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Resumo

Apresentamos um estudo sobre equações diferenciais fuzzy (EDFs), tanto do ponto de

vista analítico quanto numérico. Para ambas abordagens faz-se necessário estabelecer uma

aritmética entre números fuzzy. Focamos em aritméticas que consideram uma relação

entre números fuzzy chamada interatividade, que é atrelada ao conceito de distribuição

de possibilidade conjunta. Através do princípio de extensão sup-J , propomos diferentes

aritméticas entre números fuzzy interativos, podendo assim tratar de EDFs numericamente

através dos métodos de Euler e Runge-Kutta, adaptando as operações aritméticas para

números fuzzy interativos. Fornecemos soluções analíticas para problemas de valores

iniciais fuzzy utilizando o princípio de extensão sup-J e estabelecemos conexões dessa

solução com outras na literatura, por exemplo, as soluções obtidas através da derivada de

Fréchet. Provamos que a derivada de Hukuhara e suas generalizações são casos particulares

de derivadas interativas. Construímos, através de uma nova família de distribuições de

possibilidade conjunta, operações aritméticas que produzem números fuzzy com norma

e largura mínimas, em comparação com qualquer outra aritmética obtidas via extensão

sup-J . Caracterizamos essas operações aritméticas por α-níveis, tornando seu cálculo

mais simples. Investigamos também soluções para equações fuzzy lineares que consideram

aritméticas interativas, estabelecendo condições necessárias e suficientes para existência de

tais soluções. Ilustramos os métodos propostos nessa tese, fornecendo soluções numéricas

para modelos epidemiológicos e reações químicas e soluções analíticas para problemas

físicos do tipo massa-mola, corroborando os resultados teóricos. Por fim, exploramos as

propriedades de simetria de números fuzzy em sequências de Fibonacci e retardamento.

Palavras-chave: Equações diferenciais fuzzy. Derivadas fuzzy. Aritmética fuzzy.



Abstract

We present a study of fuzzy differential equations (FDEs) from the analytical and numerical

point of view. Both approaches require an arithmetic on fuzzy numbers. We focus on

arithmetics that consider the relationship between fuzzy numbers called interactivity,

which is associated to concept of joint possibility distribution. By means of sup-J extension

principle, we propose different arithmetics on interactive fuzzy numbers, allowing to deal

with FDEs numerically using Euler’s and Runge-Kutta methods, adapting the arithmetic

operations for interactive fuzzy numbers. We provide analytical solutions to fuzzy initial

value problems via sup-J extension principle and we establish connections with others

approaches in the literature, for example, the solutions obtained from Fréchet derivative. We

proved that Hukuhara derivative and its generalizations are particular cases of interactive

derivatives. We construct, from a new family of joint possibility distributions, arithmetic

operations that produce fuzzy numbers with minimal norm and width, in comparison with

any other arithmetic derived from sup-J extension. We characterized these arithmetic

operations by means of α-cuts, making the computation simpler. Also we investigate

solution to linear fuzzy equations that consider interactive arithmetic, establishing necessary

and sufficient conditions for the existence of these solutions. We illustrate the methods

proposed in this thesis, providing numerical solutions to epidemiological and chemical

models and analytical solutions to physical mass-springer problems, corroborating the

theoretical results. Finally, we explore the symmetry properties of fuzzy numbers in

Fibonacci and Delay sequences.

Keywords: Fuzzy differential equation. Fuzzy derivatives. Fuzzy arithmetic.
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number-valued functions. Puri and Ralescu [118] introduced the Hukuhara derivative

(H-derivative) and Kaleva [80] provided a detailed study of this type of fuzzy derivative.

Nevertheless this approach produces only solutions with increasing width of the support,

which means that in fuzzy dynamical systems the future state is always more uncertain

than the present state [15].

Over the years many generalizations of the Hukuhara derivative were proposed.

Bede and Gal [17] proposed the strongly generalized differentiability of fuzzy functions.

Later, Stefanini and Bede [133] introduced the generalized Hukuhara derivative (gH-

derivative). The gH-derivative is more general than the H-derivative, and they do not

require the monotonicity width of the support for its existence.

Thereafter Bede and Stefanini [16] developed the generalized derivative (g-

derivative). This fuzzy derivative arises from the g-difference. Gomes and Barros [68]

proved that the existence of the generalized difference is only guaranteed, if one applies

the convex hull to the definition proposed by Bede and Stefanini.

Another approach to deal with FDEs is through the relationship between fuzzy

numbers called interactivity [161]. Barros and Santo Pedro [15] proposed a solution to

FDEs using the concept of fuzzy interactive derivative. This paper reveals interesting

properties in the study of fuzzy processes [109, 110]. Esmi et al. [52] used the notion of

interactivity to introduce the Fréchet derivative for fuzzy functions. Salgado, Barros and

Esmi [124] provided solutions of FDEs using the notion of interactivity via fuzzy Laplace

transform.

Several models describe biological phenomena considering that the initial

population is constant [46]. In the case where the states and/or parameters are given

by fuzzy numbers, the only FDE that incorporates this hypothesis is the one that uses

interactivity [15, 149]. This fact can be also observed in chemical and physical problems,

which one may consider the conservation law. In chemistry, the conservation law of mass

states that the mass of the final product must be equal to the mass of the reagents

[106, 139]. In physics, the conservation law states that a particular measurable property of

a physical system does not change as the system evolves over time [21]. This thesis deals

with these models and other ones without this hypothesis.

It is possible to provide analytical solutions to FDEs without using the notion

of fuzzy derivative. In this case, one can use the Zadeh’s extension principle [42, 25, 97, 68],

which consists in extending the classical solution of the corresponding ordinary differential

equation.

Also one can provide solutions to FDEs embracing the notion of interactivity via

sup-J extension principle [62], which is a generalization of the Zadeh’s extension principle.

Cabral and Barros [29] provided a study of FDEs with parameters and initial conditions
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higher order fuzzy differential equations is provided. Moreover this chapter establishes

some connections with others approaches given in the literature, such as Fréchet derivative.

Chapter 5 deals with FDEs from two points of view: fuzzy derivatives and fuzzy numerical

solutions. These approaches are connected from a family of fuzzy derivatives that take

into account the relationship of interactivity. As the forth contribution, a fuzzy numerical

solution for an n-dimensional fuzzy differential equations, with n initial conditions given

by interactive fuzzy numbers, is proposed. As the fifth contribution, this chapter shows

that the Hukuhara derivative is a particular case of this family of fuzzy derivatives, which

makes the Hukuhara derivative be a type of interactive derivative. Chapter 6 proposes a

family of joint possibility distributions, which gives rise to a new type of interactivity. From

this family, arithmetic operations between interactive fuzzy numbers can be computed in a

simpler way. The symmetry properties of fuzzy numbers and the consequences in addition

and subtraction between fuzzy numbers are also explored, which is the sixth contribution.

Finally, the last contribution is given in Chapter 7. Some applications are presented using

different types of interactivity, such as in physical, biological and chemical models. Also

the Fibonacci and Delay sequences composed by interactive fuzzy numbers are explored,

in order to illustrate the properties of symmetry of fuzzy numbers.
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1 Some Notions of Fuzzy Set Theory

This chapter presents the mathematical background for this thesis, which

consists of the main definitions and theorems about fuzzy set theory. Fuzzy sets are

characterized by a mapping called membership function. In order to interpret this concept

and give a meaningful use to it, one can classify the fuzzy sets in two classes, Ontic and

Epistemic fuzzy sets [38].

Ontic fuzzy sets represent objects originally constructed as sets, but to express

the notion of subjectivity, for instance, to describe linguistic labels such as low, medium,

high, etc [37]. On the other hand, epistemic fuzzy sets represent the idea of partial or

imprecise information [20], for example, to determine the exact number of individuals

infected with the HIV virus. This thesis deals with fuzzy sets without distinguishing

between these two point of view.

This chapter is divided in six sections and it is based on the references [85,

83, 111, 70, 9, 140, 108]. Section 1.1 presents introductory definitions of fuzzy set theory.

Section 1.2 focuses on a special class of fuzzy sets called fuzzy numbers. Section 1.3 recalls

the extension principle, which is used in Section 1.4 to provide an arithmetic on fuzzy

numbers. Finally, Sections 1.5 and 1.6 respectively establish the types of fuzzy functions

and fuzzy derivatives most used in the literature.

1.1 Fuzzy Set Theory

Fuzzy set theory was introduced in 1965 by Zadeh [156]. A fuzzy set is defined

as follows.

Definition 1.1. [156] A fuzzy (sub)set A of a universe X is characterized by a function

µA : X Ñ r0, 1s, (1.1)

called the membership function of A.

The function µA applied at the element x P X represents the membership degree

of x in the set A. This means that the greater value of µApxq, the greater association

of the element x to the set A, where µApxq “ 1 and µApxq “ 0 represent the full and

non-association of x to the set A, respectively.

Example 1.1. Let A be the set given by A “ tx P R : x is close to 0u. The elements that

belong to A depend on the expression “close to”, which is a subjective term. This implies
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that the set A is defined in an uncertain way. The membership function µA : R Ñ r0, 1s in

order to characterize the fuzzy subset A is given by

µApxq “

$
’’’&
’’’%

1 ` x if ´ 1 ď x ď 0

1 ´ x if 0 ď x ď 1

0 otherwise

. (1.2)

The image of the membership function µA is depicted in Figure 3. In this case,

the elements outside the interval I “ r´1, 1s are not close to 0. For example, the number

1000 is not close to 0, since the membership degree of 1000 in A is 0, that is, µAp1000q “ 0.

Note that µAp0.25q “ 0.75 and µAp´0.1q “ 0.9. This means that both elements

have an association with the set A (based on definition (1.2)) but ´0.1 is closer to 0 than

0.25. Observe that the element 0 has full association with the set A, since µAp0q “ 1.

Figure 3 – Graphical representation of the fuzzy set A of Example 1.1.

Source: Author.

The choice of the interval I, in the above example, is subjective. One may

choose an interval with larger or smaller size, this depends on the problem to be modeled.

The class of fuzzy subsets of X is denoted by FpXq. Note that each classical

subset U of X is identified by its characteristic function

χU : X Ñ t0, 1u, (1.3)

where χU pxq “ 1 if x P U , and χU pxq “ 0 if x R U . This means that classical subsets are

particular cases of fuzzy subsets. These subsets are also called crisp subsets in fuzzy set

theory.

The universe (X) and the empty (H) sets are fuzzy sets whose membership

functions are given by µXpxq “ 1, @x P X and µHpxq “ 0, @x P X, respectively. For

notational convenience, the symbol Apxq is used instead of µApxq.
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The fuzzy set A is contained in B (A Ď B) if, and only if, Apxq ď Bpxq, for all

x P X. Moreover, A and B are equal if, and only if, Apxq “ Bpxq, @x P X. The intersection

(X) and union (Y) between A and B are given by

pA X Bqpxq “ Apxq ^ Bpxq and pA Y Bqpxq “ Apxq _ Bpxq,

where the symbols ^ and _ stand for the maximum and minimum, respectively. The

complement of the fuzzy set A in X, denoted by AC , is defined by the membership function

ACpxq “ 1 ´ Apxq, @x P X.

Remark 1.1. In general, the intersection between the fuzzy subsets A Ď X and AC Ď X

is not equal to the empty set, that is, A X AC ‰ H. A similar observation can be made for

the union, that is, A Y AC ‰ X.

Example 1.2. Let A be the set given in Example 1.1. The complement AC has membership

function given by

ACpxq “

$
’’’&
’’’%

´x if ´ 1 ď x ď 0

x if 0 ď x ď 1

1 otherwise

.

The union and intersection between A and AC have the following membership

function

pA Y ACqpxq “

$
’’’’’’’’’&
’’’’’’’’’%

´x if ´ 1 ď x ď ´0.5

1 ` x if ´ 0.5 ď x ď 0

1 ´ x if 0 ď x ď 0.5

x if 0.5 ď x ď 1

1 otherwise

and

pA X ACqpxq “

$
’’’’’’’’’&
’’’’’’’’’%

1 ` x if ´ 1 ď x ď ´0.5

´x if ´ 0.5 ď x ď 0

x if 0 ď x ď 0.5

1 ´ x if 0.5 ď x ď 1

0 otherwise

.

Therefore for this example, A Y AC ‰ R and A X AC ‰ H.

Definition 1.2. A fuzzy subset A of X is said to be normal if there exists x P X such

that Apxq “ 1.
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Every crisp set is a normal fuzzy subset (see (1.3)). Another example of normal

fuzzy set is the fuzzy set A given in Example 1.1.

Definition 1.3. The core of a fuzzy subset A of X is defined by the crisp set:

corepAq “ tx P X : Apxq “ 1u.

The corepAq represents the set of all elements of X that have full association

to the subset A. In the case of Example 1.1 it follows that corepAq “ t0u, which means

that 0 is the only element that is certainly “close to 0”.

Definition 1.4. The support of the fuzzy set A is given by

supppAq “ tx P X : Apxq ą 0u.

The crisp set supppAq consists of all elements that have “some” association to

the set A. In Example 1.1 the support of A is equal to the interval p´1, 1q, which means

that all elements between ´1 and 1 are considered as close to some (non-zero) degree,

based on membership function given as in (1.1).

The class of fuzzy subsets FpXq together with the partial ordering of fuzzy

set inclusion pĎq is a complete lattice that is isomorphic to the complete lattice given

by r0, 1sX “ tf : X Ñ r0, 1su together with the usual partial ordering of functions

(f ď g ô fpxq ď gpxq, @x P X). The definitions of partial ordering and complete lattice

are given as follows.

Definition 1.5. [22] A set L is a partial ordered set if a binary relation (ď) is defined,

and satisfies

1. For all x P L, x ď x (Reflexive);

2. If x ď y and y ď x, then x “ y @x, y P L (Antisymmetric);

3. If x ď y and y ď z, then x ď z @x, y, z P L (Transitive);

Definition 1.6. [22] A partially ordered set pL, ďq is a complete lattice if every limited

X Ď L has an infimum, denoted
ľ

X, and a supremum, denoted
ł

X, in L.

The case where X “ txi : i P Iu, for an arbitrary index set I, the infimum and

supremum are written as
ľ

iPI

xi and
ł

iPI

xi, respectively, instead of
ľ

X and
ł

X. In

the special case where X “ tx, yu, one can simply write x ^ y and x _ y.

Next, the definitions of algebraic erosions and dilations are presented.
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Definition 1.7. [72] A mapping Φ : L Ñ M is called an algebraic erosion if Φp
ľ

iPI

xiq “

ľ

iPI

Φpxiq for all xi P L and for all index sets I. Similarly, a mapping Φ : L Ñ M is called

an algebraic dilation if Φp
ł

iPI

xiq “
ł

iPI

Φpxiq for all xi P L and for all index sets I.

A mapping Φ that is both an algebraic erosion and an algebraic dilation is said

to be a complete lattice homomorphism. If Φ is in addition bijective, then one speaks

of a complete lattice isomorphism. Let us remark that a complete lattice isomorphism

can also be characterized as a bijection Φ : L Ñ M that satisfies x ďL y if and only if

Φpxq ďM Φpyq @x, y P L [22]. If pL, ďq is a complete lattice and ď is a total order, that

is, if x ď y or y ď x @x, y P L, then one speaks of a complete chain. Moreover, a chain L

is said to be conditionally complete if the infimum and the supremum of any bounded

subset of L exists in L [22]. If L is a complete lattice and X is an arbitrary non-empty set,

then L
X “ tf : X Ñ Lu is also a complete lattice with the partial ordering given by [22]

f ď g ô fpxq ď gpxq, @f, g P L
X . (1.4)

Example 1.3. The unit interval r0, 1s and the extended R˘8 “ R Y t`8, ´8u are

examples of complete chains. The set R is known to be a conditionally complete lattice

with the operation of addition.

Example 1.4. [22] The PpRq and pR˘8qR “ tf : R Ñ R˘8u together with the partial

order of set inclusion pĎq and the usual order of functions pďq, respectively, are examples

of complete lattices.

An example is given by r0, 1sX with the partial order given by (1.4) and this

complete lattice is isomorphic to FpXq. More precisely, φ : FpXq Ñ r0, 1sX given by

φpAq “ µA represents a complete lattice isomorphism because φ is bijective and because

A Ď B if and only if µA ď µB.

Next the definition of triangular norms is presented. This concept started in

1942 by Menger [94], which was used to construct metric spaces based on probability

distributions. Triangular norms arose as a generalization of the classical logical connectives

[83].

Definition 1.8. A triangular norm, t-norm for short, is a binary operation

△ : r0, 1s ˆ r0, 1s Ñ r0, 1s

px, yq ÞÝÑ x △ y

that satisfies the following properties:

(a) Commutativity: x △ y “ y △ x, @x, y P r0, 1s;
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(b) Associativity: x △ py △ zq “ px △ yq △ z, @x, y, z P r0, 1s;

(c) Monotonicity: if y ď z, then x △ y ď x △ z, @x P r0, 1s;

(d) Boundary conditions: x △ 1 “ x and x △ 0 “ 0, @x P r0, 1s.

Example 1.5. The following operators are examples of t-norms

(a) Minimum: x ^ y “ mintx, yu;

(b) Product: x △p y “ xy;

(c) Łukasiewicz: x △Ł y “ maxtx ` y ´ 1, 0u;

(d) Drastic product: x △d y “

$
&
%

mintx, yu, if maxtx, yu “ 1

0, otherwise
.

Definition 1.9. A triangular conorm, also called as s-norm, is a binary operation

▽ : r0, 1s ˆ r0, 1s Ñ r0, 1s

px, yq ÞÝÑ x ▽ y

that satisfies the following properties:

(a) Commutativity: x ▽ y “ y ▽ x, @x, y P r0, 1s;

(b) Associativity: x ▽ py ▽ zq “ px ▽ yq ▽ z, @x, y, z P r0, 1s;

(c) Monotonicity: if y ď z, then x ▽ y ď x ▽ z, @x P r0, 1s;

(d) Boundary conditions: x ▽ 1 “ 1 and x ▽ 0 “ x, @x P r0, 1s.

Example 1.6. The following operators are examples of s-norms

(a) Maximum: x _ y “ maxtx, yu;

(b) Probabilistic sum: x ▽p y “ x ` y ´ xy;

(c) Łukasiewicz: x ▽Ł y “ mintx ` y, 1u;

(d) Drastic sum: x ▽d y “

$
&
%

maxtx, yu, if mintx, yu “ 0

1, otherwise
.

The t-norm and s-norm generalize the and and or connectives of classical

logic, respectively. Moreover, s-norms can be viewed as dual operators of the t-norms.

One can prove that ▽ is a s-norm if and only if there exists a t-norm △ such that

x ▽ y “ 1 ´ p1 ´ x △ 1 ´ yq, for every x, y P r0, 1s [83, 111]. In general, both t-norms and
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s-norms can not be ordered. However, there exist the largest and the smallest t-norm and

s-norm [111]. One can prove that the minimum operator is the largest t-norm, whereas

the drastic product is the smallest one [140], that is, for all t-norm △ it follows that

x △d y ď x △ y ď x ^ y, @x, y P r0, 1s.

In addition, the maximum operator is the smallest s-norm, whereas the drastic sum is the

largest one [83], that is, for all s-norm ▽ it follows that

x _ y ď x ▽ y ď x ▽d y, @x, y P r0, 1s.

Next the definition of Cartesian product via t-norm is presented [44].

Definition 1.10. Let Ai P FpXiq, for i “ 1, . . . , n. The Cartesian product A1ˆ△. . .ˆ△An,

via t-norm, is defined by the following membership function:

pA1 ˆ△ . . . ˆ△ Anqpx1, . . . , xnq “ A1px1q △ . . . △ Anpxnq, @px1, . . . , xnq P X1, . . . , Xn,

for some t-norm △.

Consider the Cartesian product given by the minimum t-norm in Definition

1.10, which is called usual Cartesian product and it is denoted simply by A1 ˆ . . . ˆ An.

The usual Cartesian product gives rise to fuzzy relations among fuzzy sets. A relation

between classical sets indicates if there is (or not) an association among their elements,

whereas the fuzzy relations not only indicates this relationship but also the degree of this

association.

Definition 1.11. An n-ary fuzzy relation R among the classical universes X1, . . . , Xn is

a fuzzy subset of X1 ˆ ... ˆ Xn, whose membership function is given by

R : X1 ˆ . . . ˆ Xn Ñ r0, 1s.

The symbol Rpx1, . . . , xnq P r0, 1s represents the degree of relationship among

the elements x1, . . . , xn according to the relation R. A fuzzy relation R between two

classical universes X1 and X2 is called binary fuzzy relation.

The cylindrical extension of a fuzzy set is an example of fuzzy relation [70].

Definition 1.12. [111] The cylindrical extension of a fuzzy set A Ď Xi, for i “ 1, 2, is

the fuzzy relation cylpAq P FpX1 ˆ X2q whose membership function is given by

cylpAqpx1, x2q “ Apxiq, @xi P Xi.

The fuzzy projection provides fuzzy relations on some subspaces of the original

space, in contrast to the cylindrical extension, which increases the number of coordinates

of the Cartesian product over which the fuzzy relation is defined. That is, the projection

reduces the dimensionality of the original fuzzy relation.
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Definition 1.13. [111] The projection of R P FpX1 ˆ ... ˆ Xnq onto Xi, where 1 ď i ď n,

is the fuzzy subset
iź

R

of Xi, whose membership function is given by

iź

R

pyq “
ł

txPX : xi“yu

Rpx1, . . . , xnq, @y P Xi,

where X “ X1 ˆ ... ˆ Xn.

The α-cut plays a key role in the relationship between fuzzy and classical sets.

The α-cut of a fuzzy set is defined as follows.

Definition 1.14. [9] Let A be a fuzzy subset of X ‰ H. The α-cuts of A are defined by

the classical sets

rAsα “ tx P X : Apxq ě 0u, @α P p0, 1s.

In addition, if X is a topological space then the 0-cut of A is given by

rAs0 “ cl supppAq,

where cl Y Ď X represents the closure of the classical Y .

It is easy to see, from the above definition, that the following statement holds

true [85, 9]

A “ B ô rAsα “ rBsα, @A, B P FpXq, @α P r0, 1s.

This fact implies that there is a relationship between the membership function of a fuzzy

subset and the characteristic function of its α-cuts, as can be seen in the next corollary [9].

Corollary 1.1. The membership function of A P FpXq can be expressed in terms of the

characteristic function of its α-cuts, as follows:

Apxq “
ł

αPr0,1s

pα ^ χrAsαpxqq, @A P FpXq

where χrAsαpxq “

$
&
%

1, if x P rAsα

0, if x R rAsα
.

The following theorem is known as Negoita and Ralescu’s Theorem of Repre-

sentation [102]. It shows a sufficient condition for a family of classical subsets of X to be

formed as α-cuts of a fuzzy subset.

Theorem 1.1. Given a family of classical subsets tMα Ď X : α P r0, 1su that satisfies the

following conditions
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paq
ď

0ďαď1

Mα Ă M0;

pbq If 0 ď α1 ď α2 ď 1, then Mα2
Ď Mα1

;

pcq For any sequence αn which converges from below to α P p0, 1s, it follows

8č

n“1

Mαn
“ Mα;

Then there exists a unique fuzzy set M , such that rM sα “ Mα, for any α P r0, 1s.

Proof. See [102, 16].

The next section discusses an important subclass of fuzzy sets, namely fuzzy

numbers. They are connected to the definition of α-cuts.

1.2 Fuzzy Numbers

Fuzzy numbers form a special class of fuzzy sets, which are widely used in

applications of fuzzy logic [9, 85, 104, 140], fuzzy analysis [102, 40, 16] and fuzzy differential

equations [42, 80, 67, 70, 108]. Fuzzy numbers are fuzzy subsets of R (called fuzzy quantities)

with some additional properties.

Definition 1.15. [9] The fuzzy set A P FpRq is said to be a fuzzy number if the following

properties are satisfied:

(a) A is normal, that is, rAs1 ‰ H;

(b) The α-cuts of A are closed intervals of R, for all α P r0, 1s;

(c) supppAq is bounded.

The class of fuzzy numbers is denoted by RF . Since the α-cuts of a fuzzy

number A are given by closed intervals, rAsα is denoted by

rAsα “ ra´
α , a`

α s, @A P RF , @α P r0, 1s.

Note that real numbers are particular cases of fuzzy numbers. The most common

fuzzy numbers used in the literature are triangular, trapezoidal and Gaussian fuzzy numbers

[9].



Chapter 1. Some Notions of Fuzzy Set Theory 35

Definition 1.16. A fuzzy number A is said to be triangular if its membership function is

given by

Apxq “

$
’’’’&
’’’’%

x ´ a

b ´ a
, if a ă x ď b

c ´ x

c ´ b
, if b ă x ď c

0, otherwise

,

where a ď b ď c are real numbers.

From Definition 1.16, the triangular fuzzy number A is determined by a, b, c P R.

Hence, A is denoted by the triple pa; b; cq. In this thesis the class of triangular fuzzy numbers

is represented by the symbol FT r. The graphical representation of a triangular fuzzy number

is depicted as in Figure 4.

Figure 4 – Graphical representation of a triangular fuzzy number A “ pa; b; cq.

Source: Author

The α-cuts of the triangular fuzzy number A “ pa; b; cq are given by [9]

rAsα “ ra ` αpb ´ aq, c ` αpb ´ cqs, @α P r0, 1s.

Definition 1.17. A fuzzy number A is said to be trapezoidal if its membership function is

given by

Apxq “

$
’’’’’’’&
’’’’’’’%

x ´ a

b ´ a
, if a ă x ď b

1 , if b ă x ď c

d ´ x

d ´ c
, if c ă x ď d

0 , otherwise

,

where a ď b ď c ď d are real numbers.

The trapezoidal fuzzy number A is denoted by the quadruple A “ pa; b; c; dq.

The class of trapezoidal fuzzy numbers is represented by the symbol FT p. The graphical

representation of a trapezoidal fuzzy number is given as in Figure 5.

The α-cuts of the trapezoidal fuzzy number A “ pa; b; c; dq are given by

rAsα “ ra ` αpb ´ aq, d ` αpc ´ dqs, @α P r0, 1s.
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Figure 5 – Graphical representation of a trapezoidal fuzzy number A “ pa; b; c; dq.

Source: Author

In the case where b “ c the trapezoidal fuzzy number A “ pa; b; c; dq becomes

the triangular fuzzy number A “ pa; b; dq. This implies that FT r is contained in FT p.

Definition 1.18. A fuzzy number A is said to be Gaussian if its membership function is

given by

Apxq “

$
&
%

e´
pµ´xq2

σ , if µ ´ δ ď x ď µ ` δ

0 , otherwise
,

where µ, σ and δ are real numbers, with δ ą 0.

The Gaussian fuzzy number A is denoted by A “ pµ, σ, δq and its graphical

representation is given as in Figure 6. The class of Gaussian fuzzy numbers is represented

by the symbol FG.

Figure 6 – Graphical representation of a Gaussian fuzzy number A “ pµ, σ, δq.

Source: Author

The α´cuts of the Gaussian fuzzy number A “ pµ, σ, δq are given by

rAsα “

$
’’&
’’%

«
µ ´ σ

d
ln

ˆ
1

α

˙
, µ ` σ

d
ln

ˆ
1

α

˙ff
, if α ě α “ e´ δ2

σ

rµ ´ δ, µ ` δs, if α ă α “ e´ δ2

σ

.
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The following results are consequences of Definition 1.15.

Proposition 1.1. [8, 104] The following statements hold true for all A P RF :

(a) The fuzzy numbers are convex fuzzy functions, i.e., Apyq ě Apxq ^ Apzq whenever

x ď y ď z;

(b) The fuzzy numbers are upper semi-continuous, i.e., for all x P R and ǫ ą 0 exists

δ ą 0 such that |x ´ y| ă δ implies that Apyq ă Apxq ` ǫ;

(c) A is non-decreasing on p´8, a´
1

s and non-increasing on ra`
1

, 8q.

Theorem 1.2. [66] Consider the endpoints functions given by

a´ : r0, 1s Ñ R and a´ : r0, 1s Ñ R

a´pαq ÞÝÑ a´
α a`pαq ÞÝÑ a`

α

Thus

paq a´ P R is a bounded, non-decreasing, left-continuous function in p0, 1s and it is

right-continuous at 0.

pbq a` P R is a bounded, non-increasing, left-continuous function in p0, 1s and it is

right-continuous at 0.

pcq a´p1q ď a`p1q.

Conversely, given two functions a´, a` : r0, 1s Ñ R that satisfy the conditions (a)-(c)

there exists a fuzzy number A P RF such that rAsα “ ra´
α , a`

α s, where a´
α “ a´pαq and

a`
α “ a`pαq, @α P r0, 1s.

Lemma 1.1. [129] Let IpRq “ tra´
α , a`

α s Ď R : α P p0, 1su be a family of non-empty

closed intervals of R. If the following properties are satisfied

(a) rb´
α , b`

α s Ă ra´
α , a`

α s, for 0 ă α ď β;

(b)
”

lim
kÑ8

a´
αk

, lim
kÑ8

a`
αk

ı
“ ra´

α , a`
α s, where pαkq is a non-decreasing sequence which con-

verges to α P p0, 1s,

then the family ra´
α , a`

α s represents the α-cuts of the fuzzy number A. On the other hand if

ra´
α , a`

α s are the α-cuts of the fuzzy number A, then the properties (a) and (b) hold true.

The set of fuzzy numbers such that the corresponding endpoint functions are con-

tinuous is denoted by the symbol RFC
, that is, RFC

“ tA P RF : a´ and a` are continuousu.

It follows that FT r Ă RFC
and FT p Ă RFC

.



Chapter 1. Some Notions of Fuzzy Set Theory 38

Next the concept of distance for fuzzy numbers is presented. Moreover, this

thesis uses the Pompeiu-Hausdorff norm, which is obtained by the Pompeiu-Hausdorff

metric.

Definition 1.19. [71] Let A and B be two non-empty compact subsets of a metric space

X. The pseudometric d̃, given by

d̃pA, Bq “
ł

aPA

dpa, Bq,

where

dpa, Bq “
ľ

bPB

||a ´ b||,

is called the Hausdorff separation. The symbol
ľ

stands for the infimum operator.

Definition 1.20. [71] Let A and B be two non-empty compact subsets of a metric space

X. The Pompeiu-Hausdorff metric dH is given by

dHpA, Bq “ maxtd̃pA, Bq, d̃pB, Aqu.

Particularly, if X “ FpRq then the Pompeiu-Hausdorff metric for fuzzy sets is given as

follows.

Definition 1.21. [40] Let A and B be fuzzy sets. The Pompeiu-Hausdorff distance d8 :

FpRq ˆ FpRq Ñ r0, `8q is given by

d8pA, Bq “
ł

0ďαď1

dHprAsα, rBsαq, @A, B P FpRq.

In the case where A and B are given by fuzzy numbers, Definition 1.5 boils down to the

next definition.

Definition 1.22. [40] The Pompeiu-Hausdorff distance d8 : RF ˆRF Ñ r0, `8q, between

fuzzy numbers, is given by

d8pA, Bq “
ł

αPr0,1s

maxt|a´
α ´ b´

α |, |a`
α ´ b`

α |u, @A, B P RF . (1.5)

Moreover, the Pompeiu-Hausdorff norm of a fuzzy number A P RF is defined

by

||A||F “ d8pA, 0q, (1.6)

where the symbol 0 stands for the characteristic function of the real number 0.

One can observe that RF is not a vector space, thus the operator || ¨ ||F does

not characterize a norm. In the literature the operator || ¨ ||F has been called by quasi-norm

[121]. Here a language abuse is committed and this operator is called as the norm.
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Theorem 1.3. [14] The following statements are equivalent:

(a) f : Rn Ñ R
n is continuous in the usual metric of Rn;

(b) F : pFpRnq, d8q Ñ pFpRnq, d8q is continuous.

Recall that pRFC
, d8q is a complete and separable metric space, whereas

pRF , d8q is only a complete metric space [119].

Definition 1.23. The width (or diameter) of a fuzzy number A P RF is defined by

widthpAq “ a`
0

´ a´
0

ě 0. (1.7)

The width of a fuzzy number is associated with the uncertainty that it models,

which means that larger width is tied with greater uncertainty. Observe that every real

number has width equals to 0.

The next section introduces the Zadeh extension principle which will be used

in order to generate an arithmetic for fuzzy numbers, and to define what is meant by a

fuzzy function and real-value analyses to fuzzy analyses.

1.3 Extension Principle

The Zadeh extension principle is a method that extends classical operations to

operations with fuzzy sets as arguments. Given a function f : X Ñ Z, the Zadeh extension

of f maps a fuzzy subset A of X in some element of FpZq [157].

Definition 1.24. [157, 103] Let f : X Ñ Z be a classical function and A P FpXq. The

Zadeh extension of f at A, denoted by f̂pAq, is given by

pfpAqpzq “

$
’&
’%

ł

f´1pzq

Apxq , if f´1pzq ‰ H

0 , if f´1pzq “ H

,

where f´1pzq “ tx : fpxq “ zu.

For multiple variables the Zadeh extension principle is defined as follows.

Definition 1.25. [59, 16] Let f : X1 ˆ . . . ˆ Xn Ñ Z and Ai P FpXiq, for i “ 1, . . . , n.

The extension principle of f at pA1, . . . , Anq is given by

pfpA1, . . . , Anqpzq “

$
’&
’%

ł

f´1pzq

A1px1q ^ . . . ^ Anpxnq , if f´1pzq ‰ H

0 , if f´1pzq “ H

,

where f´1pzq “ tpx1, . . . , xnq : fpx1, . . . , xnq “ zu.
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The Zadeh extension principle can be generalize via the t-norm. The method

known as sup-t extension principle [30, 41] is given by

f△pA1, . . . , Anqpzq “
ł

f´1pzq

A1px1q △ . . . △ Anpxnq. (1.8)

Note that in the case where △ “ ^, the equation given as in Definition 1.25 and Equation

(1.8) are equivalent, that is, pf “ f^. The next theorem yields the α-cuts of the fuzzy

number pfpAq P FpRq obtained by the extension principle.

Theorem 1.4. [103, 8, 34] Let f : Rn Ñ R
m. Thus the following statements hold true

(a) If f is surjective, then

r pfpAqsα “ fprAsαq,

if and only if each element of suppp pfpAqq is attained, for all z P R
m.

(b) If f is continuous, then pf : FpRnq Ñ FpRq is well-defined and

r pfpAqsα “ fprAsαq, @α P r0, 1s.

An immediate consequence of Theorem 1.4 is that if f is continuous, then A Ď B ñ
pfpAq Ď pfpBq [8, 28].

The next two theorems provide the α-cuts of the Cartesian product when the

extension principle is applied. These facts are used in the study of fuzzy initial value

problems (FIVP).

Theorem 1.5. [60] Let f : Rm ˆ R
n Ñ R

k be a continuous function, A P FpRmq and

B P FpRnq. If △ is an upper semi-continuous t-norm, then

r pfpA ˆ△ Bqsα “ fprA ˆ△ Bsαq,

where fprA ˆ△ Bsαq “ tfpx, yq : px, yq P rA ˆ△ Bsαu.

For the usual Cartesian product the following theorem, known as Nguyen’s Theorem, holds

true.

Theorem 1.6. [103, 8] Let f : Rm ˆ R
n Ñ R

k be a continuous function, A P FpRmq and

B P FpRnq. Thus

r pfpA ˆ Bqsα “ r pfpA, Bqsα “ fprAsα, rBsαq,

where fprAsα, rBsαq “ tfpx, yq : x P rAsα and y P rBsαu.

The next section provides an arithmetic on fuzzy numbers. This arithmetic

arises from Definition 1.25, that is, from the Zadeh extension principle for multiple

variables.
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1.4 Arithmetic on Fuzzy Numbers

The Zadeh extension principle allows us to generate an arithmetic on fuzzy

numbers. To this end, one can consider an arithmetic operator as the function f and

use the extension principle to provide the corresponding arithmetic operation between

fuzzy numbers. Before providing the formalization of the fuzzy arithmetic, recall interval

arithmetic. Henceforth open intervals of the real line will be denoted by I Ď R. Also

K “ tra, bs : a, b P R such that a ď bu stands for the set of all closed intervals of R.

Definition 1.26. [100] Let λ P R and let A, B P K given by A “ ra1, a2s and B “ rb1, b2s

be two closed intervals of R. The arithmetic operations between intervals are given by:

(a) The sum (+) between A and B is the interval

A ` B “ ra1 ` b1, a2 ` b2s;

(b) The difference (´) between A and B is the interval

A ´ B “ ra1 ´ b2, a2 ´ b1s;

(c) The product (¨) of A by B is the interval

A ¨ B “ rmin U, max U s,

where U “ ta1b1, a1b2, a2b1, a2b2u;

(d) The quotient (˜) of A by B, if 0 R B, is the interval

A ˜ B “ ra1, a2s ¨

„
1

b2

,
1

b1


;

(e) The product of A by a scalar λ is the interval

λA “

$
&
%

rλa1, λa2s, if λ ě 0

rλa2, λa1s, if λ ă 0
.

Interval arithmetic generalizes the arithmetic for real numbers, since every real number can

be seen as a closed interval with equal endpoints. In addition, the next theorem provides

interval arithmetic in terms of the extension principle.

Theorem 1.7. [9] Let A and B be two closed intervals of R. Then

χAbBpzq “
ł

px,yq:xby“z

χApxq ^ χBpyq “

$
&
%

1, if z P A b B

0, if z R A b B
,

where b is some basic interval arithmetic operator `, ´, ¨ or ˜.
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The following corollary is an immediate consequence of Theorem 1.7.

Corollary 1.2. [9] Let the interval A b B. The α-cuts of the crisp set A b B, with

respective membership function χAbB, are given by

rA b Bsα “ A b B,

@α P r0, 1s.

Next, the usual arithmetic on fuzzy numbers is defined.

1.4.1 Standard Arithmetic

Consider the following arithmetic operator given by

b : R ˆ R Ñ R

px, yq ÞÝÑ x b y,

where b P t`, ´, ¨, ˜u. Now let A, B P RF . From Zadeh’s extension principle, it follows

that

pb : RF ˆ RF Ñ RF

pA, Bq ÞÝÑ pbpA, Bq “ ApbB,

where

pApbBqpzq “
ł

px,yq : xby“z

Apxq ^ Bpyq. (1.9)

The arithmetic that arises from Equation (1.9) is called by standard fuzzy

arithmetic or simply usual fuzzy arithmetic. For simplicity of notation, ApbB will be

denoted by A b B.

Definition 1.27. Let A, B P RF and λ P R. The standard arithmetic operations are

defined as follows

(a) The standard sum between A and B is the fuzzy number A ` B whose membership

function is given by

pA ` Bqpzq “
ł

px,yq : x`y“z

Apxq ^ Bpyq;

(b) The standard difference between A and B is the fuzzy number A´B whose membership

function is given by

pA ´ Bqpzq “
ł

px,yq : x´y“z

Apxq ^ Bpyq;
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(c) The standard product of A by B is the fuzzy number A ¨ B whose membership

function is given by

pA ¨ Bqpzq “
ł

px,yq : xy“z

Apxq ^ Bpyq;

(d) The standard quotient of A by B, if 0 R supppBq, is the fuzzy number A ˜ B whose

membership function is given by

pA ˜ Bqpzq “
ł

px,yq : x{y“z

Apxq ^ Bpyq;

(e) The product of A by scalar λ is the fuzzy number λA whose membership function is

given by

pλAqpzq “
ł

x : λx“z

Apxq.

The standard fuzzy arithmetic can be characterized by α-cuts, which is con-

nected with the interval arithmetic. Theorem 1.8 provides the α-cuts of the standard

arithmetic operations.

Theorem 1.8. [9] Let A and B be fuzzy numbers with the respective α-cuts rAsα “ ra´
α , a`

α s

and rBsα “ rb´
α , b`

α s. Then the following properties hold true

(a) The α-cuts of the standard sum between A and B are given by

rA ` Bsα “ rAsα ` rBsα “ ra´
α ` b´

α , a`
α ` b`

α s, @α P r0, 1s;

(b) The α-cuts of the standard difference between A and B are given by

rA ´ Bsα “ rAsα ´ rBsα “ ra´
α ´ b`

α , a`
α ´ b´

α s, @α P r0, 1s;

(c) The α-cuts of the standard product of A by B are given by

rA ¨ Bsα “ rAsα ¨ rBsα “ rmin Uα, max Uαs, @α P r0, 1s;

where Uα “ ta´
α b´

α , a´
α b`

α , a`
α b´

α , a`
α b`

α u;

(d) The α-cuts of the standard quotient of A by B, if 0 R supppBq, are given by

rA ˜ Bsα “ rAsα ˜ rBsα “ ra´
α , a`

α s ¨

„
1

b`
α

,
1

b´
α


, @α P r0, 1s;

(e) The α-cuts of the product of A by a scalar λ are given by

rλAsα “ λrAsα “

$
&
%

rλa´
α , λa`

α s , if λ ě 0

rλa`
α , λa´

α s , if λ ă 0
, @α P r0, 1s;
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Proof. See [85, 60, 104].

Example 1.7. Let A “ p´1; 0; 1q and B “ p1; 2; 3q, whose α-cuts are given by rAsα “

r´1 ` α, 1 ´ αs and rBsα “ r1 ` α, 3 ´ αs. The fuzzy numbers obtained from the result of

the arithmetic operations are depicted in Figure 7 and given as follows

1. rA ` Bsα “ r2α, 4 ´ 2αs;

2. rA ´ Bsα “ r´4 ` 2α, ´2αs;

3. rA ¨ Bsα “ r´α2 ` 4α ´ 3, α2 ´ 4α ` 3s;

4. rA ˜ Bsα “

„
´1 ` α

1 ` α
,
1 ´ α

1 ` α


.

Figure 7 – Graphical representation of the standard arithmetic operations of Example 1.7.

(a) Standard sum A ` B. (b) Standard difference A ´ B.

(c) Standard product A ¨ B. (d) Standard quocient A ˜ B.

Source: Author

The standard sum A`B, in Example 1.7, is equal to the triangular fuzzy number

p0; 2; 4q. Moreover, the standard difference A ´ B is equal to triangular fuzzy number

p´4; ´2; 0q. It is easy to verify that the standard sum (difference) between two triangular

fuzzy numbers is a triangular fuzzy number [9]. In contrast to the latter operations, the

standard product and quotient between triangular fuzzy numbers are not triangular fuzzy

numbers, as Example 1.7 illustrates.

The standard arithmetic operations between fuzzy numbers can be easily com-

puted. Moreover, the standard arithmetic is commutative, associative and sub-distributive
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[45, 111]. However, this arithmetic do not satisfy some intuitive properties, such as

piq A ´ A “ χt0u;

piiq pA ` Bq ´ B “ A;

piiiq A ˜ A “ χt1u,

where A, B P RF .

Examples 1.8, 1.9 and 1.10 exhibit the counterexamples for the statements piq, piiq and

piiiq. From now on, χtuu is simply denoted by u P R.

Example 1.8. Let A “ p´1; 0; 1q, whose α-cuts are given by rAsα “ r´1 ` α, 1 ´ αs. For

all α P r0, 1s, it follows that

rA ´ Asα “ rAsα ´ rAsα “ r´2 ` 2α, 2 ´ 2αs ‰ r0, 0s.

Therefore, A ´ A ‰ 0. In fact A ´ A “ 0 if, and only if A is a real number [9].

Example 1.9. Let A “ p´1; 0; 1q and B “ p´2; 0; 2q. Thus

pA`Bq´B “ pp´1; 0; 1q`p´2; 0; 2qq´p´2; 0; 2q “ p´3; 0; 3q´p´2; 0; 2q “ p´5; 0; 5q ‰ A.

Therefore, pA ` Bq ´ B ‰ A.

Example 1.10. Let A “ p1; 2; 3q, whose α-cuts are given by rAsα “ r1 ` α, 3 ´ αs. For

all α P r0, 1s, it follows

rA ˜ Asα “ rAsα ˜ rAsα “

„
1 ` α

3 ´ α
,
3 ´ α

1 ` α


‰ r1, 1s.

Therefore, A ˜ A ‰ 1. Indeed A ˜ A “ 1 if, and only if, A is a real number [9].

This thesis focuses on statements piq and piiq. In order to avoid these mishaps,

the next subsection provides the Hukuhara difference for fuzzy numbers.

1.4.2 Hukuhara Difference and its Generalizations

Several researchers have introduced other differences between fuzzy numbers

such that A ´ A “ 0 is verified. In 1967, Hukuhara [76] defined the Hukuhara difference to

deal with integration of measurable functions and later Banks and Jacobs [6] generalized

this concept and investigated its properties. Puri and Ralescu [118] used the Hukuhara

difference in the context of fuzzy set theory for the first time in order to study differentials

of fuzzy functions.
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Definition 1.28. [76, 118] The Hukuhara difference (or H-difference for short) between

two fuzzy numbers A and B is defined by

A ´H B “ C ðñ A “ B ` C,

where ` is the standard sum.

Note that A ´H A “ 0 holds true for all A P RF , since

A ´H A “ 0 ðñ A “ A ` 0.

Moreover, pA ` Bq ´H B “ A, since the standard sum is a commutative operation and by

definition of the Hukuhara difference, it follows that

A ` B “ B ` A ðñ pA ` Bq ´H B “ A.

However, the difference ´H is not defined for every pair of fuzzy numbers. A necessary

condition for the existence of A ´H B is given by

rAsα “ rB ` Csα ô rAsα “ rBsα ` rCsα, @α P r0, 1s

ô ra´
α , a`

α s “ rb´
α ` c´

α , b`
α ` c`

α s

ô

$
&
%

c´
α “ a´

α ´ b´
α

c`
α “ a`

α ´ b`
α

.

Since c´
α ď c`

α for all α P r0, 1s, it follows

widthprAsαq “ a`
α ´ a´

α ě b`
α ´ b´

α “ widthprBsαq. (1.10)

Note that a sufficient condition for the existence of A ´H B is that B Ď A.

The α-cuts of the Hukuhara difference between A and B, when it exists, is

provided as follows:

Lemma 1.2. [118] Let A and B be fuzzy numbers. If there exists the H-difference of A

and B, then

rA ´H Bsα “ ra´
α ´ b´

α , a`
α ´ b`

α s, @α P r0, 1s. (1.11)

The generalized Hukuhara difference or, for short, gH-difference, proposed by

Bede, Gal and Stefanini [17, 18, 133, 132, 19], extends the H-difference, that is, if the

difference ´H exists then the difference ´gH also exists and the equality A´H B “ A´gH B

holds true. More precisely, the gH-difference is defined as follows.

Definition 1.29. [16] Let A, B P RF . If there exists a fuzzy number C such that A “ B`C

or B “ A ´ C, where ` and ´ are respectively the standard sum and difference, then

C “ A ´gH B is the generalized Hukuhara difference.
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If the fuzzy numbers A and B satisfies the first condition of Definition 1.29, then

there exists C such that A “ B`C, which is exactly the case where the Hukuhara difference

also exists. Therefore, a necessary condition to exist A´gH B is widthprAsαq ě widthprBsαq,

for all α P r0, 1s. On the other hand, if the fuzzy numbers A and B satisfies the second

condition of Definition 1.29 then there exists C such that B “ A ´ C. Thus

rBsα “ rA ´ Csα ô rBsα “ rAsα ´ rCsα

ô rb´
α , b`

α s “ ra´
α ´ c`

α , a`
α ´ c´

α s

ô

$
&
%

c´
α “ a`

α ´ b`
α

c`
α “ a´

α ´ b´
α

Hence

widthprAsαq ď widthprBsαq, (1.12)

since c´
α ď c`

α for all α P r0, 1s.

Note that the gH-difference extends the H-difference. However the gH-difference

is not defined for every pair of fuzzy numbers. Example 1.11 illustrates this fact.

Example 1.11. Let A “ p0; 4; 8q and B “ p2; 3; 5; 6q, whose α-cuts are given by rAsα “

r4α, 8 ´ 4αs and rBsα “ r2 ` α, 6 ´ αs. Suppose that A ´gH B exists. Then A and B

satisfies the condition iq A “ B ` C or iiq B “ A ´ C, for some C P RF .

If the condition iq is satisfied then rCsα “ r´2 ` 3α, 2 ´ 3αs, however this is

not an interval for values of α greater than
2

3
. Therefore, A and B do not satisfy the first

condition. If the condition iiq is satisfied then rCsα “ r2 ´ 3α, ´2 ` 3αs, which is not an

interval for α ă
2

3
. In these two cases the α-cuts of C are not intervals for all α P r0, 1s

(see Figure 8), thus C is not a fuzzy number. This means that the gH-difference of A and

B do not exist.

Figure 8 – Graphical representation of C from Example 1.11.

(a) Fuzzy set C obtained from the case iq. (b) Fuzzy set C obtained from the case iiq.

The fuzzy set C obtained from the gH-difference between A “ p0; 4; 8q and B “ p2; 3; 5; 6q.
The dotted and solid lines represent the left and right endpoints of rCsα, respectively.
Source: Author
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The non-existence of the gH-difference between the fuzzy numbers provided

in Example 1.11 is attached with the fact that the inequalities (1.10) or (1.12) are not

satisfied for all α P r0, 1s.

The gH-difference between fuzzy numbers, when it exists, can be given by

means of α-cuts (see Lemma 1.3). Moreover, the properties given by Proposition 1.2 holds

true.

Lemma 1.3. [16] Let A, B P RF . If there exists the gH-difference between A and B, then

the α-cuts of A ´gH B are given by

rA ´gH Bsα “ rminta´
α ´ b´

α , a`
α ´ b`

α u, maxta´
α ´ b´

α , a`
α ´ b`

α us, @α P r0, 1s. (1.13)

Proposition 1.2. [132] Let A, B P RF . If A ´gH B exists, then the following properties

are satisfied:

piq A ´gH B is unique;

piiq A ´gH A “ 0;

piiiq pA ` Bq ´gH B “ A;

pivq A ´gH pA ´ Bq “ B;

pvq A ´gH B “ B ´gH A “ C if, and only if, C “ ´C.

Note that the gH-difference does not satisfy the property pC ´gH Bq ` B “ C.

Indeed, let C “ p0; 1; 2q and B “ p0; 1; 3q. Then p0; 1; 2q ´gH p0; 1; 3q “ p´1; 0; 0q, but

p´1; 0; 0q ` p0; 1; 3q ‰ p0; 1; 2q.

Later Bede and Stefanini [19] proposed another difference, called generalized

difference (or g-difference for short), which is defined in Definition 1.30. In contrast to the

generalized Hukuhara difference, the difference ´g is well-defined for any pair of fuzzy

numbers [16].

Definition 1.30. [16, 19] The g-difference of two fuzzy numbers A, B P RF is defined by

rA ´g Bsα “ cl

#
conv

˜
ď

βěα

prAsβ ´gH rBsβq

¸+
, @α P r0, 1s (1.14)

where the ´gH denotes the gH-difference between the intervals rAsβ and rBsβ, @β P r0, 1s,

conv(Y) denotes the convex hull of Y .

Remark 1.2. In [16] the authors do not consider the convex hull as in Definition 1.30.

More recently, Gomes and Barros [69] showed that the convexification (convex hull) is

needed to guarantee that g-difference of any pair of fuzzy numbers is a fuzzy number.

Considering the convexification as given by Definition 1.30, one can obtain the statement

given as in Theorem 1.9.
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Theorem 1.9. [16] Let A, B P RF . The α-cuts of A ´g B are given by

rA ´g Bsα “

«
ľ

βěα

minta´
β ´ b´

β , a`
β ´ b`

β u,
ł

βěα

maxta´
β ´ b´

β , a`
β ´ b`

β u

ff
, @α P r0, 1s.

The g-difference between the fuzzy numbers A and B, given as in Example

1.11, is depicted in Figure 9. This difference extends the gH-difference in the following

sense: if the gH-difference exists, then the g-difference also exists, and A ´gH B “ A ´g B.

Consequently, the generalized difference also extends the Hukuhara difference.

Figure 9 – Graphical representation of the fuzzy number A ´g B, where A and B are given
as in Example 1.11.

The fuzzy number C obtained from de g-difference between A “ p0; 4; 8q and B “ p2; 3; 5; 6q.
Source: Author.

Note that the property pC ´g Bq`B “ C may not hold true for the g-difference.

For instance consider C “ p0; 1; 2; 3q and B “ p0; 1; 3q, hence p0; 1; 2; 3q ´g p0; 1; 3q “ r0, 1s.

On the other hand, pp0; 1; 2; 3q ´g p0; 1; 3qq ` p0; 1; 3q “ p0; 1; 3; 4q ‰ p0; 1; 2; 3q.

Alternatively, one can define other arithmetic on fuzzy numbers which also

satisfies the property A ´ A “ 0, for all A P RF . This arithmetic is called CIA arithmetic

and it is defined in the next subsection.

1.4.3 CIA Arithmetic

The Constraint Interval Arithmetic, or CIA for short, arises from an extension

of a special type of arithmetic between intervals [86]. These interval arithmetic operations

can be similarly defined as the arithmetic operations between sets. Moore [99] established

an arithmetic obtained by endpoints of intervals. This arithmetic can be extend as [100]

X d Y “ tx d y : x P X , y P Y u,

for all intervals X and Y , where d P t`, ´, ¨, ˜u.
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The CIA arithmetic is obtained by rewriting those intervals as real-valued

functions, that is, each element x of the interval A “ ra1, a2s is associated by a combination

of the endpoints of A “ ra1, a2s in the form of x :“ p1´λAqa1 `λAa2, for some 0 ď λA ď 1.

Hence, the CIA arithmetic for intervals is presented as follows.

Definition 1.31. [86] Let A “ ra1, a2s and B “ rb1, b2s. The CIA arithmetic is defined by

A dCIA B “ rmintp1 ´ λAqa1 ` λAa2s d rp1 ´ λBqb1 ` λBb2s, 0 ď λA, λB ď 1u,

maxtp1 ´ λAqa1 ` λAa2s d rp1 ´ λBqb1 ` λBb2s, 0 ď λA, λB ď 1us

where d is an arithmetic operation.

Lodwick and Untiedt [89] extend the CIA arithmetic for fuzzy numbers by

using the operations, given as in Definition 1.31, in each α-cut of the corresponding fuzzy

arithmetic operation.

Definition 1.32. [89] Let A, B P RF . For all α P r0, 1s, the CIA arithmetic between fuzzy

numbers is defined by

rA dCIA Bsα “ rminp1 ´ λAqa´
α ` λAa`

α s d rp1 ´ λBqb´
α ` λBb`

α s, 0 ď λA, λB ď 1u,

maxp1 ´ λAqa´
α ` λAa`

α s d rp1 ´ λBqb´
α ` λBb`

α s, 0 ď λA, λB ď 1us

where d is an arithmetic operation.

One can define, in particular, the CIA difference by taking d “ ´. Note that

in this case A ´CIA A “ 0 for all A P RF , since

rA ´CIA Asα “ rminp1 ´ λAqa´
α ` λAa`

α s ´ rp1 ´ λAqa´
α ` λAa`

α s, 0 ď λA ď 1u,

maxp1 ´ λAqa´
α ` λAa`

α s ´ rp1 ´ λAqa´
α ` λAa`

α s, 0 ď λA ď 1us

“ r0, 0s, @α P r0, 1s.

There are other types of arithmetic on fuzzy numbers that are based on interval

arithmetic [84, 96, 87, 108, 113]. This thesis focuses on the interactive arithmetic, whose

definition is provided in Chapter 2. For instance, the CIA arithmetic takes into account

the concept of interactivity [108]. The various differences are used to deal with fuzzy

derivatives, which are based on differences between fuzzy numbers, but first, the concept

of fuzzy functions is established in the next section.

1.5 Fuzzy Functions

The definition of fuzzy function is required to study various problems such as

in fuzzy differential equations [9, 70], fuzzy integrals [135, 120] and fuzzy optimization
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[112, 154, 88]. The approach of this thesis is to develop results and connections mainly

on the first subject, that is, in fuzzy differential equations. The definitions and examples

provided in this section are based on the references [63, 67, 108].

There are several types of fuzzy functions [45] in contrast to the classical

definition functions (real-valued functions), which are defined in the space EpI,Rq “ tf :

I Ñ R, I Ď Ru. One of them is defined by mappings from crisp space to fuzzy space,

that is, F : X Ñ FpY q, where X and Y are a crisp sets. These fuzzy functions are called

fuzzy-set-valued functions, which are generalizations of set-valued functions [5].

Example 1.12. [70] Let f : R` Ñ K be a function given by

fpxq “ r´1, 1sx. (1.15)

For each x P R` the function f associates the interval fpxq P K, which is

graphically represented in Figure 10.

Figure 10 – Graphical representation of the fuzzy-set-valued function f given in Example
1.12.

The black region represents the function fpxq “ r´1, 1sx, whose images are given by closed
intervals. Source: Author

Functions that associate real values to fuzzy number values, in particular, are

also functions of the form F : X Ñ FpY q. These functions are called fuzzy-number-valued

functions.

Definition 1.33. [45] The functions of the following form

F : R Ñ RF ,

are called fuzzy-number-valued functions.

Example 1.13. Let F : R` Ñ RF be a fuzzy-number-valued function given by

F pxq “ Ax,
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where A “ p´1; 0; 1q P RF .

The fuzzy function F maps each element x P R` to the triangular fuzzy number

p´x; 0; xq. Since F pxq is a fuzzy number for all x P R`, it is possible to describe the image

of F in terms of its α-cuts

rF pxqsα “ rAsαx

“ r´1 ` α, 1 ´ αsx

“ rp´1 ` αqx, p1 ´ αqxs

The fuzzy function F is depicted in Figure 11

Figure 11 – Graphical representation of the fuzzy function F from Example 1.13.

(a) The top view of the fuzzy function F . (b) The tri-dimensional view of the fuzzy function
F .

The left and right subfigures represent the top and tri-dimensional view of the fuzzy
number-valued-function F , respectively. The gray lines represent the α-cuts of the fuzzy
function F , varying from 0 to 1, which are represented respectively from the gray-scale
lines varying from white to black. Source: Author

The above example presents a fuzzy-number-valued function and the character-

ization of its image. In general, the α-cuts of F pxq are denoted by

rF pxqsα “ rF ´
α pxq, F `

α pxqs , @α P r0, 1s .

where F ´
α , F `

α : I Ñ R.

Another type of fuzzy functions are given by maps that simply associates fuzzy

sets from one universe to the corresponding fuzzy sets from the other universe. These

functions have the following form F : FpXq Ñ FpY q, where X and Y are crisp sets. The

Zadeh extension of a classical function f : X Ñ Y , denoted by pf (see Definition 1.24), is

an example of fuzzy function of this form.

Although all these functions are defined in different ways, all of them are

denoted by a capital letter F and, in each problem, it will be clarified which one is being

used.
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Next, Section 1.6 presents the derivatives of fuzzy-number-valued functions

that are most used in the literature.

1.6 Fuzzy Derivatives

This section focuses on derivatives obtained from differences between fuzzy

numbers. These derivatives are used in order to develop the theory of fuzzy differential

equations, which may describe biological (chemical, physical,...) phenomena considering

uncertainty parameters/states.

Chang and Zadeh [36] introduced the notion of fuzzy derivative. Later, several

authors proposed different approaches for fuzzy derivatives [42, 118, 66, 80, 129, 57],

which are all equivalent, as Buckley and Feuring showed [25]. In 2004, Bede and Gal

[17, 18] proposed a derivative based on difference, which is called SGH-derivative. In 2013,

Stefanini and Bede [133] presented the gH- and g-derivatives, which are based on the

differences ´gH and ´g, respectively. In the same year, Barros et al. [12, 68] introduced

the fuzzy derivative for fuzzy bunches of functions[70], which is based on the Zadeh’s

extension of the classical derivative operator. Recently, Esmi et al. [52] introduced the

notion of Fréchet derivative for fuzzy-number-valued functions.

The derivatives of fuzzy-number-valued functions F , that are based on difference

between fuzzy numbers, arise from

lim
hÑ0

F pt ` hq ´ F ptq

h
. (1.16)

This expression depends on the choice of a difference operation “ ´ ” for fuzzy numbers.

Consequently, different derivatives arise from this limit.

Note that, if F is a constant fuzzy-number-valued function, that is, F pxq “

A P RF , @x P R, then the limit (1.16) based on the standard difference is not equal to 0,

since A ´ A ‰ 0 for all A P RFzR. Therefore, the derivative via standard difference does

not satisfy classical results for fuzzy functions. However, the H-, gH-, and g-derivatives

satisfy this property.

The Hukuhara derivative (or H-derivative for short) is defined as follows.

Definition 1.34. [118] The function F : I Ď R Ñ RF , where I is an open set of R, is

said to be Hukuhara differentiable (H-differentiable for short) at t0 P I, if the limits

lim
hÑ0`

F pt0 ` hq ´H F pt0q

h
and lim

hÑ0`

F pt0q ´H F pt0 ´ hq

h
(1.17)

exist and they are equal to some element F 1
Hpt0q P RF , in d8 metric. The fuzzy number

F 1
Hpt0q is called H-derivative of F at t0.
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The H-derivative satisfies a similar property of classical derivatives, that is, if

a fuzzy-number-valued function F is Hukuhara differentiable then F is continuous [80]. In

addition, the α-cuts of F 1
H are given as follows.

Lemma 1.4. [80] Let F : pa, bq Ñ RF be a fuzzy-number-valued function. If F is H-

differentiable, then the real-valued functions F ´
α and F `

α are also differentiable and

rF 1
Hptqsα “ rpF 1q´

α ptq, pF 1q`
α ptqs, @t P R. (1.18)

Example 1.14. Let F : p0, 8q Ñ RF be the fuzzy function given by F ptq “ p´t2; 0; t2q

for all t P p0, 8q. Then

rF ptqsα “ r´1 ` α, 1 ´ αst2 “ rp´1 ` αqt2, p1 ´ αqt2s.

On the one hand,

lim
hÑ0`

rF pt0 ` hq ´H F pt0qsα

h
“ lim

hÑ0`

rp´1 ` αqp2t0h ` h2q, p1 ´ αqp2t0h ` h2qs

h
“ rp´1 ` αq2t0, p1 ´ αq2t0s. (1.19)

On the other hand,

lim
hÑ0`

rF pt0q ´H F pt0 ´ hqsα

h
“ lim

hÑ0`

rp1 ´ αqp´2t0h ` h2q, p´1 ` αqp´2t0h ` h2qs

h
“ rp´1 ` αq2t0, p1 ´ αq2t0s. (1.20)

Since (1.19) and (1.20) are equal, it follows that F is H-differentiable. Moreover,

rF 1
Hptqsα “ rp´1 ` αq2t, p1 ´ αq2ts, for all t P R`. Figure 12 depicts the H-derivative of F .

A necessary condition for the existence of the H-derivative of a fuzzy-number-

valued function F at a given point t is that the width of F be an increasing function

in the neighborhood of t. This means that widthpF pt2qq ą widthpF pt1qq, for all t1, t2 P

pt0 ´ h, t0 ` hq with h ą 0 and t1 ă t2.

The function F provided in Example 1.14 satisfies this condition for every

t P R`. However, if the domain of the function F is given by R, then F is not H-

differentiable in every point t (t ă 0). In this case, the α-cut rp´1 ` αq2t0, p1 ´ αq2t0s,

obtained by the limits (1.19) and (1.20), is not an interval for all α P r0, 1q. Consequently,

F is not H-differentiable at t0 ă 0. Figure 13 portrays the changing endpoints of rF 1
Hsα at

t “ 0.

Next, the definition of the gH-derivative is presented, which arises from the

gH-difference. The generalized Hukuhara differentiability were first considered for set-

valued functions [92]. Several authors used this concept to deal with fuzzy-number-valued

functions [18, 133].
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Figure 12 – Graphical representation of the H-derivative of the fuzzy function F given in
Example 1.14.

(a) The top view of F 1

H . (b) The tri-dimensional view of F 1

H .

The left and right subfigure represent the top and tri-dimensional view of the H-derivative
of F given by F ptq “ p´t2; 0; t2q, respectively. The gray lines represent the α-cuts of F 1

H ,
varying from 0 to 1, which are represented respectively from the gray-scale lines varying
from white to black. Source: Author

Figure 13 – Graphical representation of the changing endpoints of rF 1
Hsα given in Example

1.14.

The top view of the H-derivative of F . The red and blue lines represent the lower and
upper endpoint of rF 1

Hs0, respectively. The gray lines represent the α-cuts of F 1
H , varying

from 0 to 1, which are represented respectively from the gray-scale lines varying from
white to black. Source: Author

Definition 1.35. [16] The function F : I Ď R Ñ RF is said to be generalized Hukuhara

differentiable (gH-differentiable) at t0 P I, if the limit

lim
hÑ0

F pt0 ` hq ´gH F pt0q

h
(1.21)

exists and it is equal to some F 1
gHpt0q P RF , in d8 metric. The fuzzy number F 1

gHpt0q is

said to be the gH-derivative of F at t0.

The implications of gH-differentiability are given in Theorem 1.10.
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Theorem 1.10. [16] Let F : pa, bq Ñ RF be gH-differentiable at t0. Then the endpoints

F ´
α and F `

α of rF 1
gHpt0qsα are continuous at t0.

The next theorem provides a necessary and sufficient condition for the existence

of the generalized Hukuhara derivative.

Theorem 1.11. [19] Let F : pa, bq Ñ RF be a fuzzy function such that F ´
α and F `

α are

real-valued functions, differentiable with respect to t and uniformly continuous with respect

to α P r0, 1s. The fuzzy function F is gH-differentiable at t P pa, bq, if and only if, one of

the following cases hold:

piq pF 1q´
α ptq is an increasing function and pF 1q`

α ptq is a decreasing function with respect

to α, and pF 1q´
1

ptq ď pF 1q`
1

ptq, for all t P pa, bq;

piiq pF 1q´
α ptq is a decreasing function and pF 1q`

α ptq is an increasing function with respect

to α, and pF 1q`
1

ptq ď pF 1q´
1

ptq, for all t P pa, bq.

The α-cuts of the gH-derivative of F are given as follows.

Theorem 1.12. Let F : pa, bq Ñ RF be a gH-differentiable function. The α-cuts of F 1
gH

are given by

rF 1
gHptqsα “ rmintpF 1q´

α ptq, pF 1q`
α ptqu, maxtpF 1q´

α ptq, pF 1q`
α ptqus, (1.22)

for all t P ra, bs and α P r0, 1s.

Example 1.15. Let F : R Ñ RF be the fuzzy function given by F ptq “ p´t2; 0; t2q for all

t P R. The gH-derivative of F is given by

lim
hÑ0

rF pt0 ` hq ´gH F pt0qsα

h
“ lim

hÑ0

rmintuphq, vphqu, maxtuphq, vphqus

h
,

where uphq “ p´1 ` αqp2t0h ` h2q and vphq “ p1 ´ αqp2t0h ` h2q.

Therefore,

lim
hÑ0

rF pt0 ` hq ´gH F pt0qsα

h
“ rmintu, vu, maxtu, vus. (1.23)

where u “ p´1 ` αq2t0 and v “ p1 ´ αq2t0.

Note that the expression, given by (1.23), is an interval for all α P r0, 1s. Thus,

the gH-derivative of F exists and is equal to (1.23). Figure 14 graphically represents F 1
gH .

One can observe that in Figure 14 paq the endpoints of rF 1
gHsα do not switch,

which corroborates the fact that (1.23) is always an interval.
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Figure 14 – Graphical representation of the gH-derivative of the fuzzy function F given
in Example 1.15.

(a) The top view of F 1

gH . (b) The tri-dimensional view of F 1

gH .

Sugfigure (a) represents the top view of the gH-derivative of F . The red and blue lines
represent the lower and upper endpoints of rF 1

gHs0, respectively. Subfigure (b) represents
the tri-dimensional view of the gH-derivative of F . The gray lines represent the α-cuts
of F 1

gH , varying from 0 to 1, which are represented respectively from the gray-scale lines
varying from white to black. Source: Author.

Recall that the gH-derivative is not a linear operator with respect to the

sum. Indeed, consider the functions F, G : p´1, 1q Ñ RF , whose α-cuts are given by

rF ptqsα “ r´1, 1st and rGptqsα “ r0, 1se´t. The functions F and G are gH-differentiable

at t0 “ 0, but F ` G is not [35].

The g-difference generates another derivative, which is called g-derivative. This

fuzzy derivative extends the gH-derivative and it was introduced by Bede and Stefanini

[19].

Definition 1.36. The function F : I Ď R Ñ RF is said to be generalized differentiable

(or g-differentiable for short) at t0 P I, if the limit

lim
hÑ0

F pt0 ` hq ´g F pt0q

h
, (1.24)

exists and it is equal to some F 1
gpt0q P RF , in d8 metric. The fuzzy number F 1

gpt0q is said

to be the g-derivative of F at t0.

Note that the g-derivative extends the gH-derivative, since F pt0 `hq´g F pt0q “

F pt0 ` hq ´gH F pt0q whenever the gH-difference on the right side exists. The following

theorem provides a characterization for the g-derivative of a fuzzy-number-valued function.

Theorem 1.13. [19] Let F : pa, bq Ñ RF be a g-differentiable function. The α-cuts of F 1
g

are given by

rF 1
gptqsα “

«
ľ

βěα

mintpF 1q´
β ptq, pF 1q`

β ptqu,
ł

βěα

maxtpF 1q´
β ptq, pF 1q`

β ptqu

ff
(1.25)
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The gH- and g-derivatives extend the Hukuhara derivative. In fact, if a fuzzy

function is H-differentiable, then it is also gH- and g-differentiable, and all these derivatives

are equal.

Next, an example is presented. This example illustrates a case where a fuzzy

function is g-differentiable but, it is not gH-differentiable in all domain [16].

Example 1.16. Let F : r0, 1s Ñ RF be a fuzzy number-valued function given by

rF pxqsα “ rF ´
α pxq, F `

α pxqs, @α P r0, 1s,

where

F ´
α pxq “ xe´x ` α2pe´x2

` x ´ xe´xq

and

F `
α pxq “ e´x2

` x ` p1 ´ α2qpex ´ x ` e´x2

q.

One can show that the fuzzy function F , depicted in Figure 15, is gH-differen-

tiable in the intervals r0, x1s and px2, 1s, where x1 « 0.61 and x2 « 0.71. However, in the

interval rx1, x2s this function is only g-differentiable [16]. The g-derivative of F is depicted

in Figure 16.

Figure 15 – Graphical representation of the fuzzy function F given in Example 1.16.

(a) The top view of F . (b) The tri-dimensional view of F .

The left and right subfigures represent the top and tri-dimensional view of F . The gray
lines represent the α-cuts of F , varying from 0 to 1, which are represented respectively
from the gray-scale lines varying from white to black. Source: Author

The existence of the g-derivative depends on specific conditions of the functions

F ´
α and F `

α . For example, if F ´
α and F `

α are differentiable functions with respect to t and

uniformly continuous with respect to α P r0, 1s, then F is g-differentiable [19]. For more

details about the gH- and g-derivatives the reader can refer to [16].

Other derivative studied here is the Fréchet derivative for fuzzy functions.

Let us recall the Fréchet derivative for classical functions, before presenting this type of

derivative.
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Figure 16 – Graphical representation of the g-derivative of the fuzzy function F given in
Example 1.16.

(a) The top view of F 1

g. (b) The tri-dimensional view of F 1

g.

The left and right subfigures represent the top and tri-dimensional view of the g-derivative
of F , respectively. The gray lines represent the α-cuts of F 1

g, varying from 0 to 1 which
are represented respectively from the gray-scale lines varying from white to black. Source:
Author

The function f : M Ñ N , where M and N are Banach spaces, is Fréchet

differentiable at t0 if there exists a linear continuous function κ : M Ñ N and o : M Ñ N

that satisfies
||ophq||

|h|
Ñ 0 when h Ñ 0, such that the expression (1.26) holds true [162]:

fpt0 ` hq “ fpt0q ` κphq ` ophq. (1.26)

Esmi et al. [52] proposed a derivative for fuzzy-number-valued functions based

on the Fréchet derivative for classical functions. To this end, they considered the following

fuzzy functions: For a fixed fuzzy number A P RFzR, let F : R Ñ RF be given by

F ptq “ qptqA ` rptq, (1.27)

where q, r : R Ñ R. If q and r are differentiable functions, then F is Fréchet differentiable

and it obeys the following expression [52]

F 1ptq “ q1ptqA ` r1ptq. (1.28)

Moreover,

rF 1ptqsα “ q1ptqrAsα ` r1ptq, @α P r0, 1s. (1.29)

Here the notation from [52] is used to denote the Fréchet derivative by F 1
F .

This type of derivative is associated with the arithmetic on fuzzy numbers that takes into

account a relationship called interactivity, as will be proved in Chapter 4. For more details

about the Fréchet derivative of fuzzy functions the reader can refer to [52].

The next chapter presents the concept of interactivity, which can be used to

extend the Hukuhara derivative (and its generalizations).
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1.7 Conclusion

This chapter reviewed the basic concepts about the fuzzy set theory required

in the chapters that ensue. The definition of fuzzy numbers and the usual arithmetic for

them were presented. In particular, the focus was on the operation of difference. Different

types of fuzzy differences proposed in the literature were delineated. This chapter ended

by presenting the concept of fuzzy derivatives based on the various differences and the

Fréchet derivative.
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2 Interactive Fuzzy Numbers

A discussion about interactive fuzzy numbers will be the focus of this chapter.

The relationship of interactivity was introduced by Zadeh in 1975. According to him, “fuzzy

variables are interactive if the assignment of a value to one affects the fuzzy restrictions

placed on the others” [157, 158, 159]. The interactivity can be described in terms of a

possibility distribution.

The possibility theory is based on the fuzzy set theory [160]. This approach

consists in identifying the membership functions of fuzzy sets with possibility distributions.

In this case, the possibility distribution is interpreted as a function that measures the

possibility of an element belonging to a certain set [45, 48, 85]. In [85] possibility is defined

axiomatically.

Later, in 2004, Fullér, Carlsson, and Majlender [62, 32] associated the concept

of interactivity with the definition of joint possibility distribution. This thesis follows the

same approach proposed by them.

This chapter is divided in four sections and it is based on the references

[157, 158, 159, 161, 31, 88, 62, 33, 61, 95, 32, 78]. Section 2.1 provides the definition of

joint possibility distribution. Section 2.2 presents the notion of interactivity and some

examples to clarify this concept. Finally, Section 2.3, uses the relationship of interactivity

to construct an arithmetic on interactive fuzzy numbers.

2.1 Joint Possibility Distribution

The definition of a possibility distribution is provided as follows.

Definition 2.1. [41]A possibility distribution over A Ă X ‰ H, PospAq : X Ñ r0, 1s, is

defined by

PospAq “
ł

xPA

Apxq

Note that every normal fuzzy set A satisfies PospAq “ 1, in particular for fuzzy

numbers. Also, it is important to observe that a fuzzy set can not be viewed as a possibility

distribution.

The definition of joint possibility distribution is presented as follows [62].

Definition 2.2. [31] Let A1, . . . , An P RF . The possibility distribution J , defined in R
n
F , is

said to be a joint possibility distribution (JPD) of fuzzy numbers A1, . . . , An, if it satisfies
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the following condition

Aipyq “
ł

xPRn:y“xi

Jpx1, . . . , xnq, @x “ px1, . . . , xnq P R
n (2.1)

for all i “ 1, . . . , n. Furthermore, the fuzzy number Ai is called as the ith marginal

possibility distribution of J .

The fuzzy relation J , from the mathematical point of view, is a joint possibility

distribution among the fuzzy numbers A1, . . . , An if each fuzzy number Ai can be given as

the projection of J in the i direction, for i “ t1, . . . , nu. From the practical point of view,

this fact ensures that all the aggregated information in the joint possibility distribution

may be transferred to their marginal possibilities.

Example 2.1. The fuzzy relation J^ P FpRnq obtained from the usual cartesian product,

i.e.,

J^px1, . . . , xnq “ A1px1q ^ . . . ^ Anpxnq, @px1, . . . , xnq P R
n (2.2)

is an example of JPD [62].

The next remark presents some properties that hold for all joint possibility

distribution J .

Remark 2.1. (a) Let J be a bivariate joint possibility distribution of the fuzzy numbers

A1 and A2. Hence J satisfies

ł

yPR

Jpx1, yq “ A1px1q and
ł

yPR

Jpy, x2q “ A2px2q. (2.3)

(b) Let J be an arbitrary multivariate joint possibility distribution of A1, . . . , An P RF .

Hence J satisfies

Jpx1, . . . , xnq ď A1px1q ^ . . . ^ Anpxnq “ J^px1, . . . , xnq, @px1, . . . , xnq P R
n. (2.4)

Consequently, J is contained in the usual Cartesian product, that is,

rJsα Ď rA1sα ˆ . . . ˆ rAnsα, (2.5)

for all α P r0, 1s.

The distribution J^, given by (2.2), is a particular case of joint possibility

distribution based on the t-norm, whose definition is given as follows. Let A1, . . . , An P RF

and some t-norm △. The fuzzy relation J△ given by

J△px1, . . . , xnq “ A1px1q △ . . . △ Anpxnq, @px1, . . . , xnq P R
n, (2.6)
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is said to be a joint possibility distribution based on t-norm [41].

Recall from Chapter 1, the sup-J extension principle is a mathematical tool to

extend functions with two or more real arguments to a fuzzy domain. In contrast to the

extension principle (see Definition 1.25) which is based on t-norm, the sup-J extension

principle is based on a joint possibility distribution.

Definition 2.3. [62] Let J P FpRnq be a joint possibility distribution of pA1, ..., Anq P R
n
F

and f : Rn Ñ R. The sup-J extension of f at pA1, ..., Anq P R
n
F , denoted by fJpA1, ..., Anq,

is the fuzzy set whose membership function is given as follows:

fJpA1, ..., Anqpyq “
ł

px1,...,xnqPf´1pyq

Jpx1, ..., xnq, (2.7)

where f´1pyq “ tpx1, ..., xnq P R
n : fpx1, ..., xnq “ yu.

Equation (2.7) boils down to Equation (1.8), in the case where J “ J△.

Moreover if J “ J^, then Definitions 1.25 and 2.3 are equivalent. This means that the

Zadeh’s extension principle for multiple variables is a particular case of sup-J extension

principle. Clearly, if there is only one fuzzy number A in Equation (2.7), then this only

makes sense, if Definition 1.24 is used.

The next theorem presents a practical method to obtain the α-cuts of the sup-J

extension principle of a continuous function.

Theorem 2.1. [103, 11] Let J be a joint possibility distribution of A1, . . . , An P RF and

let f : Rn Ñ R be a continuous function. For every α P r0, 1s, the α-cut of the sup-J

extension principle fJ is given by

rfJpA1, . . . , Anqsα “ fprJsαq. (2.8)

Recall that the condition of continuity over the function f is sufficient to

guarantee (2.8). However, it is not a necessary condition [11]. In the case where the sup-J

extension of f at pA1, ..., Anq is a fuzzy number, the α-cuts of fJpA1, ..., Anq can be given

in terms of the infimum and supremum of the classical function f restricted by the α-cuts

of J , that is,

rfJpA1, ..., Anqsα “

«
ľ

px1,...,xnqPrJsα

fpx1, ..., xnq ,
ł

px1,...,xnqPrJsα

fpx1, ..., xnq

ff
. (2.9)

Remark 2.2. When the function f is continuous and rJsα is closed and connected set for

all α P r0, 1s, then fJpA1, ..., Anq is a fuzzy number [90]. Consequently the characterization

by means of α-cuts, provided in (2.9), holds. Recall that, these are sufficient but not

necessary conditions.

The next section presents a special concept called interactivity.
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2.2 Interactive Fuzzy Numbers

Let us begin this section by defining non-interactive fuzzy numbers.

Definition 2.4. The fuzzy numbers A1, . . . , An are said to be non-interactive if their joint

possibility distribution J is given by

Jpx1, . . . , xnq “ J^px1, . . . , xnq “ A1px1q ^ . . . ^ Anpxnq, (2.10)

for all px1, . . . , xnq P R
n. Moreover, for all α P r0, 1s it follows

rJsα “ rJ^sα “ rA1sα ˆ . . . ˆ rAnsα. (2.11)

This means that in the case where A1, . . . , An are non-interactive, there are no

restrictions in the joint possibility distribution J^, i.e., the elements x1 P A1, . . . , xn P An

that are related with respect to J^ may be chosen independently from each other. In order

to clarify this idea, let us consider the following example.

Example 2.2. Let A1, A2 P RF given by A1 “ A2 “ p´1; 0; 1q. The joint possibility

distribution J^ between A1 and A2 is given by

rJ^sα “ rA1sα ˆ rA2sα “ r´1 ` α, 1 ´ αs ˆ r´1 ` α, 1 ´ αs.

The JPD J^ is graphically represented in Figure 17.

Figure 17 – Graphical representation of the joint possibility distribution J^ between two
non-interactive fuzzy numbers.

(a) The top view of the JPD J^. (b) The tri-dimensional view of the JPD J^.

The fuzzy numbers A1 “ p´1; 0; 1q and A2 “ p´1; 0; 1q are depicted by the shaded triangles.
The joint possibility distribution J “ J^ “ A1 ˆ A2 is depicted by the shaded pyramid.
The gray lines represent the α-cuts of J , varying from 0 to 1, which are represented
respectively from the gray-scale lines varying from white to black. Source: Author.

Note that for each element of A1 the joint possibility distribution establishes

which elements of A2 are associated with it. In this case, for each x1 P rA1sα the entire

interval rA2sα “ rpa2q´
α , pa2q`

α s is linked to x1.
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The concept of non-interactivity is similar (but not equivalent) to the concept

of independence of random variable in probability theory [157]. Non-interactive fuzzy

variables are defined by the JPD given by (2.10), whereas independent random variables

are defined by the joint probability distribution given by the product of all the proba-

bilities (P pu1, . . . , unq “ P pu1q . . . P punq) [27]. In both cases, the membership function

(probability) of one marginal does not interfere the membership (probability) of the others.

Hisdal [74] provided a study between the difference of conditional independence and

non-interactivity. For more details on this topic the reader can refer to [7].

Next, the definition of interactive fuzzy numbers is presented.

Definition 2.5. Let A1, . . . , An P RF and J be their joint possibility distribution. The

fuzzy numbers A1, . . . , An are called J-interactive, or simply interactive, if J ‰ J^.

In contrast to non-interactivity, the above definition ensures that interactive

fuzzy numbers may have a dependence relation, which means that if A1, . . . , An are

interactive with respect to some joint possibility distribution J , then for each element

xi P rAis
α there are specific elements xj P rAjsα, with i ‰ j, related to it. In this sense,

the concept of interactivity is similar to dependence in the case of random variables.

Example 2.3. Let A1 “ A2 “ p´1; 0; 1q P RF . Consider the fuzzy relation (depicted in

Figure 18) defined by the following membership function

Jpx1, x2q “

$
’’’&
’’’%

A1px1q ^ A2px2q , if px1, x2q P r´1, 0s ˆ r´1, 0s

A1px1q ^ A2px2q , if px1, x2q P r0, 1s ˆ r0, 1s

0 , otherwise

(2.12)

whose α-cuts are given by

rJsα “ r´1 ` α, 0s ˆ r´1 ` α, 0s Y r0, 1 ´ αs ˆ r0, 1 ´ αs. (2.13)

Let us prove that J is a joint possibility distribution for A1 and A2. To this

end, two cases can be considered: a) ´1 ď x1 ď 0 and b) 0 ď x1 ď 1.

a) For ´1 ď x1 ď 0, it follows

ł

x2Pr´1,1s

Jpx1, x2q “

˜
ł

x2Pr´1,0s

A1px1q ^ A2px2q

¸
_

˜
ł

x2Pr0,1s

0

¸

The left endpoint of rA2sα is increasing w.r.t α, therefore for x2 P r´1, 0s the

supremum of A1px1q ^ A2px2q is attached in x2 “ 0. Thus,

ł

x2Pr´1,1s

Jpx1, x2q “ pA1px1q ^ 1q _ 0 “ A1px1q.
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Figure 18 – Graphical representation of the joint possibility distribution J between two
interactive fuzzy numbers of Example 2.3.

(a) The top view of the JPD. (b) The tri-dimensional view of the JPD.

The fuzzy numbers A1 “ p´1; 0; 1q and A2 “ p´1; 0; 1q are depicted by the shaded
triangles, whereas the joint possibility distribution J , given in (2.12), is depicted by the
shaded pyramid. The gray lines represent the α-cuts of J , varying from 0 to 1, which are
represented respectively from the gray-scale lines varying from white to black. Source:
Author.

b) On the other hand, for 0 ď x1 ď 1 it follows

ł

x2Pr´1,1s

Jpx1, x2q “

˜
ł

x2Pr´1,0s

0

¸
_

˜
ł

x2Pr0,1s

A1px1q ^ A2px2q

¸

“ 0 _ pA1px1q ^ 1q

“ A1px1q,

since the right endpoint of rA2sα is decreasing w.r.t α and consequently for x2 P r0, 1s the

supremum of A1px1q ^ A2px2q is attached in x2 “ 0.

Similarly, it can be shown that
ł

x1Pr´1,1s

Jpx1, x2q “ A2px2q, for all x2 P r´1, 1s.

Therefore J is a joint possibility distribution for A1 and A2, which means that A1 and A2

are interactive with respect to J , or simply J-interactive.

In the above example, the elements x2 P rA2sα that are linked to x1 P rA1sα

are given by

x2 P

$
&
%

r´1 ` α, 0s , if ´ 1 ` α ď x1 ď 0

r0, 1 ´ αs , if 0 ď x1 ď 1 ´ α
. (2.14)

Therefore, the set of elements x2 that are connected to each x1 is more specific

than in the case of non-interactivity (see Figure 17). This means that the elements

x1 P rA1sα and x2 P rA2sα may not be chosen independently, they have to satisfy the

restrictions placed by the joint possibility distribution J .
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Note that Examples 2.2 and 2.3 illustrate that the same fuzzy numbers can

be interactive or not, all depends on the JPD under consideration. The next example

ensures that fuzzy numbers may be interactive with respect to different joint possibility

distributions.

Example 2.4. Let A1 “ A2 “ p´1; 0; 1q P RF and the fuzzy relation J ( see Figure 19)

given by

Jpx1, x2q “

$
’’’&
’’’%

A1px1q ^ A2px2q , if px1, x2q P r´1, 0s ˆ r0, 1s

A1px1q ^ A2px2q , if px1, x2q P r0, 1s ˆ r´1, 0s

0 , otherwise

(2.15)

whose α-cuts are given as follows

rJsα “ r´1 ` α, 0s ˆ r0, 1 ´ αs Y r0, 1 ´ αs ˆ r´1 ` α, 0s. (2.16)

One can prove that J is a joint possibility distribution for A1 and A2 (cf. Example 2.3).

Figure 19 – Graphical representation of the joint possibility distribution J between two
interactive fuzzy numbers of Example 2.4.

(a) The top view of the JPD. (b) The 3 dimensional view of the JPD.

The fuzzy numbers A1 “ p´1; 0; 1q and A2 “ p´1; 0; 1q are depicted by the shaded triangles,
whereas the joint possibility distribution J , given in (2.15), is depicted by the shaded
pyramid. The gray lines represent the α-cuts of J , varying from 0 to 1 which are represented
respectively from the gray-scale lines varying from white to black. Source: Author.

In this case, the elements x2 P rA2sα that are linked to x1 P rA1sα are given by

x2 P

$
&
%

r´1 ` α, 0s , if 0 ď x1 ď 1 ´ α

r0, 1 ´ αs , if ´ 1 ` α ď x1 ď 0
. (2.17)

Note that the joint possibility distribution J , given by (2.15), establishes a

different dependence between the fuzzy numbers A1 and A2, than the JPD given by (2.12)
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(see Figure 18). This means that fuzzy numbers may be interactive in different ways, and

this relation is described by the joint possibility distribution under consideration.

Another type of interactivity is the one based on t-norms [107, 41]. The fuzzy

numbers are said to be J△-interactive, if their joint possibility distribution is given by

J△ ‰ J^ (see (2.6)). For more details about this type of interactivity the reader can refer

to [78].

The next section provides the interactive arithmetic on fuzzy numbers, which

is obtained by the sup-J extension principle.

2.3 Arithmetic on Interactive Fuzzy Numbers

The arithmetic for interactive fuzzy numbers was introduced by Dubois and

Prade [41]. More precisely, they provided the notion of addition between interactive fuzzy

numbers considering the joint possibility distribution J△ (cf. Equation (2.6)). This subject

has been the topic of interest of many researchers [24, 61, 82]. Later different types of

interactive arithmetics, which are not based on t-norms, were proposed [62, 32, 50, 78, 55].

The focus of this thesis is on the interactive arithmetic that does not come from t-norms.

It is important to observe that, motivated by the properties of the standard

arithmetic that do not hold, such as A´A “ 0 and A˜A “ 1 (see Examples 1.8 and 1.10),

Klir [84] proposed in 1997 a fuzzy arithmetic with requisite constraints. The main idea is

to constrain the arithmetic operations based on the extension principle. This approach

resembles the interactive arithmetic, which takes into account the interactivity between

the operands.

The interactive arithmetic is defined as follows: consider a function f : Rn Ñ R

given by

fpx1, . . . , xnq “ x1 b . . . b xn, @px1, . . . , xnq P R
n, (2.18)

where b P t`, ´, ¨, ˜u. Definition 2.3 gives raise to the following definition of interactive

arithmetic.

Definition 2.6. Let A1, A2 P RF and J be their joint possibility distribution. The interac-

tive arithmetic operations are defined by:

(a) The interactive sum between A1 and A2 is the fuzzy number A1 `J A2, whose

membership function is given by

pA1 `J A2qpzq “
ł

x1`x2“z

Jpx1, x2q;
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(b) The interactive difference between A1 and A2 is the fuzzy number A1 ´J A2, whose

membership function is given by

pA1 ´J A2qpzq “
ł

x1´x2“z

Jpx1, x2q;

(c) The interactive product of A1 by A2 is the fuzzy number A1 ¨J A2, whose membership

function is given by

pA1 ¨J A2qpzq “
ł

x1¨x2“z

Jpx1, x2q;

(d) The interactive quotient of A1 by A2, if 0 R supppA2q, is the fuzzy number A1 ˜J A2,

whose membership function is given by

pA1 ˜J A2qpzq “
ł

x1{x2“z

Jpx1, x2q.

(e) The product of A P RF by a scalar λ is the fuzzy number λA, whose membership

function is given by

pλAqpzq “
ł

λx“z

Apxq.

Remark 2.3. (I) Since fuzzy numbers can be interactive with respect to different JPDs

(see Example 2.4), the interactive arithmetic operations are denoted by bJ , in order

to clarify which JPD is being used.

(II) When J is given by J^, that is, A1 and A2 are non-interactive, the arithmetic

provided by the sup-J extension principle boils down to the standard arithmetic.

(III) The product given by item peq of Definition 2.6 is the same scalar product as the one

given by standard arithmetic (see item peq of Definition 1.27).

The observation (II) of Remark 2.3 ensures that the arithmetic obtained from

Zadeh’s extension principle is a particular case of the arithmetic based on sup-J extension

principle. Henceforth, the arithmetic for non-interactive fuzzy numbers is called standard

arithmetic. The case J ‰ J^, the arithmetic is called the interactive arithmetic.

The next theorem is the first contribution of this thesis, which consists of some

connections between these two arithmetics.

Theorem 2.2. [146] Let A, B, C, D P RF and J^ be the joint possibility distribution given

by (2.10). Then for all joint possibility distribution J and b P t`, ´, ˜, ¨u it follows

a) A bJ B Ď A b^ B;

b) λpA bJ Bq Ď λpA b^ Bq, for all λ P R;
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c) If A Ď B then A bJ C Ď B b^ C;

d) If A Ď B and C Ď D then A bJ C Ď B b^ D;

e) pA bJ pB bJ Cqq Ď pA b^ pB b^ Cqq.

Proof.

a) Theorem 2.1 and item bq of Remark 2.1 ensures that

rA bJ Bsα “ ta b b : pa, bq P rJsαu Ď ta b b : pa, bq P rJ^sαu “ rA b^ Bsα, @α P r0, 1s.

Therefore A bJ B Ď A b^ B.

b) Since λrA bJ Bsα “ rλpA bJ Bqsα and λrA bJ^ Bsα “ rλpA bJ^ Bqsα, for all α P r0, 1s,

from item aq it follows that λpA bJ Bq Ď λpA b^ Bq.

c) If A Ď B then a combination of Theorem 2.1, Remark 2.1 and Equation (2.11) gives

rise to the following

rA bJ Csα “ ta b c : pa, cq P rJsαu Ď ta b c : pa, cq P rJ^sαu

“ ta b c : pa, cq P rAsα ˆ rCsαu

Ď tb b c : pb, cq P rBsα ˆ rCsαu

“ rB b^ Csα, @α P r0, 1s.

Therefore A bJ C Ď B b^ D.

d) The proof is similar to item c).

e) A combination of items a) and c) proves this statement.

Theorem 2.2 establishes that all the arithmetics that take into account the

concept of interactivity is contained in the standard arithmetic.

This thesis develops different types of interactive arithmetics and it compares

with the standard arithmetic. The above theorem will be used specially in the comparison

of numerical methods using different arithmetics on fuzzy numbers.

From the point of view of dynamic population, the use of standard arithmetic

results in the spread of uncertainty. For example, let us describe the growth of population

of rabbits by the Fibonacci sequence [116].

For this problem consider:

1. A pair of rabbits that are well-fed;
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2. The population of rabbits does not escape;

3. There are no predators for them.

Under these assumptions, how many rabbits do we have at time t?

In order to describe this behaviour mathematically, assume that the original

pair of rabbits at the end of each instant of time (months) give birth to another pair of

rabbits, then immediately mate again and give birth to another pair of rabbits, and so on.

Moreover, consider that each newly-born pair of rabbits take one instant of time to be

able to reproduce. Also, for simplification, suppose that rabbits do not die.

With these hypothesis at hand, the number of rabbits at time t is given by

xt “ xt´1 ` xt´2, (2.19)

where the initial values of populations x0 and x1 are given. If x0 “ 1 and x1 “ 1, then the

sequence (2.19) is given by

t1, 1, 2, 3, 5, 8, 13, 21, 34, . . .u.

Particularly, if the initial numbers of rabbits are uncertain, then one can model

the initial values by fuzzy numbers X0 and X1. This means that one can consider a

number “around” one, instead considering x0 “ x1 “ 1. For example X0 “ p0; 1; 2q and

X1 “ p0; 1; 2q.

Since X0, X1 P RF , the usual sum between real numbers, given as in Equation

(2.19), needs to be extend to a sum between fuzzy numbers. This extension is given by

means of sup-J extension principle. Hence, the following sequence of fuzzy numbers is

obtained

Xt “ Xt´1 ‘ Xt´2, (2.20)

where Xt P RF for all t P R` and the symbol ‘ stands for some (interactive or non-

interactive) sum between fuzzy numbers.

One can use the standard sum, that is, ‘ “ `^. This implies that widthpXt`1q ě

widthpXtq, for all t P R`, since

widthpXt`1q “ widthpXt `^ Xt´1q ě widthpXtq. (2.21)

Figure 20 corroborates the statement given by Equation (2.21).
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Figure 20 – Fibonacci sequence for standard sum

Fibonacci sequence using the standard sum. The initial conditions are given by the

triangular fuzzy numbers X0 “ X1 “ p0; 1; 2q. Source: Author

The Fibonacci sequence for fuzzy numbers, depicted as in Figure 20, can be

interpreted by the following sequence

t“around” one, “around” one, “around” two, “around” three, “around” five, . . .u,

where Xt0
“ “around” u means that at the instant time t0, each number of rabbits in the

interval containing u, has a membership degree in the fuzzy set Xt0
.

In this case, rXts
1 “ txtu for all t P R`, as one can observe in Figure 20.

However the uncertainty, which is measured by the value of width, increases over time.

Consequently, the standard sum may not be a good approach to describe this phenomena.

Theorem 2.2 reveals that interactive arithmetic operations may provide a better

approach to the Fibonacci model, since the width of Xt using the interactive arithmetic is

always less or equal than the width of Xt using the standard arithmetic (see item aq of

Theorem 2.2). Chapter 7 provides this comparison.

For each t0 P R` the Fibonacci sequence gives rise to a fuzzy equation Xt0´1 ‘

Xt0´2 “ Xt0
. In general, the main goal of a dynamical systems is to obtain an information

about the future, knowing the present. Also one can focus on the past, that is, knowing

the present Xt what can be established about the past Xt´1 or Xt´2? This question is

equivalent to a linear fuzzy equation of the form X ‘ A “ B or A ‘ X “ B, where X P RF

is the free variable.

Consider the case where ‘ “ `^. For simplification, denote `^ “ `. If there

exists X P RF such that A ` X “ B, then the fuzzy number X is the Hukuhara difference

between B and A, that is, X “ B ´H A (see Definition 1.34). Moreover, the Hukuhara

difference X “ B ´H A is the only solution for A ` X “ B.
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However, in general the equation A ` X “ B may not have a solution. One of

the reasons is because of the standard sum. Basically, three fundamental questions about

linear fuzzy equations can be made:

1) Given fuzzy numbers B and C, is there a fuzzy number X and an arithmetic sum

such that X ‘ B “ C ?

2) Given fuzzy numbers A, B, and C, is there an arithmetic sum such that A ‘ B “ C ?

3) Given an arithmetic sum and the fuzzy numbers A and B, is there an arithmetic

difference such that pA ‘ Bq a B “ A ?

As previously observed, the standard arithmetic do not provide a positive

answer to questions 1q and 2q. One can observe that the pair p`, ´q consisting of standard

sum and difference is not a solution for the third problem. In contrast, the pair p`, ´Hq

consisting of standard sum and Hukuhara difference is a solution for the problem.

The next chapter considers a relaxation of the hypothesis of A and X be

non-interactive. This means that the above questions, in the case where the operands are

interactive fuzzy numbers, will be investigated.

2.4 Conclusion

This chapter presented the notion of interactivity and the joint possibility

distribution. The definition of sup-J extension principle, which gives rise to different

arithmetic for interactive fuzzy numbers, was provided. This chapter ended by comparing

the interactive arithmetic operations with the standard ones.
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3 Interactive Fuzzy Equations

This chapter contains the second contribution of this thesis. Some fundamental

questions about addition of interactive fuzzy numbers are investigated. These questions

involve fuzzy linear equations, such as:

1) Given fuzzy numbers B and C, is there a fuzzy number X and a joint possibility

distribution J of X and B such that X `J B “ C ?

2) Given fuzzy numbers A, B, and C, is there a joint possibility distribution J of A

and B such that A `J B “ C ?

3) Given a joint possibility distribution J of fuzzy numbers A and B, is there a joint

possibility distribution N of pA `J Bq and B such that pA `J Bq ´N B “ A ?

This chapter intends to answer these questions, providing the maximal solution

for each of these problems, if it exists. The concept of maximal solution will be given as

well. This chapter is based on reference [51].

3.1 Fuzzy Equations

Fuzzy linear equations were studied by several authors. Dubois and Prade [43]

started to investigate fuzzy equations of the form (3.1)

A b X “ C, (3.1)

where b P t`, ´, ¨, ˜u stands for arithmetic operations between fuzzy numbers and A, X

and C are the fuzzy variables.

The equality of (3.1) means that both inclusions A b X Ď C and C Ď A b X

holds.

Mizumoto and Tanaka [98] and Yager [155] discussed the non-existence of

inverse fuzzy numbers for the standard arithmetic operations, in particular, for the

standard sum. This means that given A, C P RF , the fuzzy equation A ` X “ C in general

can not be solved by X “ C ´ A, where ` and ´ are the standard sum and difference,

respectively.

Sanchez [127] provided necessary and sufficient conditions for Equation (3.1)

has solution X. Buckley [26] in addition to study the existence of these solutions, also

studied a way of calculating them. Many authors proposed different methods to solve
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this problem, for instance, Kawaguchi [81] solved this problem using fuzzy t-norm and

Mazarbhuiya [93] used the method of superimposition.

The aforementioned papers consider the usual arithmetic operations between

fuzzy numbers. This thesis focuses in providing a solution to (3.1), where not only A, X

and C are the variables but also the joint possibility distribution J that gives rise to the

arithmetic operation. In the case where the arithmetic under consideration is given by an

interactive arithmetic operation, the equation

A `J X “ C, (3.2)

is called by an interactive fuzzy equation.

An interactive fuzzy equation embraces the interactivity between A and X. In

order to solve (3.2), it is necessary to establish which X P RF and the joint possibility

distribution J , between A and X, that satisfies A`J X “ C. This means that the solutions

for (3.2) are always pairs pX, Jq. Note that the fuzzy equation given by (3.1) is a particular

case of an interactive fuzzy equation given by (3.2), considering the joint possibility

distribution J “ J^.

The next sections provide the maximal solution, if it exists, to the problems

1q, 2q and 3q. In this case, the concept of the maximal solution is given by the following

definition.

Definition 3.1. Let A, C P RF . Consider the following interactive fuzzy equation

A `J X “ C, (3.3)

where J is a JPD between A and X. The fuzzy solution pX, Jq is said to be the maximal

solution of (3.3) if all solutions pX̂, Ĵq of (3.3) satisfy X̂ Ď X and Ĵ Ď J .

The following sections investigate solutions of Equation (3.2), where X P RF

and J is a JPD of A and X. Section 3.2 provides the maximal solution for (3.2). In this

case, A and X are marginal distributions of the joint possibility distribution J , which

means that the free variable is the marginal distribution X. Section 3.3 considers X as a

fixed marginal distribution, say X “ B, and the joint possibility distribution J as free

variable. More precisely, for A, B, C P RF , the following equation is considered

A `J B “ C, (3.4)

where J is a JPD of A and B, and it is investigated when a fuzzy number C can be written

as a J-interactive sum of A and B. Section 3.4 studies the existence of a joint possibility

distribution N of pA `J Bq and B such that Equation (3.5) holds true

pA `J Bq ´N B “ A. (3.5)
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3.2 Given fuzzy numbers B and C, is there a fuzzy number X

and a joint possibility distribution J of X and B such that

X `J B “ C?

This section provides a solution of

X `J B “ C (3.6)

where B and C are given fuzzy numbers and the fuzzy number X and the joint possibility

distribution J of X and B are the free variables.

Moreover, this section shows that X `J B “ B `J X, as the following theorem

guarantees.

Theorem 3.1. [51] Let J be a joint possibility distribution of fuzzy numbers A and B and

let J̄ and J‹ be the fuzzy relations given by

J̄px, yq “ Jpy, xq (3.7)

and

J‹px, yq “ Jpx, ´yq (3.8)

for all px, yq P R
2. The fuzzy set J̄ is a joint possibility distribution of B and A and

A `J B “ B `J̄ A. Moreover, the fuzzy set J‹ is a joint possibility distribution of A and

p´Bq and A ´J B “ A `J‹ p´Bq.

Proof. For all z P R, it follows that

pA `J Bqpzq “
ł

z“x`y

Jpx, yq “
ł

z“x`y

J̄py, xq “ pB `J̄ Aqpzq

and

pA ´J Bqpzq “
ł

z“x´y

Jpx, yq “
ł

z“x`p´yq

J‹px, ´yq “ pA `J‹ p´Bqqpzq.

Theorem 3.2 reveals a maximal solution of Equation (3.6).

Theorem 3.2. [51] Let B, C P RF and S be the fuzzy relation whose membership function

is defined by

Spx, yq “ Bpyq ^ Cpx ` yq, @px, yq P R
2. (3.9)

Thus
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1. The fuzzy relation S is a joint possibility distribution with marginals distributions

X, B P RF , where Xpxq “
ł

yPR

Bpyq ^ Cpx ` yq, @x P R.

2. X `S B “ C and rXsα “ rc´
α ´ b`

α , c`
α ´ b´

α s, @α P r0, 1s;

3. X and S are the maximal solution of (3.2), that is, if there are a fuzzy number X̃

and a joint possibility distribution J̃ of X̃ and B where X̃ `J̃ B “ C, then J̃ Ď S

and X̃ Ď X.

Proof. 1. Let X be the fuzzy set whose membership function is given by

Xpxq “
ł

yPR

Bpyq ^ Cpx ` yq, @x P R.

From definition of X, it follows Xpxq “
ł

yPR

Spx, yq. Now, let z̄ P rCs1. From definition

of the fuzzy relation S, for every y, z P R, one obtains

Bpyq ě
ł

xPR

Spx, yq ě Spz̄ ´ y, yq “ Cpz̄q ^ Bpyq “ Bpyq,

which implies that Bpyq “
ł

xPR

Spx, yq. Therefore, S is a joint possibility distribution

for X and B.

2. Let us prove that X `S B “ C and rXsα “ rc´
α ´ b`

α , c`
α ´ b´

α s. To this end, consider

0 ă α ď 1. On the one hand, if y P rBsα and z P rCsα then Spz ´ y, yq ě α which

implies that z ´ y P rXsα. Thus,

rc´
α ´ b`

α , c`
α ´ b´

α s “ tz ´ y | z P rCsα, y P rBsαu Ď rXsα.

On the other hand, if x P rXsα then there exists pynq such that lim
nÑ8

Bpynq ^ Cpx `

ynq ě α. For n sufficient large, one obtains Bpynq ě Bpynq ^ Cpx ` ynq ą
α

2
. This

implies that pynq is bounded and, therefore, there exists a convergent subsequence

pynk
q P rBs

α
2 , say lim

kÑ8
ynk

“ ŷ P rBs
α
2 . If β :“ Bpŷq ă α then for β ă ρ ă α and for k

sufficient large, it follows that ynk
P rBsρ, because Bpynk

q ě Bpynk
q ^ Cpx ` ynk

q ě ρ.

Since rBsρ is a bounded closed interval, one concludes that ŷ P rBsρ which produces

the following contradiction: Bpŷq ă ρ ď Bpŷq. Therefore, Bpŷq ě α. Similarly, it can

be shown that x ` ŷ P rCsα. These last observations imply that

rXsα Ď rc´
α ´ y`

α , c`
α ´ y´

α s.

Hence, rXsα “ rc´
α ´ b`

α , c`
α ´ b´

α s, for all α P p0, 1s. For α “ 0 it follows

rXs0 “ supppXq “
ď

αPp0,1s

rXsα “

»
– ľ

αPp0,1s

c´
α ´ b`

α ,
ł

αPp0,1s

c`
α ´ b´

α

fi
fl “

“
c´

0
´ b`

0
, c`

0
´ b´

0

‰
.
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Therefore the equality holds for all α P r0, 1s. Finally, let ȳ P rBs1. Since pX `S

Bqpzq “
ł

z“x`y

Spx, yq, one obtains

Cpzq ě
ł

z“x`y

Spx, yq ě Spz ´ ȳ, ȳq “ Cpzq ^ Bpȳq “ Cpzq.

Thus X `S B “ C.

3. Let J̃ be a joint possibility distribution of X̃ P RF and B such that X̃ `J̃ B “ C.

For x, y P R and z “ x ` y, it follows Bpyq “
ł

wPR

J̃pw, yq ě J̃px, yq and Cpzq “

ł

u`v“z

J̃pu, vq ě J̃px, yq. Thus, Spx, yq “ Bpyq^Cpx`yq ě J̃px, yq for all px, yq P R
2,

which implies that Xpxq “
ł

yPR

Spx, yq ě
ł

yPR

J̃px, yq “ X̃pxq for all x P R. Hence

J̃ Ď S and X̃ Ď X.

Theorem 3.2 ensures that the set of all fuzzy numbers X and a joint possibility

distribution J of X and B, such that X `J B “ C is not empty and the maximal solution

is given by the marginal distribution X of the joint possibility distribution S, given as in

Equation (3.9).

Observe that X and J are free variables of Equation (3.6). However, the JPD

S given by (3.9) determines uniquely the fuzzy number X. This means that the truly free

variable of the problem is the JPD J .

The next example illustrates this result.

Example 3.1. Let B “ p0; 1; 2; 3q and C “ p´1; 1; 1.5qG. Figure 21 exhibits the joint

possibility distribution S of X and B, given as in Theorem 3.2. Figure 22 presents a visual

representation of X `S B “ C.
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Figure 21 – Graphical representation of the joint possibility distribution S given as in

Example 3.1

(a) Tri-dimensional view of the JPD S. (b) Top view of the JPD S.

The joint possibility distribution S given as in Equation (3.9), with B “ p0; 1; 2; 3q and

C “ p´1; 1; 1.5qG, and its marginal distributions X and B. The gray region represent the

α-cuts of S, varying from 0 to 1 which are represented respectively from the gray-scale

varying from white to black. Source: [51].

Figure 22 – Graphical representation of S-interactive sum between X and B given as in

Example 3.1.

The S-interactive sum between X and B, where B “ p0; 1; 2; 3q, C “ p´1; 1; 1.5qG, and X

and S are given as in Figure 21. Source: [51].

Note that in the case where C “ B, that is, when the interactive fuzzy equation

is given by X `J B “ B, the fuzzy number X “ 0 is not a unique solution for it, as one

can see in the next example.

Example 3.2. Consider the Gaussian fuzzy numbers B “ C “ p1; 1; 1qG. Figure 23

exhibits the greatest fuzzy number X and joint possibility distribution S of X and B, given

as in Theorem 3.2. A visual representation of X `S B “ B is illustrated in Figure 24.
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Figure 23 – Graphical representation of the JPD S given as in Example 3.2.

(a) Tri-dimensional view of JPD S (b) Top view of JPD S

The joint possibility distribution S given as in Equation (3.9), with B “ C “ p1; 1; 1qG,

and its marginal distributions X and B. The gray region represent the α-cuts of S, varying

from 0 to 1 which are represented respectively from the gray-scale varying from white to

black. Source: [51].

Figure 24 – Graphical representation of S-interactive sum between X and B given as in

Example 3.2.

The S-interactive sum between X and B, where B “ C “ p1; 1; 1qG, X and S are given as

in Figure 23. Source: [51].

The next corollary is an immediate consequence of Theorems 3.1 and 3.2.

Corollary 3.1. [51] Let A, B, C P RF and let R, T and V be fuzzy relations of R2 given

by

Rpx, yq “ Apxq ^ Cpx ` yq, T px, yq “ Bpyq ^ Cpx ´ yq, V px, yq “ Apxq ^ Cpx ´ yq

(3.10)

for all px, yq P R
2. it follows that

1. R is a joint possibility distribution with marginals distributions A and X P RF such

that A `R X “ C;
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2. T is a joint possibility distribution with marginals distributions B and X P RF such

that X ´T B “ C;

3. V is a joint possibility distribution with marginals distributions A and X P RF such

that A ´V X “ C.

Proof. 1. From Theorem 3.2, one obtains

X `S A “ C

where Spy, xq “ Apxq ^ Cpy ` xq, @py, xq P R
2.

Theorem 3.1 implies that

X `S A “ C “ A `S̄ X,

and S̄px, yq “ Spy, xq “ Rpx, yq, @px, yq P R
2.

2. Theorem 3.2 ensures that

X `S p´Bq “ C,

where Spx, yq “ Bp´yq ^ Cpx ` yq, @px, yq P R
2.

Theorem 3.1 implies that

X `S p´Bq “ C “ X ´S‹ B,

and S‹px, yq “ Spx, ´yq “ Bpyq ^ Cpx ´ yq “ T px, yq, @px, yq P R
2.

3. Theorem 3.2 ensures that

X `S p´Aq “ C,

where Spx, yq “ Ap´yq ^ Cpx ` yq, @px, yq P R
2.

Theorem 3.1 implies that

X `S p´Aq “ C “ X ´S‹ A

and S‹px, yq “ Spx, ´yq “ Apyq ^ Cpx ´ yq “ V px, yq, @px, yq P R
2.

Item 1. of Corollary 3.1 reveals that equation A`R X “ C has maximal solution

pX, Rq. Item 2. guarantees that the equation X ´T B “ C has maximal solution pX, T q.

Item 3. ensures that the equation A ´V X “ C has maximal solution pX, V q.

The next section investigates the second question.
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3.3 Given fuzzy numbers A, B, and C, is there a joint possibility

distribution J of A and B such that A `J B “ C?

This section focuses on studying the equation given by

A `J B “ C, (3.11)

where A, B and C are given fuzzy numbers and the JPD J is the free variable.

Necessary and sufficient conditions are established for a J-interactive sum,

between A and B, results in the fuzzy number C. For instance, one can see that there is

no joint possibility distribution J of the real numbers 1 and 2 such that 1 `J 2 “ p2; 3; 3.5q.

However, it is not obvious if there exists or not a joint possibility distribution J of p1; 1; 1qG

and p1; 1; 1qG such that p1; 1; 1qG `J p1; 1; 1qG “ p1; 2; 3q.

The next theorem yields a sufficient condition for the existence of a maximum

solution of Equation (3.11).

Theorem 3.3. [49] Let A, B, and C be fuzzy numbers. If there exists a joint possibility

distribution J of A and B such that A `J B “ C, then the fuzzy relation M of R2 given

by

Mpx, yq “ Apxq ^ Bpyq ^ Cpx ` yq (3.12)

is a joint possibility distribution of A and B such that J Ď M and A `M B “ C.

Proof. Since J is a joint possibility distribution of A and B, it follows that Jpx, yq ď

Apxq ^ Bpyq. Moreover, since A `J B “ C one obtains

Cpx ` yq “
ł

fpu,vq“x`y

Jpu, vq ě Jpx, yq, @px, yq P R
2,

where f is the sum operator.

Thus J Ď M . Now let us prove that M is a joint possibility distribution of A

and B. The aforementioned comments imply that

Apxq “
ł

yPR

Jpx, yq ď
ł

yPR

Mpx, yq “
ł

yPR

Apxq ^ Bpyq ^ Cpx ` yq ď Apxq.

Similarly one can show that Bpyq “
ł

xPR

Mpx, yq, for all y P R.

Finally, since A `J B “ C it follows that

Cpzq “
ł

x`y“z

Jpx, yq ď
ł

x`y“z

Mpx, yq “
ł

x`y“z

Apxq ^ Bpyq ^ Cpzq ď Cpzq, @z P R.

Therefore A `M B “ C.
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The next example illustrate an interactive fuzzy equation of the form A `J B “

C that has solution.

Example 3.3. Let A “ B “ p1; 1; 1qG and C “ p1; 2; 3q. The joint possibility distribution

M given by Equation (3.12) and its marginal distributions are depicted in Figure 25. One

can observe in Figure 26 that A and B are the marginal distributions of M . Moreover, the

M-interactive sum between A and B produces the fuzzy number C.

Figure 25 – Graphical representation of the JPD M given as in Example 3.3.

(a) Tri-dimensional view of JPD M (b) Top view of JPD M

The joint possibility distribution M given as in Equation (3.12), with A “ B “ p1; 1; 1qG

and C “ p1; 2; 3q, and its marginal distributions A and B. The gray region represent the
α-cuts of S, varying from 0 to 1 which are represented respectively from the gray-scale
varying from white to black. Source: [51].

Figure 26 – Graphical representation of M -interactive sum between A and B given as in
Example 3.3.

The M -interactive sum between A and B, where A “ B “ p1; 1; 1qG, A and S are given
as in Figure 25. Source: [51].

The next corollary is an immediate consequence of Theorem 3.3 and it provides

necessary and sufficient conditions for the existence of a solution of A `J B “ C.

Corollary 3.2. [49] Let A, B, and C be fuzzy numbers. There exists a joint possibility

distribution J of A and B such that A `J B “ C if, and only if, the fuzzy relation M given

as in Equation (3.12) is a joint possibility distribution of A and B and A `M B “ C.
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Proof. On the on hand, if M is a joint possibility distribution of A and B such that

A`M B “ C, then J “ M is the required joint probability distribution. On the other hand,

if there is a joint possibility distribution J of A and B such that A`J B “ C, then Theorem

3.3 yields that M is a joint possibility distribution of A and B, with A `M B “ C.

Note that from Corollary 3.2, if the joint possibility distribution M given by

(3.12) does not satisfy A `M B “ C or it is not a JPD between A and B, then there is no

solution of A `J B “ C. The next example illustrates a case where M does not satisfy

A `M B “ C.

Example 3.4. Let A “ p´1; ´0.5; 0; 1q, B “ p´1; ´0.5; 0.5; 1q and C “ p´1.5; 0; 0.5; 1q.

The joint possibility distribution M given by Equation (3.12) and its marginal distributions

are depicted in Figure 27. One can observe in Figure 27 that B is not a marginal distribution

of M . From Corollary 3.2, there is no joint possibility distribution J of A and B such that

p´1; ´0.5; 0; 1q `J p´1; ´0.5; 0.5; 1q “ p´1.5; 0; 0.5; 1q.

Figure 27 – Graphical representation of the fuzzy relation M given as in Example 3.3.

(a) Tri-dimensional view of M (b) Top view of M

The fuzzy relation M given as in Equation (3.12), and the fuzzy numbers A “
p´1; ´0.5; 0; 1q, B “ p´1; ´0.5; 0.5; 1q and C “ p´1.5; 0; 0.5; 1q, where the fuzzy number
B is not a marginal distribution of M . Source: [51].

The above example reveals that not always an interactive fuzzy equation of the

form (3.4) has a solution for J . Hence the equation A `J B “ C does not always work,

but X `J B “ C has a solution. The next section studies the last question pointed out in

this section.
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3.4 Given a joint possibility distribution J of fuzzy numbers A and

B, is there a joint possibility distribution N of pA `J Bq and

B such that pA `J Bq ´N B “ A?

This section focuses on equation given by

pA `J Bq ´N B “ A, (3.13)

where J is a JPD between the fuzzy numbers A and B and the JPD N are the free

variables.

Let C be the J-interactive sum between the fuzzy numbers A and B. A natural

question that arises here is if there is a joint possibility distribution N of C and B, such

that A “ C ´N B. Theorem 3.4 provides an affirmative answer to this question, establishing

a formula for the maximal solution.

Theorem 3.4. [49] Let J be a joint possibility distribution of two fuzzy numbers A and

B such that C :“ A `J B P RF . The fuzzy relation N of R2, whose membership function

is given by

Npz, yq “ Apz ´ yq ^ Bpyq ^ Cpzq, @pz, yq P R
2, (3.14)

is a joint possibility distribution of C and B and A “ C ´N B. Moreover, if there exists a

joint possibility distribution J̃ of C and B such that A “ C ´J̃ B, then J̃ Ď N .

Proof. Let z P R. If Cpzq “ 0, then Npz, yq “ 0, for all y P R, which implies thatł

yPR

Npz, yq “ 0. If Cpzq ą 0, then there exists pynq such that lim
nÑ8

Jpz´yn, ynq “ Cpzq, since

C “ A`J B. Using the fact that Jpz´yn, ynq ď Apz´ynq^Bpynq and Jpz´yn, ynq ď Cpzq,

one concludes that

Cpzq ě
ł

yPR

Apz´yq^Bpyq^Cpzq ě lim
nÑ8

Apz´ynq^Bpynq^Cpzq ě lim
nÑ8

Jpz´yn, ynq “ Cpzq.

Therefore C is a marginal distribution of N .

Now let us prove that B is also a marginal distribution of N . To this end, let

y P R. If Bpyq “ 0 then Npz, yq “ 0, for all z P R, which implies that
ł

yPR

Npz, yq “ 0. If

Bpyq ą 0, then there is a sequence pxnq such that Bpyq “ lim
nÑ8

Jpxn, yq, since J is a joint

possibility distribution of A and B. Consider zn “ xn ` y, thus

Cpznq “
ł

z“u`v

Jpu, vq ě Jpxn, yq

and

Jpzn ´ y, yq ď Apzn ´ yq ^ Bpyq.
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A combination of the above observations gives rise to the following:

Bpyq ě
ł

zPR

Apz´yq^Bpyq^Cpzq ě lim
nÑ8

Apzn´yq^Bpyq^Cpznq ě lim
nÑ8

Jpzn´y, yq “ Bpyq.

Therefore, B is a marginal distribution of N .

Let us prove that A “ C ´N B. To this end, let x P R. On the one hand if

Apxq “ 0, then ł

x“z´y

Apxq ^ Bpyq ^ Cpzq “ 0.

On the other hand, if Apxq ą 0 then there exists pynq such that Apxq “

lim
nÑ8

Jpx, ynq, since J is a joint possibility distribution of A and B. For every zn “ x ` yn,

it follows

Cpznq “
ł

zn“u`v

Jpu, vq ě Jpx, ynq

and

Apzn ´ ynq ^ Bpynq ě Jpx, ynq.

From these last observations,

Apxq ě
ł

x“z´y

Apxq^Bpyq^Cpzq ě lim
nÑ8

Apzn´ynq^Bpynq^Cpznq ě lim
nÑ8

Jpx, ynq “ Apxq.

Therefore, A “ C ´N B.

Finally, let us prove that N is the maximal solution for (3.5). To this end,

suppose that J̃ is a joint possibility distribution of C and B such that A “ C ´J̃ B. This

hypothesis implies that Cpzq ě J̃pz, yq, Bpyq ě J̃pz, yq, and Apz ´ yq ě J̃pz, yq for every

z, y P R. Thus

J̃pz, yq ď Apz ´ yq ^ Bpyq ^ Cpzq “ Npz, yq, @pz, yq P R
2.

Therefore, J̃ Ď N .

Recall that the standard addition of two fuzzy numbers A and B coincides

with the non-interactive addition. From Theorem 3.4 one obtains C ´H B “ A “ C ´N B

where C “ A ` B and N is given by Equation (3.14). Example 3.5 illustrates this last

observation.

Example 3.5. Let A “ p´0.5; 0.5; 1q, B “ p1; 2; 3q, and C “ A ` B “ p0.5; 2.5; 4q. The

joint possibility distribution N given by Equation (3.14) and its marginal distributions C

and B are depicted in Figure 28. As expected from Theorem 3.4, the equality C ´N B “ A

holds true.
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Figure 28 – Graphical representation of the JPD N given as in Example 3.5.

(a) Tri-dimensional view of JPD N (b) Top view of JPD N

The joint possibility distribution N given as in Equation (3.14), with A “ p´0.5; 0.5; 1q,
B “ p1; 2; 3q, and C “ A ` B “ p0.5; 2.5; 4q. The fuzzy numbers C and B are the marginal
distributions of N . The gray region represent the α-cuts of S, varying from 0 to 1 which
are represented respectively from the gray-scale varying from white to black. Source: [51].

This chapter is ended by connecting the joint possibility distributions M and

N . The next corollary is a consequence of Theorem 3.4 and Corollary 3.1, the proof is

provided in [49].

Corollary 3.3. [49] Let A, B, C P RF . Thus

A `M B “ C ô A “ C ´N B.

where M and N are the fuzzy sets of R2 given respectively by (3.12) and (3.14).

The next table presents a brief summary of questions brought in this chapter.

Table 1 – Solutions for interactive fuzzy equations.

Question Answer Maximal Solution

DX P RF , J P FpR2q : X `J B “ C? Yes X “
ł

yPR

Bpyq ^ Cpx ` yq

DJ P FpR2q : A `J B “ C? Not always Mpx, yq “ Apxq ^ Bpyq ^ Cpx ` yq

DN P FpR2q : pA `J Bq ´N B “ A? Yes Npz, yq “ Apz ´ yq ^ Bpyq ^ Cpzq

Solutions of the questions raised in Chapter 3. Source: Author

This chapter shows the usefulness of interactive arithmetic in the context of

fuzzy linear equations. In particularly, the equation A ´V X “ C (see Corollary 3.1) gives

raise to the following.

Let us consider a fuzzy function F . The expression

F pt0 ` hq ´J F pt0q “ hC (3.15)
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is an equation in the form of A ´J X “ C and it is connected with the definition of

fuzzy derivative that is obtained from a limit of difference between fuzzy numbers. Hence,

Equation (3.15) allows us to define a fuzzy derivative that embraces the concept of

interactivity.

Moreover, the equation

Xptq `J hfpt, Xptqq “ Xpt ` hq (3.16)

can be interpreted by the Euler’s numerical method for a fuzzy initial value problem.

The expression given by (3.16) is an equation in the form of A `J X “ C. This

means that linear interactive fuzzy equations can be associated with numerical solutions

for fuzzy differential equations. So the aforementioned questions can be associated with

fuzzy differential equations from both numerical and analytical points of view.

Motivated by these connections, the next chapters will study fuzzy differential

equations, using different types of interactivity (consequently, different types of JPDs).

3.5 Conclusion

This chapter asked fundamental questions regarding additions and subtractions

involving fuzzy linear equations. More precisely, fuzzy equations that take into account the

relationship of interactivity were investigated. Section 3.2 stated that for every B, C P RF

there exist a fuzzy number X and a joint possibility distribution S of X and B such

that X `S B “ C. Section 3.3 established necessary and sufficient conditions for the

equation A `J B “ C has a solution in the free variable J . In this case, in contrast to

standard addition, Example 3.3 showed that a triangular fuzzy number can be written as

an interactive addition of two Gaussian fuzzy numbers. Section 3.4 ensured that if a fuzzy

number C is given by means of a J-interactive sum of the fuzzy numbers A and B, then

the fuzzy number A corresponds to the N -interactive difference of C and B (see Theorem

3.4). This chapter ended by establishing that linear interactive fuzzy equations can be

associated with fuzzy differential equations from both numerical and analytical points of

view.
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4 Linearly Interactive Fuzzy Numbers

This chapter presents the concept of linear interactive correlation. This type

of interactivity takes into account a relationship between fuzzy numbers that associates

their membership functions via a linear correlation. The linear interactive fuzzy numbers

are used in various problems such as arithmetic on fuzzy numbers [32, 77], fuzzy dynamic

systems [15, 148, 138], fuzzy regression problems [115, 114], etc.

This relationship, which is also called completely correlation, was first intro-

duced by Fullér, Carlsson and Majlender [62, 32]. Carlsson et al. [32] established the sum

between two completely correlated fuzzy numbers. Barros and Pedro [15] characterized the

arithmetic operations between completely correlated fuzzy numbers by means of α-cuts.

Also, they introduced the notion of derivative for autocorrelated fuzzy process via complete

correlation.

The third contribution of this thesis is to provide a generalization of this

concept. In this case n completely correlated fuzzy numbers are called linear interactive

fuzzy numbers [53, 148, 77]. Moreover, solutions of fuzzy differential equations are provided,

using linear interactive correlation. More precisely, this chapter focuses on fuzzy initial

value problems, where the initial conditions are given by n linear interactive fuzzy numbers.

These solutions are compared with the one obtained from the Zadeh extension principle

and it is shown that this approach is connected with the Fréchet derivative.

This chapter is based on references [32, 62, 15, 53, 148, 77, 149].

4.1 Completely Correlated Fuzzy Numbers

The completely correlated fuzzy numbers are defined by the following joint

possibility distribution.

Definition 4.1. [32] The fuzzy numbers A and B are said to be completely correlated if

there exist q, r P R, where q ‰ 0, such that their joint possibility distribution JC is given

by

JCpx, yq “ Apxqχtv“qu`rupx, yq “ Bpyqχtv“qu`rupx, yq, (4.1)

where

χtv“qu`rupx, yq “

$
&
%

1 if y “ qx ` r

0 if y ‰ qx ` r
(4.2)

is the characteristic function of the line C “ tpu, vq P R
2 : qu ` r “ vu.
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This type of interactivity allows to write the α-cuts of the fuzzy number B in

terms of the α-cuts of A [62]

rBsα “ qrAsα ` r, @α P r0, 1s. (4.3)

It is important to observe that if A and B are completely correlated, then there

exist q and r that satisfies the expression (4.3), for all α P r0, 1s, which means that the

values of q and r do not change, once the JPD JC is chosen.

Also, the α-cuts of the joint possibility distribution JC can be written in terms

of A and the parameters q and r, as follows

rJCsα “ tpx, qx ` rq : x P rAsαu , @α P r0, 1s. (4.4)

Equation (4.4) means that in the case where the fuzzy numbers A and B are

completely correlated, the first marginal distribution determines completely the second

one, and vice versa. The joint possibility distribution JC may also be denoted by Jq,r, in

order to make clear which parameters q and r are been used. Example 4.1 illustrates this

concept.

Example 4.1. Let A “ B “ p´1; 0; 1q P RF . Note that A and B are completely correlated

with respect to the joint possibility distribution JC “ J1,0 (see Figure 29), whose membership

function is given by

J1,0px, yq “ Apxqχtv“uupx, yq.

The α-cuts of J1,0 are given by

rJ1,0sα “ tpx, xq : x P rAsαu, @α P r0, 1s.

The fuzzy numbers A and B can also be completely correlated with respect to

the joint possibility distribution JC “ J´1,0 (see Figure 30), whose membership function is

given by

J´1,0px, yq “ Apxqχtv“´uupx, yq.

The α-cuts of J´1,0 are given by

rJ´1,0sα “ tpx, ´xq : x P rAsαu, @α P r0, 1s.

Observe that the pairs p1, 0q and p´1, 0q are the only possible values for pq, rq

which make A and B be completely correlated.

Example 4.1 suggests that two fuzzy numbers may be completely correlated in

two different forms, when q ą 0 or q ă 0. In fact, if two fuzzy numbers are completely

correlated then there are at most two joint possibility distribution for them [108].
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Figure 29 – Graphical representation of the joint possibility distribution J1,0 given by
Example 4.1.

(a) The top view of J1,0. (b) The tri-dimensional view of J1,0.

The blue line represents the set C “ tpu, vq : u “ vu and the shaded triangle on it
represents the joint possibility distribution J1,0. The gray lines represent the α-cuts of J ,
varying from 0 to 1 which are represented respectively from the gray-scale lines varying
from white to black. Source: Author.

Figure 30 – Graphical representation of the joint possibility distribution J´1,0 given by
Example 4.1.

(a) The top view of J´1,0. (b) The 3 dimensional view of J´1,0.

The blue line represents the set C “ tpu, vq : u “ ´vu and the shaded triangle on it
represents the joint possibility distribution J´1,0. The gray lines represent the α-cuts of J ,
varying from 0 to 1 which are represented respectively from the gray-scale lines varying
from white to black. Source: Author.

Definition 4.2. Two fuzzy numbers are said to be positively (negatively) completely

correlated if the parameter q of Jq,r is positive (negative).

The definition of completely correlation requires that membership functions of

the involved fuzzy numbers have the same shape. For instance, triangular and trapezoidal

fuzzy numbers can never be completely correlated, since their membership functions do
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not have the same form.

Next, the arithmetic for completely correlated fuzzy numbers are presented.

4.1.1 Arithmetic on completely correlated fuzzy numbers

The arithmetic operations between completely correlated fuzzy numbers are

defined by

pA b Bqpzq “
ł

z“xby

Jq,rpx, yq, (4.5)

where b represents some arithmetic operation.

The α-cuts of the arithmetic operations, via completely correlation, are provided

in Theorem 4.1

Theorem 4.1. [15] Let A and B be completely correlated fuzzy numbers. Thus

paq rA `C Bsα “ p1 ` qqrAsα ` r, @α P r0, 1s;

pbq rA ´C Bsα “ p1 ´ qqrAsα ´ r, @α P r0, 1s;

pcq rA ¨C Bsα “ tqx2 ` rx P R : Apxq ě αu;

pdq rA ˜C Bsα “

"
x

qx ` r
P R : Apxq ě α

*
.

Note that every fuzzy number A is completely correlated with itself, since A

can be written as A “ 1.A ` 0. In this case, from item pbq of Theorem 4.1 it follows that

rA ´C Asα “ p1 ´ 1qrAsα ` 0 “ r0, 0s, @α P r0, 1s. (4.6)

Therefore, the difference based on the joint possibility distribution JC also satisfies the

property of the generalized (Hukuhara) difference, that is, A ´g A “ 0. Moreover, if

q ă 0 then A `C B “ A ` B, where ` is the standart sum. Furthermore, if q ą 0 then

A ´C B “ A ´ B, where ´ is the standart difference [15].

For more details about this type of interactivity the reader can refer to [108, 15].

The next section provides the generalization of the concept of completely

correlation.
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4.2 Linearly Interactive Fuzzy Numbers

The fuzzy numbers A1, ..., An P RF are said to be linear interactive if their

joint possibility distribution JL is given by [148, 77, 53]

JLpx1, ..., xnq “ A1px1qχLpx1, ..., xnq (4.7)

“ A2px2qχLpx1, ..., xnq
...

“ AnpxnqχLpx1, ..., xnq

where L “ tpu, q2u ` r2, ..., qnu ` rnq : u P R; qi, ri P R, with q1q2 . . . qn ‰ 0u.

Note that JL extends JC , since from (4.7) one can see that A1 and Ai, with

i ą 1, are completely correlated. In this case rAis
α “ qirA1sα ` triu, for all i “ 2, ..., n. For

each α P r0, 1s, the α´cuts of JL can be given by:

rJLsα “ tpx, q2x ` r2, . . . , qnx ` rnq : x P rA1sαu . (4.8)

Equation (4.8) reveals that the α´cuts of the joint possibility distribution JL can be

obtained only in terms of α-cuts of A1 and the parameters qi and ri, for all i “ 2, ..., n.

Since each x P rAsα “ ra´
α , a`

α s can be written as x “ p1 ´ λqa´
α ` λa`

α for

λ P r0, 1s, the expression given by (4.8) becomes

rJLsα “
 

p1 ´ λqpa´
α , q2a

´
α ` r2, . . . , qna´

α ` rnq ` λpa`
α , q2a

`
α ` r2, . . . , qna`

α ` rnq : λ P r0, 1s
(

.

(4.9)

The total possible number of joint possibility distributions that makes the

fuzzy numbers A1, . . . , An be linear interactive depends on the symmetry of the first fuzzy

number A1.

Definition 4.3 (Symmetry). [52] A fuzzy number A is said to be symmetric, with respect

to x P R, if Apx ´ yq “ Apx ` yq, @y P R. If there is no x P R such that this property is

satisfied, A is said to be non-symmetric.

For example the fuzzy number A “ p1; 2; 3q is symmetric with respect to x “ 2,

since Ap2 ´ yq “ Ap2 ` yq for all y P R.

The follow proposition is obtained from the definition of symmetry.

Proposition 4.1. [52] Let A P RF and q1, q2, r1, r2 P R, where q1q2 ‰ 0. If A satisfies

q1A ` r1 “ q2A ` r2, (4.10)

then $
’’&
’’%

q1 “ q2 and r1 “ r2 Ñ if A is non-symmetric

q1 “ q2 and r1 “ r2 or

q1 “ ´q2 and r1 “ 2q2x̄ ` r2

+
if A is symmetric (w.r.t. x̄)

(4.11)
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where x̄ is the midpoint of rAs1.

Proposition 4.1 implies that if A1 is non-symmetric then A1, . . . , An are linear

interactive with respect to only one joint possibility distribution. However, if A1 is symmet-

ric then A1, . . . , An are linear interactive with respect to 2n´1 joint possibility distributions

[53].

Example 4.2. Let A1 “ p1; 2; 4q, A2 “ p3; 4; 6q, A3 “ p0; 1; 3q P RF . Note that A1, A2

and A3 are linear interactive with respect to Jq,r, where q “ p1, 1, 1q and r “ p0, 2, ´1q.

Since A1 is non-symmetric, the joint possibility distribution Jq,r is the only one that makes

A1, A2 and A3 be linear interactive, as Proposition 4.1 ensures.

Example 4.3. Let A1 “ p1; 2; 3q, A2 “ p2; 3; 4q, A3 “ p3; 4; 5q P RF . Note that A1, A2 and

A3 are linear interactive with respect to four different joint possibility distributions:

rJ1sα “

$
’&
’%

¨
˚̋

x

x ` 1

x ` 2

˛
‹‚: x P rA1sα

,
/.
/-

, rJ2sα “

$
’&
’%

¨
˚̋

x

x ` 1

´x ` 6

˛
‹‚: x P rA1sα

,
/.
/-

,

rJ3sα “

$
’&
’%

¨
˚̋

x

´x ` 5

x ` 2

˛
‹‚: x P rA1sα

,
/.
/-

and rJ4sα “

$
’&
’%

¨
˚̋

x

´x ` 5

´x ` 6

˛
‹‚: x P rA1sα

,
/.
/-

,

as Proposition 4.1 establishes.

The above examples clarify that if the fuzzy number A1 is non-symmetric

and A1, . . . , An are linear interactive, then A2, . . . , An are necessarily non-symmetric as

well. On the other hand, if A1 is symmetric and A1, . . . , An are linear interactive, then

A2, . . . , An are necessarily symmetric [53].

Remark 4.1. If A1, . . . , An are linear interactive symmetric fuzzy numbers, then is possible

to consider 2n´1 JPDs.

The representation (4.9) is used in order to provide fuzzy solutions to fuzzy

initial value problems (FIVPs) and/or fuzzy boundary value problems (FBVPs), where

the additional conditions (initial or boundary) may have an intrinsic linear correlation,

which is described by linear interactive fuzzy numbers. This approach is presented in the

next section.

4.2.1 Initial Value Problems with Linearly Interactive Fuzzy Conditions

Let us first present a brief review on the theory of ordinary differential equations

(ODEs). Let I Ď R be an open set. A linear n-th order ordinary differential equation with
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constant coefficients is given by an equation, for all t P I, of the form

ypnqptq ` an´1y
pn´1qptq ` . . . ` a0yptq “ gptq, (4.12)

where ypiq denotes the i´ary derivative of y, ai P R, for all i “ 1, ..., n, and g : I Ñ R is a

continuous function. If gptq “ 0, for all t P I, then the corresponding ODE is said to be

homogeneous. Otherwise, the ODE is called non-homogeneous.

Since Equation (4.12) involves the n-th derivative of y with respect to t, in

order to obtain a unique solution it is necessary to specify n additional conditions. Here the

focus is on fuzzy initial value problems (FIVPs), that is, the n initial conditions condition

are given by $
’’’’’’&
’’’’’’%

ypt0q “ y0

yp1qpt0q “ y
p1q
0

...

ypn´1qpt0q “ y
pn´1q
0

, (4.13)

where t0 P I.

The general solution y for Equation (4.12) is given by the sum of a particular

solution yp and a solution yh of the corresponding homogeneous ODE

yptq “ ypptq ` yhptq, @t P I. (4.14)

Recall that the function yh, given in Equation (4.14), can be written as

yhptq “ c1w1ptq ` ... ` cnwnptq, (4.15)

where c1, ..., cn are constants values that can be determined by the n initial conditions and

w1, ..., wn are the fundamental set of solutions of the corresponding homogeneous ODE

[23].

For t “ t0 one can represent (4.14), in matrix form, by

Mc “ b ´ yP , (4.16)

where

M “

»
——–

w1pt0q . . . wnpt0q
...

. . .
...

w
pn´1q
1 pt0q . . . wpn´1q

n pt0q

fi
ffiffifl , c “

»
——–

c1

...

cn

fi
ffiffifl , b “

»
——–

y0

...

y
pn´1q
0

fi
ffiffifl , and yP “

»
——–

yppt0q
...

ypn´1q
p pt0q

fi
ffiffifl .

Since the linear combination (4.15) of the functions w1, ..., wn is a solution for

the corresponding homogeneous equation, then M is a non-singular matrix [153]. Therefore,

the vector c is obtained as follows

c “ M´1b ´ M´1yP . (4.17)
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Thus, for each t P R, the solution yptq is given by

yptq “ ypptq ` W T pM´1b ´ M´1yP q, (4.18)

where W T “ rw1ptq . . . wnptqs.

Let us consider the case where the initial conditions are given by interactive

fuzzy numbers, that is, the vector b is formed by n linear interactive fuzzy numbers. Hence,

consider the following FIVP
$
’’’’’’&
’’’’’’%

ypnqptq ` an´1y
pn´1qptq ` ... ` a0yptq “ gptq

ypt0q “ Y0

...

ypn´1qpt0q “ Y
pn´1q

0

(4.19)

where ai P R for all i “ 1, . . . , n and the initial conditions Y0, Y
p1q

0 , ..., Y
pn´1q

0 P RF are

linear interactive.

Let yp¨, bq be the deterministic solution of the associated IVP given by Equation

(4.18). A fuzzy solution for (4.19) is a fuzzy function yL given by

yLp¨q “ yJL
p¨, Bq, (4.20)

where B “ pY0, . . . , Y
pn´1q

0 q. In view of Theorem 2.1, the α-cut of the fuzzy solution yL,

for each t P R, can be written as

ryLptqsα “ typptq ` W T pM´1b ´ M´1yP q : b P rJLsα Ď R
nu, (4.21)

where rJLsα is given by (4.8).

From (4.17) and (4.9), for each λ P r0, 1s and α P r0, 1s, the vector cλ can be

obtained by:

cλ “ p1 ´ λqM´1b´
α ` λM´1b`

α ´ M´1yP , (4.22)

where

b´
α “

»
————–

y´
0α

q2y
´
0α

` r2

...

qny´
0α

` rn

fi
ffiffiffiffifl

and b`
α “

»
————–

y`
0α

q2y
`
0α

` r2

...

qny`
0α

` rn

fi
ffiffiffiffifl

.

with rY0sα “ ry´
0α

, y`
0α

s, for all α P r0, 1s.

This leads us to the following deterministic solution for the associated IVP:

hpt, α, λq “ ypptq ` W T cλ

“ ypptq ´ W T M´1yPloooooooooomoooooooooon
Y1ptq

` p1 ´ λq W T M´1b´
αlooooomooooon

Y2pt,αq

` λ W T M´1b`
αlooooomooooon

Y3pt,αq

“ Y1ptq ` p1 ´ λqY2pt, αq ` λY3pt, αq. (4.23)



Chapter 4. Linearly Interactive Fuzzy Numbers 97

The above comments and Equations (4.21) and (2.9) imply that [148]

ryLptqsα “ typptq ` W T cλ : λ P r0, 1su

“ thpt, α, λq : λ P r0, 1su

“

«
ľ

λPr0,1s

hpt, α, λq,
ł

λPr0,1s

hpt, α, λq

ff
. (4.24)

Equation (4.24) reveals that the task of determining the endpoints of α-cuts of

yLptq boils down to calculate the minimum and maximum values of hpt, α, λq with respect

to λ P r0, 1s. Since Y1 does not depend on the parameters λ or α, it is only necessary to

analyze Y2 and Y3 in (4.23). On the one hand, if Y2pt, αq ď Y3pt, αq, then

Y1ptq ` Y2pt, αqloooooooomoooooooon
hpt,α,0q

ď Y1ptq ` Y2pt, αq ` λpY3pt, αq ´ Y2pt, αqqlooooooooooooooooooooooooomooooooooooooooooooooooooon
hpt,α,λq

ď Y1ptq ` Y3pt, αqloooooooomoooooooon
hpt,α,1q

,

for all λ P r0, 1s.

Hence, the minimizer and maximizer of the function hpt, α, ¨q are given by

λ “ 0 and λ “ 1, respectively. Similarly, if Y3pt, αq ă Y2pt, αq, then the minimum and

maximum values of hpt, α, ¨q are achieved at λ “ 1 and λ “ 0, respectively. In other words,

the global minimizer and maximizer of hpt, α, λq with respect to λ P r0, 1s are given at

λ “ 0 or λ “ 1. Therefore, for each t P R, the α-cuts of the fuzzy solution yLptq are given

by

ryLptqsα “ rminthpt, α, 0q, hpt, α, 1qu, maxthpt, α, 0q, hpt, α, 1qus , (4.25)

where

hpt, α, 0q “ Y1ptq ` Y2pt, αq and hpt, α, 1q “ Y1ptq ` Y3pt, αq.

One can observe that in the case where the initial condition is symmetric,

there are 2n´1 joint possibility distributions. But once the JPD is chosen there is only one

solution for (4.19). Therefore, the problem involving the fuzzy differential equations (FDEs)

with the additional conditions given by interactive fuzzy numbers should be written by

the differential equation, the additional conditions given by fuzzy numbers and the joint

possibility distribution that turns the fuzzy numbers interactive, that is,
$
’’’&
’’’%

ypnqptq ` an´1y
pn´1qptq ` . . . ` a0yptq “ gptq

ypi´1qpt0q “ Y
pi´1q

0 P RF , i “ 1, . . . , n

JL

. (4.26)

Other approach to solve FDEs is given by the Zadeh’s extension principle,

which is based on extending the classical solution y of the corresponding ODE, according

to Definition 1.25. In this case, the fuzzy conditions are considered as non-interactive and

this solution is denoted by py.
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Recall from Subsection 2.1 that if J “ J^, then the sup-J and Zadeh’s extension

principles coincide. Consequently, the fuzzy solution py is given by yJ^ . In view of Theorem

2.1, the endpoints of rpyptqsα are obtained by

rpyptqsα “

„
min
rJ^sα

ypt, ¨q , max
rJ^sα

ypt, ¨q


. (4.27)

The next theorem establishes the connection between the fuzzy solutions py and

yL, in the case where the initial fuzzy condition B0 is symmetric.

Theorem 4.2. Consider the FDE, given by (4.19), with n initial fuzzy conditions B0, . . . , Bn´1,

where B0 is symmetric. Let py be the solution via Zadeh’s extension and yJi
be the solution

via sup-J extension, where i “ t1, . . . , 2n´1u. Then,

rJ^sα “ conv

˜
2

n´1ď

i“1

rJis
α

¸
, @α P r0, 1s, (4.28)

where conv pW q represents the convex hull of the set W . Moreover,

rpyptqsα “

„
min

i“1,...,2n´1

pyJi
ptqq´

α , max
i“1,...,2n´1

pyJi
ptqq`

α


(4.29)

Proof. Let us first prove the equality (4.28). To this end, the following inclusion will be

proved

conv

˜
2

n´1ď

i“1

rJis
α

¸
Ď rJ^sα.

Note that rJis
α Ď rJ^sα, for all i P t1, . . . , 2n´1u and for all α P r0, 1s, which

implies that
2

n´1ď

i“1

rJis
α Ď rJ^sα. Therefore,

conv

˜
2

n´1ď

i“1

rJis
α

¸
Ď convprJ^sαq “ rJ^sα,

since rJ^sα is convex.

Now, let us prove the other inclusion. For a fixed α P r0, 1s, let x P rJ^sα Ď R
n.

If x P U1 “ rJ1sα then exists λ P r0, 1s such that x “ p1 ´ λqb´
α ` λb`

α , where b´
α , b`

α P rJ1sα.

Thus, x P conv

˜
2

n´1ď

i“1

rJis
α

¸
.

If x R U1, then let J2 such that rJ2sα Ę spanpU1q, where spanpSq is defined as

the set of all finite linear combinations of elements of S. Define U2 as follows

U2 “ tu : u “ p1 ´ λqa ` λb, 0 ď λ ď 1, a P rJ2sα and, b P U1u.
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If x P U2, then x P conv

˜
2

n´1ď

i“1

rJis
α

¸
, otherwise, let J3 such that J3 Ę spanpU2q.

Define U3 as follows

U3 “ tu : u “ p1 ´ λqa ` λb, 0 ď λ ď 1, a P rJ3sα and, b P U2u.

If x P U3, then x P conv

˜
2

n´1ď

i“1

rJis
α

¸
, otherwise, repeat this process successively.

Since there are 2n´1 joint possibility distributions and 2n´1 ě n “ dimpRnq, @n ě 2, then

exist tJ1, . . . , Jnu, such that x P Ui, where

Ui “ tu : u “ p1 ´ λqa ` λb, 0 ď λ ď 1, a P rJis
α and, b P Ui´1u,

for i P t2, . . . , nu and U1 “ rJ1sα.

Therefore, rJ^sα Ď conv

˜
2

n´1ď

i“1

rJis
α

¸
and the equality (4.28) holds. Conse-

quently, the fuzzy solution py is given as follows

rpyptqsα “

„
min

px1,...,xnqPrJ^sα
ypt, B0, . . . , Bn´1q, max

px1,...,xnqPrJ^sα
ypt, B0, . . . , Bn´1q



“

»
– min

px1,...,xnqPconv
´Ť

2n´1

i“1
rJisα

¯ ypt, B0, . . . , Bn´1q,

max
px1,...,xnqPconv

´Ť
2n´1

i“1
rJisα

¯ ypt, B0, . . . , Bn´1q

fi
fl

“

„
min

i“1,...,2n´1

pyJi
ptqq´

α , max
i“1,...,2n´1

pyJi
ptqq`

α


,

where ryJi
ptqsα “ ryJi

ptqq´
α , yJi

ptqq`
α s, for all i “ 1, . . . , 2n´1.

Theorem 4.2 ensures that if the initial condition B0 is symmetric then the

fuzzy solution given by Zadeh’s extension is equal to the convex hull of the fuzzy solutions

produced by the sup-J extension.

The next theorem shows that the fuzzy solution via sup-J extensions is contained

in the solution via Zadeh’s extension, in the case where the initial condition B0 is non-

symmetric.

Theorem 4.3. Consider the FDE, given by (4.19), with n initial fuzzy conditions B0, . . . ,

Bn´1, where B0 is non-symmetric. Let py be the solution via Zadeh’s extension and yJ be

the solution via sup-J extension. Then,

ryJptqsα Ď rpyptqsα, (4.30)

for all α P r0, 1s.
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Proof. Since rJsα Ď rJ^sα, @α P r0, 1s, it follows that

min y|rJ^sα ď min y|rJsα and max y|rJ^sα ě max y|rJsα ,

where y|A represents the restriction of the function y to the set A.

Therefore,

ryJptqsα “

„
min

px1,...,xnqPrJsα
ypt, B0, . . . , Bn´1q, max

px1,...,xnqPrJsα
ypt, B0, . . . , Bn´1q



Ď

„
min

px1,...,xnqPrJ^sα
ypt, B0, . . . , Bn´1q, max

px1,...,xnqPrJ^sα
ypt, B0, . . . , Bn´1q



“ rpyptqsα.

Theorem 4.3 yields that the fuzzy solution via sup-J extension is more specific

than the solution given by Zadeh’s extension in the case that the initial condition B0 is

non-symmetric.

The next subsection presents a method to produce a solution for fuzzy boundary

value problems (FBVs), where the boundary conditions are given by linearly interactive

fuzzy numbers. This method was provided in [77].

4.2.2 Boundary Value Problem with Linearly Interactive Fuzzy Conditions

Ibáñez et al. [77] provided a solution for fuzzy boundary conditions [125]

for higher order differential equations. To this end, they used the arithmetic for linear

interactive fuzzy numbers. Before presenting the similarities of this approach with ours,

let us present the method given by them.

Consider the following FBVP
$
’’’&
’’’%

ypnqptq ` an´1y
pn´1qptq ` . . . ` a0yptq “ gptq

ypti´1q “ Bpi´1q P RF

JL

. (4.31)

The fuzzy solution of (4.31) is given by the fuzzy function pStqL given by

pStqLpBq “ ypptq ` wT ptqB ´ wT ptqp, (4.32)

with BT “
”
B0 B1 ¨ ¨ ¨ Bn´1

ı
, for all t P rt0, T s, wT is a vector of a fundamental

solution and p is a particular solution of the ODE. From the arithmetic on interactive

fuzzy numbers (see Theorem 4.1), one obtains

pStqLpBq “ ypptq ´ wT ptqp ` wT ptqqB0 ` wT ptqr, (4.33)
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where qT “
”
1 q2 ¨ ¨ ¨ qn

ı
and rT “

”
0 r2 ¨ ¨ ¨ rn

ı
.

The α-cuts of pStqLpBq, for all α P r0, 1s, are given by [77]

rpStqLpBqsα “ ypptq ´ wT ptqp ` wT ptqr ` γtrB0sα, (4.34)

where γt “ wT ptqq “
nÿ

i“1

wiptqqi P R and γtrB0sα is given as follows

γtrB0sα “

#
rγtpb0q´

α , γtpb0q`
α s , if γt ě 0,

rγtpb0q`
α , γtpb0q´

α s , if γt ă 0.

The next theorem establishes that yL and pStqL, given by (4.25) and (4.35),

are the same solution to the higher order fuzzy differential equation, where the additional

conditions are given by linear interactive fuzzy numbers.

Theorem 4.4. Consider a higher order differential equation with constant coefficients of

the form (4.12). If B0, . . . , Bn´1 are the n additional conditions (initial or boundary) of

(4.12), then the fuzzy solutions yL and pStqL given by (4.25) and (4.35), respectively, are

equal.

Proof. Let t P rt0, T s. Then,

”
yLptq

ıα

“
”

min
 
hpt, α, 0q, hpt, α, 1q

(
, max

 
hpt, α, 0q, hpt, α, 1q

(ı

“
”

min
 
Y1ptq ` Y2pt, αq, Y1ptq ` Y3pt, αq

(
,

max
 
Y1ptq ` Y2pt, αq, Y1ptq ` Y3pt, αq

(ı

“ Y1ptq `
”

min
 
Y2pt, αq, Y3pt, αq

(
, max

 
Y2pt, αq, Y3pt, αq

(ı

“ ypptq ´ yT ptqM´1p `
”

min
 
yT ptqM´1b´

α , yT ptqM´1b`
α

(
,

max
 
yT ptqM´1b´

α , yT ptqM´1b`
α

(ı

“ ypptq ´ wT ptqp `
”

min
 
wT ptqpqpb0q´

α ` rq, wT ptqpqpb0q`
α ` rq

(
,

max
 
wT ptqpqpb0q´

α ` rq, wT ptqpqpb0q`
α ` rq

(ı

“ ypptq ´ wT ptqp ` wT ptqr `
”

min
 
γtpb0q´

α , γtpb0q`
α

(
,

max
 
γtpb0q´

α , γtpb0q`
α

(ı

“ ypptq ´ wT ptqp ` wT ptqr ` γt

“
B0

‰α

“
”
pStqLpBq

ıα

, @α P r0, 1s.

(4.35)
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Theorem 4.5 reveals that the solution via sup-J extension is associated with

an arithmetic for interactive fuzzy numbers. The next section associates the fuzzy solution

yL with the one produced by Fréchet derivative.

4.2.3 Fréchet Derivative for Fuzzy Functions

The Fréchet derivative for fuzzy functions is one type of derivative that considers

the concept of interactivity [52]. The focus here is to compare the solution via Fréchet

derivative and the solution proposed in this chapter, since both of them embraces the

relationship of interactivity.

Esmi et al. [52] proposed a method to produce a solution of fuzzy differential

equations by means of Fréchet derivative. Before present the similarities of this approach

with ours, let us present the method given by them.

Let yF be a fuzzy function given by

yFptq “ qptqB0 ` rptq, (4.36)

where q, r : R Ñ R. The n-th order Fréchet derivative of (4.36) at t is given as follows

y
pnq
F ptq “ qpnqptqB0 ` rpnqptq. (4.37)

Thus the fuzzy function yF is a solution of FDE given by (4.19), if yF satisfies

pIq pyFqpnqptq `
n´1ÿ

i“0

kipyFqpiqptq “ fptq and

pIIq y
pikq
F ptiq “ Bti,ku.

The condition pIIq and Equation (4.37) imply Bti,ku “ qpikqptiqB0 ` rpikqptiq.

Since Bti,ku “ qti,kuB0 ` rti,ku, the following conditions are obtained

qpikqptiq “ qti,ku and rpikqptiq “ rti,ku.

A combination of condition pIIq and Equation (4.37) result in the following

FDE

pqpnqptq `
n´1ÿ

i“0

kiq
piqptqqB0 ` rpnqptq `

n´1ÿ

i“0

kir
piqptq “ fptq. (4.38)

Since f is a classical function, Equation (4.38) implies that

qpnqptq `
n´1ÿ

i“0

kiq
piqptq “ 0 and rpnqptq `

n´1ÿ

i“0

kir
piqptq “ fptq,
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which lead us to the following deterministic problems

$
’&
’%

qpnqptq `
n´1ÿ

i“0

kiq
piqptq “ 0

qpikqptiq “ qti,ku P R

(4.39)

and $
’&
’%

rpnqptq `
n´1ÿ

i“0

kir
piqptq “ fptq

rpikqptiq “ rti,ku P R

. (4.40)

Thus the classical solutions of (4.39) and (4.40) are given by

qptq “ yT ptqM´1q, and rptq “ ypptq ´ yT ptqM´1p ` yT ptqM´1r, (4.41)

where yT ptq “ pyiptqq, q “ pqti,kuq, r “ prti,kuq and the vector p is the particular solution

and the matrix M is composed by the fundamental solution of the ODE.

Therefore, Equations (4.36) and (4.41) ensure that the fuzzy solution of (4.19),

via Fréchet derivative, is the fuzzy function yF given by

yF “ qptqB0 ` rptq

“ yT ptqM´1qB0 ` ypptq ´ yT ptqM´1p ` yT ptqM´1r,
(4.42)

where q and r are solutions of (4.39) and (4.40), respectively.

The next theorem shows that the Fréchet derivative produces a fuzzy solution

that is equal to the solution pStqL.

Theorem 4.5. Consider a higher order differential equation with constant coefficients of

the form (4.12). If B0, . . . , Bn´1 are the n additional conditions (initial or boundary) of

(4.12), then the fuzzy solutions yF and pStqL given by (4.42) and (4.35), respectively, are

equal.

Proof. Let t P rt0, T s.
”
yFptq

ıα

“ qptq
“
B0

‰α
` rptq

“ yT ptqM´1q
“
B0

‰α
` ypptq ´ yT ptqM´1p ` yT ptqM´1r

“ ypptq ´ wT ptqp ` wT ptqr ` wT ptqq
“
B0

‰α

“ ypptq ´ wT ptqp ` wT ptqr ` γt

“
B0

‰α

“
”
pStqLpBq

ıα

, @α P r0, 1s.

(4.43)

A combination of Equations (4.35) and (4.43) reveals the following

yLptq “ pStqLpBq “ yFptq, @t P rt0, T s. (4.44)



Chapter 4. Linearly Interactive Fuzzy Numbers 104

This means that in the case where the additional conditions of the FDE (4.19)

are given by linearly interactive fuzzy numbers, the solution produced by the sup-J

extension is in fact associated with the notion of fuzzy derivative.

One can observe that in the case where B0, . . . , Bn´1 are symmetric, even

though there is more than one JPD that makes these fuzzy numbers interactive, the result

provided by Theorem 4.5 does not dependent on the choice of JL. Indeed, the values of qi

and ri for both JL and the additional conditions of systems (4.39) and (4.40) are fixed,

once the JPD is chosen.

Table 2 presents a brief summary of these fuzzy solutions. Table 3 presents the

equivalence between these methodologies in the case where the additional condition B0 is

symmetric. Table 4 presents these equivalences when B0 is non-symmetric.

Table 2 – Solutions for higher order fuzzy differential equations.

Solution Notation Equation
Sup-J extension yL (4.21)

Zadeh’s extension py (4.27)
Interactive arithmetic pStqL (4.34)

Fréchet derivative yF (4.42)

Solutions via sup-J extension, Zadeh’s extension, Interactive arithmetic and Fréchet
derivative. Source: [53].

Table 3 – Fuzzy solutions when the additional condition is symmetric.

Solutions Equivalences
Sup-J/Interactive Arithmetic/Fréchet yL “ pStqL “ yF

Sup-J/Zadeh py “ convpYyJq

Comparison of the methods in the case where the additional condition is symmetric, where

YyJ stands for
nď

i“1

yJi
. Source: [53].

Table 4 – Fuzzy solutions when the additional condition is non-symmetric.

Solutions Equivalences
Sup-J/Interactive Arithmetic/Fréchet yL “ pStqL “ yF

Sup-J/Zadeh yL Ď py
Comparison of the methods in the case where the additional condition is non-symmetric.
Source: [53].

The proposed method solves problems that can be given by linear systems as

(4.16). In particular this thesis deals with initial value problem, where the initial conditions



Chapter 4. Linearly Interactive Fuzzy Numbers 105

are given by linear interactive fuzzy numbers. For boundary conditions a similar method

can be made, as one can see in [53]. Recall that this approach can be used in optimization

problems as well, as Pinto et al. proposed [115, 114]. Chapter 7 presents an application

in a physical problem that involves linear correlations among the position, velocity and

acceleration of a particle, in order to illustrate this method.

The completely correlated fuzzy numbers have interesting properties. Several

authors use this type of interactivity in problems that take this notion into account.

However, this concept requires that the membership function of these interactive fuzzy

numbers have the same shape. The next chapter produces a joint possibility distribution

that does not require any restrictions of the shape of the involved fuzzy numbers.

4.3 Conclusion

This chapter presented one type of interactivity, which is widely used in the

literature, called completely correlation. The arithmetic for this subclass of fuzzy numbers

were established and a generalization of this concept was provided. Solutions for FIVPs

were yielded and they were associated with the ones given by Fréchet derivative and the

interactive arithmetic. This chapter ended by presenting a comparison among the solutions

via linear interactivity, Zadeh’s extension, interactive arithmetic and Fréchet derivative.
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5 The g-difference as a Particular Case of an

Interactive Difference

This chapter presents a family of joint possibility distributions denoted by Jγ,

which was proposed by Esmi et al. [50, 54]. This family can be applied to every pair

of fuzzy numbers. Moreover, they showed that one can have a certain control of the

Pompeiu-Hausdorff norm of the interactive sum via this family of JPD’s.

Later, Sussner et al. [136] proposed the concept of translated fuzzy numbers in

order to “control” the width of this interactive sum as well. The width of a fuzzy number

is associated with the uncertainty that it models. Consequently, controlling the width of

the arithmetic operations via Jγ means controlling uncertainties in different ways, using

the same fuzzy numbers.

This thesis used Jγ to provide a numerical solution for fuzzy differential equa-

tions, which is our fourth contribution. This numerical solution is based on extending the

classic arithmetic operations of the Euler and Runge Kutta methods via sup-J extension

principle. For each element of this family, there will be a numerical solution for the FDE.

The proposed numerical method can be used in every n-dimensional initial value problem,

in contrast to the other methods based on JPDs, JL for example.

This chapter shows that this numerical solution is more specific than the

solution using Zadeh’s extension principle [146]. In order to illustrate this fact and

the aforementioned ones, several applications of this method are presented, such as in

epidemiology [142, 149, 145, 143, 144, 141, 146] and chemistry [147, 139] problems (see

Chapter 7). In these cases, the numerical solutions will simulate different behaviours,

with respect to the uncertainty along time, of the disease of a population and chemical

reactions.

In addition, as the fifth contribution, this chapter proves that the generalized

difference (´g) is a particular case of interactive difference [150]. This means that the

g-derivative (as well as gH- and H-derivatives) is interactive. This chapter is based on

references [78, 50, 136, 150, 149, 146, 142, 143, 141, 144, 147, 139].

5.1 Joint Possibility Distribution Jγ

Esmi et al. [50, 54, 78] defined a parametrized family of joint possibility

distributions Jγ , γ P r0, 1s. In contrast to the joint possibility distribution JL (cf. Equation

(4.7)), the family of JPD’s Jγ can be applied to every pair of fuzzy numbers. These joint
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possibility distributions are defined as follows. Given A1, A2 P RF , considers the auxiliary

functions gi
^, gi

_ and vi defined by

gi
^pz, αq “

ľ

wPrA3´isα

|w ` z|, (5.1)

gi
_pz, αq “

ł

wPrA3´isα

|w ` z| (5.2)

and

vipz, α, γq “ p1 ´ γqgi
^pz, αq ` γgi

_pz, αq, (5.3)

for all z P R, α P r0, 1s, γ P r0, 1s and i P t1, 2u.

Note that the functions gi
^ and gi

_ calculate, respectively, the minimum and

maximum absolute values of the sum between the elements in rA1sα and rA2sα. Also note

that the function vipz, α, γq, with respect to z, assumes greater values as long as γ increases

in r0, 1s. Also, consider the sets Ri
α and Lipz, α, γq, given by

Ri
α “

$
&
%

ta´
iα

, a`
iα

u if α P r0, 1q

rAis
1 if α “ 1

(5.4)

and

Lipz, α, γq “ rA3´is
α X r´vipz, α, γq ´ z, vipz, α, γq ´ zs. (5.5)

Finally, Jγ is given by

Jγpx1, x2q “

$
&
%

A1px1q ^ A2px2q, if px1, x2q P P pγq

0 , otherwise
(5.6)

where

P pγq “
2ď

i“1

ď

αPr0,1s

P ipγ, αq (5.7)

and for all i P t1, 2u, γ P r0, 1s e α P r0, 1s, P ipγ, αq is defined by

P ipγ, αq “ tpx1, x2q : xi P Ri
α and x3´i P Lipxi, α, γqu. (5.8)

Since the function vi is increasing with respect to γ, the set Li is a larger

interval for greater values of γ. This implies that for greater values of γ P r0, 1s, the greater

the number of pairs px1, x2q such as Jγpx1, x2q ą 0. In this case the “level” of interactivity

is measure by the parameter γ, in the following sense: the smaller the value of γ P r0, 1s,

the greater the interactivity.

One can prove that for γ “ 1, J1 “ J^ [50], that is, A1 and A2 are non-

interactive. In this case the sup-J extension principle boils down to the Zadeh extension

principle.
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Theorem 5.1. [50] Let A1, A2 P RF . If 0 ď γ1 ď γ2 ď 1, then

1. J0 Ď Jγ1
Ď Jγ2

Ď J1;

2. ||A1 bJ0
A2||F ď ||A1 bJγ1

A2||F ď ||A1 bJγ2
A2||F ď ||A1 bJ1

A2||F , where b P

t`, ´, ¨, ˜u

Geometrically, the larger the value of γ, the bigger the fuzzy set Jγ , as illustrated

in the following example.

Example 5.1. Let A1 “ A2 “ p´1; 0; 1q P RF . The joint possibility distribution Jγ, where

γ P t0, 0.25, 0.5, 1u, between A1 and A2 are graphically represent in Figure 31.

Figure 31 – Graphical representation of the joint possibility distribution Jγ given as in
Example (5.1).

(a) The top view of J0. (b) The top view of J0.25.

(c) The top view of J0.5. (d) The top view of J1.

The light gray triangles represent the triangular fuzzy numbers A1 “ p´1; 0; 1q and
A2 “ p´1; 0; 1q. The dark grey region represents the joint possibility distribution Jγ.
Source: [142].
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Note that J0 Ď J0.25 Ď J0.5 Ď J1. Moreover, the joint possibility distribution

obtained by γ “ 1 is the J^. Also, the JPD J0 resembles one of the cases of JL (see Figure

29).

The next example illustrates that Jγ can be applied to every pair of fuzzy

numbers, in contrast to the joint possibility distribution JL.

Example 5.2. Let A1 “ p´2; ´1; 1; 2q P FT p and A1 “ p´1; 0; 1q P FT r. The joint

possibility distribution Jγ, where γ P t0, 0.25, 0.5, 0.75, 1u, between A1 and A2 are graphically

represent in Figure 32.

Note that in Example 5.2 the fuzzy numbers A1 “ p´2; ´1; 1; 2q and A2 “

p´1; 0; 1q are not interactive with respect to the joint possibility distribution JL, since

their membership function can not be associated linearly. However, A1 “ p´2; ´1; 1; 2q

and A2 “ p´1; 0; 1q are interactive with respect to Jγ, for all 0 ď γ ă 1.

One can observe that J0 is a more general JPD than the distribution JL, since

it can be applied to every pair of fuzzy numbers. Even though J0 resembles JL, in the case

where A1 and A2 are triangular fuzzy numbers (see Figures 31 and 30), the JPD JL may

produce two types of interactivity, the positive and the negative, and the JPD J0 can only

reproduce one of them. Moreover, the JPD J0 can not be used to describe the α-cuts of

A1 in terms of the α-cuts of A2, as it is possible for JPD JL.

Although the width of a fuzzy number is limited by two times its norm [136],

the approach proposed by [54] did not produce results about the width of the numerical

solutions for FIVPs. In order to have a better control of the width, Sussner et al. [136]

introduced the concept of translated fuzzy numbers.

Definition 5.1. The translation of A P RF by k P R is defined as the fuzzy number Apkq,

whose membership function is given by

Apkqpxq “ Apx ` kq, @x P R. (5.9)

By the above definition it is possible to construct a family of JPDs, according

to Theorem 5.2.

Theorem 5.2. [136] Given A1, A2 P RF and c “ pc1, c2q P R
2, consider the translated

fuzzy numbers A
pc1q
1 , A

pc2q
2 P RF . Let γ P r0, 1s and J̃γ be a joint possibility distribution

between A
pc1q
1 and A

pc2q
2 . If J c

γ is the following fuzzy relation given by

J c
γpx1, x2q “ J̃γpx1 ´ c1, x2 ´ c2q, @px1, x2q P R

2 (5.10)

then J c
γ is a JPD for A1 and A2, furthermore, pA1 `c

γ A2q P RF , where `c
γ represents the

sum via sup-J extension principle.
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From the JPD, given by (5.10), the following statements are equivalent:

Proposition 5.1. [136, 50] Let J c
γ be the joint possibility distribution of the fuzzy numbers

A1 and A2. The following statements are equivalent:

(a) γ ď β;

(b) J c
γ Ď J c

β;

(c) A1 `c
γ A2 Ď A1 `c

β A2; and

(d) widthpA1 `c
γ A2q ď widthpA1 `c

β A2q.

It is important to observe that A1 `c
γ A2 and A1 `γ A2 produce different results.

However, one can show that rA
pc1q
1 `γ A

pc2q
2 sα ´ tc1 ` c2u “ rA1 `c

γ A2sα for all α P r0, 1s

[136]. These equivalences ensure that the width of the sum via sup-J extension principle,

with J “ J c
γ, is connected with the parameter γ in the following sense, the width of the

fuzzy number obtained from the interactive sum decreases as the value of γ goes to 0.

The next section uses this family of JPDs to produce an arithmetic on interactive

fuzzy numbers. Moreover, from this arithmetic a numerical solution for fuzzy differential

equations will be provided.

5.2 Numerical Solution for Initial Value Problems with Interactive

Fuzzy Conditions

This section focuses on fuzzy initial values problems where the initial conditions

are uncertain and given by interactive fuzzy numbers via joint possibility distribution

J c
γ. From now on, in order to simplify the notation, J c

γ will be denoted by Jγ and the

arithmetic operations bc
γ will be denoted by bγ.

There are several methods in the literature that provide numerical solutions of

FDEs [3, 79, 2]. Most of them use arithmetic operators that are obtained from different

joint possibility distributions. For instance, the authors of [2] used the generalized difference

and standard sum in their numerical solutions. This chapter proves that the generalized

difference is one type of interactive arithmetic but, as it was point out before, the standard

sum is not. Consequently it is necessary to exhibit the JPD that has this property.

In contrast of these methods, our approach provides a numerical solution whose

arithmetic operations are derived from the same JPD. Moreover, in the most numerical

solutions [105, 91, 64, 1, 3, 79, 2] the authors study the problem via α-cuts, treating the

FDEs in a classical way. Our proposed method do not require the study of α-cuts.
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The numerical solution proposed in this thesis is based on the classical numerical

solutions of the Euler’s and Runge-Kutta methods, with the arithmetic operations involved

in the method adapted for interactive fuzzy numbers. Before presenting this methodology,

let us briefly review the Euler’s and Runge-Kutta method.

Let yi : R Ñ R
n, with i “ 1, ..., n, functions that depend on time t. Consider

the following IVP composed of ODEs and initial condition

$
&
%

dyi

dt
“ fipt, y1, y2, ..., ynq

ypt0q “ y0 P R
n

, (5.11)

where fi is a function that depends on y1, y2, ..., yn and t, for each i “ 1, ..., n.

Euler’s and Runge-Kutta methods consist in determining numerical solutions

for (5.11). The steps of algorithms are given by

y
pk`1q
i “ y

pkq
i ` hfipt

pkq, y
pkq
1 , ..., ypkq

n q, (Euler) (5.12)

and

y
pk`1q
i “ y

pkq
i `

h

6
pk

pkq
1 ` 2k

pkq
2 ` 2k

pkq
3 ` k

pkq
4 q, (Runge-Kutta) (5.13)

where

k
pkq
1 “ fipt

pkq, y
pkq
1 , ..., ypkq

n q,

k
pkq
2 “ fi

ˆ
tpkq `

h

2
, y

pkq
1 `

h

2
k

pkq
1 , ..., ypkq

n `
h

2
k

pkq
1

˙
,

k
pkq
3 “ fi

ˆ
tpkq `

h

2
, y

pkq
1 `

h

2
k

pkq
2 , ..., ypkq

n `
h

2
k

pkq
2

˙
, (5.14)

k
pkq
4 “ fi

´
tpkq ` h, y

pkq
1 ` hk

pkq
3 , ..., ypkq

n ` hk
pkq
3

¯
,

with 0 ď k ď N ´ 1, where N is the number of partitions of the interval time divided in

equally spaced intervals rtpkq, tpk`1qs with size h and initial condition ptp0q, y
p0q
1 , . . . , yp0q

n q.

Since the initial conditions are given by fuzzy numbers, the arithmetic operations

in each iteration must be extended to operations between fuzzy numbers, for all k ą 0.

Therefore, the Euler’s algorithm becomes

Y k`1

i “ Y k
i `γ hfipt

k, Y k
1

, ..., Y k
n q, (5.15)

and the Runge-Kutta algorithm is given by

Y
pk`1q

i “ Y
pkq

i `γ

h

6
pK

pkq
1 `γ 2K

pkq
2 `γ 2K

pkq
3 `γ K

pkq
4 q, (5.16)
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where

K
pkq
1 “ fipt

pkq, Y
pkq

1 , ..., Y pkq
n q,

K
pkq
2 “ fi

ˆ
tpkq `

h

2
, Y

pkq
1 `γ

h

2
K

pkq
1 , ..., Y pkq

n `γ

h

2
K

pkq
1

˙
,

K
pkq
3 “ fi

ˆ
tpkq `

h

2
, Y

pkq
1 `γ

h

2
K

pkq
2 , ..., Y pkq

n `γ

h

2
K

pkq
2

˙
, (5.17)

K
pkq
4 “ fi

´
tpkq ` h, Y

pkq
1 `γ hK

pkq
3 , ..., Y pkq

n `γ hK
pkq
3

¯
,

where Yi is a fuzzy number for all i “ 1, . . . , n.

A combination of Proposition 5.1 and Theorem 2.2 ensures that both numerical

solutions (5.15) and (5.16) are more specific when there is interactivity than the solutions

using the standard arithmetic, since for all γ P r0, 1s it follows that J0 Ď Jγ Ď J1 “ J^.

This fact is illustrated in some applications in epidemiological problems, given in Chapter

7.

The next section focuses on a particular joint possibility distribution of this

family, namely J0. The interactive sum, obtained from J0, produces a fuzzy number with

smaller Pompeiu-Hausddorf norm. This is not the only interesting property that J0 has.

The next section provides the fifth result of this thesis, which is, the difference based on

J0 extends the g-difference, which means that the g-difference is interactive [150].

5.3 The joint possibility distribution J0

This section provides new results about the joint possibility distribution J0. Let

us first present some preliminary results. The next proposition describes some properties

of the joint possibility distribution J0 [50].

Proposition 5.2. Let J0 be the joint possibility distribution given by (5.6), with γ “ 0.

Then

(a) A1 `0 A2 P RFC
;

(b) ||A1 `0 A2||F ď ||A1 `J A2||F for every joint possibility distribution J of A1 and A2

such that A1 `J A2 is a fuzzy number.

Using the idea of translated fuzzy numbers, a specific joint possibility distribu-

tion Ik1,k2
is defined for a given pair of fuzzy numbers in RFC

.

Theorem 5.3. [150] Let A1, A2 P RFC
and let ki P R for i “ 1, 2. Consider the joint

possibility distribution J0 of A
pk1q
1 and ´A

pk2q
2 given by (5.9). The fuzzy relation I defined

by

Ik1,k2
px1, x2q “ J0px1 ´ k1, k2 ´ x2q, @px1, x2q P R

2 (5.18)
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has the following properties:

(a) Ik1,k2
is a joint possibility distribution of A1 and A2;

(b) A1 ´Ik1,k2
A2 “

´
A

pk1q
1 `0 p´A

pk2q
2 q

¯
` k1 ´ k2 P RFC

.

Proof. Let us prove that A1 and A2 are marginal distributions of Ik1,k2
given by

(5.18).

One the one hand,

A1pxq “ A
pk1q
1 px ´ k1q “

ł

yPR

J0px ´ k1, yq “
ł

yPR

J0px ´ k1, k2 ´ yq “
ł

yPR

Ik1,k2
px, yq,

for all x P R.

On the other hand, the following equations are satisfied for all y P R:

A2pyq “ A
pk2q
2 py ´ k2q “ ´A

pk2q
2 pk2 ´ yq “

ł

xPR

J0px, k2 ´ yq

“
ł

xPR

J0px ´ k1, k2 ´ yq “
ł

xPR

Ik1,k2
px, yq.

Therefore, Ik1,k2
is a joint possibility distribution for A1 and A2.

(a)(b) Let i P t1, 2u and let a`
i , a´

i , pa
pkiq
i q`, pa

pkiq
i q´ : r0, 1s Ñ R be the functions that

map α P r0, 1s to paiq
`
α , paiq

´
α , pa

pkiq
i q`

α , and pa
pkiq
i q´

α , respectively. Since a`
i and

a´
i are continuous and since pa

pkiq
i q` “ paiq

` ´ ki and pa
pkiq
i q´ “ paiq

´ ´ ki, the

functions pa
pkiq
i q` and pa

pkiq
i q´ are continuous as well. Thus, A

pkiq
i P RFC

, for i “ 1, 2.

Proposition 5.2 implies that
´

A
pk1q
1 `0

´
´A

pk2q
2

¯¯
P RFC

and, consequently, D :“
´

A
pk1q
1 `0

´
´A

pk2q
2

¯¯
`k1 ´ k2 P RFC

.

Also,

Dpy ´ pk1 ´ k2qq “
´

A
pk1q
1 `0

´
´A

pk2q
2

¯¯
pyq “

ł

x1`x2“y

J0px1, x2q

“
ł

x1`x2“y

Ik1,k2
px1 ` k1, k2 ´ x2q,

for every y P R.

By taking z1 “ x1 ` k1 and z2 “ k2 ´ x2, it follows

Dpy ´ pk1 ´ k2qq “
ł

z1´z2“y´pk1´k2q

Ipz1, z2q “ pA1 ´I A2qpy ´ pk1 ´ k2qq.

Therefore, D “ A1 ´Ik1,k2
A2.
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Remark 5.1. If k1 “ k2, then A1 ´Ik1,k2
A2 “ A1 `0 p´A2q. This expression resembles

the definition of the difference of real numbers in terms of the additive inverse.

The next corollary is a consequence of Theorem 5.3 and of Proposition 5.2.

Corollary 5.1. For every A P RFC
, it follows that

A ´Ik1,k2
A “ 0.

Proof. Theorem 5.3 implies that

A ´Ik1,k2
A “ pA `0 p´Aqq ` pk ´ kq “ A `0 p´Aq.

Thus

A `Jt´1,0u
p´Aq “ 0,

since A and ´A are completely correlated with respect to Jt´1,0u [32].

Item (c) of Proposition 5.2 ensures that

0 ď ||A `0 p´Aq||F ď ||A `Jt´1,0u
p´Aq||F “ 0

Therefore, A `0 p´Aq “ A ´Ik1,k2
A “ 0.

The next example illustrates the interactive difference, given by (5.18), and it

compares Ik1,k2
-difference with the gH-difference.

Example 5.3. Let A1 “ p´1; 0; 1q and A2 “ p´2; 0; 2q. Since widthprA1sαq “ 2 ´ 2α ă

4 ´ 4α “ widthprA2sαq, for all α P r0, 1s, one obtains A1 ´gH A2 “ X “ p´1; 0; 1q.

On the other hand, let k1 “ 0 and k2 “ 0. From Theorem 5.3, it follows

A1 ´Ik1,k2
A2 “

´
A

pk1q
1 `0

´
´A

pk2q
2

¯¯
` tk1 ´ k2u.

Hence

´
A

pk1q
1 `0

´
´A

pk2q
2

¯¯
pzq “

ł

x1`x2“z

A1px1q ^ p´A2q px2q,

where px1, x2q P P “
ď

αPr0,1s

P 1pαq Y P 2pαq, with

P 1pαq “ tpx1, x2q P t´1 ` αu ˆ t1 ´ αuu Y tpx1, x2q P t1 ´ αu ˆ t´1 ` αuu

and

P 2pαq “ tpx1, x2q P t´1 ` αu ˆ t2 ´ 2αuu Y tpx1, x2q P t1 ´ αu ˆ t´2 ` 2αuu.
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Therefore, A1 `0 p´A2q “ p´1; 0; 1q. Hence

A1 ´Ik1,k2
A2 “ p´1; 0; 1q ` t0u “ p´1; 0; 1q “ A1 ´gH A2.

Now, let A1 “ p´3; 0; 3q and A2 “ p´1; 0; 1q. Since widthprA1sαq “ 3 ´ 3α ą

1 ´ α “ widthprA2sαq, for all α P r0, 1s, one obtains A1 ´gH A2 “ X “ p´2; 0; 2q.

On the other hand, considering k1 “ 0 and k2 “ 0, from Theorem 5.3 it follows

pA1 ´Ik1,k2
A2qpzq “

´
A

pk1q
1 `0

´
´A

pk2q
2

¯¯
pzq “

ł

x1`x2“z

A1px1q ^ p´A2q px2q,

where px1, x2q P P “
ď

αPr0,1s

P 1pαq Y P 2pαq, with

P 1pαq “ tpx1, x2q P t´1 ` αu ˆ t3 ´ 3αuu Y tpx1, x2q P t1 ´ αu ˆ t´3 ` 3αuu

and

P 2pαq “ tpx1, x2q P t´1 ` αu ˆ t1 ´ αuu Y tpx1, x2q P t1 ´ αu ˆ t´1 ` αuu.

Therefore, A1 `0 p´A2q “ p´2; 0; 2q. Hence

A1 ´Ik1,k2
A2 “ p´2; 0; 2q ` t0u “ p´2; 0; 2q “ A1 ´gH A2.

Example 5.3 suggests that if the translations ki are given by ki “ 0.5ppaiq
´
1

`

paiq
`
1

q for i “ 1, 2, then the gH- and Ik1,k2
-differences lead to the same results. The

next section shows that this statement holds true. More precisely, it proves that if the

gH-difference exists, then A ´gH B “ A ´Ik1,k2
B, where ki “ 0.5ppaiq

´
1

` paiq
`
1

q for i “ 1, 2

and for all A, B P RFC
. Henceforth, the joint possibility distribution I used here is given

by

I “ Ik1,k2
, (5.19)

where k1 “ 0.5ppa1q´
1

` pa1q`
1

q and k2 “ 0.5ppa2q´
1

` pa2q`
1

q.

The following example compares the I-interactive difference, given by (5.19),

with the standard and the g-difference.

Example 5.4. Let A1 “ p1; 2; 3q and A2 “ p1; 3; 4q. From Theorem 5.3, it follows that

A1 ´I A2 “
´

A
pk1q
1 `0

´
´A

pk2q
2

¯¯
` tk1 ´ k2u, where k1 “ 2 and k2 “ 3. Hence

´
A

pk1q
1 `0

´
´A

pk2q
2

¯¯
pzq “

ł

x1`x2“z

A
pk1q
1 px1q ^

´
´A

pk2q
2

¯
px2q,

where px1, x2q P P “
ď

αPr0,1s

P 1pαq Y P 2pαq, with

P 1pαq “ tpx1, x2q P t´1 ` αu ˆ t1 ´ αuu Y tpx1, x2q P t1 ´ αu ˆ r´2 ` 2α, 0su
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and

P 2pαq “ tpx1, x2q P t1 ´ αu ˆ t´2 ` 2αuu Y tpx1, x2q P t1 ´ αu ˆ t´1 ` αuu.

Therefore, A
pk1q
1 `0

´
´A

pk2q
2

¯
“ p0; 0; 1q. Hence

A1 ´I A2 “ p0; 0; 1q ` t2 ´ 3u “ p´1; ´1; 0q.

Note that

rA1 ´g A2sα “

«
ľ

βěα

mint´β, ´1u,
ł

βěα

maxt´β, ´1u

ff
“ r´1, ´αs.

The standard, generalized, and I-interactive differences between A1 and A2

satisfy

A1 ´g A2 “ A1 ´I A2 “ p´1; ´1; 0q Ă p´3; ´1; 2q “ A1 ´ A2

which implies that

widthpA1 ´g A2q “ widthpA1 ´I A2q “ 1 ă 5 “ widthpA1 ´ A2q,

and

||pA1 ´g A2q||F “ ||pA1 ´I A2q||F “ 1 ă 3 “ ||pA1 ´ A2q||F .

Example 5.4 suggests that the g-difference and I-interactive difference coincide.

In fact this statement always holds true. The next three lemmas are used to prove Theorem

5.5. The main idea is to characterize the set rJ0sα and, thereby, rIsα. From now on,

for simplicity of notation, the sets P p0q and P ip0, αq, given by (5.6), will be denoted

respectively by P and P ipαq. Moreover, since for γ “ 0 the function vi (see (5.3)) is equal

to gi
^, then the function gi

^ will be denoted by gi.

Lemma 5.1. Let Aβ Ď R, Aβ ‰ H, for all β P I, where I is an arbitrary non-empty index

set. The following equalities hold true:

ł
˜
ď

βPI

Aβ

¸
“
ł

βPI

´ł
Aβ

¯
and

ľ
˜
ď

βPI

Aβ

¸
“
ľ

βPI

´ľ
Aβ

¯

Proof. Let us prove this lemma by using a few concepts of lattice theory and mathematical

morphology [72]. Consider the following mappings F, G:

F : PpRq Ñ pR˘8qR and G : PpRq Ñ pR˘8qR

A ÞÑ fA A ÞÑ gA
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where

fApxq “

#
x , if x P A

´8 , otherwise
and

gApxq “

#
x , if x P A

`8 , otherwise

For simplicity, fAβ
and gAβ

are written by fβ and gβ, respectively. Since PpRq

and pR˘8qR yield complete lattices, the following equations hold true for all Aβ Ď R and

all I:

fŤ
iPI Aβ

“
ł

iPI

fβ and gŤ
iPI Aβ

“
ľ

iPI

gβ. (5.20)

Let δR, εR : pR˘8qR Ñ pR˘8qR denote respectively the dilation and the erosion

by the structuring element R based on the threshold or flat approach [72, 130, 137], that

is:

δRpfq “
ł

xPR

fpxq, εRpfq “
ľ

xPR

fpxq. (5.21)

Thus

δRpfAq “
ł

xPR

fApxq “
ł

tx | x P Au “
ł

A, (5.22)

εRpgAq “
ľ

xPR

gApxq “
ľ

tx | x P Au “
ľ

A, (5.23)

for every A ‰ H.

A combination of (5.20), (5.21), (5.22), and (5.23) leads to the following

equations that are valid for non-empty Aβ such that β P I ‰ H:

ł
˜
ď

βPI

Aβ

¸
“
ł

xPR

fŤAβ
pxq “ δRpfŤAβ

q “ δRp
ł

βPI

fβq,

ľ
˜
ď

βPI

Aβ

¸
“
ľ

xPR

gŤAβ
pxq “ εRpgŤAβ

q “ εRp
ľ

βPI

gβq.

Since δR and εR are, respectively, an algebraic dilation and an algebraic erosion

[137], the proof of Lemma 1 is concluded as follows:

δR

˜
ł

βPI

fβ

¸
“
ł

βPI

δR pfβq “
ł

βPI

ł
Aβ,

εR

˜
ľ

βPI

gβ

¸
“
ľ

βPI

εR pgβq “
ľ

βPI

ľ
Aβ.
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Lemma 5.2. [150] Let A1, A2 P RF . If J0 is the joint possibility distribution of A1 and

A2 P RF that is defined in (5.24), then

rJ0sα “
2ď

i“1

˜
ď

βPrα,1s

P ipβq

¸
, @α P r0, 1s, (5.24)

where P ipβq “ tpx1, x2q : xi P Ri
β and x3´i P Lipxi, βqu for i “ 1, 2 and for all β P rα, 1s.

Proof. Let us first prove that the set on the right side of (5.24) is contained in the set on

the left side. Recall that the sets Ri
β and Lipxi, βq are given by (5.4) and (5.5). Note that

every element px1, x2q of
2ď

i“1

˜
ď

βPrα,1s

P ipβq

¸
satisfies px1, x2q P P jpβq for some β ě α and

some j P t1, 2u. Therefore,

xj P R
j

β
Ď rAjsβ and x3´j P Lpxj, βq Ď rA3´jsβ

ñ Ajpxjq ě β and A3´jpx3´jq ě β,

which implies that A1px1q ^ A2px2q ě β ñ px1, x2q P rJ0sβ Ď rJ0sα.

These considerations reveal that

2ď

i“1

˜
ď

βPrα,1s

P ipβq

¸
Ď rJ0sα.

Let us proceed by showing

rJ0sα Ď
2ď

i“1

˜
ď

βPrα,1s

P ipβq

¸
.

First, note that J0px1, x2q “ A1px1q ^ A2px2q ě α for all px1, x2q P rJ0sα. By

the definition of J0 (see (5.6)), it follows

px1, x2q P P “
2ď

i“1

˜
ď

αPr0,1s

P ipαq

¸
.

Thus, there exists α P r0, 1s for some j P t1, 2u such that px1, x2q P P jpαq, that is,

xj P R
j
α Ď rAis

α and x3´j P Ljpxi, αq Ď rA3´jsα. This implies that Aipxq ě α for i “ 1, 2

and, therefore, A1px1q ^ A2px2q ě α. If α ě α then px1, x2q P P ipαq which implies that

rJ0sα Ď
2ď

i“1

˜
ď

βPrα,1s

P ipβq

¸
.

On the other hand, suppose that α ă α. Thus,

α ă α ď β :“ A1px1q ^ A2px2q ď Aipxiq ď 1.
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From (5.4), it follows xi P Ri
α “ ta´

iα
, a`

iα
u, because α ă 1. Let us suppose without loss of

generality that xi “ a´
iα

. Note that Aipa
´
iγ

q ě γ, @γ P r0, 1s, because a´
iγ

P rAis
γ. The last

observation and the fact the function a´
i : r0, 1s Ñ R given by a´

i pγq “ a´
iγ

is increasing by

Theorem 4.9 of [16], then

xi “ a´
i pαq ď a´

i pβq ď a´
i pAipxiqq ď xi P ra´

iAipxiq
, a`

iAipxiq
s,

Thus, xi “ a´
i pβq P Ri

β. In addition, the sequence of inequalities

|x1 ` x2| “ gipxi, αq “
ľ

wPrA3i
sα

|w ` xi| ď
ľ

wPrA3i
sβ

|w ` xi| “ gipxi, βq ď |x1 ` x2|

holds true since x3´i P rA3´is
β Ď rA3´is

α. These last observations imply that x3´i P

Lipxi, βq because x3´i P rA3´is
β and x3´i P r´gipxi, βq ´ xi, gipxi, βq ´ xis. Therefore,

rJ0sα Ď
2ď

i“1

˜
ď

βPrα,1s

P ipβq

¸

since pxi, x2q P P ipβq Ď
2ď

i“1

˜
ď

γPrα,1s

P ipγq

¸
.

Therefore, the equality rJ0sα “
2ď

i“1

˜
ď

βPrα,1s

P ipβq

¸
holds.

Lemma 5.2 shows that the set rJ0sα equals
ď

βPrα,1s

P pβq where P pβq :“ P 1pβq Y

P 2pβq. Note that the following function f is continuous:

f : R2 Ñ R

px1, x2q ÞÑ x1 ` x2

A combination of Theorem 2.1, Lemmas 5.1 and 5.2 reveals that, for every

α P r0, 1s, the α-cut of rA1 `0 A2s is given by

rA1 `0 A2sα “ rfJ0
pA1, A2qsα

“ fprJ0sαq

“ tx1 ` x2 | px1, x2q P rJ0sαu

“

#
x1 ` x2 | px1, x2q P

ď

βPrα,1s

P pβq

+

“
ď

βPrα,1s

tx1 ` x2 | px1, x2q P P pβqu

“
ď

βPrα,1s

Spβq,
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where

Spβq “ tx1 ` x2 | px1, x2q P P pβqu . (5.25)

The next lemma presents a characterization of the set Spβq defined in (5.25) for certain

pairs of fuzzy numbers.

Lemma 5.3. Let A1, A2 P RFC
such that paiq

´
1

` paiq
`
1

“ 0, i “ 1, 2. For every β P r0, 1s,

the set Spβq in (5.25) is given by

Spβq “

#
tuβ, 0, vβu , if β P r0, 1q

ruβ ^ vβ, uβ _ vβs , if β “ 1
, (5.26)

where

uβ “ pa1q´
β ` pa2q`

β and vβ “ pa1q`
β ` pa2q´

β .

Proof. Let β P r0, 1s be arbitrary. First, consider an arbitrary index j P t1, 2u. If px1, x2q P

P jpβq, then xj P Ri
β and x3´j P Ljpxj, βq. Note that Ljpxj, βq corresponds to the set of

minimizers of the function hjpwq “ |xj ` w| subject to w P rA3´jsβ, that is,

x3´j P Ljpxj, βq ô x3´j “ argminwPrA3´jsβ |xj ` w|.

Since pa1q´
1

` pa1q`
1

“ 0 “ pa2q´
1

` pa2q`
1

, it follows that pajq´
β ď 0 ď pajq`

β ,

where pajq`
β ě 0, @β P r0, 1s. Therefore, for i “ 1, 2:

x3´i “ argminwPrA3´isβ |xi ` w|

“

$
’’’’&
’’’’%

´xi , if 0 ď xi and pa3´iq
´
β ď ´xi

pa3´iq
´
β , if 0 ď xi and pa3´iq

´
β ě ´xi

´xi , if 0 ě xi and pa3´iq
`
β ě ´xi

pa3´iq
`
β , if 0 ě xi and pa3´iq

`
β ď ´xi

. (5.27)

Using (5.27), let us divide the rest of the proof into four cases.

(i) Suppose that pa1q´
β ď ´pa2q`

β and pa1q`
β ě ´pa2q´

β .

If β ă 1, then xi P tpaiq
´
β , paiq

`
β u for i “ 1, 2. Thus, (5.27) yields

P 1pβq “
 `

pa1q´
β , pa2q`

β

˘
,
`
pa1q`

β , pa2q´
β

˘(

and

P 2pβq “
 `

´pa2q´
β , pa2q´

β

˘
,
`
´pa2q`

β , pa2q`
β

˘(

which implies that

Spβq “ tx1 ` x2 | px1, x2q P P pβq “
2ď

i“1

P ipβqu

“ tuβ, 0, vβu,
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where uβ “ pa1q´
β ` pa2q`

β and vβ “ pa1q`
β ` pa2q´

β .

If β “ 1, then xi P rAis
1 for i “ 1, 2. From (5.27), it follows that

P 1p1q “
 `

x1, pa2q`
1

˘
| x1 P rpa1q´

1
, ´pa2q`

1
s
(

“
ď 

px1, ´x1q | x1 P r´pa2q`
1

, ´pa2q´
1

s
(

“
ď `

x1, pa2q´
1

˘
| x1 P r´pa2q´

1
, pa1q`

1
s
(

and

P 2p1q “
 

p´x2, x2q | x2 P rpa2q´
1

, pa2q`
1

s
(

.

These observations reveal that

Sp1q “ tx1 ` x2 | px1, x2q P P p1q “
2ď

i“1

P ip1qu

“ ru1 ^ v1, u1 _ v1s ,

where u1 “ pa1q´
1

` pa2q`
1

and v1 “ pa1q`
1

` pa2q´
1

. Note that u1 ď 0 ď v1 or

v1 ď 0 ď u1 since paiq
´
1

` paiq
`
1

“ 0 for i “ 1, 2.

(ii) Suppose that pa1q´
β ď ´pa2q`

β and pa1q`
β ď ´pa2q´

β .

If β ă 1, then xi P Ri
β “ tpaiq

´
β , paiq

`
β u for i “ 1, 2. Using (5.27), one obtains

P 1pβq “
 `

pa1q´
β , pa2q`

β

˘
,
`
pa1q`

β , ´pa1q`
β

˘(

and

P 2pβq “
 `

pa1q`
β , pa2q´

β

˘
,
`
´pa2q`

β , pa2q`
β

˘
,
(

which implies that

Spβq “ tx1 ` x2 | px1, x2q P P pβq “
2ď

i“1

P ipβqu

“ tuβ, 0, vβu,

where uβ “ pa1q´
β ` pa2q`

β and vβ “ pa1q`
β ` pa2q´

β .

If β “ 1, then xi P Ri
1

“ rAis
1 for i “ 1, 2. Thus, (5.27) reveals that

P 1p1q “
 `

x1, pa2q`
1

˘
| x1 P rpa1q´

1
, ´pa2q`

1
s
(

“
ď 

px1, ´x1q | x1 P r´pa2q`
1

, pa1q`
1

s
(

and

P 2p1q “
 `

pa1q`
1

, x2

˘
| x2 P rpa2q´

1
, ´pa1q`

1
s
(

“
ď 

p´x2, x2q | x1 P r´pa1q`
1

, pa2q`
1

s
(

.

These equations imply that

Spβq “ tx1 ` x2 | px1, x2q P P p1q “ P 1p1q Y P 2p1qu “ ru1 ^ v1, u1 _ v1s ,

where u1 “ pa1q´
1

` pa2q`
1

and v1 “ pa1q`
1

` pa2q´
1

. In addition, note that u1 ď 0 ď v1

or v1 ď 0 ď u1 since paiq
´
1

` paiq
`
1

“ 0 for i “ 1, 2.
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(iii) The proof of (5.26) for the case where pa1q´
β ě ´pa2q`

β and pa1q`
β ď ´pa2q´

β is similar

to the one of (i).

(iv) The proof of (5.26) for the case where pa1q´
β ě ´pa2q`

β and pa1q`
β ě ´pa2q´

β is similar

to the one of (ii).

Note that in the above lemma, the condition paiq
´
1

` paiq
`
1

“ 0, for i “ 1, 2,

stands only for fuzzy numbers that are centered in the origin, which means that the

translation of A1 and A2 are given by the midpoint of the core of the respective fuzzy

number.

Let us now employ Lemmas 1, 2, and 3 to prove the following two theorems

that characterize the α-cuts of the difference A1 ´I A2.

Theorem 5.4. Let A, B P RFC
. The α-cuts of rA ´I Bsα are given by

«
ľ

βěα

`
pa´

β ´ b´
β q ^ pa`

β ´ b`
β q
˘

,
ł

βěα

`
pa´

β ´ b´
β q _ pa`

β ´ b`
β q
˘
ff

,

for every α P r0, 1s.

Proof. Let α P r0, 1s be arbitrary. By Theorem 5.3,

rA ´I Bsα “ rApkAq `0 p´BpkBqqsα ` pkA ´ kBq

where kA “ 0.5pa´
1

` a`
1

q and kB “ 0.5pb´
1

` b`
1

q.

Note that papkAqq˘
α “ a˘

α ´ kA and pbpkBqq˘
α “ b˘

α ´ kB for all α P r0, 1s. Defining

C “ ´BpkBq, one obtains c´
α “ ´pbpkBqq`

α “ kB ´ b`
α and c`

α “ ´pbpkBqq´
α “ kB ´ b´

α for all

α P r0, 1s. Moreover,

papkAqq´
1

` papkAqq`
1

“ pa´
1

` a`
1

q ´ 2kA “ 0

and

c´
1

` c`
1

“ pkB ´ b`
1

q ` pkB ´ b´
1

q “ 2kB ´ pb`
1

` b´
1

q “ 0.

A brief glance at Lemmas 5.2 and 5.3 reveals that

rApkAq `0 p´BpkBqqsα “ rApkAq `0 Csα “
ď

βPrα,1s

Spβq. (5.28)

Recall that Spβq is given by

Spβq “

#
tuβ, 0, vβu , if β P r0, 1q

ruβ ^ vβ, uβ _ vβs , if β “ 1
,
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where

uβ “ papkAqq´
β ` c`

β “ pa´
β ´ b´

α q ` pkB ´ kAq

and

vβ “ papkAqq`
β ` c´

β “ pa`
β ´ b`

α q ` pkB ´ kAq.

Thus u1 ď 0 ď v1 or v1 ď 0 ď u1, since papkAqq´
1

` papkAqq`
1

“ c´
1

` c`
1

“ 0. This

implies that

0 P ruβ ^ vβ, uβ _ vβs

and, consequently, ď

βPrα,1s

Spβq “
ď

βPrα,1s

S̄pβq, (5.29)

where

S̄pβq “

#
Spβqzt0u , if β P r0, 1q

Sp1q , if β “ 1
.

One obtains rApkAq `0 p´BpkBqqsα “
ď

βPrα,1s

S̄pβq by merging (5.28) and (5.29).

Since S̄pβq ‰ H for all β P rα, 1s, Lemma 5.1 can be applied to
ď

βPrα,1s

S̄pβq, yielding

ď

βPrα,1s

S̄pβq “

«
ľ

βěα

puβ ^ vβq,
ł

βěα

puβ _ vβq

ff
.

Moreover, note that ApkAq `0 p´BpkBqq is a fuzzy number by Theorem 5.2 which

implies that the sets tuβ ^vβ | β ě αu and tuβ _vβ | β ě αu are bounded for every α P r0, 1s.

Since R is conditionally complete lattice (see Example 1.3), every group translation is an

order-automorphism [22]. As an immediate consequence, it follows that

ľ

βěα

puβ ^ vβq “
ľ

βěα

prpa´
β ´ b´

α q ` pkB ´ kAqs ^ rpa`
β ´ b`

α q ` pkB ´ kAqsq

“
ľ

βěα

prpa´
β ´ b´

α q ^ pa`
β ´ b`

α qs ` pkB ´ kAqq

“
ľ

βěα

rpa´
β ´ b´

α q ^ pa`
β ´ b`

α qs ` pkB ´ kAq.

Similarly,

ł

βěα

puβ _ vβq “
ł

βěα

rpa´
β ´ b´

α q _ pa`
β ´ b`

α qs ` pkB ´ kAq.

Since ra ` c, b ` cs “ ra, bs ` c, for all a, b, c P R, thus

rApkAq `0 p´BpkBqqsα “

«
ľ

βěα

ppa´
β ´ b´

α q ^ pa`
β ´ b`

α qq,
ł

βěα

ppa´
β ´ b´

α q _ pa`
β ´ b`

α qq

ff
`pkB ´kAq
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At last, the proof finishes as follows:

rA ´I Bsα “ rApkAq `0 p´BpkBqqsα ` pkA ´ kBq

“

«
ľ

βěα

ppa´
β ´ b´

β q ^ pa`
β ´ b`

β qq,
ł

βěα

ppa´
β ´ b´

β q _ pa`
β ´ b`

β qq

ff
.

Theorems 1.9 and 5.4 reveal that α-cuts of the g-difference and of the I-

interactive difference of two fuzzy numbers in RFC
coincide. Consequently, the g-difference

and the I-interactive difference of A and B are equal if A, B P RFC
[102].

Theorem 5.5. If A, B P RFC
, then

A ´I B “ A ´g B.

The g-difference extends the gH´ as well as the H´difference, so all well-

known differences between fuzzy numbers in RFC
can be derived using the sup-J extension

principle for particular choices of J , and the following corollary is obtained.

Corollary 5.2. Let A, B P RFC
. If the Hukuhara difference between A and B exists, then

the gH-, g-, and I-differences also exist and they satisfy

A ´H B “ A ´gH B “ A ´g B “ A ´I B.

There are two types of fuzzy arithmetic based on joint possibility distributions

of fuzzy numbers: the interactive and non-interactive arithmetics [51]. Theorem 5.5 shows

that the joint possibility distribution I gives rise to the generalized difference. Since I ‰ J^,

the g-difference is an interactive arithmetic operation.

These differences give raise to the H-, gH-, and g-derivatives, as it was pointed

out before. Both concepts of gH- and g-derivatives, given by Definitions 1.35 and 1.36

extend the Hukuhara derivative (see (1.34)) [118]. This is also true for the interactive

derivative that is defined as follows:

Definition 5.2. Let F : R Ñ RF , x0 P R, and δ ą 0. For every h P p´δ, δqzt0u, let Jh be

a joint possibility distribution of F px0 ` hq and F px0q and let J “ tJh | 0 ă |h| ă δu. The

interactive derivative of a fuzzy-number-valued function F : R Ñ RF at x0 with respect to

J is given by

lim
hÑ0

F px0 ` hq ´Jh
F px0q

h
, (5.30)

if this limit exists. In this case, the limit in (5.30) is called the interactive derivative of F

at x0 and is denoted F 1
J px0q.
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This definition yields a concept of interactive derivative for a fuzzy-number-

valued function. From the point of view of fuzzy differential equations, a fuzzy initial value

problem can be written by #
F 1pxq “ fpF pxq, xq

F px0q “ F0

(5.31)

for some fuzzy derivative F 1.

Considering interactive fuzzy derivative Jh, one obtains
$
&
%

lim
hÑ0

F pt ` hq ´Jh
F ptq

h
“ fpF ptq, tq

F pt0q “ F0

(5.32)

where the expression in the left side of equation depends on F ptq and Jh. This means

that in order to study a solution for this problem, it is necessary to establish which joint

possibility distribution is at hand. In particular, if the family of JPDs under consideration

is I “ tIh | 0 ă |h| ă δu where Ih are the joint possibility distributions of F px0 ` hq and

F px0q given by (5.19), then F 1
I is called the I-interactive derivative of F .

Observe that for a given fuzzy-number-valued function F : R Ñ RFC
, the joint

possibility distribution Ih connects the fuzzy numbers F ptq and F pt ` hq, for all h P R.

From the dynamical point of view, one intends to yield an information about the future

F pt ` hq knowing the present F ptq, where h ą 0. Here this information is provided from

the joint possibility distribution given by I. For instance, if one establishes that a fuzzy

function has decreasing width, then the formula (5.6) with γ “ 0 produces the joint

possibility distribution I with this property.

The next theorem, which is an immediate consequence of Theorem 5.5, shows

that the g-derivative of a fuzzy-number-valued function F : R Ñ RFC
coincides with the

I–interactive derivative of F .

Theorem 5.6. Let F : R Ñ RFC
. Thus F is g-differentiable if and only if F is I-

differentiable.

Hence, the g-derivative of a fuzzy-number-valued function F : R Ñ RFC
is a

particular case of the interactive derivative. In other words, the g-derivative of F : R Ñ RFC

is interactive. Since the g-derivative extends the notions of H- and gH-derivative, these

are interactive as well. In fact, Barros and Pedro suggested this statement as a hypothesis

in [15]. This thesis proves this result.

In conclusion, the family of JPDs defined as in (5.6) has the following properties:

1. Produces an interactive sum with smaller Pomepeiu-Hausdorff norm;

2. Extend classical numerical solutions of FDEs;
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3. Produces an interactive difference that extends the Hukuhara difference and its

generalizations;

4. Produces an interactive derivative that embraces the g-derivative;

5. Associates numerical solutions with the notion of interactive fuzzy derivatives.

However from the computational point of view, the interactive arithmetic

operations based on family Jγ may be difficult to successfully implement. The next chapter

proposes a new family of JPDs denoted by Jγ . This new family has similar properties with

the one defined as in (5.18). But in advantage to Jγ, the interactive sum and difference

derived from the family Jγ can be characterized by means of α-cuts, which makes the

computation more simpler.

5.4 Conclusion

This chapter presented a parametrized family of joint possibility distributions.

The joint possibility distribution Jγ can be applied to every pair of fuzzy numbers, in

contrast to JL. From the concept of translated fuzzy numbers, it was exhibited another

joint possibility distribution in order to control the Pompeiu-Hausdorff norm and width

of the arithmetic operations via sup-J extension. From these family a numerical solution

for fuzzy initial value problems were proposed, where the initial conditions are given by

Jγ-interactive fuzzy numbers. In particular this chapter focused on J0. It was demonstrated

that, under some weak conditions, the generalized difference represents a particular case of

the interactive difference. This chapter ended by showing that the generalized derivative

of a fuzzy-number-valued function F : R Ñ RFC
is a particular case of the interactive

derivative.
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6 Family of joint possibility distributions Jγ

This chapter proposes a new family of joint possibility distributions and defines

arithmetic operations based on it. More precisely, this chapter focuses on the interactive

sum and difference. The Pompeiu-Hausdorff norm and width of these operations can be

controled as well as the arithmetic operations obtained via Jγ, given in the previously

chapter.

The family Jγ provided very interesting results. However, the arithmetic op-

erations may be difficult to compute. From this new family proposed here, it is possible

to characterize the interactive sum and difference by means of α-cuts, which makes the

computation simpler. This new family also extends the g-difference, that is, the generalized

difference can be obtained from one joint possibility distributions of this family.

This chapter is also connected with Chapter 3, since it deals with fuzzy discrete

models involving only interactive sum and difference. This chapter also discusses the

consequences of symmetric fuzzy numbers in the context of interactive fuzzy equations.

The applications of this approach are provided in Chapter 7, where the Fibonacci and

delay discrete sequence are studied. This chapter is based on the reference [55].

6.1 Family of joint possibility distributions Jγ

This section constructs a new parametrized family of joint possibility distri-

butions tJγ : γ P r0, 1su. Each element of this family is associated with the parameter

γ, which considers the notion of interactivity as well as the family of joint possibility

distributions provided in Chapter 5.

Before providing the construction of this family, consider the fuzzy numbers

A, B P RFC
. In view of Definition 5.1 the α-cuts of the translated fuzzy numbers Apaq and

Bpbq are denoted by

rApaqsα “ rpapaqq´
α , papaqq`

α s and rBpbqsα “ rpbpbqq´
α , pbpbqq`

α s,

where a “ 0.5pa´
1

` a`
1

q and b “ 0.5pb´
1

` b`
1

q. Recalling that rAsα ´ a “ rApaqsα and

rBsα ´ b “ rBpbqsα, for all α P r0, 1s.

For the construction of Jγ , let us consider for each γ P r0, 1s and for each x P R,

the following intervals

IApx, α, γq “ rb ` fα
Apxq ` γppbpbqq´

α ´ fα
Apxqq, b ` fα

Apxq ` γppbpbqq`
α ´ fα

Apxqqs,
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and

IBpx, α, γq “ ra ` fα
Bpxq ` γppapaqq´

α ´ fα
Bpxqq, a ` fα

Bpxq ` γppapaqq`
α ´ fα

Bpxqqs,

where the functions fα
A and fα

B are respectively given by

fα
Apxq “ p´px ´ aq _ ppbpbqq´

α qq ^ ppbpbqq`
α q

and

fα
Bpxq “ p´px ´ bq _ ppapaqq´

α qq ^ ppapaqq`
α q.

Note that the intervals IA and IB are well-defined, since pbpbqq´
α ď pbpbqq`

α and

papaqq´
α ď papaqq`

α , for all α P r0, 1s. Also, the functions fα
A and fα

B are continuous and

decreasing, for each α P r0, 1s, hence by Weierstrass Theorem it follows that fα
Apa`

α q ď

fα
Apxq ď fα

Apa´
α q and fα

Bpb`
α q ď fα

Bpyq ď fα
Bpb´

α q, @x P rAsα and @y P rBsα.

Therefore, for a fixed γ P r0, 1s it follows

fα
Apa`

α qp1 ´ γq ` γb´
α ď fα

Apa´
α qp1 ´ γq ` γb´

α , @α P r0, 1s

and

fα
Apa`

α qp1 ´ γq ` γb`
α ď fα

Apa´
α qp1 ´ γq ` γb`

α , @α P r0, 1s.

This means that for each α P r0, 1s the function fα
A applied at a`

α produces the

smallest left endpoint of the interval IA and fα
A applied at a´

α produces the biggest right

endpoint of the interval IA. Analogously, fα
B applied at b`

α and b´
α produce the smallest

left endpoint and the biggest right endpoint of the interval IB, respectively.

Now, for each γ P r0, 1s consider the sets PApγq, PBpγq Ď R
2 given by

PApγq “

¨
˝ ď

αPr0,1q

¨
˝ ď

xPta´
α ,a`

α u

txu ˆ IApx, α, γq

˛
‚
˛
‚Y

˜
ď

xPrAs1

txu ˆ IApx, 1, γq

¸
(6.1)

and

PBpγq “

¨
˝ ď

αPr0,1q

¨
˝ ď

xPtb´
α ,b`

α u

IBpx, α, γq ˆ txu

˛
‚
˛
‚Y

˜
ď

xPrBs1

IBpx, 1, γq ˆ txu

¸
. (6.2)

Define the fuzzy relation Jγ by the following membership function

Jγpx1, x2q “

$
&
%

Apx1q ^ Bpx2q , if px1, x2q P P pγq

0 , otherwise
, (6.3)

where the set

P pγq :“ PApγq Y PBpγq (6.4)
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is defined as the region such that Jγpu, vq ą 0, @pu, vq P R
2.

In order to clarify this construction, the following example presents the set

P pγq for specific values of γ.

Example 6.1. Let A “ B “ p´1; 0; 1q P RFC
, whose α-cuts are given by rAsα “ rBsα “

r´1 ` α, 1 ´ αs. For these fuzzy numbers one obtains fα
Apa´

α q “ 1 ´ α, fα
Apa`

α q “ ´1 ` α,

fα
Bpb´

α q “ 1´α and fα
Bpb`

α q “ ´1`α. The functions fα
Ap¨q and fα

Bp¨q are depicted in Figure

33.

Figure 33 – Graphical representation of fα
A and fα

B of Example 6.1.

The red and blue lines represent the functions fα
A and fα

B, respectively, where A “ B “
p´1; 0; 1q. Source: Author.

The intervals IA and IB are given by

IApa´
α , α, γq “ r1 ´ α ` γp´2 ` 2αq, 1 ´ αs,

IApa`
α , α, γq “ r´1 ` α, ´1 ` α ` γp2 ´ 2αqs,

IBpb´
α , α, γq “ r1 ´ α, 1 ´ α ` γp´2 ` 2αqs,

IBpb`
α , α, γq “ r´1 ` α ` γp2 ´ 2αq, ´1 ` αs.

For γ “ 0, the intervals

IApa´
α , α, 0q “ r1 ´ α, 1 ´ αs and IApa`

α , α, 0q “ r´1 ` α, ´1 ` αs

are depicted in Figure 34 for different values of α.

For γ “ 0.25, the intervals

IApa´
α , α, 0.25q “ r0.5 ´ 0.5α, 1 ´ αs and IApa`

α , α, 0.25q “ r´1 ` α, ´0.5 ` 0.5αs

are depicted in Figure 35 for different values of α.

For γ “ 0.5, the intervals

IApa´
α , α, 0.5q “ r0, 1 ´ αs and IApa`

α , α, 0.5q “ r´1 ` α, 0s
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Figure 34 – Graphical representation of the interval IA for γ “ 0 given as in Example 6.1.

The left subfigure contains the interval IA evaluated at a´
α for γ “ 0 and for different

values of α P t0, 0.25, 0.5, 0.75, 1u. The right subfigure contains the interval IA evaluated
at a`

α for γ “ 0 and for different values of α P t0, 0.25, 0.5, 0.75, 1u. Source: Author

Figure 35 – Graphical representation of the interval IA for γ “ 0.25 given as in Example
6.1.

The left subfigure contains the interval IA evaluated at a´
α for γ “ 0.25 and for different

values of α P t0, 0.25, 0.5, 0.75, 1u. The right subfigure contains the interval IA evaluated
at a`

α for γ “ 0.25 and for different values of α P t0, 0.25, 0.5, 0.75, 1u. Source: Author

Figure 36 – Graphical representation of the interval IA for γ “ 0.5 given as in Example
6.1.

The left subfigure contains the interval IA evaluated at a´
α for γ “ 0.5 and for different

values of α P t0, 0.25, 0.5, 0.75, 1u. The right subfigure contains the interval IA evaluated
at a`

α for γ “ 0.5 and for different values of α P t0, 0.25, 0.5, 0.75, 1u. Source: Author

are depicted in Figure 36 for different values of α.
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For γ “ 0.75, the intervals

IApa´
α , α, 0.75q “ r´0.5 ` 0.5α, 1 ´ αs and IApa`

α , α, 0.75q “ r´1 ` α, 0.5 ´ 0.5αs

are depicted in Figure 37 for different values of α.

Figure 37 – Graphical representation of the interval IA for γ “ 0.75 given as in Example
6.1.

The left subfigure contains the interval IA evaluated at a´
α for γ “ 0.75 and for different

values of α P t0, 0.25, 0.5, 0.75, 1u. The right subfigure contains the interval IA evaluated
at a`

α for γ “ 0.75 and for different values of α P t0, 0.25, 0.5, 0.75, 1u. Source: Author

Finally for γ “ 1, the intervals

IApa´
α , α, 1q “ IApa`

α , α, 1q “ r´1 ` α, 1 ` αs

are depicted in Figure 38 for different values of α.

Figure 38 – Graphical representation of the interval IA for γ “ 1 given as in Example 6.1.

The left subfigure contains the interval IA evaluated at a´
α for γ “ 1 and for different

values of α P t0, 0.25, 0.5, 0.75, 1u. The right subfigure contains the interval IA evaluated
at a`

α for γ “ 1 and for different values of α P t0, 0.25, 0.5, 0.75, 1u. Source: Author

From Equations 6.1 and 6.2 the sets PApγq and PBpγq are given by

PApγq “ t´1 ` αu ˆ r1 ´ α ` γp´2 ` 2αq, 1 ´ αs Y

t1 ´ αu ˆ r´1 ` α, ´1 ` α ` γp2 ´ 2αqs Y

r´1 ` α, 1 ´ αs ˆ t0u.
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and

PBpγq “ r1 ´ α ` γp´2 ` 2αq, 1 ´ αs ˆ t´1 ` αu Y

r´1 ` α, ´1 ` α ` γp2 ´ 2αqs ˆ t1 ´ αu Y

t0u ˆ r´1 ` α, 1 ´ αs.

Figure 39 depicts the set P pγq for different values of γ. The black region

represents the set PApγq, whereas the gray region represents the set PBpγq. Hence, P pγq is

given by the union of these two regions.

Figure 39 – Graphical representation of the set Pγ for different values of γ given as in
Example 6.1.

The subfigures paq, pbq, pcq, pdq, peq exhibit the top view of PApγq (represented by black
region) and PBpγq (represented by gray region) for γ “ 0, 0.25, 0.5, 0.75, 1, respectively.
Source: Author

Observe that for γ “ 0, PApγq “ PBpγq. This statement holds since the functions

fα
A and fα

B are equal, in this example. Note that for small values of γ, one obtains more

constrains for the region P pγq, where Jγpu, vq ą 0. Those constrains are associated with

interactivity in the following sense: the larger the constrain of the region P the greater the

interactivity between the fuzzy numbers.

One can observe that in the previous example the chosen fuzzy numbers can

be also interactive with respect to the joint possibility distribution JL (see (4.7)), for

q “ 1, r “ 0 and q “ ´1, r “ 0. However the joint possibility distribution JL can not be

applied when the involved fuzzy numbers have different shapes, as already observed in

Chapter 5. The next example illustrates that the proposed joint possibility distribution Jγ

does not have this type of restriction nor does the joint possibility distribution Jγ given

by (5.6).
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Example 6.2. Let A “ p´2; ´1; 1; 2q and B “ p´1; 0; 1q be fuzzy numbers whose α´cuts

are given by rAsα “ r´2 ` α, 2 ´ αs and rBsα “ r´1 ` α, 1 ´ αs. Thus

fα
Apa´

α q “

$
&
%

1 ´ α , if 0 ď α ă 1

0 , if α “ 1
and fα

Apa`
α q “

$
&
%

´1 ` α , if 0 ď α ă 1

0 , if α “ 1

and

fα
Bpb´

α q “ 1 ´ α and fα
Bpb`

α q “ ´1 ` α,

which are depicted in Figure 40.

Figure 40 – Graphical representation of the functions fα
A and fα

B given as in Example 6.2.

The red line at left subfigure represents the function fα
A and the blue line at right subfigure

represents the function fα
B, where A “ p´2; ´1; 1; 2q and B “ p´1; 0; 1q. Source: Author

For each γ P r0, 1s, it follows

IApa´
α , α, γq “ r1 ´ α ` γp´2 ` 2αq, 1 ´ αs, 0 ď α ă 1

IApa`
α , α, γq “ r´1 ` α, ´1 ` α ` γp2 ´ 2αqs, 0 ď α ă 1

IApx, 1, γq “ t0u, @x P rAs1,

and

IBpb´
α , α, γq “ r1 ´ α ` γ, 1 ´ α ` γp´3 ` 2αqs, 0 ď α ď 1

IBpb`
α , α, γq “ r´1 ` α ` γp3 ´ 2αq, ´1 ` α ´ γs, 0 ď α ď 1.

Figure 41 depicts the sets PApγq (black region) and PBpγq (gray region) for

γ “ 0, 0.25, 0.5, 0.75, 1. Note that independently of the choice of the fuzzy numbers A and

B, the larger the parameter γ the greater the region P pγq.

Figure 42 graphically represents the tri-dimensional view of the joint possibility

distribution Jγ for some values of γ.

Figure 43 compares the regions P pγq of the joint possibility distributions Jγ

and Jγ, for different values of γ. One can observe that the region where Jγpu, vq ą 0 is

smaller than the region where Jγpu, vq ą 0, for all values of γ P t0, 0.25, 0.5, 0.75, 1u.
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Figure 41 – Graphical representation of the sets PApγq and PBpγq given as in Example
6.2.

The subfigures paq, pbq, pcq, pdq, peq exhibit a top view of PApγq (represented by black region)
and PBpγq (represented by gray region) for γ “ 0, 0.25, 0.5, 0.75, 1, respectively, where
A “ p´2; ´1; 1; 2q and B “ p´1; 0; 1q. Source: Author

Theorem 6.1 shows that J “ tJγ : γ P r0, 1su is a family of joint possibility

distributions of A and B. Moreover, the interactive sum between A and B, obtained via

sup-J extension principle and denoted by A `γ B, is a fuzzy number in RFC
.

Theorem 6.1. Let A, B P RFC
and Jγ be the fuzzy relation given by (6.3). For each

γ P r0, 1s, it follows that:

paq Jγ is a joint possibility distribution between A and B;

pbq Jγpx1, x2q ď Jλpx1, x2q, for all 0 ď γ ď λ ď 1 and for all px1, x2q P R
2;

pcq A `γ B P RFC
.

Proof. paq Let us first prove that IApx, α, γq Ď rBsα, @x P rAsα and IBpy, α, γq Ď

rAsα, @y P rBsα for all α P r0, 1s and for all γ P r0, 1s. Suppose that α ă 1. Let

z P IApx, α, γq, where x P ta´
α , a`

α u. Let us divide this proof into two cases.

piq Suppose that x “ a´
α .

If ´papaqq´
α ď pbpbqq`

α then

b´
α ď b̄ ´ papaqq´

α ` γppbpbqq´
α ` papaqq´

α q ď z ď b̄ ´ papaqq´
α ` γppbpbqq`

α ` papaqq´
α q ď b`

α ,

which implies that z P rBsα.
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If ´px ´ āq ď pbpbqq`
1

then

b´
1

ď b̄ ´ px ´ āq ` γppbpbqq´
1

` px ´ āqq ď z ď b̄ ´ px ´ āq ` γppbpbqq`
1

` px ´ āqq ď b`
1

,

which implies that z P rBs1. If ´px ´ āq ě pbpbqq`
1

then

b´
1

ď b̄ ` pbpbqq`
1

` γppbpbqq´
1

´ pbpbqq`
1

q ď z ď b̄ ` pbpbqq`
1

“ b`
1

,

which implies that z P rBs1.

piiq Suppose x P r0, a`
1

s.

If ´px ´ āq ď pbpbqq´
1

then

b´
1

“ b̄ ` pbpbqq´
1

ď z ď b̄ ` pbpbqq´
1

` γppbpbqq`
1

´ pbpbqq´
1

q ď b`
1

,

which implies that z P rBs1. If ´px ´ āq ě pbpbqq´
1

then

b´
1

ď b̄ ´ px ´ āq ` γppbpbqq´
1

` px ´ āqq ď z ď b̄ ´ px ´ āq ` γppbpbqq`
1

` px ´ āqq ď b`
1

,

which implies that z P rBs1.

Therefore, IApx, 1, γq Ď rBs1, concluding that the inclusion holds for all α P

r0, 1s. Similarly, one can prove that IBpy, α, γq Ď rAsα, @α, γ P r0, 1s.

Now, let us prove that Jγ is a joint possibility distribution for A and B for

all γ P r0, 1s. To this end, let γ P r0, 1s. On the one hand, Jγpx1, x2q “ Apx1q ^ Bpx2q ď

Apx1q, @px1, x2q P P pγq. Hence,

Aź

Jγ

px1q “
ł

x2PR

Jγpx1, x2q ď Apx1q.

On the other hand, for each α P r0, 1s let x P rAsα such that Apxq “ α.

If α ă 1, then a´
Apxq “ α or a`

Apxq “ α, since a˘
α are continuous. From definition

of P pγq, exists w P IApx, Apxq, γq such that px, wq P PApγq, which implies that H ‰

PApγq Ď P pγq. Since w P IApx, Apxq, γq Ď rBsApxq, it follows that Bpwq ě Apxq “ α.

Therefore,

Apxq “ Apxq ^ Bpwq “ Jγpx, wq ď
ł

uPR

Jγpx, uq “ ΠA
Jγ

pxq.

If α “ 1, then x P ra´
1

, a`
1

s. By definition of P pγq exists w P IApx, 1, γq such

that px, wq P PApγq, which implies that H ‰ PApγq Ď P pγq. Since w P IApx, 1, γq Ď rBs1,

it follows that Bpwq ě 1 “ Apxq. Therefore,

Apxq “ Apxq ^ Bpwq “ Jγpx, wq ď
ł

uPR

Jγpx, uq “ ΠA
Jγ

pxq.

Consequently, ΠA
Jγ

“ A. Similarly, it can be prove that ΠB
Jγ

“ B. Hence, Jγ is

a joint possibility distribution for A and B, for all γ P r0, 1s.
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pbq Let us prove that Jγpx1, x2q ď Jλpx1, x2q, for 0 ď γ ď λ ď 1. To this end, let

px, yq P rJγsα, for some α P r0, 1s. Then px, yq P PApγq or px, yq P PBpγq. Without loss of

generality, suppose that px, yq P PApγq.

If α ă 1, then px, yq P ta´
α , a`

α u ˆ IApx, α, γq. Let us divide this proof in two

cases.

piq Suppose x “ a´
α .

If papaqq´
α ` pbpbqq`

α ě 0 then

b̄ ´ papaqq´
α ` λppbpbqq´

α ` papaqq´
α q ď b̄ ´ papaqq´

α ` γppbpbqq´
α ` papaqq´

α q ď y

and

y ď b̄ ´ papaqq´
α ` γppbpbqq`

α ` papaqq´
α q ď b̄ ´ papaqq´

α ` λppbpbqq`
α ` papaqq´

α q.

This implies that y P IApa´
α , α, λq.

If papaqq´
α ` pbpbqq`

α ď 0 then

b̄ ` pbpbqq`
α ` λppbpbqq´

α ´ pbpbqq`
α q ď b̄ ` pbpbqq`

α ` γppbpbqq´
α ´ pbpbqq`

α q ď y,

and

y ď b̄ ` pbpbqq`
α “ b̄ ` pbpbqq`

α ` γppbpbqq`
α ´ pbpbqq`

α q “ b̄ ` pbpbqq`
α ` λppbpbqq`

α ´ pbpbqq`
α q,

which also implies that y P IApa´
α , α, λq.

(ii) Suppose x “ a`
α .

If papaqq`
α ` pbpbqq´

α ě 0 then

b̄ ` pbpbqq´
α ` λppbpbqq´

α ´ pbpbqq´
α q “ b̄ ` pbpbqq´

α ` γppbpbqq´
α ´ pbpbqq´

α q “ b̄ ` pbpbqq´
α ď y,

and

y ď b̄ ` pbpbqq´
α ` γppbpbqq`

α ´ pbpbqq´
α q ď b̄ ` pbpbqq´

α ` λppbpbqq`
α ´ pbpbqq´

α q.

This implies that y P IApa`
α , α, λq.

If papaqq`
α ` pbpbqq´

α ď 0 then

b̄ ´ papaqq`
α ` λppbpbqq´

α ` papaqq`
α q ď b̄ ´ papaqq`

α ` γppbpbqq´
α ` papaqq`

α q ď y,

and

y ď b̄ ´ papaqq`
α ` γppbpbqq`

α ` papaqq`
α q ď b̄ ´ papaqq`

α ` λppbpbqq`
α ` papaqq`

α q,

this also implies that y P IApa`
α , α, λq.
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If α “ 1 then suppose x P ra´
1

, 0s. If ´px ´ āq ď pbpbqq`
1

then

b̄ ´ px ´ āq ` λppbpbqq´
1

` px ´ āqq ď b̄ ´ px ´ āq ` γppbpbqq´
1

` px ´ āqq ď y,

and

y ď b̄ ´ px ´ āq ` γppbpbqq`
1

` px ´ āqq ď b̄ ´ px ´ āq ` λppbpbqq`
1

` px ´ āqq,

this means that y P IApx, 1, λq.

If ´px ´ āq ě pbpbqq`
1

then

b̄ ` pbpbqq`
1

` λppbpbqq´
1

´ pbpbqq`
1

q ď b̄ ´ px ´ āq ` γppbpbqq´
1

´ pbpbqq`
1

q ď y,

and

y ď b̄ ` pbpbqq`
1

` γppbpbqq`
1

´ pbpbqq`
1

q “ b̄ ` pbpbqq`
1

` λppbpbqq`
1

´ pbpbqq`
1

q,

which implies that y P IApx, 1, λq.

The case where x P r0, a`
1

s is analogous.

Therefore, rJγsα Ď rJλsα, for all 0 ď γ ď λ ď 1. Consequently, Jγpx1, x2q ď

Jλpx1, x2q, @px1, x2q P R
2.

pcq Let us first prove that A `γ B is a fuzzy number by showing that rA `γ Bsα is a

non-empty, compact and connected set of R, for all α P r0, 1s. These conditions imply that

rA `γ Bsα is a closed and boundary interval, which by definition yields A `γ B P RF .

By Theorem 2.1, rA `γ Bsα “ `rJγsα. Thus, it is sufficient to show that

rJγsα satisfies the above properties for all α P r0, 1s. Since rJγs1 ‰ H, it follows that

rA `γ Bsα ‰ H, @α P r0, 1s. Hence rA `γ Bsα is a non-empty set.

Let us prove that rJγsα is a compact set, that is, all sequences in rJγsα has a

subsequence that converges to a point in rJγsα. First, note that P pγq is bounded for all

γ P r0, 1s, since P pγq Ď rAs0 ˆ rBs0. Let pxn, ynq be a sequence in rJγsα, so exists pαnq and

pinq such that pxn, ynq P Pin
pγq, where in P tA, Bu and α ď αn ď Apxnq, Bpynq, @n P N.

Since tA, Bu is a finite set, there is a convergent subsequence pink
q of pinq, that is, for

every ǫ ą 0 there exists nk0
such that ink

“ A or ink
“ B, for all nk ě nk0

.

Suppose, without loss of generality, that Ank
“ A, @n P N. By definition

of PApγq, the subsequence pxnk
q of pxnq satisfies xnk

“ a´
αnk

, xnk
“ a`

αnk
or xnk

P

ra´
1

, a`
1

s, @nk ě nk0
. Let us divide this proof into three cases.

(i) If xnk
“ a´

αnk
, then ynk

P IApa´
αnk

, αnk
, γq Ď rBsαnk .

Since αnk
P r0, 1s, ynk

P rBsαnk and B is upper semi-continuous (see Proposition 1.1),

there are convergent subsequences pαnki
q and pynki

q such that

pαnki
q Ñ α ě α and pynki

q Ñ y P IApa´
α , α, γq Ď rBsα.



Chapter 6. Family of joint possibility distributions Jγ 141

Consequently, Bpyq ě α. Since A P RFC
, one obtains

x “ lim
iÑ8

xnki
“ lim

iÑ8
a´

αnki

“ a´
α ,

thus Apxq “ Apa´
α q ě α.

Therefore, px, yq P ta´
α u ˆ tIApa´

α , α, γqu Ď PApγq. Finally,

Jγpx, yq “ Apxq ^ Bpyq ě α ñ px, yq P rJγsα Ď rJγsα.

(ii) If xnk
“ a`

αnk
, then the proof is analogous to the item (i).

(iii) If xnk
P ra´

1
, a`

1
s, then ynk

P IApxnk
, 1, γq Ď rBs1. Let pxnki

, ynki
q be a convergent

subsequence such that xnki
Ñ x P rAs1 and ynki

Ñ y. From the continuity of the

endpoints of IApx, 1, γq, it follows y P IApx, 1, γq. Thus px, yq P P pγq and

Jγpx, yq “ Apxq ^ Bpyq “ 1 ě α ñ px, yq P rJγsα

Therefore, by items piq, piiq, and piiiq one concludes that rJγsα is compact.

Now, let us show that rJγsα is a (path) connected set.

Let px1, x2q, py1, y2q P rJγsα. Thus exist pixq, piyq, pαxq and pαyq such that

px1, x2q P Pix
pγq, py1, y2q P Piy

pγq, where pixq, piyq P tA, Bu. Thus α ď αx ď Apx1q, Bpx2q

and α ď αy ď Apy1q, Bpy2q.

Let us consider the case where ix “ iy and w.l.o.g suppose that ix “ iy “ A.

Suppose Apx1q ď Apy1q (the other case is similar). Let us divide this proof into

three cases.

(i) If x1 “ a´
αx

and y1 “ a´
αy

then the path

tx1u ˆ rb̄ ` fαx

A px1q ` γppbb̄q´
αx

´ fαx

A px1qq, x2s Y

tpa´
β , b̄ ` f

β
Apa´

β q ` γppbb̄q´
β ´ f

β
Apa´

β qqq : β P pαx, αyqu Y

ty1u ˆ rb̄ ` f
αy

A py1q ` γppbb̄q´
αy

´ f
αy

A py1qq, y2s,

connects px1, x2q and py1, y2q in rJγsα, since the above sets are contained in PApγq.

(ii) If x1 “ a`
αx

and y1 “ a`
αy

then the path can be constructed in a similar way of item

(i).

(iii) If x1, y1 P ra´
1

, a`
1

s, i.e, αx “ αy “ 1. Suppose w.l.o.g that x1 ď y1. Thus, the points

px1, x2q and py1, y2q are connected by the following path:

tx1u ˆ rb̄ ` f 1

Apx1q ` γppbpbqq´
1

´ f 1

Apx1qq, x2s Y

tpz, b̄ ` f 1

Apzq ` γppbpbqq´
1

´ f 1

Apzqqq : z P px1, y1qu Y

ty1u ˆ rb̄ ` f 1

Apy1q ` γppbpbqq´
1

´ f 1

Apy1qq, y2s,

since the above sets are contained in PApγq.
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On the other hand, let us consider the case where ix ‰ iy, that is, px1, x2q P

PApγq and py1, y2q P PBpγq. Since rJγs1 ‰ H, there exists pz1, z2q P IBpz2, 1, γq ˆ

IApz1, 1, γq Ď rAs1 ˆ rBs1. A combination of the previously construction ensures that

there are paths ρ1 and ρ2 which connect px1, x2q to pz1, z2q and py1, y2q to pz1, z2q. Thus

ρ1 Y ρ2 is a path connecting px1, x2q to py1, y2q, since pz1, z2q P PApγq X PBpγq. Therefore,

rJγsα is a (path) connected set, which implies that `prJγsαq is a closed interval of R, since

rJγsα is also compact. By Theorem 1.1, A `γ B is a fuzzy number, for all γ P r0, 1s.

Finally, it will be shown that A`γB P RFC
. In view of Proposition 1.2, it remains

to prove that c´
α and c`

α are right-continuous functions in p0, 1s, where rA`γ Bsα “ rc´
α , c`

α s.

The fact that rA`γ Bsα is a non-empty, compact and connected set, for all α P r0, 1s, implies

that for every z P rA`γ Bsα there exists px1, x2q P rJγsα such that z “ x1 `x2. Let pαnq be

a sequence that converges to α P p0, 1q such that α ď αn, @n P N. If zn “ c´
αn

P rA `γ Bsα

then zn ě z :“ c´
α P rA `γ Bsα, since c´

α is increasing. This observation reveals that

zn P rz, c´
1

s, for all n P N. Thus, one can extract a decreasing convergent subsequence

pznk
q Ď pznq such that lim

kÑ8
znk

“ z and znk`1
ď znk

. Obviously, z ď z. Let us prove that

z “ z. To this end, suppose z ă z. Thus pA `γ Bqpwq “ α, @w P rz, zq, since rA `γ Bsα is

close interval of R.

If Jγpx1, x2q “ α P p0, 1q, then by Equation (6.3), one obtains Apx1q “ α or

Bpx2q “ α. Due to the continuity of the functions a´
α and a`

α the set tx : Apxq “ αu is

equal to ta´
α : Apa´

α q “ αu Y ta`
α : Apa`

α q “ αu for α P p0, 1q, consequently, this set has

at most two elements. Consider the following elements z ă w1 ă w2 ă w3 ă w4 ă z and

pxj
1, x

j
2q P rJγsα such that wj “ x

j
1 ` x

j
2 for j “ 1, ..., 4. Thus, it is possible to determine

wp1
and wp2

with p1 ă p2 such that xi :“ x
p1

i “ x
p2

i , Apxpk
1 q “ α and Bpxpk

2 q ą α, for

k “ 1, 2, which implies that a´
α “ xi or a`

α “ xi, where i P t1, 2u. The definition of PApγq

ensures that x
pk
2 P IApxpk

1 , α, γq, for k “ 1, 2. Since x
p1

2 “ wp1
´ x1 ă wp2

´ x1 “ x
p2

2 , for

x
p1

2 ă x2 ă x
p2

2 it follows that px1, x2q P PApγq Ď rJγsα and Bpx2q ą α . Suppose that

a´
α “ x1. For z ´wp2

ą ǫ ą 0 exists δ ą 0, such that α ă β ă α`δ implies 0 ď a´
β ´x1 ă ǫ

and Y :“ IApa´
β , β, γq X pxp1

2 , x
p2

2 q ‰ H, since a´
α and the endpoints of IApa´

α , α, γq are

continuous. Thus px1, x2q P PApγq, where x1 “ a´
β and x2 P Y Ď rBsβ. Consequently,

wp1
“ x1 ` x

p1

2 ď x1 ` x2 ă a´
β ` x

p2

2 ď x1 ` x
p2

2 ` ǫ ď wp2
` ǫ ă z. Thus, one obtains the

contradicting statement

α “ pA `γ Bqpx1 ` x2q ě Jγpx1, x2q ě β ą α.

A similar analysis can be made in the case where a`
α “ x1. Therefore, z “ z.

Thus c´
α is right-continuous in the interval p0, 1q. Similarly, it can be prove that c`

α is

right-continuous in the interval p0, 1q. Hence, A `γ B P RFC
.

An immediately consequence of item pbq of Theorem 6.1 is that J1 has greater
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arithmetic operation. In contrast to the joint possibility distribution Jγ, it is possible to

describe the sum via Jγ by means of α-cuts.

Note that in the right subfigures depicted in Example 6.3 (see Figures 44, 45,

46, 47 and 48), the level curves of the sum operator fpx, yq “ x ` y are presented. The

goal is to illustrate which elements pu, vq P R
2, where Jγpu, vq ‰ 0, are associated with

respect to fpx, yq “ x ` y.

The next section presents the interactive sum via joint possibility distribution

given as in (6.3).

6.2 Interactive Sum via Jγ

This section provides a characterization of the interactive sum between fuzzy

numbers by means of α-cuts. To this end, the next lemma is used as an auxiliary result.

Lemma 6.1. Let A, B P RFC
and Jγ be a joint possibility distribution for A and B given

by (6.3). Thus

rJγsα “
ď

βPrα,1s

pPApβ, γq Y PBpβ, γqq, @γ P r0, 1s, (6.5)

where

PApβ, γq “

$
’&
’%

`
ta´

β u ˆ IApa´
β , β, γq

˘
Y
`
ta`

β u ˆ IApa`
β , β, γq

˘
, if β P r0, 1q

ď

xPrAs1

txu ˆ IApx, 1, γq, if β “ 1
,

and

PBpβ, γq “

$
’&
’%

`
IBpb´

β , β, γq ˆ tb´
β u
˘

Y
`
IBpb`

β , β, γq ˆ tb`
β u
˘

, if β P r0, 1q
ď

xPrBs1

IBpx, 1, γq ˆ txu, if β “ 1
.

Proof. Let us prove Equation (6.5) by first showing the inclusion
ď

βPrα,1s

pPApβ, γq Y

PBpβ, γqq Ď rJγsα. To this end, let px, yq P
ď

βPrα,1s

pPApβ, γq Y PBpβ, γqq. Thus, there exists

β ě α such that px, yq P PApβ, γq or px, yq P PBpβ, γq. Suppose w.l.o.g px, yq P PApβ, γq.

If β “ 1 ě α, then x P rAs1 and consequently Apxq “ 1. By definition of

the set IA, one obtains y P IApx, 1, γq Ď rBs1, which implies that Bpyq “ 1. Thus,

Jγpx, yq “ Apxq ^ Bpyq “ 1. Hence px, yq P rJγs1 Ď rJγsα.

If β ă 1, then x P ta´
β

, a`
β

u Ď rAsβ and y P IApx, β, γq Ď rBsβ. Thus, Jγpx, yq “

Apxq ^ Bpyq ě β which implies that px, yq P rJγsβ Ď rJγsα. Therefore,
ď

βPrα,1s

pPApβ, γq Y

PBpβ, γqq Ď rJγsα.
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Let us prove the other inclusion. To this end, consider px, yq P rJγsα. Hence

Jγpx, yq ě α. Suppose that px, yq R
ď

βPrα,1s

pPApβ, γq Y PBpβ, γqq. Thus, exists λ ă α such

that

px, yq P
`
ta´

λ u ˆ IApa´
λ , λ, γq

˘
Y
`
ta`

λ u ˆ IApa`
λ , λ, γq

˘
Y

˜
ď

xPrAs1

txu ˆ IApx, 1, γq

¸
,

or

px, yq P
`
IBpb´

λ , λ, γq ˆ tb´
λ u
˘

Y
`
IBpb`

λ , λ, γq ˆ tb`
λ u
˘

Y

˜
ď

xPrBs1

IBpx, 1, γq ˆ txu

¸
.

Since λ ă α ď 1, it follows that

px, yq R

˜
ď

xPrAs1

txu ˆ IApx, 1, γq

¸
and px, yq R

˜
ď

xPrBs1

IBpx, 1, γq ˆ txu

¸
.

Without loss of generality suppose that

px, yq P
`
ta´

λ u ˆ IApa´
λ , λ, γq

˘
Y
`
ta`

λ u ˆ IApa`
λ , λ, γq

˘
.

Thus, x P ta´
λ , a`

λ u and y P IApx, λ, γq Ď rBsλ. Since A P RFC
, one obtains Apxq “ λ ď

Bpyq, for x P ta´
λ , a`

λ u. Hence, Jγpx, yq “ Apxq ^ Bpyq “ Apxq “ λ ă α, contradicting the

fact that Jγpx, yq ě α. Therefore, rJγsα Ď
ď

βPrα,1s

pPApβ, γq Y PBpβ, γqq, concluding that

the equality holds.

The next theorem reveals the α-cuts of the interactive sum between fuzzy

numbers.

Theorem 6.2. Let A, B P RFC
whose α-cuts are given by rAsα “ ra´

α , a`
α s and rBsα “

rb´
α , b`

α s. Then, for all α P r0, 1s

rA `γ Bsα “ rc´
α , c`

α s ` ta ` bu (6.6)

where,

c´
α “

ľ

βěα

h´
pA`Bqpβ, γq and c`

α “
ł

βěα

h`
pA`Bqpβ, γq. (6.7)

with

h´
pA`Bqpβ, γq “ mint papaqq´

β ` pbpbqq`
β ` γppbpbqq´

β ´ pbpbqq`
β q,

papaqq`
β ` pbpbqq´

β ` γppapaqq´
β ´ papaqq`

β q,

γppapaqq´
β ` pbpbqq´

β qu

and

h`
pA`Bqpβ, γq “ maxt papaqq´

β ` pbpbqq`
β ` γppapaqq`

β ´ papaqq´
β q,

papaqq`
β ` pbpbqq´

β ` γppbpbqq`
β ´ pbpbqq´

β q,

γppapaqq`
β ` pbpbqq`

β qu
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Proof. First note that

IApx, α, γq “ rfα
Apxq ` γppbpbqq´

α ´ fα
Apxqq, fα

Apxq ` γppbpbqq`
α ´ fα

Apxqqs ` tbu

and

IBpx, α, γq “ rfα
Bpxq ` γppapaqq´

α ´ fα
Bpxqq, fα

Bpxq ` γppapaqq`
α ´ fα

Bpxqqs ` tau.

In order to prove this theorem, let us analyse the intervals

rfα
Apxq ` γppbpbqq´

α ´ fα
Apxqq, fα

Apxq ` γppbpbqq`
α ´ fα

Apxqqs

and

rfα
Bpxq ` γppapaqq´

α ´ fα
Bpxqq, fα

Bpxq ` γppapaqq`
α ´ fα

Bpxqqs.

To this end, consider for each β P r0, 1s the following cases:

piq papaqq´
β ` pbpbqq`

β ě 0 and pbpbqq´
β ` papaqq`

β ě 0;

piiq papaqq´
β ` pbpbqq`

β ě 0 and pbpbqq´
β ` papaqq`

β ď 0;

piiiq papaqq´
β ` pbpbqq`

β ď 0 and pbpbqq´
β ` papaqq`

β ě 0;

pivq papaqq´
β ` pbpbqq`

β ď 0 and pbpbqq´
β ` papaqq`

β ď 0.

Case piq:

If papaqq´
β ` pbpbqq`

β ě 0 and pbpbqq´
β ` papaqq`

β ě 0, then

γppbpbqq´
β ` papaqq´

β q ď y ` papaqq´
β ď γppbpbqq`

β ` papaqq´
β q

and

pbpbqq´
β ` papaqq`

β ď y ` papaqq`
β ď pbpbqq´

β ` papaqq`
β ` γppbpbqq`

β ´ pbpbqq´
β q, (6.8)

for all y P rBsβ.

Also, for all x P rAsβ,

γppapaqq´
β ` pbpbqq´

β q ď x ` pbpbqq´
β ď γppapaqq`

β ` pbpbqq´
β q

and

papaqq´
β ` pbpbqq`

β ď x ` pbpbqq`
β ď papaqq´

β ` pbpbqq`
β ` γppapaqq`

β ´ papaqq´
β q. (6.9)

Let c´
β and c`

β be the endpoints of rA `γ Bsβ, that is, rA `γ Bsβ “ rc´
β , c`

β s.

Since γppapaqq´
β ` pbpbqq´

β q is less or equal than the left side of inequalities (6.8) and (6.9),

one obtains

c´
β ď γppapaqq´

β ` pbpbqq´
β q.
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On the other hand, since

γppbpbqq`
β ` papaqq´

β q ď papaqq´
β ` pbpbqq`

β ` γppapaqq`
β ´ papaqq´

β q

and

γppapaqq`
β ` pbpbqq´

β q ď papaqq`
β ` pbpbqq´

β ` γppbpbqq`
β ´ pbpbqq´

β q,

then

c`
β ě maxtpapaqq´

β ` pbpbqq`
β ` γppapaqq`

β ´ papaqq´
β q, papaqq`

β ` pbpbqq´
β ` γppbpbqq`

β ´ pbpbqq´
β qu.

Case piiq:

If papaqq´
β ` pbpbqq`

β ě 0 and pbpbqq´
β ` papaqq`

β ď 0, then

γppbpbqq´
β ` papaqq´

β q ď y ` papaqq´
β ď γppbpbqq`

β ` papaqq´
β q (6.10)

and

γppbpbqq´
β ` papaqq`

β q ď y ` papaqq`
β ď γppbpbqq`

β ` papaqq`
β q, (6.11)

for all y P rBsβ.

Also, for all x P rAsβ

papaqq`
β ` pbpbqq´

β ` γppapaqq´
β ´ papaqq`

β q ď x ` pbpbqq´
β ď papaqq`

β ` pbpbqq´
β (6.12)

and

papaqq´
β ` pbpbqq`

β ď x ` pbpbqq`
β ď papaqq´

β ` pbpbqq`
β ` γppapaqq`

β ´ papaqq´
β q. (6.13)

Since papaqq`
β ` pbpbqq´

β ` γppapaqq´
β ´ papaqq`

β q is less or equal than the left side

of inequalities (6.10), (6.11), and, (6.13),

c´
β ď papaqq`

β ` pbpbqq´
β ` γppapaqq´

β ´ papaqq`
β q.

On the other hand, since papaqq´
β ` pbpbqq`

β ` γppapaqq`
β ´ papaqq´

β q is greater or

equal than the right side of inequalities (6.10), (6.11), and, (6.12), one obtains

c`
β ě papaqq´

β ` pbpbqq`
β ` γppapaqq`

β ´ papaqq´
β q.

Case piiiq:

If papaqq´
β ` pbpbqq`

β ď 0 and pbpbqq´
β ` papaqq`

β ě 0, then

papaqq´
β ` pbpbqq`

β ` γppbpbqq´
β ´ pbpbqq`

β q ď y ` papaqq´
β ď pbpbqq`

β ` papaqq´
β (6.14)
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and

pbpbqq´
β ` papaqq`

β ď y ` papaqq`
β ď papaqq`

β ` pbpbqq´
β ` γppbpbqq`

β ´ pbpbqq´
β q, (6.15)

for all y P rBsβ.

Also, for all x P rAsβ,

γppapaqq´
β ` pbpbqq´

β q ď x ` pbpbqq´
β ď γppapaqq`

β ` pbpbqq´
β q (6.16)

and

γppapaqq´
β ` pbpbqq`

β q ď x ` pbpbqq`
β ď γppapaqq`

β ` pbpbqq`
β q. (6.17)

Since papaqq´
β ` pbpbqq`

β ` γppbpbqq´
β ´ pbpbqq`

β q is less than or equal to the left side

of inequalities (6.15), (6.16), and, (6.17) then

c´
β ď papaqq´

β ` pbpbqq`
β ` γppbpbqq´

β ´ pbpbqq`
β q.

On the other hand, since papaqq`
β ` pbpbqq´

β ` γppbpbqq`
β ´ pbpbqq´

β q is greater than

or equal to the right side of inequalities (6.14), (6.16), and, (6.17) then

c`
β ě papaqq`

β ` pbpbqq´
β ` γppbpbqq`

β ´ pbpbqq´
β q.

Case pivq:

If papaqq´
β ` pbpbqq`

β ď 0 and pbpbqq´
β ` papaqq`

β ď 0 then

papaqq´
β ` pbpbqq`

β ` γppbpbqq´
β ´ pbpbqq`

β q ď y ` papaqq´
β ď pbpbqq`

β ` papaqq´
β (6.18)

and

γppbpbqq´
β ` papaqq`

β q ď y ` papaqq`
β ď γppapaqq`

β ` pbpbqq`
β q,

for all y P rBsβ.

Also, for all x P rAsβ

papaqq`
β ` pbpbqq´

β ` γppapaqq´
β ´ papaqq`

β q ď x ` pbpbqq´
β ď papaqq`

β ` pbpbqq´
β (6.19)

and

γppapaqq´
β ` pbpbqq`

β q ď x ` pbpbqq`
β ď γppapaqq`

β ` pbpbqq`
β q.

Since

papaqq´
β ` pbpbqq`

β ` γppbpbqq´
β ´ pbpbqq`

β q ď γppapaqq´
β ` pbpbqq`

β q

and

papaqq`
β ` pbpbqq´

β ` γppapaqq´
β ´ papaqq`

β q ď γppbpbqq´
β ` papaqq`

β q,
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then

c´
β ď mintpapaqq´

β ` pbpbqq`
β ` γppbpbqq´

β ´ pbpbqq`
β q, papaqq`

β ` pbpbqq´
β ` γppapaqq´

β ´ papaqq`
β qu.

On the other hand, since γppapaqq`
β ` pbpbqq`

β q is greater or equal than the right

side of inequalities (6.18) and (6.19), then

c`
β ě γppapaqq`

β ` pbpbqq`
β q

Next, let h´
pA`Bq, h`

pA`Bq : r0, 1s2 Ñ R be the functions defined by

h´
pA`Bqpβ, γq “ mint papaqq´

β ` pbpbqq`
β ` γppbpbqq´

β ´ pbpbqq`
β q,

papaqq`
β ` pbpbqq´

β ` γppapaqq´
β ´ papaqq`

β q,

γppapaqq´
β ` pbpbqq´

β qu,

and

h`
pA`Bqpβ, γq “ maxt papaqq´

β ` pbpbqq`
β ` γppapaqq`

β ´ papaqq´
β q,

papaqq`
β ` pbpbqq´

β ` γppbpbqq`
β ´ pbpbqq´

β q,

γppapaqq`
β ` pbpbqq`

β qu.

A combination of the Cases piq, piiq, piiiq, and, pivq reveals that

h´
pA`Bqpβ, γq ď x ` y ď h`

pA`Bqpβ, γq,

for all x P rApaqsβ and y P rBpbqsβ. Therefore, one obtains

h´
pA`Bqpβ, γq ` ta ` bu ď x ` y ď h`

pA`Bqpβ, γq ` ta ` bu,

for all x P rAsβ and y P rBsβ, which leads us to the following equivalence

px, yq P PApβ, γq Y PBpβ, γq ô x ` y P rh´
pA`Bqpβ, γq, h`

pA`Bqpβ, γqs ` ta ` bu. (6.20)

Since the sum operator is continuous, by Theorem 2.1 it follows that

rA `γ Bsα “ `rJγsα “ tx ` y : px, yq P rJγsαu, @α P r0, 1s,

which is given by rJγsα “ rc´
α , c`

α s, where

c´
α “

ľ

px,yqPrJγ sα

px ` yq and c`
α “

ł

px,yqPrJγ sα

px ` yq.

Theorem 6.1 and Lemma 5.1 lead us to

c´
α “

ľ
px ` y : px, yq P rJγsαq

“
ľ

˜
x ` y : px, yq P

ď

βěα

pPApβ, γq Y PBpβ, γqq

¸

“
ľ

βěα

´ľ
px ` y : px, yq P pPApβ, γq Y PBpβ, γqq

¯
.
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Table 5 – Pompeiu-Hausdorff norm and width of A `γ A.

γ Pompeiu-Hausdorff Norm Width

0 4 0
0.25 4.5 1
0.5 5 2
0.75 5.5 3

1 6 4

Table 6 – Pompeiu-Hausdorff norm and width of A `γ B.

γ Pompeiu-Hausdorff Norm Width

0 5 1
0.25 5.5 2
0.5 6 3
0.75 6.5 4

1 7 5

Table 7 – Pompeiu-Hausdorff norm and width of A `γ C.

γ Pompeiu-Hausdorff Norm Width

0 5.5 6
0.25 6 7
0.5 6.5 8
0.75 7 9

1 7.5 10

Theorem 6.3. Let A, B P RFC
. Consider the function φA`B : r0, 1s Ñ R given by

φA`Bpγq “ ||A `γ B||. Thus, the following properties hold.

paq φA`B is a continuous and increasing function;

pbq φA`Bp0q ď ||A `γ B|| ď φA`Bp1q, @ 0 ď γ ď 1.

Proof. paq Consider the function φ : r0, 1s Ñ R given by φpγq “ ||A `γ B||, where A

and B are fixed arbitrary fuzzy numbers in RFC
. First, it will be shown that φ is

an increasing function. To this end, let γ, λ P r0, 1s such that γ ď λ. Let us call

A `γ B “ Cγ and A `λ B “ Cλ, where rCγsα “ rc´
γα

, c`
γα

s and rCλsα “ rc´
λα

, c`
λα

s.

From Definition 1.22, one obtains that ||C|| “ maxt|c´
0

|, |c`
0

|u, for all C P RFC
. By

item pcq of Theorem (6.1) and the definition of joint possibility distribution, it follows

that c´
λ0

ď c´
γ0

ď 0 and 0 ď c`
γ0

ď c`
λ0

which implies that |c´
γ0

| ď |c´
λ0

| and |c`
γ0

| ď |c`
λ0

|.

Therefore,

φpγq “ ||Cγ|| “ maxt|c´
γ0

|, |c`
γ0

|u ď maxt|c´
λ0

|, |c`
λ0

|u “ ||Cλ|| “ φpλq,
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concluding that φ is an increasing function.

Now, it will be shown that φ is a continuous function. To this end, let pγnq Ď r0, 1s

be a sequence that converges to γ P r0, 1s. Let us call Cn “ A `γn
B and C “ A `γ B.

Since A, B P RFC
, it follows that h´

Cn
pβ, γnq and h`

Cn
pβ, γnq converges to h´

Cpβ, γq

and h`
Cpβ, γq, respectively. Since β P rα, 1s, which is a compact set, then

c´
nα

“
ľ

βěα

h´
Cn

pβ, γnq Ñ
ľ

βěα

h´
Cpβ, γq “ c´

α

and

c`
nα

“
ľ

βěα

h`
Cn

pβ, γnq Ñ
ľ

βěα

h`
Cpβ, γq “ c`

α .

Consequently,

φpγnq “ ||Cn|| “ maxt|c´
n0

|, |c`
n0

|u ÝÑ maxt|c´
0

|, |c`
0

|u “ ||C|| “ φpγq,

which implies that φ is continuous.

pbq Since, φ is continuous and r0, 1s is compact, Weierstrass Theorem concludes that there

exist γ1 and γ2 such that φpγ1q ď φpγq ď φpγ2q, @γ P r0, 1s. Since φ is increasing, it

follows that φp0q ď φpγq ď φp1q. Hence,

||A `0 B|| ď ||A `γ B|| ď ||A `1 B||, @γ P r0, 1s.

Theorem 6.3 reveals that the norm of the interactive sum obtained from Jγ is

increasing with respect to γ. Moreover, the minimum and maximum norm are achieved at

γ “ 0 and γ “ 1, respectively.

Theorem 6.4. Let A, B P RFC
. Consider the function ϕA`B : r0, 1s Ñ R given by

ϕA`Bpγq “ widthpA `γ Bq. Thus, the following properties hold.

paq ϕA`B is a continuous and increasing function;

pbq ϕA`Bp0q ď widthpA `γ Bq ď ϕA`Bp1q, @ 0 ď γ ď 1.

Proof. paq Consider the function ϕ : r0, 1s Ñ R given by ϕpγq “ widthpA `γ Bq, where

A and B are fixed arbitrary fuzzy numbers in RFC
. In a similar way to the item

paq of Theorem (6.3), it can be prove that ϕ is a continuous function. Let us call

A `γ B “ Cγ and A `λ B “ Cλ, where rCγsα “ rc´
γα

, c`
γα

s and rCλsα “ rc´
λα

, c`
λα

s for

γ ď λ. Item pcq of Theorem (6.1) concludes that 0 ď c`
γ0

´ c´
γ0

ď c`
λ0

´ c´
λ0

. Therefore,

ϕpγq “ widthpCγq “ |c`
γ0

´ c´
γ0

| ď |c`
λ0

´ c´
λ0

| “ widthpCλq “ ϕpλq,

which implies that ϕ is increasing.
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pbq An immediately consequence of Weierstrass Theorem applied to the function ϕ,

ensures that

widthpA `0 Bq ď widthpA `γ Bq ď widthpA `1 Bq, @γ P r0, 1s.

Theorem 6.4 reveals that the width of the interactive sum obtained from Jγ is

increasing with respect to γ. Moreover, the minimum and maximum width are achieved at

γ “ 0 and γ “ 1, respectively.

The next proposition reveals an interesting property of the interactive sum via

J0 for symmetric triangular fuzzy numbers (see Definition 4.3).

Proposition 6.1. [55] Let A, B P RFC
be symmetric triangular fuzzy numbers and J0 be

their joint possibility distribution given as in (6.3), for γ “ 0. Hence

A `0 B “ pδ ´ µqp´1; 0; 1q ` χta`bu, (6.21)

where ` stands for the standard sum and A “ pa ´ δ; a; a ` δq and B “ pb ´ µ; b; b ` µq.

Proof. Let A and B be triangular fuzzy numbers given by A “ pa ´ δ; a; a ` δq and

B “ pb ´ µ; b; b ` µq. From Theorem 6.2

rA `0 Bsα “

«
ľ

βěα

h´
A`Bpβ, 0q,

ł

βěα

h`
A`Bpβ, 0q

ff
,

where

h´
A`Bpβ, 0q “ mint´δ ` δβ ` µ ´ µβ, δ ´ δβ ´ µ ` µβ, 0u ` ta ` bu

“ pδ ´ µq mint´1 ` β, 1 ´ βu ` ta ` bu

and

h`
A`Bpβ, 0q “ maxt´δ ` δβ ` µ ´ µβ, δ ´ δβ ´ µ ` µβ, 0u ` ta ` bu

“ pδ ´ µq maxt´1 ` β, 1 ´ βu ` ta ` bu

Hence,

rA `0 Bsα “

«
ľ

βěα

pδ ´ µq mint´1 ` β, 1 ´ βu,
ł

βěα

pδ ´ µq maxt´1 ` β, 1 ´ βu

ff
` ta ` bu

“ pδ ´ µq

«
ľ

βěα

mint´1 ` β, 1 ´ βu,
ł

βěα

maxt´1 ` β, 1 ´ βu

ff
` ta ` bu

“ pδ ´ µq

«
ľ

βěα

p´1 ` βq,
ł

βěα

p1 ´ βq

ff
` ta ` bu

“ pδ ´ µq r´1 ` α, 1 ´ αs ` ta ` bu @α P r0, 1s.
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Therefore,

A `0 B “ pδ ´ µqp´1; 0; 1q ` χta`bu.

Proposition 6.1 ensures that if δ “ µ, then the interactive sum via J0 between

A and B produces a real number.

Corollary 6.1. Let A and B be symmetric triangular fuzzy numbers and J0 be their joint

possibility distribution. If widthpAq “ widthpBq, then

A `0 B “ χta`bu.

Chapter 7 provides an application in the Fibonacci sequence in order to illustrate

the results given by Proposition 6.1 and Corollary 6.1. One can prove that the same results

provided by the above statements hold for trapezoidal and Gaussian fuzzy numbers as

well.

The next section defines the interactive difference between fuzzy numbers based

on joint possibility distribution given by (6.3).

6.3 Interactive Difference via Jγ

This section focuses on defining a difference between fuzzy numbers that is

obtained as the inverse operation of the sum, that is, A ´J1
B “ A `J2

p´Bq. To this end,

consider the following fuzzy relation

pJγpx, yq “ Jγpx, ´yq, @x, y P R, (6.22)

where Jγ is given as in (6.3).

Hence, the following theorem is obtained.

Theorem 6.5. [55] Let A, B P RFC
and Jγ be the joint possibility distribution of A and

B given by (6.3). The fuzzy relation pJγ defined by

pJγpx, yq “ Jγpx, ´yq (6.23)

satisfies the following properties for all γ P r0, 1s

paq pJγ is a joint possibility distribution of A and B;

pbq pJγpx1, x2q ď pJλpx1, x2q, for all γ ď λ and @px1, x2q P R
2;

pcq A ´ pJγ
B P RFC

.
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Proof. The proof is similar to the proof of Theorem 6.1.

Theorem 6.5 reveals that the fuzzy relation given by (6.22) is a joint possibility

distribution between A and B. Moreover, the properties pbq and pcq of Theorem 6.1 also

hold for pJγ and the following equation is satisfied

A ´ pJγ
B “ A `Jγ

p´Bq. (6.24)

For simplicity of notation, A ´ pJγ
B is denoted by A ´γ B.

The characterization of the interactive difference via pJγ can be provided by

means of α-cuts. Theorem 6.6 establishes these α-cuts.

Theorem 6.6. Let A, B P RFC
whose α-cuts are given by rAsα “ ra´

α , a`
α s and rBsα “

rb´
α , b`

α s. Then, for all α P r0, 1s

rA ´γ Bsα “ rd´
α , d`

α s ` ta ´ bu, (6.25)

where
d´

α “
ľ

βěα

h´
pA´Bqpβ, γq and d`

α “
ł

βěα

h`
pA´Bqpβ, γq. (6.26)

with

h´
pA´Bqpβ, γq “ mint papaqq´

β ´ pbpbqq´
β ` γppbpbqq´

β ´ pbpbqq`
β q,

papaqq`
β ´ pbpbqq`

β ` γppapaqq´
β ´ papaqq`

β q,

γppapaqq´
β ´ pbpbqq`

β qu

and

h`
pA´Bqpβ, γq “ maxt papaqq´

β ´ pbpbqq´
β ` γppapaqq`

β ´ papaqq´
β q,

papaqq`
β ´ pbpbqq`

β ` γppbpbqq`
β ´ pbpbqq´

β q,

γppapaqq`
β ´ pbpbqq´

β qu

.

Proof. The proof is similar to the proof of Theorem 6.2, recalling that r´Bsα “ r´b`
α , ´b´

α s.

Remark 6.1. Theorem 6.6 guarantees that the interactive difference via pJ0 also satisfies

A ´0 A “ A ´L A “ A ´I A “ A ´g A “ 0, @A P RFC
. (6.27)

The next example illustrates the interactive difference between triangular,

trapezoidal and Gaussian fuzzy numbers for different values of γ.

Example 6.5. Let A “ p2; 3; 5; 6q, B “ p0; 4; 8q and C “ p0.5; 1.5; 4qG be fuzzy numbers.

In view of Theorem 6.6, for all γ P r0, 1s, it follows that:

rA ´γ Asα “ rγp´4 ` 2αq, γp4 ´ 2αqs ` 0.
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rA ´γ Bsα “

«
ľ

βěα

mint2 ´ 3β ` γp´8 ` 8βq, ´2 ` 3β ` γp´4 ` 2βq, γp´6 ` 5βqu,

ł

βěα

maxt2 ´ 3β ` γp4 ´ 2βq, ´2 ` 3β ` γp8 ´ 8βq, γp6 ´ 5βqu

ff
` 0.

For all α P r0, 1s such that α ě α, where α “ e´32, one obtains

rA ´γ Csα “

«
ľ

βěα

h´
A´Bpβ, γq,

ł

βěα

h`
A´Bpβ, γq

ff
` 3.5,

where

h´
A´Bpβ, γq “ min

!
´2 ` β ` p1 ´ 2γq

a
´1.5lnpβq, 2 ´ β ´

a
´1.5lnpβq ` γp´4 ` 2βq,

γ
´

´2 ` β ´
a

´1.5lnpβq
¯)

and

h`
A´Bpβ, γq “ max

!
´2 ` β `

a
´1.5lnpβq ` γp4 ´ 2βq, 2 ´ β ` p2γ ´ 1q

a
´1.5lnpβq,

γ
´

2 ´ β ´
a

´1.5lnpβq
¯)

For α ă α

rA ´γ Csα “

«
ľ

βěα

mint2 ` β ´ 8γ, ´2 ´ β ` γp´4 ` 2βq, γp´6 ` βqu,

ł

βěα

maxt2 ` β ` γp4 ´ 2βq, ´2 ´ β ` 8γ, γp6 ´ βqu

ff
` 3.5.

Figure 52 depicts the interactive difference between the trapezoidal fuzzy numbers

A and A for the following values of γ P t0, 0.25, 0.5, 0.75, 1u.

Figure 52 – Graphical representation of the interactive difference A ´γ A given as in

Example 6.5.

The interactive sum A ´γ A, where A “ p2; 3; 5; 6q. The red, blue, black, green and purple

lines represent the fuzzy numbers obtained by the interactive difference for γ “ 0, γ “ 0.25,

γ “ 0.5, γ “ 0.75 and γ “ 1, respectively. Source: Author.
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Figure 53 graphically represents the interactive difference between the trapezoidal

fuzzy number A and the triangular fuzzy number B for the same values of γ.

Figure 53 – Graphical representation of the interactive difference A ´γ B given as in

Example 6.5.

The interactive sum A ´γ B, where A “ p2; 3; 5; 6q and B “ p0; 4; 8q. The red, blue, black,

green and purple lines represent the fuzzy numbers obtained by the interactive difference

for γ “ 0, γ “ 0.25, γ “ 0.5, γ “ 0.75 and γ “ 1, respectively. Source: Author.

Finally, Figure 54 graphically portrays the interactive difference between the

trapezoidal fuzzy number A and the Gaussian fuzzy number B, for γ P t0, 0.25, 0.5, 0.75, 1u.

Figure 54 – Graphical representation of the interactive difference A ´γ C given as in

Example 6.5.

The interactive sum A ´γ C, where A “ p2; 3; 5; 6q and C “ p0.5; 1.5; 4qG. The red, blue,

black, green and purple lines represent the fuzzy numbers obtained by the interactive

difference for γ “ 0, γ “ 0.25, γ “ 0.5, γ “ 0.75 and γ “ 1, respectively. Source: Author.

Figure 52 corroborates the fact that A ´0 A “ 0, for all A P RFC
. Moreover,

one can observe in Figures 52, 53 and 54 that the proposed interactive difference has

increasing Pompeiu-Hausdorff norm and width with respect to γ.

Theorem 6.7. Let A, B P RFC
. Consider the function pφA´B : r0, 1s Ñ R given by

pφA´Bpγq “ ||A ´γ B||. Hence the following properties hold.

paq pφA´B is a continuous and an increasing function;

pbq pφA´Bp0q ď ||A ´γ B|| ď pφA´Bp1q, @ 0 ď γ ď 1.
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Proof. paq The proof of the continuity of the function pφ is similar to the proof of item paq

of Theorem (6.3) considering h´
A´Bpβ, γnq and h`

A´Bpβ, γnq. The item pbq of Theorem

6.5 implies that pφ is increasing.

pbq Since, A ´γ B “ A ´ pJγ
B “ A `Jγ

p´Bq then

||A ´0 B|| “ ||A `0 p´Bq|| ď ||A `Jγ
p´Bq|| “ ||A ´ pJ B||

ď ||A `1 p´Bq|| “ ||A ´1 B||.

Theorem 6.7 reveals that the width of the interactive difference obtained from
pJγ is increasing with respect to γ. Moreover, the minimum and maximum width are

achieved at γ “ 0 and γ “ 1, respectively.

Theorem 6.8. Let A, B P RFC
. Consider the function pϕA´B : r0, 1s Ñ R given by

pϕA´Bpγq “ widthpA ´γ Bq. Hence the following properties hold.

paq pϕA´B is a continuous and an increasing function;

pbq pϕA´Bp0q ď widthpA ´γ Bq ď pϕA´Bp1q, @ 0 ď γ ď 1.

Proof. The proof is similar to the proof of Theorem 6.4.

Theorem 6.8 reveals that the norm of the interactive difference obtained from
pJγ is increasing with respect to γ. Moreover, the minimum and maximum norm are

achieved at γ “ 0 and γ “ 1, respectively.

One can observe, in Figure 53, that the interactive difference (for γ “ 0) between

the fuzzy numbers A “ p2; 3; 5; 6q and B “ p0; 4; 8q resembles the g-difference between

them (see Figure 9). Chapter 5 already proved that the g-difference is an interactive

difference. The next theorem shows that ´g also coincides with ´γ.

Theorem 6.9. Let pJ0 be the joint possibility distribution of A and B given as in (6.24),

for γ “ 0. Hence

A ´0 B “ A ´g B.

Proof. By Theorem 6.6, it follows that

rA ´0 Bsα “

«
ľ

βěα

h´
pA´Bqpβ, 0q,

ł

βěα

h`
pA´Bqpβ, 0q

ff
` pa ´ bq,

where

h´
pA´Bqpβ, 0q “ mintpapaqq´

β ´ pbpbqq´
β , papaqq`

β ´ pbpbqq`
β u
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and

h`
pA´Bqpβ, 0q “ maxtpapaqq´

β ´ pbpbqq´
β , papaqq`

β ´ pbpbqq`
β u.

Therefore,

rA ´0 Bsα “

«
ľ

βěα

mintpapaqq´
β ´ pbpbqq´

β , papaqq`
β ´ pbpbqq`

β u ,

ł

βěα

maxtpapaqq´
β ´ pbpbqq´

β , papaqq`
β ´ pbpbqq`

β u

ff
` pa ´ bq

“

«
ľ

βěα

minta´
β ´ b´

β , a`
β ´ b`

β u,
ł

βěα

maxta´
β ´ b´

β , a`
β ´ b`

β u

ff

“ rA ´g Bsα, @α P r0, 1s

Theorem 6.9 reveals that the interactive difference coincides with the g-

difference, consequently, from Theorem 5.5 the next Corollary is obtained

Corollary 6.2. Let A P RFC
. Thus

A ´0 B “ A ´I B “ A ´g B.

The next proposition shows a particular property of the interactive difference

via ´ pJ0
between symmetric triangular fuzzy numbers.

Proposition 6.2. Let A, B P RFC
be symmetric triangular fuzzy numbers and pJ0 be their

joint possibility distribution given as in (6.3), for γ “ 0. Hence

A ´0 B “ pδ ´ µqp´1; 0; 1q ` χta´bu, (6.28)

where ` stands for the standard sum and A “ pa ´ δ; a; a ` δq and B “ pb ´ µ; b; b ` µq.

Proof. Let A “ pa ´ δ; a; a ` δq and B “ pb ´ µ; b; b ` µq be symmetric triangular fuzzy

numbers. Since A ´0 B “ A `0 p´Bq, Proposition 6.1 guarantees that

A ´0 B “ A `0 p´Bq “ pa ´ δ; a; a ` δq `0 p´b ´ µ; ´b; ´b ` µq “ pδ ´ µqp´1; 0; 1q ` χta´bu.

Proposition 6.2 implies that if δ “ µ, then the proposed interactive difference

between A and B results in a real number.
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Corollary 6.3. Let A and B be symmetric triangular fuzzy numbers and pJ0 be their joint

possibility distribution. If widthpAq “ widthpBq, then

A ´0 B “ χta´bu.

Chapter 7 provides an application in discrete delay models for fuzzy numbers

in order to illustrate the results given by Proposition 6.2 and Corollary 6.3. One can prove

that the same results provided by the above statements hold for trapezoidal and Gaussian

fuzzy numbers as well.

6.4 Conclusion

This chapter presented a new family of joint possibility distribution Jγ , where

γ P r0, 1s. This family has similar properties as the family (5.6) presented in Chapter 5,

that is, the interactive sum and difference via sup-J extension produce fuzzy numbers

in RFC
with smaller Pompeiu-Hausdorff norm and width. More precisely, the interactive

sum and difference via J0 produce fuzzy numbers with minimum norm and width, than

any other sum and difference obtained from joint possibility distributions. Some examples

were presented to illustrate the proposed arithmetic operations between different types

of fuzzy numbers (triangular, trapezoidal and Gaussian). This chapter proved that the

g-difference is a particular case of the interactive difference based on this family as well.

The interactive sum and difference were characterized by means of α´cuts, which allowed

to compute these operations in a simpler way. Some properties involving the symmetries

of fuzzy numbers were explored. This chapter ended presenting the conditions so that the

sum and difference between interactive fuzzy numbers result in a real number.
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7 Applications in Biomathematics

This chapter presents some applications of the methods proposed in Chapters

4, 5 and 6. Briefly comments about ontic and epistemic fuzzy sets were made in Chapter

1. In that context there was no distinction between these two points of view. However, in

this chapter, the fuzzy numbers in the initial and/or boundary conditions will be chosen

in order to describe the imprecise/uncertain information. This means that the approach

considered in this chapter is the epistemic one.

Section 7.1 presents examples in fuzzy differential equations with initial condi-

tions given by linearly interactive fuzzy numbers. For this section the reader can refer to

[77, 138, 53, 148, 126]. Section 7.2 provides several examples in epidemiology and chemical

reactions in order to illustrate the numerical fuzzy solutions of FDE’s, where the initial

conditions are given by Jγ-interactive fuzzy numbers. For this section the reader can refer

to [141, 142, 143, 144, 145, 146, 147, 149, 139]. Finally, Section 7.3 uses the proposed

family of joint possibility distribution Jγ, defined in Chapter 6, in order to describe the

Fibonacci and discrete delay sequences in the case where the first and second conditions

are given by Jγ-interactive fuzzy numbers. For this section the reader can refer to [55].

7.1 Application on FIVPs with linearly interactive fuzzy conditions

This section provides solutions of fuzzy differential equations, where the ad-

ditional conditions are given by linearly interactive fuzzy numbers. First it is presented

some examples in order to illustrate the method given in Chapter 4, which are based on

reference [148]. Next it is provided applications in physical problems such as: to describe the

trajectory of a particle according to a Hypocycloid curve [138] and mechanical vibrations

[126].

7.1.1 Example 1

Let us consider a 3rd order differential equation given by

$
&
%

y3ptq ´ 5y2ptq ` 6y1ptq “ 2t ` 4

yp0q “ 1, y1p0q “ 2, y2p0q “ 3
. (7.1)

Here the initial position, velocity and acceleration are supposed to be uncertain

and modeled by linearly interactive fuzzy numbers. In classical physics theory, this consid-

eration is justifiable in problems such as determining the position of an aircraft far from

earth. Ashby et al. [4] demonstrate that the position cannot be accurately determined
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unless either the velocity of the detector is known or determined from the same data

used to determine the position. In other words, they show that position and velocity are

correlated.

The particular (yp) and homogeneous (yh) solutions of IVP (7.1) are given by

ypptq “
17

18
t `

t2

6
and yhptq “ w1ptqk1 ` w2ptqk2 ` w3ptqk3,

where w1ptq “
1

2
e2t, w2ptq “

1

3
e3t, w3ptq “ 1, k1, k2 and k3 are constants. Therefore, under

these initial conditions the deterministic solution is given by

yptq “
1

108

`
61 ` 27e2t ` 20e3t ` 102t ` 18t2

˘
. (7.2)

Figure 55 exhibits the deterministic solution yptq.

Figure 55 – Graphical representation of the deterministic solution yptq given by (7.2).

Solution of Equation (7.1), where the initial conditions are given by real numbers. Source:
[148]

Now suppose that the initial conditions are uncertainties and modelled by the

fuzzy numbers

$
’’’&
’’’%

yp0q “ p0; 1; 2q “ Y0

y1p0q “ p1; 2; 3q “ Y 1
0

y2p0q “ p2; 3; 4q “ Y 2
0

, (7.3)

where Y0, Y 1
0

and Y 2
0

are linearly interactive fuzzy numbers with respect to the joint

possibility distribution JL, whose membership function is given by

JLpx, y, zq “ χ$
’’’’’&
’’’’’%

¨
˚̊
˚̊
˚̋

u

u ` 1

u ` 2

˛
‹‹‹‹‹‚

: uPR

,
/////.
/////-

px, y, zqY0pxq, (7.4)



Chapter 7. Applications in Biomathematics 165

for each px, y, zq P R
3. From Equation (4.9), the α´cuts of (7.4) are given as follows

rJLsα “

$
’&
’%

p1 ´ λq

¨
˚̋

α

α ` 1

α ` 2

˛
‹‚` λ

¨
˚̋

2 ´ α

3 ´ α

4 ´ α

˛
‹‚: λ P r0, 1s

,
/.
/-

.

By Equation (4.25) the fuzzy solution yLptq, for each α P r0, 1s and t P R , is

given by

ryLptqsα “ rminthpt, α, 0q, hpt, α, 1qu, maxthpt, α, 0q, hpt, α, 1qus,

where

hpt, α, 0q “
17

18
t `

1

6
t2 ´

3

4
e2t `

14

27
e3t `

25

108
` α

ˆ
e2t ´

1

3
e3t `

1

3

˙

and

hpt, α, 1q “
17

18
t `

1

6
t2 `

5

4
e2t ´

4

27
e3t `

97

108
` α

ˆ
´e2t `

1

3
e3t ´

1

3

˙
.

Note that the α´cut of the fuzzy solution can also be written as

ryLptqsα “
!17

18
t `

t2

6
`

79

108
`

1

2
e2t

ˆ
p1 ´ λqp1 ` 2αq ` λp5 ´ 2αq ´

5

2

˙

`
1

3
e3t

ˆ
p1 ´ λqp´αq ` λp´2 ` αq `

14

9

˙

` p1 ´ λq

ˆ
´

1

2
`

1

3
α

˙
` λ

ˆ
1

6
´

1

3
α

˙
: λ P r0, 1s

)

(7.5)

Figure 56 depicts the top and tri-dimensional views of the fuzzy solution (7.5).

Figure 56 – Graphical representation of the fuzzy solution based on the joint possibility
distribution JL given by (7.4).

(a) The top view of the fuzzy solution. (b) The tri-dimensional view of the fuzzy
solution.

The gray-scale lines represent the α´cuts of the fuzzy solution given as in (7.5), where
their endpoints for α varying from 0 to 1 are represented respectively from the gray-scale
lines varying from white to black. Source: [148].
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Note that the joint possibility distribution J “ JL, given by (7.4), suggests

that Y0 and Y 1
0

are positively linear interactive, as well as Y0 and Y 2
0

, since the diameter of

the fuzzy solution always increases. One can observe that Y0, Y 1
0
, and Y 2

0
may be linearly

interactive with respect to others joint possibility distributions. The next subsection

illustrates this fact.

7.1.2 Example 2

Consider the following 3rd order differential equation with the initial conditions:

$
&
%

y3ptq ` 9y1ptq “ tsint

yp0q “ 0, y1p0q “ 0, y2p0q “ 0
. (7.6)

The deterministic solution for this IVP is given by

yptq “
1

96
p´12t cos t ` 9sint ` sin3tq .

The solution y is depicted in Figure 57.

Figure 57 – Graphical representation of the deterministic solution yptq of the system (7.6).

Solution of Equation (7.6), where the initial conditions are given by real numbers. Source:

[148]

Suppose that the initial conditions are modelled by the fuzzy numbers

$
’’’&
’’’%

yp0q “ p´1; 0; 1q “ Y0

y1p0q “ p´1; 0; 1q “ Y 1
0

y2p0q “ p´1; 0; 1q “ Y 2
0

.
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Thus Y0, Y 1
0

and Y 2
0

may be linearly interactive with respect to the following

joint possibility distributions:

J1px, y, zq “ χ$
’’’’’&
’’’’’%

¨
˚̊
˚̊
˚̋

u

u

u

˛
‹‹‹‹‹‚

: uPR

,
/////.
/////-

px, y, zqY0pxq. (7.7)

From J1, it follows that Y0 and Y 1
0

are positively linearly interactive, as well as

Y0 and Y 2
0

. The fuzzy solution yL obtained by our approach is depicted in Figure 58.

Figure 58 – Graphical representation of the fuzzy solution based on joint possibility distri-
bution J1 given by (7.7).

(a) The top view of the fuzzy solution. (b) The tri-dimensional view of the fuzzy solution.

The top and tri-dimensional view of the fuzzy solution obtained using the joint possibility
distribution J1 as in (7.7). The gray lines represent the α´cuts of the fuzzy solution yLptq.
The endpoints of the α´cuts for α varying from 0 to 1 are represented respectively from
the gray-scale lines varying from white to black. Source: [148].

Now, suppose that Y0, Y 1
0

and Y 2
0

are linearly interactive with respect to joint

possibility distribution J2, given by

J2px, y, zq “ χ$
’’’’’&
’’’’’%

¨
˚̊
˚̊
˚̋

u

u

´u

˛
‹‹‹‹‹‚

: uPR

,
/////.
/////-

px, y, zqY0pxq. (7.8)

The fuzzy solution yL based on J2 is exhibited in Figure 59. Note that, from J2,

it follows that Y0 and Y 1
0

are positively linearly interactive and Y0 and Y 2
0

are negatively

linearly interactive.

If Y0, Y 1
0

and Y 2
0

are linearly interactive with respect to joint possibility distri-



Chapter 7. Applications in Biomathematics 168

Figure 59 – Graphical representation of the fuzzy solution based on joint possibility distri-
bution J2 given by (7.8).

(a) The top view of the fuzzy solution. (b) The tri-dimensional view of the fuzzy solution.

The top and tri-dimensional view of the fuzzy solution obtained using the joint possibility
distribution J2 as in (7.8). The gray lines represent the α´cuts of the fuzzy solution yLptq.
The endpoints of the α´cuts for α varying from 0 to 1 are represented respectively from
the gray-scale lines varying from white to black. Source: [148].

bution J3, given by

J3px, y, zq “ χ$
’’’’’&
’’’’’%

¨
˚̊
˚̊
˚̋

u

´u

u

˛
‹‹‹‹‹‚

: uPR

,
/////.
/////-

px, y, zqY0pxq, (7.9)

then Y0 and Y 1
0

are negatively linearly interactive whereas Y0 and Y 2
0

are positively linearly

interactive. The fuzzy solution yL via the proposed approach is depicted in Figure 60.

Finally, suppose that Y0, Y 1
0

and Y 2
0

are linearly interactive with respect to

joint possibility distribution J4, given by

J4px, y, zq “ χ$
’’’’’&
’’’’’%

¨
˚̊
˚̊
˚̋

u

´u

´u

˛
‹‹‹‹‹‚

: uPR

,
/////.
/////-

px, y, zqY0pxq, (7.10)

The fuzzy solution yL, obtained by J4, is exhibited in Figure 61. By Equation (7.10), one

can conclude that Y0 and Y 1
0

as well as Y0 and Y 2
0

are negatively linearly interactive.

Note that the joint possibility distribution J1 indicates that initial positive

positions (ypt0q) is associated with initial positives velocity (y1pt0q) and acceleration (y2pt0q),

since Y0 and Y 1
0

as well as Y0 and Y 2
0

are positively linear interactive. This means that

yptq increases initially with increasing rate if the initial position ypt0q is positive. On the

other hand, if ypt0q is negative, then the initial velocity y1pt0q and acceleration y2pt0q
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Figure 60 – Graphical representation of the fuzzy solution based on joint possibility distri-
bution J3 given by (7.9).

(a) The top view of the fuzzy solution. (b) The tri-dimensional view of the fuzzy solution.

The top and tri-dimensional view of the fuzzy solution obtained using the joint possibility
distribution J3 as in (7.9). The gray lines represent the α´cuts of the fuzzy solution yLptq.
The endpoints of the α´cuts for α varying from 0 to 1 are represented respectively from
the gray-scale lines varying from white to black. Source: [148].

Figure 61 – Graphical representation of the fuzzy solution based on joint possibility distri-
bution J4 given by (7.10).

(a) The top view of the fuzzy solution. (b) The tri-dimensional view of the fuzzy solution.

The top and tri-dimensional view of the fuzzy solution obtained using the joint possibility
distribution J4 as in (7.10). The gray lines represent the α´cuts of the fuzzy solution
yLptq. The endpoints of the α´cuts for α varying from 0 to 1 are represented respectively
from the gray-scale lines varying from white to black. Source: [148].

are also negative values. In this case yptq decreases with decreasing rate initially, causes

the expansion of the diameter of the fuzzy solution yLptq initially, as one can observe in

Figure 58.

The fuzzy solution based on J2 has the same behaviour as the solution produced
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by J1. However, the acceleration at t0 is negatively linear interactive with the initial

position ypt0q. This means that the expansion of the solution based on J2 is smaller than

the expansion of the solution given by J1 (see Figures 58 and 59), as one can observe in

Figure 62.

In contrast to J1 and J2, the joint possibility distribution J3 indicates that the

yptq decreases initially with increasing rate if the initial position ypt0q is positive since Y0

and Y 1
0

are negatively linear interactive and Y0 and Y 2
0

are positively linear interactive.

Thus, the solution yLptq obtained by J3 is initially contractive (see Figure 60).

Finally, the JPD J4 also produces a fuzzy solution that is initially contractive.

However, the contraction is smaller than the contraction of the solution given by J3, since

the acceleration is negatively linear interactive with the initial position ypt0q.

A briefly study of the diameter of the fuzzy solution is given as follows. For J1,

it follows

diampyLptqq “
2

3
sinp3tq ´

2

9
cosp3tq `

20

9

Note that the diameter of the fuzzy solution increases on the intervals

„
2

3
πn,

π

6
`

2

3
πn


and

„
π

2
`

2

3
πn,

2π

3
`

2

3
πn


,

for all n P N, since the derivative of diampyLptqq with respect to t is positive in these

intervals. Moreover, it decreases on intervals

„
π

6
`

2

3
πn,

π

3
`

2

3
πn


and

„
π

3
`

2

3
πn,

π

2
`

2

3
πn


,

for all n P N since the derivative of diampyLptqq is negative in these intervals.

A similar analysis can be made for the diameter of the solution obtained by

using J2, J3 and J4. Figure 62 exhibits the diameters of the solutions yLptq with respect to

the joint possibility distributions J1, J2, J3 and J4. Figure 62 also corroborates the above

comments about the initially expansion and contraction of the fuzzy solutions.

The next subsection presents the last example involving this type of interactivity,

in order to clarify the properties of the fuzzy solution that arises from the JPD JL.
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Figure 63 – Graphical representation of the fuzzy solution via Zadeh’s extension principle
of the FBVP given as in (7.11).

(a) The top view of py. (b) The tri-dimensional view of py.

The green line represents the deterministic solution y, given by (7.12). The red and white
dashed-lines illustrate respectively the 0-cut and the 0.5-cut of yL. The gray-scale lines
varying from white to black represent the α-cuts of py, where α varying from 0 to 1. Source:
[138].

rJ3sα “

$
’&
’%

¨
˚̋

x

´x

x ` 5

˛
‹‚: x P rAsα

,
/.
/-

and rJ4sα “

$
’&
’%

¨
˚̋

x

´x

´x ` 5

˛
‹‚: x P rAsα

,
/.
/-

.

The fuzzy solutions of (7.11) via sup-J extension are depicted in Figure 64.

It is important to observe in Figures 63 and 64 that the convex hull of the

solutions yJ1
, yJ2

, yJ3
and yJ4

is equal to the solution given by Zadeh’s extension, which

corroborates the statement of Theorem 4.2.

Now, suppose that the boundary conditions are given by the non-symmetric

fuzzy numbers yp0q “ p´1; 0; 2q “ A, y1p0q “ p´1; 0; 2q “ B, and, yp10q “ p4; 5; 7q “ C.

The fuzzy numbers A, B, and, C are linearly interactive with respect to the joint possibility

distribution given by

rJsα “

$
’&
’%

¨
˚̋

x

x

x ` 5

˛
‹‚: x P rAsα

,
/.
/-

. (7.13)

The fuzzy solution yJ of (7.11) via sup-J extension is depicted in Figure 65.

Observe that in this case there is only one joint possibility distribution of A,

B, and, C. Also, note that Figure 65 (a) verifies the result of Theorem 4.3, that is, the

solution yJ is contained in py. Moreover, Equation (4.38) ensures that ỹF , given by (4.36),

is also contained in py.

The next subsection presents an example to describe the trajectory of a particle,

according to a hypocycloid curve.
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Figure 64 – Graphical representation of the fuzzy solution based on joint possibility distri-
bution JL given by (7.10).

(a) The top view of yJ1
. (b) The top view of yJ2

.

(c) The top view of yJ3
. (d) The top view of yJ4

.

The red and white dashed-lines illustrate respectively the 0-cut of py and the 0.5-cut of yJi
,

where i “ 1, . . . , 4. The gray-scale lines varying from white to black represent the α-cuts
of yJi

, where α varying from 0 to 1. Source: [138].

Figure 65 – Graphical representation of the fuzzy solution yJ given as in (7.11).

(a) The top view of yJ . (b) The tri-dimensional view of yJ .

The red and white dashed-lines illustrate respectively the 0-cut of py and the 0.5-cut of
yJ . The gray-scale lines varying from white to black represent the α-cuts of yJ , where α

varying from 0 to 1. Source: [138].
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Then in order to provide a fuzzy solution for this problem, one can use the

same method, provided in Chapter 4, for system (7.15) by taking the particular and

homogeneous solution of the problem and calculating the vector of constants in terms of

the fuzzy initial condition.

So let us illustrate the above comments by considering a linear second order

and homogeneous FIVP given by

$
’’’&
’’’%

x2ptq ´ 2 y1ptq ` 3 xptq “ 0,

y2ptq ` 2 x1ptq ` 3 yptq “ 0,

xp0q “ p3.5; 4; 5q, x1p0q “ yp0q “ y1p0q “ p´1; 0; 0.5q,

(7.16)

for t P r0, 2πs, where the initial conditions are given by linearly interactive fuzzy numbers.

The classical solution of the associated FIVP (7.16), where the initial conditions

are real numbers xp0q “ 4 and x1p0q “ yp0q “ y1p0q “ 0, is given by

xptq “ 3 cosptq ` cosp3tq

yptq “ 3senptq ´ senp3tq
. (7.17)

The α-cuts of the fuzzy solution of (7.16) are given by

rxJptqsα “ u1ptq ` v1ptqrxp0qsα (7.18)

ryJptqsα “ u3ptq ` v3ptqrxp0qsα

where rxp0qsα “ r0.5α ` 3.5 , 5 ´ αs for all α P r0, 1s and u1ptq, u3ptq, v1ptq, v3ptq are

determined as in (4.34) with q “
”
1 ´1 ´1 ´1

ıT

and r “
”
0 4 4 4

ıT

.

Note that the fuzzy solutions given by (7.18) depend only on the initial condition

xp0q P RF and the parameters qi and ri, for i “ 1, . . . , 4, as well as in the method provided

in Section 4.2. Also observe that the initial conditions are given by non-symmetric fuzzy

numbers, which means that there is only one joint possibility distribution JL among

xp0q, x1p0q, yp0q and y1p0q, as Proposition 4.1 ensures.

Figure 67 depicts the fuzzy solution given by (7.18). In this figure the fuzzy

solutions were superimposed on the same graph to observe the behaviour of solutions

at the same points on the domain. One can observe that the fuzzy solution via sup-J

extension is contained in the one given by the Zadeh’s extension. From the physical point

of view the fuzzy numbers can represent the uncertainty of the initial points xp0q and yp0q

or stability points x1p0q and y1p0q [148].

The equations in (7.17) describe the hypocycloid curve traced by a fixed point

P px, yq on the circumference of a circle of radio 1, which rolls internally around from a

circle of radius 4. A fuzzy hypocycloid curve, depicted in Figure 68, can be considered as
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Figure 67 – Graphical representation of the fuzzy solution of hyocycloid curve problem.

The green and blue solid lines represent the deterministic solution xptq and yptq, given
by (7.17). The green and blue dashed-lines represent the 0-cut of the solution via Zadeh’s
extension. The gray lines represent the α-cuts of the fuzzy solution via sup-J extension
given by (7.18). The endpoints of the α-cuts for α varying from 0 to 1 are represented
respectively from the gray-scale lines varying from white to black. Source: [138].

the diagram phase of the fuzzy solution via sup-J extension principle, given by (7.18), of

the states variables xptq and yptq.

Figure 68 – Graphical representation of the fuzzy hyocycloid curve.

5

0

5
0

0

-5-5

0.5

1

Tri-dimensional view of the fuzzy hypocycloid curve as diagram phase. The yellow solid line

represents the deterministic solutions xptq and yptq, given by (7.17). The red dashed-line

represents the 0-cut of the solution via Zadeh’s extension. The gray lines represent the

α-cuts of the fuzzy solution via sup-J extension given by (7.18). The endpoints of the

α-cuts for α varying from 0 to 1 are represented respectively from the gray-scale lines

varying from white to black. Source: [138].

The next subsection presents an application involving mechanical vibrations.
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Figure 70 – Graphical representation of the solution of a mass-spring system given as in
(7.19).

The green lines represent the deterministic solutions xptq and yptq for the coupled mechani-
cal vibration problem (7.19), for xp0q “ yp0q “ 3 and x1p0q “ y1p0q “ 0. In both subfigures,
the dashed red lines represent the 0-cut of the solution via Zadeh’s extension. The gray
lines represent the α-cuts of the fuzzy solution via sup-J extension. The endpoints of the
α-cuts for α varying from 0 to 1 are represented respectively from the gray-scale lines
varying from white to black. Source: [126]

Since B0 is symmetric, there exist 23 JPDs among the initial fuzzy numbers. Fig-

ure 70 portrays the JPD JL in the case where q “
”
1 1 1 1

ıT

and r “
”
0 ´3 0 ´3

ıT

.

The next section presents applications in epidemiology and chemical reaction

problems.

7.2 Numerical solutions for IVP’s with initial conditions given by

Jγ-interactive fuzzy numbers

In the epidemiology field, the mathematical models are fundamental tools for

understanding the dynamic and spread of the disease. These mathematical models are

usually given by ordinary or partial differential equations [46]. Here, the focus is on models

that are widely studied in the literature, such as SI, SIS, and SIR models, where S,
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Figure 76 – Graphical representation of the populations S, I and R in the SIR epidemio-

logical model.

The left to right subfigures represent respectively the susceptible, infected and recovered

populations, where Sp0q “ 1, Ip0q “ 0 and Rp0q “ 0. Source: [145]

In all these models, the number of individuals S, I, and R are uncertain, since

the immunological system of each individual reacts in different ways [13, 144]. The classical

models do not take into account this fact.

The FIVPs consider initial conditions and/or parameters uncertain in their

differential equations. However, the most FIVPs do not take into account, explicitly, the

interactivity relationship. In the epidemiological models the interactivity relationship may

arise in any restriction of the biological phenomena, such as the relations of mutualism,

protocooperation, commensalism, etc [142]. Mathematically, this interactivity is described

by the concept of interactive fuzzy numbers.

Next, numerical solutions of FDEs, which are based on the method proposed

in Chapter 5, are presented. These FDEs describe the epidemiological models SI, SIS,

and SIR.

7.2.1 Numerical solution of SI model

The SI model is described by diagram in Figure 71, and it is written mathe-

matically as follows [46] $
’&
’%

dS

dt
“ ´βSI, Sp0q “ S0

dI

dt
“ βSI, Ip0q “ I0

. (7.20)

where β is the rate of the infection of disease and S0 and I0 are given by interactive fuzzy

numbers.
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Therefore, the numerical solution based on Euler’s method adapted (see (5.15))

is given by $
&
%

Sk`1 “ Sk `γ hp´βSk ˚γ Ikq

Ik`1 “ Ik `γ hpβSk ˚γ Ikq
. (7.21)

One can observe that, a fuzzy solution for (7.20) using the joint possibility

distribution JL can also be given. Indeed, suppose that the initial values S0 and I0 are given

by interactive fuzzy numbers with respect the joint possibility distribution JL “ Jtq,ru,

given by (4.1). Note that S ˚L I and S are not necessarily interactive, even though S and I

are interactive. The same observation can be made for S ˚L I and I. Thus, the arithmetic

operations in (5.12) can not be applied. First it is necessary to make some appropriated

changes in Equation (5.12). Since a vital dynamics is not considered in this model, it

follows that Sptq ` Iptq “ p, with p P R and @t P r0, 8q. Thus the following equations are

equivalent

Sk`1 “ Sk ` hp´βSkIkq ô Sk`1 “ Skp1 ´ phβ ` hβSkq. (7.22)

In this case, Sk and p1 ´ phβ ` hβSkq are also linearly interactive and then one can use

the sup-J extension principle for JL “ Jtq,ru, where q “ hβ and r “ 1 ´ phβ. The same

holds for Ik. Thus, the fuzzy numerical solution for (7.20), with respect JL “ Jtq,ru, is

given by $
&
%

Sk`1 “ Sk ˚L p1 ´ phβ ` hβSkq

Ik`1 “ Ik ˚L p1 ` phβ ´ hβIkq
. (7.23)

In order to illustrate this method, let us consider S0 “ p4; 5; 6q and I0 “ p0; 1; 2q.

Note that S0 and I0 are interactive with respect to JL and Jγ . Chapter 5 observed that the

JPDs JL and J0 are similar (but not equal), in the case where the involved fuzzy numbers

are triangular. Hence, in order to compare these JPDs, it is depicted in Figure 77 the

fuzzy solutions provided by (7.23) and (7.21), for γ “ 0.
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Note that in all the cases that was considered, the width of the fuzzy solutions

given by J0 decreases over time. This means that it is possible to obtain a certain control

of the uncertainty in the temporal evolution of both populations.

The next subsection presents a numerical solution for the SI model considering

vital dynamics.

7.2.2 Numerical solution for SI model with vital dynamics

This subsection provides a numerical solution for the SI model with vital

dynamics. This solution is based on the Runge-Kutta adapted method (see (5.16)). Recall

that one may use the Euler adapted method as well [143]. The bidimensional SI model

with vital dynamics is given by
$
’’’’&
’’’’%

dS

dt
“ ´βSI ` pη ´ µqS,

dI

dt
“ βSI ´ µI,

Sp0q “ S0, Ip0q “ I0

, (7.24)

where η, µ, and, β are the rate of birth, death and infection of disease, respectively, and

the initial conditions S0 and I0 are given by fuzzy numbers.

In the case where the initial conditions are considered as non-interactive, the

fuzzy numerical solution have to be based on the standard arithmetic. Therefore the

solution via Runge-Kutta method of forth order is given by (7.25)
$
’&
’%

Sk`1 “ Sk `
h

6
pKS

1
` 2KS

2
` 2kS

3
` KS

4
q

Ik`1 “ Ik `
h

6
pKI

1
` 2KI

2
` 2kI

3
` KI

4
q

, (7.25)

where the values of KS
i and KI

i are given by

KS
1

“ fSptk, Sk, Ikq “ ´βSk ¨ Ik ` pη ´ µqSk,

KI
1

“ fIptk, Sk, Ikq “ βSk ¨ Ik ´ µSk,

KS
2

“ fS

ˆ
tk `

h

2
, Sk ` KS

1

h

2
, Ik ` KS

1

h

2

˙
,

KI
2

“ fI

ˆ
tk `

h

2
, Sk ` KS

1

h

2
, Ik ` KS

1

h

2

˙
,

KS
3

“ fS

ˆ
tk `

h

2
, Sk ` KS

2

h

2
, Ik ` KS

2

h

2

˙
,

KI
3

“ fI

ˆ
tk `

h

2
, Sk ` KS

2

h

2
, Ik ` KS

2

h

2

˙
,

KS
4

“ fS

`
tk ` h, Sk ` hKS

3
, Sk ` hKS

3

˘
,

KI
4

“ fI

`
tk ` h, Sk ` hKS

3
, Sk ` hKS

3

˘
.
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of γ increases, where the smallest and largest width is attached in γ “ 0 and γ “ 1,

respectively, corroborating the theoretical results.

7.2.4 Numerical solution for SIR model

Let us provide the last example in the biological field. In this case consider the

SIR model with vital dynamic. The SIR model is described by the following system

$
’’’’’’&
’’’’’’%

dS

dt
“ ´βSI ` pη ´ µqS, Sp0q “ S0

dI

dt
“ βSI ´ pµ ` νqI, Ip0q “ I0

dR

dt
“ νI ´ µR, Rp0q “ R0

, (7.29)

where η, µ, ν, β P R are the birth, mortality, recovery, and infection rates, respectively.

The fuzzy numerical solution, via Euler’s method, for (7.29) is given by

$
’’’&
’’’%

Sk`1 “ Sk `γ hp´βSk ˚γ Ik `γ pη ´ µqSkq

Ik`1 “ Ik `γ hpβSk ˚γ Ik ´γ pµ ` νqIkq

Rk`1 “ Rk `γ hpνIk ´γ µRkq

. (7.30)

Figure 84 depicts the numerical solutions considering the values γ “ 0, γ “ 0.5,

and γ “ 1. The initial conditions are given by S0 “ p75; 80; 85q, I0 “ p4; 5; 6q, and

R0 “ p0; 0; 0q. Recall that, at the beginning of the temporal evolution the recovered

population begins with 0 individuals, since there is no infection yet.

One can observe that in Figures 84 (a) and (b) the susceptible population

decreases, whereas the infected population increases. The recovery population increases

and stabilizes.

It is important to observe that it was considered the case where only the initial

conditions are given by interactive fuzzy numbers. In fact, the same methodology can be

applied in the case where the parameters are given by interactive fuzzy numbers [144].
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on chemical reactions of the type

U ` V Ñ cW, (7.31)

where U and V are the consumed reagents and W is the final product of this reaction,

with proportion c.

Some factors may influence the velocity of these reactions, for instance, con-

centration, activation energy, temperature, pressure, etc. The velocity pvq of a reaction

can be determined from v “ krU smrV sn, where k is the reaction rate, rU s and rV s are

the concentration of the reagents and m and n are the orders of the reactions, which are

determined experimentally. Thus, there may be imprecision (or uncertainty) in the process

of obtaining such parameters. The classic models do not consider this fact [65]. On the

other hand, fuzzy sets theory can be used to describe these uncertainties.

This thesis focuses on Lotka-Volterra model of oscillating chemical reactions,

which is based on a molecular mechanism where at each step the reagent molecules combine

to produce intermediate reagents or final products. Fundamentally [117]:

A ` X Ñ 2X with reaction rate k1

X ` Y Ñ 2Y with reaction rate k2 (7.32)

Y Ñ B with reaction rate k3

The effective rate laws for the reagent A, the product B, and the intermediates

reagents X and Y are described by the initial value problem (IVP) [73]:

$
’’’’’’’’’’&
’’’’’’’’’’%

drAs

dt
“ ´k1rAsrXs, rAp0qs “ rA0s

drXs

dt
“ k1rAsrXs ´ k2rXsrY s, rXp0qs “ rX0s

drY s

dt
“ k2rXsrY s ´ k3rY s, rY p0qs “ rY0s

drBs

dt
“ k3rY s, rBp0qs “ rB0s

. (7.33)

The classical solution of (7.33) is depicted in Figure 85.
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Figure 85 – Classical solution of Lotka-Volterra model of oscillating chemical reactions

given as in (7.33)

The subfigures represent the chemical reagents A, X, Y and B, with initial conditions

given by Ap0q “ Xp0q “ Y p0q “ 1 and Bp0q “ 0. Source: [139].

Law of conservation of mass guarantees that a mass is neither created nor

destroyed in chemical reactions. This means that the mass of any element at the beginning

of a reaction will be equal to the mass of that element at the end of the reaction. Moreover,

for all reagents and products in a chemical reaction, one obtains that the total mass will

be the same at any point in time in any closed system [134]. Therefore, Equation (7.34)

holds true.
drAs

dt
`

drXs

dt
`

drY s

dt
`

drBs

dt
“ 0. (7.34)

Consequently,

rAptqs ` rXptqs ` rY ptqs ` rBptqs “ k, @t P R (7.35)

for some k P R.

In particular, for initial quantities

rA0s ` rX0s ` rY0s ` rB0s “ k. (7.36)

The initial conditions and/or parameters may be uncertain [65]. In case where

the initial conditions rA0s, rX0s, rY0s and rB0s are uncertain and modeled by fuzzy numbers,

it follows that rA0s, rX0s, rY0s and rB0s need to be interactive [62] in order to guarantee

that the total quantity pkq, given in (7.36), be a real number [15].

The concept of interactivity is requiried to ensure that Equation (7.36) holds.

Moreover, interactivity is used to model the intrinsic dependence of the reagents/products

with its concentration [56]. The sum is obtained via sup-J extension principle, with J “ Jγ .
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Consequently the sum operation depends on the values of γ P r0, 1s. Hence Equations

(7.35) and (7.36) become

rAptqs `γ rXptqs `γ rY ptqs `γ rBptqs “ k, (7.37)

and

rA0s `γ rX0s `γ rY0s `γ rB0s “ k. (7.38)

Since rBs represents the concentration of the final product B, then rB0s “ 0.

The combination of (7.37) and (7.38) leads us to the following

rBs “ rA0s ´γ rAptqs `γ rX0s ´γ rXptqs `γ rY0s ´γ rY ptqs. (7.39)

Therefore it is only necessary to solve the first three equations of (7.33). The

numerical solution based on the Euler’s adapted method for this problem is given by

$
’’’’’’&
’’’’’’%

rAsk`1 “ rAsk ´γ hk1prAsk ¨γ rXskq

rXsk`1 “ rXsk `γ hpk1rAsk ¨γ rXsk ´γ k2rXsk ¨γ rY skq

rY sk`1 “ rY sk `γ hppk2rXsk ¨γ rY skq ´γ pk3rY skqq

rBsk`1 “ rA0s ´γ rAsk `γ rX0s ´γ rXsk `γ rY0s ´γ rY sk

, (7.40)

with initial conditions rA0s, rX0s, rY0s P RF .

Figures 86, 87 and 88 depict the simulations for three different “levels” of

interactivity, that is, γ “ 0, γ “ 0.5 and γ “ 0.75. The parameters used were h “ 0.125,

k1 “ 0.03, k2 “ 0.09, k3 “ 0.06 and rA0s “ rX0s “ rY0s “ p0; 1; 2q.

Note that for different values of γ one obtains different final products. This

fact is associated with the interactive arithmetic that is based on the family of the joint

possibility distribution Jγ [149].

Figure 86 reveals that for the highest level of interactivity (γ “ 0) one obtains

decreasing width for the reagents A, X and Y over time. However the width of the final

product increases initially and thereafter has few variations.

Figure 87 reveals that for γ “ 0.5 (medium level of interactivity) the width

of A, X and Y has few variations. The width of the product also has few variations but

always with width smaller than width of the fuzzy solution provided by γ “ 0.

Even though for γ “ 0.5 the reagents have a greater uncertainty than for γ “ 0,

the uncertainty in the final product is smaller. Thus, in this sense, the solution via J0.5

may describe this final product in a more precisely way.

For γ “ 0.75 the uncertainty increases over time as it was expected, since the

value of γ is closer to 1 [149]. This fact is corroborated in Figure 88.



Chapter 7. Applications in Biomathematics 195

Figure 86 – Numerical solution for (7.33) produced by the Euler’s adapted method for
γ “ 0.

The gray lines represent the α-cuts of the fuzzy solutions, where their endpoints for α

varying from 0 to 1 are represented respectively from the gray-scale lines varying from
white to black. Source: [139].

Figure 87 – Numerical solution for (7.33) produced by the Euler’s adapted method for
γ “ 0.5.

The gray lines represent the α-cuts of the fuzzy solutions, where their endpoints for α

varying from 0 to 1 are represented respectively from the gray-scale lines varying from
white to black. Source: [139].

From the chemical point of view, the joint possibility distributions J0 and J0.5

produce solutions which are qualitatively similar to the deterministic case (see Figures 86,

87 and 85). On the other hand, the joint possibility distribution J0.75 produces a numerical

solution with uncertainty so high that the final result does not resemble (qualitatively)

the deterministic case.
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Figure 88 – Numerical solution for (7.33) produced by the Euler’s adapted method for
γ “ 0.75.

The gray lines represent the α-cuts of the fuzzy solutions, where their endpoints for α

varying from 0 to 1 are represented respectively from the gray-scale lines varying from
white to black. Source: [139].

Hence, in the context of fuzzy sets theory, the relationship of interactivity (as

well as the level of interactivity given by γ) influences in the width of the final product.

This means that from the chemical point of view, different quantities and/or concentration

of the reagents produce products with different uncertainties.

The next section provides the last application of this thesis.

7.3 Fuzzy numerical sequences for Fibonacci and Discret Delay

models with initial conditions given by Jγ-interactive fuzzy

numbers

This section provides examples on Fibonacci and Delay discrete sequences,

using the interactive sum and difference obtained from Jγ (see Chapter 6).

7.3.1 Fuzzy Fibonacci Sequence

The Fibonacci sequence is a well-known sequence in Mathematics. This sequence

is defined by

xn`2 “ xn`1 ` xn, (7.41)

where x0 and x1 are the initial conditions.
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For example, if the initial conditions are given by x0 “ x1 “ 1, then the

Fibonacci sequence is given by

t1, 1, 2, 3, 5, 8, 13, 21, . . .u.

This sequence has several applications as one can find in [75].

This subsection focuses on the Fibonacci sequence where the initial conditions

X0 and X1 are Jγ-interactive fuzzy numbers, in order to illustrate the properties presented

by Chapter 6.

Hence, considering the initial conditions given by Jγ-interactive fuzzy numbers,

the Fibonacci sequence is given by

Xn`2 “ Xn`1 `γ Xn. (7.42)

where Xn`2 is a fuzzy number for all n P N.

Figures 89, 90, 91 and 92 depict the numerical simulations for the Fibonacci

sequence given by (7.42), where the initial conditions are given by X1 “ X0 “ p0; 1; 2q.

Figure 89 – Graphical representation of the Fibonacci sequence for γ “ 0.

Fibonacci sequence for γ “ 0, where the initial conditions are given by X0 “ X1 “ p0; 1; 2q.

Source: Author.



Chapter 7. Applications in Biomathematics 198

Figure 90 – Graphical representation of the Fibonacci sequence for γ “ 0.25.

Fibonacci sequence for γ “ 0.25, where the initial conditions are given by X0 “ X1 “

p0; 1; 2q. Source: Author.

Figure 91 – Graphical representation of the Fibonacci sequence for γ “ 0.5.

Fibonacci sequence for γ “ 0.5, where the initial conditions are given by X0 “ X1 “ p0; 1; 2q.

Source: Author.

Figure 92 – Graphical representation of the Fibonacci sequence for γ “ 1.

Fibonacci sequence for γ “ 1, where the initial conditions are given by X0 “ X1 “ p0; 1; 2q.

Source: Author.

One can observe that, for γ “ 1 the Fibonacci sequence obtained is the same

as the one given by the standard sum, that is, Xn`2 “ Xn`1 `^ Xn.
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Note that as long as the values of γ decreases, one obtains elements Xk with

smaller width. In fact, for γ “ 0, it follows that X2, X5, X8... are real numbers. This fact

is associated with the symmetry of the fuzzy numbers X0 and X1, as it had been prove in

Theorem 6.1.

The next subsection presents the fuzzy delay discrete sequence.

7.3.2 Delay Discrete Sequence

The discrete delay sequence is defined by

yn`2 “ yn`1 ´ ryn, (7.43)

where r P p0, 1q is a constant, y0 and y1 are the initial conditions.

For example, if the initial conditions are given by x0 “ x1 “ 1 and r “ 0.25,

then the delay discrete sequence is given by

t1, 1, 0.75, 0.5, 0.3125, 0.1875, . . .u.

This subsection focuses on the delay discrete sequence where the initial con-

ditions Y0 and Y1 are Jγ-interactive fuzzy numbers, in order to illustrate the properties

presented by Chapter 6.

Hence, considering the initial conditions given by Jγ-interactive fuzzy numbers,

the delay discrete sequence is given by

Yn`2 “ Yn`1 ´γ rYn, (7.44)

where Yn`2 is a fuzzy number for all n P N.

Figures 93, 94, 95 and 96 depict the numerical simulations for the delay discrete

sequence given by (7.44), where the initial conditions are given by X1 “ X0 “ p0; 1; 2q and

r “ 0.25.
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Figure 93 – Graphical representation of the discrete delay sequence for γ “ 0.

Discrete delay sequence for γ “ 0, where the initial conditions are given by X0 “ X1 “

p0; 1; 2q and r “ 0.25. Source: Author.

Figure 94 – Graphical representation of the discrete delay sequence for γ “ 0.25.

Discrete delay sequence for γ “ 0.25, where the initial conditions are given by X0 “ X1 “

p0; 1; 2q and r “ 0.25. Source: Author.
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Figure 95 – Graphical representation of the discrete delay sequence for γ “ 0.5.

Fibonacci sequence for γ “ 0.5, where the initial conditions are given by X0 “ X1 “ p0; 1; 2q

and r “ 0.25. Source: Author.

Figure 96 – Graphical representation of the discrete delay sequence for γ “ 1.

Discrete delay sequence for γ “ 1, where the initial conditions are given by X0 “ X1 “

p0; 1; 2q and r “ 0.25. Source: Author.

One can observe that for γ “ 1 the delay sequence obtained is the same as the

one given by the standard difference. For γ “ 0 one obtains that the sequence approximates

to the fuzzy number with width closer to 0.

In case where the delay coefficient r is given by r “ 1, it follows that the

elements Y2, Y5, Y8... are real numbers, as Theorem 6.2 reveals.

Also note that for this particular sequence the joint possibility distribution J0

is the only one that produced a sequence where all values in the support of Yk, with k P N,

are positive.
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7.4 Conclusion

This chapter provided several examples where the concept of interactivity can

be used. First, the method proposed in Chapter 4 was applied in a physical problem, where

the position, velocity and acceleration were linear connected. Second, the family of joint

possibility distributions Jγ, defined in Chapter 5, was used in order to provide numerical

solutions for epidemiological and chemical models, where the populations/reagents were

considered as Jγ-interactive. This chapter ended applying the family of joint possibility

distribution Jγ, given in Chapter 6, in the Fibonacci and delay sequences, in order to

explore the symmetry of these interactive fuzzy numbers.
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Conclusion

This thesis presented a study about fuzzy differential equations (FDEs) con-

sidering the relationship of interactivity. It was proposed some methods to solve fuzzy

initial value problems (FIVPs), where the initial conditions are given by fuzzy numbers

with different types of interactivity. To this end several types of interactive arithmetics

were provided, which give raise to methods that can be used in the solution of FDEs

analytically as well as numerically.

Before presenting the study of FDEs, it was investigated some fundamental

questions about fuzzy equations of the form A ‘J B “ C, where the operation ‘J is given

by an interactive sum or difference. In the case where A and J are free variables, it was

showed that there is always a solution for it and this solution is the maximal solution

(see Definition (3.1)). However, in the case where only J is the free variable, the equation

A ‘J B “ C not always has solution; in the affirmative case, necessary and sufficient

conditions to exist the solution were established.

The study of FDEs began by developing a theory using the linear interactivity,

which arises from the joint possibility distribution (JPD) JL (see Equation (4.7)). By

means of JL analytical solutions of FIVPs were provided, where the initial conditions are

given by linearly interactive fuzzy numbers. These solutions were obtained by the sup-J

extension principle. It was showed that the solution provided by JL is associated with

Fréchet derivative approach, in the sense that both methods produce the same solution to

FIVPs.

The linear interactivity requires that the membership functions of the fuzzy

numbers have a linear correlation. Hence, a more general JPD, denoted by Jγ (see Equation

(5.6)) was studied. This family can be applied to every pair of fuzzy numbers. From Jγ

numerical solutions of FIVPs were provided, where the fuzzy initial conditions are Jγ-

interactive. These numerical solutions were obtained by extending the classical arithmetic

operations in the Euler’s and Runge-Kutta methods. The proposed approach is not

computed via α-cuts, in contrast to the methods provided in the literature.

In addition it was proved that the difference via Jγ coincides with the g-difference

(see Equation (1.30)). This means that the g-difference is one type of interactive difference,

and consequently, embraces the notion of interactivity. Since g-difference generalizes the

gH- and H-differences, it was possible to conclude that these differences are interactive as

well. Hence the connection between interactive differences and the Hukuhara difference

(and its generalizations), investigated in Figure 2, was answered as Figure 97 depicts.
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The proposed approaches were used in applications involving Physics, Biology

and Chemistry fields. From JL, analytical fuzzy solutions of FIVPs were provided. These

FIVPs describe problems involving hypocycloid curves and a mass-spring system, where the

initial conditions are given by linearly interactive fuzzy numbers, describing the correlation

among the position, velocity and acceleration.

From Jγ numerical fuzzy solutions of FIVPs were provided. These FIVPs

describe the epidemiological models SI, SIS and SIR. Since the immunological system of

each individual reacts in different ways, different values of γ were used in order to study

these fuzzy solutions taking into account different interactivities.

Chemical reactions were studied numerically by providing numerical solutions,

via Jγ, to the FIVPs that describe the Lotka-Volterra model of oscillating chemical

reactions. The values of γ model different interactions of reagents that influence the final

result of the reaction.

Finally the JPD Jγ was used to introduce the Fibonacci and Delay discrete

sequences that incorporate the concept of interactivity. The properties of symmetry of

fuzzy numbers in these sequences were exhibited.

For further works, we intend to continue the study of FDEs by providing

an analysis of the stability of fuzzy solutions. Also we aim to establish the conditions

for the existence of the family of J -interactive derivatives. Our other goal is provide a

characterization of the family of I-interactive derivatives by means of α-cuts. In addition,

we intend to study fundamental properties of arithmetic on interactive fuzzy numbers,

such as associativity and distributivity. Finally, we aim to provide a more deeply study of

the Fibonacci and Delay sequences, using the notion of interactivity.

This thesis provides a study in the field of FDEs, using different types of

interactive arithmetic on fuzzy numbers. Some important and significant connections with

the approaches proposed in the literature were established, proving that some of them

embrace the concept of interactivity. The importance and richness of interactivity in the

context of FDE is showed in the diagram given as in Figure 99, which contains all the

contributions from this thesis.
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