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Resumo

Essa dissertação é focada no estudo de condições suficientes para a existência de toros

invariantes no espaço de fase estendido de sistemas padrão da Teoria da Média, também

chamada de Teoria Averaging. A demonstração dos resultados está fortemente ancorada na

teoria de variedades invariantes normalmente hiperbólicas. Serão apresentados conceitos

básicos dessas duas teorias, necessários para a compreensão completa da demonstração

que iremos desenvolver. O percurso da demonstração também nos incentivou a apresentar

uma discussão sobre a existência de folheações invariantes pelo fluxo de vizinhanças de

ciclos limites atratores hiperbólicos no plano.

Palavras-chave: Teoria Averaging; Teoria da Média; Variedades invariantes normalmente

hiperbólicas; Toros invariantes.



Abstract

This dissertation centers on results providing sufficient conditions for the existence of

invariant tori in the extended phase space of systems in the standard form according to

the averaging theory. The proof of the results relies strongly on the theory of normally

hyperbolic invariant manifolds. Fundamental concepts of those two theories will be pre-

sented, as they will be necessary for full comprehension of the proof we will present for

the main result. The path to proving this result has also motivated us to introduce a brief

exposition of results regarding the existence of foliations of neighbourhoods of attracting

hyperbolic limit cycles that are invariant under the flow of the field.

Keywords: Averaging theory; Normally hyperbolic invariant manifolds; Invariant tori.
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Introduction

An important method in the study of nonlinear oscillating systems which

are affected by small perturbations is the Averaging Theory. While its origins can be

traced back to names such as Clairaut, Laplace and Lagrange, this theory was rigorously

formalised only later, in the 20th century - see (FATOU, 1928) and (BOGOLIUBOV;

MITROPOLSKY, 1961), for instance. The theory is mainly applied to provide long-time

asymptotic estimates for solutions of non-autonomous differential equations given in the

following standard form:

9x “
Nÿ

i“1

εiFipt, xq ` εN`1F̃ pt, x, εq, (1)

where F̃ : R ˆ D ˆ r0, ε0s and each Fi : R ˆ D Ñ R
n are smooth functions, T -periodic in

t. The set D is an open subset of Rn and ε0 ą 0 is assumed to be small. The estimates

provided by the Averaging Theory are related to solutions of an autonomous system,

named the truncated average equation, which has the form

9ξ “
Nÿ

i“1

εigipξq. (2)

As the name indicates, this equation is obtained by truncating a different equation. In

fact, one fundamental result of the Averaging Theory is precisely that there is a change of

coordinates under which system (1) is transformed into

9ξ “
Nÿ

i“1

εigipξq ` εN`1Gpt, ξ, εq. (3)

We remark that g1 is in general the time average of F1pt, xq, that is,

g1pξq “
1
T

ż T

0

F1ps, ξq ds.

Motivated by this identity, each gi is named averaged function of order i of (1). This theory

has found great success when applied to investigate invariant manifolds of differential

systems (HALE, 1961). In particular, it has been extensively used to study periodic

solutions, for example (BUICĂ; LLIBRE, 2004). Examples of results regarding the relation

between simple zeros of the first-order averaged function, g1, and isolated T -periodic

solutions of (1) can be found in (HALE, 1961), (HALE, 1980), and (VERHULST, 1996).

Let ℓ P t1, 2, ..., ku be the first index for which gi is not identically zero. The

main result of this work is concerned with sufficient conditions for the existence of invariant

tori in the extended phase space of systems of the form (1) in R
2 that satisfy the following

hypothesis:
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Hypothesis A: The differential system ξ1 “ gℓpξq has an attractive hyperbolic limit cycle.

The main result of this work is stated in Theorem A of next chapter, and

basically claims that a system of the form (1) in R
2 that satisfies Hypothesis A has an

invariant torus in the extended phase space.

This dissertation is divided in four chapters. In the first one, we will properly

state the main result of this work, and show how it relates to the Averaging Theory. In

the second chapter, we will state some preliminary results concerning methods that we

will employ to prove the main result, such as the theory of normally hyperbolic invariant

manifolds. In the third one, we will prove a fundamental proposition that will be used for

the proof of our result. This proposition requires some discussion about the existence of

invariant foliations of neighbourhoods of hyperbolic limit cycles, which will be present in

the same section. The last chapter will contain the proof of our main result. This proof

will be divided in several lemmas, which will be proved in the same section.
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1 Main Theorem

Let N P N such that N ě 1. Consider the system

9x “
Nÿ

i“1

εiFipt, xq ` εN`1F̃ pt, x, εq, (1.1)

where F̃ : R ˆ D ˆ r0, ε0s Ñ R
2 and Fi : R ˆ D Ñ R

2, for i “ 1, 2, ..., N , are smooth

functions, T -periodic in t. The set D is an open subset of R2 and ε0 ą 0 is small. System

(1.1) is said to be in standard form. We will make use of the following theorem, proved in

(SANDERS; VERHULST; MURDOCK, 2007):

Theorem 1. There is a T -periodic transformation,

x “ Upt, ξ, εq “ ξ `
Nÿ

i“1

εiuipt, ξq,

under which system (1.1) is transformed into

9ξ “
Nÿ

i“1

εigipξq ` εN`1Gpt, ξ, εq. (1.2)

Let ℓ P t1, 2, ..., Nu be the first index for which gi is not identically zero. Then,

system (1.2) can be written as

9ξ “ εℓgℓpξq ` εℓ`1G̃pt, ξ, εq. (1.3)

We assume that Hypothesis A is valid for system (1.1) and we apply a time rescaling of

the form s “ εℓ t. We will denote the derivative of ξ with respect to the new time s by ξ1.

System (1.3) becomes:

ξ1 “ gℓpξq ` εG̃ps{εℓ, ξ, εq. (1.4)

Note that, since F̃i and U are T -periodic in t, G̃ is periodic in s. The procedures that

follows are based on a idea from Novaes and Cândido, which is being developed in a paper

yet to be published . We apply an additional change of variables, which is a combination

of a translation of the origin to the interior of the limit cycle present in Hypothesis A and

a change to coordinates pρ, σq similar to polar coordinates with respect to which the limit

cycle is given as a graph of a function of the angular variable, σ. Thus, system (1.4) may

be rewritten:

ρ1 “ fpρ, σq ` εRpρ, σ, s{εℓ, εq,

σ1 “ gpρ, σq ` εSpρ, σ, s{εℓ, εq. (1.5)



Chapter 1. Main Theorem 14

The functions f , g, R, and S are smooth, and 2π-periodic in the angular variable σ.

Moreover, t ÞÑ Rpρ, σ, t, εq and t ÞÑ Spρ, σ, t, εq are periodic, and we will denote this period

by 2πm{Ω, where m P N. We remark that solutions of the truncated system

ξ1 “ gℓpξq (1.6)

correspond naturally to solutions of

ρ1 “ fpρ, σq,

σ1 “ gpρ, σq. (1.7)

In order to study (1.5), we introduce a new angular variable modulo 2πmεℓ{Ω, denoted by

τ , and the autonomous system

ρ1 “ fpρ, σq ` εRpρ, σ, τ{εℓ, εq,

σ1 “ gpρ, σq ` εSpρ, σ, τ{εℓ, εq,

τ 1 “ 1. (1.8)

Solutions of (1.8) correspond naturally to solutions of (1.5). Thus, the search for invariant

tori in (1.5) can be performed via the study of (1.8). To study this system, we will consider

it the result of a singular perturbation effected on the system

ρ1 “ fpρ, σq,

σ1 “ gpρ, σq,

τ 1 “ 1. (1.9)

The result we seek to prove is:

Theorem A: Consider a differential system in the form (1.1). Suppose that gi “ 0 for

i “ 1, 2, ..., ℓ ´ 1, where 0 ă ℓ ď N . If Hypothesis A holds, that is, the truncated equation

ξ1 “ gℓpξq has an attracting hyperbolic limit cycle, then system (1.1) has a normally

hyperbolic invariant torus in the extended phase space.

The invariant torus appears if we consider the time variable, t, as an angular

variable of the system (1.1), and treat it as an autonomous system in a space of dimension

three. This can be done because we are working with functions which are periodic in t.

The correspondence of systems discussed above allows us to state this result in terms of

the transformed system (1.8). In this new setting, Hypothesis A is restated as follows:

Hypothesis B: The system

ρ1 “ fpρ, σq

σ1 “ gpρ, σq, (1.10)

has an attracting hyperbolic limit cycle Γ that is the graph of a function of the angular

variable σ.
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The following result will take the place of Theorem A in our new setting:

Theorem B: Let k be an integer such that 2 ď k ď r. Suppose that Hypothesis B

is satisfied. Then, if |ε| is sufficiently small, system p1.8q has a k-normally hyperbolic

invariant manifold that is the graph of a function of the angular variables σ and τ .

The definition of a k-normally hyperbolic manifold will be given in the next

chapter. We remark for now that the fact that the invariant manifold is a graph of a

function of the angular variables is actually a stronger conclusion than we had envisioned

in Theorem A. It will be proved that Theorem B is valid, so that Theorem A must also be

valid.

As mentioned above, the proof of Theorem B will be done by studying a

singular perturbation effected on system (1.9). To study this perturbation, we will make

use of the theory of normally hyperbolic invariant manifolds and of a continuation method,

following Chicone in (CHICONE; LIU, 1999/00). First, we will introduce briefly the theory

of normally hyperbolic invariant manifolds. This is done in the next section, where other

useful results will be discussed.
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2 Preliminaries

We begin this section with a brief introduction of the theory of normally

hyperbolic invariant manifolds. Afterwards, we present results related to the Arzelà-Ascoli

theorem and results derived from the Grönwall inequality that will be used later on in

this work.

2.1 Normally hyperbolic invariant manifolds

We shall present the definition of normally hyperbolic invariant manifolds and a

fundamental theorem regarding those objects proved by Fenichel in (FENICHEL, 1971/72).

Afterwards, we discuss some conditions that guarantee normal hyperbolicity for a special

class of invariant manifolds with which we shall work. Our exposition is based mainly in

(FENICHEL, 1971/72), (HIRSCH; PUGH; SHUB, 1977) and (WIGGINS, 1994).

2.1.1 Hyperbolic splittings

Let f be a C1 vector field on R
n, with flow φt. Let also M be a compact,

connected C1 manifold invariant under f . We suppose that M is properly embedded in

R
n, that is, each point in M has a neighbourhood U and coordinates px, yq for U such

that M X U “ tpx, yq P R
d ˆ R

n´d : y “ 0u.

We define TRn|M :“ tpa, bq P R
n ˆ R

n : a P Mu, the tangent bundle of Rn

restricted to M , and we denote the tangent bundle of the manifold M by TM , as is

customary. Moreover, the symbol ‘ represents the Whitney sum of vector bundles. Let

TRn|M “ TM ‘N s ‘Nu be a continuous splitting such that TM ‘N s and TM ‘Nu are

invariant under Dφt for all t, that is, the fibre corresponding to an arbitrary m P M of one

of those bundles is carried by Dφt to the fibre corresponding to φtpmq of the same bundle.

Define π, πs and πu the projections on TM , N s and Nu, respectively. For each

m P M , define

νspmq “ lim sup
tÑ8

}πsDφtpφ´tpmqq|Ns}1{t and

νupmq “ lim sup
tÑ´8

}πuDφtpφ´tpmqq|Nu}1{t.

We say that this splitting is hyperbolic if νspmq ă 1 and νupmq ă 1 for all m P M.
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2.1.2 Definition of k-normally hyperbolic invariant manifolds

Suppose that M , f and φt are as above, and assume that we have a hyperbolic

splitting TRn “ TM ‘ N s ‘ Nu. For each m P M , define:

σspmq “ lim sup
tÑ8

log }Dpφ´t|M qpmq}

´ log }πsDφtpφ´tpmqq|Ns}
and

σupmq “ lim sup
tÑ´8

log }Dpφ´t|M qpmq}

´ log }πuDφtpφ´tpmqq|Nu}
.

Let k P N
˚. We say that M is k-normally hyperbolic if σspmq ă 1{k and σupmq ă 1{k for

all m P M . If k “ 1, we say simply that M is normally hyperbolic.

The numbers νs, νu, σs and σu are called the generalised Lyapunov type num-

bers. An interesting result, proved in (FENICHEL, 1971/72), is that they are independent

of the choice of metric on TRn|M . They generally depend on the splitting.

A different definition of k-normally hyperbolic invariant manifolds is provided

in (HIRSCH; PUGH; SHUB, 1977). If M is assumed to be a C1 compact manifold, this

definition is equivalent to the one presented above.

2.1.3 Fenichel’s Theorem

The following theorem was proved by Fenichel in (FENICHEL, 1971/72). It

ensures the persistence of normally hyperbolic invariant manifolds under regular perturba-

tions.

Theorem 2. Let f be a Cr vector field on R
n, r ě 1. Let M be a compact, connected Cr

manifold properly embedded in R
n and invariant under f . Suppose that M is k-normally

hyperbolic. Then, for any vector field g in some C1 neighbourhood of f , there is a Cr

manifold Mg invariant under g and Cr diffeomorphic to M .

Remark: The same result is proved in (HIRSCH; PUGH; SHUB, 1977), albeit in a

different setting. In this reference, it is explicitly proved that Mg is near M . In particular,

if M and Mg are both given as graphs, respectively of the functions h1 and h2 of two

angular variables, then, for each r ą 0, there is ǫ ą 0 such that |f ´ g|C1 ă ǫ implies that

|h1 ´ h2|C0 ă r, a result we will make use of later on.

2.1.4 Existence of invariant normal bundles

Once again, let M and f be as in Section 2.1.1. In (FENICHEL, 1971/72)

Fenichel also proved, under specific conditions, the existence of a normal bundle over M
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that is invariant under Dφt. With the same notation as before, we define:

ρspmq “ lim sup
tÑ8

`
}Dpφ´t|M qpmq}}πsDφtpφ´tpmqq|Ns}

˘1{t
and

ρupmq “ lim sup
tÑ´8

`
}Dpφ´t|M qpmq}}πuDφtpφ´tpmqq|Nu}

˘´1{t
.

The theorem proved in that reference is the following:

Theorem 3. If ρspmq ă 1 and ρupmq ă 1 for all m P M , there are bundles Is, and Iu

in TRn|M , homeomorphic to N s and Nu and invariant under Dφt for all t. Is ‘ Iu is

transversal to TM.

2.1.5 Normal hyperbolicity via contraction rates

In this section, we introduce sufficient conditions for an invariant manifold to

be normally hyperbolic in the particular case of 2-dimensional C1 invariant manifold in

R
3. Those conditions were extracted from (CHICONE; LIU, 1999/00).

Let f be a C1 vector field on R
3, with flow φt. Let M be a compact connected

properly embedded 2-dimensional C1 manifold. Suppose that M is invariant under the

vector field f . Let TR3|M “ TM ‘ N be a splitting of TR3|M and suppose that the

1-dimensional normal bundle N is invariant under Dφt. For each m P M , define γps,mq

to be solution to x1 “ fpxq such that γp0,mq “ m.

Let a solution γps,mq be fixed. Consider the first variational equation along

this solution:

X 1 “ dfpγps,mqq ¨ X, X P R
3. (2.1)

Let Φpsq be the principal fundamental matrix solution of (2.1), and let X1psq and X2psq

be independent solutions of this equation that span the tangent space Tγps,mqM for each

s P R. Define θpsq by

θpsq “ arccos
ˆ

xX1psq, X2psqy

|X1psq||X2psq|

˙
, (2.2)

and suppose that there are kθ, Kθ P R such that 0 ă kθ ď θpsq ď Kθ ă π for all s ě 0,

independently of the choice of m P M . This condition ensures that the vectors X1psq and

X2psq do not approach parallelism even as s Ñ 8.

Let X0 be a vector in Nm, the fibre of the bundle N corresponding to the point

m P M . We define the following quantities:

λ1psq :“
|X1psq|

|X1p0q|
, λ2psq :“

|X2psq|

|X2p0q|
, λ3psq :“

|ΦpsqX0|

|X0|
. (2.3)

We present now the main result of this section.
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Lemma 2 (Uniformity Lemma).

1. Suppose }Bspmq}{as Ñ 0 as s Ñ 8 for all m P M . Then there are constants â ă a

and c such that }Bspmq} ă câ for all m P M and s ě 0.

2. Under the hypotheses of item 1, suppose also that a ď 1 and that α is such that

}Aspmq}}Bspmq}α Ñ 0 as s Ñ 8 for all m P M . Then there are constants α̂ ă α

and C ą 0 such that }Aspmq}}Bspmq}α̂ ă C for all m P M and s ě 0.

3. If the inequalities νpmq ă a ď 1 and σpmq ă α hold for all m P M , then }Bspmq} Ñ 0

and }Aspmq}}Bspmq}α Ñ 0 as s Ñ 8 uniformly for m P M .

4. ν and σ attain their suprema on M.

We present below the proof of Lemma 1.

Proof (of Lemma 1): By our remarks, we have:

νpmq ď lim sup
sÑ8

pc e´βsq1{s “ e´β ă 1,

and thus the splitting TR3|M “ TM ‘ N is hyperbolic.

We must prove that σpmq ă 1{k for all m P M . For a linear map T , define

µpT q “ inft|Tv| : |v| “ 1u. We claim that there is C ą 0, independent of m, such that

µpDφspmq|TmM q ą C ¨ }Dφspmq|Nm
}1{k eβs{k,

for all s ě 0 and all m P M . Let m P M and take v P TmM satisfying |v| “ 1. Since X1p0q

and X2p0q span TmM , there are a, b P R such that aX1p0q ` bX2p0q “ v. Considering that

|v| “ 1, we have that

a2|X1p0q|2 ` b2|X2p0q|2 ` 2ab|X1p0q||X2p0q| ¨ cos θp0q “ 1.

Now, we have Dφspmq|TmM ¨ v “ aX1psq ` bX2psq. Therefore,

|Dφspmq|TmM ¨ v|2 “ a2|X1psq|2 ` b2|X2psq|2 ` 2ab|X1psq||X2psq| ¨ cos θpsq.

Define p :“ a|X1p0q| and q :“ b|X2p0q|. By (2.3) and (2.4), we have,

|DφspmqTmM ¨ v|2 ě

ˆ
λ3psq

c
eβs

˙ 2

k `
p2 ` q2 ` 2pq cos θpsq

˘
,

where rpp, qq :“ p2 ` q2 ` 2pq cos θp0q “ 1 and θpsq P rkθ, Kθs. Consider the problem of

finding the global minimum of the function ψpp, q, zq “ p2 ` q2 ` 2pqz in the region

R :“ tpp, q, zq P R
3 : rpp, qq “ 1 and ´ 1 ă cosKθ ď z ď cos kθ ă 1u,
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which is ensured to exist because R is compact. Observe that

ψpp, q, zq “ pq

ˆ
p

q
`
q

p
` 2z

˙
.

If pq ą 0, the condition ψpp, q, zq ą 0 is equivalent to
˜
p

q
`

1
p

q

` 2z

¸
ą 0,

which is true in the region R because the minimum of the function t ÞÑ

ˆ
t `

1
t

˙
with

t ą 0 is equal to 2 and because z ą ´1. Similarly, if pq ă 0, the condition ψpp, q, zq ą 0 is

equivalent to
˜
p

q
`

1
p

q

` 2z

¸
ă 0,

which is again true in R, because the maximum of the function t ÞÑ

ˆ
t `

1
t

˙
with t ă 0

is equal to -2 and because z ă 1. Therefore, we have

kR :“ mintψpp, q, zq : pp, q, zq P Ru ą 0.

Hence, we get

|DφspmqTmM ¨ v|2 ě kR

ˆ
λ3psq

c
eβs

˙ 2

k

,

which means, by recalling the definition of λ3psq in (2.3), that there is C ą 0 satisfying

µpDφspmq|TmM q ą C ¨ }Dφspmq|Nm
}1{k e

βs

k , (2.5)

for all s ě 0 and independently of the choice of m P M .

Since (2.5) holds for all m P M , we have

µpDφspφ´spmqq|T
φ´spmqM q ą C ¨ }Dφspφ´spmqq|N

φ´spmq
}1{k e

βs

k .

Since Aspmq is the inverse of Dφspφ´spmqq|T
φ´spmqM , the last inequality may be rewritten

as

1
}Aspmq}

ą C ¨ }Bspmq}1{ke
βs

k ,

which implies that }Aspmq}}Bspmq}1{k Ñ 0 as s Ñ 8. Hence, σpmq ď 1{k.

At last, we must show that σpmq is, in fact, less than 1{k. In order to do

that, we recall Lemma 2. Since νpmq ă 1, there is a ă 1 such that }Bspmq}{as Ñ 0 as

s Ñ 8. Furthermore, we know that }Aspmq}}Bspmq}1{k Ñ 0 as s Ñ 8. Therefore, there
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are α̂ ă 1{k and C ą 0 such that }Aspmq}}Bspmq}α̂ ă C for all m P M and s ě 0. Let

r ą 0 be such that 0 ă r ă
1
k

´ α̂. Observe that

}Aspmq}}Bspmq}α̂`r ă C}Bspmq}r

for all s ě 0. Since }Bspmq}r Ñ 0 as s Ñ 8 for all m P M , it follows promptly that

}Aspmq}}Bspmq}α̂`r Ñ 0 as s Ñ 8. Therefore, we have

σpmq “ inftα P R : }Aspmq}}Bspmq}α Ñ 0 as s Ñ 8u ď α̂ ` r ă
1
k
,

as we wanted.

2.2 Arzelà-Ascoli theorem and Cr norms

In this section, we will provide results regarding convergence in sets of continu-

ously differentiable functions. Those results will be used later on in the proof of Theorem

B. Let X be a compact metric space. Define CpXq the space of real valued continuous

functions from X. We begin with two definitions:

Definition 1. A subset F Ă CpXq is uniformly bounded if there is M ą 0 such that

|fpxq| ă M for all x P X and all f P F .

Definition 2. A subset F Ă CpXq is uniformly equicontinuous if, for every ǫ ą 0, there

is δ ą 0 such that dpx1, x2q ă δ ùñ |fpx1q ´ fpx2q| ă ǫ for all f P F .

We state now the Arzelà-Ascoli theorem, which gives us conditions for a

sequence of continuous functions to have a uniformly convergent subsequence. Its proof

may be found in (DUNFORD; SCHWARTZ, 1988).

Theorem 4 (Arzelà-Ascoli theorem). Let X be a compact metric space and let tfnunPN be

a sequence of functions in CpXq. Define F “ tfn : n P Nu. The sequence tfnunPN has a

subsequence that converges uniformly if, and only if, F is uniformly bounded and uniformly

equicontinuous.

Definition 3. A family F of real valued Cr functions is uniformly bounded in the Cr

norm if there is M ą 0 such that }f}Cr ă M .

The next result concerns uniform convergence of a sequences of functions

uniformly bounded in the C2 norm. Such a result will be useful later on.

Proposition 1. Let U :“ ra, bs ˆ rc, ds Ă R
2. Let tfnunPN be a sequence of C2 real valued

functions from U. If F :“ tfn : n P Nu is uniformly bounded in the C2 norm, then there is

a subsequence of tfnunPN that converges uniformly to a C1 function.
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Proof: First, we remark that, since F is uniformly bounded in the C2 norm, there is

M ą 0 such that }fn}C2 ă M for all n P N. In particular, }fn}8 ă M for all n, which

means that F is uniformly bounded in the sense of Definition 1. We will prove that F is

also uniformly equicontinuous. In fact, take ǫ ą 0. Uniform boundedness in the C2 norm

also ensures that }Dfn}8 ă M . Let x1, x2 P U be such that |x1 ´ x2| ă ǫ{M . By the mean

value inequality,

|fnpx1q ´ fnpx2q| ă M ¨
ǫ

M
“ ǫ,

for all n P N. Hence, F is uniformly equicontinuous. Because F is uniformly equicontinuous

and uniformly bounded, we may apply the Arzelà-Ascoli theorem to get a subsequence

tfnk
ukPN that converges uniformly to f P CpUq.

It remains to be proved that f is a C1 function. Define gk “ B1fnk
, where B1

denotes the partial derivative with respect to the first variable. Define also G “ tgk : k P Nu,

which is clearly uniformly bounded considering that F is uniformly bounded in the C2 norm.

We remark also that uniform boundedness in the C2 norm of F ensures that the derivative

of each gk is bounded by M in U . Therefore, each gk is a Lipschitz continuous function

with Lipschitz constant equal to M . The set G is thus uniformly equicontinuous. Once

again, we apply the Arzelà-Ascoli theorem to get a subsequence tgkl
ulPN that converges

uniformly to g P CpUq.

Define now hl “ B2fnkl
and proceed as above to get a subsequence of thlulPN that

converges uniformly to h P CpUq. Let I be the set of indices present in this subsequence.

We know that tfiuiPI converges uniformly to f , tgiuiPI converges uniformly to g and thiuiPI

converges uniformly to h, since they are all subsequences of uniformly convergent sequences.

For each ps, tq P U , we have

fips, tq “ fipa, tq `

ż s

a

B1fipσ, tq dσ “ fipa, tq `

ż s

a

gipσ, tq dσ.

Therefore, applying the limit, we get

fps, tq “ fpa, tq `

ż s

a

gpσ, tq dσ,

and by taking the partial derivative with respect to s, we get

B1fps, tq “ gps, tq.

Similarly, we can show that B2fps, tq “ hps, tq for all ps, tq P U . Hence, f has continuous

partial derivatives over U , proving that f is C1.

2.3 Grönwall’s inequality

We state a version of Grönwall’s inequality, proved in (CHICONE, 2006), that

will be used throughout this work.
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Theorem 5 (Grönwall’s inequality). Let a ă b and suppose that α, β and ψ are non-

negative continuous functions defined on ra, bs. Suppose also that either α is a constant

function, or that α is differentiable on ra, bs with positive derivative, 9α. If, for all t P ra, bs,

ψptq ď αptq `

ż t

0

βpsqψpsq ds,

then

ψptq ď αptq e
şt

0
βpsq ds

for all t P ra, bs.

We proceed to the proof of two lemmas that will be of use later and that are

direct consequences of Grönwall’s inequality.

Lemma 3. Let 9x “ F px, ǫq be a smooth family of differential equations, where F is a Cr

function, r ě 1. Define xpt, z, ǫq to be the solution to 9x “ F px, ǫq such that xp0, z, ǫq “ z.

Let A,B ą 0 and let C Ă R
n be a compact set. Then, there is a constant K ą 0 such that

|xpt, z2, ǫq ´ xpt, z1, 0q| ď KeK|t|
`
|xp0, z2, ǫq ´ xp0, z1, 0q| ` ǫ|t|

˘
,

for all t P r0, As, z1, z2 P C and ǫ P r0, Bs. The same is also true, possibly for a different

constant K 1 ą 0, for all t P r´A, 0s, z1, z2 P C and ǫ P r0, Bs.

Proof: Let z1, z2 P C, t P r0, As and ǫ P r0, Bs. Since t ÞÑ xpt, z2, ǫq is a solution to

9x “ F px, ǫq and t ÞÑ xpt, z1, 0q is a solution to 9x “ F px, 0q, we have

xpt, z2, ǫq ´ xpt, z1, 0q “ xp0, z2, ǫq ´ xp0, z1, 0q

`

ż t

0

`
F pxps, z2, ǫq, ǫq ´ F pxps, z1, 0q, 0q

˘
ds.

Using the triangle inequality, we get

|xpt, z2, ǫq ´ xpt, z1, 0q| ď |xp0, z2, ǫq ´ xp0, z1, 0q|

`

ˇ̌
ˇ̌
ż t

0

`
F pxps, z2, ǫq, ǫq ´ F pxps, z1, 0q, 0q

˘
ds

ˇ̌
ˇ̌ . (2.6)

By properties of the integral, we have
ˇ̌
ˇ̌
ż t

0

`
F pxps, z2, ǫq, ǫq ´ F pxps, z1, 0q, 0q

˘
ds

ˇ̌
ˇ̌ ď

ż t

0

ˇ̌
F pxps, z2, ǫq, ǫq ´ F pxps, z1, 0q, 0q

ˇ̌
ds.

Define C̃ :“ r0, As ˆ C ˆ r0, Bs. The image xpC̃q is a compact set. We remark that F is

Lipschitz continuous in xpC̃q ˆ r0, Bs, because F is a Cr function and xpC̃q ˆ r0, Bs is

compact. Therefore, there is M ą 0 such that
ˇ̌
F

`
xps, z2, ǫq, ǫ

˘
´ F

`
xps, z1, 0q, 0

˘ˇ̌
ď M

`
|xps, z2, ǫq ´ xps, z1, 0q| ` ǫ

˘
.
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. Therefore, from (2.6), we have:

|xpt, z2, ǫq ´ xpt, z1, 0q| ď |xp0, z2, ǫq ´ xp0, z1, 0q|

`

ż t

0

M
`
|xps, z2, ǫq ´ xps, z1, 0q| ` ǫ

˘
ds.

Define K “ maxt1,Mu. We have

|xpt, z2, ǫq ´ xpt, z1, 0q| ď K
`
|xp0, z2, ǫq ´ xp0, z1, 0q| ` ǫ |t|

˘

`

ż t

0

K
`
|xps, z2, ǫq ´ xps, z1, 0q|

˘
ds. (2.7)

Let us define the following functions:

ψptq “ |xpt, z2, ǫq ´ xpt, z1, 0q|;

αptq “ K
`
|xp0, z2, ǫq ´ xp0, z1, 0q| ` ǫ |t|

˘
;

βptq “ K,

so that (2.7) may be rewritten as

ψptq ď αptq `

ż t

0

βpsqψpsq ds.

We remark that ψ, α and β are non-negative continuous functions, and that α is differen-

tiable with 9αptq “ ǫ ą 0 for all t P r0, As. By Grönwall’s inequality, we have

|xpt, z2, ǫq ´ xpt, z1, 0q| ď KeK|t|
`
|xp0, z2, ǫq ´ xp0, z1, 0q| ` ǫ|t|

˘
,

as wanted. We remark that the constant K depends on the set C̃.

In order to prove the lemma for t P r´A, 0s, we define ypt, z, ǫq as the solution

to 9y “ ´F px, ǫq with initial value yp0, z, ǫq “ z. We remark that ypt, z, ǫq “ xp´t, z, ǫq. It

suffices then to apply the result we have proved above to the family y with t P r0, As.

Lemma 4. Let 9x “ fpxq ` rF px, ǫ, µq such that f is a Cr function on R
n, n P N, and

F̃ is a continuous function on R
n ˆ ∆, where r ě 1 and ∆ Ă R

2 is a compact set.

Suppose that F̃ px, 0, µq “ 0 for all µ and all x. Define xpt, z, ǫ, µq to be the solution to

9x “ fpxq ` F̃ px, ǫ, µq such that xp0, z, ǫ, µq “ z. Let A ą 0 and let C Ă R
n be a compact

set. If there is M ą 0 such that |F̃ px, µ, ǫq| ă Mǫ for all px, ǫ, µq P xpr´A, 0s ˆCˆ∆q ˆ∆,

then there is a constant K ą 0 such that

|xpt, z2, ǫ, µq ´ xpt, z1, 0, µq| ď KeK|t|
`
|xp0, z2, ǫ, µq ´ xp0, z1, 0, µq| ` ǫ|t|

˘
,

for all t P r´A, 0s, z1, z2 P C and pǫ, µq P ∆. The same is also true, possibly for a different

constant K 1 ą 0, for all t P r0, As, z1, z2 P C and pǫ, µq P ∆.
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Proof: Let z1, z2 P C, t P r´A, 0s and pǫ, µq P ∆. Since F̃ px, 0, µq “ 0, we have

xpt, z2, ǫ, µq ´ xpt, z1, 0, µq “ xp0, z2, ǫ, µq ´ xp0, z1, 0, µq

`

ż t

0

fpxps, z1, ǫ, µqq ´ fpxps, z2, 0, µqq ds

`

ż t

0

ǫF̃ pxps, z1, ǫ, µq, ǫ, µq ds.

Observe that the solution x is a continuous function. Therefore, the image I :“ xpr´A, 0sˆ

C ˆ ∆q is a compact set. Since f is a C1 function, there is L ą 0 such that

|fpxps, z1, ǫ, µqq ´ fpxps, z2, 0, µqq| ď L|xps, z1, ǫ, µq ´ xps, z2, 0, µq|, (2.8)

for all s P r´A, 0s. Note that L does not depend on the choice of z1, z2, ǫ or µ. By hypothesis,

|F̃ pxps, z1, ǫ, µq, ǫ, µq| ă Mǫ, (2.9)

for all s P r´A, 0s. Once again, we remark that M does not depend on the choice of the

other entries as long as they are in the sets established. By the triangle inequality, we have

|xpt, z2, ǫ, µq ´ xpt, z1, 0, µq| ď|xp0, z2, ǫ, µq ´ xp0, z1, 0, µq| ` Mǫ|t|

`

ż t

0

L|xps, z1, ǫ, µq ´ xps, z2, 0, µq| ds. (2.10)

We apply Grönwall’s lemma as done in Lemma 3, and find K ą 0 such that

|xpt, z2, ǫ, µq ´ xpt, z1, 0, µq| ď KeK|t|p|xp0, z2, ǫ, µq ´ xp0, z1, 0, µq| ` ǫ|t|q.
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3 Fundamental proposition

The main goal of this section is proving the following proposition, which will

be crucial to further results.

Proposition 2 (Fundamental proposition). Consider a planar differential equation

x1 “ fpxq (3.1)

with an asymptotically stable limit cycle Γ of period ω ą 0. Let τ be an angular variable

modulo T ą 0. Suppose that Γ is hyperbolic, that is,

b :“
ż ω

0

trDfpφtppqq dt ă 0. (3.2)

Let M be the invariant torus corresponding to Γ for the system

x1 “ fpxq, τ 1 “ 1. (3.3)

Then, there are a neighbourhood N Ă R
2 ˆ R of M and a constant C ą 0 such that, for

every smooth function g : N Ñ R
2, with gpx, τ ` T q “ gpx, τq for all x P R

2 and all τ P R,

and for which the system

x1 “ fpxq ` gpx, τq, τ 1 “ 1 (3.4)

has an invariant set M̃ Ă N , the following estimate holds:

suptdppx, τq,Mq : px, τq P M̃u ď C}g}C0

In order to prove the above proposition, we shall study invariant foliations of a

neighbourhood of a hyperbolic limit cycle. A deeper exposition of the results presented

below can be found in (CHICONE; LIU, 2004). The approach and the style of proofs in

this section were greatly influenced by (TESCHL, 2012) and (PERKO, 2001).

3.1 Groundwork for the proof

Proposition 3. Let φspxq denote the flow of the system x1 “ fpxq in R
n, where f is a C1

field. Let K Ă R
n be a compact, and S be a positive constant. Then, there is a constant

C ą 0 satisfying

|φspxq ´ φspyq| ď eCs|x ´ y|, s P r0, Ss,

provided that φspxq P K and φspyq P K for all s P r0, Ss.
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Proof: Let B be a closed ball containing K. Observe that, for every s P r0, Ss:

|φspxq ´ φspyq| ď |pφspxq ´ xq ´ pφspyq ´ yq| ` |x ´ y|.

Therefore, we have

|φspxq ´ φspyq| ď

ˇ̌
ˇ̌
ż s

0

fpφtpxqq ´ fpφtpyqq dt

ˇ̌
ˇ̌ ` |x ´ y|,

and then

|φspxq ´ φspyq| ď

ż s

0

|fpφtpxqq ´ fpφtpyqq| dt ` |x ´ y|.

Let C :“ maxt|f 1ppq| : p P Bu. Since φtpxq and φtpyq are both in B, the mean value

inequality ensures that

|fpφtpxqq ´ fpφtpyqq| ď C|φtpxq ´ φtpyq|, t P r0, ss.

We thus have

|φspxq ´ φspyq| ď

ż s

0

C|φtpxq ´ φtpyq| dt ` |x ´ y|.

We apply Grönwall’s inequality and get

|φspxq ´ φspyq| ď |x ´ y|eCs,

as wanted.

We proceed by proving an estimate of the distance between an attractive

hyperbolic limit cycle and the flow of point near this cycle.

Lemma 5. Let Γ be a ω-periodic asymptotically stable limit cycle for the planar system

x1 “ fpxq. Let φspx0q be the flow of this equation with initial point x0. Suppose that Γ

is hyperbolic, that is, the quantity b, as defined in (3.2), is a negative number. Assume

also that there is a neighbourhood V of Γ, contained in the stable manifold of Γ, with an

invariant foliation with respect to x1 “ fpxq, and whose leaves are curves. Then, there is

C ą 0 such that dpφspqq,Γq ď Ce
bs
ω for all s ě 0, provided that q P V .

Proof: Let p be a point in Γ. Let Msppq denote the leaf through p. We define q̃ the first

crossing of the flow φspqq and the curve Msppq. We also define s̃ P r0, ωq the time for which

φs̃pqq “ q̃. Let s be a positive number. We will study the distance dpφspqq, φs´s̃ppqq. First,

we shall prove that there is C1 ą 0, independent of p and q such that

|φspqq ´ φs´s̃ppq| ď C1|φspq̃q ´ φsppq|, for all s ě 0.

To do so, observe that, if we denote the flow of the system x1 “ ´fpxq by ψspx0q, we have

φspqq “ ψs̃pφspq̃qq;
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φs´s̃ppq “ ψs̃pφsppqq.

Let K be a compact set such that V Ă K. Since V is contained in the stable manifold of

Γ, we know that ψtpφspq̃qq and ψtpφsppqq are in K for every t P r0, s̃s. By Proposition 3,

there is M ą 0 such that

|φspqq ´ φs´s̃ppq| ď eMs̃|φspq̃q ´ φsppq|

Because 0 ď s̃ ă ω, we know that eMs̃ ď eMω. We finish by defining C1 :“ eMω, which

yields

|φspqq ´ φs´s̃ppq| ď C1|φspq̃q ´ φsppq|. (3.5)

We will now study the expression |φspq̃q ´ φsppq|. Divide s by ω, and let n be

the quotient and r the remainder of this division. Since q̃ P Msppq and the foliation is

invariant, we have φωpq̃q P Mspφωppqq “ Msppq. Therefore,

φspq̃q “ φrpi ˝ πnpq̃qq;

φsppq “ φrppq,

where π is the Poincaré map defined on Msppq, and i : Msppq Ñ R
2 is the natural

embedding. Therefore, we have

|φspq̃q ´ φsppq| “ |φrpi ˝ πnpq̃qq ´ φrppq|.

We know that φtpxq P V for all t ě 0 if x P V . Therefore, since r P r0, ωq, we can apply

Proposition 3 again and get N ą 0 such that

|φspq̃q ´ φsppq| ď eNrdpπnpq̃q, pq ď eNωdpπnpq̃q, pq.

As before, we define C2 :“ eNω, and get

|φspq̃q ´ φsppq| ď C2 ¨ dpπnpq̃q, pq. (3.6)

We must now study the expression dpπnpq̃q, pq. We know that the derivative

of the map π at p is given by π1ppq “ eb. Since }π1ppq} ă 1, the Poincaré map π is

C1-conjugated to its derivative at its fixed point, p, as proved in (RODRIGUES; RUBIÓ,

2012). Therefore, there exist a compact neighbourhood U of p and a C1 diffeomorphism

H : U 1 Ñ U such that Hp0q “ p and πnpxq “ H ˝ pπ1ppqqn ˝ H´1pxq. *Let N P N be such

that πN pxq P U for all x P Msppq*. Let C3 be such that C3 ě e´bN ¨suptdpx, pq : x P Msppqu.

If n ă N , we have

dpπnpq̃q, pq ď dpq̃, pq ď eb pn´Nqdpq̃, pq ď C3 ¨ ebn

On the other hand, if n ě N , we have

dpπnpq̃q, pq “ dpπn´N pπN pq̃qq, pq “ dpH ˝ pπ1ppqqn´N ˝ H´1pπN pq̃qq, Hp0qq.
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Since H is a C1 function on a compact set, there is C4 ą 0 such that dpHpxq, Hpyqq ď

C4 ¨ dpx, yq for all x, y P U 1. Therefore,

dpH ˝ pπ1ppqqn´N ˝ H´1pπN pq̃qq, Hp0qq ď C4 ¨ dpπ1ppqn´N ˝ H´1pπN pq̃qq, 0q.

Similarly, there is C5 ą 0 such that dpH´1pxq, H´1pyqq ď C5 ¨ dpx, yq for all x, y P U . Thus,

C4 ¨ dpπ1ppqn´N ˝ H´1pπN pq̃qq, 0q ď C4C5 ¨ ebpn´Nq ¨ dpπN pq̃q, pq.

Finally, we

C4C5 ¨ ebpn´Nq ¨ dpπN pq̃q, pq ď C4C5 ¨ e´bNdpq̃, pq ¨ ebn ď C3C4C5 ¨ ebn.

Hence, defining C6 “ maxtC3C4C5, C3u, we get, for all n P N:

dpπnpq̃q, pq ď C6 ¨ ebn (3.7)

Combining inequalities (3.5), (3.6) and (3.7), we get

|φspqq ´ φs´s̃ppq| ď C1C2C6 ¨ ebn “ C1C2C6 ¨ e
bs
ω

´ br
ω

Finally, defining C “ C1C2C6 ¨ e´b, we get:

|φspqq ´ φs´s̃ppq| ď Ce
bs
ω ,

which concludes our proof.

The following two results are non-autonomous versions of the stable manifold

theorem, which will help us with the construction of a foliation of a neighbourhood of an

attractive hyperbolic limit cycle that is invariant under the flow.

Proposition 4. Let g : R ˆ R
n Ñ R

n be a smooth function that is T -periodic in the first

variable. Suppose that

lim
|x|Ñ0

|gpt, xq|

|x|
“ 0 and

Bg

Bx
pt, 0q “ 0.

Consider the system

x1 “ Ax ` eβtgpt, e´βtxq, (3.8)

where A is a constant matrix and β ě 0. Suppose 0 is a hyperbolic equilibrium point for

the unperturbed system x1 “ Ax. Let k ą 0 be the dimension of Es, the stable subspace of

A. Then, there exists a k-dimensional C1-manifold W satisfying:

i. 0 P W ;

ii. Let xpt, x0q be the solution to (3.8) with xp0, x0q “ x0. If x0 P W ,

lim
tÑ8

|xpt, x0q| “ 0;
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iii. W is tangent to Es at 0.

Proof: Let x0 P R
n be close to 0. We will abbreviate xpt, x0q to xptq and define hpt, xq “

eβtgpt, e´βtxq. By the method of variation of parameters, we have

xptq “ etAx0 `

ż t

0

ept´rqAhpr, xprqqdr. (3.9)

We will first find a necessary condition for xptq to be bounded for t ě 0. Let Es and Eu

be the stable and unstable subspaces for the system x1 “ Ax, respectively. Define P s the

projection operator onto Es and P u the projection operator onto Eu. Also, abbreviate

xu “ P ux0, xs “ P sx0, hupt, xq “ P uhpt, xq and hspt, xq “ P shpt, xq. Applying P u to xptq,

we get

P uxptq “ etAxu `

ż t

0

ept´rqAhupr, xprqqdr,

which can be written

xu “ e´tAP uxptq ´

ż t

0

e´rAhupr, xprqqdr.

Suppose that xptq remains bounded. Then, the integral on the right-hand side of the

equation is absolutely convergent, and we can apply the limit and get

xu “ ´

ż 8

0

e´rAhupr, xprqqdr.

Substituting back into (3.9), we have

xptq “ etAxs `

ż t

0

ept´rqAhspr, xprqqdr ´

ż 8

t

ept´rqAhupr, xprqqdr. (3.10)

Therefore, if xptq remains bounded, it must satisfy (3.10). We will now prove that this

integral equation admits solutions. In fact, we will prove that, provided we take xs small

enough, we can choose xu, depending on xs, such that xptq is a solution to (3.10).

Let then xs be a point in Es. We will study pujpt, xsqqjPN, the sequence of

functions defined for t ě 0 given by

u0pt, xsq “ 0

and

uj`1pt, xsq “ etAxs `

ż t

0

ept´rqAhspr, ujpr, xsqqdr

´

ż 8

t

ept´rqAhupr, ujpr, xsqqdr. (3.11)

This definition includes a improper integral, which might not be well de-

fined. Thus, we must first show that, if we fix xs small enough, then each uj is a well
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defined function of t. In order to do that, take α ą 0 such that α ă mint|Repλiq| :

λi is an eigenvalue of Au and we will prove by induction that, provided xs is small, the

following inequality holds for all j P N

|ujpt, xsq ´ uj´1pt, xsq| ď
|xs|e´αt

2j´1
(3.12)

The case j “ 1 is clearly valid. For the other cases, let us note that, given v P Es and

w P Eu, if σ ` α ă mint|Repλiq| : λi is an eigenvalue of Au, we have

|etAv| ď e´pα`σqt|v| for t ě 0

and

|etAw| ď eσt|w| for t ď 0.

Since
Bg

Bx
pt, 0q “ 0, we know that, for each ǫ ą 0, there is δ ą 0 such that

|x|, |y| ă δ ùñ sup
tPr0,T s

|gpt, xq ´ gpt, yq| ă ǫ|x ´ y|. (3.13)

Assume the induction hypothesis (3.12) is valid for j “ 1, ...,m. Then, we have

|um`1pt, xsq ´ umpt, xsq| ď

ż t

0

ˇ̌
ept´rqA phspr, umpr, xsqq ´ hspr, um´1pr, xsqqq

ˇ̌
dr

`

ż 8

t

ˇ̌
ept´rqA phupr, umpr, xsqq ´ hupr, um´1pr, xsqqq

ˇ̌
dr.

Note that, with σ chosen as before, the first integral in last inequality is less than
ż t

0

e´pt´rqpα`σqeβt
ˇ̌
gspr, e´βtumpr, xsqq ´ gspr, e´βtum´1pr, xsqq

ˇ̌
dr.

Also, the second integral is less than
ż 8

t

eσpt´rqeβt
ˇ̌
gupr, e´βtumpr, xsqq ´ gupr, e´βtum´1pr, xsqq

ˇ̌
dr.

Let ǫ ą 0 be such that ǫ{σ ă 1{4, and let δ be such that condition (3.13) is true for this ǫ.

If we take |xs| ă δ{2, the induction hypothesis ensures that

|umpt, xsq| ă δ and |um´1pt, xsq| ă δ,

and then

|um`1pt, xsq ´ umpt, xsq| ď

ż t

0

e´pt´rqpα`σqǫ |umpr, xsq ´ um´1pr, xsq| dr

`

ż 8

t

eσpt´rqǫ |umpr, xsq ´ um´1pr, xsq| dr.

Again considering the induction hypothesis, we have
ż t

0

e´pt´rqpα`σqǫ |umpr, xsq ´ um´1pr, xsq| dr ď
ǫ|xs|e´pα`σqt

2m´1

ż t

0

eσrdr

ď
ǫ|xs|e´αt

σ2m´1
,
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and
ż 8

t

eσpt´rqǫ |umpr, xsq ´ um´1pr, xsq| dr ď
ǫ|xs|eσt

2m´1

ż 8

t

e´pσ`αqrdr

ď
ǫ|xs|e´αt

σ2m´1
.

Finally, since ǫ{σ ă 1{4, we have

|um`1pt, xsq ´ umpt, xsq| ď
2ǫ|xs|e´αt

σ2m´1
ă

|xs|e´αt

2m
,

as we wanted.

Now that we have proven (3.12), we can show that uj is well defined if xs is

chosen as above. We begin by

ujpt, xsq “ u0pt, xsq `
jÿ

i“1

puipt, xsq ´ ui´1pt, xsqq ,

to which we can apply the triangle inequality and (3.12) to get

|ujpt, xsq| ď
jÿ

i“1

|uipt, xsq ´ ui´1pt, xsq| ď 2|xs|e´αt (3.14)

Thus, the improper integral appearing in the definition of each uj is absolutely convergent,

which means uj is well defined.

We will now prove that (3.10) admits solution. In fact, the solution we seek is

the limit of the sequence pujpt, xsqqjPN. We must first show that this sequence has a limit.

Let m,n P N, with n ą m. Then,

|unpt, xsq ´ umpt, xsq| ď
nÿ

i“m`1

|uipt, xsq ´ ui´1pt, xsq| .

If N P N is such that n ą m ą N , we can apply (3.12) and get

|unpt, xsq ´ umpt, xsq| ď |xs|e´αt
8ÿ

i“N

1
2i´1

“
|xs|e´αt

2N´2
.

Therefore, if xs is fixed and small enough, the sequence of functions ujpt, xsq is a uniformly

Cauchy sequence of continuous functions for t ě 0. We know then that this sequence

converges uniformly to a continuous function: upt, xsq. Considering that the convergence is

uniform, we may take the limit of both sides of equation (3.11) and conclude that upt, xsq

is a solution to the integral equation (3.10). Taking the derivative of (3.10), we deduce

that upt, xsq is the unique solution of x1 “ Ax ` hpt, xq with initial value up0, xsq.

Finally, define V Ă Es, the open ball centered at 0 with radius equal to δ{2,

where δ is chosen as before. We introduce the function ξ : V Ñ Eu given by

ξpxsq “ P uup0, xsq.
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The set W :“ ta ` ξpaq : a P V u is a submanifold of Rn, whose dimension equals the

dimension of Es. It is also clear that W satisfies property (i). By construction, the solution

to the system x1 “ Ax ` hpt, xq beginning at x0 P W approaches 0 as t Ñ 8. In fact,

(3.14) ensures that this solution approaches 0 at exponential rate α. Therefore, property

(ii) is also proved.

At last, we will prove that W is tangent to Es at 0. Let i : Rk Ñ Es Ă R
n

be a linear parametrisation of the surface Es. Define ξ̃ : Rk Ñ R
n the function given by

ξ̃ “ ξ ˝ i. By (3.10), the derivative of ξ̃ at z P R
k is

Dξ̃pzqp¨q “ P u

ˆ
ip¨q ´

ż 8

0

e´rA Bhu

Bx
pr, upr, ipzqqq

Bu

Bz
pr, ipzqq dr

˙
.

If we take z “ 0, we have ipzq “ 0, by linearity of i. Thus, upr, ip0qq “ 0 for all r ě 0.

Since
Bgu

Bx
pr, 0q “ 0 by hypothesis, we have

Dξ̃p0qp¨q “ P u pip¨qq “ 0,

so that W is tangent to Es at 0.

Proposition 5. Let g : R ˆ R
n Ñ R

n be a smooth function that is T -periodic in the first

variable. Suppose that

lim
|x|Ñ0

|gpt, xq|

|x|
“ 0 and

Bg

Bx
pt, 0q “ 0.

Consider the system

x1 “ Ax ` gpt, xq, (3.15)

where A is a constant matrix. Suppose 0 is an equilibrium point for the unperturbed system

x1 “ Ax. Let k ą 0 be the dimension of Es, the stable subspace of A. Then, there exists a

k-dimensional C1-manifold W satisfying:

i. 0 P W ;

ii. Let xpt, x0q be the solution to (3.15) with xp0, x0q “ x0. If x0 P W ,

lim
tÑ8

|xpt, x0q| “ 0;

iii. W is tangent to Es at 0.

Proof: Let β ą 0 be such that β ă mint|Repλiq| : λi is an eigenvalue of Au. Define

yptq “ eβt xptq. Observe that yptq satisfies the following differential equation:

y “ pA ` β Iq y ` eβtgpt, e´βtq.

Furthermore, our choice of β ensures that all eigenvalues of A ` β I have non-zero real

part and that the stable subspace of A ` βI is equal to Es. Applying Proposition 4 to

this system, we get a k-dimensional C1-manifold, Wy satisfying:
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i. 0 P Wy;

ii. If y0 P Wy, then lim
tÑ8

|ypt, y0q| “ 0;

iii. Wy is tangent to Es.

It suffices then to notice that, since xptq “ e´βtyptq, it follows:

lim
tÑ8

|ypt, y0q| “ 0 ùñ lim
tÑ8

|xpt, y0q| “ 0.

Thus, we conclude our proof by defining W :“ Wy.

The next two results are dedicated to the construction of a foliation of a

neighbourhood of an attractive hyperbolic limit cycle that is invariant under the flow. This

construction will be of great importance in the proof of our fundamental proposition.

Proposition 6. Let Γ be a ω-periodic asymptotically stable hyperbolic limit cycle for

the planar system x1 “ fpxq. Let b be defined as in (3.2). For each p P Γ, there is a

1-dimensional C1-manifold, Msppq, contained in the stable manifold of Γ, satisfying:

i. p P Msppq;

ii. lim
tÑ8

|φspxq ´ φsppq| “ 0 for all x P Msppq;

iii. Msppq intersects Γ transversally at p.

Proof: Let p be a point in Γ. We will study the difference ypsq :“ φspp̃q ´ φsppq, where p̃

is a point near p. We have:

y1psq “
d

ds
pφspp̃q ´ φsppqq “ fpφspp̃qq ´ fpφsppqq.

Define h : R ˆ R
2 Ñ R

2 by

hps, xq “ fpφsppq ` xq ´ fpφsppqq ´ Dfpφsppqqpxq

By Taylor’s theorem, we know that

lim
xÑ0

|hps, xq|

|x|
“ 0.

Furthermore, hps` ω, xq “ hps, xq for all s P R and all x P R
2. Define Apsq “ Dfpφsppqq.

Observe that y satisfies the following differential equation:

y1 “ Apsq y ` hps, yq, (3.16)

where Apsq is ω-periodic and h satisfies all the hypotheses in Proposition 5. Define Φpsq

as the fundamental matrix solution at s “ 0 for the linear system

y1 “ Apsq y. (3.17)
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By Floquet’s theorem, there are an ω-periodic matrix function P psq and a matrix B such

that

Φpsq “ P psq esB.

Then, we have

ApsqP psqesB “ Φ1psq “ P 1psqesB ` P psqBesB.

so that, since esB is invertible,

ApsqP psq “ P 1psq ` P psqB (3.18)

for all s P R. Let us put zpsq :“ P´1psq ypsq. Then, we may write

y1psq “ P 1psq zpsq ` P psq z1psq,

and, by equation (3.16), we have

P 1psqzpsq ` P psqz1psq “ ApsqP psqzpsq ` hps, yq.

Using equation (3.18), we conclude that z satisfies the differential equation

z1 “ Bz ` gps, zq, (3.19)

where gps, zq “ P´1psq¨hps, P psq zq. Observe that g also satisfies all the conditions required

in Proposition 5.

In order to study this system, let us note that

det Φpωq “ detP pωq det eωB “ det eωB,

because P pωq “ P p0q “ I. By Liouville’s formula, we have

det Φpωq “ exp
ż ω

0

trAptqdt “ eb.

Furthermore, s ÞÑ fpφsppqq is clearly a solution for (3.17). Therefore, we have

Φpωqfppq “ fpφωppqq “ fppq,

and fppq is eigenvector of Φpωq “ eωB associated to the eigenvalue 1. We know then, since

the determinant of a matrix is equal to the product of its eigenvalues, that eωB has another

eigenvalue equal to eb. Thus, the eigenvalues of the matrix B are 0 and
b

ω
ă 0. Therefore,

system (3.19) satisfies all the hypotheses needed to apply Proposition 5. Applying it,

we get a 1-dimensional C1-manifold, Wz, satisfying all the properties presented in the

proposition.

We define Msppq “ tp ` z : z P Wzu. Let us prove that this 1-dimensional

C1-manifold satisfies all the properties asserted. Property piq is clear because 0 P Wz. Now,





Chapter 3. Fundamental proposition 38

Proof: Let p0 be a point in Γ. We build Mspp0q as in Proposition 6. Observe that, for

every other point p1 P Γ, there is a unique Tp1 P p0, ωq such that φTp1 pp0q “ p1. We define

Mspp1q :“ φTp1 pMspp0qq.

By construction, each Mspp1q is a curve intersecting Γ only at p1. We also define the

neighbourhood V “
ď

p1PΓ

Mspp1q of Γ.

Let p P Γ. Suppose that q is a point in Msppq. We will prove first that

lim
tÑ8

|φtpqq ´ φtppq| “ 0.

By the definition of Msppq, there is q0 P Mspp0q such that φTppq0q “ q. Hence, for all t P R,

|φtpqq ´ φtppq| “ |φt`Tppq0q ´ φt`Tppp0q|.

By property piiq in Proposition 6, we have

lim
tÑ8

|φtpqq ´ φtppq| “ lim
tÑ8

|φt`Tppq0q ´ φt`Tppp0q| “ 0,

as wanted.

Now, let t be a positive real number. We will prove that φtpqq P Mspφtppqq.

Since φtpqq P V , there is p1 P Γ such that φtpqq P Mspp1q. Therefore, we have

lim
sÑ8

|φspφtpqqq ´ φspp1q| “ 0.

Defining p2 “ φ´tpp1q, we have

lim
sÑ8

|φs`tpqq ´ φs`tpp2q| “ 0,

or, equivalently,

lim
sÑ8

|φspqq ´ φspp2q| “ 0.

Since q P Msppq, we also have

lim
sÑ8

|φspqq ´ φsppq| “ 0.

By the triangle inequality, we have, for all s P R,

|φsppq ´ φspp2q| ď |φsppq ´ φspqq| ` |φspqq ´ φspp2q|.

Hence, we have

lim
sÑ8

|φsppq ´ φspp2q| “ 0,

which, since p, p2 P Γ, can only be true if p “ p2. Therefore, p1 “ φtppq, as wanted.

Corollary 1. Let b be defined as in (3.2). There is C ą 0 such that, if q P V , the following

inequality holds for all s ě 0:

dpφspqq,Γq ď Ce
bs
ω .

Proof: We need only apply Lemma 5 to the neighbourhood V obtained in the last

proposition.
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3.2 Proof of the fundamental proposition

We begin by building two families of C1 plane curves, which we will call S`
r

and S´
r , with r P p0, 1s. The following properties will be satisfied for those families:

i. The curves S`
r lie in the exterior of Γ, and the curves S´

r lie in the interior of Γ.

Each S`
r (or S´

r ) together with Γ encloses an annulus;

ii. The curves S`
r and S´

r are transverse to the vector field f ;

iii. There is a constant C0 ą 0, independent of r, such that suptdpx,Γq : x P S˘
r u ď C0r;

iv. If we define C˘
f prq :“ mintxfpxq, npxqy : x P S˘

r u, where npxq is the inward (resp.

outward) unit normal vector to S`
r (resp. S´

r ) at x, then C˘
f prq ě C1r for some

constant C1, independent of r.

The construction of those two families and the verification of the properties stated above

will be done in sections 3.2.1 and 3.2.2 below. The proof of the proposition itself will be

presented afterwards, in section 3.2.3.

3.2.1 Construction of S`

r
and S´

r

By Proposition 7, there is a neighbourhood V of Γ, contained in the stable

manifold of Γ, with an invariant foliation with respect to the system (3.1). Each leaf of this

foliation is a curve that crosses Γ once. We denote by Msppq the leaf that passes through

p P Γ. Let t ÞÑ xpt, ξq be the solution of (3.1) with xp0, ξq “ ξ. Also, let Φpt, ξq denote the

principal matrix fundamental solution at t “ 0 of the linearized system along this solution.

This means that Φ satisfies the following differential equation

X 1 “ Dfpxpt, ξqq ¨ X, (3.20)

and that Φp0, ξq “ I.

In order to build S`
r , we will first build a closed C1 curve, S, contained in the

exterior of Γ. Fix a point q1 P Msppq that lies in the exterior of Γ, and let q0 :“ xpω, q1q,

the point where q1 first returns to Msppq. Note that the time needed for q1 to return is

indeed ω, because Msppq is invariant with respect to (3.1). Let q : r0, 1s Ñ Msppq Ă R
2 be

a smooth function such that qp0q “ q0, qp1q “ q1, and the derivative of q, including the

left-hand and right-hand derivatives at the end points of r0, 1s, does not vanish. We also

require that q satisfies the following property:

9qp0`q “ Φpω, q1q 9qp1´q. (3.21)
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This requirement can be met because, since the foliation is invariant with respect to (3.1),

we have

Φpω, q1qTq1
M sppq “ Tq0

M sppq.

Let t : r0, 1s Ñ r0, ωs denote the linear transformation tpλq “ λω, and define

the curve S parametrically by λ ÞÑ xptpλq, qpλqq. Let us note that S is closed. In fact, we

need only see that

xptp0q, qp0qq “ xp0, q0q “ q0,

xptp1q, qp1qq “ xpω, q1q “ q0.

Let us prove that S is C1. In order to do so, define T pλq to be the tangent vector to S at

the point xptpλq, qpλqq, where 0 ă λ ă 1. We have

T pλq “
d

ds
xptpsq, qpsqq

ˇ̌
ˇ̌
s“λ

“ Btxptpλq, qpλqq ω ` Bξxptpλq, qpλqq 9qpλq. (3.22)

Since x satisfies equation (3.1), we have Btxptpλq, qpλqq “ fpxptpλq, qpλqqq. Moreover, the

derivative Bξxpt, qq satisfies (3.20) and Bξxp0, qq “ I for all q. Hence, Bξxptpλq, qpλqq “

Φptpλq, qpλqq. It follows

T pλq “ ω fpxptpλq, qpλqqq ` Φptpλq, qpλqq 9qpλq. (3.23)

To prove that S is C1, we need only show that T p0`q “ T p1´q. Indeed, by (3.21),

T p0`q “ ω fpxp0, q0qq ` Φp0, q0q 9qp0`q “ ω fpq0q ` 9qp0`q;

T p1´q “ ω fpxpω, q1qq ` Φpω, q1q 9qp1´q “ ω fpq0q ` 9qp0`q.

S is, thus, a closed C1 curve.

Let φs denote the flow associated with the system x1 “ fpxq. Let r P p0, 1s.

The curve S`
r is defined by S`

r :“ φspSq, where s “ pω{bq ln r. The construction of S´
r is

done in like manner.

3.2.2 Verification of properties

Property piq is clearly valid. In order to prove piiq, let us first show that the curve

S is transverse to f . Observe that, since 9qpλq is tangent to Msppq at qpλq, this vector is not

parallel to fpqpλqq. Furthermore, fpxpt, qqq is always a solution to the linearized system

x1 “ Dfpxpt, qqq ¨ x along the solution xpt, qq. Therefore, since Φpt, qq is the fundamental

matrix solution at for this system,

Φptpλq, qpλqq fpqpλqq “ fpxptpλq, qpλqqq.

Since the determinant of Φptpλq, qpλqq is non-zero, it follows that Φptpλq, qpλqq 9qpλq and

Φptpλq, qpλqq fptpλq, qpλqq are linearly independent. By (3.23), T pλq is nowhere parallel to

fptpλq, qpλqq. Thus, S is everywhere transverse to f .



Chapter 3. Fundamental proposition 41

Now, let us prove that f is transverse to S`
r . For each Q P S`

r , there is P P S

such that φspP q “ Q. By definition of S`
r , we have TQS

`
r “ DφspP qTPS. Once again,

use that fpφtpP qq is the solution to the linearized system x1 “ Dfpxpt, P qq ¨ x with initial

value fpP q. This means that fpQq “ DφspP q fpP q. Since fpP q is transverse to TPS, it

follows that TQS
`
r is also transverse to fpQq, and property piiq is proved.

To prove property piiiq, observe that, by corollary 1, there is C0 ą 0 such that,

if x0 P V , we have dpφspx0q,Γq ď C0e
bs
ω . By construction, S Ă V . Applying the inequality

to P P S, we get

dpQ,Γq “ dpφspP q,Γq ď C0e
bs
ω “ C0r,

and C0 depends only on the neighbourhood V .

Finally, let us prove property pivq. Once more, for each Q P S`
r , let P P S be

such that φspP q “ Q. Additionally, denote by λ the number satisfying xptpλq, qpλqq “ P .

Define the vector T pQq P TQS
`
r to be, with an abuse of notation, T pQq “ DφspP q T pλq.

Define npQq to be the inward unit normal vector to S`
r at Q.

Since T pQq and npQq are orthogonal, we have xfpQq, npQqy |T pQq| “ |fpQq ˆ

T pQq|. By definition of C`
f prq, if r P p0, 1s, then

C`
f prq “ min

QPSr

"
|fpQq ˆ T pQq|

|T pQq|

*
.

Because DφtpP q is a solution to (3.20) with ξ “ P and Dφ0pP q “ I, we have DφtpP q “

Φpt, P q. Then, by (3.23),

T pQq “ DφspP qT pλq “ ωΦps, P q fpP q ` Φps, P q Φptpλq, qpλqq 9qpλq

“ ω fpQq ` Φps ` tpλq, qpλqq 9qpλq. (3.24)

Hence, |fpQq ˆ T pQq| “ |fpQq ˆ Φps ` tpλq, qpλqq 9qpλq|. Next, we will make use of the

following auxiliary lemma, which will be proved later on in order not to interrupt the flow

of the proof.

Lemma 6 (Auxiliary lemma). Under the same hypotheses and notation from the proof of

Proposition 2, if q1 is chosen sufficiently close to p P Msppq, there is K ě 1 such that

1
K

exp
ż t

0

trApτqdτ ď |Φpt, qpλqq 9qpλq| ď K exp
ż t

0

trApτqdτ ,

for all t ě 0, where Apτq “ Dfpφτ ppqq.

By the lemma above, if we choose q1 sufficiently close to p P Msppq, there is a

number K ě 1 such that

1
K

exp
ż s`tpλq

0

trApτqdτ ď |Φps ` tpλq, qpλqq 9qpλq| ď K exp
ż s`tpλq

0

trApτqdτ ,
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where Aptq :“ Dfpφtppqq. The proof of last inequality is given in Lemma 6 in order not to

interrupt the flow of the proof.

Let vpQq denote the unit tangent vector at Q to the stable fiber through Q.

By (3.24), we have:

|fpQq ˆ T pQq| “ |fpQq ˆ Φps ` tpλq, qpλqq 9qpλq|.

Since Φps ` tpλq, qpλqq 9qpλq is tangent to the stable fiber through Q, we have:

|fpQq ˆ T pQq| ě
1
K

|fpQq ˆ vpQq| exp
ż s`tpλq

0

trApτqdτ ,

Furthermore, again by (3.24), there is a constant C2 ą 0 such that

|T pQq| ď ω|fpQq| ` |Φps ` tpλq, qpλqq 9qpλq|

ď ω|fpQq| ` K exp
ż s`tpλq

0

trApτqdτ

ď ω|fpQq| ` C2.

Observe that |f | and |fpQq ˆ vpQq| are bounded below over the compact set whose

boundary is given by S`
1

Y S´
1

. Since Q must be in this set, using the above estimates, we

get that there is C3 ą 0 such that

|fpQq ˆ T pQq|

|T pQq|
ě

|fpQq ˆ vpQq|

Kpω|fpQq| ` C2q
exp

ż s`tpλq

0

trApτqdτ

ě C3 exp
ż s

0

trApτqdτ .

Let m be a nonnegative integer and ρ be a number in r0, ωq such that s “ mω ` ρ. Then

there are constants C1 ą 0 and C4 ą 0 such that

C3 exp
ż s

0

trApτqdτ “ C3 exp
ż mω`ρ

0

trApτqdτ

ě C4 exp
ż mω

0

trApτqdτ

“ C4e
bm “ C4e

bs´bρ

ω ě C1r,

proving that C`
f prq ě C1r.

3.2.3 Proof of the fundamental proposition

We begin by "suspending" the curves S`
r and S´

r , generating the tori B˘
r “

tpx, τq : x P S˘
r u Ă R

2 ˆ R. We then define N as the annular region bounded by B`
1

and

B´
1

. M is the torus generated by the "suspension" of Γ. Observe that fspx, τq :“ pfpxq, 1q

is the vector field present in equation (3.3). The following properties of B˘
r follow directly

from the properties we established for S˘
r :
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i. Each B`
r lies in the exterior of M , and each B´

r lies in the interior of M ;

ii. B`
r and B´

r are transverse to the vector field fs;

iii. There is a constant C0 ą 0, independent of r, such that suptdppx, τq,Mq : x P

S˘
r , τ P Ru ď C0r;

iv. If we define C˘
fs

prq :“ mintxfspx, τq, nspx, τqy : px, τq P B˘
r u, where we have defined

nspx, τq “ pnpxq, 0q, the inward (resp. outward) unit normal vector to B`
r (resp. B´

r )

at px, τq, then C˘
fs

prq ě C1r for some constant C1, independent of r.

Let g : N Ñ R
2 be such that gpx, τq “ gpx, τ ` T q for all τ P R, and for which

the system (3.4) has an invariant set M̃ Ă N . The periodicity of g will ensure that g is

well defined for the angular variable τ .

We divide the proof in two cases, depending on the value of the quantity

}g}C0 :“ supt|gpx, τq| : px, τq P Nu. First, we suppose that }g}C0 ą C1. In this case, we

have

suptdppx, τq,Mq : px, τq P M̃u ď suptdppx, τq,Mq : px, τq P Nu ď C0,

by property piiiq. Thus, we can write

suptdppx, τq,Mq : x P M̃u ď C0 “ C1 ¨
C0

C1

ă }g}C0 ¨

ˆ
C0

C1

` 1
˙
,

which proves the proposition in this case.

Now, let us assume that }g}C0 ď C1. Then, there is r0 P p0, 1s such that

}g}C0 “ C1r0. Let px, τq P B˘
r . Let us denote the vector field appearing in system (3.4) by

f̃spx, τq “ fspx, τq ` pgpx, τq, 0q. We have

xf̃spx, τq, nspx, τqy ě C˘
fs

prq ´ }g}C0
ě C1pr ´ r0q,

by property pivq. Thus, for r ą r0, we have

xf̃spx, τq, nspx, τqy ą 0.

Therefore, if r ą r0, the set B`
r Y B´

r is the boundary of a positively invariant set for

the flow of (3.4). To conclude the proof, we will prove that this ensures that M̃ must be

contained in the region bounded by B`
r0

and B´
r0

. Indeed, provided that this is true, we

have

suptdppx, τq,Mq : x P M̃u ď C0r0 “
C0

C1

}g}C0 ă }g}C0

ˆ
C0

C1

` 1
˙
.

We begin by defining the equivalence relation „ in the space R
2 ˆ R:

px, τq „ px1, τ 1q ðñ x “ x1 and Dn P Z such that τ 1 “ τ ` nT.
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Since g is T -periodic in τ , system (3.4) and the sets M and M̃ are well defined in R
2 ˆR{„.

In this new space, however, the region bounded by B`
r YB´

r is compact. We will prove that

the orbit of f̃s through every point y “ px, τq P ExtpB`
r0

q intersects ExtpB`
1

q. Let φpt, yq

be the flow of f̃s. Define γ´pyq :“ tφpt, yq : t ď 0u. Assume that γ´pyq Ă IntpB`
1 q, which is

compact. Then, the α-limit set αpyq is a non-empty, compact and connected set contained

in IntpB`
1 qzIntpB`

r0
q. We will prove that this assumption leads us to a contradiction.

Define L :“ tr P pr0, 1s : αpyq X ExtpB`
r q “ Hu. Suppose first that L is

empty. Then, there is z P αpxq X ExtpB`
1 q. Since αpyq Ă IntpB`

1 q, we have: z P B`
1

.

Thus, there is ǫ ą 0 such that φp´ǫ, zq P ExtpB`
1

q, because xf̃spzq, nspzqy ą 0. Therefore,

z P γ´pyq X ExtpB`
1

q, which is a contradiction.

Now, suppose L is not empty. Define i :“ inf L. Assume that i “ r0. Let r ą r0

be such that y P B`
r . By assumption, there is η ă 0 such that φpη, yq P IntpB`

r1 q, where

r0 ă r1 ă r. But this contradicts the fact that B`
r1 Y B´

r1 is the boundary of a positively

invariant region. Thus, we have i ą r0.

We now consider two cases. If i P L, since αpyq and ExtpB`
i q are closed sets,

there is a neighbourhood U of ExtpB`
i q such that U X αpyq “ H. But this means there is

l P pr0, iq such that αpyq X ExtpB`
l q “ H, which is a contradiction. On the other hand, if

i R L, we can take z P αpyq X ExtpB`
i q. Suppose that z P ExtpB`

i q. Then, there would be

j ą i such that z P αpyq X ExtpB`
j q, that is, j R L. Observe that if l P L and l1 ě l, then

l1 P L. This means that, if l ă j, then l cannot be in L. Since i is the greatest lower bound

of L, this is a contradiction. The only possibility then is that z P αpyq X B`
i . But then

again there is ǫ ą 0 such that φp´ǫ, zq P B`
j , where j ą i. Since αpyq is invariant, we have

j R L. Once more, this is a contradiction with the fact that i is the infimum.

We have thus proved that γ´pyqXExtpB`
1

q ‰ H if y P ExtpB`
r0

q. By hypothesis,

the invariant set M̃ is contained in N Ă IntpB`
1 q. Therefore, we must have M̃ Ă IntpB`

r0
q.

We can also prove that M̃ Ă ExtpB´
r0

q in the same way.

3.2.4 Proof of the auxiliary lemma

We present the proof of the auxiliary lemma used in section 3.2.2.

Proof: Let t ě 0. Let m be a positive integer and ρ P r0, ωq be such that t “ mω ` ρ. We

have, by properties of the flow:

φtpxq “ φρpφmωpxqq,

for all x P R
2. Therefore, by differentiating with respect to x, we have:

Φpt, xq “ Φpρ, φmωpxqq ¨ Φpmω, xq.

If we take x “ qpλq and apply both sides to 9qpλq, we get:

|Φpt, qpλqq ¨ 9qpλq| “ |Φpρ, φmωpqpλqqq ¨ Φpmω, qpλqq ¨ 9qpλq|.
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Thus, we have

|Φpt, qpλqq ¨ 9qpλq| “
ˇ̌
ˇΦpmω, qpλqq ¨ 9qpλq

ˇ̌
ˇ
ˇ̌
ˇΦpρ, φmωpqpλqqq ¨

ˆ
Φpmω, qpλqq ¨ 9qpλq

|Φpmω, qpλqq ¨ 9qpλq|

˙ ˇ̌
ˇ.

Let us define the function α : r0, ωs ˆ S1 Ñ R by

αpρ, vq “ |Φpρ, pq ¨ v|.

Observe that α is a continuous function defined on compact set; hence, it has a maximum

and a minimum value on that set. Moreover, αpρ, vq ą 0, because, by Liouville’s formula,

we have

detpΦpρ, pqq ą 0, @ρ P r0, ωs.

then there are l, L ą 0 such that

l ă αpρ, vq ă L. (3.25)

Let ǫ ą 0. By continuity, if z is sufficiently close to p, we have

|Φpρ, zq ¨ v ´ Φpρ, pq ¨ v| ă ǫ.

Therefore, by taking q1 sufficiently close to p, we get:

ˇ̌
ˇΦpρ, φmωpqpλqqq ¨

ˆ
Φpmω, qpλqq ¨ 9qpλq

|Φpmω, qpλqq ¨ 9qpλq|

˙
´ Φpρ, pq ¨

ˆ
Φpmω, qpλqq ¨ 9qpλq

|Φpmω, qpλqq ¨ 9qpλq|

˙ ˇ̌
ˇ ă

l

2
.

Combining last inequality with (3.25), we get:

l

2
ă

ˇ̌
ˇΦpρ, φmωpqpλqqq ¨

ˆ
Φpmω, qpλqq ¨ 9qpλq

|Φpmω, qpλqq ¨ 9qpλq|

˙ ˇ̌
ˇ ă L `

l

2
.

Since qpλq is a parametrisation of a submanifold of Msppq, we have

φmωpqpλqq “ πmpqpλqq,

where π denotes the Poincaré map on Msppq. Taking the derivative with respect to λ, we

get ˇ̌
ˇΦpmω, qpλqq ¨ 9qpλq

ˇ̌
ˇ “

ˇ̌
ˇpπmq1pqpλqq

ˇ̌
ˇ
ˇ̌
ˇ 9qpλq

ˇ̌
ˇ.
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4 Proof of the main theorem

In this chapter, we shall prove Theorem B. This theorem is related to systems

of the following form:

ρ1 “ fpρ, σq ` µRpρ, σ, τ{µℓ, µq

σ1 “ gpρ, σq ` µSpρ, σ, τ{µℓ, µq

τ 1 “ 1, (4.1)

where ℓ ě 2 is a natural number, where |µ| ą 0, where f, g, R and S are Cr functions (r ě 2)

that are all 2π-periodic functions of the angular variable σ, and where t ÞÑ Rpρ, σ, t, µq

and t ÞÑ Spρ, σ, t, µq are 2πm{Ω-periodic, m P N. We view τ as an angular variable modulo

2πmµℓ{Ω, and we use s for the independent variable.

In order to study system (4.1) and prove the theorem, we follow Chicone and

Liu in (CHICONE; LIU, 1999/00). Consider the unperturbed system

ρ1 “ fpρ, σq

σ1 “ gpρ, σq. (4.2)

We recall Hypothesis B, stated in chapter 2.

Hypothesis B: System p4.2q has an attracting hyperbolic limit cycle Γ that is the graph

of a function of the angular variable σ.

For the convenience of the reader, we restate Theorem B, changing the notation

to that which we will adopt throughout this chapter:

Theorem B: Let k be an integer such that 2 ď k ď r. Suppose that Hypothesis B

is satisfied. Then, if |µ| is sufficiently small, system p4.1q has a k-normally hyperbolic

invariant manifold that is the graph of a function of the angular variables σ and τ .

We remark that it suffices to prove the case µ ą 0, since the case µ ă 0 is easily

transformed to the first case by redefining R and S. We will study Eǫ,µ, the auxiliary

family of differential systems given by

Eǫ,µ :

$
’’’&
’’’%

ρ1 “ fpρ, σq ` ǫRpρ, σ, τ{µℓ, µq

σ1 “ gpρ, σq ` ǫSpρ, σ, τ{µℓ, µq

τ 1 “ 1,
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Note that system (4.1) coincides with Eµ,µ. Furthermore, Hypothesis B guarantees that

the suspended system

ρ1 “ fpρ, σq

σ1 “ gpρ, σq

τ 1 “ 1, (4.3)

where τ is seen as an angular variable modulo 2πmµℓ{Ω, has a normally hyperbolic torus

that is a graph over the angular variables σ and τ.

4.1 Outline of the proof: the method of continuation

In order to prove theorem B, we apply a method of continuation, by defining,

for each µ ą 0, the set Aµ, which is the maximal interval with left endpoint at ǫ “ 0 such

that Eǫ,µ has a k-normally hyperbolic invariant manifold, k ě 2. We will prove that, for

µ ą 0 sufficiently small, the set Aµ X r0, µs is a non-empty, connected subset of r0, µs which

is also relatively open and closed, and thus Aµ X r0, µs “ r0, µs. Then, Theorem B follows

by taking ǫ “ µ P Aµ.

First, notice that Aµ X r0, µs is indeed connected, because it is an interval by

definition. It is also non-empty, because 0 P Aµ X r0, µs by hypothesis. Moreover, Theorem

2 ensures that, if ǫ P Aµ, there is an open interval containing ǫ that is contained in Aµ.

Hence, the set Aµ X r0, µs is relatively open. Theorem B is thus a direct consequence of

the following proposition:

Proposition 8. If µ ą 0 is chosen sufficiently small and if ǫ˚ ă µ is the least upper bound

of a relatively open interval with left endpoint at 0 in Aµ, then ǫ˚ P Aµ.

The proof of last proposition will be divided in three lemmas.

Lemma L1: With the hypotheses and notation of this section, the system Eǫ˚,µ has an

invariant manifold Mpǫ˚, µq given as the graph of a C1 function of the angular variables.

Lemma L2: If Mpǫ˚, µq is the invariant manifold in Lemma L1, then it has an invariant

normal bundle.

Lemma L3: If Mpǫ˚, µq is the invariant manifold in Lemma L1, then it is k-normally

hyperbolic. In particular, Mpǫ˚, µq is Ck and ǫ˚ P Aµ.

The rest of this work will be dedicated to proving the three lemmas above.

In section 4.2, we will build the objects needed to render the concepts presented in 2.1

applicable. In section 4.3, we set out to prove technical lemmas that will be used later on.

Finally, in section 4.4, we effectively prove Lemmas L1, L2 and L3.
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For the remainder of this chapter, let us assume that µ ą 0 and ǫ ě 0 are

fixed, and that system (4.3) has an invariant torus, Mpǫ, µq, given as the graph of hǫ, a

C1 function of the angular variables.

4.2 Normal splitting

The proof of Lemma L3 consists in showing that an invariant manifold is

k-normally hyperbolic. In order to do this, we will study quantities that arise when we

have an invariant splitting of the tangent bundle of the ambient space, as seen in section

2.1.5. We begin this section by effectively constructing a pair X1psq and X2psq as in that

section for the case of the vector field given by system (4.3) and the invariant torus Mpǫ, µq,

invariant under this field.

Let us define new functions

F pρ, σ, τ, µ, ǫq “ fpρ, σq ` ǫRpρ, σ, τ{µℓ, µq

Gpρ, σ, τ, µ, ǫq “ gpρ, σq ` ǫSpρ, σ, τ{µℓ, µq (4.4)

and suppose that the invariant torus Mpǫ, µq is given as the graph of the function

pσ, τq ÞÑ hǫpσ, τq. First, let us find two vector fields that span the tangent space TξMpǫ, µq

at every point ξ P Mpǫ, µq. The vector field

X
ǫ
1
pσ, τq “

¨
˚̋
F pρ, σ, τ, µ, ǫq

Gpρ, σ, τ, µ, ǫq

1

˛
‹‚ (4.5)

is clearly tangent to Mpǫ, µq, because it is a vector field under which Mpǫ, µq is invariant.

The curve given by σ ÞÑ phǫpσ, τq, σ, τq for fixed τ is on Mpǫ, µq. Therefore, a

vector tangent to this curve is always tangent to Mpǫ, µq. One such vector is obtained by

the derivative of the function defining the curve:

X
ǫ
2
pσ, τq “

¨
˚̋
hǫ

σpσ, τq

1

0

˛
‹‚. (4.6)

Observe that, for each pσ, τq, the vectors X
ǫ
1
pσ, τq and X

ǫ
2
pσ, τq are linearly independent vec-

tors in TξMpǫ, µq, where ξ :“ phǫpσ, τq, σ, τq. Thus, these vectors span the fiber TξMpǫ, µq

of the tangent bundle of Mpǫ, µq.

Now, we will determine contraction rates for the flow on the invariant torus

Mpǫ, µq by studying the solutions of the first variational equational for system (4.3). Let

s ÞÑ γǫps, qq “: phǫpσǫps, qq, τpsqq, σǫps, qq, τpsqq (4.7)
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be the solution to system (4.3) with γǫp0, qq “ phǫpq, 0q, q, 0q. This solution is on the

invariant torus. The first variational equation along the solution s ÞÑ γǫps, qq is defined as

¨
˚̋
u1

v1

w1

˛
‹‚“

¨
˚̋
Fρ Fσ Fτ

Gρ Gσ Gτ

0 0 0

˛
‹‚

¨
˚̋
u

v

w

˛
‹‚, (4.8)

where the argument of each function is phǫpσǫps, qq, τpsqq, σǫps, qq, τpsq, µ, ǫq. Solutions to

the variational equation are given by the next proposition, and are directly related to the

vector fields X
ǫ
1

and X
ǫ
2
.

Proposition 9. Two independent solutions to the variational equation (4.8) along the

solution (4.7), are given by, with a slight abuse of notation,

X1psq :“ X
ǫ
1
pγǫps, qqq

X2psq :“ yǫps, qqX ǫ
2
pγǫps, qqq,

where

yǫpt, qq :“ exp
ˆż t

0

pGρh
ǫ
σ ` Gσq

˙
ds.

In the last integral, the arguments of the functions Gρ and Gσ are given by the expression

phǫpσǫps, qq, τpsqq, σǫps, qq, τpsq, µ, ǫq, and the argument of hǫ
σ is pσǫps, qq, τpsqq. Moreover,

X1psq and X2psq span the tangent space of the invariant torus Mpǫ, µq at each point along

the solution (4.7).

Proof: For X1psq, we define, to simplify notation

γǫps, qq “: pγǫ
1
ps, qq, γǫ

2
ps, qq, γǫ

3
ps, qqq

We will omit the arguments µ and ǫ from the functions F and G and their derivatives

for simplicity. They are assumed to remain unchanged throughout the proof. Then, since

γǫps, qq is a solution to (4.3), we have

pγǫ
1
q1ps, qq “ F pγǫps, qqq

pγǫ
2
q1ps, qq “ Gpγǫps, qqq

pγǫ
3
q1ps, qq “ 1

Applying the derivative to X1psq, we get

¨
˚̋
Fρpγǫps, qqqpγǫ

1
ps, qqq1 ` Fσpγǫps, qqqpγǫ

2
ps, qqq1 ` Fτ pγǫps, qqqpγǫ

3
ps, qqq1

Gρpγǫps, qqqpγǫ
1
ps, qqq1 ` Gσpγǫps, qqqpγǫ

2
ps, qqq1 ` Gτ pγǫps, qqqpγǫ

3
ps, qqq1

0

˛
‹‚
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This can be written as
¨
˚̋
Fρ Fσ Fτ

Gρ Gσ Gτ

0 0 0

˛
‹‚X1psq

where the argument of each function in the square matrix is γǫps, qq as we wanted.

In order to prove that X2psq is also a solution, we will first prove that

X2psq “
Bγǫ

Bq
ps, qq. (4.9)

In fact, we have

Bγǫ

Bq
ps, qq “

ˆ
hǫ

σpσǫps, qq, τpsqq
Bσǫ

Bq
ps, qq,

Bσǫ

Bq
ps, qq, 0

˙
“

Bσǫ

Bq
ps, qqX ǫ

2
pγǫps, qqq.

Moreover, we have, by changing order of derivatives

B

Bs

ˆ
Bσǫ

Bq

˙
ps, qq “

B

Bq

´
Gphǫpσǫps, qq, τpsqq, σǫps, qq, τpsqq

¯
“

“ Gρphǫpσǫps, qq, τpsqq, σǫps, qq, τpsqq ¨ hǫ
σpσǫps, qq, τpsqq ¨

Bσǫ

Bq
ps, qq

` Gσphǫpσǫps, qq, τpsqq, σǫps, qq, τpsqq ¨
Bσǫ

Bq
ps, qq.

Thus, the partial derivative of σǫ with respect to q satisfies the same initial value problem

as yǫps, qq, which proves (4.9).

Now, observe that

B

Bs

ˆ
Bγǫ

Bq

˙
ps, qq “

B

Bq

ˆ
Bγǫ

Bs

˙
ps, qq “

B

Bq

´
F pγǫps, qq, Gpγǫps, qq, 1

¯
.

Applying the derivative, we get

B

Bs

ˆ
Bγǫ

Bq

˙
ps, qq “

¨
˚̋
Fρ Fσ Fτ

Gρ Gσ Gτ

0 0 0

˛
‹‚

Bγǫ

Bq
ps, qq,

where the argument of each function in the matrix is once again γǫps, qq. By (4.9), we

know that X2psq is a solution to the variational equation.

Finally, since X
ǫ
1
pγǫps, qqq and X

ǫ
2
pγǫps, qqq are linearly independent and yǫps, qq

is a positive function, the vectors X1psq and X2psq span the tangent space Tγǫps,qq Mpǫ, µq.

We remark also that the angle condition stated in section 2.1.5 is satisfied by

X1psq and X2psq in this case. In order to prove this, observe that the angle θpsq between
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X1psq and X2psq is the angle between X
ǫ
1
pγǫps, qqq and X

ǫ
2
pγǫps, qqq. The vector fields X1

and X2 are continuous over the compact Mpǫ, µq, therefore the angle between them over

Mpǫ, µq attains its minimum and maximum value in this manifold. Let us name kθ and

Kθ the minimum and maximum values, respectively, of the angle between X1pξq and

X2pξq with ξ P Mpǫ, µq. Since γǫps, qq P Mpǫ, µq regardless of s ě 0 and q P Mpǫ, µq, we

have kθ ă θpsq ă Kθ, for all possible choices of s and q. Furthermore, the inequality

´π ă kθ ă Kθ ă π holds. In fact, if it were otherwise, we would have that the fields X1

and X2 are parallel at a point ξ P Mpǫ, µq, which is absurd, because they were proved to

span the fiber TξMpǫ, µq.

We have constructed X1 and X2 as needed. We will now assume that Mpǫ, µq

is normally hyperbolic in order to obtain necessary conditions for it to be so. Define Φǫpsq

to be the principal fundamental matrix solution of (4.8) at s “ 0. By Theorem 3, there is

a normal bundle over Mpǫ, µq that is invariant under Φǫpsq. Since the codimension of M is

one, the dimension of the fibres of the normal bundle is also one. Let X
ǫ
0

be a continuous

nonzero section of the normal bundle. We define the following family

L
s “ tpρ, σ, τq P R

3 : s P Ru.

We remark that tL
susPR is a foliation of the ambient space that is invariant under the flow

of system (4.3). For each ξ P Mpǫ, µq, let Lpξq denote the leaf of this foliation that passes

through ξ. The invariance of this foliation under the flow ensures that

Dφspξq ¨ TξLpξq “ TφspξqLpφspξqq. (4.10)

We define

X0psq :“ X
ǫ
0
pγǫps, qqq,

and

XK
2

psq “

¨
˚̋

0 ´1 0

1 0 0

0 0 1

˛
‹‚¨ X2psq.

It is clear that tX1psq, X2psq, XK
2

psqu is a basis for the tangent space of the ambient space

at the point γǫps, qq. It is also clear that X2psq and XK
2

psq span Tγǫps,qqLpγǫps, qqq for all

s ě 0. Furthermore, (4.10) guarantees that

ΦǫpsqXK
2

p0q P Tγǫps,qqLpγǫps, qqq,

or, equivalently, that there are apsq and bpsq such that

ΦǫpsqXK
2

p0q “ α1psqX2psq ` α2psqXK
2

psq.
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We will prove that X0psq in the span of X2psq and XK
2

psq for all s ě 0. There are

α1, α2, α3 P R such that

X0p0q “ α1X1p0q ` α2X2p0q ` α3X
K
2

p0q.

Therefore, since X1psq and X2psq are solutions to the variational equation (4.8), we have

ΦǫpsqX0p0q “ α1X1psq ` α2X2psq ` α3

`
apsqX2psq ` bpsqXK

2
psq

˘
,

and, by considering the third entry of ΦǫpsqX0p0q, we have

|ΦǫpsqX0p0q| ě |α1|,

for all s ě 0. Since Mpǫ, µq is normally hyperbolic, there must be β ą 0 and c ą 0 such

that

|ΦǫpsqX0p0q| ď |X0p0q| ¨ ce´βs,

for all s ě 0. This is possible only if α1 “ 0, so that the vector ΦǫpsqX0p0q is indeed in the

span of the set tX2psq, XK
2

psqu.

4.2.1 A formula for λ3psq

We have just proved that a necessary condition for Mpǫ, µq to be normally

hyperbolic is: there is a normal bundle over Mpǫ, µq, invariant under the linearized flow,

that is always tangent to the leaves of the foliation tL
susPR. In this section, we assume

that such a normal bundle, X
ǫ
0
, is already constructed, and find a convenient formula

for the quantity λ3 as defined in section 2.1.5. The fact that X2psq and XK
2

psq span

Tγǫps,qqLpγǫps, qqq for all s ě 0 does not rely on Mpǫ, µq being normally hyperbolic. Thus,

there are apsq and bpsq such that

Xpsq :“ ΦǫpsqXK
2

p0q “ apsqX2psq ` bpsqXK
2

psq. (4.11)

We will compute formulas regarding apsq and bpsq. We define

R “

¨
˚̋

0 ´1 0

1 0 0

0 0 1

˛
‹‚ and Bpsq “

¨
˚̋
Fρ Fσ Fτ

Gρ Gσ Gτ

0 0 0

˛
‹‚,

where the argument of each function in Bpsq is once again given by the expression

phǫpσǫps, qq, τpsqq, σǫps, qq, τpsq, µ, ǫq. Since Φǫpsq is the principal matrix fundamental solu-

tion at t “ 0 of the linearized system along γǫps, qq, Xpsq satisfies the differential equation

X 1psq “ Bpsq ¨ Xpsq. Therefore, we have:

`
apsqX2psq ` bpsqXK

2
psq

˘1
“ Bpsq ¨

`
apsqX2psq ` bpsqXK

2
psq

˘
(4.12)
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Applying the usual rules of differentiation, the left side of the last equation may be

rewritten as:

a1psqX2psq ` apsqX 1
2
psq ` b1psqXK

2
psq ` bpsqpXK

2
q1psqq.

Since X2psq is a solution to the variational equation, we have X 1
2
psq “ BpsqX2psq. Moreover,

pXK
2

psqq1 “ pR ¨ X2psqq1 “ R ¨ pBpsqX2psqq. Hence, equation (4.12) is equivalent to

a1psqX2psq ` b1psqXK
2

psq “ bpsq
`
BpsqXK

2
psq ´ R ¨ BpsqX2psq

˘
. (4.13)

By taking the inner product of both sides of last equation with XK
2

psq, we get

b1}XK
2

psq}2 “ bpsq
`
xBpsqXK

2
psq, XK

2
psqy ´ xR ¨ BpsqX2psq, XK

2
psqy

˘
. (4.14)

We remark that, since R is an isometry, we have

xR ¨ BpsqX2psq, XK
2

psqy “ xR ¨ BpsqX2psq, RX2psqy “ xBpsqX2psq, X2psqy,

and equation (4.14) may be rewritten:

b1}XK
2

psq}2 “ bpsq
`
xBpsqXK

2
psq, XK

2
psqy

` xBpsqX2psq, X2psqy ´ 2xBpsqX2psq, X2psqy
˘

(4.15)

In order to simplify notation, we will omit the arguments of the functions in the next

calculations.

xBXK
2
, XK

2
y “ pyǫq2

@
p´Fρ ` Fσh

ǫ
σ,´Gρ ` Gσh

ǫ
σ, 0q, p´1, hǫ

σ, 0q
D

“ pyǫq2
`
Fρ ´ Fσh

ǫ
σ ´ Gρh

ǫ
σ ` Gσphǫ

σq2
˘

xBX2, X2y “ pyǫq2
@

pFρh
ǫ
σ ` Fσ, Gρh

ǫ
σ ` Gσ, 0q, phǫ

σ, 1, 0q
D

“ pyǫq2
`
Fρphǫ

σq2 ` Fσh
ǫ
σ ` Gρh

ǫ
σ ` Gσ

˘

Therefore, we have

xBXK
2
, XK

2
y ` xBX2, X2y “ pyǫq2

´
Fρ

`
1 ` phǫ

σq2
˘

` Gσ

`
1 ` phǫ

σq2
˘¯

“ }X2}2 ¨ trB.

We also have

2xBX2, X2y “ 2xX 1
2
, X2y “

d

ds

´
xX2, X2y

¯
“

d

ds
}X2}2,

so that equation (4.15) is equivalent to

b1psq “ bpsq ¨

ˆ
trBpsq ´

1
}X2psq}2

¨
d

ds
}X2psq}2

˙

“ bpsq ¨

ˆ
trBpsq ´

d

ds

`
ln }X2psq}2

˘˙
.
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Since XK
2

p0q “ Φǫp0qXK
2

p0q “ ap0qX2p0q ` bp0qXK
2

p0q, we must have bp0q “ 1. Therefore,

by integrating, we get:

bpsq “
}X2p0q}2

}X2psq}2
¨ exp

ˆż s

0

trBptq dt

˙
. (4.16)

We have found a formula for bpsq. We move to the task of finding a formula related to

apsq. We will actually obtain an initial value problem to which apsq must be a solution.

First, we take the inner product of both sides of equation (4.13) with the vector X2psq:

a1psq}X2psq}2 “ bpsq
`
xBpsqXK

2
psq, X2psqy ´ xR ¨ BpsqX2psq, X2psqy

˘
.

Since R is an isometry:

xR ¨ BpsqX2psq, X2psqy “ xR2 ¨ BpsqX2psq, RX2psqy.

Observe that

R2 “

¨
˚̋

´1 0 0

0 ´1 0

0 0 1

˛
‹‚,

so that, since the last component of BpsqX2psq is zero, we have

xR ¨ BpsqX2psq, X2psqy “ x´BpsqX2psq, XK
2

psqy.

Therefore, we have

a1psq “
bpsq

}X2psq}2

`
xBpsqXK

2
psq, X2psqy ` xBpsqX2psq, XK

2
psqy

˘
. (4.17)

To completely determine the initial value problem, we must only observe that ap0qX2p0q `

bp0qXK
2

p0q “ Φǫp0qXK
2

p0q “ XK
2

p0q implies that ap0q “ 0. By assumption, X0psq is in the

span of X2psq and XK
2

psq. Therefore, by choosing an appropriate section of the normal

bundle X
ǫ
0
, there is a smooth function s ÞÑ αpsq such that

X0psq “ αpsqX2psq ` XK
2

psq. (4.18)

We emphasize that we have normalized the coefficient of XK
2

psq by choosing the section of

X
ǫ
0

appropriately. Since the normal bundle is invariant under Φǫ, there is also a smooth

function s ÞÑ λpsq such that

ΦǫpsqX0p0q “ λpsqX0psq (4.19)

By combining identities (4.18) and (4.19), we get

Φǫpsq
`
αp0qX2p0q ` XK

2
p0q

˘
“ λpsqαpsqX2psq ` λpsqXK

2
psq.
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Considering the definitions of Φǫ and X2, and applying identity (4.11), we have

αp0qX2psq ` apsqX2psq ` bpsqXK
2

psq “ λpsqαpsqX2psq ` λpsqXK
2

psq.

Hence, since X2psq and XK
2

psq are linearly independent, we obtain two new identities:

λpsqαpsq “ αp0q ` apsq and bpsq “ λpsq. We remark that, by (4.18), we have

|X0psq| “
a
α2psq ` 1 |X2psq|

Finally, considering the definition of λ3psq, given in display (2.3) in section 2.1.5, we find

a formula for λ3psq in the case studied

λ3psq “ λpsq
|X0psq|

|X0p0q|
“

ˆ
|X2p0q|2

|X2psq|2
exp

ˆż s

0

trBptqdt

˙˙ a
α2psq ` 1 |X2psq|a
α2p0q ` 1 |X2p0q|

“
|X2p0q|

|X2psq|

d
α2psq ` 1
α2p0q ` 1

exp
ˆż s

0

trBptq dt

˙
. (4.20)

This formula will be used later to verify the inequalities on display (2.4).

4.3 Derivative estimates

In this section, we prove some technical lemmas regarding estimates for the

size derivatives of hǫ. Those estimates will be useful later when we turn our attention to

the proof of Lemmas L1, L2 and L3. The proofs presented here are heavily based on the

proofs found in (CHICONE; LIU, 1999/00).

Lemma 7. Suppose that µ ą 0 and ǫ˚ ą 0 and that Eǫ,µ has an invariant manifold given

as the graph of the function hǫ of the angular variables for 0 ď ǫ ă ǫ˚ ď µ. If there is a

constant C1 ą 0 such that the following estimates hold for all angles σ and τ :

|hǫpσ, τq ´ h0pσ, τq| ă C1ǫ, |hǫ
σpσ, 0q ´ h0

σpσ, 0q| ă C1ǫ,

then for µ sufficiently small there is a constant C2 ą 0 such that

|hǫ
σpσ, τq ´ h0

σpσ, τq| ă C2ǫ.

Proof: Let s ÞÑ φps, pρ, σ, τq, ǫq be the solution to Eǫ,µ with initial conditions given by

φp0, pρ, σ, τq, ǫq “ pρ, σ, τq. We remark that, if γǫ is defined as in (4.7), then

γǫps, qq “ φps, phǫpq, 0q, q, 0q, ǫq.

For each pair of angles, pp, τq, with 0 ď p ă 2π and 0 ď τ ă 2πmµℓ{ω, there is a unique

angle qǫ defined by the equation

phǫpqǫ, 0q, qǫ, 0q “ φp´τ, phǫpp, τq, p, τq, ǫq. (4.21)
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We apply Lemma 3 to the family of solutions φps, pρ, σ, τq, ǫq, choosing t “ ´τ , z2 “

phǫpp, τq, p, τq and z1 “ ph0pp, τq, p, τq. Therefore, there is K ą 0 such that

|φp´τ, phǫpp, τq, p, τq, ǫq´φp´τ, ph0pp, τq, p, τq, 0q| ď

KeKτ
`
|phǫpp, τq, p, τq ´ ph0pp, τq, p, τq| ` ǫτ

˘
. (4.22)

Since τ P r0, 2πmµℓ{ωs, there is K1 ą 0, independent of the value of τ in this interval,

such that

KeKτ
`
|phǫpp, τq, p, τq ´ ph0pp, τq, p, τq| ` ǫτ

˘
ď

K1

`
|phǫpp, τq, p, τq ´ ph0pp, τq, p, τq| ` ǫ

˘
(4.23)

Combining (4.23) and (4.22), we get

|φp´τ, phǫpp, τq, p, τq, ǫq ´ φp´τ, ph0pp, τq, p, τq, 0q| ď

K1

`
|phǫpp, τq, p, τq ´ ph0pp, τq, p, τq| ` ǫ

˘
(4.24)

We will use the 1-norm for convenience, as all norms are equivalent in the space considered.

Hence, we have

|phǫpp, τq, p, τq ´ ph0pp, τq, p, τq| “ |hǫpp, τq ´ h0pp, τq|,

and

|φp ´ τ, phǫpp, τq, p, τq, ǫq ´ φp´τ, ph0pp, τq, p, τq, 0q| “

|phǫpqǫ, 0q, qǫ, 0q ´ ph0pq0, 0q, q0, 0q| “
`
|hǫpqǫ, 0q ´ h0pq0, 0q| ` |qǫ ´ q0|

˘

Therefore, (4.24) is equivalent to

|hǫpqǫ, 0q ´ h0pq0, 0q| ` |qǫ ´ q0| ď K1

`
|hǫpp, τq ´ h0pp, τq| ` ǫ

˘
.

By hypothesis, |hǫpp, τq ´ h0pp, τq| ă C1ǫ. Hence, we have

|hǫpqǫ, 0q ´ h0pq0, 0q| ` |qǫ ´ q0| ď K1pC1 ` 1qǫ.

In particular, there is K2 ą 0 such that

|qǫ ´ q0| ă K2 ǫ. (4.25)

We remark that

γǫpτ, qǫq “ φpτ, phǫpqǫ, 0q, qǫ, 0q, ǫq “ φ
`
τ, φp´τ, phǫpp, τq, p, τq, ǫq, ǫ

˘

“ φ
`
0, phǫpp, τq, p, τq, ǫ

˘

“ phǫpp, τq, p, τq
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We modify the notation introduced in Proposition 9 as to include the initial angle q and

the parameter ǫ:

Xǫ
2
ps, qq :“ yǫps, qqX ǫ

2
pγǫps, qqq “ yǫps, qq

¨
˚̋
hǫ

σpσǫpq, sq, τpsqq

1

0

˛
‹‚.

Considering the solution of the first variational equation for Eǫ,µ along the solution γǫps, qǫq,

we have, at s “ 0 and at s “ τ ,

Xǫ
2
p0, qǫq “

¨
˚̋
hǫ

σpqǫ, 0q

1

0

˛
‹‚, Xǫ

2
pτ, qǫq “ yǫpτ, qǫq

¨
˚̋
hǫ

σpp, τq

1

0

˛
‹‚

Since these are solutions to the family of variational equations (4.8), parameterised by ǫ,

we can once more apply Lemma 3 to the family of solutions and get K3 ą 0 such that

|Xǫ
2
pτ, qǫq ´ X0

2
pτ, q0q| ď K3e

K3τ
`
|Xǫ

2
p0, qǫq ´ X0

2
p0, q0q| ` ǫ τ

˘
.

Since τ P r0, 2πmµℓ{ωs, there is K4 ą 0 such that

|Xǫ
2
pτ, qǫq ´ X0

2
pτ, q0q| ď K4

`
|Xǫ

2
p0, qǫq ´ X0

2
p0, q0q ` ǫ

˘
,

which can be expanded to:

|yǫpτ, qǫqhǫ
σpp, tq ´ y0pτ, q0qh0

σpp, τq| ` |yǫpτ, qǫq ´ y0pτ, q0q| ď

K4p|hǫ
σpqǫ, 0q ´ h0

σpq0, 0q| ` ǫq. (4.26)

By hypothesis, we know that |hǫpqǫ, 0q ´ h0pqǫ, 0q| ă C1ǫ, so that, applying the triangle

inequality, we get

|hǫ
σpqǫ, 0q ´ h0

σpq0, 0q| ď C1ǫ ` |h0

σpqǫ, 0q ´ h0

σpq0, 0q|.

The function h0

σ is a Ck´1 function defined on a compact set, with k ě 2. Therefore, it is

Lipschitz continuous. Thus, there is L ą 0 such that

|h0

σpqǫ, 0q ´ h0

σpq0, 0q| ď L|qǫ ´ q0| ď L ¨ K2ǫ,

the last inequality being a consequence of (4.25). Hence, we get

|hǫ
σpqǫ, 0q ´ h0

σpq0, 0q| ď C1ǫ ` L ¨ K2ǫ.

Define K5 “ C1 ` L ¨ K2 ` 1. We have, considering (4.26),

|yǫpτ, qǫqhǫ
σpp, tq ´ y0pτ, q0qh0

σpp, τq| ` |yǫpτ, qǫq ´ y0pτ, q0q| ď K5ǫ. (4.27)
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We remark that both summands on the left-hand side of the last inequality are consequently

bounded above by K5ǫ. The first of those summands may be rewritten as

ˇ̌`
yǫpτ, qǫqhǫ

σpp, τq ´ yǫpτ, qǫqh0

σpp, τq
˘

´
`
y0pτ, q0qh0

σpp, τq ´ yǫpτ, qǫqh0

σpp, τq
˘ˇ̌
.

The last expression must be bounded above by K5ǫ. By applying the reverse triangle

inequality, we obtain

|yǫpτ, qǫq| |hǫ
σpp, τq ´ h0

σpp, τq| ´ |h0

σpp, τq| |yǫpτ, qǫq ´ y0pτ, q0q| ď K5ǫ

Considering that |yǫpτ, qǫq´y0pτ, q0q|, the second summand appearing in (4.27), is bounded

above by K5ǫ, we get:

|yǫpτ, qǫq| |hǫ
σpp, τq ´ h0

σpp, τq| ď K5

`
|h0

σpp, τq| ` 1
˘
ǫ

Since h0

σ is a continuous function defined on a compact set, it is bounded. Therefore, there

is K6 ą 0 such that

|yǫpτ, qǫq| |hǫ
σpp, τq ´ h0

σpp, τq| ď K6ǫ (4.28)

Moreover, we have, by once more applying the reverse triangle inequality and considering

(4.27),

ˇ̌
yǫpτ, qǫq

ˇ̌
ě

ˇ̌
y0pτ, q0q

ˇ̌
´

ˇ̌
y0pτ, q0q ´ yǫpτ, qǫq

ˇ̌
ě |y0pτ, q0q| ´ K5ǫ

Since ǫ P r0, µs, we have

|yǫpτ, qǫq| ě |y0pτ, q0q| ´ K5µ

Since y0 is a strictly positive continuous function and pτ, qǫq P r0, 2πmµℓ{ωs ˆ r0, 2πs, we

have

|y0pτ, q0q| ě min ty0pτ 1, q1q : pτ 1, q1q P r0, 2πmµℓ{ωs ˆ r0, 2πsu ą 0,

so that, by choosing µ ą 0 sufficiently small, there must be K7 ą 0 such that

|yǫpτ, qǫq| ě |y0pτ, q0q| ´ K5µ ą K7. (4.29)

Combining (4.28) and (4.29), we get

K6ǫ ě |yǫpτ, qǫq| |hǫ
σpp, τq ´ h0

σpp, τq| ą K7|hǫ
σpp, τq ´ h0

σpp, τq|,

so that, finally,

|hǫ
σpp, τq ´ h0

σpp, τq| ă
K6

K7

ǫ, (4.30)

and the result follows simply by defining C2 “ K6{K7.
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Lemma 8. Let m : Rˆr0, 2πs Ñ M2pRq be a continuous matrix function and λ : r0, 2πs Ñ

R a continuous function. Let also T0 be a positive number. Suppose that there is M0 ą 0

such that

|m21ps, qqλpqq ` m22ps, qq| ě M0,

for all s P R and all q P r0, 2πs. Then there is r ą 0 such that, for T P rT0, T0 ` 1q,

|d21ξ ` d22| ą
2
3
M0, and | detD ´ detmpT, qq| ă

1
8
M2

0
,

whenever ξ, a real number, D “ pdijq, a 2 ˆ 2 real matrix and q P r0, 2πs are such that

|ξ ´ λpqq| ă r, and |D ´ mpT, qq| ă r.

Proof: Let q P r0, 2πs and T P rT0, T0 ` 1s be given. Note that the function pu, v, wq ÞÑ

|uv ` w| is continuous. Therefore, there is r1 ą 0 such that, if

|ξ ´ λpqq| ă r1 and |D ´ mpT, qq|8 ă r1,

then

ˇ̌
d21ξ ` d22 ´

`
m21pT, qqλpqq ` m22pT, qq

˘ˇ̌
ă
M0

3
.

By the reverse triangle inequality, we get:

ˇ̌
|d21ξ ` d22| ´ |m21pT, qqλpqq ` m22pT, qq|

ˇ̌
ă
M0

3
,

which implies that

|m21pT, qqλpqq ` m22pT, qq| ´
M0

3
ă |d21ξ ` d22|.

Since |m21pT, qqλpqq ` m22pT, qq| ě M0 by hypothesis, last inequality also implies that

|d21ξ ` d22| ą
2
3
M0.

The determinant is also a continuous function. Thus, there is r2 ą 0 such that, if

|D ´ mpT, qq|8 ă r2,

then

| detD ´ detmpT, qq| ă
1
16
M2

0
.

For each pair pT, qq given, we get different values of r1 and r2. We define rpT, qq “

mintr1, r2u.



Chapter 4. Proof of the main theorem 60

Since rT0, T0 ` 1s ˆ r0, 2πs is a compact set and m is continuous, the product

of images

K :“ mprT0, T0 ` 1s ˆ r0, 2πsq ˆ λpr0, 2πsq

is also a compact set. Let Bppm,αq, ρq Ă M2pRq ˆ R denote the open ball centered at

pm,αq of radius ρ in the norm

| ¨ | : M2pRq ˆ R Ñ R
`

pm,αq ÞÝÝÝÝÑ maxt|m|8, |α|u

Note that

C :“
"
B

ˆ
pmpT, qq, λpqqq,

rpT, qq

2

˙
: pT, qq P rT0, T0 ` 1s ˆ r0, 2πs

*
,

is an open cover of K. Therefore, C admits a finite subcover,

S “

"
B

ˆ
pmpTi, qiq, λpqiqq,

rpTi, qiq

2

˙
: i “ 1, 2, ..., n

*
.

We define

r “ min
i“1,...,n

rpTi, qiq

2
.

Let q̃ P r0, 2πs and T̃ P rT0, T0 ` 1q. Suppose that ξ and D are such that

|ξ ´ λpq̃q| ă r, |D ´ mpT̃ , q̃q|8 ă r. (4.31)

Since S covers K, there is k P t1, ..., nu such that

|λpq̃q ´ λpqkq| ă
rpTk, qkq

2
, |mpT̃ , q̃q ´ mpTk, qkq|8 ă

rpTk, qkq

2
. (4.32)

In particular, by definition of rpT, qq, we have

| detmpT̃ , q̃q ´ detmpTk, qkq| ă
1
16
M2

0
(4.33)

Combining (4.31) and (4.32) and applying the triangle inequality, we get

|ξ ´ λpqkq| ă r `
rpTk, qkq

2
ď rpTk, qkq,

and

|D ´ MpTk, qkq|8 ă r `
rpTk, qkq

2
ď rpTk, qkq.

Therefore, by definition of rpTk, qkq, we have

|d21ξ ` d22| ą
2
3
M0,
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and

| detD ´ detmpTk, qkq| ă
1
16
M2

0
. (4.34)

Finally, combining (4.33) and (4.34) and applying once more the triangle inequality, we

get

| detD ´ detmpT̃ , q̃q| ă
1
8
M2

0
,

thus proving the lemma.

Lemma 9. Suppose there is C ą 0 such that

dpx,Mp0, µqq ď Cǫ, @x P Mpǫ, µq.

Then there is C̃ ą 0 such that

|hǫ ´ h0|C0 ă C̃ǫ

Proof: Let x P Mpǫ, µq. By the definition of Mpǫ, µq, it follows that x has the form

x “ phǫpσ, τq, σ, τq, where pσ, τq P K :“ r0, 2πs ˆ r0, 2πmµℓ{ωs. By definition, we have

dpphǫpσ, τq, σ, τq,Mp0, µqq “ inf
pξ,ηqPK

d
`
phǫpσ, τq, σ, τq, ph0pξ, ηq, ξ, ηq

˘
.

Observe that

d
`
phǫpσ, τq, σ, τq, ph0pξ, ηq, ξ, ηq

˘
“

ˇ̌`
hǫpσ, τq ´ h0pξ, ηq, σ ´ ξ, τ ´ η

˘ˇ̌
.

Since h0 is constant with respect to its second argument, we have:

h0pξ, ηq “ h0pξ, τq.

Therefore, we have

d
`
phǫpσ, τq, σ, τq, ph0pξ, ηq, ξ, ηq

˘
“

ˇ̌`
hǫpσ, τq ´ h0pξ, ηq, σ ´ ξ, τ ´ η

˘ˇ̌

ě
ˇ̌`
hǫpσ, τq ´ h0pξ, τq, σ ´ ξ, 0

˘ˇ̌

“ d
`
phǫpσ, τq, σ, τq, ph0pξ, τq, ξ, τq

˘

for all pξ, ηq P K. Thus, we get

inf
ξPr0,2πs

d
`
phǫpσ, τq, σ, τq, ph0pξ, τq, ξ, τq

˘
ď inf

pξ,ηqPK
d

`
phǫpσ, τq, σ, τq, ph0pξ, ηq, ξ, ηq

˘

But the reverse inequality holds by definition of infimum. Hence, the following equality

holds:

inf
ξPr0,2πs

d
`
phǫpσ, τq, σ, τq, ph0pξ, τq, ξ, τq

˘
“ inf

pξ,ηqPK
d

`
phǫpσ, τq, σ, τq, ph0pξ, ηq, ξ, ηq

˘
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Considering that the image of ξ ÞÑ ph0pξ, τq, ξ, τq is compact, there is σ̃ P r0, 2πs such that

inf
ξPr0,2πs

d
`
phǫpσ, τq, σ, τq, ph0pξ, τq, ξ, τq

˘
“ d

`
phǫpσ, τq, σ, τq, ph0pσ̃, τq, σ̃, τq

˘

By hypothesis, we have

d
`
phǫpσ, τq, σ, τq, ph0pσ̃, τq, σ̃, τq

˘
ă Cǫ.

In particular, |σ´ σ̃| ă Cǫ and |hǫpσ, τq ´h0pσ̃, τq| ă Cǫ. Since h0 is a C1 function defined

on a compact set, it is Lipschitz continuous. Let us denote its Lipschitz constant by L. We

have then

|h0pσ, τq ´ h0pσ̃, τq| ď L|σ ´ σ̃| ă LCǫ.

By the triangle inequality, we get

|hǫpσ, τq ´ h0pσ, τq| ď |hǫpσ, τq ´ h0pσ̃, τq| ` |h0pσ̃, τq ´ h0pσ, τq| ă CpL ` 1qǫ.

the lemma is proved by taking C̃ “ CpL ` 1q.

Lemma 10. Suppose Hypothesis B holds for the unperturbed system (4.2). There is µ0 ą 0

such that, for each µ P p0, µ0s, there is C ą 0 such that, if ǫ˚ is as in Proposition 8, then

|hǫ ´ h0|C0 ă Cǫ, |hǫ
σ ´ h0

σ|C0
ď Cǫ, |hǫ

τ |C0 ď Cǫ,

for 0 ď ǫ ă ǫ˚.

Proof: Choose a bounded neighbourhood N of the graph of h0 and a constant C0 ą 0 as

in Proposition 2. Let r0 ą 0 be so small that, if |hǫ ´ h0|C0
ă r0, then the graph of hǫ is in

N . Note that, if R and S are the perturbation terms present in (4.3), then

K :“ sup
"

|Rpρ, σ, τ{µℓ, µq| ` |Spρ, σ, τ{µℓ, µq| : pρ, σ, τq P N, 0 ă µℓ ă
Ω

2πm

*

is finite. If we choose µ ą 0 so small that 0 ă µℓ ă Ω{2πm and C0Kµ ă r0, then, by

Proposition 2,

dpx,Mp0, µqq ď C0Kǫ, @x P Mpǫ, µq (4.35)

as long as |hǫ ´ h0|C0 ă r0. Therefore, (4.35) holds for ǫ P r0, ǫ˚q. In fact, let B be the

maximal interval with left endpoint at ǫ “ 0 such that |hǫ ´h0|C0
ă r0 for all ǫ in B. The set

B X r0, ǫ˚q is clearly connected, open and non-empty. Suppose α :“ sup
`
B X r0, ǫ˚q

˘
ă ǫ˚.

Because B X r0, ǫ˚q is open, we would have |hα ´ h0|C0 ě r0 ą C0Kµ ą C0Kα, which

would mean that hǫ is not continuous with respect to its parameter at ǫ “ α. Indeed,

|hα ´ h0|C0 ă C0Kµ for all ǫ P B X r0, ǫ˚q. In fact, if ǫ is sufficiently small, since Mpǫ, µq

is Cr close to Mp0, µq, |hǫ ´ h0|C0
must be less than r0.
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By Lemma 9, the following inequality holds for all ǫ P r0, ǫ˚q:

|hǫ ´ h0|C0 ă C̃ǫ,

where C̃ ą 0 is a constant.

We will now show that, if µ is sufficiently small, then there is a constant C ą 0

such that |hǫ
σ ´ h0

σ|C0 ď Cǫ. By Lemma 7, it suffices to find C such that, for all q P r0, 2πs,

|hǫ
σpq, 0q ´ h0

σpq, 0q| ď Cǫ.

In order to prove that this inequality holds, we first note, by recalling Proposition 9, that

the function given by s ÞÑ phǫ
σpσǫps, qq, τpsqqyǫps, qq, yǫps, qqq is a solution of the following

system:

u1 “ pfρ ` ǫRρqu ` pfσ ` ǫRσqv

v1 “ pgρ ` ǫSρqu ` pgσ ` ǫSσqv, (4.36)

where the argument of the functions are given by the solutions of (4.3), γǫps, qq. In

particular, for ǫ P r0, ǫ˚q, the argument of the derivatives of f and g is given by the

expression phǫpσǫps, qq, τpsqq, σǫps, qqq and the argument of the derivatives of S and R is

given by the expression phǫpσǫps, qq, τpsqq, σǫps, qq, τpsq, µ, ǫq. Let Ψǫps, qq :“ pψǫ
ijps, qqq2ˆ2

be the principal fundamental matrix solution of (4.36) at s “ 0. We remark that, for µ ą 0

fixed, ǫ and q are parameters of the Cr´1 family of differential systems given by (4.36).

The smoothness of this family is ensured by the fact that γǫps, qq, as defined in (4.7), is

itself a solution of a Cr system. Thus, we have
˜
hǫ

σpσǫps, qq, τpsqqyǫps, qq

yǫps, qq

¸
“ Ψǫps, qq

˜
hǫ

σpq, 0q

1

¸
,

so that

hǫ
σpσǫps, qq, τpsqq “

ψǫ
11

ps, qqhǫ
σpq, 0q ` ψǫ

12
ps, qq

ψǫ
21ps, qqhǫ

σpq, 0q ` ψǫ
22ps, qq

. (4.37)

If s ÞÑ pρpsq, σpsqq is a solution of the unperturbed system (4.2), then

s ÞÑ
`
fph0pσpsq, 0q, σpsqq, gph0pσpsq, 0q, σpsqq

˘

is a solution of the corresponding variational equation (4.36) with ǫ “ 0. Since h0 is

constant with respect to τ , we have: ρpsq “ h0pσpsq, 0q on the invariant manifold. By

differentiating this equation with respect to s, we get

fph0pσ, 0q, σpsqq “ h0

σpσpsq, 0q gph0pσ, 0q, σpsqq.
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Therefore, the function s ÞÑ
`
h0

σpσpsq, 0q gph0pσ, 0q, σpsqq, gph0pσpsq, 0q, σpsqq
˘

is a solution

of the variational equation (4.36). Using the fundamental matrix solution Ψǫ, we find

ψ0

21
ps, qqh0

σpq, 0q ` ψ0

22
ps, qq “

g
`
h0pσps, qq, 0q, σps, qq

˘

g
`
h0pq, 0q, σps, qq

˘ ,

where σps, qq denotes the solution σpsq with initial point given by q. Since σ1 does not

vanish, there is M0 ą 0 such that |ψ0

21
ps, qqh0

σpq, 0q ` ψ0

22
ps, qq| ě M0 for all s P R and

q P r0, 2πs. We remark that M0 is independent of the choice of µ.

By hypothesis, the unperturbed normally hyperbolic invariant manifold that

exists for the system E0,µ is the suspension of an attracting hyperbolic limit cycle. The

characteristic multiplier of this limit cycle is, thus, negative. Therefore, by Liouville’s

formula and by continuity of Ψ0 with respect to the parameter q, there is T0 ą 0 such

that det Ψ0pt, qq ď p1{4qM2

0
for all t ě T0 and all q P r0, 2πs. We remark that T0 does not

depend on the choice of µ. If we restrict µ so that 0 ă µℓ ă Ω{2πm, there is a positive

integer n such that

T0 ď
2πmnµℓ

Ω
ă T0 ` 1.

For definiteness, let us define n “ npµq as the smallest such integer for a given µ. We

define also

T :“ T pµq “
2πmnµℓ

Ω
. (4.38)

We remark that, while the value of T may vary as µ is made sufficiently small to satisfy new

requirements, the final value of T is an integer multiple of the period of the perturbation

terms in Eǫ,µ. It is also bounded above and below and approaches T0 as µ decreases toward

zero.

Applying Lemma 8, choose r ą 0 sufficiently small so that, for T0 ď T ă T0 ` 1,

the following inequalities hold:

|d21ξ ` d22| ą
2
3
M0, | detD ´ det Ψ0pT, qq| ă

1
8
M2

0
, (4.39)

whenever ξ, a real number, D, a 2 ˆ 2 real matrix and q P r0, 2πs are such that

|ξ ´ h0

σpqq| ă r, |D ´ Ψ0pT, qq| ă r.

Note that r is independent of the choice of µ.

Let p P r0, 2πs. If µ ą 0 is so that 0 ă µℓ ă Ω{2πm and C̃µ ă r0, then T is

well defined. If we then set s “ T in (4.37), we get

hǫ
σpp, 0q “

ψǫ
11

pT, qǫqhǫ
σpqǫ, 0q ` ψǫ

12
pT, qǫq

ψǫ
21pT, qǫqhǫ

σpqǫ, 0q ` ψǫ
22pT, qǫq

, (4.40)
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where qǫ is defined by

p “ σǫpT, qǫq. (4.41)

Define µ1 “ mint ℓ
a

Ω{2πm,
r0

C̃
u. We apply Lemma 4 to solutions γǫpt, pq and

γ0pt, pq, taking A “ T0 ` 1, ∆ “ tpǫ, µq P R
2 : µ P r0, µ1s and ǫ P r0, µsu and C a compact

set such that

ď

µPp0,µ1s

˜
ď

ǫPr0,ǫ˚q

Mpǫ, µq

¸
Ă C.

to find C1 ą 0 such that

|hǫpqǫ,´T q ´ h0pq0,´T q| ` |qǫ ´ q0| ď C1p|hǫpp, 0q ´ h0pp, 0q| ` ǫq.

Note that, in principle, we are not allowed to simply take µ “ 0 in system (4.3), and

thus it should not be possible to apply Lemma 4 as we did. This problem is tackled by

observing that, in this case, the function F̃ as appearing in the statement of Lemma 4

should be taken to be the continuous extension of the perturbation terms to the set ∆.

The only point in ∆ at which the perturbation terms were not defined is p0, 0q, and we

extend to this point by defining F̃ px, 0, 0q :“ 0. Moreover, since T is an integer multiple of

the period of 2πmµℓ{Ω, we have hǫpqǫ, T q “ hǫpqǫ, 0q. Therefore, the following inequality

holds:

|hǫpqǫ, 0q ´ h0pq0, 0q| ` |qǫ ´ q0| ď C1p|hǫpp, 0q ´ h0pp, 0q| ` ǫq.

Considering the estimate (4.35), we conclude that there is C2 ą 0 such that

|qǫ ´ q0| ď C2ǫ (4.42)

Consider the principal fundamental matrix solution of (4.36), Ψǫps, qq. Observe that ǫ and

q can be seen as parameters of a Cr´1 family of differential equations, given by (4.36).

Applying Lemma 4 to the solutions Ψǫps, qǫq and Ψ0ps, q0q, we find C3 ą 0 such that

|ΨǫpT, qǫq ´ Ψ0pT, q0q| ď C3p|qǫ ´ q0| ` ǫq. (4.43)

Combining (4.42) and (4.43), we conclude that there is C5 ą 0

|ΨǫpT, qǫq ´ Ψ0pT, q0q| ď C5ǫ. (4.44)

We will prove now that there is a constant Cd ą 0 such that, for 0 ď ǫ ă ǫ˚,

if |hǫ
σ ´ h0

σ|C0 ď r, then |hǫ
σ ´ h0

σ|C0 ď Cdǫ. Henceforth, we will omit the second entry to

the functions hǫ and h0 when it is equal to zero. As before, fix p P r0, 2πs and define qǫ

according to (4.41). By (4.40), we have

|hǫ
σppq ´ h0

σppq| “

ˇ̌
ˇ̌ψ

ǫ
1,1pT, qǫqhǫ

σpqǫq ` ψǫ
1,2pT, qǫq

ψǫ
2,1pT, qǫqhǫ

σpqǫq ` ψǫ
2,2pT, qǫq

´
ψ0

1,1pT, q0qh0

σpq0q ` ψ0

1,2pT, q0q

ψ0
2,1pT, q0qh0

σpq0q ` ψ0
2,2pT, q0q

ˇ̌
ˇ̌
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Define

I :“
ˇ̌
ˇ̌ψ

ǫ
1,1pT, qǫqhǫ

σpqǫq ` ψǫ
1,2pT, qǫq

ψǫ
2,1pT, qǫqhǫ

σpqǫq ` ψǫ
2,2pT, qǫq

´
ψǫ

1,1pT, qǫqh0

σpqǫq ` ψǫ
1,2pT, qǫq

ψǫ
2,1pT, qǫqh0

σpqǫq ` ψǫ
2,2pT, qǫq

ˇ̌
ˇ̌

II :“
ˇ̌
ˇ̌ψ

ǫ
1,1pT, qǫqh0

σpqǫq ` ψǫ
1,2pT, qǫq

ψǫ
2,1pT, qǫqh0

σpqǫq ` ψǫ
2,2pT, qǫq

´
ψ0

1,1pT, q0qh0

σpq0q ` ψ0

1,2pT, q0q

ψ0
2,1pT, q0qh0

σpq0q ` ψ0
2,2pT, q0q

ˇ̌
ˇ̌

By the triangle inequality, we have

|hǫ
σppq ´ h0

σppq| ď I ` II (4.45)

We will estimate the quantities I and II separately. Define u : R ˆ M2pRq Ñ R by

upξ,Dq “
d11ξ ` d12

d21ξ ` d22

.

Observe that

I “ |uphǫ
σpqǫq,ΨǫpT, qǫqq ´ uph0

σpqǫq,ΨǫpT, qǫqq|

II “ |uph0

σpqǫq,ΨǫpT, qǫqq ´ uph0

σpq0q,Ψ0pT, q0qq|

Moreover, we have

uξpξ,Dq “
detD

pd21ξ ` d22q2
.

We apply the mean value theorem to the function ξ ÞÑ upξ,Dq and conclude that there is

ξ between hǫ
σpqǫq and h0

σpqǫq.

I ď

ˇ̌
ˇ̌ det ΨǫpT, qǫq

pψǫ
21pT, qǫqξ ` ψǫ

22pT, qǫqq2

ˇ̌
ˇ̌ |hǫ

σpqǫq ´ h0

σpqǫq|

Since we assumed that |hǫ
σ ´ h0

σ|C0 ď r, we have |ξ ´ h0

σpqǫq| ď r. There is µ2 ą 0 such

that, if µ P p0, µ2s, then

|ΨǫpT, qǫq ´ Ψ0pT, qǫq| ă r

Therefore, by (4.39), we have

1
|ψǫ

21pT, qǫqξ ` ψǫ
22pT, qǫq|

ă
3

2M0

, (4.46)

and

| det ΨǫpT, qǫq ´ det Ψ0pT, qǫq| ă
1
8
M2

0
. (4.47)

Considering that T ě T0, we have | det Ψ0pT, qǫq| ă p1{4qM2

0
. Hence, applying the triangle

inequality to (4.47), we get:

| det ΨǫpT, qǫq| ă
3
8
M2

0
(4.48)



Chapter 4. Proof of the main theorem 67

Estimates (4.46) and (4.48) combined ensure that

I ď
27
32

|hǫ
σpqǫq ´ h0

ǫ pqǫq| ď
27
32

|hǫ
σ ´ h0

σ|C0 . (4.49)

In order to estimate II, let us note that the function u is Lipschitz continuous on the set

tph0

σpqq,ΨǫpT, qqq P R ˆ M2pRq : q P r0, 2πs, ǫ P r0, ǫ˚q, µ P p0, µ2su.

Thus, there is L1 ą 0 such that

II ď L1

`
|h0

σpqǫq ´ h0

σpq0q| ` |ΨǫpT, qǫq ´ Ψ0pT, q0q|
˘
.

Since h0 is Lipschitz on r0, 2πs, there is L ą 0 such that

II ď L
`
|qǫ ´ q0| ` |ΨǫpT, qǫq ´ Ψ0pT, q0q|

˘

By (4.43), there is C4 ą 0 such that

II ď C4ǫ. (4.50)

Combining (4.45), (4.49) and (4.50), we get:

|hǫ
σppq ´ h0

σppq| ď
27
32

|hǫ
σ ´ h0

σ|C0 ` C4ǫ.

Thus, we have finally, by subtracting the first term on the right-hand side from both sides

of the inequality, and considering that |hǫ
σ ´ h0

σ|C0 ě |hǫ
σppq ´ h0

σppq| for all p P r0, 2πs,

5
32

|hǫ
σppq ´ h0

σppq| ď C4ǫ.

Thus, we have, for some Cd ą 0:

|hǫ
σ ´ h0

σ|C0 ď Cdǫ. (4.51)

We have thus proved that, if |hǫ
σ ´ h0

σ|C0 ď r, then |hǫ
σ ´ h0

σ|C0 ď Cdǫ. Let us require in

addition to all other requirements made on µ that µ ă r{Cd. Define

ǫ0 “ suptǫ̃ P r0, ǫ˚q : |hǫ
σ ´ h0

σ|C0 ď r for ǫ P r0, ǫ̃su.

We will show that ǫ0 “ ǫ˚, so that (4.51) holds for all ǫ P r0, ǫ˚q. Suppose not, that is,

suppose that ǫ0 ă ǫ˚. For ǫ ă ǫ0, |hǫ
σ ´h0

σ|C0 ď r, therefore |hǫ
σ ´h0

σ|C0 ď Cdǫ. By definition

of ǫ˚, the graph of hǫ0 is normally hyperbolic. Taking the limit as ǫ Ñ ǫ0, we have

|hǫ0

σ ´ h0

σ|C0 ď Cdǫ ď Cdµ ă Cd

ˆ
r

Cd

˙
“ r.

This is a contradiction to the fact that ǫ0 is the supremum. Thus, we must have ǫ0 “ ǫ˚.

Hence, inequality (4.51) holds for all ǫ P r0, ǫ˚q.
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Finally, we will estimate hǫ
τ . Since the graph of hǫ is invariant, then

hǫ
σpσ, τqσ1 ` hǫ

τ “ fphǫpσ, τq, σq ` ǫRphǫpσ, τq, σ, τ{µℓ, µq

σ1 “ gphǫpσ, τq, σq ` ǫSphǫpσ, τq, σ, τ{µℓ, µq (4.52)

Let us define the function H by hǫpσ, τq “ h0pσ, τq ` ǫHpσ, τ, ǫq. Henceforth, we will omit

the arguments of the functions if they are the same as above, for simplicity. We use the

definition of H in the second equation (4.52) and get

σ1 “ gph0 ` ǫH, σq ` ǫSph0 ` ǫH, σ, τ{µℓ, µq.

By substituting in the first equation of (4.52), we get
`
gph0 ` ǫH, σq ` ǫSph0 ` ǫH, σ, τ{µℓ, µq

˘
Hσ ` Hτ

“
1
ǫ

`
fph0 ` ǫH, σq ´ h0

σgph0 ` ǫH, σq
˘

´ h0

σS ` R (4.53)

By the fact that (4.51) holds for ǫ P r0, ǫ˚q, we have

|Hσ|C0 “
1
ǫ

|hǫ
σ ´ h0

σ|C0 ď Cd.

Moreover, since fph0, σq “ h0

σgph0, σq and the function defined by ρ ÞÑ fpρ, σq ´ h0

σ gpρ, σq

is Lipschitz on compact sets, we have

|fph0 ` ǫH, σq ´ h0

σgph0 ` ǫH, σq| ď L ǫ|H|,

where L ą 0 is a Lipschitz constant. Therefore, by (4.53), we have

|Hτ | ď
ˇ̌
gph0 ` ǫH, σq ` ǫSph0 ` ǫH, σ, τ{µℓ, µq

ˇ̌
Cd ` L|H| ` |h0

σS| ` |R|.

By continuity of all the functions present in the right-hand side of last inequality, and

considering that the domains of those functions are compact sets, we conclude that there

is Cτ ą 0, independent of ǫ, such that

|Hτ |C0 ď Cτ ,

that is

|hǫ
τ |C0 ď Cτǫ.

By defining C “ maxtC̃, Cd, Cτ u, the lemma is proved.

Lemma 11. Let Sτ denote the derivative of S with respect to its third entry. For all n ě 2

the following equality holds:

ǫ2

µℓ

SSτ

G2
“

nÿ

k“2

ǫk

k

d

ds

ˆ
Sk

Gk

˙
´ pSρh

ǫ
σG ` Sρh

ǫ
τ ` SσGq

nÿ

k“2

ǫkS
k´1

Gk

` pGρh
ǫ
σG ` Gρh

ǫ
τ ` GσGq

nÿ

k“2

ǫk Sk

Gk`1
`
ǫn`1

µℓ

SnSτ

Gn`1
, (4.54)
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where the argument of the function G and its derivatives is given by the expression

phǫpσǫps, qq, τpsqq, σǫps, qq, τpsq, µ, ǫq, the argument of hǫ and its derivatives is given by

pσǫps, qq, τpsqq and the argument of S and its derivatives is given by the expression

phǫpσǫps, qq, τpsqq, σǫps, qq, τpsq{µℓ, µq.

Proof: We will omit the arguments of the functions in order to simplify notation. The

proof is done by induction. For n “ 2, we simply differentiate S2{G2 with respect to s:

d

ds

ˆ
S2

G2

˙
“

2SpSρh
ǫ
σG ` Sρh

ǫ
τ ` SσGq

G2
`

2
µℓ

SSτ

G2

´
2S2pGρh

ǫ
σG ` Gρh

ǫ
τ ` GσGq

G3
´

2ǫ
µℓ

S2Sτ

G3
.

Rearranging the terms and multiplying by ǫ2{2, we get

ǫ2

µℓ

SSτ

G2
“
ǫ2

2
d

ds

ˆ
S2

G2

˙
´ ǫ2S

pSρh
ǫ
σG ` Sρh

ǫ
τ ` SσGq

G2

` ǫ2S2
pGρh

ǫ
σG ` Gρh

ǫ
τ ` GσGq

G3
`
ǫ3

µℓ

S2Sτ

G3
,

as wanted. Suppose that (4.54) is valid for some n ě 2. We must prove that it is also valid

for n ` 1 in this case. We differentiate Sn`1{Gn`1 with respect to s:

d

ds

ˆ
Sn`1

Gn`1

˙
“

pn ` 1qSnpSρh
ǫ
σG ` Sρh

ǫ
τ ` SσGq

Gn`1
`

pn ` 1q

µℓ

SnSτ

Gn`1

´
pn ` 1qSn`1pGρh

ǫ
σG ` Gρh

ǫ
τ ` GσGq

Gn`2
´

pn ` 1qǫ

µℓ

Sn`1Sτ

Gn`2
.

Rearranging and multiplying by ǫn`1{pn ` 1q, we get:

ǫn`1

µℓ

SnSτ

Gn`1
“

ǫn`1

pn ` 1q

d

ds

ˆ
Sn`1

Gn`1

˙
´ ǫn`1Sn pSρh

ǫ
σG ` Sρh

ǫ
τ ` SσGq

Gn`1

` ǫn`1Sn`1
pGρh

ǫ
σG ` Gρh

ǫ
τ ` GσGq

Gn`2
`
ǫn`2

µℓ

Sn`1Sτ

Gn`2
,

By substituting this expression in (4.54), we get

ǫ2

µℓ

SSτ

G2
“

n`1ÿ

k“2

ǫk

k

d

ds

ˆ
Sk

Gk

˙
´ pSρh

ǫ
σG ` Sρh

ǫ
τ ` SσGq

n`1ÿ

k“2

ǫkS
k´1

Gk

` pGρh
ǫ
σG ` Gρh

ǫ
τ ` GσGq

n`1ÿ

k“2

ǫk Sk

Gk`1
`
ǫn`2

µℓ

Sn`1Sτ

Gn`2
,

which is the formula for n ` 1. The lemma is thus proved.

Lemma 12. Let yǫps, qq be defined as in Propositon 9, that is

yǫps, qq :“ exp
ˆż s

0

pGρh
ǫ
σ ` Gσq

˙
dt.
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where the argument Gρ and Gσ is phǫpσǫps, qq, τpsqq, σǫps, qq, τpsq, µ, ǫq, and the argument

of hǫ
σ is pσǫps, qq, τpsqq. If the function s ÞÑ Gphǫpσǫpsq, τpsqq, σǫpsq, τpsq, µ, ǫq has no zeros

for all s ě 0, and if µ ą 0 is sufficiently small, then there is C ą 0 such that

yǫps, qq ě e´C e´Cǫs.

Proof: Note that

d

ds
ln |Gphǫpσǫpsq, τpsqq, σǫpsq, τpsq, µ, ǫq| “

1
G

pGρh
ǫ
σpσǫq1 ` Gρh

ǫ
τ ` Gσpσǫq1 ` Gτ q

“ Gρh
ǫ
σ ` Gσ `

Gρh
ǫ
τ

G
`
Gτ

G
.

where the arguments omitted in the expressions on the right-hand side of the equation are

phǫpσǫps, qq, τpsqq, σǫps, qq, τpsq, µ, ǫq for the function G and its derivatives, pσǫps, qq, τpsqq

for hǫ and its derivatives, and s for pσǫq1. Henceforth, whenever the arguments of those

functions are omitted, they are to be understood as stated. By integrating and rearranging

the terms, we get:
ż s

0

pGρh
ǫ
σ ` Gσq dt “ ln

ˇ̌
ˇ̌Gphǫpσǫpsq, τpsqq, σǫpsq, τpsq, µ, ǫq

Gphǫpσǫp0q, τp0qq, σǫp0q, τp0q, µ, ǫq

ˇ̌
ˇ̌

´

ż s

0

Gρh
ǫ
τ

G
dt ´

ż s

0

Gτ

G
dt.

Recall the definition of G, found in (4.4). We observe that, if S is the function present in

this definition, we have

d

ds

ˆ
S

G

˙
“
Sρh

ǫ
σpσǫq1 ` Sρh

ǫ
τ ` Sσpσǫq1 ` 1

µℓSτ

G

´
SpGρh

ǫ
σpσǫq1 ` Gρh

ǫ
τ ` Gσpσǫq1 ` ǫ

µℓSτ q

G2
,

where the argument of the function S and its derivatives are given by the expression

phǫpσǫps, qq, τpsqq, σǫps, qq, τpsq{µℓ, µq. We remark that Sτ is a symbol representing the

partial derivative of S with respect to its third entry. Since Gτ “
ǫ

µℓ
Sτ and pσǫq1 “ G, we

find that

Gτ

G
“

ǫ

µℓ

ˆ
Sτ

G

˙
“ ǫ ¨

SpGρh
ǫ
σG ` Gρh

ǫ
τ ` GσGq

G2
`
ǫ2

µℓ

SSτ

G2

´ ǫ ¨
Sρh

ǫ
σG ` Sρh

ǫ
τ ` SσG

G
` ǫ

d

ds

ˆ
S

G

˙
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By integrating, we get
ż s

0

Gτ

G
dt “ ǫ

ż s

0

SGρh
ǫ
σG ` SGρh

ǫ
τ ` SGσG

G2
dt

´ ǫ

ż s

0

Sρh
ǫ
σG ` Sρh

ǫ
τ ` SσG

G
dt

` ǫ ¨
Sphǫpσǫps, qq, τpsqq, σǫps, qq, τpsq

µℓ , µq

Gphǫpσǫps, qq, τpsqq, σǫps, qq, τpsq, µ, ǫq

´ ǫ ¨
Sphǫpσǫp0, qq, τp0qq, σǫp0, qq, τp0q

µℓ , µq

Gphǫpσǫp0, qq, τp0qq, σǫp0, qq, τp0q, µ, ǫq

`
ǫ2

µℓ

ż s

0

SSτ

G2
dt

Observe that, for µ0 ą 0, the set H :“ thǫ : ǫ P r0, ǫ˚pµqq, µ P p0, µ0s u is uniformly bounded.

The sets Hσ and Hτ , defined similarly to H, are also uniformly bounded. Therefore, there is

M ą 0 such that |hǫ| ă M , |hǫ
σ| ă M and |hǫ

τ | ă M for all µ P p0, µ0s and all ǫ P r0, ǫ˚pµqq.

Moreover, S and its derivatives are bounded on r´M,M s ˆ R ˆ R ˆ r0, µ0s. Thus, the

integrands of the first and second integrals on the right-hand side of last equation are

bounded, and there is K1 ą 0 such that

ǫ

ż s

0

ˇ̌
ˇ̌SGρh

ǫ
σG ` SGρh

ǫ
τ ` SGσG

G2

ˇ̌
ˇ̌ dt ď K1ǫs,

and

ǫ

ż s

0

ˇ̌
ˇ̌Sρh

ǫ
σG ` Sρh

ǫ
τ ` SσG

G

ˇ̌
ˇ̌ dt ď K1ǫs.

Moreover, since S and G are bounded, since µ is small, and since ǫ P r0, µs, there is K2 ą 0

such that

ǫ

ˇ̌
ˇ̌
ˇ
Sphǫpσǫps, qq, τpsqq, σǫps, qq, τpsq

µℓ , µq

Gphǫpσǫps, qq, τpsqq, σǫps, qq, τpsq, µ, ǫq

ˇ̌
ˇ̌
ˇ ď K2,

and

ǫ

ˇ̌
ˇ̌
ˇ
Sphǫpσǫp0, qq, τp0qq, σǫp0, qq, τp0q

µℓ , µq

Gphǫpσǫp0, qq, τp0qq, σǫp0, qq, τp0q, µ, ǫq

ˇ̌
ˇ̌
ˇ ď K2.

In order to estimate the last term, we apply Lemma 11 with n “ c and integrate to get

ǫ2

µℓ

ż s

0

SSτ

G2
dt “

cÿ

k“2

ǫk

k

ż s

0

d

dt

ˆ
Sk

Gk

˙
dt ´ pSρh

ǫ
σG ` Sρh

ǫ
τ ` SσGq

cÿ

k“2

ǫk

ż s

0

Sk´1

Gk
dt

` pGρh
ǫ
σG ` Gρh

ǫ
τ ` GσGq

cÿ

k“2

ǫk

ż s

0

Sk

Gk`1
dt `

ǫc`1

µℓ

ż s

0

ScSτ

Gc`1
dt

Similarly as above, the first term on right-hand side is bounded by a positive constant

K3. The second and third terms are bounded by K4ǫs, where and K4 is also a positive

constant. For last term, because ǫ ď µ, there is K5 ą 0 such that

ǫc`1

µℓ

ż s

0

ˇ̌
ˇ̌S

cSτ

Gc`1

ˇ̌
ˇ̌ dt ď K5ǫs. (4.55)
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Defining C1 “ maxtKi : i “ 1, 2, ..., 5u, we have:
ˇ̌
ˇ̌
ż s

0

Gτ

G
dt

ˇ̌
ˇ̌ ď C1 ` C1ǫs

We remark that C1 is independent of the choice of ǫ and µ, provided that µ is sufficiently

small. By continuity of the functions and compactness of the domain, there is also C2 ą 0

such that

ln
ˇ̌
ˇ̌Gphǫpσǫpsq, τpsqq, σǫpsq, τpsq, µ, ǫq

Gphǫpσǫp0q, τp0qq, σǫp0q, τp0q, µ, ǫq

ˇ̌
ˇ̌ ď C2 (4.56)

for all s ě 0. Finally, we remark that, by Lemma 10, there is Cτ ą 0 such that |hǫ
τ | ď Cτǫ.

Thus, we have
ˇ̌
ˇ̌
ż s

0

Gρh
ǫ
τ

G
dt

ˇ̌
ˇ̌ ď

ż s

0

ˇ̌
ˇ̌GρCτ

G

ˇ̌
ˇ̌ ǫ dt ď C3ǫs,

where C3 is a positive constant. Defining C “ maxtCi : i “ 1, 2, 3u, we have
ˇ̌
ˇ̌
ż s

0

pGρh
ǫ
σ ` Gσq dt

ˇ̌
ˇ̌ ď C ` Cǫs,

so that

e´Ce´Cǫs ď yǫps, qq ď eCeCǫs,

thus proving the lemma.

Lemma 13. With the hypotheses of Lemma 10, there are µ0 ą 0 and C ą 0 such that, if

µ P p0, µ0s, then |hǫ
σσ|C0 ď C.

Proof: Recall that hǫ
σ satisfies equation (4.37), that is,

hǫ
σpσǫps, qq, τpsqq “

ψǫ
11

ps, qqhǫ
σpq, 0q ` ψǫ

12
ps, qq

ψǫ
21ps, qqhǫ

σpq, 0q ` ψǫ
22ps, qq

.

Let yǫps, qq be defined as before, that is

yǫps, qq :“ exp
ˆż t

0

pGρh
ǫ
σ ` Gσq

˙
ds.

By Lemma 12, there are µ1 ą 0 and C1 ą 0 such that, if µ P p0, µ1s, then

yǫps, qq ě e´C1e´C1ǫs.

Similarly to what was done in Lemma 10, we choose T0 ą 0 such that, if t ě T0, then

det Ψ0pt, qq ď
M2

0

4
e´C1e´C1µ1pT0`1q,
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for all q P r0, 2πs. Let µ2 be defined as

µ2 “ min

#
µ1,

c

c
Ω

2πm

+
,

and define T “ T pµq P rT0, T0 ` 1q as in the proof of Lemma 10 for all µ P p0, µ2s. Let

p P r0, 2πs and define qǫ by p “ σpT, qǫq, as before. By equation (4.37),

hǫ
σppq “

ψǫ
11

pT, qǫqhǫ
σpqǫq ` ψǫ

12
pT, qǫq

ψǫ
21pT, qǫqhǫ

σpqǫq ` ψǫ
22pT, qǫq

,

where we have omitted the second argument of hǫ
σ if it is zero. By differentiating both

sides with respect to p, we get:

hǫ
σσppq “

dqǫ

dp`
ψǫ

21pT, qǫqhǫ
σpqǫq ` ψǫ

22pT, qǫq
˘2

˜ ˆ
ψǫ

21

dψǫ
11

dq
´ ψǫ

11

dψǫ
21

dq

˙ `
hǫ

σpqǫq
˘2

`

ˆ
ψǫ

22

dψǫ
11

dq
´ ψǫ

12

dψǫ
21

dq
` ψǫ

21

dψǫ
12

dq
´ ψǫ

11

dψǫ
22

dq

˙
hǫ

σpqǫq

` pψǫ
11
ψǫ

22
´ ψǫ

12
ψǫ

21
qhǫ

σσpqǫq ` ψǫ
22

dψǫ
12

dq
´ ψǫ

12

dψǫ
22

dq

¸
, (4.57)

where the functions ψǫ
ij are evaluated at pT, qǫq. We also differentiate the relation p “

σǫpT, qǫq with respect to p, and get

dqǫ

dp
“

1
σǫ

qpT, qǫq
.

Let γǫps, qq be defined as before. Note that the partial derivative of γǫps, qq with respect

to q, which we will denote by Y psq, is the solution of the first variational equation along

γǫps, qq with initial condition Y p0q “ phǫ
σpq, 0q, 1, 0q. By Proposition 9, we must have

Y psq “ X2psq, an identity we had already shown to be true in (4.9). By differentiating

γǫps, qq directly, we conclude that the second entry of Y psq is equal to σǫ
qps, qq. Since the

second entry of X2psq is equal to yǫps, qq, we have

σǫ
qpT, qq “ yǫpT, qq.

Thus, for µ P p0, µ2s, there is, by Lemma 12, Cy ą 0 such that
ˇ̌
ˇ̌dq

ǫ

dp

ˇ̌
ˇ̌ “

1
yǫpT, qǫq

ă eC1eC1ǫ T ď eC1eC1µ2pT0`1q.

Applying Lemma 8, let r ą 0 be such that, for T P rT0, T0 ` 1q,

|d21ξ ` d22| ą
2
3
M0, | detD ´ det Ψ0pT, qq| ă

M2

0

8
e´C1e´C1µ2pT0`1q,

whenever ξ, a real number, D “ pdijq, a 2 ˆ 2 real matrix and q P r0, 2πs are such that

|ξ ´ h0pqq| ă r, |D ´ Ψ0pT, qq| ă r.
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Let µ ą 0 be sufficiently small so that |hǫ
σ ´ h0

σ| ă r, |ΨǫpT, qq ´ Ψ0pT0, qq| ă r for all

q P r0, 2πs and the partial derivative Ψǫ
q is uniformly bounded. Then, for all q and all

T “ T pµq, we have

|ψǫ
21

pT, qqhǫ
σpqq ` ψǫ

22
pT, qq|2 ą

4
9
M2

0
,

and

| det ΨǫpT, qq ´ det Ψ0pT0, qq| ă
M2

0

8
e´C1e´C1µ2pT0`1q.

Since

det Ψ0pT0, qq ď
M2

0

4
e´C1e´C1µ1pT0`1q ď

M2

0

4
e´C1e´C1µ2pT0`1q,

for all q P r0, 2πs, we have

| det ΨǫpT, qǫq| ă
3M2

0

8
e´C1e´C1µ2pT0`1q.

Therefore, we have
ˇ̌
ˇ̌
ˇ

dqǫ

dp

pψǫ
21h

ǫ
σpqǫq ` ψǫ

22q2
pψǫ

11
ψǫ

22
´ ψǫ

12
ψǫ

21
q

ˇ̌
ˇ̌
ˇ ă

27
32

To estimate the |hσσ|, we take the absolute value of each side of (4.57), apply the triangle

inequality to the right-hand side, take the supremum over qǫ on the right-hand side and

take the supremum on the right-hand side over p, to get

|hǫ
σσ| ď K1 `

27
32

|hǫ
σσ|,

where K1 is a positive constant. Therefore, we have

|hǫ
σσ| ď

32
5
K1.

The lemma is proved by defining µ0 small enough to satisfy all requirements made hitherto

and defining C “ p32{5qK1.

Lemma 14. With the hypotheses of Lemma 10, there are µ1 ą 0 and C1 ą 0 such that, if

µ P p0, µ1s, then |hǫ
στ |C0 ď C1 and |hǫ

ττ |C0 ď C1

Proof: We recall the definition of H from Lemma 10 and consider equation (4.53). By

differentiating both sides with respect to σ, we get

AHσ ` BHσσ ` Hτσ “
1
ǫ
C ` D, (4.58)
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where A, B, C and D are functions of pσ, τ, ǫ, µq given by

A “ph0

σ ` ǫHσqgρ ` gσ ` ǫph0

σ ` ǫHσqSρ ` ǫSσ

B “g ` ǫS

C “ph0

σ ` ǫHσqfρ ` fσ ´ h0

σσg ´ ph0

σ ` ǫHσqh0

σgρ ´ h0

σgσ

D “ ´ h0

σσS ´ pph0

σ ` ǫHσqSρ ` Sσqh0

σ ` ph0

σ ` ǫHσqRρ ` Rσ.

In the definitions above, the argument of f , g and their derivatives is given by the

expression ph0pσq ` ǫHpσ, τ, ǫ, µq, σq, and the argument of R, S and their derivatives is

given by ph0pσq ` ǫHpσ, τ, ǫ, µq, σ, τ{µℓ, µq.

Considering Lemma 13, there are µ0 ą and K0 ą 0 such that, if µ P p0, µ0s,

then

|Hσσ| ď
K0

ǫ
, (4.59)

for all ǫ P r0, ǫ˚q. Taking into account Lemmas 10 and 13, functions AHσ, B, C and D are

all uniformly bounded. Therefore, applying the triangle inequality to (4.58) after some

rearranging, we get K2 ą 0 and K3 ą 0 such that

|Hτσ| ď
K2

ǫ
` K3.

Thus, we have

|hǫ
τσ| “ ǫ|Hτσ| ď K2 ` K3ǫ ď K2 ` K3µ0 ď C1,

where C1 ą 0 is a constant. The proof for |hǫ
ττ | is analogous.
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4.4 Proof of the main lemmas

In this section, we present the proofs of Lemmas L1, L2, and L3. The section

is divided in three parts, each one containing the proof of one of the lemmas.

4.4.1 Proof of Lemma L1

Let µ0 ą 0 be given by Lemma 13. Let µ P p0, µ0s and choose C ą 0 be as in

Lemma 10. As before, let ǫ˚ be such that, for ǫ P r0, ǫ˚q, system Eǫ,µ has a k-normally

hyperbolic invariant manifold, k ě 2, that is the graph of a Ck function hǫ of the angular

variables. By Lemmas 10 and 13, the set S :“ thǫ : 0 ď ǫ ă ǫ˚u is uniformly bounded

in the C2 norm. Let pǫnqnPN be an increasing sequence such that ǫn Ñ ǫ˚ as n Ñ 8.

By Proposition 1, we can extract from this sequence a subsequence pǫkq that converges

uniformly to a C1 function, hǫ˚ .

We show now that the graph of hǫ˚ is invariant for Eǫ˚,µ. In order to do so,

let s ÞÑ pρǫps, q, wq, σǫps, qq, τps, wqq denote the solution to Eǫ,µ such that σǫp0, qq “ q,

ρǫp0, q, wq “ hǫpq, wq and τp0, wq “ w. If s P R, then, using the continuity of the flow

with respect to parameters, we have: σǫkps, qq Ñ σǫ˚ps, qq, ρǫkps, q, wq Ñ ρǫ˚ps, q, wq and

τ ǫkps, wq Ñ τ ǫ˚ps, wq. We note that the identity ρǫkps, q, wq “ hǫkpσǫkps, qq, τ ǫkps, wqq

becomes ρǫ˚ps, q, wq “ hǫ˚pσǫ˚ps, qq, τ ǫ˚ps, wqq by passing to the limit as k Ñ 8. Thus, it

follows that the graph of hǫ˚ is an invariant set for Eǫ˚,µ.

4.4.2 Proof of Lemma L2

Let µ ą 0 be chosen as in Lemma L1. By definition, ǫ˚ is such that, for

0 P r0, ǫ˚q, the system Eǫ,µ has a k-normally hyperbolic invariant manifold that is the

graph of a Ck function, hǫ, of the angular variables. By Lemma L1, Eǫ˚,µ has a C1 invariant

manifold, Mpǫ˚, µq, given as the graph of the function hǫ
˚ of the angular variables. We

must show that Mpǫ˚, µq has an invariant normal bundle.

We show first that it suffices to build a normal bundle over the curve

q ÞÑ phǫ˚pq, 0q, q, 0q (4.60)

that is invariant with respect to some iterate of the stroboscopic linearized Poincaré map,

Ps. In fact, the line tangent to the invariant torus is invariant under Ps. Also, for every

two dimensional linear map with an invariant line, if some iterate of this map has two

distinct invariant lines, then so does the map itself. Since Ps is two-dimensional, if we

construct an invariant normal bundle over the curve (4.60) for some of its iterates, then Ps

will also have an invariant normal bundle. Finally, if there is an invariant normal bundle

over the curve, then an invariant normal bundle over the torus is easily constructed by

moving the vector in the given normal bundle forward by the linearized flow.
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We remark that a fixed point of Λ corresponds to the function that provide the invariant

normal bundle we seek. Note that

|pΛα2qppq ´ pΛα1qppq| “

ˇ̌
ˇ̌α2ppq ´ α1ppq

bǫ˚pT, qq

ˇ̌
ˇ̌ ď

1
η

|α2ppq ´ α1ppq|.

Thus, Λ is a contraction on the complete metric space F . By the Banach fixed-point

theorem, there is a unique fixed point of Λ, as we wanted to show.

4.4.3 Proof of Lemma L3

We will show that the C1 invariant manifold Mpǫ˚, µq, given as the graph of

hǫ˚ , is k-normally hyperbolic under the assumption that this manifold has an invariant

normal splitting. In order to do so, we will make use of the inequalities (2.4), deduced

earlier. Recall formula (4.20) for λ3psq. Let us suppose that a bounded neighbourhood N

is chosen for the graph of h0 and that µ is sufficiently small so that the invariant manifold

Mpǫ˚, µq is in N . By Lemma 10, the following inequality holds for ǫ P r0, ǫ˚q:

|hǫ ´ h0| ă Cǫ. (4.64)

Let s ÞÑ γǫ˚ps, q, τq “
`
hǫ˚pσǫ˚ps, q, τq, s ` τq, σǫ˚ps, q, τq, s ` τ

˘
be the solution of (4.3)

corresponding ǫ˚ with the initial condition
`
hǫ˚pq, τq, q, τ

˘
and let the B be defined as in

section 4.2.1. We change the notation of the argument of B slightly to include the solution

along which the variational equation is built. Note that:

trBpγǫ˚pt, q, τqq “ fρ ` gσ ` ǫpRρ ` Sσq.

Let ω be the minimal period of the unperturbed system (4.2). Let pq̃, τ̃q be any pair of

the angular variables. We define

b :“
ż ω

0

trBpγ0ps, q̃, τ̃qq ds.

The quantity b is a Floquet exponent of the periodic orbit, thus it is independent of the

choice of the angular variables. By an application of Lemma 3, there is a constant C1 ą 0

such that, for s P r0, ωs,

|γǫ˚ps, q̃, τ̃q ´ γ0ps, q̃, τ̃q| ď C1ǫ˚.

Therefore, there is a constant C2 ą 0 such that

| trBpγǫ˚ps, q̃, τ̃qq ´ trBpγ0ps, q̃, τ̃qq| ď C2ǫ˚.

Thus, by an application of the reverse triangle inequality, we get
ż ω

0

trBpγǫ˚ps, q̃, τ̃qq ds ď

ż ω

0

trBpγǫ˚ps, q̃, τ̃qq ds ` C2ǫ˚ω “ b ` C2ǫ˚ω.
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Any s ě 0 can be expressed in the form s “ lω ` r, where l is an integer and r P r0, ωq.

For k “ 1, 2, ..., l, we define

qk :“ σǫ˚pkω, q, τq, τk :“ kω ` τ.

We have
ż s

0

trBpγǫ˚pt, q, τqq dt “
l´1ÿ

k“0

ż pk`1qω

kω

trBpγǫ˚pt, q, τqq dt `

ż lω`r

lω

trBpγǫ˚pt, q, τqq dt

“
l´1ÿ

k“0

ż ω

0

trBpγǫ˚pt, qk, τkqq dt `

ż r

0

trBpγǫ˚pt, ql, τlqq dt

ď lpb ` C2ǫ˚ωq ` C3 ď

ˆ
b

ω
` C2ǫ˚

˙
s ` C4,

where C3 and C4 are positive constants. Furthermore, by Lemma 12, there are constants

C5 ą 0 and C6 ą 0 such that

|X2psq| ě C6e
´µC5s. (4.65)

Recall formula (4.20) and observe that the function α appearing in it must be bounded.

In fact, it suffices to compare the definition of α with how we built the invariant manifold

in Lemma L2 and notice that α must be periodic. Thus, combining all estimates above

and formula (4.20), there is a constant c ą 0 such that

λ3psq ď cep b
ω

`cµqs. (4.66)

If we take µ sufficiently small, we have ´β :“
b

ω
` cµ ă 0. Therefore, by (4.66), we have

λ3psq ď ce´βs, (4.67)

for all s ě 0.

By considering its components, we see that |X1psq| is uniformly bounded from

below by 1. Thus, if k is a positive integer, then there is c1 ą 0 such that

λ3psq

λk
1psq

ď c1e
´βs. (4.68)

By combining 4.65 and 4.67, we also get

λ3psq

λk
2psq

ď
c1

Ck
6

e´spβ´µkc1q.

Thus, if µ ą 0 is sufficiently small, there are constants c2 ą 0 and β1 ą 0 such that

λ3psq

λk
2psq

ď c2e
´β1s. (4.69)

Therefore, by Lemma 1, Mpǫ˚, µq is k-normally hyperbolic.
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