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Resumo

Nosso objetivo neste tabalho é estudar a geometria dos espaços de móduli de feixes de posto 2

no espaço projetivo. Nós apresentamos uma nova família de mônadas cuja cohomologia é um

fibrado vetorial de posto 2 estável em P3. Também estudaremos a irredutibilidade, suavidade e

uma descrição geométrica e algumas dessas famílias. Tais fatos são usados para demonstrar que

o espaço de móduli de fibrados estáveis de posto 2 em P3, com primeira classe de Chern igual 0 e

segunda classe de Chern igual a 5 tem exatamente 3 componentes irredutíveis. Adicionalmente,

descrevemos novas componentes irredutíveis do espaço de móduli de feixes sem torção, semi-

estáveis de posto 2 em P3, cujos pontos genéricos não são localmente livres. Como aplicação,

provamos que o número de tais componentes cresce indefinidamente junto com a segunda

classe de Chern. Provamos ainda que M♣✁1, 2, 4q é irredutível, que M♣✁1, 2, 2q possui pelo

menos duas componentes irredutíveis e que essas componentes têm interseção não vazia, e que

M♣✁1, 2, 0q possui pelo menos 4 componentes, onde pelo menos 3 destas possui interseção não

vazia.

Palavras-chave: Feixes sem torção. Espaços de moduli. Fibrados vetoriais. Problemas de

classificação.



Abstract

Our goal is to study the geometry of moduli spaces of rank 2 sheaves on projective spaces. We

present a new family of monads whose cohomology is a stable rank two vector bundle on P3. We

also study the irreducibility and smoothness together with a geometrical description of some

of these families. Such facts are used to prove that the moduli space of stable rank two vector

bundles of zero first Chern class and second Chern class equal to 5 has exactly three irreducible

components. Additionally, we describe new irreducible components of the moduli space of rank

2 semistable torsion free sheaves on the tridimensional projective space whose generic point

corresponds to non-locally free sheaves. As applications, we prove that the number of such

components grows as the second Chern class grows. Additionally, we proved that M♣✁1, 2, 4q
is irreducible; M♣✁1, 2, 2q has at least two irreducible components, such that the intersection

is non-empty and that M♣✁1, 2, 0q has at least four irreducible components, and that at least

three of them has non-empty intersection.

Keywords: Torsion-free sheaves. Vector Bundles. Moduli Spaces. Classification Problems.
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Introduction

The study of vector bundles is a topic that has attracted the attention of the

mathematical community, due to its connections to various fields of the mathematics and

physics, see for instance [24].

After the proof of existence of a projective moduli scheme parametrizing S-equivalence

classes of semistable sheaves on a projective variety by Maruyama [49], the study of the geometry

of such moduli spaces has been a central topic of research within algebraic geometry. Although

a lot is known for curves and surfaces, general results for three dimensional varieties are still

lacking. In fact, moduli spaces of sheaves on 3-folds turn out to be quite complicated spaces (as

it is illustrated by Vakil’s Murphy’s law [64]), particularly with several irreducible components

of various dimensions.

The goal of this thesis is to advance on the study of the moduli space of semistable

rank 2 sheaves on P3 with fixed Chern classes ♣c1, c2, c3q. We will denote by M♣c1, c2, c3q the

moduli space of rank 2 torsion free sheaves with Chern classes ♣c1, c2, c3q, and additionally,

we will also consider the open subset consisting of stable rank 2 reflexive sheaves, denoted

by R♣c1, c2, c3q; when c3 ✏ 0, this is actually the moduli space of stable rank 2 locally free

sheaves, and that will be denoted by B♣c1, c2q. Questions on the geometry of such spaces, such as

connectedness, or the number of irreducible components, seem to be less explored if compared to

the study of the geometry of the Hilbert schemes of curves in the projective 3-space for instance.

(Some known results for the Hilbert schemes can be found in [21, 40, 41, 53]).

A rich literature on these moduli spaces was produced, especially between the 1970’s

and 1990’s, studying R♣c1, c2, c3q and B♣c1, c2q for specific values of the Chern classes. For

instance, the geometry of B♣0, c2q and B♣✁1, c2q is completely understood for c2 up to 4, see

[5, 12, 12, 18, 23] for c1 ✏ 0, and [4, 28] for c1 ✏ ✁1. In addition, Ein characterized an

infinite series of irreducible components of B♣c1, c2q and proved that the number of irreducible

components of B♣c1, c2q goes to infinity as the c2 goes to infinity [15].

Regarding reflexive sheaves, R♣c1, c2, c3q is known for c1 ✏ ✁1, 0, c2 ↕ 3 and all

possible values for c3, see [11]. Some extremal values are also known, namely, R♣✁1, c2, c
2
2q was

studied by Hartshorne in [25], Chang described R♣0, c2, c
2
2 ✁ 2c2 � 4q in [13], while Miró-Roig

studied R♣✁1; c2; c2
2 ✁ 2c2 � 4q in [52], and the moduli spaces R♣✁1, c2, c

2
2 ✁ 2rc2 � 2r♣r� 1qq for

1 ↕ r ↕ ♣✁1�❄
4c2 ✁ 7q④2, and c2 greater than 5; and R♣✁1, c2, c

2
2 ✁ 2♣r ✁ 1qc2q for c2 greater

than 8 in [50].

Even less is known for torsion free sheaves. The most general results are due to
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Okonek and Spindler, who proved in [57] that M♣0, c2, c
2
2 ✁ c2 � 2q and M♣✁1, c2, c

2
2q are

irreducible for c2 ➙ 6. For small values of c2, Miró-Roig and Trautmann proved that M♣0, 2, 4q
is irreducible, while Le Potier showed in [46, Chapter 7] that M♣0, 2, 0q has exactly 3 irreducible

components; more recently, it was shown in [36] that M♣0, 2, 0q is connected. Trautmann has

also argued that M♣0, 2, 2q has exactly 2 irreducible components [63]. Very recently, using

stability conditions, Schimidt [59] obtained a new proof for the irreducibility of the moduli

spaces of sheaves with maximal third Chern class, thus extending Okonek and Splinder’s results

for the remaining Chern classes.

Due to the ideas of Bridgeland in his seminal works in [8] and [9], the interest in

the study of the geometry of moduli spaces of sheaves, even for more general schemes, was

renewed, as can be seeing in the papers [6], [54], [59] and in the references therein. But, despite

the power of these new techniques, questions about the connectedness, number and examples

of irreducible components of moduli space of sheaves seem to be out of the reach for them, at

least at the moment. Thus, this justifies the use of the classical methods employed in the works

[32, 34, 35, 36, 42, 43, 60] and in this thesis.

Our starting point will be the study of the moduli spaces of locally free sheaves

with first Chern class equals to 0. It is more or less clear from the table in [27, Section 5.3]

that B♣0, 1q and B♣0, 2q should be irreducible, while B♣0, 3q and B♣0, 4q should have exactly two

irreducible components; see [19] and [12], respectively, for the proof of the statements about

B♣0, 3q and B♣0, 4q. For n ➙ 5, two families of irreducible components have been studied, namely

the instanton components, whose generic point corresponds to an instanton bundle, that is,

locally free sheaves that are cohomology of monads of the form :

0 Ñ k.OP3♣✁1q Ñ ♣2k � 2q.OP3 Ñ k.OP3♣1q Ñ 0,

and the Ein components, whose generic point corresponds to a bundle given as cohomology of a

monad of the form

0 Ñ OP3♣✁cq Ñ OP3♣✁bq ❵OP3♣✁aq ❵OP3♣aq ❵OP3♣bq Ñ OP3♣cq Ñ 0,

where b ➙ a ➙ 0 and c → a� b. All of the components of B♣0, nq for n ↕ 4 are of either of these

types; Here we focus on a new family of bundles that appear as soon as n ➙ 5. More precisely,

we study the family of vector bundles in B♣0, a2 � kq for each a ➙ 2 and k ➙ 1 which arise as

cohomologies of monads of the form:

0 Ñ OP3♣✁aq ❵ k ☎OP3♣✁1q Ñ ♣4� 2kq ☎OP3 Ñ k ☎OP3♣1q ❵OP3♣aq Ñ 0 (1)
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which will be denoted by G♣a, kq. We provide a bijection between such monads and monads of

the form:

0 Ñ OP3♣✁aq σÝÑ Ẽ
τÝÑ OP3♣aq Ñ 0

where Ẽ is a rank 4 instanton bundle of charge k. When k ✏ 1 these facts, are used to prove

our first main result.

Main Theorem 1. For each a ➙ 2 not equal to 3, G♣a, 1q is a nonsingular open subset of an

irreducible component of B♣0, a2 � 1q of dimension

4 ☎
✂
a� 3

3

✡
✁ a✁ 1.

Our second main result provides a complete description of all the irreducible compo-

nents of B♣5q.

Main Theorem 2. The moduli space B♣0, 5q has exactly 3 irreducible components, namely:

(i) the instanton component, of dimension 37, which consists of those bundles given as

cohomology of monads of the form

0 Ñ 5 ☎OP3♣✁1q Ñ 12 ☎OP3 Ñ 5 ☎OP3♣1q Ñ 0, and (2)

0 Ñ 2 ☎OP3♣✁2q Ñ 3 ☎OP3♣✁1q ❵ 3 ☎OP3♣1q Ñ 2 ☎OP3♣2q Ñ 0; (3)

(ii) the Ein component, of dimension 40, which consists of those bundles given as cohomology

of monads of the form

0 Ñ OP3♣✁3q Ñ OP3♣✁2q ❵ 2 ☎OP3 ❵OP3♣2q Ñ OP3♣3q Ñ 0; (4)

iii) the closure of the family G♣2, 1q, of dimension 37, which consists of those bundles given as

cohomology of monads of the form

0 Ñ OP3♣✁2q ❵OP3♣✁1q Ñ 6 ☎OP3 Ñ OP3♣1q ❵OP3♣2q Ñ 0 and (5)

0 Ñ OP3♣✁2q❵2 ☎OP3♣✁1q Ñ OP3♣✁1q❵6 ☎OP3 ❵OP3♣1q Ñ 2 ☎OP3♣1q❵OP3♣2q Ñ 0. (6)

Indeed, Hartshorne and Rao proved in [27] that every stable rank 2 bundle on P3

with Chern classes c1♣Eq ✏ 0 and c1♣Eq ✏ 5 is the cohomology of one of the monads listed

above. Rao showed in [58] that bundles given as cohomology of monads of the form (3) lie in the
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closure of the family of instanton bundles of charge 5, which was shown to be irreducible firstly

by Coanda, Tikhomirov and Trautmann in [14]; see also [61]. The irreducibility of the family of

bundles which arise as cohomology of monads of the form (4) was established by Ein in [15].

Finally, our first main result yields the third component, and we also show that the

family of bundles given by the monads of the form (6) lies in the closure of the family G♣2, 1q.
After this, we proceed to the study of proper torsion free sheaves. The crucial starting

point was the identification of three different types of torsion free sheaves made by the authors

in [36]; more precisely, we have the following defintion.

Definition 1. Let E be a torsion free sheaf on P3, and set QE :✏ E❴❴④E, which we assume to

be nontrivial; we have the following fundamental sequence

0 Ñ E Ñ E❴❴ Ñ QE Ñ 0 (7)

and say that E has

• 0-dimensional singularities if dimQE ✏ 0;

• 1-dimensional singularities if QE has pure dimension 1;

• mixed singularities if dimQE ✏ 1, but QE is not pure.

With this definition in mind, a systematic way of producing examples of irreducible

components of M♣0, c2, 0q whose generic point corresponds to a torsion free sheaf with 0-

dimensional and 1-dimensional singularities is given in [36]. Furthermore, Ivanov and Tikhomirov,

in [32], constructed irreducible components of M♣0, 3, 0q whose generic point corresponds to a

torsion free sheaf with mixed singularities.

Our goal then is to generalize the results presented in [32, 36], and show how to

produce irreducible components of M♣c1, c2, c3q, for values of c1, c2 and c3 also including cases

with c1 ✏ ✁1 and c3 ✘ 0, for sheaves with 0-dimensional, 1-dimensional, and mixed singularities.

More precisely, we prove the following two statements.

Main Theorem 3. For each e P t✁1, 0✉, let n and m be positive integers such that en ✑
m♣mod 2q. Let R✝ be a nonsingular, irreducible component of R♣e, n,mq of expected dimension

8n✁ 3 � 2e.

• For each l ➙ 1 there exists an irreducible component T♣e, n,m, lq ⑨ M♣e, n,m ✁ 2lq of

dimension 8n✁3�2e�4l whose generic point rEs satisfies rE❴❴s P R✝ and length♣QEq ✏ l.
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• For each r ➙ 2 and s ➙ 1 such that 2r � 2s ↕ m � e � 2, or r ✏ 1 and s ✏ 0 when

✁e ✏ n ✏ m ✏ 1, there exists an irreducible component X♣e, n,m, r, sq ⑨ M♣e, n� 1,m�
2 � c1 ✁ 2r ✁ 2sq of dimension 8n � 4s � 2r � 2 � e, whose generic point rEs satisfies

rE❴❴s P R✝ and QE is supported on a line plus s points.

The case c1 ✏ 0 of the first part of the previous theorem is just [36, Theorem 7];

we prove here the case c1 ✏ ✁1. The second part is a generalization of [32, Theorem 3], which

covers the cases c1 ✏ 0, n ✏ 2, m ✏ 2, 4.

As as application of our constructions, we provide a description of some of the

irreducible components of M♣✁1, 2, c3q.

Main Theorem 4. The moduli spaces M♣✁1, 2, c3q are connected and

• M♣✁1, 2, 4q is irreducible of dimension 11;

• M♣✁1, 2, 2q has at least 2 irreducible components of dimensions 11, and 15. Moreover,

the intersection between these two irreducible components are non-empty;

• M♣✁1, 2, 0q has at least 4 irreducible components, two of them of dimensions 11, and the

other with dimension 15 and 19. Moreover, the intersection between 3 of these components

are non-empty;

This work is organized as follows. In Chapter 1, we will introduce the main tools

and will fix the notation used troughout this work. We will introduce torsion free, reflexive and

locally free sheaves on a scheme, define moduli spaces, Chern classes, and then, we will study

monads. Finally, we wil give examples of some known irreducible components of moduli spaces

of locally free sheaves, and give the notion of the spectrum of torsion free sheaves, which is

a valuable tool that help us to compute the number of irreducible component of the moduli

spaces.

In Chapter 2, we define the notion of modified instanton bundles, and their relations

with bundles given by cohomology of the monads of the form 1. We then compute the dimension

of the Ext groups of the sheaves defined by this monad. Next, we study the geometrical properties

of these families of sheaves, in order to obtain the proof for the Main Theorem 1. Using these

results, and gathering the results of known components of B♣0, 5q we prove the Main Theorem

2. The results of this chapter can be found in the paper [2], that is a joint work with my advisor

Marcos Jardim, Alexander Tikhomirov and Serguey Tikhomirov.

In Chapter 3, we start by building up some basic techniques, and preliminary results.

We compute the dimensions of the Ext groups of torsion free sheaves in terms of their Chern

classes, and use it to produce the examples of irreducible components of the moduli space of
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torsion free sheaves, and to prove Main Theorem 3. These results are then explored in order to

prove that the number of irreducible components of M♣c1, c2, 0q whose generic point correspond

to a sheaf with 0-, 1-, or mixed dimensional singularities goes to infinity as c2 goes to infinity, thus

showing that the problem of computing the number of irreducible components of M♣c1, c2, 0q
becomes more complicated for higher valuers of c2. Then, we compute the exact number of

irreducible components of M♣✁1, 2, c3q. Finally, we establish the connectedness of M♣✁1, 2, c3q,
thus completing the proof of Main Theorem 4. The results of this chapter can be found in the

paper [1], that is a joint work with my advisor Marcos Jardim and Alexander Tikhomirov.
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1 Preliminaries

In this chapter we will introduce the main tools and will fix the notation used

throughout this work.In Section 1.1 we will introduce torsion free, reflexive and locally free

sheaves on a scheme, which are the main objects that we are interested in this work. In section

1.2 we will make the precise definition of classification of sheaves, by defining moduli spaces,

and stating some properties. In Section 1.3 it will be defined Chern classes, which are the main

invariants of our study, and in section 1.4, we will study monads, which are one of the main

tools to study locally free sheaves on projective spaces. In section 1.5 we will give examples

of some known irreducible components of moduli spaces of locally free sheaves, and finally in

section 1.6 we will give the notion of spectrum of torsion free sheaves, which are a valuable tool

that help us compute the number of irreducible component of the moduli spaces.

1.1 Sheaves of OX-modules

In this section we will present the main definitions and results about sheaves on

schemes that will be used in the next chapters. For more details the reader can see [22, Chapter

2].

Definition 2. Let X be a scheme with a structural sheaf OX , a sheaf of OX-modules F over

X is a sheaf that satisfies the following conditions:

1. For any open set U ⑨ X the group F♣Uq is a OX♣Uq-module.

2. For any open sets U, V ⑨ X with V ⑨ U the restriction homomorphism ρUV : F♣Uq Ñ
F♣V q is compatible with the module structure via the homomorphism ρ✶UV : OX♣Uq Ñ
OX♣V q. That is, if r P OX♣Uq and m P F♣Uq, then

ρUV ♣rmq ✏ ρ✶UV ♣rqρUV ♣mq.

Definition 3. Let A be a commutative ring with unity, and M a A-module. The sheaf

associated with M over Spec♣Aq, denoted by ⑨M is defined as follows:

For any prime ideal p P A, let Mp be the localization of M at p. Let U ⑨ Spec♣Aq
be an open subset, then we define M̃♣Uq as the set of all maps:

s : U Ñ
➜
pPU

Mp
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such that ❅p P U , s♣pq PMp and s is locally a fraction. More precisely, for any p P U there is a

open neighbourhood of p, V that is contained in U and elements m PM and f P A such that

for each q P V , f ❘ q and s♣qq ✏ m④f in Mq. It is possible to prove that ⑨M is a sheaf using the

usual restriction maps.

Let F be a sheaf over a scheme X with structural sheaf OX . Let x P X, we will

denote the stalk of F at x by Fx. If F and G are sheaves of OX✁modules, then we will denote

by Hom♣F ,Gq the group of all morphisms from F to G, and by Hom♣F ,Gq the sheaf of

morphisms from from F to G (sometimes, Hom♣F ,Gq is called local hom).

Definition 4. We will say that the sheaf F❴ :✏ Hom♣F,OX q is the dual of F .

Definition 5. Let X be a scheme with strcutural sheaf OX . A sheaf of OX-modules F is

quasi-coherent if X can be covered by affine open sets Ui ✏ Spec♣Aiq such that for every i

there exists Mi a Ai-module such that F ⑤Ui
✕ ⑨Mi. We will say that F is coherent if all Mi are

finitely generated Ai-modules.

Definition 6. A coherent sheaf F over an scheme X is torsion free, if for every x P X, the

stalk Fx is torsion free OX,x✁module, where OX is the structural sheaf of X.

It is not hard to see that a coherent sheaf F over a scheme X is torsion free if, and

only if, the canonical map F Ñ F❴❴ is injective.

Definition 7. A coherent sheaf F over an scheme X is reflexive if the canonical morphism

F Ñ F❴❴ is an isomorphism.

Note that to say that a sheaf is reflexive is not equivalent to say simply that F is

isomorphic to F❴❴ (We are asking more, we require the canonical map to be an isomorphism).

For an example of sheaf that is isomorphic to its double dual but it is not reflexive the reader

can see [17, Corollary 4.15]

Definition 8. Let X be a scheme, with structural sheaf OX . A sheaf F of OX✁modules is

locally free, if, and only if, there is an open cover ❨iUi of X, such that F ⑤Ui
✔ ❵ri

i✏1OUi
.

In the above definition, if X is connected, it is possible to prove that ri ✏ r for every

i. In this case, we will say that r is the rank of F , and denoted by rk F .

Definition 9. Let X be an algebraic variety. A vector bundle E on X is an algebraic variety

E, together with a morphism π : E Ñ X satisfying the following conditions:

a) There exists an open cover
↕
iPI

Ui and a K-vector space V , such that ψi : π✁1♣Uiq ✔ Ui ✂ V
is an isomorphism, and π ✆ ψ✁1

i is the projection in the first coordinate.
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b) For each i, j P I the morphism

ϕij ✏ ψj ✆ ψ✁1
i⑤Ui❳Uj

: ♣Ui ❳ Ujq ✂ V Ñ ♣Ui ❳ Ujq Ñ ♣Ui ❳ Ujq ✂ V

is a linear isomorphism, that is, there exists an invertible matrix Ai,j, such that

ϕij♣x, vq ✏ ♣x,Aij♣xqvq.

The matrices Ai,j are called transiction matrices, if dim V → 1 and transictions

function if dim V ✏ 1.

Definition 10. Let F be a vector bundle on a scheme X. If rk F ✏ 1 we will say that F is a

line bundle.

In this work we will not make any distinction between locally free sheaves and vector

bundles, and this can be done thanks to the following theorem.

Theorem 11 ([22] - Chapter 2 - Exercise 5.18). There exists an equivalence of the category of

locally free sheaves of rank r and the category of vector bundles of rank r over a scheme X.

It is possible to prove that any locally free sheaf is reflexive, and that any reflexive

sheaf is torsion free. But the converse is not always true, indeed, it will depend on the dimension

of the scheme where the sheaves are defined.

Definition 12. For a fixed sheaf F on a scheme X, we will denote by Hi♣X,✁q the right derived

of the functor of global sections of F , Exti♣F ,✁q the right derived functor of Hom♣F ,✁q and

by Exti♣F ,✁q the right derived functor of Hom♣F ,✁q.

The following properties of the sheaves Exti and of the groups Exti will be used

several times throughout this work.

Proposition 13. Let X be a scheme with structure sheaf OX , and dualizing sheaf ωX , L, F

and G sheaves of OX✁modules, with L being locally free. The following claims are true:

a) Hom♣OX , F q ✔ F ;

b) Exti♣OX , F q ✏ 0 for i ↕ 1;

c) Exti♣OX , F q ✔ Hi♣X,F q;

d) Exti♣F ❜ L,Gq ✔ Exti♣F,G❜ L❴q;

e) Exti♣F ❜ L,Gq ✔ Exti♣F,G❜ L❴q ✔ Exti♣F,Gq ❜ L❴.
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Proof. The items aq ✁ cq follows from [22, Chapter 3, Prop. 6.3], the items dq ✁ eq are proved in

[22, Chapter 3, Prop. 6.7].

From now on, let X be a noetherian scheme over an algebraically closed field K, and

let Coh♣Xq denote the category of coherent sheaves on X.

Definition 14. Let F P Coh♣Xq, we have the following definitions:

a) The support of F is the closed set:

Supp♣Fq :✏ tx P X; Fx ✘ 0✉;

b) The dimension of Supp♣Fq is called the dimension of F ;

c) The singularity set of F is defined as:

Sing♣Fq :✏ tx P X; Fx is not locally free over OX,x✉.

The following propositions will be used several times in this work.

Proposition 15. Let X be a smooth algebraic variety of dimension n, ωX its dualizing sheaf,

and F P Coh♣Xq, of dimension d. Then the sheaves Exti♣F , ωXq ✏ 0 for all i ➔ n ✁ d, and

codim♣Exti♣F , ωXqq ➙ i, for all i ➙ n✁ d.

Proof. See [31, 1.1.6]

Proposition 16. Let X be a smooth algebraic variety of dimension n and F P Coh♣Xq. The

following claims are true.

a) codim♣Sing♣Fqq ➙ 1.

b) If F is torsion free then codim♣Sing♣Fqq ➙ 2.

c) If F is reflexive then codim♣Sing♣Fqq ➙ 3.

d) If F is locally free then Sing♣Fq ✏ ❍.

Proof. See [55, Lemma 1.1.7, Lemma 1.1.8 and Lemma 1.1.9]

Definition 17. Let X be a smooth algebraic variety of dimension n and F P Coh♣Xq, by

definition, F ⑤X③ Sing♣Fq is locally free, and we define the rank of F to be the rank of F ⑤X③ Sing♣Fq.
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1.2 Moduli Spaces

The main goal of this work will be to classify the objects that we have defined in

the previous section. In this one we will say what to classify formally means. We will need the

notion of moduli problem. A moduli problem consist of the following data:

a) A notion of object and equivalence of objects;

b) A notion of family over a base scheme B and equivalence of families;

c) A notion of pullback of families compatible with equivalence.

These notions can be defined at our needs, but they always define a contravariant

functor M : C Ñ Set from the category of the objects that we want to classify to the category

of sets, given by

M♣Xq :✏ tfamilies over X✉④ ✒S

M♣f : Y Ñ Xq :✏ f✝ : M♣Xq Ñ M♣Y q.

This contravariant functor is called moduli functor. We will refer to a moduli problem simply

by its moduli functor.

Definition 18. Given a moduli functor F , a scheme M is called fine moduli space for the

moduli functor F , if M represents F , that is, if F is isomorphic to HomC♣✁,Mq.

Example 1. Fix a vector space V over a field k of dimension n�1. The projective space Pn can

be interpreted as the fine moduli space of the problem of classifying lines trough the origin in V .

For a carefully definition of the notion of this moduli functor the reader can see [30, Example

2.19].

Example 2. Fix a vector space V over a field k of dimension n � 1. The moduli problem

of classifying all subspaces of fixed dimension d of V has a fine moduli space, called the

Grassmannian and denoted by G♣n, dq. For more details the reader can see [30, Example 2.20].

Unfortunatelly, not all moduli problems can be solved, that is, it is possible to find

moduli functor that can not be representable. Even worse, very natural moduli problems cannot

be solved, for instance the problem of classifying all endomorphisms of a given vector space does

not admmit a fine moduli space (see [30, Example 2.21]), therefore we will need a wider notion

for moduli spaces.

Definition 19. We say that a moduli functor F : C Ñ Set is corepresented by an object

M P Ob♣Cq if there is a natural transformation η : F Ñ HomC♣✁,Mq such that η♣tpt✉q is
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bijective and for any object N P Ob♣Cq and for any natural transformation β : F Ñ HomC♣✁, Nq
there exists a unique morphism γ : M Ñ N such that β ✏ hγ ✆ η. The object M is called a

coarse moduli space for the contravariant moduli functor F .

When a coarse moduli space exists it is not hard to prove that it is unique up to

isomorphism, but unfortunately, even coarse moduli spaces can not exist, for instance, the

problem of the classification of rank 2 vector bundles of degree 0 on P1 does not have a coarse

moduli space see [30, Example 2.22]. Hence the problem of the classification of rank 2 torsion

free sheaves on P3 which is the goal of this work seems to be out of reach. Then, in order to

progress towards the solution of this problem, we need to consider a convenient class of torsion

free sheaves, and a convenient notion of equivalence. We will dedicate the rest of this section to

this end.

1.2.1 The objects

In this subsection we will define the notion of µ-semistability and Gieseker semista-

bility of sheaves, that are the properties of the class of sheaves which will allow us to actually

find a moduli functor and a coarse moduli space. Let E be a torsion free sheaf on a projective

scheme over an algebraically closed field k, recall that the Euler characteristic of the sheaf E,

denoted by χ♣Eq is given by
dim X➳

i✏1

♣✁1qi dim Hi♣X,Eq.

Definition 20. Fixing an ample line bundle OX♣1q on X then the function

PE♣mq ✏ χ♣E ❜OX♣mqq ✏ χ♣E♣mqq is called Hilbert polynomial of E.

Lemma 21. With the notation of the Definition 20, PE is a polynomial. Moreover,

pE♣mq ✏ PE♣mq
rkE

is called the reduced Hilbert Polynomial of E

Proof. See [31, Lemma 1.2.1].

Given two polynomials, f and g, we will say that f → g or f ➙ g if for every m →→ 0,

f♣mq → g♣mq or f♣mq ➙ g♣mq.

Definition 22. A torsion free sheaf E is Gieseker semistable if for any proper subsheaf

F ⑨ E one has pF ↕ pE. E is called stable if E the inequality is strict.

For any torsion free sheaf E on a projective variety, X with a fixed ample line bundle

OX♣1q, denote by αi♣Eq the i-th coefficient of the Hilbert Polynomial of E. Moreover, we will
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call the number αdim X✁1♣Eq ✁ rkE.αdim X✁1♣OXq the degree of the sheaf E and denote it by

degE.

Definition 23. Let E be a torsion free sheaf on a projective variety X, with a fixed line bundle

OX♣1q. We define the slope of E as the number :

µ♣Eq :✏ degE

rkE

Additionaly, we say that E is µ✁semistable if, for all subsheaves F ⑨ E with

0 ↕ rkF ↕ rkE, we have µ♣F q ↕ µ♣Eq. E is stable if the last inequality is strict.

Remark 1. Clearly the notion of stability depends on the choice of the ample line bundle on

the projective variety, we will see the end of this section how to deal with this problem.

Although the moduli space for torsion free sheaves is constructed with the notion of

Gieseker semistability, sometimes the µ✁semistability is more tractable, and there are spaces

where both notions are equivalent as we shall see in the next results.

Proposition 24. Let E be a torsion free sheaf on a projective variety X with fixed ample line

bundle OX♣1q. Then we have the following chain of implications.

Proof. See [31, Lemma 1.2.13]

E is µ✁stableñ E is Gieseker stableñ E is Gieseker semistableñ E is µ✁semistable.

Proposition 25. For rank 2 locally free sheaf E on Pn, we have that E is Gieseker stability ô
E is µ✁stability.

Example 3. The cotangent bundle ΩPn given by the Euler sequence:

0 Ñ ΩPn♣1q Ñ ♣n� 1q.OPn Ñ OPn♣1q Ñ 0

is Gieseker stable.

Proof. See [31, Lemma 1.4.5].

Lemma 26. Let E, E1 and E2 be torsion free sheaves on Pn. Then the following claims are

true:

a) The sum E1 ❵ E2 is semistable if, and only if, µ♣E1q ✏ µ♣E2q.

b) E is µ✁(semi)stable, if and only if, E❴ is.
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c) E is µ✁(semi)stable, if and only if, E♣kq is for k P Z.

d) If degE and rk E are coprime, then E is µ✁semistable if, and only if E is µ✁stable

Proof. See [55, Lemma 1.2.4], and [51, Page 6].

An important tool for checking the µ-stability of vector bundles is the Hoppe’s

criteria.

Theorem 27 (Hoppe’s criteria). Let E be a rank r locally-free sheaf on a smooth projective

variety X with cyclic Picard group, then it follows that

a) If H0♣X, ♣
q➞
F qnormq ✏ 0 for 1 ↕ q ↕ r ✁ 1 then F is µ✁stable.

b) If H0♣X, ♣
q➞
F qnorm♣✁1qq ✏ 0 for 1 ↕ q ↕ r ✁ 1 then F is µ✁semistable.

Proof. See [51, Proposition 2.12].

1.2.2 The Families

In this subsection we will define the notion of family of sheaves that we are going

to classify. Let f : X Ñ S be a morphism of finite type of Noetherian schemes, for s P S the

fibre f✁1♣sq ✏ Spec♣k♣sqq ✂S X is denoted Xs. Let E be a coherent sheaf on X ✂ S we will

denote Es the sheaf E restricted to Xs. Often, we will think of E as a collection of sheaves Es

parametrized by s P S.

Definition 28. A flat family of coherent sheaves on the fibres of f is a coherent OX-module F

which is flat over S.

1.2.3 The Moduli Functor

Let X be a projective scheme over an algebraically closed field k of characteristic

zero. For a fixed polynomial P P Qrzs, define the contravariant functor M✶♣P q : ♣Schqo Ñ Sets,

where ♣Schqo denote the opposite category of Schemes over K. If S P Obj♣♣Schqoq, M✶♣Sq is the

set of isomorphisms classes of S-flat families of semistable sheaves on X with Hilbert polynomial

P . Given a morphism f : S ✶ Ñ S let M✶♣P q♣fq be the map obtained by pulling-back sheaves

via fX ✏ f ✂ idX .

Note that if F P M✶♣Sq is a S-flat family of semistable sheaves, and if L is an

arbitrary line bundle on S, then F ❜p✝L is also a S-flat family and all fibers Fs and F ❜p✝L are

isomorphic for every s P S, where p : LÑ S is the map of the definition of line bundle. Then,
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in order to classify families of sheaves on X, it is reasonable to consider the quotient functor

M♣P q ✔ M✶♣P q④ ✒, when we say that two families (F1 and F2) of sheaves parametrized by S

are quivalent, F1 ✒ F2 if, and only if, there is line bundle L on S such that F1 ✔ F2 ❜ p✝L.

Definition 29. A scheme M♣P q is called a moduli space of semistable sheaves if it is a coarse

moduli scheme for M♣P q.

Definition 30. Let E be a semistable torsion free sheaf. A Jordan-Holder filtration of E is a

filtration

0 ✏ E0 ⑨ E1 ⑨ . . . El ✏ E

such that the factors gri♣Eq ✏ Ei④Ei✁1 are stable with the same reduzed Hilbert Polynomial

p♣Eq.

Proposition 31. Jordan-Holder filtrations always exist. Up to isomorphism, the sheaf gr♣Eq ✏
❵igri♣Eq does not depend on the choice of the Jordan-Holder filtration.

Proof. See [31, Chapter 1, Section 1.5]

Definition 32. Two semistable sheaves E1 and E2 with the same reduced Hilbert polynomial

are called S-equivalent if gr♣E1q ✔ gr♣E2q.

These definitions are important due to the following result.

Lemma 33. Suppose M♣P q is the moduli space for M♣P q. Then S-equivalent sheaves corre-

spond to identical closed points in M . In particular, if there is a properly semistable sheaf F ,

(i.e. semistable but not stable), then M cannot be represented.

Proof. See [31, Lemma 4.1.2]

We are now in position to state the main result of this section.

Theorem 34. Let X be a projective scheme, and P P Q♣zq. Then there is a scheme M♣P q that

is a moduli space for M♣P q.

Proof. See [31, Chapter 4], or [48].

Once we have ensured the existence of the moduli space, we are now allowed to study

its geometry. The following result will help us to compute the dimension of the tangent space

of the moduli space M♣P q. Abusing the notation, we often will refer to a sheaf E over X as a

point in the moduli space M♣P q, and denote E PM♣P q.
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Theorem 35. Let X be a projective scheme, and P P Q♣zq. Then for every E PM♣P q there is

a natural bijection between Ext1♣E,Eq and TEM♣P q the tangent space at E in M♣P q.

Proof. See [26, Theorem 2.6].

Two important tools used to compute the Ext of sheaves are the local to global

spectral sequence for sheaves and the Serre’s duality Theorem.

Theorem 36 (Local-to-global spectral sequence). Let E and F be two sheaves on a projective

scheme X. There is a spectral sequence Epq
r with E1-term

E
pq
1 ✏ Hq♣X, Extp♣E,F qq

which converges to Extp�q♣E,F q.

Proof. See [65, Exercise 30.2K]

Theorem 37 (Serre Duality). Let X be a projective scheme of dimension n over an algebraically

closed field k and let F be a coherent sheaf over X. Let ωX be the dualizing sheaf on X, and

let OX♣1q be a very ample line bundle on X, then for all i ➙ 0 there is functorial isomorphism

Exti♣F , ωXq Ñ Hn✁i♣X,Fq❴.

Proof. See [22, Chapter 3, Thm 7.6].

We also will use the following form of Serre Grothendieck duality for coherent sheaves:

Theorem 38. Let X be a smooth projective variety, with dualizing sheaf ωX , F and G two

coherent sheaves on X then it holds:

Exti♣F ,Gq ✔ Extn✁i♣G,F ❜ ωXq❴

Proof. See [22, Chapter 2, Theorem 7.6].

1.3 Chern Classes

In the previous section we established the existence of the moduli space of torsion

free sheaves on projective schemes, with fixed Hilbert Polynomial. In this section we are going

to introduce the notion of Chern classes, because sometimes, is more convenient to consider

them as invariants for the sheaves instead of the Hilbert Polynomial. We will end this section

with the Hirzebruch-Riemann-Roch Theorem that show how these two notions are related.
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For a quick view on Chern classes the reader can see [22, Appendix A], for a deepder

presentation see [16].

Definition 39. Let X be a projective variety over K. A cycle of codimension r on X is an

element of the free abelian group Z♣Xq generated by the closed irreducible subvarieties of X of

codimension r.

Definition 40. Let Rat♣Xq ⑨ Z♣Xq be the subgroup generated by differences of the form:

t➔ Φ ❳ ♣tt0✉ ✂Xq →✉ ✁ t➔ Φ ❳ ♣tt1✉ ✂Xq →✉

where t0, t1 P P1 and Φ ⑨ P1 ✂X is a subvariety of P1 ✂X not contained in any fiber ♣tt✉ ✂Xq.

Definition 41. Two cycles C1, C2 P Z♣Xq are rationally equivalent if there exists if there is

a rationally parametrized family of cycles interpolating between them. More precisely, C1 and

C2 are rationally equivalent if their difference lies in Rat♣Xq.

Definition 42. For each integer r let Ar♣Xq be the group of cycles of codimension r on X

modulo rational equivalence. The Chow group A♣Xq ✏à
i

Ai♣Xq is the group of cycles modulo

rational equivalence. If Z P Z♣Xq then rZs denotes its image in A♣Xq.

Definition 43. Two subschemes Y0, Y1 ⑨ X of a scheme X intersects transversely at

p P Y0 ❳ Y1 if p is smooth in Y0, Y1 and X, and it holds:

TpY0 � TpY1 ✏ TpX.

Two cycles C0 and C1 intersects trasnversely if each irreducible summando of C0 intersects the

irreducible summands of C1 as schemes. Moreover, Y0 and Y1 are generically transverse if

the Y0 and Y1 intersects transversely in the generic point.

Theorem 44. If X is a smooth quasi-projective variety, then there is a unique product structure

on A♣Xq such that for each two generically transverse varieties of X, Y0 and Y1, we have that

rY0s ✝ rY1s ✏ rY0 ❳ Y1s.

Proof. See [16, Theorem-Definition 1.5]

This structures makes A♣Xq into an associative, commutative ring, graded by codi-

mension, called the Chow ring.

It is important to highlight that to define the intersection of cycles, C0 and C1, of a

smooth quasi-projective variety, X, one can not simply make rC0s ✝ rC1s ✏ rC0 ❳ C1s P A♣Xq.
See [16, Section 1.3.7] for a detailed discussion.

We are now in position to state the main result of this subsection.
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Theorem 45. There is a unique way of assigning to each rank r coherent sheaf F , on a smooth

quasi-projective variety X a class c♣Fq ✏ 1 � c1♣Fq � c2♣Fq � . . . � ctop♣Fq P A♣Xq where

top ✏ mintr, dimX✉ that satisfies:

(C1) [Line bundles] Let F ✕ OX♣Dq be the line bundle associated to a divisor D. Then

c♣Eq ✏ 1 � D.

(C2) [Functoriality] If f : X ✶ Ñ X is a morphism, then for each i

ci♣f✝Fq ✏ f✝ci♣Fq,

where f✝ is the pullback of f .

(C3) [Whitney’s formula] If 0 Ñ F ✶ Ñ F Ñ F✷ Ñ 0 is an exact sequence of locally free sheaves

on X, then

c♣Fq ✏ c♣F ✶q ☎ c♣F✷q.

Additionally, for a rank r locally free sheaf F on a scheme X, we can define the

Chern Polynomial of F to be c♣Fq ✏ 1 � c1♣Fqt� c2♣Fqt2 � . . .� ctop♣Fqttop.

Proof. If F is locally free sheaf the proof can be found in [16, Section 1.3.7], for coherent sheaves

the proof is in [47].

Finally, we will relate the Chern classes of a torsion free sheaf with its Euler charac-

teristic, thus with its Hilbert Polynomial.

Let F be a coherent sheaf, with Chern polynomial given by

ct♣Fq ✏
r➵

i✏1

♣1 � aitq

where the ai are formal symbols obtained by factorizing this polynomial. Then we define the

exponential Chern character

ch♣Fq ✏
r➳

i✏1

eai ,

and the Todd class of F ,

td♣Fq ✏
r➵

i✏1

ai

1 ✁ e✁ai
,

where
x

1 ✁ e✁x
✏ 1 � 1

2
x� 1

12
x2 ✁ 1

720
x4 � ☎ ☎ ☎ .



Chapter 1. Preliminaries 29

Theorem 46 (Hirzebruch-Riemann-Roch). For a coherent sheaf F of rank r on a nonsingular

projective variety X of dimension n,

χ♣Fq ✏ deg♣ch♣Fq ☎ td♣TXqqn, (1.1)

where ♣qn denotes the component of degree n P A♣Xq ❜Q.

Proof. A proof that works for coherent sheaves and not only locally free sheaves is less standard,

and can be found in [47].

Example 4. Given a torsion free sheaf F on a projective variety, using Hirzebruch-Riemann-

Roch, it is possible to prove the deg F ✏ c1♣Fq.

Since the right-hand side of equation 1.1 depend only of the Chern classes of the

sheaf, we have that the Euler characteristic, thus the Hilbert polynomial of the sheaf depends

only on the Chern classes, and the definitions of the moduli spaces that we have made in the

previous sections can be done considering Chern classes instead of Hilbert Polynomials.

For this reason, from now on, we will denote the moduli space of rank r semistable

torsion free sheaves with fixed Chern classes, c1, ..., cdim X on a smooth projective scheme X

by MX♣r; c1, c2, ..., cnq, the open subset of the reflexive sheaves by RX♣r; c1, c2, ..., cnq, and the

open subscheme of the locally free sheaves by BX♣r; c1, c2, ..., ctopq where top ✏ maxtr, dimX✉.
Moreover, if X ✏ P3 and r ✏ 2, we will simply omitt them in the notation, that is, M♣c1, c2, c3q
denotes the moduli space of rank 2 torsion free sheaves on P3 with Chern classes c1, c2 and c3,

R♣c1, c2, c3q the moduli space of reflexive sheaves, and B♣c1, c2q the moduli space of locally free

sheaves.

1.4 Monads

From now on, we will restrict our attention to sheaves on projective spaces. In these

ambient spaces, monads are a very important tool to study locally free sheaves, and this section

will be devoted to them.

Definition 47. A monad over a projective variety X is a complex,

M :✏ 0 // A
a

// B
b

// C // 0 (1.2)

of coherent sheaves over X which is exact at A and at C, that means ba ✏ 0, a is injective and

b is surjective. The coherent sheaf F :✏ ker ♣bq④Im ♣aq will be called cohomology of M and

also denoted by H✌♣Mq ✏ F .
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Definition 48. Let M be a monad of locally free sheaves on Pn. The set

Σ♣Mq ✏ tx P Pn ⑤ a♣xq is not injective✉ .
is called the degeneracy locus of the monad.

The following result will help us to determine whether the cohomology sheaf of a

moanad is locally free, reflexive, or even torsion-free.

Lemma 49. Let

M :✏ 0 // A
a

// B
b

// C // 0

be a monad of locally free sheaves on Pn. Then

Σ♣Mq :✏ tx P Pn ⑤ the stalk Fx is not a free OPn,x-module✉ .

Proof. See [20, Lemma 4].

The notion of monad is important in the study of vector bundles on Pn due to the

following result of Horrocks.

Theorem 50. Let F be a rank r locally free sheaf on Pn, then there is monad

M :✏ 0 // A
a

// B
b

// C // 0

sucht that A, B and C are sums of line bundles, with rk B ✁ rk A ✁ rk C ✏ rkF .

Proof. See [29] .

For an example of how the study of monads can help to describe the geometry of

moduli spaces of locally free sheaves, the reader can check [55, Chapter 2].

Once we have defined the notion of monad, we would like to have the notion of

morphisms between them.

Definition 51. Given two monads

M ✶ :✏ 0 // A
a

// B
b

// C // 0

M ✶ :✏ 0 // A✶ a✶

// B✶ b✶

// C✶ // 0 ,

a morphism of monads is a triple of morphisms ♣f, g, hq such that the following diagram is

commutative
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M :✏ 0 // A

f
��

a
// B

g

��

b
// C

h
��

// 0

M ✶ :✏ 0 // A✶ a✶
// B✶ b✶

// C✶ // 0

.

In addition, if f , g and h are isomorphisms we say that the monads are isomorphic.

The following lemma gives a relation between isomorphism classes of monads and

their cohomology when they are locally free; a proof can be found in [55, Lemma 4.1.3].

Lemma 52. Let E and E ✶ be, respectively, locally free sheaves that are cohomology of the

following monads:

M : A
a

// B
b

// C (1.3)

M ✶ : A✶ a✶
// B✶ b✶

// C ✶ (1.4)

If one has that Hom♣B,A✶q ✏ Hom♣C,B✶q ✏ H1♣X,C❴ ❜ A✶q ✏ H1♣X,B❴ ❜ A✶q ✏
H1♣X,C❴ ❜ B✶q ✏ H2♣X,C❴ ❜ A✶q ✏ 0 then there exists a bijection between the set of all

morphisms from E to E ✶ and the set of all morphisms of monads from (1.3) to (1.4).

The following important corollary will be used several times in what follows.

Corollary 53. Consider the monad

M : A
a

// B
b

// C

and its dual monad:

M❴ : C❴ b❴
// B❴ a❴

// A❴.

If these monads satisfy the hypothesis of Lemma 52, and there exists an isomorphism f : E Ñ E❴

between its cohomology bundles such that f❴ ✏ ✁f , then there are isomorphisms h : C Ñ A❴,

and q : B Ñ B❴, such that q❴ ✏ ✁q, and h ✆ b ✏ a❴ ✆ q.

Proof. See [55, Lemma 4.1.3, Corollary 2].

Given a locally free sheaf F on Pn, sometimes it will be important to compute the

dimension of the group Ext2♣F ,Fq. Due to this, the following result is useful,

Lemma 54. Consider the monad

M : A
a0

// B
b0

// C

with cohomology E being locally free. For the mapping
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d0 : Hom♣A,Bq ❵ Hom♣B, Cq Ñ Hom♣A, Cq

given by d0♣a, bq ✏ a0b� ab0.

If Hom♣B,A✶q ✏ Hom♣C,B✶q ✏ H1♣X,C❴ ❜ A✶q ✏ H1♣X,B❴ ❜ A✶q ✏ H1♣X,C❴ ❜
B✶q ✏ H2♣X,C❴ ❜ A✶q ✏ 0 then

cokerd0 ✏ Ext2♣E , Eq

Proof. See [55, Lemma 4.1.7]

1.5 Examples of Irreducible Components

In this section we will state some properties of two very important families of vector

bundles: the instanton bundles and the generalized null correlation bundles.

Instanton bundles were extensively studied by the mathematical community in the

past 60 years, and several interesting properties of them are known. They provide an example of

irreducible and smooth component with the expected dimension for the moduli spaces B♣0, c2q
for any c2.

We now present the main results concerning instanton sheaves that will be used

below. We start by recalling the definition of instanton sheaves on P3, cf. [33, Introduction] for

further information on these objects.

Definition 55. An instanton sheaf on P3 is a torsion free coherent sheaf E with c1♣Eq ✏ 0

satisfying the following cohomological conditions:

H0♣E♣✁1qq ✏ H1♣E♣✁2qq ✏ H2♣E♣✁2qq ✏ H3♣E♣✁3qq ✏ 0.

The integer c :✏ c2♣Eq is called the charge of E. When E is locally free, we say that E is an

instanton bundle.

With this cohomological characterization it is possible to prove the following result.

Proposition 56. Any instanton sheaf on P3 with charge c and rank r can be obtained as the

cohomology of monad of the form

0 Ñ c.OP3♣✁1q Ñ ♣r � 2cq.OP3 Ñ c.OP3♣1q Ñ 0.

Theorem 57. Let I♣c2q be the family of rank 2 instanton bundles with second Chern class

equals to c2. Then I♣c2q fills out a smooth irreducible component of B♣0, c2q with dimension

8c2 ✁ 3.
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Proof. For the smoothness see [37], for the irreducibility see [61] and [62].

Recently, the study of moduli space of instanton bundles on P3 with rank r ➙ 3 has

attracted the interest of the mathematical community, as the reader can see for instance in[3]

and [10]. Rank 4 instanton bundles will be particularly interesting in this work, and by this

reason, we will gather here some important properties of them.

Lemma 58. (i) Every rank 4 instanton bundle E of charge 1 over P3 fits into an exact sequence:

0 Ñ 2 ☎OP3

µÝÑ E
νÝÑ N Ñ 0 (1.5)

where N is a null correlation sheaf fitting into an exact triple:

0 Ñ OP3♣✁1q sÝÑ Ω1
P3♣1q Ñ N Ñ 0. (1.6)

(ii) In addition, if N is locally free, then it is a null correlation bundle, and the triple (1.5) splits:

E ✔ N ❵ 2 ☎OP3 . Respectively, if N is not locally free, then it fits into an exact triple

0 Ñ N Ñ 2 ☎OP3 Ñ Ol♣1q Ñ 0, (1.7)

where l is some projective line in P3.

(iii) There are exact triples induced by (1.5) and (1.6):

0 Ñ 3 ☎OP3

S2µÝÝÑ S2E Ñ coker♣S2µq Ñ 0, 0 Ñ 2 ☎N Ñ coker♣S2µq Ñ S2N Ñ 0, (1.8)

0 Ñ ❫2Ω1
P3♣2q ζÝÑ Ω1

P3♣1q ❜N
ηÝÑ S2N Ñ 0. (1.9)

Proof. See [2, Lemma 4].

With this, it is possible to prove the following.

Corollary 59. In the conditions of Lemma 58, h0♣S2Eq ✏ 3, h1♣S2Eq ✏ 5, h2♣S2Eq ✏ 0.

Proof. See [2, Corollary 5].

The Lemma 58 implies that in order to understand the rank 4 instanton bundles, we

need to study the equations (1.7) and (3.3). Fixing a projective line l ⑨ P3, and let Nl denote

the non locally free null correlation sheaf associated with l, as given in sequence (1.7). Note that

dim Ext1♣Nl, 2 ☎OP3q ✏ 2 ☎ h2♣Nl♣✁4qq ✏ 2 ☎ h1♣Ol♣✁3qq ✏ 4,

so we must understand how many locally free extensions of Nl by 2 ☎OP3 do exist.
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Lemma 60. For each line l ⑨ P3, the corresponding non locally free null correlation sheaf Nl

admits an unique, up to isomorphism, locally free extension by 2 ☎OP3 .

Proof. See [2, Lemma 6].

We conclude that the moduli space of rank 4 instanton bundles of charge 1, denoted

by I♣4, 1q, is isomorphic to P5. Indeed, let G ⑨ P5 denote the Grassmanian of lines in P3;

the points in the complement U :✏ P5③G correspond to the split instantons, of the form

N ❵ 2 ☎ OP3 ; the points l P G correspond to the unique extention of Nl by 2 ☎ OP3 . These

moduli spaces consider only isomorphism classes of instanton bundles, but if we are interested

in their sympletic structure it will be important to determine how many sympletic structure

each E P I♣4, 1q has. The next lemma will answer this question.

Lemma 61. Every rank 4 instanton bundle E of charge 1 admits an unique symplectic structure,

up to isomorphism.

Proof. See [2, Lemma 8]

It is also possible to compute the structure of the automorphism group of any rank 4

instanton bundle, as we can see in the next lemma.

Lemma 62. If E is a rank 4 instanton bundle of charge 1, then h0♣End♣Eqq ✏ 5 and Aut♣Eq ✔
K✝ ✂GL♣2q.

Proof. See [2, Lemma 7]

In [15], Ein studied families of locally free sheaves arising as cohomology of monads

of the form:

0 Ñ OP3♣✁cq Ñ OP3♣✁bq ❵OP3♣✁aq ❵OP3♣aq ❵OP3♣bq Ñ OP3♣cq Ñ 0

where b ➙ a ➙ 0 and c → a � b. Ein called such locally free sheaves of Generalized null

correlation bundles. The following result will be used in this work.

Theorem 63. Let a, b and c be integers such that b ➙ a ➙ 0 and c → a� b. The family of all

generalized null correlation bundles, arising as cohomology of the monad

0 Ñ OP3♣✁cq Ñ OP3♣✁bq ❵OP3♣✁aq ❵OP3♣aq ❵OP3♣bq Ñ OP3♣cq Ñ 0
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denoted by E♣a, b, cq, fullfills an irreducible smooth component of B♣0, c2✁a2✁ b2q, of dimension:✂
c� a� 3

3

✡
�
✂
c� b� 3

3

✡
�
✂
c✁ a� 3

3

✡
�
✂
c✁ a� 3

3

✡
�
✂
c✁ b� 3

3

✡
✁
✂
a� b� 3

3

✡
✁
✂
b✁ a� 3

3

✡
✁
✂

2a� 3

3

✡
✁
✂

2b� 3

3

✡
✁ 3✁ ǫ♣a, bq

where ǫ♣a, bq ✏ 4 if a ✏ b ✏ 0, or ǫ♣a, bq ✏ 1 if a ✏ 0 ➔ b or a ✏ b → 0, or ǫ♣a, bq ✏ 0 if 0 ➔ a ↕ b.

Proof. See [15, Theorem 3.1]

We call such irreducible components the Ein components. For a deeper study on

the number of Ein components, or about their geometry the reader can see [42] and [43].

Another important tool to produce irreducible components in the moduli space of

vector bundles is the Hartshorne-Serre correspondence, which we will now state.

Theorem 64 (Hartshorne-Serre Correspondence). For any fixed line bundle L on P3, there is a

bijective correspondence between ♣iq and ♣iiq:

i) the set of triples ➔ E , s, ϕ → with the equivalence relation ✒, where E is a locally free

sheaf of rank 2 on P3; s P H0♣Eq is a global section whose scheme of zeros is Y , has

codimension 2; and ϕ : ❫2E Ñ L is an isomorphism. The equivalence relation ✒ is defined

as follows: two triples ➔ E , s, ϕ →✒➔ E ✶, s✶, ϕ✶ → if there is an isomorphism ψ : E Ñ E ✶,

and a non-zero constant λ such that s✶ ✏ λψ♣sq, and ϕ✶ ✏ λ2ϕ ✆ ♣❫2ϕq✁1.

ii) The set of pairs ➔ Y, η → where Y is a locally complete intersection curve in P3, and

η : L❜ ωP3 ❜OY Ñ ωY is an isomorphism.

Proof. See [23, Theorem 1.1]

In the context of the Theorem 64, we say that the locally free sheaf E comes from

the extension of the curve Y . This is motivated by the fact that there is an exact sequence of

the form:

0 Ñ OP3♣✁c1♣Eqq Ñ E♣✁c1♣Eqq Ñ IY Ñ 0

that relates E and IY where the later is the ideal sheaf of the curve Y .

Proposition 65. The set of rank 2 normalized stable locally free sheaves on P3 that came

from the extension of r disjoint conics, lies inside an irreducible component of the moduli space

B♣✁1, 2♣r ✁ 1qq with dimension 8♣2♣r ✁ 1qq ✁ 5.

Proof. This is follows from [23, Proposition 4.1].
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1.6 The spectrum of torsion free sheaves

In the previous sections we presented the problem of the study of the moduli spaces

of torsion free sheaves on P3, and in the section 1.5 we presented some examples of irreducible

componentes of these moduli spaces. In the section we will present the notion of spectrum of

sheaves, which are a tool that help to compute the exact number of irreducible components

of the moduli spaces. The notioin of spectrum for torsion free sheaves is due to Okonek and

Spindler in [56].

Theorem 66. Let F be a rank 2 torsion free sheaf on P3, with generic splitting type ♣a1, a2q,
with ai P Z, and a1 ↕ a2. Let sF ✏ h0♣Ext2♣F,OP3qq then there exists a list of m integers

♣k1, k2, ..., kmq, with k1 ↕ k2 ↕ . . . ↕ km such that

a) h1♣F ♣lqq ✏ sF �
m➳

i✏1

h0♣OP1♣ki � l � 1q if l ↕ a2 ✁ 1

b h2♣F ♣lqq ✏
m➳

i✏1

h1♣OP1♣ki � l � 1q if l ➙ a1 ✁ 3

Proof. See [56, Theorem 2.3].

Definition 67. Let F be a rank 2 torsion free sheaf on P3, the list of integers ♣k1, k2, ..., kmq
given by the previous theorem is called spectrum of F .

For any torsion free sheaf E on P3, there exists a exact sequence of the form

0 Ñ RÑ F Ñ E Ñ 0 (1.10)

Where F is a locally free sheaf, and R a reflexive sheaf. Applying the functor

Hom♣✁,OP3q in the sequence (1.10), one has that Ext2♣E,OP3q ✔ Ext1♣R,OP3q. Therefore the

support of the sheaf Ext2♣E,OP3q is zero dimensional. Then it is possible to find a hyperplane

H ⑨ P3 such that H ❳ Supp Ext2♣E,OP3q ✏ ❍, and to define sFH
✏ h0♣Ext1♣F,OP3q ❜OHq.

With this notation it is possible to obtain the following result, that give us numerical

properties for the spectrum of a sheaf.

Proposition 68. Let F be a rank 2 torsion free sheaf on P3, with splitting type ♣a1, a2q and

spectrum ♣k1, . . . , kmq.

a) Let k → a2 � 1, if there is at least sFH
� 1 elements ki in the spectrum, such that ki ➙ k,

then each k
✶

, such that a2 � 1 ↕ k
✶ ↕ k appears in the spectrum.



Chapter 1. Preliminaries 37

b) If k ↕ a1 ✁ 1 is in the spectrum, so every integer k
✶

, such that k ↕ k
✶ ↕ ✁1. Is in the

spectrum.

Proof. See [56, Prop 2.4].

For stable locally free sheaves, it is possible to obtain a better description for the

spectrum.

Proposition 69. Let F be a rank 2 stable locally free sheaf on P3, with spectrum ♣k1, . . . , kmq.
Then the following claims are true:

a) m ✏ c2♣F q;

b) 0 necessarily occurs in the spectrum;

c) If ki is in the spectrum, then so is ✁ki;

d) If c1 ✏ 0, then 0 or ✁1 appears in the spectrum at least twice.

Proof. See [25, Theorem 7.5]

This proposition gives a sistematic way of studying all possible spectrum of stable

locally free sheaves on P3 with fixed second Chern class, then in order to prove that for a given

second Chern class, we have found all possible irreducible components, it is enough to check that

these irreducible components contain the sheaves with all possible spectrum. The next couple of

propositions will help us to understand better the spectrum of stable torsion free sheaves.

Proposition 70. Let E be a rank 2 torsion free sheaf on P3, with splitting type ♣a1, a2q and

spectrum ♣k1, . . . , kmq. If a2 ✁ a1 ↕ 2 then

m➳
i✏1

ki ✏ m♣a2 ✁ 1q ✁ χ♣F ♣✁a2 ✁ 1qq ✁ sE

Proof. See [56, Proposition 2.6]

Proposition 71. Let E be a torsion free sheaf on P3 with spectrum KF ✏ ♣k1, . . . , kmq H ❸ P3

a general hyperplane, with splitting type ♣a1, a2q such that a1 ✁ a2 ↕ 1. Then we have:

m ✏ χ♣FH♣✁a2 ✁ 1qq (1.11)

Proof. See [56, Proposition 2.7]

We will use the above results to deduce some important properties of stable rank 2

torsion free sheaves in P3.
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Proposition 72. Let E be a normalized semistable rank two torsion free sheaf on P3, with

c3♣Eq ✏ 0, and H ❸ P3 a generic hyperplane. Then one has

m ✏ χ♣FH♣✁1qq ✏ c2♣Eq (1.12)

Proof. Since E is a normalized stable rank two torsion free sheaf on P3, we have that the

splitting type of E is either ♣✁1, 0q, if c1♣Eq ✏ ✁1 or ♣0, 0q, if c1♣Eq ✏ 0. By Proposition 71 is

enough to prove that c2♣Eq ✏ χ♣FH♣✁1qq.
Fix a generic hyperplane H ⑨ P3. Consider the sequence of restriction

0 Ñ OP3♣✁1q Ñ OP3 Ñ OH Ñ 0 (1.13)

Twisting this sequence by E♣✁1q, one has that

0 Ñ Tor1♣E,OHq♣✁1q Ñ E♣✁2q Ñ E♣✁1q Ñ E⑤H♣✁1q Ñ 0 (1.14)

Computing the Euler characteristic, we have that

χ♣E⑤H♣✁1qq ✏ χ♣E♣✁1qq ✁ χ♣E♣✁2qq � χ♣Tor1♣E,OHq♣✁1qq ✏ c2♣Eq ✁ h0♣Tor1♣E,OHq♣✁1qq
(1.15)

In the last inequality we use the fact that Tor1♣E,OHq is a 0-dimensional sheaf. But

using the semistability of E, and the sequence (1.14) one sees that h0♣Tor1♣E,OHq♣✁1qq ✏ 0

what give us the result.

The next proposition characterizes the third Chern class of a torsion free sheaf in

terms of its spectrum.

Proposition 73. Let E be a normalized, semistable torsion free sheaf on P3 with sE ✏
h0♣Ext2♣E,OP3qq. Then the following equalities are true.

a) If c1♣Eq ✏ ✁1, then c3♣Eq ✏ ✁2
➳

ki ✁ c2♣Eq ✁ 2sE.

b) If c1♣Eq ✏ 0, then c3♣Eq ✏ ✁2
➳

ki ✁ 2sE.

Proof. For the item aq, since c1♣♣Eq ✏ ✁1, recall that by Hirzenbruch-Riemann-Roch, the Euler

Characteristic of E is χ♣E♣tqq ✏ 1

6
♣t� 1q♣t� 2q♣2t� 3q ✁ 1

2
♣c2♣Eq♣2t� 3q � c3♣Eqq, using this,
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and the fact that m ✏ c2♣Eq in Proposition 70 we have that c3♣Eq ✏ ✁2
➳

ki ✁ c2♣Eq ✁ 2sE as

we wanted.

The proof of item bq is analogous, just recall that the Euler Characteristic of E is

χ♣E♣tqq ✏ 1

3
♣t� 1q♣t� 2q♣t� 3q ✁ ♣c2♣Eq♣t� 2q � 1

2
c3♣Eqq.

It is interesting to note that Okonek and Spindler could prove the irreducibility of

a large family of moduli spaces of torsion free sheaves on P3, [57], only using the notion of

spectrum.
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2 Moduli of locally free sheaves

As discussed in the Introduction, the problem of classification of vector bundles has,

attracted the attention of the mathematical community. The problem that we will address in

this chapter, was pointed, for instance at Harthsorne’s list in [24, Problem 7], in his words:

”Describe explicitly the moduli spaces B♣c1, c2q of rank 2 stable bundles on P3, with Chern

classes c1 and c2”. It is surprisingly that, 40 years later this list come out, we only understand

completely these moduli spaces for c2 ↕ 4.

In this chapter we will give examples of irreducible components of the moduli space

of stable locally free sheaves on P3 different from those describe in the previous chapter. This

new examples will help us to compute the exact number of irreducible components of B♣0, 5q.

2.1 Modified instanton monads

An important object when studying locally free sheaves on projective spaces, is their

first cohomology module.

Definition 74. Let E be a rank 2 locally free sheaf on P3. The set H1
✝♣Eq :✏ ❵tPZH1♣E♣tqq has

the structure of a graduated module, over the polynomial ring with 4 variables, and it is called

first cohomology module of E.

The first cohomology module of vector bundles was the starting point of the study

of the Ein Components in [15]; and it is possible to prove that the first cohomology module of

any generalized null correlation bundle is generated by one element of degree ✁a with a ➔ 0. It

is also possible to prove that the first cohomology module of any instanton bundle of charge k is

generated by k elements of degree ✁1. A natural question that arises here is: what can be said

of locally free sheaves whose first cohomolgy module is generated by one element of degree ✁a
and k elements of degree ✁1? We will dedicate the rest of this chapter to the answer.

For a ➙ 2 and k ➙ 1, consider the following monad:

0 Ñ OP3♣✁aq ❵ k ☎OP3♣✁1q αÝÑ ♣4� 2kq ☎OP3

βÝÑ OP3♣aq ❵ k ☎OP3♣1q Ñ 0, (2.1)

which we call modified instanton monads. The family of isomorphism classes of bundles

arising as cohomology of such monads will be denoted by G♣a, kq.
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Proposition 75. A vector bundle E on P3 is the cohomology of a monad of the form (2.1) if

and only if H1
✝♣Eq has one generator in degree ✁a and k generators in degree ✁1, and its Chern

classes are c1♣Eq ✏ 0, and c2♣Eq ✏ a2 � k.

Proof. The “only if” part is straightforward. Indeed, if E is cohomology of a monad of the form

(2.1), then, by the display of the monad, H1
✝♣Eq has one generator in degree ✁a and k generators

in degree ✁1. On the other hand, if c1♣Eq ✏ 0, it implies that E is a self dual vector bundle on

P3, additionally, if H1♣Eq has one generator in degree ✁a and k generators in degree ✁1, then

by [38, Theorem 2.3], E is cohomology of a monad of the type:

0 Ñ OP3♣✁aq ❵ k ☎OP3♣✁1q αÝÑ ❵2k�4
i✏1 OP3♣kiq βÝÑ OP3♣aq ❵ k ☎OP3♣1q Ñ 0.

Computing the Chern class give us c2♣Eq ✏ a2 � k ✁
6➳

i✏1

k2
i , since c2♣Eq ✏ a2 � k, we

have ki ✏ 0 for all i.

Note that, by now, G♣a, kq could possibly be empty. The next proposition shows that

this is not the case.

Proposition 76. For each a ➙ 2 and k ➙ 1, the family G♣a, kq is non-empty and contains

stable bundles, while every E P G♣a, kq is µ-semistable. In addition, every E P G♣a, 1q is stable.

Proof. First, we will prove that there exists a E P G♣a, kq such that E is stable. Let F be a

rank 2 instanton bundle of charge k. Let a ➙ 2 and take σ P H0♣F ♣2aqq and cosider the zero

locus of σ, ♣σq0 ✏ X (such σ always exists if F is a ’t Hooft instanton bundle, for instance).

Let Y be a complete intersection of two surfaces of degree a and X ❳ Y ✏ ❍. According to [27,

Lemma 4.8], there exists a bundle E and a section τ P H0♣E♣aqq such that ♣τq0 ✏ Y ❨X which

is given as cohomology of a monad of the form (2.1). In addition, since F is stable, X is not

contained in any surface of degree a, hence neither is Y ❨X, and E is also stable.

It is straightforward to check that every E P G♣a, kq satisfies h0♣E♣✁1qq ✏ 0, thus E

is µ-semistable.

Now, we will prove that every E P G♣a, 1q is stable. Fix k ✏ 1, and assume that there

is E P G♣a, 1q satisfying h0♣Eq ✘ 0. Setting K :✏ ker β, it follows that h0♣Kq ✘ 0, hence the

quotient K ✶ :✏ K④OP3 fits into the following exact sequence

0 Ñ K ✶ Ñ 5 ☎OP3

β✶ÝÑ OP3♣1q ❵OP3♣aq Ñ 0.

hence ♣K ✶q❴ admits a resolution of the form:

0 Ñ OP3♣✁1q ❵OP3♣✁aq ♣β✶q❴ÝÝÝÑ 5 ☎OP3 Ñ ♣K ✶q❴ Ñ 0.
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By [7, Theorem 2.7] ♣K ✶q❴ is µ-stable, hence K ✶ is µ-stable. However, the monomor-

phism α : OP3♣✁aq ❵ OP3♣✁1q Ñ K induces a monomorphism OP3♣✁1q Ñ K ✶ (because

K ✶ :✏ K④OP3 ); by the µ-stability of K ✶, we should have

✁1 ➔ µ♣K ✶q ✏ ✁a� 1

3
ùñ a ➔ 2,

providing the desired contradiction.

The modified instanton bundles are also related to usual instanton bundles of higher

rank in a very important way. The precise relationship is outlined in the next couple of lemmas,

and then summarized in Proposition 80 below.

Lemma 77. Given a vector bundle E P G♣a, kq, there exists a rank 4 instanton bundle Ẽ of

charge k, and sections σ P H0♣Ẽ♣aqq, τ P H0♣Ẽ❴♣aqq such that the complex:

0 Ñ OP3♣✁aq σÝÑ Ẽ
τÝÑ OP3♣aq Ñ 0 (2.2)

is a monad whose cohomology is isomorphic to E.

Proof. Define α̃ ✏ α ✆ i and β̃ ✏ π ✆ β where i : k ☎OP3♣✁1q Ñ OP3♣✁aq ❵ k ☎OP3♣✁1q is the inclusion

and π : OP3♣aq ❵ k ☎ OP3♣1q Ñ k ☎ OP3♣1q is the projection. It is clear that α̃ is injective and β̃ is

surjective. We then get the following monad, whose cohomology is a rank 4 instanton Ẽ of charge k:

0 Ñ k ☎OP3♣✁1q
α̃
ÝÑ ♣4� 2kq ☎OP3

β̃
ÝÑ k ☎OP3♣1q Ñ 0. (2.3)

Now we need to construct the morphisms σ and τ . It is straightforward to check that the

chain of inclusions: im α̃ ❸ im α ❸ ker β ❸ ker β̃ holds. For this reason, we have:

0

��

OP3♣aq

��

0 // ker β //

f1

��

♣4� 2kq ☎OP3
//

��

OP3♣aq ❵ k ☎OP3♣1q //

��

0

0 // ker β̃
i
// ♣4� 2kq ☎OP3

//

��

k ☎OP3♣1q //

��

0

0 0,
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where f1 is the inclusion. It follows that coker f1 ✔ OP3♣aq. In addition, we also obtain the following

commutative diagram:

0

��

0 // im α̃
i

// ker β //

f1

��

//

��

ker β④ im α̃ //

ω
��

0

0 // im α̃
i

// ker β̃ //

��

Ẽ // 0

OP3
♣aq

��

0,

where ω is the inclusion. Thus coker ω ✔ OP3♣aq, and we obtain an epimorphism τ : Ẽ Ñ OP3♣aq.

Now, by the isomorphism theorem we have
ker β

im α
✔

ker β
im α̃
im α
im α̃

, so there exists an epimorphism

f2 : ker β④ im α̃ Ñ E fitting into the following commutative diagram:

0

��

0 // k ☎OP3
♣✁1q

α̃
//

��

ker β // ker β④ im α̃ //

f2

��

0

0 // k ☎OP3
♣✁1q ❵OP3

♣✁aq //

��

ker β // E //

��

0

OP3
♣✁aq

��

0

0.

It follows that ker f2 ✔ OP3
♣✁aq, so there exists a monomorphism σ✶ : OP3♣✁aq Ñ

ker β④ im α̃. Composing it with ω, we obtain a monomorphism σ :✏ ω ✆ σ✶ : OP3♣✁aq Ñ Ẽ. An

epimorphism τ is constructed in a similar way. We have therefore constructed the monad:

0 Ñ OP3
♣✁aq

σ
ÝÑ Ẽ

τ
ÝÑ OP3

♣aq Ñ 0,

whose cohomology is precisely the bundle E (note that the leftmost row in the above diagramm gives

E in the display of such monad).

Lemma 78. If a bundle E is the cohomology of a monad of the form (2.2), in which Ẽ is a

sympletic rank 4 instanton bundle, then E is also isomorphic to the cohomology of a monad of

the form (2.1), i.e. E P G♣a, kq.
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Proof. Let Ẽ be an rank 4 instanton bundle of charge k over P3, so that Ẽ is cohomology of a

monad of the type:

0 Ñ k ☎OP3♣✁1q α̃ÝÑ ♣4� 2kq ☎OP3

β̃ÝÑ k ☎OP3♣1q Ñ 0.

Take τ, σ P H0♣Ẽ♣aqq satisfying τ ✆ σ ✏ 0. We thus have the following exacts sequences:

0 Ñ ker β̃ Ñ ♣4� 2kq ☎OP3

β̃ÝÑ k ☎OP3♣1q Ñ 0,

0 Ñ k ☎OP3♣✁1q α̃ÝÑ ker β̃ Ñ Ẽ Ñ 0,

0 Ñ ker τ Ñ Ẽ
τÝÑ OP3♣aq Ñ 0,

0 Ñ OP3♣✁aq σÝÑ ker τ Ñ E Ñ 0,

where E ✔ ker τ④ im σ.

First, define a morphism f2 : ker τ ❵ k ☎OP3♣✁1q Ñ ker β̃ as follows: given x and y

local sections of ker τ and k ☎OP3♣✁1q, respectively, we set f2♣x, yq :✏ x� α̃♣yq (note that f2 is

well defined since α̃ is injective), where x in the right hand side of the equality is regarded as a

local section of Ẽ ✔ ker β̃④ im α̃. We thus obtain the following commutative diagram:

0 // k ☎OP3♣✁1q // ker τ ❵ k ☎OP3♣✁1q
f2

��

// ker τ //

��

0

0 // k ☎OP3♣✁1q α̃
// ker β̃ // Ẽ // 0,

from which we obtain the exact sequence:

0 Ñ ker τ ❵ k ☎OP3♣✁1q f2ÝÑ ker β̃ Ñ OP3♣aq Ñ 0.

We can then compose f2 with the inclusion ker β̃ ❸ ♣4 � 2kq ☎ OP3 , obtaining a

monomorphism f̃2 fitting into the diagram below:

0

��

0

��

ker τ ❵ k ☎OP3♣✁1q
f2

��

ker τ ❵ k ☎OP3♣✁1q
f̃2

��

0 // ker β̃ i
//

��

♣4� 2kq ☎OP3

β̃
//

��

k ☎OP3♣1q // 0

0 // OP3♣aq //

��

coker f̃2
//

��

k ☎OP3♣1q //

��

0

0 0 0
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with the third line obtained via the Snake Lemma; it follows that coker f̃2 ✔ OP3♣aq ❵ k ☎OP3♣1q.
Let β : ♣4� 2kq ☎OP3 Ñ OP3♣aq ❵ k ☎OP3♣1q denote the natural quotient morphism.

Making

α :✏ f̃2 ✆ ♣σ,1k☎O
P3 ♣✁1qq : OP3♣✁aq ❵ k ☎OP3♣✁1q Ñ ♣4� 2kq ☎OP3 ,

we get the monad:

0 Ñ OP3♣✁aq ❵ k ☎OP3♣✁1q αÝÑ ♣4� 2kq ☎OP3

βÝÑ OP3♣aq ❵ k ☎OP3♣1q Ñ 0,

whose cohomology is isomorphic to E.

Next, we argue that the instanton bundle Ẽ obtained in Proposition 77 is symplectic.

Lemma 79. If Ẽ is a rank 4 instanton bundle of charge k that fits in a monad of the form

(2.2), such that the cohomology is a vector bundle, then Ẽ admits a symplectic structure, and τ

is determined by σ.

Proof. Since E is a rank 2 vector bundle with c1♣Eq ✏ 0, there is a (unique up to scale)

symplectic isomorphism ϕ : E
✔ÝÑ E❴. By Corollary 53, there is an isomorphism of monads:

0 // OP3♣✁aq σ
//

g✔

��

Ẽ
τ

//

ϕ✔

��

OP3♣aq //

h✔

��

0

0 // OP3♣✁aq τ❴
// Ẽ❴ σ❴

// OP3♣aq // 0

such that ϕ❴ ✏ ✁ϕ, so ♣Ẽ, ϕq is a symplectic instanton bundle, and τ ✏ σ❴ ✆ ϕ.

Gathering the Lemmas 77, 78 and 79, we obtain the following statement.

Proposition 80. A rank 2 bundle E is the cohomology of a monad of the form:

0 Ñ OP3♣✁aq ❵ k ☎OP3♣✁1q αÝÑ ♣4� 2kq ☎OP3

βÝÑ OP3♣aq ❵ k ☎OP3♣1q Ñ 0

if and only if it is also the cohomology of a monad of the form:

0 Ñ OP3♣✁aq σÝÑ Ẽ
σ❴✆ϕÝÝÝÑ OP3♣aq Ñ 0

where ♣Ẽ, ϕq is a rank 4 symplectic instanton bundle of charge k.

As a first application of Proposition 80 we provide an alternative, more manageable

description of the set G♣a, kq.
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In order to fix the notation, note that every automorphism f P Aut♣OP3♣✁aq ❵ k ☎
OP3♣✁1qq can be represented by a ♣k � 1q ✂ ♣k � 1q matrix :

f ✏

☎✝✝✝✝✆
f1,1 0 ☎ ☎ ☎ 0

f2,1 f2,2 ☎ ☎ ☎ f2,k�1

...
...

. . .
...

fk�1,1 fk�1,2 ☎ ☎ ☎ fk�1,k�1

☞✍✍✍✍✌
where each fj,1 P H0♣OP3♣a ✁ 1qq with j ✏ 2, . . . , k � 1, and f1,1 and fl,m are constants for

l,m ✏ 2, 3, . . . , ♣k � 1q such that:

f1,1 ☎ det

☎✝✝✆
f2,2 ☎ ☎ ☎ f2,k�1

...
. . .

...

fk�1,2 ☎ ☎ ☎ fk�1,k�1

☞✍✍✌✘ 0.

We will denote:

f̃ ✏

☎✝✝✆
f2,2 ☎ ☎ ☎ f2,k�1

...
. . .

...

fk�1,2 ☎ ☎ ☎ fk�1,k�1

☞✍✍✌;

clearly, f̃ P Aut♣k ☎OP3♣✁1qq.
Similarly, every h P Aut♣k ☎OP3♣1q❵OP3♣aqq can be represented by a ♣k�1q✂♣k�1q

matrix:

M ✏

☎✝✝✝✝✆
M1,1 ☎ ☎ ☎ M1,k 0

M2,1 ☎ ☎ ☎ M2,k 0
...

...
. . .

...

Mk�1,1 Mk�1,2 ☎ ☎ ☎ Mk�1,k�1

☞✍✍✍✍✌
where each Mk�1,j P H0♣OP3♣a✁ 1qq for j ✏ 1, . . . , k, and Mk�1,k�1 and hl,m are constants for

l,m ✏ 1, 2, . . . , k, such that:

Mk�1,k�1 ☎ det

☎✝✝✆
M1,1 ☎ ☎ ☎ M1,k

...
. . .

...

Mk,1 ☎ ☎ ☎ Mk,k

☞✍✍✌✘ 0.

We will denote:

M̃ ✏

☎✝✝✆
M1,1 ☎ ☎ ☎ M1,k

...
. . .

...

Mk,1 ☎ ☎ ☎ Mk,k

☞✍✍✌.
Clearly, M̃ P Aut♣k ☎OP3♣1qq.
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Now let P♣a, kq be the set of pairs ♣♣Ẽ, ϕq, σq consisting of a rank 4 symplectic

instanton bundle ♣Ẽ, ϕq of charge k, and a nowhere vanishing section σ P H0♣Ẽ♣aqq, equipped

with the following equivalence relation: ♣♣Ẽ, ϕq, σq ✒ ♣♣Ẽ ✶, ϕ✶q, σ✶q if and only if there are an

isomorphism of symplectic bundles g : ♣Ẽ, ϕq ✒Ñ ♣Ẽ ✶, ϕ✶q, and a constant λ P K✝ such that

g ✆ σ ✏ λσ. We will denote each equivalence class in P♣a, kq by r♣Ẽ, ϕq, σs.

Theorem 81. There exists a bijection between G♣a, kq and P♣a, kq.

Proof. From each pair ♣♣Ẽ, ϕq, σq we build the monad

0 Ñ OP3♣✁aq σÝÑ Ẽ
σ❴✆ϕÝÝÝÑ OP3♣aq Ñ 0,

whose cohomology, by Proposition 80, yields an element rEs P G♣a, kq. Two equivalent pairs

♣♣Ẽ, ϕq, σq and ♣♣Ẽ ✶, ϕ✶q, σ✶q yield isomorphic monads

0 // OP3♣✁aq σ
//

λ

��

Ẽ
σ❴✆ϕ

//

g

��

OP3♣aq //

λ

��

0

0 // OP3♣✁aq σ✶
// Ẽ ✶

σ✶❴✆ϕ✶

// OP3♣aq // 0,

thus rEs ✏ rE ✶s.
Conversely, any rEs P G♣a, kq is the cohomology of a monad of the form (2.1), from

which we can obtain, via Proposition 80, a pair ♣♣Ẽ, ϕq, σq. Any two monads whose cohomologies

are isomorphic to E are also isomorphic, by Lemma 52; since E is rank 2 vector bundle with

zero first Chern class, then Corollary 53 implies the existence of a skew symmetric isomorphism

of monads:

0 // OP3♣✁aq ❵ k ☎ OP3♣✁1q
f

��

α
// ♣4 � 2kq ☎ OP3

g

��

β
// OP3♣aq ❵ k ☎ OP3♣1q //

M

��

0

0 // OP3♣✁aq ❵ k ☎ OP3♣✁1q α✶

// ♣4 � 2kq ☎ OP3

β✶
// OP3♣aq ❵ k ☎ OP3♣1q // 0.

It then follows that the following diagram

0 // k ☎ OP3♣✁1q
f̃
��

α̃
// ♣4 � 2kq ☎ OP3

g

��

β̃
// k ☎ OP3♣1q

M̃
��

// 0

0 // k ☎ OP3♣✁1q α̃✶

// ♣4 � 2kq ☎ OP3

β̃✶
// k ☎ OP3♣1q // 0

provides an isomorphism of monads, since f̃ , g, M̃ are isomorphisms, which in turn induces an

isomorphism g : Ẽ
✒Ñ Ẽ ✶.
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In addition, we also have the following isomorphism of monads

0 // OP3♣✁aq σ
//

f1,1

��

Ẽ
τ

//

g

��

OP3♣aq //

Mk�1,k�1

��

0

0 // OP3♣✁aq σ✶
// Ẽ ✶ τ ✶

// OP3♣aq // 0,

(2.4)

which implies that gσ ✏ f1,1 ☎ σ✶.
Corollary 53 tells us that Ẽ and Ẽ ✶ admit symplectic structures ϕ and ϕ✶, respectively,

and it only remains for us to show that ♣Ẽ, ϕq and ♣Ẽ ✶, ϕ✶q are isomorphic as symplectic bundles.

By Lemma 79, one can take τ ✏ σ❴ ✆ ϕ and τ ✶ ✏ σ✶❴ ✆ ϕ✶ in equation (2.4), so that the

commutation of the right square in that diagram yields σ✶❴ ✆ ϕ✶ ✏ hk�1,k�1 ☎ σ❴ ✆ ϕ. Since

σ✶❴ ✏ f✁1
1,1 ☎ σ❴ ✆ g❴, we conclude that f1,1 ✏ hk�1,k�1 and g❴ ✆ ϕ✶ ✆ g ✏ ϕ, as desired.

For our second application of Proposition 80, we focus our attention on the case

k ✏ 1 to obtain the following important formula for the case k ✏ 1.

Lemma 82. For every E P G♣a, 1q with a ➙ 2, the following holds

h1♣End♣Eqq ✏ 4 ☎
✂
a� 3

3

✡
✁ a✁ 1 � ε♣aq,

where ε♣aq ✏ 1 when a ✏ 3, and ε♣aq ✏ 0 when a ✘ 3.

Proof. See [2, Lemma 16]

It is interesting to observe that the right hand side of the formula in Lemma 82

yields the expected value when a ✏ 2 and a ✏ 3, respectively 37 and 77; when a ➙ 4, one can

check that 4 ☎
✂
a� 3

3

✡
✁ a✁ 1 → 8♣a2 � 1q ✁ 3.

2.2 The structure of P♣a, 1q

Motivated by Lemma 82, we now aim at showing that the set P♣a, 1q has the structure

of an irreducible, nonsingular, quasi-projective variety whose dimension matches the formula in

the statement of the lemma. We will not make any distinction between a vector bundle E and

its isomorphism class rEs and will denote both of them by the letter E without the brackets.

Recall that a null correlation bundle is, by definition, the cokernel of a nonzero

morphism η P Hom♣OP3♣✁1q,ΩP3♣1qq up to a scalar factor, so that the moduli space of null cor-

relation sheaves can be identified with P♣H0♣ΩP3♣2qqq ✔ P5. Denoting by Nη the null correlation

sheaf defined by η P P♣H0♣ΩP3♣2qqq, we have the following exact sequence:

0 // OP3♣a✁ 1qq η
// ΩP3♣a� 1q // Nη♣aq // 0.
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Therefore, by the long exact sequence of cohomology, there exists a natural isomorphism of

H0♣Nη♣aqq with the quotient vector space H0♣ΩP3♣a� 1qq④H0♣OP3♣a✁ 1qq.
Setting V :✏ P♣H0♣ΩP3♣2qqq, consider the morphism

H0♣OP3♣a✁ 1qq ❜ OV ♣✁1q η̃
// H0♣ΩP3♣a� 1qq ❜ OV

given by multiplication by the coordinates. This is clearly injective, and its cokernel is a vector

bundle over V , denoted by Na, whose fibre over η P V is

H0♣coker η♣aqq ✔ H0♣Nη♣aqq.
From Lemmas 58 and 60, we know that each rank 4 instanton bundle Ẽ of charge 1

corresponds to a unique null correlation sheaf N :✏ Ẽ④2 ☎ OP3 .

Note that the exact sequence (2.2) yields an exact sequence in cohomology for every

a ➙ 1:

0 Ñ H0♣OP3♣aqq❵2 Ñ H0♣Ẽ♣aqq Ñ H0♣N♣aqq Ñ 0.

It follows that

H0♣Ẽ♣aqq ✔ H0♣N♣aqq ❵ H0♣OP3♣aqq❵2, (2.5)

so every section σ P H0♣Ẽ♣aqq can be represented as a triple ♣σN , σ1, σ2q with σN P H0♣N♣aqq
and σ1, σ2 P H0♣OP3♣aqq. In this representation, the action of Aut♣Eq on H0♣Ẽ♣aqq is given by

♣λ,Mq ☎ ♣σN , σ1, σ2q ✏ ♣λ ☎ σN , σ
✶
1, σ

✶
2q, where

✄
σ✶1

σ✶2

☛
✏M

✄
σ1

σ2

☛
. (2.6)

Since Ẽ admits a unique symplectic structure, the splitting in cohomology given

in equation (2.5) implies that any pair ♣♣Ẽ, ϕq, σq, consisting of a sympectic rank 4 instanton

bundle of charge 1 and a section σ P H0♣Ẽ♣aqq, can be regarded as a point of the product

Na ✂ H0♣OP3♣aqq❵2, namely ♣♣N, σNq, ♣σ1, σ2qq in the notation of equation (2.6).

Moreover, equation (2.6) also implies that two equivalent pairs ♣♣Ẽ, ϕq, σq and

♣♣Ẽ ✶, ϕ✶q, σ✶q will correspond to points ♣♣N, σNq, ♣σ1, σ2qq and ♣♣N, λσNq, ♣σ✶1, σ✶2qq, respectively,

where

λ

✄
σ✶1

σ✶2

☛
✏M

✄
σ1

σ2

☛
;

here, ♣λ,Mq is the pair representing the symplectic isomorphism ♣Ẽ, ϕq ✒Ñ ♣Ẽ ✶, ϕ✶q under the

isomorphism of Lemma 62. In other words, an equivalence class r♣Ẽ, ϕq, σs P P♣a, 1q defines a

unique point in the Grassmannian G♣2,H0♣OP3♣aqqq of 2-dimensional subspaces of H0♣OP3♣aqq.

Proposition 83. P♣a, 1q is an irreducible, rational, nonsingular quasi-projective variety of

dimension

5 � h0♣N♣aqq � 2 ☎ ♣h0♣OP3♣aqq ✁ 2q ✏ 4 ☎
✂
a� 3

3

✡
✁ a✁ 1.



Chapter 2. Moduli of locally free sheaves 50

Proof. We start by defining the following map, using the notation of the previous paragraph:

π : P♣a, 1q Ñ P5 ✂G♣2, h0♣OP3♣aqqq
r♣Ẽ, ϕq, σs ÞÑ ♣Ẽ④2 ☎ OP3 , ①σ1, σ2②q.

This is clearly well defined, and we check that it is surjective. Given a null correlation sheaf

N P P5, let Ẽ be the unique locally free extension of N by 2 ☎ OP3 , and let ϕ be its unique

symplectic structure.

Next, take ①σ1, σ2② P G♣2, H0♣OP3♣aqqq, and note that the set tσ1 ✏ σ2 ✏ 0✉ is a

complete intersection curve C (of degree a2) in P3. One can find a section σN P H0♣N♣aqq whose

zero locus, being a curve of degree a2 � 1, does not intersect C. The triple ♣σN , σ1, σ2q thus

obtained defines a nowhere vanishing section σ P H0♣Ẽ♣aqq.
Clearly, the set π✁1♣N, ①σ1, σ2②q consists of all those sections σN P H0♣N♣aqq which

do not vanish along the curve C :✏ tσ1 ✏ σ2 ✏ 0✉, so it is an open subset of H0♣N♣aqq. It follows

that P♣a, 1q can be regarded as an open subset of the product Na ✂G♣2, H0♣OP3♣aqqq, showing

that P♣a, 1q is an irreducible, nonsingular quasi-projective variety of the given dimension.

Finally, note that Na is rational, since it is the total space of a vector bundle over

P5. Hence the product Na ✂G♣2, H0♣OP3♣aqqq is rational, and so is P♣a, 1q.

Noting that the dimension of P♣a, 1q matches h1♣End♣Eqq for a ✏ 2 and a ➙ 4, as

calculated in Lemma 82, we have therefore completed the proof of the first main result of this

work.

Theorem 84. For a ✏ 2 and a ➙ 4, the rank 2 bundles given as cohomology of monads of the

form

0 Ñ OP3♣✁aq ❵ OP3♣✁1q Ñ 6 ☎ OP3 Ñ OP3♣1q ❵ OP3♣aq Ñ 0

fill out an open subset of an irreducible component of B♣0, a2 � 1q of dimension

4 ☎
✂
a� 3

3

✡
✁ a✁ 1.

Proof. See [2, Theorem 18]

We will present here the proof for particular case.

Proposition 85. The moduli space B♣0, 5q contains an irreducible component of dimension 37,

whose generic sheaf is cohomology of the monad

0 Ñ OP3♣✁2q ❵ OP3♣✁1q αÝÑ 6.OP3

βÝÑ OP3♣1q ❵ OP3♣2q Ñ 0. (2.7)
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Proof. Consider for each point t P P♣2, 1q the locally free sheaf E♣tq P B♣0, 5q. By construction,

this give us a morphism from P♣2, 1q Ñ B♣0, 5q. For t0, let E♣t0q be the locally free sheaf which

is the cohomology of the monad (2.1) given by the maps:

α ✏

☎✝✝✝✝✝✝✝✝✝✆

y2 w2

✁x2 ✁z2

✁zy 0

wx 0

z2 y2

✁w2 ✁x2

☞✍✍✍✍✍✍✍✍✍✌
, (2.8)

β ✏
✄
x2 y2 z2 w2 zy wx

z2 w2 y2 x2 0 0

☛
. (2.9)

One easily checks that β ✆ α ✏ 0; moreover, note that the following minors of both

matrices

y3 ✁ w2z , xy2 ✁ z3 , x3 ✁ z2w

yx2 ✁ w3 and x2yz2

do not vanish simultaneously. It follows that the cohomology sheaf is locally free.

Using the notation of the Lemma 54, let α0 ✏ α and β0 ✏ β. Fixing basis for

Hom♣OP3♣✁2q ❵ OP3♣✁1q, 6.OP3q, for Hom♣6.OP3 ,OP3♣2q ❵ OP3♣1qq and for

Hom♣OP3♣✁2q❵OP3♣✁1q,OP3♣2q❵OP3♣1qqq and applying d0 in each element of the fixed basis of

Hom♣OP3♣✁2q ❵OP3♣✁1q, 6.OP3q ❵Hom♣6.OP3 ,OP3♣2q ❵OP3♣1qq, one finds the matrix represen-

tation for d0 (which is a matrix of order 85✂168) and using Macaulay2 (or any software for com-

putations with matrices), we check that d0 is surjective, hence Ext2♣E♣tq, E♣tqq ✏ coker d0 ✏ 0.

By the stability of E♣tq, one has dim Ext1♣E♣tq, E♣tqq ✏ dim P♣2, 1q. Since P♣2, 1q
is irreducible, there exists an open dense in U ❸ P♣2, 1q, such that for each t P U , one has

dim Ext1♣E♣tq, E♣tqq ✏ dimU . This implies that, the closure of the image of U , hence the

closure of the image P♣2, 1q into B♣0, 5q is an irreducible component of dimension 37.

2.3 Components of B♣0, 5q

As we discussed in the Introduction, the smallest integer n such that all the irreducible

components of B♣0, nq is not known is n ✏ 5. In this section we will use the Theorem 84 to

study the number of irreducible components of B♣0, 5q.
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From the possible spectrums of the locally free sheaves in B♣0, 5q, Hartshorne and

Rao, proved that every bundle there is cohomology of one of the following monads, cf. [27, Table

5.3, pages 803–804].

0 Ñ 5 ☎ OP3♣✁1q Ñ 12 ☎ OP3 Ñ 5 ☎ OP3♣1q Ñ 0, and (2.10)

0 Ñ 2 ☎ OP3♣✁2q Ñ 3 ☎ OP3♣✁1q ❵ 3 ☎ OP3♣1q Ñ 2 ☎ OP3♣2q Ñ 0; (2.11)

0 Ñ OP3♣✁3q Ñ OP3♣✁2q ❵ 2 ☎ OP3 ❵ OP3♣2q Ñ OP3♣3q Ñ 0; (2.12)

0 Ñ OP3♣✁2q ❵ OP3♣✁1q Ñ 6 ☎ OP3 Ñ OP3♣1q ❵ OP3♣2q Ñ 0 and (2.13)

0 Ñ OP3♣✁2q ❵ 2 ☎ OP3♣✁1q Ñ OP3♣✁1q ❵ 6 ☎ OP3 ❵ OP3♣1q Ñ 2 ☎ OP3♣1q ❵ OP3♣2q Ñ 0. (2.14)

Recall that for each stable rank 2 bundle E on P3 with vanishing first Chern class,

the number α♣Eq :✏ h1♣E♣✁2qq mod 2 is called the Atiyah–Rees α-invariant of E, see [23,

Definition in page 237]. Hartshorne showed [23, Corollary 2.4] that this number is invariant on

the components of the moduli space of stable vector bundles on P3. One can easily check that

the cohomologies of monads of the form (2.10) and (2.11) have α-invariant equal to 0, while the

cohomologies of the other three types of monads have α-invariant equal to 1.

Our first step here will be to prove that the family of stable locally free sheaves which

are cohomology of the monad 2.14 are contained in the closure of G♣2, 1q. Precisely, consider the

set:

H ✏ trEs P B♣0, 5q ⑤ E is cohomology of a monad of the form (2.14)✉.

then we have the following proposition

Proposition 86. H ⑨ G♣2, 1q.

Proof. The fact that

dim♣H③♣G♣a, 1q ❳ Hqq ↕ 36. (2.15)
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is a very technical result that requires several intermediate steps, whose proof can be found in

[2, Proposition 19]. Assuming it, it follows that H cannot fullfill an irreducible component of

B♣0, 5q. Since every locally free sheaf in H has α✁invariant equals to 1, we need to prove that if

E P H then E ❘ E♣3, 2, 0q.
Now, suppose by contradiction that there exists a vector bundle E P H ❳ E♣3, 2, 0q.

By the inferior semi-continuity of the dimension of the cohomology groups of coherent sheaves,

one has that h1♣E♣✁2qq ➙ 3. However, one can check from the display of the monad (2.14) that

dim H1♣E♣✁2qq ✏ 1 ➔ 3. It follows that the family H must lie in G♣2, 1q.

We finally have at hand all the ingredients needed to complete the proof of our

second main result, namely the characterization of the irreducible components of B♣0, 5q. We

will proof the following result.

Theorem 87. The moduli space B♣0, 5q has exactly 3 irreducible components, namely:

(i) the instanton component, of dimension 37, which consists of those bundles given as

cohomology of monads of the form

0 Ñ 5 ☎OP3♣✁1q Ñ 12 ☎OP3 Ñ 5 ☎OP3♣1q Ñ 0, and (2.16)

0 Ñ 2 ☎OP3♣✁2q Ñ 3 ☎OP3♣✁1q ❵ 3 ☎OP3♣1q Ñ 2 ☎OP3♣2q Ñ 0; (2.17)

(ii) the Ein component, of dimension 40, which consists of those bundles given as cohomology

of monads of the form

0 Ñ OP3♣✁3q Ñ OP3♣✁2q ❵ 2 ☎OP3 ❵OP3♣2q Ñ OP3♣3q Ñ 0; (2.18)

iii) the closure of the family G♣2, 1q, of dimension 37, which consists of those bundles given as

cohomology of monads of the form

0 Ñ OP3♣✁2q ❵OP3♣✁1q Ñ 6 ☎OP3 Ñ OP3♣1q ❵OP3♣2q Ñ 0 and (2.19)

0 Ñ OP3♣✁2q❵2☎OP3♣✁1q Ñ OP3♣✁1q❵6☎OP3❵OP3♣1q Ñ 2☎OP3♣1q❵OP3♣2q Ñ 0. (2.20)

Proof. Rao showed in [58] that the family of bundles obtained as cohomology of monads of

the form (2.11) is irreducible, of dimension 36, and it lies in a unique component of B♣0, 5q.
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Since instanton bundles of charge 5, i.e. the cohomologies of monads of the form (2.10), yield an

irreducible family of dimension 37, it follows that the set

I :✏ trEs P B♣0, 5q ⑤ α♣Eq ✏ 0✉

forms a single irreducible component of B♣0, 5q, of dimension 37, whose generic point corresponds

to an instanton bundle. In addition, every rEs P I satisfies H1♣End♣Eqq ✏ 37; this was originaly

proved by Katsylo and Ottaviani for instanton bundles [39], and by Rao for the cohomologies of

monads of the form (2.11) [58, Section 3]. Therefore, we also conclude that I is nonsingular.

Our next step is to analyse those bundles with Atiyah–Rees invariant equal to 1.

Hartshorne proved in [25, Theorem 9.9] that the family of stable rank 2 bundles E

with c1♣Eq ✏ 0 and c2♣Eq ✏ 5 whose spectrum is ♣✁2,✁1, 0, 1, 2q form an irreducible, nonsigular

family of dimension 40. Such bundles are precisely those given as cohomologies of monads of the

form (2.12), cf. [27, Table 5.3, page 804], which is a particular case of a class of monads studied

by Ein in [15]. From these references, we conclude that the closure of the family of vector bundle

arising as cohomology of monads of the form (2.12) is an oversized irreducible component of

B♣5q of dimension 40.

We proved above that the bundles arising as cohomology of monads of the form (2.13)

form a third irreducible component of dimension 37, while those bundles arising as cohomology

of monads of the form (2.14), denoted by H, form an irreducible family of dimension 36. It

follows by the Proposition 86 that latter must lie in G♣2, 1q, concluding our proof.

For the sake of completeness, we summarize all the information in the theorem, and

the discrete invariants of stable rank 2 bundles with c1 ✏ 0 and c2 ✏ 5 in the following table.

Table 1 – Irreducible components of B♣0, 5q
Component Dimension Monads Spectra α-invariant

Instanton 37
(2.10) (0,0,0,0,0)

0
(2.11) (-1,-1,0,1,1)

Ein 40 (2.12) (-2,-1,0,1,2) 1
Modified

Instanton
37

(2.13)
(-1,0,0,0,1) 1

(2.14)
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3 Moduli of Torsion Free Sheaves

The moduli space of rank 2 torsion free sheaves on P3 provides a natural compact-

ification to the moduli space rank 2 locally free sheaves on P3, and although the study of

its properties was a problem rised by Hartshorne in his problems list in late 70’s, [24], it is

suprising how little we know about them. Besides its intrinsecal interest, that is, in order to

know more about locally free sheaves it makes sense to try to know more about torsion free

sheaves. Moreover, the torsion free sheaves have, as predicted by Hartshorne, see [24, Problem

7], some significance to mathematical physics see [44].

In this chapter we compute the dimensions of the Ext groups of torsion free sheaves

in terms of their Chern classes, and use it in order to produce the examples of irreducible

components of the moduli space of torsion free sheaves. These results are then explored in

order to prove that the number of irreducible components of M♣c1, c2, 0q whose generic point

correspond to a sheaf with 0-, 1-, or mixed dimensional singularities goes to infinity as c2 goes

to infinity, thus showing that the problem of computing the number of irreducible components

of M♣c1, c2, 0q becomes more complicated for higher valuers of c2. Then, we study the moduli

spaces M♣✁1, 2, c3q.

3.1 First Computations

In order to study the moduli spaces of torsion free sheaves on P3 we will need an

explicit method to compute dim Ext1♣E,Eq, which gives us the dimension of the tangent space

of the isomorphism class of a stable torsion free sheaf E as a point the moduli space. Our main

goal in this section is to prove the following theorem.

Theorem 88. Let E be a stable rank 2 torsion free sheaf on P3. Then

dim Ext1♣E,Eq ✁ dim Ext2♣E,Eq ✏ 8c2♣Eq ✁ 3 ✁ c1♣Eq2.

Note that this result generalizes [36, Lemma 5d)] and [36, Lemma 10], which establish

the formula above for stable rank 2 torsion free sheaves with 0- and 1-dimensional singularities,

respectively, in the case c1♣Eq ✏ 0. The proofs for sheaves with 0- and 1-dimensional singularities

with arbitrary c1 are, mutatis mutandis, the ones in [36]; therefore, we only include here the

proof for sheaves with mixed singularities.

Lemma 89. If E is a torsion free sheaf on P3, then
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(i) Ext1♣E,Eq ✏ H1♣Hom♣E,Eqq ❵ ker d01
2 ;

(ii) Ext2♣E,Eq ✏ ker d02
3 ❵ ker d11

2 ❵ coker d01
2 ;

(iii) Ext3♣E,Eq ✏ coker d02
3 .

Here, dpq
j are the differentials in the j-th page of the spectral sequence for local to global ext’s

E
pq
2 :✏ Hp♣Extq♣E,Eqq. In particular, we have

3➳
j✏0

♣✁1qj dim Extj♣E,Eq ✏ χ♣Hom♣E,Eqq ✁ χ♣Ext1♣E,Eqq � h0♣Ext2♣E,Eqq.

Proof. The first part is a standard calculation with the spectral sequence Epq
2 :✏ Hp♣Extq♣E,Eqq,

which converges in its fourth page, since the spectral maps vanishes since Extq♣E,Eq ✏ 0 for

q ➙ 4 and Hp♣Extq♣E,Eqq for p ➙ 4. Note that Hp♣Extq♣E,Eqq ✏ 0 for p ➙ 2 and q ➙ 1, since

dim Extq♣E,Eq ↕ 1 for q ➙ 1. Furthermore, applying the functor Hom♣☎, Eq to the fundamental

sequence (3.1):

0 Ñ E Ñ E❴❴ Ñ QE Ñ 0 (3.1)

we get an epimorphism Ext3♣E❴❴, Eq ։ Ext3♣E,Eq and the isomorphism Ext2♣E,Eq ✔
Ext3♣QE, Eq; however, the sheaf on the left vanishes because E❴❴ is reflexive, and therefore

has homological dimension equals to 1, so Ext3♣E,Eq ✏ 0 as well. Finally, we also check that

dim Ext2♣E,Eq ✏ 0, whenever nontrivial; indeed, E admits a resolution of the form

0 Ñ L2 Ñ L1 Ñ L0 Ñ E Ñ 0, (3.2)

where Lk are locally free sheaves; we then get an epimorphism

Ext3♣QE,OP3q ❜ L0 ։ Ext3♣QE, Eq,

which implies that dim Ext3♣QE, Eq ✏ 0 since dim Ext3♣QE,OP3q ✏ 0.

The second claim is an immediate consequence of the first, together with

dim Ext2♣E,Eq ✏ 0.

Assuming that E is µ-semistable provides an useful simplification of the previous

general result.

Lemma 90. If E be a µ-semistable torsion free sheaf on P3, then:

(i) Ext1♣E,Eq ✏ H1♣Hom♣E,Eqq ❵ ker d01
2 ;



Chapter 3. Moduli of Torsion Free Sheaves 57

(ii) Ext2♣E,Eq ✏ H0♣Ext2♣E,Eqq ❵ H1♣Ext1♣E,Eqq ❵ coker d01
2 ;

(ii) Ext3♣E,Eq ✏ 0.

Here, d01
2 and is the spectral sequence differential:

d01
2 : H0♣Ext1♣E,Eqq Ñ H2♣Hom♣E,Eqq.

Proof. The last item is the easiest one: by Serre duality, we have

Ext3♣E,Eq ✔ Hom♣E,E♣✁4qq✝ ✏ 0,

with the vanishing given by µ-semistability.

In addition, we argue that µ-semistability also implies that H3♣Hom♣E,Eqq ✏ 0.

Indeed, applying the functors Hom♣✁, Eq and Hom♣E❴❴,✁q to the fundamental sequences

(3.1) we obtain, respectively,

0 Ñ Hom♣E❴❴, Eq Ñ Hom♣E,Eq Ñ Ext1♣QE, Eq Ñ ☎ ☎ ☎

and

0 Ñ Hom♣E❴❴, Eq Ñ Hom♣E❴❴, E❴❴q Ñ Hom♣E❴❴, QEq Ñ ☎ ☎ ☎
In both sequences, the rightmost sheaf has dimension ↕ 1, hence so does the cokernel of the

leftmost monomorphism, and it follows that

H3♣Hom♣E,Eqq ✔ H3♣Hom♣E❴❴, Eqq ✔ H3♣Hom♣E❴❴, E❴❴qq.

However

H3♣Hom♣E❴❴, E❴❴qq ✏ Ext3♣E❴❴, E❴❴q ✔ Hom♣E❴❴, E❴❴♣✁4qq❴ ✏ 0;

the first equality follows from the spectral sequence for local to global ext’s for E❴❴, the

isomorphism in the middles is given by Serre duality, and the vanishing is a consequence of the

µ-semistability of E❴❴.

It follows that dpq
2 ✏ 0 except for d01

2 , while dpq
3 ✏ 0 for every p and q. This means

that Epq
2 converges in its third page, providing the desired result.

The following technical lemma will be helpful in our next argument.

Lemma 91. Let F be a torsion free sheaf. If E is a subsheaf of F for which the quotient sheaf

Z :✏ F ④E is 0-dimensional, then

3➳
j✏0

♣✁1qjχ♣Extj♣Z,Eqq �
3➳

j✏0

♣✁1qjχ♣Extj♣F,Zqq ✏ 0. (3.3)
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Proof. Break a locally free resolution of E as in (3.2) into two short exact sequences

0 Ñ L2 Ñ L1 Ñ K Ñ 0 and 0 Ñ K Ñ L0 Ñ E Ñ 0.

Applying functor Hom♣Z,✁q and passing to Euler characteristic on the first sequence, we have:

χ♣Ext2♣Z,Kqq ✁ χ♣Ext3♣Z,Kqq ✏ χ♣Ext3♣Z,L2qq ✁ χ♣Ext3♣Z,L1qq ✏ (3.4)

✏ ♣rk♣L2q ✁ rk♣L1qqχ♣Zq.

since χ♣Ext3♣Z,Lkqq ✏ χ♣Ext3♣Z,OP3q ❜ Lkq ✏ rk♣Lkq ☎ χ♣Zq. Now, applying the functor

Hom♣Z,✁q to the second exact sequence we obtain the isomorphism Ext1♣Z,Eq ✔ Ext2♣Z,Kq
and passing to the Euler characteristic we have

χ♣Ext2♣Z,Eqq ✁ χ♣Ext3♣Z,Eqq ✏ χ♣Ext3♣Z,Kqq ✁ χ♣Ext3♣Z,L0qq

Subtracting χ♣Ext1♣Z,Eqq from the left hand side and χ♣Ext2♣Z,Kqq from the right hand side,

and then substituting for (3.4) we have:

3➳
j✏0

♣✁1qjχ♣Extj♣Z,Eqq ✏ ♣rk♣L1q ✁ rk♣L2q ✁ rk♣L0qq ☎ χ♣Zq ✏ ✁ rk♣Eqχ♣Zq. (3.5)

Since dim Extj♣Z,Eq ✏ 0, we have

χ♣Extj♣Z,Eqq ✏ h0♣Extj♣Z,Eqq ✏ dim Extj♣Z,Eq SD✏ dim Ext3✁j♣E,Zq ✏ χ♣Ext3✁j♣E,Zqq,

where the supercript SD indicates the use of Serre duality. The formula (3.5) applied to the

sheaf F then yields
3➳

j✏0

♣✁1qjχ♣Extj♣F,Zqq ✏ rk♣F qχ♣Zq.

The fact that rk♣F q ✏ rk♣Eq provides the desired identity.

Lemma 92. Let E be a rank 2 torsion free sheaf with mixed singularities. Then:

3➳
j✏0

♣✁1qj dim Extj♣E,Eq ✏ ✁8c2♣Eq � 4� 2c1♣Eq2.

Proof. Let ZE ãÑ QE the maximal 0-dimensional subsheaf of QE, and set TE :✏ QE④ZE to be

the pure 1-dimensional quotient; we assume that both ZE and TE are nontrivial. Let E ✶ be the

kernel of the composed epimorphism E❴❴
։ QE ։ TE; note that it also fits into the following

short exact sequence

0 Ñ E Ñ E ✶ Ñ ZE Ñ 0. (3.6)
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Moreover, c1♣E ✶q ✏ c1♣Eq and c2♣E ✶q ✏ c2♣Eq. In addition, ♣E ✶q❴❴ ✔ E❴❴, and QE✶ ✔ TE, thus

E ✶ is a torsion free sheaf with 1-dimensional singularities. It follows that E ✶ has homological

dimension 1 (that is Extp♣E ✶, Gq ✏ 0 for p ➙ 2 and every coherent sheaf G), so the proof of [25,

Proposition 3.4] also applies for E ✶, and we conclude that

3➳
j✏0

♣✁1qj dim Extj♣E ✶, E✶q ✏ ✁8c2♣Eq � 4� 2c1♣Eq2.

Therefore, it is enough to prove that

3➳
j✏0

♣✁1qj dim Extj♣E,Eq ✏
3➳

j✏0

♣✁1qj dim Extj♣E ✶, E✶q,

which, by Lemma 89 is the same as showing that

χ♣Hom♣E,Eqq ✁ χ♣Ext1♣E,Eqq � h0♣Ext2♣E,Eqq ✏ χ♣Hom♣E ✶, E✶qq ✁ χ♣Ext1♣E ✶, E✶qq.

To see this, applying the functor Hom♣E ✶,✁q to the sequence (3.6) we obtain:

χ♣Hom♣E ✶, Eqq ✁ χ♣Hom♣E ✶, E✶qq � χ♣Hom♣E ✶, ZEqq✁
χ♣Ext1♣E ✶, Eqq � χ♣Ext1♣E ✶, E✶qq ✁ χ♣Ext1♣E ✶, ZEqq
✏ 0.

Next, applying the functor Hom♣✁, Eq to the sequence (3.6) we have

χ♣Hom♣E ✶, Eqq ✁ χ♣Hom♣E,Eqq � χ♣Ext1♣ZE, Eqq✁
χ♣Ext1♣E ✶, Eqq � χ♣Ext1♣E,Eqq ✁ χ♣Ext2♣ZE, Eqq
✏ 0

Taking the difference between these last two equations we obtain

χ♣Hom♣E ✶, E✶qq ✁ χ♣Ext1♣E ✶, E✶qq ✏ χ♣Hom♣E,Eqq ✁ χ♣Ext1♣E,Eqq�
✁χ♣Ext1♣ZE, Eqq � χ♣Ext2♣ZE, Eqq � χ♣Hom♣E ✶, ZEqq ✁ χ♣Ext1♣E ✶, ZEqq ✏

χ♣Hom♣E,Eqq ✁ χ♣Ext1♣E,Eqq � χ♣Ext3♣ZE, Eqq,
with the second equality following from applying the formula established in Lemma 91 to the

sheaves E and E ✶. Applying the functor Hom♣✁, Eq to the sequences

0 Ñ E ✶ Ñ E❴❴ Ñ TE Ñ 0 and 0 Ñ ZE Ñ QE Ñ TE Ñ 0

we conclude that Ext3♣TE, Eq ✏ 0 and Ext3♣QE, Eq ✔ Ext3♣ZE, Eq. We already noticed in the

proof of Lemma 89 that Ext3♣QE, Eq ✔ Ext2♣E,Eq, thus χ♣Ext3♣ZE, Eqq ✏ χ♣Ext2♣E,Eqq ✏
h0♣Ext2♣E,Eqq, as desired.
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Gathering the above results we are in position to prove the Theorem 88.

Proof of Theorem 88. By Lemma 92, it is enough to show that dim Hom♣E,Eq ✏ 1 and

dim Ext3♣E,Eq ✏ 0, but these follow easily from the stability of E (see proof of 90).

The following proposition will be a technical tool that will help us to explicitly

compute the dimension of Ext1♣E,Eq for certain torsion free sheaves.

Proposition 93. Let F be a stable rank 2 reflexive sheaf on P3, with dim Ext2♣F, F q ✏ 0. Let

Z be a sheaf of finite length in P3, T a sheaf supported in a pure 1 dimensional subscheme

C ⑨ P3, Q :✏ Z ❵ T such that Sing F ❳ Supp Q ✏ ❍ and ϕ : F Ñ Q be an epimorphism. In

addition, let E :✏ kerϕ. Then the following claims are true:

a) E is a stable rank 2 torsion free sheaf.

b) c1♣Eq ✏ c1♣F q and c2♣Eq ✏ c2♣F q � degC.

c) We have that

Ext2♣E,Eq ✏ H0♣Ext3♣Z,Eqq ❵ Ext3♣T,Eq. (3.7)

Proof. The items a) and b) are straightforward. We will prove c). First we will show that the

spectral sequence map

d01
2 : H0♣Ext1♣E,Eqq Ñ H2♣Hom♣E,Eqq

is an epimorphism.

Consider the exact sequence:

0 Ñ E Ñ F Ñ QÑ 0, (3.8)

applying the functor Hom♣F,✁q in the sequence (3.8), once coker(Hom♣F,Eq Ñ Hom♣F, F q)
is supported in dimension 1, we have

H2♣Hom♣F,Eqq Ñ H2♣Hom♣F, F qq Ñ 0 (3.9)

Next apply Hom♣F,✁q in the sequence (3.8), by hypothesis, Ext2♣F, F q ✏ 0, then

we have

Ext1♣F,Qq Ñ Ext2♣F,Eq Ñ 0
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To see that Ext1♣F,Qq vanishes, note that Extp♣F,Qq ✏ 0 for p ✏ 2, 3 because F is reflexive.

Ext1♣F,Qq ✏ 0 because Sing F ❳ Supp Q ✏ ❍. In addition, Hp♣Hom♣F,Qqq ✏ 0 for p ✏ 2, 3

because dimQ ✏ 1. From the local to global spectral sequence, Ext1♣F,Qq ✏ H1♣Hom♣F,Qqq
which vanishes by hypothesis. Therefore d01

2 : H0♣Ext1♣F,Eqq Ñ H2♣Hom♣F,Eqq is surjective.

Then we have

H0♣Ext1♣F,Eqq

��

d01

2
// H2♣Hom♣F,Eqq

��

H0♣Ext1♣E,Eqq d01

2
// H2♣Hom♣E,Eqq,

(3.10)

where the vertical arrow in the left is the natural map coming from the exact sequence (3.8),

and horizontal maps came from the spectral sequence. Since the top row map, and the right

vertical map are surjective, we have that the bottom map is surjective as we wanted. Now,

applying Hom♣✁, Eq in the sequence (3.8) we have

Ext2♣E,Eq ✔ Ext3♣Q,Eq ✔ Ext3♣Z,Eq ❵ Ext3♣T,Eq

Furthermore,

Ext1♣F,Eq // Ext1♣E,Eq f
// Ext2♣Q,Eq // 0,

note that dim ker f ✏ 0, since dim Ext1♣F,Eq ✏ 0, thus

Ext2♣E,Eq ✏ H0♣Ext3♣Z,Eqq ❵ H0♣Ext3♣T,Eqq ❵ H1♣Ext2♣T,Eqq. (3.11)

Since F is reflexive, from [31, Proposition 1.1.6], we have Extp♣T, F q ✏ 0 for p ✏ 0, 1 and

codim Supp Extp♣T, F q ➙ q for q ✏ 2, 3, once F is locally free along the support of fo T .

Applying the functor Hom♣T,✁q in the sequence (3.8) one sees that dim Extp♣T,Eq ✏ 1 for

p ✏ 1, 2, dim Ext3♣T,Eq ✏ 0 and Hom♣T,Eq ✏ 0, using these facts, the spectral sequence for

Ext3♣T,Eq gives

Ext3♣T,Eq ✏ H0♣Ext3♣T,Eqq ❵ H1♣Ext2♣T,Eqq. (3.12)

Putting together the equations (3.11) and (3.12) we obtain the formula (3.7).

An important ingredient of the Proposition 93 is a family of stable reflexive sheaves,

that fills out an irreducible component of the moduli space, with the expected dimension. A

priori, it is not clear why such family should exists. In [36] the authors proved that indeed such
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families exists for infinitely many values of the second Chern class, provided that the first Chern

class is even. Next, we state a theorem that shows that this happens also for sheaves with odd

first Chern class.

Theorem 94. For each triple ♣a, b, cq of positive integers such that 3a� 2b� c is nonzero and

odd, let G♣a,b,cq :✏ a ☎OP3♣✁3q❵ b ☎OP3♣✁2q❵ c ☎OP3♣✁1q. The family of rank 2 reflexive sheaves

F obtained as the cokernel of the maps α below, whose degeneracy locus is is 0-dimensional

0 Ñ a ☎ OP3♣✁3q ❵ b ☎ OP3♣✁2q ❵ c ☎ OP3♣✁1q αÝÑ ♣a� b� c� 2q ☎ OP3 Ñ F ♣kq Ñ 0

fills out an irreducible, nonsingular, component S♣a, b, cq of R♣✁1;n;mq of expected dimension

8n✁ 5, where k :✏ ♣3a� 2b� cq④2, so that c1♣F q ✏ ✁1, n and m are given by the expressions:

n ✏ 1

4
♣3a� 2b� c� 1q2 � 6a

2
� b,

✏ m♣a, b, cq ✏27

✂
a� 2

3

✡
� 8

✂
b� 2

3

✡
�
✂
c� 2

3

✡
� 3♣3a� 2b� 5qab� (3.13)

� 3

2
♣3a� c� 4qac� ♣2b� 3c� 3qbc� 6abc

more precisely, rS♣a, b, cq ⑨ Hom
�
G♣a,b,cq, ♣a� b� c� 2q ☎ OP3

✟
be the open subset consisting of

monomorphisms with 0-dimensional degeneracy loci; then

S♣a, b, cq ✏ rS♣a, b, cq④♣Aut♣G♣a,b,cqq ✂GL♣a� b� c� 2qq④C✝q.

Proof. Let a, b, c P Z, such that 3a�2b� c is odd and non zero and, and consider the morphisms

α : a ☎ OP3♣✁3q ❵ b ☎ OP3♣✁2q ❵ c ☎ OP3♣✁1q Ñ ♣a� b� c� 2q ☎ OP3

if the degeneracy locus ∆♣αq :✏ tx P P3 ⑤ α♣xq is not injective✉ is 0-dimensional then the

cokernel of α is a rank 2 reflexive sheaf on P3, which we normalize as to fit into the short exact

sequence:

0 Ñ a ☎ OP3♣✁3q ❵ b ☎ OP3♣✁2q ❵ c ☎ OP3♣✁1q αÝÑ ♣a� b� c� 2q ☎ OP3 Ñ F ♣kq Ñ 0 (3.14)

we set k :✏ ♣3a� 2b� c� 1q④2, so that c1♣F q ✏ ✁1.

For simplicity of notation, let G♣a,b,cq :✏ a ☎ OP3♣✁3q ❵ b ☎ OP3♣✁2q ❵ c ☎ OP3♣✁1q.
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The dimension of the family of rank 2 reflexive sheaves constructed as in the short

exact sequence (3.14) is given by

dim Hom
�
G♣a,b,cq, ♣a� b� c� 2q ☎OP3

✟✁ dim Aut
�
G♣a,b,cq

✟✁ ♣a� b� c� 2q2 � 1 ✏

8k2 � 24a� 8b✁ 5 ✏ 8c2♣F q ✁ 5

Now, note that for every F given by (3.14), we have that H0♣F ♣✁1qq ✏ 0 thus

F is always stable, hence, we only need to check that dim Ext2♣F, F q ✏ 0, in order to have

dim Ext1♣F, F q ✏ 8c2♣F q✁5, but this follows applying the functor Hom♣☎, F ♣kqq to the sequence

(3.14), and observing that H1♣F ♣tqq ✏ 0 for every t P Z and that H2♣F ♣kqq ✏ 0. Therefore the

family of sheaves given by (3.14) provides a component of the moduli space of stable rank 2

reflexive sheaves on P3

A case that deserves special attention is the is the case a ✏ b ✏ 0 and c ✏ 1, that

give us c1♣F q ✏ ✁1, c2♣F q ✏ c3♣F q ✏ 1. In [25, Lemma 9.4] and [25, Lemma 9.4] is shown that

every reflexive sheaf in R♣✁1, 1, 1q admits a resolution of the form:

0 Ñ OP3♣✁2q αÝÑ 3 ☎OP3♣✁1q Ñ F Ñ 0 (3.15)

From this sequence we can obtain the splitting behaviour of a sheaf F P R♣✁1, 1, 1q.
Indeed, each one of the 3 rows of the map α can be viewed as the equation of a hyperplane in

P3, since α is injective, the hyperplane must intersect in exactly one point p, that coincides with

the singularity of the sheaf F . Thus, if l ⑨ P3 is a line, if p ❘ l, then the restriction of F on l,

F ⑤l, is isomorphic to Ol♣✁1q ❵Ol. On the other hand, if p P l, from sequence (3.15), we have

that F ⑤l ✔ Op ❵ 2Ol♣✁1q. Summarizing, we have:

F ⑤l ✏
✩✫✪Ol♣✁1q ❵Ol, if p ❘ l

Op ❵ 2Ol♣✁1q, if p P l
(3.16)

Moreover the [25, Theorem 9.3], shows that R♣✁1, 1, 1q is irreducible non-singular and rational

of dimension 3. Then Theorem 94, implies that rS♣0, 0, 1q ✏ R♣✁1, 1, 1q. These sheaves will play

an important role in the proof of the main results of this work.

3.2 Sheaves with mixed singularities

In [36] the authors produced examples of irreducible components with 0-dimensional

singularities and pure 1-dimensional singularities, in the moduli space of rank 2 stable torsion

free sheaves with first Chern class equals to 0, and in [32] the authors proved the existence of
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irreducible components in M♣0, 3, 0q whose generic point is a sheaf with mixed singularities.

The first natural question that arises is that if similar constructions can be made for sheaves

with odd first Chern class, and if it is possible similar irreducible components for non zero third

Chern class.

We will explicit construct examples of irreducible components of the moduli space of

torsion free sheaves with mixed singularities. We refer the reader to [32] for some examples in

M♣0, 3, 0q.
For the rest of this work, let e P t✁1, 0✉, and n and m be two integers such that

en ✑ m♣Mod 2q.
Let R✝♣e, n,mq ❸ R♣e, n,mq be an irreducible component of the moduli space of

stable reflexive sheaves with the expected dimension, and such that, for each F P R✝♣e, n,mq, we

have that Ext2♣F, F q ✏ 0. Recall that by Theorem 94 it always possible to find such components

for e ✏ ✁1. For the case e ✏ 0, the same is also true due to [36, Theorem 8].

Let S ⑨ Syms ♣P3q be the open dense subset of disjoint unions of s distinct points

in P3. For any closed point rF s P R✝♣e, n,mq, we can define the set

XrF s :✏ tl ✂ S P G♣2, 4q ✂ S ⑤ l ❳ S ✏ ❍ and F ⑤l ✏ Ol♣eq ❵Ol✉

For a pair ♣l, Sq P XrF s let r ➙ e, and Q♣l,Sq,r :✏ OS ❵ ♣i✝♣Olqq♣rq where i : l ãÑ P3

is a closed immersion. Consider the open dense subset Hom♣F,Q♣l,Sq,rqe ⑨ Hom♣F,Q♣l,Sq,rq of

the epimorphisms F Ñ Q♣l,Sq,r. For any element φ P Hom♣F,Q♣l,Sq,rqe the torsion free sheaf

Eφ :✏ kerφ is stable, and defines a closed point in M♣e, n�1,m✁2r✁2s✁2✁ eq. Furthermore,

Eφ ✔ Eφ✶ if, and only if, there is a g P Aut♣Q♣l,Sq,rq such that φ ✏ g ✆ φ✶. Denote by rφs the

equivalence class of φ modulo Aut♣Q♣l,Sq,rq. Now consider the set

X̃ ♣e, n,m, r, sq :✏ tx ✏ ♣rF s, ♣l, Sq, rφxsq⑤ rF s P R♣c1, n,mq ♣l, Sq P XrF s,

and rφxs P Hom♣F,Q♣l,Sq,rqe④Aut♣Q♣l,Sq,rq✉

By hypothesis, R✝♣e, n,mq is a reduced and irreducible scheme, hence X̃ ♣e, n,m, r, sq
is a reduced irreducible scheme. To see this, consider the product R♣e, n,mq ✂ ♣P3qs ✂G♣2, 4q
and the subset

�
R✝♣e, n,mq ✂ ♣P3qs ✂G♣2, 4q✟0

:✏ t♣rF s, q1, . . . , qs, lq ⑤ qi ✘ qj , qi ❘ Sing♣F q,
qi ❘ l, and, Sing♣F q ❳ l ✏ ❍✉
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By Grauert-Mulich Theorem, we get that
�
R✝♣e, n,mq ✂ ♣P3qs ✂G♣2, 4q✟0

is an open

dense subset of R♣e, n,mq ✂ ♣P3qs ✂G♣2, 4q. Note that one has the surjective projection

X̃ ♣e, n,m, r, sq։ �
R✝♣e, n,mq ✂ ♣P3qs ✂G♣2, 4q✟0

, ♣rF s, Q♣l,sq,r, ϕq ÞÑ ♣rF s, Q♣l,sq,rq

onto an irreducible base variety of dimension 8n� 3s� 2e� 1, with irreducible fibers given by

Hom♣F,Q♣l,sq,rqe④Aut♣Q♣l,sq,rq open
ãÑ Hom♣F,Q♣l,sq,rq④Aut♣Q♣l,sq,rq

which have dimension 2s� 2r ✁ e� 2✁ s✁ 1 ✏ s� 2r ✁ e� 1.

Note that since F ❳ supp Q♣l,sq,rq ✏ ❍, there exists an open set U ⑨ P3 such

that U contains l and S, and F trivializes on U . Then it follows that Hom♣F,Q♣l,sq,rq ✔
Hom♣2OU , i

✝Ol♣rqq
sà

i✏1

Hom♣2OU ,Opi
q and therefore:

Hom♣F,Q♣l,sq,rq④Aut♣Q♣l,sq,rq ✔ P♣Hom♣2OU , i
✝Ol♣rqqq ✂s

i✏1 P♣Hom♣2OU ,Opi
qq

Therefore Hom♣F,Q♣l,sq,rq④Aut♣Q♣l,sq,rq is a Segre Variety thus it is irreducible.

Now, To each t :✏ ♣rF s, Q♣l,sq,r, ϕq P X̃ ♣e, n,m, r, sq one associates the sheaf

E♣tq :✏ kertϕ : F ։ Q♣l,sq,r✉ which defines a point rE♣tqs in M♣e, n� 1,m� 2� e✁ 2r ✁ 2sq,
this map defines a natural injective morphism

Ψ : X̃ ♣e, n,m, r, sq ãÑ M♣e, n� 1,m� 2� e✁ 2r ✁ 2sq

Let X ♣e, n,m, r, sq :✏ Ψ♣X̃ ♣e, n,m, r, sqq. The dimension of the scheme X̃ ♣e, n,m, r, sq
(and consequently of the scheme X ♣e, n,m, r, sq can be computed in the following way

dim X̃ ♣e, n,m, r, sq ✏ dim R♣e, n,mq�dim G♣2, 4q�dimS�dim Hom♣F,Q♣l,Sq,rqe④Aut♣Q♣l,Sq,rq
from what follows

dim X̃ ♣e, n,m, r, sq ✏ 8n� 4s� 2r � 2� e (3.17)

We are going to prove that, for each point Eϕ P X ♣e, n,m, r, sq, we have that

dim Ext1♣Eφ, Eφq ✏ dim X̃ ♣e, n,m, r, sq.
Theorem 95. Given positive integers n,m such that exists an irreducible component R✝♣e, n,mq ⑨
R♣e, n,mq with the expected dimension, and such that, for each F P R♣e, n,mq, Ext2♣F, F q ✏ 0,

we have that every Eφ P X ♣e, n,m, r, sq, as defined above, satisfies

dim Ext1♣Eφ, Eφq ✏
✩✫✪8n� 4s� 2r � 2� e, if r ➙ 2

8n� 4s� 3, otherwise
(3.18)
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In particular, for each r ➙ 2, and s such that 0 ↕ s ↕ 2r � 2� e✁m, or, for r ✏ 1, s ✏ 0, and

n ✏ m ✏ 1, we have that every Eφ P X ♣e, n,m, r, sq satisfies

dim Ext1♣Eφ, Eφq ✏ dim X ♣e, n,m, r, sq (3.19)

Hence, X ♣e, n,m, r, sq is an open dense subset of an irreducible component X♣e, n,m, r, sq :✏
X ♣e, n,m, r, sq of M♣e, n� 1,m� 2� e✁ 2r ✁ 2sq of dimension 8n� 4s� 2r � 2� e.

Proof. Consider an Eφ P X ♣e, n,m, r, sq. By definition we have the sequence

0 Ñ Eφ Ñ F Ñ Q♣l,Sq,r Ñ 0 (3.20)

Fom Proposition 93, we just need to compute dim H0♣Ext3♣OS, Eφqq � dim Ext3♣i✝Ol♣rq, Eφq.
As in [36, Proposition 6] one can check that dim H0♣Ext3♣OS, Eφqq ✏ 4s. We will include the

proof here for completeness.

If p ❘ S, then clearly Ext3♣OS, Eφq ✏ 0.

Take p P S; restricting the sequence (3.8) to an open affine subset U of P3 containing

p but none of the other singularities of F , we have the following short exact sequence of sheaves

on U :

0 Ñ OU ❵ Ip④U Ñ 2 ☎OU Ñ Op④U Ñ 0 (3.21)

where Ip④U denotes the ideal sheaf of the point p P U and Op④U denotes the structure sheaf of

the point p as a subscheme of U . Therefore we have that :

H0♣Ext3♣Op④U , Eφ⑤Uqq ✏ H0♣Ext3
OU
♣Op④U ,OUqq ❵H0♣Ext3

OU
♣Op④U , Ip④Uqq. (3.22)

Now, applying functor Hom♣✁,Op,P3q in the sequence (3.23), one sees that

Ext3
OU
♣Op④U , Ip④Uq ✔ Ext2

OU
♣Ip④U , Ip④Uqq. Bu, by the proof of [36, Proposition 6] one sees that the

later has length 3. Therefore, for each p ✏ qj P Supp♣Qq, we have that h0♣Ext2
OU
♣Ip④U , Ip④Uqq ✏ 3.

Finally, since Ext3♣Op④P3 ,OUq ✔ Op④P3 , it has length 1 and them h0♣Ext2
OU
♣Ip④U ,Op④Uqq ✏ 1,

for each p ✏ qj P S. Therefore, each of the s points contributes with 4 for the dimension of

dim Ext3♣OS, Eφq, hence dim H0♣Ext3♣OS, Eφqq ✏ 4s

Now, Ext3♣i✝Ol♣rq, Eφq ✔ Hom♣Eφ, i✝Ol♣r ✁ 4qq❴ by Serre Duality. And

Hom♣Eφ, i✝Ol♣r ✁ 4qq ✔ H0♣Hom♣Eφ, i✝Ol♣r ✁ 4qqq by local to global spectral sequence.
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To compute this last cohomology group, we need to understand the restriction of Eφ

in the line l. Applying the functor i✝♣✁ ❜ i✝Olq we have

0 // i✝Tor1♣i✝Ol♣rq, i✝Olq // Eφ⑤l f
// Ol♣eq ❵ Ol

g
// Ol♣rq // 0 (3.23)

Since i✝Tor1♣i✝Ol♣rq, i✝Olq ✔ N❴
l ❜ Ol♣rq ✔ 2.Ol♣r ✁ 1q

from the sequence (3.23) we see that ker g ✔ Ol♣e ✁ rq. From what follows that

Eφ⑤l ✔ 2.Ol♣r ✁ 1q ❵ Ol♣e ✁ rq. Now, Hom♣Eφ, i✝Ol♣r ✁ 4qq ✏ 2.Ol♣✁3q ❵ Ol♣2r ✁ e ✁ 4q.
Therefore, dim H0♣Hom♣Eφ, i✝Ol♣r ✁ 4qqq ✏ 2r ✁ e ✁ 3 if r ➙ 2 and 0 otherwise. Therefore if

r ➙ 2 we have

dim Ext1♣Eφ, Eφq ✏ 8n� 4s� 2r � 2 � e

and

dim Ext1♣Eφ, Eφq ✏ 8n� 4s� 3

otherwise.

This means that if r ➙ 2, we will have dim Ext1♣Eφ, Eφq ✏ X̃ ♣e, n,m, r, sq, and if

r ✏ ✁1, s ✏ 0 and n ✏ m ✏ 1 we will have dim Ext1♣Eφ, Eφq ✏ X̃ ♣e, n,m, r, sq ✏ 11, from

where follows our result.

Note that the examples of irreducible components of sheaves with 0-dimensional

singularities described in [36] can be obtained as a particular case of the Theorem 95, by

ommiting the line l in the construction of the family and repeating the arguments of the proof,

mutatis mutandis. Once this includes sheaves with odd determinant, we will state this result in

the next theorem.

Theorem 96. For every nonsingular irreducible component R✝♣e, n,mq of R♣e, n,mq of expected

dimension 8n✁3�2e, there exists an irreducible component T♣e, n,m, lq of dimension 8n✁3�2e�
4l in M♣e, n,m✁ 2lq whose generic sheaf rEs satisfies rE❴❴s P R✝♣e, n,mq and lenght♣QEq ✏ l.

Additionaly, it is important to highlight that X♣e, n,m, r, 0q is an irreducible com-

ponent of M♣e, n� 1,m� 2 � c1 ✁ 2sq whose generic sheaf corresponds to a sheaf with pure

1-dimensional singularities different from those described in [36, Theorem 15].
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3.3 Ein Type Results

Our goal in this section is to prove that each one of the irreducible components

described in the previous paragraphs grow in number as the second Chern class of the sheaves

grows. Indeed we will prove:

Theorem 97. The number ηn of irreducible components of M♣✁1, n, 0q which the generic point

corresponds to a sheaf with mixed singularities goes to infinite as n goes to infinite.

Proof. For any odd integer q ➙ 1 set nq ✏ 9q2 ✁ 6q ✁ 1 and i, 0 ↕ i ↕ q ✁ 1, let aq,i ✏ i, bq,i ✏
3q✁3i✁3, cq,i ✏ 3i�2. Then, according to Theorem 8 of [36] the sheaf F P S♣aq,i, bq,i, cq,iq belongs

to an irreducible component S♣aq,i, bq,i, cq,iq of R♣✁1;nq,mq,iq, where mq,i ✏ m♣aq,i, bq,i, cq,iq is an

odd integer given by (3.13). Now, by Theorem 95, for each integer s ↕ nq✁1, and 2r ✏ mq,i�1✁2s

corresponds to a component

X♣✁1, n ✁ 1,mq,i, r, sq ❸ M♣✁1, nq, 0q of dimension 8nq � 4s � 2♣nq � 1 ✁ sq � 1 For each

odd q we obtain q different families of stable reflexive sheaves with the expected dimension, and

each such family corresponds to nq ✁ 1 families of torsion free sheaves such that the generic

point is a sheaf with mixed singularities. Therefore for each q we have at least 9q3 ✁ 6q2 ✁ q

irreducible components of M♣✁1, nq, 0q whose generic point is a stable torsion free sheaf with

mixed singularities.

As discussed in the end of the previous section, from the irreducible components with

mixed singularities, we can obtain irreducible components with 0✁dimensional singularities and

pure 1-dimensional singularities, from this observation, and Theorem 97, we can easily obtain

the following Corollary.

Corollary 98. Let ζn and ξn denote the number of irreducible components of M♣✁1, n, 0q whose

generic points correspond to sheaves with 0-dimensional singularities and with 1-dimensional

singularities, respectively. Then

lim sup
nÑ✽

ζn ✏ ✽, and, lim sup
nÑ✽

ξn ✏ ✽
.

Proof. It follows from the proof of Theorem 97, considering s ✏ 0, for the pure 1-dimensional

singularities, and ommiting the line in the 0-dimensinal case.
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3.4 Irreducible components of M♣✁1, 2, c3q

In the previous sections our results ensured the existence of irreducible components

of the moduli spaces of torsion free sheaves with prescribed singularities, but for given chern

classes we were not able to describe all irreducible components of the moduli space. The aim

of this section is to consider this problem for small values of c2, in order to obtain to have the

complete characterization of the moduli spaces, and to illustrate why this study becomes too

complicated for large values of c2.

More precisely, in this section we will describe the irreducible components of the

moduli spaces M♣✁1, 2, c3q, for c3 ✏ 0, 2, 4.

For the convenience of the reader, in the following Proposition we will fix some

numerical invariants of torsion free sheaves that we will use in this entire section.

Proposition 99. Let E be a normalized stable torsion free sheaf, E❴❴ its double dual and

QE :✏ E❴❴④E. The following holds:

a) c1♣E❴❴q ✏ c1♣Eq

b) c2♣E❴❴q ✏ c2♣Eq ✁multQE, where multQE is the multiplicity of the sheaf QE.

c) c3♣E❴❴q ✏ ♣c3♣Eq � c3♣QEqq ✁ c1♣EqmultQE

Additionally, it follows that c2♣Eq ➙ multQE, from the stability of E.

Proof. Since E is torsion free, it fits in the following exact sequence:

0 Ñ E Ñ E❴❴ Ñ QE Ñ 0 (3.24)

Computing the Chern classes we have the item aq to cq, and since E is stable, E❴❴ is stable,

then c2♣E❴❴q ➙ 0. Then by 99 b), 0 ↕ degQE ↕ c2♣Eq.

The next Lemma is an easy technical result that we use later in this section.

Lemma 100. For each F P R♣✁1, 1, 1q, consider the set YF :✏ tl P G♣2, 4q; SingF ⑨ l✉, and

the set:

Y ♣rq :✏ t♣F, l, ϕq; ♣F, lq P R♣✁1, 1, 1q ✂ YF ; ϕ P Hom♣F, i✝Ol♣rqqe④Aut♣F, i✝Ol♣rq✉

Then, for each r P t✁1, 0, 1✉, the set Y ♣rq is an irreducible scheme of dimension 8 � 2r.

Additionally, the image of the morphism Y ♣rq Ñ M♣✁1, 2, 2✁2rq that, for each triple ♣F, l, ϕq P
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Y ♣rq associates the sheaf rkerϕs P M♣✁1, 2, 2 ✁ 2rq never fulfills an irreducible component of

M♣✁1, 2, 2 ✁ 2rq.

Proof. For each F P R♣✁1, 1, 1q, SingF is an unique point, this means that the set YF of lines l P
G♣2, 4q such that SingF ⑨ l is a surface in the Grassmannian isomorphic to P2. Therefore it is irre-

ducible of dimension 2. To see that the dimension of Hom♣F, i✝Ol♣rqe④Aut♣F, i✝Ol♣rq✉ is 3�2r, ap-

ply functor Hom♣✁, i✝Ol♣rqq in the sequence (3.15), and recall that dim H0♣Ext1♣F, i✝Ol♣rqqq ✏
1.

Putting all these data together, we define the set

Y ♣rq :✏ t♣F, l, ϕq; ♣F, lq P R♣✁1, 1, 1q ✂ YF , ϕ P Hom♣F, i✝Ol♣rqqe④Aut♣F, i✝Ol♣rq✉

which by construction is an irreducible scheme of dimension 8�2r. Indeed one has the surjective

projection

Y ♣rq ։ R♣✁1, 1, 1q ✂ YF , ♣rF s, l, ϕq ÞÑ ♣rF s, lq

onto an irreducible scheme of dimension 5, with fibers given by

Hom♣F, i✝Ol♣rqqe④Aut♣i✝Ol♣rqq open
ãÑ Hom♣F, i✝Ol♣rqq④Aut♣i✝Ol♣rqq

which have dimension 3 � 2r.

With the previous Lemma, we are already in position to prove the first main result

of this section.

Theorem 101. The moduli space of rank 2 stable sheaves on P3 with Chern classes c1 ✏
✁1, c2 ✏ 2, c3 ✏ 4, is the closure of the moduli space of the rank 2 reflexive sheaves with Chern

classes c1 ✏ ✁1, c2 ✏ 2, c3 ✏ 4, hence, it is irreducible, generically smooth, of dimension 11.

Proof. By [25, Thm 9.2], R♣✁1, 2, 4q is irreducible of dimension 11, and, R♣✁1, 2, 4q is an

irreducible component of M♣✁1, 2, 4q.
Consider E P M♣✁1, 2, 4q③R♣✁1, 2, 4q. By Proposition 99, 0 ↕ multQE ↕ 2. We will study the

possibilities for multQE.

i) If multQE ✏ 2, then c2♣E❴❴q ✏ 0, and by [25], c3♣E❴❴q ↕ c2♣E❴❴q2, therefore c3♣E❴❴q ✏
0. Hence E❴❴ ✏ OP3♣✁1q ❵ OP3 , which contradicts the stability of E❴❴.
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ii) If multQE ✏ 1, then c2♣E❴❴q ✏ 1 and c3♣E❴❴q ✏ 1 and QE is supported on a line,

possibly with embedded points. In any case, QE fit in an exact sequence of the form:

0 Ñ ZE Ñ QE Ñ i✝Ol♣rq Ñ 0. (3.25)

Where ZE is the maximal 0-dimensional subsheaf of QE of length s, and Ol is the structure

sheaf of a line i : l ãÑ P3. Then we have that the Euler characteristic of QE♣tq is :

χ♣QE♣tqq ✏ t� r � s� 1 (3.26)

From sequence 3.24, and 3.26 we have that:

✁1 ✏ χ♣Eq ✏ χ♣E❴❴q ✁ χ♣QEq ✏ ✁2✁ r ✁ s (3.27)

hence ✁r✁1 ✏ 1, and since we have an epimorphism E❴❴ Ñ QE, from the equation (3.16),

we have that r ➙ ✁1, then it implies that the only possible values for r and s are r ✏ ✁1

and s ✏ 0. From what we have that QE ✔ i✝Ol♣✁1q, additionally c2♣E❴❴q ✏ c3♣E❴❴q ✏ 1.

Therefore, if l ❳ Sing♣E❴❴q ✏ ❍, then E belongs to X ♣1, 1,✁1, 0q which has dimension 5

which is too small to fill out an irreducible component of M♣✁1, 2, 4q. If l❳ Sing♣Eq ✘ ❍,

then by definition E P Y ♣✁1q that has dimension 5 by Lemma 100, and also is too small

to fulfill an irreducible component of M♣✁1, 2, 4q.

iii) If multQE ✏ 0, then c3♣E❴❴q ✏ c3♣Eq � 2s, with s ✏ lenght♣QEq, and s → 0 because

E is not reflexive by assumption, the by Proposition 99 c), c3♣E❴❴ → c3♣Eq, but this

contradicts the stability of E❴❴ since c2♣Eq ✏ c2♣E❴❴q.

In conclusion, we have proved that M♣✁1, 2, 4q ✏ R♣✁1, 2, 4q.

Next, we will study the moduli space M♣✁1, 2, 2q.

Theorem 102. The moduli space of rank 2 stable sheaves on P3 with Chern classes c1 ✏
✁1, c2 ✏ 2, c3 ✏ 2, has at least 2 irreducible components, namely:

a) The closure R♣✁1, 2, 2q of the family of reflexive sheaves R♣✁1, 2, 2q, of dimension 11;

b) The irreducible component T♣✁1, 2, 4, 1q given by the Theorem 96, of dimension 15, whose

generic element is a torsion free sheaf E such that E❴❴ P R♣✁1, 2, 4q and QE is supported

in a point.

Furthemore, the intersection of these two components is non-empty.
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Proof. By [11, Thm 2.5], R♣✁1, 2, 2q is irreducible, nonsingular of dimension 11, and its closure

in M♣✁1, 2, 2q in R♣✁1, 2, 2q is an irreducible component of M♣✁1, 2, 2q of dimension 11. By

Theorem 96, T♣✁1, 2, 4, 1q is an irreducible component of M♣✁1, 2, 2q with dimension 15. To

see that these two families have non-empty intersection, consider a 1-dimensional flat family of

curves Z in P3, such that :

π : Z Ñ P3 ✂ U
pr2ÝÝÑ U

with base U open dense of A1, such that 0 P U , satisfying:

a) for t ✘ 0, the fiber Zt :✏ π✁1♣tq is the disjoint union of two skew lines;

b) the fiber at 0 is the union of two lines meeting in a fat point of multiplicity 2. That is,

♣Z0qred ✏ l1 ❨ l2 and p ✏ l1 ❳ l2, and as scheme Z0 has an embedded point p:

0 Ñ Op Ñ OZ0
Ñ O♣Z0qred

Ñ 0 (3.28)

0 Ñ OP3♣✁1q❜OU Ñ G Ñ IZ④P3✂U ❜ OP3 ❜OU Ñ 0 (3.29)

Set Gt :✏ G⑤P3 ✂ tt✉, with t P U . Note that, for t ✘ 0, each Gt P R♣✁1, 2, 2q by [11,

Lemma 2.4], and that for G0 we have the following exact sequence:

0 Ñ OP3♣✁1q rÑ G0 Ñ IZ0④P3 Ñ 0 (3.30)

From the sequences (3.28) and (3.30), we have the following exact sequences:

0 Ñ G0 Ñ G❴❴
0 Ñ Op Ñ 0, (3.31)

0 Ñ O♣✁1q sÑ G❴❴
0 Ñ I♣Z0qred④P3 Ñ 0. (3.32)

where s is the composition morphism r in the sequence (3.30) with the standard monomorphism

G0 Ñ G❴❴
0 . From sequence (3.32) and [25, Proposition 4.2] we conclude that G❴❴

0 is stable,

hence so is G0.

Thus, we have a morphism :

ΦU : U Ñ M♣✁1, 2, 2q, t ÞÑ rGts, Gt :✏ G⑤P3✂tt✉. (3.33)

Since ΦU♣U③t0✉q ⑨ R♣✁1, 2, 2q, we have that G0 P R♣✁1, 2, 2q. Moreover, by sequence (3.31),

G0 P T♣✁1, 2, 4, 1q, which yields the proof since, by Theorem 102, we have that M♣✁1, 2, 2q ✏
R♣✁1, 2, 2q ❨ X♣✁1, 2, 4, 1q.
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We note that is possible to prove that the components appearing the previous

Theorem are all the possible irreducible components of M♣✁1, 2, 2q. This can be proved by

studying all the possible deformations of the sheaves in M♣✁1, 2, 2q, and a proof can be found

in [1, Theorem 24].

Next, we study the irreducible components of M♣✁1, 2, 0q.

Theorem 103. The moduli space of rank 2 stable sheaves on P3 with Chern classes c1 ✏
✁1, c2 ✏ 2, c3 ✏ 0, M♣✁1, 2, 0q, has at least 4 irreducible components, namely:

a) The closure of the family of stable rank 2 locally free sheaves which can be obtained Serre’s

construction as extensions of ideal sheaves of two irreducible conics (see [23, Example

9.1.2]), denoted by C♣2q, which is smooth, of dimension 11;

b) The irreducible component X♣✁1, 1, 1, 1, 0q of dimension 11, described by Theorem 3.19,

whose generic element is a torsion free sheaf E such that E❴❴ P R♣✁1, 1, 1q and QE is

supported on a line.

c) The irreducible component T♣✁1, 2, 2, 1q of dimension 15 described in Theorem 96, whose

generic sheaf is a torsion free sheaf E such that E❴❴ P R♣✁1, 2, 2q and QE is a length 1

sheaf, supported at a point.

d) The irreducible component T♣✁1, 2, 4, 2q of dimension 19 described by the Theorem 96,

whose generic sheaf is a torsion free sheaf E such that E❴❴ P R♣✁1, 2, 4q and QE is a

length 2 sheaf, supported at two distinct points.

Moreover, the union C♣2q ❨ T♣✁1, 2, 4, 2q ❨ T♣✁1, 2, 2, 1q is connected.

Proof. By [23, Proposition 4.1], C♣2q is an irreducible component of M♣✁1, 2, 0q of dimension 11.

By Theorem 96, T♣✁1, 2, 2, 1q and T♣✁1, 2, 4, 2q are irreducible components of M♣✁1, 2, 0q of

dimension 15 and 19, respectively. By Theorem 95, X♣✁1, 1, 1, 1, 0q is an irreducible component

of M♣✁1, 2, 0q of dimension 11.

To see that the union C♣2q ❨T♣✁1, 2, 4, 2q ❨T♣✁1, 2, 2, 1q is connected, we are going

to prove that the component C♣2q intersects T♣✁1, 2, 4, 2q and T♣✁1, 2, 2, 1q.
Consider the following two, 1-dimensional flat families of curves Z1, Z2 in P3, such

that for each i ✏ 1, 2, the family Z i satisfies the conditions aq and biq:

π : Z i Ñ P3 ✂ U
pr2ÝÝÑ U,

with base U open dense of A1, such that 0 P U , satisfying:

a) for t ✘ 0, the fiber Zt :✏ π✁1♣tq is the disjoint union of two conics;
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b1) the fiber at 0 is the union of two conics, C1 and C2 meeting in a fat point of multiplicity 2.

That is, ♣Z1
0qred ✏ C1 ❨C2 and p ✏ C1 ❳C2, and as scheme Z1

0 has an embedded point p:

0 Ñ Op Ñ OZ1

0

Ñ O♣Z1

0
qred

Ñ 0 (3.34)

b2) the fiber at 0 is the union of two conics, C1 and C2 meeting in two distinct fat points of

multiplicity 2. That is, ♣Z2
0qred ✏ C1 ❨ C2, and tp1, p2✉ ✏ C1 ❳ C2, and as scheme Z2

0 has

two embedded points p1 and p2:

0 Ñ Op1
❵Op2

Ñ OZ2

0

Ñ O♣Z2

0
qred

Ñ 0 (3.35)

Let p2 : P3 ✂ U Ñ U be the projection. For each t P U , we have that

dim Ext1♣IZi
t
♣1q,OP3♣✁2qq ✏ 2, and Extj♣IZi

t
,OP3♣✁2qq ✏ 0, for j ➙ 2. Indeed, for each Zi

t ,

consider the conics Ci
1t and Ci

2t, with i ✏ 1, 2 such that Zi
t fits into an exact sequence of the

form:

0 Ñ IZi
t
Ñ ICi

1t
Ñ OCi

2t
Ñ 0. (3.36)

Moreover, each Ci
jt, with i, j ✏ 1, 2 fits in the following exact sequences:

0 Ñ OP3♣✁3q Ñ O♣✁2q ❵OP3♣✁1q Ñ ICi
jt
Ñ 0,

0 Ñ ICi
jt
Ñ OP3 Ñ OCi

jt
Ñ 0

twisting by OP3♣1q and applying the functor Hom♣✁,OP3♣✁2qq in the above short exact sequences,

we see that dim Ext1♣ICi
jt
♣1q,OP3♣✁2qq ✏ 1 and dim Extl♣ICi

jt
♣1q,OP3♣✁2qq ✏ 0 if l ✘ 1, and

that dim Ext2♣OCi
jt
♣1q,OP3♣✁2qq ✏ 1 and and dim Extl♣OCi

jt
♣1q,OP3♣✁2qq ✏ 0 if l ✘ 2. Thus

twisting by OP3♣1q and applying the functor Hom♣✁,OP3♣✁2qq in the sequence (3.36) we get

that dim Ext1♣IZi
t
♣1q,OP3♣✁2qq ✏ 2 and Extj♣IZi

t
,OP3♣✁2qq ✏ 0, for j ➙ 2, as we claimed.

Therefore the base change for relative Ext-sheaves (see [45, Thm. 1.4]) shows that

the sheaf A ✏ Ext1
p2
♣IZ,P3✂A1 ,OP3♣✁2q ❜ OA1q is a locally free OA1-sheaf and there exists a

nowhere vanishing section s P H0♣Aq. Furthermore, by the spectral sequence of global-to-relative

Ext we may consider s as an element of the group Ext1
p2
♣IZ,P3✂A1 ,OP3♣✁1q❜OA1q. Hence, this

element defines an extension of OP3✂U -sheaves

0 Ñ OP3♣✁2q❜OU Ñ Ei Ñ IZi,P3✂U♣1q❜OU Ñ 0, i ✏ 1, 2. (3.37)

The sheaves Ei are flat over U and, by construction, for t P U , the restriction of

(3.37) is nonsplitting extension of OP3-sheaves 0 Ñ OP3♣✁2q Ñ Ei
t Ñ IZi

t ,P3♣1q Ñ 0, where
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Ei
t :✏ Ei⑤P3✂tt✉. Hence, rEi

ts P M♣✁1, 2, 0q, i. e., we obtain modular morphisms Φi : U Ñ
M♣✁1, 2, 0q, t ÞÑ rEi

ts. Note that, for t ✘ 0, each rEi
ts P C♣2q by [23, Example 3.1.2]. Hence,

also rEi
0s P C♣2q, i ✏ 1, 2. Besides, Ei

0 fit in the following exact triples:

0 Ñ OP3♣✁2q riÑ Ei
0 Ñ IZi

0
,P3♣1q Ñ 0, i ✏ 1, 2. (3.38)

The triples (3.34), (3.35) and (3.38), give us the following exact sequences:

0 Ñ E1
0 Ñ ♣E1

0q❴❴ Ñ Op Ñ 0, (3.39)

0 Ñ E2
0 Ñ ♣E2

0q❴❴ Ñ Op1
❵Op2

Ñ 0, (3.40)

0 Ñ O♣✁2q siÑ ♣Ei
0q❴❴ Ñ I♣Zi

0
qred,P3♣1q Ñ 0, i ✏ 1, 2, (3.41)

where si is the composition morphism ri from (3.38) with the canonical monomorphism Ei
0 Ñ

♣Ei
0q❴❴. From sequence (3.41) and [25, Proposition 4.2] we see that ♣Ei

0q❴❴ is stable, and

computing the Chern classes we conclude that r♣Ei
0q❴❴s P M♣✁1, 2, 2iq, i ✏ 1, 2. Thus, it

follows from (3.39) that rE1
0s P T♣✁1, 2, 2, 1q; and, from (3.40) that rE2

0s P T♣✁1, 2, 4, 2q.
Since, by the above, rE1

0s, rE2
0s P C♣2q, i ✏ 1, 2, it follows, that C♣2q ❳ T♣✁1, 2, 2, 1q ✘ ❍ and

C♣2q ❳ T♣✁1, 2, 4, 2q ✘ ❍, as we wanted.

We note that is possible to prove that the components appearing the previous

Theorem are all the possible irreducible components of M♣✁1, 2, 0q. This can be proved by

studying all the possible deformations of the sheaves in M♣✁1, 2, 0q, and a proof can be found

in [1, Theorem 27]. Moreover, it is also possible to prove that M♣✁1, 2, 0q is connected see [1,

Theorem 29].
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