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“It’s the questions we can’t answer that teach us the most.
They teach us how to think.

If you give a man an answer, all he gains is a little fact.
But give him a question and he’ll look for his own answers.”
— Patrick Rothfuss, The Wise Man’s Fear

“Sao as perguntas que ndo sabemos responder que mais nos ensinam.

Elas nos ensinam a pensar.

Se vocé dd uma resposta a um homem, tudo o que ele ganha é um fato qualquer.
Mas, se vocé lhe der uma pergunta, ele procurard suas proprias respostas.”

— Patrick Rothfuss, O Temor do Sdbio



Resumo

Dada uma algebra de Lie complexa simples de dimensao finita g, consideramos a corres-
pondente dlgebra de correntes g[t] e a subjacente categoria dos g[t]-médulos graduados
de dimensao finita. O presente trabalho ¢ motivado pelo conceito de produto de fusao
de certos objetos nesta categoria. Em particular, pela conjectura de E. Feigin afirmando
que tais produtos nao dependem dos parametros espectrais escolhidos para sua defini¢ao.
Em casos especiais, tal conjectura foi demonstrada ao estabelecer isomorfismo entre o
produto de fusdo dado e um mdédulo para o qual se conhece geradores e relagoes (que
nao dependem dos mencionados parametros). Fazemos aqui uma revisao de dois artigos
representativos deste fato: [29] e [45]. Nestes artigos o ponto central é uma conjectura a
respeito da realizacao de médulos de Weyl truncados como produto de fusdao de certos moé-
dulos irredutiveis. Casos particulares sao demonstrados ao explorar o relacionamento entre
diversas classes de objetos da categoria, como moédulos de Demazure, de Chari-Venkatesh
e de Kirillov-Reshetikhin. Terminamos o trabalho com uma breve discussao dos resultados
de [23], que traz uma abordagem usando bases de Grobner para provar a conjectura de E.

Feigin.

Palavras-chave: Produtos de fusao, Modulos de Weyl, Médulos de Demazure, Modulos
de Chari-Venkatesh.



Abstract

Given a simple finite-dimensional Lie algebra g, we consider the underlying current algebra
g|t] as well as the category of finite-dimensional graded g[t]-modules. The present work is
motivated by the concept of fusion products of certain objects in this category, specially
by E. Feigin’s conjecture stating that such products are independent of the spectral
parameters which are chosen for their definitions. Particular cases of this conjecture were
established by describing an isomorphism between the given fusion product and a module
for which a presentation in terms of generators and relations independent of the mentioned
parameters is known. We review two papers which are examples of this fact: [29] and [45].
The main focus of these papers is on a conjecture concerning the realization of truncated
Weyl modules as fusion products of certain simple modules. They prove some particular
cases by exploring the relationship between several classes of objects in the category such
as Demazure, Chari-Venkatesh, and Kirillov-Reshetikhin modules. We end the text with a
brief discussion of the results of [23] which proposes a Grobner bases approach for proving

Feigin’s Conjecture.

Keywords: Fusion Products, Weyl Modules, Demazure Modules, Chari-Venkatesh Mod-

ules.
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Introduction

Let g be a complex Lie algebra. The current algebra g[t] can be defined as
the tensor product g ® A, where A = C|[t] or, equivalently, as the algebra of polynomial
maps C — g. One can easily check that g[t] can be equiped with a Lie algebra structure.
Moreover, both g[t] and its universal enveloping algebra U(g[t]) inherit a grading that
comes from the grading of C[t]. The category of finite-dimensional graded representations
of current algebras G has been intensely studied mainly because of its conection with
the theory of representations of quantum groups. In addition, the homological properties
of this category is one of its important aspects, because of the similarity with the BGG
category O for the simple Lie algebra. One can also consider the truncated case, that
is, the Lie algebra g[t]y := g ® (C[t]/(t"C[t])). The pullback of the canonical projection
of g[t] onto g[t]ny gives a way to define a g[t]-module structure in any g[t]y-module, so
that the category of graded finite-dimensional representations over g[t|x is, actualy, a

subcategory of G denoted by Gy.

The Weyl modules are certain objects in the category of representations of
quantum affine and affine Lie algebras that were first defined by Chari and Pressley in
[13]. The definition was motivated by a phenomenon from modular representation theory
of algebraic groups where simple modules in characteristic zero give rise to non-simple
modules in positive characteristic by a process of base field change. The modules thus
obtained are known as Weyl modules. This same phenomenon occurs in the context of
quantum affine algebras [13] for the limit ¢ = 1 of simple modules. By now, the notion
of Weyl modules has been intensively studied in a broader range of contexts such as for
algebras of the form g® A, where g is either a symmetrizable Kac-Moody algebra or a
super Lie algebra and A is an associative commutative unital algebra, for quantum affine
algebras at roots of unity, and for hyper loop algebras [1, 2, 3, 5, 6, 9, 28, 29, 30, 36, 44].

In the category of finite-dimensional representations for the current algebra
glt], the local Weyl modules are universal objects in the following sense. Given a triangular
decomposition of the semi-simple Lie algebra g, say g = n~ @h@®n™, where b is the Cartan

subalgebra, consider the induced triangular decomposition of g[t] given by
glt] = nT[t]@b[t]®nT[t],

where n*[t] := n* ® C[t] and h[t] := b ® C[t]. Now, given an integral dominant weight
A, one can consider the Verma module M ()\) associated to this triangular decomposition
of g[t]. It turns out that M () has some finite-dimensional quotients and the local Weyl
modules are the largest ones. Thus, any finite-dimensional quotient of M()\) is also a

quotient of one of the associated Weyl modules. Moreover, for each integral dominant
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weight A, there exists a unique (up to isomorphism) graded Weyl module, usualy denoted
by W (). Since this work is focused on graded modules, we refer to W (\) as Weyl modules.
The same construction can be made for truncated current algebras and their Weyl modules
are called truncated Weyl modules, usually denoted by Wy (A). Demazure and Chari-
Venkatesh modules are other examples of finite-dimensional graded quotients of M(\)
which have been intensively studied (see, for instance, [16, 11, 27, 33, 45, 49]).

One interesting construction in the category of finite-dimensional graded mod-
ules for current algebras, which has received growing interest in the last years, is that of
fusion products introduced by B. Feigin and S. Loktev in [21]. Given aq,--- ,a, € C and a
family of cyclic objects Vi,---,V,, in G generated by vy, --- ,v,, respectively, consider a

twisting on the action of g[t] on each V; given by
(@ f(t)vi = (@ f(t + a;))v;.

Denote each V; with the twisted action as V;*. One easily checks that V;* is not a graded
g[t]-module and it is well-known that if the complex parameters a; are pairwise distinct,
then the tensor product V" @ --- ® V' is also cyclic and generated by v; ® - -+ ® v,,.
Thus, one can define a filtration on this tensor product and, then, the associated graded
g[t]-module is called fusion product. It was conjectured in [21] that the fusion product
is independent of the complex parameters, which motivates the notation V; = --- = V.
Although many works have proved this conjecture to be true for specific cases (see
[11, 15, 16, 20, 21, 27, 33, 42, 43, 49]), the general case remains an open problem. However,
a very interesting approach has been taken by J. Flake, G. Fourier and V. Levandovskyy
in [23] where they proved that the existence of a Grobner basis for a certain ideal of the
universal enveloping algebra U(g[t]) implies the conjecture made by E. Feigin about the
defining relations for the fusion product. In the same work, they gave a new proof to the
sly case, which might be easier to generalize to sl,, than the current proof made in [20].
Their approach also leads to a proof for the conjecture on Schur positivity stated in [10],
which can be rewritten as a conjecture about a realization for truncated Weyl modules as

fusion products of irreducible objects in G.

Fusion products are a usefull tool to study the objects in G. For instance, it
is known that for the integral dominant weight A = \; + --- + \,,,, then the local Weyl

module W () can be writen as the following fusion product:
W) =W(A) #--- = W(A,).

This fact was proved in [27] for g simply laced and then in [43] for the general case. This
decomposition makes it easier to answer structural questions, such as dimension and
character, by reducing the problem to study local Weyl modules associated to fundamental

weights. This fact motivates the conjecture mentioned in the end of the last paragraph
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about truncated Weyl modules, which can be explained as follows. Consider the set
P AN = A=, ) e (PHY c X =M+ 4+ Ay}

A partial order on P*(\, N) was considered in [10] and the maximal elements can be

computed following an algorithm described in [25].

Conjecture. Let XA = (A\,---,Ax) be a maximal element of PT(\,N). If N < |)|, then
Wr(A) = evgV (A1) -+ = evgV (An).

The level-¢ Demazure modules D(¢, \) are well-understood objects in G that
are related to many objects in G. The characters of these modules were computed in [35]
and [39] and then used in [11] to prove the isomorphism between Weyl modules and level-1
Demazure modules as representations for the affine Lie algebra of sl,.;. Althought these
modules are well-understood, the independence of parameters for the fusion products of
Demazure modules remains an open problem. However, many works have given positive
answers for fusion products of Demazure modules of same level (see [15, 16, 27, 43, 49]) and
in [45] for D(1,A\)*™ = evgV (0)*". In particular, a positive answer for the above conjecture
for g simply laced follows as a corollary of the main result of [45]. Tt is also known, in
the case g = sly, the necessary and sufficient conditions for a truncated Weyl module be
isomorphic to a Demazure module. This fact relies on the theory of Chari-Venkatesh (CV)

modules and results from [29] and [16].

The Chari-Venkatesh modules were first defined in [16]. These objects are
graded quotients of local Weyl modules by certain submodules that are related to some
families {{,}aep+ of partitions. It was proved in [16] that given A\ € P*, every level-/

Demazure module is isomorphic to the CV module related to the A-compatible partition

Eea(@) = ((0da) =D, my),

where d, = and the numbers m, and s, appear in the definition of Demazure

a, Q)
module as we explain later.

This work is focused on reviewing the results from [29] and [45]. The main
results of the former are about truncated Weyl modules, namely Theorem 4.1.2 that proves
that every truncated Weyl module is isomorphic to a certain CV module and Theorem 4.1.1
that gives a positive answer to the above conjecture in the case that A is a multiple of a
minuscle weight and g is simply laced. Moreover, Proposition 4.3.1 ([29, Proposition 2.5.2])
takes a further step towards proving the conjecture without any hypothesis on A or g. On
the other hand, the main result of [45] is Theorem 5.2.3 ([45, Theorem 1]), that shows the
existence of a short exact sequence of certain quotients of Demazure modules and also the
existence of a realization for the fusion product of Demazure modules of different levels

as one of these quotients. The main consequences of this results are Theorem 5.3.2 and
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Corollary 5.2.3, where the first generalizes [16, Theorem 5, items (i) and (ii)]' and the

second shows the existence of the isomorphism

W(@)*N_k # 6UOV(Q)%_N,

k<
W (k) =
W (k6), N >

when g is simply laced, k = 0 and |kf| < N < A(h,). Clearly, for* k = N, this corollary

gives a positive answer for the conjecture on truncated Weyl modules above.

The text is organized as follows. In Chapter 1, we give a brief review of simple
Lie algebras, the category O, and current algebras. In Chapter 2, we study the Weyl
modules, truncated Weyl modules, Chari-Venkatesh modules, and Demazure modules. In
Chapter 3, we define the fusion products, review the main results for these modules and
the conjecture about truncated Weyl modules. In Chapter 4, we review [29] and define
the Kirillov-Reshetikhin modules. In Chapter 5, we review [45]. Next, in Chapter 6, we
specialize the discussion to sl to study the Demazure flags and chains of inclusions of
truncated Weyl modules. Finally, in Chapter 7, we give an example of the direction we
can pursue in the future, that is, we review the necessary background on Grobner basis

and also state the main results of [23].

! [16, Theorem 5] apears as Theorem 3.2.10 and is strongly used to prove Theorem 4.1.2.

2 Which means N = |k6)|.
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1 Preliminaries

In this chapter, we review the fundamental definitions and results involving
Lie algebras, categories, representations and modules over a Lie algebra. All the tensor
products and vector spaces are over the complex field and we omit the proofs, since they

can be easily found in [7, 32, 19].

1.1 Lie algebras

Definition 1.1.1. A Lie algebra over a field K is a K-vector space g equipped with a
bilinear map
[.]:axg — g
(z,y) — lz,y],
called Lie bracket, which satisfies

(i) |x,x] =0, forall xeg

(i) [[x,y], z] + [y, 2], 2] + [[2z, =], 4] =0, for all z,y,z€g.

It is important to observe that (i) can be used to show that the Lie bracket is

antisymmetric, while (ii) is called Jacobi identity. From now on, we set K = C.

Definition 1.1.2. Let g be a Lie algebra. A Lie subalgebra of g is a subvector space § of
g such that [x,y] € b, for all z,y € b.

Example 1.1.3. The algebra of n x n matrices over C can be equipped with a Lie algebra

structure. In this case, we denote gl,, and the Lie bracket is given by
[A,B] = AB — BA, forall A,Begl,.
A Lie bracket defined this way is called commutator. In addition, let
sl, ={Aegl, : tr(A) =0}.
Then sl,, is a Lie subalgebra of gl,,.

Example 1.1.4. The last example can be generalized to an arbitrary associative algebra
with the Lie bracket as the commutator. If A = Endc(V'), then A as a Lie algebra is
denoted by gl(V') and called general Lie algebra.
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Definition 1.1.5. Let I be a subspace of a Lie algebra g. I is called ideal of g if
[z,y]e I forall zel,yeg.

Observe that any ideal of g is bilateral, since [z,y] = —[y, x].

The immediate examples of ideals are {0} and g. Besides that, the following

plays an important role.
Example 1.1.6. The center of a Lie algebra g is an ideal given by
Z(g)={reg: [z,y] =0 forally € g}.

If Z(g) = g, then g is called abelian Lie algebra.

Let g/I be the quotient space. If I is an ideal of g, then g/I can be regarded
as a Lie algebra with the Lie bracket being

[t+ L,y+ 1] =[z,y]+ I, forall z,yeg.

Definition 1.1.7. Let g, and gs be Lie algebras. A linear map ¢ : g1 — @s is called a Lie

algebra homomorphism if it preserves Lie brackets, i.e. for all x,y € g1 we have

o([lz, y]) = [o(x), o(y)].

Example 1.1.8. Given a Lie algebra g, the mapping

ad:g — gl(g)
r — ad(z)’

such that ad(xz)(y) = [z, y] for x,y € g, is called adjoint homomorphism

Example 1.1.9. Let ¢ : g1 — g2 be a Lie algebra homomorphism. Then ker ¢ is an ideal

of g1 and there exists a Lie algebra homomorphism

g1 — g1/ ker ¢
mapping x onto x + ker ¢ for all x € g;.

Theorem 1.1.10. (i) Let ¢ : g1 — g2 be a Lie algebra homomorphism. Then Im¢ is a

Lie subalgebra of go and there exists the isomorphism
o/ ker ¢ = Imos

(ii) If I and J are ideals of a Lie algebra g, then

(I+J) I
J (InJ)

lle
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(7ii) If the ideals I and J are such that I < J, then J/I is an ideal and

@ g
J/) = J

As usual, a Lie algebra homomorphism ¢ is called monomorphism (epimorphism)
if it is injective (surjective) and is called isomorphism if it is bijective. Futhermore, if

¢ : g — g is an isomorphism, it is called automorphism.

Let g, and g2 be subspaces of a Lie algebra g. The subspace spanned by

{[r,y] : v€ g, y€ g}

is denoted by [g1, g2]. Now, for all n > 1 and k > 0, define

1 n

g =g ¢ =g

and

(k=1) g(h=1)].

g0 =g, " :=[g" Vg

This way we define the lower central series and the derived series of g, respectively, by

1 2

g2g'2¢° 2

and

Definition 1.1.11. A Lie algebra g is said to be nilpotent (solvable) if its lower central

series (derived series) stabilizes at {0} for somen =1 (k=0).

One easily checks that every nilpotent Lie algebra is solvable. It is well-known
that every finite-dimensional Lie algebra has a unique solvable ideal containing every
solvable ideal of g. This ideal is called radical of g and is denoted by rad(g). In addition,
g/rad(g) does not contain any non-trivial solvable ideal. From now on, we consider all the

Lie algebras being finite-dimensional.
Definition 1.1.12. (i) A Lie algebra g is said to be semisimple if rad(g) = 0;

(i) It is said to be simple if its only ideals are {0} and g.

Note that if g is simple, then g is also semisimple.

Definition 1.1.13. (i) Let b be a Lie subalgebra of g. The set

Ny(h) ={zeg: [h,x] €l forall h e b}

is called normalizer of b.
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(ii) A nilpotent Lie subalgebra by is called Cartan subalgebra of g if
Ng(h) =b.

Note that neither the existence nor uniqueness of a Cartan subalgebra is
guaranteed by its definition. However, since our ground field is the complex numbers and
g is finite-dimensional, the Cartan subalgebras will aways exist. In addition, we have the

following.

Theorem 1.1.14. If b, and by are two Cartan subalgebras of a Lie algebra g, then there

exists an automorphism ¢ such that ¢(bh,) = bs.
Definition 1.1.15. Let (-,-): g x g — C be a bilinear form given by
(x,y) := tr(ad(z)ad(y)).

Then {-,- is called Killing form of g.

The Killing is symmetric, since the trace function is commutative, and is

associative in the following sense

(2,9l 2) = <&, [y, 21

The Killing form is non-degenerate when {(x,y)=0 for all y € g implies = 0. The next

result is often called Cartan’s criterions

Theorem 1.1.16. (First and second Cartan’s Criterions)

(i) A Lie algebra g is solvable if and only if {x,y> = 0 for all x € g and y € g°.

(7i) g is semisimple if and only if its Killing form is non-denerate.

Another equivalence for semisimplicity is the following.

Theorem 1.1.17. A Lie algebra is semisimple if and only if it is isomorphic to a direct

sum of simple Lie algebras.

1.2 Representations and irreducible objects

Now we recall the definition of an important Lie algebra homomorphism called

representation.

Definition 1.2.1. A representation of g is a Lie algebra homomorphism
¢:g—gl(V)

where V' is a vector space. Moreover, the dimension of ¢ is defined as dim(V).
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Representations provide a way to examine a Lie algebra as a subalgebra of
the endomorphisms of a vector space. From now on, let us consider finite-dimensional

representations.

Example 1.2.2. The adjoint homomorphism ad : g — gl(g) is a representation of g
called adjoint representation. For g simple we have ker(ad) = 0, which is equivalent to say
that the adjoint representation is injective. Therefore, every simple finite-dimensional Lie

algebra is isomorphic to a subalgebra of gl(g).

The last statement of Example 1.2.2 can be generalized due to Ado’s theorem,
which states that every finite-dimensional Lie algebra over a field of characteristic zero

can be seen as a subalgebra of gl(V') for some vector space V.

In light of Theorem 1.1.17, the classification of semisimple Lie algebras is
reduced to classify simple Lie algebras, that is, subalgebras of gl(V') by the last example.
The first step is the following theorem due to Engel.

Theorem 1.2.3. A Lie algebra g is nilpotent if and only if, for all x € g, ad(x) is a

nilpotent linear map.

As a corollary of Theorem 1.2.3; a Lie subalgebra g < gl(V') being nilpotent
implies that there exists a basis of V' such that all elements of g are represented by strictly
upper triangular matrices. Now, one can ask the sufficient conditions for each element of g

be represented as an upper diagonal matrix.

Theorem 1.2.4. (Lie’s Theorem) Let V' be a finite-dimensional vector space. If g is a
solvable Lie subalgebra of gi(V'), then there exists a basis of V' such that the elements of g

are all represented as upper triangular matrices.

Given a representation ¢ : g — gl(V'), the next step is decomposing V into a
direct sum of centain subspaces, but first we introduce some concepts related to modules

over g.

Definition 1.2.5. A module over g (also called g-module) is a vector space V' in which is

possible to define an action of g given by

gxV — V

(x,v) — av
satisfying that, for all x,y € g, v,u eV and a € C,
(i) (x + ay)v = zv + a(yv);

(i7) z(v + au) = zv + a(zu);
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(iii) [z, ylv = z(yv) — y(av).

Definition 1.2.6. A subspace W of a g-module V is called g-submodule if xw € W for
allwe W and x € g.

Example 1.2.7. Let V| and V5 be modules over a Lie algebra g.

1. The direct sum V, @ Vs is a g-module where the action of g is given by

x(v1 +vg) = zvy +xvy  forall xegandv; €V;, withi=1,2;

2. The tensor product Vi ® V4 is a g-module where the action of any x € g in a

homogeneous tensor vi ® vy is given by
(v @ v2) = (2v1) ® Vg + 11 ® (zv2). (1.2.1)

3. Given a g-module V', the trivial subspace {0} and V are g-submodules of V. A

g-module such that the only submodules are {0} and V' is called irreducible.

Remark 1.2.8. Let p: g — gl(V) be a representation of g. One can define an action of g
on the vector space V' by xv := p(x)v. On the other hand, if V is a g-module, then the Lie
algebra homomorphism p : g — gl(V') such that p(x)v := xv defines a representation of g.
One can easily check that this defines an equivalence between the categories of g-modules

and representations of g.

Definition 1.2.9. (i) A g-module V' is called indecomposable if there are no two non-
trivial submodules Vi and Vy such that V =V, @ V5.

(7i) V is called completely-reducible if it is a direct sum of irreducible submodules.

For each \ € g* and a g-module V', define the subspace
Vi:={veV : foreach z € g,3n = 1 s.t. (x — A(x))"v = 0}.

Theorem 1.2.10. Let g be a finite-dimensional nilpotent Lie algebra. If V is a finite-

dimension g-module, then V) is a g-submodule of V' and

V=@ V.

AEg*

Let h be a Cartan subalgebra of a Lie algebra g. One can consider g as a
h-module with the action of h being the adjoint representation. The last theorem implies
that

g=@@ o (1.2.2)

Aeh*
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Moreover, it is well-known that go = . The elements A € h*\{0} and g, # 0 are called
roots, the set of all roots is denoted by ® and g, is called root space if A is a root. When g
is semi-simple, the decomposition (1.2.2) has many properties as recorded in the following

theorem.

Theorem 1.2.11. Let g be semi-simple. Then the following properties hold:

(1) [9x, 8,] S 9arp, which implies

C O, YA+ped

[9x, 8.1 < b, if A= —p
=0, PA+p#0and A+ p ¢ .

(ii) The restriction of the Killing form of g to b is non-degenerated;
(iii) b is abelian;
(iv) dim(gy) =1 for all A € ®;
(v) If A€ @, then the only scalar multiples of X in ® are +);
(vi) If X # —p, then the root space gy is orthogonal to g, with respect to the Killing form;
(vii) ® generates h*;

(viii) Since b is not semi-simple, the Killing form of b is degenerated.

Note that the second item implies that there exists a Lie algebra isomorphism
h = h* given by the assignment h — h* such that h*(z) = (h, z) for all x € b.

Fix a root sistem ® of g with respect to a Cartan subalgebra . Now, for each

A € @, define the element ¢, satisfying
AMz) = {ty,z) forall zebh.

One easily checks that the elements ¢, generates h and hence it is possible to define a

bilinear form in ® given by
(A, ) i= (st = A(ty) = p(ty), forall A ped.

Now, for every A € @, one can check that (A, \) = {t,t\) > 0 and that given z € g,

2t
and y € g_», we have [z,y] = (z,y)tr. It follows that the element h) := ()\;) can be

defined. Moreover, given z € gy, there exists an unique x, € g_, such that [z}, 2] = hy.

Therefore the subalgebra generated by {z),hy,z}} is denoted by sl,. Futhermore, the

00 10 0 1
Ty —> hy — T —

assignment
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defines the isomorphism sl = sl5.

Choose a basis {a; - -+, aq} of b such that \; € ® for all i = 1,--- . Thus any

£ € ® can be uniquely writen as
l
b= Z Ci 4.
i=1

One can check that ¢; € Q for all ¢ = 1,--- ] and hence the Q-vector subspace of b
spanned by t,,, - ,ta,, say ho has dimension over Q equals dim(h). Moreover, the form
(-,-) over hg is positive definite and if we extend the base field from Q to R, then the
form can be extended canonically to hr := R ®@q hg. In addition, the form over bg is also

positive definite, that is, hg is an Euclidean space.

Theorem 1.2.12. Let g be a semi-simple Lie algebra with Cartan subalgebra b and root
system ®. Then

(i) ® spans b and 0 ¢ ;

2(8, )
(@, a)

2(8, ) cZ.

(@, q)

(ii) Define o,(p) = — a. If a, 5 € @, then 0,(8) € ®.;

(iii) If a, p € ®, then

(iv) Let by be the image of br by the isomorphism b = h*. Define a bilinear form in by

by
(h1,h3) :=<Chi,hoy € R, for all hy, hs € bg.

Then (-, -) is positive definite, that is, by is an Euclidean space.

1.3 Abstract root systems

Let V' be an euclidean space and (-, -) its inner product. Each a € V\{0} defines
a reflection o, with respect to the orthogonal hyperplane P, := {5 € V : (5,«a) = 0}.
Since 0,(a) = —a and 0,(8) = 3, for all § € P,, it follows that
2(8,a)

(@, q)

7a(B) = 0 =

Q.

2(8,a)
(@, q)

Definition 1.3.1. A subset ® of the euclidean space V' is a root system in V if

The number is denoted by (3, a)

(i) ® is finite, generates V, and 0 ¢ ®;

(ii) If « € ®, the only multiples of a in ® are ta;
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(iii) If a € @, then o, leaves ® invariant;
(iv) If o, B € @, then (B,a) € Z.
Let ® be a root system of V. The subgroup W of GL(V') generated by elements

O, @ € @, is called Weyl group of ®. VW is finite and permutes the set ®. For this reason,
the Weyl group of ® is a subgroup of the symmetric group on .

Definition 1.3.2. A subset A of ® is called a base if A is a basis of V' and every p € ®
s such that

b= Z ca, where either ¢, € Z=qg, Yo € A\, or ¢y € Zigy, Ya € A.
a€eA
The elements in A are called simple roots.x

Note that if ¢, = 0 (¢, < 0), for all @« € A, then f is called positive (negative).
The set of positive roots is denoted by ®* and the set of negative roots is denoted ® . In
addition, ®* "n® =, d" = —P and P =D LD .

Theorem 1.3.3. Every root system ® has a base.

Definition 1.3.4. (i) Given a root = Z co0v, the height hif3 is the number
aEA

htf = Z Ca;

aEA

(ii) The rank of ® is the cardinality of A;

(iii) Let w € W. Denote by l(w) the length of w, which is the smallest number such that

w is writen as product of simple reflections and (1) = 0;
(iv) Define n(c), o € W, as the number of roots o € ®* such that o(a) € .

Theorem 1.3.5. Let A be a basis of a root system P.
(i) If A" is another basis of ®, then o(A") = A for some o € W;
(ii) For every root o there exists some o € W such that o(a) € A;
(iii) W is generated by {0a}aen;
(iv) If o(A) = A with o € W, then o = 1.
Proposition 1.3.6. Let W be the Weyl group of a root system ®. Then
(i) For allo e W, l(0) = n(o);

(ii) There exists a unique oy € W such that l(og) = |®*|. Moreover, oo(®") = &~ and

2 .
0-0:17

(iii) For allo e W, l(o) < |®7].
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1.4 The Cartan Matrix

Fix a root system ® with rank n, a Weyl group W, and a basis A for ®. For
an ordered basis of V' of simple roots, say {ai,---,a,}, the matrix (¢;j),xn such that

¢;; = {0y, ;) is called Cartan matrix of ®.

Proposition 1.4.1. The Cartan matriz C' = (¢;j)nxn satisfies

(i) ¢y =2 withi=1,--+ n;
(it) ci; € {0,—1,—-2, =3} foralli,je{l,--- ,n} and i # j;

(1ii) If ci; is equal -2 or -3, then c;; = —1. Moreover, ¢;j = 0 if and only if ¢;; = 0.

Although the Cartan matrix depends on the chosen ordering on the basis, this
matrix does not depend on the choice of the basis, i.e. the Cartan matrix is unique up to
reordering. The simple Lie algebras are in a one-to-one correspondence with the Cartan
matrices, which, in turn, can be identified with certain graphs called Dynkin diagrams.
Those diagrams can be explained as follows: The vertices are labelled by the simple roots

of the root system. Between two vertices a and f3, there are d,g lines, where

daﬁ = <Oé, B><67 Oé> € {07 17 27 3}
Whenever d,g > 1, we add an arrow pointing from the longer to the the shorter root.

Example 1.4.2. 1. Consiter the Cartan matriz given by

2 -1
-1 2
The Dynkin diagram of this matriz is said to be of type Ay and is given by

aq (5]

2. Consiter the Cartan matriz given by
2 =2
-1 2
The Dynkin diagram of this matriz is said to be of type By and is given by

(€51 Qg

Definition 1.4.3. The root system ® is irreducible if its Dynkin diagram is connected.

Otherwise, ® is reducible.
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Definition 1.4.4. Let ® and ® be root systems in the Euclidean spaces V and V',
respectively. We say that ® and ®' are isomorphic if there is a vector space isomorphism
©: V — V" such that

(i) p(®) = P';
(ii) For any two roots o, f € ®, (o, B) = (), p(B)).

Proposition 1.4.5. If ® is a root system of an Euclidean space V', then there exists

pairwise orthogonal subspaces Vi, -+ -, V.. with irreducible root systems ®1,--- , ®,. such that

i=1

® can be uniquely decomposed as

In addition, V =V ®--- @V,

Theorem 1.4.6. If ® is an irreducible root system of rank n, its Dynkin diagram must be

one of the following.

— o —0—@

1 2 n—1n

n ® * * =
1 2 n—2 n—1n

C, : - o o e
1 2 n—2n—1n
n—1

D, o —
1 2

2
ES; b—O—I—O—O—O—Q

Fy: — oo o
4 1 2 3 4
G2: —

1 2

It is finally possible to classify all root systems.

Theorem 1.4.7. There exists an one-to-one correspondence (up to isomorphism) between

the Dynkin diagrams of Theorem 1.4.6 and irreducible root systems.

Theorem 1.4.8. If two root systems are isomorphic, then their Dynkin diagrams are the

same.
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1.5 Classification of semi-simple Lie algebras

Recall that the subalgebra by is an Euclidean space. Observe that the root
system of by is also a root system in the sense of Definition 1.3.1. Moreover, one can
check that if b’ is another Cartan subalgebra of g, then the root systems of hi and b are

isomorphic. Hence, one can define the following.

Definition 1.5.1. Let g be a semi-simple Lie algebra and by be a Cartan subalgebra of
g. A root system for g is a root system for the vector space bg. Furthermore, the Dynkin

diagram of g is the Dynkin diagram of a root system of bi.

Proposition 1.5.2. Let g be a complex semi-simple Lie algebra with Cartan subalgebra b

and root system ®. If g is simple, then ® is irreducible.

Theorem 1.5.3. Let g be a semi-simple Lie algebra.

(i) The Dynkin diagram of a semisimple Lie algebra g is connected if and only if g is
simple. Moreover, any two Lie algebras with the same Dynkin diagrams are isomor-

phic.

(i) g is the direct sum of simple Lie algebras g1, - - , @, if and only if the Dynkin diagrams

of g is union of the diagrams of g; for alli=1,--- ,r.

To complete the classification of simple Lie algebras, it remains to prove that
every irreducible root system arises as the root system of some simple Lie algebra. This
is a result due to Serre. We shall review the concept of generators and relations before

stating Serre’s Theorem.

Given a complex vector space V', consider the following vector spaces
T'V)=VRV® -V (itimes).
Definition 1.5.4. The tensor algebra T(V') is the vector space
w .
T(V):=@1TV)
i=0
with the associative product
Yy =T1Q @)Y ® OYn) =210 QT U QYm e T"™(V),
for all homogeneous tensors x € T" (V') and y € T™ (V') and r,m € Zxy.

Now, let g be a Lie algebra and J be the ideal of T'(g) generated by

xy —yx — |x,y], forall z,yeg.
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Definition 1.5.5. The universal enveloping algebra of g is the quotient
U(g) :=T(g)/J.

Note that 7" (g) = g, so that we have an inclusion g < T'(g). In addition, given
7 the canonical projection of T'(g) onto U(g), there exists a Lie algebra homomorphism
i:g— U(g) given by the composition of the projection m;, the inclusion of T"(g), and
the identification g =~ T"(g).

Proposition 1.5.6. The universal enveloping algebra U(g) of any Lie algebra g satisfies
the following universal property. If there exists another pair (A, @) such that A is an
associative algebra with unity, 14, regarded as a Lie algebra with the commutator and
¢ :g— A s a Lie algebra homomorphism, then there exists a unique homomorphism of
associative algebras ¢ : U(g) — A (sending lyg) to 14) such that the following diagram
commutes

g—="U(g)

Theorem 1.5.7. (Poincaré-Birkhoff-Witt) Let g be a Lie algebra and J be a set of indezes.
If {x; : i€ J} is an ordered basis of g, then 1y together with the elements

01 Ao s
Liy Tig =" " Ly

with r € Zwg, i1 <ig < -+ <i, and l; € Lwo for i =1,--- |1 form a basis for U(g).

This theorem is known as Poincaré-Birkhoff-Witt (PBW) Theorem.

Corollary 1.5.8. 1. The Lie algebra homomorphism g — U(g) is injective, that is, g
is identified with a subalgebra of U(g). In particular, if b is a subalgebra of g, then
U(b) is a subalgebra of U(g).

2. Let g1 and g be two Lie algebras with universal enveloping algebras U(gy) and U(ga),
repectively. Then

U(g1 ®g2) = U(g1) @ U(ga).

3. The category of left modules over a Lie algebra g is equivalent to the category of left
modules over U(g).

The last ingredient to prove Serre’s Theorem is the free Lie algebras. These

algebras are defined by the following universal property.

Definition 1.5.9. Let FL(X) be a Lie algebra containing a set X. FL(X) is said to be free
over X if, given any mapping ¢ : X — g, there exists a unique Lie algebra homomorphism
¢ : FL(X) — g extending ¢.
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The existence of the free Lie algebra can be explained as follows. Let V' be
a complex vector space with basis X and T(V') be its tensor algebra regarded as a Lie

algebra. Consider the Lie subalgebra g of T'(V') generated by X. Given any function
b:X > L,

extend ¢ to a linear map V' — L and then to a Lie algebra homomorphism ¥ : T'(V') —
U(L). The restriction ¢ = ¥|; : g — L is the desired extension of ¢. One can easily check

the uniqueness of .

Definition 1.5.10. Let X = {x; : i € I}. If FL(X) is a free Lie algebra on X and
R={f; : je J} c FL(X) generates an ideal R, then the Lie algebra given by generators

x;, 1 € I, and relations f; =0, j € J, is the quotient
FL(X,R) := FL(X)/R.

Proposition 1.5.11. The universal enveloping algebra of FL(X) is isomorphic to the

tensor algebra T(V') where V' is a vector space having X as a basis.
Proposition 1.5.12. Under the conditions of Definition 1.5.10, if R’ = R, then FL(X, R)
is a quotient of FL(X, R').

Finally, the next theorem, due to Serre, classifies all the simple Lie algebras.

Theorem 1.5.13. (Serre) Let ® be a root system with basis A = oy, -+, and C =
(Cij)nxn be its Cartan matriz. Consider the complex Lie algebra g generated by elements
a7, hi, i =1,--- 0 with relations

(i) [hi,h;] =0, forall i,j=1--- n;

(i) [z, x;] = dijhs  forall d,j=1,--- n;

(iii) [hi,a5] = tegas  forall i, j=1,--- n;

(iv) (ad(z)) ™ (xT) =0 forall i=1,---,n,i#j.

J

Then g has finite-dimension, is semi-simple and its Cartan subalgebra by is spanned by

{h; : 7 =1,--- ,n} with root system isomorphic to ®.

Remark 1.5.14. Theorem 1.4.6 describes all the possible root systems for simple Lie alge-
bras. Moreover, a Lie algebra g is said to be of type X € {A,,, By, Cp, Dy, Es, E7, Eg, Fy, Go}
if its Dynkin diagram is of type X .
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1.6 The category O

From now on, the set of roots of a Lie algebra is denoted by R (and the positive
roots by R™). We now recall some properties of the category of integrable representations
over a semi-simple Lie algebra g, which is denoted by O™ This is a full' subcategory of
the Bernstein-Gelfand-Gelfand’s category O.

Definition 1.6.1. Let g = n~ @ b @ n' be a fived triangular decomposition of g. The
category O is the full subcategory of Mod(g)?, whose objects are g-modules satisfying

(i) V=@ V, where Vo ={ve V : hv=a(h), forall heb};

agh*

(i) V is finitely-generated;
(iii) V is locally n™ -finite, i.e. for each v € V, the n"-module U(n™)v is finite-dimensional.
The category O is an abelian and noetherian category, and closed under

submodules, quotients and direct sums. Some additional facts about this category can be

summarized as follows.

Proposition 1.6.2. If V,W € ObjO, then

1. If V is finite-dimensional, then V Q W € ObjO;

2.V and W are finitely-generated U(n™)-modules.

The spaces V,, in Definition (1.6.1) are called weight spaces of V', a € h* are
called weights and the non-zero elements v € V,, are called weight vectors. Note that

1.2.2 is a weight space decomposition. If g, is a weight space of g, then
0.Va S Vayy, aeb® peR. (1.6.1)

Moreover, a non-zero vector v € V is called highest weight vector of weight ) if v € V),
and n"v = 0. One can easily check any object V in O has at least one highest weight

vector.

Definition 1.6.3. A U(g)-module (or a g-module) V' is a highest weight module with
highest weight X\ if there exists a highest weight vector v € Vy such that V = U(g)v.

Lemma 1.6.4. Let V be a sly-module and v eV be a weight vector of weight® m € Zsy.
If 170 =0, then (7)™ v = 0.

1

A subcategory S of a category C is a full subcategory if for any X,Y € Obj(S), every morphism in
Home(X,Y) is also a morphism in Homg(X,Y) (that is, the inclusion functor is full).

The category of left modules over a Lie algebra g.

If g = sly, then Pt can be identified with Z.

2
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Remark 1.6.5. The PBW Theorem and (1.6.1) implies that if V' is a highest weight module
of highest weight X\, then V' contains a unique maximal proper submodule and, consequently,

a unique irreducible quotient. Moreover, if V,, # 0, then u < X, since V. =U(n")v.

Definition 1.6.6. Let A € h*, the Verma module M () is the g-module generated by v # 0

with the following defining relations

nfo =0, hv=Ah)v, forall heb.

Note that the Verma module M (\) is the universal highest weight module, that
is all highest weight modules with highest weight A are quotient of M (). By using PBW
Theorem, one can check that M () is an object in O. In addition, as mentioned before,
M (X) has a unique irreducible quotient denoted by V().

Finally, the subcategory O™ can be constructed.

Definition 1.6.7. A g-module V' is said to be integrable if for any v eV and i€ I, there

exists m € Z=q such that

The category O™ is the full subcategory of @ whose objects are integrable

g-modules.

From now on, we use the following notation. Let w;, for i = 1,---  n, be the
fundamental weights corresponding to a set of simple roots A = {ay, -+, a,}. Consider
the sets

n Z}()Oéi, P = i Zwi, and P+ i Z}Owi-

i=1 =1 =1

Q= Zn:ZOéu Q" =
=1

For our purposes, the following are the main results involving O,

Theorem 1.6.8. Let A\e b* and I = {1,--- ,n} where n is the rank of g. Given a highest
weight vector v € M(X), the module V() is integrable if and only in X € P™. In this case,
V(\) is the quotient of M()\) by the submodule generated by (z; )"0 for alli e I, and
V(A) is finite-dimensional.

Theorem 1.6.9. If V e O™ is simple, then V = V(\) for some A € P*. In addition,
every object in O™ is a direct sum of simple submodules and, in particular, O™ consists

of finite-dimensional g-modules.

Given V,W € ObjO™, then, equipped with the same action as in item 2 of
Example 1.2.7, the tensor product V ® W is an object of O™ In addition,

V,@W, < (VW)
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Proposition 1.6.10. Let A\, u€ P™\{0}. Then V(\) ® V(u) is not simple.
Example 1.6.11. Let g = sly. The standard basis for g is {x~, h,x™} with
[z",27 ] =h, [haT]=+22".

In this case, a Cartan subalgebra is h = spanc{h}, which can be identified with C and
the set of multiple of fundamental weights P can be identified with Z. The Verma module
M(X) is generated by {vg,vi,va, -} and the structure of slo-module is described by the

following diagram:

A—2(n+1) A—2n A—4 A—2 A
a 5 VR a 1 VR a VN a VN VRN
N s S . TN S N S S S
Un+1 T U1 Vo 0

.. Up, . Uo

where a; = i(\ — i + 1) denotes the action of a certain element of g. The left arrows
represents the action of x%, the right arrows are the action of x~, and the laces are the
action of h, while the numbers over and under the arrows are the coefficients of the action
of x* and h on each v;, i€ I, e.g.

vj_1  denotes x+vj = kvj_1.

1.7 Current Algebra

Let g be a semisimple complex Lie algebra and A be an associative and

commutative algebra. Consider the vector space g ® A and the following bilinear function:

[,]: (@A) x (g®A) — g®A
(r®a,y®b) — [zr,y]®ab

One easily checks that this equips g ® A with a Lie algebra structure. If A has identity,
say 14, then the subspace g® 1,4 is a subalgebra isomorphic to g. If A is Z>¢-graded, that
is A = PA[s], then g® A is also graded and can be written as

s=0

I@A=Do®Als],
>0
When A = C[t], the graded Lie algebra g ® C|[t] is called the current algebra
over g and is denoted by g[t]. If A = C[t]/tYC[t], for N € N, the algebra g® A is denoted by
g[t]v and is called the truncated current algebra of nilpotence index N. In addition,
a[t]n can be seen as the graded quotient g[t] = g[t]/(g @t C[t]). Let g=n" ®@HhDn" be

a triangular decomposition , note that

glt] =n [tJ@b[t]®n'[t] (1.7.1)
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where n*[t] = n* ® C[t] and h[t] = h ® C[t]. Given a € C, there is a Lie algebra
homomorphism ev, : g[t] — g, called evaluation map, which sends z ® f to f(a)z. If
V is a g-module, the evaluation map allows us to define a g[t]-module structure on V' by

pulling-back the action of g, that is,
(x® f)v:= f(a)xv for each aeC.

A g[t]-module, defined this way is called an evaluation module and is denoted by ev,V.

One easily checks that ev,V is simple if, and only if, V' is simple.

Given A € PT, an irreducible g-module of highest weight A is denoted by V' (),

which is generated by an element v, with the following defining relations:
ntuy =0, hoy = Ah)vy, (z7) Hly, =0, forallae RY, heb.
Note that vy regarded as an element of ev, V' (\) satisfies
n[tloy =0, (h®t" vy =a"Nh)vy forall hebh, reZs,. (1.7.2)

Since vy is a generator of ev,V'(\), (1.7.2) says that it is a highest weight module with
respect to the triangular decomposition (1.7.1). Furthermore, the parameter a € C being
zero is equivalent both to ev,V () being graded and ev,V () factors to a g[t]y-module,
for N > 1.

We record a well-known fact about the tensor product of evaluation modules
(see [41, Corollary 2.1.10] and references therein): given k = 0, Ay, --- , A\, € PT\{0}, and
distinct ay, - - ,a, € C\{0}, then

€V, V(A1) ® -+ - ® ev,, V (Ag) is irreducible if and only if a; # a; for i # j. (1.7.3)

In addition, every irreducible finite-dimensional g[t]-module is isomorphic to a tensor

product of this form.

The category where the objects are graded finite-dimensional g[t]-modules and
the morphisms are grade preserving g[t]-module homomorphisms is denoted by G. It is
also possible to consider the analogous category for the truncated case, which is denoted
by Gn. Note that every objects in Gy can be seen as an object in G by pulling-back the
canonical epimorphism of Lie algebras g[t] — g[t]n. Given V an object of G, its s-th
graded piece is denoted by V[s] and the sum of its positive graded pieces is denoted by

Vi =P V]s].

s>0

Observe that there exists an endofunctor of the category of Z-graded vector spaces called
grade shift functor given by
(V[k]) = V[k — s], (1.7.4)
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which induces an endofunctor of G that changes the grading of an object while the action

of g[t] remains the same. Let A € P* and s € Z, set
V(A s) = 1s(evgV (). (1.7.5)

Now, for some s € Z, consider the grade shifting of some irreducible element evyV (A) in
Gn. By (1.7.3), it is isomorphic to ev,, V(A1) ® - - - ® evy, V (Ax), for some choice of distinct
ap, - ,a and A\; + -+ + A\, = A. In addition, by using (1.7.5), one can check that any
simple object in Gy is isomorphic to a unique element of the form V(u, s) for some s € Z

and some p € P*.

Let U(glt]) be the universal enveloping algebra of the current algebra g[t]. The

grading on g[t] induces one on U(g[t]) whose subspace of grade is

k
Us(g[t]) := spanf{(z1 @ t™) - (2, ®t"™) : k=1, x;€g9, 1, € Z>0,Zn~ =s}. (1.7.6)

i=1
A g[t]-module is said to be cyclic if there exists an element v € V' such that V' = U(g[t])v.
In this case, by (1.7.6), there exists a filtration F,.V,| r € Z,, given by

FV = Y Uglt]v. (1.7.7)

0<s<r

In addition, if we set F' 1V = {0}, then the associated graded vector space

gr(V) =P FEV/F.1V, (1.7.8)

r=0

can be viewed as a cyclic g[t]-module generated by v + F'_ V' with the action of g[t] as

follows
(z@t°)(w+ FV) = (x @t w+ Foos1V, VYxeg, wekFV, rsels. (1.7.9)

Let (., € C, be the automorphism of g[t] induced by the mapping t — ¢ + z. Denote by
V# the pullback of V' by (.. The action of g[t] on V* becomes

(2@t =@t +2)°)v, zeg, veV, selx. (1.7.10)

Let W be a g-module. If V' = evgW, one easily checks that V* = ev,W.

For r, s € Z~, consider the set

S(r,s) = {(bp)p>0 : by € Ly, przr, prpzs},

which is finite, because b, = 0 whenever p > s, and empty for r = 0 and s > 0. For k£ > 0,

we also consider the set

kS (1, 8) = {(bp)ogpes € S(r,s) = b, =01if p <k}

=
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Given z € g, 1,5 € Z=o, we can define the elements x(r, s), xx(r,s) € U(g[t]),

respectively, by

X(r, 5) = Z (x ® 1)(170)(3j ® t)(bl) .. (l- ® tS)(bs)

(bp)eS(r,s)

and

px(r, 8) 1= Z (2 @ t5)®) (g @ t++1)Brs) L. (7 @ ) (B)

(bp)ErS(rys)

where y® denotes °/b!, for any y € g[t] and any integer b > 0. One easily checks that

kX, (r kr) = (z, @t%)). (1.7.11)

The following result has been proved in [31] and it will be used in the next

sections to find relations for some g[t]-modules.

Lemma 1.7.1. Given s€ N, r € Z=y and a € R™, then
(zf @) (x, @ 1)) — (=1)°x, (r, 5) € U(g[thn" [t @ U (n[¢])th[t].

For k € Z, consider the monomorphism 7, : g[t] — g[t] induced by t — t*. It

follows from the above lemma that

(¢F @M (2 @ NET — (1)°mix; (r,8) e Ug[n [ @ U~ [)b[1]4.  (1.7.12)
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2 Modules Over Current Algebras

2.1 Weyl Modules

We now recall the notion of local Weyl modules over the algebra g ® A where
A'is either A = C[t] or A = C[t]/t"C[t]. For a general unital associatiave algebra A, see
9]. Let w € (h[t])* and consider the Verma module M (w), i.e. the module generated by a

vector v satisfying the following defining relations:
n"[tJo=0 and hv=w(h)v, for all he bh[t].

It turns out that M (w) admits nonzero finite-dimensional quotients if and only if there

exists k=0, A, -, A\, € PP\{0}, and pairwise distinct ay, - - - , a; € C such that
k
wh®t") = Z a;jA(h) forall heh, r € Zxy. (2.1.1)
j=1

In this case, w|, € P and, then, the local Weyl module W (w) can be defined as the
quotient of M (w) by the submodule generated by

()"t forall iel.

W (w) is finite-dimensional and every finite-dimensional quotient of M (w) is also a quotient
of W(w). Note that M(w) is graded if and only if w(h[t],) = 0. Since we are interested in
the case when M (w) is graded, so that W (w) is also graded, from now on, we will use the

following definition for Weyl modules.

Definition 2.1.1. Given X\ € P" the local Weyl module W(\) is the cyclic g[t]-module

generated by an element wy, with the following defining relations:

n[tlwy =0, (h®t)wy = A(h)dsowy =0, s=0, hebh, (2.1.2)
(z; @ M)y, =0, ae RY. (2.1.3)

Relation (2.1.2) implies (U(g[t])n*[t]® U(n~[t])b[t]+) wr = 0 € W(A) and
then

(z, ®t’\(h‘*)) wy =0, a€eR". (2.1.4)

Indeed, if s = A(h,) and 7 = 1 in the Lemma 1.7.1, then (—1)°x, (r, s)w, = 0 with (b;) = 0,

for all i # s and (b,) = 1. Hence, 0 = x, (r, s)wy = (2, @ t""))w, as claimed.

One can consider Weyl modules in the category Gy, it is denoted by Wy () and

is defined as the g[t]y-module generated by an element v satisfying relations (2.1.2) and



Chapter 2. Modules Over Current Algebras 38

(2.1.3). Regarded as a g[t]-module, the generator v of Wy (A) must satisfy the following
additional relation

(r, ®t")v=0forall «e R* and r > N. (2.1.5)

In addition, the universal property of W (\) implies the existence of an epimorphism of
g[t]-modules
TN - W()\) - WN(/\)

By (2.1.2) and (2.1.5), the kernel of 7y is generated by
(z@tMwy, zen . (2.1.6)

Thus, the truncated Weyl module Wy (\) can be defined as the quotient of W (\) by
ker(my). Observe that by (2.1.5), for all M < N, there exists a projection

v Wn(A) = W (). (2.1.7)
Another important well-known fact is that, for all « € R*,
(o ®@t°)v =0, if s = A(hy), (2.1.8)
and therefore, denoting the highest short root as 7,

W (M)

lle

W(N), if N = A(hy). (2.1.9)

Let 6 be the highest root. If g is simply laced, then all the roots have the same length and

hence the previous isomorphism holds for all N = A(hy).

The next lemma is a result from [45], which gives some additional relations in

the case that A € N@, that is, some scalar multiple of the highest root.

Lemma 2.1.2. Let k € N. The following relations hold in the local Weyl module W (k6):

1 (g @ D)* oy @t* 7 Dwrg =0, forall 0<i<k—1;

2. (2 @t™)(z; @t" N wig € (x5 @™ wig)y, for all m =k — 1.

Proof. Note (2.1.3) implies (z; ® 1)**'wyy = 0. Hence, by (1.7.12), we get
Tok—1-iXg (2k, 1wy = 0.
Since x, (2k,1) = (z, ® 1)®* Y(z, @1), part (1) follows.

Part (2) is clear since

(xg @t )wiy € {(xg Rt )wygy for any 1,5 >0 (2.1.10)

and .
0= x5 (2,2m + Vw1 = Z(xg Q") (xy @ t" T Y wyy. (2.1.11)

=0
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2.2 Demazure Modules

Let A\e Pt ae R" with A(hy) > 0 and /, so, My € Z=o be the unique numbers
such that

AMho) = (Sa — D)ldy + my, 0 <my < U, (2.2.1)
and if A(h,) = 0, set s, = my = 0.

Definition 2.2.1. The level-l Demazure module D(¢,\) is the graded quotient of W (\)

by the submodule generated by the union of the following two sets:

{(z; @t**)wy : « € RT such that d, > 1}; (2.2.2)
{(z; @t )™ty : ae RY such that mq < ldy}. (2.2.3)

We denote by w)y, the image of wy in this quotient. In addition, set

D(¢, A, m) = TwD(L, \).

In particular, there exists the g[t]-modules isomorphism
D(1,)\) =W (\)

which was proved in [13] for sly, in [11] for sl,.,; and then in [27] for the simply laced case.

It is a well known fact that one can relate Demazure modules of different levels,
say D(¢,\) and D(¢',\), by the epimorphism

D, \) — D(¢',\), forall e PT </, (2.2.4)

In particular, for ¢ large enough, D(¢, \) = evoV (A).
If A=k, ke Nand # € R being the highest root, the defining relations for

D(1, ) can be rewriten as follows

Proposition 2.2.2. [/5, Proposition 1] Given k > 1, the level-1 Demazure module D(1, k)

is the graded g[t]-module generated by an element Wiy with the following defining relations:

1. ﬂ+[t]@k9 =0, (h@ts)wkg = k‘@(h)(ss’owk@ =0, s=0, he h,‘
2. (q:; &® 1)wk9 =0, «ae€ RJr, (9, Oé) =0,
8. (v, @ DMty =0, (z, @t")wr =0, aeR", (0,a)=1;

4. (.CE; &® 1)2k+1@k9 = 0.
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Proof. Note that the defining relations of W (k6) imply that (z, ® 1)* '@, = 0 as well
as relations 1. and 4. Now, since @ is the highest root in R™, the abstract theory of root

systems says that (0, ) is either 0 or 1 for every a € R*\{#} and hence

0, if(0,a)=0

K(ha) = { kd,, if (6,a) =1

Therefore, relations determined by the set in (2.2.3) do not occur, since m, # 0. For
kO(hs) = 0, we have s, = 0 and (2.2.2) becomes (2.). Otherwise, for all « € R*\{6}, (2.2.2)
implies (z, @ t*)Wry = 0.
Note that the opposite is also true, i.e. if (z, ®t*)wWry = 0 holds, then relations determined
by (2.2.2) hold. In fact, since k(h,) = kd,, then s, = k + 1 and by (2.1.10), we have
0= ({L‘; ® tk—H)@kg = (ZL’; ® tsa)@kg.
O

Remark 2.2.3. The Demazure module D(1,0), as g-module, is isomorphic to V(0) @ C

and, in particular, we have

dim D(1,0) = dim V' (0) + 1. (2.2.5)

The next lemma, which was proved in [45], gives some additional relations for

D(1, kf) and is crucial to prove Theorem 5.1.2.
Lemma 2.2.4. Let k = 1 and 0 < @ < k. The following relations hold in the module
D(1,k6) :

1. (z;, @ DF Vet (o @215, = 0, for all o e RY such that (6,a) = 1;

2. (z,Qt" ) (g @M N € {(x; @t W), for all a € RT such that (0,a) = 1;

3. (xg @t*F ) (2 @F 1 Nk € (g @t kg

Proof. Let o € R™ be such that (f, ) = 1. Since 6 is the highest root of g, § — a is also
a root with (0,6 — o) = 1 and hence we can consider the element (z, ., ® t** ')y,
which is zero for all 0 < ¢ < k. Indeed, since 2k — 1 — 14 > k for 0 < i < k, by part 3. of
Proposition 2.2.2, we have
(5o @)Wy = 0,
and it implies
(Tg_, @t )Wk =0, forall s=k.

Now, 1. follows from Lemma 1.6.4, since (z; ® t** ')y has weight (k — 1)6,

(x @ 1)(mg @ Wy = (x5 @) (@) @ VWi + (150 @ Wi = 0,
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and the subalgebra spanned by (z, ® 1), (z; ® 1) and (h® 1) is isomorphic to sls.
For 2., note that 2k — i > k for all 0 < i < k. Hence, by (2.1.5),

(g @D Wy = (v, @ 1) (2, @ 1) 1wy = 0.
Then, by putting r = 2 and s = 2k — 1 — ¢ in Lemma 1.7.1 and by (2.1.10), we have
X, (2,2k — 1 — i)Wy € {(x5 @ Vg ) (2.2.6)
Given a € R*, one easily checks that (z,_, ® 1) ((z5 @t)(x5 @ t7)Wke) is equal to
((zg @ 1") (25 @ t")(25_, ® 1) + (75 @) (2 @) + (x; @) (25 ® 7)) Wi,
so that, together with (2.1.5), this implies
(2 @t*" Nz, @t Ny = (260 @ 1)(z; @t* 1) (z, @1k (2.2.7)

which belongs to {(z; ® t** )W) as we wanted. Finally, 3. follows directly from part 2.
of Lemma 2.1.2. O

2.3  Chari-Venkatesh Modules

Let & be the set of non-increasing monotonic sequences of nonnegative integers
with finite-support. The elements of & are called partitions. Given any sequence x =
(%i)iez., with finite support, we denote as x the partition obtained from x by reordering

its elements and set
[(x) =max{j : z; #0} [|x]= ij.

j=1
When |x| = m, x is said to be a partition of m and the set of all partitions of m is denoted
by Z,,. The integer [(x) is called the length of x and it represents the number of nonzero

elements in x.

Now, given A € P*, a family of partitions & = (§(«))aer+ is said to be M-

compatible if

Aha) = Y €&(@);, VaeR'.

j=1
We will denote by &2, the set of families of A-compatible partitions.

Definition 2.3.1. Given £ € P, the Chari-Venkatesh (or CV) module V() is the
quotient of W(X) by the submodule generated by

{(mi@t)s(x;(@l)s“w,\ ca€R", s,reN st s+r=1l4+rk+ Z £(a);, k‘eN}

j=k+1
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These modules were defined for the first time in [16]. Note V() is a graded
quotient of W (X). We now recall a result that was implicitly shown in the proof of [16,

Theorem 1], which gives some additional understanting about the CV modules.

Lemma 2.3.2. Let A€ P*, r e N and (§())aer+ € Py. If r = £(a); then x, (1, s)wy = 0
in W(A), forallae R, s,keN, s+r>1+rk+ Z £(@);.

j=k+1

Proof. Let a € RT, £ = (§(@))aer+ € Py such that s +r =1+ rk + Z &(a);, for all

j=k+1
keN. If r = &(a), then s+r > 1+ Z &(a); = 1+ A(hy). By Lemma 1.7.1 and (2.1.3),
j=k+1
we have
Xo (7’, S)w)\ =0,
since (z7 @)™ (z; @ 1)*w, = 0. O

Keeping the notation of the previous lemma, we denote by V'(£) the quotient
of W () by the submodule generated by

x_ (r,s)wy, VaeR", Vs,re N suchthat s+r>1+rk+ Z E(a);, keN.
j=k+1

Futhermore, consider the quotient V" (&) of W () by the submodule generated by

px,, (1, 8)wy, VYaeR" Vs,r,keN suchthat s+r>=1+rk+ Z &(a);, ke N
jzk+1

Lemma 2.3.2 implies:

Proposition 2.3.3. The modules V'(§) and V" () are isomorphic to V (§).

We denote a generator of V' (§) with weight A by ve, where £ € &5. The previous
proposition together with (1.7.11) gives us

(z; @t)Dve =0, forall aeR*and k,r >0 suchthat 7> Z E(a);.  (2.3.1)

i>k
If £ = 1(&(a)), then Z &(a); = 0 and hence
>k
(2, @t*)we =0, forall ae R and k = 1(£(a)). (2.3.2)

For A e PT, let {\} and 1* denote the following partitions in 22
{A} = (Mha))acrs, and 1= (100D) b

where (1)) denotes the partition consisting of A\(ha) copies of 1. The next proposition
gives another way to describe the CV modules V({\}) and V (1%).
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Proposition 2.3.4. The following holds for all X € P*:
V{AD) =g evoV(A)  and V(1Y) =g W(N).
Proof. Since V({\}) is a quotient of W(\) by the submodule generated by
x, (1, Dwy = (z, ®t)wy, «€ R,

there exists an epimorphism of g[t]-modules mapping vy to vy. Now, equation (2.3.2)
says that for all « € R™ and k = [(A(h,)) = 1, we have

(.27; X tk)v{,\} = 0.

Therefore, g ® tC[t]vgyy = 0 and this gives us the existence of an inverse epimorphism and

the first isomorphism follows.

Since (1); = 1 for all @ € R™, by Lemma 2.3.2, we can identify the element wy € W (\)

with v;x and therefore, we have the second isomorphism. O

In [16, Theorem 2], it was shown a way to identify CV modules and level-¢
Demazure modules as follows:
Given &\ € &, defined by

Eoa(a) == ((Lde)=™" my,) (2.3.3)

for « € R" and s,, m, being as in the definition of level-¢ Demazure modules. Then, there

is an isomorphism of graded g[t]-modules

D) = V(E). (2.3.4)
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3 Fusion Products

3.1 Fusion product of cyclic g[t]-modules

Let Vi,---,V,, be cyclic g-modules with cyclic vectors vy,--- ,v,,. For each

choice of A = (ay,as,--- ,a,) € C™, we can consider the g[t]-module
V(A) = ev,,(V1) ® - - ® evg,,, (Vin).

In that case, the action of g[t] on any homogeneous tensor, say w; ® - - - ® wy, is given by
(x@tk)(wl Q- Qwy) = Zaf W R Rrw, - w,y,. (3.1.1)
i=1

Proposition 3.1.1. Let A= (a1, ,a,). If a; are pairwise distinct numbers, then the
g[t]-module V(A) is generated by v1 ® - - - Q vyy,.

Proof. We want to prove
V(A) =U(@)r1 @ @U(g)vm = UGt (1 ® - - @ o).

First, note that the action described in (3.1.1) implies that an element of the form
(2@t (u1 @ Qup) € U(g[t])(v1 @ - - - @ vy,) can be writen as a linear combination of
elements in U(g)v; ® - - @ U(g)vm- In addition, for a fixed x € g and an homogeneous

tensor u; ® - - - ® u,, € V(A), consider the subspaces

W = span{(z @t (u1 @+ @ Up), (T @) (U1 @ R Up), -+, (TRt N1 @ - - Qupm)}

and

W = span{zu; @ -+ @ Uy, , U1 @ TU2 R+ ** R Upy,++ , U QU R« + + @ LUy}

Note that the vectors of the definition of W can be written as linear combinations of those

in the definition of W using the scalars of the columns of the following matrix.

2 m—1

1 aqg a7 -+ df
1 ay a3 -+ ay!

A= _
2 m—1

1 an a, -+ a

Since a; # aj, for all j # 4 and 4,5 = 1,--- ,m, it follows that

det(A) = n (a; —a;) # 0.

1<i<j<m
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It follows that any homogeneous tensor 1 ® - - @ xu; ® - - - @ Uy, for ¢ = 1,--- ,m, can be
written as linear combination of (z ® t/)(u; ® ---®u,y,) for all z € gand j = 0,--- ,m — 1.
In particular, the previous procedure can be done on the vector v; ® - - - ® v,,. One can

check that some iterations of the previous process implies, first, that any element
U1®"'®Xivi®"'®vm7 XzEU(g)7 izla"'7m

is a linear combination of elements in U(g[t])(v; ® - - - ® v,,,) and then that the same holds

for
X1U1®X2’02®'"®XZ"U1'®"'®Xm’Um, foranyXieU(g), z=1,,m

Therefore,

U@ ®- - @U(g)vm S U(g[th (1 @ @ vy).
0

Let a1, -+, a,, € C be as in the last proposition and consider the filtration on
V(A) as in (1.7.7) for v =11 ® - - ® V.

Definition 3.1.2. Let Vi, --- , V., be cyclic objects in G with cyclic vectors vy, - -+ , U, and
ai, -, am € C with a; # a; for all j # i. The fusion product V{** « -+ V™ is the graded
g[t]-module gr(V) = (—B F.YV/F,. 1V with cyclic vector v ® -+~ Q v, € F 1 V.

el

3.2 Conjectures on fusion products

We denote a generator of the fusion product as vy #- - - #v,,. Note that it depends

on the parameters ay, - - , a,,. However, the following was conjetured in [21].
Conjecture 3.2.1. Let aq,--- ,a,, € C pairwise distinct and Vi, --- ,V,, cyclic objects in
G.Then

1. The fusion product V\** = - -+ V™ s independent of the parameters ay,--- , ap,.

2. The fusion product of any finite collection of cyclic elements in G is associative up

to isomorphism.

This motivates us to shorten the notation and write Vj # - - -« V,,,. Conjecture
3.2.1 has been proved for some particular cases. This is the case for V; being certain
quotients of a Weyl module with its cyclic generator being a highest weight vector (see
[11, 20, 21, 27, 33, 42]). In particular, this conjecture was proved for Demazure modules of
the same level (see [15, 16, 27, 43, 49]) and for D(1,0)* « evgV (6)*™ as we will see later.

Many of these works have proved Conjecture 3.2.1 by finding an isomorphism between
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certain fusion products and g[t]-modules whose defining relations are known. Another

important fact about fusion products is the following isomorphism of g[¢]-modules
WAL # s W) = W) if X=X+ 4+ Ay, (3.2.1)

which was first proved in [11] for g = sl,,, then in [27] for the simply laced case, and, finally,
for the general case in [42]. Since each \; can be writen as a sum of [; = A(h;) copies of w;,

then, (3.2.1) is equivalent to the isomorphism of g[t]-modules

W) 2= W(w) ) e e W(w,) ) forall Ae P*. (3.2.2)

Let Ae P*, and N € Z-g. Define the set
PTOLN) ==, ) e(POY ¢« A+ -4+ Ay = AL (3.2.3)

Let us define a partial order on P (\, N). For this, given « € R* and 1 < s < N, consider

the following number
Tas(A) =min{(\;, +---+ X )(he) 1 <0y <+ <ig < N} (3.2.4)
and define
B<A e ra4p) <ras), forall aeRY 1<s<N. (3.2.5)

By following the algorithm described in [25], we can compute the maximal element in
P*(\, N) as follows.

n

IfA= Zaiwi, consider the unique nonnegative integers p; and r;, ¢ € I such

i=1
that

Al =psN +r;, for 0<r; <N.
Also, forie Il and 1 < j < N, set
i,j pz+17 lfj<7"“
mY =
Dis if j >r;.
Hence m™ = m'™" for all 4, j. It follows that \; := Z m" (w; —w; 1) € PT. A maximal
i=1

element in P*(\, N) is
A= ()\1, fee ,)\N).
In addition, it was also proved in [25, Lemma 3.1] that the maximal elements are in the

same orbit under the action of the symmetric group Sy. One of the main results in [29)] is

about the next conjecture. It was stated in [10, 26, 33] and generalizes (3.2.1).

Conjecture 3.2.2. Let N € Z-y, A € P, and suppose A = (A, ..., \y) is a mazimal
element of PT(A\,N). If N < A, Wy(A) = V(A) #---+ V(Axn) as graded g[t]-modules.
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This conjecture has been proved in [45] for g simply laced, A being a natural
multiple of the highest root # and N = |A| (Theorem 5.2.3), in [33] for A = Nu + v where
€ P and v minuscle' and in [26] for g of type A, N = 2, and A = mw;, m = 0. The

followmg is [45, Lemma 5].

Lemma 3.2.3. Let Vi, --- |V, be finite-dimensional cyclic graded g[t|-modules generated

by vi, -+, U, Tespectively, and s1,-++ , Sm € L. If (x @t )v; = 0, for some x € g and
for all1 < i< m, then (x @5+ ) (vy # -+ 5 vy,) = 0.
Proof. Let ay,--- ,a,, € C be distinct complex numbers, v; # - - - # v,,, be the generator of

Vi# s -« % Vo and consider the polynomial f(t) = H(t —a;)%. Note that the element
=1

(z® (t° — f(t)))(vy * - * v,,) belongs to Fs_1 (V1 ® - ®V,,), where S = 51 + - + 5y,
Hence

(@t vy -5 vy) = (2@ F(£))(vy # - % vy). (3.2.6)

Write p;x(t) =t + a; —a, € C[t] for all j,k =1,---m. By (1.7.10), we have

- <$® <ﬁ(pgk(t))8k>> V@ QU

k=1

IE

@)1 @ Qun) =

1

J

I
RgE

v Q- ®<x®tsﬂ'<ﬂ (pyx(t ))vj@--@vm
1 k=1,k#j

Futhermore, by (3.2.6), we have (z ®@ t)(vy # -+ v,,) = (2 @ f(t))(vy # -+ *v,,) =0 O

<

The following result is [29, Proposition 3.2.2.].

Proposition 3.2.4. Given l € Z-, for each 1 < i <1, let V; be a quotient of W(\;) for
some \; € P and v; € (V;),\{0}. Suppose

(n~ @ tNiC[t])v; = 0, (3.2.7)

N; € Zeg, N=Ny+---+ N and A\ = \y + -+ \. Then, for any choice of distinct

ay,---,q; € C, there ezists an epimorphism of graded g|t]-modules

Wy (A) = evg, Vi -+ x ev,, V. (3.2.8)

Proof. Let v; be a highest weight vector of V; for each i = 1,--- [, so that v = vy #--- = v

is the cyclic generator of ev,, Vi # - - - # ev,, V). One easily checks that

n"[tlv = b[t] v = 0. (3.2.9)
A € PT is said to be minuscule if {z € P™ :py < \} =

1
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Moreover, for all h € b, we have (h® 1)v = A(h)v and (z; ® 1))+ = 0, for all i € I.
Note that the epimorphism in the statement exists if (z, ® " )v = 0 for all a € RT, but
this follows directly from Lemma 3.2.3. O

In [16] it was shown the existence of an isomorphism between certain CV
modules and fusion products of irreducible g[¢t]-modules under specific conditions. Since we
know a presentation in terms of generators and relations for CV modules, this isomorphism

gives us one more situation where the fusion product is independet of complex parameters.

Set g = sly. In this case, we identify P with Z. Denote by T and h the elements
x7 and hy, respectively, and the set &y, for A € PT, becomes the set of partitions of \.
Given a partition & = (& = & = --- = & = 0), we define the partitions ¢ as follows. If
i=1,then £ =¢and £ isempty. If i > 1, then & = (&, ==& , =&, = 0),

where

37 if j <i—1,
§J_ =1 &G =&, iftr=i-1,
0, if 7 =1,
and £t = (& = -+ = &5 = & = 0) is the unique partition whose parts are associated to

the sequence (517 e 7£i—27 gi—l + 17 gz - 1)

Theorem 3.2.5. [16, Theorem 5]. Let £ € Py, r =1(§). Then

(i) Forr > 1, there exists a short exact sequence of g[t]-modules

0— T—ne, V() = V() —» V() —0.

(i) For any choice of distinct complex parametes ay,--- , a,, there exists an isomorphism

of graded g[t]-modules

V(&) = evg, V(&) * -+ * evg, V(&) (3.2.10)

Theorem 3.2.5 has a corollary that is a key to prove Theorem 4.1.2 bellow. In
order to state this result, we have to introduce another important A\-compatible partition.

Fix N € Z~y u {0} and let ¢, and p, be the integers such that
AMha) = N¢o + po, with 0<p, <N foreach «ae R". (3.2.11)
If N = o0, then ¢, = 0 and p, = A(h,). Now, consider the element &3 € P, given by
Ex (@) = ((go + 1T, g)). (3.2.12)

In the case g = sly, we write p; = p and ¢; = q.
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Corollary 3.2.6. Let g = sly. The fusion product V(q + 1)*? « V(¢)* "7 is isomorphic to
the quotient of W(\) by the submodule generated by

(" @) (x~ @) Twy  forall r,s>0, st s+r>rk+q(N—k) +(p—k), (3.2.13)

with k>0 andny =n ifm =0 and my =0 if m < 0.

Proof. Let & be as in (3.2.12). By Theorem 3.2.5, there exists an isomorphism of graded
g[t]-modules
V(g+ 1)« V(g)*™N P = V(&y). (3.2.14)

We have to show

(" @t)° (2~ ® 1)8”05?\] =0
for s and r as in (3.2.13). It follows from (3.2.12) and from the definition of CV module
that

(x+®t)s(x_®1)s+rv§?v =0, forall s,r>0 suchthat s+7r> Tk—l—Z&, for k > 0.

i>k

Thus, we have to check the inequality for £ < p and k > p. Note that

rk+ Y &=rk+plg+1)+q(N—p),

izk+1

so that, if & < p, then
s+r>rk+p+qgN >rk+qN—-k)+(p—k)=rk+q(N—k)y +(p—Fk);,
and if k > p, then
s+r>rk+p+qgN>rk+qN—qgk=rk+qN—k)=rk+q(N —k),.

Therefore, s +r > rk + Z &Gifandonly if s +r >rk+ (N —k)y + (p— k). ]
i=kt1
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4 The case of minuscle weights

In this chapter, we study the main results of [29], namely Theorem 4.1.1,
Theorem 4.1.2 and Proposition 4.3.1, which are [29, Theorem 2.3.2, Theorem 2.4.1,
Proposition 2.5.2] respectively. In particular, the first of these results proves Conjecture
3.2.2 for minuscle weights and g simply laced, while the proposition is a step forward to

prove Theorem 4.1.1 for general g.

4.1 Truncated Weyl modules viewed as CV modules

Theorem 4.1.1. If g is simply laced and w; is minuscle, then Conjecture 3.2.2 holds for
A = kw; for all k € Zsg.

The proof of this theorem relies on some additional results about CV modules
and another class of objects in G called Kirillov-Reshetikhin (KR) modules. The following

theorem was proved in [33, Theorem 4.2] for g = sl; and then in [29] for the general case.

Theorem 4.1.2. The modules V(£,) and Wi (\) are isomorphic graded g[t]-modules.

Proof. In order to shorten the notation, only in this proof, we denote & = &3, the cyclic

generator of V'(¢) by ve and the cyclic generator of Wx () by w. By (2.3.2), we have
(z, @tV )ve =0, forall aeR".
Therefore, there exists an epimorphism of g[t]-modules
W) = V(©).
Denote by w the cyclic generator of Wi (\). We want to find the following sequence
V(&) = Win(A) = V(§),

since, by Proposition 2.3.3, V(§) and V(&) are isomorphic. In other words, it suffices to

show

px, (r,s)w =0, forall aeR" and s,r,keN st. s+r>rk+ Z ¢(a)j, ke N
i>k
In order to do this, let us prove it for g = sl, and after this, by considering the subalgebra
sl,[t] we are done. There are two cases to consider: N < A(h,) and N > A(h,). When
N < A(hy), by (2.1.9), the theorem follows from Proposition 2.3.4.
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Note that, by Proposition 3.2.4 and (3.2.14), we have the epimorphism of
g[t]-modules
Wy(A) = V(g +1)7 = V(g™ = V(g).

Therefore, by Corollary 3.2.6, it suffices to show
(z7®t)°(z~®1)°7"w =0, Vr,s >0, such that s+r > rk+q(N—Fk),+(p—k),, (4.1.1)

where p and ¢ are as in (3.2.11) and k£ > 0. Now, suppose that s,r and k satisfy (4.1.1).
Hence, we have to check that (z* ®t)°(z~ ® 1)°""w = 0 for r > g and r < q.

First, for r > ¢, note that it suffices to show that s +r = A(h,). If £ = p, then
the term (p — k). = 0. Hence

s+r=rk+q(N—k)y = (q+Dk+q(N—k)y =2k+qk+(N—k);)=p+gN = Xhe),
and it is done. Now, if k& < p, then (N —k)+ = N —k and (p— k), = p— k. It follows that

s+r>rk+q(N—k)+p—k=rk+p+qN —k(¢g—1)=rq—k(qg—1)+ Xh¢) = Ah¢).

Second, suppose r < ¢ and observe that it gives the following inequality
s+1r> Nr.
In fact, if £ < N, then (N — k), = N — k and hence
s+r>rk+qN—qgk+ (p—Fk)y =2rk+rN—rk+(p—Fk); =rN.

While if N < k, then
s+r>rk=rN. (4.1.2)

Now, observe that (4.1.2) implies ,x~ (r, s)w = 0 which completes the proof, since
(z7®t)°(z~ ®1)*"w =0 if and only if ;x (r,s)w =0
by Proposition 2.3.3. Indeed, let us check that
(z- @t") ) (= @bt ber) . (7 @) bw =0, forall (by,) € xS(r,s). (4.1.3)

One easily checks that (4.1.3) holds for (b,,) having some term b; > 0 with ¢ > N and also
for a general (b,,) with k£ = N. It remains to show that (4.1.3) holds for k¥ < N and (b,,)

being a sequence such that b; = 0 for all ¢« > N. If we assume the contrary, it follows that

s = Z iby < (N —1) Z b; < Nr—r.

k<i<N k<i<N

However, this contradicts (4.1.2) and, therefore, (4.1.3) holds. O
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4.2 Kirillov-Reshetikhin modules

The idea of KR modules was first explored in the context of finite-dimensional
irreducible modules for quantum affine algebras. Nowadays, for this context, these modules
are sometimes referred to as quantum KR modules. The graded limits of those modules
began to be studied after several years and then started to be called (graded) KR modules.
For more information about the relation between the quantum case and our context see
(12, 40, 41, 42] and references therein. In this work, we use the term KR modules to mean

the modules defined as follows.

Definition 4.2.1. Let m € Z>0 and i € I. The Kirillov-Reshetikhin module (or KR
modules) K R(mw;) is the quotient of W (mw;) by the submodule generated by

(x; ®t)v  with v e W (mw;)mw, \{0}.

It is well known (see [8, 12, 27]) that under the hypothesis of Theorem 4.1.1
we have
KR(mw;) = V(muw;), Ym = 0. (4.2.1)

Let N > 0. Consider the N-tuplesi = (iy,--- ,ix) € IV andm = (my,--- ,my) €
Z,. For some choice of complex parameters, set S;(i) = {j :i; = i} and
KRi(m) = KR(myw;,) * -+ » KR(myw;, ) (4.2.2)
If for all 1 < j < N we have i; = ¢ for some i € I, we simplify notation and write K R;(m)
instead of K R;(m) as well as V;(m) instead of V;(m). The following theorem, one of the
main results of [29], gives a presentation to K R;(m) in terms of generators and relations.

The only proof we know relies on the quantum setting, reason why we shall not review the

proof.

Theorem 4.2.2 ([42, Theorem B]). For every N > 0, i€ I™, and m € ZY,, the module
K R;(m) is isomorphic to the quotient of W(\) by the submodule generated by

xy (r,s)wy  forall iel, r>0, s+r> Z min{r, m;}.
jESi(i)
0

As observed in [42, Remark 3.4(b)], this theorem gives a way to relate CV

modules and K R;(m) as in Corollary 4.2.3 bellow. But first, given i and m as before, let
m; = (M;)jes,s), forall iel
and &" e ) be given by

e (a) = m;, if « = «; for some i€ [
’ (1’\(’“’)), otherwise.
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Corollary 4.2.3. There is a g[t]-module isomorphism V(§") = KR;(m).

Proof. As in Theorem 4.1.2, we write { = £™. Let uy and v¢ be the cyclic generators of
KR;(m) and V (), respectively. The desired isomorphism follows from the existence of
the epimorphisms

KR;(m) —» V(¢ (4.2.4)
and

V(§) » KR;(m). (4.2.5)

In light of Proposition 2.3.3, we have to show that

x, (r,s)uy =0, VaeR" Vs,reN suchthat s+r>rk+ Z &(a); (4.2.6)

i>k
for (4.2.4) and also, for some k > 0 that
X, (r,8)ve =0 forall iel, r>0, s+r> Z min{r, m;} (4.2.7)
for (4.2.5). First, if « is not a simple root, then &(a); = 1 < r and it is exactly Lemma
2.3.2 and hence (4.2.6) is satisfied.

Now, for a = «;, with 7 € I, let
m; = (M1, M),

for some N; € Zx, so that {(a); = m; ; for 1 < j < N;. It follows that

rk + Z E(au); = Zmin{’r, mij} = Z min{r, m,}. (4.2.8)

j>k jeSi(i)
Thus (4.2.6) holds, by Theorem 4.2.2 and (4.2.8).

Fix ¢,7 and s as in (4.2.7). Note that if there exists & > 0 such that s + r >
rk+ «;);, then, by definition of V' (£), we have x_ v, = 0 and, by (4.2.8), (4.2.7) holds.
J Yy a; Y€ Y

7>k
Observe that such k exists, because otherwise we would have

5+r<rk—|—2§j(ai)=rk+2mi,j for all k£ > 0.

i>k i>k

Therefore, taking k = max{j :m;; <r}, it follows that

N;
s+r<rk+ Z mi; = Z min{r, m; ;},
i~k j=1

which contradicts the choice of 7,7 and s. O

This result allows us to prove the following corollary, which is one of the main

tools to prove Theorem 4.1.1.
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Corollary 4.2.4. For allm,N e N, i€ I, and m = £y («;) there exists an epimorphism
of graded g[t]-modules

Proof. By Theorem 4.1.2 and Corollary 4.2.3 we have
Wy(wy) = V(YY) and V(") = KR;(m),
for 4 = (i™)). Hence, this proof comes down to constructing an epimorphism

V(&™) = VIER™),

(2

which is equivalent to showing that

Lo (1, s)vgmes = 0 forall ae R, r,s>0 suchthat s+r>1+7rk+ Z & (@)
7>k

Note that we have only to consider nonsimple a because & (a;) = £y (o;) for all i € 1.

In that case, we have £"(a); = 1 < r and the proof follows by Lemma 2.3.2. [

Proof of Theorem 4.1.1. The previous corollary together with Proposition 3.2.4 gives the

sequence of epimorphisms

Under the hypothesis of the theorem, that is g simply laced and w; minuscle, by (4.2.1), it
follows that K R;(m) = V;(m).

mw;

Now set Ex“ (i) = (mq, -+ ,my) and A = (mqwyq, -+, myw;). It only remains
to prove that A is a maximal element of P*(mw;, N). In [10, Lemma 3.3], it was proved
that showing that element v = (vy,--+ ,7s) € P*(mw;, N) is maximal is equivalent to
proving

max-y;(hi) — min ;(hs) < 1.

mw;

However, by definition of {5“(«;), we have (m; —my;) < 1 and hence A is maximal. [

4.3 A further step to generalize Conjecture 3.2.2

Observe that the hypotheses on g and w; were strongly used in the proof of
Theorem 4.1.1 and, then, it is natural to ask what happens in a more general context. In
this direction, a further step was proved in [29, Proposition 2.5.2]. However, in order to
understant this result, we have to define the following.
Forie I and k = 0, given A = Zaiozi € Q set ht;(A) = a; and
i€l

Rl :={aeR" : htj(a) = k}.
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If w; is minuscle, the set R: . 1s empty for & > 2. Otherwise, by inspecting the root system,
one can prove that it has a unique minimal element with respect the standard partial
order in P. Let tp,, a highest-weight generator of K'R;(m) and write 8 = min R/, for
k = 2. We denote as T;(m) the quotient of K R;(m) by the submodule generated by

(25 @tV Yy, - (4.3.1)

If m = ¢y (o) for some m, N € Z, by Corollary 4.2.4 and (2.1.6) it follows that there
exists an epimorphism
T,(m) — Wiy (),

while by Proposition 3.2.4 we have the epimorphism Wy (mw;) — Vi(m), so that

Ti,(m) — Wy(mw;) — Vi(m). (4.3.2)
The following is [29, Propostion 2.5.2]
Proposition 4.3.1. If m = (' («;) for someie I, m =0, N >0, then

T;(m) = Wy (mw;).

Proof. Let u be the image of t,,,, in T;(m). In light of (4.3.2), we have to prove the

existence of a g[t]-modules epimorphism
Wy (mw;) — T;(m), (4.3.3)
which is equivalent to showing that
(23 @tM)yu=0 forall feR*. (4.3.4)

Let us prove (4.3.4) for ht;(3) = k equals 0 and 1. If k& = 0, then (75 ® 1)u = 0 and hence
(4.3.4) holds.

Now, for £k =1, ie. € RZ 1, we can assume without loss of generality that
I(m) = r < N and write wy,, = uy * -+ * u, with u; being a highest weight vector if
KR;(m)\{0} for all 1 < j < r. We prove this case by induction on ht(/3). First, recall that
by definition of KR modules we have

(T, @t)u; =0 forall 1<j<r
Thus, if ht(S) = 1, then § = «; and hence
(7, @t )Umw, =0,

which imples that
(25 @tV Y, = 0.
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Now, for ht(3) > 1 and § = B + v, with vy € R" and f3; € R}, we have
(2, ® Dy, =0,
which, together with the inductive hypothesis, implies (2, ® t")tmq, = 0. Therefore, since
T @t = b[xgl ®1, 27 ®t"], for some be C,

(4.3.4) holds for this current case.

Finally, for the inductive step, suppose [ € RZ . for k = 2. Note that, by
definition of T;(m), (4.3.4) holds for

o = [ == min R,\{0}, k=2

It follows that there exists m > 1 and ;, with 1 < j < m such that

6k+27jeR+, Vi<n<m and 5=5k+27j~ (4.3.5)
=" i—1

J J

Since (2, ® 1)ume, = 0 for all 1 < j < m, we have
(2p @t )u =b[(x3, ®1), - [(z3, ®1), (x5, @™)] -+ Ju =0,

for some b € C and for all S € R*. O
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5 The case of multiples of highest root

In this chapter, we review the proof of [45, Theorem 1]. There are some strong
implications of this result, namely it shows the conjecture about the independence of
parameters for the fusion product of k — i copies of D(1,6) and i copies of evyV () and
proves Conjecture 3.2.2 for g simply laced and A being the highest root. Besides that, the
quotients on its statement are better interpreted in terms of truncated algebras as we see

later.

5.1 Quotients of Demazure modules

Given k > 1 and 0 < 7 < k, consider the following quotient:
Vin := D(1,k0) /{(xg @t )y, (5.1.1)

and denote by v;;, the image of Wy in V, ;. Moreover, later in this section, we show that,

for g simply laced, V;; can be seen as a truncated Weyl modules.

By Proposition 2.2.2, the following result is proved

Proposition 5.1.1. 'V, ;. is the cyclic graded g[t]-module generated by v; , with the following

defining relations:
1. 0 [t]uig = 0;
2. (h®@t°)vi, = kO(h)osovip =0 s=0, heb;
3. (2, ®@Vvpg =0, aeR", (6,a)=0;
4o (w, @ 1)ty =0, (v, @t")ip =0, aeRY, (0,a)=1;
5. (xy ® 1)2k+lvi,k =0, (z, ®t2k*")vi7k =0.
Using (5.1.1), [45, Theorem 1] can be rewriten as

Theorem 5.1.2. Let k = 1. For 0 <1 < k we have:

(i) a short exact sequence of g[t]-modules,

o~ ot
0—7p-1-iVig1 — Vi — V1, —0

(7i) an isomorphism of g|t]-modules,

Vie = D(1,0)*® D« evgV (0)*.
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Before proving the theorem, let us construct the homomorphisms ¢*. First

observe that
(g ®t2k7i)vi+1,k =0,

by (5.) and (2.1.10), then v, satisfies the same relations as v; ;. Thus the map ¢* can

be simply defined as
T Ve — Vigg

)
Vik > Vit1k

which is surjective and ker(¢™) = {(z; @ t*717")v; ;). Indeed, note that (v; @ t** "),

is non-zero in V, 5, but
. + . .
(rg @ v LA (25 @ Y1k = 0 (in Vipiy).

In addition, ker(¢™) is determined by Proposition 5.1.1 and its only non-zero elements are
(zp @F 175y, 4, for s = 0 (cf. (2.1.10)). Since we know ker(¢"), the map ¢~ can be

found.

Proposition 5.1.3. There exists an epimorphism of g[t]-modules

¢ Tok-1-iVig 1 — ker(¢")

t2k;—1—i)

sending v j—1 to (x5 & Vi k-

Proof. If there exists such morphism of g[t]-modules, it is surjective, because v; ;1 is
mapped to a generator of ker(¢"). In addition, it exists if (v; @ t**717)v; ;. satisfies the

defining relations of V; ;_;.

Relations (4.) and (5.) follow imediately from Lemmas 2.1.2 and 2.2.4, while
relation (2.) follows from the definition of D(1, A), and (3.) comes from the same argument
as item 3. of Proposition 2.2.2. As for relation (1.), the cases & = 6 or @ # 6 and (0, ) = 0

are imediate.

Now, if (0,«) = 1, then § — « is also a root and (0,0 — a) = 1, hence, by
relation (4.) for V;, ., we get (z,_, ®t")v; ), = 0 for all s = k. Therefore, by equation (2.2.7)
we have
() @)1y @t 1441 = 0.

The existence of the epimorphisms ¢~ gives the following inequality

dimV@k < dimVUﬁ_l + dimVHLk (512)
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5.2 Proof of Theorem 5.2.3

In order to prove Theorem 5.1.2, we need to prove the reverse inequality. So,

let us check the existence of the map

Y :Vip — D(1,0)** D s ev V()"

(i) (5.2.1)

Vi F— W, v’

Note that ¢(v; ;) satisfies the relations of Proposition 5.1.1. Indeed, the definition of D(1,6)
and evyV () gives, respectively, (z; ®t*)wy = 0 and (2} @t°)vg = 0, for all s = 0, a € R*.
Then, by Lemma 3.2.3, it follows that

(xf ®t5)(@2(k_i) sup) = (1F @t )h(v) =0, forall s=0, aeRT,

which gives us relation 1.. Now, since wy and vy are eigenvectors for the action of (h ® t°)

with eigenvalue 0, 06(h) and by the formula
k—
(h @) (u1 @ua ® - -~ @ uy,_;) 2 W® @Mt ) ® - @ ug_s,

relation 2. follows, i.e.
(h@t) (@ @vY") = JsokO(h) (@ @v"), forall s=0, heb.
Relations 3., 4. and 5. are given by Lemma 3.2.3 together with the relations

(z, @)Wy = (z, @)Wy =0 = (x, @t)vg = (v, @t)vy, forall ae RM\{0}.

The existence of (5.2.1), gives us the reverse inequality

dim V;; > (dim D(1,6))*“(dim V()" (5.2.2)

5.2.0.1 Proof of Theorem 5.1.2

Since we have already proved the existence of ¢~ and ¢, the previous mentioned

sequence is exact and part (i) is proved. We want to show the g[t]-module isomorphism
Vie = D(1,0)** D w epgV(0)*, forall k>1and0<i<k. (5.2.3)

Let us proceed by induction on k considering that the case i = k for all £ > 1 has been
proved in [22, Corollary 2]. Since this result uses some tools that are outside the scope of

this work such as PBW filtrations, the proof of this case is omitted.

The case k = 1 follows directly from item 3. of Proposition 2.2.2, while for

k = 2 we have to prove it in the cases ¢ equals 0 and 1, that is

VOQ = D(l,@)*2 and VLQ = D(l,@) * €UOV(9).
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If ¢ = 1, by Proposition 5.1.1, one easily checks that relations on v; ; are exactly the defining
relations of vy € evyV (). Therefore, there is a g[t]-modules isomorphism V;; = evyV'(0).

That isomorphism together with Remark 2.2.3 and (5.1.2) gives us

dimV;, < dimevyV(6) + dim Vs,

(0) + (dim €U0V(9))2

(0) + (dim D(1,0) — 1) dim evV ()
(

dim D(1, 6).

= dim evyV
0
= dim evyV (0

= dim evyV

~— N N’ e

By (5.2.2) the equality holds and hence we have the isomorphism we wanted. If ¢ = 0, in
light of part (3.) of Proposition 2.2.2 and (2.1.10), observe that the submodule generated
by (19 ® t*)wWy is zero in D(1,6). It follows that Vo, =~ D(1,6) and together with Remark
2.2.3 and (5.1.2), we have

dimVyo <dimVy; +dimV;,
= dim D(1,0) + dim D(1,6) dim evoV (6)
= dim D(1,0)(1 + dim evyV (9))
= dim D(1,0)(1 + dim D(1,6) — 1)
= (dim D(1, 0))%.

Hence, by (5.2.2) this case follows. Now, suppose k > 2 and that the theorem holds for
k — 1, that is, for every 0 < i < k — 1, we have

Vi,kfl = D(l, 6)*(]67171') * €UOV(¢9)*i. (524)

In order to prove that this also holds for k, let us proceed by induction on k —i > 1.
For k —i =1, by (5.1.2) we have
dika,ljk < dika,l,k,l + dlthk
= (dim evoV (0))* ! + (dim evyV (6))*

— (dlm eUOV(G))kfl(l + dim evOV(H))
= (dim evoV ()" dim D(1, §)

and this case is proved, by (5.2.2).

Now, for k —i > 1, suppose that (5.2.3) holds for k — 1 — 4, that is, for all
k = 2, we have
ViJrl,k = D(l,e)*(kilii) * 6@0V(9)*i. (525)

Note that (5.2.4) and (5.2.5) imply
dim Vi1 +dimV; ;1 = (dim D(1,6)) ' (dim evy V (0))* (dim evy V (6) + 1).
Therefore, by (2.2.3), it follows that

dim V1, +dimV, ;1 = (dim D(1,0))* 7 (dim evoV ()" (5.2.6)
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Finally, using (5.1.2) for V, ;, we get
dlmVLk < dim Vi,kfl + dim Vi+1,k
= (dim D(1, 0))*~(dim ev, V (8))"*
and the theorem follows, since we have (5.2.2). [

Using part (ii) of Theorem 5.1.2, item (i) can be rephrased as a statement

about fusion products as follows.

Corollary 5.2.1. Given k > 1 and 0 < i < k, there exists a short exact sequence of

g[t]-modules,

0— Tok—1—i (D(l, 8)*(]?7171.) * €UOV(0)*i) i D(l, 9)*(’{72) * €UOV(9)*i
— D(1,0)*®9 « epgV (9) Y - 0.

By using item (ii), we obtain
Corollary 5.2.2. Given m, N = 0, we have the isomorphism of g|t]-modules

D(l, Q)*m * €U0V(0)*N = VN,m—i—N-

Let us remember that for g simply laced, we have W(\) = D(1,\) as g[t]-
modules. It follows that
WN(]CQ) = V2ka,k-

Now, using Corollary 5.2.2, we get

Corollary 5.2.3. Let g be a simply laced Lie algebra. Given k, N = 1, we have the

following isomorphism of g[t]-modules.

Y/I/(G)*]V”C # eUOV(G)Qk’N,

k<N <2k
W (k6), N =2

5.3 Results for CV modules

Until the end of this section, g is a simply laced Lie algebra. In this case,

Theorem 5.1.2 can be restated in terms of CV modules as follows.

Given k£ > 1, 0 < ¢ < k and X € {(k — 1)0,k0}, consider the following A-

compatible partitions:

(1000 o g
(200, 1C6=1=0)) o — g
(1402 a0,
(200, 1260y o — g,

(1(769(’104)))’ a#0,
& = (& (@))aer+, where () :{ (201, 10y

& = (& (@))aen+, where & (@) = {

& = (§i(@))aer+, where §;(a) =

a=0.
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Note that the length of those partitions are

(k—1)0(ha), «a#0,
%k—2—i.  a=0,
kO(ha), o #0,

2k —i, a =140,
kO(he), a#0,
% —1—i, a=0,

(& (@) =
(&) =
(& (o)) =

and hence, by (2.3.2), the following relations hold in V(&;), V(&) and V(&) respectively:

(g ®t2k_2_i)z;£; =0, (v; @t* v, =0, and (x5 ®t2k_1_i)v£+ = 0.

i

Futhermore, it is clear that the generators in V, ;_q, V,; , and V;,, ; satisfy the relations
of v € V(& ), ve, € V(&) and Vgt € V (&), respectively. Therefore, we have proved the

following;:

Lemma 5.3.1. For g simply laced, there exists the isomorphisms of graded g[t]-modules

V&)= Vi, V(&) =V, and V() = Vi

Finally, by Theorem 5.1.2, Lemma 5.3.1 and Proposition 2.3.4, the next theorem

is proved.

Theorem 5.3.2. Let g be a simply laced Lie algebra. Given k=1 and 0 <1 < k, there

exists
1. a short exact sequence of g[t]-modules,

0 — 71—V (&) = V(&) = V(&) =0

2. an isomorphism of g[t|-modules,

V(&) = VT v ({h .
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6 Demazure Flags

In this chapter, we review some results concerning the concept of Demazure

flags.

6.1 Demazure flags for sl
Given £ € Z=y, A € P, set
D, \,m) :=T1,D(,\), for melZ. (6.1.1)

Definition 6.1.1. (i) A g[t]-module V' admits a level-{ Demazure flag if there exist

k>0, A,---, \€PT,my,--- ,my € Z and a sequence of inclusions
O=VycVic---cViacVp=V,
such that V;/V; 1 = D(l, \;,m;) for all 1 <1 < k.

(ii) LetV be a Demazure flag of V.. The multiplicity of a Demazure module D in 'V is
the number
[V:D]:=#{1<i<k : V;/Vi 1= D}

It was proved in [14, Lemma 2.1] that the multiplicity is independent of the
choice of the flag, so that, for a fixed ¢, it is denoted as [V : D] instead of [V : D]. Define

the generating function

[V : DJ(t):= Y[V : DIt € Z[t, t7'].

meZ

Since a Demazure module D is isomorphic as non-graded g[t]-modules to 7,,D, it can be

also interesting to compute the ungraded multiplicity of D in V' as follows:

[V : DJ(1) :== Y[V : 7D].

meZ

We now recall the definition of level-/ Demazure module. Given A € P*, o € R*

and ¢ € Z, consider the integers s, and m, such that
Ahe) = (8o — Dldy + my, 0 < mg < ld,. (6.1.2)
Let & » be a A-compatible partition given by

(@) = (tda)™ " ma), aeR'.
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Consider the isomorphism
V(f&)\) = D(f, /\) (613)

Let g = sly, so that ¢ = g4, and p = p,,. Identify Z with P* by the assignment
A — A(hy) consider the partition &y = ((g + 1), ¢"N"P)). The following result is [40,
Theorem 3.3.2].

Theorem 6.1.2. There exists a g|t]-module isomorphism

D(q, ), if N divides X

W(3) = { D(g+1,)\), ifpe{N—1,\.

Proof. By using Theorem 4.1.2, it suffices to show that &3 and e are equal in each case.

If N divides A, then p = 0 and &3 = (¢V ', ¢). Therefore

A=Ng=(N-1)g+q.

If p=N —1, then &y = ((¢ + 1)V ¢) = €,41.4 and by (6.1.3), this case is
proved. Now, note that p = X if and only if N > A. Thus, if N > A, then ¢ = 0 and
& = 1Py = (1@ Y 1) = & . Hence, by (6.1.3), V(éx) = D(1,\) = D(g + 1, ). O

The next result, proved in [14], gives sufficient conditions for Wx(\) not to
be a Demazure module in some cases. Its proof relies on the existence of a short exact

sequence of CV modules
0= 7w 1eV(E) = V() = V(ET) =0, (6.1.4)
wich is given by Theorem 3.2.5.
The following lemma is easily checked (cf. [14, Lemma 2.4]).

Lemma 6.1.3. If U is a submodule of a g[t]-module V' such that both U and V /U admit
a level-¢ Demazure flag, then so does V. 0

The following result is [14, Lemma 3.7

Lemma 6.1.4. Suppose that r,l € Z~o, w is a fundamental weight and & is a partition. If
D(¢,rw) is a quotient of V(§), then £ > &.

Proof. Let ve and w,, be generators of V(§) and D({,rw), respectively. Suppose that
D(¢,rw) is a quotient of V(&). It follows that r» = |¢| and the projection of V(&) onto
D(¢,rw) maps vg — W,,. By (2.1.10) and the defining relations of V(¢) (more precisely

the relation obtained from (2.1.3)) we have

(z~ ®t)”‘5|’5lvg =0
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and hence
(z~ @) T4, = 0.
However, it follows from the definition of level-¢ Demazure module that (z~ ®¢) ', # 0

in D(¢,rw) whenever r < max{0, |{| — ¢}. Therefore,

El =& = €] ¢,
which implies that ¢ > &. O

Theorem 6.1.5. ([14, Theorem 3.3]) Let & € Py, for some A€ PT. Then V(£) admits a
level-C Demazure flag if and only if € = &;. In particular, D(¢,\) admits a level-f' Demazure
flag if and only if ¢ = (. N

Proof. Define a partial order on the set of all partitions &2 as follows. Given two partitions
£, € & with a and b parts, respectively, we say that £ > £ if and only if a = b and if
a = b, then &, > &. Recall that if £ € & has a parts, then £~ has a — 2 parts, £ has a
parts and &, > £. Therefore,

E>ET>¢, forall e 2. (6.1.5)

We proceed by induction on the number of parts of an arbtrary partition &
to prove that if £ > &, then V(¢) admits a level-/ Demazure flag. Let £ be a partition
with number of parts equals 1 with ¢ > &. In this case, it suffices to consider £ = {¢},
in which case we are done by Proposition 2.3.4. Now, suppose that we have proved this
statement for any partition with ¢ — 1 parts and that £ is a partition with ¢ parts. The
inductive hypothesis can be applied to £ by (6.1.5) provided that m > &,. Therefore,
both 7(;_1y¢,V({7) and V(£7) admit a level-¢ Demazure flag. Since V' (£¥) is isomorphic to
the quotient of V(&) by 1(;-1)e,V({7), by (6.1.4), it follows from Lemma 6.1.3 that V(&)

admits a level-¢ Demazure flag.

In the case that ¢ < &, we have £ = & and & = (/7Y &). Tt follows that
§ = & (i—1)e+¢; and hence
V(€)= D, (1 — 1)+ &),

and there is nothing to prove.
It remains to prove that if V(§) has a level-f Demazure flag, then ¢ > &, but
this follows from Lemma 6.1.4. O]
One easily checks that Theorems 4.1.2 and 6.1.5 implies
Corollary 6.1.6. The module Wy () admits a level-f Demazure flag if and only if

/s q, if N divides A
~ q+ 1 otherwise.
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Given{ = (§1 262262 0)wewrited = (& ==& ,2§_, =20),

where
6]7 1f] < 1 — 17
gzl 527 lfT:Z_lv
0 itg>1
and 7 = (& = -+ > 0) is the unique partition associated to the sequence
(1, 62,861+ 1751' - )
One easily checks that
er € c@A and 57 S f@/\,Qgi. (616)
In addition, note that
Ife=¢5 and pé¢{0,N—1}, then &F =¢+1. (6.1.7)

Therefore, by Corollary 6.1.6 and (2.2.4), in order to show that Wy () is not a Demazure
module it is sufficient to show that the length of its level-(¢ + 1) Demazure flag is bigger
than 1, so that

Voc Vi€ Wy(A) with Vi/Vo = D(qg+ 1, A\, my).

This is, indeed, the case, since by (6.1.4) and Theorem 4.1.2 we have the isomorphism
(T(s=1)(e))s V((EN)T)) @V ((Ex)T) = Wx()). This isomorphism implies that the length of
its level-(¢ + 1) Demazure flag is the sum of lengths of level-(¢ + 1) Demazure flags of
V((€x)%), wich shows that W ()) is not a Demazure module for such A and N.

6.2 Existence of length 2 Demazure flags

Next we study some examples from [29] of Demazure flags for truncated Weyl
modules. From these examples, a characterization of Weyl modules admitting a Demazure
flag of length 2 can be deduced.

Example 6.2.1. Let p = N — 2 # \. Note that
& =@+ )™ 2.4%), () =@+ )™ 2,0), and (&) =@+ )™ V1)
Now, by (2.3.4), it follows that

V((Ex)) = D(@+1L,A=2g) and V((&)") = D(g+1,2),

which, together with Theorem 6.1.4, gives the following short exact sequence

0—D(g+1,A=2q,(N—1)q) > Wn(A) = D(g+1,A) = 0. (6.2.1)
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Denote by soc(M) the socle of a g[t]-module, i.e. the largest semisimple submodule of M.
Let us compute the socle of Wi () in the case A =4 and N = 3. In this case, note that
p=gq=1, so that (6.2.1) becomes

0—-V(2,2) > W5(4) — D(2,4) — 0,

since D(2,2,2) = V(2,2). Now, by definition of Demazure module, there exist the iso-
morphisms D(2,0) = evoV(0) and D(2,1) = evyV (1), so that we have the short exact

sequences
V(0,2) - D(2,4) > D(3,4) and V(2,1) - D(3,4) — V(4,0).
Thus D(2,4) = V(0,2) ® D(3,4), D(3,4) = V(2,1) ® V(4,0) and hence
Wa(4) = V(2,2)@V(0,2) @ V(2,1) @ V(4,0).

Therefore, soc(W5(4)) = W5(4)[2] = V(2,2) @ V(0,2).
This example shows us that while all Weyl modules have simple socle, truncated Weyl

modules may have non simple socle.

Example 6.2.2. Suppose p = N — 3 # A. In this case, we have
& =@+ DY .49), (@)= ¢+ )™ .q),  and (E3)7 = ((a+ DV, q,.9-1).
Note that (&x)” = ((g+ 1) ¢) = &, where N = X\ —2q. Hence, by (6.1.3),
V((Ex)7) = V(&x) = D(g+ 1,A = 29).
For q =1 it follows that we have a length-2 Demazure flag
0— D@2,A—2,N—1) > Wx(A) = D(2,\) — 0. (6.2.2)
Otherwise, if ¢ # 1, (6.1.3) implies that V ((éx)") admits a length-2 Demazure flag
0= D(g+1,A—=2¢, (N =1)(g—1)) > V((x)") = Dlg + 1,A) >0,

which means that Wy () does not admit a length-2 Demazure flag.

Now, let \ =5 and N =4, so that p = q =1 (in particular, p = N —3). Hence,
(6.2.2) becomes
0— D(2,3,3) »> Wy(5) - D(2,5) = 0,

which implies that Wy (5) = D(2,3,3) @ D(2,5). One easily checks, using (6.1.4), (3.2.10),
and Proposition 2.3.4, that

D(2,3,3) = V(1,4) @V (3,3)
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and
D(2,5) =V (5,00 V(3,1)®dV(3,2)®V(1,2)®V(1,4).

We claim that soc(Wy(5)) is simple, so that it is isomorphic to V(1,4). In order to prove
that claim, note that soc(Wy(5)) is simple if and only if there exists v € Wy(5)[3]; such
that

(h@t")w=(z" @t v=0 forall hebh[t] andr =0

where Wy (5)), denotes the subspace whose elements have weight k. Now, consider v e Wy(5),
being nonzero. Note that W4(5)[3]1 = span{(z~ ® 1)(z~ @ t*)v, (2~ @t*)(z~ @t )v}. In
particular, observe that (z~ @t )w = 0 for w e Wy(5)[3]1, r = 0 if and only if

w=k(z"@t)(z” @) — (z- ®1)(z~ ®*t*))v, for some ke C.

It follows that (h@t)((z~ @t)(z” @t*) — (z” @ 1)(z~ @ t*))v = —2(z~ @ *)(z~ @ t*)v
and hence we are left to check that —2(z~ @ t*)(z~ @ t*)v is nonzero. But this is clear,

since Wy(5)[4]1 = span{(z~ @ t*)(z~ @ t*)v, (z~ @t)(z~ @t*)v} is non-trivial and

0=x,(2,4v=((z7 @) (2~ @) +2(z~ @t)(z~ ®*))v.

The next Proposition can be easily deduced from Examples 6.2.1 and 6.2.2.

Proposition 6.2.3. Let p ¢ {0, N — 1}. The level-(q+ 1) Demazure flag of W () has
length 2 if and only if eitherp =N —2 orp=N —3 and q = 1.

Proof. The first paragraphs of Examples 6.2.1 and 6.2.2 prove that if pe {N — 3, N — 2}
and ¢ = 1, then W (\) admits a level-(¢ + 1) Demazure flag of legth 2.

The comment right after (6.2.2) shows that if Wy () has a length 2 Demazure
flag, then ¢ = 1. Moreover, one can check that for p = N — (3 + i) with ¢ > 1, the CV
module V((£x)T) is not a Demazure module, so that, by Theorem 3.2.5, Wx()) does not
admit a level-(¢ + 1) Demazure flag. O

In order to understand the implications of the simplicity of the socle of a

g[t]-module, let us recall the definitions of the radical, socle and grading series.

Given a g[t]-module W, a semisimple filtration for W is a sequence of inclusions

O=FWc...c FEW=W (6.2.3)

such that the quotient F;W/F;, ;W is semisimple for all 0 < i < k. The radical of W,
denoted by rad(W) is the intersection of all submodules of W such that the corresponding
quotient is semisimple. The quotient W /rad(W), which is called head of W, allows us to

define the radical series as follows:



Chapter 6. Demazure Flags 69

Write rady(W) = W and then define
radg(W) := rad(rady_(W)) for k= 1.
inductively. Hence, we have a semisimple filtration for W
0cradg(W) c -+ crad(W) c radg(W) =W

called radical series.

The socle of a g[t]-module W can be defined as the sum of all simple submodules
of W. Now, write soco(W) = 0 and define

socy(W) = soc( W >: sock(W)

soci_1W socg_1 (W)’

Therefore, there exists a semisimple filtration for W
0 = soco(W) < soc(W) < soca(W) < --- < W,

which is called socle series.

Finally, if W is a Z-graded g[t]-module, the filtration
EW =@ W[s]
k<s
is called grading series.
Remark 6.2.4. One easily checks that W () has simple head. On the other hand, it was
proved in [34, Lemma 2.3] that if the head of a finite-dimensional module over a C-algebra

is simple, then the grading and radical series coincide. Moreover, the same result states

that if the socle of that module is simple, then the socle and grading series coincide.

Although Example 6.2.1 shows that Wx(\) may have non-simple socle and [34,
Lemma 2.3] does not guarantee the coincidence for a non-simple case, Example 6.2.1 shows

that the coincidence is possible in that case.

Given n,m, ¢ € Z~, consider the following A\-compatible partition

Eor = (((+ 1), 00)

S,T

and write )\?r = {(s + r) + s. One easily checks that

EN =& N p (6.2.4)

which is equivalent to
V(L) = W (XL,). (6.2.5)

s,r
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In particular,

V(Ens) = V(& n) = D(C,Nl) = Wy(N). (6.2.6)
Now, if we write A = )\;,T and N = s + r with r # 0, Theorem 6.1.4 immediately implies
A—2) > Wyn(A) > Wy _1(N\) = 0. (6.2.7)

0— v W15, x4 (

Given pu € P*, consider the function
A nt) = [VIEL) = D+ 1)) (6.28)

These functions were studied in [4, 14]. In [4] the autors have greatly extended
the results of [14], namely they proved that the numerical multiplicity for the case ¢ = 1

is a racional number given by

WBald = 2k,8) = W)+ D(2,A = 2k)](¢8) = 1131 L

N[>

JL (6.2.9)

for all 0 < k < [;\J, where

1 —gmd
j=
However, these functions are far from being completely understood.
From now on we consider s > 0. Observe that if r is equal to 0 or 1, then

fgr = &ry1a¢,- Therefore, by (6.1.3),

V(EE)=DU+1,)).

s,T » Ns,r

In particular, if » = 0, 1, then
Vf,r(ru’a t) = 6)\£,r,p,'
Now, for r > 1, by (6.2.7), it follows that

Vo (158) = Voot g (15 1) = Yoo, (1, )ET (6.2.11)

Hence, together with (6.2.9), there is a recursive procedure to compute 7;,7~(M7 t). As we

will see next, one can reach an alternative formula for . (. t).

Let & = (&, , &) € P, for some k € Z=(. By removing the largest part of £,

we obtain a (A — & )-compatible partition given by

&= (&, &)

In particular,
(5@)* = ffflm for some s = 0. (6.2.12)
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It is also important to consider the following equality proved in [14, Lemma 3.8].

—p

[V(€) = D(&, m(t) = = [V(€") + D&, — EDI(E), (6.2.13)

which says that if & > p, then

[V(€),: D(&, )] =0.

By (6.2), one easily checks that if we iterate (6.2.13), then
() = BB TyE (i — (04 1), 1), (6.2.14)
In particular, by (6.2.4), we have
[Wy(A) s D(g+1,w)](t) = 27 [D(q,q(N — p)) : D(q + 1, 1t — plg + 1))](t). (6.2.15)
The following result is [29, Corollary 4.2.7].

Proposition 6.2.5. Let A € P". Given N > 1 such that N < X\ < 2N, then, for all
0 <k < )\/2, we have

A
tk[%][N;[%]] L if k<N - [517
t

0, otherwise.

[Wn(X) : D(2,\ = 2k)](t) =

Proof. Let A, ;€ P* be such that A= N +p for 0 <p < N and pu = X — 2k. Note that

[Wn(X) : D2, )] (t) = vy (5.
By (6.2.14), we have

Dy
Yon_pltnt) =123 b o (i —2p,t)
= 1"y v—p(N +p — 2k — 2p, t)
= tpk’yol,)\—Qp(/\ - 2p - 2k7 t))

which, together with (6.2.9), implies

Thvo(it) = POV 2p) + D@2 A—2p—2W)](1) = PP 1P| = el 1210
' L P L P

A
for k < N — [517 and, since N — A\ = —p, this case is done.

Otherwise, i.e. 2k > A — 2p = 2N — \, we have 7;,]\/7]0(#7 t) = 0. ]

It follows from [14, Section 3.8] that, for every partition &,

(V) = D w)](t) # 0
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implies that |{| — 2u € 2Z, so that the generating function

M‘tlh

Le(x,t) = Z D(L, |§] = 2R)](2) =

k=0

allows us to compute the length of the level-¢ Demazure flag, which is given by
Lg = Lg(1,1).

Therefore, letting & = fj}h if A and N are as in Proposition 6.2.5, then
—I31 A
N —[4] 2
2 N—
L;= ) ( i 2 ) — oN-I31,

6.3 Chains of inclusions

In the context of local Weyl modules, the discussion about chains of inclusions
is mostly related with bases for W (\), more precisely, the stability of these bases (see
[46, 47, 48] for more details). However, by following [29], we study only the existence of

chains of inclusions for truncated Weyl modules.

Let A € P" and identify P* with Z-,. Proposition 2.3.4 together with Theorem
3.2.5 implies the inclusion
Tt W (A —2) > W(N).
One easily checks that the image of this inclusion is the submodule generated by (z®t*)w)
for all £ > A — 1 and x € n~. Therefore, by (2.1.6) there exists the following short exact
sequence
0> 1 WA=2) > W) - W,y_1(\) — 0. (6.3.1)
If we write N = A and M = A — 1 and consider the projection (2.1.7), then we have, up to
grade shift, the isomorphism W(A — 2) = W, _5(\ —2). Hence, (6.3.1) can be rewriten as

0 = Ho Wasa(A — 2) = Wi(A) — Wi (M) — 0. (6.3.2)

One interesting approach is characterizing all chains of inclusions of truncated Weyl
modules, e.g. if A = Nqg + p for 0 < p < N and either p < N — 1 or ¢ = 1, then Theorem
3.2.5 implies

Tv-1)gWh—2(A = 2¢) — Wi (N).

Note that the quotient of Wy () by the submodule generated by
(z @tV "V, with zen”

is a truncated Weyl module if and only if ¢ = 1, which results exactly in (6.2.7). Although
for ¢ > 1 and p = N — 1 Theorem 3.2.5 does not result in an inclusion of truncated Weyl

modules as before, a second application does. This inclusion is given by

TN,QT(N_l)qWN,Q()\ — 2((] + 1)) —> WN()\)
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Recall that 7y denotes the projection (2.1.7). If M = N — 1, we write 7y instead of
mn—1n. In addition, it follows from (2.1.6) that the kernel of 7y is the submodule of
Wi (A) generated by (z~ @ tY 1)v, for v being the highest weight generator of Wy ().
Observe that

TNM = Tps10---omy, forall M < N.

Moreover, (= ® tY v satisfies the same relations as the cyclic generator of Wy (\ — 2)

and hence we have the graded g[t]-module epimorphism
oN : TNAWN(A = 2) = ker(my).
If we write dy(A) = dim(Wix (X)), Theorems 4.1.2 and 3.2.5 imply
In(N) = (g +2)"(g+ 1),

Since oy (A) = dn_1(A) + dimker(7y), one easily checks that ¢y is an isomorphism if and

only if
IN(A) — O (A —2) =dy_1(N). (6.3.3)
Note that 572 and €x_, are given by
aea ) g+ D)E2 NPy i p > 9,
! (¢ (g = 1)), ifp=0,1
and

Exvoi = ((g+q + 1)) (g + )Ny

withp+¢=(N—-1)¢ +p, 0 <p’' < N — 1. Moverover, for N = 2 we have p = 0,1, so

that
+1)2, forp=20
5,(\) = (¢+1) p
(q+2)(g+1), forp=1,
2 for p =0
Sr(A—2) = q, or p
q(q+1), forp=1,

5(0) = 2¢q+1, forp=0
n 2(q+1), forp=1.

Therefore, for N = 2 (6.3.3) aways holds and hence the following short sequence is exact

Observe that if N >2and ¢ =1,then N —1—-6,y1 > A—2if and only if p = 0,1, so
that (6.2.7) implies that oy is injective if and only if A is N or N + 1. For this reason, we

can assume ¢ > 1. The following example is the smallest case where ¢ is not injective.
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Example 6.3.1. Let N = 3 and A\ = 6. Since we have assumed q > 1, then ¢ = 2 and

hence

53(6) = 27, 65(6) =16 and §3(4) = 12.

It follows that (6.3.3) does not hold and hence ¢3 is not injective. Note that W5(6) = D(2,6)
by Theorem 6.1.2 and, in particular, W3(6) has simple socle.

Let us prove by contradiction that ¢ is not injective. Suppose that @3 is injective.
It follows that W5(6) contains a submodule isomorphic to 2W5(4), but, by Example 6.2.1,
soc(W5(4)) is not simple, which is a contradiction. Hence 3 is non-injective. The same

example says that there exists a short eract sequence
0— V(0,2) — W3(4) 2 ker(ms) — 0,

since dim(ker(ms)) = 03(6) — 92(6) < d3(4). Moreover, one can check that ker(rms) is not a
CV module just because it would imply that ker(ms) = V (€), for & being a partition of 4,
but dim(V(€)) # 11 by Theorem 3.2.5.

However, one easily checks that there exists an inclusion of truncated Weyl
modules in W3(6), which is exactly the inclusion of soc(W3(6)) = V(2,2) = ,W1(2) given
by Theorem 3.2.5, that is

O — TQWl(Q) —> W3(6) — V(f) — O,

where £ = (3,2,1). One can check that this inclusion is, in fact, the only inclusion of
truncated Weyl modules for Ws(6).
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7 Final remarks and further steps

In this chapter, we state some results of [23] about the conjecture on the
defining relations for fusion products as an example of direction that we can pursue in the

future. From now on, g is of type A.

7.1 Defining relations for fusion products

Let A\j, Ao € PT and A = A\; + Xo. Denote by (A1, \2) the left ideal of U(g[t])
generated by
n[t], ha®1—Ah,), b&tC[t]
and
(:E; ® 1)>\(h(¥)+1’ (x; ® t)min{)\l(ha))\z(ha)}-‘rl’ nm® tQC[t],

with o € R". We have the following conjecture (see [23, Conjecture 2.7] and references

therein).
Conjecture 7.1.1. Ifa; # ay € C, then there exists an isomorphism of graded g[t]-modules

eva, VI # eva, VO2) = U(g[t])/ I\, M)

This conjecture has been proved for sl, in [20] and for sl,, with certain conditions
on A; and \s. In particular, for sl,,, many cases involving multiples of fundamental weights

were discussed in [26].

Conjecture 7.1.1 can be reformulated into the language of Grobner bases as
we will see later. Denote by V' (A1, A2, ay, ag) the fusion product ev,, V(A1) » ev,,V (A2) and
note that the automorphism z ® t — = ® (t — a) induces an automorphism ¢, of U(g[t]).
Now, we have

¢:V()\1,)\2,a1,a2) = V()\l,)\g,o,ag —Gl), (711)

which reduces the analysis of fusion products with parameters in C x C to the ones with
parameters in {0} x (C\{0}).

Lemma 7.1.2. [23, Lemma 2.6] Let \;, s € P*, a € C\{0}. Then V (A1, s,0,a) is
isomorphic to the quotient of U(g[t]) by the left ideal I,(A1, \2) generated by

nt[t], h®1— (A1 + X)(h), h®t—ady(h), forallheh
and
Tt —ar ®t, (z, ® 1)(/\1+)\2)(ha)+1’ (72 @ t))\Q(ha)}+l7 (2, ® (t — a))Al(ha)H_

forallzeg, ae RY. N
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For each choice of admissible order in U(g[t]), the tools from the theory of
Grobner bases can be used in the family of left ideals I,(A1, A2). The following was

conjectured in [23].

Conjecture 7.1.3. I,(A\1, A2) is a flat family of left ideals (over Cla]) in U(g[t]), i.e. the
quotient U(g[t])/Io(A1, A2) s a special fiber of a Grébner degeneration. In addition, there

exists a monomial ordering on U(g[t]) such that the leading term ideals of 1,(A1, A2) and
I(A1, \2) coincide.

Now, we have a sufficient condition for Conjecture 7.1.1 to be true. The following
result is [23, Theorem 2.8].

Theorem 7.1.4. Conjecture 7.1.3 implies Conjecture 7.1.1.

Proof. Note that Conjecture 7.1.3 implies
dim U(g[t])/1a(A1, A2) = dim U (g[t])/1(A1, A2). (7.1.2)

On the other hand, denoting by v; = vy the cyclic generator of V(A1, g, a1, az), one easily
checks that vy = vy satisfies the same relations as the ones determined by the ideal (A, A\2).

Hence we have a g[t]-module epimophism
U(g[tD/I(A1, A2) = V(A1, Az, a1, a2),

which is actualy an isomorphism, by (7.1.1), (7.1.2), and Lemma 7.1.2. ]

7.2 Grobner basis

Before defining the Grobner bases, we need to introduce some notation.

Let < be a total ordering on the monoid (Z%, +). Then < is called admissible
if a < b implies a + ¢ < b+ c for all a,b,c € ZZ,. Let L be an algebra over a field K
generated by x1,--- ,x,. The set of standard monomials of L is

Mon(L) := {a{'z5? - 20"+ oy € Zxo}-

Let a = (aq, -+ ,ay). It is also usefull to introduce the notation

(67

R a1 .02 Qn
x .= ZEI x2 X

Given an admissible ordering < on ZZ,, one can check that any f € (spangMon(A))\{0}

is uniquely represented by Z box® for some b, € K with a, # 0 only for finitely many

Q€ZX >0
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a. With respect to <, for f € (spangMon(A))\{0}, we denote the leading exponent,

the leading coefficient, and the leading monomial of f respectively by
lexp<(f) := mgx{a €Z%y : by # 0};
lcé(f) = blexps(f) € K\{O}a
Im<(f) := z'P<D) e Mon(A).
Definition 7.2.1. Let n € N, 1 < i < j # n. Consider nonzero scalars b;; € K, and

polynomials p;; € K[xq,--- ,x,]. Given an admissible ordering < in Z%, such that for

1 <1< j<n either pjj =0 orlexp(p;j) < lexp(x;z;) holds, the K-algebra
A= K{xq, -+ @y 0 xjx; = bjjzxy + pij for all1 <i<j<n)

is called a G-algebra if Mon(A) is a K-basis of A. Moreover, we say that A is a Lie type
G-algebra if all b;; = 1.

The G-algebras can be equivalently defined via algebraic relations involving b;;
and p;; as explained in [38]. These algebras are left and right noetherian domains and are
known as algebras of solvable type and as PBW algebras. One easily checks that, given a
finite-dimensional Lie algebra g, then U(g) is a G-algebra of Lie type.

Definition 7.2.2. Let A be a G-algebra with a fixed monomial ordering > and let I be a
left ideal of A. A subset G < I is a left Grobner basis of I, if for all f € I, there exists
h e G such that lexp(h) < lexp(f) componentwise.

Remark 7.2.3. In the context of commutative rings, a Grébner basis of an ideal can be
computed via Buchberger’s algorithm (see [18, Buchberger’s algorithm 15.9, page 333]).
Although an ideal can have more than one Grébner basis, this ideal has a unique reduced
Grébner basis, whose elements are minimal in some sense. Moreover, for non-commutative
rings, one can prove that it is always possible to find a finite left Grébner basis for every
ideal of a G-algebra. These bases are usually constructed using the generalized Buchberger’s

algorithm (see [37, 38]).
The next step is to study the effect of certain degenerations for current algebras.

m—1

First, consider the polynomial p = t" — Z bit' € C[t] where' b; € C. Now, given a basis
i=0

{x1, - ,x,} of g, one can check that the algebra U(g ® C[t]/{(p)) is a G-algebra, which

admits a Grobner basis given by
{r;@t : 0<i<nand0<j<r}

Next, for a € C, consider the ideal I, < U(g[t]) generated by g ® (t* — at). One easily

checks the isomorphism

Uglt])/I. = U (s ® C[t) o @ (* — at))) = U(g @ (C[t]/{t* — aty)).

One can also consider b; € C[ag, -+, a4] for the indeterminants a; being central with respect to g.

1
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Consider a monomial admissible ordering > on the homogeneous monomials {(z ® t*) €
U(g[t]) : k € Z=o} compatible with the natural grading on C[t]. In (t* — at) < CJ[t],
note that the ideal of leading terms with respect to > is independent on a and thus
Cl[t]/{t* — at) defines a flat family. This implies that the ideal of leading terms of I, is
generated by g ® t?, which does not depend on a and hence the quotient U(g[t])/1, is a

Grobner degeneration, i.e. this quotient is a flat family of C[a]-modules.

Geometrically, a Grobner degeneration defines a linear bundle. In the case of
U(g[t])/ 1., the quotient U(g[t])/Iy is a special fiber. If we consider the left ideal I, of
U(g[t])/I. consisting of all elements whose leading terms are independent of a, we have

the following.

Theorem 7.2.4. [253, Theorem 3.3] The quotient (U(g[t])/1.)/I. is a flat family of Cla]-
modules, i.e. (U(g[t])/t*))/Iy is the special fiber of a Grébner degeneration. O

7.3 Grobner basis for fusion products

Now, we recall a conjecture on Schur positivity, which was stated for the first
time in [17]. Let A € P™, consider the same set as in (3.2.3), that is

PHAL2) = {0, Aa) € PF x PY 2 A 4 Ao = A}
with a partial order defined by
(A1, A2) > (1, po) if and only if (A1 — X2)(ha) < (g1 — p2)(hy), for all € R*,

which is equivalent to (3.2.4).

Let us review the notion of character of a g-module consider the free abelian
group consisting of the isomorphism classes [V'] of finite-dimensional representations V' of
g and divide it by the relation

[V1=[IVT+[V",
whenever V = V'@ V". This quotient is called representation ring and is denoted by R(g),
whose product is given by
[V]-[W]:=[VeWw]
We now recall the definition of Z[P], the group ring of P, which is the free Z-module with
basis {¢* : A € P}. The addition on Z[P] is denoted by e* + ¢ and its product is given

by e*e# := e’*. One can check that there exists a ring homomorphism
Char : R(g) — Z|[P]

sending [V] to Z dim Vje*. In addition, the image of Char is contained in the ring Z[P]"

AEP
of invariants in Z[P] under the action of the Weyl group W.
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Theorem 7.3.1. [2/, Theorem 23.24]

(i) The representation ring R(g) is a polynomial ring on the variables I'y,--- T, where
T; is the class in R(g) of the irreducible representation with highest weight w;, for

i=1,---,n.
(ii) The homomorphism Char : R(g) — Z[P]"Y is an isomorphism.
Since the symmetric group S, ;1 is the Weyl group of sl,,, 1, the previous theorem

implies that Z[P]*+! is a polynomial ring on the variables Char(V (w;)), - -+ , Char(V (w,))

consisting of symmetric polynomials.

The Schur polynomials are a generalization of the symmetric elementary poly-
nomials that form a basis of the ring of polynomials in n variables up to the relation
xy -, — 1. If write sy = Char(V/())), one can check that the Schur polynomial of the

partition A\ coincides with sy

Definition 7.3.2. A symmetric polynomial in n variables is called Schur positive if it is a

non-negative linear combination of Schur polynomials.

The following is the previously mentioned conjecture on Schur positivity

Conjecture 7.3.3. Let A € PT. If (A, \a) > (11, p2) in (PT(N,2),>), then $x,8x, — Spu; Sy,

is Schur positive.
About this conjecture, it has been proved in [10] the following:

(1) If ()\1,)\2) > (Ml,MQ) in P+(>\, 2), then

dim V(A1) @ V(Ag) = dim V(111) ® V (1a)
(ii) The conjecture is true for sls.

Now, one of the main results of [23] is related to both the conjecture on Schur positivity

and Conjecture 3.2.2.

Theorem 7.3.4. [23, Theorem 4.8] Conjecture 7.1.3 implies Conjecture 7.3.3 and also
Conjecture 3.2.2 for N = 2. O

Finally, for g = sl and A > p being two dominant weights, it was computed in
[23, Theorem 5.7] a Grobner basis for the ideal 1, (A, i) as follows:

First, fix a € C and non-negative integers A > u. Again, we write

v7 =25 and hy =h.
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Now, consider the element

F(\p) = le cri(—a) Mz @)z @ 1),

k=0

m;=A+pu+1—1:¢ and cji=<m,i)<u_‘7,).
g ) \m—i
J

The commutator relations between {(z* ® #/),(h® /) : j = 0,1} and F;(\, u) were
computed in [23, Lemma 5.2] and [23, Lemma 5.4].

where

Second, denote by > the monomial admissible ordering on both {z~ ®1, 2~ ®t}
and {z* @t h@t : j=0,1} satisfying (2~ ®@1t) > (z~ ®1).

Theorem 7.3.5. [23, Theorem 5.7] If X = € Z=qo are dominant weights for sly and > is
the monomial admissible ordering chosen as above, then the following is a Grébner basis
with respect to > of the left ideal I,(\, ).

{z"®1), @ @), (hel) = (A+p), (h®t) —pat U {F(Ap) i =0, p)}.
O

Remark 7.3.6. By [23, Proposition 5.8/, Conjecture 7.1.3 holds for sly and hence, by
Theorem 7.1.4, Conjecture 7.1.1 holds for sly, which is already known due to [20]. However,

this approach might allow a generalization to sl,.
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