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Resumo

No presente estudo, é apresentado um modelo computacional bidimensional do

fluxo sanguíneo em uma câmara de um coração saudável humano, com a parti-

cular descrição do ventrículo esquerdo. O domínio e a malha utilizados para a

representação espacial são fixos, o sangue é considerado como sendo um fluido

newtoniano incompressível e a variação do volume da câmara é simulada a partir

da introdução de uma função de capacitância que é dependente do espaço e do

tempo. Apesar de ser feita a hipótese de incompressibilidade do sangue, a função

de capacitância confere ao sistema uma forma diferencial que se assemelha às

equações de Navier-Stokes para fluidos compressíveis. Inicialmente é descrita a

resolução do Problema de Stokes incompressível a partir do emprego de um Método

de Elementos Finitos Misto estável, baseado no método de Galerkin. Em seguida,

o modelo numérico é evoluído para abordar o problema completo. A partir daí, são

apresentadas simulações numéricas obtidas a partir de um código elaborado em

Fortran 90. Os resultados indicam uma boa aderência com a literatura médica. A

partir desse modelo, foi possível aplicar as Leis da Termodinâmica a partir do qual

obteve-se uma eficiência de Segunda Lei equivalente a 71%.

Palavras-chave: Coração; Ventrículo esquerdo; Navier-Stokes; Método dos Ele-

mentos Finitos; Análise exergética.



Abstract

In the present study, a bidimensional computational model of blood flow through

a chamber of a healthy human heart, with a particular description of the left

ventricle, is presented. The domain and mesh used for spatial representation are

fixed, blood is considered to be an incompressible Newtonian fluid, and the chamber

volume variation is simulated from the introduction of a capacitance function that

is space and time-dependent. Although the hypothesis of blood incompressibility is

made, the capacitance function gives the system a differential form that resembles

the Navier-Stokes equations for compressible fluids. Initially, the resolution of the

incompressible Stokes Problem is described using a stable Mixed Finite Element

Method, based on the Galerkin method. Then, the numerical model is evolved to

address the whole problem. Subsequently, numerical simulations obtained from a

code elaborated in Fortran 90 are presented. The results indicate good adherence

with the medical literature. From this model, it was possible to apply the Laws

of Thermodynamics, from which a Second Law efficiency equivalent to 71% was

obtained.

Keywords: Heart; Left ventricle; Navier-Stokes; Finite Element Method; Exergy

analysis.
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1 Introduction

From the Second Law of Thermodynamics, Boltzmann theorized that

nature is moving toward the thermal death of the universe. This seems to contradict

the paradigm, associated with Darwin, that biological systems are in increasing

complexity and organization (MURPHY; O’NEAL, 1997). In 1943, Schrödinger

gave lectures entitled “What Is Life?" at Trinity College in Dublin, in which he

focused on subjects such as the nature of heredity and the thermodynamics of living

beings. Schrödinger explored Boltzmann’s ideas, speculating that living organisms

seemed to defy the Second Law of Thermodynamics if they are considered as closed

systems, but, appealing to the non-equilibrium thermodynamics, the scientist

recognized that organisms are open systems, that take energy from the external

environment, causing them to obtain a higher internal level of organization. Thus,

from a global perspective, the system’s entropy continues to increase, causing

the Second Law of Thermodynamics not to be violated (MURPHY; O’NEAL,

1997). This work has initiated a new way of thinking about life and, consequently,

biological systems. Moreover, it has boosted the studies on this imbalance and

what causes the generation of entropy in the body. Later Prigogine e Wiame (1946)

obtained that all living things tend to a state of minimum entropy generation.

Therefore, it is possible to conclude that when there is a disequilibrium of the body

with the environment (biological things have higher order) the entropy generation

is higher.

Biological and physiological systems

An exponent study of the thermodynamics of the human body was done

in 1948 by H.H. Pennes (PENNES, 1948). The author performed experiments in

order to evaluate the applicability of the heat and mass transfer concepts to the

forearm. To this aim it was evaluated the blood flow rate and local energy transfer

associated with the metabolism. Pennes (1948) aimed at a quantitative analysis of

the relationship between arterial blood and tissue temperatures for the first time,



Chapter 1. Introduction 17

and have originated the perfusion term introduced in the energy balance. This

model treats the vessels as part of a continuum, however, the temperature depends

on the position, i.e., it is not a fixed representative one. In this sense, the work of

Chen e Holmes (1980) summarized that the temperature of blood and tissue comes

to an equilibrium, not in capillaries as previously assumed, but between the terminal

arterial branches and the precapillary arterioles. This work also reveals that, the

heat transfer of larger vessels must be considered individually, not in a continuum

formulation. Finally, Chen e Holmes (1980) proposed a bio-heat equation including

Pennes’s perfusion term, and contributions of local blood perfusion velocity and

thermal conductivity.

Blick e Stein (1977) presented an analysis of the heart through the First

Law of Thermodynamics, which considers the control volume that surrounds the

heart’s exterior, but passing through the veins and arteries that are responsible

for the carrying the blood in and out of the heart. This remarkable work has

determined the “order of magnitude” of several modes of energy conversion processes

performed by the heart, such as, kinetic energy, potential energy, flow work, heat

transfer, metabolic energy, endothermic chemical reaction. Furthermore, the authors

included energy due to shear work, Ohmic heating, and compression of intrathoracic

structures. Nevertheless, they found these terms to be negligible when compared

to the other forms of work. Figure 1 illustrates the obtained results of the energy

balance obtained by the authors. It is important to point out that other means

of energy were calculated, but their order are lower than the ones presented in

the figure. Finally, Blick e Stein (1977) have calculated the heart efficiency as

approximately 13%, which is in accordance with the medical literature.
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Figure 1 – Energy sinks of the normal human heart from Blick e Stein (1977).

From the combination of the First and Second Laws of Thermodynamics,

Szargut (2005) was one of the first researchers to look to the concept of exergy,

which is the amount of work that a certain system can perform when it is brought

into thermodynamic equilibrium (mechanical, thermal, and chemical) with the

environment, and, in (SZARGUT, 2005) the author adds that

“[...] one field may be very interesting for young researchers,
namely the analysis of exergy losses in living organisms. For
example, the exergetic efficiency of the vegetation of plants is very
low. The reasons behind such an effect are worth investigating.
In the human body, too, the exergy losses are considerable. In a
mature organism, the total exergy of food is transformed into the
considerably smaller exergy of waste materials or heat rejected
into the environment. The reduction of these losses might be
interesting from the point of view of food consumption and human
health.”

On the other hand, isolated cells and small organisms have no circulatory

system. Its metabolic functions can be satisfied by means of diffusion and convection

processes of solutes from the external environment to the internal one. As the size

and complexity of organisms increase, a circulatory system becomes an evolutionary

need. This system is responsible for the distribution of nutrients between cells and
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the collection of residues (BORON; BOULPAEP, 2012). According to Fung (1997),

blood flow theory is the most advanced theme of biomechanics, with roots in the

study of Aristotle and Huangti, with contributions from leading scientists such as

Galileo, Descartes, Euler, Poiseuille, Helmholtz, and many others. This system, in

particular, has been modeled by analogy to circuit physics, fluid mechanics, and

thermodynamics.

The heart, in turn, has been modeled using different approaches, depend-

ing on the focus and purpose given to the research. When speaking of heart-blood

dynamics, which is a fluid-structure interaction problem, the approach through the

immersed boundary method (PESKIN, 2002; GAO et al., 2014) allows the volume

of the cardiac chambers to vary over time. In this case, the conservation laws for

blood are generally described by the incompressible Navier-Stokes equations. In the

present work, the domain and the mesh are defined to be fixed, therefore, a math-

ematical artifice is introduced to change the heart chamber volume, namely, the

capacitance function. Consequently, although the hypothesis of blood incompress-

ibility is used, there is a compressible behavior associated with the Navier-Stokes

equations.

Another important aspect of the blood flow through a heart chamber is

the mechanical behavior of the fluid. A liquid containing suspended particles may

have a non-Newtonian shift, which becomes significant when the particle size is large

in relation to the channel through which the fluid is flowing. In the human body,

this is true when blood flows through small arterioles and capillaries (OTTESEN;

OLUFSEN; LARSEN, 2004), however, in the case of the heart, the Newtonian

hypothesis is reliable and stems from the fact that the viscosity can be considered

constant, since the cavities and valves are large in relation to the diameters of the

cells. Moreover, the shear stresses are high enough so that the viscosity can be

considered independent of them (OTTESEN; OLUFSEN; LARSEN, 2004).

Numerical Modeling

Towards attempting to understand physiological problems, which are

often expressed mathematically through partial differential equations, scientists

look for solutions of their governing equations. However, for most of these problems,
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the equations can not be solved analytically, and it is necessary to use numerical

approximations. In this sense, the approximate solutions can be constructed from

different types of discretization. There is a vast literature on this area of study and,

among other possibilities (PESKIN, 2002; GAO et al., 2014), the finite element

method (FEM) is the one chosen in this work for the spatial discretization of the

problem while the finite difference method (FDM) is left to the time discretization.

In particular, the FEM has the advantage of being able to solve problems with

complex geometries, besides being able to predict the order of approximation

of the spaces used for such analyses. The basis of the numerical methodology

employed in this work stands on a Stable Galerkin Mixed Finite Element Method

for the Stokes problem (BREZZI; FORTIN, 2012). More specifically, the locally

conservative approximation that uses biquadratic nodal interpolations for velocity

and linear approximations for pressure is discussed. This choice of elements, so

called Q2P1, is not standard, since it is not usual to approximate the pressure in a

quadrilateral mesh using the space P1 (BREZZI; FORTIN, 2012). An important

observation about this element is the possibility of using a local (mapped) pressure

approximation or a global (unmapped) pressure one, combined with a mapped

velocity approach. Although both approaches satisfy the inf-sup condition (BOFFI;

GASTALDI, 2002), in the former case, where the pressure is calculated in the

parent domain, the convergence of the solution does not reach its optimal order

in L2, whereas the global approach turns out to be optimally convergent (BOFFI;

BREZZI; FORTIN, 2013). Then, having these results in mind, the global pressure

approach is considered for the rest of the numerical simulations of this dissertation,

including the final one.

Thermodynamics

In order to perform the thermodynamic analysis it is necessary to

calculate the metabolism in both energy (M) and exergy (BM) bases. Mady e

Oliveira (2013) uses stoichiometry of the reactions of oxidation, the consumption

of carbohydrates, protein and lipids to calculate metabolic exergy, using two

control volumes that represent the human body. The authors conclude that the

approximation BM ≈ M , as previously reported in (BATATO et al., 1990), is valid
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in basal conditions and may also hold during physical activities. Later on, Henriques

et al. (2017) formulated the exergy analysis for healthy hearts and ones with aortic

stenosis, considering the relation of the intensity of the stenosis and the destroyed

exergy. Due to a lack of experimental data, only the left heart was analyzed. Then,

the right side was accounted considering that the fraction of destroyed exergy of the

heart right and left sides was equal to the fraction of its workloads (HENRIQUES

et al., 2017).

Organization of the dissertation

This Master Dissertation in Applied Mathematics Program is inserted

in this multidisciplinary context with the objective of proposing a computational

model of a heart ventricle based on theories of fluid mechanics and thermodynamics.

The purpose is to create a collaborative work that allows the use of the mathematical

and numerical modeling in the thermodynamic analysis of the complex circulatory

system. All the numerical codes were developed in Fortran 90 by the authors, based

on the works (CORREA, 2006; CORREA; LOULA, 2009). More specifically, in

this dissertation, an introduction to the mathematical model of a heart chamber is

presented and a numerical model of the left ventricle is proposed. Several numerical

results, from the simplified and Classical Stokes problem to a modification of

the incompressible Navier-Stokes equations, are presented. Finally, a model of a

heart chamber that takes into account heat exchanges with the rest of the body

is presented. The energy equation is solved in its integral form in order to give a

clue of its necessity in this phenomenological problem. As a closing equation, it is

possible to apply the Second Law of Thermodynamics and the exergy analysis of

the system, based on (MADY et al., 2012) and (MADY; OLIVEIRA, 2013).

The organization of the text follows. The heart chamber bidimensional

model developed to simulate the volume variation is presented in Chapter 2, together

with the governing equations: mass and linear momentum conservation, that are a

modified version of the Navier-Stokes equations. The references used to stem the

simplifying hypothesis are also mentioned in this part of the text, such as the reason

for the blood being considered Newtonian in the present model. At the end of this

chapter, the left ventricle idealized geometry is described. Numerical models of
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steady-state forms of the Navier-Stokes equations are presented in Chapter 3, while

Chapter 4 is entirely devoted to the description of the numerical methodology for

the solution of the modified Navier-Stokes equations. Some numerical experiments

are performed, in order to evaluate qualitatively the results before proceeding to the

next step, which is the parameter calibration to simulate an idealized human left

ventricle. In the sequence, Chapter 5 presents some cardiac cycle volume-pressure

pairs for a healthy human left ventricle, and other parameters such as the blood

viscosity, and specific mass. Using this data from the literature and the geometry

presented at the end of Chapter 2, simulations using the authors’ code are performed

and its results are shown, including the PV -diagram and the velocity fields.

Putting the outcomes from the previous chapters together, the Thermo-

dynamics analysis for the left ventricle is carried out in Chapter 6. The First and

Second Laws of Thermodynamics are explored, and from them, it is performed the

exergy analysis, which has a prior role in the efficiency analysis of a thermodynamic

system. Then, the final considerations and conclusions are presented in Chapter 7,

including possible improvements that can be implemented in future works. At last,

the Appendix A give details on the implementation of the numerical simulations,

such as details on the solver used to approximate the solution of the linear systems,

and other simulation features.
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2 Physical and Mathematical models

The aim of this chapter is to present a mathematical bidimensional

model for the blood flow throughout a heart chamber. In order to introduce the

volume change of the chamber, a capacitance function is defined, leading to a

modified version of the incompressible Navier-Stokes equations. Additionally, the

references used to state the simplifying hypotheses are presented, and the medical

parameters used to represent the geometry of a human left ventricle are included

in the last section.

2.1 Mathematical model

Let I = [0, T ] be a time interval and Ω ⊂ R2, with boundary Γ = ∂Ω and

unit outward normal n, be a domain under which a fluid, with constant dynamic

viscosity µ ∈ R>0 and specific mass ρ ∈ R>0, flows with velocity u = (u, v) :

Ω × I → R2 and hydro-static pressure p : Ω × I → R. Since the fluid is considered

incompressible, a usual simplification in the modeling of blood flow in the heart

chambers that will be discussed bellow, and the bidimensional domain Ω of the

cavity is fixed in time, changes in volume are modeled through the introduction

of a capacitance function ϕ : Ω × I → R>0, which characterizes the amount of

fluid mass at each point of the domain, and depends on the spatial coordinates

x ∈ Ω and time t ∈ I. It may also have a dependence on the hydro-static pressure

p, however, this case will not be considered in this work.

In other words, each point in the domain has a weight — in the mathe-

matical sense — at each time frame t, that can be associated with the amount of

mass there. It means that every integral that takes into account the specific mass,

must consider the distribution of ϕ over the domain. Thus, the mass contained in

the domain can be expressed as

M =

ˆ

Ω

ρϕ(x, t)dΩ, (2.1)
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n

dl
ϕ(x, t)

Ω

Figure 2 – Domain Ω.

where ϕ(x, t) = ϕ0 + ϕ̃(x, t), and ϕ(x, t) > 0 for all x ∈ Ω and t ∈ I. Therefore, for

each x ∈ Ω and t ∈ I, ϕ(x, t) assumes positive values that can be fewer or greater

than the constant ϕ0, indicating that the point can store less or more mass. Figure

3 illustrates what would represent the function ϕ in the case of a fluid flowing

through a pipe of variable diameter in a one-dimensional flow model in the axis x.

ϕ

ϕ(x)

x

x

ϕ0

ϕ0

Figure 3 – One-dimensional analogy of the capacitance function ϕ.

Wherever possible ϕ(x, t) will be denoted simply as ϕ.
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2.1.1 Governing equations

In this subsection, the governing equations that compose the mathe-

matical model are presented. In this work it is assumed that the energy equation

does not affect the mass conservation equation and does not influence the physical

properties of the fluid (density, viscosity, etc.), however, it is assumed that the flow

affects the energy equation of the system. Thus, the balance equations studied here

are the equation of conservation of mass and the equation of conservation of linear

momentum, under the assumption of isothermal conditions. The central hypotheses

of the thermodynamic model are discussed in Chapter 6.

2.1.1.1 Conservation of mass

Consider the mass of the system shown in Figure 2, and the mass flow

rate through it, represented, respectively, by

M =

ˆ

Ω

dM =

ˆ

Ω

ρϕdΩ (2.2)

and

ṁ =

ˆ

∂Ω

ρu · nϕdl =

ˆ

Ω

∇ · (ρu)ϕdΩ, (2.3)

where ∂Ω is the boundary of Ω. From the Reynolds transport theorem, one gets
ˆ

Ω

(

∂(ρϕ)

∂t
+ ∇ · (ρϕu)

)

dΩ = 0. (2.4)

Since the equation (2.4) holds for all Ω, it turns out that the law of conservation of

mass inside the cavity can be described as

∂(ρϕ)

∂t
+ ∇ · (ρϕu) = 0. (2.5)

2.1.1.2 Conservation of momentum

Consider that the domain Ω (shown in Figure 2) is also the control

volume (CV) of the actual problem. Then, the linear momentum, and moment flow

rate within the CV can be written, respectively, as

P =

ˆ

Ω

ρuϕdΩ, (2.6)
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and

Ṗ =

ˆ

∂Ω

(ρu)u · nϕdl =

ˆ

∂Ω

[(ρu) ⊗ u]nϕdl =

ˆ

Ω

∇ · (ϕρu ⊗ u)dΩ. (2.7)

Consequently, considering that there are no forces acting on the fluid, the equation

of conservation of momentum can be written as
ˆ

Ω

[

∂(ϕρu)

∂t
+ ∇ · (ϕρu ⊗ u)

]

dΩ = 0. (2.8)

Recalling that

∇ · (ϕρu ⊗ u) = ∇ · (u ⊗ ϕρu) = u∇ · (ϕρu) + (∇u)(ϕρu), (2.9)

it turns out that Equation (2.8) can be rewritten as
ˆ

Ω

[

u
∂(ϕρ)

∂t
+ ϕρ

∂u

∂t
+ u∇ · (ϕρu) + (∇u)(ϕρu)

]

dΩ = 0. (2.10)

And using the Equation of conservation of mass (2.4), it yields
ˆ

Ω

ϕρ

(

∂u

∂t
+ (∇u)u

)

dΩ = 0. (2.11)

On the other hand, the terms corresponding to the forces acting on the

fluid are split as the contribution of the body forces and of the forces of contact.

The first one being represented by
ˆ

∂Ω

ρfϕdΩ, (2.12)

and the contact forces being expressed as
ˆ

∂Ω

tdl =

ˆ

∂Ω

σndl =

ˆ

Ω

∇ · σdΩ, (2.13)

where t = (t1, t2) = σn is the traction vector.

Therefore, taking external forces into account, Equation (2.10) becomes

ˆ

Ω

[

ϕ
∂u

∂t
+ ϕ(∇u)u

]

dΩ =

ˆ

Ω

[

ϕf +
1

ρ
∇ · σ

]

dΩ. (2.14)

Eventually, since equation (2.14) holds for every Ω, the conservation of linear

momentum can be expressed in the differential form:

ϕ
∂u

∂t
+ ϕ(∇u)u = ϕf +

1

ρ
∇ · σ. (2.15)
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2.2 Heart chamber model

Henriques et al. (2017) used the model of the heart proposed in (HEN-

RIQUES; MADY; OLIVEIRA-JUNIOR, 2016): a model of steady-state and con-

tinuous behavior for the organ and each atrium-ventricle pair to be a cavity. In

addition, the authors considered that each part of the heart has only one entry

and one exit with cross-sectional areas equivalent to the sum of the cross-sectional

areas of the real arteries and veins that connect to the respective part of the heart.

The scheme is represented in Figure 4. The exergy balance takes into consideration

the left and right workloads of the heart.

Figure 4 – Human heart model by Henriques, Mady e Oliveira-Junior (2016).

According to Ottesen, Olufsen e Larsen (2004), the mechanical behavior

of a liquid containing suspended particles may have a non-Newtonian shift, which

becomes significant when the particle size is large in relation to the channel through

which the fluid is flowing. In the human body this is true for small arterioles and

capillaries. In addition, Saltzman (2009) states that the presence of proteins and
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high concentration of red cells in the blood contributes to its high viscosity —

compared to water, for example.

However, in larger arteries, veins, and cavities one can assume that the

blood flow is isotropic, Newtonian and incompressible (HUO; KASSAB, 2010).

The hypothesis of being Newtonian stems from the fact that the viscosity can be

considered constant, since the diameter of the arteries and large veins are large

in relation to the diameters of the cells. Moreover, because the shear stresses are

high enough that the viscosity can be considered independent of them (OTTESEN;

OLUFSEN; LARSEN, 2004). Since in this work the focus is not on microcirculation,

it is assumed that the blood has Newtonian behavior.

In this dissertation, a simplified model for the left ventricle of the

human heart that can be straightforwardly extended to a model for the other heart

cavities is proposed. It is expected that further extensions of this model allow the

representation of more general models of the human heart, such as the one proposed

in (HENRIQUES; MADY; OLIVEIRA-JUNIOR, 2016). The next subsections show

the references used to establish simplifying hypothesis to evolve the geometry of

the left heart ventricle.

2.2.1 Modified Navier-Stokes equations

From the Subsection 2.1.1 the blood flow through a cavity can be

modeled by the equations (2.16).

ϕ∇ · u + u · ∇ϕ = −
∂ϕ

∂t
,

ϕ
∂u

∂t
+ ϕ(∇u)u = ϕf +

1

ρ
∇ · σ.

(2.16)

Moreover, since the fluid has a Newtonian behavior (as explained in the previous

section), the constitutive law for Newtonian fluids holds:

σ = −pI + 2µǫ(u), (2.17)

in which σ is the Cauchy stress tensor, and

ǫ(u) =
1

2
(∇(u) + ∇(u)T ) (2.18)



Chapter 2. Physical and Mathematical models 29

is the rate of strain tensor. Then, the equation (2.16) is rewritten as:

ϕ∇ · u + u · ∇ϕ = −
∂ϕ

∂t
,

ϕ
∂u

∂t
+ ϕ(∇u)u = ϕf −

1

ρ
∇p +

2µ

ρ
∇ · ǫ(u).

(2.19)

Equations (2.19) will be referred to as the modified Navier-Stokes equations because,

although the fluid is incompressible, the equations are similar to the Navier-Stokes

equations for compressible fluids (they are not the same because the constitutive

equation is the one for incompressible fluids).

2.2.2 Geometry

Consider that the referred heart cavity is the human left ventricle. The

idealization of the domain is illustrated in Figure 5, which considers that there are

only one inflow and one outflow pathways. Since, for a healthy individual, the mitral

valve area (MVA) is about 4 − 6cm2 (OMRAN; ARIFI; MOHAMED, 2011), and

the aortic valve area (AVA) of a healthy individual is around 3 − 4cm2 (GARCIA;

KADEM, 2006), this model sets the following parameters to the left ventricle:

• MVA = 5.0 cm2;

• AVA = 3.5 cm2;

• Domain dimensions of the Left Ventricle (LV) = (4 × 8)cm2;

• Average capacitance function height = 2.8cm.
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MVAV

Figure 5 – Left ventricle model.

Since the mitral valve (MV) and the aortic valve (AV) are defined to be

on the upper edge of the domain, the capacitance function is maintained constant

ϕ = ϕ0 on this part of the boundary. The same is assumed for the lower edge.
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3 Finite element formulations of steady-

state problems

In this chapter, the definitions and notations which will be used through-

out this work are introduced, such as the choice of solution and approximation

spaces for the incompressible Stokes problem. Its resulting mixed problem approx-

imation is discussed by means of Galerkin FEM, and some relevant theoretical

results for the development of the numerical method are also presented. In the

last section, the incompressible Stokes problem is explored numerically from com-

putational simulations, providing insights to numerical approaches to even more

complex problems. Finally, we do one more step towards to the Navier-Stokes

equations, introducing the Oseen problem, that contains an advection term.

3.1 Definitions and notations

Let Ω be a closed and limited subset of R2. Denote by ∂Ω the adequate

boundary of Ω, i.e., ∂Ω = Ω̄ \ Ω, and ΓD, ΓN ⊂ ∂Ω denote the part in which

the Dirichlet, and Neumann boundary conditions are imposed, respectively, with

∂Ω = ΓD ∪ ΓN . Firstly, we must define relevant spaces.

Definition 1 (Hilbert Spaces). For each m ∈ N, Hm(Ω,R) will denote the Hilbert

scalar field space of order m in Ω, which can be defined as

H0(Ω,R) ≡ L2(Ω,R) := {v; ||v||2 < +∞},

and if m ≥ 1, then

Hm(Ω,R) :={v ∈ Hm−1(Ω,R);
∂mv

∂xα1

1 ∂xα2

2

∈ L2(Ω,R) ∀α = (α1, α2) ∈ N2

with |α| = α1 + α2 = m}

being the derivatives taken in the sense of distributions. Particularly,

H1
0 (Ω,R) := {v; v ∈ H1(Ω,R), v|∂Ω = 0}.
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Then the inner product and the norm that will be used onward can be

defined:

Definition 2 (L2 Inner product and norm). Let C be a limited subset of Ω. The

inner product of u, w ∈ L2(C,R) is defined as

(u, w)C :=

ˆ

C

uwdx.

And when u = (u, v), w = (w, z) ∈ L2(C,R2)

(u, w) := (u, w)C + (v, z)C .

Furthermore, the inner product for tensors T , S ∈ L2(C,R2×2) is defined as

(S, T ) :=
2
∑

i=1

2
∑

j=1

(Sij, Tij)C ,

where the indexes ij indicate the tensor coordinate ij.

If C = Ω then the index will be implicit and dropped (·, ·) = (·, ·)Ω.

Moreover, the definition of norm in L2 derives from the definition of inner product

defined above for each case. Then, if v ∈ L2(Ω,R),

||v|| = ||v||L2(Ω,R) = (v, v)1/2.

The next definition is an important concept from the Fluid Mechanics

theory, and it is widely used to predict flow patterns.

Definition 3 (Reynolds number). The Reynolds number of the flow (ReL), is an

dimensionless number defined as:

ReL =
ρuavL

µ
, (3.1)

in which ρ in the specific mass, uav is a typical velocity (e.g. the average one), L is

the characteristic linear dimension, and µ is the dynamic viscosity of the fluid.
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3.2 Stokes Problem

Consider the general model and physical variables defined in Section

2.1. The incompressible Stokes problem is a particular case of the Navier-Stokes

equations presented in Chapter 2, which take into consideration some simplifying

hypotheses (CORREA, 2006):

• The flow is stationary, that is,
∂u

∂t
= 0; (3.2)

• The flow is slow, i.e., the viscous forces predominate in relation to those of

inertia, in other words, the Reynolds number is low. Thus, the nonlinear term

of the linear momentum conservation equation can be neglected;

• The specific mass ρ is constant.

As a consequence of these hypotheses, the conservation laws are simplifications of

Equations (2.19), which can be rewritten as
1

ρ
∇ · σ = −ϕf ;

ϕ∇ · u + u · ∇ϕ = 0.

(3.3)

Thus, the problem described by Equations (3.4) will be called general Stokes

problem.

2µ∇ · ǫ(u) − ∇p = −ϕρf in Ω;

ϕ∇ · u + u · ∇ϕ = 0 in Ω;

u = ū over ΓD;

p = p̄ over ΓN .

(3.4)

When ϕ = 1, Equations (3.3) turn out to be

2µ∇ · ǫ(u) − ∇p = −ρf in Ω;

∇ · u = 0 in Ω;

u = ū over ΓD; z

p = p̄ over ΓN .

(3.5)

which will be called the classical Stokes problem.
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3.2.1 Galerkin method

In the Galerkin method, it is assumed that the test functions belong

to the same Hilbert space as the solutions, i.e., w, u ∈ U and q, p ∈ P (BREZZI;

FORTIN, 2012; CIARLET, 1978). In the following, this approach is used and, for

simplicity, Dirichlet boundary conditions are homogeneous over ∂Ω. In this way,

the chosen function spaces are

U = {u ∈ H1
0 (Ω,R2)} (3.6)

for velocity, and

P = {p ∈ L2(Ω,R); (p, 1)Ω = 0} (3.7)

for pressure.

3.2.1.1 Variational formulation

Multiplying the first equation of (3.4) by q ∈ P , taking the inner product

of the second one with u ∈ U , and integrating both on the domain Ω, one obtains

the variational formulation:

Find (u, p) ∈ U × P satisfying

2µ

ˆ

Ω

ǫ(u) : ǫ(w)dΩ −

ˆ

Ω

p∇ · wdΩ = ρ

ˆ

Ω

ϕf · wdΩ +

ˆ

∂Ω

t · wdl,
ˆ

Ω

(ϕ∇ · u + u · ∇ϕ) qdΩ =

ˆ

Ω

0qdΩ,

(3.8)

for all w ∈ U , and q ∈ P. The vector t = σn is a traction vector.

Then, equation (3.8) can be written in the abstract form as

a(u, w) + b(w, p) = f(w), ∀w ∈ U ,

d(u, q) = g(q), ∀q ∈ P,
(3.9)

where a(·, ·) : U × U → R and b(·, ·) : U × P → R are bilinear forms, f(·) : U → R
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and g(·) : P → R are continuous linear functionals such that:

a(u, w) = 2µ

ˆ

Ω

ǫ(u) : ǫ(w)dΩ (3.10)

b(w, p) = −

ˆ

Ω

p∇ · wdΩ, (3.11)

d(u, q) =

ˆ

Ω

(ϕ∇ · uq +

ˆ

Ω

u · ∇ϕq)dΩ (3.12)

f(w) = ρ

ˆ

Ω

ϕf · wdΩ +

ˆ

∂Ω

t · wdl (3.13)

g(q) =

ˆ

Ω

0qdΩ = 0. (3.14)

Observe that it follows from the equation of conservation of mass (2.5) that g ≡ 0,

which physically means that there is no source nor sinks of blood inside the ventricle.

The variational formulation for the classical Stokes problem (Equation

(3.5)) is therefore represented by Equations (3.15).

a(u, w) + b(w, p) = f(w), ∀w ∈ U ,

b(u, q) = −g(q), ∀q ∈ P.
(3.15)

Since, the classical problem is a particular case of the general one, the

variational formulation for the general Stokes problem (3.9) are solved in a finite

dimensional context using classical Galerkin FEM, which will be carried out in

Subsection 3.2.2.

3.2.2 Galerkin Approximation

In this subsection, the definitions of the mesh and the approximation

spaces shall be provided. Let {Th} be a decomposition of Ω in open subsets Th = E

known as elements, such that the domain closure Ω̄ = lim
h→0

⋃

E∈Th

Ē. The elements E

must be non-overlapping and the boundary ∂E of an element must be C1 by parts.

Index h represents the characteristic length, i.e., the maximum diameter of the

family of elements of Ω, over which the approximation spaces are taken (HUGHES,

2000).
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Dimensional finite subspaces of H1 are usually built from the mapping

of polynomials defined in a standard element Ê — also called as parent domain —

to each element E of the mesh Th. See Figure 6.

Definition 4 (Approximation spaces). Let

P̄k(E,R) = span{xi
1x

k−i
2 ; i = 0, 1, . . . , k}

be the set of homogeneous polynomials in E and

Pk(E,R) = ⊕k
n=0P̄n(E,R) = span{xi

1x
j
2; i, j = 0, 1, . . . , k; i + j ≤ k}

be the space of polynomials in E of degree k ≥ 0. Additionally, let

Pk,s(E,R) = span{xi
1x

j
2; i = 0, 1, . . . , r; j = 0, 1 . . . , s}

be the space spanned by the tensor product of two spaces Pk(E,R); if r = s, it will

be represented as Qk(E,R) ≡ Pk,k(E,R).

The spaces corresponding to vector polynomials in R2, such that each

entry is in P̄n(E,R),Pn(E,R), and Pk,s(E,R) are denoted by P̄k(E,R2),Pn(E,R2),

Pk,s(E,R2) respectively.

As in the Classical Galerkin FEM, the local solutions are built in finite

dimensional spaces (BREZZI; FORTIN, 2012; CIARLET, 1978) correspondent to

U and P , which are denoted, respectively, as Uh and Ph.

Since, for non-affine meshes, the approximation of pressure affects the

results for velocity, non-affine transformations are made from the standard element

to the global one, which affects the optimal convergence of the approximations

(ARNOLD et al., 2001a). An element that appears naturally for the actual case is

Q2Q1 with discountinuous Q1, nevertheless, that is not a stable element for the

Stokes problem, then the approximation spaces of Equation (3.16) were proposed

as a cure for the instability (BOFFI; BREZZI; FORTIN, 2013).

Uh = {uh ∈ U ; uh|E ∈ QE(Q2(Ê,R2)) ∀E ∈ Th}

Ph = {ph ∈ P; ph|E ∈ P1(E,R2) ∀E ∈ Th}.
(3.16)
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The approximation space Uh × Ph to which the approximate solution (uh, ph)

belongs shall be denoted simply as Q2P1 which, for the classical Stokes Problem

(Equation (3.15)) approximated in a quadrilateral mesh satisfies the following

conditions:

1. Continuity of a(·, ·) and b(·): there exist constants M1, M2 ∈ R>0 such that

|a(uh, wh)| ≤ M1||uh||Uh
||wh||Uh

∀uh, wh ∈ Uh

|b(uh, qh)| ≤ M1||uh||Uh
||qh||Ph

∀uh ∈ Uh, ∀qh ∈ Ph

2. K-Coercitivity of a(·, ·): there are constants α1, α2 > 0 such that

sup
wh∈K

|a(uh, wh)|

||wh||Uh

≥ α1||uh||Uh
∀uh ∈ K

sup
wh∈K

|a(uh, wh)|

||wh||Uh

≥ α2||wh||Uh
∀wh ∈ K

where

K = {uh ∈ Uh; b(uh, qh) = 0, ∀qh ∈ Ph}

3. Ladyszhenskaya-Babuška-Brezzi (LBB) condition: there exists a constant

γ > 0 such that

inf
qh∈Ph

sup
wh∈Uh

b(wh, qh)

||qh||Ph
||wh||Uh

= γ > 0, ∀qh ∈ Ph.

Consequently, it follows from Brezzi’s theorem (BREZZI, 1974), that there is a

unique solution for the classical Stokes problem (Equation (3.15)).

3.2.3 Calculations on parent and real elements

Furthermore, in order to map the coordinates, the pressure and velocity

from the parent element Ê to each real element E of Ω, some relevant mappings

are introduced:

Definition 5. Let TÊ→E : Ê → E be a biquadratic isomorphism of two limited

convex quadrilaterals in R2. In the present context, Ê = [−1, 1]2 ⊂ R2.
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Define the function QÊ→E : L2(Ê,R) → L2(E,R) such that a scalar

field φ1 in Ê is mapped into another scalar field φ2 = QÊ→Eφ1 in E through the

composition:

φ2(x2) = (QÊ→E)(x2) = φ1(x1) (3.17)

in which x2 = TÊ→E(x1). Analogously, define QÊ→E : H1
0 (Ê,R) → H1

0 (E,R) such

that a vector field φ1 in Ê is mapped into another vector field φ2 = QÊ→Eφ1 in E

through the composition:

φ2(x2) = (QÊ→E)(x2) = φ1(x1) (3.18)

in which x2 = TÊ→E(x1). Hereafter TE, QE and QE will represent TÊ→E, QÊ→E,

and QÊ→E, respectively.

Figure 6 depicts an example of mapping between a real element and the

parent domain, and also the order of the nodes of both.

1
2

21

ξ

η

E

Ê

(xE
1 , yE

1 )

(xE
3 , yE

3 ) (xE
4 , yE

4 )(−1, 1) (1, 1)

(−1, −1) (1, −1)

3 4

TE =

{

x
y

}

T −1
E =

{

ξ
η

}

y

x

(xE
2 , yE

2 )

43

Figure 6 – Parent domain, biquadratic quadrilateral element domain, their node
orderings, and mapping between them.
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Now, it is useful to introduce the global/local terminology to refer to the

choice of coordinate system: in the local approach, one can define local polynomials

to approximate the pressure in the local coordinate system, namely, the parent

domain (Figure 6), while in the global one the pressure must be approximated

using shape functions defined on the global coordinate system (ARNOLD et al.,

2001b), namely, in the real element.

Note that in Equation (3.16), the velocity is calculated in the parent

domain Ê and that the pressure is calculated in the real element E of the global

mesh (unmapped pressure approach). The unmapped pressure approach is chosen

because it ensures a quadratic convergence for the pressure in L2(Ω,R), which is

an optimal approximation, while the local model (mapped pressure approach) turns

out to be suboptimally convergent (BOFFI; BREZZI; FORTIN, 2013). The theory

that explains this phenomenon is developed in the reference (ARNOLD; BOFFI;

FALK, 2002). The authors essentially show that the space P1 must be contained in

the image of the mapping from the parent to the real element, which is guaranteed

only if the map is affine. Since this is not the case of the transformations used

throughout this text, which are general quadratic polynomials, the global pressure

approach will be used. Some numerical results over this issue are presented in

Subsection 3.2.5, and can also be found in references (BOFFI; GASTALDI, 2002),

(ARNOLD et al., 2001b).

3.2.4 Basis functions

The last tools needed to express the variational formulation in terms

of functions in Uh × Ph are the basis for each space. Then, let NE be the number

of nodes per each element E, β = {ζ1(x, y), ζ2(x, y), . . . , ζNE
(x, y)} be a basis for

Uh and α = {φ̄1(x, y), φ̄2(x, y), . . . , φ̄Np
(x, y)} be a basis for Ph over an arbitrary

element. One can express the local solutions uh, ph and the test functions wh, qh
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as a linear combination of those basis:

uh(x(ξ, η)) =
NE
∑

j=1

ujζj(x(ξ, η))

wh(x(ξ, η)) =
NE
∑

i=1

wiζi(x(ξ, η))

ph(x(ξ, η)) =
Np
∑

k=1

pkφ̄k(x(ξ, η))

qh(x(ξ, η)) =
Np
∑

l=1

qlφ̄l(x(ξ, η))

(3.19)

in which pk and ql are constants, Np is the polynomial space degree used to

approximate the pressure in each element E, and

ui = (ui, vi)
T , wi = (wi, zi)

T , (3.20)

in which all the components of ui, wi are constant.

The mesh used to approximate the solution in this work is composed by

quadrilateral elements — to which the element type Q2P1 was proposed (BOFFI;

BREZZI; FORTIN, 2013) — each one with NE = 9 nodes as shown in Figure 7,

and the number of degrees of freedom of the space P1 is Np = 3 for each element E.

E

Figure 7 – Mesh.

Consider that, for each Ê, there are m ∈ N nodes and its respective

shape functions β̂ = {φ1(x, y), φ2(x, y), . . . , φm(x, y)}, which is a basis for the
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standard element. Using the map TE, one gets

TE(ξ) =
m
∑

i=1

φi(ξ)xE
i . (3.21)

Note that, while there are NE nodes per element E and shape functions

φk, k = 1, . . . , NE, used to approximate the velocity, the polynomial maps used

to define the mesh geometry are of degree m, which may be greater, less or equal

than NE. The special case in which m = NE, the map TE is called isoparametric

(BECKER; CAREY; ODEN, 1981), and this is the one used throughout the present

work. For instance, uh is expressed as

uh(ξ) =
m
∑

j=1

φj(ξ)ue
j . (3.22)

Using the analogous expression for wh, and the expressions given by Equation (3.19)

for ph and qh, it follows that the problem (3.9) is reduced to the approximation

problem given by Equation (3.23).

a(uh, wh) + b(wh, ph) = f(wh), ∀wh ∈ Uh,

d(uh, qh) = g(qh), ∀qh ∈ Ph.
(3.23)

3.2.4.1 Computational implementation

Methods that employ discontinuous interpolations for pressure without

addition of jump terms, allow this variable to be eliminated at element level. In

order to do so, a term that represents a small compressibility is added in the second

equation of (3.23):

d(uh, qh) +
1

λ
(ph, qh) = g(qh), (3.24)

in which λ is called penalty parameter, and is big enough so as not to perturb the

solution. With the introduction of this term it is possible to achieve a condensation

of the variables so that the system can be solved for the velocity and then, from a

post-processing, to obtain the pressure.
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Assemble

Post−processing

Pressure field

Velocity field

Capacitance function Boundary condition

BC1/BC2ϕ(x, t)

Figure 8 – Schematic diagram of routines and functions.

Thus, the form c(·, ·) : P × P → R is defined to be bilinear and

continuous:

c(p, q) =
1

λ
(p, q). (3.25)

Leading to a compact form of Equation (3.24):

d(uh, qh) + c(ph, qh) = g(qh), (3.26)

which, together with the first equation of (3.23), and using expressions from

Equations (3.19) for uh, wh, qh, ph, yield a matrix form of Equation (3.9):

[

WE QE

]





A B

D C









UE

PE



 =
[

WE QE

]





F

G



 (3.27)

where WE, UE are the coefficient matrices of ui, wi of each node of element E,

respectively; and PE, QE are the matrices of coefficients that multiply the basis

functions of space Ph in element E.
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Since Equation (3.27) holds for every WE and PE, the linear system

(3.23) can be expressed as:




A B

D C









UE

PE



 =





F

G



 . (3.28)

Note that for the classical Stokes Problem this problem could be expressed as a

symmetric linear system:




A B

BT C









UE

PE



 =





F

G



 . (3.29)

The expressions for each submatrix of Equation (3.28) are listed in Subsection

3.2.4.2. Observe that from Equation (3.28), one gets:

AUE + BPE = F (3.30)

DUE + CPE = G. (3.31)

And, from Equation (3.31) combined with the fact that C is invertible, it follows

that PE can be expressed as:

PE = C−1(−DUE + G). (3.32)

Substituting the Expression (3.32) for PE on Equation (3.30), it remains a linear

system for UE:

(A − BC−1D)UE = −BC−1G + F (3.33)

which is spread in the global matrix system AbU = Bb, from where the global

approximation for velocity U is obtained. In the following, the solution UE in each

element is recovered in order to determine PE from Equation (3.34):

PE = −ÃEUE + B̃E, (3.34)

in which the matrices

ÃE = C−1D,

B̃E = C−1G,

were stored in the calculation process of B, D and C−1 for each element E.
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3.2.4.2 Matrix form

In Sub-subsection 3.2.4.1 the Stokes problem was reduced to a linear

system given by equation (3.28). The expressions of the submatrices that make up

this system are:

• A : (2m) × (2m), with elements

A2i−1,2j−1 =

ˆ

Ω

(

2µ
∂φi

∂x

∂φj

∂x
+ µ

∂φi

∂y

∂φj

∂y

)

dΩ (3.35)

A2i−1,2j =

ˆ

Ω

(

µ
∂φi

∂y

∂φj

∂x

)

dΩ (3.36)

A2i,2j−1 =

ˆ

Ω

(

µ
∂φi

∂x

∂φj

∂y

)

dΩ (3.37)

A2i,2j =

ˆ

Ω

(

µ
∂φi

∂x

∂φj

∂x
+ 2µ

∂φi

∂y

∂φj

∂y

)

dΩ (3.38)

• B: (2m) × (np), with elements

B2i−1,k = −

ˆ

Ω

(

∂φi

∂x
φ̄k

)

dΩ (3.39)

B2i,k = −

ˆ

Ω

(

∂φi

∂y
φ̄k

)

dΩ (3.40)

• C: (np) × (np), with elements

Cl,k =
1

λ

ˆ

Ω

(

φ̄lφ̄k

)

dΩ (3.41)

• D: (np) × (2m), with elements

Dl,2i−1 =

ˆ

Ω

[

ϕ
∂φi

∂x
+ φi

∂ϕ

∂x

]

φ̄kdΩ; (3.42)

• F : (2m) × 1, with elements

F e
2j−1,k =

ˆ

Ω

(ϕf1φj) dΩ +

ˆ

∂Ω

(t1φj) dl (3.43)

F e
2j,k =

ˆ

Ω

(ϕf2φj) dΩ +

ˆ

∂Ω

(t2φj) dl (3.44)
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• G: (np) × 1, with elements

Ge
k,1 =

ˆ

Ω

(

gφ̄k

)

dΩ (3.45)

with l, k = 1, . . . , np; j, i = 1, . . . , m.

3.2.5 Error analysis and numerical experiments

In this subsection, the efficiency of the approximations obtained using

the Galerkin Finite Element Method in an orthogonal quadrilateral mesh, and the

results obtained from code validation will be discussed.

Towards performing the code validation, some known solutions for

the Stokes problem were used, verifying if convergence and expected order of

approximation were reached for the space Q2P1. The obtained numerical solution

uh is compared to the exact one u, as well as the numerical result for pressure ph

is compared to the theoretical p, using the L2 norm. The expected estimates are

given by Equations (3.46) (BOFFI; GASTALDI, 2002).

||u − uh|| = Ch3

||∇u − ∇uh|| = Ch2

||p − ph|| = Ch2.

(3.46)

In the following, there are several numerical experiments, all of them

are made using a uniform discretization of elements Q2P1 in quadrilateral meshes

with the same number 2n of elements in x and y directions. The number n was

taken as 1, 2, 3,4, and 5. The method order was calculated from Equations (3.46)

using the errors obtained for two consecutive approximations uh, and u2h. Thus,

||u − uh||

||u − u2h||
=

Ch3

C(2h)3
(3.47)

Simplifying and applying the logarithm, one obtains

ln(||u − u2h||) − ln(||u − uh||)

ln(2)
= 3. (3.48)

In the next subsections some simulations of the Stokes problem are

performed in order to validate the code.
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3.2.5.1 Simulation 1

The method validation was done considering the domain Ω = [−1, 1]2,

viscosity µ = 1.0, and the penalty parameter λ = 108. The capacitance function

was set constant ϕ = 1, and the analytic solution:

u(x, y) = π





cos(πx)sen(πy)

−sen(πx) cos(πy)



 , and p = (1 + 2π2)sen(πx)sen(πy) (3.49)

is given, considering the Dirichlet boundary conditions on all domain edges.

The convergence rates obtained for the sequence of trapezoidal meshes

described in (BOFFI; GASTALDI, 2002) are presented in Table 1. The velocity

profiles in directions x and y, and the pressure field are presented in Figures 9a, 9b

and 10a, respectively.

The convergence results for the (pathological) case where the space for

the pressure is mapped from the reference element

P̄h := {ph ∈ P; ph|E ∈ QE(Pk−1(Ê,R2))},

are presented in Table 2. It can be seen that, by using the space Uh × P̄h, the

convergence order for the pressure approaches 1.0 and for the velocity drops to 2.0,

as the mesh is refined. For the sake of comparison, the mapped pressure profile is

shown in Figure 10b. The velocity profiles (not shown) are basically the same of

the unmapped case. Because of this sub-optimal convergence, already mentioned

in the literature (BOFFI; GASTALDI, 2002), (BOFFI; BREZZI; FORTIN, 2013),

the chosen space for the pressure in Equation (3.16) was Ph, the global one.

Table 1 – Results obtained for the incompressible Stokes Problem with unmapped
pressure.

2n ||u − uh|| Order ||∇(u − uh)|| Order ||p − ph|| Order
2 0.1262E+01 2.5032 0.8282E+01 1.5569 0.1301E+02 1.3716
4 0.2226E+00 3.0650 0.2815E+01 2.0214 0.5029E+01 1.9258
8 0.2660E-01 3.0363 0.6933E+00 2.0492 0.1324E+01 1.9739
16 0.3243E-02 3.0064 0.1675E+00 2.0171 0.3369E+00 1.9962
32 0.4035E-03 2.9854 0.41385E-01 2.0030 0.8446E-01 1.9997
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Table 2 – Results obtained for the incompressible Stokes Problem with mapped
pressure.

2n ||u − uh|| Order ||∇(u − uh)|| Order ||p − ph|| Order
2 0.1267E+01 2.4898 0.8306E+01 1.5552 0.1303E+02 1.3949
4 0.2255E+00 2.8284 0.2826E+01 1.8757 0.4956E+01 1.7489
8 0.3175E-01 2.5395 0.7701E+00 1.7080 0.1475E+01 1.6396
16 0.5461E-02 2.2103 0.2357E+00 1.3423 0.4733E+00 1.3331
32 0.1180E-02 2.0580 0.9297E-01 1.1119 0.1878E+00 1.1166
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(a) Velocity profile in x direction.
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(b) Velocity profile in y direction.

Figure 9 – Speed profiles for incompressible Stokes.
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(a) Unmapped pressure profile.
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(b) Mapped Pressure Profile.

Figure 10 – Pressure profiles for incompressible Stokes.

3.2.5.2 Simulation 2

Another study of convergence was done in a domain Ω = [0, 1]2, with

viscosity µ = 1.0, and the penalty parameter λ = 108. The capacitance function
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was set to be ϕ = 1 + 0.5sen(πx)sen(πy), and the analytic solution

u =





sen(πx)sen(πy)

0



 p = sen(πx)sen(πy), (3.50)

is given. A homogeneous Dirichlet condition was imposed on the upper and lower

edges, and, on the lateral edges, a mixed boundary condition: the x-velocity

component u = 0 was imposed strongly, in other words, the arrays were modified to

introduce the solution on the boundary, whereas the traction component t2(x) =

−p(x) was imposed weakly, i.e., it is added inside the boundary integral that

appears on the variational formulation (Equation (3.8)).
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Figure 11 – (a) Velocity profile in x direction. (b) Global pressure profile.

Table 3 – Results obtained for the incompressible Stokes Problem with global
pressure.

n ||u − uh|| Order ||∇(u − uh)|| Order ||p − ph|| Order
2 0.1555E-01 - 0.2065E+00 - 0.3056E+00 -
4 0.2642E-02 2.5575 0.6542E-01 1.6585 0.1134E+00 1.4301
8 0.2970E-03 3.1531 0.1514E-01 2.1111 0.3035E-01 1.9017
16 0.3503E-04 3.0836 0.3452E-02 2.1328 0.7633E-02 1.9913
32 0.4377E-05 3.0008 0.8237E-03 2.0673 0.1905E-02 2.0022

3.2.5.3 Simulation 3: Poiseuille flow

The Poiseuille flow is a classical problem in fluid mechanics that math-

ematically describes a characteristic pipe flow (WHITE, 2011). To simulate it,

consider the domain Ω = [−1, 1]2, the viscosity µ = 1.0, and the penalty parameter
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λ = 108. The capacitance function was set to be ϕ = 1 + 0.5sen(πx)sen(πy), and

the analytic solution

u =







0
1 − y2

2µ





 p = y + 1, (3.51)

was given. Since the functions above belong to the space of solutions, the error in

the first iteration with the coarsest mesh reached the order 10−7, as was expected.

A homogeneous Dirichlet condition was imposed on the lateral edges,

and, on the upper and lower ones, the same mixed boundary condition was consid-

ered for simulation 2 (Subsection 3.2.5.2).
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Figure 12 – (a)Capacitance function profile. (b)Velocity profile in y direction.

Figures 12b and 13b show the velocity profile and the velocity field of

the flow respectively. Figures 12a, and 13a illustrate its capacitance function and

pressure profile.
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Figure 13 – (a) Pressure profile. (b) Velocity field.

3.3 Oseen equations

The Oseen problem is also a simplification of the problem described by

Equations (2.19), in a stationary regime. The difference from the Stokes problem

is that here there is an advection term, and it is represented by equations:

2µ∇ · ǫ(u) − ∇p + (∇u)a = −ϕρf in Ω;

ϕ∇ · u + u · ∇ϕ = 0 in Ω;

u = ū over ΓD;

p = p̄ over ΓN .

(3.52)

where a is a known vector field. The classical Oseen Problem is represented by

(3.52) when ϕ = 1. It may present instabilities if the Reynolds number is high, and

stabilization methods are frequently needed (CONCEICAO, 2006).

3.3.1 Variational formulation

Analogously to the Stokes problem, the variational formulation for the

Oseen one can be expressed as:
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Find the pair (u, p) ∈ U × P such that
ˆ

Ω

{

2µǫ(u) : ǫ(w) + [(∇u)a] · w

}

dΩ −

ˆ

Ω

p∇ · wdΩ = ρ

ˆ

Ω

ϕf · wdΩ,
ˆ

Ω

(ϕ∇ · u + u · ∇ϕ) qdΩ =

ˆ

Ω

0qdΩ

(3.53)

hold for all w ∈ U , and q ∈ P. Or, in the abstract form:

a(u, w) + b(w, p) = f(w), ∀w ∈ U ;

d(u, q) = g(q), ∀q ∈ P.
(3.54)

In which a(·, ·) : U × U → R, b(·, ·) : U × P → R, and d(·, ·) : U × P → R are

bilinear forms, f(·) : U → R, and g(·) : P → R are continuous linear functionals

such that

a(u, w) =

ˆ

Ω

{

2µǫ(u) : ǫ(w) + [(∇u)a] · w

}

dΩ (3.55)

b(w, p) = −

ˆ

Ω

p∇ · wdΩ, (3.56)

d(u, q) =

ˆ

Ω

(ϕ∇ · uq + u · ∇ϕq)dΩ (3.57)

f(w) = ρ

ˆ

Ω

f · wdΩ +

ˆ

∂Ω

t · wdl (3.58)

g(q) =

ˆ

Ω

0qdΩ = 0. (3.59)

3.3.2 Matrix form

In order to approximate the Oseen problem, the function and approx-

imation spaces are the same as the ones defined in Subsections 3.2.1, and 3.2.2

respectively. The matrix form resulting from these choices is just as in the case of

the Stokes problem, except for a small modification in matrix A:
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• A : (2m) × (2m), with elements

A2i−1,2j−1 =

ˆ

Ω

[

2µ
∂φi

∂x

∂φj

∂x
+ µ

∂φi

∂y

∂φj

∂y
+

(

∂φj

∂x
a1 +

∂φj

∂y
a2

)

φi

]

dΩ

A2i−1,2j =

ˆ

Ω

(

µ
∂φj

∂y

∂φi

∂x

)

dΩ

A2i,2j−1 =

ˆ

Ω

(

µ
∂φj

∂x

∂φi

∂y

)

dΩ

A2i,2j =

ˆ

Ω

[

µ
∂φi

∂x

∂φj

∂x
+ 2µ

∂φi

∂y

∂φj

∂y
+

(

∂φj

∂x
a1 +

∂φj

∂y
a2

)

φi

]

dΩ



53

4 Navier-Stokes Problem

In this chapter, the general problem of approximating the modified

Navier-Stokes equations (2.19) is addressed. The algorithm for linearization, and

to approximate the variation in time is presented. The variational problem is

formulated, and then the space discretizations lead to a matrix form of the problem,

which is the last step before performing the numerical simulations.

4.1 Nonlinear Variational Formulation

From the strong form of the conservation principles presented in Section

2.2, the derivation of the variational formulation corresponding to these equations

will be presented in this section. Consider the partition of the time interval I in

time steps

∆tn = tn+1 − tn, with
∑

n

∆tn = T. (4.1)

For the sake of simplicity in what follows a uniform partition is assumed with

∆tn = ∆t. It is important to note that the final scheme holds for nonuniform

partitions, though.

The first step is to integrate the second equation of (2.19),

ˆ tn+1

tn

[

ρϕ(x, τ)
∂u

∂τ
+ ρϕ(x, τ)(∇u)u

]

dτ =

ˆ tn+1

tn

[ρϕ(x, τ)f + ∇ · σ] dτ, (4.2)

adopting an implicit Euler scheme to approximate the integrals, with ϕ evaluated

in time step tn+1. This leads to the following equation discrete in time

ρϕn+1(un+1 − un) + ∆tρ(∇ϕn+1un+1)un+1 = ∆tρϕn+1fn+1 + ∆t∇ · σn+1

+O((∆t)2),
(4.3)

where un+1 and un stand for the velocity vector fields at times tn+1 and tn,

respectively and ϕn+1 = ϕ(x, tn+1). By dropping the O((∆t)2) error, multiplying

(4.3) by a test function w ∈ U and integrating on Ω, one gets the semidiscrete
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(discrete in time, continuous in space) equation
ˆ

Ω

ρϕn+1(un+1 − un) · wdΩ + ∆t

ˆ

Ω

ρϕn+1[(∇un+1)un+1] · wdΩ

= ∆t

ˆ

Ω

ρϕn+1fn+1 · wdΩ + ∆t

ˆ

Ω

(∇ · σn+1) · wdΩ.

(4.4)

The term of the Cauchy stress tensor can be written as
ˆ

Ω

(∇ · σn+1) · wdΩ =

ˆ

Ω

∇ · ((σn+1)tw)dΩ −

ˆ

Ω

σn+1 : ∇wdΩ

=

ˆ

∂Ω

(σn+1n) · wdΓ −

ˆ

Ω

σn+1 : ∇wdΩ

=

ˆ

∂Ω

tn+1 · wdΓ −

ˆ

Ω

σn+1 : ∇wdΩ

where integration by parts, the symmetry of the stress tensor, the divergence

theorem and the definition of the traction vector t = σn were used. By using the

constitutive equation (2.17), one can write the last integral in terms of the velocity

and the pressure, as
ˆ

Ω

σn+1 : ∇wdΩ = 2µ

ˆ

Ω

ǫ(un+1) : ǫ(w)dΩ −

ˆ

Ω

pn+1
∇ · wdΩ (4.5)

Thus, the first weak equation of the system is given by
ˆ

Ω

ρϕn+1un+1 · wdΩ + ∆t

ˆ

Ω

ρϕn+1[(∇un+1)un+1] · wdΩ

+2µ∆t

ˆ

Ω

ǫ(un+1) : ǫ(w)dΩ − ∆t

ˆ

Ω

pn+1
∇ · wdΩ − ∆t

ˆ

∂Ω

tn+1 · wdΓ

=

ˆ

Ω

ρϕn+1un · wdΩ + ∆t

ˆ

Ω

ρϕn+1fn+1 · wdΩ

(4.6)

The second equation follows by evaluating the first equation of (2.19)

at t = tn+1, multiplying it by q ∈ P , and integrating on the domain Ω, leading to
ˆ

Ω

ϕn+1
∇ · un+1qdΩ +

ˆ

Ω

un+1 ·
(

∇ϕn+1
)

qdΩ = −

ˆ

Ω

ϕ̇n+1qdΩ. (4.7)

where ϕ̇n+1 stands for the time derivative of the capacitance function at t = tn+1.

Equations (4.6) and (4.7) form the following nonlinear variational for-

mulation posed in terms of the unknowns un+1 and pn+1:
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Nonlinear problem Given un find un+1 ∈ U and pn+1 ∈ P such that

ˆ

Ω

ρϕn+1un+1 · wdΩ + ∆t

ˆ

Ω

ρϕn+1[(∇un+1)un+1] · wdΩ

+ 2µ∆t

ˆ

Ω

ǫ(un+1) : ǫ(w)dΩ

− ∆t

ˆ

Ω

pn+1
∇ · wdΩ − ∆t

ˆ

∂Ω

tn+1 · wdΓ

= ∆t

ˆ

Ω

ρϕn+1fn+1 · wdΩ

+
ˆ

Ω

ρϕn+1un · wdΩ ∀ w ∈ U (4.8)

and
ˆ

Ω

ϕn+1
∇·un+1qdΩ+

ˆ

Ω

un+1 ·∇ϕn+1qdΩ = −

ˆ

Ω

ϕ̇n+1qdΩ ∀ q ∈ P. (4.9)

The algorithm employed to solve this nonlinear problem is described in

the next section.

4.2 Sequential Iterative Algorithm

In order to solve the Nonlinear problem, the term (∇un+1)un+1 is

linearized in the form

(∇un+1)un+1 = (∇un+1,k+1)un+1,k (4.10)

where the index k denotes the iteration. Thus, by setting the unknowns u = un+1,k+1

and p = pn+1,k+1, one step of the iterative algorithm is defined by the following

linear variational formulation:
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Linearized problem Given un and un+1,k find u = un+1,k+1 ∈ U and p =

pn+1,k+1 ∈ P such that

ˆ

Ω

ρϕn+1u · wdΩ + ∆t

ˆ

Ω

ρϕn+1[(∇u)un+1,k] · wdΩ

+ 2µ∆t

ˆ

Ω

ǫ(u) : ǫ(w)dΩ

− ∆t

ˆ

Ω

p∇ · wdΩ − ∆t

ˆ

∂Ω

tn+1 · wdΓ

= ∆t

ˆ

Ω

ρϕn+1fn+1 · wdΩ

+
ˆ

Ω

ρϕn+1un · wdΩ ∀ w ∈ U (4.11)

ˆ

Ω

ϕn+1
∇ · uqdΩ +

ˆ

Ω

u · ∇ϕn+1qdΩ = −

ˆ

Ω

ϕ̇n+1qdΩ ∀ q ∈ P. (4.12)

Thus, the step from tn to tn+1, follows by setting un+1,0 = un and

solving the Linearized problem iteratively until convergence in k is reached. It

is described by the following algorithm:

Algorithm 1 (Sequential Iterative Algorithm)

Step 1 Set the iteration index k = 0 and un+1,k = un.

Step 2 Given un and un+1,k find un+1,k+1 and pn+1,k+1 by solving the Linearized

Problem (4.11)-(4.12)

Step 3 Check for convergence. If converged, set un+1 = un+1,k+1 and pn+1 =
pn+1,k+1; otherwise advance k = k + 1 and go to step 2.

The convergence test, for given tolerances ǫu > 0 and ǫp > 0, can verified

through the conditions

||un+1,k+1 − un+1,k|| < ǫu (4.13)

and

||pn+1,k+1 − pn+1,k|| < ǫp, (4.14)
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or

||un+1,k+1 − un+1,k|| < ǫu||un+1,k+1|| (4.15)

and

||pn+1,k+1 − pn+1,k|| < ǫp||pn+1,k+1||, (4.16)

designating the absolute and the relative errors, respectively.

4.3 Abstract variational problem

The variational formulation (Equations (4.11), and (4.12)) for the mod-

ified Navier-Stokes problem (Equation (2.19)) can be rewritten in the abstract

form:

a(u, w) + b(w, p) = f(w), ∀w ∈ U ,

d(u, q) = g(q), ∀q ∈ P,
(4.17)

in which a(·, ·) : U × U → R, b(·, ·) : U × P → R, and d(·, ·) : U × P → R are

bilinear forms, f(·) : U → R and g(·) : P → R are linear continuous functionals

given by

a(u, w) =

ˆ

Ω

ϕ̃u · wdΩ + ∆t

ˆ

Ω

ϕ̃[(∇u)uk] · wdΩ + 2µ∆t

ˆ

Ω

ǫ(u) : ǫ(w)dΩ

b(p, w) = −∆t

ˆ

Ω

p∇ · wdΩ

f(w) = ∆t

ˆ

Ω

ϕ̃f · wdΩ +

ˆ

Ω

ϕ̃ua · wdΩ + ∆t

ˆ

∂Ω

t · wdΓ

d(u, q) =

ˆ

Ω

ϕ̃∇ · uqdΩ +

ˆ

Ω

u · (∇ϕ̃) qdΩ

g(q) = −

ˆ

Ω

˙̃ϕn+1qdΩ,

(4.18)

where uk = un+1,k, ua = un and ϕ̃ = ρϕn+1.

As in the Stokes problem approach (Chapter 2), the mixed approach

and the introduction of a small compressibility scheme is also used here, and its

implementation is analogous to the one explained in Sub-subsection 3.2.4.1. Thus,

it is possible to express Equation (4.18) as a matrix form, as follows in the next

section.
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4.4 Matrix form

Using the function and approximation spaces defined in Subsections

3.2.1, and 3.2.2, respectively, and the linear expansions from Equation (3.19), it is

possible to express Equations (4.17) as a linear system:




A B

D C









UE

PE



 =





F

G



 (4.19)

In which the submatrices of the continuity equation are:

• C: (np) × (np), with elements

Cl,k =
1

λ

ˆ

Ω

[

φ̄lφ̄k

]

dΩ; (4.20)

• D: (np) × (2m), with elements

Dl,2i−1 =

ˆ

Ω

[

ϕ̃
∂φi

∂x
+ φi

∂ϕ̃

∂x

]

φ̄kdΩ; (4.21)

Dl,2i =

ˆ

Ω

[

ϕ̃
∂φi

∂y
+ φi

∂ϕ̃

∂y

]

φ̄kdΩ; (4.22)

• G: (np) × 1, with elements

Ge
l,1 = −

ˆ

Ω

∂ϕ̃

∂t
φ̄ldΩ. (4.23)

And the submatrices corresponding to the linear momentum conservation equation:

• A : (2m) × (2m), with elements

A2i−1,2j−1 =

ˆ

Ω

[

ϕ̃φiφj + ϕ̃∆t

(

uk1

∂φj

∂x
+ uk2

∂φj

∂y

)

φi (4.24)

+ µ∆t

(

2
∂φi

∂x

∂φj

∂x
+

∂φi

∂y

∂φj

∂y

)

]

dΩ; (4.25)

A2i−1,2j = µ∆t

ˆ

Ω

∂φj

∂y

∂φi

∂x
dΩ; (4.26)
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A2i,2j−1 = µ∆t

ˆ

Ω

∂φj

∂x

∂φi

∂y
dΩ; (4.27)

A2i,2j =
ˆ

Ω

[

ϕ̃φiφj + ϕ̃∆t

(

uk1

∂φj

∂x
+ uk2

∂φj

∂y

)

φi (4.28)

+ µ∆t

(

2
∂φi

∂y

∂φj

∂y
+

∂φi

∂x

∂φj

∂x

)

]

dΩ; (4.29)

• B: (2m) × (np), with elements

B2i−1,k = −∆t

ˆ

Ω

∂φi

∂x
φ̄kdΩ; (4.30)

B2i,k = −∆t

ˆ

Ω

∂φi

∂y
φ̄kdΩ; (4.31)

• F : (2m) × 1, with elements

F e
2j−1,k =

ˆ

Ω

[

ϕ̃∆tf1φj + ϕ̃ua1
φj

]

dΩ +

ˆ

∂Ω

(t1φj) dl; (4.32)

F e
2j,k =

ˆ

Ω

[

ϕ̃∆tf2φj + ϕ̃ua2
φj

]

dΩ +

ˆ

∂Ω

(t2φj) dl; (4.33)

with l, k = 1, . . . , np; j, i = 1, . . . , m.

4.5 Numerical experiments

In this section, qualitative simulations are presented. They incorporate

important components to simulate the blood flow through a heart chamber during

a cardiac cycle, such as filling and ejection of fluid given through the variation of

the capacitance function ϕ. In the first part, two different boundary conditions

are explored, and some conclusions are outlined. Then, a problem with analytic

solution is carried out, which is a relevant test before proceeding to the left ventricle

case. All the simulations were made with mesh of 20 × 20 Q2P1 elements, density

ρ = 1, viscosity µ = 1, penalty parameter λ = 108, and time interval I = [0, 1]. In

all the numerical experiments it was used the condition (4.15) with ǫu = 10−2.
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4.5.1 Study of boundary conditions

In this subsection the suitability of two types of boundary conditions

(BCs) to be imposed on the mitral and aortic valves is discussed. The study of

stability of BCs for the Navier-Stokes equations is a vast and intricate area in

the literature. For example, it is known that prescribing only the pressure on

the boundary is an ill-posed problem (FOUCHET-INCAUX, 2014). The mixed

(Dirichlet-Neumann) boundary condition is often used, but its stability is not guar-

anteed for physiological problems (FOUCHET-INCAUX, 2014), (GRAVEMEIER

et al., 2012), (HEYWOOD; RANNACHER; TUREK, 1996). This approach is

particularly interesting for the problems addressed in this work, since it is necessary

to impose artificial conditions on the chamber in order to simulate the real pressure

inside it.

In what follows, a Poiseuille-type problem is simulated, by considering

the flow between two flat plates separated by a distance x̄. The domain is defined

to be Ω = [0, x̄] × [0, 1] and the capacitance is set to be ϕ = 1. The time interval

I = [0, 1] was subdivided in 10 time steps. On the lateral edges of the domain, the

homogeneous Dirichlet boundary condition u = 0 was imposed, while on the upper

and lower edges the pressure is p̄(x) = 11.0 and p̄(x) = 1.0, respectively.

On the upper and lower edges, two different mixed Dirichlet/traction

conditions are tested. In the first boundary condition (BC1), the x-component of

the velocity is (strongly) imposed as u = 0, and, the y-component of the traction

vector is (weakly) set as

t2(x) = −p̄(x)ny, (4.34)

where p̄ is the given pressure on the boundary and ny is the y-component of the

outward unit normal vector. The second boundary condition (BC2) differs from

the first one by considering the full y-component of the traction vector

t2(x) = −p̄(x)ny + 2µ
∂v

∂y
ny. (4.35)

While the first part, associated to the pressure, is weakly imposed and goes to the

right hand side of the system (source vector on the right hand side of the linear

system (4.19)), the second part, associated to the y-component of the velocity, is



Chapter 4. Navier-Stokes Problem 61

implicit and goes to the stiffness matrix, in the right hand side of the linear system

(Equation (4.19)). It is similar to the imposition of Robin boundary conditions.

Figure 14 show the y-component velocity results for x = 1.00, x = 0.10,

and x = 0.01 using BC1 and BC2. Note that when BC1 was used, the velocity

profile was similar to the Poiseuille flow one (Subsection 3.2.5.3) in all the cases

tested. However, when x = 1.00, the velocity profile resulted from the use of BC2

was totally different from the one using the former approach, and it approximates

the Poiseuille flow profile as the distance between the plates diminishes.
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(c) x = 0.10.
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(e) x = 0.01.

 0
 0.002

 0.004
 0.006

 0.008
 0.01

X
 0

 0.2

 0.4

 0.6

 0.8

 1

Y

-0.00014

-0.00012

-0.0001

-8x10
-5

-6x10
-5

-4x10
-5

-2x10
-5

 0

 2x10
-5

(f) x = 0.01.

Figure 14 – Flow between two flat plates separated by a distance x using BC1
(left), and BC2 (right): velocity profile in y direction.
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4.5.2 Capacitance function varying in space and time

This test was specially constructed in order to compare the approximated

solution in a case where the capacitance function varies in space and time and

there is an analytic (exact) solution. To this end, consider Equations (2.16) in the

domain Ω = [0, 1]2, the time interval I = [0, 1], the capacitance function

ϕ = 1 − 0.9sen(πx)sen(πy)sen(πt), (4.36)

and the sources

f =











−πsen(πx) cos(πx)
(

1 + 3 cos2
(

πy

2

))

+
4π2

ϕ
cos(πx) cos

(

πy

2

)

π

2
sen(

πy

2
) cos

(

πy

2

)

(

1 + 3 cos2(πx)
)

+
π2

2ϕ
sen(πx)sen

πy

2











(4.37)

and

g = −0.9π cos(πt)sen(πx)sen(πy)

+ cos
(

πy

2

)

(−2πsen(πx) − 1.8π cos(2πx)sen(πt)sen(πy))

+ cos(πx)
(

−0.9π2 cos(πy)sen(πt)sen(πx)sen
(

πy

2

)

+ cos
(

πy

2

)

(

π2

2
− 0.45π2sen(πt)sen(πx)sen(πy)

))

,

(4.38)

where g is introduced in the right hand side of the first Equation of (2.19). This

problem has the following analytic solution:

u =







2 cos(πx) cos
(

πy

2

)

π cos(πx)sen(
πy

2
)






, p = sen(πt). (4.39)

The simulation was done with the boundary condition type BC1 (refer

to Subsection 4.5.1) on the upper edge of the domain, and on the remaining edges

the homogeneous Dirichlet BC was imposed. The number of time steps was set

to be 50. Figures 15a and 15b show the simulation results for velocity in x and y

directions, respectively. Observe that, even though pressure and volume change

with time, the velocity profiles are maintained static.
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(b) Velocity profile in y direction.

Figure 15 – Capacitance function varying in space and time with BC1: velocity
profiles.

The resulting velocity field at t = 1 can be seen in Figure 16a, which is

side-by-side to the pressure profile at t = 1 shown in Figure 16b. Note that pressure

changes with time, but, at the last time step it is identically null.
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(a) Velocity field at t = 1.0.
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(b) Pressure profile at t = 1.0.

Figure 16 – Capacitance function varying in space and time with BC1: velocity
field and pressure profile.

Figure 17a depicts the volume variation result using the Expression

(4.36) for the capacitance function. Figure 17b shows the pressure variation with
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time. Note that the average of pressure on the domain coincides with the pressure

prescribed on the boundary using BC1.
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Figure 17 – Capacitance function varying in space and time with BC1: volume vs.
time and pressure vs. time graphs.
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5 The Human Left Ventricle Simulation

In this chapter the model composed by the modified bidimensional

Navier-Stokes equations, presented in Chapter 2, and the numerical methodology

described in Chapters 3 and 4 will be used in the simulation of a healthy human

left ventricle. All the hypotheses and experimental data are displayed at first, and

then the results from the computational code simulation are shown and discussed.

Figure 18a shows the heart with its four chambers. Two atria and

two ventricles, responsible for pumping blood into the pulmonary and systemic

circulation. To do so, the heart goes through the so-called cardiac cycle, which is

the period between the beginning of a heartbeat to the moment just before the next

beat (HALL; GUYTON, 2011). The cardiac cycle is usually referred to using the

left ventricle as a reference (Figure 18b), but the process is analogous for the four

chambers. The cycle can be divided into two phases, an active phase and a passive

one. In the active phase, the ventricular muscles contract from an electrical stimulus.

Thus, the ventricular pressure increases isovolumetrically, and when it equals to

the blood aortic pressure, the aortic valve opens causing the blood to flow through

the artery. In this process, called systole, the pressure increases significantly, until

the maximum systolic pressure (when blood ejection is still occurring), and, at the

moment the pressure reaches values below those of blood pressure, the valve closes.

Then, the isovolumetric phase of relaxation begins, and, soon, the mitral valve

opens allowing the blood to flow from the atrium to the ventricle. This phase, just

after the blood ejection, is called diastole (GUYTON; HALL, 2006). The P × V

diagram of the cardiac cycle is indicated by red arrows in Figure 18b.
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5.1 Cardiovascular parameters

According to American Heart Association (2018),the usual resting heart

rate (RHR) ranges in general from 60 to 90 beats per minute. The simulations

performed in this section consider that the heart frequency is 1Hz, i.e., the RHR

is equal 60 beats per minute. Furthermore, the simulations used the volume and

pressure data for the left ventricle displayed in Table 4, that were taken from

(BORON; BOULPAEP, 2012). The corresponding time scale was set to mimic a

real cardiac cycle.

The end-diastolic volume is set to be 120 ml, and the stroke volume, 70

ml. In other words, the maximum volume is 120ml and the minimum volume that

remains inside the ventricle (after the blood pump) is 50ml.

Table 4 – Data for a healthy human left ventricle from (BORON; BOULPAEP,
2012).

i ti (s) Pi (mmHg) Vi (ml) Cardiac Phase [ti − 1, ti)
0 0.00 10 120
1 0.05 80 120 Systole: Isovolumetric pressurization
2 0.20 120 75 Systole: Ejection
3 0.30 100 50 Systole: Ejection
4 0.45 7 50 Diastole: Isovolumetric relaxation
5 0.60 5 70 Diastole: Filling
6 1.00 10 120 Diastole: Filling

The notation settled for the ejection time interval is IAV = [t1, t3), and

the filling one is IMV = [t4, t6). The indices AV and MV indicates the interval over

which the valve is opened. The blood specific mass was set to be ρ = 1059 m−3kg

(WERNER; BUSE, 1988), and the dynamic viscosity, µ = 4 ∗ 10−3Pa·s (BLICK;

STEIN, 1977).

5.2 Results from the left ventricle simulation

Consider the ideal geometry for the left ventricle presented in Subsection

2.2.2, and set an uniform mesh of 20 × 20 quadrilateral elements. The number of
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time steps for the ejection was set to be 40, whereas for the filling it was 50. Again,

in all the numerical experiments it was used the condition (4.15) with ǫu = 10−2.

It is important to remark that, for this configuration, the number of iterations in k

(Section 4.2) in each time step was always less than 5. Furthermore, in order to

verify that the mass is numerically conserved, it was verified that the difference

between the volumetric flow rate on the valves and the change in volume inside

the chamber was about 0.27%.

During the isovolumetric processes — ventricle compression and relax-

ation — the velocity field was not solved, since it is expected that there is no

flow during these periods. Then, the pressure was prescribed to be linear during

both moments, as it is represented in the literature (BORON; BOULPAEP, 2012).

In the ejection and filling processes, the pressure and volume functions where

set to interpolate quadratically the data points shown in Table 4. The boundary

conditions were set to be homogeneous Dirichlet u = 0 on the fixed walls, from

which there is no flux. On the valves, the pressure was prescribed using BC2 (refer

to 4.5.1), but the following results are similar to the ones obtained when using

BC1.

Figure 19b depicts the pressure versus time graph with the pressure

prescribed on the boundary (“expected”), its average on the chamber, on the mitral

and aortic valves. Figure 19a illustrates the volume versus time graph, which was

simulated from the variation of the capacitance function ϕ. Both are similar to

the ones from literature (HALL; GUYTON, 2011). Figure 20a shows the P × V

diagram, with the prescribed and average pressure inside the chamber, and, on its

side, there is a diagram from the literature (HALL; GUYTON, 2011).
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different moments of the simulation, being respectively: at t = 0.04s and t = 0.06s

(just before and soon after the beginning of the chamber ejection), at t = 0.3s

(end of the ejection/just before the beginning of the isovolumetric compression), at

t = 0.44s and t = 0.46s (just before and soon after the beginning of the chamber

filling); and, finally, at t = 0.98s (at the end of the chamber filling). It is possible

to see details of the velocity field at four different time frames in Figure 25, and in

Figure 26 their corresponding magnitudes.

Recalling that the capacitance function ϕ was proposed in the Chapter

2 in order to allow the chamber volume variation on a fixed domain and mesh. In

the present simulation, its profile is shown above the domain in Figure 24, which

resembles a diaphragm.

At each time frame, the spatial pressure variation is minimal, but it is

enough to cause the fluid to flow and to generate vortexes. The profile of velocity

streamlines are illustrated on the domain of Figure 27. In the same figure, the

pressure profile is represented as a plane that varies on the z axis at the same time

frames mentioned for the velocity. Figure 28 shows the pressure magnitude in four

different moments of the cycle. Note that the pressure magnitude is scaled over

one cardiac cycle, that is, its upper limit is defined by the highest possible pressure

value during a cardiac cycle. The same goes for the lower limit. This explains why

the pressure seems to be a flat surface in Figure 27, and, in Figure 28, as one

homogeneous color. However, when the pressure profile is scaled on each fixed time

frame of Figure 28, it is possible to see the small variations over the domain. See

Figure 29.
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(a) t = 0.04s. (b) t = 0.06s.

(c) t = 0.30s. (d) t = 0.44s.

(e) t = 0.46s. (f) t = 0.98s.

Figure 24 – Blood velocity field and the capacitance function at six time frames of
the cardiac cycle.
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(a) t = 0.06s. (b) t = 0.30s.

(c) t = 0.46s. (d) t = 0.98s.

Figure 25 – Blood velocity field detailed in four different time frames of the cardiac
cycle.



Chapter 5. The Human Left Ventricle Simulation 77

(a) t = 0.06s. (b) t = 0.30s.

(c) t = 0.46s. (d) t = 0.98s.

Figure 26 – Blood velocity magnitude detailed in four different time frames of the
cardiac cycle.
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(a) t = 0.04s. (b) t = 0.06s.

(c) t = 0.30s. (d) t = 0.44s.

(e) t = 0.46s. (f) t = 0.98s.

Figure 27 – Profile of velocity streamlines and the pressure profile at six time
frames of the cardiac cycle.
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(a) t = 0.06s. (b) t = 0.30s.

(c) t = 0.46s. (d) t = 0.98s.

Figure 28 – Pressure magnitude scaled over the cardiac cycle in four different time
frames of the cardiac cycle.
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(a) t = 0.06s. (b) t = 0.30s.

(c) t = 0.46s. (d) t = 0.98s.

Figure 29 – Pressure magnitude scaled over the time frame in four different time
frames of the cardiac cycle.
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6 Thermodynamics analysis

In this chapter a thermodynamic model for the left ventricle is proposed,

considering the cavity geometry presented in Subsection 2.2.2, and the calibration

of parameters carried out in Chapter 5. As explained in Chapter 2, it is assumed

that the thermodynamics does not affect the mass conservation equation and the

physical properties of the fluid, but the flow does affect the energy balance. Thus,

in this Chapter the First and Second Laws of Thermodynamics are applied to the

model and the exergy analysis is applied in order to evaluate the quality of the

energy conversion process in the human heart. Henceforth, the velocity magnitude

is denoted as ū in order to avoid an ambiguous notation with the internal energy u.

6.1 Thermodynamic model

From the left ventricle geometry of Figure 5, the thermodynamic model

illustrated in Figure 30 is introduced. It comes up with a control volume (CV),

which is placed outside the heart walls to take the heart metabolism M into account,

then the cardiac muscle is considered to be inside the CV (HENRIQUES; MADY;

OLIVEIRA-JUNIOR, 2016). The work W is considered to be performed on the CV

since it is a result of external electrical stimulus (to contract the cardiac muscle).

However, such a definition needs to be further discussed, because there is not a

proper concept in the literature regarding the performed power by the cardiac

muscle. Some key experiments can be found in (CAVAGNA; KANEKO, 1977;

SMITH; BARCLAY; LOISELLE, 2005). The remaining energy is released as heat

QM to the body.

This scheme is mathematically expressed in Equations (6.1), and (6.2)

(MADY; OLIVEIRA-JUNIOR, 2013). The first expression indicates the energy

conversion process in the metabolism, therefore, all the energy in the nutrients are

converted into work or heat. From this process the energy is converted into flow

work, internal energy variation and kinetic energy. Equation (6.2) represents the
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MV

M

AV
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CV

W

Figure 30 – Left ventricle thermodynamic model.

exergy analysis in the whole control volume, where it is clear that the part of the

chemical exergy of the nutrients (BM) is converted in a variation of the physical

exergy, work, heat and the remain destroyed.

M = QM + W, (6.1)

Bd = −∆B + BM − BQM
− W. (6.2)

6.1.1 Metabolism on an energy and exergy basis

Mady e Oliveira (2013) proposed Equations (6.3) to calculate the

metabolism in energetic and exergy basis (in Joules) using thermodynamic proper-

ties obtained by Haynie (2008) as functions of oxygen consumption, carbon dioxide

production, and nitrogen excreted from urine mO2
, mCO2

, mN respectively.

M = 1000(11371mO2
+ 2366mCO2

+ 6891mN)

BM = 1000(9501mO2
+ 3963mCO2

+ 6979mN)
(6.3)
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However, according to Mady e Oliveira (2013) for a healthy person in basal

conditions or under physical activities, the oxidation of proteins can be disregarded

(maximum contribution of 3%). Since the term of mN comes from the oxidation of

proteins, its value is negligible. Then the following expression will be carried out to

calculate the metabolism in energy and exergy bases:

M = 1000(11371mO2
+ 2366mCO2

)

BM = 1000(9501mO2
+ 3963mCO2

)
(6.4)

The authors conclude that the approximation BM ≈ M , as previously reported

in (BATATO et al., 1990), is valid in basal conditions and may also hold during

physical activities. One point that was evaluated, and which is not analyzed in the

literature, is the entropy variation of reaction of oxidation. The values of absolute

entropy of glucose and palmitic acid were obtained from Annamalai e Silva (2012).

Hence, it results that

SM = 1000(−5.9029mO2
+ 5.2790mCO2

). (6.5)

Another relevant result was obtained by Takaoka et al. (1992) from

human experimental data: a linear relationship between the myocardial oxygen

consumption (VO2
) and the systolic pressure-volume area (PVA), which is the

shaded area shown in Figure 31. From the value determined for PVA, it is possible

to calculate mO2
using the specific mass of O2 at T = 37◦C and p = 1atm, while

mCO2
can be calculated using the respiratory quotient (RQ), which is the ratio of

the carbon dioxide production to oxygen consumption (on a molar or volumetric

basis). This parameter is 1 for glucose, 0.7 for palmitic acid, and 0.83 for amino

acids. The assumption that RQ is 0.83 for basal conditions is reliable according

to Mady e Oliveira-Junior (2013), nevertheless it is well established in medical

literature that the myocardial (biggest heart muscle) consumes 70% of lipids and

30% of glucose (HALL; GUYTON, 2011).

It is important to highlight that the metabolism of the blood (hemoglobin

and leukocytes) was neglected in this analysis, because, according to (DALAND;

ISAACS, 1927), this amount is not representative for healthy individuals.
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time will also be denoted as an overdot, such as, Ẇ ≡
δW

dt
.

6.2.1 The First Law of Thermodynamics

During the cardiac cycle, each heart activity must be in permanent

regime, because there is no resting heart rate (RHR) increase, neither of volume

nor temperature, that is, it is expected that there is no energy variation of the

heart over the time. Then, the First Law of Thermodynamics can be expressed as:

0 =
dUV C

dt
=
∑

i

ṁi(hi +
ū2

i

2
+ gzi) −

∑

e

ṁe(he +
ū2

e

2
+ gze) + Ṁ + Ẇ

=
∑

i

ṁi(hi +
ū2

i

2
+ gzi) −

∑

e

ṁe(he +
ū2

e

2
+ gze) + Ṁ + Ẇ ,

(6.6)

in which ṁ is the mass flow rate, h is the specific enthalpy, ū is the magnitude of

blood velocity, g is the gravitational acceleration, and z is the height of flow rate.

The indices i and e indicates when there is an inflow and outflow (exit) of a mass

associated with the referred property.

Furthermore, the input comes through the mitral valve (MV) and the

output goes through the aortic valve (AV), then the terms of potential energy

cancel out.

Thus, Equation (6.6) can be rewritten as:

0 = ṁi(hi +
ū2

i

2
) − ṁe(he +

ū2
e

2
) + Ṁ + Ẇ

= ṁi(ui +
pi

ρ
+

ū2
i

2
) − ṁe(ue +

pe

ρ
+

ū2
e

2
) + Ṁ + Ẇ

(6.7)

Then, integrating it over time,

m(ue − ui) =
1

ρ

(

ˆ

IMV

ṁipidt −

ˆ

IAV

ṁepedt

)

+
1

2

(

ˆ

IMV

ṁiū
2
i dt −

ˆ

IAV

ṁeū
2
edt

)

+ M + W,

(6.8)

where m is the mass of the stoke volume, i.e., the total mass that comes in the

ventricle during the filling process, that is the same amount that leaves during the

ejection process.
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Usually, incompressible fluids passing though expansion valves with

low pressure difference have not only the isenthalpic behavior, but also isothermal

behavior, since for the blood dh = cdT , where c is the blood specific heat, considered

as c = 3850 J ◦C−1kg−1 (WERNER; BUSE, 1988), and T is its temperature.

Therefore, it was considered that the temperature of the blood does not change in

the MV and AV during the filling and ejection process. Finally, the First Law of

thermodynamics for this system is:

mc(Te − Ti) =
1

ρ

(

ˆ

IMV

ṁipidt −

ˆ

IAV

ṁepedt

)

+
1

2

(

ˆ

IMV

ṁiū
2
i dt −

ˆ

IAV

ṁeū
2
edt

)

+ M + W.

(6.9)

Observe that, the work W is the area enclosed by the diagram P × V shown in

Figure 20a:

W =

ˆ V 6

V4

p(V )dV, (6.10)

where V4 and V6 where defined in Section 5.1. Besides, all the terms on the right side

of the equation (6.9) are available from the solution of the Navier-Stokes equations

within the geometry of Figure 30. Thus, defining a temperature of blood inflow, it

is possible to determine the exit temperature Te.

6.2.2 The Second Law of Thermodynamics

Consider that there is no variation of the entropy property of the heart

during one cardiac cycle, the Second Law of Thermodynamics can be written as:

0 =
dSV C

dt
= −ṠM + ṁisi − ṁese +

Q̇M

T0

−
Q̇M

Tml

+ σ̇, (6.11)

in which σ stands for the entropy generated due to irreversibilities, si, and se are

the inlet and outlet specific entropies, respectively, T0 is set to be the environmental

temperature T0 = 25◦C, and

Tml =
Te − Ti

ln(Te/Ti)

is the logarithmic mean temperature, that is the representative temperature at

which a heat exchange process leads to no irreversibility, i.e., σ = 0 (NEVERS;
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SEADER, 1980). In the present case, σ 6= 0 because there are irreversibilities, such

as the heat exchange between T0 and Tml. Now, isolating σ̇ in (6.11):

σ̇ = ṠM + ṁese − ṁisi − Q̇M

(

1

T0

−
1

Tml

)

, (6.12)

where QM > 0.

From the Gibbs relation,

ṁese − ṁisi ≈ c(ṁe ln(Te) − ṁi ln(Ti)) −
1

ρTe

ṁepe +
1

ρTi

ṁipi. (6.13)

Then, integrating Equation (6.12) on time, one gets:

σ = SM + mc ln
(

Te

Ti

)

−
1

ρTe

ˆ

IAV

ṁepedt

+
1

ρTi

ˆ

IMV

ṁipidt − QM

(

1

T0

−
1

Tml

)

.

(6.14)

6.3 Exergy analysis

The equation for exergy is a combination of equations for the First and

Second Laws of Thermodynamics (KOTAS, 1985). Multiplying Equation (6.14) by

−T0 and summing the result with Equation (6.9), one obtains:

∆B = Be − Bi

= mc

[

Te − Ti − T0 ln
(

Te

Ti

)

+ T0

(

1

ρTe

ˆ

IAV

ṁepedt −
1

ρTi

ˆ

IMV

ṁipidt

)]

+
1

2

ˆ

IAV

ṁeū
2
edt −

1

2

ˆ

IMV

ṁiū
2
i dt

(6.15)

Additionally, the exergy associated with the heat exchange at an average tempera-

ture of blood between temperature T0 and Tml is

BQM = QM

(

1 −
T0

Tml

)

. (6.16)

Thus, based on (HENRIQUES et al., 2017), the destroyed exergy is defined as:

Bd = −∆B − BQM + BM + W. (6.17)
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A remarkable result for the exergy analysis is the relation between the

destroyed exergy Bd and the entropy generation σ given by the Guoy-Stodola

theorem (NEVERS; SEADER, 1980), and expressed in Equation (6.18):

Bd = T0σ, (6.18)

which will be used to validate the consistency of the thermal model.

The advantage of the exergy analysis in relation solely of the Second

Law of Thermodynamics is the possibility to propose performance parameters

based on the maximum available work, lost work and the desired effect. For the

heart, two efficiencies may be considered, according to Equations (6.19) and (6.20):

η1 =
∆B

BM

, (6.19)

η2 =
BM + W − Bd

BM + W
. (6.20)

While the First Law of Thermodynamics may evaluate the efficiency based only on

the performed work of the heart and the metabolism, therefore defined as the ratio

of W to BM .

6.4 Results

In this section, the simulation outputs for the Laws of Thermodynamics

(Sections 6.2.1 and 6.2.2) and for the exergy analysis (Section 6.3) are presented

together with the conclusions.

6.4.1 Calculation of the integrals

In order to calculate the integrals that appear on the Laws of Thermo-

dynamics expressions, the values of pi, pe, ūi, and ūe were defined to be the average
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on each of the valves:

p∗

i =
1

∆xMV

ˆ

ΓMV

p(x)dl,

p∗

e =
1

∆xAV

ˆ

ΓAV

p(x)dl,

ū∗

i =
1

∆xMV

ˆ

ΓMV

u(x) · ndl,

ū∗

e =
1

∆xAV

ˆ

ΓAV

u(x) · ndl,

(6.21)

in which ∆xAV , and ∆xMV are the AV and MV lengths, u(x) · n is the normal

velocity component at each of the valves, and p(x) is the pressure at point x of

the space. The values of ṁi, and ṁe were calculated as shown in Equation (6.22).

ṁe = ϕ0

ˆ

ΓAV

ρu(x) · ndl,

ṁi = ϕ0

ˆ

ΓMV

ρu(x) · ndl.

(6.22)

Then, the results calculated for each integral are:
ˆ

IMV

ṁip
∗

i dt = 79.4596 Jm3kg−1,

ˆ

IAV

ṁep
∗

edt = 1128.2980 Jm3kg−1,

ˆ

IMV

ṁi(ū
∗

i )
2d = 4.7486 J,

ˆ

IAV

ṁe(ū
∗

e)
2dt = 5.6275 J.

(6.23)

6.4.2 Metabolism

The systolic pressure-volume area (PVA) was approximated to be the

area of the PV -diagram (Figure 20a) plus the area of the triangle defined by the

vertices: the origin of the Cartesian system, and the two closest vertices of the

P × V cycle to the origin. Then, PVA was used to calculate the myocardial oxygen

consumption VO2
, consequently, the oxygen consumption mO2

, and the carbon

dioxide production mCO2
were obtained. Hence, from Equations (6.4), and (6.5),
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it was possible to obtain the heart metabolism in energy (M), entropy (SM), and

exergy (BM) bases. All results are shown in Equations (6.24), (6.25), and (6.26).

M = 3.1786 J, (6.24)

SM = −0.0007 J, (6.25)

BM = 2.9536 J. (6.26)

Remember that it was expected that BM ≈ M , and, in fact, the relative error

between them is relatively small:

100
(

BM − M

BM

)

≈ 7%. (6.27)

6.4.3 First Law of Thermodynamics

Subsequently, the rest of the terms appearing in the First Law of

Thermodynamics (Equation 6.6) were calculated. Starting with the work done by

the left ventricle during one cardiac cycle:

W = 0.9292 J, (6.28)

from which, together with the metabolism value (Expression (6.24)), it was possible

to determine the heat released to the body:

QM = 4.1077 J. (6.29)

Since the stroke volume is 70ml, then, multiplying it by the specific

mass given in Chapter 5, it turns out that the “stroke mass” is m = 0.0741kg.

Having those results on hand together with the integrals’ results shown earlier, it

was possible to determine the blood temperature increase from the moment it is

pulled into the chamber until the moment it is pumped out to the body:

Te − Ti = 0.0108 K, (6.30)

and setting Ti = 310.1500 K = 37.0000 ◦C to be the average body temperature, it

turns out that

Te = 310.1608 K

= 37.0108 ◦C.
(6.31)
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These temperatures values were left with four more decimals, because

they show that the increase in the temperature of the blood is almost negligible,

which is justified by the small period that the blood remains in the organ. Another

point is that the heart is one of the organs with highest metabolism and highest

temperature, justifying its temperature assumption to be 37 oC (FERREIRA;

YANAGIHARA, 2009).

6.4.4 Second Law of Thermodynamics

Moving forward to the Second Law of Thermodynamics, the calculation

results for all the parameters that appear in Equation (6.14) were already presented

above, but the logarithm mean temperature that is:

Tml = 310.1554 K

= 37.0054 ◦C.
(6.32)

Consequently, the entropy generation resulted in

σ = 0.0056 J/K. (6.33)

6.4.5 Exergy analysis

Now, in order to determine the exergy destruction, it is necessary to

discover the exergy variation of the flow rate from (6.15). This result indicates an

increase in the physical exergy (bearing in mind that this is the objective of the

heart).

∆B = 2.0878 J. (6.34)

In the following, the exergy associated with the heat exchange between blood at

different temperatures T0, and Tml is

BQM = 0.1590 J. (6.35)

This value indicates the quality of the energy related to heat, therefore,

it is the maximum work that is possible to obtain from the metabolic heat transfer.

Observe that this amount is one order of magnitude lower than the physical exergy.
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Consequently, from the two values above together with the value of

metabolism in exergy basis (Expression (6.26)), the left ventricle exergy destruction

during a cardiac cycle — calculated using Equation (6.17) — is

Bd = 1.6337 J. (6.36)

Hence, comparing with the result obtained from Equation (6.18):

T0σ = 1.6576 J. (6.37)

The relative error can be calculated:

100
(

Bd − T0σ

Bd

)

≈ −1.46% (6.38)

which indicates that these values are very close, as expected.

According to Henriques et al. (2017), the predicted destroyed exergy

in the whole cardiovascular system for a healthy individual in basal conditions is

7.86W, while the destroyed exergy only in the heart for the same conditions is

7.53W. Then, it is possible to conclude that at least 25% of the cardiovascular

exergy destruction is due to the left ventricle.

Figures 32 and 33 show the Sankey and Grassmann diagrams. The first

depicts energy efficiency of the left ventricle: the arrows start from the energy

contained in the system to the forms in which it is transformed, while the latter

illustrates the exergy diagram for the system: the arrows start from the “available”

exergy to its components losses and useful effects. One interesting result is that

the destroyed exergy is almost in the same order of magnitude of the heat transfer

on an energy basis, indicating that the metabolism is one of the most irreversible

processes of the human heart. Moreover, from these diagrams it is possible to define

the exergy efficiency.
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and the cardiac work (W ). Whereas the exergy destruction associated with the

usefulness of the heart counts as more than half of the final exergy.

Additionally, Mady e Oliveira (2013) concluded that only 5% of the

exergy metabolism is due to thermal portion of metabolism, and the maximum

available work from ATP hydrolysis is approximately 60% of exergy metabolism,

which assures that our results are consistent.

The efficiencies calculated from Equations (6.19), and (6.20) are, respec-

tively:

η1 = 0.7072, (6.39)

η2 = 0.5790. (6.40)

Note that the useful effect from the point of view of exergy (Equations

(6.39) and (6.40)) is much larger when compared to the efficiency of 24.1% based on

the First Law (Sankey diagram) because the former considers exergy variation of

the flow, while the latter only takes into account work divided by the metabolism.
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7 Final remarks and conclusions

This dissertation presented bidimensional mathematical and numerical

models to represent a heart chamber, specifically, the human left ventricle. To

this aim, the blood was assumed to be Newtonian, isotropic, and incompressible.

In order to simulate the volume change during a cardiac cycle, it was found

necessary to introduce a capacitance function to describe the mass distribution on

the domain over time. Then, the final model was governed by a modified version

of the incompressible Navier-Stokes equations. They were considered modified

because, even though the fluid is incompressible, the equations are similar to

the Navier-Stokes equations for compressible fluids: nevertheless, for the sake of

simplicity, they are not the same since the constitutive equation was the one for

incompressible fluids.

Numerical models of steady-state forms of the Navier-Stokes equations,

such as the classical Stokes problem, were presented and evolved to the complete

problem. The employed numerical method stands on a Stable Galerkin Mixed Finite

Element Method for the Stokes problem (BREZZI; FORTIN, 2012), constructed

from the use of quadrilateral elements Q2P1. The choice of discontinuous spaces for

the pressure assured the conservation of mass between the elements. To reach the

optimal convergence in L2, the global pressure approach was employed, combined

with a local one for velocity. The boundary conditions were discussed for each

of the cases presented. Some data points were used to describe the variation of

pressure and volume with time. The pressure was imposed weakly on the valves of

the heart, while the volume variation was prescribed with the capacitance function.

The results for the left ventricle, such as velocity in the valves, were consistent

when compared to medical data. Moreover, it was possible to extract information

to use in the next step, which is the thermodynamic analysis.

Further, a thermodynamic model of a heart chamber that takes into

account heat exchanges with the rest of the body was presented. The energy

equation was solved in its integral form in order to give a clue of its necessity
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in this phenomenological problem. As a closing equation, the Second Law of

Thermodynamics and the exergy analysis of the system were also explored in

their integral forms. This last one has a prior role in the efficiency analysis of a

thermodynamic system. Two efficiencies were proposed. The one based on the First

Law of thermodynamics turned out to be around 58%, and the other from the

exergy point of view was about 71%.

The thermodynamic results can be more accurate and detailed if the

energy conservation and the Second Law of Thermodynamic equations are used in

their differential forms. Another improvement in the model could be done using

an elastance relation between volume, pressure and time so that the capacitance

function would be determined from pressure and time, rather than prescribed.

Hence, pressure-volume diagrams could be generated from the use of some pressure

measurements over the cycle. Consequently, the exergy analysis could be performed

using noninvasive patient-specific data.



97

Bibliography

American Heart Association. All About Heart Rate (Pulse).
2018. <http://www.heart.org/en/health-topics/high-blood-pressure/
the-facts-about-high-blood-pressure/all-about-heart-rate-pulse>. Accessed:
2018-11-15. Citado na página 68.

ANNAMALAI, K.; SILVA, C. Entropy stress and scaling of vital organs over life
span based on allometric laws. Entropy, Multidisciplinary Digital Publishing
Institute, v. 14, n. 12, p. 2550–2577, 2012. Citado na página 83.

ARNOLD, D.; BOFFI, D.; FALK, R. Approximation by quadrilateral finite
elements. Mathematics of computation, v. 71, n. 239, p. 909–922, 2002. Citado na
página 39.

ARNOLD, D. N.; BOFFI, D.; FALK, R.; GASTALDI, L. Finite element
approximation on quadrilateral meshes. Communications in Numerical Methods in
Engineering, Wiley Online Library, v. 17, n. 11, p. 805–812, 2001. Citado na
página 36.

ARNOLD, D. N.; BOFFI, D.; FALK, R. S.; GASTALDI, L. Finite element
approximation on quadrilateral meshes. Communications in Numerical Methods in
Engineering, Wiley Online Library, v. 17, n. 11, p. 805–812, 2001. Citado na
página 39.

BATATO, M.; BOREL, L.; DERIAZ, O.; JEQUIER, E. Analyse exergétique
théorique et expérimentale du corps humain. entropie: énergétique et dynamique
des systèmes complexes: la revue internationale des sciences et techniques en
énergétique, génie chimique, génie biologique, v. 153, n. LENI-ARTICLE-1989-009,
p. 1, 1990. Citado 2 vezes nas páginas 20 and 83.

BECKER, E. B.; CAREY, G.; ODEN, J. T. Finite elements: An introduction.
Austin: Prentice-Hall, 1981. (Texas finite element series). Citado na página 41.

BLICK, E.; STEIN, P. Work of the heart: A general thermodynamics analysis.
Journal of Biomechanics, Elsevier, v. 10, n. 9, p. 589–595, 1977. Citado 4 vezes
nas páginas 11, 17, 18, and 68.

BOFFI, D.; BREZZI, F.; FORTIN, M. Mixed Finite Element Methods and
Applications. Pavia: Springer Berlin Heidelberg, 2013. (Springer Series in
Computational Mathematics). Citado 5 vezes nas páginas 20, 36, 39, 40, and 46.



Bibliography 98

BOFFI, D.; GASTALDI, L. On the quadrilateral q2–p1 element for the stokes
problem. International Journal for Numerical Methods in Fluids, Wiley Online
Library, v. 39, n. 11, p. 1001–1011, 2002. Citado 4 vezes nas páginas 20, 39, 45,
and 46.

BORON, W.; BOULPAEP, E. Medical Physiology. [S.l.]: Elsevier Health Sciences,
2012. Citado 4 vezes nas páginas 13, 19, 68, and 69.

BREZZI, F. On the existence, uniqueness and approximation of saddle-point
problems arising from lagrangian multipliers. Revue française d’automatique,
informatique, recherche opérationnelle. Analyse numérique, EDP Sciences, v. 8,
n. R2, p. 129–151, 1974. Citado na página 37.

BREZZI, F.; FORTIN, M. Mixed and hybrid finite element methods. [S.l.]: Springer
Science & Business Media, 2012. v. 15. Citado 4 vezes nas páginas 20, 34, 36,
and 95.

CAVAGNA, G.; KANEKO, M. Mechanical work and efficiency in level walking
and running. The Journal of physiology, Wiley Online Library, v. 268, n. 2, p.
467–481, 1977. Citado na página 81.

CHEN, M. M.; HOLMES, K. R. Microvascular contributions in tissue heat transfer.
Annals of the New York Academy of Sciences, Wiley Online Library, v. 335, n. 1, p.
137–150, 1980. Citado na página 17.

CIARLET, P. G. The Finite Element Method for Elliptic Problems. [S.l.]:
North-Holland Publishing Company, 1978. (Studies in Mathematics and its
Applications). Citado 2 vezes nas páginas 34 and 36.

CONCEICAO, D. Balancing Domain Decomposition Preconditioners for
Non-symmetric Problems. Tese (Doutorado) — Instituto Nacional de Matemática
Pura e Aplicada, 2006. Citado na página 50.

CORREA, M.; LOULA, A. A unified mixed formulation naturally coupling stokes
and darcy flows. Computer Methods in Applied Mechanics and Engineering,
Elsevier, v. 198, n. 33, p. 2710–2722, 2009. Citado na página 21.

CORREA, M. R. Métodos de Elementos Finitos Estabilizados para Escoamentos
de Darcy e de Stokes-Darcy Acoplados. Tese (Doutorado) — Laboratório Nacional
de Computação Científica, 2006. Citado 2 vezes nas páginas 21 and 33.

DALAND, G. A.; ISAACS, R. Cell respiration studies: Ii. a comparative study
of the oxygen consumption of blood from normal individuals and patients with
increased leucocyte counts (sepsis; chronic myelogenous leucemia). The Journal of



Bibliography 99

experimental medicine, The Rockefeller University Press, v. 46, n. 1, p. 53, 1927.
Citado na página 83.

FERREIRA, M.; YANAGIHARA, J. I. A transient three-dimensional heat transfer
model of the human body. International Communications in Heat and Mass
Transfer, Elsevier, v. 36, n. 7, p. 718–724, 2009. Citado na página 91.

FOUCHET-INCAUX, J. Artificial boundaries and formulations for the
incompressible navier–stokes equations: applications to air and blood flows. SeMA
Journal, Springer, v. 64, n. 1, p. 1–40, 2014. Citado na página 60.

FUNG, Y. C. Biomechanics: Circulation. 2. ed. [S.l.]: Springer-Verlag New York,
1997. Citado na página 19.

GAO, H.; WANG, H.; BERRY, C.; LUO, X.; GRIFFITH, B. E. Quasi-static
image-based immersed boundary-finite element model of left ventricle under
diastolic loading. International journal for numerical methods in biomedical
engineering, Wiley Online Library, v. 30, n. 11, p. 1199–1222, 2014. Citado 2
vezes nas páginas 19 and 20.

GARCIA, D.; KADEM, L. What do you mean by aortic valve area: geometric
orifice area, effective orifice area, or gorlin area? Journal of Heart Valve Disease,
ICR PUBLISHERS CRISPIN HOUSE, 12/A SOUTH APPROACH, MOOR
PARK, NORTHWOOD HA6 2ET, ENGLAND, v. 15, n. 5, p. 601, 2006. Citado
na página 29.

GRAVEMEIER, V.; COMERFORD, A.; YOSHIHARA, L.; ISMAIL, M.;
WALL, W. A. A novel formulation for neumann inflow boundary conditions
in biomechanics. International Journal for Numerical Methods in Biomedical
Engineering, Wiley Online Library, v. 28, n. 5, p. 560–573, 2012. Citado na página
60.

GUYTON, A.; HALL, J. Textbook of Medical Physiology. [S.l.: s.n.], 2006. (Guyton
Physiology Series). ISBN 9780808923176. Citado 3 vezes nas páginas 11, 66,
and 67.

HALL, J.; GUYTON, A. Tratado de fisiologia médica. [S.l.]: Elsevier Brasil, 2011.
Citado 4 vezes nas páginas 66, 69, 70, and 83.

HAYNIE, D. T. Biological thermodynamics. Cambridge, UK: Cambridge University
Press, 2008. Citado na página 82.

HENRIQUES, I.; MADY, C.; JUNIOR, S. O.; ROLL, J. Exergy analysis of the
cardiovascular system. In: Proceedings of the 30th international conference on



Bibliography 100

efficiency, cost, optimization, simulation and environmental impact of energy
systems. [S.l.: s.n.], 2017. Citado 4 vezes nas páginas 21, 27, 87, and 92.

HENRIQUES, I.; MADY, C.; OLIVEIRA-JUNIOR, S. Exergy model of the human
heart. Energy, Elsevier, 2016. Citado 4 vezes nas páginas 11, 27, 28, and 81.

HEYWOOD, J. G.; RANNACHER, R.; TUREK, S. Artificial boundaries and
flux and pressure conditions for the incompressible navier–stokes equations.
International Journal for Numerical Methods in Fluids, Wiley Online Library,
v. 22, n. 5, p. 325–352, 1996. Citado na página 60.

HUGHES, T. J. R. The finite element method: linear static and dynamic finite
element analysis. Mineola: [s.n.], 2000. Citado na página 35.

HUO, Y.; KASSAB, G. Governing equations of blood flow and respective numerical
methods. Computational Cardiovascular Mechanics: Modeling and Applications in
Heart Failure, Springer, 2010. Citado na página 28.

JACOBSEN, J. M.; ADELER, P. T.; KIM, W. Y.; HOULIND, K.; PEDERSEN,
E. M.; LARSEN, J. K. Evaluation of a 2d model of the left side of the human
heart against magnetic resonance velocity mapping. Cardiovascular Engineering:
An International Journal, Springer, v. 1, n. 2, p. 59–76, 2001. Citado 3 vezes nas
páginas 70, 71, and 72.

KOTAS, T. The exergy method of thermal plant analysis. [S.l.]: Butterworths,
1985. ISBN 9780408013505. Citado na página 87.

MADY, C.; FERREIRA, M.; YANAGIHARA, J.; SALDIVA, P.; OLIVEIRA-
JUNIOR, S. Modeling the exergy behavior of human body. Energy, Elsevier, v. 45,
n. 1, p. 546–553, 2012. Citado na página 21.

MADY, C.; OLIVEIRA, S. Human body exergy metabolism. International Journal
of Thermodynamics, v. 16, n. 2, p. 73–80, 2013. Citado 5 vezes nas páginas 20, 21,
82, 83, and 94.

MADY, C. E. K.; OLIVEIRA-JUNIOR, S. Human body exergy metabolism.
International Journal of Thermodynamics (IJoT), v. 16, n. 2, p. 73–80, 2013.
Citado 2 vezes nas páginas 81 and 83.

MURPHY, M.; O’NEAL, L. O que é vida? 50 anos depois. [S.l.]: Unesp, 1997.
Citado na página 16.

NEVERS, N. D.; SEADER, J. Lost work: A measure of thermodynamic efficiency.
Energy, Elsevier, v. 5, n. 8-9, p. 757–769, 1980. Citado 2 vezes nas páginas 87
and 88.



Bibliography 101

OMRAN, A.; ARIFI, A.; MOHAMED, A. Echocardiography in mitral stenosis.
Journal of the Saudi Heart Association, Elsevier, v. 23, n. 1, p. 51–58, 2011.
Citado na página 29.

OTTESEN, J.; OLUFSEN, M.; LARSEN, J. Applied Mathematical Model in
Human Physiology. [S.l.: s.n.], 2004. v. 405. Citado 6 vezes nas páginas 19, 27, 28,
70, 72, and 73.

PENNES, H. H. Analysis of tissue and arterial blood temperatures in the resting
human forearm. Journal of applied physiology, v. 1, n. 2, p. 93–122, 1948. Citado
na página 16.

PESKIN, C. S. The immersed boundary method. Acta numerica, Cambridge
University Press, v. 11, p. 479–517, 2002. Citado 2 vezes nas páginas 19 and 20.

PRIGOGINE, I.; WIAME, J.-M. Biologie et thermodynamique des phénomènes
irréversibles. Experientia, Springer, v. 2, n. 11, p. 451–453, 1946. Citado na página
16.

SALTZMAN, W. Biomedical Engineering: Bridging Medicine and Technology. [S.l.]:
Cambridge University Press, 2009. (Cambridge Texts in Biomedical Engineering).
Citado na página 27.

SMITH, N. P.; BARCLAY, C. J.; LOISELLE, D. S. The efficiency of muscle
contraction. Progress in biophysics and molecular biology, Elsevier, v. 88, n. 1, p.
1–58, 2005. Citado na página 81.

STEENDIJK, P.; ELLEN, A. Invasive assessment of cardiac efficiency. Heart and
metabolism, Servier, n. 39, p. 33–36, 2008. Citado 2 vezes nas páginas 12 and 84.

SZARGUT, J. Exergy analysis. The Magazine of Polish Academy of Sciences, v. 3,
n. 7, p. 31–33, 2005. Citado na página 18.

TAKAOKA, H.; TAKEUCHI, M.; ODAKE, M.; YOKOYAMA, M. Assessment of
myocardial oxygen consumption (vo2) and systolic pressure–volume area (pva) in
human hearts. European heart journal, Oxford University Press, v. 13, n. suppl_E,
p. 85–90, 1992. Citado na página 83.

WERNER, J.; BUSE, M. Temperature profiles with respect to inhomogeneity
and geometry of the human body. Journal of Applied Physiology, v. 65, n. 3, p.
1110–1118, 1988. Citado 2 vezes nas páginas 68 and 86.

WHITE, F. Fluid Mechanics. [S.l.]: McGraw Hill, 2011. (McGraw-Hill series in
mechanical engineering). ISBN 9780073529349. Citado na página 48.



102

APPENDIX A – Implementation details

The program was implemented in Fortran 90 using data structure. The

number of nodes of each element can be chosen by means of the variable m, which,

consequently, determines the element type, generated mesh, basis functions, array

dimensions, matrix band, etc. The boundary conditions were inserted into the local

matrices and load vectors. An assemble routine has coupled the local arrays and

vectors into a global system. By means of the physical interpretation of the problem

and the finite element bases used, it is possible to verify that the coefficient matrix

is in a band-form. Thus, the solver dgbsv was used — which is based on the LU

factorization and is suitable for this type of linear system — available in Linear

Algebra PACKage (LAPACK). Regarding the integrals used to find the array’s

entries, the Gaussian quadrature scheme was used.
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