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Resumo

O célon humano é propicio ao desenvolvimento de cancer devido a possibilidade de
ocorrerem mutacoes na intensa atividade de renovagao celular que consiste em um alto
numero de divisdes celulares por dia, localizadas em pequenas cavidades chamadas de
criptas. O epitélio do célon é formado por milhoes de criptas e é conhecido que mutagdes no
processo de proliferacao (dentro das criptas) podem conduzir a carcinogénese. A dindmica
de células colénicas pode ser modelada usando multiescalas (FIGUEIREDO et al., 2013).
Em particular, nés podemos usar uma cripta de referéncia como um dominio microescala,
que é periodicamente distribuido em um dominio macroescala, onde este é associado a
uma porg¢ao do epitélio do célon. O modelo final resulta em um sistema de EDPs acoplado
formado por um problema elitico e um outro parabdlico nos quais as variaveis sao a

densidade de células proliferativas e a pressao celular exercida.

Apresentamos o processo de homogenizacao desse sistema de equacoes supondo a existéncia
de uma expansao assintotica da solugao e das demais fungoes que compéem o problema,
veja (CIORANESCU; DONATO, 1999). Aplicamos um método de resolu¢ao multiescala
baseado em elementos finitos (HMM-FEM) para aproximar a solugdo homogenizada
encontrado em alguns trabalhos como (ABDULLE, 2009; ABDULLE, 2012; ABDULLE;
HUBER, 2014). No cenério onde o problema é acoplado e nao linear, a implementagao
de métodos se torna mais robusta computacionalmente, portanto optamos por resolver
primeiro o problema elitico e depois o parabdlico como uma forma de amenizar essa

complexidade.

Em uma tnica escala, estudamos estabilidade e convergéncia de um esquema supraconver-
gente baseado em diferencas finitas centradas para malhas nao uniformes que é equivalente
a um esquema baseado em elementos finitos. Em um cenario mais simplificado, estudamos
convergéncia e estabilidade do método apresentado. J& para um caso mais geral provamos,
para s = 1,2, ordem O(h®) de convergéncia para a solugdo e gradiente se a solugdo exata
estd em H'™(Q), veja (FERREIRA; BARBEIRO; GRIGORIEFF, 2005). Para o problema
homogenizado, apresentamos uma estratégia supraconvergente que permite aproximar a
solucao do problema homogenizado acoplado, onde numericamente obtemos uma ordem
de convergéncia quadratica Por fim, apresentamos um método para resolver problemas
multiescala usando dos bons resultados de convergéncia discutidos acima. Esse modelo é
baseado em um problema microescala que posteriormente sera usado para construir uma
solucao macroescala para o sistema homogenizado. Os primeiros indicios de convergéncia

surgem dos resultados numéricos obtidos.

Palavras-chave: Método multiescala. ACF. Cancer colorretal. Simulagao numérica.



Abstract

The human colon is prone to develop a cancer due to its cell renovation that consists in a
large number of cell divisions per day located in small cavities of the colon epithelium,
called crypts. The colon epithelium is filled by millions of crypts, and it is known that
mutations in the cell proliferation process (inside the crypts) can lead to the carcinogenesis.
Colonic cell proliferation can be modeled by using multiscales (FIGUEIREDO et al., 2013).
In particular, we can use a reference crypt, as a microscale domain, that is periodically
distributed in a macroscale domain that is a portion of the colon epithelium. The final
model results in a coupled system formed by an elliptic and parabolic equations whose

unknowns are the proliferative cell density and the exerted cell pressure.

We present a homogenization for the final PDE model where it is supposed to exist
a asymptotic expansion for the exact solution of the problem ;| see (CIORANESCU;
DONATO, 1999). We apply a multiscale method based on finite elements (HMM-FEM)
to approximate the homogenized solution as in (ABDULLE, 2009; ABDULLE, 2012;
ABDULLE; HUBER, 2014). The coupling and the non-linearity of the system implies a
more complex implementation and increase the computational effort, thus we first solve
the elliptic problem and then the parabolic one to make it easier. As we can see later, that

strategy does not affect the convergence rates.

Furthermore, in a single scale, we study a supraconvergent method based on centered
finite difference to nonuniform mesh which is equivalent to a fully discrete linear finite
element method. Firstly we study convergence and stability of a simpler model and then
we prove for s = 1,2 order O(h®) convergence of solution and gradient if the exact solution
is in H'"5(Q), see (FERREIRA; BARBEIRO; GRIGORIEFF, 2005). Numerical results
illustrate the methods above. For the multiscale problem, we present a supraconvergent
scheme which provides approximations to the coupled system with quadratic convergence
rate. This is done by solving the homogenized problem with the supraconvergent method
discussed before. Our last contribution is a multiscale model in development which can
be useful to solve multiscale problems with the good convergence rates discussed above.
That model is based on solving a microscale problem that will be used to construct a
macroscale solution for the homogenized system. Numerical results for this model suggest

a supraconvergence.

Keywords: Multiscale method. ACF. Colorectal cancer. Numerical simulation.
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1 Introduction

1.1 Motivation

Colorectal cancer (CRC) is one of the most common cancer in the world and
is considered a real public health problem, with over 1.4 million new cases diagnosed
each year. Despite improvements in screening for early diagnosis, CRC is responsible for
about 700 000 deaths in 2012 (FERLAY et al., 2013). In Brazil, according to estimates of
incidence for 2018 from the National Cancer Institute (INCA), 17.380 new cases of cancer
of colon and rectum are expected in men and 18.980 in women (INCA, 2018). For 2020,

20540 new cases of colorectal cancer are expected for men and 20470 for women.

In UNICAMP, a CRC screening and prevention program was implemented
in 2011 in the Zeferino Vaz Campus. The Program is based on guidance lectures, pro-
viding occult blood testing, colonoscopy and surgery when necessary and monitoring of
participants. Until February 2017, 22.582 fecal occult blood tests have been made, where
about 1.187 people had a positive result (abnormal) and were then recommended for a

colonoscopy. 624 polyps (pre-malignant lesions) were found and removed over five years
(GARDENAL, 2017; COY, 2013).

There are several risk factors that may increase the chance of a individual
developing CRC (SOCIETY, 2018a), such as:

e Family history: People with a first-degree relative who has been diagnosed with CRC
are in increased risk. The risk is even higher if that relative was diagnosed with

cancer when they were younger than 45.

e Age: Although a person can develop CRC at any age, it is much more common after

age 50.

e Lifestyle: A sedentary lifestyle, obesity, lack of exercises, alcohol and smoking are

greatly linked with that disease.

An early colon screening can prevent cancer and it is recommended at age
50. One of the several methods for CRC screening is the colonoscopy, that provides a
direct visualization of the colonic mucosa and often the terminal ileum. Colonoscopy
examination allows early identification of lesions, signs and symptoms, and allows biopsies
to be performed. In (MENDES et al., 2018), they present some indicators and findings for

the exam in patients aged > 50 years who underwent colonoscopy (n = 1.614 exams):
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Table 1 — Main indicators Table 2 — Main findings
% %

Indications Resuls
Intestinal bleeding 26.5% Diverticular disease 38.9%
Neoplasia screening 20.7% Polyps 38.8%
Abdominal pain 10.2% Normal 23.2%
Obstipation 8.2% Angioectasia 4.6%
History of polyp 7.9% Neoplasia 4.3%

Source: (MENDES et al., 2018)

We can verify from Table 1 and Table 2 that colonoscopy is an important exam
for the diagnosis of various colorectal diseases including the first stages of CRC. In general
the current treatment options for CRC are surgery, chemotherapy, and biological therapies
(SOCIETY, 2018b). Radiotherapy is not commonly used to treat, although it can be used

after surgery to destroy any residual cancer cells.

The Colorectal Cancer is caused by the abnormal growth of epithelial cells
which form the lining of colon or rectum. More precisely, the genetic mutations occur
inside small cavities, called crypts, located in the colon epithelium. CRC usually begins
as a small growth called a polyp which are a protuberance in the intestinal lumen that
originates from the mucosa containing dysplastic cells being likely to progress to cancer
and it is believed that the precursors of CRC are aberrant crypt foci (ACF) which are
clusters of crypts in the colon epithelium, containing cells with a deviant behavior with
respect to the normal ones (FIGUEIREDO et al., 2013; LEEUWEN et al., 2006).

The motivation of this thesis is to model and simulate accurately the abnormal
cell dynamics in the colon. We propose a cell dynamics model for describing the evolution
of abnormal colonic cells in a single crypt and use the periodic crypt distribution in the
colon to model such dynamics in the whole colon. The high computational cost of a
such numerical method applied in the colon suggested us to implement cheap multiscale

methods such as HMM-FEM and and a supraconvergent multiscale method.

In the next section, we present some cell dynamics models related to this work.

1.2 Review of relevant mathematical models for cell dynamics in a

colonic crypt

There are many different approaches to modeling cell proliferation and move-
ment such as continuum and cell-based models. According to (MURRAY et al., 2011),
continuum models are generally fairly simple, where effects as proliferation, death and other
few parameters can be incorporated by introducing a source term into the appropriate

mass balance equation. On the other hand, cell-based models are less suited to modeling
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cell growth, however they have the ability to track individual cells and are better suited

for small number of cells.

We treat in this thesis continuum models for cell dynamics in the colonic crypts
based on partial differential equation. A list of models of this type are presented and
discussed in this section, where we put on evidence their characteristics and differences

also with respect our proposed model (2.4) in Chapter 2.

1.2.1 Continuum models for tumor growth based on two families of cells

King and Franks (KING; FRANKS, 2004) have presented a simple class of
models that predicts certain keys stages in the tumor growth. The conservation laws for

two types has the following form

0
%—FV-(nlv) = V- (D,,Vni) + Kny,
] (1.1)
% LV () = V- (Dp, Vi) + kno,
ny + no = 1,

\

where ny,ny are respectively the volume fraction of malignant or abnormal cell type and
of normal cell type. Cell proliferation and death are modeled by the mitotic rates k, K.
Proliferation is associated to positive rates and Death to negative rates. The relation
n1 + no = 1 is called overall density condition that assures that no void is allowed between

cells. The cell velocity v can be obtained by summing the first two equations in (1.1)

V-v=V-(D,,Vn + D,,Vns) + Kny + kns. (1.2)

During the tissue growth, elastic effects can be typically neglected and the
tissue treated as a fluid. A Darcy constitutive relation has been often adopted in modeling
tumor growth, though apparently often more for mathematical simplicity than for physical

reasons. We can supplement (1.1) by the constitutive law
K
v=——Vp. (1.3)
i

where v is the velocity of cells, p is the cell-cell adhesion pressure, p the viscosity of cells
and k is the motility coefficient. Following the model of King and Franks, in (WALTER,

2009) the mass conservation equations are given by

( (9 N
%‘FV'(&VD = Ko,
t
1 0 . (1.4)
% +V-(01V2) = Ksp9,

L 01+ 02 = 1,



Chapter 1. Introduction 20

where 01, 02 are respectively the volume fractions of normal and mutant cell populations,
V1, Vs are the cell velocities and K7, K» their net proliferation rates. They suppose that
the source terms decrease linearly with distance from the base of the crypt as follows:

Y
)

where the positive constants k; are the maximum rate at which the cells of type ¢ proliferate.

Ki(X) = k(1 — A, i=1,2. (1.5)

The crypt is modeled by a 2D surface of a cylinder with height h and radius gh, as show

in Figure 1.

Figure 1 — Sketch of the two-dimensional model for two epithelial cell populations growing
on the surface of a cylindrical crypt, height h and radius Sh. The volume
fractions of each population are separated by the boundary Y = C(X,T) with
normal N(X,T).

Crypt Lumen

Y = FF
t)'l == {]
og =1
N (X,T)
Y =C(X,T)
o =1
pa =10
v
Y =0 X
X =0 Crypt Base X =28 h

Source: (WALTER, 2009)

Here they consider two cell populations which differ in their proliferation rates
and viscosities to develop a continuum model that describes the movement of cells inside
a cylindrical crypt. In our model we suppose that families of cells have the same diffusion,
that means that have the same behavior in what concern their interaction with other cells.
The two families of cells that we consider in or model differ then only for the proliferation

rate, as those presented in the next paragraph.
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1.2.2  Abnormal cell dynamics

In (FIGUEIREDO et al., 2013) is presented the following elliptic-parabolic

coupled model

a(g V- (VpC) + V - (DyVC) + (1 — O,

“Ap = V-((Dy— D)VC) +a(l—C),

(1.6)

where Dq, Dy are diffusion coefficients, C' denotes the cells abnormal density, p is the
pressure generated by cell-cell adhesion. The proliferative activity is present in the lower
two thirds of the crypt of height h, and the activity is larger at the bottom of crypt
and decreases upwards towards the orifice of crypt. They define the proliferative rate

coefficients «, 8 as a decreasing function with respect to the height of crypt, thus

2 2h 2 2h
To(23 — —h)2 if 13 < — T3(z3 — —h)2 +5 ifxg < —

a(r3) = 3 3 Blxs) = 3 3 (1.7
0 elsewhere, o7 elsewhere.

where 7, is larger than 73 to guarantee that « is larger than 8. In (1.7) v is the positive
rate of proliferation for the abnormal cells over the two thirds of the crypt, where normal

cells cannot proliferate. A large g characterize cells that very abnormal.

Their multiscale problem is presented in a two dimensional colonic region that
is formed by a periodic distribution of a crypt domain. That crypt is represented by a
cylinder in R? closed at the bottom and opened at the top. After making a projection of
the 3D crypt in a plane and obtaining then a 2D model for crypt, where it is periodically
distributed. In this way, they obtain a coupled elliptic-parabolic model in a domain = R?,
which describes the dynamics in space and time of the normal and abnormal cells in the

colon.

In (FIGUEIREDO et al., 2016) is considered two population of cells as in
(KING; FRANKS, 2004). Based on tumor growth, their model is presented by the following

elliptic-parabolic coupled model

(;(; — V- (VpC)+ V- (DcVC) + BC, (1.8)
—Ap = V- ((Dc—Dyn)VC) +(B—7)C +7,

where C' is the density of abnormal cells, and N is the density of normal cells satisfying

the equation

N
L~ V(VDN) + V- (DNTN) . (1.9)

with N+ C = 1. The second equation in (1.8) is obtained summing the parabolic equations
associated to N and C. D¢, Dy the diffusion coefficients of abnormal and normal cells,

respectively. £ is the proliferative rate of abnormal cells and ~ is the proliferative rate of
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normal cells defined as follows

2%, . 2h %, , 2h
- — fas < — - — f < —
7 (T3 3 ) if g 3 By — 75(x3 3 )+ if s 3 (1.10)

0 elsewhere, ol elsewhere.

v(z3) =

Here, they represent a region of the colon epithelium by an heterogeneous
domain, obtained by the periodic distribution of a rescaled crypt e P, where e P is a regular
flat hexagon with edge size ea. Thus, with that structure they were able to define a 2D
heterogeneous periodic model, where the unknown is the pair cell density C° and the
pressure p°. A homogenization technique could be applied to that model considering a
sequence indexed by e, where the objective is to find the limit (C°,p°) of the sequence
pairs {(C¢, p°)}c=0. The homogenized model associated to multiscale problem based on
(1.8) is the system

oCc® —— oCY op° — 0*C"

o amT Y~ pAm ST 1 (Bm— )1 — C°
5 " 5r, o, M i, T Pm ML = ) L1
— azpo — N 0 N .
_Aijmm = (Bm—ym)C” +ym
52(Aijm)

where m is the solution of a cell problem — = 0 in P, and A;; define the

0Yi0y;
planification of the crypt. This is a macroscopic model that represents the evolution of

ACF at the surface of colon, by using the information of the cell dynamics in the crypts.

Other continuum models can consider other families of cells as differentiated
and semi-differentiated as presented in the next paragraph and used along in our model,

see chapter (2).

1.2.3 Aberrant colonic crypt morphogenesis

In (FIGUEIREDO et al., 2011) was proposed a hybrid convection-diffusion-
shape model for simulating and implemented a method to simulate and predict what
has been validated medically, with respect to some aberrant colonic crypt morphogenesis.
The model demonstrates crypt fission, in which a single crypt starts dividing into two
crypts, when there is an increase of proliferative cells. The problem is modeled by a
transport/mass conservation model to describe the dynamics of different types of cells
inside a colonic crypt. Using the volume conservation Ny + Ny = 1 where N; are the

densities of proliferative and apoptotic cells, the final model is given by

)
N
aat V- (UpN) 4 V- (DVN) 4+ aN — BN in Qu(t) x [t + A,
—Ap = V-(DVN)+aN in Q.(t) x [t,t + Ay,

(N — 0p=1 in Ty x (0,7), (1.12)
oN-_ in (T, UT3) x (0,7
= = in (Ty uTy) x (0,7),
N(,O) = NO ln Qc7
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where A, is a fixed time step used to solve numerically the problem, /N is the proliferative

cell density and p an internal pressure.

The problem is composed of three parts: the coupled parabolic and elliptic
equations, involving the unknowns N and p, and the equation describing the evolution the
spatial domain €).. The main purpose of that work was to simulate colonic crypt folding, by
means of partial differential equations, more exactly, by using a convection-diffusion-shape
model. They used a 2D version of the problem since the histological medical exams are
sections of the colon from the mucosa surface until the bottom of the crypts. The set 2.
stands for the 2D-geometry of the crypt (U-shape) where I'y is its upper boundary, I's and

I's are respectively, the outer and inner boundaries.

In comparison, this problem considers the same class of cells of this last work

but as we will see later, we avoid that kind of boundary conditions considering a manifold
PDE model of that problem.

Figure 2 — Shape of the colonic crypt at different times:t = 0, 1, 2, 5, and 10 respectively.
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Source: (FIGUEIREDO et al., 2011)

Others models for describing the crypt morphogenesis are based on elastic or
viscoelastic relations between colonic cells and epithelial tissue. See (FIGUEIREDO et al.,

2019) and references of other models therein.

1.3 Aims and objectives of the thesis

The aim of this work is to describe numerically the dynamics of cancer cells
in the colon by means of accurate multiscale methods. In order to perform a numerical
analysis of the proposed methods we aim to obtain errors estimates and prove stability

and convergence of the proposed methods.
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The specific objectives of this work are:

e To prove convergence and stability of the cell proliferation problem in a single scale

using a method based on finite differences;

e To study numerically the solutions of the multiscale cell proliferation problem
provided by HMM-FEM method;

e To present the numerical properties of a supraconvergent finite different method

applied to multiscale problems.

1.4 Preliminary results

Our first step in the development of this work was use a more realistic sur-
face than the one proposed in (FIGUEIREDO et al., 2013; FIGUEIREDO et al., 2016;
FIGUEIREDO et al., 2019) to approximate the crypt’s shape, thus we were able to rewrite
the main equations in a divergence form which makes the numerical analysis easier. Using
the HMM framework, we analyses a suitable homogenized problem and we obtain the
numerical convergence of the HMM-FEM numerical solution to the homogenized solution.
To prove analytically the convergence and stability in a single scale we use a non uniform
space discretization by using finite difference method which we proved the equivalency to
a weighted finite elements method. The methods used provide some good error estimates
to our problem as we’ll see later. At the end of this work we prove convergence and

stability to functions in H'**. All the presented implementations in this work were built
in (MATLAB, 2018a).

1.5 Overview

The rest of this manuscript is organized as follows. Chapter 2 presents the
biological information of the colon tissue and how it is related with the colorectal cancer
and presents a mathematical model in a single crypt. In Chapter 3, we introduce multiscale
problems and homogenization. In Chapter 4, we present the HMM method as a framework
to designing multiscale methods. In Chapter 5 we present a finite difference method in a
non uniform mesh and analyze it numerically, studying its stability and convergence. In
Chapter 6, we study a more robust method which provides convergence and stability to
H'"* solutions. Finally, in Chapter 7 our purpose is to present a new multiscale scheme
that uses the microscale information to solve the homogenized problem and to build then

an approximation for the multiscale solution.
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2 Mathematical model

The colon (see Figure 3) is a part of the digestive tract located between the
small intestine and the rectum. Its principal functions are the absorption of water, minerals,
nutrients, and to serve as a storage area for the waste material. Because of its biological
nature, the colon has a high level of cellular regeneration and which exposes it to many
agents of a physical, chemical, and biological nature, which increases the possibility of

developing pathologies, including cancer.

Colorectal cancer is located in the colon or in the rectum digestive tract. It
requires years and several genetic mutations of the colonic cells to appear. These mutations
lead changes in the cell proliferative behavior and result in a significant deformation of

the colorectal crypts.

In the following Section 2.1 we provide some biological information useful to
define the mathematical model for the proliferative cells dynamics. In Section 2.2 we model
mathematically the geometry domain of a crypt and then also the cell dynamics in a such

domain by using a system of partial differential equations.

2.1 Biological background

In the following sections we discuss some biological information which allow us

to model the crypt’s shape 2.1.2 and the proliferative rates.

2.1.1 Colon structure

The anatomical regions of the colon are illustrated in Figure 3. The large
intestine is the penultimate stage in the digestive tract, weights only 0.22 kg and is
approximately 1.5m long and the diameter varies along its length, the average diameter is
around 6 — 8cm (COLLINS, 2016). It extends from the terminal ileum to the anus. The
colon is divided into five parts: cecum, ascending colon (measures 12 — 20cm in length),
middle or transverse colon (ranging between 40 and 50cm), descending colon (measures

10 — 15¢m in length), and the sigmoid colon.
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Figure 3 — Colon anatomy
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Source: (COLLINS, 2016); Copyright Springer.

The main function of its muscularis externa is to move matter along the large
intestine through peristaltic contractions which allows to absorb water and any remaining
absorbable nutrients from food. Inside the musculature externa there is the submucosa,

which contains vessels that provides the main blood supply for the colon.

2.1.2 Crypts

The epithelial layer of the human colon mucosa is made up of a single sheet of
columnar epithelial cells, which form finger-like invaginations called crypts as represented
in Figure 4(a). The crypts have epithelial cells that contain digestive enzymes that digest
specific foods while they are being absorbed through the epithelium. Thus the colonic
crypts are the end absorption functional unit of the intestine. The epithelial cells cover all
the colon including the crypts, see Figure 4(b). It is estimated that there are approximately
107 crypts in an adult human colon, each crypt containing 1000-4000 epithelial cells. The
crypts are about 433um in length and approximately 31um in diameter (MICHOR et al.,
2005).

The epithelial cells are generated at the crypt base and migrate along the crypt
axis towards the top orifice. This migration is due to a cell-cell adhesion pressure generated
by the cell proliferation. As the cells migrate to the crypt top they differentiate, becomes
less proliferative, and when reaching the luminal surface they perform their absorption

function and then they are shed into the lumen.
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Colon H&E
2 lamina propria

Figure 4 — Distribution and shape of crypys. (4(a) can be found in (FIGUEIREDO et al.,
2016) and 4(b) in UWA Blue Histology. Copyright Lutz Slomianka 1998-2009.)

2.1.3 Stem cells

The large intestine and the colon are continuously renewed, in fact billions
of cells are lost and created therein on a daily basis. It is widely accepted that cells
replacement and production is achieved by stem cells found at the base of crypt. The stem
cells are defined as a small population of relatively undifferentiated cells that maintain
their size when they divide. The progeny of stem cells (called transit cells) are located
above the stem cells along the crypt axis. These transit cells have generate each of the
epithelial cells found in colorectal crypts: Colonocytes, the primary absorptive cell; goblet
cells, the mucin secreting cell; enteroendocrine cells, the hormone-producing population;
and secreting Paneth cells. An average human colonic crypt contains 2000 cells and is
believed to have approximately 19 stem cells (KHALEK; GALLICANO; MISHRA, 2010),
but this amount can change depending on the crypt location. In the scientific literature it
is believed that transit cells undergo 4-6 cell divisions, proliferating less and differentiating
as they move upward the crypt. At the top of the crypt there are fully differentiated cells

that cannot proliferate anymore.
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Figure 5 — Stem cells and its mutations

Source: (ANDERSON et al., 2011)

In Figure 5, we have the scheme of a colorectal crypt. Stem cells, at the
base(red), proliferate to produce transit cells(pink) and differentiate into differentiated
cells(blue). A single transforming mutation in a somatic intestinal stem cell could rise to a
CSC (cancer stem cell).

2.1.4 Aberrant Crypt Foci (ACF) and development of adenomas

ACF are focal lesions composed of several enlarged crypts, which are specifically
induced by colon carcinogenesis. In Figure 6 we note two ACFs characterized by crypts
evidenced by a blue ethylene dye. It is believed that ACF is the earliest expression of
this colon carcinogenesis and are the precursors of adenomas. In colon, the adenoma-
carcinoma sequence is widely regarded as the main pathway leading to the development of
malignancy. Cancer is a multistage process that requires the accumulation of several genetic
mutations, each of them alter successively the tissue’s normal behavior causing deregulated
differentiation and uncontrolled proliferation. A series of pathological alterations are

involved in the ACF up to the formation of malignant tumors.

Analysis of colon adenomas has shown that there is an upward expansion
of the proliferative compartment towards the surface of crypt in adenomas. Over time
the adenoma may accumulate more mutations in critical genes, resulting in malignant

transformation to an adenocarcinoma with invasion into the submucosa of the colon.
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Figure 6 — ACF pictured in a colonoscopy image. The dark blue regions are clusters of
deformed and enlarged crypts, called ACF, in the colon epithelium, that appear
in the first stage of colon carcinogenesis

Source: (FIGUEIREDO et al., 2016)

2.2 Mathematical model of the crypt geometry, cell proliferation

and dynamics in the colonic crypts

From the above literature we are able to model the parameters to build a

problem that describe the cell dynamics.

2.2.1 Crypt geometry

As already mentioned the average dimensions of a human colonic crypt are 433
pm from the bottom to the top, and 31um for the diameter of the top orifice excluding the
epithelium (FIGUEIREDO et al., 2016). Since the crypt is our main domain of interest,
we choose a surface that approximate its geometry. A single crypt can be represented as

the two-dimensional surface I' generated by the graph of the function f : [0,1]* — T', with

_(R1.92)\?2
Pl ) = h(1— e (552, (21)
1.2 1.2 . . . .
where R(y1,y2) = (yl — —) + (y2 — —) and h is the surface height and sigma describe the

2 2
width of the crypt, that is permit to respect that the height is fourteen times the crypt

orifice diameter, see Figure 7.
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Figure 7 — A single crypt represented as a two-dimensional surface in R>.

2.2.2 3D periodic domain

There are millions of crypts in the human colon epithelium. Based on images
provided by colonoscopy, we can see that crypts are almost periodically distributed in
the colon, see Figure 6. Therefore to solve and simulate the mathematical problem of
cell dynamics in the colon we write our problem in a three-dimensional domain with
repeated crypts represented as a surface, see Figure 8, that will represent the external

colon epithelium in three dimensions.

Figure 8 — This figure show how the crypts are periodically distributed in our modeled
colon epithelium in three dimensions.

On a such three dimension domain with repeated crypts we will study our
multiscale PDE problem in Chapter 3. Before analyzing a such problem we need to
define the source terms in the next subsection and present the model in a single crypt in
subsection 2.2.4. Then we will rewrite the PDE problem in the two-dimensional manifold,

see Section A.1, obtaining a two-dimensional multiscale problem in Section 2.3.
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2.2.3 Source terms

Our mathematical model consider only two types of colonic cells: fully differen-
tiated with density N and semi-differentiated cells (also called proliferative or transit cells)
with density C. Cells have a proliferative rate that depends on the cell location in the
crypt. According to (DRASDO; LOEFFLER, 2001), the proliferative activity is presented
in the lower two thirds of the crypt and thus we suppose that the proliferation rate of
semi-differentiated cells 5o decrease quadratically with distance from the base to the two

thirds of the crypt heights as follows:

3 (2.2)

where 7 is a positive constant representing the maximum rate at which the cells of type C

proliferate.

We also suppose that the rate of transformation (or differentiation) of prolifer-

ative semi-differentiated cells C' proliferate into fully differentiated cells NV is modeled by

2h
0 if z < 3
Oéc(CC,y,Z) = z 2 f2h b (23)
1-— if —<z<h.
T( 2h/3) Py ST

Furthermore, we assume that the cells verify the overall density hypothesis

N + C = 1. This is equivalent to suppose that no free-space (no void hypothesis) exists.

2.2.4 3D final model

Let I' © R® be the surface that models a single crypt, ¢ the time variable
belonging to the interval [0,7] with T" > 0 fixed and N(z,vy, z,t) and C(z,vy, z,t) are
respectively the fully differentiated cells and the semi-differentiated cells densities, at each
point (x,y, z) of I and at time ¢. Then, based on models of tumor growth, described by
systems of Partial Differential Equations (PDEs) and relying on transport/diffusion/reac-
tion models, we reproduce the following system of PDEs for representing the dynamics of

these populations of colonic cells in I' x (0, 7]

( ON

E + Vr- (UNN) = Vr- (DNVFN) + ﬂcc

E + V- (Uco) = Vr- (DCVFC) + 0400 — 5(;0
| N+cC _
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We have assumed that (2.4) has Dirichlet boundary conditions with initial
conditions N(-,0) = Ny, C(+,0) = Cy. Here Dy, D¢ are the diffusion coeflicients of fully
and semi-differentiated cells, respectively, B¢ is the rate of change of proliferative cells C
into fully differentiated N and a( is the proliferation rate of cells C'. The convective velocity
of the normal and abnormal cells are denoted by vy and v, respectively. We suppose also
that the two populations of cells have the same convective velocity vy = ve = v, which is

defined by v = —Vrp, where p is the cell-cell adhesion pressure and that Do = Dy = D.

Then, by assuming the first two equations in (2.4) and using the overall density
hypothesis N + C = 1 we obtain the following elliptic-parabolic coupled model whose
unknown is the pair (C, p):

= Ve (Vap0) + Vo (DVC) +aC in T x (0,7]
~Arp = BC inT x (0,7 (2.5)
C=p = 0 on o' x (0,77,

where o = ¢ — B¢ and 8 = a¢. Note that

2
ey it2< 2P
2h/3 3

o(z,y,2) = z 2h
71 1— if —<z<h.
2h/3

(2.6)

The operator Ar is the so called Laplace-Beltrami operator, which is a generalization to
non-flat Riemannian manifolds. The Laplacian operator appears in differential equations

describing various physical phenomena, such as heat diffusion, wave propagation, etc.

2.2.5 Differential model in local coordinates

Let I' = R® be a surface that models a single crypt and a chart {Y, ¢}, see
Appendix A.1. We can rewrite the system (2.5) in local coordinates (y1, y2) as the following

problem
oC _= S oA A
|g|§ = V- (AVpC) + V- (DAVC) + |g|laC inY x (0,T]
_V (AVp) = |g|BC iy x (0,7] (2.7)
C=p = 0 on dY x (0,77,

where |g| = 4/det g, A = (g)"'4/det g and g is the metric induced by R*. Now, the
unknown functions (C,p) are defined in Y x (0,7, where C' = C o ¢ and p = p o ¢. For

more details see A.1.

System (2.7) provided with initial condition of C' admits a unique solution.
This can be proved using the same proof used in (FIGUEIREDO et al., 2016).
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2.2.6 Properties of g and A

The quadratic form I, on T,I', the tangent plane of I at p (see appendix A.1),
is called the first fundamental form of the regular surface I' © R?® at p e I". Therefore,
the first fundamental form is merely the expression of how the surface I' inherits the
natural inner product of R® . Geometrically the first fundamental form allows us to make

measurements on the surface.

We shall now express the first fundamental form in the basis {¢,,, ¢y, } associ-
ated to ¢(y1, y2) at p. Since a tangent vector w € T,I' is a tangent vector to a parameterized

curve a(s) = p(u(s),v(s)), s € (—¢,¢), with p = a(0) = p(uo, v9), we obtain

L(a'(0)) = {(a’(0),a(0)),

= (ot + g,V 0y 0+ 0",
= E@)*+2Fuv + G,

where the values of the functions involved are computed for s = 0, and

E(yla yQ) = <§0y17 Py >P (28>
F(yla y2) = <90y17 (py2>p (29)
G(yla yQ) = <90y27 90y2>p' (2'1())

By letting p run in the coordinate neighborhood corresponding to ¢ (y1, y2) we
obtain functions E(y1,ys), F(y1,92), G(y1,y2) which are differentiable in that neighbor-
hood.

Then, the symmetric positive definite matrix ¢ is defined as

g= [E(yby?) F(yl,yz)] ‘
Fly,y2) Gly1,92)
In the case of I' is obtained by a graph of function f, therefore
L+ ()" fonfw
T [ fyl(f;) 1 +y<fl>2] | 21
Then, the functions that depend of g in (2.7) are

(2.11)

9l = /1 + (fu)? + (f)? > 1 () € . (2.13)
and
1+ (fy,)° B Joi fye
A = g_lx/m — \/1 + (f?izf;— (fy2)2 \/1 "1' if?ZI}yi;; (fy2)2 ) (2'14)

NI P2+ (P2 AVIH )2+ (F)?
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We can check easily that the eigenvalues of A are

1 L+ (fu)* + %f
A= , 2.15
VAT TAR NI 2
since det g = 1+ (f,,)* + (f,,)? and so
0<A<1L,A>1VY(z,y) €Y. (2.16)

Note that A is also a SPD matrix.

2.2.7 2D periodic domain

To get a problem for describing the abnormal cell dynamics in the colon
epithelium, that has scales as those depicted in Figure 6, we represent the colon as
rectangle 2 = R? with a periodically repeated planified crypt structure QF below, where
X is a square domain (that can be thought as shifted Y, see next paragraph) representing

a single crypt with side size € and center ¢

O0|0010|0
O0O|0]010|0
O10|0[010|0
OOOIO10|0
0000100
0000100
O0]0]010|0
QOO IOI0[O
O0|0|010|0
Q1000100
O0|0]010|0

Jolelelelele

Figure 9 — 2D domain

Source: produced by the author.

We can do it easily defining the problem (2.5) in I' x (0, 7], where I is a surface
obtained by a graph of function as before with ¢(y1,y2) = (y1, y2, f(y1, y2))) parameterized
in QF and distributing the problem periodically in (2.

2.2.8 Periodic distribution

In what follows Y = [0,1]%. Let I' be a surface defined previously and con-

11
sider a linear transformation 7, that takes €2 to Y given by T.(x1,25) = (5, 5) +

($1 —C

£
used as a domain of reference (this is because we refer I' as a reference crypt ). In Y, the

X2 —02)

= (yl, yg), where ¢ = (c1, ¢2) is the center of €25. The domain Y will be

)
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function § (local coordinates) is defined as

fy,y2)\2 . 2h
. Tl= =) i fyye) <
Blyr, ) = 0= "ons ) RS (2.17)
0 otherwise.
In QF the function 5° is defined as
e, z2)\2 ., L. 2h,
_ 7'(1—2(};32)) if f(x1,22) < 3
B (w1, 29) = e/ (2.18)
0 otherwise,

where h, h. = ch are the crypt heights (reference and micro levels), respectively. Using the
_ R (z1,x9) 2
linear transformation T, and taking f©(x1,z5) = he(l —e ( oe ) ), where R®(xq,x9) =

(z1 —c1)* + (z2 — ¢2)? (similarly to f(y1,2), with ¢ = 0./¢) we can check easily that holds
fe (xlv xQ) )2

68(1’1,.%2) = ’7'(1—

2h./3
f(yh yQ) 2
1] — =727
( 2h/3 )
= 6(y17 y2)7
with the suitable change of coordinates. Look that the same holds to a®, where
€ 2h,.
=L@ Ty e ) <
_c _ 2h./3 3
af(wy,x2) = Fe(a1, 2) 2 (2.19)
(1 - ’ ) otherwise.

2h/3
Now, let g be the metric of I induced by R? (similarly to ¢°). We can check that
Of(z1,m2)  4(z1 — ) (f (21, 22) — he) R (21, 32)

2
0xq op:

That leads us to

- of¢(xy,x 2
gl’l(xl,xg) = 1+ ((5;12)>

= 1+ (4(371 — ) (f* (21, 72) — hE)Ré(xth))Z

02
1 2
4y — 5)(f(y1, y2) — h)R(y1, 42)
= 1+ 5
o
= 9171(y1,y2)-

since f°(z1,22) = f(y1,92)e, RE(x1,72) = R(y1,y2)e?, 0. = oe. From this, we conclude that
A (21, 22) = A(y1,y2) and |g|* (21, x2) = |g|(y1, y2) with the suitable change of coordinates.

Now, we are able to distribute €2 periodically in {2 using the definitions

A (w1, 22) = A(y1,92), B (21,22) = 5(?41792), af(ry,x3) = 07(?41792), (2-20)

(1'1 —017.%'2 —62)‘

11
where (y1,92) = (5’ 5) * c €
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2.3 Multiscale modeling

It is clear that cell interactions occur in a scale smaller than the observed one,
and so we can model this problem using two scales: the macroscale describes the region
(mensurable in decimeters) of the colon where the evolution of ACF (Aberrant Crypt Foci)
is taking place, whilst the microscale describes the region (mensurable in micrometers)
occupied by a single crypt. Pressure and density are computed at the macroscale level

with the coefficients responsible for diffusion and proliferation defined at the microscale.

The multiscale problem is defined as

|g|‘€aac;E = V- (AVpFEC?) + V- (DPAVCT) + |gIfa*C® in Q x (0,7

! V- (AVp) = g|°B°CF in Q% (0,7T]
Ce=p° =0 on 0 x (0,T]
(-0 = G

\

(2.21)

where |g|° = \/det g7, A° = (¢°)"'\/det g5, 5° and a° are defined in Q by periodicity.
Then the unknown functions (C¢, %) are defined in Q x (0,7]. Note that A%, ¢°,a° and
¢ depend only of the microscale, that is

FE2) i Zisin Y
[, @2) = € e’ ¢ (2.22)
by periodicity elsewhere.
By periodicity we mean that if (ﬁ, ﬂ) ¢ Y then f°(x1,x9) = f(y1,y2) where
e’ €

(y1,12) is the unique point such that (yi, ) = (—, —) + ¢k for some k € Z*.
e’ €

Note that exists a unique solution for the homogenized system, the proof can
be found in (FIGUEIREDO et al., 2016).
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3 Multiscale problems and homogenization

Consider a domain 2 where the quantity u , that can be a cell-cell pressure
in our case, satisfies a diffusion problem with diffusion tensor K = KC(x). For simplicity,
we assume that the domain is isotropic, which means that K is a scalar. Suppose that
f represents a source term for v and u is null on the surface 0. Then u = u(x) at the
point x € € satisfies the following boundary value problem with homogeneous Dirichlet
conditions

=V - (KVu(z)) = f, inf,
u =0, on 0f2.

(3.1)

This is a classic elliptic boundary value problem and it is well known that if f
is sufficiently smooth, it admits a unique solution u which is twice differentiable and solves
system (3.1) at any point = € Q. If now we consider a heterogeneous or composite material
Q, then K takes different values in each component of the composite material. Hence, K is
now a function, which is discontinuous in €2, since it jumps over the surfaces that separate
the components. Suppose that the heterogeneities are very small with respect to the size
of €2 and that they are periodically distributed. This is a realistic assumption for a large

class of applications that can be modeled with a domain that is periodically distributed.

The periodic domain is supposed to be characterized by a dimension ¢ (CIO-
RANESCU; DONATO, 1999; MURAT; TARTAR, 1997). Then the coefficient K depends

on ¢ and the problem (3.1) can be written as

Find u € H}(R) such that

" Oout ov (3.2)
e dr = d Y HYO
Zf (2) . Lfv . Voe HY(Q)

A natural way to introduce the periodicity of £ in (3.2) is to suppose that it

has the form
T

Ke = /c(g), (3.3)

where (KC; ;)i j=1..n is a given periodic matrix function of period Y. This means that we
are given a reference period Y, in which the reference heterogeneities are periodically
distributed. Observe that two scales characterize the model problem (3.2), the macroscopic
scale x and the microscopic one E, describing the micro-oscillations in Y. Observe that
the pointwise knowledge of the characteristic of the material does not provide in a simple
way any information on its global behavior and that making the heterogeneities smaller
and smaller means that we “homogenize” the mixture (from the mathematical point of

view this means that ¢ tends to zero).
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Many natural questions arise:

e Does the temperature u° converge to some limit function u°?
e Does u° solve some limit boundary value problem?

e is v’ a good approximation of u¢? Which is the rate of convergence?

We are going to answer some of these questions in the next sections. For more

details see (CIORANESCU; DONATO, 1999).

3.1 Introduction to homogenization

The aim of this Chapter is to present the key issues of the mathematical theory
of homogenization applied to our model. Generally speaking, in a composite material the
heterogeneities are small compared to its global dimension. From the macroscopic point of
view, the composite looks like a “homogeneous” material. The aim of “homogenization” is
precisely to give the macroscopic properties of the composite by taking into account the

properties of the microscopic composite.

Here well follow very closely the book (CIORANESCU; DONATO, 1999). The
purpose of homogenization theory is to study the limit of u® as ¢ — 0. In particular
it is desirable to identify the equation satisfied by u° in the limit. In next sections we
will discuss that, under appropriate assumptions on K(g), f(z), and Q, the homogenized
equation is c

—V - (K'Vu®) = f in Q,

(3.4)
u’ =0 on of2

and K’ is called the homogenized tensor (revisit the well-known theory (CIORANESCU;
DONATO, 1999)).

3.2 Homogenization of elliptic equations: some results

In this section we present some important results that will be used in this work.

Consider the elliptic problem

-V - (K*Vu®) = in ,
(V) = £ in )
u® =0

on of).

The following classic result is valid (CIORANESCU; DONATO, 1999)
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Theorem 1. Let f € H*(Q) a function in the dual space of H} () and u® be solution
of (3.5) where K¢ is a Y-periodic matriz that satisfies K°(x) = lC(f) and the differential
€

operator of (3.5) is coercive. Then

i) uf — uCweakly in H)(S)

(3.6)
i) KEVu — K'Vulweakly in L*(Q)

where u° is the unique solution in HY () of the homogenized problem (3.4). The matriz

K° is constant and coercive.

Corollary 1. If K¢ is symmetric then K° is symmetric.

Besides that, the classical homogenization theory (JIKOV et al., 1994) provide
us: 3C > 0, Ve > 0 such that
|u® — || 2y < Ce. (3.7)

As mentioned before, we consider multiscale problems with two scales: the
variable z describe the “macroscopic” scale, while z/¢ describes the “microscopic” one.
Indeed, if = € Q, by the definition of Y, there exists k € Z" such that z/e = (y + k;) with
y €Y and where k; = (kily, ..., kyl,). Here, x gives the position of a point in the domain

) whereas y gives its position in the reference cell Y.

Studying the limit function u° suggests to write down u° using a asymptotic

expansion of the form
uf(z) = u’(z, g) +eu' (z, g) + e%u?(z, g) + ... (3.8)
with v/ (z,y) for j = 1,2,..., such that

u! (z,y) is defined for re Qand ye Y (3.9)
u/(x,) is Y — periodic .

where u(x, ) Y-periodic means that function u = wu(z,y) is periodic with respect the
second variable y and has Y as the periodic domain. Let ¢ (x,y) be a function on the

two x,y variables in R", we denote by ¢°(z) the associated multiscale function such that
T

Y (x) = (x, —). Its derivatives satisfies
€

oY® 1oy, =« oy, x
= — — -). 3.10
(JSU@<) 5(3yi(75)+5131( ) ( )
Consequently, defining the operator K. = 2 K & , one can write K.19° as
1,J=

follows:

Kot = (€72 Ko + 7 Ko + Ko)v) (. 5) (3.11)
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where
( 0 0
Ky=— Kii(y)=—
0 idz_l ayl( 7]( )8y])
0 0 0 0
K, =— Kiily)=—) — Kii(y)=— ,
1K Z 7 K 7)) Z 5 K 7) (3.12)
0 0
Ky = — Kiily)=—).
L 3,j=1
Equalizing the ¢ power terms, we have to solve the following infinite system of
equations:

Kou’=0inY
(3.13)
u’ Y — periodic,
Kou' = K’ inY
(3.14)
u!' Y — periodic,
Ko’ = f—Kiu' — Kou®in Y
0 f 1 2 (3.15)
u? Y — periodic,
and for s > 1
Kou't? = — Kt — Kou® in Y
(3.16)

u Y — periodic.
with v/ € H*(Q x Y).

Let us now solve successively systems (3.13)-(3.15). Let Wi,y the quotient

space associated to the relation u ~ v, see B.3.

We consider the variational formulation of (3.13) as follows

Find g € Wher(Y) such that

(3.17)
Ky (g, v) = 0, Y0 € Wy, (Y)

where Vi, 0 € Wy, (Y)Vu € u,v € 0 and Ky (i, 0) = J KVuVudy. For the Lax-Milgram
Y

Theorem (see appendix) @ = 0 is the unique solution of (3.17). This implies that the
solution u” of (3.17) is independent of y, so that

u’(@,y) = u’(z),

then v’ € H*(Q).
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Consider now equation (3.14), since u’(z) not depends on y, (3.14) can be

written as

Z alC” é’u ny
i,j=1 &yl 8% (318)

'Y — periodic.
Its variational formulation is
Find 13 € Wy, (Y) such that
’CY (u17 ) <F /U>(Wpe’r Wpe'r (3'19)
Vi € Wher(Y),

where F'is defined by

Fdonerme = 3 o [ Ky vwe b eWuv). (320
i,j=1 Lj
Observe that if ¥y, € w then
o1 iy
= 21
0Yi Yy (3:21)
and so
<F’ w1>H1;er pE’V‘ - <F w2>H1l pe'r' (322)

This defines F' as an element of W ,..(Y).

The linearity of K, together with the fact that du”/dz; is independent of v,

suggests to write u; solution of (3.19) in the following form:

Z auo ), in Wpe, (V) (3.23)

é’x]

where y satisfies
n

Kox; = Z a{gci.’j inY
i=1 Yi (3.24)

X; Y — periodic,

for j = 1,2,...,n. It is easy to see that from Lax-Milgram theorem there is a unique
solution x € W), (Y) of this problem. Moreover, we can choose a representative element

of x;. Hence, there is a unique x; € x;, such that

y (X, ¥ ZJ i (/w - dy

V@Z) S Wper,O(Y)y

(3.25)

where
Whero(Y) = {v e B (V): f v dy — 0. (3.26)
Y



Chapter 3. Multiscale problems and homogenization 42

On the other hand, from (3.23) we see that any solution u'(z,y) € u; of (3.14) has the

form

< oud
ul(z,y) = = Y () 5 +wla), (3.27)
where 1, is independent of y, i.e.
iy (z) € 0 in Woe (V). (3.28)

Now we use (3.15) to obtain the form of u?(z,y). Since

R K = S Py - S e (2

We have that, the variational formulation of (3.15) is

Find ty € Wer(Y) such that
Ky (t2,0) = CF1L 0 0Wper ), Wper) (3.30)
Vi € Wher(Y),

where F} is defined by

' a )
CEL ) Wyer ) Wper) f fo dy — Z J azj (a;p (3.31)
i,j=1 i
out  ou
5 J o, KW (G -+ 5, dy (3.32)

V1 € ¥, 1) € Wyer (Y).

We use now the following Lemma (PERSSON et al., 1993) to prove the existence
of solution of (3.15).
Lemma 1. Let ((y) € L*(Q) e Y -periodic. For the boundary value problem

Ko = ((y) on'Y, (3.33)

where Y (y) is Y -periodic. There exists a solution v if and only if ({) = 0, where {-) denote

the average over'Y .

Using this result, (3.15) has a solution if (F},0) = 0. Note that (3.33) guarantee
also that (Fy, ) is unique. Now (3.15) can be written as

1

ou (9u
S G ey an= | ra (3340

7,7=1 y]

Replacing (3.34), and since f = f(x), we find that u° has to satisfy

P2 J ai Z e L ) gy =y, (3.35)

S 1 0y; Oy, é’:nj
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or equivalently

& an o*u®
=1\Y|f. .

- ([ (ke

ik=1 JY

Consequently, (3.36) is nothing else than

S0 o Ou .
-3 L) - s, 337
where u” € H? and
OXk
|Y|J Kix — ”& 5 dy, Vi, k = M. (3.38)

The existence and uniqueness of u” e Hé(Q) solution of variational form of (3.37) in the

weak form follows from Lax-Milgram theorem.

3.3 Homogenization of parabolic equations: some results (PERS-

SON et al., 1993)

In this section we consider the following sequence of parabolic problems:

Lou®
€ £ = 57 °(0) = )
s fou(0) =g (3:39)
u e L*(0,T; Hy (),

where (2 is an open bounded subset of R" and where class { K.} of operators has the form

(020, (3.40)

2,j=1

We assume that the functions K°(z) = K, j(x/¢) are mensurable and satisfy
the coercivity and boundedness assumptions. Further, p°(z) = p(z/e) is assumed to be
positive and to belong to L*(£2) and f¢ are assumed to belong to L*(0,T; L*(Q)),T > 0,
and g is assumed to belong to L*(€2). The main result is that the sequence u° of solutions
of (3.39) converges weakly in L?(0,T; H}(€)) to the solution u° of the following problem,

homogenization problem associated to (3.39)

<p>*+Ku = f,u’(0) = g,
= LQ(O,T; Hy(Q)),

(3.41)

as € tends to zero, where () is the average over Y and the operator K is of the form

Ko el (3.42)

Z?
a[L’i J &vj

4,j=1
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The coefficients K, in (3.42) are defined as (3.38).
The parabolic differential operators P° and P are defined by
.0
P.=(p pris K.) (3.43)

and
P= (<p>§t + K). (3.44)

Consider the problems (3.41) and (3.39). We say that the sequence {P.} G-

converges to P as ¢ — 0 if

u® — u’ in L*(0,T; Hy(Y)) weakly, (3.45)
and ot o
. ou u’ ' "
K ; 5, — K?’jgjm L*(0,T; (L*(Q))") weakly, (3.46)
whenever
fe— fin L*(0,T; L*(Q)) weakly. (3.47)

Theorem 2. Consider the problems (3.41) and (3.39). If K5 ; is Y -periodic and symmetric,
if p° is Y -periodic and uniformly bounded and if f¢ — f in L*(0,T; L*(Q)) weakly as
g — 0, then, P G-converges to P.

For more details see (PERSSON et al., 1993).

3.4 Homogenization of our multiscale colonic cell problem (2.21)

The main benefit of the homogenization is that it permits to describe, with
a simpler model, a very complex, periodic, and multiscale problem, providing numerical
solutions which can be easily computed. We describe in the following the homogenization
for the elliptic and parabolic equations (2.21). We use in the next sections the notation
C¢,p° instead of C=, pF.

3.4.1 Elliptic equation

Firstly, let is begin by homogenizing the elliptic equation using similar steps
of that discussed in Section 3.2. In what follows, we consider the Einstein notation. The
elliptic equation is

0
(3%-

6} £
(Agjag) — |gpECE = fe. (3.48)
J

and where f(x,y) = |g(y)|8(y)C(z,y) with f*(x) = f(z, f) We suppose that exists an
£
asymptotic expansion for p° and f° as function of . Then, p°(z) = p°(x) + ep'(x,y) +
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e2p*(x,y) + ... with each p' and its derivatives Y —periodic with respect to y and and

fe=fo+eft +e%f?2 + ... . Therefore we have
op°  0p°  op' opt op*\ | 5 ,00*  Op°
or = Gn T o) TG ) e G e (3.49)
op°
and then let i := Aj;——. From (3.49)
ﬁxj
5 0 1 2 aps
hi = hi(x,y) +eh; (z,y) +&°... = Aij(y)%, (3.50)
J
where ) S0 A
0 A () (PP
hz’ (a:,y) - Az,j(fg)(ax{ + (f}y
op op
S hi(x,y) = Ai’j@)(axf. + aT,) . (3.51)
opf  opit
l — .. —_—
| il y) = Ai()( o o

We have in partlcular that each hl(z,y) is Y —periodic with respect y. Since in general

0
p w(x, g) 8¢ 6¢ we can rewrite equation (3.48) in the form
X € x; €

(_

Note that since |g|°4°C* has not € powers with negative exponents we have equalizing the

0 10
ox; gayz

) (A +ehi +...) = f(). (3.52)

e powers in (3.49). Which allow us to get the following powered e equations:

e The ¢! equation:

ohl 0 op®  opt
o Lx,y) =0 < a—yz(A”(y)(a—% + (,}yj)(a:,y)) = 0. (3.53)
e The £° equation:
ohY  oh! 0
(Y i - 54
((%Q + ayi)(x,y) oz, y) (3.54)

where f*(2,y) = |g(y)|B(y)C°(x).
By applying the operator {-) to (3.54), we have Vz € Q

(Bho (3h1

)- (3.55)

On the other hand, by using the divergence theorem we have

oh; J&hl 1
_ - ) dy = —— ihi(x,s) ds 3.56
T T T e )
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where 17 = n; is i — th component of the the outer unit normal on the boundary Y of
Y. But since hj (z,y) is Y —periodic in y, then the integral on two opposite faces of JY’

takes opposite values because h(x,y) (resp. n(y)) takes the same (resp. opposite) values in
1

Oh;

homologous points. Thus using (3.56) we conclude that —( 5 “(x)) = 0 and using (3.55)
OYi

we get

<ah0> (). (3.57)

The next step is to obtain a relation between (h°) and p°. We write the local

equation (3.53) (for a fixed z) in the form

0 op
o (Aij(y)aT/j

&.Al j
0y

(2.9) = 2 (a)

63:]-

() (3.58)

and we consider it as an equation in y with the unknown p'(z, y). Here z is just a parameter
and the equation may be regarded as a problem depending on the variable y only. Therefore

it suffices to consider the cell problem

J OXk

~ oy, Al )ayj

0A;
oy;

W) =—-——-() (3.59)

Now, assuming that a solution xx(y) of (3.59) is given, for k =1,2,...,n. By

using the linearity, we conclude that the function

Z y) + clz).

is the weak solution of (3.58). Thus we have

h(z,y) = Az‘j(?/)(gi(x)JrgZ(x,y)) = Ayly )(Zf; +Z§izg’;(:c,y>) (3.60)
- 3 Cal) - A S ) o .61)

and by (3.57) we obtain the homogenized equation associated to (3.48)

o o )
T oz (Al’fax (2)) = ), (3.62)

where

0
zk - <Alk ZAU an (363)

are the homogenized coefficients.
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3.4.2 Parabolic equation

In what follows we suppose that the diffusion matrix D¢ is not singular and

constant. A similar analysis can be obtained when D = D(y) varies only at the microscale.

00 . 0C* . 0C° 0p°
9 ot (A” oz, ) =4 Ox; 0x;

9" (a® = p°C7) = 0 (3.64)

£

, oC . .
Defining hj = Aj;—— e we consider the expansions hS = h(z,y,t) + ehi(z,y,t) + ¢

e¢]
and C*(z,t) = Co(x,t) + ZEiCi(x, y,t). Note that h¥ with & = 0,1,2,... have a similar
definition of those defined in (3.51) with p replaced by C.
0C*® op*

4 Ox; O, g

terms. Using an similar analysis of that implemented in the previous section, the ¢

has not 2

Since p° = p°(x,t) and C° = C°(x,t) the expression A

-1
equation is associated

Kl O )+ 1)) = 0. (3.65)

ox; oy;

Note that since D is a non singular matrix independent on x the equation

(3.65) yields to . 1
(45 (0) (5 (o) + S(w.0) =0 (3.66)

@zj

7
oy;

Using the Y —periodicity of A and its symmetry, we have that the €° equation

is

o0C? onY  oh} op®  opt, ,0C° oCt
= D(= Y A (A R 0 — ) = 0.
)15 =Py ) —Au(G + ayi)(axj + 6y]) COlg(y)|(aly) = By)C? =0
(3.67)
As before by applying the mean operator {-) to the Y —periodic function
ohi(z,y)
————=~ we have
0Yi
oh!
and then applying the mean operator to (3.67) we obtain for each z € {2
800 onY po opt, 0C° oCt
Qob— = PG ) = Al + 3) (g + 5,70 = Clglla— 5C7)) = 0. (3.68)
é’yz oxrj  0y;

As in the previous section, using the ¢! equation (3.66) we get

(x,y,t) Z ﬁxk )+ ci(z,t).
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where x; is the same solutions of (3.59) obtained before. Substituting C'*(xz,y) into hY

oc?  oct oCY  aC? oy,
R = A (—— 4+ )=A,. _ '
Po= Ayl o o ) = Ay ()( 52, 2ur oy, (%) (3.69)
é’xk é‘CO
= i t .
ZA] ayj m —(z,1) (3.70)
and then applying the mean operator {-) to h) we have
oC?
hdy = A5 (3.71)
0 Al
where A% is defined in (3.63). We observe that since h) = Aw(aiag)
0x; 0y,
op®  opt, ,0C° oC! o 00" opt 0, 0p° 00"
i (= —-— = h; h; h; 72
Aj(axi—ir&yi)(@xj * 8yj) (8% 8%) (5x2)+ (8%) (3.72)
and then by applying the average operator {-),
op®  opt 500 0 o OpY oC®
(= h; - — .
!
where we used the relation (3.71) ; true since using the
divergence theorem and (3.66) we obtain
op! 1 0 800 é‘Cl
0 =—— | —(A; d : 74

Therefore using (3.73), (3.68), (3.57) and (3.62) the homogenization of (2.21) is

{ WDES = DY AV 4 V- AT 4 gl - BCY) (3.75)

(AOVP ) = glB)C”.

We can obtain this homogenized system starting also with the parabolic equation

without developing in series its derivatives as done in (3.64). Consider

NGO J 00 0 c 8p e e
0 v, 0y 10 .
since aw(:v, E) = %(m,y) + ga—yw(x,y) we obtain
o, .. 0P 0 A op®  opt opt  op? i
or Wiag, €)= o G+ 5 oGy, +5,) 725 0)

1o, op®  op' op' | op° 2 i i
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Then the ¢! equation becomes

0 ocY  aCt ) o o o
fDaiyZ(Az](y)(T%JFTy]))*aiyl( ”(67;]+57y]>0> = 0,

but from (3.53) we get

0 ocY  oC!
*D*(Aij(y)(é?j + En

o )) = 0. (3.77)

Look that this is the same ™' equation obtained before in (3.65). The £ equation is

oC0 AR ohl. @, L
W1 — PG + 3~ PGy, * 3,
O (4 opt | O\ o 00 O 0
= (GG + 3¢+ (G 500h) = Clawlat
= 0.

Look that for the Y-periodicity

e opt ot o 0" opt 4 _

and then applying the average operator and using the equation (3.77) we get a sim-

0"
ilar expression to C'(z,y,t) = — Y ——xx + c1(z,t). Now, using also p'(x,y,t) =
k

k
0

0
— Z &i Xk + co(z,t) we obtain the following homogenized system
Tk
k

0
ah e~ DY - (A'VC0) V- (A'F4°C°) ~ OXJgla) = 0

=V (AVD") = (Jg|B)C°

(3.78)

which is equivalent to (3.75).
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4 Heterogeneous Multiscale Method(HMM)

The main purpose of this Chapter together with Chapter 3 is to provide
an approximation of the original multiscale problem. In Chapter 3 we saw that the
homogenization provide us a strategy to represent at the macro level the behavior of a
multiscale problem making the heterogeneities smaller and smaller. The HMM method
is a framework to design multiscale methods for a wide variety of applications. The aim
of HMM is to study the macroscopic behavior of a problem for which the macroscale
model is only partially known whereas the microscale model is completely known. The
first natural idea could be to solve the microscale problem in the whole domain, but this
will require a huge computational effort since the mesh needs elements with dimension
smaller than . HMM uses instead a efficient numerical method at the macroscale, as if the
macroscale model is completely known, and then solves numerically some microproblems

in the regions where the macroscale information is missed.

After a brief description of the HMM method in Section 4.1, we discuss the
HMM-FEM method to solve a generic elliptic Laplace equation in Section 4.2. Here we also
present some known convergence results of this method to approximate the homogenized
solution of parabolic or elliptic multiscale equations. This result is used also to give
estimates of the approximation error between HMM-FEM solution and the theoretical
multiscale solution of parabolic and elliptic equations. Then in Section 4.3 we describe our
HMM-FEM method to solve the coupled elliptic-parabolic multiscale equations in 2.21.
We plot at the end of this Section one test results of the implemented HMM-FEM. During
the implementation of HMM-FEM we can compute, as described in Subsection 4.3.1 an
approximation of the homogenized tensor A°. This is useful to approximate A" that is
computationally complex to be obtained and thus we can solve the homogenized problem
3.78 with a such approximated homogenized tensor by a simple FEM method based on
Backward Euler in time and piecewise linear finite element basis on space. Thus in Section
4.4 we measure the error in L, and H; norm between the HMM-FEM numerical solution
and the homogenized numerical solution. We compare then such results with the expected

norm presented in Section 4.2.

4.1 The HMM framework

We consider a microscale model, written as

f(u,b) =0 (4.1)
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where u is the state variable and b is the set of auxiliary conditions, such as initial and
boundary conditions for the problem. We are not interested in the microscopic details of w,
but rather the macroscopic state of the system which we denote by U, where U satisfies

some abstract macroscopic equation:
F(U,D) = 0. (4.2)

where D is the missing macroscale data. The goal of HMM is to compute U using the
abstract form of F' and the microscale model (4.1). A such unknown U is obtained with
the HMM method in two steps:

e Selection of a macroscopic solver even though the macroscopic model is not completely

available.

e Estimation of the missing macroscale data D using the microscale model.

In the following section we discuss a particular HMM based on finite elements
method for solving an elliptic equation. Later we present a HMM-FEM method for solving

our multiscale elliptic-parabolic problem.

4.2 Review of HMM-FEM method

Consider
~V(A*(2)Vui (7)) = f(z), € Qc R (4.3)

Here € is a small parameter that represents explicitly the multiscale nature of the matrix
A®(x). The HMM-FEM method (ENGQUIST et al., 2007) permits to solve multiscale PDE
problems at the macroscale level avoiding the theoretical problems of the homogenization.
In this section we present the HMM-FEM that is a HMM method based on finite elements,

We discuss its deduction and numerical implementation.

4.2.1 The macro solver and the needed data

We use a finite element approach to solve at macroscale the multiscale problem
(4.3). We denote by Xpy the macroscopic finite element space which can be standard
piecewise linear functions over some triangularization Ty where H denotes the element

size. The data needed is the stiffness matrix on 7y : S = (5;;), where
Q

Here Ap(x) is the missing effective conductivity tensor at scale H that describes the

behavior of the multiscale tensor A°(x) at the macroscale level and {¢;(x)} are the
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basis functions for Xz. We can evaluate S;; simply by numerical quadrature: let f;; =

ngz(w)TAH(x)quj(x), then

L
S, = Lfm =3 fow:) dr~ S 1K w0, (4.5)

KeTy =1
where {z;};,—1_» and {w;},=1, ¢ are, respectively, the quadrature points and weights of
the integration quadrature formula used to approximate the integral in the macro element
K. Here |K| is the volume of element K. In this analysis we use quadrilateral or triangle
elements with, respectively, £ = 4 and £ = 3 quadrature points. We suppose also to use
the same quadrature formula for each element K. Our problem reduces to approximate
the values {Ag(x;)}, that can be done by solving locally the original microscale problem

around each quadrature point x;.

Let Is5(x;), also denoted by Is,, the cube of edge 6 and barycenter x;, and

consider a microfunction ¢ such that

—V - (A% (x)Vo(z)) =0, x € Iy, (4.6)

The local microscale problem (4.6) is constrained by the local macroscopic
state through the generic constraint:
1
1] 1y
for some fixed constant vector G (ENGQUIST et al., 2007). In section 4.3 we will present a

specific constraint in our multiscale problem to define the associated microscale problems.

L e (4.7)

Two natural boundary conditions for the microscale problem are the periodic boundary

condition and the Dirichlet boundary condition which the above condition is satisfied.

e Dirichlet: In this case, Dirichlet boundary condition is used for problem (4.6):

¢*(r) = Gx, on 0l;. (4.8)

e Periodic: The problem (4.6) is subjected to:

¢°(x) — Gz is periodic with period I;. (4.9)

Thus in this case we can define the effective conductivity tensor at x; by the relation
(AN )1, = A (2){V &)1, (4.10)

where (v);, = v(x) dzx. The main objective of the HHM-FEM is to link efficiently

1
Ls| Ji,
the microscale behavior of ¢° with Ay (x;), under the assumption that Ay (x) is practically
constant around x; for a small §, and that the average gradient of ¢° is fixed independently

of the element and of the quadrature point considered.

In summary, the overall algorithm in 2 = R? consists in the following steps:
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e Determine for ¢, ¢5 by using the constraint (V¢35 ), = e;.
e Obtain the approximate values of Ag(x;) by using (4.10).
e Assemble the effective stiffness matrix A (4.5).

e Solve the macroscale finite element equation using the effective stiffness matrix A
(4.5).

This overall procedure is called herein HMM-FEM method (ENGQUIST et al.,
2007), that stays for Finite Element Heterogeneous Multiscale Method. The homogenization
theory allows us to define the effective (homogenized) conductivity tensor, by considering
the infinite volume limit (¢ — 0) of the solution of the microscale problem subject to the
constraint that average gradient remains fixed. When the microstructure is periodic, the

infinite volume problem reduces to a periodic problem.

Since the homogenization is another technique to describe the multiscale
problem averaging the micro-behavior at the macro scale level, it is natural to consider
the HMM-FEM solution as a approximation of the homogenized problem. In (ABDULLE,
2009), HMM-FEM is used to solve an elliptic equation as (4.3). They choose piecewise
linear macro and micro FE spaces and periodic coupling to provide the following a prior
convergence rates (§ = ¢)

Huo — 'LLHMMHHI(Q) < C(H + (2)2), Huo — uHMMHL2(Q) < C(H2 + (2)2) (4.11)

For the following parabolic equation

ot (x,t) = V(A (z,Vui(z,t))) + f(z) inQx(0,7)
u(z,t) = 0 on 02 x (0,7 (4.12)
u?(x,0) = g(z) in

under some refinements strategies, one can get the following error estimates

),  (4.13)

maxi<p<n|u’ (-, tn) — UHMM(tn)HL2(Q) < C’(At + H? + (

(D) AV 1) — VUMM (1) |20) 7 < C(At+ H + (2)). (4.14)

For more details see (ABDULLE; HUBER, 2014).

4.3 HMM-FEM applied to our problem

Let consider our differential problem defined in single crypt I' = R?

oC
— = V- (VrpC) = V- (DVC) —aC =0
T r- (VrpC) r- (DVrC) — o (4.15)

—Arp = C
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in I x (0, 7], with the parametrization ¢ : Y — I', as described in Chapter 2. We can

rewrite the system (4.15) in local coordinates (y1,y2) € Y as follows

= V- (AVpC) + V- (DAVC) + |g|laC
-V (AVp) = [g|5C.

(4.16)

If we accept this choice of variables in Y, we should change (z,y) with (y1,¥2) also in
2.2.5. The variational problem associated with (4.16) is the following: Find C,p e Hy(f)
such that

f |g| v dy = —f C(Vp)" AV dy — Df (VO)T AV dy +f lglaCv dy
Y Y Y
| woravedy = [ iglsco
Y Y
(4.17)
where v € Hy(Q), A = (9) " '\/det(g) and |g| = v/det(g) as described in 2.2.5. Note that

oo
ox’ oy’

Let € be the microscale dimension of the crypt in colon. The two dimensional

we are using the column notation for the vectors, for instance Vo = (

multiscale problem (4.17) is modeled in a rectangular domain €2 formed by a periodic
distribution of planified crypts I' as shown in the figure 9. In order to define a problem in
Q2 we consider the multiscale periodic coefficients A°, o, 3° defined in 2 in the following
way: Vo € ()

AifyeY

A (z) = A(L) with A(y) =
€ by periodicity elsewhere.

Similar definitions are valid for o® and 3°. Then we can rewrite the variational

problem (4.17) in €2 as follows

J r |aC v di _ f CE(Vpf )T A (V) da — D J (VO AV da
Q Q

X + |g°|a*C*v dx (4.18)

Jﬂ 9°16°C de.

In the following, we analyze separately the above equations. First, we consider

J (V)T AV da
L Ja

the parabolic equation (4.18);. The finite element discretization used is standard. Let Ty
be a partition of 2 in simplicial or quadrilateral elements K. For this partition we define

the finite dimensional subspace V? = V?(Q, Ty) of Hy(Q2) by

VP(Q, Ty) = {v" € HY(Q) : u|x € RP(K), VK € T},
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where RP(K) is the space of polynomials defined in K with largest degree p. The solution
of the discretized problem reads: Find C*(t) € V?(Q, T3) such that

H
L \gg\a;vH dx + BE(CH(t),v") = 0 Yo € VP(Q8, Ty), (4.19)

where

BE(CH v = J CH(Vp )T AV + D(VCH)T A (Vo) — |gfla" O dx.  (4.20)
0

We proceed with our HMM-FEM method by rewriting the bilinear term (4.20),
such that it will depend on some microfunctions v" whose averaging resemble the v

macroscale functions in V?. For v", w € V?(Q, Ty) we define

B, wf) = By (0", w™) + By, w) + Bs(v™,w™) (4.21)
where
A £ w
By(v" w?) = Z K (v, V)T AVl d (4.22)
KeTh =1 |K6Kl| K
c
Bo(v wl!) = Y D(Vul )T AVl de (4.23)
KeTy l=1 |K‘5Kl| Ks)
c
By, w) = - S| g latu g, do, (4.24)

KeTy l=1 ‘K6Kl| K

where v?(l,w?{l are appropriated microfunctions defined on sampling domains Kj, (written
as K;) and the factor | Kj,| gives the appropriated weight for the contribution of the integral
defined on Ky, instead of K. Note that B(v" w') is an approximation to B* (v’ w"), this is
because we used a quadrature formula with weight wg, associated to the quadrature points
x; in the macroelement K to approximate the integral in K. Then we find appropriate

microfunctions v?(l, w’}(l defined only in the sampling domains 5, (that resemble the

H

macrofunctions v, w! in I5,) that verifies Bx = By ik + Ba x + B3 k. Sometimes we write

K; and I; instead of K5, and I5,.

For each macroelement K we compute the sum contribution in (4.22)-(4.24)
by computing the microfunctions U?Q, w?ﬁ obtained by solving microfunctions on sampling
domains Kj;,l = 1,..., L. The microproblems read as follows: find v?(l such that (v?(l —
vfh k) € S (Ks,, Ty) and

per

J v (VE)TAVda + | D(Vu!)" AV de — | |¢flatv)z"de = 0 V2" € S1(Ks, Th),
I I I

l l l (4.25)
where

Viim 1, () = 0" (2, ) + (@ — 1, ) V0 (2, )
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is a linearization in I, of the macrofunction v at the integration quadrature point z K,
and
S Ky, Ta) — (=" e HY(Ky): 2|r € RIT), T e n,J Da)dr — 0}, (4.26)
Kgl

Sper(Ks,. Th) {ve S (Ks, Tn);v periodic in Ks,}). (4.27)

In what follows we denote by

o {pMMmac the basis of the macro FE space V' (€2, T), where M,,,. is the number of

discretization points in the macrodomain 2.

o (¢ Kl}m:ic the basis of micro FE space S'(Kj,, Tr), where M, is the number of

discretization points in Kj,.

Following a standard assembly process for the macro form (4.21) we compute
the contribution By in B associated to the macroelement K by the contribution of the
microfunctions. We use the macro basis functions with non-zero support in K denoted
by gpf{ .0 =1,..., ug, and determine By based on contribution computed in sampling
domains as follows:

A

BK = E (sz ’90] zg 1= ZBWLK 907, 7(pj),] 1 (428>

UJKZ

Il
e
=

: |(L O VPAVl -+ Vol AV - — |glagh ol )i (4.29)
l 1

~
Il

1

w
KI;Z| (Aﬁl(Blmic,Kl + BQmic,Kl + B3mic,Kl)AKl)' (430)
l

I
_Dﬂh

Il
—_

]
Then, for each sampling domain K5 < K and considering the associated linearized macro

basis function ¢/}, .. ; we write instead of (4.25) the minimization problem (ABDULLE;
NONNENMACHER, 2009)

¢, =argmin | Vu"(Vp)T A (2)Vu" + D(Vw")" A (z) (V)" — |g°|la*w"w"dx
K (4.31)
over all function w" € S'(Ks,7;) such that w" — ¢f}, x . € S5, where ¢}l . (z) =
pi' (z5) + (x — 25) - Vipi' (25,)
To compute (4.31) we expand @[}, . ; in the basis of S*(Kj,, Ts)

mz(‘

@gn,Kgl, Z ﬁzm%{él, (4.32)

and the above minimization problem leads, by introducing Lagrange multipliers A, to a
saddle point problem given in linear form by

(Bimic,k, + Bamic, i, + Bamic i) K5, i + M\ = 0, (4.33)

M(C%K5l i — Pr, i) = 0, (4.34)
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where ﬂKél i= {@,m}%ﬁic and o g, = {nim}%ﬂc are associated to the solution and M is
the matrix of the constraints detailed below. We then have

Mmic

gp%gl,i = Z O{mgb};((jl,m' (435>

m=1

The matrix (B, . + B

mie, g Smies, T Bmici,) has coefficients

h
(Blmic,Kl + BQmic,Kl + B3mic,Kl)mn = f gbK(; m p€>TA6V¢K(5l,n

+ V¢K5 m)TAEV¢K§l
- €|g |¢K51,m¢K(§l,n'

In order to write M we observe that if (" — i) € St (K5, T) we have

per

L f (" — olh) dr = 0,
Ks

2. (¢" =l )(p) = ("= ('), for all L couples (p, p') of boundary nodes on opposite

edges avoiding redundant couples at the corner.

In this situation, the matrix M has the form

bi ... ba.,
M = ( b me) , (4.36)
M

where the first row corresponds to the condition 1 and the L x M,,;. matrix M corresponds

to the condition 2.

The problem (4.33),(4.34) is solved for each function gpﬁn’ivml,i =1,..., k.

This is done for each quadrature node of the macroelement and we obtain

WK
BK - Z |K l| Blmzc LK + Bszc N.¢ + B3mzc KZ>MKZ) (4'37>
with @k, = (ay1, ... 7041,#K)T. Using the simple backward Euler method in time we have

the following weak form of the parabolic multiscale equation

J 1g°|CH (t )0 de + AtB(CT (t,), p™ o) = J CH(t,_1)v"|g°| da. (4.38)
0 0

The mass matrix is given by

W= | el o (439)

We can calculate that integral for the K element as

j S| de ~ | () f ool du, (4.40)
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where z g, is the barycenter of K. Since |¢°(2k, )| need to be computed, we can approximate
on the microdomain around xg, during the integration process. The sampling of |¢°(x, )|

can be done in the following way

97 (r,)| == R D |g(2i,,yr)], (4.41)
ReZy,
where 7, is an axiparallel mesh of the unit cell Y with congruent rectangles R of size h

and yg is the barycenter of the rectangle R.

Thus using HMM-FEM discussed in this section we can solve the parabolic
equation (4.17); by using the following linear system

(M + AtB)CH(t,) = MCH(t,_,). (4.42)

where B is the stiffness matrix B = (B(¢!, gpf ))ij=1,.. M. and here for abuse of notation

-----

we denoted by C(t,) the vector with components C (2;,t") for i = 1,..., M,,q. Where

x; are the nodes in the mesh Ty.

A similar methodology can be used for solving the elliptic equation using the
HMM-FEM (ABDULLE; NONNENMACHER, 2009).

Byp™ () = b(C™ (ta-1))- (4.43)

where the matrix Bj is obtained as before from the operator

By )y = ) 2 R (Vo)A (V)T da (4.44)

KeTy 1= 1’ K| Ks,

and b a suitable operator for the right-hand side. That contribution can be calculated for

the element K as
J f<pH dr ~ (Z‘Kb)f goiH dz, (4.45)
K

where zx, € K is an integration point located at the barycenter of K.

4.3.1 Approximating A"

For numerical purposes, we need to find a way to approximate the homogenized
tensor since is not too easy to calculate it analytically. We use rectangular simple domains
of edge § = e.

x

2)
x

During the implementation of HMM-FEM method, with A®(z) = A(x, —), we
€

compute for each quadrature point x; (I = 1,...,4) in the macroelement K the matrix

1
(M2 i1 = ). Az, y) VeVl dy (4.46)
1 5,

43.1.1 Case A%(x) = A(x,
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that can vary in each element K for each [ = 1,...,4. I; is a simple domain along the

point z; of edge ¢.
We have used previously the microfunctions {¢!} in Kj, associated to the nodal

macro basis {¢} of the rectangular element K and to the quadrature point x;, that satisfy

i z a‘PHm
() = Dl () + & 3 X1, 2) 2 1) (.47

i=1,2
where S%H,zml (x) = gojH () + (x— xl)wa (z;) and x*" are solution of the cell problem whose
(V) is:

variational form in S;er

JY VX Az, y)Vo dy = — L/(A(x, y)e) ' - Vo(y)dy, Vv e S;ET(Y). (4.48)
The following property is valid, see (ABDULLE, 2009),
(M2)ij—12 = A (2) V! (2) Vol (1), (4.49)
with A%"(x;) that is an approximation of A%(x;) defined as follows

Ao () =

= — | Alx,y)(I + Vyx(z,y)) dy (4.50)
|Iél‘ I(;l

In the following we give an easy way to build A%" that is based on (4.49). Let

consider ; the nodal basis defined in the reference element K = [0,1]?, where

( ) = (1=z)(1—m),

( ) = (1—mz)z,
@3(r1,m2) = 1129,

( ) = (1 —x1)x,.

We have that ¢;(z) = @;0® ! (x) where ® : K — K is the linear transformation
between K and K, that satisfies

D(x) = v1¢1(T) + V2@ () + V3P3(T) + VaPa(z), Vo € K

where v;,i = 1...r are the vertices of K.

Moreover we have

Vii(z) = Jg-1(2) Vi (@7 (2)).

Note that the following relation is also valid Jy1(z) = (J4(¢7'(2)))" =
J; (@' (2)). Therefore from (4.49) we have

(M2)i = & Jg A () J5 ¢, (4.51)
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and so

M} =N Jg A (@) J5TE (4.52)
where ¢ = (V@1 (%), V@a(Z1)), (or equivalently & = V(7)) and thus 7 = J,(7;) that
is the Jacobian of ¢ = (@1, ¢2) in the | — th node z; of the reference element K. Thus we

get
ME = Jpd P A () ;T TE = BT A () BT (4.53)

%)
with B = Jd)(.fl)ng(.fl).

Using (4.53) we have finally the relation that link A%" with the already com-
puted mass matrix

A% (z)) = BM! B” (4.54)

43.1.2 Case A*®@ = A(E) with elements K of same dimension
€

T
When A depends only on the microscale as in our case we have A = A(—) and
€

then M} represented in (4.49) or equivalently in (4.53) is constant with respect K, but

depends on m = 1,...,4 and so it can be represented as Mfl and satisfies
1
= 7] Al)Vervehdy = A"Vl (x) - Vil () (4.55)
6l I§l
with .
x
AMa) = = | AT+ Y (E))dy (4.56)
sl e

that is independent of m and K, then it is an approximation of A°(z;). We note that in

(4.56) X" = (x*™");=1.2 is the vector of the solution of cell problem (independent of m and
K)in 83, (V) | S0RA@)Te dy = — | (A@)e,)" - Voly) dy. o € S, (7).
Y Y

Following the same step as in the previous subsection (see (4.50)-(4.53)-(4.54))
we get
Oh( Y _ h
A" (z)) = BM" B! (4.57)

with B = Jd)(ti’l)n]gl(i’l)-

4.4 HMM-FEM approach for multiscale solution

After developing the HMM framework to our problem. In this simulation we
1 h 1
fix H = L T =0.1,At =0.01,0 = e = le — 06, 5% which provides the results shown
in Figure 10
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Figure 10 — Numerical solutions of the multiscale problem.

In the top and bottom row we have numerical solutions of the pressure and

density at the times ¢t = 0.01,¢ = 0.04 and ¢t = 0.1 from left to right.

4.4.1 Numerical convergence of HMM-FEM to homogenized solution

Example 1. In this example, we use the method described in Chapter 5 to get an approxi-
mation of the homogenized solution py, Cy to homogenized problem. We are able to compare
numerically the HMM-FEM solution with this homogenized solution. To approximate the
parameters, present in the homogenized problem and listed below, we use a integration

numerical method of high order to not have large errors.

o | 1.012724469451771 0.000000000000033
0.000000000000011  1.012724469451337 |’

Y

{|gB8> = 0.013424520172113,
{|glery = 0.008393086150538,
{g]> = 9.527732571537580.

In this simulation we fix an uniform mesh h = k = 9_16’ T = 0.1, At = 0.01.

following figures shows the plot of the obtained homogenized solution.
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Figure 11 — From top to bottom we have numerical solutions to homogenized problem at
the times ¢ = 0.01,¢ = 0.04 and ¢ = 0.1.

To compute the HMM-FEM errors into approximating the homogenized solu-
tion, we first calculate a fine numerical solution of the homogenized problem using the
final system of equations (4.12) and the approximation of the homogenized tensor using

HMM described before. Then we solved that system using finite difference (Example 1).

Table 3 — Errors and rate of convergence of the HMM method

L H [ leplee [ leylan || Raten, || feclz || [ecln | Raten, |
1/3 || 9.7270e-03 || 9.7360e-03 - 1.1662e-01 || 3.5464e-01 -
1/6 || 1.4584e-03 || 3.6590e-03 1.41 4.6964e-02 || 2.18010e-01 0.70
1/12 || 4.5137e-04 || 1.8348e-03 0.99 7.4453e-03 || 1.1500e-01 0.92
1/24 || 3.9449e-04 || 8.8498e-04 1.05 3.7053e-03 || 5.1204e-02 1.16

That table show us a second order of convergence for pressure and density in
L? discrete norm and first order of convergence in H' discrete norm, where ef and e are
the errors between the HMM approximation and a fine finite difference approximation
(Hef | and |eZ| are defined using the discrete norms provided by the next Chapter). Note
that these errors are very familiar with (4.11) and (4.14). There are some analytical results
that provide convergence rates to simpler elliptic and parabolic problems as (ABDULLE,
2009), (ABDULLE, 2012) , (ABDULLE; HUBER, 2014), but there are not works that
deal with multiscale coupled problems. For a while in this Chapter we applied the HMM

framework to our system and searched for some convergence indicators. Our next step in
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a future work is to prove analytically this convergence of HMM-FEM numerical solutions

to the homogenized solution.

(a)

1.5564x-3.348

1.7585x-0.166

(b)

1.1375x-3.461

Figure 13 — Convergence

0.92988x+0.064745

(-]

rates for HMM approximation (Density).
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5 Supraconvergent FDM for the crypt cell dy-

namics on non uniform meshes

In this Chapter we present a numerical scheme for the cell proliferation problem
inside the colonic crypt represented mathematically by the elliptic-parabolic system (2.7)
that depends on the cell-cell adhesion p(z,y,t) and proliferative cell density C(z,y,t).

f ]g\aa? = V.- (AVpC)+ V- (DAVC) + |glaC, in S x (0,7

) =V (AVp) = |g|pC, in S x (0,77 (5.1)
C=p - 0 on 0S5 x (0,7T]
C(-,0) = () in S.

We solve (5.1) by using a semi-discretization method. The proposed numerical
scheme scheme is based on finite differences on nonuniform meshes that provide good
convergence and stability properties, which are proved in the following paragraphs. The
method has a second order convergence using a discrete norm in L?([0, T'], H3 (S)) norm for
the density and second order for the pressure using a discrete norm in L* ([0, T], Hy(S))
norm. A such order is not expected since the truncation error decays with second order in L.
For this reason the proposed finite difference method, which is equivalent (see next Chapter)
to a finite element method, is supraconvergent (see Appendix B.6). The proof of this
supraconvergence is described in the followings Sections in details. A such supraconvergence
is here proved to be valid for solutions C,p that belongs in L*([0,T], C*(S)). In what
follow we solve a semidiscrete problem, with a space discretization using appropriated

operators and then the semidiscrete problem is solved by Backward Euler.

5.1 Preliminary results

N M
Let H = {(hi,k;) € R?[hs, ky > 0,45 = 1,...N,M; Y hi = Y k; = 1}, we
i=1 j=1
denote by H,,,, the maximum step size in the two directions: Hy,q, = max {h;, k;}. We

(hik;)eH
suppose that exists C' > 0 such that Hyee/Hpmin < C. Let (hy, k;) € H, we define by Sy

the discrete mesh in S = (0,1)?, as follows

SfH = {($Zay])%%|($l7y]) = (xi—l + hiayj—l + k]) € gaivj =1... 7N7 M7 (1'07340) = (070)}

We introduce also the following sets

6SH= {(Qf@,y]),’l:o,N,jZO,,M}U{(Q?l,y]),Z:O,,N,]ZO,M},SHzg/aSH
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Let Wi, Wi be the following sets of grid functions

Who = {vH:EHR,szom oSu},
Wy = {v:5; >R}

In the following we denote by v - the value v" (z;,y;). We denote also V_p =
(D_y, D_y) that is V_gv!; = (D_,v]% D,yvfj) where

2,77

ol — pH

H _ "ij i—1,j
D_yuf = Ui~V (5.2)
Ty — Tj—1
and . .
vt — vt
H _ 2¥) 17]71
nyvi,j = _7 (53)
Yi —Yj—1
In Wy we introduce the following inner product
0
N—1,M-1
H , HY _ H, H
(v w )y = Z hiy 1k 1viwis,
ij=1
for v w? € Wy and by | - ||z we denote the associated induced norm in Wyg. In

Wy x Wy we also use the scalar product

(?H,@)H)Hﬁ _ (UH’I,IUH’l)h’, + (UH’2,U)H’2>;€7, (54)
where
N,M—1
(w1t whhy, _ = Z]h(ﬁ,glgl (5.5)
i,j=1
(W2 wh?), - = }g hiyakjupswis? (5.6)
i,j=1
7 = (v o), W = (! w?) e Wy x Wy, and the induced semi-norm

|71 = A/ (T, T )

The centered operator V. = (d,,d,), uses

H H H H
Sl — Vit1j — Vit1j oH Vij+1 — Vij-1
ool = ) T H _ 2w+l 7uj=1
Y h1+hl 1 YT ki + k; 1
+ j -+

We consider also the operator Dy = (dp, 5k) defined by

his16tV/ S+ hdW2E
Sl — Uity 5.7
hvz,] hz+1 + h ) ( )
R ]{Z G+1 + /{3 . .

where 62" 1/2,j = D_,vf | that is 63/? is a centered operator of half step. Finally

1,57
1

by My = (M,, M,) we denote the average operator, where M, (v");; = i(vi’j + Uiﬂ,j)

(respectively for M,).
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Proposition 1. For all v, w"” € Wy, and a : Sy — R, A: Sy — R**? bounded we have

| Mpo™ - < 0" ]a, (5.9)
— (08 (a(x, )00 D), wh g = (a(My(x),y)D_v™, D_yw™),_,  (5.10)
—(0 0, w) g = (W7, 6wy, (5.11)
— (60w = (M,(v™), D_yw™), _, (5.12)
—((Sx’UH,éyUH)H < HV—HUHH%L_, (513)
[ADgo™ |5 < M|A[LIV-mv™|F . (5.14)
el Hma:(:
where X = {x;}iz1,.. N,y = {Yj}j=1,...:, With (z;,;) € S and <C.
Proof. For (5.11) we have
H H ET (Vig1,j — Vie1)
—(0v7,w )y = — hy1k. 11— I, 5.15
( ) Z’;l +577+5 hz 4 hi+1 5] ( )
| N-LM-1
= —5 2 ijr%(viH’jwm - ’Uz;l’jwi’j) (516)
ij=1
| M- N—2,M-1
= —5 Z kj+%vi7jwi_17j + 5 Z kj+%1}i7jwi+17j (517)
i=2,j=1 i=0,j=1
using vy ; = wy,; = 0 and vy ; = wyn; = 0.
For (5.12), continuing from (5.16) we add and subtract
N—1,M-1
Z k:j+;vi_1,jwi_,j we get
ij=1 :
1 VM-
_((511}]{’ wH)H = ) Z kj+%(v2-,j + Ui_l,j)wi_l’j (519)
ij=1
1 VM-
+ 5 2 kﬂ%(vi,l,jwi,l,j +Ui,17jwi’j) (520)
ij=1
= (My(v"), D_yw™); (5.21)
using vy ; = wy,; = 0.
For (5.13) we use that for € > 0
(517}1‘,')2
5xvzjj5yv” < 4€2J + 52(51/1)7;7]')2, (522)

then we use € =

s
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For (5.14) is enough to show that | Dyv™ |7, < C|V o™ |3 _ where
N—1,M—1
IDao™ 5 = > hay ik ((Gnvig)” + (Gkvi5)%). (5.23)
ij=1
We have that 3IM (C) > 0 such that

hQ(Dfoij)Q hihi+1Dfoiijin+1j h12+1(D—zUzj)2

(Opvig)? = - : oy (5.24)
’ (h? + hiq) (hi + hz.1) (hi + hiq)
< M(C) ((D_$Ui7j)2 + (D_I’Ui_;,_l,j)Q) (525)
. Hmax ; 2 2 .
since —— < C. It’s useful to note that h;(v;p)° < Chg(v;;)° for any i, k. O

In order to approximate the solution of the elliptic equation in (5.1) we use

the elliptic operator

La(f™) = P (AN (1)) + 0,(A%0,(F1)) (5.26)
+ 8y (A28, (F1) + 0P (AP (1)), (5.27)
associated to the matrix function A : [0, 1]* — R?*2. The truncation error of this operator

is then Tz, = La(Ruf) — V(AVf) where Ry f is the restriction of f in Sy. It satisfies

the following proposition

Proposition 2. Let f € C*(S) and Ty, = Li(Ruf) — V(AVf) where Ryf is the

restriction of f in Sy
T (wi,y5) = (Riy = ho)r(ws, y;, ) + (kja — ky)s(i,y5,1) + O(Hp,), (5.28)

where functions r(x,y), s(x,y) depend on the derivatives of A and f up to order 3. Fur-
thermore, Tg, satisfies, for each ¢ > 0, voll e Who

M
(T 0™ < gﬂﬁm CUV-rv™ o - + 3[0" %), (5.29)

where M is independent of h;, k;.

Proof. Tt is possible to prove (5.28), then we have

—1,M-1
(TE,AUUH)H - Z hz-i-lk “‘1 - hi)r(xi’yj’t)vfj
i,j=1
ﬁrst\;erm
1,M—
+ Z j+1 k'>8(xi7ijt>UH (O(‘anax) H)H

second term
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Using that vy ; = vy; = 0, the first term satisfies

| N-LM-1
5 (B = Wy, 0l
ij=1
| VM-
=3 *21 kj+%h?(r(xi—layjat)vi}£1,j_T<xi’yjat)vfj>
i,j=
RAS RAS .
_ 3 2( H
= =3 ”Z_:I ijr%hir(xiflayjat) 2]211 /<:j+;hZ JH a—x(x,y,t) dz)v; ;
or
‘|T||w max Y& H H a{L’ HOOHT%ALG'I M H
S # 2 kj+§hi|D—a:(Ui,j>| + - 9 Z kj+%hi|vi,j|
ij=1 ij=1
MlHﬁza:L‘
< e + C(I D™ [~ + 0" 7,
2 0 2
with M; = max { ]7”4007 a—r } Analogously we have an upper bound for the second
Z o0
M,H? 2 Jes|?
term : % C(|D_yo™ |7 + [v"[3), where M; = max { ”S4|OO, 6; OO} then since
(O(H?,,),v") <% 2|72, we have the thesis (5.20) using M — ~ (M, + M
ma HS + C*||v™ |7 we have the thesis (5.29) using —4( 1+ Mo+
Ms). ]

Analogously we can prove the following proposition

Proposition 3. Let f € L*([0,T],C*(S)),g € L*([0,T],C?*(S)). The discrete operator
V. (ADy(Ry f)Rug) approzimates V((AV f)g) with a truncation error Ty, that satisfies,
forall ¢ >0

(v, v")u Hippoq + AC (Voo™ [ - + 20" 5). (5.30)

M
C2
where M is independent of h;, k;.

Proposition 4 (Discrete Poincaré Inequality). For all v € Wy we have

[oa < CIV_gv|n.-,

where C' depends on Sy and is independent of hy, k;.

In the following we consider the simplified system

~V - (AVp) = aC.

5.31
aﬁ(tj = —V-(vC)+V-(DAVC) + BC, o0

where v = —AVp and D is a diffusion coefficient defined in S. Note that (5.31) can derive
from (5.1) by using a = |g|8 and § = |g|a. Note also that since |g| not depends on t
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and we are discretizing only the derivatives on space in the PDE system, by a method of

oC
lines, we can continue to use i instead of | g|g in this Chapter that not change the

significance of the following results.

By p”(t) and C¥(t) we represent the semi-discrete approximation for p(x,y, t)
and C(z,y,t) defined by the following coupled problem

r—EA(pH) — aCH, in Sy x [0,77,
ocH
—— — V.- (ADyp"C) = Lx(C?) + pCH, in S 0,71,

| (ADypC™) = £a(CT) 4 5O, in Sy x OT]
pT =CH =0, on 05y,

\CH(O) = Cé{ in SH

where B = DA and L(+), L5(+) are defined as in (5.26).

5.2 Convergence analysis and stability

To simplify the notation in the next paragraph we write v instead of v!! (1)
when it is possible. Let (p, C*), (5", CH") two solutions of (5.32) with different initial
conditions for the parabolic problem. We prove that the stability of the method implemented
in (5.32) with respect to the norm | - |z requires the boundness of |C* |, and |Dyp™| .,
as it will be shown. Whereas the convergence analysis of (5.32) requires only the boundness
of |Dp™| ., and since it will be proved that convergence implies stability, then it is
sufficient that | Dgp™||, is uniformly bounded to have both stability and convergence.

Moreover in our demonstration for the convergence of the elliptic problem we requires that

matrix A satisfies min{A;}, A7} > || A" + [ A |-
ij
Let v = pff —pH wf = CH —CH ¢ W, using the linearity of the operators

defined above, it can be shown that v™, w" are solutions of the problem

([ —La(@") = aw” in Sy x [0,T]
2oy H
| VL (ACT D" — G D) + L) + B in Sy x (0.T],
o — wf=0 on 0S5y,
| w?(0) = wl.
(5.33)

5.2.1 Stability for the elliptic equation (5.32);

Multiplying (5.33); by v” = p — p¥, it can be shown, using the relations
(5.12) and (5.13) of Proposition 1, the next estimate: for all ¢ > 0

vl ™ I
< tion ™ BHA

ao|V_pv™ |5 _ 4+ (A% + AN)50", 6,0 )y < 12 + o). (5.34)
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where ¢ > 0 and ag = min { A", A**}. Taking by = [A"*| + [ 4*"[|c we get from (5.34),
and using Propositions 1)

Jevl3 ™ [13

(a0~ bo = CETpo" [y < 15

Then we have the following stability result for the pressure: if (ag — by — C¢?) > 0,3M > 0,
which is independent of H and ¢, such that

IV -3 - < Mw"[. (5.35)
%

here M =
where 1% (ag — by — CC)
obtained when min {.AH, .A22} > [ A% + [ A o

. Note that the stability result (5.35) for the pressure is

5.2.2 Stability for the parabolic equation (5.32)9
Multiplying the parabolic equation (5.33)y by w = C* — CH | we get

1w
2 ot

+(ao—bo) [V_pw" |3, _ < (Ve (ACY Dyp™ —CH* Dyp™)), w™) i+ Bloc 0™ | 3.
(5.36)
where ag = min{B", B*}, by = |B"?|» + |B*"]w.

Firstly we have from Proposition (1)), that

(Ve (ACHDyp" — CTDpp™)), w™)y = —(My(ACH Dyp™),V_gw™)g
+ (My(CHDyp™), V_gw) g _
— (M (p" ! — i oy, D_yw'),
+ (M, (P! — Py D_w),

where 0! = —ADyp" 7 = —ADyp" . Using Proposition (1)) we have

(My(nWHC? — 1 CH), 60wy, - < e — g CH| | D_gw™ | -
2|CHNZ " — b 15 + 207 5w ™ |5
+ CzHD—waHiZL,—'

Then
2|C™ 2| AD ko |7+

(Mg (A(CH Dyp™ — CHDyp™)), V_pguw )y < 0 (5.37)
2| ADgp" % w3
|ADg 4{!2 (w7l (558

+ CIVogw|f (5.39)
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for some ¢ > 0. Using Proposition 1, the pressure stability result (5.35) and (5.37)- (5.39),

we get

A MACH2Z + Mol Do 121w |12
(My(ACHEDyp! — CEDyp™), V_pw )y < (M |CH% + 42€2 ap" %) w5

+ CIVogw|E

To conclude the stability we need to suppose that the numerical solutions are

uniformly bounded that is ||, and |Dgp" |4 are uniformly bounded with respect to
(M B)|CT @®)]5, + Ma(t)| Dup™ (1)]5,)

H. Calling My = (ag — by — ¢?), My(t) = 12 + (Bl
we have from (5.36)
1 0||wf(t)|?
A AV, < M) (5.40)
Consequently using the Gronwall lemma we have
’ 1 t Mo S S
lw™ ()% +JO |V mw™ ()7 ds < meH(O)H%eKSOMM ) (5.41)

YA Ma(s)
where M4(S) = m

5.2.3 Convergence

In the following we analyze the behavior of the pressure error ef — Rup — p*
and density error ef = RyC — C*, where p, C are the solutions of the density-pressure
problem (5.31) and p”, O™ of (5.32). Let T,, Tc be the truncation errors induced by the
spatial discretization for elliptic and parabolic equations in (5.32) respectively. These

errors are related by the system

_EA(ef) = acd + 7T, in Sy x [0,7]
a H
% = (Ve (AVPC — ADyp" C™)) + Lp(el) + Bed + Te in Sy x (0,71,
¢ = e¢c =0 on 0Sy.
(5.42)

Theorem 3. Forpe L*([0,T],C*(S)) and C € L*([0,T],C°(S))), we have the following

convergence results for the pressure elliptic problem in the norm | - ||y

IV-ney (O < Mlec (t)[[3 + O(Hipar), (5.43)

max

where M s independent of H and t.

Proof. From (5.42) we easily obtain, for ¢ > 0, using a demonstration similar to that done

to get the stability result (5.35) for the pressure

]2

e leclz + Cllepl + (Tp,ep)n- (5.44)

(a0 — bo) [V-ne, I - <
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where ag = min{A", A%%} by = | A" + |A?!] .

Using the Propositions 2 and 4 with v = ef , we get

(a0 = )1Vl < Ll + 4G Iy + S Hb + IV e T (549
Supposing that (ag — by — ¢*(1 + 4C)) > 0 we prove the theorem. ]
Proposition 5. Suppose that |[V_gell |}, < MH,,, . p € C°(S) and Zmax < M(S),
then |Dgp™ || is bounded. -

Proof. Since |V_gel |} < MH,,, then |[Vyp™ |y is bounded. We have that
(5}1]9{?;)2 _ (hi+15i/21}9li1++h}i:jglg/2pﬁ1,j)2 (5.46)
< MOPyp_pmpe, (547
O]

Theorem 4. For C e L*([0,T],C*(S)) n L™([0,T],C*(S)) n C*([0,T],C°(S)). Let
|Dgp™ | uniformly bounded with respect to H, then we have the convergence for density

parabolic problem, that is
t
el Ol + [ 19-uel (9 ds < M (e + IO (5.48)
0
where M 1is independent of h and k.

Proof. We can get this result using a similar demonstration of that used to get the result
(5.41). In this demonstration we use wf = RIC — C*, and we are always supposing that

the restriction of the solution is uniformly bounded by |C/|.

]

Corollary 2. The elliptic pressure problem and the parabolic density problem are conver-

gent if and only if | Dup™ |y is bounded.

Corollary 3. For the density-pressure numerical problem (5.33) convergence implies

stability.

Proof. Convergence for the density problem implies that |C| ., is bounded and for the
Theorem 5.43 also implies convergence for the pressure problem. Such convergence for
Proposition (5) implies that |Dgp” | is bounded. Then from the uniform bounding of
ICH||l and | Dgp™ | we obtain the stability of the density pressure problem (5.34). [
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5.3 Numerical results

We measure the errors of the numerical solution p™, C* of (5.33) with respect

the solution p, C' of (5.31) by using the following norms:

lecln = max, | lef(ta)l + Y AV el ()] (5.49)
leslir = mas el (t,)] (5.50)

geeay

Here we consider the time interval [0,T] with constant time steps At = T'/Nrp.

We proved in the Section 5.2 that using these different norms for measuring
the pressure and density approximation error of the method the approximations p’ and
C* converges to p and C with a second order when p, C' are in L*([0,T],C*(S)) as one
can see in Examples 2 and 3. In this section we prove numerically that this second order
is obtained in the example 4 when we use solutions p, C' in L*([0, 7], C*(S)). However
in example 3 we prove that this order is obtained also for functions in L*([0,T], C*(S)).
This have motivated us to further examine in Chapter 6 the numerical method where we
proved that a such second order of convergence is valid also for functions less regular that
are in fact in L([0,T], H*(S)).

The non uniform mesh is built using a small and random perturbation of an

< C. To avoid the

max

uniform one. For some purposes we always impose the condition

non linearity of the problem, we decouple the system by solving ﬁrstﬁ;nthe elliptic equation
and then the parabolic one. The final semi discrete problem is solved using backward Euler

in time and the rate of convergence is computed using the following expression.

o ()
Rate; = ——1oili/. (5.51)

1 Hmaaz ’
O =
& Hmaaz

Example 2. We start by considering a reqular C*(S) solution of (5.31)

for i = p, C.

p(z,y,t) = C(z,y,t) = e 'sen(mz)sen(my),
defined in [0,1]? x (0,T], with T = 0.1 and At = le — 04.

Alr.y) = 4 +sen(my)>  —sen(wx)sen(ry) 1

—sen(mx)sen(my) 4+ sen(nx)?
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Table 4 — Numerical errors and convergence rates for Example 2
Hpon lep m ‘ Rate, H lec| a ‘ Ratec H
2.503216e-01 || 1.706188e-01 - 3.505003e-01 -
1.252408e-01 || 3.605839e-02 | 2.244438 || 7.620294e-02 | 2.203528
8.342393e-02 || 1.541813e-02 | 2.091040 || 3.357726e-02 | 2.017093
6.255882e-02 || 8.574553e-03 | 2.038528 || 1.906057e-02 | 1.967243
5.023403e-02 || 5.469237e-03 | 2.049362 || 1.224774e-02 | 2.015729
4.204243e-02 || 3.793964e-03 | 2.054495 || 8.511195e-03 | 2.044562
Example 3. We consider the following solution that is in C°(S)
1 9 1 9 1 9
8t((r — — V(2 — =y — — )y — —N* if — < <
0 otherwise.
C(z,y,t) = e 'sen(rx)sen(my), (5.53)
with T = 0.1 and At = le — 04.
Al.y) = 1 + sen(my)? —sen(ww)sen(gy) D= %
—sen(mx)sen(my) 1+ sen(mx) 27

Table 5 — Numerical errors and convergence rates for Example 3

H, o el e \ Rate, H lec|q \ Ratec H
8.340501e-02 || 4.244955e-04 - 1.855296e-03 -
7.699766e-02 || 3.614419e-04 | 2.011679 || 1.590796e-03 | 1.924220
7.149196e-02 || 3.127291e-04 | 1.951262 || 1.381933e-03 | 1.897174
6.673173¢e-02 || 2.732260e-04 | 1.959786 || 1.209120e-03 | 1.938781
6.254805e-02 || 2.412143e-04 | 1.924663 || 1.069797e-03 | 1.890848
5.900608e-02 || 2.144615e-04 | 2.016581 || 9.522958e-04 | 1.995874
5.560734e-02 || 1.909160e-04 | 1.960324 || 8.492288e-04 | 1.930827
5.280920e-02 || 1.713778e-04 | 2.091092 || 7.651417e-04 | 2.019521

In the next example we are solving the cell dynamics problem in a single scale,
basically, we choose S = Y. In the last Chapter, we do something similar but with other

boundary conditions and other purposes.

Example 4. We consider the problem of cell proliferation in a colonic crypt described by

the system (5.1) with initial condition for the cell density

)

ate--1

CO($7y) = (05)4

. (z,y)€[0,1]? (5.54)
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see figure 1/ for its graph in three dimension depicted on the crypt I' with h = 7 and

1 1

7

0.9 09
6 08 08

07 07
H

06 06
4

>05 05

3

0.4 04
2 03 03
N 0.2 02

01 01

-
0 -
-
1 1 o o
05 o5 0 01 0.2 03 0.4 [ 0.6 0.7 08 0.9 1
x
y [ M

Figure 14 — Initial density distribution Cj defined in (5.54) on the crypt I' graph of the
function f defined in (5.55). Three dimensional plot of the initial density
Co(z,y) in the points (z,y, f(x,y)). Two dimensional plot of Cy(z,y) with

(z,y) € [0, 1]".

In this example we use D = 1 and functions Ae = EA (€ = 4.17451-10%),|g],c, 8
(T = 2.22627-107%) and with the crypt geometry defined as described previously in Chapter
2 with

h=T0=003, floy) =h(l—e ")) Ray) = (2—1/2)+ (y—1/2) (5.55)

where A, |g| are given respectively in (2.14),(2.13) and a, B are those given in (2.3) and
(2.2).

For T = 1 we solve (5.1) in (0,1)? x (0,T]* by the Backward Euler method
with time step At = le — 01 applied to the initial value problem (5.32). The accuracy
results applying the IVP (5.32) to this example on non uniform meshes are given in Table

6, where a fine solution of (5.1) associated to Hynee = 1/480 = 2.2083 - 107° 4s used as

exact solution.
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Table 6 — Numerical errors and convergence rates in Example 4

H H,ox e i ‘ Rate, H lec|u ‘ Ratecx H
1.6667e-02 || 3.9386e-07 - 1.9956 -
1.2500e-02 || 3.5188e-07 | 0.3917 || 9.7944e-01 | 0.7047
1.0000e-02 || 3.1160e-07 | 0.5449 || 8.0811e-01 | 0.8617
8.3333e-03 || 2.7443e-07 | 0.6967 || 6.7472e-01 | 0.9895
7.1429e-03 || 2.4080e-07 | 0.8480 || 5.6788e-01 | 1.1182
6.2500e-03 || 2.1062e-07 | 1.0026 || 4.8177e-01 | 1.2320
5.5556e-03 || 1.8370e-07 | 1.1610 || 4.0992e-01 | 1.3708
5.0000 e-03 || 1.5975e-07 | 1.3263 || 3.4983e-01 | 1.5042
4.5455e-03 || 1.3846e-07 | 1.5004 || 2.9876e-01 | 1.6560
4.1667e-03 || 1.1956e-07 | 1.6870 || 2.5521e-01 | 1.8107
3.8462e-03 || 1.0268e-07 | 1.9010 || 2.1686e-01 | 2.0341
3.5714e-03 || 8.7652e-08 | 2.1355 || 1.8369¢e-01 | 2.2401

Since the density and pressure depends only on their distance with respect the
bottom of the crypt that is respect the point (x,y,0) = (0.5,0.5,0) we can analyze only
one direction along this point ot analyze the evolution of the pressure and density along
the time interval [0, 7’]. In figures 15-16 we plot the value measure for the cell density and
pressure along the line y = 0.5. We observe that the cell density of transit cells diffuse
away from the bottom of the crypt filling slowly the above regions along the crypt walls.

L &\—4‘
0.7 () 0.0

Figure 15 — Pressure in the points located in the line y = 0.5 during the numerical
simulation in the time interval [0,1]. Plots are referred to the times ¢ =
0,0.1,0.5, 1.
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C(x,0.5)
—_—
o

Figure 16 — Pressure in the points located in the line y = 0.5 during the numerical
simulation in the time interval [0,1]. Plots are referred to the times ¢ =
0,0.1,0.5, 1.

We note a decreasing of pressure at the bottom and of its gradient along the
crypt axis, this yield to a significant decrease of the velocity, as you can see in figure
17, where the maximum is always obtained along the line y = 0.5 for x = 0.6773 that

2
corresponds to the crypt quote z = §h'

1Iv{x,0.5)]|

Figure 17 — Euclidean Norm for the velocity |v|| = £|Vp]|| in the points located in the line
y = 0.5 during the numerical simulation in the time interval [0, 1]. Plots are
referred to the times ¢t = 0,0.1,0.5, 1.



78

6 An equivalent FEM with second order ac-
curacy for solutions in L([0, T, H>(S))

In the previous Chapter we have seen that the finite difference method (5.32) on
nonuniform meshes converges with order two using a discrete norm in L*([0, 7], H; (S)))
for the density and second order in the L*([0,T]H,(S) discrete norm for the pressure.
Since we were using centered schemes a such order was unexpected, thus we called the
method as supraconvergent. The convergence theorem seen in the previous Chapter
guarantees a such convergence order when the solutions p, C' belong to L*([0,T], Cy(S)).
However in the Example 3 of previous Chapter we have seen numerically that a such
convergence order is reached in a case when p, C' belong to L?([0,T],C5(S)). We will
prove in this Chapter that for any C,p in L*([0,T], H;(S)) the finite difference method
have order 2 using the same norms. This Chapter is an application of the method presented
in (FERREIRA; GRIGORIEFF, 2006) for a two-dimensional coupled elliptic-parabolic
problems. See also (FERREIRA; PINTO, 2013; FERREIRA; NO; OLIVEIRA, 2013;
FERREIRA; BARBEIRO; GRIGORIEFF, 2005).

6.1 Approximating the variational problem

We will work with the usual Sobolev spaces W7 () for r € N U {0} where

S = (0,1)? and ¢ € [2, 0] with semi-norms, respectively, given by

Ohige = (25 1D™g) ™ ol = (1ol 6) "
j=0

|laf=r

with the usual interpretation in case ¢ = o and || - ||, denoting the usual norm in the

Sobolev space L(S). We often write H"(S) in place of W3 (S) and denote by | - ||, for its
norm. By (-,-)o we denote the standard inner product on L*(S) and we use the notation
H(S) ={ve H'(S);v =0on dS}.

We now write down the variational formulation of (5.1) in Hy using the L?
inner product. Let S = R? be a simple polygonal domain (in this case S = [0, 1]?). The

variational formulation of our problem is: find p, C' € Hy(S) such that

aa(p,v) = (aC,v)o, for v e Hy(S)

6.1
(Cr,w)o + b.(C,w) = —apa(C,w) + (BC,w)y, for we Hy(S), o

where z = —AVp, the diffusion coefficient D > 0 is supposed to be constant, and
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as(-,-),b.(-, ) are defined by

as(v,w) = (AMvg,wp)o + (A ve,wy)o + (A2, we)o + (A0, w,)e,  (6.2)

bo(v,w) = ((2)1v,wa)o + ((2)20,wy)o, (6.3)
for v,w e H'(S). (2); and (2), are respectively the first and the second component

The discretization of (6.2)-(6.3) is obtained in the following way. As done in
Chapter 5 let h = (h;)z and k = (k;)z be two sequences of mesh sizes. We define by Sy
the discrete mesh in S = [0, 1]?,

Su = {(wi;yj)gji/[d(xiayj) = (wi—1 + hi,yj—1 + kj)7 (z0,90) = (0,0)}.
We introduce the following sets

By Wy we denote the space of grid functions on Sy and by Wy the subspace
of grid functions vanishing on dSy. For convenience, we assume that functions in Wy
are also defined outside of Sy with function values equal to zero. For (z;, y;) € Sy let
0, = (Tic1/2, Tiv1/2) X (Yj—1/2,Yj+1/2) NS and w;; = | o5 |, the measure of o; ;.

In Wy we introduce the following inner product
H = 2 Wi, Vi, W; 5, for UH, wH e Wy

(%i,y;)eSH
that defines an inner product in Wy where v = {v;;} and w” = {wy;}.

In this Chapter we apply the following method that approximate the variational
formulation of the cell dynamics problem (5.33) in the space Wy o using the scalar product
(+, ). The benefit of the method (6.4) is that it is written as a finite element method and

this provide use numerical properties that allow to prove that the method is second order
accurate also for solutions in L*([0, T, H?(S5)).

The discrete problem has the form: find p, C# e Wy such that

(atCH7wH)H = _sz,H(CHawH) - aDA,H(CvaH) + (50H,U}H)H7 '
for v, w € Wy o, where 2y = —ADpp™, where Dy = (8, 8) with dy, d;, are the operator

defined below and pf = C# = 0 on 05y.

Let Ty be a triangularization of S using the set Sy as vertices. By Pyv®
we denote the continuous piecewise linear interpolation of v with respect to 7. The

aam(-, ), bsy m(-,-) are defined as follows

arg = a+b+c (6.5)
sz,H = d (66)
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where a, b, ¢, d are defined bellow. These terms derives from the terms in the variational
problem (6.1) that are rewritten in an equivalent formulation using the piecewise linear

interpolation of grid functions in Wy.

Let A € Ty with a g angle, we define Ay, to be the value of the coefficient
AM in the midpoint of the side of A parallel to the z—axis. Then let

NETH A
Similarly, with AQA%y, denoting the value of A% in the midpoint of the side of A parallel

to the y—axis,

c(v?,wf) = Z AK@’J (Pyo™), (Pyw™), dz dy. (6.8)
NETHy A

For the discretization of the mixed derivatives, we consider two special triangu-
larizations of S, which we call 7}(11) and 7}9 that have as vertices all the grid points x;; of

Sp. They are obtained from the disjoint decomposition
S =15y uSy,

where the sum ¢ + j of the indices of the points (z;,y;) in 32) and ?ﬁ) is even and odd,
respectively. 7}51) (and 7}5,2) ) has triangles with angle 7/2, each triangle has two vertices in
?ﬁ}) (respectively in ?ﬁ) ) and the third is that associated to the 7/2 angle. For a triangle
A in a triangularization, denote by (xa,ya) the vertex of A associated with the angle
7/2 of A. We define the value of A" and (zy),0™ in the points A,z and A,y as follows

Alﬁ,x = A1A2,y = AlQ(anyA>a ((ZH>SUH>A,1 = ((zH)SUH)A,y = ((ZH)SUH)(QJA?yA)?S = 17 2.

We use
1
b wf) = i(b(l)(vH,wH)+b(2)(vH,wH)), (6.9)
1
d(® wf) = §(d(1)(vH,wH)+d(2)(UH,wH)), (6.10)
for v wf e W o, where
O W) = ] f [AZ, (P ") (P w™), + AR (P "), (P w™),] du dy
AGTI;” =
. I
= o)+l
dT W) = [<<zH>1vH>A,xf<Pﬁ)wH>x dx dy
AGTP(ID o
b (e | (P, do dy,
A

= 4V +dV,

Y
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where z; = —ADyp™, 1 = 1,2 and PI(}) is the picewise linear interpolant operator. The

operator Dy = (dp,0x) will be defined later.

The method (6.4) can be seen as a finite element method with standard
piecewise linear basis in Ty. This method is similar to the finite difference method in the
non uniform grid Qg defined in the previous Chapter (5.32). For its formulation we use

the following centered finite difference operators

5Dy, = L2 S LA 2 Ak (6.11)
Tig1/2 — Ti—1/2 Tit1 — Xy
Vit1; — Vi-1,4
00, = ———=, 6.12
K Tit1 — Ti—1 ( )
h; 62y, R 0Dy,
5hvij x +1/2,5 +19g 1/2,5 ’ (613)
’ hi + hia
in the x—direction and also correspondingly we get the defined quantities in y—direction.
By M, we denote the average operator, where M, (v");; = g(vi,j + v;_1,;) (respectively
for M,).

In the following we use the discrete operator

Li(ul) = =602 (B () = 8,88, (u)) = 0,(B* 0, (u™)) — 612 (BZ552 (u')).

(6.14)
Proposition 6. For all v € Wy, w" € Wy and a : [0,1]*> — R we have
_(53(61/2) (a(gg(gl/?)vH), wH)H = Z hikj+1/2a($i—1/2a yj)53(51/2)Ui—1/2,j5g(;1/2)ﬂ7i—1/2,j
(zi,y;)€SH
—(0" w0y = Y ke Me ()00 Py
(zi,y5)€S

Proof. This proposition presents the same results (5.11) and (5.12) that are here rewritten

using an explicit expression in order to help in the proof of the next proposition. O

Proposition 7. Let aapy and the operator L4 be defined by (6.5) and (7.5), respectively.
We have

a0 W) = (La(w™), w)y, for v e Wy, w" € Wy .

Proof. Consider the following triangles in Ty
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i—1j+1 4+l
[ ]

i_lv 27.7

[}
i—1,j—1 ij—1

Figure 18 — Triangles representation

Triangles of different colors are in different triangularization, then fixing the

segment from (z;_1,y;) to (z;,y;) we have since w” € Wy g

AR f (Pyv™), (Pgw™), dr dy + AR, 2 J (Pyv™) (Pyw™), dv dy =
/AN

A

hk]+1/2Az 1/2]5(1/ *1/273'5 /)w, 1/2,j-

The same holds to /\ |, /\,. Then using Proposition 6 for any triangularization
a(v, wf) = 2 AXJEJ (Pgo™) . (Pgw™), dx dy
NETH A
N,M—1
= ik AL 0P 00D
1,j=1
N—1,M—1
= - Z hisijokyeapds? (AM6ND (0));
ij=1

= (=0MDAMSED (v)) w ) .
Now, considering both triangularizations, we have using Proposition 6
SR [ PP, oy A2, [P, b dy

+ AT ,yf (P ™), (P w™), de dy + A2 f (PPwH), (PP wh), du dy)

1 hikj

_ 50/2)
55—

4 (1/2) 5. .
i— 1] Y U’L*LJ*l/Qéx wl*1/2:J

A2, o2 szl,j+1/25§;1/2)@171/23

1= LJ y
h;k h;k;
+ JHAZl? 08 D0, 126y + ’A335y1/2 Vi j-1/205 20 125).
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Then

(b(l) +b(2)) i Z AR J o), (Pﬁlw )z dz dy
=1 eTl

N,M—
Z hi «412 j+15:gl/2)vi,j+l/2 + k?j5;(,1/2)Ui,j—1/2)5§;1/2)wi—1/2,j

1
4
+ hAZ 1 (k183 20y o + kg0 P01 j12) 0P Wi )
N,
1

M-—1
= Z h; k;]+1/2(A”(5 Vi + A2 1,0y vi- 1])5(1/ )@1—1/24‘
i,7=1
N,M—1
= Z hikjy 12 M, (A26,0)s 5 P, 1/2,5
3,7=1
N-1,M-1
= — Z hi+1/2kj+1/25m(Al?éy(v))idwid
ij=1

= _(596(-’4125?; (UH»a wH)H-

Proposition 8. The operator b,,, y defined in (6.6) satisfies the following equality

bap (V7T w™) = (0, ((za)10™) + 6, ((zm)20™), w™) g, for v € Wi, w™ € Wi,

Proof. Consider the term d and the two triangularizations 7’,5,”,7}&2) we have for all
t1=1,...,Nand j=1,... M —1

;(((ZH)WH)Al,J;J

(PDwh), de dy+<<zH>wH>A2,zf (POwh), de dy
Ay

(et f (PPwH), de dy+ ((21)10™). f (PPw™), dr dy)

1 hik;

= 2(hik2j+1((2H)1“ )i— 1]5(/ Wi—1/2,5 + ((ZH)1UH>i—1,j5§;1/2)wi71/2,j
+ }”ZM((ZH)WH)”(SS/?)@1/2,j + }L;]%((ZH)WH)@]‘(;S/Q)@1/2,j)-
Then
1 N,M—-1
i(dg)erg))(UH»wH) = - Z (hikj-i-l/QMz((ZH)lU )”fﬁj Wi—1/2,5
o

= hi+1/2kj+1/26z((ZH)1UH>i,j7Dz’,j

i,7=1

1
Thus we have the thesis i(d(l) +d?) = (6,((zm)20™), w") 1. O

<
<
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6.2 Estimating the method error

In this section we estimate the errors between the discretized operator used
in the numerical method (6.4) with respect the corresponding integrals appearing in
the variational formulation of the elliptic-parabolic problem (6.1). Such estimates are of
second order of consistency for functions u in H*(S) as it is proved in this section. Then
following the same theorems done in Section 5.2 it can be proved that this finite element
method is a superconvergent method in the context of finite elements methods theory. Our
method will result in fact to be of second order of convergence for the pressure using the

norm L*([0,7T], H'(S)) and second order of convergence for the density using the norm

CH([0, T, H'(S)).
Lemma 2. Let ue H*(S) and the coefficient A € WZ(S). Then the part
9"y = a(Ryu, ™) — Z (=AM uy), dz dyv;;. (6.15)
(J?i,yj)GSH Bij
satisfies the following estimate

1/2‘

i) (0™)] < O > (diamd) g |Frany) | Pav™ |1, Vol € Wi,

ANeTy
where diam/\ is the diameter of the triangle /\ € Ty, where Ty is a reqular triangulation

of S as that represented in blue or green in Figure 18 with triangles with a angle of 7/2.

Proof. Let consider the interval I; := (y;_1/2,y;+1/2) and define &; ; = (x;_1, ;) x I;. Using

the definition of a, we get

TI(;) (UH) = Z <|[j|<.¢411(5§31/2)u)7;_1/2,j — L (A11u$)<l’i_1/2,y) dy) Az@i,j' (616)
©,] J

Adding and subtracting (A"u,)(2;_1/2,y;), We obtain

") = LA 0)i 1y — (AN ) (2512, 95)) Aais

i
+ (I (A ) (i1 /2, 9) —L (A ) (@im12,y) dy) Duvs,
g 5

= ) + P (o).

N,M~1
We rewrite the first term TI(;’I)(UH) as follows Tl(f’l)(vH) = Z | I;| Fij(u) Ayv; ; where
i=1,j=1

Fid(“) = (AH(SS/Q)U)@‘_UQJ - (Allux)(xi—l/%yj)

1 [
= All(l'ifl/% y])(hi J UI(I', y]) dx — ul(xi*l/% y]))
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as a linear bounded functional in the function u, € H?(5; ;) that vanishes for the functions

1,z and y, see Remark 1. The Bramble-Hilbert lemma furnishes the bound

1
hil I

[F(w)] < CsuplA™ (z,y)|(

Bi,j

1/2
+ |Ij|4|uxyy|2)

< Csupl A" (@, y)|(hal )72 (17 + 1117 [ualr2cs, ) -

S5

hi [taao* + B3 1L 2 [ty [* + 1L | [ty |

Bi,j

and we obtain

‘2 1] (A 650 — A, (251 j2, yi) A0 5| < C( 2 (diamA)4|ux|?{2(A))1/2||PHUHH1.

1,7 ANETy
(6.17)
h; ki k;

Note that since 3C' > 0 such that % < C then |[;]* = (53 + ];1)2 < ki +k2,,. Using

the previous equation and Cauchy Schwartz, we can estimate Tl(qa D as follows

a,l .
i < O Y (diamA) fuglipep) | Prv” | g ) (6.18)
AeTy

Remark 1. Define the operator

Ag) = L g(&,m) d§ — g(;,n), (6.19)

which vanishes for 1, and n. From Bramble-Hilbert lemma
A9 < Clg? 2 (0,172)-
Now we estimate the term T}f 2 (u)

D T(LIA ) (im0, ) — J (A ug) (5172, y) dy) Dy,

ij I;
kj+1 11 Yiti/z 11 =
= Z(T(A Uz ) (T2, Y5) — (A ug) (xim1/2,y) dy) Asls
0,7 Yj
ki Y 11 5
+ 2(5(«4 Uy ) (@12, Y5) — (A" g ) (i1/2, y) dy) Dy 0;
i, Yj—1/2
— 3T ATy + T Ay
i
where
k- Yj+1/2
T = j;(Alluaz)(ﬂfil/z,yj)—J (A" uy) (i 1/2,9) dy, (6.20)
Yj
k. vi
T = LA (i) - J (A ,) (2510, ) dy. (6.21)

Yj—1/2
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Since v € W o we have

T = Z( )A Vi 1+( )A Vi
1,3
1
= 9 (Z (T(Q) + T )(A Uzy + A Uzj 1) + (T(Q) — 72(]-1))<Azlji’j — A$27i7j_1))

1)
2%

Q1+ Q2.

We start estimating ). Consider

k- Yi
F(U) = 2J((Allux)($i—1/27yj)+(A11ux>(xi—1/2>yj1))_J (Allux)(%—l/z,y) dy. (6-22)
Yi—1
The Bramble-Hilbert lemma furnishes, see Remark 2
ki1/2 kj\1/2
|F(u)| < C’(h—]) / (h? + k§)|AHux|H2(ai7j) < C(h—J) / (R? + k?)”%”m(a,,j), (6.23)

where I/Z\VZJ = (.fi,l, fL’z) X (yj*h y]) and we took ./4.11 € WO%(E)
Remark 2. Define the operator

1 1

Ma) 1= 5(0(5.0) + 9(5.10) = | algm dn (6.21)

2

which vanishes for 1, and n. From Bramble-Hilbert lemma

IA9)] < CllgP L2(o,1)2)- (6.25)
Then
Fu)| < ckj(hjkjf”m? A gl e, ) < c(’,jj)”m? + ksl 2, - (6.26)
Then it follows that
Qi < C( Y (diamA) fuglZ2a) | P 1. (6.27)

ANeTy

We are now going to estimate (Jo. A summation by parts with respect to ¢

leads to the representation

1
Q2= 5 ) (T ~ T8, T + T ) A vy (6.28)
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since Axviyj — Axﬂi,j—l = (Ui,j — Ui—l,j) — (Ui,j—l — Ui—l,j—l) = Ay”UZ'J‘ — Ayvi_l,j. USng (620)
and (6.21) it is seen that

T,

j Tit1/2 " Yj—1/2 1
- 2T (e - [ A ) dy ) ds
Ti—1/2 Y

7—1

kj T 11 v 11
Ti—1/2 Yj—1/2

Yj—1/2

Ti+1/2
- f f (Ao dy— [ (Aw)(ey) dy
Ti—1/2 —1/2 Y

j—1

SR

+ (Allux)x<l'7 yj—l) - 5](“411%6)06(% y])) dr.

b |2

We obtain for almost all « € (2;_1/2, Ti11/2)

Yj—1/2 . k.
(f j ) (At dy = (AT o) = FA ) )|
Yj—1/2
< CK?

A )P dy)

i—1
This last estimate can be proved using the following remark

Remark 3. Taking

F(u) = N — e (A'tuy), dy — ks (Anux)x(m,yj) ij(Allul‘)x(xvyj—l) :
. 2
Yj—1/2 Yj—1 (629>

Define the operator

1 1/2 1
D= (| = )99 de = 560 - 9(0)), (6.30)
12 Jo 2
which vanishes for 1. From Bramble-Hilbert lemma

IA(9)] < Clg™|z2(0.0))-

Then
|F(u)] < OB (A )y (2, )| 220y 1)) (6.31)

After integrating with respect to x and an application of Cauchy-Schwartz’s

inequality for integrals
1 1 2 2 3/2 (11/2 1/2
T = T + T3 = T < Ok (h sl e, ) + hild el s )

follows. Then ()5 satisfies the same bound as (). ]
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Lemma 3. Let ue H*(S) and the coefficient A = A*" € W2. Then the part

7O = b(Ryu, v ZJ (—A%u,), + (—A*u,), dz dyv;j, (6.32)

satisfies the estimate

. 1/2
(™M) < C( D] (diamd) ul s ) [P, (6.33)
NETy

for v e Wy .
Proof. We estimate only the error of the discretization of (Auuy)x. Analogously we get

the estimate for the error associated to (Amux)y. Our strategy is to rewrite the integral

term coming from the variational form

b = =Y J (Au,), do dyb,; (6.34)
1
and its approximation by, (Rgu,v™) := i(b&)(RHu o) + b (Ryu, v in a similar way

in function of the elementary displacements A v; ;A,v; ;. By a partial integration of a

summation by part we obtain
= ZJ (—A%u,), dr dyv;; = ZJ (APuy) (Tiz1/2,y) dyA,v; ;. (6.35)
~ )i i I
Next we want to evaluate (a similar expression is valid also for by, )

1
bye(Rpu,v™) = i(b&)(RHU o) + b D(Rypu, v™)) = —(0,(A26, Ryu), v ) i,

for v e W o.

It is easy to see that

bye(Rpu,v) = —Zhi+1/2kj+1/25x(A125yRHU)i,j@i,j

-7j

= 2k3+1/2 (A6, Ryu)i—1; — (AP0, Ryu)ii;)v;,
4,J

1
= 42("41 1 (Wit — U1 1)

4,7

12 -
- Az+1](ui+1 J+1 T Ui+1,j—1))“i,j

= Z (A2 (K10, (1/2) i1 g1 + K0y (1/2)ui1 ;)

7]

- Az+1]( ]+153(,1/2)Uz’+1,j+1 + kj5z(,1/2)ui+1,j))?7i,j

byl’(RHu7vH) = 72 "421?63(;1/2)'“2]— 1/2 + Az 1,5 yl/Q)Ui—lyj—l/Q)
+ (Ag% P jiage + AP 60w 1)) Dby,
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We can rewrite it using
Yj
(Al,] 1/2 /Q)Uzg 1/2 4‘-/4@_1J y1/2)ui—1,j—1/2) = QMI(Azlijv uy(xi,y) dy)
1
12 5 2 [P
]+1(A —y u1]+1/2 +-f4, 1,j y/)uifl,j+1/2> = 2Mx(Ai7jJ Uy(%,y) dy).
Then summing and subtracting

: vj
fZM Alzf Uy dy)Ayv; j_1 + — ZM (A2 IJ wy dy) Ay v; (6.36)

Yj—1

and using after the relation we can write b,,(Ryu,v") as follows

byx(RHU, ’UH) = = Z -/412 J uy(xia y) dy)
Y

j—1

j+1
©OM (A2 j w2, y) dy)) Aot
Y

j

1 Yj
= 1(2 M, (A% J uy(z5,y) dy
,J

Yj—1

Yj
+ A 1J uy (i, y) dy)(Dpvij + Dyvij-1)

Yj—1

Yj
s (MI(A}EJ wy (23, ) dy

j—1

»J Y
Yj
a 'A 1,j— 1J U (xla ) dy) (Ax6i7j — Azﬁi,j—l))

- ZM Alzj wy (i, y) dy

Yj—1

Yi
+ A ij— 1J U (xi, ) dy)(Ax'ljlﬁ + A;ﬂi)i’jfl)

Y

+ 72 Az 1,5 z lj I)J uy(l‘i—lay) dy
Yj—1
Yj

- (Az-i-lj Az-i-lj 1)J Uy (Tit1,Y) dy)Ay@iJ)

Yj—1
= Z BZ‘(;‘)(Aac'lji,j + Axﬁi,j—l) + Z Bz‘(?Ay@i,ja

1] 1]

since

Agij = DBglijo1 = (Vi — Vi1j) — (Vij-1 — Vim1j-1) = Dylij — Byliony.
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Now we obtain a similar expression for l;yx by using (6.14), decomposing the integrals

Z;yac = Z L (A12uy)(xi—l/27 y) dyA$1_)Z7j
1 v B -
_ 2(ZJ (A120,) (51172, 9) dy(Daic; + D)
4,7 YYi—-1

Yj Yj—1/2
+ (f —J )(AIQUy)(xi—l/% y) dy(Ayv; 5 — Az@i,j—l))
Yj—1/2

Yj—

— ZJ (A%u,) (2io12,y) dy(Da0; + Dy j—1)

Yji—1/2 .
" f f V(AP (1 1/209) — (AP (1 1/20)) d) (D)
Yj—1/2

Yj—

= Z Sz-’j Amvi,j + Amvi,j—l + 2 Sz’,j Ayvi,j‘

0] Y]

Now we begin with estimating the corresponding quantities starting with

BZ%) — S,L»(;-). First we concentrate on BZ%) alone

Alzuy(xu )+ Az 1]“3}(331 1ay) (637)

An application of Bramble-Hilbert lemma and taking A2 € W2(S) into account yields
that uniformly for y € (y;,y,-1)

|A12uy($l, ) Az ljuy(xz 17y)_2"41131/2,juy(xi—1/27 )| Ch3/2|*’412( ) y( )|H2($i—1,$i)'
(6.38)
1
Remark 4. In order to get (6.38) we consider the functional A(g) = g(1) — g(0) — 29(5)
that vanishes for 1 and &. Thus using §(§) := A™(zi_1 + Ehy, y)uy(ziy + Ehiyy) for the
Bramble Hilbert Lemma |\(§)| < [§®|r201) and thus we obtain (6.38).

Integration of the last inequality over (y,_1,y;) provides an additional factor

k‘;/ ? and we end up with

Yj
| («412%(%7 ) + Azlzl,juy(xi—lay> - 2-141131/2,]'“3/(%—1/2,9)) dy|

Yj-1
< Ck;/2h?/2"“412(xi—1/27 yj)uy(l‘i—l/?v y)HHQ(E'i,j) < C(hf + kJQ)Huy”Hz(ﬁz,J)
(the same holds for j — 1 in place of j). The last inequality is obtained using that
3 k; hi
2%;h2 = (#)%hf (l_ﬂ)%k:]2 <h?+ k2. (6.39)
i J

Remark 5. Define

Auuy(x“ y) + A2 1Uy(Tic1,y) = Fi(ziy) + Fj(vioa,y), (6.40)
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where Fj(z,y) := A*(x,y;)u,(z,y). The following operator

Mg) = (1) +g(0) ~ 29(), (6.41)
vanishes for 1 and &, then we get easily (6.38).
Now we estimate the two terms added
(Az 1/2,5 Jjj uy(xi—l/Qay) dy + -’4@131/2@—1 Lyj uy(xi—l/%y> dy). (6'42)
j—1 i1
as before we have
A 1/2,j +A2 1/2,5—1 —2A;% 1/2,5— 1/2) L%jl Uy (512, y) dy| < Ck2(#>1/2|’“y"H1(ﬁi,j) (6.43)

Now, adding and subtracting k; (A12'U/y)2‘_1/27j_1 /2, we get from Bramble-Hilbert

lemma

" kj\1/2
|Ai131/2,j—1/2(f Uy(-fz‘—l/z,y) dy — kj(uy)(xifl/%yjfl/?))’ < C(h? + k?)(h ) / ’%’Hz )
Yj—1 7

(6.44)

Next we consider Si(é) and derive the following estimate:

vi k1)
!(J (A2u,) (@1, ) dy — ki (Auy)imysgoae)l < O + K2 (G2) 2| Ay | o,
Yy

j—1 hi
2 2 k 1/2
Combining this bounds, it follows that
L\ 2
DY - s+ )] < 08 ) () bl By + A1)

4,7
. 1/2
< C( ) (diamA) uy|32(n)) I Pav™ 1.
NeTH

We are now going to estimate ij) and Si(?. Starting from the of SZ( J), we obtain with the

aid of Bramble-Hilbert lemma

) Yji— 1/2 12
|Si,j | = *| (:cz 1/2,3/) — (A Uy)(xz‘+1/273/>> dy|
—1/2 Yj—

$z+1/2 Yj—1/2 19
< 3 f <f - f NA,). () dy da]
Ti—1/2 Yj—1/2 Yj—1

1 1
< O((higr + ki) (higa k) 2 | (A uy) ol i o) + (he + k5) (hik)2 (A uy)ol e y)) -
We use |(A"%uy,).|1 < Clluy|2 and derive

st”AM C( ) (diamA) fuy |2 ) | P (6.45)
NETH
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Recalling the definition of BZ-@)

Li+1
B2 - | 1) - A2 el dy ds
Ti—1 Yj—
Ti+1
< Cf [ RlA oy )]+ o))y
Yj—
< Oy k) Pl e+ sk Pl

It follows that

1/2
}23” Ayvigl < C( ). (diamA) fuy i a)) | Pav™]1. (6.46)
NETH
Then we have
. 1
\Z P =S A < CC Y (diamA) [y 202 | Pav™ | (6.47)
AeTy

and thus this lemma is proved. O

Lemma 4. Let ue H*(S), p,u, p,u € H*(S) and the coefficients A7 € W2, fori,j =1,2.
Then

T};” (v = d(Ryu,v? Zf ((AVp)iu), — ((AVp)au), dz dyv; ;, (6.48)

satisfies the estimate

d . 1/2
P Wl < (Y (diamA) (Ipoulea) + Ipylieay) " 1Pav™ L, (6.49)
NETH

for v € Wiy,

Proof. We concentrate on estimating the error of the discretization ((AVp)iu), = ((A"p.+

A'p,)u),. By a partial integration of a summation by parts we obtain
ZJ —(AVp)u), dx dyv; ; = ZJ ((AVD)1u)(wi—1)2,y) dyAsv;

Next we want to evaluate
1
do(Ryu,v™) = i(dg(cl)(RHu, o) + dP (Ryru,v™))

= —(0((ADgp)1Ryu), v™) g, for v € Wy
It is easy to see that

do(Ryu,v™) = — Z his1j2kj1/2082 ((ADgp)1 Rirw); s
.
= Zijrl/QMx((ADHp)lRHU)Lijl_}i,j
(2]
= Y ki1 Mo ((A"6p + A6p) Ry A,

1,
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then
dy(Ryu,v™) = dy(Rgu,0™) = > (LMo (A" p + A0kp) Ry
i
- | (AD ) di) st
= Bi + Bs.
Starting with By ( Bz is equivalent), we have
B, = Z (11| M, (AY 6 pRyru); —L (A" paRyu) (i1, ) dy) Auti; (6.50)
1,7 J

Adding and subtracting |I;| (A" p, Ryu)(2i-1/2, y;), We get
B, = Z Uj|(Mx(AH5hPRHU)i,j - (»AllpxRHu)(xi—l/% yj))Ax@,j
1,

+ Z (11| (A pa Rpru) (i-1/2, ;) —J (A" pe Rp) (wi-172, y) dy) Ayy

i,j 1
The quantity
Z (’[j|(A11pxRHU>(37i—1/2a yj) - J ((Allp:rRHU)<xi—1/2:y> dy)A:ﬂ_)i,ja
i I

as before, can be divided in ()1 + )2, where we can estimate ); with the aid of

Fu) = IZ(((AHVP)W)(%1/27?/j)+((v411VP)1U)($i1/2vyj—1))
- " (AN ) rya, ) d,

then from Bramble-Hilbert we get

kj\1/2
F@)| < OG0+ B)IA poulie, ), (6.51)

(@2 has a similar bound). Now we need to bound the quantity
D LMo (A Snpu)i j — (A potn) (w172, 45)) Al (6.52)
1]

It is easy to see that

h + |

|Mx(«4npxu)z‘,j— (Allpxu)(xifl/%yj” < Cw’flnpxuh?(ﬁi,j),

then the remain quantity is

DL (M (A Spu)i j — Mo(AY parr); ) Au 5,
i



Chapter 6. An equivalent FEM with second order accuracy for solutions in L*([0,T], H3(S)) 94

which can be bounded by
(hicy + ha)? + | I;]?
(hiv1 + hi)? + \I E

Mo (A" Spu)iy — Mo(AMpou)iyl < C(

‘ 1p$u|H2(Di71,j)

| px ’ ?(54,5) )
(hi+1/2uj|)1/2
]
Remark 6. The 1D the operator
& &i §iv1 &i &
Ag) = g(1) —g + g = 900)) = ge(7—7—),
(©) fz’+1( M (&' +§i+1)) & ( (fi + it ( >>) £<§i +§i+1)
vanishes for g = 1,€ and g = €. Then, from Bramble-Hilbert lemma
0n9i — gz (:)] < Clg|m3((0,1))-
We can also rewrite X as
&
&i ! Siv1, [EFem &i
Mge) = =—(| . gedE)+>( ge d€) — ge(——5—),
fz-‘rl g-fg- gz 0 é.z + gz-&-l
i TSi+1
which vanishes for ge = 1 and ge = £, then
0n9: — g2 (@) < Clgelm2(0,1))- (6.53)
Lemma 5. Let ue H*(S) and the coefficient v € W2, fori,j = 1,2. Then the part
TI(;L)<U ) = (R (yu), v") g —ZJ yu(z,y) dx dyv, j, (6.54)
satisfies the estimate
u . 1/2
7" @ < C( Y] (diamd) ulfaqa) | Pav™ 1, (6.55)

ANETy
for v e Wy .

Proof. We know that

TJE}J) (UH) = Z (hi+1/2kj+1/2(7u)z‘,j —J yu(z,y) dr dy)@m

i,J i
h;

hi — i —
= Z (5k3+1/2(7u)ijvz‘j + Ekj+1/2(7u)i—1,jvi—1,j)

Ti— 1/2
— ff u(z,y) de dyv; j + JJ u(z,y) dr dyv;_ 1])
Ti— 1/2 Ti—1

_ h; _
= Z (hikj+1/2Mx(’YU)i,jUi,j - ikj+1/2(7u)i—1,ijUi,j)
0]
X Ti—1/2
— Z (f J yu(x,y) dr dyv; ; —f J u(z,y) dr dyA, v”)
’L',j Ij Ti—1 Ti—1

. 1 = 2 -~
2% 1,3
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With the aid of Bramble-Hilbert lemma, we can bound 5; ; ! ; using

M, (yu); —f ulz,y) d] < ”q‘uwmﬁmﬂ?
Ti—1

Integrating over I; we get

T 1/2
SLl < € [ ma?(| " Je)aal de) < OOl 2R e,
j Ti-1

then

. 1/2
|Z Ol < C( Y (diamA) fulFaay) | Pav™ o (6.56)
NETy

Using Bramble-Hilbert again we have

2 LTi—1/2 L 1/2
(O)icss = | o) daf < CHP([ (Gunf de)
1 Jr;1 Ti—1

Integrating over I; we get

i 1/2
Sl <€ | mhi®(] "l an) < COulL) Phluling, .
j Ti-1

then

_ . 1/2
>0 87AT, < C( )] (diamA) [ulFaay) " [Pav™1. (6.57)
7,7 NETH

6.3 Numerical results

In this section we prove numerically that the method is convergent with second

order when C| p stays in H?(S) using many examples.

We consider a uniform discretization in time of [0, 7] with Nr time steps of
width At = T'/Nr. Then for each t,, = nAt with n = 1,..., Ny we measure the numerical
errors el (t,) = RyC(t,) — CH(t,) , f( n) = Rup(t,) — pH(tn) of the numerical method
(6.4) by using the following norms defined by the mesh H:

We illustrate the behavior of the errors

lecln = max el ()3 + > AUV -_med (t;)F . (6.58)
n=1,.., T o
IVeplln = max \/HeH Wi + Vel ()3, - (6.59)

77777

leplln = nlgagﬁﬁep<qouH. (6.60)

T W
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The rate of convergence is numerically obtained by the formula
(1)
Rate = ————HL

1 Hma:r: '
0} =
& Hma:r:

Y(,y,t) = de'sen(ay)(z — 1)(y — 1)(|12y — 1) + |20 — 1|+

(6.61)

Let
(6.62)

defined in S x (0,7] = [0,1]* x (0, T] we observe that

e If ¢ > 1.5 then ¢ € H*(S);

e If 1.5> 0 > 0.5(c # 1) then v € H*(S);

To illustrate the convergence rate we introduce functions fi, fo in (5.31), such

that, the exact solution of problem (5.31) is given by

p(l‘,y,t) = C(l‘,y,t) = 1/’(%?/7@- (663>

In this first example, the exact solution matches with the assumption p, C' € H?, then the
O(H?

2 ) rate of convergence is expected.

Example 5. Let

1 + sen(my)?

A= a=1,8=-1,0 =16, (6.64)

—sen(7x)sen(my)
)2

—sen(mz)sen(my) 1+ sen(mx

with initial condition C(x,y,0) = p(x,y,0) =0 .
Note that we obtain, as expected, a second order of convergence in all the
considered norms.

Table 7 — Numerical approximation p, C(T = 0.01,dt = 5e — 04) Example 5

[ H | lepla || Rate | |Vey|u | Rate || fec|lu || Rate |
5.0025e-02 || 8.7543e-04 - 4.6994e-03 - 3.1635e-04 -
4.1687e-02 || 6.0893e-04 || 1.9910 || 3.2763e-03 || 1.9785 || 2.2130e-04 || 1.9598
3.5762e-02 || 4.4755e-04 || 2.0085 || 2.4114e-03 || 1.9991 || 1.6335e-04 || 1.9805
3.1266e-02 || 3.4263e-04 || 1.9882 || 1.8478e-03 || 1.9815 || 1.2550e-04 || 1.9620
2.7798e-02 || 2.7085e-04 || 1.9998 || 1.4618e-03 || 1.9932 || 9.9370e-05 || 1.9856
2.5012e-02 || 2.1941e-04 || 1.9948 || 1.1849e-03 || 1.9892 || 8.0618e-05 || 1.9807
2.2750e-02 || 1.8137e-04 || 2.0083 || 9.7989e-04 || 2.0035 || 6.6701e-05 || 1.9990

In the next example we analyses what happen with the problem (5.31)when

the solution are in H? and not in H?
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Example 6. Let

1 2 -
A= | Prsen(m) Sen(m)sen(zy) a=1,8=—1,0=051 (6.65)
—sen(mz)sen(my) 1+ sen(wx)
We obtain the errors and rate of convergence given in Table 8
Table 8 — Numerical approximation p, C'(T = 0.01,dt = 5e — 04) Example 6
H H ey i H Rate H IVeyln H Rate H lec|a H Rate H

2.7793e-02 || 1.7721e-04 - 1.9498e-03 - 2.1546e-04 -
2.5047e-02 || 1.4403e-04 || 1.9928 || 1.7161e-03 || 1.2275 || 1.9190e-04 || 1.1132
2.2772e-02 || 1.1915e-04 || 1.9914 || 1.5312e-03 || 1.1971 || 1.7293e-04 || 1.0929
2.0931e-02 || 1.0033e-04 || 2.0393 || 1.3840e-03 || 1.1993 || 1.5752e-04 || 1.1074
1.9290e-02 || 8.5821e-05 || 1.9128 || 1.2643e-03 || 1.1073 || 1.4475e-04 || 1.0349
1.7920e-02 || 7.4013e-05 || 2.0102 || 1.1609e-03 || 1.1592 || 1.3366e-04 || 1.0825
1.6687e-02 || 6.4466e-05 || 1.9365 || 1.0745e-03 || 1.0841 || 1.2430e-04 || 1.0186
1.5671e-02 || 5.6740e-05 || 2.0320 || 1.0004e-03 || 1.1374 || 1.1616e-04 || 1.0778

We observe that only the convergence rate associated to the L? norm |e,||x
continue to be of second order as expected for finite element method with linear piecewise
basis, instead in other norms we lost the second order and we obtain the first order.
The method is then not superconvergent for functions that not belong in H?. This is
confirming that this class of functions is the largest possible space that permit to have a

superconvergent method for our problem.

The next one give us an indication of convergence of O(H?) if p,C' € H'™* with
s € (1/2,2]. One can see that it is achieved in (FERREIRA; BARBEIRO; GRIGORIEFF,
2005). Decreasing o we show the convergence rate decay for p,C belonging in a less regular

space.

Example 7. In this case p,C are not in H*(S).

A 1 +sen(ry)®  —sen(mx)sen(my) 15— 1o-03 (6.66)
—sen(rx)sen(ry) 1+ sen(mz)?
Table 9 — Numerical approximation p, C'(T = 0.01,dt = 5e — 04) Example 7
[ H | leplu || Rate | |Vey|u | Rate || [ec|lu || Rate |

2.5107e-02 || 1.3781e-04 - 2.2619e-03 - 2.7196¢-04 -
2.2739e-02 || 1.1414e-04 || 1.9020 || 2.0521e-03 || 0.9828 || 2.4841e-04 || 0.9143
2.0843e-02 || 9.6692e-05 || 1.9062 || 1.8876e-03 || 0.9599 || 2.2947e-04 || 0.9115
1.9240e-02 || 8.2606e-05 || 1.9671 || 1.7446e-03 || 0.9841 || 2.1301e-04 || 0.9297
1.7910e-02 || 7.1992e-05 || 1.9204 || 1.6298e-03 || 0.9501 || 1.9944e-04 || 0.9190
1.6675e-02 || 6.2461e-05 || 1.9870 || 1.5227e-03 || 0.9511 || 1.8697e-04 || 0.9032
1.5650e-02 || 5.5360e-05 || 1.9029 || 1.4341e-03 || 0.9456 || 1.7641e-04 || 0.9167
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These error estimates allow us to conclude that the method studied leads to

O(H?) for the pressure and density as expected for s € (1/2,2].
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7 Supraconvergent multiscale scheme

The main idea of this Chapter is to show how we can use the supraconvergent
finite difference method of Chapter 5 (or equivalently the finite element method of Chapter
6) to get an approximation for the homogenized solution of system (3.78) and also for the
multiscale solution of the systems (2.21). The method is here presented only for solving
the problems (3.78) and (2.21) in a one dimensional domain. However a simple method
extension can be implemented to solve also two-dimensional multiscale and homogenized
problems. The proposed scheme is based on approximating the homogenized solution
obtained by supposing that the solutions C, p satisfies an asymptotic expansion in the micro
dimension e. Basically, we solve the microproblem (3.24) to provide an approximation at
the macro-scale with mesh sizes H; for the homogenized tensor and then we obtain with
the method of Chapter 5 the approximated homogenized solution ©®# and then through

LH we can approximate the multiscale solution. Here u® is the

a reconstructed u*? + eu
numerical homogenized solution and u™f approximates the spatial derivatives of u® and
depends on the cell microproblem in the periodically distributed domain Y. One can see

more details about homogenization in Chapter 3 and Appendix B.4.

The homogenization for multiscale systems as (2.21) has been discussed in
Chapter 3 and further details on the homogenization of PDE systems are presented in
Appendix B.4. In fact despite we proved in Chapter 6 a second order using a norm
in L*([0,T], H'(S)) when Dirichlet conditions were used here we prove that when we
use micro cell problems with a Y-periodic conditions the discussed process to build the
homogenized numerical solution and multiscale solution is also a second order method

using a macroscale norm in L*([0,T], H'(S)) and a microscale norm in L*([0,T], H'(S)).

The second order in L*([0,T], H*(S)) proved for single-scale problems in Chap-
ter 5 and 6 is thus conserved also for solving multiscale problems (2.21) with proposed

multiscale strategy proposed in this Chapter.

7.1 Cell problem

The periodicity of the micro-problem in the multiscale problem is a good feature
for numerical multiscale methods since we can solve the microproblem once in a reference
domain Y and then its solution can be replicated periodically in the macroscale domain 2.

In this section we approximate the solution y in the reference domain Y = [0, 1] of the
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cell problem that is

0 ox oK
—— (K(y)=) = ——— inY
oy kW5 ) =3,
x(y) Y-periodic, (7.1)
0 =0.
We remember that a function v is called Y —periodic if and only if
v(y+ k|Y]) =v(y) Yy e YVk € Z. (7.2)

Let h = (hi)i:O
with a maximum hy,,, = max{h;|i = 0,..., N} . We define by Y, the discrete mesh in
Y =[0,1],

N+1 With hg = hyy1 be the sequence nonuniform mesh sizes

.....

Yh = {{yl}7{i0|yl = Yi—1 + hiay(] = O’yN — 1}

As before, we introduce the following sets

Yy, ={y;,i = 0,N},Y), = Y}, /0Y),.

By W” (Y) we denote the space of Y-periodic grid functions v" on Y, and

per

W;T7O(Y) the subspace of Y-periodic grid functions with “zero mean” . For y; € Y}, let

hi + hita
—s

In W) (V) we introduce the inner products

I; = (yifl/ZayiJrl/Q) NY and |[;| = hivip2 =

" w")y = > L

Yi €Yy

N
(vh,wh)h,_ = Zhivi@i
=1

and the associated norms |v" [, = v/ (v",v"), and [[v"],_ = 1/ (V" 0"),

The discrete problem has the form: find x" e th ro such that

e

oK

aic,h(Xh,Uh) =—((—

ay )h,?)h)h. (73)

h h
for v € W, ¢

(V) and ax;(v", w") = —(5?51/2) (Kéggl/?)vh), w™), (see Chapter 6 and 7.1.1).

7.1.1 The finite difference scheme

The discretized variational problem (7.3) is equivalent to a standard FDM

for (7.1) on a nonuniform grid, which we will derive in this section. To formulate, as in
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Chapter 5, the finite difference method in nonuniform meshes we use the following finite

difference operators

g2y, — V2T U2 sy g YL T 74
Y Yiv1/2 — Yi-1/2 Y e Y Yiv1 — Yi (7.4)
Then denoted by

Lic(u?) = =02 (K552 (u)) (7.5)

the finite difference method used to solve the cell problem (7.1) is find x" € W/, such
that:

Le(x") = (?;)h (7.6)

oK 1 oK . . . oK
where (| — | ={— | —— ¢ is alocal approximation for — on the nodes ;.

7.1.2 Equivalent FE method for the cell problem 7.1

As in Chapter 6 we are able to show here the equivalence of the FD scheme
N
to a FE method. Let 7}, = U /A\; a partition of Y using the set Y;, as extremes of each

i=1
subinterval A. We define by K, the value of K in the midpoint of A. Note that we use

this notations in order to be easy to extend the problem in two dimensions.

We define the following discrete operator : Yo", w" e W (V)

per
a@" ") = Y Kay f (Pyo"), (Pyw™), dy. (7.7)
= A

Thus we can get an approximation of the solution x of the cell problem through the

variational problem: find x" € W” , such that

per,
oK
a(x",v") = —((@)h, ) e W, (7.8)

The next proposition show the equivalence of (7.6) and (7.8)

Proposition 9. For all v, w" e W (Y) and K(y) Y — periodic, we have

per

N
—(6?51/2) (K:(S:L(JI/Q)U}L), U)h>h = Z ]’Lilci_1/2(5351/2)Ui_l/g(szglﬂ)@i_l/g. (79)

=1
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Proof. Since ICNH/z(S:,Sl/Q)vNH/QEN = IC1/2(5?51/2)U1@0 for periodicity we have
N
—(MSDy )y, = =Y LIS (K8 D) (7.10)
i=1
N
= - Z(’Ci+1/25§1/2)%+1/2 - K¢—1/25151/2)Uz'—1/2)@i (7.11)
i=1
N
= Z hilci_l/g(sz(/lp)Ui_1/2(5?51/2)wi_1/2. (712)
i=1
O
Now we can prove using Proposition 6 and Lemma 2 in Chapter 6 that the
finite difference method (7.6) is of second order of consistency, that is its truncation error

decays of order two. In order to help the reader we rewrite in the following the Lemma 2

of Chapter 6 for our cell problem in one dimension.

Lemma 6. Let ue H2, (Y) and the coefficient K € W2X(Y). Then the part

per per

(") = a(Rpu,o") — L (=Kuy), dyu; (7.13)

Yi€Yh

satisfies the estimate

@M < C (D] (diamA) fuy |32 0)) | Pt 1, for v € Wi o (V),
NETh

where Ry, is the restriction operator.

7.2 Approximating the homogenized coefficient

By meany (-) we denote a discrete mean operator in WIZT(Y) that approximate

the arithmetic mean over Y defined by

1
vy = J v dy, (7.14)
Y Jy
for instance, we use Midpoint rule to construct meany ().

Proposition 10. For all v" € W" (V) we have

per

[o" — meany (V") < C|V_,o"

h,—>

where C' depends on Y.
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Proof. Firstly,

v, = (Uj — Ujfl) + vy = Z(hiv,yvj) + Vo,

7=1

N

meany (V") = 72 Lijv; = |Y| Z |I;|( Z (h;V_yvj) + v9)
-1
N .

- ZI\ Zzzh V_yv;)) + v

i=1

.

<.
Il
—

then using that Va,be R (a + b)® < a® + b* and that Va; € R ( Z <1 ?

Jj=1 Jj=1

[v" —meany (W")[}; = Z |1 (v; — meany (v"))*
]=V % N
= Z |[l|(2 h‘jv*yvj |Y’ Z |[k
i=1 j=1
. 7 N N )
2(2 2| (iPmae Z hj<v—yvj |Y7 Z Ik| k( Z —y“k) ))
i=1 j =1

||M?r

VAN

VAN

2C (Y>(‘|D*yUhHh D" )
< CY)V_yls -

Corollary 4. The Poincaré inequality holds for v € W" (Y) if vy = 0 or meany (v") = 0.

per

]

We can use the approximated solution y" of the cell problem solution Y,
obtained by the finite difference method 7.6 with meany (x") = 0 that is such that

oK —
—ﬁ;c(Xh) = _(87y>h n Yh

" is Y — periodic (7.15)

meany (x") = 0.

to build an approximation of the homogenized coefficient

q= ]Y\J (K — IC dy (7.16)

The approximated homogenized coefficient ¢" used is given by
q" = meany (R,K — R,V _,x"). (7.17)

Note that the right hand-side of (7.15) is not available in general, but it can be replaced

by the discrete derivative of K without loss of convergence.



Chapter 7. Supraconvergent multiscale scheme 104

Proposition 11. ¢" approzimates the homogenized coefficient with a second order consis-
tency, that is
g —d"| < Ch;,

max”

0
Proof. Since for hypothesis hy,1 := hy then for the Y —periodicity of K — ICa—X we have
Y
that its integral in [yn, yn11/2] is equal to that in [yo, y1/2]. Thus we obtain

8)( (9X
q= J (K- IC dy = J (K- IC 7.18
Vi Vi 2 Z (71%)

From Bramble-Hilbert Lemma

N
. 1/2
I3 | dy = 8] < O Y (inma) ), (7.19)
i=1Y1 ATy
then if y € ) (V)
h ox
lg—q"| < !meany(Rh’C(@ — Vo, X))+ Chl, (7.20)
< HICHOO|meany(Rh 2 — V_yRyx + V_yRyx — V_yx )|+ Ch2,,..(7.21)
From Bramble-Hilbert Lemma
N ox(vi) : 42 3
RS =Vl < O 3 (@diamd) ) (7.22)
i=1 Y NETH
then we obtain
=" < |K|olmeany (V_yRyx — V_yx")| + Chl,,, (7.23)
< Ch:,., (7.24)
where C' depends on K and y. [

We verify now with two examples that effectively our approximated homogenized

coefficient is second order accurate.

Example 8. Tuking
1

My) = 2 + cos(2my)’

1
we have that ¢ = 3

Using formula (7.17) we build varying the non uniform mesh the value ¢" that

has shown in the Table 10 it converges to ¢ with order two when h,,,, tends to zero.
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Table 10 — Numerical approximation for homogenized coefficient

[P

qh

| la—q" | Rate |

2.5051e-01
1.2514e-01
6.2555¢-02
3.1278e-02
1.5640e-02
7.8200e-03
3.9596e-03
1.9551e-03
9.7754e-04
4.8877e-04
2.4438e-04
1.2219e-04

0.243247e-01
5.058797e-01
5.014967e-01
5.003722¢-01
5.000931e-01
5.000235e-01
5.000060e-01
5.000015e-01
5.000004e-01
5.000001e-01
5.000000e-01
5.000000e-01

2.4325e-02
5.8797e-03
1.4967e-03
3.7217e-04
9.3094e-05
2.3523e-05
5.9780e-06
1.4860e-06
3.6813e-07
9.8083e-08
2.3477e-08
5.6048e-09

2.0460
1.9732
2.0078
1.9994
1.9846
2.0129
1.9725
2.0131
1.9081
2.0628
2.0665

Example 9. Tuking
2+ |20 — 1)*!
Cly) = 27 1=v— 2
) 2 + cos(2my) ’

we have that ¢ = 1.1930597352384201837.

The associates numerical results are shown in Table 11, showing a gain a second

order of convergence of ¢" to the homogenized coefficient g.

Table 11 — Numerical approximation for homogenized coefficient

[t || a° ]
2.5017e-01 || 1.244211e+00
1.2510e-01 || 1.205424e4-00
6.2565e-02 || 1.196208e+-00
3.1314e-02 || 1.193846e+-00
1.5640e-02 || 1.193257e4-00
7.8202e-03 || 1.193108e+00
3.9440e-03 || 1.193072e+00
1.9955e-03 || 1.193063e+-00
9.7754e-04 || 1.193060e+00
4.9948e-04 || 1.193060e+00
2.6163e-04 || 1.193060e+00
1.2219¢-04 || 1.193060e+-00

lg—¢"|
5.11516-02
1.2364e-02
3.1479¢-03
7.8638¢-04
1.9708e-04
4.8481e-05
1.2534¢-05
3.1958¢-06
7.5597¢-07
1.8905¢-07
4.9999¢-08
1.0459¢-08

H Rate H

2.0491
1.9743
2.0040
1.9933
2.0234
1.9761
2.0060
2.0201
2.0641
2.0569
2.0550
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7.3 Approximating the solution of multiscale elliptic problems

In this section we propose a numerical method to approximate the solution of

the multiscale one dimensional elliptic equation

0 L ou® ..
oz <’C ax) = f @ (7.25)
U| = 0

Q

associated to a multiscale tensor (coefficient) K and multiscale function f°. This equation
is a simpler case of the multiscale pressure equation analyzed and determined in Chapter

3 in a two dimensional colon domain.

An important feature of the proposed multiscale method is to approximate u°

starting by approximating the solution u” of the associated homogenized problem

0 ou’ ;
%) = [ reow me (7.26)

u0|ﬂ =0
. . . 1 ox . . . .
with the homogenized coefficient ¢ = m (K — K==dy) given in the previous section
Y Y

0
7.2.

The approximation u® of u° is obtained by the high order method finite

difference method

Lpu® = meany(f°) in Qg
oI , (7.27)
u”’ \6QH = 0
where as usual
L () = —6Y2(g 5020, (7.28)

19 is the € component of the asymptotic expansion of f¢ and ¢” is the approximated

homogenization coefficient given by (7.16).

In (7.27) Qy is a one dimensional mesh in 2 = R that is given by the macroscale

non uniform mesh sizes H = {H,};—;,.a with a maximum mesh size H,,,, that is given
Qu ={zi € Qu; =21+ Hii=1,..., M},
Qg = {xo, ), Qm = /0.

Proposition 12. Let "% = Ryu® — u®% with u° , u™ solution of (7.26) and (7.27)

respectively then the following convergence result is valid

IV e < C(Hby, + !

max ma:p) ?

(7.29)

since |q — ¢"| < ChZ,,, and |(f°) — meany ()| < Ch?

max*
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Proof. We have that u® verifies the following equation
Lpu®" = meany (f°). (7.30)
Furthermore Ryu” verifies the same equation with addition of an O(H?2,,) term
LRy = {f) + O(Hy,)- (7.31)
Subtracting both (7.30) and (7.31) and multiplying by ¢®* we get

(012 (g80 D Ryr®) + 612" PM), )y = (O(R2,,,) + O(HR,), ™),
(qD—xRHUO - th—:vUJO’Hy D—xeo’H)H =

("D_pe®" + (¢ — ¢")D_,Ryu®, D_,e"My =

then using that ¢" is constant with respect to H and the discrete Poincaré inequality

N

¢" |V o™ 3 ((¢" = @) Do Rt”, D—p™) r + O(y) + O(Hypa)
OV ™ -
O |V =t [, - + | V™ [

O(az) + O(Hpgr) + OV e[,

max

N+

+

We obtain that if (¢" — C') > 0,

|V o™ |2, < C(hE,, + H

max max >

(7.32)

]

In the next example, we test numerically the validity of the convergence result

in Proposition 12.

Example 10. Using the parameters

1

My) = 2 + cos(2my)

(2, y) = cos(2ma),

and solving the numerical homogenized associated problem (7.27) we get the numerical
results of Table 12.

In Table 12 we note a second order of convergence with respect H. This is

obtained since we used a sufficient small micro-scale mesh size h.
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Table 12 — Numerical errors

H H, o HeSIHH Rate H HV,xeé{HH7, H Rate
2.5032e-01 || 8.3717e-03 - 4.7358e-02 -
1.2517e-01 || 1.9029e-03 || 2.1375e+00 1.1651e-02 2.0233e+00
6.2562e-02 || 4.6355e-04 || 2.0364e+00 || 2.8940e-03 | 2.0083e+00
3.1278e-02 || 1.1531e-04 || 2.0069e+00 7.2339¢e-04 1.9999e+00
1.5639e-02 || 2.8768e-05 || 2.0031e+00 1.8069e-04 2.0013e+00
7.8774e-03 || 7.1965e-06 || 2.0205e+00 4.5213e-05 2.0201e+00
3.9200e-03 || 1.7974e-06 || 1.9877e+00 1.1294e-05 1.9876e+00
1.9551e-03 || 4.4842¢-07 || 1.9958e+00 2.8176e-06 1.9957e+00
1.0005e-03 || 1.1119e-07 || 2.0815e+00 || 6.9865e-07 || 2.0815e+00
4.9633e-04 || 2.7121e-08 || 2.0128e+00 1.7041e-07 2.0128e+00

Numerical error in approximating on nonuniform meshes the homogenized solution of
(7.26) by using the method (7.27) varying in H,,,, and fixing h = 5e — 03.

In the next Table 13 we do the opposite in the sense that we fix H and vary

hmam .

Table 13 — Numerical errors

H Rz HeOHHH Rate H HV_weOHHH,_ H Rate
2.5014e-01 || 1.6683e-03 - 1.0483e-02 -
1.2512e-01 || 4.1596e-04 || 2.0051e+00 2.6136e-03 2.0051e+00
6.2557e-02 || 1.0618e-04 || 1.9698e+00 6.6719e-04 1.9698e+00
3.1281e-02 || 2.6624e-05 || 1.9960e+00 1.6729e-04 1.9960e+00
1.5641e-02 || 6.6140e-06 || 2.0092e+00 || 4.1557e-05 || 2.0092e-+00
7.8829e-03 || 1.6900e-06 || 1.9914e+00 1.0619e-05 1.9914e+00
3.9101e-03 || 4.2508e-07 || 1.9686e+00 2.6709e-06 1.9686e-+00
1.9551e-03 || 1.0575e-07 || 2.0070e+00 6.6448e-07 2.0070e+00
9.8381e-04 || 2.5197e-08 || 2.0886e+00 1.5832e-07 2.0886e+00
4.8877e-04 || 5.6460e-09 || 2.1383e+00 || 3.5475e-08 || 2.1383e+00

Numerical error in approximating on nonuniform meshes the homogenized solution of
(7.26) by using the method (7.27) varying in Ay, and fixing H = le — 04.

Now, we are able to construct an approximation for the multiscale solution
by distributing the domain of reference Y periodically in €2. The numerical multiscale

solution is built by using the following formula

H _  0H H 0,H
u; =u" —ex"Vogut,

(7.33)

where x? is the macroscale function obtained by linear interpolating x" in the Q2 nodes.
This interpolation is obtained after by distributing periodically Y in Q5. Note that a
such multiscale numerical solution approximate the first two terms of the € asymptotic

expansion of u® = u® + eu' + ...



Chapter 7. Supraconvergent multiscale scheme 109

One can find a post-processing scheme similar to (7.33) in (ABDULLE, 2009)

that satisfies the following error estimate

. h

In (ABDULLE, 2009) they use the numerical homogenized solution provided by the
HMM-FEM method in place og u®¥. That is done by extending the small scale solution

locally on the macro element K.

We assert that our multiscale approximation (7.33) satisfies

C(H? 4+ h*+ ¢+ fi(H, h,e))

IV_sel |- <
< C(H?+h*+ &%+ fo(H, h,e))

(7.35)
le |

where e = Ryu® — u”. Despite we are not able to prove the convergence result in (7.35),
we can obtain numerically a second order for H and h and a first order for £ on non

uniform meshes as shown un the next Examples.

Example 11. Taking in (7.25)

1

&€
o —sen(®
2 + cos(2my)’ f* = sen(2mz),

K(y) (7.36)

we obtain, varying € and h, the approrimation errors shown in Tables 14 and 15, respec-

tively.

As we can see, in Table 14 and associated plots we have a first order of

convergence in the || - |~ norm with respect to e.

Table 14 — Convergence rate for e(H = h = le — 04)

H € H HefHH H Rate H HV,xefHH, H Rate H
2.0000e-01 || 5.3816e-04 - 1.5916e-02 -
1.6667e-01 || 3.6685e-04 || 2.10 1.3263e-02 1.00
1.2500e-01 || 2.0259e-04 || 2.06 9.9472e-03 1.00
8.3333e-02 || 8.8875e-05 || 2.03 6.6315e-03 0.99
5.0000e-02 || 3.1782e-05 || 2.01 3.9789¢e-03 0.99
2.7778e-02 || 9.7844e-06 || 2.00 2.2106e-03 0.99
1.4706e-02 || 2.7405e-06 || 2.00 1.1704e-03 0.99
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rate for il 1)

rate for

Figure 19 — Convergence for €.

In the next we choose a quite large € to see how it affects the errors. Note that

in Table and Figure 15 the error in | - | g— norm decreases up to reach a lower limit. We

think that this happens due to presence of a term f; in (7.35) that depends on ¢, H and h.

Table 15 — Convergence rate for h(H = le — 04, = le — 03)

[ e [ 17l [ Rote [IV—/ls_ ] Faic]
2.5021e-01 || 1.67150e-03 - 2.2469e-02 -
1.2512e-01 || 4.19674e-04 || 1.99 5.6681e-03 1.98
6.2560e-02 || 1.05793e-04 || 1.98 1.2000e-03 2.23
3.1280e-02 || 2.67972e-05 || 1.98 3.5142e-04 1.77
1.5640e-02 || 6.70333e-06 || 1.99 1.3087e-04 1.42
7.8384e-03 || 1.66984e-06 || 2.01 8.5213e-05 0.62
3.9156e-03 || 4.07688e-07 || 2.03 8.2261e-05 0.05
1.9667e-03 || 1.00208e-07 || 2.03 8.2035e-05 0.00
9.7753e-04 || 2.84471e-08 || 1.80 8.2048e-05 || -0.00
4.8877e-04 || 1.43107e-08 || 0.99 8.2047e-05 0.00

Figure 20 — Convergence rate for h.
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In the following example we can analyze the influence of the magnitude of ¢ in
the convergence analysis varying the macroscale mesh size H. A similar analysis can be

done varying h.

Example 12. Taking in (7.25)

1

My) = 2 + cos(2my)

,ff = €" + cos?(2rx), e = 0.05,0.01 and 0.001, (7.37)

we obtain the numerical errors shown in the next Tables 16, 17 and 18.

Firstly for € = 0.05 we have

Convergence rate for H{Norm H) Convergence rate for H{Norm H,+)

25+

B RSO0 CEGED 6 g,

8 L L . . L 35

Figure 21 — From left to right we can see the behavior of the errors for € = 0.05.

Table 16 — Convergence rate for H(h = le — 04,¢ = 0.05)

H H,pon H HefHH H Rate H HV—foHH,— H Rate H
2.0138e-01 || 9.8645e-02 - 8.0082¢-01 -
7.9540e-02 || 1.2352e-02 || 2.2366e+00 1.1302e-01 2.1078e+00
4.8022e-02 || 4.6284e-03 || 1.9453e+00 4.2921e-02 1.9188e+00
3.4798e-02 || 2.6877e-03 || 1.6874e+00 3.0623e-02 1.0482e+00
2.7675e-02 || 1.8237e-03 || 1.6933e+00 || 3.2657e-02 || -2.8082¢-01
1.3202e-03 || 6.3838e-04 || 6.0425e-03 4.9943e-02 -1.0861e-03
1.3081e-03 || 6.3827e-04 || 5.3403e-04 4.9945e-02 -3.8638e-05
1.2737e-03 || 6.3823e-04 || 2.0257e-03 4.9946¢e-02 -5.9153e-04
1.2610e-03 || 6.3818e-04 || 7.7969e-03 4.9947e-02 -2.5189¢-03

For ¢ = 0.01 we have
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Figure 22 — From left to right we can see the behavior of the errors for ¢ = le — 2.

Figure 23 — From left to right we can see the behavior of the errors for ¢ = le — 3.

rergence rate for H(Norm H)

nvergence ra

te for H(Norm H,+)

Table 17 — Convergence rate for H(h = le — 04, = 0.01)

| Huw || €f]u Rate || [V_oe|n- | Rate |
2.0162e-01 || 1.0184e-01 - 8.0216e-01 -
7.8452e-02 || 1.1012e-02 || 2.3568e+00 || 1.0927e-01 || 2.1120e+00
4.7961e-02 || 4.0982¢-03 || 2.0085e+4-00 || 4.2582¢-02 || 1.9150e+00
3.4819¢-02 || 2.1854e-03 || 1.9634e+00 || 2.2266e-02 || 2.0248e+00
2.7260e-02 || 1.3671e-03 || 1.9168e+00 || 1.3731e-02 || 1.9748e+-00
1.3639e-03 || 2.7532e-05 || -3.6428e-02 || 9.7231e-03 2.8402e-02
1.5003e-03 || 2.7465e-05 || -2.5288e-02 || 9.7283e-03 5.6779e-03
1.3486e-03 || 2.7430e-05 || 1.2086e-02 9.7331e-03 || -4.5617e-03
1.3870e-03 || 2.7372e-05 || -7.5536e-02 || 9.7403e-03 2.6541e-02
1.2610e-03 || 2.7331e-05 || 1.5773e-02 9.7420e-03 || -1.8105e-03
Then, for e = 0.001
Convergence rate for H(Norm H) o Convergence rat‘e for H(Norm H,+)
|
e iv e
A ﬁ 7 j;"
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Table 18 — Convergence rate for H(h = le — 04,e = le — 3)

H H, o H HefHH H Rate H HV_;BefHE_ H Rate H
2.0199e-01 || 1.0138e-01 - 8.0507e-01 -
7.8301e-02 || 1.1523e-02 || 2.2946e+00 1.1159e-01 2.0852e+00
4.9199e-02 || 4.2003e-03 || 2.1718e+00 4.2433e-02 2.0808e+00
3.5164e-02 || 2.1173e-03 || 2.0396e+00 2.1825e-02 1.9796e+00
2.7264e-02 || 1.3388e-03 || 1.8013e+00 1.3721e-02 1.8238e+00
1.3202e-03 || 3.2941e-06 || 1.3806e+00 2.0274e-04 1.7373e+00
1.3066e-03 || 3.2176e-06 || 2.2690e+00 1.9872e-04 1.9323e+00
1.2932e-03 || 3.1469e-06 || 2.1542e+00 1.9430e-04 2.1817e+00
1.3491e-03 || 3.0803e-06 || -5.0581e-01 1.8948e-04 -5.9433e-01
1.2610e-03 || 3.0397e-06 || 1.9649e-01 1.8427e-04 4.1264e-01

Note that the errors in the Table 16 and plots 21, associated to ¢ = be — 2,
decrease with a second order in both norms only in the first three coarsest macro-scale
meshes. Then the errors decrease slowly by decreasing H,,.., up to reaching a value
6.38¢ — 04 in the norm || - |z and 4.994e — 02 in the norm |V _,||g . We perform in the
following a error analysis in the norm | - |z but a similar analysis is valid in the norm
|V_s - |lg.— . Our understanding is that the error does not decrease further since for the
formula (7.35),, is bounded by a term O(g?), that should be C;e? = C'1(0.05)* ~ 6.38¢ — 04
with C7 = 2.552e — 01. This understanding is confirmed by the observation that with
¢ = le—02 we have in Table 17 and plot 22 that the errors have a second order rate in more
meshes (5 coarsest meshes) and reach a constant value 2.7¢ — 05 ~ Cye? = Cy - (1e — 04)
with C5 = 2.7e — 01 that is approximately ;. Using ¢ = le — 03 we observe in Table
18 that the error is still decreasing with the H,,,, used, and that it is maybe reaching
the value Cje2 = 2.5¢ — 01 - le — 06 = 2.5¢ — 07. One can see also that Cy = 2\/51 and
Cy = 2/C5 fit very well in the bounds of | - | norm. Now, observe that the errors in
| - |z~ does not have the same behavior as | - || errors, in fact the error in | - ||z — looks
like a ball that is thrown down and bounces on the surface. We are not able to explain

this effect without determining the theoretical the analytical error bounds.

7.4 Coupled multiscale problem

In this section we propose a multiscale method for solving with an high order
of convergence the one dimensional version of the coupled elliptic-parabolic multiscale
problem in (2.21) that determine the cell density and pressure inside the colonic crypts

with micro-domainY distributed in the colon domain 2.

In Chapter 2 we proved that the microscale cell problem that determine x can

be solved once in the reference domain, and then we can use this solution to obtain the
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homogenized tensor for both the elliptic and parabolic equation as well as the €' terms p'

and C'. We propose a multiscale method defined by the following steps:

1. Solve the microproblem using the supraconvergent method with periodic boundary

conditions, which means we get x” as before in (7.15)

2. Build a discrete version of the problem with the supraconvergent method again by
replacing the homogenized tensor by ¢" and use the meany operator where it is

needed;

3. Solve first the homogenized elliptic equation and then insert the obtained homoge-

nized pressure in the parabolic equation;

4. Build an approximation of the multiscale solutions C° and p° by using respectively
CH = — ex"V_,Cl and p = pll — ex"V_.pll;

We observe that, as in HMM-FEM, the computational effort of this method is
quite independent of € since we use a reference domain instead of each repeated periodic
domain. Beside that at the last step, we just have to interpolate x" near the nodal points

of Qy to get y.

In the following we prove numerically that this multiscale scheme is convergent
with order two with respect both step sizes H and h and with order 1 or 2 with respect
¢ depending on the norm used. On the other words we have the same convergence rates
observed for the elliptic problem. The stability and convergence of this method will be

proved theoretically in the near future, see the conclusions Chapter.

Example 13. Consider the coupled 1D system

—V - (K°Vp®) = aly)C° + f7.
e o . o (7.38)
= + V. (v°C%) =V - (Dy)KVC?) + B(y)C° + f5.

where v° = —K°Vp®, K(y) = 1/(2 + cos(2my)) and D = f = a = 1.

Findig exact solutions for multiscale problems is not a too easy task, so we
added two additional functions f7, f5 to make this analysis possible. In the following sets
of Tables we present the convergence for the macromesh H and the micromesh A for the

homogenized problem.
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Table 19 — Convergence rate for H in | - | norm(h ~ le — 04)

H,on H Heg’HHH H Rate H Heg’HHH H Rate H
5.0418e-02 || 4.6760e-03 - 1.4158e-03 -
2.5394e-02 || 1.1363e-03 || 2.06 | 3.5631e-04 || 2.01
1.2621e-02 || 2.7990e-04 || 2.00 || 8.9569e-05 || 1.97
6.3111e-03 || 7.1025e-05 || 1.97 || 2.2393e-05 || 2.00
3.1760e-03 || 1.7668e-05 || 2.02 || 5.6170e-06 || 2.01
1.6773e-03 || 4.4003e-06 || 2.17 || 1.4133e-06 || 2.16

Table 20 — Convergence rate for H in | - |z - norm(h ~ le — 04)

| Huwe || [V_ueb™|u- || Rate || [V_.eg |- || Rate |
5.0418¢-02 | 6.6174e-03 - 2.3904e-03 -
2.5394e-02 || 1.6164e-03 | 2.05 | 6.1236e-04 | 1.98
1.2621e-02 | 4.0135e-04 || 1.99 || 1.5451e-04 || 1.96
6.3111e-03 | 1.0128¢-04 | 1.98 || 3.8663¢-05 | 1.99
3.1760e-03 || 2.5248e-05 | 2.02 || 9.7034e-06 | 2.01
1.6773e-03 | 6.2922e-06 || 2.17 || 2.4422e-06 | 2.16

Table 21 — Convergence rate for h in | - ||y norm(H ~ 2e — 03)

Romax H Heg’HHH H Rate H Heg’HHH H Rate H
3.3527e-01 || 1.8098e-02 - 1.6986e-03 -
2.0195e-01 || 7.1451e-03 || 1.83 || 6.1790e-04 || 1.99
1.4397e-01 || 3.9705e-03 || 1.73 || 3.3595e-04 || 1.80
1.1214e-01 || 2.3891e-03 || 2.03 || 2.0017e-04 || 2.07
9.1816e-02 || 1.6658e-03 || 1.80 || 1.3907e-04 || 1.82
7.9848e-02 || 1.1984e-03 || 2.35 || 9.9901e-05 || 2.36

Table 22 — Convergence rate for h in | - ||z~ norm(H ~ 2e — 03)

T e IV 2"l | Rate [ IV 2eC " || Ratc |
3.3527e-01 2.5567e-02 - 1.8509e-03 -
2.0195e-01 1.0093e-02 1.83 6.7494e-04 1.99
1.4397e-01 5.6088e-03 1.73 3.6710e-04 1.79
1.1214e-01 3.3749e-03 2.03 2.1868e-04 2.07
9.1816e-02 2.3531e-03 1.80 1.5187e-04 1.82
7.9848e-02 1.6928e-03 2.35 1.0902e-04 2.37
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(a) (b)

Figure 24 — 24(a) and 24(b) show us the graph of the exact homogenized solution and the
numerical solution for pressure and density respectively (H ~ 2e — 03, h =
le — 04).
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Figure 25 — Images 24(a) and 24(b) respectively with zoom applied.

The next table is one of our most interest which is the convergence for ¢ and

as we can see the error goes to zero in a first order of convergence for the gradient.

Table 23 — Convergence rate for ¢ in | - | g norm(h ~ le — 04, H ~ 2e — 03)

I [ lee™la [[Rate ] [e€7]n ] Rate |
1.0000e-01 || 2.6331e-03 - 4.1198e-04 -
6.6667e-02 || 1.1420e-03 || 2.06 || 1.8319e-04 || 1.99
5.0000e-02 || 6.3743e-04 || 2.02 | 1.0306e-04 | 1.99
4.0000e-02 || 4.0681e-04 | 2.01 | 6.5964e-05 || 1.99
3.3333¢-02 || 2.8230e-04 || 2.00 || 4.5810e-05 || 1.99
2.8571e-02 || 2.0749¢-04 || 1.99 || 3.3657e-05 || 1.99
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Table 24 — Convergence rate for € in | - |- norm(h ~ le — 04, H ~ 2e — 03)

H € H HV,xef’HHHﬁ H Rate H HV,xeg’HHH,, H Rate H
1.0000e-01 1.0285e-02 - 2.0415e-03 -
6.6667e-02 6.7268e-03 1.04 1.3458e-03 1.02
5.0000e-02 5.0117e-03 1.02 1.0051e-03 1.01
4.0000e-02 3.9964e-03 1.01 8.0236e-04 1.00
3.3333e-02 3.3237e-03 1.01 6.6767e-04 1.00
2.8571e-02 2.8446e-03 1.00 5.7162e-04 1.00

Note that we used the same approximation as in (7.33). A O(y/e) order of
convergence was expected for | - ||z~ norm in the same way O(H) was expected from the
classical literature. We need a deeper analyze as done in Chapter 6 to conclude the exact

rate of convergence.

Figure 26 — Graph of the exact multiscale solution and the numerical solution for pressure
and density respectively (¢ = 0.1).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 1 0 0.1 0.2 0.3 04 0.5 0.6 07 0.8 0.9 1

Figure 27 — Graph of the exact multiscale solution and the numerical solution for pressure
and density respectively (¢ = 0.01).
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In the next 4 Tables we show the errors for H and h convergence for the
multiscale problem. As we can see, the convergence rates are very similar to Tables 19-22

since € ~ le — (6.

Table 25 — Convergence rate for h in | - ||y norm(e ~ le — 06, H ~ 2e — 03)

hmaz lePH | g Rate || eS|y | rate
3.3639e-01 || 1.7881e-02 - 1.6748e-03 -
2.0367e-01 || 7.0458e-03 || 1.85 || 6.0837e-04 || 2.01
1.4403e-01 || 3.9115e-03 || 1.69 || 3.3032e-04 || 1.76
1.1412e-01 || 2.4817e-03 || 1.95 || 2.0753e-04 || 1.99
9.1788e-02 || 1.6750e-03 || 1.80 | 1.3932e-04 || 1.83
7.7804e-02 || 1.1982e-03 || 2.02 || 9.9364e-05 || 2.04

Table 26 — Convergence rate for h in | - |z norm(e ~ le — 06, H ~ 2e — 03)

Pmas IV _.e?z_ || Rate || [V_.eS7|u_ || Rate
3.3639e-01 || 2.5260e-02 - 1.8253e-03 -
2.0367e-01 || 9.9535¢-03 | 1.85 || 6.6480e-04 | 2.01
1.4403e-01 | 5.5256e-03 || 1.69 || 3.6119¢-04 || 1.76
1.1412e-01 | 3.5058¢-03 || 1.95 || 2.2697e-04 || 1.99
9.1788¢-02 || 2.3662¢-03 || 1.80 | 1.5237e-04 | 1.83
7.7804e-02 || 1.6926e-03 || 2.02 || 1.0866e-04 || 2.04

Table 27 — Convergence rate for h in |

- |z norm(e ~ le — 06,h ~ le — 04)

Hinax Il || Rate | eS|z || Rate
5.0994e-02 || 4.7257e-03 - 1.4058e-03 -
3.3641e-02 || 1.9674e-03 || 2.10 || 6.3358e-04 || 1.91
2.5243e-02 || 1.1147e-03 || 1.97 || 3.5674e-04 || 2.00
2.1161e-02 || 7.2352e-04 || 2.44 || 2.2919e-04 || 2.50
1.6831e-02 || 4.9429¢-04 || 1.66 || 1.5901e-04 || 1.59
1.4717e-02 || 3.7325e-04 || 2.09 || 1.1683e-04 || 2.29

Table 28 — Convergence rate for h in |

- | g norm(e ~ 1le — 06, h ~ le — 04)

Hpan IV_.e?z_ || Rate || [V_.eS7|n_ || Rate
5.0994e-02 ||  6.5900e-03 - 2.3800e-03 -
3.3641e-02 || 2.8429¢-03 || 2.02 | 1.0820e-03 | 1.89
2.5243e-02 || 1.6014e-03 || 1.99 | 6.1261e-04 | 1.98
2.1161e-02 | 1.0335e-03 || 2.48 || 3.9544e-04 | 2.48
1.6831e-02 || 7.0945e-04 || 1.64 || 2.7404e-04 | 1.60
1.4717e-02 || 5.2946e-04 || 2.17 || 2.0166e-04 | 2.28
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7.5 Comments

If we take a look closer, the scheme described here is very familiar with the
HMM framework (see Chapter 4). The macro solver choose is the supraconvergent method
described in Chapter 6 and we supply the need data by approximate the homogenized
tensor using information of the microscale. On the other hand, we take advantage of the
periodicity to build a scheme that does not need to solve a microproblem around each
node of the macro mesh. The micro problem is solved in a domain of reference that in
some sense is independent of €. The main idea of the scheme is lead the convergence of

the micro problem to the macro problem without lose accuracy.

The numerical convergence of O(e) for the post-processing approximation was
not expected and is superior in comparison with other methods as HMM-FEM. We strongly
believe that it is a consequence of the supraconvergent method, but we remark that there
is a finite elements equivalency so we need to go deeper to find the right answer. Note
that the computational cost of this scheme is the same than solving a 1D coupled problem
in Chapter 6.
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8 Conclusions, contributions and future work

8.1 Conclusions

Based on some models for tumor growth in the colon, see Chapter 1, we used a
system of PDE in three spatial dimensions for the dynamics of colon cell populations. The
cell dynamics, differentiation and proliferation in the colon occur in three dimensional
cavities wide spread in the colon epithelium and called crypts. Due to its micro-dimension
(measured in micro-meters), that is very small with respect the dimension of the colon that
is measured in meters, such dynamics in the colon can be modeled by using multiscales
with a microscale dimension ¢ representing the dimension of a single crypt and a macroscale
for the colon epithelium dimension. Moreover due to the large diffusion of crypts in the
colon we suppose that an averaged crypt is periodically distributed in the colon, as done
in Chapter 2. The averaged reference crypt is there represented by a two dimensional
Riemannian manifold that permits to rewrite the three dimensional PDE system in a
bidimensional PDE system whose parameters describing the proliferation, diffusion and
geometry of the crypt will depend on the micro-scale dimension e. Solving a multiscale
problem with a standard FEM usually needs to use the smallest scale in all the domain.

For multiscale elliptic problem

—V(AVu) = f (8.1)

the following sharp a-priori error is valid
. h
Ju* =l < O flla-1, (8.2)

which means that to get a limited error the mesh size must satisfies h < ¢ leading to a
huge computational effort. To overcome this difficulty in solving multiscale problems we
introduced the homogenization theory in Chapter 3 for the coupled multiscale PDE system
solving the cell dynamics in the colon epithelium. The homogenization permits to analyze
the multiscale problem with solution u° when ¢ — 0 by using a single scale, transforming
the multiscale PDE equations in a problem, called homogenized problem with solution u°,
that is uniformly spanned in all the domain. There are known analytical forms for the
homogenized problem and error estimates associated to many elliptic, parabolic and coupled
problems (GOUDON; POUPAUD, 2005), however it results computationally expensive
to build the associated homogenization tensors. This is the reason for introducing the
HMM-FEM method in Chapter 4 that permits to approximate the homogenized solution
through a FEM multiscale strategy using a limited computational and memory effort. Its

computational cost is in fact independent of the dimension of the micro scale, and the

associated homogenized tensor can be computed by solving the microscale cell problem
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only around the quadrature points used to approximates the macro-scale integrals that
depend on the FEM used. As discussed in the thesis, exists in the literature HMM error
estimates with respect the homogenized solution [u® — u**| for elliptic and parabolic
multiscale problems. It is known for example that the error estimates for the gradients

scales with a first order of convergence with respect H, and second order with respect to

—. Moreover the HMM-FEM solution can be used to approximate the multiscale solution
€
after a proper post-processing construction of a approximation of u°. This reconstructed

approximation scales for the gradients with order 0.5 and for the solutions with order 1.

A goal of this thesis was to speed-up such convergence in solving coupled
parabolic elliptic multiscale PDE problem as that associated to the colonic crypt cell
dynamics in nonuniform meshes. We succeed in this by building firstly a finite difference
method with a higher convergence order than to HMM-FEM for approximating the gradient
of the solution of coupled PDE parabolic-elliptic system in a single scale, see Chapter 5.

This supraconvergent method is proved to converge with a such high order for solutions in
CH(Q).

We were able to relax such assumption in Chapter 6 proving that this method
is equivalent to a FEM method that converges with the same order using less regular
functions that are in H*($2). Finally in Chapter 7 we extended this method to solve
accurately, with an high order, multiscale coupled PDE systems. We proposed a multiscale
strategy that uses the supraconvergent method at each scale: in the micro to solve the
microscale cell problem for obtaining the homogenized matrix, and in the macro-scale to
solve the homogenized equations. Such strategy combined with the post-processing of the

SH . — % 4 eyH permits to have a high accurate method for

homogenized solution w
the gradient that is a second order for the micro and macro scale mesh size and of first
order with respect . This post-processing strategy is similar to that used in HMM-FEM

(see Chapter 4).

8.2 Future work

In this section we give some remarks on perspectives of the thesis results that

can be investigated in the future.

8.2.1 Convergence and stability analysis

In Chapter 7 we presented how to use the supraconvergent method to obtain
better approximations of the multiscale solution of PDE multiscale coupled elliptic parabolic

problems. Our numerical tests show a O(HZ2__+h? . +c+ f(H, h,¢)) order of convergence

max

in nonuniform meshes. The next step is then to prove such orders theoretically using a
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similar approach of that used in Chapter 5 and 6 but now considering also the ¢ scale and

the interaction with the macro scale in the approximations.

8.2.2 The Hill equation

Nowadays medical doctors are interested in the physiochemical reactions of
drugs with the cancer cell proliferation. A such problem is modeled nowadays by adding a
reaction term represented by a Hill equation in the cell dynamics that inhibits or reduces
the cell proliferation and cancer growth. A such new equation coupled with a drug release
model in the colon can be considered in our mathematical modeling of colonic cell dynamics

to simulate its effect in the first stage of colorectal cancer under a pharmacological therapy.

This new equation can be represented by a Hill equation that is a nonlinear
relation between three parameters ¥,,q4., ¢ and a:
YmazL”
o+

Focusing on pharmacodynamics, the Hill equation has been widely used to describe the

y = (8.3)

relation between drug effect (E) and drug concentration (C'). Mathematically, this model

has a Hill equation form
Emaasca

T %+ O
where FE is the predicted effect of the drug, E,,., is the maximum effect , C' is the drug

(8.4)

concentration at time ¢, Csq is the drug concentration for which 50% of maximum effect is
obtained and « is the Hill coefficient of sigmoidicity. For more details see (GOUTELLE et
al., 2009; ZHAN; GEDROYC; XU, 2014).

8.2.3 Convergence and stability analysis of the HMM-FEM method applied

to a coupled problem

In Chapter 4 we applied the HHM-FEM to our coupled problem to get the first
numerical solutions in a observable macro scale. We showed numerically that HMM-FEM
solution converges to the homogenized solution when macro scale size goes to zero also for
our coupled elliptic parabolic problem.The convergence rates obtained are similar to those
obtained in (ABDULLE, 2009; ABDULLE, 2012; ABDULLE; HUBER, 2014; ABDULLE;
NONNENMACHER, 2009). It is interested to prove this convergence rate theoretically, in
fact this will help us to determine the exact error estimates and understand how reducing

the approximation error.

8.2.4 2D analysis of supraconvergent multiscale method

Results in Chapter 7 have been obtained applying the proposed multiscale

method to solve a multiscale problem in one dimension in space. Despite this, it is easy to
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extend such multiscale method in a 2D domain. Preliminary results have been already
obtained, see Example 14, where we prove that we can approximate the homogenized

tensor with a high order by using the supraconvergent method presented in Chapters 5-6.

Example 14. Toking A(yi,y2) = (2 + cos(2my,))1, where I € R**? and
V3o
0 2

Table 29 — Numerical approximation for homogenized tensor

.AO

[

H |A° — A", H Rate H

2.0005e-01
1.0002e-01
5.0024e-02
2.5002e-02
1.2503e-02
6.2516e-03

4.7314e-02
1.3118e-02
3.2997e-03
8.2611e-04
2.0664e-04
5.1619e-05

0.0000
1.8505
1.9919
1.9967
1.9996
2.0011

Using this result it will be possible to prove a high order of convergence for
the multiscale numerical solution in bidimensional domains. This will be obtained using

similar demonstrations of that presented for one dimensional multiscale problems.

8.3 Contributions

8.3.1 Presentations

Some parts of this work were presented in the following events:

e CNMAC - XXXVIIT Computational and applied mathematics National Congress -

Campinas/SP - Brazil (2018);

e WCMNA - Workshop on Computational Modeling and Numerical Analysis -

Petrépolis/RJ - Brazil(2019);

e [CIAM - International Congress on Industrial and Applied Mathematics - Valencia -

Spain (2019);

e WANA - Workshop on Numerical Analysis and Applications- Imecc/Unicamp -

Brazil (2019);
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8.3.2 Project

I gained a CAPES-PRINT financed project for a visiting research in the
University of Coimbra-Portugal under the supervision of Professor José Augusto Ferreira
from September 2019 to March 2020.

The project was named FEstabilidade e Convergéncia de métodos numéricos
multiescala aplicados a equacoes diferenciais acopladas and started at 01/09/2019. During
this six months we developed a numerical process to approximate the solution of a general
coupled elliptic parabolic PDE system in a single scale on nonuniform meshes. The main
result obtained during this research visit was the quadratic convergence in L? and H'
discrete norms of the numerical method presented in Chapters 5-6 when the solutions

belongs in H>.

Moreover during this period a small part of Chapter 7 have been developed,
and I profit that period to learn numerical techniques to improve further this Chapter

later on.

8.3.3 Submissions of articles

With this work we have the intention of publish up to 3 articles. The first one

are the results presented in Chapter 5. It is named
e Supraconvergent method for elliptic-parabolic PDE systems

and is expected to be submitted by January.
The second will present the results of Chapter 6.

The last one will contain the results of Chapter 7 together with the future work

8.2.1 discussed above.
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APPENDIX A - Riemannian Manifold

A.1 Differential model on a manifold

In what follows we introduce some notations, and the derivatives for functions
defined on a 2D Riemann manifold. This will permit to rewrite system (2.5) in the local
coordinates of the 2D manifold I'. Briefly let I' = R® be a 2D Riemann manifold, {Y, ¢} a
chart, and let (y;,y2) € Y the local coordinates that parameterize the manifold I'. For an
arbitrary C?(T) function f : I' — R, we define f : Y — R such that f = fo¢. The relation
between the derivatives of the function f, defined in I', and derivatives of f, defined in Y,
are established using the metric g, associated to the manifold I' (CARMO, 1976; HSU,
2007; BRENNER; SCOTT, 2004).

In the next paragraph we give the formal definitions for Riemannian Manifold,

metric g, the associated function matrix g, and the matrix A that are used in Chapter 2.

A.1.1 Riemannian manifold and metric

Definition 1. Let I' be a differential manifold. A differentiable function o : (—¢,e) — T’
is called a (differentiable) curve in U'. Suppose that a(0) = p e I', and let D be the set of
functions on I' that are differentiable at p. The tangent vector to the curve o att =0 is a

function o/ (0) : D — R given by

(0 = (9(fa<; a)

Since a(0) = p, each tangent vector defined in (A.1) is also called tangent vector at p. The

=0, fe€D. (A.1)

set of all tangent vectors to I' at p, indicated by T,I", is called Tangent Plane of I' at p.

A Riemannian Metric g in a differentiable manifold I' is a correspondence
which associates to each point p on I' an inner product (), (that is, a symmetric,
bilinear, positive-definite form) on the tangent space 7,I". The differential manifold I'
endowed with the metric g, that is (I', g), is for definition a Riemannian manifold. If

¢ : Y c R? - I'is a system of coordinates around p, for each g € o(Y),q = ©(y1,v2) ,

a , a )
them g (ur.4a) 1= ¢ w(g;yz)j w(g;yz)
i J

(Gij)ij=1,2 is called the local representation of the Riemannian metric g in the coordinate

Op is a differentiable function on Y. The function

system o : Y < R? — T. This matrix function (g, ;) is represented in this thesis, for abuse

of notation, by the matrix function g.

We consider in our model problem a crypt as a surface in R®, that is a

Riemannian manifold thus in the next part we define the differential operators over
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surfaces. Recall that a subset I' © R? is a regular surface if, for every point p € I, there
exist a neighborhood V of p in R?* and a mapping x : U < R*> - V ~ T of an open set
U c R? onto V N T, such that:

e x is a differentiable homeomorphism;

e The differential (dx), : R* — R? is injective for all g € U (CARMO, 1976).

The natural inner product of I' = R* induces on each T, 4,)(I') of a regular
surface I', an inner product to be denoted by {, ),y 4.)(¢, ) for convenience). In general,
to this inner product, which is a symmetric bilinear form, there corresponds a quadratic

form I, : T,I' — R given by
L(w) = Cw,wy, = Juf? > 0. (A.2)

op 0
L4 —¢> that are the scalar product between

dy;’ Oy,

0
the derivatives = € R3. A Riemannian metric is important to introduce the meaning of
distance on the manifold. We define by ¢!, the g inverse matrix, with elements ¢*/, that is

g~ ' = (g")i =12 This permits to define the function A with elements A;; = +/| det g|g"/,

In the case of I' is a surface, ¢, ; = (

where det g denotes the determinant of g.

A.1.2 Differential operators on a Riemannian manifold

Although we can solve the problem (2.5) in that form, the implementation
of numerical methods would be easier if the domain was a subset of R", thus we firstly

rewrite the original problem in local coordinates.

A.1.2.1 The gradient

Let (T, g) be a surface, and let f : T' — R be a real-valued function over I'. For

any p € I and for any v € T,I', the gradient of f in p is a vector field defined by
(gradf,v) = df,(v). (A.3)

That is, for each p € I' and for any v € T,I', grad f is a vector in T,,I" such that
the inner product with v is the derivation of f by v. In local coordinates
of 0
gradf = g7 ———.
Z y; y;

3,j=1

(A.4)
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A.1.2.2 The divergence

The divergence of a vector field V' in local coordinates is

1 & o
divV = ———— N = (Viy/|det g A5
WeeRT g|;&yz~( |det g]) (A.5)

0
where V' = Vi—
; "Oyi

A.1.2.3 The Laplacian-Beltrami-Operator

After determining the expressions to the gradient and to the divergence, we can
combine them into a way to compute the Laplace-Beltrami-Operator(Ar : C*(I') — C®)

in local coordinates

Arf = div gradf (A.6)
V |det g 'L]Z:l

af

- A8
A/ | det g Z (/yz (331] ( )

where A; ; = \/det g g"/. One can find more details about these operators in (LEE, 2003).
7-]

Jaet g J) (A7)
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APPENDIX B - Banach Spaces, Sobolev
Spaces and Periodic function in Sobolev Space
Hl

B.1 Banach space

B.1.1 Dual space

Definition 2. If E is a Banach space, the set of the linear and continuous maps from E
into R is called the dual space of E and is denoted E'. If ' € E', the image ' (x) of z € F
is denoted by (', x)p p. The bracket (-, yp g is called the duality pairing between E' and
E.

B.1.2 Weak convergence

Definition 3. A sequence {x,} € E is said to converge weakly to z iff
Vo' € E' (& xpyp g — (& 2)p B (B.1)
This weak convergence is denoted

x, — x weakly in E. (B.2)

B.2 Sobolev space

k
B21 WiQ)

Definition 4. Let k be a non-negative integer, and let f € L},.(Q)). Suppose that the weak

loc

derivative D, f exist for all |o| < k. Define the Sobolev norm

1 lwser = (S 108 1200) " (B.3)

la|<k

in the case 1 < p < o0, and in the case p = o
[ flws ) = mazia<il Dy f | e (@) - (B.4)
In either case, we define the Sobolev space via

Wy Q= {f € Lioo() : | flwp) < o} (B.5)

loc
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For p = 2, one denotes W5 (2) = H*(Q). Suppose that 0 is Lipschitz continu-
ous. Then

Hy(Q) = {ulu e H'(Q),v(u) = 0} (B.6)
The function 7(u) is called the trace of u on 0SQ.
Definition 5. We denote by H () the Banach space defined by
H(Q) = (HY(Q)Y (B.7)

wquipped with the norm

Fouyy-
|F| -1y = sup [F, W), my(0)|

(B.8)
HL(9Q)\0 Hu”Hg(Q)

B.3 Periodic functions in the Sobolev space H'(Y)

Here we introduce a notion of periodicity for functions in the Sobolev space
H'. Let Y be the reference cell defined by Y = (0,1;), where [; is a positive number.

Definition 6. Let C2 (Y') be the subset of C*(R) of Y -periodic functions. We denote by

per

H! (Y) the closure of C*(R) for the H'-norm.

per

Proposition 13. Let ue H', (Y) and u¥ be its extension defined by periodicity. Then

per

u¥ is in H'(w) for any bounded open subset w of R.
Definition 7. The quotient space

Wier (V) = HY, (YV)/R (B.9)

per

is defined as the space of equivalence classes with respect to the relation

U~ v <= u—uvisa constant, Yu,ve H (Y). (B.10)

per

We denote by u the equivalence class represented by .
Proposition 14. The following quantity:
[l Wper vy = VU] L2(v), Y € 4, Vi € Wher (Y), (B.11)

defines a norm on Wy, (Y).

Suppose that the coefficients a;; are Y-periodic. Let f be Y-periodic and

consider the problem
—V(AVU) =f inY
(u) =0 (B.12)

U Y — periodic.
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A natural space for the solutions is
Woero(Y) = {v|v e H., . (Y), My (v) = 0}. (B.13)

per

Hence, for f given in (W,er0(Y))’, the variational formulation is

Find u e Wyeo(Y) such that
f AVuVo dy = <f, U>(Wper,o(Y))’,Wper,o(Y) (B.14)
Y

Yo e Wper,(] (Y)

Due to the Poincaré-Wirtinger inequality, Wpe.o(Y) is a Banach space for the

norm

[t Woerov) = [Vl 223y, Yt € Wiero(Y). (B.15)

Theorem 5. Let A be a elliptic matriz with Y -periodic coefficients and f € (Whyero(Y))'.

Then problem (B.14) has a unique solution.

B.4 Homogenization in one dimensional function space

Consider the following problem

d .., ou .
_@(A (7) Ox) = f°, 0<x<l, (B.16)
u(0) = u(1) = 0.

In the light of the properties of our model problem it is now natural to assume
a two scales asymptotic expansion for the solution u®(x). We start by introducing the new

variable y, defined as y = ¢ 'z, and assume that u°(z) can be represented as

uf(x) = wo(z,y) + cwy (x,y) + 2wa(z,y) + - - (B.17)

where the function w;(x,y),7 = 0,1,2,---, are assumed to be periodic in the variable y

over some fixed interval Y. We introduce the operator A° as

AT = —;;(Ae(a:)‘jli). (B.18)

Assuming ¥ (z) = ®(z,y), the chain rule yields

AV 0d 109

—_— =4+ ——. B.1
dz &x+66y (B-19)
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Thus
e, e _ _i € du®
A = o (A () dx) (B.20)
o 10 o 10 ,
= —(%+gafy)()\(y)(£+g@)(7ﬂ(]+€wi+€ ’LU2+"')) (B21)
= (6_2140 + 5_1141 + AQ)(U)(] + ewy + €2w2 + - ) = fe, (B22)
where
0 0
A = _@(A(y)@)a (B.23)
0 0 0?
A = _%(A<y)%) _/\(?J)Ma (B.24)
82

Equating in powers of € leads us to the following three lowest order equations

Ao’LU(_) = 0, (B26)
A0w1 + Ale = 0, (BQ?)
(B.28)

|
s
.m

AowQ + a1wWq + A2w0

In order to solve (B.26)-(B.28) we need the following Lemma:
Lemma 7. Let ((y) € L*(Q) be Y —periodic. For the boundary value problem in'Y

where V(y) is Y —periodic, the following holds:

1. There exists a solution WV if and only if () = 0.

2. If there exists a solution it is unique up to an additive constant.

Now we note that (B.26) has the trivial solution wy = 0. Since the variable x is
just a parameter in (B.26), Lemma 7 yelds that wq(z,y) is a solution of (B.26) if and only
if wy is a constant with respect to the variable y, i.e., wo(x,y) = u(z), for some sufficiently

differentiable function u(z). Then we have

o\, Ou

Aqun = 52(0) 5 (@) (5.30)



APPENDIX B. Banach Spaces, Sobolev Spaces and Periodic function in Sobolev Space H' 136

Here again x is just a parameter and the equation may be regarded as a problem

depending on the variable y only. Therefore it suffices to consider the cell problem

oA

Aogx = ~a x(y) Y — periodic. (B.31)
)

Now, assume that a solution x(y) of (B.31) is given. By using the linearity
and the fact that Ay not involves differentiation with respect to x, we conclude that the

function

w(2,9) = X)) + () (B.32)

is also a solution of (B.31) for every sufficiently differentiable u;(z). By using Lemma 7

once more we find that (B.28) has a solution wq(z,y), Y —periodic in y, if and only if

<f — A1w1 — A2w0> = 0, (B33)

where

0 o*u o\, 0wy ox 0%u
A = — — — —(y)—= — B.34
N O RO ORI e TN CED
and
A = —\( )aiu (B.35)
2Wo = ) o2 .

The Y —periodicity of A(y) and x(y) implies that

ox. 0%u

A function wy(z,y) exists if and only if x(y) and u(z) satisfy the relation

ox. ®u
—(\— )\@ e . (B.37)

We say that
ox
=A== B.
1= (- A5, (B.35)

is the homogenized coefficient of the homogenized equation (B.37).
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B.5 Some theorems of functional analysis

Theorem 6 (Lax-Milgram). Assume that H is a Hilbert space, B : H x H — R is a

bilinear functional and there exist constants o, f > 0 such that

[B(u, )| < aful - |vf, u,ve H, (B.39)
Blul* < B(u,v),ue H. (B.40)

Then for every continuous functional f on H there exists a unique w € H such that

B(w,v) = f(v), ve H. (B.41)

For more details see (BRENNER; SCOTT, 2008).

Theorem 7 (Bramble-Hilbert). Let F' be a linear functional on HZ’f(R) satisfying

k
o |F(u)| < C’Z NP, where Cis independent of p and u,

j=1

e I(q) =0 for qe Pk.

Then there is a constant C' independent of p and u such that

[F(w)] < Cp NP Y 1D ully e (B.42)

TeK

For more details see (BRAMBLE; HILBERT, 1970).

B.6 Supraconvergence and Superconvergence of numerical meth-

ods

A finite difference method is called supraconvergent when it has an higher
convergence order than the truncation error order measured pointwise or in the L® norm,
(KREISS et al., 1986) Thus for example if u is a solution of a differential problem and u,
is its approximation obtained by some finite difference method having a truncation error
T}, such that || T3] < Ch®, where h is the maximum mesh size used in the grid. If the error
of the method |u — uh| converges to zero with order greater than s, then the method is
called supraconvergent. In our case we proved in Chapter 5 that in a discrete H' norm the
error goes to zero with order two for any non uniform mesh, even if the truncation error is
of order one in the infinity norm. Then our method is supraconvergent in a discrete H'
norm. When a such supraconvergence appear for a finite element method then the method

is called superconvergent.
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