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Resumo
Neste trabalho apresentamos generalizações para as derivadas fracionárias. Inicialmente
discutimos, a partir de uma modificação do tipo Caputo nas derivadas fracionárias gene-
ralizadas, as chamadas derivadas fracionárias generalizadas do tipo Caputo. Discutimos
algumas de suas propriedades e, como uma aplicação, apresentamos o teorema funda-
mental do cálculo fracionário envolvendo estes operadores de diferenciação fracionários.
Após discutir as derivadas fracionárias generalizadas do tipo Caputo, apresentamos uma
outra proposta para a generalização dos operadores de diferenciação fracionários. Esta
generalização consiste em uma derivada fracionária do tipo Hilfer a qual está associada
às integrais fracionários generalizadas propostas por Katugampola. Denominamos por
Hilfer-Katugampola estas derivadas fracionárias. Discutimos algumas propriedades, bem
como o problema de Cauchy envolvendo estes novos operadores de diferenciação. Por
fim, de modo a generalizar ainda mais as derivadas fracionárias, propomos as derivadas
pk, ρq-fracionárias generalizadas. Esta formulação, mais geral do que as anteriores recupera,
como casos particulares, as derivadas fracionárias mencionadas anteriormente e, ainda
mais, recupera as derivadas fracionárias de Hilfer, Hilfer-Katugampola, Hilfer-Hadamard,
pk, ρq-fracionária, Riemann-Liouville generalizada, Katugampola generalizada, Riemann-
Liouville, Caputo, Hadamard, Caputo-Hadamard; bem como, para particulares valores
dos extremos de integração, esta também recupera as derivadas fracionárias de Weyl e
Liouville.

Palavras-chave: Generalização para derivadas fracionárias. Modificação do tipo Caputo.
Derivada fracionárias de Hilfer-Katugampola. Derivadas pk, ρq-fracionárias generalizadas.
Problema de Cauchy. Existência e unicidade.



Abstract
In this thesis we present generalizations for fractional derivatives. Initially we discuss, by
means of a Caputo-type modification of the generalized fractional derivatives, the so-called
generalized Caputo-type fractional derivatives. We discuss some of their properties and, as
an application, we present the fundamental theorem of fractional calculus involving these
fractional differentiation operators. After discussing generalized Caputo-type fractional
derivatives, we present another proposal for the generalization of fractional differentiation
operators. This generalization consists of a Hilfer-type fractional derivative whose associated
fractional integrals are the generalized fractional integrals proposed by Katugampola. We
call these fractional derivatives Hilfer-Katugampola fractional derivatives. We discuss some
properties, as well as a Cauchy problem involving these new fractional differentiation
operators. Finally, in order to further generalize the fractional derivatives, we propose
the generalized pk, ρq-fractional derivatives. This formulation, more general than the
previous ones, recovers, as particular cases, the fractional derivatives previously mentioned
and, furthermore, recovers the fractional derivatives of Hilfer, Hilfer-Katugampola, Hilfer-
Hadamard, pk, ρq-fractional, Riemann-Liouville generalized, Katugampola generalized,
Riemann-Liouville, Caputo, Hadamard, Caputo-Hadamard; moreover, for particular values
of integration extremes, it also recovers the fractional derivatives of Weyl and Liouville.

Keywords: Generalization for fractional derivatives. Caputo-type modification. Hilfer-
Katugampola fractional derivatives. Generalized pk, ρq-fractional derivatives. Cauchy prob-
lem. Existence and uniqueness.
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Introduction

The number of different fractional integration and differentiation operators has
been increasing along the last few years. Classical fractional derivatives, among which
we mention the Riemann-Liouville, Hadamard and Caputo derivatives [17, 38], have
found many applications in physics and other fields of science. These non-integer order
derivatives are usually expressed in terms of a corresponding fractional integral. Fractional
integrals have also been widely used, for instance, in some recent generalizations involving
Minkowski’s inequality [58] and Grüss inequality [62]. As a fractional derivative is a
non-local operation, and also admits a singular kernel, the classical fractional derivative
incorporates the memory effect [42] when it is used to model physical processes1 involving
time evolution. In the early 2010’s, several formulations of fractional derivatives have
appeared in the literature [8, 33], distinct from the classical ones, as the new derivatives
are defined by means of a limit process [32, 60, 59]. Furthermore, one has recently defined
[9, 41] a fractional derivative and a corresponding fractional integral whose kernel can
be a non-singular function such as a Mittag-Leffler function [64]. More recently, a new
definition of fractional derivative with respect to a function was also presented [61]. Maybe
the reason why there are so many approaches to fractional derivatives and integrals lies in
the fact they do not have a classical geometrical interpretation as in ordinary differential
calculus. However, using an adequate limit process, non-integer order derivatives can be
transformed in integer order derivatives in Newton’s sense and Leibniz’s sense.

In this thesis our main interest is the study of fractional derivatives which are
expressed in terms of a fractional integral with a singular kernel. There are three kernels
to be considered, namely:

(i) px´ tqαk´1 (ii) t´1
´

ln x
t

¯
α
k
´1

(iii) tρ´1
ˆ

xρ ´ tρ

ρ

˙
α
k
´1

,

where k ą 0 and ρ ą 0. When ρÑ 1 in (iii), we obtain the kernel given by (i) and when
ρÑ 0` in (iii) we have an indeterminate form. Using `’Hôpital rule we obtain kernel (ii).
1 By model of a physical process we mean a fractional system composed of a fractional differential

equation and initial conditions and/or boundary conditions.
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There are three different ways to define a fractional derivative. The first one
consists in applying an integer order derivative on the left side of a fractional integral. The
second one is to apply a fractional integral to the left side of an integer order derivative.
Finally, the third way employs a differentiation operator of integer order acting between
two fractional integrals, where one fractional integral is at the left side of this operator
and the other is at the right side. The integer order differentiation operators considered
here are:

(a) Dn
”

ˆ

d

dx

˙n

, (b) δn ”
ˆ

x
d

dx

˙n

, (c) δnρ ”
ˆ

x1´ρ d

dx

˙n

,

where n ´ 1 ă α ď n with n P N and ρ ą 0. Note that, when ρ Ñ 1 in (c), we
obtain the operator defined in (a) and when ρ Ñ 0`, we recover the operator given by
(b). The derivatives of non-integer order with which we work throughout this thesis are
combinations of fractional integrals with kernels given by (i), (ii) and (iii) with the integer
order derivatives shown in (a), (b) and (c). Notice that when n “ 1, we restrict the order
of our derivatives to 0 ă α ď 1. We work mainly with fractional derivatives for which
k “ 1 in (i), (ii) e (iii).

Classical fractional derivatives —Riemann-Liouville, Hadamard and Caputo—
are defined according to different schemes. The Riemann-Liouville derivative consists in
applying the differentiation operator (a) to a fractional integral whose kernel is given by
(i). The Hadamard derivative of arbitrary order applies the differentiation operator (b) to
a fractional integral with kernel given by (ii). Finally, the Caputo derivative is defined
according to the second scheme, that is, the differentiation operator given in (a) is used in
the integrand of a fractional integral whose kernel is given by (i).

Let us consider the fractional derivatives defined according to the first way.
In 2011, Katugampola [31] defined a generalized fractional integral whose kernel is the
function (iii). We emphasize that, as kernel (iii) a generalization of kernels (i) and (ii), it
is possible to recover, from this fractional integral, the Riemann-Liouville and Hadamard
integrals. The same author [30], in 2014, proposed, from the generalized fractional integral,
what he called a generalized fractional derivative which consists in applying operator (c)
to the left of the generalized fractional integral.

Other authors employ the second way for the definition of fractional derivatives.
In 2012, Jarad, Abdeljawad and Baleanu [27], motivated by the Caputo and Hadamard
formulations, proposed the so-called Caputo-Hadamard fractional derivative. This definition
consists in taking a Caputo-type modification of the Hadamard fractional derivative, namely,
in introducing the differentiation operator into the integrand of fractional integration. Thus,
one simply inserts operator (b) into the integrand of the Hadamard fractional integral,
whose kernel, as previously mentioned, is given by (ii). Starting with this last proposal
for fractional derivative, in 2016, Almeida, Malinowska and Odzijewicz [3] introduced the
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Caputo-Katugampola fractional derivative. By means of a Caputo-type modification of the
generalized fractional derivative, the integer order differentiation operator (c), with n “ 1,
was introduced into the integrand of the generalized fractional integral whose kernel is
given by (iii). Using this definition, with an adequate choice of parameters, it is possible
to obtain, as particular cases, the Caputo and Caputo-Hadamard fractional derivatives.
However, in that paper the authors discuss only the case 0 ă α ď 1. Thus, in 2017, we
proposed the generalized Caputo-type fractional derivative [48] of order n´1 ă α ď n with
n P N and, as particular cases, we recover the Caputo and Caputo-Hadamard fractional
derivatives.

Finally, we mention the fractional derivatives defined by means of the third
scheme. In 2000, Hilfer [22] proposed a non-integer order derivative which, for particular
values of the order of derivation, recovers the formulations proposed by Riemann-Liouville
and Caputo and, for particular values of the extreme of integration, also recovers the Weyl
and the Liouville fractional derivatives [23]. This approach considers the differentiation
operator (b), with n “ 1, acting between two Riemann-Liouville fractional integrals.
In 2012, Hilfer, Lucko and Tomoviski [24] proposed the generalized Riemann-Liouville
fractional derivative. This definition follows the same reasoning that led to the Hilfer
derivative, but without the restriction n “ 1, that is, considering n P N. In the same
year, Kassim, Furati and Tatar [28] defined the Hilfer-Hadamard fractional derivative, in
which the differential operator (b), with n “ 1, acts between two Hadamard fractional
integrals. In order to generalize Hilfer and Hilfer-Hadamard fractional derivatives, in 2017,
we proposed the Hilfer-Katugampola fractional derivative [47]. This definition uses the
differentiation operator (c), with n “ 1, acting between two generalized fractional integrals.
Considering the differential operator (c), with n “ 1, and the generalized fractional integral
whose kernel contains function (iii), the derivative proposed by us recovers the Hilfer,
Hilfer-Hadamard, Riemann-Liouville, Hadamard, Caputo, Caputo-Hadamard, generalized
and generalized Caputo-type derivatives, as well as the Weyl and Liouville fractional
derivatives, for particular cases of the extremes of integration.

On the other hand, there are other ways to generalize fractional integrals and
derivatives, for example, by inserting a new parameter. The fractional derivatives which
we will mention in the sequence consider the kernels (i), (ii) and (iii) with k ą 0. Thus, in
2012, Mubben and Habibullah [44], inserted the parameter k ą 0 in a Riemann-Liouville
fractional integral in order to obtain the so-called Riemann-Liouville k-fractional integral
with kernel given by (i). To obtain the classical Riemann-Liouville fractional integral by
means of this definition one just needs to consider k “ 1. In 2015, Farid and Habibullah
[16] introduced the Hadamard k-fractional integral, with kernel given by (ii). In the case
k “ 1 one recovers the Hadamard fractional integral. In 2016, Sarikaya et al. [56] proposed
the pk, ρq-fractional integral, whose kernel is given by (iii). As in the previous cases, one
just needs to consider k “ 1 to obtain the generalized fractional integral.
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As the fractional derivatives that we study in this thesis are defined in terms
of a respective fractional integral, it will be useful to define k-fractional derivatives. In
2013, Dorrego and Cerutti [15] defined the Hilfer k-fractional derivative, in which the
differentiation operator (a), with n “ 1, acts between two Riemann-Liouville k-fractional
integrals. Recently, in 2017, Nisar et al. [46] defined the pk, ρq-fractional derivative. In their
definition, they consider operator (c), with n “ 1, acting between two pk, ρq-fractional
integrals. In order to generalize the derivative of arbitrary order proposed by Nisar et al.,
we used operator (c) with n P N and defined the so-called generalized pk, ρq-fractional
derivative [49]. In this definition we use operator (c), with n P N, acting between two
pk, ρq-fractional integrals.

This thesis is organized as follows. In Chapter 1 we present notations, definitions
and the main results of real analysis which will be used throughout the work. Chapter 2 is
dedicated to present the concepts and some properties of Hadamard fractional integrals
and derivatives. Our main contribution in this chapter is to present a Leibniz-type rule for
Hadamard fractional derivatives. In Chapter 3 we develop the theory and some properties
of Caputo-Hadamard fractional derivatives; our greatest contribution is the proof of a
Leibniz-type rule for these fractional differential operators. Chapter 4 is dedicated to
an explanation of generalized Caputo-type fractional derivatives, which were originally
proposed by us. In Chapter 5, we investigate the Hilfer-Katugampola fractional derivatives.
Finally, Chapter 6 brings our main results, as generalized pk, ρq-fractional derivatives
constitute the most general case for fractional derivatives. Concluding remarks and future
perspectives close the thesis, which contains also two appendices with some calculations
used in the main text.
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Chapter 1
Preliminaries

It is necessary to introduce and discuss some concepts, which are not our main
object of study, but will be useful in the next chapters. We present notations, theorems,
properties, definitions and, also, the so-called special functions. The definitions involving
left-sided integrals also hold for the right-sided integrals. These results are important to
define the fractional integrals and derivatives which we call classics. The results presented
in this chapter can be found in some textbooks and papers as [14, 13, 17, 20, 38, 45, 51, 55].

1.1 Notations, Definitions and Function Spaces
First, we fix the following notation which we use throughout the text.

Notation 1.1. N0 “ NY t0u, where N “ t1, 2, . . .u.

Notation 1.2. Z´0 “ Z´ Y t0u, where Z´ “ t´1,´2, . . .u.

Notation 1.3. Let α P R, then rαs denotes the integer part of α.

The Lipschitz condition on fpx, ϕq with respect to the second variable is defined
as follows.

Definition 1.1. Assume that fpx, ϕq is defined on the set pa, bs ˆG, G Ă R. A function
fpx, ϕq satisfies Lipschitz condition with respect to ϕ, if for all x P pa, bs and for ϕ1, ϕ2 P G,

|fpx, ϕ1q ´ fpx, ϕ2q| ď A|ϕ1 ´ ϕ2|,

where A ą 0 does not depend on x.

The Dirichlet formula, used to interchange the order of integration in double
integrals, is a particular case of the Fubini’s theorem [55, p. 9] and is given by:

ż b

a

dx

ż x

a

fpx, yqdy “

ż b

a

dy

ż b

y

fpx, yqdx. (1.1)
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Definition 1.2. [51] If f : ra, bs Ñ R is continuous and if g is integrable on ra, xs and
g ě 0, then there exists a number ξx in ra, bs such that

ż x

a

fptqgptqdt “ fpξxq

ż x

a

gptqdt. (1.2)

Next we present the classical Banach fixed point theorem in a complete metric
space.

Theorem 1.1. [38] Let pU, dq be a nonempty complete metric space; let 0 ď ω ă 1, and
let T : U Ñ U be the map such that, for every u, v P U , the relation

dpTu, Tvq ď ωdpu, vq, p0 ď ω ă 1q (1.3)

holds. Then the operator T has a unique fixed point u˚ P U .
Furthermore, if T k pk P Nq is the sequence of operators defined by

T 1
“ T and T k “ TT k´1, pk P Nzt1uq, (1.4)

then, for any u0 P U , the sequence tT ku0u
8
k“1 converges to the above fixed point u˚.

The map T : U Ñ U satisfying condition Eq.(1.3) is called a contractive map.
Now we exhibit the adequate space functions which we use to define the fractional integrals
[38].

Definition 1.3. Let Ω “ ra, bs p´8 ď a ă b ď 8q be a finite or infinite interval of
the real axis R “ p´8,8q. We denote by Xp

c pa, bq pc P R, 1 ď p ď 8q the set of those
complex-valued Lebesgue measurable functions ϕ on ra, bs for which ‖ϕ‖Xp

c
ă 8, with

‖ϕ‖Xp
c
“

ˆ
ż b

a

|xcϕpxq|p
dx

x

˙1{p

, 1 ď p ă 8 (1.5)

and

}ϕ}X8c “ ess supaďxďb rxc|ϕpxq|s, (1.6)

where ess sup |xcϕpxq| denotes the essential supremum of function |xcϕpxq|. In particular,
when c “ 1{p, the space Xp

c pa, bq coincides with the classical Lppa, bq-space with

‖ϕ‖p“
ˆ
ż b

a

|ϕpxq|pdx

˙1{p

, 1 ď p ă 8 (1.7)

and

}ϕ}p “ ess supaďxďb |ϕpxq|, (1.8)

where ess sup |ϕpxq| denotes the essential supremum of function |ϕpxq|. We denote L1pa, bq

by Lpa, bq.



Chapter 1. Preliminaries 18

Definition 1.4. Let ra, bs be a finite interval and let ACra, bs be the space of functions
ϕ which are absolutely continuous on ra, bs. It is known that ACra, bs coincides with the
space of primitives of Lebesgue summable functions:

ϕpxq P ACra, bs ðñ ϕpxq “ c`

ż x

a

fptqdt, fptq P Lpa, bq, (1.9)

and therefore an absolutely continuous function ϕpxq has a summable derivative ϕ1pxq “
fpxq almost everywhere on ra, bs. Thus Eq.(1.9) yields

fptq “ ϕ1ptq and c “ ϕpaq. (1.10)

Definition 1.5. For n P N we denote by ACn
ra, bs the space of complex-valued functions

ϕpxq which have continuous derivatives up to order (n´ 1) on ra, bs such that ϕpn´1q
pxq P

ACra, bs:

ACn
ra, bs “

"

ϕ : ra, bs Ñ C : pDn´1ϕqpxq P ACra, bs, D “
d

dx

*

, (1.11)

with C being the set of complex numbers. When n “ 1, the space AC1
ra, bs “ ACra, bs.

This space is characterize by assertion below, presented as a lemma.

Lemma 1.1. The space ACn
ra, bs consists of those and only those functions ϕpxq which

can be represented in the form

ϕpxq “ pIna`fqpxq `
n´1
ÿ

k“0
ckpx´ aq

k, (1.12)

where fptq P Lpa, bq, ck pk “ 0, 1, . . . , n´ 1q are arbitrary constants, and

pIna`fqpxq “
1

pn´ 1q!

ż x

a

px´ tqn´1fptqdt.

Proof. See Lemma 2.4 in [55].

It follows from Eq.(1.12) that

fptq “ ϕpnqptq, ck “
ϕpkqpaq

k! pk “ 0, 1, . . . , n´ 1q. (1.13)

We also use a weighted modification of the space AC n
ra, bs pn P Nq, in which the usual

derivative D “ d{dx is replaced by the so-called δ-derivative, defined by

δ “ xD “

ˆ

x
d

dx

˙

.
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Definition 1.6. Let n P N and µ P R, the space ACn
δρra, bs with ´8 ă a ă b ă 8 consists

of those complex-valued functions ϕ which have continuous derivatives up to order (n´ 1)
on ra, bs such that δn´1

ρ ϕ P ACra, bs is absolutely continuous on ra, bs:

AC n
δρra, bs “

"

ϕ : ra, bs Ñ R : δn´1
ρ ϕpxq P AC ra, bs, δρ “

ˆ

x1´ρ d

dx

˙*

.

When ρ Ñ 1 we have D “ d{dx, that is, ACn
δρra, bs “ ACn

ra, bs. On the other hand, in
the case ρÑ 0` we have δ “ x d{dx, this is, ACn

δρra, bs “ ACn
δ ra, bs.

Definition 1.7. Let Ω “ ra, bs p´8 ď a ă b ď 8q and m P N0. We denote by Cm
pΩq a

space functions f which are m times continuously differentiable on Ω with the norm

‖f‖Cm “
m
ÿ

k“0
‖f pkq‖C “

m
ÿ

k“0
max
xPΩ

|f pkqpxq|, m P N0.

In particular, for m “ 0, C0
pΩq is the space of continuous functions f on Ω with the norm

‖f‖C “ max
xPΩ

|fpxq|.

1.2 Special Functions
We present the concept of k-˚, where ˚ denoting gamma function, beta function

or Pochhammer symbol in order to introduce the k-Mittag-Leffler function in Chapter 6,
[14, 13, 20, 45]. In this section we only define the three- and two-parameters Mittag-Leffler
functions [17]. The special functions and their properties are defined for complex numbers,
but here we consider real values, only.

1.2.1 The k-Gamma and Incomplete Gamma Function

The Euler’s gamma function Γpzq, or gamma function only, generalizes the
factorial and allows non-integer and complex values [6, 17, 38]. In order to generalize this
function Díaz and Pariguan [13] defined the k-gamma function by

Γkpxq “
ż 8

0
tx´1e´ tk

k dt, with x, k ą 0, (1.14)

satisfying the following relations, which can be easily proved.

1. Γkpx` kq “ xΓkpxq;

2. Γkpxq “ k
x
k
´1 Γ

´x

k

¯

;

3. Γkpkq “ 1;

4. ΓkpxqΓkpk ´ xq “
π

sin
`

πx
k

˘ .
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Recently, Mubeen and Rehman [45] discussed the following limit involving the k-gamma
function, for k ą 0,

lim
nÑ8

Γkpa` nkq
Γkpb` nkq

pnkq
b
k
´ a
k “ 1, (1.15)

where a ` nk, b ` nk P Rzt0,´k,´2k, . . .u and n P N. In the case k Ñ 1, we have
Γkpxq “ Γpxq and the well-known properties associated with the gamma function are
recovered, [6].

On the other hand, the incomplete gamma function γpν, xq is defined for ν, x P R
by the integral

γpν, xq “

ż x

0
tν´1e´tdt, ν ą 0. (1.16)

1.2.2 The k-Pochhammer Symbol

Díaz and Pariguan [13] generalized the Pochhammer symbol by means of
insertion of a new parameter, k ą 0, in order to obtain the k-Pochhammer symbol given
by

pxqn,k “

#

1, for n “ 0
xpx` kq ¨ ¨ ¨ px` pn´ 1qkq, for n P N, x P R,

(1.17)

or, in terms of a quotient of k-gamma functions,

pxqn,k “
Γkpx` nkq

Γkpxq
. (1.18)

For k Ñ 1 we recover the classical Pochhammer symbol, i.e., pxqn,k “ pxqn “ Γpx`nq{Γpxq,
[17].

1.2.3 The k-Beta Function

The beta function, Bpx, yq, is defined by the Euler integral of the first kind
[38]. Thus, Díaz and Pariguan [13] generalized this function from the following integral

Bkpx, yq “
1
k

ż 1

0
t
x
k
´1
p1´ tq

y
k
´1dt, x ą 0, y ą 0, k ą 0. (1.19)

Notice that, when k Ñ 1 we have Bkpx, yq “ Bpx, yq. The k-beta function can be written,
in terms of k-gamma functions and in terms of beta function, respectively, as follows

Bkpx, yq “
ΓkpxqΓkpyq
Γkpx` yq

and Bkpx, yq “
1
k
B
´x

k
,
y

k

¯

.
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1.2.4 The Mittag-Leffler Functions

To be a generalization of the exponential function, the Mittag-Leffler functions
play a very important role in the solution of linear fractional differential equations and
integral equations, [12, 25, 35, 37, 38]. Such functions allows complex values for the
parameters, but here we consider real values only.

Definition 1.8. [50] The three-parameters Mittag-Leffler function

Eγ
α,βpzq “

8
ÿ

n“0

pγqn
Γpαn` βq

zn

n! , z P R, (1.20)

is defined for α, β, γ P R and α, β, γ ą 0 and pγqn being the Pochhammer symbol.

Notice that, when γ “ 1, Eq.(1.20) becomes the two-parameters Mittag-Leffler
function [63], i.e.,

Eα,βpzq “
8
ÿ

n“0

zn

Γpαn` βq , z P R, α ą 0, β ą 0. (1.21)

On the other hand, if β “ γ “ 1 in Eq.(1.20), we have the one-parameter Mittag-Leffler
function [43], as introduced by himself

Eαpzq “
8
ÿ

n“0

zn

Γpαn` 1q , z P R, α ą 0. (1.22)

The generalized Mittag-Leffler function Eα,l,mpxq, introduced by Kilbas and Saigo [7, 36],
is defined as follows:

Definition 1.9. Let α, l,m, x P R and j P N0 such that α ą 0, m ą 0 and αpjm` lq R Z´.
The generalized Mittag-Leffler function is defined by

Eα,l,mpxq “
8
ÿ

k“0

˜

k´1
ź

j“0

Γrαpjm` lq ` 1s
Γrαpjm` l ` 1q ` 1s

¸

xk, with c0 “ 1 and k P N. (1.23)

Property 1.1. Let x P R, β, γ, δ P R with α ą 0. We have,

´
1

Γpγq ` E
δ
β,γpxq “ x

8
ÿ

k“0

pδqk`1

Γpβk ` β ` γq
xk

pk ` 1q! . (1.24)

1.3 Stirling Functions of the Second Kind
In this section we present Stirling functions of the second king Spα, kq with

nonnegative α ě 0, [4]. These functions will be fundamental to prove Leibniz-type rule for
Hadamard and Caputo-Hadamard fractional derivatives.
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Theorem 1.2. Let α ě 0 and k P N0. Then the Stirling function of the second kind
Spα, kq has the following explicit representation

Spα, kq “
1
k!

k
ÿ

j“0
p´1qk`j

ˆ

k

j

˙

jα, pα ą 0 , k P Nq. (1.25)

In particular, we have

Spα, 0q “ 0, pα ą 0q; Sp0, kq “ 0, pk P Nq; Sp0, 0q “ 1. (1.26)

Proof. See [4].

1.4 Mellin Transform
In this section we define the Mellin transform as well as its inverse and we

present some properties involving this integral transform [38]. The parameter associated
with the Mellin transform, s, can be complex, but here we consider only the real case, this
is, s P R.

Definition 1.10. Let ϕpxq be a real function defined on p0,8q and s P R, the parameter
associated with the integral transform. The Mellin transform is defined by means of the
following integral

pMϕqpsq “Mrϕpxqs “
ż 8

0
xs´1ϕpxqdx (1.27)

and its respective inverse by

rpMgqpsqs´1
“ gpxq “

1
2πi

ż γ`i8

γ´i8

x´srpMgqpsqsds

with γ ą 0, if the integrals exist.

The direct and inverse Mellin transforms are inverse to each other for “suffi-
ciently good” functions ϕ and g:

pM´1Mϕq “ ϕpxq and pMM´1gq “ gpxq. (1.28)

1.4.1 Properties

We present some important properties involving the Mellin transform.

1. Let c1 and c2 are arbitrary constants, then

Mrc1 ϕpxq ` c2 gpxqs “ c1 pMϕqpsq ` c2 pMgqpsq. (1.29)
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2. Let a ą 0, then

pMxaϕqpsq “ pMϕqps` aq (1.30)

3. Let n P N, δn “
ˆ

x
d

dx

˙n

, then

pMδnϕqpsq “ p´sqnpMϕqpsq. (1.31)

1.5 Fractional Integrals and Fractional Derivatives
In this section, we define the Riemann-Liouville fractional integrals which

is necessary to define the Riemann-Liouville, Caputo, Hilfer and generalized Riemann-
Liouville fractional derivatives [23, 24, 38, 55]. The Riemann-Liouville fractional integral
is defined by means of analytic continuation of the nth integral of Cauchy given as follows.

Theorem 1.3. Let n P N and a ě 0. The nth classical integral is given by

pIna`ϕqpxq “

ż x

a

dt1

ż t1

a

dt2 ¨ ¨ ¨

ż tn´1

a

ϕptnq dtn

“
1

pn´ 1q!

ż x

a

px´ tqn´1ϕptq dt, px ą aq. (1.32)

Notice that, pn´ 1q! “ Γpnq.

1.5.1 Riemann-Liouville Fractional Derivatives

Generalizing the result of Theorem 1.3, for α P R, we obtain the definition for
the Riemann-Liouville fractional integrals [38].

Definition 1.11. Let Ω “ ra, bs be a finite interval on the real axis R. The Riemann-
Liouville fractional integrals, Iαa`ϕ and Iαb´ϕ of order α P R, the left- and right-sided are
defined, for ϕ P Lppa, bq, respectively, by

pIαa`ϕqpxq “
1

Γpαq

ż x

a

px´ tqα´1ϕptqdt, α ą 0, x ą a, (1.33)

and

pIαb´ϕqpxq “
1

Γpαq

ż b

x

pt´ xqα´1ϕptqdt, α ą 0, b ą x.

The Riemann-Liouville fractional derivatives are defined from the Riemann-
Liouville fractional integrals as follow [38].
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Definition 1.12. Let α ě 0 and n “ rαs ` 1 with n P N. Also let ϕ P ACn
ra, bs with

0 ă a ă b ă 8. Then, the Riemann-Liouville fractional derivatives of order α, the left-
and right-sided, are defined, respectively, by

pRLDαa`ϕqpxq “

ˆ

d

dx

˙n

pIn´αa` ϕqpxq

“
1

Γpn´ αq

ˆ

d

dx

˙n "ż x

a

px´ tqn´α´1ϕptqdt

*

(1.34)

and

pRLDαb´ϕqpxq “

ˆ

´
d

dx

˙n

pIn´αb´ ϕqpxq

“
1

Γpn´ αq

ˆ

´
d

dx

˙n "ż b

x

pt´ xqn´α´1ϕptqdt

*

. (1.35)

In particular, when α “ n P N0, we have

pRLD0
a`ϕqpxq “ pRLD0

b´ϕqpxq “ ϕpxq;

pRLDna`ϕqpxq “ ϕpnqpxq and pRLDnb´ϕqpxq “ p´1qnϕpnqpxq pn P Nq

where ϕpnqpxq is the ordinary derivative of ϕpxq of order n.

1.5.2 Caputo Fractional Derivatives

Now we present the definition of the Caputo fractional derivatives [17, 38].

Definition 1.13. Let ra, bs be a finite interval of the real line R, and let pRLDαa`ϕqpxq
and pRLDαb´ϕqpxq be the Riemann-Liouville fractional derivatives of order α pα ě 0q
defined by Eq.(1.34) and Eq.(1.35), respectively. The fractional derivatives p˚Dαa`ϕqpxq and
p˚Dαb´ϕqpxq of order α P R pα ě 0q on ra, bs are defined via the above Riemann-Liouville
fractional derivatives by

p˚Dαa`ϕqpxq “

˜

RLDαa`

«

ϕptq ´
n´1
ÿ

k“0

ϕpkqpaq

k! pt´ aqk

ff¸

pxq (1.36)

and

p˚Dαb´ϕqpxq “

˜

RLDαa`

«

ϕptq ´
n´1
ÿ

k“0

ϕpkqpbq

k! pb´ tqk

ff¸

pxq (1.37)

respectively, where

n “ rαs ` 1 for α R N0; n “ α for α P N0. (1.38)

These derivatives are called left-sided and right-sided Caputo fractional derivatives of order
α, respectively, and are defined for ϕ P ACn

ra, bs.
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The definition from the Riemann-Liouville fractional integrals is more restrictive
than Definition 1.13 because the function ϕ must be in the same space as the Riemann-
Liouville fractional integrals. On the other hand, another way to define the Caputo
fractional derivatives is given by the following theorem.

Theorem 1.4. Let α ě 0 and let n be given Eq.(1.38). If ϕ P ACn
ra, bs, then the Caputo

fractional derivatives p˚Dαa`ϕqpxq and p˚Dαb´ϕqpxq exist almost everywhere on ra, bs.

(a) If α R N0, p˚Dαa`ϕqpxq and p˚Dαb´ϕqpxq are represented by

p˚Dαa`ϕqpxq “
1

Γpn´ αq

ż x

a

ϕpnqptq dt

px´ tqα´n`1 “ pI
n´α
a` Dnϕqpxq, x ą a (1.39)

and

p˚Dαb´ϕqpxq “
p´1qn

Γpn´ αq

ż b

x

ϕpnqptq dt

pt´ xqα´n`1 “ p´1qnpIn´αb´ Dnϕqpxq x ă b

respectively, where D “ d{dx and n “ rαs ` 1.

(b) If α “ n P N0, then p˚Dna`ϕqpxq and p˚Dnb´ϕqpxq are represented by

p˚Dna`ϕqpxq “ ϕpnqpxq and p˚Dnb´ϕqpxq “ p´1qnϕpnqpxq pn P Nq.

In particular, for n “ 0 we recover the functions ϕpxq,

p˚D0
a`ϕqpxq “ p˚D0

b´ϕqpxq “ ϕpxq.

1.5.3 Hilfer Fractional Derivatives

We now present the definition of Hilfer fractional derivatives which is associated
with the Riemann-Liouville fractional integrals [22].

Definition 1.14. The Hilfer fractional derivatives of order 0 ă α ă 1 and type 0 ď β ď 1
with respect to x is defined by

pDα,βa˘ ϕqpxq “
ˆ

˘ Iβp1´αqa˘
d

dx
Ip1´βqp1´αqa˘ ϕ

˙

pxq (1.40)

for functions in which the expression on the right-hand side exists.

1.5.4 Generalized Riemann-Liouville Fractional Derivatives

In order to obtain more general derivatives than the one proposed by Hilfer,
that is, a fractional derivatives of order α P R` with n ´ 1 ă α ď n, where n P N,
Hilfer, Luchko and Tomovski [24] proposed the generalized Riemann-Liouville fractional
derivatives, which is associated with the Riemann-Liouville fractional integrals.
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Definition 1.15. Let α, β P R such that n ´ 1 ă α ď n, n P N, 0 ď β ď 1, where α is
the order and β is the type of generalized Riemann-Liouville fractional derivatives, then

p
nDα,βa˘ ϕqpxq “

ˆ

˘ Iβpn´αqa˘
dn

dxn
Ip1´βqpn´αqa˘ ϕ

˙

pxq (1.41)

for functions in which the expression on the right-hand side exists.
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Chapter 2
Hadamard Fractional Integrals and
Fractional Derivatives

We have already mentioned that our interest is in the study of fractional
differentiation operators which are defined by means of a correspondent fractional integral.
The integrals of arbitrary order presented in this chapter are called Hadamard fractional
integrals and was introduced, in 1892, by Hadamard [21]. We emphasize that there is a
more general definition, in the literature, the so-called Hadamard-type fractional integral
and was introduced by Butzer, Kilbas and Trujillo [5], from the insertion of a term in
the integrand and this depends of a new parameter. However,in this work, we consider
only the Hadamard fractional integrals. To do so, we start the nth integral theorem, after
that, as an analytical continuation of this theorem, we obtain the Hadamard integrals of
arbitrary order. Let us, throughout this chapter, discuss some properties involving these
integration operators.

After presenting the fractional integrals it is possible to define the fractional
derivatives associated with these operators. In a similar way to fractional integrals there
are the so-called Hadamard-type fractional derivatives which was introduced by Butzer,
Kilbas and Trujillo [5], and that generalize the Hadamard fractional derivatives by means
of insertion of two terms that depend of a new parameter, the same one considered in
the Hadamard-type fractional integrals. However, in this thesis, we consider only the
Hadamard fractional derivatives and, in similar way to the fractional integrals, we present
some properties involving these differentiation operators. Both the fractional integrals and
derivatives presented in this chapter allow α P C, but we restrict to the cases where α P R.
The contents of this chapter are based essentially on the works of Baleanu et al. [4], Kilbas
[34] and Kilbas et al. [38].
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2.1 The nth Hadamard Integral
In this section we discuss the nth (n P N) integral [5]. By means of analytic

continuation of this result it is possible to define the Hadamard fractional integrals.

Theorem 2.1. Let n P N and a ě 0. The nth Hadamard integral is given by

pJ n
a`ϕqpxq “

ż x

a

dt1
t1

ż t1

a

dt2
t2
¨ ¨ ¨

ż tn´1

a

ϕptq
dt

t

“
1

pn´ 1q!

ż x

a

´

ln x
t

¯n´1
ϕptq

dt

t
, px ą aq. (2.1)

Proof. We prove by mathematical induction. We consider Eq.(2.1) is true for n “ 1, so

pJ 1
a`ϕqpxq “

ż x

a

ϕptq
dt

t
.

Suppose that Eq.(2.1) is true for n “ 1, 2, . . . , k, this is,

pJ k
a`ϕqpxq “

1
pk ´ 1q!

ż x

a

´

ln x
t

¯k´1
ϕptq

dt

t
. (2.2)

We need to show that if Eq.(2.2) holds for n “ k, then it must also holds for n “ k ` 1.
Require to prove that

pJ k`1
a` ϕqpxq “

1
k!

ż x

a

´

ln x
t

¯k

ϕptq
dt

t
.

From the semigroup property for the Hadamard fractional integrals pJ α
a`J

β
a`ϕqpxq “

pJ α`β
a` ϕqpxq, which we present in this chapter, Property 2.2 and, using Eq.(1.1), which

can be found in Chapter 1, we can write

pJ k`1
a` ϕqpxq “ pJ k

a`J 1
a`ϕqpxq

“
loomoon

Eq.(2.2)

1
pk ´ 1q!

ż x

a

´

ln x
t

¯k´1
"
ż t

a

ϕpuq
du

u

*

dt

t

“
loomoon

Eq.(1.1)

1
pk ´ 1q!

ż x

a

ϕpuq

"
ż x

u

´

ln x
t

¯k´1 dt

t

*

du

u
.

Considering the change of variable z “
´

ln x
t

¯

, in the last equation, we have

pJ k`1
a` ϕqpxq “

1
pk ´ 1q!

ż x

a

ϕpuq
du

u

#

ż pln x
uq

0
zk´1dz

+

“
1

kpk ´ 1q!

ż x

a

´

ln x
u

¯k

ϕpuq
du

u
,

this is,

pJ k`1
a` ϕqpxq “

1
k!

ż x

a

´

ln x
u

¯k

ϕpuq
du

u
.

This concludes the proof of Theorem 2.1.
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2.2 Hadamard Fractional Integrals
Generalizing the result of Theorem 2.1, for α P R, we obtain the definition for

Hadamard fractional integrals, [21]. The formulation of these integrals is essential for the
definition of Hadamard fractional derivatives, presented also in this chapter.

Definition 2.1. Let α ą 0 and let pa, bq be a limited or ilimited interval of the half-axis
R` and c ď 0. The Hadamard fractional integrals, of order α, the left-sided and right-sided,
are defined for ϕ P Xp

c pa, bq, respectively, by

pJ α
a`ϕqpxq :“ 1

Γpαq

ż x

a

´

ln x
t

¯α´1
ϕptq

dt

t
, px ą aq (2.3)

and

pJ α
b´ϕqpxq :“ 1

Γpαq

ż b

x

ˆ

ln t

x

˙α´1

ϕptq
dt

t
, pb ą xq. (2.4)

When a “ 0 and bÑ 8, we have

pJ α
0`ϕqpxq :“ 1

Γpαq

ż x

0

´

ln x
t

¯α´1
ϕptq

dt

t
, px ą 0q (2.5)

and

pJ α
´ϕqpxq :“ 1

Γpαq

ż 8

x

ˆ

ln t

x

˙α´1

ϕptq
dt

t
, px ą 0q. (2.6)

We denote J 0
“ I, where I is the identity operator, we obtain pJ 0

a`ϕqpxq “ ϕpxq.

The integrals Eq.(2.3), Eq.(2.4), Eq.(2.5) and Eq.(2.6) are called Hadamard
fractional integrals of order α and, as we have already mentioned, the integral given by
Eq.(2.5) was proposed by Hadamard [21].

2.3 Hadamard Fractional Operators in the Space Xp
c pa, bq

The next theorem shows that the Hadamard fractional integration operator
J α
a` is bounded in Xp

c pa, bq, [34].

Theorem 2.2. Let α ą 0, 1 ď p ď 8, 0 ă a ă b ă 8 and c ď 0. Thus, the operator J α
a`

is bounded in Xp
c pa, bq, this is,

}J α
a`ϕ}Xp

c
ď K }ϕ}Xp

c
, (2.7)

where

K “
1

Γpα ` 1q

ˆ

ln b

a

˙α

(2.8)

when c “ 0, and

K “
1

Γpαqp´cq
´α γ

„

α,´c

ˆ

ln b

a

˙

(2.9)

when c ă 0 with γpν, xq being the incomplete gamma function defined by Eq.(1.16).
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2.4 Properties Involving the Hadamard Fractional Integrals
Next, we present and prove some properties involving the Hadamard fractional

integrals, the left-sided, but we omitted the cases involving the right-sided fractional
integrals because they are proved similarly. The first property refers to the fractional

integrals of order α of the function
ˆ

ln t

a

˙β´1

and the second property refers to the
semigroup property. On the other hand, the third property verified that the Hadamard
fractional integrals of order α of the power function tβ yield the same function, apart
from a constant multiplication factor. We also present an proposition given in [4] for the
Hadamard fractional integrals.

Finally, we present the same particular cases, for this proposition, involving
the confluent hypergeometric function and the Mittag-Leffler functions.

Property 2.1. Let α, β P R, if α, β ą 0, where α ą 1 ´ β and 0 ă a ă b ă 8, then we
have

˜

J α
a`

ˆ

ln t

a

˙β´1
¸

pxq “
Γpβq

Γpα ` βq

´

ln x
a

¯β`α´1
. (2.10)

and
˜

J α
b´

ˆ

ln b
t

˙β´1
¸

pxq “
Γpβq

Γpα ` βq

ˆ

ln b

x

˙β`α´1

. (2.11)

Proof. From the definition, Eq.(2.3), we can write
˜

J α
a`

ˆ

ln t

a

˙β´1
¸

pxq “
1

Γpαq

ż x

a

´

ln x
t

¯α´1
ˆ

ln t

a

˙β´1
dt

t
.

Introducing the chance of variable,

τ “

`

ln t
a

˘

`

ln x
a

˘ ñ
dt

t
“

´

ln x
a

¯

dτ and p1´ τq
´

ln x
a

¯

“

´

ln x
t

¯

,

in order to obtain the following expression
˜

J α
a`

ˆ

ln t

a

˙β´1
¸

pxq “
1

Γpαq

´

ln x
a

¯α`β´1
ż 1

0
p1´ τqα´1τβ´1dτ

looooooooooomooooooooooon

Bpα,βq

.

Thus, we have
˜

J α
a`

ˆ

ln t

a

˙β´1
¸

pxq “
Γpβq

Γpα ` βq

´

ln x
a

¯α`β´1
.
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The next property yields the semigroup property associated the Hadamard
fractional integrals which states that pJ α

a`J
β
a`ϕqpxq “ pJ

α`β
a` ϕqpxq.

Property 2.2. Let α, β P R such that α, β ą 0 and 1 ď p ď 8. Thus, for ϕ P Xp
c pa, bq

and c ď 0, the semigroup property for Hadamard fractional integrals is given by

pJ α
a`J

β
a`ϕqpxq “ pJ

α`β
a` ϕqpxq. (2.12)

and

pJ α
b´J

β
b´ϕqpxq “ pJ

α`β
b´ ϕqpxq. (2.13)

If a “ 0 and bÑ 8, follows that

pJ α
0`J

β
0`ϕqpxq “ pJ

α`β
0` ϕqpxq. (2.14)

and

pJ α
´J

β
´ϕqpxq “ pJ α`β

´ ϕqpxq. (2.15)

Proof. See [34].

In the following property we obtain the Hadamard fractional integral of the
power function, [4].

Property 2.3. Let α, β P R such that α ą 0.

(a) If β ą 0, then

pJ α
0`t

β
qpxq “ β´αxβ. (2.16)

(b) If β ă 0, then

pJ α
´ t

β
qpxq “ p´βq´αxβ. (2.17)

2.5 An Interesting Proposition for Hadamard Fractional Integrals
In this section we present the item (1) of Proposition 1.2 proposed in [4], but

we consider the case when µ “ 0 in order to obtain the result involving the Hadamard
fractional integral. This proposition discusses the Hadamard fractional integral of a given
convergent power series that also results in a convergent power series.
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Proposition 2.1. Let α P R such that ϕpxq be a convergent power series, this is,

ϕpxq “
8
ÿ

k“0
ak x

k, pak P Rq. (2.18)

If α ą 0, the Hadamard fractional integral, with aÑ 0, pJ α
0`ϕqpxq is represented, also, by

a convergent power series, given by

pJ α
0`ϕqpxq “

8
ÿ

k“1
k´αak x

k. (2.19)

The series given by Eq.(2.18) and Eq.(2.19) are convergent and the radii of convergence
coincide.

2.5.1 Particular Cases

Under the hypothesis of Proposition 2.1, we propose in this thesis the following
particular cases involving the Hadamard fractional integral of order α.

1. We consider the following convergent power series, ϕpxq, represented by

ϕpxq “

˜

8
ÿ

k“1
kα
paqk
pcqk

xk

k!

¸

.

Substituting this series in Eq.(2.19), we obtain the expression
«

J α
0`

˜

8
ÿ

k“1

kαpaqk
k!pcqk

tk

¸ff

pxq “

8
ÿ

k“1
k´α

ˆ

kαpaqk
k!pcqk

˙

xk

“

8
ÿ

k“0

paqk
pcqk

xk

k! ´ 1

“ 1F1pa; c;xq ´ 1, (2.20)

where 1F1pa; c;xq is the confluent hypergeometric function. We note that the right-
hand side of the above equation do not depend on the parameter α.

2. Assuming

ϕpxq “
8
ÿ

k“1

kαpρqk
Γpβk ` γq

xk

k!

in Eq.(2.19), we obtain the following result
«

J α
0`

˜

8
ÿ

k“1

kαpρqk
Γpβk ` γq

tk

k!

¸ff

pxq “

˜

8
ÿ

k“1
k´α

kαpρqk
k!Γpβk ` γq

¸

xk

“

8
ÿ

k“1

pρqk
Γpβk ` γq

xk

k! .
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Considering a change of index k Ñ k ` 1, follows that
«

J α
0`

˜

8
ÿ

k“1

kαpρqk
Γpβk ` γq

tk

k!

¸ff

pxq “

8
ÿ

k“0

pρqk`1

Γpβk ` β ` γq
xk`1

pk ` 1q!

“ x
8
ÿ

k“0

pρqk`1

Γpβk ` β ` γq
xk

pk ` 1q!

and, by Property 1.1, we can write
«

J α
0`

˜

8
ÿ

k“1

kαpρqk
Γpβk ` γq

tk

k!

¸ff

pxq “ ´
1

Γpγq ` E
ρ
β,γpxq. (2.21)

When ρ “ 1, we obtain p1qk “ k!, this is,

«

J α
0`

˜

8
ÿ

k“1

kαtk

Γpβk ` γq

¸ff

pxq “ ´
1

Γpγq ` Eβ,γpxq “ xEβ,β`γpxq. (2.22)

When ρ “ γ “ 1, we have
«

J α
0`

˜

8
ÿ

k“1

kαtk

Γpβk ` 1q

¸ff

pxq “ ´1` Eβpxq “ xEβ,β`1pxq.

When β “ 1, the last equation, takes the following form
«

J α
0`

˜

8
ÿ

k“1

kαpρqk
Γpk ` γq

tk

k!

¸ff

pxq “ ´
1

Γpγq ` E
ρ
1,γpxq. (2.23)

3. Knowing that,

Eρ
1,γpxq “

1
Γpγq1F1pρ; γ;xq,

we can rewrite Eq.(2.23) as
«

J α
0`

˜

8
ÿ

k“1

kαpρqk
Γpk ` γq

tk

k!

¸ff

pxq “ ´
1

Γpγq `
1

Γpγq1F1pρ; γ;xq

“
1

Γpγqr1F1pρ; γ;xq ´ 1s.

By means of Eq.(2.20), follows that
«

J α
0`

˜

8
ÿ

k“1

kαpρqk
Γpk ` γq

tk

k!

¸ff

pxq “
1

ΓpγqJ
α
0`

˜

8
ÿ

k“1

kαpρqk
k!pγqk

xk

¸

.

4. Taking the derivative of integer order, d{dx, in both sides of Eq.(2.22), we obtain
the following expression

d

dx

#«

J α
0`

˜

8
ÿ

k“1

kαtk

Γpβk ` γq

¸ff

pxq

+

“
d

dx

"

´
1

Γpγq ` Eβ,γpxq
*

“
d

dx
txEβ,β`γpxqu ,
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this is,

d

dx

#«

J α
0`

˜

8
ÿ

k“1

kαtk

Γpβk ` γq

¸ff

pxq

+

“
d

dx
rEβ,γpxqs

“ Eβ,β`γpxq ` x
d

dx
Eβ,β`γpxq.

This formula yields a recurrence relation involving the Mittag-Leffler function, [53,
p. 23].

2.6 Mellin Transform of the Hadamard Fractional Integrals
In this section, we present the Mellin transform of Hadamard fractional integrals

[38].

Lemma 2.1. Let α ą 0 and a function ϕpxq be such that its Mellin transform pMϕqpsq

exits for s P R.

(a) If s ă 0 and pMJ α
0`ϕqpsq exists, then

pMJ α
0`ϕqpsq “ p´sq

´α
pMϕqpsq. (2.24)

(b) If s ą 0 and pMJ α
´ϕqpsq exists, then

pMJ α
´ϕqpsq “ s´αpMϕqpsq.

2.7 Hadamard Fractional Derivatives
In this section, we present the Hadamard fractional dervatives [5, 34, 38]. As

previously mentioned, these derivatives are defined by means of Hadamard fractional
integrals.

Definition 2.2. Let α ą 0 and n “ rαs ` 1 where n P N and rαs be the integer part of α.
Also let ϕ P ACn

δ ra, bs with 0 ă a ă b ă 8. Then, the Hadamard fractional derivatives of
order α, the left-sided and right-sided, are defined, respectively, by

pDαa`ϕqpxq “ δnpJ n´α
a` ϕqpxq, px ą aq (2.25)

“

ˆ

x
d

dx

˙n " 1
Γpn´ αq

ż x

a

´

ln x
t

¯n´α`1
ϕptq

dt

t

*

(2.26)

and

pDαb´ϕqpxq “ p´δqnpJ n´α
b´ ϕqpxq, pb ą xq (2.27)

“

ˆ

´x
d

dx

˙n
#

1
Γpn´ αq

ż b

x

ˆ

ln t

x

˙n´α`1

ϕptq
dt

t

+

. (2.28)
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When a “ 0 and bÑ 8, we have

pDα0`ϕqpxq “ δnpJ n´α
0` ϕqpxq, px ą 0q (2.29)

and

pDα´ϕqpxq “ p´δqnpJ n´α
´ ϕqpxq, px ą 0q. (2.30)

For α “ n P N0, we have

pDna`ϕqpxq “ δnϕpxq and pDnb´ϕqpxq “ p´1qnδnϕpxq. (2.31)

In particular, when n “ 0, we obtain

pD0
a`ϕqpxq “ ϕpxq and pD0

b´ϕqpxq “ ϕpxq, (2.32)

that is, it returns the function itself.

2.8 Properties Involving the Hadamard Fractional Derivatives
This section is dedicated to present and prove some properties involving the

Hadamard fractional derivatives and their respective fractional integration operators.
We present the following results considering the left-sided Hadamard differentiation and
integration operators, in analogous way defined for the right-sided operators, but here we
will not do it. Such results can ben found in [38]. We start presenting the theorem that
guarantees the linearity these non-integer order differential operators.

Theorem 2.3. Let α ě 0 and n “ rαs`1 with n P N. If ϕ P ACn
δ ra, bs with 0 ă a ă b ă 8,

then

pDαa`pϕ` gqqpxq “ pDαa`ϕqpxq ` pDαa`gqpxq (2.33)

and

pDαb´pϕ` gqqpxq “ pDαb´ϕqpxq ` pDαb´gqpxq. (2.34)

Proof. The result follows by the fact that the integration operators are linear.

The following theorem presents the composition of the integration operator
J α
a` with the differentiation operator Dβa` .

Theorem 2.4. Let α, β P R, 1 ď p ď 8, 0 ă a ă b ă 8 such that α ą β ą 0 and
ϕ P Xp

c pa, bq with c ď 0. Thus, we have the following result,

Dβa`pJ
α
a`ϕqpxq “ pJ

α´β
a` ϕqpxq

On the other hand, for β “ m P N, follows

Dma`pJ α
a`ϕqpxq “ pJ α´m

a` ϕqpxq.
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The following theorem gives the Hadamard fractional derivative of function
ˆ

ln t

a

˙β´1

.

Property 2.4. Let α, β P R, 0 ă a ă b ă 8 such that α ą 0, β ą n and n “ rαs ` 1, the
˜

Dαa`
ˆ

ln t

a

˙β´1
¸

pxq “
Γpβq

Γpβ ´ αq

´

ln x
a

¯β´α´1
. (2.35)

and
˜

Dαb´
ˆ

ln b
t

˙β´1
¸

pxq “
Γpβq

Γpβ ´ αq

ˆ

ln b

x

˙β´α´1

. (2.36)

In particular, if β “ 1 and α ě 0, then the Hadamard fractional derivative of a constant,
in general, not equal to zero:

pDαa`1q “ 1
Γp1´ αq

´

ln x
a

¯´α

and

pDαb´1q “ 1
Γp1´ αq

ˆ

ln b

x

˙´α

.

In what follows we present, as a corollary, conditions that must satisfy a function
whose Hadamard fractional derivative is zero. We present only the result involving the
left-sided differential operator, the corresponding result for the right-sided operator can
be derived analogously.

Corollary 2.1. Let α ą 0, n “ rαs ` 1 and 0 ă a ă b ă 8. The equation pDαa`ϕqpxq “ 0
is valid if, only if,

ϕpxq “
n
ÿ

j“1
cj

´

ln x
a

¯α´j

,

where cj P R pj “ 1, . . . , nq are arbitrary constants. In particular, when 0 ă α ď 1, the
relation pDαa`ϕqpxq “ 0 holds if, and only if, ϕpxq “ c

´

ln x
a

¯α´1
with any c P R.

The next property gives the Hadamard fractional derivative, the left-sided, of
the power function, this is, pDα0`tβqpxq.

Property 2.5. Let α, β P R such that α ě 0 and β ą 0. Then, the Hadamard fractional
derivative of power function, tβ, with aÑ 0, is given by

pDα0`tβqpxq “ βαxβ. (2.37)

Proof. See [4].



Chapter 2. Hadamard Fractional Integrals and Fractional Derivatives 37

The following lemma shows that the Hadamard fractional derivative is the
left-sided inverse of Hadamard fractional integral.

Lemma 2.2. Let α ą 0 and n “ rαs ` 1 with n P N. Also let ϕ P Xp
c pa, bq and c ď 0. If

0 ă a ă b ă 8 and 1 ď p ď 8, then

pDαa`J α
a`ϕqpxq “ ϕpxq.

Proof. From the definition Eq.(2.25), we can write

pDαa`J α
a`ϕqpxq “ pδ

nJ n´α
a` J

α
a`ϕqpxq.

By means of semigroup property for the Hadamard fractional integrals, Eq.(2.12), follows

pDαa`J α
a`ϕqpxq “ pδ

nJ n
a`ϕqpxq.

Considering the nth integral, given by Eq.(2.1) and differentiating under the integral sign,
we obtain

pDαa`J α
a`ϕqpxq “

ˆ

x
d

dx

˙n " 1
Γpnq

ż x

a

´

ln x
t

¯n´1
ϕptq

dt

t

*

“

ˆ

x
d

dx

˙n´1 ż x

a

ˆ

x
B

Bx

˙

´

ln x
t

¯n´1
ϕptq

dt

t

“

ˆ

x
d

dx

˙n´1 " 1
Γpn´ 1q

ż x

a

´

ln x
t

¯n´2
ϕptq

dt

t

*

“ pδn´1 J n´1
a` ϕqpxq.

Continuing this process of differentiation for (n´ 1) times, in order to obtain

pDαa`J α
a`ϕqpxq “ pδ

n´n J n´n
a` ϕqpxq “ ϕpxq.

We apply the Stirling functions of the second kind Spα, kq, as defined in
Theorem 1.2, to express Hadamard fractional integrals and derivatives [4].

Theorem 2.5. Let ϕpxq, defined for x ą 0, be an arbitrarily often differentiable function
such that its Taylor series converges, and let α P R.

(a) When α ě 0, the Hadamard fractional derivative, Dα0`ϕ, is given by Eq.(2.25) if,
and only if, there holds for x ą 0 the relation

pDα0`ϕqpxq “

8
ÿ

i“0
Spα, iqxi ϕpiqpxq. (2.38)
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(b) When α ą 0, the Hadamard fractional integral, pJ α
0`ϕqpxq, is given by Eq.(2.3), if,

and only if, there holds for x ą 0 the relation

pJ α
0`ϕqpxq “

8
ÿ

i“0
Sp´α, iqxi ϕpiqpxq. (2.39)

We omitted the proof of Theorem 2.5, because is analogous to Theorem 3.5,
considering Caputo-Hadamard fractional derivative, which we will prove in the next
chapter.

2.9 Leibniz-Type Rule for Hadamard Fractional Derivatives
In this section, we propose the Leibniz-type rule for Hadamard fractional

derivatives. Therefore, we apply the results presented, previously, in this chapter, as:
Stirling function of the second kind and the Hadamard fractional derivative of power
function.

Theorem 2.6. Let α P R and ϕ, g differentiable functions defined for x ą 0. The Leibniz-
type rule for Hadamard fractional derivative takes the following form

pDα0`ϕ gqpxq “
8
ÿ

i“0
Spα, iqxiDi

rϕpxqgpxqs. (2.40)

Proof. From Eq.(2.38) of Theorem 2.5 and considering ϕpxq Ñ ϕpxqgpxq, we obtain the
Eq.(2.40), where the Leibniz rule for integer order derivatives is used, this is,

Di
rϕpxqgpxqs “

i
ÿ

m“0

ˆ

i

m

˙

rDi´mϕpxqsrDmgpxqs. (2.41)

The proof of Theorem 2.6 is analogous to the right-sided Hadamard fractional derivative.

In what follows, we present an example for the Leibniz-type rule involving the
Hadamard fractional derivative, with aÑ 0. After that, we compare the obtained result
with the Theorem 2.6 and using Eq.(2.37).

Example 2.1. Consider ϕpxq “ x2, gpxq “ x3 and Eq.(2.40). Note that, the product
ϕpxqgpxq is 5-times differentiable, i.e., n “ 5. Then,

pDα0`t2 t3qpxq “
5
ÿ

i“0
Spα, iqxi

i
ÿ

m“0

ˆ

i

m

˙

rDi´m x2
srDm x3

s,
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or

pDα0`t2 t3qpxq “ Spα, 1qx
1
ÿ

m“0

ˆ

1
m

˙

rD1´m x2
srDm x3

s

` Spα, 2qx2
2
ÿ

m“0

ˆ

2
m

˙

rD2´m x2
srDm x3

s

` Spα, 3qx3
3
ÿ

m“0

ˆ

3
m

˙

rD3´m x2
srDm x3

s

` Spα, 4qx4
4
ÿ

m“0

ˆ

4
m

˙

rD4´m x2
srDm x3

s

` Spα, 5qx5
5
ÿ

m“0

ˆ

5
m

˙

rD5´m x2
srDm x3

s,

Remember that Spα, 0q “ 0. After that, we rearrange the expression in order to obtain

pDα0`t2 t3qpxq “ Spα, 1q 5x5
` Spα, 2q 20x5

` Spα, 3q 60x5
` Spα, 4q 120x5

` Spα, 5q 120x5

Expanding the sums involving Spα, kq with k “ 1, . . . , 5, follows

pDα0`t2 t3qpxq “ 5x5
` p´2` 2αq10x5

` p3´ 3 ¨ 2α ` 3αq105

` p´4` 6 ¨ 2α ´ 4 ¨ 3α ` 4αq5x5

` p5´ 10 ¨ 2α ` 10 ¨ 3α ´ 5 ¨ 4α ` 5αqx5.

Simplifying the expression, we can write

pDα0`t5qpxq “ 5α x5. (2.42)

Note that, using Eq.(2.37), with β “ 5, we obtain, exactly, Eq.(2.42).

2.10 Mellin Transform of the Hadamard Fractional Derivatives
In this section we present the Mellin transform of Hadamard fractional derivative

of order α [38].

Lemma 2.3. Let α ą 0 and a function ϕpxq such that its Mellin transform pMϕqpsq

exists for s P R.

(a) If s ă 0 and pMDα0`ϕqpsq exists, then

pMDα0`ϕqpsq “ p´sqαpMϕqpsq. (2.43)

(b) If s ą 0 and pMDα´ϕqpsq exists, then

pMDα´ϕqpsq “ sαpMϕqpsq. (2.44)
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2.11 Hilfer-Hadamard Fractional Derivatives
Similar to the Hilfer derivatives and the generalized Riemann-Liouville frac-

tional derivatives, it is possible to define Hilfer-Hadamard fractional derivatives, which is
associated with the Hadamard fractional integrals, [28].

Definition 2.3. The Hilfer-Hadamard fractional derivatives of order 0 ă α ă 1 and type
0 ď β ď 1 with respect to x are defined by

pHDα,βa˘ ϕqpxq “
ˆ

˘J βp1´αq
a˘

ˆ

x
d

dx

˙

J p1´βqp1´αqa˘ ϕ

˙

pxq (2.45)

for functions in which the expression on the right hand side exists.
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Chapter 3
Caputo-Hadamard Fractional Derivatives

Recently, in 2012, Jarad, Abdeljawad and Baleanu [27], introduced a new
formulation for the fractional derivatives, where the argument is basically the same as the
one used to define the Caputo fractional derivatives. For this formulation is proposed a
Caputo-type modification in the Hadamard fractional derivatives obtaining the so-called
Caputo-Hadamard fractional derivatives. We emphasize, a Caputo-type modification mean
the differentiation operator introduced in the integrand of fractional integration. From
this recent formulation, in 2016, Almeida [2] established a new definition for the Caputo-
Hadamard fractional derivatives by considering the order of these derivatives as variable.
In this thesis, our interest is in the approach proposed by [27].

This chapter is dedicated to present the definition for the Caputo-Hadamard
fractional derivatives by means of its relation with the Hadamard fractional derivatives.
Therefore, further in this Chapter, we shall presents this same definition, similar to the
definition of Hadamard fractional derivatives, however with an inversion of order: we
change differentiation and integration operators. We present some properties involving the
Caputo-Hadamard fractional derivatives as well as the fundamental theorem of fractional
calculus. We use the particular case of a lemma proposed in [19] in order to obtain
a generalization for another result presented in this same work. We propose to write
the Caputo-Hadamard fractional derivatives of a convergent power series as an another
convergent power series. We discuss particular cases involving this result, proposed by
us. Finally, we present the Mellin transform for the fractional differentiation operators
discussed in this chapter. We emphasize that this chapter, in addition our contribution, is
based on the following works [19, 27, 38].
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3.1 Caputo-Hadamard Fractional Derivatives
We define the Caputo-Hadamard fractional derivatives of order α by means of

its relation with the Hadamard fractional derivatives [19, 27].

Definition 3.1. Let pDαa`ϕqpxq and pDαb´ϕqpxq the Hadamard fractional derivatives of
order α P R pα ě 0q defined by Eq.(2.25) and Eq.(2.27), respectively, with 0 ă a ă b ă 8.
The Caputo-Hadamard fractional derivatives of order α P R pα ě 0q, pCDαa`ϕqpxq and
p
CDαb´ϕqpxq are defined via Hadamard fractional derivatives, with ϕ P ACn

δ ra, bs, the left-
and right-sided, by

p
CDαa`ϕqpxq “

˜

Dαa`

«

ϕptq ´
n´1
ÿ

k“0

δkϕpaq

k!

ˆ

ln t

a

˙k
ff¸

pxq (3.1)

and

p
CDαb´ϕqpxq “

˜

Dαb´

«

ϕptq ´
n´1
ÿ

k“0

p´1qkδkϕpbq
k!

ˆ

ln b
t

˙k
ff¸

pxq, (3.2)

respectively, where

n “ rαs ` 1 for α R N, n “ α for α P N. (3.3)

In particular, when 0 ă α ă 1, we have

p
CDαa`ϕpxq “ Dαa`rϕptq ´ ϕpaqsqpxq (3.4)

and

p
CDαb´qϕpxq “ Dαb´rϕptq ´ ϕpbqsqpxq. (3.5)

It is possible rewrite the Definition 3.1 using the Property 2.4 by means of the
following lemma.

Lemma 3.1. Let α P R pα ě 0q and n “ rαs ` 1, if ϕ P ACn
δ ra, bs and the Hadamard and

Caputo-Hadamard fractional derivatives, the left- and right-sided, pCDαa`ϕqpxq, pCDαb´ϕqpxq,
pDαa`ϕqpxq and pDαb´ϕqpxq exist, respectively, then

p
CDαa`ϕqpxq “ pDαa`ϕqpxq ´

n´1
ÿ

k“0

δkϕpaq

Γpk ´ α ` 1q

´

ln x
a

¯k´α

(3.6)

and

p
CDαb´ϕqpxq “ pDαb´ϕqpxq ´

n´1
ÿ

k“0

δkϕpbq

Γpk ´ α ` 1q

ˆ

ln b

x

˙k´α

. (3.7)

In particular, when 0 ă α ă 1, we have

p
CDαa`ϕqpxq “ pDαa`ϕqpxq ´

ϕpaq

Γp1´ αq

´

ln x
a

¯´α

(3.8)
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and

p
CDαb´ϕqpxq “ pDαb´ϕqpxq ´

ϕpbq

Γp1´ αq

ˆ

ln b

x

˙´α

. (3.9)

Proof. As the Hadamard differetiation operators are linear, using the results in Theorem
2.3, from Eq.(3.1), we can write

p
CDαa`ϕqpxq “ pDαa`ϕqpxq ´

n´1
ÿ

k“0

δkϕpaq

k!

˜

Dαa`

«

ˆ

ln t

a

˙k
ff¸

pxq. (3.10)

Using Eq.(2.35), we obtain

p
CDαa`ϕqpxq “ pDαa`ϕqpxq ´

n´1
ÿ

k“0

δkϕpaq

Γpk ´ α ` 1q

´

ln x
a

¯k´α

.

The Caputo-Hadamard fractional derivatives, Eq.(3.1) and Eq.(3.2), coincide
with the Hadamard fractional derivatives, Eq.(2.25) and Eq.(2.27) in the cases:

p
CDαa`ϕqpxq “ pDαa`ϕqpxq and p

CDαb´ϕqpxq “ pDαb´ϕqpxq,

if ϕpaq “ δ ϕpaq “ ¨ ¨ ¨ “ δn´1 ϕpaq “ 0 and ϕpbq “ δ ϕpbq “ ¨ ¨ ¨ “ δn´1 ϕpbq “ 0,
respectively, with n “ rαs ` 1. In particular, when 0 ă α ă 1, we have

p
CDαa`ϕqpxq “ pDαa`ϕqpxq, and p

CDαb´ϕqpxq “ pDαb´ϕqpxq,

when ϕpaq “ 0 and ϕpbq “ 0, respectively. If α “ n P N and the derivative δn ϕpxq of order
n exits, then pCDna`ϕqpxq coincides with δn ϕpxq, while pCDnb´ϕqpxq coincides with δn ϕpxq,
with exactness to a constant p´1qn,

p
CDna`ϕqpxq “ δn ϕpxq and p

CDnb´ϕqpxq “ p´1qn δn ϕpxq with n P N. (3.11)

It is possible to define the Caputo-Hadamard fractional derivatives by means of the
Hadamard fractional integrals, Eq.(2.3) and Eq.(2.4). The details of the proof can be seen
in [27].

Theorem 3.1. Let α P R pα ě 0q and let n be given by Eq.(3.3). If ϕ P ACn
δ ra, bs and

0 ă a ă b ă 8, then the Caputo-Hadamard fractional derivatives, pCDαa`ϕqpxq and
p
CDαb´ϕqpxq exist on ra, bs.

(a) If α R N, pCDαa`ϕqpxq and pCDαb´ϕqpxq are represented by

p
CDαa`ϕqpxq “

1
Γpn´ αq

ż x

a

´

ln x
t

¯n´α´1
δnϕptq

dt

t
“ pJ n´α

a` δnϕqpxq (3.12)
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and

p
CDαb´ϕqpxq “

p´1qn
Γpn´ αq

ż b

x

ˆ

ln t

x

˙n´α´1

δnϕptq
dt

t
“ p´1qnpJ n´α

b´ δnϕqpxq, (3.13)

respectively, where δ “
ˆ

t
d

dt

˙

.

(b) If α “ n P N0, the pCDαa`ϕqpxq and pCDαb´ϕqpxq are represented by Eq.(3.11). In
particular,

p
CD0

a`ϕqpxq “ p
CD0

b´ϕqpxq “ ϕpxq. (3.14)

3.2 Properties
This section is dedicated to present some properties involving the Caputo-

Hadamard fractional derivatives. First, we present the theorem that guarantee the linearity
for the Caputo-Hadamard fractional differentiation operators.

Theorem 3.2. Let α P R pα ě 0q, n “ rαs ` 1 with n P N and ϕ, g P ACn
δ ra, bs,

0 ă a ă b ă 8, then

p
CDαa`pϕ` gqqpxq “ pCDαa`ϕqpxq ` pCDαa`gqpxq (3.15)

and

p
CDαb´pϕ` gqqpxq “ pCDαb´ϕqpxq ` pCDαb´gqpxq. (3.16)

Proof. The result follows by the fact that, the integration operators are linear.

The following assertion, similar to the Theorem 2.4, also holds [19].

Theorem 3.3. Let α, β P R such that α ą β ą 0. If 0 ă a ă b ă 8, 1 ď p ď 8 and
ϕ P Lppa, bq, we have

p
CDβa`J

α
a`ϕqpxq “ pJ

α´β
a` ϕqpxq and p

CDβb´J
α
b´ϕqpxq “ pJ

α´β
b´ ϕqpxq.

In particular, if β “ m P N, then

p
CDma`J α

a`ϕqpxq “ pJ α´m
a` ϕqpxq and p

CDmb´J α
b´ϕqpxq “ pJ α´m

b´ ϕqpxq.

The following property is similar to the Property 2.4, this is, we present the

Caputo-Hadamard fractional derivatives for the function
ˆ

ln t

a

˙β´1

.
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Property 3.1. Let α, β P R such that β ą α ą 0 and 0 ă a ă b ă 8, then
˜

CDαa`
ˆ

ln t

a

˙β´1
¸

pxq “
Γpβq

Γpβ ´ αq

´

ln x
a

¯β´α´1
, (3.17)

˜

CDαb´
ˆ

ln b
t

˙β´1
¸

pxq “
Γpβq

Γpβ ` αq

ˆ

ln b

x

˙β´α´1

. (3.18)

Proof. From the definition of Caputo-Hadamard fractional derivatives of order α, the
left-sided, Eq.(3.12), we can write
˜

CDαa`
ˆ

ln t

a

˙β´1
¸

pxq “
1

Γpn´ αq

ż x

a

´

ln x
t

¯n´α´1
ˆ

t
d

dt

˙nˆ

ln t

a

˙β´1
dt

t

“
1

Γpn´ αq

ż x

a

´

ln x
t

¯n´α´1
ˆ

t
d

dt

˙n´1
«

ˆ

t
d

dt

˙ˆ

ln t

a

˙β´1
ff

dt

t

“
1

Γpn´ αq

ż x

a

´

ln x
t

¯n´α´1
ˆ

t
d

dt

˙n´1
«

pβ ´ 1q
ˆ

ln t

a

˙β´2
ff

dt

t
.

After to derive pn´ 1q times, follows
˜

CDαa`
ˆ

ln t

a

˙β´1
¸

pxq “
pβ ´ 1q!

pβ ´ n´ 1q! Γpn´ αq

ż x

a

´

ln x
t

¯n´α´1
ˆ

ln t

a

˙β´n´1
dt

t
.

Taking the same change of variable as in Property 2.1, we obtain
˜

CDαa`
ˆ

ln t

a

˙β´1
¸

pxq “
Γpβq

Γpβ ´ nqΓpn´ αq

´

ln x
a

¯β´α´1
ż 1

0
p1´ τqn´α´1τβ´n´1dτ

loooooooooooooomoooooooooooooon

Bpn´α, β´nq

,

which completes the proof.

The Caputo-Hadamard fractional differentiation is an operation inverse to the
Hadamard fractional integration from the left [27].

Lemma 3.2. Let α ą 0, n “ rαs ` 1 and ϕ P Cra, bs. If α ‰ 0 or α P N, then

CDαa`J α
a`ϕpxq “ ϕpxq and CDαb´J α

b´ϕpxq “ ϕpxq. (3.19)

Proof. From the definition of Caputo-Hadamard fractional derivative of order α, the
left-sided, given by Eq.(3.1), we can write

CDαa`J α
a`ϕpxq “ Dαa`J α

a`ϕpxq ´
n´1
ÿ

k“0

δkrJ α
a`ϕpaqs

k!

´

ln x
a

¯k

.
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Since J α
a`ϕpaq “ J α

a`ϕpxq
ˇ

ˇ

x“a
, we can write

J α
a`ϕpaq “

"

1
Γpαq

ż x

a

´

ln x
t

¯α´1
ϕptq

dt

t

*

ˇ

ˇ

ˇ

ˇ

ˇ

x“a

“
1

Γpαq

ż a

a

´

ln a
t

¯α´1
ϕptq

dt

t
“ 0.

Thus,

CDαa`J α
a`ϕpxq “ ϕpxq,

which yields the first formula in Eq.(3.19). The second one is proved similarly.

The next statement is known as the semigroup property for Caputo-Hadamard
derivatives [19].

Theorem 3.4. Let α, β P R, ϕ P Cm`n
δ ra, bs, such that 0 ă a ă b ă 8 and α, β ě 0, then

p
CDαa` CDβa` ϕqpxq “ p

CDα`βa` ϕqpxq,

where n´ 1 ă α ď n and m´ 1 ă β ď m.

In this same paper, [19], the authors proposed a generalization for the previous
theorem. We present the theorem and its proof as follow.

Lemma 3.3. Let ϕ P Cn
δ ra, bs with 0 ă a ă b ă 8, then

p
CDα1

a`
CDα2

a` ¨ ¨ ¨
CDαma` ϕqpxq “ p

CD
řm
j“1 αj

a` ϕqpxq, (3.20)

where αj ě 0, nj ă αj ď nj and
m
ÿ

j“1
αj ď n, @j “ t1, 2, . . . ,mu.

Proof. The proof follows by means of mathematical induction and using Theorem 3.4. The
expression Eq.(3.20) is true for m “ 1. Suppose that Eq.(3.20) is true for m “ k, this is,

p
CDα1

a`
CDα2

a` ¨ ¨ ¨
CDαka` ϕqpxq “ p

CD
řk
j“1 αj

a` ϕqpxq. (3.21)

We need to show that if Eq.(3.20) holds for m “ k, then it must also holds for m “ k ` 1.
In fact, we have

p
CDα1

a`
CDα2

a` ¨ ¨ ¨
CDαk`1

a` ϕqpxq “
loomoon

Eq.(3.21)

p
CD

řk
j“1 αj

a`
CDαk`1

a` ϕqpxq

“
loomoon

Theorem 3.4

p
CDp

řk
j“1 αjq`αk`1

a` ϕqpxq “ pCD
řk`1
j“1 αj

a` ϕqpxq.

Analogous to Property 2.5, the Caputo-Hadamard fractional derivative of the
power function tβ yields the same power function apart from a constant factor.
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Property 3.2. Let α, β P R such that α ě 0 and β ą 0. Then, the Caputo-Hadamard
fractional derivative of the power function tβ with aÑ 0, is given by

p
CDα0`tβqpxq “ βα xβ. (3.22)

Proof. Consider Eq.(3.6) the relationship between Dα0` and CDα0` and ϕptq “ tβ. Thus, we
can write

p
CDα0`tβqpxq “ pDαa`tβqpxq ´

n´1
ÿ

k“0

δkϕpaq

Γpk ´ α ` 1q

´

ln x
a

¯k´α

,

where δkϕpaq “
«

ˆ

t
d

dt

˙k

tβ

ff

t“a

“ rβk tβst“0 “ 0. This means that the Caputo-Hadamard

fractional derivative of the power function coincides with the Hadamard fractional deriva-
tive, for the case aÑ 0, this is, by Property 2.5 we have

p
CDα0`tβqpxq “ βα xβ.

The following theorem is dedicated to express the Caputo-Hadamard fractional
derivative in terms of infinite series involving the Spα, kq.

Theorem 3.5. Let ϕpxq with x ą 0, be an arbitrary often differentiable function such that
its Taylor series converges, and let α P R. When α ď 0, the Caputo-Hadamard fractional
derivative CDα0`ϕ is given by Eq.(3.12) if, and only if, there holds for x ą 0 the relation

p
CDα0`ϕqpxq “

8
ÿ

i“0
Spα, iqxi ϕpiqpxq. (3.23)

Proof. Let α ě 0, and recall the relationship between Dα0` and CDα0` given by Eq.(3.6).
Thus, we can write

p
CDα0`ϕqpxq “ pDα0`ϕqpxq ´

n´1
ÿ

k“0

δkϕpaq

Γpk ´ α ` 1q

´

ln x
a

¯k´α

. (3.24)

where n “ rαs ` 1. By the hypothesis of the theorem, ϕpxq is a differentiable function, i.e.,
fix x ą 0, for any a P r0, xs and any y ą 0 we have, using the binomial formula, that

ϕpaq “
8
ÿ

i“0

ϕpiqpyq

i!

i
ÿ

j“0
p´1qi`j

ˆ

i

j

˙

yi´j aj|a“0 “ 0. (3.25)

For any fixed y ą 0, Eq.(3.24) is a convergence power series because it coincides with the
Taylor series Eq.(2.38), being convergent by the condition of the theorem, this is,

p
CDα0`ϕqpxq “

8
ÿ

i“0
Spα, iqxi ϕpiqpxq.
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When α “ 0, in the last expression, we obtain

p
CD0

0`ϕqpxq “ Sp0, 0q
loomoon

“1

ϕpxq `
8
ÿ

i“1
Sp0, iq
loomoon

“0

xi ϕpiqpxq. (3.26)

that is, pD0
0`ϕqpxq “ ϕpxq.

3.3 Leibniz-Type Rule for Caputo-Hadamard Fractional Derivative
We propose a Leibniz-type rule for the Caputo-Hadamard fractional derivative.

Theorem 3.6. Let α P R and ϕ, g differentiable function defined for x ą 0. Then, a
Leibniz-type rule involving the Caputo-Hadamard fractional derivative is given by

p
CDα0`ϕ gqpxq “

8
ÿ

i“0
Spα, iqxiDi

rϕpxqgpxqs, (3.27)

where Di
rϕpxqgpxqs is the Leibniz rule for integer order derivatives in accordance with

Eq.(2.41). In the case ϕg is n-times differentiable, we have

p
CDα0`ϕ gqpxq “

n
ÿ

i“0
Spα, iqxi

i
ÿ

m“0

ˆ

i

m

˙

rDi´m ϕpxqsrDm gpxqs. (3.28)

Proof. By means of Theorem 3.5 and considering ϕpxq Ñ ϕpxqgpxq and using Leibniz rule
for integer order derivatives, we obtain

Di
rϕpxqgpxqs “

i
ÿ

m“0

ˆ

i

m

˙

rDi´mϕpxqsrDmgpxqs.

this is, follows immediately Eq.(3.27).

3.4 Fundamental Theorem of Fractional Calculus
The concept of Hadamard fractional integrals and the Caputo-Hadamard frac-

tional derivatives were presented. By means of these concepts we present the fundamental
theorem of fractional calculus. The proof can be found in [19].

Theorem 3.7. Let α P R pα ě 0q, n “ rαs ` 1, ϕ P AC n
δ ra, bs and 0 ă a ă b ă 8.

(i) If Φpxq “ J α
a`ϕpxq or Φpxq “ J α

b´ϕpxq, @x P ra, bs, then

CDαa`Φpxq “ ϕpxq and CDαb´Φpxq “ ϕpxq. (3.29)

(ii) We also have

aJ α
b p

CDαa`qΦpxq “ Φpbq ´ Φpaq, and aJ α
b p

CDαb´qΦpxq “ Φpaq ´ Φpbq. (3.30)
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3.5 A New Generalization
In what follow we present Lemma 5 as in [19] considering a particular case.

Lemma 3.4. If α P R with α ě 0, n “ rαs ` 1 and k,m P N, ϕpxq P ACn
δ ra, bs,

0 ă a ă b ă 8, then

rpJ α
a`q

k
p
CDαa`ϕsmqpxq “

rpCDαa`qm ϕspξq
Γpαk ` 1q

´

ln x
a

¯αk

, ξ P pa, xq (3.31)

or

rpJ α
b´q

k
p
CDαb´qmϕspxq “

rpCDαb´qm ϕspξq
Γpαk ` 1q

ˆ

ln b

x

˙αk

, ξ P px, bq. (3.32)

Also, we discuss a generalization of Lemma 9 proposed in [19].

Lemma 3.5. Let α P R, k,m P N, ϕpxq P ACn
δ ra, bs and 0 ă a ă b ă 8. Then,

rpJ α
a`q

k`m
p
CDαa`qk`mϕspxq “

rpCDαa`qk`m ϕspξq
Γpαk ` αm` 1q

´

ln x
a

¯αk`αm

, ξ P pa, xq. (3.33)

Proof. From the semigroup property for Hadamard fractional integral, the left-sided,
Eq.(2.12), we can write

pJ α
a`q

k
“ J α

a` J α
a` ¨ ¨ ¨J α

a`
loooooooomoooooooon

k´times

,

this is, pJ α
a`q

k
“ J αk

a` . Using the definition of Hadamard fractional integral of order α,
Eq.(2.3) and finally using the mean value theorem for integrals, Definition 1.2, we obtain

rpJ α
a`q

k`m
p
CDαa`qk`m ϕspxq “ rpJ α

a`q
m
pJ α

a`q
k
p
CDαa`qk`m ϕspxq

“ pJ α
a`q

m 1
Γpαkq

ż x

a

´

ln x
t

¯αk´1
“

p
CDαa`qk`m ϕptq

‰ dt

t

“
loomoon

Definition 1.2

pJ α
a`q

m

“

pCDαa`qk`m ϕ
‰

pξq

Γpαkq

ż x

a

´

ln x
t

¯αk´1 dt

t
,

“ pJ α
a`q

m

“

pCDαa`qk`m ϕ
‰

pξq

Γpαk ` 1q

´

ln x
a

¯αk

“

“

pCDαa`qk`m ϕ
‰

pξq

Γpαk ` 1q pJ α
a`q

m
´

ln x
a

¯αk

, ξ P pa, xq.

Using Eq.(2.10), we have

rpJ α
a`q

k`m
p
CDαa`qk`m ϕspxq “

“

pCDαa`qk`m ϕ
‰

pξq

������Γpαk ` 1q
������Γpαk ` 1q

Γpαk ` αm` 1q

´

ln x
a

¯αk`αm

“

“

pCDαa`qk`m ϕ
‰

pξq

Γpαk ` αm` 1q

´

ln x
a

¯αpk`mq

, ξ P pa, xq,

which completes the proof.
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We mention two particular cases for the previous result.

• If m “ 0 in Eq.(3.33), we have

rpJ α
a`q

k
p
CDαa`qkϕspxq “

rpCDαa`qk ϕspξq
Γpαk ` 1q

´

ln x
a

¯αk

, ξ P pa, xq,

this is, we have the result of Lemma 3.4 with m “ k.

• If m “ 1 in Eq.(3.33), we obtain

rpJ α
a`q

k`1
p
CDαa`qk`1ϕspxq “

rpCDαa`qk`1 ϕspξq

Γpαk ` α ` 1q

´

ln x
a

¯αk`α

, ξ P pa, xq

and considering k Ñ k ´ 1 follows that

rpJ α
a`q

k
p
CDαa`qkϕspxq “

rpCDαa`qk ϕspξq
Γpαk ` 1q

´

ln x
a

¯αk

,

where k “ t1, 2, . . .u, i.e., we recover the result of Lemma 9 proposed in [19].

3.6 An Interesting Proposition
In this section, we prove the statement: the Caputo-Hadamard fractional

derivatives of a convergent power series is a convergent power series.

Proposition 3.1. Let α P R and ϕpxq a convergent power series, where

ϕpxq “
8
ÿ

k“0
ak x

k, pak P Rq. (3.34)

If α ě 0, then the Caputo-Hadamard fractional derivative of order α, the left-sided, with
a “ 0, pCDα0`ϕqpxq, is represented by a convergent power series

p
CDα0`ϕqpxq “

8
ÿ

k“1
kαak x

k. (3.35)

The radii of convergent of series in Eq.(3.34) and Eq.(3.35) coincide.

Proof. From the Caputo-Hadamard fractional derivatives of α, we have
«

CDα0`

˜

8
ÿ

k“0
ak t

k

¸ff

pxq “
1

Γpn´ αq

ż x

0

´

ln x
t

¯n´α´1
ˆ

t
d

dt

˙n
«

8
ÿ

k“0
ak t

k

ff

dt

t

“
1

Γpn´ αq

ż x

0

´

ln x
t

¯n´α´1 8
ÿ

k“0
ak

ˆ

t
d

dt

˙n´1 „ˆ

t
d

dt

˙

tk


dt

t

“
1

Γpn´ αq

ż x

0

´

ln x
t

¯n´α´1 8
ÿ

k“1
ak

ˆ

t
d

dt

˙n´1

rk tks
dt

t
.
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After to derive pn´ 1q times, we obtain
«

CDα0`

˜

8
ÿ

k“0
ak t

k

¸ff

pxq “
1

Γpn´ αq

ż x

0

´

ln x
t

¯n´α´1
«

8
ÿ

k“1
ak k

n tk

ff

dt

t

“
1

Γpn´ αq

8
ÿ

k“1
ak k

n

ż x

0

´

ln x
t

¯n´α´1
tk
dt

t
.

Introducing the change of variable, u “
´

ln x
t

¯

, follows that
«

CDα0`

˜

8
ÿ

k“0
ak t

k

¸ff

pxq “
1

Γpn´ αq

8
ÿ

k“1
ak k

n xk
ż 8

0
un´α´1e´ukdu.

Further, with a new change of variable, ξ “ uk, we obtain
«

CDα0`

˜

8
ÿ

k“0
ak t

k

¸ff

pxq “
1

Γpn´ αq

8
ÿ

k“1

ak k
n xk

kn´α

ż 8

0
ξn´α´1 e´ξdξ

looooooooomooooooooon

Γpn´αq

,

“

8
ÿ

k“1
kα ak x

k, pn´ αq ą 0.

which conclude the proof.

3.6.1 Particular Cases

The following particular case can be derived from Proposition 3.1.

1. Let

ϕpxq “

˜

8
ÿ

k“1

k´αpρqk
Γpβk ` γq

xk

k!

¸

,

then replacing, this expression, in Eq.(3.35), we can write
«

CDα0`

˜

8
ÿ

k“1

k´αpρqk
Γpβk ` γq

tk

k!

¸ff

pxq “
8
ÿ

k“1
kα

ˆ

k´αpρqk
k!Γpβk ` γq

˙

xk “
8
ÿ

k“1

ˆ

pρqk
Γpβk ` γq

xk

k!

˙

.

Introducing the change of index k Ñ k ` 1, follows that
«

CDα0`

˜

8
ÿ

k“1

k´αpρqk
Γpβk ` γq

tk

k!

¸ff

pxq “

8
ÿ

k“0

pρqk`1

Γpβk ` β ` γq
xk`1

pk ` 1q!

“ x
8
ÿ

k“0

pρqk`1

Γpβk ` β ` γq
xk

pk ` 1q! ,

and by Property 1.1, we can write
«

CDα0`

˜

8
ÿ

k“1

k´αpρqk
Γpβk ` γq

tk

k!

¸ff

pxq “ ´
1

Γpγq ` E
ρ
β,γpxq,
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where Eρ
β,γpxq is the three-parameters Mittag-Leffler function. For ρ “ 1, we obtain
«

CDα0`

˜

8
ÿ

k“1

k´αtk

Γpβk ` γq

¸ff

pxq “ ´
1

Γpγq ` Eβ,γpxq “ xEβ,β`γpxq, (3.36)

where Eβ,γpxq is the two-parameter Mittag-Leffler function. For ρ “ γ “ 1, we have
«

CDα0`

˜

8
ÿ

k“1

k´αtk

Γpβk ` 1q

¸ff

pxq “ ´1` Eβpxq “ xEβ,β`1pxq.

Taking xÑ pλx2
q in Eq.(3.36), where λ P R, we obtain

«

CDα0`

˜

8
ÿ

k“1

k´αpλt2qk

Γpβk ` γq

¸ff

pxq “ ´
1

Γpγq ` Eβ,γpλx
2
q. (3.37)

Considering λ “ ´1, β “ 2 and γ “ 1 in Eq.(3.37), follows
«

CDα0`

˜

8
ÿ

k“1

k´αp´t2qk

Γp2k ` 1q

¸ff

pxq “ ´
1

Γp1q ` E2,1p´x
2
q “ cospxq ´ 1.

On the other hand, for λ “ ´1 and β “ γ “ 2 in Eq.(3.37), we have
«

CDα0`

˜

8
ÿ

k“1

k´αp´t2qk

Γp2k ` 2q

¸ff

pxq “ ´
1

Γp2q ` E2,2p´x
2
q “

sinpxq
x

´ 1.

Considering λ “ 1, β “ 2 and γ “ 1 in Eq.(3.37), we obtain
«

CDα0`

˜

8
ÿ

k“1

k´αpt2qk

Γp2k ` 1q

¸ff

pxq “ ´
1

Γp1q ` E2,1px
2
q “ coshpxq ´ 1.

Finally, for λ “ 1 and β “ γ “ 2 in Eq.(3.37), follows that
«

CDα0`

˜

8
ÿ

k“1

k´αpt2qk

Γp2k ` 2q

¸ff

pxq “ ´
1

Γp2q ` E2,2px
2
q “

sinhpxq
x

´ 1.

3.7 Mellin Transform of the Caputo-Hadamard Fractional Deriva-
tive

In this section we present the result given by Mellin transform of the Caputo-
Hadamard fractional derivatives, [27].

Lemma 3.6. Let α P R such that α ą 0 and let a function ϕpxq be such that its Mellin
transform pMϕqpsq exists for s P R.

(a) If s ă 0 and pM δnϕqpsq exists, then

pM CDα0`ϕqpsq “ p´sqαpMϕqpsq. (3.38)

(b) If s ą 0 and pM δnϕqpsq exists, then

pM CDα´ϕqpsq “ sαpMϕqpsq. (3.39)
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Chapter 4
Generalized Caputo-Type Fractional
Derivatives

Here our main goal is to introduce a new fractional differentiation operator.
For this end, we first present some relevant results. This chapter is part of a paper
that was accepted for publication [48] and we presented an application in [57]. In 2011,
Katugampola [30] proposed the generalized fractional integrals. These fractional integration
operators recover both the Riemann-Liouville and Hadamard fractional integrals. In 2014,
the same author [31] introduced the generalized fractional derivatives. These fractional
differentiation operators admit, as particular cases, both the Riemann-Liouville and
Hadamard fractional derivatives. We propose by means of a Caputo modification in the
generalized fractional derivatives to define a new differentiation operator of arbitrary
order which contains, as particular cases, the derivatives of arbitrary order in the sense
of Caputo and Caputo-Hadamard. We call this new fractional derivative by generalized
Caputo-type fractional derivatives. We emphasize that, Almeida et al. [3] presented a new
type of fractional operator, Caputo-Katugampola derivative, which recovers the Caputo
and Caputo-Hadamard fractional derivatives. However, in that paper the authors discuss
only the case 0 ă α ă 1, while we discuss the general case α P R with α ą 0. Recently,
also, Jarad et al. [26] proposed a fractional derivative which recovers the Caputo and
Caputo-Hadamard fractional derivatives.

In section 4.1 we present the theorem for the nth generalized integral so that,
by means of analytic continuation it is possible to define the generalized fractional integrals.
In section 4.2 we revisit the results proposed by Katugampola. In section 4.3 we present
our definition for fractional derivatives and some properties associated with these operators.
In section 4.4, we show that there exists a relation between the generalized fractional
derivatives and generalized Caputo-type fractional derivatives. Finally, in section 4.5 we
present the fundamental theorem of fractional calculus associated with these new operators.
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4.1 The nth Generalized Integral
In the following theorem we present the nth generalized integral [30].

Theorem 4.1. Let n P N, ρ ‰ 0 and ϕ P Xp
c pa, bq where c P R and 1 ď p ď 8, then the

nth generalized integral, the left sided, is defined by

p
ρJ n

a`ϕqpxq “

ż x

a

tρ´1
1 dt1

ż t1

a

tρ´1
2 dt2 ¨ ¨ ¨

ż tn´1

a

tρ´1
n ϕptnqdtn “

ρ1´n

Γpnq

ż x

a

tρ´1

pxρ ´ tρq1´n
ϕptq dt.

We note that when ρ Ñ 1, we obtain the nth integral of Cauchy, Theorem 1.3. On the
other hand, when ρ Ñ 0` and, from the `’Hôpital rule, we obtain the nth integral of
Hadamard, Theorem 2.1.

4.2 Generalized Fractional Integrals and Derivatives
The generalized fractional integral was introduced by Katugampola [30] in

order to generalize the Riemann-Liouville and Hadamard fractional integrals. In that paper,
he defines the generalized fractional derivatives associated with the generalized integral
operators in such a way that the differential operators generalize the Riemann-Liouville and
Hadamard fractional derivatives [31]. Both generalized fractional integral and fractional
derivative are defined for α P C; however, in this thesis we discuss only the case α P R.

Definition 4.1. [30] Let α, ρ, c P R with α ą 0 and ρ ą 0. The generalized fractional
integrals pρJ α

a`ϕqpxq (left-sided) and pρJ α
b´ϕqpxq (right-sided), with ϕ P Xp

c pa, bq, are
defined by

p
ρJ α

a`ϕqpxq “
ρ1´α

Γpαq

ż x

a

tρ´1 ϕptq

pxρ ´ tρq1´α
dt, x ą a (4.1)

and

p
ρJ α

b´ϕqpxq “
ρ1´α

Γpαq

ż b

x

tρ´1 ϕptq

ptρ ´ xρq1´α
dt, x ă b. (4.2)

Similarly, we introduce the generalized fractional derivatives corresponding to
the fractional integrals, Eq.(4.1) and Eq.(4.2).

Definition 4.2. [31] Let α P R such that α R N, α ą 0, n “ rαs ` 1 and ρ ą 0. The
generalized fractional derivatives, pρDαa`ϕqpxq and pρDαb´ϕqpxq, the left- and righ-sided, are
defined by

p
ρDαa`ϕqpxq “ δnρ p

ρJ n´α
a` ϕqpxq

“
ρ1´n`α

Γpn´ αq

ˆ

x1´ρ d

dx

˙n ż x

a

tρ´1 ϕptq

pxρ ´ tρq1´n`α
dt, (4.3)
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and

p
ρDαb´ϕqpxq “ p´1qnδnρ pρJ n´α

b´ ϕqpxq

“
p´1qnρ1´n`α

Γpn´ αq

ˆ

x1´ρ d

dx

˙n ż b

x

tρ´1 ϕptq

pxρ ´ tρq1´n`α
dt, (4.4)

respectively, if the integrals exist, δnρ “
ˆ

x1´ρ d

dx

˙n

and ϕ P ACnδρra, bs.

Theorem 4.2. Let α ą 0, β ą 0, 1 ď p ď 8, 0 ă a ă b ă 8 and ρ, c P R, ρ ě c. Then,
for ϕ P Xp

c pa, bq the semigroup property is valid, i.e.

p
ρJ α

a`
ρJ β

a`ϕqpxq “ p
ρJ α`β

a` ϕqpxq.

Proof. See [31].

Lemma 4.1. Let x ą a, ρJ α
a` and ρDαa`, as defined in Eq.(4.1) and Eq.(4.3), respectively.

Then, for α ě 0 and ξ ą 0, we have
«

ρJ α
a`

ˆ

tρ ´ aρ

ρ

˙ξ´1
ff

pxq “
Γpξq

Γpα ` ξq

ˆ

xρ ´ aρ

ρ

˙α`ξ´1

,

«

ρDαa`
ˆ

tρ ´ aρ

ρ

˙α´1
ff

pxq “ 0, 0 ă α ă 1.

Proof. See [3].

Lemma 4.2. Let 0 ă α ă 1, 0 ď γ ă 1. If ϕ P Cγra, bs and ρJ 1´α
a` ϕ P C1

γ ra, bs, then

p
ρJ α

a`
ρDαa`ϕqpxq “ ϕpxq ´

pρJ 1´α
a` ϕqpaq

Γpαq

ˆ

xρ ´ aρ

ρ

˙α´1

, for all x P pa, bq.

Proof. The proof uses integration by parts, with u “ pxρ´tρqα´1 and dv “ d

dt
p
ρJ 1´α

a` ϕqptqdt.

Lemma 4.3. Let α ą 0, 0 ď γ ă 1 and ϕ P Cγra, bs. Then,

p
ρDαa` ρJ α

a`ϕqpxq “ ϕpxq, for all x P pa, bq

Proof. See [30].

In what follows, we use a lemma and a property to prove the relation between
the generalized fractional derivatives and the generalized Caputo-type fractional derivatives
according to Definition 4.3.
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Lemma 4.4. Let n P N, ρ ą 0 and ϕptq as in Definition 1.3, such that

p
ρJ n

a`ϕqpxq “
ρ1´n

Γpnq

ż x

a

tρ´1 ϕptq

pxρ ´ tρq1´n
dt

and δnρ “
ˆ

t1´ρ
d

dt

˙n

, then

p
ρJ n

a`δ
n
ρϕqpxq “ ϕpxq ´

n´1
ÿ

k“0

δkρ ϕpaq

k!

ˆ

xρ ´ aρ

ρ

˙k

. (4.5)

Proof. From Theorem 4.1, we have

p
ρJ n

a` δ
n
ρϕqpxq “

ρ1´n

Γpnq

ż x

a

tρ´1

pxρ ´ tρq1´n

ˆ

t1´ρ
d

dt

˙n

ϕptqdt.

Applying integrating by parts formula,

u “ pxρ ´ tρqn´1 and dv “ tρ´1
ˆ

t1´ρ
d

dt

˙n

ϕptqdt

we get

p
ρJ n

a`δ
n
ρϕqpxq “ ´

ρ1´n

Γpnqpx
ρ
´ tρqn´1 δn´1

ρ ϕpaq

`
ρ2´n

Γpn´ 1q

ż x

a

pxρ ´ tρqn´2 tρ´1
ˆ

t1´ρ
d

dt

˙n´1

ϕptq dt.

Integrating by parts n´ 1 times, follows that,

p
ρJ n

a`δ
n
ρϕqpxq “

ż x

a

d

dt
ϕptq dt´

n´1
ÿ

k“1

δkρϕpaq

k!

ˆ

xρ ´ aρ

ρ

˙k

“ ϕpxq ´ ϕpaq ´
n´1
ÿ

k“1

δkρϕpaq

k!

ˆ

xρ ´ aρ

ρ

˙k

.

From the last expression, we obtain Eq.(4.5).

Property 4.1. Let α, ρ P R, n “ rαs ` 1, k P N0 and ρ ą 0. If α ą 0 and 0 ă a ă b ă 8,
then

`

ρJ n´α
a` ptρ ´ aρqk

˘

pxq “
Γpk ` 1qρα´n

Γpk ` n´ α ` 1q px
ρ
´ aρqk`n´α (4.6)

and

δnρ rpx
ρ
´ aρqk`n´αs “

Γpk ` n´ α ` 1q
Γpk ´ α ` 1q ρnpxρ ´ aρqk´α. (4.7)

Proof. First, we prove Eq.(4.6). From Eq.(4.1), we can write

`

ρJ n´α
a` ptρ ´ aρqk

˘

pxq “
ρ1´pn´αq

Γpn´ αq

ż x

a

tρ´1

pxρ ´ tρq1´pn´αq
ptρ ´ aρqkdt.
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Introducing the change of variable, u “ tρ ´ aρ

xρ ´ aρ
, we find that

`

ρJ n´α
a` ptρ ´ aρqk

˘

pxq “
ρ1´pn´αq

Γpn´ αq

ż 1

0

rpxρ ´ aρqusk

rxρ ´ aρ ´ pxρ ´ aρqus1´n`α
pxρ ´ aρq

ρ
du

“
ρ1´pn´αq

Γpn´ αq .px
ρ
´ aρqk`n´α

ż 1

0
uk p1´ uqn´α´1du

loooooooooooomoooooooooooon

Bpk`1, n´αq

,

this is,
`

ρJ n´α
a` ptρ ´ aρqk

˘

pxq “
Γpk ` 1q

Γpk ` n´ α ` 1qρ
α´n
pxρ ´ αρqk`n´α. (4.8)

Now we prove Eq.(4.7), this is,

δnρ rpx
ρ
´ aρqk`n´αs “

ˆ

x1´ρ d

dx

˙n

rpxρ ´ aρqk`n´αs

“

ˆ

x1´ρ d

dx

˙n´1 ˆ

x1´ρ d

dx

˙

rpxρ ´ aρqk`n´αs

“

ˆ

x1´ρ d

dx

˙n´1

rx1´ρ
pk ` n´ αqpxρ ´ aρqk`n´α´1ρ xρ´1

s

“ ρ pxρ ´ aρqk`n´α´1
ˆ

x1´ρ d

dx

˙n´1

rpxρ ´ aρqk`n´α´1
s

“ ¨ ¨ ¨ ρnpk ` n´ αq ¨ ¨ ¨ pk ` n´ α ´ pn´ 1qqpxρ ´ aρqk`n´α´n

“
pk ` n´ αq ¨ ¨ ¨ pk ´ α ` 1qΓpk ´ α ` 1q

Γpk ´ α ` 1q ρn pxρ ´ aρqk´α.

Therefore, we obtain

δnρ rpx
ρ
´ aρqk`n´αs “

Γpk ` n´ α ` 1q
Γpk ´ α ` 1q ρnpxρ ´ aρqk´α.

4.3 Generalized Caputo-Type Fractional Derivatives
In this section, we introduce the generalized Caputo-type fractional derivatives

by means of a Caputo-type modification of the generalized fractional derivatives. After
that, we present a theorem showing that, from two adequate limits, these generalized
Caputo-type fractional derivatives recovers both Caputo and Caputo-Hadamard fractional
derivatives.

Definition 4.3. Let α, ρ P R, α R N, α ą 0, n “ rαs ` 1 and ρ ą 0. The left-sided and
the right-sided generalized Caputo-type fractional derivatives are defined, for 0 ď a ă x ă

b ď 8 and ϕ P ACn
δρra, bs, by

p
ρ
˚Dαa`ϕqpxq “ p

ρJ n´α
a` δnρϕqpxq (4.9)

“
ρ1´n`α

Γpn´ αq

ż x

a

tρ´1

pxρ ´ tρq1´n`α

ˆ

t1´ρ
d

dt

˙n

ϕptq dt, (4.10)
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and

p
ρ
˚Dαb´ϕqpxq “ p´1qnpρJ n´α

b´ δnρϕqpxq

“
p´1qnρ1´n`α

Γpn´ αq

ż b

x

tρ´1

pxρ ´ tρq1´n`α

ˆ

t1´ρ
d

dt

˙n

ϕptq dt, (4.11)

respectively, if the integrals exist. If α P N0, then pρ˚Dna`ϕqpxq and pρ˚Dnb´ϕqpxq are repre-
sented by

p
ρ
˚Dαa`ϕqpxq “ δnρϕpxq and p

ρ
˚Dαb´ϕqpxq “ p´1qnδnρϕpxq. (4.12)

In particular, we have

p
ρ
˚D0

a`ϕqpxq “ p
ρ
˚D0

b´ϕqpxq “ ϕpxq.

The following theorem shows that, from the definition of the generalized Caputo-
type fractional derivatives, it is possible to recover, as particular cases, both the Caputo
and Caputo-Hadamard derivatives.

Theorem 4.3. Let α, ρ P R, α ą 0, α R N, n “ rαs ` 1 and ρ ą 0. Then, for x ą a

lim
ρÑ1
p
ρ
˚Dαa`ϕqpxq “ p˚Dαa`ϕqpxq “

1
Γpn´ αq

ż x

a

px´ tqn´α´1ϕpnqptqdt. (4.13)

lim
ρÑ0`

p
ρ
˚Dαa`ϕqpxq “ pCDαa`ϕqpxq “

1
Γpn´ αq

ż x

a

´

ln x
t

¯n´α´1
δnϕptqdt. (4.14)

Proof. First we show Eq.(4.13): Using Eq.(4.10) and by dominated convergence theorem
[54], we can write

lim
ρÑ1
p
ρ
˚Dαa`ϕqpxq “ lim

ρÑ1

"

ρ1´n`α

Γpn´ αq

ż x

a

tρ´1

pxρ ´ tρq1´n`α

ˆ

t1´ρ
d

dt

˙n

ϕptqdt

*

“
1

Γpn´ αq

ż x

a

px´ tqn´α´1ϕpnqptqdt

“ p˚Dαa`ϕqpxq, (4.15)

where ϕpnqptq “
ˆ

d

dt

˙n

ϕptq.

Now we show Eq.(4.14): Again, we use Eq.(4.10), `’Hôpital rule and dominated convergence
theorem [54], to obtain

lim
ρÑ0`

p
ρ
˚Dαa`ϕqpxq “ p

CDαa`ϕqpxq

“ lim
ρÑ0`

"

ρ1´n`α

Γpn´ αq

ż x

a

tρ´1

pxρ ´ tρq1´n`α

ˆ

t1´ρ
d

dt

˙n

ϕptqdt

*

“
1

Γpn´ αq

ż x

a

lim
ρÑ0`

tρ´1
ˆ

xρ ´ tρ

ρ

˙n´α´1 ˆ

t1´ρ
d

dt

˙n

ϕptqdt

“
1

Γpn´ αq

ż x

a

´

ln x
t

¯n´α´1
δnϕptq

dt

t
, onde δn “

ˆ

t
d

dt

˙n

.

The proof is valid also for the right-sided operator.
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The linearity of the differential operators ρ
˚Dαa` and ρ

˚Dαb´ is ensured by the
following theorem:

Theorem 4.4. Let α, ρ P R and ρ ą 0 such that α R N and α ą 0. If 0 ă a ă b ă 8, then

p
ρ
˚Dαa`pϕ` gqqpxq “ pρ˚Dαa`ϕqpxq ` pρ˚Dαa`gqpxq. (4.16)

Proof. The result follows from the fact that integral operators are linear.

The composition of the fractional integration operators ρJ α
a` and ρJ α

b´ , with
the fractional differentiation operators, ρ˚Dαa` and ρ

˚Dαb´ , is given by the following result.

Theorem 4.5. Let α, ρ P R, α ą 0 and ρ ą 0. If 0 ă a ă b ă 8, then

p
ρ
˚Dαa`ρJ α

a`ϕqpxq “ ϕpxq and p
ρ
˚Dαb´ρJ α

b´ϕqpxq “ ϕpxq. (4.17)

Proof. Using, Eq.(4.1) and Eq.(4.10), we can write

p
ρ
˚Dαa`ρJ α

a`ϕqpxq “
ρ1´n`α

Γpn´ αq

ż x

a

tρ´1

pxρ ´ tρq1´n`α
δnρ

„

ρ1´α

Γpαq

ż t

a

τ ρ´1 ϕpτq

pxρ ´ tρq1´α
dτ



dt. (4.18)

Knowing that,
ż t

a

τ ρ´1 ϕpτq

pxρ ´ tρq1´α
dτ “

1
αρ

"

ϕpaqptρ ´ aρqα `

ż t

a

ptρ ´ τ ρqαϕ1pτqdτ

*

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

Aptq

“
1
αρ
Aptq (4.19)

see Appendix A. If we substitute Eq.(4.19) into Eq.(4.18), we obtain

p
ρ
˚Dαa`ρJ α

a`ϕqpxq “ (4.20)
ρ1´n

Γpn´ αqΓpα ` 1q

ż x

a

tρ´1

pxρ ´ tρq1´n`α
δnρ

"„

ϕpaqptρ ´ aρqα `

ż t

a

ptρ ´ τ ρqαϕ1pτqdτ

*

dt.

Using the following result which we prove in Appendix A,

δnρAptq “
Γpα ` 1q ρn

Γpα ´ n` 1q

„

ϕpaqptρ ´ aρqα´n `

ż t

a

ptρ ´ τ ρqα´nϕ1pτqdτ



, (4.21)

we obtain, substituting in Eq.(4.20), the expression

p
ρ
˚Dαa`ρJ α

a`ϕqpxq “
ρϕpaq

Γpn´ αqΓpα ´ n` 1q

ż x

a

ptρ ´ aρqα´n

pxρ ´ tρq1´n`α
tρ´1dt (4.22)

`
ρ

Γpn´ αqΓpα ´ n` 1q

ż x

a

tρ´1

pxρ ´ tρqα´n`1

"
ż t

a

ptρ ´ τ ρqα´nϕ1pτqdτ

*

dt.

We use Fubini’s theorem and Dirichlet’s formula, in order to change the order of the
integrals, together with the result

ż x

a

ptρ ´ aρqα´n

pxρ ´ tρq1´n`α
tρ´1dt “

Γpn´ αqΓpα ´ n` 1q
ρ

, (4.23)
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see Appendix A. As one can rewrite Eq.(4.22) as follows

p
ρ
˚Dαa`ρJ α

a`ϕqpxq “ ϕpaq `
ρ

Γpn´ αqΓpα ´ n` 1q

ż x

a

ϕ1pτqdτ

ż x

τ

ptρ ´ τ ρqα´n

pxρ ´ tρqα´n`1 t
ρ´1dt

“ ϕpaq `

ż x

a

ϕ1pτqdτ.

Using the fundamental theorem of calculus we obtain the first expression in Eq.(4.17).
The second expression in Eq.(4.17) is proved similarly.

The following theorem yields the compositions of the fractional integral opera-
tors, ρJ β

a` and ρJ β
b´ with the fractional differential operators, ρ˚Dαa` and ρ

˚Dαb´ .

Theorem 4.6. Let α, β, ρ P R such that β ą α and α ą 0. If 0 ă a ă b ă 8, then, for
ρ ą 0,

p
ρ
˚Dαa`ρJ

β
a`ϕqpxq “ p

ρJ β´α
a` ϕqpxq and p

ρ
˚Dαb´ρJ

β
b´ϕqpxq “ p

ρJ β´α
b´ ϕqpxq. (4.24)

Proof. The proof is analogous to the proof of Theorem 4.5.

We now discuss the following property involving the power function:

Property 4.2. Sejam α, β, ρ P R, α ą 0, ρ ą 0, pβ ´ αρq ą 0 and ϕptq “ tβ. Taking the
limit aÑ 0, we get

p
ρ
˚Dα0`tβqpxq “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

Γ
´

β
ρ
` 1

¯

Γ
´

β
ρ
´ α ` 1

¯ραxβ´αρ, α ą 0,
ˆ

α ´
β

ρ

˙

R N

0, α ą 0,
ˆ

α ´
β

ρ

˙

P N.

(4.25)

Proof. We consider Eq.(4.10) with aÑ 0 and ϕptq “ tβ. Hence, we can write

p
ρ
˚Dα0`tβqpxq “

ρ1´n`α

Γpn´ αq lim
aÑ0

ż x

a

tρ´1

pxρ ´ tρq1´n`α

ˆ

t1´ρ
d

dt

˙n

tβ dt, x ą a. (4.26)

with n “ rαs ` 1 and n “ t1, 2, . . .u. Since
ˆ

t1´ρ
d

dt

˙n

tβ “ βpβ ´ ρqpβ ´ 2ρq . . . pβ ´ pn´ 1qρq tβ´nρ

“ ρn
Γ
´

β
ρ
` 1

¯

Γ
´

β
ρ
´ n` 1

¯ tβ´nρ,

we can substitute this expression into Eq.(4.26) in order to obtain

p
ρ
˚Dα0`tβqpxq “

ρ1`α

Γpn´ αq
Γ
´

β
ρ
` 1

¯

Γ
´

β
ρ
´ n` 1

¯

ż x

0

tβ`p1´nqρ´1

pxρ ´ tρq1´n`α
dt.
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Further, with the change of variable u “ tρ{xρ we have

p
ρ
˚Dα0`tβqpxq “

ρ1`α

Γpn´ αq
Γ
´

β
ρ
` 1

¯

Γ
´

β
ρ
´ n` 1

¯ρ´1xβ´αρ
ż 1

0
u
β
ρ
´n
p1´ uqn´α´1du

loooooooooooooomoooooooooooooon

Bpβρ´n`1, n´αq

where Bp¨, ¨q is the beta function. Hence, we get

p
ρ
˚Dα0`tβqpxq “

Γ
´

β
ρ
` 1

¯

Γ
´

β
ρ
´ α ` 1

¯ ραxβ´αρ, (4.27)

as desired. We emphasize that, if
ˆ

α ´
β

ρ

˙

R N in Eq.(4.27), we then obtain the first

expression in Eq.(4.25). On the other hand, if
ˆ

α ´
β

ρ

˙

P N, we obtain the second

expression in Eq.(4.25).

Notice that, by taking the limit ρÑ 1, Eq.(4.25) becomes

lim
ρÑ1

p
ρ
˚Dα0`tβqpxq “ p˚Dα0`tβq “

Γpβ ` 1q
Γpβ ´ α ` 1qx

β´α,

that is, it coincides with a Caputo arbitrary order derivative of the power function. Similarly,
taking the limit ρÑ 0, and using the result (see [40])

Γpz ` αq
Γpz ` βq « zα´β when z Ñ 8 and α, β ě 0,

we obtain

lim
ρÑ0`

p
ρ
˚Dα0`tβqpxq “ pCDα0`tβqpxq “

ˆ

β

ρ

˙α

ραxβ “ βαxβ,

that is, the new derivative coincides with the fractional derivative in the Caputo-Hadamard
sense, Eq.(3.22).
We now present and prove the semigroup property of the generalized Caputo-type fractional
derivative ρ

˚Dαa` . The result is also valid for the operator ρ
˚Dαb´ .

Theorem 4.7. Let α, β, ρ P R such that α, β ą 0. If 0 ă a ă b ă 8, then, for ρ ą 0, we
have

p
ρ
˚Dαa`ρ˚D

β
a`ϕqpxq “ p

ρ
˚D

α`β
a` ϕqpxq. (4.28)

Proof. Considering n “ rαs ` 1 and m “ rβs ` 1 and without loss of generality, we take
m ě n. Thus, m “ n ` k, k P N0 “ t0, 1, 2, . . .u and α ` β ď m` n; Then, from the
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semigroup property of the generalized fractional integral operator [30], we have

p
ρ
˚Dαa`ρ˚D

β
a`ϕqpxq “ p

ρJ n´α
a` δnρ

ρ
˚D

β
a`ϕqpxq

“ p
ρJ n´α

a` δnρ
ρJm´β

a` δmρ ϕqpxq

“ p
ρJ n´α

a` δnρ
ρJ n`k´β

a` δn`kρ ϕqpxq

“ p
ρJ n´α

a` δnρ
ρJ n´β

a`
ρJ k

a`δ
n`k
ρ ϕqpxq

“ p
ρJ n´α

a`
ρDβa`

ρJ k
a`δ

n`k
ρ ϕqpxq

“ p
ρJ n´α

a`
ρJ ´βa`

ρJ β
a`

ρDβa`
ρJ k

a`δ
n`k
ρ ϕqpxq

“ p
ρJ n´α´β

a`
ρJ k

a` δ
n`k
ρ ϕqpxq

“ p
ρJ n`k´pα`βq

a` δn`kρ ϕqpxq

“ p
ρJm´pα`βq

a` δmρ ϕqpxq

“ p
ρ
˚D

α`β
a` ϕqpxq.

4.4 Relation Between Generalized and generalized Caputo-Type
Fractional Derivatives

In this section we present the relation between the generalized fractional
derivatives and the generalized Caputo-type fractional derivatives and recover particular
cases.

Theorem 4.8. Let α, ρ P R such that α ą 0, n “ rαs ` 1 and ρ ą 0. The relation between
the generalized fractional derivatives and the generalized Caputo-type fractional derivatives
is given by the expressions

p
ρ
˚Dαa`ϕqpxq “ pρDαa`ϕqpxq ´

n´1
ÿ

k“0

δkρ ϕpaq

Γpk ´ α ` 1q

ˆ

xρ ´ aρ

ρ

˙k´α

(4.29)

and

p
ρ
˚Dαb´ϕqpxq “ pρDαb´ϕqpxq ´

n´1
ÿ

k“0

p´1qkδkρ ϕpbq
Γpk ´ α ` 1q

ˆ

bρ ´ xρ

ρ

˙k´α

. (4.30)

In particular, for 0 ă α ă 1, Eq.(4.29) and Eq.(4.30) take the following form:

p
ρ
˚Dαa`ϕqpxq “ pρDαa`ϕqpxq ´

ϕpaq

Γp1´ αq

ˆ

xρ ´ aρ

ρ

˙´α

and

p
ρ
˚Dαb´ϕqpxq “ pρDαb´ϕqpxq ´

ϕpbq

Γp1´ αq

ˆ

bρ ´ xρ

ρ

˙´α

.
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Proof. We consider initially the generalized fractional derivative, the left-sided, given by

p
ρDαa`ϕqpxq “ δnρ p

ρJ n´α
a` ϕqpxq.

We write ϕptq explicitly as given by Eq.(4.5) and using the results of Property 4.1, we have

p
ρDαa`ϕqpxq “ δnρ

˜

ρJ n´α
a`

«

p
ρJ n

a`δ
n
ρϕqptq `

n´1
ÿ

k“0

δkρ ϕpaq

k!

ˆ

tρ ´ aρ

ρ

˙k
ff¸

pxq.

“ pδnρ
ρJ n

a`
ρJ n´α

a` δnρϕqpxq ` δ
n
ρ

n´1
ÿ

k“0

δkρ ϕpaq

k!

˜

ρJ n´α
a`

„

tρ ´ aρ

ρ

k
¸

pxq

“ p
ρJ n´α

a` δnρϕqpxq `
n´1
ÿ

k“0
δkρ ϕpaq

ρα´n´k

Γpn´ α ` k ` 1q δ
n
ρ rpx

ρ
´ aρqk`n´αs

“ p
ρ
˚Dαa`ϕqpxq `

n´1
ÿ

k“0

δkρ ϕpaq

Γpk ´ α ` 1q

ˆ

xρ ´ aρ

ρ

˙k´α

.

This last expression follows immediately from the Eq.(4.29). The proof of Eq.(4.30) is
analogous.

In [31], the Riemann-Liouville fractional derivatives are recovered, applying
the limit ρÑ 1 to the generalized fractional differential operators, that is,

lim
ρÑ1
p
ρDαa`ϕqpxq “ pRLDαa`ϕqpxq.

The Hadamard fractional derivatives are recovered in the limit ρÑ 0, that is, lim
ρÑ0
p
ρ
˚Dαa`ϕqpxq “

pDαa`ϕqpxq. However, in this case, our differentiation operator recovers, as limit cases, both
Caputo and Caputo-Hadamard fractional derivatives.

• When ρÑ 1 in Eq.(4.29), we obtain

lim
ρÑ1
p
ρ
˚Dαa`ϕqpxq “ p˚Dαa`ϕqpxq “ pRLDαa`ϕqpxq ´

n´1
ÿ

k“0

ϕpkqpaq

Γpk ´ α ` 1qpx´ aq
k´α.(4.31)

• On the other hand, if ρÑ 0, again, using Eq.(4.29), we have

lim
ρÑ0`

p
ρ
˚Dαa`ϕqpxq “ pCDαa`ϕqpxq “ pDαa`ϕqpxq ´

n´1
ÿ

k“0

δk ϕpaq

Γpk ´ α ` 1q

´

ln x
a

¯k´α

.(4.32)

Therefore, when ρÑ 1 we recover the relation between the fractional derivative as proposed
by Caputo and the Riemann-Liouville fractional derivative [38, p. 91]. On the other hand,
when ρÑ 0 we recover the relation between the Hadamard fractional derivative and the
fractional derivative in the Caputo-Hadamard sense Eq.(3.6).
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4.5 Fundamental Theorem of Fractional Calculus
In this section we present the fundamental theorem of fractional calculus asso-

ciated with the generalized fractional integral and the generalized Caputo-type differential
operator [11, 19].

Theorem 4.9. Let α, ρ P R such that α ą 0 and ρ ą 0 with n “ rαs`1 and ϕ P ACn
δ ra, bs.

(a) If α R N or α P N and Φpxq “ pρJ α
a`ϕqpxq or Φpxq “ pρJ α

b´ϕqpxq, for all x P ra, bs,
we obtain

p
ρ
˚Dαa`Φqpxq “ ϕpxq and p

ρ
˚Dαb´Φqpxq “ ϕpxq. (4.33)

(b) If pρJ n´α
a` ϕqpxq P AC n

δ ra, bs, then

p
ρJ α

a`
ρ
˚Dαa`Φqpxq “ ϕpxq ´

rαs
ÿ

k“0

δkρ ϕpaq

k!

ˆ

xρ ´ aρ

ρ

˙k

(4.34)

and

p
ρJ α

b´
ρ
˚Dαb´Φqpxq “ ϕpxq ´

rαs
ÿ

k“0

p´1qkδkρ ϕpbq
k!

ˆ

bρ ´ xρ

ρ

˙k

.

For 0 ă α ă 1, we have

p
ρ
aJ α

b
ρ
˚Dαa`Φqpxq “ Φpxq ´ Φpaq and p

ρ
aJ α

b
ρ
˚Dαb´Φqpxq “ Φpxq ´ Φpaq. (4.35)

Proof. (a) Eq.(4.33) follow immediately from Theorem 4.5.

(b) Let α R N. Using the definition in Eq.(4.9), we can write

p
ρJ α

a`
ρ
˚Dαa`Φqpxq “ pρJ α

a`
ρJ n´α

a` δnρ Φqpxq “ pρJ n
a` δ

n
ρ Φqpxq.

Thus, Eq.(4.34) follows from Lemma 4.4. In particular, if 0 ă α ă 1, then

p
ρJ α

a` δ
α
ρ Φqpxq “

ż x

a

tρ´1
ˆ

t1´ρ
d

dt

˙

Φptqdt

“

ż x

a

ˆ

d

dt
Φptq

˙

dt “ Φpxq ´ Φpaq.

which is the classical fundamental theorem of calculus. On the other hand, for α P N,
when α “ 1, we obtain

p
ρ
aJ 1

b
ρ
˚D1

a`Φqpxq “
ż b

a

ˆ

d

dt
Φptq

˙

dt “ Φpbq ´ Φpaq.
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Chapter 5
Hilfer-Katugampola Fractional Derivatives

In 2000, Hilfer [22] proposed a type of non-integer order derivative, also defined
from fractional integration and integer order differentiation, but this type of formulation
differs from other already presented by the fact that it is defined by means of integer
order derivative performing between fractional integrals. The Hilfer fractional derivatives
interpolates the well-known Riemann-Liouville and Caputo fractional derivatives [18]. In
this sense, in 2012, Kassim et al. [28] presented the Hilfer-Hadamard fractional derivative
which interpolates Hadamard and Caputo-Hadamard fractional derivatives.

In this chapter we introduce the Hilfer-Katugampola fractional derivatives and
it’s part of our paper that was published online [47]. This new formulation is a Hilfer-type
fractional differentiation operator, this is, an integer order derivative performing between
generalized fractional integrals according to Katugampola [30]. This new fractional deriva-
tives interpolates the Hilfer, Hilfer-Hadamard, Riemann-Liouville, Hadamard, Caputo,
Caputo-Hadamard, generalized and generalized Caputo-type fractional derivatives, as well
as the Weyl and Liouville fractional derivatives for particular cases of integration extremes.
More details on these fractional derivatives which we don’t discuss in this thesis can be
found in [17, 22, 23].

This chapter is organized as follows: in section 5.1, we present results that will
be used in the remaining sections. In section 5.2, we define our derivative of non-integer
order, the Hilfer-Katugampola fractional derivative, together with some of its properties.
In section 5.3, we discuss the equivalence between an initial value problem and a Volterra
integral equation. In section 5.4, we present and prove the existence and uniqueness
theorem for the initial value problem presented in the previous section. As an application,
in section 5.5 we discuss, using the method of successive approximations, the analytical
solution of some fractional differential equations involving this differentiation operator.
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5.1 Function Spaces
In order to introduce Hilfer-Katugampola fractional derivatives, in this section,

we propose the function spaces and some results involving these spaces that are adequate
for such definition.

Definition 5.1. Let Ω “ ra, bs p0 ă a ă b ă 8q be a finite interval on the half-axis R`

and the parameters ρ ą 0 and 0 ď γ ă 1.

(1) The weighted space Cγ,ρra, bs of functions g on pa, bs is defined by

Cγ,ρra, bs “

"

g : pa, bs Ñ R :
ˆ

xρ ´ aρ

ρ

˙γ

gpxq P Cra, bs

*

, (5.1)

where 0 ď γ ă 1 and with the norm

‖g‖Cγ,ρ “
∥∥∥∥∥
ˆ

xρ ´ aρ

ρ

˙γ

gpxq

∥∥∥∥∥
C

“ max
xPΩ

ˇ

ˇ

ˇ

ˇ

ˆ

xρ ´ aρ

ρ

˙γ

gpxq

ˇ

ˇ

ˇ

ˇ

, (5.2)

where C0,ρra, bs “ Cra, bs.

(2) Let δρ “
ˆ

tρ´1 d

dt

˙

. For n P N we denote by Cn
δρ,γ ra, bs the Banach space of functions

g which are continuously differentiable on ra, bs, with operator δρ, up to order pn´ 1q
and which have the derivative δnρ g of order n on pa, bs such that δnρ g P Cγ,ρra, bs, that
is,

Cn
δρ,γra, bs “

 

g : ra, bs Ñ R : δkρ g P Cra, bs, k “ 0, 1, . . . , n´ 1, δnρ g P Cγ,ρra, bs
(

,

where n P N, with the norms

‖g‖Cn
δρ,γ

“

n´1
ÿ

k“0
‖δkρ g‖C ` ‖δ

n
ρ g‖Cγ ,ρ, ‖g‖Cn

δρ

“

n
ÿ

k“0
max
xPΩ

|δkρ gpxq|.

For n “ 0, we have

C0
δρ,γra, bs “ Cγ,ρra, bs.

Lemma 5.1. Let n P N0 and µ1, µ2 P R such that

0 ď µ1 ď µ2 ă 1.

Then,

Cn
δρra, bs ÝÑ Cn

δρ,µ1ra, bs ÝÑ Cn
δρ,µ2ra, bs,

with
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‖f‖Cn
δρ,µ2

ra,bs ď Kδρ‖f‖Cn
δρ,µ1

ra,bs,

where

Kδρ “ min
«

1,
ˆ

bρ ´ aρ

ρ

˙µ2´µ1
ff

, and a ‰ 0.

In particular,

Cra, bs ÝÑ Cµ1,ρra, bs ÝÑ Cµ2,ρra, bs,

with

‖f‖Cµ2,ρra,bs
ď

ˆ

bρ ´ aρ

ρ

˙µ2´µ1

‖f‖Cµ1,ρra,bs
, a ‰ 0.

Lemma 5.2. Let 0 ď γ ă 1, a ă c ă b, g P Cγ,ρra, cs, g P Crc, bs and g continuous at c.
Then, g P Cγ,ρra, bs.

Lemma 5.3. For α ą 0, ρJ α
a` maps Cra, bs into Cra, bs.

Lemma 5.4. Let α ą 0 and 0 ď γ ă 1. Then, ρJ α
a` is bounded from Cγ,ρra, bs into

Cγ,ρra, bs.

Lemma 5.5. Let α ą 0 and 0 ď γ ă 1. If γ ď α, then ρJ α
a` is bounded from Cγ,ρra, bs

into Cra, bs.

Lemma 5.6. Let 0 ă a ă b ă 8, α ą 0, 0 ď γ ă 1 and ϕ P Cγ,ρra, bs. If α ą γ, then
ρJ α

a`ϕ is continuous on ra, bs and

p
ρJ α

a`ϕqpaq “ lim
xÑa`

p
ρJ α

a`ϕqpxq “ 0.

Proof. Since ϕ P Cγ,ρra, bs, then
ˆ

xρ ´ aρ

ρ

˙γ

ϕpxq is continuous on ra, bs and

ˇ

ˇ

ˇ

ˇ

ˆ

xρ ´ aρ

ρ

˙γ

ϕpxq

ˇ

ˇ

ˇ

ˇ

ďM, x P ra, bs,

for some positive constant M . Consequently,

|p
ρJ α

a`ϕqpxq| ďM

«

ρJ α
a`

ˆ

tρ ´ aρ

ρ

˙´γ
ff

pxq

and by Lemma 4.1, we can write

|p
ρJ α

a`ϕqpxq| ďM
Γp1´ γq

Γpα ´ γ ` 1q

ˆ

xρ ´ aρ

ρ

˙α´γ

. (5.3)

As α ą γ, the right-hand side of Eq.(5.3) goes to zero when xÑ a`.
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5.2 Hilfer-Katugampola Fractional Derivative
In this section, our main result, we introduce the Hilfer-Katugampola fractional

derivative and discuss, from adequate parameters cases, other formulations for fractional
derivatives.

Definition 5.2. Let order α and type β satisfy n´ 1 ă α ď n and 0 ď β ď 1, with n P N.
The fractional derivative (left-sided/right-sided), with respect to x, with ρ ą 0 of a function
ϕ P C1´γ,ρra, bs, is defined by

p
ρDα,βa˘ ϕqpxq “

ˆ

˘
ρJ βpn´αq

a˘

ˆ

tρ´1 d

dt

˙n
ρJ p1´βqpn´αqa˘ ϕ

˙

pxq

“

´

˘
ρJ βpn´αq

a˘ δnρ
ρJ p1´βqpn´αqa˘ ϕ

¯

pxq,

where J is the generalized fractional integral given in Definition 4.1. In this thesis we
consider the case n “ 1 only, because the Hilfer derivative and the Hilfer-Hadamard
derivative are discussed with 0 ă α ă 1.

We present and discuss our new results involving the Hilfer-Katugampola
fractional derivative using only the left-sided operator. An analogous procedure can be
developed using the right-sided operator. The following property shows that it is possible
to write operator ρDα,βa` in terms of the operator given in Definition 4.2.

Property 5.1. The operator ρDα,βa` can be written as

ρDα,βa` “
ρJ βp1´αq

a` δρ
ρJ 1´γ

a` “
ρJ βp1´αq

a`
ρDγa` , γ “ α ` βp1´ αq.

Proof. From definition of the generalized fractional integral, we have

p
ρDα,βa` ϕqpxq “

ρJ βp1´αq
a`

ˆ

x1´ρ d

dx

˙"

ρ1´p1´βqp1´αq

Γrp1´ βqp1´ αqs

ż x

a

tρ´1

pxρ ´ tρq1´p1´βqp1´αq
ϕptqdt

*

“

„

ρJ βp1´αq
a`

ρ1`α`β´αβ

Γrp1´ βqp1´ αq ´ 1s

ż x

a

tρ´1

pxρ ´ tρq1`α`β´αβ
ϕptqdt



pxq

“ p
ρJ βp1´αq

a`
ρDγa`ϕqpxq,

where operator D is the generalized fractional derivative given in Definition 4.2.

Property 5.2. The fractional derivative ρDα,βa` is an interpolator of the following fractional
derivatives: Hilfer pρÑ 1q [23], Hilfer-Hadamard pρÑ 0`q [29], generalized pβ “ 0q [31],
generalized Caputo-type pβ “ 1q [48], Riemann-Liouville pβ “ 0, ρÑ 1q [38], Hadamard
pβ “ 0, ρÑ 0`q [38], Caputo pβ “ 1, ρÑ 1q [38], Caputo-Hadamard pβ “ 1, ρÑ 0`q [19],
Liouville pβ “ 0, ρ Ñ 1, a “ 0q [38] and Weyl pβ “ 0, ρ Ñ 1, a Ñ ´8q [22]. This fact is
illustrated in the diagram below.
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Hilfer-
Katugampola
derivative

Katugampola
derivative

Generalized
Caputo-type
derivative

Riemann-
Liouville

Hadamard
Caputo Caputo-

Hadamard

Liouville Weyl

Hilfer-
Hadamard
derivative

Hilfer
derivative

β “ 0 β “ 1

ρÑ 1 ρÑ 0`

ρÑ 1 ρÑ 0`

a “ 0 aÑ ´8

ρÑ 0`ρÑ 1

Property 5.3. We consider the following parameters α, β, γ, µ satisfying

γ “ α ` βp1´ αq, 0 ă α, β, γ ă 1, 0 ď µ ă 1.

Thus, we define the spaces Cα,β
1´γ,µra, bs “ tϕ P C1´γ,ρra, bs,

ρDα,βa` ϕ P Cµ,ρra, bsu and
Cγ

1´γ,ρra, bs “ tϕ P C1´γ,ρra, bs,
ρDγa`ϕ P C1´γ,ρra, bsu where Cµ,ρra, bs and C1´γ,ρra, bs

are weighted spaces of continuous functions on pa, bs defined by item (2) in Definition 5.1.
Since ρDα,βa` ϕ “

ρJ γp1´αq
a`

ρDγa`ϕ, it follows from Lemma 5.4

Cγ
1´γra, bs Ă Cα,β

1´γra, bs.

Lemma 5.7. Let 0 ă α ă 1, 0 ď β ď 1 and γ “ α ` βp1´ αq. If ϕ P Cγ
1´γra, bs, then

ρJ γ
a`

ρDγa`ϕ “
ρJ α

a`
ρDα,βa` ϕ (5.4)

and

ρDγa`
ρJ α

a`ϕ “
ρDβp1´αqa` ϕ. (5.5)

Proof. We first prove Eq.(5.4). Using Theorem 4.2 and Property 5.1, we can write

ρJ γ
a`

ρDγa`ϕ “
ρJ γ

a`
ρJ ´βp1´αqa`

ρDα,βa` ϕ “
ρJ α`β´αβ

a`
ρJ ´β`αβa`

ρDα,βa` ϕ “
ρJ α

a`
ρDα,βa` ϕ.

To prove Eq.(5.5), we use Definition 5.2 and Theorem 4.2 to get

ρDγa`
ρJ α

a`ϕ “ δρ
ρJ 1´γ

a`
ρJ α

a`ϕ “ δρ
ρJ 1´β`αβ

a` ϕ “ δρ
ρJ 1´βp1´αq

a` ϕ “ ρDβp1´αqa` ϕ.
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Lemma 5.8. Let ϕ P Lpa, bq. If ρDβp1´αqa` ϕ exists on Lpa, bq, then

ρDα,βa`
ρJ α

a`ϕ “
ρJ βp1´αq

a`
ρDβp1´αqa` ϕ.

Proof. From Lemma 4.1, Definition 4.2 and Definition 5.2, we obtain

ρDα,βa`
ρJ α

a`ϕ “
ρJ βp1´αq

a`
ρDγa`

ρJ α
a`ϕ “

ρJ βp1´αq
a` δρ

ρJ 1´γ
a`

ρJ α
a`ϕ

“
ρJ βp1´αq

a` δρ
ρJ 1´βp1´αq

a` ϕ “ ρJ βp1´αq
a`

ρDβp1´αqa` ϕ.

Lemma 5.9. Let 0 ă α ă 1, 0 ď β ď 1 and γ “ α ` βp1 ´ αq. If ϕ P C1´γra, bs and
ρJ 1´βp1´αq

a` P C1
1´γra, bs, then ρDα,βa`

ρJ α
a`ϕ exists on pa, bs and

ρDα,βa`
ρJ α

a`ϕ “ ϕ, x P pa, bs. (5.6)

Proof. Using Lemma 4.2, Lemma 4.1 and Lemma 5.8, we obtain

p
ρDα,βa`

ρJ α
a`ϕqpxq “ p

ρJ βp1´αq
a`

ρDβp1´αqa` ϕqpxq

“ ϕpxq ´
pρJ βp1´αq

a` ϕqpaq

Γpαq

ˆ

xρ ´ aρ

ρ

˙βp1´αq´1

“ ϕpxq, x P pa, bs.

5.3 Equivalence Between the Generalized Cauchy problem and the
Volterra Integral Equation

In this section, we consider the following nonlinear fractional differential equa-
tion

p
ρDα,βa` ϕqpxq “ fpx, ϕpxqq, x ą a ą 0 (5.7)

where 0 ă α ă 1, 0 ď β ď 1, ρ ą 0, with the initial condition

p
ρJ 1´γ

a` ϕqpaq “ c, with γ “ α ` βp1´ αq, c P R. (5.8)

The following theorem yields the equivalence between the problem Eq.(5.7)-Eq.(5.8) and
the Volterra integral equation, given by

ϕpxq “
c

Γpγq

ˆ

xρ ´ aρ

ρ

˙γ´1

`
1

Γpαq

ż x

a

ˆ

xρ ´ tρ

ρ

˙α´1

tρ´1fpt, ϕptqqdt. (5.9)

Theorem 5.1. Let γ “ α`βp1´αq, where 0 ă α ă 1 and 0 ď β ď 1. If f : pa, bsˆRÑ R
is a function such that fp¨, ϕp¨qq P C1´γra, bs for any ϕ P C1´γra, bs, then ϕ satisfies
Eq.(5.7)-Eq.(5.8) if, and only if, it satisfies Eq.(5.9).
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Proof. pñq Let ϕ P Cγ
1´γra, bs be a solution of the problem Eq.(5.7)-Eq.(5.8). We prove

that ϕ is also a solution of Eq.(5.9). From the definition of Cγ
1´γra, bs, Lemma 5.4 and

using Definition 5.2, we have
ρJ 1´γ

a` ϕ P Cra, bs and ρDγa`ϕ “ δρ
ρJ 1´γ

a` ϕ P C1´γra, bs.

By Definition 5.1, it follows that ρJ 1´γ
a` ϕ P C1

1´γra, bs. Using Lemma 4.2, with α “ γ, and
Eq.(5.8), we can write

p
ρJ γ

a`
ρDγa`ϕqpxq “ ϕpxq ´

c

Γpγq

ˆ

xρ ´ aρ

ρ

˙γ´1

, (5.10)

where x P pa, bs. By hypothesis, ρDγa`ϕ P C1´γra, bs, using Lemma 5.7 with α “ γ and
Eq.(5.7), we have

p
ρJ γ

a`
ρDγa`ϕqpxq “ p

ρJ α
a`

ρDα,βa` ϕqpxq

“ p
ρJ α

a`fpt, ϕptqqqpxq. (5.11)

Comparing Eq.(5.10) and Eq.(5.11), we see that

ϕpxq “
c

Γpγq

ˆ

xρ ´ aρ

ρ

˙γ´1

` p
ρJ α

a`fpt, ϕptqqqpxq, (5.12)

with x P pa, bs, that is, ϕpxq satisfies Eq.(5.9).

pðq Let ϕ P Cγ
1´γra, bs satisfying Eq.(5.9). We prove that ϕ also satisfies the problem

Eq.(5.7)-Eq.(5.8). Apply operator ρDγa` on both sides of Eq.(5.12). Then, from Lemma 4.1,
Lemma 5.7 and Definition 5.2 we obtain

p
ρDγa`ϕqpxq “ p

ρDβp1´αqa` fpt, ϕptqqqpxq. (5.13)

By hypothesis, ρDγa`ϕ P C1´γra, bs; then, Eq.(5.13) implies that

p
ρDγa`ϕqpxq “ δρ

ρJ 1´βp1´αq
a` ϕqpxq

“ p
ρDβp1´αqa` ϕq P C1´γra, bs. (5.14)

As fp¨, ϕp¨qq P C1´γra, bs and from Lemma 5.4, follows
ρJ 1´βp1´αq

a` f P C1´γra, bs. (5.15)

From Eq.(5.14), Eq.(5.15) and Definition 5.1, we obtain
ρJ 1´βp1´αq

a` ϕ P C1
1´γra, bs.

Applying operator ρJ βp1´αq
a` on both sides of Eq.(5.14) and using Lemma 4.2, Lemma 4.1

and Definition 5.2, we have

p
ρJ βp1´αq

a`
ρDγa`ϕqpxq “ fpx, ϕpxqq

`
pρJ 1´βp1´αq

a` fpt, ϕptqqqpaq

Γpβp1´ αqq

ˆ

xρ ´ tρ

ρ

˙βp1´αq´1

“ p
ρDα,βa` ϕqpxq “ fpx, ϕpxqq,
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that is, Eq.(5.7) holds. Next, we prove that if ϕ P Cγ
1´γra, bs satisfies Eq.(5.9), it also

satisfies Eq.(5.8). To this end, we multiply both sides of Eq.(5.12) by ρJ 1´γ
a` and use

Lemma 4.1 and Theorem 4.2 to get

p
ρJ 1´γ

a` ϕqpxq “ c` pρJ 1´γp1´αq
a` fpt, ϕptqqqpxq. (5.16)

Finally, taking xÑ a in Eq.(5.16), Eq.(5.8) follows.

5.4 Existence and Uniqueness of Solution for the Cauchy Problem
In this section, we prove the existence and uniqueness of the solution for the

problem Eq.(5.7)-Eq.(5.8) in the space Cα,β
1´γ,ρra, bs defined in Property 5.3, under the

hypotheses of Theorem 5.1 and the Lipschitz condition on fp¨, ϕq with respect to the
second variable, that is, fp¨, ϕq is bounded in a region G Ă R such that

‖fpx, ϕ1q ´ fpx, ϕ1q‖C1´γ,ρra,bs
ď A‖ϕ1 ´ ϕ2‖C1´γ,ρra,bs

, (5.17)

for all x P pa, bs, and for all ϕ1, ϕ2 P G, where A ą 0 is constant.

Theorem 5.2. Let 0 ă α ă 1, 0 ď β ď 1 and γ “ α`βp1´αq. Let f : pa, bsˆRÑ R be a
function such that fp¨, ϕp¨qq P Cµ,ρra, bs for any ϕ P Cµ,ρra, bs with 1´γ ď µ ă 1´ βp1´ αq
and satisfying the Lipschitz condition, Eq.(5.17), with respect to the second variable. Then,
there exists a unique solution ϕ for the problem Eq.(5.7)-Eq.(5.8) in the space Cα,β

1´γ,µra, bs.

Proof. According to Theorem 5.1, we just have to prove that there exists a unique solution
for the Volterra integral equation, Eq.(5.9). This equation can be written as

ϕpxq “ Tϕpxq,

where

Tϕpxq “ ϕ0pxq ` r
ρJ α

a`fpt, ϕptqqspxq, (5.18)

with

ϕ0pxq “
c

Γpγq

ˆ

xρ ´ aρ

ρ

˙γ´1

. (5.19)

Thus, we divide the interval pa, bs into subintervals on which operator T is a contraction;
we then use Banach fixed point theorem, Theorem 1.1. Note that ϕ P C1´γ,ρra, x1s, where
a “ x0 ă x1 ă . . . ă xM “ b and C1´γ,ρra, x1s is a complete metric space with metric

dpϕ1, ϕ2q “ ‖ϕ1 ´ ϕ2‖C1´γ,ρra,x1s
“ max

xPra,x1s

ˇ

ˇ

ˇ

ˇ

ˆ

xρ ´ aρ

ρ

˙1´γ

rϕ1 ´ ϕ2s

ˇ

ˇ

ˇ

ˇ

.
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Choose x1 P pa, bs such that the inequality

w1 “
AΓpγq

Γpα ` γq

ˆ

x1
ρ ´ aρ

ρ

˙α

ă 1, (5.20)

where A ą 0 is a constant, holds, as in Eq.(5.17). Thus, ϕ0 P C1´γ,ρra, x1s and from
Lemma 5.4, we have Tϕ P C1´γ,ρra, x1s and T maps C1´γ,ρra, x1s into C1´γ,ρra, x1s. There-
fore, from Eq.(5.17), Eq.(5.18), Lemma 5.4 and for any ϕ1, ϕ2 P C1´γ,ρra, x1s, we can
write

‖Tϕ1 ´ Tϕ2‖C1´γ ra,x1s
“ ‖ρJ α

a`fpt, ϕ1ptqq ´
ρJ α

a`fpt, ϕ2ptqq‖C1´γ,ρra,x1s

“ ‖ρJ α
a`r|fpt, ϕ1ptqq ´ fpt, ϕ2ptqq|s‖C1´γ,ρra,x1s

ď

ˆ

x1
ρ ´ aρ

ρ

˙α Γpγq
Γpα ` γq‖fpt, ϕ1ptqq ´ fpt, ϕ2ptqq‖C1´γ,ρra,x1s

ď A

ˆ

x1
ρ ´ aρ

ρ

˙α Γpγq
Γpα ` γq‖ϕ1ptq ´ ϕ2ptq‖C1´γ,ρra,x1s

ď w1‖ϕ1ptq ´ ϕ2ptq‖C1´γ,ρra,x1s
.

Since fpx, ϕpxqq P Cpa, x1s for any ϕ P Cpa, x1s, Lemma 5.3 implies that
p
ρJ α

a`fq P Cpa, x1s. By hypothesis Eq.(5.20) we can use the Banach fixed point to get a
unique solution ϕ˚ P C1´γ,ρra, x1s for Eq.(5.9) on the interval pa, x1s. This solution ϕ˚ is
obtained as a limit of a convergent sequence T kϕ˚0 :

lim
kÑ8
‖T kϕ˚0 ´ ϕ˚‖C1´γ,ρra,x1s

“ 0, (5.21)

where ϕ˚0 is any function in C1´γ,ρra, x1s and

pT kϕ˚0qpxq “ pT T k´1ϕ˚0qpxq

“ ϕ0pxq ` r
ρJ α

a`fpt, pT
k´1ϕ˚0qptqqspxq, k P N.

We take ϕ˚0pxq “ ϕ0pxq with ϕ0pxq defined by Eq.(5.19). Denoting

ϕkpxq “ pT
kϕ˚0qpxq, k P N, (5.22)

then Eq.(5.22) admits the form

ϕkpxq “ ϕ0pxq ` r
ρJ α

a`fpt, ϕk´1ptqqspxq, k P N.

On the other hand, Eq.(5.21) can be rewritten as

lim
kÑ8
‖ϕk ´ ϕ˚‖C1´γ,ρra,x1s

“ 0.

We consider the interval rx1, x2s, where x2 “ x1 ` h1, h1 ą 0 and x2 ă b, then by Eq.(5.9),
we can write

ϕpxq “
c

Γpγq

ˆ

xρ ´ aρ

ρ

˙γ´1

`
1

Γpαq

ż x1

a

tρ´1
ˆ

xρ ´ tρ

ρ

˙α´1

fpt, ϕptqqdt

`
1

Γpαq

ż x

x1

tρ´1
ˆ

xρ ´ tρ

ρ

˙α´1

fpt, ϕptqqdt

“ ϕ01pxq `
1

Γpαq

ż x

x1

tρ´1
ˆ

xρ ´ tρ

ρ

˙α´1

fpt, ϕptqqdt,
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where ϕ01pxq, defined by

ϕ01pxq “
c

Γpγq

ˆ

xρ ´ aρ

ρ

˙γ´1

`
1

Γpαq

ż x1

a

tρ´1
ˆ

xρ ´ tρ

ρ

˙α´1

fpt, ϕptqqdt,

is a known function and ϕ01pxq P C1´γ,ρrx1, x2s. Using the same arguments as above,
we conclude that there exists a unique solution ϕ˚ P C1´γ,ρrx1, x2s for Eq.(5.9) on the
interval rx1, x2s. The next interval to be considered is rx2, x3s, where x3 “ x2 ` h2, h2 ą 0
and x3 ă b. Repeating this process, we conclude that there exists a unique solution
ϕ˚ P C1´γ,ρra, bs for Eq.(5.9) on the interval ra, bs. We must show that such unique solution
ϕ˚ P C1´γ,ρra, bs is also in Cα,β

1´γ,µra, bs. Thus, we need show that pρDα,βa` ϕ
˚
q P Cµ,ρra, bs. We

emphasize that ϕ˚ is the limit of the sequence ϕk, where ϕk “ T kϕ˚0 P C1´γ,ρra, bs, that is,

lim
kÑ8
‖ϕk ´ ϕ˚‖C1´γ,ρra,bs

“ 0, (5.23)

for an adequate choice of ϕ˚0pxq on each subinterval ra, x1s, . . . ,rxM´1, bs. If ϕ0pxq ‰ 0,
then we can admit ϕ˚0pxq “ ϕ0pxq and once µ ě 1´ γ, from Lipschitz condition, Definition
1.1, and by Lemma 5.1, we can write

‖ρDα,β
a` ϕk ´

ρDα,β
a` ϕ˚‖

Cµ,ρra,bs
“ ‖fpx, ϕkq ´ fpx, ϕ˚q‖Cµ,ρra,bs

ď A

ˆ

bρ ´ aρ

ρ

˙µ´1`γ
‖ϕk ´ ϕ˚‖C1´γ,ρra,bs

. (5.24)

By Eq.(5.23) and Eq.(5.24), we obtain

lim
kÑ8
‖ρDα,βa` ϕk ´

ρDα,βa` ϕ
˚‖

Cµ,ρra,bs
“ 0.

From this last expression, we have pρDα,βa` ϕ
˚
q P Cµ,ρra, bs if pρDα,βa` ϕkq P Cµ,ρra, bs, k “

1, 2, . . . Since pρDα,βa` ϕkqpxq “ fpx, ϕk´1pxqq, then by the previous argument, we obtain
that fp¨, ϕ˚p¨qq P Cµ,ρra, bs for any ϕ˚ P Cµ,ρra, bs. Consequently, ϕ˚ P Cα,β

1´γ,µra, bs.

5.5 Application: Particular Cases for Cauchy Problem
This section is devoted to explicit solutions to fractional differential equations

associated with the Hilfer-Katugampola differential operator pρDα,βa` ϕqpxq of order 0 ă α ă 1
and type 0 ď β ď 1 in the space Cα,β

1´γ,ρra, bs defined in Property 5.3.

We consider the following Cauchy problem

p
ρDα,βa` ϕqpxq ´ λϕpxq “ fpxq, 0 ă α ă 1, 0 ď β ď 1, (5.25)

p
ρJ 1´γ

a` qpaq “ c, γ “ α ` βp1´ αq, (5.26)

where c, λ P R. We suppose that fpxq P Cµ,ρra, bs with 0 ď µ ă 1 and ρ ą 0. Then, by
Theorem 5.1, the problem Eq.(5.25)-Eq.(5.26) is equivalent to solve the following integral
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equation

ϕpxq “
c

Γpγq

ˆ

xρ ´ aρ

ρ

˙γ´1

`
λ

Γpαq

ż x

a

tρ´1
ˆ

xρ ´ tρ

ρ

˙α´1

ϕptqdt

`
1

Γpαq

ż x

a

tρ´1
ˆ

xρ ´ tρ

ρ

˙α´1

fptqdt. (5.27)

In order to solve Eq.(5.27), we use the method of successive approximations, that is,

ϕ0pxq “
c

Γpγq

ˆ

xρ ´ aρ

ρ

˙γ´1

, (5.28)

ϕkpxq “ ϕ0pxq `
λ

Γpαq

ż x

a

tρ´1
ˆ

xρ ´ tρ

ρ

˙α´1

ϕk´1ptqdt

`
1

Γpαq

ż x

a

tρ´1
ˆ

xρ ´ tρ

ρ

˙α´1

fptqdt, pk P Nq. (5.29)

Using Eq.(4.1), Eq.(5.28) and Lemma 4.1, we have the following expression for ϕ1pxq:

ϕ1pxq “ ϕ0pxq ` p
ρJ α

a`ϕ0qpxq ` p
ρJ α

a`fqpxq

“ c
2
ÿ

j“1

λj´1

Γpαj ` βp1´ αqq

ˆ

xρ ´ aρ

ρ

˙αj`βp1´αq´1

` p
ρJ α

a`fqpxq. (5.30)

Similarly, using Eq.(5.28), Eq.(5.29), Eq.(5.30) and Theorem 4.2, we get an expression for
ϕ2pxq, as follows:

ϕ2pxq “ ϕ0pxq ` p
ρJ α

a`ϕ1qpxq ` p
ρJ α

a`fqpxq

“ c
3
ÿ

j“1

λj´1

Γpαj ` βp1´ αqq

ˆ

xρ ´ aρ

ρ

˙αj`βp1´αq´1

` λpρJ α
a`

ρJ α
a`fqpxq ` p

ρJ α
a`fqpxq

“ c
3
ÿ

j“1

λj´1

Γpαj ` βp1´ αqq

ˆ

xρ ´ aρ

ρ

˙αj`βp1´αq´1

`

ż x

a

2
ÿ

j“1

λj´1

Γpαjq t
ρ´1

ˆ

xρ ´ tρ

ρ

˙αj´1

fptqdt.

Continuing this process, the expression for ϕkpxq is given by

ϕkpxq “ c
k`1
ÿ

j“1

λj´1

Γpαj ` βp1´ αqq

ˆ

xρ ´ aρ

ρ

˙αj`βp1´αq´1

`

ż x

a

k
ÿ

j“1

λj´1

Γpαjq t
ρ´1

ˆ

xρ ´ tρ

ρ

˙αj´1

fptqdt.

Taking the limit k Ñ 8, we obtain the expression for ϕpxq, that is,

ϕpxq “ c
8
ÿ

j“1

λj´1

Γpαj ` βp1´ αqq

ˆ

xρ ´ aρ

ρ

˙αj`βp1´αq´1

`

ż x

a

8
ÿ

j“1

λj´1

Γpαjq t
ρ´1

ˆ

xρ ´ tρ

ρ

˙αj´1

fptqdt.
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Replacing the index of summation in this last expression, j Ñ j ` 1, we have

ϕpxq “ c
8
ÿ

j“0

λj

Γpαj ` γq

ˆ

xρ ´ aρ

ρ

˙αj`γ´1

`

ż x

a

8
ÿ

j“0

λj

Γpαj ` αq t
ρ´1

ˆ

xρ ´ tρ

ρ

˙αj`α´1

fptqdt

or, by two-parameters Mittag-Leffler function, we can rewrite the solution as

ϕpxq “ c

ˆ

xρ ´ aρ

ρ

˙γ´1

Eα,γ

„

λ

ˆ

xρ ´ aρ

ρ

˙α

`

ż x

a

tρ´1
ˆ

xρ ´ tρ

ρ

˙α´1

Eα,α

„

λ

ˆ

xρ ´ tρ

ρ

˙α

fptqdt. (5.31)

The function fpx, ϕq “ λϕpxq ` fpxq satisfies the Lipschitz condition, Definition 1.1, for
any x1, x2 P pa, bs and any y P G, where G is an open set on R. If µ ě 1´ γ, then by
Theorem 5.2, the problem Eq.(5.25)-Eq.(5.26) has a unique solution given by Eq.(5.31) in
the space Cα,β

1´γ,µra, bs. Note that, the problem Eq.(5.25)-Eq.(5.26), whose solution is given
by Eq.(5.31), admits the following particular cases:

• If ρ Ñ 1 and β “ 0, then γ “ α and we have a problem involving the Riemann-
Liouville fractional derivative; its solution is given by [38, p.224]

ϕpxq “ c px´ aqα´1Eα,αrλpx´ aq
α
s `

ż x

a

px´ tqα´1Eα,αrλpx´ tq
α
sfptqdt.

• For ρÑ 1 and β “ 1 our derivative becomes the Caputo fractional derivative; the
solution is given by [38, p.231].

ϕpxq “ cEαrλpx´ aq
α
s `

ż x

a

px´ tqα´1Eα,αrλpx´ tq
α
sfptqdt.

• Considering ρÑ 0` and β “ 0, we have γ “ α a Cauchy problem formulated with
the Hadamard fractional derivative; whose solution is given by [38, p.235]

ϕpxq “ c
´

ln x
a

¯α´1
Eα,α

”

λ
´

ln x
a

¯αı

`

ż x

a

´

ln x
t

¯α´1
Eα,α

”

λ
´

ln x
t

¯αı

fptq
dt

t
.

• Other particular cases arise when we vary the parameters as described in Property
5.2.

A special case occurs for fpxq “ 0 in Eq.(5.25); we then have the following problem

p
ρDα,βa` ϕqpxq ´ λϕpxq “ 0, 0 ă α ă 1, 0 ď β ď 1, (5.32)

p
ρJ 1´γ

a` qpaq “ c, γ “ α ` βp1´ αq, (5.33)



Chapter 5. Hilfer-Katugampola Fractional Derivatives 77

with λ P R and a ă x ď b. The solution is given by

ϕpxq “ c

ˆ

xρ ´ aρ

ρ

˙γ´1

Eα,γ

„

λ

ˆ

xρ ´ aρ

ρ

˙α

. (5.34)

Also, consider the following Cauchy problem:

p
ρDα,βa` ϕqpxq ´ λ

ˆ

xρ ´ aρ

ρ

˙ξ

ϕpxq “ 0, 0 ă α ă 1, 0 ď β ď 1, (5.35)

p
ρJ 1´α

a` qpaq “ c, c P R, ρ ą 0, (5.36)

with λ, ξ P R, a ă x ď b and ξ ą ´α. We suppose
«

λ

ˆ

xρ ´ aρ

ρ

˙ξ

ϕ

ff

P C1´α,ρra, bs. Then,

by Theorem 5.1, the problem Eq.(5.35)-Eq.(5.36) is equivalent to the integral equation:

ϕpxq “
c

Γpαq

ˆ

xρ ´ aρ

ρ

˙α´1

`
λ

Γpαq

ż x

a

tρ´1
ˆ

xρ ´ tρ

ρ

˙α´1 ˆ
tρ ´ aρ

ρ

˙ξ

ϕptqdt. (5.37)

We apply the method of successive approximations to solve the integral equation Eq.(5.37),
that is, we consider

ϕ0pxq “
c

Γpαq

ˆ

xρ ´ aρ

ρ

˙α´1

(5.38)

and

ϕkpxq “ ϕ0pxq `
λ

Γpαq

ż x

a

tρ´1
ˆ

xρ ´ tρ

ρ

˙α´1 ˆ
tρ ´ aρ

ρ

˙ξ

ϕk´1ptqdt. (5.39)

For k “ 1 and using Lemma 4.1, we have

ϕ1pxq “ ϕ0pxq ` λ

˜

ρJ α
a`

ˆ

tρ ´ aρ

ρ

˙ξ

ϕ0

¸

pxq

“
c

Γpαq

ˆ

xρ ´ aρ

ρ

˙α´1

`
cλ

Γpαq
Γpα ` ξq
Γp2α ` ξq

ˆ

xρ ´ aρ

ρ

˙2α`ξ´1

. (5.40)

For k “ 2 and using again Lemma 4.1, we can write

ϕ2pxq “ ϕ0pxq ` λ

˜

ρJ α
a`

ˆ

tρ ´ aρ

ρ

˙ξ

ϕ1

¸

pxq

“ ϕ0pxq `
cλ

Γpαq

˜

ρJ α
a`

ˆ

tρ ´ aρ

ρ

˙α`ξ´1
¸

pxq

`
cλ2

Γpαq
Γpα ` ξq
Γp2α ` ξq

˜

ρJ α
a`

ˆ

tρ ´ aρ

ρ

˙2α`2ξ´1
¸

pxq

“
c

Γpαq

ˆ

xρ ´ aρ

ρ

˙α´1
$

&

%

1` c1

«

λ

ˆ

xρ ´ aρ

ρ

˙α`ξ
ff

` c2

«

λ

ˆ

xρ ´ aρ

ρ

˙α`ξ
ff2
,

.

-

,
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where

c1 “
Γpα ` ξq
Γp2α ` ξq and c2 “

Γpα ` ξq
Γp2α ` ξq

Γp2α ` 2ξq
Γp3α ` 2ξq . (5.41)

Continuing this process, we obtain the expression for ϕkpxq, given by

ϕkpxq “
c

Γpαq

ˆ

xρ ´ aρ

ρ

˙α´1
$

&

%

1`
k
ÿ

j“1
cj

«

λ

ˆ

xρ ´ aρ

ρ

˙α`ξ
ffj
,

.

-

, (5.42)

where

cj “
j
ź

r“1

Γrrpα ` ξqs
Γrrpα ` ξq ` αs , j P N.

Using Definition 1.9 we can write the solution of Eq.(5.42) as

ϕkpxq “
c

Γpαq

ˆ

xρ ´ aρ

ρ

˙α´1

Eα,1`ξ{α,1`pξ´1q{α

«

λ

ˆ

xρ ´ aρ

ρ

˙α`ξ
ff

. (5.43)

If ξ ě 0, then fpx, ϕq “ λ

ˆ

xρ ´ aρ

ρ

˙ξ

ϕpxq satisfies the Lipschitz condition, Eq.(5.17),

for any x1, x2 P pa, bs and for all ϕ1, ϕ2 P G, where G is an open set on R. If µ ě 1´ γ,
then by Theorem 5.2, there exists a unique solution to the problem Eq.(5.35)-Eq.(5.36),
given by Eq.(5.43), in space Cα,β

1´γ,µra, bs. Note that the problem Eq.(5.35)-Eq.(5.36), whose
solution is given by Eq.(5.43), admits the following particular cases:

• For ρ Ñ 1 and β “ 0, we have formulation for this problem, as well as it solution
considering the Riemann-Liouville fractional derivative [38, p.227], this is

ϕpxq “
c

Γpαqpx´ aq
α´1Eα,1`ξ{α,1`pξ´1q{αrλpx´ aq

α`ξ
s.

• Consider ρ Ñ 1 and β “ 1, we have formulation of the problem and it solution,
considering the Caputo fractional derivative [38, p.233], is given by

ϕpxq “ cEα,1`ξ{α,ξ{αrλpx´ aq
α`ξ
s.

• For ρÑ 0` and β “ 0, we have formulation for this Cauchy problem and its solution
considering the Hadamard fractional derivative that is given by [38, p.237]

ϕpxq “
c

Γpαq

´

ln x
a

¯α´1
Eα,1`ξ{α,1`pξ´1q{α

„

λ
´

ln x
a

¯α`ξ


.
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Chapter 6
Generalized pk, ρq-Fractional Derivatives

In order to generalize the fractional integrals and derivatives some authors
have inserted a new parameter in existing formulations. In 2012, Mubben and Habibullah
[44] inserted the parameter k ą 0 in Riemann-Liouville fractional integrals and called this
generalization by k-Riemann-Liouville fractional integrals. In 2015, Farid and Habibullah
[16], also inserted a new parameter in Hadamard fractional integrals, in order to obtain
the Hadamard k-fractional integrals.

From the k-fractional integrals it was possible to define the k-fractional deriva-
tives. In 2013, Dorrego and Cerutti [15] defined the Hilfer k-fractional derivatives by means
of Riemann-Liouville k-fractional integrals. In the same year, Romero et al. [52] introduced
the k-Riemann-Liouville fractional derivatives. More recently, in 2017, Nisar et al. [46]
defined the pk, ρq-fractional derivatives. However, in that paper the authors discuss only
the case 0 ă α ă 1. In this chapter we proposed the pk, ρq-fractional derivatives, but we
discussed the general case α P R with α ą 0. This chapter is part of our paper that was
accepted for publication [49].

This chapter is organized as follows: In section 6.1, we present some definitions
aiming at our main result; in particular, the definition of k-Mittag-Leffler functions, the
spaces in which we work and the k-fractional integrals in the senses of Riemann-Liouville
and Hadamard. In section 6.3, we present some properties of the so-called pk, ρq-fractional
operator and in section 6.4, our main result, we introduce the generalized pk, ρq-fractional
derivative and we demonstrate that, using adequate parameters, we are able to recover
a wide list of definitions of fractional derivatives. As an application, introduced in the
previous section by means of theorems, we approach linear fractional differential equations
by studying the Cauchy problem and discuss the existence and uniqueness of its solution
and its dependence on initial conditions.
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6.1 Generalizations of Special Functions and Fractional Integrals
In order to generalize such functions, Dorrego and Cerutti [14] defined the

so-called k-Mittag-Leffler function as follows:

Eδ
k,β,γpzq “

8
ÿ

n“0

pδqn,k
Γkpβn` γq

zn

n! , z P R, β ą 0, γ ą 0, (6.1)

where n P N, pδqn,k is the k-Pochhammer symbol defined in Eq.(1.17) and Γkpxq is the
k-gamma function, Eq.(1.14). In the case k “ 1 we recover the three-parameters Mittag-
Leffler function, Eq.(1.20). Gupta and Parihar [20] defined the so-called k-new generalized
Mittag-Leffler function using the following series:

Ek,ξ,σpzq “
8
ÿ

n“0

zn

Γkpξn` σq
, z P R, ξ ą 0, σ ą 0, (6.2)

where n P N. Again, in order to recover the two-parameters Mittag-Leffler function
introduced by Wiman, Eq.(1.21), one just has to consider k “ 1.

6.2 k-Fractional Integrals
Mubeen and Habibullah [44] introduced the so-called k-Riemann-Liouville

fractional integrals, a generalization of the Riemann-Liouville fractional integrals, obtained
for k “ 1. Such integral is defined here, for the left-sided only, as

pkIαa`ϕqpxq “
1

k Γkpαq

ż x

a

px´ tq
α
k
´1ϕptqdt, α ą 0, x ą a, (6.3)

where ϕ P Lpa, bq. For k Ñ 1, we have Γkpαq “ Γpαq and kIαa` “ Iαa` , where Iαa` is
the classical Riemann-Liouville fractional integral. Similarly, in order to generalize the
Hadamard fractional integral, the k-Hadamard fractional integral [1] was introduced. The
definition of this operator, for the left-sided only, is given by

pkJ α
a`ϕqpxq “

1
k Γkpαq

ż x

a

´

ln x
t

¯
α
k
´1
ϕptq

dt

t
, α ą 0, x ą a, (6.4)

where k ą 0 and ϕ P Lpa, bq. For k Ñ 1, we have kJ α
a` Ñ J α

a` , where J α
a` is the Hadamard

fractional integral.
Recently, Sarikaya et al. [56] proposed the so-called pk, ρq-fractional integral which, at
adequate limits, recovers the k-Riemann-Liouville and k-Hadamard fractional integrals.
This operator is defined —left-sided only— by

p
ρ
kJ α

a`ϕqpxq “
1

k Γkpαq

ż x

a

ˆ

xρ ´ tρ

ρ

˙
α
k
´1

tρ´1ϕptqdt, α ą 0, x ą a, (6.5)
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with n ´ 1 ă α ď n, n P N, k ą 0, ρ ą 0 and ϕ P Lpa, bq. When k Ñ 1, we have
Γkpαq Ñ Γpαq and ρ

kJ α
a` Ñ

ρJ α
a` , where ρJ α

a` is the generalized fractional integral defined
by Katugampola in [31]. When ρ Ñ 1, we obtain the k-Riemann-Liouville fractional
integral, Eq.(6.3). On the other hand, considering ρ Ñ 0`, we obtain the k-Hadamard
fractional integral, Eq.(6.4).

6.3 Auxiliary Results
We now present some properties of the fractional integrals, defined in the

previous section, in order to use them throughout this chapter. We start by presenting
the semigroup property for the pk, ρq-fractional operator and an application to the power
function; both results are theorems can be found in [56].

Theorem 6.1. Let α ą 0, β ą 0, k ą 0, ρ ą 0 and ϕ P Lppa, bq, then

p
ρ
kJ α

a`
ρ
kJ

β
a`ϕqpxq “ p

ρ
kJ

α`β
a` ϕqpxq “ pρkJ

β
a`

ρ
kJ α

a`ϕqpxq.

Theorem 6.2. Let α, β ą 0 and k, ρ ą 0. Then, we have

r
ρ
kJ α

a`pt
ρ
´ aρq

β
k
´1
spxq “

Γkpβq
ρ
α
k Γkpα ` βq

pxρ ´ aρq
α`β
k
´1.

The following lemma shows that the pk, ρq-fractional operator is bounded in
the space Lpa, bq.

Lemma 6.1. [56] Let ϕ P Lpa, bq; then, the pk, ρq-Riemann-Liouville fractional integral
of order α ą 0 is bounded in the space Lpa, bq, i.e.

‖ρkJ α
a`ϕ‖1 ďM‖ϕ‖1, (6.6)

where

M “
1

αΓkpαq

ˆ

bρ ´ aρ

ρ

˙
α
k

.

Recently, Nisar et al. [46] proposed the pk, ρq-fractional derivative, which is
associated with the pk, ρq-fractional integral, Eq.(6.5).

Definition 6.1. [46] Let µ, ν, k P R such that 0 ă µ ă 1, 0 ď ν ď 1 and k ą 0. The
pk, ρq-fractional derivative is defined by

p
ρ
kD

µ,ν
a` ϕqpxq “

ˆ

ρ
kJ

νpk´µq
a`

ˆ

x1´ρ d

dx

˙

pk ρkJ
p1´νqpk´µq
a` ϕq

˙

pxq, (6.7)

for functions for which the expression on the right hand side exists.
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6.4 Generalized pk, ρq-Fractional Derivative
In this section we propose, as our main result of this chapter, a generalization

for the fractional derivative proposed in [46]. The definition in that work considers the order
of derivative to be 0 ă µ ă 1, but here we consider α P R`, with n´ 1 ă α ď n and n P N.
We call our definition by generalized pk, ρq-fractional derivative. The fractional integrals
associated with this differentiation operator is the pk, ρq-fractional integral, Eq.(6.5). In
this section we also prove some properties of this operator.

Definition 6.2. Let α, ν P R such that n ´ 1 ă α ď n, n P N, 0 ď ν ď 1, ρ ą 0 and
k ą 0. We define the generalized pk, ρq-fractional derivative by

p
ρ
kD

α,ν
a` ϕqpxq “

ˆ

ρ
kJ

νpnk´αq
a`

ˆ

x1´ρ d

dx

˙n

pkn ρkJ
p1´νqpkn´αq
a` ϕq

˙

pxq (6.8)

“

´

ρ
kJ

νpnk´αq
a` δnρ pk

n ρ
kJ

p1´νqpkn´αq
a` ϕq

¯

pxq, (6.9)

where δnρ “
ˆ

x1´ρ d

dx

˙n

.

With adequate choices of parameters in Definition 6.2, we recover some well-
known operators of fractional differentiation, namely:

• if n “ 1, we obtain the pk, ρq-fractional derivative Definition 6.1;

• if k “ 1 and n “ 1, we have the Hilfer-Katugampola fractional derivative proposed
in Definition 5.2;

• if k “ 1 and ρ “ 1, we obtain the so-called generalized Riemann-Liouville fractional
derivative Definition 1.15;

• if k “ 1, ρ Ñ 0` and n “ 1, we have the Hilfer-Hadamard fractional derivative
Definition 2.3;

• if k “ 1, ρ “ 1 and n “ 1, we obtain the well-known Hilfer derivative Definition 1.14;

• if k “ 1, ρ “ 1 and ν “ 0, we obtain the Riemann-Liouville fractional derivative
Definition 1.12;

• if k “ 1, ρ “ 1 and ν “ 1, we obtain the Caputo derivative Theorem 1.4;

• if k “ 1, ρÑ 0` and ν “ 0, we obtain the Hadamard fractional derivative Definition
2.2;

• if k “ 1, ρ Ñ 0` and ν “ 1, we have the Caputo-Hadamard fractional derivative
Theorem 3.1;
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• if k “ 1 and ν “ 0, we have the generalized fractional derivative Definition 4.2;

• if k “ 1 and ν “ 1, we obtain the generalized Caputo-type fractional derivative
section 4.3.

It is also possible to recover, for particular extreme values of integration, the fractional
derivative in the Liouville sense [38, p. 87] and in the Weyl [23] sense.
The generalized pk, ρq-fractional derivative, ρkD

α,ν
a` , is the inverse operator of the pk, ρq-

fractional integral, ρkJ α
a` . We prove this result by means of the following lemma.

Lemma 6.2. Let α P R˚ and ρ ą 0, k ą 0. If 1 ď p ď 8, then for ϕ P Lppa, bq we have

p
ρ
kD

α,ν
a`

ρ
kJ α

a`ϕqpxq “ ϕpxq. (6.10)

Proof. In order to simplify the development and the notation, we define

Ψ “
νpnk ´ αq

k
and Φ “ n´Ψ. (6.11)

From Definition 6.2 and Theorem 6.1, we can write

p
ρ
kD

α,ν
a`

ρ
kJ

α
a`ϕqpxq “

´

ρ
kJ

νpnk´αq
a` δnρ pk

n ρ
kJ

p1´νqpkn´αq`α
a` ϕq

¯

pxq (6.12)

“
kn´2 ρ2´Ψ´Φ

ΓkrkΨsΓkrkΦs

ż x

a

pxρ ´ tρqΨ´1tρ´1δnρ

„
ż t

a

ptρ ´ uρqΦ´1uρ´1ϕpuqdu



dt.

Knowing that,
ż t

a

ptρ ´ uρqΦ´1uρ´1ϕpuqdu “
1
ρΦ

"

ϕpaqptρ ´ aρqΦ `

ż t

a

ptρ ´ uρqΦϕ1puqdu

*

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

F ptq

, (6.13)

see Appendix B. Differentiating with the operator δnρ

δnρF ptq “
ΓpΦq ρn´1

ΓpΦ´ n` 1q

„

ϕpaqptρ ´ aρqΦ´n `

ż t

a

ptρ ´ uρqΦ´nϕ1puqdu



(6.14)

and after substituing the result Eq.(6.14) into Eq.(6.12), we have

p
ρ
kD

α,ν
a`

ρ
kJ α

a`ϕqpxq “
kn´2 ρ2´Ψ´Φ

ΓkrkΨsΓkrkΦs

ż x

a

pxρ ´ tρqΨ´1tρ´1 (6.15)

ˆ
ΓpΦq ρn´1

ΓpΦ´ n` 1q

„

ϕpaqptρ ´ aρqΦ´n `

ż t

a

ptρ ´ uρqΦ´nϕ1puqdu



dt.

Using item 2 and rearranging the last expression to get

p
ρ
kD

α,ν
a`

ρ
kJ α

a`ϕqpxq “
ρ

k kΨ´1ΓrΨs kp1´Ψq´1 Γr1´Ψs

"

ϕpaq

ż x

a

pxρ ´ tρqΨ´1tρ´1
ptρ ´ aρq´Ψdt

`

ż x

a

ϕ1puqdu

ż x

u

pxρ ´ tρqΨ´1tρ´1
ptρ ´ uρq´Ψdt

*

.
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Introducing in the integral from a to x the change of variable u “ ptρ ´ aρq{pxρ ´ aρq and
doing the same in the integral from u to x, we have

p
ρ
kD

α,ν
a`

ρ
kJ α

a`ϕqpxq “
1

ΓkrkΨsΓkrkp1´Ψqs

„

ϕpaq `

ż x

a

ϕ1puqdu

"

1
k

ż 1

0
p1´ uqΨ´1up1´Ψq´1du

*

.

We then use the two expressions in item 2 to obtain

p
ρ
kD

α,ν
a`

ρ
kJ α

a`ϕqpxq “
1

ΓkrkΨsΓkrkp1´Ψqs

„

ϕpaq `

ż x

a

ϕ1puqdu



ΓkrkΨsΓkrkp1´Ψqs
Γkrks

“ ϕpaq `

ż x

a

ϕ1puqdu.

Finally, we use the fundamental theorem of calculus, whence it immediately follows

p
ρ
kD

α,ν
a`

ρ
kJ α

a`ϕqpxq “ ϕpxq.

The following result yields the composition between the pk, ρq-fractional integral
and the generalized pk, ρq-fractional derivative.

Lemma 6.3. Let α, β P R such that α ą β ą 0, k, ρ ą 0, n ´ 1 ă α ď n and n P N. If
1 ď p ď 8, then for ϕ P Lppa, bq, we have

p
ρ
kD

α,ν
a`

ρ
kJ

β
a`ϕqpxq “ p

ρ
kJ

β´α
a` ϕqpxq. (6.16)

Proof. The proof is analogous to previous Lemma 6.2.

Again, in order to simplify the development and notation, we introduce the
parameter Λ:

Λ “ νpnk ´ αq ` α

k
. (6.17)

Lemma 6.4. Let α ą 0, n “ rαs`1, n P N. If ϕ P Lppa, bq and pρkJ
p1´νqpkn´αq´kpn´jq
a` ϕqqpxq P

ACn
δ ra, bs, then

p
ρ
kJ α

a`
ρ
kD

α,ν
a` ϕqpxq “ ϕpxq ´

n
ÿ

j“1

p
ρ
kJ

p1´νqpkn´αq´kpn´jq
a` ϕqpaq

ΓkrkpΛ´ j ` 1qs

ˆ

xρ ´ aρ

ρ

˙Λ´j

. (6.18)

In particular, if 0 ă α ă 1, then

p
ρ
kJ α

a`
ρ
kD

α,ν
a` ϕqpxq “ ϕpxq ´

p
ρ
kJ

p1´νqpk´αq´kp1´jq
a` ϕqpaq

Γkrνpk ´ αq ` α ´ kpj ´ 1qs

ˆ

xρ ´ aρ

ρ

˙Λ´j

. (6.19)



Chapter 6. Generalized pk, ρq-Fractional Derivatives 85

Proof. From Definition 6.2, we can write

p
ρ
kJ α

a`
ρ
kD

α,ν
a` ϕqpxq “

´

ρ
kJ α

a`
ρ
kJ

νpnk´αq
a` δnρ pk

n ρ
kJ

p1´νqpkn´αq
a` ϕq

¯

pxq

“

´

ρ
kJ

νpnk´αq`α
a` δnρ pk

n ρ
kJ

p1´νqpkn´αq
a` ϕq

¯

pxq

“
ρ1´Λ

ΓkrkΛs

ż x

a

pxρ ´ tρqΛ´1 tρ´1
!

δnρ pk
n ρ
kJ

p1´νqpkn´αq
a` ϕqptq

)

dt.

Integrating by parts the last expression, we obtain

p
ρ
kJ α

a`
ρ
kD

α,ν
a` ϕqpxq “

´ρ1´Λ pxρ ´ aρqΛ´1

kΛ ΓpΛq rδn´1
ρ pkn ρkJ

p1´νqpkn´αq
a` ϕqpaqs

`
ρ2´Λ

kΛ ΓpΛ´ 1q

ż x

a

pxρ ´ tρqΛ´1 tρ´1δnρ pk
n ρ
kJ

p1´νqpkn´αq
a` ϕqptqdt.

Thus, integrating by parts pn´ 1q times, we have

p
ρ
kJ α

a`
ρ
kD

α,ν
a` ϕqpxq “ ´

n´1
ÿ

j“0

δn´j´1
ρ pkn ρkJ

p1´νqpkn´αq
a` ϕqpaq

kj`1 ΓkrkpΛ´ jqs

ˆ

xρ ´ aρ

ρ

˙Λ´j´1

`
1

k ΓkrkpΛ´ nqs

ż x

a

ˆ

xρ ´ tρ

ρ

˙Λ´n´1

tρ´1
p
ρ
kJ

p1´νqpkn´αq
a` ϕqptqdt

“ ´

n´1
ÿ

j“0

δn´j´1
ρ pkn ρkJ

p1´νqpkn´αq
a` ϕqpaq

kj`1 ΓkrkpΛ´ jqs

ˆ

xρ ´ aρ

ρ

˙Λ´j´1

` p
ρ
kJ

νpkn´αq`α´nk
a`

ρ
kJ

p1´νqpkn´αq
a` ϕqpxq

“ ϕpxq ´
n
ÿ

j“1

δn´jρ pkn ρkJ
p1´νqpkn´αq
a` ϕqpaq

kj ΓkrkpΛ´ j ` 1qs

ˆ

xρ ´ aρ

ρ

˙Λ´j

“ ϕpxq ´
n
ÿ

j“1

p
ρ
kJ

p1´νqpkn´αq´kpn´jq
a` ϕqpaq

ΓkrkpΛ´ j ` 1qs

ˆ

xρ ´ aρ

ρ

˙Λ´j

.

Next, we show that the generalized pk, ρq-fractional derivative of order α of the
polynomial function ptρ ´ aρqΛ´j is null, i.e.,

“

ρ
kD

α,ν
a` pt

ρ
´ aρqΛ´j

‰

pxq “ 0.

Lemma 6.5. Let α, ν P R such that n´ 1 ă α ď n, n P N, 0 ď ν ď 1, ρ ą 0 and k ą 0.
Then, for all j “ 1, 2, . . . , n, we have

“

ρ
kD

α,ν
a` pt

ρ
´ aρqΛ´j

‰

pxq “ 0. (6.20)

Proof. Again, in order to simplify the development and the notation in what follows, we
use Eq.(6.17) and we define

Ω “ p1´ νqpkn´ αq
k

. (6.21)
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Thus, from Definition 6.2 and Eq.(6.5), we have
´

kn ρkJ
p1´νqpkn´αq
a` ptρ ´ aρqΛ´j

¯

pxq “
kn ρ1´Ω

k ΓkrkΩs

ż x

a

pxρ ´ tρqΩ´1
ptρ ´ aρqΛ´j tρ´1dt.

We introduce the change of variable u “ ptρ ´ aρq{pxρ ´ aρq, and use the definition of
k-beta function, Eq.(1.19), to obtain
´

kn ρkJ
p1´νqpkn´αq
a` ptρ ´ aρqΛ´j

¯

pxq “
kn ρ´Ω

ΓkrkΩspx
ρ
´ aρqn´j

"

1
k

ż 1

0
p1´ uqΩ´1uΛ´jdu

*

“
kn ρ´Ω ΓkrkpΛ´ j ` 1qs

Γkrkpn´ j ´ 1qs pxρ ´ aρqn´j.

Next, we calculate δnρ pkn
ρ
kJ

p1´νqpkn´αq
a` ptρ ´ aρqΛ´jqpxq, that is,

ˆ

x1´ρ d

dx

˙n

pxρ ´ aρqn´j “

ˆ

x1´ρ d

dx

˙n´1 ˆ

x1´ρ d

dx

˙

pxρ ´ aρqn´j

“ ρpn´ jq

ˆ

x1´ρ d

dx

˙n´1

pxρ ´ aρqn´j´1.

Differentiating more pn´ 1q times, we obtain
ˆ

x1´ρ d

dx

˙n

pxρ ´ aρqn´j “ ρn pn´ jqpn´ j ´ 1q ¨ ¨ ¨ p2´ jqp1´ jqpxρ ´ aρq´j “ 0.(6.22)

As j “ 1, 2, . . . , n, then for each j there is one null term in the product given by Eq.(6.22);
this completes the proof.

Finally, we show the equivalence between the Cauchy problem and a Volterra
integral equation of the second kind.

Theorem 6.3. Let α ą 0 and n “ rαs ` 1 where n P N. Let G be an open set in R and
f : pa, bsˆGÑ R be a function such that fpx, ϕpxqq P Lpa, bq for any ϕ P G. If ϕ P Lpa, bq,
then ϕ satisfies the relations

p
ρ
kD

α,ν
a` ϕqpxq “ fpx, ϕpxqq, (6.23)

p
ρ
kJ

p1´νqpkn´αq´kpn´jq
a` ϕqpa`q “ bj, bj P R, pj “ 1, 2, . . . , nq, (6.24)

if, and only if, ϕ satisfies the Volterra integral equation

ϕpxq “
n
ÿ

j“1

bj rpx
ρ ´ aρq{ρsΛ´j

ΓkrkpΛ´ j ` 1qs `
1

k Γkpαq

ż x

a

ˆ

xρ ´ tρ

ρ

˙
α
k
´1

tρ´1fpt, ϕptqq dt, (6.25)

with Λ defined in Eq.(6.17).
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Proof. pñq We consider ϕ P Lpa, bq satisfying Eq.(6.23) and Eq.(6.24). As ϕ P Lpa, bq,
then Eq.(6.23) exists and pρkD

α,ν
a` ϕqpxq P Lpa, bq. Applying operator ρ

kJ α
a` on both sides of

Eq.(6.23) and using Lemma 6.4 and Eq.(6.24), we obtain

p
ρ
kJ α

a`
ρ
kD

α,ν
a` ϕqpxq “ p

ρ
kJ α

a` fpt, ϕptqqqpxq

ϕpxq ´
n
ÿ

j“1

p
ρ
kJ

p1´νqpkn´αq´kpn´jq
a` ϕqpaq

ΓkrkpΛ´ j ` 1qs

ˆ

xρ ´ aρ

ρ

˙Λ´j

“ p
ρ
kJ α

a` fpt, ϕptqqqpxq

ϕpxq “
n
ÿ

j“1

bj
ΓkrkpΛ´ j ` 1qs

ˆ

xρ ´ aρ

ρ

˙Λ´j

` p
ρ
kJ α

a` fpt, ϕptqqqpxq.

From Lemma 6.1, the integral pρkJ α
a` fpt, ϕptqqqpxq P Lpa, bq, thus Eq.(6.25) follows.

pðq Assume that ϕ P Lpa, bq satisfies Eq.(6.25). Applying operator ρkD
α,ν
a` on both sides of

Eq.(6.25), we obtain

p
ρ
kD

α,ν
a` ϕqpxq “

n
ÿ

j“1

bj ρ
j´Λ

ΓkrkpΛ´ j ` 1qs
“

ρ
kD

α,ν
a` pt

ρ
´ aρqΛ´j

‰

pxq ` pρkD
α,ν
a`

ρ
kJ α

a` fpt, ϕptqqqpxq.

From Lemma 6.2 and Lemma 6.5, Eq.(6.23) follows. Next, we prove the validity of Eq.(6.24).
Therefore, we apply the operator ρkJ

p1´νqpkn´αq´kpn´mq
a` , with m “ 1, 2, . . . , n, on both sides

of Eq.(6.25), in order to obtain

p
ρ
kJ

p1´νqpkn´αq´kpn´jq
a` ϕqpxq “

n
ÿ

j“1

bj
ΓkrkpΛ´ j ` 1qs

«

ρ
kJ

p1´νqpkn´αq´kpn´mq
a`

ˆ

xρ ´ aρ

ρ

˙Λ´j
ff

` p
ρ
kJ

p1´νqpkn´αq´kpn´mq
a`

ρ
kJ α

a`fpt, ϕptqqqpxq

“

m
ÿ

j“1

bj
Γkrkpm´ j ` 1qs

ˆ

xρ ´ aρ

ρ

˙m´j

` p
ρ
kJ

kpm´νnq`αν
a` fpt, ϕptqqqpxq.

Letting xÑ a`, we finally have

p
ρ
kJ

p1´νqpkn´αq´kpn´jq
a` ϕqpa`q “ bm, with m “ 1, 2, . . . , n.

6.5 Linear Fractional Differential Equations
In this section we analyze some particular cases of function fpx, ϕpxqq appearing

in Theorem 6.3. We apply the method of successive approximations in order to obtain
an analytical solution of the resulting linear fractional differential equations. Let us first
consider fpx, ϕpxqq “ λϕpxq in Theorem 6.3.
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Theorem 6.4. Let α, λ P R˚ such that n´ 1 ă α ď n, where n P N. If ϕ P Lpa, bq, then
the Cauchy problem

p
ρ
kD

α,ν
a` ϕqpxq “ λϕpxq (6.26)

p
ρ
kJ

p1´νqpkn´αq´kpn´jq
a` ϕqpa`q “ bj, bj P R, pj “ 1, 2, . . . , nq, (6.27)

admits a unique solution in the space Lpa, bq, given by

ϕpxq “
n
ÿ

j“1
bj

ˆ

xρ ´ aρ

ρ

˙Λ´j

Ek,α,kpΛ´j`1q

«

λ

ˆ

xρ ´ aρ

ρ

˙
α
k

ff

, (6.28)

where Ek,ξ,σp¨q is defined in Eq.(6.2).

Proof. According to Theorem 6.3, we just need to solve the Volterra integral equation,
Eq.(6.25), with fpt, ϕptqq “ λϕptq. As the Volterra integral equation of the second kind
admits a unique solution [39], the uniqueness of Eq.(6.25) is guaranteed. In order to find
the exact solution, we use the method of successive approximations, that is, we consider

ϕ0 “

n
ÿ

j“1

bj
ΓkrkpΛ´ j ` 1qs

ˆ

xρ ´ aρ

ρ

˙Λ´j

(6.29)

ϕipxq “ ϕ0pxq `
λ

k Γkpαq

ż x

a

ˆ

xρ ´ tρ

ρ

˙
α
k
´1

tρ´1ϕi´1ptq dt. (6.30)

We define a parameter Λm by

Λm “
νpnk ´ αq ` αm

k
with m “ 1, 2, . . . , i` 1. (6.31)

For m “ 1, we have Λ1 “ Λ given by Eq.(6.17). Thus, from Eq.(6.29) and Eq.(6.30), we
can write

ϕ1pxq “ ϕ0pxq `
λ

k Γkpαq

ż x

a

ˆ

xρ ´ tρ

ρ

˙
α
k
´1

tρ´1ϕ0ptq dt

“ ϕ0pxq `
n
ÿ

j“1

λ bj
ΓkrkpΛ´ j ` 1qs

«

ρ
kJ α

a`

ˆ

tρ ´ aρ

ρ

˙Λ´j
ff

pxq.

Using Theorem 6.2, we obtain

ϕ1pxq “

n
ÿ

j“1

bj
ΓkrkpΛ´ j ` 1qs

ˆ

xρ ´ aρ

ρ

˙Λ´j

`

n
ÿ

j“1

bj
ΓkrkpΛ2 ´ j ` 1qs

ˆ

xρ ´ aρ

ρ

˙Λ2´j

“

n
ÿ

j“1
bj

2
ÿ

m“1

λm´1

ΓkrkpΛm ´ j ` 1q

ˆ

xρ ´ aρ

ρ

˙Λm´j

. (6.32)
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Similarly, using Eq.(6.29), Eq.(6.32) and Theorem 6.2, we obtain the expression for ϕ2pxq,
that is,

ϕ2pxq “ ϕ0pxq `
λ

k Γkpαq

ż x

a

ˆ

xρ ´ tρ

ρ

˙
α
k
´1

tρ´1ϕ1ptq dt

“ ϕ0pxq ` λ
n
ÿ

j“1
bj

2
ÿ

m“1

λm´1

ΓkrkpΛm ´ j ` 1qs

«

ρ
kJ α

a`

ˆ

tρ ´ aρ

ρ

˙Λm´j
ff

pxq

“

n
ÿ

j“1
bj

3
ÿ

m“1

λm´1

ΓkrkpΛm ´ j ` 1q

ˆ

xρ ´ aρ

ρ

˙Λm´j

.

Repeating this process, we obtain the expression for ϕipxq, with i P N:

ϕipxq “
n
ÿ

j“1
bj

i`1
ÿ

m“1

λm´1

ΓkrkpΛm ´ j ` 1q

ˆ

xρ ´ aρ

ρ

˙Λm´j

.

Taking iÑ 8, we obtain the explicit solution for ϕpxq

ϕpxq “
n
ÿ

j“1
bj

8
ÿ

m“1

λm´1

ΓkrkpΛm ´ j ` 1q

ˆ

xρ ´ aρ

ρ

˙Λm´j

.

Changing the summation index, mÑ m` 1, we have

ϕpxq “
n
ÿ

j“1
bj

8
ÿ

m“0

λm

ΓkrkpΛm`1 ´ j ` 1qs

ˆ

xρ ´ aρ

ρ

˙Λm`1´j

.

Moreover, we can rewrite this last expression in terms of k-new generalized Mittag-Leffler
function, that is,

ϕpxq “
n
ÿ

j“1
bj

ˆ

xρ ´ aρ

ρ

˙Λ´j

Ek,α,kpΛ´j`1q

«

λ

ˆ

xρ ´ aρ

ρ

˙
α
k

ff

. (6.33)

As another application, we consider fpx, ϕpxqq “ λpρkD
β,ν
a` ϕqpxq in Theorem

6.3.

Theorem 6.5. Let α, β P R, α ą β ą 0, n ´ 1 ă α ď n, n P N and λ P R. Then, the
Cauchy problem

p
ρ
kD

α,ν
a` ϕqpxq “ λpρkD

β,ν
a` ϕqpxq

p
ρ
kJ

p1´νqpkn´αq´kpn´jq
a` ϕqpa`q “ bj, bj P R, pj “ 1, 2, . . . , nq,

admits a unique solution in the space Lpa, bq, given by

ϕpxq “
n
ÿ

j“1
bj

ˆ

xρ ´ aρ

ρ

˙Θ´j

Ek,α´β,kpΘ´j`1q

«

λ

ˆ

xρ ´ aρ

ρ

˙

α´β
k

ff

,

where Θ “
α ` νpnk ´ α ` βq

k
.
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Proof. Suppose the solution ϕ “ pρkJ
β
a`gqpxq P Lpa, bq, then

p
ρ
kD

α,ν
a`

ρ
kJ

β
a`gqpxq “ λpρkD

β,ν
a`

ρ
kJ

β
a`gqpxq.

By Lemma 6.2, we can write

p
ρ
kD

α,ν
a`

ρ
kJ

β
a`gqpxq “ λgpxq,

and by Lemma 6.3, we have

p
ρ
kJ

β´α
a` gqpxq “ λgpxq or p

ρ
kD

α´β,ν
a` gqpxq “ λgpxq.

We shall use the second expression. Thus, let Υm “
pα ´ βqm` α ` β ` νpnk ´ α ` βq

k
;

in the case m “ 1 we denote Υm “ Υ. Taking αÑ α ´ β in Theorem 6.4, we can write

gpxq “
n
ÿ

j“1
bj

ˆ

xρ ´ aρ

ρ

˙Υ´j

Ek,α´β,kpΥ´j`1q

«

λ

ˆ

xρ ´ aρ

ρ

˙

α´β
k

ff

. (6.34)

As ϕpxq “ pρkJ
β
a`gqpxq, we apply pρkJ

β
a`q on both sides of Eq.(6.34), in order to obtain

p
ρ
kJ

β
a`gqpxq “

n
ÿ

j“1
bj

8
ÿ

m“0

λm

ΓkrkpΥm ´ j ` 1qs

«

ρ
kJ

β
a`

ˆ

tρ ´ aρ

ρ

˙Υm´j
ff

pxq.

Using Theorem 6.2 and rewriting the expression, we obtain

ϕpxq “
n
ÿ

j“1
bj

ˆ

xρ ´ aρ

ρ

˙Θ´j

Ek,α´β,kpΘ´j`1q

«

λ

ˆ

xρ ´ aρ

ρ

˙

α´β
k

ff

.

In the next theorem we consider a sequence of linear fractional differential
equations of order αn. This theorem generalizes the results presented in [10, 12].

Theorem 6.6. Let α, β P R, α ą β ą 0, n ´ 1 ă α ď n, n P N and λ P R. Then, the
Cauchy problem

p
ρ
kD

αn,ν
a` ϕqpxq “ λϕpxq (6.35)

p
ρ
kJ

p1´νqpkn´αnq´kpn´jq
a` ϕqpa`q “ bj, bj P R, pj “ 1, 2, . . . , nq, (6.36)

admits a unique solution in the space Lpa, bq, given by

ϕpxq “
n
ÿ

j“1
bj

ˆ

xρ ´ aρ

ρ

˙Λn´j

Ek,αn,kpΛn´j`1q

«

λ

ˆ

xρ ´ aρ

ρ

˙
αn
k

ff

, (6.37)

where Λn “
νpnk ´ αnq ` αn

k
.

Proof. We consider αÑ αn in Theorem 6.4; we thus obtain the solution, Eq.(6.37).
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6.6 Dependence on Initial Conditions
In this section, we present the changes in a solution entailed by small changes

in initial conditions. Consider Eq.(6.23) with the following changes in the initial conditions
shown in Eq.(6.24):

p
ρ
kJ

p1´νqpkn´αq´kpn´jq
a` ϕqpa`q “ bj ` ηj, bj P R, pj “ 1, 2, . . . , nq, (6.38)

where ηj pj “ 1, . . . , nq are arbitrary constants.

Theorem 6.7. Suppose that the hypotheses of Theorem 6.3 are satisfied. Let ϕpxq and
ϕ̃pxq be solutions of the initial value problems Eq.(6.23)-Eq.(6.24) and Eq.(6.23))-Eq.(6.38),
respectively. Then,

|ϕpxq ´ ϕ̃pxq| ď
n
ÿ

j“1
|ηj|

ˆ

xρ ´ aρ

ρ

˙

νpnk´αq`α
k

´j

Ek,α,α`νpnk´αq´kpj´1q

«

A

ˆ

xρ ´ aρ

ρ

˙
α
k

ff

,

with x P pa, bs, where Ek,ξ,σpzq is the k-Mittag-Leffler function, Eq.(6.2).

Proof. According to Theorem 6.4, we have

ϕpxq “ lim
iÑ8

ϕipxq

where ϕ0pxq is given by Eq.(6.29) and

ϕipxq “ ϕ0pxq `
1

kΓkrαs

ż x

a

ˆ

xρ ´ aρ

ρ

˙
α
k
´1

tρ´1fpt, ϕi´1ptqqdt. (6.39)

We also have

ϕ̃pxq “ lim
iÑ8

ϕ̃ipxq, (6.40)

ϕ̃0pxq “

n
ÿ

j“1

pbj ` ηjq

ΓkrkpΛ´ j ` 1qs

ˆ

xρ ´ aρ

ρ

˙Λ´j

, (6.41)

ϕ̃ipxq “ ϕ̃0pxq `
1

kΓkrαs

ż x

a

ˆ

xρ ´ aρ

ρ

˙
α
k
´1

tρ´1fpt, ϕ̃i´1ptqqdt, i “ 1, 2, . . .(6.42)

From Eq.(6.29) and Eq.(6.41), we can write

|ϕ0pxq ´ ϕ̃0pxq| ď
n
ÿ

j“1

|ηj|

ΓkrkpΛ´ j ` 1qs

ˆ

xρ ´ aρ

ρ

˙Λ´j

. (6.43)
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We finally consider Eq.(6.39) and Eq.(6.42) with i “ 1, the Lipschitz condition for fpt, ϕq,
Definition 1.1, the inequality Eq.(6.43) and Theorem 6.2, in order to obtain

|ϕ1pxq ´ ϕ̃1pxq| ď
n
ÿ

j“1

|ηj|

ΓkrkpΛ´ j ` 1qs

ˆ

xρ ´ aρ

ρ

˙Λ´j

`
A

kΓkrαs

ż x

a

ˆ

xρ ´ tρ

ρ

˙
α
k
´1

tρ´1
|fpt, ϕ0ptqq ´ fpt, ϕ̃0ptqq|dt

ď

n
ÿ

j“1

|ηj|

ΓkrkpΛ´ j ` 1qs

ˆ

xρ ´ aρ

ρ

˙Λ´j

`
A

kΓkrαs

ż x

a

ˆ

xρ ´ tρ

ρ

˙
α
k
´1

tρ´1
|ϕ0ptq ´ ϕ̃0ptq|dt

ď

n
ÿ

j“1

|ηj|

ΓkrkpΛ´ j ` 1qs

ˆ

xρ ´ aρ

ρ

˙Λ´j

`
A

kΓkrαs

n
ÿ

j“1

|ηj|

ΓkrkpΛ´ j ` 1qs

ż x

a

ˆ

xρ ´ tρ

ρ

˙
α
k
´1

tρ´1
ˆ

tρ ´ aρ

ρ

˙Λ´j

“

n
ÿ

j“1
|ηj|

2
ÿ

m“1

Am´1

ΓkrkpΛm ´ j ` 1qs

ˆ

xρ ´ aρ

ρ

˙Λm´j

,

where Λm is given by Eq.(6.31). Thus, continuing this procedure, we obtain

|ϕipxq ´ ϕ̃ipxq| ď
n
ÿ

j“1
|ηj|

i`1
ÿ

m“1

Am´1

ΓkrkpΛm ´ j ` 1qs

ˆ

xρ ´ aρ

ρ

˙Λm´j

.

Taking iÑ 8 and mÑ m` 1, it follows that

|ϕpxq ´ ϕ̃pxq| ď
n
ÿ

j“1
|ηj|

ˆ

xρ ´ aρ

ρ

˙Λ´j

Ek,α,kpΛ´j`1q

«

A

ˆ

xρ ´ aρ

ρ

˙
α
k

ff

.
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Concluding Remarks and Future Perspectives

The fact that there exist much more than one definition for fractional derivatives
makes choosing the adequate approach a crucial issue in solving a given problem. In order
to overcome the problem of choosing the operator of fractional differentiation, we have
developed generalizations. In this thesis we studied essentially five different formulations
for fractional derivatives; for all those formulations, when the order of the derivative is an
integer we recover the results of ordinary differential calculus. Before we could introduce
our proposals for fractional derivatives, it was necessary to present some fundamental
concepts. In Chapter 1 we presented classical concepts of real analysis. In Chapter 2 we
showed how it is possible, starting from Hadamard integrals of arbitrary order, to present
Hadamard fractional derivatives [21, 38]. Our main contribution, in this chapter, was the
development a Leibniz-type rule involving Hadamard fractional derivatives. In Chapter
3, also starting from Hadamard integrals of arbitrary order, we presented the Caputo-
Hadamard fractional derivatives [27, 19]. In this chapter, again, our main contribution was
the proof of a Leibniz-type rule for these fractional differentiation operators. In Chapter 4
we proposed the generalized Caputo-type fractional derivatives. This new formulation was
obtained by means of a Caputo modification in the generalized fractional derivatives and it
recovers, as particular cases, the derivatives of arbitrary order in the sense of Caputo and
Caputo-Hadamard. This chapter is part of a paper that was accepted for publication [48].
In Chapter 5 we presented an original proposal for fractional derivatives which we called
Hilfer-Katugampola fractional derivatives. We demonstrated some theorems and properties
involving this formulation, as well as the equivalence between a nonlinear initial value
problem and a Volterra integral equation. We also discussed the existence and uniqueness
of the solution for this initial value problem. Finally, we obtained the analytical solutions
to some fractional differential equations using the method of successive approximations.
This new derivative is much more general than that presented in Chapter 4 and the results
presented in Chapter 5 are part of a paper that was published online [47]. Finally, Chapter
6 presented our main contribution for this thesis, because this is our most general proposal
for fractional derivatives. We proposed the generalized pk, ρq-fractional derivatives. We
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discussed the equivalence between a Cauchy problem using this operator of fractional
differentiation, and a Volterra integral equation of the second kind; we also considered
some particular cases of such a problem. Besides, we also proved that small changes on
initial conditions entail small changes in the solution of the problem. The Chapter 6 is
part of a paper that was accepted for publication [49].

A natural continuation of this work consists in proposing a new fractional
integration operator which contains in its kernel a generalized Mittag-Leffler function, that
is,

p
ρ
kE

µ,q
a`,β,γ,ξϕqpxq “

1
k

ż x

a

ˆ

xρ ´ tρ

ρ

˙

γ
k
´1

tρ´1Eµ,q
k,β,γ,ξ

«

ω

ˆ

xρ ´ aρ

ρ

˙
α
k

ff

ϕptqdt.

We will investigate some properties involving this operator. After studying this operator
we shall try to study a particular Cauchy problem, namely,

p
ρ
kD

α,ν
a` ϕqpxq “ p

ρ
kE

µ,q
a`,β,γ,ξϕqpxq,

p
ρ
kJ

p1´νqpkn´αq´kpn´jq
a` ϕqpa`q “ bj, bj P R, pj “ 1, 2, . . . , nq.
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APPENDIX A
Auxiliary Results: Chapter 4

A.1 Proof Eq.(4.19)
First we show that

ż t

a

τ ρ´1 ϕpτq

pxρ ´ tρq1´α
dτ “

1
αρ

"

ϕpaqptρ ´ aρqα `

ż t

a

ptρ ´ τ ρqαϕ1pτqdτ

*

.

For this end we need to integrate by parts the above expression with the choice u “ ϕpτq

and du “ ϕ1pτqdτ , in order to obtain
ż t

a

τ ρ´1 ϕpτq

pxρ ´ tρq1´α
dτ “ ´

ϕpτq

α ρ
ptρ ´ τ ρqα

ˇ

ˇ

ˇ

ˇ

t

a

`
1
α ρ

ż t

a

ptρ ´ τ ρqαϕ1pτqdτ

“
1
αρ

"

ϕpaqptρ ´ aρqα `

ż t

a

ptρ ´ τ ρqαϕ1pτqdτ

*

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

Aptq

.

A.2 Proof Eq.(4.22)
Now we prove Eq.(4.21). We differentiate the expression Aptq as above

δnρAptq “
Γpα ` 1q ρn

Γpα ´ n` 1q

„

ϕpaqptρ ´ aρqα `

ż t

a

ptρ ´ τ ρqα ϕ1pτqdτ



, (A.1)

where δnρ “
ˆ

t1´ρ
d

dt

˙n

. Note that,

ˆ

t1´ρ
d

dt

˙„

ϕpaqptρ ´ aρqα´n `

ż t

a

ptρ ´ τ ρqα´n ϕ1pτqdτ



“

αρϕpaqptρ ´ aρqα´1
` αρ

ż t

a

ptρ ´ τ ρqα´1ϕ1pτqdτ. (A.2)
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The proof is based on mathematical induction over n. The Eq.(A.1) holds for n “ 1, then
we obtain Eq.(A.2). Suppose that Eq.(A.1) is valid for n “ k

ˆ

t1´ρ
d

dt

˙k „

ϕpaqptρ ´ aρqα `

ż t

a

ptρ ´ τ ρqα ϕ1pτqdτ



“

Γpα ` 1q ρk
Γpα ´ k ` 1q

„

ϕpaqptρ ´ aρqα´k `

ż t

a

ptρ ´ τ ρqα´k ϕ1pτqdτ



. (A.3)

We want to prove that
ˆ

t1´ρ
d

dt

˙k`1 „

ϕpaqptρ ´ aρqα `

ż t

a

ptρ ´ τ ρqα ϕ1pτqdτ



“

Γpα ` 1q ρk`1

Γpα ´ kq

„

ϕpaqptρ ´ aρqα´k´1
`

ż t

a

ptρ ´ τ ρqα´k´1 ϕ1pτqdτ



. (A.4)

Note that, we can write
ˆ

t1´ρ
d

dt

˙k`1 „

ϕpaqptρ ´ aρqα `

ż t

a

ptρ ´ τ ρqα ϕ1pτqdτ



“

ˆ

t1´ρ
d

dt

˙ˆ

t1´ρ
d

dt

˙k „

ϕpaqptρ ´ aρqα `

ż t

a

ptρ ´ τ ρqα ϕ1pτqdτ



looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

induction hypothesis, Eq.(A.3)

or
ˆ

t1´ρ
d

dt

˙k`1 „

ϕpaqptρ ´ aρqα `

ż t

a

ptρ ´ τ ρqα ϕ1pτqdτ



“

ˆ

t1´ρ
d

dt

˙

Γpα ` 1q ρk
Γpα ´ k ` 1q

„

ϕpaqptρ ´ aρqα´k `

ż t

a

ptρ ´ τ ρqα´k ϕ1pτqdτ



“

t1´ρ
Γpα ` 1q ρk

Γpα ´ k ` 1q

ˆ

d

dt

˙„

ϕpaqptρ ´ aρqα´k `

ż t

a

ptρ ´ τ ρqα´k ϕ1pτqdτ



.

We finally find
ˆ

t1´ρ
d

dt

˙k`1 „

ϕpaqptρ ´ aρqα `

ż t

a

ptρ ´ τ ρqα ϕ1pτqdτ



“

Γpα ` 1q ρk`1

Γpα ´ kq

„

ϕpaqptρ ´ aρqα´k´1
`

ż t

a

ptρ ´ τ ρqα´k´1 ϕ1pτqdτ



.

A.3 Proof Eq.(4.24)
We will prove Eq.(4.23),

ż x

a

ptρ ´ aρqα´n

pxρ ´ tρq1´n`α
tρ´1dt “

Γpn´ αqΓpα ´ n` 1q
ρ

.
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Considering the change of variable u “ tρ ´ aρ

xρ ´ aρ
in order to obtain

ż x

a

ptρ ´ aρqα´n

pxρ ´ tρq1´n`α
tρ´1dt “

1
ρ

ż 1

0

rpxρ ´ aρqusα´n

rxρ ´ aρ ´ pxρ ´ aρqusα´n`1 px
ρ
´ aρqdu

“
1
ρ

ż 1

0
uα´n p1´ uqn´α´1du

loooooooooooooomoooooooooooooon

Bpα´n`1, n´αq

.

We immediately get Eq.(4.23).
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APPENDIX B
Auxiliary Results: Chapter 6

B.1 Proof Eq.(6.13)
We prove that

ż t

a

ptρ ´ uρqΦ´1uρ´1ϕpuqdu “
1
ρΦ

"

ϕpaqptρ ´ aρqΦ `

ż t

a

ptρ ´ uρqΦϕ1puqdu

*

,

this is, we prove Eq.(6.13). For this end we need to integrate by parts the above expression
with the choice w “ ϕpuq and dv “ ptρ ´ uρqΦ´1uρ´1du, in order to obtain

ż t

a

ptρ ´ uρqΦ´1uρ´1ϕpuqdu “ ´
ϕpuq

ρΦ ptρ ´ uρqΦ
ˇ

ˇ

ˇ

ˇ

t

a

`
1
ρΦ

ż t

a

ptρ ´ uρqΦϕ1puqdu

“
1
ρΦ

"

ϕpaqptρ ´ aρqΦ `

ż t

a

ptρ ´ uρqΦϕ1puqdu

*

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

Bptq

.

B.2 Proof Eq.(6.14)
Differentiating the expression Bptq with the operator δnρ follows

δnρBptq “
ΓpΦ` 1q ρn

ΓpΦ´ n` 1q

„

ϕpaqptρ ´ aρqΦ´n `

ż t

a

ptρ ´ uρqΦ´n ϕ1puqdu



, (B.1)

where δnρ “
ˆ

t1´ρ
d

dt

˙n

. Note that,

ˆ

t1´ρ
d

dt

˙„

ϕpaqptρ ´ aρqΦ `

ż t

a

ptρ ´ τ ρqΦ ϕ1puqdu



“

ρϕpaqΦptρ ´ aρqΦ´1
` ρΦ

ż t

a

ptρ ´ uρqΦ´1ϕ1puqdu. (B.2)

The proof is based on mathematical induction over n. The Eq.(B.1) is valid for n “ 1, this
is, considering n “ 1 in Eq.(B.1) we obtain Eq.(B.2). Suppose that Eq.(B.1) is valid for
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n “ m, i.e.,
ˆ

t1´ρ
d

dt

˙m „

ϕpaqptρ ´ aρqΦ `

ż t

a

ptρ ´ uρqΦϕ1puqdu



“

ΓpΦ` 1q ρm
ΓpΦ´m` 1q

„

ϕpaqptρ ´ aρqΦ `

ż t

a

ptρ ´ τ ρqΦ ϕ1puqdu



. (B.3)

We want to prove that
ˆ

t1´ρ
d

dt

˙m`1 „

ϕpaqptρ ´ aρqΦ `

ż t

a

ptρ ´ uρqΦϕ1puqdu



“

ΓpΦ` 1q ρm`1

ΓpΦ´mq

„

ϕpaqptρ ´ aρqΦ´m´1
`

ż t

a

ptρ ´ τ ρqΦ´m´1 ϕ1puqdu



. (B.4)

Note that, we can write
ˆ

t1´ρ
d

dt

˙m`1 „

ϕpaqptρ ´ aρqΦ `

ż t

a

ptρ ´ uρqΦϕ1puqdu



“

ˆ

t1´ρ
d

dt

˙ˆ

t1´ρ
d

dt

˙m „

ϕpaqptρ ´ aρqα `

ż t

a

ptρ ´ τ ρqα ϕ1pτqdτ



loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon

induction hypothesis, Eq.(B.3)

or
ˆ

t1´ρ
d

dt

˙m`1 „

ϕpaqptρ ´ aρqΦ `

ż t

a

ptρ ´ uρqΦϕ1puqdu



“

ˆ

t1´ρ
d

dt

˙

ΓpΦ` 1q ρm
ΓpΦ´m` 1q

„

ϕpaqptρ ´ aρqΦ `

ż t

a

ptρ ´ τ ρqΦ ϕ1puqdu



“

t1´ρ
ΓpΦ` 1q ρm

ΓpΦ´m` 1q

ˆ

d

dt

˙„

ϕpaqptρ ´ aρqΦ `

ż t

a

ptρ ´ τ ρqΦ ϕ1puqdu



.

We finally find
ˆ

t1´ρ
d

dt

˙m`1 „

ϕpaqptρ ´ aρqΦ `

ż t

a

ptρ ´ uρqΦϕ1puqdu



“

ΓpΦ` 1q ρm`1

ΓpΦ´m` 1q

„

ϕpaqptρ ´ aρqΦ´m `

ż t

a

ptρ ´ uρqΦ´m ϕ1puqdu



.
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