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Resumo

O contetdo desta tese se divide em duas partes. A primeira, compreendendo os capitulos 1
e 2, apresenta os fundamentos das classicas teorias multilinear e polinomial. Além disso,
exibe varias linhas de pesquisa dentro de tais contextos, que foram separadamente e
isoladamente estudadas até o momento. A segunda parte, o capitulo 3, é projetada para
oferecer uma abordagem generalizada e unificada dos topicos da primeira parte. Espera-se
que o método do capitulo 3 possa ser amplamente aplicado em investigagoes futuras onde

alguma estrutura multilinear ou polinomial esteja envolvida.

Palavras-chave: espaco normado, espago de Banach, aplicagao multilinear, polinémio
homogéneo, multipolindmio, ideal de operadores, hiper-ideal, coeréncia, compatibilidade,

desigualdade de Bohnenblust—Hille, operador absolutamente somante, cotipo.



Abstract

The contents of this thesis are divided into two parts. The first, comprising chapters 1
and 2, presents the fundamentals of the multilinear and polynomial classical theories.
Also, it exhibits diverse research lines within such settings, which have so far been studied
separately and in isolation. The second part, chapter 3, is designed to offer an extended
and unified approach of the topics of the first part. It is expected that the methods of
chapter 3 may widely be applied in future investigations where a multilinear or polynomial

framework is involved.

Keywords: normed space, Banach space, multilinear mapping, homogeneous polynomial,
multipolynomial, operator ideal, hyper-ideal, coherence, compatibility, Bohnenblust—Hille

inequality, absolutely summing operator, cotype.
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Introduction

Linear Functional Analysis emerged in the '30s after the publication of Stefan
Banach’s monograph (BANACH, 1932). The investigation of polynomials and multilinear
mappings between Banach spaces is the first natural step when moving from linear to
Nonlinear Functional Analysis. In this sense, polynomials and multilinear mappings have

been exhaustively examined by numerous different viewpoints.

Overall, research lines in multilinear and polynomial scenarios are independent
and, albeit very close to each other, have some subtle differences. An effort in unifying them
seems to be an exciting task. A key to such a purpose is the concept of multipolynomial.
This notion seems to have been first explored by I. Chernega and A. Zagorodnyuk in
(CHERNEGA; ZAGORODNYUK, 2009) (with different terminology). It is a somewhat
natural extension of the notions of multilinear mapping and homogeneous polynomial.
Recall that a map A: F; x --- x E,, —» F is m-linear if it is linear in each variable; now,
amap P: F; x --- x E,, — Fis called an (nq,...,n,,)-homogeneous polynomial if it is
nj-homogeneous in the respective coordinate (1 < j <m). When ny = --- =n,, = 1 one
recovers the notion of an m-linear mapping, and when m = 1 one recovers the notion of an
ni-homogeneous polynomial. Thus, multipolynomials encompass the notions of multilinear

mapping and homogeneous polynomial as “extreme” cases.

Chapter 1 recalls the basics of the multilinear and polynomial classical theories.
It is translated to multipolynomials in section 3.1, with the advantage of bringing its unity.
Mostly in these parts, just normed spaces are required but warning the reader to the use
of Banach spaces whenever necessary. Chapter 2 exhibits several research lines, within
the multilinear and polynomial settings, which have been studied in separated ways so
far. Finally, chapter 3 extends and unifies that whole previous theory to multipolynomials.
Still in this chapter, section 3.6 pushes the summing theory further and generalizes earlier
works concerning absolutely summing multilinear /polynomial mappings in Banach spaces

with unconditional Schauder basis.

We may say that chapter 3 mostly draws theory sketches which emerge to
future investigations, and it suggests, as A. Pietsch once did (PIETSCH, 1984), a modus

vivendd.
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1 Preliminaries

This chapter is devoted to briefly recalling some results from the basic theory of
multilinear mappings and homogeneous polynomials that will be useful in this thesis. One
can find a complete explanation in the classical books (MUJICA, 1986) and (DINEEN;,
1999).

Throughout the whole thesis the letter K will stand either for the field R of all
real numbers or for the field C of all complex numbers. N will denote the set of all strictly
positive integers, whereas the set N U {0} will be indicated by Ny. When dealing with
basic theories (we mean, the present chapter and section 3.1), the letters E, E1, ..., E,,,
and F' shall represent normed spaces over the same field K. In all other parts of the text,

unless stated otherwise, they will always denote Banach spaces.

1.1 Multilinear mappings

For each m € N, we recall that a mapping A : F; x --- x E,, — F is said to be

m-linear if, for each 1 < j < m, the mapping
A(:Cl,...,:(;j,l,-,xjﬂ,...,a:m) : E] — F
is linear for all fixed z; € E; with ¢ # j.

For each m € N, we shall denote by L,(F1, ..., E,; F) the vector space of all
m-linear mappings from the cartesian product E; x --- x E,, into F, whereas we shall
denote by L(E1,. .., Eny; F) the subspace of all continuous members of L,(Ey, ..., Ep; F).
For each A€ L,(F1, ..., E,; F) we define

|A]|l := sup {HA (x1,...,xm)| t 2 € Ej,mjax ;] < 1} )

When F' = K we shall write L,(E\, ..., En;K) = L,(Ey, ..., Ey) and L(Ey, ..., B, K) =
L(Ey,...,E,).

Similarly, when Ey = --- = E,,, = E we shall write L,("E; F) and L("E; F).
In this case, we shall denote by L3 (™ E; F') the subspace of all A€ L,(™FE; F) which are
symmetric. When m = 1, as usual, we shall write £L,(*E; F) = L,(E; F) and L('E; F) =
L(E; F). When F = K then, for short, we shall write £,("E;K) = L,("E), L(ME;K) =
L(ME), L(ME;K) = L("E), etc. Finally, when m = 1 and F = K we shall write
L(E) = E

Proposition 1.1.1. For each A€ L,(Es, ..., Ey; F) the following conditions are equiva-

lent:
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(i) A is continuous;
(ii) A is continuous at the origin,

(iii) There exists a constant ¢ = 0 such that

[A (1, )| < el - ol
for all (xy,...,x,) € By X -+ X Ey;
(iv) [A] < oo;
(v) A is uniformly continuous on bounded subsets of By x -+ x E,,;

(vi) A is bounded on every ball with finite radius;
(vii) A is bounded on some ball;

(viii) A is bounded on some ball with center at the origin.

For each A€ L(E, ..., Ey; F), we have the straightforward properties:

o [A(zy, . mm)l < Al ] - Jem],  forall z; e By, j=1,....m;

o |[A| =inf{c=>0:|A(x1,...,2n)| <clai] - |lon], Ve, e £, j =1,...,m}.

One may increase the list in Proposition 1.1.1 provided we add Banach spaces

in the assumptions.

Proposition 1.1.2. If Ey,..., E,, are Banach spaces, then A € L,(F1,...,Ey; F) is

continuous if and only if A is separately continuous in each variable.

One can readily see that if (A;) is a sequence in L,(Ey, ..., E,; F) such that
the limit A(z) = lim ;o A;(z) exists for every z = (z1,...,2,) € Ey X -+ x E,,, then
Ae L, Ey,....E.; F). If By =-.. = E,, and each A; is symmetric, then A is symmetric.

If £y, ..., E,, are Banach spaces and each A; is continuous, then A is continuous as well.

Proposition 1.1.3. If F' is a Banach space, then L(E, ..., Ey; F) is a Banach space

under the norm A — |A].

The Uniform Boundedness Principle (UBP), as well as its corollary Banach—

Steinhaus Theorem (BST), can be naturally extended to m-linear mappings as follows:

Theorem 1.1.4 (Uniform Boundedness Principle). Let Ey, ..., E,, be Banach spaces, F
be a normed space and let {A;}ier be a family in L(Ey, ..., Ey; F). The following conditions

are equivalent:
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(i) For every x = (x1,...,2y) € By x +-+ x E,, there exists C, < oo such that

sup [4; ()] < Cy;
el

(ii) The family {A;}ier is norm bounded, that is,

sup || 4;] < co.
1€l

Corollary 1.1.5 (Banach—Steinhaus Theorem). Let Ey, ..., E,, be Banach spaces, F' be
a normed space and let (A;) be a sequence in L(Ey, ..., E,; F) such that (A;(z1,...,2m))

is convergent in F for every (z1,...,xy) € By X -+ x E,,. If we define
A By x---x E, > F

by

Az, .., Ty) = jli_)rngj (X1, .., Tm)

then Ae L(Ey,...,En; F).

If, in addition, F' in BST-hypotheses is complete, then (A;) converges to A

uniformly on compact subsets of £} x -+ x E,,.

Remark 1.1.6. We refer to (SANDBERG, 1985) and (BERNARDINO, 2009) as a couple
of references to the multilinear UBP and BST. The first one contains a little bit unnatural
proof and uses the linear UBP. The last one presents a quite simple arqgument which does
not need to invoke the linear UBP and, when m = 1, recovers the classical proof of the

linear case.
For each n € N and each multi-index o = (a, ..., a,) € Nj we set

ol =01+ F+a, ao=a!--a,l
|| ,

Let Ae L,("E; F). Then for each (xy,...,x,) € E"andeach o = (v, ..., ) €

N§ with |a| = m we write

o (o7
Azt eoaim = ATy, . T, e Ty ey T
—_—

o (Leibniz Formula) If A e £ (™E; F), then for all x,...,z, € E we have
|
A+ +a,)" = Z%Aw‘fl R

where the summation is taken over all multi-indices o = (ay, . .., ;) € N} such that

la| = m.
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o (Polarization Formula) If Ae L:(™E; F), then for all o, ..., z,, € E we have

m

1
= g1 emA(xg+ e+ -+ ep
m!2m5k;i1 1 m ( 0 141 m m)

A(xy, ..., Tm)

Definition 1.1.7. Given A € L,("E) and B € L,("E) their tensor product A® B €
L,(""E) is defined by

(A B)(x1, ..., Tman) = A1, .., T0) B(Tmats -y Tman)y Y T1, o Tonan € E.

If A and B are continuous, then it is clear that A ® B is continuous as well.

When FE is finite dimensional, another well-known formula comes into play:

e Let {e1,...,eq} beabasis for E and let &1, ..., &, denote the corresponding coordinate

functionals. Then each A € L,(™E; F) can be uniquely represented as a sum

d

A=Y ¢l ® - ®F, (1.1)

J1yemes szl

where each ¢;,...;,, € F. We conclude that £,("E; F) = L(™E; F).

1.2 Homogeneous polynomials

We recall that if £ and F' are vector spaces, a map P : E — F' is called an

m~-homogeneous polynomial if there exists an m-linear mapping
A E" - F

such that
P(x) = A(z,...,x)

for every x € E. The vector space of all m-homogeneous polynomials from E into F' is
denoted by P,(™E; F). We shall represent by P("E; F') the subspace of all continuous
members of P,("E; F). For each P € P,("E; F') we define

|P] = sup{|[P (2)] : x € B, [z < 1.
When F' = K then, for short, we shall write P,(" E;K) = P,("E) and P("E;K) = P("E).

Theorem 1.2.1. For each A € L,("E; F) let A€ P,("E; F) be defined by A(x) = Ax™
for every x € E. Then:
(i) The mapping

"L (ME F) > Py (MEGF)

is a linear isomorphism. We denote the inverse of this mapping by .
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(ii) We have the inequalities

~ m™ | ~
] <1a1< T[4
m.

| (1.2)
for every Ae L°(ME; F).

In particular, the mapping A — A induces a topological isomorphism between
L(ME; F) and P(™E; F). Its inverse is again denoted by Y. Since L°(™E; F) is a closed
subspace of L(™E; F), it follows from Proposition 1.1.3 and the isomorphism above that

Corollary 1.2.2. If F is a Banach space, then P("E; F) is a Banach space under the

norm P — |P|.

The next lemma is useful in characterizing continuous polynomials.

Lemma 1.2.3. Let P e P,("E; F). If P is bounded by ¢ on an open ball B(a;r), then P
is bounded by em™ /m! on the ball B(0;7).

Proposition 1.2.4. For each P € P,("E; F) the following conditions are equivalent:

(i) P is continuous;
(ii) P is continuous at the origin;
(iii) There ezists a constant ¢ = 0 such that
|P (@) < efz]™,
forallxe E;
(iv) [P <o
(v) P is uniformly continuous on bounded subsets of E;
(vi) P is bounded on every ball with finite radius;
(vii) P is bounded on some ball;

(viii) P is bounded on some ball with center at the origin.
For each P € P(™FE; F), we have the straightforward properties:

o [P@@)| < [Pl]]™, forevery xe E;

o |P|=inf{c=0:|P(z)] <clz|”, VzeE}.
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Before we present the polynomial versions of UBP and BST, it is convenient
noting that if (P;) is a sequence in P,(™E; F') such that the limit P(x) = lim ;o P;j(x)
exists for every x € E, then P € P,("E; F).

Next lemma is helpful in proving UBP future versions.

Lemma 1.2.5. Let U be an open subset of E, and let {f;}ic; be a family of continuous
mappings from U into F. If the family { f;}ier is pointwise bounded on U, then there is an
open set V. U where the family {f:}ier is uniformly bounded.

Theorem 1.2.6 (Uniform Boundedness Principle). Let E be a Banach space, F be a
normed space and let {P;}ier be a family in P(ME;F). The following conditions are

equivalent:

(i) For every x € E there exists C, < oo such that

sup | P; (z)] < Ca;
el

(ii) The family {P;}ier is norm bounded, that is,
sup || B;|| < co.
i€l

Corollary 1.2.7 (Banach—Steinhaus Theorem). Let E be a Banach space, F' be a normed
space and let (P;) be a sequence in P(™E; F) such that (Pj(x)) is convergent in F for
every x € E. If we define

P:E—>F

by
P (x):= limP;(x),

J—00

then P e P("E; F).

If, in addition, F' in BST-hypotheses is complete, then (P;) converges to P

uniformly on compact subsets of E.

If F is finite dimensional, let {eq,...,eq} be a basis for E and let &,...,&,
denote the corresponding coordinate functionals. Then each P € P, (™ E; F') can be uniquely

represented as a sum
P =cadi™ &3, (1.3)

where each ¢, € F and where the summation is taken over all multi-indices o =
(a1, ..., aq) € N¢ such that |a] = m. We conclude that P,("E; F) = P(™E; F).
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2 Multilinear mappings versus homogeneous

polynomials

Each section of this chapter introduces a well-known research line in the
multilinear and polynomial settings. We shall present them separately and often in that

order.

2.1 ldeals

Polynomials and multilinear mappings have been exhaustively investigated
by quite different viewpoints. While polynomials are suitable to the investigation of
holomorphic mappings, multilinear mappings are commonly explored in the context
of the extension of the operator ideals’ theory to the nonlinear setting. The notion of
ideals of linear operators between Banach spaces is due to Albrecht Pietsch (PIETSCH,
1978). The natural extension to multilinear mappings and polynomials was designed
by Pietsch some years later in (PIETSCH, 1984). Nowadays, ideals of polynomials and
multilinear mappings are explored by several authors in many and diverse directions (see, for
instance, (ACHOUR et al., 2016; BERRIOS; BOTELHO, 2016; BERTOLOTO; BOTELHO;
JATOBA, 2015; BOTELHO; PELLEGRINO; RUEDA, 2007; BOTELHO; PELLEGRINO,
2006b; BOTELHO et al., 2006; BOTELHO; PELLEGRINO, 2005; FLORET; GARCIA,
2003)). In this section, we shall parallelly confront the basics of such (apparently separated)

ideals’ theories.

Recall that a continuous linear operator u : E — F' is said to have finite rank
if dimu(E) < oo. One can readily see that an operator u € L(E; F') has finite rank if, and
only if, there exist ¢1,...,p, € E' and by,...,b, € F such that

u(w) = Y

for every z € E.

Let us begin by recalling the classical definition of linear operator ideal.

Definition 2.1.1 ((PIETSCH, 1978)). An operator ideal is a class T of continuous
linear operators between Banach spaces such that for all Banach space E and F, its
components

I(E;F):=L(E;F)nT

satisfy:
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(Oa) Z(E; F) is a linear subspace of L(E; F') which contains the finite rank operators;
(Ob) The ideal property: if ue Z(E;F), ve L(G; E), and t € L(F; H), then

touoveZ(G;H).
Moreover, T is said to be a (quasi-) normed operator ideal if there exists a map
||z :Z — [0,00) satisfying:
(01) || |z restricted to Z(E; F) is a (quasi-) norm, for all Banach spaces E and F';
(03) ifueZ(E;F), ve L(G;E) and t € L(F; H), then

[t 0wovly <t fulz o] -

When all the components Z(E; F') are complete under the (quasi-) norm | - |z above, then

T is called a (quasi-) Banach operator ideal.

An operator ideal Z is said to be closed if all components Z(E; F') are closed

subspaces of (L(E; F),| -|), where || - || is the usual operator norm.

The theory of operator ideal is extensively presented in (PIETSCH, 1978). We
now give a list of examples.
L: Ideal of continuous operators;
F: Ideal of finite rank operators;
Z: The closure (with the usual operator norm) of an operator ideal Z;
A: Ideal of approximable operators;
V: Ideal of completely continuous operators;
IC: Ideal of compact operators;
W: Ideal of weakly compact operators;
N,: Ideal of p-nuclear operators;
Z,: Ideal of p-integral operators;

IL,,: Ideal of absolutely p-summing operators.
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The operator ideals (L, [ - ||), (Z, [ -[), (A, [ 1), V. - D, (|| ) and OV, |- )
are closed (therefore, Banach). Further, for any fixed 1 < p < o0, (N,,1,), (Z,,1p), and
(IT,, 7,) are Banach operator ideals; (N7, 71) is the smallest of all Banach operator ideals
(see, also, (DIESTEL; JARCHOW; TONGE, 1995) for details).

A multilinear mapping A € L(F, ..., E,; F) is said to be of finite type if there
exist ne N, p;1 € E],...,0oim € E/ and b; € F (1 <i < n) such that

Ay, ap) = Z%‘l (1) Pim (Tm) b,
i=1

for every (z1,...,xy) € Ey x -+ x E,,. We shall denote by L¢(Ey, ..., E,; F') the subspace
of all finite-type members of L(E, ..., E,; F).

Definition 2.1.2 (see, e.g., (FLORET; GARCIA, 2003)). For each positive integer m, let
L, denote the class of all continuous m-linear mappings between Banach spaces. An ideal
of multilinear mappings M is a subclass of the class L = Uy _ L., of all continuous
multilinear mappings between Banach spaces such that for a positive integer m, Banach

spaces Ey, ..., E,, and F, the components
M(Ey, ... ,Ep;F):=L(E,...,Ep; F)n M
satisfy:
(Ma) M(E:,...,Ey.; F) is a linear subspace of L(Ey, ..., Ey; F) which contains the
m-linear mappings of finite type;

(Mb) The ideal property: if Ae M(E,...,En; F), u;€ L(Gj; E;) forj=1,...,m, and
te L(F;H), then

toAo(uy,...,um) € M(Gy,...,Gpn; H).

Moreover, M is said to be a (quasi-) normed ideal of multilinear mappings if

there exists a map || - |am : M — [0, 00) satisfying:

(M1) ||| restricted to M(Ey, ..., En; F) is a (quasi-) norm, for allm € N and Banach
spaces Ey, ..., E,, and F;

(M2) |idy, : K™ - K :idp(Ary ooy Am) = A1+ Awllm = 1, for allm e N;

(M3) If Ae M(E\,...,En; F), uje L(Gj; Ej) forj=1,....m, andte L(F;H), then

[to Ao (uy,...um)| g < (el ALy Juall- - ]l
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When all the components M(E\, ..., Eny; F) are complete under the (quasi-) norm | - | m
above, M is said to be a (quasi-) Banach ideal of multilinear mappings. For a

fized ideal of multilinear mappings M and a positive integer m € N, the class

My = | M(BE, ... EnF)

E17"'aEmaF

is called an tdeal of m-linear mappings.

An ideal of multilinear mappings M is said to be closed if all components
M(E, ..., Ey,; F) are closed subspaces of (L(Ey, ..., En; F),| ), where || - | is the usual

multilinear norm.

As examples, we may cite some natural extensions of operator ideals.

L: Ideal of continuous multilinear mappings;

L

: Ideal of finite-type multilinear mappings;

[y

M: The closure (with the usual sup norm) of an ideal of multilinear mappings M;
L 4: Ideal of approximable multilinear mappings;
Laspsq): 1deal of absolutely (p; ¢)-summing multilinear mappings;

Lms(pig): 1deal of multiple (p; ¢)-summing multilinear mappings.

The ideals of multilinear mappings (£, |- [), (M, |-]), and (L4, - |) are closed
(therefore, Banach). The classes Lys(pg) and Loy are Banach ideals for p > 1, and

p-Banach ideals for 0 < p < 1 (see section 2.5 for more details).

A homogeneous polynomial P € P(™E; F) is said to be of finite type if there
exist ©1,...,p, € B and by,...,b, € F such that

P(x) = i ()" b,
i=1
for every x € E. We shall denote by Ps(™E; F') the subspace of all finite-type members of
P(ME; F).

Definition 2.1.3 (see, e.g., (FLORET, 2002)). For each positive integer m, let Py,
denote the class of all continuous m-homogeneous polynomials between Banach spaces.
A polynomial ideal Q (or ideal of homogeneous polynomials) is a subclass of the
class P = U, _1 Py, of all continuous homogeneous polynomials between Banach spaces

such that for all m € N and all Banach spaces E and F', the components
Q(MEF) :=P("E; F)nQ

satisfy:
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(Pa) Q(ME;F) is a linear subspace of P(™E;F) which contains the finite-type m-

homogeneous polynomials;
(Pb) The ideal property: if ue L(G; E), Pe Q("E; F), and te L(F; H), then
toPoue Q("G;H).

Moreover, Q is said to be a (quasi-) normed polynomial ideal if there exists a map

| -l Q@—[0,00) satisfying:
(P1) |- g restricted to Q (" E; F) is a (quasi-) norm, for all m € N and all Banach spaces
E and F;
(P2) ||idy, : K — K :idy, (A) = \"|g =1, for allme N;
(P3) Ifue L(G,E), Pe Q("E;F) andte L(F;H), then
ltoPoulg < It 1Plg Jul”
When all the components Q(™E; F') are complete under the (quasi-) norm | - |g above,

then Q is called a (quasi-) Banach polynomial ideal. For a fized polynomial ideal Q

and a positive integer m € N, the class
Q.= Jo("E; F)
E.F
is called an tdeal of m-homogeneous polynomials.

An ideal of homogeneous polynomials Q is said to be closed if all components
Q(ME; F) are closed subspaces of (P(™E; F),| - ), where || - | is the usual polynomial

norm.

We give some examples.

P: Ideal of continuous homogeneous polynomials;
Py: Ideal of finite-type homogeneous polynomials;
Q: The closure (with the usual sup norm) of an ideal of homogeneous polynomials Q;
P4: Ideal of approximable homogeneous polynomials;
Pasipiq): 1deal of absolutely (p; ¢)-summing homogeneous polynomials;
The polynomial ideals (P, || - ||), (Q, ] - ), and (Pa,| - |) are closed (therefore,

Banach). The class Pys(p,q) is @ Banach ideal for p > 1, and p-Banach ideal for 0 <p < 1

(see section 2.5 for more details).
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2.2 Hyper-ideals and two-sided ideals

Recently, in the papers (BOTELHO; TORRES, 2015) and (BOTELHO; TOR-
RES, 2016; BOTELHO; TORRES, 2018), the authors introduced and developed the
notions of hyper-ideals of multilinear mappings and homogeneous polynomials between
Banach spaces. While the well-studied concepts of multilinear-mapping ideal (multi-ideals),
as well as polynomial ideal, relies on the composition with linear operators (the so-called
ideal property), the notion proposed by the authors, called now as hyper-ideal property,
considers in (BOTELHO; TORRES, 2015) composition with multilinear mappings and,
under the polynomial viewpoint, considers in (BOTELHO; TORRES, 2016; BOTELHO;
TORRES, 2018) composition with homogeneous polynomials. Historically speaking, the
hyper-ideal property has already been studied individually for some specific classes, see,
e.g., (DEFANT; POPA; SCHWARTING, 2010; POPA, 2012; POPA, 2014), and then
(BOTELHO; TORRES, 2015; BOTELHO; TORRES, 2016; BOTELHO; TORRES, 2018)

started the systematic study of the classes satisfying this stronger condition.

Definition 2.2.1 ((BOTELHO; TORRES, 2015)). A hyper-ideal of multilinear map-
pings is a subclass H of the class of all continuous multilinear mappings between Banach

spaces such that for all n € N and all Banach spaces Ey, ..., E, and F, the components
H(EL,....,EyF):=L(E,...,E;F)nH
satisfy:
(ha) H(E,...,E,; F) is alinear subspace of L(EY, . .., Ey; F') which contains the n-linear
mappings of finite type;

(hb) The hyper-ideal property: given natural numbers n and 1 < my < --- < m, and
Banach spaces Gy, ...,Gp, ,E1,...,E,,F and H, if By € L(G1,...,Gpny; E1), ...,
Bne L(Gpm, i1y, Gm, i En), A€ H(EL, ..., Ey; F) and t € L(F; H), then

toAo(By,...,B,) eH(Gy,...,Gpn,; H).

Moreover, H is said to be a (quasi-) normed hyper-ideal of multilinear mappings

if there exists a map | - |y : H — [0, 00) satisfying:

(h1) |- | restricted to H(E\, ..., Ey; F) is a (quasi-) norm, for alln € N and all Banach
spaces Ky, ..., E, and F;

(h2) |, K" > K, I,(A1, ..., ) = A1 M|l = 1, foralln e N;

(h3) The hyper-ideal inequality: if By € L(G1,...,Gmy; E1), ..., By € LG, (41, ---
cos G En),Ae H(EL, ..., Ey F) and t € L(F; H), then

[toAo (B, Bl < [t 1Al [ Ball - - [ Bal -
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When all the components H(Eh, ..., Ey; F) are complete under the (quasi-) norm |-|| above,

then (H,| - |%) is called a (quasi-) Banach hyper-ideal of multilinear mappings.

It is plain that every (normed, quasi-normed, Banach, quasi-Banach) hyper-ideal

is a (normed, quasi-normed, Banach, quasi-Banach) multi-ideal.

Definition 2.2.2 ((BOTELHO; TORRES, 2016)). A polynomial hyper-ideal is a
subclass Q of the class of all continuous homogeneous polynomials between Banach spaces

such that for allm € N and all Banach spaces E and F, the components
Q("E;F):=P("E;F)n Q
satisfy:
(pa) Q("E; F) is a linear subspace of P("E; F) which contains the n-homogeneous poly-
nomials of finite type;

(pb) The hyper-ideal property: given m,n € N and Banach spaces E, F,G and H, if
Qe P("G;E),Pe Q("E;F) andte€ L(F;H), then

toPoQe Q("G;H).

If there exist a map |- |g : @ — [0,0) and a sequence (C;)5L, of real numbers with C; = 1

for every j € N and Cy = 1, such that:
(p1) |- | g restricted to Q("E; F) is a (quasi-) norm, for all n € N and all Banach spaces
E and F;
(P2) |In: K—>K,I,(\) =Xg=1, forallne N;
(p3) The hyper-ideal inequality: if Q € P("G; E),Pe Q"E;F) and te L(F; H), then
[toPeoQlg <Gyt Pl QI
then (Q, ] - |o) is called a (quasi-) normed polynomial (C;);”,-hyper-ideal. When

all the components Q("E; F') are complete under the (quasi-) norm || - |g above, then

(Q,|-lo) is called a (quasi-) Banach polynomial (C;);_,-hyper-ideal.

When C; =1 for every j € N, we simply say that Q is a (quasi-) normed/
(quasi-) Banach polynomial hyper-ideal. When the hyper-ideal property (and inequality)
holds for every n € N, but only for m = 1, we recover the concept of (quasi-) normed/

(quasi-) Banach polynomial ideal (remember that C; = 1).
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Definition 2.2.3 ((BOTELHO; TORRES, 2018)). A polynomial two-sided ideal is a
subclass Q of the class of all continuous homogeneous polynomials between Banach spaces

such that for all n € N and all Banach spaces E and F', the components
Q("E; F) =P ("E;F) n Q
satisfy:
(ts-a) Q("E; F) is a linear subspace of P("E; F) which contains the n-homogeneous
polynomials of finite type;

(ts-b) The two-sided ideal property: given m,n,r € N and Banach spaces E, F,G and H,
if Qe P("G;E),Pe Q("E;F) and Re P("F; H), then

RoPoQe Q(™G;H).

e}

If there exist a map | - g : @ — [0,00) and a sequence (Cj, K;)72,

with C;, K; = 1 for every j € N and Cy = Ky = 1, such that:

of pairs of real numbers

(ts-1) |-|lg restricted to Q("E; F) is a (quasi-) norm, for alln € N and all Banach spaces
E and F;

(ts-2) |, : K-> K, I,(A\) = \"|g =1, for alln e N;

(ts-3) The two-sided ideal inequality: if Q € P("G; E),P € Q("E;F) and Re P("F; H),
then
|[RoPoQlg < K,Cp' R |Plg Q™

then (Q, | - |o) is called a (quasi-) normed polynomial (C;, K;);.,-two-sided ideal.
When all the components Q("E; F') are complete under the (quasi-) norm || -|g above, then
(Q,]- o) is called a (quasi-) Banach polynomial (Cj, K;)i_,-two-sided ideal.

When C; = K; = 1 for every j € N, we simply say that Q is a (quasi-)
normed/(quasi-) Banach polynomial two-sided ideal. The condition C} = K; = 1 guaran-
tees that every (normed, quasi-normed, Banach, quasi-Banach) polynomial (Cj, K;)/Z;-
two-sided ideal is a (normed, quasi-normed, Banach, quasi-Banach) polynomial (C})7Z;-
hyper-ideal; and that, as we mentioned before, every (normed, quasi-normed, Banach,
quasi-Banach) polynomial (C});Z,-hyper-ideal is a (normed, quasi-normed, Banach, quasi-

Banach) polynomial ideal.
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2.3 Coherence and compatibility

The extension of an operator ideal to the multilinear and polynomial settings
is not always a trivial question. For example, the absolutely-summing operator ideal
has at least eight possible extensions to higher degrees (see, for example, (BOTELHO;
PELLEGRINO; RUEDA, 2007; CALISKAN; PELLEGRINO, 2007; DIMANT, 2003;
MATOS, 2003a; MATOS, 2003b; PELLEGRINO; SANTOS, 2011; PELLEGRINO; SAN-
TOS; SEOANE-SEPULVEDA, 2012; PEREZ-GARCIA, 2005) and references therein).
The almost-summing operator ideal is another example which has several different possible
extensions to the setting of multilinear and polynomial ideals (BOTELHO; BRAUNSS;
JUNEK, 2001; PELLEGRINO, 2003b; PELLEGRINO; RIBEIRO, 2012). Motivated by
questions about finding a more suitable and less artificial extension of a given operator
ideal, being able to preserve its main properties and essence, several concepts like ideal
closed for scalar multiplication (csm) and ideal closed under differentiation (cud) were
first introduced in (BOTELHO; PELLEGRINO, 2005) (see also (BOTELHO et al., 2006)
for related notions). With the same aim of filtering good polynomial extensions of a
given operator ideal, and exclusively directed toward polynomial ideals, D. Carando et
al. introduced the notions of coherent sequence and compatible ideal in (CARANDO;
DIMANT; MURO, 2009) (see also in (CARANDO; DIMANT; MURO, 2012a; CARANDO;
DIMANT; MURO, 2012b)). In this section, we are mainly interested in these last concepts.

We recall them after fixing the following notation:

e Remember that if P € P(™E; F), then P denotes the unique symmetric m-linear

mapping associated to P.

o If Pe P(ME;F) and a € E, then P, is the (m — k)-homogeneous polynomial in
P("™*E; F) defined by

P (x) :zlvj(a,...,a,x,...,x).

Next, we recall the definitions of coherent and compatible polynomial ideals
(our notation essentially follows (CARANDO; DIMANT; MURO, 2009)). Nevertheless, it
is convenient to be aware that such notions are just the notions of ideals cud and csm

(with different terminology) from (BOTELHO; PELLEGRINO, 2005).

Definition 2.3.1 (Compatible polynomial ideals (CARANDO; DIMANT; MURO, 2009)).
Let T be a normed ideal of linear operators. The normed ideal of n-homogeneous polynomials
U, is compatible with L if there exist positive constants c; and g such that for all Banach

spaces E and F', the following conditions hold:

(cp 1) For each P e U,("E; F) and a € E, the mapping Pyn-1 belongs to Z(E; F') and

-1
| Pan-r]l 7 < 1 [Py, lla|™
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(cp 2) For each Pe I(E; F) and v € E', the mapping ¥" ' P belongs to U,("E; F) and
[P, < az A" P,

Definition 2.3.2 (Coherent polynomial ideals (CARANDO; DIMANT; MURO, 2009)).
Consider a sequence (Uy)r.,, where for each k, Uy is a normed ideal of k-homogeneous
polynomials and N is eventually infinite. The sequence (Uy)h_, is a coherent sequence
of polynomial ideals if there exist positive constants 31 and [y such that for all Banach
spaces E and F', the following conditions hold for k=1,... N —1:

(ch 1) For each P € Uy ("™ E; F) and a € E, the mapping P, belongs to Up("E; F) and
| Pallyy, < 81l Plly,,, laf -

(ch 2) For each P € Uy(*E; F) and v € E', the mapping YP belongs to Uy, ("7 E; F)
and
7Py, < Bo IVl 1Py, -

The philosophy brought by the above concepts is about to be able to transit
between different levels of homogeneity of a given polynomial ideal, preserving the intercon-
nection and the spirit of the original level (n = 1). Motivated by the fact that an operator
ideal Z can always be extended (at least in an abstract sense) not only to polynomials but
also to the multilinear settings (see (BOTELHO, 2005/06)), D. Pellegrino and J. Ribeiro
(PELLEGRINO; RIBEIRO, 2014) proposed a significant new approach to coherence and
compatibility which simultaneously deals with multilinear and polynomial ideals by consid-
ering pairs (Uy, My )i, where Uy is a (quasi-) normed ideal of k-homogeneous polynomials
and My is a (quasi-) normed ideal of k-linear mappings. In the next definitions, we recall
how it was done (we mainly follow the notation in (PELLEGRINO; RIBEIRO, 2014)).

Definition 2.3.3 (Compatible pair of ideals (PELLEGRINO; RIBEIRO, 2014)). Let
T be a normed operator ideal and N € (N\{1}) u {0}. A sequence (U, My)r_,, with
U, = My = 7, is compatible with I if there exist positive constants aq, g, oz such
that for all Banach spaces E, E1, ..., E, and F, the following conditions hold for all
nef{2,...,N}:

(cp-i) For each k € {1,....,n}, A € M,(E\,....E,;F), and a; € E; for all j €
{1,...,n}\{k}, the mapping A(ay,...,ax_1,", Qi1 ---,0pn) belongs to Z(Ey; F) and

[ACars s arrs s arns s an)llr < an A, lan - - far|laka - - llan] -
(cp-ii) For each P e U,("E; F) and a € E, the mapping Pn—1 belongs to Z(E; F') and

\2
1Py < axmax{ [P 121,
M7l "
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(cp-iii) For each A€ I(E,; F) and v; € E for j =1,...,n—1, the mapping y1 - - Y14
belongs to M, (Ey, ..., Ey; F) and

[ ma Al < aslml-- -yl 1Al
(cp-iv) For each P e Z(E; F) and v € E', the mapping v~ P belongs to U,("E; IF).
(cp-v) P belongs to U,("E; F) if, and only if, P belongs to M,,("E; F).

Definition 2.3.4 (Coherent pair of ideals (PELLEGRINO; RIBEIRO, 2014)). Let Z be
a normed operator ideal and N € N U {oo}. A sequence (U, My)r_,, withUy = My =T,
is coherent if there exist positive constants 1, 5o, B3 such that for all Banach spaces
E Ey, ..., Exy1 and F, the following conditions hold for all k =1,...,N —1:

(ch-i) For each Ae My1(E, ..., B F) andaje Ej forj=1,....k+1, the mapping
A(ey.ooyag, ey, ) belongs to My (B, ..., Ej_1,Ej11, ... Exi; F) and

[AC - mags g, < Bl A, lasl

(ch-ii) For each P € Uy 1 ("' E; F) and a € E, the mapping P, belongs to Uy(*E; F) and
Pl < {7, 1Pl o
k+1

(ch-iii) For each A € My(Er,...,E F) and v € E ., the mapping vA belongs to
Mk+1(E17 ey Ek+1; F) and

VAl ag, < Bs Il 1A s, -

(ch-iv) For each P € U,(*E; F) and v € E', the mapping P belongs to Uy (*1E; F).

(ch-v) P belongs to Up(*E; F) if, and only if, P belongs to My (*E; F).

2.4 Bohnenblust—Hille inequalities

In this section, we present the famous Bohnenblust—Hille inequalities (BOHNEN-
BLUST; HILLE, 1931) for homogeneous polynomials and multilinear forms. The the-
ory of Bohnenblust—Hille inequalities has been exhaustively investigated in recent years
(see, for instance (ALBUQUERQUE et al., 2014; BAYART; PELLEGRINO; SEOANE-
SEPULVEDA, 2014; CARO; ALARCON; SERRANO-RODRIGUEZ, 2017; ALARCON,
2013; PELLEGRINO; TEIXEIRA, 2018; SANTOS; VELANGA, 2017), and the references

therein).
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For each pair of sequences x = (z;);2, and a = ()72, in K and Ny, respectively,
such that |a] :== 372 | a; < o0, we shall write 2% := [7; 257 Under such notation, it follows
from Leibniz formula that each continuous m-homogeneous polynomial P : ¢y — K can be

uniquely represented as a sum

Pl) = Y ca(P)a®,

for every = € ¢y, where ¢,(P) € K and where the summation is taken over all sequences «

such that |o| =m

The Bohnenblust—Hille inequality for homogeneous polynomials (BOHNEN-
BLUST; HILLE, 1931) asserts that

Theorem 2.4.1 (Polynomial Bohnenblust—Hille inequality). Let m be a positive fized

integer. The following assertions are equivalent:

(i) There exists a constant Ck,,, = 1 such that

A

(Z o (P)|p> < Cim | P|

|at|=m
for all continuous m-homogeneous polynomial P : cg — K;
(ii)
2m
m+1

p =

We also have the Bohnenblust—Hille inequality for multilinear forms (BOHNEN-
BLUST; HILLE, 1931):

Theorem 2.4.2 (Multilinear Bohnenblust-Hille inequality). Let m be a positive fized

integer. The following assertions are equivalent:

(i) There exists a constant Cx ,,, = 1 such that

< >, |A<ei1,...,eim>|p> < Cm Al

iy =1
for all continuous m-linear forms A :co X -+ x ¢cg = K;
(ii)
2m
m+1

p=
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2.5 Absolutely summing mappings

The basics of the linear theory of absolutely summing operators can be found in
the classical book (DIESTEL; JARCHOW; TONGE, 1995). Its extension to the multilinear
setting was sketched by Albrecht Pietsch in (PIETSCH, 1984) and it was rapidly developed

thereafter in several nonlinear environments.

Let 0 < p < oo. The vector space of all sequences (z;);2; in £ such that
1(@5)521llp = (Z;’;lH:erp)l/p < oo will be denoted by /,(E). We will also denote by ¢ (E)
the vector space formed by the sequences (z;);Z, in E such that (o(z;));2, in £,(K) for
every continuous linear functional ¢ : £/ — K. The function | - |, in £;(E) defined by
()71 lw,p = SUPgen,, (Zj’;l|g0(xj)|p)1/p is a p-norm for p < 1, and a norm for p > 1. In
any case, they are complete metrizable linear spaces. The case p = o is the case of the

bounded sequences and in {(E) we use the sup norm.

Let us begin by recalling the notions of absolutely summing homogeneous
polynomials and multilinear mappings. These notions date back to the works of A. Pietsch
(PIETSCH, 1984) and Alencar-Matos (ALENCAR; MATOS, 1989).

Definition 2.5.1. Let 0 < p,q,q1,...,qm. A continuous m-homogeneous polynomial
P: E — I is absolutely (p; q)-summing (or (p; q)-summing) if (P(x;));Z, € £,(F) for
all (x;);2, € £, (E). A continuous m-linear mapping A : Ey x -+ x E,, — F is absolutely
(p;q1s - -y Gm)-sSumming (or (p;qi, ..., qn)-Summing) if (A(:Egl), o ,xgm)));ozl € (,(F)
for all (e e 2 (Ey), k=1,...,m.

The vector space of all absolutely (p; ¢)-summing m-homogeneous polynomials
from E into F' is denoted by Pog(piq) (" E; F) (Paspsqy (" E) if FF = K). Analogously, the vector

space of all absolutely (p; q1, . - . , gm)-summing m-linear mappings from E; x - -+ x E,, into
Fis denoted by Laspigr,am)(E1s - - - Emi F) (Lastigr,am) (L1, - -, By if F'=K). When
@ == ¢ = ¢, we simply write Lospg)(Er, ..., En; F).

We have Py (" E; F) = {0} (resp. Lospqr,gm)(E1s - Ep; F) = {0}) if
1/p > m/q (resp. 1/p > 1/q1 + -+ + 1/q;,). So, in order to avoid trivialities, we must
suppose p = g/m (resp. 1/p < 1/q; + - -+ + 1/q,,) in the polynomial (resp. m-linear) case.

As in the linear case, we have characterization theorems by means of inequalities.

Theorem 2.5.2 ((MATOS, 1996)). Let P € P("E;F). The following statements are

equivalent:

(i) P is absolutely (p; q)-summing,
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(ii) There exists a constant C' > 0 such that

B =

m

(Z P <xj>||”> < C (@), |

forallneNandz;e E, j=1,...,n.

w7q

(iii) There exists a constant C > 0 such that

RS

q

(i P <wj>||”> <c|@|; 1)
for every (ch);';l € EZ”(E).

The infimum of the C' > 0 for which inequality (2.1) always holds is denoted
by || - [as(p:q) and defines a norm (resp. p-norm) on Pyy(pq) (™ E; F') for the case p = 1 (resp.

p < 1). In any case, we thus obtain complete topological metrizable spaces.

Theorem 2.5.3 (MATOS, 1996)). Let A€ L(E,..., Ey; F). The following statements

are equivalent:

(i) A is absolutely (p; qu, - - - , Gm)-Summing;

(ii) There exists a constant C' > 0 such that

(S0 ) <ef

for alln e N and:vgk),...,x,(f)eEk, k=1,...,m.

(iii) There ezists a constant C > 0 such that

(S ) <l

for every (x§-k))30=1 €ly (Ey), k=1,...,m.

(2.2)

The infimum of the C' > 0 for which inequality (2.2) always holds is denoted
by | - las(rigr,...qm) and defines a norm (resp. p-norm) on Lagpqr,...qn)(E1, ..., Em; F) for
the case p > 1 (resp. p < 1). In any case, we thus obtain complete topological metrizable

spaces.

Next, we present a stronger concept. It was independently introduced in
(MATOS, 2003a) and (PEREZ-GARCIA; VILLANUEVA, 2003).
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Definition 2.5.4. A continuous m-linear mapping A : Ey X --- x E,, — F is said to be

multiple (p; q1, ..., qm)-summing if there exists C = 0 such that
N w e\ PY <ol o)
Z HA (le ey T ) < C’n (xj ) _ (2.3)
J1sndm=1 k=1 I gk
for every (x§-k))30=1 € Ly (Ex), k =1,...,m. In this case we write Lygpiq,,...qm)(E1, - -

o B F).

If g > p for some k = 1,...,m, we have L spqr,...qn)(E1, ..., Em; F) = {0}
So, we must suppose g, < p for every k= 1,...,m. The infimum of the C' > 0 for which
inequality (2.3) always holds is denoted by |- | ms(piq1,....qm) and defines a norm (resp. p-norm)
N Lonspigr,am) (L1, - - -, B F') for the case p = 1 (resp. p < 1). In any case, we thus

obtain complete topological metrizable spaces.

One can see that
£m8(p;q1,-.-,qm) (El, ce Em; F) - Eas(p§q1a---7(hn) (El, ce Em; F)

and
||A||a8(p;q17---7qm) < HA||m5(p§Q17---7QTn) ) VAe ﬁmS(p;qh---,qm)(Eh ey B F)
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3 Multipolynomials: a unified approach

This chapter mostly extends and unifies the previous two. In section 3.6 we
go further with multipolynomial summing theory to generalize recent advances concern-
ing absolutely summing multilinear /polynomial mappings between Banach spaces with

unconditional Schauder basis.

Let us start with the following natural definition:

Definition 3.0.1. Let m e N and (nq,...,n,,) € N*. A mapping P: Ey X --- X E,, > F

is said to be an (ny,...,nmy)-homogeneous polynomial if, for each 1 < j < m, the mapping
P(l’l,...,l‘j_l,',l'j+1,...,$m) : Ej - F

is an nj-homogeneous polynomial for all fived x; € E; with © # j.

When m =1 and n; = 1, it is just the concept of an linear operator; when
m = 1 and n; > 1, we have an homogeneous polynomial and, finally, when m > 1 and
ny =---=mn, = 1, we recover the concept of an m-linear mapping. This kind of map is
called a multipolynomial. Sometimes those particular cases will be called extreme cases. We
shall denote by P,(" E1,...,"™ E,,; F) the vector space of all (ny,...,n,,)-homogeneous
polynomials from the cartesian product E; x --- x E,, into F', whereas we shall denote by
P(ME,...,"™ E,; F) the subspace of all continuous members of P, (" Ey,...,"™ E,,; F).
For each P € P,(™Ey,...,"™ E,,; F') we define

|P| := sup {”P(le, )|ty E Ej,mjax |z < 1} )

When E, = --- = E,, = E we shall write P,("t""E; F) and P("""E; F); if ny =

- =n, =n we use P, (""" E; F) instead. Finally, when F' = K then, for short, we shall
utilize the notations P, (" Ey,...,"™ Ey), P(" Ey,...,"™ E,,), etc.

The concept of multipolynomials was firstly conceived by I. Chernega and
A. Zagorodnyuk in (CHERNEGA; ZAGORODNYUK, 2009) and was rediscovered in
(VELANGA, 2018), in the current notation/language, as an attempt to unify the theories of
multilinear mappings and homogeneous polynomials between Banach spaces. An illustration
of how it works can also be seen in (BOTELHO; TORRES; VELANGA, 2018).

The basics of the theories of homogeneous polynomials and multilinear map-
pings, as well as several topics in such settings, can be translated to multipolynomials with
the advantage of having a unified and elegant approach. The present chapter is dedicated

to developing this subject.
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Modus vivendi: Every concept separately dealt with in the multilinear or
polynomial setting should be designed such that it extends and unifies the whole theory
by the procedure to be outlined in this chapter.

3.1 Basic theory

We begin by extending Lemma 1.2.3.

Lemma 3.1.1. Let P € P,("Ey,...,"" E,; F). If P is bounded by ¢ on an open ball
B((ay,...,ay);r) then P is bounded by cni*/ny!---ny™/ny,! on the ball B((0,...,0);r).

Proof. Let (x1,...,2,) € B((0,...,0);r). We prove this by induction on m. If m =1 it is
just Lemma 1.2.3. Suppose that the result holds for m — 1, then the multipolynomial

P ey Y EPa(nlEl,...7nm71 Em,hF)
——

m—1

is bounded by ¢ on the ball B((ay,...,amn 1);7), for all y € B(am;r). The induction
hypothesis implies that

P e Y
1
is bounded by cni* /ny! -+ np 3t /ng, 1! on the ball B((0,...,0);r), whenever y € B(a,; ).
Applying the polarization formula to P, . 4, .., With 2o = ap, and 2y = -+ = 2, =

Ton /Mo, We get

HP (xlv s >-Tm)H
n M Tm ftm
= nmm P(Ilv--wxmfly') ni
m
Nm
= np"m 1 251..-5 }V7 a +(51+...+5 )xﬂ
" nm'Qnm egj==+1 o ($17---7Im_1,-) m Nm Ny,

Nm

n v T\
o Z P(Ilw'wznl—l:.) <am + (81 +eeet 6"7/m) 7/;n)

Ty l2nm

Ej=i1 m
nim T
m m
- |2an Plooooam+(er+-+en) (1, i)
m: E]’=i1 m—1 m
n ni Nm—1
B LT L L
~ .
Ny ) 270 ny! N1 !

It follows that P is bounded by cni'/ny!---n;™/n,,! on the ball B((0,...,0);r), and the

proof is complete. O

Continuous multipolynomials can be described as follows:
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Theorem 3.1.2. For each P € P,("Ey,...,"™ E,; F) the following conditions are equiv-

alent:

(i) P is continuous;
(ii) P is continuous at the origin;

(iii) There ezists a constant ¢ = 0 such that

[P (1, )| < cfaa™ - fam]™
for all (x1,...,2,) € By X -+ X E;
(iv) [P < o5
(v) P is uniformly continuous on bounded subsets of Ey x -+ X Ep,;

(vi) P is bounded on every ball with finite radius;
(vii) P is bounded on some ball;
(viii) P is bounded on some ball with center at the origin.

Proof. The implications (i) = (i7) and (vi) = (vii) are obvious.

(1) = (i4i): Suppose P continuous at the origin. Then, there exists 6 > 0 such that

(X1, xm) € By X -+ X By (21, ..y xm)| < 0= |P(z1,...,25)| <1

The inequality in (i47) is obvious if z; = 0 for some ¢ = 1,...,m. So, we can assume x; # 0
for every ¢ = 1,...,m. Then,

G- 2men)l -3

e =—-<9
2 ||l 2 |z 2

and thus

AN dxq 0T

Pl = (5) ol e (5 )|
s 2 ||| 2 ||zl

) ni+-+nm
<(3) el

It gives us (4i1) with ¢ = (2/§)™ 7 +mm,

(13i) = (iv): If (i4i) is true then we have
P (ony szl < ol - fol™ <

for all x; € By, ..., 2 € Ep, with |z1], ..., |zm] < 1. Tt shows that ||P| < c.
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(iv) = (v): Let a = (ay,...,am), © = (x1,...,Tp) € By x -+ x E,, with

max ;| < r
7

and
o Ja] < 7
7
Then
1P (a1, aimt, s @iv, - @) | <0 ™ o a7 a0 ] [ P
< Tn1+~--+ni,1+ni+1+---+nm HP” .
From (1.2) we get
v n
P(a17---7ai—17'7$i+17---71'm)H < TZZ“ ||P (ala ey A1yt L1y - - )xm)H
< Lrnl+-~~+n¢,1+ni+1+~~~+nm ||PH
h nl‘ ’

for every i = 1,...,m. Now, we can write
| P (x) = P (a)]

HP(al,...,ai_l,xi,...,xm) —P((ll,...,ai,l’i+1,...,l’m)H

)
IngE

-
Il
—_

A\ A\
P(al7---7ai717'775i+17---7$m) (IZ) - P(al7---aai717'7xi+17---7$m) (CLZ)

L

-
Il
—

v

Plar,aiorowisyam) (@i = Qiy Tiy oo T) 4 -+
A\

et P(a1,-~~,ai717',m+17~--,wm) (ai7 <oy gy T — ai)

L

=1
m v .
S 1 —) ] T
=1
zm o
< (n PH) |z —af !
-1 nil
m nT}rFl
< | 2o P al
=1 v

and the uniform continuity of P on bounded subsets of F; x --- x E,, follows.

(v) = (i): Let us show that P is continuous at an arbitrary point a € E = Ey x -+ X E,,.
Given € > 0 it follows from (v) that there exist dy > 0 such that, for every z,y €
Bg (0;]la] + 1),

|z =yl <do=[P(zx) =Pyl <e.

Defining 0 = min {dy, 1} we get

reE, |r—a|<d=|P(x)—Pla)| <e,
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and thus P is continuous at the point a.

(17) = (vi): Let B be a ball with center at (ai,...,a,,) € E1 x --- x E,, and radius r > 0.
For every (z1,...,x,) € B the hypothesis (iii) gives us a constant ¢ > 0 such that
[P (@1, wm)| < cflad™ - llam ™ < clr + ad])™ - (r + Jan])™

and so P is bounded on B.
(vii) = (viii): It follows immediately from Lemma 3.1.1.

(viii) = (iv): Suppose that there exist r > 0 and ¢ = 0 such that
P (z1,...,z0)| < ¢, V(21,...,2m) € Bg,x-xn, ((0,...,0);7).

Thus, given z1 € Ei,..., 2, € E,, with ||z1],...,|z,] < 1, we have ((r/2)z1,...
ooy (1/2)x1,) € By x..x 5, ((0,...,0);7) and hence

2 ni+-+nm 2 ni+-+nm
1P (21, 2] = () P (Lo ban)| < () |

Proposition 3.1.3. For each P € P("™Ey,....,"™ E,,; F) we have the following:
@) [Py, zm)| < [Pllaa]™ -z, Yz € B j=1,....m.
(ii) |P|| =inf{c = 0: |P(z1,...,zm)| < cllzg|™ - |zm|™™, Vo, € E;, j =1,...,m}.

As in the multilinear case, one might increase the list above provided we add

Banach spaces in the hypothesis.

Proposition 3.1.4. If Ey, ..., E,, are Banach spaces, then P € P, (" Ey,...."" E,; F)

is continuous if and only if P is separately continuous in each variable.

Proof. We will do it for m = 2. To prove the non-trivial assertion, let us assume that P is

separately continuous. Consider the family {P(z, ) }zen,, S P("Ey; F). Given y € Ey,
[P, )yl < 1P Cy)llel™ < [Pyl =) <o,
for every x € Bg,. By Theorem 1.2.6, sup,ep, |P (z,-)| =: €' < o0. Thus,
|12 ()| =P () y| < |P(z,-)] < C,

for all x € By, y € Ey with |z|, |ly| < 1. Hence, | P| < oo and the proof is done. O
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if (P;) is a sequence in P,(" Ey,...," E,,; F') such that the limit P(x) =
lim P;(z) exists for every © = (x1,...,2Tm) € Eyx---xE;,, then P € P,("MEy,...." E,; F).
If By =--- = E,, and each P; is symmetric (see definition in subsection 3.1.2), then P
is symmetric. If E,,..., £, are Banach spaces and each P; is continuous, then P is
continuous as well. A direct route to prove the latter assertion is by using Proposition 3.1.4

and Corollary 1.2.7. An alternative way follows in the form of the coming multipolynomial
BST (Corollary 3.1.7).

Proposition 3.1.5. If F' is a Banach space, then P(" Ey,...,"™ E,,; F) is a Banach space

under the norm P +— |P|.

Proof. Let (P;) be a Cauchy sequence in P(™ E},"* Ey; F'). Given € > 0 there is ng € N
such that
Jk=ny = ||P—PFf <e

Then for each (x,y) € Fy x Ey and j, k = ng we have that
| Py (2, y) — P (zy)| = (P — Pr) (z, )| < 1By — Pl =™ [yl™ < e =™ )™, (3.1)

and it follows that (P;(x,y)) is a Cauchy sequence in F'. Since F' is complete, we have the
well-defined mapping
P: FyxE, — F
(w9~ lmpey) &
00

which, as we already noted, belongs to P,(" Ey,"* Es; F). Furthermore, since (P;) is a
Cauchy sequence in P, (™ E,"? Ey; F') there is a constant ¢ > 0 such that |P;| < ¢, for
every j. Then it follows from (3.2) that | P|| < ¢, and P is therefore continuous, by Theorem
3.1.2. Finally, letting k¥ — oo in (3.1) we obtain

[(P; = P) (z,y)ll < ef=]™ y|™,

for all (z,y) € By x Ey and j = ng. It shows that lim; . |P; — P| = 0 and completes the
proof. n

Next, we extend the UBP and the BST to multipolynomials.

Theorem 3.1.6 (Uniform Boundedness Principle). Let Ey, ..., E,, be Banach spaces, F
be a normed space and let {P;}ier be a family in P("MEy,...,"™ E,; F). The following

conditions are equivalent:

(i) For every x = (x1,...,xy) € By x -+ X E,, there exists C,, < oo such that

sup [ P ()] < Cs.

el
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(ii) The family {P;}ier is norm bounded, that is,

sup || P;|| < co.
i€l

Proof. 1f (i) holds, it follows from Lemma 1.2.5, with U = E' = E; x --- x E,,, that there

exist a ball Bg(a;r) € E and a constant ¢ such that
|P; ()] < e, Vze Bg(a;r) and VYiel.

By Lemma 3.1.1,

1P @) <t Vae By(05r) and Viel

and, by the multipolynomial homogeneity,
2 ni+-+nm nnl nnm
Pi<(2) S e,
r ! !

It shows (i7). The other implication follows immediately from Proposition 3.1.3. O

Corollary 3.1.7 (Banach—Steinhaus Theorem). Let E, ..., E,, be Banach spaces, F be a
normed space and let (P;) be a sequence in P(" Ey,...,"™ E,; F) such that (Pj(z1, ..., %))

is convergent in F' for all (z1,...,xy) € Fy X -+ x E,,. If we define
P:Eix---xFE, > F

by

P(xy,...,xy) = JILI?OP,(xI, e Tm),

then P € P("MEy,...."" E,; F).

Proof. 1t is clear that P € P,("Ey,...,"™ E,; F). For each = (z1,...,2,,) € Ey x -+
- x E,,, the sequence (Pj(x)) is convergent and, therefore, bounded. By Theorem 3.1.6,

there exists uma constante ¢ > 0 such that sup;ey||P;| < ¢. Thus,
155 @) < 1Bl o™ - o™ < e flaa[™ - - [lzm]™

forall z e Fy x --- x E,, and j € N. Taking j — oo completes the proof. [

If, in addition, F' in BST-hypotheses is complete, we can also conclude that

(P;) converges to P uniformly on compact subsets of £y x - -- x E,,. Precisely, we have the

Corollary 3.1.8. Let Ey, ..., E,, and F be Banach spaces and let P, Py, P,, ..., be mul-
tipolynomials in P("MEy,...."" By F) such that im;_,oPj(x1, ..., Tm) = P(z1,...,2m)
for every (x1,...,2,) € By X -+ x E,,. Then, (P;) converges to P uniformly on compact
subsets of E1 X -+ x E,,.
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Proof. By Theorem 3.1.6, sup,,oy| P/ := ¢ < 0. It suffices to prove that
sup | P, () = P (z)| — 0 (3.3)
zeK

for every compact subset K € E = F; x --- x E,,. Indeed, if (3.3) is not true, there exists
a compact subset K € E such that the sequence sup,.j | P.(x) — P(x)| does not converge

to zero. That is, there exists an g > 0 with the following property:
VkeN 3dn,eN: ng>=k and supl|P,, (z)— P (z)| > eo.
zeK

It yields a sequence (xy) = (:L‘](Cl), . ,x,(gm)) in K such that | P,, (xr) —P(xy)| > eo, for every

k e N. Since K is compact, (z;) has a subsequence (xy,)jen such that limzy, = a € K.
Thus,

€0 < ‘P”kj (xkj) - P (xkj) ‘
< | Py (11,) = P, (@)] + | Pay, (@) = P @) + [P (w1,) = P(a)].
Since
1 1 m nm
‘Pnkj (ZL“k]) _Pnkj (a)H < CHxl(cj) - Hxl(cj) — am )

we obtain €9 < 0, after taking 7 — oo, which is absurd. O]

Let us establish some notation that will be required from now on. For fixed
m,ni, ..., N, positive integers, we shall write M := Z;nzl n;. For each m,d € N we

shall denote by M., 4(Np) the set of all m x d matrices with entries in Ny. Given a =
(@ij)ij € Minxa(No) and a fixed 1 < jo < d, we define || == > @ij,. that is, the

summation of the jo-th column (aqj,, ..., amj,) of a. For its rows a; = (o1, .., &aq),
1 <i<m, weset |ay] := Z?Zlaij and ;! = ayi!- - aqug!l. If, for each i with 1 <7 < m,
Ai i= (Ait, -, Aig) € K% we shall write A% := A% -+ - A%¢. More generally, if A and o are

infinite-column matrices in M, o (K) and M, x(Nyg), respectively, such that |a;| = n; for
cach row i with 1 <7 < m, then we shall set A" := [, \j;’. Finally, given ¢, € {1, -1}

with n € N, we put

— Qg
Eij 1= D 1EM— (it ) +las| —(cig+aig)+
for each pair (7,j) € {1,...,m} x {1,...,d}. For convenience, we also define ¢;; = 0

whenever o;; = 0.

With this in mind, let P € P,("t""E; F). Then for all z;,...,24 € E and
Aity -+ Nig € K, 1 < 7 < m, one can inductively combine Leibniz and polarization formulas

to yield

P(Stoht )

1 AT AT d d
m
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where the summation is taken over all matrices o € M,,«4(Np) such that |a;| = n;, for

each 7 with 1 <7 < m.

Equation 3.4 shows that if F is finite dimensional with a basis (e1, ..., e4), let
&1, ..., & denote the corresponding coordinate functionals, then each P € P, (""" E: F)

can be uniquely represented as a sum

P=2ca (M-8 @ @ (& - &™) (3-5)

where ¢, € F' and where the summation is taken over all matrices v € M, x4(Np) such that
|a;| = ny, for each @ with 1 < ¢ < m. In particular, P, (""" E; F') = P("""E; F).

Equation 3.5 unifies previous well-known formulas. Indeed, when n = 1 we
have Equation 1.1. Putting m = 1, and then n = m, we have Equation 1.3.

If F is an infinite dimensional Banach space with a Schauder basis (e,) and

*

*(2))nen denote the coordinates of x, for every

coordinate functionals (e), let e*(z) := (e
x € E. An application of Equation 3.4 shows that each P € P("*"" E; F') can be uniquely

represented as a sum

P(x1,. .. %) = Dlcae® (21)™ - e (xm)™", (3.6)

for all x¢,...,x,, € E, where ¢, € F' and where the summation is taken over all matrices

a € M, 10 (Np) such that |o;| = n;, for each ¢ with 1 < i < m.

3.1.1 Every multipolynomial is a polynomial

Next, we show that the class of homogeneous polynomials encompasses dis-
tinct classes of nonhomogeneous polynomials. To be explicit, we shall prove that every
multipolynomial is a homogeneous polynomial. As corollaries, we expose some apparently
overlooked properties in the literature. For instance, multilinear mappings are specific

cases of polynomials.

Theorem 3.1.9. Let E and F' be vector spaces over K. Let {e;}ier be a Hamel basis for E
and let & denote the corresponding coordinate functionals. Then, each P € P, (""" E; F)

can be uniquely represented as a sum

P(xy,...,2m)
= Z Cil"'ijw H;n:l (H:jjjzlgikff(nj+---+nm)+’l‘j) (Ij) )

Ulyesipg €1

where ¢;,...;,, € F' and where all but finitely many summands are zero.

Proof. For simplicity, let us do the proof for m = 2. The proof of the case m = 2 makes

clear that the other cases are similar. Every x € E' can be uniquely represented as a sum
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x = Y& (x)e; where almost all of the scalars &;(x) (i.e., all but a finite set) are zero. So,

we can write

P (3’)17 %2) = Z (5“ s £Zn1) (.Cﬁl) ﬁ(',ﬂn) (61'1, Ce ,einl) .

il,...,inlef
Since .
Vv \
mn
P 2 (em e ,einl) = o Yoeyrren Py 52,
Npia™ gj=+1 exeiy
k=1
v . .
r r r ( no ) n roof i ne wi
epeat the process for P and the proof is done with
=15k
™ S e, S
Ciyovipy = er-emP €kCiyy 24 En1+kCipn, x| s
nylng!2M . =y k=1 k=1 '
for every i1,...,1p € 1. O

Corollary 3.1.10. Let E and F' be vector spaces over K. Then,
P, ("B F) < P (ME™F) . (3.7)

Proof. Indeed, the map A : (E x --- x E)” — F defined by
—_—

m

A((:pn,...,xlm),...,($M1,...,me))

= L m nj . .
- Z Cll"'zlwHj:lHTjZlglM—(nj+---+nm)+rj (x[M*(anr"'Jrnm)Jrrj]J)
Ulsenslg

cey

is an M-linear mapping which is equal to P on the diagonal. O]

In other words, every (nq, ..., n,,)-homogeneous polynomial is an M-homoge-

neous polynomial.

Remark 3.1.11. It is worth noting that (k, m)-linear mappings, introduced by I. Chernega
and A. Zagorodnyuk in (CHERNEGA; ZAGORODNYUK, 2009, Definition 3.1), are km-
homogeneous polynomials. It suffices to observe that Lq(% E; F) = Pa(m"]'c”mE; F) and
apply Corollary 3.1.10.

If ny =---=n, =1, then Corollary 3.1.10 also implies the following:

Corollary 3.1.12. Let E and F be vector spaces over K. Then every m-linear mapping

in L,("FE; F) is an m-homogeneous polynomial in P,(™(E™); F).

Some applications are in order:
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e When m = 1, inclusion (3.7) trivially becomes equality, but it is always strict when
m > 1. For instance, when n; = --- = n,, = 1, it is clear that there exists a
homogeneous polynomial in P,(™(E™); F') which is not an m-linear mapping in
L,("E;F). If n; > 1 for some ¢ with 1 <4 < m, let us say m = 2 and ny = 2, the
mapping

Pilyxty—K. P((), () =3,

7 )

belongs to P(3(fy x £5)), with js((a, b), (¢, d), (w, 2)) = >, ajcyw;, but P ¢ P(H24y),
by Equation 3.6. Analogously,

Q:lyx by — K, Q((x), (7)) = 2 75y,
is another instance in P(*(fy x £5)) which is not in P("24,).

e The previous results show, in particular, that (algebraically speaking) multilinear
mappings are homogeneous polynomials. So, at first glance, one may wonder why
the theory of multilinear mappings is investigated separately? The point is that
this algebraic identification does not catch analytical information. For instance, the

estimate (see Proposition 3.1.3 for the corresponding multipolynomial inequality)
[ A, am) | < JA] (s zm) ™
is far less precise than
[ Ay, zm)| < JA] ] - ] (3.8)

In this sense, when dealing with quantitative, computational or statistical prob-
lems and applications, such as (to cite some) the search for optimal constants in
Hardy-Littlewood and Bohnenblust—Hille inequalities, Gale-Berlekamp games, and
applications for multilinear forms (see (ALARCON, 2013; ALBUQUERQUE et al.,
2018; ARAUJO; PELLEGRINO, 2019;: PELLEGRINO; TEIXEIRA, 2018; JUNIOR,
2018)), the above identification is useless. However, Corollary 3.1.10 says that quali-
tative results, especially topological properties, e.g., uniform boundedness principle

and Banach—Steinhaus theorem, can be inherited from polynomials.

3.1.2 A polarization formula

m

For each m,n € N, we shall denote by P:;(""E;F) the subspace of all
Pe?P, ("m”E ; ') which are symmetric, that is, such that

P (Ig(l), R ,Jfg(m)) = P(xl, R ,:L’m)

for all x1,...,2,, € E and for any permutation o of the set {1,...,m}. Note that if
n; # n; for some 1 <4 # j < m, then multi-homogeneity and symmetry imply that
Pi( B F) = {0}
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Definition 3.1.13. Let m and n be positive integers. Let M < M,y m+1)(No) be the subset
of m x (m + 1) matrices a such that its Oth column is zero and Y;7" oy = n = D7 ayj,
foralli,je{l,...,m}. We define the remainder function R, : E™ — F as follows:

Ro(x1, ..., 2m)
E1+"-€ m
= Z Zak=i1 | - (Zﬁljl‘ja-.., ng’jx]) ’
aeM\D Qpe-- j=1

where
D={aeM:Vje{l,...,m} Jie{l,...,m} st a; =n}.

In other words, D can be seen as the set of all m! row-permutation matrices of
the diagonal matrix (d,;);; = n.

Next, we extend the polarization formula to multipolynomials.

Theorem 3.1.14. Let P e P:("™™"E; F). Then for all x, ...z, € E we have

P(zy,...,2n)
1 n n m
= - <P + 4+ m—1n m
m!(n!Zn)mgkgilgl c (ZBO kglgkifl kglf( Dtk )
1
— WRH(Q:I’ e ,Im).

Proof. By Equation 3.4 we have that

P <(L’0 + Z 5kl'1 + -+ Z 5(m1)n+kxm>
k=1 k=1

‘az]‘
U <Z_ 05 1>n+k> m m
Z Z J 61...5mnP(251’jx]’,...,ngdxj)
§=0 J=0

ep==1 ar! -y

2mn

where the summation is taken over all matrices & € M,y (ma1) (Ng) such that ayo + - -

-+, = n, for each i with 1 <4 < m. Thus, if |a,j,| > n for some column (@, - - -, Qmjo)
with 1 < jo < m, then there must exist 1 < j; # jo < m such that |y, | < n. Otherwise,
we would have > =1 Qg > mn, which is absurd. Since for each j = 1,...,m we have

9

Sp=+t1 nl2", if o =n

n ‘Ch'j‘ 0 lf |a| -n
2 0G-nni1- Ojn <k215(j1)n+kj> = { 7 Y
p

it follows that

Z 51 . 5mnP (;CO + Z (SkIl + o+ Z 5(m—l)n+kxm)
=11 k=1

k=1
€ m
. nm ZZsk +1 ‘__mn (Zaljxj’-..7zgm,jxj)
= (n) a€eD ! am j=1
+ R (21,0 i)
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Since P is symmetric and #D = m/!, we get

(C_’-: m
Z Zak 1, — (Z €1,5Tj, -+ Z 6m,jxj)

m

12m
= m! <nn' > P(xy,...,zn),

and the desired result follows. O]

Corollary 3.1.15. Let Ae L:(™E; F). Then for all xo,...,z, € E we have

A(xy, .. Ty) =

+ 4t "
m|2m€k2+151 (xo &1 5m$m)

Proof. Choose n = 1 in Theorem 3.1.14 and observe that since D = M the remainder-

function R; must be zero. O

If n > 1, the pointwise-polynomial nature of a multipolynomial P € P*("™""E;
F') is an obstacle to obtain, in general, an exact polarization formula, that is, the one with
null remainder-function. The next results characterize the class of such mappings as a

proper subspace of P (™" E; F).
Proposition 3.1.16. For each A€ L(™E; F) let VA e PS("™™"E; F) be defined by
VA (xy,...,20m) = Az} - 2],
for every x1,...,x,, € E. Then the mapping
W L7 E:F) P F)

is a linear isomorphism onto its range Im W. Moreover, for each P € P;(""E;F), we

have the following equivalent conditions:

(a) Pelm¥;
(b) For all xg,...,z, € E we have the exact polarization formula
P(xy,...,2p)
1 n n m
= 1 EmnP | o+ DiEk®1 + 0+ D Em—nkTm | -
o 5 CRDEEEIRED En—

Proof. By Corollary 3.1.15, we get the 1st and (a) = (b) statements. By Corollary 3.1.10,
there exists a unique P € L£;(™"(E™); F') which is equal to P on its diagonal. Now, it
suffices to consider A € L3(™"E; F') defined by

A(xy, ooy o) = P (21, 521) o ooy (T -+ o T )
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and notice that

n n m
( Z ExT1 + - Z 6(ml)nJrlfl‘m) .
k=1

k=1
[

Example 3.1.17. Let E = R*, F = K =R and let {e;, e5} be the canonical basis of E.
By Equation 3.5, with m = n = 2, we have that the mapping

P ((5”17 x2) ) (?Jl; y2)) = T1T2Y1Y2

belongs to P,(""E; F) but P ¢ Im V. Indeed, one can quickly check that such a P cannot

satisfy the exact polarization formula. For instance, take xqg =0, © = ey, and y = e,.

Remark 3.1.18. By the above proposition and example, we conclude with a correction to
the important paper (CHERNEGA; ZAGORODNYUK, 2009, p. 200-201). Namely, the
canonical isomorphism indicated therein cannot occur between L5(*™E; F) onto the whole
vector space L:(" B, F) of all symmetric (k, m)-linear mappings (or, with our notation,
onto 'Pj(m """ "E; F)). Finally, to fill the gap where the exact polarization formula does not

work, one can use Theorem 3.1.14.

3.2 ldeals

This section extends section 2.1 to multipolynomials and gives detailed exam-
ples.

Let m € N, (ny,...,n,) € N™ and let E;, F;,G,H (1 < j < m) be normed
spaces over K. Given s; € L,(Ej; F;), P € Po("Fy,...," F,;G) and t € L,(G; H), one
can quickly check that P o (s1,...,8y,) € Po("MEL,...."" E,;G) and t o P € P, (" Fy,. ..

S By H).

A multipolynomial P € P(" Ey,...," E,,; F') is said to be of finite type if there
exist ne N, p;1 € Ef,...,0oim € E/ and b; € F (1 < i < n) such that

P(z1,... 2m) = ZSOil (@)™ - P (Tm)""™ by
for every (xz1,...,2,) € Ey x --- x E,,. We shall denote by F(™E,...,"™ E,,; F) the

subspace of all finite type members of P(" Ey,....,"" E,,; F).

Definition 3.2.1. For each m € N and multi-degree (ny,...,n,) € N, let 73,(,:“ """ nm)

denote the class of all continuous (nl, ..oy ) -homogeneous polynomials between Banach

.....
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Pt "m)) of all continuous multipolynomials between Banach spaces such that for all
m € N, multi-degree (ny,...,n,) € N™ and all Banach spaces Ey, ..., E,, and F, the

components

S(MEy,..." B F) =P (MEy, ... ™ Eni F) A 4l

satisfy:

(Ua) Y(™Ey,...,"" E,; F) is a linear subspace of P("Ey,...,"™ E.,; F) which contains

the (ny, ..., nm)-homogeneous polynomials of finite type;
(Ub) The ideal property: if P € (™ Ey,...." B F), uj € L(Gy; E;) forj=1,...,m,
and t € L(F; H), then

tOPO(’LLl,...,U,m)eu(anly"'aanm;H)'

Moreover, L is said to be a (quasi-) normed multipolynomial ideal if there exists a

map | - |y : 4 — [0, 00) satisfying:

(U1) | - |y restricted to (" Ey,...."™ En; F) is a (quasi-) norm, for all m € N, multi-
degree (ny,...,ny,) € N™ and all Banach spaces FEy, ..., E,, and F;

(U2) [idm-mm) K™ — Kz gdm-mm)(Xy o0 N,) = A0 A" g = 1, for allm e N

and (ny,...,n,) € N™;

(U3) If P e U(MEy,..."" En; F), uj € L(Gj;E;) for j =1,...,m, and t € L(F;H),
then

[t 0 Po(u, .y um)ly < [P ™ - Jum ™

When all the components \(" Ey,....,"™ E,; F) are complete under the (quasi-) norm

| - |lu above, then Ll is called a (quasi-) Banach multipolynomial ideal. For a fized

multipolynomial ideal I, a positive integer m € N, and a multi-degree (nq, ... ,ny,) € N,
the class
gipemm) o= ) UM By, B F)
Eryoo. By, F
is called an ideal of (ni,...,n,,)-homogeneous polynomials.

A multipolynomial ideal $ is said to be closed if all components
UM Ey,..." B, F) are closed subspaces of (P(MEy,....,"" En; F),| - |), where | - |

is the usual multipolynomial norm.

Some basic remarks are in order:



Chapter 3. Multipolynomials: a unified approach 48

e As particular cases or, more precisely, as extreme cases, every ideal of multilinear
mappings (which includes the ideals of linear operators) as well as every polynomial
ideal already established in the literature is a multipolynomial ideal. They will be

called extreme multipolynomial ideals.

e Condition (Ua) easily leads § right to the smallest multipolynomial ideal, as we shall

see.

e From now on the symbol | - | will always denote the usual sup norm (uniform norm)
and a class of multipolynomials to which no specific norm has been assigned is

supposed to be endowed with it.

Proposition 3.2.2. Regardless of the normed multipolynomial ideal (L4, | - ||y), we have
|P|| < |Ply for any P in U(" Ey,...."™ Ep; F).

Proof. Given a component (" Ey,....,"" E,,; F) and P e W("MEy,...."" E,; F), let x; €
E; (1 <j <m) and define
idK®$j K — Ej
A - /\Ij
which belongs to L(K; E;) and [idg ® ;|| = ||, for each j = 1,...,m. Also,

woPol(idg @, .. idg @) = (o P)(x1,...,Tm)id"mm)
for every ¢ € F'. Then

(9o P)(x1,....zm)| = [(9 0 P) (21, z)| Jidfy )

u

= |poPo(idg @z, ..., idg ®zm)ly

< ol 1Pl e ™ - ™

for every ¢ € F'. It follows from Hanh-Banach’s theorem that

[P (21, s wm)| = sup |(p o P) (21, m)| < |Plyfaa[™ - |zm]™
pEB
for every z; € E; (1 < j <m). O

Recall that the family of normed operator ideals has a natural partial order
(DIESTEL; JARCHOW; TONGE, 1995, p. 135). One can easily extend that to multipoly-
nomials as follows. Given two normed multipolynomial ideals (a, | - |4) and (b, | - [|s), we
shall define

(@, [q) = (b, f-l) (3.9)
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if, and only if, regardless of the choice of m € N, multi-degree (ni,...,n,) € N and

Banach spaces Ey, ..., E,, and F we have
a(MEy,...""E;F)cb(MEy,..."" E,;F),

and
Pl <[Pl

for all Pe a(™Ey,...," En,; F). Naturally,
(a,[-.) = (b, I-[)

means that both relations (a, | -||o) < (b, -[ls) and (b, |-|s) < (a, |- |4) hold simultaneously.

We now give a list of several examples which will be studied next.

PB: Ideal of continuous multipolynomials;

$: Ideal of finite-type multipolynomials;

iz The closure of a multipolynomial ideal 4;

LB 4: Ideal of approximable multipolynomials;

Pas: Ideal of absolutely summing multipolynomials;

Pms: Ideal of multiple summing multipolynomials.

Let us now check each of the above examples.

3.2.1 Ideal of continuous multipolynomials

Proposition 3.2.3. The class (B, | - |) of all continuous multipolynomials is a Banach

multipolynomial ideal.

Proof. Conditions (Ua), (Ub), and (U2) are immediate.
(U1): The map || - |y : P — [0,00), defined by |P|yg := | P| for every P € B, coincides

with || - || on each B-component, which is a Banach space by Proposition 3.1.5.
(U3): For Pe P(MEy,...."" En; F), uj€ L1(G; E) (1 <j<m),and t € Ly(F; H), we

have

[(toPo(uy,...;um)) (@1, ., zm)|| = [t (P (u1 (1), .-, U (T0)))]
< [elHP (ua (1) -t ()]
< [t [P @)™ - - et ()™

[P Clua [ o)™ - - (e )™

N
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for every z; € G, (1 < j < m). Thus,
[tePo(uy,...um)| < [EHIPI ™ - fum ™
as desired. ]

(B, |-|) is maximal (with respect to the partial order (3.9)). Indeed, by Definition
3.2.1 and Proposition 3.2.2 we have (4, || - |¢) < (B, | - |) for all normed multipolynomial
ideal (4, [ - [ls)-

3.2.2 Ideal of finite-type multipolynomials

Proposition 3.2.4. The class (§,| - |) of all finite-type multipolynomials is a normed

multipolynomial ideal.

Proof. (Ua) is obvious. If P € §("™Ey,...,"" E,; F), u; € L(G;; E;) (1 < j < m), and
te L(F; H), then

toPo(uy,...,un)€P ("G,...."" Gpu; H).
Besides,

toPo(Upy ... Up) (T, ..., 2m) =t0P (ug (1), Un (Tm))

where (¢! 0 u;) € G and t(b;) € H. Thus,
toPo(uy,...,up)€F (MG, ...,""Gn; H).

We have shown (Ub). The remaining axioms are inherited by the §-components from the

corresponding (3, || - |)-components, and the proof follows. O

§ is the smallest multipolynomial ideal, but (§, | - |) is not a Banach multipoly-
nomial ideal. In fact, the linear §-component is F, the ideal of finite rank linear operators,
which is not a Banach ideal (DIESTEL; JARCHOW; TONGE, 1995, p. 131-132).



Chapter 3. Multipolynomials: a unified approach 51

3.2.3 The closure of a multipolynomial ideal

Given a multipolynomial ideal 4(, we shall define

D(U By, By F) o= U0 Ey, 7 Byt F)

for all m € N, multi-degree (ny,...,n,) € N™ and Banach spaces Ej, ..., E,, and F. We
shall denote by i the closure of il.

Example 3.2.5. The so-called approximable multipolynomials are defined to be the

members of

Ba(MEy,...""E;F):=F(MEy,..." E; F).

Proposition 3.2.6. If il is a multipolynomial ideal then (4, - |) is a Banach multipoly-

nomial ideal.

Proof. Since

§(MEy, ... " B F)c U (ME,,... " By F)

cU(ME, .. B F)

cP(ME,..." En F),

and the closure of every linear subspace is a linear subspace, we obtain (Ua). If P €

MMEy,..." B F),uje L(G; E)) (1 <j<m),and t e L(F; H), then there exists a
sequence (Py) of multipolynomials in (" Ey, ... ,"™ E,,; F') such that limg_,e|| P, — P|| = 0
and

tOPko(ul,...,um)Eil(mGl,...,"’"Gm;H).

It follows from Proposition 3.2.3 that

[toPro(uy,...,uy)—toPo(uy,...,uy)|=|to(P,—P)o(uy,...,u,)|

< [P = Pl lua™ - ™

and (Ub) finishes together with (U3) after letting k¥ — oo. The -components are closed
under the uniform norm induced by its corresponding Banach B-components and therefore,

are complete. The remaining axioms are inherited from (B, | - ||). O

In particular, B4 is a Banach multipolynomial ideal. It is straightforward to
see that &l is the smallest closed multipolynomial ideal containing ${ and B 4 is the smallest

closed multipolynomial ideal.
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3.2.4 Ideal of absolutely summing multipolynomials

Definition 3.2.7. Let 0 < p,q1,...,qm. A continuous (ny,...,ny,)-homogeneous poly-

nomial P : Ey x --- x E,, — F is said to be absolutely (p;q,...,qm)-summing (or

(p;q1s - - -y Gm)-SUMmMing) if

provided that (w§k))§o:1 el?(Ey), k=1,...,m.

dk

The vector space of all absolutely (p; qi, . . ., ¢m)-summing (nq, ..., n,, )-homoge-
neous polynomials from Ey x - - - x E,, into F is denoted by Pogpqr,....qm) (" By - o™ By F)
(Passqr,ongm) ("B, o' Ey) if F = K). When ¢4 = --- = ¢, = ¢, we simply write
Pastpia) (MEy,...""E,; F).

Lemma 3.2.8. If1/p > ni/qi + -4+ /Gm, then Poseigr,..qm) (", "™ By F) = {0}

Proof. Suppose there exists a multipolynomial P € Pusipigy,...qm) (" E1, ... ,"™ Ep; F) which
is not zero. It follows from the hypothesis that

1
P < o 4
a + “ee + q7m
and therefore, there exists a sequence of scalars (\;) € £,\(, and a vector (z1,...,2,,) € E1 X

- x E,, such that P(zq,...,x,) # 0. Since (A?/quk)j € lg,(Ex) € £y (Er) (1 <k <m),
we have

q(‘11+ +

WP (@1 2n)) 2, = (Aj qm)P(xl,...,xm))

and thus ()\;) € ¢,, which is absurd. O

From now on, in order to avoid trivialities, we will suppose 1/p < ny/q; + - -

o g

Proposition 3.2.9. A multipolynomial P € P("™ E1,....,"™ E,.; F) is absolutely (p;qi, . ..

<y qm)-summing if, and only if, the correspondence

~ @ Q0 0
() ()LL) = ()
J=1 j=1 j=1

induces a continuous (ny, . ..,ny,)-homogeneous polynomial

(0 (By) x - X 2 (By) — b, (F).
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Proof. To prove the non-trivial assertion, it is apparent that every multipolynomial

Pe 7Das(p;ql ..... qm)(n1 El, e ’nm Em7 F) induces the mappmg

P A7 (Ey) x - x ly (Byn)  — l, (F)
OAN (m))* (1) (m))\*
((xj )" (o )j=1> (P (™)
which we claim to be an (ng, ..., n,)-homogeneous polynomial. To see this, note that for
each ¢ = 1,...,m, the mapping
=~ 1 o i-th m o Y w w
p((xp)jl,..., - (:cg >)j1) 0V () x o x 00 (By) — 6, (F)
defined by
o6}
1 @® ng ® M 1 Uz
((y§~ ) () ) = <P< 0w (v, >)> (3.10)
7j=1 7j=1 T s C ey T, )
7j=1
is n;-linear and symmetric which coincides with ]3((x§~1))§°:1, . ,i_Fh, ce (x§m));o:1) on the

diagonal. To see that (3.10) is well defined, note that

Pty (47 f”)

1 Uz m
= —on Z 51---5niP(xﬁl),...,elyj(l)+---+5niy§ 1),...,x§~ )>

and therefore,
o
(13 (0,7t (46" 7%@))) €6 (F),
J J i1

provided that P is (p;qi, ..., ¢n)-summing. We have shown that P is an (N1, ey M )-
homogeneous polynomial. Besides, if the mapping (3.10) is continuous for each i = 1,...,m
then P is separately continuous by Theorem 1.2.1 and therefore, continuous by Proposition
3.1.4. So, we only need to prove the continuity of (3.10), which will be done by closed
graph theorem (see, e.g., (DEFANT; FLORET, 1993, Ex 1.11)). In fact, let (y,)._; be a

sequence of vectors

o ((yfj;):ol T (yflnj)):ol) € (géu (Ez))n

such that

and
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Then,
: ®\* 1\* w
t () = (7)), el
: n)\* (n)\* w (I
7}% (y"’j )j:l N (yj )j:1€€q (i),
and

e8]
: - 1 n;
7H%<PGm ahwwg(%}~-wxd> — 2= (5)7 €4, (F).
J

j=1
It follows from ¢ (F;) and £,(F) norm definitions that

lim (yy(f},---,ygj)) = (yj(-l),---,y](-””) € k"

n—o0
and

LT (1) (ni)
P (o0, (s uil) = zie P,
F A I A ki

\4
for each j € N. Since P < m)> is continuous, it follows from the uniqueness of the

limit that
_ 7 (1) (ns)
Zj = P(x(l) i-th J:(m)) (?JJ PRI 7yj )

and the proof follows. O

Corollary 3.2.10. The mapping P — P is an one-to-one linear operator from
Paspiqrogm) B By F) to P("l(ﬁz'i(El)),...,"m (fg”m(Em));fp(F)) with closed

range.

Proof. One can readily see that the mapping P — P is an one-to-one linear operator.

To establish the last assertion, let R e P(" ({; (E1)),...,"™ (6 (Em)); €p(F)) be a multi-

polynomial in the closure of this operator range. Then, there exists a sequence (P,), with

Py € Pastiar,am) (" Eny - "™ By ), such that |P, — R| — 0. In particular, we have the

pointwise convergence and therefore, with the aid of the 1-st projection map m;, we get
lim P, (x1,...,2,) = limm (P, (x1,...,2,),0,0,...)

n—ao n—oo

= lim (ﬁ((xl,o,o,...),...,(xm,o,o,...)))

—m (J%E((xl,o,o,...),...,(acm,0,0,...)))
= 1 (R((21,0,0,...) 1., (0, 0,0,...))).
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An application of Corollary 3.1.7 allows us to define a multipolynomial P € P(" Ey, ...
S By F) by
P(xy,...,zp) = lim P, (z1,...,2,).

n—oo

We claim that P € Puspigr,....qm )("1E1, o By F) and P=R. Indeed, for every positive
integer N,

N
<Z HP (mgl), - ,:17§m)>
j=1

=
N—
|—=
I
f:
38
VRS
\
ko]
~—
L3

W,qk

w,qk

provided that (xg-k));ozl € £y (Ey) (1 <k < m) and therefore, P € Pusipigy,....qm) (" B, - -
' By FY). We prove the last claim by using the i-th projection map m;, for each i € N.
In fact, if (atgk));';l € ly (Ey) (1 <k <m) then

() 7)) = (P (), ()))

_ B, (m))*
= (P(() o (5)7)),
for every ¢ € N. It shows that P = R and completes the proof. n

As in the classical framework, we have a characterization which plays a promi-
nent role in the theory. For instance, it will lead us to define a norm on the space of

absolutely summing multipolynomials.

Corollary 3.2.11. Let P e P(MEy,...," E,; F). The following statements are equiva-

lent:

(i) P is absolutely (p;qi, .- ., qm)-summing;
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(ii) There exists a constant C' > 0 such that

1

n p p n ng

(Sl () ) e, 11

for allne N and:vgk),...,ng) eb, k=1,...,m
(iii) There exists a constant C > 0 such that

e} p % m 0 N

(Z P (2l ) <c[ (=) (3.12)
j=1 k=1 7=l g

for every (:L‘§k)) L€l (By), k=1,...,m.

The infimum of the C' > 0 for which inequality (5’ 12) always holds is denoted by 7r(m """ nm)

as(p;qu,.--,gm)

and defines a norm on Paspqr,...qm) (" Ers o By F).

Proof. The implications (i) = (i) and (ii7) = (i1) are obvious.

(17) = (i17): For each k =1,...,m, let (x § )) "1 € Ly (Eg). Then we have

(51 () ) (Sl 0)0)" <

for all ¢ € By and every n € N. Therefore,

n m
X = Su €Z: S
< J j=1 @EBIE);Q <Z SD J

=1
for every n e N (1 < k < m). By (ii) we get

W,qk

1
9 1 m p\” B\" "
(Z P(xg),...,:UE )>‘> <Cn (xg-));l

j=1 k=1 I= Hlw,g

m ng

&\ "
< Cn (xj ) i=1 ’

k=1 I=Hlw,gp

and (7i7) follows after letting n — oo.

(1) = (uii): Since, by Proposition 3.2.9, the induced mapping
Pty (By) % x L2 (Ey) — 4, (F)

qm

defined by
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is a continuous (ny, ..., nm,)-homogeneous polynomial, we have

. N
(Z le («9,....a4") ) _
j=1

~ 0¢] [e'e}
P((a;(”) <x<m>) > (3.13)
J . J .
7j=1 7j=1
p
g m o ||k
<[P (")
11:11 T /= w,q

for every (xg»k));';l €ly (EBy) (1<k<m).

To prove the last part, let C' > 0 be any constant for which inequality (3.12) holds. Then
it follows from the definition of P that |P| < C, for all such constants. It follows from
(3.13) that the infimum is attained by |P| = w{"~"m) )(P). All the norm axioms follow

as(piqus.-.gm
immediately from this last equation combined with Corollary 3.2.10. The proof has been

completed. O

To establish completeness, we recall a useful result.

Lemma 3.2.12. Let E be a vector space, let F' be a Banach space and let T : E — F be

an one-to-one linear operator with closed range. Then the map

Mg: £ — R

v~ |Tz

defines a norm on E which makes (E, | - |g) complete.

Proof. One can readily see that the mapping | - ||z defines a norm on E. Note that if (x,,)
is a Cauchy sequence in (E,| - ||g), then (Tx,) is a Cauchy sequence in F. Since F' is
complete, there exists y € F' for which (T'z,) converges. Since T'(F) is closed in F', there

is x € F such that y = Tx and therefore, (z,) converges to x € E because
ln = 2llg = T (@0 = 2)| = |Txn =yl
[

Corollary 3.2.13. Pospgr,...am)(" E1, ... "™ Ep; F) is a Banach space under the norm

T as(piquyeesdm)”

Proof. 1t is an immediate consequence of Corollary 3.2.10, Lemma 3.2.12, and the equation

[P = 7 (P, VP € Prsy " Brre 2 B ). (314)
proved in the last part of Corollary 3.2.11. O]

Corollary 3.2.14. The mapping P — P is an isometric isomorphism from the Banach

space (Pasigr,gm) (" E1y o By F), ﬂfg(lpql"m)qm)) onto its range.
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Proof. Tt follows immediately from Corollary 3.2.10 combined with the isometry (3.14)
and the open mapping theorem. O

Proposition 3.2.15. If Pe P(™Ey,...,"" E,; F) is a finite-type multipolynomial then
P is absolutely (p; qi, . . ., qm)-summing.

Proof. 1t suffices to show that the map

%  xE, — F
(@1, s xm) = o1 ()™ om (T)"™ b

is absolutely (p; q1, - . ., ¢ )-summing, for all ¢, € E}, (1 <k < m) and b e F. Indeed, we
can assume @y # 0 for every k= 1,...,m and, since 1/(q1/n1) + -+ 1/(¢m/nm) = 1/p,
it follows from Hlder’s inequality (see Corollary A.0.3) that

1
n ni Nm p\"”
(§ e )
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lom (xf )

nm

qm) qm

.
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< lea™ -+ llm ™ (6]

(&
Il
—_

= lea[™ -+ llm ™ (0]

[

<
Il
_

||901 ||

ni n Nm
n Nom 1 m
<ol lnl o | (0) 1 ()
J= w,q1 i=1 W,qm
for all n € N and :cgk), ..,z e By, (1 <k <m). The desired result is now a consequence
of Corollary 3.2.11. O

Proposition 3.2.16. For fized 0 < p,q < o, the class (Basp:q) Tasipsg)) 0f all absolutely

(p; q)-summing multipolynomials is a Banach multipolynomial ideal.

Proof. It has been established in the previous proposition that Py (" Ex,...,"" Ep; F)
is a linear subspace of P("™ Ey,...,"™ E,,; F') containing the (nq,...,n,,)-homogeneous
polynomials of finite type. If P € Pogpig)(" B, ..., En; F), uj € L(G5 E;) (1 <5 <m),
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and t € L(F; H), then

%

j=1

0

< 3 (o () o (57)
j=1

ni

© Nm
(1 (=")),.,
w?q
e
(.T] i1 .I'j i

for every ( gk )iy € 47 (Gy), (1 <k < m). It follows from Corollary 3.2.11 that

toPo(uy,...,upy) (xg-l),...,xg-m)>

as(p;q)

< e itz <P>\

Nm

< [t (P) fu|™ - g™

L

w,q w,q

toPo(ur,...,Un)€ Pasppg ("G1,...."" Gy H),

and
Tty ™ (t0 P o (ur, . um)) < Jelwingy™ (P) ™ - "

as(p;q) as(p;q)
We have shown conditions (Ub) and (U3). Completeness follows from Corollary 3.2.13.
One can readily see from (3.11) that

< 7T( ..... nm) (Zd(nl ..... ’er)) .

as(p;q)

1= g

To prove the reverse inequality, let ()\g-k))?ozl e () (K) (1 <k <m). It follows from Hlder’s

p\?
J=1

inequality that, for every n € N,

£

idfyr-m) (A, A

m

=
=
>
S~
=
N———
2
N
>
<.~
&
N———
S
3
S
\_/
B =

)
7=

j=1
ni © Nm
<O )]

=14 =14
_ ooy | e\ |

o (GO (OO
w,q w,q

Letting n — oo we get

00 P m ng

N1, m (1) (m) p (k) ®

(S (o)) <10,
-1 k=1 I= g

Hence 7"} nm)(id(”1 """ nm)) < 1 and (U2) follows. O
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3.2.5 Ideal of multiple summing multipolynomials

Let J be a countable set. We intend to introduce the following vector-valued
function spaces. For 1 < p < o0 and a Banach space E, we shall define EJ(E) to be the
set of all functions f: J — E such that > ;[ f(4)[" is finite. It follows from Minkowski’s

inequality that ¢(E) is a vector space and

I£1, = (;; If G ”)1

is a norm on E; (E). An effortless adaptation of the usual proof that ¢, is a Banach space
rapidly leads to the conclusion that EZ (E) is a Banach space. The classical vector-valued

sequence spaces {,(E) is obtained by taking J = N.

Next, we present a quite more demanding definition than Definition 3.2.7.

Definition 3.2.17. Let 0 < p,qi,...,qm. A continuous (ny, ..., n,)-homogeneous poly-

nomial P : Ey x -+ x E,, — F is said to be multiple (p;q1,...,qm)-summing if

e}
(P (xﬁ),,xgz))) eﬁgm (F),
1yeedim=1

provided that ( gk)) L€l (By), k=1,...,m.

The vector space of all multiple (p;qi, ..., ¢y)-summing (nq,...,n,)-homoge-
neous polynomials from F x - - - x £, into F'is denoted by Prspigr,....qm) (" Es oo™ By F)
(Prspigrsegm) ("B, Ey) if F = K). When ¢p = --+ = ¢, = ¢, we simply write
Prns(pia) (MEy,..." B, F).

The previous absolutely-summing theory can be easily translated to multiple

summing multipolynomials. For instance, we have the following key results.

If gr/ni, > p for some k = 1,...,m, we have Prupig.....qm) (E1, - - -, By F) = {0},

So, we must suppose qx/n; < p for every k=1,....m

Proposition 3.2.18. Let P € P(™E,,...,"" En; F). The following statements are equiv-

alent:

(i) P is absolutely (p;qi, ..., qm)-summing;

(ii) There exists a constant C > 0 such that

1) ONAR =
( [P (st ) <]
.717 Jm
(5

for every n € N and all =i ,...,xgk)eEk,kzl,...,m
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(iii) There ezists a constant C' > 0 such that

1
(m) p\? m
< ‘P(h?"-vxjm)‘) <Cn
J1yesdm

for every (xg.k));@:l €ly (Ey), k=1,...,m.

(3.15)

The infimum of the C' > 0 for which inequality (3.15) always holds is denoted by g nm)

ms(p;qi,.-.,gm)
and defines a norm on Ppspar,..qm)("E1, - By F).

,,,,,

Proposition 3.2.19. For fizred 0 < p,q < 00, the class (Bmsp;q)s Tms(pq)) 0f all multiple

(p; q)-summing multipolynomials is a Banach multipolynomial ideal.

With respect to the order (3.9), we have (Bs(pig), Tmspg)) © (Baspig)» Tas(piq))-
Indeed, if P is multiple (p; ¢)-summing then

n o0
Z P(xgl),...,xgm)) : < 2 HP ($§1),,x§:))
=1 j =1

P

glesnm) (py < gltemm) (py oy Pe P (M By, By F).

as(p;q)

3.3 Hyper-ideals

This section aims to invoke the multipolynomials again to generalize and

propose a unified approach to section 2.2.

Definition 3.3.1. A hyper-ideal of multipolynomials (or multipolynomial hyper-
ideal) is a subclass $ of the class of all continuous multipolynomials between Banach spaces
such that for all n € N, multi-degree (ki, ..., k,) € N* and all Banach spaces Ey, ..., E,

and F', the components
HME,. S EgF) =P ME, ... E;F)n$

satisfy:

(Ha) H(ME,,... " E,; F) is a linear subspace of P(MEy,... " E,; F) which contains
the (ki,. .., k,)-homogeneous polynomials of finite type,
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(Hb) The hyper-ideal property: given natural numbers n, 1 < m; < --- < m, and
TlyeosTmy,, K1y kn and v and Banach spaces G, ...,Gp,, E1, ..., E,, F and H, if Q1 €
PGy, ™ Gy B, Qn € P11 G i1y G ER), P e H(ME ...
B F) and Re P("F; H), then

RoPo(Qr,...,Qu) eH ("FGy,.... """ G, H).

If there exist a map || - || : $ — [0,00) and a sequence (Cj, K;)i2, of pairs of real numbers
with C;, K; = 1 for every j € N and Cy = K, = 1, such that:

(H1) ||| restricted to H(™ Ey, ... " E,; F) is a (quasi-) norm, for alln € N, multi-degree
(k1,...,kn) € N" and all Banach spaces Ey, ..., E, and F;

(H2) [IlFrkn) o K K TRk (N N) = AN o = 1) for alln e N and
(ki,..., k) e N";

(H3) The hyper-ideal inequality: if @1 € P(Gy,...,;”™ G Er),...,Q, €
P01t G i1y ™ Gy Bn), PeH(MEY, .. B F) and Re P("F; H), then

HROPO(Q17"'aQn)||fJ
K C C T‘kl C C Tkn R PT‘ Tkl T‘k‘n
<K (G Cr) Gy G ) IREIPIGNQ™ - @al™

then (9, |- |s) is called a (quasi-) normed multipolynomial (C;, K;)7 ,-hyper-ideal.
When all the components (M Ey, ... " E,; F) are complete under the (quasi-) norm || - ||g
above, then (%), |-|s) is called a (quasi-) Banach multipolynomial (Cj, K;)_, -hyper-

ideal.

When C; = K; = 1 for every j € N, we simply say that $ is a (quasi-)
normed/(quasi-) Banach multipolynomial hyper-ideal.

Note that Definition 3.3.1 recovers the multilinear and polynomial cases. Indeed,
setting n = 1 = my we get Definition 2.2.3, if » > 1; and Definition 2.2.2, if r =
1. In the other end, setting ky = --- =k, =11 = --- =1,, =1 = 1 we recover
Definition 2.2.1. Finally, it is plain that every (normed, quasi-normed, Banach, quasi-
Banach) multipolynomial hyper-ideal is a (normed, quasi-normed, Banach, quasi-Banach)

multipolynomial ideal.

3.4 Coherence and compatibility

The pair-of-ideals notions from section 2.3 seems to have been the first attempt
to obtain an evaluating method for extending ideals addressed to polynomials and multi-
linear mappings, simultaneously. Let us see a route to a more general and unified view of
it.
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Definition 3.4.1 (Compatible multipolynomial ideals). Let Z be a normed operator
ideal. The (quasi-) normed ideal of (ny,...,ny,)-homogeneous polynomials Z/lg“’“""m) 18
compatible with T if there exist positive constants ay and oo such that for all Banach

spaces Ey, ..., E,,, the following conditions hold:

(CP 1) Foreachke{l,...,m}, PeUrr-"")(ME, .. " B, F), a,¢€E, and xv; € E;

for all j € {1,...,m{\{k}, the mapping Pny-1(21,...,Tk_1,", Thy1, ..., Tm) belongs to
k

Z(Ey; F) and

Hpa;%*1 (xb e Th—1, 5 Tht1y - - - 7$m)HI

Nm

" ™ L

|z

.....

(CP 2) For each P € Z(E,;F) and v; € Ej for j = 1,...,m, the mapping 7" ---
o iytm =L P obelongs to U (MEBy L M B F) and

m

[ A T Py < @2 I e [ TPl

(CP 3) For each P € P(MEy,....""E.F), ke {l,...,m} and z; € E; for all j €
{1,....,mI\{k}, P(xy, ..., Tk 1, Ty, .-, Tm) belongs to Z/ll(n’“)(”’“Ek; F) if, and only if,

Play o 1mpsram) DelOngs to L{%’“"l)(lEk, B F).

We shall denote by {Us}aer the family of multipolynomial ideals such that
U, = L{,gfl""’”m) is a (quasi-) normed ideal of a-homogeneous polynomials, for each
multi-index o = (ny,...,n,,) € I = J_ N™

Definition 3.4.2 (Coherent multipolynomial ideals). Let Z be a normed operator ideal.
A family {UnYoer of multipolynomial ideals, with Z/ll(l) = 7, is coherent if there exist
positive constants B, Ba, B3, Ba such that for all Banach spaces E, E1, ..., E1 and F, the

following conditions hold for all k € N and for all multi-inder o = (ny, ..., n;) € N*.

(CH 1) Foreachje{l,... .k}, Peyf" " rdoup  ntlp.  mEp-F) g e
Ej and z; € E; for all i € {1,...,k}\{j}, the nj-homogeneous polynomial P, (x1,...
e L1, Tjs1, - -, Tg) belongs to Z/ll(nj)("jEj; F) and

1By ety (o)
1

<h \\P||u(n1 ,,,,, gt 1L g 27 gl

Nj4+1 Nk
AREERS 7

k

(CH 2) For each P € U,gill""’n’““)(”lEl, o B F) and aj e Ej forj =1, k+1,
the multipolynomial P(-,...,- a;,-,...,-) belongs to L{,Enl""’nj_l’nj“’""n’““)("1E1, .
.. ,nj71 Ej,l,anrl Ej+1’ Ce ,nk'H Ek+1; F) and
HP('a"'a'aaja'w" : <52 HP” (n1smkt1) ”aj”nj .

I, oy s
Treens L7 I O S B g1
U, I Ui
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(CH 3) For each je{l,....k}, PeU, """ nk)(mEl, B B F) and vy €
EY, the mapping v; P belongs to u,§"1 """ AR n")("lEl, TR ™ B F) and

to U;gill ..... nk,l)(mEl’ o ’le Ek,l Ek:—H; F) and

(CH 5) For each P € P(MEy,...*EwxF), j € {1,...,k} and z; € E; for all i €
{1,....k}\{j}, P(x1,...,%j-1,,Tjt1, ..., T) belongs to Ul(nj)(”jEj;F) if, and only if,
]v3($17,,,7xj s 2) belongs to L{T(Li """ 1)(1Ej . E; F).

Definition 3.4.1, with m = 1, recovers Definition 2.3.1. If we fix £k = 1 and
makes n; vary in {1,..., N — 1}, then items (CH 1) and (CH 3) of Definition 3.4.2 recover
Definition 2.3.2. Note that, in any case, one may go even further toward the apparently

overlooked multilinear setting. Indeed, it suffices to set m > 1 and ny =---=n,, = 1.

One can extract a compatible (or coherent) pair of ideals from a given family

of multipolynomial ideals.

Proposition 3.4.3. Let N € (N\{1}) u {co}. If a family {Upn}uer of multipolynomial ideals
is compatible with the operator ideal I := L{l(l) (resp. coherent), then the sequence of pairs
of ideals (U,, M,,)\_, is compatible with T (resp. coherent).

n=1

compatible case (the coherent case is analogous). Let E, Fy, ..., E,, and I’ be Banach spaces
for a fixed (but arbitrary) n € {2,..., N}. Applying the hypothesis with a = (1,...,1) e N*
then (cp-i) and (cp-iii) respectively follow from (CP 1) and (CP 2). Applying the hypothesis
with a = n then (cp-ii) and (cp-iv) respectively follow from (CP 1) and (CP 2). Finally,
(cp-v) follows from (CP 3). O

3.5 Bohnenblust—Hille inequality

Let us see how to extend (and unify) section 2.4 theorems to multipolynomials.
Considering the canonical basis of ¢, it follows from Equation 3.6 that every continuous

(nq,...,n,)-homogeneous polynomial P : ¢y x -+ x ¢y — K can be written as

P(xy,...,zp) =ZCQ(P)x?1---xfnm

for all 24, ..., x,, € cy, where ¢, (P) € K and where the summation is taken over all matrices

a € M, 100 (Np) such that |o;| = n;, for each ¢ with 1 < i < m.
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Theorem 3.5.1 (Multipolynomial Bohnenblust—Hille inequality). Let ny,...,n,, and m

be fized positive integers (recall that M = Z;n:ln]) The following assertions are equivalent:

(i) There is a constant Cx pr = 1 such that

1
P
( >, |Ca (P)Ip> < Cxu |P|
la1]|=n1,....,|am|=nm
for all continuous (ny, ..., nmy)-homogeneous polynomial P : co X - -+ x cg — K.

(ii)
2M
M+1

p =

Proof. (ii) = (i): It suffices to prove the assertion for

oM
M+ 1

Po

Let @ : ¢o — K be the M-homogeneous polynomial given by

where N = N; U --- UN,, is a disjoint union with card(N;) = card(N), for j = 1,...,m.

Note that since we are dealing with the sup norm we have
Q| < [P

and

D s @F = > lea ()"

|B|l=M let|=n1,.|oom|=nm
for all p. By the polynomial Bohnenblust-Hille inequality there exists a constant Cx 3r = 1
such that

1

( > |ca<P>|P>p<cK,MP|| (Z |cﬁ<cz>|”°>m
|at|=n1

..... |otm |=nm |B|l=M
< Cru Q]
< Cgum||P|-
(1) = (u1): Let
T, Co X - xcg — K
T, (2 D) = Z 1ML (M)
T [ - 1M
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be the M-linear mapping given by the Kahane-Salem-Zygmund inequality (see, (ALBU-
QUERQUE et al., 2014, Lemma 6.1)). Define

m

—_———
PT:COX"'XCO—)K

where
N = Ngl)U...UNgl)
N = Ngm)U...UN%Tn)
are disjoint unions with card(Ng)) = card(N), fori = 1,...,m and k = 1,...,n;. Note
that P, is a continuous (nq, ..., n,,)-homogeneous polynomial and |P,| < |7.|. Moreover,
Z lca (PP = M
la1|=n1,...,|am|=nm

for all p. Since

by (i) we conclude that

and the proof is done. O

To see how to unify Theorem 2.4.1 and Theorem 2.4.2, it suffices applying

this-section theorem with m =1 and ny = --- = n,, = 1, respectively.

3.6 Absolutely summing multipolynomials

In this section, we generalize to multipolynomials previous results of (BOTELHO;
PELLEGRINO, 2006a) and (PELLEGRINO, 2003a; PELLEGRINO, 2004) concerning
absolutely summing polynomials and multilinear mappings, inspired by techniques from

the famous paper “Absolutely summing operators in £, spaces and their applications” by
J. Lindenstrauss and A. Petezynski (LINDENSTRAUSS; PELCZYNSKI, 1968).

Remark 3.6.1. The results presented here have been published in (VELANGA, 2019).
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3.6.1 Preliminary results

Let us begin by introducing material that will be needed later. A well-known
result due to A. Defant and J. Voigt states that every scalar-valued m-linear mapping
is absolutely (1;1)-summing (see (ALENCAR; MATOS, 1989, Theorem 3.10)). The

polynomial version is also valid. We start by extending that to multipolynomials.

Lemma 3.6.2. Every (ny,...,n,)-homogeneous polynomial P : Ey x -+ x E,, — K is

absolutely (1;1)-summing.

Proof. Let P :cy x -+ x ¢cg — K be an (nq, ..., n,)-homogeneous polynomial. Define the

M := (ny + - -+ + n,,)-homogeneous polynomial @ : ¢g — K by

Q) 1= P (w6 tmer) > (i) )

Note that, since we are dealing with the sup norm, we have

QI < 1P|

and, since () is a scalar-valued M-homogeneous polynomial, it follows from the theorem of

Defant-Voigt and the open mapping theorem that there exists a constant C' > 0 such that

[e 0]
2P (1 imis) oo (1 amin) )| = ZIQED < UL,
j=1

8

whenever (x(j));il € (Y (co). In particular,

Z |P(ej,....e;)| = 2 Q(=)
Jj=1 o

where, for each j € N,
@@) S L G-mel<i<jm
" Jen 0, otherwise

|G,

Since
=1

)
then

0
Z e]a"'a | C”PH

Applying the isometric isomorphlsm from L(co; Ey) onto (Y (Ey), for each k =1,...,m,
(see (DIESTEL; JARCHOW; TONGE, 1995, Proposition 2.2)) we are led to the desired

conclusion. O
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Recall that if 2 < ¢ <

< o and (r;);2, are the Rademacher functions, then E
has cotype q if there exists C,(E) = 0 such that, for every k € N and zy,..., 24 € E,

k 1/q 1| & 2 2
(2 ||:cj||q> <a@ | [ 130
j=1 0 =1
To cover the case ¢ = oo, we replace (Zleﬂxqu)l/q with max;< [|z;]. We denote

inf{q; E has cotype ¢} by cotE.

The following result, also known as Maurey—Talagrand’s theorem, gives the

main connection between cotype and absolutely summing operators.

Theorem 3.6.3 ((TALAGRAND, 1992)). If E has finite cotype q, then the identity

operator idg : E — E is (q;1)-summing. The converse is true, except for ¢ = 2.

By exploiting the notion of cotype, we prove other coincidence results.
Proposition 3.6.4. Let m € N and (nq,...,n,,) € N™,
(i) If E; has cotype q; < © for each j =1,...,m, then
Posisity "By, ... ™ By F) = P (MEy, ... " Epi F)
for every F and every s > 0 such that 1/s < ny/qi + -+ + nn/ G-
(i) If F has cotype q < oo, then
Posigy "By, By F) =P (MEy,...."" By F)

for every Eq, ..., E,,.

Proof. (i): By Proposition 3.1.3, Hélder’s inequality, and Maurey—Talagrand’s theorem we

have that
e

j:l
(I1>Q1 ( n xg ) qm>qm

P (xgﬂ,... <m>) H ) —|P| <§n]

<|P| (Z 2t
j=1

Nk
< 1Pl lids [3sgry - - i, (x )l
for all n € N, xgk), . ,:Eglk) € By, with k = 1,...,m. Then, P is absolutely (s;1)-summing.

(ii): By Lemma 3.6.2, it is straightforward that every multipolynomial P in
P(MEy,...,"™ E,; F) is such that

(P ( o §m>))j1 e v (F),
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whenever (x(-k))oo € l(Y(Ex), k = 1,...,m. After applying Corollary 3.2.11, the open

Jj /3=1
m\* ™
()L
i )i
I=H w1

mapping theorem provides a constant C' > 0 such that
for all (x(k));?o:1 € (Y(Ey), k = 1,...,m. Therefore, it follows from Maurey—Talagrand’s

w,

1 m © =
‘(P<x§),...,x§ ))> <CP||H‘
7=l k=1
J

theorem that

(2 [P (2, 2lm) Hq> _ (2 idr (P (x§1>,...,x;m>>)‘4>
Jj= Jj=

. 1 m ®©
< HZdF”as(q;l) (P (:L’E )’ o ’ng ))) .
J=1 w,1
» m A 0 ng
< Jidpl e CIPIT T ()
k=1 J=1 w,1

for all (ajg-k));ozl e (Y (Ey), k = 1,...,m. We have shown that P is absolutely (g;1)-

summing. O

In particular, we extract the coincidence results for the class of polynomials/-

multilinear mappings due to G. Botelho.

Corollary 3.6.5 ((BOTELHO, 1997, Theorem 2.2)). Let m € N.

(i) If E has cotype mq < o, then
Pasigy ("E; F) =P ("E; F), for every F.
(ii) If F has cotype q, then
Posig) ("E; F) =P ("E; F), for every E.
Proof. Apply Proposition 3.6.4 with m = 1. O]

Corollary 3.6.6 ((BOTELHO, 1997, Theorem 2.5)). Let m € N.

(i) If E; has cotype q; < o for each j =1,...,m, then

Losisity (Br - By F) = L(E, ..., Epi F),
for every F' and every s > 0 such that 1/s < 1/q1 + -+ + 1/qpm.
(ii) If F has cotype q, then

Losigry (Br .. Bpi F) = L(Ey, ..., Epi F),

for every Ey, ..., Ep,.

Proof. Apply Proposition 3.6.4 with ny =---=mn,, = 1. O]
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3.6.2 Main result

Let m,nq,...,n,, be natural numbers and let F1, ..., E,, be infinite dimensional
Banach spaces with normalized unconditional Schauder basis (z),en, k = 1,...,m. We
define
n=mn (nl, ey, B By (xgll))neN ey (a:g”))neN)
by

m n oo
n =inf < ¢: (H (ag-k)) k> € /; whenever xkzz eEk,k—l,...,m
k=1 jeN 7j=1

and investigate the following general question:

Problem 3.6.7. If Poyq1)(" Er,...,"" Epi F) = P(MEy,...."™ Ep; F), then how does 1
behave?

The techniques used to solve this kind of problem date back to the seminal paper
(LINDENSTRAUSS; PELCZYNSKI, 1968) where J. Lindenstrauss and A. Petezynski
provide a beautiful theorem stating that if £ is an infinite dimensional Banach space with
an unconditional Schauder basis and every bounded linear operator from F into an infinite
dimensional Banach space F' is absolutely (1;1)-summing, then E is isomorphic to ¢;(T")

and [ is a Hilbert space.

Firstly, recall that a Banach space F finitely factors the formal inclusion

l, — Uy for 0 < 0 < 1 if for every n € N there exist y1,...,y, € F' such that

Z a;y;

Note that 1 — 6 < |y;|| <1, for all j.

(1—9)al, < |al, , for all a = (a;)7_, € €.

For the extreme cases, the answers to the Problem 3.6.7 are already known.
More precisely, when m = 1 and n; = 1, we recover the linear setting which as we
comment has a solution in (LINDENSTRAUSS; PELCZYNSKI, 1968). When m = 1 and

ny =m > 1, D. Pellegrino has shown the following:

Theorem 3.6.8 ((PELLEGRINO, 2003a, Theorem 5)). Let E and F' be infinite dimen-
sional Banach spaces. Suppose that E has an unconditional Schauder basis. If F finitely
factors the formal inclusion £, < Ly, for some 0 and Poyq1)("E; F) = P(ME; F), then

(@) n<pg/(p—q), if ¢ <p;

(b) n<gq, if ¢ <p/2.



Chapter 3. Multipolynomials: a unified approach 71

Theorem 3.6.9 ((PELLEGRINO, 2004, Theorem 5)). Let E be an infinite dimensional
Banach space with an unconditional Schauder basis. If Pogq1)("E) = P("E), then

(@) n<q/(1—q), ifg<1;

(b) n<yq, ifqg<1/2.

As to the other extreme case, that is, when m > 1 and ny = --- = n,, = 1, the

following has been proved:

Theorem 3.6.10 ((PELLEGRINO, 2003a, Theorem 8)). Let F' be an infinite dimen-
stonal Banach space and let Fy, ..., E,, denote infinite dimensional Banach spaces with

unconditional Schauder basis. If F' finitely factors the formal inclusion ¢, — { for some

§ and Losgy(Er, ..., En; F) = L(Ey, ..., Epn; F), then
(@) n<pa/(p—a), if ¢ <p
(b) n<aq ifq<p/2.
Later, still dealing with the class of homogeneous polynomials (m = 1 and

ny = m > 1), G. Botelho and D. Pellegrino obtained better estimates for 7, improving

Theorem 3.6.8 and Theorem 3.6.9, as we see below:

Lemma 3.6.11 ((BOTELHO; PELLEGRINO, 2006a, Lemma 2.1)). Suppose that F

satisfies the following condition:

There exist C1,Cy > 0 and p = 1 such that for every n € N, there are yi,...,y, in F with

< G (2 |aj|p>
j=1

In this case, if E has a normalized unconditional Schauder basis (T,)nen, ¢ < p, and

7Das(q;l)(mEJ; F) = P(mEv F)7 then n<gq.

ly;| = C for every j and

n
Zajyj
j=1

for every aq, ..., a, € K.

Next, we will extend Lemma 3.6.11 to multipolynomials which will provide a
unified approach to Problem 3.6.7. Indeed, the next lemma recovers all the aforementioned

results as particular extreme cases.

Lemma 3.6.12. Suppose that F' satisfies the following condition:

There exist C1,Cy > 0 and p = 1 such that for every n € N, there are y,...,y, in F with

1
n p
< <Z |@j|p>
=1

|ly;|| = Cy for every j and

Z a;yj
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for every aq,...,a, € K.

In this case, if Ei has a normalized unconditional Schauder basis for each k =1,...,m,
q <p, and Poggy(" Er,...."" Epn; F) = P("ME,,...."™ En; F), thenn < q.

Proof. We follow the ideas of the original proof in (BOTELHO; PELLEGRINO, 2006a);
it is done by an induction argument. Recall that [[(2;)j_[lw1 = max. e 1 {] 27, €525}
for K = R; and [|(2j)}—1 w1 < 2maxcen,1y{| 2}, €52} for K = C. By the coincidence
hypothesis, there exists K > 0 such that the absolutely summing multipolynomial norm
gt (py < K| P for all P e P(MEy, ... E,; F). Let n be a fixed natural number

as(g;1)

and {y;}7_; be such that >, [u;|* = 1 with s = p/q. Define P : Fy x --- x E,, — F by

Pl = S (4 ()

where z;, = Z;o ) agk)a:(k) (1 <k <m)and y,...,y, are as in the assumptions. Since

(xglk))neN is an unconditional basis, there exist o > 0 satisfying

Z(Zl‘

_Q \

alF :v < ok = ok ||zk| , for any e; = £1.

Hence | 337 5ja (k>|| < og|xk| for all n and any €; = +1. So, if z = ZJ 1 ag )x(k> we

have |a§-k)| < og|lzg| for all 7 and then we get

1o (@) ()™,
<§ e (a2)" - (o)™
< Czﬁ (o |z (Z:] )

k=

[P (21, am)| =

RS

)

3=

—_

(ok [z )™

H::]S

We obtain |P| < Co[ T 0 and 7" ’"’")( P) < KCo[ ", 01" and achieve the estimate

as(q;1)
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m N
(M1 0rem) k), (R)\"
= as(q;1) (P)l_[ (aj :I:j >A_1
k=1 I= w1
m n N
- (k) (k)
<o Lo o, {| Sea| |
< KG[ | (207 [aul)™ (3.16)
k=1

Note that the last inequality holds whenever > ;7 |u;|* = 1. Hence, since 1/s+1/(;%7) = 1,

we have
o oy 22 g\ Y/(57)
(1) () )
_ Sup{ (agn)mq (agm)qu 2"1 Il = 1}
<sup{i ()" (™) s Zw —1} (3.17)

Then, by (3.16) and (3.17), it follows that

n n1 T, | = 1/(:) m q
(Zl (agl)) (a§m)) s— q) < (CllKC’2H (2@% ||xk)nk> 7
j=

k=1
and then

(JZ; (a§1>)”1 . (a§m>)”m

Since -*7q = pq/(p — q) and n is arbitrary, we have n < pg/(p — q). Now, if ¢ < p/2, define,
for a fixedn, S: Ey x --- x E,, > F by

n - o 0
S(x1, .., Tm) :Z (ag.l)) ..-(ag.m)) yj, where xj, = 2 ~ , fork=1,...,m.

7=1

L\ V() m m
) < Cr'KG] [ (20 ]‘[ 2] .

k=1
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Since p > -*7¢, combining the preceding estimates, we obtain

1S (@1, .. )| = ‘i (a§1>)"1 o (a§m>)"m "
j=1
o (86" ) )
n - S 1/(527)a
o (Bl )

<CU'EC T 20)™ T )™
k=1 k=1

Thus, |S| < C7'KC3 e, (20;)™ and W(nl’ﬁ“inm)(S) < CT'K2CIT T, (207)™. Hence

as(g;1
Z <a§1)) (agm)> el
j=1

q

q ni m Nm
()" ()

N

|
=TI

<.
Il
—

k=1

Ccr 1K2(J2H 40}) > [ T lae)™
k=1

\

/\/?

Consequently, since n is arbitrary, we have Z] a 1))”1 e (a§m))nm|q < o whenever
LL’k—Z] 1a§):c()eE for k=1,...,m,and n < ¢ if ¢ < p/2.

Now we state the induction hypothesis. Suppose that we have:

Pq

(i) n < 22 and (72, |(a{V)™ - (o) 7750 VG < AT ™, if 22 < g <

ir—ijq
b,

(i) n<qand (372, |(af)™ - @™y |0V < BT o™, if ¢ < 2,

where

e A = C'I_IKOQHZL:l@Qi)M’
o B; = CTAK2CE T, (40])™,
o A;j=C'KCyA; T (206)™ for j = 2,

o By = CP2KCEA AT) (462)™ for j = 2
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Note that the case j = 1 is done. We assume that (i) and (ii) hold for j and prove that

they hold for j + 1. To prove (i), assume (ﬁl)p <q<p.

Fix n and let {;}i~, be such that > |u;]* = 1, where s; = W Deﬁmng P as at

we have - + L =1 and so
tj lj P

Pq L/ —
the beginning and puttlng l; T—7a and t; (J+1)q ip’

IP (21, ... 20)| = Zn: |m|i (al(l)>n1 . (agm))nm Yi
-1 .
AN (a®)" - (alm)™ p> ;
i=1 N N
st g1
= / -1 /
< (Y i|ui|8j>tj <i 51) B lj>l]
i=1 i=1

()" (o)

m
< Co ] | e ™
k=1

We obtain |P|| < C2A; and s )n)(P) < KC5A; and achieve the estimate below:

as(g;1
L n1 )\ 7 1 7\ i n1 )\ T
(Bt} < (1)) o)
=1 =1
= (i HP (a(-l)xm a(»m)xgm)) q)
i=1

N1y, K _(\" ™
< 7T((zs(q;l) ) (P) 1_[ H (az( )l'g )>

i=1

Q=

w,1

}nk

H 201, | ])"™ (3.18)

;ilmlsj = }
Zm, % = 1} (3.19)
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It is plain that (3.18) holds whenever > " | |p;|* = 1. Thus, by (3.18) and (3.19), it follows
that

q

n Sj 1/(55711) m
O R O R e I e (e n
Bty ey ) < (oo e

i=1

and then

S

J
ﬁ)q

5 A\
n n nom s-ij—lq 55 m m
(Z ()" ()] ) < cytrca] [ o™ [l
k=1 k=1

. S _ pq : . bgq
Since 519 = Grp-Gaa and n is arbitrary, we have n < Gip- G704 and

(Sl o)

pq
G+1D)p—(+1)q

1/((j+1>1fi](j+1)q) m
) Aja ] [ lel™
k=1

i i ) .o ( +
which proves (i) for j + 1. To prove (ii), assume ¢ < - +2 and invoke, for a fixed n, S
again. We have W < p, 50

St =[S ) )
i=1

pg
G+1)p—(+1)a

(aﬁ.”) b (a§m>) m

m
< Cody] [ leul™ .
k=1

)1/(<]+1>p’"’<]+1>q)

Thus |S| < CyA;41 and o n’”)(S) < KCyA 41 and then we get

as(q;1)
. < ()" (o)
=1

n Nm q
(a§1>> b (agm) c,
q
S (al(-l)xl(-l), . ,a(-m):z:gm)) H

=1 =
(N1yeeyim) - n
< <”as<q;1> (5) nf " é?ﬁxl}{

KCz ]+1 q 2Qk \IkH nkq-
k=1

q

a as(k)

1)

Consequently, since n is arbitrary, we have

(Sl o)

N "
< By [l
k=1
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whenever z; = Z;ilaz(-k)xz(k) € Ex, k = 1,...,m, proving (ii) for j + 1. The induction
argument is done. Finally, since lim;_, jj% = p, the proof is concluded. O
Theorem 3.6.13. Let F1, ..., E,, be infinite dimensional Banach spaces with normalized

unconditional Schauder basis and Poggn) (™ Er,...,"" Ep; F) = P(MEy,...."" E, F).
Then n < q if:
(i) ¢ <1 and dim F' < oo;

(ii) ¢ < cotF and dim F = c0.

Proof. (i): It suffices to deal with the case F' = K". Since

Pas(q;l)(nlEl, Ce ,nm Em, Kn) = P(nlEl, N 7nm Em; Kn)
= Pas(q;l) (nlEl, C ’nm E,.; K) = P(nlEl, c ’nm E,.; K),

we just need to consider F' = K. Applying Lemma 3.6.12 withp=C, =Cy =y, = -+ =
yn = 1, the proof is done. (ii): Since Maurey-Pisier’s theorem (see (DIESTEL; JARCHOW;
TONGE, 1995, p. 226)) asserts that F finitely factors leop < oo, it suffices to call on
Lemma 3.6.12 with p = cotF'. O]

Corollary 3.6.14 ((BOTELHO; PELLEGRINO, 2006a, Theorem 2.3)). Let E be an
infinite dimensional Banach spaces with a normalized unconditional Schauder basis and
7Das(q;l)(mE’; F) = P(mE7 F) Then n<q Zf

(i) ¢ <1 and dim F < oo;
(ii) ¢ < cotF and dim F = o0.

Proof. Apply Theorem 3.6.13 with m = 1. O]

Corollary 3.6.15. Let Ey, ..., E,, be infinite dimensional Banach spaces with normalized
unconditional Schauder basis and Loggay(Er, ..., Epy F) = L(E4, ..., By F). Then n < q

(i) ¢ <1 and dim F < oo;
(ii) ¢ < cotF and dim F = 0.
Proof. Apply Theorem 3.6.13 with ny = --- =n,, = 1. O

From now on we consider the canonical basis of the classical sequence spaces.

Corollary 3.6.16. Let m € N and (ni,...,ny,) € N™.
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(1) If1<ry,...,rm <00 and dim F' = oo, we have
PGS(Q;l) (nlgr“ e 7nm é,«m;F) = P(nlg'fl? s 7nm ngaF)
=
, 1
q =z min{ ————— CotF ».
(i) If2<ry,...,rm < o0, dim F' = oo and F has cotype cotF, we have
Pastaty (Mg oM s ) = P (Ml 5 F)
=
_ 1
q = min{ ———————,cotl ;.
711_|_..._|_$
(iii) For2 <ry,...,ry, <o, we have

Pas(%l) (nlgrn B anm grm) =P (nlgrn s 7nm frm)

. 1
¢zmin{ ———,1,.
{++ }

Proof. (i):1f ¢ < min{1/(**+---+%=), cotF'}, then Theorem 3.6.13 and Holder’s inequality
provide 1/(% + .-+ + =) = ) < ¢ (contradition).

(ii): Suppose that ¢ = min{l1/(* + .-+ =), cotF'}. If ¢ = 1/(%* + - -+ + 7=), the result
follows from Proposition 3.6.4-(i). If ¢ = cotF’, then it follows from Proposition 3.6.4-(ii).

The converse follows from (i).

(iii): Assume the coincidence hypothesis and suppose that

. ny Ny
q<m1n{1/<+---+),1}.
1 Tm

Then n = 1/(%* + -+ + =) > ¢, which contradicts Theorem 3.6.13-(i). Conversely, if
q=1/(%* + -+ =) apply Proposition 3.6.4-(i) and we are done. If ¢ > 1, since £, 2 1,

T'm

the proof is now a consequence of Lemma 3.6.2. O
We recover the original Botelho—Pellegrino’s polynomial version.

Corollary 3.6.17 ((BOTELHO; PELLEGRINO, 2006a, Corollary 2.2)). Let m € N.

(1) Ifr=1,dim F = o0 and F has cotype cotF', we have

Pasgry (s F) =P ("ly; F) = ¢ = min {L, cotF} :
m
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(i) Ifr =2, dim F = o and F has cotype cotF, we have

Pastat) ("o F) = P (™4,; F) < q > min {1, cotF} .
m
(iii) Forr = 2, we have Poygy ("lr) = P ("¢,) & ¢ = min {L, 1}'
m

Proof. Apply Corollary 3.6.16 with m = 1. O

Likewise, we naturally extract the multilinear version.

Corollary 3.6.18. Let m € N.

Q) If1<ry,...,rm <oo, dim F = oo, we have

'C‘ls(fﬁl) (67'1""7€TW;F) = ﬁ(ﬁrl,...,érm;F)

-
quin{M,cotF}.
(i) If2<mry,...,rm < o0, dim F = oo and F' has cotype cotF, we have
Lasgy Uy by s FY = LUy 4,5 F)
=
¢ = min {111,c0tF} .
L4 L
(iii) For2 <ry,...,r, <o, we have
Loasgy Crrs o b)) = LUy lry)
<
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APPENDIX A — Holder's inequality and its

extensions

The Holder’s inequality, as stated in Proposition A.0.1, was first proved by L.
J. Rogers (ROGERS, 1888). The Holder’s proof appeared in a less symmetrical form a
little later in (HOLDER, 1889). A thorough discussion with its analogs and extensions can
be found, for instance, in the classical book (HARDY; LITTLEWOOD; POLYA, 1952).

We remark some of those extensions which has been helpful in this thesis.

Proposition A.0.1 (Holder’s inequality). Letn € N andp,q > 1 be such that 1/p+1/q = 1.

Then
1 1
Z |a;b;| < (Z |aj|p> (Z |bj|q>
j=1 j=1 j=1
regardless of the choice of the scalars ay, ..., ay,,b1,..., b,.

Corollary A.0.2. Let ne€ N and p,q,s > 0 be such that 1/p+ 1/q =1/s. Then

1 1 1
a;b; < aj j
(S < (Sur) (o)
j=1 j=1 j=1

regardless of the choice of the scalars ay, ..., ay,,b1,...,b,.

Proof. In fact,

s s s 8
2 i<l 42o
pqg P g
implies that p/s, ¢/s > 1 such that
1 1
An application of Proposition A.0.1 completes the proof. n

The next extension can also be deduced from (HARDY; LITTLEWOOD;
POLYA, 1952, Theorem 12)

Corollary A.0.3. Letne N and py,...,pm,s > 0 be such that 1/py + --- + 1/p, = 1/s.
Then

" 1 m S E " 1 p1 E n m Pm pfm
(Z $§)£E§) > <<Z xg») > (Z x§) ) (A.1)
j=1 j=1 j=1
regardless of the choice of the scalars mg»l), e ,xg»m), where 7 =1,...,n.
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Proof. we proceed by induction on m. There is nothing to do when m = 1. If inequality
(A.1) holds for m — 1, then it follows from Corollary A.0.2 that
1. 1 1

(El-ar) )
) T g

The induction hypothesis with s = 1/(1/p; + -+ + 1/pp,_1) implies that
1

1
n i 1 . H+...+pm71
Z x(l) e x(mil) ﬂ+...+p'm71
J J
J=1

< (n 2§ ) <zn: e 1>pm_1 (A.3)

Now, replace (A.2) with (A.3), and we are done. O

N )

J

Remark A.0.4. The Hoélder’s inequality (as well as its extensions) is also true for p,q > 1
such that 1/p + 1/q = 1. Indeed, there exist p' = p and ¢’ = q such that 1/p' +1/¢ = 1.

Then, it follows from Hélder’s inequality and the canonical inclusion between the ¢, norms

> labsl < (Z |aj|pl> <Z |bj|ql>

= L L

(Ser) (S0r)
J=1 =1

spaces that

M:

as desired.
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APPENDIX B — Index

Banach—Steinhaus theorem, 13, 17, 39

Bohnenblust—Hille inequality
for homogeneous polynomials, 29
for multilinear forms, 29

for multipolynomials, 65

coherent
multipolynomial ideals, 63
pair of ideals, 28
polynomial ideals, 27
compatible
multipolynomial ideals, 63
pair of ideals, 27
polynomial ideals, 26
cotype, 68

extreme case, 33

family of multipolynomial ideals, 63
finite factorization of ¢, — (, 70

finite rank operator, 18

homogeneous polynomial, 15
absolutely summing, 30
of finite type, 21
hyper-ideal
of multipolynomials, 61
of homogeneous polynomials, 24

of multilinear mappings, 23

ideal
of operators, 18
of homogeneous polynomials, 21
of multilinear mappings, 20
of multipolynomials, 46
closed, 47

extreme, 48

Leibniz formula, 14

multilinear mapping, 12
absolutely summing, 30
multiple summing, 32
of finite type, 20

multipolynomial, 33
absolutely summing, 52
approximable, 51
multiple summing, 60

of finite type, 46

polarization formula, 15, 44
exact, 45

polynomial two-sided ideal, 25
tensor product, 15

uniform boundedness principle, 13, 17, 38
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