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Resumo

Apresentamos um estudo sobre equagoes diferenciais fuzzy (EDFs), tanto do ponto de
vista analitico quanto numérico. Para ambas abordagens faz-se necessario estabelecer uma
aritmética entre ntimeros fuzzy. Focamos em aritméticas que consideram uma relagao
entre numeros fuzzy chamada interatividade, que é atrelada ao conceito de distribuigao
de possibilidade conjunta. Através do principio de extensao sup-J, propomos diferentes
aritméticas entre niimeros fuzzy interativos, podendo assim tratar de EDFs numericamente
através dos métodos de Euler e Runge-Kutta, adaptando as operacoes aritméticas para
numeros fuzzy interativos. Fornecemos soluc¢oes analiticas para problemas de valores
iniciais fuzzy utilizando o principio de extensao sup-J e estabelecemos conexoes dessa
solucao com outras na literatura, por exemplo, as solucoes obtidas através da derivada de
Fréchet. Provamos que a derivada de Hukuhara e suas generalizacoes sao casos particulares
de derivadas interativas. Construimos, através de uma nova familia de distribui¢oes de
possibilidade conjunta, operagoes aritméticas que produzem ntmeros fuzzy com norma
e largura minimas, em comparagao com qualquer outra aritmética obtidas via extensao
sup-J. Caracterizamos essas operagoes aritméticas por a-niveis, tornando seu calculo
mais simples. Investigamos também solugoes para equacoes fuzzy lineares que consideram
aritméticas interativas, estabelecendo condigbes necessarias e suficientes para existéncia de
tais solugoes. Ilustramos os métodos propostos nessa tese, fornecendo solugoes numeéricas
para modelos epidemioldgicos e reagoes quimicas e solugoes analiticas para problemas
fisicos do tipo massa-mola, corroborando os resultados tedricos. Por fim, exploramos as

propriedades de simetria de niimeros fuzzy em sequéncias de Fibonacci e retardamento.

Palavras-chave: Equacoes diferenciais fuzzy. Derivadas fuzzy. Aritmética fuzzy.



Abstract

We present a study of fuzzy differential equations (FDEs) from the analytical and numerical
point of view. Both approaches require an arithmetic on fuzzy numbers. We focus on
arithmetics that consider the relationship between fuzzy numbers called interactivity,
which is associated to concept of joint possibility distribution. By means of sup-.J extension
principle, we propose different arithmetics on interactive fuzzy numbers, allowing to deal
with FDEs numerically using Euler’s and Runge-Kutta methods, adapting the arithmetic
operations for interactive fuzzy numbers. We provide analytical solutions to fuzzy initial
value problems via sup-J extension principle and we establish connections with others
approaches in the literature, for example, the solutions obtained from Fréchet derivative. We
proved that Hukuhara derivative and its generalizations are particular cases of interactive
derivatives. We construct, from a new family of joint possibility distributions, arithmetic
operations that produce fuzzy numbers with minimal norm and width, in comparison with
any other arithmetic derived from sup-J extension. We characterized these arithmetic
operations by means of a-cuts, making the computation simpler. Also we investigate
solution to linear fuzzy equations that consider interactive arithmetic, establishing necessary
and sufficient conditions for the existence of these solutions. We illustrate the methods
proposed in this thesis, providing numerical solutions to epidemiological and chemical
models and analytical solutions to physical mass-springer problems, corroborating the
theoretical results. Finally, we explore the symmetry properties of fuzzy numbers in

Fibonacci and Delay sequences.

Keywords: Fuzzy differential equation. Fuzzy derivatives. Fuzzy arithmetic.
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Introduction

Over time several researchers have found difficulty to incorporate in their
models some properties, such as uncertainty and subjectivity. In 1965, Lofti Asker Zadeh
introduced a new theory, called Fuzzy Set Theory [156]. By this theory it was possible to

incorporate subjectivity in mathematical models.

Zadeh established that elements may belong to a set with different degrees,
which allows us to describe linguistic variables mathematically [111]. For instance, the
authors of [123] used fuzzy-rule-based systems to describe linguistic variables such as small,

medium or big sizes of tumor, in order to predict the risk of kidney cancer.

Fuzzy set theory can be used in many fields of science, such as biology [9,
107, 131], medicine [122, 128, 123], geology [151, 152] and chemistry [139]. A well-known
methodology used to describe problems in these fields is fuzzy differential equation (FDE)
9, 16].

A FDE consists of a mathematical equation that relates some fuzzy function
with its fuzzy derivative. In applications, the fuzzy functions represent the behaviour
of quantities, biological or chemical for example, embracing uncertain and/or imprecise
information. Fuzzy derivatives represent the variation of these quantities, and fuzzy

differential equation establishes the relationship between them.

There are several ways to deal with FDEs. One can study these problems

analytically and/or numerically, as depicted in Figure 1.

Figure 1 — Diagram of approaches for fuzzy differential equations

Zadeh extension

. 1
/ Analytical solutions [~ sup-J extension
_____________ 1

Fuzzy differential equations ! Fuzzy derivative

The solid squares are the most common approaches used in the literature. The dashed
squares are the ones studied in this thesis. Source: Author

Many authors interpreted FDEs using the notion of derivatives for fuzzy-
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number-valued functions. Puri and Ralescu [118] introduced the Hukuhara derivative
(H-derivative) and Kaleva [80] provided a detailed study of this type of fuzzy derivative.
Nevertheless this approach produces only solutions with increasing width of the support,
which means that in fuzzy dynamical systems the future state is always more uncertain
than the present state [15].

Over the years many generalizations of the Hukuhara derivative were proposed.
Bede and Gal [17] proposed the strongly generalized differentiability of fuzzy functions.
Later, Stefanini and Bede [133] introduced the generalized Hukuhara derivative (gH-
derivative). The gH-derivative is more general than the H-derivative, and they do not

require the monotonicity width of the support for its existence.

Thereafter Bede and Stefanini [16] developed the generalized derivative (g-
derivative). This fuzzy derivative arises from the g-difference. Gomes and Barros [68]
proved that the existence of the generalized difference is only guaranteed, if one applies

the convex hull to the definition proposed by Bede and Stefanini.

Another approach to deal with FDEs is through the relationship between fuzzy
numbers called interactivity [161]. Barros and Santo Pedro [15] proposed a solution to
FDEs using the concept of fuzzy interactive derivative. This paper reveals interesting
properties in the study of fuzzy processes [109, 110]. Esmi et al. [52] used the notion of
interactivity to introduce the Fréchet derivative for fuzzy functions. Salgado, Barros and
Esmi [124] provided solutions of FDEs using the notion of interactivity via fuzzy Laplace

transform.

Several models describe biological phenomena considering that the initial
population is constant [46]. In the case where the states and/or parameters are given
by fuzzy numbers, the only FDE that incorporates this hypothesis is the one that uses
interactivity [15, 149]. This fact can be also observed in chemical and physical problems,
which one may consider the conservation law. In chemistry, the conservation law of mass
states that the mass of the final product must be equal to the mass of the reagents
[106, 139]. In physics, the conservation law states that a particular measurable property of
a physical system does not change as the system evolves over time [21]. This thesis deals

with these models and other ones without this hypothesis.

It is possible to provide analytical solutions to FDEs without using the notion
of fuzzy derivative. In this case, one can use the Zadeh’s extension principle [42, 25, 97, 68],
which consists in extending the classical solution of the corresponding ordinary differential

equation.

Also one can provide solutions to FDEs embracing the notion of interactivity via
sup-J extension principle [62], which is a generalization of the Zadeh’s extension principle.

Cabral and Barros [29] provided a study of FDEs with parameters and initial conditions
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given by interactive fuzzy numbers. To this end, the authors consider the sup-J extension
principle and a family of differential inclusions [39, 10]. Ibanez et al. [77] proposed solutions

to FDEs with interactive fuzzy boundary conditions, using sup-J extension.

The aforementioned approaches deal with FDEs analytically. This thesis also
studies FDEs from the numerical point of view. Many researchers proposed numerical
methods to produce fuzzy solutions to these problems [91, 3, 105, 64, 79, 1]. These methods
do not take into account the concept of interactivity. In contrast of the methods provided
in the literature, here numerical methods embracing the notion of interactivity will be

investigated.

The study of solutions (analytical and/or numerical) to FDEs require an
arithmetic on fuzzy numbers. The most common are the ones obtained by the standard
arithmetic [85] and Hukuhara difference and its generalizations [118, 133, 16, 68]. New
arithmetics will be proposed. Moreover they will be compared with the ones mentioned
before, concluding that our approach embraces H-, gH- and g¢- differences (see diagram

given in Figure 2).

Figure 2 — Diagram of arithmetics on fuzzy numbers

Fuzzy arithmetic

T~

Non-interactive Interactive - - -4:::0761?6;8— B -:
, | \
7/ \
‘ £ i R\
[ Standard | E—difference |gH—difference, | g-difference

The solid squares are the arithmetic operations provided in the literature. The dashed
square is the one provided in this thesis. The dashed arrows represents the associations
established here. Source: Author

This thesis is divided as follows. Chapter 1 presents the necessary background
for the understanding of this thesis. Chapter 2 provides a discussion about joint possibility
distributions and the concept of interactivity. Moreover, it presents arithmetic of fuzzy
numbers from two point of views, the interactive and non-interactive. Also it compares these
two types of arithmetics, which is the first contribution. Chapter 3 investigates some natural
questions that arise from fuzzy linear equations, such as the existence and uniqueness
of solution for these equations when the arithmetic operations embraces the notion of
interactivity. This is the second contribution. Chapter 4 presents the third contribution of
this work, which is a generalization of one type of interactivity called linear interactivity

(or also called completely correlation). From this type of relationship, a fuzzy solution for
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higher order fuzzy differential equations is provided. Moreover this chapter establishes
some connections with others approaches given in the literature, such as Fréchet derivative.
Chapter 5 deals with FDEs from two points of view: fuzzy derivatives and fuzzy numerical
solutions. These approaches are connected from a family of fuzzy derivatives that take
into account the relationship of interactivity. As the forth contribution, a fuzzy numerical
solution for an n-dimensional fuzzy differential equations, with n initial conditions given
by interactive fuzzy numbers, is proposed. As the fifth contribution, this chapter shows
that the Hukuhara derivative is a particular case of this family of fuzzy derivatives, which
makes the Hukuhara derivative be a type of interactive derivative. Chapter 6 proposes a
family of joint possibility distributions, which gives rise to a new type of interactivity. From
this family, arithmetic operations between interactive fuzzy numbers can be computed in a
simpler way. The symmetry properties of fuzzy numbers and the consequences in addition
and subtraction between fuzzy numbers are also explored, which is the sixth contribution.
Finally, the last contribution is given in Chapter 7. Some applications are presented using
different types of interactivity, such as in physical, biological and chemical models. Also
the Fibonacci and Delay sequences composed by interactive fuzzy numbers are explored,

in order to illustrate the properties of symmetry of fuzzy numbers.
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1 Some Notions of Fuzzy Set Theory

This chapter presents the mathematical background for this thesis, which
consists of the main definitions and theorems about fuzzy set theory. Fuzzy sets are
characterized by a mapping called membership function. In order to interpret this concept
and give a meaningful use to it, one can classify the fuzzy sets in two classes, Ontic and

FEpistemic fuzzy sets [38].

Ontic fuzzy sets represent objects originally constructed as sets, but to express
the notion of subjectivity, for instance, to describe linguistic labels such as low, medium,
high, etc [37]. On the other hand, epistemic fuzzy sets represent the idea of partial or
imprecise information [20], for example, to determine the exact number of individuals
infected with the HIV virus. This thesis deals with fuzzy sets without distinguishing

between these two point of view.

This chapter is divided in six sections and it is based on the references [85,
83, 111, 70, 9, 140, 108]. Section 1.1 presents introductory definitions of fuzzy set theory.
Section 1.2 focuses on a special class of fuzzy sets called fuzzy numbers. Section 1.3 recalls
the extension principle, which is used in Section 1.4 to provide an arithmetic on fuzzy
numbers. Finally, Sections 1.5 and 1.6 respectively establish the types of fuzzy functions

and fuzzy derivatives most used in the literature.

1.1 Fuzzy Set Theory

Fuzzy set theory was introduced in 1965 by Zadeh [156]. A fuzzy set is defined

as follows.

Definition 1.1. [156] A fuzzy (sub)set A of a universe X is characterized by a function

pa X —[0,1], (1.1)
called the membership function of A.

The function 4 applied at the element x € X represents the membership degree
of z in the set A. This means that the greater value of ps(z), the greater association
of the element x to the set A, where pa(z) = 1 and pa(x) = 0 represent the full and

non-association of x to the set A, respectively.

Example 1.1. Let A be the set given by A = {x € R : x is close to 0}. The elements that

belong to A depend on the expression “close to”, which is a subjective term. This implies
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that the set A is defined in an uncertain way. The membership function pa: R — [0,1] in

order to characterize the fuzzy subset A is given by

142 if —1<2<0
palr)=<31—2 if 0<z<l1. (1.2)

0 otherwise

The image of the membership function pa is depicted in Figure 3. In this case,
the elements outside the interval I = [—1,1] are not close to 0. For example, the number
1000 is not close to 0, since the membership degree of 1000 in A is 0, that is, u4(1000) = 0.

Note that 114(0.25) = 0.75 and pa(—0.1) = 0.9. This means that both elements
have an association with the set A (based on definition (1.2)) but —0.1 is closer to 0 than
0.25. Observe that the element 0 has full association with the set A, since ua(0) = 1.

Figure 3 — Graphical representation of the fuzzy set A of Example 1.1.
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Source: Author.

The choice of the interval I, in the above example, is subjective. One may

choose an interval with larger or smaller size, this depends on the problem to be modeled.

The class of fuzzy subsets of X is denoted by F(X). Note that each classical

subset U of X is identified by its characteristic function

xu : X — {0,1}, (1.3)

where xp(x) = 1if x € U, and xy(z) = 0 if 2 ¢ U. This means that classical subsets are
particular cases of fuzzy subsets. These subsets are also called crisp subsets in fuzzy set

theory.

The universe (X) and the empty (&) sets are fuzzy sets whose membership
functions are given by ux(z) = 1, Vo € X and pug(x) = 0, Yo € X, respectively. For

notational convenience, the symbol A(z) is used instead of p4(x).
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The fuzzy set A is contained in B (A < B) if, and only if, A(z) < B(z), for all
x € X. Moreover, A and B are equal if, and only if, A(z) = B(x), Yz € X. The intersection

(n) and union (V) between A and B are given by

(An B)(x) = A(z) A B(x) and (Au B)(z) = A(x) v B(x),

where the symbols A and v stand for the maximum and minimum, respectively. The

complement of the fuzzy set A in X, denoted by A, is defined by the membership function
ACx) =1— A(x), Yo e X.

Remark 1.1. In general, the intersection between the fuzzy subsets A < X and A® € X
is not equal to the empty set, that is, An AY # &. A similar observation can be made for
the union, that is, Au AY # X

Example 1.2. Let A be the set given in Example 1.1. The complement A€ has membership

function given by

—x if —1<z<0
A%(z) = x if 0<z<l.
1 otherwise

The union and intersection between A and A have the following membership

function
(—:1: if —1<x<-05
142 if —05<2x<0
(AVA9)z)=<1—-2 if 0<z<05
z if 05<z<l1
| 1 otherwise
and .
l+z if —-1<2z<-05
—x if —05<z<0
(An A9 (z) =13 = if 0<z<05
l—z if 05H<zx<1
0 otherwise

Therefore for this example, A U A® # R and A n A° +# &.

Definition 1.2. A fuzzy subset A of X is said to be normal if there exists v € X such
that A(x) = 1.
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Every crisp set is a normal fuzzy subset (see (1.3)). Another example of normal

fuzzy set is the fuzzy set A given in Example 1.1.

Definition 1.3. The core of a fuzzy subset A of X is defined by the crisp set:

core(A) ={xe X : A(x) =1}.

The core(A) represents the set of all elements of X that have full association
to the subset A. In the case of Example 1.1 it follows that core(A) = {0}, which means

that 0 is the only element that is certainly “close to 0.

Definition 1.4. The support of the fuzzy set A is given by

supp(A) ={re X : A(zx)> 0}.

The crisp set supp(A) consists of all elements that have “some” association to
the set A. In Example 1.1 the support of A is equal to the interval (—1, 1), which means
that all elements between —1 and 1 are considered as close to some (non-zero) degree,

based on membership function given as in (1.1).

The class of fuzzy subsets F(X) together with the partial ordering of fuzzy
set inclusion (<) is a complete lattice that is isomorphic to the complete lattice given
by [0,1]* = {f : X — [0,1]} together with the usual partial ordering of functions
(f <g< f(z) <g(x), Yx e X). The definitions of partial ordering and complete lattice

are given as follows.

Definition 1.5. [22] A set L is a partial ordered set if a binary relation (<) is defined,

and satisfies

1. Forallx e, x <z (Reflexive);
2. Ifx <yandy <z, thenx =y Yr,yel (Antisymmetric);
3. Ifr<yandy <z, thenx <z Va,y,z €L (Transitive);
Definition 1.6. [22] A partially ordered set (L, <) is a complete lattice if every limited

X € L has an infimum, denoted /\X, and a supremum, denoted \/X, in L.

The case where X = {x; : 7 € I}, for an arbitrary index set I, the infimum and
supremum are written as /\ x; and \/xi, respectively, instead of /\ X and \/ X. In

el el
the special case where X = {x,y}, one can simply write © A y and = v y.

Next, the definitions of algebraic erosions and dilations are presented.
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Definition 1.7. [72] A mapping ® : L — M is called an algebraic erosion if <I>(/\ x;) =
iel
/\ O (x;) for all x; € L and for all index sets I. Similarly, a mapping ® : L — M is called
iel
an algebraic dilation if q;(\/ x;) = \/ O (x;) for all x; € L and for all index sets I.
iel iel
A mapping ® that is both an algebraic erosion and an algebraic dilation is said
to be a complete lattice homomorphism. If ® is in addition bijective, then one speaks
of a complete lattice isomorphism. Let us remark that a complete lattice isomorphism
can also be characterized as a bijection ® : . — M that satisfies x <p, y if and only if
O(x) <pr P(y) Va,y € L [22]. If (L, <) is a complete lattice and < is a total order, that
is, if x <y or y < x Vx,y € L, then one speaks of a complete chain. Moreover, a chain L
is said to be conditionally complete if the infimum and the supremum of any bounded
subset of L exists in L [22]. If L is a complete lattice and X is an arbitrary non-empty set,

then LY = {f : X — L} is also a complete lattice with the partial ordering given by [22]

f<g e flz)<g(x), Vfge L™ (1.4)

Example 1.3. The unit interval [0,1] and the extended Riy, = R U {+0, —0} are
examples of complete chains. The set R is known to be a conditionally complete lattice

with the operation of addition.

Example 1.4. [22] The P(R) and (Rip)* = {f : R — Ru,} together with the partial
order of set inclusion (S) and the usual order of functions (<), respectively, are examples

of complete lattices.

An example is given by [0, 1]* with the partial order given by (1.4) and this
complete lattice is isomorphic to F(X). More precisely, ¢ : F(X) — [0,1]* given by
¢(A) = pa represents a complete lattice isomorphism because ¢ is bijective and because

A c B if and only if ua < up.

Next the definition of triangular norms is presented. This concept started in
1942 by Menger [94], which was used to construct metric spaces based on probability
distributions. Triangular norms arose as a generalization of the classical logical connectives
[83].

Definition 1.8. A triangular norm, t-norm for short, is a binary operation

A:[0,1] % [0,1] — [0,1]
() — wly

that satisfies the following properties:

(a) Commutativity: x Ny =y Az, Yo,y € [0,1];
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(b) Associativity: v A\ (y A z) = (x Ay) Az, Ya,y,z € [0, 1];
(¢c) Monotonicity: if y < z, thenx Ay <z Az, Vre[0,1];
(d) Boundary conditions: t A1 =z and x A0 =0, Yz € [0, 1].

Example 1.5. The following operators are examples of t-norms

(a) Minimum: x A y = min{x,y};
(b) Product: x N,y = xy;
(c) Lukasiewicz: v Ay y = max{z +y — 1,0};

min{z,y}, o maxi{zr,y} =1
(d) Drastic product: x Ngy = @y} d .y} :

0, otherwise

Definition 1.9. A triangular conorm, also called as s-norm, is a binary operation
v [0,1] x [0,1]  —  [0,1]
(z,y)  — Yy

that satisfies the following properties:

(a) Commutativity: x 7y =y~ z, Vz,y € [0,1];

(b) Associativity: <7 (y~7 2) = (x v y) V 2, Yx,y,z € [0, 1];

(¢) Monotonicity: if y < z, then x <y y < x </ 2z, Vo € [0,1];

(d) Boundary conditions: x<y 1 =1 and x 7 0 = z, Yz € [0, 1].
Example 1.6. The following operators are examples of s-norms

(a) Mazimum: x v y = max{x,y};

(b) Probabilistic sum: © <7,y = * + y — Ty;

(c) Lukasiewicz: x 7y, y = min{x + y, 1};

max{z,y}, if min{z,y} =0
1 .

(d) Drastic sum: x \/qy =
, otherwise

The t-norm and s-norm generalize the and and or connectives of classical
logic, respectively. Moreover, s-norms can be viewed as dual operators of the t-norms.
One can prove that 17 is a s-norm if and only if there exists a t-norm A such that

rvy=1—(1—-—xA1-y), for every z,y € [0,1] [83, 111]. In general, both t-norms and
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s-norms can not be ordered. However, there exist the largest and the smallest t-norm and
s-norm [111]. One can prove that the minimum operator is the largest t-norm, whereas

the drastic product is the smallest one [140], that is, for all t-norm A it follows that
rlNgy<zAy<znry, Yr,yel0,1].

In addition, the mazimum operator is the smallest s-norm, whereas the drastic sum is the

largest one [83], that is, for all s-norm 57 it follows that

rvy<rvy<rvay, Yr,yel0,1].

Next the definition of Cartesian product via t-norm is presented [44].

Definition 1.10. Let A; € F(X;), fori =1,...,n. The Cartesian product A; X a...xaA,,

via t-norm, is defined by the following membership function:
(A1 Xa oo xp A (1, x) = Ar(z) A A Ap(xy), V(21,0 ,x,) € Xq, .00, X,

for some t-norm /\.

Consider the Cartesian product given by the minimum t-norm in Definition
1.10, which is called usual Cartesian product and it is denoted simply by A; x ... x A,,.
The usual Cartesian product gives rise to fuzzy relations among fuzzy sets. A relation
between classical sets indicates if there is (or not) an association among their elements,
whereas the fuzzy relations not only indicates this relationship but also the degree of this

association.

Definition 1.11. An n-ary fuzzy relation R among the classical universes Xy, ..., X, is

a fuzzy subset of Xy x ... x X,,, whose membership function is given by

R1X1X...><Xn—>[0,1].

The symbol R(z1,...,x,) € [0, 1] represents the degree of relationship among
the elements x1,...,z, according to the relation R. A fuzzy relation R between two

classical universes X; and X5 is called binary fuzzy relation.

The cylindrical extension of a fuzzy set is an example of fuzzy relation [70].

Definition 1.12. [711] The cylindrical extension of a fuzzy set A < X;, fori = 1,2, is
the fuzzy relation cyl(A) € F(X; x X3) whose membership function is given by

cyl(A)(x1, x2) = A(zy), Vo, € X,

The fuzzy projection provides fuzzy relations on some subspaces of the original
space, in contrast to the cylindrical extension, which increases the number of coordinates
of the Cartesian product over which the fuzzy relation is defined. That is, the projection

reduces the dimensionality of the original fuzzy relation.
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Definition 1.13. [111] The projection of R € F(X; x ... x X;,) onto X;, where 1 <i < n,

is the fuzzy subset 1_[ of X;, whose membership function is given by
R

n(y) = \/ R(z1,...,x,), Yye X;,

where X = X1 x ... x X,,.

The a-cut plays a key role in the relationship between fuzzy and classical sets.

The a-cut of a fuzzy set is defined as follows.

Definition 1.14. [9] Let A be a fuzzy subset of X # &. The a-cuts of A are defined by
the classical sets
[A]* ={re X : A(z) =0}, Vae(0,1].

In addition, if X is a topological space then the 0-cut of A is given by

[A]” = cl supp(A),
where cl Y < X represents the closure of the classical Y .

It is easy to see, from the above definition, that the following statement holds
true [85, 9]
A= B < [A]*=[B]* VA, Be F(X), Yae|[0,1].

This fact implies that there is a relationship between the membership function of a fuzzy

subset and the characteristic function of its a-cuts, as can be seen in the next corollary [9)].

Corollary 1.1. The membership function of A € F(X) can be expressed in terms of the

characteristic function of its a-cuts, as follows:

Ax) = \/ (a A xpape(z)), VAe F(X)

ael0,1]
1, ifzxe|A]*
where X[a1o(7) = foeldl .
0, ifz¢[A]

The following theorem is known as Negoita and Ralescu’s Theorem of Repre-
sentation [102]. It shows a sufficient condition for a family of classical subsets of X to be

formed as a-cuts of a fuzzy subset.

Theorem 1.1. Given a family of classical subsets {M, < X : a € [0,1]} that satisfies the

following conditions
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(@) | Mac My

0<axl

(b) [fO SO0 S < 1, then Ma2 - Mal;'

(¢) For any sequence o, which converges from below to o € (0,1], it follows
o0
ﬂ Man = Ma;
n=1

Then there exists a unique fuzzy set M, such that [M]* = M,, for any a € [0, 1].
Proof. See [102, 16]. O

The next section discusses an important subclass of fuzzy sets, namely fuzzy

numbers. They are connected to the definition of a-cuts.

1.2 Fuzzy Numbers

Fuzzy numbers form a special class of fuzzy sets, which are widely used in
applications of fuzzy logic [9, 85, 104, 140], fuzzy analysis [102, 40, 16] and fuzzy differential
equations [42, 80, 67, 70, 108]. Fuzzy numbers are fuzzy subsets of R (called fuzzy quantities)

with some additional properties.

Definition 1.15. [9] The fuzzy set A € F(R) is said to be a fuzzy number if the following

properties are satisfied:

(a) A is normal, that is, [A]' # &;
(b) The a-cuts of A are closed intervals of R, for all a € [0,1];

(¢) supp(A) is bounded.

The class of fuzzy numbers is denoted by Rx. Since the a-cuts of a fuzzy
number A are given by closed intervals, [A]* is denoted by
[A]* = [a;,a]], VA e Rz, Yae|0,1].

Note that real numbers are particular cases of fuzzy numbers. The most common

fuzzy numbers used in the literature are triangular, trapezoidal and Gaussian fuzzy numbers

[9]-



Chapter 1. Some Notions of Fuzzy Set Theory 35

Definition 1.16. A fuzzy number A is said to be triangular if its membership function is

given by
x—a7 ifa<x<b
bz
Az) = , ifb<z<c,
c—b
0, otherwise

where a < b < ¢ are real numbers.

From Definition 1.16, the triangular fuzzy number A is determined by a, b, c € R.
Hence, A is denoted by the triple (a; b; ¢). In this thesis the class of triangular fuzzy numbers
is represented by the symbol Fr,.. The graphical representation of a triangular fuzzy number

is depicted as in Figure 4.

Figure 4 — Graphical representation of a triangular fuzzy number A = (a;b; ¢).
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The a-cuts of the triangular fuzzy number A = (a;b;c) are given by [9]
[A]* =[a + a(b—a),c+ a(b—c)], YVae[0,1].

Definition 1.17. A fuzzy number A is said to be trapezoidal if its membership function is

given by

r—a ,ifa<x<b

b—a
1 ,ifb<x<c
A(m):<d—m )
,ife<ax<d

d—c

0 , otherwise

\

where a < b < ¢ < d are real numbers.

The trapezoidal fuzzy number A is denoted by the quadruple A = (a;b; ¢; d).
The class of trapezoidal fuzzy numbers is represented by the symbol Fp,. The graphical

representation of a trapezoidal fuzzy number is given as in Figure 5.

The a-cuts of the trapezoidal fuzzy number A = (a;b; ¢; d) are given by

[A]* =[a + a(b—a),d+ a(c—d)], YVa e [0,1].
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Figure 5 — Graphical representation of a trapezoidal fuzzy number A = (a; b; ¢; d).
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In the case where b = ¢ the trapezoidal fuzzy number A = (a;b; ¢; d) becomes
the triangular fuzzy number A = (a; b; d). This implies that Fr, is contained in Fr,.

Definition 1.18. A fuzzy number A is said to be Gaussian if its membership function is

given by

e o ) —0<x< u+6
Al) = I w It |

0 , otherwise

where p, o and d are real numbers, with 6 > 0.

The Gaussian fuzzy number A is denoted by A = (u,0,0) and its graphical
representation is given as in Figure 6. The class of Gaussian fuzzy numbers is represented
by the symbol Fg.

Figure 6 — Graphical representation of a Gaussian fuzzy number A = (u, 0, 9).
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The a—cuts of the Gaussian fuzzy number A = (u, 0, d) are given by

2
[ -0 ln u—l—a ln ] if a>a=e v
[4]" - \ \ -~

)

[ — (5,u+(5 if a<a=e o
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The following results are consequences of Definition 1.15.

Proposition 1.1. /8, 104/ The following statements hold true for all A € Rg:

(a) The fuzzy numbers are convex fuzzy functions, i.e., A(y) = A(x) A A(z) whenever

T<Y <z

(b) The fuzzy numbers are upper semi-continuous, i.e., for all x € R and € > 0 exists
d > 0 such that |x — y| < 0 implies that A(y) < A(z) + €;

(¢) A is non-decreasing on (—0, ay | and non-increasing on [a], ).
Theorem 1.2. [66] Consider the endpoints functions given by

a” :[0,1] > R and a :[0,1] >R

a (a) — a, a*(a) — ag
Thus

(a) a= € R is a bounded, non-decreasing, left-continuous function in (0,1] and it is

right-continuous at 0.

(b) a* € R is a bounded, non-increasing, left-continuous function in (0,1] and it is

right-continuous at 0.
(c) a= (1) < a™(1).

Conversely, given two functions a”,a™ : [0,1] — R that satisfy the conditions (a)-(c)
there exists a fuzzy number A € Ry such that [A]* = [a,,a}], where a, = a”(a) and

af =a*(a), Vae[0,1].

Lemma 1.1. [129] Let I(R) = {[a,,af] € R : « € (0,1]} be a family of non-empty

) o

closed intervals of R. If the following properties are satisfied

(a) [by,ba] < [ag, a,], for 0 < a < f;

o) o

. - . + o f— + . . .
(b) [kh_rgo gy s kh_r}olo %k] = |a,,a.], where (ay) is a non-decreasing sequence which con-

a) o

verges to a € (0, 1],

then the family [a,,,a]| represents the a-cuts of the fuzzy number A. On the other hand if
[a,,,al] are the a-cuts of the fuzzy number A, then the properties (a) and (b) hold true.

The set of fuzzy numbers such that the corresponding endpoint functions are con-
tinuous is denoted by the symbol Rz, , that is, Rz, = {A € Rz : a~ and a™ are continuous}.
It follows that Fp, € Rg, and Fr, < Rg,.



Chapter 1. Some Notions of Fuzzy Set Theory 38

Next the concept of distance for fuzzy numbers is presented. Moreover, this
thesis uses the Pompeiu-Hausdorff norm, which is obtained by the Pompeiu-Hausdorff

metric.

Definition 1.19. [71] Let A and B be two non-empty compact subsets of a metric space
X. The pseudometric d, given by

d(A,B) = \/ d(a, B),

where

d(a, B) = /\ lla —0]l.

beB

is called the Hausdorff separation. The symbol /\ stands for the infimum operator.

Definition 1.20. [71] Let A and B be two non-empty compact subsets of a metric space
X. The Pompeiu-Hausdorft metric dg is given by

dy (A, B) = max{d(A, B),d(B, A)}.

Particularly, if X = F(R) then the Pompeiu-Hausdorff metric for fuzzy sets is given as

follows.

Definition 1.21. [/0] Let A and B be fuzzy sets. The Pompeiu-Hausdorft distance do, :
F(R) x F(R) — [0,+00) is given by

do(A,B) = \/ du([A]%,[B]"), YA, B e F(R).

0<ax<l

In the case where A and B are given by fuzzy numbers, Definition 1.5 boils down to the

next definition.

Definition 1.22. [/0] The Pompeiu-Hausdorff distance do, : Rr x Rr — [0, +00), between

fuzzy numbers, is given by

(A, B) = \/ max{lag —b.|,]a} —bi[}, VA, Be Ry (1.5)

ael0,1]

Moreover, the Pompeiu-Hausdorff norm of a fuzzy number A € Rx is defined

by

where the symbol 0 stands for the characteristic function of the real number 0.

One can observe that Rz is not a vector space, thus the operator || - ||= does
not characterize a norm. In the literature the operator ||- ||+ has been called by quasi-norm

[121]. Here a language abuse is committed and this operator is called as the norm.
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Theorem 1.3. [14] The following statements are equivalent:

(a) f:R"™ — R" is continuous in the usual metric of R";

(b) F: (F(R"),dy) — (F(R"),dy) is continuous.

Recall that (Rz.,dy) is a complete and separable metric space, whereas

(Rz,dy) is only a complete metric space [119].
Definition 1.23. The width (or diameter) of a fuzzy number A € Rz is defined by

width(A) = af —ag = 0. (1.7)

The width of a fuzzy number is associated with the uncertainty that it models,
which means that larger width is tied with greater uncertainty. Observe that every real

number has width equals to 0.

The next section introduces the Zadeh extension principle which will be used
in order to generate an arithmetic for fuzzy numbers, and to define what is meant by a

fuzzy function and real-value analyses to fuzzy analyses.

1.3 Extension Principle

The Zadeh extension principle is a method that extends classical operations to
operations with fuzzy sets as arguments. Given a function f : X — Z, the Zadeh extension
of f maps a fuzzy subset A of X in some element of F(Z) [157].

Definition 1.24. [157, 103] Let f : X — Z be a classical function and A € F(X). The
Zadeh extension of f at A, denoted by f(A), is given by

\ Al) L iff ) 2@
F(A)(2) = { 51 ,

0 L if ) =

For multiple variables the Zadeh extension principle is defined as follows.

Definition 1.25. /59, 16] Let f : X1 x ... x X,, > Z and A; € F(X;), fori=1,...,n.
The extension principle of f at (Aq,...,A,) is given by

R \/ Al(l'l)/\---/\An<xn) > fo71<2)#@
f(Al,,An)(Z) = =1(z) )

0 CiffN2) =@

where f71(2) = {(x1,...,2,) : flx1,...,2,) = 2}.
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The Zadeh extension principle can be generalize via the t-norm. The method

known as sup-t extension principle [30, 41] is given by

falAr,. A (2) =\ Awlm) A A Ay(wn). (1.8)
f71(=)

Note that in the case where A = A, the equation given as in Definition 1.25 and Equation
(1.8) are equivalent, that is, f = f.. The next theorem yields the a-cuts of the fuzzy

A~

number f(A) € F(R) obtained by the extension principle.

Theorem 1.4. [103, 8, 34] Let f : R"™ — R™. Thus the following statements hold true

(a) If [ is surjective, then R
Lf(A)]* = f([A]Y),

~

if and only if each element of supp(f(A)) is attained, for all z € R™.

(b) If f is continuous, then ]?: F(R") — F(R) is well-defined and

~

LF(A)]" = f([A]), Ve [0,1].

An immediate consequence of Theorem 1.4 is that if f is continuous, then A € B =

f(A) < f(B) [8, 28].
The next two theorems provide the a-cuts of the Cartesian product when the

extension principle is applied. These facts are used in the study of fuzzy initial value

problems (FIVP).

Theorem 1.5. [60] Let f : R™ x R" — R¥ be a continuous function, A € F(R™) and
Be F(R"). If A is an upper semi-continuous t-norm, then

~

[f(Axa B)]* = f([Axa B]%),

where f([A xa B]") = {f(z,y) : (z,y) € [A xa B]"}.

For the usual Cartesian product the following theorem, known as Nguyen’s Theorem, holds

true.

Theorem 1.6. [103, 8] Let f : R™ x R™ — R* be a continuous function, A € F(R™) and
Be F(R"). Thus

A~ ~

[f(Ax B)]* = [f(A, B)]* = f([A]*, [B]")
where f([A]*, [B]*) = {f(z,y) : v €[A]" andy e [B]"}.
The next section provides an arithmetic on fuzzy numbers. This arithmetic

arises from Definition 1.25, that is, from the Zadeh extension principle for multiple

variables.
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1.4  Arithmetic on Fuzzy Numbers

The Zadeh extension principle allows us to generate an arithmetic on fuzzy
numbers. To this end, one can consider an arithmetic operator as the function f and
use the extension principle to provide the corresponding arithmetic operation between
fuzzy numbers. Before providing the formalization of the fuzzy arithmetic, recall interval
arithmetic. Henceforth open intervals of the real line will be denoted by I < R. Also
K = {[a,b] : a,be R such that a < b} stands for the set of all closed intervals of R.

Definition 1.26. [100] Let A € R and let A, B € K given by A = [ay,as] and B = [by, bs]

be two closed intervals of R. The arithmetic operations between intervals are given by:

(a) The sum (+) between A and B is the interval

A+B= [a1+bl,a2+b2];

(b) The difference (—) between A and B is the interval

A — B =la; — by, ay — by];

(¢) The product (-) of A by B is the interval
A- B = [minU,max U],
where U = {Cblbl, albg, agbl, CLQbQ},’

(d) The quotient (<) of A by B, if 0 ¢ B, is the interval

1 1
A+ B = [al,ag]- [b,b],
2 1

(e) The product of A by a scalar X is the interval

[)\Cll, >\CL2], Zf A=0

NA = .
[)\CLQ, )\&1], Zf A<O0

Interval arithmetic generalizes the arithmetic for real numbers, since every real number can
be seen as a closed interval with equal endpoints. In addition, the next theorem provides

interval arithmetic in terms of the extension principle.

Theorem 1.7. [9] Let A and B be two closed intervals of R. Then

1, ifze A®B
xaes(z) = \/ xal@) Axsly) = ‘ :
(z,y):2Qy=2 O, zfz ¢ AR B

where @ is some basic interval arithmetic operator +, —, - or .
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The following corollary is an immediate consequence of Theorem 1.7.

Corollary 1.2. [9] Let the interval A ® B. The a-cuts of the crisp set A ® B, with

respective membership function x agp, are given by
[A® B]* = A®Q B,

Va € [0,1].

Next, the usual arithmetic on fuzzy numbers is defined.

1.4.1 Standard Arithmetic

Consider the following arithmetic operator given by

®:RxR — R
(z,y) — z®uY,

where ® € {+,—,-, ~}. Now let A, B € Rr. From Zadeh’s extension principle, it follows
that

Q:RrxRr — Rgx
(A,B) +~— ®(A,B) = A®B,

where
(A®B)(z) = \/  A(x) A By). (1.9)
(z,y) : a®y=2
The arithmetic that arises from Equation (1.9) is called by standard fuzzy
arithmetic or simply wsual fuzzy arithmetic. For simplicity of notation, AQB will be

denoted by A ® B.

Definition 1.27. Let A,B € Rr and A\ € R. The standard arithmetic operations are
defined as follows

(a) The standard sum between A and B is the fuzzy number A + B whose membership

function is given by

(A+B)z)= \/ Al2)»Bly);

(zy) + zt+y=2

(b) The standard difference between A and B is the fuzzy number A—B whose membership

function is given by

(A-B)) = \/  Al) A Bly):

(zy) + z—y=2
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(¢) The standard product of A by B is the fuzzy number A - B whose membership

function is given by

(A-B)z)= \/ Alz) »Bly);

(z,y) : wy=2

(d) The standard quotient of A by B, if 0 ¢ supp(B), is the fuzzy number A + B whose

membership function is given by

A=+B)z)=  \/ Al)aBly)

(zy) : z/y==

(e) The product of A by scalar X is the fuzzy number AA whose membership function is
given by

D) =\ A).

T Ar==z

The standard fuzzy arithmetic can be characterized by a-cuts, which is con-
nected with the interval arithmetic. Theorem 1.8 provides the a-cuts of the standard

arithmetic operations.

Theorem 1.8. [9] Let A and B be fuzzy numbers with the respective a-cuts [A]* = [a,, a]"]
and [B]* = [b,,b}]. Then the following properties hold true

(a) The a-cuts of the standard sum between A and B are given by

[A+ B]* = [A]* + |B]* = [a, +b,,a +bl], Yae]0,1];

(b) The a-cuts of the standard difference between A and B are given by

[A— B]* = [A]* — [B]* = [a, — b},a —b_], Yae]0,1];

(¢c) The a-cuts of the standard product of A by B are given by
[A-B]* =[A]*-[B]* = [min U%, max U?], Ya € [0,1];
where U* = {a b, ,a b}, a’b,, a’bl};

(d) The a-cuts of the standard quotient of A by B, if 0 ¢ supp(B), are given by

(A= B|" — [A]° = [B]" = [a- a+]-l1 1], Vae[0,1]:

0
(e) The a-cuts of the product of A by a scalar \ are given by

[Na,,\a)] |, if A=0
[AA]" = A[A]* = , Ve [0, 1;
[Nal, Na] , if A<O
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Proof. See [85, 60, 104]. O

Example 1.7. Let A = (—1;0;1) and B = (1;2;3), whose a-cuts are given by [A]* =
[-1+ a,1 —«a] and [B]* = [1 + a,3 — «|. The fuzzy numbers obtained from the result of
the arithmetic operations are depicted in Figure 7 and given as follows

1. [A+ B]* = [2a,4 — 2a];

2. [A - B]* =[-4+ 2, —2a];

3.[A- B]* = [-a® + 4a — 3,0* — 4a + 3];

—1+a 1l—«
l+a ' 1+al

4. [A+B]‘“:[

Figure 7 — Graphical representation of the standard arithmetic operations of Example 1.7.

(a) Standard sum A + B.

(b) Standard difference A — B.

1

A-B

A+B

0 0.5

. . \ .
1 15 2 25 3 35 4
Real line

(¢) Standard product A - B.

8 0.5

0
Real line

0.9r
0.8
0.7¢
0.6
3 0.5
0.4F
0.3r
0.2r
0.1F

. \ . \ . . .
94 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0
Real line

(d) Standard quocient A + B.

0
Real line

Source: Author

The standard sum A+ B, in Example 1.7, is equal to the triangular fuzzy number
(0;2;4). Moreover, the standard difference A — B is equal to triangular fuzzy number
(—4;—2;0). It is easy to verify that the standard sum (difference) between two triangular
fuzzy numbers is a triangular fuzzy number [9]. In contrast to the latter operations, the
standard product and quotient between triangular fuzzy numbers are not triangular fuzzy

numbers, as Example 1.7 illustrates.

The standard arithmetic operations between fuzzy numbers can be easily com-

puted. Moreover, the standard arithmetic is commutative, associative and sub-distributive



Chapter 1. Some Notions of Fuzzy Set Theory 45

[45, 111]. However, this arithmetic do not satisfy some intuitive properties, such as

(1) A—A= xo;
(1)) (A+ B)— B = A;
(ZZZ) A+ A= X{l},

where A, B € Rx.

Examples 1.8, 1.9 and 1.10 exhibit the counterexamples for the statements (i), (i) and

(4i7). From now on, Xy, is simply denoted by u € R.

Example 1.8. Let A = (—1;0;1), whose a-cuts are given by [A]* = [-1+ a,1 —a]. For
all a € [0, 1], it follows that

[A— A]* = [A]° — [A]" = [-2 + 20,2 — 2a] # [0, 0].

Therefore, A — A # 0. In fact A — A = 0 if, and only if A is a real number [9].
Example 1.9. Let A = (—1;0;1) and B = (—2;0;2). Thus

(A+B)=B = ((=1;0;1)+(=2;0;2)) = (=2;0;2) = (=3;0;3) = (=2;0;2) = (=5;0;5) # A.

Therefore, (A+ B) — B # A.

Example 1.10. Let A = (1;2;3), whose a-cuts are given by [A]* = [1 + «,3 — a]. For
all a € [0,1], it follows

l+a 3—«a
3—a’' 1+«

[A+mazmr+mr=[ ]#UJ]

Therefore, A~ A # 1. Indeed A +~ A = 1 if, and only if, A is a real number [9].

This thesis focuses on statements (¢) and (¢7). In order to avoid these mishaps,

the next subsection provides the Hukuhara difference for fuzzy numbers.

1.4.2 Hukuhara Difference and its Generalizations

Several researchers have introduced other differences between fuzzy numbers
such that A — A = 0 is verified. In 1967, Hukuhara [76] defined the Hukuhara difference to
deal with integration of measurable functions and later Banks and Jacobs [6] generalized
this concept and investigated its properties. Puri and Ralescu [118] used the Hukuhara
difference in the context of fuzzy set theory for the first time in order to study differentials

of fuzzy functions.
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Definition 1.28. [76, 118] The Hukuhara difference (or H-difference for short) between
two fuzzy numbers A and B is defined by

A—-gB=C<= A=B+C,

where + is the standard sum.

Note that A —g A = 0 holds true for all A € Rz, since
A-pgA=0= A=A+0.
Moreover, (A + B) —y B = A, since the standard sum is a commutative operation and by
definition of the Hukuhara difference, it follows that
A+B=B+ A<= (A+B)—-yB=A.
However, the difference — g is not defined for every pair of fuzzy numbers. A necessary

condition for the existence of A —y B is given by

[A]*=[B+C]* = [A]*=[B]*+[C]*, Vae]l0,1]
< la;,al]=[b, +c,,bf +c]

Co = Gy — by
S
Co = o — by
Since ¢, < ¢ for all « € [0, 1], it follows
width([A]*) = a} — a, = b} — b, = width([B]®). (1.10)

Note that a sufficient condition for the existence of A —y B is that B < A.

The a-cuts of the Hukuhara difference between A and B, when it exists, is

provided as follows:

Lemma 1.2. [118] Let A and B be fuzzy numbers. If there exists the H-difference of A
and B, then
[A—py B]* = [a, —b,,a} — %], Yae[0,1]. (1.11)

« o

The generalized Hukuhara difference or, for short, g H-difference, proposed by
Bede, Gal and Stefanini [17, 18, 133, 132, 19], extends the H-difference, that is, if the
difference — exists then the difference — 4 also exists and the equality A—yg B = A—,y B

holds true. More precisely, the g H-difference is defined as follows.

Definition 1.29. [16] Let A, B € Rx. If there exists a fuzzy number C' such that A = B+C
or B=A—C, where + and — are respectively the standard sum and difference, then

C = A —4u B is the generalized Hukuhara difference.
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If the fuzzy numbers A and B satisfies the first condition of Definition 1.29, then
there exists C' such that A = B+C, which is exactly the case where the Hukuhara difference
also exists. Therefore, a necessary condition to exist A—,y B is width([A]*) = width([B]*),
for all @ € [0,1]. On the other hand, if the fuzzy numbers A and B satisfies the second
condition of Definition 1.29 then there exists C' such that B = A — C'. Thus

[B]*=[A—C]* <

= b;Jb;]:[a’;_caaag_ca]
C, = ay — by
<=
o =a, — b,
Hence
width([A]*) < width([B]%), (1.12)

since ¢, < ¢ for all a € [0,1].

Note that the g H-difference extends the H-difference. However the g H-difference

is not defined for every pair of fuzzy numbers. Example 1.11 illustrates this fact.

Example 1.11. Let A = (0;4;8) and B = (2;3;5;6), whose a-cuts are given by [A]* =
[4o,8 — 4a] and [B]* = [2 + a,6 — «a|. Suppose that A —,u B exists. Then A and B
satisfies the condition i) A = B+ C orii) B=A—C, for some C € Rg.

If the condition i) is satisfied then [C]* = [-2 + 3a, 2 — 3a], however this is
not an interval for values of o greater than —. Therefore, A and B do not satisfy the first
condition. If the condition ii) is satisfied then [C]* = [2 — 3a, —2 + 3a], which is not an
interval for a < 2 In these two cases the a-cuts of C' are not intervals for all o € [0, 1]

(see Figure 8), thus C is not a fuzzy number. This means that the gH -difference of A and

B do not exist.

Figure 8 — Graphical representation of C' from Example 1.11.

(a) Fuzzy set C obtained from the case 7). (b) Fuzzy set C obtained from the case 7).
1 ‘ ; C— 1 : —
08 08 "
06- T 1 06-
3 e, I
0.4- 1 0.4-
02 T 1 02
d e
[ c e C
2] L L L % - o L L L L%
%45 1 95 0o 05 1 15 2 45 1 95 0o 05 1 15 2
R R

The fuzzy set C' obtained from the gH-difference between A = (0;4;8) and B = (2;3;5;6).
The dotted and solid lines represent the left and right endpoints of [C']*, respectively.
Source: Author
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The non-existence of the gH-difference between the fuzzy numbers provided
in Example 1.11 is attached with the fact that the inequalities (1.10) or (1.12) are not
satisfied for all a € [0, 1].

The gH-difference between fuzzy numbers, when it exists, can be given by
means of a-cuts (see Lemma 1.3). Moreover, the properties given by Proposition 1.2 holds

true.

Lemma 1.3. [16] Let A, B € Rz. If there exists the gH -difference between A and B, then
the a-cuts of A —gu B are given by

[A —,i B]* = [min{a, —b_,a} — bl }, max{a, —b,,af —b}}], Vae[0,1]. (1.13)
Proposition 1.2. [132] Let A, B € Ry. If A —,y B exists, then the following properties

are satisfied:

Note that the gH-difference does not satisfy the property (C'—,4 B) + B = C.
Indeed, let C' = (0;1;2) and B = (0;1;3). Then (0;1;2) —,x (0;1;3) = (—1;0;0), but
(—=1;0;0) + (0; 1;3) # (0; 1;2).

Later Bede and Stefanini [19] proposed another difference, called generalized
difference (or g-difference for short), which is defined in Definition 1.30. In contrast to the
generalized Hukuhara difference, the difference — is well-defined for any pair of fuzzy

numbers [16].

Definition 1.30. /16, 19] The g-difference of two fuzzy numbers A, B € Rx is defined by

[A—, B]*=cl {conv (U ([A)? —4m [B]’B)> } , Ya e [0,1] (1.14)

pza

where the —,u denotes the gH -difference between the intervals [A]° and [B]?, V3 € [0,1],
conv(Y) denotes the conver hull of Y.

Remark 1.2. In [16] the authors do not consider the convex hull as in Definition 1.30.
More recently, Gomes and Barros [69] showed that the convexification (convex hull) is
needed to guarantee that g-difference of any pair of fuzzy numbers is a fuzzy number.
Considering the convexification as given by Definition 1.30, one can obtain the statement

given as in Theorem 1.9.
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Theorem 1.9. [16] Let A, B € Rr. The a-cuts of A—, B are given by

[A—, B]* = /\min{ag —bg,a5 — b}, \/max{ag —bg,af —bg}|, Yae[0,1].

Bz« B=a

The g-difference between the fuzzy numbers A and B, given as in Example
1.11, is depicted in Figure 9. This difference extends the gH-difference in the following
sense: if the gH-difference exists, then the g-difference also exists, and A —,;y B = A —; B.

Consequently, the generalized difference also extends the Hukuhara difference.

Figure 9 — Graphical representation of the fuzzy number A —; B, where A and B are given
as in Example 1.11.

1

0.8r 8

0.6- .
3
0.4 8

0.2r 8

45 4 05 0 05 1 15 2

The fuzzy number C' obtained from de g-difference between A = (0;4;8) and B = (2;3;5;6).
Source: Author.

Note that the property (C'—, B)+ B = C may not hold true for the g-difference.
For instance consider C' = (0;1;2;3) and B = (0;1; 3), hence (0;1;2;3) —, (0;1;3) = [0, 1].
On the other hand, ((0;1;2;3) —, (0;1;3)) + (0;1;3) = (0;1;3;4) # (0;1;2;3).

Alternatively, one can define other arithmetic on fuzzy numbers which also
satisfies the property A — A = 0, for all A € Rx. This arithmetic is called CIA arithmetic
and it is defined in the next subsection.

1.4.3 CIA Arithmetic

The Constraint Interval Arithmetic, or CIA for short, arises from an extension
of a special type of arithmetic between intervals [86]. These interval arithmetic operations
can be similarly defined as the arithmetic operations between sets. Moore [99] established

an arithmetic obtained by endpoints of intervals. This arithmetic can be extend as [100)]

XOY={z@Qy : ve X,yeY},

for all intervals X and Y, where © € {+,—, -, =}.
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The CIA arithmetic is obtained by rewriting those intervals as real-valued
functions, that is, each element x of the interval A = [ay, as] is associated by a combination
of the endpoints of A = [ay, as] in the form of z := (1 — A4)a; + Aaag, for some 0 < Ay < 1.

Hence, the CIA arithmetic for intervals is presented as follows.

Definition 1.31. [86] Let A = [a1,a3] and B = [by,by]|. The CIA arithmetic is defined by

g
1

A@C[AB = [min{(l—)\A)al+)\Aa2]®[(1—)\3)b1—1—)\Bb2],

0< g <1
max{(l — >\A)a1 + )\AGQ] ® [(1 — )\B)bl + >\Bb2], 0< A, Ap <1

where © s an arithmetic operation.

Lodwick and Untiedt [89] extend the CIA arithmetic for fuzzy numbers by
using the operations, given as in Definition 1.31, in each a-cut of the corresponding fuzzy

arithmetic operation.

Definition 1.32. [89] Let A, B € Rg. For all a € [0,1], the CIA arithmetic between fuzzy
numbers is defined by
[A Ocra B]a = [mln(l — )\A)a; + )\ACL;;] ® [(1 - )\B)b; + /\Bb;;], 0 < Ag, A < 1},
max(1l — Aa)a, + Aaa ] O[(1 — Ag)b, + Agb], 0 < Aa, Ap < 1}]

where © is an arithmetic operation.

One can define, in particular, the CIA difference by taking ® = —. Note that

in this case A —cr4 A = 0 for all A € Rz, since
[A—cra A1 = [min(1—Xa)a, + Aaal] —[(1 = Aa)a, + Aaal], 0 <
max(1 — Aa)a, + dAaal] —[(1 = Aa)a, + Aaal], 0 < Aa <
= [0,0], Yae]0,1].

g
il

Mg <1
1

There are other types of arithmetic on fuzzy numbers that are based on interval
arithmetic [84, 96, 87, 108, 113]. This thesis focuses on the interactive arithmetic, whose
definition is provided in Chapter 2. For instance, the CIA arithmetic takes into account
the concept of interactivity [108]. The various differences are used to deal with fuzzy
derivatives, which are based on differences between fuzzy numbers, but first, the concept

of fuzzy functions is established in the next section.

1.5 Fuzzy Functions

The definition of fuzzy function is required to study various problems such as

in fuzzy differential equations [9, 70], fuzzy integrals [135, 120] and fuzzy optimization
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[112, 154, 88]. The approach of this thesis is to develop results and connections mainly
on the first subject, that is, in fuzzy differential equations. The definitions and examples

provided in this section are based on the references [63, 67, 108].

There are several types of fuzzy functions [45] in contrast to the classical
definition functions (real-valued functions), which are defined in the space E(I,R) = {f :
I - R, I < R}. One of them is defined by mappings from crisp space to fuzzy space,
that is, F': X — F(Y), where X and Y are a crisp sets. These fuzzy functions are called

fuzzy-set-valued functions, which are generalizations of set-valued functions [5].

Example 1.12. [70] Let f : R, — K be a function given by

f(z) =[-1,1]x. (1.15)
For each x € R, the function f associates the interval f(x) € K, which is

graphically represented in Figure 10.

Figure 10 — Graphical representation of the fuzzy-set-valued function f given in Example
1.12.

The black region represents the function f(z) = [—1, 1]x, whose images are given by closed
intervals. Source: Author

Functions that associate real values to fuzzy number values, in particular, are
also functions of the form F': X — F(Y'). These functions are called fuzzy-number-valued

functions.

Definition 1.33. [/5] The functions of the following form
F:R— R]:,
are called fuzzy-number-valued functions.

Example 1.13. Let F': R, — Rz be a fuzzy-number-valued function given by
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where A = (—1;0;1) € Rg.

The fuzzy function F maps each element x € R to the triangular fuzzy number
(—x;0;2). Since F(x) is a fuzzy number for all x € Ry, it is possible to describe the image

of F' in terms of its a-cuts
[F(z)]* = [A]%
= [-1+ao,1-alx
= [(-1+a)z, (1 - a)z]
The fuzzy function F' is depicted in Figure 11

Figure 11 — Graphical representation of the fuzzy function F' from Example 1.13.

(a) The top view of the fuzzy function F. (b) The tri-dimensional view of the fuzzy function
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The left and right subfigures represent the top and tri-dimensional view of the fuzzy
number-valued-function F', respectively. The gray lines represent the a-cuts of the fuzzy
function F', varying from 0 to 1, which are represented respectively from the gray-scale
lines varying from white to black. Source: Author

The above example presents a fuzzy-number-valued function and the character-

ization of its image. In general, the a-cuts of F(z) are denoted by

[F()]* = [Fy (2), F (2)], Vo€ [0,1].

where FI,,FF : I — R.

Another type of fuzzy functions are given by maps that simply associates fuzzy
sets from one universe to the corresponding fuzzy sets from the other universe. These
functions have the following form F': F(X) — F(Y), where X and Y are crisp sets. The
Zadeh extension of a classical function f: X — Y, denoted by f (see Definition 1.24), is

an example of fuzzy function of this form.

Although all these functions are defined in different ways, all of them are
denoted by a capital letter F' and, in each problem, it will be clarified which one is being

used.
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Next, Section 1.6 presents the derivatives of fuzzy-number-valued functions

that are most used in the literature.

1.6 Fuzzy Derivatives

This section focuses on derivatives obtained from differences between fuzzy
numbers. These derivatives are used in order to develop the theory of fuzzy differential
equations, which may describe biological (chemical, physical,...) phenomena considering

uncertainty parameters/states.

Chang and Zadeh [36] introduced the notion of fuzzy derivative. Later, several
authors proposed different approaches for fuzzy derivatives [42, 118, 66, 80, 129, 57],
which are all equivalent, as Buckley and Feuring showed [25]. In 2004, Bede and Gal
[17, 18] proposed a derivative based on difference, which is called SG H-derivative. In 2013,
Stefanini and Bede [133] presented the gH- and g-derivatives, which are based on the
differences —, and —,, respectively. In the same year, Barros et al. [12, 68] introduced
the fuzzy derivative for fuzzy bunches of functions|[70], which is based on the Zadeh’s
extension of the classical derivative operator. Recently, Esmi et al. [52] introduced the

notion of Fréchet derivative for fuzzy-number-valued functions.

The derivatives of fuzzy-number-valued functions F', that are based on difference

between fuzzy numbers, arise from

F(t+h) — F(t)

li 1.1
oo h (1.16)
This expression depends on the choice of a difference operation “ — 7 for fuzzy numbers.

Consequently, different derivatives arise from this limit.

Note that, if F' is a constant fuzzy-number-valued function, that is, F'(z) =
A e Rz, Yz € R, then the limit (1.16) based on the standard difference is not equal to 0,
since A — A # 0 for all A € Rr\R. Therefore, the derivative via standard difference does
not satisfy classical results for fuzzy functions. However, the H-, gH-, and g-derivatives

satisfy this property.

The Hukuhara derivative (or H-derivative for short) is defined as follows.

Definition 1.34. [118] The function F' : I € R — Rz, where I is an open set of R, is
said to be Hukuhara differentiable (H-differentiable for short) at tg € I, if the limits

lim F(to+ h) —pu F(to) and lim F(ty) —u F(to — h)

h—0+ h h—0+ h (1.17)

exist and they are equal to some element Fy(to) € Rr, in dy metric. The fuzzy number
Fi(to) is called H-derivative of F at ty.
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The H-derivative satisfies a similar property of classical derivatives, that is, if
a fuzzy-number-valued function F' is Hukuhara differentiable then F is continuous [80]. In

addition, the a-cuts of F}; are given as follows.

Lemma 1.4. [80] Let F : (a,b) — Rz be a fuzzy-number-valued function. If F' is H-

differentiable, then the real-valued functions F, and F. are also differentiable and
[Fp®)]" = [(F)a @), (F)at)], VteR. (1.18)

Example 1.14. Let I : (0,0) — Rz be the fuzzy function given by F(t) = (—t?;0;1?)
for all t € (0,0). Then

[F(O)]* =[-1+a,1—a]t* =[(—-1+a)t? (1 —a)t?].

On the one hand,

[F(to + h) —m F(ty)]” [(—1 + a)(2toh + h?), (1 — a)(2toh + h?)]

hlg(% h - hli»]%1+ h
= [(—=1+ a)2ty, (1 — a)2ty]. (1.19)

On the other hand,

) =i Fo =" (1= a) (=2t + 1), (=1 + a)(=2teh + 7))

h—0+ h h—0+ h
= [(—1+ a)2t, (1 — a)2t]. (1.20)

Since (1.19) and (1.20) are equal, it follows that I is H -differentiable. Moreover,
[Fi; ()] = [(—14 «)2t, (1 — «)2t], for allt € R,. Figure 12 depicts the H-derivative of F.

A necessary condition for the existence of the H-derivative of a fuzzy-number-
valued function F' at a given point ¢ is that the width of F' be an increasing function
in the neighborhood of ¢. This means that width(F(ts)) > width(F(ty)), for all t;,t, €
(to — h,to + h) with A > 0 and t; < ts.

The function F' provided in Example 1.14 satisfies this condition for every
t € R,. However, if the domain of the function F' is given by R, then F' is not H-
differentiable in every point ¢ (¢ < 0). In this case, the a-cut [(—1 + «)2to, (1 — «)2¢t0],
obtained by the limits (1.19) and (1.20), is not an interval for all « € [0,1). Consequently,
F is not H-differentiable at ¢ty < 0. Figure 13 portrays the changing endpoints of [F}]* at
t=0.

Next, the definition of the g H-derivative is presented, which arises from the
gH-difference. The generalized Hukuhara differentiability were first considered for set-
valued functions [92]. Several authors used this concept to deal with fuzzy-number-valued
functions [18, 133].



Chapter 1. Some Notions of Fuzzy Set Theory 55

Figure 12 — Graphical representation of the H-derivative of the fuzzy function F' given in
Example 1.14.

(a) The top view of Fj;. (b) The tri-dimensional view of Fy;.
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The left and right subfigure represent the top and tri-dimensional view of the H-derivative
of F given by F(t) = (—t* 0;t%), respectively. The gray lines represent the a-cuts of FJ;,
varying from 0 to 1, which are represented respectively from the gray-scale lines varying
from white to black. Source: Author

Figure 13 — Graphical representation of the changing endpoints of [F7;]* given in Example
1.14.
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The top view of the H-derivative of F'. The red and blue lines represent the lower and
upper endpoint of [Fy;]°, respectively. The gray lines represent the a-cuts of Fy,, varying
from 0 to 1, which are represented respectively from the gray-scale lines varying from

white to black. Source: Author

Definition 1.35. [16] The function F': I € R — Rz is said to be generalized Hukuhara
differentiable (gH-differentiable) at to € I, if the limit

h—0 h

(1.21)

exists and it is equal to some Fyy(to) € Ry, in dy, metric. The fuzzy number F,y(to) is
said to be the gH-derivative of F' at tg.

The implications of gH-differentiability are given in Theorem 1.10.
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Theorem 1.10. [16] Let F' : (a,b) — Rz be gH -differentiable at to. Then the endpoints

E, and F of [F,y(to)]* are continuous at to.

The next theorem provides a necessary and sufficient condition for the existence

of the generalized Hukuhara derivative.

Theorem 1.11. [19] Let F : (a,b) — Rx be a fuzzy function such that F, and F. are
real-valued functions, differentiable with respect to t and uniformly continuous with respect
to a € [0,1]. The fuzzy function F is gH -differentiable at t € (a,b), if and only if, one of
the following cases hold:

(i) (F");(t) is an increasing function and (F')[(t) is a decreasing function with respect

to a, and (F")] (t) < (F'){(t), for allt € (a,b);
(ir) (F"),(t) is a decreasing function and (F')}(t) is an increasing function with respect
to «, and (F"){(t) < (F'){(¢), for all t € (a,b).
The a-cuts of the gH-derivative of F' are given as follows.

Theorem 1.12. Let F': (a,b) — Rx be a gH-differentiable function. The a-cuts of F,y

are given by

[Fon ()] = [min{(F"), (1), (F")5 (£)}, max{(F"), (£), (F")4 (1)}], (1.22)
for all t € [a,b] and a € [0, 1].

Example 1.15. Let F : R — Rz be the fuzzy function given by F(t) = (—t*;0;t%) for all
t e R. The gH-derivative of F is given by

T By PO [minfu(h), o(A) max{u(h). o(h))]
h—0 h h—0 h 7

where u(h) = (=1 + )(2toh + h?) and v(h) = (1 — a)(2toh + h?).
Therefore,

}lbiir(l) [F'(to + 1) ];gH F(to)l” = [min{u, v}, max{u, v}]. (1.23)

where u = (—1 + )2ty and v = (1 — «)2ty.

Note that the expression, given by (1.23), is an interval for all o € [0,1]. Thus,
the gH -derivative of F exists and is equal to (1.23). Figure 14 graphically represents Fg'H.

One can observe that in Figure 14 (a) the endpoints of [F, ] do not switch,

which corroborates the fact that (1.23) is always an interval.
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Figure 14 — Graphical representation of the gH-derivative of the fuzzy function F' given
in Example 1.15.

(a) The top view of F} . (b) The tri-dimensional view of F, .
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Sugfigure (a) represents the top view of the gH-derivative of F'. The red and blue lines

represent the lower and upper endpoints of [F, ; 1]°, respectively. Subfigure (b) represents

the tri-dimensional view of the g H-derivative of F. The gray lines represent the a-cuts
of F ; i, varying from 0 to 1, which are represented respectively from the gray-scale lines
varying from white to black. Source: Author.

Recall that the gH-derivative is not a linear operator with respect to the
sum. Indeed, consider the functions F,G : (—1,1) — Rz, whose a-cuts are given by
[F(t)]* = [-1,1]t and [G(t)]* = [0,1]e”". The functions F and G are gH-differentiable
at to = 0, but F' + G is not [35].

The g-difference generates another derivative, which is called g-derivative. This

fuzzy derivative extends the gH-derivative and it was introduced by Bede and Stefanini
[19].

Definition 1.36. The function F': I € R — Rz is said to be generalized differentiable
(or g-differentiable for short) at ty € I, if the limit

lim F(to + h) —g F(to)
h—0 h

: (1.24)

exists and it is equal to some F,(to) € Rx, in dyy metric. The fuzzy number F,(t) is said
to be the g-derivative of F at tg.

Note that the g-derivative extends the g H-derivative, since F'(to+h) —, F(to) =
F(to + h) —gu F(to) whenever the gH-difference on the right side exists. The following

theorem provides a characterization for the g-derivative of a fuzzy-number-valued function.

Theorem 1.13. [19] Let F' : (a,b) — Rx be a g-differentiable function. The a-cuts of F,

are given by

[Fy (0] = | /\ min{(F)5 (1), (F)5 ()}, \/ max{(F"); (¢), (F')3 (1)} (1.25)

Bza B=a
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The gH- and g-derivatives extend the Hukuhara derivative. In fact, if a fuzzy
function is H-differentiable, then it is also g H- and g-differentiable, and all these derivatives

are equal.

Next, an example is presented. This example illustrates a case where a fuzzy

function is g-differentiable but, it is not gH-differentiable in all domain [16].
Example 1.16. Let F': [0,1] — Rz be a fuzzy number-valued function given by

[F(2)]* = [Fy (x), F ()], Vo€ [0,1],

where
Fo(z) =ze® + (™ +z—xe®)

and
Fr@)=e® +z+(1—a?)(" —z+e ™).

67

One can show that the fuzzy function F', depicted in Figure 15, is gH -differen-
tiable in the intervals [0, x1]| and (x2, 1], where x1 ~ 0.61 and xo ~ 0.71. However, in the
interval [xq, x2] this function is only g-differentiable [16]. The g-derivative of F is depicted
in Figure 16.

Figure 15 — Graphical representation of the fuzzy function F' given in Example 1.16.

(a) The top view of F. (b) The tri-dimensional view of F.
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The left and right subfigures represent the top and tri-dimensional view of F'. The gray

lines represent the a-cuts of F', varying from 0 to 1, which are represented respectively
from the gray-scale lines varying from white to black. Source: Author

The existence of the g-derivative depends on specific conditions of the functions
F and F}. For example, if F; and F, are differentiable functions with respect to ¢ and
uniformly continuous with respect to v € [0, 1], then F' is g-differentiable [19]. For more

details about the gH- and g-derivatives the reader can refer to [16].

Other derivative studied here is the Fréchet derivative for fuzzy functions.
Let us recall the Fréchet derivative for classical functions, before presenting this type of

derivative.
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Figure 16 — Graphical representation of the g-derivative of the fuzzy function F' given in
Example 1.16.

(a) The top view of F}. (b) The tri-dimensional view of F,.
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The left and right subfigures represent the top and tri-dimensional view of the g-derivative
of F, respectively. The gray lines represent the a-cuts of F| ;, varying from 0 to 1 which

are represented respectively from the gray-scale lines varying from white to black. Source:
Author

The function f : M — N, where M and N are Banach spaces, is Fréchet

differentiable at tq if there exists a linear continuous function xk : M — N and o: M — N

h
[lo(h)I — 0 when h — 0, such that the expression (1.26) holds true [162]:

that satisfies
Al

f(to+ h) = f(to) + k(h) + o(h). (1.26)

Esmi et al. [52] proposed a derivative for fuzzy-number-valued functions based
on the Fréchet derivative for classical functions. To this end, they considered the following

fuzzy functions: For a fixed fuzzy number A € Rz\R, let F': R — Rz be given by

F(t) = q) A+ r(t), (1.27)

where ¢,r : R — R. If ¢ and r are differentiable functions, then F'is Fréchet differentiable

and it obeys the following expression [52]
F'(t) = ¢ (t)A+r'(1). (1.28)

Moreover,
[F'(t)]* = ¢ (H)[A]* + '(t), Vae]0,1]. (1.29)

Here the notation from [52] is used to denote the Fréchet derivative by FZ.
This type of derivative is associated with the arithmetic on fuzzy numbers that takes into
account a relationship called interactivity, as will be proved in Chapter 4. For more details

about the Fréchet derivative of fuzzy functions the reader can refer to [52].

The next chapter presents the concept of interactivity, which can be used to

extend the Hukuhara derivative (and its generalizations).
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1.7 Conclusion

This chapter reviewed the basic concepts about the fuzzy set theory required
in the chapters that ensue. The definition of fuzzy numbers and the usual arithmetic for
them were presented. In particular, the focus was on the operation of difference. Different
types of fuzzy differences proposed in the literature were delineated. This chapter ended
by presenting the concept of fuzzy derivatives based on the various differences and the

Fréchet derivative.
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2 Interactive Fuzzy Numbers

A discussion about interactive fuzzy numbers will be the focus of this chapter.
The relationship of interactivity was introduced by Zadeh in 1975. According to him, “fuzzy
variables are interactive if the assignment of a value to one affects the fuzzy restrictions
placed on the others” [157, 158, 159]. The interactivity can be described in terms of a
possibility distribution.

The possibility theory is based on the fuzzy set theory [160]. This approach
consists in identifying the membership functions of fuzzy sets with possibility distributions.
In this case, the possibility distribution is interpreted as a function that measures the
possibility of an element belonging to a certain set [45, 48, 85]. In [85] possibility is defined

axiomatically.

Later, in 2004, Fullér, Carlsson, and Majlender [62, 32] associated the concept
of interactivity with the definition of joint possibility distribution. This thesis follows the

same approach proposed by them.

This chapter is divided in four sections and it is based on the references
[157, 158, 159, 161, 31, 88, 62, 33, 61, 95, 32, 78]. Section 2.1 provides the definition of
joint possibility distribution. Section 2.2 presents the notion of interactivity and some
examples to clarify this concept. Finally, Section 2.3, uses the relationship of interactivity

to construct an arithmetic on interactive fuzzy numbers.

2.1 Joint Possibility Distribution

The definition of a possibility distribution is provided as follows.

Definition 2.1. [/1]/A possibility distribution over A < X # &, Pos(A) : X — [0,1], is
defined by
Pos(A) = \/A(x)

zeA

Note that every normal fuzzy set A satisfies Pos(A) = 1, in particular for fuzzy
numbers. Also, it is important to observe that a fuzzy set can not be viewed as a possibility

distribution.

The definition of joint possibility distribution is presented as follows [62].

Definition 2.2. [31] Let Ay, ..., A, € Rr. The possibility distribution J, defined in R, is
said to be a joint possibility distribution (JPD) of fuzzy numbers Ay, ..., Ay, if it satisfies
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the following condition

L) =\ J@nem), Vo= (@) €RY (2.1)
zeR":y=x;
for all v = 1,...,n. Furthermore, the fuzzy number A; is called as the ith marginal

possibility distribution of J.

The fuzzy relation J, from the mathematical point of view, is a joint possibility
distribution among the fuzzy numbers Ay, ..., A, if each fuzzy number A; can be given as
the projection of J in the i direction, for i = {1,...,n}. From the practical point of view,
this fact ensures that all the aggregated information in the joint possibility distribution

may be transferred to their marginal possibilities.

Example 2.1. The fuzzy relation J, € F(R™) obtained from the usual cartesian product,
ie.,

Ja(xy, oo x) = Aj(xy) Ao A Ap(y), Yz, .. 2,) €RY (2.2)
is an example of JPD [62].

The next remark presents some properties that hold for all joint possibility
distribution J.

Remark 2.1. (a) Let J be a bivariate joint possibility distribution of the fuzzy numbers
Ay and Ay. Hence J satisfies

\/ J(x1,y) = Ai(z1) and \/ J(y,v2) = As(x2). (2.3)

yeR yeR

(b) Let J be an arbitrary multivariate joint possibility distribution of Ay, ..., A, € Rg.

Hence J satisfies
J(x1, .y n) KAL) Ao A Ap() = Ja (21,00, 2), V(2,0 x,) € R (2.4)

Consequently, J is contained in the usual Cartesian product, that is,

for all v € [0, 1].

The distribution J,, given by (2.2), is a particular case of joint possibility
distribution based on the t-norm, whose definition is given as follows. Let Ay,..., A, € Rx

and some t-norm A. The fuzzy relation Jo given by

In(z, .o x,) = Al(z) AN A Ap(xy),  Y(xq,...,2,) € R, (2.6)
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is said to be a joint possibility distribution based on t-norm [41].

Recall from Chapter 1, the sup-J extension principle is a mathematical tool to
extend functions with two or more real arguments to a fuzzy domain. In contrast to the
extension principle (see Definition 1.25) which is based on ¢-norm, the sup-.J extension

principle is based on a joint possibility distribution.

Definition 2.3. [62] Let J € F(R") be a joint possibility distribution of (A, ..., A,) € R
and f:R"™ — R. The sup-J extension of f at (A, ..., An) € R%, denoted by f;(A1, ..., Ay),

is the fuzzy set whose membership function is given as follows:

fJ(Ala--'aAn)(y) = \/ J(x17"'7$n)7 (27)
('7:17"'73:")6]071(:'4)

where 1 (y) = {(21, ..., 2n) € R" : f(21, ..., 20) = Y}

Equation (2.7) boils down to Equation (1.8), in the case where J = Ja.
Moreover if J = J,, then Definitions 1.25 and 2.3 are equivalent. This means that the
Zadeh’s extension principle for multiple variables is a particular case of sup-J extension
principle. Clearly, if there is only one fuzzy number A in Equation (2.7), then this only

makes sense, if Definition 1.24 is used.

The next theorem presents a practical method to obtain the a-cuts of the sup-.J

extension principle of a continuous function.

Theorem 2.1. [103, 11] Let J be a joint possibility distribution of Ai, ..., A, € Ry and
let f:R" — R be a continuous function. For every « € [0,1], the a-cut of the sup-J

extension principle fj is given by
[fs(Ar, o Al = F(LI]7). (2.8)

Recall that the condition of continuity over the function f is sufficient to
guarantee (2.8). However, it is not a necessary condition [11]. In the case where the sup-J
extension of f at (Ay,..., A,) is a fuzzy number, the a-cuts of f;(Aq,..., A,) can be given
in terms of the infimum and supremum of the classical function f restricted by the a-cuts
of J, that is,

[f7(A, .., A" = AN ),/ flan )| (29)

(@10 )E[T] (@1 0esn )E[T]2

Remark 2.2. When the function f is continuous and [J]* is closed and connected set for
all v € [0, 1], then f;(A1, ..., Ay) is a fuzzy number [90]. Consequently the characterization
by means of a-cuts, provided in (2.9), holds. Recall that, these are sufficient but not

necessary conditions.

The next section presents a special concept called interactivity.
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2.2 Interactive Fuzzy Numbers

Let us begin this section by defining non-interactive fuzzy numbers.

Definition 2.4. The fuzzy numbers A1, ..., A, are said to be non-interactive if their joint

possibility distribution J is given by
J(x1, .o xn) = Ja(x1, .oy xn) = Ar(x) A oo A An(zn), (2.10)

for all (xq,...,xz,) € R". Moreover, for all o € |0, 1] it follows

[J] = [JA]® = [A1]® x ... x [A,]~ (2.11)
This means that in the case where Ay, ..., A, are non-interactive, there are no
restrictions in the joint possibility distribution J,, i.e., the elements x1 € Ay, ..., 2z, € A,

that are related with respect to J, may be chosen independently from each other. In order

to clarify this idea, let us consider the following example.

Example 2.2. Let Ay, Ay € Ry given by Ay = Ay = (—1;0;1). The joint possibility

distribution J, between Ay and As is given by

[JA ] =[A1]* x [A]*=[-1+a,1—a] x[-1+a,1—q].

The JPD J, is graphically represented in Figure 17.

Figure 17 — Graphical representation of the joint possibility distribution .J, between two
non-interactive fuzzy numbers.

(a) The top view of the JPD J,. (b) The tri-dimensional view of the JPD J,.
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The fuzzy numbers A; = (—1;0;1) and Ay = (—1;0; 1) are depicted by the shaded triangles.
The joint possibility distribution J = J, = A; x Aj is depicted by the shaded pyramid.
The gray lines represent the a-cuts of J, varying from 0 to 1, which are represented
respectively from the gray-scale lines varying from white to black. Source: Author.

Note that for each element of A the joint possibility distribution establishes
which elements of Ay are associated with it. In this case, for each x1 € [A1]® the entire

interval [Ag]® = [(a2)y, (a2)] is linked to x.
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The concept of non-interactivity is similar (but not equivalent) to the concept
of independence of random variable in probability theory [157]. Non-interactive fuzzy
variables are defined by the JPD given by (2.10), whereas independent random variables
are defined by the joint probability distribution given by the product of all the proba-
bilities (P(u1,...,u,) = P(uy)...P(uy,)) [27]. In both cases, the membership function
(probability) of one marginal does not interfere the membership (probability) of the others.
Hisdal [74] provided a study between the difference of conditional independence and

non-interactivity. For more details on this topic the reader can refer to [7].

Next, the definition of interactive fuzzy numbers is presented.

Definition 2.5. Let Aq,..., A, € Rx and J be their joint possibility distribution. The

fuzzy numbers Ay, ..., A, are called J-interactive, or simply interactive, if J # J,.

In contrast to non-interactivity, the above definition ensures that interactive
fuzzy numbers may have a dependence relation, which means that if A;,..., A, are

interactive with respect to some joint possibility distribution J, then for each element

«

x; € [A;]* there are specific elements z; € [A;], with ¢ # j, related to it. In this sense,

the concept of interactivity is similar to dependence in the case of random variables.

Example 2.3. Let A} = Ay = (—1;0;1) € Rz. Consider the fuzzy relation (depicted in
Figure 18) defined by the following membership function

Aj(x1) A Ag(xe) , if (21,m9) € [—1,0] x [—1,0]
J(w1,29) =  Ay(21) A Ag(x) , if (21, 29) € [0,1] x [0, 1] (2.12)

0 , otherwise
whose a-cuts are given by
[J]*=[-1+a,0] x [-1+a,0]u[0,1—a] x[0,1—a]. (2.13)

Let us prove that J is a joint possibility distribution for Ay and As. To this

end, two cases can be considered: a) —1 < 1 <0 and b) 0 < 27 < 1.

a) For —1 < x1 <0, it follows

\/ J(x1,29) = ( \/ Ay () AAQ(:EQ)) V. ( \/ 0)
]

1‘26[71,1] IQE[*l,O] $2E[O,1

The left endpoint of [A3]® is increasing w.r.t o, therefore for xo € [—1,0] the

supremum of Ay(x1) A Aa(xg) is attached in xo = 0. Thus,

\/  J(@1,m2) = (Ai(r) A1) v 0= Ay(ay).

$2€[71,1]
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Figure 18 — Graphical representation of the joint possibility distribution J between two
interactive fuzzy numbers of Example 2.3.

(a) The top view of the JPD. (b) The tri-dimensional view of the JPD.

=N
o
-

The fuzzy numbers A; = (—1;0;1) and Ay = (—1;0;1) are depicted by the shaded
triangles, whereas the joint possibility distribution J, given in (2.12), is depicted by the
shaded pyramid. The gray lines represent the a-cuts of J, varying from 0 to 1, which are

represented respectively from the gray-scale lines varying from white to black. Source:
Author.

b) On the other hand, for 0 < zy < 1 it follows

\ ) = ( 0) v ( \V A /\A2(l’2)>
wQE 1, ]
)

xze[—l,l] JJQE 0 1
= 0v (Al T1) N ]_

= (x1)7

since the right endpoint of [A3]® is decreasing w.r.t o and consequently for x4 € [0, 1] the
supremum of Ay(x1) A Aa(xs) is attached in x4 = 0.
Similarly, it can be shown that \/ J(x1,x9) = Ag(xs), for all xo € [—1,1].

z1€[—1,1]
Therefore J is a joint possibility distribution for Ay and As, which means that Ay and A

are interactive with respect to J, or simply J-interactive.

In the above example, the elements x5 € [A3]* that are linked to z; € [A;]*

are given by
—14+a,0] ,if —1+a<z:<0
s € [ | P (2.14)
[0,1—a] ,if 0<z;<1—«

Therefore, the set of elements x5 that are connected to each x; is more specific
than in the case of non-interactivity (see Figure 17). This means that the elements
x1 € [A1]" and x5 € [A2]® may not be chosen independently, they have to satisfy the
restrictions placed by the joint possibility distribution J.
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Note that Examples 2.2 and 2.3 illustrate that the same fuzzy numbers can
be interactive or not, all depends on the JPD under consideration. The next example
ensures that fuzzy numbers may be interactive with respect to different joint possibility

distributions.

Example 2.4. Let A} = Ay = (—1;0;1) € Rz and the fuzzy relation J ( see Figure 19)
given by
Ar(zr) A Ag(x2) , if (21,22) € [-1,0] x [0, 1]
J(w1,29) =  Ay(21) A Ag(z) , if (21,22) € [0,1] x [~1,0] (2.15)

0 , otherwise

whose a-cuts are given as follows

[J]*=[-1+,0] x[0,1—a]u[0,1—a]x[-1+«a,0]. (2.16)

One can prove that J is a joint possibility distribution for Ay and Ay (cf. Example 2.3).

Figure 19 — Graphical representation of the joint possibility distribution J between two
interactive fuzzy numbers of Example 2.4.

(a) The top view of the JPD. (b) The 3 dimensional view of the JPD.

N
[=]
-

The fuzzy numbers A; = (—1;0; 1) and A = (—1;0; 1) are depicted by the shaded triangles,
whereas the joint possibility distribution J, given in (2.15), is depicted by the shaded
pyramid. The gray lines represent the a-cuts of J, varying from 0 to 1 which are represented
respectively from the gray-scale lines varying from white to black. Source: Author.

«

In this case, the elements xq € [Ag]® that are linked to x1 € [A1]* are given by

—1+a,0 ,if0<2r<]l -0«
s € [ I ! . (2.17)
[0,1—a] ,if —1l4+a<z <0

Note that the joint possibility distribution J, given by (2.15), establishes a
different dependence between the fuzzy numbers A; and A, than the JPD given by (2.12)
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(see Figure 18). This means that fuzzy numbers may be interactive in different ways, and

this relation is described by the joint possibility distribution under consideration.

Another type of interactivity is the one based on t-norms [107, 41]. The fuzzy
numbers are said to be Ja-interactive, if their joint possibility distribution is given by
Jn # J . (see (2.6)). For more details about this type of interactivity the reader can refer
to [78].

The next section provides the interactive arithmetic on fuzzy numbers, which

is obtained by the sup-J extension principle.

2.3 Arithmetic on Interactive Fuzzy Numbers

The arithmetic for interactive fuzzy numbers was introduced by Dubois and
Prade [41]. More precisely, they provided the notion of addition between interactive fuzzy
numbers considering the joint possibility distribution Ja (cf. Equation (2.6)). This subject
has been the topic of interest of many researchers [24, 61, 82|. Later different types of
interactive arithmetics, which are not based on ¢-norms, were proposed [62, 32, 50, 78, 55].

The focus of this thesis is on the interactive arithmetic that does not come from ¢-norms.

It is important to observe that, motivated by the properties of the standard
arithmetic that do not hold, such as A— A =0 and A+ A = 1 (see Examples 1.8 and 1.10),
Klir [84] proposed in 1997 a fuzzy arithmetic with requisite constraints. The main idea is
to constrain the arithmetic operations based on the extension principle. This approach
resembles the interactive arithmetic, which takes into account the interactivity between

the operands.

The interactive arithmetic is defined as follows: consider a function f : R" - R

given by

[, 0,zn) =01 ® ... Q @y, Y(z1,...,2,) € R, (2.18)
where ® € {+, —, -, =}. Definition 2.3 gives raise to the following definition of interactive
arithmetic.

Definition 2.6. Let Ay, Ay € Rr and J be their joint possibility distribution. The interac-

tive arithmetic operations are defined by:

(a) The interactive sum between A; and As is the fuzzy number Ay +; Ay, whose

membership function is given by

(A1 +5 A)(2) = \/  J(m1,2);

r1+Tr2=z2
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(b) The interactive difference between Ay and As is the fuzzy number Ay —; As, whose

membership function is given by

(A= A)(2) = \/ J(z1,20);

T1—T2=2

(¢) The interactive product of Ay by As is the fuzzy number Ay -5 A, whose membership
function is given by

(Ar-s A2)(z) = \/ J(z1,20);

T1-To2=2

(d) The interactive quotient of Ay by As, if 0 ¢ supp(As), is the fuzzy number Ay +; As,

whose membership function is given by

(A1 A)(2) = \/ (21, 22),

T1/T2=2

(e) The product of A € Rr by a scalar X is the fuzzy number AA, whose membership
function is given by

AA)(2) = \/ Alx).

Ar=z

Remark 2.3. (1) Since fuzzy numbers can be interactive with respect to different JPDs
(see Example 2.4), the interactive arithmetic operations are denoted by ®y, in order
to clarify which JPD is being used.

(II) When J is given by J,., that is, Ay and Ay are mon-interactive, the arithmetic

provided by the sup-J extension principle boils down to the standard arithmetic.

(III) The product given by item (e) of Definition 2.6 is the same scalar product as the one
given by standard arithmetic (see item (e) of Definition 1.27).

The observation (II) of Remark 2.3 ensures that the arithmetic obtained from
Zadeh’s extension principle is a particular case of the arithmetic based on sup-J extension
principle. Henceforth, the arithmetic for non-interactive fuzzy numbers is called standard

arithmetic. The case J # J,, the arithmetic is called the interactive arithmetic.

The next theorem is the first contribution of this thesis, which consists of some

connections between these two arithmetics.

Theorem 2.2. [146] Let A, B,C, D € R and J, be the joint possibility distribution given
by (2.10). Then for all joint possibility distribution J and ® € {+,—, +,-} it follows

a) A@JBQA@,\ B,’

b) MA®; B) € A(A®, B), for all A e R;
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c) If A< B then AQ; C < B®, C;
d) IfA< B and C < D then AQ; C < B®, D;

e) (A®; (B®,C)) s (A®. (B®. C)).

Proof.

a) Theorem 2.1 and item b) of Remark 2.1 ensures that

[A®; B]* ={a®b: (a,b) € [J]*} = {a®b: (a,b) € [J]*} = [A®, B]*, Vace[0,1].

Therefore AQ; B< A®, B.

b) Since A[A®; B]* = [AM(A®,; B)]* and \[A®,, B]* = [MA®,;, B)|?, for all a €[0,1],
from item a) it follows that A(A®; B) € A(A®, B).

c) If A € B then a combination of Theorem 2.1, Remark 2.1 and Equation (2.11) gives

rise to the following
[A®; Cl* ={a®c: (a,c) e [J]*} < {a®c: (a,c)e[J.]*}
= {a®c: (a,c) € [A]* x [C]*}
c {b®c:(bc)e[B]* x[C]*}
= [B®,.C]*, Vael0,1].

Therefore AQ; C < B®, D.
d) The proof is similar to item c).

e) A combination of items a) and c¢) proves this statement. O

Theorem 2.2 establishes that all the arithmetics that take into account the

concept of interactivity is contained in the standard arithmetic.

This thesis develops different types of interactive arithmetics and it compares
with the standard arithmetic. The above theorem will be used specially in the comparison

of numerical methods using different arithmetics on fuzzy numbers.

From the point of view of dynamic population, the use of standard arithmetic
results in the spread of uncertainty. For example, let us describe the growth of population

of rabbits by the Fibonacci sequence [116].

For this problem consider:

1. A pair of rabbits that are well-fed;
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2. The population of rabbits does not escape;

3. There are no predators for them.

Under these assumptions, how many rabbits do we have at time ¢?

In order to describe this behaviour mathematically, assume that the original
pair of rabbits at the end of each instant of time (months) give birth to another pair of
rabbits, then immediately mate again and give birth to another pair of rabbits, and so on.
Moreover, consider that each newly-born pair of rabbits take one instant of time to be

able to reproduce. Also, for simplification, suppose that rabbits do not die.

With these hypothesis at hand, the number of rabbits at time ¢ is given by

Ty = Tp—1 + Ty_9, (219)

where the initial values of populations zy and x; are given. If o = 1 and x; = 1, then the

sequence (2.19) is given by

{1,1,2,3,5,8,13,21,34, .. .}.

Particularly, if the initial numbers of rabbits are uncertain, then one can model
the initial values by fuzzy numbers Xy and X;. This means that one can consider a
number “around” one, instead considering xo = x; = 1. For example X, = (0;1;2) and
X7 =(0;1;2).

Since Xy, X7 € Rz, the usual sum between real numbers, given as in Equation
(2.19), needs to be extend to a sum between fuzzy numbers. This extension is given by
means of sup-J extension principle. Hence, the following sequence of fuzzy numbers is

obtained
X, = X, 1@ X, o, (2.20)

where X; € Rz for all t € R, and the symbol @ stands for some (interactive or non-

interactive) sum between fuzzy numbers.

One can use the standard sum, that is, ® = + . This implies that width(X;;1) =
width(X,), for all t € R, , since

width(X,1) = width(X, +, Xo_1) > width(X,). (2.21)

Figure 20 corroborates the statement given by Equation (2.21).
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Figure 20 — Fibonacci sequence for standard sum

0.8 B

0.6 B

0.2 B

Fibonacci sequence using the standard sum. The initial conditions are given by the

triangular fuzzy numbers X, = X; = (0; 1;2). Source: Author

The Fibonacci sequence for fuzzy numbers, depicted as in Figure 20, can be

interpreted by the following sequence

{“around” one, “around” one, “around” two, “around” three, “around” five, ...},

where X;, = “around” u means that at the instant time ¢, each number of rabbits in the

interval containing u, has a membership degree in the fuzzy set Xy, .

In this case, [X;]' = {z;} for all t € R,, as one can observe in Figure 20.
However the uncertainty, which is measured by the value of width, increases over time.

Consequently, the standard sum may not be a good approach to describe this phenomena.

Theorem 2.2 reveals that interactive arithmetic operations may provide a better
approach to the Fibonacci model, since the width of X; using the interactive arithmetic is
always less or equal than the width of X; using the standard arithmetic (see item a) of

Theorem 2.2). Chapter 7 provides this comparison.

For each ¢y € R, the Fibonacci sequence gives rise to a fuzzy equation X;,_1 @
Xiy—2 = X3,. In general, the main goal of a dynamical systems is to obtain an information
about the future, knowing the present. Also one can focus on the past, that is, knowing
the present X; what can be established about the past X;_; or X;_ 57 This question is
equivalent to a linear fuzzy equation of the form X®A = Bor A®X = B, where X € Rx

is the free variable.

Consider the case where @ = + .. For simplification, denote +, = +. If there
exists X € Rz such that A + X = B, then the fuzzy number X is the Hukuhara difference
between B and A, that is, X = B —g A (see Definition 1.34). Moreover, the Hukuhara
difference X = B —y A is the only solution for A + X = B.
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However, in general the equation A + X = B may not have a solution. One of
the reasons is because of the standard sum. Basically, three fundamental questions about

linear fuzzy equations can be made:

1) Given fuzzy numbers B and C, is there a fuzzy number X and an arithmetic sum
such that X® B =C7

2) Given fuzzy numbers A, B, and C, is there an arithmetic sum such that A@B = C'?

3) Given an arithmetic sum and the fuzzy numbers A and B, is there an arithmetic
difference such that (A®@B)e B =A7"

As previously observed, the standard arithmetic do not provide a positive
answer to questions 1) and 2). One can observe that the pair (+, —) consisting of standard
sum and difference is not a solution for the third problem. In contrast, the pair (+, —g)

consisting of standard sum and Hukuhara difference is a solution for the problem.

The next chapter considers a relaxation of the hypothesis of A and X be
non-interactive. This means that the above questions, in the case where the operands are

interactive fuzzy numbers, will be investigated.

2.4 Conclusion

This chapter presented the notion of interactivity and the joint possibility
distribution. The definition of sup-J extension principle, which gives rise to different
arithmetic for interactive fuzzy numbers, was provided. This chapter ended by comparing

the interactive arithmetic operations with the standard ones.
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3 Interactive Fuzzy Equations

This chapter contains the second contribution of this thesis. Some fundamental
questions about addition of interactive fuzzy numbers are investigated. These questions

involve fuzzy linear equations, such as:

1) Given fuzzy numbers B and C, is there a fuzzy number X and a joint possibility
distribution J of X and B such that X +; B=C7?

2) Given fuzzy numbers A, B, and C, is there a joint possibility distribution J of A
and B such that A+; B=C7?

3) Given a joint possibility distribution J of fuzzy numbers A and B, is there a joint
possibility distribution N of (A +; B) and B such that (A+, B) —y B=A?

This chapter intends to answer these questions, providing the maximal solution
for each of these problems, if it exists. The concept of maximal solution will be given as

well. This chapter is based on reference [51].

3.1 Fuzzy Equations

Fuzzy linear equations were studied by several authors. Dubois and Prade [43]

started to investigate fuzzy equations of the form (3.1)

A®X =C, (3.1)

where ® € {+, —, -, =} stands for arithmetic operations between fuzzy numbers and A, X

and C' are the fuzzy variables.

The equality of (3.1) means that both inclusions AQ X € C and C € AR X
holds.

Mizumoto and Tanaka [98] and Yager [155] discussed the non-existence of
inverse fuzzy numbers for the standard arithmetic operations, in particular, for the
standard sum. This means that given A, C' € Rz, the fuzzy equation A+ X = C in general
can not be solved by X = C' — A, where + and — are the standard sum and difference,

respectively.

Sanchez [127] provided necessary and sufficient conditions for Equation (3.1)
has solution X. Buckley [26] in addition to study the existence of these solutions, also

studied a way of calculating them. Many authors proposed different methods to solve
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this problem, for instance, Kawaguchi [81] solved this problem using fuzzy ¢-norm and

Mazarbhuiya [93] used the method of superimposition.

The aforementioned papers consider the usual arithmetic operations between
fuzzy numbers. This thesis focuses in providing a solution to (3.1), where not only A, X
and C' are the variables but also the joint possibility distribution J that gives rise to the
arithmetic operation. In the case where the arithmetic under consideration is given by an

interactive arithmetic operation, the equation

A+, X =C, (32)

is called by an interactive fuzzy equation.

An interactive fuzzy equation embraces the interactivity between A and X. In
order to solve (3.2), it is necessary to establish which X € R and the joint possibility
distribution J, between A and X, that satisfies A+ ;X = C. This means that the solutions
for (3.2) are always pairs (X, J). Note that the fuzzy equation given by (3.1) is a particular
case of an interactive fuzzy equation given by (3.2), considering the joint possibility
distribution J = J,.

The next sections provide the maximal solution, if it exists, to the problems
1), 2) and 3). In this case, the concept of the maximal solution is given by the following

definition.
Definition 3.1. Let A,C € Rx. Consider the following interactive fuzzy equation

A+, X =C, (3.3)

where J is a JPD between A and X. The fuzzy solution (X, J) is said to be the maximal
solution of (3.3) if all solutions (X,.J) of (3.3) satisfy X = X and J < J.

The following sections investigate solutions of Equation (3.2), where X € Rz
and J is a JPD of A and X. Section 3.2 provides the maximal solution for (3.2). In this
case, A and X are marginal distributions of the joint possibility distribution J, which
means that the free variable is the marginal distribution X. Section 3.3 considers X as a
fixed marginal distribution, say X = B, and the joint possibility distribution J as free

variable. More precisely, for A, B, C' € Rz, the following equation is considered
A+;B=0C, (3.4)

where J is a JPD of A and B, and it is investigated when a fuzzy number C' can be written
as a J-interactive sum of A and B. Section 3.4 studies the existence of a joint possibility
distribution N of (A +; B) and B such that Equation (3.5) holds true

(A+; B)—y B = A. (3.5)
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3.2 Given fuzzy numbers B and C, is there a fuzzy number X
and a joint possibility distribution J of X and B such that
X+;B=C7

This section provides a solution of

X+,B=C (36)

where B and C' are given fuzzy numbers and the fuzzy number X and the joint possibility
distribution J of X and B are the free variables.

Moreover, this section shows that X +; B = B +; X, as the following theorem

guarantees.

Theorem 3.1. [51] Let J be a joint possibility distribution of fuzzy numbers A and B and
let J and J* be the fuzzy relations given by

J(z,y) = J(y,x) (3.7)

and
S (z,y) = J(z,—y) (3.8)

for all (z,y) € R®. The fuzzy set J is a joint possibility distribution of B and A and
A+, B = B+jA. Moreover, the fuzzy set J* is a joint possibility distribution of A and
(=B) and A—; B = A+, (—B).

Proof. For all z € R, it follows that

A+, B)2) = \/ Jay) = \/ Ja) = (B+;A)()

and

Theorem 3.2 reveals a maximal solution of Equation (3.6).

Theorem 3.2. [51] Let B,C € Rx and S be the fuzzy relation whose membership function
is defined by
S(a,y) = Bly) A Cle +y), ¥(w,y) e R (3.9)

Thus
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1. The fuzzy relation S is a joint possibility distribution with marginals distributions
X, B € Ry, where X (z \/B YAC(z+y), YreR.

yeR

2. X +sB=Cand [X]|*=[c, —b.,c¢) —b,], Yae[0,1];

a?a

3. X and S are the mazimal solution of (3.2), that is, if there are a fuzzy number X
and a joint possibility distribution J of X and B where X +5; B =C, then Jc S
and X < X.

Proof. 1. Let X be the fuzzy set whose membership function is given by

\/B )AC(z+y), Ve

yeR

From definition of X, it follows X (z \/ S(z,7y). Now, let z € [C]". From definition
yeR
of the fuzzy relation S, for every y, z € R, one obtains

B(y) = \/ S(z,y) = S(z—y,y) = C(2) A B(y) = B(y),

zeR

which implies that B(y \/ S(z,y). Therefore, S is a joint possibility distribution
zeR

for X and B.

2. Let us prove that X +¢ B = C and [X]* = [¢, — b}, ¢} — b ]. To this end, consider
0 < a < 1. On the one hand, if y € [B]* and z € [C]|* then S(z — y,y) = « which
implies that z — y € [X]*. Thus,

[ca —ba ca —ba]l ={z—ylze[C]",ye[B]"} = [X]"

On the other hand, if z € [ X]* then there exists (y,) such that Lim B(yn) A C(x +

yn) = «a. For n sufficient large, one obtains B(y,) = B(yn) A C(z + yn) > %. This
implies that (y,) is bounded and, therefore, there exists a convergent subsequence
(yn,) € [B]?, say kh—I}c}oynk — §e[B]2.If  := B(§)) < o then for 3 < p < o and for k
sufficient large, it follows that y,, € [B]?, because B(yyn,) = B(yn,) A C(x+yn,) = p.
Since [B]” is a bounded closed interval, one concludes that § € [B]” which produces
the following contradiction: B(§) < p < B(g). Therefore, B(§) > «. Similarly, it can
be shown that x 4+ § € [C']*. These last observations imply that

[(XT* < [ea —va i Ca —val-

Hence, [X]* = [c, — b}, ¢} — b, ], for all a € (0,1]. For @ = 0 it follows

X =supp(X) = |J [Xlo=| N\ eo—bd, \V el —ba| =l b5, —bp].

ae(0,1] ae(0,1] ae(0,1]
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Therefore the equality holds for all o € [0,1]. Finally, let 4 € [B]'. Since (X +g
B)(z) = \/ S(x,y), one obtains

zZ=x+y

C(z)= \/ S(,y) = S(z—5,5) = C() A B(y) = C(2).

Z2=x+Y

Thus X +5 B =C.

3. Let J be a joint possibility distribution of X € Rz and B such that X + jB=C.
For z,y € R and z = z + y, it follows B(y) = \/j(w,y) > J(z,y) and C(z) =

weR
\/ J(u,v) = J(x,y). Thus, S(x,y) = B(y) AC(z+y) = J(z,y) for all (z,y) € R?,
utv=z
which implies that X (x) = \/S(x,y) > \/ J(z,y) = X(z) for all € R. Hence

yeR yeR

Jc Sand X C X.
O

Theorem 3.2 ensures that the set of all fuzzy numbers X and a joint possibility
distribution J of X and B, such that X +; B = C'is not empty and the maximal solution
is given by the marginal distribution X of the joint possibility distribution S, given as in
Equation (3.9).

Observe that X and J are free variables of Equation (3.6). However, the JPD
S given by (3.9) determines uniquely the fuzzy number X. This means that the truly free
variable of the problem is the JPD J.

The next example illustrates this result.

Example 3.1. Let B = (0;1;2;3) and C = (—1;1;1.5)¢. Figure 21 exhibits the joint
possibility distribution S of X and B, given as in Theorem 3.2. Figure 22 presents a visual
representation of X +¢ B = C'.
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Figure 21 — Graphical representation of the joint possibility distribution S given as in

Example 3.1

(a) Tri-dimensional view of the JPD S. (b) Top view of the JPD S.
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The joint possibility distribution S given as in Equation (3.9), with B = (0; 1;2;3) and
C = (—1;1;1.5)g, and its marginal distributions X and B. The gray region represent the
a-cuts of S, varying from 0 to 1 which are represented respectively from the gray-scale
varying from white to black. Source: [51].

Figure 22 — Graphical representation of S-interactive sum between X and B given as in

Example 3.1.
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The S-interactive sum between X and B, where B = (0;1;2;3), C' = (—1;1;1.5)g, and X

and S are given as in Figure 21. Source: [51].

Note that in the case where C' = B, that is, when the interactive fuzzy equation
is given by X +; B = B, the fuzzy number X = 0 is not a unique solution for it, as one

can see in the next example.

Example 3.2. Consider the Gaussian fuzzy numbers B = C = (1;1;1)q. Figure 23
exhibits the greatest fuzzy number X and joint possibility distribution S of X and B, given
as in Theorem 3.2. A wvisual representation of X +s B = B is illustrated in Figure 24.



Chapter 3. Interactive Fuzzy Equations 80

Figure 23 — Graphical representation of the JPD S given as in Example 3.2.

(a) Tri-dimensional view of JPD S (b) Top view of JPD S

25
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The joint possibility distribution S given as in Equation (3.9), with B = C = (1;1;1)¢,
and its marginal distributions X and B. The gray region represent the a-cuts of S, varying

from 0 to 1 which are represented respectively from the gray-scale varying from white to
black. Source: [51].

Figure 24 — Graphical representation of S-interactive sum between X and B given as in

Example 3.2.
+s 1 =.
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The S-interactive sum between X and B, where B = C = (1;1;1)g, X and S are given as
in Figure 23. Source: [51].

The next corollary is an immediate consequence of Theorems 3.1 and 3.2.

Corollary 3.1. [51] Let A, B,C € Rz and let R, T and V be fuzzy relations of R?* given
by

R(z,y) = A(z) A C(z +y), T(r,y) = Bly) AClz—y), Vizy) =Al)AClz—y)
(3.10)
for all (x,y) € R%. it follows that

1. R is a joint possibility distribution with marginals distributions A and X € R such
that A+r X = C
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2. T is a joint possibility distribution with marginals distributions B and X € Rz such
thatX—TB = C,'

3. 'V is a joint possibility distribution with marginals distributions A and X € Rx such
that A -V X=C.

Proof. 1. From Theorem 3.2, one obtains

X+sA=C

where S(y,r) = A(z) A C(y + ), ¥(y,z) € R%.

Theorem 3.1 implies that

X+sA=C=A+5X,

and S(x,y) = S(y,z) = R(z,y), ¥(z,y) € R%.

2. Theorem 3.2 ensures that
X +g (—B) = C,

where S(z,y) = B(—y) A C(z +y), ¥(z,y) € R

Theorem 3.1 implies that

X +5(-B)=C =X —g B,

and S*(x,y) = S(z,—y) = B(y) A C(z —y) = T(x,y), Y(z,y) € R*.
3. Theorem 3.2 ensures that
X +s (—A) = C,
where S(z,y) = A(—y) A C(z +y), V(z,y) e R

Theorem 3.1 implies that

Xts(—A)=C=X—g A

and S*(z,y) = S(z, —y) = A(y) A C(z —y) = V(z,y), Y(z,y) € R*.
O

Item 1. of Corollary 3.1 reveals that equation A+r X = C has maximal solution
(X, R). Item 2. guarantees that the equation X —7 B = C has maximal solution (X, 7).

Item 3. ensures that the equation A —y X = C has maximal solution (X, V).

The next section investigates the second question.
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3.3 Given fuzzy numbers A, B, and C|, is there a joint possibility
distribution J of A and B such that A +; B = (7

This section focuses on studying the equation given by
A+, B=C, (3.11)
where A, B and C' are given fuzzy numbers and the JPD J is the free variable.

Necessary and sufficient conditions are established for a J-interactive sum,
between A and B, results in the fuzzy number C. For instance, one can see that there is
no joint possibility distribution J of the real numbers 1 and 2 such that 14,2 = (2;3;3.5).
However, it is not obvious if there exists or not a joint possibility distribution J of (1;1;1)¢g
and (1;1; 1) such that (1;1;1)¢ +,5 (1;1;1)¢ = (1;2;3).

The next theorem yields a sufficient condition for the existence of a maximum

solution of Equation (3.11).

Theorem 3.3. [}9] Let A, B, and C be fuzzy numbers. If there exists a joint possibility
distribution J of A and B such that A +; B = C, then the fuzzy relation M of R* given

by
M(z,y) = A(x) A B(y) A C(z +vy) (3.12)

s a joint possibility distribution of A and B such that J < M and A+, B = C.

Proof. Since J is a joint possibility distribution of A and B, it follows that J(x,y) <
A(x) A B(y). Moreover, since A +; B = C one obtains

Clr+y) = \/ J(u,v) = J(x,y), ¥(z,y) e R?,

fluw)=r+y
where f is the sum operator.

Thus J < M. Now let us prove that M is a joint possibility distribution of A

and B. The aforementioned comments imply that

Aw) = \/ J(,y) < \/ M(z,y) = \/ A@@) » B(y) A Clz +y) < A).

yeR yeR yeR

Similarly one can show that B(y) = \/ M (z,y), for all y € R.

zeR

Finally, since A +; B = C' it follows that

Clz)=\/ Jy < \/ My =\ A@) By rC(z) <C(2), VzeR.

T+y=z2 T+Yy=z T+yYy=z2

Therefore A 4+, B = C.
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The next example illustrate an interactive fuzzy equation of the form A+; B =
C' that has solution.

Example 3.3. Let A= B = (1;1;1)g and C = (1;2;3). The joint possibility distribution
M given by Equation (3.12) and its marginal distributions are depicted in Figure 25. One
can observe in Figure 26 that A and B are the marginal distributions of M. Moreover, the

M -interactive sum between A and B produces the fuzzy number C'.

Figure 25 — Graphical representation of the JPD M given as in Example 3.3.

(a) Tri-dimensional view of JPD M (b) Top view of JPD M

25
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The joint possibility distribution M given as in Equation (3.12), with A = B = (1;1;1)¢g
and C = (1;2;3), and its marginal distributions A and B. The gray region represent the
a-cuts of S, varying from 0 to 1 which are represented respectively from the gray-scale
varying from white to black. Source: [51].

Figure 26 — Graphical representation of M-interactive sum between A and B given as in
Example 3.3.

A ) B ; C

+r . =.

05 o 05 1 5 2 25 05

The M-interactive sum between A and B, where A = B = (1;1;1)g, A and S are given
as in Figure 25. Source: [51].

The next corollary is an immediate consequence of Theorem 3.3 and it provides

necessary and sufficient conditions for the existence of a solution of A +; B = C.

Corollary 3.2. [/9] Let A, B, and C be fuzzy numbers. There exists a joint possibility
distribution J of A and B such that A+; B = C if, and only if, the fuzzy relation M given
as in Equation (3.12) is a joint possibility distribution of A and B and A+, B = C.
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Proof. On the on hand, if M is a joint possibility distribution of A and B such that
A4y B = C, then J = M is the required joint probability distribution. On the other hand,
if there is a joint possibility distribution J of A and B such that A+ ;B = C', then Theorem
3.3 yields that M is a joint possibility distribution of A and B, with A +,, B = C. n

Note that from Corollary 3.2, if the joint possibility distribution M given by
(3.12) does not satisfy A +,; B = C or it is not a JPD between A and B, then there is no
solution of A 4+; B = C. The next example illustrates a case where M does not satisfy

A+y B=C.

Example 3.4. Let A = (—1;-0.5;0;1), B = (—1;-0.5;0.5;1) and C = (—1.5;0;0.5;1).
The joint possibility distribution M given by Equation (3.12) and its marginal distributions
are depicted in Figure 27. One can observe in Figure 27 that B is not a marginal distribution
of M. From Corollary 3.2, there is no joint possibility distribution J of A and B such that
(—1;-0.5;0;1) +; (—1;—-0.5;0.5;1) = (—1.5;0;0.5; 1).

Figure 27 — Graphical representation of the fuzzy relation M given as in Example 3.3.
(a) Tri-dimensional view of M (b) Top view of M
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The fuzzy relation M given as in Equation (3.12), and the fuzzy numbers A =
(—1;-0.5;0;1), B = (—1;—-0.5;0.5;1) and C = (—1.5;0;0.5; 1), where the fuzzy number
B is not a marginal distribution of M. Source: [51].

The above example reveals that not always an interactive fuzzy equation of the
form (3.4) has a solution for J. Hence the equation A +; B = C does not always work,

but X +; B = C has a solution. The next section studies the last question pointed out in

this section.
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3.4 Given a joint possibility distribution J of fuzzy numbers A and
B, is there a joint possibility distribution NV of (A +; B) and
B such that (A +,; B) —y B = A7
This section focuses on equation given by
(A+,B)—n B = A, (3.13)

where J is a JPD between the fuzzy numbers A and B and the JPD N are the free

variables.

Let C' be the J-interactive sum between the fuzzy numbers A and B. A natural
question that arises here is if there is a joint possibility distribution N of C' and B, such
that A = C'—y B. Theorem 3.4 provides an affirmative answer to this question, establishing

a formula for the maximal solution.

Theorem 3.4. [}9] Let J be a joint possibility distribution of two fuzzy numbers A and
B such that C := A +; B € Rr. The fuzzy relation N of R?, whose membership function
is given by

N(z,y) = A(z —y) A B(y) A O(2), VY(z,y) e R? (3.14)

is a joint possibility distribution of C' and B and A = C' —n B. Moreover, if there exists a
joint possibility distribution J of C' and B such that A = C —j B, then J< N.

Proof. Let z € R. If C(z) = 0, then N(z,y) = 0, for all y € R, which implies that

\/ N(z,y) =0.1f C(z) > 0, then there exists (y,) such that lim J(2—=Yn, yn) = C(2), since
yeR
C = A+, B. Using the fact that J(z—yn,yn) < A(z—yn) A B(y,) and J(z—y,, yn) < C(2),

one concludes that
C(z) = \/A(z—y)AB(y)AC’(z) > lim A(z—yn) AB(Yn) AC(2) = lim J(z—yn, yn) = C(2).

n—0 n—00
yeR

Therefore (' is a marginal distribution of N.

Now let us prove that B is also a marginal distribution of N. To this end, let

y € R. If B(y) = 0 then N(z,y) = 0, for all z € R, which implies that \/ N(z,y) =0.1If

yeR
B(y) > 0, then there is a sequence (x,,) such that B(y) = lim J(xp,y), since J is a joint

possibility distribution of A and B. Consider z, = z, + y, thus

Clza) = \/ J(w,0) = J(wn,y)

zZ=u+v

and
J(2n —y,y) < Alzn —y) A B(y).
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A combination of the above observations gives rise to the following:

y) = \/ AG=y)AB)AC(2) = lim A(za—y) AB(y)AC(z0) = lim J(z,—y,y) = B(y).

zeR

Therefore, B is a marginal distribution of V.

Let us prove that A = C' —xn B. To this end, let x € R. On the one hand if

A(z) =0, then
\/ Alx A C(z) =
r=z—Yy
On the other hand, if A(x) > 0 then there exists (y,) such that A(z) =
nll_{rolo J(x,yy,), since J is a joint possibility distribution of A and B. For every z, = x + y,,

it follows

Clza) =\ J(w,0) = J(z,yn)

Zn=u+v

and

From these last observations,

\/ y)nC(z) = 7}1_{%0 A(zn=Yn) AB(Yn) AC(2,) = nh_r)rolo J(x,yn) = A(z).

Therefore, A =C —y B.

Finally, let us prove that N is the maximal solution for (3.5). To this end,
suppose that J is a joint possibility distribution of C' and B such that A = C' — 7 B. This
hypothesis implies that C(z) > J(z,9), B(y) = J(z,9), and A(z —y) = J(z,y) for every
z,y € R. Thus

J(2,y) < A(z = y) A Bly) A C(2) = N(2,y), ¥(z,y) € R®.

Therefore, J < N.
O

Recall that the standard addition of two fuzzy numbers A and B coincides
with the non-interactive addition. From Theorem 3.4 one obtains C —y B=A=C—x B
where C' = A+ B and N is given by Equation (3.14). Example 3.5 illustrates this last

observation.

Example 3.5. Let A = (—0.5;0.5;1), B =(1;2;3), and C = A+ B = (0.5;2.5;4). The
joint possibility distribution N given by Equation (3.14) and its marginal distributions C
and B are depicted in Figure 28. As expected from Theorem 3.4, the equality C' —y B = A
holds true.
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Figure 28 — Graphical representation of the JPD N given as in Example 3.5.

(a) Tri-dimensional view of JPD N (b) Top view of JPD N
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The joint possibility distribution N given as in Equation (3.14), with A = (—0.5;0.5; 1),
B = (1;2;3),and C = A+ B = (0.5;2.5;4). The fuzzy numbers C' and B are the marginal

distributions of N. The gray region represent the a-cuts of .S, varying from 0 to 1 which
are represented respectively from the gray-scale varying from white to black. Source: [51].

This chapter is ended by connecting the joint possibility distributions M and
N. The next corollary is a consequence of Theorem 3.4 and Corollary 3.1, the proof is
provided in [49].

Corollary 3.3. [49] Let A, B,C € Rx. Thus
A+yB=C< A=C—-x5B.

where M and N are the fuzzy sets of R? given respectively by (3.12) and (3.14).

The next table presents a brief summary of questions brought in this chapter.

Table 1 — Solutions for interactive fuzzy equations.

Question Answer Maximal Solution
IX eRr,Je F(R?) : X +,B=C? Yes Xz\/B(y)/\C(x—I-y)
yeR
1Je F(R?) : A+, B=C? Not always M (z,y) = A(x) A B(y) A C(z +y)
INe F(R?) : (A+;B) -y B=A? Yes N(z,y) = A(z —y) A B(y) A C(2)

Solutions of the questions raised in Chapter 3. Source: Author

This chapter shows the usefulness of interactive arithmetic in the context of
fuzzy linear equations. In particularly, the equation A —y X = C (see Corollary 3.1) gives

raise to the following.
Let us consider a fuzzy function F'. The expression

F(to+h) —y F(ty) = hC (3.15)
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is an equation in the form of A —; X = (' and it is connected with the definition of
fuzzy derivative that is obtained from a limit of difference between fuzzy numbers. Hence,
Equation (3.15) allows us to define a fuzzy derivative that embraces the concept of

interactivity.

Moreover, the equation

X(t)+5hf(t,X(t) = X(t+ h) (3.16)

can be interpreted by the Euler’s numerical method for a fuzzy initial value problem.

The expression given by (3.16) is an equation in the form of A +; X = C. This
means that linear interactive fuzzy equations can be associated with numerical solutions
for fuzzy differential equations. So the aforementioned questions can be associated with

fuzzy differential equations from both numerical and analytical points of view.

Motivated by these connections, the next chapters will study fuzzy differential

equations, using different types of interactivity (consequently, different types of JPDs).

3.5 Conclusion

This chapter asked fundamental questions regarding additions and subtractions
involving fuzzy linear equations. More precisely, fuzzy equations that take into account the
relationship of interactivity were investigated. Section 3.2 stated that for every B,C € Rx
there exist a fuzzy number X and a joint possibility distribution S of X and B such
that X +¢ B = C. Section 3.3 established necessary and sufficient conditions for the
equation A +; B = C' has a solution in the free variable J. In this case, in contrast to
standard addition, Example 3.3 showed that a triangular fuzzy number can be written as
an interactive addition of two Gaussian fuzzy numbers. Section 3.4 ensured that if a fuzzy
number C' is given by means of a J-interactive sum of the fuzzy numbers A and B, then
the fuzzy number A corresponds to the N-interactive difference of C' and B (see Theorem
3.4). This chapter ended by establishing that linear interactive fuzzy equations can be
associated with fuzzy differential equations from both numerical and analytical points of

view.
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4 Linearly Interactive Fuzzy Numbers

This chapter presents the concept of linear interactive correlation. This type
of interactivity takes into account a relationship between fuzzy numbers that associates
their membership functions via a linear correlation. The linear interactive fuzzy numbers
are used in various problems such as arithmetic on fuzzy numbers [32, 77|, fuzzy dynamic

systems [15, 148, 138], fuzzy regression problems [115, 114], etc.

This relationship, which is also called completely correlation, was first intro-
duced by Fullér, Carlsson and Majlender [62, 32]. Carlsson et al. [32] established the sum
between two completely correlated fuzzy numbers. Barros and Pedro [15] characterized the
arithmetic operations between completely correlated fuzzy numbers by means of a-cuts.
Also, they introduced the notion of derivative for autocorrelated fuzzy process via complete

correlation.

The third contribution of this thesis is to provide a generalization of this
concept. In this case n completely correlated fuzzy numbers are called linear interactive
fuzzy numbers [53, 148, 77]. Moreover, solutions of fuzzy differential equations are provided,
using linear interactive correlation. More precisely, this chapter focuses on fuzzy initial
value problems, where the initial conditions are given by n linear interactive fuzzy numbers.
These solutions are compared with the one obtained from the Zadeh extension principle

and it is shown that this approach is connected with the Fréchet derivative.

This chapter is based on references [32, 62, 15, 53, 148, 77, 149].

4.1 Completely Correlated Fuzzy Numbers

The completely correlated fuzzy numbers are defined by the following joint

possibility distribution.

Definition 4.1. [32] The fuzzy numbers A and B are said to be completely correlated if
there exist q,r € R, where q # 0, such that their joint possibility distribution Jo is given
by

Jo(z,y) = Al@)Xqo=qusr} (2, 4) = By)Xv=qusr} (2, 1), (4.1)

where

1 ify=qx+r
X{v:unrr} (wa y) = . (42)
0 ify#qr+r

is the characteristic function of the line C = {(u,v) e R* : qu +r = v}.
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This type of interactivity allows to write the a-cuts of the fuzzy number B in
terms of the a-cuts of A [62]

[B]* = q[A]* +r, Yae]0,1]. (4.3)

It is important to observe that if A and B are completely correlated, then there
exist ¢ and r that satisfies the expression (4.3), for all « € [0, 1], which means that the

values of ¢ and r do not change, once the JPD J¢ is chosen.

Also, the a-cuts of the joint possibility distribution Jo can be written in terms

of A and the parameters ¢ and r, as follows

[Jo]® ={(z,qx + 1) : xe[A]*}, Vae|0,1]. (4.4)

Equation (4.4) means that in the case where the fuzzy numbers A and B are
completely correlated, the first marginal distribution determines completely the second
one, and vice versa. The joint possibility distribution Jo may also be denoted by J, ,, in
order to make clear which parameters ¢ and r are been used. Example 4.1 illustrates this

concept.

Example 4.1. Let A= B = (—1;0;1) € Rr. Note that A and B are completely correlated
with respect to the joint possibility distribution Jo = Jyo (see Figure 29), whose membership
function is given by

Jl,O(*% y) = A(x)X{v:u} (QJ, y)

The a-cuts of Jio are given by

[J10]* = {(z,z) : xze[A]*}, Vael0,1].

The fuzzy numbers A and B can also be completely correlated with respect to
the joint possibility distribution Jo = J_1 (see Figure 30), whose membership function is
given by

J_10(2,y) = A(@) X (o=—u} (2, Y).

The a-cuts of J_1 are given by
[Jfl,O]a = {(LU, —.13) P XTE [A]a}7 Va e [07 1]

Observe that the pairs (1,0) and (—1,0) are the only possible values for (q,r)
which make A and B be completely correlated.

Example 4.1 suggests that two fuzzy numbers may be completely correlated in
two different forms, when ¢ > 0 or ¢ < 0. In fact, if two fuzzy numbers are completely

correlated then there are at most two joint possibility distribution for them [108].
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Figure 29 — Graphical representation of the joint possibility distribution J; o given by
Example 4.1.

(a) The top view of Ji . (b) The tri-dimensional view of J; g.

The blue line represents the set C' = {(u,v) : u = v} and the shaded triangle on it
represents the joint possibility distribution .J; o. The gray lines represent the a-cuts of J,
varying from 0 to 1 which are represented respectively from the gray-scale lines varying
from white to black. Source: Author.

Figure 30 — Graphical representation of the joint possibility distribution J_;, given by
Example 4.1.

(a) The top view of J_1 . (b) The 3 dimensional view of J_1 .

The blue line represents the set C' = {(u,v) : u = —v} and the shaded triangle on it
represents the joint possibility distribution J_; . The gray lines represent the a-cuts of J,
varying from 0 to 1 which are represented respectively from the gray-scale lines varying
from white to black. Source: Author.

Definition 4.2. Two fuzzy numbers are said to be positively (negatively) completely

correlated if the parameter q of J,, is positive (negative).

The definition of completely correlation requires that membership functions of
the involved fuzzy numbers have the same shape. For instance, triangular and trapezoidal

fuzzy numbers can never be completely correlated, since their membership functions do
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not have the same form.

Next, the arithmetic for completely correlated fuzzy numbers are presented.

4.1.1 Arithmetic on completely correlated fuzzy numbers

The arithmetic operations between completely correlated fuzzy numbers are

defined by
(A@B)(Z) = \/ Jq,r(x>y)a (45)

z2=xQyY

where ® represents some arithmetic operation.

The a-cuts of the arithmetic operations, via completely correlation, are provided

in Theorem 4.1

Theorem 4.1. [15] Let A and B be completely correlated fuzzy numbers. Thus
(a) [A+¢c B]*=(1+q)[A]*+r, Vae|0,1];
(0) [A—c B]* = (1—-q[A]* —=r, Vael0,1];

(c) [A-¢ B]* = {qz* +rz e R : A(x) > a};

(d) [A+CB]°‘:{ eR : A(:v)>oz}.

qr + 17

Note that every fuzzy number A is completely correlated with itself, since A

can be written as A = 1.A + 0. In this case, from item (b) of Theorem 4.1 it follows that
[A—c A]” = (1 - D[A]*+0=10,0], Yo € [0,1]. (4.6)

Therefore, the difference based on the joint possibility distribution Jo also satisfies the
property of the generalized (Hukuhara) difference, that is, A —, A = 0. Moreover, if
g <0 then A+ B = A+ B, where + is the standart sum. Furthermore, if ¢ > 0 then
A —¢ B = A — B, where — is the standart difference [15].

For more details about this type of interactivity the reader can refer to [108, 15].

The next section provides the generalization of the concept of completely

correlation.
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4.2 Linearly Interactive Fuzzy Numbers

The fuzzy numbers Ay, ..., A, € Rz are said to be linear interactive if their
joint possibility distribution Jy, is given by [148, 77, 53]
Jp(x1, ey xn) = Ai(z)xo(x, ..., ) (4.7)
= AQ(Q?Q)XL(QZl, ey .CL’n)

= Ay (xn)xp(x1, ..., Ty)
where L = {(u, gau + 1o, ...,qou + 1) : u € R; g;,7; € R, with ¢1¢2 ... ¢, # 0}.
Note that J;, extends J¢, since from (4.7) one can see that A; and A;, with
i > 1, are completely correlated. In this case [A;]* = ¢;[A1]® + {r;}, for all i = 2, ..., n. For

each a € [0, 1], the a—cuts of J, can be given by:

[Tl = {(z, qx + 79, .o o + 1)+ € [A1]7}. (4.8)
Equation (4.8) reveals that the a—cuts of the joint possibility distribution J; can be
obtained only in terms of a-cuts of A; and the parameters ¢; and r;, for all i = 2, ..., n.

Since each z € [A]* = [a,,a] can be written as z = (1 — M)a, + Aa, for

A € [0, 1], the expression given by (4.8) becomes

[Je])* = {(1 = N(ay, g2ay + 72, ..., quag, + 1) + Mal, gal + 12, qual +1,) : A€ [0,1]}.

(4.9)

The total possible number of joint possibility distributions that makes the

fuzzy numbers Ay, ..., A, be linear interactive depends on the symmetry of the first fuzzy
number A;.

Definition 4.3 (Symmetry). [52] A fuzzy number A is said to be symmetric, with respect
toxeR, if A(lx —y) = A(z +y), Yy € R. If there is no x € R such that this property is

satisfied, A is said to be non-symmetric.

For example the fuzzy number A = (1;2;3) is symmetric with respect to x = 2,
since A(2—y) = A(2+y) for all y e R.

The follow proposition is obtained from the definition of symmetry.
Proposition 4.1. [52] Let A€ Rzx and q1,qo, 71,72 € R, where qiqo # 0. If A satisfies
QA+ 711 = qA+ 1, (4.10)
then

¢1=¢q and 11 =719 — if A is non-symmetric

~ 1 _ (4.11)
q1=¢q2 and 7 =72 Or }ifAis symmetric (w.r.t. )

g1 =—q and 1| =2qr+ 1
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where T is the midpoint of [A]'.

Proposition 4.1 implies that if A; is non-symmetric then A, ..., A, are linear
interactive with respect to only one joint possibility distribution. However, if A; is symmet-
ric then Ay, ..., A, are linear interactive with respect to 2"~ joint possibility distributions
[53].

Example 4.2. Let A; = (1;2;4), Ay = (3;4;6), A3 = (0;1;3) € Rx. Note that Ay, Ag
and As are linear interactive with respect to J,,, where ¢ = (1,1,1) and r = (0,2, —1).

Since Ay is non-symmetric, the joint possibility distribution J,, is the only one that makes

Ay, Ay and Az be linear interactive, as Proposition 4.1 ensures.

Example 4.3. Let A; = (1;2;3), Ay = (2;3;4), A3 = (3;4;5) € Rx. Note that Ay, Ay and

Az are linear interactive with respect to four different joint possibility distributions:

x T
[J1]* = c+1]:zelAay , [L]*= 41 |:zelAay,
T+ 2 —r+6
x T
[J3]* = —z+5 |:xelAlla and [J4]* = —x+5|:xelAlap,
T+ 2 —z+6

as Proposition 4.1 establishes.

The above examples clarify that if the fuzzy number A; is non-symmetric
and Ay, ..., A, are linear interactive, then A,,..., A, are necessarily non-symmetric as
well. On the other hand, if A; is symmetric and Ay, ..., A, are linear interactive, then

Ay, ..., A, are necessarily symmetric [53].

Remark 4.1. If Ay, ..., A, are linear interactive symmetric fuzzy numbers, then is possible
to consider 2"~ JPDs.

The representation (4.9) is used in order to provide fuzzy solutions to fuzzy
initial value problems (FIVPs) and/or fuzzy boundary value problems (FBVPs), where
the additional conditions (initial or boundary) may have an intrinsic linear correlation,
which is described by linear interactive fuzzy numbers. This approach is presented in the

next section.

4.2.1 |Initial Value Problems with Linearly Interactive Fuzzy Conditions

Let us first present a brief review on the theory of ordinary differential equations

(ODEs). Let I < R be an open set. A linear n-th order ordinary differential equation with
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constant coefficients is given by an equation, for all ¢t € I, of the form
YO () + anay"TIE) + L+ agy(t) = g(b), (4.12)

where 4 denotes the i—ary derivative of y, a; € R, foralli =1,...,n,and g: I > Ris a
continuous function. If g(¢) = 0, for all ¢ € I, then the corresponding ODE is said to be

homogeneous. Otherwise, the ODE is called non-homogeneous.

Since Equation (4.12) involves the n-th derivative of y with respect to ¢, in
order to obtain a unique solution it is necessary to specify n additional conditions. Here the
focus is on fuzzy initial value problems (FIVPs), that is, the n initial conditions condition
are given by

-

y(to) = Yo

MW (4.} = (1)
}Y (?) Yo , (4.13)

n— n—1
y" (k) = "

\

where g € 1.

The general solution y for Equation (4.12) is given by the sum of a particular

solution y, and a solution yj, of the corresponding homogeneous ODE
y(t) = yp(t) + yn(t), Vte L. (4.14)

Recall that the function y, given in Equation (4.14), can be written as
yn(t) = cawi(t) + ... + cowp(t), (4.15)

where ¢y, ..., ¢, are constants values that can be determined by the n initial conditions and
wy, ..., w, are the fundamental set of solutions of the corresponding homogeneous ODE
23].

For t = ty one can represent (4.14), in matrix form, by

Mc=b—yp, (4.16)
where
w1 (to) Ce Wy, (to) C1 Yo yp (to)
M = . . bl c= b b = 9 a’nd ?JP =
W Dt) ... wl V() Cn v yy' (ko)

Since the linear combination (4.15) of the functions wy, ..., w, is a solution for
the corresponding homogeneous equation, then M is a non-singular matrix [153]. Therefore,

the vector ¢ is obtained as follows

c=M"1b— M yp. (4.17)
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Thus, for each t € R, the solution y(t) is given by
y(t) = yp(t) + WMo — M~ yp), (4.18)

where W7 = [w;(t) ... w,(t)].

Let us consider the case where the initial conditions are given by interactive
fuzzy numbers, that is, the vector b is formed by n linear interactive fuzzy numbers. Hence,
consider the following FIVP

-

Y™ () + ano1y™ V() + .+ agy(t) = g(1)

. jy(to) - (4.19)

y" D (tg) = Yy Y

\
where a; € R for all i = 1,...,n and the initial conditions Yj, Yb(l), e Yb("_l) € Rx are
linear interactive.

Let y(-, b) be the deterministic solution of the associated IVP given by Equation
(4.18). A fuzzy solution for (4.19) is a fuzzy function y;, given by

yL(') = yJL('7B)7 (42())

where B = (Y, ... ,Yo(n_l)). In view of Theorem 2.1, the a-cut of the fuzzy solution y;,

for each t € R, can be written as
«@ T —1 —1 . « n
I = {y, 1% — : c R"}, .
[y ()] = {y,(t) + W (M™°b = M"yp) : be [J]" = R"} (4.21)
where [J;]% is given by (4.8).

From (4.17) and (4.9), for each A € [0,1] and « € [0, 1], the vector ¢y can be
obtained by:

ey = (=AM, + A\M "0 — M yp, (4.22)
where
Yo, Yo
— +
b — Q2yoa.+7"2 and bt — Q2yoa.+7“2
@Yo, + Tn @Yo, + Tn

with [Y5]® = [yo., vg. ], for all a € [0, 1].
This leads us to the following deterministic solution for the associated IVP:

h(t,a, ) = y,(t) + Whey

= y,() —W'M lyp + (1 =XN)W M, + \WTM b}
(N ~- J/ N—_————— N’
Yl(t) YQ(t,Oc) Y3(t,a)

= Vi) + (1= \Ya(t, @) + A\Ys(t, ). (4.23)
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The above comments and Equations (4.21) and (2.9) imply that [148]

[yr()]* = {y,(t) + WTex + Ae[0,1]}
= {h(t,a,\) : Xe[0,1]}

= | A bt N, \/ hita,N)]. (4.24)

Xe[0,1] Xe[0,1]

Equation (4.24) reveals that the task of determining the endpoints of a-cuts of
yr(t) boils down to calculate the minimum and maximum values of h(t, a, A) with respect
to A € [0, 1]. Since Y7 does not depend on the parameters A or «, it is only necessary to
analyze Y3 and Y3 in (4.23). On the one hand, if Y3(¢, o) < Y3(¢, ), then

Yi(t) + Ya(t, ) < Yi(1) + Ya(t, ) + A(Y3(t, @) — Ya(t, ) < Ya(t) + Y3(, ),

[ J
g g g

h(t,0,0) h(t,o\) h(t,a,1)

for all A € [0, 1].

Hence, the minimizer and maximizer of the function h(t, «,-) are given by

A =0 and A = 1, respectively. Similarly, if Y3(¢, ) < Ya(¢, ), then the minimum and

maximum values of h(t, «, ) are achieved at A = 1 and A = 0, respectively. In other words,

the global minimizer and maximizer of h(t,«, \) with respect to A € [0, 1] are given at

A =0 or A = 1. Therefore, for each t € R, the a-cuts of the fuzzy solution y,(t) are given
by

[yr(t)]a = [min{h(t, a,0), h(t, o, 1)}, max{h(t, o, 0), h(t,a, 1)}], (4.25)

where
h(t,a,0) = Yi(t) + Ya(t,a) and h(t,a,1) =Yi(t) + Ya(t, ).

One can observe that in the case where the initial condition is symmetric,
there are 2"~! joint possibility distributions. But once the JPD is chosen there is only one
solution for (4.19). Therefore, the problem involving the fuzzy differential equations (FDEs)
with the additional conditions given by interactive fuzzy numbers should be written by
the differential equation, the additional conditions given by fuzzy numbers and the joint

possibility distribution that turns the fuzzy numbers interactive, that is,

v () + anay™ V() + L+ aoy(t) = g(1)
y(i_l) (tO) = O(i_l) € R]:a 1= ]-7 N : (426>
JL

Other approach to solve FDEs is given by the Zadeh’s extension principle,
which is based on extending the classical solution y of the corresponding ODE, according
to Definition 1.25. In this case, the fuzzy conditions are considered as non-interactive and

this solution is denoted by 7.
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Recall from Subsection 2.1 that if J = J,, then the sup-J and Zadeh’s extension
principles coincide. Consequently, the fuzzy solution ¥ is given by y; . In view of Theorem
2.1, the endpoints of [7(t)]* are obtained by

[y(t)]* = Lr}l}]g y(t,-), Inax (t.)|- (4.27)

The next theorem establishes the connection between the fuzzy solutions y and

Y1, in the case where the initial fuzzy condition By is symmetric.

Theorem 4.2. Consider the FDE, given by (4.19), with n initial fuzzy conditions By, ..., B,_1,

where By is symmetric. Let § be the solution via Zadeh’s extension and y;, be the solution

via sup-J extension, where i = {1,...,2" '}, Then,
on—1
[JA]* = conv (U [Jl-]a> , Vae[0,1], (4.28)
i=1
where conv (W) represents the convex hull of the set W. Moreover,
900 = | _in (a0, oo (000 (4.2

Proof. Let us first prove the equality (4.28). To this end, the following inclusion will be

proved )
conv (U [Ji]a) < [JA]™

Note that [J;]* < [JA]%, for all i € {1,...,2" '} and for all a € [0, 1], which

2n—1

implies that U [J;]* < [JA]*. Therefore,

1=1

conv (U [Ji]a> < conv([JA]%) = [JA]%,

since [J,]® is convex.

Now, let us prove the other inclusion. For a fixed a € [0,1], let z € [J,]* < R™.
If x € Uy = [J1]* then exists A € [0, 1] such that z = (1 — \)b,, + Ab, where b, b € [J1]*.

alr o
2n—1

Thus, x € conv < U [Ji]o‘>

If z ¢ Uy, then let J; such that [J5]% & span(U;), where span(S) is defined as

the set of all finite linear combinations of elements of S. Define U, as follows

Uy={u:u=(1-XNa+Ab,0< A <1, ae[J]" and, be Ui}.
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27L71

If x € Uy, then x € conv (U [Ji]a) , otherwise, let J3 such that J3 & span(Us).
i=1
Define Us as follows

Us={u:u=(1-XNa+A,0< <1, ae[J]*and, be Us}.

2n—1
If x € Us, then x € conv ( U [JJ“) , otherwise, repeat this process successively.
i=1
Since there are 2"~ joint possibility distributions and 2"~' > n = dim(R"), ¥n > 2, then

exist {Ji,..., Jn}, such that x € U;, where

U={u:u=(1-XNa+,0<A<1, ae[J;]"and, be U;_1},

forie{2,...,n} and Uy = [J1].
277,71
Therefore, [J,]* < conv U [JJ“) and the equality (4.28) holds. Conse-
i=1
quently, the fuzzy solution 7 is given as follows

y(t)]a = min t,By,...,B,_1), max t,Bqy,...,B,_
9Ok = |, min B B, (B B

= mln ) y(t7 BO;--'aBn—1)7
21—

(@1,.,Zn )ECONV (Ui:1 [Ji]a>

max y(t, By, ..., Bn_1)
(m1,...,xn)Econv<U?21— [Jl.]a)

_ [ min _ (ys,(t));, max (yJi(t));]’

i=1,...,2n—1 i=1,...2n—1
where [y, ()]* = [ys,(0)a, ys ()], forall i = 1,..., 2" O

Theorem 4.2 ensures that if the initial condition By is symmetric then the
fuzzy solution given by Zadeh’s extension is equal to the convex hull of the fuzzy solutions

produced by the sup-J extension.

The next theorem shows that the fuzzy solution via sup-.J extensions is contained
in the solution via Zadeh’s extension, in the case where the initial condition By is non-

symmetric.

Theorem 4.3. Consider the FDE, given by (4.19), with n initial fuzzy conditions By, . . .,
B,,_1, where By is non-symmetric. Let i be the solution via Zadeh’s extension and y; be

the solution via sup-J extension. Then,
[y, ()] = [H(1)]%, (4.30)

for all o € [0, 1].
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Proof. Since [J]* < [J.]%, Ya € [0, 1], it follows that

min y|[JA]a < min y|[J]a and max y|[JA](x > max y|[J]a ;

where y|, represents the restriction of the function y to the set A.

Therefore,

[yJ(t)]Ot = Lm min 1 y(t7 BOa s 7Bn—1)a max 1 y(ta BOa s 7Bn—1):|

Theorem 4.3 yields that the fuzzy solution via sup-J extension is more specific
than the solution given by Zadeh’s extension in the case that the initial condition By is

non-symimetric.

The next subsection presents a method to produce a solution for fuzzy boundary
value problems (FBVs), where the boundary conditions are given by linearly interactive

fuzzy numbers. This method was provided in [77].

4.2.2 Boundary Value Problem with Linearly Interactive Fuzzy Conditions

Ibanez et al. [77] provided a solution for fuzzy boundary conditions [125]
for higher order differential equations. To this end, they used the arithmetic for linear
interactive fuzzy numbers. Before presenting the similarities of this approach with ours,

let us present the method given by them.
Consider the following FBVP

Y ) + an-1y" V) + -+ aoy(t) = g(t)
y(ti—l) = B(ifl) € R]: . (43].)
Jr

The fuzzy solution of (4.31) is given by the fuzzy function (S;); given by
(S)L(B) = wp(t) +w"(t)B —w' (t)p, (4.32)

with BT = [BO By - Bn_l], for all t € [to,T], w” is a vector of a fundamental
solution and p is a particular solution of the ODE. From the arithmetic on interactive

fuzzy numbers (see Theorem 4.1), one obtains

(SH)L(B) = y,(t) — w? (t)p + w” (t)gBy + w’ (t)r, (4.33)
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where ¢7 = [1 g - C]n] and 7 = [() ry - Tn]-
The a-cuts of (S;)1(B), for all a € [0, 1], are given by [77]

[(S)L(B)]* = 3,(t) —w" (t)p +w" (t)r + [ Bo]®, (4.34)
where vy, = w’ (t)q = Z w;(t)g; € R and [ By]” is given as follows
i—1

[e(bo)a s e(bo)a]  if 7 =0,

t[Bol]* =
Tl { [ve(bo)a» vi(bo)a ] if 7 <0,

The next theorem establishes that y; and (S;)r, given by (4.25) and (4.35),
are the same solution to the higher order fuzzy differential equation, where the additional

conditions are given by linear interactive fuzzy numbers.

Theorem 4.4. Consider a higher order differential equation with constant coefficients of
the form (4.12). If By, ..., B,_1 are the n additional conditions (initial or boundary) of
(4.12), then the fuzzy solutions yr, and (S;)r given by (4.25) and (4.35), respectively, are

equal.
Proof. Let t € [to, T]. Then,

[yL(t)]a = [min{h(t,a,()),h(t,a,1)},max{h(t,a,0),h(t,oz,1)}}

_ [min{Yl(t)+Y2(t,a),Y1(t)+3%(t’04)}>
max {Y(t) + Ya(t, @), Y1 (t) + YS(tvO‘)}}

— Yi(t) + [min{Yg(t,a),Yg(t,a)},max{YQ(t, Q), Ya(t, a)}]

— )~y (OM p+ | min {y" ()M, " (M B}
max {y” () M, yT(t)M—lb;‘}]

— (1) = w (Op + | min {w ()(albo); + 1), w" (D)(albo)f + 1)}
max {w” (£)(a(b0); + 1), 0" () (a(bo)i + 1)} |

— () = W (Op + w () + | min {3(bo) s (bo)
maxx {3 (bo)7, 1(00); }

= y,(t) —w' (®)p +w () + [Bo]a

_ [(St)L(B)]a, va e [0, 1].

(4.35)
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Theorem 4.5 reveals that the solution via sup-J extension is associated with
an arithmetic for interactive fuzzy numbers. The next section associates the fuzzy solution

yr, with the one produced by Fréchet derivative.

4.2.3 Fréchet Derivative for Fuzzy Functions

The Fréchet derivative for fuzzy functions is one type of derivative that considers
the concept of interactivity [52]. The focus here is to compare the solution via Fréchet
derivative and the solution proposed in this chapter, since both of them embraces the

relationship of interactivity.

Esmi et al. [52] proposed a method to produce a solution of fuzzy differential
equations by means of Fréchet derivative. Before present the similarities of this approach

with ours, let us present the method given by them.

Let yr be a fuzzy function given by
yr(t) = q(t)Bo + r(t), (4.36)
where ¢,7 : R — R. The n-th order Fréchet derivative of (4.36) at ¢ is given as follows
ys () = ¢ (1) By + 7 (1), (4.37)

Thus the fuzzy function yr is a solution of FDE given by (4.19), if y# satisfies

() )0+ 3 k)0 = 1(t) and
(I1) ¥ (t:) = Byy.

The condition (17) and Equation (4.37) imply Bz = ¢ (t;) By + ™) (t;).

Since By xy = qqikyBo + 7(ixy, the following conditions are obtained
¢t = Qi and rR)(t) = T{i k)

A combination of condition (/1) and Equation (4.37) result in the following
FDE

(@™ () + Z kg (t))Bo + r™(t) + Z ki@ (t) = f(t). (4.38)

Since f is a classical function, Equation (4.38) implies that

n—-1 n—1
g™ () + Y ki (t) =0 and r"(t) + Y kaO(t) = f(1),
=0 1=0
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which lead us to the following deterministic problems

n—1
+ ;) kgD (t) = 0 )
¢ (t;) = qupy € R
and -
'+ Z k) =10 (4.40)
ri) () =rgn eR
Thus the classical solutions of (4.39) and (4.40) are given by
q(t) =y ()M g, and r(t) = y(t) —y" (OM p+y’ ()M T, (4.41)
where y" (t) = (yi(t)), ¢ = (qgxy), 7 = (riixy) and the vector p is the particular solution
and the matrix M is composed by the fundamental solution of the ODE.
Therefore, Equations (4.36) and (4.41) ensure that the fuzzy solution of (4.19),

via Fréchet derivative, is the fuzzy function yz given by

q(t)By + r(t)

T -1 T —1 T —1 (442)
= y ()M qBo +yp(t) —y ()M "p+y ()M r,

where ¢ and r are solutions of (4.39) and (4.40), respectively.
The next theorem shows that the Fréchet derivative produces a fuzzy solution
that is equal to the solution (S;).

Theorem 4.5. Consider a higher order differential equation with constant coefficients of
the form (4.12). If By, ..., B,_1 are the n additional conditions (initial or boundary) of
(4.12), then the fuzzy solutions yr and (Sy)r, given by (4.42) and (4.35), respectively, are

equal.
Proof. Let t € [to, T1.

)] = a®[Bo]" +r(t
= y (M q[Bo]” +yp(t) =y ()M 'p +y" ()M 'y
= yp(t) —w (t)p + w" (t)r + w" (t)g[ Bo]” (4.43)
= yp(t) —w" (t)p + w (t)r + [ Bo]”
- [(St)L ] . Vae[0,1].

A combination of Equations (4.35) and (4.43) reveals the following

yr(t) = (S)(B) = yr(t), Vte [to,T]. (4.44)



Chapter 4. Linearly Interactive Fuzzy Numbers 104

This means that in the case where the additional conditions of the FDE (4.19)
are given by linearly interactive fuzzy numbers, the solution produced by the sup-J

extension is in fact associated with the notion of fuzzy derivative.

One can observe that in the case where By,..., B, 1 are symmetric, even
though there is more than one JPD that makes these fuzzy numbers interactive, the result
provided by Theorem 4.5 does not dependent on the choice of .J;. Indeed, the values of g;
and r; for both J;, and the additional conditions of systems (4.39) and (4.40) are fixed,

once the JPD is chosen.

Table 2 presents a brief summary of these fuzzy solutions. Table 3 presents the
equivalence between these methodologies in the case where the additional condition By is

symmetric. Table 4 presents these equivalences when By is non-symmetric.

Table 2 — Solutions for higher order fuzzy differential equations.

Solution Notation Equation
Sup-.J extension yr, (4.21)
Zadeh’s extension Y (4.27)
Interactive arithmetic  (S;)r (4.34)
Fréchet derivative (i (4.42)

Solutions via sup-J extension, Zadeh’s extension, Interactive arithmetic and Fréchet
derivative. Source: [53].

Table 3 — Fuzzy solutions when the additional condition is symmetric.

Solutions Equivalences
Sup-J /Interactive Arithmetic/Fréchet vy, = (S;)r = yr
Sup-.J/Zadeh y = conv(uyy)

Comparison of the methods in the case where the additional condition is symmetric, where

vy, stands for UyJi. Source: [53].
i=1

Table 4 — Fuzzy solutions when the additional condition is non-symmetric.

Solutions Equivalences
Sup-J /Interactive Arithmetic/Fréchet vy, = (S;)r = yr
Sup-J/Zadeh yL <y

Comparison of the methods in the case where the additional condition is non-symmetric.
Source: [53].

The proposed method solves problems that can be given by linear systems as

(4.16). In particular this thesis deals with initial value problem, where the initial conditions
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are given by linear interactive fuzzy numbers. For boundary conditions a similar method
can be made, as one can see in [53]. Recall that this approach can be used in optimization
problems as well, as Pinto et al. proposed [115, 114]. Chapter 7 presents an application
in a physical problem that involves linear correlations among the position, velocity and

acceleration of a particle, in order to illustrate this method.

The completely correlated fuzzy numbers have interesting properties. Several
authors use this type of interactivity in problems that take this notion into account.
However, this concept requires that the membership function of these interactive fuzzy
numbers have the same shape. The next chapter produces a joint possibility distribution

that does not require any restrictions of the shape of the involved fuzzy numbers.

4.3 Conclusion

This chapter presented one type of interactivity, which is widely used in the
literature, called completely correlation. The arithmetic for this subclass of fuzzy numbers
were established and a generalization of this concept was provided. Solutions for FIVPs
were yielded and they were associated with the ones given by Fréchet derivative and the
interactive arithmetic. This chapter ended by presenting a comparison among the solutions

via linear interactivity, Zadeh’s extension, interactive arithmetic and Fréchet derivative.
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5 The g-difference as a Particular Case of an

Interactive Difference

This chapter presents a family of joint possibility distributions denoted by J,,
which was proposed by Esmi et al. [50, 54]. This family can be applied to every pair
of fuzzy numbers. Moreover, they showed that one can have a certain control of the

Pompeiu-Hausdorff norm of the interactive sum via this family of JPD’s.

Later, Sussner et al. [136] proposed the concept of translated fuzzy numbers in
order to “control” the width of this interactive sum as well. The width of a fuzzy number
is associated with the uncertainty that it models. Consequently, controlling the width of
the arithmetic operations via J, means controlling uncertainties in different ways, using

the same fuzzy numbers.

This thesis used J, to provide a numerical solution for fuzzy differential equa-
tions, which is our fourth contribution. This numerical solution is based on extending the
classic arithmetic operations of the Euler and Runge Kutta methods via sup-J extension
principle. For each element of this family, there will be a numerical solution for the FDE.
The proposed numerical method can be used in every n-dimensional initial value problem,

in contrast to the other methods based on JPDs, J;, for example.

This chapter shows that this numerical solution is more specific than the
solution using Zadeh’s extension principle [146]. In order to illustrate this fact and
the aforementioned ones, several applications of this method are presented, such as in
epidemiology [142, 149, 145, 143, 144, 141, 146] and chemistry [147, 139] problems (see
Chapter 7). In these cases, the numerical solutions will simulate different behaviours,
with respect to the uncertainty along time, of the disease of a population and chemical

reactions.

In addition, as the fifth contribution, this chapter proves that the generalized
difference (—,) is a particular case of interactive difference [150]. This means that the
g-derivative (as well as gH- and H-derivatives) is interactive. This chapter is based on
references [78, 50, 136, 150, 149, 146, 142, 143, 141, 144, 147, 139).

5.1 Joint Possibility Distribution J,

Esmi et al. [50, 54, 78] defined a parametrized family of joint possibility
distributions J,,, v € [0, 1]. In contrast to the joint possibility distribution J, (cf. Equation
(4.7)), the family of JPD’s J, can be applied to every pair of fuzzy numbers. These joint
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possibility distributions are defined as follows. Given A;, As € Rz, considers the auxiliary

functions ¢’ , ¢’ and v* defined by

g (z,a) = /\ lw + 2|, (5.1)

we[Az—;]*

g (z,a) = \/ lw + 2] (5.2)

we[As_]*
and
vz, a,7) = (1= 7)g (2, ) + 79, (2, ), (5.3)
for all ze R, a€[0,1], v€[0,1] and i € {1, 2}.
Note that the functions ¢’ and ¢’ calculate, respectively, the minimum and
maximum absolute values of the sum between the elements in [A;]* and [A5]*. Also note

that the function v'(z, a, 7), with respect to z, assumes greater values as long as 7 increases

in [0, 1]. Also, consider the sets R, and L'(z, , ), given by

{a; ,a; if ae0,1)

Rl = { e e (5.4)
[A]Y fa=1
and
Li(z7a77) = [A?)fi]a A [_Ui(zaaﬁ) o Z,’Ui(Z,Oé,’}/) - ’Z]' (55>
Finally, J, is given by
Ai(xy) A Ag(xo), if (x1,29) € P
T (1, 9) = 1(z1) 2(72) (21, 72) () (5.6)
0 , otherwise
where

HﬂZLJ P'(v, ) (5.7)

and for all i € {1,2}, y€ [0,1] e a € [0, 1], P'(v, ) is defined by

Pi(%oz) = {(z1,29) : x; € RZ and z3_; € Li(:ri,oz,y)}. (5.8)

Since the function v* is increasing with respect to 7, the set L' is a larger
interval for greater values of . This implies that for greater values of € [0, 1], the greater
the number of pairs (1, x2) such as J,(z1,22) > 0. In this case the “level” of interactivity
is measure by the parameter v, in the following sense: the smaller the value of v € [0, 1],

the greater the interactivity.

One can prove that for v = 1, J; = J, [50], that is;, A; and A, are non-
interactive. In this case the sup-J extension principle boils down to the Zadeh extension

principle.
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Theorem 5.1. [50] Let A1, Ay € Re. If 0 < vy < 79 < 1, then

1. Joc J, € Jy, © Ji;
2. ||A1 ®JO AQH]: < ||A1 ®Jw1 Ag”}‘ < ||A1 ®J72 A2||]-' < ||A1 ®J1 AQH]:, where ® €

{+7 T +}

Geometrically, the larger the value of 7y, the bigger the fuzzy set .J,, as illustrated

in the following example.

Example 5.1. Let A} = Ay = (—1;0;1) € Rr. The joint possibility distribution J,, where
v €{0,0.25,0.5,1}, between Ay and Ay are graphically represent in Figure 31.

Figure 31 — Graphical representation of the joint possibility distribution J, given as in
Example (5.1).

(a) The top view of Jp. (b) The top view of Jy.25.

. J.y

(c) The top view of Jy 5. (d) The top view of J;.

Ay
Ay

I, I,

The light gray triangles represent the triangular fuzzy numbers A; = (—1;0;1) and
Ay = (—1;0;1). The dark grey region represents the joint possibility distribution .J,.
Source: [142].
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Note that Jy S Jyos S Jos S J1. Moreover, the joint possibility distribution
obtained by v = 1 is the J,. Also, the JPD Jy resembles one of the cases of J (see Figure
29).

The next example illustrates that J, can be applied to every pair of fuzzy

numbers, in contrast to the joint possibility distribution Jy.

Example 5.2. Let Ay = (—2;-1;1;2) € Fr, and Ay = (=1;0;1) € Fp.. The joint
possibility distribution J.,, where vy € {0,0.25,0.5,0.75, 1}, between Ay and Ay are graphically

represent in Figure 32.

Note that in Example 5.2 the fuzzy numbers A; = (—2;—1;1;2) and Ay =
(—1;0; 1) are not interactive with respect to the joint possibility distribution Jy, since
their membership function can not be associated linearly. However, 4; = (—2;—1;1;2)

and Ay = (—1;0;1) are interactive with respect to J,, for all 0 <y < 1.

One can observe that Jy is a more general JPD than the distribution Jy,, since
it can be applied to every pair of fuzzy numbers. Even though Jy resembles .Jy,, in the case
where A; and Aj are triangular fuzzy numbers (see Figures 31 and 30), the JPD J, may
produce two types of interactivity, the positive and the negative, and the JPD J; can only
reproduce one of them. Moreover, the JPD J; can not be used to describe the a-cuts of

Ay in terms of the a-cuts of Ay, as it is possible for JPD J;.

Although the width of a fuzzy number is limited by two times its norm [136],
the approach proposed by [54] did not produce results about the width of the numerical
solutions for FIVPs. In order to have a better control of the width, Sussner et al. [136]

introduced the concept of translated fuzzy numbers.

Definition 5.1. The translation of A € Rx by k € R is defined as the fuzzy number A®,

whose membership function is given by

AW (z) = A(z + k), Yz eR. (5.9)

By the above definition it is possible to construct a family of JPDs, according
to Theorem 5.2.

Theorem 5.2. [136] Given A1, Ay € Ry and ¢ = (c1,¢c2) € R?, consider the translated
fuzzy numbers Agcl),Agc” € Rr. Let v € [0,1] and j7 be a joint possibility distribution

between Aﬁq) and AéCQ). If J3 is the following fuzzy relation given by

JC($1,LE‘2) = j,},(,fl —C1,T9 — C2)7 V(Jfl,.%Q) S R2 (510)

Y

then J5 is a JPD for Ay and A,, furthermore, (A; +5 Ag) € Ry, where +5 represents the

sum via sup-J extension principle.
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Figure 32 — Graphical representation of the joint possibility distribution J, given as in
Example (5.2).

(a) The top view of Jy. (b) The top view of Jg.25.

(¢) The top view of Jy 5. (d) The tovaiew of Jy.75.

(e) The top view of J;.

The light gray triangles represent the fuzzy numbers A; = (—2; —1;1;2) and A; = (—1;0;1).
The dark grey region represents the joint possibility distribution .J,. Source: Author.
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From the JPD, given by (5.10), the following statements are equivalent:

Proposition 5.1. [136, 50] Let JS be the joint possibility distribution of the fuzzy numbers

Ay and As. The following statements are equivalent:

(a) v <B;
(b) Je < J5;
(C) Al +2 A2 - A1 +% AQ; and

(d) width(A; +5 Az) < width(A; +5 Ag).

It is important to observe that A; + Az and A +., A3 produce different results.
However, one can show that [Agcl) +4 Ag”)]a —{c1 + 2} = [Ay +5 Ag]” for all a € [0, 1]
[136]. These equivalences ensure that the width of the sum via sup-J extension principle,
with J = J7, is connected with the parameter 7 in the following sense, the width of the

fuzzy number obtained from the interactive sum decreases as the value of v goes to 0.

The next section uses this family of JPDs to produce an arithmetic on interactive
fuzzy numbers. Moreover, from this arithmetic a numerical solution for fuzzy differential

equations will be provided.

5.2 Numerical Solution for Initial Value Problems with Interactive

Fuzzy Conditions

This section focuses on fuzzy initial values problems where the initial conditions
are uncertain and given by interactive fuzzy numbers via joint possibility distribution
JS. From now on, in order to simplify the notation, JJ will be denoted by J, and the

arithmetic operations ®7 will be denoted by ®,.

There are several methods in the literature that provide numerical solutions of
FDEs [3, 79, 2]. Most of them use arithmetic operators that are obtained from different
joint possibility distributions. For instance, the authors of [2] used the generalized difference
and standard sum in their numerical solutions. This chapter proves that the generalized
difference is one type of interactive arithmetic but, as it was point out before, the standard

sum is not. Consequently it is necessary to exhibit the JPD that has this property.

In contrast of these methods, our approach provides a numerical solution whose
arithmetic operations are derived from the same JPD. Moreover, in the most numerical
solutions [105, 91, 64, 1, 3, 79, 2] the authors study the problem via a-cuts, treating the

FDEs in a classical way. Our proposed method do not require the study of a-cuts.
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The numerical solution proposed in this thesis is based on the classical numerical
solutions of the Euler’s and Runge-Kutta methods, with the arithmetic operations involved
in the method adapted for interactive fuzzy numbers. Before presenting this methodology,

let us briefly review the Euler’s and Runge-Kutta method.

Let y; : R > R", with ¢ = 1, ..., n, functions that depend on time ¢. Consider
the following IVP composed of ODEs and initial condition
dy;
dt
y(to) = yo € R"

= itv 3y Y25 -+ Yn
filt,y1, 92 Yn) ’ (5.11)

where f; is a function that depends on yq,ys, ..., y, and t, for each ¢ = 1, ..., n.

Euler’s and Runge-Kutta methods consist in determining numerical solutions

for (5.11). The steps of algorithms are given by

y D =y 4 nfi @y, ), (Euler) (5.12)
and

)

h
y(kﬂ) = yz(k) + 8 (k%k) + 2k§k) - 2k§k) + k;flk)), (Runge-Kutta) (5.13)
where

k k

h h h
kék) = fi (t(k) + —,yi’“ + 5/{:5@, oy 2]{%‘“)) 7

2
h h h
K = f (t“ﬂ oo+ ok Qké’“’) , (5.14)

B = (89 g bk, )

n

with 0 < k < N — 1, where N is the number of partitions of the interval time divided in

0) . (0) (0))'

equally spaced intervals [t t*+D] with size h and initial condition (), ¢1”, ..., 4

Since the initial conditions are given by fuzzy numbers, the arithmetic operations
in each iteration must be extended to operations between fuzzy numbers, for all £ > 0.

Therefore, the Euler’s algorithm becomes
YE = VE 4 R YE, YR, (5.15)
and the Runge-Kutta algorithm is given by

h
v v 2w+ 2md) 4 2k - KY), (5.16)
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where
KYC) - fl(t(k)7}q(k)a 7Yn(k))7
(k) W Pywm hw ® . P em
K7 = [fi|t +§>Y1 ‘1’75[(1 vy Y "‘75[(1 ;
h h h
K = (t“f) 50 SEY LY 2K§’“’) , (5.17)
K = f (09 n i 4 iR, Y0 ),
where Y; is a fuzzy number for all i = 1,... n.

A combination of Proposition 5.1 and Theorem 2.2 ensures that both numerical
solutions (5.15) and (5.16) are more specific when there is interactivity than the solutions
using the standard arithmetic, since for all v € [0, 1] it follows that J, = J, < J; = J,.
This fact is illustrated in some applications in epidemiological problems, given in Chapter
7.

The next section focuses on a particular joint possibility distribution of this
family, namely Jy. The interactive sum, obtained from Jy, produces a fuzzy number with
smaller Pompeiu-Hausddorf norm. This is not the only interesting property that J; has.
The next section provides the fifth result of this thesis, which is, the difference based on

Jo extends the g-difference, which means that the g-difference is interactive [150].

5.3 The joint possibility distribution J

This section provides new results about the joint possibility distribution Jy. Let
us first present some preliminary results. The next proposition describes some properties
of the joint possibility distribution Jy [50].

Proposition 5.2. Let Jy be the joint possibility distribution given by (5.6), with v = 0.
Then

(a) Al +0 A2 € R}—C;

(b) ||A1 +0 Asl|7 < ||A1 + Asl|# for every joint possibility distribution J of Ay and Ay
such that Ay 45 As is a fuzzy number.

Using the idea of translated fuzzy numbers, a specific joint possibility distribu-

tion Iy, x, is defined for a given pair of fuzzy numbers in Ry,.

Theorem 5.3. [150] Let Ay, Ay € Ry, and let k; € R for i = 1,2. Consider the joint
possibility distribution Jy of AS’“) and —Ag’”) given by (5.9). The fuzzy relation I defined
by

Iy ko (1, 02) = Jo(m1 — ko, Ky — 22), V(21,2) € R? (5.18)
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has the following properties:

(a) Iy, k, s a joint possibility distribution of Ay and As;

(b) Ay =1 ., As = (Aﬁ’“) +o (—Ag"f”)) +hy — ky € Ry,

(b)

Proof. Let us prove that A; and A, are marginal distributions of I, 5, given by
(5.18).

One the one hand,

Ay(z) = AP (@ = k) = \/ Jole = ki, y) = \/ oo — k1 ke = 9) = \/ T (2, 9),

yeR yeR yeR

for all z € R.

On the other hand, the following equations are satisfied for all y € R:

As(y) = Agw)(y — ko) = —A, kZ) \/JO x, ko —
zeR
= \/JO(:E - klakQ - y) = \/Ik17k2<xvy)'
zeR zeR

Therefore, Iy, x, is a joint possibility distribution for A; and As.

Let 7 € {1,2} and let a,a;, (a ki)) ,(a (ki)) [0,1] — R be the functions that
alk

map «a € [0,1] to (a;)}, (a;),, ia’)*and(

a; are continuous and since (ag 1)) = (a;)* — k; and (al(-ki))_ = (a;)” — k;, the

‘ )a, respectively. Since a; and

functions (agki)) and (a Z( ’)) are continuous as well. Thus, Aﬁ’“") €eRg,, fori=1,2.

Proposition 5.2 implies that (Agkl) +0 (—A§k2)>> € Rz, and, consequently, D :=
(A 1 (—a29)) s — by
Also,

Dly— (b~ ko)) = (A 40 (-A82)) ) = /ol )

T1t+x2=y
= \/ Ty ko (21 + K1, ko — 22),
T1+T2=Y
for every y € R.
By taking z; = x1 + k; and 2o = kg — x4, it follows
D(y — (k1 — ks)) = \V I(z1,22) = (A1 =1 A2)(y — (k1 — k2)).
z1—z2=y—(k1—k2)
Therefore, D = A; Ik, A,.
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Remark 5.1. If ky = ko, then Ay —, , Az = A +o (—Asy). This expression resembles

the definition of the difference of real numbers in terms of the additive inverse.

The next corollary is a consequence of Theorem 5.3 and of Proposition 5.2.
Corollary 5.1. For every A € Rg,, it follows that

A A=0.

R
Proof. Theorem 5.3 implies that

A A=(A+o(-A))+ (k—k) = A+, (—A).

_Ikl,kg

Thus
A T 10 (_A) =0,

since A and —A are completely correlated with respect to Jy_1 gy [32].

Item (c) of Proposition 5.2 ensures that

O<[lA+o (=Allr <A+ =Alz=0

Therefore, A +¢ (-A4) = A -y, ,, A=0. O
The next example illustrates the interactive difference, given by (5.18), and it

compares [, p,-difference with the gH-difference.

Example 5.3. Let A; = (—1;0;1) and Ay = (—2;0;2). Since width([A;]*) = 2 — 2a <
4 —4da = width([A2]?), for all a € [0,1], one obtains Ay —guy Ay = X = (—1;0;1).

On the other hand, let k1 = 0 and ky = 0. From Theorem 5.3, it follows

Ay =g, A2 = (AP 40 (-A52)) + (= B},

Hence

(A o (A 6=\ e 2 A e

r1+To=2

where (ry1,x9) € P = U P'(a) U P*(a), with

a€l0,1]

Pl(a) = {(x1,29) € {~=1+a} x {1 —a}} u {(z1,72) € {1 —a} x {1+ a}}

and

P*(a) = {(z1,29) € {=1+ a} x {2 —2a}} U {(z1,22) € {1 — a} x {=2 + 2a}}.
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Therefore, Ay +¢ (—Az) = (—1;0;1). Hence

A Ay = (=1;0;1) + {0} = (=1;0;1) = Ay —g5 As.

1 _Iklka

Now, let A1 = (=3;0;3) and Ay = (—1;0;1). Since width([A;]%) = 3 — 3a >
1 — o = width([As]), for all a € [0,1], one obtains Ay —gu Ay = X = (—2;0;2).

On the other hand, considering k1 = 0 and ky = 0, from Theorem 5.3 it follows

(A1 =1y, A2)(2) = (A1 0 (-457)) () =\ Aulan) & (—A2) (),

Tr1+xTo==2

where (r1,x9) € P = U P'(a) U P*(a), with

a€l0,1]

Pl(a) = {(z1,22) € {~1+ a} x {3 —3a}} U {(z1,72) € {1 — a} x {=3 + 3a}}

and

P%(a) = {(x1,20) e {1+ a} x {1 —a}} u {(z1,22) € {1 —a} x {-1+al}.

Therefore, Ay +¢ (—A2) = (—2;0;2). Hence

A Ay = (=2;0;2) +{0} = (=2;0;2) = A; —yp A

1Ty kg

Example 5.3 suggests that if the translations k; are given by k; = 0.5((a;)] +
(a;)f) for © = 1,2, then the gH- and Iy, y,-differences lead to the same results. The
next section shows that this statement holds true. More precisely, it proves that if the
gH-difference exists, then A—,zy B = A B, where k; = 0.5((a;)] + (a;)]) fori =1,2
and for all A, B € Rx,. Henceforth, the joint possibility distribution I used here is given
by

T gy kg

I =TI ko, (5.19)

where k1 = 0.5((a1)] + (a1)]) and ky = 0.5((az); + (a2)7).

The following example compares the [-interactive difference, given by (5.19),
with the standard and the g-difference.

Example 5.4. Let A; = (1;2;3) and Ay = (1;3;4). From Theorem 5.3, it follows that
A —1 Ay = <A§k1) +o (—Ag”))) + {k1 — ka}, where k1 = 2 and ko = 3. Hence

(A 40 (~48)) ) =\ AP () n (A (),

T1+xr2==2

where (r1,x9) € P = U P'(a) U P*(a), with

ael0,1]

P'(a) = {(x1,29) € {=1 + a} x {1 —a}} U {(z1,72) € {1 — a} x [-2 + 22, 0]}
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and
P%(a) = {(x1,20) € {1 —a} x {~2+2a}} U {(z1,22) € {1 —a} x {1+ a}}.
Therefore, AS’“) +0 <—A§’“2)> = (0;0;1). Hence
Ay —1 Ay =(0;0;1) + {2 -3} = (—1;-1;0).
Note that
[A —, A)]® = [/\ min{—g, -1}, \/ max{-8, -1} | = [-1,—a].
pza pza

The standard, generalized, and I-interactive differences between Ay and A,

satisfy

Al —g A2 = Al -7 AQ = (—1, —1,0) e (—3, —].,2) = Al - A2

which implies that

wzdth(Al —g Ag) = IUZdth(Al - Ag) =1<5bH= wzdth(Al — Ag),

and
[(A1 =4 A2)||7 = [|[(AL =1 A)[|Fr =1 < 3 = ||[(A1L — Aa)||F.

Example 5.4 suggests that the g-difference and /-interactive difference coincide.
In fact this statement always holds true. The next three lemmas are used to prove Theorem
5.5. The main idea is to characterize the set [Jy]* and, thereby, [I]*. From now on,
for simplicity of notation, the sets P(0) and P'(0,«), given by (5.6), will be denoted
respectively by P and P'(a). Moreover, since for v = 0 the function v* (see (5.3)) is equal
to ¢, then the function ¢’ will be denoted by g;.

Lemma 5.1. Let Ag € R, Ag # &, for all B €I, where 1 is an arbitrary non-empty index
set. The following equalities hold true:

\/ (U AB> -\/ (\/ A5> and

Au)- At

Proof. Let us prove this lemma by using a few concepts of lattice theory and mathematical

morphology [72]. Consider the following mappings F, G:

F:PR) — (Ryp)® and G:PR) — (Rix)®
A — fa A — ga
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where

if A
fA(iU)Z{ v nee and

—oo , otherwise

x ifzeA
ga(z) = {

+oo , otherwise

For simplicity, fa, and ga, are written by fz and g, respectively. Since P(RR)
and (R.o)® yield complete lattices, the following equations hold true for all Ag < R and
all I:

fUieﬂAB = \/fﬁ and Ui A = /\g& (520)

i€l i€l

Let 0, cr : (Rig)™ — (Riy)® denote respectively the dilation and the erosion
by the structuring element R based on the threshold or flat approach [72, 130, 137], that

—\/ F@), ex(f) = N\ f(@). (5.21)

zeR zeR

Thus

1) =\ falw) = \/{z|ze A} =\/ 4, (5.22)

zeR

2) = Nogal@) = Nz|lze A= A A (5.23)

zeR

for every A # (.

A combination of (5.20), (5.21), (5.22), and (5.23) leads to the following
equations that are valid for non-empty Ag such that § el # &:

V() = Vo) =t = 5.

Bel zeR Bel
A(U) = Ansnto = exasn) = A
Bel zeR Bel

Since dgr and ep are, respectively, an algebraic dilation and an algebraic erosion

[137], the proof of Lemma 1 is concluded as follows:

O (\/fﬁ) =\ (fs) =\ V 45

Bel Bel Bel
a(Aw) = Aseton = AN
Bel Bel Bel
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Lemma 5.2. [150] Let Ay, As € Rx. If Jy is the joint possibility distribution of Ay and
Ay € Ry that is defined in (5.24), then

[Jo]® = O (BEL[Jl] ) , Yae[0,1], (5.24)

where P'(B) = {(z1,22) : ¥; € Ry and x5_; € L'(x;, B)} fori = 1,2 and for all B € [a, 1].

Proof. Let us first prove that the set on the right side of (5.24) is contained in the set on
the left side. Recall that the sets R} and L'(z;, 3) are given by (5.4) and (5.5). Note that

2

every element (x1,xs) of U ( U Pi(ﬁ)) satisfies (z1,12) € P?(B) for some § > o and
' Bela1]

some j € {1,2}. Therefore,

"
?E
fb
=
e
=
=9
8
w
<
m
=
8
<
=
N
0N
w
2

which implies that Ay (z1) A As(22) = B = (1, 22) € [Jo]® < [Jo]™

These considerations reveal that

First, note that Jyo(x1,22) = A1(z1) A As(za) = « for all (zq,x9) € [Jo]*. By
the definition of Jy (see (5.6)), it follows

Thus, there exists @ € [0,1] for some j € {1,2} such that (x;,25) € P’/(a), that is,
z; € RL < [A;]]% and x5 € LY (2;,@) < [A3_;]®. This implies that A;(z) > @ for i = 1,2
and, therefore, A;(x1) A Ay(z2) = @. If @ > a then (x1,25) € P'(@) which implies that

[Jo]” gO(U )

[e,1]
On the other hand, suppose that @ < «. Thus,

a<a< ﬁ = A1($1) A AQ(Q?Q) < Al<£L‘l) < 1.
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From (5.4), it follows z; € RL = {ozi_H , a;; }, because @ < 1. Let us suppose without loss of
generality that z; = a;_. Note that A;(a; ) = v, Vy € [0, 1], because a; € [A;]". The last
observation and the fact the function a; : [0,1] — R given by a; () = a;_ is increasing by
Theorem 4.9 of [16], then

v = a; (@) < a; (B) < a; (Ai(xi) < @i € [a;, oaf ],

Thus, 2; = a; (8) € Rj. In addition, the sequence of inequalities

|21 + 22| = gi(2i, @) = /\ W+ 2] < /\ (W + x| = gizi, B) < |v1 + a2
wE[Ag,Z.]a wE[Agi]ﬁ

holds true since zs5_; € [As_;]® < [A3_;]°. These last observations imply that zs_; €
L(x;, B) because x3_; € [Ag_i]ﬁ and z3_; € [—gi(zi, B) — x4, gi(x;, B) — x;]. Therefore,

2

[Jol* < ( U P%ﬁ))
Be[o,1]

=1

since (x;,15) € PY(B) < U ( U Pi(y)).

i=1 \nefa,1]

Therefore, the equality [Jy]* = U

2
i=1

( U Pi(6)> holds. O
B

i ela,1]

Lemma 5.2 shows that the set [Jy]® equals U P(B) where P(B) := P*(3) u
Bela1]
P?(B). Note that the following function f is continuous:

f:R*> - R

(x1,m2) +— T1 + X9

A combination of Theorem 2.1, Lemmas 5.1 and 5.2 reveals that, for every
a € [0,1], the a-cut of [A; +¢ Az] is given by
[A1 40 A2]* = [f1(A1, 42)]°
= f([J]?)

= {z1+ 22| (21, 22) € [Jo]"}

= {:m + @y | (z1,22) € U P(@)}
Bela1]
= U {z1 + 29 | (z1,22) € P(B)}

pela1]
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where
S(B) = {z1 + w2 | (21, 22) € P(B)} . (5.25)
The next lemma presents a characterization of the set S(f) defined in (5.25) for certain

pairs of fuzzy numbers.

Lemma 5.3. Let Ay, Ay € Rz, such that (a;)] + (a;)f =0, i =1,2. For every 8 € [0,1],
the set S(B) in (5.25) is given by
0 , 0,1
S(ﬁ) _ {uﬁa ) 'U,B} ) ZfﬁE[ ) ) : (526)
[ug A vg, ug v gl ,if =1
where

ug = (a1)5 + (a2)f and vg = (a1)y + (az)s

Proof. Let 8 € [0,1] be arbitrary. First, consider an arbitrary index j € {1,2}. If (x1,25) €
P’(B), then z; € R}; and z3_; € L’ (x;, 8). Note that L’(z;, ) corresponds to the set of

minimizers of the function h;(w) = |z; + w| subject to w € [A3_;]°, that is,

x3 ;€ L(x;,8) & 13 = argmin,ep4, |z, +wl.

Since (a1); + (a1)] = 0 = (az)7 + (az)7, it follows that (a;); < 0 < (ay)4,
where (a;)5 = 0, V3 € [0,1]. Therefore, for i = 1,2:

r3—; = argmingera, 6|z + wl
—z; , f0<zand (a3—)5 < —z;
(as—i)5 %f() < z; and (a,g_i)é;r > —x; (5.27)
—z; 0> and (az—)5 = —x;
(CL3—z’);§ , if0 > z; and ((J,g_i>g < -y

Using (5.27), let us divide the rest of the proof into four cases.

(i) Suppose that (a1); < —(az)s and (a1)5 = —(az)s.
If 3 <1, then z; € {(a;)5, (a;)5} for i = 1,2. Thus, (5.27) yields

PYB) = {((a1)5, (a2)}) , ((a1)F, (a2)5) }

and
P*(8) = {(~(a2)5. (a2)5) , (—(a2)}. (a2)§) }

which implies that

2

S(B) = {or+w2 | (21,m0) € P(B) = P'(8)}

=1
= {u[% 0, Uﬁ}?



Chapter 5. The g-difference as a Particular Case of an Interactive Difference 122

where ug = (a1)5 + (a2)5 and vz = (a1)j + (az);z.
If 3 =1, then z; € [A;]' for i = 1,2. From (5.27), it follows that
P1) = {(z1,(a2)f) | 21 € [(ar)7, —(a2){]}
= U{ z1,—11) |1 € [—(a2), —(a2)7 ]}
— {1 (a2)7) |21 € [~(az)y, ()] ]}
and
P*(1) = {(=w2,22) | 22 € [(a2)7, (a2){]} -

These observations reveal that

S(1) = {x1+ a9 (x1,29) € P(1

HC[\D

= [u1 Av1, ug v,
where u; = (a;)] + (a2)f and vy = (a1)] + (a2)]. Note that u; < 0 < vy or
v < 0 <y since (a;)] + (a;)7 =0 for i = 1,2.
(ii) Suppose that (a1); < —(az); and (a1)} < —(az);.
If 8 <1, then x; € Rg = {(ai)3, (a;)5} for i = 1,2. Using (5.27), one obtains
PY(B) = {((a1)s. (a2)3) , ((@)5, —(a1)§) }

and

which implies that

2
S(B) = {x1+a2| (v1,22) € P(B U

= {u57 0, Uﬁ}a
where ug = (a1)5 + (az)4 and vz = (a1)} + (az);5.
If 3 =1, then z; € R} = [A4;]" for i = 1,2. Thus, (5.27) reveals that
PY(1) = {(z1,(a2)f) |21 € [(a1)7, —(a2)]}
U{(l'h —z1) |21 € [~(a2)f, (a){]}
and
PA(1) = {((a)f,22) |22 € [(a2)7, —(a1)]}
= U{(—Im@) | 1€ [=(a)], (a2){]} -
These equations imply that
S(B) = {z1 + 23 | (z1,22) € P(1) = PY(1) U P2(1)} = [uy A v1, ug v vy],

where u; = (a1)7 + (ag){ and v1 = (a1)] + (a2)7. In addition, note that u; <0 < vy

or v; < 0 < uy since (a;)] + (a;)] =0 for i =1,2.
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(iii) The proof of (5.26) for the case where (a1)5 > —(az)} and (a1); < —(ag)j is similar
to the one of (i).

(iv) The proof of (5.26) for the case where (a1); = —(az)5 and (a;)} > —(az); is similar
to the one of (ii).

]

Note that in the above lemma, the condition (a;)] + (a;)] = 0, for i = 1,2,
stands only for fuzzy numbers that are centered in the origin, which means that the
translation of A; and As are given by the midpoint of the core of the respective fuzzy

number.

Let us now employ Lemmas 1, 2, and 3 to prove the following two theorems

that characterize the a-cuts of the difference A; —; A,.

Theorem 5.4. Let A, B € Rg,. The a-cuts of [A—; B]* are given by
I\ (a5 = 05) A (ag = 53)) \/ ((a5 = b5) v (af = 7)) |
Bza Bza

for every a € [0, 1].

Proof. Let «a € [0, 1] be arbitrary. By Theorem 5.3,
[A—; B]* = [A") 44 (=B*)]* + (ks — k)

where kq = 0.5(a] + af ) and kg = 0.5(b] + b ).
Note that (a®*))* = af — k4 and (b)) = b% — kp for all a € [0, 1]. Defining

C = —B™2)_one obtains ¢, = —(b*2)* = kp — b} and ¢ = —(b*8))7 = kg — b for all

a € [0, 1]. Moreover,
(a(k?A))l_ + (a(kA))i*‘ = (al_ + af) —2ks =0

and
CI—FCT = (kB—bir)—f—(kB—bI) ZQkB—(bir-i—bI) = 0.

A brief glance at Lemmas 5.2 and 5.3 reveals that

[A(k;A) +o (_B(kB))]a _ [A(kA) +0 C’]O‘ = U S(ﬁ) (528)
pela,1]

Recall that S(f) is given by

sw):{[ e, O, gk, A0 1)

ug A g, ug vugl L, ifp=1

Y
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where
ug = (a(kA))g + cg = (ag —b,)+ (kp — ka)

and
vg = (a(’“‘));r +c5 = (ag — b))+ (kp — ka).

Thus 11 < 0 < vy or vy <0 < uy, since (a®))7 + (a*)) = ¢ + ¢ = 0. This
implies that
0 € [ug A vg, ug v vg]

and, consequently,

U s®= 1) 51, (5.29)
]

pelan1] Belasl

where

2o ) SN0}, ifBel0,1)
Sw)_{ Sy  Lifg=1

One obtains [A*4) +( (=B*#)]* = | | 5(8) by merging (5.28) and (5.29).
Bela,1]
Since S(f) # & for all § € [, 1], Lemma 5.1 can be applied to U S(B), yielding
Belo1]

lJ S0 = [/\(Uﬂ/\vﬁ)v\/(uﬂvvﬁ) :

Bza B>a

Moreover, note that A%4) 4+, (—B*2)) is a fuzzy number by Theorem 5.2 which
implies that the sets {ug Avg | = a} and {ug v vg |5 = a} are bounded for every a € [0, 1].
Since R is conditionally complete lattice (see Example 1.3), every group translation is an

order-automorphism [22]. As an immediate consequence, it follows that

Ns rvs) = N(lla5 —by) + (ks — ka)] A [(af — %) + (ks — ka)])

Bz Bz=a
= Aag =) A (af = D)) + (ki — ka))
Bz«
= Allaz —by) A (af —b5)] + (kp — ka).
B=a
Similarly,
\/ (s v v5) = \/[(a5 —b7) v (@} = b2)] + (ki — k).
Bz« B=a

Since [a + ¢,b + ¢] = [a,b] + ¢, for all a,b,c € R, thus

[ACD o (=BEN]™ = | N\ (a5 —b3) A (af = b5)), \/ (a5 = b3) v (af = b)) |+ (kp—ka)

Bza Bza
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At last, the proof finishes as follows:
[A—;B]* = [A®) 4o (=B®EN]™ 1 (ks — kp)

= | Naz —b5) A (af = b}), \/ (a5 —b3) v (af = b)) |-

Bza B=a

]

Theorems 1.9 and 5.4 reveal that a-cuts of the g-difference and of the I-
interactive difference of two fuzzy numbers in Rz, coincide. Consequently, the g-difference
and the I-interactive difference of A and B are equal if A, B € Rz, [102].

Theorem 5.5. If A, B e Rx,, then

A—;B=A—,B.

The g-difference extends the gH— as well as the H—difference, so all well-
known differences between fuzzy numbers in Rz, can be derived using the sup-J extension

principle for particular choices of J, and the following corollary is obtained.

Corollary 5.2. Let A, B € Rg,. If the Hukuhara difference between A and B exists, then
the gH-, g-, and I-differences also exist and they satisfy

A-yB=A-,yB=A—,B=A—;B.

There are two types of fuzzy arithmetic based on joint possibility distributions
of fuzzy numbers: the interactive and non-interactive arithmetics [51]. Theorem 5.5 shows
that the joint possibility distribution I gives rise to the generalized difference. Since I # J,,

the g-difference is an interactive arithmetic operation.

These differences give raise to the H-, gH-, and g-derivatives, as it was pointed
out before. Both concepts of gH- and g-derivatives, given by Definitions 1.35 and 1.36
extend the Hukuhara derivative (see (1.34)) [118]. This is also true for the interactive

derivative that is defined as follows:

Definition 5.2. Let F: R — Rz, 29 € R, and § > 0. For every h € (—6,0)\{0}, let J), be
a joint possibility distribution of F(xo + h) and F(xq) and let J = {J, |0 < |h| < 6}. The
interactive derivative of a fuzzy-number-valued function F': R — Rz at xy with respect to

J is given by

lim £ (Fo + 1) =g, Flwo) (5.30)
h—0 h

if this limit exists. In this case, the limit in (5.30) is called the interactive derivative of F

at xo and is denoted F';(xo).
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This definition yields a concept of interactive derivative for a fuzzy-number-
valued function. From the point of view of fuzzy differential equations, a fuzzy initial value

problem can be written by

F'(z) = f(F
F(l’o) = FO
for some fuzzy derivative F”.
Considering interactive fuzzy derivative J;,, one obtains
_ F@t+h)—; Ft)
i h = JF@®).1) (5.32)

F(to) = F(]

where the expression in the left side of equation depends on F(t) and Jj,. This means
that in order to study a solution for this problem, it is necessary to establish which joint
possibility distribution is at hand. In particular, if the family of JPDs under consideration
is Z = {I,|0 < |h| < §} where I, are the joint possibility distributions of F'(zo + h) and
F(xg) given by (5.19), then F7 is called the Z-interactive derivative of F.

Observe that for a given fuzzy-number-valued function F': R — Ry, the joint
possibility distribution I, connects the fuzzy numbers F(¢) and F'(t + h), for all h € R.
From the dynamical point of view, one intends to yield an information about the future
F(t + h) knowing the present F'(t), where h > 0. Here this information is provided from
the joint possibility distribution given by I. For instance, if one establishes that a fuzzy
function has decreasing width, then the formula (5.6) with v = 0 produces the joint
possibility distribution I with this property.

The next theorem, which is an immediate consequence of Theorem 5.5, shows
that the g-derivative of a fuzzy-number-valued function F': R — Rz, coincides with the

Z-interactive derivative of F'.

Theorem 5.6. Let F' : R — Ryg,. Thus F is g-differentiable if and only if F' is I-
differentiable.

Hence, the g-derivative of a fuzzy-number-valued function F': R — Ry, is a
particular case of the interactive derivative. In other words, the g-derivative of /' : R — Rz,
is interactive. Since the g-derivative extends the notions of H- and gH-derivative, these
are interactive as well. In fact, Barros and Pedro suggested this statement as a hypothesis

in [15]. This thesis proves this result.

In conclusion, the family of JPDs defined as in (5.6) has the following properties:

1. Produces an interactive sum with smaller Pomepeiu-Hausdorff norm;

2. Extend classical numerical solutions of FDEs;
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3. Produces an interactive difference that extends the Hukuhara difference and its

generalizations;
4. Produces an interactive derivative that embraces the g-derivative;

5. Associates numerical solutions with the notion of interactive fuzzy derivatives.

However from the computational point of view, the interactive arithmetic
operations based on family J, may be difficult to successfully implement. The next chapter
proposes a new family of JPDs denoted by 7. This new family has similar properties with
the one defined as in (5.18). But in advantage to J,, the interactive sum and difference
derived from the family J, can be characterized by means of a-cuts, which makes the

computation more simpler.

5.4 Conclusion

This chapter presented a parametrized family of joint possibility distributions.
The joint possibility distribution .J, can be applied to every pair of fuzzy numbers, in
contrast to Jr. From the concept of translated fuzzy numbers, it was exhibited another
joint possibility distribution in order to control the Pompeiu-Hausdorff norm and width
of the arithmetic operations via sup-J extension. From these family a numerical solution
for fuzzy initial value problems were proposed, where the initial conditions are given by
J-interactive fuzzy numbers. In particular this chapter focused on Jy. It was demonstrated
that, under some weak conditions, the generalized difference represents a particular case of
the interactive difference. This chapter ended by showing that the generalized derivative
of a fuzzy-number-valued function F' : R — Ry, is a particular case of the interactive

derivative.
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6 Family of joint possibility distributions 7~

This chapter proposes a new family of joint possibility distributions and defines
arithmetic operations based on it. More precisely, this chapter focuses on the interactive
sum and difference. The Pompeiu-Hausdorff norm and width of these operations can be
controled as well as the arithmetic operations obtained via J,, given in the previously

chapter.

The family J, provided very interesting results. However, the arithmetic op-
erations may be difficult to compute. From this new family proposed here, it is possible
to characterize the interactive sum and difference by means of a-cuts, which makes the
computation simpler. This new family also extends the g-difference, that is, the generalized

difference can be obtained from one joint possibility distributions of this family.

This chapter is also connected with Chapter 3, since it deals with fuzzy discrete
models involving only interactive sum and difference. This chapter also discusses the
consequences of symmetric fuzzy numbers in the context of interactive fuzzy equations.
The applications of this approach are provided in Chapter 7, where the Fibonacci and

delay discrete sequence are studied. This chapter is based on the reference [55].

6.1 Family of joint possibility distributions 7,

This section constructs a new parametrized family of joint possibility distri-
butions {7, : 7 € [0, 1]}. Each element of this family is associated with the parameter
v, which considers the notion of interactivity as well as the family of joint possibility

distributions provided in Chapter 5.

Before providing the construction of this family, consider the fuzzy numbers
A, B € Rg,. In view of Definition 5.1 the a-cuts of the translated fuzzy numbers A@ and
B® are denoted by

[AP] = [(@®)7, (@™)2] and [BO) = [6), 6],

) e}

where @ = 0.5(a] + af) and b = 0.5(b] + b7). Recalling that [A]* —a@ = [A@]* and
[B]* —b= [B(b)]o‘, for all « € [0, 1].

For the construction of 7,, let us consider for each v € [0, 1] and for each z € R,

the following intervals

La(w,0,7) = [0+ f3(2) +7((0)g = f5(@), b+ f5(@) + (0P = fi())],
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and

Ip(z,a,7) = [a+ f(x) + (D) = fE(2)),a + fi(2) + (D)5 — fE(2))],

where the functions f§ and f3 are respectively given by

fi@) = (=(@—a) v (")) A (B")2)

and

(@) = (=(z = b) v (@@))) A ("))

Note that the intervals 14 and I are well-defined, since (b@); < (0} and
(@) < (@)}, for all a € [0,1]. Also, the functions f§ and f& are continuous and

decreasing, for each a € [0, 1], hence by Weierstrass Theorem it follows that f§(a)) <
file) < filag) and f5(b) < f3(y) < f(by), Vo € [A]* and Vy € [B]*,
Therefore, for a fixed v € [0, 1] it follows

falad) (X =) + by < filag)(1 =) + b, Vo€ [0,1]

and
fa(al)(1 =) + by < filag)(1 =) + by, Yae[0,1].

This means that for each a € [0, 1] the function f¢ applied at a, produces the
smallest left endpoint of the interval I4 and fj applied at a, produces the biggest right
endpoint of the interval I4. Analogously, fg applied at b} and b, produce the smallest
left endpoint and the biggest right endpoint of the interval Ig, respectively.

Now, for each v € [0, 1] consider the sets Pa(v), Pg(y) € R? given by

ped - (U [ U e i (U{x}xu x,m) 61
a€l0,1) \ze{ag,ad} ze[ At
and

Pp(y) = U U Is(z0,7) x {a} U<U IB(;U,m)x{x}).(ﬁ.z)

ael0,1) \ ze{by bt} ze[B]!
Define the fuzzy relation 7, by the following membership function

A(x1) A B(xo) ,if (21, 29) €
onay - A A Bt ) € PO) o)

0 , otherwise

where the set



Chapter 6. Family of joint possibility distributions J., 130

is defined as the region such that .J,(u,v) > 0, ¥(u,v) € R?.

In order to clarify this construction, the following example presents the set

P(~) for specific values of 7.

Example 6.1. Let A = B = (—1;0;1) € Rx,, whose a-cuts are given by [A]* = [B]* =
[-1+ a,1 — «]. For these fuzzy numbers one obtains f4(a,) =1—«, fi(al) = -1+ a,
fo(b)) =1—a and fg(bl) = —1+«. The functions f$(-) and f(-) are depicted in Figure
33.

Figure 33 — Graphical representation of f3 and f3 of Example 6.1.

1 T T T 1

0.5- b 0.5-

-0.5- b -0.5-

| 0.5 0 0.5 1 | 0.5 0 0.5 1
X X

The red and blue lines represent the functions f§ and f3, respectively, where A = B =
(—1;0;1). Source: Author.

The intervals 14 and Ig are given by

In(ag,0,y) = [1—a+7(—2+2a),1—aqa],
Is(al, ) = [-1+a,—1+a+7(2—2a)],
Ip(b,,a,v) = [1—a,1—a+v(—2+2a)],
Ip(bl,c,y) = [-1+a+79(2-2a),—1+al.

For v = 0, the intervals
In(a,,0,0) =[1—a,1—a] and Ia(al,a,0)=[-1+a,—1+q]
are depicted in Figure 34 for different values of a.
For v = 0.25, the intervals
I4(a,,@,0.25) = [0.5—0.50,1 — ] and Ia(al,,0.25) =[-1+ «a,—0.5+ 0.5a]

are depicted in Figure 35 for different values of «.

For v = 0.5, the intervals

I4(a,,a,0.5) =[0,1—a] and Ia(al,a,05)=[-1+«,0]
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Figure 34 — Graphical representation of the interval I4 for v = 0 given as in Example 6.1.

. @00 . L,@,00)
. 14(8) 55,0-25,0) . 148} ,5,0.25,0)
. 14(8550.5,0) . 148} 5,0.5,0)
. 1\(@] £5,0.75,0) . 1a(@5 75:0.75,0)
. 143,10 . 14(a%1,0)
0 0.2 0.4 0.6 0.8 1 1 0.8 0.6 0.4 0.2 0

The left subfigure contains the interval 4 evaluated at a_ for v = 0 and for different
values of a € {0,0.25,0.5,0.75, 1}. The right subfigure contains the interval 4 evaluated
at a for v = 0 and for different values of a € {0,0.25,0.5,0.75, 1}. Source: Author

Figure 35 — Graphical representation of the interval I4 for v = 0.25 given as in Example

6.1.
—1,(2;,0,0.25) |A(a0 0,0.25)
o158 510:25,0.25) ey (@ 55:0.25,0.25)
------- s 1485 £,0.5,0.25) s 1p (@5 £0.5,0.25) -
- 15(85 15/0.75,0.25) e @) 10.75,0.25)
. 15(87,1,0.25) . 1,@1,0.25)
0 0.2 0.4 0.6 08 1 1 0.8 0.6 0.4 0.2 0

The left subfigure contains the interval I4 evaluated at a, for v = 0.25 and for different
values of « € {0,0.25,0.5,0.75, 1}. The right subfigure contains the interval 4 evaluated
at a) for v = 0.25 and for different values of « € {0,0.25,0.5,0.75, 1}. Source: Author

Figure 36 — Graphical representation of the interval I, for v = 0.5 given as in Example

6.1.
—1,(2,,0.05) — 1@ 0,05)
- 14(85 55,025,0.5) - 14(8} ,5,025,05)
............. . 1(25 510:5,0.5) o 1a(@% 5,0.5,0.5) JE——
= 1(85 5,0.75,0.5) e (@) 1510.75,0.5)
1,2,,1,0.5) . ,@1,05)
0 02 0.4 06 0.8 1 1 0.8 0.6 0.4 0.2 0

The left subfigure contains the interval I4 evaluated at a, for v = 0.5 and for different
values of a € {0,0.25,0.5,0.75,1}. The right subfigure contains the interval 14 evaluated
at a) for v = 0.5 and for different values of « € {0,0.25,0.5,0.75, 1}. Source: Author

are depicted in Figure 36 for different values of a.
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For v = 0.75, the intervals
I4(a,,a,0.75) = [-0.54+ 0.5a,1 —a] and Ia(al,,0.75) = [-1 + a,0.5 — 0.5¢/]
are depicted in Figure 37 for different values of a.

Figure 37 — Graphical representation of the interval I4 for v = 0.75 given as in Example
6.1.

T.2,,0,0.75) T.@; 0,0.75)

mme (@) 55,0.25,0.75) e (@) ,5,025,0.75)
(@, 5:0.5.0.75) I\(a; 5.0.5.0.75)

—————— - + ——————
mm (@ 50.75,0.75) o 1482 ,5,0.75,0.75)

- +
o 1,@1,075) . 1@1,075)

-0.5 0 0.5 1 -1 -0.5 0 0.5

The left subfigure contains the interval /4 evaluated at a_ for v = 0.75 and for different
values of « € {0,0.25,0.5,0.75,1}. The right subfigure contains the interval 14 evaluated
at a} for v = 0.75 and for different values of o € {0,0.25,0.5,0.75, 1}. Source: Author

Finally for v = 1, the intervals
Is(ay,a,1) = Ia(al,a,1) =[-1+a,1+a]
are depicted in Figure 38 for different values of a.

Figure 38 — Graphical representation of the interval I4 for v = 1 given as in Example 6.1.

— 01 ' ' ' — @00
a3 ,5,0.25,1) ama h(@] 50251
........ (35 5:05.1) 5 505.1)
"""""""" o W85 5:0.75,1) m————

0.75"
RERCRR RENCARY

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

The left subfigure contains the interval I, evaluated at a_ for v = 1 and for different
values of « € {0,0.25,0.5,0.75, 1}. The right subfigure contains the interval 4 evaluated
at a for v = 1 and for different values of a € {0,0.25,0.5,0.75, 1}. Source: Author

From Equations 6.1 and 0.2 the sets Pa(y) and Pg(7y) are given by

Pis(v) = {-1+a}x[1—a+y(-2+2a),1—a]u
{1—alx[-14+a,-1+a+75(2—-2a)]u
[-1+a,1—a] x {0}
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and

Pg(y) = 1—a+y(-2+2a),l-a]x{-1+a}u
[-14+a,—-1+a+7(2—-20)] x{l—a}u
{0} x [-1+a,1—a.

Figure 39 depicts the set P(vy) for different values of . The black region
represents the set Pa(7y), whereas the gray region represents the set Pg(7y). Hence, P(7) is

given by the union of these two regions.

Figure 39 — Graphical representation of the set P, for different values of v given as in
Example 6.1.

The subfigures (a), (b), (¢), (d), (e) exhibit the top view of Pa(7) (represented by black
region) and Pg(7v) (represented by gray region) for v = 0,0.25,0.5,0.75, 1, respectively.
Source: Author

Observe that for v = 0, Pa(y) = Pg(7). This statement holds since the functions
f4 and fg are equal, in this example. Note that for small values of v, one obtains more
constrains for the region P(v), where J,(u,v) > 0. Those constrains are associated with
interactivity in the following sense: the larger the constrain of the region P the greater the

interactivity between the fuzzy numbers.

One can observe that in the previous example the chosen fuzzy numbers can
be also interactive with respect to the joint possibility distribution J, (see (4.7)), for
qg=1,r=0and g = —1,r = 0. However the joint possibility distribution .J;, can not be
applied when the involved fuzzy numbers have different shapes, as already observed in
Chapter 5. The next example illustrates that the proposed joint possibility distribution 7,
does not have this type of restriction nor does the joint possibility distribution .J, given
by (5.6).
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Example 6.2. Let A = (—2;—1;1;2) and B = (—1;0; 1) be fuzzy numbers whose a— cuts
are given by [A]* = [-2+ a,2 —a] and [B]* = [-1 + a,1 — a]. Thus

B l—a ,if 0<a<l1 N —1+a ,if 0<a<l
filag) = and  filay) =
0 Jif a=1 0 Jif a=1
and
f5by) =1—a and f3(by) =-1+a,
which are depicted in Figure /0.

Figure 40 — Graphical representation of the functions f§ and fg7 given as in Example 6.2.

1 : T T 1
0.5t 1 0.5F
g< g P
-0.5f B -0.5¢
T 4 0 1 2 ™ 05 0 05 1

X X

The red line at left subfigure represents the function f§ and the blue line at right subfigure
represents the function f5, where A = (—2;—1;1;2) and B = (—1;0;1). Source: Author

For each ~y € |0, 1], it follows

[A(a;7a77) = [1—Oé+"}/(—2+206),1—04]’ O<Q<1
In(af,0,7) = [-1+a,-14+a+79(2-2a)], 0<a<1
Ln(z,1,7) = {0}, Vo e [A]',

and

Ig(b,,a,v) = [l—a+y,1—a+y(-3+2a)], 0<a<1
Ig(bf,a,v) = [-1+a+7(B—-2a),-1+a—79], 0<a <.

Figure /1 depicts the sets Ps(7y) (black region) and Pg(y) (gray region) for
v =0,0.25,0.5,0.75,1. Note that independently of the choice of the fuzzy numbers A and
B, the larger the parameter «y the greater the region P(7).

Figure 42 graphically represents the tri-dimensional view of the joint possibility
distribution J, for some values of .

Figure 43 compares the regions P(v) of the joint possibility distributions J.,
and T, for different values of y. One can observe that the region where J,(u,v) > 0 is

smaller than the region where J,(u,v) > 0, for all values of v € {0,0.25,0.5,0.75, 1}.
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Figure 41 — Graphical representation of the sets Ps(v) and Pg(y) given as in Example
6.2.

The subfigures (a), (b), (¢), (d), (¢) exhibit a top view of P4(7) (represented by black region)
and Ppg(7y) (represented by gray region) for v = 0,0.25,0.5,0.75, 1, respectively, where
A= (-2;-1;1;2) and B = (—1;0;1). Source: Author

Theorem 6.1 shows that J = {J, : v € [0,1]} is a family of joint possibility
distributions of A and B. Moreover, the interactive sum between A and B, obtained via

sup-J extension principle and denoted by A +, B, is a fuzzy number in Rgz,.

Theorem 6.1. Let A,B € Rz, and J, be the fuzzy relation given by (6.3). For each
v € [0,1], it follows that:

(a) T is a joint possibility distribution between A and B;
(b) T (21, 72) < Ta(21,22), for all 0 < v < A< 1 and for all (v1,75) € R

(C) A-i-,yBER]:C.

Proof. (a) Let us first prove that I,(z,«,vy) < [B]*, Vx € [A]* and Igz(y,a,7) <

[A]%, Yy € [B]® for all @ € [0,1] and for all v € [0,1]. Suppose that a < 1. Let

z € I (x,a,7), where x € {a_,a’}. Let us divide this proof into two cases.

(i) Suppose that = = a .
If —(a@); < (0®)F then

«

by <b—(a®); +7((bP); + (™)) <z <b— (@@); + v ((bD)F + (a®@)7) < b}

which implies that z € [B]®.
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Figure 42 — Graphical representation of the joint possibility distribution 7, given as in
Example 6.2.

(a) The top view of Jp. (b) The top view of Jo.25.

(c¢) The top vi;aw of Jo.5. (d) The top \';iew of Ji.

The light gray trapezoid represents the trapezoidal fuzzy number A = (—2;—1;1;2) and
the light gray triangle represents the triangular fuzzy number B = (—1;0;1). The dark
grey region represents the joint possibility distribution 7. Source: Author.
On the other hand, if —(a®)7 = (®)7 then
by <+ () +(00); — 00 <z <b+ (")} =t

which implies that z € [B]®.
Therefore, 1,(a,,a,7v) < [B]®, Ya € [0,1) and Y~ € [0, 1].

(i1) Suppose z = a}.

If —(a®)F < (6®) then
by = b+ (00)7 <2< b+ (0)g + ()7 — 0)7) <],

which implies that z € [B]®.
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Figure 43 — Graphical representation of the joint possibility distribution 7, given as in
Example 6.2.

(a) The top view of Jy and Jy. (b) The top view of Jy.25 and Jo.25.

(¢) The top view of Jy.5 and Jo.5. (d) The top view of J; and J;.

A A
|

The light gray trapezoids represent the trapezoidal fuzzy numbers A = —1;1;2) and
the light gray triangles represent the triangular fuzzy numbers B = ( 1, O, 1). The left
dark grey regions represent the joint possibility distribution J,. The right dark grey regions
represent the joint possibility distribution 7,. Source: Author.

It —(a®)} = (6®); then
by <b— (@@ + (65 + (@®@)E) < 2 <b— (@@)F + A (OP)f + (@) < b,

[e%

which implies that z € [B]*.
Therefore, I,(a}, a,v) < [B]*, Ya€[0,1) and Vv € [0, 1].

Let us prove the above statement in the case where av = 1. Let z € I4(x,1,7),

where z € [A]'. Also, let us divide this proof into two cases.

(7) Suppose zx € [a,0].
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If —(z —a) < (0®); then

by <b—(x—a)+ (") + (z—a)) <z <b—(@—a) +4((O"){ + (v —a)) <bf,

by < b+ (BO)F + ()7 - (0)]) <2 < b+ 6O)F =01,
which implies that z € [B]'.
(1) Suppose z € [0, a;].
If —(z —a) < (b®)] then
by =b+ (00) <z <b+ (00); + D))~ 6P)) <bf,
b <b— (0 —a) +1(0); +(@—) < 2 <b— (2 —3) +7((BO)} + (2 —a)) < b},
which implies that z € [B]'.
Therefore, I ,(z,1,7) < [B]', concluding that the inclusion holds for all a €
[0, 1]. Similarly, one can prove that I5(y, a,v) < [A]%, Va,v € [0,1].

Now, let us prove that 7, is a joint possibility distribution for A and B for
all v € [0,1]. To this end, let v € [0,1]. On the one hand, J,(x1,x2) = A(z1) A B(x3) <
A(xy), Y(z1,29) € P(7). Hence,

A
H(xl) = \/ Ty (21, 72) < A(1).
T~ z2€R

On the other hand, for each a € [0,1] let T € [A]® such that A(ZT) = «

If a < 1, then Ay(z) = O Or az@ = q, since a are continuous. From definition
of P(v), exists w € 1,(T, A(T),v) such that (Z,w) € Pa(y), which implies that &J #
Pa(v) € P(y). Since w € I,(7, A(T),7) < [B]*@, it follows that B(w) > A(T) = o
Therefore,

A(T) = A@®) A Bw) = T,(T,w) < \/ Ty, u) = 17, (2).
ueR

If « = 1, then T € [a], a]]. By definition of P(v) exists w € I4(7,1,7) such
that (Z,w) € Pa(v), which implies that &J # P4(y) < P(v). Since w € 1,(7,1,7) < [B]",
it follows that B(w) > 1 = A(T). Therefore,

A(®) = A@®) A Bw) = J,(z.w) < \/ T, (F,u) = I3 (7).

ueR

Consequently, Hi = A. Similarly, it can be prove that HBW = B. Hence, J, is
a joint possibility distribution for A and B, for all v € [0, 1].
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(b) Let us prove that J,(z1,22) < Jx(x1,22), for 0 < v < A < 1. To this end, let
(z,y) € [J,]?, for some a € [0,1]. Then (x,y) € Pa(7y) or (z,y) € Pp(y). Without loss of
generality, suppose that (x,y) € Pa(7).

If a < 1, then (z,y) € {a,,a}.} x Li(x,a,v). Let us divide this proof in two

al) o

cases.

(1) Suppose x = a.

If (@) + (6®)F = 0 then

b= (D)5 + Mg + (a@)3) <0 = (D)5 +4((BV); + (aV)3) <y

«

and

y < b= (a™)g + (V)5 + (a)7) <b— ()7 + MOD)E + (a®);).

This implies that y € I,(a,, a, A).
If (@), + (b@);’ < 0 then

b+ (60)F + MBP); = 6011 < b+ (6O)F + (D) — 671 <,

and

y <b+(O0)g = b+ ) +((0)5 = 60 = b+ (0)7 + M) = (67)2),

which also implies that y € I,(a,,a, A).
(it) Suppose z = a}.

If (a@)F + (b®)= > 0 then

and

y< b+ OO)7 + (0 = 00)7) <b+ (607

This implies that y € I,(a), a, \).
If (a®)* + (™) < 0 then

b= (@) + MO + (@®)) <b— (@) +4(06"); + (@@)5) <.

and

y < b= ()5 + (D)5 + (@)3) <b— (@) + MOD)E + (a®)3),

this also implies that y € I,(a}, o, \).
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If & =1 then suppose z € [a;,0]. If —(z —a) < (b@)l+ then
b—(w—a) + M); + (r—a) <b— (2 —a) +5((t")] + (v —a) <,

and

y<b—(z—a)+ 10O + (z—a) <b—(z—a) + \OP){ + (z - a)),
this means that y € I,(x, 1, A).
If —(z —a) = (b®){ then

b+ (B + AT — OO)F) <b— (z—a) + (P — D)) < v,

and
y < b+ (OO +1(OO)F = (6)F) = b+ 6O)F + ME)T - 0D,

which implies that y € 1,(z, 1, \).
The case where z € [0, ay | is analogous.

Therefore, [J,]* < [Jx]%, for all 0 < v < A < 1. Consequently, J,(x1,z2) <
Ia(w1,22), V(21, 72) € R%

(c) Let us first prove that A +, B is a fuzzy number by showing that [A +, B]® is a
non-empty, compact and connected set of R, for all « € [0, 1]. These conditions imply that
[A+, B]* is a closed and boundary interval, which by definition yields A +, B € Rx.

By Theorem 2.1, [A +, B]* = +[J,]% Thus, it is sufficient to show that
[J,]* satisfies the above properties for all a € [0,1]. Since [7,]' # &, it follows that
[A+, B]* # &, Ya e [0,1]. Hence [A +, B]® is a non-empty set.

Let us prove that [J,]* is a compact set, that is, all sequences in [7,]* has a
subsequence that converges to a point in [J,]*. First, note that P(v) is bounded for all
v € [0,1], since P(vy) < [A]” x [B]°. Let (2,,y.) be a sequence in [7,]%, so exists (c,) and
(in) such that (z,,y,) € P, (v), where i, € {A, B} and o < «,, < A(z,,), B(yn), Vn € N.
Since {A, B} is a finite set, there is a convergent subsequence (in,) of (in), that is, for
every € > ( there exists ny, such that ¢, = A or ¢,, = B, for all n; > n,.

Suppose, without loss of generality, that A,, = A, Vn € N. By definition

o, T, = ap O I, €

of Pa(7), the subsequence (z,,) of (z,) satisfies x,, = a i an,

Qn ’
[a1,ai], Vni = ng,. Let us divide this proof into three cases.

«

(i) If wn, = ag, , then y,, € Iy(ay, ,om,,7) S [B]*".

Since ay,, € [0, 1], yn, € [B]** and B is upper semi-continuous (see Proposition 1.1),

there are convergent subsequences (o, ) and (y,, ) such that

(am,,) > @ > aand (yn, ) > T € Ly(agz,@,7) < [B]".
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Consequently, B(y) = @. Since A € Rg,, one obtains

T=Ilimz, =Ilima, =a;
1—00 T 1—00 "k, a?’

thus A(7) = A(az) = @.

Therefore, (Z,7) € {az} x {I4(az,@,7)} S Pa(7y). Finally,
J,(z,7) = A@) A B(y) = a = (7,7) € [J,]" = []"

J’_

an, » then the proof is analogous to the item ().

(i7) If z,,, = a

(iii) If x,, € [a],a]], then y,, € I,(z,,,1,7) < [B]'. Let (Tny, s Yny,) be a convergent
subsequence such that z,, — T € [A]' and Yn,, — J- From the continuity of the

endpoints of 1,(%,1,7), it follows 5 € 1,(Z, 1,7). Thus (Z,y) € P(y) and
I(T,Y) = A@) A B(y) =12 a=(7,7) € [J]"
Therefore, by items (), (i), and (iii) one concludes that [7,]|* is compact.
Now, let us show that [J,]* is a (path) connected set.

Let (x1,22), (y1,y2) € [J4]% Thus exist (i), (iy), () and (o) such that
(z1,72) € Py, (7), (y1,92) € P, (7), where (i), (iy) € {A, B}. Thus a < a, < A(21), B(x2)
and a < ay < A(y1), B(yz).

Let us consider the case where ¢, = i, and w.l.o.g suppose that ¢, =i, = A.

Suppose A(z1) < A(y1) (the other case is similar). Let us divide this proof into

three cases.

(¢) If 21 = a,, and y1 = a, then the path

fan} x [b+ fi7 (@) + 7 (), = f5(21)),25]
{(ag,b+ filaz) + ()5 fA(aﬂ))) e (aw,ay)} v
fyr} < b+ f5" () + (), = £47 () 2],

connects (x1,xs) and (yi,y2) in [J,]%, since the above sets are contained in Pa(7).

(#1) If x; = aj, and y; = a then the path can be constructed in a similar way of item
(4)-
(i) If z1,v1 € [a7, a7 ], i.e, @ = o, = 1. Suppose w.l.o.g that z; < y;. Thus, the points
(x1,22) and (yi,yo) are connected by the following path:
{w} < [b+ faler) + 7((1@)_ — fa(z1)), @] U
{26+ f4(2) +21((O)y = F4(2))) s 2 € (w1,91)} v
fyr} x [0+ faly) + 107 = Fi)), v,

since the above sets are contained in Py(7).
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On the other hand, let us consider the case where i, # i,, that is, (z1,23) €
Pa(y) and (y1,y2) € Pg(y). Since [J,]' # &, there exists (z1,22) € Ip(22,1,7) x
Ia(z1,1,7) < [A]' x [B]'. A combination of the previously construction ensures that
there are paths p; and p, which connect (x,2z3) to (21, 22) and (y1,¥2) to (21, z2). Thus
p1 U po is a path connecting (z1,x2) to (y1,yz), since (z1, 2z2) € Pa(y) N Pg(7y). Therefore,
[J,]% is a (path) connected set, which implies that +([7,]%) is a closed interval of R, since
[J,] is also compact. By Theorem 1.1, A +, B is a fuzzy number, for all v € [0, 1].

Finally, it will be shown that A+, B € Rgz,. In view of Proposition 1.2, it remains
to prove that ¢, and ¢} are right-continuous functions in (0, 1], where [A+, B]* = [c;, 2]
The fact that [A+, B]* is a non-empty, compact and connected set, for all a € [0, 1], implies
that for every z € [A+, B] there exists (21, z2) € [J,]® such that z = z1 + x5. Let (o) be
a sequence that converges to a € (0,1) such that o < o, Yn e N. If 2, = ¢, € [A+, B]*
then z, > z := ¢, € [A+, B]?, since c, is increasing. This observation reveals that
Zn € [2,¢1 ], for all n € N. Thus, one can extract a decreasing convergent subsequence
(2n,,) € (25,) such that kh_{rc}o Zn, = Z and 2, ,, < zy,. Obviously, z < Z. Let us prove that
z = Z. To this end, suppose z < Z. Thus (A +, B)(w) = «, Yw € [2,%), since [A +, B|* is

close interval of R.

If J,(x1,22) = o € (0,1), then by Equation (6.3), one obtains A(x;) = « or
B(zs) = a. Due to the continuity of the functions a, and a; the set {z : A(z) = o} is
equal to {a; : A(a,) = a} u {a} : A(a}) = a} for a € (0,1), consequently, this set has
at most two elements. Consider the following elements z < w; < wy < w3 < wy < Z and
(1, 23) € [J,]* such that w; = 2] + x} for j = 1,...,4. Thus, it is possible to determine
wy, and w,, with p; < py such that z; := " = 2*, A(2}*) = o and B(2%*) > a, for
k = 1,2, which implies that a, = T; or a} = T;, where i € {1,2}. The definition of Pa(y)
ensures that 25" € 1, (al*, o, ), for k = 1,2. Since 2" = wy, — T1 < wp, — T1 = x5, for
rh' < Ty < xh’ it follows that (7, T2) € Pa(y) < [J,]* and B(T2) > « . Suppose that
a, = Ty. For Z—w,, > € > 0 exists ¢ > 0, such that « < f < a+4d implies 0 < ag —T; <¢
and Y := I,(ag, 3,7) n (28", 28%) # &, since a, and the endpoints of I,(a,,,v) are
continuous. Thus (z1,22) € Pa(y), where 71 = a5 and 7, € Y < [B]?. Consequently,
Wy, =T + 25 < a1+ 19 <ag + 2y KT+ 25 + € <wy, + € <Z. Thus, one obtains the

contradicting statement

a = (A +’Y B)(l’l +$2) = j’y(ajlny) = B > Q.

A similar analysis can be made in the case where a} = 7. Therefore, z = Z.
Thus ¢, is right-continuous in the interval (0,1). Similarly, it can be prove that ¢ is

right-continuous in the interval (0,1). Hence, A +., B € Rx,.
[l

An immediately consequence of item (b) of Theorem 6.1 is that J; has greater
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region where J,(u,v) # 0, than 7, for all v € [0,1). One can prove that J; = J., by
following the similar steps given as in [54], which means that if 77 is the joint possibility
distribution under consideration, then non-interactive fuzzy numbers are being considered.

Hence one obtains J; = J; = J,, as expected from Figure 43 - (d).

The next example illustrates the properties given by Theorem 6.1.

Example 6.3. Let A= B = (—1;0;1) € Rg, and J, be the joint possibility distribution
of A and B given by (6.3). Figures 44, 45, 46, 47 and 48 depict J., for different values of
. Note that these figures corroborate the property given by item (b) of Theorem 6.1, that
is, Jo < Ty < Jh, for all v € [0,1].

Figure 44 — Graphical representation of 7 given as in Example 6.3.
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The left subfigure represents the joint possibility distribution 7, for v = 0, between fuzzy
numbers A = B = (—1;0; 1). The right subfigure represents the top view of 7, the region
where 7, (u,v) # 0 is depicted by the black line and the blue lines represent the level sets
of the function z = z + y for z € {—2,—1,0, 1,2}. Source: Author

Figure 45 — Graphical representation of 7y o5 given as in Example 6.3.
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The left subfigure represents the joint possibility distribution 7., for v = 0.25, between
fuzzy numbers A = B = (—1;0;1). The right subfigure represents the top view of 7.,
the region where J,(u,v) # 0 is depicted by the gray shadow region and the blue lines
represent the level sets of the function z = z + y for z € {—2,—1,0,1,2}. Source: Author

Theorem 6.1 ensures that the interactive sum via sup-J, extension principle

is a fuzzy number in Rx,. Here the focus is on the characterization of this interactive
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Figure 46 — Graphical representation of Jy5 given as in Example 6.3.

2

. N
"
1k g
N N N
- .
05 > I S
N
0 <
~ N A
05 . >
N R
-1 ™
\\-k N
15 o = o
Slize ~ 4 ~
2 ‘ J
2 45 4 05 0 05 1 15 2

The left subfigure represents the joint possibility distribution 7., for v = 0.5, between
fuzzy numbers A = B = (—1;0;1). The right subfigure represents the top view of 7,,
the region where 7, (u,v) # 0 is depicted by the gray shadow region and the blue lines
represent the level sets of the function z = z + y for z € {—2,—1,0, 1,2}. Source: Author

Figure 47 — Graphical representation of 7y 75 given as in Example 6.3.
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The left subfigure represents the joint possibility distribution 7., for v = 0.75, between
fuzzy numbers A = B = (—1;0;1). The right subfigure represents the top view of 7,
the region where J,(u,v) # 0 is depicted by the gray shadow region and the blue lines
represent the level sets of the function z = z + y for z € {—2,—1,0, 1,2}. Source: Author

Figure 48 — Graphical representation of [7; given as in Example 6.3.
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The left subfigure represents the joint possibility distribution 7., for v = 1, between fuzzy
numbers A = B = (—1;0;1). The right subfigure represents the top view of 7, the region
where 7, (u,v) # 0 is depicted by the gray shadow region and the blue lines represent the
level sets of the function z = = + y for z € {—2,—1,0,1,2}. Source: Author
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arithmetic operation. In contrast to the joint possibility distribution J,, it is possible to

describe the sum via J, by means of a-cuts.

Note that in the right subfigures depicted in Example 6.3 (see Figures 44, 45,
46, 47 and 48), the level curves of the sum operator f(z,y) = x + y are presented. The
goal is to illustrate which elements (u,v) € R?, where J,(u,v) # 0, are associated with

respect to f(z,y) = x + y.

The next section presents the interactive sum via joint possibility distribution

given as in (6.3).

6.2 Interactive Sum via 7,

This section provides a characterization of the interactive sum between fuzzy

numbers by means of a-cuts. To this end, the next lemma is used as an auxiliary result.

Lemma 6.1. Let A, Be Rz, and J, be a joint possibility distribution for A and B given
by (6.3). Thus

(7,07 = | (Pa(8,7) v Ps(B,7)), ¥yelo1], (6.5)
Bela,1]
where
({ag} x Lalaz, B,7)) v ({af} x Ly(af, B8,7)), i Be[0,1)
PA(B,W) N U {IK} X IA(‘% 177)7 Zf ﬂ =1 ’
ze[ At
and
(Ip(b5,8,7) x {b5}) v (Ix(b3,8,7) x {bg}), if Be€[0,1)
P2 =3 1 pla1,9)  {a), i 51

ze[B]!

Proof. Let us prove Equation (6.5) by first showing the inclusion U (Pa(B,7) v
pela1]
Pg(8,7)) < [Jy]*. To this end, let (z,y) € U (Pa(3,7v) U Pg(B,7)). Thus, there exists
Bela1]
B = a such that (z,y) € P4(B,7) or (z,y) € Pg(B,7). Suppose w.l.o.g (z,y) € Pa(B,7).
If 3 =12 a, then € [A]' and consequently A(z) = 1. By definition of
the set I,, one obtains y € I,(x,1,v) < [B]', which implies that B(y) = 1. Thus,
Jy(x,y) = A(z) A B(y) = 1. Hence (z,y) € [T]' < [7,]™.
If 3 <1, thenze {ag, a5} < [A)P and y € I,(z,3,7) < [B]®. Thus, T, (z,y) =
A(z) A B(y) = B which implies that (z,y) € [JY]B < [J,]%. Therefore, U (Pa(B,7) v

pela]
PB(BKY)) - [j“/]a'
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Let us prove the other inclusion. To this end, consider (z,y) € [J,]%. Hence

Jy(x,y) = a. Suppose that (z,y) ¢ U (Pa(B,7) v Pg(B,7)). Thus, exists A < a such

Bela,1]
that

(IL’,y) € ({CL;} X ]A(a;’A7’7)) <{a)\} X IA(a)\7 77 ( U {IL’} X IA xz, 177))
ze[A]!

(:L‘7y) € (]B(b;7/\7/7) X {b)_\}) Y (]B<b:7)‘a7) X {b;\i_}) o ( U ]B(xa17’7> X {:L‘}) .
ze[B]!

Since A < a < 1, it follows that

( U {x} x I, x,1,7)> and (z,y) ¢ ( U Ig(x,1,7) % {x})

e[A]* e[B]*
Without loss of generality suppose that
(z,y) € ({ax} x Ly(ay, A7) v ({al} x Ly(al, A7) -

Thus, = € {ay,a} and y € I,(x,\,7) < [B]. Since A € Rx,, one obtains A(z) = A <
B(y), for z € {ay,a}}. Hence, T, (x,y) = A(z) A B(y) = A(z) = A < a, contradicting the

fact that J,(z,y) = a. Therefore, [J,]* < U (Pa(B,7) v Pg(f,7)), concluding that

Bela1]
the equality holds. O

The next theorem reveals the a-cuts of the interactive sum between fuzzy
numbers.

Theorem 6.2. Let A, B € Ry, whose a-cuts are given by [A]* = [a_,a)] and [B]* =
[b,,b2]. Then, for all a € [0,1]

[A+, B]" = [cg,ca] +{a+0} (6.6)
where,
Co = /\h(_A+B)(5a7) and cf = \/h?_A+B)(Bv’7)' (6.7)
Bza B=a
with
har sy (8,7) = min{ (a@)5 + O +4((0")5 — 6)),
(@®)f + 00); + (0 @) - (@)3),
Y(@@)5 + (0®)5)}
and

hines (B.7) = max{ (a@)5 + ") +1((@)f — (a'9)p),
( 5
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Proof. First note that

Ia(w,0,7) = [f3(@) + 50" = f5(@)), f3(2) + (65 = f5@)] + {7}

and
Ip(z,a,7) = [f3(z) +1((a@); = f5(2)), fE(2) +2((@?)s — f(2)] + {a}.
In order to prove this theorem, let us analyse the intervals
[£5(2) + 107 = 5(@)), £3(2) + (0P = fi(2))]
and

[F5(2) +7((@@)g = f5(2), f3(2) + 1 ((@®)s — f(@))].

To this end, consider for each 5 € [0, 1] the following cases:

b®)

@)

>0 and (b®)5 + (@)} = 0;
>0 and (b®)5 + (a@)} <0;

@)

(=)

<0and (b®)5 + (@)} = 0;

b(b))

—~
~
<

~— ~— ~— ~—
—~
IS
—

| | 2| |
=
~—
™ |

—~ —~ —~ —~
(=

SF %+ w4t ot

<0and (b®)5 + (@)} <o.

and
()5 + (@) <y + (@)f < )5 + (@) + (") - (0®)3), (6.8)
for all y € [B]”.
Also, for all z e [A]°,

(@) +00)5) <z + )5 < (@) + 60)5)

and

()5 + 0 <@+ O")F < (@@)5 + 05 +((@@)f = (@)5). (6.9)

Let ¢5 and cg be the endpoints of [A +, B)?, that is, [A +, B]’ = [cs,c3].
Since 7((a(a))/g + (b(b))/g) is less or equal than the left side of inequalities (6.8) and (6.9),

one obtains

& <2((@®); + (69);).
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On the other hand, since
YO + (@™)5) < (@) + (O)F + (@) = (a@)5)

and

and

for all y € [B]”.
Also, for all z € [A]?

(@5 + 0P) +7((@); — (@) <w+ (0); < (@) + 075 (6.12)

and

(@@); + (0®)F <z + 06P)F < @®); + OD)F +1((@@)F — (@®)3). (6.13)

Since (a@)} + (b(g))g +7((@'?)5 — (a'™)}) is less or equal than the left side
of inequalities (6.10), (6.11), and, (6.13),
¢ < (a@)F + )5 +1((@@)z = @?)h).

On the other hand, since (a'”); (b@)g + (@)} — (a'?)5) is greater or
equal than the right side of inequalities (6.10), (6.11), and, (6.12), one obtains

ci = (@@ + ) +v((a@)f — (@@)5).

Case (1ii):

.—4
=
—~
)
B
S~—
@ |
+
—~
SH)
=
SN—
=t
N
(@)
v
=
o,
—~
>
=
S~—
@ |
+
—
s}
8l
S~—
ey
WV
JO
—+
=
@
=

(@™)5 + )5 +1(D)5 = 6")f) <y + (@); < @) + (@) (6.14)
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and

=@+

(b5 + (@)f <y + (@)

for all y € [B]”.
Also, for all z e [A]°,

V(@) + (6")5) <@+ (6P)5 <A((@@)F + (67)3) (6.16)

and
Y(@®)5 + 0)E) <z + OD)F <4((@@)F + 0®)5). (6.17)

Since (a(a))g + (b@)g + ’y((b(g))g — (b(b))g) is less than or equal to the left side

of inequalities (6.15), (6.16), and, (6.17) then

¢ < (@@)5 + )5 +4((6®)5 — 6®)).

On the other hand, since (a(a))g + (b(g))g + 7((()(5));3r - (b(g))g) is greater than
or equal to the right side of inequalities (6.14), (6.16), and, (6.17) then

ci = (@@)f + )5 + (") — (0")5).

Case (iv):

N5 <005+ @) (619)

and

O + (@™)F) <y + (@)f <

for all y € [B]”.
Also, for all z € [A]°

(@)f + (0P); + (@5 — (@@)F) <z + (0D); < @); +P);  (6.19)
and )
V(@5 + 0)F) <z + 6)F < (@5 + 6®)5)
Since
(a™)5 + ()5 + (D)5 = )5 < (@5 + )
and
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then

cg < min{(a@)g + (b@)g + ’V((b@))g - (b@)E), (a@>§ + (b(g))é + 7((61@)/5 - (a@)E)}-

On the other hand, since v((a™)} + (b)1) is greater or equal than the right
side of inequalities (6.18) and (6.19), then

ci = (@) + 6")5)

Next, let Ay, p), herJrB) . [0,1]* — R be the functions defined by

hias iy (B,7) = min{ (a@)5 + 67 +1((0®)5 — ),
(@™)3 + (™) +((a™)5 — (a)}),
Y((@@)5 + (0®)5)},

and
hiaym) (B,7) = max{ (a'?);

+

@®)F + (05 +9((6)F - 0)p),
5

A combination of the Cases (i), (i), (¢i¢), and, (iv) reveals that

has) (B:7) ST +7 < hiy,p5/(8,7),

for all 7 € [A@)? and 7 € [B®]?. Therefore, one obtains
hearmy(B:7) +{@+0} <2 +y <Ay, p(B.7) + {@a+0},
for all z € [A]” and y € [B]”, which leads us to the following equivalence
(z,y) € Pa(B,7) v Pp(B,7) <+ y € [hiy,p)(B,7), hins s (B, 7)] + {a+ b} (6.20)

Since the sum operator is continuous, by Theorem 2.1 it follows that

A+, B]* =+[T|* ={z+vy : (z,y) e [TH]"}, YVae0,1],

which is given by [7,]* = [¢,, ¢} ], where
c, = /\ (r+y) and ¢ = \/ (x+y).
(z,y)e[T ]~ (z,y)e[T ]~

Theorem 6.1 and Lemma 5.1 lead us to
= Ne@+y: (z,9)e[F]%)
- A (:v +y () e | (PalBy) v PB(B,V))>

B=a

= /\(/\(ery t(z,y) € (Pa(B,7) v Ps(8,7))

pza
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By (6.20), it follows that

Ca = /\ Piarp)(8,7) + {@+0}.

pza

Analogously,
= \/hA+B (B,7) + {a + b}.

pza

Therefore, for all « € [0, 1]

[A+, B /\h(A+B (8,7, \/hZLA+B)(5>7) +{a +0}.

B=a B>«

Next, an example of this interactive sum is provided.

Example 6.4. Let A = (1;2;3), B =(1;2;3;4) and C = (0.5;1.5;4)¢ be fuzzy numbers.

In view of Theorem 6.2 one obtains:
[A+, A" = [v(-2 + 2a),7(2 — 2a)] + 4.
[A+, B]* = [-0.54+ (=2 4+ 2a),0.5 + (2 — 2a)] + 4.5.
For all a € [0,1] such that o > @, where @ = e 2, it follows that

[A—HC]O‘:[l—a—«/—l.5ln(a)+'y —242a), -1+ a++/—1.5In(a) + v(2 —2a]+2.5.

For a <@,

[A+,C]* =[-3—a+v(—2+2a),3+a+7(2—2a)] +2.5.

Figure 49 depicts the interactive sum between the triangular fuzzy numbers A
and A for the following values of v € {0,0.25,0.5,0.75, 1}.

Figure 49 — Graphical representation of the interactive sum A +, A given as in Example
6.4.

1

0.8

0.6

0.4t

02

/
. ) o1k
1 15 2 25 3

The interactive sum A +, A, where A = (1;2;3). The red, blue, black, green and purple
lines represent the fuzzy numbers obtained by the interactive sum for v = 0, v = 0.25,

v =0.5,7=0.75 and v = 1, respectively. Source: Author.
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Figure 50 graphically represents the interactive sum between the triangular

fuzzy number A and the trapezoidal fuzzy number B for the same values of .

Figure 50 — Graphical representation of the interactive sum A +, B given as in Example
6.4.

1 05 /)
0.4 ] —|— 0.4 - 04 ////
,->/ 03 ’/
1 4 //
/ /

1 15 2 25 3 1 15 2 25 3 35 4 2 25 3 35 4 45 55 6 65 7

The interactive sum A +., B, where A = (1;2;3) and B = (1;2;3;4). The red, blue, black,
green and purple lines represent the fuzzy numbers obtained by the interactive sum for

v=0,v=0.25v=0.5v=0.75 and 7 = 1, respectively. Source: Author.

Finally, Figure 51 graphically portrays the interactive sum between the triangular
fuzzy number A and the Gaussian fuzzy number C, for ~ € {0,0.25,0.5,0.75, 1}.

Figure 51 — Graphical representation of the interactive sum A +, C' given as in Example
6.4.

o
=
o
=
o o o
o 2 G

The interactive sum A +, B, where A = (1;2;3) and C' = (0.5;1.5;4)s. The red, blue,
black, green and purple lines represent the fuzzy numbers obtained by the interactive sum

for v =0,v=0.25~v=0.5,7=0.75 and v = 1, respectively. Source: Author.

Note that in all these cases the sum for v =1 boils down to the standard one.

Tables 5, 6 and 7 exhibit the values of the Pompeiu-Hausdorff norm and width
of A+, A A+, B and A+, C, respectively, for v =0,0.25,0.5,0.75, 1.

One can observe, in Example 6.4, that the width and the Pompeiu-Hausdorff
norm of the interactive sums based on this family of joint possibility distributions are
increasing with respect to the parameter ~. In fact Theorems 6.3 and 6.4 show that this

result holds true for every pair of fuzzy numbers.
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Table 5 — Pompeiu-Hausdorff norm and width of A +, A.

~  Pompeiu-Hausdorff Norm Width

0 4 0
0.25 4.5 1
0.5 5 2
0.75 5.5 3

1 6 4

Table 6 — Pompeiu-Hausdorff norm and width of A +, B.

~v  Pompeiu-Hausdorff Norm Width

0 5 1
0.25 5.5 2
0.5 6 3
0.75 6.5 4

1 7 )

Table 7 — Pompeiu-Hausdorff norm and width of A 4+, C.

v  Pompeiu-Hausdorff Norm Width

0 9.5 6
0.25 6 7
0.5 6.5 8
0.75 7 9

1 7.5 10

Theorem 6.3. Let A, B € Ryg,. Consider the function ¢parp : [0,1] — R given by
da+5(y) = ||A +, Bl||. Thus, the following properties hold.

(@) ¢payp is a continuous and increasing function;

(0) ¢a+p(0) < |[A+, Bl| < ¢avp(l), VO<y <L

Proof. (a) Consider the function ¢ : [0,1] — R given by ¢(v) = ||A +, B||, where A
and B are fixed arbitrary fuzzy numbers in Rz,. First, it will be shown that ¢ is
an increasing function. To this end, let v, A € [0, 1] such that v < A. Let us call
A+, B = C,and A+, B = Cy, where [C,]* = [c ,c] ] and [CA]* = [c) ¢y ]-
From Definition 1.22, one obtains that ||C|| = max{|cg|,|cg |}, for all C' € Rg,. By
item (c) of Theorem (6.1) and the definition of joint possibility distribution, it follows
that ¢, < ¢, <0and 0 < ¢l <y, which implies that |} | < |cy | and |c] | < ey |-

Therefore,

¢(7) = [|C5]| = max{|c |, ], [} < max{ley |, [ex, [} = [[Call = &(A),
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concluding that ¢ is an increasing function.

Now, it will be shown that ¢ is a continuous function. To this end, let (v,) < [0, 1]
be a sequence that converges to 7 € [0, 1]. Let us call C,, = A+, Band C = A+5B.
Since A, B € Ry, it follows that hg, (8,7,) and h¢, (8,7,) converges to he(3,7)
and h((3,7), respectively. Since 8 € [, 1], which is a compact set, then

e =\ e, (B.) — /\ ha(B.79) = ca

pza Bz
and
i = I\ hé, (Bom) = \hE(BA) = ¢t
B=a B=a
Consequently,

¢(1n) = [|Cnl| = max{|cy, |, [c, |} — max{lcy |, g [} = [|C]| = &(7),
which implies that ¢ is continuous.

(b) Since, ¢ is continuous and [0, 1] is compact, Weierstrass Theorem concludes that there
exist 71 and 7, such that ¢(v1) < ¢(7) < ¢(y2), Vv € [0, 1]. Since ¢ is increasing, it
follows that ¢(0) < ¢(v) < ¢(1). Hence,

1A +0 Bl < [[A +- Bl[ < [[A +1 Bl|, ¥y € [0,1].
O

Theorem 6.3 reveals that the norm of the interactive sum obtained from 7, is
increasing with respect to 7. Moreover, the minimum and maximum norm are achieved at

v =0 and v = 1, respectively.

Theorem 6.4. Let A,B € Rg,. Consider the function @aip : [0,1] — R given by
warp(y) = width(A 4+, B). Thus, the following properties hold.

(a) warp is a continuous and increasing function;

(b) @asp(0) < width(A+, B) < pasp(l), V0 <~ < 1.

Proof. (a) Consider the function ¢ : [0,1] — R given by ¢(v) = width(A +., B), where
A and B are fixed arbitrary fuzzy numbers in Rx,. In a similar way to the item
(a) of Theorem (6.3), it can be prove that ¢ is a continuous function. Let us call
A+, B =C,and A+, B = Cy, where [C,]* = [} ,c] ] and [C}]* = [c;,, cx, ] for

v < A Ttem (c) of Theorem (6.1) concludes that 0 < ¢, — ¢,

+ —
o < Gy, — O+ Therefore,

p(7) = width(Cy) = |cj, — & | < ey, = 6| = width(Cy) = (X),

Y0

which implies that ¢ is increasing.
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(b) An immediately consequence of Weierstrass Theorem applied to the function ¢,

ensures that

width(A +¢ B) < width(A +., B) < width(A +1 B), Yy € [0,1].
O

Theorem 6.4 reveals that the width of the interactive sum obtained from 7, is
increasing with respect to . Moreover, the minimum and maximum width are achieved at

v = 0 and v = 1, respectively.

The next proposition reveals an interesting property of the interactive sum via

Jo for symmetric triangular fuzzy numbers (see Definition 4.3).

Proposition 6.1. [55] Let A, B € Rg, be symmetric triangular fuzzy numbers and Jy be
their joint possibility distribution given as in (6.3), for v = 0. Hence

A+oB = (00— p)(-10;1) + X@.5- (6.21)
where + stands for the standard sum and A = (@ — §;a;a+ ) and B = (b — p;0;b + p).

Proof. Let A and B be triangular fuzzy numbers given by A = (a — d;@;a + §) and
B = (b— p;b;b + ). From Theorem 6.2

A+0 /\hA-i-B ﬁ; \/hA+B 6, ,
Bz B=a
where
Waep(8,0) = min{=6+ 08+ pu— .0 — 0B — i+ B, 0} + {a+ b}
= (6 —p)min{—1+ 3,1 — 3} + {a+ b}
and

Paep(8.0) = max{—0+d8 +pu— 6 — 3 — -+ juf, 0} + {a+ 7}
= (6 —p)max{—1+3,1— 3} + {a+b}

Hence,

[A+o B]* = /\(5 — p)min{—1+ 5,1 — 5}, \/(6 —p)max{—1+ 3,1 — 5}] + {a+ b}

pza Bza

= (0 —p) /\min{—l+5,1—B},\/max{—1+5,1—ﬁ}] + {a + b}

| Bza B=a

= 0= | AE1+8), /=8| +{a+b)

| Bz« B=a

= —p[-1+a1—a]l+{@a+b Vaelo1].
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Therefore,
A+oB=(0—p)(=10;1) + Xz15-

]

Proposition 6.1 ensures that if 6 = u, then the interactive sum via J; between

A and B produces a real number.

Corollary 6.1. Let A and B be symmetric triangular fuzzy numbers and Jy be their joint
possibility distribution. If width(A) = width(B), then

Chapter 7 provides an application in the Fibonacci sequence in order to illustrate
the results given by Proposition 6.1 and Corollary 6.1. One can prove that the same results

provided by the above statements hold for trapezoidal and Gaussian fuzzy numbers as

well.

The next section defines the interactive difference between fuzzy numbers based

on joint possibility distribution given by (6.3).

6.3 Interactive Difference via 7,

This section focuses on defining a difference between fuzzy numbers that is
obtained as the inverse operation of the sum, that is, A —; B = A+, (—B). To this end,

consider the following fuzzy relation

Ty (x,y) = T (x,—y), Vr,yeR, (6.22)

where 7, is given as in (6.3).

Hence, the following theorem is obtained.

Theorem 6.5. [55] Let A, B € Rr, and J, be the joint possibility distribution of A and
B given by (6.3). The fuzzy relation jw defined by

j’y(x>y) = \7“/<x7 _y) (623)
satisfies the following properties for all v € [0,1]
(a) j7 is a joint possibility distribution of A and B;
(b) ‘7/\7(331,362) < j,\(xl,azg), for all v < X and ¥(x1,15) € R?;

(C) A—j’yBER]:C.
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Proof. The proof is similar to the proof of Theorem 6.1. O]

Theorem 6.5 reveals that the fuzzy relation given by (6.22) is a joint possibility
distribution between A and B. Moreover, the properties (b) and (¢) of Theorem 6.1 also
hold for 57 and the following equation is satisfied

A—; B=A+g (-B). (6.24)

For simplicity of notation, A — 2, B is denoted by A —, B.

The characterization of the interactive difference via jv can be provided by

means of a-cuts. Theorem 6.6 establishes these a-cuts.

Theorem 6.6. Let A, B € Ry, whose a-cuts are given by [A]* = [a;,a’] and [B]* =
[b,,bF]. Then, for all o € [0,1]

[A—, B]* =|d,,d}]+ {a — b}, (6.25)
where
5/>\ahAB (8,7) and d*—ﬁ\>/ah (6.26)
with
hia_p)(B,7) = min{ (a@)5 — ") ++((6®); — 6)3),
(@F = ) + (@) = (a@)F),
Y((@?)z — ()5}
and

hiaey(8,7) = max{ (a™)5 — (07)5 +1(@™)f - (@@)5),
()5 = )5 + (05 = (6)5),
Y((@®)5 = (07)5)}

Proof. The proof is similar to the proof of Theorem 6.2, recalling that [—B]* = [—bZ, —b ].
[

Remark 6.1. Theorem 6.6 guarantees that the interactive difference via jo also satisfies

A—QAZA—LAZA—[AZA—QAZO, VAER]:C. (627)

The next example illustrates the interactive difference between triangular,

trapezoidal and Gaussian fuzzy numbers for different values of ~.

Example 6.5. Let A = (2;3;5;6), B =(0;4;8) and C = (0.5;1.5;4)g be fuzzy numbers.
In view of Theorem 6.6, for all v € [0, 1], it follows that:

[A—, A]* = [v(—4 + 2a),7(4 — 2a)] + 0.
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[A—, B]* = [/\ min{2 — 30 + (=8 + 8p), -2+ 38 + v(—4 + 26),v(—6 + 55)},

Bza

\/ max{2 — 33 + (4 — 28), =2+ 38 + (8 — 88),7(6 — 56)}] +0.

p=za

32

For all a € [0, 1] such that o = @, where a@ = e~ °%, one obtains

[A—, C]" = [/\ has(8:7), \/ his(ﬁ,v)] +3.5,

B=a Bza

where

Wap(87) = min {2+ 5+ (1~ 29)y/=T50(B), 2 ~ f — /=150 (B) + (~4 + 26)
v (~2+ 8- V=150(9)) }

and

% p(8,7) = max {—2 4 B4 A/—150(B) + (4 —28),2 — B+ (2y — 1)n/—L5ln(B),
v (2-8-+/~15In(3)) }

Fora<a

[A— O] = [/\ min{2 + 5 — 8y, =2 — f + (=4 + 26),7(=6 + 8)},

pza

\/ max{2+ [+ v(4—28),-2— 5+ 8y,7(6 — ﬁ)}] + 3.5.
Bza

Figure 52 depicts the interactive difference between the trapezoidal fuzzy numbers
A and A for the following values of v € {0,0.25,0.5,0.75,1}.

Figure 52 — Graphical representation of the interactive difference A —, A given as in

Example 6.5.

2 25 3 35 4 45 5 55 6 2 25 3 35 4 45 5 55 6 4 -3 2 -1 0 1 2 3 4

The interactive sum A —, A, where A = (2;3;5;6). The red, blue, black, green and purple
lines represent the fuzzy numbers obtained by the interactive difference for v = 0, v = 0.25,

v =0.5,v=0.75 and v = 1, respectively. Source: Author.
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Figure 53 graphically represents the interactive difference between the trapezoidal

fuzzy number A and the triangular fuzzy number B for the same values of ~y.

Figure 53 — Graphical representation of the interactive difference A —, B given as in

Example 6.5.

1
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The interactive sum A —, B, where A = (2;3;5;6) and B = (0;4;8). The red, blue, black,
green and purple lines represent the fuzzy numbers obtained by the interactive difference

for v =0,v=0.25~v=0.5,7=0.75 and v = 1, respectively. Source: Author.

Finally, Figure 54 graphically portrays the interactive difference between the
trapezoidal fuzzy number A and the Gaussian fuzzy number B, for v € {0,0.25,0.5,0.75,1}.

Figure 54 — Graphical representation of the interactive difference A —, C' given as in

Example 6.5.

1 1 !

08 08 038

06- 06- 08

04 "}/ 04- 04

02- 02 0.2

o ,
%25 3 35 4 45 5 55 R % 2 0 2 4 6 g 10

The interactive sum A —, C, where A = (2;3;5;6) and C' = (0.5;1.5;4)¢. The red, blue,
black, green and purple lines represent the fuzzy numbers obtained by the interactive

difference for v = 0, v = 0.25, v = 0.5, v = 0.75 and v = 1, respectively. Source: Author.

Figure 52 corroborates the fact that A —y A = 0, for all A € Rg,. Moreover,
one can observe in Figures 52, 53 and 54 that the proposed interactive difference has

increasing Pompeiu-Hausdorff norm and width with respect to ~.

Theorem 6.7. Let A,B € Ryg,. Consider the function $A_B : [0,1] — R given by
(EA—B(V) = ||A —, B||. Hence the following properties hold.

(@) ¢pa_p is a continuous and an increasing function;

(b) 6a-5(0) <[|A—, Bl < da-p(l), VO<y <.
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Proof.  (a) The proof of the continuity of the function ¢ is similar to the proof of item (a)
of Theorem (6.3) considering hy_5(8,7,) and h’_5(8,7,). The item (b) of Theorem

6.5 implies that ngS is increasing.
(b) Since, A=y B=A—-; B=A+gz (—B) then

1A= Bl = [[A+o(=B)l < [[A+g (=B)|| = [|A-; Bl
< |[A+ (=Bl = ||A -1 BJ|.

]

Theorem 6.7 reveals that the width of the interactive difference obtained from
jv is increasing with respect to . Moreover, the minimum and maximum width are

achieved at v = 0 and v = 1, respectively.

Theorem 6.8. Let A,B € Rg,. Consider the function o4—p : [0,1] — R given by
Pa—p(y) = width(A —, B). Hence the following properties hold.

(a) Pa_p is a continuous and an increasing function;

(b) @A—B(O) < wzdth(A — B) < @A_B(l), VO0< v < 1.
Proof. The proof is similar to the proof of Theorem 6.4. [

Theorem 6.8 reveals that the norm of the interactive difference obtained from
f7 is increasing with respect to . Moreover, the minimum and maximum norm are

achieved at v = 0 and v = 1, respectively.

One can observe, in Figure 53, that the interactive difference (for v = 0) between
the fuzzy numbers A = (2;3;5;6) and B = (0;4;8) resembles the g-difference between
them (see Figure 9). Chapter 5 already proved that the g-difference is an interactive

difference. The next theorem shows that —, also coincides with —,.

Theorem 6.9. Let jo be the joint possibility distribution of A and B given as in (6.24),
for v =0. Hence
A—9yB=A—,B.

Proof. By Theorem 6.6, it follows that

[A=0BI* = | A\ hiap (8,0 ,\/ G (B,0) |+ @—1),

ﬂ>0é /

where

hia_p(8,0) = min{(a®@); — (0®)7, (@) — ()5}
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and
taoy(8:0) = max{(@®); = )5, (@) - 873

Therefore,

[A—o B]* = [ A\ min{(a®); = (6P)5, (@)} - )5},
B=a

\/ max{(@®); — (0)5, (™)} - (b“’))E}] +(a—"b)

pza
_ I s — = ot
= [/\mln{aﬁ — by, a3 —bﬁ},\/max{aﬁ —bg,a; —bg}]
B>a B>a

= [A—, B]", Vae[0,1]
]

Theorem 6.9 reveals that the interactive difference coincides with the g-

difference, consequently, from Theorem 5.5 the next Corollary is obtained
Corollary 6.2. Let Ae Rg,. Thus
A—B=A-B=A—,B.
The next proposition shows a particular property of the interactive difference
via — ;7 between symmetric triangular fuzzy numbers.

Proposition 6.2. Let A, B € Ry, be symmetric triangular fuzzy numbers and jo be their

joint possibility distribution given as in (6.3), for v = 0. Hence
A—oB=(00—-p)(-10;1) + Xz - (6.28)
where + stands for the standard sum and A = (@ — §;a;a+ 0) and B = (b — p;b;b + p).

Proof. Let A= (a—d;a;a+6) and B = (b— u;b;b + p) be symmetric triangular fuzzy
numbers. Since A —y B = A +¢ (—B), Proposition 6.1 guarantees that

A—gB=A+¢(—B) = (@—68;a;a+0)+o(—b—p;—b;—b+u) = (6 — u)(—1;0; 1)+ X a7
[

Proposition 6.2 implies that if § = u, then the proposed interactive difference

between A and B results in a real number.
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Corollary 6.3. Let A and B be symmetric triangular fuzzy numbers and jo be their joint
possibility distribution. If width(A) = width(B), then

Chapter 7 provides an application in discrete delay models for fuzzy numbers
in order to illustrate the results given by Proposition 6.2 and Corollary 6.3. One can prove
that the same results provided by the above statements hold for trapezoidal and Gaussian

fuzzy numbers as well.

6.4 Conclusion

This chapter presented a new family of joint possibility distribution 7, where
v € [0,1]. This family has similar properties as the family (5.6) presented in Chapter 5,
that is, the interactive sum and difference via sup-J extension produce fuzzy numbers
in Rz, with smaller Pompeiu-Hausdorff norm and width. More precisely, the interactive
sum and difference via Jy produce fuzzy numbers with minimum norm and width, than
any other sum and difference obtained from joint possibility distributions. Some examples
were presented to illustrate the proposed arithmetic operations between different types
of fuzzy numbers (triangular, trapezoidal and Gaussian). This chapter proved that the
g-difference is a particular case of the interactive difference based on this family as well.
The interactive sum and difference were characterized by means of a—cuts, which allowed
to compute these operations in a simpler way. Some properties involving the symmetries
of fuzzy numbers were explored. This chapter ended presenting the conditions so that the

sum and difference between interactive fuzzy numbers result in a real number.
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7 Applications in Biomathematics

This chapter presents some applications of the methods proposed in Chapters
4, 5 and 6. Briefly comments about ontic and epistemic fuzzy sets were made in Chapter
1. In that context there was no distinction between these two points of view. However, in
this chapter, the fuzzy numbers in the initial and/or boundary conditions will be chosen
in order to describe the imprecise/uncertain information. This means that the approach

considered in this chapter is the epistemic one.

Section 7.1 presents examples in fuzzy differential equations with initial condi-
tions given by linearly interactive fuzzy numbers. For this section the reader can refer to
(77,138, 53, 148, 126]. Section 7.2 provides several examples in epidemiology and chemical
reactions in order to illustrate the numerical fuzzy solutions of FDE’s, where the initial
conditions are given by J,-interactive fuzzy numbers. For this section the reader can refer
to [141, 142, 143, 144, 145, 146, 147, 149, 139]. Finally, Section 7.3 uses the proposed
family of joint possibility distribution 7, defined in Chapter 6, in order to describe the
Fibonacci and discrete delay sequences in the case where the first and second conditions

are given by J,-interactive fuzzy numbers. For this section the reader can refer to [55].

7.1 Application on FIVPs with linearly interactive fuzzy conditions

This section provides solutions of fuzzy differential equations, where the ad-
ditional conditions are given by linearly interactive fuzzy numbers. First it is presented
some examples in order to illustrate the method given in Chapter 4, which are based on
reference [148]. Next it is provided applications in physical problems such as: to describe the
trajectory of a particle according to a Hypocycloid curve [138] and mechanical vibrations
[126].

7.1.1 Example 1

Let us consider a 3rd order differential equation given by

y"(t) = 5y"(t) + 6y'(t) = 2t + 4

(7.1)
y(0) =1, y'(0) =2, y"(0) =3

Here the initial position, velocity and acceleration are supposed to be uncertain
and modeled by linearly interactive fuzzy numbers. In classical physics theory, this consid-
eration is justifiable in problems such as determining the position of an aircraft far from

earth. Ashby et al. [4] demonstrate that the position cannot be accurately determined
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correlated.

164
unless either the velocity of the detector is known or determined from the same data
used to determine the position. In other words, they show that position and velocity are

?/p(t) = —t+

The particular (y,) and homogeneous (y;) solutions of IVP (7.1) are given by
17,
18 6

and y,(t) = wy(t)ky + wa(t)ky + ws(t)ks,
where w; (t) = ~e?, wo(t) = —€*, ws(t) = 1, ky, ko and k3 are constants. Therefore, under
these initial conditions the deterministic solution is given by

y(t)

1
= 108 (61 + 27¢* + 20e™ + 102t + 18t%) .

(7.2)
Figure 55 exhibits the deterministic solution y(t).

Figure 55 — Graphical representation of the deterministic solution y(t) given by (7.2).

148

Solution of Equation (7.1), where the initial conditions are given by real numbers. Source:

fuzzy numbers

Now suppose that the initial conditions are uncertainties and modelled by the

y(0) = (0;1;2) = Yy

y'(0) = (1;2;3) =Yg
y'(0) = (2;3;4) =Yy

(7.3)

where Yy, Yy and Yy are linearly interactive fuzzy numbers with respect to the joint
possibility distribution .J, whose membership function is given by

JL(x,y,Z) =X <x7y7 Z)Yb(l’),

(7.4)
u—+ 1]:ueR

u+ 2
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for each (z,y, z) € R®. From Equation (4.9), the a—cuts of (7.4) are given as follows

a 2—«
[Je]* =<1 =X la+1|+A]|3—a]|:Ae[0,1]
o+ 2 4 —

By Equation (4.25) the fuzzy solution y(t), for each ae € [0,1] and t € R | is

given by
[y2(£)]* = [min{h(t, @, 0), h(t, o, 1)}, max{h(t, o, 0), h(t, o, 1)}],
where 17 1 3 14 25 1 1
h t O — 7t 7t2 _ 2t _ 3t . 2t _ 3t _
(t,a,0) T 1€ Tt +108+a<e 3¢ +3)
and 17 1 ) 4 97 1 1
Bt o 1) = g g2y 22 = e I R A
(t,a, 1) F +6 + e 57¢ +108+a< e +36 3)

Note that the a—cut of the fuzzy solution can also be written as

2
ly(®]* = {%t + % + 1%98 + %e% ((1 —A)(1 +2a) + A5 — 2a) — g)

+
@

(1- M) (—;+;a>+)\<é—;a) :Ae[o,l]}

_l_

(7.5)

Figure 56 depicts the top and tri-dimensional views of the fuzzy solution (7.5).

Figure 56 — Graphical representation of the fuzzy solution based on the joint possibility
distribution J, given by (7.4).

(a) The top view of the fuzzy solution. (b) The tri-dimensional view of the fuzzy
solution.

1
DB]
DBjI

- 04
DZ{

04
° -5

The gray-scale lines represent the a—cuts of the fuzzy solution given as in (7.5), where
their endpoints for a varying from 0 to 1 are represented respectively from the gray-scale
lines varying from white to black. Source: [148].
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Note that the joint possibility distribution J = J, given by (7.4), suggests
that Yy and Y] are positively linear interactive, as well as Y and Yy, since the diameter of
the fuzzy solution always increases. One can observe that Y, Yy, and Yy may be linearly
interactive with respect to others joint possibility distributions. The next subsection

illustrates this fact.

7.1.2 Example 2

Consider the following 3rd order differential equation with the initial conditions:

y"(t) + 9y (t) = tsint

(7.6)
y(0) = 0,/(0) = 0,”(0) = 0

The deterministic solution for this IVP is given by
1 . .
y(t) = 9% (—12t cost + 9sint + sin3t).
The solution y is depicted in Figure 57.

Figure 57 — Graphical representation of the deterministic solution y(t) of the system (7.6).

0.4

0.2

1]

08

Solution of Equation (7.6), where the initial conditions are given by real numbers. Source:
[148]

Suppose that the initial conditions are modelled by the fuzzy numbers

y(0) = (=1;0;1) = Yy
y'(0) = (=1;0;1) = Y
y"(0) = (—=1;0;1) = Yy’
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Thus Yp, Yy and Yy may be linearly interactive with respect to the following

joint possibility distributions:

Jl(xayaz) =X u (sc,y, Z)Yb(l‘) (77>

u | : ueR

From .Jj, it follows that Yy and Y] are positively linearly interactive, as well as

Yy and Yy'. The fuzzy solution y;, obtained by our approach is depicted in Figure 58.

Figure 58 — Graphical representation of the fuzzy solution based on joint possibility distri-
bution J; given by (7.7).

(a) The top view of the fuzzy solution. (b) The tri-dimensional view of the fuzzy solution.

2

55 L [
0 1 2 3 4 5 5 7 8 t 8 2 y(t)

The top and tri-dimensional view of the fuzzy solution obtained using the joint possibility
distribution J; as in (7.7). The gray lines represent the a—cuts of the fuzzy solution yy, ().
The endpoints of the a—cuts for a varying from 0 to 1 are represented respectively from
the gray-scale lines varying from white to black. Source: [148].

Now, suppose that Yy, Yy and Yy are linearly interactive with respect to joint
possibility distribution Js, given by
J2('T7y7z) =X u (xvya Z)}/E)(x) (78>

u : uelR

The fuzzy solution y, based on Js is exhibited in Figure 59. Note that, from Js,
it follows that Y and Yy are positively linearly interactive and Yy and Yy’ are negatively

linearly interactive.

If Yy, Yy and Yy are linearly interactive with respect to joint possibility distri-
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Figure 59 — Graphical representation of the fuzzy solution based on joint possibility distri-
bution J, given by (7.8).

(a) The top view of the fuzzy solution. (b) The tri-dimensional view of the fuzzy solution.

2

] 1 2 3 4 5 6 7 8 t 8 2 yit)

The top and tri-dimensional view of the fuzzy solution obtained using the joint possibility
distribution J; as in (7.8). The gray lines represent the a—cuts of the fuzzy solution yr,(t).
The endpoints of the a—cuts for a varying from 0 to 1 are represented respectively from
the gray-scale lines varying from white to black. Source: [148].

bution J3, given by

By =X\ @), (79)

—u | ueR

u

then Yy and Y] are negatively linearly interactive whereas Yy and Y, are positively linearly

interactive. The fuzzy solution y via the proposed approach is depicted in Figure 60.

Finally, suppose that Yy, Yy and Y, are linearly interactive with respect to

joint possibility distribution Jy, given by

J4(I,y,Z) =X (x,y,z)Yb(m), (71())

The fuzzy solution y;,, obtained by Jy, is exhibited in Figure 61. By Equation (7.10), one

can conclude that Yy and Y] as well as Y; and Yy are negatively linearly interactive.

Note that the joint possibility distribution J; indicates that initial positive
positions (y(to)) is associated with initial positives velocity (v/(fg)) and acceleration (y”(to)),
since Yy and Yy as well as Yy and Y] are positively linear interactive. This means that
y(t) increases initially with increasing rate if the initial position y(to) is positive. On the

other hand, if y(ty) is negative, then the initial velocity 3'(ty) and acceleration 3" (¢o)
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Figure 60 — Graphical representation of the fuzzy solution based on joint possibility distri-
bution J3 given by (7.9).

(a) The top view of the fuzzy solution. (b) The tri-dimensional view of the fuzzy solution.
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The top and tri-dimensional view of the fuzzy solution obtained using the joint possibility
distribution J3 as in (7.9). The gray lines represent the a—cuts of the fuzzy solution yr,(t).
The endpoints of the a—cuts for a varying from 0 to 1 are represented respectively from
the gray-scale lines varying from white to black. Source: [148].

Figure 61 — Graphical representation of the fuzzy solution based on joint possibility distri-
bution Jy given by (7.10).

(a) The top view of the fuzzy solution. (b) The tri-dimensional view of the fuzzy solution.
2
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t

The top and tri-dimensional view of the fuzzy solution obtained using the joint possibility
distribution Jy as in (7.10). The gray lines represent the a—cuts of the fuzzy solution
yr(t). The endpoints of the a—cuts for a varying from 0 to 1 are represented respectively
from the gray-scale lines varying from white to black. Source: [148].

are also negative values. In this case y(t) decreases with decreasing rate initially, causes

the expansion of the diameter of the fuzzy solution y (t) initially, as one can observe in
Figure 58.

The fuzzy solution based on .J; has the same behaviour as the solution produced
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by Ji. However, the acceleration at t; is negatively linear interactive with the initial
position y(to). This means that the expansion of the solution based on J; is smaller than
the expansion of the solution given by J; (see Figures 58 and 59), as one can observe in

Figure 62.

In contrast to J; and J, the joint possibility distribution J3 indicates that the
y(t) decreases initially with increasing rate if the initial position y(¢y) is positive since Yj
and Y, are negatively linear interactive and Y, and Y]  are positively linear interactive.

Thus, the solution y, () obtained by J3 is initially contractive (see Figure 60).

Finally, the JPD J; also produces a fuzzy solution that is initially contractive.
However, the contraction is smaller than the contraction of the solution given by J3, since

the acceleration is negatively linear interactive with the initial position y(%).

A briefly study of the diameter of the fuzzy solution is given as follows. For Ji,

it follows
20

diam(y(t)) = gsin(iit) - 3005(375) + 5

Note that the diameter of the fuzzy solution increases on the intervals

2 T N 2 d T N 2 2T N 2
J— JR— J— n JR— J— PR J—
37m,6 37m a 5 37m, 5 37m ,

for all n € N, since the derivative of diam(yr(t)) with respect to ¢ is positive in these
intervals. Moreover, it decreases on intervals

7T+2 7r+2 d 7T+2 7r+2
5 37m,3 37m an 3 37m,2 37m,

for all n € N since the derivative of diam(y.(t)) is negative in these intervals.

A similar analysis can be made for the diameter of the solution obtained by
using Jp, J3 and Jy. Figure 62 exhibits the diameters of the solutions yy, () with respect to
the joint possibility distributions J;, Js, J3 and Jy. Figure 62 also corroborates the above

comments about the initially expansion and contraction of the fuzzy solutions.

The next subsection presents the last example involving this type of interactivity,

in order to clarify the properties of the fuzzy solution that arises from the JPD J.



Chapter 7. Applications in Biomathematics 171

Figure 62 — Graphical representation of the diameter of the solutions produced by .J;, Js,
:]3, and 1]4.

Diameter Size

Time

The solid, dash-dotted, dotted, and dashed lines represent the diameter of the fuzzy
solution y;, obtained using Jy, Ja, J3 and Jy, respectively. Source: [148].

7.1.3 Example 3

For this example, consider the following FBVP, where the additional conditions

are given by linearly interactive fuzzy numbers:

y"(t) + 5y (t) = tcos’t

, (7.11)
y(0) = A, y(0) = B, y(10) = C

where t € [0,10] and A, B,C € Rx.

The classical solution of the associated ODE, where the boundary conditions
are y(0) = 0, y"(0) = 0 and y(10) = 5, is given by

1
" 40 (cos (10v/5) — 1)
— 35 cos (10\/5) cos(2t) + 35 cos(2t) + 35 cos(20) cos (\/gt)

— 35 cos (\/Bt) + 10t cos (10\/5) sin(2t) — 35 cos(20)
+100sin(20) — 100sin(20) cos (\/515) + 35 cos (10\/5))

y(t)

(—2t2 1+ 212 cos (10\/3) ~ 10tsin(2t)

(7.12)

Suppose that the boundary conditions are given by the symmetric fuzzy numbers
y(0) = (=1;0;1) = A, '(0) = (—1;0;1) = B, and, y(10) = (4;5;6) = C. The fuzzy
solution y, of (7.11), via Zadeh’s extension, is depicted in Figure 63.

The fuzzy numbers A, B and C may be linearly interactive with respect to

four different joint possibility distributions given by

x
[J1]a = x cx e [A], . [ L)a = x cxelAlap,
r+5 —x+5
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Figure 63 — Graphical representation of the fuzzy solution via Zadeh’s extension principle
of the FBVP given as in (7.11).

(a) The top view of g. (b) The tri-dimensional view of §.

The green line represents the deterministic solution y, given by (7.12). The red and white
dashed-lines illustrate respectively the 0-cut and the 0.5-cut of y. The gray-scale lines
varying from white to black represent the a-cuts of 3, where o varying from 0 to 1. Source:
[138].

T T
[J3]a = —x |:ze[A], and  [Jy]o = —z  |:ze[A]a
rT+5 —r+ 95

The fuzzy solutions of (7.11) via sup-J extension are depicted in Figure 64.

It is important to observe in Figures 63 and 64 that the convex hull of the
solutions vy, ,v,,ys, and vz, is equal to the solution given by Zadeh’s extension, which

corroborates the statement of Theorem 4.2.

Now, suppose that the boundary conditions are given by the non-symmetric
fuzzy numbers y(0) = (—1;0;2) = A, /(0) = (-1;0;2) = B, and, y(10) = (4;5;7) = C.
The fuzzy numbers A, B, and, C are linearly interactive with respect to the joint possibility

distribution given by
x

[J]a = r |rxelAl.p. (7.13)
T+

The fuzzy solution y; of (7.11) via sup-J extension is depicted in Figure 65.

Observe that in this case there is only one joint possibility distribution of A,
B, and, C. Also, note that Figure 65 (a) verifies the result of Theorem 4.3, that is, the
solution y; is contained in y. Moreover, Equation (4.38) ensures that ¢, given by (4.36),

is also contained in 7.

The next subsection presents an example to describe the trajectory of a particle,

according to a hypocycloid curve.
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Figure 64 — Graphical representation of the fuzzy solution based on joint possibility distri-
bution J, given by (7.10).

(a) The top view of y,. (b) The top view of y,.
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The red and white dashed-lines illustrate respectively the 0-cut of ¥ and the 0.5-cut of y,,
where i = 1, ..., 4. The gray-scale lines varying from white to black represent the a-cuts
of y,,, where a varying from 0 to 1. Source: [138].

Figure 65 — Graphical representation of the fuzzy solution y; given as in (7.11).

(a) The top view of y;. (b) The tri-dimensional view of y.

The red and white dashed-lines illustrate respectively the O-cut of ¢ and the 0.5-cut of
ys. The gray-scale lines varying from white to black represent the a-cuts of y;, where o
varying from 0 to 1. Source: [138].
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7.1.4 Fuzzy Initial Value Problems for Fuzzy Hypocycloid Curves

This subsection focuses on a system of differential equations that describes the
trajectory of a particle that moves in the plane according to a hypocycloid curve (See
Figure 66).

Figure 66 — Graphical representation of the hypocycloid curve.

Hypocycloid curve generated by the trace of a fixed point on a circle that rolls along a
line. Source: Author

To this end, consider a coupled system composed of two ordinary second order
differential equations with initial conditions given by interactive fuzzy numbers. In this

case, the same approach given in Chapter 4 can be used, as it will be illustrated.

Hypocycloid curves are solutions of IVPs, which are given by a homogeneous
system of two ODEs of second order. This solution represents a dynamic response of two
states variables that graphically represent the movement of particles on a phase plane [47].

Consider that the initial conditions are given by linearly interactive fuzzy numbers.

Before presenting this solution, let us provide the method for a system of two

ODEs. Consider the second order linear and homogeneous system given by

2(8) + kg (£) + Ky () = 0
y/() + ks 2'(8) + ke y(t) = 0

: (7.14)

for all t € [ty, T], where the parameters kq, ko, k3, ks € R are constants and z,y are the

state variables.

The linear system (7.14) can be rewritten in the matrix form using the substi-

tution x1 = x(t), xo = 2'(t), x3 = y(t) and x4 = y'(t) given by
v =Ku, (7.15)

T T
/
where 2’ = [xl T @y xﬁl] , T = [561 Ty T3 1’4] and
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Then in order to provide a fuzzy solution for this problem, one can use the
same method, provided in Chapter 4, for system (7.15) by taking the particular and
homogeneous solution of the problem and calculating the vector of constants in terms of

the fuzzy initial condition.

So let us illustrate the above comments by considering a linear second order

and homogeneous FIVP given by

2" (t) — 2y () + 3x(t)

0,
y'(t) +22'(t) + 3y(t) =0, (7.16)
2(0) = (3.5:4;5),  2'(0) = y(0) = ¥/'(0) = (~1;0;0.5),
for t € [0, 27], where the initial conditions are given by linearly interactive fuzzy numbers.
The classical solution of the associated FIVP (7.16), where the initial conditions
are real numbers z(0) = 4 and 2'(0) = y(0) = ¢/(0) = 0, is given by

x(t) = 3cos(t) + cos(3t)

(7.17)
y(t) = 3sen(t) — sen(3t)
The a-cuts of the fuzzy solution of (7.16) are given by
[z ()] = ua(t) + v (£)[2(0)] (7.18)

where [2(0)]* = [0.5a + 3.5,5 — « for all a € [0,1] and u;(t),us(t),v1(t),vs(t) are
determined as in (4.34) with ¢ = [1 -1 -1 —1]T and r = [0 4 4 4]T.

Note that the fuzzy solutions given by (7.18) depend only on the initial condition
x(0) € R and the parameters ¢; and r;, for i = 1,...,4, as well as in the method provided
in Section 4.2. Also observe that the initial conditions are given by non-symmetric fuzzy
numbers, which means that there is only one joint possibility distribution J;, among

z(0),2'(0),y(0) and y'(0), as Proposition 4.1 ensures.

Figure 67 depicts the fuzzy solution given by (7.18). In this figure the fuzzy
solutions were superimposed on the same graph to observe the behaviour of solutions
at the same points on the domain. One can observe that the fuzzy solution via sup-J
extension is contained in the one given by the Zadeh’s extension. From the physical point
of view the fuzzy numbers can represent the uncertainty of the initial points z(0) and y(0)
or stability points 2'(0) and y'(0) [148].

The equations in (7.17) describe the hypocycloid curve traced by a fixed point
P(z,y) on the circumference of a circle of radio 1, which rolls internally around from a

circle of radius 4. A fuzzy hypocycloid curve, depicted in Figure 68, can be considered as
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Figure 67 — Graphical representation of the fuzzy solution of hyocycloid curve problem.

The green and blue solid lines represent the deterministic solution x(t) and y(t), given
by (7.17). The green and blue dashed-lines represent the 0-cut of the solution via Zadeh’s
extension. The gray lines represent the a-cuts of the fuzzy solution via sup-J extension
given by (7.18). The endpoints of the a-cuts for o varying from 0 to 1 are represented
respectively from the gray-scale lines varying from white to black. Source: [138].

the diagram phase of the fuzzy solution via sup-.J extension principle, given by (7.18), of

the states variables x(t) and y(t).

Figure 68 — Graphical representation of the fuzzy hyocycloid curve.

Tri-dimensional view of the fuzzy hypocycloid curve as diagram phase. The yellow solid line
represents the deterministic solutions z(t) and y(t), given by (7.17). The red dashed-line
represents the O-cut of the solution via Zadeh’s extension. The gray lines represent the
a-cuts of the fuzzy solution via sup-J extension given by (7.18). The endpoints of the
a-cuts for a varying from 0 to 1 are represented respectively from the gray-scale lines

varying from white to black. Source: [138].

The next subsection presents an application involving mechanical vibrations.
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7.1.5 Fuzzy Initial Value Problems for Fuzzy Mechanical Vibrations

The field of mechanical vibrations plays a fundamental role in the study and
design of physical phenomena and structures. For instance, computer designs of engines,
planes or cars help to lower costs and visualize possible problems related to noise or
attrition of parts due to vibrations. In particular, mechanical vibration describes the
dynamics (position and/or velocity) of one or more particles subjected to free or forced

external conditions in a simple or coupled mass-spring model (see Figure 69).

Figure 69 — Graphical representation of the mass-spring system.
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The spring k; is attached to the wall and mass m;. Mass m; is also attached to mass mso
through spring k. The trajectories of particles of mass m; and msy are described by x and
y, respectively. Source: Author

These physical models are represented by two ODEs for any mass coupled and
empirical initial conditions values. Particularly, these ODEs can be transform in a linear

first order system, in according to the classical differential equation theory [101].

This subsection presents an example of mass-spring system with initial condi-
tions given by linearly interactive fuzzy numbers. This example considers the trajectory of

two particles without damper and external force.
So consider the mass-springer system given by
22"(t) +6x(t) —2y(t) =0,
y'(t) +2y(t) —2z(t) =0, (7.19)
w(to) = (2 3:4), (o) = (—=1; 05 1), y(to) = (2; 35 4), y'(to) = (—1; 05 1).
where ¢ € [0,20] and the initial conditions are given by linearly interactive fuzzy numbers.
From the method described in last subsection and Chapter 4, the two ODEs
given by (7.19) can be written in a matrix form using the substitution z; = z(t), xo =

2'(t), x3 = y(t) and x4 = y'(t). Hence, the fuzzy solution of (7.19) can be obtained in the

same way as before (see Subsection 7.1.4), and it is depicted in Figure 70.

Figure 70 represents two dynamic trajectories y(¢) and z(¢) with masses ms
and my, respectively. Observe that the interactive fuzzy solution is contained in the one
given by the Zadeh'’s extension, as it was expected. Note that the curve given by the 1-cut

of the fuzzy solution z;(t) coincides with the deterministic solution.
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Figure 70 — Graphical representation of the solution of a mass-spring system given as in

(7.19).
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The green lines represent the deterministic solutions z(t) and y(t) for the coupled mechani-
cal vibration problem (7.19), for (0) = y(0) = 3 and 2'(0) = 3/(0) = 0. In both subfigures,
the dashed red lines represent the 0-cut of the solution via Zadeh’s extension. The gray
lines represent the a-cuts of the fuzzy solution via sup-J extension. The endpoints of the
a-cuts for a varying from 0 to 1 are represented respectively from the gray-scale lines
varying from white to black. Source: [126]

Since By is symmetric, there exist 2° JPDs among the initial fuzzy numbers. Fig-
T

T
ure 70 portrays the JPD Jp in the case where ¢ = [1 11 1] and r = [0 -3 0 *3] .

The next section presents applications in epidemiology and chemical reaction

problems.

7.2 Numerical solutions for IVP's with initial conditions given by

J,-interactive fuzzy numbers

In the epidemiology field, the mathematical models are fundamental tools for
understanding the dynamic and spread of the disease. These mathematical models are
usually given by ordinary or partial differential equations [46]. Here, the focus is on models
that are widely studied in the literature, such as SI, SIS, and SIR models, where S,
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I, and R stands for susceptible, infected and recovered populations, respectively. Each
individual is classified in one of these states. The interactions among the populations
are given by the law of mass action [13] and it is assumed that the infected individual
transmits the disease with the same infection rate to the susceptible ones. In other words,

the population is homogeneous.

1. For the ST model the population is divided in two states, susceptible and infected.
The susceptible individual becomes infected with rate § and in this state remains
(see Figure 71). One example of this disease is the AIDS [144].

Figure 71 — Diagram of the SI epidemiological model.

(S A

The susceptible and infected individuals are represented by S and I, respectively. The

infection rate is represented by (. Source: Author

The behaviour of populations S and I in the SI model is depicted in Figure 72

Figure 72 — Graphical representation of the populations S and I in the SI epidemiological

model.
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The left and right subfigures represent respectively the susceptible and infected populations,
where S(0) =5 and I(0) = 1. Source: [145]

2. In the SIS model the infected individual may return to the susceptible state.
However, those who recover do not have permanent immunity to infection, returning
to susceptible population with rate o (see Figure 73). One example of this disease is
the Chagas disease [145].
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Figure 73 — Diagram of the SIS epidemiological model.
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The susceptible and infected individuals are represented by S and I, respectively. The

infection rate is represented by 3 and the recovery is represented by o. Source: Author

The behaviour of populations S and I in the SIS model is depicted in Figure 74

Figure 74 — Graphical representation of the populations S and [ in the SIS epidemiological

model.

Susceptible

The left and right subfigures represent respectively the susceptible and infected populations,
where S(0) =5 and I(0) = 1. Source: [145]

3. In the SITR model there are three states, susceptible, infected and recovered. The
infected individual after recovering the disease is moved to the recovered state with
rate v and in this state remains (see Figure 75). One example of this disease is
Caxumba [142].

Figure 75 — Diagram of the SIR epidemiological model.

g g 7 v

R

The susceptible, infected and recovered individuals are represented by S, I and R, respec-

tively. The infection rate is represented by [ and the recovery is represented by v. Source:
Author

The behaviour of populations S, I and R in the SIR model is depicted in Figure
76
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Figure 76 — Graphical representation of the populations S, I and R in the SIR epidemio-

logical model.
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The left to right subfigures represent respectively the susceptible, infected and recovered
populations, where S(0) = 1, 1(0) = 0 and R(0) = 0. Source: [145]

In all these models, the number of individuals S, I, and R are uncertain, since
the immunological system of each individual reacts in different ways [13, 144]. The classical

models do not take into account this fact.

The FIVPs consider initial conditions and/or parameters uncertain in their
differential equations. However, the most FIVPs do not take into account, explicitly, the
interactivity relationship. In the epidemiological models the interactivity relationship may
arise in any restriction of the biological phenomena, such as the relations of mutualism,
protocooperation, commensalism, etc [142]. Mathematically, this interactivity is described

by the concept of interactive fuzzy numbers.

Next, numerical solutions of FDEs, which are based on the method proposed
in Chapter 5, are presented. These FDEs describe the epidemiological models SI, SIS,
and STR.

7.2.1 Numerical solution of SI model

The ST model is described by diagram in Figure 71, and it is written mathe-

matically as follows [46]

L~ ps1. S0) = S0
o . (7.20)

where [ is the rate of the infection of disease and Sy and I are given by interactive fuzzy

numbers.
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Therefore, the numerical solution based on Euler’s method adapted (see (5.15))

is given by
k+1 k k., Tk
S =S¥ 4 h(—=BS" x, IV)

M= 18 4 h(BSk s IF) (7.21)
v v

One can observe that, a fuzzy solution for (7.20) using the joint possibility
distribution Jy, can also be given. Indeed, suppose that the initial values Sy and I are given
by interactive fuzzy numbers with respect the joint possibility distribution J, = Jg,1,
given by (4.1). Note that S =7, [ and S are not necessarily interactive, even though S and
are interactive. The same observation can be made for S =, I and I. Thus, the arithmetic
operations in (5.12) can not be applied. First it is necessary to make some appropriated
changes in Equation (5.12). Since a vital dynamics is not considered in this model, it
follows that S(t) + I(t) = p, with p € R and Vt € [0,0). Thus the following equations are

equivalent

SEL = Gk 4 p(—BS*TF) < SEFL = SE(1 — phg + hBSY). (7.22)

In this case, S* and (1 — phj + h3S") are also linearly interactive and then one can use
the sup-J extension principle for J;, = Jy,,}, where ¢ = hf3 and r = 1 — phf3. The same
holds for I*. Thus, the fuzzy numerical solution for (7.20), with respect Jp = Jyg,y, is
given by

S — SF4p (1 — phfs + hBS¥)

k+1 _ 7k _ k (7.23)
I = 1%« (1 + phs — hBI")

In order to illustrate this method, let us consider Sy = (4;5;6) and Iy = (0; 1;2).
Note that Sy and I are interactive with respect to Jy, and J,. Chapter 5 observed that the
JPDs Jp, and J, are similar (but not equal), in the case where the involved fuzzy numbers
are triangular. Hence, in order to compare these JPDs, it is depicted in Figure 77 the
fuzzy solutions provided by (7.23) and (7.21), for v = 0.
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Figure 77 — Graphical representation of the fuzzy solutions of the SI model (7.21), via Jy

and Jr.
(a) Fuzzy solution, via JPD Jy, given by (7.21).
6 6
5 5
o4 4
= 3
g3 83
(13J =
2 2
1 1
00 50 100 G0 50 100
Time Time
(b) Fuzzy solution, via JPD Jy,, given by (7.23).
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The fuzzy solutions provided by (7.21) and (7.23), where Sy = (4;5;6) and Iy = (0; 1;2).
The left and right subfigures present the susceptible and infected populations, respectively.
The parameters used were h = 0.125 and g = 0.01. The gray lines represent the a-cuts
of the fuzzy solutions, where their endpoints for a varying from 0 to 1 are represented

respectively from the gray-scale lines varying from white to black. Source: [149].

Now, let us consider other fuzzy initial conditions. Let Sy = (9;10;12) and
Iy = (0;1;2). Even though Sy and I are triangular fuzzy numbers, there is no linear
correlation between their membership functions. Therefore the fuzzy solution provided by
(7.23) can not be applied in this case. However, the fuzzy solution provided by (7.21) has

no restriction. Figure 78 presents the fuzzy solution given by (7.21).
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Figure 78 — Graphical representation of the fuzzy solution of the SI model (7.21) via Jo.
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The fuzzy solution provided by (7.21), where Sy = (9;10; 12) and Iy = (0; 1;2). The left
and right subfigures present the susceptible and infected populations, respectively. The
parameters used were h = 0.125 and 8 = 0.01. The gray lines represent the a-cuts of the
fuzzy solutions, where their endpoints for a varying from 0 to 1 are represented respectively

from the gray-scale lines varying from white to black. Source: [149].

Chapter 5 states that the joint possibility distribution .J, has no restrictions
with respect to the shape of the fuzzy numbers. In order to corroborate this statement, let
us consider the following case: suppose that the initial number of susceptible population is
around 11 and the initial number of infected population is around the interval [1, 3]. Thus,
the population Sy and Iy are modeled by the interactive fuzzy numbers Sy = (10;11;12)
and Iy = (0;1;3;4). Since, Sy is a triangular fuzzy number and I is a trapezoidal fuzzy
number, obviously Sy and I, are not linearly interactive. Hence, between the two approaches
only the joint possibility distribution J; can be used in this case. The fuzzy solution is

depicted in Figure 79.

Figure 79 — Graphical representation of the fuzzy solution of the SI model (7.21) via Jy.
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The fuzzy solution provided by (7.21), where Sy = (10;11;12) and I, = (0;1;3;4). The
left and right subfigures present the susceptible and infected populations, respectively.
The parameters used were h = 0.125 and 8 = 0.01. The gray lines represent the a-cuts

of the fuzzy solutions, where their endpoints for a varying from 0 to 1 are represented

respectively from the gray-scale lines varying from white to black. Source: [149].
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Note that in all the cases that was considered, the width of the fuzzy solutions
given by .Jy decreases over time. This means that it is possible to obtain a certain control

of the uncertainty in the temporal evolution of both populations.

The next subsection presents a numerical solution for the SI model considering

vital dynamics.

7.2.2  Numerical solution for SI model with vital dynamics

This subsection provides a numerical solution for the SI model with vital
dynamics. This solution is based on the Runge-Kutta adapted method (see (5.16)). Recall
that one may use the Euler adapted method as well [143]. The bidimensional SI model

with vital dynamics is given by

as

5 —BST + (n—p)S,

dl (7.24)
R — _[ _ ] )

S(0)=5° 1(0)=1°
where 7, i, and, 8 are the rate of birth, death and infection of disease, respectively, and
the initial conditions S and I° are given by fuzzy numbers.

In the case where the initial conditions are considered as non-interactive, the
fuzzy numerical solution have to be based on the standard arithmetic. Therefore the

solution via Runge-Kutta method of forth order is given by (7.25)

h
ShHL = gk 4 E(Kf +2K5 +2k3 + K7)

) : (7.25)
IF =1k 4 8(K{ + 2K, + 2ki + KJ)

where the values of K and K/ are given by
Ky = fs(t", S5 1%) = =BS" - 1" + (n — w)S*,
Kl = fi(t*,S* 1") = pS*. Ik Sk,
h
+ — 8P KP ["f + K? )

Kl = fl(t’“+,8’“+K I’“+K

h

2
h h h
Ky = f5<t’“+2,5k KS IR+ KS)
)

t* 4 h, S’“+hK§?,S’“+hKS),
M+ h, S+ hKS, S+ hKY)
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Figure 80 — Graphical representation of the fuzzy solution of the SI model with vital
dynamics (7.24) via standard arithmetic.
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The fuzzy solution given by Runge-Kutta method via standard arithmetic. The left and
right subfigures present the susceptible and infected populations, respectively. The gray
lines represent the a-cuts of the fuzzy solutions, where their endpoints for a varying from
0 to 1 are represented respectively from the gray-scale lines varying from white to black.
Source: [146].

The parameters used in all simulations are h = 0.125, = 0.2 x 107*, =
0.1 x 107*, 8 =10.01, S = (9;10;11) and I° = (0;1;2).

One can observe in Figure 80 the numerical method given by (7.25) yields
a fuzzy solution which width increases over time. This fact holds due to the standard
arithmetic for non-interactive fuzzy numbers. More precisely, width(S* + A) = width(S*),
VA € Rz, which implies that width(S*™) = width(S*) for all iteration k.

From the epidemiological point of view the numerical method based on the
standard arithmetic is not a good approach to model the dynamic of the disease, since the

uncertainty of the temporal evolution increases.

On the other hand, it seems reasonable to consider that the future number of
the susceptible and infected individuals depends on the current or past number of the
population. This dependence can be describe by the concept of interactivity. For this

approach the numerical solution has to be based on the interactive arithmetic.

In this case, the JPD J;, can not be used, since the equality S(¢) + I(t) = p do
not hold true for all ¢ € [0,0) (see (7.24)). Hence, only the JPD .J, is used to provide the

solution for this model.

Thus the following numerical solution for (7.20) via Runge-Kutta method is
proposed
h
SHH = S5 ) — (K7 40 2K5 49 25 49 K})
6
. (7.26)
=1k 5 (KT o 2K +o 2k +o K)
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where,
KY = [fs(t*, 8% 1) = =BS* - I" 4+ (n — ) S*,
Kl = fi(t*,S* 1%) = BS* .o I" —y uS*,
K5 = (t’“+—S’“+K TP+ K h)

h

Ky = (tk+ KS A+ K

h
2 )
h h h
K = fs <tk+ Sk+0KS IF 4o K5 — )
h h
K = (tk+ o K35, 1"+ K35 )
Ky = fs(t*+h, 5"+ thS, S* 4o hKY),
Ky = [fr(t"+h,S* +0 hK$,S* +9 hKY) .
and the arithmetic operations are obtained from .J,.
The fuzzy solution presented in (7.26) is depicted in Figure 81.

Figure 81 — Graphical representation of the fuzzy solution of the SI model with vital
dynamics (7.24) via Jo.
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The fuzzy solution given by Runge-Kutta method via interactive arithmetic based on Jy.
The left and right subfigures present the susceptible and infected populations, respectively.
The gray lines represent the a-cuts of the fuzzy solutions, where their endpoints for «

varying from 0 to 1 are represented respectively from the gray-scale lines varying from
white to black. Source: [146].

The fuzzy solution produced by (7.26) has non-increasing width over time,
as one can observe in Figure 81. This fact is associated with the interactive arithmetic
based on Jy, whose operations have the smallest norm and width than any other operation
based on joint possibility distributions J, [54]. In contrast to the standard arithmetic, one
may have width(S* +¢ A) < width(S*) where A € Rz and +¢ is the interactive sum. For
example, let be S¥ = (—=2;0;2) and A = (—1;0;1) then

SF 4o A=(-1;0;1) = width(S* +¢ A) = 2 < 4 = width(S*).



Chapter 7. Applications in Biomathematics 188

As an immediately consequence of a combination of Proposition 5.1 and Theo-
rem 2.2 ensures that the numerical solution given by (7.26) is contained in the numerical

solution given by (7.25), as one can observe in Figure 82.

Figure 82 — Comparison of the fuzzy numerical solutions of (7.24) produced by the stan-
dard and interactive arithmetic via Jj.

0 5 10 15

The left and right Figures present the susceptible and infected populations. The dotted and
solid lines represent the O-cut of the fuzzy solutions provided by the Runge-Kutta method
based on interactive and standard arithmetic, respectively. The dashed line represents the
classical solution of (7.20) considering the initial conditions given by S° = 10 and I° = 1.
Source: [146].

From the epidemiological point of view the fuzzy solution produced by the
interactive arithmetic describes the dynamic of the disease more specifically than the
solution given by (7.25). Note that over time the fuzzy solution (7.26) behaves similarly

to the classical solution (see Figure 82).

The next subsection presents a numerical solution for the SIS model. In this
case different values of v are used, in order to illustrate the “control” of the width of the

numerical fuzzy solutions.

7.2.3 Numerical solution for SIS model

Let us consider now the SIS model. In this case consider a vital dynamic, which

is described by the following system

ds

— = —pSI+0ol+ (n—u)S, S(0)=.5

g} , (7.27)
%:5S[+(_M_U)]a 1(0) = Iy

where 7, u, B, 0 € R are the birth, mortality, infection, and recovery rates, respectively.
Therefore the fuzzy numerical solution, via Euler’s method, is given by
S = SF 4 h(=BS* s« TP+ oI" + (n—p)S")

It =154 h(BS* s 1"+ (—p—o)I") (729
Y Y Y
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In order to illustrate the “control” of the width of the solution, consider three
values of 7, which are v = 0, v = 0.5, and 7 = 1. Recalling that for v = 1 one obtains that
the involved fuzzy numbers are non-interactive. Figure 83 depicts the numerical solution
for these values of 7, where the initial conditions are given by Sy = (9;10;11) € Fr,. and
Iy = (1;2;3) € Frp,.

Figure 83 — Graphical representation of the fuzzy solution of the SIS model (7.27).

(a) Numerical solution for v = 0.
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(b) Numerical solution for v = 0.5.
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(¢) Numerical solution for v = 1.
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The fuzzy solution provided by (7.28). The left and right curves represent the susceptible
and infected populations, respectively. The parameters used were h = 0,125, g = 0,01,
o ="710"%n=2107° and u = 1.107°. The gray lines represent the a-cuts of the fuzzy
solutions, where their endpoints for a varying from 0 to 1 are represented respectively

from the gray-scale lines varying from white to black. Source: [145]. Source: [145].

One can observe that in Figures 83 (a) and (b) the susceptible population
decreases whereas the infected ones increase. The same behaviour occurs in the classical

models. Moreover, the width of the fuzzy numerical solution increases when the values
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of v increases, where the smallest and largest width is attached in v = 0 and v = 1,

respectively, corroborating the theoretical results.

7.2.4 Numerical solution for SIR model

Let us provide the last example in the biological field. In this case consider the

SIR model with vital dynamic. The SIR model is described by the following system

(dS
—r = ~BSI+(n—p)S, S(0) =S
dI

Vg =5 = (utn)l, 10) =1 (7:29)
dR

|~ v R(0) = Ro

where 1, u, v, § € R are the birth, mortality, recovery, and infection rates, respectively.

The fuzzy numerical solution, via Euler’s method, for (7.29) is given by

k+1 k k k k

ST =S¥+ h(=BSY «, I" +. (n— p)SY)

M= T8 4 h(BS* e, I — (u+ v)I") : (7.30)
k+1 k k k

R™™ = R" + h(vI® — pR")

Figure 84 depicts the numerical solutions considering the values v = 0, v = 0.5,
and v = 1. The initial conditions are given by Sy = (75;80;85), Iy = (4;5;6), and
Ry = (0;0;0). Recall that, at the beginning of the temporal evolution the recovered

population begins with 0 individuals, since there is no infection yet.

One can observe that in Figures 84 (a) and (b) the susceptible population
decreases, whereas the infected population increases. The recovery population increases

and stabilizes.

It is important to observe that it was considered the case where only the initial
conditions are given by interactive fuzzy numbers. In fact, the same methodology can be

applied in the case where the parameters are given by interactive fuzzy numbers [144].
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Figure 84 — Graphical representation of the fuzzy solution of the SIR model (7.29).

(a) Numerical solution for v = 0.
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(b) Numerical solution for v = 0.5.
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The fuzzy solution provided by (7.28). The left and right curves represent the susceptible
and infected populations, respectively. The parameters used were h = 0,125, v = %,
B =0,01,7 =210 and g = 1.107°. The gray lines represent the a-cuts of the fuzzy
solutions, where their endpoints for a varying from 0 to 1 are represented respectively

from the gray-scale lines varying from white to black. Source: [142].

The next subsection presents the last application of the Euler’s adapted method

in a chemical reactions problem.

7.2.5 Numerical solution for Lotka-Volterra Model of Oscillating Chemical
Reactions
Chemical Kinetic deals with chemistry experiments and interprets them in

terms of mathematical models. In particular, Chemical Kinetic studies the chemical

reactions, as well as the factors that influence the final result [58]. This subsection focuses
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on chemical reactions of the type

U+V —cW, (7.31)

where U and V' are the consumed reagents and W is the final product of this reaction,

with proportion c.

Some factors may influence the velocity of these reactions, for instance, con-
centration, activation energy, temperature, pressure, etc. The velocity (v) of a reaction
can be determined from v = k[U]™[V]", where k is the reaction rate, [U] and [V] are
the concentration of the reagents and m and n are the orders of the reactions, which are
determined experimentally. Thus, there may be imprecision (or uncertainty) in the process
of obtaining such parameters. The classic models do not consider this fact [65]. On the

other hand, fuzzy sets theory can be used to describe these uncertainties.

This thesis focuses on Lotka-Volterra model of oscillating chemical reactions,
which is based on a molecular mechanism where at each step the reagent molecules combine

to produce intermediate reagents or final products. Fundamentally [117]:

A+ X — 2X with reaction rate k;
X +Y — 2Y with reaction rate ky (7.32)

Y — B  with reaction rate ks

The effective rate laws for the reagent A, the product B, and the intermediates
reagents X and Y are described by the initial value problem (IVP) [73]:

(d[A]

— = —hi[A][X], [A(0)] = [Ad]
AX] 40X = [X][Y], [X(0)] = [Xo]

< dd;/ . (7.33)
Elt] — W[XIY]-k[Y],  [Y(0)] =[]
d[B]

| = Rl [B(0)] = [Bo]

The classical solution of (7.33) is depicted in Figure 85.
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Figure 85 — Classical solution of Lotka-Volterra model of oscillating chemical reactions

given as in (7.33)

A X
2 2
1\ 1\_/
0 0
0 50 100 150 0 50 100 150
Y B
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2
1
1
Q 0
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The subfigures represent the chemical reagents A, X, Y and B, with initial conditions
given by A(0) = X(0) =Y (0) = 1 and B(0) = 0. Source: [139].

Law of conservation of mass guarantees that a mass is neither created nor
destroyed in chemical reactions. This means that the mass of any element at the beginning
of a reaction will be equal to the mass of that element at the end of the reaction. Moreover,
for all reagents and products in a chemical reaction, one obtains that the total mass will
be the same at any point in time in any closed system [134]. Therefore, Equation (7.34)
holds true.

+ + + = 0. (7.34)

Consequently,
[AD)] + [ X))+ [Y()] + [B(t)] =k, VteR (7.35)

for some k € R.

In particular, for initial quantities

[Ao] + [Xo] + [Yo] + [Bo] = k. (7.36)

The initial conditions and/or parameters may be uncertain [65]. In case where
the initial conditions [Ao], [Xo], [Yo] and [By] are uncertain and modeled by fuzzy numbers,
it follows that [Ag], [Xo], [Yo] and [By] need to be interactive [62] in order to guarantee
that the total quantity (k), given in (7.36), be a real number [15].

The concept of interactivity is requiried to ensure that Equation (7.36) holds.
Moreover, interactivity is used to model the intrinsic dependence of the reagents/products

with its concentration [56]. The sum is obtained via sup-J extension principle, with J = J.,.



Chapter 7. Applications in Biomathematics 194

Consequently the sum operation depends on the values of v € [0, 1]. Hence Equations
(7.35) and (7.36) become

[A@] ++ [X (O] +4 [Y ()] + [B(O)] = &, (7.37)

and
[AO] Ty [XO] Ty [YO] ty [BO] = k. (7-38>

Since [B] represents the concentration of the final product B, then [By] = 0.
The combination of (7.37) and (7.38) leads us to the following

[B] = [Ao] = [AWD)] ++ [Xo] = [X(O)] + [Yo] = [Y(1)]- (7.39)

Therefore it is only necessary to solve the first three equations of (7.33). The

numerical solution based on the Euler’s adapted method for this problem is given by

(A1 = [A]* — ks ([4]* - [X])
JIXP = X AT X = X D
YT = (] 4 ((RXTE - V] = (s

[

=1
B]kH [AO] el [A]k ty [XO] el [X]k ty

\

with initial conditions [Ap], [Xo], [Yo] € Rx.

Figures 86, 87 and 88 depict the simulations for three different “levels” of
interactivity, that is, v = 0, v = 0.5 and v = 0.75. The parameters used were h = 0.125,
k1 = 0.03, ks = 0.09, k3 = 0.06 and [Ay] = [Xo] = [Yo] = (0; 1;2).

Note that for different values of v one obtains different final products. This
fact is associated with the interactive arithmetic that is based on the family of the joint
possibility distribution J., [149].

Figure 86 reveals that for the highest level of interactivity (v = 0) one obtains
decreasing width for the reagents A, X and Y over time. However the width of the final

product increases initially and thereafter has few variations.

Figure 87 reveals that for v = 0.5 (medium level of interactivity) the width
of A, X and Y has few variations. The width of the product also has few variations but

always with width smaller than width of the fuzzy solution provided by ~ = 0.

Even though for v = 0.5 the reagents have a greater uncertainty than for v = 0,
the uncertainty in the final product is smaller. Thus, in this sense, the solution via Jy 5

may describe this final product in a more precisely way.

For v = 0.75 the uncertainty increases over time as it was expected, since the

value of v is closer to 1 [149]. This fact is corroborated in Figure 88.
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Figure 86 — Numerical solution for (7.33) produced by the Euler’s adapted method for

v =0.
X
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1
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The gray lines represent the a-cuts of the fuzzy solutions, where their endpoints for «

varying from 0 to 1 are represented respectively from the gray-scale lines varying from
white to black. Source: [139].

Figure 87 — Numerical solution for (7.33) produced by the Euler’s adapted method for

v = 0.5.
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The gray lines represent the a-cuts of the fuzzy solutions, where their endpoints for o

varying from 0 to 1 are represented respectively from the gray-scale lines varying from
white to black. Source: [139].

From the chemical point of view, the joint possibility distributions Jy and Jy 5
produce solutions which are qualitatively similar to the deterministic case (see Figures 86,
87 and 85). On the other hand, the joint possibility distribution Jy 75 produces a numerical
solution with uncertainty so high that the final result does not resemble (qualitatively)

the deterministic case.
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Figure 88 — Numerical solution for (7.33) produced by the Euler’s adapted method for

v = 0.75.
3 A 10 X
2 5
1
0 0
o 5 10 0 5 10
10 Y 10 B
5 5
B —— | 0
0 5 10 B0 5 10

The gray lines represent the a-cuts of the fuzzy solutions, where their endpoints for «
varying from 0 to 1 are represented respectively from the gray-scale lines varying from
white to black. Source: [139].

Hence, in the context of fuzzy sets theory, the relationship of interactivity (as
well as the level of interactivity given by ) influences in the width of the final product.
This means that from the chemical point of view, different quantities and/or concentration

of the reagents produce products with different uncertainties.

The next section provides the last application of this thesis.

7.3 Fuzzy numerical sequences for Fibonacci and Discret Delay
models with initial conditions given by J,-interactive fuzzy

numbers

This section provides examples on Fibonacci and Delay discrete sequences,

using the interactive sum and difference obtained from 7, (see Chapter 6).

7.3.1 Fuzzy Fibonacci Sequence

The Fibonacci sequence is a well-known sequence in Mathematics. This sequence
is defined by

Tpt2 = Tptl + Ty, (741)

where zo and x, are the initial conditions.
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For example, if the initial conditions are given by zy = x; = 1, then the

Fibonacci sequence is given by

{1,1,2,3,5,8,13,21,...}.

This sequence has several applications as one can find in [75].

This subsection focuses on the Fibonacci sequence where the initial conditions
Xo and X are J,-interactive fuzzy numbers, in order to illustrate the properties presented
by Chapter 6.

Hence, considering the initial conditions given by J,-interactive fuzzy numbers,

the Fibonacci sequence is given by
XTL+2 = Xn+1 +'Y Xn (742)

where X, is a fuzzy number for all n € N.

Figures 89, 90, 91 and 92 depict the numerical simulations for the Fibonacci

sequence given by (7.42), where the initial conditions are given by X; = X, = (0;1;2).

Figure 89 — Graphical representation of the Fibonacci sequence for v = 0.

1

0.8f B

0.6 b

0.4f 1

02 B

Fibonacci sequence for v = 0, where the initial conditions are given by Xy = X; = (0;1;2).

Source: Author.
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Figure 90 — Graphical representation of the Fibonacci sequence for v = 0.25.
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Fibonacci sequence for v = 0.25, where the initial conditions are given by X, = X; =
(0;1;2). Source: Author.

Figure 91 — Graphical representation of the Fibonacci sequence for v = 0.5.
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Fibonacci sequence for v = 0.5, where the initial conditions are given by X, = X; = (0; 1;2).

Source: Author.

Figure 92 — Graphical representation of the Fibonacci sequence for v = 1.
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Fibonacci sequence for v = 1, where the initial conditions are given by X, = X; = (0; 1;2).

Source: Author.

One can observe that, for v = 1 the Fibonacci sequence obtained is the same

as the one given by the standard sum, that is, X, 1o = X411 +. Xp-
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Note that as long as the values of v decreases, one obtains elements X with
smaller width. In fact, for v = 0, it follows that X5, X5, Xs... are real numbers. This fact
is associated with the symmetry of the fuzzy numbers X, and X7, as it had been prove in
Theorem 6.1.

The next subsection presents the fuzzy delay discrete sequence.

7.3.2 Delay Discrete Sequence

The discrete delay sequence is defined by
Yn+2 = Yn+1 — TYn, (743)

where 7 € (0, 1) is a constant, y, and y; are the initial conditions.
For example, if the initial conditions are given by zy = ;1 = 1 and r = 0.25,

then the delay discrete sequence is given by

{1,1,0.75,0.5,0.3125,0.1875, .. .}.

This subsection focuses on the delay discrete sequence where the initial con-
ditions Yy and Y; are J,-interactive fuzzy numbers, in order to illustrate the properties

presented by Chapter 6.
Hence, considering the initial conditions given by J,-interactive fuzzy numbers,

the delay discrete sequence is given by

Yoo = Yoay = Y5, (7.44)

where Y, .5 is a fuzzy number for all n € N.

Figures 93, 94, 95 and 96 depict the numerical simulations for the delay discrete
sequence given by (7.44), where the initial conditions are given by X; = X, = (0;1;2) and
r = 0.25.
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Figure 93 — Graphical representation of the discrete delay sequence for v = 0.
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Discrete delay sequence for v = 0, where the initial conditions are given by X, = X; =
(0;1;2) and r = 0.25. Source: Author.

Figure 94 — Graphical representation of the discrete delay sequence for v = 0.25.
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Discrete delay sequence for v = 0.25, where the initial conditions are given by Xy = X; =
(0;1;2) and r = 0.25. Source: Author.
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Figure 95 — Graphical representation of the discrete delay sequence for v = 0.5.
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Fibonacci sequence for v = 0.5, where the initial conditions are given by X, = X; = (0;1;2)
and r = 0.25. Source: Author.

Figure 96 — Graphical representation of the discrete delay sequence for v = 1.

1

o4} \ _

A

Discrete delay sequence for v = 1, where the initial conditions are given by X, = X; =
(0;1;2) and r = 0.25. Source: Author.

One can observe that for v = 1 the delay sequence obtained is the same as the
one given by the standard difference. For v = 0 one obtains that the sequence approximates

to the fuzzy number with width closer to 0.

In case where the delay coefficient r is given by r = 1, it follows that the

elements Y5, Y5, Ys... are real numbers, as Theorem 6.2 reveals.

Also note that for this particular sequence the joint possibility distribution Jy
is the only one that produced a sequence where all values in the support of Yy, with k£ € N,

are positive.
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7.4 Conclusion

This chapter provided several examples where the concept of interactivity can
be used. First, the method proposed in Chapter 4 was applied in a physical problem, where
the position, velocity and acceleration were linear connected. Second, the family of joint
possibility distributions J,, defined in Chapter 5, was used in order to provide numerical
solutions for epidemiological and chemical models, where the populations/reagents were
considered as J,-interactive. This chapter ended applying the family of joint possibility
distribution J,, given in Chapter 6, in the Fibonacci and delay sequences, in order to

explore the symmetry of these interactive fuzzy numbers.
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Conclusion

This thesis presented a study about fuzzy differential equations (FDEs) con-
sidering the relationship of interactivity. It was proposed some methods to solve fuzzy
initial value problems (FIVPs), where the initial conditions are given by fuzzy numbers
with different types of interactivity. To this end several types of interactive arithmetics
were provided, which give raise to methods that can be used in the solution of FDEs

analytically as well as numerically.

Before presenting the study of FDEs, it was investigated some fundamental
questions about fuzzy equations of the form A@®; B = C', where the operation @ is given
by an interactive sum or difference. In the case where A and J are free variables, it was
showed that there is always a solution for it and this solution is the maximal solution
(see Definition (3.1)). However, in the case where only J is the free variable, the equation
A@; B = C not always has solution; in the affirmative case, necessary and sufficient

conditions to exist the solution were established.

The study of FDEs began by developing a theory using the linear interactivity,
which arises from the joint possibility distribution (JPD) J; (see Equation (4.7)). By
means of Jy, analytical solutions of FIVPs were provided, where the initial conditions are
given by linearly interactive fuzzy numbers. These solutions were obtained by the sup-J
extension principle. It was showed that the solution provided by .J;, is associated with
Fréchet derivative approach, in the sense that both methods produce the same solution to
FIVPs.

The linear interactivity requires that the membership functions of the fuzzy
numbers have a linear correlation. Hence, a more general JPD, denoted by .J, (see Equation
(5.6)) was studied. This family can be applied to every pair of fuzzy numbers. From J,
numerical solutions of FIVPs were provided, where the fuzzy initial conditions are J,-
interactive. These numerical solutions were obtained by extending the classical arithmetic
operations in the Euler’s and Runge-Kutta methods. The proposed approach is not

computed via a-cuts, in contrast to the methods provided in the literature.

In addition it was proved that the difference via J,, coincides with the g-difference
(see Equation (1.30)). This means that the g-difference is one type of interactive difference,
and consequently, embraces the notion of interactivity. Since g-difference generalizes the
gH- and H-differences, it was possible to conclude that these differences are interactive as
well. Hence the connection between interactive differences and the Hukuhara difference

(and its generalizations), investigated in Figure 2, was answered as Figure 97 depicts.
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Figure 97 — Diagram of arithmetics on fuzzy numbers and its connections

Fuzzy arithmetic

>~

_ . J ,-difference
Non-interactive Interactive > .
I-difference
} 1
Standard H-difference | |gH-difference|| g-difference

The solid squares are the arithmetics operations investigated in this thesis. The solid
arrows stands for the connections established here. Source: Author

The proposed approach allowed to treat of FDEs numerically and analytically.
Moreover, the numerical solution is connected with the analytical solutions, since both of

them arose from the JPD J,. Figure 98 depicts this new association.

Figure 98 — Diagram of approaches for fuzzy differential equations

Zadeh extension

. |
/ Analytical solutions —>: sup-.J extension |
_____________ |

. . I
Fuzzy differential equations ! Fuzzy derivative

The solid squares are the most common approaches used in the literature. The dashed
squares are the ones studied in this thesis. The dashed arrow establishes the connection
provided here. Source: Author

The interactive arithmetic operations, via .J,, may be difficult to manually
compute, demanding a computational effort. In this sense another JPD, denoted by 7,
(see Equation (6.3)), was proposed. This JPD produces arithmetic operations that can be

characterized by a-cuts, making the computation of the operations simpler.

The J,-interactive sum (difference), with v = 0, produce fuzzy numbers with
smaller Pompeiu-Hausdorff norm and width than any other sum (difference) derived from
the sup-J extension. In addition, sufficient conditions for the J,-interactive sum and

difference between fuzzy numbers resulting in real numbers were established.
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The proposed approaches were used in applications involving Physics, Biology
and Chemistry fields. From Jp, analytical fuzzy solutions of FIVPs were provided. These
FIVPs describe problems involving hypocycloid curves and a mass-spring system, where the
initial conditions are given by linearly interactive fuzzy numbers, describing the correlation

among the position, velocity and acceleration.

From J, numerical fuzzy solutions of FIVPs were provided. These FIVPs
describe the epidemiological models SI, SIS and SIR. Since the immunological system of
each individual reacts in different ways, different values of v were used in order to study

these fuzzy solutions taking into account different interactivities.

Chemical reactions were studied numerically by providing numerical solutions,
via J,, to the FIVPs that describe the Lotka-Volterra model of oscillating chemical
reactions. The values of v model different interactions of reagents that influence the final

result of the reaction.

Finally the JPD J, was used to introduce the Fibonacci and Delay discrete
sequences that incorporate the concept of interactivity. The properties of symmetry of

fuzzy numbers in these sequences were exhibited.

For further works, we intend to continue the study of FDEs by providing
an analysis of the stability of fuzzy solutions. Also we aim to establish the conditions
for the existence of the family of J-interactive derivatives. Our other goal is provide a
characterization of the family of Z-interactive derivatives by means of a-cuts. In addition,
we intend to study fundamental properties of arithmetic on interactive fuzzy numbers,
such as associativity and distributivity. Finally, we aim to provide a more deeply study of

the Fibonacci and Delay sequences, using the notion of interactivity.

This thesis provides a study in the field of FDEs, using different types of
interactive arithmetic on fuzzy numbers. Some important and significant connections with
the approaches proposed in the literature were established, proving that some of them
embrace the concept of interactivity. The importance and richness of interactivity in the
context of FDE is showed in the diagram given as in Figure 99, which contains all the

contributions from this thesis.
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Figure 99 — Contributions of the thesis.

e Solutions of fuzzy higher order linear
differencial equations with interactive
fuzzy values (IEEE Transactions on
Fuzzy Systems)

e On Interactive Mechanical Vibrations
Problems (Mechanical Systems and

Signal Processing)

e Higher Order Initial Value Problem
with Interactive Fuzzy Conditions

(FUZZIEEE - 2018)

e Fuzzy initial value problems for fuzzy
hypocycloid curves (FUZZIEEE — 2019)

e Solugao numérica para PVI com
condigoes iniciais fuzzy interativas:
uma aplicagao a modelos do tipo

SIR (Biomatemética — UNICAMP)

e The Generalized Fuzzy Derivative
is Interactive (Information Sciences)

e Numerical Solutions for
Bidimensional Initial Value
Problem with Interactive Fuzzy

Numbers (NAFIPS - 2018)

e Comparison between
numerical solutions of fuzzy
initial value problems via

interactive and standard
arithmetics (NAFIPS — 2019)

I

\/

e Addition and subtraction of
interactive fuzzy numbers based on

a family of joint possibility
distributions (Fuzzy Sets and

Systems)

Jg

\/

e Some notes on the addition of
interactive fuzzy numbers

(NAFIPS — 2019)

e Solugao Numérica para PVI via
aritmética fuzzy interativa: uma aplicacao
aos modelos epidemiolégicos SI

(CNMAC - 2017)

e Solugao Numérica para PVIF via
Aritmética Fuzzy Interativa:

Aplicacao aos Modelos

Epidemiolégicos (V CBSF)

e Solugao Numérica para PVI com
Condigoes Iniciais Fuzzy Interativas
Aplicados a Modelos Epidemiolégicos
do tipo SIR com Dinamica Vital

(XII EnCPos)

e Solucao Numérica para PVIF com
Parametro Fuzzy Interativo: Aplicacao
em Modelos Epidemioldgicos do Tipo SI
(CNMAC - 2018)

e Solugao Numérica para PVI com
condigoes iniciais fuzzy interativas que
modelam reagoes quimicas

(CNMAC - 2019)

e Numerical solution for Lotka-Volterra
model of oscillating chemical reactions
with interactive fuzzy initial conditions
(EUSFLAT - 2019)

e red: Articles
e green: Chapters

e blue: Conference Papers

The contributions written in red, green and blue represent the manuscripts submitted /pub-
lished in form of articles, chapters of books and conference papers, respectively.
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