de ligações Cr-O, tais como CrO, e Cro_{3}^{-} , que foram detectadas após a irradiação γ de cristais de $\mathrm{K}_{2}^{\mathrm{Cro}}_{4}$ à tempe ratura ambiente (30, 32). Qualquer uma destas especies excitadas seria suficien temente reativa para provocar reações químicas que iriam gerar as espécies marcadas com 51 Cr, durante o processo de dissolução das amostras.

A ativação térmica, por outro lado, deve atuar de modo diferente nos sólidos dopados, pois sem a ação da radiação ionizante (antes ou durante o aquecimento) os fenômenos de transporte de energia responsáveis pela formação dos precursores no estado sólido, mencionados anteriormente, estariam bloqueados ou, pelo menos, seriam dificultados. Esta suposição é bastante razoá vel e na verdade parece ser comprovada pela semelhança observada entre as curvas de recozimento isocrônico dos cristais de K₂CrO₄ dopados com ⁵¹Cr(III) por cocristalização e por coprecipitação (figs. IV.26 e IV.28). A similaridade observada parece sugerir que fenômenos muito parecidos estariam sendo igualmente induzidos, no estado sólido, para ambos os tipos de cristais, que foram prepara dos por métodos totalmente diferentes.

Possivelmente, nestes casos, a ativação sirva apenas para promover interações locais entre o dopante e o retículo, nos próprios sítios

de recozimento, sendo pouco efetivos os fenômenos de transporte através do cristal. Estas interações iriam gerar, sem duvida, os precursores das espécies detectadas após a análise.

Qualquer descrição detalhada deste fenômeno seria prejudicada pela falta de informações adicionais, mas tentativamente pode-se supor que a ativação térmica do retículo regaria espécies do tipo

$$\left[\operatorname{cro}_{4}^{2-}\right] + \Delta \longrightarrow \left[\left[\operatorname{cro}_{4}^{2-}\right]\right]^{\frac{1}{2}}$$

os quais interagiriam com o dopante (excitado termicamente ou não) no estado solido, formando outras espécies energéticas tais como

$$\left[{^{51}\text{Cr}_{\mathbf{n}}(\text{H}_{2}\text{O})}_{\mathbf{x}}(\text{OH})_{\mathbf{y}}(\text{C1})_{\mathbf{m}} \right] {^{3}\mathbf{n} - \mathbf{y} - \mathbf{m}} + \left| \left[\text{CrO}_{4}^{2^{-}} \right] \right|^{\frac{1}{4}} \rightarrow \left| \left[{^{51}\text{Cr}_{\mathbf{n}}(\text{H}_{2}\text{O})}_{\mathbf{x}}(\text{OH})_{\mathbf{y}}(\text{C1})_{\mathbf{m}} \right] {^{3}\mathbf{n} - \mathbf{y} - \mathbf{m}} \left[\text{CrO}_{4}^{2^{-}} \right] \right|^{\frac{1}{4}}$$

que reagiriam quando da dissolução dos cristais formando os produtos observados, como, por exemplo, o fon ${51 \over 2} {\rm Cr0_4^{2-}}$

$$\begin{bmatrix} ^{51}\mathrm{Cr}_{\mathbf{n}}(\mathrm{H}_{2}\mathrm{O})_{\mathbf{x}}(\mathrm{OH})_{\mathbf{y}}(\mathrm{C1})_{\mathbf{m}} \end{bmatrix}^{3\mathbf{n}-\mathbf{y}-\mathbf{m}} \begin{bmatrix} \mathrm{CrO}_{4}^{2-} \end{bmatrix}^{\frac{1}{4}} - \begin{bmatrix} ^{51}\mathrm{CrO}_{4}^{2-} \end{bmatrix} + \mathrm{outras} \text{ especies de cromo}$$

Como ja foi mencionado anteriormente, os cristais coprecipitados mostram comportamentos muito similares frente ao calor, independentemente do fato de terem sido irradiados com fotons γ ou não (fenômenos de difusão pouco efetivos), o que não acontece com os cocristalizados. Estes cristais cocristalizados quando irradiados e ativados termicamente, induziriam o aparecimento de espécies reticulares do tipo

$$\left| \left[\operatorname{cro}_{4}^{3-} \right] \right|^{\frac{1}{2}} \stackrel{\Delta}{\longrightarrow} \left| \left[\operatorname{cro}_{4}^{2-} \right] \right|^{\frac{1}{2}} + e^{-}$$

$$\left| \left[\operatorname{51}_{\text{Cr}} \left(\operatorname{H}_{2} \operatorname{0} \right)_{x} \left(\operatorname{OH} \right)_{y} \left(\operatorname{C1} \right)_{m} \right]^{3n-y-m} \right|^{\frac{1}{2}} \stackrel{\Delta}{\longrightarrow} \left| \left[\operatorname{51}_{\text{Cr}} \left(\operatorname{H}_{2} \operatorname{0} \right)_{x} \left(\operatorname{OH} \right)_{y} \left(\operatorname{C1} \right)_{m} \right]^{3n-y-m} \right|^{\frac{1}{2}} + e^{-}$$

$$\left[\operatorname{cro}_{4}^{2-} \right] e/\operatorname{ou} \left| \left[\operatorname{cro}_{4}^{2-} \right] \right|^{\frac{1}{2}} + e^{-} \stackrel{\left[\operatorname{cro}_{4}^{2-} \right] \left|^{\frac{1}{2}} \right|}{\left[\operatorname{cro}_{4}^{2-} \right] \left[\operatorname{cr$$

que também poderiam utilizar os seus excessos de energia de diversas maneiras, in cluindo a quebra de ligações para produzir atomos de oxigênio e fons ou especies de cromo deficientes em oxigênio, altamente reativas (ex: CrO_{2}) (33).

O aquecimento destes sólidos, alternativamente, pode gerar deslocamentos mais rápidos de espécies de diferentes sítios do retículo devido ao aumento da energia vibracional do cristal como um todo, propiciando um aumento na velocidade de interação das espécies no estado sólido e/ou alteração destes processos, quando comparados com os submetidos a um aquecimento mais brando.

Isto foi verificado tanto para as amostras cocristalizadas (figs. IV.12 a IV.16) como para as coprecipitadas (figs. IV.18 a IV.22), variando-se a temperatura de irradiação. A irradiação a 0°C das amostras cocristalizadas (fig. IV.14) mostra que o processo de produção de Cr(VI) modifica-se em relação às irradiações efetuadas a temperaturas mais baixas. Acima de 0°C observa-se uma intensificação na participação das espécies M e D na formação de VI. As amostras coprecipitadas, por outro lado, mostraram basicamente poucas modificações no processo de formação de Cr(VI), mesmo assim quando irradiadas em temperaturas mais altas. Nestes casos o processo M → VI manteve-se como o principal em todo o intervalo de temperatura estudado. Estas observações vêm, outra vez, reforçar as hipóteses feitas, em especial quanto à influência do processo de dopagem nos mecanismos de reação e no que diz respeito à proposição pela qual sugere -se que os processos de difusão são efetivos e muito importantes somente para as amostras cocristalizadas.

Neste sentido a ideia do mecanismo da troca ativada(transferência)sugerido por vários pesquisadores (34-36) seria reforçada, mas com algumas modificações (vide cap. II.3 para uma comparação). A principal delas é que somente no processo de dissolução ocorrerá a formação das especies detectadas.

A consistência destes resultados pode ser também testada ao se comparar as curvas de recozimento isotérmico a 150°C para os cristais cocristalizados e coprecipitados (figs. IV.24 e IV.25) com as obtidas durante a ir radiação destes sólidos a 153°C (figs. IV.16 e IV.22). As formas das curvas são basicamente idênticas (comparar as figs. IV.16/IV.24 e figs. IV.22/IV.25), diferenciando-se entre sí somente no valor dos rendimentos encontrados, mostrando

que a irradiação γ realizada simultaneamente com aquecimento é muito mais efetiva que o processo de irradiação γ (em temperaturas mais baixas) com aquecimento posterior. Entretanto, estas curvas deixam claro que os processos químicos e/ou físicos gerados nos cristais e/ou durante o processo de dissolução dos mesmos , são idênticos nos dois casos.

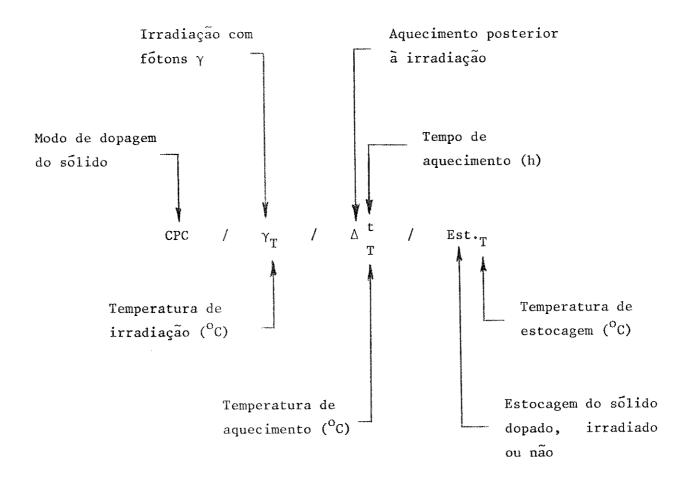
Os resultados obtidos e apresentados nesta tese permitem a penas as sugestões e conclusões apresentadas, sendo temário ir mais adiante a posse de outras informações adicionais. Infelizmente houve necessidade de limitar o conteúdo deste trabalho, como foi explicado no início deste capítulo, visto que um sem número de outras experiências poderiam ser programadas para esclarecer os pontos ainda obscuros no estudo da química do estado solido, em espe cial a química dos sólidos dopados. A necessidade de se desenvolver novos métodos de analise para estes sistemas, especialmente metodos físicos, que permitam estabelecer a identidade, no solido, dos precursores das espécies encontradas após a análise química, relacionando-os entre si, e o fator limitante deste estu do, porquanto, devido a esta deficiência, pouco ainda se conhece a respeito dos estados condensados, onde varias e diferentes interações químicas ocorrem ao mesmo tempo. Entretanto, tem-se plena consciência de que o trabalho ora sentado, sem dúvida, propôs algumas sugestões que provocarão a rediscussão do assunto em pauta, o que certamente levará ao desenvolvimento de outras ideias conceitos que ajudem a aplicar tais fenômenos.

CAPITULO IV

BIBLIOGRAFIA

- 1 S. KAUSIĆ e M. VLATKOVIĆ, Croat. Chim. Acta, 35 (1963) 305.
- 2 D.J. APERS, K.E. COLLINS, C.H. COLLINS, Y.F. GHOOS e P.C. CAPRON, Radiochim.
 Acta, 3 (1964) 18.
- 3 C.H. COLLINS, K.E. COLLINS, Y.F. GHOOS e D.J. APERS, Radiochim. Acta, <u>4</u>
 (1965) 211.
- 4 C.H. COLLINS, R.E. ACKERHALT e K.E. COLLINS, Radiochim. Acta, 17 (1972) 73.
- 5 T. ANDERSEN e G. SORENSEN, Trans. Faraday Soc., 62 (1966) 3424.
- 6 B. MAHIEU, D.J. APERS e P.C. CAPRON, Radiochim. Acta, 16 (1971) 100.
- 7 S. KHORANA e D.R. WILES, J. Inorg. Nucl. Chem., 33 (1971) 1589.
- 8 T.G. LADRIELLE, M.A. COGNEAU e D.J. APERS, Radiochim. Acta, 22 (1975) 65.
- 9 T.G. LADRIELLE, M.A. COGNEAU e D.J. APERS, Radiochim. Acta, 22 (1975) 173.
- 10 M.I. STAMOULI, Radiochim. Acta. 23 (1976) 6.
- 11 M.I. STAMOULI, Radiochim. Acta, 26 (1979) 37.
- 12 T. ANDERSON e G. SORENSEN, Trans. Faraday Soc., <u>62</u> (1966) 3427.
- 13 G.E. BOYD e Q.V. LARSON, J. Am. Chem. Soc., 90 (1968) 254.
- 14 G.E. BOYD e Q.V. LARSON, J.Am. Chem. Soc., 91 (1969) 4639.
- 15 A.V. BELLIDO e D.R. WILES, Radiochim. Acta, 12 (1969) 94.
- 16 S. KHORANA e D.R. WILES, J. Inorg. Nucl. Chem., 31 (1969) 3387.
- 17 M.F. DE JESUS, F.R.M. MACHADO e G. DUPLÂTRE, Radiochim. Acta, 26 (1979) 41.
- 18 R.E. ACKERHALT, C.H. COLLINS e K.E. COLLINS, Trans. Faraday Soc., <u>67</u> (1971) 1459.

- 19 R.E. ACKERHALT, "Thermal Annealing Reactions of Chromium (51) Species in


 Newtron Activated Potassium Chromate", Tese de Doutoramento, Universidade de

 Nova Iorque (Buffalo), 1970.
- 20 M.I. STAMOULI, "Effect of Radiative Neutron Capture in Chromates", Tese de Doutoramento, Universidade de Cambridge, 1971.
- 21 R.E. ACKERHALT, C.H. COLLINS e K.E. COLLINS, Trans. Faraday Soc., 65 (1969) 1927.
- 22 C.H. COLLINS e K.E. COLLINS, Nature (Phys. Sci.), 232 (1971) 109.
- 23 J.C. DE ANDRADE, trabalho não publicado.
- 24 T. ANDERSEN e K. OLESEN, Trans. Faraday Soc., 61 (1965) 781.
- 25 A. NATH, Indian J. Chem., 2 (1964) 332.
- 26 G. PODEANU e T. COSTEA, Radiochim. Radioanal. Lett. 6 (1971) 57.
- 27 S.M. MILENKOVIĆ e S.R. VELJKOVIĆ, Radiochim. Acta, 8 (1967) 146.
- 28 Y.-C. LIN e D.R. WILES, Radiochim. Acta, 13 (1970) 43.
- 29 P.N. DIMOTAKIS e M.I. STAMOULI, J. Inorg. Nucl. Chem., 30 (1968) 23.
- 30 R. DEBUYST, D.J. APERS e P.C. CAPRON, J. Inorg. Nucl. Chem., 34 (1972) 1541.
- 31 D.H. LISTER e M.C.R. SYMONS, J. Chem. Soc., A 1970, 782.
- 32 R. DEBUYST, J. LADRIÈLLE e D.J. APERS, J. Inorg. Nucl. Chem., 34 (1972) 3607.
- 33 K.E. COLLINS, C.H. COLLINS, M.H. YANG, J.T. CHUANG, J.C. WEI e S.J. YEH, Radiat. Phys. Chem., 11 (1978) 103.
- 34 J.L. BONTE e D.S. MARTIN, J. Inorg. Nucl. Chem., 39 (1977) 1481.
- 35 A. NATH, em Specialist Periodical Reports Radiochemistry Vol. II, editado por G.W.A. Newton, The Chemical Society, p. 74, 1975.
- 36 E. LAZZARINI e A.L. FONTOLA LAZZARINI, J. Inorg. Nucl. Chem1, <u>39</u> (1977) 1233.

<u>APENDICES</u>

APÊNDICE I

SIMBOLOGIA UTILIZADA NOS GRĀFICOS E TABELAS

TIPOS DE DOPAGEM UTILIZADOS

CPC - dopagem por cocristalização

CPP - dopagem por coprecipitação

CPS - dopagem por evaporação do solvente (superficial)

APÊNDICE II

TABELAS

DOSE RECEBIDA (MRad)	-log DOSE	%Cr(VI)	%Cr(III)M	ZCr (III)D	ZCr(III)P
Tabela IV.1 - K	C2CrO4/51Cr - (COCRISTALIZ	ADO (T = 100 ⁰ C))	
C	PC/γ _{0°C} /Est. ₀	o _C			
	yddiodd ym y gaell y glain y glain y glain y glain y gaell y y gaell y gaell y gaell y gaell y glain y glain y Mae'r y gaell	2,6	13,1	65,1	19,3
$8,5 \times 10^{-5}$	4,07	3,0	13,5	65,1	18,5
3,0x10 ⁻	3,52	3,0	13,1	64,9	19,1
$3,0x10^{-3}$	2,52	4,7	12,8	64,6	18,0 17,4
1.0×10^{-2}	2,00	7,9	12,4	62,3 56,3	16,8
$1,0x10^{-1}$	1,00	15,9	11,9 11,1	45 , 3	13,1
1,0	0,00	29,4 48,9	9,3	31,7	10,3
6,0	-0,78 -0,90	53,6	8,0	28,5	10,0
8,0	-0,90	22,0	0,0	- , -	•
Tabela IV.2 - 1	K ₂ Cr0 ₄ / ⁵¹ Cr - CPC/γ _{O°C} /Δ ^{1h} _{150C}		ZADO (T = 100°C)	
O	STOM	15,0	8,6	52,4	24,0
$8,5 \times 10^{-5}$	4,07	15,8	8,6	52,4	23,1
3.0×10^{-4}	3,52	17,1	8,7	51,4	23,0
1.0×10^{-3}	3,00	20,6	8,4	49,4	21,5
$1,0x10^{-2}$	2,00	35,3	7,6	40,2	17,0 12,7
3.0×10^{-2}	1,52	43,4	7,1	36,9 33,2	13,5
$1,0 \times 10^{-1}$	1,00	46,5 56.1	6,8 5,6	26,8	11,5
1,0	0,00 -0,30	56,1 59,3	5,6	25,9	9,1
2,0	-0,30 -0,60	63,1	5,1	21,8	10,0
4,0 8,0	-0,90 -0,90	69,4	4,4	17,4	8,8
0,0	0,50	~~, '	• • •	•	·

OSE RECEBIDA (MRad)	-10g DOSE	%Cr(VI)	%Cr(III)M	%Cr(III)D	%Cr(III)
Cabela IV.3 - R	C ₂ CrO ₄ / ⁵¹ Cr -	COCRISTALIZA	$DO (T = 70^{\circ}C)$		
(CPC/YOOC/Est.o	°C			
0	gyaphy principal and the second secon	0,9	43,9	45,0	10,3
$8,0x10^{-5}$	4,10	0,9	41,7	47,0	10,3
3,6x10	3,44	1,1	esate	stoke	
$2,9 \times 10^{-3}$	2,54	3,1	40,7	46,1	10,2
3.0×10^{-2}	1,52	12,3	***	w/#>	
9,9x10 ^{~2}	1,00	21,5	30,6	38,8	9,1
$3,0x10^{-1}$	0,52	31,4	24,9	35,0	8,6
2,0	-0, 30	50, 2	16,1	26,7	7,1
Sabela IV.4 - 1	K ₂ Cr0 ₄ / ⁵¹ Cr - CPC/γ ₀ ο _C /Δ ^{1h} ₁₅₀ ο		$ADO (T = 70^{\circ}C)$		
					** **
0		23,1	21,3	43,6	12,1
8,0x10 ⁻⁵	4,10	24,1	20,7	42,6	12,6 12,3
$3,6x10^{-4}$	3,44	24,6	21,0	42,1	9,2
1.0×10^{-3}	3,00	27,4	20,7	42,7	9,7
3	2,54	31,8	20,0	38,5	9,0
2.9×10^{-3}			18,7	32,7	7. U
$2,9 \times 10^{-3}$ $1,0 \times 10^{-2}$	1,99	39,6	-		
2,9x10 ⁻³ 1,0x10 ⁻² 3,0x10 ⁻²	1,99 1,52	47,0	16,6	29,1	7,4
2,9x10 ⁻³ 1,0x10 ⁻² 3,0x10 ⁻² 9,9x10 ⁻²	1,99 1,52 1,00	47,0 51,2	16,6 15,0	29,1 26,4	7,4 6,4
2,9x10 ⁻³ 1,0x10 ⁻² 3,0x10 ⁻² 9,9x10 ⁻² 3,0x10 ⁻¹	1,99 1,52 1,00 0,52	47,0 51,2 58,7	16,6 15,0 12,4	29,1 26,4 23,0	7,4 6,4 5,8
2,9x10 ⁻³ 1,0x10 ⁻² 3,0x10 ⁻² 9,9x10 ⁻² 3,0x10 ⁻¹ 1,0	1,99 1,52 1,00 0,52 0,00	47,0 51,2 58,7 64,6	16,6 15,0 12,4 10,1	29,1 26,4 23,0 20,6	7,4 6,4 5,8 4,8
2,9x10 ⁻³ 1,0x10 ⁻² 3,0x10 ⁻² 9,9x10 ⁻² 3,0x10 ⁻¹	1,99 1,52 1,00 0,52	47,0 51,2 58,7	16,6 15,0 12,4	29,1 26,4 23,0	7,4 6,4 5,8
2,9x10 ⁻³ 1,0x10 ⁻² 3,0x10 ⁻² 9,9x10 ⁻² 3,0x10 ⁻¹ 1,0 2,0	1,99 1,52 1,00 0,52 0,00 -0,30	47,0 51,2 58,7 64,6 68,4	16,6 15,0 12,4 10,1 8,0	29,1 26,4 23,0 20,6	7,4 6,4 5,8 4,8
2,9x10 ⁻³ 1,0x10 ⁻² 3,0x10 ⁻² 9,9x10 ⁻² 3,0x10 ⁻¹ 1,0 2,0	1,99 1,52 1,00 0,52 0,00 -0,30	47,0 51,2 58,7 64,6 68,4	16,6 15,0 12,4 10,1	29,1 26,4 23,0 20,6	7,4 6,4 5,8 4,8
2,9x10 ⁻³ 1,0x10 ⁻² 3,0x10 ⁻² 9,9x10 ⁻² 3,0x10 ⁻¹ 1,0 2,0 Tabela IV.5 -	1,99 1,52 1,00 0,52 0,00 -0,30 $K_2^{\text{Cro}_4/51}\text{Cr}$ $K_2^{\text{Cro}_4/51}\text{Cr}$	47,0 51,2 58,7 64,6 68,4 COCRISTALIZ	16,6 15,0 12,4 10,1 8,0 ADO (T = 70°C)	29,1 26,4 23,0 20,6 19,0	7,4 6,4 5,8 4,8 4,6
2,9x10 ⁻³ 1,0x10 ⁻² 3,0x10 ⁻² 9,9x10 ⁻² 3,0x10 ⁻¹ 1,0 2,0 Tabela IV.5 -	1,99 1,52 1,00 0,52 0,00 -0,30 K ₂ CrO ₄ / ⁵¹ Cr -	47,0 51,2 58,7 64,6 68,4 COCRISTALIZ	16,6 15,0 12,4 10,1 8,0 ADO (T = 70°C)	29,1 26,4 23,0 20,6 19,0	7,4 6,4 5,8 4,8 4,6
2,9x10 ⁻³ 1,0x10 ⁻² 3,0x10 ⁻² 9,9x10 ⁻² 3,0x10 ⁻¹ 1,0 2,0 Tabela IV.5 -	1,99 1,52 1,00 0,52 0,00 -0,30 $K_2^{\text{Cro}_4/51}\text{Cr}$ $K_2^{\text{Cro}_4/51}\text{Cr}$	47,0 51,2 58,7 64,6 68,4 COCRISTALIZ OC/Est.OCC 88,9 88,8 88,2	16,6 15,0 12,4 10,1 8,0 ADO (T = 70°C)	29,1 26,4 23,0 20,6 19,0	7,4 6,4 5,8 4,8 4,6
2,9x10 ⁻³ 1,0x10 ⁻² 3,0x10 ⁻² 9,9x10 ⁻² 3,0x10 ⁻¹ 1,0 2,0 Tabela IV.5 -	1,99 1,52 1,00 0,52 0,00 -0,30 K ₂ CrO ₄ / ⁵¹ Cr - CPC/Y ₀ O _C / ^Δ lh 2820 4,10	47,0 51,2 58,7 64,6 68,4 COCRISTALIZ OC/Est.OOC 88,9 88,8 88,2 88,3	16,6 15,0 12,4 10,1 8,0 ADO (T = 70°C)	29,1 26,4 23,0 20,6 19,0	7,4 6,4 5,8 4,8 4,6 5,0 5,2 5,4 5,5
2,9x10 ⁻³ 1,0x10 ⁻² 3,0x10 ⁻² 9,9x10 ⁻² 3,0x10 ⁻¹ 1,0 2,0 Tabela IV.5 - 0 8,0x10 ⁻⁵ 3,6x10 ⁻⁴ 1,0x10 ⁻³ 2,9x10 ⁻³	1,99 1,52 1,00 0,52 0,00 -0,30 K ₂ CrO ₄ / ⁵¹ Cr - CPC/Y ₀ O _C / ^Δ ^{1h} ₂₈₂ 4,10 3,44 3,00	47,0 51,2 58,7 64,6 68,4 COCRISTALIZ OC/Est.OOC 88,9 88,8 88,2 88,3	16,6 15,0 12,4 10,1 8,0 ADO (T = 70°C)	29,1 26,4 23,0 20,6 19,0	7,4 6,4 5,8 4,8 4,6 5,0 5,2 5,4 5,5 5,3
2,9x10 ⁻³ 1,0x10 ⁻² 3,0x10 ⁻² 9,9x10 ⁻² 3,0x10 ⁻¹ 1,0 2,0 Tabela IV.5 - 0 8,0x10 ⁻⁵ 3,6x10 ⁻⁴ 1,0x10 ⁻³ 2,9x10 ⁻³ 1,0x10 ⁻²	1,99 1,52 1,00 0,52 0,00 -0,30 K ₂ CrO ₄ / ⁵¹ Cr - CPC/Y ₀ O _C / ^Δ ^{1h} ₂₈₂ 4,10 3,44 3,00 2,54	47,0 51,2 58,7 64,6 68,4 COCRISTALIZ OC/Est.OOC 88,9 88,8 88,2 88,3 89,0	16,6 15,0 12,4 10,1 8,0 ADO (T = 70°C)	29,1 26,4 23,0 20,6 19,0 4,4 4,4 4,8 4,6 4,2 4,3	7,4 6,4 5,8 4,8 4,6 5,0 5,2 5,4 5,5 5,3 4,9
2,9x10 ⁻³ 1,0x10 ⁻² 3,0x10 ⁻² 9,9x10 ⁻² 3,0x10 ⁻¹ 1,0 2,0 Tabela IV.5 - 0 8,0x10 ⁻⁵ 3,6x10 ⁻⁴ 1,0x10 ⁻³ 2,9x10 ⁻³ 1,0x10 ⁻² 3,0x10 ⁻²	1,99 1,52 1,00 0,52 0,00 -0,30 K ₂ CrO ₄ / ⁵¹ Cr - CPC/Y ₀ O _C / ^Δ ^{1h} ₂₈₂ 4,10 3,44 3,00	47,0 51,2 58,7 64,6 68,4 COCRISTALIZ OC/Est.OOC 88,9 88,8 88,2 88,3	16,6 15,0 12,4 10,1 8,0 ADO (T = 70°C) 1,7 1,4 1,6 1,6 1,5	29,1 26,4 23,0 20,6 19,0 4,4 4,4 4,8 4,6 4,2	7,4 6,4 5,8 4,8 4,6 5,0 5,2 5,4 5,5 5,3 4,9 4,6
2,9x10 ⁻³ 1,0x10 ⁻² 3,0x10 ⁻² 9,9x10 ⁻² 3,0x10 ⁻¹ 1,0 2,0 Tabela IV.5 - 0 8,0x10 ⁻⁵ 3,6x10 ⁻⁴ 1,0x10 ⁻³ 2,9x10 ⁻³ 1,0x10 ⁻² 3,0x10 ⁻² 9,9x10 ⁻²	1,99 1,52 1,00 0,52 0,00 -0,30 $K_2^{\text{Cro}_4/51}\text{Cr}$ CPC/ $\gamma_0^{\text{O}_C}/\Delta_{282}^{1h}$ 4,10 3,44 3,00 2,54 1,99	47,0 51,2 58,7 64,6 68,4 COCRISTALIZ OC ^{/Est.} O°C 88,9 88,8 88,2 88,3 89,0 89,2 90,1 90,7	16,6 15,0 12,4 10,1 8,0 ADO (T = 70°C) 1,7 1,4 1,6 1,6 1,5 1,6	29,1 26,4 23,0 20,6 19,0 4,4 4,4 4,8 4,6 4,2 4,3	7,4 6,4 5,8 4,8 4,6 5,0 5,2 5,4 5,5 5,3 4,9 4,6 4,7
2,9x10 ⁻³ 1,0x10 ⁻² 3,0x10 ⁻² 9,9x10 ⁻² 3,0x10 ⁻¹ 1,0 2,0 Tabela IV.5 - 0 8,0x10 ⁻⁵ 3,6x10 ⁻⁴ 1,0x10 ⁻³ 2,9x10 ⁻³ 1,0x10 ⁻² 3,0x10 ⁻² 9,9x10 ⁻²	1,99 1,52 1,00 0,52 0,00 -0,30 K ₂ CrO ₄ / ⁵¹ Cr - CPC/Y ₀ O _C / ^Δ lh 2820 4,10 3,44 3,00 2,54 1,99 1,52	47,0 51,2 58,7 64,6 68,4 COCRISTALIZ OC / Est. O°C 88,9 88,8 88,2 88,3 89,0 89,2 90,1	16,6 15,0 12,4 10,1 8,0 ADO (T = 70°C) 1,7 1,4 1,6 1,6 1,5 1,6 1,4	29,1 26,4 23,0 20,6 19,0 4,4 4,4 4,8 4,6 4,2 4,3 3,8	7,4 6,4 5,8 4,8 4,6 5,0 5,2 5,4 5,5 5,3 4,9 4,6 4,7 4,4
2,9x10 ⁻³ 1,0x10 ⁻² 3,0x10 ⁻² 9,9x10 ⁻² 3,0x10 ⁻¹ 1,0 2,0 Tabela IV.5 - 0 8,0x10 ⁻⁵ 3,6x10 ⁻⁴ 1,0x10 ⁻³ 2,9x10 ⁻³ 1,0x10 ⁻² 3,0x10 ⁻²	1,99 1,52 1,00 0,52 0,00 -0,30 K ₂ CrO ₄ / ⁵¹ Cr - CPC/Y ₀ O _C / ^Δ lh 2820 4,10 3,44 3,00 2,54 1,99 1,52 1,00	47,0 51,2 58,7 64,6 68,4 COCRISTALIZ OC ^{/Est.} O°C 88,9 88,8 88,2 88,3 89,0 89,2 90,1 90,7	16,6 15,0 12,4 10,1 8,0 ADO (T = 70°C) 1,7 1,4 1,6 1,6 1,6 1,6 1,5 1,6 1,4 1,3	29,1 26,4 23,0 20,6 19,0 4,4 4,4 4,8 4,6 4,2 4,3 3,8 3,8	7,4 6,4 5,8 4,8 4,6 5,0 5,2 5,4 5,5 5,3 4,9 4,6 4,7

OSE RECEBIDA (MRad)	-log DOSE	%Cr(VI)	ZCr (111)M	ZCr(III)D	%Cr(III)F
abela IV.6 -	K ₂ CrO ₄ / ⁵¹ Cr -	COPRECIPITAL	$OO (T = 0^{O}C)$		
	CPP/γ _O ° _C /Est.				
			h high armst man was reason and a construction of the construction		
O		1,1	71,0	22,5	5,5
1,2x10 ⁻⁴	3,92	1,2	68,8	24,0	6,0
3,1x10 ⁻⁴	3,51	1,4	69,8	22,8	6,0
$1,0\times10^{-3}$	3,00	1,7	69,5	22,9	5,9
$3,0x10^{-3}$	2,52	2,3	68,7	23,0	6,0
$1,0x10^{-2}$	2,00	3 , 8	66,7	23,6	6,0
$3,0\times10^{-2}$	1,52	6,2	59,3	28,0	6,5
1,0x10 ⁻¹	1,00	8,9	56,3	28,0	6,7
$3,0x10^{-1}$	0,52	12,2	51,2	29,4	7,1
	0,00	17,9	44,6	30,1	7,3
1,0	·	23,0	38,1	31,2	7,7
2,0	-0, 30	20,0			
эндөрийн үүлээд этээр этээр нь хэр	and the second s	A STATE OF THE STA			
abela IV.7 -	K ₂ CrO ₄ / ⁵¹ Cr -	COPRECIPITA	$DO (T = O^{O}C)$		
	♣.				
	many (41h	1 .			
	CPP/γ _{0°C} /Δ ^{1h} ₁₅₀	oc ^{/Est} .ooc		renadad estillinah (h. (h. (h. (h. (h. (h. (h. (h. (h. (h	MIR OP HOTE REPRESENTATION OF FREE HEAD IS THE CHIEF OF MIR PROPERTY AND ADDRESS. WHEN THE PARTY OF THE PARTY
		and the state of t	38.3	30,2	8,8
0		22,8	38,3 39,3	30,2 27,5	
1.2×10^{-4}	3,92	22,8 23,1	39,3	27,5	10,2
1,2x10 ⁻⁴ 3,1x10 ⁻⁴	3,92 3,51	22,8 23,1 21,8	39,3 39,2	27,5 29,5	10,2 9,5
$1,2\times10^{-4}$ $3,1\times10^{-4}$ $1,0\times10^{-3}$	3,92 3,51 3,00	22,8 23,1 21,8 22,6	39,3 39,2 38,4	27,5 29,5 30,3	10,2 9,5 8,8
1,2x10 ⁻⁴ 3,1x10 ⁻⁴ 1,0x10 ⁻³ 3,0x10 ⁻³	3,92 3,51 3,00 2,52	22,8 23,1 21,8 22,6 23,6	39,3 39,2 38,4 37,6	27,5 29,5 30,3 29,5	10,2 9,5 8,8 9,3
1,2x10 ⁻⁴ 3,1x10 ⁻⁴ 1,0x10 ⁻³ 3,0x10 ⁻³ 1,0x10 ⁻²	3,92 3,51 3,00 2,52 2,00	22,8 23,1 21,8 22,6 23,6 24,4	39,3 39,2 38,4 37,6 37,7	27,5 29,5 30,3 29,5 29,0	10,2 9,5 8,8 9,3 9,0
1,2x10 ⁻⁴ 3,1x10 ⁻⁴ 1,0x10 ⁻³ 3,0x10 ⁻³ 1,0x10 ⁻² 3,0x10 ⁻²	3,92 3,51 3,00 2,52 2,00 1,52	22,8 23,1 21,8 22,6 23,6 24,4 27,3	39,3 39,2 38,4 37,6 37,7 33,2	27,5 29,5 30,3 29,5 29,0 30,2	10,2 9,5 8,8 9,3 9,0 9,3
1,2x10 ⁻⁴ 3,1x10 ⁻⁴ 1,0x10 ⁻³ 3,0x10 ⁻³ 1,0x10 ⁻² 3,0x10 ⁻² 1,0x10 ⁻¹	3,92 3,51 3,00 2,52 2,00 1,52 1,00	22,8 23,1 21,8 22,6 23,6 24,4 27,3 28,9	39,3 39,2 38,4 37,6 37,7 33,2 33,1	27,5 29,5 30,3 29,5 29,0 30,2 28,7	10,2 9,5 8,8 9,3 9,0 9,3 9,3
1,2x10 ⁻⁴ 3,1x10 ⁻⁴ 1,0x10 ⁻³ 3,0x10 ⁻³ 1,0x10 ⁻² 3,0x10 ⁻¹ 3,0x10 ⁻¹	3,92 3,51 3,00 2,52 2,00 1,52 1,00 0,52	22,8 23,1 21,8 22,6 23,6 24,4 27,3 28,9 32,8	39,3 39,2 38,4 37,6 37,7 33,2 33,1 28,4	27,5 29,5 30,3 29,5 29,0 30,2 28,7 28,8	10,2 9,5 8,8 9,3 9,0 9,3 9,3
1,2x10 ⁻⁴ 3,1x10 ⁻⁴ 1,0x10 ⁻³ 3,0x10 ⁻³ 1,0x10 ⁻² 3,0x10 ⁻¹ 3,0x10 ⁻¹	3,92 3,51 3,00 2,52 2,00 1,52 1,00 0,52 0,00	22,8 23,1 21,8 22,6 23,6 24,4 27,3 28,9 32,8 40,1	39,3 39,2 38,4 37,6 37,7 33,2 33,1 28,4 24,1	27,5 29,5 30,3 29,5 29,0 30,2 28,7 28,8 25,3	10,2 9,5 8,8 9,3 9,0 9,3 9,3 10,0
1,2x10 ⁻⁴ 3,1x10 ⁻⁴ 1,0x10 ⁻³ 3,0x10 ⁻³ 1,0x10 ⁻² 3,0x10 ⁻² 1,0x10 ⁻¹ 3,0x10 ⁻¹	3,92 3,51 3,00 2,52 2,00 1,52 1,00 0,52	22,8 23,1 21,8 22,6 23,6 24,4 27,3 28,9 32,8	39,3 39,2 38,4 37,6 37,7 33,2 33,1 28,4	27,5 29,5 30,3 29,5 29,0 30,2 28,7 28,8	10,2 9,5 8,8 9,3 9,0 9,3 9,3
1,2x10 ⁻⁴ 3,1x10 ⁻⁴ 1,0x10 ⁻³ 3,0x10 ⁻² 1,0x10 ⁻² 1,0x10 ⁻¹ 3,0x10 ⁻¹ 1,0 2,0	3,92 3,51 3,00 2,52 2,00 1,52 1,00 0,52 0,00 -0,30	22,8 23,1 21,8 22,6 23,6 24,4 27,3 28,9 32,8 40,1 41,6	39,3 39,2 38,4 37,6 37,7 33,2 33,1 28,4 24,1 19,9	27,5 29,5 30,3 29,5 29,0 30,2 28,7 28,8 25,3	10,2 9,5 8,8 9,3 9,0 9,3 9,3 10,0 10,5
1,2x10 ⁻⁴ 3,1x10 ⁻⁴ 1,0x10 ⁻³ 3,0x10 ⁻³ 1,0x10 ⁻² 3,0x10 ⁻¹ 3,0x10 ⁻¹ 1,0 2,0	3,92 3,51 3,00 2,52 2,00 1,52 1,00 0,52 0,00 -0,30	22,8 23,1 21,8 22,6 23,6 24,4 27,3 28,9 32,8 40,1 41,6	39,3 39,2 38,4 37,6 37,7 33,2 33,1 28,4 24,1 19,9	27,5 29,5 30,3 29,5 29,0 30,2 28,7 28,8 25,3	10,2 9,5 8,8 9,3 9,0 9,3 9,3 10,0 10,5
1,2x10 ⁻⁴ 3,1x10 ⁻⁴ 1,0x10 ⁻³ 3,0x10 ⁻³ 1,0x10 ⁻² 3,0x10 ⁻¹ 3,0x10 ⁻¹ 1,0 2,0	3,92 3,51 3,00 2,52 2,00 1,52 1,00 0,52 0,00 -0,30	22,8 23,1 21,8 22,6 23,6 24,4 27,3 28,9 32,8 40,1 41,6	39,3 39,2 38,4 37,6 37,7 33,2 33,1 28,4 24,1 19,9	27,5 29,5 30,3 29,5 29,0 30,2 28,7 28,8 25,3	10,2 9,5 8,8 9,3 9,0 9,3 9,3 10,0
1,2x10 ⁻⁴ 3,1x10 ⁻⁴ 1,0x10 ⁻³ 3,0x10 ⁻³ 1,0x10 ⁻² 3,0x10 ⁻¹ 3,0x10 ⁻¹ 1,0 2,0	3,92 3,51 3,00 2,52 2,00 1,52 1,00 0,52 0,00 -0,30	22,8 23,1 21,8 22,6 23,6 24,4 27,3 28,9 32,8 40,1 41,6	39,3 39,2 38,4 37,6 37,7 33,2 33,1 28,4 24,1 19,9	27,5 29,5 30,3 29,5 29,0 30,2 28,7 28,8 25,3 28,4	10,2 9,5 8,8 9,3 9,0 9,3 10,0 10,5 10,1
1,2x10 ⁻⁴ 3,1x10 ⁻⁴ 1,0x10 ⁻³ 3,0x10 ⁻² 1,0x10 ⁻² 1,0x10 ⁻¹ 3,0x10 ⁻¹ 1,0 2,0	3,92 3,51 3,00 2,52 2,00 1,52 1,00 0,52 0,00 -0,30 -K ₂ CrO ₄ / ⁵¹ Cr - CPP/\gamma_0^\sigma_2^\lambda_282	22,8 23,1 21,8 22,6 23,6 24,4 27,3 28,9 32,8 40,1 41,6 **COPRECIPITATE OC C / Est. O C C	39,3 39,2 38,4 37,6 37,7 33,2 33,1 28,4 24,1 19,9	27,5 29,5 30,3 29,5 29,0 30,2 28,7 28,8 25,3 28,4	10,2 9,5 8,8 9,3 9,0 9,3 10,0 10,5 10,1
1,2x10 ⁻⁴ 3,1x10 ⁻⁴ 1,0x10 ⁻³ 3,0x10 ⁻² 1,0x10 ⁻² 1,0x10 ⁻¹ 3,0x10 ⁻¹ 1,0 2,0 Tabela IV.8 -	3,92 3,51 3,00 2,52 2,00 1,52 1,00 0,52 0,00 -0,30 -0,30 -K ₂ CrO ₄ / ⁵¹ Cr -CPP/\gamma_0OC/\Delta_{282}^{1h} 3,92	22,8 23,1 21,8 22,6 23,6 24,4 27,3 28,9 32,8 40,1 41,6 **COPRECIPITATE OC / Est. OC C	39,3 39,2 38,4 37,6 37,7 33,2 33,1 28,4 24,1 19,9	27,5 29,5 30,3 29,5 29,0 30,2 28,7 28,8 25,3 28,4	10,2 9,5 8,8 9,3 9,0 9,3 10,0 10,5 10,1
1,2x10 ⁻⁴ 3,1x10 ⁻⁴ 1,0x10 ⁻³ 3,0x10 ⁻² 1,0x10 ⁻¹ 3,0x10 ⁻¹ 1,0 2,0 Tabela IV.8 -	3,92 3,51 3,00 2,52 2,00 1,52 1,00 0,52 0,00 -0,30 - K ₂ CrO ₄ / ⁵¹ Cr - CPP/γ _O O _C /Δ ^{1h} ₂₈₂	22,8 23,1 21,8 22,6 23,6 24,4 27,3 28,9 32,8 40,1 41,6 **COPRECIPITATE OF COPERCIPITATE OF	39,3 39,2 38,4 37,6 37,7 33,2 33,1 28,4 24,1 19,9	27,5 29,5 30,3 29,5 29,0 30,2 28,7 28,8 25,3 28,4	10,2 9,5 8,8 9,3 9,0 9,3 9,3 10,0 10,5 10,1
1,2x10 ⁻⁴ 3,1x10 ⁻⁴ 1,0x10 ⁻³ 3,0x10 ⁻³ 1,0x10 ⁻² 3,0x10 ⁻¹ 3,0x10 ⁻¹ 1,0 2,0 Tabela IV.8 -	3,92 3,51 3,00 2,52 2,00 1,52 1,00 0,52 0,00 -0,30 - K ₂ CrO ₄ / ⁵¹ Cr - CPP/γ ₀ °C/Δ ^{1h} ₂₈₂	22,8 23,1 21,8 22,6 23,6 24,4 27,3 28,9 32,8 40,1 41,6 **COPRECIPITATE OF COPRECIPITATE OF COPPETATE OF	39,3 39,2 38,4 37,6 37,7 33,2 33,1 28,4 24,1 19,9 ADO (T = 0°C)	27,5 29,5 30,3 29,5 29,0 30,2 28,7 28,8 25,3 28,4	10,2 9,5 8,8 9,3 9,0 9,3 10,0 10,5 10,1
1,2x10 ⁻⁴ 3,1x10 ⁻⁴ 1,0x10 ⁻³ 3,0x10 ⁻³ 1,0x10 ⁻² 1,0x10 ⁻¹ 3,0x10 ⁻¹ 1,0 2,0 Tabela IV.8 -	3,92 3,51 3,00 2,52 2,00 1,52 1,00 0,52 0,00 -0,30 - K ₂ CrO ₄ / ⁵¹ Cr - CPP/γ _O O _C /Δ ^{1h} ₂₈₂ 3,92 3,51 3,00 2,52	22,8 23,1 21,8 22,6 23,6 24,4 27,3 28,9 32,8 40,1 41,6 **COPRECIPITATE OC / Est. OC C	39,3 39,2 38,4 37,6 37,7 33,2 33,1 28,4 24,1 19,9 ADO (T = 0°C) 2,4 2,1 3,2 2,1 2,3	27,5 29,5 30,3 29,5 29,0 30,2 28,7 28,8 25,3 28,4	10,2 9,5 8,8 9,3 9,0 9,3 10,0 10,5 10,1
1,2x10 ⁻⁴ 3,1x10 ⁻⁴ 1,0x10 ⁻³ 3,0x10 ⁻³ 1,0x10 ⁻² 3,0x10 ⁻¹ 3,0x10 ⁻¹ 1,0 2,0 Tabela IV.8 -	3,92 3,51 3,00 2,52 2,00 1,52 1,00 0,52 0,00 -0,30 -K ₂ CrO ₄ / ⁵¹ Cr - CPP/Y ₀ O _C /Δ ^{1h} ₂₈₂ 3,92 3,51 3,00 2,52 2,00	22,8 23,1 21,8 22,6 23,6 24,4 27,3 28,9 32,8 40,1 41,6 **COPRECIPITA **OC/Est*O°C 86,9 87,4 85,3 87,4 85,9 87,0	39,3 39,2 38,4 37,6 37,7 33,2 33,1 28,4 24,1 19,9 ADO (T = 0°C) 2,4 2,1 3,2 2,1 2,3 2,2	27,5 29,5 30,3 29,5 29,0 30,2 28,7 28,8 25,3 28,4 4,0 4,0 4,3 4,0 4,8 4,1	10,2 9,5 8,8 9,3 9,0 9,3 10,0 10,5 10,1
1,2x10 ⁻⁴ 3,1x10 ⁻⁴ 1,0x10 ⁻³ 3,0x10 ⁻³ 1,0x10 ⁻² 3,0x10 ⁻¹ 1,0x10 ⁻¹ 1,0 2,0 Tabela IV.8 - 0 1,2x10 ⁻⁴ 3,1x10 ⁻⁴ 1,0x10 ⁻³ 3,0x10 ⁻³ 1,0x10 ⁻² 3,0x10 ⁻²	3,92 3,51 3,00 2,52 2,00 1,52 1,00 0,52 0,00 -0,30 K ₂ CrO ₄ / ⁵¹ Cr CPP/Y _O O _C / ^Δ ^{1h} ₂₈₂ 3,92 3,51 3,00 2,52 2,00 1,52	22,8 23,1 21,8 22,6 23,6 24,4 27,3 28,9 32,8 40,1 41,6 **COPRECIPITA **OC/Est**0°C 86,9 87,4 85,3 87,4 85,9 87,0 87,4	39,3 39,2 38,4 37,6 37,7 33,2 33,1 28,4 24,1 19,9 ADO (T = 0°C) 2,4 2,1 3,2 2,1 2,3 2,2 2,0	27,5 29,5 30,3 29,5 29,0 30,2 28,7 28,8 25,3 28,4	10,2 9,5 8,8 9,3 9,0 9,3 10,0 10,5 10,1
1,2x10 ⁻⁴ 3,1x10 ⁻⁴ 1,0x10 ⁻³ 3,0x10 ⁻² 1,0x10 ⁻¹ 3,0x10 ⁻¹ 1,0 2,0 Tabela IV.8 - 0 1,2x10 ⁻⁴ 3,1x10 ⁻⁴ 1,0x10 ⁻³ 3,0x10 ⁻³ 1,0x10 ⁻² 3,0x10 ⁻² 1,0x10 ⁻¹	3,92 3,51 3,00 2,52 2,00 1,52 1,00 0,52 0,00 -0,30 - K ₂ CrO ₄ / ⁵¹ Cr - CPP/γ ₀ °C/Δ ^{1h} ₂₈₂ 3,92 3,51 3,00 2,52 2,00 1,52 1,00	22,8 23,1 21,8 22,6 23,6 24,4 27,3 28,9 32,8 40,1 41,6 **COPRECIPITA **OC/Est**0°C 86,9 87,4 85,3 87,4 85,9 87,0 87,4 84,0	39,3 39,2 38,4 37,6 37,7 33,2 33,1 28,4 24,1 19,9 ADO (T = 0°C) 2,4 2,1 3,2 2,1 2,3 2,2 2,0 2,0	27,5 29,5 30,3 29,5 29,0 30,2 28,7 28,8 25,3 28,4 4,0 4,0 4,3 4,0 4,8 4,1 4,0 4,7	10,2 9,5 8,8 9,3 9,0 9,3 10,0 10,5 10,1 6,8 6,5 7,1 6,6 7,1 6,7 9,3
1,2x10 ⁻⁴ 3,1x10 ⁻⁴ 1,0x10 ⁻³ 3,0x10 ⁻² 1,0x10 ⁻¹ 3,0x10 ⁻¹ 1,0 2,0 Tabela IV.8 - 0 1,2x10 ⁻⁴ 3,1x10 ⁻⁴ 1,0x10 ⁻³ 3,0x10 ⁻³ 1,0x10 ⁻² 3,0x10 ⁻² 1,0x10 ⁻¹ 3,0x10 ⁻¹ 3,0x10 ⁻¹	3,92 3,51 3,00 2,52 2,00 1,52 1,00 0,52 0,00 -0,30 • K ₂ CrO ₄ / ⁵¹ Cr - CPP/γ ₀ ο _C /Δ ^{1h} ₂₈₂ 3,92 3,51 3,00 2,52 2,00 1,52 1,00 0,52	22,8 23,1 21,8 22,6 23,6 24,4 27,3 28,9 32,8 40,1 41,6 **COPRECIPITA **CoC/Est.0°C 86,9 87,4 85,3 87,4 85,9 87,0 87,4 85,9 87,0 87,4 85,9 87,0 88,0	39,3 39,2 38,4 37,6 37,7 33,2 33,1 28,4 24,1 19,9 ADO (T = 0°C) 2,4 2,1 3,2 2,1 2,3 2,2 2,0 2,0 1,6	27,5 29,5 30,3 29,5 29,0 30,2 28,7 28,8 25,3 28,4 4,0 4,0 4,3 4,0 4,8 4,1 4,0 4,7 3,5	10,2 9,5 8,8 9,3 9,0 9,3 10,0 10,5 10,1
1,2x10 ⁻⁴ 3,1x10 ⁻⁴ 1,0x10 ⁻³ 3,0x10 ⁻² 1,0x10 ⁻¹ 3,0x10 ⁻¹ 1,0 2,0 Tabela IV.8 - 0 1,2x10 ⁻⁴ 3,1x10 ⁻⁴ 1,0x10 ⁻³ 3,0x10 ⁻³ 1,0x10 ⁻² 3,0x10 ⁻² 1,0x10 ⁻¹	3,92 3,51 3,00 2,52 2,00 1,52 1,00 0,52 0,00 -0,30 - K ₂ CrO ₄ / ⁵¹ Cr - CPP/γ ₀ °C/Δ ^{1h} ₂₈₂ 3,92 3,51 3,00 2,52 2,00 1,52 1,00	22,8 23,1 21,8 22,6 23,6 24,4 27,3 28,9 32,8 40,1 41,6 **COPRECIPITA **OC/Est**0°C 86,9 87,4 85,3 87,4 85,9 87,0 87,4 84,0	39,3 39,2 38,4 37,6 37,7 33,2 33,1 28,4 24,1 19,9 ADO (T = 0°C) 2,4 2,1 3,2 2,1 2,3 2,2 2,0 2,0	27,5 29,5 30,3 29,5 29,0 30,2 28,7 28,8 25,3 28,4 4,0 4,0 4,3 4,0 4,8 4,1 4,0 4,7	10,2 9,5 8,8 9,3 9,0 9,3 10,0 10,5 10,1

DOSE RECEBIDA (MRad)	-log DOSE	%Cr(VI)	%Cr(III)M	%Cr(III)D	%Cr(III)P
Tabela IV.9 - 1	K ₂ Cr0 ₄ / ⁵¹ Cr - 8	SUPERFICIAL ($(T = 0^{\circ}C)$		
	CPS/γ _{O°C} /Est. _O c				
	2, 100°C, 200.00	C		THE RESERVE OF THE PROPERTY OF	
O	Note	4,1	50,3	34,4	11,2
1,2x10 ⁻	3,92	4,7	52,0	32,5	10,8
3.1x10 *	3,51	4,2	50,5	33,6	11,6
1.0×10^{-3}	3,00	4,5	46,5	36,8	12,2
$3,0x10^{-3}$	2,52	4,2	49,6	34,1	12,2
$1,0 \times 10^{-2}$	2,00	4,8	48,2	35,2	11,9
$3,0 \times 10^{-2}$	1,52	4,7	49,2	34,3	11,9
$1,0x10^{-1}$	1,00	4,7	50,2	33,3	11,8
$3,0x10^{-1}$	0,52	4,8	48,9	34,2	12,1
1,0	0,00	5,8	47,7	34,9	11,7
-	*	6,4	45,5	36,3	11,8
2,0	-0, 30	U y T	1		,
Tabela IV.10 -	CPS/γ _{0°C} /Δ ^{1h} ₁₅₀			og til a sammer skrevetige spekking spå program kan a skriveting spå kallen og skrivet skrivet skrivet skrivet	and the state of t
0	ower	13,2	32,5	35,5	18,9
$1,2 \times 10^{-4}$	3,92		31,4	39,5	17,8
3.1×10^{-4}	3,51	11,6	31,0	38,8	18,6
1.0×10^{-3}	3,00	11,1	30,6	40,2	18,1
3.0×10^{-3}	2,52	12,4	30,5	38,5	18,7
1.0×10^{-2}	2,00	12,3	31,4	38,2	18,1
3.0×10^{-2}	1,52	12,7	31,2	37,8	18,3
1.0×10^{-1}	1,00	12,4	30,1	38,5	19,0
3.0×10^{-1}	0,52	12,5	30,8	38,3	18,4
1,0	0,00	11,8	29,8	40,1	18,4
2,0	-0,30	12,7	29,2	40,3	17,8
0 8,0x10 ⁻⁵ 3,6x10 ⁻⁴ 1,0x10 ⁻³ 2,9x10 ⁻³ 1,0x10 ⁻² 3,0x10 ⁻² 9,9x10 ⁻²	- K ₂ CrO ₄ / ⁵¹ Cr - CPS/γ ₀ O _C /Δ ^{1h} 282 4,10 3,44 3,00 2,54 2,00 1,52 1,00	60,8 62,0 64,9 61,3 61,9 66,5 61,8 61,5	2,5 2,6 2,4 2,5 2,3 2,2 2,3 2,5	18,4 16,9 15,7 18,7 18,3 15,0 17,9 18,9	18,3 18,5 17,1 17,6 17,5 16,2 18,1 18,2 19,2
$3,0x10^{-1}$	0,52	60,7 61.8	2,5 2,5	17,7	18,0
1,0	0,00	61,8			
2,0	-0,30	63,1	2,4	16,7	17,9

(MRad)	%Cr (VI)	ZCr (III)M	%Cr(III)D	%Cr (III)P
abela IV.12 - K ₂ CrC)./ ⁵¹ Cr - COCRIS	STALIZADO (T = 70	o ^o c)	
Δυ.				
	-196°C/Est196	5°C		
Q	1,9	49,3	40,1	8,7
1.0×10^{-1}	8,5	42,5	39,6	9,3
2.0x10 ⁻¹	10,0	41,0	39,8	9,2
$4,0x10^{-1}$	10,5	41,1	40,5	8,0
6.0×10^{-1}	11,8	39,7	40,6	7,9
$8,0x10^{-1}$	13,1	38,8	40,4	7,8
1,0	13,8	33,9	43,8	8,5
Tabela IV.13 - K ₂ Cre			o ^o c)	
CPC/	Y _{-78°C} /Est. ₋₇₈ 0		manife (manife property) is a select to reflect from the contract of the contr	namagayayayaya marahka shirkin
0	1,6	45,7	43,4	9,3
1.0×10^{-1}	10,7	37,0	42,8	9,5
2.0×10^{-1}	12,5	35,6	42,9	9,1
$4,0x10^{-1}$	14,1	32,5	42,3	11,1
6.0×10^{-1}	15,2	33,3	42,0	9,5
$8,0x10^{-1}$	16,9	32,4	41,5	9,1
1,0	16,9	31,0	42,8	9,3
не обявания по не производительной по не принценей на пр	er .			
CPC/	Y _{00C} /Est. ₀ o _C	46,4	42,8	9,0
0 1,0x10 ⁻¹	1,8 18,0	46,4 34,5	42,8 39,0	8,5
0 1,0x10 ⁻¹ 2,0x10 ⁻¹	1,8 18,0 22,0	46,4 34,5 31,2	42,8 39,0 37,5	8,5 9,6
0 1,0x10 ⁻¹ 2,0x10 ⁻¹ 4,0x10 ⁻¹	1,8 18,0 22,0 27,9	46,4 34,5 31,2 29,1	42,8 39,0 37,5 34,3	8,5 9,6 8,7
0 1,0x10 ⁻¹ 2,0x10 ⁻¹ 4,0x10 ⁻¹ 6,0x10 ⁻¹	1,8 18,0 22,0 27,9 30,5	46,4 34,5 31,2 29,1 27,4	42,8 39,0 37,5 34,3 33,4	8,5 9,6 8,7 8,8
0 1,0x10 ⁻¹ 2,0x10 ⁻¹ 4,0x10 ⁻¹ 6,0x10 ⁻¹	1,8 18,0 22,0 27,9 30,5 34,5	46,4 34,5 31,2 29,1 27,4 25,5	42,8 39,0 37,5 34,3 33,4 32,0	8,5 9,6 8,7 8,8 8,1
0 1,0x10 ⁻¹ 2,0x10 ⁻¹ 4,0x10 ⁻¹	1,8 18,0 22,0 27,9 30,5	46,4 34,5 31,2 29,1 27,4	42,8 39,0 37,5 34,3 33,4	8,5 9,6 8,7 8,8
0 1,0x10 ⁻¹ 2,0x10 ⁻¹ 4,0x10 ⁻¹ 6,0x10 ⁻¹ 8,0x10 ⁻¹ 1,0 Tabela IV.15 - K ₂ Cr	1,8 18,0 22,0 27,9 30,5 34,5 37,4	46,4 34,5 31,2 29,1 27,4 25,5 24,0	42,8 39,0 37,5 34,3 33,4 32,0 31,1	8,5 9,6 8,7 8,8 8,1
0 1,0x10 ⁻¹ 2,0x10 ⁻¹ 4,0x10 ⁻¹ 6,0x10 ⁻¹ 8,0x10 ⁻¹ 1,0 Tabela IV.15 - K ₂ Cr	1,8 18,0 22,0 27,9 30,5 34,5 37,4	46,4 34,5 31,2 29,1 27,4 25,5 24,0	42,8 39,0 37,5 34,3 33,4 32,0 31,1	8,5 9,6 8,7 8,8 8,1
0 1,0x10 ⁻¹ 2,0x10 ⁻¹ 4,0x10 ⁻¹ 6,0x10 ⁻¹ 8,0x10 ⁻¹ 1,0 Tabela IV.15 - K ₂ C ₁	1,8 18,0 22,0 27,9 30,5 34,5 37,4 $ro_4/^{51}cr - cocriterion (1)$	46,4 34,5 31,2 29,1 27,4 25,5 24,0 ISTALIZADO (T = 7	42,8 39,0 37,5 34,3 33,4 32,0 31,1	8,5 9,6 8,7 8,8 8,1 7,6
CPC/ 0 1,0x10 ⁻¹ 2,0x10 ⁻¹ 4,0x10 ⁻¹ 6,0x10 ⁻¹ 8,0x10 ⁻¹ 1,0 Tabela IV.15 - K ₂ Cr CPC/	1,8 18,0 22,0 27,9 30,5 34,5 37,4 $ro_4/^{51}Cr - COCR$ $/\gamma_{78} \circ c/Est0 \circ c$ 2,7 32,1	46,4 34,5 31,2 29,1 27,4 25,5 24,0 ISTALIZADO (T = 7	42,8 39,0 37,5 34,3 33,4 32,0 31,1	8,5 9,6 8,7 8,8 8,1 7,6
O 1,0x10 ⁻¹ 2,0x10 ⁻¹ 4,0x10 ⁻¹ 6,0x10 ⁻¹ 8,0x10 ⁻¹ 1,0 Tabela IV.15 - K ₂ C ₁ CPC,	1,8 18,0 22,0 27,9 30,5 34,5 37,4 ro ₄ / ⁵¹ cr - cocr / _{778°C} /Est. _{0°C}	46,4 34,5 31,2 29,1 27,4 25,5 24,0 ISTALIZADO (T = 7	42,8 39,0 37,5 34,3 33,4 32,0 31,1 70°C)	10,3 7,5 8,5 9,6 8,7 8,8 8,1 7,6
0 1,0x10 ⁻¹ 2,0x10 ⁻¹ 4,0x10 ⁻¹ 6,0x10 ⁻¹ 8,0x10 ⁻¹ 1,0 Tabela IV.15 - K ₂ C ₁ CPC,	1,8 18,0 22,0 27,9 30,5 34,5 37,4 r0 ₄ / ⁵¹ Cr - COCR / _{778°C} /Est. _{0°C} 2,7 32,1 42,7 50,7	46,4 34,5 31,2 29,1 27,4 25,5 24,0 ISTALIZADO (T = 7	42,8 39,0 37,5 34,3 33,4 32,0 31,1 70°C)	10,: 7,6
0 1,0x10 ⁻¹ 2,0x10 ⁻¹ 4,0x10 ⁻¹ 6,0x10 ⁻¹ 8,0x10 ⁻¹ 1,0 Tabela IV.15 - K ₂ C ₁ CPC, 0 1,0x10 ⁻¹ 2,0x10 ⁻¹ 4,0x10 ⁻¹ 6,0x10 ⁻¹	1,8 18,0 22,0 27,9 30,5 34,5 37,4 r0 ₄ / ⁵¹ cr - cock / _{778°c} /Est. ₀ °c 2,7 32,1 42,7 50,7 56,4	46,4 34,5 31,2 29,1 27,4 25,5 24,0 ISTALIZADO (T = 7	42,8 39,0 37,5 34,3 33,4 32,0 31,1 70°C) 42,4 33,9 27,1 24,9 21,8	10,3 7,6 10,3 7,6
0 1,0x10 ⁻¹ 2,0x10 ⁻¹ 4,0x10 ⁻¹ 6,0x10 ⁻¹ 8,0x10 ⁻¹ 1,0 Tabela IV.15 - K ₂ C ₁ CPC,	1,8 18,0 22,0 27,9 30,5 34,5 37,4 r0 ₄ / ⁵¹ Cr - COCR / _{778°C} /Est. _{0°C} 2,7 32,1 42,7 50,7	46,4 34,5 31,2 29,1 27,4 25,5 24,0 ISTALIZADO (T = 7	42,8 39,0 37,5 34,3 33,4 32,0 31,1 70°C)	8,5 9,6 8,7 8,8 8,1 7,6

DOSE RECEBIDA (MRad)	%Cr(VI)	ZCr(III)M	%Cr(III)D	%Cr(III)P
abela IV.16 - K ₂ Cr(o / ⁵¹ cr - cocpres	таттуаро (т = 70 [°]	°c)	
		INITIANO (I 70	<i>5</i> ,	
CPC/	Y ₁₅₃ ° _C /Est. ₀ ° _C		to the control of the	Whitehouse Commercial programs and the Commercial State of the Commercial Stat
0	20,5	24,8	44,5	10,2
$1,0 \times 10^{-1}$	44,0	14,5	32,7	8,9
$2,0x10^{-1}$	47,9	11,4	28,7	12,1
$4,0x10^{-1}$	57,1	8,1	26,9	7,9
6.0×10^{-1}	61,4	6,3	24,4	7,9
$8,0x10^{-1}$	63,0	5,7	23,8	7,5
1,0	64,4	5,0	23,0	7,6
abela IV.18 - K ₂ Cr	o ₄ / ⁵¹ Cr - COPREC	IPITADO (T = 0°C)	
	Y ₋₁₉₆ °c ^{/Est} 196			a normal mental series de la company de la management del describent en experiencia de la company de la company
O	1,7	70,8	22,2	5,3
$1,0x10^{-1}$	3,5	66,9	23,7	5,9
$2,0x10^{-1}$	4,8	64,3	24,5	6,4
4.0×10^{-1}	4,8	63,0	26,1	6,2
6.0×10^{-1}	5,3	62,8	25,8	6,1
$8,0x10^{-1}$	5,4	62,3	26,3	6,0
1,0	5,3	62,3	26,2	6,3
1,0 abela IV.19 - K ₂ Cr	5,3	$62,3$ CIPITADO (T = 0° C	26,2	6,3
1,0 abela IV.19 - K ₂ Cr	5,3 $c_{0_4}/_{51}^{51}$ cr - coprec $c_{1_{1_{1_{1_{1_{1_{1_{1_{1_{1_{1_{1_{1_$	$62,3$ CIPITADO (T = 0° C	26,2	
1,0 abela IV.19 - K ₂ Cr	5,3 $co_4/^{51}$ cr - coprece $co_4/^{51}$ cr - coprece $co_4/^{51}$ cr - coprece 1,1	$62,3$ CIPITADO (T = 0°) $63,8$	26,2	6,
1,0 abela IV.19 - K ₂ Cr CPP/	5,3 $c_{0_{4}}/^{51}$ cr - coprec $c_{0_{4}}/^{51}$ cr - coprec	62,3 CIPITADO (T = 0°C	26,2 24,1 27,6	6,6 6,
1,0 abela IV.19 - K ₂ Cr CPP/ 1,0x10 ⁻¹ 2.0x10 ⁻¹	5,3 $c_{4}/^{51}$ Cr - COPREC c_{7-78} °C/Est78°C 1,1 5,9 6,7	62,3 CIPITADO (T = 0°C	26,2 24,1 27,6 27,0	6,6 6,6
1,0 abela IV.19 - K ₂ Cr CPP/ 0 1,0x10 ⁻¹ 2,0x10 ⁻¹ 4,0x10 ⁻¹	5,3 7^{51} cr - coprective 7^{7} -78° c / Est78° c /	62,3 CIPITADO (T = 0°C 63,8 59,9 59,6 57,4	26,2 24,1 27,6 27,0 28,4	6,6 6, 6,
0 1,0x10 ⁻¹ 2,0x10 ⁻¹ 4,0x10 ⁻¹ 6,0x10 ⁻¹	5,3 $c_{4}/^{51}$ Cr - COPREC c_{7-78} °C/Est78°C 1,1 5,9 6,7	62,3 CIPITADO (T = 0°C	24,1 27,6 27,0 28,4 29,3	6,0 6,°
1,0 abela IV.19 - K ₂ Cr CPP/ 0 1,0x10 ⁻¹ 2,0x10 ⁻¹ 4,0x10 ⁻¹ 6,0x10 ⁻¹ 8,0x10 ⁻¹	5,3 $60_4/^{51}$ Cr - COPREC $7-78^{\circ}$ C/Est78°C 1,1 5,9 6,7 7,6 8,0	62,3 CIPITADO (T = 0°C) 63,8 59,9 59,6 57,4 55,9	24,1 27,6 27,0 28,4 29,3	6,6 6,6,6
0 1,0x10 ⁻¹ 2,0x10 ⁻¹ 4,0x10 ⁻¹ 6,0x10 ⁻¹	5,3 7^{51} cr - coprective 7^{7} -78° c / Est78° c /	62,3 CIPITADO (T = 0°C 63,8 59,9 59,6 57,4	24,1 27,6 27,0 28,4 29,3	6, 6, 6, 6,
1,0 abela IV.19 - K ₂ Cr CPP/ 0 1,0x10 ⁻¹ 2,0x10 ⁻¹ 4,0x10 ⁻¹ 6,0x10 ⁻¹ 8,0x10 ⁻¹ 1,0	5,3 $60_4/^{51}$ cr - coprece $7-78^{\circ}$ c /Est78° c 1,1 5,9 6,7 7,6 8,0 10,0	62,3 CIPITADO (T = 0°C 63,8 59,9 59,6 57,4 55,9 52,2	24,1 27,6 27,0 28,4 29,3 30,4	6,6 6,6,6
1,0 abela IV.19 - K ₂ Cr CPP/ 1,0x10 ⁻¹ 2,0x10 ⁻¹ 4,0x10 ⁻¹ 6,0x10 ⁻¹ 8,0x10 ⁻¹ 1,0 Cabela IV.20 - K ₂ Cr	5,3 $60_4/^{51}$ cr - coprece $7-78^{\circ}$ c /Est78° c 1,1 5,9 6,7 7,6 8,0 10,0	62,3 CIPITADO (T = 0°C 63,8 59,9 59,6 57,4 55,9 52,2	24,1 27,6 27,0 28,4 29,3 30,4	6,6 6,6,6,
1,0 Tabela IV.19 - K ₂ Cr CPP/ 1,0x10 ⁻¹ 2,0x10 ⁻¹ 4,0x10 ⁻¹ 6,0x10 ⁻¹ 8,0x10 ⁻¹ 1,0 Tabela IV.20 - K ₂ Cr CPP	5,3 $^{60}4^{/51}$ Cr - COPREC $^{7}4^{-78}$ Cr - COPREC 1,1 5,9 6,7 7,6 8,0 10,0 $^{7}4^{/51}$ Cr - COPREC $^{7}4^{/51}$ Cr - COPREC	62,3 CIPITADO (T = 0°C 63,8 59,9 59,6 57,4 55,9 - 52,2 CIPITADO (T = 0°C	24,1 27,6 27,0 28,4 29,3 30,4	6,6 6,6,6,7,7,
1,0 abela IV.19 - K ₂ Cr CPP/ 0 1,0x10 ⁻¹ 2,0x10 ⁻¹ 4,0x10 ⁻¹ 6,0x10 ⁻¹ 8,0x10 ⁻¹ 1,0 Cabela IV.20 - K ₂ Cr CPP/	5,3 $60_4/^{51}$ Cr - COPREC 7_{-78}° C/Est78°C 1,1 5,9 6,7 7,6 8,0 10,0 7_{-78}° Cr - COPREC 7_{-78}° Cr - COPREC	62,3 CIPITADO (T = 0°C 63,8 59,9 59,6 57,4 55,9 - 52,2 CIPITADO (T = 0°C)	24,1 27,6 27,0 28,4 29,3 30,4	6,6 6,6 6,7
1,0 abela IV.19 - K ₂ Cr CPP/ 0 1,0x10 ⁻¹ 2,0x10 ⁻¹ 4,0x10 ⁻¹ 6,0x10 ⁻¹ 8,0x10 ⁻¹ 1,0 Cabela IV.20 - K ₂ Cr CPP/	5,3 $60_4/^{51}$ Cr - COPREC 7_{-78}° C/Est78°C 1,1 5,9 6,7 7,6 8,0 10,0 7_{-78}° Cr - COPREC 7_{-78}° Cr - COPREC 7_{-78}° Cr - COPREC 7_{-78}° Cr - COPREC	62,3 CIPITADO (T = 0°C 63,8 59,9 59,6 57,4 55,9 - 52,2 CIPITADO (T = 0°C	24,1 27,6 27,0 28,4 29,3 30,4	6,6 6,6,6,7,7,
1,0 abela IV.19 - K ₂ Cr CPP/ 0 1,0x10 ⁻¹ 2,0x10 ⁻¹ 4,0x10 ⁻¹ 6,0x10 ⁻¹ 8,0x10 ⁻¹ 1,0 Cabela IV.20 - K ₂ Cr CPP/ CPP/ 1,0x10 ⁻¹ 2,0x10 ⁻¹	5,3 co ₄ / ⁵¹ cr - coprect (Y-78°c/Est78°c) 1,1 5,9 6,7 7,6 8,0 10,0 ro ₄ / ⁵¹ cr - coprect (Y ₀ °c/Est.0°c) 1,3 7,9 9,7	62,3 CIPITADO (T = 0°C 63,8 59,9 59,6 57,4 55,9 52,2 CIPITADO (T = 0°C 69,3 59,0 53,9	24,1 27,6 27,0 28,4 29,3 30,4 23,5 26,6 28,4	6, 6, 6, 6, 7,
1,0 abela IV.19 - K ₂ Cr CPP/ 0 1,0x10 ⁻¹ 2,0x10 ⁻¹ 4,0x10 ⁻¹ 6,0x10 ⁻¹ 1,0 cabela IV.20 - K ₂ Cr CPP/ CPP/ 1,0x10 ⁻¹ 2,0x10 ⁻¹ 4,0x10 ⁻¹ 4,0x10 ⁻¹	5,3 $60_4/^{51}$ Cr - COPREC (Y_{-78}°) C/Est78°C 1,1 5,9 6,7 7,6 8,0 10,0 (Y_{-78}°) Cr - COPREC (Y_{-78}°) Cr - COPREC (Y_{-78}°) Cr - COPREC (Y_{-78}°) Cr - COPREC 1,3 7,9 9,7 12,5	62,3 CIPITADO (T = 0°C 63,8 59,9 59,6 57,4 55,9 - 52,2 CIPITADO (T = 0°C 69,3 59,0 53,9 51,1	24,1 27,6 27,0 28,4 29,3 30,4 23,5 26,6 28,4 29,3	6,6 6,6,6,6,7,7,
1,0 abela IV.19 - K ₂ Cr CPP/ 0 1,0x10 ⁻¹ 2,0x10 ⁻¹ 4,0x10 ⁻¹ 8,0x10 ⁻¹ 1,0 Cabela IV.20 - K ₂ Cr CPP/ CPP/ 0 1,0x10 ⁻¹ 2,0x10 ⁻¹ 4,0x10 ⁻¹ 6,0x10 ⁻¹ 6,0x10 ⁻¹	5,3 50 ₄ / ⁵¹ Cr - COPREC (Y-78°C/Est78°C 1,1 5,9 6,7 7,6 8,0 10,0 ro ₄ / ⁵¹ Cr - COPREC (Y ₀ °C/Est. ₀ °C 1,3 7,9 9,7 12,5 14,8	62,3 CIPITADO (T = 0°C 63,8 59,9 59,6 57,4 55,9 - 52,2 CIPITADO (T = 0°C 69,3 59,0 53,9 51,1 49,0	24,1 27,6 27,0 28,4 29,3 30,4 23,5 26,6 28,4 29,3 29,0	6,6 6,6,6,7,7,5
1,0 Cabela IV.19 - K ₂ Cr CPP/ 0 1,0x10 ⁻¹ 2,0x10 ⁻¹ 4,0x10 ⁻¹ 8,0x10 ⁻¹ 1,0 Cabela IV.20 - K ₂ Cr CPP/ CPP/ 1,0x10 ⁻¹ 2,0x10 ⁻¹ 4,0x10 ⁻¹ 4,0x10 ⁻¹	5,3 $60_4/^{51}$ Cr - COPREC (Y_{-78}°) C/Est78°C 1,1 5,9 6,7 7,6 8,0 10,0 (Y_{-78}°) Cr - COPREC (Y_{-78}°) Cr - COPREC (Y_{-78}°) Cr - COPREC (Y_{-78}°) Cr - COPREC 1,3 7,9 9,7 12,5	62,3 CIPITADO (T = 0°C 63,8 59,9 59,6 57,4 55,9 - 52,2 CIPITADO (T = 0°C 69,3 59,0 53,9 51,1	24,1 27,6 27,0 28,4 29,3 30,4 23,5 26,6 28,4 29,3	6,6 6,6,6

DOSE RECEBIDA (MRad)	ZCr(VI)	%Cr (III)M	ZCr (III)D	ZCr (III)P
rabela IV.21 - K ₂ C	ro ₄ / ⁵¹ cr - cop	RECIPITADO (T = 0	o°C)	
CPP	/ _{78°C} /Est. _{0°C}			
0 1,0x10 ⁻¹ 2,0x10 ⁻¹ 4,0x10 ⁻¹ 6,0x10 ⁻¹ 8,0x10 ⁻¹	2,2 13,7 18,1 22,1 26,0 27,7 29,0	63,1 48,7 42,1 37,9 34,3 34,5 31,8	27,8 30,0 31,8 31,6 31,6 29,3 30,5	6,9 7,6 7,9 8,4 8,1 8,5 8,8
Tabela IV.22 - K ₂	cro ₄ / ⁵¹ cr - co ²		0°C)	
0 1,0x10 ⁻¹ 2,0x10 ⁻¹ 4,0x10 ⁻¹ 6,0x10 ⁻¹ 8,0x10 ⁻¹	17,2 29,0 31,3 36,0 38,6 40,8 41,5	32,8 21,6 19,3 16,2 13,9 12,6 11,6	41,2 40,4 40,0 37,6 37,0 35,9 35,3	8,8 9,0 9,4 10,2 10,5 10,7
TEMPO DE AQUE CIMENTO (MIN)	ZCr (VI)	%Cr (III)M	%Cr(III)D	%Cr(III)P
Tabela IV.24 - K	$2^{\operatorname{Cro}_4/51}\operatorname{Cr} - \operatorname{Co}_4$	OCRISTALIZADO (T	= 70°C) RECEBIDA: 1,0x1	0 ^{−1} MRad
0 15 30 60 90 120 150 180	19,2 41,0 45,8 49,3 51,6 51,3 52,1 52,9	33,9 20,9 18,0 17,0 15,6 15,3 14,6 14,5	37,4 30,2 28,0 25,8 25,1 25,5 25,1 24,4	9,5 7,9 8,2 7,9 7,7 7,9 8,2 8,2

TEMPO DE AQUE CIMENTO (MIN)	%Cr(VI)	%Cr(III)M	%Cr(III)D	%Cr(III)P
Tabela IV.25 - K ₂ C	r0 ₄ / ⁵¹ Cr - COPR	ECIPITADO (T = 0°C	3)	
		t. ₀ ° _C - DOSE REC		MRad
		58,0	27,9	6,5
15	20,2	41,6	30,6	7,7
30	22,2	36,6	32,3	9,0
60	31,5	30,5	29,7	8,2
90	33,7	28,1	29,3	8,9
120	34,1	25,2	32,0	8,7
150	37,6	25, 2	27,5	9,7
180	36,3	23,6	31,6	8,6
TEMPERATURA DE AQUEC. (°C)	%Cr (VI)	%Cr(III)M	%Cr(III)D	%Cr (III)P
rabela IV. ₂₆ - K ₂ C		RISTALIZADO (T = 70		
0	2 y 4	49,2	39,8	8 , 7
64	2,7	45,5	43,0	8,8
91	3,7	43,3	43,5	9,5
102	5,2	38,7	46,9	9,3
120	9,1	34,0	47,2	9,8
136	14,4	24,6	50,4	10,6
150	24,8	22,9	42,9	9,4
166	38,0	15,7	35,4	10,9
180	41,3	13,9	32 , 5	12,3
213	59,4	6,4	21,6	12,6
242	72,3	3,7	11,2	12,8
284	79,3	1,5	5,7	13,5
Tabela IV.27 - K ₂ 0 CPO	,	RISTALIZADO (T = 7 $\Delta_{\rm T}^{1h}/{\rm Est.}_{\rm O^{\circ}C} - {\rm DO}$		0x10 ⁻¹ MRad
0	14,0	39,9	38,0	8,2
26	14,0	38,8	38,1	9,1
64	17,5	36,0	38,7	7,8
91	22,9	32,8	37,0	7,3
102	25,7	28,4	37,5	8,5
120	29,9	26,0	36,6	7,5
136	34,3	22,0	36,5	7,3
			33,9	7,5
150	40,9	17,7	~~,-	
166	40,9 49,6	12,7	28,8	8,8
		12,7 10,9	28,8 25,8	8,8 10,4
166 180 213	49,6 53,0 65,3	12,7 10,9 5,7	28,8 25,8 17,8	8,8 10,4 11,2
166 180	49,6 53,0	12,7 10,9	28,8 25,8	8,8 10,4

TEMPERATURA DE AQUEC. (^O C)	ZCr (VI)	%Cr(III)M	%Cr(III)D	ZCr (III)
Cabela IV. 28 - K ₂ C	ro ₄ / ⁵¹ Cr - COPRI	ECIPITADO (T = 0 ⁰	C)	
CPP	//Est. $_0$ ° $_{ m C}/\Delta_{ m T}^{ m 1h}$ /Est	- ooc - dose rec	EBIDA: 0 MRad	
20 and 1 and	1,8	63,4	29,6	5,2
64	2,0	60,5	31,1	6,4
91	2,8	53,8	36,9	6,6
102	3,6	50,5	38,2	7,7
120	6,6	45,5	40,0	7,9
136	10,3	38,7	41,2	9,9
150	21,8	30,0	39,5	8,7
166	38,2	16,3	33,8	11,6
180	41,2	13,5	30,5	14,8
213	51,0	6,4	20,5	22,1
225	56,2	5,1	14,1	24,6
242	59,2	4,3	11,9	24,5
262	65,4	3,5	8,7	22,5
284	72,1	2,5	6,5	18,9

Tabela IV.29 -	$K_2^{\text{Cro}_4}/^{51}$ Cr - COPRE	ECIPITADO (T = 0°	'c)	
	CPP/Y _{OOC} /Est. _{OOC} /Δ	lh/Est. ₀ ° _C - DC	SE RECEBIDA: 1,0	0x10 ⁻¹ MRad
	5,7	60,2	28,0	6,0
26	6,4	54,9	31,7	6,9
64	6,3	53,2	33,4	7,1
91	8,1	48,5	35,8	7,6
102	9,2	43,4	39,2	8,2
120	13,4	36,1	42,3	8,2
136	17,1	33,2	41,2	8,5
150	26,6	24,8	39,7	9,0
166	40,7	13,5	33,9	12,0
180	43,5	12,4	29,8	14,3
213	51,3	6,3	20,3	22,2
225	57,0	4,0	14,5	24,5
242	59,5	3,7	11,4	25,5
262	66,1	2,4	7,8	23,7
284	71,6	2,2	7,1	19,2

APÊNDICE III

GLOSSÃRIO DE TERMOS

1. Atividade de um radioisotopo: É definida como sua velocidade de decaimento e é descrita pela lei fundamental do decaimento radioativo.

$$\frac{dN}{dt} = -\lambda N$$

onde N e o número de núcleos radioativos e λ e a constante de decaimento do radioisotopo.

2. Atividade específica: Existem três conceitos correntes para definir a atividade específica de uma fonte radioativa, a saber: a) É a razão entre a quan tidade de atividade de um radioisotopo e a massa total deste elemento (isoto pos ativos + inativos) presente em uma amostra; b) É a atividade por unidade de massa de um radioisotopo constituinte da amostra; c) É a atividade por unidade de peso de qualquer amostra de material radioativo. Infelizmente estes três conceitos são utilizados indistintamente, de acordo com a conveniência. A definição c) é a mais facilmente aplicavel (este conceito foi o utilizado no texto da tese), mas a definição b) parece ser a mais aceita. Neste caso (definição b)), considerando-se uma amostra pura ou livre de carregador, isto é, não misturada com outros nuclídeos emissores, a atividade específica pode ser calculada por

$$AE = \frac{\text{ativid.}}{\text{massa}} = \frac{\lambda N}{\text{nM/A}_{V}} = \frac{\lambda A_{V}}{M}$$

onde M \in o peso molecular da amostra, A_v \in o número de Avogadro (6,02x10²³ núcleos/mol) e λ \in a constante de decaimento radioativo do nuclídeo emissor (λ =(1n2)/(t1/2)).

- 3. Atomos quentes: É a denominação que se da a atomos que se encontram em estados de alta energia cinética e/ou potencial, independentemente do processo de ativação. A ativação nuclear e apenas um dos varios metodos de que se dispoe para a produção destas especies energeticas.
- 4. Buraco ("hole"): É uma espécie criada no solido pela saída de um elétron de um sítio do cristal. Obviamente neste sítio ficará localizada sempre uma "carga mais positiva". O elétron ejetado pode ser posteriormente aprisionado ("trapped") por outras espécies contidas na rede cristalina, chamadas armadilhas ("traps"), conferindo-lhes uma carga mais negativa (vide fig. II.6).

- 5. Captura eletrônica: É um processo de decaimento nuclear através do qual a carga nuclear é diminuída de uma unidade, devido a captura de um eletron orbital (geralmente eletrons K) pelo nucleo. Este processo de decaimento pode gerar vários outros fenômenos subsequentes, como a emissão de raios-X, a emissão de raios γ e/ou a geração de uma cascata de eletrons Auger.
- 6. Carregador: É uma quantidade mensuravel de uma substância (geralmente um isotopo estavel ou um elemento químico) que, quando adicionada a traços de uma outra substância (geralmente radioativa e contendo o mesmo elemento químico), "conduz" estes traços durante os processos químicos, físicos e/ou biológicos que esta amostra possa vir a sofer.
- 7. Conversão interna: É o processo pelo qual a energia de excitação nuclear é transferida diretamente a um elétron orbital do atomo, por interação deste com o núcleo. O elétron de conversão podera se originar de qualquer camada eletrônica e, da mesma forma que a captura eletrônica, podera induzir a emissão de raios-X e/ou elétrons Auger. Estes dois processos de emissão são competitivos entre si.
- 8. Curie (Ci): É uma unidade histórica de atividade, mas ainda em uso, definida como exatamente 3,7x10¹⁰ desintegrações por segundo. Este valor originou-se na melhor estimativa da atividade de 1g de ²²⁶Ra puro. Os submultiplos desta unidade (mCi e μCi) são os mais usados em radioquímica. A unida de Curie está sendo gradualmente substituída pelo seu equivalente em unidades SI que é o Becquerel (Bq) e seus multiplos kBq e MBq. A conversão de Bq em Ci e vice-versa é feita considerando-se que 1Bq=2,703x10⁻¹¹Ci (1mCi=37 MBq).
- 9. Dose Absorvida: É definida como a energia (de qualquer tipo de radiação) absorvida por unidade de massa de absorvedor. A unidade histórica deste parâmetro é o Rad, definida como 100 ergs/g. Como as outras unidades no entanto, o Rad está sendo substituído pelo seu equivalente em unidades SI, chamado Gray (Gy), definido como 1 Joule/kilograma, ou seja, 1 Gy = 100 Rad.
- 10. Exposição à radiação ionizante: Este conceito foi introduzido logo no inicio das pesquisas com radioisotopos. É uma quantidade definida de modo muito parecido com a força de um campo elétrico criado por uma carga pontual. A exposição e linear e e definida somente para fontes de raios X e γ. A unidade básica da exposição aos raios γ e definida em termos de carga dQ criada pela ionização provocada por elétrons secundários, formada em um volume elementar de ar de massa dm, quando estes elétrons são completamente parados pelo ar. O valor de exposição e dado por dQ/dm. A unidade SI para a exposição aos raios γ e o coulomb por kilograma (C/kg), à qual não foi da do nenhum nome especial. A unidade histórica deste parametro foi o Roentgen (R) e a relação entre os dois sistemas de unidades e dado por 1R=2,58x10⁻⁴ C/kg (para maiores detalhes, vide ref. 158a, cap. II).
- 11. Meia-vida: É o tempo no qual metade dos átomos de uma substância radioativa desintegra-se em outra forma nuclear.
- 12. Pureza radioisotópica: Indica a pureza de uma amostra com respeito a existencia de outros isotopos do mesmo elemento (radioativo ou não).
- 13. Pureza radionuclidica: Indica o grau de pureza de um determinado radionuclideo em uma amostra, com respeito a todos os outros radionuclideos presentes nesta amostra (tidos como impurezas).

- 14. Pureza radioquímica: Indica a pureza de uma substância radioativa quanto à sua forma química.
- 15. Rad: Abreviação de Radiation Absorbed Dose (vide dose absorvida).
- 16. Rendimento das espécies: É a fração ou porcentagem dos atomos de recuo encontrados em formas químicas diferentes daquelas idênticas ou quimicamente indistinguíveis ao composto pai.
- 17. Retenção: É a fração (ou porcentagem) das especies quimicamente indistingui veis do composto pai que incorporou o atomo de recuo.
- 18. Retenção inicial: É definida como a quantidade de átomos de recuo (ou de dopagem) encontrados sob a mesma forma química do composto pai, apos a dissolução de um solido irradiado (dopado) que tenha sido submetido a uma perturbação mínima antes da sua análise. Este parâmetro depende de alguns fatores inerentes ao proprio cristal, tais como a identidade dos cátions e ânions (ou das moleculas neutras) que compoem o retículo, a presença ou ausência de moleculas de solvatação e a força das ligações químicas envolvidas no solido. Depende também dos detalhes estruturais do cristal, das con dições de irradiação (dopagem) e estocagem da amostra antes da sua análise e das reações que ocorrem no ato da dissolução do solido.
- 19. Resfriamento do átomo de recuo: É o processo através do qual o átomo de recuo perde a sua energia cinética e/ou potencial, até ficar retido intersticialmente no reticulo cristalino, pronto para sofer reações posteriores, se ativados adequadamente.
- 20. Roentgen: É a unidade histórica de exposição à um campo de radiação ionizante, definida como a exposição que resulta na produção de uma unidade de carga eletrostática por 0,001293 g de ar (1 cm³ de ar nas CNTP vide exposição à radiação ionizante).
- 21. Taxa de dose: É definida como a velocidade de absorção de energia (por unidade de massa da amostra). No presente texto, a taxa de dose foi citada em MRad \times h⁻¹ ou em kRad \times h⁻¹.
- 22. Termalização do átomo de recuo: Mesmo que "resfriamento do átomo de recuo".
- 23. Transferência linear de energia: É definida como a velocidade local (i.e., em um determinado ponto) de deposição de energia, ao longo da trajetoria da partícula ou foton incidente. Este parâmetro é aproximadamente igual à per da específica de energia, -dE/dx.
- 24. Transição isomérica: É um processo de decaimento nuclear pelo qual o núcleo produzido em uma transformação nuclear desexcita-se até um estado metaestável, antes de decair ao estado fundamental.
- 25. Vacância: Para sólidos iônicos, é considerada como a ausência de ions em de terminadas posições do retículo, frequentemente para compensar a presença de impurezas de cargas diferentes, de modo que o cristal possa obedecer o principio da eletroneutralidade. Quando a impureza é um cation de carga eletrica maior que a do cation que compõe o retículo, esta carga em excesso é compensada, dentre outros processos, por uma vacância cationica, represen

tada pela ausência de um cation do reticulo. Alternativamente, um excesso de cargas negativas pode ser compensada por vacâncias aniônicas.

26. Valor G: Expressa o número de moléculas, N, produzidas por mol de composto irradiado por 100 eV de energia absorvida, por grama de amostra. Calcula-se o valor G por meio da equação

$$G = \frac{N}{D \times 10^{-2}}$$

onde D e a dose absorvida pela amostra em termos de eVxg⁻¹. Na realidade,o valor G e uma relação proporcional entre a dose absorvida e o rendimento dos produtos da radiolise. Atualmente, no sistema SI, a dose absorvida deve ser dada em termos de Jxkg⁻¹ (vide Dose Absorvida).