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“There are three kinds lies:

lies, damned lies and statistics,
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Resumo

Nesta tese lidamos com dois problemas estatísticos. Investigamos as propriedades de

uma métrica entre amostras de processos estocásticos e usamos ela para desenvolver um

procedimento robusto de seleção de amostras. Abordamos o problema de decidir se duas

amostras independentes provenientes de processos Markovianos discretos são regidas pela

mesma lei estocástica. No caso em que as leis que geram os processos não são as mesmas,

a metodologia apresentada neste documento permite detectar os elementos específicos do

espaço de estados em que as discrepâncias se manifestam. Nós estabelecemos uma métrica

local entre amostras com base no critério de Informação Bayesiano (Bayesian Information

Criterion), derivamos a fronteira que deve ser usada nesta métrica para tomar a decisão.

Mostramos que a distância é estatisticamente consistente para detectar se as amostras

seguem a mesma lei, tendendo a zero quando os tamanhos das amostras aumentam.

Mostramos que a métrica assume valores arbitrariamente grandes quando os tamanhos

de amostra aumentam e as leis estocásticas são diferentes. Também mostramos a relação

dessa distância com a divergência de Kullback Leibler e revelamos seu comportamento

estocástico em termos de distribuição Qui-quadrado. O objetivo de segundo problema é o

de postular um método de seleção de amostras de um conjunto de amostras provenientes

de processos Markovianos de ordem finita e alfabeto finito. Sob a suposição da existência

de uma lei que prevalece em pelo menos 50% das amostras da coleção, mostramos que o

procedimento permite identificar amostras regidas pela lei predominante. A abordagem é

baseada na distância local entre amostras, que tende a zero quando comparamos amostras

de lei idêntica e tende ao infinito ao comparar amostras com diferentes leis. A distância

local permite definir um critério que registra valores arbitrariamente grandes quando a

suposição anterior sobre a existência de uma lei predominante não é válida. Aplicamos

os conceitos e resultados aqui introduzidos em bases de dados de diversas áreas, como

linguística, genêtica, indústria e finanças.

Palavras-chave: Critério de informação Bayesiano, Entropia relativa, Processo de Markov,

Robustez.



Abstract

In this thesis we deal with two statistical issues. We investigate the properties of a metric

between samples from stochastic processes and we use it to develop a robust sample

selection procedure. We address the problem of deciding if two independent samples,

coming from discrete Markovian processes, are governed by the same stochastic law. In

the case on which is decided that the laws generating the processes are not the same, the

methodology presented in this research allows to detect the specific elements of the state

space where the discrepancies are manifested. We establish a local metric between samples

based on the Bayesian Information Criterion, we derive the bound that must be used in

this metric to take the decision. We show that the distance is statistically consistent to

detect if the samples follow the same law, tending to zero when the sample sizes increase.

we show that the metric assumes arbitrarily large values when the sample sizes increase

and the stochastic laws are different. Also we show the relationship of this distance to

the divergence of Kullback Leibler which reveals its stochastic behavior in terms of the

Chi-squared distribution. We introduce a method of selecting samples from a set of samples

coming from Markovian processes of finite order and finite alphabet. Under the assumption

of the existence of a law that prevails in at least 50% of the samples of the collection, we

show the procedure which allows to identify samples governed by the predominant law.

The approach is based on the local metric between samples, which tends to zero when

we compare samples of identical law and tends to infinity when comparing samples with

different laws. The local distance allows to define a criterion which takes arbitrarily large

values when the previous assumption about the existence of a predominant law does not

hold. We illustrate both, the use of this metric and the procedure of selecting samples

through applications in real data.

Keywords: Bayesian information criterion, Relative entropy, Markov processes, Robust-

ness.
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20

1 Introduction

We begin this thesis by introducing the problems. Given two samples of Markov

processes, we want to decide if the two samples follow the same stochastic law. If we arrive

to the conclusion that the stochastic laws are different, it will be relevant to know in which

way those samples are different. That is, it will be necessary to identify the states in the

space state in which the transition probabilities estimated through the samples are different

or maybe it will be necessary to know for which states the discrepancy between the samples

is larger. This issue can be formulated as a model selection problem. The decision about if

the two samples are coming from the same stochastic law can be formulated as follows:

For a fixed s P S, where S is the state space and s is a string, when we estimate the

transition probabilities (conditioned to s) by mean of the two samples, should we estimate

only one set of transition probabilities for s which will be used for both samples? or should

we estimate two different sets of transition probabilities, one set for each sample? We will

formulate those questions from the Bayesian Information Criterion point of view. The

Bayesian Information Criterion consists of two terms. The first one is the logarithm of

the maximum likelihood, which measures the goodness of fit of the sample to the model

class. The second term is the half number of free parameters in the model class times the

logarithm of the sample size. This second term penalizes too complex models.

In several works in the area, criteria have been proposed to achieve this goal,

see for example Garcıa e González-López (2013), García, González-López e Andrade (2017)

among others. In this thesis, we study the theoretical properties of one of these criteria

and show how it operates. This criterion was experimentally used in García, Gholizadeh e

González-López (2017b) and it is built through the Bayesian Information Criterion (BIC),

introduced in Schwarz et al. (1978). The BIC was used to obtain consistent estimates in

several Markov models, as is the case of Context Tree estimation (CSISZÁR; TALATA,

2006) and Partition Markov model estimation (GARCÍA; GONZÁLEZ-LÓPEZ, 2017).

The measure was used to investigate several real problems, by means of those

situations we investigate the performance of the distance ds that, when evaluated in a

given string s, allows us to define how far or near the processes are.

In the first application we inspect written texts of Portuguese dated between

16th century and 18th century using this tool (ds). We identify the most voluble structures

throughout the period and also we identify robust linguistic compositions that should be

considered when studying the linguistic changes from Classical Portuguese to Modern

Portuguese.

In the second application we explore the performance of ds in order to establish a
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notion of natural proximity between DNA sequences from patients with identical diagnosis,

which is: Burkitt lymphoma/leukemia. And we present a robust strategy of estimation

to identify the law that governs most of the sequences considered, thus mapping out a

common profile to all these patients, via their DNA sequences.

In the third application, we compare lines of production of alcohol fuel. The

database considers several variables arising from the production of fuel, based on sugar

cane. Fuel based on sugar cane, corresponds to 18% of the Brazilian energy consumption.

For a complete review of the historical and political context governing these productions

in the Brazilian market, we cite Goldemberg (2008) and Cortez et al. (2014). Regarding

the importance of production processes based on sugar cane, we cite two references that

show the impacts of these productions on the health of the population: Arbex et al. (2007)

and Cançado et al. (2006).

Chapter 4 is devoted to propose and explore a selection procedure which applied

in a collection of samples from Markov processes over a finite alphabet, with finite order,

selects the more representative samples of the full collection.

Collet et al. (2008) showed that a small random Bernoulli perturbation in the sample from

a Markovian variable memory process will effectively transform the process to an infinity

memory process. They also show a variation of the original context algorithm given by

Rissanen (1983) which can recover the context tree of the original chain, provided that

the noise is small enough. García, González-López e Viola (2014) considered a different

type of contamination model considering a set of m independent samples, with most of

them coming from the same stochastic process with law Q but the remained portion of

the sample following different laws, and also they defined he asymptotic breakdown point

γ for a model selection procedure under the assumption of context tree structures.

We applied the robust selection procedure in 4 series related to brazilian stocks

traded at B3 S.A. – Brasil, Bolsa, Balcão. We identify groups of series with similar traded

volume patterns which support for determining potential profits or risk scenarios. Also the

method let us to map similarities and dissimilarities of the daily trading volume dynamics

between the series.

Finally, we present the organization of this thesis:

‚ In Chapter 2, we define the Markovian structures which are consistently estimated

through the Bayesian Information Criterion, see Csiszár e Talata (2006) and García

e González-López (2017) for the estimation of context trees and partition Markov

model, respectively, via the information criterion BIC, see Csiszár, Shields et al.

(2000) and Schwarz et al. (1978).

‚ In Chapter 3, we propose a consistent measure for the comparison between Markovian
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processes, we also explore its theoretical properties and we apply this concept to

several real problems as historical linguistics, Burkitt lymphoma/leukemia DNA and

alcohol fuel production.

‚ In Chapter 4, we introduce a robust sample selection procedure, using the measure

presented in the chapter 3. Also in this chapter we investigate its theoretical properties.

To make this procedure more clear, we use this concept for the selection of subsamples

of series coming from the financial sector of the Brazilian market.

‚ In Chapter 5, we report the final conclusions obtained in chapters 3 and 4.
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2 Markovian Models

2.1 Introduction

Context tree models describe processes where each “past” has a suffix which is

enough to determine the transition probability to the next symbol in the alphabet. Context

trees are generalizations of Markov chains and were introduced by Rissanen (1983) as an

efficient tool for data compression. The context trees have been studied and used in the

modeling of several practical problems, such as the analysis of linguistic data Galves et al.

(2012), protein classification Leonardi (2007) and identification of genes Bühlmann, Wyner

et al. (1999).

Several researchers have studied various aspects related to context trees.

Bühlmann, Wyner et al. (1999) proved properties of the Context estimator allowing

the model to grow with the sample size. They also studied a bootstrap scheme based on

fitted Variable Length Markov Chains. Ferrari e Wyner (2003) consider processes with

infinite dependence for which there exist “good” context tree approximations. They estab-

lished new results on a sieve methodology based on an adaptation of the context algorithm.

Galves e Leonardi (2008) investigated an exponential upper limit for the convergence rate

of the Context algorithm when the tree is not necessarily limited. Collet et al. (2008)

studied the retrieval of the tree from contexts of an unlimited variable memory Markov

chain from a sample with the noise is small enough.

Recently, García e González-López (2017) introduce a new class of finite order

Markov chain models, called Partition Markov models (PMM). It characterizes the process

by a partition L, of the state space, where the elements in each part of L share the same

transition probability to an arbitrary element in the alphabet. This class of models includes

the full Markov chains and the Variable Length Markov Chain models because a context

tree can be seen as a particular case of a PMM. Under the assumption of this new family,

they addressed the problem of model selection, showing that the model can be selected

consistently using the Bayesian Information Criterion (BIC).

The BIC proposed by Schwarz et al. (1978) was used to obtain consistent

estimates in several Markov models, as is the case of Context Tree estimation Csiszár e

Talata (2006) and Partition Markov model estimation García e González-López (2017).

Therefor, in this chapter we will cover the main results for the estimation of context trees

and partition Markov models via the BIC criterion, see Csiszár, Shields et al. (2000) and

Schwarz et al. (1978).

The process of estimation of full Markov chains is hard because it involves a
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number of parameters |A|M p|A| ´ 1q, which grows exponentially with the order M , where

|A| denotes the cardinal of the alphabet A. For example, if |A| “ 5 and M “ 5, the

number of parameters is 12500, which is prohibitive. Another limitation is that the class

of full Markov chains is not very rich, since, fixed the alphabet with cardinal |A| there is

just one model for each order M and in practical situations it could be necessary a more

flexible structure. A richer class of finite order Markov models introduced by Rissanen

(1983) and Bühlmann, Wyner et al. (1999) is composed by the Variable Length Markov

Chains (VLMC). In the VLMC class, each model is identified by a suffix tree T called

context tree. For a given model with a context tree T , the total number of parameters is

|T |p|A| ´ 1q.

Here is a description of the issues addressed in this chapter, section by section.

In Section 2.2, we describe some concepts related to the suffix tree Csiszár e Talata (2006)

and its association with a variable memory Markov process Bühlmann, Wyner et al. (1999),

Csiszár e Talata (2006) and also we present the consistent estimation of a context tree

proposed by Csiszár e Talata (2006). In Section 2.3, we introduce the concept of Markov

chain with partition L and we show that the optimal partition can be obtained through

the BIC criterion, eventually almost surely, when the sample size tends to infinity. In

Section 2.4, we explore some notions of proximity between Markovian Processes. First

the concept of relative entropy between two stochastic processes is defined and second we

introduce a measure to quantify the distance between the parts of a partition García e

González-López (2017).

2.2 Context Tree

Let A be a finite set called alphabet and |A| its cardinality, the set A˚ is formed by all

the finite sequences of elements in A.

A string s “ amam`1 . . . an of symbols in A will be denoted by an
m with length lpsq “

n ´ m ` 1. This notation is also valid for m “ ´8 in which case we obtain a left-infinite

sequence an
´8. The empty string is denoted by φ with lpφq “ 0.

A string v is a suffix of a string s , denoted by s ľ v, when there exists a string u such

that s “ uυ. For a proper suffix, that is, when s ‰ v, we write s ą v.

Remark 2.2.1. It should be noted that the employed structure an
m in the current thesis is

exactly the same used by Csiszár e Talata (2006), while in Bühlmann, Wyner et al. (1999)

the notation is partially different, for instance an
m is built as anan´1 . . . am.

Definition 2.2.2. A set T Ă A˚ is called an irreducible tree if it satisfies the following

rules:
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i). Suffix property: No sequence s1 P T is a suffix of any other sequence s2 P T ;

ii). Irreducibility: No sequence s1 P T can be replaced by a proper suffix without violating

rule i.

The family of irreducible trees will be denoted by I.

A tree T is any set of strings, called leaves, such that no w P T is a proper

suffix of any other s P T . This property enables us to represent the set T as a graphical

rooted tree by identifying the elements in T with paths from the terminal nodes of the

tree to the root. As an example of finite tree, consider the set T1 “ t00, 010, 110, 1u over

the alphabet A “ t0, 1u. On the other hand, an example of an infinite tree over A is given

by T2 “
 
10i

1
: i “ 0, 1 . . .

(
Y t08u which has a unique infinite element, the left-infinite 08.

The graphical representation of these trees can be found in Fig 1, both irreducible trees.

An example of a non-irreducible tree is T3 “ t000, 010, 110, 1u, because substituting 000

by 00 leads to T1 that satisfies the property i) of definition 2.2.2

Figure 1 – Graphical representation: on the left the tree T1 and on the right the tree T2. In
both cases, the contexts correspond to the sequences obtained by concatenating
the symbols from the leaves to the root of the trees.

The depth of the tree T denoted by dpT q, is given by

dpT q “ max tlpsq, s P T u

and the tree T truncated at level K will be denoted by T |K , it satisfies

T |K “ ts1 : s1 P T with lps1q ď K or s1 is a suffix of length tKu of some s P T u .
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Let pXtqtPZ be a stationary and ergodic process assuming values in the finite alphabet A.

We denote by P pan
mq the stationary probability of the string an

m, that is

P pan
mq “ ProbpXn

m “ an
mq.

If s P A˚ is such that P psq ą 0 we write

P pa|sq “ ProbpX0 “ a|X´1

´k “ sq

Definition 2.2.3. A string s P A˚ is a context for a process P if P psq ą 0 and

ProbpX0 “ a|X´1

´8 “ x´1

´8q “ P pa|sq, @a P A

whenever s is a suffix of the semi-infinite sequence x´1

´8, and no proper suffix of s has this

property.

By this definition, the set of contexts of a process pXtqtPZ with measure P is an irreducible

tree, it will be denoted by TP . The set of contexts associated with the process pXtqtPZ is

called the probabilistic tree of contexts.

Definition 2.2.4. A probabilistic context tree is a pair pT , pq such that:

i). T is an irreducible tree;

ii). p “ tP p¨|sq : s P T u is a family of transition probabilities over A

Example 2.2.5. Consider the stationary Markov chain of order 3 over the alphabet

A “ t0, 1u defined by the transition probabilities

s P p0|sq P p1|sq
ab1 0.2 0.8
a00 0.5 0.5
010 0.3 0.7
110 0.7 0.3

Table 1 – Table of transition probabilities with alphabet A “ t0, 1u.

where a, b P A are arbitrary. By Definition 2.2.3, the only contexts of this process are the

strings 1, 00, 010 and 110. The context tree TP is the tree T1 represented in Fig. 1

In a context tree, the probability of a sequence can be obtained by the probability of

contexts and transition probability. For example, in example 2.2.5, the contexts are 1, 00,

010 and 110, then the probability ProbpX0

´4
“ 01000q is given by

Prob pX0 “ 0|X´4 “ 0, X´3 “ 1, X´2 “ 0, X´1 “ 0q Prob pX´4 “ 0, X´3 “ 1, X´2 “ 0, X´1 “ 0q
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On the other hand Prob pX´4 “ 0, X´3 “ 1, X´2 “ 0, X´1 “ 0q is equals

Prob pX´1 “ 0|X´4 “ 0, X´3 “ 1, X´2 “ 0q Prob pX´4 “ 0, X´3 “ 1, X´2 “ 0q

Since a sequence 00 is one of the contexts, we have

Prob pX0 “ 0|X´4 “ 0, X´3 “ 1, X´2 “ 0, X´1 “ 0q “ Prob pX0 “ 0|X´2 “ 0, X´1 “ 0q

therefor the probability Prob pX´4 “ 0, X´3 “ 1, X´2 “ 0, X´1 “ 0, X0 “ 0q is given by

Prob pX0 “ 0|X´2 “ 0, X´1 “ 0q ˆ Prob pX´1 “ 0|X´4 “ 0, X´3 “ 1, X´2 “ 0q

ˆ Prob pX´4 “ 0, X´3 “ 1, X´2 “ 0q

whereas the sequence 010 is one of the contexts.

2.2.1 Consistent Estimation of a Context Tree via BIC

The purpose of this section is to describe the estimation process of a context

tree T0 and its transition probabilities from their contexts. Consider a sample xn
1
, which is

a realization of the process pXtqtPZ .

Let Nnps, aq denote the number of occurrences of the string s P Alpsq followed by the

symbol a P A in the sample xn
1
, where s is supposed to be of length at most Dpnq. As

Nnps, aq denote the number of occurrences of the string s P Alpsq followed by the symbol

a P A, only the cases with i ą Dpnq, are considered, thus Nnps, aq is given by

Nnps, aq “
ˇ̌
ˇ
!

i : Dpnq ă i ď n; xi´1

i´lpsq “ s, xi “ a
)ˇ̌
ˇ

and the number of occurrences of s is given by

Nnpsq “
ˇ̌
ˇ
!

i : Dpnq ă i ď n; xi´1

i´lpsq “ s
)ˇ̌
ˇ

Given a sample xn
1
, a feasible tree is any tree T of depth dpT q ď Dpnq such that Nnpsq ě 1

for all s P T , and each string s1 with Nnps1q ě 1 is either a suffix of some s P T or has

a suffix s P T . A feasible tree T is called r-frequent if Nnpsq ě r for all s P T . The

family of all feasible, r-frequent trees is denoted by Fr pxn
1
, Dpnqq, so for r “ 1, we have

F1 pxn
1
, Dpnqq.

Clearly,
ÿ

aPA

Nnps, aq “ Nnpsq and
ÿ

sPT

Nnpsq “ n ´ Dpnq, for any feasible tree T .

Considering the tree T as a context tree associated with a law process P , the probability

of the sample xn
1

can be written as

P pxn
1
q “ P

´
x

Dpnq
1

¯ ź

sPT ,aPA

P pa|sqNnps,aq (2.1)
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For context trees in F1 pxn
1
, Dpnqq, we define the maximum likelihood of equation (2.1),

denoted by ML pxn
1
, T q as the maximum of the second factor in equation (2.1), given

by
ź

sPT ,aPA

pP pa|sqNnps,aq, where pP pa|sq, @a P A, s P T are the estimators of P pa|sq

@a P A, s P T , that maximize the function
ź

sPT ,aPA

P pa|sqNnps,aq subject to the restriction
ÿ

aPA

P pa|sq “ 1 for each s P T . The maximum likelihood ML pxn
1
, T q is given by the

expression

MLpxn
1
, T q “

ź

sPT ,Nnpsqě1

ź

aPA

ˆ
Nnps, aq
Nnpsq

˙Nnps,aq

(2.2)

which can be factored as

MLpxn
1
, T q “

ź

sPT

rPspxn
1
q

where

rPspxn
1
q“

$
’’’’&
’’’’%

ź

aPA

ˆ
Nnps, aq
Nnpsq

˙Nnps,aq

if Nnpsq ě 1;

1 if Nnpsq “ 0

.

For the estimation of the tree T0 is used the criterion BIC that assigns a score for each

hypothetical model (in this case, the models are context trees), the estimator will be that

model with maximal score. One of the most relevant criterion used in model selection of

stochastic processes is the Bayesian Information Criterion (BIC). Schwarz et al. (1978)

derived an information criterion by means of an asymptotic approximation of the maximum

posterior Probability estimator. Csiszár e Talata (2006) have used this criterion to obtain

a consistent estimator of a context tree. The BIC consists of two terms:

1). The logarithm of the maximum likelihood, which measures the goodness of fit of the

sample to the model class,

2). the half number of the free parameters in the model class times the logarithm of the

sample size. This term penalizes complex models.

Consider a density functions belonging to the exponential family

fθpxiq “ exp pθypxiq ´ bpθqq ; θ P Θ

In the natural parametric Θ which is a convex subset of the K-dimensional Euclidean

space, y is a sufficient K-dimensional statistic and

bpθq “ log

ż
exp pθypxiqq dxi

Consider a prior distribution of the parameter vector written in the form µ “
ÿ

αjµj,

where αj is the priori probability of the jth model being the true one, and µj is the
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conditional priori distribution of θ given the jth model with θ P Θ. Schwarz et al. (1978)

shows that, under regularity conditions, maximum posteriori Probability estimator of the

parameter vector θ from an i.i.d. sample x1, . . . , xn asymptotically does not depend on

µ, and is equivalent to the maximum likelihood estimator pθ “ arg max
θPΘ

fθpxq. The BIC

chooses the j that maximizes

SpY, n, jq “ log
ż

mjXΘ

αj exp ppθY ´ bpθqqnq dαjpθq

where Y “
1
n

ÿ

i

ypxiq and mj is a dimension of the j-th model.

Considering an asymptotic treatment for SpY, n, jq when n goes to infinity, then the BIC

is defined as follows:

Definition 2.2.6. Given the maximum likelihood function Lpxn
1
, Kjq corresponding to a

model Kj and a sample xn
1
, the BIC is defined by

BICpxn
1
, Kq “ ln pLpxn

1
, Kjqq ´

Mj

2
lnpnq

where K “ tKjuj and Mj is the total number of parameters to be estimated for the model

Kj. In the scope of context trees, Mj “ p|A| ´ 1q|T |, so the BIC definition for context

trees estimation is:

Definition 2.2.7. Given a sample xn
1
, the BIC for a feasible tree T is

BICT pxn
1
q “

ÿ

sPT ,aPA

Nnps, aq ln
ˆ

Nnps, aq
Nnpsq

˙
´

p|A| ´ 1q |T |
2

lnpnq.

The estimator for T , denoted by pTBICpxn
1
q, is defined as

pTBICpxn
1
q “ arg min

FPF1pxn
1

,DpnqqXI

BICT pxn
1
q

This estimator is a consistent estimator, that in the case DpT0q ă 8, consistency means

that estimated context tree is equal to the tree T0, almost certainly, so D n0 such that the

estimated context tree is equal to the tree T0, @n ě n0.

Theorem 2.2.8. Csiszár e Talata (2006) If dpT0q ă 8, the estimator pTBIC , with Dpnq “

oplog nq, satisfies pTBICpXn
1

q “ T0 almost certainly, when n ÝÑ 8.

Proof. See Section A.1 of Appendix A. �

In order to show that the Kullback Leibler concept can be adapted to the structure of

context trees, we introduce the next definition. García, González-López e Viola (2014)
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introduced a structure of tree TP Q and they demonstrated that the relative entropy between

two processes can be expressed, through its conditional relative entropies. For this purpose,

first it is necessary to define the structure of tree TP Q, which is given as follows.

Definition 2.2.9. Let TP and TQ be two context trees with probability law P and Q,

respectively. The tree TP Q, resulting from the concatenation of TP and TQ, is defined as

TP Q “ ts P TP Y TQ : Es1 P TP Y TQ, suffix of su

In Figure 2 we show an example of the concatenation of TP and TQ trees resulting in the

context tree TP Q.

Figure 2 – Left: context tree TP . Middle: context tree TQ. Right: context tree TP Q.

2.3 Partition Markov Model

In this section, we introduce the concept of Markov chain with partition L,

which is a partition of the state space defined through a stochastic equivalence relationship

between strings of the state space as shown below.

Consider pXtqtPZ be a discrete time order M stationery Markov chain on a finite alphabet

A with M ă 8. Let us call S “ AM the state space. Denote the string amam`1...an

by an
m, where ai P A, m ď i ď n. For each ai P A and s P S, P pa|sq “ ProbpXt “

a|X t´1

t´M “ sq. Let L “
 
L1, L2, ¨ ¨ ¨ , L|L|

(
be a partition of S, for ai P A, L P L, P pL, aq “

ÿ

sPL

ProbpX t´1

t´M “ s, Xt “ aq, P pLq “
ÿ

sPL

ProbpX t´1

t´M “ sq and P pa|Lq “
P pL, aq
P pLq

with

P pLq ą 0.

The following definition, which was proposed by García e González-López (2017), defines

a Markov chain with a "minimal partition" based on the equivalent relationship on S.

Definition 2.3.1. Let pXtqtPZ be a discrete time order M stationery Markov chain on a

finite alphabet A; with state space S “ AM ,

i. s, r P S are equivalent (denoted by s „ r) if P pa|sq “ P pa|rq @a P A.



Chapter 2. Markovian Models 31

ii. pXtqtPZ is a Markov chain with partition L “
 
L1, L2, ¨ ¨ ¨ , L|L|

(
if this partition is

the one defined by the equivalence relationship introduced by item i.

The set of parameters for a Markov chain over the alphabet A “
 
a1, a2, ¨ ¨ ¨ a|A|

(
with

partition L “
 
L1, L2, ¨ ¨ ¨ , L|L|

(
can be denoted by tP pai|Ljq : 1 ď i ă |A|, 1 ď j ď |L|u .

This means that there are p|A| ´ 1q transition probabilities for each part. Then, the total

number of parameters for the model is |L|p|A| ´ 1q; where |A| and |L| denote the cardinal

of A and L respectively.

For a better understanding of this definition, consider the example below.

Example 2.3.2. Let pXtqtPZ be a discrete time order M “ 2 stationary Markov chain

taking values on A “ t0, 1u with state space S “ AM “ t00, 01, 10, 11u. Suppose that this

chain follows the transition probabilities given by

P p0|00q “ 0.4 “ P p0|01q and P p0|10q “ 0.2 “ P p0|11q

the process as a full chain have 4 parameters. Then, according the definition 2.3.1-ii, the

partition for this Markov chain is L “ tt00, 01u , t10, 11uu. Note that only 2 parameters

are needed to describe the source, since P p0| t00, 01uq “ 0.4 and P p0| t10, 11uq “ 0.2.

There is a link between context trees or VLMC with finite depth M and Partition Markov

models, which is illustrated by the next example.

Example 2.3.3. Let pXtqtPZ be a finite order Markov chain taking values on A “ t0, 1u

and T a set of contexts. Consider dpLq “ 3 and T “ tt00u, t10u, t11u, t001u, t101uu,

illustrated by Figure 3. Also suppose that P p¨|sq is the probability of s P t00, 10, 11u and

Qp¨|sq is the probability of s P t001, 101u, this mean that P p¨|00q “ P p¨|10q “ P p¨|11q and

the same occurs with Q. This context tree corresponds to the partition L “ tL1, L2u where

L1 “ tt000u, t100u, t010u, t110u t011u, t111uu and L2 “ tt001u, t101uu.

Figure 3 – Graphical representation: context tree in the example 2.3.3
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since

Probp¨|000q “ Probp¨|100q “ Probp¨| 00loomoon
context

q “ P p¨|sq

Probp¨|010q “ Probp¨|110q “ Probp¨| 10loomoon
context

q “ P p¨|sq

this is also true for the strings 011 and 111 with context 11., so @s, s1 P Li, i “ 1, 2 we

have Probp¨|sq “ Probp¨|s1q.

2.3.1 Partition Markov Model Estimation via BIC

In a given sample xn
1
, coming from the stochastic process, we denote the number

of occurrences of elements into L followed by a as NnpL, aq “
ÿ

sPL

Nnps, aq, L P L. The

accumulated number of Nnpsq for s in L is denoted by NnpLq “
ÿ

sPL

Nnpsq, L P L.

Under the assumption of a hypothetical partition L of S, the ProbpXn
1

“ xn
1
q denoted by

P pxn
1
q follows

P pxn
1
q “ P pxM

1
q

ź

LPL,aPA

P pa|LqNnpL,aq. (2.3)

According to the definition of the Bayesian Information Criterion (BIC) will be necessary

to maximize the second term in the equation 2.3 called maximum likelihood for a given

observation xn
1
. Then the BIC definition for partition Markov models is:

Definition 2.3.4. Given a sample xn
1

of the process pXtqtPZ, a discrete time order M

stationary Markov chain on a finite alphabet A with state space S “ AM and L a partition

of S. The BIC of the model given by definition 2.3.1-ii is

BICαpL, xn
1
q “

ÿ

aPA,LPL

NnpL, aq ln
ˆ

NnpL, aq
NnpLq

˙
´

p|A| ´ 1q|L|
α

lnpnq.

for a given positive value α.

Remark 2.3.5. The theoretical results of this thesis show that can be used any positive

values of α. The consistency of our results will be remain valid when n goes to infinity,

for any α. As was done by Schwarz et al. (1978) and Csiszár e Talata (2006), in the

applications we use by simplicity α “ 2. In this thesis we didn’t explore different values of

alpha since we assume that n is big enough. We note that any possible difference can be

detected by simulations for moderate sample sizes, but that is not the focus of this thesis.

By means of definition 2.3.4 it is possible to, archive the minimal partition of S, by

maximizing the BIC. In order to show how this criterion works, we introduce bellow some

concepts.
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Definition 2.3.6. Let L “
 
L1, L2, ¨ ¨ ¨ , L|L|

(
be a partition of S.

piq L P L is a good part of L if @s,s
1

P L, P pXt “ .|X t´1

t´M “ sq “ P pXt “ .|X t´1

t´M “ s
1

q;

piiq L is a good partition of S if for each i P t1, . . . , |L|u , Li verifies item (i).

Theorem 2.3.7. (GARCÍA; GHOLIZADEH; GONZÁLEZ-LÓPEZ, 2017a) Given a

sample xn
1

of the process pXtqtPZ, a discrete time order M stationary Markov chain on a

finite alphabet A; with state space S “ AM :

i. According to definition 2.3.6 (i), suppose that i and j exist, and i ‰ j such that Li

and Lj are good parts. Then P pa|Liq “ P pa|Ljq, @a P A if, and only if, eventually

almost surely as n Ñ 8,

BICαpLij, xn
1
q ą BICαpL, xn

1
q

ii. Let P be the set of all the partitions of S. Define

Ln “ argmaxLPP tBICαpL, xn
1
qu

Then, eventually almost surely as n Ñ 8, L˚ “ Ln, where L˚ is the minimal partition of

S.

where Lij “
 
L1, . . . , Li´1, Lij, Li`1, . . . , Lj´1, Lj`1, . . . , L|L|

(
, with Lij “ Li YLj. And, for

each a P A, we set NnpLij, aq “ NnpLi, aq ` NnpLj, aq and NnpLijq “ NnpLiq ` NnpLjq.

Example 2.3.8. Suppose A “ t0, 1u with M “ 3 and consider contexts tree as following

T1 “ tt0u , t01u , t011u , t111uu

The good partition corresponding with the these context tree is given by

L “ tL1, L2, L3, L4u

where L1 “ tt000u , t100u , t010u , t110uu, L2 “ tt001u , t101uu , L3 “ t011u and L4 “

t111u.

Suppose P p¨|sq ‰ P p¨|s1q, @s, s1 P T zt111, 011u and P p¨|011q “ P p¨|111q. Define L
1

“

L3 Y L4 and L
1

“
!

L1, L2, L
1
)

is also good partition and it is also minimal, according to

definition 2.3.1.
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2.4 Measures between Markovian Processes and Related Struc-

tures

2.4.1 Relative Entropy

In this section, we introduce the concepts of relative entropy between two

random variables of the family of VLMC or Context Trees models, and also we define the

relative entropy rate between two stochastic processes.

Definition 2.4.1. Let X, Y be two discrete random variables over the finite set (alphabet)

A, with probability mass functions P p¨q and Qp¨q, respectively. Then the relative entropy

or Kullback Leibler divergence between two laws P and Q is

DpP ||Qq “
ÿ

xPA

P pxq ln
ˆ

P pxq
Qpxq

˙
“ EP

ˆ
ln
ˆ

P pXq
QpXq

˙˙

In the above definition, using the convention (based on continuity) that 0 lnp
0
0

q “

0, 0 lnp
0
Q

q “ 0 if P pxq “ 0 and P lnp
P

0
q “ 8 if P pxq ą Qpxq “ 0.

Example 2.4.2. Let P be a Bernoulli distribution with success probability 1{2, and also

Q be a Bernoulli distribution with success probability q, then according to definition 2.4.1,

we have

DpP ||Qq “
1
2

ln
ˆ

1
2q

˙
`

1
2

ln
ˆ

1
2p1 ´ qq

˙
“ ´

1
2

ln p4qp1 ´ qqq

and when q Ñ 0, DpP ||Qq Ñ 8,

also

DpQ||P q “ q lnp2qq ` p1 ´ qq ln p2p1 ´ qqq

and when q Ñ 0, DpQ||P q Ñ lnp2q.

So as a consequence

DpP ||Qq ‰ DpQ||P q.

It is worth mentioning that the relative entropy is not a distance because it is not a

symmetric function and does not satisfy the triangular inequality. Nonetheless, it quantifies

the similarity/divergence between distributions. Now we show some relevant characteristics

of the relative entropy.

Theorem 2.4.3. (Gibbs Inequality) Consider P p.q and Qp.q as being two probability

functions defined in the same finite alphabet A. Then, DpP ||Qq ě 0. The equality occurs

if, and only if P pxq “ Qpxq, @x P A.



Chapter 2. Markovian Models 35

Proof. Consider A “ tx : P pxq ą 0u, then

´DpP ||Qq “ ´
ÿ

xPA

P pxq ln
ˆ

P pxq
Qpxq

˙
“

ÿ

xPA

P pxq ln
ˆ

Qpxq
P pxq

˙

Since lnptq is a strictly concave function at t, using the inequality of Jensen we have

ÿ

xPA

P pxq ln
ˆ

Qpxq
P pxq

˙
ď ln

˜
ÿ

xPA

P pxq
Qpxq
P pxq

¸
. (2.4)

So,

´DpP ||Qq “
ÿ

xPA

P pxq ln
ˆ

Qpxq
P pxq

˙
ď ln

˜
ÿ

xPA

P pxq
Qpxq
P pxq

¸

“ ln

˜
ÿ

xPA

Qpxq

¸
“ lnp1q “ 0

Therefore DpP ||Qq ě 0.

The equality in the equation (2.4) occurs if, and only if
Qpxq
P pxq

“ 1, @x P A. Therefore

DpP ||Qq “ 0 if, and only if P pxq “ Qpxq @x P A. �

Theorem 2.4.4. (Log-Sum Inequality) Let a1, a2, . . . and b1, b2, . . . non-negative num-

bers so that
ÿ

ai ă 8 and 0 ă
ÿ

bi ă 8. Then

ÿ
ai ln

ai

bi

ě
´ÿ

ai

¯
ln

ř
aiř
bi

(2.5)

The equality occurs if and only if
ai

bi

“ c, @i.

Proof. Let

a1
i “

aiř
j aj

; b1
i “

biř
j bj

Hence pa1
1
, a1

2
, . . .q and pb1

1
, b1

2
, . . .q are probability measures, from the Gibbs inequality, it

follows

0 ď D ppa1
1
, a1

2
, . . .q||pb1

1
, b1

2
, . . .qq “

ÿ
a

1

i ln
ˆ

a
1

i

b
1

i

˙
“
ÿ

˜
aiř
j aj

¸
ln

˜ aiř
j aj

biř
j bj

¸

“
1ř
j aj

«
ÿ

ai ln
ˆ

ai

bi

˙
´
´ÿ

ai

¯
ln

˜ř
j ajř
j bj

¸ff

ñ
ÿ

ai ln
ai

bi

ě
´ÿ

ai

¯
ln

ř
aiř
bi
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The inequality 2.5 follows. We have that D ppa1
1
, a1

2
, . . .q||pb1

1
, b1

2
, . . .qq “ 0 iff a1

i “ b1
i. This,

implies that
ai

bi

“

ř
j ajř
j bj

, @i. �

Remark 2.4.5. Note that log-sum inequality and Gibbs inequality are equivalent.

Theorem 2.4.6. Consider P1, P2, Q1, Q2 distributions on A. Then convexity of relative

entropy is given by:

D pλP1 ` p1 ´ λqP2||λQ1 ` p1 ´ λqQ2q ď λDpP1||Q1q ` p1 ´ λqDpP2||Q2q

Proof. Fix x P A. According to Log-sum inequality, we have:

λP1pxq ln
λP1pxq
λQ1pxq

` p1 ´ λqP2pxq ln
p1 ´ λqP2pxq
p1 ´ λqQ2pxq

ě pλP1pxq ` p1 ´ λqP2pxqq ln
ˆ

λP1pxq ` p1 ´ λqP2pxq
λQ1pxq ` p1 ´ λqQ2pxq

˙

Sum over A. �

Theorem 2.4.7. (CSISZÁR; TALATA, 2006) Consider two distributions P1 and P2 on

A, then,

D pP1||P2q ď
ÿ

xPA

pP1pxq ´ P2pxqq2

P2pxq
(2.6)

Proof.

D pP1||P2q “
ÿ

xPA

P1pxq ln
P1pxq
P2pxq

ď
ÿ

xPA

P1pxq

ˆ
P1pxq
P2pxq

´ 1
˙

“
ÿ

xPA

pP1pxq ´ P2pxqq2

P2pxq
. �

Since the relative entropy between two laws P and Q is not symmetric, a complementary

concept is defined below.

Definition 2.4.8. The symmetrized relative entropy between two laws P and Q is defined

by

DpP, Qq “
DpP ||Qq ` DpQ||P q

2

Now the concept of relative entropy is extended to stochastic processes. The rate of

relative entropy is calculated for two stationary and Markovian processes defined under

the same finite alphabet A and with laws P and Q. The next theorem shows how to use

the joint context tree structure (definition 2.2.9) to evaluate the relative entropy between

the processes.
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Theorem 2.4.9. (GARCÍA; GONZÁLEZ-LÓPEZ; VIOLA, 2014) Let pXtqtPZ and pYtqtPZ

be two stationary, ergodic and Markovian stochastic process on a finite alphabet A of finite

order, with probability law P and Q, respectively. Then, the relative entropy rate between

them is given by

DpP ||Qq “
ÿ

sPTP Q

P psqDpP p¨|sq||Qp¨|sqq

Proof. See Section A.1 of Appendix A. �

Remark 2.4.10. For s P TP Q, we observe that P p¨|sq is the usual probability when s P TP .

If s R TP , D s1 P TP and x some string, such that s “ xs1 and P p¨|sq “ P p¨|s1q.

2.4.2 Measure for Partition Markov Model

In this section we introduce a distance between the parts of a partition, and this

concept defines a metric on the state space and also allows to build efficient algorithms for

estimating the minimal partition see definition 2.3.1 in García e González-López (2017).

Definition 2.4.11. Let pXtqtPZ be a stationary Markov chain of order M , with finite alpha-

bet A and state space S “ AM , xn
1

a sample of the process and let L “
 
L1, L2, . . . , L|L|

(

be a good partition of S

dLpi, jq “
1

lnpnq

ÿ

aPA

"
NnpLi, aq ln

ˆ
NnpLi, aq
NnpLiq

˙
` NnpLj, aq ln

ˆ
NnpLj, aq
NnpLjq

˙

´NnpLij, aq ln
ˆ

NnpLij, aq
NnpLijq

˙*

where NnpLij, aq “ NnpLi, aq ` NnpLj, aq and NnpLijq “ NnpLiq ` NnpLjq.

García e González-López (2017) shows that dL is a distance in L.

Theorem 2.4.12. Let pXtqtPZ be a stationary Markov chain of order M over a finite

alphabet A and S “ AM the state space and xn
1

a sample of the Markov process. If

L “ tL1, L2, . . . , LLu is a good partition of S, for each n, and for any i, j, k P t1, 2, . . . , Lu:

piq dLpi, jq ě 0 with equality if and only if
NnpLi, aq
NnpLiq

“
NnpLj, aq
NnpLjq

@a P A

piiq dLpi, jq “ dLpj, iq

piiiq dLpi, kq ď dLpi, jq ` dLpj, kq

Proof. See García e González-López (2017).
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Remark 2.4.13. As a consequence of Theorem 1 proved in García e González-López

(2017), if pXtqtPZ is a discrete time, order M stationary Markov chain on a finite alphabet

A and xn
1

is a sample of the process, then for n large enough, for each s, r P S, dLpr, sq ă 1

iff s and r belong to the same part of the partition.
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3 New Measure between Stochastic Pro-

cesses

We describe below the issues addressed in this chapter. In section 3.2 we

expose and prove the main results about the properties of a BIC-based measure ds

built between samples. In section 3.3 we use the distance ds between strings to identify

linguistic compositions that show a different performance when comparing written texts

of Portuguese. In section 3.4 we describe the strains of 15 patients, using ds to establish a

notion of natural proximity between DNA sequences from patients with identical diagnosis,

which is: Burkitt lymphoma/leukemia. In section 3.5 we apply the measure to the problem

of fuel alcohol production, comparing two lines of production.

3.1 Comparison of Stochastic Processes

There are several practical situations in which it is necessary to quantify

divergences between the laws of samples coming from stochastic processes. Whether to

establish that all the samples follow the same stochastic law or in case of being governed

by the same law, the interest may lie in establishing a metric that allows to decide which

of these samples are closer. For example, the interest may be in inspecting industrial

processes, in which the behavior of production lines could point to concrete evidence of

the (dis)similarities found in the final products. For instance, industrial plants usually

carry out their productions in parallel. That is, these are planned to operate in various

production lines. The raw material comes from the same source and is separated into

different systems that process them. The lines of production are monitored in order to

obtain equivalent products to the end of the production process.

In this section, we introduce a distance which allows to compare Markovian

processes. We show the relationship of this distance to the divergence of Kullback Leibler

and revealed its stochastic behavior in terms of the Chi-squared distribution. The distance

allows to decide if there is any discrepancy between two samples of stochastic processes.

When a discrepancy exist, the use of this distance allows us to find the strings where

the discrepancy is manifested. Also we establish a local metric between samples based

on the Bayesian Information Criterion, we derive the bound that must be used in this

metric to take the decision. We show that the distance is statistically consistent to detect

if the samples follow the same law, tending to zero when the sample sizes increase. We

show that the metric assumes arbitrarily large values when the sample sizes increase and

the stochastic laws are different. In this chapter, we investigate the performance of ds in
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several real problems, coming from several areas as linguistics, genetics and industry.

3.2 Results: The Measure and its Properties

Consider the independent samples xn1

1,1, xn2

2,1 of pX1,tqtPZ with law P and pX2,tqtPZ

with law Q respectively. Define Nn1`n2
ps, aq “ Nn1

ps, aq `Nn2
ps, aq, Nn1`n2

psq “ Nn1
psq `

Nn2
psq, where Nn1

and Nn2
are given as usual, computed from the samples xn1

1,1 and xn2

2,1

respectively. We start calculating the BIC value for the joint model on which P p¨|rq ‰

Qp¨|rq, @r P S. If the samples are independent then the likelihood of the two samples is

P pxM
1,1qP pxM

2,1q
ź

aPA,rPS

P pa|rqNn1
pr,aqQpa|rqNn2

pr,aq

and the total number of parameters to be estimated is 2p|A| ´ 1q|S|. Under the assumption

that the memory of both processes is M , and the state space for both is S. Obtaining the

log-maximum likelihood for the two samples, as
ÿ

aPA,rPS

!
Nn1

pr, aq ln
´Nn1

pr, aq
Nn1

prq

¯
` Nn2

pr, aq ln
´Nn2

pr, aq
Nn2

prq

¯)
.

On the other hand, if we consider that there is an specific s P S on which P p¨|sq “ Qp¨|sq,

the number of parameters is now p|A| ´ 1qp2|S| ´ 1q and under this constraints the

log-maximum likelihood is,
ÿ

aPA,rPSztsu

!
Nn1

pr, aq ln
´Nn1

pr, aq
Nn1

prq

¯
` Nn2

pr, aq ln
´Nn2

pr, aq
Nn2

prq

¯)

`
ÿ

aPA

Nn1`n2
ps, aq ln

´Nn1`n2
ps, aq

Nn1`n2
psq

¯
.

In this way we have all the elements to show how the BIC can be used to decide if the

two sets of probabilities related to an specific r P S should be considered as being the

same. We will formulate a distance ds that, when evaluated in a given string s, allows us

to define how far or near the processes are. All our results are shown to be connected with

the relative entropy DpP p¨q||Qp¨qq between distributions.

Definition 3.2.1. Consider two independent and stationary Markov chains pX1,tqtPZ and

pX2,tqtPZ , of order M , with finite alphabet A, state space S “ AM and samples xn1

1,1, xn2

2,1

respectively. Define for a string s P S,

dspxn1

1,1, xn2

2,1q “
α

p|A| ´ 1q lnpn1 ` n2q

ÿ

aPA

"
Nn1

ps, aq ln
ˆ

Nn1
ps, aq

Nn1
psq

˙

`Nn2
ps, aq ln

ˆ
Nn2

ps, aq
Nn2

psq

˙

´Nn1`n2
ps, aq ln

ˆ
Nn1`n2

ps, aq
Nn1`n2

psq

˙*

with α a real and positive value.
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Remark 3.2.2. According to definition 3.2.1, ds is only the difference between two formu-

lations of the BIC. One of them considering that the samples follow different conditional

laws and the other considering that the samples follow the same law. Moreover, since ds is

a measure any clustering algorithm can be used to deal with the magnitude of ds.

The following theory is represented to demonstrate the relationship between the distance

ds and the Kullback-Leibler divergence Dp¨||¨q(presented in section 2.4).

Theorem 3.2.3. Let pXk,tqtPZ be a stationary Markov chain of order M , with finite

alphabet A, state space S “ AM and xnk

k,1 a sample of the process for k “ 1, 2. Consider

also s P S. If D
´Nnk

ps, ¨q
Nnk

psq
‖

Nn1`n2
ps, ¨q

Nn1`n2
psq

¯
ă 8, for k “ 1, 2, then

dspxn1

1,1, xn2

2,1q “
α

p|A| ´ 1q lnpn1 ` n2q

ÿ

k“1,2

Nnk
psqD

´Nnk
ps, ¨q

Nnk
psq

‖
Nn1`n2

ps, ¨q
Nn1`n2

psq

¯
.

Proof. Note that lnpn1 ` n2q
p|A| ´ 1q

α
dspxn1

1,1, xn2

2,1q is

“
ÿ

aPA

"
Nn1

ps, aq ln
ˆ

Nn1
ps, aq

Nn1
psq

˙
` Nn2

ps, aq ln
ˆ

Nn2
ps, aq

Nn2
psq

˙

´pNn1
ps, aq ` Nn2

ps, aqq ln
ˆ

Nn1`n2
ps, aq

Nn1`n2
psq

˙*

“
ÿ

aPA

"
Nn1

ps, aq
´

ln
ˆ

Nn1
ps, aq

Nn1
psq

˙
´ ln

ˆ
Nn1`n2

ps, aq
Nn1`n2

psq

˙¯*
`

ÿ

aPA

"
Nn2

ps, aq
´

ln
ˆ

Nn2
ps, aq

Nn2
psq

˙
´ ln

ˆ
Nn1`n2

ps, aq
Nn1`n2

psq

˙¯*

“
ÿ

k“1,2

Nnk
psq

ÿ

aPA

Nnk
ps, aq

Nnk
psq

ln
ˆ

Nnk
ps, aq

Nnk
psq

{
Nn1`n2

ps, aq
Nn1`n2

psq

˙

“
ÿ

k“1,2

Nnk
psqD

´Nnk
ps, ¨q

Nnk
psq

‖
Nn1`n2

ps, ¨q
Nn1`n2

psq

¯
. �

The questions derived from the definition of ds are, is ds a metric?, how is its relation with

the BIC?, what can we say about its behavior in terms of statistical consistency?. In the

next theorems we address and respond to all these points. We start by showing that ds is

a metric.

Theorem 3.2.4. Consider three stationary Markov chains pXi,tqtPZ , i “ 1, 2, 3 of order

M , with finite alphabet A, state space S “ AM and independent samples xni

i,1, i “ 1, 2, 3.

Consider a string s P S,

i. dspxn1

1,1, xn2

2,1q ě 0 with equality ô
Nn1

ps, aq
Nn1

psq
“

Nn2
ps, aq

Nn2
psq

@a P A,

ii. dspxn1

1,1, xn2

2,1q “ dspxn2

2,1, xn1

1,1q,
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iii. dspxn1

1,1, xn2

2,1q ď dspxn1

1,1, xn3

3,1q ` dspxn3

3,1, xn2

2,1q.

Proof. Following similar calculations of theorem 2 in García e González-López (2017).

For (i) define ai “ Nni
ps, aq and bi “ Nni

psq, i “ 1, 2. Consider the log-sum inequality:

a1 lnp
a1

b1

q ` a2 lnp
a2

b2

q ě
ÿ

i“1,2

ai ln
´ř

i“1,2 aiř
i“1,2 bi

¯
, with equality ô

a1

b1

“
a2

b2

, and the result

follows.

For (iii) assume by simplicity n1 “ n2 “ n3, we note that the statement to prove is

equivalent to

0 ď
ÿ

k“1,2

!
Nn3

psqD
´Nn3

ps, ¨q
Nn3

psq
||

Nnk`n3
ps, ¨q

Nnk`n3
psq

¯
`

ÿ

aPA

Nnk
ps, aqNn1`n2

psq
Nn1`n2

ps, aq
Nn1`n2

ps, aq
Nn1`n2

psq
ln
´Nn1`n2

ps, aq
Nn1`n2

psq
{
Nnk`n3

ps, aq
Nnk`n3

psq

¯)
,

and, the right side of the previous inequality is greater to the next positive term

Nn3
psq

ÿ

k“1,2

D
´Nn3

ps, ¨q
Nn3

psq
||

Nnk`n3
ps, ¨q

Nnk`n3
psq

¯
`

1
n

ÿ

k“1,2

D
´Nn1`n2

ps, ¨q
Nn1`n2

psq
||

Nnk`n3
ps, ¨q

Nnk`n3
psq

¯
. �

The next result shows the connection of ds with the BIC.

Theorem 3.2.5. Consider two stationary Markov chains pX1,tqtPZ and pX2,tqtPZ , of order

M , with finite alphabet A, state space S “ AM and independent samples xn1

1,1, xn2

2,1 respec-

tively. Denote by tP pa|rquaPA,rPS and tQpa|rquaPA,rPS the sets of conditional probabilities

of pX1,tqtPZ and pX2,tqtPZ respectively. Given s P S,

BICpxn1

1,1, xn2

2,1q ă BICpxn1

1,1, xn2

2,1, “sq ô dspxn1

1,1, xn2

2,1q ă 1,

where BICpxn1

1,1, xn2

2,1q and BICpxn1

1,1, xn2

2,1, “sq are given by definition 2.2.6 and the second

is formulated under the assumption: P pa|sq “ Qpa|sq, @a P A.

Proof. Since the samples are independent, from definition 2.2.6 we obtain

BICpxn1

1,1, xn2

2,1q “
ÿ

aPA,rPS

Nn1
pr, aq ln

´Nn1
pr, aq

Nn1
prq

¯

`
ÿ

aPA,rPS

Nn2
pr, aq ln

´Nn2
pr, aq

Nn2
prq

¯

´
p|A| ´ 1q

α
2|S| lnpn1 ` n2q,
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where the number of parameters to be estimated is twice in comparison with the case of

one sample. If we assume: P pa|sq “ Qpa|sq where s is a string in S, we obtain

BICpxn1

1,1, xn2

2,1, “sq “
ÿ

aPA,rPSztsu

Nn1
pr, aq ln

´Nn1
pr, aq

Nn1
prq

¯

`
ÿ

aPA,rPSztsu

Nn2
pr, aq ln

´Nn2
pr, aq

Nn2
prq

¯

`
ÿ

aPA

Nn1`n2
ps, aq ln

´Nn1`n2
ps, aq

Nn1`n2
psq

¯

´
p|A| ´ 1q

α
tp|S| ´ 1q2 ` 1u lnpn1 ` n2q.

Then, the result follows directly. �

As we can see, a consequence of this result is that the BIC indicates the decision

to consider the samples as being governed by the same stochastic law, when the value of

ds is less than 1. Allowing to create an specific decision rule that corresponds directly with

the formulation of the BIC. Also, we can assert that the samples are governed by different

stochastic laws when ds assumes values greater than 1, in this case the BIC recognizes

that it is necessary to estimate two groups of conditional probabilities and not more one

group as it happens in the previous case, when ds ă 1.

On the next result we show the statistical consistency of ds.

Theorem 3.2.6. Consider two Markov chains X1,t and X2,t of order M , with finite

alphabet A, state space S “ AM and independent samples xn1

1,1, xn2

2,1 respectively. Denote

by tP pa|rquaPA,rPS and tQpa|rquaPA,rPS the sets of conditional probabilities of X1,t and X2,t

respectively. Consider a string s P S,

i. if P pa|sq “ Qpa|sq@a P A then, dspxn1

1,1, xn2

2,1q ÝÑ
minpn1,n2qÑ8

0,

ii. if there is a P A : P pa|sq ‰ Qpa|sq then, dspxn1

1,1, xn2

2,1q ÝÑ
minpn1,n2qÑ8

8.

Proof. i. : Since dspxn1

1,1, xn2

2,1q ě 0 from the previous result, given an arbitrary and

positive value δ, it is enough to prove that there exists a sample size n0 such that, if

minpn1, n2q ą n0, dspxn1

1,1, xn2

2,1q ă cδ, for a constant and positive value c. Let’s see that this

happens.

Since
Nn1

ps, aq ` Nn2
ps, aq

Nn1
psq ` Nn2

psq
is the maximum likelihood estimator of P pa|sq then,
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Nn1
ps, aq ` Nn2

ps, aq
Nn1

psq ` Nn2
psq

ě P pa|sq, as a consequence dspxn1

1,1, xn2

2,1q is

ď
α

p|A| ´ 1q lnpn1 ` n2q

ÿ

i“1,2

ÿ

aPA

Nni
ps, aq ln

´Nni
ps, aq

Nni
psq

{P pa|sq
¯

“
α

p|A| ´ 1q lnpn1 ` n2q

ÿ

i“1,2

Nni
psqD

´Nni
ps, ¨q

Nni
psq

||P p¨|sq
¯

ďp1q
α

p|A| ´ 1q lnpn1 ` n2q

ÿ

i“1,2

Nni
psq

ÿ

aPA

´
Nni

ps,aq

Nni
psq

´ P pa|sq
¯2

P pa|sq

ďp2q
α

p|A| ´ 1q lnpn1 ` n2q

ÿ

i“1,2

Nni
psq

ÿ

aPA

δ
lnpniq

Nni
psqP pa|sq

ď
αδ|A|

p|A| ´ 1q lnpn1 ` n2qp˚

ÿ

i“1,2

lnpniq

ďp3q
αδ|A|2

p|A| ´ 1qp˚

lnpn˚q
lnpn1 ` n2q

ďp4q
2α|A|

p|A| ´ 1qp˚
δ.

Where p˚ “ mintP pa|sq : a P Au and n˚ “ maxtn1, n2u. p1q is a consequence of lemma 6.3

of Csiszár e Talata (2006). (2) is coming from lemma 6.2 of Csiszár e Talata (2006) , since,

given an arbitrary δ ą 0, for each i pi “ 1, 2q there exists ki ą 0 such that M ă ki lnpniq.

(3) and (4) are immediate, since 1 ă n˚ ă n1 ` n2.

According to the proof, the constant c is given by
2α|A|

p|A| ´ 1qp˚
and n0 “ rmaxte

M
k1 , e

M
k2 us.

ii. : From theorem 1 of García e González-López (2017),

dspxn1

1,1, xn2

2,1q “
α

p|A| ´ 1q lnpn1 ` n2q

ÿ

k“1,2

Nnk
psqD

´Nnk
ps, ¨q

Nnk
psq

‖
Nn1`n2

ps, ¨q
Nn1`n2

psq

¯
.

When n1 Ñ 8,
Nn1

ps, aq
Nn1

psq
Ñ P pa|sq, and when n2 Ñ 8,

Nn2
ps, aq

Nn2
psq

Ñ Qpa|sq. Since P pa|sq ‰

Qpa|sq, if we denote by P1,2 the law of the mixture, when mintn1, n2u Ñ 8,
Nn1`n2

ps, aq
Nn1`n2

psq
Ñ

P1,2pa|sq. As a consequence when mintn1, n2u Ñ 8,

D
´Nnk

ps, ¨q
Nnk

psq
‖

Nn1`n2
ps, ¨q

Nn1`n2
psq

¯
Ñ

$
&
%

D
´

P p¨|sq ‖ P1,2p¨|sq
¯

if k “ 1;

D
´

Qp¨|sq ‖ P1,2p¨|sq
¯

if k “ 2,

with a positive limit in both cases. In addition
Nnk

psq
lnpn1 ` n2q

“
nk

lnpn1 ` n2q
Nnk

psq
nk

Ñ 8,

when mintn1, n2u Ñ 8, since,

Nnk
psq

nk

Ñ

#
P psq if k “ 1;

Qpsq if k “ 2.

Then, the result follows. �
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The latter theorem shows that increasing the sample sizes increases the ability of ds of

to detect discrepancies or similarities between the stochastic laws involved. That is, as

is to be expected, the statistical consistency of the transition probabilities carry their

characteristics for the metric ds.

In the following result, we show the asymptotic behavior of the distance using the following

notations of Kullback-Leibler divergence DpP ||Qq and χ2pP p¨q, Qp¨qq “
ÿ

aPA

pP paq ´ Qpaqq2

Qpaq
.

Theorem 3.2.7. Considering two distributions P and Q, with empirical distribution

P̂ paq “
Xpaq

k1

and Q̂paq “
Y paq

k2

where two samples of sizes k1 and k2 generated from the

law W, respectively, defined in the alphabet A, for Qpaq ‰ 0, a P A and k “ 1, 2, then

DpP̂ p¨q||Q̂p¨qq
1

2k1

χ2,k1pP̂ p¨q, W p¨qq ` 1

2k2

χ2,k2pQ̂p¨q, W p¨qq
Ñ 1. (3.1)

Proof. Consider the function fpxq “ x lnpxq, near to x “ 1, by the Taylor’s expansion

we have fpxq “ px ´ 1q `
px ´ 1q2

2
` δpxqpx ´ 1q2 where δpxq “ ´

px ´ 1q
6t2

for some value

t P px, 1q (Lagrange’s form). We note that when x Ñ 1, δpxq Ñ 0. Thus, for two probability

distributions P and Q in A,

P paq ln
´P paq

Qpaq

¯
“ Qpaqf

´P paq
Qpaq

¯

“ P paq ´ Qpaq `
1
2

pP paq ´ Qpaqq2

Qpaq
` δ

´P paq
Qpaq

¯pP paq ´ Qpaqq2

Qpaq
,

for a P A,

DpP p¨q||Qp¨qq “
1
2

χ2pP p¨q, Qp¨qq `
ÿ

aPA

δ
´P paq

Qpaq

¯pP paq ´ Qpaqq2

Qpaq
(3.2)

and

DpP p¨q||Qp¨qq
χ2pP p¨q, Qp¨qq

“
1
2

`

ř
aPA

δ
´

P paq
Qpaq

¯
pP paq´Qpaqq2

Qpaq

χ2pP p¨q, Qp¨qq
.

If
P paq
Qpaq

Ñ 1, given ǫ positive and small enough, |δ
´P paq

Qpaq

¯
| ă ǫ and

ˇ̌
ˇ
ř

aPA
δ
´

P paq
Qpaq

¯
pP paq´Qpaqq2

Qpaq

χ2pP p¨q, Qp¨qq

ˇ̌
ˇ ă

ǫ, so
DpP p¨q||Qp¨qq
χ2pP p¨q, Qp¨qq

Ñ
1
2

.

If one of the probabilities is the empirical distribution, say P̂ paq “
Xpaq

k
, where the occur-

rences of a in the sample of size k is denoted by Xpaq, and the sample is generated from

the law Q, χ2pP̂ p¨q||Qp¨qq “
1
k

ÿ

aPA

pXpaq ´ kQpaqq2

kQpaq
. Thus, if we introduce the quantity



Chapter 3. New Measure between Stochastic Processes 46

χ2,kpP̂ p¨q, Qp¨qq “
ÿ

aPA

pXpaq ´ kQpaqq2

kQpaq
, we can recognize the typical Chi-square statistic.

From the equation 3.2 we obtain

DpP̂ p¨q||Qp¨qq “
1
2k

χ2,kpP̂ p¨q, Qp¨qq `
ÿ

aPA

1
k

δ
´ P̂ paq

Qpaq

¯pXpaq ´ kQpaqq2

kQpaq

and when
P̂ paq
Qpaq

Ñ 1,

DpP̂ p¨q||Qp¨qq

χ2,kpP̂ p¨q, Qp¨qq
Ñ

1
2k

.

If we have two samples of sizes k1 and k2 generated from the law W, with empirical

distribution P̂ paq “
Xpaq

k1

and Q̂paq “
Y paq

k2

respectively. According to equation 3.2 we

obtain

DpP̂ p¨q||Q̂p¨qq “
1
k1

ÿ

aPA

´W paq

Q̂paq

¯´1
2

` δ
´ P̂ paq

Q̂paq

¯¯pXpaq ´ k1W paqq2

k1W paq
`

1
k2

ÿ

aPA

´W paq

Q̂paq

¯´1
2

` δ
´ P̂ paq

Q̂paq

¯¯pY paq ´ k2W paqq2

k2W paq
`

ÿ

aPA

´
1 ` 2δ

´ P̂ paq

Q̂paq

¯¯
pP̂ paq ´ W paqq

´W paq

Q̂paq
´ 1

¯
.

So, when
W paq

Q̂paq
Ñ 1 and

P̂ paq

Q̂paq
Ñ 1,

DpP̂ p¨q||Q̂p¨qq
1

2k1

χ2,k1pP̂ p¨q, W p¨qq ` 1

2k2

χ2,k2pQ̂p¨q, W p¨qq
Ñ 1. �

These simple relationships between empirical distributions allows us to delineate the

behavior of the distance ds (definition 3.2.1).

Theorem 3.2.8. Let pXk,tqtPZ be a stationary Markov chain of order M , with finite al-

phabet A state space S “ AM and xnk

k,1 a sample of the process for k “ 1, 2. Consider also

s P S. If D
´Nnk

ps, ¨q
Nnk

psq
‖

Nn1`n2
ps, ¨q

Nn1`n2
psq

¯
ă 8, when

Nnk
ps, ¨q{Nnk

psq
W p¨q

Ñ 1 for k “ 1, 2, then

2 lnpn1 ` n2q
p|A| ´ 1q

α
dspxn1

1,1, xn2

2,1q „d

ÿ

k“1,2

χ2,Nnk
psq
´Nnk

ps, ¨q
Nnk

psq
, W p¨q

¯
` χ2,Nn1`n2

psq
´Nn1`n2

ps, ¨q
Nn1`n2

psq
, W p¨q

¯
,
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where „d means similarity in distribution.

Proof. According to theorem 3.2.3 lnpn1 ` n2q
p|A| ´ 1q

α
dspxn1

1,1, xn2

2,1q is

ÿ

k“1,2

Nnk
psqD

´Nnk
ps, ¨q

Nnk
psq

‖
Nn1`n2

ps, ¨q
Nn1`n2

psq

¯

Following the equation 3.1, we have

ÿ

k“1,2

Nnk
psqD

´Nnk
ps, ¨q

Nnk
psq

‖
Nn1`n2

ps, ¨q
Nn1`n2

psq

¯
„d

ÿ

k“1,2

Nnk
psq

2

!χ2,Nnk
psq
´

Nnk
ps,¨q

Nnk
psq

, W p¨q
¯

Nnk
psq

`
χ2,Nn1`n2

psq
´

Nn1`n2
ps,¨q

Nn1`n2
psq

, W p¨q
¯

Nn1`n2
psq

)
.

Then,

2 lnpn1 ` n2q
p|A| ´ 1q

α
dspxn1

1,1, xn2

2,1q „d

ÿ

k“1,2

χ2,Nnk
psq
´Nnk

ps, ¨q
Nnk

psq
, W p¨q

¯
` χ2,Nn1`n2

psq
´Nn1`n2

ps, ¨q
Nn1`n2

psq
, W p¨q

¯
. �

We show now a notion of proximity between samples considering all the values of ds with

s P S (see García, Gholizadeh e González-López (2017b)).

Definition 3.2.9. Consider two stationary Markov chains pX1,tqtPZ and pX2,tqtPZ , of

order M, with finite alphabet A, state space S “ AM and independent samples xn1

1,1, xn2

2,1

respectively,

dmaxpxn1

1,1, xn2

2,1q “ max
sPS

tdspxn1

1,1, xn2

2,1qu.

and

smax “ arg max
 
dmaxpxn1

1,1, xn2

2,1q
(

Observe that dmax ă ǫ if and only if dspxn1

1,1, xn2

2,1q ă ǫ, @s P S. That is, a small value

of dmax indicates the stochastic laws on s are similar for all s P S. In other words the

distributions of the processes are similar.

Remark 3.2.10. From the properties observed for dspxn1

1,1, xn2

2,1q it follows that,

i. P pa|sq “ Qpa|sq @a P A, s P S if, and only if, dmaxpxn1

1,1, xn2

2,1q ÝÑ
minpn1,n2qÑ8

0,

ii. P pa|sq ‰ Qpa|sq for some a P A and s P S if, and only if, dmaxpxn1

1,1, xn2

2,1q ÝÑ
minpn1,n2qÑ8

8.



Chapter 3. New Measure between Stochastic Processes 48

Three case studies are presented in the following section applying the concept

given by definition 3.2.1, which is already described in section 3.2. The first case study

concerns to a linguistic issue that considers written texts dated between 16th century

and 18th century. The second case study is about stochastic distance between Burkitt

lymphoma/leukemia Strains, while the third case study considers the production of alcohol

fuel. A step by step strategy was employed in each case by comparing several processes to

tackle real problems accurately. In these applications we consider a method to measure

discrepancies between samples avoiding to fit a model.

3.3 First Case Study: Linguistic Data

Investigations in the field of historical linguistics record a body of evidence on

the changes occurring in written texts, from Classical to Modern Portuguese, including

the period from 16th to 19th century. Frota et al. (2012) shows clear evidence of changes

occurred from the 16th century to the 17th century, in relation to the prosody of the

language. In this case study, our focus is to identify the most relevant linguistic constructions

(N -grams) that lead to these changes. That is, by sequentially observing the texts, we want

to identify the constructions that lead to relevant changes. One line of research is to treat

a written text, or some strategic coding thereof, as a sequence of N -grams. The structure

of N -grams plays a very important role in the inspection and modeling of language profiles,

see for instance Manning and Manning e Schütze (1999). In some of the investigations, the

focus has been on discriminating between languages, for example see García and Garcıa e

González-López (2016) (under the scope of Partition Markov Models (PMM)), in others,

the purpose has been to discriminate between varieties of the same language, for example

see Galves et al. (2012) (under the scope of Context Tree Models).

Tycho Brahe corpus is an annotated historical corpus, freely accessible at

Galves e Faria (2010). This corpus uses the chronological criterion of the author’s birthdate

to assign a time for written texts. The subset of historical written texts included in this

study, listed in table 2 is composed by 19 texts from 15 authors, coming from five genres.
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Author Gândavo Pinto Sousa Brandão Vieira
Date 1502 1510 1556 1584 1608
Type narrative narrative narrative narrative dissertation

Author Vieira Vieira Chagas Bernardes Oliveira
Date 1608 1608 1631 1644 1702
Type letters sermons letters narrative letters

Author Aires Costa Alorna Garrett Garrett
Date 1705 1714 1750 1799 1799
Type dissertation letters letters letters narrative

Author Garrett Fronteira Camilo Ortigão
Date 1799 1802 1826 1836
Type theater narrative narrative letters

Table 2 – The set of the Tycho Brahe corpus.

There are previous studies (see Frota et al. (2012)) that show that histori-

cal texts such as the listed in table 2 reveal changes in the proportion of occurrence

of the placement of the stress in the last or in the penultimate syllable of the word.

Also the written texts reveal alterations in the use of monosyllables. These changes are

found predominantly from the 16th century to the 17th century. For this reason we

guide our inspection to the position in the word occupied by the stress and the word

size. Each written text was processed with a slightly modified version of the perl-code

“silaba” (by Miguel Galves) that can be freely downloaded for academic purposes at

www.ime.usp.br/„tycho/prosody/vlmc/tools/sil4.pl. The software was used to ex-

tract two components of each orthographic word, denoted by pi, jq, where i is the total

number of syllables which integrate the word, i “ 1, 2, ..., 8 and j indicates the position of

the stressed syllable in the word (from left to right). j “ 0 means no stress in the word.

The period (final of sentence) was codified as p0, 0q. The alphabet A used here was defined

as exposed in table 3.

Orthographic word code Element in the alphabet A Meaning

p0, 0q 0 final of sentence

p1, 1q 1 monosyllable with stress

p1, 0q 2 monosyllable without stress

p2, 2q 3 dissyllable - stress in the last syllable

p2, 1q 4 dissyllable - stress in the first syllable

pi, iq, i ě 3 6 oxytone word

pi, i ´ 1q, i ě 3 7 paroxytone word

pi, i ´ 2q, i ě 3 8 proparoxytone word

Table 3 – Definition and meaning of each element a P A.

In this approach we used linguistic composition of two words (bigrams), for technical

reasons: size of the alphabet and size of the available texts. For example, the linguistic
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structure 2-7 represents an unstressed monosyllable followed by a paroxytone word. The

perspective introduced in this study aims to incorporate in the analysis of written texts

the dependence between the words that compose them. When considering a bigram s we

see that the discrepancies between two written texts will be confirmed, if the next word a

to be found in the text 1 and 2, are different. Precisely, given a bigram s, if dsp1, 2q ą 1

we will have that Prob1pa|sq ‰ Prob2pa|sq with Probi computed from the text i, i “ 1, 2

and a a word of the alphabet.

3.3.1 The Most Variable Configurations

According to definition 3.2.9 and remark 3.2.10, we can see that if dmax is

large, smax is exactly the string we want to recognize, as being relevant in terms of

discrepancy but all the strings with a large relative value of ds will reveal changes on the

local laws of the processes relative to the string. In this application a value larger than 1

will be considered significant.

Date text 1 Date text 2 dmax smax

1502 1510 1.08679 2-4
1510 1556 1.64926 2-7
1556 1584 0.71331 1-6
1584 1608c 1.73511 2-4
1584 1608d 1.00874 7-2
1584 1608s 1.35197 2-7
1608c 1631 4.44799 2-4
1608d 1631 3.10919 2-4
1608s 1631 1.78843 2-4
1631 1644 2.00082 2-4
1644 1702 1.03420 4-4
1702 1705 2.04039 7-0
1705 1714 2.59383 2-4
1714 1750 4.46181 2-4
1750 1799c 1.45198 4-7
1750 1799t 6.14052 2-4
1750 1799n 2.29650 2-4
1799c 1802 6.62204 7-2
1799t 1802 6.45512 2-7
1799n 1802 9.04413 7-2
1802 1826 6.39264 7-2
1826 1836 0.52470 2-4

Table 4 – Values of dmax between a written text and the written text, dated immediately
after the previous one.
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Figure 4 – dmax values (on the vertical axis) denoted by the year of the second written
text (column 2 of the table 4). In the case of a year with several texts, a symbol
was attached to the year, which indicates the type of written text: narrative
(n), letters (c), sermons (s), theater (t), dissertation (d).

Figure 4 shows the values of dmax over the years, recorded on the horizontal axis. We

note that over the years, the discrepancies detected by dmax are more pronounced, except

at the end of the 19th century (right). It is worth emphasizing that each discrepancy can

be produced by bigrams that are not necessarily identical for all the texts, as detailed in

the last column of table 4.
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a smax: 2-4 (1.08679) smax: 2-7 (1.64926)
1502 1510 1510 1556

0 0.03251 0.01590 0.01974 0.05232
1 0.06572 0.04623 0.04877 0.04559
2 0.34383 0.39770 0.52833 0.52970
3 0.04220 0.04310 0.05864 0.03270
4 0.28087 0.23577 0.19509 0.16385
6 0.02421 0.01485 0.01635 0.01944
7 0.19301 0.23159 0.12602 0.13896
8 0.01764 0.01485 0.00705 0.01744

a smax: 2-4 (1.73511) smax: 7-2 (1.00874) smax: 2-7 (1.35197)
1584 1608c 1584 1608d 1584 1608s

0 0.03356 0.02277 0.00022 0.00000 0.05627 0.11444
1 0.07102 0.06624 0.10044 0.09927 0.05447 0.05488
2 0.38474 0.31714 0.13624 0.15025 0.52607 0.47124
3 0.04528 0.04251 0.07707 0.04350 0.03614 0.03284
4 0.20363 0.20402 0.32729 0.29417 0.15643 0.16809
6 0.02528 0.02638 0.03930 0.03986 0.01859 0.02203
7 0.21719 0.31144 0.29127 0.34266 0.13552 0.12464
8 0.01931 0.00949 0.02817 0.03028 0.01652 0.01183

a smax: 2-4 (4.44799) smax: 2-4 (3.10919) smax: 2-4 (1.78843)
1608c 1631 1608d 1631 1608s 1631

0 0.02277 0.04852 0.03027 0.04852 0.06825 0.04852
1 0.06624 0.08622 0.07731 0.08622 0.07620 0.08622
2 0.31714 0.32035 0.33885 0.32035 0.35255 0.32035
3 0.04251 0.09578 0.03550 0.09578 0.04473 0.09578
4 0.20402 0.23178 0.21733 0.23178 0.22949 0.23178
6 0.02638 0.01768 0.03223 0.01768 0.02175 0.01768
7 0.31144 0.19012 0.24913 0.19012 0.19307 0.19012
8 0.00949 0.00956 0.01938 0.00956 0.01397 0.00956

Table 5 – Conditional probabilities from smax to each element a of the alphabet A. Texts:
1502, 1510, 1556, 1584, 1608c, 1608d, 1608s, 1631.
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a smax: 2-4 (2.00082) smax: 4-4 (1.03420) smax: 7-0 (2.04039)
1631 1644 1644 1702 1702 1705

0 0.04852 0.03472 0.03494 0.11220 0.00000 0.00000
1 0.08622 0.07377 0.10519 0.09368 0.06766 0.12903
2 0.32035 0.33500 0.31225 0.30174 0.53498 0.25605
3 0.09578 0.04860 0.05112 0.07190 0.05791 0.05645
4 0.23178 0.23085 0.22030 0.18954 0.22764 0.30847
6 0.01768 0.02864 0.03715 0.02832 0.00516 0.03427
7 0.19012 0.22282 0.21552 0.18736 0.09117 0.15323
8 0.00956 0.02560 0.02354 0.01525 0.01548 0.06250

a smax: 2-4 (2.59383) smax: 2-4 (4.46181)
1705 1714 1714 1750

0 0.07313 0.04440 0.04440 0.03273
1 0.09521 0.07985 0.07985 0.05687
2 0.33216 0.33246 0.33246 0.29573
3 0.03062 0.10373 0.10373 0.03412
4 0.23695 0.23657 0.23657 0.19684
6 0.01824 0.01493 0.01493 0.02484
7 0.20030 0.17761 0.17761 0.34123
8 0.01339 0.01045 0.01045 0.01764

a smax: 4-7 (1.45198) smax: 2-4 (6.14052) smax: 2-4 (2.29650)
1750 1799c 1750 1799t 1750 1799n

0 0.08432 0.10345 0.03273 0.13364 0.03273 0.06361
1 0.05295 0.05314 0.05687 0.10649 0.05687 0.07905
2 0.40000 0.44432 0.29573 0.27959 0.29573 0.30952
3 0.12310 0.03957 0.03412 0.04200 0.03412 0.05047
4 0.17774 0.16789 0.19684 0.24608 0.19684 0.21318
6 0.02226 0.02600 0.02484 0.01273 0.02484 0.02374
7 0.11872 0.14811 0.34123 0.17522 0.34123 0.23070
8 0.02091 0.01752 0.01764 0.00424 0.01764 0.02973

Table 6 – Conditional probabilities from smax to each element a of the alphabet A. Texts:
1631, 1644, 1702, 1705, 1714, 1750, 1799c, 1799t, 1799n.
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a smax: 7-2 (6.62204) smax: 2-7 (6.45512) smax: 7-2 (9.04413)
1799c 1802 1799t 1802 1799n 1802

0 0.00064 0.00031 0.25458 0.06325 0.00183 0.00031
1 0.12162 0.06796 0.08215 0.03171 0.10353 0.06796
2 0.16651 0.38500 0.35777 0.51374 0.15735 0.38500
3 0.05890 0.04704 0.04684 0.04228 0.05153 0.04704
4 0.28335 0.22984 0.14053 0.14711 0.29684 0.22984
6 0.04011 0.02673 0.01154 0.02872 0.02863 0.02673
7 0.31137 0.22770 0.10251 0.16138 0.32410 0.22770
8 0.01751 0.01542 0.00407 0.01180 0.03619 0.01542

a smax: 7-2 (6.39264)
1802 1826

0 0.00031 0.00000
1 0.06796 0.08152
2 0.38500 0.13136
3 0.04704 0.05919
4 0.22984 0.32347
6 0.02673 0.03998
7 0.22770 0.33022
8 0.01543 0.03427

Table 7 – Conditional probabilities from smax to each element a of the alphabet A. Texts:
1799c, 1799t, 1799n, 1802, 1826.

We see that the most frequent bigram which produces a high dmax (ą 1) is

2-4. From the meaning of ds this means that, the probability conditioned to an unstressed

monosyllable followed by a disyllable with stress at the beginning of the word motivates

such discrepancies between consecutive texts, i.e. these conditional probabilities are very

different from a text to the following text, in the cases: 1502-1510, 1584-1608c, 1608c-

1631,1608d-1631, 1608s-1631, 1631-1644, 1705-1714, 1714-1750, 1750-1799t, 1750-1799n.

Although this same bigram causes the maximum value of dmax, between the texts of

1826 and 1836, the value of dmax in this case does not indicate a discrepancy between

them (because dmax ă 1). The bigram 7-2 appears as the next string responsible for

discrepancy between texts. The transition probability of a paroxytone word followed by

an unstressed monosyllable can be considered different for the cases: 1584-1608d, 1799c-

1802, 1799n-1802, 1802-1826. Similarly occurs with 2-7, the transition probability of an

unstressed monosyllable followed by a paroxytone word, can be considered different for the

cases: 1510-1556, 1584-1608s, 1799t-1802. In tables 5, 6 and 7 we expose the conditional

probabilities from the bigram smax, to each value of the alphabet A and for each pair of

texts. We found cases in which the disparity between the processes is evident, since the

conditional probabilities are markedly different, see for instance: 1702-1705, 1714-1750,

1750-1799t, 1750-1799n, 1799c-1802, 1799t-1802, 1799n-1802, 1802-1826.
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dsp1750, 1799tq s dsp1799n, 1802q s dsp1799t, 1802q s

1.12915 2-2 1.00300 4-7 1.05268 2-6
1.13272 7-4 1.21533 1-2 1.13008 4-3
1.18684 4-1 1.39296 6-2 1.16699 4-1
1.21775 1-4 1.55913 2-2 1.23502 7-0
1.22487 3-2 1.69919 2-7 1.31616 1-2
1.22692 1-7 1.96170 3-2 1.51818 0-2
1.26838 6-2 2.01062 2-4 1.62364 1-4
1.29315 7-7 2.08092 4-4 1.62953 7-7
1.39431 1-2 5.31407 4-2 1.66957 7-2
2.18292 2-1 9.04413 7-2 1.75069 1-7
2.35651 4-4 1.77862 7-4
3.37187 4-2 2.56165 2-1
3.38483 7-2 2.58853 2-2
4.00310 4-7 3.62165 4-2
4.66029 2-7 4.05870 4-4
6.14052 2-4 4.39322 4-7

6.39768 2-4
6.45512 2-7

Table 8 – Cases with bigger values of ds and different smax : 1750-1799t, 1799n-1802,1799t-
1802. In bold the bigrams that most often produce the highest values of ds.

In table 8 we list all the bigrams that show values of ds ą 1 for the cases: 1750-1799t,

1799n-1802 and 1799t-1802 that are those that show a higher dmax for the 3 most frequent

smax, 2-4, 2-7, 7-2. All these cases are in the 18th and early 19th century. We can note

that the bigrams (i) an unstressed monosyllable followed by a disyllable with stress at

the beginning of the word, code: 2-4; (ii) a paroxytone word followed by an unstressed

monosyllable, code: 7-2 and (iii) an unstressed monosyllable followed by a paroxytone word,

code: 2-7 detect values of ds greater than 1, practically in all the written texts, so they

should not necessarily be considered as responsible for the changes from the 16th century

to the 17th century. We can argue that those constructions between others (also with

ds ą 1) are constructions with a tendency to report the particularity of each text.

3.3.2 From the 16th Century to the Beginning of the 17th Century

In Frota et al. (2012) significant changes are reported in the language from the

16th century to the 17th century. In the previous section we noticed that some bigrams

are intrinsically variable, being characterized by large values of dmax. In this section, we

examine the transition from the 16th century to the 17th century, taking into account

that the 3 configurations cited in the previous section do not necessarily lead to drastic

changes in the language. We record all the bigrams which report changes (i.e. with values
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of ds ą 1), considering each written text of the 16th century in relation to the written

texts dated immediately afterwords, until the beginning of the 17th century. Tables 9, 10

and 11 present the results.

dsp1502, 1510q s dsp1502, 1556q s dsp1502, 1584q s

1.08679 2-4 1.10873 7-2 1.10897 4-2
1.51328 4-2 1.32348 4-4

dsp1502, 1608cq s dsp1502, 1608dq s dsp1502, 1608sq s

1.15103 4-2 1.85333 4-2 1.07436 1-4 (V)
1.21610 2-3 (II) 1.93021 7-2
2.16232 2-4

Table 9 – Values of ds and bigrams such that ds ą 1, between texts of the 16th century
and Vieira’s texts: 1608c, 1608d and 1608s. In bold letter the most frequent
bigrams, according to the previous section.

dsp1510, 1556q s dsp1510, 1584q s

1.39871 4-2 1.02257 4-0
1.64242 7-2 1.04342 2-4
1.64926 2-7 1.06105 1-3

1.12283 7-2
1.15678 4-4
1.19666 3-6
1.33785 1-6
1.37050 7-0
1.51808 2-7

dsp1510, 1608cq s dsp1510, 1608dq s dsp1510, 1608sq s

1.20665 2-7 1.04371 1-7 (VI) 1.41470 4-4
2.03579 2-4 1.07434 1-4 (V) 2.06415 4-7 (I)

1.13177 7-0 3.20374 2-4
1.31517 1-6 4.43740 2-7
1.36703 4-2
1.55650 2-4
1.81723 2-7
2.43819 7-2

Table 10 – Values of ds and bigrams such that ds ą 1, between texts of the 16th century
and Vieira’s texts: 1608c, 1608d and 1608s. In bold letter the most frequent
bigrams, according to the previous section.
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dsp1556, 1608cq s dsp1556, 1608sq s

1.32334 2-4 1.57438 4-7(I)
1.66714 7-2 1.67042 2-4

1.94014 2-7

dsp1584, 1608cq s dsp1584, 1608dq s dsp1584, 1608sq s

1.07605 3-1 (III) 1.00874 7-2 1.07634 2-4
1.10511 6-1 (IV) 1.14234 3-1(III)
1.10537 7-2 1.35197 2-7
1.14962 1-6
1.23217 2-3 (II)
1.41250 3-6
1.73511 2-4

Table 11 – Values of ds and bigrams such that ds ą 1, between texts of the 16th century
and Vieira’s texts: 1608c, 1608d and 1608s. In bold letter the most frequent
bigrams, according to the previous section.

In table 12 we list the bigrams detected as a change in the comparison between each

written text of the 16th century with the first 3 written texts of the 17th century: 1608c,

1608d and 1608s. In that list we exclude configurations that are identified as changes

between texts of the 16th century itself.

Code string Bigram Reference
4-7 a disyllable with stress on the first syllable (I)

followed by a paroxytone word
2-3 an unstressed monosyllable followed by (II)

a disyllable with stress on the last syllable
3-1 a disyllable with stress on the last syllable (III)

followed by a stressed monosyllabic word
6-1 an oxytone word followed by (IV)

a stressed monosyllabic word
1-4 a stressed monosyllabic word followed by (V)

a disyllable with stress on the first syllable
1-7 a stressed monosyllabic word (VI)

followed by a paroxytone word

Table 12 – Bigrams that announce changes between texts of the 16th century when
compared to texts of beginning of the 17th century: 1608c, 1608d, 1608s. In the
third column are indicated the cases covered by the configuration, see tables
3.8, 3.9, 3.10
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3.3.3 Conclusion

In this study we introduce a strategy to identify linguistic structures (bigrams)

that generate alterations of the Portuguese. Also it is possible to identify the bigrams more

strongly associated with historical changes. Bigrams with large values of ds unrelated to

temporal changes could possibly be used to discriminate linguistic genres or particular

aspects of texts. Moreover, the idea of identifying the language with sequences of N -grams

thus adopting the measure ds to proceed to the detection of changes, can be applied to

other contexts and problems, helping to solve and review linguistic alterations proclaimed

in the literature of the area of historical linguistics. In this instance, it is necessary to

make some observations. The dmax detects volatile linguistic constructions that expose

changes in several moments from Classical Portuguese to Modern Portuguese (period:

16th century to 19th century). Among them, the most outstanding constructions, with

maximum ds value and most frequent, are: (i) an unstressed monosyllable followed by a

paroxytone disyllable word, (ii) a paroxytone word followed by an unstressed monosyllable

and (iii) an unstressed monosyllable followed by a paroxytone word. These voluble linguistic

constructions allow to delineate the profile of the Portuguese language in the period: 16th

century to 19th century, showing in a clear way the constructions more associated to the

changes of the period. These results already show that bigrams composed by unstressed

monosyllables and paroxytone words (and viceversa) are the most likely to suffer alteration.

It should be remembered that in Frota et al. (2012) these two characteristics indicate

significant changes in the Portuguese of the period: 16th-17th. In the present work we

go further, because bigrams take into account the dependence between both aspects:

unstressed monosyllables and paroxytone words. When comparing the texts of the 16th

century with the first texts of the 17th century, it is possible to detect a series of bigrams

that indicate important differences, since, in these cases, the measure d adopts values

greater than 1. These are (a) a disyllable with stress on the first syllable followed by a

paroxytone word (indicated by two texts), (b) an unstressed monosyllable followed by a

disyllable with stress on the last syllable (indicated by one text), (c) a disyllable with stress

on the last syllable followed by a stressed monosyllabic word (indicated by two texts),

(d) an oxytone word followed by a stressed monosyllabic word (indicated by two texts),

(e) a stressed monosyllabic word followed by a disyllable with stress on the first syllable

(indicated by two texts) and (f) a stressed monosyllabic word followed by a paroxytone

word (indicated by one text).

3.4 Second Case Study: Comparison between DNA Strains

The Burkitt lymphoma occurs when the chromosome 8 (locus of gene MYC)

is broken, which produces a change in the cellular proliferation. The data used in this

application corresponds to the most frequent variant, produced by the translocation
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between chromosomes 8 and 14. It is known, so far, three variants of Burkitt lymphoma,

which are (i) endemic, (ii) sporadic, (iii) produced by immunodeficiency. The first case is

observed in childs in Equatorial Africa and it is associated with chronic Malaria infections.

It does not exist until the moment and according to what we know, a clear notion of the

profile of the Burkitt lymphoma’s DNA. Considering that it is natural to expect diversity

between DNA strains, we will measure the distance between 15 of them. We adopt a

distance between the strains which is conditioned to each possible common string s, where

s is an element of the state space. That is, suppose that xn1

1,1 and xn2

2,1 are the concatenations

of elements a, c, g and t of the DNA of two patients, say 1 and 2, dsp1, 2q will be the

distance between the sequences in relation to s some string of interest, for instance s “

aggc. As there are a variety of possible strings, which we should observe to measure the

discrepancy between the strains, we will compute the maximum of all: max
s

tdsp1, 2qu, so as

to focus on the most extreme situation among them. This notion allows to identify which

of these strings can be considered more distant of the majority, and allows us to select the

strains which will be used to define the profile of the DNA. To strengthen our conclusions,

we compared the model constructed with the selected strains with the model constructed

using the 15 available strains.

3.4.1 DNA Data

The database is composed by 15 DNA sequences, available in the repository:

<https://www.ncbi.nlm.nih.gov/nuccore/>, coming from 15 patients with Burkitt lym-

phoma/leukemia carrying the t(8;14)(q24;q32) with IgH-MYC fusion, breakpoint in the

joining region. The registers (genbank numbers) of the sequences are: AM2871z.1, where

z=39, 40, 41, 46, 50, 52, 57, 58, 59, 61, 62, 65, 76, 81, 87. For each sequence, the concate-

nation of bases a,c,g,t observed in the code is the realization denoted by xn
1
. The size of

each sequence is shown in table 13.

z 39 40 41 46 50 52 57
n 3641 2965 4464 2731 5428 2475 3907
z 58 59 61 62 65 76 81 87
n 3636 4291 2642 3206 2906 2635 3608 3734

Table 13 – Sample sizes n of DNA sequence coming from 15 patients with Burkitt
lymphoma/leukemia, AM2871z.1, where z “ 39, 40, 41, 46, 50, 52, 57,

58, 59, 61, 62, 65, 76, 81, 87.

3.4.2 Results

In tables 14 and 15 we expose the dmax values between the DNA sequences,

where dmaxpi, jq “ max
sPS

tdspi, jqu, i ‰ j, i, j “ AM2871z.1, with z “ 39, 40, 41, 46, 50, 52, 57,
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58, 59, 61, 62, 65, 76, 81, 87. At the end of each column we record the sum of the dmax,

that is:

Spiq “
ÿ

j

dmaxpi, jq, for each sequence i “ AM2871z.1,

where z “ 39, 40, 41, 46, 50, 52, 57, 58, 59, 61, 62, 65, 76, 81, 87. Through ds we have a crite-

rion to rescue the greatest distance between two DNA sequences. From the magnitudes

found, we can affirm that the processes can be considered as coming from the same

stochastic law, dmax ă 1. We also verified the above statement from the dendrograms

constructed using the values recorded in tables 14 and 15, see figure 5.

j z i 39 40 41 46 50 52 57
40 0.23625
41 0.16160 0.25648
46 0.22578 0.24031 0.21857
50 0.20218 0.25847 0.17855 0.22644
52 0.19479 0.17870 0.21143 0.16253 0.33231
57 0.09777 0.24533 0.13885 0.22058 0.12481 0.19363
58 0.27729 0.21783 0.30105 0.25156 0.28312 0.23041 0.25738
59 0.12485 0.32050 0.09723 0.24232 0.15545 0.21165 0.09821
61 0.20229 0.10170 0.22626 0.20598 0.30120 0.12572 0.25328
62 0.32556 0.34309 0.35858 0.26633 0.47720 0.24569 0.32362
65 0.22234 0.15183 0.26545 0.15812 0.25339 0.29264 0.27469
76 0.19421 0.24629 0.20804 0.12923 0.23960 0.12786 0.19308
81 0.16363 0.17050 0.19272 0.16614 0.22817 0.17392 0.12994
87 0.26047 0.16796 0.24704 0.25130 0.41112 0.26425 0.22481

Spiq 2.8890 3.13523 3.06186 2.96519 3.67203 2.94553 2.77597

Table 14 – dmaxpi, jq values, i ‰ j, i, j “ AM2871z.1, where z “ 39, 40, 41, 46, 50, 52, 57,

58, 59, 61, 62, 65, 76, 81, 87.

j z i 58 59 61 62 65 76 81 87
59 0.30177
61 0.20284 0.32032
62 0.27748 0.34112 0.25478
65 0.25707 0.27412 0.21689 0.30528
76 0.13397 0.21109 0.13318 0.27990 0.21237
81 0.25801 0.14463 0.11904 0.23329 0.21155 0.15334
87 0.23089 0.24762 0.20658 0.37764 0.20689 0.23144 0.19405

Spiq 3.48067 3.09091 2.87007 4.40955 3.30265 2.69363 2.53891 3.52205

Table 15 – dmaxpi, jq values, i ‰ j, i, j “ AM2871z.1, where z “ 39, 40, 41, 46, 50, 52, 57,

58, 59, 61, 62, 65, 76, 81, 87. In bold the lowest value of S, associated to the
sequence with z = 81.
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Figure 5 – Dendrograms build through the dmax values (tables 3.13-14), agglomeration
method: Average, on the left and Complete, on the right.

The model we will apply in the data, is extensively investigated in García e González-López

(2017). This is the most general model known to be used in finite order Markov chains on

a finite alphabet, since this model includes fixed order Markov chains and the variable

lenght Markov chains (VLMC). Essentially what this model proposes as we describe in

chapter 2 is to estimate the transition probabilities that describe the process by identifying

a partition L “ tL1, ¨ ¨ ¨ , L|L|u in the state space S. The state space is divided into parts

Li, i “ 1, ¨ ¨ ¨ , |L| which constitute a partition. The strings of each part have in common

the characteristic of sharing the same transition probability to any element of the alphabet.

In practice, all strings included in the same part of that partition will be used for the

computation of the transition probability that identifies them. As we show in chapter 2,

the identification of such partition is done using the Bayesian Information Criterion (BIC),

which also is the basis to the concept ds, previously introduced.

Table 16 shows some general characteristics that are observed in the adjustment of the

model introduced in García e González-López (2017). We include progressively (from top

to bottom) the closest sequences, according to the criterion S. That is, first using the

sequence 81, second, using two sequences: 81 and 76 and so on. In other words, we are

increasing the sample size from one stage to the next, following as inclusion criterion the

magnitude of S.



Chapter 3. New Measure between Stochastic Processes 62

z Sample size |S| |L|
81 3604 134 6

81,76 6235 193 13
81,76,57 10138 241 18

81,76,57,61 12776 249 21
81,76,57,61,39 16413 255 27

81,76,57,61,39,52 18884 255 28
81,76,57,61,39,52,46 21611 255 27

81,76,57,61,39,52,46,41 26071 256 31
81,76,57,61,39,52,46,41,59 30358 256 33

81,76,57,61,39,52,46,41,59,40 33319 256 31
81,76,57,61,39,52,46 36221 256 34

41,59,40,65
81,76,57,61,39,52,46 39853 256 37

41,59,40,65,58
81,76,57,61,39,52,46 43583 256 39

41,59,40,65,58,87
81,76,57,61,39,52,46 49007 256 40
41,59,40, 65,58,87,50
81,76,57,61,39,52,46 52209 256 42

41,59,40,65,58,87,50,62

Table 16 – Relation between the sequences used in the estimation and number of parts of
the estimated partition, for AM2871z.1, where z=39, 40, 41, 46, 50, 52, 57, 58,
59, 61, 62, 65, 76, 81, 87.

We can not state unequivocally that by increasing the sample sizes we increase the parts

of the estimated partition, but it seems to be a trend, as seen in the table 16. But this

could also be the result of incorporating in the model gradually the more distant sequences

according to criterion S.

We apply in all the adjustments the agglomerative method, whose performance is analyzed

in García e González-López (2017), the memory used in all the adjustments is equal to

M “ 4 ď tlog|A|p2475qu ´ 1, with alphabet A “ ta,c,g,tu where 2475 is the smallest sample

size reported in table 13.

We describe in a comparative way the results when applying the model in: (i) the 7 closest

sequences according to S, which are: AM2871z.1, where z=39, 46, 52, 57, 61, 76, 81 (see

tables 17 and 18) and (ii) the 15 sequences (see tables 20 and 21).
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i of part Li Strings
1 acgc, accg, ccag, gacg, acac, gcag, caat, atca
2 ccgc, cggt, cctc, agga, tcac, tagg, acca, gcac
3 gcgc, cgtg, ctat, tctc, cagg, cacc, taag, cgtt, ttct, cccc, ggct, gtca

ctct, agac, tctt, ctta, tgcc, atgc, gttt, tatc, gctt, cttg, agct
4 tcgc, gaca, tttc, ctgc, ttgt, gata, gtta
5 aggc, aaca, agtc, agca, attc, ttcg, aagt, taca, agcg, cagc, gtcc
6 cggc, cgct, tttg, atac, gccg, caga, ttat, ctaa, tagt, ctca, gaaa
7 gggc, gtct, aatt, ttgg, cctt, ttgc, tgga, ctgt, taat, tgta, ccat

tcct, ttca, ggaa, ctcg, tgtt, agaa, gtga
8 tggc, atct, gagt, gagc, aatc, tacg, ggcc, ggtt, agtg, cact, ataa
9 gtgc, gatc, catc, aaga, gctc, aaat, aata
10 actc, tgaa, acag, gtat
11 cgtc, tgtc, gtag, aggt, ttag, ttga, gtac, gcct
12 ggtc, gtaa, agtt, caaa, gttc, gaag, atag
13 cttc, taaa, ttta, catt, attt, aaag, ttaa, acat, aagc, cttt, aaac
14 caag, gcca, tgag, gcaa, aacg, acga, ccac
15 tcag, attg, agag, atcc, aact, cgat, cgta, catg, taga, tccc, ttcc, acaa
16 cgag, tccg, tcta, ggta, taac, acgg, gaga, cata
17 ggag, tgtg, tgct, tcca, tctg, tttt, ccca, ccga, ggca, gcgg, gtgg

tgat, gggg
18 ctag, tcgt, ctgg, aaaa, tcgg, gtgt, gggt, tggt, gatt
19 cacg, aagg, tcaa, cgcg, actg, cgca, tgcg, tcat, ccgt
20 cccg, ctac, atcg, aggg, aatg, ggcg, cggg
21 gtcg, atta, ggat, cgaa, gagg, ggac, tact, tgca, tata, agat, acct

gcga, tcga
22 ccgg, gatg, caac, cctg, atgg, tatt, tggg, tatg, accc, ggtg, cgac, atgt

gcta, ggga
23 gctg, gaat, gttg, acgt, tgac, gacc
24 gcat, gact, ccta, gcgt, caca, acta, gaac, ttac
25 atat, cgga, actt, atga, ccct, cagt, aacc, ccaa, agta, ctga
26 tacc
27 gccc, cgcc, ctcc, agcc

Table 17 – Parts of the partition selected through the Bayesian Information Criterion,
using AM2871z.1, where z=39, 46, 52, 57, 61, 76, 81.
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i of part Li a c g t
1 0.52430 0.24041 0.18670 0.04859
2 0.26705 0.53977 0.13636 0.05682
3 0.31714 0.25073 0.30718 0.12495
4 0.16245 0.27557 0.53791 0.02407
5 0.47689 0.07948 0.27542 0.16821
6 0.20235 0.17204 0.33822 0.28739
7 0.11628 0.31924 0.46564 0.09884
8 0.26162 0.34661 0.36122 0.03054
9 0.14495 0.11376 0.57982 0.16147
10 0.00487 0.42336 0.37226 0.19951
11 0.02754 0.11864 0.61441 0.23941
12 0.26225 0.08357 0.62824 0.02594
13 0.17198 0.23406 0.41527 0.17869
14 0.35484 0.00000 0.18894 0.45622
15 0.27907 0.22161 0.12996 0.36936
16 0.02667 0.72800 0.11200 0.13333
17 0.23476 0.35264 0.24390 0.16870
18 0.13996 0.43050 0.31757 0.11197
19 0.36605 0.38650 0.02658 0.22086
20 0.20380 0.51813 0.09845 0.17962
21 0.08753 0.43885 0.11631 0.35731
22 0.16603 0.35227 0.21136 0.27034
23 0.14469 0.25736 0.23303 0.36492
24 0.01155 0.33949 0.22864 0.42032
25 0.07393 0.47471 0.28664 0.16472
26 0.03922 0.05882 0.03922 0.86275
27 0.26437 0.04310 0.46264 0.22989

Table 18 – Transition probabilities P p¨|Liq with ¨ P ta,c,g,tu and i “ 1, ¨ ¨ ¨ , 27. For each
part i, listed on the left column (see table 17), we indicate in bold the highest
transition probability to the elements of the alphabet.

We note (see table 18) that in relation to the transition probabilities from part i to the

elements of the alphabet, 3 of these parts show their highest values in the transition to

a, 10 parts expose their highest values in the transition to c, 9 of those parts show their

highest values in the transition to g and 5 of those parts expose their greater probabilities

in the transition to t.
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i of part Li Strings Probability
1 acgc, accg, ccag, gacg, acac, gcag, caat, atca P pa|L1q “0.52430
16 cgag, tccg, tcta, ggta, taac, acgg, gaga, cata P pc|L16q “0.72800
12 ggtc, gtaa, agtt, caaa, gttc, gaag, atag P pg|L12q “0.62824
26 tacc P pt|L26q “0.86275

i of part Li Strings Probability
14 caag, gcca, tgag, gcaa, aacg, acga, ccac P pc|L14q “ 0

Table 19 – Selected parts, from table 17, which have the greater (on top)/null (on bottom)
transition probabilities to each element of the alphabet ta,c,g,tu.

In table 19 we highlight the composition of four parts 1, 16, 12 and 26 that show the

highest values of transition probability for a, c, g and t respectively. We also emphasize in

table 19, the part 14 that joins all those strings whose transition probability to c is zero.

We list in table 20 the elements of the partition obtained using all the strains, and then

we give their transition probabilities in table 21.
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i of part Li Strings

1 acgc , accg

2 ccgc, gagt, acca, gagc, ggcg, cggt

3 gcgc, tacg, cgtg, ccca, gccg, ctat, cacc, ttat, ctaa, caga

4 tcgc, ggtt, aatc, ggcc, atca, agtg, ataa, tggc, atct

5 aggc, agtc, aaca, agca

6 cggc, cgct, tttg, atac

7 gggc, ctcg, gtct, cctt, gaca, tagc

8 atgc, gttt, cttg, tatc, ttgg, cttc, catt, taaa, gctt

9 ctgc, ctgt, gttc, tttc

10 gtgc, ggtc, gaag, atag, agtt, caaa, gtaa

11 ttgc, tgga, taat, aaac, ttca, aaag, ttaa, acat, aagc, ttta, cttt

12 catc, ctcc, gctc, aaga, gccc

13 gatc, aata, aaat, gtac, gtag, ttga, ttag, aggt

14 actc, agaa, cgga, atat, atga

15 cctc, tgcc, ggct, tcca, acac, ggag, tgat, tgtg, tgct, gcac, tctg, tttt, gtca

16 tctc, taag, cccc, cagg, ttct, ctct, tctt

17 cgtc, tgtc, gcct

18 attc, aagt, agct, taca, tagt, ctca, gaaa

19 caag, gcca, ccac

20 acag, gtat, tgaa

21 ccag, agac, agga, gcag, gacg, caat, cgtt

22 tcag, attg, aact, agag, catg, atcc, aatg, cgat, cgta

23 cgag, tccg

24 tgag, acga, gcaa, agcc, cgcc

25 ctag, ggga, accc, gctg, atgt, gaat, acgt, gttg, tgac, gacc

26 aacg, taga, acaa, tccc, ttcc

27 cacg, aagg, tcaa, cgca, actg, cgcg, tagg, tcac

28 cccg, ctac, aggg, atcg, gtcg, atta, cggg

29 agcg, cagc, gtcc, ttcg

30 tgcg, tcat, ccgt, acct

31 gagg, ggac, tgca, gcat, ttac, gact, gaac, caca, tata

32 acgg, agat

33 ccgg, gatg, tact, atgg, cctg, gcta, caac, tggg, tatg, ggtg, tatt, cgac, ggca, ccga

34 gcgg, gtgg, cact, ctta, attt, aaaa, gggg, cgaa

35 tcgg, actt, tggt, gggt, ctgg, tcgt, gatt

36 ccat, ggaa, tgta, tcct, aatt, gata, gtta, gtgt, tgtt, gtga

37 ggat, gcga, gaga, tcga

38 ccct, cagt, aacc, ccta, ccaa, agta, ctga

39 gcgt, acta

40 ttgt

41 cata, tcta, ggta, taac

42 tacc

Table 20 – Parts of the partition selected through the Bayesian Information Criterion,
using all the sequences AM2871z.1, where z “ 39, 40, 41, 46, 50, 52, 57, 58,

59, 61, 62, 65, 76, 81, 87.
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i of part Li a c g t

1 0.62162 0.17568 0.11824 0.08446

2 0.20141 0.52669 0.18127 0.09063

3 0.27795 0.22742 0.25900 0.23563

4 0.26518 0.31020 0.37473 0.04989

5 0.49296 0.03873 0.34859 0.11972

6 0.15173 0.17569 0.36646 0.30612

7 0.17982 0.28801 0.44956 0.08260

8 0.26409 0.22741 0.38224 0.12625

9 0.13973 0.20960 0.58923 0.06145

10 0.25732 0.09728 0.57741 0.06799

11 0.15512 0.23870 0.42244 0.18373

12 0.22067 0.08288 0.50377 0.19268

13 0.07543 0.16140 0.58475 0.17843

14 0.07708 0.49605 0.26383 0.16304

15 0.26020 0.34949 0.22874 0.16156

16 0.34054 0.25250 0.28011 0.12685

17 0.05213 0.06398 0.55450 0.32938

18 0.29789 0.14042 0.34416 0.21753

19 0.38671 0.04532 0.09970 0.46828

20 0.01037 0.41014 0.38134 0.19816

21 0.43774 0.26038 0.21384 0.08805

22 0.27390 0.29363 0.11684 0.31563

23 0.08333 0.82222 0.05556 0.03889

24 0.26710 0.05375 0.35668 0.32248

25 0.14725 0.28990 0.24258 0.32027

26 0.28553 0.14211 0.18027 0.39211

27 0.38189 0.38091 0.06102 0.17618

28 0.19352 0.51001 0.09724 0.19924

29 0.48899 0.11006 0.19654 0.20440

30 0.22482 0.37230 0.02698 0.37590

31 0.05018 0.35636 0.17236 0.42109

32 0.02055 0.66438 0.02740 0.28767

33 0.17956 0.35776 0.19200 0.27069

34 0.19475 0.34030 0.30463 0.16031

35 0.15342 0.42826 0.30464 0.11369

36 0.09625 0.36320 0.44644 0.09401

37 0.07349 0.48294 0.14961 0.29396

38 0.09836 0.36339 0.31785 0.22040

39 0.00339 0.35254 0.28136 0.36271

40 0.17865 0.31828 0.49281 0.01027

41 0.05017 0.63378 0.16890 0.14716

42 0.05970 0.10448 0.12687 0.70896

Table 21 – Transition probabilities P p.|Liq with . P ta, c, g, tu and i “ 1, ¨ ¨ ¨ , 42. For each
part i, listed on the left column (see table 20), we indicate in bold the highest
transition probability to the elements of the alphabet.

According to table 21, 7 parts exhibit their highest transition probability values for the

element a, 13 for the element c, 14 for the element g, and 8 for the element t.
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i of part Li Strings Probability
1 acgc, accg P pa|L1q=0.62162
23 cgag, tccg P pc|L23q=0.82222
9 ctgc, ctgt, gttc, tttc P pg|L9q=0.58923
42 tacc P pt|L42q=0.70896

Table 22 – Selected parts, from table 20 and 21, which have the greater transition proba-
bilities to each element of the alphabet ta,c,g,tu.

Note that the parts recorded in the selection given in table 19, where we use only 50% of

the nearest strains, are combinations of those listed in table 22 with other parts, in the

latter case we use all the strains. We detail the connection in the table 23.

Index of part from table 19 Indices of parts - table 20
1 1,4,15,21
16 23,32,37,41
12 9,10
26 42
14 19,24,26

Table 23 – Relation between the parts listed in table 19 and 20. On left we display the
parts coming from the model using only 50% of the DNA sequences, on right
the parts coming from the model using all the DNA strains. In the same line,
on the right we list the parts in which are identified the elements into the part
on the left.

We see that the listed parts (to the left of table 23) are dispersed in several parts of the

model adjusted with all the sequences. In the case of the last line, the strings listed in

part 14 of table 19 occur with nonzero frequencies, when using all the sequences. This last

aspect shows evidences of the natural dispersion that is imprinted to the model with only

50% of the sequences more near, when we use all the sequences.

3.4.3 Conclusion

In this application we show how to use the measure ds to establish a notion of pro-

ximity between strains of Burkitt lymphoma/leukemia, over the alphabet A “ ta, c, g, tu,

we deal with 15 strains. The state space is formed by strings that are concatenations of size

4 of elements coming from the alphabet, and the DNA sequences are identified with Markov

processes of memory 4. From ds it is also possible to propose a strategy of selection of

strains, for the construction of a model that allows to describe the way the elements of the

state space are organized. The measure ds allows to select the nearest strains to build the

model whose represents the majority of the strains. We estimate the transition probability
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of each string for any element of the alphabet A. By the conception of the model it is

possible to classify the strings into 27 categories, where each category contains strings with

the same transition probability to elements of the alphabet, i.e. within each category, the

strings are stochastically equivalent. Comparing the model constructed from the closest

strains to the model with all the strains, we noticed that the categories practically double.

An open question is to be able to quantify with some level of significance the impact of

the inclusion of each strain on the model, as the quantity S increases. An answer in that

line would allow to classify the different possible models, given the 15 strains.

3.5 Third Case Study: Production of Alcohol Fuel

The case investigated in this section is the process of distillation of sugar cane,

for the production of fuel. After the fermentation, the product is heated in the same batch

and immediately it is introduced in two different columns, in order to extract the hydrated

alcohol. Those columns work under the same specifications. For each column i, i “ 1, 2,

there are 5 variables collected in a period of 1 month, one observation by minute t which

means a total of n “ 44643 observations. Those variables are (1) alcoholic contents M i
t p1q

in INPM degrees (the alcohol weight percentage in a hydro-alcoholic solution), (2) fill

level M i
t p2q in percentage, (3) entrance temperature M i

t p3q in degrees Celsius, (4) exit

temperature M i
t p4q in degrees Celsius, (5) vapor pressure M i

t p5q in kgf{cm2 (kilogram-

force per square centimeter). In García, González-López e Andrade (2017) a preliminary

study is carried out to determine whether or not the processes are different. The processes

are compared by mean of the joint comparison of the 5 variables of column 1 with the 5

variables of column 2, the criterion used is also BIC-based, but it is not a measure. That

study already points to divergence between the columns. The purpose of this application

is to determine which of these variables most contribute to the divergence. To do that,

we use the local measure ds, for each pair of variables, identifying precisely which are

the configurations (strings) that lead to the discrepancy between the processes. This

information points out which are the mayor problems that must be corrected to avoid

divergences.

For each time t and each column i “ 1, 2 define X i
tpjq “ 1 if the value of

M i
t pjq ą M i

t´1
pjq and X i

tpjq “ 0 otherwise (then A “ t0, 1u) for j “ 1, . . . , 5. In terms of

the joint process, i.e. with alphabet A “ t0, 1u5 and using memory M “ 1 (by the rule

described above) we obtain the results detailed in table 24. To compare we have included

the results with memory M “ 2.
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M “ 1

ds String (s)
1.01564 (0,0,0,1,1)
1.26571 (1,1,0,1,0)
1.56578 (1,1,1,1,0)
2.08815 (0,1,0,1,1)
2.80355 (1,1,0,1,1)
2.82101 (1,0,1,1,1)
5.29509 (1,1,1,1,1)

M “ 2

ds String (s)
1.27915 (1,1,0,1,1)(1,1,0,1,1)
1.64902 (1,0,1,1,1)(1,0,1,1,1)
2.37569 (1,1,1,1,1)(1,1,1,1,1)

Table 24 – For each order M, M “ 1, 2, on the right we list the strings (s) in which the
columns i, i “ 1, 2 are considered as being different. On the left we inform the
value of ds. In bold, we highlight the cases with greater distances.

We see that according to the records in table 24, the 3 extreme cases (for each order)

involve 3 elements of A those are: p1, 1, 1, 1, 1q, p1, 0, 1, 1, 1q and p1, 1, 0, 1, 1q.
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column 1 2 1 2 1 2
a P A P pa|s0q P pa|s0q P pa|s1q P pa|s1q P pa|s2q P pa|s2q

p0, 0, 0, 0, 0q 0.00012 0.00046 0.00000 0.00000 0.00000 0.00000
p1, 0, 0, 0, 0q 0.00000 0.00000 0.00014 0.00122 0.00012 0.00000
p0, 1, 0, 0, 0q 0.00012 0.00034 0.00000 0.00000 0.00037 0.00034
p1, 1, 0, 0, 0q 0.00012 0.00160 0.00000 0.00000 0.00220 0.00271
p0, 0, 1, 0, 0q 0.00000 0.00011 0.00027 0.00052 0.00000 0.00000
p1, 0, 1, 0, 0q 0.00048 0.00034 0.00217 0.00226 0.00012 0.00000
p0, 1, 1, 0, 0q 0.00000 0.00011 0.00000 0.00000 0.00012 0.00023
p1, 1, 1, 0, 0q 0.00227 0.00239 0.00054 0.00000 0.00024 0.00136
p0, 0, 0, 1, 0q 0.00084 0.00023 0.00217 0.00417 0.00098 0.00079
p1, 0, 0, 1, 0q 0.00358 0.00445 0.00666 0.03056 0.00415 0.00701
p0, 1, 0, 1, 0q 0.00131 0.00274 0.00068 0.00017 0.00598 0.00724
p1, 1, 0, 1, 0q 0.00836 0.05347 0.00462 0.00590 0.06798 0.08492
p0, 0, 1, 1, 0q 0.00239 0.00080 0.00747 0.00625 0.00024 0.00023
p1, 0, 1, 1, 0q 0.02233 0.01015 0.05787 0.07380 0.00354 0.00565
p0, 1, 1, 1, 0q 0.00299 0.00559 0.00109 0.00052 0.00073 0.00441
p1, 1, 1, 1, 0q 0.06294 0.08118 0.01562 0.00903 0.01684 0.05552
p0, 0, 0, 0, 1q 0.00024 0.00011 0.00014 0.00052 0.00024 0.00023
p1, 0, 0, 0, 1q 0.00107 0.00080 0.00163 0.00556 0.00110 0.00045
p0, 1, 0, 0, 1q 0.00048 0.00068 0.00027 0.00035 0.00171 0.00090
p1, 1, 0, 0, 1q 0.00084 0.00638 0.00041 0.00347 0.01855 0.01029
p0, 0, 1, 0, 1q 0.00072 0.00034 0.00149 0.00174 0.00012 0.00011
p1, 0, 1, 0, 1q 0.00561 0.00319 0.01345 0.00799 0.00037 0.00068
p0, 1, 1, 0, 1q 0.00060 0.00125 0.00054 0.00052 0.00012 0.00079
p1, 1, 1, 0, 1q 0.01588 0.00946 0.00367 0.00243 0.00525 0.00746
p0, 0, 0, 1, 1q 0.00478 0.00456 0.01793 0.01858 0.00842 0.00339
p1, 0, 0, 1, 1q 0.02723 0.03238 0.07390 0.20455 0.03662 0.03856
p0, 1, 0, 1, 1q 0.00836 0.01767 0.00421 0.00886 0.05029 0.03426
p1, 1, 0, 1, 1q 0.06330 0.22780 0.03152 0.07380 0.61089 0.43250
p0, 0, 1, 1, 1q 0.01696 0.00775 0.05910 0.04150 0.00574 0.00328
p1, 0, 1, 1, 1q 0.18094 0.08186 0.51691 0.38999 0.02124 0.03290
p0, 1, 1, 1, 1q 0.02257 0.02816 0.01386 0.00955 0.00513 0.02001
p1, 1, 1, 1, 1q 0.54258 0.41364 0.16166 0.09620 0.13060 0.24378

Table 25 – Transition probabilities from the string s to each element of the alphabet
A “ t0, 1u5 (listed on the left), for each process (column 1 and column 2) where
s “ s0, s1, s2; s0 “ p1, 1, 1, 1, 1q, s1 “ p1, 0, 1, 1, 1q and s2 “ p1, 1, 0, 1, 1q with
ds ą 1, for the case M “ 1 - see table 24.

Given the strings that show greater values of ds (being ds ą 1), according to table 24 and

for the case of order 1, we see in table 25 in a comparative way the transition probabilities

of the processes (columns 1 and 2). We note that the difference between the probabili-

ties is perceptible, although it is much more practical to use ds to detect such discrepancies.

In this work, when defining the order of the processes we follow a line of reasoning
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similar to the introduced and detailed in García, González-López e Hirsh (2016), M “

t
plogpnq ´ logplogpnqq

logp|A|q
u ´ 1 “ 10. Instead of using n “ 44643, which is the original size of

the sample, we use n “ 43643, since we discard the 500 initial observations and the 500

final observations.

Interval of ds values Strings (s)
r1, 2q 1111100010, 0111111001, 1111110011, 1100111000,

0111111011, 1101111110, 0011111101, 1110011001,
1110000111, 1100100111, 1110111100, 1000001111,
1110011000, 1111001001, 1111011110, 1110010011,
1100001111, 1100001110, 1110001101, 1110111110,
0111111110, 0011111110, 0011111000, 1111100000,

1110011111, 1111100110
r2, 3q 1111111011, 1011111100, 1111100011, 1110001110,

1100111110, 1110000110
r3, 4q 0000111111, 1111110010, 1110011110, 0001111110,

1111111100
r4, 5q 1111001110, 0111111000, 1111111001
r5, 6q 0111111111, 1111000010
r6, 7q 1111000110, 1001111110
r8, 9q 0011111111

r10, 11q 0001111111
r19, 20q 1111111110
r41, 42q 1111111000

Table 26 – On the right we list the strings (s) in which the columns i, i “ 1, 2 are
considered as being different, according to the variable X i

tp1q built from the
alcoholic content. On the left we inform the intervals in which the values of ds

are included. The strings are listed according to the ds values, in an increasing
order from left to right and from top to bottom.
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Interval of ds values Strings (s)
r1, 2q 1011100000, 0110001000, 1110111100, 0011001000,

1100010000, 1100100100, 0111110000, 1001100000,
1011000100, 0000010111, 0111010000, 0000100001,
0111100000, 0000001100, 0111111110, 0000111000,
0000111100, 0110110000, 0001010000, 1110100000,
0110100000, 1101111111, 0101101000, 0000110100,
0001001000, 1100100000, 1100001000, 1101100000,
0010111111, 1110000100, 0100100000, 1011000000,
0110010000, 0000100100, 1100000001, 1010010000,

1010100000, 0011111101, 0011100000
r2, 3q 1000001000, 0101000000, 1111100000, 0001100000
r3, 4q 0010100000, 1101000000, 0001000000, 1001000000,

0011000000
r4, 5q 1000000000, 0111000000
r5, 6q 1010000000, 1111000000, 0000000001
r6, 7q 0110000000, 0010000000, 0100000000, 0111111111
r8, 9q 0000000011

r10, 11q 0000111111, 1110000000, 0001111111
r11, 12q 1100000000
r12, 13q 0000000111, 0011111111
r13, 14q 0000001111, 0000011111

Table 27 – On the right we list the strings (s) in which the columns i, i “ 1, 2 are considered
as being different, according to the variable X i

tp2q built from the fill level. On
the left we inform the intervals in which the values of ds are included. The
strings are listed according to the ds values, in an increasing order from left to
right and from top to bottom.

In tables 26 and 27 we show the strings (s) where the marginal processes 1

(alcohol) and 2 (fill level) are different, when compared the columns 1 and 2. We also

expose the intervals of ds values where such strings show discrepancies. In table 28 we

show the strings where the columns behave differently in relation to the temperatures’s

records. Analogously to the previous cases, on the left we expose the intervals of values

of ds where the magnitudes of the discrepancies are recorded. About variable 5 (vapor

pressure), no records of discrepancies are detected.
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j “ 3

Interval of ds values Strings (s)
r1, 2q 1111110100, 1111010011, 0111111100, 0000001111,

0000111111, 1111100100, 1111110011, 0111111000,
1111111011, 1111100111, 1111001100, 1111100000,

0011111111, 0001111111, 1111101100
r2, 3q 1111111001
r3, 4q 1111111111
r4, 5q 1111110000, 1111111110
r7, 8q 1111111000, 1111111100

j “ 4

Interval of ds values Strings (s)
r1, 2q 0111111001, 1100110000, 1110100000, 0000011111,

0100111100, 1111011111, 0001000001, 1000000100,
1000100000, 0100001100, 0000000011, 1010000000,
0110000000, 1111111100, 1000000000, 0100000000

r2, 3q 0000011000, 0010000000, 0000000001
r3, 4q 1100000000, 1111100000
r4, 5q 1111000000, 1110000000
r5, 6q 1111111111
r6, 7q 1111110000
r8, 9q 1111111000

Table 28 – On the right we list the strings (s) in which the columns i, i “ 1, 2 are considered
as being different, according to the variable X i

tpjq, built from the temperatures
recorded at the entrance (j “ 3) and at the exit (j “ 4). On the left we inform
the intervals in which the values of ds are included. The strings are listed
according to the ds values, in an increasing order from left to right and from
top to bottom.

The fill level contributes with 66 strings with ds ą 1, 39 of them with ds P r1, 2q

and 2 strings with ds P r13, 14q; the alcoholic content contributes with 48 strings with

ds ą 1, 26 of them with ds P r1, 2q and 2 strings with ds P r19, 42q. The temperature of

entrance contributes with 21 strings with ds ą 1, 15 of them with ds P r1, 2q and 2 strings

with ds P r7, 8q. The temperature of exit contributes with 26 strings with ds ą 1, 16 of them

with ds P r1, 2q and 2 strings with ds P r6, 9q, see table 28. Tables 29 and 30 show for each

variable the 4 strings that expose the highest values of ds. Also in these tables we show

the transition probabilities that explain the discrepancies detected by ds. The measure

ds already captures that the performance of the processes conducted in the columns are

essentially different, in the list of strings detailed in the tables 26, 27 and 28. More precisely,

if we focus on the four most extreme cases of each variable, we can see how this measure

identifies the differences between the transition probabilities when comparing the values

between the columns. See for instance tables 29 and 30. We can note that when comparing

the processes marginally, variable to variable, there is a tendency to show strings s with

large values of ds, which are made up of runs of zeros (or runs of ones) followed by runs
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j “ 1 s “ 1111111000
P p0|sq P p1|sq

column 1 0.80362 0.19638
column 2 0.29775 0.70225

pds “ 41.81420q

s “ 1111111110 column 1 0.94970 0.05030
column 2 0.78208 0.21792

pds “ 19.03538q

s “ 0001111111 column 1 0.02968 0.97032
column 2 0.18218 0.81782

pds “ 10.47809q

s “ 0011111111 column 1 0.07895 0.92105
column 2 0.20325 0.79675

pds “ 8.95013q

j “ 2 s “ 0000011111
P p0|sq P p1|sq

column 1 0.01379 0.98621
column 2 0.18511 0.81489

pds “ 13.81704q

s “ 0000001111 column 1 0.00771 0.99229
column 2 0.16183 0.83817

pds “ 13.77702q

s “ 0011111111 column 1 0.03814 0.96186
column 2 0.24505 0.75495

pds “ 12.13914q

s “ 0000000111 column 1 0.00312 0.99688
column 2 0.13412 0.86588

pds “ 12.05557q

Table 29 – Transition probabilities from the string s to 0 and 1, assigned by the two
processes, given by columns 1 and 2, respectively, j “ 1 records the results for
the alcoholic content, j “ 2 indicates the results for the fill level.
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j “ 3 s “ 1111111100
P p0|sq P p1|sq

column 1 0.43993 0.56007
column 2 0.24449 0.75551

pds “ 7.76765q

s “ 1111111000 column 1 0.63227 0.36773
column 2 0.28346 0.71654

pds “ 7.53980q

s “ 1111111110 column 1 0.70874 0.29126
column 2 0.58032 0.41968

pds “ 4.78982q

s “ 1111110000 column 1 0.77159 0.22841
column 2 0.35135 0.64865

pds “ 4.16771q

j “ 4 s “ 1111111000
P p0|sq P p1|sq

column 1 0.76239 0.23761
column 2 0.92345 0.07655

pds “ 8.59985q

s “ 1111110000 column 1 0.78345 0.21655
column 2 0.92347 0.07653

pds “ 6.03633q

s “ 1111111111 column 1 0.18722 0.81278
column 2 0.14170 0.85830

pds “ 5.38372q

s “ 1110000000 column 1 0.67971 0.32029
column 2 0.85825 0.14175

pds “ 4.44585q

Table 30 – Transition probabilities from the string s to 0 and 1, assigned by the two
processes, given by columns 1 and 2, respectively, j “ 3 records the results for
the temperature of entrance, j “ 4 indicates the results for the temperature of
exit.
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of ones (or runs of zeros). This shows that the processes react differently with different

transition probabilities to atribute the next symbol a zero (or one). We can visualize these

discrepancies in table 29 and 30. For example if we consider the variable j “ 2 and the

string s “ 0000011111, P p1|sq “ 0.98621 for column 1 while P p1|sq “ 0.81480 for column

2. Similar behaviour is observed on the other cases for j “ 2; on a long sequence of ones,

the probability of the next symbol be one is always larger for column 1 than for column 2.

The interpretation in practice is the following, a long sequence of ones means that the value

of the variable keep increasing for long time while a long sequence of zeros means that the

variable is in a decreasing mode for a long time. The behaviour observed corresponds with

differences on the reaction velocity on the self-regulation mechanism of the variable. The

self-regulation mechanism for j “ 2 is faster for column 2 than for column 1. A similar

behaviour is observed for the variables j “ 1 and j “ 3. For variable j “ 4 we observe an

inverse behaviour, column 2 seems to self-regulate faster than column 1.

3.5.1 Conclusion

In the application we address a real problem that is to compare two lines of

production of alcohol fuel. Our purpose goes beyond deciding whether or not production

lines are equivalent. Through the measure explored in this section, we identify which

are the strings of the processes that mark discrepancies between the lines of production.

We do it variable to variable and jointly. We were able to identify from a range of 5

variables, which are the ones that contribute most in terms of discrepancies. For this,

two situations can be observed: the first one is to determine the number of strings with

which each variable contributes and the second is when a variable contributes with very

marked discrepancies, in terms of the magnitude of the local measure. The fill level is

the first contributor in terms of quantity of strings (66) and the alcoholic content is the

first in terms of magnitude (ds ą 41). The variables recording temperatures show each of

them about 20 strings that expose discrepancies between the lines of production and the

magnitudes of the differences are similar between them (1 ă ds ă 9). On the other hand

in relation to the vapor pressure the production lines can be considered equivalent.



78

4 Robust Sample Selection Strategy

In section 4.1 we introduce the problem, In section 4.2. we propose a robust

procedure that has the highest possible robustness rate (50%). We apply this procedure to

the dataset of the financial sector in section 4.3.

4.1 Sample Selection

In this chapter we propose a robust strategy for selecting samples which come

from stochastic processes in discrete time taking values on a finite alphabet. Suppose that

it is suspected that although most of the samples come from the same stochastic law, a

minor proportion of them may come from different laws. So, if our purpose is to discover

the prevailing stochastic law, we should be able to identify the samples associated with

that law. Being able to identify those samples with more discrepant behavior or associated

with the alternatives laws.

In this chapter, we consider m samples tx
nj

i,1um
i“1

coming from Markov processes

of order M, over the finite alphabet A and state space S. Assume that the samples follow

the laws denoted by tPium
i“1

where k˚ of these samples follow the same law, say P. Our

goal is to establish a sample selection procedure which identifies samples following the

same law P. We want to ensure that this procedure is capable of selecting samples with

law P when m ´ k˚ ă k˚. Noting that those m ´ k˚ samples can be generated by laws

that are different of P. A procedure with such characteristics will be able to withstand a

fraction of alternative laws (different of P ) less than q% of the total number of samples,

allowing its robustness. A method of selecting samples with this ability should involve

some notion of proximity or a distance between the samples that reflects the generating

law. It is desirable that, when the sample sizes are large enough such a distance tends to

zero if both samples are generated by the same law and also it is desirable that such a

distance be arbitrarily large when the laws generating the samples are different.

In the next section we introduce and investigate the robust procedure of sample selection,

using the dmax notion.

4.2 Results

First, given a collection of samples, we use the notion introduced in the definition

3.2.9 to quantify the proximity between a specific sample in the collection xn
i,1 and the rest

of the members of the collection of samples. This is a way to compare a sample with a group
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of samples. In conceptual terms, establishing the notion of proximity between samples is

equivalent to quantifying the proximity between the stochastic laws that generate such

samples.

Definition 4.2.1. Given a finite collection tx
nj

i,1um
i“1

of samples from the processes tXj,tum
j“1

with probabilities tPjum
j“1

, over the finite alphabet A with state space S “ AM (M ă 8).

For a fixed i P t1, 2, ..., mu define

V pxni

i,1q “ mediantdmaxpxni

i,1, x
nj

j,1q : j ‰ i, 1 ď j ď mu.

Where, given a sequence tzjul
j“1

, mediantzj, 1 ď j ď lu “ zpk`1q if l “ 2k ` 1 and

mediantzj, 1 ď j ď lu “
zpkq ` zpk`1q

2
if l “ 2k, for k an integer and zpjq denoting the jth

order statistic of the collection tzjul
j“1

.

We can use V pxni

i,1q to compare stochastic laws, under the assumption that mintn1, ¨ ¨ ¨ , nmu

is large enough. For instance, if all the samples follow the same law, according to remark

3.2.10,

V pxni

i,1q ÝÑ
mintn1,¨¨¨ ,nmuÑ8

0, i “ 1, ..., m.

In a more realistic case, we may have that not all the samples in the collection have the

same law. Even in this case, we will have that, if Ji “ tj : 1 ď j ď m, Pj “ Piu, then

V pxni

i,1q goes to zero when mintn1, ¨ ¨ ¨ , nmu goes to infinity, if and only if |Ji| ą r
m

2
s, where

rrs represents the smallest integer which is also larger than r. From now on we will use

the following notation. Under the assumptions of definition 4.2.1, for each i, 1 ď i ď m,

ξi “ |Ji| (cardinal of the set Ji).

The following result formally exposes the conditions for which V pxni

i,1q takes high values

indicating a high proportion of samples from different stochastic laws, in comparison with

the law of xni

i,1.

Theorem 4.2.2. Under the assumptions of definition 4.2.1, for each i, 1 ď i ď m,

V pxni

i,1q ÝÑ
mintn1,¨¨¨ ,nmuÑ8

8, if, and only if, ξi ď r
m

2
s.

Proof. To simplify the exposition of the proof we will assume that all the samples have the

same size n. Denote by zn
j “ dmaxpxn

i,1, xn
j,1q, j ‰ i, 1 ď j ď m (i.e. we have m ´ 1 values

of zn
j ) then V pxn

i,1q “ zn
pk`1q if m ´ 1 “ 2k ` 1 and V pxn

i,1q “
zn

pkq ` zn
pk`1q

2
if m ´ 1 “ 2k.

For the first part of the proof, for the case m even i.e. m ´ 1 “ 2k ` 1 note that, if

V pxn
i,1q ÑnÑ8 8, then, zn

pk`1q ÑnÑ8 8, and, zn
pvq ÑnÑ8 8, for v “ k ` 1, k ` 2, ¨ ¨ ¨ , m ´ 1

which correspond to k ` 1 samples of the total of m “ 2k ` 2 samples. Also, for each

v “ k`1, ¨ ¨ ¨ , m´1 if jpvq is the original index of the sample, dmaxpxn
i,1, xn

jpvq,1q ÑnÑ8 8.

As seen in remark 3.2.10, this means that Pi ‰ Pjpvq and jpvq R Ji. That is ξi ď k`1 “ r
m

2
s.

The odd case follows in a similar way.
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For the second part of the proof, consider the complementary set of Ji, say tjpvqu. For each

jpvq R Ji, Pi ‰ Pjpvq and according to the remark 3.2.10, this means that zn
jpvq ÑnÑ8 8.

Then, the condition ξi ď r
m

2
s implies that more than 50% zn

j values go to infinity when n

goes to infinity and so does the median V pxn
i,1q. �

That is, V pxni

i,1q takes large values if, and only if, more than 50% of the available samples

exhibit different laws, compared to the law of xni

i,1. In a collection of stochastic processes

we will admit the existence of a predominant stochastic law. This supposition is essential

to ensure that it is possible to extract from the collection of samples one specific sample

which is associated with the predominant law.

Definition 4.2.3. Under the assumptions of definition 4.2.1 Pj˚ , for some 1 ď j˚ ď m,

is denoted as the majority law in tXj,tum
j“1

if ξj˚ ą ξj, @j ‰ j˚, j P t1, ¨ ¨ ¨ , mu.

Remark 4.2.4. If ξj˚ ď r
m

2
s, then, for every i, 1 ď i ď m, ξi ď r

m

2
s and from theorem

4.2.2 we will have that V pxni

i,1q ÝÑ
mintn1,¨¨¨ ,nmuÑ8

8. This mean that if the majority law does

not correspond to at least half of the samples, then any procedure based on the V statistic

will be inconclusive. In this work we will only consider the case on which ξj˚ ą r
m

2
s.

Suppose we have m samples tx
nj

j,1um
j“1

, and we want to identify one of them which can

be considered as being the nearest sample to all the other samples. We will see that

finding the nearest sample is equivalent to identifying the majority law. The procedure

described below allows the ordering of the samples of the set tx
nj

j,1um
j“1

,. That is, once this

procedure is executed on the set, let’s say by doing Pptx
nj

j,1um
j“1

q we will have the ordered

set: tx
npjq

pjq,1um
j“1

, so the sample in the i position is Pptx
nj

j,1um
j“1

qpiq “ x
npiq

piq,1.

Procedure 4.2.5. (Pptx
nj

j,1um
j“1

q)

a. imput (sample set): tx
nj

j,1um
j“1

;

i. for each j P t1, 2, ¨ ¨ ¨ , mu compute V pxnj

j,1q;

ii. vpiq the ith order statistic of tV pxnj

j,1q, 1 ď j ď mu, for i “ 1, ¨ ¨ ¨ m;

iii. denote by x
npiq

piq,1 the sample related to vpiq, for i “ 1, ¨ ¨ ¨ , m;

b. output (ordered sample set): tx
npjq

pjq,1um
j“1

.

The procedure takes a set of samples and return the set of samples ordered by the value

of V .

Theorem 4.2.6. Consider the samples tx
nj

j,1um
j“1

coming from the processes tXj,tum
j“1

under

the assumptions of definition 4.2.3, set n “ mintn1, ¨ ¨ ¨ , nmu. Suppose that ξjˆ˚ ą r
m

2
s
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and define xnx

1
“ Pptx

nj

j,1um
j“1

qpiq, where P is the ordering procedure 4.2.5. Then, for n

large enough and i ď ξjˆ˚, xnx

1
will be a sample of the majority law.

Proof. Fix a value M ą 0, if ξjˆ˚ ą r
m

2
s then, for each l such that Pl is not the majority

law, ξl ă
m

2
and from theorem 4.2.2 V pxnl

l,1q ÝÑ
mintn1,¨¨¨ ,nmuÑ8

8. This implies that there is

N1 such that if mintn1, ¨ ¨ ¨ , nmu ě N1 then, V pxnl

l,1q ą M for all l such that Pl is not the

majority law.

On the other hand if Pk is the majority law, then, V pxnk

k,1q ÝÑ
mintn1,¨¨¨ ,nmuÑ8

0, and there

is N2 such that, if mintn1, ¨ ¨ ¨ , nmu ě N2, then, V pxnk

k,1q ă M for all k such that Pk is

the majority Law. Now, for mintn1, ¨ ¨ ¨ , nmu ě maxtN1, N2u, V pxnk

k,1q ă M if Pk is the

majority law and V pxnl

l,1q ą M if Pl is not the majority law. Then, for n “ mintn1, ¨ ¨ ¨ , nmu

large enough on the ordering procedure 4.2.5, the samples generated from the majority

law will precede the samples coming from other distributions. �

The next section shows a case study of similarity and discrepancy, on financial

series. It is worth noting that according to our knowledge with a possible exception see

García, González-López e Viola (2014), there is not any other method of selecting samples

in stochastic processes in the literature. García, González-López e Viola (2014) expressed

a VLMC structure for selecting samples in stochastic processes but in our case only a

Markovian behavior is required.

4.3 Case Study: Daily Trading Volume

In this section we inspect four financial series, in table 31 we give a general

description of the series.

Series Description
BBDC4 Banco Bradesco SA Preference Shares (private bank)
BVMF3 B3 S.A. – Brasil, Bolsa, Balcão

(public company of trading and clearing services)
BBAS3 Banco do Brasil (state owned bank)
ITUB4 Itau Unibanco Holding SA Preference Shares (private bank)

Table 31 – Four financial series with sample size n=1446. Period: 3 January 2012- 3
November 2017.

The proposed discretization (just with daily up-down) is a first approach for liquidity

modelling. By simplicity BBDC4 is associated with j “ 1, BVMF3 (j “ 2), BBAS3 (j “ 3)

and ITUB4 (j “ 4) and for each j “ 1, 2, 3, 4, we codify the sequences in the following

way: wj,t “ 1, if the volume negotiated on day t is greater than the one negotiated on day
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t ´ 1 and wj,t “ 0 otherwise, so the alphabet is A “ t0, 1u. We wish to establish if the

behavior of the four series W1,t, W2,t, W3,t and W4,t represented by the samples twn
j,1u4

j“1

can be considered similar or not, this is discussed in subsection 4.3.1. In subsection 4.3.2

we apply the robust procedure 4.2.5 for selection of subsamples and in subsection 4.3.3 we

re-evaluate the results of subsection 4.3.1 using the subsamples selected by mean of the

robust procedure.

4.3.1 Proximity between the Full Series

Usually in Markovian processes the maximum memory to be considered in

practical terms is limited by the size of the sample n and the size of the alphabet A. Thus,

if the alphabet A has size |A| the memory M is such that M ď tlog|A|pnqu ´ 1, where tzu

is the greatest integer less than or equal to z. The series treated here are sequences of size

n “ 1446 and |A| “ 2, then the memory is M ď 9. Since these series are taken during the

workweek days, it is natural to consider M “ 5, 10, 15, etc. From the limitation mentioned

above we have adopted M “ 5.

jzk 1 2 3 4
1 - 1.00574 0.55082 0.78985
2 - - 1.50145 0.55436
3 - - - 0.85719
4 - - - -
1 - 0.12342 0.10213 0.10733
2 - - 0.17352 0.09399
3 - - - 0.17949
4 - - - -

Table 32 – dmaxj,k (up) and dmeanj,k (down) values for j ‰ k, j, k P t1, 2, 3, 4u. Order
M “ 5. See equations 4.1 and 4.2.

Given that the measure ds can be computed string by string, table 32 shows two global

concepts to compare the series, these are

dmaxj,k “ maxtdspwn
j,1, wn

k,1q, s P Su (4.1)

and

dmeanj,k “ meantdspwn
j,1, wn

k,1q, s P Su, (4.2)

for j ‰ k, j, k P t1, 2, 3, 4u. We observe that in terms of the average value (dmean) all the

series can be considered similar, since dmean ă 1. And this is not the case of dmax, for

dmax we register two discrepancies, one between processes 1 and 2 and another between

processes 2 and 3. Since all the stocks belongs to the same sector, the financial services

industry, it is expected to have a similar behavior. This is shown in the general result of
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table 32 when we look at the average distance computed using the whole samples. But

when we look at extreme values, we identify different behaviors or higher dmax values.

This indicates that for liquidity risk analysis we should have a spread between them. About

a detailed inspection on the performance of ds on all the strings of the state space, we

note that there is only one string s˚ “ 00100 that is responsible for the values of dmax

greater than 1 and there is no other string with ds ą 1, see table 33 for details.

j 1 (BBDC4) 2 (BVMF3) 3 (BBAS3)
P p0|s˚q 0.35088 0.11364 0.44737
P p1|s˚q 0.64912 0.88636 0.55263

Table 33 – For the processes 1, 2 and 3, from left to right we list the transition probabilities
from s˚ “ 00100 to a P A. Order M “ 5.

As it is perceived from the results reported in table 33, the series 2 (BVMF3) shows the

most discrepant probabilities, when we compare the three samples. Now we test what

happens with the discrepancies ds˚pwn
1,1, wn

2,1q “ 1.00574 and ds˚pwn
2,1, wn

3,1q “ 1.50145 by

varying the order,let’s say for M “ 4 and M “ 6, we infer that the discrepancy between

the processes 1 (BBDC4) and 2 (BVMF3) is no longer relevant, but the discrepancy

between the processes 2 (BVMF3) and 3 (BBAS3) becomes more marked, substituting

the string s˚ “ 00100 by 0100. Already if we move to an order M “ 6, and in relation to

these two cases also, we have that the discrepancy between the processes 1 and 2 ceases to

be relevant and the discrepancy between the processes 2 and 3 continues to be relevant

but with a lesser magnitude, substituting the string s˚ by ˚00100 for ˚ “ 0 or “ 1. The

table 34 summarizes the information.

Order M “ 4 M “ 5 M “ 6
String 0100 s˚ “ 00100 ˚00100

dspwn
1,1, wn

2,1q 0.91468 1.00574 0.62200 p˚ “ 0q
dspwn

2,1, wn
3,1q 1.85619 1.50145 1.05025 p˚ “ 1q

Table 34 – Magnitude of ds for three consecutive orders (M) from left to right, reporting
the discrepancies between processes 1(BBDC4) and 2(BVMF3) and between
processes 2(BVMF3) and 3(BBAS3), from top to bottom. In bold letter the
values registered in table 32.

4.3.2 Selecting Subsamples from the Robust Procedure

Another big deal when modeling daily financial data is setting the ideal period

for calibrating the model. Let us explore different periods by selecting the more representa-

tive ones. We apply the robust procedure to each of the series j “ 1, 2, 3 and 4 individually,
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in order to select representative fractions (in the sense indicated by theorem 4.2.6) of each

of these financial processes. We divide the sample wn
j,1 into m “ 5 disjoint parts

twn˚

j,1 , w2n˚

j,n˚`1
, w3n˚

j,2n˚`1
, w4n˚

j,3n˚`1
, w5n˚

j,4n˚`1
u (4.3)

of size n˚ “ t
n

m
u “ 289 each. By simplicity denote by tx

j,n˚

i,1 um
i“1

at the sequence given by

the list 4.3, then x
j,n˚

i,1 “ win˚

j,pi´1qn˚`1
, i “ 1, ¨ ¨ ¨ , m. Each subsample is associated with a

specific temporal period, as described by table 35.

Subsample Period
x

j,n˚

1,1 3 January 2012 - 7 March 2013
x

j,n˚

2,1 8 March 2013 - 7 May 2014
x

j,n˚

3,1 8 May 2014 - 6 July 2015
x

j,n˚

4,1 7 July 2015 - 2 September 2016
x

j,n˚

5,1 5 September 2016 - 31 October 2017

Table 35 – Temporal period associated with the subsample for j “ 1, 2, 3, 4.

For each subsample x
j,n˚

i,1 we compute

z
j
i “ mediantmaxtdspxj,n˚

i,1 , x
j,n˚

k,1 q, s P Su, k ‰ i, 1 ď k ď mu, (4.4)

denote by tx
j,n˚

piq,1um
i“1

the sequence ordered by (4.4) (output of the procedure 4.2.5). Table

36 shows the results of equation (4.4) and table 37 shows the ordered blocks for each

series j “ 1, 2, 3, 4. By way of illustration fix j “ 1, which is the process BBDC4. For this

process, the procedure 4.2.5 identifies as the most representative block the fifth block (5

September 2016 - 31 October 2017) because according to the values in table 36, this block

shows a value of z5

1
“ 0.08347. As the second block following this criterion we will have

the block 3 (with z5

1
“ 0.14360), and so on, as shown by the column associated with j “ 1,

in table 37. The column j “ 1 of table 37, from up to down, arranges the subsamples in

increasing order according to the magnitude of tx1

i u5

i“1
.

j Series z
j
1 z

j
2 z

j
3 z

j
4 z

j
5

1 BBDC4 0.19210 0.14954 0.14360 0.26676 0.08347
2 BVMF3 0.24919 0.18972 0.13113 0.21829 0.15970
3 BBAS3 0.15297 0.18481 0.22455 0.13880 0.15351
4 ITUB4 0.14616 0.11654 0.22273 0.15714 0.13980

Table 36 – Results of equation (4.4), in bold letter the minimum values which select x
j,n˚

p1q,1,

for j “ 1, 2, 3, 4.
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Subsample j “ 1 (BBDC4) j “ 2 (BVMF3) j “ 3 (BBAS3) j “ 4 (ITUB4)
x

j,n˚

p1q,1 x
1,n˚

5,1 x
2,n˚

3,1 x
3,n˚

4,1 x
4,n˚

2,1

x
j,n˚

p2q,1 x
1,n˚

3,1 x
2,n˚

5,1 x
3,n˚

1,1 x
4,n˚

5,1

x
j,n˚

p3q,1 x
1,n˚

2,1 x
2,n˚

2,1 x
3,n˚

5,1 x
4,n˚

1,1

x
j,n˚

p4q,1 x
1,n˚

1,1 x
2,n˚

4,1 x
3,n˚

2,1 x
4,n˚

4,1

x
j,n˚

p5q,1 x
1,n˚

4,1 x
2,n˚

1,1 x
3,n˚

3,1 x
4,n˚

3,1

Table 37 – Sample selection following procedure 4.2.5, for series j “ 1, 2, 3, 4.

The third period (8 May 2014 - 6 July 2015) is the most discrepant for both

series: BBAS3 and ITUB4. The first period (3 January 2012 - 7 March 2013) is the most

discrepant for the series BVMF3, while the fourth period (7 July 2015 - 2 September 2016)

is the most discrepant for the series BBDC4. This last case reports the greater magnitude

of z
j
i , when compared with all the other cases (0.26676374). The recent period, the fifth

period (5 September 2016 - 31 October 2017) is the most representative between the 5

blocks of the series, in the case of BBDC4 and also this case reports the lesser magnitude

of z
j
i , when compared with all the other cases (0.08346967). The third period is the most

representative for the series BVMF3, the fourth in the case of BBAS3 and for the series

ITUB4, the second period (8 March 2013 - 7 May 2014) is the most representative. Note

that in some sense the series BBAS3 behaves temporally different in comparison with the

others three series, since the period 4 (considered the most representative for BBAS3) is

in all the remaining cases considered the most discrepant or the second most discrepant

block. One aspect that is notorious is that series 1 (BBDC4) and 2 (BVMF3) show some

coincidence in relation to the blocks of more or less representative samples, we see that

blocks 3 and 5 are the most representative and blocks 1 and 4 the most discrepant in

both series. About the results of table 36 and in a summarized way, we conclude that

the most representative periods for each series can be identified, see also the first line of

table 37. For example, thus, any forecast of the series j “ 1, should seriously consider the

performance of the period: 5 September 2016 - 31 October 2017, since such period has

been selected as the most representative, according to the procedure 4.2.5. According to

table 37 we investigate all period of series, with time series. Because of the reduced values

of the alphabet t0, 1u, it is hard to identify some specific pattern in the graphic, so this

task is easy considering the values of table 36. On the other hand, the number of data are

large and to illustrate the changes, we divide each period into 4 periods. As we can see the

picture of the best period (5 September 2016 - 31 October 2017), picture 6 and the worst

period (7 July 2015 - 2 September 2016), picture 7 in the case of BBDC4, it is a difficulty

task to identify a clear patter. But we can see in the picture 7 (8 October 2015- 7 January

2016) a very volatile period, maybe this is the reason which case the worst position of the

period 7 July 2015 - 2 September 2016 (0.26676). In the picture 6, we can observe a very
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stable period (7 July 2017- 31 October 2017), we note that the whole period (5 September

2016 - 31 October 2017) is considered the most representative so is natural also to have

high variation.
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Figure 6 – Representative fifth period, 5 September 2016 - 31 October 2017 , for BDDC4
using of equation (4.4).
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Figure 7 – Fourth period, 7 July 2015 - 2 September 2016 , for BDDC4 using of equation
(4.4).
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4.3.3 Re-evaluating the Proximity between the Series

With the selected subsamples, we will proceed to re-evaluate the comparison

between the financial entities in the following way. Table 38 shows the results of dmax

(equation 4.1) and dmean (equation 4.2) between x
j,n˚

p1q,1 and x
k,n˚

p1q,1, for j, k “ 1, 2, 3, 4.

jzk 1 2 3 4
1 - 0.34081 0.44222 0.67331
2 - - 0.56085 0.34323
3 - - - 0.63592
4 - - - -
1 - 0.09016 0.13409 0.13087
2 - - 0.13688 0.11386
3 - - - 0.19879
4 - - - -

Table 38 – dmaxj,k (up) and dmeanj,k (down) between the samples x
j,n˚

p1q,1 and x
k,n˚

p1q,1 for
j ‰ k; j, k P t1, 2, 3, 4u. Order M “ 5.

Table 39 shows the results of dmax and dmean between x
j,n˚

p1q,1, x
j,n˚

p2q,1 and x
k,n˚

p1q,1, x
k,n˚

p2q,1 for

j, k “ 1, 2, 3, 4. Table 40 shows the results of dmax and dmean between x
j,n˚

p1q,1, x
j,n˚

p2q,1, x
j,n˚

p3q,1

and x
k,n˚

p1q,1, x
k,n˚

p2q,1, x
k,n˚

p3q,1 for j, k “ 1, 2, 3, 4.

jzk 1 2 3 4
1 - 0.92315 0.54757 0.71179
2 - - 0.83523 0.33198
3 - - - 1.10101
4 - - - -
1 - 0.14222 0.12811 0.18238
2 - - 0.17223 0.11028
3 - - - 0.20563
4 - - - -

Table 39 – dmaxj,k (up) and dmeanj,k (down) between the samples x
j,n˚

p1q,1, x
j,n˚

p2q,1 and

x
k,n˚

p1q,1, x
k,n˚

p2q,1 for j ‰ k; j, k P t1, 2, 3, 4u. Order M “ 5.
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jzk 1 2 3 4
1 - 1.30840 0.61490 1.01026
2 - - 1.25238 0.52223
3 - - - 0.82828
4 - - - -
1 - 0.16503 0.12915 0.19999
2 - - 0.17599 0.13989
3 - - - 0.19314
4 - - - -

Table 40 – dmaxj,k (up) and dmeanj,k (down) between the samples x
j,n˚

p1q,1, x
j,n˚

p2q,1, x
j,n˚

p3q,1 and

x
k,n˚

p1q,1, x
k,n˚

p2q,1, x
k,n˚

p3q,1 for j ‰ k; j, k P t1, 2, 3, 4u. Order M “ 5.

Table 41 shows the results of dmax and dmean between x
j,n˚

p1q,1, x
j,n˚

p2q,1, x
j,n˚

p3q,1, x
j,n˚

p4q,1 and

x
k,n˚

p1q,1, x
k,n˚

p2q,1, x
k,n˚

p3q,1, x
k,n˚

p4q,1 for j, k “ 1, 2, 3, 4.

jzk 1 2 3 4
1 - 1.58548 0.64465 0.64251
2 - - 1.41443 0.54859
3 - - - 0.64070
4 - - - -
1 - 0.15505 0.12432 0.13754
2 - - 0.16492 0.12252
3 - - - 0.17647
4 - - - -

Table 41 – dmaxj,k (up) and dmeanj,k (down) between the samples x
j,n˚

p1q,1, x
j,n˚

p2q,1, x
j,n˚

p3q,1, x
j,n˚

p4q,1

and x
k,n˚

p1q,1, x
k,n˚

p2q,1, x
k,n˚

p3q,1, x
k,n˚

p4q,1 for j ‰ k; j, k P t1, 2, 3, 4u. Order M “ 5.

Table 38 reports no discrepancy between the processes, but by construction the samples

with index (1) only capture discrepancies when those are very strong, and therefore the

results of table 38 are very reasonable. Despite this, we must take into account the relatively

small sample size in that case (n˚=289), so it may make more sense to include more

samples to support any decision. Table 39 uses for the calculations the two most robust

samples, which are those of indices (1) and (2). With this change we detect a discrepancy

between processes 3 and 4, although the magnitude of the discrepancy is moderate. Table

42 shows the reasons of this discrepancy.
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Original series Samples used for the calculation P p0|sq P p1|sq
BBAS3 x

3,n˚

p1q,1, x
3,n˚

p2q,1 0.48276 0.51724

ITUB4 x
4,n˚

p1q,1, x
4,n˚

p2q,1 0.13043 0.86957

Table 42 – Details about the discrepancy related in table 39, between the processes 3 and
4, ds “ 1.10101, s “ 01100.

Table 40 uses for the calculations the three most robust samples, which are those of indices

(1), (2) and (3). With this change we detect three discrepancies, two of them are those

detected by the initial inspection in table 32 an extra discrepancy is now detected between

the processes 1 (BBDC4) and 4 (ITUB4), although the magnitude of the discrepancy is

moderate. Table 43 shows the reasons of this discrepancy, also we explore details about

the previous discrepancies.

s Original series Samples used for the calculation P p0|sq P p1|sq
00100 BBDC4 tx

1,n˚

pkq,1uk“1,2,3 0.37143 0.62857

(ds “ 1.30840) BVMF3 tx
2,n˚

pkq,1uk“1,2,3 0.06452 0.93548

10111 BBDC4 tx
1,n˚

pkq,1uk“1,2,3 0.68750 0.31250

(ds “ 1.01026) ITUB4 tx
4,n˚

pkq,1uk“1,2,3 1.00000 0.00000

10100 BVMF3 tx
2,n˚

pkq,1uk“1,2,3 0.15909 0.84091

(ds “ 1.25238) BBAS3 tx
3,n˚

pkq,1uk“1,2,3 0.45455 0.54545

Table 43 – Details about the discrepancies related in table 40.

Hence, we are able to identify, through the technique proposed here, the subsample or

period more representative for studying the daily trading volume dynamic. When there

is no economic reasons for selecting a sample period, we can select one with statistical

properties such as the robustness. In addition, we got a kind of classification metric

according the stocks’ liquidity. It can be seen, in table 39 and 40, BVMF3 and ITUB4 are

closer than the others and BBAS3 and BBDC4 are next one each other. So we get two

groups for the liquidity behavior.

Table 41 uses for the calculations the four most robust samples, which are those of indices

(1), (2), (3) and (4). With this change we detect two discrepancies, those detected by the

initial inspection in table 32. Table 44 shows the reasons of this discrepancy.
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ds˚ Original series Samples used for the calculation P p0|s˚q P p1|s˚q
1.58548 BBDC4 tx

1,n˚

pkq,1uk“1,2,3,4 0.41026 0.58974

BVMF3 tx
2,n˚

pkq,1uk“1,2,3,4 0.07895 0.92105

1.41443 BVMF3 tx
2,n˚

pkq,1uk“1,2,3,4 0.07895 0.92105

BBAS3 tx
3,n˚

pkq,1uk“1,2,3,4 0.41379 0.58621

Table 44 – Details about the discrepancies related in table 41, s˚ “ 00100.

First of all it should be noted that the latter case offers similar information to those given

by the study with all the subsets of the series, pointing the same string as responsible for

the discrepancies, i.e. s˚ “ 00100, and involving three processes 1 (BBDC4), 2 (BVMF3)

and 3 (BBAS3). The table 44 reflects the information of the table 33.

4.3.4 Conclusion

The technique had been applied to real financial data, specifically to four

Brazilian stocks’ daily trading volume. It had given a clustering of the stocks according

their liquidity and had identified the most representative period for describing this dynamic.

When quantifying the distances between the 4 complete series we had identified that those

that could be considered closest are BBDC4 (code 1) and BBAS3 (code 3) on the one hand,

and, BVMF3 (code 2) and ITUB4 (code 4) on the other hand, see table 32. This result had

kept when calculating the distances with the subsamples selected by the robust procedure

for the cases of tables 39 and 40 and also for the case of the dmean criterion in table

41, this means, when considering more than one selected subsample. In relation to the

selection of subsamples based on the robust procedure, the four financial series generally

had pointed to different periods within the interval: 3 January 2012 to 31 October 2017,

but the series BBDC4 and BVMF3 had shown some similarity in this selection, since they

had shown as the most representative subsamples the same periods 3 and 5 (8 May 2014 -

6 July 2015 and 5 September 2016 - 31 October 2017, respectively) and also those series

had shown as less representative subsamples the same periods 1 and 4 (3 January 2012 -

7 March 2013 and 7 July 2015 - 2 September 2016, respectively). When the series had

been compared restricted to the robust subsamples of index (1), the series had appeared

as being similar, revealing their practical nature, since all of them belong to the same

sector, see table 38. This comparison had contrasted with the results presented by the

comparison between the complete sequences (table 32) which had been affected by periods

that insert internal discrepancies, in the robust sense explored in this paper. In relation to

the discrepancies detected by dmax, we had highlighted two cases that had been confirmed

by several selections of subsamples performed on the full series: the discrepancy between

BVMF3 and BBAS3 and the discrepancy between BBDC4 and BVMF3, whose had been
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presented in strings ending in 0100, that is to say an increase in the volume traded on day

t ´ 2 followed by two decreases experienced on days t ´ 1 and t and also preceded by a

decrease in the volume traded on day t´3. The discrepancies had been revealed when com-

paring the complete series (table 32), and with several selected subsamples (three and four

of the five possibles and selected through the procedure 4.2.5) indicated in tables 40 and 41.
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5 Final Conclusion

In this thesis we discuss two problems related to (i) the comparison of samples

coming from Markovian processes by means of a BIC-based metric and (ii) a robust sample

selection procedure. Both of which were motivated by several real applications.

The first problem consists of the construction of a distance which allows to compare and

decide if there is any discrepancy between two samples of stochastic processes. When a

discrepancy exists, the use of this distance allow us to find the strings where the discrepancy

is manifested. It is shown the relationship of this distance to the divergence of Kullback

Leibler and is also revealed its stochastic behavior in terms of the Chi-squared distribution,

as seen in the theorem 3.2.8.

The Bayesian Information Criterion has already been used to obtain consistent

methods for the selection of models, in Markovian processes, see for example Csiszár e

Talata (2006) and García e González-López (2017). Chapter 3 theoretically contributes to

this line of research, showing that the Bayesian Information Criterion can also be used

to consistently decide whether two independent samples of stochastic processes can be

considered to be coming from the same process (theorem 3.2.6-i), i.e. it allows identifying

if such samples are governed by the same law of probability. Moreover, this criterion

makes it possible to construct a local measure (in the mathematical sense) between the

samples (theorem 3.2.4). We also see that this measure assumes unlimited values when

the stochastic laws of the samples are different and the sample sizes grow, which indicates

their strong discriminatory ability (theorem 3.2.6-ii). In addition, the measure tends to

zero consistently when the samples are governed by the same law. We perceive a natural

connection of the distance ds with the relative entropy D computed between the empirical

laws involved, which strengthens the notion that ds is governed by similar theoretical

and practical bases supporting the relative entropy D (theorem 3.2.3). The connection

between the BIC concept and the measure ds is exposed in theorem 3.2.5. This shows that

to decide if two samples are coming from the same stochastic law is enough to verify that

ds ă 1. The property described by theorem 3.2.5. is practical and easy to check.

We use ds in several real applications for clarifying this topic. First we introduce

a strategy to identify linguistic structures (bigrams) that generate alterations of the

Portuguese, related to the period from 16th to 19th century. With use of ds and dmax

(definition 3.2.1 and definition 3.2.9 ), we inspect written texts of Portuguese dated between

16th century and 18th century. We identify the most voluble structures throughout the

period and also we identify robust linguistic compositions that should be considered when

studying the linguistic changes from Classical Portuguese to Modern Portuguese. According
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to remark 3.2.10 the dmax detects volatile linguistic constructions that expose changes in

several moments from Classical Portuguese to Modern Portuguese (period: 16th century

to 19th century). This type of study could motivate others that allow in fact to identify

precisely how the prosody concerns intonational and rhythmic patterns involving stress

alternation in a language.

In the second application, we use DNA sequences of Burkitt lymphoma. It

occurs when the chromosome 8 (locus of gene MYC) is broken, which produces a change

in the cellular proliferation. In this application we show how to use the measure ds to

establish a notion of proximity between strains of Burkitt lymphoma/leukemia, over the

alphabet A “ ta, c, g, tu, we deal with 15 strains. The measure ds allows to select the

nearest strains to build the model whose represents the majority of the strains. Comparing

the model constructed from the closest strains to the model with all the strains, we noticed

that the categories practically double.

In the third application, we address a real problem that is to compare two lines

of production of alcohol fuel. The purpose of this application is to determine which of

these variables most contribute to the divergence. To do that, we use the local measure

ds, for each pair of variables, identifying precisely which are the configurations (strings)

that lead to the discrepancy between the processes. This information points out which are

the mayor problems that must be corrected to avoid divergences. The strings where the

discrepancies occur expose the differences in the mechanisms of self-regulation between the

columns of fuel production. We note that the processes differ in the time that they remain

in certain states, for that reason long runs showing growth (code=1)/decrease (code=0)

are the strings where the discrepancies appear with greater magnitude.

In chapter 4 we propose a method of selecting samples, starting from a collection

of samples from Markov processes over a finite alphabet, with finite order. The selection

procedure 4.2.5 shows that it is possible to detect samples with the predominate law, under

the requirement that the percentage of samples with a predominant law is greater than or

equal to 50% of the total of samples in the collection. The theoretical properties of this

procedure are investigated in the theorems 4.2.2 and 4.2.6. Theorem 4.2.2 explains how

operates the criterion of proximity between the samples, when the previous condition about

the predominant law is violated. This criterion is incorporated in the selection procedure.

Theorem 4.2.6 shows how the selection procedure allows us to select a quantity of samples

(with the predominate law) until the total of samples that experience the predominant

law, under the previous condition of to have at least 50% of the samples coming from the

same law.

The technique was applied to real financial data, specifically to four Brazilian
stocks’ daily trading volume. With this study we had given the initial step in the sense
of using statistical criteria to determine representative and robust periods of financial
series, using tools coming from the stochastic processes field as is the case of the Bayesian
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Information Criterion. The selection procedure introduced here had lead us to describe
the profile of financial series and, in the future, it could be used to determine periods of
crisis in blocks of series.
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APPENDIX A – Proofs

A.1 Proofs of Theorems of Chapter 1

To prove the theorem 2.2.8, it is necessary to show the following lemmas intro-

duced by Csiszár e Talata (2006).

Lemma A.1.1. For any proper suffix s of some s0 PT0, there exists an irreducible tree rT
with dprT q ă 8 such that u ą s and Qpuq ą 0 for each u P rT , each v ľ s with Qpvq ą 0

has a suffix in rT , and

ln rPML,spxn
1
q ´

ÿ

uPrT

ln rPML,upxn
1
q ă ´cn (A.1)

eventually almost surely as n Ñ 8, where c ą 0 is a sufficiently small constant.

Lemma A.1.2. For any irreducible tree T with dpT q ď Dpnq, Dpnq “ opln nq and s PT

that has a proper suffix s0 PT0 with lps0q ď K, there exists w satisfying s ą w ě s0 such

that, for rT “ tu PT :u ą wu and arbitrary v ą 0

ÿ

uPrT

ln rPML,upxn
1
q ´ ln rPML,wpxn

1
q ă v |rT | ln n (A.2)

holds simultaneously for all T and as above, eventually almost surely as n Ñ 8. Moreover,

here w “ a´ka´k`1 . . . a´1 be chosen such that a´k`1 . . . a´1 is a proper suffix of some

u P T \rT .

Theorem A.1.3. If dpT0q ă 8, the estimator pTBIC, with Dpnq “ opln nq, satisfies
pTBICpXn

1
q “ T0 almost certainly, when n ÝÑ 8.

Proof. For demonstrate the theorem it is enough to show that if T ‰ T0 for some

T P F1 pxn
1
, Dpnqq X I then there exists a modification T

1

of T also satisfying T
1

P

F1 pxn
1
, Dpnqq X I such that

BICT pxn
1
q ą BIC

1

T pxn
1
q (A.3)

simultaneously for all considered trees T , eventually almost surely as n Ñ 8.

According to Eq. 2.2 the likelihood can be described by

MLT pxn
1
q “

ź

sPT

rPML,spxn
1
q,
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where

rPML,spxn
1
q“

$
’’’’&
’’’’%

ź

aPA

„
Nnps, aq
Nnpsq

Nnps,aq

if Nnpsq ě 1;

1 if Nnpsq “ 0.

.

Using of the definition of BIC, Eq. A.3 is equivalent to

ÿ

sPT

ln rPML,spxn
1
q ´

ÿ

s
1 PT

1

rPML,s
1 pxn

1
q ă

p|T | ´ 1q
2

p|T | ´ |T
1

|q ln n. (A.4)

If T P F1 pxn
1
, Dpnqq X T is of such form that T ‰ T

1

, there exist a sequence rs P T and

rs0 P T0 such that rs ă rs0 or rs0 ă rs. Equivalently, there exist s P T and s0 P T0 such that

one of the following cases is true:

(a) s ă s0

(b) s0 ă s

Let us first consider the case (a), then there is a modification T
1

P F1 pxn
1
, Dpnqq X I of T

given by

T
1

“ pT \ tsuq Y rT

where rT given by Lemma A.1.1. that in case (a), we have |T | ´ |T
1

| “ 1 ´ |rT | and the

left-hand side of Eq. A.4 is equal to that of Eq. A.1.1. By Lemma A.4 the latter is less

than ´c n , eventually almost surely n Ñ 8, and thus (A.4) certainly holds.

Let us now consider the case (b) Then there exist a modification T
1

P

F1 pxn
1
, Dpnqq X I of T given by

T
1

“ pT \T
1

q Y twu ,

where rT and twu given by Lemma A.1.2 . In case (b), we have |T | ´ |T
1

| “ |rT | ´ 1, and

the left-hand side of Eq. A.4 is equal to that of Eq. A.1.2 below. Hence, by Lemma A.1.2,

Eq. (A.4) is satisfied also in this case, eventually almost surely as for all considered. �

Theorem A.1.4. Let pXtq and pYtq be two stationary, ergodic and Markovian stochastic

process on a finite alphabet A of finite order, with probability law P and Q, respectively.

Then, the relative entropy rate between them is given by

DpP ||Qq “
ÿ

sPTP Q

P psqDpP p.|sq||Qp.|sqq

Proof. Let d “ max tdpTP q, dpTQqu and Ad be the set of all sequence of length d, it is

denoted by Pn and Qn, respectively the probabilities P pxq and Qpxq for some x P Ad.
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Given a sequence z P An`1, n ą d, exist x P An, y P A such that z “ xy. Then

DpPn`1||Qn`1q “
ÿ

zPAn`1

P pzq ln
ˆ

P pzq
Qpzq

˙
“

ÿ

xPAn

ÿ

yPA

P pxyq ln
ˆ

P pxyq
Qpxyq

˙

“
ÿ

xPAn

ÿ

yPA

P py|xqP pxq ln
ˆ

P py|xqP pxq
Qpy|xqQpxq

˙
“

ÿ

xPAn

ÿ

yPA

P py|xqP pxq ln
ˆ

P py|xq
Qpy|xq

˙

`
ÿ

xPAn

ÿ

yPA

P py|xqP pxq ln
ˆ

P pxq
Qpxq

˙

Using
ÿ

yPA

P py|xq “ 1 we get

DpPn`1||Qn`1q “
ÿ

xPAn

ÿ

yPA

P py|xqP pxq ln
ˆ

P py|xq
Qpy|xq

˙
`

ÿ

xPAn

P pxq ln
ˆ

P pxq
Qpxq

˙

Now, using the definition

DpP pY |xq||QpY |xqq “
ÿ

yPA

P py|xq ln
ˆ

P py|xq
Qpy|xq

˙

for some sequence x P An, and

DpPn||Qnq “
ÿ

xPAn

P pxq ln
ˆ

P pxq
Qpxq

˙

we have DpPn`1||Qn`1q “
ÿ

xPAn

P pxqDpP p.|xq||Qp.|xqq ` DpPn||Qnq.

Given x P An, D a sequence x1 such that x “ x1s, s P S and s is suffix of x1. Thus

DpPn`1||Qn`1q “
ÿ

sPTP Q

ÿ

aPAk: s is suffix of x1

P pxqDpP p.|sq||Qp.|sqq ` DpPn||Qnq

“
ÿ

sPTP Q

DpP p.|sq||Qp.|sqq

»
– ÿ

aPAk: s is suffix of x1

P pxq

fi
fl ` DpPn||Qnq

“
ÿ

sPTP Q

DpP p.|sq||Qp.|sqqP psq ` DpPn||Qnq

(A.5)

as

P psq “
ÿ

aPAk: s is suffix of x1

P pxq.

Then, using the reasoning above, DpPn||Qnq can be written as

DpPn||Qnq “
ÿ

sPTP Q

DpP p.|sq||Qp.|sqqP psq ` DpPn´1||Qn´1q (A.6)
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Substituting (A.6) into (A.5) we have

DpPn`1||Qn`1q “
ÿ

sPTP Q

DpP p.|sq||Qp.|sqqP psq ` DpPn||Qnq

“
ÿ

sPTP Q

DpP p.|sq||Qp.|sqqP psq `
ÿ

sPTP Q

DpP p.|sq||Qp.|sqqP psq ` DpPn´1||Qn´1q

“ 2
ÿ

sPTP Q

DpP p.|sq||Qp.|sqqP psq ` DpPn´1||Qn´1q

Developing, the expression DpPn´1||Qn´1q until the sequence s P TP Q of length d we obtain

DpPn`1||Qn`1q “ pn ´ dq
ÿ

sPTP Q

DpP p.|sq||Qp.|sqqP psq ` DpPd||Qdq

Thus, the relative entropy rate between the laws processes

DpP ||Qq “ lim
nÑ8

«
n ´ d

n

ÿ

sPTP Q

DpP p.|sq||Qp.|sqqP psq `
1
n

DpPd||Qdq

ff

“ lim
nÑ8

«
n ´ d

n

ÿ

sPTP Q

DpP p.|sq||Qp.|sqqP psq

ff
` lim

nÑ8

1
n

DpPd||Qdq

“
ÿ

sPS

DpP p.|sq||Qp.|sqqP psq

Therefore,

DpP ||Qq “
ÿ

sPS

DpP p.|sq||Qp.|sqqP psq. �
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APPENDIX B – Graphs

B.1 Graphs of time series for financial study in chapter 4
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Figure 8 – First period, 3 January 2012 - 7 March 2013 , for BDDC4 using of time series.

●

●

●

●

●

●

● ●

● ●

● ●

● ● ●

●

● ●

●

●

● ●

●

●

●

● ●

●

● ● ●

●

●

● ●

●

●

●

●

● ●

● ●

●

● ●

●

● ●

● ● ●

● ●

●

● ● ● ●

●

●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

8 Maech 2013−8 June 2013

B
B

D
C

4

2013−03−08 2013−04−08 2013−05−07 2013−06−05

●

●

●

●

● ●

● ● ●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

● ● ●

●

● ●

●

● ●

●

● ●

●

● ● ●

● ●

●

●

● ● ●

●

● ● ● ●

●

●

●

●

●

●

● ●

●

●

●

● ●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

9 June 2013−8 September 2013

B
B

D
C

4

2013−06−10 2013−07−08 2013−08−06 2013−09−03

●

●

●

● ● ●

● ●

● ● ●

●

● ●

● ●

● ● ● ●

●

●

● ●

●

● ● ●

●

●

●

● ●

● ●

● ●

●

●

●

●

●

● ● ●

●

● ●

●

● ●

●

●

●

●

● ●

● ●

●

● ●

● ● ●

● ●

●

●

●

●

● ● ● ●

●

●

● ●

● ●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

9 September 2013−8 January 2014

B
B

D
C

4

2013−09−09 2013−10−07 2013−11−04 2013−12−04 2014−01−07

●

● ●

●

●

●

● ●

● ● ● ●

● ●

●

●

● ●

● ●

●

● ●

●

●

● ●

●

● ●

●

●

● ● ● ●

●

●

● ●

● ●

●

● ●

● ●

●

● ●

●

● ● ●

● ● ●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

● ●

●

●

● ● ● ●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

9 January 2014−7 May 2014

B
B

D
C

4

2014−01−09 2014−02−04 2014−02−28 2014−03−28 2014−04−25

Figure 9 – Second period, 3 January 8 March 2013 - 7 May 2014 , for BDDC4 using of
time series.
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Figure 10 – Third period, 8 May 2014 - 6 July 2015 , for BDDC4 using of time series.
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Figure 11 – First period, 3 January 2012 - 7 March 2013 , for BVMF3 using of time series.
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Figure 12 – Second period, 3 January 8 March 2013 - 7 May 2014 , for BVMF3 using of
time series.
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Figure 13 – Representative third period, 8 May 2014 - 6 July 2015, for BVMF3 using of
time series.
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Figure 14 – Fourth period, 7 July 2015 - 2 September 2016, for BVMF3 using of time
series.
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Figure 15 – Fifth period, 5 September 2016 - 31 October 2017, for BVMF3 using of time
series.
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Figure 16 – First period, 3 January 2012 - 7 March 2013 , for BBAS3 using of time series.
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Figure 17 – Second period, 3 January 8 March 2013 - 7 May 2014 , for BBAS3 using of
time series.
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Figure 18 – Third period, 8 May 2014 - 6 July 2015, for BBAS3 using of time series.
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Figure 19 – Representative fourth period, 7 July 2015 - 2 September 2016, for BBAS3
using of time series.
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Figure 20 – Fifth period, 5 September 2016 - 31 October 2017, for BBAS3 using of time
series.
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Figure 21 – First period, 3 January 2012 - 7 March 2013 , for ITUB4 using of time series.
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Figure 22 – Third period, 8 May 2014 - 6 July 2015 , for ITUB4 using of time series.
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Figure 23 – Representative second period, 8 March 2013 - 7 May 2014, for ITUB4 using
of time series.
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Figure 24 – Fourth period, 8 May 2014 - 6 July 2015, for BBAS3 using of time series.
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Figure 25 – Fifth period, 5 September 2016 - 31 October 2017, for ITUB4 using of time
series.
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