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"To show or to be shown?" is a question never, even not known by many to exist - The

Residents



Resumo

Nesse trabalho nés estudamos fibrados vetoriais estaveis de posto 2 com primeira classe de
Chern -1 analizando seus espectros. Além disso procuramos possiveis ménadas de acordo
com cada espectro, seguindo o trabalho feito por Hartshorne e Rao em "Spectra and
Monads of Stable Bundles".

Palavras-chave: Geometria Algébrica. Fibrados Vetoriais Estaveis. Monadas.



Abstract

In this work we study rank 2 stable vector bundles with first Chern class -1 by analyzing
their spectra, In addition we search for possible monads according with each spectrum,

following the work done by Hartshorne and Rao in "Spectra and Monads of Stable Bundles'.

Keywords: Algebraic Geometry. Stable Vector Bundles. Monads.



1.1
1.2
1.3

2.1
2.2

3.1
3.2

Contents

Introduction . . . . . . . . . L e e e e e e e e e e e e e e e e 11
PRELIMINARIES . . . . . . . e e e e e e e e e e e e e e 14
Basic definitions and results . . . . . . . ... ... 14
Curves and Chern classes . . . . . . . . . . . . . ... ... ... 17
Monads . . . . . . . . 20
LINEAR AND HORROCKS MONADS . ... . ... ... . .... 23
Linear monads . . . . . . . . . .. 23
Horrocks monads . . . . . . . . . . . . ... 28
TOWARD THE CLASSIFICATION . .. . . . . . . . i v v v 37
Spectrum and its properties. . . . . . ... ... 37
The Hartshorne-Serre correspondence . . . . . . . . . ... ... ... 39

BIBLIOGRAPHY . . . . . . e e 47



11

Introduction

Let € be a vector bundle of rank 2 on P? and ¢; and ¢, denotes the first and

second Chern classes of £. Associated to £ are its spectrum and its minimal monad.

Monads were introduced by Horrocks in 1964 [6, Horrocks]. It is defined to be
a complex of vector bundles
VoiVo SV 50 (1)

such that « is injective and 3 surjective as morphism of sheaves. We say V, is associated
to & if its cohomology ker[/ima is isomorphic to £. A monad associated to £ is minimal

in the sense that it comes from a minimal free resolution of M = H,(€) := (P H'(£(k)),
keZ
the first cohomology module [18, Rao]. A method for constructing minimal monads is

given by Rao in [18, Rao], essentially it depends on the minimal generators of the module
M over S := k[xg, x1, 22, x3] and their respective degrees:
Let

0—>Ly,—>Ly3—>Ly—>L1—>Ly—>M—0 (2)

be a minimal free resolution of M over S where rk(Ly) =t and rk(L;) = s. Then t is
the number of minimal generators for M and s is the number of minimal relations among

them. A minimal monad for £ is given by

L§ (Cl) — El — EO (3)

Here L means the sheafification of an S-module L.

[18, Rao] also gives two important results:

Theorem. Let M := H}(E), then all rank two bundles on P* that have M as their

cohomology module have same Chern classes c¢; and co

and

Proposition. If M is the cohomology module of a stable rank 2 bundle on P* with Chern
classes ¢y and ¢y, then there is an irreducible subset of M(c1,cs) that parametrises those

rank 2 bundles with first cohomology module equal to M

Here M(cy, ¢2) denotes the coarse moduli space parametrising the stable rank

2 vector bundles with Chern classes ¢; and c;.

Inspired in the previous works of Horrocks [12, Horrocks] and Serre [22, Serre],

Hartshorne proves the so called Hartshorne-Serre correspondence which states that there
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is a bijective correspondence between nonsingular subcanonical varieties of codimension 2
in P" and vector bundles £ on P" of rank 2, n > 3. Moreover, the variety occurs as the
zero-set of £. The case n = 3 was later generalized by Hartshorne [10, Hartshorne] to give

a correspondence between reflexive sheaves of rank 2 and more general curves.

The spectrum of & (stable with ¢; = 0) was first defined by Barth and Elencwajg
in [3, Barth & Elencwajg|, it is a sequence of integers {k;};—1._ ., satisfying specific condi-

tions, the two principal conditions being:

(1) {k;} is symmetric around 0;

(2) {k;} is a connected sequence of integers;

In [10, Hartshorne] Hartshorne generalized the definition of spectrum to include
reflexive sheaves F of rank 2 on P* ¢; = 0 or —1 and H°(F(—1)) = 0.

In [11, Hartshorne & Rao] Hartshorne and Rao studied the possible spectra and
minimal monads for ¢; = 0 and for low values of ¢5 (¢2 = 1, ..., 8). They constructed families
of curves on P?, each family via Hartshorne-Serre correspondence gives a family of vector
bundles. Together with the associated spectrum and minimal monad they summarized
this data in a table [11, Hartshorne & Rao, Table 5.3].

This dissertation is structured in three chapters:

The first chapter contains the necessary concepts which will be necessary in

the later chapters.

In chapter 2 we present the study of two papers, [13, Jardim| and [14, Jardim
& Martins]. Which serves as an introduction to the study of monads and vector bundles

using cohomology.

In chapter 3 we introduce the Hartshorne-Serre correspondence and the spec-
trum of a sheaf. Fixed a spectrum y we then give a curve, which will correspond to a
stable vector bundle £ with spectrum y and ¢; = —1, and finally we search for possible
monads with cohomology £.
We obtain a table of possible spectra depending on the values of ¢y, we also describe the

following examples:

-A disjoint union of conics corresponds to a normalized vector bundle with only

po’s in the spectrum

-A disjoint union of a plane curve of degree 2m — 2 and a complete intersection
of surfaces of degree m and m — 1 for m > 2 gives a normalized bundle with spectrum of

the form pop1...pm—2

-The disjoint union of two plane curves of degree 4 and a complete intersection

of surfaces of degree 3 and 2 gives a normalized bundle with spectrum pgpf, this example
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also shows that we can generate other bundles with higher second Chern class with only

po and p; appearing in the spectrum.
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1 Preliminaries

In this chapter we will recall the necessary concepts and results about coherent
sheaves, monads, curves and Chern classes, including the Hirzebruch-Riemann-Roch

theorem, which we will need throughout this dissertation.

1.1 Basic definitions and results

X denotes a scheme, from now on whenever we write F? for a sheaf F we mean
the direct sum (—D F; where F; = F. If r € N we will write 7" to denote the direct sum of

1€l
r copies of F. The base field k is an algebraically closed field of characteristic 0.
Definition 1.1.1. A sheaf of Ox-modules F is

(i) finitely generated, or of finite type if every point € X has an open neighbourhood

such that there is a surjective morphism
O% |y — Flu (1.1)

with n finite
(ii) coherent if it is finitely generated and for every open U, every finite p € N and every
morphism

O%lv — Flu (1.2)

of Ox|y-modules has a finitely generated kernel.

(iii) finitely presented if there is an exact sequence of the form
0% -0y - F—0 (1.3)

with p and n finite. Every finitely presented Ox-module is finitely generated.
(iv) quasi coherent if it is locally presentable, i.e. there is an open cover {U;} of X and for

every ¢ an exact sequence

I;
Ox

U, — O}I(Z U, — F|Uz -0 (14)

where I; and J; may be infinite.

If X is locally noetherian, those concepts become intertwined :

Lemma 1.1.2. [2/, Stacks, 29.9.1] Let X be a locally noetherian scheme. Let F be an
Ox-module. The following are equivalent
(i) F is coherent,
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(ii) F is a quasi-coherent, finite-type Ox-module,

(iii) F is a finitely presented Ox-module,

() for any affine open Spec(A) = U = X we have F|y = M with M a finite A—module,
(v) there exists an affine open covering X = U U, Ui = Spec(A;) such that each Fly, = M;
with M; a finite A;-module.

We will always deal with locally noetherian ringed spaces. So (1.1.2) could be
taken as a definition.

Another useful lemma for locally noetherian schemes is the following:

Lemma 1.1.3. [2/, Stacks, 29.9.5] Let X be a locally noetherian scheme. Let F,G be
coherent Ox-modules. Let ¢ : F — G be a morphism and x € X.

(i) If F, = 0 then there is an open neighbourhood U < X of x such that F|y = 0,

(i) if ¢r : Fp — G, is injective, then there is an open neighbourhood U < X of x such that
élu s injective,

(iit) if ¢, : Fu — Gy is surjective, then there is an open neighbourhood U < X of x such
that ¢|y is surjective,

(v) if ¢ = Fu — G, is bijective, then there is an open neighbourhood U < X of x such that

élu is an isomorphism.

Lemma 1.1.4. A coherent sheaf F on a locally noetherian scheme X with free stalks is a

locally free sheaf.

Proof. Being locally free is a local concept, so assume X = Spec(A) and F = M. By
Lemma (1.1.2) M is a finitely generated module over A. Then M is locally free if and only
if M is projective. But a finitely generated module M is projective if and only if all its

localizations M, are A, free modules. ]

From now on every scheme X will be locally noetherian, Lemma (1.1.4) gives

a proposition which will be frequently used:

Proposition 1.1.5. Let 5 : F — G be a surjective morphism of locally free sheaves, then
kerpB is a locally free sheaf.

Proof. Let x € X. G, is free since G is locally free. In particular it is a projective module.

Then the sequence of modules
0— kerf, > F,—> G, — 0 (1.5)

splits. Hence F, = kerB, ® G,, and ker(, is projective since F, is free. A projective
module over a local ring is free which implies that kerf, is free. The kernel of a morphism
between coherent sheaves on a locally noetherian scheme is also coherent, and a coherent
sheaf with free stalks is locally free by Lemma (1.1.4). O
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Definition 1.1.6. Let F be a coherent sheaf on a projective variety X. We define its
support to be the closed set Supp(F) = {x € X| F, = 0} where F, denotes the stalk of F
at x. The singular locus of F is the closed set Sing(F) = {x € X| F, is not a free Ox , —
mod}.

The next theorem tells us we can look at the sheaves Ext?(F, Ox) to see where
F fails to be free

dimX
Theorem 1.1.7. The singular locus of F is U Supp Ext?(F,Ox)
p=1
Proof. 16, Okonek, Schneider & Spindler, Lemma 1.1.4] O

We are going to introduce some essential concepts of nonsingular varieties.

They are going to be extensively used through the rest of this dissertation.

Definition 1.1.8 (Sheaf of relative differentials). Let f : X — Y be a morphism of
schemes. Consider the diagonal morphism A : X — X xy X, the diagonal morphism
gives an isomorphism between X and A(X) so we can consider A(X) as a locally closed
subscheme of X xy X, i.e. a closed subscheme of an open set of X xy X. Let Z be the
ideal sheaf of A(X). We define the sheaf of relative differentials of X over Y to be the
sheaf Qxy = A*(Z/I%) on X. It is a quasi-coherent sheaf of Oy-modules and if Y is

noetherian and f is of finite type then {2xy is coherent.

Proposition 1.1.9 (The Euler sequence). Let A be a ring, let Y = Spec(A) and X = P'.

Then there is an exact sequence of sheaves on X.

0— Qx/y g Ox(—l)n+1 - OX -0 (16)
Proof. [8, Hartshorne, Theorem 11.8.13] O

If X is a nonsingular variety of dimension n over k£ we define the tangent sheaf

Tx = Homo (Qx/k, Ox) and the canonical sheaf wx = /\ Qx /. The tangent sheaf is
locally free of rank n and the canonical sheaf is invertible. If Y 4 X is a nonsingular
subvariety we define the conormal sheaf of Y on X as Cy/x = i*(Z/Z°) where Z is the
ideal sheaf of Y in X. Its dual Ny, x = Homo, (Cy,x, Oy) is the normal sheaf of Y in
X. Both are locally free.

We need one more theorem from [8, Hartshorne]:

Theorem 1.1.10. Let X be a nonsingular variety over k and Y < X an irreducible closed
subscheme defined by a sheaf of ideals Z. Then'Y is nonsingular if and only if

(1) Qyx is locally free and

(ii) the sequence 0 — /I — Qx/ ® Oy — Qy . — 0 is exact
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Proof. [8, Hartshorne, theorem I1.8.17] O
Proposition 1.1.11. Let Y be a nonsingular variety of codimension r in a nonsingular

variety X over k. Then wy = wx|y ® /\NY/X.

Proof. Since Y is nonsingular 1.1.10 gives an exact sequence

Taking the highest exterior powers gives wxy ® Oy =~ wy ® /\(I /T?%). Applying Ny /x

and commuting the highest exterior power with the dual yields wy ~ wxy ® /\Ny /x. O

Proposition 1.1.11 gives a way to compute the canonical sheaf of nonsingular

varieties:

Example 1.1.12 (The canonical sheaf of a hypersurface). Let X = P} forn > 2 and Y be
a nonsingular hypersurface of degree d. Taking the highest exterior power from the Euler
sequence gives wx = Ox(—n — 1), so by (1.1.11) wy = Ox(—n —1) ® Ny/x. Since Y is a
hypersurface of degree d we have the exact sequence 0 — Ox(—d) —» Ox — Oy — 0 so
T/)T? ~T® Oy = O(—d)|y and hence Ny, x = Oy (d) which implies wy = Oy(d —n —1).

1.2 Curves and Chern classes

In this section a curve will be an integral scheme of dimension 1, proper over k

with regular local rings.

Definition 1.2.1. Let X be a projective scheme of dimension r over k£ and F be a coherent
sheaf on X. The Euler characteristic of F is defined by

X(F) = Xip(=1)"h'(X, F) (1.8)

Here h'(X, F) denotes the dimension of H'(X,F) as a k-vector space

Note that if 0 - F; — Fo — F3 — 0 is an exact sequence of coherent sheaves

on X, then we have an exact sequence of finite dimensional k-vector spaces
0— HO(X, Fl) - HO(X, Fg) g HO(X, fg) - Hl(X, JT"1> - ... (19)
which implies x°(F2) = x°(F1) + x°(F3). In other words, x° is additive.

Definition 1.2.2. Let X be a projective scheme of dimension r over k. We define the

arithmetic genus p,(X) of X by:

Pa(X) = (=1)"(x(Ox) = 1) (1.10)
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If X is a curve we also define the geometric genus p,(X) = h°(X,wx), where wy is the

canonical sheaf.

If X is a curve then h"(Ox) = 0 for r = 2 so p.(X) = (=1)(h°(Ox) —
h'(Ox) —1). Since X is integral it corresponds to a projective variety, hence H°(Ox) = k
which implies p,(X) = h'(Ox). Serre duality implies H(X,wy) = Ext'(wx,wx)* =
Ext'(Ox,0x)* =~ H'(X,0x)* because wy is invertible, so h’(X,wx) = h' (X, Ox). This

leads to the definition of an important number

Definition 1.2.3. Let X be a curve, then p,(X) = p,(X) = h'(X, Ox) is called the genus
of X. We denote it by g.

Since we have only defined those numbers for projective schemes, it is important
to notice that a curve X is necessarily projective since X is proper over k. [8, Hartshorne
11.6.7].

We will briefly recall some basic definitions on divisors.

Let X a notherian integral separated scheme which is regular on codimension one [8,
Hartshorne, p.130]. A Weil divisor on X is an element of the free abelian group Div(X)
generated by prime divisors, in other words generated by closed integral subscheme Y
of X. We can write a divisor D = ¥;_,n;Y; with n; € Z. The degree of the divisor D is
defined to be deg(D) = ¥!_;n;. A divisor D is called effective if n, > 0 for every i.

Since X is integral it has a generic point £ € X. The function field of an integral scheme is
defined as the stalk at its generic point K (X) = Ox¢. An element of K(X) is called a
rational function. A prime divisor Y is integral so we can consider the stalk at its generic
point Oy, which has quotient field K(X) and it is a discrete valuation ring (this comes
from the fact that a ring A is a discrete valuation ring if and only if it is noetherian,
normal and it has only two prime ideals : 0 and m). So it makes sense to talk about the
evaluation vy (f) of f e K(X)* = K(X) — {0} at Y. We define the divisor of f to be
div(f) = Lvy(f)Y, where ¥ runs over all prime divisors. It is well defined because any
proper closed subset of X can contain only a finite amount of prime divisors. [8, Hartshorne,
11.6.1]

Given two divisors D, D" we say D is linearly equivalent to D" if D — D’ = div(f) for some
rational function f. The quotient group Div(X) modulo linear equivalence is called the
divisor class group C1(X) and it is isomorphic to the group Pic(X) of invertible sheaves
on X modulo isomorphism [8, Hartshorne, 11.6.10], the image of [D] € Div(X)/ ~ in
Pic(X)/ ~ is denoted L£(D). A divisor K corresponding to the invertible sheaf wy is said

to be a canonical divisor.

The Riemann-Roch theorem was originally proven by Riemann in 1857 [19,

Riemann| and later generalized by Roch in 1865 [20, Roch], it was first developed in
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an analytic context. We present here a version of Riemann-Roch concerning curves in

algebraic geometry.

Theorem 1.2.4. [8, Hartshorne, Riemann-Roch Theorem p.295] Let D be a divisor on a
curve X of genus g. Then

h(L(D)) — h°(L(K — D)) = deg(D) +1 —g (1.11)

where K 1s a canonical divisor.

Theorem (1.2.4) is an important tool used to compute cohomology of invertible
sheaves. The divisor K — D corresponds to an invertible sheaf wy ® £(D)*, using Serre
duality we conclude H®(wx ® £(D)*) = H'(L(D))*. Thus the Riemann-Roch theorem
simply states x°(L£(D)) = deg(D) +1—g.

Example 1.2.5. Let Y -5 X = P? be a conic. It is of the form V(fi1, f2) where f; €
HY(Ops(1)) and fo € H*(Ops(2)) and it has degree deg(f1)deg(fz) = 2. The canonical
sheaf wy is isomorphic to Oy (—1) by Proposition (1.1.12) thus K is linearly equivalent to
—L where L is the divisor corresponding to :*Ox (1), it has degree deg(L) = 2 because the
intersection of a general hyperplane with Y has two points. Apply Theorem (1.2.4) we get:
h%(wy) — h*(Oy) = deg(K) + 1 — g. By definition h°(wy) = g so g = (—deg(H) +2)/2 = 0.
Now let r € Z and let D = rL. £(D) = Oy(r) so h°(Oy(r)) — h'(Oy (1)) = 1 + 2r.

We won’t use theorem (1.2.4), but we will use one of the many generalizations,

the Hirzebruch-Riemann-Roch. But first we need a few definitions.

Definition 1.2.6. (Chern class of a vector bundle) [8, Hartshorne, p.429] Let £ be a locally
free sheaf of rank r on a nonsingular quasi-projecive variety X. For each i = 0,...,r we
define the ith Chern class ¢;(£) € AY(X) (A"(X) is the ith Chow group) by the requirement
co(€) =1 and

Yo (=)' (£).67 =0 (1.12)

in A"(P()) where 7 : P(€) — X is the projection from the associated projective bundle
of £ and £ € A'(P(E)) is the class of the divisor corresponding to Ope)(1).

We will be most interested in the case X = P". In this case A'(X) =~ Z
is generated by H? where H is the hyperplane class associated to Opn(1). So A(X) =
@ A'(X) is just Z[H]/H"*" as a group since A" (X)) = 0. It is possible to define a product

i>0

in A(X), making it isomorphic to Z[H]/H"*" as a ring. The product A%(X) x A*(X) —
A%*¢(X) can be seen as the general intersection of varieties. So we can identify ¢;(€) with
an integer for every i and make computations with them as if they were in Z[H]/H™*".
The Chern polynomial ¢;(€) is just 1 4+ ¢;(E)t + ... + ¢.(E)t". The Chern polynomial is
multiplicative in the sense that if 0 —» & — & — £" — 0 is exact then ¢;(€) = (&) ey (E")
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At some point we will be talking about the Chern class of a coherent sheaf, this
is possible because since ¢; is multiplicative, it can be defined on the Grothendieck group of
vector bundles on X [8, Hartshorne, p.435] and for a nonsingular variety X the Grothendieck
groups of all vector bundles and of all coherent sheaves coincide [8, Hartshorne, 111 Ex.

6.9]. Using this isomorphism we can define the Chern class of a coherent sheaf on X.

r

Let (&) = 1_[(1 +a;H) considering ¢; in A(X)®Q where a; are formal symbols,

i=1
2

x
the exponential Chern character of € is ch(€) = Xi_ e where e” = 1+ + 5 +... and the
r 2 4

Todd class is defined to be td(£) = H % Where —— =1+ 242 - 4
i=1

1 —eai 1—e 2 2 12 720

Theorem 1.2.7. (Hirzebruch-Riemann-Roch) For a locally free sheaf € of rank r on a

nonsingular projective variety X of dimension n,
X°(E) = deg(ch(E).td(Tx))n (1.13)

where (), denotes the component of degree n in A(X)® Q

The Hirzebruch-Riemann-Roch theorem will be used in chapter 3 to develop
the formula (3.8).

Let £ be a vector bundle of rank 2 on P3. We have the following formulas:
(i) c1(E(r)) = 1 (&) + 2r
(ii) co(E(r)) = ca(E) + e (E)r + 1
(iif) () = (—1)'ci(€)
If £ has first Chern class ¢; € {—1,0} we say £ is normalized. Furthermore we can

always normalize a vector bundle &, in other words we can always find a r € Z so that
el(E(r)) € {~1,0}.

We end this section with the notion of stability of torsion-free sheaves

Definition 1.2.8 (Stability of torsion-free sheaves). Let F be a torsion-free coherent
sheaf on X, a normal projective variety with fixed very ample divisor H. We define the
slope of F to be u(F) := deg(ci(F))/rk(F) where we are considering ¢; as an element of
Pic(X) and deg is the degree with respect to H. F is stable if and only if u(H) < pu(F)
for all proper non-zero coherent subsheaves H of F (and is semistable if p(H) < pu(F)).

A normalized vector bundle € of rank 2 on P? is stable if and only if H°(E) = 0
[16, Okonek, Schneider & Spindler, p. 167].

1.3 Monads

In this section we will define one of the main objects of this dissertation.
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Definition 1.3.1. A monad V, on X is a complex of locally free sheaves on X
Ve:Vo S5V 5, (1.14)

such that « is injective and f is surjective as morphisms of sheaves. The sheaf £ =
ker(3/ima is called the cohomology of V,.

The degeneration locus of V, is the set 3y, = {x € X| a(z) is not injective}

Monads were introduced by Horrocks, who proved that every vector bundle on
P" is the cohomology of a minimal monad ( [6, Horrocks| or [4, Barth]). In fact Horrocks
shows that every rank 2 vector bundle on P? is the cohomology of a monad V, = V; A Vs,
where V; are sums of line bundles. We are only interested in this particular situation. But

before moving on we need an important theorem given by Beilinson.

Theorem 1.3.2. [16, Okonek, Schneider & Spindler, p. 240] For any locally free sheaf
E on P" there exists a spectral sequence EPY for £ whose Ei-term is given by (¢ =0,....,n
andp=0,—1,...,—n):
et = HY(E(p)) ® Qpr (—p) (1.15)
which converges to
. Eifp+q=0
g (B pra (1.16)
0 otherwise
Theorem 1.3.3. [16, Okonek, Schneider & Spindler, p. 245] For any locally free sheaf
E on P" there exists a spectral sequence EPY for £ whose £ -term is given by (¢ =0,....,n

andp=0,—1,...,—n):
&M = H(€ @ Qpr(—p)) ® Opr(p) (1.17)

which converges to
. Eifp+q=0
&= fra (1.18)
0 otherwise

In addition with theorems such as the Serre duality and Riemann-Roch the
Beilinson spectral sequence is an important tool for characterizing vector bundles on P".

We conclude the chapter giving an example on how to use the Beilinson spectral

sequence. This result will also be used in chapter 2.

Lemma 1.3.4. Let F be a coherent sheaf on P" and {FP?} its Beilinson spectral sequence.
If FP'* =0 for q = 1 and for g = 1, p < —3 then the spectral sequence degenerates at the

Fo-term and the monad
0— F2' = Fb' = Fol =0 (1.19)

has F as its cohomology.
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Proof. We have the following diagram on F; :

q

The differentials d? : FP4 — FP*H9 give the complex
-7:{2’1 3);;1,1 ﬁ)}—lo,l (1'2())

Let K = ker a, L = ker 8/im o, M = coker (3, then the diagram of the F,-term looks

as follows :

\\\
\\

p

All the differentials db? : F5? — F2*97" vanish and so K = F .21, £ = F ;8 M = FOL
But by Beilinson’s theorem K = M = 0 and £ = F. In particular

0 F21 o FoU o, FOL g (1.21)

is a monad whose cohomology is F. O]
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2 Linear and Horrocks monads

This chapter contains the main goal of the first year of the master’s degree:
to study and understand the demonstrations from the first sections of [13, Jardim]
and [14, Jardim & Martins| serving as an introduction to the study of monads, vector

bundles and cohomology.

In the first section of [13, Jardim] it is studied the cohomology of linear monads,
including a theorem that guarantees a given torsion-free sheaf to be linear provided some
conditions on its cohomology.

In the first two sections of [14, Jardim & Martins| it is given a bijective correspondence
between isomorphism classes of monads and collections of homogeneous elements of H, (&)
and H} (£ ® wx) where & is locally free and X is an ACM variety. It is also studied the

cohomology functor that associates to each Horrocks monad its cohomology sheaf.

2.1 Linear monads

Let V, : Vo > V) LA Vs, be a monad, it is worth noticing that its cohomology £
is not always locally free, but conditions on « can be set to guarantee it. Next proposition

states that & is locally free if and only if a(z) is injective for every x.

Proposition 2.1.1. The degeneration locus of Vs coincides with the singular locus of its
cohomology E. In other words Yy, = Sing(E) = Supp(Ext' (€, Ox))

Proof. Consider the short exact sequence :
0-Vy-K—-E—-0 (2.1)
where K = ker. Applying the functor Hom(—, Opr) the sequence yields:
0 & - K* BV - Eat'(E,05) - 0 (2.2)

K being locally free by 1.1.5, and V) is locally free by hypothesis which implies Ext? (£, Ox) =
0 for p = 2. Thus Sing(€) = Supp(Ext* (€, Ox)).

The first equality follows from the fact that surjectivity on the stalks happens if and only
if the morphism of fibers is surjective.

Then «a(x) is injective if and only if a*(z) is surjective if and only if o is surjective if and
only if x ¢ Xy,. O

In 1977 [1, Atiyah, Hitchin, Drinfeld & Manin| introduced the notion of a

mathematical instanton bundle on P?. Instantons are self-dual solutions of the Yang-Mills
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equations in the compactified euclidean 4-space S* which corresponds to certain real

algebraic bundles on P3. In 1986 [17, Okonek & Spindler] generalized this idea to define

mathematical instanton bundles on P?"*1,

Each instanton bundle appears as the cohomology of a monad of the form
Oponir (—1)" %5 Q22 By Oponin (1) (2.3)
This motivates the following definition

Definition 2.1.2. [13, Jardim| A monad is said to be linear if it is of the form :
V@O (—1) 5 W Q Opn > U ® Opa(1) (2.4)

Where V, W, U are finite dimensional vector spaces, and the product V ® Ox denotes the
locally free sheaf of rank dim(V') with fiber V.
A coherent sheaf will be called linear if it can be represented as the cohomology of a linear

monad.

The next theorem will give some necessary conditions for a sheaf £ to be linear.

Theorem 2.1.3. [13, Jardim] If £ is a linear sheaf, then:
(i) forn =2, H*(E(k)) = H*(E*(k)) =0, Yk < —

(ii) forn =3, H'(E(k)) =0, Yk < —2

(iii) for n =4, HP(E(k)) = 2<p n—2 and Yk

)
(iv) forn =3, H"Y(E(k)) =0, Vk > —n +1
(v) form =2, H*(E(k)) =0 fark
(vi) forn =2, Ext'(E,Opn) = cokera™ and ExtP(E(k), Opn) =0 for p =2 and all k

Proof. Since & is a linear sheaf, we can write it as the cohomology of a monad:
V®Opi(—1) %W Q Opn > U@ Opa(1) (2.5)

First note that kernel K = kerf is locally free (1.1.5), and there are two sequences for

every integer k:
00— K(k) > W®Op(k) > UQOpn(k+1) -0 (2.6)

and
0->V®O0pm(k—-1)—> Kk) > EK)—0 (2.7)

From the first sequence writing the long exact sequence of cohomology:

0 — HY(K(k)) » H* (W ® Opn(k)) — H'(U @ Opn(k + 1)) — ... (2.8)
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If k < —1 then H(W ® Opx(k)) = 0 so that H°(K(k)) = 0. Continuing the long sequence:

H (U ® Opn (k + 1)) — H'(K(k)) — H\(W @ Opn (k)) — .. (2.9)

If k < —2 then H*(U ® Opn(k + 1)) = 0. Furthermore if n > 2 then H'(Opn(k)) = 0 and
therefore H'(W ® Opx(k)) = 0, implying H' (K (k)) = 0.

Consider now 2 < p < n — 1 and the sequence

HP "YU ® Opn(k + 1)) — HP(K(k)) — HP(W ® Opn(k)) (2.10)
If p—1,p <n—1 then the extremities are 0, thus H?(K(k)) = 0.
1 1 1
Flnally lfp =n, Hp(OPn<k>) = (ﬁC[ﬁ’ ce ﬁ])k7 lf k = —n thls group s 0 Wthh

implies H"(KC(k)) = 0.

Now for the second sequence, again looking at the long exact sequence of cohomology:
H?(V ® Opn(k — 1)) — HP(K(k)) — HP(E(k)) — HP*H(V ® Opn(k — 1)) (2.11)

The extremities are zero when p = 0O and £ < —1, 1 < p < n—2Vk p =n and
k > —n (because we are on the projective space). Under these conditions we have
HP(KC(k)) ~ HP(E(k)). All these results gives the first half of (i) through (v).

Dualizing both sequences yields:

0 — E*(—k) - K*(—k) = V@ Opn(—k + 1) — Ext*(E(k), Opn) — Ext* (K(k), Opn) — ...
(2.13)

Writing the long exact sequence for the first sequence :
H(W ® Opn(—k)) — H*(K*(—k)) - H (U ® Opn(—k — 1)) (2.14)

We conclude that H°(K*(k)) = 0 for k < —1.

For the second sequence, K locally free implies Ext' (K (k), Opn) = 0. Thus

0 & > K* BV Q0 (1) = Ext (€, Opn) — 0 (2.15)

So that cokera® = Ext' (€, Opn), H*(E(k)) = 0 for k < —1 and
ExtP(E(k), Opn) =0 for p = 2 VEk.

O

If £ is a torsion-free sheaf, with some of the conditions on Theorem (2.1.3) we

can guarantee it to be linear. Even further, we can explicitly give its monad:
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Theorem 2.1.4. [13, Jardim] If £ is a torsion-free sheaf on P" satisfying:
(i) forn =2, H*(E(—1)) = H*(£(—n)) = 0;

(ii) forn =3, H'(£(—2)) = H" 1(£(1 —n)) = 0;

(iii) forn =>4, HP(E(k)) =0,2<p<n—2 and Yk € Z;

then & is linear and can be represented as the cohomology of the monad:

H'(E®Q3.(1)) @ Opn(—1) »> HY(E Q@ V) @ Opn — HY(E(=1)) ® Opa(1)  (2.16)

Proof. Let H < P" be a hyperplane defined by a homogeneous polynomial f of degree 1.

By a known result [24, Stacks Project Lemma 08AO0] there is an exact sequence
0>ER0m(k—1) > EROpm(k) > EROpn (k)| — 0 (2.17)
By hypothesis H°(£(—1)) = 0, so for k = —1 the long exact sequence yields
0— HE(—2)) — H*(E(-1)) =0 (2.18)

And thus H(£(—2)) = 0. Using the same process, by induction results
HY(E(k)) =0, k < —1.

For k = —n + 1 we have
0=H"(E(—n)) > H(E(—n+ 1)) > H(E(—n + 1)|x) (2.19)

But H"(E(—n + 1)|g) = 0 because H" vanishes on any Noetherian topological space
of dimension n — 1, and H'(P" ', &|y) = H'(P",i,&|g) [8, Hartshorne, Lemma I11.2.10],
hence H"(E(k)) = 0 for k = —n.

Since H°(E(—1)) = H'(E(-2)) = 0, the long sequence yields

0 = HO(E(~1)) — HO(E(~1),) — H(E(~2)) =0 (2.20)
So H(E(—1)|y) = 0 and therefore H°(E(k)|y) = 0 for k < —1 . Then for k < —1
0= HE(k)|n) —» H'(E(k - 1)) > H'(E(k)) (2.21)

By induction H'(£(k)) = 0 for k < —2.

By hypothesis H"(£(—n)) = H" *(£(1 —n)) = 0 then H" '(£(1 —n)|x) = 0.

We apply the Beilinson spectral sequence on £(—1) to obtain a spectral sequence with
&t = HY(E @ Qpr (—p) @ Opn(p))

Now, suppose we had
HIU(E-1)® W% (—p)) =0 for q =1and forq=1, p< —3. (2.22)
Lemma (1.3.4) gives a monad

0— HY(E(-1) ®Q3.(2) ® Opn(—2)
— HY(E(-1) @ (1)) ® Opn(—1) — H'(E(-1)) @ Opn — 0



Chapter 2. Linear and Horrocks monads 27

With £(—1) as cohomology. So twisting it by Opx (1) gives a monad with cohomology &.
The only thing left to do is to prove (2.22). Consider the Euler sequence for p-forms

0 — Qpf(—p) — OF" — Q™' (—p) = 0 (2.23)

n+1

where p = —1,...,—n and m = (
P

). and twist it by (k)

0 — E(k) @ Qpl(—p) — E(K)®™ — E(k) ® Qe (—p) — 0 (2.24)

We have the following vanishings

- H°(E(k) @ Qpr(—p)) = 0 for every p and k < —1

- HY(E(-1) ®@Qpn(n)) = HY(E(—2)) = 0 for every q

- HY(E(—1)) =0 for every g = 1

H"(E(k) @ Qpr(—p)) = 0 for every p and k = —n. Indeed, by hypothesis H°(£(—1)) = 0,
hence H°(E(k) ® Qpt(—p)) = 0 for every p and k < —1. The second equation follows from
the fact that Qp.(n) = Opn(—1). O

Now that we have established a characterization of a linear monad, it is natural
to ask whether we can guarantee any further property. We already know £ is locally free
precisely when its degeneration locus is empty. We will prove that the degeneration locus

of a monad is a subvariety.

Definition 2.1.5. Let M be a A-module where A is a ring, if M is finitely generated then
it has a projective resolution 0 — P, — ... - Py - M — 0 with P, = 0. The homological
dimension (or projective dimension) of M is defined to be the smallest number n. We can
define a similar concept for coherent sheaves: let F be a coherent sheaf over X = P" and
x € X. The stalk F, is a finitely generated module over the local noetherian ring Ox .
Hence we can define the homological dimension dh(F,) over Ox ., to be the minimal
length of a projective (thus free) resolution of F,.

Let M be a module over a semi-local ring A and J the Jacobson radical of A. An M-
sequence is a sequence (ai, ..., a,), a; € J satisfying

- For every integer i with 1 < i < p we have: a; is not a zero divisor in M /(ay, ..., a;_1)M.
The cohomological dimension codh(F,) is defined as the maximal length of an F,-sequence
in Ox ,.The detailed discussion can be found in [21, Serre, IV-14].

The integer dh(F,) is the smallest number k so that for all finitely generated
Ox -module M and all i > k we have Exté)xyz (Fz, M) = 0. We briefly explain it.
Let 0 - P, dny Py —..—>P - F L F, be a minimal free resolution of F,. Let M
be any Ox ,-module (it is sufficient to consider M finitely generated). Consider the exact
sequences 0 - K; - P, » K;_1 — 0 where K; = kerd; = imd;,, and apply the functor

Homo, (=, M). Any Exty,  (P;, M) vanishes for i > 0, thus setting i = n — 1 we obtain
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Ewt}oxz(Kn_l,M) -~ Ext(%)x’z(Kn_g,M) = 0 because K,_; =~ P,. This process implies
EﬂleI(Kn—i,M) ~ Ewt’gXII(Kn_i_l,M) until the last sequence 0 — Ky — Py — F,.

Hence Exty! (F,, M) = 0, while Exty  (F,, M) = 0 comes from the minimality of the

4

resolution.

Lemma 2.1.6. [16, Okonek, Schneider & Spindler, Lemma 1.1.1] dh(F,) < q if and
only if for all i > q we have (Ext'(F,O0x))s =0 for allve X

Lemma 2.1.7. [13, Jardim] Let € be a linear sheaf, then

(i) € is locally free if and only if its degeneration locus is empty

(ii) € is reflexive if and only if its degeneration locus is a subvariety of codimension at
least 3

(iii) & is torsion free if and only if its degeneration locus is a subvariety of codimension at
least 2

Proof. Let X be its degeneration locus. We have already proved (i).

To prove (ii) and (iii) we use the concept of the m-th singularity set of a coherent sheaf F :
Sm(F) = {x € P"|codh F, < m} = {x € P"|dh(F,) = n —m} where dh(F,) denotes the
homological dimension of F, as an O,-module. [16, Okonek, Schneider & Spindler, Lemma
1.1.3]. Lemma (2.1.6) tells us that

ExtY(F,,Ox,) =0
dh(F)=d — { (2, Oxa) (2.25)
Ext?(F,, Ox.) = 0¥p > d

Back to our case, x € ¥ implies dh(€,) = 1, and = ¢ ¥ implies dh(E,) = 0. Then
So(g) = ... = n_g(g) = @ and Sn—l = 2.

Recall that a coherent sheaf F is a k-th syzygy sheaf if there is an exact sequence
0> F O - O - . — O (2.26)

[23, Siu, Proposition 1.20] states that:
(i) if codim ¥ = 2 then dim S,,(£) < m — 1 Ym < n, hence & is a locally 1*-syzygy sheaf
(i) if codim ¥ = 3 then dim S,,(£) < m—2 ¥m < n, hence & is a locally 2"%-syzygy sheaf.
Finally we use that £ is torsion free if and only if it is a locally 1¥-syzygy sheaf, and & is
reflexive if and only if it is a locally 2"%-syzygy sheaf. [16, Okonek, Schneider & Spindler,
p.148-149] 0

2.2 Horrocks monads

In this section X is a projective variety over k with a given very ample invertible

sheaf Ox (1). From this section and until the end of the dissertation a monad will always
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have cohomology £ with Sing(€) = & (thus it is always locally free).

It is interesting to notice that if £ is locally free then o* is surjective, so a monad
VeV SV 5, (2.27)
gives another monad by dualizing V, :
vy Syl oy (2.28)

Denote H,(F) = P H'(F(k)). We will now define a Horrocks monad as follows
keZ

Deﬁnition 2.2.1. [14, Jardim & Martins| A monad is said to be Horrocks if
i) Vo = @wx ) for k; € Z

(ii) Vo = @(’)X ) for l; € Z
() HAV) = HI' (V) = 0

We will now define an ACM variety

Definition 2.2.2. [?, Eisenbud] A projective variety X <— P" of pure dimension n
is arithmetically Cohen-Macaulay (ACM) if its homogeneous coordinate ring S(X) =
HY(Ox) is a Cohen-Macaulay ring

This is equivalent to saying that H.(P",Zx) = 0 and H?(Ox) =0for 1 < p <
n — 1 where Zx is the saturated ideal sheaf of X.

Theorem 2.2.3. [14, Jardim & Martins, Theorem 2.3] Let X be an ACM wvariety
of dimension n = 3 and let € be a locally free sheaf on X. There exists a bijective
correspondence between collections hy, ..., by, g1, ..., gs with h; € H' (E* @ wx (k;)) and g; €

HY(E(~1y)), for integers k; and l;, and isomorphism classes of monads of the form

Vo: Pux(k) S F L5 POx() (2.29)
i=1 j=1
whose cohomology is isomorphic to €. This correspondence is such that V, is Horrocks if
and only if the g; generate H.(E) and the h; generate Hy(E* @ wx) as S(X)-modules.
Proof. Let ki € P H(E* Qux (k) = H'(E* ® @wx ) =

Ext'(Ox, & ® Puwx (k) = Ext' (€, Pwx(h:)). ThlS element defines an extension

0> Puwx(k) >K—-E—-0 (2.30)
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In particular we have, for every p, the following exact sequence in cohomology

P H? (wx (k) — HP(K) — HP(E) — P H (wx (k;)) (2.31)
i=1 i=1
But 0 <Y H" ?(Ox(—k;)) = H”(wx (k;)) hence H?(K(m)) = H?(E(m))
for 1 <p <n-—2andany m.
Let g; € H'(K(=1;)) be the image through the isomorphism above for every g;. We
have the isomorphisms P H'(K(—l;)) =~ H' (P K(-1;)) = Ext'(Ox, P K(-1;))
j J J

lle

j
Ext' (@ 0x(1;),K), so £;g; € @ H'(K(—1;)) defines an extension :
J J

0—K—FLPox()—0 (2.32)

7=1

Putting (2.30) and (2.32) together gives the monad :
Pux(k) > F & D Ox(l)) (2:33)
i=1 j=1

Since K = ker § and coker a = £ we have £ as the cohomology of (2.33). Now, conversely

if we have an isomorphism class as in (2.29), then there are two exact sequences

0> Puwx(k) >K—>E—-0 (2.34)
i=1
and i
0>K—>F—>P0Ox(;) —0 (2.35)
j=1

with K = ker. The first one corresponds to an element h € Ext' (€, Pwx(k;)) =

7

Ext'(Ox, &* @ P wx (ki) = H'(E* @ @ wx (ki)), while the second sequence corresponds

to an element g € Ext' (P Ox(I;),K) = P H (K(-1;)) = P H'(E(—1;)). Set h = Z;h;
j=1 J J
and g = X,g;, we still need to prove the last statement.

First notice that conditions (i) and (ii) of (2.2.1) are satisfied automatically. Since X is
ACM, H, (P Ox(l;)) = 0. But then using the exact sequence (2.35) we have the following
J

exact sequence :

HY@P Ox(l; + k) % H'(K(k) - H'(F(k)) =0 (2.36)

Hence 0y, is surjective for every k if and only if H!(F) = 0. Those morphisms are defined
by construction taking ¥ f; to Efjg;-, each f; € Ox(l; + k) has degree [; + k, this is because

given an element ¢ € Ext'(Ox, K) corresponding to an extension

0>K—>F—0x—0 (2.37)
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And an element g € H'(K) = Ext'(Ox,K). Then the morphism H%(Ox) — H'(K) has
to send 1 to g.

Surjectivity of each & is equivalent to saying that g generates H,(K) as H](Ox)-module.
Finally, using Serre duality H" ' (F(k)) = Ext'(F(k),wx)* = Ext'(Ox, F*Qux (—k))* =
HY(F*Q@uwx(—k))* hence H '(F) = 0 if and only if H}(F*®wx) = 0. Since & is locally

free the dual of V, is a monad, tensoring it by wx gives
V:k . @CUX(—lj) - .F* @CUX I @OX(_kz) (238)
j=1 =1
Which gives

7j=1

HO(GTB Ox(—ki + k) Hl(@ wx (=l + k) = H'(F*@wx (k) — 0 (2.39)

The same argument shows that H?~'(F) = 0 if and only if h; generate H,(E* @ wx) as
HY(Ox)-module. O

The theorem leads to an interesting result not only concerning the case X = P",

but this time considering X as an ACM variety of dimension > 3.

Corollary 2.2.4. [1/, Jardim & Martins] Every locally free sheaf € on an ACM variety

of dimension n = 3 is the cohomology of a monad
Ve @ux(ki) > F 5 P ox(ly) (2.40)

such that
(i) Hy(F) = H}7/(F) =
(ii) forn =4, HY(F(k)) = HE(E(k)) for2<p<n—2

o

Proof. € is locally free so H}(E) and H.(E* ® wx) are finitely generated as H.(Ox)-
modules. Then we can pick any set of generators and apply last theorem to generate the

desired monad. O

Since every Horrocks monad is a complex, and every morphism of Horrocks
monads is a morphism of complexes it is immediate to see that Horrocks monads on X
form a full subcategory H(X) of Che(X) the abelian category of complexes of sheaves on
X. Since H(X) is a full subcategory of an abelian category, we also have that H(X) is
additive.

Remark 2.2.5. Let V, and W, be two monads and ¢, : V, — W, be a morphism of
monads. Then ¢, defines a morphism of sheaves between the cohomologies of V, and W,.
Moreover, this defines a functor C : H(X) — V(X)) from the category of Horrocks monads

to the category of locally free sheaves on X.
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Proof. Let £ and F be the cohomology of V, and W, respectively. Considering both
monads as complexes over V(X)) we obtain a morphism which we call C(¢) : £ — F. Any
composition of morphisms of complexes ¢, o 1, goes to C(¢. 01).) = C(¢) o C(1)) since
everything is done in Che(X). ]

Theorem (2.2.3) states that C is surjective on objects, but more can be asked
of it.

Theorem 2.2.6. [14, Jardim & Martins, Theorem 2.5] Let X be an ACM projective

variety and

M. My S My 5 M, (2.41)
NN, SN 25N (2.42)

be Horrocks monads. Consider the morphism

p: Hom(Mi,No) @ Hom(Mz, N1) — Hom (M., N,)
(Y1, 12) — (Y1, &'thy + o3, B'1h)

Then the sequence
0 — Im(p) > Hom(M.,N,) &> Hom(C(M.,), C(N.)) — 0 (2.43)
is exact, where v is the inclusion and m the natural morphism.

Proof. First we need to prove that p is well defined. Denote vy = ¥y, 71 = '1)1 + o3
and v, = 3ty

My —2 My —25 M,

o]

Ny — 5 N, —2 A

But then 110 = o/t + 1sBa "= a'tha = o'y and By = Bla’vn + B T 18,
hence p is well defined.

The map 7 is injective by definition of image. To show 7w = 0 we can apply diagram
chasing because the category of sheaves on an abelian category is an abelian category: Let
& and F be the cohomology of M, and N, respectively, let x + Ima € € = ker3/Ima.
It v = (90,71, 72) = p(¥1, ¥2) then H(y)(z + Ima) = yi(z) + Ima’ = o/11(x) + ¢28(z) +
Ima’ = 0 because o' (11 (x)) € Ima’ and x € ker3 hence 3(z) = 0.
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To establish the surjectivity of , consider the exact sequences :
(i) 0 > ker8 5 My 5 My — 0
(i3) 0 — kerp 2> Ny 5 Ny — 0
(iii) 0 — Mo > ker 5 € — 0
(iv) O—»./\/Oﬁl»k:erﬁ'i}"ao
Let ¢ : € — F, define ¢ = p o p : ker3 — F. Applying the functor Hom(ker(3, —) to the
sequence (iv) results
Hom(ker, ker3') — Hom(kerj, F) — Ext'(kerj3, Np) (2.44)
Now, Ext'(ker3,Ny) = 0, indeed applying Hom(—, Nj) to the sequence (i) we get
Ext' (M, Ny) — Ext'(ker3,Ny) — Ext*(My, Np) (2.45)

But Ext*(My, Ny) = Ext*(Ox, M3 @ Ny) = H* (M ®@Ny) = 0 because M is a sum of
line bundles, Ny is a sum of twists of the canonical bundle, so we would have a sum of terms
H?(wx (kj)) which are zero since X is ACM. The same goes for Ext' (M, Np) =~ H' (M} ®
No) = 0 by definition of a Horrocks monad. But then Exzt'(kerB3,Ny) = 0 and hence
Hom(kerB, ker') — Hom(ker[3, F) is surjective so there is a map ® € Hom/(ker3, ker3')

with ¢ = p’ o @, in other words the right square in the diagram below is commutative :

0 —— My —*— kerf E 0
l@ ¢ P
0 Ny —2 kerp S F 0

Applying Hom(M, —) to the sequence (iv) results in
0 — Hom(Mgy, Ny) — Hom(My, ker') — Hom(M,, F) — Ext' (Mg, No) =0 (2.46)

exact since since X is ACM. But p'o®oa = goa = popoa = 0 because poa = 0 s0 Poa
is in the kernel of the second morphism. Therefore there exists a map g € Hom(Mg, Np)

such that o’g = ®a hence making the following diagram commutative.

0 —— My —*— kerf E 0
lg l@ d; Lﬁ
0 Ny —2 kerp S F 0

The composition of ® with the first map in (i) gives a map ® : ker3 — Nj. Applying the
functor Hom(—, N7) to the sequence (i) yields

Hom (M, Nv) — Hom(ker3,N) — Ext'(My,N7) = 0 (2.47)

So there is a h : M; — N; such that the left square in the diagram below commutes :



Chapter 2. Linear and Horrocks monads 34

0 —— kerp M, o My —— 0
Jcp ‘i’ Jh
M /
0 —— kerf N TNy —— 0

Applying the functor Hom(—, N3) to (i)
0 — Hom(My, No) — Hom(My, Ny) — Hom(kerB, Ny) — Ext'(Ma, N3) =0 (2.48)

Using the same argument as before we have that 5’ o h is in the kernel of the second map,

so there is a map [ : My — Ny with 5’ o h = [ o 3. Thus making the diagram commute

0 —— kerp M, o My —— 0

~ - |
F N2 Jh ¥
> +

M /
0 —— kerf N TNy —— 0

By construction (g, h,l) is a morphism of complexes from M, to N,.

Notice that 7(g, h,l) = ¢ : if x € € then 7(g, h,1)(z + Ima) = h(z) + Ima’ = p' o h(x) =
pohojx)=podx)=p ojod(x)=podx)=d¢op(x)=d(x+ Ima), in which we
are considering j(z) = x and j'(y) = y since j, 7’ are inclusions.

Therefore 7 is surjective. To prove exactness suppose (g, h,l) € kerm, then we get the

following diagram :

0 —— My —2 kerf —2— & 0
oo
0 Ny —< ker3’ L F 0

where we consider the restriction of h as h' : ker — kerf’. Applying the functor

Hom(ker(3,—) on the sequence (iv) yields

0 — Hom(kerB,No) — Hom(kerp, ker3') — Hom(kerp,F) — Ext*(kerB3,Ny) =0
(2.49)
But the diagram above states that p'oh’ = 0so h' € ker(Hom(ker3,Ny) — Hom(ker(3, ker3'))
hence there exists a map v, : ker3 — Ny with o’y = h'.

0 —— My —2 kerf —2— & 0
Jg L//;;bl lh/ , JO
0 No —2— kerf —2— F 0

Applying the functor Hom(—, Np) to (i)

0 — Hom(May, Ny) — Hom(My,Ny) — Hom(ker3,Ny) — Ext' (Mg, Ny) =0 (2.50)
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Then there is a map ¥, : M; — N extending 1.

Since Ima < ker3, Vo o = v o «, by the last diagram h' o o = o’ 0 g hence o’ o)y oav =
h' o o = o' o g which by injectivity implies ¥; o a = g hence ¥; o v = g (so0 ¢ is the image
of p on the first coordinate).

Consider the map H = h—a’oW; : M; — N, the restriction of H on kerf3is h' —a’o; = 0

so H lies in the kernel of the second map in the exact sequence
Hom(My, N1) — Hom(My,Ny) — Hom(ker,N7) (2.51)

obtained from (i). But then there is Wy : My — A such that H = Wy o 8 hence
h = Wyf3 + o'y (so h is the image of p on the second coordinate).

Finally, I3 = f'h = 'Uy3 + 3o’ U, = 3'¥y3 where the first equality comes from the fact
that (g, h,1) is a morphism of complexes, and the third is due to 3o’ = 0. But this implies
[ = B'WUy because 3 is surjective (so [ is the image of p on the third coordinate).

Those three equalities prove (g, h,l) = (Via, 'y + Uy3, 3'Uy) € Im p so the sequence is

exact. OJ

Theorem 2.2.7. [14, Jardim & Martins, Theorem 2.6] Let X be an ACM variety of

dimension n = 3. The functor C is additive, essentially surjective, full and exact.

Proof. Tt is essentialy surjective by Theorem (2.2.3), full by Theorem (2.2.6) and additive
because 7(f + g) = 7(f) + 7(g) (the same 7 in the last theorem).

Consider the following exact sequence of monads:

0 0 0

g1 h1 ll

a Bum
My —— M, M,
g2 ha lo

with €, F and G the cohomology of the first, second and third rows. Let hy : £ — F and
hy : F — G be the induced maps. We have hyhi = 0 because C(Ba) = C(0) = 0.

Using the same argument from the proof of Theorem (2.2.6), we can verify the injectivity
and surjectivity of hy, hy respectively using diagram chasing : Let & = = + imay € € and
suppose hy (Z) = hi(x) +imay = 0. Then hy(z) € imay, implies the existence of an unique
y € Mo with ay(y) = = because ayy is injective. Using injectivity of g; gives another

unique z € Ly with g;(z) = y. Since the diagram is commutative and «;, is injective we
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have ay(z) = x hence = = 0.

Let y = y + tmay € F.Being the map hs surjective, there is an element z € M; with
ho(z) = y € kerfy. Since every square is commutative, Iy o Sy(x) = 0 so Sy () € kerls,
but then Sy(x) € iml; and thus there is an unique z € £y with [;(2) = Bu(z). Since
B, is surjective there is a (non unique) 2z’ € £; such that ;(z2') = z which implies
Bt o (2 = Bu(z).

Now the fact that «, is a monomorphism implies there is an unique 2" with ay(z") = 2/
hence ayy o g1(2") = hi(2'). But then hy(2') € kerfy; implies that 0 = [; o B1(2") = [1(2)
which implies 0 = [;(2) = Sy (x) hence x € ker3y; so the element & = x + imay; is well
defined and hy(Z) = 7.

Finally if Z € kerhy we have hy(z) € imay so there is an element y € N, with an(y) =
ho(z). But since g9 is an epimorphism so there exists z € My such that go(2) = y and
hy o ap(z) = an o ga(z) = an(y) = ha(z). So he(an(z) —x) = 0.

It is known [15, MacLane, Theorem 3 (vi), p.201] that implies ap(z) — x € imhy, which
implies the existence of an element 2’ € £, with hy(2') = ap(2) — 2. Then [y o 5(2') =
Bu(an(z) — x) = 0 because Sy o apy = 0 and x € kerfy. So Br(2') € kerl; implies
Br(2') = 0 hence 2’ € kerB; and finally 2/ = z + ima;, is well defined with hy(z') = Z as
desired. O

Corollary 2.2.8. If X is an ACM wvariety of dimension n = 3 then the category V(X)
of locally free sheaves on X is equivalent to a quotient of the category H(X) of Horrocks

monads on X.

With Theorem (2.2.3) in hands we are ready to begin the study of the classifi-

cation of vector bundles.
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3 Toward the classification

In this chapter we will introduce the spectrum of a reflexive sheaf and the
Hartshorne-Serre correspondence. Then we will give a few families of curves which we can
use the correspondence to obtain families of vector bundles of rank 2 with ¢; = —1, each

vector bundle has an spectrum and a monad associated.

3.1 Spectrum and its properties

In [3, Barth & Elencwajg] Barth and Elencwajg introduced the concept of the
spectrum of a stable vector bundle € of rank 2 on P* with ¢; = 0, we recall their construction.
Let L be a general line on P?, p : X — P? the blowing-up of P* along L and ¢ : X — P! the
morphism determined by the pencil of planes through L. The sheaf H := R'q,p*E(—1) is
locally free of rank ¢, on P* [3, Barth & Elencwajg, Proposition 2.2.1 p.9]. Grothendieck’s
theorem states that # is a finite sum of line bundles Op: (k1) @ ... ® Op: (k.,) for suitable

integers k;. The sequence & = {k;}i—1._., is called the spectrum of £.

.....

In [10, Hartshorne, Theorem 7.1 p.151] Hartshorne generalized the concept of
spectrum for any reflexive sheaf F of rank 2 with ¢; = 0 or —1 and H°(F(—1)) on P?.
In this chapter we won’t be interested in the case ¢; = 0 since it has already been
studied in [11, Hartshorne & Rao], but almost every result in this chapter is based
on [11, Hartshorne & Rao|. We start with some fundamental facts and definitions from

Hartshorne’s paper, starting from an equivalent definition for spectrum.

Theorem 3.1.1. [10, Hartshorne, Theorem 7.1] Let F be a rank 2 reflexive on X with
c1 =0 or —1. Assume H°(F(—1)) = 0. Then there is an unique sequence of integers (up
to ordering) x = {ki}, i = 1,..., ¢ satisfying the following properties:

(1) (P, F(1)) = h°(P*,H(l + 1)) forl < —1

(2) (P F(1)) = (P, H(I+ 1)) forl = -3 ifc;=0o0rl>-2ifc; =—1

Where H = @Op1(k;). This set of integers is called the spectrum of F.

In his proof Hartshorne gives a method on how to compute x. Define n; =
R (F(=1)) — h'(F(=1 — 1)) for I > 1, then n; = #{k; € x|k; = [ — 1}, which results
ny —ni—1 = #{k; = [ — 1}. In other words

#{k; =1} = W' (F(=l—=1)) = 2R (F(~1—2)) + B} (F(=1—-3)), 1 =0 (3.1)

We present some results which will help us in the computation of the spectrum
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Proposition 3.1.2. [10, Hartshorne, Proposition 7.2] If F is locally free, then

{—ki} ={ki} if 1 =0 (3.2)
{—ki} ={ki+1}if a1 = -1 (3.3)

Theorem 3.1.3. [10, Hartshorne, Theorem 7.5] Let F be as in the previous theorem and
x = {k;} its spectrum.

(a) Assume H(F(=1)) =0

1) If there is a k = 1 in x, then 1,2,....k also occur in x

2) If there is a k < —2 then -1,-2,..,k also occur if ¢, = 0 and -2,-3,....k also occur if
c=—1

(b) Assume F is stable.

1) If there is a k = 1 then 0,1,...,k also occur.

2) If there is a k < —1 then -1,-2,....k also occur. Furthermore, if ¢; = 0, then either 0

also occurs, or -1 occurs at least twice.

Proposition 3.1.4. [10, Hartshorne, Proposition 5.1] Let F be a semistable rank 2
reflexive sheaf on P* with ¢; = 0 or —1. Let k = max{—k;} as k; runs over the spectrum
of F. Assume there is a ro with —k < ro < —2 which occurs only once in the spectrum.

Then each k; with —k < k; < ro occurs exactly once in the spectrum

Now, let F be a rank 2 locally free sheaf with ¢; = —1, H*(F(—1)) = 0 and y
its spectrum. If k; € x, by symmetry —k; — 1 occurs in .
Define p; = {—j — 1, j} for each integer. We will say that p; occurs in x if —j — 1 and j
are in x. Note that p; = p_;_; so we will only deal with 5 > 0.
For example, pop? denotes the spectrum {—22% —1,0,1%}.
By Theorem (3.1.3), if p; occurs in x and j > 1 then every p; with 1 <1 < j also occurs,
if F is stable then every p; with 0 <[ < j occurs.
With this in mind, given an integer ¢, we can write a list of possible spectra a stable

bundle satisfying the hypothesis of (3.1.1) can have:

=)
[\

X

%]
Po
%]
Po, Popr
%]
Piys P10, P1P0: P2P1Po0
1]
Po» P1Pg, P1Po, PiDo, P2D1P0, P2D1Pg, P3P2P1 D0

N[O =W ||~
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Notice that we don’t have p%plpo in the line ¢y = 8, because Proposition (3.1.4) tells us

this case cannot happen. To see this notice that max{—k;};—1 s = 3 and take ry = —2,
we have —3 = max{k;}i=1.. s < 1o = —2 and —2 occurs only once in the spectrum, so
Proposition (3.1.4) states that any k; such that —3 = —k < k; < —2 must occur only once

in the spectrum, this includes —3. But —3 appears twice in xy = pap1po 0 X can’t happen.
Since any integer in y must have another different integer associated with it we see there
is no rank 2 locally free sheaf with ¢; = —1 satisfying H°(F(—1)) = 0 with odd c,.

It is interesting to notice this is not the case for ¢; = 0. In this case 0 is not associated

with any other integer, so for instance it is possible to have a spectrum y = {—1,0?, 1}.
2

2
A general formula for any ¢, is given by n pfi with:
. i=1
() B2y ki = e
(ii) If py € x then p; € x for every 0 < j <k
(iii) If py € x is such that k = max{l | p; € x} and p; occurs only once with p; < p; < py

then any p; with p; < py < p occurs only once

Theorem (2.2.3) tells us that every locally free sheaf of rank 2 in P? is the

cohomology of a monad of the form
V(] - Vl g VQ (34)

where V), V1, Vs are sums of line bundles. Such monad can be chosen to be minimal in the
sense that it is built from a minimal resolution of the first cohomology module [18, Rao]
and [5, Decker].

In [5, Decker, Proposition 1], Decker shows that &£ is the cohomology of a monad of the

form
(—_Bl Ops(—¢; — 1) — @(Opiﬁ(—bi —1)® Ops(b;)) — (—_Dl Ops(¢;) (3.5)

Note that (3.5) is Horrocks, hence by Theorem (2.2.3) r coincides with the number of
generators of H, (&) as a graded module over the ring of polynomials in four variables,

while —¢; are the degrees of these generators.

3.2 The Hartshorne-Serre correspondence

In [7, Hartshorne|, Hartshorne, following the ideas of previous works of Horrocks
[12, Horrocks, 1968] and Serre [22, Serre, 1960] proved that a nonsingular subvariety Y of
codimension 2 in P" with n > 3 occurs as the zero-set of a section of a bundle £ of rank 2
on P" if and only if its canonical sheaf wy is a multiple of the hyperplane sheaf Oy (1) (if
this last condition is satisfied we say Y is subcanonical).
In [10, Hartshorne] Hartshorne provided a version of the correspondence between rank 2

reflexive sheaves on P? and arbitrary curves in P
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Recall that a projective variety Y — P" of codimension r is a local complete

intersection if the ideal sheaf can be locally generated by r elements at every point.

Theorem 3.2.1. [9, Hartshorne, Theorem 1.1] Fiz a line bundle £ on P*, there is a
bijective correspondence between

(i) the set of triples (€,s,®) modulo equivalence relation ~, where £ is a vector bundle
of rank 2 on P*, s € H°() is a global section whose scheme of zeros Y has codimension
2, ¢ : A2E — L is an isomorphism and (€,s,¢) ~ (E',5,¢") if and only if there is
an isomorphism ¢ : € — &' and an element X € k — {0} such that s = \(s) and
¢ = Mo (A2).

(ii) the set of pairs (Y,&) where Y is a locally complete intersection curve in P* and

£ LRwps ® Oy — wy is an isomorphism.

If Y is a subcanonical curve with wy = Oy (a) we can take £ = Ops(a+4), thus
wy = LQwps ® Oy. The theorem then gives a bundle &£, a section s and an isomorphism
det(E) = L. Since ci(det(€)) = ¢1(€) [8, Hartshorne, p.430] we get ¢1(£) = a + 4. We
also have cy(€) = [Y] = deg(Y)[H]? [8, Hartshorne, C6 p.431] so the second Chern class

corresponds to the degree of Y. From the proof of theorem 3.2.1 we get an exact sequence:
0L —>E ->Iy -0 (3.6)

Tensor it by Ops(a + 4) and define F = £*(a + 4).
0> 0Op > F >Zy(a+4) >0 (3.7)

The Chern classes of F are ¢;(F) = —(a+4) +2(a+4) = ¢1(€) and c2(F) = c2(€) — (a +
e (E) + (a+4) = ca(€).

So from now on the vector bundle £ corresponding to a subcanonical curve Y will
be the vector bundle satisfying sequence (3.7).

Now, let T be the tangent bundle of P*. From the sequence 0 — Ops — Ops(1)* — T — 0
we obtain td(T) = td(Ops(1)*) where td is the Todd class, so td(T) = 14+ 2H + 1;H2 + H?.
Let F be a rank 2 bundle on P* with Chern classes ¢;(F) = ¢; and ¢3(F) = c5. The Chern

2 2 3 3
a- =2, a-ae Multiplying td(7T) with ch(F) and

character ch(F) is 2 + c1H + ; ;

1 -3
summing the degree 3 terms gives 2 + % + (cf —2c9) + % Rearranging terms
and using the Riemann-Roch theorem gives
c1+3 cic
X(F) = ( 13 ) *202*7122+1 (3.8)

We will give a few examples of bundles corresponding to curves

Example 3.2.2 (Disjoint union of conics). Let Y = |_| C; be a disjoint union of r conics in
i=1
P? and 7 the inclusion morphism. We have deg(Y) = 2r and wy = Oy (—1). Let & be the
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vector bundle corresponding to Y. We have an exact sequence 0 — Ops — & — Iy (3) — 0
with ¢(€") = 3 and (&) = 2r. Let & = £'(-2), then ¢;(£) = —1 and »(&) = 2r — 2.
The sequence

0— Ops(—2) > & > Zy(1) - 0 (3.9)

shows that if 7 > 2 then H°(€) = 0 since Y is not contained in any hyperplane (this
implies H%(Zy (1)) = 0 ). Since £ is normalized it means £ is stable. Notice £* =~ £(1)
because ¢;(£) = —1.

Now, since H°(£(k)) = 0 for every k < 0 using Serre duality we have H*(E(—k —3)) =0
for £ < 0. In other words H*(£(k)) = 0 for k > —3.

From sequence (3.9) twisted by k € Z we get H'(£(k)) = H' (Zy(k + 1)). From

0 — Zy (k) = Opn(k) = Oy (k) — 0

since H(Oy (k)) = @ H"(O¢,(k)) = 0 for k < —1 we get H'(Zy(k)) = 0 for k < —1,
i=1

hence H'(£(k)) = 0 for k < —2. By Serre duality H'(E(k))

H*(E(k)) =0 for k = —1.

We wish to compute the spectrum of £. Notice that the number of p; in the spectrum

where i > 1 is zero since #p; = h*(E(—1 — 1)) — 2h' (E(=2 —4)) + K (E(=3 —4)) for i > 1.

2r—2

So x(&) can only have py’s, which implies x(€) = p, > = pj "

lle

H*(E(—k — 3))* so

We could also use formula (3.1): Since H*(£(—1)) = 0 for i = 1 we can use equation
(3.8) to compute h*(£(—1)). Since ¢;(E(—1)) = =1 —2 = =3 and ¢p(E(—1)) = 2r — 2 +
(=1)(—=1) + 1 = 2r, using formula (3.8) we get h'(£(—1)) = r — 1, hence #py =7 — 1, in
other words x (&) = pj .

Example 3.2.3. Let m > 2 be an integer, Y7 a plane curve of degree 2m — 2 and
Y5 a complete intersection of surfaces of degree m and m — 1. Let Y =Y, |_| Y5. Since
wy, = Oy, (2m—>5) we have wy = Oy (2m—>5) with deg(Y) = m(m—1)+2m—2 = m*+m—2.

The correspondence gives a vector bundle &’ satisfying

We wish to normalize &', so consider £ = £'(—m). Then ¢;(£) = 2m — 1+ 2(—m) = —1
and ¢3(€) = deg(Y) + (2m — 1)(=m) + m* = 2m — 2. So the new exact sequence is

0— Opn(—m) = & > Ty(m—1) =0 (3.11)

£ is stable because Y is not contained in any surface of degree m—1. Y has two components
so from the exact sequence 0 — H°(Opn) — H*(Oy) — H'(Zy) — 0 we get h'(Ty) = 1,
which implies H'(£(—m + 1)) = 0. But ¢; = 2m — 2 so Hl(é’(—%)) = 0 which implies

X(E) = popr--pea2.
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Example 3.2.4. Let Y] be the disjoint union of two plane curves of degree 4 and Y5 be a
curve from the intersection of two surfaces of degree 3 and 2. We have wy, = Oy, (1). Let

&, be the vector bundle corresponding to Y;.

c1(&]) = 5 and »(&)) = deg(Y;). Set & = E/(—3) so that ¢1(&) = —1, «2(&;) = 2 and
62(52) = 0.

It only makes sense to talk about the spectrum of & since the spectrum is defined only if
co > 0:

The number of ones in the spectrum is given by #1 = h'(&(—2)) — 2h'(&E1(-3)) +
h'(&1(—4)). From (3.13) we have H'(& (k) = H'(Zy,(k + 2)). We already know that
H'(Zy,(k)) = 0 for k < 0 since Y] is a disjoint union of complete intersections, indeed if
Z is a complete intersection curve of surfaces of degree d; and dy then using the exact
sequence

0 — Opn(—dy — dy) = Opn(—dy) ® Opn(—dy) > Iz — 0

we conclude H'(Zz(k)) = 0 for k < 0. Looking at the exact sequence
O—>Iy1 —>O[p>n —>Oy1 —>0

and noticing that H%(Zy,) = 0 and h°(Oy,) is the number of connected components, we
get h'(Zy,) = 1. So the spectrum of Y] is x(&;) = pi. In particular this implies that & is
not stable (Theorem 3.1.3), hence Y; is contained in a surface of degree 2.

Now consider ¥ = Y; |_|Y2 Let £ be the normalized vector bundle corresponding to
Y.Y is not contained in any surface of degree 2 so £ is stable. We have ¢;(€£) = —1 and
co(€) = 10 Using the same argument as before #1 = 2 so p? appears in x(€). We can
only complete the spectrum with py because h'(£(k)) = 0 for k < —3 so x(£) = pip;. We
could keep on adding those curves in order to generate other stable vector bundles with

only p; and py.

We now have three families of curves, each generating a family of vector bundles
with a specific spectrum, it is natural to ask what kind of monad we can get from each
family. We would like to use Theorem (2.2.3), but first we need to find the amount of
minimal generators of H,(€) and their respective degrees.

Let £ be a rank 2 stable vector bundle on P* with ¢, = —1 and call M := H.(E)
the first cohomology module over S = k[zg, 21, z2, x3] with M; being the degree jth
submodule of M. Given | € Z define p(l) to be amount of minimal generators for M
in degree [ and let m; := h'(£(j)) = dim(M;). It has a spectrum of the form x(&) =
{((=k —1)*® 15O 0@ ks®)} since s(k + 1) = 0, s(k) = 0 and s(1) = h*(E(~1 -
1)) — 2R (E(=1 = 2)) + h'(E(—=1 — 3)) we have that M_j_; is the lowest degree part of M
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such that it is nonzero. In particular this implies p(—k — 1) = m_j_1, using the fact that
= #{k; e x(E)|k; = | — 1} gives:

p(—k—1) = s(k) (3.14)

In other words, if we know how many times the greatest integer k appears in x (&), then we
know the amount of minimal generators in degree —k — 1 for M, which gives a summand
of our monad. Following the notation of equation (3.5) the number k + 1 will be the largest
number between the ¢;’s.

We still need to find the other ¢; < k + 1, the following proposition given by Hartshorne is

useful

Proposition 3.2.5. [11, Hartshorne & Rao, p.796] For 0 <i <k
s(i) — 22j>i+1s(j) <p(—i—1)<s(i)—1 (3.15)

Proof. Since we are in the case ¢; = —1, the restriction of £ to the general plane is stable
( [2, Barth, Theorem 3]). So the map M_;,_; — M_; is injective for every [ = 0. Define
N_; by the exact sequence 0 - M_; 1 - M_; — N_; — 0 and call n_; the dimension of
N_;. Let 2 € H°(Op2(1)), we have a natural map N_;_; > N_;, consider then the map
N_;_1 ® H°(Op>(1))—N_;. From the proof of [10, Hartshorne, Theorem 5.3] we have that

this map has image of dimension > n_; ;. Let N = (—B Ny, then p(—I) is also the number

keZ
of generators for N in degree —[ which results for [ > 1

p(=l)=ny—n-1 (3.16)

But n_; —n_;_1 = s(l — 1), hence
p(=l) <s(l—1)—1 (3.17)
Notice that N_;_; ® H°(Op2(1))—N_; has image < 3n_;_; since h°(Op2(1)) = 3. Hence
N_; must contain at least n_; — 3n_;_; minimal generators for N, equation (3. 1) ives the
inequality. O

We have seen that the a monad for £ must be of the form

r+1
@ OPS — 1 @(OP3< b - 1) @ O]IDS @ OPS CZ (318)

=1

For the sake of simplicity denote it by

Next proposition gives us a tool to limit the negative degrees appearing in the summands
of Voi
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Proposition 3.2.6. Suppose Vy has r summands with degrees < 1. Then V; must contain

at least v + 3 summands with degrees = —I

Proof. Vi(—1) has r summands with degrees > —I — 1, and since the monad is minimal
these must embed into the summand of V; consisting of terms with degrees > —[. The

quotient of this embedding has rank 3 or more [

With equation (3.14) we can construct a monad for the first three examples:

Example 3.2.7. (Disjoint union of conics) Let Y and € be the curve and the vector
bundle of example (3.2.2). We already know that x(£) = p;~" so using the notation from
equation (3.14) we have k = 0 and s(k) = r — 1. Then p(—1) = r — 1 and hence we know
that there is a ¢; = 1 which appears r — 1 times in V,. Since 0 was the largest integer in
the spectrum, there can be no integer greater than 1 in V), so we can only complete it
with Ops’s. But if we had any summand Ops in V, the monad wouldn’t be minimal, hence

we have an unique monad
Ops(—2)""" — Ops(—1)" ® Ops — Ops(1)"* (3.20)

Example 3.2.8. Let £ be the vector bundle of example 3.2.3. We already have x(€) =
PoD1---Pm—2 Where co = 2m —2 and m > 2. Then k = m —2 and p(—m + 1) = s(k) =1, so
Ops (m —1) appears only once in V. Using proposition (3.2.5) we get that Vy = Ops(m —1).

O]p3(—m) — Ops (a) @ O]p:%(—a — 1) @ Ops (b) &) O]p?,(—b — 1) — Ops (m — 1) (3.21)

We can compute a and b using the Chern polynomial ¢;: If Vy — V; — V, is a monad,

using the associated exact sequences

and
0>Vy—>K—E—0 (3.23)
. . T ce(V1)
and using the fact that ¢; is multiplicative, we get ¢ () = ———~————, we can then
ct(Vo)ei(Va)
compare each coefficient since ¢, (£) = —1, c2(€) = 2m—2. In our case the denominator will

be 1—t—m(m—1)t*, and its inverse is 1+¢+(1+m(m—1))t*+(1+2m(m—1))t*. Multiplying
this last polynomial with the numerator gives the polynomial 1—¢+(m?*—m—b—b*—a—a*)t?,

using again that co = 2m — 2 we are left with a diophantine equation
(m—1)(m—2)=b+b*+a+a (3.24)
We already know the case m = 2, so let m = 3 (c2 = 4)

2=0b+0b"+a+a (3.25)
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has 5 solutions, all of them give the same monad
Ops(—3) — Ops(—2) @ Ops(—1) ® Ops @ Ops (1) — Ops(2) (3.26)
The case m =4 (co = 6) gives
Ops(—4) — Ops(—3) @ Ops(—1) ® Ops @ Ops(2) — Ops(3) (3.27)
which suggests that a general solution is given by
Ops(—m) — Ops(—m + 1) @ Ops(—1) @ Ops @ Ops(m — 2) — Ops(m — 1) (3.28)
In order to verify it just take a = —1 and b = —m + 1.

Example 3.2.9. Let & be the vector bundle from example (3.2.4). x(€) = pip?, c2(€) = 10
and p(—2) = s(1) = 2. Using proposition (3.2.5) we get p(—1) < 2, so we need to analyze
three different cases.

Case 1: if p(—1) = 0 the monad will be

O]ps(—3>2 — OPS(a)@OPS(—a—l)@OPS(b)@)OPB(—b—1)@0[@3(0)@0[@3(—6—1) — OP3(2)2

(3.29)
The same computation gives the diophantine equation
a+a*+b+bP+c+ct=2 (3.30)
Which has 24 solutions, all of them giving the same monad
Ops(=3)* — Ops (=2) ® Ops(—1)* ® Ops @ Ops(1) — Ops(2)* (3.31)

Case 2: if p(—1) = 1 we have

O]ps(—3>2 @ Ops(—Q) — Ops (CL) @ O[P?)(—a, — 1) @ Ops (b) &) O]p:a(—b — 1) @ OPS(C) @ O]ps(—c — 1)
@®O0ps (d) @ O]ps(—d — 1) — O]ps(l) @ Ops (2)2
(3.32)

which gives the diophantine equation
a+a*+b+b+c+F+d+d* =4 (3.33)
it has 96 solutions giving the monad
Ops (—3)?* @ Ops (—2) — Ops(—2)?* D Ops (—1)* @ O3 ®Ops (1)* — Ops(1)DOps(2)* (3.34)
Case 3: if p(—1) = 2 we have

Ops (—3)? ® Ops(—2)* — Ops(a) ® Ops(—a — 1) ® Ops(b) @ Ops(—b — 1) @ Ops(c) ® Ops(—c — 1)
®Ops (d) @ Op3(—d — 1) @ Ops (6) &) (9[[»3(—6 — 1) — Ops(l)Q @ Ops (2)2
(3.35)
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gives the diophantine equation
a+a*+b+bP+ctE+rd+d®+ete’ =6 (3.36)

there are two monads satisfying the equation:

O[ps(—?))z (&) O]ps(—2)2 — Ops(—3)® O]ps(—l)4 @ Ofés @ Ops(2) — Op3(1)2 @® Ops (2)2
(3.37)

which cannot occur, since we are assuming the monad to be minimal, and

OPS(—3)2®O]P>3(—2)2 - OPS(—2)3@O[@3(—1)26‘)053@0[@3(1)3 - Op3(1>2@0p3<2)2 (338)
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