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Resumo

É discutida uma modelagem numérica para aproximar o escoamento bifásico

em um meio poroso heterogêneo, levando em conta efeitos da pressão capilar dinâmica.

O sistema de equações governantes consiste em um sistema pseudo-parabólico para o

transporte da saturação e um problema elíptico de pressão-velocidade. O sistema de

transporte é reescrito a fim de se obter uma equação elíptica para a pressão capilar. Dessa

forma, é possível usar a mesma abordagem numérica para ambos os problemas. São

combinadas uma discretização por elementos finitos mistos e técnicas de volumes finitos

localmente conservativos. Uma estratégia implícita é aplicada para a solução do problema

de transporte de natureza pseudo-parabólica. Foram realizadas simulações bidimensionais

em uma variedade de regimes de escoamento com campos de permeabilidade heterogêneos

e efeitos de gravidade. Os experimentos numéricos demostram a viabilidade da formulação

proposta e podem ajudar a entender a combinação dos diferentes efeitos físicos.

Palavras-chave: Equação pseudo-parabólica; Pressão capilar dinâmica; Escoamento

bifásico; Meios porosos; Volumes finitos; Elementos finitos mistos.



Abstract

We discuss a numerical modeling to approximate a two-phase flow in a het-

erogeneous porous media taking into account effects of dynamic capillary pressure. The

governing system of equations consists of a pseudo-parabolic transport saturation system

and an elliptic pressure-velocity problem. We rewrite the transport system in order to

obtain a elliptic equation for capillary pressure. Therefore, we are able to use the same

numerical approach for both problems. We combine mixed finite element discretization

and locally conservative finite volume techniques. An implicit strategy is applied for the

numerical solution of the transport problem of pseudo-parabolic nature. We performed

two-dimensional simulations in a variety of flow regimes along with heterogeneous per-

meability fields and gravity effects. Our numerical experiments demonstrate the viability

of the proposed formulation and may help understand the combination of the different

physical effects.

Keywords: Pseudo-parabolic equation; Dynamic capillary pressure; Two-phase flow;

Porous media; Finite volume; Mixed finite element.
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Chapter 1

Introduction

The main interest of this work is the design and implementation of a numerical

scheme for approximation of a two-phase immiscible flow in porous media with dynamic

capillary pressure model to account non-equilibrium effects in difference of pressure

between the two fluids. The governing equations can be described by a pseudo-parabolic

transport equation coupled with a pressure-velocity problem of elliptic nature. Here we are

interested in solution of the two-dimensional two-phase flow problem with gravity effects

and heterogeneous fields of permeability and porosity.

1.1 Literature review

To design our novel computational approach, we must consider some recent

developments related to pseudo-parabolic differential models, in particular linked to

regularity issues. Thus, in this section we provide a brief review of the analytical and

numerical studies, as well as a brief description of experimental and thermodynamics

studies that have led to the dynamic model of capillary pressure, with no pretense of

exhausting the subject.

Significance of the non equilibrium effects on capillary pressure

Capillary pressure, the difference between pressures of fluid phases, plays a

central role in the description of two-phase flow in porous media. In the past decades, many

capillary pressure-saturation models were correlated from laboratory experiments under

equilibrium conditions. These static capillary pressure models have been used in most of

the mathematical studies on modeling of a multiphase flow in a porous medium. In most

traditional treatments of capillary pressure, it is assumed to be a function of saturation

[8, 11, 15, 83]. This standard relationship between capillary pressure and saturation is

empirical in nature, therefore it lacks a firm theoretical foundation [49].

Several experimental evidences in the past decades demonstrated that the

description of capillary pressure must include non-equilibrium effects. For example, it was

found that, in the case of large velocity regimes, the laboratory measured capillary pressure
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does not correspond to the standard model assumed under equilibrium conditions. The

works [49] and [73] present a review of these experimental studies. As a consequence, new

empirical and theoretical studies were developed to generalize the functional dependence

of capillary pressure to include dynamic effects [10, 54, 55, 60, 98].

In the recent years, the dynamic capillary pressure relationship proposed by

Hassanizadeh and Gray [51] has received considerably attention. This macroscopic model

of capillary pressure is a result of a solid thermodynamic theory of two-phase flow in a

porous medium developed by Hassanizadeh and Gray in a series of works [46, 47, 50, 51,

52]. Since then, this dynamic capillary pressure has been applied successfully to model

the two-phase flow in porous media in various contexts such as laboratory experiments [1,

14, 26, 72, 79, 82], numerical simulation [41, 42, 53, 84] and mathematics [18, 31, 32].

It is worth mentioning that some authors believe that the dynamic capillary

pressure could help to explain instabilities in gravity-driven flows and viscous fingering

phenomena [80, 103]. In this respect, gravity-driven fingers in porous medium are known

to have a nonmonotonic saturation profile (saturation overshoot) [27]. The observed satu-

ration overshoot is inconsistent with classical continuum descriptions of porous media but

qualitatively matches observations and predictions from discrete pore-filling mechanisms.

In [27], the authors suggest that pore-scale physics controls saturation overshoot and in

turn gravity-driven fingering. The dynamic capillary pressure may help to explain the

saturation overshoot phenomenon. In [32] and [31], the authors discuss extensions of

the Buckley–Leverett equation describing two-phase flow in porous media with dynamic

effects in the capillary pressure. They obtained nonmonotone weak solutions for these

extended Buckley–Leverett equation. In this connection, in the works [90, 105], the authors

study saturation and pressure overshoots with a related model that incorporates dynamic

capillary pressure and capillary pressure hysteresis.

Under certain physical assumptions, the governing equations of the two-phase

flow can be described by a transport equation for saturation coupled with a pressure-

velocity problem of elliptic nature. From a mathematical point of view, the transport

equation with the standard capillary pressure model is a degenerate nonlinear parabolic

equation on the saturation. On the other hand, when we consider the dynamic capillary

pressure model, the equation becomes pseudo-parabolic.

Definition of pseudo-parabolic equation

Pseudo-parabolic equations appear in many areas of physics, for instance, to

model imprisoned radiation through a gas [57, 58, 78], fluid flow in fissured rock [9], heat

conduction in heterogeneous media [21, 88], out-of-equilibrium viscoelastic relaxation

effects [81] and porous media applications [41, 51, 59].
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Pseudo-parabolic differential equations are characterized by having mixed time

and space derivatives appearing in the highest-order terms [62, 101]. While there is not a

single definition in the literature [68, 95, 101], we can define a pseudo-parabolic equation

as an arbitrary higher-order partial differential equation with the first-order derivative

with respect to time as follows,

∂

∂t
A(u) + B(u) = 0. (1.1)

where A and B are elliptic nonlinear operators. This equation is an example of a general

class of equations of Sobolev type, sometimes referred to as Sobolev-Galpern type [62]. It

differs from the parabolic equations by the additional higher order terms [101]. According to

[68], pseudo-parabolic equations are equations in which the operator A(u) has a continuous

inverse operator in appropriate Banach spaces. In the opposite case, the equation is said

to be a Sobolev-type equation.

Showalter and Ting [95] called this class of equation as pseudo-parabolic for

two main reasons: first, well posed initial-boundary value problems for parabolic equations

are well posed for related pseudo-parabolic equations; second, in certain cases, the solution

of an initial-boundary value problem for a parabolic equation can be obtained as the limit

of solutions to the corresponding problem for a related class of pseudo-parabolic equations.

Therefore, a solution of the parabolic equation can be approximated by a solution of

pseudo-parabolic equations [95].

Mathematical analysis

The choice of numerical approximations must be guided by the mathematical

nature of the differential model, in order to recover the same physical and mathematical

properties of the original continuous problem at the discrete level. Therefore, in connection

with the computational modeling, we must consider the recent progresses on mathematical

analysis of pseudo-parabolic differential equations, in particular, linked to the two-phase

flow in porous media.

The early existence, uniqueness, and regularity theory for pseudo-parabolic

equations [93, 94, 95, 101] predicts that the additional pseudo-parabolic term decreases the

smoothing property characteristic to parabolic problems. This character has consequences

on the behavior of the solution and it was also observed in subsequent works. For instance,

if the initial data has jump discontinuity at some point, then so does the solution for every

time [24, 25]. In general, there is no maximum principle for pseudo-parabolic equations

such as one expected of solutions to parabolic equations [99].

There are some recent results in the literature on existence and uniqueness
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of weak solutions for pseudo-parabolic equations that models distinct physical processes.

Assuming linearity of the pseudo-parabolic term, existence and uniqueness results can be

found in [35, 85] for simplified nonlinear pseudo-parabolic models related to two-phase flow

problems in porous media. On the other hand, the existence of weak solutions was studied

for degenerate nonlinear pseudo-parabolic problems associated to sorption processes in

coal [77] and unsaturated flow in porous media, respectively [76]. In addition, we refer

in particular to [17, 18], where the global existence and uniqueness results were obtained

for a more comprehensive pseudo-parabolic problem modeling two-phase flow in a porous

medium with dynamic capillary pressure.

An important issue about the pseudo-parabolic equations modeling multiphase

flow in porous media is the existence and behavior of solutions in the context of traveling

waves. Traveling waves solutions for pseudo-parabolic problems linked to unsaturated

flow in porous media is analyzed in [23, 24, 80]. On the other hand, in the context of

two-phase flow in porous media, the existence and uniqueness of traveling waves solutions

were investigated in [31, 32, 97] for pseudo-parabolic Buckley-Leverett models. It is worth

mentioning that in [32] the pseudo-parabolic equation is interpreted as a regularization of

the hyperbolic Buckley-Leverett equation.

The heterogeneous case of two-phase porous media flow model, in which dynamic

effects are taken into account in phase pressure difference is investigated in [33, 67]. In

[67], the authors investigate the singular limit as the diffusion and dispersion parameters

tend to zero, showing strong convergence towards a weak solution of the limit conservation

law. In [33], the authors consider a one-dimensional heterogeneous case, with two adjacent

homogeneous blocks separated by an interface. Therefore, the interface conditions coupling

the models in each homogeneous block are derived.

The Richards equation with a dynamic capillary pressure including hysteresis

is studied in [91], which the authors provided existence and approximation results for

degenerate capillary pressure curves.

Numerical approximation

From the point of view of numerical analysis for pseudo-parabolic differential

problems, we review the approaches available in the literature in order to better understand

the computational aspects related to the approximation of these models. In general, the

most used numerical methodologies are finite differences methods, finite volumes methods

and finite element methods. These three classes of methods were already exploited for

pseudo-parabolic problems.

The finite difference method is regarded as the simplest approach to numerical



24

solution of differential problems. In [38, 39], finite difference approximations to the solution

of a pseudo-parabolic problem are constructed and shown to converge. In [84], the authors

consider numerical modeling of unsaturated flow models incorporating dynamic capillary

pressure terms. They systematically study the difficulties associated with numerical

approximation of such equations using two classes of methods, a cell-centered finite

difference method and a locally conservative Eulerian-Lagrangian method based on the

finite difference method. A study of finite difference schemes for one-dimensional problems

with discontinuous initial data are presented in [25].

Pseudo-parabolic equations modeling fluid flow in porous media arises from

conservation laws of some physical quantity, e.g., the mass of fluid. Therefore, finite

volume techniques are quite suitable to discretize such equations. In [53], the authors use a

semi-implicit upwind finite volume scheme to study the two-phase flow in one-dimensional

heterogeneous porous media with dynamic capillary pressure. On the other hand, a fully

implicit discretization based on finite volume method is proposed in [41, 42]. In [104], the

authors study a finite volume element approximation of pseudo-parabolic equations in three

spatial dimensions. Pseudo-parabolic problems may be written in different formulations

that are equivalent in a formal point of view, however, they may lead to different numerical

schemes. In [36], the authors investigate the equivalence of three different formulations for

a class of pseudo-parabolic equations and the corresponding numerical discretizations.

Numerical methods are often used as a auxiliary tool to mathematical analysis

of PDEs. In the works [31, 32, 97], finite difference and finite volume numerical schemes

are exploited in order to illustrate the solution profile described in the traveling wave

analysis for pseudo-parabolic problems in homogeneous porous media. The heterogeneous

porous media case is studied in [33], where the authors present some numerical results

supporting the theoretical findings for an interface condition between two homogeneous

blocks.

Finite element methods constitute a huge and flexible class of numerical tech-

niques suitable to different differential problems. In [34, 37], time-stepping Galerkin

methods were proposed for pseudo-parabolic Sobolev models. The nodal superconvergence

for a Galerkin method for a quasilinear equation of Sobolev is presented and analyzed in

[7]. Interior penalty discontinuous Galerkin scheme are discussed in [65, 66] for a two-phase

porous media flow model with dynamic capillary pressure. Fourier spectral methods for

pseudo-parabolic equations were analyzed in [86].

Operator splitting techniques for the approximation of solutions of partial

differential equations have a long history and have been developed with various objectives

in mind (see, e.g., [56]). In porous media application, operator splitting has been used

successfully in the numerical approximation of parabolic models of two-phase flow [28]
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and, more recently, three-phase flow in porous media [2, 4]. In [84], an operator splitting

scheme is used to approximate the Richards’ equation with dynamic capillary pressure. In

[102], splitting schemes for a pseudo-parabolic equation were analyzed. In [61], the authors

propose a fast explicit operator splitting method to solve the modified Buckley-Leverett

equations of pseudo-parabolic nature.

Other related models

There is a very interesting connection between pseudo-parabolic and dispersive

models, specially with respect to Benjamin-Bona-Mahony (BBM) equation [13], that is an

alternative to the Korteweg-de Vries equation for describing unidirectional, long, dispersive

waves. This connection arise from the dispersive character associated to the third-order

mixed derivative operator found in both differential equations. However, in the best of our

knowledge, the relation between pseudo-parabolic and dispersive equations is not clear

in the literature and just few works connect this two class of differential models. For

instance, Benjamin-Bona-Mahony-Burgers (BBMB) equation is sometimes referred to as

pseudo-parabolic or Sobolev-type [7, 34, 45, 92]. This relation is also referenced in [97],

where the authors mention the dispersive character of third order derivative introduced in

the Buckley-Leverett equation by the rate-dependence of dynamic capillary pressure.

Regarding the new advances on non-equilibrium models for flow in porous

media, it must be mentioned that some authors has considered extensions of dynamic

capillary pressure model that include further non-equilibrium effects, such as hysteresis.

In [12], the authors propose a theoretical capillary pressure model for two-phase flow in

porous media including dynamic and hysteretic effects. Concerning this model, analytical

existence, instability results and numerical calculations are presented in [89] for flow

problems in unsaturated porous media, whereas the uniqueness of weak solutions for a

two-phase flow model is demonstrated in [16]. In [90], one and two-dimensional numerical

solutions are presented for an alternative non-equilibrium model for a modified Richards

equation which incorporates a dynamic hysteretic capillary pressure model. On the other

hand, in [96] the authors perform traveling wave analysis for a generalized model of

dynamic capillary pressure that incorporates thermodynamically constrained averaging

theory (TCAT) capillary pressure.

In [22] the authors point out that a pseudo-parabolic equation can be obtained

by Brinkman regularization of the classical Darcy’s law in two-phase flow in porous media.

Formally applying the Helmholtz operator to the saturation transport equation and using

the Brinkman velocity model, they obtain a third-order problem that is very similar to a

model of dynamic capillary pressure. They emphasize that two independent mechanisms

do lead to very similar regularization terms for the transport equation.
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1.2 Motivation and significance of the work

As presented in our brief review, several recent studies about pseudo-parabolic

equations in porous media flow problems can be found in the literature in fields of theory,

numerics and applications. We emphasize that most works in the literature for the

computational modeling of two-phase flow problems considering models for dynamic

capillary pressure are restricted to one spatial dimension. Only some few and interesting

two-dimensional simulations can be found in the literature, e.g., [66, 84, 89] and thus the

need of efforts from the community to enlarge insights on this subject is justified.

Many reliable discretizations have been proposed for the pseudo-parabolic

Richards equation modeling unsaturated flow with dynamic capillary pressure – see, for

instance, [25, 84]. Despite some similarity with pseudo-parabolic Richards equation, the

model considered in this work consists of a pseudo-parabolic Buckley-Leverett equation for

the saturation transport coupled with an elliptic pressure-velocity problem. This model

arises from governing equations written in phase formulation (see, e.g., [2] and references

cited there in), which is appropriated due to its generality with respect to the fundamental

constitutive relations as such phase relative permeabilities and capillarity pressure relations.

The pseudo-parabolic nature, induced by dynamic capillary pressure, combined with the

effects of gravity and discontinuous geologic properties leads to distinct flow regimes, but

retains typical flow path situations as such with saturation overshoot and nonmonotone

saturation profile.

As previously stated, operator splitting has been used successfully in the

numerical approximation of parabolic models of flow in porous media application [2, 4, 28].

In [5], we discussed two numerical schemes based on the operator splitting technique. We

found that the standard operator splitting may fail to capture the correct behavior of the

solutions. In this sense, the operator splitting must take into account the dispersive-like

character in both splitting steps. Thus, here we focus on a non-splitting numerical method

which is based on a fully coupled space-time mixed-hybrid finite element and finite volume

discretizations.

In the present work, we present a two-dimensional numerical study of two-phase

flow in porous media with dynamic capillary pressure taking into account different flow

regimes, heterogeneous permeability fields and gravity effects. This is a distinctive point

of this work.



27

1.3 Aims and objectives of the thesis

In general, the aim of this work is the numerical modeling of the two-phase flow

in heterogeneous porous media with dynamic effects in capillary pressure. The specific

objectives of this work are:

• To formulate a numerical approach for pseudo-parabolic problems based on mixed

finite element method;

• To simulate the flow in a two-dimensional domain;

• To study numerically the structure of solution taking into account heterogeneous

fields of porosity and permeability;

• To study numerically the combined effects of gravity and dynamic capillary pressure.

1.4 Main results and scientific contributions

In this work, we developed new computational methods to approximate the

solution of pseudo-parabolic equations linked to transport phenomena in porous media.

We used a space discretization by hybridized mixed finite element method in both elliptic

and pseudo-parabolic problems. For the time direction, we applied an implicit strategy.

This approach is a two-dimensional extension of the method proposed in [5]. Hybridized

mixed finite elements is locally conservative by construction and it is quite adequate for

accurate computation of fluxes and velocity fields in the case of heterogeneous porous

media transport problems [2, 4, 28].

The hyperbolic operator for the transport problem is approximated by a conser-

vative finite volume numerical flux. Due to the dispersive nature of the pseudo-parabolic

equation, and motivated by the numerical hyperbolic flux used in [32] and the good

one-dimensional results of [5], we chose a dispersive numeric flux. Thus, we constructed

a two-dimensional extension of the Richtmyer scheme for hyperbolic conservation laws.

We designed this extension to take advantage of the velocity field approximated by mixed

finite elements.

Our strategy of time discretization allowed us to decouple the calculations

of the saturation transport problem from the pressure-velocity system. Therefore, the

subproblems are solved sequentially. We used an implicit approach to the transport problem

leading to a system of nonlinear algebraic equations. The resulting nonlinear algebraic

problem is solved by a simple fixed-point iterative procedure. Thus, we avoided more

sophisticated techniques, such as the Newton method. Our numerical experiments showed
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that the fixed-point iteration is robust and effective alternative to solve the nonlinear

systems.

We performed a dimensional analysis of the governing system of equations

and identified the main dimensionless groups, which allowed us guide the numerical

experiments in order to study the different physical effects and flow regimes. As a result,

we investigated the interaction between gravity and dynamic capillary effects combined

with heterogeneous permeability fields. Our numerical results suggest the viability and

accuracy of the proposed approach. The mesh refinement study suggested a first-order

numerical convergence.

The scientific learning of this work embraces the Computational and Applied

Mathematics in the fields of Numerical Analysis and Computational Simulation of physical

processes. The main scientific works generated by the current thesis are listed as follows:

• The article “Computing numerical solutions of the pseudo-parabolic Buckley-Leverett

equation with dynamic capillary pressure”, published in the journal Mathematics

and Computers in Simulation [5];

• The submitted manuscript “Numerical resolution of a pseudo-parabolic Buckley-

Leverett model with gravity and dynamic capillary pressure in heterogeneous porous

media”.

1.5 Overview of the thesis

The rest of this manuscript is organized as follows: Chapter 2 presents the

mathematical model of two-phase flow problem in porous media; Chapter 3 presents

the numerical study of two operator splitting approaches applied to a one-dimensional

pseudo-parabolic problem; in Chapter 4, we describe the numerical approach based on

mixed finite element discretization; in Chapter 5, we report our numerical results on the

performance of the proposed method for homogeneous and heterogeneous media; We

present some concluding remarks and perspectives for future works in Chapter 6. In

addition, in the Appendix A, we present a preliminary stability analysis for the one-

dimensional linear pseudo-parabolic problem. Appendix B discusses a finite difference

scheme for the pseudo-parabolic problem. Finally, we present further one-dimensional

numerical experiments in Appendix C.
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Chapter 2

Mathematical model of two-phase

flow in porous media with dynamic

capillary pressure

In this chapter, we present the governing equations of the two-phase flow in

porous media with dynamic capillary pressure. The equations governing the fluid flow with

dynamic capillary pressure in two dimensions can be described using phase formulation by

a pseudo-parabolic transport equation coupled with a pressure-velocity problem of elliptic

nature. The pseudo-parabolic equation comes with the inclusion of the dynamic capillary

pressure model.

The two-phase flow model considered herein takes into account capillary forces,

general expressions for the relative permeability functions, variable porosity and perme-

ability fields and gravity effects.

2.1 Governing equations

In the discussion of the governing equations we consider two-dimensional flow

of two immiscible and incompressible fluid phases in heterogeneous porous media. We

also assume that there are no internal sources or sinks, mass transfer between phases and

thermal effects are neglected.

We indicate the wetting phase and the non-wetting phase by the subscripts w

and n, respectively. Thus, we denote by Sw and Sn the saturations of the fluid phases.

We assume that they occupy the whole pore space, i.e.,

Sw + Sn = 1. (2.1)

To describe the two-dimensional flow, we consider a domain Ω ⊂ R
2 with
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Lipschitz boundary. Then, the conservation of mass for each phase is given by,

∂

∂t
(φ ρα Sα) + ∇ · (ρα vα) = 0, x ∈ Ω, t ≥ 0, α = w , n, (2.2)

where, for phase α, Sα is the saturation, ρα is the mass density, vα is the seepage velocity

and φ is the rock porosity.

According to an extension of Darcy’s law for two-phase flow in a porous medium,

the seepage velocity of phase α is given by,

vα = −K kα

µα

ρα(∇pα − ρα g ∇Z), x ∈ Ω, t ≥ 0, α = w, n, (2.3)

where K is the absolute permeability of the rock, which measures its capability of allowing

the flow of a pure fluid. The magnitude of gravity is g and Z is the depth. For each phase

α, kα is a dimensionless function of saturation, measured in the laboratory, and µα is the

viscosity and pα denotes the pressure of phase α.

For two-phase flow model it is natural that each phase exhibits a distinct

pressure. The pressure difference between the non-wetting phase and wetting phase is

called the capillary pressure which is given by an equation of state:

pc = pn − pw, (2.4)

In standard multiphase flow models on porous media, a capillary pressure relationship

developed under static conditions is assumed. In the classical models, capillary pressure is

a function of wetting phase saturation, i.e.,

pc = pe(Sw), (2.5)

The function pe(Sw) is called static capillary pressure model. On the basis of experimen-

tal measurements, a monotonically decreasing relationship between pe and Sw can be

determined. Hassanizadeh and Gray [51] proposed a model that takes the dynamics into

account by letting the capillary pressure pc depend on the time derivative of the water

saturation Sw. Thus, we consider the model for dynamic capillary pressure given by,

pc = pe(Sw) − τH
∂

∂t
(φSw) (2.6)

with τ being a positive parameter, which is called dynamic effect coefficient. In general

models, τ may depend on Sw. The function pe(Sw) is the same static capillary pressure

model (2.5).
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2.2 Phase formulation

In order to solve the fundamental governing equations numerically, we rewrite

equations such that its mathematical nature is better understood. Thus, let us first

introduce the following auxiliary variables, i.e., the relative mobilities, the total mobility,

the fractional flow functions of the phase α, respectively:

λα =
kα

µα

, λ = λw + λn, fα =
λα

λ
. (2.7)

We define the total velocity as the sum of the velocities of the two phases:

v = vw + vn. (2.8)

After algebraic manipulations, the governing systems of equations can be

rewritten in volumetric form in a so-called phase formulation [19],

∂

∂t
(φSw) + ∇ ·

[

vfw +Kλwfn(ρw − ρn)g∇Z
]

= −∇ ·
[

Kλwfn∇pc

]

. (2.9)

The pressure-velocity system is obtained by adding, respectively, the conservation equations

(2.2) and the Darcy’s law (2.3) for the two phases. Thus, the pressure-velocity system

reads:

∇ · v = 0, v = −Kλ∇pn +Kλw ∇pc +K (λwρw + λnρn) g ∇Z. (2.10)

To complete the mathematical model we need to specify boundary and initial

conditions. The boundary conditions and initial conditions will be introduced in the

description of the numerical simulations in Chapter 5. We are setting up to calculate fluid

flows on a rectangular domain, but more general domains and other boundary conditions

can be treated by our techniques.

2.3 Dimensional analysis

Equations (2.9)-(2.10) can be nondimensionalized by identifying characteristic

values for each variable [74]. So consider the characteristic values for length Lc, velocity
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uc, porosity φc, absolute permeability Kc and capillary pressure pcc. We set:

t∗ =
t uc

Lc

, x∗ =
x
Lc

, Z∗ =
Z

Lc

, ∇∗ = Lc ∇, φ∗ =
φ

φc

K∗ =
K

Kc

, v∗ =
v
uc

, p∗
n =

pn

pcc

, p∗
c =

pc

pcc

, p∗
e =

pc

pcc

.

(2.11)

Following [74], we identify three important dimensionless groups, i.e., the capillary number

NCa, the gravity number NGr and the dynamic effect number NDy. They are given by,

NCa =
Kc pcc

µw uc Lc

, NGr =
Kc ρw g
µw uc

, NDy =
τH uc

pcc Lc φc

, (2.12)

where the capillary number NCa is interpreted as the ratio of equilibrium capillary to

viscous force; the gravity number NGr represents the ratio of gravitational to viscous force;

finally, the “dynamic effect number” NDy is interpreted as the ratio of dynamic capillary

to equilibrium capillary force. We also identify the viscosity and density ratios,

Rµ =
µw

µn

, Rρ =
ρw

ρn

. (2.13)

Remark 2.3.1. In [74], besides NDy, the authors define another dimensionless group

related to dynamic capillary force. The other number is called “dynamic number” and

represents the ratio between dynamic capillary to viscous force. We can obtain this other

number by the product NCa NDy. We choose to write the dimensionless equations in terms

of NDy.

Thus, after nondimensionalizing, the two-phase system reads:

∂

∂t∗
(φ∗Sw) +∇∗ ·

[

v∗fw +NGr K
∗ kw fn (1 −R−1

ρ ) ∇∗Z∗

]

=

−NCa ∇∗ ·
[

K∗kwfn∇∗p∗
c

]

,
(2.14a)

∇∗ · v∗ = 0, (2.14b)

v∗ = −NCa K
∗ (kw +Rµ kn) ∇∗p∗

n +NCa K
∗kw ∇∗p∗

c

+NGr K
∗ (kw +Rµ R

−1
ρ kn)∇∗Z∗,

(2.14c)

p∗
c = p∗

e(Sw) −NDy
∂

∂t∗
(φ∗Sw). (2.14d)

Note that K∗ and φ∗ stand for the heterogeneous parts of the permeability and porosity

fields, respectively.
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2.4 Computational modeling of the flow equations

From now on, we drop the superscript ∗ to indicate the nondimensionalized

quantities. For simplicity of notation, we rewrite the governing equations. The saturation

transport problems is written as follows,

∂

∂t
(φSw) + ∇ · F(v, Sw) = −∇ · [Hc(Sw) ∇pc], (2.15a)

pc = pe(Sw) − τ
∂

∂t
(φSw), (2.15b)

where τ = NDy, the term Hc is the capillary induced diffusion function and F(u, Sw) is

the convection flux and they are defined by,

Hc(Sw) = NCa K(x) kw(Sw) fn(Sw), (2.16a)

F(v, Sw) = vfw(Sw) +NGr K(x) kw(Sw) fn(Sw) [1 −R−1
ρ ] ∇Z. (2.16b)

We write the pressure-velocity system as,

∇ · v = 0, v = −Hn(Sw) ∇pn + vc + vG, (2.17)

where the coefficient Hn(Sw) is given by,

Hn(Sw) = NCa K(x)
[

kw(Sw) +Rµ kn(Sw)
]

. (2.18)

The terms vc and vG are correction velocities linked to the capillary pressure and gravity

effects, respectively. They are given by,

vc = NCa K(x) kw(Sw) ∇pc, (2.19a)

vG = NGr K(x)
[

kw(Sw) +Rµ R
−1
ρ kn(Sw)

]

∇Z. (2.19b)

Note that, when we consider the static capillary model (2.5), the transport

equation (2.15a) has a parabolic nature. On the other hand, if we assume the dynamic

model (2.6), the equation (2.15a) becomes pseudo-parabolic and a third order mixed

derivative appears in the diffusive flux.
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Chapter 3

Numerical study of operator

splitting techniques applied to the

pseudo-parabolic problem

In this chapter, we discuss two operator splitting strategies to approach the

one-dimensional pseudo-parabolic equation. Operator splitting techniques for the approxi-

mation of solutions of systems of partial differential equations arising in many fields of

application have a long history and have been developed with various objectives in mind;

see, e.g., [56] for an excellent survey of the use of operator splitting techniques along with

rigorous analysis. After splitting the differential operators, it is not a simple task to define

the local approximations and correction strategies in order to account and control the

nonlinear error. For a comprehensive list of works where distinct successful procedures

were developed on separating the underlying physical processes, see [2, 4, 28, 30, 43, 64],

and the references cited therein.

We consider the following pseudo-parabolic equation defined on an one-dimensional

domain Ω = (a , b),

∂

∂t
(φS) +

∂F (S)
∂x

= − ∂

∂x

(

H(S)
∂

∂x

(

pe(S) − τ
∂

∂t
(φS)

))

, x ∈ Ω, t > 0, (3.1)

along with the initial and boundary conditions,

S(x, 0) = η(x), x ∈ Ω, (3.2)

S(a, t) = SL, S(b, t) = SR, t > 0. (3.3)

Eq. (3.1) represents a one-dimensional version of the transport problem (2.15) linked to

the two-phase flow in porous media with dynamic capillary pressure.
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3.1 Operator splitting based on advective and diffu-

sive processes

In our first splitting scheme, we take into account convection and diffusion

effects separately. This approach has been used successfully in the numerical approximation

of parabolic models of two-phase flow [28] and, more recently, three-phase flow in porous

media [2, 4] with static capillary pressure (2.5). In [84], an operator splitting scheme

is used to approximate the Richards’ equation with dynamic capillary pressure. Those

studies are a motivation to apply this approach to the pseudo-parabolic two-phase flow

model as well. Thus, consider a splitting of the pseudo-parabolic model (3.1) as follows:

∂

∂t
(φS̃) +

∂F (S̃)
∂x

= 0, (3.4a)

∂

∂t
(φŜ) = − ∂

∂x

(

H(Ŝ)
∂

∂x

(

pe(Ŝ) − τ
∂

∂t
(φŜ)

))

. (3.4b)

So we solve the advection problem and the diffusion problem sequentially. Note that the

first equation in (3.4) is a first order hyperbolic equation, so we can use explicit strategies

to solve this subproblem. On the other hand, the second equation in (3.4) is a third order

differential equation of pseudo-parabolic type. Thus, for this subproblem it is better to

use an implicit approach.

Let us introduce the time step ∆t. We take tn = n∆t, and the integer N

defines the total simulation time T . Then, the algorithm is defined as follows:

1. Let tn = n∆t and assume that S is known for t < tn.

2. For t ∈ [tn , tn+1], solve the convection problem given by:

∂

∂t
(φS̃) +

∂F (S̃)
∂x

= 0, (3.5)

with initial condition given by S̃(x, tn) = S(x, tn).

3. Compute the diffusive effects on [tn , tn+1] by solving the equation

∂

∂t
(φŜ) = − ∂

∂x

(

H(Ŝ)
∂

∂x

(

pe(Ŝ) − τ
∂

∂t
(φŜ)

))

, (3.6)

with initial condition Ŝ(x, tn) = S̃(x, tn+1).

4. Set S(x, tn+1) = Ŝ(x, tn+1).
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Numerical scheme

For the purpose of numerical simulation, we solve each subproblem using finite

difference schemes. These schemes are based on the numerical method presented in [32]

to solve the complete model (3.1) with linear high order terms. Similar schemes are also

used in [36, 84].

For brevity, let us limit ourselves to a very short description of the numerical

method. The first and second order spatial differential operators are approximated by

standard centered finite differences, and the time differential operators are discretized by

backward Euler formula. The first order term is explicit, i.e., evaluated at tn, and the high

order derivatives are the implicit terms, i.e., evaluated at tn+1. To avoid the solution of

nonlinear algebraic systems, the nonlinear coefficients of high order terms are linearized

by taking the values in time tn.

Here, for simplicity, we present a discretization for the complete model (3.1).

We use the same ideas for each step of the operator splitting approach. Consider a uniform

partition of Ω into cells Ωi, for i = 1 , . . . , M , with length ∆x and center denoted by xi.

Let Sn
i be a finite difference approximation for S(xi , tn). A discretization of (3.1) by the

finite difference method is given by,

φi
Sn+1

i − Sn
i

∆t
+
F n

i+1/2 − F n
i−1/2

∆x
=
W n+1

i+1/2 −W n+1
i−1/2

∆x
(3.7)

where the approximations of the convective and diffusive fluxes are given by,

F n
i+1/2 = F (Sn

i ), (3.8a)

W n+1
i+1/2 = Dn

i+1/2

(

Sn+1
i+1 − Sn+1

i

∆x

)

+
Cn

i+1/2

∆t

(

Sn+1
i+1 − Sn+1

i

∆x
− Sn

i+1 − Sn
i

∆x

)

, (3.8b)

where D(S) = −H(S) p′
e(S) and C(S) = τ H(S). The coefficients are chosen as the

arithmetic mean at interfaces [36]. Because of the advective term, the time step is

determined by a necessary Courant-Friedrichs-Levy (CFL) condition for stability,

∆t
∆x

max
S∈[0,1]

{|F ′(S)|} < σCFL, (3.9)

where σCFL is a positive constant.

In Appendix B we present a two-dimensional finite difference scheme for

approximation of the two-phase flow in porous media with dynamic capillary pressure.

For more details of the constructions of such one-dimensional finite difference schemes, we

refer [32, 36].
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Numerical experiments

To discuss the viability of this approach, we present some numerical experiments

based on numerical results presented in [36]. Here, we consider the case with linear high

order terms, where we take the diffusion function H(S) to be identically 1. Following [36],

we take pe(S) = −S. The hyperbolic flux function is the Buckley-Leverett flux,

F (S) =























0, S < 0
S2

S2 + 2(1 − S)2
, 0 ≤ S ≤ 1,

1, S > 1.

(3.10)

The initial value for all examples is a Riemann data defined by,

η(x) =







SL, x ≤ 0,

SR, x ≥ 0,
(3.11)

with consistent boundary values SL and SR. We simulate the cases for τ = 5 and SR = 0

with two different inflow values: SL = 0.9 and SL = 0.55. The computation time is

T = 150 and the computational domain is (−60, 210).

Figure 3.1 shows the mesh refinement study for the operator splitting scheme.

The first solution (SL = 0.9) presents a nonmonotone profile with a plateau value [32, 36].

For the second case (SR = 0.55), the profile presents damped oscillations. The reference

solution is obtained from the numerical scheme presented in [32] with relatively large

number of 1024 cells. This reference solution is in agreement with the theoretical analysis

[32]. We can see that this operator splitting approach seems to not converge to the correct

solution by means of mesh refinement. Moreover, the qualitative structure of the solution

is not recovered. Figure 3.1 shows numerical solutions with up 512 cells, but more refined

meshes were used in our experiments and the solutions present the same incorrect profile.

In the Figure 3.1, we take the time step ∆t using (3.9) with σCFL = 0.5 for all

simulations. However, it is well-know that the error in operator splitting techniques always

depends on ∆t. Thus, we performed tests with smaller ∆t for a fixed mesh with 512 cells.

First we decrease the parameter σCFL from 0.5 to 0.001. After, we set ∆t = σ∆x2 and we

repeated the tests with decreasing σ from 1 to 0.01. The computed numerical solutions

are not in good agreement with the exact solutions from the literature and exhibit the

same incorrect profiles.

In [84], the authors compared several numerical methods for pseudo-parabolic

models linked to porous media flow with dynamic capillary pressure. They used operator

splitting schemes as well as unsplit approaches. One of those methods based on operator

splitting consists on a variant of LCELM (Locally Conservative Eulerian-Lagrangian
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Figure 3.1: Mesh refinement study to the first operator splitting approach, with τ = 5,
SR = 0 and two different left values: (left) SL = 0.9 and (right) SL = 0.55. Number of
cells used in the meshes: 64, 128, 256 and 512. The reference solution (REF) is obtained
with numerical scheme from [32] with 1024 cells.

Method). Such variant decomposes the pseudo-parabolic equation similarly to (3.4). The

numerical approximations obtained from this splitting approach in [84], similarly we found

in Fig. 3.1, does not agree with unsplit schemes. On the other hand, Pesynska [84]

presented a correction of the operator splitting LCELM scheme as well. The numerical

results of this corrected LCELM scheme agrees with the unsplit schemes. In the next

section, we will also present a corrected operator splitting scheme, but in a different

approach from that used in [84]. We also point out that the nonmonotone profiles of the

solutions were not well understood in [84].

In our current understanding, the operator splitting decomposition technique

affects the interaction between the various differential operators and the dispersive-like

character is lost. Moreover, when applied to the pseudo-parabolic equation (3.1), this

operator splitting approach decompose the time derivative term, unlike what occurs for

parabolic model. In other words, when we deal with a parabolic equation and we apply

the operator splitting technique in order to decompose the physical effects of convection

and diffusion, only the space differential term is split into two. However, in the case of

two-phase flow pseudo-parabolic equation with convection first order term, there are two

terms with time derivatives: the accumulation term and the dynamic term in the capillary

pressure. When we try to use the same idea and decompose those two physical effects, the

purely hyperbolic step of operator splitting technique lacks the time derivative from the

dynamic term.

To highlight the effects of the operator splitting technique, we consider a
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particular case of pseudo-parabolic equation (3.1) with linear high order terms:

∂S

∂t
+
∂F (S)
∂x

= ε
∂2

∂x2

(

S + τ
∂S

∂t

)

, ε > 0, τ > 0, (3.12)

which can be written as

∂

∂t

(

S − ετ
∂2S

∂x2

)

+
∂F (S)
∂x

− ε
∂2S

∂x2
= 0. (3.13)

We can see the time derivative term is (S − ετSxx)t. Now, if we use the first operator

splitting approach, we will obtain the two steps:

∂S̃

∂t
+
∂F (S̃)
∂x

= 0,
∂Ŝ

∂t
= ε

∂2

∂x2

(

Ŝ + τ
∂Ŝ

∂t

)

, (3.14)

which can be written as

∂S̃

∂t
+
∂F (S̃)
∂x

= 0,
∂

∂t

(

Ŝ − ετ
∂2Ŝ

∂x2
Ŝxx

)

− ε
∂2Ŝ

∂x2
= 0. (3.15)

Thus, we can see that the first step has a “incomplete” term in the time derivative

that affects the dispersion relation. In first order hyperbolic equation, waves of different

wavelengths have the same propagation velocities, thus the solution did not present

dispersion behavior. On the other hand, pseudo-parabolic equations without convection

term represents a controlled diffusion process. Although this argument is not rigorous,

we believe that it is closely related to the failure of this approach. In [63] and [64] the

authors present strategies to correct the operator splitting technique for nonlinear parabolic

equations.

Figure 3.1 shows the distinct numerical example in which the standard splitting

may fail if a nonlinear balance dispersive term linked to the full pseudo-parabolic Buckley-

Leverett model with dynamic capillary pressure model (3.1)-(3.3) is not properly handled.

Therefore, this motivates us to study another operator splitting approach.

3.2 Operator splitting based on dispersive-like char-

acter

The second proposed splitting scheme for the pseudo-parabolic (3.1)-(3.3) takes

into account the dispersive-like character in both subproblems. Thus, we consider the
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following splitting of the pseudo-parabolic equation (3.1),

∂

∂t
(φS̃) +

∂F (S̃)
∂x

=
∂

∂x

(

H(S̃)
∂

∂x

(

τ
∂

∂t
(φS̃)

))

, (3.16a)

∂

∂t
(φŜ) = − ∂

∂x

(

H(Ŝ)
∂

∂x

(

pe(Ŝ) − τ
∂

∂t
(φŜ)

))

. (3.16b)

Note the presence of the third order mixed derivative in both equations. The first

equation (3.16) looks like a nonlinear BBM equation and the second equation in (3.16) is

a pseudo-parabolic equation without convection term. A similar procedure is investigated

in [106] for a BBM-type equation and in [61] for a modified Buckley–Leverett equations,

both with constant coefficients in high order terms.

Similarly to the previous approach, the numerical algorithm is defined as

follows:

1. Let tn = n∆t and assume that S is known for t < tn.

2. For t ∈ [tn , tn+1], solve the problem given by:

∂

∂t
(φS̃) +

∂F (S̃)
∂x

=
∂

∂x

(

H(S̃)
∂

∂x

(

τ
∂

∂t
(φS̃)

))

, (3.17)

with initial condition given by S̃(x, tn) = S(x, tn).

3. Compute the diffusive effects on [tn , tn+1] by solving the equation

∂

∂t
(φŜ) = − ∂

∂x

(

H(Ŝ)
∂

∂x

(

pe(Ŝ) − τ
∂

∂t
(φŜ)

))

, (3.18)

with initial condition Ŝ(x, tn) = S̃(x, tn+1).

4. Set S(x, tn+1) = Ŝ(x, tn+1).

Numerical experiments

Here we present the numerical experiments for the second operator splitting

approach. To approximate the solution of each subproblem, we use finite difference schemes

based on the same ideas presented in the previous section. As in the previous simulations

presented in the Figure 3.1, we take here the time step ∆t using (3.9) with σCFL = 0.5.

We study the same test cases and Figure 3.2 shows the mesh refinement. Overall, the

numerical method was able to capture the correct behavior of the solutions reported in

the literature.
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Figure 3.2: Mesh refinement study to the second operator splitting approach, with τ = 5,
SR = 0 and two different left values: (left) SL = 0.9 and (right)SL = 0.55. Number of cells
used in the meshes: 64, 128, 256 and 512. The reference solution (REF) is obtained with
numerical scheme from [32] with 1024 cells.

Although this approach seems more successful, the goal of computational

efficiency has not been reached yet. In our implementation, we use implicit strategies for

both subproblems. Thus, the solution of each subproblem (3.17) and (3.18) is as expensive

as the solution of the complete problem (3.1). However, this is still a point to be better

explored in a future work.

Since, in our simulations, operator splitting techniques did not show good

features for this class of pseudo-parabolic equations, from now on we propose an efficient

approach not based on operator splitting.
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Chapter 4

Mixed finite element approximation

for the pseudo-parabolic two-phase

flow problem

In this chapter, we present the numerical approach to approximate the governing

equations (2.15)-(2.19). The numerical scheme is based on the mixed-hybrid finite element

and finite volumes schemes along with a implicit time discretization. We use the ideas of

one-dimensional approach presented in [5] and we extend this framework to two spatial

dimensions.

We remark that the pressure-velocity (2.17) and saturation transport (2.15)

systems compose a strongly coupled nonlinear problem. Though, by taking an explicit

approximation for hyperbolic flux (2.16b), we separate the calculation of pressure-velocity

problem from the pseudo-parabolic transport equation. Thus we solve these problems

sequentially. Similar ideas are present in some operator splitting techniques [2, 3, 75] and

IMPES (Implicit Pressure Explicit Saturation) strategies.

4.1 Approximation by mixed finite elements

We now turn our attention to the continuous-time mixed finite element ap-

proximations to the elliptic and to the pseudo-parabolic problems. For the convenience of

readers, let us write the transport system (2.15a)-(2.15b) again,

∂

∂t
(φSw) + ∇ · F(v, Sw) = −∇ · [Hc(Sw) ∇pc], (4.1a)

pc = pe(Sw) − τ
∂

∂t
(φSw) (4.1b)

Now, from the particular form of the dynamic capillary pressure (4.1b) and the

transport equation (4.1a), we can obtain a nonlinear reaction-diffusion elliptic equation
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for pc [5, 25, 36],

−∇ · [Hc(Sw) ∇pc] +
1
τ
pc = ∇ · F(v, Sw) +

1
τ
pe(Sw), (4.2)

Thus, we can write an equivalent differential system given by,

∂

∂t
(φSw) + ∇ · F(v, Sw) = −∇ · [Hc(Sw) ∇pc], (4.3a)

− ∇ · [Hc(Sw) ∇pc] +
1
τ
pc = ∇ · F(v, Sw) +

1
τ
pe(Sw), (4.3b)

This formulation is equivalent to (4.1a)-(4.1b) from a formal point of view. For the

equivalence proof for similar formulations we mention [36].

To solve the elliptic equation (4.3b) using mixed element method, first we

identify a diffusive-gradient flux w linked to capillary pressure. Thus, we can rewrite Eq.

(4.2) in its mixed form given by,

w = −Hc(Sw) ∇pc, (4.4a)

∇ · w +
1
τ
pc = ∇ · F +

1
τ
pe(Sw). (4.4b)

Note that (4.4) is still linked to an evolution equation for saturation. First, we use mixed

finite elements to approximate the pair (w , pc). The value of the capillary pressure is

then used to calculate the water saturation by solving the time evolution equation (4.3a)

by the implicit method.

Without loss of generality, consider a rectangular domain Ω = (xa , xb) ×
(ya , yb) ∈ R

2. We consider the following boundary conditions,

w · n = wb on ΓN
w , Sw = Swb on ΓD

w , (F − w) · n = vwb on ΓR
w, (4.5a)

v · n = vb on ΓN
n , pn = pnb on ΓD

n , (4.5b)

where we have

∂Ω = ΓN
n ∪ ΓD

n = ΓN
w ∪ ΓR

w ∪ ΓD
w

ΓN
n ∩ ΓD

n = ΓN
w ∩ ΓR

w = ΓN
w ∩ ΓD

w = ΓR
w ∩ ΓD

w = ∅.
(4.6)

We denote by n the unit outer vector normal to domain boundary. For the system (4.4),

we have to impose a value of capillary pressure pc on ΓD
w consistent with the Dirichlet
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condition for saturation,

pc = pcb = pe(Swb) on ΓD
w . (4.7)

Also, consider the spaces

Vc =
{

ṽ ∈ H(div; Ω) : ṽ · n = wb on ΓN
w

}

Wc = L2(Ω)

Vc0 =
{

ṽ ∈ H(div; Ω) : ṽ · n = 0 on ΓN
w

}

(4.8a)

Vn =
{

ṽ ∈ H(div; Ω) : ṽ · n = vb on ΓN
n

}

Wn = L2(Ω)

Vn0 =
{

ṽ ∈ H(div; Ω) : ṽ · n = 0 on ΓN
n

}

(4.8b)

The weak mixed formulation for (4.4) is given by seeking (w , pc) ∈ Vc × Wc

such that:

(

H−1
c w , ṽ

)

Ω
− (pc , ∇ · ṽ)Ω + 〈pcb , ṽ · n〉∂Ω = 0 (4.9a)

(∇ · w , p̃)Ω +
(1
τ
pc , p̃

)

Ω
= (∇ · F , p̃)Ω +

(

pe

τ
, p̃
)

Ω
, (4.9b)

for all (ṽ , p̃) ∈ Vc0 ×Wc0.

Similarly, the weak mixed formulation for the pressure-velocity system (2.17)

is given by seeking (u , pn) ∈ Vn ×Wn such that:

(

H−1
n v , ṽ

)

Ω
− (pn , ∇ · ṽ)Ω + 〈pnb, ṽ · n〉ΓD

n
=
(

H−1
n vcj , ṽ

)

Ω
+
(

H−1
n vGj , ṽ

)

Ω
,

(4.10a)

(∇ · v , p̃)Ω = 0, (4.10b)

for all (ṽ , p̃) ∈ Vn0 ×Wn0.

To define the numerical mesh, let {Ωi , i = 1, . . . ,M} be a uniform partition of

Ω into disjoint elements Ωi, i.e.,

Ω =
M
⋃

i=1

Ωi, Ωi ∩ Ωj = ∅, i 6= j. (4.11)

The elements Ωi have dimensions ∆x× ∆y. Let Γ = ∂Ω, Γi = ∂Ωi ∩ ∂Ω, Γij = ∂Ωi ∩ ∂Ωj.

Let V h
c ×W h

c and V h
n ×W h

n be mixed finite element spaces over {Ωi}. These

spaces are defined through local spaces V h
c i ⊂ H(div; Ωi), V h

n i ⊂ H(div; Ωi), W h
c i ⊂ L2(Ωi)
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and W h
n i ⊂ L2(Ωi) [28, 29]. Then, the global mixed finite element spaces are defined as,

V h
c =

{

ṽ ∈ Vc : ṽ|Ωi
∈ V h

c i

}

, W h
c =

{

p̃ ∈ Wc : p̃|Ωi
∈ W h

c i

}

, (4.12a)

V h
n =

{

ṽ ∈ Vn : ṽ|Ωi
∈ V h

n i

}

, W h
n =

{

p̃ ∈ Wn : p̃|Ωi
∈ W h

n i

}

. (4.12b)

Note that the functions p̃ ∈ W h
α are allowed to be discontinuous across each interface Γij,

for α = w, n, while normal component of the functions ṽ ∈ V h
α must be continuous across

Γij. In the hybridized mixed finite element method, we relax this constraint by defining,

V̂ h
c =

{

ṽ ∈
[

L2(Ω)
]2

: ṽ|Ωi
∈ V h

c i

}

, V̂ h
n =

{

ṽ ∈
[

L2(Ω)
]2

: ṽ|Ωi
∈ V h

n i

}

. (4.13a)

We then need to introduce Lagrange multipliers to enforce the required continuity on V̂ h
c

and V̂ h
n . We define the local spaces of Lagrange multipliers as the space of the normal

component of the functions in V h
c and V h

n , respectively, restricted to Γij, i.e.,

Λh
c ij =

{

ℓ̃ ∈ L2(Γij) : ℓ̃ ∈ V h
c · n|Γij

}

, (4.14a)

Λh
nij =

{

ℓ̃ ∈ L2(Γij) : ℓ̃ ∈ V h
n · n|Γij

}

, (4.14b)

We set the global Lagrange multipliers spaces as,

Λh
c =







ℓ̃ ∈ L2





⋃

i6=j

Γij



 : ℓ̃|Γij
∈ Λh

c ij, Γij 6= ∅






, (4.15a)

Λh
n =







ℓ̃ ∈ L2





⋃

i6=j

Γij



 : ℓ̃|Γij
∈ Λh

nij, Γij 6= ∅






, (4.15b)

For simplicity, we will describe the hybridized mixed element method for the two problems

in a local framework. Let wh ∈ V̂c

h
, ph

c ∈ W h
c , vh ∈ V̂n

h
, and ph

n ∈ W h
c the hybridized

mixed finite element approximations for w, pc, v, and pn, respectively. We define the local

approximations as,

wh
i = wh|Ωi

ph
c i = ph

c |Ωi
vh

i = vh|Ωi
ph

ni = ph
n|Ωi

. (4.16)

We denote the Lagrange multipliers at Γij by ℓh
c ij and ℓh

nij related to (w , pc) and (v , pn)

problems, respectively. By definition, we must have just one Lagrange multiplier per

interface. Since Γij = Γji, we have,

ℓh
c ij = ℓh

c ji ℓh
nij = ℓh

nji. (4.17)

The hybridized mixed finite element method for the diffusive system (4.4) is
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given by seeking (wh
i , p

h
c i , ℓ

h
c ij) ∈ V h

c i ×W h
c i × Λh

c ij, i = 1, . . . ,M , such that:

(

H−1
c wh

i , ṽ
)

Ωi

−
(

ph
c i , ∇ · ṽ

)

Ωi

+
∑

j 6=i

〈ℓh
c ij , ṽ · n〉Γij

= 0, (4.18a)

(

∇ · wh
i , p̃

)

Ωi

+
(1
τ
ph

c i , p̃
)

Ωi

= (∇ · F , p̃)Ωi
+
(

pe

τ
, p̃
)

Ωi

, (4.18b)

〈wh
i · nij + wh

j · nji , ℓ̃ij〉Γij
= 0, j 6= i, Γij 6= ∅, (4.18c)

for all ṽ ∈ V h
c i, p̃ ∈ W h

c i and ℓ̃ij ∈ Λh
c ij. Here, nij is the unit vector normal to Γij in the

outward direction of element Ωi.

Similarly, the hybridized mixed finite element method for the pressure-velocity

(2.17) system is given by seeking (vh
i , pn

h
i , ℓ

h
nij) ∈ W h

n j × V h
n j × Λh

nij, i = 1, . . . ,M , such

that:
(

H−1
n vh

i , ṽ
)

Ωi

−
(

ph
ni , ∇ · ṽ

)

Ωi

+
∑

j 6=i〈ℓh
nij , ṽ · n〉Γij

=

(H−1
n vci , ṽ)Ωi

+ (H−1
n vGi , ṽ)Ωi

,
(4.19a)

(

∇ · vh
i , p̃

)

Ωi

= 0, (4.19b)

〈vh
i · nij + vh

j · nji , ℓ̃ij〉Γij
= 0, j 6= i, Γij 6= ∅, (4.19c)

for all test functions ṽ ∈ V h
n i, p̃ ∈ W h

n i and ℓ̃ij ∈ Λh
nij.

4.2 Reduction to the lowest index Raviart-Thomas

spaces over rectangles

We choose the fundamental lowest index Raviart-Thomas space over rectangles

[87]. The natural local degrees of freedom on the element Ωi, are the constant value of the

scalar variables pc
h
i and pn

h
i , which we associate to the center of Ωi, and the four constant

values of the outward normal component of the gradient fluxes wh
i and vh

i across the edges

of the element [2, 28]. Thus, the Lagrange multipliers are also constants om the interfaces

of elements. We also assume the absolute permeability and porosity fields to be constant

on each element.

Now, consider a element Ωi = (xil , xir)×(yid , yiu), where the neighbor elements

are denoted by l, r, d and u (see Figure 4.1). The center of the element Ωi is denoted by

(xi , yi). We choose the same basis functions for local the spaces V h
c i and V h

n i on Ωi as

follows,

ϕil =
(x− xir)

∆x
e1, ϕir =

(x− xil)
∆x

e1, ϕid =
(y − yiu)

∆y
e2, ϕiu =

(y − yid)
∆y

e2, (4.20)
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Figure 4.1: Element Ωi and the neighbor elements.

where e1 and e2 are unit vectors of R2 in x and y direction, respectively. The basis for

W h
α i and Λh

αij, α = c, n, is given by,

ψi = 1, on Ωi, lij = 1, on Γij. (4.21)

We can write the local solutions as a linear combination of the basis functions as follows,

wh
i =

∑

j∈{l,r,d,u}

wij ϕij, ph
c i = pci ψi, ℓh

c ij = ℓcij lij, j = l, r, d, u, (4.22a)

vh
i =

∑

j∈{l,r,d,u}

vij ϕij, ph
ni = pni ψi, ℓh

nij = ℓnij lij, j = l, r, d, u. (4.22b)

We also define a discretization of the corrector velocities vh
c i and vh

Gi as a linear combination

of the basis functions,

vh
c i =

∑

j∈{l,r,d,u}

vcij ϕij, vh
Gi =

∑

j∈{l,r,d,u}

vGij ϕij, (4.23)

Figure 4.2 presents the position of the nine natural degrees of freedom for each problem.

Note that for the transport problem, in addiction to capillary pressure value, we associate

a saturation value to the element center.

If we choose the test functions in (4.18) and (4.19) as the basis functions (4.20)-

(4.21), and apply a trapezoidal rule to integrations, we can write the resulting algebraic

problem in a particularly simple form [2, 20, 28]. For elliptic problems, this quadrature

rule preserves the order of convergence [20].
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Ωj

pci
Si

wil

ℓcil

widℓcid

wir

ℓcir

wiuℓciu

Transport problem

Ωj

pni
vil

ℓnil

vidℓnid

vir

ℓnir

viuℓniu

Pressure-velocity problem

Figure 4.2: Natural degrees of freedom on the element Ωi. For each problem, there are
nine degrees of freedom: one constant value of the scalar variables, associated to the
center of Ωi; four constant values of the outward normal component of the gradient fluxes
across the edges of the element; four constant values of the the Lagrange multipliers at the
interfaces of elements. For the transport problem (left), in addition to capillary pressure,
we associate a saturation value to the element center

The local algebraic problem on Ωi for the diffusive system (4.18) is given by,

wil − 2Hci

∆x
(pci − ℓcil) = 0, (4.24a)

wir − 2Hci

∆x
(pci − ℓcir) = 0, (4.24b)

wid − 2Hci

∆y
(pci − ℓcid) = 0, (4.24c)

wiu − 2Hci

∆y
(pci − ℓciu) = 0, (4.24d)

wil + wir

∆x
+
wid + wiu

∆y
+
pci

τ
=
pei

τ
+

(Fri − Fli)
∆x

+
(Fiu − Fdi)

∆y
, (4.24e)

with the consistency conditions at interfaces Γij,

wij + wji = 0. (4.25)

The terms Fij denote an approximation of hyperbolic flux. We will discuss the a finite

volume approach for this term in Section 4.4.

Remark 4.2.1. Although we use piecewise constant in this work, the mixed finite element

approach allows us to use higher order spaces [87]. In this context, the first-order hyperbolic

flux approximation is an issue to be explored further. Conceptually, by writing the test

function as p̃ = p̃0 + p̃′, where p̃0 and p̃′ the constant and nonconstant part of p̃, it is
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possible to decompose inner product (∇ · F , p̃) = (∇ · F , p̃0) + (∇ · F , p̃′). The first term

on the right hand side can be handled by the same framework as presented here. The

second term is more intricate, but can be interpreted as a higher order term approximation

(e.g., an anti-diffusion term as a Q-form [100]).

For the system (4.19), the resulting algebraic problem on Ωi reads,

vil − 2Hni

∆x
(pni − ℓnil) = vcil + vGil, (4.26a)

vir − 2Hni

∆x
(pni − ℓnir) = vcil + vGir, (4.26b)

vid − 2Hni

∆y
(pni − ℓnid) = vcil + vGid, (4.26c)

viu − 2Hni

∆y
(pni − ℓniu) = vcil + vGiu, (4.26d)

vil + vir

∆x
+
vid + viu

∆y
= 0, (4.26e)

along with the consistency conditions at interfaces Γij,

vij + vji = 0. (4.27)

Note that, for both local systems (4.24) and (4.26), we have five equations and

nine variables linked to the element Ωi. For each problem, the four consistency conditions,

respectively (4.25) and (4.27), link the local variables of element Ωi to the variables of

neighbor elements.

We choose to eliminate the Lagrange multipliers and the gradient fluxes since

the resulting linear system is symmetric positive definite [2, 20], then we can apply a

suitable solver for linear systems. Combining the consistency conditions (4.25) and (4.27)

with the system (4.24) and (4.26), respectively, we obtain the following discrete equations

for the capillary pressure pc and non-wetting phase pressure pn:

[Heff
c ]il(pci − pcl) + [Heff

c ]ir(pci − pcr)
∆x2

+
[Heff

c ]id(pci − pcd) + [Heff
c ]iu(pci − pcu)

∆y2
+
pci

τ
= bci,

(4.28a)

[Heff
n ]il(pni − pnl) + [Heff

n ]ir(pni − pnr)
∆x2

+
[Heff

n ]id(pni − pnd) + [Heff
n ]iu(pni − pnu)

∆y2
= bni,

(4.28b)

where, the effective coefficients [Hc]eff
ij and [Hn]eff

ij across the interface Γij naturally appear



50

as a harmonic mean,

[Heff
c ]ij =

2 Hci Hcj

Hci +Hcj

, [Heff
n ]ij =

2 Hni Hnj

Hni +Hnj

. (4.29)

The right hand side terms bci and bni are given by,

bci =
pei

τ
+

(Fri − Fli)
∆x

+
(Fiu − Fdi)

∆y
, (4.30a)

bni = −
(

vcil + vcir

∆x
+
vcid + vciu

∆y

)

−
(

vGil + vGir

∆x
+
vGid + vGiu

∆y

)

. (4.30b)

The diffusive flux and velocity in each interface Γij can be calculated from the

capillary pressure and non-wetting phase pressure, respectively, of the elements Ωi and Ωj

as follows,

wil = [Heff
c ]il

(pci − pcl)
∆x

, wir = [Heff
c ]ir

(pci − pcr)
∆x

,

wid = [Heff
c ]id

(pci − pcd)
∆y

, wiu = [Heff
c ]iu

(pci − pcu)
∆y

,
(4.31)

vil = [Heff
n ]il

(pni − pnl)
∆x

+ vcil + vGil, vir = [Heff
n ]ir

(pni − pnr)
∆x

+ vcir + vGir,

vid = [Heff
n ]id

(pni − pnd)
∆y

+ vcid + vGid, viu = [Heff
n ]iu

(pni − pnu)
∆y

+ vciu + vGiu.
(4.32)

We have to define consistent approximations for the correction velocities. If

fw(Sw) 6= 0, we can write the correction velocity linked to the capillary pressure as

vc = − 1
fn(Sw)

w. (4.33)

Thus, we can determine suitable approximation for vc from the numerical approximation

of the diffusive flux w. For vG, first we define the coefficient,

HG(Sw) = NGr K(x)
[

kw(Sw) +Rµ R
−1
ρ kn(Sw)

]

, (4.34)

and using a continuity argument, we obtain

vGij = [Heff
G ]ij ∇Z · nij, [Heff

G ]ij =
2 HGi HGj

HGi +HGj

. (4.35)

The equations (4.28a) and (4.28b) define systems of algebraic equations for
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pci and pni, respectively. However, at this point these systems are nonlinear since they

are coupled through their coefficients, right hand terms and the evolution equation for

saturation. We emphasize that the right hand term bci depends on Darcy flux v through

the numerical hyperbolic fluxes Fij and bni depends on the ∇pc through the corrector

velocity approximations vcij. In the next sections, we will discuss a time discretization

and a iterative approach along with a linearization strategy. In this context, the systems

(4.28a) and (4.28b) becomes linear and symmetric positive defined, and we solve them

sequentially. In this work, the arising systems of linear equations are solved efficiently

with an algebraic multigrid method, along with the conjugate gradient method.

4.3 Discretization in time

To define the time discretization, consider that we want to approximate the

solution over time interval (0 , T ]. Let N ∈ N be the number of time steps, we take

∆t = T/N and tn = n∆t, for n = 0, 1, . . . , N . Now, we denote Sn
i and pc

n
i the numerical

approximations for Sw(x , tn) and pc(x , tn) at the center of element Ωi, respectively.

We consider an implicit discretization of (4.3a) by means of finite volume

framework. First, from the definition of diffusive flux (4.4a), rewrite the transport equation

(4.3a) as follows,

∂

∂t
(φSw) + ∇ · F(v, Sw) = ∇ · w. (4.36)

Thus, by taking advantage of the Raviart-Thomas mixed finite element formulation, we

propose the following implicit finite volume scheme for (4.36),

Sn+1
i = Sn

i − ∆t
φi

[

(F n
ri − F n

li )
∆x

+
(F n

iu − F n
di)

∆y

]

+
∆t
φi

[

(wn+1
ri + wn+1

il )
∆x

+
(wn+1

iu + wn+1
id )

∆y

]

.

(4.37)

Note that this finite volume approach uses constant values of saturation and four values of

hyperbolic fluxes and diffusive fluxes.

The first-order hyperbolic term is evaluated at time tn, hence, to evolve sat-

uration, we need the velocity field evaluated only at tn (see Eq. (2.16b)). On the other

hand, the diffusive flux is evaluated at time tn+1, therefore the capillary pressure have to

be calculated implicitly, leading to a nonlinear problem. Accordingly, we have to rewrite
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(4.28)-(4.30) to take into account the time discretization,

[Heff
c ]n+1

il

∆x2

(

pc
n+1
i − pc

n+1
l

)

+
[Heff

c ]n+1
ir

∆x2

(

pc
n+1
i − pc

n+1
r

)

+
[Heff

c ]n+1
id

∆y2

(

pc
n+1
i − pc

n+1
d

)

+
[Heff

c ]n+1
iu

∆y2

(

pc
n+1
i − pc

n+1
u

)

+
pc

n+1
i

τ
=
pe(Sn+1

i )
τ

+
(F n

ri − F n
li )

∆x
+

(F n
iu − F n

di)
∆y

,

(4.38a)

[Heff
n ]nil

∆x2
(pn

n
i − pn

n
l ) +

[Heff
n ]nir

∆x2
(pn

n
i − pn

n
r )

+
[Heff

n ]nid
∆y2

(pn
n
i − pn

n
d) +

[Heff
n ]niu

∆y2
(pn

n
i − pn

n
u) =

−
(

vc
n
il + vc

n
ir

∆x
+
vc

n
id + vc

n
iu

∆y

)

−
(

vG
n
il + vG

n
ir

∆x
+
vG

n
id + vG

n
iu

∆y

)

.

(4.38b)

Due to the advective nature of the first-order term of (4.36) we adopted the

following stability criterion:

∆t vmax

min{∆x,∆y}φmin

[

max
Sw∈[0,1]

{|f ′
w(Sw)|}

]

< σCFL, (4.39)

where vmax = max vij and φmin = minφi. The parameter σCFL is chosen to ensure stability.

We emphasize that this choice was also made based on previous one-dimensional results [5];

see also the Appendix A for convergence proof for a one-dimensional linear pseudo-parabolic

equation.

Remark 4.3.1. Alternatively to (4.37), we can simply write an implicit strategy by means

of the backward Euler procedure to the evolution equation (2.6), which reads:

Sn+1
i = Sn

i +
∆t
τφi

[

pe(Sn+1
i ) − pc

n+1
i

]

. (4.40)

This approach was used in [5, 25, 35] for one-dimensional pseudo-parabolic problems. We

also performed numerical tests with (4.40) in two-dimensional problems, but we choose

those numerical results since we obtained similar performance.
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elements. For each staggered element Ω̂̂, we define a set of all non-staggered element

indexes that intersect Ω̂̂ as I̂ = {i : Ω̂̂ ∩ Ωi 6= ∅}. To approximate the saturation Ŝn+1/2
̂

on the staggered mesh, we use a two-dimensional Lax-Friedrichs type scheme given by,

φ̂̂ Ŝ
n+1/2
̂ =

1
4

∑

i∈I̂

(φi S
n
i ) − ∆t

∆x

(

F̂̂r̂ − F̂l̂̂

)

− ∆t
∆y

(

F̂̂û − F̂d̂̂

)

, (4.41)

where the numerical flux F̂̂k̂ at the boundaries of staggered element Ω̂̂ are defined as a

arithmetic mean of the fluxes of intersected non-staggered elements. Similarly, by following

the ideas of [2], we define φ at the staggered element Ω̂̂ as,

φ̂̂ ≡ 1
4

∑

i∈I̂

φi. (4.42)

To evolve from time tn to time tn+1, the numerical flux is given by at interface

Γij of the non-staggered mesh,

F n
ij = F

(

un
i (xij , yi) , S

n+1/2
ij

)

· nij, (4.43)

where Sn+1/2
ij is defined as a arithmetic mean of saturation given by (4.41) on staggered

elements that intersect Γij. Figure 4.3 (right) shows the numerical stencil for the numerical

approximation of the hyperbolic term.

4.5 Boundary conditions

To complete the method description, we have to impose the boundary conditions

(4.5). Our local framework allows us to write easily the discrete equations for the elements

the intersects the boundary of the domain. We just have to define appropriately the values

of the some degree of freedom defined on the boundary of the domain (gradient fluxes and

Lagrange multipliers) in (4.26).

Remark 4.5.1. We assume that if a (rectangular) element Ωi intersects the boundary of

Ω at the edge Γiβ, then just one type of boundary condition for each problem is imposed

over Γiβ. So the mesh matches the boundary partition.

Let ℓwiα and ℓnjβ denote the Lagrange multipliers associated to Γiα and Γjβ,

respectively, where we define Dirichlet boundary conditions, i.e., Γiα ⊂ ∂Ωi ∩ ΓD
w and

Γjβ ⊂ ∂Ωj ∩ ΓD
n , then we impose,

ℓwiα = Swb, on Γiα, ℓnjβ = pnb, on Γiβ. (4.44)



55

Similarly, let wiα and vnjβ denote the diffusive flux and total velocity associated to Γiα

and Γjβ, respectively, where we define Neumann boundary conditions, i.e., Γiα ⊂ ∂Ωi ∩ ΓN
w

and Γjβ ⊂ ∂Ωj ∩ ΓN
n , then we impose,

viα = vb, on Γiα, wjβ = wb, on Γiβ. (4.45)

Finally, we impose the total flux (Robin) conditions for the transport problem at Γiα ⊂
∂Ωi ∩ ΓR

w by setting,

F n
iα − viα = vwb, on Γiα. (4.46)

4.6 Iterative procedure

As previously stated, the discrete equations becomes a nonlinear semi-implicit

scheme. At each time step, we solve the transport problem through an iterative procedure,

but we have to solve the pressure-velocity problem only once. To handle the nonlinear

problem, we exploit a successive approximation framework already used in one-dimensional

problem [5]. In [25], the author employs a similar strategy for approximate a pseudo-

parabolic Burguers equation.

Let k be the iteration index, we denote Sn,k
j as a approximation for at the

iteration level k and Sn
j the approximation after convergence. As an initial approximation,

we take the response of the last time step, i.e., Sn+1 , 0 = Sn and pn+1 , 0
c = pn

c , then we

solve sequentially (4.38a) and (4.37) untill the convergence. The criterion of convergence

for the iterative procedure is given by,

∥

∥

∥Sn,k − Sn,k−1
∥

∥

∥

2
< ε, (4.47)

where ε > 0 is the tolerance for the difference between the responses of the iteration levels

k − 1 and k.

The sequential time-marching approach to evolve the solution from tn and tn+1

is defined as follows,

1. Calculate the coefficients [Heff
n ]nij and the right-hand-side term bn

n , k−1
i of (4.38b)

from Sn
i and pc

n
i ;

2. Solve the linear system (4.38b) for pn
n
i ;

3. Recover the velocity field vn
i from pn

n
i ;
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4. By (4.43), calculate the numerical fluxes F n
ij from Sn

i and vn
i ;

5. Calculate the saturation Sn+1
i of next time step tn+1 by means of the following

iterative procedure:

a. Set the initial approximations Sn+1 , 0
i = Sn

i and pc
n+1 , 0
i = pc

n
i ;

b. Calculate the coefficients [Heff
c ]n+1 , k−1

ij and the right-hand-side term bc
n+1 , k−1
i

from Sn+1 , k−1
i ;

c. Solve the linear system (4.38a) for pc
n+1 , k
i ;

d. By means of (4.37), update Sn+1 , k
i from pc

n+1 , k
i ;

e. Check for convergence for S:

If not attained, go back to the step b.;

If attained, set Sn+1
i = Sn+1 , k

i .

The saturation calculation depicted in the step 5 is based in a simple and robust

fixed-point iteration to solve the nonlinear algebraic equations. This iterative procedure

concludes the presentation of our numerical approach. Appendix A shows a convergence

proof of the iterative procedure for a one-dimensional linear problem. In the next chapter,

we present numerical experiments that evinces the convergence of the iterative procedure.



57

Chapter 5

Numerical experiments

This chapter presents numerical experiments of two-phase flow in porous media

with dynamic capillary pressure. All parameters and details on the flow equations,

boundary and initial conditions and numerical experiments are described in details to

allow the proper reproduction of them. The simulations aims:

• to demonstrate the viability of the proposed numerical method;

• to study the effects of heterogeneities of porosity and permeability fields in presence

of dynamic capillary pressure and gravity.

We used the one-dimensional numerical experiments presented in [31, 32, 36]

and reproduced in [5] as reference guide to our two-dimensional experiments. It is important

to mention that gravity and viscosity ratio effects are not explored in those one-dimensional

studies. Hence, we use an one-dimensional version of our approach to study numerically

this effects and provide reference solutions for the two-dimensional simulations (see [5]

for details of the one-dimensional scheme). We implemented the method in C language

in a serial framework and we performed all the experiments on a Linux Debian 7.2.0-8

computer with processor Intel® Xeon® CPU E5-2643 v2 3.50GHz.

Since our approach does not handle degenerated values, i.e., saturation values

such that Hc(Sw) = 0, we perform only experiments that the saturation profile does

not attain degenerated values. Nevertheless, to prevent degeneracy problems on coarser

meshes, we modify the diffusion coefficient Hc(Sw) near to degeneracy points by taking

Hc(Sw) = Hcmin, if Hc(Sw) < Hcmin, with Hcmin > 0. We set Hcmin = 1 × 10−8 for all

simulations.

We chose the slab geometry to compose the boundary conditions of our simula-

tions (see Figure 5.1). We set Neumann zero flux conditions in the horizontal boundaries

(ΓD and ΓU) for both problems (transport of saturation an pressure-velocity system). For

the transport problem, we defined the saturation Sw at left boundary (ΓL) (Dirichlet

condition) according to the initial data, and zero diffusive flux (Neumann condition) at
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right boundary (ΓR),

Sw = SL, x ∈ ΓL, (5.1a)

w · n = 0, x ∈ ΓR, (5.1b)

(F − w) · n = 0, x ∈ ΓD, (5.1c)

(F − w) · n = 0, x ∈ ΓU . (5.1d)

For the pressure-velocity problem, we set the flux at left boundary (Neumann condition)

and a reference pressure at right boundary (Dirichlet condition)

v · n = −Qin, x ∈ ΓL, (5.2a)

pn = pref
n , x ∈ ΓR, (5.2b)

v · n = 0, x ∈ ΓD, (5.2c)

v · n = 0, x ∈ ΓU . (5.2d)

Ω

n

n

n

n

v · n = 0

(F−w) · n = 0

(F−w) · n = 0

v · n = 0

pn = prefn

w · n = 0Sw = SL

v · n = −Qin

y

x

Figure 5.1: Boundary conditions for slab geometry for saturation transport and pressure-
velocity problems. Zero flux conditions are imposed on top and bottom boundaries for
both problems. A total inflow flux Qin and a reference saturation are defined on left
boundary. A reference pressure pref

n and a zero diffusive flux condition are imposed on
right boundary.

The initial value for all examples is a Riemann data defined by,

η(x) =







SL, x ≤ 0,

SR, x ≥ 0,
(5.3)
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with consistent boundary values SL and SR. We focus on the case SL > SR and Qin > 0,

which the wetting phase displaces the non-wetting phase (imbibition).

Following [31, 36], we use the models of relative permeabilities and static

capillary pressure given by:

kw(Sw) = S1.5
w , kn(Sw) = (1 − Sw)1.5, pe(Sw) = −Sw, 0 ≤ Sw ≤ 1. (5.4)

We performed numerical simulations using homogeneous and heterogeneous

fields of porosity and permeability. For experiments with heterogeneous fields, we use a

log-normal model for multiscale rock heterogeneity proposed in the seminal work by Glimm

and Sharp [44]. In this model, we consider a Gaussian field ξ(x) with its distribution

determined by its mean and covariance function,

cov(ξ(x1) , ξ(x2)) = ‖x1 − x2‖−β , (5.5)

β is a scaling exponent that controls the nature of multiscale heterogeneity [44]. Its

realization on a finite lattice (e.g. a mesh grid) provides a short distance regularization [2].

Then the absolute permeability is given by,

K(x) = K0 exp(̟K ξ(x)), (5.6)

where K0 is a cutoff value for absolute permeability, and ̟K ≥ 0 is a scaling factor [44].

We assume the same multiscale field ξ(x) to construct a variable porosity field,

φ(x) = φ0 +̟φ ξ(x), (5.7)

where φ0 is a cutoff value for porosity and normalizing factor ̟φ ≥ 0 is chosen to bound

the porosity. Note that, if we take ̟K = 0 and ̟φ = 0 we have the homogeneous case. We

use the coefficient of variation CV (the ratio of the standard deviation to the mean) as a

dimensionless measure of the heterogeneity of the field. Figure 5.2 shows the high-contrast

multiscale field ξ(x) used for the simulations reported in this work.

To solve the linear system of algebraic equation, we used a implementation

of the conjugate gradient method with an algebraic multigrid (AMG) preconditioner of

Manfred Liebmann’s Parallel Toolbox [71]. It is a academic C++ package for the numerical

solution of linear systems. For the nonlinear iterative procedure, we set the tolerance

parameter as ε = 1 × 10−9 for all simulations.
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Figure 5.2: The Gaussian field ξ(x) used to define the heterogeneous rock properties. This
field is defined in a 64 × 64 geologic reference element mesh and scaling factor β = 0.5.

5.1 Refinement study

The numerical accuracy and convergence study for the proposed computational

procedure is based on a simple mesh refinement study. Thus, we compute errors in different

norms using an approximate solution on a fine mesh grid (1024 × 1024 elements) labeled

as the reference solution Sref . In order to measure the difference between the reference

solution Sref and an approximate solution Sh, at a fixed time tn of simulation, we will

use residual-errors E(h) = Sh − Sref along with Ln
q -errors defined by En

q ≡ ||E(h)||q,
q = 1, 2,∞, where,

||E(h)||∞ = max
∣

∣

∣Sh
i − Sref

i

∣

∣

∣ ,

||E(h)||q =

(

∆x∆y
M
∑

i=1

∣

∣

∣Sh
i − Sref

i

∣

∣

∣

q
)1/q

.
(5.8)

Notice, here quantity Sh
i stands for the projection of the numerical solution Sh onto the

refined mesh in the computational domain. The superscript h denotes the mesh parameter

taken as h = max(∆x , ∆y). In our simulation, we discretized the domain in square

elements, thus, h = ∆x = ∆y.

We performed numerical experiments with different values for the flow pa-

rameter. In this section, we choose to present the refinement study of a representative

simulation with the following parameters,
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Computational domain: Ω2D = (−5 , 20) × (0 , 25) Final time of simulation: T = 5.0

Left saturation value: SL = 0.85 Inflow flux: Qin = 1.0

Right saturation value: SR = 0.10 Right pressure value: pref
n = 0.0

Viscosity ratio: Rµ = 1.0 Capillary number: NCa = 1.0

Density ratio: Rρ = 1.0 Gravity number: NGr = 0.0

Dynamic effect number: NDy = 0.5 Stability parameter: σCFL = 0.5

We observe the formal convergence from numerical experiments reported in Fig

5.3 (homogeneous on the top and heterogeneous on the bottom), and Table 5.1 and Table

5.2, which shows a good resolution first-order convergence rate behavior (see right column

in Figure 5.3). Indeed, Fig 5.3 shows the refinement study, where we used meshes from

64×64 to 512×512 elements and the reference solution was obtained on 1024×1024 element

mesh. We notice that the pseudo-parabolic model lead to nonmonotone solutions. No

spurious numerical artifacts are observed. Indeed, our numerical simulations indicates that,

the nonclassical pseudo-parabolic structure persists under the presence of heterogeneities

imposed for long-range correlations and stronger heterogeneity over permeability (5.6) and

porosity (5.7) fields. The proposed scheme seems to be robust and efficient and accurate

to show features on the flow path.

Table 5.1: Refinement study with homogeneous permeability field.

Mesh h ‖E‖1 ‖E‖2 ‖E‖∞ Run time (s)

64 × 64 3.13 × 10−1 1.78 × 100 2.03 × 10−1 7.12 × 10−2 8.87 × 100

128 × 128 1.56 × 10−1 7.21 × 10−1 9.10 × 10−2 3.01 × 10−2 5.71 × 101

256 × 256 7.81 × 10−2 3.27 × 10−1 4.31 × 10−2 1.26 × 10−2 3.64 × 102

512 × 512 3.91 × 10−2 1.57 × 10−1 1.91 × 10−2 4.13 × 10−3 2.99 × 103

Table 5.2: Refinement study with heterogeneous permeability field.

Mesh h ‖E‖1 ‖E‖2 ‖E‖∞ Run time (s)

64 × 64 3.13 × 10−1 2.04 × 100 2.25 × 10−1 1.35 × 10−1 1.63 × 101

128 × 128 1.56 × 10−1 8.08 × 10−1 9.79 × 10−2 5.97 × 10−2 1.12 × 102

256 × 256 7.81 × 10−2 3.64 × 10−1 4.74 × 10−2 2.58 × 10−2 8.59 × 102

512 × 512 3.91 × 10−2 1.60 × 10−1 2.05 × 10−2 9.66 × 10−3 5.86 × 103

5.2 Numerical study of viscosity ratio effects

In this section, we study the effect of viscosity ratio Rµ in the solution profile.

The objective is to numerically study the solution behavior in different flow regimes. We

simulate cases for Rµ < 1 (i.e. the wetting phase is less viscous than the non-wetting

phase) and Rµ > 1 (the wetting phase is more viscous than the non-wetting phase). It is

worth mentioning that both cases have physical applications in two-phase flow in porous
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Figure 5.3: Numerical solutions and refinement study for saturation. Simulations are
presented for homogeneous (top) and heterogeneous permeability fields (bottom). The left
columns present the saturation profile for 1024 × 1024 element mesh. The right column
presents the numerical error with respect the reference numerical solution (1024 × 1024
elements). Dots denote the numerical error on different norms, while dashed lines are the
linear adjusted curve.

media. For Rµ > 1, we may cite the problem of water infiltration in the soil. On the other

hand, regimes where Rµ < 1 occur in petroleum reservoir applications.

In this section, we performed numerical experiments for Rµ = 0.5 , 1.0 , 2.0. For

each of value of the viscosity ratio, we used homogeneous and heterogeneous permeability

fields. We used the following simulation parameters:

Computational domain: Ω2D = (−5 , 20) × (0 , 25) Final time of simulation: T = 5.0

Left saturation value: SL = 0.85 Inflow flux: Qin = 1.0

Right saturation value: SR = 0.10 Reference pressure value: pref
n = 0.0

Viscosity ratio: Rµ = 0.5 , 2.0 Capillary number: NCa = 1.0

Density ratio: Rρ = Rµ Gravity number: NGr = 0.0

Dynamic effect number: NDy = 0.5 Stability parameter: σCFL = 0.5

Figure 5.4 shows the solution profile for saturation for the different values of

Rµ with homogeneous (left) and heterogeneous (right) permeability field. We can see

that for the smaller value of viscosity ratio, the solution profile presents viscous finger-like
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patterns , whereas for the bigger viscosity ratio these patterns are less developed. This

result in consistent with the immiscible and incompressible two-phase (water-oil) flow

problems in petroleum reservoir applications and with typical water infiltration problems

in soils. Figures 5.6 and 5.5 show the evolution of the solution profiles on the heterogeneous

permeability field for Rµ = 0.5 (left column) and Rµ = 2.0 (right column). The numerical

solutions are presented for T = 5, 7.5, 10, from top to bottom, and for Rµ = 0.5 (top) and

Rµ = 2.0. The non-classical one-dimensional pseudo-parabolic structure is observed in the

presence of heterogeneities (this structure is also similar for homogeneous media, with and

without gravity effect) where there is a nontrivial coupling between the transport equations

and flow velocities field, which is dynamically governed by the pressure equation. This

interaction have not been reported on rigorous mathematical grounds in the literature.

Figure 5.4: Numerical solutions for saturation with different values of viscosity ratio
Rµ. On the left (resp. right) column we present simulations with homogeneous (resp.
heterogeneous) geologic permeability fields. From top to bottom, we have Rµ = 0.5, 2.0.
The solutions were obtained with 1024 × 1024 elements.
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Figure 5.5: Saturation profile during the infiltration in a heterogeneous porous media (3D
view). The numerical solutions are presented for T = 5, 7.5, 10, from top to bottom, and
for Rµ = 0.5 (left) and Rµ = 2.0 (right). The solutions were obtained with 512 × 512
elements.
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Figure 5.6: Saturation profile during the infiltration in a heterogeneous porous media
(color map). The numerical solutions are presented for T = 5, 7.5, 10, from top to bottom,
and for Rµ = 0.5 (left) and Rµ = 2.0 (right). The solutions were obtained with 512 × 512
elements.
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5.3 Numerical study of gravity effects

In this section we study the gravitational effects on two-phase flow with capillary

pressure. We performed numerical simulations with several values of gravity number

NGr. We focused on two cases of direction of gravity: the predominant direction of the

flow, i.e., ∇Z = e1, and the opposite direction, i.e., ∇Z = −e1. Indeed, we simulate

cases for heterogeneous permeability fields with different coefficient of variation (CV =

0.5, 1.0). We also compare different longitudinal sections of the two-dimensional profile to

a numerical solution of one-dimensional homogeneous problem (see Appendix C for more

one-dimensional simulations). The parameters of the simulations are:

Computational domain: Ω2D = (−5 , 20) × (−5 , 20) Final time of simulation: T = 10.0

Left saturation value: SL = 0.85 Inflow flux: Qin = 1.0

Right saturation value: SR = 0.10 Reference pressure value: pref
n = 0.0

Viscosity ratio: Rµ = 2.0 Capillary number: NCa = 1.0

Density ratio: Rρ = Rµ Gravity number: NGr = 0.125,

0.25, 0.5

Dynamic effect number: NDy =, 0.25 Stability parameter: σCFL = 0.5

Figures 5.7 to 5.9 show the numerical solutions for different values of gravity

number NGr, gravity direction ∇Z and coefficient of variation of permeability field CV (K).

Figures 5.7 and 5.8 show the solution for the direction of the gravity is ∇Z = e1 and

∇Z = −e1, respectively, with CVK = 0.5. Figures 5.7 and 5.8 show the solution for

the direction of the gravity is ∇Z = e1 and ∇Z = −e1, respectively, with CVK = 1.0.

From top to bottom, the gravity number NGr varies from 0.125 to 0.5. We find that

the new procedure is accurate and robust for solving two-phase transport problems of

pseudo-parabolic nature in two space dimensions with high-contrast geologic properties

and gravity effects.

Finally, for the parameter range considered, along with distinct dimensionless

gravity numbers, viscous fingers are found to undergo interaction with dynamic capillary

pressure and gravity effects for typical flow path situations in porous media problems.

The dominant feature for these flows is the saturation overshoot, which develops a delay

mechanism when dynamic capillary pressure and gravity effects are in balance as seem

from numerical simulations from Figures 5.7 to 5.9.
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Figure 5.7: Numerical simulations for the flow in the gravity direction and heterogeneous
permeability field (CVK = 0.5). The left column presents saturation profile of the
two-dimensional simulation. The right column presents longitudinal sections for y =
6.25, 12.5, 18.75 along with the reference solution of one-dimensional homogeneous problem
(1D). The range of NGr varies from 0.125 (top) to 0.5 (bottom) and the gravity direction
is (1 , 0). These simulations use a computational mesh of 512 × 512 elements.
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Figure 5.8: Numerical simulations for the flow against the gravity and heterogeneous
permeability field (CVK = 0.5). The gravity direction is (−1 , 0) The left column presents
saturation profile of the two-dimensional simulation. The right column presents longitudinal
sections for y = 6.25, 12.5, 18.75 along with the reference solution of one-dimensional
homogeneous problem (1D). The range of NGr varies from 0.125 (top) to 0.5 (bottom) and
the gravity direction is (−1 , 0) . These simulations use a computational mesh of 512 ×
512 elements
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Figure 5.9: Numerical simulations for the flow in the gravity direction and heterogeneous
permeability field (CVK = 1.0). The left column presents saturation profile of the
two-dimensional simulation. The right column presents longitudinal sections for y =
6.25, 12.5, 18.75 along with the reference solution of one-dimensional homogeneous problem
(1D). The range of NGr varies from 0.125 (top) to 0.5 (bottom) and the gravity direction
is (1 , 0). These simulations use a computational mesh of 512 × 512 elements.
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5.4 Nonlinear model for capillary pressure

In the previous numerical experiments, we consider a linear model (5.4) for

the static part pe(Sw) of dynamic capillary pressure pc. Now, we investigate the solution

behavior taking in account more realistic model for pe. To study the nonlinear effects of

static capillary pressure model, we use the following representative model [2]:

pe(Sw) =
(1 − Sw)√

Sw

, (5.9)

This model is more diffusive for smaller values of Sw, and less diffusive for Sw near to one.

The parameters of this simulation were:

Computational domain: Ω2D = (−5 , 12) × (0 , 20) Final time of simulation: T = 7.0

Left saturation value: SL = 0.85 Inflow flux: Qin = 1.0

Right saturation value: SR = 0.10 Reference pressure value: pref
n = 0.0

Viscosity ratio: Rµ = 2.0 Capillary number: NCa = 1.0

Density ratio: Rρ = 2.0 Gravity number: NGr = 0.0

Dynamic effect number: NDy = 0.25, 0.5, 1.0 Stability parameter: σCFL = 0.25

Figure 5.10 shows the numerical saturation profile for NDy = 0.25, 0.5, 1.0. We

present one-dimensional homogeneous simulations (right) and two-dimensional experiments

with heterogeneous porous media (left). We observe that the qualitative behavior of solution

is preserved even for nonlinear model of pe(Sw). In addition, the solution can present

nonmonotone profile for higher values of the dynamic number NDy.
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Figure 5.10: Numerical solution for nonlinear static capillary pressure. We present
simulations for NDy = 0.25, 0.5, 1.0 (from top to bottom). The left column presents the
two-dimensional experiments with heterogeneous permeability fields (512 × 512 elements).
The right column presents the one-dimensional experiments in homogeneous porous media
(512 elements).
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Chapter 6

Concluding remarks

In this work, we were concerned with the construction of numerical methods to

approximate a pseudo-parabolic equation describing two-phase flow in porous media. This

equation, differently from the classical parabolic model, takes into account dynamic effects

in the pressure difference between interfaces of the two phases. Our numerical approach is

locally conservative by construction and combines mixed-hybrid finite element method

with finite volume method.

6.1 Final Considerations

The governing system is composed by a saturation transport problem and a

pressure-velocity system. We rewrote the transport problem in order to obtain a elliptic

equation for capillary pressure along with a evolution equation for saturation. This very

convenient formulation is a distinctive point of our work, because it allowed us to use the

same numerical approach – mixed-hybrid finite element method – for two parts of the

problem (the pressure-velocity and the transport problems). The appropriate choice of

approximation spaces allows us to use numerical fluxes based on finite volume technique

to deal with the hyperbolic term of the transport equation. The time discretization

decouples the pressure-velocity system from the saturation transport problem resulting in

two systems of nonlinear algebraic equations. We solved the discrete nonlinear systems

through an iterative procedure.

We performed two-dimensional experiments with different flow conditions.

Based on refinement study, we obtained good evidences of numerical convergence and

accuracy of computed solution. We also studied numerically the gravity effects and the

viscosity effects on the solution profile. We verified that for smaller viscosity ratio (wetting

phase less viscous than non-wetting phase) the solution profile presents more finger-like

patterns. In addition, we observed that when the flows occurs in gravity direction, the

solution changes from nonmonotone to monotone by increasing gravity number.
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6.2 Perspectives for future work

Finally, we point out some open subjects to explore in fields of theory, numerics

and applications that can be issues for future works:

• We presented and implemented the numerical method for one an two-dimensional

domains, but our framework can be extended to three spatial dimensions;

• The overall approach can be naturally parallelized by using, for instance, the ideas

of the domain decomposition method for elliptic problems proposed in [29];

• Computational solution of many physical problems in large domains with high

heterogeneous properties could be computationally intractable by standard fine-grid

methods. The multiscale methods were developed to reduce the computational cost

keeping needed accuracy of approximated solution. Many multiscale approaches are

based on mixed finite element methods, e.g., [6, 40, 48]. Thus, our framework can

be applied in the context of multiscale methods;

• Our approach does not handle degenerate values, however we can circumvent this by

following the ideas of [3];

• New numerical analysis techniques can be exploited to access a stability condition

based on rigorous convergence proof at least for the one-dimensional problem [7, 25];

• As mentioned in our literature review in Chapter 1, the pseudo-parabolic equations

are related to other non-equilibrium models, which may extend the dynamic capillary

pressure. A topic for future developments is to extend our framework in order to

take into account other physical phenomena such as hysteresis [89, 105];

• The mixed finite element method combined with finite volume techniques have been

successfully applied to study the three-phase in porous media with static capillary

pressure models (see, e.g. [2, 3] and the references therein). Thus, we may use the

same approach presented in this work to study numerically the three-phase problem

with dynamic capillary pressure. It is worth to mention that, in the best of our

knowledge, the three-phase flow in porous media with dynamic capillary pressure

model after Hassanizadeh and Gray [51] is an open subject in theory, experiments

and numerics.
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Appendix A

Stability analysis for a simplified

pseudo-parabolic model

The purpose of this appendix is to provide a preliminary stability analysis for

the hybrid mixed finite element method employed in the solution of the pseudo-parabolic

equation. We consider here a linear one-dimensional pseudo-parabolic model. We employ

the Van-Neumann stability analysis to the fully discrete system to obtain a consistent

stability condition. We also present a condition for the convergence of the (fixed point)

iterative procedure used in this work.

A.1 One-dimensional simplified model

Consider the linear pseudo-parabolic system defined over the one-dimensional

domain Ω = (xa , xb):

∂s

∂t
+ a

∂s

∂x
= −ε∂

2p

∂x2
, (A.1a)

p = −
(

s+ τ
∂s

∂t

)

, (A.1b)

where a > 0, ε > 0 and τ > 0. The initial and boundary conditions are given by,

s(xa , t) = sl, s(xb , t) = sr, t > 0, (A.2a)

s(x , 0) = s0(x), x ∈ Ω, (A.2b)

We rewrite the system (A.1) as follows,

− ε
∂2p

∂x2
+

1
τ
p = a

∂s

∂x
− s

τ
, (A.3a)

∂s

∂t
= −s+ p

τ
. (A.3b)
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The boundary conditions consistent with (A.2a),

p(xa, t) = pl = −sl, p(xb, t) = pr = −sr. (A.4)

Remark A.1.1. It is worth to mention that pressure-velocity system linked to the one-

dimensional two-phase flow in porous media has constant solution for the total velocity.

A.2 One-dimensinal numerical scheme

The discretization of Eq. (A.3a) by mixed finite elements method and Eq.(A.3b)

by backward Euler method leads to the numerical scheme:

−ε
(

pn+1
j−1 − 2pn+1

j + pn+1
j+1

∆x2

)

+
1
τ
pn+1

j = a

(

sn
j − sn

j−1

∆x

)

− sn+1
j

τ
(A.5a)

sn+1
j = sn

j − ∆t

(

sn+1
j + pn+1

j

τ

)

. (A.5b)

We can rewrite Eq. (A.5b) as follows,

pn+1
j = −sn+1

j − τ

(

sn+1
j − sn

j

∆t

)

. (A.6)

By replacing (A.6) in (A.5a), we get:

ε

(

sn+1
j−1 − 2sn+1

j + sn+1
j+1

∆x2

)

+
ετ

∆t

(

sn+1
j−1 − 2sn+1

j + sn+1
j+1

∆x2

)

− ετ

∆t

(

sn
j−1 − 2sn

j + sn
j+1

∆x2

)

−
(

sn+1
j − sn

j

∆t

)

= a

(

sn
j − sn

j−1

∆x

)

.

(A.7)

After algebraic manipulations, we obtain

−
(

ε∆t+ ετ

∆x2

)

sn+1
j−1 +

(

2
ε∆t+ ετ

∆x2
+ 1

)

sn+1
j −

(

ε∆t+ ετ

∆x2

)

sn+1
j+1 =

−
(

ετ

∆x2
− a∆t

∆x

)

sn
j−1 +

(

2
ετ

∆x2
− a∆t

∆x
+ 1

)

sn
j −

(

ετ

∆x2

)

sn
j+1.

(A.8)

Consider,

c1 =
ε∆t
∆x2

, c2 =
ετ

∆x2
, c3 =

a∆t
∆x

, (A.9)
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thus we write the scheme as follows,

− (c1 + c2) sn+1
j−1 + (2c1 + 2c2 + 1) sn+1

j − (c1 + c2) sn+1
j+1 =

− (c2 − c3) sn
j−1 + (2c2 − c3 + 1) sn

j − (c2) sn
j+1.

(A.10)

A.3 Linear stability analysis

To analyze the stability of scheme (A.10), we use the Van-Neumann approach

to stability analysis. The von Neumann stability analysis is based on Fourier analysis and

hence is generally limited to constant coefficient linear PDEs [70]. For simplicity, in this

section we apply this approach to the Cauchy problem (initial value problem).

Suppose we can express sn
j as a linear combination of the grid functions

exp(i jξ∆x) for all ξ in the range [−π/∆x , π/∆x]. Consider the function Ên(ξ) corre-

sponding to the direct analogue of the Fourier transform in the discrete case,

Ên(ξ) =
∆x√

2π

∞
∑

−∞

sn
j exp(−i jξ∆x). (A.11)

Multiplying Eq. (A.8) by exp(−i jξ∆x) and summing over j, we obtain,

− (c1 + c2) e−iξ∆xÊn+1 + (2c1 + 2c2 + 1) Ên+1
j − (c1 + c2) eiξ∆xÊn+1 =

− (c2 − c3) e−iξ∆xÊn + (2c2 − c3 + 1) Ên − (c2) eiξ∆xÊn;
(A.12a)

[

− (c1 + c2) e−iξ∆x + (2c1 + 2c2 + 1) − (c1 + c2) eiξ∆x
]

Ên+1 =
[

− (c2 − c3) e−iξ∆x + (2c2 − c3 + 1) − (c2) e−iξ∆x
]

Ên;
(A.12b)

[

1 + (c1 + c2)
(

2 −
(

e−iξ∆x + eiξ∆x
))]

Ên+1 =
[

1 + c2

(

2 −
(

e−iξ∆x + eiξ∆x
))

− c3

(

1 − e−iξ∆x
)]

Ên.
(A.12c)

Using the identities,

cos(ξ∆x) =
e−iξ∆x + eiξ∆x

2
, sin2

(

ξ∆x
2

)

=
1 − cos(ξ∆x)

2
, (A.13)

we obtain,

[

1 + 4(c1 + c2) sin2

(

ξ∆x
2

)]

Ên+1 =

[

1 + 4c2 sin2

(

ξ∆x
2

)

− c3

(

1 − e−iξ∆x
)

]

Ên,

(A.14a)
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Ên+1 =





1 + 4c2 sin2
(

ξ∆x
2

)

− c3

(

1 − e−iξ∆x
)

1 + 4(c1 + c2) sin2
(

ξ∆x
2

)



 Ên. (A.14b)

Thus, the amplification factor G(ξ) is given by,

G(ξ) =
1 + 4c2 sin2

(

ξ∆x
2

)

− c3

(

1 − e−iξ∆x
)

1 + 4(c1 + c2) sin2
(

ξ∆x
2

) . (A.15)

For stability of the numerical scheme, the amplification factor must satisfy |G| ≤ 1. We

have,

|G|2 =

[

1 + 4c2 sin2
(

ξ∆x
2

)

− c3 (1 − cos(ξ∆x))
]2

+ [c3 sin(ξ∆x)]2
[

1 + 4(c1 + c2) sin2
(

ξ∆x
2

)]2 , (A.16a)

|G|2 =

[

1 + (4c2 − 2c3) sin2
(

ξ∆x
2

)]2
+ [c3 sin(ξ∆x)]2

[

1 + 4(c1 + c2) sin2
(

ξ∆x
2

)]2 , (A.16b)

|G|2 =





1 + 4c2 sin2
(

ξ∆x
2

)

1 + 4(c1 + c2) sin2
(

ξ∆x
2

)





2








1 −
2c3 sin2

(

ξ∆x
2

)

1 + 4c2 sin2
(

ξ∆x
2

)





2

+





c3 sin(ξ∆x)

1 + 4c2 sin2
(

ξ∆x
2

)





2




 .

(A.16c)

We identify two factors, the first one linked to diffusion and the other to the advection

term. For the first factor, we have,

1 + 4c2 sin2
(

ξ∆x
2

)

1 + 4(c1 + c2) sin2
(

ξ∆x
2

) ≤ 1, ∀ξ ∈ R. (A.17)

Thus we need to limit just the second factor. Using the identity,

sin (ξ∆x) = 2 sin

(

ξ∆x
2

)

cos

(

ξ∆x
2

)

, (A.18)
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we obtain,



1 −
2c3 sin2

(

ξ∆x
2

)

1 + 4c2 sin2
(

ξ∆x
2

)





2

+





c3 sin(ξ∆x)

1 + 4c2 sin2
(

ξ∆x
2

)





2

=



1 −
2c3 sin2

(

ξ∆x
2

)

1 + 4c2 sin2
(

ξ∆x
2

)





2

+





2c3 sin
(

ξ∆x
2

)

cos
(

ξ∆x
2

)

1 + 4c2 sin2
(

ξ∆x
2

)





2

=

1 −
4c3 sin2

(

ξ∆x
2

)

1 + 4c2 sin2
(

ξ∆x
2

) +
4c2

3 sin2
(

ξ∆x
2

)

sin2
(

ξ∆x
2

)

[

1 + 4c2 sin2
(

ξ∆x
2

)]2 +
4c2

3 sin2
(

ξ∆x
2

)

cos2
(

ξ∆x
2

)

[

1 + 4c2 sin2
(

ξ∆x
2

)]2 =

1 −
4c3 sin2

(

ξ∆x
2

)

1 + 4c2 sin2
(

ξ∆x
2

) +
4c2

3 sin2
(

ξ∆x
2

)

[

1 + 4c2 sin2
(

ξ∆x
2

)]2 ,

(A.19)

where we use the fundamental identity,

sin2

(

ξ∆x
2

)

+ cos2

(

ξ∆x
2

)

= 1. (A.20)

Consider the change of variables,

η = sin2

(

ξ∆x
2

)

. (A.21)

Thus, we define the function,

g(η) = 1 − 4c3η

1 + 4c2η
+

4c2
3η

(1 + 4c2η)2 , 0 ≤ η ≤ 1. (A.22)

Now, we will study the maximun of the function g(η). The first derivative of g(η) is given

by,

g′(η) =
4c3(c3 − 1) + 16c2c3(1 − c3)η

(1 + 4c2η)3
. (A.23)

The critical point of g(η) is,

η∗ =
1

4c2

. (A.24)

To classify this critical point, we study the sign of g′(η). There are two cases,

c3 < 1, c3 > 1. (A.25)
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Case c3 < 1: Here we have,

g′(η) < 0, η < η∗,
g′(η) > 0, η > η ∗ .

(A.26)

Thus the function g(η) changes from decreasing to increasing and η∗ is a local minimum.

We have to evaluate g(η) at the boundary of the interval,

g(0) = 1, g(1) = 1 − 4c3

1 + 4c2

+
4c2

3

(1 + 4c2)2
. (A.27)

We have to impose,

1 − 4c3

1 + 4c2

+
4c2

3

(1 + 4c2)2
< 1, (A.28)

that is,

c3 < 1 + 4c2. (A.29)

We have c3 < 1 in this case.

Case c3 > 1: Here we have,

g′(η) > 0, η < η∗,
g′(η) < 0, η > η ∗ .

(A.30)

The function g(η) changes from increasing to decreasing, thus η∗ is a local maximum. If

0 ≤ η∗ ≤ 1, then we evaluate,

g(η∗) = 1 − c3

2c2

+
c2

3

4c2

, (A.31)

and we impose,

1 − c3

2c2

+
c2

3

4c2

< 1, (A.32)

that is,

0 < c3 < 2. (A.33)

If η∗ > 1, we have to evaluate g(1),

c3 < 1 + 4c2. (A.34)
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As the critical point is defined by,

η∗ =
1

4c2

=
∆x2

4ετ
, (A.35)

we can always have 0 ≤ η∗ ≤ 1 with mesh refinement.

Therefore, a stability condition for the method is given by,

a∆t
∆x

< 2. (A.36)

This condition resembles the CFL condition for explicit schemes for numerical solution of

linear conservation laws. This reflects the fact that the hyperbolic flux is approximated by

a explicit rule.

A.4 Convergence of iterative procedure

The numerical scheme defined by (A.5) is solved by a fixed-point iterative

procedure. Le k be the iteration index, thus the iterative procedure is given by:

−ε




pn+1 , k
j−1 − 2pn+1 , k

j + pn+1 , k
j+1

∆x2



+
1
τ
pn+1 , k

j = a

(

sn
j − sn

j−1

∆x

)

− sn+1 , k
j

τ
(A.37a)

sn+1 , k+1
j = sn

j − ∆t





sn+1, , k
j + pn+1 , k

j

τ



 . (A.37b)

In this section, we proof the convergence of the iterative procedure by means of the

Banach Fixed Point Theorem [69]. Thus, we write the scheme in an matrix form,

A Pn+1 , k = B Sn − 1
τ

Sn+1 , k + v, (A.38a)

Sn+1 , k+1 = Sn − ∆t
τ

(

Sn+1, , k + Pn+1 , k
)

, (A.38b)

where we define the vectors of unknowns,

Sn+1, , k =
(

sn+1, , k
j

)

, Pn+1, , k =
(

pn+1, , k
j

)

. (A.39)
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and the matrices

A = (ai , j) ai , j =































































2ε
∆x2

+
1
τ
, j = i,

− ε

∆x2
, j = i− 1,

− ε

∆x2
, i = j + 1,

0, otherwise.

B = (bi , j) bi , j =







































a

∆x
, j = i,

− a

∆x
, j = i− 1,

0, otherwise.

The vector v is the boundary conditions vector.

We can write the solution of (A.38a) as a function of saturation,

Pn+1 , k = A−1B Sn − 1
τ

A−1 Sn+1 , k + A−1 v (A.41)

Thus, by replacing (A.41) in (A.38b) we have,

Sn+1 , k+1 =

(

−∆t
τ

I +
∆t
τ 2

A−1

)

Sn+1, , k +

(

I − ∆t
τ

A−1B

)

Sn − ∆t
τ

A−1v, (A.42)

The matrix of the iterative procedure is given by,

M = −∆t
τ

I +
∆t
τ 2

A−1 (A.43)

For the convergence of the iterative procedure, we must have,

ρ(M) = max |λM| ≤ α < 1. (A.44)

The matrix A is a Toeplitz tridiagonal symmetric matrix and its eigenvalues

are known,

λr
A

=
2ε

∆x2

[

1 + cos
(

rπ

m+ 1

)]

+
1
τ
, 1 ≤ r ≤ m. (A.45)

Thus we have

min |λr
A

| > 1
τ
, max |λr

A
| < 4ε

∆x2
+

1
τ

(A.46)
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The eigenvalues of M can be written as function of the eigenvalues of A,

λr
M

= −∆t
τ

+
∆t
τ 2

(λr
A

)−1 , (A.47)

Thus,

|λr
M

| =

∣

∣

∣

∣

∣

−∆t
τ

+
∆t
τ 2

(λr
A

)−1

∣

∣

∣

∣

∣

<
∆t
τ

+
∆t
τ 2

(min |λr
A

|)−1 < 2
∆t
τ

(A.48)

Then we impose,

2
∆t
τ
< 1, (A.49)

that is,

∆t <
τ

2
. (A.50)

Condition (A.50) must be satisfied to ensure that the sequence defined by

the iterative procedure (A.37) converges to the solution of (A.5). Therefore, besides the

stability condition (A.36), we have to choose the time step ∆t restricted by the dynamic

effect coefficient τ .
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Appendix B

Finite difference method for

two-phase flow with dynamic

capillary pressure

We present a finite difference scheme for two-dimensional pseudo-parabolic

problems modeling the two-phase flow in porous media with dynamic capillary pressure.

The purpose of using finite difference scheme in this work is corroborate the numerical

results of our mixed finite element approach.

Here we use a uniform rectangular mesh and cell-centered finite differences. To

construct this scheme, we use may ideas learned from the mixed finite element method.

The mixed finite element framework has two advantages [20]: it yields a very natural and

physical discretization of the boundary conditions; and it gives a consistent way of defining

a gradient flux, as in the mixed formulation.

B.1 Finite difference scheme tor the pseudo-parabolic

transport equation

Consider the pseudo-parabolic transport equation written as follows,

∂

∂t
(φSw) + ∇ · F(v , Sw) = ∇ ·

[

H(Sw) ∇
(

pe(Sw) + τ
∂

∂t
(φSw)

)]

. (B.1)

For convenience, here we assume that pc is defined as pc = pw − pn, thus pe(Sw) is a

nondecreasing function. If we assume that the function pe(Sw) is differentiable, then we

can write (B.1) as,

∂

∂t
(φSw) + ∇ · F(v , Sw) = ∇ ·

[

H(Sw) p′
e ∇Sw + τ H(Sw) ∇ ∂

∂t
(φSw)

]

. (B.2)
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So we define the coefficients,

D(Sw) = H(Sw) p′
e(Sw) C(Sw) = τ H(Sw). (B.3)

We also identify the diffusive flux w as given by,

w = H(Sw) ∇
(

pe(Sw) + τ
∂

∂t
(φSw)

)

= D(Sw) ∇Sw + C(Sw) ∇ ∂

∂t
(φSw). (B.4)

Now, we will discuss a finite difference approach for the pseudo-parabolic

equation (B.2).

Consider a uniform partition of Ω into rectangular subdomains Ωi, for i =

1 , . . . , M , with dimensions ∆x × ∆y. The center of each subdomain Ωi is denoted by

(xi , yi). Given a final time of simulation T , consider a uniform partition of the interval

[0 , T ] into N subintervals. The time step ∆t = T/N is usually defined by a stability

condition. We denote the time instants as tn = n∆t, for n = 0 , . . . , N .

Let Sn
i be a finite difference approximation for Sw(xi , yi , tn). A discretization

of (B.2) by the finite difference method is given by,

φi
Sn+1

i − Sn
i

∆t
+
F n

ir − F n
il

∆x
+
F n

iu − F n
id

∆y
=
W n+1

ir −W n+1
il

∆x
+
W n+1

iu −W n+1
id

∆y
, (B.5)

where the approximation of the diffusive flux is given by a centered difference formula,

W n+1
ir = Dn

ir

(

Sn+1
r − Sn+1

i

∆x

)

+
Cn

ir

∆t

(

Sn+1
r − Sn+1

i

∆x
− Sn

r − Sn
i

∆x

)

, (B.6a)

W n+1
iu = Dn

iu

(

Sn+1
u − Sn+1

i

∆y

)

+
Cn

iu

∆t

(

Sn+1
u − Sn+1

i

∆y
− Sn

u − Sn
i

∆y

)

. (B.6b)

The coefficients are chosen as the arithmetic mean at interfaces,

Dn
ir =

Dn
i +Dn

r

2
, Diu =

Dn
i +Dn

u

2
, (B.7a)

Cn
ir =

Cn
i + Cn

r

2
, Ciu =

Cn
i + Cn

u

2
. (B.7b)

where Dn
i = D(Sn

i ) and Ci = C(Sn
i ).

We chose to use the coefficients at time tn. This choice leads to a algebraic
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linear system over the unknowns Sn+1
i . The algebraic equations may be written as,

ai , d S
n+1
d + ai , l S

n+1
l + ai , i S

n+1
i + ai , r S

n+1
r + ai , u S

n+1
u = bi, (B.8)

where,

bi = φi S
n
i − ∆t

∆x
(Fir − Fil) − ∆t

∆y
(Fiu − Fid)

−CilS
n
l − (Cil + Cir)Sn

r + CirS
n
r

∆x2
− CidS

n
d − (Cid + Ciu)Sn

i + CuS
n
u

∆y2
,

(B.9)

and the coefficients are given by,

ai , d = −∆tDid + Cid

∆y2
, ai , u = −∆tDiu + Ciu

∆y2
, (B.10a)

ai , l = −∆tDil + Cil

∆x2
, ai , r = −∆tDir + Cir

∆x2
, (B.10b)

ai , i = −(ai , d + ai , u + ai , l + ai , r) + φi (B.10c)

We still have to define how to impose the boundary conditions. Therefore, we

will write the algebraic equations for the subdomains that intersects the boundary.

The zero flux condition is imposed at bottom (ΓD) and the top (ΓU) of the

domain by taking,

Fid − Vid = 0, ∂Ωi ∩ ΓD 6= ∅, (B.11a)

Fiu − Viu = 0, ∂Ωi ∩ ΓU 6= ∅. (B.11b)

On the other hand, to impose the Dirichlet conditions at left (ΓL) and right (ΓR) boundaries

of the domain, we have to redefine the fluxes. We use the following approximation for the

diffusive fluxes:

Wil = Di

(

Sn+1
i − SL

∆x/2

)

+
Ci

∆t

(

Sn+1
i − SL

∆x/2
− Sn

i − SL

∆x/2

)

, ∂Ωi ∩ ΓL 6= ∅, (B.12a)

Wir = Di

(

SR − Sn+1
i

∆x/2

)

+
Ci

∆t

(

SR − Sn+1
i

∆x/2
− SR − Sn

i

∆x/2

)

, ∂Ωi ∩ ΓR 6= ∅. (B.12b)
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The hyperbolic fluxes are given as follows,

Fil = f(SL), ∂Ωi ∩ ΓL 6= ∅, (B.13a)

Fir = f(SR), ∂Ωi ∩ ΓR 6= ∅. (B.13b)

B.2 Finite difference scheme tor the elliptic pressure-

velocity problem

For reading convenience, let us rewrite the equations of pressure-velocity system,

∇ · v = 0, v = −Hn∇pn + vc + vG, (B.14)

where the coefficient Hn(Sw) is given by,

Hn = NCa K(x)
[

kw(Sw) +Rµ kn(Sw)
]

. (B.15)

The terms vc and vG are correction velocities and they are given by,

vc = −L(Sw) ∇Sw −M(Sw)∇ ∂

∂t
(φSw), (B.16a)

vG = M(Sw) ∇Z. (B.16b)

and the coefficients L(Sw), M(Sw) and N(Sw),

L(Sw) = NCa K(x) kw(Sw) p′
e(Sw), (B.17a)

M(Sw) = τ NCa K(x) kw(Sw), (B.17b)

N(Sw) = NGr K(x)
[

kw(Sw) +Rµ R
−1
ρ kn(Sw)

]

. (B.17c)

Applying the divergent operator to Eq. (B.14), we obtain a second order elliptic

equation for pn,

−∇ · (Hn ∇pn) = −∇ · vc − ∇ · vG. (B.18)

Now, we will discuss a finite difference approach for the elliptic problem (B.14).

Let P n
i be a finite difference approximation for pn(xi , yi , tn). A discretization

of (B.14) by the finite difference method is given by,

V n
ir − V n

il

∆x
+
V n

iu − V n
id

∆y
= 0 (B.19)
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where the approximation of the flux is given by a centered difference formula,

V n
ir = Hn

ir

(

Sn+1
r − Sn+1

i

∆x

)

+ Vc
n
ir + VG

n
ir, (B.20a)

V n
iu = Hn

iu

(

Sn+1
u − Sn+1

i

∆y

)

+ Vc
n
iu + VG

n
iu. (B.20b)

The correction velocities are given by centered differences,

Vc
n
ir = −Ln

ir

(

Sn
r − Sn

i

∆x

)

− Mn
ir

∆t

(

Sn+1
r − Sn+1

i

∆x
− Sn

r − Sn
i

∆x

)

(B.21a)

Vc
n
iu = −Ln

iu

(

Sn
u − Sn

i

∆y

)

− Mn
iu

∆t

(

Sn+1
u − Sn+1

i

∆y
− Sn

u − Sn
i

∆y

)

(B.21b)

VG
n
ir = Nn

ir

∂Z

∂x
VG

n
iu = Nn

iu

∂Z

∂y
(B.22)

The coefficients are chosen as the arithmetic mean at interfaces,

Hn
ij =

Hn
i +Hn

j

2
, Ln

ij =
Ln

i + Ln
j

2
, Mij =

Mn
i +Mn

j

2
, Nn

ij =
Nn

i +Nn
j

2
, (B.23)

where Hn
i = H(Sn

i ), Ln
i = L(Sn

i ), Mn
i = M(Sn

i ) and Ni = N(Sn
i ).

This discretization leads to a algebraic linear system over the unknowns P n
i .

The algebraic equations may be written as,

ci , d P
n
d + ci , l P

n
l + ci , i P

n
i + ci , r P

n
r + ci , u P

n
u = bni, (B.24)

where,

bni = −
(

Vc
n
ir − Vcil

∆x
+
Vc

n
iu − Vcid

∆y

)

−
(

VG
n
ir − VGil

∆x
+
VG

n
iu − VGid

∆y

)

. (B.25)

and the coefficients are given by,

ci , d = − Hn
id

∆y2
, ci , u = −Hn

iu

∆y2
, ci , l = − Hn

il

∆x2
, ci , r = − Hn

ir

∆x2
, (B.26a)

ci , i = −(ci , d + ci , u + ci , l + ci , r) (B.26b)
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The boundary conditions may be imposed in the same way as the transport problem.

B.3 Numerical experiments

In this section, we present numerical experiments in order to verify the viability

of the finite difference method for pseudo-parabolic equations. The numerical accuracy and

convergence study for the proposed computational procedure is based on a simple mesh

refinement study. We present the same numerical tests reported in 5.1. For convenience of

reading, we present again the simulation parameters,

Computational domain: Ω2D = (−5 , 20) × (0 , 25) Final time of simulation: T = 5.0

Left saturation value: SL = 0.85 Inflow flux: Qin = 1.0

Right saturation value: SR = 0.10 Right pressure value: pref
n = 0.0

Viscosity ratio: Rµ = 1.0 Capillary number: NCa = 1.0

Density ratio: Rρ = 1.0 Gravity number: NGr = 0.0

Dynamic effect number: NDy = 0.5 Stability parameter: σCFL = 0.5

Figure B.1 shows the solution profile (right column) and refinement study

(left column) for homogeneous (top) and heterogeneous (bottom) permeability fields. We

used meshes from 64 × 64 to 512 × 512 cells and the reference solution was obtained on

1024 × 1024 cell mesh. We observe the numerical convergence from numerical experiments

reported in Figure B.1 and Table B.1 and Table B.2, which shows a good resolution first-

order convergence rate behavior (see right column in Figure B.1). As in the mixed-hybrid

element approach, no spurious numerical artifacts are observed on the numerical solution

by finite difference.

Table B.1: Refinement study with homogeneous permeability field for the finite difference
scheme.

Mesh h ‖E‖1 ‖E‖2 ‖E‖∞ Run time (s)

64 × 64 3.13 × 10−1 2.40 × 100 3.92 × 10−1 1.86 × 10−1 1.41 × 100

128 × 128 1.56 × 10−1 8.64 × 10−1 1.70 × 10−1 1.05 × 10−1 1.13 × 101

256 × 256 7.81 × 10−2 3.34 × 10−1 7.06 × 10−2 4.28 × 10−2 9.64 × 101

512 × 512 3.91 × 10−2 1.47 × 10−1 2.86 × 10−2 1.32 × 10−2 8.05 × 102

Table B.2: Refinement study with heterogeneous permeability field for the finite difference
scheme.

Mesh h ‖E‖1 ‖E‖2 ‖E‖∞ Run time (s)

64 × 64 3.13 × 10−1 1.78 × 100 2.454 × 10−1 1.81 × 10−1 3.17 × 100

128 × 128 1.56 × 10−1 7.60 × 10−1 1.06 × 10−1 7.55 × 10−2 2.70 × 101

256 × 256 7.81 × 10−2 3.30 × 10−1 4.93e × 10−2 3.44 × 10−2 2.29 × 102

512 × 512 3.91 × 10−2 1.55 × 10−1 2.19 × 10−2 1.14 × 10−2 1.96 × 103
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Figure B.1: Numerical solutions for saturation and refinement study for the finite difference
scheme. Simulations are presented for homogeneous (top) and heterogeneous permeability
fields (bottom). The left columns present the saturation profile for 1024 × 1024 cell mesh.
The right column presents the numerical error with respect the reference numerical solution
(1024 × 1024 elements). Dots denote the numerical error on different norms, while dashed
lines are the linear adjusted curve.
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Appendix C

Further one-dimensional simulations

In this appendix, we present additional numerical experiments in one-dimension.

The propose is complement the discussion about the solution behavior of the pseudo-

parabolic model. Here, we consider two situations: no gravity effects and nondecreasing

initial data; non-increasing data with gravity effects.

Consider the two-phase flow problem with dynamic capillary pressure in one-

dimensional domain Ω = (a , b), given as follows,

∂

∂t
(φSw) +

∂

∂x
F (Sw) = − ∂

∂x

[

Hc(Sw)
∂

∂x

(

pe(Sw) − τ
∂

∂t
(φSw)

)]

, (C.1)

where τ = NDy, the capillary induced diffusion function Hc and the convective flux F (Sw)

as given by,

H(Sw) = NCa K(x) kw(Sw) fn(Sw), (C.2a)

F (Sw) = fwSw +NGr K(x) kw(Sw) fn(Sw) (1 −R−1
ρ )

∂Z

∂x
. (C.2b)

We remark that it is not mandatory to solve the pressure-velocity problem for one-

dimensional problems.

We consider here the initial values given by Riemann data as follows,

Sw(x, 0) =







SL, x ≤ 0,

SR, x > 0,
(C.3)

along with consistent boundary conditions,

S(a, t) = SL, S(b, t) = SR, t > 0. (C.4)

To perform the numerical simulations, we use a one-dimensional version of the

method presented in Cap. 4. The mixed-hybrid finite element method for the transport

equation along with the semi-implicit time discretization and the fixed-point iterative

procedure result in algebraic linear systems with a tridiagonal symmetric positive defined

matrix. To solve the linear systems we employ the Thomas algorithm. For further
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informations in respect to the one-dimensional numerical scheme see [5].

For all simulations in this section, we have used the stability parameter σCFL =

0.5 to define the time step. The tolerance for the iterative procedure was taken as

ǫTOL = 10−11. We used the linear model for static capillary pressure pe(Sw) = −Sw. We

took homogeneous permeability and porosity fields with the values K(x) ≡ 1 and φ(x) ≡ 1.

C.1 Numerical experiments for nondecreasing initial

data

In this section, we study numerically the solution behavior of pseudo-parabolic

equation along with nondecreasing initial Riemann data. In [97], the authors analyze

the solution profile of simplified pseudo-parabolic model for some nondecreasing initial

data. We present a mesh refinement study for linear and nonlinear high order terms. In

general, the profile structure is very similar to the solution of the parabolic model. This is

illustrated by the numerical study of variation of dynamic effect parameter τ .

Linear diffusion case

Here we consider the relative permeability functions as follows,

kw(Sw) = S2
w, kn(Sw) = (1 − Sw)2. (C.5)

However, we consider a constant diffusion coefficient Hc(Sw) ≡ 1. The nondimensional

groups are given by,

NCa = 0.5, NDy = 5.0, Rµ = 2.0, Rρ = 2.0. (C.6)

The computational domain is the interval Ω = (−60, 210) and the final time of

simulation is T = 150. We consider two case for the initial data: SL = 0.0 and SR = 0.9;

SL = 0.0 and SR = 0.55. Figure C.1 presents the mesh refinement study. In first case, we

can say that the structure is composed by a rarefaction and a shock. In the other case, we

have a pure rarefaction wave.
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Figure C.1: Mesh refinement study for non-increasing initial data and linear high order
terms. Left: initial data SL = 0.0 and SR = 0.9; Right: initial data SL = 0.0 and
SR = 0.55. Computational meshes: 64, 128, 256, 512 e 1024 elements.

Non-linear diffusion case

For this case we consider the relative permeability functions as follows,

kw(Sw) = S1.5
w , kn(Sw) = (1 − Sw)1.5. (C.7)

Here we use the nonlinear model for the diffusion coefficient Hc(Sw) as given by (C.2).

The nondimensional groups are given by,

NCa = 0.5, NDy = 5.0, Rµ = 2.0, Rρ = 2.0. (C.8)

The computational domain is Ω = (−5, 15) and the final time of simulatin is

T = 10. We considere two initial data: SL = 0.85 e SR = 0.1; SL = 0.9 e SR = 0.1. For

these examples, the solution does not attain degenerated values. Figure C.2 presents the

refinement study for the case with nonlinear high order terms. For both initial data, we

can say that the solution profile consists on a rarefaction and a shock wave.

Numerical study of the dynamic effect coefficient variation

Figures C.3 and C.4 show the numerical solutions for three values of the

dynamic effect coefficient NDy = τ . Hence, we can observe numerically the influence of

this parameter on the solution structure. Figure C.3 presents the linear diffusion case for

τ = 0.05 , 5.0 , 15.0. Figure C.4 presents the nonlinear diffusion case for τ = 0.005 , 0.5 , 1.5.
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Figure C.2: Mesh refinement study for non-increasing initial data and nonlinear high
order terms. Left: initial data SL = 0.1 and SR = 0.85; Right: initial data SL = 0.1 and
SR = 0.9. Computational meshes: 64, 128, 256, 512 e 1024 elements.

For small values of τ the solutions are too similar to the parabolic model, presenting

monotone profiles. On the other hand, for larger values of τ the solution may exhibit

damped oscillations.

C.2 Numerical study of gravity effects on solution

profile

In this section, we present some numerical experiments with different values

of gravity number NGr to study its effects on the solution structure. In general, we

observe that the gravity effects may change the behavior of solution from monotone to

non-monotone. Traveling wave solutions for pseudo-parabolic problems in porous media

with gravity effects are analyzed and numerically approximated in [61].

We considere the following relative permeability models,

kw(Sw) = S1.5
w , kn(Sw) = (1 − Sw)1.5, (C.9)

and the values of nondimensional numbers,

NCa = 0.5, Rµ = 2.0, Rρ = 2.0. (C.10)

For the simulations, we use two values of dynamic effect number: NDy = 5 × 10−1 as
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Figure C.3: Numerical solutions for the linear diffusion case with different values of the
dynamic effect coefficient τ . Top: initial data SL = 0.0 and SR = 0.9; Bottom: initial
data SL = 0.0 and SR = 0.55. Dynamic effect coefficient: τ = 0.05 (left); τ = 5 (center);
τ = 15 (right). Computational mesh: 1024 elements.

reported in [31, 36]; and NDy = 5 × 10−3 for which the solution is very similar to the

two-phase flow parabolic model. The computational domain is the interval Ω1D = (−5 , 20)

and the final time of simulation is defined as T = 10. For the initial and boundary

conditions, we consider SL = 0.85 and SR = 0.1. The solution profiles do not attain

degenerated values.

Figures C.5 and C.6 present the numeric solutions for different values of

dynamic effect number NDy and gravity number NGr. In Figure C.5 the gravity acts in the

direction of the flow (from left to right), while in Figure C.6 the gravity acts in opposite

direction. From left to right, the dynamic effect number varies from NDy = 5 × 10−3 to

NDy = 5 × 10−1. The values of the gravity number NGr varies from 0 (no gravity effects)

to 3. As expected, in general, when gravity acts in flow direction the flow speed increases

with NGr; the opposite occur when the flow goes against gravity, i.e., the velocity decreases

for larger values of NGr. However, unlike the parabolic model, the profile may change from

non-monotone to monotone with increasing gravity number NGr.
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Figure C.4: Numerical solutions for the nonlinear diffusion case with different values of
the dynamic effect coefficient τ . Top: initial data SL = 0.1 and SR = 0.85; Bottom: initial
data SL = 0.1 and SR = 0.9. Dynamic effect coefficient: τ = 0.005 (left); τ = 0.5 (center);
τ = 1.5 (right). Computational mesh: 1024 elements.



105

-5 0 5 10 15 20
DISTANCE

0

0,2

0,4

0,6

0,8

1

S
A

T
U

R
A

T
IO

N
NDy = 0.005 , NGr = 0.0

-5 0 5 10 15 20
DISTANCE

0

0,2

0,4

0,6

0,8

1

S
A

T
U

R
A

T
IO

N

NDy = 0.05 , NGr = 0.0

-5 0 5 10 15 20
DISTANCE

0

0,2

0,4

0,6

0,8

1

S
A

T
U

R
A

T
IO

N

NDy = 0.5 , NGr = 0.0

-5 0 5 10 15 20
DISTANCE

0

0,2

0,4

0,6

0,8

1

S
A

T
U

R
A

T
IO

N

NDy = 0.005 , NGr = 1.0

-5 0 5 10 15 20
DISTANCE

0

0,2

0,4

0,6

0,8

1

S
A

T
U

R
A

T
IO

N

NDy = 0.05 , NGr = 1.0

-5 0 5 10 15 20
DISTANCE

0

0,2

0,4

0,6

0,8

1

S
A

T
U

R
A

T
IO

N

NDy = 0.5 , NGr = 1.0

-5 0 5 10 15 20
DISTANCE

0

0,2

0,4

0,6

0,8

1

S
A

T
U

R
A

T
IO

N

NDy = 0.005 , NGr = 2.0

-5 0 5 10 15 20
DISTANCE

0

0,2

0,4

0,6

0,8

1

S
A

T
U

R
A

T
IO

N

NDy = 0.05 , NGr = 2.0

-5 0 5 10 15 20
DISTANCE

0

0,2

0,4

0,6

0,8

1

S
A

T
U

R
A

T
IO

N

NDy = 0.5 , NGr = 2.0

-5 0 5 10 15 20
DISTANCE

0

0,2

0,4

0,6

0,8

1

S
A

T
U

R
A

T
IO

N

NDy = 0.005 , NGr = 3.0

-5 0 5 10 15 20
DISTANCE

0

0,2

0,4

0,6

0,8

1

S
A

T
U

R
A

T
IO

N

NDy = 0.05 , NGr = 3.0

-5 0 5 10 15 20
DISTANCE

0

0,2

0,4

0,6

0,8

1

S
A

T
U

R
A

T
IO

N

NDy = 0.5 , NGr = 3.0

Figure C.5: Numerical solutions when the gravity acts in flow direction with different
values of dynamic effect number NDy and gravity number NGr. Dynamic effect number:
NDy = 5 × 10−3 (left), NDy = 5 × 10−2 (center) and NDy = 5 × 10−1 (right). The gravity
number increases from NGr = 0.0 (top) to NGr = 3.0 (bottom). Computational mesh: 512
elements.
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Figure C.6: Numerical solutions when the gravity acts in the direction opposite to the flow
with different values of dynamic effect number NDy and gravity number NGr. Dynamic
effect number: NDy = 5 × 10−3 (left), NDy = 5 × 10−2 (center) and NDy = 5 × 10−1

(right). The gravity number increases from NGr = 0.5 (top) to NGr = 3.0 (bottom).
Computational mesh: 512 elements.
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