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Resumo

Essa dissertacao é focada no estudo de condigoes suficientes para a existéncia de toros
invariantes no espaco de fase estendido de sistemas padrao da Teoria da Média, também
chamada de Teoria Averaging. A demonstracao dos resultados esta fortemente ancorada na
teoria de variedades invariantes normalmente hiperbdlicas. Serdo apresentados conceitos
basicos dessas duas teorias, necessarios para a compreensao completa da demonstracao
que iremos desenvolver. O percurso da demonstracao também nos incentivou a apresentar
uma discussao sobre a existéncia de folheagoes invariantes pelo fluxo de vizinhancas de

ciclos limites atratores hiperbdlicos no plano.

Palavras-chave: Teoria Averaging; Teoria da Média; Variedades invariantes normalmente

hiperbdlicas; Toros invariantes.



Abstract

This dissertation centers on results providing sufficient conditions for the existence of
invariant tori in the extended phase space of systems in the standard form according to
the averaging theory. The proof of the results relies strongly on the theory of normally
hyperbolic invariant manifolds. Fundamental concepts of those two theories will be pre-
sented, as they will be necessary for full comprehension of the proof we will present for
the main result. The path to proving this result has also motivated us to introduce a brief
exposition of results regarding the existence of foliations of neighbourhoods of attracting

hyperbolic limit cycles that are invariant under the flow of the field.

Keywords: Averaging theory; Normally hyperbolic invariant manifolds; Invariant tori.
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Introduction

An important method in the study of nonlinear oscillating systems which
are affected by small perturbations is the Averaging Theory. While its origins can be
traced back to names such as Clairaut, Laplace and Lagrange, this theory was rigorously
formalised only later, in the 20th century - see (FATOU, 1928) and (BOGOLIUBOV;,
MITROPOLSKY, 1961), for instance. The theory is mainly applied to provide long-time
asymptotic estimates for solutions of non-autonomous differential equations given in the

following standard form:
N . ~
T = ZalFi(t,x) + MR (L, x, ), (1)
i=1

where F': R x D x [0,¢0] and each F} : R x D — R" are smooth functions, T-periodic in
t. The set D is an open subset of R" and ¢y > 0 is assumed to be small. The estimates
provided by the Averaging Theory are related to solutions of an autonomous system,

named the truncated average equation, which has the form

£= 2 ¢(6). @

As the name indicates, this equation is obtained by truncating a different equation. In
fact, one fundamental result of the Averaging Theory is precisely that there is a change of

coordinates under which system (1) is transformed into

N
§=),9:(8) + NG, 6 ). (3)
i=1
We remark that g; is in general the time average of Fi(t,z), that is,

g1(&) = 1J Fi(s,€)ds.

0
Motivated by this identity, each g; is named averaged function of order i of (1). This theory
has found great success when applied to investigate invariant manifolds of differential
systems (HALE, 1961). In particular, it has been extensively used to study periodic
solutions, for example (BUICA; LLIBRE, 2004). Examples of results regarding the relation
between simple zeros of the first-order averaged function, g;, and isolated T-periodic
solutions of (1) can be found in (HALE, 1961), (HALE, 1980), and (VERHULST, 1996).

Let ¢ € {1,2,...,k} be the first index for which g; is not identically zero. The
main result of this work is concerned with sufficient conditions for the existence of invariant
tori in the extended phase space of systems of the form (1) in R? that satisfy the following
hypothesis:
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Hypothesis A: The differential system & = g,(¢) has an attractive hyperbolic limit cycle.

The main result of this work is stated in Theorem A of next chapter, and
basically claims that a system of the form (1) in R? that satisfies Hypothesis A has an

invariant torus in the extended phase space.

This dissertation is divided in four chapters. In the first one, we will properly
state the main result of this work, and show how it relates to the Averaging Theory. In
the second chapter, we will state some preliminary results concerning methods that we
will employ to prove the main result, such as the theory of normally hyperbolic invariant
manifolds. In the third one, we will prove a fundamental proposition that will be used for
the proof of our result. This proposition requires some discussion about the existence of
invariant foliations of neighbourhoods of hyperbolic limit cycles, which will be present in
the same section. The last chapter will contain the proof of our main result. This proof

will be divided in several lemmas, which will be proved in the same section.
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1 Main Theorem

Let N e N such that N > 1. Consider the system
N . ~
T = Zs’Fi(t,a:) + MRt 3, ), (1.1)
i—1

where F : R x D x [0,60] = R* and F; : R x D — R?, for i = 1,2,..., N, are smooth
functions, T-periodic in ¢. The set D is an open subset of R? and ¢y > 0 is small. System

(1.1) is said to be in standard form. We will make use of the following theorem, proved in
(SANDERS; VERHULST; MURDOCK, 2007):

Theorem 1. There is a T-periodic transformation,

N
T = U<t7£7€) = 6 + Zgiui(t7€)’
=1

under which system (1.1) is transformed into
=298 + "G & ). (12)
i=1

Let £ € {1,2,..., N} be the first index for which g; is not identically zero. Then,

system (1.2) can be written as

€ = elg,(€) + Gt €, ). (1.3)

We assume that Hypothesis A is valid for system (1.1) and we apply a time rescaling of
the form s = °t. We will denote the derivative of € with respect to the new time s by &

System (1.3) becomes:

€' = gu(€) +£G(s/<", €. ¢). (1.4)

Note that, since F; and U are T-periodic in ¢, G is periodic in s. The procedures that
follows are based on a idea from Novaes and Céandido, which is being developed in a paper
yet to be published . We apply an additional change of variables, which is a combination
of a translation of the origin to the interior of the limit cycle present in Hypothesis A and
a change to coordinates (p, o) similar to polar coordinates with respect to which the limit
cycle is given as a graph of a function of the angular variable, o. Thus, system (1.4) may

be rewritten:

p' = f(p,o) +eR(p, 0,5/, &),
o' =g(p,0) +eS(p,0,s/e",¢). (1.5)
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The functions f, g, R, and S are smooth, and 27-periodic in the angular variable o.
Moreover, t — R(p, 0,t,e) and t — S(p,0,t,¢) are periodic, and we will denote this period

by 27m/Q), where m € N. We remark that solutions of the truncated system

& = gi(§) (1.6)
correspond naturally to solutions of
Pl = f<p7 0-)’
o' = g(p,0). (1.7)

In order to study (1.5), we introduce a new angular variable modulo 2mme’ /€2, denoted by

7, and the autonomous system

/

f(p,o) +eR(p,0,7/e" ),
(p,o) +eS(p,o,7/e" 2),

S
l

!/

Q
I
= Q

!/

\]
Il

(1.8)

Solutions of (1.8) correspond naturally to solutions of (1.5). Thus, the search for invariant
tori in (1.5) can be performed via the study of (1.8). To study this system, we will consider

it the result of a singular perturbation effected on the system

o= f(p o),
o' =g(p, o),
7 =1. (1.9)

The result we seek to prove is:

Theorem A: Consider a differential system in the form (1.1). Suppose that g; = 0 for
1=1,2,....,0 — 1, where 0 < ¢ < N. If Hypothesis A holds, that is, the truncated equation
¢ = go(€) has an attracting hyperbolic limit cycle, then system (1.1) has a normally

hyperbolic invariant torus in the extended phase space.

The invariant torus appears if we consider the time variable, ¢, as an angular
variable of the system (1.1), and treat it as an autonomous system in a space of dimension
three. This can be done because we are working with functions which are periodic in ¢.
The correspondence of systems discussed above allows us to state this result in terms of

the transformed system (1.8). In this new setting, Hypothesis A is restated as follows:
Hypothesis B: The system

p=f(p,0)

o' =g(p,0), (1.10)

has an attracting hyperbolic limit cycle I' that is the graph of a function of the angular

variable o.
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The following result will take the place of Theorem A in our new setting:

Theorem B: Let k be an integer such that 2 < k£ < r. Suppose that Hypothesis B
is satisfied. Then, if |¢| is sufficiently small, system (1.8) has a k-normally hyperbolic

invariant manifold that is the graph of a function of the angular variables o and 7.

The definition of a k-normally hyperbolic manifold will be given in the next
chapter. We remark for now that the fact that the invariant manifold is a graph of a
function of the angular variables is actually a stronger conclusion than we had envisioned
in Theorem A. It will be proved that Theorem B is valid, so that Theorem A must also be

valid.

As mentioned above, the proof of Theorem B will be done by studying a
singular perturbation effected on system (1.9). To study this perturbation, we will make
use of the theory of normally hyperbolic invariant manifolds and of a continuation method,
following Chicone in (CHICONE; LIU, 1999/00). First, we will introduce briefly the theory
of normally hyperbolic invariant manifolds. This is done in the next section, where other

useful results will be discussed.
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2 Preliminaries

We begin this section with a brief introduction of the theory of normally
hyperbolic invariant manifolds. Afterwards, we present results related to the Arzela-Ascoli
theorem and results derived from the Gronwall inequality that will be used later on in

this work.

2.1  Normally hyperbolic invariant manifolds

We shall present the definition of normally hyperbolic invariant manifolds and a
fundamental theorem regarding those objects proved by Fenichel in (FENICHEL, 1971/72).
Afterwards, we discuss some conditions that guarantee normal hyperbolicity for a special

class of invariant manifolds with which we shall work. Our exposition is based mainly in
(FENICHEL, 1971/72), (HIRSCH; PUGH; SHUB, 1977) and (WIGGINS, 1994).

2.1.1 Hyperbolic splittings

Let f be a C! vector field on R", with flow ¢'. Let also M be a compact,
connected C' manifold invariant under f. We suppose that M is properly embedded in

R™, that is, each point in M has a neighbourhood U and coordinates (z,y) for U such
that M n U = {(z,y) e R* x R" .y = 0}.

We define TR" |y, := {(a,b) € R" x R" : a € M}, the tangent bundle of R"
restricted to M, and we denote the tangent bundle of the manifold M by TM, as is
customary. Moreover, the symbol @ represents the Whitney sum of vector bundles. Let
TR"yy = TM @ N°@® N be a continuous splitting such that TM @& N° and TM @ N* are
invariant under D¢’ for all ¢, that is, the fibre corresponding to an arbitrary m € M of one

of those bundles is carried by D¢’ to the fibre corresponding to ¢'(m) of the same bundle.
Define 7, 7° and 7* the projections on T'M, N* and N“, respectively. For each
m € M, define
v*(m) = limsup |7°D¢' (¢~ (m))|n+ Yt and
t—00

v"(m) = limsup 7" Dg' (¢~ (m))|nu| ",

t——0o0

We say that this splitting is hyperbolic if v*(m) < 1 and v*(m) < 1 for all m € M.
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2.1.2 Definition of k-normally hyperbolic invariant manifolds

Suppose that M, f and ¢ are as above, and assume that we have a hyperbolic
splitting TR" = TM @ N* @ N*". For each m € M, define:
. log [ D(¢~"|ar)(m)]
s =1

7m) = I o Dt (m)

. log [ D(¢~"a)(m)|
c“(m) = limsup :
) =P hog we D (ot ()]

Let k € N*. We say that M is k-normally hyperbolic if o°(m) < 1/k and ¢“(m) < 1/k for
allme M. If k =1, we say simply that M is normally hyperbolic.

and

Ns

The numbers v, v*, ¢ and ¢“ are called the generalised Lyapunov type num-
bers. An interesting result, proved in (FENICHEL, 1971/72), is that they are independent
of the choice of metric on TR"|;. They generally depend on the splitting.

A different definition of k-normally hyperbolic invariant manifolds is provided
in (HIRSCH; PUGH; SHUB, 1977). If M is assumed to be a C' compact manifold, this

definition is equivalent to the one presented above.

2.1.3 Fenichel’'s Theorem

The following theorem was proved by Fenichel in (FENICHEL, 1971/72). It
ensures the persistence of normally hyperbolic invariant manifolds under regular perturba-

tions.

Theorem 2. Let f be a C" vector field on R"™, r = 1. Let M be a compact, connected C"
manifold properly embedded in R™ and invariant under f. Suppose that M is k-normally
hyperbolic. Then, for any vector field g in some C* neighbourhood of f, there is a C”
manifold M, invariant under g and C" diffeomorphic to M.

REMARK: The same result is proved in (HIRSCH; PUGH; SHUB, 1977), albeit in a
different setting. In this reference, it is explicitly proved that M, is near M. In particular,
it M and M, are both given as graphs, respectively of the functions h; and hy of two
angular variables, then, for each r > 0, there is € > 0 such that |f — g|c1 < € implies that

|hq — ha|co < 7, a result we will make use of later on.

2.1.4 Existence of invariant normal bundles

Once again, let M and f be as in Section 2.1.1. In (FENICHEL, 1971/72)

Fenichel also proved, under specific conditions, the existence of a normal bundle over M
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that is invariant under D¢'. With the same notation as before, we define:

)1/t

p*(m) = limsup (ID(¢™" L) (m) || 7* D' (6" (m)) and

p"(m) =limsup (|D(¢™"|ar) (m)[[ | D" (¢~ (m)) - )

Ns

—1/t

The theorem proved in that reference is the following:

Theorem 3. If p°(m) < 1 and p*(m) < 1 for all m € M, there are bundles I°, and I*
in TR"|yr, homeomorphic to N* and N" and invariant under D¢" for all t. I° @ I* is

transversal to T M.

2.1.5 Normal hyperbolicity via contraction rates

In this section, we introduce sufficient conditions for an invariant manifold to
be normally hyperbolic in the particular case of 2-dimensional C! invariant manifold in
R?. Those conditions were extracted from (CHICONE; LIU, 1999/00).

Let f be a C* vector field on R?, with flow ¢'. Let M be a compact connected
properly embedded 2-dimensional C' manifold. Suppose that M is invariant under the
vector field f. Let TR3|y; = TM @ N be a splitting of TR?|); and suppose that the
1-dimensional normal bundle N is invariant under D¢’. For each m € M, define (s, m)

to be solution to 2’ = f(z) such that v(0,m) = m.

Let a solution (s, m) be fixed. Consider the first variational equation along
this solution:
X' =df(y(s,m))- X, XeR3 (2.1)

Let ®(s) be the principal fundamental matrix solution of (2.1), and let X;(s) and Xs(s)
be independent solutions of this equation that span the tangent space T )M for each
s € R. Define 6(s) by

= arccos Xafs), Xa(s))
s) = ( X, ()] %a(5) ) ’

and suppose that there are ky, Ky € R such that 0 < kg < 0(s) < Ky < 7 for all s > 0,

(2.2)

independently of the choice of m € M. This condition ensures that the vectors X;(s) and

X5(s) do not approach parallelism even as s — o0.

Let Xy be a vector in V,,, the fibre of the bundle N corresponding to the point
m € M. We define the following quantities:

_1Xu(s)]
X,(0)]

As3(s) = |(D|<§()j(0|

/\2(S> L |X2(S)|

Mls): = X0)

(2.3)

We present now the main result of this section.
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Figure 1 — Vectors X;, X5 and Xy, and angle 6.

Lemma 1. Let k be a positive integer. Suppose that there are > 0 and ¢ > 0 independent

of the choice of m such that the following conditions are satisfied for s = 0:

—pBs )‘3(3) —Bs )‘3(8) —Bs
A3(s) < ce™, e (s) < ce P, (o) < ce . (2.4)

Then, M is a k-normally hyperbolic invariant manifold.

Before proving this lemma, we establish some definitions and present some
basic facts. First, we remark that, since N is invariant under D¢’ and the matrix of

D¢'(m) is exactly ®(s), the quantity A3(s) can be rewritten as

As(s) = [mn Do*(m)|w,, |-

Now, we may replace m by any point in M and the inequalities (2.4) will still hold.

Therefore, we have
|7 D (67" (m))|n, ., | < ce ™, Vs =0.
In order to simplify notation, we define

A*(m) = D(¢™°|m)(m) and  B*(m) = wy D¢*(¢~"(m))

R

Let us also define

v(m) = limsup | B*(m)|** and
S§—0
. log | A*(m)|
o(m) = limsup ——————.
) = B0SP log [B+(m)]
just as we defined v* and o® before. Observe that, if v(m) < 1, equivalent definitions for
v(m) and o(m) are
v(m) = inf{a : |B*(m)|/a® — 0 as s — o0} and
o(m) = inf{a : [[A*(m)||B*(m)||* — 0 as s — oo}.
The following result, proved by Fenichel in (FENICHEL, 1971/72), will be used in our

proof of Lemma 1.
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Lemma 2 (Uniformity Lemma).

1. Suppose |B*(m)|/a®* — 0 as s — w0 for all m € M. Then there are constants a < a

and ¢ such that |B*(m)| < ca for allme M and s = 0.

2. Under the hypotheses of item 1, suppose also that a < 1 and that « is such that
|A*(m)||B*(m)|* — 0 as s — o for all m € M. Then there are constants & < «

and C > 0 such that | A*(m)||| B*(m)|* < C for allm e M and s > 0.

3. If the inequalities v(m) < a < 1 and o(m) < « hold for allm € M, then |B*(m)| — 0

and ||A*(m)||B*(m)|* — 0 as s — o0 uniformly for m e M.

4. v and o attain their suprema on M.

We present below the proof of Lemma 1.

Proof (of Lemma 1): By our remarks, we have:

1/s

v(m) < limsup (ce )Y = e < 1,

§—00

and thus the splitting TR?|,; = TM @ N is hyperbolic.

We must prove that o(m) < 1/k for all m € M. For a linear map T, define
w(T) = inf{|Tv| : |v| = 1}. We claim that there is C' > 0, independent of m, such that

w(D¢*(m)|,a1) > C - |Dg*(m)|,, | e*/*,

for all s > 0 and all m € M. Let m € M and take v € T,,, M satisfying |v| = 1. Since X;(0)
and X5(0) span T, M, there are a,b € R such that aX;(0) + bX5(0) = v. Considering that

lv| = 1, we have that
a®| X1(0)* + b X2(0)|* + 2ab| X1(0)]| X2(0)] - cos §(0) = 1.
Now, we have D¢®(m)|r,ar - v = aXi(s) + bXs(s). Therefore,
| D¢ (m)| 7,00 - v|* = a®| X1(8)|* + b?| Xo(s) | + 2ab| X1 (s)|| X2(s)| - cosO(s).
Define p := a|X;(0)] and ¢ := b|X2(0)|. By (2.3) and (2.4), we have,

2
|D¢®(m) 7,0 - 0| = <)\36(8)6[35> (p*> + ¢* + 2pg cosb(s)) ,

where 7(p, q) := p* + ¢* + 2pgcos0(0) = 1 and 6(s) € [ky, Ky]. Consider the problem of
finding the global minimum of the function v (p, ¢, z) = p* + ¢* + 2pqz in the region

R:={(p,q,2)eR®:r(p,q) =1and —1 < cos Ky < z < coskg < 1},
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which is ensured to exist because R is compact. Observe that
P q
U(p,q,2) = pq ( +-+ 22) :
qa P

If pg > 0, the condition ¥ (p, ¢, z) > 0 is equivalent to

1

<p+p+22) >O7
q f =y
q

1
which is true in the region R because the minimum of the function t — [ ¢+ — | with

t > 0 is equal to 2 and because z > —1. Similarly, if pg < 0, the condition t(p, g, z) > 0 is

1

<p+p+22) <O7
q =y
q

1
which is again true in R, because the maximum of the function t — <t + ) with ¢t < 0

equivalent to

is equal to -2 and because z < 1. Therefore, we have

kg :=min{¢(p, q,2) : (p,q,2) € R} > 0.
Hence, we get
%
|D¢*(m)gar - vf° = kg ()\3(5)655) ;
c

which means, by recalling the definition of A3(s) in (2.3), that there is C' > 0 satisfying
Bs
w(D¢*(m)|,a1) > C - [De*(m)|n,, | €%, (2.5)

for all s > 0 and independently of the choice of m € M.

Since (2.5) holds for all m € M, we have

(DG (6 (m)lr, ., 00) > C - D67 (m)) |, [V e ¥

Since A*(m) is the inverse of D¢*(¢™*(m))|r,_,  u, the last inequality may be rewritten

as

Bs
> C || B*(m)|"*ew,
[ A2 (m)]

which implies that |A*(m)]|||B*(m)|** — 0 as s — oo. Hence, o(m) < 1/k.

At last, we must show that o(m) is, in fact, less than 1/k. In order to do

that, we recall Lemma 2. Since v(m) < 1, there is a < 1 such that |B*(m)|/a® — 0 as

Hl/kz

s — o0. Furthermore, we know that |A*(m)||B*(m)|"/" — 0 as s — o0. Therefore, there
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are & < 1/k and C' > 0 such that |A*(m)|||B*(m)|* < C for all m € M and s > 0. Let

r > (0 be such that 0 < r < T &. Observe that

|A*(m)[[ B*(m)|** < O B*(m)|"

for all s > 0. Since |B*(m)|” — 0 as s — o for all m € M, it follows promptly that
|A*(m)| | B*(m)|**" — 0 as s — oo. Therefore, we have

1
o(m) =inf{ae R: |A*(m)|||B*(m)|* > 0ass > w0} <a+71 < iz

as we wanted. O

2.2  Arzela-Ascoli theorem and C" norms

In this section, we will provide results regarding convergence in sets of continu-
ously differentiable functions. Those results will be used later on in the proof of Theorem
B. Let X be a compact metric space. Define C'(X) the space of real valued continuous

functions from X. We begin with two definitions:

Definition 1. A subset F < C(X) is uniformly bounded if there is M > 0 such that
|[f(z)] < M for allx e X and all f € F.

Definition 2. A subset F < C(X) is uniformly equicontinuous if, for every e > 0, there
is 0 > 0 such that d(x1,22) <d = |f(x1) — f(x2)| <€ for all f e F.

We state now the Arzela-Ascoli theorem, which gives us conditions for a

sequence of continuous functions to have a uniformly convergent subsequence. Its proof
may be found in (DUNFORD; SCHWARTZ, 1988).

Theorem 4 (Arzela-Ascoli theorem). Let X be a compact metric space and let {f,}nen be
a sequence of functions in C(X). Define F = {f, : n € N}. The sequence {f,}nen has a
subsequence that converges uniformly if, and only if, F is uniformly bounded and uniformly

equicontinuous.

Definition 3. A family F of real valued C" functions is uniformly bounded in the C"
norm if there is M > 0 such that || f|cr < M.

The next result concerns uniform convergence of a sequences of functions

uniformly bounded in the C* norm. Such a result will be useful later on.

Proposition 1. Let U := [a,b] x [c,d] € R%. Let {f,}nen be a sequence of C* real valued
functions from U. If F := {f, : n € N} is uniformly bounded in the C* norm, then there is

a subsequence of {fnlnen that converges uniformly to a C* function.
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Proof: First, we remark that, since F is uniformly bounded in the C? norm, there is
M > 0 such that |f,|c2 < M for all n € N. In particular, |f,| < M for all n, which
means that F is uniformly bounded in the sense of Definition 1. We will prove that F is
also uniformly equicontinuous. In fact, take € > 0. Uniform boundedness in the C* norm
also ensures that | D f, | < M. Let 1,29 € U be such that |x; — x| < ¢/M. By the mean
value inequality,

€

|fu(@1) = fulz2)] < M - 7

for all n € N. Hence, F is uniformly equicontinuous. Because F is uniformly equicontinuous

€,

and uniformly bounded, we may apply the Arzela-Ascoli theorem to get a subsequence

{fn, }ren that converges uniformly to f e C'(U).

It remains to be proved that f is a C' function. Define gy = 0, f,,,, where 0
denotes the partial derivative with respect to the first variable. Define also G = {g; : k € N},
which is clearly uniformly bounded considering that F is uniformly bounded in the C* norm.
We remark also that uniform boundedness in the C? norm of F ensures that the derivative
of each g, is bounded by M in U. Therefore, each g, is a Lipschitz continuous function
with Lipschitz constant equal to M. The set G is thus uniformly equicontinuous. Once
again, we apply the Arzela-Ascoli theorem to get a subsequence {gy, }ien that converges

uniformly to g € C(U).

Define now h; = 05 fnkl and proceed as above to get a subsequence of {h;};ey that
converges uniformly to h € C(U). Let I be the set of indices present in this subsequence.
We know that {f;}ic; converges uniformly to f, {g;}ic; converges uniformly to g and {h;}ics
converges uniformly to h, since they are all subsequences of uniformly convergent sequences.
For each (s,t) € U, we have

fi(s,t) = fi(a,t) + JS Orfi(o,t)do = fi(a,t) + f gi(o,t)do.

a

Therefore, applying the limit, we get

S

f<87t) = f(avt) +f g(O', t) do,

a

and by taking the partial derivative with respect to s, we get

a1f(57t) = g(S,t).

Similarly, we can show that dyf(s,t) = h(s,t) for all (s,t) € U. Hence, f has continuous
partial derivatives over U, proving that f is C. O]

2.3 Gronwall's inequality

We state a version of Gronwall’s inequality, proved in (CHICONE, 2006), that
will be used throughout this work.
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Theorem 5 (Gronwall’s inequality). Let a < b and suppose that «, 5 and ¢ are non-
negative continuous functions defined on [a,b]. Suppose also that either o is a constant

function, or that « is differentiable on [a,b] with positive derivative, . If, for allt € [a,b],

o) <)+ [ 91s) 665 .
then
(t) < aft) e
for all t € [a,b].
We proceed to the proof of two lemmas that will be of use later and that are
direct consequences of Gronwall’s inequality.

Lemma 3. Let & = F(x,€) be a smooth family of differential equations, where F is a C"
function, r = 1. Define x(t, z,€) to be the solution to * = F(x,€) such that x(0, z,€) = z.

Let A, B > 0 and let C' < R" be a compact set. Then, there is a constant K > 0 such that
|z(t, 22, €) — x(t, 21,0)| < K6K|t|(|x(0,22,e) — (0, 21,0)| + €|t]),

for allt € [0, A], z1,22 € C and € € [0, B]. The same is also true, possibly for a different
constant K' > 0, for allt € [—A,0], 21,22 € C and € € [0, B].

Proof: Let z,20 € C, t € [0, A] and € € [0, B]. Since t — x(t, 29,€) is a solution to

T = F(x,¢) and t — z(t, 21,0) is a solution to & = F(z,0), we have
x(t, z2,€) — x(t, 21,0) = (0, 22, €) — (0, 21, 0)

+ L (F(x(s, 22,€),€) — F(x(s, 21,0),0)) ds.

Using the triangle inequality, we get
|$(t, 22, 6) o .’L‘(t, 21, O)‘ < ’SL’(O, 225 6) o LU(O, 21, O)’

L (F(x<57227€)76) - F($(5721,O),0)) ds| .

_l’_

(2.6)
By properties of the integral, we have

J (F(a(5, 22, ¢), ¢) — F(a(s,71,0),0)) ds| <

0

[ 1Ftetsi 0.0 = Plats.2.0,0) ds

Define C' := [0, A] x C x [0, B]. The image z(C) is a compact set. We remark that F is

Lipschitz continuous in z(C') x [0, B], because F' is a C" function and z(C) x [0, B] is
compact. Therefore, there is M > 0 such that

‘F(x(s, Z9,€), e) — F(x(s, 21,0),0)‘ < M(|$(5,2’27€) — (s, 21,0)] + 6)-
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. Therefore, from (2.6), we have:
|$(t’ 22, 6) - ‘T(t7 21, 0)| < |'T(07 22, 6) - ZE‘(O, 21, 0)|

¢
+ J M (|z(s, 22, €) — z(s, 21,0)| + €) ds.

0

Define K = max{1, M}. We have
‘I(tv 2276) - l’(t, Z170)| < K(|l’(0, 2276) - x<072170>’ +€ |t|)

+ J;) K(|x<87 2276) - x(‘S?Zl?O)D ds. (2‘7)

Let us define the following functions:

Y(t) = |z(t, 20, €) — z(t, 21,0)[;
K(|.T<O, 22, E) — ]3(07 21, 0)| 1€ ‘t|),

Q
—~
~+
~—
|

so that (2.7) may be rewritten as

(1) < alt) + f B(s) ¥ (s) ds.

We remark that 1, a and [ are non-negative continuous functions, and that « is differen-

tiable with &(t) = € > 0 for all ¢ € [0, A]. By Gronwall’s inequality, we have
|2(t, 22, €) — 2(t, 21,0)] < K" (|2(0, 20, €) — (0, 21, 0)| + €[t]),

as wanted. We remark that the constant K depends on the set C.

In order to prove the lemma for ¢t € [—A, 0], we define y(t, z, €) as the solution
to y = —F(x,€) with initial value y(0, z, €) = z. We remark that y(t, z,¢) = x(—t, z,¢). It
suffices then to apply the result we have proved above to the family y with ¢ € [0, A]. O

Lemma 4. Let & = f(z) + F(x,e, 1) such that f is a C" function on R", n € N, and
F is a continuous function on R™ x A, where r = 1 and A < R? is a compact set.
Suppose that F(x,0,1) = 0 for all p and all . Define x(t, z, €, 1) to be the solution to
&= f(zx) + F(x, e, 1) such that ©(0,2,¢, 1) = 2. Let A> 0 and let C = R" be a compact
set. If there is M > 0 such that |F(z, p,€)| < Me for all (z,e, 1) € z([—A,0] x O x A) x A,

then there is a constant K > 0 such that
(8, 20, €, 1) — x(t, 21,0, )| < KX (|2(0, 22, €, ) — 2(0, 21,0, )| + €]t]),

for allt € [—A,0], z1,20 € C and (e, ) € A. The same is also true, possibly for a different
constant K' > 0, for allt € [0, A], 21,20 € C and (e, 1) € A.
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Proof: Let 2,2, € C, t e [-A,0] and (e, ) € A. Since F(z,0, ) = 0, we have

x(t, z9, €, 1) — x(t, 21,0, ) =2(0, 22, €, ) — x(0, 21,0, )

[ om0 = Tt 200.0) s
JOEF( x(s, 21, € 1), € 1) ds.

Observe that the solution x is a continuous function. Therefore, the image I := x([—A, 0] x

C x A) is a compact set. Since f is a C' function, there is L > 0 such that
| (@(s, 21, €, 1)) — f(2(s, 22,0, )| < Llz(s, 21, €, 1) — x(s, 22,0, ) (2.8)
for all s € [—A, 0]. Note that L does not depend on the choice of 21, z9, € or . By hypothesis,
|E(z(s, 21, €, 1), €, p)| < Me, (2.9)

for all s € [—A,0]. Once again, we remark that M does not depend on the choice of the

other entries as long as they are in the sets established. By the triangle inequality, we have
|'T(t7 <2, €, ,LL) - (L’(t, 21, 0, ,LL)| <|l’(07 22, €, /J“) - 13(07 21, 0, M>| + M€|t‘

t
+JMM&%QM—M&%QMM& (2.10)

0

We apply Gronwall’s lemma as done in Lemma 3, and find K > 0 such that

|2 (t, 29, €, 1) — x(t, 21,0, )| < KefM(|2(0, 20, €, 1) — (0, 21,0, 11)| + €|t]).
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3 Fundamental proposition

The main goal of this section is proving the following proposition, which will

be crucial to further results.

Proposition 2 (Fundamental proposition). Consider a planar differential equation

' = f(z) (3.1)

with an asymptotically stable limit cycle I' of period w > 0. Let T be an angular variable

modulo T > 0. Suppose that I" is hyperbolic, that is,

b= J: tr D (6 (p)) dt < 0. (3.2)

Let M be the invariant torus corresponding to I' for the system
= f(x), 7 =1 (3.3)

Then, there are a neighbourhood N < R? x R of M and a constant C > 0 such that, for
every smooth function g : N — R?, with g(x, 7 +T) = g(x,7) for all v € R?* and all T € R,

and for which the system
= f(x)+g(x,7), T=1 (3.4)
has an invariant set M < N, the following estimate holds:

sup{d((z,7), M) : (z,7) € M} < C|g|en

In order to prove the above proposition, we shall study invariant foliations of a
neighbourhood of a hyperbolic limit cycle. A deeper exposition of the results presented
below can be found in (CHICONE; LIU, 2004). The approach and the style of proofs in
this section were greatly influenced by (TESCHL, 2012) and (PERKO, 2001).

3.1 Groundwork for the proof

Proposition 3. Let ¢°(z) denote the flow of the system x' = f(x) in R", where f is a C*
field. Let K < R" be a compact, and S be a positive constant. Then, there is a constant
C > 0 satisfying

|0°(2) = ¢*(y)] < ePlz —yl, se]0,5],

provided that ¢°*(x) € K and ¢°(y) € K for all s € [0, 5].
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Proof: Let B be a closed ball containing K. Observe that, for every s € [0, S]:
|0°(x) — ¢ (y)| < [(¢°(x) — x) = (¢°(y) — )| + |z —yl.

Therefore, we have

|9°(x) = ¢*( F(@'(y) dt| + |z —yl,

and then .
6°(@) — ¢°(y)] < f 16 (@) — 1@ ()] dt + [z — ).

Let C := max{|f'(p)| : p € B}. Since ¢'(x) and ¢'(y) are both in B, the mean value
inequality ensures that
f(¢'(@)) = f(&' ()] < Clo'(x) — ¢'(y)l. te[0,s].
We thus have .
6'0) =0l < |l ~ S e+ o=l

We apply Gronwall’s inequality and get

[6°(2) = &* ()] < |2 — yle

as wanted. O

We proceed by proving an estimate of the distance between an attractive

hyperbolic limit cycle and the flow of point near this cycle.

Lemma 5. Let I' be a w-periodic asymptotically stable limit cycle for the planar system
' = f(x). Let ¢°(xq) be the flow of this equation with initial point xo. Suppose that T'
is hyperbolic, that is, the quantity b, as defined in (3.2), is a negative number. Assume
also that there is a neighbourhood V' of I', contained in the stable manifold of T, with an
invariant foliation with respect to ' = f(x), and whose leaves are curves. Then, there is
C > 0 such that d(¢°(q),T) < Cet for all s = 0, provided that ¢ € V.

Proof: Let p be a point in T". Let M,(p) denote the leaf through p. We define ¢ the first
crossing of the flow ¢°(¢q) and the curve M (p). We also define § € [0,w) the time for which
#*(q) = G. Let s be a positive number. We will study the distance d(¢°(q), ¢ (p)). First,
we shall prove that there is C'y > 0, independent of p and ¢ such that

|6°(q) — ¢*3(p)| < C1|¢°(§) — ¢°(p)|, for all s = 0.

0 do so, observe that, if we denote the flow of the system =" = —f(x) by Tg), we have
To d b hat, if d he fl f th ! by ° h

¢*(q) = ¥*(¢°(9));
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¢~ (p) = ¥°(6°(p))-
Let K be a compact set such that V < K. Since V' is contained in the stable manifold of
I', we know that ¥'(¢°(§)) and *(¢*(p)) are in K for every t € [0, §]. By Proposition 3,
there is M > 0 such that

6°(q) — ¢°*(p)| < €™*|9°(q) — ¢°(p)]

Because 0 < § < w, we know that eM® < e We finish by defining C, := ¢M“, which

yields
0°(q) — ¢°(p)| < C1l¢°(q) — ¢°(p)]. (3.5)

We will now study the expression |¢*(¢) — ¢°(p)|. Divide s by w, and let n be
the quotient and r the remainder of this division. Since ¢ € M,(p) and the foliation is
invariant, we have ¢*(q) € My(¢“(p)) = Ms(p). Therefore,

¢°(q) = ¢"(i o 7"(q));
*(p) = ¢"(p),

where 7 is the Poincaré map defined on M(p), and i : M,(p) — R? is the natural

embedding. Therefore, we have
[0°(q) — &°(P)| = [¢" (i o 7"(q)) — ¢"(p)].

We know that ¢'(x) € V for all t > 0 if z € V. Therefore, since r € [0,w), we can apply
Proposition 3 again and get N > 0 such that

0°(q) — ¢°(p)] < Nd(7"(q),p) < e™d(7"(q), p).

As before, we define Cy := eMw, and get
0°(7) — ¢°(p)| < C2 - d(7"(9), p)- (3.6)

We must now study the expression d(7"(§),p). We know that the derivative
of the map m at p is given by 7’(p) = €’. Since |7'(p)| < 1, the Poincaré map 7 is
C'-conjugated to its derivative at its fixed point, p, as proved in (RODRIGUES; RUBIO,
2012). Therefore, there exist a compact neighbourhood U of p and a C* diffeomorphism
H :U' — U such that H(0) = p and 7"(x) = H o (7'(p))" o H '(x). *Let N € N be such
that 7 (z) € U for all z € M,(p)*. Let Cs be such that Cs = e -sup{d(z,p) : € M,(p)}.

If n < N, we have
d(7"(q),p) < d(@,p) < " Nd(q,p) < Cs- ™
On the other hand, if n > N, we have

d(m"(q),p) = d(z" " (x"(q)), p) = d(H o (w'(p))"~" o H™}(x"(q)), H(0)).
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Since H is a C' function on a compact set, there is Cy > 0 such that d(H(z), H(y)) <
Cy - d(x,y) for all z,y € U'. Therefore,

d(H o (v'(p)"™ o B (x(§)), H(0)) < Cy - d(x'(p)"™ o H(x(3)), 0).
Similarly, there is C5 > 0 such that d(H *(z), H '(y)) < Cs-d(x,y) for all #, € U. Thus,
Ci-d(w'(p)"" o H™H(x(9)),0) < CuCs - =) - d(x (), p).

Finally, we
CyCs - N d(7N(§),p) < CuCs - e PN d(G, p) - e < C3C4Css - €.
Hence, defining Cs = max{C3C,C5, Cs}, we get, for all n € N:
d((@),p) < Cs - e (3.7)
Combining inequalities (3.5), (3.6) and (3.7), we get
10°(q) — ¢° 3 (p)| < C1C2C5 - € = C1CoC - Sy
Finally, defining C' = C1C,Cq - €7°, we get:
bs

[0°(q) — ¢°*(p)| < Cew,

which concludes our proof. O]

The following two results are non-autonomous versions of the stable manifold
theorem, which will help us with the construction of a foliation of a neighbourhood of an

attractive hyperbolic limit cycle that is invariant under the flow.

Proposition 4. Let g : R x R" — R" be a smooth function that is T-periodic in the first
variable. Suppose that

lg(t, )| &
= d —(t,0)=0.
= 0 an ﬁa:( ,0)=0
Consider the system
' = Az + ePlg(t, e Plx), (3.8)

where A is a constant matriz and B = 0. Suppose 0 is a hyperbolic equilibrium point for
the unperturbed system x' = Az. Let k > 0 be the dimension of E°, the stable subspace of
A. Then, there exists a k-dimensional C'-manifold W satisfying:

. 0e W;
it. Let x(t, ) be the solution to (3.8) with x(0,x¢) = xo. If 1o € W,

lim [x(t, zo)| = 0;
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1i. W is tangent to E° at 0.

Proof: Let xq € R" be close to 0. We will abbreviate x(¢, zg) to z(¢) and define h(t,z) =

eﬁtg(t, e‘ﬁtx). By the method of variation of parameters, we have

z(t) = e +f0 eI AR(r, x(r))dr. (3.9)

We will first find a necessary condition for z(¢) to be bounded for ¢ > 0. Let E° and E
be the stable and unstable subspaces for the system 2’ = Az, respectively. Define P® the
projection operator onto E° and P“ the projection operator onto E“. Also, abbreviate
Ty, = P'xg, x5 = P’xg, hy(t,z) = P"h(t,z) and hs(t,x) = P°h(t,x). Applying P to z(t),

we get
t

PUz(t) = ez, + J e(t_T)Ahu(T, x(r))dr,

0
which can be written

t
Ty = e APUx(t) — f e "y (r, z(r))dr.
0
Suppose that x(f) remains bounded. Then, the integral on the right-hand side of the

equation is absolutely convergent, and we can apply the limit and get

T, = — f : e "y (r, z(r))dr.

0

Substituting back into (3.9), we have

t

z(t) = o, + J

0
eI A (r, (r))dr — f e AR, (r, z(r))dr. (3.10)
0 t
Therefore, if z(t) remains bounded, it must satisfy (3.10). We will now prove that this
integral equation admits solutions. In fact, we will prove that, provided we take z, small

enough, we can choose x,, depending on x,, such that z(t) is a solution to (3.10).

Let then z, be a point in E°. We will study (u;(¢,xs)) en, the sequence of
functions defined for ¢ > 0 given by

uo(t, xs) =0

and

t

w1 (t, z5) = e, + f e(t_T)Ahs(r, w;(r, xs))dr
0

Q0
- f AR, (v, ui(ry ) dr. (3.11)
t

This definition includes a improper integral, which might not be well de-

fined. Thus, we must first show that, if we fix x; small enough, then each u; is a well
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defined function of ¢. In order to do that, take @ > 0 such that o < min{|Re(\;)| :

A; is an eigenvalue of A} and we will prove by induction that, provided z, is small, the

following inequality holds for all j € N

|sle”
271

The case 5 = 1 is clearly valid. For the other cases, let us note that, given v € E* and

|Uj<t, .%s) — Ujfl(t, $S)| < (312)

we B if o + a <min{|Re(\;)| : A; is an eigenvalue of A}, we have
et < e @ty fort =0

and

et w| < etw| for t < 0.

Since gg(t, 0) = 0, we know that, for each € > 0, there is 6 > 0 such that
T

|z, |y <d = sup |g(t,z) — g(t,y)| < €|z —y|. (3.13)

te[0,T]

Assume the induction hypothesis (3.12) is valid for j = 1,...,m. Then, we have
‘uerl(tvms) - t Ls | <J ‘et ") 7’ Um(T xS)) o h (T Um—1 7“ xs ‘dr

+f |e(t DA (B (7, i (7, 5)) = P (7, U1 (7, ) |d7’
t
Note that, with ¢ chosen as before, the first integral in last inequality is less than

t
f e et Bt g (v, e P, (v, 2,)) — gs(r, € P (1, 5))| dr.
0

Also, the second integral is less than
ee}
J e (t=7) ot ‘gu(r, e P (r,4)) — gu(r, ety (r, xs))} dr.
t

Let € > 0 be such that ¢/o < 1/4, and let § be such that condition (3.13) is true for this e.
If we take |z4| < ¢/2, the induction hypothesis ensures that

lum(t,z5)| <6 and  |upm_1(t, z5)| <9,
and then

t
|1 (t, 25) — U (£, 24) | <f e~ Ot el (7, 25) — U (7, 225) | dr
0

o0
+ J e?t=")¢ [t (7, Ts) — U1 (7, )| dr.
¢

Again considering the induction hypothesis, we have

t —(a+o)t [t

J e~ OHD gy (1, 24) — Uy (7, 224)| dr < €|~Ts|26;n_1 J e’ dr

0 0
e|zgle

= oom—1 ’
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and

OO o(t—r) €|.§L’s‘60t © —(o+a)r
€ € ‘um(rv {L’S) - Um—l(ra -Ts)’ dr < e dr
t t

gm—1
€lxsle
oom—1 "~
Finally, since ¢/o < 1/4, we have
2€|zsle xg|le™
‘um-i-l(t? .175) - Um(t, xs)‘ < (‘727)|11 ’ 2|m 5

as we wanted.

Now that we have proven (3.12), we can show that u; is well defined if z; is

chosen as above. We begin by

w;t, xy) = ug(t, ) + 2 (ui(t, 5) — wi (t, 5))

to which we can apply the triangle inequality and (3.12) to get
J
i (8, w)| < ) it ws) — wica (8, )| < 2lagle (3.14)
i=1
Thus, the improper integral appearing in the definition of each w; is absolutely convergent,

which means u; is well defined.

We will now prove that (3.10) admits solution. In fact, the solution we seek is
the limit of the sequence (u;(t, xs)) en. We must first show that this sequence has a limit.
Let m,n € N, with n > m. Then,

n

|un(t7 ms) - um(t7xs)| < Z |uz(taxs) - ui—l(ta ms)| .

t=m+1
If N € N is such that n > m > N, we can apply (3.12) and get

ey L mfe
|t (t, 25) — U (t, 25)| < [5|e™ Z 9i-1 ~ 9N-2
i=N

Therefore, if x, is fixed and small enough, the sequence of functions u,(¢, x,) is a uniformly
Cauchy sequence of continuous functions for ¢ > 0. We know then that this sequence
converges uniformly to a continuous function: u(t, z5). Considering that the convergence is
uniform, we may take the limit of both sides of equation (3.11) and conclude that u(t, x5)
is a solution to the integral equation (3.10). Taking the derivative of (3.10), we deduce

that u(¢, zs) is the unique solution of @’ = Az + h(t,x) with initial value u(0, x).

Finally, define V' < E°, the open ball centered at 0 with radius equal to 6/2,

where ¢ is chosen as before. We introduce the function £ : V' — E* given by

E(zs) = Pu(0, zy).
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The set W := {a + £(a) : a € V} is a submanifold of R", whose dimension equals the
dimension of E°. It is also clear that W satisfies property (i). By construction, the solution
to the system z’ = Az + h(t,z) beginning at xy € W approaches 0 as t — o0. In fact,
(3.14) ensures that this solution approaches 0 at exponential rate «. Therefore, property

(ii) is also proved.

At last, we will prove that W is tangent to E® at 0. Let i : R¥ — E* ¢ R"
be a linear parametrisation of the surface E°. Define € : R — R” the function given by
€ = €o0i. By (3.10), the derivative of € at z € R¥ is

DE(2)(-) = P (7;(.) _ JOO e—TAaa};” (T,u(r,i(z)))?:(r,i(z)) dr) :

If we take z = 0, we have i(z) = 0, by linearity of i. Thus, u(r,i(0)) = 0 for all r > 0.

0G0
Since %(r, 0) = 0 by hypothesis, we have
x
DE(0)(-) = P (i(-) = 0,
so that W is tangent to E® at 0. O

Proposition 5. Let g : R x R" — R" be a smooth function that is T-periodic in the first
variable. Suppose that

/ ;
lim Do g Yoy = 0.
lz|—0 |z ox

Consider the system
¥ = Az + g(t,z), (3.15)

where A is a constant matriz. Suppose 0 is an equilibrium point for the unperturbed system
' = Az. Let k > 0 be the dimension of E°, the stable subspace of A. Then, there exists a
k-dimensional C*-manifold W satisfying:
. 0eW;
it. Let x(t,xq) be the solution to (3.15) with x(0,x¢) = xo. If 1o € W,
lim [2:(t, )| = 0;
ii. W is tangent to E*° at 0.

Proof: Let 5 > 0 be such that § < min{|Re()\;)| : A\; is an eigenvalue of A}. Define
y(t) = e’ 2(t). Observe that y(t) satisfies the following differential equation:

y=(A+B1)y+e"g(te™).

Furthermore, our choice of 3 ensures that all eigenvalues of A + 31 have non-zero real
part and that the stable subspace of A + (1 is equal to E®. Applying Proposition 4 to

this system, we get a k-dimensional C*-manifold, W, satisfying:
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i. 0e Wy;
ii. If yo € Wy, then tlirg)|y(t,yo)| = 0;
iii. W, is tangent to £”.
It suffices then to notice that, since 2(t) = e Py(t),