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Be curious,

and however difficult life may seem,

there is always something you can do,

and succeed at.

It matters that you don’t just give up.

Stephen Hawking



Resumo

Em epidemiologia, medidas de controle podem ser propostas e implementadas de modo

a reduzir infecções e custos associados a uma doença infecciosa. Neste trabalho usamos

modelagem matemática, teoria de controle ótimo e simulações numéricas para descrever,

simular e analisar um problema da vida real nesse sentido. Nosso objeto de estudo em

particular foi o espalhamento geográfico do vírus Zika, que obteve preocupação mundial

após um recente surto na América Latina que se iniciou no Brasil. Houve um alto número

de doenças neurológicas, como microcefalia em recém nascidos de mães infectadas por Zika,

o que nunca havia ocorrido antes. O vírus é transmitido principalmente por mosquitos

Aedes aegypti, mas há casos confirmados de transmissão direta (sexual). Um modelo de

difusão-reação foi formulado, baseado em equações diferenciais parciais, que considera

movimento espaço-temporal de humanos e vetores, com transmissão local do vírus Zika.

Vacinação foi introduzida como um controle variável no tempo e espaço, dando imunidade

a humanos suscetíveis, com o objetivo de caracterizar uma estratégia de vacinação ótima

que minimiza os custos associados a infecções e vacinas. A caracterização do controle ótimo

foi obtida por meio de equações de estado e adjuntas. Soluções numéricas do modelo foram

obtidas usando os métodos de elementos finitos para variáveis espaciais, e de diferenças

finitas para a variável temporal. Utilizando dados para o surto inicial de Zika em 2015 do

estado do Rio Grande do Norte no Brasil, alguns parâmetros do modelo foram estimados

usando uma abordagem de quadrados mínimos. A metodologia de estimação de parâmetros

foi testada com dados artificialmente gerados. Uma análise de sensibilidade global foi

realizada de forma a encontrar os parâmetros com mais impacto no custo total e no número

de infecções. Diversos cenários foram considerados e discutidos em termos do número de

novas infecções e e custos, mostrando que a aplicação do controle ótimo foi bem sucedida,

significantemente reduzindo estes números.

Palavras-chave: Epidemiologia. Controle ótimo. Equações diferenciais parciais. Métodos

numéricos. Vírus Zika.



Abstract

In epidemiology, control measures can be proposed and implemented in order to reduce

infections and associated costs of an infectious disease. In this work we used mathematical

modeling, optimal control theory and numerical simulations to describe, simulate, and

analyze a real life problem in this sense. Our particular subject of study was the geographical

spread of the Zika virus, which has acquired worldwide concern after a recent outbreak in

Latin America that started in Brazil. There was a high number of associated neurological

conditions, such as microcephaly in newborns from infected mothers, which had never

happened before. The virus is transmitted mainly by Aedes aegypti mosquitoes, but direct

(sexual) transmission has been documented. We formulated a reaction diffusion model,

based on partial differential equations, that considers spatiotemporal movement of humans

and vectors, with local contact transmission of Zika virus. Vaccination was introduced as

a space and time variable control, giving immunity to susceptible humans, with the goal

of characterizing an optimal vaccination strategy that minimizes the costs associated with

infections and vaccines. The optimal control characterization was obtained in terms of

state and adjoint equations. Numerical solutions of the model were obtained using the

finite element method for the space variables, and the finite difference method for time.

Using data for the initial 2015 Zika outbreak in the state of Rio Grande do Norte in

Brazil, some parameters of the model were estimated using a least squares approach. The

parameter estimation methodology was tested with artificially generated data. A global

sensitivity analysis was performed in order to find the parameters with most impact in

the overall cost and in the number of new infections. Several scenarios were considered

and discussed in terms of number of new infections and costs, showing that the optimal

control application was successful, significantly reducing these quantities.

Keywords: Epidemiology. Optimal Control. Partial differential equations. Numerical

methods. Zika virus.
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Chapter 1

Introduction

Mathematical models have been widely used in several biological applications,

such as population dynamics, neurobiology, ecology, tumor growth, cell physiology, im-

munology, and epidemiology. Model studies may require mathematical analysis and/or

computational simulations, the latter specially in situations in which several variables are

included in the model. Those analyses may result in unexpected and important properties

of the phenomenon being studied, according to particular interests. In epidemiology, our

main interest in this work, the purpose of the modeling is usually to describe, understand,

quantify, and possibly control health care and disease conditions.

Among a variety of mathematical models, the most commonly used in epi-

demiology are compartmental models, based on ordinary differential equations (ODEs).

This class of models considers populations in different compartments, such as susceptible,

infected or infectious, exposed, recovered, immune, non linearly related to each other [53,

55]. The choice of which compartments to be used depends on the dynamics of the disease

to be studied and which characteristics are important. Thus, there could be a variety

of compartmental models that describe the same disease, each of them suitable to each

particular approach. ODE models consider time as a continuous variable, but discrete time

models could also be used, based on difference equations [9]. In this case, dynamics are

also considered between compartments, with discrete time stepping. This kind of modeling

could be suitable when there is some sort of generation involved with a fixed time length,

such as insect reproduction period, or latent and infectious periods of a disease.

Compartmental ODE models consider only time variations, assuming that

spatial variation is homogeneous. There are many kinds of models available in the literature

that are used to include this additional variation. For example, patchy models use one

compartmental ODE system for each spatial locus such as a city, and all ODE systems are

connected through movement between the loci [7]. Another example is the use of agent

based models (also called individual based models), in which movement and dynamics occur

randomly, according to decision-making rules [90]. Our approach in this work considers

movement through spatial diffusion of populations in a certain region, by means of systems

of partial differential equations (PDEs) [21, 88]. For most ODE models, it is possible to

simply include a diffusion term in each equation of the system to readily modify them to

a reaction-diffusion PDE model, also defining appropriate spatial domain and boundary
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conditions. Although explicit solutions of PDE models are rare, there are theoretical

studies regarding existence and uniqueness of solutions and convergence of several different

numerical methods [25, 36, 59].

Occasionally, it may be necessary to add a control measure in the model, either

to represent the reality of the phenomenon to be modeled, as a tool in theoretical studies,

or even to test hypotheses. The inclusion of this control measure could, and often does,

bring associated costs (or profit) that should be taken into account. This kind of situation

can be suitably modeled by the use of optimal control theory. It seeks the minimum cost (or

maximum profit or advantage, if applicable) in terms of the control variable(s), balancing

out the costs associated to the control and benefits, always restricted to the model. Once a

well behaved objective functional to be minimized is defined, optimal control theory can be

readily applied to existing ODE and PDE models. The ODE case is usually straightforward,

because the solution of the optimal control problem is characterized by the well known

Pontryagin’s maximum principle, for systems that satisfy specific technical properties [58].

For PDE systems, however, there is no general characterization for the optimal solution and

each situation must be treated separately, although the overall procedure is always similar.

The characterization is obtained in terms of state and adjoint equations, using directional

derivatives of the states and the objective functional with respect to the control. Optimal

control may also be applied to other kinds of models, as discrete models [30], in a fairly

similar way to that of differential equation models. On the other hand, there is no standard

framework for solving optimal control problems in agent based models. An alternative is

to approximate the model by a PDE model and then obtain the corresponding optimal

control solution [4].

The modeling of a real life problem using PDEs requires the use of numerical

methods in order to obtain approximated solutions, because analytical solutions are almost

always impossible to be obtained. The most common numerical methods for PDEs are the

finite element, finite difference, and finite volume methods. Our choice consists in the finite

element for the spatial variables and the finite difference (more specifically, implicit Euler)

method for time, together with a predictor-corrector linearization method [31, 32]. This

combination has been showing good results in studies similar to ours [44, 91, 96, 101, 112].

The solution of the optimal control problem is obtained using a forward-backward sweep

method, which is also commonly used, being the main choice in numerical simulations of

optimal control [46, 58].

Another important aspect in modeling real life problems is the connection

between model and data. Numerical or analytical solutions of ordinary and partial differ-

ential equations depend strongly on the model parameters. However, numerical values are

not always available from literature and laboratory or field experiments [35]. It may be

impossible to explicitly measure some parameters, or experiments could be too expensive. If
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a set of data is available, a model can be parametrized based on it in order to represent the

reality of the problem in study. This is usually done using statistical inference methods or

regression methods, such as least squares, or equivalently, maximum likelihood estimation

[108]. An example of a (Bayesian) inference method is the well known Markov chain Monte

Carlo (MCMC), an iterative method that samples a desired probability distribution by

observing a Markov chain after a usually large number of steps. Although very powerful,

it may take a long time to converge, specially if each iteration is computationally time

consuming [111]. On the other hand, regression methods usually do not have this kind of

issue. We use a nonlinear least squares approach that relates the model output with data,

minimizing their difference in terms of some model parameters.

Even when it is possible to numerically estimate parameters from the model,

their values are not always exact, as uncertainties naturally arise from the measure and

estimation processes. This kind of uncertainty can be evaluated through sensitivity analysis,

which assesses how model’s outputs are affected by variations in input parameters [103].

Methods on sensitivity analysis can be local, such as the calculus of partial derivatives

of the output in respect to a parameter, or global, which take into account a whole set

of possible parameter values. Usually in biological applications the model outputs have

complex and non local behaviors, so global analysis are more appropriate. As an example,

the statistic Pearson correlation coefficient measures linear relations between parameters

and outputs, in a global manner. However, in complex models correlations are usually

nonlinear and another kind of methodology should be more appropriate, as partial rank

correlation coefficients [67]. We use these coefficients to study sensitivity analysis in our

PDE model, after obtaining baseline values for parameters.

The main goal of this thesis is to study optimal control applied to partial

differential equation models in epidemiology. We use numerical methods to obtain numerical

solutions and connect the model with data. Zika virus was chosen as a real life application,

because of its recent importance and public health concern. Hypothetical vaccination is

considered as a control measure, in order to reduce infections in a strategy that balances

cost-benefit. As a vector-borne disease, the epidemiological dynamics of Zika is similar

to other diseases such as dengue, chikungunya (both transmitted by the same species

of mosquitoes), malaria, yellow fever, among other important diseases. Thus, a study

on mathematical models and optimal control of Zika may serve as a base reference for

the others. We discuss some of Zika virus main aspects and importance in the following

section.
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1.1 Background on Zika virus

Zika virus (ZIKV) was first isolated from a monkey in the Zika Forest of Uganda

in 1947, and later isolated from humans in Nigeria in 1954. For a long time, about 50 years,

little importance was given to the virus as only few cases from Africa and Southeast Asia

were reported [118]. The recent 2015-2016 outbreak that started in the northeastern region

in Brazil brought more attention to Zika, as it quickly spread throughout other countries

in South and Central Americas and had a large number of microcephaly among newborns

allegedly linked to it. On February 2016, the World Health Organization declared Zika

as a public health emergency of international concern. There were more than 580, 000

suspected and 220, 000 confirmed cases in all Americas by January 2018, with most of

the cases concentrated in Brazil. Also, there were more than 3, 500 confirmed congenital

syndromes in newborns associated with Zika virus in this period [89].

Zika is a flavivirus similar to dengue, and it is primarily transmitted to humans

by Aedes aegypti and Aedes albopictus mosquitoes, which also transmit important diseases

as dengue, chikungunya, and yellow fever in humans [64]. Zika can also be transmitted

vertically (from mother to child) [12], through sexual relations [27], and through blood

transfusions [81], although the main route of transmission is through the vector [3, 66]. Only

about 20% of infected people develop mild symptoms such as fever, rash, conjunctivitis

and joint pain, with a few documented fatalities – only 20 by January 2018 [89]. Zika

virus is hard to diagnose by symptoms only because they are similar to other common

diseases. Confirmed diagnosis are performed in laboratory through PCR (polymerase chain

reaction) and virus isolation from blood samples. Diagnosis by serology can be difficult as

the virus can cross-react with other flaviviruses such as dengue, West Nile virus and yellow

fever [118]. There is no cure or specific medicine for Zika virus, but symptoms should be

treated. Specialists suggest rest, hydration, and use of non-steroidal anti-inflammatory

medicine to reduce fever and pain [23]. There is an increased chance of babies born from

infected mothers to develop microcephaly [78] and other congenital conditions, including

malformations of the head, seizures, hearing and sight abnormalities, and the virus is also

linked to the development of Guillain-Barré syndrome [87]. However, precise information

about the development of these conditions are still unknown [16, 74].

Microcephaly is a condition that causes a baby to be born with a smaller than

normal head or causes the head to have a slow growth after birth. It is a rare condition in

the absence of external factors, occurring naturally in one baby among several thousands.

Diagnosis can be done early by fetal ultrasound, with a best probability of success if

performed around 28 weeks. Even if fetal ultrasound does not detect microcephaly, babies

should have their head circumference measured within 24 hours after birth. Microcephaly is

defined by a cephalic perimeter smaller than 2 standard deviations of the same gestational
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age and sex, and the severe case corresponding to less than 3 standard deviations. Besides

Zika, it is mostly caused by infections during pregnancy of toxoplasmosis, rubella, syphilis,

genetic abnormalities, exposure to toxic chemicals, among others [118]. There is no specific

treatment, although support actions are encouraged to help the development of the baby. In

Brazil, the Unified Health System (SUS - Sistema Único de Saúde) provides a stimulation

program, which aims to maximize physical and neurological potential of children up to three

years old [75]. Guillain-Barré syndrome (GBS) is an acute immune-mediated neurological

condition that affects muscle control and nerves transmitting pain, temperature and touch

sensations. It can result in weakness and loss of sensation in the legs and/or arms [118]. It

is a rare condition, with approximately 1 case per 100,000 people per year, among all ages.

It is potentially fatal, with some of the patients requiring ventilation and intensive care

support. There is a 5% mortality rate, despite optimal care. Possible causes of GBS are

infections from bacterias and viruses, such as Zika, dengue, chikungunya, HIV. Diagnosis

should be done by a health-care professional with expertise in performing neruological

examinations. In 2015, a total of 1708 cases were registered in Brazil, representing an

increase of 19% from 2014, possibly due to the Zika outbreak [89].

The most common vector of Zika in Brazil is Aedes aegypti (Diptera: Culicidae),

a species of mosquito native from Africa but widely spread worldwide. It thrives in tropical

and subtropical regions, but can survive in temperate regions as long as there are no

constant low temperatures. It is well adapted to urban areas, specially in densely populated

areas. It needs clean and still water to lay eggs, which can survive for months. Once hatched,

eggs turn into larvae, pupae, then adults (winged form). Female adults need blood meals

in order to reproduce, and it is through these meals that diseases are transmitted. Zika or

other flavivirus stay in the mosquito saliva after biting an infected human, and can be

transmitted in following bites [40].

There is no specific treatment or antiviral therapies to treat Zika, but there

has been great effort in the development of vaccines for the virus. The National Institute

of Allergy and Infectious Diseases (NIAID) in the USA started a clinical trial of a Zika

vaccine in humans in August 2016, with a second phase launched in March 2017 [86].

Tests are being performed in hospitals around the world, including Brazil, United States,

Puerto Rico, Peru, and Mexico. The trial aims to further evaluate the vaccine’s safety and

ability to stimulate an immune response in participants, also assessing the optimal dose.

It will also attempt to determine if the vaccine can effectively prevent disease caused by

Zika infection. [85]. Although the vaccine is still not publicly available, it is important

to consider the impact and efficacy of a possible vaccination program, accounting for the

costs involved, such as production, application, and logistic costs.
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1.2 Literature review

Many models have been developed in order to study the spread, impact, and

control of infectious and vector borne diseases, including Zika virus. Most of the works uses

systems of ordinary differential equations (ODEs), but there is also interest in including

spatial dependence in the models, by the use of partial differential equations (PDEs) and

other techniques, considering the spread of the disease. In this section we review some

important literature in vector-borne diseases, Zika virus, and application of optimal control

and numerical methods that are related to our study.

Gao et al. [41] developed an ODE model considering vector and sexual trans-

mission with several compartments for infected humans, analyzed the endemic equilibrium

stability, estimated the basic reproduction number with data from Brazil, Colombia and

El Salvador, and performed a global stability analysis. Similar models were developed with

estimations of the basic reproduction number for Colombia, El Salvador and Suriname

[106], and for Barranquilla, Colombia [113]. Agusto et al. [2] studied an ODE model with

separate compartments for female and male humans, with different transmission rates.

They explored endemic equilibrium stability and numerical simulations for their model.

Saad-Roy et al. [102] also studied an ODE model with sexual transmission, but with

migrated infections between two regions. They also estimated the number of Zika infections

based on the number of microcephaly cases. Manore et al. [65] used an ODE model with

field data to assess conditions in which Zika and chikungunya from travelers could spread

in eastern USA. They conclude that spatial mosquito data, biting behavior and seasonality

are important factors that should be taken into account to better understand transmission

risk. The introduction of transgenosis mosquitoes carrying the Wolbachia bacteria was

studied by Wang et al. [116] in order to control the Zika virus using Brazil data for the

year of 2016, and by Zheng et al. [122] in a more general sense, analyzing the vertical

transmission of the bacteria in mosquitoes population, both being ODE models. Bonyah

et al. [14] considered the use of bednets, treatment, and insecticide spray as control

measures, comparing the results with constant and time dependent optimal controls in an

ODE system.

A spatial agent based model was studied by Matheson et al. [68] in order

to model the spread of Zika at the 2016 Olympics. They varied some parameters (bite

rates, population sizes) and discussed the consequent outcomes, using some data from

Rio de Janeiro city. Zhang et al. [121] used a spatiotemporal stochastic model based on

compartments to study Zika in the American continent. They estimated the introduction

of Zika in America between August 2013 and April 2014, and simulated infections in

several countries based on mosquito, temperature, population and mobility data. Zinszer

et al. [123] modeled spatial and temporal data in order to reconstruct the introduction
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of Zika in Brazil, in a very simple modeling using only interpolation of data. A different

modeling was used by Gardner et al. [42] to infer risks of Zika infection in the Americas.

Their model is based on optimization to estimate the parameters, and uses a data driven

stochastic-dynamic epidemic model for evaluation. They find that local vector control is

more important than travel restrictions in reducing risks of Zika infections. Roques and

Bonnefon [99] proposed a hybrid two and one dimensional PDE model to study the spread

of Aedes albopictus mosquitoes in France, considering the effect of corridors (highways)

that facilitates movement of mosquitoes.

Fitzgibbon et al. [38] considered a reaction-diffusion PDE model with com-

partments for susceptible vectors, and infected humans and vectors, including seasonality

through the mosquito breeding rate. It is assumed that the susceptible human population

does not change in time. They applied their model to the 2015–2016 Zika outbreak in Rio

de Janeiro municipality, using data for the total number of infections in the city. De Araujo

et al. [28] studied existence and uniqueness of weak solutions of a reaction-diffusion PDE

model for the spatial spread of dengue, with an example of optimal control applied to

reduction of mosquitoes. In their model, the mosquito population is divided into winged

and aquatic forms (eggs, larvae and pupae), and the human population into susceptible,

infected and immune. A PDE model coupled with a system based on fuzzy rules was used

by Silveira and Barros [107] to study the risk of dengue spread. A Markov chain method

was used to model the stochastic dependence of rainfall in the model, and numerical

simulations were carried out for the city of Campinas, Brazil. Ramírez Bernate [96] studied

the effects of larvicides and insecticides and the introduction of sterile Aedes aegypti

mosquitoes using reaction-diffusion PDEs. Their approach for numerical solutions is very

similar to the one we use in the present work.

Other works have been successfully applying the same methodology (finite

element and difference and predictor-corrector methods) than ours to numerical PDE

solutions, in several applications. As some examples, we can cite [91], in a pollutant

dispersal model with fuzzy parameters in a water reservoir in the central-eastern area of

São Paulo state, Brazil. Gomes [44] applied a model coupled with fuzzy parameters to

dengue in the south district of Campinas, Brazil. Rubianes Silva [101] modeled competition

of aquatic macrophytes in the presence of pollution, and also the introduction of herbivore

fish to control the growth of macrophyte. A benthic sediments model was used in [112]

to study climate effect changes in an Antarctic cove. All these models are based on

reaction-diffusion or reaction-advection-diffusion equations, and their numerical solutions

were capable of provide important conclusions in real life problems.

Some research considered applications of vaccination to control and possibly

reduce infections, particularly in vector-borne diseases. Valega-Mackenzie and Ríos-Soto

[114] analyzed an ODE model for Zika virus with constant vaccination rate, studying its
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role in the impact of direct and vector transmissions. An ODE vector-borne model with

vaccination was studied in [95], considering waning protective immunity, incomplete vaccine-

induced protection and adverse events, with an application to yellow fever. Rodrigues

et al. [98] investigated the usefulness of a hypothetical dengue vaccine, with constant

and optimal controls in ODEs, different efficacies and different ways of distribution. A

general arboviral disease model was studied in [1], with analysis of bifurcation of endemic

equilibriums and application of optimal control of vaccination, treatment and individual

protection, and adult vectors, eggs and larvae elimination in an ODE model. They showed

the existence of up to two endemic equilibrium points, and how optimal controls would

affect them, using numerical simulations. Optimal vaccine strategies for rabies in raccoons

are analyzed in an ODE metapopulation model in [7], and in a PDE model in [84]. Both

models consider spatial and temporal SIR dynamics of raccoons and vaccines, with the

latter distributed by food baits. Although it is not a vector-borne disease, the techniques

used in those papers are similar to our approach.

We can cite other control and optimal control models that have been successfully

applied to real life problems. Kelly Jr et al. [54] studied a metapopulation model for the

effect of human and cholera pathogen movement in Haiti, considering optimal vaccination

strategies. Stephenson et al. [110] also considered optimal vaccination, but applied to

an ODE model of a particular bacteria infection in hospitals. Levy et al. [60] studied

the dynamics of Ebola in the presence of public health education in Sudan. Outside

epidemiology, Edholm et al. [34] studied optimal introduction of biological control agents

working as biopesticides of invasive insect species in a discrete model. Heines et al. [49]

assessed the economic tradeoffs between prevention and suppression of forest fires, using

ODE models.

Among the already mentioned works, some of them use a least squares or

maximum likelihood approach in order to estimate parameters from real data [38, 41, 60,

113]. The methodology in these works is similar to the one we propose. Considering a

residual that measures the difference between data and output from the model, numerically

calculated, an optimization procedure is performed in order to find the parameters that

gives the least squared residual. Some other works rely on statistical inference methods

[99, 106, 111, 116, 121], or even particularly designed methods [42]. Other works in the

sense of parameter estimation for ODEs can be cited, as [120], in which time dependent

entomological parameters are estimated using dengue data. Ramsay et al. [97] used a

smoothing treatment of data and included penalty in the optimization procedure. Xue

et al. [119] uses B-splines interpolation for time dependent parameters. For PDEs, we can

cite [79], that compares a standard nonlinear approach to linear least squares in the case

that the solution is explicitly obtained. Anguelov et al. [5] use least squares with finite

element method in a trap-insect model. Carvalho et al. [22] considered different methods

for the optimization procedure in parameter estimation of PDE models, and discussed
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associated difficulties.

A study on global sensitivity analysis is well depicted in [67], in which the

authors apply partial rank correlation coefficients (PRCCs) and extended Fourier amplitude

sensitivity test (eFAST) to ODE and agent based models in immunology. PRCCs are an

extension of the well known Pearson correlation coefficients, and thus are a sampling based

method, while eFAST is variance based. The authors show that PRCCs are appropriate

when relationships between input and output are monotonic and nonlinear, while eFAST

can be applied when they are non-monotonic. The aforementioned works [41, 60, 65, 116]

also use PRCCs to assess sensitivity, identifying which parameters have the most impact

in the basic reproduction number and infections. On the other hand, Heines et al. [49] use

PRCCs analysis to find the parameters with most impact in the optimal functional, which

in that case represents an expected value for a forest in the presence of fire, in an ODE

model.

In the present work, we propose a spatiotemporal PDE model for the Zika

virus spread between humans and mosquitoes. A reaction-diffusion system is proposed to

model the spatial movement of the populations (diffusion) and their dynamics (reaction).

We consider susceptible, infected, and immune/recovered compartments for humans, and

susceptible and infected for mosquitoes. Hypothetical vaccination is considered as a time

and space varying control, converting susceptible humans into immune. The main goal is

to obtain the most cost-effective vaccination strategy and simulate it in realistic scenarios.

Using numerical solutions of PDEs, the optimality system (state and adjoint systems with

optimal control characterization) is applied to data for the initial 2015 Zika outbreak in

the state of Rio Grande do Norte, in the northeastern region of Brazil. Some parameters

of the model are estimated from incidence data in a least squares approach, and different

scenarios are evaluated in terms of the number of new infections and costs. The simulations

show that the application of the optimal vaccine strategy is successful, reducing both

infections and the overall associated cost. A global sensitivity analysis using PRCCs is

carried out in order to find the parameters with most impact in the overall cost and in

the total number of new infections. To the best of our knowledge, this work is the first

to study vaccination and optimal control in a reaction-diffusion model for Zika virus.

Furthermore, in optimal control applied to PDE models, regardless of the application,

the strong connection between model and data is novel, as well as the sensitivity analysis

performed, which considers the impact of parameters in the optimal functional cost.

1.3 Thesis outline

The remainder of this thesis is organized as follows: in Chapter 2 we present

the mathematical modeling of Zika virus dynamics with vaccination, developing a reaction-
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diffusion vector-borne partial differential equation model. We consider the transmission of

the virus between humans and mosquitoes, and immunization through vaccination.

The optimal control problem is defined in Chapter 3. The control variable is

the vaccination rate u, that varies in space and time. The overall cost to be minimized

consists of costs from infections, vaccine applications and vaccine production and logistic

costs. The characterization of the optimal solution is carried out in terms of sensitivity

and adjoint equations, in the proper weak sense. Rigorous proofs are not our main focus,

therefore are omitted but properly referenced to the available literature.

Chapter 4 is about the methods used to obtain numerical solutions of the

optimal problem. Finite element and finite difference methods are used for the PDE

approximated solutions, coupled with a predictor-corrector iteration for nonlinearities, and

a forward-backward sweep is used for the optimal system solution. A clear but not detailed

explanation of the methods is given, so that the reader can understand and possibly apply

them to other problems of their interest. A numerical error and convergence analysis is

performed in order to show the accuracy of the methods.

In Chapter 5 the parameter estimation procedure is presented and used to

connect the model to data from the 2015 Zika outbreak in the Rio Grande do Norte state

in Brazil. Some parameter values are estimated from data in a least squares approach and

others from available literature. The methodology is tested using artificially generated data

with added noise. More precisely, random normally distributed noise is considered, adding

deviation to the baseline values. Maximum variation from generated data is considered as

up to 100%, providing reliable results in all cases. Furthermore, a sensitivity analysis on

parameters is performed considering the overall cost and number of new cases as output.

Numerical results are discussed in Chapter 6. Several scenarios are considered,

first without control, then with constant and optimal controls, also varying the starting

time of intervention. All scenarios are evaluated in terms of quantities of interest: number

of new infections, overall cost and number of vaccinated people. Spatial and time plots are

presented, the latter obtained by integrating solutions in space.

Lastly, Chapter 7 concludes this work, pointing out important features and

commenting all results obtained. Some future work perspectives are also commented, the

most important being the extension of the model in order to include multiple control

variables, such as human and mosquito contact reduction and insecticides. Another

modification is the inclusion of an immature phase for mosquitoes and larva/egg removal as

control. Our work is readily adaptable for these inclusions, with all necessary mathematical

and computational tools already presented.

A flow chart with of all the methods used throughout this work is shown below

in Figure 1. It shows the connection of the modeling and each of the methods, all of them
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Chapter 2

Mathematical modeling

In this chapter we propose a reaction-diffusion compartmental model for Zika

virus. The term “reaction” stands for the dynamics within the model, in our case the dy-

namics of infectious diseases between the compartments in study. It involves transmissions

between humans and vector mosquitoes, recovering, birth and death, and other dynamics

that should be important, depending on particular interests in the modeling. For more

details about infectious disease compartmental models we suggest the excellent books by

Edelstein-Keshet [33], Keeling and Rohani [53], and Murray [82].

Diffusion accounts for spatial movement of the populations. Mathematically,

it is the mean movement of a random process, and it is modeled by the divergent of a

diffusion coefficient multiplied by the gradient of a density [21, 83, 88]. In population

dynamics of humans and animals (mosquitoes in the present work), it is impossible to

track or represent all movement that occurs at given period. In this sense, diffusion can

be interpreted as the mean of all the movement performed by a population at a given

time period. When diffusion is combined with infectious disease modeling, it is assumed

that local contact transmission occurs when populations occupy the same space. Diffusion

coupled with transmission is responsible for the local spread of the disease throughout a

certain region, and depends on existing infections for the spread to happen, not considering

migration or external sources of infection.

Before passing to the model itself, we review some technical definitions regarding

functional analysis, more precisely functional spaces that are necessary in the analysis of

PDEs.

2.1 Technical definitions

Due to the necessary theory in the treatment of PDEs, we need to consider

specific function spaces, which we define in the following. The integrals are all Lebesgue,

and the derivatives in the weak sense. It should be noted that Lebesgue integrals have

the same properties as Riemann integrals, as well as derivatives of distributions generalize

usual derivatives [11, 25]. We define the spaces for general spatial domains in R
n, but

our interest in real life applications restricts to n ✏ 1 or n ✏ 2, or even n ✏ 3 in some
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problems. In the present work the application is restricted to n ✏ 2, corresponding to

spatial areas. More information on the spaces defined below can be found in [36, 57].

Given an open domain Ω ⑨ R
n, the space L2♣Ωq of square integrable functions

is defined as:

L2♣Ωq ✏
✧
f♣xq : Ω Ñ R;

➺
Ω

⑤f♣xq⑤2 dµ ➔ ✽
✯
.

For functions that also depend on time t P ♣0, T q, given Q ✏ ♣0, T q ✂ Ω, the

space L2♣♣0, T q; Ωq ✏ L2♣Qq is the direct extension of L2♣Ωq:

L2♣♣0, T q; Ωq ✏
✧
f♣x, tq : Ω✂ ♣0, T q Ñ R;

➺
Ω

⑤f♣x, tq⑤2 dµ ➔ ✽, ❅t P ♣0, T q
✯
.

The Sobolev space H1♣Ωq consists of the functions in L2♣Ωq such that their

weak derivatives also belong to L2♣Ωq, that is:

H1 ♣Ωq ✏
✧
f♣xq P L2♣Ωq; ❇f❇x1

, . . . ,
❇f
❇xn

P L2♣Ωq
✯
.

The dual space of the Sobolev space H1♣Ωq is H1♣Ωq✝, which consists of linear

functionals in H1♣Ωq. That is, any linear form F such that F : H1♣Ωq Ñ R. A simple

example is the derivative operator acting on functions in H1♣Ωq.
The subspace H1

0
♣Ωq ⑨ H1♣Ωq is such that all its functions have compact

support (have zero values at the boundary ❇Ω):

H1

0
♣Ωq ✏

✧
f♣xq P L2♣Ωq; ❇f❇x1

, . . . ,
❇f
❇xn

P L2♣Ωq, f ✏ 0 in ❇Ω
✯
.

We do not need to consider as much restrictive aspects for temporal derivatives

in functions that depend on both space and time. We can consider functions such that in

space belong to H1♣Ωq, but in time are square integrable. So, we have the space:

L2♣♣0, T q;H1♣Ωqq ✏
✧
f♣x, tq : Ω✂ ♣0, T q Ñ R;➺

Ω

⑤f♣x, tq⑤2 dµ ➔ ✽, ❅t P ♣0, T q, ❇f❇x1

, . . . ,
❇f
❇xn

P L2♣Ωq
✯
.

The corresponding dual space is L2♣♣0, T q;H1♣Ωq✝q, consisting on linear forms

F such that F : L2♣♣0, T q;H1♣Ωqq Ñ R. Later in the optimal control characterization we

consider time derivatives in this space.

2.2 Reaction-diffusion model with vaccination

We wish to develop a reaction-diffusion model for the spread of Zika virus in

humans and mosquitoes, containing the most important features and being capable of
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providing realistic results. Even so, it should be simple enough to analyze and treat, both

analytically and numerically. An over complicated model, with many compartments and

parameters, brings more uncertainties to the model and possible difficulties in numerical

simulations. Also, interpretations of the results would be more complex, particularly in a

PDE model, in which spatial and temporal dynamics are both important. Therefore, some

simplifying assumptions are necessary. A flow chart for the model is shown in Figure 2,

with parameter descriptions in Table 1.

S I

R

Sv Iv

uS

βSIv

βdSI

βvSvI µvIv

δI

Figure 2 – Flow chart for model (2.1). Squares denote humans and circles mosquitoes.
S, I, R denote susceptible, infected, and immune populations, respectively.
Reproduction for mosquitoes is of logistic type (not shown in figure). Parameter
descriptions can be found in Table 1.

Table 1 – Description and units of quantities from model (2.1).

Description Unit

S Susceptible humans density humans④km2

I Infected humans density humans④km2

R Immune humans density humans④km2

Sv Susceptible mosquitoes density mosquitoes④km2

Iv Infected mosquitoes density mosquitoes④km2

u Vaccination rate 1④days
β Mosquito to human transmission rate 1④(mosq.④km2 days)
βv Human to mosquito transmission rate 1④(hum.④km2 days)
βd Human to human transmission rate 1④(hum.④km2 days)
1④δ Disease duration days
rv Mosquito intrinsic growth rate days
1④µv Mosquito lifespan days
κv Mosquito carrying capacity mosq.④km2

α Human diffusion coefficient km2④days
αI Infected human diffusion coefficient km2④days
αv Mosquito diffusion coefficient km2④days
Ω Spatial domain km2

♣0, T q Time interval days

The proposed model consists of five compartments: susceptible (S), infected (I)

and immune (R) humans, and susceptible (Sv) and infected (Iv) mosquitoes/vectors [53].
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The word “infected” is used to denote that a human or a vector in its corresponding class

is able to transmit the virus, even if they are asymptomatic or have the virus in the latent

phase. This simplifies the model by eliminating two compartments (asymptomatic and

exposed). The immune compartment consists of both humans that acquired the disease

and naturally recovered, and the ones that acquired resistance through vaccination.

All populations are able to spatially move, which is described in the model by

diffusion. As mentioned before, it represents the mean movement performed at a given time.

Throughout the present work we consider constant diffusion coefficients for all populations,

assuming that they spread evenly in all spatial directions. Nevertheless, variable diffusion

could be considered, if appropriate, depending on the context of application. There is no

known transport or preferred direction of movement, so we do not consider advection or

convection terms.

The virus is mainly transmitted between humans and mosquitoes: a susceptible

human can become infected through bites from mosquitoes carrying the virus, while

susceptible mosquitoes can become infected by having blood meals from infected humans.

We consider only the Aedes aegypti species of mosquito, as it is far more common in the

region of our interest (Brazil). A remarkable feature of the Zika virus is direct (sexual)

transmission, even though the main course of transmission is through the vector [3]. Little

data are available on confirmed direct transmission cases. We consider direct transmission

between susceptible and infected humans in the model, but in our numerical simulations

we find that it is irrelevant, at least for the set of data we use to parametrize the model.

All transmissions are modeled using the mass action principle, which accounts for the

mean of the probability of transmission in the spatial contact between susceptible and

infected humans or mosquitoes.

Once infected, humans develop mild symptoms which last around 14 days, and

after this period are considered to be immune, being unable to transmit the virus and not

being able to acquire it anymore. The virus has no effect on the mosquitoes, which remain

infected during their lifetime. Deaths caused by the virus are rare, so we do not include

them in the model. No natural birth or death rates are included for the humans due to

the short time frame for Zika outbreaks. On the other hand, it is important to consider

birth and death for mosquitoes since their lifespan is much shorter than that of humans.

We chose logistic growth considering that the population of mosquitoes in the region of

study is large, but also dependent on resources available for them. Due to simplification

aspects, we do not consider different compartments for the life cycle of mosquitoes.

A hypothetical vaccination moves susceptible humans directly into the immune

class. The rate of the vaccination of susceptible humans is u♣x, tq, which is a time and

space varying control. It is assumed that the vaccine has 100% of efficiency, but once a

real vaccine is approved and applicable, a simple adjustment could be made in order to
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include its efficacy. In this way, the new vaccination can be defined as ū, and eu as the

efficacy (in percentage). Then, the vaccination term should be ū ✏ euu.

Boundary conditions are chosen as no flux for all populations, with derivatives

in the outward normal direction n equal to zero (homogeneous Neumann). This means

that there is no flux of humans or mosquitoes at the boundary of the region in study, which

is therefore isolated. In other words, the inward and outward flux cancel out at the border,

with a resulting zero flux. This kind of behavior is plausible at the border of a state, since

we are concentrated in studying the disease spread only within the state. Other boundary

conditions could be considered, for example partial flux, with outward normal derivatives

proportional to the concentration at the boundary (homogeneous Robin), or proportional

to both concentration and an external factor (non homogeneous Robin). Unfortunately,

these kinds of boundary conditions would add another parameter to the model, that would

be specially hard to estimate since it involves human and mosquito movement across states.

A detailed explanation on boundary conditions can be found in [77].

The model is then given by the PDE system (2.1) in Q ✏ Ω ✂ ♣0, T q. All

populations S, I, R, Sv, Iv and the vaccination rate u are functions of space x ✏ ♣x, yq
and time t P ♣0, T q, with spatial domain Ω ⑨ R

2 and smooth boundary ❇Ω. Populations

are seen as densities over space, which is continuous. Initial conditions S0, I0, R0, Sv0 and

Iv0 are properly defined in each situation of interest. Parameters descriptions and units

can be found in Table 1.✩✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✫
✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✪

❇S
❇t ✁ ∇ ☎ ♣α∇Sq ✏ ✁βSIv ✁ βdSI ✁ uS,

❇I
❇t ✁ ∇ ☎ ♣αI∇Iq ✏ βSIv � βdSI ✁ δI,

❇R
❇t ✁ ∇ ☎ ♣α∇Rq ✏ uS � δI,

❇Sv

❇t ✁ ∇ ☎ ♣αv∇Svq ✏ ✁βvSvI � rv ♣Sv � Ivq
✂

1 ✁ ♣Sv � Ivq
κv

✡
,

❇Iv

❇t ✁ ∇ ☎ ♣αv∇Ivq ✏ βvSvI ✁ µvIv, in Q,

S♣x, 0q ✏ S0, I♣x, 0q ✏ I0, R♣x, 0q ✏ R0, Sv♣x, 0q ✏ Sv0, Iv♣x, 0q ✏ Iv0, in Ω,

❇S
❇n ✏ 0,

❇I
❇n ✏ 0,

❇R
❇n ✏ 0,

❇Sv

❇n ✏ 0,
❇Iv

❇n ✏ 0, in ❇Ω ✂ ♣0, T q.

(2.1)

Diffusion coefficients are the same for S and R, possibly lower for I due to disease

symptoms, and Sv and Iv having the same diffusion coefficient, since the virus does not

affect mosquitoes. The transmission terms are proportional to the size of the populations,

with the parameter rates β, βd, βv regulating the proportionality. The vaccination u and

recovery rate δ are also proportional, with the vaccination rate varying in space and time.

The other parameters in the model may also depend on space and/or time, but throughout

this work they are assumed to be constant. Logistic growth for mosquitoes considers that
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both susceptible and infected give birth, and all newborn mosquitoes are susceptible. In

this sense, the intrinsic growth rate is given by rv. Logistic growth also accounts for an

embedded mortality due to competition between both susceptible and infected mosquitoes,

which limits the population size to the carrying capacity κv. Thus, the birth of mosquitoes

is greater if the total population Sv � Iv is small (low competition), and gets smaller as

this value approaches the carrying capacity (large competition). For infected mosquitoes a

proportional natural death term is included with rate µv.
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Chapter 3

Optimal control

In the modeling, we defined the vaccination rate u ✏ u♣x, tq as a space and

time variable. It could be constant in both space and time, representing that vaccination

should be applied always at the same rate in all space region. Another alternative is time

varying, for example with an oscillatory behavior, representing a prevention program at

peaks of infections. This kind of situation could be studied with control theory, in which

some variable(s) values are varied in order to satisfy a predefined state or condition [62].

This is not our main goal.

It is usually difficult to know exactly at which time and spatial region the disease

would spread the most. In this context, a variable rate that adapts to regions and time

intervals with most infections could be more efficient, and even the most efficient according

to certain criteria. This rate can be obtained by optimal control theory, considering the

vaccination as a control variable of an optimization problem. This theory is explored in

the present chapter and applied to model (2.1).

We wish to find a vaccination rate that has the best cost-benefit, in terms of

costs associated to infections and vaccines, including application costs. In order to specify

the optimal control problem, we need to define an associated cost to be minimized or

maximized: the objective functional. Once the problem is proposed, the optimal control

characterization can be obtained using standard analysis [58]. This involves the sensitivity

and adjoint systems, and a directional derivative of the objective functional. In optimal

control theory, model (2.1) is also called state system, because its solutions are the state

functions ♣S, I, R, Sv, Ivq.

3.1 Definition of the optimal control problem

We wish to obtain the best strategy of vaccination over a spatial region during

a time period, considering the vaccination rate u as function of ♣x, tq. Therefore, having

the state system (2.1) as a constraint, we wish to minimize the following cost objective

functional depending on the vaccination rate u:

J♣uq ✏
➺

Q

♣c1I♣x, tq � c2u♣x, tqS♣x, tq � c3u♣x, tq2q dxdt, (3.1)
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where c1, c2 and c3 are constant weights, c1 represents the cost related to infected people,

such as medical care and an average cost associated to neurological conditions (possibly

including the consequent costs in newborns with microcephaly), c2 represents the cost

related to the implementation of vaccination (per person) in susceptible humans, and c3

represents the nonlinear cost related to the vaccines themselves, such as production and

logistics. The quadratic term u♣x, tq2 is chosen to represent a small cost, smaller than a

linear term, as the rate u♣x, tq is smaller than 1. The integral over Q ✏ Ω✂♣0, T q represents

the summed contributions over all space and all time, in a way that all contributions

are equally important in the total cost and summarized in a single value. Parameter

descriptions and units can be found in Table 2. Looking at a dimensional analysis on

the coefficients, it is possible to obtain another look at their interpretation. The unit

($④hum.)④days from c1 represents the per capta infection cost per day, meaning that an

infected human would in average cost c1 monetary units $ per day. Similarly, c2 would

represent the average cost of vaccination per human, $④hum. On the other hand, c3, with

unit $④♣km2④daysq, would represent the average cost of vaccination spent in a unitary area

in a day.

Considering bounds umin and umax on u, the set of admissible controls is:

U ✏ ✥
u P L2♣Qq, umin ↕ u ↕ umax

✭
. (3.2)

We seek to find the optimal control u✝ P U such that:

J♣u✝q ✏ inf
uPU

J♣uq (3.3)

subject to the state equations (2.1). In other words, we seek to find, from all possible

controls u P U , the optimal control u✝ such that J♣u✝q is the minimum among all J♣uq. It

is worth noting that this is an optimization problem in which the variables are functions,

so that special care must be taken in the functional analysis involved.

Table 2 – Description and units of parameters for optimal control problem (3.3).

Description Unit

c1 Infected human cost per day ($④hum.)④days
c2 Vaccination cost per human $④hum.
c3 Vaccination cost per area per day $④♣km2④daysq
umin Vaccination rate lower bound 1④days
umax Vaccination rate upper bound 1④days

It is possible to show that weak solutions of system (2.1), with state functions

in L2♣♣0, T q;H1♣Ωqq and corresponding time derivatives in L2♣♣0, T q;H1♣Ωq✝q, exist and

are unique, as well as the existence and uniqueness of the optimal control, which holds

for a sufficiently small time. We do not show these results since they are not in the scope
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of our work. Proofs for weak solutions of applied optimal problems can be found in [24,

29, 84], which also contain detailed explanation on the optimal control characterization.

In particular, Fister [37] provides a more thorough demonstration of the existence and

uniqueness of the optimal solution, using minimizing sequences. These references treat

parabolic problems very similar to (2.1), and the provided demonstrations follow the

same concepts needed in our case. More theoretical concepts regarding analysis of optimal

control problems can be found in [61, 63].

3.2 Derivation of optimal control

We seek to find an optimal control u✝ P U satisfying (3.3), where U is the set

of admissible controls defined in (3.2). This optimization problem is subject to the state

system (2.1), with state functions in L2♣♣0, T q;H1♣Ωqq and corresponding time derivatives

in L2♣♣0, T q;H1♣Ωq✝q. In order to find u✝, we have to solve an optimality system, which

consists of the state PDEs, adjoint PDEs, and the optimal control characterization. We also

need the sensitivity system, and in order to obtain it we must differentiate the control-to-

state map uÑ ♣S, I, R, Sv, Ivq ♣uq. We use that system and the objective functional to find

the adjoint system. Then we use the sensitivity and adjoint system to simplify the derivative

of the map uÑ J♣uq, finally obtaining the desired optimal control characterization. The

derivatives of both of these maps are computed as directional derivatives. In the following,

we provide an overview of the derivation of the sensitivity and adjoint equations, and the

control characterization.

3.2.1 Sensitivity system

Given a control u P U , consider another control u � ǫℓ in U for ǫ → 0, with

ℓ P L2♣Qq, which represents a perturbation. From the control-to-state map, we define

♣Sǫ, Iǫ, Rǫ, Sǫ
v, I

ǫ
vq ✏ ♣S, I, R, Sv, Ivq♣u� ǫℓq. We then define the sensitivity functions, which

are Gateaux derivatives of the control-to-state map:

Sǫ ✁ S

ǫ
á ψ1,

Iǫ ✁ I

ǫ
á ψ2,

Rǫ ✁R

ǫ
á ψ3,

Sǫ
v ✁ Sv

ǫ
á ψ4,

Iǫ
v ✁ Iv

ǫ
á ψ5, as ǫÑ 0.

We also have:

Sǫ Ñ S, Iǫ Ñ I, Rǫ Ñ R, Sǫ
v Ñ Sv, I

ǫ
v Ñ Iv, as ǫÑ 0.

The sensitivity functions ψ ✏ ♣ψ1, ψ2, ψ3, ψ4, ψ5q satisfy a system corresponding

to a linearized version of the state equations. See works by De Silva et al. [29], Li and Yong

[61], and Lions [63] to show justification of such convergence of these quotients and the

existence of the sensitivity functions and their PDEs. These equations are used to derive
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PDEs for the adjoint λ ✏ ♣λ1, λ2, λ3, λ4, λ5q, where each adjoint variable is associated with

a state variable.

We now calculate equations for the sensitivity functions, forming the coefficients

of the sensitivity functions and then passing the limit. In order to do so we use system

(2.1) to write equations for ♣Sǫ, Iǫ, Rǫ, Sǫ
v, I

ǫ
vq and then form equations for the sensitivity

coefficients. Calculating in this way an equation for the S quotient, noting that for Sǫ, we

use u� ǫℓ instead of u:✂
Sǫ ✁ S

ǫ

✡
t

✁ ∇ ☎ ♣α∇Sǫq ✁∇ ☎ ♣α∇Sq
ǫ

✏ ✁β
✂
SǫIǫ

v ✁ SǫIv � SǫIv ✁ SIv

ǫ

✡

✁ βd

✂
SǫIǫ ✁ SǫI � SǫI ✁ SI

ǫ

✡
✁ u

✂
Sǫ ✁ S

ǫ

✡
✁ ℓSǫ.

Letting ǫÑ 0, and passing to the limit we get:

♣ψ1qt ✁∇ ☎ ♣αψ1q � β ♣Sψ5 � ψ1Ivq � βd ♣Sψ2 � ψ1Iq � uψ1 ✏ ✁ℓS.

In the same way, letting ǫÑ 0 in✂
Iǫ ✁ I

ǫ

✡
t

✁ ∇ ☎ ♣αI∇Iǫq ✁∇ ☎ ♣α∇Iq
ǫ

✏ β

✂
SǫIǫ

v ✁ SǫIv � SǫIv ✁ SIv

ǫ

✡

� βd

✂
SǫIǫ ✁ SǫI � SǫI ✁ SI

ǫ

✡
✁ δ

✂
Iǫ ✁ I

ǫ

✡

gives an equation for ♣ψ2qt:

♣ψ2qt ✁∇ ☎ ♣αIψ2q ✁ β ♣Sψ5 � ψ1Ivq ✁ βd ♣Sψ2 � ψ1Iq � δψ2 ✏ 0.

Similarly:✂
Rǫ ✁R

ǫ

✡
t

✁ ∇ ☎ ♣α∇Rǫq ✁∇ ☎ ♣α∇Rq
ǫ

✏ u

✂
Sǫ ✁ S

ǫ

✡
� ℓSǫ � δ

✂
Iǫ ✁ I

ǫ

✡
,

gives:

♣ψ3qt ✁∇ ☎ ♣αψ3q ✁ uψ1 ✁ δψ2 ✏ ℓS.

For Sv, we obtain:✂
Sǫ

v ✁ Sv

ǫ

✡
t

✁ ∇ ☎ ♣αv∇Sǫ
vq ✁∇ ☎ ♣αv∇Svq
ǫ

✏ ✁βv

✂
Sǫ

vI
ǫ ✁ Sǫ

vI � Sǫ
vI ✁ SvI

ǫ

✡

� rv

✂
Sǫ

v ✁ Sv

ǫ

✡
� rv

✂
Iǫ

v ✁ Iv

ǫ

✡
✁ rv

κv

✂
Sǫ

vS
ǫ
v ✁ Sǫ

vSv � Sǫ
vSv ✁ SvSv

ǫ

✡

✁ 2rv

κv

✂
Sǫ

vI
ǫ
v ✁ Sǫ

vIv � Sǫ
vIv ✁ SvIv

ǫ

✡
✁ rv

κv

✂
Iǫ

vI
ǫ
v ✁ Iǫ

vIv � Iǫ
vIv ✁ IvIv

ǫ

✡
,

which gives:

♣ψ4qt ✁∇ ☎ ♣αvψ4q � βv ♣Svψ2 � ψ4Iq ✁ rv ♣ψ4 � ψ5q � 2rv

κv

♣Sv � Ivq ♣ψ4 � ψ5q ✏ 0.
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Similarly, for Iv we have:✂
Iǫ

v ✁ Iv

ǫ

✡
t

✁ ∇ ☎ ♣αv∇Iǫ
vq ✁ ∇ ☎ ♣αv∇Ivq
ǫ

✏ βv

✂
Sǫ

vI
ǫ ✁ Sǫ

vI � Sǫ
vI ✁ SvI

ǫ

✡

✁ µv

✂
Sǫ

v ✁ Sv

ǫ

✡
,

and:

♣ψ5qt ✁ ∇ ☎ ♣αvψ5q ✁ βv ♣Svψ2 � ψ4Iq � µvψ5 ✏ 0.

In a similar way, we obtain initial conditions:

ψ1♣x, 0q ✏ ψ2♣x, 0q ✏ ψ3♣x, 0q ✏ ψ4♣x, 0q ✏ ψ5♣x, 0q ✏ 0, in Ω,

and boundary conditions:

❇ψ1

❇n ✏ ❇ψ2

❇n ✏ ❇ψ3

❇n ✏ ❇ψ4

❇n ✏ ❇ψ5

❇n ✏ 0 in ❇Ω ✂ ♣0, T q.

We can now write the sensitivity system in vector form as follows:

L

☎
✝✝✝✝✝✝✆

ψ1

ψ2

ψ3

ψ4

ψ5

☞
✍✍✍✍✍✍✌
✏

☎
✝✝✝✝✝✝✆

✁ℓS
0

ℓS

0

0

☞
✍✍✍✍✍✍✌
,

where:

L

☎
✝✝✝✝✝✝✆

ψ1

ψ2

ψ3

ψ4

ψ5

☞
✍✍✍✍✍✍✌
✏

☎
✝✝✝✝✝✝✆

♣ψ1qt ✁ ∇ ☎ ♣α∇ψ1q
♣ψ2qt ✁ ∇ ☎ ♣αI∇ψ2q
♣ψ3qt ✁ ∇ ☎ ♣α∇ψ3q
♣ψ4qt ✁ ∇ ☎ ♣αv∇ψ4q
♣ψ5qt ✁ ∇ ☎ ♣αv∇ψ5q

☞
✍✍✍✍✍✍✌
�M

☎
✝✝✝✝✝✝✆

ψ1

ψ2

ψ3

ψ4

ψ5

☞
✍✍✍✍✍✍✌
,

and the transpose of the matrix M is given by:

MT ✏

☎
✝✝✝✝✝✝✝✝✆

βIv � βdI � u ✁βIv ✁ βdI ✁u 0 0

βdS δ ✁ βdS ✁δ βvSv ✁βvSv

0 0 0 0 0

0 0 0 ✁rv � 2rv

κv

♣Sv � Ivq � βvI ✁βvI

βS ✁βS 0 ✁rv � 2rv

κv

♣Sv � Ivq µv

☞
✍✍✍✍✍✍✍✍✌
.

(3.4)
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3.2.2 Adjoint system

The adjoint variables λ ✏ ♣λ1, λ2, λ3, λ4, λ5q are each associated with one state

variable ♣S, I, R, Sv, Ivq. The adjoint operator L✝ is obtained from the relation:

①λ,Lψ② ✏ ①L✝λ,ψ② (3.5)

in the appropriate weak L2♣Qq sense and ①☎, ☎② is the L2♣Qq inner product. The right hand

side of the adjoint system is given by the derivatives of the integrand of the objective

functional, with respect to the states:

❇
❇S

�
c1I � c2uS � c3u

2
✟ ✏ c2u,

❇
❇I
�
c1I � c2uS � c3u

2
✟ ✏ c1,

❇
❇R

�
c1I � c2uS � c3u

2
✟ ✏ 0,

❇
❇Sv

�
c1I � c2uS � c3u

2
✟ ✏ 0,

❇
❇Iv

�
c1I � c2uS � c3u

2
✟ ✏ 0.

We use expression (3.5) in order to obtain the operators in the adjoint system.

This is done using integration by parts on ①λ,Lψ② and the boundary conditions of the

sensitivity equations. The adjoint system obtained this way is:

L✝

☎
✝✝✝✝✝✝✆

λ1

λ2

λ3

λ4

λ5

☞
✍✍✍✍✍✍✌
✏

☎
✝✝✝✝✝✝✆

c2u

c1

0

0

0

☞
✍✍✍✍✍✍✌
, (3.6)

where:

L✝

☎
✝✝✝✝✝✝✆

λ1

λ2

λ3

λ4

λ5

☞
✍✍✍✍✍✍✌
✏

☎
✝✝✝✝✝✝✆

✁♣λ1qt ✁ ∇ ☎ ♣α∇λ1q
✁♣λ2qt ✁ ∇ ☎ ♣αI∇λ2q
✁♣λ3qt ✁ ∇ ☎ ♣α∇λ3q
✁♣λ4qt ✁ ∇ ☎ ♣αv∇λ4q
✁♣λ5qt ✁ ∇ ☎ ♣αv∇λ5q

☞
✍✍✍✍✍✍✌
�MT

☎
✝✝✝✝✝✝✆

λ1

λ2

λ3

λ4

λ5

☞
✍✍✍✍✍✍✌
.

In the integration by parts, the adjoints must be defined as zero at the final time t ✏ T .

Thus, the transversality (final time) conditions are given by:

λ1♣x, T q ✏ 0, λ2♣x, T q ✏ 0, λ3♣x, T q ✏ 0, λ4♣x, T q ✏ 0, λ5♣x, T q ✏ 0, in Ω,

and boundary conditions by:

❇λ1

❇n ✏ 0,
❇λ2

❇n ✏ 0,
❇λ3

❇n ✏ 0,
❇λ4

❇n ✏ 0,
❇λ5

❇n ✏ 0, in ❇Ω ✂ ♣0, T q.
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3.2.3 Optimal control characterization

We now derive an expression for the optimal control u✝ as a function of the

state and adjoint variables. The derivative of the map uÑ J♣uq at u✝ in the direction ℓ is:

lim
ǫÑ0�

J♣u✝ � ǫℓq ✁ J♣u✝q
ǫ

,

with:

J♣u✝ � ǫℓq ✏
➺

Q

✏
c1I

ǫ � c2♣u✝ � ǫℓqSǫ � c3♣u✝ � ǫℓq2✘ dxdt

✏
➺

Q

✏
c1I

ǫ � c2u
✝Sǫ � ǫc2ℓS

ǫ � c3♣u✝q2 � 2c3u
✝ǫℓ� c3ǫ

2ℓ2
✘

dxdt.

J♣u✝q ✏
➺

Q

✏
c1I � c2u

✝S � c3♣u✝q2
✘

dxdt.

The ✝ superscript over the state variables denotes optimality, that is: the state

solution at the optimal characterization. In order to find the optimal control characteriza-

tion, we wish to find u✝ such that:

lim
ǫÑ0�

J♣u✝ � ǫℓq ✁ J♣u✝q
ǫ

➙ 0.

The positivity of the derivative comes from the fact that J♣u✝q is minimum

among all J♣uq, u P U . Using the sensitivity and adjoint systems we find a characterization

for u✝ in the following way:

0 ↕ lim
ǫÑ0�

J♣u✝ � ǫℓq ✁ J♣u✝q
ǫ

.

Substituting J♣u✝ � ǫℓq and J♣u✝q:

0 ↕ lim
ǫÑ0�

➺
Q

✒
c1

Iǫ ✁ I

ǫ
� c2u

✝
Sǫ ✁ S

ǫ
� c2ℓS

ǫ � 2c3u
✝ℓ� c3ǫℓ

2

✚
dxdt.

Passing to the limit:

0 ↕
➺

Q

rc1ψ2 � c2u
✝ψ1 � c2ℓS

✝ � 2c3u
✝ℓs dxdt.

Rearranging in matrix form:

0 ↕
➺

Q

✑
♣ψ1, ψ2, ψ3, ψ4, ψ5q ♣c2u

✝, c1, 0, 0, 0qT � ℓ ♣c2S
✝ � 2c3u

✝q
✙

dxdt.

Using the fact that ♣c2u
✝, c1, 0, 0, 0qT is the right hand side of the adjoint operator:

0 ↕
➺

Q

✑
♣ψ1, ψ2, ψ3, ψ4, ψ5qL✝ ♣λ1, λ2, λ3, λ4, λ5qT � ℓ ♣c2S

✝ � 2c3u
✝q
✙

dxdt.
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Using the adjoint relation (3.5), in the appropriate weak sense:

0 ↕
➺

Q

✑
♣λ1, λ2, λ3, λ4, λ5qL ♣ψ1, ψ2, ψ3, ψ4, ψ5qT � ℓ ♣c2S

✝ � 2c3u
✝q
✙

dxdt.

Substituting the sensitivity operator by its right hand side:

0 ↕
➺

Q

✑
♣λ1, λ2, λ3, λ4, λ5q ♣✁ℓS✝, 0, ℓS✝, 0, 0qT � ℓ ♣c2S

✝ � 2c3u
✝q
✙

dxdt.

Rearranging:

0 ↕
➺

Q

r✁ℓλ1S
✝ � ℓλ3S

✝ � ℓ ♣c2S
✝ � 2c3u

✝qs dxdt.

0 ↕
➺

Q

ℓ r♣✁λ1 � λ3 � c2qS✝ � 2c3u
✝s dxdt.

This has to be true for all ℓ P L2♣Qq on the interior of the control set. In

particular, if ℓ ➙ 0, then the term in the brackets must also be nonnegative:

♣✁λ1 � λ3 � c2qS✝ � 2c3u
✝ ➙ 0.

And if ℓ ↕ 0, then:

♣✁λ1 � λ3 � c2qS✝ � 2c3u
✝ ↕ 0.

So we must necessarily have:

♣✁λ1 � λ3 � c2qS✝ � 2c3u
✝ ✏ 0.

Which leads to:

u✝ ✏ ♣λ1 ✁ λ3 ✁ c2qS✝
2c3

.

Due to the boundedness of the control umin ↕ u ↕ umax, we obtain the following

optimal control characterization:

u✝ ✏ min
✂
umax,max

✂♣λ1 ✁ λ3 ✁ c2qS✝
2c3

, umin

✡✡
. (3.7)

We can see that the characterization depends both on state and adjoint variables.

Also, the adjoint system depends on the states and control, and has a final time condition

instead of an initial one. Therefore the state and adjoint systems and the optimal control

characterization are coupled, and it is not possible to solve them separately. The forward-

backward sweep, which is an iterative numerical approach, is used to overcome this

difficulty. The state and adjoint systems must be solved, and for that we use numerical

methods for PDEs. The whole procedure for the numerical solutions is the topic of the

next chapter.
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Chapter 4

Numerical solutions

This chapter presents the use of numerical methods for solutions of partial

differential equations, in a clear but not very detailed way. More details about the

application and implementation of the same numerical methods used here can be found

in [8, 51, 52, 76, 96, 101]. Analytical solutions of PDEs are almost always impossible to

be explicitly obtained, even though their existence and uniqueness can be proved. As

mentioned in the previous chapter, we do not prove existence and uniqueness of solutions

of the states and adjoint systems, although it is possible to do it, and there is an extensive

literature for that [25, 36, 37, 96].

The finite element method (FEM), in the classical Galerkin approach, searches

for approximated solutions of a PDE in its weak (or variational) formulation, as opposed

to the classical (or strong) formulation, in which the problems are usually modeled,

as model (2.1). In classical formulations, solutions belong to spaces of continuous and

differentiable functions, while in weak formulations the solution spaces are less restrictive.

The approximated finite element solution is a linear combination of basis functions in

a specific space, usually the space of piecewise polynomial functions. The domain of

the problem is approximated by a discrete domain, usually consisting of triangles or

quadrilaterals in the two dimensional case. The approximated solution search is done by

the calculation of the linear combination coefficients, solving algebraic linear or nonlinear

systems of equations. The degrees of freedom used in the interpolation polynomials and

the discrete domain refinement define the approximated solution precision in comparison

to the analytical solution.

Among the advantages in using FEM, we highlight the following: less regularity

required in candidate functions to be approximated solutions; ease of adjustment for non

rectangular, real life applicable domains; and simple variation of precision by changing the

type of polynomial basis used. For more details about the classical method, we recommend

as an introduction the books [8, 52]; for quadrilateral elements [51]; and for a more

theoretical point of view [25]. Extensions of the method include adding residual terms to

the weak formulation in order to improve stability (specially in advective or convective

problems), as SUPG (Streamline Upwind Petrov Galerkin) [18] and GLS (Galerkin Least

Squares) methods [39]. In another sense, the discontinuous Galerkin method [15] uses

approximated solutions which are piecewise discontinuous, possibly improving stability
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for continuous problems. We choose to use the standard Galerkin method because it is

reliable, easy to implement, and also sufficient to our purposes.

The finite difference method (FDM) approximates derivatives in ordinary or

partial differential equations by difference formulas. Usually, these formulas are obtained

by local truncated Taylor approximations, with errors associated to the considered step

size. In this way, a continuous problem is transformed into a discrete one, which is a

linear or nonlinear algebraic system. Among many possible difference formulas, we chose

the backward or implicit Euler method which uses formulas based on a simple linear

approximation. Its main advantage is that of being an unconditionally stable method, that

is, it is stable for any considered time step. This aspect is important because the class

of problems we are interested in solving is stiff. There is no consensus in the definition

of a stiff problem, but its classification could involve the steepness of the variation of

the solution in function of time; absolute stability region; periodicity; difference between

the magnitude of associated eigenvalues [19, 115]. In general, a stiff problem requires

a tiny time step to be used in conditionally stable methods, such as the widely used

Runge-Kutta methods. In our numerical solutions, the implicit Euler method is enough to

correct oscillations that could arise in the time evolution. Also, the implicit Euler method

is simple to be used, because it is linear and considers only one time step per iteration. For

more details about finite difference methods in general we recommend the introductory

books [20, 26], and for a more complete approach [59].

Both in the finite element and finite difference methods, the obtained algebraic

systems are computationally large, and with particular sparsity structures, therefore they

must be solved by appropriate methods which take advantage of these structures. As

examples of direct methods, we cite the LU and Cholesky factorizations which can be

implemented for band matrices, the latter one for symmetric positive definite matrices. As

examples of iterative methods, we cite the conjugate gradients method, also for symmetric

positive definite matrices, in which particular preconditioners can be used in order to

accelerate convergence and improve stability. Variants of this method are useful for general

matrices, such as the biconjugate conjugate gradients and conjugate gradients squared

methods [10, 43, 117].

In the following, we present the numerical methods applied to system (2.1) we

wish to solve, at first without considering the optimal control. The procedure for obtaining

a numerical solution for the adjoint system is completely analogous as the state, so we

omit the details but indicate how it should be done. We then show how the forward-

backward sweep is used to solve the optimality system. Finally, we present a numerical

error and convergence analyses, comparing the numerical results to a predefined known

analytical solution. These analyses show that the numerical method scheme converges to

an approximated solution, and give a estimate for the convergence order. A theoretical
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proof for this convergence can be made, but falls beyond the scope of our work. Results

for similar problems can be found in [25, 51, 59]. The numerical method implementation

is done in Fortran 90 in Linux, using sparse compact storage for matrices. This choice

provides fast code execution, necessary due to the high number of computations involved.

4.1 Weak formulation

As already mentioned, we apply the finite element method to the weak form of

the problem we wish to approximate. We are now going to find the weak form of the PDE

system (2.1).

For simplicity in notation, we write, for any functions f, g and considering

Lebesgue integrals:

♣f, gq ✏
➺

Ω

fg dx,

♣∇f,∇gq ✏
➺

Ω

∇f ☎ ∇g dx.

Recalling model (2.1), we rewrite it here to facilitate the analysis:✩✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✫
✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✪

❇S
❇t ✁ ∇ ☎ ♣α∇Sq ✏ ✁βSIv ✁ βdSI ✁ uS,

❇I
❇t ✁ ∇ ☎ ♣αI∇Iq ✏ βSIv � βdSI ✁ δI,

❇R
❇t ✁ ∇ ☎ ♣α∇Rq ✏ uS � δI,

❇Sv

❇t ✁ ∇ ☎ ♣αv∇Svq ✏ ✁βvSvI � rv ♣Sv � Ivq ♣1 ✁ ♣Sv � Ivq④κvq ,
❇Iv

❇t ✁ ∇ ☎ ♣αv∇Ivq ✏ βvSvI ✁ µvIv, in Q,

S♣x, 0q ✏ S0, I♣x, 0q ✏ I0, R♣x, 0q ✏ R0, Sv♣x, 0q ✏ Sv0, Iv♣x, 0q ✏ Iv0, in Ω,

❇S
❇n ✏ 0,

❇I
❇n ✏ 0,

❇R
❇n ✏ 0,

❇Sv

❇n ✏ 0,
❇Iv

❇n ✏ 0, in ❇Ω ✂ ♣0, T q.

(2.1)

The Neumann boundary conditions in (2.1) are called natural conditions in

the finite element context. This name comes from the fact that these type of conditions

must not be imposed in the search solution space, but arise naturally in the manipulation

of the weak formulation. Robin conditions are also called natural, for the same reason. On

the other hand, Dirichlet conditions must be imposed directly in the search solution space,

and does not appear in the weak formulation. Due of this reason they are called essential

conditions.

The process of obtaining the weak form associated to (2.1) consists in multi-

plying the state equations, for S, I, R, Sv, Iv, by test functions v P H1♣Ωq and integrating
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them over Ω. Doing this procedure we obtain:✩✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✫
✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✪

✂❇S
❇t , v

✡
✁ ♣∇ ☎ ♣α∇Sq , vq ✏ ✁ ♣βSIv, vq ✁ ♣βdSI, vq ✁ ♣uS, vq ,✂❇I

❇t , v
✡
✁ ♣∇ ☎ ♣αI∇Iq , vq ✏ ♣βSIv, vq � ♣βdSI, vq ✁ ♣δI, vq ,✂❇R

❇t , v
✡
✁ ♣∇ ☎ ♣α∇Rq , vq ✏ ♣uS, vq � ♣δI, vq ,✂❇Sv

❇t , v
✡
✁ ♣∇ ☎ ♣αv∇Svq , vq ✏ ✁ ♣βvSvI, vq � ♣rv ♣Sv � Ivq ♣1 ✁ ♣Sv � Ivq④κvq , vq ,✂❇Iv

❇t , v
✡
✁ ♣∇ ☎ ♣αv∇Ivq , vq ✏ ♣βvSvI, vq ✁ ♣µvIv, vq .

We observe that all parameters are inside the integrals, because they may

depend on space variables. If we consider constant parameters, we can simply take them

out of the integrals. Using integration by parts (Green’s first identity), the diffusive term

in the first equation becomes:

✁♣∇ ☎ ♣α∇Sq , vq ✏ ♣α∇S,∇vq ✁
➽
❇Ω

α
❇S
❇nv dS,

where n is the unit normal vector exterior to ❇Ω. Due to the natural boundary conditions

the normal derivative is null, and so is the line integral. Thus:

✁♣∇ ☎ ♣α∇Sq , vq ✏ ♣α∇S,∇vq .

Due to the natural boundary conditions, there is no need to modify anything

else in the implementation of the method, besides the equivalence above. Analogous

expressions hold for the other equations. Substituting these results, we obtain the weak

form of problem (2.1): Find S, I, R, Sv, and Iv belonging to V ✏ L2♣♣0, T q;H1♣Ωqq and

solutions of:✩✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✫
✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✪

✂❇S
❇t , v

✡
� ♣α∇S,∇vq ✏ ✁ ♣βSIv, vq ✁ ♣βdSI, vq ✁ ♣uS, vq ,✂❇I

❇t , v
✡
� ♣αI∇I,∇vq ✏ ♣βSIv, vq � ♣βdSI, vq ✁ ♣δI, vq ,✂❇R

❇t , v
✡
� ♣α∇R,∇vq ✏ ♣uS, vq � ♣δI, vq ,✂❇Sv

❇t , v
✡
� ♣αv∇Sv,∇vq ✏ ✁ ♣βvSvI, vq � ♣rv ♣Sv � Ivq ♣1 ✁ ♣Sv � Ivq④κvq , vq ,✂❇Iv

❇t , v
✡
� ♣αv∇Iv,∇vq ✏ ♣βvSvI, vq ✁ ♣µvIv, vq .

(4.1)

This way V ✏ L2♣♣0, T q;H1♣Ωqq is called the set of admissible functions and

H1 ♣Ωq the set of test functions. We now look for an approximated solution of this problem

by the Galerkin method.
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4.2 Galerkin method

The Galerkin method consists in the search for approximated solutions, called

Galerkin solutions, in a finite dimensional subspace VN ⑨ V. By reducing the problem

to a finite dimensional space we can numerically calculate solutions SN , IN , RN , SvN

IvN as linear combinations of vectors that form a basis for VN . Assuming that Galerkin

solutions admit separation of space and time variables, we consider the search space

VN ✏ Vh♣Ωhq✂Vh♣0, T q, where Vh♣Ωhq is a finite dimensional subspace of H1♣Ωhq, Vh♣0, T q
is a finite dimensional subspace of L2♣0, T q, and Ωh is a discrete partition that approximates

Ω.

Considering a generic basis B ✏ tϕ1♣xq, . . . , ϕN♣xq✉ for Vh♣Ωhq and using

separation of variables, the Galerkin solutions are given by:

S♣x, tq ✓ SN♣x, tq ✏
N➳

j✏1

sj♣tqϕj♣xq,

I♣x, tq ✓ IN♣x, tq ✏
N➳

j✏1

ij♣tqϕj♣xq,

R♣x, tq ✓ RN♣x, tq ✏
N➳

j✏1

rj♣tqϕj♣xq,

Sv♣x, tq ✓ SvN♣x, tq ✏
N➳

j✏1

svj♣tqϕj♣xq,

Iv♣x, tq ✓ IvN♣x, tq ✏
N➳

j✏1

ivj♣tqϕj♣xq.

(4.2)

These approximations are linear combinations of elements from B with time-
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dependent coefficients, to be later determined. Substituting (4.2) in (4.1) and rearranging:✩✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✫
✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✪

N➳
j✏1

dsj

dt
♣ϕj, vq �

N➳
j✏1

sj

✧
♣α∇ϕj,∇vq �

N➳
k✏1

ivk ♣βϕjϕk, vq �
N➳

k✏1

ik ♣βdϕjϕk, vq

� ♣u♣x, tqϕj, vq
✯
✏ 0,

N➳
j✏1

dij
dt

♣ϕj, vq �
N➳

j✏1

ij

✧
♣αI∇ϕj,∇vq ✁

N➳
k✏1

skϕk ♣βdϕj, vq � ♣δϕj, vq
✯

✏
N➳

k✏1

sk

N➳
ℓ✏1

ivℓ ♣βϕkϕℓ, vq ,
N➳

j✏1

drj

dt
♣ϕj, vq �

N➳
j✏1

rj

✧
♣α∇ϕj,∇vq

✯
✏

N➳
k✏1

sk ♣u♣x, tqϕk, vq �
N➳

k✏1

ik ♣δϕk, vq ,

N➳
j✏1

dsvj

dt
♣ϕj, vq �

N➳
j✏1

svj

✧
♣αv∇ϕj,∇vq �

N➳
k✏1

ik ♣βvϕjϕk, vq
✯

✏
✄
rv

✄
N➳

j✏1

svjϕj �
N➳

k✏1

ivkϕk

☛✄
1 ✁
✄

N➳
j✏1

svjϕj �
N➳

k✏1

ivkϕk

☛
④κv

☛
, v

☛
,

N➳
j✏1

divk

dt
♣ϕj, vq �

N➳
j✏1

ivj

✧
♣αv∇ϕj,∇vq � ♣µvϕj, vq

✯
✏

N➳
k✏1

svk

N➳
ℓ✏1

iℓ ♣βvϕkϕℓ, vq .

The control variable remains with usual notation u♣x, tq, because it is not

approximated by a Galerkin solution. In order to obtain a characterization of the Galerkin

solution, we need to substitute the test functions v by a linear combination of vectors

from basis B, such as v ✏
N➳

i✏1

biϕi, for constants bi, i ✏ 1, . . . , N . After substituting, in the

resulting system we find that it is enough to consider each ϕi, i ✏ 1, . . . , N one at a time
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in place of v. This way we obtain the following equations, for i ✏ 1, . . . , N :✩✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✫
✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✪

N➳
j✏1

dsj

dt
♣ϕj, ϕiq �

N➳
j✏1

sj

✧
♣α∇ϕj,∇ϕiq �

N➳
k✏1

ivk ♣βϕjϕk, ϕiq �
N➳

k✏1

ik ♣βdϕjϕk, ϕiq

� ♣u♣x, tqϕj, ϕiq
✯
✏ 0,

N➳
j✏1

dij
dt

♣ϕj, ϕiq �
N➳

j✏1

ij

✧
♣αI∇ϕj,∇ϕiq ✁

N➳
k✏1

skϕk ♣βdϕj, ϕiq � ♣δϕj, ϕiq
✯

✏
N➳

k✏1

sk

N➳
ℓ✏1

ivℓ ♣βϕkϕℓ, ϕiq ,
N➳

j✏1

drj

dt
♣ϕj, ϕiq �

N➳
j✏1

rj

✧
♣α∇ϕj,∇ϕiq

✯
✏

N➳
k✏1

sk ♣u♣x, tqϕk, ϕiq �
N➳

k✏1

ik ♣δϕk, ϕiq ,

N➳
j✏1

dsvj

dt
♣ϕj, ϕiq �

N➳
j✏1

svj

✧
♣αv∇ϕj,∇ϕiq �

N➳
k✏1

ik ♣βvϕjϕk, ϕiq
✯

✏
✄
rv

✄
N➳

j✏1

svjϕj �
N➳

k✏1

ivkϕk

☛✄
1 ✁
✄

N➳
j✏1

svjϕj �
N➳

k✏1

ivkϕk

☛
④κv

☛
, ϕi

☛
,

N➳
j✏1

divk

dt
♣ϕj, ϕiq �

N➳
j✏1

ivj

✧
♣αv∇ϕj,∇ϕiq � ♣µvϕj, ϕiq

✯
✏

N➳
k✏1

svk

N➳
ℓ✏1

iℓ ♣βvϕkϕℓ, ϕiq .

(4.3)

As we know all functions ϕj, ϕi, i, j ✏ 1, . . . , N , from basis B, we know how

to calculate all integrals appearing in (4.3). Thus, equations (4.3) consist in a system of

ordinary differential equations (ODEs) on time variable t, or precisely, an initial value

problem (IVP). Initial conditions are given by Galerkin solutions applied in the initial

conditions of system (2.1):

S0♣xq ✓ SN♣x, 0q ✏
N➳

j✏1

sj♣0qϕj♣xq,

I0♣xq ✓ IN♣x, 0q ✏
N➳

j✏1

ij♣0qϕj♣xq,

R0♣xq ✓ RN♣x, 0q ✏
N➳

j✏1

rj♣0qϕj♣xq,

Sv0♣xq ✓ SvN♣x, 0q ✏
N➳

j✏1

svj♣0qϕj♣xq,

Iv0♣xq ✓ IvN♣x, 0q ✏
N➳

j✏1

ivj♣0qϕj♣xq.

(4.4)
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4.3 Backward Euler method

In order to obtain a numerical solution of the IVP (4.3) we use the backward

(or implicit) Euler method. Dividing the time interval ♣0, T q in nt subintervals with regular

size ∆t, in the partition Πt : 0 ✏ t0 ➔ t1 ➔ . . . ➔ tnt
✏ T , the method uses the following

difference formula:
dun�1

j

dt
✏ un�1

j ✁ un
j

∆t
� O♣∆tq, (4.5)

for n ✏ 1, . . . , nt and a given j. The index n is related to time and j to space, so that un�1

j

represents the j-th coefficient of a Galerkin solution at time tn�1. The term O♣∆tq means

that the formula has an error of order ∆t. Substituting these formulas for each derivative

in (4.3), we obtain for i ✏ 1, . . . , N and n ✏ 0, . . . , nt ✁ 1:✩✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✫
✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✪

N➳
j✏1

sn�1

j

✧
♣ϕj, ϕiq � ∆t ♣α∇ϕj,∇ϕiq �

N➳
k✏1

iv
n�1

k ∆t ♣βϕjϕk, ϕiq

�
N➳

k✏1

in�1

k ∆t ♣βdϕjϕk, ϕiq � ∆t ♣u♣x, tn�1qϕj, ϕiq
✯
✏

N➳
j✏1

sn
j ♣ϕj, ϕiq ,

N➳
j✏1

in�1

j

✧
♣ϕj, ϕiq � ∆t ♣αI∇ϕj,∇ϕiq ✁

N➳
k✏1

sn�1

k ϕk∆t ♣βdϕj, ϕiq � ∆t ♣δϕj, ϕiq
✯

✏
N➳

j✏1

inj ♣ϕj, ϕiq �
N➳

k✏1

sn�1

k

N➳
ℓ✏1

iv
n�1

ℓ ∆t ♣βϕkϕℓ, ϕiq ,

N➳
j✏1

rn�1

j

✧
♣ϕj, ϕiq � ∆t ♣α∇ϕj,∇ϕiq

✯
✏

N➳
j✏1

rn
j ♣ϕj, ϕiq �

N➳
k✏1

sn�1

k ∆t ♣u♣x, tn�1qϕk, ϕiq

�
N➳

k✏1

in�1

k ∆t ♣δϕk, ϕiq ,

�
N➳

j✏1

sv
n�1

j

✧
♣ϕj, ϕiq � ∆t ♣αv∇ϕj,∇ϕiq �

N➳
k✏1

in�1

k ∆t ♣βvϕjϕk, ϕiq
✯

✏
N➳

j✏1

sv
n
j ♣ϕj, ϕiq � ∆t

✂
rv

✄
N➳

j✏1

sv
n�1

j ϕj �
N➳

k✏1

iv
n�1

k ϕk

☛
✂

1 ✁
✄

N➳
j✏1

sv
n�1

j ϕj �
N➳

k✏1

iv
n�1

k ϕk

☛
④κv

✡
, ϕi

✡
,

�
N➳

j✏1

iv
n�1

j

✧
♣ϕj, ϕiq � ∆t ♣αv∇ϕj,∇ϕiq � ∆t ♣µvϕj, ϕiq

✯
✏

N➳
j✏1

iv
n
j ♣ϕj, ϕiq

�
N➳

k✏1

sv
n�1

k

N➳
ℓ✏1

in�1

ℓ ∆t ♣βvϕkϕℓ, ϕiq .
(4.6)

The notation u♣x, tn�1q denotes that the control variable must be calculated at time tn�1.
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For simplicity we can write equations (4.6) in matrix form:✩✬✬✬✬✬✬✬✬✫
✬✬✬✬✬✬✬✬✪

♣As � Bsq sn�1 ✏ ♣Cs � Dsq sn � fs,
♣Ai � Biq in�1 ✏ ♣Ci � Diq in � fi,
♣Ar � Brq rn�1 ✏ ♣Cr � Drq rn � fr,

♣Asv
� Bsv

q sn�1

v ✏ ♣Csv
� Dsv

q sn
v � fsv

,

♣Aiv � Bivq in�1

v ✏ ♣Civ � Divq inv � fiv .

(4.7)

Where As, Ai, Ar, Asv
, Aiv , Cs, Ci, Cr, Csv

, and Civ contain the linear terms in each

equation in (4.6); Bs, Bi, Br, Bsv
, Biv , Ds, Di, Dr, Dsv

, Div , fs, fi, fr, fsv
, and fiv the non

linear terms (depending on the variables); and sn ✏ rsn
j s, in ✏ rinj s, rn ✏ rrn

j s, sn
v ✏ rsv

n
j s,

and inv ✏ rivn
j s are the solution vectors for j ✏ 1, , . . . , N and n ✏ 1, . . . , nt ✁ 1. The non

linear terms depend on the solutions both at time n and n � 1: ♣sn, in, rn, sn
v , i

n
vq and�

sn�1, in�1, rn�1, sn�1

v , in�1

v

✟
. At each time step we must solve five matrix equations in

order to obtain the solutions, willing to ultimately find solutions at the final step size

n ✏ nt, ♣snt , int , rnt , snt

v , i
nt

v q. Starting from initial conditions for n ✏ 0, we use known

values at time n to find solutions at time n� 1, and so on successively. However, as the

system is nonlinear, at a given time n it is not possible to obtain all values in the non

linear matrix coefficients, because some of them depend on n� 1. We thus need a method

that can deal with non linearities.

4.4 Predictor-corrector linearization method

The matrix equations in (4.7) are coupled due to the nonlinearities in system

(2.1). To overcome this issue, we use a predictor-corrector method consisting of successive

linearizations, due to Douglas and Dupont [31, 32] in problems similar to ours.

For a time step n, the method uses predictors for solutions at time n� 1 and

iterates until a corrector is accepted, then it moves to the next time step. It starts using

as predictors solutions at time step n:�
sn�1, in�1, rn�1, sn�1

v , in�1

v

✟ ✓ ♣s✍, i✍, r✍, s✍v, i✍vq ✏ ♣sn, in, rn, sn
v , i

n
vq .

Substituting ♣s✍, i✍, r✍, s✍v, i✍vq in the matrix equations in (4.7), they become

linear. Solving this linearized system, the solutions give the correctors ♣s✍✍, i✍✍, r✍✍, s✍✍v , i✍✍v q.
These solutions are now the new predictors for solutions at time step n� 1:�

sn�1, in�1, rn�1, sn�1

v , in�1

v

✟ ✓ ♣s✍✍, i✍✍, r✍✍, s✍✍v , i✍✍v q .

Then the method iterates again and new solutions are calculated. The process

is repeated until the relative errors between two successive iterations:

⑥♣s✍✍, i✍✍, r✍✍, s✍✍v , i✍✍v q ✁ ♣s✍, i✍, r✍, s✍v, i✍vq⑥
⑥♣s✍✍, i✍✍, r✍✍, s✍✍v , i✍✍v q⑥
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become smaller than a certain predefined tolerance, for a given norm ⑥☎⑥. In our simulations

we use a tolerance of 10✁6 with the max (infinite) norm, and the method converges in

up to 4 iterations. Once the tolerance is reached, the latest corrector is accepted at the

solution at n� 1, and the linearization method starts again with predictors for time step

n� 2. The method proceeds until the final step size, nt.

4.5 Finite element basis

In the finite element context, the basis Vh♣Ωhq consists of piecewise polyno-

mial functions. The discretized domain Ωh usually consists of triangles or quadrilaterals

called elements, that disjointly cover the entire domain Ω. The piecewise polynomials

are constructed in one element from the partition Ωh with nodal values and are null

outside this element. In this way the integrals in (4.6) are simply calculated, because they

are all polynomial multiplications, and thus have a small support. Also, because of the

local support, these functions lead to sparse matrices in system (4.7), simplifying their

resolution. Furthermore, using informations about the discrete mesh and with appropriate

variable transformations, the integrals are systematically calculated, transforming each

element in Ωh to a single reference element Ê and using Gaussian quadratures [20, 26],

which exactly integrates polynomials depending on the number of quadrature points used.

The use of transformations also allows the use of unstructured meshes in an easy way,

which are widely used in real life applications.

Possible spaces to be used are Pr, consisting of the space with polynomials

with degree less than or equal to r. Another possibility is the space Qr, which is defined as

the tensorial product of Pr with itself, that is: Qr ✏ Pr ❜Pr [51]. In R
2, this space consists

in polynomials in x and y with sum of exponents less than or equal to r. As examples, we

can cite linear elements in P1 (triangles with 3 nodes), quadratic elements in P2 (triangles

with 6 nodes), bilinear elements in Q1 (quadrilaterals with 4 nodes), biquadratics in Q2

(quadrilaterals with 9 nodes), and bicubics in Q3 (quadrilaterals with 16 nodes). These

reference elements are schematically shown in Figure 3.

(a) Linear (b) Bilinear (c) Biquadratic (d) Bicubic

Figure 3 – Examples of reference elements used in the finite element method.

We implemented the method for P1, but it is readily adaptable for P2, Q1, Q2,
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and so on. We use isoparametric transformations, which can transform general quadrilat-

erals or triangles, even curved ones. These are more general than affine transformations,

which can only transform triangles and parallelograms. Results on approximation capa-

bilities and errors can be found in [6]. In section 4.9 we present a numerical error and

convergence analysis for the finite element and finite difference methods.

Let pi, i ✏ 1, . . . , nen denote the polynomial basis functions, nen the number

of element nodes exemplified in the previous paragraph, x the real coordinates, and ξ the

coordinates in the reference element Ê. Also, let xi, i ✏ 1, . . . , nen denote the nodes in

any element E in the domain discretization Ωh. Then the isoparametric transformation

from Ê to R
2 is given by:

x♣ξq ✏
nen➳
i✏1

pi♣ξqxi. (4.8)

Transformation (4.8) relates the real coordinates x in the element E with

the coordinates ξ in the reference element Ê. There is one transformation (4.8) for each

element E, which takes ξj in Ê to xj in E, for j ✏ 1, . . . , nen, where ξj are the element

nodes as shown in Figure 3, in an arbitrary enumeration, usually counterclockwise. The

functions pi♣ξq are such that pi♣ξjq ✏ δij (Kronecker delta), for i, j ✏ 1, . . . , nen. These

properties facilitates the calculation of the integrals in (4.6). For example, let us see how

an integral involving gradients can be calculated, changing variables from x in E to ξ in

Ê. The gradient of a basis function in x coordinates is:

∇ϕ♣xq ✏
✂ ❇ϕ
❇x1

,
❇ϕ
❇x2

✡
.

Using the chain rule, we can calculate the gradient of ϕ̂, the basis function in

the reference element: ❇ϕ̂
❇ξ1

✏ ❇ϕ
❇x1

❇x1

❇ξ1

� ❇ϕ
❇x2

❇x2

❇ξ1

,

❇ϕ̂
❇ξ2

✏ ❇ϕ
❇x1

❇x1

❇ξ2

� ❇ϕ
❇x2

❇x2

❇ξ2

.

This can be rewritten as:

∇ϕ̂♣ξq ✏

☎
✝✆
❇x1

❇ξ1

❇x2

❇ξ1❇x1

❇ξ2

❇x2

❇ξ2

☞
✍✌
☎
✝✆

❇ϕ
❇x1❇ϕ
❇x2

☞
✍✌✏ JT ∇ϕ♣xq,

where J is the Jacobian of the isoparametric transformation (4.8), which is easily calculated.

Inverting the transpose of the Jacobian matrix gives a relation between the gradients:

∇ϕ♣xq ✏ ♣JT q✁1∇ϕ̂♣ξq.

This way, an integral involving gradients can be calculated as:➺
E

∇ϕj ☎ ∇ϕi dx ✏
➺

Ê

✏♣JT q✁1∇ϕ̂j

✘ ☎ ✏♣JT q✁1∇ϕ̂j

✘
det♣Jq dx. (4.9)
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The other integrals from system (4.6) can be calculated in the same way, passing

from coordinates x in E to coordinates ξ in Ê, for all elements E in Ωh.

4.6 Solutions of linear systems arising in discretization

For each time step we also have intermediate iterations due to the predictor-

corrector method, so that we need to solve a great ammount of linear systems in order to

obtain solutions at the final time step, ♣snt , int , rnt , snt

v , i
nt

v q. Thus it is important to solve

the systems carefully.

As already mentioned, the systems have the property of being sparse. Also,

a well known result in finite element theory states that the matrices arising from the

method applied to reaction-diffusion problems are symmetric and positive definite [51,

52]. The matrix structure also depends on the kind of finite element mesh being used.

If a structured mesh is used, for example, a rectangle divided in regular small triangles

or quadrilaterals, the resulting matrices would have a band structure. In this case, it is

recommended to use direct methods implemented in a way that takes advantage of the

band, such as Cholesky factorization [117]. Real life problems usually have domains that

require an unstructured mesh, in which each element is different from the other. The

resulting matrices in this case do not have a regular band structure, although the sparsity

is the same. Thus, an iterative method should be used, for example the preconditioned

conjugate gradients method [10]. In our simulations we use the conjugate gradients method,

with diagonal preconditioning suited to a compact sparse storage structure. This structure

consists of non zero elements only, and storages the i, j✁th element together with the

i and j indexes. Scalar products, matrix multiplications and other calculations are also

implemented according to this structure, eliminating useless computations and speeding

up the code execution. Details on these storage structure can be found in [70, 94].

4.7 Adjoint system solutions

In order to find the optimal control characterization, we need to numerically

solve the adjoint system. This is done using the same methods as for the state system,

and the procedure is analogous, since it is also a nonlinear reaction-diffusion system, with

a few adjustments. We will comment the procedure in the following. Writing the adjoint
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system (3.6) in equation form:✩✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✫
✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✪

✁ ❇λ1

❇t ✁ ∇ ☎ ♣α∇λ1q � ♣βIv � βsI � uqλ1 ✁ ♣βIv � βsIqλ2 ✁ uλ3 ✏ c2u,

✁ ❇λ2

❇t ✁ ∇ ☎ ♣αI∇λ2q � βsSλ1 � ♣δ ✁ βsSqλ2 ✁ δλ3 � βvSvλ4 ✁ βvSvλ5 ✏ c1,

✁ ❇λ3

❇t ✁ ∇ ☎ ♣α∇λ3q ✏ 0,

✁ ❇λ4

❇t ✁ ∇ ☎ ♣αv∇λ4q �
✂
βvI ✁ rv � 2rv

κv

♣Sv � Ivq
✡
λ4 ✁ βvIλ5 ✏ 0,

✁ ❇λ5

❇t ✁ ∇ ☎ ♣αv∇λ5q � βSλ1 ✁ βSλ2 �
✂
✁rv � 2rv

κv

♣Sv � Ivq
✡
λ4

� µvλ5 ✏ 0, in Q.

λ1♣x, T q ✏ 0, λ2♣x, T q ✏ 0, λ3♣x, T q ✏ 0, λ4♣x, T q ✏ 0, λ5♣x, T q ✏ 0, in Ω.

❇λ1

❇n ✏ 0,
❇λ2

❇n ✏ 0,
❇λ3

❇n ✏ 0,
❇λ4

❇n ✏ 0,
❇λ5

❇n ✏ 0, in ❇Ω.

(4.10)

We can see that the adjoint equations are coupled with the state and control

variables. Because of this, it is not possible to obtain independent solutions. In order

to deal with this, we use a specific strategy to solve each system separately and then

combine the results. For now, we derive numerical solutions for the adjoint system (4.10)

considering known values for the states ♣S, I, R, Sv, Ivq and control u, and solving the

system for ♣λ1, λ2, λ3, λ4, λ5q.
In order to apply the finite element method, system (4.10) is transformed to

its weak form, as in (4.1). Then we look for Galerkin solutions similar to (4.2), obtaining a

final value problem (FVP), due to the transversality (final time) conditions, as opposed to

the IVP (4.3). Using a simple change of variables in t, τ ✏ T ✁ t, it is possible to transform

this FVP in an IVP. This way, the backward Euler method is readily applicable, resulting in

algebraic equations to be solved, as (4.6), or its matrix form (4.7). The predictor-corrector

linearization method is then applied, and linear systems must be solved by the same

methods as before.

4.8 Optimality system solutions: forward-backward sweep

In Chapter 3 we showed that the optimality system consists of the state and

adjoint equations, and the optimal control characterization, all of them coupled. While the

state system has initial conditions, the adjoint has final time (transversality) conditions.

Thus, it is not possible to solve them simultaneously. We overcome this using the forward-

backward sweep, which is an iterative method [46]. As the optimal control problem has

a unique solution, it is possible to use an iterative method. Thus, if it converges to one

solution, we know that it is the correct one. A detailed explanation of the method for

ODEs can be found in [58], but its application is totally analogous for PDEs.
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The method starts with an initial guess for u✝, which can be defined as u✝ ✏ 0

in all Q ✏ Ω ✂ ♣0, T q for convenience. Then, the state system (2.1) is numerically solved

forward in time, and the solution is stored for all time and space. Using this obtained state

solution, the adjoint system is solved backward in time, and its solution is also stored for

all Q. Afterwards, the optimal control u✝ is updated as a convex combination (usually the

average) between the old control and the characterization (3.7), that we rewrite here for

convenience:

u✝ ✏ min
✂
umax,max

✂♣λ1 ✁ λ3 ✁ c2qS✝
2c3

, umin

✡✡
. (3.7)

Also, the relative change between successive old and new states and controls is checked,

through some norm ⑥ ☎ ⑥. If the relative changes are greater than a predefined tolerance,

the procedure is iterated again, until convergence is obtained. The adjoint solutions are

also iteratively calculated, but there is no need to consider their norm, because if the

states and control converge, the adjoint will converge as well. We use in our simulations

the vector 1 norm (sum of linear absolute errors), and a tolerance of 10✁2. In this way

the method converges in about 10 iterations. The procedure can be summarized in the

following algorithm:

1. Define u✝ ✏ 0 (initial guess).

2. Using u✝, solve state equations (2.1) forward in time.

3. Using state solutions and u✝, solve adjoint equations (4.10) backward in time.

4. Update u✝ as the average of u✝ and (3.7).

5. Check convergence through relative errors between old and new solutions. If the

errors are greater than the tolerance, return to step 2. Otherwise stop, and the

current solutions are optimal.

After the optimal solution is obtained, we calculate the value of the total cost

J♣u✝q, using (3.1):

J♣u✝q ✏
➺

Q

♣c1I
✝♣x, tq � c2u

✝♣x, tqS✝♣x, tq � c3u
✝♣x, tq2q dxdt. (4.11)

Remembering that Q ✏ Ω ✂ ♣0, T q, this integral depends on both space x P Ω

and time t P ♣0, T q. It is numerically calculated using quadratures in space, with the same

formulas used in the finite element integrals, and using repeated trapezoidal formulas

in time, since the time grid is regular. Other quantities of interest can be calculated as

integrals, using these same approximations. More of these values will be discussed in

Chapter 6.
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4.9 Numerical error and convergence analysis

In numerical solutions of partial or ordinary differential equations, a single

given solution that approximates the exact solution of the problem may be apparently

acceptable, showing good and expected behavior, although incorrect. Thus, it is important

to verify the quality of the obtained solutions, usually by the error between the numerical

and exact solutions, uh and ū respectively, where h is a step size associated to the mesh in

which the solutions are being calculated. We can measure the error using a given norm

⑥ ☎ ⑥, so that the absolute error is ⑥uh ✁ ū⑥. The absolute value for this error often does not

represent the quality of the solution, because it depends on the scale of the problem. The

relative error ⑥uh ✁ ū⑥④⑥ū⑥ is thus more appropriate. For the results of this section we will

use the O♣hrq notation, meaning that the approximation is of order r, that is, the error

has the form Chr for a constant C that does not depend on h. We will also consider the

following norms:

Norm in L2♣Ωq: ⑥u⑥L2 ✏
❣❢❢❡➻

Ω

⑤u⑤2 x.

Gradient norm in L2♣Ωq: ⑥∇u⑥L2 ✏
❣❢❢❡➻

Ω

⑤∇u⑤2 dx.

Vector 2 norm: ⑥u⑥2 ✏
❣❢❢❡ N➳

i✏1

h⑤ui⑤2.

An important result in approximation theory of finite element states that errors

in P1 calculated in the L2♣Ωq norm are O♣h2q, and in the L2♣Ωq gradient norm are O♣hq,
where h is the maximum diameter among all elements in the mesh [6]. The error of the

backward Euler method is O♣∆tq, and can be obtained by truncation error analysis [59].

With these results it is possible to numerically calculate the convergence rate

p obtained by the methods. Considering u1 and u2 solutions in meshes with step sizes

h ✏ h1 and h ✏ h2 ✏ h1④2, respectively, and ū the exact solution of the problem, we have,

asymptotically:

⑥u1 ✁ ū⑥ ✏ Chp, ⑥u2 ✁ ū⑥ ✏ C

✂
h

2

✡p

.

Dividing both errors:

⑥u1 ✁ ū⑥
⑥u2 ✁ ū⑥ ✏ Chp

Chp
2p.

Applying logarithm at both sides and rearranging we isolate p:

p ✏ log
✂⑥u1 ✁ ū⑥
⑥u2 ✁ ū⑥

✡
1

log 2
. (4.12)



Chapter 4. Numerical solutions 56

If the analytical solution ū is not available, an analogous procedure can be

done, comparing solutions in three different meshes with consecutive refinements, with

h1, h2 ✏ h1④2 e h3 ✏ h2④2. Another option is to assume that an approximated solution in

a very fine mesh is a sufficiently good approximation to the analytical solution, and use

it as ū. In any of the approaches mentioned, the tendency is that as h gets smaller, the

numerical rate p gets closer to the theoretical, aside from floating point numerical errors

[59], and the numerical solution gets closer to the analytical. Once the convergence of the

method is verified, it is enough to consider numerical simulations with a not so refined

mesh, because it is known that the results are trustworthy.

In real life problems, as the ones we are interested in solving, the analytical

solution is not available. However, we can test the numerical results by imposing a

predefined analytical solution and adding a source term to the differential equation, in a

way that the predefined solution satisfies the modified equation. In order to do that, it

suffices to take a source term corresponding to the differential equation evaluated at the

predefined solution. For problem (2.1), imposing known solutions S̄, Ī, R̄, S̄v, and Īv, we

add the following source terms to each of the system’s equations:

gS ✏❇S̄❇t ✁ ∇ ☎ �α∇S̄
✟� βS̄Īv � βdS̄Ī � uS̄,

gI ✏❇I❇t ✁ ∇ ☎ �αI∇Ī
✟✁ βS̄Īv ✁ βdS̄Ī � δĪ,

gR ✏❇R̄❇t ✁ ∇ ☎ �α∇R̄
✟✁ uS̄ ✁ δĪ,

gSv
✏❇S̄v

❇t ✁ ∇ ☎ �αv∇S̄v

✟� βvS̄v Ī ✁ rv

�
S̄v � Īv

✟ �
1 ✁ �

S̄v � Īv

✟④κv

✟
,

gIv
✏❇Īv

❇t ✁ ∇ ☎ �αv∇Īv

✟✁ βvS̄v Ī � µv Īv.

(4.13)

It is straightforward to see that S̄, Ī, R̄, S̄v, and Īv are solutions for the modified

system. As we use known S̄, Ī, R̄, S̄v, and Īv, the derivatives and all terms in the expression

above can be directly calculated, except for u. However, we also add source terms similar

to (4.13) to the adjoint system (4.10), so that we also have predefined known adjoint

solutions. Thus, using the optimal control characterization (3.7), we can calculate u ✏ u✝

directly in terms of the known state and adjoint solutions. Approximated solutions for the

modified systems can be obtained using the forward-backward sweep, with a procedure

completely analogous to the one showed in the previous sections.



Chapter 4. Numerical solutions 57

In our tests, we used the predefined solutions:

S̄♣x, tq ✏
✂
x3

3
✁ x

✡✂
y2

2
✁ y

✡
cos♣πtq,

Ī♣x, tq ✏
✂
x3

3
✁ x2

2

✡✂
y3

3
✁ y2

2

✡
cos♣πtq,

R̄♣x, tq ✏
✂
x3

3
✁ x

✡✂
y3

3
✁ y2

2

✡
cos♣πtq,

S̄v♣x, tq ✏
✂
x5

5
✁ x2

2

✡✂
y3

3
✁ y

✡
cos♣πtq,

Īv♣x, tq ✏
✂
x2

2
✁ x

✡✂
y5

5
✁ y3

3

✡
cos♣πtq.

And same functions for the adjoint variables, that is:
�
λ̄1, λ̄2, λ̄3, λ̄4, λ̄5

✟ ✏ �
S̄, Ī , R̄, S̄v, Īv

✟
.

These functions satisfy homogeneous Neumann boundary conditions in the test domain

Ω ✏ ♣0, 1q ✂ ♣0, 1q. Initial conditions are set by taking t ✏ 0. We decided to use these

functions because they are simple and well behaved, both in space and time. Visualization

of these functions can be seen in Figure 4, for t ✏ 0, but the spatial shape is the same for

any given time t, due to the particular form of the functions. In the following we present

the error analysis for the state equations. There is no need to do the analysis for the

adjoint equations, since the systems are coupled.

Figure 4 – Spatial plots of the functions considered as exact solutions for the error analysis.

For the error analysis of the finite element method, we considered a final time

of T ✏ 0.01, and nt ✏ 210 time intervals, obtaining a time step of ∆t ✏ 9.77 ✂ 10✁6, a

sufficiently small value so that the time discretization would not interfere in the spatial
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numerical error. As we are using regular meshes, the number of divisions in x and y

directions is the same, denoted by n, and each element maximum diameter denoted by h.

We vary the number of divisions n in order to lower the error and find the numerical rate

p of the method. The results are presented in Tables 3 and 4, which contains n, absolute

errors in L2 or L2 gradient norms and convergence rate, respectively. Figure 5 displays

plots of the error by h in log✂ log scale, with linear regressions for each case. It is possible

to see that the errors have the expected rates in all cases: p ✓ 2 for L2 norm and p ✓ 1 for

L2 gradient norm.

Table 3 – Errors and convergence rates of the finite element method in the L2 norm.

S I R Sv Iv

n error rate error rate error rate error rate error rate

4 6.0e✁3 5.1e✁4 2.0e✁3 3.8e✁3 1.5e✁3

8 1.5e✁3 1.99 1.3e✁4 1.95 5.2e✁4 1.97 9.7e✁4 1.95 4.0e✁4 1.92

16 3.7e✁4 2.01 3.3e✁5 1.99 1.3e✁4 2.00 2.4e✁4 1.99 1.0e✁4 1.98

32 9.2e✁5 2.02 8.3e✁6 2.01 3.2e✁5 2.01 6.1e✁5 2.01 2.5e✁5 2.00

64 2.5e✁5 1.89 2.0e✁6 2.05 8.0e✁6 2.01 1.5e✁5 2.06 6.2e✁6 2.04

Table 4 – Errors and convergence rates of the finite element method in the L2 gradient
norm.

S I R Sv Iv

n error rate error rate error rate error rate error rate

4 8.6e✁2 7.3e✁3 2.9e✁2 5.3e✁2 2.2e✁2

8 4.3e✁2 1.00 3.8e✁3 0.96 1.5e✁2 0.98 2.7e✁2 0.97 1.1e✁2 0.94

16 2.1e✁2 1.00 1.9e✁3 0.99 7.4e✁3 0.99 1.4e✁2 0.99 5.7e✁3 0.98

32 1.1e✁2 1.00 9.5e✁4 1.00 3.7e✁3 1.00 6.9e✁3 1.00 2.9e✁3 1.00

64 5.8e✁3 0.90 4.7e✁4 1.00 1.9e✁3 0.97 3.4e✁3 1.00 1.4e✁3 1.00

For the error analysis of the backward Euler method, we considered a final

time T ✏ 1 and n ✏ 26 divisions in both x and y directions. We vary the number of time

steps nt in order to refine the time step h ✏ ∆t ✏ T ④nt. We calculated the error using the

vector 2 norm, applied to the integral of S, I, R, Sv and Iv over the whole domain. The

results are presented in Table 5, which contains h ✏ ∆t, absolute errors in vector 2 norm

and convergence rate. In Figure 6 we present error plots by h ✏ ∆t in log✂ log scale, with

linear regressions for each case. It is possible to see that the errors have the expected rates

p ✓ 1 in all cases.
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Figure 5 – At left: numerical errors in L2 norm by element step sizes. At right: numerical
errors in L2 gradient norm by element step sizes. Linear regressions are shown
for each case.

Table 5 – Errors and convergence rates of the backward Euler method in the vector 2
norm.

S I R Sv Iv

n error rate error rate error rate error rate error rate

4 4.5e✁2 2.3e✁3 1.1e✁2 1.8e✁2 5.5e✁3

8 2.1e✁2 1.12 1.1e✁3 1.11 5.2e✁3 1.12 8.1e✁3 1.13 2.5e✁3 1.12

16 1.0e✁2 1.06 5.1e✁4 1.06 2.5e✁3 1.06 3.9e✁3 1.07 1.2e✁3 1.06

32 4.9e✁3 1.03 2.5e✁4 1.03 1.2e✁3 1.03 1.9e✁3 1.03 6.0e✁4 1.03

64 2.4e✁3 1.02 1.2e✁4 1.02 6.0e✁4 1.02 9.4e✁4 1.02 2.9e✁4 1.02

128 1.2e✁3 1.02 6.2e✁5 1.01 3.0e✁4 1.01 4.6e✁4 1.02 1.5e✁4 1.02

256 5.9e✁4 1.02 3.1e✁5 1.02 1.5e✁4 1.02 2.3e✁4 1.02 7.2e✁5 1.02

512 2.9e✁4 1.04 1.5e✁5 1.03 7.2e✁5 1.03 1.1e✁4 1.04 3.5e✁5 1.04

1024 1.4e✁4 1.07 7.2e✁6 1.05 3.4e✁5 1.06 5.2e✁5 1.08 1.6e✁5 1.09

h

10-4 10-3 10-2 10-1

E
rr

o
r

10-6

10-5

10-4

10-3

10-2

10-1
Numerical errors ×  h

S

I

R

S
v

I
v

Figure 6 – Numerical errors in vector 2 norm by time step sizes. Linear regressions are
shown for each case.
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Chapter 5

Parameter estimation

With all tools needed to obtain reliable numerical solutions of model (2.1) and

the optimal problem (3.3), we can focus on applying them to a real life problem. In order

to do so, we need to find numerical values for the parameters involved in the model. There

are some information available in literature, for example for the disease duration and

mosquito lifespan [41, 50]. However, some of the parameters, specially transmission rates,

could have different values depending on location and climate, since mosquito behavior,

biting rates, and other factors are dependent on the weather [80]. For this reason, we wish

to connect our model to some real life Zika data in order to get closer to reality.

Unfortunately, it is not easy to find reliable datasets containing the number

of infected cases in Brazil. Lots of suspected cases could be unreported or misdiagnosed,

specially with vector-borne diseases as dengue, chikungunya and Zika that have similar

symptoms and are present in the same seasons. Moreover, Zika virus was completely absent

in Brazil before its introduction around 2013. A surveillance protocol was published by

the Brazilian Health Ministry in December 2015, in order to identify and confirm Zika

suspected infections and microcephaly cases in newborns [75]. Before that, Zika cases

were difficult to diagnose and suspected and confirmed cases were not of compulsory

notification.

There are some public data available for the notified Zika, dengue, and chikun-

gunya cases in the Brazilian Health Ministry website, but only after 2016, when the

surveillance protocol was active. We are interested in simulating scenarios for the begin-

ning of the outbreak, when Zika was introduced in Brazil, back in 2015. The only dataset

we were able to find for this time frame was for Rio Grande do Norte State, in northeastern

Brazil, one of the first states to have confirmed cases in Brazil [104].

In this chapter, we create a finite element mesh using Matlab (R2015a) to

approximate the geographical boundary of Rio Grande do Norte state, and find some

estimates for some parameters of model (2.1). Then, we use a parameter estimation method

based on nonlinear least squares to connect our model to the dataset. We define a residual

between the number of new cases from data and from the model, and minimize its square

in terms of a set of parameters. Some tests are also carried out in order to verify the

capacity of the proposed method in obtaining reliable results.
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5.1 Application to 2015 Zika outbreak in Brazil

Weekly reported cases for the initial 2015 Zika outbreak in Rio Grande do

Norte state in Brazil are available from the State Health Office website [104], from 5th

to 26th epidemiological weeks of that year, and separated by cities. Most cities have few

reported cases, so we decided to consider only the 13 cities with relevant number of cases.

We show the number of reported cases by weeks in Table 6, and city locations in the state

in Figure 8. There is no available information about confirmed cases and reporting rates,

so we assume an under-reporting rate equal to the symptomatic rate of 20% [118]. This

way the number of new cases (also called incidence throughout this work) is the reported

cases from data divided by 20%. The sum of all reported cases is 4486, which rescaled

gives a total of 22430 assumed infections. A schematic bar plot for the rescaled number of

cases is shown in Figure 7.

Table 6 – Number of reported Zika cases in Rio Grande do Norte state in 2015.

Epidemiological week
City 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Apodi 0 0 0 0 0 0 0 0 0 0 4 6 5 11 0 6 6 4 7 11
Areia Branca 0 0 0 0 0 0 0 0 0 0 0 1 38 4 30 52 33 11 11 1
Caicó 0 0 0 0 0 0 2 0 1 1 87 73 67 67 37 9 3 14 1 5
Canguaretama 0 0 0 0 0 0 0 3 0 14 16 19 19 25 21 14 16 34 29 17
Ceará Mirim 33 94 16 17 70 42 1 31 59 72 38 11 28 23 18 16 13 3 9 8
João Câmara 0 0 0 3 8 0 0 0 0 0 4 25 5 5 3 3 0 0 0 0
Mossoró 0 0 0 2 2 3 7 6 25 154 163 131 130 57 59 61 42 27 26 19
Natal 0 1 0 9 2 2 3 0 36 45 96 196 230 196 155 190 106 100 126 82
Parnamirim 0 0 0 0 0 0 0 0 0 11 21 30 24 25 16 28 22 22 13 14
Rio do Fogo 0 0 0 0 0 0 1 0 0 3 6 11 8 8 3 9 2 1 0 0
Santa Cruz 0 0 0 0 0 0 0 0 0 0 1 2 2 14 0 5 3 10 3 0
Santo Antônio 0 0 0 0 0 0 1 0 0 1 24 13 11 11 22 23 16 11 4 5
S. G. Amarante 0 0 0 0 1 0 0 0 3 2 1 4 7 14 2 3 1 2 3 1

Total 33 95 16 31 83 47 15 40 124 303 461 522 574 460 366 419 263 239 232 163

Using Google Earth software [45], we created a numerical representation for the

boundary of Rio Grande do Norte state, using geographical coordinates. More precisely,

we defined 33 nodes to approximate the boundary. As coordinates from Google Earth

are tridimensional, we projected the points into a plane. After that, the coordinates were

converted from geodetic coordinates (latitude, longitude and altitude) to ECEF (earth-

centered, earth-fixed) in kilometers using lla2ecef function from the aerospace toolbox

in Matlab [69]. This way we have ♣x, yq coordinates in kilometers for the boundary of the

state. There is no loss of accuracy in the projection because the altitude in the state is

irrelevant compared to the length – the state has approximately 400 km in the latitudinal

direction, 240 km in the longitudinal direction and 300 m elevation.
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Figure 7 – Rescaled incidence in selected cities by epidemiological weeks of 2015.

With the boundary coordinates we created a linear finite element mesh, using

Matlab’s PDE toolbox [72]. We create a PDE model with function createpde, in which

it is possible to define a domain, boundaries, and finite element meshes. Then with

function decsg we create a decomposed geometry, in which we define the boundary

and interior of the domain. This geometry is included in the PDE model with function

geometryFromEdges. Finally we create the linear finite element mesh (consisting of 3 node

triangles) using generateMesh. We export this mesh as a file and load it in our Fortran

90 finite element implementation. The mesh and location of cities from data are shown in

Figure 8.

From the data, the first reported cases were in the city of Ceará-Mirim, at the

7th epidemiological week. This means that there were 33 reported Zika cases between

the 6th and 7th weeks, but there is no information on the exact date. So we assume that

the first infections happened one week before the data starts, between the 6th and 7th

epidemiological weeks. To include this in the model, we define I0I as the number of infected

people at Ceará-Mirim divided by the approximated area of the city, between weeks 6

and 7. This way, I0I represents density of the first infected humans arriving in the state.

We have 20 weeks of data as in Table 6, so we start at t ✏ 0 days counting from the 6th

epidemiological week, and simulate a final time of T ✏ 140 days (corresponding to the

26th epidemiological week).

Analyzing the dataset we find that the virus started to spread in the eastern
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Figure 8 – Linear finite element mesh approximating Rio Grande do Norte state. Circles
represent cities with relevant incidence data.

region of the state, where the capital city Natal and its densely populated metropolitan

region are located, and most number of cases were also located in that region. However,

infected cases started to appear in the western region in the 10th week in the city of

Mossoró, and in the southern region in the 13th week in the city of Caicó (Figures 7 and

8). At this time, the virus had not spread over a large region in the state from the initial

focus in the east. Thus, instead of local transmission, we consider those new infections

to be originated from immigration of infected people from other locations. In order to

consider this in our model, we include this data as an additional source function f♣x, tq in

the I equation of the state (2.1), acting in a specific spatial region and time period. It acts

by adding new infected humans in the model, as an external source. The addition of this

function does not change the adjoint system neither the optimal control characterization,

because it does not depend on any of the state variables ♣S, I, R, Sv, Ivq. For simplicity,

f♣x, tq is defined as constant in periods of time length τ and adds a number of infected

humans coming from outside, in an region ω̄i ⑨ Ω, i ✏ 1, 2, having the following form:

f♣x, tq ✏

✩✬✫
✬✪

(infected humans)
τ ⑤ω̄i⑤ , if t̄j ↕ t ↕ t̄j � τ, x P ω̄i, i, j ✏ 1, 2,

0, otherwise.
(5.1)

Considering ♣t̄j, t̄j � τq as the time interval between two successive weeks as

in data, we must have τ ✏ 7 days. The region ω̄i is a small part of the domain, with ⑤ω̄i⑤
representing its area measure. We consider ω̄i as an approximation of the area of each

city in which the new infected source is being added. We also define I0M and I0C as the

number of infected humans in the right hand side of (5.1) for the cities of Mossoró and

Caicó, respectively. These functions are added between epidemiological weeks 9 and 10

(7 ↕ t ↕ 14, if counting from t ✏ 0 days) for Mossoró, and weeks 12 and 13 (28 ↕ t ↕ 35,
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if counting from t ✏ 0 days) for Caicó. This way the source function (5.1) turns into:

f♣x, tq ✏

✩✬✬✬✬✬✫
✬✬✬✬✬✪

I0M

7⑤ω̄1⑤ , if 7 ↕ t ↕ 14 and x P ω̄1,

I0C

7⑤ω̄2⑤ , if 28 ↕ t ↕ 35 and x P ω̄2,

0, otherwise.

(5.2)

As an approximation to each ⑤ω̄i⑤, i ✏ 1, 2, we use the area of the triangular element closest

to the city location in the mesh, as in Figure 8.

In order to simulate the initial spread of Zika virus in Rio Grande do Norte

state, we define the initial conditions as following. For susceptible humans and vectors the

density is constant in the whole domain, representing the total human population and the

mosquitoes at carrying capacity. For infected humans, the initial condition is zero in the

whole domain, except for a small region corresponding to the city of Ceará-Mirim (the

mesh triangle closest to the city), that has I0I infected humans per area. The density for

immune humans and infected vectors are zero in the entire domain. A representation of

the initial condition is depicted in Figure 25 in Chapter 6.

5.2 Parameter estimates

Our model is limited to the time interval connected with data, a period of

140 days, or 20 weeks, between February and June, a period with no great changes in

environmental features affecting mosquitoes, such as temperature and precipitation, and

thus we are not considering seasonality, opting instead for constant parameters. Relating

these factors with entomological parameters could also be a difficult task, specially in PDE

models. The values for all parameters used in simulations are shown in Table 1.

We adapted values for some of the parameters in our model from [41], obtaining

a recovery period of 1④δ ✏ 15 days, and mosquitoes incubation period and lifespan of

1④rv ✏ 1④µv ✏ 14 days. The total human population in Rio Grande do Norte state is

approximately 3.4 million [104], which leads to a density of 64.28 humans④km2, value used

as the initial condition for susceptible humans. Also, assuming a rate of 5 mosquitoes per

human, we have a maximum density of κv ✏ 321.4 mosquitoes④km2.

According to Honório et al. [50], an Aedes aegypti mosquito can fly up to 300

meters per day. We have to connect this speed to the diffusion coefficient, which is the

mean spread of an area over time. In order to do so, let us consider a reaction-diffusion

equation for mosquitoes only, with logistic growth and without external influence, that

is, the equation for Sv in (2.1) with I and Iv equal to zero. Then it is possible to find

that the traveling wave speed of the solution is given by 2
❄
αvrv, as done in [56]. Solving

2
❄
αvrv ✏ 300 for αv we find an approximated diffusion coefficient of αv ✏ 0.315 km2④days.
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Table 7 – Parameter values used in simulations.

Value Unit Source

β 1.28 ✂ 10✁5 1④(mosq.④km2 days) estimated
βv 1.55 ✂ 10✁2 1④(hum.④km2 days) estimated
βd 0 1④(hum.④km2 days) estimated
1④δ 15 days [41]
1④rv 14 days [41]
1④µv 14 days [41]
κv 321.4 mosq.④km2 assumed
α 5 km2④days [50, 56]
αI 5 km2④days [50, 56]
αv 0.315 km2④days [50, 56]
c1 66.67 ($④hum.)④days assumed
c2 100 $④hum. assumed
c3 1000 $④♣km2④daysq assumed
umin 0 1④days assumed
umax 0.005 1④days assumed
T 140 days [104]
N 64.28 hum.④km2 [104]
I0I 133 hum.④km2 estimated
I0M 107 hum.④km2 estimated
I0C 107 hum.④km2 estimated

The movement scale for humans is completely different and depends on a variety of factors

[17]. Zika symptoms are mild when symptomatic and there is no relevant difference in

movement from different humans classes, so we assume a mean diffusion coefficient of

α ✏ αI ✏ 5 km2④days for humans.

As there are still no vaccines publicly available we have to make assumptions

for the parameters related to them. It is important to note that for the optimal control

characterization we need to use well balanced weights c1, c2, and c3, so we are considering

these values relative to an unit “$” (United States Dollars). Nevertheless, it is important

to consider these costs relatively realistic. A cost of $1000 per infection day was considered

for infected humans, giving c1 ✏ $66.67 per hum.④days, considering 15 days for the disease

duration. The costs related to vaccine were assumed to be c2 ✏ $100 per human vaccinated,

and c3 ✏ $1000 per ♣km2④daysq, the latter being the cost related to vaccination per

area and per day. These values provide the ratios c2④c1 ✏ 1.5 and c3④c1 ✏ 15, which are

reasonable in realistic terms. Again, we emphasize that the most important factor is the

relative size of c1, c2 and c3, as the cost functional (3.1) can be normalized if divided by

c1. The vaccine application should be non negative, and we assumed a maximum rate of

0.005 per day, corresponding to approximately 0.5% of susceptible humans or less being

vaccinated each day. Since u ➔➔ 1 and the c3 term is associated with u2, it contributes

much less to J than the terms with c1 and c2. As these choices are somewhat uncertain
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we later consider a sensitivity analysis on the parameters.

All transmission rates, β, βd, and βv may depend on local conditions, such as

weather and behavior of humans and mosquitoes, so we decided to estimate them from

data. We also have to estimate the number of infected humans in the initial condition,

I0I , and the number of infected humans from immigration, I0M and I0C . The estimation

procedure is detailed in next section, and the values obtained are in Table 1. We note

that the estimation for βd as zero corroborates the hypothesis that direct transmission is

irrelevant in the spread of Zika virus, at least for the set of data we are using [3].

5.3 Parameter estimation using least squares

We wish to estimate some parameters of model (2.1) from the available data

in Table 6. In order to do so, we need to consider a measure to fit the model to data, as

performed in other parameter estimation works [5, 22, 109]. The dataset consists of the

number of cases, or incidence, so we need to define a measure for a equivalent quantity

in the model. The incidence from model (2.1) in a spatial region ωi ⑨ Ω and at a time

interval ♣tj, tj � τq is defined as:

Yij ✏
➺ tj�τ

tj

➺
ωi

♣βSIv � βdSIq dxdt, (5.3)

where ωi denotes the spatial region of the i-th city and ♣tj, tj � τq the time length of the

j-th week of interest, with τ ✏ 7 days. The integrals represent the sum over a specific

space and time. The integrand consists of the rates of new infections, and its form is given

by the positive components at the right hand side of the equation for I in model (2.1),

except for the external source of immigration.

We define Y ij as the incidence from data, that is, data from Table 6 seen as a

matrix and divided by the report rate of 20%, with i ✏ 1, . . . , 13 (representing the cities),

j ✏ 1, . . . , 20 (representing the weeks). Then it is possible to compare the model incidence

Yij to the data incidence Y ij. In order to do so, we define the normalized residual between

the incidence from data and from model (2.1):

R ✏

❣❢❢❢❢❡
➦

iPI,jPJ

�
Y ij ✁ Yij

✟2

➦
iPI,jPJ

�
Y ij

✟2
. (5.4)

In the residual, we consider only indexes i P I and j P J such that Y ij is

different from zero, for i ✏ 1, 2, . . . , 13 (one for each city) and j ✏ 1, 2, . . . , 20 (one for each

week). The geometric interpretation for this expression is the euclidean distance between

the two quantities. The normalization only helps to keep the absolute value of the residual
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small. Therefore, by minimizing R, or equivalently R2 to eliminate the square root, we try

to obtain parameters for model (2.1) that produce results close to data. Formally, we wish

to find a vector of parameters θ P Θ such that θ ✏ arg min R2, subject to system (2.1).

This is a nonlinear least squares problem [5, 79], that should be solved appropriately. The

choice of which parameters θ should be considered as variables depend on the information

available on the problem, as well as the set of possible values Θ. Usually, and this is the

way we proceed, Θ consists of lower and upper bounds for each parameter, such that

Lk ↕ θk ↕ Uk, for each k-th parameter. In our case, the parameters we wish to estimate

are θ ✏ ♣β, βv, βd, I0I , I0M , I0Cq, as mentioned before. For each set of parameters, the state

system (2.1) is solved using the methods discussed in Chapter 4 and the residual R is

calculated using quadratures and trapezoids.

Several optimization methods are available for solving nonlinear least squares

problems, for example we can cite, in Fortran, TANGO (Trustable Algorithms for Nonlinear

General Optimization) [13], and TOLMIN (a tolerant algorithm for linearly constrained

optimization calculations) [93], and Matlab optimization toolbox with several methods

[71]. Our choice is BOBYQA (Bounded Optimization by Quadratic Approximation), a

bound constrained derivative-free algorithm [92], because it is very simple to use and to

connect with the finite element implementation in Fortran 90. It is also very reliable and

appropriate to our problem, as we can see in the results. In a brief explanation, BOBYQA

uses a trust region method that forms quadratic models by interpolation of the objective

function – in our case the residual R. Each iteration produces a new point θ, usually by

solving a trust region subproblem subject to the bound constraints. Alternatively, it chooses

a point to replace an interpolation point in order to provide good linear independence in

the interpolation conditions.

Lower bounds for β, βv, βd, I0I , I0M , I0C were taken as small values close to

zero, and upper bounds according to realistic approximations of each parameters – bounds

are shown in Table 8. We vary the initial guess of the optimization method to guarantee

that we find a global minimum instead of a local one. The initial guesses were uniformly

random generated based on the lower and upper bounds and simulated 100 times.

Best fit results are shown in Table 8, with a normalized residual of R ✏ 0.821.

We show in Figure 9 the simulated incidence in each city, and in Figure 10 the simulated

incidence summed over the 13 cities. Overall, we can see that the result from simulation

qualitatively agrees with data, although it is very difficult to obtain a good fit for all the

cities at once. The rate βd is estimated at the lower bound, so we assume its value as zero,

meaning that direct transmission is irrelevant for the dataset used.

In the next section we run some tests in order to verify that the methodology

is reliable. However, before that we give a brief summary of the parameter estimation

procedure, which can be readily applied to other problems of interest:
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Table 8 – Parameter bounds and estimation results.

R β βv βd I0I I0M I0C

Lower bounds 0 10✁6 10✁6 10✁6 1 1 1
Upper bounds 0 10✁1 10✁1 10✁1 133 107 107

Results 0.821 6.438✂10✁5 1.561✂10✁2 0 133 107 107
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Figure 9 – Comparison between the sum in each city of data and simulated incidence.
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Figure 10 – Comparison between the sum from data and from simulated incidence.

✌ We use a dataset with reported Zika cases from Rio Grande do Norte state in Brazil,

for 20 weeks, or 140 days.

✌ We created a finite element mesh to approximate the state, and cities are approxi-
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mated by mesh triangles.

✌ We introduced a function f♣x, tq to account for immigrated infections.

✌ Most parameter values are obtained from literature [41, 50, 56, 104].

✌ The incidence (number of new infections) from model (2.1) is given by (5.3).

✌ The residual (5.4) between model and data incidence is minimized in order to

estimate parameters.

✌ The estimated parameters are the transmission rates β, βv, and βd, and number of

initial infections I0I , I0M , and I0C .

5.4 Tests with generated data

In order to verify that our parameter estimation methodology is reliable, in

this section we run some tests with artificially generated data, trying to imitate the set of

available data from Table 7. The generated set is defined by running a simulation using

the parameters values obtained in the previous section (all parameters from Table 7) and

then calculating the corresponding incidence by expression (5.3) in the relevant cities for

which we have data (cities from Table 7), for 20 weeks. However, in order to get closer

to a real data set, we use data only from weeks in which values from the real data set is

different from zero. In other words, the set of partial data consists of the incidence Yij, for

i P I and j P J , as defined in (5.4). Both complete and partial generated data is shown in

Figure 11, and summed complete and partial generated data is shown in Figure 12, in

which partial data is visibly different from full data.

Real life collected data often is affected by noise, coming for example from

measurement errors, uncertain report rates, misleading diagnosis, and uncertainty in

modeling. Thus, we add random noise in the generated data set in order to include some of

these factors. A good way to add random noise is to use white noise, a vector in which each

component is a random variable with zero mean and finite variance. We define variance as

a predefined maximum variation from the generated data. For example, if the maximum

variation is 10%, each variance is proportional to the baseline data and maximum variation,

and the data with added noise ranges between 90% and 110% from the baseline value. In

this way, let Ŷ be the artificial generated data matrix, and ε the white noise matrix, then

the noisy data set is given by Ŷ � ε.
We considered five different noisy scenarios, corresponding to 0%, 30%, 50%,

70%, and 100% of maximum variation from generated data. In each of these scenarios,

different white noise was added to Ŷ , producing five different datasets. Using our least

squares approach as in the previous section, we estimated β, βv, I0I , I0M , and I0C for
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Figure 11 – Full and partial artificially generated incidence data. The latter is used in the
parameter estimation tests.
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Figure 12 – Full and partial summed artificially generated incidence data. The latter is
used in the parameter estimation tests.

each one of these datasets. The direct transmission rate βd was not estimated because we

have found that its value is irrelevant and very close to zero. In the case of 0% variation,

corresponding to no added noise, the method was able to exactly retrieve the predefined

parameters. Results are shown in Table 9, which contains the predefined values for the

parameters (denoted by true values), estimated parameters for each dataset, residuals R

calculated as in (5.4), and relative errors between the estimated parameters and true values.

In Figure 13 we graphically show the residuals R and relative errors of the parameters, in

order to have a geometric overview of the results. It is possible to see that β and βv have
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small relative errors in all considered noise scenarios, but not for the other parameters.

Also, the 100% noise scenario gives the highest residual R, but returns small relative errors

for all parameters. This means that relative errors for the parameters do not uniquely

define accuracy in the results. By accuracy we mean a small residual between simulated

and data incidence – a small value for R. Nevertheless, all of the scenarios produced a

small residual R, representing a good fit to each of the dataset considered in the estimation

procedure.

Table 9 – Results of parameter estimation tests with artificially generated noisy data.

R β βv I0I I0M I0C

True values 0 6.438✂✂✂ 10✁5 1.561✂✂✂ 10✁2 133 107 107

30% noise 7.17✂ 10✁2 6.709✂ 10✁5 1.501✂ 10✁2 133 94.67 105.94
Rel. error 4.2% 3.9% 0.0% 11.5% 1.0%

50% noise 1.56✂ 10✁1 6.542✂ 10✁5 1.544✂ 10✁2 122.64 90.45 93.30
Rel. error 1.6% 1.1% 7.8% 15.5% 12.8%

70% noise 2.00✂ 10✁1 6.807✂ 10✁5 1.527✂ 10✁2 90.14 75.04 88.75
Rel. error 5.7% 2.2% 32.2% 29.9% 17.1%

100% noise 3.05✂ 10✁1 6.396✂ 10✁5 1.561✂ 10✁2 133 97.28 105.30
Rel. error 0.6% 0% 0% 9.1% 1.6%
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Figure 13 – Residual R and relative errors of estimated parameters using artificially
generated data with 30%, 50%, 70%, and 100% added noise.

In Figures 14 – 21 we show the results from the parameter estimation with

noisy generated datasets. Figures 14, 16, 18, and 20 show the simulated incidence with

estimated parameters, original generated incidence data (without noise), and incidence

data with added noise. Figures 15, 17, 19, 21 show these same contents summed over the

13 cities with relevant data.
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Figure 14 – Incidence in each city (blue solid lines) with estimated parameters β ✏
6.709✂10✁5, βv ✏ 1.501✂10✁2, I0I ✏ 133, I0M ✏ 94.67, I0C ✏ 105.94, obtained
using artificially generated data with 10% added noise. The corresponding
residual is R ✏ 7.17 ✂ 10✁2. Data with 10% added noise (red circles) and
without noise (yellow dotted lines) are also shown.
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Figure 15 – Summed incidence in all cities (blue solid line) with estimated parameters β ✏
6.709✂10✁5, βv ✏ 1.501✂10✁2, I0I ✏ 133, I0M ✏ 94.67, I0C ✏ 105.94, obtained
using artificially generated data with 10% added noise. The corresponding
residual is R ✏ 7.17✂ 10✁2. Summed data with 30% added noise (red circles)
and without noise (yellow dotted line) are also shown.
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Figure 16 – Incidence in each city (blue solid lines) with estimated parameters β ✏ 6.542✂
10✁5, βv ✏ 1.544✂10✁2, I0I ✏ 122.62, I0M ✏ 90.45, I0C ✏ 93.30, obtained using
artificially generated data with 50% added noise. The corresponding residual
is R ✏ 1.56✂10✁1. Data with 10% added noise (red circles) and without noise
(yellow dotted lines) are also shown.
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Figure 17 – Summed incidence in all cities (blue solid line) with estimated parameters
β ✏ 6.542 ✂ 10✁5, βv ✏ 1.544 ✂ 10✁2, I0I ✏ 122.62, I0M ✏ 90.45, I0C ✏ 93.30,
obtained using artificially generated data with 10% added noise. The corre-
sponding residual is R ✏ 1.56 ✂ 10✁1. Summed data with 50% added noise
(red circles) and without noise (yellow dotted line) are also shown.
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Figure 18 – Incidence in each city (blue solid lines) with estimated parameters β ✏
6.807✂10✁5, βv ✏ 1.527✂10✁2, I0I ✏ 90.14, I0M ✏ 75.04, I0C ✏ 88.75, obtained
using artificially generated data with 70% added noise. The corresponding
residual is R ✏ 2.00 ✂ 10✁1. Data with 70% added noise (red circles) and
without noise (yellow dotted lines) are also shown.
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Figure 19 – Summed incidence in all cities (blue solid line) with estimated parameters β ✏
6.807✂10✁5, βv ✏ 1.527✂10✁2, I0I ✏ 90.14, I0M ✏ 75.04, I0C ✏ 88.75, obtained
using artificially generated data with 70% added noise. The corresponding
residual is R ✏ 2.00✂ 10✁1. Summed data with 70% added noise (red circles)
and without noise (yellow dotted line) are also shown.
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Figure 20 – Incidence in each city (blue solid lines) with estimated parameters β ✏
6.396✂10✁5, βv ✏ 1.561✂10✁2, I0I ✏ 133, I0M ✏ 97.28, I0C ✏ 105.30, obtained
using artificially generated data with 100% added noise. The corresponding
residual is R ✏ 3.05 ✂ 10✁1. Data with 100% added noise (red circles) and
without noise (yellow dotted lines) are also shown.
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Figure 21 – Summed incidence in all cities (blue solid line) with estimated parameters β ✏
6.396✂10✁5, βv ✏ 1.561✂10✁2, I0I ✏ 133, I0M ✏ 97.28, I0C ✏ 105.30, obtained
using artificially generated data with 100% added noise. The corresponding
residual is R ✏ 3.05✂ 10✁1. Summed data with 100% added noise (red circles)
and without noise (yellow dotted line) are also shown.



Chapter 5. Parameter estimation 76

In Figures 14 and 15 we can see that a maximum variation of 30% does not

change much the generated incidence, and the simulated incidence in this case is very close

to the original data. This also happens in Figures 16 and 17, with a 50% noise, although

the variation is a little bit higher. In Figures 18 and 19, 70% noisy data is relatively far

for original simulated data, which causes a visible difference between the incidence with

estimated parameters and original incidence. In Figures 20 and 21, 100% of maximum

variation significantly changes the behavior of the noisy data from the original incidence

curves, but the estimated solution still approximates the original data without added

noise.

The results in this section show that the proposed parameter estimation

methodology is able to retrieve good results in terms of parameters and output, producing

small least squares residuals even when white noise is present in data. It is not clear how

errors in estimated and true parameters are related to the residual R in the presence of

noise, since small errors in parameters could provide a higher residual. However, more

variation in noise produced results with higher R, even though all of the incidence solutions

obtained were close to the artificially generated data without noise.

5.5 Global Sensitivity Analysis

A complete analysis of parameters should also account for sensitivities in model

(2.1), which are able to verify which parameters have the most impact in a particular

model output. In order to search for these key parameters, we perform a global sensitivity

analysis, accounting for the influence of all the parameters at once. We assess the impact of

variations in the model parameters on the outputs using partial rank correlation coefficients

(PRCCs) [67]. These coefficients are similar to the common Pearson correlation coefficient,

but also deal with nonlinearities, as long as the output is monotonic in the parameters.

PRCC analysis is a sample based method, which means it requires several trials

(or samples) of the model. These trials are usually random generated in a Monte Carlo

sense [47]. The idea is to generate several random sets of parameters for model (2.1), and

then numerically solve it for each set, obtaining a corresponding set of outputs, which

are used for the calculation of the correlation coefficients. In this sense it is expected

that as the number of trials increase, a better overview of the model outputs should be

provided, eventually covering a large amount of parameter combinations. Asymptotically,

the considered sets of parameters should cover all the possible combinations of the search

space.

Latin hypercube sampling (LHS) is a particular Monte Carlo method that

relies on sampling without replacement, with the advantage that it requires fewer samples

than simple random sampling with the same accuracy [73]. This is specially important
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in the present work, as numerical solutions for PDEs can be very time-consuming. Each

parameter range is divided into Nsim equally spaced intervals, with Nsim being the number

of trials. Each interval for each parameter is then sampled only once, that is, without

replacement, so that the entire range is explored, for each of the parameters. The results

of the sampling are put in a matrix that consists of one column per parameter, with

the sampling results in each of the Nsim rows. Once the matrix is assembled, Nsim model

solutions are simulated, using each combination of parameters of the matrix rows.

The PRCCs are calculated with the Nsim latin hypercube samples. Briefly, the

procedure is as following: for a j-th parameter input xj and output y, the xj, y data is

rank transformed, by putting it in ascending order from 1 to the sample size, Nsim. Then,

linear effects of the other parameters on the output are disregarded from linear regressions.

The correlation coefficient is then calculated, and it describes the linear correlation of the

rank-transformed data, which corresponds to nonlinear correlation of the original data.

Each PRCC has an associated p-value, that accounts for the significance (or in a less

technical word, reliability) of the result. More details on the coefficient calculations can

be found in [67, 103]. A detailed and thorough PRCC analysis for an ODE model with

optimal control can be found in [48], and a corresponding shorter version in [49].

We performed two analyses, one using the cost J♣u✝q as output, and the other

using incidence (total number of new infections). J♣u✝q is a single number output that

accounts for all time and space at once, so its sensitivities are also single numbers, one for

each parameter. On the other hand, the total incidence from the model can be viewed as

a function over time, so the PRCCs can also be seen that way.

The Latin hypercube sampling was simulated with Nsim ✏ 200 trials, and

parameters from model (2.1) were considered following normal distributions, with baseline

values given by the estimated parameters in the previous sections. Ranges were chosen

corresponding to 15% of maximum variation from their baselines for β and c3, 10% for δ,

rv and µv, and 5% for the other parameters. These values can be found in Table (10). The

direct transmission rate βd was not considered because we considered its value as zero.

The normal distributions are defined within these ranges, with means at the baselines and

standard deviations according to the lower and upper bounds. More precisely, values were

chosen such that lower and upper bounds were within three standard deviations from the

mean, according to the three sigma rule [100]. We considered a significance level of 0.05,

meaning that PRCCs with p-values greater than 0.05 are assumed to be not significant.

A PRCC value lower than 0.2 is also considered insignificant, due to the low impact it

has on the output. Monotonicity was verified in for the parameters between lower and

upper bounds, with J♣u✝q being decreasing in δ, µv, and c1, and increasing in the other

parameters. Scatter plots of rank-transformed data are shown in Figures (23) and (24).

Both axis scales in the plots result from the rank transformation and linear regression,
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and do not represent the real values for the output and parameters in the simulations.

Table 10 – Parameter baseline values and ranges used in the PRCC analysis.

Baseline value Lower bound Upper bound Variation

β 1.28 ✂ 10✁5 1.09 ✂ 10✁5 1.47 ✂ 10✁5 15%
βv 1.55 ✂ 10✁2 1.47 ✂ 10✁2 1.63 ✂ 10✁2 5%
δ 0.067 0.0603 0.0737 10%
rv 0.071 0.0639 0.0781 10%
µv 0.071 0.0639 0.0781 10%
κv 321.4 305.33 337.47 5%
α 5 4.75 5.25 5%
αI 5 4.75 5.25 5%
αv 0.315 0.299 0.331 5%
c1 66.67 63.34 70 5%
c2 100 95 105 5%
c3 1000 850 1150 15%

PRCC results and p-values considering the cost J♣u✝q as output are shown

in Tables 11 and 12. We found that both transmission rates β, βv, mosquitoes carrying

capacity κv, and costs associated with infected humans c1 are positive correlated with

J♣u✝q, while the recovery rate δ and mortality rate of mosquitoes µv are negative correlated

to J♣u✝q. The other parameters have insignificant PRCCs. In Figure 23 it is possible to see

the apparent linear correlation in the transformed data (which corresponds to a nonlinear

correlation of the original data) for β, δ, βv, κv, µv, and c1. There is no visible trend in the

other parameter plots, as they seem to be evenly spread. In both cases the plots confirm

the results from the PRCC values.

Table 11 – Significant PRCCs with J♣u✝q as output.

Parameter β δ βv κv µv c1

PRCC 0.9698 ✁0.8490 0.7808 0.6324 ✁0.7463 0.5618
p-value 0 0 0 0 0 0

Table 12 – Insignificant PRCCs with J♣u✝q as output.

Parameter rv α αI αv c2 c3

PRCC ✁0.09 0.00 ✁0.06 ✁0.04 0.07 0.15
p-value 0.206 0.974 0.375 0.530 0.330 0.031

Considering incidence as a time varying output, we can calculate PRCC values

at each time, assessing parameter sensitivity over time. Significant PRCCs calculated

this way are shown in Figure 22, and rank-transformed scatter plots at the final time of
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Figure 22 – Significant PRCCs over time, using incidence as output. Shaded area indicates
region where PRCC is not significant.

simulation (t ✏ 140 days) in Figure 24. We can see that there is a great variation in the

PRCCs for κv, µv, and δ in the beginning of the simulations, when the correlations are

low (in absolute values), and then they increase over time. There is a moderate variation

in the PRCCs for βv, αI , and c2 over the whole time interval. PRCCs for αI , and c2 are

insignificant in most of the time, but increase at the end of the simulation. The recovery

rate δ and mortality rate of mosquitoes µv are again negatively correlated to the output,

while the other parameters are positively correlated. In Figure 24 it is possible to see the

linear correlation trend of the parameters and incidence at t ✏ 140 days for β, δ, βv κv,

µv. Although slight, it is also possible to see the correlation for αI and c2. These results

are again in accordance to the PRCC values as seen in Figure 22.
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Figure 23 – Scatter plots of rank-transformed data with J♣u✝q as output. A PRCC is
considered significant if it is greater than 0.2 or if its p-value is less than 0.05.
Scales in both axes result from rank transformation and linear regression. It is
possible to see positive linear trends of correlation for β, βv, κv, and c1, and
negative ones for δ and µv.
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Figure 24 – Scatter plots of rank-transformed data with incidence as output. Results are
showed for t ✏ 140 days. A PRCC is considered significant if it is greater than
0.2 or if its p-value is less than 0.05. Scales in both axes result from rank
transformation and linear regression. It is possible to see positive linear trends
of correlation for β, βv, κv, αI and c2, and negative ones for δ and µv.
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Chapter 6

Numerical results

Using parameter values obtained in Chapter 5, we now focus on simulating

different scenarios for the spread of Zika virus, also considering optimal vaccination

strategies, with methods described in Chapter 4. The parameters used in the simulations

are from Table 1, which were estimated in Chapter 5.

We first consider a scenario without control, trying to recreate the spread of

the virus in Rio Grande do Norte state in 2015, based on the dataset from Table 6. After

that, we wish to evaluate scenarios with the introduction of vaccination control. It is

expected that the earlier the control is applied, the better the results will be, with lower

costs J♣u✝q and infections. However, due to practical factors it is almost impossible to

begin the vaccination program as soon as the virus is detected in the population. Even

if the vaccine is readily available, there are operational procedures such as allocation of

resources and transportation of vaccine to health care facilities. Therefore, we simulate

optimal control scenarios with introduction of vaccination starting at different times: 35,

52, 70, and 105 days. These scenarios are simulated without control until the specified

starting time, and then the vaccination is introduced by solving the optimal system. We

vary the time of introduction of vaccination to verify if there is a significant impact on the

overall output. Furthermore, constant control scenarios are simulated with u always at the

upper bound, that is, u ✏ umax, also starting at times 35, 52, 70, and 105 days, in order to

show the advantages of a spatial and time varying optimal control. For these scenarios, we

do not show the state solution plots, only the overall cost J♣umaxq values.

Some quantities of interest are calculated, in order to have a comparison

overview between all scenarios, namely: the total incidence from the model (total number

of new infected cases in the simulated time and over all space), the total number of

vaccinated humans, the total optimal cost J♣u✝q, the cost with constant control at the

upper bound, J♣umaxq, and the ratio J♣u✝q④J♣umaxq. These quantities of interest are
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calculated as integrals:

Total incidence ✏
➺

Q

βSIv dxdt,

Total vaccinated ✏
➺

Q

uS dxdt,

Total cost: J♣uq ✏
➺

Q

�
c1I � c2uS � c3u

2
✟

dxdt.

The total cost can be calculated for the optimal control u ✏ u✝ or constant at

the upper bound u ✏ umax. The integrals are calculated over Q ✏ Ω ✂ ♣0, T q, gathering

contributions from both space and time. Their approximation are made by quadratures

and trapezoids, as explained in Chapter 4. Results are compared to the scenario without

control in order to quantify, in percentages, the advantages of the control application.

Quantities of interest results are shown in Table 13.

In the next sections, we show spatial plots for the scenarios without control

and with optimal control, for selected times. The plots consist of scaled 2D heatmaps,

with scaled colors representing different densities of each population. The selected times

are t ✏ 35, 52, 70, 105 and 140 days, chosen as intermediate intervals in order to represent

a good overview of the temporal dynamics.

We also show plots of the total number of each model compartment through

time, calculated by integrals over space. In mathematical terms, the integrals are given by:

S♣tq ✏
➺

Ω

S♣x, y, tq dx,

I♣tq ✏
➺

Ω

I♣x, y, tq dx,

R♣tq ✏
➺

Ω

R♣x, y, tq dx,

Sv♣tq ✏
➺

Ω

Sv♣x, y, tq dx,

Iv♣tq ✏
➺

Ω

Iv♣x, y, tq dx,

u♣tq ✏
➺

Ω

u♣x, y, tq dx,

in which the integral over space represents the total number of each compartment over time

t P ♣0, T q. In this way, the above functions over time are similar to ordinary differential

equation solutions, which helps in the interpretation of the results. Plots for these functions

are shown in Figure 31, for the scenarios without control, and with optimal control starting

at 35, 52, and 70 days, all together in the same figure to facilitate comparisons.

As mentioned before in Chapter 5, the initial conditions are the same for all

scenarios, and are shown in Figure 25. For susceptible humans and vectors the density
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Table 13 – Optimal control results compared to the scenario without control.

without control starting control starting control starting control starting
control at t ✏ 35 days at t ✏ 52 days at t ✏ 70 days at t ✏ 105 days

Total incidence 4.719 ✂ 105 2.746 ✂ 105 3.271 ✂ 105 3.811 ✂ 105 4.628 ✂ 105

% of no control 58.18% 69.32% 80.75% 98.06%

Total vaccinated 4.951 ✂ 105 4.072 ✂ 105 2.939 ✂ 105 4.472 ✂ 104

J♣u✝q 3.341 ✂ 108 2.454 ✂ 108 2.759 ✂ 108 3.040 ✂ 108 3.335 ✂ 108

% of no control 73.44% 82.58% 90.98% 99.81%

J♣umaxq 3.093 ✂ 108 3.326 ✂ 108 3.536 ✂ 108 3.687 ✂ 108

% of no control 92.56% 99.53% 105.83% 110.36%

J♣umaxq/J♣u✝q 126.03% 120.53% 116.33% 110.56%

is constant in the whole domain, representing the total human population (3.4 million

spread over the total area or 64.25 hum.④km2) and the mosquitoes at carrying capacity (17

million spread over the total area or 321.5 mosq.④km2). For infected humans, the initial

condition is zero in the whole domain, except for a small region corresponding to the city

of Ceará-Mirim (the mesh triangle closest to the city), that has I0I infected humans per

area. The density for immune humans and infected vectors are zero in the entire domain.

Figure 25 – Plots of initial conditions in space (t ✏ 0 days), for all scenarios. Each plot
has a different scale.

6.1 Simulation without control

Results without control over space at selected times are shown in Figures 26

– 30. We can see the spread over time of each infected source due to diffusion, as both

susceptible humans and mosquitoes are being infected, and humans recover, becoming

immune. As the simulation time passes, S and Sv have lower densities in the regions

where infections are located, while I, Iv and R have higher ones. Each infected source,

the initial ♣I0Iq and the two added sources at times t ✏ 7 ♣I0Mq and t ✏ 28 ♣I0Cq days,
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act independently with non overlapping supports – they reach each other only at the end

of the simulation, as seen in Figure (30). We can see that the spread due to the initial

condition, in the eastern region, is bigger than the others, which reflects the data and the

fact that it is where the initial condition is located. At the final time, 140 days – Figure

(30), we can see that the virus has spread through a major region of the state, in the form

of circular waves due to the homogeneity of diffusion.

Figure 26 – Plots of solutions in space at t ✏ 35 days, scenario without control. Each plot
has a different scale.

Figure 27 – Plots of solutions in space at t ✏ 52 days, scenario without control. Each plot
has a different scale.

In the time plots of Figure 31, we can see the increase in the infected human

population (I), the corresponding increase in the removed (R) and infected vector (Iv)

populations, and the corresponding decrease in the susceptible human (S) and vector (Sv)

populations. Also, the infected human population is always increasing, which reflects the

initial phase of the disease outbreak. By comparing the numbers in the scales we see that

at the end of 140 days, the approximately 140 thousand infected humans is not so large

compared to the total population in the state, 3.4 million.
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Figure 28 – Plots of solutions in space at t ✏ 70 days, scenario without control. Each plot
has a different scale.

Figure 29 – Plots of solutions in space at t ✏ 105 days, scenario without control. Each
plot has a different scale.

Figure 30 – Plots of solutions in space at t ✏ 140 days, scenario without control. Each
plot has a different scale.
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Figure 31 – Integrals of state solutions and optimal control over space. Scenarios without
control, and with optimal control starting at t ✏ 35, 52 and 70 days.

Quantities of interest for this scenario are shown in the second column of Table

13. The total number of new infections is 471, 900 humans, corresponding to approximately

14% of the total population in the state. As we are assuming that the report rate is 20%,

the total reported infections, or equivalently the total symptomatic, would be 2.8%. The

associated cost J♣u ✏ 0q is 3.34 ✂ 108, which corresponds to the cost of infected people

only, as there is no vaccination being applied. As mentioned before, these values are taken

as baseline for comparison of efficacy of the vaccination scenarios.

6.2 Simulation with optimal control starting at 35 days

We can see in Figures 32 – 36 that the optimal control application does not

change much of the spatial spread in the solutions over time, except for the susceptible

and immune humans, which now have much lower and higher density values over space,

respectively. The infected sources continue to spread the same way as in the case without

control, but the densities are lower, as it can be seen comparing the difference in scale of

solutions at t ✏ 140 days in Figures 30 and 36. The control starts acting with values at

the upper bound umax ✏ 0.005, and is non-zero in a region that covers where the infected

humans are. The reason for this is because the optimal control solution accounts for all

time, so that it tries to prevent the spread of infection as soon as possible, introducing

higher vaccination at the beginning. As time passes, until t ✏ 70 days, Figure 34, we can

see that the control shrinks covering a smaller part of the spatial domain, but always

where there are the most infected humans, with the optimal control staying at the upper

bound. We see that at t ✏ 112 days, Figure 35, the control is positive at a smaller part

of the domain. From t ✏ 119 to t ✏ 140 days the control is zero, because the optimal
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characterization requires it to be that way at the final time, as seen in Figure 36.

Figure 32 – Plots of solutions in space at t ✏ 35 days, scenario with optimal control
starting at t ✏ 35 days. Each plot has a different scale.

Figure 33 – Plots of solutions in space at t ✏ 52 days, scenario with optimal control
starting at t ✏ 35 days. Each plot has a different scale.

In the time plots, Figure 31, we can see that the control is highest at the time

it starts, and then lowers until zero, confirming the spatial results. We can see the control

effects in the other population plots, starting at t ✏ 35 days, mainly in the susceptible

humans and removed, in which the control acts. When the control starts, the susceptible

human population sharply decreases, with the corresponding increase in the immune

population. This behavior changes approximately at t ✏ 105 days, when the control

application starts to lower to zero.

From Table 13, the number of new infected humans is 274, 600, corresponding

to 58.18% of the incidence with no control, and the cost J♣u✝q is reduced to 73.44% from

that case. Both values had considerable reduction, showing a successful application of

vaccination. We note that these values were obtained with almost 500 thousand vaccinated

humans, which is a relatively low number, about 15% of the total human population
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Figure 34 – Plots of solutions in space at t ✏ 70 days, scenario with optimal control
starting at t ✏ 35 days. Each plot has a different scale.

Figure 35 – Plots of solutions in space at t ✏ 105 days, scenario with optimal control
starting at t ✏ 35 days. Each plot has a different scale.

Figure 36 – Plots of solutions in space at t ✏ 140 days, scenario with optimal control
starting at t ✏ 35 days. Each plot has a different scale.



Chapter 6. Numerical results 90

(3.4 million). This means that there is no need to vaccinate a high proportion of the

population to reduce infections, as 15% of vaccinated humans is enough to reduce incidence

by 40%. The scenario with constant control starting at t ✏ 35 days returned a cost J♣umaxq
corresponding to 92.56% of the cost without control and 126.03% of the optimal control

cost, so there is a significant difference between constant and optimal controls.

6.3 Simulation with optimal control starting at 52 days

Starting the optimal control at t ✏ 52 days results in a similar spatial behavior

for state and control solutions, as shown in Figures 37 – 40. The most prominent difference

in this scenario is again in the scale, as there are less immune humans due to less vaccination,

and consequently more infections. The control rate again starts at the upper bound and

covers the same part of the domain as before, and keeps shrinking as time passes until it

becomes zero.

Figure 37 – Plots of solutions in space at t ✏ 52 days, scenario with optimal control
starting at t ✏ 52 days. Each plot has a different scale.

In the time plots, Figure 31, it is possible to see differences in the numbers,

as less control is being applied, but the overall behavior is also similar to the previous

scenario. There are less immune and more susceptible humans, and consequently more

infections, but still less than the scenario without control. The vaccination rate is higher

than before, but it starts later and goes to zero approximately at the same time, which

overall gives less vaccinated humans.

In Table 13, we can see that the number of new infections and cost J♣u✝q reduce

to 69.32% and 82.58% from the case without control, respectively, which is a smaller

reduction compared to the scenario with control starting at 35 days. The cost J♣umaxq
from constant control corresponds to 105.83% of the cost without control and 116.33%

of J♣u✝q. Comparing the results of control starting at 52 days to the scenario in which it
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Figure 38 – Plots of solutions in space at t ✏ 70 days, scenario with optimal control
starting at t ✏ 52 days. Each plot has a different scale.

Figure 39 – Plots of solutions in space at t ✏ 105 days, scenario with optimal control
starting at t ✏ 52 days. Each plot has a different scale.

Figure 40 – Plots of solutions in space at t ✏ 140 days, scenario with optimal control
starting at t ✏ 52 days. Each plot has a different scale.
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starts at 35 days, we see that there is a small increase in the number of new infections

and total cost, and the number of vaccinations is lightly reduced. Therefore, if the optimal

control application starts later, it is less advantageous, but there is still improvement if

compared to the application of no vaccination at all.

6.4 Simulation with optimal control starting at 70 days

In Figures 41 – 43 spatial results are shown for the scenario with control starting

at t ✏ 70 days. Again, the behavior is very similar if compared to the previous two with

optimal control scenarios. The infected human solution, however, is closer to the scenario

without control. Observing the total number of populations over time, in Figure 31, we

see that all scenarios with control have similar behavior. The control variable also has the

same behavior, starting high and decreasing over time until it reaches zero. This way it is

possible to see that the delay in starting the vaccine application causes the control to be

applied in a short time frame.

Figure 41 – Plots of solutions in space at t ✏ 70 days, scenario with optimal control
starting at t ✏ 70 days. Each plot has a different scale.

From Table 13, the total incidence and cost J♣u✝q in this case reduce to

80.75% and 90.98% from the case without control, respectively, which is a small reduction.

Comparing now the cost of applying a constant control after 70 days, we have that J♣umaxq
corresponds to 90.56% of the cost without control and 126% of the optimal control cost.

Although the results in terms of cost and new infections get worse as the starting optimal

control is delayed, this scenario is still viable as a vaccination program, as there is still a

significant reduction in the number of new cases.
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Figure 42 – Plots of solutions in space at t ✏ 105 days, scenario with optimal control
starting at t ✏ 70 days. Each plot has a different scale.

Figure 43 – Plots of solutions in space at t ✏ 140 days, scenario with optimal control
starting at t ✏ 70 days. Each plot has a different scale.

6.5 Simulation with optimal control starting at 105 days

We do not show graphical solutions for the scenario with optimal control

starting at t ✏ 105 days, because its results had very small differences from the case

without control. From Table 13, the number of new infections and the cost J♣u✝q in this

scenario are 98% and 99.81% of the respective quantities from the scenario without control,

so practically there is no improvement, even with almost 45, 000 vaccinations applied.

Thus, starting the application of control too close to the final time of simulation is not a

viable vaccination program.
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Chapter 7

Conclusion and future perspectives

7.1 Concluding remarks

We proposed a spatiotemporal epidemic model for Zika virus with human and

vector transmissions described by a system of partial differential equations, and vaccination

as a control variable. Spatial movement is incorporated in the model through diffusion,

and transmission is given by compartmental dynamics. Optimal control is applied to the

model, in order to obtain a vaccination strategy over space and time that minimizes costs

related to infections and vaccine application. We developed the optimality system using

sensitivity and adjoint functions, and a directional derivative of the objective functional.

The optimal control characterization is obtained in terms of the state and adjoint systems.

Numerical methods were applied in order to obtain approximated solutions for both state

and adjoint systems.

The finite element and implicit Euler methods were used in the discretization

of the differential systems, a predictor-corrector method was used to iteratively treat the

non linearities, and a forward-backward sweep was used in the optimal system resolution.

A convergence analysis was carried out showing that the numerical methods produce errors

consistent with the theoretical prediction, and therefore confirming that the solutions

are trustworthy. Using available data for the initial Zika outbreak in the Rio Grande do

Norte state in Brazil, we were able to estimate some parameters in the model, using a

least squares approach coupled with the numerical solutions. Other parameter values were

taken from available literature or assumed. The estimation methodology was tested with

generated data in the presence of noise, showing that the methodology is able to retrieve

results close to the data. In order to better represent the spatial spread of the disease in

the data, we included immigration in the model due to infected humans coming from the

outside. From the parameter estimation results we found that direct transmission of the

Zika virus between humans is not relevant for the set of data used.

A global sensitivity analysis was carried out using PRCCs (partial rank corre-

lation coefficients), which identify how the parameters in the model affects in the increase

or decrease in an output of the model. We performed this analysis considering the overall

cost of vaccination and the incidence (number of new infections) over time as outputs, in
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two separated analyses. The cost is most sensitive to the transmission and recovery rates,

carrying capacity and mortality rate of mosquitoes, and cost associated with infected

humans. The incidence is also sensitive to the transmission and recovery rates, carrying

capacity, and mortality rate of mosquitoes, in most of the simulated time.

Several scenarios were simulated in order to compare the results of optimal and

constant controls, and without control. Different scenarios were analyzed by comparing

the total cost, number of new infections, and number of people vaccinated, quantitatively.

Optimal vaccination distributions were considered in several scenarios, varying the starting

day of the control. From all of the scenarios showed, the lowest cost and number of new

infections were obtained with the optimal control starting at 35 days, the earliest of all

applications, from a simulation of 140 days. However, scenarios with control starting at

52 and 70 days also showed good results, with improvements if compared to the scenario

without control. We also compared the optimal control scenarios to constant control cases,

evaluating their respective costs and finding that optimal controls significantly reduce the

cost if compared to constant controls, showing the successfulness of the optimal vaccination

strategy. The results were obtained with assumed values for the cost coefficients c1, c2 and

c3 of the objective functional (3.1), but similar results would be obtained if other values

with same ratios c2④c1 and c3④c1 were used.

In terms of novelty, to the best of our knowledge this work is the first to apply

vaccination and optimal control to a partial differential model describing the dynamics of

Zika virus in humans and mosquitoes. The connection between model and real life data in

an epidemiological PDE with optimal control is also novel, regardless of the particular

application. Furthermore, the sensitivity analysis performed is innovative, which considers

the impact of parameters of a PDE model in the optimal functional cost.

The combination of different mathematical techniques served the purpose of

quantitatively analyze a real life problem. We hope that the results of this thesis could help

to provide a better understanding of a Zika outbreak and the planning of public health

policies. Techniques used in this work could also be applied to other sets of data in order

to assess the benefits of an optimal vaccination program, even to other diseases similar

to Zika such as dengue, chikungunya, and malaria – also vector borne diseases. Small

modifications in the model could be done to include particular features, with corresponding

modifications in the optimality system and in the numerical methods. In this sense, the

present work serves as a solid reference for possible future works.

Other types of modeling could also be considered as alternatives to the one we

provided, and comparisons could be obtained to the results we have found. Depending on

the different type of model to be used, the methods we used could be appropriate or not. As

example, a metapopulation model could be considered, in patches of ODEs, representing

different cities, and optimal control could also be applied as in [7, 54]. Stratified diffusion
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is also a possibility [105, 111], considering non local diffusion to model immigration of

infected humans, besides local diffusion.

Different types of controls could be included in the model, with a corresponding

modified objective functional to be minimized. An optimal characterization can be obtained

using the same techniques as before. In the following, we show an example of a model

with multiple control measures, as a direct extension of the model proposed in this work.

7.2 Future work perspectives

Throughout this work we have considered only one control in model (2.1). It is

possible to include multiple control variables, and obtain an optimal characterization for

all of them at the same time. In this section we propose a first attempt modeling with

multiple controls that could lead to a future, more complete, work. We decided to include

four additional measures, plus vaccination, that could lower the number of infections in a

Zika outbreak. The control variables u ✏ ♣u1, u2, u3, u4, u5q are defined as follows: u1 is

the vaccination rate, as in model (2.1); u2 represents mosquito to human contact reduction

through the use of repellents, window nets, public awareness; u3 represents the use of

larvicides and mechanical removal of larvae, eggs and pupae of immature mosquitoes, u4

represents the use of insecticides and mosquito traps, aiming the elimination of adult

mosquitoes; and u5 represents human to human contact reduction through prophylaxis

measures and public awareness, in cases such that human transmission is relevant.

As we are considering the removal of immature and adult mosquitoes, we need

to consider them separately in the model. Thus, we include another compartment in the

modified model, denoted by Av, representing the aquatic phase of mosquitoes, in which

they are still immature. This way, Sv now represents susceptible adult mosquitoes, and

since only these mosquitoes bite humans and possibly contract the virus, Iv represents

infected adult mosquitoes. A flow chart for the modified model can be seen in Figure 44,

with parameters descriptions in Tables (1) and (14).

Table 14 – Description and units of some quantities from model (7.1). The others are
shown in Table (1).

Description Unit

Av Immature mosq. density immature mosq.④km2

1④γ Immature phase duration days
κv Immature mosq. carrying capacity immature mosq.④km2

The new system is then given by model (7.1) in Q ✏ Ω✂♣0, T q. All populations

S, I, R, Av, Sv, Iv and the controls u ✏ ♣u1, u2, u3, u4, u5q are functions of space x and
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S I

R

Av Sv Iv

u1S

(1 − u2)βSIv

(1 − u5)βdSI

(1 − u2)βvSvI (1 + u4)µvIv

(1 + u4)µvSv(1 + u3)µAAv

δI

rv

(

1 −

Av

κA

)

(Sv + Iv)
γAv

Figure 44 – Flow chart for model (7.1). Squares denote humans and circles mosquitoes.
S, I, R denote susceptible, infected, and immune, respectively. Av denotes
mosquito immature phase.

time t, with spatial domain Ω ⑨ R
2 and smooth boundary ❇Ω.✩✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✫

✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✬✪

❇S
❇t ✁ ∇ ☎ ♣α∇Sq ✏ ✁♣1 ✁ u2qβSIv ✁ ♣1 ✁ u5qβdSI ✁ u1S,

❇I
❇t ✁ ∇ ☎ ♣αI∇Iq ✏ ♣1 ✁ u2qβSIv � ♣1 ✁ u5qβdSI ✁ δI,

❇R
❇t ✁ ∇ ☎ ♣α∇Rq ✏ u1S � δI,

❇Av

❇t ✏ rv ♣Sv � Ivq
✂

1 ✁ Av

κA

✡
✁ ♣1 � u3qµAAv ✁ γAv,

❇Sv

❇t ✁ ∇ ☎ ♣αv∇Svq ✏ ✁♣1 ✁ u2qβvSvI � γAv ✁ ♣1 � u4qµvSv,

❇Iv

❇t ✁ ∇ ☎ ♣αv∇Ivq ✏ ♣1 ✁ u2qβvSvI ✁ ♣1 � u4qµvIv, in Q.

(7.1)

Non flux boundary conditions (outward directional derivatives equal to zero)

and appropriate initial conditions are also defined. Most of the parameters are the same

than model (2.1) and can be found in Table 1. The new ones are κA, immature mosquitoes

carrying capacity, and γ, the inverse of the number of days spent in the immature phase.

In this new model, both susceptible and infected mosquitoes are assumed to

reproduce, with an intrinsic growth rate rv with immature offspring given by Av. For

simplicity, this compartment is assumed to contain eggs, larvae, and pupae, which are

phases of the mosquito life cycle that depend on water. Diffusion is not included in their

equation, because there is no spatial movement. Logistic growth is also assumed here,

with a carrying capacity of immature mosquitoes κA, representing limited resources in the

aquatic phase. After a period of 1④γ, the immature turn into adult susceptible mosquitoes,

assuming there is no vertical transmission. Natural mortality is considered in all mosquito

compartments.

The control of vaccination u1 acts turning susceptible humans into immune,
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in the same way as before. The mosquito contact reduction u2 acts by reducing the

transmission rates β and βv, and could be thought of as a percentage reduction. In

an analogous way, u3 and u4 acts by increasing the mortality of immature and adult

mosquitoes, respectively, representing an effort in killing them. Lastly, u5 is similar to u2,

reducing the direct transmission rate βd. This control should be considered only in the

case that Zika direct transmission in humans is relevant.

In order to obtain an optimal control solution, a new objective functional must

be considered, extending the concept of (3.1) by assessing the multiple costs associated to

all controls. As we are now concerned with eliminating mosquitoes, we should account

for the cost of infected mosquitoes, in an analogous way that we considered the cost of

infected humans in (3.1). The cost of application of u2 and u5 in the susceptible human

population should also be taken into account, as well as the cost of u3 applied to the

immature mosquitoes and u4 in both susceptible and infected adult mosquitoes. One

alternative could be:

J♣u1, u2, u3, u4, u5q ✏
➺

Q

✂
A1I � A2Iv � ♣B1u1 �B2u2 �B5u5qS

�B3u3Av �B4u4♣Sv � Ivq �
5➳

i✏1

Ciu
2

i

✡
dxdt.

(7.2)

The right hand side of (7.2) contains several cost parameters. A1 and A2 are the costs

associated to infected humans and mosquitoes, respectively. In particular, A2 should

account for the indirect costs that infected mosquitoes bring when transmitting the

disease. B1, B2, B3, B4, B5 are the costs involved in the application of each control variable

u1, u2, u3, u4, u5. Controls u1, u2, and u5 are applied to susceptible humans, while u3

to immatures mosquitoes and u4 to adult ones. C1, C2, C3, C4, C5 are nonlinear costs

involved in controls u1, u2, u3, u4, u5, respectively. These include logistics, production costs,

propaganda, and public awareness efforts.

An optimal control characterization for this new problem would be completely

analogous to the one solved in Chapter 3, following the same steps and leading to a

corresponding optimal system consisting of state and adjoint equations, and the control

characterizations. A numerical solution would also be similar, but a considerable attention

should be given to the cost parameters in the objective functional (7.2), since their

numerical values could potentially influence the convergence of the forward-backward

sweep method.

The modified model (7.1) and the associated control measures showed are only

examples of a more complete model for Zika virus. Clearly, a detailed study should be

carried out, which could point out improvements in the model. Other modifications could

also be considered in the state equations, control variables or objective functional. For

example, non homogeneous initial conditions could be considered in order to obtain more
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realistic simulations, as well as variable parameters such as diffusion and transmission

coefficients. Both spatial and time dependence on the parameters could be considered.

If time dependence were to be included, the final time of simulation could be extended,

in order to evaluate the effects of infections throughout dry/wet and cold/hot seasons.

Nevertheless, in any alternative model, the whole development of the present work could

be used as a reference.
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