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Resumo

O estudo de códigos no contexto de reticulados e outras constelações discretas para

aplicações em comunicações é um tópico de interesse na área de teoria da informação.

Certas construções de reticulados, como é o caso das Construções A e D, e de outras

constelações que não são reticulados, como a Construção C, são utilizadas na decodificação

multi-estágio e para quantização vetorial eficiente. Isso motiva a primeira contribuição deste

trabalho, que consiste em investigar características da Construção C e propor uma nova

construção baseada em códigos lineares, que chamamos de Construção C✍, analisando suas

propriedades (condições para ser reticulado, uniformidade geométrica e distância mínima)

e relação com a Construção C. Problemas na área de comunicações envolvendo reticulados

podem ser computacionalmente difíceis à medida que a dimensão aumenta, como é o caso

de, dado um vetor no espaço real n✁dimensional, determinar o ponto do reticulado mais

próximo a este. A segunda contribuição deste trabalho é a análise desse problema restrito

a um sistema distribuído, ou seja, onde o vetor a ser decodificado possui cada uma de suas

coordenadas disponíveis em um nó distinto desse sistema. Nessa investigação, encontramos

uma solução aproximada para duas e três dimensões considerando a partição de Babai e

também estudamos o custo de comunicação envolvido.

Palavras-chave: Teoria dos reticulados. Códigos corretores de erros (Teoria da Informa-

ção). Teoria da informação em matemática. Sistemas distribuídos.



Abstract

The study of codes in the context of lattices and other discrete constellations for applications

in communications is a topic of interest in the area of information theory. Some lattice

constructions, such as the known Constructions A and D, and other special nonlattice

constellations, as Construction C, are used in multi-stage decoding and efficient vector

quantization. This motivates the first contribution of this work, which is to investigate

characteristics of Construction C and to propose a new construction based on linear codes

that we called Construction C✍, analyzing its properties (latticeness, geometric uniformity

and minimum distance) and relations with Construction C. Communication problems

related to lattices can be computationally hard when the dimension increases, as it is the

case of, given a real vector in the n✁dimensional space, determine the closest lattice point

to it. The second contribution of this work is the analysis of this problem restricted to a

distributed system, i.e., where the vector to be decoded has each coordinate available in a

separated node in this system. In this investigation, we find the approximate solution for

two and three dimensions considering the Babai partition and study the communication

cost involved.

Keywords: Lattices theory. Error correcting codes (Information theory). Information

theory in mathematics. Distributed systems.
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Introduction

"How do you best improve information transmission over a noisy channel?" This

question proposed by Claude Shannon was just the first among a lot questions that

contributes to the development of the information theory since his 1948 seminal paper [46],

where he established a common basis to everything that communicates.

This approach is still present in the recent progress regarding to transmission, storage

and security of information. Information theory studies mathematical notions and methods

to guarantee the transmission of a message through a system with minimum losses.

The contributions of this work are related to two special communication problems:

coding and quantization. The former is the act of converting a message into a symbol for

a reliable transmission and the latter is the process of constraining an input from a large

set of values to a discrete set, in order to simplify and make the communication feasible.

In the approaches presented here we have used a mathematical geometric structure

called lattice, which is defined as an additive discrete subgroup of Rn and can be geomet-

rically seen as a special periodic discrete arrangement of points in the n✁dimensional

space. Problems of interest involve lattices, such as its use to achieve low transmission

error in the additive white Gaussian noisy (AWGN) channel [18] and the application of

hard problems related to lattices to ensure the security of systems.

Lattices are commonly associated with linear codes in a lot of applications [56] and in

our context, it is interesting to mention the lattice Constructions A and D. Construction

A is used to obtain the checkerboard lattice Dn, the lattice E7 [18, pp. 138] and also

the body-centered cubic lattice (BCC), while Construction D is used for describing the

Barnes-Wall lattice in dimension 16 [18, pp. 234].

In the scope of nonlattice periodic constellations construced from linear codes lies

Construction C (or Forney’s multilevel code formula [22,23]), whose multi-stage decoding

can achieve the high SNR uniform-input capacity of an AWGN channel asymptotically

as the dimension n goes to infinity [25]. Two contributions of this thesis are related to

this special construction: an alternative proof for the geometric uniformity of a 2✁level

Construction C, counterexamples showing that this property does not hold for L ➙ 3 and

the proposal and detailed analysis of a construction which is a subset of Construction C,
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which we called Construction C✍.

The use of lattices to assure security of modern systems are based in hard problems

such as, given a real vector in the n✁dimensional space, to find the closest lattice point

to it (known as the closest lattice point problem) or to search for the lattice point with

the minimum norm (known as the shortest vector problem). These two problems are

NP-complete [21] and NP-hard [4], respectively and algorithms to approximate them are

widely studied [2, 26].

In this work we investigate the closest lattice point problem regarding communication

cost for a reliable transmission under a certain constrain. In general, in the literature, it is

assumed that the vector components are available at the same location of a given system.

We consider here the situation where the vector components are available at physically

separated nodes (as antennas or devices, for example) of a centralized (with the presence

of a fusion center) or interactive system (without a fusion center) and we are interested in

the communication cost of exchanging this information in order to determine the closest

lattice point.

This PhD thesis is structured in the following way: Chapter 1 is devoted to basic

concepts related to codes and lattices, such as a detailed description of known constructions

of lattices and nonlattice constellations using codes (Constructions A, C and D), a

characterization of the communication problems to be explored in this work and special

lattice bases such as Minkowski and obtuse superbase.

In Chapter 2, we mainly recall established properties of Construction C, present

different ways of producing general geometrically uniform constellations and as a conse-

quence of that, it follows an alternative proof for the geometric uniformity of a L ✏ 2

Construction C. We also present counterexamples showing that for L ➙ 3, Construction C

does not always have equi-distance spectrum, so it cannot be geometrically uniform.

In Chapter 3, we define a new construction, called Construction C✍, and study its

characteristics, such as geometric uniformity, latticeness, minimum distance and compar-

isons with the associated Construction C. Finally, we compare a hybrid Construction

C✍④C with Construction C for Gilbert-Varshamov achieving codes, pointing out potential

advantages of the first one.

In Chapter 4, we address the problem of solving the closest lattice point problem

in a distributed system, present a closed formula to compute the error probability based

on a Babai partition for the two dimensional case and computationally estimate bounds

for the same scenario in the three dimensional case. We also analyze the cost involved to

reproduce the Babai partition in both centralized and interactive models.

To conclude, in Chapter 5 we summarize the contributions of this PhD thesis and

present our perspectives for future works.
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Chapter 1

Introductory concepts and properties

We start with fundamental concepts and properties that are essential to the develop-

ment of this work. The main objects involved here are periodic discrete constellations in

the n✁dimensional Euclidean space, particularly lattices, which have been widely applied

to several problems in information theory and cryptography. In the scope of these problems,

we can mention lattice quantization [8] and multi-stage decoding [25], which will be ex-

plored with details in the next chapters. Lattices and other constellations constructions are

associated to linear codes introduced next. This chapter is mainly based on [18], [20], [26]

and [55].

1.1 Linear codes

We consider the binary field F2 ✏ t0, 1✉, with the standard modulo two operations.

A binary code of length n is a subset of Fn
2 . For most results in this work the codes will be

required to be linear.

Definition 1. (Linear binary code) A linear binary code C of length n and rank k is a

vector subspace of Fn
2 with dimension k.

A linear binary code of length n and rank k has 2k elements (codewords) and can be

given either as the image of a linear map φ : Fk
2 Ñ F

n
2 , where φ♣a1, . . . , akq ✏ G♣a1, . . . , akqT

or the kernel of a linear map ψ : F
n
2 Ñ F

n✁k
2 , where ψ♣y1, . . . , ynq ✏ H♣y1, . . . , ynqT ,

G P F
n✂k
2 andH P F

n✂n✁k
2 are binary matrices.

The matrix G is called a generator matrix and the matrix H is called parity check

matrix of the linear code C, since has the property to detect if an element c P F
n
2 is a

codeword of C, i.e.,

HcT ✏ 0 P F
n✁k
2 ô c P C ⑨ F

n
2 . (1.1)

The Hamming distance counts the number of different coordinates between two

distinct elements in F
n
2 :
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Definition 2. (Hamming distance) The Hamming distance between two elements x ✏
♣x1, . . . , xnq, y ✏ ♣y1, . . . , ynq P F

n
2 is defined as

dH♣x, yq ✏ ⑤ti : xi ✘ yi, 1 ↕ i ↕ n✉⑤. (1.2)

Definition 3. (Minimum distance of a code C) The minimum distance of a code C is the

minimum Hamming distance between all distinct codewords, i.e.,

dmin♣Cq ✏ mintdH♣x, yq : x, y P C, x ✘ y✉. (1.3)

Since a translation in F
n
2 is an isometry, when the Hamming distance is considered,

it follows that, if C is a linear code

dmin♣Cq ✏ mintdH♣0, cq, c P C✉. (1.4)

The distance dH♣0, cq is also called the Hamming weight of the codeword c.

A linear code of length n, rank k and with minimum distance d ✏ dmin♣Cq is said to

be an rn, k, ds✁code.

Definition 4. (Rate) The rate of an rn, k, ds✁linear code C is

R ✏ 1

n
log2 2k ✏ k

n
log2 2 ✏ k

n
bits/symbol. (1.5)

1.2 Lattices

1.2.1 Definitions and properties

Definition 5. (Lattice) A lattice Λ ⑨ R
N is a set of all integer linear combinations of a

set of n linearly independent vectors β ✏ tv1, v2, . . . , vn✉ P R
N (β is called lattice basis of

Λq, i.e.,

Λ ✏ ta1v1 � a2v2 � ☎ ☎ ☎ � anvn, ai P Z, i ✏ 1, . . . , n✉. (1.6)

It can be shown that Λ ❸ R
N is a lattice if and only if it is a discrete additive

subgroup of RN [40, pp. 24-25].

Definition 6. (Generator matrix of a lattice Λ) A matrix V P R
N✂n, whose columns are

basis vectors of a lattice Λ is called a generator matrix. In this case,

Λ ✏ tV u, u P Z
n✂1✉. (1.7)

Example 1. Given a basis β ✏ t♣1, 0q, ♣1④2,
❄

3④2q✉, the integer linear combinations

of these basis vectors is the well known A2 lattice [18] (illustrated in Figure 1), whose

generator matrix is

V ✏
✄

1 1④2
0

❄
3④2

☛
. (1.8)
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Figure 1 – A2 lattice.

Two matrices V1 and V2 of order N ✂ n and rank n are generator matrices of the

same lattice if and only if V1 ✏ V2 ☎ U, where U is an unimodular matrix (it has integer

entries and det♣Uq ✏ ✟1).

Definition 7. (Gram matrix) A Gram matrix of a lattice Λ is A ✏ V TV, where V is a

generator matrix of Λ.

Note that a Gram matrix is symmetric (for a lattice basis β ✏ tv1, v2, ...vn✉, Ai,j ✏
①vi, vj②) and its determinant is independent of the basis choice for the lattice, since for two

generator matrices V1 and V2 of Λ, det♣Λq ✏ det♣V T
1 V1q ✏ det♣UTV T

2 V2Uq ✏ det♣V T
2 V2q →

0.

Definition 8. (Volume) The volume of a lattice Λ is vol♣Λq ✏ det♣Λq1④2 ✏ ♣det♣V TV qq1④2,

where V is any generator matrix of Λ.

We say a lattice is full rank if n ✏ N. In this work we only consider full rank

lattices. For a full rank lattice Λ, with a generator matrix V, vol♣Λq ✏ ⑤det♣V q⑤.
To measure distances between points in a constellation1 in R

n we use the standard

Euclidean distance:

Definition 9. (Euclidean distance) The Euclidean distance between two points x ✏
♣x1, . . . , xnq and y ✏ ♣y1, . . . , ynq P R

n is defined as

dE♣x, yq ✏ ⑤⑤x✁ y⑤⑤ ✏
❞

n➳
i✏1

♣xi ✁ yiq2. (1.9)

Definition 10. (Minimum distance of a constellation Γ) For a constellation Γ ❸ R
n, the

minimum distance is defined as

dmin♣Γq ✏ inft⑤⑤x✁ y⑤⑤ : x, y P Γ, x ✘ y✉. (1.10)
1 A constellation is a discrete set of points in R

n.
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For a lattice Λ ❸ R
n, we also have dmin ✏ mintd♣x, 0q : x P Λ✉.

There exist some important lattice characteristics, such as Voronoi region, kissing

number and geometric uniformity.

Definition 11. (Fundamental region) A set F is called a fundamental region of a lattice

Λ if all its translations x� F ✏ tx� y : y P F✉, over all x P Λ, define a partition2 of Rn.

Definition 12. (Voronoi region) The Voronoi region V♣λq of a lattice Λ ⑨ R
n is the

subset of Rn containing all points nearer to lattice point λ than to any other lattice point:

V♣λq ✏ tx P R
n : ⑤⑤x✁ λ⑤⑤ ↕ ⑤⑤x✁ λ̃⑤⑤, for all λ̃ P Λ✉, (1.11)

where ⑤⑤.⑤⑤ denotes the Euclidean norm.

Example 2. The Voronoi region of the well known A2 lattice, with basis t♣1, 0q, ♣1④2,
❄

3④2q✉
is illustrated in Figure 2.

Figure 2 – Voronoi region of A2 lattice.

A Voronoi region of a lattice V♣0q is an example of a fundamental region, what means

that one can tile the entire R
n space considering translations of V♣0q, by elements λ P Λ.

The volume of any fundamental region of a lattice is vol♣Λq (Definition 8).

Definition 13. (Voronoi and relevant vectors) A vector v is called a Voronoi vector if

the hyperplane ✧
x P R : ①x, v② ✏ 1

2
①v, v②

✯
(1.12)

has a non-empty intersection with V♣0q. A Voronoi vector is said to be relevant if this

intersection is an ♣n✁ 1q✁dimensional face of V♣0q.

Definition 14. (Kissing number) The kissing number is the number of nearest neighbors

of a given point in a constellation of discrete points in R
n.

2 We consider here a partition of Rn as a family of sets such that their union is R
n and the intersection

of two different sets is contained in their boundaries.
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For a lattice constellation, the kissing number is the same for every point.

The following definition, geometric uniformity, is important because it guarantees

that a constellation which satisfies this definition has a special type of symmetry, in which

every point sees the same spectrum of neighbor points and all Voronoi regions have the

same shape.

Definition 15. (Geometrically uniform set) A set Γ ⑨ R
n is geometrically uniform if for

any two elements c, c✶ P Γ, there exists a distance-preserving transformation T in R
n such

that c✶ ✏ T ♣cq and T ♣Γq ✏ Γ.

Remark 1. Since any isometry in R
n is a composition of a translation by a vector with a

linear orthogonal map (rotation of reflection), the above condition is equivalent to require

that for any c, c✶ P Γ, there exist an orthogonal map To and x P R
n, such that To♣c✁xq ✏ c✶

and To♣Γ✁ xq ✏ Γ.

Every lattice Λ is geometrically uniform, due to the fact that any translation Λ� x

by a lattice point x P Λ is just Λ. This means that every point of the lattice has the same

number of neighbors at each distance and all Voronoi regions are congruent. Indeed, any

lattice translation Λ� t is geometrically uniform.

Definition 16. (Sphere packing) Given a discrete set P ❸ R
n, a sphere packing of P is

the union of n✁balls of maximum radius r centered at points of P , such that two distinct

balls can only intersect at their boundaries.

Definition 17. (Packing radius and packing density of a lattice) The packing radius ρ of

a lattice is the half of the lattice minimum distance ρ ✏ dmin♣Λq
2

and the packing density

∆Λ is the portion of the space R
n occupied by packing spheres centered at lattice points.

Due to the geometric uniformity of lattices:

∆Λ ✏ volume of a sphere of radius ρ

volume of fundamental region
(1.13)

✏ vol S♣0, ρq
vol♣Λq , (1.14)

Example 3. Considering Λ as the A2 lattice (Example 1), it follows that

∆A2
✏ πρ2

⑤ detV ⑤ ✏
π
4❄
3

2

✓ 0.9068... (1.15)

where V is any generator matrix of Λ.

Lattices with the largest possible packing density are known in dimensions 1 to 8

and in dimension 24 [18]. For general discrete sets, the largest packing is only known

in dimensions 1, 2, 3, 8 and 24 and it is achieved for special lattices in these dimensions

[16,29,52]:



1.2. LATTICES 21

• For n ✏ 2, the densest packing of circles in the plane is the one whose circles are

centered in the the hexagonal lattice [49] (Example 1).

• For n ✏ 3, the densest packing of spheres in three dimension covers
π❄
18

✓ 0.7404...

of the space and is achieved by spheres centered in the face centered cubic lattice [29],

with basis t♣1, 1,✁1q, ♣1,✁1, 1q, ♣✁1, 1, 1q✉.

• For n ✏ 8, the densest packing [52] covers
π4

384
✓ 0.2537... of the 8✁dimensional

space and is achieved by the E8 lattice, defined as

E8 ✏ t♣x1, . . . , x8q : all xi P Z or all xi P Z� 1

2
, and

➳
xi is even✉. (1.16)

• For n ✏ 24, the densest packing [16], which has
π12

12!
✓ 0.001930... of the space

covered, is given by the Leech lattice Λ24, that consists of the vectors [18]

a♣0 � 2c� 4xq,
a♣1 � 2c� 4yq, (1.17)

where a ✏ 1④
❄

8, 0 ✏ ♣0, . . . , 0q❧♦♦♦♦♠♦♦♦♦♥
PZ24

, 1 ✏ ♣1, . . . , 1q❧♦♦♦♦♠♦♦♦♦♥
PZ24

and c P C24, which is the binary Golay

code. Moreover, x, y P Z
24 such that

24➳
i✏1

xi ✑ 0 ♣mod 2q and
24➳

i✏1

yi ✑ 1 ♣mod 2q.

Definition 18. (Packing efficiency) Given the packing density, the packing efficiency is

χ♣Λq ✏ ♣∆Λq1④n.

1.2.2 Constructions from linear codes

From linear codes it is possible to derive lattice and periodic constellations using the

known Construction A,C and D. In what follows, to fix notation, consider the natural

embedding ψ : Fn
2 Ñ R

n.

Definition 19. (Construction A) Let C be an rn, k, ds✁binary code. We define the Con-

struction A from C as

ΛA ✏ ψ♣Cq � 2Zn. (1.18)

Observe that ΛA is a lattice that contains 2Zn as a sublattice.

Definition 20. (Construction D) Let C1 ❸ ☎ ☎ ☎ ❸ CL ❸ F
n
2 be a family of nested linear

binary codes. Let ki ✏ dim♣Ciq and let b1, b2, . . . , bn be a basis of Fn
2 such that tb1, . . . , bki

✉
are bases of Ci. The lattice ΛD consists of all vectors of the form

ΛD ✏
L➳

i✏1

2i✁1

ki➳
j✏1

αi
jψ♣bjq � 2Lz, (1.19)

where αi
j P t0, 1✉ and z P Z

n.
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Our study in the next Chapter 2 is focused in one particular construction which is

not always a lattice, denoted by Construction C and defined for general codes Ci ❸ F
n
2 , i ✏

1, . . . , L as follows.

Definition 21. (Construction C) Consider L binary codes C1, . . . , CL ❸ F
n
2 , not necessarily

nested or linear. The infinite constellation ΓC in R
n, called Construction C, is defined as:

ΓC :✏ C1 � 2C2 � ☎ ☎ ☎ � 2L✁1
CL � 2L

Z
n, (1.20)

i.e.,

ΓC :✏ tc1 � 2c2 � ☎ ☎ ☎ � 2L✁1cL � 2Lz : ci P Ci, i ✏ 1, . . . , L, z P Z
n✉. (1.21)

Note that this definition is based on Forney’s multilevel code formula [22] and it

does not require the additional condition assumed in the definition from Conway and

Sloane [18, pp. 150].

In general, even if the underlying codes are linear, Construction C produces a

nonlattice constellation. Note that if L ✏ 1, i.e., if we consider a single level with a linear

code, then this construction, as well as Construction D, reduces to a lattice Construction

A.

Example 4. Consider C1 ✏ t♣0, 0q, ♣1, 1q✉ and C2 ✏ t♣0, 0q✉. The 2✁level Construction

C from theses codes is given by ΓC ✏ C1 � 2C2 � 4Z2. Geometrically, we can see this

constellation in Figure 26 and clearly ΓC is not a lattice.

Figure 3 – Nonlattice Construction C.

Example 5. A well-known lattice that we can construct using 2✁level Construction C is

the body centered cubic lattice (BCC). Consider C1 ✏ t♣0, 0, 0q✉ and C2 ✏ t♣0, 0, 0q, ♣1, 1, 1q✉,
then ΓC ✏ t♣0, 0, 0q � 4z, ♣2, 2, 2q � 4z✉, z P Z

3. Note that this construction is a lattice

with basis t♣4, 0, 0q, ♣0, 4, 0q, ♣2, 2, 2q✉, which generates a scaled equivalent version of the

BCC lattice.
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Example 6. Another important lattice we can construct via Construction C is the Barnes-

Wall Λ16 [18], considering C1 ✏ R♣0, 4q, C2 ✏ R♣2, 4q and C3 ✏ F
16
2 , where R♣r,mq

represents the Reed-Muller code of length 2m and of order 0 ↕ r ↕ m. We have that

Λ16 ✏ C1 � 2C2 � 4C3 � 8Z16

✏ R♣0, 4q � 2R♣2, 4q � 4Z16
2 � 8Z16. (1.22)

Definition 22. (Schur product) For x ✏ ♣x1, . . . , xnq and y ✏ ♣y1, . . . , ynq P F
n
2 , the Schur

product is defined by x ✝ y ✏ ♣x1y1, . . . , xnynq P F
n
2 .

Regarding to the Schur product, for x, y P F
n
2 , if � denotes the sum in R

n and ❵ the

modulo two sum in F
n
2 , we have

x� y ✏ x❵ y � 2♣x ✝ yq P R
n. (1.23)

Theorem 1. [32] (Relation between Constructions C and D) Given a family of nested

binary linear codes C1 ❸ ☎ ☎ ☎ ❸ CL ❸ F
n
2 , then the following statements are equivalent:

1. ΓC is a lattice.

2. C1 ❸ ☎ ☎ ☎ ❸ CL ❸ F
n
2 is closed under Schur product.

3. ΓC ✏ ΛD.

1.2.3 Communication problems involving lattices

The study of communication and information transmission involves the solution of

special problems and we mention here the ones that are relevant to our work, such as the

notion of multi-stage decoding and quantizers.

Multilevel constructions, such as Construction C and D, can be decoded through a

very efficient method, called multi-stage decoding [25]. In multi-stage decoding, compo-

nent codes are decoded one at a time into a sequence of decoding stages. The decoded

information at one stage is passed to the next stage for decoding the next component

code. Because the component codes are shorter and simpler, they can be decoded with

soft-decision decoding to achieve good error performance. We will present in sequence the

algorithm for multi-stage decoding, represented also in Figure 4.

Algorithm: Multi-stage decoding algorithm

Let D1, . . . ,DL be, respectively, the decoders for the codes C1, . . . , CL.

1. At the first stage D1 estimates the codeword c1 ✏ ♣c11, . . . , c1nq under the assumption

that the binary vectors of the upper levels, i.e., c2, . . . , cL are uncoded, getting ĉ1.



1.2. LATTICES 24

2. The second stage decoder D2 works under the assumption that the output of the

previous stage ĉ1 correctly estimated the transmitted codeword c1. Also, the vectors

c3, . . . , cL of the upper levels is considered as uncoded.

3. Based on the assumptions that the decoder performed correctly in the previous

stages, all remaining codewords c3, . . . , cL are estimated by their respective decoders.

Figure 4 – Multi-stage decoding algorithm, based on [20, pp. 514].

Another well explored communication problem is quantization, which in general is

the process of restricting a large set of values to a discrete set of values. Since a lattice is

discrete, then there exists a special quantization which is done by using lattices.

The distance of a point x P R
n from a lattice Λ is defined as ⑤⑤x✁Λ⑤⑤ ✏ min

λPΛ
⑤⑤x✁λ⑤⑤.

The lattice quantizer maps x to its closest lattice point, i.e.,

QΛ♣xq ✏ argmin
λPΛ

⑤⑤x✁ λ⑤⑤. (1.24)

Observe that all points inside the Voronoi region V ♣λq are mapped to λ P Λ. In case of a

tie, the algorithm output must give all closest lattice points or just choose one of those.

An approach to lattice quantization is to quantize x P R
n to a lattice point by

considering other simpler fundamental regions.

In higher dimensions, to determine the closest lattice point to a given real vector is a

NP-complete problem for general lattices and this fact justify its use in cryptosystems [26].

The following discussion aim to introduce as well as present some attempts to approach

this problem using a method proposed by Babai [7]. Another formulation of quantization

in lattices is:

Definition 23. (Closest lattice point problem) The closest vector problem (CVP) in a

lattice (denoted as closest lattice point problem) can be described as an integer least squares

problem with the objective of determining u✝, such that

u✝ ✏ arg min
uPZn

⑤⑤ x✁ V u ⑤⑤2 (1.25)
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where the norm considered is the standard Euclidean norm. A closest lattice point to x is

then given by xnl ✏ V u✝.

Observe that the mapping gcl : R
n Ñ Λ, x ÞÑ xnl partitions R

n into Voronoi cells,

each of volume ⑤ detV ⑤, where V is the generator matrix of the lattice Λ. Exact as well as

approximate solutions to the closest lattice point problem have been well studied.

One approach to solve the closest lattice point problem approximately is perfoming

the nearest plane (np) algorithm which computes xnp, an approximation to xnl, given by

xnp ✏ b1v1 � b2v2 � . . .� bnvn, where bi P Z is obtained as follows, derived from [7].

Algorithm: Babai nearest plane algorithm (np algorithm)

Let Si denote the subspace spanned by the vectors tv1, v2, . . . , vi✉, i ✏ 1, 2, . . . , n.

Let Pi♣zq be the orthogonal projection of z onto Si and let vi,i✁1 ✏ Pi✁1♣viq be the nearest

vector to vi in Si✁1. We have the following unique decomposition: vi ✏ vi,i✁1 � v❑i,i✁1. Also,

let z❑i ✏ zi ✁ Pi♣ziq.

1. Start with zn ✏ x and i ✏ n.

2. Compute bi ✏
✏①zi, v

❑
i,i✁1②④⑥v❑i,i✁1⑥2

✘
, zi✁1 ✏ Pi✁1♣ziq ✁ bivi,i✁1, for i ✏ n, n✁ 1, . . . , 1.

Here rxs denotes the nearest integer to x.

3. The vector b ✏ ♣b1, b2, . . . , bnq is called Babai point, which is an approximation to

the given real vector xnl.

Definition 24. (Babai partition) The mapping gcl : R
n Ñ Λ, x ÞÑ xnp partitions R

n

into hyper-rectangular cells with volume ⑤ detV ⑤ and we refer to this partition as a Babai

partition.

Example 7. Figure 5 represents the Babai partition (black lines) and the Voronoi partition

(pink lines) for the hexagonal lattice A2 generated by t♣1, 0q, ♣1④2,
❄

3④2q✉. It gives a

geometric intuition to see why the np algorithm is an approximation to the nearest lattice

point problem.

Figure 5 – Cells of Babai and Voronoi partitions of the hexagonal lattice A2.
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Note that Babai partition is basis dependent, as will be clearer in Example 26. In

case the generator matrix V is upper triangular with ♣i, jq entry vij, each rectangular cell

is axis-aligned and has sides of length ⑤v11⑤, ⑤v22⑤, . . . , ⑤vnn⑤. Moreover, in this specific case,

the vectors v❑i,i✁1 mentioned above are of type ♣0, 0, . . . , vii, 0, . . . , 0q and solving the np

algorithm is the same as solving the linear system V b̃ ✏ x, with x P R
n and b ✏ rb̃s P Z

n.

To illustrate this process for the two dimensional case, consider an upper triangular

generator matrix given by

V ✏
✄

1 a

0 b

☛
. (1.26)

Then, we aim to find ♣u1, u2q such that ♣x1 ✁ u1 ✁ au2q2 � ♣x2 ✁ bu2q2 is minimum and

using the np algorithm, we choose u2 ✏
✑x2

b

✙
and u1 ✏ rx1 ✁ au2s . This method can be

generalized for an arbitrary dimension n and provides an straightforward way of obtaining

the Babai point (and consequently the Babai partition).

We remark that given a lattice Λ with an arbitrary generator matrix V P R
n✂n we

can apply QR decomposition, i.e., V ✏ QR, where Q P R
n✂n is an orthogonal matrix and

R P R
n✂n is an upper triangular matrix, that generates a rotation of the original lattice

defined by V.

A natural way to obtain the QR decomposition of a generator matrix V P R
n✂n is

applying the standard Gram-Schmidt process to the column vectors vi of V, i ✏ 1, . . . , n.

Then, for:

w1 ✏ v1,

w2 ✏ v2 ✁ ①v2, q1②
①q1, q1②q1,

...

wn ✏ vn ✁ ①vn, q1②
①q1, q1② q1 ✁ ☎ ☎ ☎ ✁ ①vn, qn✁1②

①qn✁1, qn✁1②qn✁1, (1.27)

where ①, ② is the usual inner product in R
n and ⑤⑤.⑤⑤ is the Euclidean norm. Set ei ✏

wi

⑤⑤wi⑤⑤ , i ✏ 1, . . . , n. Thus, Q ✏ re1 . . . ens,

R ✏

☎
✝✝✝✝✝✆
①v1, e1② ①v2, e1② . . . ①vn, e1②

0 ①v2, e2② . . . ①vn, e2②
...

...
. . .

...

0 0 . . . ①vn, en②

☞
✍✍✍✍✍✌ (1.28)

and V ✏ QR.

It is also possible to use known transformations as Householder reflections or Givens

rotations instead of the Gram-Schmidt proccess, as carefully described in [27].
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1.2.4 Special bases

We will now introduce now two types of special bases we will work closely in this

thesis: Minkowski-reduced basis [38] and obtuse superbase [17].

Definition 25. (Minkowski-reduced basis) A basis tv1, v2, ..., vn✉ of a lattice Λ in R
n is

said to be Minkowski-reduced if vj, j ✏ 1, . . . , n, is such that ⑥vj⑥ ↕ ⑥v⑥, for any v for

which tv1, ..., vj✁1, v✉ can be extended to a basis of Λ.

In particular, for lattices of dimension n ↕ 4, the norms of the Minkowski-reduced

basis vectors achieve the successive minima [43]. For two-dimensional lattices, a Minkowski-

reduced basis is also called Lagrange-Gauss reduced basis and there is a simple characteri-

zation [18]: a lattice basis tv1, v2✉ is a Minkowski-reduced basis if only if ⑥v1⑥ ↕ ⑥v2⑥ and

2①v1, v2② ↕ ⑥v1⑥2
. It follows that the angle θ between the minimum norm vectors v1 and

v2 must satisfy
π

3
↕ θ ↕ 2π

3
.

It is also possible to characterize Minkowski-reduced basis for lattices in dimensions

less or equal than three according to the following proposition.

Proposition 1. [18] Consider the Gram matrix A of a lattice Λ and the conditions below:

0 ➔ a11 ↕ a22 ↕ a33 ↕ ☎ ☎ ☎ ↕ ann (1.29)

2⑤ast⑤ ↕ ass ♣s ➔ tq (1.30)

2⑤ars ✟ art ✟ ast⑤ ↕ arr � ass ♣r ➔ s ➔ tq. (1.31)

Then, inequalities (1.29), (1.29)–(1.30) and (1.29)–(1.31) define a Minkowski-reduced basis

for dimensions 1,2 and 3, respectively.

It is pertinent to remark that all lattices have a Minkowski-reduced basis and roughly

speaking, it consists of short vectors that are “as perpendicular as possible”. Nevertheless,

it is computationally hard to get such a basis as the dimension of the lattice increase. One

alternative is to use the basis obtained with the LLL algorithm [34], which approximates

the Minkowski-reduced basis and can be derived in polynomial time. For a basis that is

LLL reduced, the ratio of the distances ⑥x✁ xnp⑥④⑥x✁ xnl⑥ can be bounded above by a

constant that depends on the dimension alone [7].

There is another important basis to our study, called obtuse superbase. The remainder

of this section based mainly in [17] is devoted to describe it.

Definition 26. (Voronoi’s first kind and obtuse superbase) Let tv1, v2, . . . , vn✉ be a basis

for a lattice Λ. A superbase tv0, v1, . . . , vn✉ with v0 ✏ ✁
n➳

i✏1

vi, is said to be obtuse if

pij ✏ ①vi, vj② ↕ 0, for i, j ✏ 0, . . . , n, i ✘ j. A lattice Λ is said to be of Voronoi’s first

kind if it has an obtuse superbase.
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The above parameters pij are called Selling parameters and if pij ➔ 0 we say that

the superbase is strictly obtuse.

Example 8. Consider the standard basis tv1, v2, v3✉ for the body-centered cubic (BCC)

lattice where v1 ✏ ♣1, 1,✁1q, v2 ✏ ♣1,✁1, 1q, v3 ✏ ♣✁1, 1, 1q. We set v0 ✏ ✁v1 ✁ v2 ✁ v3 ✏
♣✁1,✁1,✁1q and v0, v1, v2, v3 is a strictly obtuse superbase for BCC lattice. Observe that

pij ✏ ✁1 ➔ 0 for all i, j ✏ 0, 1, 2, 3, i ✘ j and BCC is of Voronoi’s first kind.

The existence of an obtuse superbase allows a characterization of the relevant Voronoi

vectors for a lattice.

Theorem 2. [17, Th.3, Sec. 2] Let Λ be a lattice of Voronoi’s first kind with obtuse

superbase tv0, v1, . . . , vn✉. Vectors of the form
➳
iPS

vi, where S is a strict non-empty subset

of t0, 1, . . . , n✉ are Voronoi vectors of Λ.

It was demonstrated [17] that all lattices with dimension less or equal than three

are Voronoi’s first kind. In three dimensions, considering an obtuse superbase, since

v0 ✏ ✁v1 ✁ v2 ✁ v3, all Voronoi vectors described in the above theorem can be written

as one of the following seven vectors or their opposites [17]: v1, v2, v3, v12 ✏ v1 � v2, v13 ✏
v1 � v3, v23 ✏ v2 � v3, v123 ✏ v1 � v2 � v3.

Given an obtuse superbase, the norms N♣v1q, N♣v2q, N♣v3q, N♣v12q, N♣v13q, N♣v23q,
N♣v123q, where N♣xq ✏ ①x, x②, are called vonorms and pij ✏ ✁ ①vi, vj② ♣0 ↕ i ➔ j ↕ 3q are

called conorms, of the superbase tv0, v1, v2, v3✉.
The nonzero cosets of Λ④2Λ naturally form a discrete projective plane of order 2. The

vonorms are marked as the nodes of the projective plane and the corresponding conorms 0

and pij at the nodes of the dual plane in the following Figure 6.

Figure 6 – Projective and dual planes labelled with vonorms and conorms respectively
(based on [17], p. 61).
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There exists an algorithm [17] to reduce any basis of a lattice in R
3 to an obtuse

superbase, based on projective planes. Here we use a more straightforward approach by

starting from special bases.

An obtuse superbase is essential for us to characterize the five parallelohedra that are

Voronoi cell of three-dimensional lattices: truncated octahedron, hexa-rhomic dodecahedron,

rhombic dodecahedron, hexagonal prism and cuboid.

Let Λ be an arbitrary 3✁dimensional lattice, with obtuse superbase tv0, v1, v2, v3✉
and conorms pi,j. A vector t P R

3 can be specified by its inner products

♣①t, v1②, ①t, v2②, ①t, v3②q ✏ ♣y1, y2, y3q ✏ y. (1.32)

The most generic Voronoi region in three dimensions is the truncated octahedron,

with 14 faces and 24 vertices. It is know [17] that the vertices of this Voronoi cell are all

the 24 points pijkl where ti, j, k, l✉ is any permutation of t0, 1, 2, 3✉:

yi ✏ 1

2
♣pij � pik � pilq, yj ✏ 1

2
♣✁pji � pjk � pjlq,

yk ✏ 1

2
♣✁pki ✁ pkj � pklq, yl ✏ 1

2
♣✁pli ✁ plj ✁ plkq. (1.33)

Using Equations (1.32) and (1.33) one can define all the points that generates a

generic Voronoi region.

It is possible to guarantee that two lattices for which the correspondent conorms

are zero have combinatorially equivalent Voronoi regions (since one can be continuously

deformed into the other without any edges being lost).

When we construct the dual projective planes to represent the conorms, there are

five choices for zeros: one, two, three collinear zeros, three non-collinear zeros or four zeros.

Each of these configuration produces a different Voronoi cell according to Figure 7.

Figure 7 – Dual plane labeled with conorms and its correspondent Voronoi cells (based
on [17], p. 65).
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In the following example, we will illustrate with the body-centered cubid lattice (BCC),

the method proposed by Conway and Sloane [17] to characterize the Voronoi region of a

three dimensional lattice given an obtuse superbase.

Example 9. Consider the BCC lattice, its obtuse superbase tv0, v1, v2, v3✉, where v0 ✏
♣✁1,✁1,✁1q, v1 ✏ ♣1, 1,✁1q, v2 ✏ ♣1,✁1, 1q, v3 ✏ ♣✁1, 1, 1q (Example 8) and its conorms

pij ✏ 1, for all i, j ✏ 0, 1, 2, 3, i ✘ j.

Comparing the dual projective plane with the characterization in Figure 7 we can

also claim that the Voronoi cell of this lattice is a truncated octahedron and the next step

is to find the vertices that define it. To do that, we find the coordinates via Equation (1.33)

and solve the linear system proposed in Equation (1.32), by considering the permutation

t1, 0, 3, 2✉ ✏ ti, j, k, l✉. Then:

y1 ✏ 1

2
♣1 � 1 � 1q ✏ 3④2, y0 ✏ 1

2
♣✁1 � 1 � 1q ✏ 1④2,

y3 ✏ 1

2
♣✁1 ✁ 1 � 1q ✏ ✁1④2, y2 ✏ 1

2
♣✁1 ✁ 1 ✁ 1q ✏ ✁3④2. (1.34)

Thus,♣y0, y1, y2, y3q ✏ ♣1④2, 3④2,✁3④2,✁1④2q.
To continue, we need to solve the linear system given by ♣①t, v1②, ①t, v2②, ①t, v3②q ✏

♣y1, y2, y3q ✏ ♣3④2,✁3④2,✁1④2q, which will give us ♣t1, t2, t3q ✏ ♣0, 1④2,✁1q. Table 1 presents

the vertices obtained after we perform this process through all the possible permutations.

Table 1 – Vertices of Voronoi region given an obtuse su-

perbase of the BCC lattice

Permutation ti, j, k, l✉ ♣y0, y1, y2, y3q Voronoi vertex ♣t1, t2, t3q
t0, 1, 2, 3✉ ♣3④2, 1④2,✁1④2,✁3④2q ♣0,✁1④2,✁1q
t0, 1, 3, 2✉ ♣3④2, 1④2,✁3④2, 1④2q ♣✁1④2, 0,✁1q
t0, 2, 1, 3✉ ♣3④2,✁1④2, 1④2,✁3④2q ♣0,✁1,✁1④2q
t0, 2, 3, 1✉ ♣3④2,✁3④2, 1④2,✁1④2q ♣✁1④2,✁1, 0q
t0, 3, 1, 2✉ ♣3④2,✁1④2,✁3④2, 1④2q ♣✁1, 0,✁1④2q
t0, 3, 2, 1✉ ♣3④2,✁3④2,✁1④2, 1④2q ♣✁1,✁1④2, 0q
t1, 2, 0, 3✉ ♣1④2, 3④2,✁1④2,✁3④2q ♣1④2, 0,✁1q
t1, 0, 3, 2✉ ♣1④2, 3④2,✁3④2,✁1④2q ♣0, 1④2,✁1q
t1, 2, 0, 3✉ ♣✁1④2, 3④2, 1④2,✁3④2q ♣1, 0,✁1④2q
t1, 2, 3, 0✉ ♣✁3④2, 3④2, 1④2,✁1④2q ♣1, 1④2, 0q
t1, 3, 0, 2✉ ♣✁1④2, 3④2,✁3④2, 1④2q ♣0, 1,✁1④2q
t1, 3, 2, 0✉ ♣✁3④2, 3④2,✁1④2, 1④2q ♣1④2, 1, 0q
t2, 0, 1, 3✉ ♣1④2,✁1④2, 3④2,✁3④2q ♣1④2,✁1, 0q
t2, 0, 3, 1✉ ♣1④2,✁3④2, 3④2,✁1④2q ♣0,✁1, 1④2q
t2, 1, 0, 3✉ ♣✁1④2, 1④2, 3④2,✁3④2q ♣1,✁1④2, 0q
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Similarly we have that p02 ↕ 0.

♣ðq If tv0, v1, v2✉ is an obtuse superbase, any permutation of it is also an obtuse

superbase. So, we may consider one such that ⑤v1⑤ ↕ ⑤v2⑤ ↕ ⑤v0⑤. Then we have that

0 ➔ ①v1, v1② ↕ ①v2, v2② ↕ ①v1 � v2, v1 � v2② and v1 ✘ 0.

From the last inequality, we have that

✁2①v1, v2② ↕ ①v1, v1② ñ 2⑤①v1, v2②⑤ ↕ ①v1, v1②. (1.36)

For n ✏ 3 ♣ñq Consider a Minkowski-reduced basis tv1, v2, v3✉ such that ①v1, v2② ↕
0, ①v1, v3② ↕ 0 and ①v2, v3② ↕ 0. To check if tv0, v1, v2, v3✉ is an obtuse superbase, we need

to verify that p01 ↕ 0, p02 ↕ 0 and p03 ↕ 0.

Observe that

p01 ✏ ①v0, v1② ✏ ✁①v1, v1②✁①v1, v2②❧♦♦♦♠♦♦♦♥
⑤①v1,v2②⑤

✁①v1, v3②❧♦♦♦♠♦♦♦♥
⑤①v1,v3②⑤

↕ ✁①v1, v1② � ①v1, v1②
2

� ①v1, v1②
2

↕ 0. (1.37)

With analogous arguments, we show that p02 ↕ 0 and p03 ↕ 0.

♣ðq To prove the converse, up to a permutation, we may consider an obtuse superbase

such that ⑤v1⑤ ↕ ⑤v2⑤ ↕ ⑤v3⑤ ↕ ⑤v0⑤, ⑤v2⑤ ↕ ⑤v1 � v2⑤, ⑤v3⑤ ↕ ⑤v1 � v3⑤ and ⑤v3⑤ ↕ ⑤v2 � v3⑤. This

basis will be Minkowski-reduced if we prove conditions (1.30) and (1.31) from Proposition

1, i.e.,

2⑤①v1, v2②⑤ ↕ ①v1, v1②; 2⑤①v1, v3②⑤ ↕ ①v1, v1②; 2⑤①v2, v3②⑤ ↕ ①v2, v2② (1.38)

and

2⑤ ✟ ①v1, v2② ✟ ①v1, v3② ✟ ①v2, v3②⑤ ↕ ①v1, v1② � ①v2, v2②. (1.39)

The inequalities in Equation (1.38) are shown similarly to the two dimensional

case starting from ①v2, v2② ↕ ①v1 � v2, v1 � v2②, ①v3, v3② ↕ ①v1 � v3, v1 � v3② and ①v3, v3② ↕
①v2�v3, v2�v3②. Starting from ①v3, v3② ↕ ①v1�v2�v3, v1�v2�v3②, it follows the inequality

in Equation (1.39) concluding the proof.
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Chapter 2

Construction C

This chapter is devoted to point out known properties of general Construction C and

to find out how close to a lattice can this construction be, in case it does not satisfy the

condition required in [32]. Our contributions are to demonstrate that a two-level (L ✏ 2)

Construction C is geometrically uniform (a result that can also be deduced from [24]) and

to show that for three levels and up (L ➙ 3) the distance spectrum between points of the

constellation may vary and consequently, Construction C is not geometrically uniform in

general. We also write derivations that shows how to construct more general geometrically

uniform constellations. These results appear in [11,13] and they were inspired by [18, pp.

150-156] and [24].

2.1 Why Construction C?

There exist significant properties and applications of Construction C that can be

useful for communication purposes, such as the fact that Construction C with multi-

stage decoding can achieve the high SNR uniform-input capacity of an AWGN channel

asymptotically as the dimension n goes to infinity [25]. Moreover, if the underlying codes

of this construction are linear, then all points in this constellation have the same minimum

distance, but not necessarily the same kissing number.

Another application of nonlattice construction is the Dn� tesselation [18], that could

be conceived as a 2✁ level Construction C if we consider C1 as the rn, 1, ns✁ repetition code

and C2 as the rn, n✁ 1, 2s✁even parity check code. Note that for n even, this construction

represents a lattice, because we would have nested linear codes that are closed under Schur

product. Otherwise, when n is odd, we obtain a nonlattice constellation which coincides

with Construction C.

Agrell and Eriksson [1] proved that the Dn� tessellation [18] exhibits as a lower

normalized second moment (i.e. a better quantization efficiency) than any known lattice

tessellation in dimensions 7 and 9. Note that a tessellation of an n✁dimensional space is a



2.2. PROPERTIES OF CONSTRUCTION C 34

partition of Rn into regions, such that any pair of regions can be transformed into each

other through a rotation, reflection or translation, so it is generally not a lattice.

2.2 Properties of Construction C

There are some known properties of Construction C already explored in the literature,

such as minimum distance, kissing number and geometric uniformity for L ✏ 2 levels.

2.2.1 Minimum distance

If the underlying codes of Construction C are linear, then the squared minimum

distance can be expressed as

d2
min♣ΓCq ✏ mintdH♣C1q, 22dH♣C2q, . . . , 22♣L✁1qdH♣CLq, 22L✉. (2.1)

Indeed, observe that sets defined as ΓCi
✏ 0�2 ☎0�☎ ☎ ☎�2i✁1ci�☎ ☎ ☎�2L✁1 ☎0�2L ☎0,

where 0 P R
n, are subsets of ΓC , i.e., ΓCi

❸ ΓC for all i ✏ 1, . . . , L, then it follows that

d2
Emin

♣ΓCq ↕ mintdH♣C1q, 22dH♣C2q, . . . , 22♣L✁1qdH♣CLq, 22L✉. On the other hand, according

to the discussion in [18, pp. 150], if we consider two elements x, y P ΓC , where

x ✏ c1 � 2c2 � ☎ ☎ ☎ � 2i✁1ci � ☎ ☎ ☎ � 2L✁1cL � 2Lz (2.2)

y ✏ c̃1 � 2c̃2 � ☎ ☎ ☎ � 2i✁1c̃i � ☎ ☎ ☎ � 2L✁1c̃L � 2Lz̃, (2.3)

such that cj ✏ c̃j, for j ✏ 1, . . . , i ✁ 1 and ci ✘ c̃i. Their squared distance vary by at

least 22♣i✁1q in at least dH♣Ciq coordinates. Hence, d2
Emin

♣ΓCq ➙ mintdH♣C1q, 22dH♣C2q, . . . ,
22♣L✁1qdH♣CLq, 22L✉. It justifies the formula in Equation (2.1).

From the formula for the squared minimum distance, it also follows that all points

in this constellation have the same minimum distance to other constellations points, i.e.,

it is equi-minimum distance.

2.2.2 Kissing number

The kissing number (number of nearest neighbors) of an element of Construction C

may vary between the elements even when the underlying codes are linear, as it can be

seen in our following Example 10, where the kissing number of an element varies between

1 and 2.

2.2.3 Geometric uniformity for L ✏ 2 levels

The geometric uniformity of a two level (L ✏ 2) Construction C can be deduced from

the work of D. Forney [24] if we consider a 2✁level Construction C as group code with
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isometric labeling over Z④4Z (i.e., a 2✁level binary coset code over Z④2Z④4Zq. He proved

that this type of construction produces a geometrically uniform generalized coset code. In

Section 2.3, we provide an alternative proof, based on explicit isometric transformation

(as a special case of a general class of geometric uniform constellations).

2.2.4 Equi-distance spectrum and geometric uniformity for L ➙ 3

Geometric uniformity implies, in particular, that all points have the same set of

Euclidean distances to their neighbors.

Definition 27. (Distance spectrum) For a discrete constellation Γ ❸ R
n, the distance

spectrum is

N♣c, dq ✏ number of points in the constellation at a Euclidean distance d from an element

c in the constellation.

Definition 28. (Equi-distance spectrum) A constellation Γ is said to have equi-distance

spectrum (EDS) if N♣c, dq is the same for all c P Γ.

Geometric uniformity implies equi-distance spectrum for L ✏ 2 levels in Construction

C and we have the following:

Proposition 2. (Equi-distance spectrum of ΓC) For a 2✁level Construction C, the distance

spectrum is identical for all codewords in ΓC , i.e., N♣c, dq ✏ N♣0, dq for all c P ΓC .

Proof. Let N♣c, dq ✏ k, with c P ΓC , which means that there are k elements x1, . . . , xk P ΓC

such that dE♣c, xiq ✏ d, for i ✏ 1, . . . , k. From the fact that a 2✁level Construction C is

geometrically uniform, we know that for any two elements y, ỹ P ΓC there is an isometry

T such that T ♣yq ✏ ỹ.

If we consider in particular y ✏ c, ỹ ✏ 0 P ΓC , then it follows directly that there are

k elements T ♣x1q, . . . , T ♣xkq P ΓC such that dE♣T ♣xiqq ✏ dE♣0, T ♣xiqq ✏ d, i ✏ 1, . . . , k

and N♣c, dq ✏ k ✏ N♣dq as we wanted do prove.

For L ➙ 3 the equi-distance spectrum and hence the geometric uniformity property

does not hold in general, as we will see in the next examples.

Example 10. Consider the following linear codes, with n ✏ 1 and L ✏ 3:

C1 ✏ t0, 1✉, C2 ✏ t0, 1✉, C3 ✏ t0✉.

Observe that some numbers obtained via Construction C, i.e., ΓC ✏ C1�2C2�4C3�8Z3

are represented in Figure 9 and N♣2, 1q ✏ 2 ✘ 1 ✏ N♣0, 1q. Therefore, this constellation

does not have equi-distance spectrum and it cannot be geometrically uniform.
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Figure 9 – Some elements of Construction C, with C1 ✏ C2 ✏ t0, 1✉ and C3 ✏ t0✉.

Example 11. Consider an n ✏ 2, L ✏ 3 Construction C with the following three component

linear codes:

C1 ✏ C2 ✏ t♣0, 0q, ♣1, 1q✉, C3 ✏ t♣0, 0q✉. (2.4)

We can write ΓC ✏ C1 � 2C2 � 4C3 � 8Z3 (Figure 10) in this case as

ΓC ✏ t♣8k1 � j, 8k2 � jq : k1, k2 P Z, j ✏ 0, 1, 2, 3✉. (2.5)

Figure 10 – Some elements of Construction C, with C1 ✏ C2 ✏ t♣0, 0q, ♣1, 1q✉ and C3 ✏
t♣0, 0q✉.

Note that N♣♣3, 3q,
❄

2q ✏ 1 ✘ 2 ✏ N♣♣1, 1q,
❄

2q, so it is not equi-distance spectrum

and therefore, not geometrically uniform.

2.3 On geometrically uniform constellations

We can derive two ways of producing geometrically uniform constellations, as will be

presented by the three main results in this section. In what follows we identify the code

C ❸ F
n
2 with its natural embedding ψ♣Cq ❸ R

n.

Theorem 4. (Geometric uniformity of Λ � C) If Λ is a lattice which has symmetry with

respect to all coordinate axes and C ❸ F
n
2 is a linear binary code, then Γ ✏ Λ � C is

geometrically uniform.
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Proof. Given x ✏ λ1 � c1 P Γ, where λ1 P Λ and c1 P C. Consider the linear map

Tc1
: Rn Ñ R

n, Tc1
♣zq ✏ rTc1

s ☎ z (z in the column format), where rTc1
s is defined as

rTc1
s ✏

☎
✝✝✝✝✆
♣✁1qc11 0 . . . 0

0 ♣✁1qc12 . . . 0

0 0
. . . 0

0 0 . . . ♣✁1qc1n

☞
✍✍✍✍✌
♣n✂nq

, (2.6)

and c1 ✏ ♣c11, c12, . . . , c1nq. Observe that Tc1
is an isometry and Tc1

✁1 ✏ Tc1
.

The map Fx : Rn Ñ R
n, Fx♣yq ✏ Tc1

♣y ✁ xq is an isometry and we show next that

its restriction Fx⑤Γ : Γ Ñ Γ is also an isometry with Fx♣xq ✏ 0.

First, note that for c1, c2 P C it is valid that Tc1
♣c2 ✁ c1q ✏ c1 ❵ c2. Indeed,

♣Tc1
♣c2 ✁ c1qqi ✏

✩✬✬✬✬✬✬✫
✬✬✬✬✬✬✪

0, if ♣c1i, c2iq ✏ ♣0, 0q,
1, if ♣c1i, c2iq ✏ ♣1, 0q,
1, if ♣c1i, c2iq ✏ ♣0, 1q,
0, if ♣c1i, c2iq ✏ ♣1, 1q

(2.7)

which implies Tc1
♣c2 ✁ c1q ✏ c1 ❵ c2.

Given y P Γ ✏ Λ � C, y ✏ λ2 � c2,

Fx♣yq ✏ Tc1
♣y ✁ xq ✏ Tc1

♣λ2 ✁ λ1 � c2 ✁ c1q ✏ Tc1
♣λ2 ✁ λ1q � Tc1

♣c2 ✁ c1q
✏ λ3 � ♣c1 ❵ c2q P Γ ✏ Λ � C, (2.8)

since Λ is axes-symmetric. Therefore, we showed that Fx♣Γq ❸ Γ.

As Fx is injective, it remains to prove that for any w ✏ λ̃� c̃ P Γ there exists y P Γ

such that w ✏ Fx♣yq. By straightforward calculation we can see that

Fx♣yq ✏ λ̃� c̃ ñ Tc1
♣y ✁ ♣λ1 � c1qq ✏ λ̃� c̃ñ Tc1

♣Tc1
♣y ✁ ♣λ1 � c1qqq ✏ Tc1

♣λ̃� c̃q
ñ y ✏ Tc1

♣λ̃q � λ1 � Tc1
♣c̃q � c1 ✏ Tc1

♣λ̃q � λ1 � Tc1
♣c̃✁ c1q

ñ y ✏ Tc1
♣λ̃q � λ1 � Tc1

♣c̃✁ c1q ✏ Tc1
♣λ̃q � λ1❧♦♦♦♦♦♠♦♦♦♦♦♥
PΛ

� c̃❵ c1❧♦♦♠♦♦♥
PC

P Γ. (2.9)

To conclude the proof, given any x P Γ and w P Γ, we can consider the isometry

F : Γ Ñ Γ, F ✏ Fw ✆ Fx, (2.10)

for which we have F ♣xq ✏ F✁1
w ♣Fx♣xqq ✏ F✁1

w ♣0q ✏ w.

Corollary 1. (Special geometrically uniform Construction C) If a L✁level Construction

C has just two nonzero linear codes Ci and CL, i P t1, . . . , L ✁ 1✉, then ΓC ✏ 2i✁1
Ci �

2L✁1
CL � 2L

Z
n is geometrically uniform.
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Proof. We can write

ΓC ✏ 2i✁1♣Ci � 2L✁i♣CL � 2Znqq. (2.11)

Since the Construction A lattice CL � 2Zn is axes-symmetric then also is its expansion

by 2L✁i. From Theorem 4, it follows that Ci � 2L✁i♣CL✁1 � 2Znq, i ✏ 1, . . . , L ✁ 1 is

geometrically uniform and this also holds for the scaled version.

As a special case of the above corollary we get the following result, which also can

be deduced from [24] (as mentioned previously in Subsection 2.2.3).

Corollary 2. (Geometric uniformity of a L ✏ 2 Construction C) Consider ΓC ✏ C1 �
2C2 � 4Zn, where C1, C2 ❸ F

n
2 are linear codes. Then ΓC is geometrically uniform.

Proof. In Corollary 1, take L ✏ 2 and i ✏ 1.

In this chapter we recalled known properties of Construction C, such as minimum

distance and kissing number, and described some ways of producing geometrically uniform

discrete constellations, from what we derived an alternative proof for the geometric

uniformity of a L ✏ 2 Construction C. We also have shown that in general, for three levels

and up, Construction C is not geometrically uniform because it does not have equi-distance

spectrum.
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Chapter 3

Construction C✍

A new process of constructing lattices and nonlattices periodic constellations, that

we call Construction C✍, is proposed in this chapter. We study its properties (geometric

uniformity, latticeness and minimum distance) and present some comparison with its

associated Construction C. A hybrid Construction C✍④C is introduced and compared with

Construction C in terms of packing efficiency. The proposal of Construction C✍ and the

study of its characteristics are motivated by a coding scheme called bit-interleaved coded

modulation (BICM) [47], [58] and the particular study of latticeness was inspired by [32].

The results in this chapter appear in [12,13].

3.1 Why Construction C✍?

A main challenge of communication problems is to transmit digital information

over a channel with minimum losses and an alternative to approach it is by using coded

modulation ( [14, 15]), where not only coding, but also a way of mapping the code bits to

constellation symbols is significant. In the latest years, a prevalent coded modulation is

the bit-interleaved coded modulation (BICM), which is a motivation to our study.

The BICM, first introduced by Zehavi [58], requires mainly to have: a nL✁dimensional

binary code C, an interleaver π and a one-to-one binary labeling map µ̃ : t0, 1✉L Ñ X ,

where X is a signal set X ✏ t0, 1, . . . , 2L✁1✉ in order to construct a constellation ΓBICM in

X
n ❸ R

n. The code and interleaved bit sequence c P C is partitioned into L subsequences

ci of length n :

c ✏ ♣c1, . . . , cLq, with ci ✏ ♣ci1, ci2, . . . , cinq. (3.1)

The bits cj are mapped at a time index j to a symbol xj chosen from the 2L✁ary

signal constellation X according to the binary labeling map µ̃. Hence, for a nL✁binary

code C to encode all bits, then we have the scheme below:

codeword ♣cq Ñ interleaver π Ñ partitioning into L subsequences of length n Ñ
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mapping µ̃ Ñ xj ✏ µ̃♣c1j , . . . , cLjq, j ✏ 1, . . . , n

In the general case, by defining the natural labeling µ : C Ñ X
n as µ♣c1, c2, . . . , cLq ✏

c1 � 2c2 � ☎ ☎ ☎ � 2L✁1cL and assuming π♣Cq ✏ C, it is possible to define an extended BICM

constellation in a way very similar to the well known multilevel Construction C, that we

call Construction C✍. Note that the constellation produced via Construction C✍ is always a

subset of the associated constellation produced via Construction C for the same projection

codes (that will be defined in sequence) and it does not usually produce a lattice.

3.2 Definition

This section is devoted to the introduction of a new method of constructing constel-

lations from binary codes, which we call Construction C✍.

Definition 29. (Construction C✍) Let C be a linear code in F
nL
2 . Construction C✍ P R

n

is defined as

ΓC✍ :✏ tc1 � 2c2 � ☎ ☎ ☎ � 2L✁1cL � 2Lz : ♣c1, c2, . . . , cLq P C,

ci P F
n
2 , i ✏ 1, . . . , L, z P Z

n✉. (3.2)

Definition 30. (Projection codes) Let c ✏ ♣c1, c2, ..., cLq be a partition of a codeword

c ✏ ♣c11, . . . , c1n, ...., cL1, . . . , cLnq P C into length n subvectors ci ✏ ♣ci1, ...., cinq, for

i ✏ 1, . . . , L. Then, a projection code Ci consists of all subvectors ci that appear as we scan

through all possible codewords c P C.

Note that if C is linear, then every projection code Ci, i ✏ 1, . . . , L, is also linear.

Definition 31. (Associated Construction C) Given a Construction C✍ defined by a linear

binary code C ❸ F
nL
2 , we call the associated Construction C the constellation defined as

ΓC ✏ C1 � 2C2 � ☎ ☎ ☎ � 2L✁1
CL � 2Zn, (3.3)

such that C1, C2, . . . , CL P F
n
2 are the projection codes of C as in Definition 30.

Remark 2. If C ✏ C1 ✂ C2 ✂ ☎ ☎ ☎ ✂ CL, then Construction C✍ coincides with Construction

C, because the projection codes are independent. However, in general, the projection codes

are dependent, i.e., not all combinations compose a codeword in the main code C, so we

get a subset of the associated Construction C., i.e., ΓC✍ ❸ ΓC .

The following examples illustrate the process of Construction C✍.
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Example 12. Consider a linear binary code C with length nL ✏ 4, (L ✏ n ✏ 2), where

C ✏ t♣0, 0, 0, 0q, ♣1, 0, 0, 1q, ♣1, 0, 1, 0q, ♣0, 0, 1, 1q✉ ❸ F
4
2. Thus, an element x♣c, zq P ΓC✍ ,

c P C, z P Z
2 can be written as

x♣c, zq ✏ c1 � 2c2 � 4z P ΓC✍ , (3.4)

for a pair ♣c1, c2q P C and z P Z
2. Geometrically, the resulting constellation is given by the

blue points represented in Figure 11. Note that ΓC✍ is not a lattice because, for example,

♣1, 2q, ♣3, 0q P ΓC✍ , but ♣1, 2q � ♣3, 0q ✏ ♣4, 2q ❘ ΓC✍ . However, if we consider the associated

Construction C with codes C1 ✏ t♣0, 0q, ♣1, 0q✉ and C2 ✏ t♣0, 0q, ♣1, 1q, ♣0, 1q, ♣1, 0q✉, we

have a lattice (pink points in Figure 11), because C1 and C2 satisfy the condition given by

Theorem 1, Subsection 1.2.2.

Figure 11 – (Nonlattice) Construction C✍ constellation in blue and its associated (lattice)
Construction C constellation in pink.

The next example presents a case where both Constructions C✍ and C are lattices,

but they are not equal.

Example 13. Let a linear binary code C ✏ t♣0, 0, 0, 0q, ♣0, 0, 1, 0q, ♣1, 0, 0, 1q, ♣1, 0, 1, 1q✉ ❸
F

4
2 (nL ✏ 4, L ✏ n ✏ 2). The projection codes are C1 ✏ t♣0, 0q, ♣1, 0q✉ and C2 ✏

t♣0, 0q, ♣1, 0q, ♣0, 1q, ♣1, 1q✉. An element x♣c, zq P ΓC✍ can be described as

x♣c, zq ✏

✩✬✬✬✬✬✬✫
✬✬✬✬✬✬✪

♣0, 0q � 4z, if c1 ✏ ♣0, 0q and c2 ✏ ♣0, 0q
♣1, 2q � 4z, if c1 ✏ ♣1, 0q and c2 ✏ ♣0, 1q
♣2, 0q � 4z, if c1 ✏ ♣0, 0q and c2 ✏ ♣1, 0q
♣3, 2q � 4z, if c1 ✏ ♣1, 0q and c2 ✏ ♣1, 1q,

(3.5)

for all c ✏ ♣c1, c2q P C and z P Z
2. This construction is represented by black points in

Figure 12. Note that ΓC✍ is a lattice and C ✘ C1 ✂ C2, which implies that ΓC✍ ✘ ΓC .

Nevertheless, the associated Construction C is also a lattice (Figure 12).
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Figure 12 – (Lattice) Construction C✍ constellation in black and its associated (lattice)
Construction C constellation in green.

To appreciate the advantage of ΓC✍ over the associated ΓC , one can notice that the packing

densities are, respectively ∆ΓC✍ ✏ Π

4
✓ 0.7853 and ∆ΓC

✏ Π

8
✓ 0.3926. Therefore, in this

example, ΓC✍ has a better packing density than ΓC (more on that in Section 3.4).

We can also describe the densest lattice in dimension 24, the Leech lattice Λ24, in

terms of Construction C✍ constellation with L ✏ 3 levels.

Example 14. Based on the construction given by Conway and Sloane [18] (pp. 131-132)

and Amrani et al [5], we start by considering three special linear binary codes

• C1 ✏ t♣0, . . . , 0q, ♣1, . . . , 1q✉ ❸ F
24
2 ;

• C2 as a Golay code C24 ⑨ F
24
2 achieved by adding a parity bit to the original

♣23, 12, 7q✁binary Golay code C23, which consists in a quadratic residue code of

length 23;

• C3 ✏ C̃3 ❨ C3 ✏ F
24
2 , where C̃3 ✏ t♣x1, . . . , x24q P F

24
2 :

24➳
i✏1

x1 ✑ 0 mod 2✉ and

C3 ✏ t♣y1, . . . , y24q P F
24
2 :

24➳
i✏1

y1 ✑ 1 mod 2✉.

Observe that C1, C2 and C3 are linear codes. Consider a code C ❸ F
72
2 whose codewords

are described in one of two possible ways:

C ✏ t♣0, . . . , 0, a1, . . . , a24❧♦♦♦♦♠♦♦♦♦♥
PC24

, x1, . . . , x24❧♦♦♦♦♠♦♦♦♦♥
PC̃3

q, ♣1, . . . , 1, a1, . . . , a24❧♦♦♦♦♠♦♦♦♦♥
PC24

, y1, . . . , y24❧♦♦♦♦♠♦♦♦♦♥
PC3

q✉. (3.6)

Thus, we can define the Leech lattice Λ24 as a 3✁level Construction C✍ given by

Λ24 ✏ ΓC✍ ✏ tc1 � 2c2 � 4c3 � 8z : ♣c1, c2, c3q P C, z P Z
24✉. (3.7)
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Observe that ΓC✍ ✘ ΓC and in this case, the associated Construction C has packing density

∆ΓC
✓ 0.00012 ➔ 0.001929 ✓ ∆ΓC✍ , which is the packing density of Λ24, the best known

packing density in dimension 24 [18, pp. 133], [16].

3.3 Properties

3.3.1 Geometric uniformity

According to Subsection 2.2.3, a 2✁level Construction C, ΓC ✏ C1 � 2C2 �Z
n, where

C1, C2 ❸ F
n
2 are linear codes, is geometrically uniform even in the case it is not a lattice.

Another question that emerges is as follows: is a 2-level Construction C✍ also geometrically

uniform? As we show below, the answer is affirmative.

Theorem 5. (Geometric uniformity of 2✁level Construction C✍) Consider the binary

linear code C ❸ F
2n
2 . Then, ΓC✍ ✏ tc1 � 2c2 � 4z : ♣c1, c2q P C, z P Z

n✉ is geometrically

uniform.

Proof. Let a binary linear code C ❸ F
2n
2 , which generates a 2✁level Construction C✍. Fix an

element x ✏ c1�2c2�4z P ΓC✍ and take another arbitrary element y ✏ c̃1�2c̃2�4z̃ P ΓC✍ ,

such that ♣c1, c2q, ♣c̃1, c̃2q P C and z, z̃ P Z
n. Assume the isometry Tc1

as given by (2.6).

Then,

rTc1
♣y ✁ xqsi ✏ ♣c̃1i ✁ c1iq mod 2 � 2r♣c̃2i ✁ c2iq mod 2s � 4z✶i,

where

z✶i ✏

✩✬✬✬✬✬✬✫
✬✬✬✬✬✬✪

z̃i ✁ zi, if c1i ✏ 0 and c̃2i ✁ c2i ➙ 0

z̃i ✁ zi � 1, if c1i ✏ 0 and c̃2i ✁ c2i ➔ 0

zi ✁ z̃i, if c1i ✏ 1 and c̃2i ✁ c2i ↕ 0

zi ✁ z̃i � 1, if c1i ✏ 1 and c̃2i ✁ c2i → 0.

(3.8)

Clearly Tc1
♣y ✁ xq ✏ ♣♣c̃1 ✁ c1q mod 2, ♣c̃2 ✁ c2q mod 2q P C, because ♣c1, c2q P

C and ♣c̃1, c̃2q P C ñ ♣c̃1 ✁ c1, c̃2 ✁ c2q mod 2 P C.

This covers all the possibilities which guarantees that Tc1
♣y ✁ xq is an element of

ΓC✍ . Moreover, as Tc1
♣y ✁ xq is an isometry (as a function of y) we can guarantee that for

each y P ΓC✍ , there exists y✶ P ΓC✍ such that Tc1
♣y✶ ✁ xq ✏ y. Therefore, for L ✏ 2, ΓC✍ is

geometrically uniform.

As we have seen in Example 10, Construction C is not geometrically uniform for

general L ➙ 3. If we consider C ❸ F
3n
2 , as the product C ✏ C1 ✂ C2 ✂ C3, we get in this

particular example, ΓC ✏ ΓC✍ and therefore ΓC✍ is not geometrically uniform in general

for L ➙ 3.
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3.3.2 Latticeness

Regarding to latticeness, in general, it is possible to have a lattice ΓC✍ , with ΓC✍ ✘ ΓC ,

as can be observed in Example 13. This fact motivates our search for a condition to

guarantee the latticeness of Construction C✍, paralleling Theorem 1. Note that in [32] the

approach consisted to compare Construction C with the lattice Construction D and in

our case, there is no known lattice to be compared, which requires a different strategy.

In the upcoming discussion, we will exhibit some definitions and present a necessary and

sufficient condition for ΓC✍ to be a lattice.

Definition 32. (Antiprojection) The antiprojection Si♣c1, . . . , ci✁1, ci�1, . . . , cLq consists

of all vectors ci P Ci that appear as we scan through all possible codewords c P C, while

keeping c1, . . . , ci✁1, ci�1, . . . , cL fixed:

Si♣c1, ..., ci✁1, ci�1, ..., cLq ✏ tci P Ci : ♣c1, . . . , ci✁1, ci❧♦♦♠♦♦♥
i-th posititon

, ci�1, . . . , cLq P C✉. (3.9)

Example 15. In Example 13, we can define the antiprojection

S2♣c1q ✏ tc2 P C2 : ♣c1, c2q P C✉. (3.10)

For c1 ✏ ♣0, 0q P C1 it follows that S2♣c1q ✏ t♣0, 0q, ♣1, 0q✉ and for c1 ✏ ♣1, 0q P C1,

S2♣c1q ✏ t♣0, 1q, ♣1, 1q✉.

We introduce next the following auxiliary result:

Lemma 1. (Sum in ΓC✍) Let C ❸ F
nL
2 be a binary linear code. If x, y P ΓC✍ are such that

x ✏ c1 � 2c2 � ☎ ☎ ☎ � 2L✁1cL � 2Lz (3.11)

y ✏ c̃1 � 2c̃2 � ☎ ☎ ☎ � 2L✁1c̃L � 2Lz̃, (3.12)

with ♣c1, c2, . . . , cLq, ♣c̃1, c̃2, . . . , c̃Lq P C and z, z̃ P Z
n, then

x � y ✏ c1 ❵ c̃1 � 2♣s1 ❵ ♣c2 ❵ c̃2qq � ☎ ☎ ☎ � �2L✁1♣sL✁1 ❵ ♣cL ❵ c̃Lqq �
�2L♣s✍L � z � z̃q, (3.13)

where si P F
n
2 is the “carry” from level i to level i� 1, given by

si ✏ ♣ci ✝ c̃iq ❵ r1
i ❵ r2

i ❵ ☎ ☎ ☎ ❵ ri✁1
i ✏ ♣ci ✝ c̃iq

i✁1à
j✏1

r
j
i ,

r1
i ✏ ♣ci ❵ c̃iq ✝ ♣ci✁1 ✝ c̃i✁1q, r

j
i ✏ r

j✁1
i ✝ rj✁1

i✁1 ,

2 ↕ j ↕ i✁ 1, i ✏ 1, . . . , L✁ 1 (3.14)

s0 ✏ ♣0, . . . , 0q and the formula for s✍L is the same for si but with real sum instead of

modulo-2 sum.
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Proof. By induction in the number L of levels, we have:

Base case: For L ✏ 1 level, C ❸ F
n
2 has only one projection code C1. Consider x, y P ΓC✍

such that x ✏ c1 � 2z and y ✏ c̃1 � 2z̃. Then

x� y ✏ c1 � c̃1 � 2♣z � z̃q ✏ c1 ❵ c̃1 � 2♣c1 ✝ c̃1❧♦♦♠♦♦♥
s1PZn

�z � z̃q (3.15)

and the result is valid.

Induction step: Assume that the formula in Equation (3.13) is valid for L ✏ k ✁ 1, where

the main code C̃ P F
n♣k✁1q
2 has projection codes C1, . . . , Ck✁1 P F

n
2 . Therefore, our induction

hypothesis affirms that for x, y P ΓC✍ such that

x ✏ c1 � 2c2 � ☎ ☎ ☎ � 2k✁2ck✁1 � 2k✁1z (3.16)

y ✏ c̃1 � 2c̃2 � ☎ ☎ ☎ � 2k✁2c̃k✁1 � 2k✁1z̃, (3.17)

with z, z̃ P Z
n, is true that

x� y ✏ c1 ❵ c̃1 � 2♣s1 ❵ ♣c2 ❵ c̃2qq � ☎ ☎ ☎ � 2k✁2♣sk✁2 ❵ ♣ck✁1 ❵ c̃k✁1qq
� 2k✁1♣s✍k✁1 � z � z̃q, (3.18)

where s✍k✁1 and si, i ✏ 1, . . . , L are as in Equation (3.14).

We aim to prove that the formula presented in Equation (3.13) is also satisfied for

L ✏ k. So, consider the main code C P F
nk
2 with subcodes C1, . . . , Ck✁1, Ck P F

n
2 . Suppose

x, y P ΓC✍ such that

x ✏ c1 � 2c2 � ☎ ☎ ☎ � 2k✁2ck✁1 � 2k✁1ck � 2kz (3.19)

y ✏ c̃1 � 2c̃2 � ☎ ☎ ☎ � 2k✁2c̃k✁1 � 2k✁1c̃k � 2kz̃. (3.20)

So we can write, applying the induction hypothesis

x� y ✏ c1 ❵ c̃1 � 2♣s1 ❵ ♣c2 ❵ c̃2qq � ☎ ☎ ☎ � 2k✁2♣sk✁2 ❵ ♣ck✁1 ❵ c̃k✁1qq �
2k✁1♣s✍k✁1 � ck � c̃kq � 2k♣z � z̃q, (3.21)

where s✍k✁1 is sk✁1 with the real sum instead of modulo✁2 sum. By doing all the decompo-

sitions to change the real sum s✍k✁1 � ck � c̃k to sk✁1 ❵ ck ❵ c̃k we have

x� y ✏ c1 ❵ c̃1 � 2♣s1 ❵ ♣c2 ❵ c̃2qq � ☎ ☎ ☎ � 2k✁2♣sk✁2 ❵ ♣ck✁1 ❵ c̃k✁1qq �
2k✁1♣sk✁1 ❵ ♣ck ❵ c̃kqq � 2k♣♣ck ✝ c̃kq � r1

k � r2
k � ☎ ☎ ☎ � rk✁1

k❧♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♥
s✍

k

�z � z̃q.(3.22)

This formula is exactly as we expected and it concludes the proof.
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The mathematical intuition behind the necessary and sufficient condition to guarantee

that ΓC✍ is a lattice lies in the fact that since a� b ✏ a❵ b� 2♣a ✝ bq for a, b P F
n
2 , when

adding two points in ΓC✍ , each codeword at level i ➙ 2 has the form of ci ❵ c̃i ❵ carry♣i✁1q,

where carry♣i✁1q is the "carry" term from the addition in the lower level. Since the projection

code Ci is linear, ci ❵ c̃i is a codeword in the i✁th level. Hence, closeness of ΓC✍ under

addition amounts to the fact that carry♣i✁1q is also a codeword in Ci, which is essentially

the condition of the theorem. Formally,

Theorem 6. (Lattice condition for ΓC✍) Let C ❸ F
nL
2 be a linear binary code that generates

ΓC✍ and let the set S ✏ t♣0, s1, . . . , sL✁1q✉ ❸ F
nL
2 defined for all pairs c, c̃ P C (including

the case c ✏ c̃q, where

si ✏ ♣ci ✝ c̃iq ❵ r1
i ❵ r2

i ❵ ☎ ☎ ☎ ❵ ri✁1
i ✏ ♣ci ✝ c̃iq

i✁1à
j✏1

r
j
i ,

r1
i ✏ ♣ci ❵ c̃iq ✝ ♣ci✁1 ✝ c̃i✁1q, r

j
i ✏ r

j✁1
i ✝ rj✁1

i✁1 ,

2 ↕ j ↕ i✁ 1, i ✏ 2, . . . , L✁ 1, (3.23)

s0 ✏ ♣0, . . . , 0q and s1 ✏ c1 ✝ c̃1. Then, the constellation ΓC✍ is a lattice if and only if

S ❸ C.

Proof. ♣ñq First, ΓC✍ is assumed to be lattice, which implies that if x, y P ΓC✍ then

x � y P ΓC✍ . From the notation and result from Lemma 1, more specifically Equations

(3.16), (3.17), (3.13) and (3.14), it means that

♣c1 ❵ c̃1, s1 ❵ ♣c2 ❵ c̃2q, . . . , sL✁1 ❵ ♣cL ❵ c̃Lqq P C. (3.24)

We can write this L✁tuple as

♣c1 ❵ c̃1, s1 ❵ ♣c2 ❵ c̃2q, . . . , sL✁1 ❵ ♣cL ❵ c̃Lqq❧♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♥
PC

✏

♣c1 ❵ c̃1, c2 ❵ c̃2, . . . , cL ❵ c̃Lq❧♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♥
PC, by linearity of C

❵♣0, s1, . . . , sL✁1q ñ ♣0, s1, . . . , sL✁1q P C, (3.25)

which is the same as saying that for all x, y P ΓC✍ , S ❸ C.

♣ðq The converse is immediate, because given x, y P ΓC✍ as in Equations (3.16) and (3.17),

with the fact that C is linear and S ❸ C, it is valid that

♣c1 ❵ c̃1, c2 ❵ c̃2, . . . , cL ❵ c̃Lq ❵ ♣0, s1, . . . , sL✁1q P C

ñ ♣c1 ❵ c̃1, s1 ❵ ♣c2 ❵ c̃2q, . . . , sL✁1 ❵ ♣cL ❵ c̃Lqq P C (3.26)

and x � y P ΓC✍ . We still need to prove that there exist the inverse element ✁x P ΓC✍ .

It is true that for x P ΓC✍ , x � x P ΓC✍ and also ♣x � xq � ♣x � xq P ΓC✍ . If we do this

sum recursively, i.e., x� x� x� ☎ ☎ ☎ � x❧♦♦♦♦♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♦♦♦♦♥
2L times

✏ 2Lj, for a suitably j P Z
n. So, if we consider

y ✏ x� x� ☎ ☎ ☎ � x❧♦♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♦♥
2L✁1 times

�2L♣✁jq P ΓC✍ , it follows that x� y ✏ 0 P R
n and y ✏ ✁x.
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Example 16. Consider the linear binary code given by C ✏ t♣0, 0, 0, 0, 0, 0q, ♣1, 0, 1, 1, 0, 1q,
♣0, 0, 1, 0, 1, 1q, ♣1, 0, 0, 1, 1, 0q, ♣0, 0, 0, 0, 1, 0q, ♣0, 0, 1, 0, 0, 1q, ♣1, 0, 0, 1, 0, 0q, ♣1, 0, 1, 1, 1, 1q✉
❸ F

6
2 with L ✏ 3, n ✏ 2. In this specific case, it is possible to describe the set S ✏

t♣0, 0, 0, 0, 0, 0q, ♣0, 0, 1, 0, 1, 1q, ♣0, 0, 0, 0, 1, 0q, ♣0, 0, 1, 0, 0, 1q✉ ❸ C. Therefore, according to

Theorem 6, ΓC✍ is a lattice (Figure 13).

Figure 13 – Lattice Construction C✍ constellation.

Remark 3. Note that with the assumption that C ✏ C1 ✂ C2 ✂ ☎ ☎ ☎ ✂ CL, i.e., ΓC ✏ ΓC✍ ,

it follows that S ❸ C is equivalent to C1 ❸ C2 ❸ ☎ ☎ ☎ ❸ CL and the chain is closed under

Schur product (Theorem 1). Indeed,

i) S ❸ C ñ C1 ❸ C2 ❸ ☎ ☎ ☎ ❸ CL and the chain is closed under Schur product: we know

that S ❸ C for any pair c, c̃ of codewords, so we take in particular c̃ ✏ c and it follows

that C1 ❸ C2 ❸ ☎ ☎ ☎ ❸ CL. The fact that C ✏ C1 ✂ C2 ✂ ☎ ☎ ☎ ✂ CL allows us to guarantee

that the element ♣0, c1 ✝ c̃1, c2 ✝ c̃2, . . . , cL✁1 ✝ c̃L✁1q P S ❸ C and then the above chain

will be closed under Schur product.

ii) C1 ❸ C2 ❸ ☎ ☎ ☎ ❸ CL and the chain is closed under Schur product ñ S ❸ C : consider

an element ♣0, s1, s2, . . . , sL✁1q P S, we want to prove that this element is also in C

and to do that it is enough to prove that s1 P C2, s2 P C3, . . . , sL✁1 P CL. Indeed, due

to the chain be closed under Schur product,

s1 ✏ c1 ✝ c̃1 P C2 (3.27)

s2 ✏ ♣♣c1 ✝ c̃1q ✝ ♣c2 ❵ c̃2qq❧♦♦♦♦♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♦♦♦♦♥
PC3

❵♣c2 ✝ c̃2q❧♦♦♦♠♦♦♦♥
PC3

P C3 (3.28)

s3 ✏ ♣♣c3 ❵ c̃3q ✝ ♣c2 ✝ c̃2qq ✝ ♣c2 ❵ c̃2 ✝ ♣c1 ✝ c̃1qq❧♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♥
PC4

❵ ♣♣c3 ❵ c̃3q ✝ ♣c2 ✝ c̃2qq❧♦♦♦♦♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♦♦♦♦♥
PC4

❵♣c3 ✝ c̃3q❧♦♦♦♠♦♦♦♥
PC4

P C4 (3.29)

...

and proceeding recursively, we can prove that si P Ci�1, i ✏ 1, . . . , L✁ 1.
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The previous remark lead the us to the following result.

Corollary 3. (Latticeness of the associated Construction C) Let C ❸ F
nL
2 be a linear code.

If ΓC✍ is a lattice then the associated Construction C is also a lattice.

Proof. If ΓC✍ is a lattice, then according to Theorem 6, S ❸ C. When we construct

the associated Construction C, we make C ✏ C1 ✂ C2 ✂ ☎ ☎ ☎ ✂ CL, where C1, C2, . . . , CL

are the projection codes. Hence, according to the Remark 3, S ❸ C is equivalent to

C1 ❸ C2 ❸ ☎ ☎ ☎ ❸ CL and the chain being closed under Schur product, which is sufficient to

guarantee that ΓC is a lattice.

Observe that the condition given by Theorem 6 is well-established. However, it is not

easy to check for lattices in higher dimensions. For this reason, we introduce the following

consequent result which is weaker, but easier to verify in general.

Corollary 4. (Special lattice condition for ΓC✍) Let C ❸ F
nL
2 be a linear binary code

with projection codes C1, C2, . . . , CL such that C1 ❸ S2♣0, . . . , 0q ❸ C2 ❸ ☎ ☎ ☎ ❸ CL✁1 ❸
SL♣0, . . . , 0q ❸ CL ❸ F

n
2 . Then the constellation given by ΓC✍ is a lattice if and only if

Si♣0, . . . , 0q closes Ci✁1 under Schur product for all levels i ✏ 2, . . . , L.

Proof. ♣ðq For any x, y P ΓC✍ , written as in Equations (3.16) and (3.17), we have x� y

as given in Lemma 1 (Equations (3.13) and (3.14)) and we need to verify if x� y P ΓC✍ .

Clearly x � y P C1 � 2C2 � ☎ ☎ ☎ � 2L✁1
CL � 2L

Z
n. It remains to demonstrate that

♣c1 ❵ c̃1, s1 ❵ c2 ❵ c̃2, . . . , sL✁1 ❵ cL ❵ c̃Lq P C.

Indeed, using the fact that the chains Ci✁1 ❸ Si♣0, . . . , 0q for all i ✏ 2, . . . , L are

closed under the Schur product, it is an element of C because it is a sum of elements in C,

i.e.,

♣c1 ❵ c̃1, s1 ❵ c2 ❵ c̃2, . . . , sL✁1 ❵ cL ❵ c̃Lq ✏
♣c1 ❵ c̃1, c2 ❵ c̃2, . . . , cL ❵ c̃Lq❧♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♥

PC

❵♣0, s1, . . . , 0q❧♦♦♦♦♦♦♠♦♦♦♦♦♦♥
PC

❵ ☎ ☎ ☎ ❵

❵ ♣0, . . . , 0, sL✁1q❧♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♥
PC

ñ ♣0, s1, . . . , sL✁1q P C (3.30)

and from Theorem 6, ΓC✍ is a lattice. Observe that any nL✁tuple ♣0, . . . , si✁1, . . . , 0q
is in C because by hypothesis, the chain Si♣0, . . . , 0q closes Ci✁1 under Schur product,

hence Si♣0, . . . , 0q contains ♣ci✁1 ✝ c̃i✁1q, r1
i✁1, ...., r

i✁2
i✁1 which is sufficient to guarantee that

si✁1 P Si♣0, . . . , 0q so ♣0, . . . , si✁1, . . . , 0q P C, for all i ✏ 2, . . . , L ✁ 1. Using analogous

arguments to the ones in Theorem 6, given x P ΓC✍ it is true that ✁x P ΓC✍ .

♣ñq For the converse, we know that given x, y P ΓC✍ then x� y P ΓC✍ . From the notation

and result from Lemma 1, more specifically Equations (3.16), (3.17), (3.13) and (3.14), it
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means that

♣c1 ❵ c̃1, s1 ❵ ♣c2 ❵ c̃2q, . . . , sL✁1 ❵ ♣cL ❵ c̃Lqq P C (3.31)

and from the result of Theorem 6 follows that

♣0, s1, . . . , sL✁1q P C, (3.32)

where si, i ✏ 1, . . . , L✁ 1 are defined as in Equations (3.28)–(3.30).

Due to the nesting C1 ❸ S2♣0, . . . , 0q ❸ ☎ ☎ ☎ ❸ CL✁1 ❸ SL♣0, . . . , 0q ❸ CL, we can

guarantee that there exist codewords with particular Schur products ci ✝ c̃i ✏ 0, for i ✏
1, . . . , L✁2. Thus, sL✁1 ✏ ♣cL✁1✝ c̃L✁1q and from Equation (3.32), ♣0, 0, . . . , cL✁1✝ c̃L✁1q P C,

i.e., SL♣0, . . . , 0q must close CL✁1 under Schur product. Proceeding similarly, we demonstrate

that Si♣0, . . . , 0q must close Ci✁1, for all i ✏ 2, . . . , L and it completes our proof.

While Si♣0, . . . , 0q ❸ Ci by construction, note that the assumption that Ci ❸
Si�1♣0, . . . , 0q, for i ✏ 2, . . . , L in Corollary 4 is not always satisfied by a general Construc-

tion C✍, sometimes even if this Construction C✍ is a lattice (see Example 16). In this cases

we need the more general condition stated by Theorem 6.

We will see in the following example that the construction of the Leech lattice

described in Example 14 satisfies the condition proposed by Corollary 4, which is easier to

verify.

Example 17. Observe that for the codes C1, C2 and C3 from Example 14, S2♣0, . . . , 0q ✏ C2

and S3♣0, . . . , 0q ✏ C̃3 ✏ t♣x1, . . . , x24q P F
24
2 :

24➳
i✏1

x1 ✑ 0 mod 2✉. Hence we need to verify

that C1 ❸ S2♣0, . . . , 0q ❸ C2 ❸ S3♣0, . . . , 0q ❸ C3 and that Si♣0, . . . , 0q closes Ci✁1 under

Schur product for i ✏ 2, 3.

Indeed C1 ❸ S2♣0, . . . , 0q ✏ C2, since ♣0, . . . , 0q P C2 and if we consider the parity

check matrix H P F
12✂24
2 of the r24, 12, 8s✁Golay code H ✏

✁
B12✂12 ⑤ I12✂12,

✠
,where

B12✂12 ✏

☎
✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✆

1 1 0 1 1 1 0 0 0 1 0 1

1 0 1 1 1 0 0 0 1 0 1 1

0 1 1 1 0 0 0 1 0 1 1 1

1 1 1 0 0 0 1 0 1 1 0 1

1 1 0 0 0 1 0 1 1 0 1 1

1 0 0 0 1 0 1 1 0 1 1 1

0 0 0 1 0 1 1 0 1 1 1 1

0 0 1 0 1 1 0 1 1 1 0 1

0 1 0 1 1 0 1 1 1 0 0 1

1 0 1 1 0 1 1 1 0 0 0 1

0 1 1 0 1 1 1 0 0 0 1 1

1 1 1 1 1 1 1 1 1 1 1 0

☞
✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✌

(3.33)
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it is easy to check that H ☎ ♣1, . . . , 1qT ✏ 0 P F
12
2 , so ♣1, . . . , 1q P C2 which implies that

C1 ❸ S2♣0, . . . , 0q.

Moreover, an element c2 P C2 can be written as c2 ✏ G.h, where G ✏
✄
I12✂12

B12✂12

☛
is the

generator matrix of the Golay code and h ✏ ♣h1, h2, h3, h4, h5, h6, h7, h8, h9, h10, h11, h12qT P
F

12
2 . Thus, when we sum all the coordinates of the resulting vector c2 ✏ G.h we have

8h1 � 8h2 � 8h3 � 8h4 � 8h5 � 8h6 � 8h7 � 8h8 � 8h9 � 8h10 � 8h11 � 12h12 ✑ 0 mod 2 ñ
c2 P C̃3 ✏ S3♣0, . . . , 0q. Hence,

C1 ❸ S2♣0, . . . , 0q ❸ C2 ❸ S3♣0, . . . , 0q ❸ C3. (3.34)

We still need to prove that

• S2♣0, . . . , 0q closes C1 under Schur product and this is clearly true because the Schur

product of any elements in C1 belong to S2♣0, . . . , 0q.

• S3♣0, . . . , 0q closes C2 under Schur product: if we consider c2 ✏ G.h P C2 and

c̃2 ✏ G.h̃ P C2, we have checked computationally that the sum of all coordinates of

the Schur product c2 ✝ c̃2 ✑ 0 mod 2 ñ c2 ✝ c̃2 P S3♣0, . . . , 0q ✏ C̃3.

3.3.3 Minimum Euclidean distance

In this section we will study the minimum Euclidean distance of Construction C✍

considering the identity interleaver and a random interleaver.

An important remark is that unlike Construction C, Construction C✍ is not equi-

minimum distance . More precisely, if the minimum distance d is achieved by two points

x, y P ΓC✍ , i.e., ⑤⑤x ✁ y⑤⑤ ✏ d there may be some other x✶ P ΓC✍ such that there is no

y✶ P ΓC✍ that makes ⑤⑤x✶ ✁ y✶⑤⑤ ✏ d.

Example 18. Consider an L ✏ 3 and n ✏ 1 Construction C✍ with main binary code

C ✏ t♣0, 0, 0q, ♣1, 0, 1q, ♣0, 1, 1q, ♣1, 1, 0q✉ ⑨ F
3
2. Thus, elements in ΓC✍ are

ΓC✍ ✏ t0 � 8z, 5 � 8z, 6 � 8z, 3 � 8z✉, z P Z. (3.35)

The minimum Euclidean distance is ⑤⑤6 ✁ 5⑤⑤ ✏ 1 and if we fix x✶ ✏ 0 P ΓC✍ there is

no element y✶ P ΓC✍ such that ⑤⑤y✶⑤⑤ ✏ 1.

3.3.3.1 Identity interleaving

If ΓC✍ is equi-minimum distance, d2
min♣ΓC✍q ✏ d2

min♣ΓC✍ , 0q (distance from any

constellation point to zero), we know that to each c P C ❸ F
nL
2 , c ✘ 0 we associate a unique
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element x♣cq P ΓC✍ ❸ R
n in the hypercube r✁2L✁1, 2L✁1sn, which gives the minimum

distance of ΓC✍♣cq (constellation points generated by c P C.q
An explicit expression for the nearest constellation point to zero regarding signals is

d2
min♣ΓC✍ , 0q ✏ m1 � 22m2 � 32m3 � ☎ ☎ ☎ � ♣2L✁1 ✁ 1q2

m2L✁1✁1 � ♣2L✁1q2
m2L✁1 , (3.36)

where mi, i ✏ 1, . . . , 2L✁1 are obtained as follows. For c ✏ ♣c11, . . . , c1n, c21, . . . , c2n, . . . ,

cL1, . . . , cLnq we consider the L✁tuples c1 ✏ ♣c11, . . . , cL1q, c2 ✏ ♣c12, . . . , cL2q, . . . , cL ✏
♣c1n, . . . , cLnq and mj, j ✏ 1, . . . , 2L✁1 as

mj ✏ number of L✁ tuples ci such that ci is the binary representation

of j or the binary representation of 2L✁1 ✁ j. (3.37)

To be more specific,

m1 ✏ the number of c✶is such that ci ✏ vi ✏ ♣1, 0, . . . , 0q or ci ✏ ṽi ✏ ♣1, 1, . . . , 1q
m2 ✏ the number of c✶is such that ci ✏ vi ✏ ♣0, 1, . . . , 0q or ci ✏ ṽi ✏ ♣0, 1, . . . , 1q
m3 ✏ the number of c✶is such that ci ✏ vi ✏ ♣1, 1, 0, . . . , 0q or ci ✏ ṽi ✏ ♣1, 0, 1, . . . , 1q
m4 ✏ the number of c✶is such that ci ✏ vi ✏ ♣0, 0, 1, . . . , 0q or ci ✏ ṽi ✏ ♣0, 0, 1, . . . , 1q

...
...

m2L✁1✁1 ✏ the number of c✶is such that ci ✏ vi ✏ ♣1, 0, . . . , 1, 0q or ci ✏ ṽi ✏ ♣1, 1, . . . , 0, 1q
m2L✁1 ✏ the number of c✶is such that ci ✏ ♣0, 0, 0, . . . , 0, 1q. (3.38)

Note that ṽi have the same coordinates of vi up to the first non vanishing coordinate

and after that all coordinates are different. Moreover,
2L✁1➳
i✏1

mi ✏ n.

Remark 4. From the expression above, we can see that given a codeword c P C of weight

ω♣Cq ✏ k,

d2
min♣ΓC✍ , 0q ➙ k

L
, (3.39)

since the minimum distance will be achieved when the projection codewords of c are more

equal as possible. Therefore, if the minimum weight w of the code C is such that w ➙ L22L,

we can assert that

d2
min♣ΓC✍ , 0q ✏ 22L. (3.40)

Example 19. For L ✏ 2 and w ➙ 32, (n ➙ 16, n is as large as we want),

d2
min♣ΓC✍ , 0q ✏ 24. (3.41)

A more concise expression for the minimum distance to zero in ΓC✍ can also be

derived from (3.37), by observing that for c ✏ ♣c1, c2, . . . , cLq P C, with c ✘ 0 and

ci ✏ ♣ci1, ci2, . . . , cinq, i ✏ 1, . . . , L :

d2
min♣ΓC✍♣cq, 0q ✏ ⑤⑤2L✁1cL ✁ 2L✁2cL✁1 ✁ ☎ ☎ ☎ ✁ 2c2 ✁ c1⑤⑤2. (3.42)
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From that we get the following result:

Proposition 3. (Minimum distance of a geometrically uniform ΓC✍) Consider a linear

code C ❸ F
nL
2 which defines ΓC✍ . If ΓC✍ is geometrically uniform, then its minimum distance

is given by

d2
min♣ΓC✍ , 0q ✏ min

c✏♣c1,c2,...,cLqPC

c✘0

★
⑤⑤2L✁1cL ✁

L✁1➳
i✏1

2i✁1ci⑤⑤2, 22L

✰
. (3.43)

If ΓC✍ is geometrically uniform, the above expression provides a closed formula for

the minimum distance of ΓC✍ , otherwise it is an upper bound for this distance. Therefore

(3.43) presents a closed formula for the minimum distance of a L ✏ 2 Construction C✍

(Theorem 5) and also when ΓC✍ is a lattice (Theorem 6).

From (3.43), it could be expected that given a code C ❸ F
nL
2 with minimum weight

of projection codes dH♣C1q, . . . , dH♣CLq, a larger minimum distance will be achieved as

dH♣Ciq increases with i.

For example, for L ✏ 2 and weights of projection codes given by dH♣C1q and dH♣C2q,
respectively, if dH♣C2q → dH♣C1q, by considering ⑤⑤2c2 ✁ c1⑤⑤2 ✏ ①2c2 ✁ c1, 2c2 ✁ c1②, we can

derive from (3.43) that

d2
min♣ΓC✍q ➙ mint4dH♣C2q ✁ 3dH♣C1q, 16✉. (3.44)

Example 20. In Example 12, we have C ✏ t♣0, 0, 0, 0q, ♣1, 0, 0, 1q, ♣1, 0, 1, 0q, ♣0, 0, 1, 1q✉
and then, according to 3.43,

d2
min♣ΓC✍q ✏ mint5, 1, 8, 16✉ ✏ 1. (3.45)

Regarding to general upper and lower bounds, since ΓC✍ is a subset of ΓC , d
2
min♣ΓC✍q ➙

d2
min♣ΓCq, where ΓC is the associated Construction C (Definition 31). A looser and easier

upper bound for d2
min♣ΓC✍q is given by:

d2
min♣ΓC✍q ↕ d2

min♣ΓC✍ , 0q ↕ d2
min♣Sq ✏ min

dH♣Si♣0,...,0qq✘0
t22♣i✁1qdH♣Si♣0, . . . , 0qq, 22L✉, (3.46)

for i ✏ 1, . . . , L.

Example 21. For the Leech lattice presented in Example 14, it follows that d2
min♣ΓCq ✏

mint24, 32, 32, 64✉ ✏ 24, d2
min♣Sq ✏ mint32, 32, 64✉ ✏ 32 as S1♣0, . . . , 0q is a null set and

d2
min♣ΓC✍ , 0q ✏ 32. In this case, d2

min♣ΓC✍q ✏ 32.

Example 22. In Example 16, d2
min♣ΓCq ✏ mint1, 4, 16✉ ✏ 1 and d2

min♣Sq ✏ mint16✉ ✏ 16

as S1♣0, . . . , 0q and S2♣0, . . . , 0q are null sets. Also, d2
min♣ΓC✍ , 0q ✏ 5, which coincides with

d2
min♣ΓC✍q, because in this case Construction C✍ is a lattice.
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Example 23. In Example 18, if we consider the associated Construction C, we have

d2
min♣ΓCq ✏ mint1, 4, 16, 64✉ ✏ 1, d2

min♣Sq ✏ mint64✉ ✏ 64 as Si♣0, . . . , 0q are null sets for

all i ✏ 1, 2, 3 and d2
min♣ΓC✍ , 0q ✏ 2. Here, d2

min♣ΓC✍q ✏ 1.

To derive a condition that states when Construction C✍ have a better packing density

than its associated Construction C, we observe that both constellations contains the lattice

2L
Z

n, i.e., 2L
Z

n ❸ ΓC✍ ❸ ΓC . If the number of points of ΓC✍ and ΓC inside the hypercube

r0, 2Lsn are respectively ⑤C⑤ and ⑤C1⑤ . . . ⑤CL⑤, where Ci, i ✏ 1, . . . , L are the projection codes,

we can assert

∆♣ΓC✍q ✏ ⑤C⑤ vol �B �
0, d1

2

✟✟
2nL

and ∆♣ΓCq ✏
⑤C1⑤ . . . ⑤CL⑤ vol

�
B
�
0, d2

2

✟✟
2nL

, (3.47)

where d1 ✏ dmin♣ΓC✍q and d2 ✏ dmin♣ΓCq. Hence, we can write the following remark:

Remark 5. 1. ∆♣ΓC✍q ➙ ∆♣ΓCq if and only if

✂
d1

d2

✡n

➙ ⑤C1⑤ . . . ⑤CL⑤
⑤C⑤ ,

2. χ♣ΓC✍q ➙ χ♣ΓCq if and only if
d1

d2

➙
✂ ⑤C1⑤ . . . ⑤CL⑤

⑤C⑤
✡1④n

.

Example 24. Let C ❸ F
2n
2 , i.e., we are considering a Construction C✍ with L ✏ 2

(therefore, geometrically uniform). If the minimum distance of the projection codes are

dH♣C1q ✏ 1 and dH♣C2q ✏ 4, then, according to the formula in (3.44), d2
min♣ΓC✍q ➙

mint13, 16✉ ✏ 13 and d2
min♣ΓCq ✏ 1. From the previous discussion, ∆♣ΓC✍q ➙ ∆♣ΓCq if

♣13qn④2 ➙ ⑤C1⑤ . . . ⑤CL⑤
⑤C⑤ . (3.48)

Example 25. Consider the constellation ΓC✍ with L ✏ 2, n ✏ 4, generated by the main

code C ✏ t♣0, 0, 0, 0, 0, 0, 0, 0q, ♣1, 1, 1, 1, 1, 1, 0, 0q, ♣0, 0, 0, 0, 1, 1, 1, 1q, ♣1, 1, 1, 1, 0, 0, 1, 1q✉.
Observe that d2

min♣ΓC✍q ✏ d2
min♣ΓCq ✏ 4 and ⑤ΓC ⑤④⑤ΓC✍ ⑤ ✏ 2 and Construction C presents

a better packing density in this case.

However, if we consider a code C obtained as permutation of the projection codes

of C (c ✏ ♣c1, c2q P C ô c ✏ ♣c2, c1q P C), we can see from (3.43) that d2
min♣ΓC✍q ✏ 4,

d2
min♣ΓCq ✏ 2 and again ⑤ΓC ⑤④⑤ΓC✍ ⑤ ✏ 2. Here,

✂
2❄
2

✡4

→ 2 and ΓC✍ has a better packing

density.

Table 2 summarizes density properties of previous examples according to the discus-

sion presented previously in this subsection.
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Table 2 – Properties of Construction C✍ and its associated Construction C.

Example Dimension d2
min♣ΓC✍q d2

min♣ΓCq ∆♣ΓC✍q ∆♣ΓCq χ♣ΓC✍q χ♣ΓCq
12✝ 2 1 1 π④16 π④8 0.4431 0.6266
13 2 4 1 π④4 π④8 0.8862 0.4431
14 24 32 24 0.001929 0.00012 0.7707 0.6236
16 2 5 1 0.8781 0.7853 0.9209 0.8861
18✝ 1 1 1 0.5 1 0.5 1

3.3.3.2 Random interleaving

From the analysis in the previous subsection, it is clear that the estimation of the

minimum distance of Construction C✍ is in general not an easy process, particularly if the

equi-minimum distance does not hold. Since in order to compare Construction C✍ with

Construction C in terms of packing density or packing efficiency, the minimum distance is

essential, we will work with random interleaving to approximate its average. This is also

meaningful for communication applications, where the average error probability (in the

presence of white Gaussian noise) is of interest.

The first analysis is regarding a deterministic interleaver. Let c P C ❸ F
nL
2 , z P Z

n

and x♣c, zq be the point in ΓC✍ given by the natural labeling. Note that each coordinate

xj, j ✏ 1, . . . , n of x♣c, zq is generated by a vector of L bits and an integer zj.

Given two codewords c, c̃ P C, c ✘ c̃ and z, z̃ P Z
n, let nm be the number of coordinates

where the vectors x♣c, zq and x♣c̃, z̃q agree in the m✁1 lower levels and disagree in the m✁th

level, m ✏ 1, . . . , L. Let n0 be the number of coordinates where all levels are zero. Clearly,

n0�n1�n2�☎ ☎ ☎�nL ✏ n, n1�n2�☎ ☎ ☎�nL ↕ dH♣c, c̃q and n1�n2�☎ ☎ ☎�nL ✏ dH♣c, c̃q
if and only if x♣c, zq and x♣c̃, z̃q differ in each coordinate in at most one bit.

Proposition 4. (Bound on the squared minimum distance) The squared minimum distance

⑤⑤x♣c, zq ✁x♣c̃, z̃q⑤⑤2 between two points in Construction C✍ is greater than or equal to

n1 � 4n2 � ☎ ☎ ☎ � 4L✁1nL. (3.49)

For the special case when L ✏ 2 and each coordinate of the integer vector z2 is z1 ✁ 1

or z1 � 1, according to which one gives the lowest distance:

⑤⑤x♣c, zq ✁ x♣c̃, z̃q⑤⑤2 ✏ n1 � 4n2. (3.50)

If the interleaver π is random, then the numbers n1, . . . , nL above are random variables.

Their expected value over all interleaver permutations is given by E♣nmq ✏ Pm ☎ n, where

Pm ✏

✄
N ✁m

d✁ 1

☛
✄
N

d

☛ ✓ P1♣1✁ P1qm✁1 for N Ñ ✽, (3.51)
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and d ✏ dH♣c, c̃q.
In particular, P1 ✏ d④N, N ✏ nL. It follows from Equations (3.49) and (3.51) that

the expected Euclidean distance between x♣c, zq and x♣c̃, z̃q, for c ✘ c̃ is lower bounded by

Et⑤⑤x♣π♣cq, zq ✁ x♣π♣c̃q, z̃q⑤⑤2✉ ➙ n♣P1 � 4P2 � ☎ ☎ ☎ � 22LPLq, (3.52)

where E♣☎q denotes expectation with respect to all permutations π.

Considering the approximation in (3.51) for the probabilities when the dimension n

goes to infinity, we have for nÑ ✽ :

E
✥⑤⑤x♣π♣cq, zq ✁ x♣π♣c̃q, z̃q⑤⑤2✭ ➙ dc

L➳
l✏1

✒
4

✂
1 ✁ dc

n

✡✚l✁1

, (3.53)

where dc ✏ dH♣c, c̃q④L.
If we consider a Construction C✍ with a random interleaver, then the average

minimum squared distance between two distinct points in ΓC✍ is

d2
E♣ΓC✍q ✏ E

✂
min

y✘ỹPΓC✍
⑤⑤y ✁ ỹ⑤⑤2

✡
, (3.54)

for y ✏ x♣π♣cq, zq and ỹ ✏ ♣π♣c̃q, z̃q. That is, we take the closest two points for each

permutation and then take an average. This quantity is what we wish we could estimate,

however its estimation is hard. Instead, let us define the minimum average squared distance

between two different points in ΓC✍ as

d2
E♣ΓC✍q ✏ min

y✘ỹPΓC✍
E♣⑤⑤y ✁ ỹ⑤⑤2q, (3.55)

for y ✏ x♣π♣cq, zq and ỹ ✏ ♣π♣c̃q, z̃q. That is, we switch the order of expectation and

minimum: take the two points which are closest on the average. Since Equation (3.52)

lower bounds the expected squared distance for any two distinct codewords c and c̃, it

follows that the minimum average squared distance of ΓC✍ is lower bounded by

d2
E♣ΓC✍q ➙ min

★
dc

L➳
l✏1

✒
4

✂
1 ✁ dc

n

✡✚l✁1

, 22L

✰
, (3.56)

where dc ✏ dH♣Cq④L, and dH♣Cq is the minimum Hamming distance of the main code.

Clearly, the average minimum is smaller than the minimum average, i.e., d2
E♣ΓC✍q ↕

d2
E♣ΓC✍q. In fact, since concentration occurs for most pairs but not for all pairs, the average

minimum distance will be dictated by atypical pairs, whose distance is strictly below

the average. Hence the estimate in Equation (3.55) is in general strictly larger than the

desired quantity d2
E♣ΓC✍q. Nevertheless, in the next section we shall use the simple bound

in Equation (3.56) to assess the packing efficiency of Construction C✍.
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3.4 Comparison of a hybrid Construction C✍④C and Construction

C for Gilbert-Varshamov bound achieving codes

In this section, we aim to compare a hybrid Construction C✍④C to Construction C

in terms of packing efficiency. To do that, we will use Gilbert-Varshamov Bound (GVB)

achieving codes, i.e., codes whose size is related to their minimum Hamming distance dH

via

⑤C⑤ ➙ 2n

⑤B♣d✁ 1, nq⑤ , (3.57)

where B♣r, nq is an n✁dimensional zero-centered Hamming ball of radius r, which is the

set of all n length binary vectors with Hamming weight smaller than or equal to r. For a

large n, ⑤B♣r, nq⑤ .✏ 2nH♣qq, with q ✏ r④n and where H♣qq ✏ ✁q log2 q ✁ ♣1 ✁ qq log2♣1 ✁ qq
is the binary entropy function for q P r0, 1s.

Suppose we start with a Construction C✍ with L✍ levels, so that its distance satisfies

d2
min♣ΓC✍q ✏ min

✦
min
c✘c̃

⑤⑤x♣c, zq, x♣c̃, z̃q⑤⑤2, 22L✍
✮
, (3.58)

c, c̃ P C ❸ F
nL
2 . If the cubic term 22L✍

is the minimum, we add one level of Construction

C above the L✍ levels of Construction C✍, with a code CL✍�1 whose minimum Hamming

distance is dL✍�1. The new construction is thus given by

ΓC✍④C ✏ tc1 � 2c2 � ☎ ☎ ☎ � 2L✍✁1cL✍ � 2L✍

cL✍�1 � 2L✍�1z✉, (3.59)

♣c1, . . . , cL✍q P C, cL✍�1 P CL✍�1, z P Z
n. Its minimum distance satisfies

d2
min♣ΓC✍④Cq ✏ min

✦
min
c✘c̃

⑤⑤x♣c, zq, x♣c̃, z̃q⑤⑤2, 22L✍

dH♣CL✍�1q, 22♣L✍�1q
✮
. (3.60)

We choose the minimum Hamming distance dL✍�1 of the code CL✍�1 large enough

so that the second term will be the minimum. Again we check whether the cubic term

22♣L✍�1q minimizes. If it still does, then we add another level of Construction C and so on.

We continue this process of adding more levels of Construction C until the cubic term

stops being the minimum and we stop. Assuming we stopped after a total of L levels, the

final formula is

d2
min♣ΓC✍④Cq ✏ mintmin

c✘c̃
⑤⑤x♣c, zq, x♣c̃, z̃q⑤⑤2, 22L✍

dH♣CL✍�1q, 22♣L✍�1qdH♣CL✍�2q, . . . ,
22♣L✁1qdH♣CLq✉. (3.61)

c, c̃ P C.

We choose the minimum Hamming distances of the added codes in a balanced way,

i.e., di�1 ✏ di④4, for all L✍ ➔ i ➔ L, similarly to what is required for Construction C in the

definition from Conway and Sloane [18, pp. 150]. Then, we have 22♣L✍�jqdH♣CL✍�j�1q ✏
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22♣L✁1qdH♣CLq, for all 0 ↕ j ↕ L ✁ L✍ ✁ 1 and d2
min♣ΓC✍④Cq ✏ mintmin

c✘c̃
⑤⑤x♣c, zq, x♣c̃, z̃q⑤⑤2,

22♣L✍�jqdH♣CL✍�j�1q✉, for any j. We also assume a balancing condition with respect to the

distances of Construction C✍ and C, i.e., min
c✘c̃

⑤⑤x♣c, zq, x♣c̃, z̃q⑤⑤2 ✏ 22♣L✍�jqdH♣CL✍�j�1q, for

any j.

According to the process described above and to take advantage of the special L✍ ✏ 2

Construction C✍, which is geometrically uniform, we define a hybrid Construction C✍④C
as:

Definition 33. (Hybrid Construction C✍④C for L✍ ✏ 2) Let C be a code in F
2n
2 and

C3, . . . , CL be binary linear codes in F
n
2 . Then the hybrid Construction C✍④C is defined by

ΓC✍④C :✏ tc1 � 2c2 � 4c3 � ☎ ☎ ☎ � 2L✁1cL � 2Lz : ♣c1, c2q P C and

ci P Ci, i ✏ 3, . . . , L, z P Z
n✉. (3.62)

Suppose that, in terms of Definition 33, C ❸ F
2n
2 and C3, . . . , CL ❸ F

n
2 are all VGB

achieving codes and also that 22L is not the minimum squared distance of the ΓC✍④C .

Assume also the balanced condition of Construction C, i.e., the Hamming distance dH♣Ciq
of Ci is 4 times smaller than dH♣Ci✁1q for i ✏ 4, . . . , L. For large n, we may admit the

approximation of min
c✘c̃

⑤⑤x♣c, zq, x♣c̃, z̃q⑤⑤2 as lower bounded by the average dmin♣ΓC✍q as in

Equation (3.56). Taking q ✏ dH♣Cq④2n and q3 ✏ dH♣C3q④n, we have:

d2
E♣ΓC✍④Cq ✓ mintd2

E♣ΓC✍q, 24dH♣C3q✉ (3.63)

Due to the balancing condition considered, i.e., d2
E♣ΓC✍q ✏ 24dH♣C3q. Thus, Equation

(3.63) reduces to:

d2
E♣ΓC✍④Cq ✓ mintnqr1 � 4♣1 ✁ qqs, 24nq3✉ (3.64)

where it follows that q3 ✏ qr1 � 4♣1 ✁ qqs④16 (or also dH♣C3q ✏ 5

32
dH♣Cq, for large n.)

We can then estimate the packing efficiency of hybrid Construction C✍④C and compare

it with that of Construction C. Remember that for large n, vol♣B♣0, ρqq ✓ 2πe

n

n④2
ρn and

we also consider GVB codes achieving the equality in Equation (3.57) in order to have a

fair comparison, then:

χ♣ΓC✍④Cq ✏
1
2

❛
nqr1 � 4♣1 ✁ qqs✒

2nL

⑤ΓC✍④C ⑤♣ 2πe

n qn④2

✚1④n ✏
❛
nqr1 � 4♣1 ✁ qqs⑤ΓC✍④C ⑤1④n

�
2πe
n

✟1④2

2L�1

✓
❛
qr1 � 4♣1 ✁ qqs♣2πeq1④22L

2L�1♣22H♣qq ☎ 2H♣q3q ☎ ☎ ☎ ☎ ☎ 2H♣q3④22♣L✁1qqq , (3.65)

which gives

χ♣ΓC✍④Cq ✓
❛
qr1 � 4♣1 ✁ qqs♣2πeq1④2

2 ☎ 2LH♣qq ☎ 2H♣q3q ☎ ☎ ☎ ☎ ☎ 2H♣q3④22♣L✁1qq , (3.66)
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Construction C✍ is geometrically uniform and used this formula to relate Construction C✍

with its associated Construction C. We also discussed the average minimum distance in

the presence of a random interleaver and adopted it in a hybrid Construction C✍④C to

compare this construction, in terms of packing efficiency, with Construction C.
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Chapter 4

Approximate closest lattice point in

a distributed system

In the present chapter, we consider the closest lattice point problem in a distributed

network setting 1 and aim to study the communication cost and the error probability for

computing an approximate nearest lattice point under this constraint, using the nearest

plane algorithm (defined in Subsection 1.2.3), due to Babai [7]. Our contribution consists of

bounds for the error probability in dimensions 2 (Theorem 7) and 3 (Figure 22, Conjecture

1), where it is shown that the error probability increases with the packing density of

the lattice. We also study the rate computation that underlies the decoding process in a

distributed system (Section 4.3). The results discussed in this chapter can also be found

in [9, 10].

4.1 Why solving a hard lattice problem in a distributed system?

Consider a function that computes, for a given lattice, the closest lattice point to a

real vector x ✏ ♣x1, x2, . . . , xnq in a given lattice Λ. This process is widely used for decoding

lattice codes and for quantization. Lattice coding offers significant coding gains [18] for

noisy channel communication and for quantization, leads to performance approaching the

rate distortion bound [8] for some sources and distortion measures.

Algorithms for the closest lattice point problem have been studied in great detail;

see [2] and the references therein. However, in all these algorithms it is assumed that

the vector components are available at the same location. In our work, we consider

communication settings where the vector components are available at physically separated

nodes and we are interested in the communication cost of exchanging this information in

order to determine the closest lattice point.

1 A collection of independent systems, that can be computers or antennas, as considered, for example
in [48].
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Problems in distributed function computation [6] arise in a broad range of modern

settings. We mention two such applications here, network MIMO systems for next gen-

eration wireless networks [45], and network management in wide area networks [31]. In

MIMO wireless systems, each antenna is considered to be an individual node, and the

received signal constellation (assumed to be a rectangular lattice at the transmitter) forms

a lattice whose basis is determined by the channel tap weights. The fusion center seeks to

decode the received signal to the nearest lattice point. Exact decoding requires that real

or complex numbers be sent from the antenna to the fusion center. However, since the

network has limited bandwidth, it becomes necessary to quantize the information prior to

transmission.

Distributed network management includes problems such as distributed threat

detection, or more generally distributed change detection. One potential application is

that of determining a denial of service attack in a distributed framework [31]. Threat

detection at a centralized point can place an enormous communication burden on the

network. Efficient quantization can mitigate this problem meaningfully.

The closest lattice point problem has also been proposed as a basis for lattice

cryptography ( [3], [26], [30], [37], [42]), which is a topic of great interest in recent years.

Some examples are the GGH and LWE cryptosystems. The idea is to require solution

of the closest lattice point problem, which is known to be NP-complete [21], assuring

security. The Babai algorithm is used in some public key cryptosystems to attack the

communication in order to approximate the closest lattice point (message) that is being

transmitted, thus computation of its error probability is of interest also in this context.

4.2 Error analysis

Consider a generic distributed function computation problem in a network of N

interconnected sensor/computers and possibly a central computing node, called a fusion

center F . Communication links with limited bandwidth interconnect the nodes, which are

assumed to have limited processing power. Node i observes real valued random variable

Xi.

In the centralized model (Figure 15), the objective is to compute a function f♣x1, x2,

. . . , xnq at the fusion center by communicating information from the nodes. We also

consider the interactive model (Figure 16), where the purpose is to compute a function

f♣x1, x2, . . . , xnq at each node, and the fusion center is absent. In general, since random

variables are real valued, these calculations would require that the system communicate an

infinite number of bits. Since the network has finite bandwidth links, the information must

be quantized in a suitable manner, but quantization affects the accuracy of the function

that we are trying to compute. Thus, the main objective is to manage the tradeoff between
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communication cost and function computation accuracy.

Figure 15 – Centralized model. Figure 16 – Interactive model.

The function f to be considered in our study calculates the closest lattice point and

our results are regarding to arbitrary lattices in two and three dimensions. The chosen

approach to solve the distributed problem was to reproduce the Babai partition by sending

a limited number of bits in each model (centralized and interactive) and send it across the

network. As the solutions are approximate, we expect errors that will be described in the

sequel.

4.2.1 Two dimensional case

We assume that node i observes an independent identically distributed (iid) random

process tXi♣tq, t P Z✉, where t is the time index (suppressed) and that random processes

observed at distinct nodes are mutually independent. The random vector X ✏ ♣X1, X2q is

obtained by projecting a random process on the basis vectors of an underlying coordinate

frame, which is assumed to be fixed.

Consider that the lattice Λ is generated by the scaled generator matrix αV , where V

is the generator matrix of the unscaled lattice. Let V♣λq and B♣λq denote the Voronoi and

Babai cells, respectively, associated with lattice vector λ P Λ. The error probability Pe♣αq,
is the probability of the event tλnl♣Xq ✘ λnp♣Xq✉, where λnl is the exact closest lattice

point and λnp is the approximated closest lattice point given by the Babai (np) algorithm.

Moreover, Pe :✏ lim
αÑ0

Pe♣αq ✏ area♣B♣0q
↔

V♣0qcq④area♣B♣0qq.
Our first remark about the Babai partition is that it is basis dependent, whereas

the Voronoi partition is independent of the basis used to represent the lattice, and this

has an impact on the error probability. To better illustrate this phenomenon, consider the

following example.

Example 26. Consider a lattice Λ ❸ R
2 with basis t♣5, 0q, ♣3, 1q✉. The probability of error

in this case, if we calculate the area inside the Babai partition but outside the Voronoi
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partition, is Pe ✏ 0.6 (Figure 17), whereas if we start from the basis t♣1, 2q, ♣✁2, 1q✉,
we achieve after the QR decomposition

✦
♣
❄

5, 0q, ♣0,
❄

5q
✮

and Pe ✏ 0, since the Babai

region associated with an orthogonal basis and the Voronoi region for rectangular lattices

coincides.

Figure 17 – Voronoi region and Babai partition of the triangular basis t♣5, 0q, ♣3, 1q✉.

Example 26 illustrates the necessity of working with a good basis. In our analysis, we

will always consider a Minkowski-reduced basis. As mentioned above, additional motivation

comes from the observation that for a Minkowski-reduced basis in two dimensions, the

relevant vectors are known.

To see this, we first note that an equivalent condition for a basis tv1, v2✉ to be

Minkowski-reduced in dimension two is ⑤⑤v1⑤⑤ ↕ ⑤⑤v2⑤⑤ ↕ ⑤⑤v1 ✟ v2⑤⑤ (cf. Proposition 1,

Chapter 1) Thus, we can state the following result, which was derived from the two

dimensional analysis proposed in [17].

Lemma 2. [17] (Relevant vectors of a Minkowski-reduced basis) If a Minkowski-reduced

basis is particularly given by t♣1, 0q, ♣a, bq✉ then, besides the basis vectors, a third relevant

vector is ✩✫
✪♣✁1 � a, bq, if π④3 ↕ θ ↕ π④2
♣1 � a, bq, if π④2 ➔ θ ↕ 2π④3,

(4.1)

where θ is the angle between ♣1, 0q and ♣a, bq.

Note that, if tv1, v2✉ is a Minkowski-reduced basis then so it is t✁v1, v2✉ and hence

any lattice has a Minkowski-reduced basis with π
2
↕ θ ↕ 2π

3
. So, if we consider the

Minkowski-reduced basis t♣1, 0q, ♣a, bq✉, with a2 � b2 ➙ 1 and ✁1
2
↕ a ↕ 0, it is possible

to use Lemma 2 to describe the Voronoi region of Λ and determine its intersection with

the associated Babai partition. Observe that the area of both regions must be the same

and in this specific case, equal to b. This means that the vertices that define the Babai

rectangular partition have always in the form
�✟1

2
,✟ b

2

✟
.

In addition, t♣✁1✁ a,✁bq, ♣1, 0q, ♣a, bq✉ is an obtuse superbase for Λ, so the relevant

vectors that defines the Voronoi region are ✟♣1, 0q,✟♣a, bq and ✟♣✁1 ✁ a,✁bq. We will
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admit in the upcoming analysis, without loos of generality, only the relevant vectors in

the first quadrant, i.e., ♣1, 0q, ♣1 � a, bq, ♣a, bq, due to the symmetry that the Voronoi cell

has. Therefore, we can state the following result:

Theorem 7. (Error probability function for an arbitrary 2✁dimensional lattice) Consider

a lattice Λ ⑨ R
2 with a triangular Minkowski-reduced basis β ✏ tv1, v2✉ ✏ t♣1, 0q, ♣a, bq✉

such that the angle θ between v1 and v2 satisfies
π

2
↕ θ ↕ 2π

3
. The probability of error Pe

for the Babai partition is given by

Pe ✏ F ♣a, bq ✏ ✁a✁ a2

4b2
. (4.2)

Proof. To calculate Pe for the lattice Λ, we compute the ratio between the area of the

Babai region which is not overlapped by the Voronoi region V♣0q and the area ⑤b⑤ of the

Babai region. In this case, it is twice the error areas given by A1 and A2 according to

Figure 19, normalized by the det♣Λq.

Figure 18 – Voronoi region,
Babai partition
and three relevant
vectors .

Figure 19 – Error triangles.

The perpendicular bisector line to the line defined by ♣0, 0q and ♣1 � a, bq, passing

through the point

✂
1 � a

2
,
b

2

✡
, has equation y1 ✏ ✁1 ✁ a

b
x� ♣1 � aq2

2b
� b

2
. Based on this

fact, we have the vertices which define the triangle with area A1, that are✂
1

2
,
b

2

✡
,

✂
1

2
,
a� a2 � b2

2b

✡
and

✂
a� 1

2
,
b

2

✡
. (4.3)

Thus, A1 ✏
✞✞✞✞✁a2♣a� 1q

8b

✞✞✞✞ ✏ a2♣a� 1q
8b

, for ✁1④2 ↕ a ↕ 0 and b ➙
❄

3④2.
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By doing an analogue process to the remaining triangle, the perpendicular bisector

line to the line defined by ♣0, 0q and ♣a, bq, passing through the point

✂
a

2
,
b

2

✡
, have

equation y2 ✏ ✁a
b
x� a2

2b
� b

2
. Hence, the triangle with area A2 is defined by

✂
✁1

2
,
b

2

✡
,

✂
✁1

2
,
a� a2 � b2

2b

✡
and

✂
a

2
,
b

2

✡
, (4.4)

resulting in A2 ✏
✞✞✞✞✁a♣a� 1q2

8b

✞✞✞✞ ✏ ✁a♣a� 1q2
8b

, in the range ✁1④2 ↕ a ↕ 0 and b ➙
❄

3④2.

Therefore, the probability of error is the sum 2A1 � 2A2, normalized by the area of

the Voronoi region (same as the area of Babai region) ⑤ det♣V q⑤ ✏ ⑤b⑤ ✏ b, where V is the

generator matrix of Λ. Then,

F ♣a, bq ✏ 2A1 � 2A2

b
✏ a2♣a� 1q

4b2
✁ a♣a� 1q2

4b2

✏ 1

4

✂✁a✁ a2

b2

✡
, (4.5)

which demonstrates the result.

Remark 7. Note that starting from any Minkowski-reduced basis of a two-dimensional

lattice γ ✏ tv1, v2✉, considering ρ ✏ ⑥v2⑥
⑥v1⑥ and the angle θ between the basis vectors, the

result of Theorem 7 can be rewritten as

Pe ✏ H♣θ, ρq ✏ 1

4ρ

⑤ cos θ⑤
sen2θ

♣1✁ ρ⑤ cos θ⑤q. (4.6)

We obtain the following Corollary, illustrated in Figure 20, from the probability of

error Pe ✏ F ♣a, bq ✏ 1

4

a

b2
♣1 ✁ aq ✏ 1✁ ♣1� 2aq2

16b2
obtained in Theorem 7 with b ➙

❄
3④2

and ✁1④2 ↕ a ↕ 0.

Corollary 5. For any two-dimensional lattice and a Babai partition constructed from the

QR decomposition associated with a Minkowski-reduced basis where
π

2
↕ θ ↕ 2π

3
, it follows

that

0 ↕ Pe ↕ 1

12
, (4.7)

and

a) Pe ✏ 0 ðñ a ✏ 0, i.e., the lattice is orthogonal.

b) Pe ✏ 1

12
ðñ ♣a, bq ✏

✂
✁1

2
,

❄
3

2

✡
, i.e., the lattice is equivalent to hexagonal lattice.

c) the level curves of Pe are described as ellipsoidal arcs in the region a2 � b2 ➙ 1 and

✁1

2
↕ a ↕ 0.
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Figure 20 – Level curves of Pe ✏ k, in right-left ordering, for k ✏ 0, k ✏ 0.01, k ✏ 0.02, k ✏
0.04, k ✏ 0.06 and k ✏ 1④12 ✓ 0.0833. a is represented in the horizontal axis
and b in the vertical axis.

4.2.2 Three dimensional case

To analyse the error in the three dimensional case, we developed and implemented

an algorithm in the software Mathematica [53] (Appendix A) which calculates the error

probability of any three dimensional lattice, given an obtuse superbase. We assume, as

we did in the two dimensional analysis, an initial upper triangular lattice basis given by

t♣1, 0, 0q, ♣a, b, 0q, ♣c, d, eq✉, where a, b, c, d, e P R. It can be accomplished by performing a

QR decomposition and a multiplication by a scalar factor in the original basis.

It is important to remark that the error probability is, in the general case, dependent

on the basis ordering. Our algorithm searches over all orderings and determines the best

one. As an example, the performance of the BCC lattice is invariant over basis ordering,

due to its symmetries. On the other hand, for the FCC lattice, depending on how the

basis is ordered, we can find two different error probabilities, 0.1505 and 0.1667, but only

0.1505 is tabulated.

A detailed description of the algorithm is presented below and the complete program

implemented in Mathematica is in Appendix A.

Algorithm: Error probability of the closest lattice point problem in a

distributed system (three dimensional case)

Voronoi region: Provided an obtuse superbase, the vertices and faces that define

the Voronoi region of Λ are determined by Equations (1.32) and (1.33), following the

method proposed by Conway and Sloane [17]. In this stage, we determine, generate
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and classify the correspondent Voronoi region of Λ into one of five possibilities

described in Figure 7.

Babai partition: Determine the vertices of the Babai cell. Since we have assumed

a generator matrix in upper triangular form, t♣1, 0, 0q, ♣a, b, 0q, ♣c, d, eq✉, the vertices

are:

✂
1

2
,✁ b

2
,
e

2

✡
,

✂
1

2
,
b

2
,
e

2

✡
,

✂
✁1

2
,✁ b

2
,
e

2

✡
,

✂
✁1

2
,
b

2
,
e

2

✡
,✂

1

2
,✁ b

2
,✁e

2

✡
,

✂
1

2
,
b

2
,✁e

2

✡
,

✂
✁1

2
,✁ b

2
,✁e

2

✡
,

✂
✁1

2
,
b

2
,✁e

2

✡
. (4.8)

Intersection: In this stage, using a function in Mathematica [53], we calculate

the intersection between the Voronoi and Babai regions obtained previously. This

function runs through all points that define both solids and select the coincident

ones, providing in the end of the process, the vertices that determine the intersection

region. We calculate then the volume of the intersection normalized by the volume of

the lattice Λ. The algorithm determines first the format of each type of Voronoi cell

(Figure 7) to simplify the calculations of the error probability. To be more specific,

if all conorms pij, ♣0 ↕ i ➔ j ↕ 3q are nonzero (truncated octahedron) or if only one

conorm is zero (hexa-rhombic dodecahedron) or if two collinear conorms are zero

(rhombic dodecahedron), we implement the general intersection algorithm, defined

as: let v1, e1, f1 be, respectively, the set of vertices, edges and faces that define the

Babai region of Λ and v2, e2, f2, be, respectively, the set vertices, edges and faces

that define the Voronoi region of Λ. Thus, we solve:

Solve {Or tx, y, z✉ P e1 and tx, y, z✉ P f2 Or tx, y, z✉ P e2 and tx, y, z✉ P f1}.

The union of points ♣x, y, zq resulting from the previous system will define the

intersection of Voronoi and Babai regions of Λ. For the two remaining cases, i.e.,

when we have two non-collinear zeros (hexagonal prism) we only calculate the

intersection between the hexagonal basis and the rectangular basis of both prisms

and when we have four zeros, the error probability is zero.

Packing density: Finally, we calculate the packing density ∆3.

We present, in whats follows, results obtained by applying Algorithm 1 to some

known lattices. In Fig. 21 we have

• in red, the cubic lattice Z
3 with basis t♣1, 0, 0q, ♣0, 1, 0q, ♣0, 0, 1q✉;
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Conjecture 1. For any three dimensional lattice and a Babai partition constructed from

the QR decomposition associated with an obtuse superbase which is also Minkowski-reduced,

0 ↕ Pe ↕ 0.1505. (4.9)

Compared with the two dimensional case, we have an increase of 7.32% in the

conjectured bound for the error probability and we expect this number to grow more as

the dimension increases.

We also conjecture, assuming a more "spherical shape" for Voronoi regions of densest

lattices the following

Conjecture 2. The worst error probability for a lattice in dimension n is achieved by the

densest lattice and it tends to one when n goes to infinity.

4.3 Rate computation for constructing a Babai partition for arbi-

trary n → 1

Communication protocols are presented for the centralized and interactive model

along with associated rate calculations in the limit as αÑ 0.

4.3.1 Centralized model

We now describe the transmission protocol Πc by which the nearest plane lattice

point can be determined at the fusion center F . Let vml④vmm ✏ pml④qml where pml and

qml → 0 are relatively prime. Note that we are assuming that the generator matrix is such

that the aforementioned ratios are rational, for l → m. Let qm ✏ l.c.m tqml, l → m✉, where

l.c.m denotes the least common multiple of its argument. By definition qn ✏ 1 (n is the

lattice dimension).

Protocol 1. (Transmission, Πc). Let s♣mq P t0, 1, . . . , qm ✁ 1✉ be the largest s for which

rxm④vmm ✁ s④qms ✏ rxm④vmms. Then node m sends b̃m ✏ rxm④vmms and s♣mq to F ,

m ✏ 1, 2, . . . , n (by definition s♣nq ✏ 0).

Let b ✏ ♣b1, b2, . . . , bnq be the coefficients of λnp, the Babai point.

Theorem 8. The coefficients of the Babai point b can be determined at the fusion center

F after running transmission protocol Πc.

Proof. Observe that each coefficient of b is given by

bm ✏
✒
xm ✁➦n

l✏m�1 blvm,l

vmm

✚
, m ✏ 1, 2, . . . , n, (4.10)
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which is written in terms of tz✉ and tz✉, the fractional and integer parts of real number z,

respectively, (z ✏ tz✉� tz✉, 0 ↕ tz✉ ➔ 1) and also rzs represents the integer closest to z.

Then,

bm ✏
✒
xm

vm

✁
✧➦n

l✏m�1 blvml

vmm

✯✚
✁
❩➦n

l✏m�1 blvml

vmm

❫
, m ✏ 1, 2, . . . , n. (4.11)

Since the fractional part in the above equation is of the form s④qm, s P t0, 1, . . . , qm ✁ 1✉,
where qm is defined above, it follows that 0 ↕ s④qm ➔ 1. Thus

bm ✏

✩✬✬✫
✬✬✪

b̃m ✁
❩➦n

l✏m�1 blvml

vmm

❫
, s ↕ s♣mq,

b̃m ✁
❩➦n

l✏m�1 blvml

vmm

❫
✁ 1, s → s♣mq.

(4.12)

can be computed in the fusion center F in the order m ✏ n, n✁ 1, . . . , 1.

Corollary 6. The rate required to transmit s♣mq, m ✏ 1, 2, . . . , n ✁ 1 is no larger than
n✁1➳
i✏1

log2♣qiq bits.

Therefore, the total rate for computing the Babai point at the fusion center F under

the centralized model is no larger than

n➳
i✏1

h♣piq ✁ log2 ⑤ detV ⑤ ✁ n log2♣αq �
n✁1➳
i✏1

log2♣qiq bits, (4.13)

where h♣piq is the differential entropy of random variable Xi, and scale factor α is small.

Thus the incremental cost due to the s♣mq’s does not scale with α. However, when α is

small, this incremental cost can be considerable, if the lattice basis is not properly chosen

as we will see in further examples.

This rate computation can be visualized geometrically and under the light of the

decoding in orthogonal lattices. Consider a lattice Λ ⑨ R
n generated by tv1, v2, . . . , vn✉,

where we want to decode under the constraints proposed by the centralized model, a real

vector x ✏ ♣x1, x2, . . . , xnq. We construct an associated orthogonal lattice Λ✶ ❸ R
n whose

basis vectors are t♣v11, 0, . . . , 0q❧♦♦♦♦♦♦♠♦♦♦♦♦♦♥
v✶

1

, . . . , ♣0, 0, . . . , vnnq❧♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♥
v✶

n

✉, where vii, 1 ↕ i ↕ n are the diagonal

elements from the original generator matrix of Λ. Observe that the Voronoi region of Λ✶

corresponds to the Babai partition not aligned achieved without sending any extra bit in

this model.

The idea is to decode in the orthogonal associated lattice Λ✶, which is a simple

process and after that, recover the original approximate closest lattice point in Λ. In the

end, we aim to prove that this process is equivalent to sending the extra bits and with

this information, decide between the cases described in Equation (4.12).
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Initially, we can notice that these Babai partitions in the space follow a cyclic

behavior, i.e., after exactly
n✁1➵
m✏1

qm, where qm ✏ l.c.m tqml, l → m✉ shifts, it comes back to

the original setting. This number, when calculated as a rate, corresponds precisely to the

upper bound we have for the extra bits, introduced in Corollary 6.

Example 27. Consider a lattice Λ generated by t♣1, 0q, ♣2④5, 2q✉ and Λ✶ generated by

t♣1, 0q, ♣0, 2q.✉ In this case, q1 ✏ 5 and there are q1 distinct settings in the plane one need

to analyze. After q1 shifts, the Voronoi aligned partition around lattice points in the form

♣0, κq, κ P Z, starts to be repeated, as illustrated in Figure 23.

Figure 23 – Voronoi partition of Λ in orange and Voronoi partition of Λ✶ (Babai) in black.

This situation can be seen as a "modulo qm" operation, where each class is represented

uniquely in the space.

The vector b̃ ✏ ♣b̃1, . . . , b̃nq, with b̃i ✏ rxi④viis , is such that ⑤⑤x ✁ V ✶b̃⑤⑤ is minimum,

where V ✶ has the vectors v✶1, . . . , v
✶
2 on its columns. It means that b̃ decodes x P R

n in the

associated lattice Λ✶ and we want to use this information to decode approximately in Λ.

Clearly, b̃n ✏ bn always.

In a general two dimensional case, for a matrix in the form V ✏
✄
v11 v12

0 v22

☛
, we

consider b̃2 ✏ b2. Indeed, this fact is always true because essentially, we want to write the

vector ♣x1, x2q in terms of the basis tv1, v2✉. So,✄
v11 v12

0 v22

☛✄
b1

b2

☛
✏
✄
x1

x2

☛
. (4.14)

To recover the aligned Babai partition, one aims to find:
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b2 ✏
✒

x2

v22

✚
,

v11b1 � v12b2 ✏ x1 ñ b1 ✏
✒

x1

v11
✁ v12

v11
b2

✚
✏
✒

x1

v11
✁ p12

q12
b2

✚

✏

✔
✖✖✖✕
✒

x1

v11

✚
❧♦♦♠♦♦♥

b̃1

�x1 ✁
✧

p12

q12
b2

✯✜✣✣✣✢✁
❩

p12

q12
b2

❫
❧♦♦♦♠♦♦♦♥

♣b2p12 mod q1q

, (4.15)

where ✁1

2
➔ x1 ➔ 1

2
. Geometrically, this operation means that we are bringing the

analysis in each case to one of the t0, 1, . . . , q1 ✁ 1✉ classes and correcting it by a factor of

♣b2p12 mod q1q, which represents the translation occurred to the lattice point.

Example 28. Figure 23 has represented in black the lattice points of Λ✶ and in red the

lattice points of Λ, which are the ones we want to recover at the end of the process. We

can immediately notice that the correction we need to take in account depends on where x1

is located in the plane. For example, if b̃2 ✏ 3 ✏ b2 and ✁1

2
➔ x1 ➔ 1

2
, then

b1 ✏
✩✫
✪
b̃1 ✁ 1, if ✁ 1

2
� 1

5
✏ ✁ 3

10
➔ x1 ✁ rx1s ➔ 1

2

♣b̃1 ✁ 1q ✁ 1, if ✁ 1

2
➔ x1 ✁ rx1s ↕ ✁ 3

10
.

(4.16)

In a more general setting, according to Equation (4.15), we have that:

b1 ✏

✩✬✬✫
✬✬✪
b̃1 ✁ ♣b2p12 mod q1q, if ✁ v11

2
�
✧
p12

q12b2

✯
➔ xm

vmm

✁
✒
xm

vmm

✚
➔ v11

2

b̃1 ✁ ♣b2p12 mod q1q ✁ 1, if ✁ v11

2
➔ xm

vmm

✁
✒
xm

vmm

✚
↕ ✁vmm

2
�
✧
p12

q12b2

✯
.

(4.17)

This analysis can be also described for the n✁dimensional case, where we aim to
find the Babai point b ✏ ♣b1, . . . , bnq, as

bm ✏

✩✬✬✬✫
✬✬✬✪

b̃m ✁ ♣
n➳

l✏m�1

blpmlq̂ml mod qmq, if ✁ vmm

2
�
✧➦n

l✏m�1
blvml

vmm

✯
➔ xm

vmm

✁
✒

xm

vmm

✚
➔ vmm

2

b̃m ✁ ♣
n➳

l✏m�1

blpmlq̂ml mod qmq ✁ 1, if ✁ vmm

2
➔ xm

vmm

✁
✒

xm

vmm

✚
↕ ✁vmm

2
�
✧➦n

l✏m�1
blvml

vmm

✯
,

(4.18)

where q̂ml ✏ qm④qml. Therefore, the cost of analyzing all the classes is no larger than
n✁1➳
m✏1

log2♣qmq, as stated in Corollary 6.

The following example illustrates how the method proposed in Theorem 8 works in

two and three dimensions and also explore a case where this cost could be large.
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Example 29. Consider the hexagonal A2 lattice generated by

V ✏

☎
✝✆1

1

2

0

❄
3

2

☞
✍✌.

The basis vectors are already Minkowski-reduced and applying what we described above we

have that the coefficients b2 and b1 are given respectively by

b2 ✏
✒

x2

v22

✚
✏
✒

2❄
3

x2

✚
(4.19)

and

b1 ✏
✒

x1

v11
✁
✧

b2v21

v11

✯✚
✁
❩

b2v21

v11

❫
(4.20)

✏
✒
x1 ✁

✧✒
2❄
3

x2

✚
1

2

✯✚
✁
❩✒

2❄
3

x2

✚
1

2

❫
. (4.21)

Hence, for any real vector x ✏ ♣x1, x2q we have

✧✒
2❄
3
x2

✚
1

2

✯
✏ s

q
, with q ✏ 2 and

s P t0, 1✉. Node one must then send the largest integer s♣1q in the range t0, 1✉ for which✒
x1 ✁ s♣1q

q1

✚
✏ rx1s and s♣1q ✏ 0 or s♣1q ✏ 1 depending on the value that x1 assumes.

The cost of this procedure, according to Corollary 6, is no larger than log2 q1 ✏ 1

bit. Thus the cost of constructing the nearest plane partition for the hexagonal lattice is at

most one bit.

Nevertheless, this rate could be potentially large as the next example illustrates.

Example 30. Suppose a lattice generated by

V ✏
✄

1 311
1000

0 101
100

☛
.

One can notice that the basis vectors are already Minkowski-reduced. Using the theory

developed above we have that

b2 ✏
✒

x2

v22

✚
✏
✒

100

101
x2

✚
(4.22)

and

b1 ✏
✒

x1

v11
✁
✧

b2v21

v11

✯✚
✁
❩

b2v21

v11

❫
(4.23)

✏
✒
x1 ✁

✧✒
100

101
x2

✚
311

1000

✯✚
✁
❩✒

100

101
x2

✚
311

1000

❫
. (4.24)
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Consider, for example, x ✏ ♣1, 1q then we have that

✧✒
100

101
x2

✚
311

1000

✯
✏ 311

1000
✏ s

q
.

In this purpose, node one sends the largest integer s♣1q in the range t0, 1, . . . , 999✉ for

which

✒
x1 ✁ s♣1q

q1

✚
✏ rx1s and we get s♣1q ✏ 500.

This procedure will cost no larger than log2 q1 ✏ log2 1000 ✓ 9.96 and in the worst

case, we need to send almost 10 bits to achieve Babai partition in the centralized model.

Example 31. Consider the three dimensional body centered cubic (BCC) lattice with

generator matrix given by

V ✏

☎
✝✝✝✝✝✆

1 ✁1

3
✁1

3

0
2
❄

2

3
✁
❄

2

3

0 0

❝
2

3

☞
✍✍✍✍✍✌, (4.25)

which is the upper triangular matrix obtained after applying QR decomposition in the

original basis considered in Example 9. In order to align this Voronoi region with Babai

partition in its best way, we need to calculate the Babai point given by ♣b1, b2, b3q described

below.

b3 ✏
✓❝

3

2
x3

✛
, (4.26)

b2 ✏
✒

3

2
❄

2
x2 �

✧
1

2
b3

✯✚
�
❩

1

2
b3

❫

✏
✓

3

2
❄

2
x2 �

★
1

2

✓❝
3

2
x3

✛✰✛
�
❬

1

2

✓❝
3

2
x3

✛❴
, (4.27)

and

b1 ✏
✒
x1 �

✧
1

3
b2 � 1

3
b3

✯✚
�
❩

1

3
b2 � 1

3
b3

❫
, (4.28)

where b2 and b3 are integers previously defined in Equations (4.26) and (4.27), respectively.

Hence, for any real vector x ✏ ♣x1, x2, x3q we have two nodes that should send extra

information, nodes 2 and 1, according to the following description✩✬✬✫
✬✬✪

Node 2:

✧
1

2
b3

✯
✏ s♣2q
q♣2q , q♣2q ✏ 2 then s♣2q ✏ 0 or 1

Node 1:

✧
1

3
b2 � 1

3
b3

✯
✏ s♣1q
q♣1q , q♣1q ✏ 3 then s♣1q ✏ 0, 1 or 2.

(4.29)

Observe that the values of s♣1q and s♣2q are calculated here in a general way, however,

they exact values depend on x1 and x2, respectively. Therefore, the total rate to send s♣1q
and s♣2q to the fusion center is

log2 2 � log2 3 ✓ 2.5859 ✓ 3 bits. (4.30)
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The analysis here points to the importance of the number-theoretic structure of

the generator matrix V in determining the communication requirements for computing xnp.

4.3.2 Interactive model

For i ✏ n, n ✁ 1, . . . , 1, node Si sends Ui ✏
✓
♣Xi ✁

n➳
j✏i�1

αvijUjq④αvii

✛
to all other

nodes. The total number of bits communicated is given by R ✏ ♣n✁ 1q
n➳

i✏1

H♣Ui⑤Ui�1, Ui�2,

. . . , Unq. For α suitably small, and under the assumption of independent Xi, this rate can

be approximated by R ✏ ♣n ✁ 1q
n➳

i✏1

h♣piq ✁ log2♣αviiq. Normalizing so that V has unit

determinant we get R ✏ ♣n✁ 1q
n➳

i✏1

h♣piq ✁ n♣n✁ 1q log2♣αq.

In this chapter, we have investigated the closest lattice point problem in a distributed

network, under two communication models, centralized and interactive. By exploring the

nearest plane (Babai) partition for a given Minkowski-reduced basis, we have determined

a closed form for the error probability in two dimensions. For the three dimensional case,

using an obtuse superbase, we have estimated computationally the worst error probability

for random lattices and also conjectured bounds for it. Based on our analysis, we expect

that the worst error probability in an n✁dimensional lattice is achieved by the densest

lattice and goes to one as n goes to infinity. The number of bits that nodes need to send in

both models (centralized and interactive) to achieve the rectangular nearest plane partition

was also computed. The communication cost/error tradeoff of refining the nearest-plane

estimate in an interactive setting is addressed in the companion papers [50, 51].
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Chapter 5

Summary of contributions and

future work

The main contributions of this thesis are:

Construction C: we present counterexamples to show that for 3 levels and up, Con-

struction C is not geometrically uniform in general (Examples 10 and 11), describe

two different ways of producing geometrically uniform constellations (Theorem 4

and Corollary 1), which provided an alternative proof for the geometric uniformity

of 2✁level Construction C (Corollary 2).

Construction C✍: we define a new multilevel constellation that we call Construction C✍

(Definition 29), inspired by the bit-interleaved coded modulation, demonstrate that a

2✁level Construction C✍ is geometrically uniform (Theorem 5) and for three levels and

up it is not necessarily geometrically uniform. Necessary and sufficient conditions

that guarantee the latticeness of Construction C✍ (Theorem 6) are provided as

well as a detailed description of the computation of the minimum distance of this

construction (Section 3.3.3.1) and also comparisons with the associated Construction

C. The average minimum distance in the presence of a random interleaver is also

determined (Section 3.3.3.2) and used to show that a hybrid Construction C✍④C has

potentially a better packing efficiency than Construction C (Figure 14) in a scenario

where the codes that define both constructions are Gilbert-Varshamov achieving.

Approximate closest lattice point in a distributed system: we derive a function

to compute the error probability of solving the approximate closest point in a

distributed system considering the Babai partition for two dimensions (Theorem

7), showing that the worst error probability happens with the hexagonal A2 lattice

(Corollary 5) and we estimate computationally lower and upper bounds for the error

probability for three dimensional lattices (Figure 22). From this analysis, we could

conjecture that also for dimension three, the worst error probability happens when
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we consider the densest lattices (Conjecture 1) and we expect this to happen also

for larger dimensions (Conjecture 2). We also calculate the rate for achieving the

Babai partition in a distributed system which is centralized (Theorem 8) and in an

interactive (Section 4.3.2).

We enumerate in what follows, promising research topics that we aim to explore in

future works:

Hybrid Construction C/D for multi-terminal coding

Multi-terminal lattice coding theory is being an interesting topic of study in recent

years, e.g., for side information problems, network coding and interference alignment

( [39], [44], [57]). Some of the new coding schemes are motivated by the insight provided

by the lattice structure, while others really hinge upon the Euclidean-space linearity of

the lattice. Multi-terminal codes commonly use a nested pair of codes, where one of the

codes should be closed under real addition (i.e., a lattice) while the other code can have a

non-linear structure. As multilevel codes are natural candidates for nesting, it would be

interesting to explore the potential of a hybrid Construction C/D nested coding scheme

for efficient multi-terminal coding.

Construction C✍ with Gray map

In our work, we defined Construction C✍ under the natural labeling in order to

compare it with Construction C, nevertheless, in the original definition of the bit-interleaved

coded modulation, from where Construction C✍ was inspired, the mapping used is the

Gray map, determined as

The Gray map is a mapping from Z4 to Z
2
2 defined by

0 Ñ ♣0, 0q, 1 Ñ ♣0, 1q, 2 Ñ ♣1, 1q, 3 Ñ ♣1, 0q, (5.1)

which can be coordinate wisely extended to a mapping from Z
n
4 to Z

2n
2 .

Thus, we aim to study the properties of a constellation generated with the Gray map

instead of the natural labeling and relate the results associated to 4✁ary codes to what

we have already done for Construction C✍. The extension of Construction C✍ to general

q✁ary codes is also a topic of interest.

Decoding algorithm for Construction C✍

When we talk about multilevel construction, it is implicit the use of multistage

decoding. However, for Construction C✍ this method is not efficient due to the dependence
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imposed by the assumption of a main code C ⑨ F
nL
2 . Hence, one of our goals is to find an

efficient decoding method for Construction C✍, which takes advantage of the structure of

the main code.

Error probability for a n✁dimensional lattice

Regarding the study of the error probability, we aim to find (if possible) a closed

formula to calculate the error probability for general three dimensional lattices and prove

Conjecture 1 and somehow to approach Conjecture 2 under certain restrictions. Further

problems include to generalize the results presented here to families An and Dn lattices,

for which reduced form bases and algorithms that searches for the closest lattice point are

already available [2]. We also want to investigate the closest lattice point in a distributed

system for Voronoi’s first kind lattices, inspired by [36].
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APPENDIX A

Mathematica program to estimate

the closest lattice point in a

distributed network (three

dimensional case)

1 Result = Table [

2 g[a1_ , b1_ , c1_ , d1_ , e1_] := Module [{f},

3

4 (* Function f produces an obtuse superbase and identify the

Voronoi region *)

5 f[a2_ , b2_ , c2_ , d2_ , e2_] := Module [{a = a2 , b = b2 , c = c2

, d = d2 , e = e2},

6 v1 = {1, 0, 0};

7 v2 = {a, b, 0};

8 v3 = {c, d, e};

9 v0 = -v1 - v2 - v3;

10 p01 = v0.v1;

11 p02 = v0.v2;

12 p03 = v0.v3;

13 p12 = v1.v2;

14 p13 = v1.v3;

15 p23 = v2.v3; {p01 , p02 , p03 , p12 , p13 , p23 }];

16

17 {a, b, c, d, e} = { RandomReal [{-1, 1}] , RandomReal [{-4, 4}] ,

RandomReal [{-4, 4}] , RandomReal [{-4, 4}] , RandomReal [{-4,

4}]}; {p01 , p02 , p03 , p12 , p13 , p23} = f[a, b, c, d, e];

18

19 (* Test if the triangular basis is an obtuse superbase (and
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also Minkowski , according to Theorem 3) *)

20 While [( p12 <= 0 && p13 <= 0 && p23 <= 0 && p01 <= 0 && p02 <= 0

&& p03 <= 0 && Norm[v1] <= Norm[v2] && Norm[v2] <= Norm[v3]

&& Norm[v3] <= Norm[v0] && Norm[v3] <= Norm[v2 + v3] && Norm[

v3] <= Norm[v1 + v3] && Norm[v2] <= Norm[v1 + v2 ]) == False ,

21 {a, b, c, d, e} = { RandomReal [{-4, 4}] , RandomReal [{-4, 4}] ,

RandomReal [{-4, 4}] , RandomReal [{-4, 4}] , RandomReal [{-4,

4}]};

22 f[a, b, c, d, e] == {p01 , p02 , p03 , p12 , p13 , p23 }];

23 {p,q,r,s,t}={a,b,c,d,e};

24

25 (**** TESTING PARAMETERS ****)

26 (* Truncated Octahedron *)

27 (*{p,q,r,s,t}={ -1/3 ,2 Sqrt [2]/3 , -1/3 , - Sqrt [2]/3 , Sqrt

[2/3]};*)

28 (* Rhombic Dodecahedron *)

29 (*{p,q,r,s,t}={0 ,1 , -1/2 , -1/2 ,1/ Sqrt [2]};*)

30 (*{p,q,r,s,t}={ -1/2 , - Sqrt [3]/2 ,0 ,1/ Sqrt [3] ,2/ Sqrt [6]};*)

31 (* Hexagonal Prism *)

32 (*{p,q,r,s,t}={ -1/2 , - Sqrt [3]/2 ,0 ,0 ,1};*)

33 (* Elongated Dodecahedron *)

34 (*{p,q,r,s,t}={0 ,1 , -1/2 , -1/2 ,2/ Sqrt [3]};*)

35 (*{p,q,r,s,t}={ -1/2 , - Sqrt [5]/2 ,0 ,1/ Sqrt [5] ,2/ Sqrt [5]};*)

36 (* Cuboid *)

37 (*{p,q,r,s,t}={0 ,1 ,0 ,0 ,1};*)

38

39 p01 = v[1].v[2];

40 p02 = v[1].v[3];

41 p03 = v[1].v[4];

42 p12 = v[2].v[3];

43 p13 = v[2].v[4];

44 p23 = v[3].v[4];

45

46 (* Constructing Voronoi region via Coway & Sloane method *)

47 Clear [p01 , p02 , p03 , p12 , p13 , p23 ];

48 v[2] = {1, 0, 0};

49 v[3] = {p, q, 0};

50 v[4] = {r, s, t};

51 v[1] = -v[2] - v[3] - v[4];

52

53 p01 = Chop[N[v[1].v [2]]];

54 p02 = Chop[N[v[1].v [3]]];
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55 p03 = Chop[N[v[1].v [4]]];

56 p12 = Chop[N[v[2].v [3]]];

57 p13 = Chop[N[v[2].v [4]]];

58 p23 = Chop[N[v[3].v [4]]];

59

60 ap = Permutations [{1 , 2, 3, 4}];

61 P = Table [Dot[v[i], v[j]], {i, 1, 4}, {j, 1, 4}];

62 y = {0, 0, 0, 0};

63 A = Table [{{i, j, k, l} = ap [[ ll]],

64 y[[i]] = 1/2 (-P[[i, j]] - P[[i, k]] - P[[i, l]]) ,

65 y[[j]] = 1/2 (P[[i, j]] - P[[j, k]] - P[[j, l]]) ,

66 y[[k]] = 1/2 (P[[i, k]] + P[[j, k]] - P[[k, l]]) ,

67 y[[l]] = 1/2 (P[[i, l]] + P[[j, l]] + P[[k, l]]) };

68 y, {ll , 1, 24}];

69

70 S = Table [ LinearSolve [{v[1] , v[2] , v[3] , v[4]} , {A[[i, 1]] , A

[[i, 2]] ,

71 A[[i, 3]] , A[[i, 4]]}] , {i, 1, 24}];

72 Vol = Abs[q*t];

73

74 (* Constructing the Babai region ( error paralelephiped )*)

75 vr = {{1/2 , -q/2, t/2} , {1/2 , q/2, t/2} , { -1/2 , -q/2, t/2} ,

{ -1/2 ,q/2, t/2} , {1/2 , -q/2, -t/2} , {1/2 , q/2, -t/2} ,

{ -1/2 , -q/2, -t/2} , { -1/2 , q/2, -t /2}};

76 f1= {{8 ,4 ,2 ,6} ,{8 ,6 ,5 ,7} ,{8 ,7 ,3 ,4} ,{4 ,3 ,1 ,2} ,

77 {1 ,3 ,7 ,5} ,{2 ,1 ,5 ,6}};

78 R = Graphics3D@GraphicsComplex [vr , Polygon /@ f1 ];

79

80 (* Calculating the probability of correctness for each special

Voronoi region *)

81 (* Truncated Octahedron *)

82 If [( p01 != 0 && p02 != 0 && p03 != 0 && p12 != 0 && p13 != 0

&& p23 != 0) ,

83

84 ff1 = Complement [f1 , {{8 , 7, 3, 4}, {2, 1, 5, 6}}];

85 f2 = {{2 , 1, 3, 4, 6, 5}, {8, 7, 9, 10, 12, 11} , {14 , 13,

15, 16 ,18 , 17} , {20 , 19, 21, 22, 24, 23} , {2, 1, 7, 8},

{4, 3, 13, 14} , {6, 5, 19, 20} , {10 , 9, 15, 16} , {12 , 11,

21, 22} , {18 , 17, 23, 24} , {20 , 6, 4, 14, 17, 23} , {12 ,

22, 24, 18, 16, 10} , {21 , 19, 5, 2, 8, 11} , {15 , 13, 3, 1,

7, 9}};

86
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87 ff2 = Complement [f2 , {{8 , 7, 9, 10, 12, 11}} , {{20 , 6, 4,

14, 17, 23}}];

88 V = Graphics3D@GraphicsComplex [S, Polygon /@ f2 ];

89 P1 = Cases [S, {x_ /; x == 1/2 , _, _}];

90 P2 = Cases [S, {x_ /; x == -1/2, _, _}];

91 Clear [x, y, z];

92 Func[v1_ , v2_ , f1_ , f2_] := Module [{ fC = Append [#, #[[1]]] &

/@ f1}, {x, y, z} /.

93 NSolve [Or @@ ({x, y, z} \[ Element ] # & /@ MeshPrimitives [

MeshRegion [v1 , Line /@ fC], 1] ) && Or @@ ({x, y, z} \[

Element ] # & /@ MeshPrimitives [ MeshRegion [v2 , Polygon /@

f2], 2]) ]];

94

95 Intersect [v1_ , v2_ , f1_ , f2_ , ff1_ , ff2_] := Union [Func[v1 ,

v2 , f1 , ff2], Func[v2 , v1 , f2 , ff1 ]];

96

97 points = Intersect [vr , S, f1 , f2 , ff1 , ff2] // Chop;

98 pts = Union [points , P1 , P2 ];

99 B = ConvexHullMesh [pts ];

100 Vc = Volume [B];

101 Pc = Vc/Vol;

102 Pc ,

103

104 (* Hexa - Rhombic Dodecahedron *)

105 If [( p01 != 0 && p02 != 0 && p03 != 0 && p12 != 0 && p13 == 0

&& p23 != 0) || (p01 != 0 && p02 != 0 && p03 != 0 && p12

!= 0 && p13 != 0 && p23 == 0) || (p01 == 0 && p02 != 0 &&

p03 != 0 && p12 != 0 && p13 != 0 && p23 != 0) || (p01 != 0

&& p02 == 0 && p03 != 0 && p12 != 0 && p13 != 0 && p23 !=

0) || (p01 != 0 && p02 != 0 && p03 == 0 && p12 != 0 &&

p13 != 0 && p23 != 0) ,

106

107 ff1 = Complement [f1 , {{8 , 7, 3, 4}, {2, 1, 5, 6}}];

108 f2 = {{2 , 1, 3, 6}, {8, 7, 9, 10, 12, 11} , {14 , 15, 16,

17} , {20 , 19, 21, 22, 24, 23} , {2, 1, 7, 8}, {6, 5, 19,

20} , {10 , 9, 15, 16} , {18 , 17, 23, 24} , {20 , 6, 4, 14,

17, 23} , {22 , 24, 18, 10} , {19 , 5, 8, 11} , {15 , 13, 3, 1,

7, 9}};

109

110 ff2 = Complement [f2 , {{8 , 7, 9, 10, 12, 11}} , {{20 , 6, 4,

14, 17, 23}}];

111 V = Graphics3D@GraphicsComplex [S, Polygon /@ f2 ];
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112 P1 = Cases [S, {x_ /; x == 1/2 , _, _}];

113 P2 = Cases [S, {x_ /; x == -1/2, _, _}];

114 Clear [x, y, z];

115 Func[v1_ , v2_ , f1_ , f2_] := Module [{ fC = Append [#, #[[1]]]

& /@ f1}, {x, y, z} /.

116 NSolve [Or @@ ({x, y, z} \[ Element ] # & /@ MeshPrimitives [

MeshRegion [v1 , Line /@ fC], 1] ) && Or @@ ({x, y, z} \[

Element ] # & /@ MeshPrimitives [ MeshRegion [v2 , Polygon /@

f2], 2]) ]];

117

118 Intersect [v1_ , v2_ , f1_ , f2_ , ff1_ , ff2_] := Union [Func[v1 ,

v2 , f1 , ff2], Func[v2 , v1 , f2 , ff1 ]];

119

120 points = Intersect [vr , S, f1 , f2 , ff1 , ff2] // Chop;

121 pts = Union [points , P1 , P2 ];

122 B = ConvexHullMesh [pts ];

123 Vc = Volume [B];

124 Pc = Vc/Vol;

125 Pc ,

126

127 (* Case 1: Rhombic Dodecahedron *)

128 If[p01 == 0 && p02 != 0 && p03 != 0 && p12 != 0 && p13 != 0

&& p23 == 0,

129 ff1 = Complement [f1 , {{8 , 7, 3, 4}, {2, 1, 5, 6}}];

130 f2 = {{2 , 3, 4, 5}, {8, 9, 10, 11} , {14 , 15, 16, 17} , {20 ,

21, 22, 23} , {4, 3, 13, 14} , {6, 5, 19, 20} , {10 , 9,

15, 16} , {12 , 11, 21, 22} , {20 , 4, 14, 23} , {22 , 18, 16,

10} , {21 , 5, 2, 11} , {15 , 3, 1, 9}};

131

132 ff2 = Complement [f2 , {{8 , 9, 10, 11}} , {{20 , 4, 14, 23}}];

133 V = Graphics3D@GraphicsComplex [S, Polygon /@ f2 ];

134 P1 = Cases [S, {x_ /; x == 1/2 , _, _}];

135 P2 = Cases [S, {x_ /; x == -1/2, _, _}];

136 Clear [x, y, z];

137 Func[v1_ , v2_ , f1_ , f2_] := Module [{ fC = Append [#, #[[1]]]

& /@ f1}, {x, y, z} /.

138 NSolve [Or @@ ({x, y, z} \[ Element ] # & /@ MeshPrimitives [

MeshRegion [v1 , Line /@ fC], 1] ) && Or @@ ({x, y, z} \[

Element ] # & /@ MeshPrimitives [ MeshRegion [v2 , Polygon /@

f2], 2]) ]];

139

140 Intersect [v1_ , v2_ , f1_ , f2_ , ff1_ , ff2_] := Union [Func[v1
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, v2 , f1 , ff2], Func[v2 , v1 , f2 , ff1 ]];

141

142 points = Intersect [vr , S, f1 , f2 , ff1 , ff2] // Chop;

143 pts = Union [points , P1 , P2 ];

144 B = ConvexHullMesh [pts ];

145 Vc = Volume [B];

146 Pc = Vc/Vol;

147 Pc ,

148

149 (* Case 2: Rhombic Dodecahedron *)

150 If [p01 != 0 && p02 == 0 && p03 != 0 && p12 != 0 && p13 ==

0 && p23 != 0,

151 ff1 = Complement [f1 , {{8 , 7, 3, 4}, {2, 1, 5, 6}}];

152 f2 = {{1 , 3, 6, 5}, {8, 9, 10, 12} , {14 , 15, 16, 17} ,

{19 , 21 ,24 , 23} , {2, 1, 7, 8}, {6, 5, 19, 20} , {10 , 9,

15, 16} , {18 , 17, 23, 24} , {6, 4, 17, 23} , {22 , 24, 18,

10} , {19 , 5, 8, 11} , {15 , 3, 1, 9}};

153

154

155 ff2 = Complement [f2 , {{8 , 9, 10, 12}} , {{6 , 4, 17, 23}}];

156 V = Graphics3D@GraphicsComplex [S, Polygon /@ f2 ];

157 P1 = Cases [S, {x_ /; x == 1/2 , _, _}];

158 P2 = Cases [S, {x_ /; x == -1/2, _, _}];

159 Clear [x, y, z];

160 Func[v1_ , v2_ , f1_ , f2_] := Module [{ fC = Append [#,

#[[1]]] & /@ f1}, {x, y, z} /.

161 NSolve [Or @@ ({x, y, z} \[ Element ] # & /@ MeshPrimitives [

MeshRegion [v1 , Line /@ fC], 1] ) && Or @@ ({x, y, z} \[

Element ] # & /@ MeshPrimitives [ MeshRegion [v2 , Polygon /

@ f2], 2]) ]];

162

163 Intersect [v1_ , v2_ , f1_ , f2_ , ff1_ , ff2_] := Union [Func[

v1 , v2 , f1 , ff2], Func[v2 , v1 , f2 , ff1 ]];

164

165 points = Intersect [vr , S, f1 , f2 , ff1 , ff2] // Chop;

166 pts = Union [points , P1 , P2 ];

167 B = ConvexHullMesh [pts ];

168 Vc = Volume [B];

169 Pc = Vc/Vol;

170 Pc ,

171

172 (* Case 3: Rhombic Dedecahedron & Special case of Hexa -
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173 Rhombic Dodecahedron *)

174 If [( p01 != 0 && p02 != 0 && p03 == 0 && p12 == 0 && p13

!= 0 && p23 != 0) || (p01 != 0 && p02 != 0 && p03 != 0

&& p12 == 0 && p13 != 0 && p23 != 0) ,

175 P1 = Cases [S, {_, _, x_ /; x >= t /2}];

176 B = ConvexHullMesh [P1 ];

177 Vc = 2* Volume [B];

178 Pc = 1 - (Vc/Vol);

179 Pc ,

180

181 (* Hexagonal Prism *)

182 If [( p01 != 0 && p02 != 0 && p03 != 0 && p12 == 0 && p13

== 0 && p23 != 0) || (p01 != 0 && p02 != 0 && p03 != 0

&& p12 == 0 && p13 != 0 && p23 == 0) || (p01 == 0 &&

p02 == 0 && p03 != 0 && p12 != 0 && p13 != 0 && p23 !=

0) || (p01 != 0 && p02 != 0 && p03 != 0 && p12 != 0

&& p13 == 0 && p23 == 0) || (p01 != 0 && p02 != 0 &&

p03 == 0 && p12 != 0 && p13 == 0 && p23 != 0) || (p01

== 0 && p02 != 0 && p03 != 0 && p12 == 0 && p13 != 0

&& p23 != 0) || (p01 != 0 && p02 == 0 && p03 != 0 &&

p12 == 0 && p13 != 0 && p23 != 0) || (p01 != 0 && p02

!= 0 && p03 == 0 && p12 != 0 && p13 != 0 && p23 == 0)

|| (p01 == 0 && p02 != 0 && p03 == 0 && p12 != 0 &&

p13 != 0 && p23 != 0) || (p01 != 0 && p02 == 0 && p03

== 0 && p12 != 0 && p13 != 0 && p23 != 0) || (p01 == 0

&& p02 != 0 && p03 != 0 && p12 != 0 && p13 == 0 &&

p23 != 0) || (p01 != 0 && p02 == 0 && p03 != 0 && p12

!= 0 && p13 != 0 && p23 == 0) ,

183

184 pp = { Part[S[[3]] , {1, 2}] , Part[S[[1]] , {1, 2}] ,

Part[S[[7]] , {1, 2}] , Part[S[[9]] , {1, 2}] , Part[S

[[15]] , {1, 2}] , Part[S[[14]] , {1, 2}]};

185 qq = {Part[vr [[6]] , {1, 2}] , Part[vr [[5]] , {1, 2}] ,

Part[vr [[7]] , {1, 2}] , Part[vr [[8]] , {1, 2}]};

186 m1 = Polygon [pp ];

187 m2 = Polygon [qq ];

188 Rd = RegionIntersection [m1 , m2 ];

189 Vc = Area[Rd ];

190 Pc = N[Vc/Vol ];

191 Pc ,

192

193 (* Cuboid *)
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194 Pc = 1]]]]]]];

195 g[a, b, c, d, e];

196

197 n = {Norm[v[2]] , Norm[v[3]] , Norm[v[4]] , Norm[v[2] + v[3]] ,

Norm[v[2] + v[4]] , Norm[v[3] + v[4]] , Norm[v[2] + v[3] + v

[4]]};

198 n1 = (Min[n]) /2;

199 Pd = N [(4/3* Pi *(( n1) ^{3}) )/Vol ];

200 {Pd , 1 - Pc}, {i, 1}]
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