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“... Many places I have been
Many sorrows I have seen

But I don’t regret

Nor will T forget

All who took the road with me

Night is now falling

So ends this day

The road is now calling

And I must away

Over hill and under tree

Through lands where never light has shone
By silver streams that run down to the sea

To these memories I will hold

With your blessing I will go

To turn at last to paths that lead home
And though where the road then takes me
I cannot tell

We came all this way

But now comes the day

To bid you farewell

I bid you all a very fond farewell”

(Billy Boyd, The Last Goodbye in The Hobbit: The Battle of Five Armies)



Resumo

Neste trabalho, estuda-se ciclos que ocorrem tipicamente em campos vetoriais descon-
tinuos, planares definidos em duas zonas, Z = (X,Y’), com variedade de descontinuidade
dada pela imagem inversa do 0 por uma funcao suave h, definida no plano e assumindo
valores reais, para a qual 0 é um valor regular. Primeiramente, mostra-se que, se X e Y
sao campos vetoriais analiticos e C' é um policiclo de Z, entao, genericamente, nao existem
ciclos limite se acumulando em C'. Depois disso, o objetivo é estudar bifurcagoes de ciclos
tipicos contendo um ponto do tipo sela-regular. Mais especificamente, considera-se ciclos
compostos por um segmento de orbita regular de Z, que cruza a variedade de descon-
tinuidade transversalmente, e um ponto do tipo sela-regular resultando numa conexao
quase-homoclinica. Sao apresentados diagramas de bifurcagdo para o caso onde o raio de
hiperbolicidade do ponto de sela é um nimero irracional, o caso onde o raio de hiper-
bolicidade da sela é um ntmero racional ¢é ilustrado com alguns modelos. Finalmente,
dois modelos comuns em aplicagoes e que apresentam tal ciclo sdo estudados por meio de
calculos numéricos.

Palavras-chave: Campos vetoriais descontinuos, Teoria de bifurcacao, Problema de
Dulac, Ciclos.



Abstract

In this work, a study is performed on cycles occurring typically in planar discontinuous
vector fields in two zones, Z = (X,Y), with switching manifold being the inverse image
of 0 by a smooth function h, defined on the plane and assuming real values, for which 0
is a regular value. Firstly, it is shown that if X and Y are analytic vector fields and C'
is a polycycle of Z, then, generically, C' cannot have limit cycles accumulating onto it.
After that, the objective is to study the bifurcations of typical cycles through a saddle-
regular point. More specifically, we consider a cycle composed by one segment of a regular
orbit of Z, which crosses the switching manifold transversally, and a saddle-regular point,
resulting in a homoclinic-like connection. Bifurcation diagrams are presented for the case
where the hyperbolicity ratio of the saddle point is a irrational number, the case where
hyperbolicity ratio is a rational number is illustrated with models. Finally, two application
models presenting cycles through saddle-regular points are studied by means of numeric
calculations.

Keywords: Discontinuous vector fields, Bifurcation theory, Dulac’s problem, Cy-
cles.
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Introduction

The concept of limit cycles has arisen in 1882, introduced by the French mathemati-
cian Jules Henri Poincaré, in his work “Mémoire sur ler courbes définies par une équation
différentielle (II)”, see [32]. Few years later, in 1900, during the 2"¢ International Con-
ference of Mathematicians, in Paris, the German mathematician David Hilbert proposed
a collection of twenty-three problems that could influence the development of the math-
ematics of that century. The Hilbert’s sixteenth problem is split in two parts, the first
one is related with algebraic topology and the second one with limit cycles in polynomial
vector fields. This second part can be written as:

- Determine the maximum number of limit cycles admitted by a polynomial vector field
of degree n on R?.

A preliminary step towards the solution of the second part of Hilbert’s sixteenth
problem is proving the following finiteness result:

- A polynomial vector field on R? has at most a finite number of limit cycles.

This last question can be extended to analytic vector fields and it can be reduced to
the problem of non-accumulation of limit cycles, see [35]:

- An elementary polycycle of an analytic vector fields cannot have limit cycles accu-
mulating onto it.

In 1923, the French mathematician Henri Dulac, who was the first to study this non-
accumulation problem, gave an incomplete proof which was noticed much later, thus the
problem turned out to be called the Dulac’s Problem. In 1986, a correct proof was given for
quadratic vector fields by R. Bamon [4]. The finiteness result was estated independently by
Yu II"Yashenko [18] (see [19] for more details) in 1984 and by J. Ecalle [12] in 1992. Finally,
the complete proof of the second part of the Hilbert’s sixteenth problem was recently
announced by J. Llibre and P. Pedregal, see [26]. In general, investigations on cycles
in smooth systems have always motivated many researchers and plenty of mathematical
tools are developed from these studies.

In addition to the study in smooth systems, cycles can be studied in the context of
discontinuous vector fields. Let U be an open subset of R? with compact closure, i.e.,
the set U is compact. Consider a smooth embedded submanifold 3 = h=1(0) N U, where
f U — R is a smooth function for which 0 is a regular value. In this way, > splits U in
two open regions

Y ={peU;f(p) >0} and X~ ={peU;f(p) <0}
A discontinuous vector field in U is of the form

X(p), pext,
Z(p):{ Y(zf), s

where X and Y are vector fields of class C” in U. The Russian mathematician Filippov
has formalized some aspects of the theory of discontinuous vector fields and presented

12
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a convention for the study of the dynamics in the discontinuity manifold ¥, [14]. For
this reason, discontinuous vector fields, defined as above with Filippov’s convention, are
commonly refereed as Filippov vector fields. Many authors also refer to discontinuous
vector fields as piecewise smooth vector fields. In the course of this work, we have adopted
the terminology “discontinuous vector fields” and we assume Filippov’s convention for
solutions through the switching manifold 3.

In 1984, Koslova worked with generic discontinuous vector fields, [21]. In the last years,
the theory of discontinuous vector fields has become stronger with growing importance
at the frontier between mathematics, physics, engineering, and the life sciences. Interest
stems, particularly, from discontinuous dynamical models in control theory [5], nonlinear
oscillations [2, 28|, impact and friction mechanics [8], economics |20, 16], biology [6], etc.
Also, in [27] the authors present a review, focused on bifurcation theory of discontinuous
dynamical systems, an introductory state-of-the-art and some open problems are also
presented.

The present work concerns the study of degenerate cycles that appear typically for
planar discontinuous vector field, see [24, 31, 42]. There exist lots of different typical
degenerate cycle and we focus on the particular case where the cycle contains a saddle-
regular point. Also, this type of cycle is a particular class of hyperbolic polycycles, i.e.,
cycles composed by finitely many hyperbolic singular points and regular orbits, it is an
extension of the same concept existent for smooth vector fields. Therefore, one natural
question arrives by questioning if, or under which conditions, the Dulac’s problem can
be extended to discontinuous vector fields. This work is composed by two parts: the
first one concerns the Dulac’s problem in the discontinuous context and, in the second
one, it is performed a study of the bifurcation diagrams of a degenerate cycle through a
saddle-regular point.

Setting Problems and Main Goals

I. Dulac’s Problem

As seen above, Dulac’s problem was originally proposed for smooth vector fields. It
has arisen from a mistake made for Dulac by trying to prove the finiteness part of the
Hilbert’s sixteenth problem. In this context, polycycles admit hyperbolic and elementary
singularities. A next step in this direction is to replace analytic by piecewise-analytic
vector fields. In this direction, we propose a version of this problem for discontinuous
vector fields considering polycycles with hyperbolic singularities.

Consider a planar discontinuous vector field Z = (X,Y’) where X and Y are analytic
vector fields in R? and assume Z admits a hyperbolic polycycle I', Definition 2.1. The
question we want to answer is

- Can a hyperbolic polycycle I of a piecewise analytic vector field have limit cycles
accumulating onto it?

In other words, we want to know if the scenario outlined in Figure 1 is realizable for a
piecewise analytic vector field. If the polycycle is hyperbolic, we prove that the answer for
this question is no. Moreover, we show an example of class a C* vector field, 1 < k < oo,
having a limit cycle that admits two sequences of limit cycles accumulating onto it.

If a polycycle I' does not intersect the switching manifold, then the problem can be
reduced to the smooth one. Thus, we also suppose I' MY # ). In order to answer this
question we follow the same steps for the smooth case in [35]. Our objective is to give an
extension for discontinuous vector fields of all concepts and results existent for hyperbolic
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Figure 1: T' is the polycycle in red, the blue cycles are limit cycles accumulating onto I'.

polycycles of smooth vector fields. It is worthwhile to emphasize the extension performed
is not a particular case of the original problem, there exist essential differences in the
construction of first return maps and forms of transition maps. Moreover, we intend to
allow a polycycle to have typical singularities of discontinuous vector fields and to check if
the result remains the same as the case where polycycles just have hyperbolic polycycles.

II. Degenerate Cycles

The study of cycles in smooth vector fields is a recurrent topic. Cycles (or graphs) are
continuous closed curves composed by a finite union of regular orbits and singular points.
The simplest kind of cycles are the limit cycles, i.e., periodic (closed) trajectories of a
vector field X which are isolated in the set of all periodic orbits of X. The simplest kind
of cycles having equilibrium points happens when the cycle is composed by one regular
orbit v and one singular point p. In this case, p is @ and w—limit of any point in v, and
the cycle is also called homoclinic connection or homoclinic loop. If we consider cycles
of discontinuous vector fields, there exists different cycles composed by a regular orbit
v (whether it is or not a concatenation of two regular orbits of the smooth vector fields
composing the discontinuous one) and a singular point p. For instance if p is on the
switching manifold, then 7 can reach p in finite time (positive or negative), sometimes it
is called homoclinic-like connection. In Figure 2 one can find some examples of cycles.

The main objective here is to study a specific type of a homoclinic-like connection.
Consider a planar discontinuous vector field Z = (X,Y), with X and Y being sufficiently
smooth vector fields, where the origin is a hyperbolic saddle for X, with eigenspaces being
transversal to Y at the origin, and a regular point for Y. In addition, suppose that the
unstable (resp. stable) manifold of the saddle crosses ¥ transversely at a point P # 0 and
the positive trajectory (resp. negative trajectory) of Y through P crosses ¥ transversely
at the origin. Observe that this cycle provides a homoclinic-like connection of the saddle
point, given any point in the loop, the trajectory through this point reaches the origin in
a finite positive time and infinite negative time or vice-versa. In this work we refer to this
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() (d)

Figure 2: Examples of cycles for smooth vector fields, (a) limit cycle and (¢) homoclinic
connection, and for discontinuous vector fields, (b) — (d) homoclinic-like connections.

kind of cycle as degenerate cycle through a saddle-regular point. The problem we want
to solve is

- Let Zy be a discontinuous vector field having a degenerate cycle, I'g, through a saddle-
reqular point. Given a discontinuous vector field Z sufficiently near Zy, how is its quali-
tative behavior in a sufficiently small neighborhood of I'y?

Thus, the main objective of this work is, under suitable generic conditions, to describe
the bifurcation diagram of a degenerate cycle T'y.

Notice there exist different types of degenerate cycles through a boundary saddle point.
For instance, if stable and unstable manifolds do not cross ¥ up to the saddle point, in this
case there exists a homoclinic connection contained in one of the open regions delimited
by 3. Piecewise Hamiltonian systems having such cycle were studied in [41] by means
of Melnikov functions. Piecewise Hamiltonian systems having double homoclinic loops
through boundary saddle points, where the loops do not cross the switching manifold, are
studied in [25] also by means of Melnikov functions. The usage of Melnikov functions is
possible in those works because the authors use an expression for the vector field (given
by the Hamiltonian condition) which is perturbed with convenient maps. This approach
is not possible in our study, the reason of this is the lack of assumption of any specific
form for the vector fields, we only assume some generic conditions. Thus, our objective
is also to develop a mechanism to study any degenerate cycle that does not depend on a
specific class of vector fields, performing a study as general as possible.

Organization of the Thesis, Methodology, and Contributions

In Chapter 1, some of the basic concepts, definitions and results used through this
thesis are briefly presented, the main objective is to establish some notations. None of
these results are new and most part of them are presented without proof but the respective
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references are given. The reader familiar with the theory of discontinuous vector fields
can skip it without risk of losing any information.

Chapter 2 is devoted to Dulac’s problem. The extension of the concept of polycycle
is presented as well as the construction of transition maps at hyperbolic saddle points.
Firstly, by assuming transition maps at hyperbolic saddle points are quasi-regular, Defi-
nition 2.3, we prove that hyperbolic polycycles of piecewise analytic vector fields cannot
have limit cycles accumulating onto it. Our contribution in this part is the extension of
the concepts of polycycles and transition maps and to observe that, up to quasi-regularity,
nothing needs to be changed in the proof presented in [35]. The second part consists in
the proof of quasi-regularity of transition maps at saddle points, whether it is or not on
the boundary. The approach employed is very similar to the one used for analytic vector
fields. Our contribution in this part is to show that, generically, transition maps at bound-
ary hyperbolic saddle points remain quasi-regular. A consequence of these contributions
is to give an answer to Dulac’s problem, i.e., we prove that hyperbolic polycycles cannot
have limit cycles accumulation onto it. Finally, the last part of this chapter consists on
a generalization of the previous study by allowing polycycles with fold points. In order
to prove the Dulac’s problem for this new kind of polycycle, it is necessary to prove two
properties for transition maps at fold points: quasi-regularity and quasi-analyticity, Defi-
nition 2.4. The main contribution in this part is to prove these properties and to conclude
that by allowing fold points in the definition of polycycles it does not change the result
obtained for hyperbolic polycycles.

Chapter 3 concerns the study of bifurcations of typical cycles through fold-regular
points. More specifically, suppose a discontinuous vector field Z = (X,Y’) has a visible
fold-regular point, the trajectory of X which is tangent to the switching manifold > also
crosses X transversally at a point P. After that, the trajectory of Y through P crosses
> transversally at P and at the fold point of X, see Figure 3. This cycle has already
appeared in literature, [9, 24], but its bifurcation diagram was not precisely studied in
these works. In [9] the cycle appears in the bifurcation of a cusp-fold singularity while in
[24] the interest is to show the birth of a limit cycle under small perturbations of the system
having the degenerate cycle. Our contribution in this line is to establish generic conditions
for the existence of a cycle, to present a bifurcation diagram for two topologically distinct
cycles, and to present the study of two models realizing these topologically distinct cycles.
By means of a detailed analysis, we emphasize that a system presenting this kind of cycle,
which is relatively simple, can have a very rich unfolding. The main reason for the study
of such cycles is the fact they naturally appear in bifurcations of cycles through saddle-
regular points.

Figure 3: A degenerate cycles passing through a visible fold-regular point.
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In Chapter 4, a study of bifurcations of a degenerate cycle through a saddle-regular
point discussed above is presented, see Figure 4. This specific kind of cycle typically
appears in the bifurcation of a Bogdanov-Takens-fold singularity, i.e., a boundary point
which is a Bogdanov-Takens singularity for one vector field and a fold point for the other
one. Such a cycle has not received proper attention in literature yet, so it is important to
perform a detailed analysis of it. The most difficult part in this study is the absence of
an algebraic expression for the vector field. In order to deal with this lack of information,
we use local features on the hyperbolic saddle given by Theorem 1.2, which is obtained
by means of the Poincaré-Dulac normal form Theorem and a technical result due to
Bonckaert, see [35]. The normal form depends on the hyperbolicity ratio of the saddle
point, i.e., the quotient 7 = —Ay /Ay, where Ay < 0 < A; are the eigenvalues of the saddle
point. Another important local study concerns on bifurcations of a saddle-regular point,
[15, 22]. After using the local analysis, it is necessary to understand the first return map
existent near the cycle. This map depends strongly on the hyperbolicity ratio of the
saddle point and whether it is real, virtual or on the boundary. Due to the difficulty in
performing a study when the hyperbolicity ratio » € Q, our study is restricted to the
case ¢ Q, a total of six different bifurcation diagrams (DSC4y, DSC1a, DSCy, DSCas,
DSC5, and DSCs,) is presented. The case r € Q is illustrated with some models.
Firstly, we consider a class of systems having hyperbolicity ratio equal to 1, it is shown
the results previously found, for r» ¢ @, still hold. Second model also corresponds to
a family of vector fields having hyperbolicity ratio equal to 1. Similarly to the previous
chapter, a detailed study of the model is presented to show how rich and complex a system
presenting such degenerate cycle can be. Finally, the last model involves a family having
generic hyperbolicity ratio » > 0, in this case the analyses on the first return maps and
existence of limit cycles are performed numerically.

Figure 4: A degenerate cycles passing through a saddle-regular point.

Since the analysis of degenerate cycles through hyperbolic saddle-regular points is the
main interest of this thesis, two application models realizing such system are presented
in Chapter 5. We perform basic numerical analysis of the models by using the software
Mathematica. Firstly, a model for a discontinuous pendulum is studied. We show that
the model presents a cycle of type DSC7; and realizes the entire bifurcation diagram of
this cycle. This is an interesting fact since models not necessarily unfold completely a
singularity. The second model is a piecewise Hamiltonian model. For this model, we show
it realizes a cycle of type DSC3; and we give intervals where there exists a limit cycle.

Chapter 6 addresses future directions. A study of a new type of cycle is proposed as
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well as proposals of improvements and completeness of the results obtained in this work.
Appendix A is a one page proof of a specific Cauchy’s inequality, used in Chapter 2, that
is not so obvious. In order to simplify the exposition, since it is just a technical tool, it
was not included in that chapter.

In what follows, we summarize the main results obtained in this thesis:

Transition maps at saddle points, with invariant manifolds transversal in X, are
quasi-regular homeomorphisms: Theorem 2.5 in Chapter 2.

Transition maps at fold points are quasi-regular homeomorphisms and quasi-analytic
maps: Theorems 2.6 and 2.7 in Chapter 2.

Description of the bifurcation diagrams of degenerate cycles through fold-regular
points: Theorem 3.1 in Chapter 3.

Description of the bifurcation diagrams of degenerate cycle through saddle-regular
points, in Chapter 4,

— Cases DSC4; and DSC1y: Theorems A, B, and C;

— Cases DSC5 and DSC5: Theorems D and E;

— Cases DSC3; and DSCs5y: Theorems F, G, and H.

Study of application models realizing degenerate cycles through saddle-regular points
in Chapter 5.



Chapter 1

Preliminaries

In this chapter, some basic concepts, results, and tools necessary to the development
of this thesis are presented. The main objective is to fix the notation and the definitions
that will be used through this thesis. We assume that the most part of the concepts
are already known by the reader, so the exposition is short and direct. Most part of the
results are given without proof, but references where they can be found are included.

Firstly, some facts on smooth vector fields in manifolds without boundary are estab-
lished. After that, some concepts are extended to manifolds with boundary. Finally, the
theory of discontinuous vector fields is explored.

1.1 Smooth Vector Fields

Let U be an open subset of R%Z. A C" vector fieldin U, 1 <r<occorr=w (r=w
means the vector field is analytic), is a map X : U — R? which is of class C" in U. A
vector field X is associated with an ordinary differential equation (ODE)

i = X(z). (1.1.1)

Analogously, an ODE, as the one in equation (1.1.1), is associated with a vector field. A
solution of the equation (1.1.1) is a map ¢ : [ C R — U such that, for all t € I,

% olt) = X(p(1)).

This solution is called trajectory (or integral curve) of the vector field X or even of
the ODE (1.1.1). The association of the vector field X with the ODE (1.1.1) can be
geometrically interpreted as following: ¢ : I — U is a trajectory of X if and only if the
tangent vector 4¢(t) coincides with X at o(¢), for all ¢ € I, see Figure 1.1. For this kind
of differential equation there are plenty of basic results, see [3], [17], [30], [36], and [37]
among others.

Definition 1.1. A point p € U for which X(p) = 0 is called a singular point of X,
otherwise it is called a regular point. Moreover, a singular point p of X is said to be
hyperbolic if all eigenvalues of DX (p) has nonzero real part.

Given p € U, denote by ¢(t,p) the trajectory of X satisfying ¢(0,p) = ¢(0) = p,
defined in the interval I,. If p is considered as a variable we call ¢(¢,p) the flow of X.
The set v, = {¢(t,p);t € I,} is called orbit of X through p, the orbits are orientated

19
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Figure 1.1: Hlustration of the trajectory () of the vector field X through p = ¢(ty) € U.

according to increasing time in [,. Observe that two orbits of X either coincide or are
disjoint, so the set U can be decomposed as a disjoint union of all orbits of X. To this
decomposition of U we give the name of phase portrait of X. Now, we are ready to present

the notions of equivalences between vector fields, these concepts allow us to compare the
phase portraits of two vector fields.

Definition 1.2. Consider C" vector fields X : Uy — R? and Y : Uy = R%2. X and Y are

said to be topologically equivalent (resp. C¥—equivalent) if there exists a homeomorphism

(resp. diffeomorphism of class C*) h : Uy — U, that sends orbits of X in orbits of Y
preserving their orientation, see Figure 1.2.

7=

Figure 1.2: h is a topological equivalence between two vector fields having a hyperbolic
saddle.

N

Y

There exists an even more restrictive concept of equivalence.

Definition 1.3. Two C" vector fields X : Uy — R? and Y : Uy — R2, with corresponding
flows ox(t,p) and @y (t,p), are said to be topologically conjugated (resp. C*—conjugated)
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if there exists a homeomorphism (resp. C*¥—diffeomorphism) h : Uy — Uy such that
h(ex(t,p)) = ey (¢ h(p)).

Denote by x" the set of all C" vector fields defined in R? endowed with the C"—topology.
A vector field X € " is structurally stable in x” if there exists a neighborhood V', of X
in x", such that all Y € V is topologically equivalent to X.

Definition 1.4. Let o(t,p) : R — R? be the trajectory of X through p. The set w(p) =
{q € R%3(t,) witht, — +oo and ¢(t,,q) — p, whenn — oo} is called the w—limit
set of p. Analogously, the set a(p) = {q € R*3(t,) witht, — —oo and (t,,q) —
p, when n — oo} is called the a—limit set of p. The w—Ilimit set (resp. the a—limit set)
of an orbit v is the set w(p) (resp. a(p)) for any p € .

For X € x" with singular point p € R?, the set W*(p) (resp. W*(p)) of all points in
R? having p as w—limit (resp. a—limit) is called stable (resp. unstable) manifold of p.
Thus, W#(p) and W*(p) are invariant by the flow of X. Given 8 > 0, let Bg(p) denote
the open ball of R? with center at p and radius f.

Definition 1.5. Consider X € x" having p as a singular point and let p(t,q) be the flow
of X. The sets

Wi(p) = {q € Bs(p); ¢(t,q) € Bs(p),Vt > 0 and ©(t,q) — p ast — +oo}
W (p) = {q € Bs(p); ¢(t,q) € Bg(p),Vt <0 and p(t,q) — p ast — —oo},

are called stable and unstable local manifolds (of size ) of X at p.

Remark 1.1. Observe that, for 8 >0, W*(p) = U ¢:(W5(p)) and W*(p) = U w:(Wg(p)),
<0 >0

where () = @(t,-). For more details see [29, 30, 36].

For further references, if necessary, we use W7 (p) = W/(p, X), j = s, u, to specify
that we are considering the stable or unstable manifold at p related to the vector field X.

1.1.1 Normal Form at a Hyperbolic Saddle Point

Consider the vector field X € x*° and suppose that X has a hyperbolic saddle s € R?,
i.e., s is a hyperbolic singular point of X and det(DX(s)) < 0. The main interest here is
to study X in a neighborhood of s so, without loss of generality, we suppose s = (0,0) and
X is defined in a neighborhood of s, Vy C R2. Due to the hyperbolicity we also assume s
is the unique singular point of X in V.

Assume the local unstable and stable manifolds of X at s are given by W* =0, NV,
and W* = 0, NV, (see [29], pages 79 — 81). Let Ay and Xy be the eigenvalues of DX (s)

A
with Ao <0 < Ay and let r = —)\—2 be the ratio of hyperbolicity of X at s.
1

Notice that one can assume A\; = 1 so Ay = —r, thus the 1—jet (or the linear part) of
X, at s, is equal to
F1X(0) = mg - Tyg (1.1.2)
o y 1.

In fact, the hyperbolicity of s implies that, by means of a linear change of coordinates,
the linear part of X at s becomes diagonal. After that it is enough to consider the change
of coordinates (z,y) — (z/A\1,y). Moreover, since \; > 0, both change of coordinates can
be taken as orientation preserving diffeomorphisms.

For hyperbolic singular points we give an important result which is proved by Bonck-
aert in [7].
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Proposition 1.1. Let X be a germ of a vector field with the conventions above. There
exists a function K : N — N, with K(k) — oo as k — o0, and such that, if X is any
germ of an analytic vector field, at s, with the property

FEE(X — X)(0) =0, (1.1.3)
then the two germs X and X are C*—conjugate.

This result allows us to replace X by a polynomial vector field up to C*—conjugacy.
Parallel to this result, we have the Dulac-Poincaré normal form theorem, see [34, 35],
which proof can be easily extended from the prove done in [34] for the case p = ¢ = 1.
This proof is really extensive, so we will just give a sketch of it, pointing the main parts.
See [10] for an introductory theory of normal forms.

Theorem 1.1. Let X be a C* wvector field having a hyperbolic saddle at s = 0 as defined
above, with hyperbolicity ratio r.

1. Suppose that r ¢ Q. Then, for any N € N,

GVTLX (5) ~ xﬁ —ry—-.

2. Suppose that r = g € Q, with p and q without common factors. Then, for any

N e N,
[(P+q)N+1 0 1 P\ 9
j X(s)wx%—i— —T+f;ai+1(93y) ya—y,

with a; € R, 1 € R. Where the sign ~ means equivalence of jets.

Proof. As seen above, there exists a C>°—conjugation that brings

If r ¢ Q then, there is no resonance and the result follows from the Poincaré Linearization
Theorem, see [10].

2
If r = % € Q, all resonance relations \; — > ngAx = 0, ¢ = 1,2 and ny € N, are

k=1
generated by the unique relation pA; + ghs = 0. Now, the prove is completed by using

induction on N. Suppose that we have found as, a3, ..., ay € R such that
GFPHONFLY(0) ~ 2 +(—r+ 1% i (2Py?)' y2 = XV, (1.1.4)
Ox q= " dy

So, we have to prove that the equivalence for j@T9W+V+1 X (0). Notice that

JErONEDHX(0) = jEFONTIX(0) + Xp+on+2 T+ XprgN+st1 T+ Xprgy(v+1)+1,

where X1 Nts41 € HPTONT for all 1 < s < p+ ¢ (HF is the space of homogeneous

polynomials of order k in two variables). Then,
N+1)+1 v A
j(P+f1)( +1)+ X(0)~X +Z}/'(p+q)N+s+1,

s=1
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where Yip+q)N+s+1 c H§P+Q)N+s+1 for 1 <s< pEq.
In order reach our objective, we prove the equivalence for jP+*ON+1+ix(0), for i =

1,...,p+ q. The Lie bracket in HY, defined as

ok HE o HE
§(x7y) = Dﬁ(w,y)(Xl)—Xl(f(x,y)),

is the key to finish the proof. Normal form theory and the remark done above on the

: : : ) N+s+1
resonance relations provide a basis of H{PTON T

Bs:{<xa0yﬁ),(xaoyﬁ);a+ﬂ=(p+q)]\7+s—|—1},

for which £PTON+s+1 i diagonal, 1 < s < p+ ¢ — 1, and it has no zero eigenvalues. By
means of an inductive process, successive conjugations bring

j(p+q)(N+1)+1x(o) ~ XN 4 37(p+q)(1v+1)+1,

HPHON+DH

with }7(p+q)( Nt+1)+1 € . Finally, by using the resonance relation we obtain

0 0
= (p+a)(N+1)+1) — Py )N+ (P a)N+1
K = Ker(L ) <{(xy) xax,(m‘y) yay}> and

_ ey 0 \atB=@+a(N+1)+1=7+3,
I—Im(ﬁ(pﬂ)(]v“)“>—<{< 0 J\ a7y’ )’ B#q(N+1), andy #p(N +1) '

Thus, LPHOWN+D+ - T T is a linear map that is diagonal with relation to the basis
of Z given above and no zero eigenvalues. It implies that

j(p+CI)(N+1)+1X(O) ~ XN 1+ B,

where B € K. From this, some algebraic calculation provides a2 such that
a N+1 ]
IR (0) XY+ araley Py =gk (3 ).
i=1

Therefore, by induction we have that equation 1.1.4 holds for any N € N. It completes
the proof. O

Now, by combining Proposition 1.1 and Theorem 1.1 we get the following useful result.

Theorem 1.2. Let X be a C* wector field as above. Then, there exists a function
N : N — N such that, in some neighborhood of the saddle point s, X is C*—equivalent to
the polynomial vector field

0 1 A
il 4= (P |
T +|—r+ . > a1 (2Py?) y@y’ (1.1.5)

i=1

ifr= % €Q. Ifr ¢ Q, X is Ck—equivalent to the linear vector field

T — ry—. (1.1.6)
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Proof. Define a sequence N(k) satisfying (p + ¢)N(k) +1 > K(k) if r = £ € Q and
N(k)+ 1> K(k) if r ¢ Q, where K (k) is given in Proposition 1.1. Now, to obtain the
result, it is enough to apply Proposition 1.1 and Theorem 1.1. O

Remark 1.2. Under some simple adaptations, Proposition 1.1 and Theorem 1.1 still hold
for C*°—families of vector fields. So, Theorem 1.2 also holds for C'*°—families of vector
fields. Since we are not interested in families, we have presented a simpler versions of
these results. A more general exposition was given by Roussarie in Chapter 5 of [35].

1.2 Vector Fields in Manifolds with Boundary

Let M be an embedded submanifold of R? with boundary. Two vector fields, X and
Y, in R? are germ equivalent in M if there exists a neighborhood of M in R? where X
and Y coincide.

Definition 1.6. A wector field X in M is a class of vector fields in R? that are germ
equivalent in M. X is said to be of class C" if it has a representative of class C™ in R?.

Let X be a vector field in M and let X be a representative of X with flow ¢, then
the flow of X is the restriction to M of the flow of X, i.e., px = ¢x|,,. It is clear that
this definition does not depends on the choice of the representative of X.

Definition 1.7. Two vector fields, X and Y, in M are topologically equivalent if there
exist a homeomorphism h : M — M that sends trajectories of X in trajectories of Y,
preserving their orientation.

Denote by x" (M) the set of all vector fields of class C" in M. A vector field X € x"(M)
is structurally stable in x" (M) if there exists a neighborhood V' of X in x"(M) such that
any Y € V is topologically equivalent to X.

Assume OM = h='(0) where h : R? — R is a smooth map having 0 as a regular value
and Int(M) = {p € R? h(p) > 0}.

Definition 1.8. A vector field X in M has a fold singularity (or a quadratic tangency) at
p € OM if Xh(p) =0 and X?h(p) # 0. Moreover, a fold p of X is visible if X*h(p) > 0
and invisible if X*h(p) < 0, see Figure 1.3.

Where Xh(p) = (X, Vh)(p), is the Lie derivative of h with respect to X at p, and
XIh(p) = (X,VX'~1h)(p) for j > 2.

Suppose p € OM is a fold point of X, without loss of generality assume that p is at
the origin. In [40] it is proved that, by means of a C°°—change of coordinates, near the

fold point p =0 € OM, X is given by X(z,y) = (a,bx)’, with a,b # 0.

1.2.1 Transition Map at a Fold Point

Consider X € x"(M), r > 2, having a visible fold point at p € ¥ = 9M. We want
to study X in a neighborhood of p, so, without loss of generality, assume p = (0,0) and
h(x,y) = y. For € > 0 sufficiently small such that, for some dy > 0, 7 = {(z,¢) € R%;0 <
xr < 0o} is contained in the neighborhood of p where the local assumption above holds
and 7 is a transversal section for the flow of X up to = 0. Our objective is to calculate
the transition map, from ¥ to 7, given by the flow of X. In order to do that, assume
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oM

Figure 1.3: Examples of fold points: p is a visible fold point and ¢ is an invisible one.

X(p) = (Xo1(p), Xo2(p)) where X¢1(0) > 0 and Xp2(0) = 0. Then for z > 0 there exists
t(x) > 0 for which p(t(x),x,0) € 7, where p(t,p) is the flow of X, see Figure 1.4. From
o(t(x),x,0) € 7, we can write p(t(x),z,0) = (p(x),e), then define p(z) as being the
transition map from X to 7 at 0.

Figure 1.4: Transition map at a fold point from ¥ to 7.

Proposition 1.2. There exists 6 > 0 sufficiently small such that
p(x) = xo + asr® + O(z?) (1.2.1)
for all 0 < x <6, where ag > 0 and xo = p(0).

Proof. Observe that p can be C"—extend to an open neighborhood of the origin by means
of the flow of a representative X, of X, defined in R?. Then, we can calculate the Taylor
expansion of p, around = = 0, is

d 1e
p(z) = p(0) + -P0)z + 5= p(0)2" + O(a”).

Therefore, it is enough to show that <L p(0) = 0 and %p(()) > 0. From the definition of
p, if og(t,2,0) = (p1(t,x), 2(t, x)), with pa(t(x),z) = €, then p(x) = ¢1(t(x), x). Thus,
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we obtain
L0 = L ler(t(w),2)] o= X (0)--1(0) + ~-41(1(0),0).
" 4, &eat(0),0)
%t(O) = —&vXTO)’.
Observe that w(t) = Zp¢(t,0) and w(t) = mX(%g(t, 0)) are both solutions of the

Cauchy’s problem

{ @ = DXy(px(t,0)w
w(0) = (1,07 '

By means of the Theorem of Existence and Uniqueness we obtain, fori = 1, 2, a%goi(t(O), 0)

. d?
= i((gl((g)) Therefore, --p(0) = 0. In [33] it is proved that Ep(O) > 0, which follows from
theorems on uniqueness of solutions and it concludes the proof. O

1.3 Discontinuous Vector Fields

In this work we concern about planar discontinuous vector fields defined in two zones,
for this reason we just present definitions for this type of vector fields. More general
definitions and concepts can be found in [11, 14, 15] among others.

Consider two connected, open, and disjoint sets, ¥, ¥~ C R?, such that the common
frontier of these sets is a codimension 1 submanifold ¥ € R? and YT U X~ U Y = R%
Let X and Y be vector fields in x" restricted to X" and X7, respectively. Under these
conditions, a discontinuous vector field is defined as following

Z(p) :{ ff(((;) 55? (1.3.1)

3} is called switching manifold or even discontinuity manifold.

Denote by Q" the set of all discontinuous vector fields in R? defined as above. For
each Z € Q" write Z = (X,Y) so, we can identify Q" with x" x x". We consider this
set endowed with the product topology, where x" is endowed with the C"—topology. In
this context, the definition of trajectories of such a discontinuous vector field follows the
Filippov’s convention, see [14].

Throughout this work, we suppose ¥ = h~1(0) is an embedded submanifold of R?,
where h : R — R is a smooth function for which 0 is a regular value. In addition, we
assume, without loss of generality, ©* = {p € R* h(p) > 0} and X~ = {p € R?; h(p) < 0}.
So, the definition in equation 1.3.1 becomes

X(p) if hip) >0,
Z(p)z{ Y(]Z;) it h(£><07 (1.3.2)

where p € R%, X, Y € x". Observe that we can think on X and Y as being vector fields
defined in the manifolds with boundary ¥ U X and ¥~ U X, respectively.

Having these assumptions established, on the switching manifold > the following re-
gions can be distinguished, depending on the directions of X and Y,

« the crossing (or sewing) region: ¥¢ = {p € ¥; Xh-Yh(p) > 0}, Figure 1.5—(a) — (b);
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o the sliding region: >° = {p € ¥; Xh(p) < 0 and Yh(p) > 0}, Figure 1.5—(c);

 the escaping region: ¥¢ = {p € ¥; Xh(p) > 0 and Yh(p) < 0}, Figure 1.5—(d).

Ll il
AN

() (d)
Figure 1.5: Illustrations of ¥¢ in (a) and (b), ¥° in (¢) and X¢ in (d).

The regions ¢, X% and € are relatively open in ¥ and the complementary set of
them in ¥ is composed by points satisfying Xh(p) - Yh(p) = 0, called tangency points. A
smooth vector field X is transversal to Y at p € X if it is not a tangency point.

For points in 3¢ it is natural to think that the trajectories of Z = (X,Y") € Q" are given
by concatenations of trajectories of X and Y. So, a preliminary step before discussing
about all possible trajectories of such a vector field is to understand the dynamics in
regions >° and »°. In 3° U X° we define a vector field Z° given by the unique convex
combination of X and Y which is tangent to X at p, i.e., given p € 3¢ U X°,

1
Y i(p) - Xf(p)

Denoted by ¢x(t,p) the flow of the smooth vector field X € x". This flow is defined
fort € I = I(p, X) C R and, by simplicity, we use [ instead of I(p, X).

Z*(p) Yf(p)X(p) - Xf(p)Y(p))- (1.3.3)

Definition 1.9. Consider Z = (X,Y) a discontinuous vector field as defined in the
equation (1.3.2). The local trajectory of Z through a point p € R? — Y5 U Xe is defined as

e if p € T orif p e X7, then the trajectory through p is pz(t,p) = @x(t,p) or
wz(t,p) = @y (t,p) respectively, fort € I C R. The interval I is such that pz(t,p) ¢
Y forallt e I;

e if p € X°, the trajectory is the concatenation of the trajectories ¢ x(t,p) and oy (t,p).
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For simplicity, we consider a trajectory of Z = (X,Y’) through p € X% U X¢ as being
multivalued, i.e., it can be any trajectory of X, Y or Z° through p. More details can be
found in [39].

Those singular points of X (resp. Y') that lie on X7 (resp. X7) are called real singular
points. Conversely, those singular points of X (resp. Y') that lie on X~ (resp. 1) are
called virtual singular points and, although they are called “singular points” they are not
singularities of the discontinuous vector field Z. Also, those singular points of X or Y
that lie on ¥ are called boundary singular points. The singularities of Z = (X,Y) are
split in two classes

o distinguished singularities: real and boundary singular points, pseudo-equilibria or
singular tangency points;

o non-distinguished singularities: regular tangency points.
The points that are not singularities are called reqular points.

Definition 1.10. A discontinuous vector field Z = (X,Y') has a fold singularity at p € X
if p is a fold singularity for X or'Y seen as vector fields defined in the manifold with
boundary Xt UX or ¥~ UX, respectively. If p is a fold for X and a reqular point for Y
or vice-versa then p is a fold-regular point for Z. Moreover, if p is a fold for both, X and
Y, then p is a fold-fold point for Z.

Observe that, from Definition 1.8, a fold point p € X is visible if it is a fold for X
(resp. Y) and X?2h(p) > 0 (resp. Y2h(p) < 0) and it is invisible provided it is a fold for
X (resp. Y) and X?h(p) <0 (resp. Y2h(p) > 0).

Definition 1.11. A discontinuous vector field Z has a saddle-regular point at p € ¥ if p
is a saddle point for X (resp. Y ) andY (resp. X ) is transversal to ¥ at p.

Given a trajectory ¢z (t,q) € XTUX™ and p € X, p is said to be a departing point (resp.
arriving point) of (¢, q) if there exists ty < 0 (resp. to > 0) such that lim, .+ ex(t,q) =p
(resp. lim, s wz(t,q) = p). With these definitions if p € ¥¢, then it is a departing point
(resp. arriving point) of @x(t,q) for any ¢ € y*(p) (resp. ¢ € v~ (p)), where

Y (p) = {wz(t,p);it € IN{t >0}} and 7~ (p) = {pz(t,p);t € IN{t < 0}},

are the positive and negative trajectories through p, respectively. Now, we are able to
give definitions of cycles, connections and separatrices.

Definition 1.12. Let Z = (X,Y) € Q" be a discontinuous vector field. A continuous
closed curve I is said to be a cycle of the vector field Z if it is composed by a finite union
of segments of reqular orbits and singularities of Z, 1,72, - --,Vn- For a cycle " there are
the following possibilities:

e I is a simple cycle, i.e, none of v;’s are singular points and the set v; N Y% is either
empty or composed only by points of 3¢, Vi = 1,...,n. If such a cycle is isolated
in the set of all simple cycles of Z, then it is called limit cycle. See Figure 1.6(a);

e I' is a regular polycycle, i.e., for alli=1,...,n, the set v; ¥ is empty and at least
one of vis is a singular point or, for some i = 1,...,n, v, N3 C 3¢ is nonempty.
See figures 1.6(b) and 1.6(c);
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e ' is a sliding cycle, i.e., there exists i € {1,2,...,n} such that ~; is a segment of
sliding orbit and, for any two consecutive curves, the departing or arriving points in
Y are not the same. See Figure 1.6(d);

e ' is a pseudo-cycle, i.e., for some i € {1,2,...,n}, the arriving or departing points
of vi and 741 coincide. See Figure 1.6(e). If the pseudo-cycle contains a segment
of a sliding orbit, then it is a sliding pseudo-cycle, see Figure 1.6(f).

A cycle is said to be degenerate if it does not persist under small perturbations of the
system, i.e., if it is not structurally stable.

O

(e)
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Figure 1.6: Ilustration of different types of cycles: (a) simple cycle; (b), (¢) regular
polycycles; (d) sliding cycle; (e) pseudo-cycle and (f) sliding pseudo-cycle.

Definition 1.13. An unstable (resp. a stable) separatriz is

e a regular orbit I' which is the unstable (resp. stable) manifold of a saddle point of
X ,peXt orofY,peX—. Itis denoted by W*(p) (resp. W*(p)). Or,

e a reqular orbit which has a distinguished singularity, p € X, as departing (resp.

arriving) point. It is denoted by Wi(p) (resp. Wi(p)) and + means that it leaves
(resp. arrives) from ¥,

If necessary, we will use the notation Wi*(X, p) to indicate which vector field is being
considered. If a separatrix is, at the same time, unstable and stable then it is a separatrix
connection. When a orbit I' is connecting two distinguished singularities of Z, p and ¢, it
will be called homoclinic connection if p = ¢ and heteroclinic connection if p # q.

Definition 1.14. A hyperbolic pseudo-equilibrium point p is said to be a

e pseudonode if p € X° (resp. p € 3°) and it is an attractor (resp. a repellor) for the
sliding vector field;

e pseudosaddle if p € ¥° (resp. p € X¢) and it is a repellor (resp. an attractor) for
the sliding vector field.
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Now, it is necessary to discuss about equivalences in €2". For discontinuous vector
fields there are different notions of topological equivalence.

Definition 1.15. Consider two discontinuous vector fields Z and Z defined in open sets,
U and U, of R? with discontinuity curves ¥ and X, respectively. Then,

e Zand Z are Y—equivalent if there exists an orientation preserving homeomorphism
h:U — U that sends ¥ to ¥ and sends orbits of Z to orbits of Z,;

e Z and Z are topologically equivalent if there exists an orientation preserving home-
omorphism h : U — U that sends orbits of Z to orbits of Z.

Observe that X —equivalence implies topologically equivalence but the reverse is not
true, for an example illustrating that these definitions are not equivalent see [15].

Through this work we consider ¥—equivalences. Thus, a vector field Z, € Q" is
structurally stable if there exists a neighborhood Vy,, of Zj in 2", such that, any Z € Vg,
is Y —equivalent to Z.



Chapter 2

Dulac’s Problem

In this chapter we present a version of the Dulac’s problem for discontinuous vector
fields. The original problem due to Dulac concerns about vector fields that are analytic in
R?, piecewise analytic ones are not considered. The main difference between the discon-
tinuous and the continuous cases is the analysis of the transition map near the singularity.
We emphasize that the extension obtained here is not a particular case of the original
problem, there are some considerable differences in the structure of the first return maps.

It is worthwhile to emphasize the original Dulac’s problem is true for elementary singu-
lar points but here we just consider hyperbolic singularities. Moreover, as a generalization,
we show the result remains true if we change hyperbolic saddles by fold points, this kind
of cycle does not exist for smooth vector fields.

2.1 The Problem

Let Z = (X,Y) be a discontinuous vector field, where X and Y are smooth enough
for our purposes. The first thing to do is to extend the concept of hyperbolic polycycle.

Definition 2.1. A continuous closed curve I' is said to be a hyperbolic polycycle of the
vector field Z if it is composed by a finite union of segments of regqular orbits of Z,
Y1,7Y2s - - - s Yn, and hyperbolic saddles, pi,ps,...,pn, such that for each 1 < 1 < n, the
w, a—limit sets of v; are p; and p;11, respectively. Moreover,

e NX CXC foralli=1,...,n;

o if pi € X then p; € X¢ and p; is a saddle-reqular or saddle-saddle point of Z for
which the invariant manifolds of the saddle are transversal to ¥ at this point;

e there exists a first return map defined in one of the two regions (bounded or un-

bounded) delimited by T .

Remark 2.1. IfT'NY = () then T is a hyperbolic polycycle for one of the smooth vector
fields X or'Y. In this case, the problem is reduced to the hyperbolic version of the classic
Dulac’s Problem

- A hyperbolic polycycle of an analytic vector field cannot have limit cycles accumulating
onto 1t.

Theorem 2.1 (Dulac’s Problem). A hyperbolic polycycle of a piecewise analytic vector
field Z € Q¥ cannot have limit cycles accumulated onto it.

31
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Figure 2.1: Examples of hyperbolic polycycles.

In order to prove the Theorem 2.1, it is necessary to construct the first return map in
such a way we are able to analyze it. Let [ be a hyperbolic polycycle and let py,...,p,
be the vertices of I', in some cyclic order. Let o’ ~ [a,b) be a transversal section to I" at
a € I' such that the first return map P of I' is defined from o C ¢’ — o.

At each vertex p; choose a local system of coordinates (z;,y;) in such way the axis 0,,
and 0,, are the local unstable and stable manifolds, respectively. If p; € ¥ we assume that
¥ is a curve crossing transversely both axes at the origin, denote by 3 the half-plane
that contains the positive part of axis 0,, and by ¥; the half-plane that contains the
negative part of axis 0,,. Moreover, the first return map P is defined in the first quadrant
of the (x;,y;)—plane. Consider transversal sections o; and 7; defined as following:

Ci— If p; ¢ X or p; € ¥ and ¥ does not lie on the first quadrant: let o; and 7; be

transversal sections to 0,, at (0,¢;) and to 0,, at (g;,0), respectively with ¢; > 0.
See Figures 2.2(a) and 2.2(b);

Co— If p; € 3, ¥ lies on the first quadrant and p; is a saddle of the vector field defined
in X let 0; be a transversal section to 0,, at (0,¢;) with ¢; > 0 and let 7; be a
segment contained in X with 0 € ;. See Figure 2.2(c);

Cs3— If p; € X, ¥ lies on the first quadrant and p; is a saddle of the vector field defined
in 3;: let 7; be a transversal section to 0,, at (g;,0) with ¢; > 0 and let o; be a
segment contained in ¥ with 0 € ;. See Figure 2.2(d).

In each one of these cases, one defines a transition map D;, near the saddle point
pi, from o} to 7;, where o7 C o; with z; > 0 and D;(0) = 0. As we will see later,
there is no loss of generality in considering ¢; and 7; orthogonal to the axis when they
are not subsets of . Hence, in the cases C'; and Cy, consider o; as the image of the
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Figure 2.2: Transition maps from o; to 7;: (a) — (b) Case (1, (¢) Case Cy and (d) Case
Cs.

map x € (—0;0;) — (z,5) € R?, where d;, &; > 0 are small enough. In the case Cs
we consider o; given by the parametrization of X. Let ¢;(¢,z,y) be the flow near the
saddle and let ¢;(x) be the smallest positive time spent by the trajectory passing through
(z,y(x)) € o to intersect 7;. Then, define D;(x;) = mo(pi(ti(7;), 75, €;)) where 7y is the
canonical projection on the second coordinate.

After crossing 7;, the trajectory of Z by p € o; will cross o;.1. If 7, Noiy = 0,
since a regular orbit makes the connection between p; and p;, 1, there exists an analytic
diffecomorphism R; : 7, — 041 such that R;(¢q) is the point in ¢;41 where the positive
trajectory of Z passing through ¢ € 7; intersects o;,1. If ;Mo # (), the transition from
7; to 0,41 will be just the identity map and for questions of completeness we also denote
it by R;. See Figure 2.3 as an example. Finally, the first return map can be written as a
composition

P(z)=R,oD,0---0RyoD(x). (2.1.1)

This characterization for the first return map allows us to come back to the analysis of
the Theorem 2.1. Suppose that there exits a sequence of limit cycles accumulating onto
the polycycle I'. It implies that the equation P(x) — 2 = 0 has infinitely many roots near
to x = 0 (for x > 0), i.e., for any real number € > 0 there exists a root of this equation in
(0,€). Therefore, proving the Theorem 2.1 is equivalent to proving that 0 is an isolated
solution of P(z) —z = 0.

The most difficult part in the analysis of the map P is to know the structure of each
transition map in its composition. For this reason, a careful study is necessary. In order
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Figure 2.3: First return map for a polycycle with 3 saddle points. Here o9 C .

to do this we need some technical definitions and results.

Definition 2.2. The Dulac series of a map D, defined in a half open interval [0,0) is a
formal series

D(z) = > 2 P(Inz),
i=1

where 0 < Ay < Ay < --- <\, < --- 18 an increasing sequence of positive numbers tending
to infinity, P; are polynomials. Moreover, this series must be asymptotic to D in the
following sense: for any n € N, there is s € N such that

D(x) =Y 2% P(Inz)| = O(a™). (2.1.2)
i=1
Definition 2.3. A germ of a map [ at 0 € RT is called quasi-reqular if

1. f has a representative on [0,0) which is C* on (0,0), where 0 is a posilive constant;

2. f has a Dulac series (f is asymptotic to a Dulac series f)
[ is a quasi-reqular homeomorphism if it is quasi-reqular and Py = A (a positive constant).

It follows from the definition that the set D of the quasi-regular homeomorphisms
is a group (with the composition of maps) which contains the group Diffy of germs of
diffeomorphisms fixing the origin.

Assume, for a moment, that the transition maps near hyperbolic saddle points are
quasi-regular and we will conclude the proof of the Theorem 2.1. The proof of this
assumption is quite difficult and extensive so, to facilitate readability, we will prove it
later.

Proposition 2.1. The first return map P is quasi-reqular.
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Proof. We have seen that D is a group with respect to the composition of maps. Moreover,
diffeomorphisms fixing the origin and transition maps near a hyperbolic saddle are quasi-
regular. Therefore, the result follows from the expression of P given in equation 2.1.1. [

Now, we proceed to show that P being quasi-regular is enough to give an affirmative
answer for Theorem 2.1.

Lemma 2.1. Suppose that P(x) # x, then the Dulac series of P(x) — x is non-zero.

Proof. By definition, it is possible to write P(z) = Z 2 Py(Inz) with 0 < A\ < Ay < -

and A\, — oo when n — oco. In order to write a Dulac1 series for P — Id, let ig > 1 be the
smaller positive integer for which \;, > 1. If \;, = 1, define \; = \; for all i > 1, P, = P,
for i # 49, and Py, (t) = Py, (t) — 1. If \;, > 1 then it follovvs from the definition of ip that
Aig—1 < 1 < \;,, in this case define

e Mi=\, P,=P foralll<i<ig—1,

=1, P, =—1, and

>
s

o« \ = A1, P, = P4 for all i > 1.

Then, we have a Dulac series for P — Id given by
Z ln x)

in fact the asymptotic condition is trivially satisfied from the construction of this series.
Notice that this series is identically zero if and only if P, = 0 for all 7 > 1. But, since
the Dulac series of the identity map coincides with its Taylor series, if the series above is
identically zero, from the construction above, P (x) = Id(x) = x. Hence, from hypothesis

P(z) # z we have P/—\Id(x) Z 0. O

/\

Now, a result about the accumulation of limit cycles.

Proposition 2.2. If there exists a sequence of limit cycles accumulating onto the hyper-

bolic polycycle T', then P(x) =

Proof. Suppose by contradiction that f’(x) # x then, from Lemma 2.1 the Dulac series of

P(z) — x is non-zero. Thus, P/—\Id(x) — M Py(lnz) + Y a™P(Inz), with Py(t) # 0.
i=k+1

Then, there exists o > 0 such that 2™ P(Inz) # 0 for all x € (0,2,) and, consequently,
P/—\Id(x) # 0 for all x € (0,x). Since P(x) — z is asymptotic to its Dulac series, o can
be chosen such that P(x) — x has no roots in (0, z). In fact, otherwise it should exists a
sequence x,, — 0 such that P(x,) — z, = 0 and

- _ _ Ak
‘x;\L’“Pk(lnxn)’:O(ka), consequently | Py(lnx,)|= O(x, )

Now, P, is non-zero so nh_>nolo Pi(Inz,) # 0 (because Inz — —o0o when z — 0% and P,

is a polynomial) while the factor on the right-hand side of the last equality tends to 0
when n — o0, so it is a contradiction. Thus, P(z) — x = 0 has no roots in (0, zg) and,
consequently, I' is not accumulated by limit cycles contradicting the initial hypothesis.
Therefore, P(z) = x. O
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With these results, to prove Theorem 2.1, it is enough to show that if P = z then
P = 2. In order to do that we need more technical results.

Definition 2.4. A germ of a map f :[0,) — R is quasi-analytic if
1. f is quasi-regular;

2. the map x — foexp(—x) has a bounded holomorphic extension F(z) in some domain
Ay of C, defined by Ay = {z = u +iv; u > b(1 + v*)V/*} where b is a positive real
number.

For quasi-analytic functions the wanted result holds. The following result is proved in
Chapter 3 of [35] (pages 45 — 49).

Theorem 2.2. If a quasi-analytic function f is such that fz 0, then f = 0. Moreover,
the transition map, D, at a hyperbolic saddle singularity is quasi-analytic. Consequently,
the first return map P of a hyperbolic polycycle is quasi-analytic.

Now, we are ready to prove the Theorem 2.1.

Theorem 2.3. If the transition maps at hyperbolic saddle points are quasi-reqular then a
hyperbolic polycycle of Z € Q¥ cannot have limit cycles accumulating onto it.

Proof. The proof follows by contradiction. From Theorem 2.2 we know that the first re-
turn map P is quasi-analytic. Proposition 2.2 gives that, if I has limit cycles accumulating
onto it, then P(z) = z and, again from Theorem 2.2, we obtain P(z) = x. Therefore, all
trajectories of Z are closed in the half-open neighborhood where P is defined. It contra-
dicts the existence of limit cycles (which are isolated closed orbits) accumulating onto I'.
Hence, I cannot have limit cycles accumulating onto it. O

Remark 2.2. It follows from Theorem 2.3 that, we just need to prove that transition
maps at hyperbolic saddles are quasi-reqular, to prove the Theorem 2.1. Moreover, the
only difference from the classical case for smooth vector fields is the construction of the
first return map.

Now, we proceed to prove the quasi-regularity of transition maps at hyperbolic saddle
points, what first requires technical results. The case C, when the saddle point does not
belong to ¥ or it belongs to ¥ and ¥ do not cross the region where the first return map is
defined, is done in Chapter 5 of [35]. Now, we will adapt that proof to the case C3 where
the saddle is in X, ¥ cross the region where the first return map is defined and we have
a saddle for the vector field defined in ¥~. Having proved thi result, the case C5 follows
directly from the fact that the set D of quasi-regular maps is a group with composition.

2.2 Transition Maps

Without loss of generality we suppose the saddle point is at the origin of the system
of coordinates (z,y) and consider V; be the neighborhood of the saddle point where the
normal form given in Chapter 1 holds. Let ¢ > 0 be a real number small enough such
that the transversal sections ., where the transition map is defined, and 7., which is
the counter-domain of the transition map, are contained in V. Denote by o(t, z,y) =
(p1(t,z,y), po(t, x,y)) the flow of the vector field X defined in ¥, then, from Theorem
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1.2, we have p1(t,z,y) = e'z. Remember that we denote by r the hyperbolicity radius
of the saddle point, i.e., 7 = —pus/p; where uy < 0 < p; are the eigenvalues of DX (0).
Since we are focused in just one saddle point we do not need to use the index (to specify
the point) above. For further references we will denote by D; the transition map and o;
and 7; the transversal sections in the case Cj, for j =1, 2, 3.

Remark 2.3. The quasi-reqularity of the transition maps does not depend on the choice
of the transversal sections o;, for j = 1,2, and 1, for j = 1,3. In fact, if we choose
different transversal sections at the correspondent branch of the invariant manifold, the
transition between these two transversal sections is done by means of a diffeomorphism.
As we have seen above D is a group, then the new transition map is quasi-reqular provided
the old one is quasi-reqular. This idea s illustrated in Figure 2.4. For o3 and 15 it is
important to keep them contained in X but, once ¥ does not depend on the vector field,
these assumptions are not problematic.

Figure 2.4: The transitions from o to ¢’ is a diffcomorphism. Being D (from o to 7)
quasi-regular, then the transition D’ (from ¢’ to 7) is also quasi-regular.

Remark 2.4. Since the analysis is local we can suppose that Y is locally a straight line.
Moreover, under a linear change of coordinates (x,y) — (ax,by) with a,b > 0 such that
in these new coordinates ¥ = {(z,y) € R*y = x}. Furthermore, the linear change of
coordinates (x,y) — (ex,cy) allows us to assume that € = 1. In fact, this change will just
modify the coefficients of the resonant terms in the normal form given in Chapter 1.

Now, in order to study the transition maps, assume ¥ = {(z,x) € R?}, ¢ = 1 and fix
transversal sections as following:

C1— We have 01 = {(2,1);0 <z < §} and 7 = {(1,9); |y|< 92} for some 01,02 > 0.
To find the transition time, i.e., the time spent by trajectories of X to go from oy to 7,
it is just necessary to solve, in t, the following equation

o1t x, 1) =1,
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and we obtain t = t1(x) = — Inz. In this case the transition map is D1 (x) = @a(t1(2), z, 1).
Co— We have 0y = 0y and 7, = {(z,z) € R*z € (=§,0)} C 3, for some § > 0. Let
ta(x) be transition time from oy to 7o, then Dy(x) = ¢1(ta(z),z,1) = palta(x), z,1). We
will not study this case now. We will show that D; and D3 (to be defined below) are
quasi-regular, so, as we have seen above, it is enough to obtain the quasi-regularity of D.
C3— We have 03 = 1 and 73 = {(1,y) € R? |y|< §3} C %, for some d3 > 0. So, if
t3(x) is the transition time from o3 to 73, then

901<t3(x)7 Z, 93) =1,

so t3(x) = —Inz and Ds3(x) = pa(ts(z), x, ).

2.2.1 Quasi-Regularity of Transition Maps

The normal form considered has two different expressions provided r € Q or r ¢ Q.
For this reason we have two different situations to explore. Moreover, from Remark 2.3
we have D;(z) = D3 o Dy(x). From the fact that D is a group with the composition of
maps it is enough to prove that two of them are quasi-regular, and we are going to prove
that Dy, D3 € D.

I) Case: ¢ Q

If r ¢ Q then po(t, z,y) = e "'y. We obtain D;(x) = 2" which is an analytic map that
coincides with its Dulac series

Di(x) = Y. oM Pl(Inx),

i=1

where A\l < A} < ... is an increasing sequence tending to infinity with A\} = r > 0,
P}(u) =1 and P}(u) =0 for all ¢ > 1. Hence, D;(z) is a quasi-regular homeomorphism.
Also, Ds(x) = e "(®)z = 21+ which is an analytic map that coincides with the Dulac
series -
Ds(x) = Y aM P} (Inx),
i=1
where A} < A3 < --- is an increasing sequence tending to infinity with A} = 1 + r,
P}(u) =1 and P?(u) =0 for all ¢ > 1. Hence, D3(z) is a quasi-regular homeomorphism.
Hence, Dy, Dy and D3 are quasi-regular homeomorphisms.

IT) Case: r = Pe Q, p and ¢ without common factors
q

If » € Q then we cannot find the flow of X explicitly and it makes a huge difference in
the analysis. It is not possible to obtain an algebraically expression for D;(z) however it is
possible to prove that D; is a quasi-regular homeomorphism for i = 1, 3 and, consequently,
for i = 2.

When r = % € Q we have one characterization of X, up to C*—conjugacy, given in
the Theorem 1.1.

More generally, we can consider the analytic vector field

0 1 o , 0
X x8x+q ( »+ E i1 (xPy ))yay, (2.2.1)

1=0
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where P,(z) = % ;2" is an analytic function of z € R, and a = (ay, g, ...) € A, where
i=1
A is the set
A= {a— (o, g, .. ), ]041\< || < M for i >2} (2.2.2)
and M > 0 is a fixed constant. Now, we need to Study the properties of D;(x) at x = 0
fori=1, 3.

Consider the singular change of coordinates ©* = x, u = zPy9, so the differential
equation associated with X becomes

T= x
{ = Py(u)= § au’. (2.2.3)

Now, system (2.2.3) has separable variables and ¢4 (¢, z) = e’z is the solution for the
first equation satisfying ¢1(0,x) = =. For the second one, P, is analytic for « € A. Let
©o(t, ) be the solution of this equation, which is analytic, verifying ¢o(0,u) = u.

We can expand ¢(t,u) in series in u for each t,

u) = igl(t)ul (2.2.4)

Using this expression we obtain:

Lemma 2.2. Consider ps(t,u) as defined above, then gi(t) = e and ¢;(0) = 0 for
1> 2.

Proof. From equation 2.2.4 we obtain

0

8t902 (t,u = o5 (Zgz ) = ;Qi(t)U,

where the change in the order of the limits above is possible due to the analyticity of the
solution and from the fact that power series which converges also converges uniformly.
Since @s(t,u) is the solution of the second equation in 2.2.3, we have

aatnpg(t u) = P, (p(t,u)) Zaz (Zg] ) .

From these two equalities and the uniqueness of the Taylor series we obtain the following
system

a(t) = agi(t)
' a1ga(t) + aagi(t)
B, =1 93(t) = aigs(t) +20291(t)g2(t) + asg?(t) (2.2.5)

Q

[\

—~
~+

~—
I

g(t) = ongr(t) + Pe(og, ..., 001, Gr-1),

where, for each k > 1, Py is a polynomial in aw, ..., ak, g1, ..., gr—1 Wwith positive rational
coefficients.

Therefore, ¢;(t) = e*'g;(0). Furthermore, from P,(u) = P,(¢2(0,u)) we obtain
91(0) =1 and ¢;(0) = 0 for i > 2. O
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We want to study the structure of the functions g; and the convergence of the series
S, gi(t)u® as a function of t. In order to do this, consider the following equation, which
will be referred as hyperbolic equation:

. 1 >
U= §U + MY Ut (2.2.6)
=1

Then, the following statement holds:

Lemma 2.3. Let U(t,u) = § G;(t)u’ be the power series expansion of the trajectories of
i=1
(2.2.6). Then, for each i >1 andt >0, |g;(t)|< Gi(t) for any o € A.

Proof. The proof of this lemma can be found in [35] (Lemma 18, page 95). Notice that
U = P,(U) with o = (%, M,M,.. .), so the functions G;(t) must verify

Gi(t) = 3Gi(t)
Ga(t) 5Ga(t) + MGi(t)
Eg =3 Gi(t) = 3G3(t) +2MGi(1)Ga(t) + MGH(t) (2.2.7)

Gk(t) = %Gk(t)—{_Pk(M?vMaGla7Gk—1)7

where, for each k > 1, P, is a polynomial as in system 2.2.5.
Then, Gy(t) = ez > 0 and G;(0) = 0, for i > 0. So, Ga(t) = 1/2G5(t) + Me' and we
obtain )
Ga(t) = e%/o MG3(s)e”2ds > 0.

More generally, we obtain

[SIES

t S
Gult) = ¢ /0 Po(M, ..., M;Gi(s),...,Gp1(s))e 3ds > 0.

Notice that Gg(t) > 0 if ¢t > 0.
Now, we are going to prove the result by induction. For a € A, a; < 1/2 so

lg1(t)|= et < e% = Gi(t), forallt>0.

Suppose, by induction hypothesis, that |gx(¢)|< Gi(t) for each 1 <k <i—1 and t > 0.
We have,
9i(t) = angi(t) + Pi(az, ..., 691, - -, gi1)
and 1
Gi(t) = §Gi(t) +P(M,...,M;Gq,...,Gi_y),

where P; are polynomials with positive coefficients, then
[P, ais gy gia)l < Pilleal, - lails gl gial)
<|\Pu(M,...,.M;Gy,...,Gr_1)|.
Now, we know that g,(0) =1, G1(0) = 1 and gx(0) = G(0) = 0 for k > 2, hence

Gr(0) = Pu(M, ... M;G1(0),...,Gr_1(0)) = MG¥(0) = M, for all k> 2,
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and 4
|gz(0)’§ |Oézg1(0)l‘: |Oél|< M, for all & > 2.

Then, [gx(0)|< Gx(0), for all k& > 2. By continuity, there exists § > 0 small enough
such that |g;(t)|< G;(0) for all t € [0,9). It means that G; increases faster than |g;|, so
lgi(t)|< Gi(t) for all t € (0,0). Now, suppose by contradiction that there exists ¢y > 0 such
that [g;(to)|> Gi(to) and |g;(t)]< Gy(t) for all t € [0,ty). Then, from continuity we must
have |g;(to)|< Gi(tp). Induction hypothesis gives us |gi(to) < Gi(tp) forall 1 < k <i—1,
then for t = ¢g

Gi(to) = a1gi(to) + Py, ..., s g1(to), - - -, gim1(to))

and

. 1
Gi(to) = §Gi(t0) + P(M, ..., M;Gi(to), - - -, Gi—1(to))-
So,

19i(to)| = [ llgi(to) [+ Pillazl, - - |ail; g1(o) ], - - |gi-1(to)])

1
< iGi(to) + Bi(M, ..., M;Gi(to), . .., Gi-1(to)) = Gi(to),

so we have a contradiction with our assumption on to. It implies that |g;(t)|< G;(t) for
all t > 0. Therefore, |g;(t)|< G;(t) for all ¢ > 0. Finally, we have the result proved by
induction. [

Next, we have more estimations to prove.

Lemma 2.4. There exist constants C,Cy > 0 such that
1g:(1)|< Co(Ce’®) for any i >1,t >0 and any o € A.

Proof. The proof of this lemma can be found in[35] (Lemma 19, page 97 ). From Lemma
2.3 it is enough to prove that Gy(t) < Cy(Cez)’ for some positive constants Cy and C
and for all ¢ > 1, ¢t > 0 and a € A. Since U(t,u) = Y ;51 Gi(t)u’ is a trajectory of

0
the hyperbolic equation u = P(u) or, equivalently, of the vector field X = P(u)—— with

A ou
P(u) = %u + MZ’Lzl 'U/Z+1.
The Linearization Theorem of Poincaré (see [10], page 71) ensures that there exists
an analytic diffeomorphism &(u) = u + O(u), converging for |u|< K;, K; > 0 a fixed

constant, such that
0 1 0

0
Moreover, this diffeomorphism sends the flow U(¢, u) of P(u)a— into the flow Uy(t,u) =
u

ues of LuZ. Tt means that Up(t, &(u)) = E(U (L, u)) for [ul, |U(t,u)|< K.

Now, we want to show that there exist constants 0 < b < B such that bju|< [{(u)|<
Blul, for |u|< K. In fact, £ is a diffeomorphism then it satisfies the Lipschitz condition,
i.e., there exists B > 0 such that |£(u)|< Blul, for all |u|< K. Also, £7! is a diffeomor-
phism, so there exists k; > 0 such that |7 (v)|< ki|v], for all |v]|< |n|1<al>(< |£(u)|. Then,

U181

for v = &(u), |u|< Ky, we have |u|= [€71(v)|< ky|v|= k1|€(w)|. So, taking b = 1/k; we
achieve the wanted inequalities.
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Notice that, 0 < %e%t < 1forallt > 0, so by defining R(t) = %Kle’% we have R(t) <
K, for all t > 0. We now can restrict |u|< R(t), then |¢(u)|< Blu|< BR(t) = bKie~2. It

implies that |Up(t, &(u))|= |€(u)]ez < bK;. Since U(t,u) = &Y (Uy(t, €(u))) we have

Ut u)|= €™ (Uolt, €IS 1100t E)I< by = Ko

%

—U(t,u) | ,_, = i G;(t) and by applying

%

By definition, U(t,u) = Y51 Gi(t)u" so,

Cauchy’s inequalities (see Appendix A) for the coefficients G;(t) we find, for all ¢ > 1 and
t>0,

1 Ky
Gi(H)|< — Ut,u)|; lul= R(#)} < —. 2.2.8
|Gi(D)|< 0] sup{|U (¢, u)|; lul= R(t)} R0 (2.2.8)
So, for all i > 1 and t > 0,
K, B K
(DL Gi(t) < = :KKK‘l) 2}.
|9:(8)| < ()_R’(t) 1\ e
Therefore, the result is achieved by choosing Cy = K; and C' = %K o O]
Lemma 2.5. For each k > 1, there exists a constant Cy, > 0 such that
d*g; t/2yi :
ik (1) < Cp(Ce?) foranyi>1,t>0,a € A, (2.2.9)

where C' is the same constant as in Lemma 2.4.
Proof. This result is proved in [35] (Lemma 20, page 98). Notice that the series in u

0 0
of —y has the same radius of convergence as ¢(t,u), it happens because agoz(t,u) =

ot
ak
P, (p2(t,u)). Similarly, we obtain, by induction on k, that %Q@Q(t, u) has the same radius

of convergence for all k£ > 1.
By means of the Cauchy’s inequality we obtain

d* 1 oF
%Qz‘(t) < Ri(D) sup %@2(@“)
k

%Qz‘(t)

= R(t)}.

S Ck(Oet/Q)i. O

Now, for C' = %Kfl and some C} > 0 we have

In order to obtain a more precise form for the functions g;(¢) we introduce the function
et — 1

Qo t) = o for a; # 0 ‘

t fora; =0

Thus, we have the following

Proposition 2.3. For each k > 1, gi(t) = e“*'Qy(t), where Qi is a polynomial of degree

< k—11in Q. The coefficients of Qi are polynomials in oy, ..., ar. More precisely,

Qr = ap + Qunlay, ..., aQ), (2.2.10)
where Qi is a polynomial of degree < k — 1 in Q with coefficients in I(ay, ..., ar_1) N
I(Oél, . 7Oék)2

- Q[ah”'aak]'
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Proof. This result is proved in [35] (Proposition 10, page 99). Since @o(t, u) = 351 g:(t)u’
is solution of @ = P,(u) with ¢(0,u) = u, we have from system Ej in equation 2.2.5 that
gr(t) = a1gr(t) + Pr(ag, ... a5 91(t), ..., gr—1(t)) where Py is polynomial of degree < k
in g1, g1,.-.,9k_1 and coefficients polynomial linear in g, O3, .. Observe that the

monomials in P, are of the form g¢i'g% - - gi’“ - with Z j-lij=Fkand 2 < Z l; <k.

]:
Also, from E, system we obtain g(t) = e*'', go(t) = ape™? (%) = ageath and,
more generally,

t
g(t) = ealt/o e~ Py(ag, .+ o 1(5), - s ge1(s))ds.

Observe that, €' = 1+a;. We are going to use induction to prove that g (t) = e***Q(t)
with Q) polynomial of degree < k in €2 and coefficients polynomial in aq, ..., ag. As seen
above, the result is true for £ = 1 and k£ = 2, so suppose that it true for all 7 < k — 1.
Consider the equation

g =019k + Pr(oa, ..., 00301, -, Gk—1),

ll lg lk 1

Py, has monomials of the form gi'gs - - - g4, then by induction hypothesis, g; = e®*Q;(t)
k—1

for 1 < j < k—1. Hence, for i,j < k—1 we have g;-g; = e**'Q;(t)Q;(t). Since Y I; > 2
j=1

we have

998 gt = XL (),
where X, is a polynomial of degree < k — 2 in gy, ... ,gk 1 Now, since e*'! = 1 + a;Q
we have that g gk - gk’“ - is polynomial of degree < Z j-l; = k in Q. Therefore,

j=1
Pi(ag, ..., an: 01, gr1) = €211 X3 (Q) where X}, is polynomial of degree < k — 2 in €.

So,

t

gr(t) = eo‘lt/ e~ 15?15 X (Q(s))ds
0
t
_ ot / %15 X4 (€(s))ds
0
e [ (14 i) Xe(Ofs)ds,
therefore, gi.(t) = e*'Qy(t) with Q) polynomial of degree < k — 1 in 2 and coefficients
polynomial in aq, ..., ax. )
Observe that Py(az,..., k01, .., 0k-1) = argt + Pu(ay, .. Q15015 -+ -5 Gr—1), for

k > 2, where P is linear in s, ..., a1 and each monomial in P, contains at least one
of g; with ¢ > 2. Moreover, the coefficients of g; are in I(al,;. ., ;) and Py, contains, at

least, one term multiplied by a;a;g;g;, so the coefficients of Py, are in Z(aa, ..., ax_1)? N
Z(aq, ..., ax_1). Now,

t
Qk:/o e*mspk(az,...,Oék;gh...,gkfl)ds
t ~
:/0 e_a13(06kglf"‘Pk(OéQ,...,Oék_l;gl,...7gk_1))ds

t t
—ons k —ant
:/0 ape ‘e O‘1Sds+/0 e VP.(ag,. .., kg1, - gr—1)ds.
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The first term in this sum is

(657853

E—1

[1 — # (e(k—l)alt _ 1) — # ((1 + OCIQ)(]C_D — 1) — akQ +

Oél<k— 1) al(k_l) S<Q)v

where S(Q2) is a polynomial of degree > 2 and < —2 in Q. The second term in the
expression of (), is

3 ~
12:/ e~ Py(s)ds,
0

since Py has at least one term in ¢; we have Pk(s) — 15 P, (s) where P, has degree < k—2

in Q. So, I is polynomial in Q with coefficients in Z(ay,...,ax—1) N Z(ag, ... cap_1)%
Therefore, Q. = I1 + I, = a2 + Q) where Q). is a polynomial in  with coefficients in
I(Oq, . ,Ozkfl) ﬂI(OéQ, - ,Oék)2 C @[Ozl, - ,Oék]. ]

Now we are ready to go back to the transition maps. The results above enable us to
study the transition map D;, i = 1, 3. We know that, in both cases, the time spent to go
from o to 7 is equal to t(x) = — Inz. Therefore, we have

o U, = aP1? = 2? and up,, = (e!@z)P Dy (x)? = Dy(z)?. Also, uj,, = u(t(z),up,), i.e.,

U, =u(—Inz,2?) =Y g (—Inz)z”,

i>1
if this series converges for ¢t = — In x. Therefore, we have
Di(z)! =¥ gi(—Inx)a, (2.2.11)

i>1
for x > 0 and D;(0) = 0.

o Uy, = aPx? = 2P and wy,, = (e @z)PDy(z)? = Ds(2)?. Also, ujr, = u(t(z), tjsy),

ie.,
Upry = (— In x,:z:p+q) > gi (— Inz) a7
i>1
if this series converges for t = —Inx. In this case, we have
Dy(0) = % gi (= In) 2l (2.2.12)

for x > 0 and D3(0) = 0.

Notice that D;, i = 1, 3, is well defined for z € [0, €], where ¢ > 0 is a real number,
and it is analytic in (z,«), for z # 0, « € A. In fact, for z # 0 and each ¢ < 0 the
convergence of the series in the expression of D! is due to Lemma 2.4 and from this
lemma we obtain that the convergence radius of the series ; gi (t)u' is, for each t > 0,

greater than or equal to e;? . It implies that, for z small enough, the series converges for
each t < —21Inx. In particular, the series converges when ¢ = —In x, so the expressions
n (2.2.11) and (2.2.12), for D} and D4, hold. Furthermore, the convergence is normal on

the interval [0, €.

ai

Lemma 2.6. The series Y. g; (—Inz)z* is normally convergent for x € (0, €| for some

i>1
e >0, where a > 1 is a fixed constant.
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Proof. By definition, this series is normally convergent in a set .S if the series
S sup |gi (— Inz) 2%| converges. It follows from Lemma 2.4 that, for all ¢ > 0,
i>1 S

9 (@) 2| = |gi (= Ina) |[2]"'< Co|Ce ™3 ['|a[*'= Co|Ca~ 3",

So, by fixing a positive constant 0 < b < 1 we can choose € > 0 small enough such that

[Ca*"3|< b < 1forall 0 <o < e It implies that, sup |g; (—Inx)a%| < Cob'. Since
z€[0,€]

0 < b < 1,it follows that > sup |g; (—Inz)z*| is convergent and we have the result. [
i>12€[0,¢]

Remark 2.5. From the proof above, we have that lim, o+ g;(—Inx) = 0. Since D;(0) =0,
j =1, 3, we can assume the series in Lemma 2.6 is normally convergent in [0, €.

Before stating the next result, the following definition is needed.

Definition 2.5. A function f : R® — R of class C* is said to be C*—flat in the coordinate
8’“f

: _ 0 _ 0

Js (Ltflj'j—l'j, Zfail'j(x())_ a k(l'[))—o where o = ($1,...,$'j_1,l'j,$j+1,...,(L’n)
From now on, we consider a € {p,p+ ¢} and we show that D,(x), satisfying Di(z) =

> gi(—Inz)z™, is quasi-regular. By doing that, we obtain the quasi-regularity of D; and

i>1

Ds.

Proposition 2.4. For any k € N there exists K(k) € N such that

K (k)
Di(z) = > gi(—Inz)z™ + ¢p(z, @), (2.2.13)

=1
where Yy (x, @) is a function of class C* in (z, ) (with o € A) and ka—flat at x = 0.
Proof. From the expression of D(z), given k > 0 we want to find K (k) such that
(D2)" (x) = Z g;(— )z
j=K(k)+1

is a C*—flat function. Tt is clear that (D2)%(0) = 0, for all K. This is equivalent to

showing that
izK(k)+1 dz?

[9;(— Inx)x%] converges and it is equal to zero at = = 0 for all

s < ka.
Suppose that, for all s < ka,

‘ T Sﬁj('r)?

dxs [gj (_ In x)ac“j}

where > fj(x) < oo and §;(0) = 0. In this case,

J>K(k)+1

> & {g(—lnx)x“j} < > @ [g (—Inz)z® } < ) Bilr) <o
>K dzs - | das - J ’
j>K(k)+1 J>K(k)+ j>K(k)+1
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a’ .
d [gj(—1In :E)x‘”]| converges to 0 when z — 07. Then,
xS

moreover, 3(0) = 0 implies that

the result we want is proved. Now, we will show that our assumption holds. Notice that,

d aj| __ dg] . aj—1
. {gj(—lnx)x J} = <_dx(_ Inz) +ajg;(— ln:c)) %
d? o d? d wi—2
) [gj(—lnx)x } = @gj(—lnx) (2aj—1)d gi(—Inz) +ajlaj — 1)g;(—lnzx) |z
d? ds s—1 s—1
[ ] = (1) i ma) + 5 Filad) (- o)
CL]' aj—s
+mgj(— hliC)) X s
where F} are polynomial pf degree < [ in aj for 1 <[ < s— 1. So, by defining Fy(aj) =
(—1)* and Fi(aj) = (ajai's)!, we can write

ds -1

e [93(—In2)a] = (ZFIW

lgj( In x)) x9s,
where Fj is polynomial of degree <[ in aj for 0 <[ < s. For each 0 <[ < s write

Fi(y) = o + pny + - - + puy/

where j;; € Rforall 0 <i<land 0<1[<s. So, fory>1, wehavey* >y for 0 <1 <s
and

l l
F)| < Sy < S laly®
=0 =0

Define M; = E|ml| then |F(y)] < My® for all 0 < [ < s. Therefore, by means of
Lemmas 2.4 and 2.5, for x > 0, we obtain

s—1

d
< Z\Fl aj) 'dﬁs_lgj(—lnx)

xajfs

o [gj( Inz)x ‘“}

< ZMl(aj)sCs,l(Cx’%)jxaj*s

1=0
< (a)"(Co"Ya Y i
1=0

< My(aj)*(Ca*= 2,
where M, = Xs: M,C,_;. Now, for each j > jo (jo to be defined below) and = > 0, define
Bi(z) = Ms(ci;;)s((?x“’%)jx_s. Observe that,

Bra@)  (F+1) s
5,(@) ‘( j )C”“" ’
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so lim [3?7(1:5*;6) = Cz% 3. Since a > 1, for 6 > 0 small enough, we have Cz972 < 1 for all
j—oo FPi

x € [0,0). Now, D’Alembert criterion for convergence ensures that . [;(z) converges
Jj=Jjo

for each = € [0,0). Moreover, 3;(0) = 0 for all j > j,. We want to find a jy such that

(a — %)jo — s (it is necessary to make (; well defined for j > jy) and, for each k € N, the

found result holds for all s < ka. So it is enough to choose jyo > 2a(k + 1) — 1. Now, the

proof is completed by choosing K (k) = 2a(k + 1). O
Let w(z, aq) be the function defined by

—aq

x .
weo) =4 o 70
—Inxz if oy = 0.
With this definition we have w(x, ;) = Q(ay, —Inz), where Q(ay,t) was previously

defined. Also, for each k > 0, 2w — —2*Inz, as a; — 0 and the convergence is uniform
for x € [0, €], where € > 0 is fixed.

Let 4,5 be natural numbers such that 0 < j < ¢ and consider monomials of the
form z'w’. These monomial functions form a totally ordered set with the following order
relation:

v <’ =i >iori=14and j > j.
Thus, we have 1 < 2w < x < 7%w? < 2°w < 22 < ---. Now we will look to a
(x,w)—expansion, of order k, of the transition map D,,.

Theorem 2.4. The transition map D, defined by (2.2.13), has the following (x,w)—
expansion for order kp

Dg(f,lj) :xa+a1[xaw+...]_|_a2[xaw+...]_|_...

+aK[xKa+ )+ (s, ), (2.2.14)

for any k € N. The index K = K (k) is defined in Proposition 2.4, and each term between
brackets is a finite combination of monomials x'w’ with the following convention:

a) the notation x'w’ + --- means that after the sign + we find a finite combination of
"W’ of strictly greater order;

b) the coefficients of the unwritten monomials after signs + are polynomial functions
of aq, ..., ax, which are zero if a = 0.

The remainder vy, is a C**—function in (x, ), which is ka—flat at x = 0.

Proof. From Proposition 2.3 gx(t) = e*'Qx(t). For t = —Inx it becomes

gk(— In 1’) = $_ale(— In :L‘) =g (ozkw + Qk(al, ey O w)), (2.2.15)

where @y, is polynomial of degree < k — 1 in w with coefficients in Z(ay,...,ar_1) N
(s, ..., ar)% Hence, the general term gp(—Inz)z% in D4(x) is given by

ge(—In2)z™ = 2% (qpw + Qplay, . . ., g, w)). (2.2.16)

Notice that 7% = ayw + 1 then, rewriting the equation (2.2.16), we obtain, for k > 2,

ge(—Inz)r™* = 2% (qw + 1) (apw + Qrlay, . . ., o, w))
) (2.2.17)
= a0 7%w? + apwr™ + (1 + aqw)x*Qy,
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and, since Q; = 1, g1(— Inx)z? = 2%~ = 2% (qqw + 1) = 2% + oy 2Pw. Proposition 2.4
gives

Di(x) = Xit gi(—Inz)a™ + 1y
= 7% + 2% 4+ 0109220 + apr?w + (14 ayw) 12 Qy + oy asr®iw?
+asr3w + (1 + ayw)r’@Qs + - - - + Yy,

(2.2.18)
where + - - - is the expansion of gs(—Inx)z** for 4 < s < K. Now, we rearrange the sum
above in the following way: first, take all the terms whose coefficients are divisible by a;
(if a1 = 0 start from the second step). Next, all the remainders (they will not be divisible
by ay) divisible by s and so on until ax. From the characterization of Qs(al, Cey Qg W)
we can write it as

Qsay, ..., asw) =Dbo(ar,...,a) +bi(o,...,00)w+ -+ be_i(a,...,a)w

where b;(a, ..., 0 ) € Z(ay, ..., as_1) NI(ag,...,a5)% fori=0,...,s — 1. If Q, = 0 we
have nothing to do. When Q, # 0 then, b; is non-zero for some i = 0,...,s — 1, and this
term is divisible by some «;, with 1 < j < s. Thus, each non-zero term of Q, is divisible
by some «;, 1 < j <s. In this way, we obtain

Di(r) =2 + o [x“w + apx?iw? + $2“w@2 + azr3w? + - }

+ g [7%w + Oq] + a3 [2%w + O3]

+ agrfuw+ Uz, o),

where O, are composed by the terms in 2U+99Q, 4, ..., 2%Q divisible by a; but not
divisible by any «; with ¢ = 1,...,5 — 1. It is clear that, each term after x**w in the
bracket related to ay is of order greater than x**w and has coefficients in Z(ay, ..., ak).
The Proposition 2.4 gives that the remainder 1, is a ka—flat function at x = 0, thus
finishing the proof. [l

Now, returning to the vector field X, Theorem 1.1 establishes a C*—equivalence be-
tween X and XV®) This equivalence defines diffeomorphisms, ® and ¥, on R, in a
neighborhood of 0 = ®(0) = ¥(0), such that if D, is the transition map for X¥*)_ then,

Do(z) = Vo D, o ®(z). (2.2.19)

Theorem 2.5. Transition maps at saddle-reqular, saddle-saddle or real saddle points are
quasi-reqular.

Proof. The expansion of order k in (w,z), given by Theorem 2.4, depends only on
aq,...,ay because all a;(\) =0 for i > N + 1, then

Di(z) = 2* + ay[zw + - -] + - + anr™V %W + Yz, N). (2.2.20)

The resonant coefficients «; are independent of &, but it does not happen for the expan-
sions in the brackets. To study the transition map for the vector field X, we have a; =0
and, thus, w = —Inz. Hence, D(x) = ¥ o D, o ®(x) is the transition map of X, with

Di(z) = 2% + sz’ (—In(z)) + - + ayzV (= Inx) + Y (z),
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where 9, is of class C** and ka—flat at z = 0. So, for a fixed k, we have

D,(x) =z (1 + oz (—In(z)) + - + anz™ D~ Inz) + %(x))l/q |

Consider the Taylor series of y — (1 + y)” and y — In(1 + y) around y = 0, then
I+y) =1l+ay+ay’+-- = 1+§aiyi
i=1

with a; = a;(v) for all ¢ > 1, and

In(1 +y) = by + bay? +- - = > b

i=1

Since ® and W are diffeomorphisms with ®(0) = 0 = ¥(0), we can write them as

O(y) = ilﬁy and  W(y) = i:my",

with S # 0. Now, expanding D and ordering the terms, we obtain that, for any k € N,
there exists a sequence of coefficients \;, with \; = % < A <+ < Anqk), and a sequence
of polynomials, P, = A (positive constant), Ps,...,Pn), such that

N(k)
D(z) =WoD,od(z)= Z 2% Py(In x) + i(z), (2.2.21)

where 1), is of class C*¥ and k—flat. The coefficients \; and the polynomials P; are inde-
pendent of k, so they are well defined. This means that taking &’ > k, the sequence for k
is the sequence for k' truncated at order N (k).

Therefore, taking k arbitrarily large, we have a well defined infinite formal series

D(z) = § 2% P;(z) which is asymptotic to D(z) in the following sense:
i=1

For any s € N—{0}, |D(x) — XS: CCAiPi(lnl')’ = O(z™) where \y =7 < Mg < - < A\, <
i=1

-+« is an infinite sequence of positive coefficients tending to +oo, and Py, P, ..., P,, ... is
an infinite sequence of polynomials with P, = A (positive constant). Hence, the transition
map D is quasi-regular as required. O

2.3 A Cycle Having Limit Cycles Accumulating onto
It

Consider the planar system of ordinary differential equations given in polar coordinates
(x = pcosb, y = psinb)
{ po= 1) (2.3.1)

where,

Fp) = p(p? —1)3sin <p21—1> if p#1,
0 if p=
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Observe that f(p) is derivable and f’(p) is continuous at p = 1, so the system (2.3.1) is
of class C! in the polar plane. Observe that by increasing the power of the term p? — 1
in the expression of f(p) (for p # 1), the class of differentiability of f at p = 1 will also
increase.

Notice that, p = 1 corresponds to a closed periodic orbit of the system (2.3.1). More-

over, when p — 1¥ there exist monotone sequences p,f =,/1+ %, k € N, such that

e p. <1, forall k € N, is an increasing sequence;
e pi > 1, forall k € N, is an decreasing sequence;
e pif = 1 when k — oo and f(pf) =0 for all k € N.

Moreover, f(p) = 0 if and only if p = 0, p* or 1. Therefore, for each k € N, pif corresponds
to a limit cycle of the system 2.3.1, more precisely, py,,, and p3, correspond to attractor
limit cycles while pd, 41 and py,. correspond to repellor limit cycles. Thus, the cycle p =1
has two sequences of limit cycles accumulating onto it, see Figure 2.5. This fact does not
contradict the Dulac’s problem because the system is not analytic.

= T
== repellor
== attractor

Figure 2.5: Phase portrait of the system (2.3.1).

2.4 Generalization

As seen in the previous section, the proof of the quasi-regularity of a transition map
does not have a drastic change if we consider hyperbolic polycycles of discontinuous vector
fields. In this section we consider a weaker hypothesis by allowing fold-regular, fold-
fold, and fold-saddle singularities in the polycycle, see Figure 2.6. The construction and
analysis of the first return maps are done in the exactly same way as in the hyperbolic
polycycles. Therefore, as we have seen above, it is enough to prove that the transition
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Figure 2.6: Examples of polycycles having singularities of the types saddle-fold, fold-
regular and fold-folds.

map, in a neighborhood a fold-regular or a fold-fold singularity, is quasi-analytic. The
first step in this direction is to prove that transition maps at fold points are quasi-regular.

In order to study the quasi-regularity of the transition maps at fold points, we consider
YT and ¥~ as being manifolds with boundary X which is locally, around the origin, given
by ¥ = h~1(0) where h(z,y) = y. Assume that X is a vector field defined in ¥+ and YV
is a vector field defined in ¥7. In addition, assume the origin is a visible fold point for X
and Y, which are analytic vector fields. Then, as seen in Chapter 1, from [40], there exists
a neighborhood of the origin such that X and Y are separately conjugated (by means of
C*°—diffeomorphisms) to

a c
Xab(xuy) - < bx ) and Kd(x/y) - < dx > ’ (241)
respectively, with ab > 0 and c¢d < 0. Now, we define the transversal sections to study

the transition maps:

o For X, consider € > 0 and define

—ifa>0 0o CXand 7T = {(:1:,5) eR%\/2e—f <z < %“e+5}, for some
§ > 0. Moreover, if D} is the transition map at 0, in order to obtain D}, (0) = 0,
we consider another parametrization of 7, i.e., we consider the change x —

T — %“5. Thus, by calculating the flow of X,, we can also calculate the
transition map from o to 7, which is Df,(z) = \/2? + 3te — /3% for z > 0

with (z,0) € o;
— if @ < 0: interchange the definition of ¢ and 7 in the case a > 0. In this case,
we need a new parametrization of o and we obtain that by doing x — x—/ 27“5
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2
the transition map from o to 7is D, (z) = \/(x — 2—“6) — 2% for z > 0 with
(:U + ) €o.
e For Y., consider € > 0 and define

—ifc >0 0 C ¥and 7 = {(x,—a) ERQ;\/——5—6<x< 1/—%&—#5}, for
some 0 > 0. Analogously to the calculations for X,, with a > 0 we obtain

DY (x) = \Ja? 4 X — /%¢ for > 0 with (2,0) € 0;

—ifc<O0: 1nterchange the definition of o and 7 in the case ¢ > 0. Analogously
2
to the calculations for X, with a < 0 we obtain D_,(z) = \/(a: - Es) — g

d d
for x > 0 with (x + %8, —8) €o.

See Figure 2.7 for a geometric illustration of the transition maps. Observe that, the case
a > 0 (resp. a < 0) is analogous to the case ¢ > 0 (resp. ¢ < 0). Thus, it is enough to
prove that D(ﬁ is quasi-regular.

€ €
T o
o T
(a) (0)
o T
—€ —€
T o

(©) (d)

Figure 2.7: Transition maps through fold points: (a) X4, with a > 0; (b) X, with a < 0;
(¢) Xeg with ¢ > 0; (d) Xoq with ¢ < 0.

Theorem 2.6. Transition maps, near fold-reqular points of C* wvector fields, are quasi-
reqular homeomorphisms.

Proof. Let the origin be a fold point of the C* vector field X defined in 1. As we have
observed above, the case where the origin is a fold point for the vector field defined in >~
is analogous, then it is not considered.

Since X is C™—conjugated to X, with ¥ = {(2,0) € R?}, there exist C>°— diffeo-
morphisms, ¢ and 9, defined around the origin, with ¢(0) = ¢(0) = 0 such that the
transition map D, of X, satisfies

e D(z)=poDhow(r)ifa>0;
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e D(x)=¢poD_oy(x)ifa<D0.
Since the set D, of all quasi-regular homeomorphisms, is a group which contains the set
Diffy of all diffeomorphisms fixing the origin, it is enough to show that DZ are quasi-
regular homeomorphisms.

Observe that, for a > 0, D}, can be C*°—extended to an open neighborhood of the
origin. Then, we can calculate the infinity formal Taylor series

1 d

Di(x) — > - aD:b(O)x’ = O(z™). Moreover, - D% (0)

where, for each n € N, we have

1

= 0 and d D;L,,(O) = (%%)_5 > 0. Therefore, we obtain an asymptotic Dulac series by

doing \; =i+ 1 and P;(u) = (z+11)' ddgz:lD ,(0) for all ¢ > 2, and so

= Z:pA"PZ-(ln x),

N[

with P = (%"5>_ > 0. Hence, D}, is a quasi-regular homeomorphism. Now, observe
that D, o D,,(z) = z, so D}, o D, = Id. Since the set D is a group and D}, and Id
are quasi-regular, we get that D_, is a quasi-regular homeomorphism. Therefore, we have
proved the result. O

Now, we proceed to prove the quasi-analyticity of the transition regular map at fold-
regular points.

Theorem 2.7. Transition maps at fold-reqular points are quasi-analytic.

Proof. Tt is enough to show that D}, is quasi-analytic. From Theorem 2.7 it is enough to
show the second part of Definition 2.4.

Let m be any positive real number and consider g(z) = DJ (e™®) = y/e=2% + 2%c —

\/ Zbae Since e™” is a decreasing map, we have that e™® < e™™ for all x > b, moreover

® — 0 as x — +00. Therefore, e2® is bounded in the set {z € R;z > m}. Now, define
the following complex extension of g,

C —

/ _2Z + 2a /2a
As a,b,e > 0, G is a composition of holomorph1c maps, G is thus a holomorphic map.
Observe that, for z = u +iv € C, |e#|= |e 2 72Y|= |e~?*(cos(2v) — isin(20))|< e72.
Moreover, A, = {z = u + iv;u > m(1 +v?)"*} C {z = u + iv;u > m}. Therefore, G is
bounded in the set A, = {z = u + iv;u > m(1 + v*)"/*} and it concludes the proof. [

Now, a straight consequence of this result and from the fact D is a group.

Corollary 2.1. Transition maps, near fold-fold points of piecewise C'* wvector fields, are
quasi-reqular homeomorphisms and quasi-analytic maps.

Remark 2.6. From Theorem 2.7 and Corollary 2.1 we conclude the result obtained for
hyperbolic polycycles does not change if fold points are allowed instead of saddle points.
More specifically, polycycles for which all singular points are hyperbolic saddles (with
invariant manifolds transversal to X if the saddle is on the switching manifold) and/or
fold points cannot have limit cycles accumulating onto it.



Chapter 3

Degenerate Cycle Through a Visible
Fold-Regular Point

In this chapter we present a study of bifurcations of a degenerate cycles through
visible fold-regular points. This kind of cycle has already been mentioned in literature,
[9, 24, 31]. It is included in this work for completeness, since it appears in bifurcations
of the degenerate cycles through hyperbolic saddle-regular points that will be studied in
the next chapter. Moreover, we give a more complete study of the first return map and
models realizing these cycles.

3.1 Generic Conditions
Consider a discontinuous vector field Z = (X,Y) € Q". We say that Z satisfies the

condition

- FC(1): if Z has a visible fold-regular point F; € X, being a fold point for X and
regular for Y,

- FC(2): if the unstable separatrix of the fold point, W} (X, F), intersects ¥ transver-
sally at a point Q)7 # Fy;

- FC(3): if Y is transversal to X at ()7 and the positive trajectory of Y through Q)
meets X transversally at Fy;

Notice that, if Z satisfies FC(1)— FC(3) then Z has a degenerate cycle 7 passing through
a visible fold-regular point. Moreover, in this case, Z satisfies:

- FC(4): there exists a first return map defined in a half open neighborhood of Fy
contained in:

(a) the bounded region in R? delimited by vz;
(b) the unbounded region in R? delimited by 7z.

Definition 3.1. Given Z = (X,Y) € Q" satisfying FC(1) — FC(3) with cycle ;. Then
Yz is of type
e DFC: if Z satisfies FC(4) — (a), see Figure 3.1—(a);

e DFCy: if Z satisfies FC(4) — (b), see Figure 3.1—(b).
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Figure 3.1: A degenerate cycle through a visible fold-regular point: (a) type DFC} and
(b) type DFC,.

3.1.1 Local Stability of a Fold-Regular Point

The first step towards the analysis of the unfolding of the degenerate cycles DFC,
and DF (5 is to perform a local study the fold-regular point.

Proposition 3.1. Let Zy = (Xo, Yy) € Q" be a discontinuous vector field satisfying the
condition FC(1). Then, there exist neighborhoods Vz, C Q" of Zy and Vo C X of the
fold-regular point such that any Z € Vz, has a visible fold-reqular point in Vj.

Proof. This result is proved in [15] (Theorem 3.5). Without loss of generality, we can
suppose that ¥ is locally determined by h(z,y) = y. Consider Xy, = (Xo1, Xo2) and
Yo = (Yo1, Yo2). By hypothesis Y is transversal to ¥ at 0, so Yph(0) = Ype(0) # 0.
Observe that the map (Y, p) € x" XX — Y h(p) is continuous, so there exist neighborhoods
Uy, C x" of Yy and Uy C ¥ of 0 such that Yh(p) # 0 and SgnY h(p) = SgnYyh(0) for
all (Y,p) € Uy, x Uy. Also, Xy has a fold point at 0 so Xoh(0) = Xp2(0) = 0 and

0
Xgh(()) = X()l(())a—XOQ(O) 7£ 0. Deﬁne,

x

r—« Qxx — R
(X,Y),z) — Xh-Yh(z)"’

It is clear that I is Fréchet differentiable at ((Xo, Y5), 0) and we have I'(( Xy, Yp),0) = 0 and

0 0

8_F(XO’ Yp,0) = YOQ(O)a—XOQ(O) # 0. It follows from the Implicit Function Theorem for
x x

Banach spaces that there exist neighborhoods Vx, C x" of Xy, Vy, C x" of ¥, and Vy C X

of 0 and a unique C"—map s : Vz, = Vx, X Vy, — V, such that I'((X,Y),s(X,Y)) =0
and, for all (Z,z) € Vz, x Vo, I'(Z,z) = 0 if, and only if, z = s(Z). Notice that we
can take Vy, C Uy, and Vy C Uy. Furthermore, given that XZh(0) # 0, by continuity
Vx, and Vj can be determined in such a way that, for all X € Vy,, X?h(s(X)) # 0 and
SgnX?h(s(X)) = SgnX2h(0). Therefore, if Z € Vy, then s(Z) € Vj is a fold-regular point
of Z of the same type as the fold-regular point of Zj. O

The last result implies that Z, satisfying FC(1) is structurally stable in Q", see Propo-
sition 3.4 in [15].
3.1.2 First Return Map

Consider Z, = (Xo, Yy) € " satistying FC(1) — FC(4), having the origin as the
fold-regular point, and degenerate cycle 75. Once we are concerned with the study in a



26

neighborhood of vy there is no problem in assuming that 3 coincides, around the origin,
with the x—axis and h(x,y) = y. Under these assumptions, by writing Xy = (Xo1, Xo2)
we have Xoh(0) = X¢2(0) = 0. As 0 is not a singular point of X, assume, without loss of
generality, that Xy;(0) > 0. The case X¢1(0) < 0 is treated analogously.

From Proposition 3.1 and continuous dependence, we obtain a neighborhood Vg, C "
of Zy for which there is a well defined first return map defined in a half open interval con-
tained in . In fact, condition F'C(2) guarantees that, for some positive time, W (X, 0)
intersects ¥ transversely at ()o. Then, reducing Vy, if necessary, by continuity we have
that given Z = (X,Y) € Vy, the unstable separatrix W (X, F) through the fold-regular
point Fiz = (az,0) € Vj intersects 3 transversely at a point ()7 € X, for some positive time
and Q7 ~ Qo. It implies that, for each x > az small enough, there exists 0 < t(x) < oo
satisfying px (t(z), (x,0)) € I}, where I, C ¥ is an open neighborhood of Qg in 3 and
t(z) is of class C". Moreover, px(t(az), Fz) = Qz and the map Z € Vyz, — Q7 is C".
Similarly, condition F'C(3) ensures that, reducing I}, if necessary, given Q € I} there
exists 0 < t(Q)) < oo such that @y (t(Q), Q) € IS where I C ¥ is an open neighborhood
of the origin. Define Ry = ¢y (t(Qz),Qz) € I, then the map Qz € I, — Rz € IY is
also of class C".

In order to describe the unfolding of the cycle vy of Zj it is necessary to study the
first return map, near Fyz, of all Z € V. Both cases, FC(4) — (a) and FC(4) — (b), are
analyzed with the same approach. The return map of Z; is defined in a half-open interval
[0,d0) C XNV, for some &y > 0.

Proposition 3.2. Consider Z € Vyz, and let Fz = (az,0) be the fold-reqular point of Z
in XN Vy. Then, the first return map of Z near Fy can be written as

T7(x) = by + Ko(x — az)?* + Os(z — ay), (3.1.1)
where x € [az,d7) C XN Vy and ky > 0.

Proof. According to what we have seen above, the first return map for Z is defined in a
half-open interval [az,d7) C X NV, for some d7 > 0, where ay corresponds to the fold
point of X. Let 7. C ¥* be a transversal section to the flow of Z at P. € W(X, Fy).
For € > 0 small enough, assume 7. C {(z,¢);x € R} and P. = (p.,e). We identify 7.
with an interval of R under projection on the first coordinate (the projection map on the
i — th coordinate is denoted by m;, i = 1,2). We also identify I with an open interval
of R through projection on the first coordinate. So, for all z € [az,dz) C I there exists
0 < ti(z) < oo satisfying m o wx(ti1(x), (x,0)) = €. So, the following transition map is
well defined
pP1 - [az,az) — Te
x — o ox(ti(x), (x,0))

From Proposition 1.2 (originally proved in [33]), for 6z > 0 small enough, we have:
p1(x) = pe + ag(x —az)* + O((z — az)?), (3.1.2)
with ap > 0, Figure 3.2. The flow of X defines a diffeomorphism from 7. to I}:

p2: T —> I}
u = ex(ta(u),u)’

where, for all u € 7., 0 < t3(u) < oo is the time spent by the trajectory of X through
P = (u,¢) to reach I}. Identify I}, with an open interval I C R through a parametrization
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@ € I — v(a) € I} satisfying v(qz) = Q. Then, it is clear that p, is a decreasing
diffeomorphism with d%pg (pe) = 1 < 0. Thus, we obtain:

p2(y) = qz + By — pe) + O((y — p:)?), (3.1.3)
see Figure 3.2. Finally, the flow of Y defines a diffeomorphism from I to I9:

p3: I, — 19
v = mopy(ts(v),v)’

where 0 < t3(v) < oo is the time spent by the trajectory of Y through Q) = v(v) to reach
I9. ps is a decreasing diffeomorphism, then %pg(qz) =1 <0 and

p3(v) = bz +m(v —qz) + O((v — q2)*), (3.1.4)
see Figure 3.2. Now, the first return map of Z can be written as:

Ty . [az,(iz) — I%

. 3.1.5
z = p3opaopi(z) ( )

From equations 3.1.2, 3.1.3 and 3.1.4, for = € [az,dz) we obtain

Figure 3.2: Construction of the first return map for: (a) type DFC; and (b) type DFCs.

Wz(x) =by + 771ﬁ10é2(l’ — az)2 + 05(1' - az). (316)

The result is achieved by writing ko = 1151 s. O

3.2 Main Results and Bifurcation Diagrams

Notice that the unique non-stable feature of the cycles DFC, and DF ()} is the fact the
fold point coincides with a fixed point for the first return map. Then, from the previous
analysis the unfolding of these cycles is completely determined by b; — az and we have
the following result.

Theorem 3.1. Consider Z € Vy,, let F; = (az,0) be the fold point of Z in Vy, 7z be the
first return map of Z given in Proposition 3.2 and § = wz(ay) — ay. Then, Z has only
one cycle vz passing through Vo and
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(i) if B > 0 then vz is an attractor crossing limit cycle;

(ii) if 5 =0 then vz is a degenerate cycle through the fold-reqular point F; which is an
attractor for orbits passing through points in (az,dp) x {0} C 3;

(iii) if § < 0 then vz is a sliding cycle through Fy.
Moreover, the bifurcation diagrams are illustrated in Figures 3.4 and 3.5.

Proof. Since the first return maps are analyzed separately for each Z € V., there is no
loss of generality in assuming az = 0. The graph of 7z, supposing az = 0, is illustrated
in Figure 3.3. Item (i) and (77) follow from the facts that the graph of 75 intersects the
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Figure 3.3: Graphs of 7z for az = 0.

graph of the identity map, providing a fixed point of 7 in (az,dz). Item (iii) follows
from the fact that F; is an attractor for the sliding vector field and (7z(az),0) € ¥°. O

B<0 B=0 B8>0

Figure 3.4: Bifurcation diagram for Z; of type DFC}.

Notice that, although the result and the approach are the same for both cases, DFC}
and DF (5, they are topologically distinct.
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B <0 B=0 B8>0

Figure 3.5: Bifurcation diagram for Z; of type DFCj.

3.3 Examples

In this section we present models realizing the cycles DFC; and DFC5. Due to
the simplicity of the system we perform a more detailed analysis for the case DF(C to
illustrate how rich can be a system presenting this kind of cycle.

Observe that cycles of type DFEF'C appear in bifurcations of a invisible fold-cusp sin-
gularity, see [9]. Moreover, cycles of type DFCy appear in bifurcations of a focus-fold
singularity.

3.3.1 Cycle of Type DF(C}
Consider Zz = (X, Ys) where X and Yj are given by

X:(x(éli&%)) and Y5:<1+_51_x>, (3.3.1)

where 3 € R is small enough for our purposes and ¥ = h=(0) with h(z,y) = y. Zs
satisfies the following properties:

1. both, X and Y3, have no singular points;

2. X has a visible fold point at Fy = (0,0) € ¥ and an invisible fold point at F; =
(4/3,0) € &;

3. Yj has an invisible fold point at Fz = (1 + 3,0) € ;

4. the trajectory of X passing through Fjy meets X transversely, for a positive time, at
b = (27 0)7

5. the trajectory of Y passing through F, meets X again, for a positive time, at (23, 0);

6. once we are interested in || sufficiently small we can assume that 0 < 1+ < g—l
(ie. =1 <8 <1/3);

Therefore, for § = 0 we have a degenerate cycle of type DFC; passing through the
visible fold-regular point Fy. The first return map, 7, of Zz on the half interval [0, 1 4 3)
is given by

g - [07 1 +6) — [2676,3)

z - 1+25+g—

V4 + 4x — 322

N | —

where 65 = m5(1 + ).



60

We are interested in the fixed points of mg, i.e., in the solutions of 7g(x) = = with
x € [0,1+ ). This equation has two solutions x4+ = 1+ f + /1 —28 —3p2. For
0<p<1/3wehavez, >1+  and 0 < x_ < 1+ [ then, only x_ corresponds to an
acceptable fixed point. Moreover, |7j(x_)|< 1 so x_ corresponds to an attractor limit
cycle of Zz. For —1 < 8 < 0 there exists no limit cycle.

In order to complete the study of the family Zj it is necessary to analyze the sliding
vector field. The sliding and escaping regions are

¥ ={(z,0) € ;2 <0} and X°={(z,0)€X;1+0<x<4/3},
the sliding vector field is given by

1+ 43 —327
148 —5x+ 322

Z(x) (3.3.2)

The equation Z§(x) = 0 has two solutions, zx = § & £4/21 + 1203, satisfying:
e z_ <0and Zz(2-) >0 for 3 > —1. Then, z_ € X is a pseudo-saddle for Zg;

o zy € (1+,4/3) and Zj(z;) > 0 for =7/4 < 3 < 1/3. Then, z, € ¥°is an unstable
pseudo-node for Zg;

e z_ =0for § = —1then, P_ = (z_,0) coincides with the visible fold point of X and
it is a repellor for Z3;

e z, =4/3 for f =1/3 then, P, = (z4,0) coincides with the invisible fold point of
X and it is a repellor for Z3.

Observe that, when 8 < 0, the points Fj and P_ can be connected with Fj, Py or F.
71

In fact, for # = 0 we have a homoclinic-like connection of Fy, for 3 = 5y = 5; — 5; V97 we
have an heteroclinic connection between Fy and P_. It follows from continuity that for
B € (Bo,0) we have m5(Fp) € (2-,0) and for —1 < 8 < [y we have m5(Fy) < z_. There
exist lots of possible heteroclinic connections for this system, since our intention is just
to show how rich this system can be we restrict our study for 5y < 8 < 1/3.

Under some restrictions on 3, the negative trajectory of Zz through P_ intersects ¥ in
a point with first coordinate greater than 2, so there exists no connections between this
point and Fj, Py, Fy or Fy. Therefore, we just need to analyze the connections of Fy. By

using the software Mathematica and continuous dependence criteria we obtain

(1) for B = 1 = —1/3 a trajectory of Y connects F; and Fy without intersecting ¥ in
any other point;

(2) for p = B3 = —1/7 the trajectory of Zz through Fjs meets Fy after crossing X
transversely once;

(3) items (1) and (2) imply in the existence of By € (f1, f3) for which the trajectory of
Zg through P, meets Fj after crossing ¥ once;

(4) for B = Bs = (=3 ++/6)/9 € (53,0) the trajectory of Zz through F; meets Fy after

crossing Y transversely twice;

(5) items (2) and (4) imply in the existence of 54 € (3, 35) for which the trajectory of
Zg through P, meets [ after crossing X twice.
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In this way, we obtain a strictly increasing sequence, fy < 1 < o < ++- < [, < --- < 0,
such that

o for 8 = a1 the trajectory of Zz through F} meets Iy after crossing X transversely
7 times;

o for 8 = Buito the trajectory of Zz through P, meets Fj after crossing > transversely
21 4+ 1 times;

o for 8 = Puits the trajectory of Zg through Fz meets Fy after crossing X transversely
1+ 1 times;

o for B = [y the trajectory of Zs through P, meets [ after crossing X transversely
¢+ 1 times;

Now we are able to sketch the bifurcation diagram of Zz, see Figure 3.6.

Figure 3.6: Bifurcation diagram of Zj.

3.3.2 Cycle of Type DF(5

In order to simplify the calculations consider ¥ = A=1(0) with h(z,y) = y — c¢. Also,
consider Zz = (X,Y}3) where X and Y} are given by

X = < géi—y?i ) and  Yj = ( . i 5 ) , (3.3.3)

with 8 € R. Observe that Zs satisfies the following properties:

o X has a real unstable focus at the origin. For ¢ # 0 X has a fold point at Fy =
(—c¢/8, ¢) which is visible if ¢ < 0 and invisible if ¢ > 0;

+ Y3 has an invisible fold point at Fz = (5, ¢).
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Notice that Z3 has a focus-fold point at the origin when ¢ = 8 = 0. We are interested
in showing that this vector field presents a cycle of the type DF (5, it is just possible for
¢ < 0. Since the focus at the origin is unstable and the orientation is counter-clockwise,
the positive trajectory of X through Fj crosses X transversely at a point Py = (po,c)
with py < —c¢/8. On the other hand, the trajectories of Y intersect X symmetrically with
relation to Fj. Therefore, for 8 = —% the vector field Z4 realizes a degenerate cycle
of type DFCs.

By means of numeric calculations we can plot the trajectories of Zz and detect values
of c and S for which Zs belongs to each region of the bifurcation diagram presented in
Figure 3.5.

04+ B! 04+

021 Bl 02

0.0 Bl 0.0F

I I | | I I I 1 I L I I L I
-0.8 -06 -04 -02 0.0 0.2 0.4 0.6 -0.8 -0.6 -0.4 -0.2 0.0 0.2 04 0.6

Figure 3.7: Trajectory of Zz through F,  Figure 3.8: Trajectories through Fy
(red) for ¢ = —0.3 and 8 = —0.3. The (red) and P = (1/5,—0.3) (blue) for

gray point is Fp. ¢ = —0.3 and f = —0.2. The gray point
is I3, the red point is Fj, and the blue
point is P.

(i) Zp has a sliding cycle through Fj for ¢ = —0.3 and § = —0.3, see Figure 3.7;

(ii) Zs has a stable crossing limit cycle for ¢ = —0.3 and 5 = —0.2. The existence of the
limit cycle is guaranteed by the fact that the positive trajectory of Zg through Fy
intersects X, at the second time, at a point with first coordinate bigger than —c/8,
while the trajectory through P = (1/5, —0.3) intersects X, at the second time, at a
point with first coordinate smaller than 1/5, see Figure 3.8;

(iii) it follows from items (i) and (77) that, for ¢ = —0.3 and g € (—0.3,—0.2), Z3 has a
degenerate cycle of type DF'Cj.



Chapter 4

Degenerate Cycle Through a
Saddle-Regular Point

In this chapter we present a study on a degenerate cycle passing through a hyperbolic
saddle-regular point. Cycles through saddle points have been studied in the literature, see
[18, 31, 41, 42], but all these works present either a real saddle with invariant manifolds
crossing the switching manifold ¥ transversely twice or a boundary saddle with invari-
ant manifolds crossing > only at the saddle point. Our interest lies on the study of a
boundary saddle with one of the invariant manifolds crossing ¥ transversely at another
point, different from the saddle. A systematical approach of the study of the bifurcations
of this kind of cycle is presented here. The first step in this analysis is the study of local
bifurcations of a saddle-regular point and then an analysis of the first return map defined
near the cycle. Finally, we present all bifurcation diagrams for a family of vector fields
Zop = (Xap, Yap), such that Zyo has a degenerate cycle of this type and the hyperbol-
icity ratios of the saddle point of X, 5 is an irrational number. Moreover, some models
realizing the cycle and having saddle with hyperbolicity ratio as a rational number are
studied.

4.1 Generic Conditions

We start by establishing the necessary generic conditions to obtain a degenerate cycle
with lower possible codimension. Consider a discontinuous vector field Zy = (X, Yp) € Q7
satisfying the following conditions

- BS(1) : X, has a hyperbolic saddle at Sx, € ¥ and the invariant manifolds of X, at
the saddle point Sx,, W*(Xy, Sx,) and W?*(Xy, Sx,), are transversal to X at Sx,;

- BS(2) : Y} is transversal to X, W"(Xy, Sx,), and W*(Xy, Sx,) at Sx,;

- BS(3) : the sliding vector field near the saddle point has Sx, as a non-degenerate
singularity, i.e., by taking x as a local chart on X at Sx,, Zs(x) = ux + O(z?) with
p 7 0;

- BSC(1) : the unstable manifold of the saddle which lies in X%, Wi(Xy, Sx,), is
transversal to ¥ at Px, # Sx,:

63
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- BSC(2): Yy is transversal to ¥ at Py, and there exists ¢y > 0 such that vy, (to, Px,)
= Sx,, where ¢y, (to, Px,) denotes the trajectory of Yy through P,. Moreover,
gOyo(t, PXO) eX forall0 <t < to.

Remark 4.1. Conditions BS(i), i = 1,2, 3, concern about the behavior of a saddle-reqular
point and they are necessary to guarantee a codimension—1 bifurcation for this singularity,
see [15] and [23]. Conditions BSC(i), i = 1,2, guarantee the existence of a degenerate
cycle and, jointly with conditions BS(i), i = 1,2, 3, they avoid higher degeneracy for the
cycle.

Notice that, under the conditions above, the saddle-regular point is on the boundary of
a sewing region and a escaping or sliding region, i.e, Sx, € 9X°U0X° or Sx, € 0X°UOX".
We can also obtain such kind of cycle by changing the conditions BSC(1) and BSC(2)
by

- BSC(1") : the stable manifold of the saddle which lies in X%, W$(Xo, Sx,), is
transversal to ¥ at Px, # Sx,;

- BSC(2'): there exists ¢ty < 0 such that oy, (to, Px,) = Sx, and Yj is transversal to
¥ at Sx,. Moreover, oy, (t, Px,) € X~ for all tg <t < 0.

However, notice that, under conditions BSC(1) and BSC(2), results for BSC(1') and
BSC(2') are obtained just by changing Z by —Z, i.e., by changing the orientation of all
orbits. Variations of these cases are similarly obtained. For this reason, we just consider
cases where BSC(1) and BSC(2) hold. There are two different topological types of cycles
satisfying BS(1) — BS(3) and BSC(1) — BSC(3). In fact, the two possibilities are: the
stable manifold W (X, S, ) is contained in the unbounded region (resp. bounded region)
delimited by W¥(Xo, Sx,) and the curve in ¥ with extreme points in Py, and Sx,, see
Figure 4.1-(a) (resp. Figure 4.1-(b)).

Figure 4.1: A degenerate cycle passing through a saddle-regular point: (a) W$(Xo, Sx,)
contained in the unbounded region and (b) W73 (Xy, Sx,) contained in the bounded region.

Despite the fact that both cases shown in Figure 4.1 are topologically distinct, the
approach is conducted in the same manner as in case (a) and the proofs of the results
in case (b) is straightforward. Therefore, we focus on case (a) and, hereinafter, whenever
we refer to a degenerate cycle through a saddle point, we refer to a cycle of case (a) in
Figure 4.1. Now, we proceed to study how this kind of cycle can be unfolded. We start by
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looking at the unfolding of the local saddle-regular bifurcation, then we perform a study
on the first return map defined near the cycle. Finally, we state the main results and
bifurcation diagrams.

4.1.1 Bifurcations of a Saddle-Regular Point

We are interested in the simplest case, i.e., the codimension 1 case studied in [15, 22,
23]. So, consider a discontinuous vector field Zy = (X, Yy) € Q" satisfying conditions
BS(1) — BS(3) and BSC(3). In order to study local bifurcations of Z, near Sy,, the
following result, which is proved in [38] (Lemma 8.1, page 79), is an important tool. It
describes bifurcations of a hyperbolic saddle point on the boundary ¥ of the manifold
with boundary ¥+ = Y U X+,

Lemma 4.1. Let p € X be a hyperbolic saddle point of Xo|sz, where Xo € x". Then,
there exist neighborhoods By of p in R? and Vy of Xy in X", and a C"—map S : Vo — R,
such that:

(a) B(X) =0 if and only if X has a unique equilibrium px € XN By which is a hyperbolic
saddle point;

(b) if B(X) > 0, X has a unique equilibrium px € By N int(XT) which is a hyperbolic
saddle point;

(c) if B(X) <0, X has no equilibria in By N L.

Since Yj is transversal to X at Sy,, there exist neighborhoods By, of Sy, in ¥, and
Vi, of Yy in ", such that for any Y € V; and p € By, Y is transversal to ¥ at p. So,
reducing By given in Lemma 4.1 and B; if necessary, we consider By N % = B; and the
neighborhood Vz, = Vy x V; of Z; in ().

Notice that, if 5(X) # 0, for X € V), there exists a fold point of X in ¥ N By. The
fold point is located between the points where the invariant manifolds of the saddle cross
>.. Moreover, the map s : Vy — X that associates each X € V), to a tangent point Fiy € X
is of class C", F is visible fold point if S(X) < 0, Fx is a hyperbolic saddle point if
B(X) =0, Fx is an invisible point if 8(X) > 0.

Given Z = (X,Y) € Vy,, we associate two curves, Tx and PFEy, defined as following:

(i) Tx is the curve given implicitly by the equation Xh(p) = 0, i.e., Tx is formed by
the point where X is parallel to 3. Therefore, the intersection of Tx with X gives
the fold point Fx;

(ii) PEy is the curve given implicitly by the equation X (p) = A(p)Y (p), where A(p) € R,
i.e., PEy is composed by those points where X and Y are parallel. So, when the
intersection of PE, with ¥ is in 3° U 3¢, this intersection gives the position of the
pseudo-equilibrium point.

Observe that the maps X — T'x and Z — PE are of class C". It follows from conditions
BS(1) — BS(3) that the curves Tx,, PEz,, W"(Xy, Sx,) and W?*(Xy, Sx,) have empty
intersection in By up to the saddle point X. In fact, all these curves contain the singular
point Sx,. Condition BS(2) guarantees that PEz,, W"(X,, Sx,) and W?*(Xy, Sx,) do not
coincide in By up to the saddle point, see [15, 23]. Condition BS(2) also ensures that Tx,
and PEy are different in B, except at Sx,, otherwise Y would be tangent to ¥ in Bj.
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The continuous dependence of the curves Tx,, PEz,, W*(Xo, Sx,) and W*(X,, Sx,) on
the vector field ensures that Vz, can be reduced in order not change the relative position
of these curves for all Z € V. Moreover, curve T is located between W7 (X, Sx,) and
Wi (Xo, Sx,), see Figure 4.2.

Now, we fix Sx, € 0¥° U 0%, the case where Sy, € 0%¢ U 0X° can be easily obtained
from the first one. Thus, there are three different cases to consider depending on the
position of PEy, in relation to Tx, W (X, Sx,), and Wi (Xo, Sx,), see 4.2. These cases
are named in [22] as BSy, BS, and BS3, we keep this notation.

TXO

Tx,

PEz, PEg,

Figure 4.2: Relative position of the curves Tx,, PEz,, Wi (Xo,Sx,), and W}(Xo, Sx,).
(a) corresponds to case BSy, (b) corresponds to case BS; and (¢) — (d) both correspond
to case BS3.

In order to understand the difference between BS;, BSy and BSs, for Z = (X,Y) €
Vz, let = B(X) be given by Lemma 4.1. Then, Sx is a real saddle if § > 0, a boundary
saddle if § = 0, or a virtual saddle if 7 < 0.

« Case BS;: this case happens when W (Sx,, Xo) is between T'x, and PEy, in ¥*, see
Figure 4.2—(a). If the saddle is virtual (8 < 0), the saddle-regular point turns into a
visible fold-regular point and there is no pseudo-equilibrium. The fold-regular point
is an attractor for the sliding vector field. Also, when the saddle is real (5 > 0),
an invisible fold-regular point merges and there exists an attractor pseudo-node.
Moreover, the point in ¥° where the unstable manifold of the saddle crosses ¥ is
located between the pseudo-equilibrium and the fold-regular point, see Figure 4.3.

N\

B<0 B=0 B>0

Figure 4.3: Bifurcation of a saddle-regular point: case BS].

2. Case BS,: this case happens when PEy, is between Ty, and W (Sx,, X,) in XF,
see Figure 4.2—(b). There is a visible fold-regular point and there is no pseudo-
equilibrium when the saddle is virtual (5 < 0). The fold-regular point is an attractor
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for the sliding vector field. When the saddle is real (8 > 0), an invisible fold-regular
point and an attractor pseudo-node coexist. Moreover, the pseudo-equilibrium is
located between the point (in ¥*) where the unstable manifold of the saddle meets
Y2 and the fold-regular point. See Figure 4.4.

B8<0 B=0 B>0

Figure 4.4: Bifurcation of a saddle-regular point: case BSj.

3. Case BSjs: this case happens when Ty, is between W3 (Sx,, Xo) and PEy, in ¥T, see
Figures 4.2(¢) — (d). When the saddle is virtual (5 < 0), a visible fold-point coexists
with a pseudo-saddle. There exists no pseudo-equilibrium when the saddle is real
(6 > 0). In this case, the saddle-regular point turns into an invisible fold-regular
point which is a repellor for the sliding vector field. See Figure 4.5.

B<0 B8=0 B>0

Figure 4.5: Bifurcation of a saddle-regular point: case BSj3.

4.1.2 First Return Map

Firstly, let Iy be the degenerate cycle of Zy. We show that V, can be reduced in such
a way that, for each Z € Vy,, a first return map is defined in a half-open interval, near
the cycle T'y.

Lemma 4.2. Consider the discontinuous vector field Zy satisfying the conditions BS(1)—
BS(3) and BSC(1) — BSC(2). In addition, suppose Sx, is located at the origin. Then,
there exists a neighborhood Vy, of Zy in )" satisfying that, for all Z € Vy,, there exists a
well defined first return map in a half-open interval [az,az + 67) with 67 > 0 and az ~ 0.

Proof. We have determined above a neighborhood Vz, = Vy x V; where, for all Z =
(X,Y) € Vg, Lemma 4.1 holds for X and transversal conditions holds for Y in B; =
By N Y. In order to reach the result, this neighborhood is reduced if it is necessary.
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Given that the orbit of Y connecting Px, and Sx, = 0 (by hypothesis) is transversal
to ¥ in these two points there exist neighborhoods V3 of Y; in x" and Iy of Px, in X
such that, for any Y € V3 and for any p € I, the trajectory of Y passing through p is
transversal to X at this point and meets X, again transversely, in a neighborhood of 0 in
> that we can suppose to be B;. Moreover, the segment of this trajectory is contained in
.

The vector field X has a hyperbolic saddle point at the origin such that the eigenspaces
of DX(0) are transverse to 2 in 0. From Lemma 4.1 we have neighborhoods V, of X
in x" and By of 0 in R? such that any X € V), has a hyperbolic saddle Sx € By as
the only singularity of X in a neighborhood By of 0 and the eigenspaces of DX (Sx) are
transverse to ¥ at the origin. Therefore, if 5(X) # 0, the invariant manifolds of X at Sy
are transversal to ¥ a neighborhood of 0. Moreover, since W (X, 0) is transversal to ¥
at P,, there exist a neighborhood V, of X in x" and a neighborhood I; C Ij of Py, in
¥ such that, for any X € V,, W¥(X, Sx) also meets ¥ transversely at a point in /.

When the saddle of X € V3N Vs is not in X, there are at least three different points in
which the invariant manifolds W*%#(X, Sy ) meet 3. Denote these points by P%, i = 1,2, 3,
where Py, P2 € By and Py € I;. Moreover, assume Py, Py € W*%(Sx,X)N Y and
P} € W*(Sx, X)NX. We keep this notation if the saddle of X € Vy N Vy is in X, the
difference is Py = P% = Sx. Since we have assumed Sx, € 93° U 9%¢ (the other case is
analogous), by taking x as a local chart for X near 0 (with = < 0 corresponding to sliding
region and z > 0 corresponding to crossing region) and by denoting Pi = x;, 1 = 1,2, we
have 1 < 5. As seen before, if Sx ¢ 3 then there exists a tangency point Fx € By, also
Sx = Fx when the saddle is on the boundary. Considering the chart taken for X, denote
Fx = x5, then 7y < zy < a9, see Figure 4.6. Observe that, limy_,z z; =0, fori = 1,2, f.

Now, redefine Vz, = (Vo N Vs) x (V1 NV3), and for Z € V; let az be defined by:

o if 5(X) < 0, then ay = xy. The trajectory through the fold point crosses X in I
(flow of X) and, after that, it crosses ¥ in By (flow of Y);

o if B(X) =0, then azy = x; = x2. The unstable manifold of Sx crosses ¥ in I; (flow
of X) and, after that, it crosses 3 in Bj;

o if B(X) > 0, then az = 3. The stable manifold of the saddle crosses ¥ at Pz
unstable manifold of Sx crosses ¥ in [; (flow of X) and, after that, it crosses ¥ in
Bs.

Therefore, by continuity, for x > az € B; the trajectory of Z through this point will
return to B after a positive finite time. Thus, by choosing d; > 0 small enough such
that [az,az + 07) C B; we reach the result. O

The next step is the presentation of a more precise form for this return map. It is
done as follows.

Proposition 4.1. Consider the discontinuous vector field Zy satisfying the conditions
BS(1) — BS(3) and BSC(1) — BSC(2) with Sx, = (0,0). Then, by considering the
notation in Lemma 4.2, the first return map of Z can be written as

A [az,az—i-(sz) — Jy

: 4.1.1
x = p3 0 p20pi(T) ( )

where ps and p3 are orientation reversing diffeomorphisms and py is a transition map near
a saddle or a fold point.
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Figure 4.6: Illustration of the first return map with transversal section 7: (a) § < 0, (b)
f=0and (c) 5> 0.

Proof. As seen in Lemma 4.2 there exist neighborhoods Vy, of Zy in Q" and By of 0 € X
such that, for all Z € V, there exists 0, > 0 for which 7 is well defined in [az,az +d7).
Now, in order to study the structure of this first return map for Z € Vy,, we proceed to
analyze it precisely near the saddle point.

First of all, without loss of generality, suppose that ¥ is transversal to the axis y at
the origin. Let o denote a transversal section to the flow of X through the point (0, ¢), for
some sufficiently small € > 0. From Lemma 4.1 there are three options for the position of
Sx in relation to X, in each possibility there is a different form to analyze the first return
map. As above, consider = 3(Z) then:

o if § <0, Sy is virtual then, the first return map is limited by the visible fold point,
Fx. So, we have a transition map, p;, from ¥ to ¢ near a fold point. See Figure
4.6—(a);

o if 3 =0, Sx € ¥. Then, we have a transition map, p;, from ¥ to ¢ near a boundary
saddle point. See Figure 4.6—(b);

o if > 0, Sx is real, then the limit point of the first return map is the point P%
where the stable manifold W3 (X, Sx) intersects ¥ near 0. In this case, there is a
transition map, p, from ¥ to o, near a real saddle point. See Figure 4.6—(c).

After crossing o, the orbits will cross ¥ near Py. Since o is a transversal section,
the transition from ¢ to ¥ is performed by means of a diffeomorphism p;. The flow of
Y makes the transition from ¥ (near P3) to ¥ (near 0), then the transversal conditions
satisfied by Y give another diffeomorphism, p3, performing this transition. By analyzing
the flow, we obtain that py and ps are orientation reversing diffeomorphisms. Thus, we
have written mz(x) = p3 o py o p1(x), for x € [ay,ay + 0z). O

Since py and p3 given in Proposition 4.1 are diffeomorphisms, the difficult part to
understand in the expression of 7y is to analyze the structure of p;. For this reason, we
will focus on understanding the structure of the transition map p;.
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As seen in Chapter 1, for each Z = (X,Y) € Vg, we can assume that, around Sy,
X is C*—conjugated to the normal form given in Theorem 1.2. By performing a change
of coordinates x +— y and y +— x in these normal forms we can consider axis y being the
local unstable manifold and axis x being the local stable manifold of Sx. Moreover, we
assume that ¥ = h; *(0), where hy(z,y) = y — = + k. Observe that X intersects the axis
at the points (0, —k) and (k,0), it means that, if the saddle is real, £ > 0, if it is on the
boundary, £ = 0. and if it is virtual, k < 0.

Moreover, as seen in Chapter 2, we can assume ¢ = 1 in the definition of ¢ and
o C {(z,1) € R%;z € R}. Since we high differentiability classes are needed, we assume
Z() = (X(),YE)) € (2> and VZ() C Q.

Hereinafter,  will denote the hyperbolicity ratio of X, i.e., 7 = —Ay/A\; where Ay < 0 <
A1 are the eigenvalues of DX (Sx). Also, denote by v (t,z,y) = (o1(t, z,y), pa(t, z,y))"
the flow of X given in the normal forms below.

(i) Suppose r ¢ Q. Then,

- 0 0
X = —rer— —. 4.1.2
(z,y) 5 tYa, (4.1.2)
In this case, the transition time from 3 to ¢ is easily calculated and it is given
by t1(x) = —In(z — k) for each (z,2 — k) € X. Therefore, the transition map

p, from ¥ to o, is given by p(z) = @o(ti(2), 7,2 — k) = e ™1y = 2(x — k)" =
k(x — k)" + (z — k)"

(ii) Suppose r = Pe Q, p,q € N without common factors. Then,
q

X(z,y) = g—l— —r—i—lia- (yPaf)" xﬁ (4.1.3)
7y 7y8y qi:1 Z+1y ax i
In this case, the transition time from X to o is also t;(x) = —In (x — k) for each
(x,z — k) € ¥. Thus, the transition map p, from X to o, is given by p(x) =
o(ti(x), x,x — k) which we cannot to calculate explicitly.

For now, we focus on the case r ¢ Q.

Transition map for r ¢ Q

As seen in Chapter 1, there exist diffeomorphisms ¢ and v, defined in a neighborhood
of the origin, such that p = ¢ o po 1 and ¥(0) = ¢(0) = 0. More specifically, ¢ = 1.
We can also assume a = 1(ayz) is equivalent to az for X. ie., the transition map p of X
is defined in [@,a + ). With the notations established above we have:

o if £ >0, then @ = k. This means P, = (k,0) for £ > 0 and Sy = (0,0) for k£ = 0.
See Figures 4.7-(a) and 4.7-(b);

o if £ <0, then k < a = 1k
Figure 4.7-(c).

r

< 0. This means that Fx = L’;k:r . See
1+7r 1+r

Lemma 4.3. Let r be the hyperbolicity radius of the saddle of X, r ¢ Q, and suppose
X is given by equation 4.1.2. Define s = [r], i.e., s is the highest integer smaller than r.
Then, the transition map p of X satisfies:
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Figure 4.7: Ilustration of the transition map p, from 3 to o: (a) k < 0, (b) £ = 0 and
(c) k> 0.

od . :
(i) %p(a) =0 and @p(a) >0ifk<0;
o A . o . 2 ,
(i1) xlggr —xp(m) == xlgg Wp(m) =0 and xhjg Wp(a:) =400 >0ifk=0
and r > 1;

(iii) lim diﬁ(x) =400 if k<0 andr <1;
x

z—at
(iv) i d~( = = li < =0 and li * = +oo if k > 0 and
W) Ji gpfle) = = i gsple) = 0 and lim, g ople) = oo ik > 0 an
r> 1.
Proof. Remember that p(z) = po(ti(2),z,2 — k) = k(z — k)" + (x — k)", To prove (i),
notice that r > 0 and @ = k/(1+7) > k for k < 0. It is easy to see that p can be smoothly
extended to an open neighborhood of Fx in Y. Moreover, we have

d _ & kr \'
%p(a) =0 and @p(a) =—kr(2+r) <—1 n 7“) > 0.
To prove (i) — (iv) it is enough to observe that, for 1 <i <s,r—i > 0and r—(s+1) <0,
also

dci;ﬁ(@ —kr(r=1)--(r—i+ )@=k +Dr(r—i+2)(x— k)

For k<Owehavea =4k Ifr>1,r—i>0foralll <i<sandr—(s+ 1) <0. For
r < 1 we have r — ¢ < 0. Therefore, taking the limits, we have proved the result. O
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Proposition 4.2. Consider Z = (X,Y) € Vyz,, let r ¢ Q be the hyperbolicity ratio of Sx
and s = [r]. Let f = B(X) be defined in Lemma 4.1 and 7wz defined in Proposition 4.1.
Then,

L od d? .
(i) %Wz(az) =0 and @Wz(az) >04f B <0;
d 1 ds—l—l d s+2
) lim L o T _ 0 i L _ _
(i) et dz? (z) prat dzot1 2 (=) e es dvsv2? (x) = +o0 if

B=0andr>1;

(i77) lim i7TZ(:):) =400 if f<0andr <1;
T

x—)a;
s s+1
(iv) xliril; —wﬁz(x) — .= xlgg} dxswz(x) =0 and xlgil; sz(x) = 400 if >0
and r > 1.

Proof. From Proposition 4.1 we know 7z = p3 o py o p;. Observe that p, and ps are
orientation reversing diffeomorphisms of class C*°. Also, from Theorem 1.2, we obtain
p1 = ¢ o porp where ¢ and 1 are orientation preserving diffeomorphisms of class C',
[ > s+ 2. Define & = p3 0 ps0 ¢, then 71z = ® o p o), where & and @ are orientation
preserving diffeomorphisms of class C!, [ > s + 2. By definition, @ = v¥(az). Let I
be a neighborhood of ay where 77 = ® o po ¢ (x) is well defined for x € I;. Then, the
derivatives of order 1 < i < s+42 of ® and ¢ are limited in ;. Moreover, p is differentiable
in (@,a+ 0) for & > 0 sufficiently small.
Row, d d d d
2572(@) = - @(p((2) o p(v () ().

Thus, for each 1 < ¢ < s+ 2, by using the Chain and Product Rules for derivatives, we
have

dd;i”Z(x) :d‘iiq>(ﬁ(¢(g¢))) CZCp(w(a:))jxw(x)] + CZQJ(ﬁ(ZD(x)))dCf;ﬁW(x)) lddx@ﬁ(a:)]
L) @) (@) + ().

where S(x) is a sum of terms of composed by products of derivatives of order < i of @,
p, and 9, at pp(z), ¥(x), and x, respectively. From Lemma 4.3 we obtain

Jim, male) = i () 1 (0() LZSW)]
_ (Z;@@W(az))) LET; dcziﬁ(w(x))] LZ;W‘Z)] |

Therefore, the result follows directly from the fact that ¢(x) — a* when z — a} and
from Lemma 4.2. O

Proposition 4.3. Consider Z = (X,Y) € Vz, and suppose that r ¢ Q is the hyperbolicity
ratio of Sx. Then, the following statements hold:
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(i) If mz(az) > az and either r > 1 orr < 1 and (Z) < 0, then there exists an
attractor fived point of wz, xy € (az,0z), which corresponds to an attractor limit
cycle of Z;

(ii) If mz(az) = az and either r > 1 orr < 1 and $(Z) < 0 then, ay is an altractor for
wy. So, there exists an attractor degenerate cycle for Z through a fold-reqular point

if B(Z) <0, a saddle-regular point if 5(Z) =0, or a real saddle if f(Z) > 0

(iii) If mz(ay) < az, r <1, and B(Z) > 0, then there exists a repellor fized point of 7y,
xo € (az,dz), which corresponds to a repellor limit cycle of Z.

7z (x) nz(x)
2N > az(x)=x
4
S mz(z) =1 ,,’ a>0
/
/' /I o =
1, | ’/
J/ | a<0
’/, a>0 R4
4
’ a=20 ’/:
- el /
|‘—¢/ x v x
[54 /
,?../ a<0 J
Vi 4
J/ i_’ K4
1
1

a>0
a=0
/i
/a<0 //

H
/ 7 '
4 _/ x
, ’

Figure 4.8: Ilustration of the graph of the first return map 7z (x) for x € [az,az + dz)
where a = mz(az) —az. (a) f(Z) <0, (b) B(Z) > 0and r > 1, (¢) B(Z) = 0, and (d)
B(Z)>0and r < 1.

Proof. Tt follows from the definition of 5(z) that it is increasing in [a, @+9). Also, from the
proof of Proposition 4.2 we have m; = ® o p o1 where ® and 1) are orientation preserving
diffeomorphisms, or, in other words, increasing maps since the first derivative of these
maps are positive.

Also from Proposition 4.2, if » > 1, the tangent vector of the graph of 74 (z) tends to
be horizontal when » — a}. Analogously, if » < 1, the tangent vector of the graph of
7z(x) tends to be vertical when x — a}. See Figure 4.8.

So, if mz(az) = az and r > 1, reducing d if necessary, az is the unique fixed point of

Tz in [az,ay + 0z) and 7wy (x) < x for all x € (ayz,ay + dz). Therefore ay is an attractor
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fixed point of 77 which corresponds to a degenerate cycle Z. The definition of ay gives
the different types of cycles as listed in item (ii). Analogously, if mz(az) = az, r < 1
and f(Z) > 0, az is the unique fixed point of pyz in [az,az + 0z7) and 7z(z) > x for all
x € (az,az+09z). Then, ay is a repellor for 7z which corresponds to a repellor degenerate
cycle of Z through a real saddle point. It proves item (7).

If 7z(az) > az and either r > 1 or r < 1 and 3(Z) < 0, the analysis is similar to
the case in item (i7), the only difference is that the fixed point will change. Indeed, since
in these cases the tangent vector of the graph of 77 tends to be horizontal at az, for Z
sufficiently near Z; (reducing Vg, if necessary), the graph of 7z intersects the graph of
the identity map at a point zg € (az,az + dz). Also, mz(x) > x for all x € [az, zo) and
mz(x) < x for all x € (xg,az + 7). It proves item (7).

Finally, to prove item (iii) it is enough to observe that, since the tangent vector of the
graph of 75 tends to be vertical at az, we obtain that the graph of 7 will cross the graph
of the identity map at a point xy € (az,az +dz). Also, mz(z) < z for all x € [az, z() and
mz(x) > x for all x € (xg,az + dz). It completes the proof. O

4.2 Main Results and Bifurcation Diagrams

Let Vz, be a neighborhood of Z, where all results found above hold. As seen before,
we have some continuous correspondences, where ¥ is identified with R,

o for Z = (X,Y) € Vg, it is associated the hyperbolic saddle Sx of X,

S V(Zg) — R?
(X,Y) — Sx

o for Z = (X,Y) € Vg, it is associated a map that determines if the saddle of X is
real, on the boundary, or virtual. This map was determined for X seen as a vector
field in a Manifold with boundary in Lemma 4.1, now we extend this map to a Vg,
and we will again call it (3,

R
pX)

_>
H
o for Z = (X,Y) € Vg, it is associated the tangency point Fx of X with X,

F: V(Z,) — Y~R
(X7Y) = FX .

Observe that Fx is an invisible fold-regular point if 5(Z) > 0, a visible fold-regular
point if 5(Z) < 0, and a saddle-regular point if 5(Z) = 0.

o for Z = (X,Y) € Vg, it is associated the points in ¥ where the invariant manifolds
of X at Sx cross X. The relative order in X of the points P;, for ¢ = 1,2, 3, where

established above.
P V(Z,) — Y¥~R
(X,)Y) = Pk
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for Z = (X,Y) € Vg, it is associated the point ¥ N PEy, where PEy is the curve
where X is parallel to Y,

A — XNPE; "

Observe that Pg(Z) is a pseudo-equilibrium point of Z when Pg(Z) € ¥° U X¢.

finally, for Z = (X,Y') € Vg, it is associated a first return map 7. Thus, we can
associate to Z a number that defines the existence of a degenerate cycle,

a: V(Zy) — R
A —> Wz(az)—az )

Observe that, despite the fact that a; was defined in terms of Sgn(f), the quantity
a(Z) is an intrinsic feature of Z, it means that this dependence is just used in order
to clarify the exposition.

Notice that « = «(Z) and 5 = B(Z) are bifurcation parameters from which we can
obtain all the bifurcations of the degenerate cycle, I'y, of Z in V,. Consider Z, satisfying
BS(1) — BS(3) and BSC(1) — BSC(2) with hyperbolicity ratio of X, being irrational,
from the study performed above it becomes clear that, to study these bifurcations, we
have six cases to analyze:

DSCyy: Zy has a saddle-regular point of type BS; and the hyperbolicity ratio of
Xy is greater than one;

DSChs: Zy has a saddle-regular point of type B.S; and the hyperbolicity ratio of
Xp is smaller than one;

DSCy: Zy has a saddle-regular point of type BSs and the hyperbolicity ratio of
X is greater than one;

DSCy: Zy has a saddle-regular point of type BS> and the hyperbolicity ratio of
Xy is smaller than one;

DSC3y: Zy has a saddle-regular point of type BS3 and the hyperbolicity ratio of
Xy is greater than one;

DSCsy: Zy has a saddle-regular point of type B.S3 and the hyperbolicity ratio of
Xp is smaller than one.

Define Vy = {Z = (X,Y) € Vy,; Sx has irrational hyperbolicity ratio}. From now on
we will consider vector fields in V, and describe the bifurcations of Z; em V,. In order
to do that, consider a family of discontinuous vector fields Z, g of vector fields in V),
(a, B) € By C R?, such that By is an open neighborhood of 0 € R?, Zyy = Zy and «, 8
are the bifurcation parameters discussed above. All the cases DSC(1) — DSC(6) have at
least four bifurcation curves, in the («, 5)—plane, given implicitly as functions of o and

B:

let vp, be the curve implicitly defined by 7(az, ;) — Pe(Zap) = 0, ie., vp, =
{(o, B) € By;m(az, ,) — Pp(Zas) = 0}. Then vp, is the curve where there exists
a connection between the pseudo equilibrium and the point corresponding to az, -
Thus, this curve lies either on the half plane 8 > 0 or in the half plane § < 0;
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o define vp = {(a, 8) € Bo;7(az, ;) — F'(Za,p) = 0}. Then, ¢ is the curve providing
a connection between the fold point Fly_ , and the point corresponding to az, ,. So,
for f < 0 this curve coincides with the axis «;

o for i = 1,2 the curve 7p, = {(o,8) € Bo; 8 > 0 and 7w(az, ;) — Pi(Zap) = 0}
provides a connection between P;(Z, ) and the saddle point (az, , corresponds to
the saddle point if 5 > 0). For i = 1 this connection i pseudo-homoclinic and it is
homoclinic for i = 2. Moreover, vp, coincides with the half axis {(0, 5); 8 > 0}.

These curves will be illustrated later and the relative position between them depends on
the case being analyzed. In some cases extra bifurcation curves will merge and they will
be defined when it is necessary. In order to obtain an order relation between the curves,
we use the abuse of notation v;(«a, 8) = 7(az, ;) — j(Zas) € R, for j = Pg, F, P,.

Now, we are ready to describe the bifurcation diagrams for the family Z, g. We observe
that all results follows almost directly from the analysis and constructions performed
previously.

The first three theorems concern about cycles of types DSCY; and DSChs.

Theorem A. Suppose that Zy is in the case DSC1, and 8 > 0. Then, for the family
Zop = (Xap, Yap) defined above, bifurcation curves, yp,, vp,, and vp,, merge from the
origin, there exists an attractor pseudo-node, and the following statements hold:

(a) if (a, B) € RE, where R} = {(«a, 3);0 < B < vp, (v, B)}, then there exists a sliding
polycycle passing through Sx.,, , and Pg(Z,p), which contains two segments of sliding
orbits;

(b) if (o,3) € 7pg, then there ewists a sliding polycycle passing through Sx,, and
Pr(Zy5), which contains just one segment of sliding orbit;

(c) if (a,B) € Rt = {(a, B);vps(, B) < B < ~vyp,(a, B)}, then there exists a sliding
pseudo-cycle passing through Sx, ,;

(d) if (o, B) € vp,, then there exists a pseudo-cycle passing through Sx, ,;

(e) if (a,8) € R = {(ca,B);7p, (o, B) < B < vr(a,B)}, then there exists a sliding
pseudo-cycle passing through Sx, ,;

(f) z'f((a, 6; € Yr, then there exists a sliding pseudo-polycycle passing through Sx, , and
F Za,ﬁ 5

(g9) if (a,B) € R} = {(a,8);vr(a,3) < 8 and o < 0}, then there exists a sliding
pseudo-cycle passing through Sx

a,fB 7'

(h) if « =0 and > 0, then there exists an attractor degenerate cycle passing through
SXaﬁ 5

(i) if (a, B) € Ry = {(«, B); B > 0 and a > 0}, then there exists an attractor limit cycle
through >°.

The bifurcation diagram is illustrated in Figure 4.9.
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Proof. For 3 > 0 we have a real saddle Sy, ,. Since Zj is in the case DSC1;, the saddle-
regular point of Zj is in the case BSj, so there exists an attractor pseudo-node, Pr(Z, ),
satisfying Pg(Zap) < Pi(Zag) in X. Also, Pi(Zyp) < F(Zup) < Po(Zap) and, for
i=1,2F, (a,ﬁl)lg(o,o)F(Za’ﬂ) = (aﬁl)li?(o,O) P(Zyp3) = 0". So, the curves yp,, vp,, and vp
merge from the origin and lie on {(«, 8);a < 0 and § > 0}. The existence of the limit
cycle follows from Proposition 4.3. Now, the result is achieved by analyzing the dynamic

of the system for the possible values of 7z, ,(az, ;). O
Theorem B. Suppose that Zy is in the case DSC19 and B > 0. Then, for the family

Zop = (Xap, Yap) defined above, bifurcation curves, yp,, vp,, and vp,, merge from the
origin, there exists an attractor pseudo-node, and the following statements hold:

(a) if (o, B) € RY, where R = {(a, 3);0 < B < vp,(, B)}, then a repellor limit cycle
through Y coexists with a sliding polycycle passing through Sx, , and Pg(Zap),
which contains two segments of sliding orbits;

(b) if (o, B) € vpg, then a repellor limit cycle through X¢ coexists with a sliding polycycle
passing through Sx, , and Pg(Z,p), which contains only one segment of sliding
orbit,

(¢) if (,8) € BY = {(c, B);1ms (0, B) < B < vm(c B)}, then a repellor limit cycle
through 3¢ coexists with a sliding pseudo-cycle passing through Sx_ ,;

(d) if (o, B) € vp,, then a repellor limit cycle through X¢ coexists with a pseudo-cycle
passing through Sx,_ , ;

(¢) if (@, 8) € R: = {(a, B);vm (s ) < B < vwl(a.B)}, then a repellor limit cycle
through ¢ coexists with a sliding pseudo-cycle passing through Sx

a,B’

(f) if (o, B) € v, then a repellor limit cycle through X¢ coexists with a sliding pseudo-

polycycle passing through Sx, , and F(Z,p);

(9) if (a,3) € Ry = {(o,8);7r(, ) < B and o < 0}, then a repellor limit cycle
through ¢ coexists with a sliding pseudo-cycle passing through Sx

a,B 7.
(h) if « = 0 and B > 0, then there exists a repellor degenerate cycle passing through
Sx.

a,B’

(i) if (o, B) € Ry = {(, B); 8 > 0 and « > 0}, there exists no cycle.
The bifurcation diagram is illustrated in Figure 4.10.

Proof. The proof is identical to the proof of Theorem A up to the fact that, as seen in
Proposition 4.3, limit cycles appear for a < 0 and the degenerate cycle for a = 0 is a
repellor. O

Theorem C. Suppose that Zy is in the case DSCi1 or DSCis and 8 < 0. Then, the
family Zo 5 = (Xa,8, Ya,p) defined above satisfies: there exists no pseudo-equilibrium, Sx,, ,
is as attractor for the sliding vector field, and:

(a) if B=0 and a <0, then there exists a sliding cycle passing through the Sx, ,;
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Figure 4.9: Bifurcation diagram of Z, g: case DSC\;.

(b) if « = 0 = j3, then there exists an attractor cycle passing through Sx, ,:
(c) if =0 and a > 0, then there exists an attractor limit cycle through %°;

(d) if (o, ) € Rt = {(, 8); B < 0 and a < 0}, then there exists a sliding cycle passing
through the fold-reqular point F(Z,z);
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Figure 4.10: Bifurcation diagram of Z, 3: case DSC\s.
(e) if « =0 and § < 0, then there exists a degenerate cycle passing through the fold-
regular point F(Zyg);

(f) if (o, B) € Ry = {(c, 8); B < 0 and o > 0}, then there exists an attractor limit cycle
through >°.

The bifurcation diagrams for DSC1y and DSChy are illustrated in Figures 4.9 and 4.10,
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respectively.

Proof. If 3 = 0 then F(Z,5) = Sx, , € ¥. Items b and c follow directly from Proposition
4.3. If & < 0 then the unstable manifold of the saddle in X1 intersects X, after that it
follows the flow of Y, o and it intersects the sliding region. Since F'(Z, ) is an attractor
for the sliding vector field (see the bifurcation of a saddle-regular point of type BS;), then
there exists a sliding cycle through the saddle-regular point. If 3 < 0, then the saddle
is virtual and there is no pseudo-equilibrium, the only distinguished singularity is the
fold-regular point. Now, the result is achieved similarly to the proof of Theorem B. [

Now, the theorems concerning with cycles of type DSCy; and DSCyy are presented.

Theorem D. Suppose that Z, is in the case DSCs . Then, for the family Z,pz =
(Xap, Yap) defined above, bifurcation curves, vp,, Ypy, Vp, and Yp., merge from the
ortgin and the following statements hold:

1. for B < 0: identical to the cases given in Theorem C.

2. for B > 0: there exists an attractor pseudo-node and
(a) if (o, ) € RE = {(a,3);0 < B < ~yp,(,B)}, then there exists a sliding
pseudo-cycle passing through Sx, ,;
(b) if (v, B) € vp, then there exists a pseudo-cycle passing through Sx, ,;
(c) if (@.8) € R2 = {(0B);1m (e B) < f < Amy(e B)}, then there exists o
sliding pseudo-cycle passing through Sx, ,;
(d) if (o, B) € ypg, then there exists a sliding polycycle passing through Sx.,

and Pg(Zy3), which contains only one segment of sliding orbits;

(e) if (0,5) € B2 = {(0B):vpp(c, B) < B < (e B)}, then there eists a
sliding polycycle passing through Sx, , and Pg(Za,p), which contains two segments
of sliding orbits;

(f) if (o, B) € ~r, then there exists a sliding polycycle passing through Sx_ ,,
PE(Zaﬁ) and F(Zaﬁ);

(9) if (a, ) € R2 = {(o, B);vr(, B) < B < Ap,(a, B)}, then there exists a
sliding pseudo-cycle passing through Sx, ,;

(h) if (o, B) € p, then there exists a sliding polycycle passing through Sx.,
and Qz, ,, which contains only one sliding segment;

(i) if (a,8) € R* = {(a,8); 8 > Apy(, ) and o < 0}, then there exists a
sliding polycycle passing through Sx,, and Pg(Z,p), which contains two sliding
segments;

(j) if a =0 and f > 0, then there exists an attractor degenerate cycle through
Sx

a,B’

(k) if (o, B) € R2 = {(a, B); 8 > 0 and o > 0}, then there exists an attractor
limit cycle passing through the crossing region near Px, ,.

The bifurcation diagram is illustrated in Figure 4.11.
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Proof. Since Zj is in the case DSCy; the saddle-regular point is in case B.S,, the position
of the curves vp, and yp, changes in relation to cases DSC4; and DSCh,. For this reason,
a new bifurcation curve, yp,, merges from the origin in the half plane where 5 > 0. In
fact, since @ < 0 and v < 8 < 0, then F(Z,p) < 7z, ,(az,,) < az,,, it means that
the trajectory which contains the unstable manifold of the saddle cross the sewing region
twice before reach the sliding region from X*. Therefore, by continuity, there exist values
of a and [ so that this trajectory reaches ¥° at the pseudo-equilibrium point. This new
curve provides a connection between Sy, , and Pg(Z,s). The rest of the proof is similar
to the proof of Theorem A. n

Theorem E. Suppose that Zy is in the case DSCy. Then, for the family Z,pz =
(Xap,Yap) defined above, bifurcation curves, vp,, Ypy, Yp, and Yp., merge from the
origin and the following statements hold:

1. for B < 0: identical to the cases given in Theorem C.

2. for B > 0: there exists a pseudo-node which is an attractor for the sliding vector

field and

(a) if (a,B) € R2 = {(a,);0 < B < vp,(a, B)}, then a repellor limit cycle
through ¥ coexists with a sliding pseudo-cycle passing through Sx., ,;

(b) if (o, B) € vp, then a repellor limit cycle through ¢ coexists with a pseudo-

cycle passing through Sx, ,;

(¢) if (@, 8) € R = {(a, )iy (0, B) < B < 7pg (e, B)}, then a repellor limit
cycle through 3¢ coexists with a sliding pseudo-cycle passing through Sx, ,;

(d) if (v, B) € yp,, then a repellor limit cycle through ¢ coezists with a sliding
polycycle passing through Sx, , and Pg(Zap), which contains only one segment of
sliding orbits;

(e) if (a,B) € R2 = {(, 8);vp, (v, B) < B < vr(a,B)}, then a repellor limit
cycle through ¢ coexists with a sliding polycycle passing through Sx. , and Pg(Zap),
which contains two segments of sliding orbits;

(f) if (o, B) € vr, then a repellor limit cycle through 3¢ coexists with a sliding
polycycle passing through Sx, ,, Pp(Zap) and F(Zap);

(9) if (o, 8) € R2 = {(a, B);vr(a, B) < B < Apy(c, 8)}, then a repellor limit
cycle through 3¢ coexists with a sliding pseudo-cycle passing through Sx, ,;

(h) if (a,B) € Ap,, a repellor limit cycle through 3¢ coexists with a sliding
polycycle passing through Sx, , and Qz, ,, which contains only one sliding segment;

(i) if (a,B) € R3 = {(o, 8); 8 > Apy(a, B) and o < 0}, then a repellor limit
cycle through ¢ coexists with a sliding polycycle passing through Sx, , and Pg(Z,p),
which contains two sliding segments;

(j) if &« = 0 and B > 0, then there exists a repellor degenerate cycle through
Sx

a,ﬁ;
(k) if (o, B) € R = {(«, B); 8 > 0 and a > 0}, then there exist no cycles.

The bifurcation diagram is illustrated in Figure 4.12.
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Figure 4.11: Bifurcation diagram of Z, 3: case DSCy;.
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Proof. The only difference from the proof of Theorem A is the position of the limit cycles
given in Proposition 4.3. 0

Finally, the last cases, DSC3; and DSC3s, are described in the sequence.

Theorem F. Suppose that Zy is in the case DSC3; and > 0. Then, for the family
Zop = (Xap, Yap) defined above, bifurcation curves, yp, and yp,. merge from the origin,
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Figure 4.12: Bifurcation diagram of Z, s:

there exists no pseudo-equilibrium, Sx, ,

following statements hold:

(a) if (a,

B) € RE, where R =

pseudo-cycle through Sx, ,;

(O‘7ﬁ);0 < 6 < 7131(&75

case DSCy,.

(b) if (o, B) € vp,, then there exists a pseudo-cycle passing through Sx, ,;
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is a repellor for the sliding vector field, and the

)}, then there exists a sliding
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(c) if (a,8) € R = {(ca,B);7p, (o, B) < B < vr(a,B)}, then there exists a sliding
pseudo-cycle through Sx,_ ,;

(d) if (o, B) € vk, then there exists a sliding pseudo-polycycle through Sx,, , and F(Z,);

(e) if (o, 8) € RE = {(a,B);vr(a, B) < B and o < 0}, then there exists a sliding
pseudo-cycle through Sx, ,;

(f) if a =0 and 3 > 0, then there exists an attractor degenerate cycle through Sx, ,;

(9) if (o, 8) € R} = {(a, B); B3 > 0 and o« > 0}, then there exists a limit cycle passing
through >°.

The bifurcation diagram is illustrated in Figure 4.13.

Proof. Since Z; is in case DSCjq, the saddle-regular point is of type BSs, i.e., the pseudo-
equilibrium points appear when the saddle is virtual (5 < 0). Thus, there is no pseudo-
equilibrium for # > 0. The position of the limit cycles given in Proposition 4.3 implies
that they happen for @ > 0. The rest of the proof is similar to the proof of Theorem
A. ]

Theorem G. Suppose that Zy is in the case DSCsy and 5 > 0. Then, for the family
Zop = (Xap, Yap) defined above, bifurcation curves, yp, and vp, merge from the origin,
there exists no pseudo-equilibrium, Sx, , is a repellor for the sliding vector field, and the
following statements hold:

(a) if (o, B) € RE, where R} = {(«,3);0 < B8 < vp, (v, B)}, then a repellor limit cycle
through ¥ coexists with a sliding pseudo-cycle through Sx, ,;

(b) if (o, B) € vp,, then a repellor limit cycle through 3¢ coexists with a pseudo-cycle
passing through Sx, ,;

(¢) if () € B = {( B)vm(0,8) < B < ve(a )}, then a repellor limit cycle
through ¥ coexists with a sliding pseudo-cycle through Sx, ,;

(d) if (a, B) € yr, then a repellor limit cycle through 3¢ coexists with a sliding pseudo-
polycycle through Sx,_ , and F(Za);

(e) if (o,8) € RE = {(a,B);7r(c, 3) < B and o < 0}, then a repellor limit cycle
through 3¢ coexists with a sliding pseudo-cycle through Sx, ,;

(f) if « =0 and 3 > 0, then there exists a repellor degenerate cycle through Sx, ,;

(9) if (a,B) € R = {(a,3); 83 > 0 and o > 0}, then there exists no cycles passing
through >°.

The bifurcation diagram is illustrated in Figure 4.14.

Proof. The position of the limit cycles given in Proposition 4.3 implies that they happen
for a < 0. The rest of the proof is similar to the proof of Theorem F. ]

Theorem H. Suppose that Zy is in the case DSCsy or DSCso and f < 0. Then, the
family Zo 5 = (Xa,8, Ya,p) defined above satisfies: there exists no pseudo-equilibrium, Sx,, ,
is an attractor for the sliding vector field, and:
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(a) if 3 =0 and a <0, then there exists a sliding cycle passing through the Sx_ ,;

(b) if « =0 = f3, then there exists an attractor degenerate cycle passing through Sx, ,;
(c) if 6=0 and a > 0, then there ezists an attractor limit cycle through X°¢;

(d) if (o, B) € R3 = {(c, B); vpy (v, B) < B < 0}, then there exists a sliding cycle passing
through the fold-reqular point F(Z,p);

(e) if (o, B) € yp,, there exists a polycycle passing through F(Z, ) and Pg(Zap);

(f) if (o, 8) € R3 = {(,B);a0 < 0 and B < yp, (v, B)}, then there exists a sliding cycle
passing through Px, ,;

(g9) if « =0 and B <0, then an attractor degenerate cycle through F(Z,z);

(h) if (a, B) € RS = {(«v, B); B < 0 and a > 0}, then there exists an attractor limit cycle
through 3T.

The bifurcation diagram for DSC5, and DSCsy are illustrated in Figures 4.13 and 4.1/,
respectively.

Proof. The position of the limit cycles given in Proposition 4.3 implies that they happen
for a > 0. The rest of the proof is similar to the proof of Theorem A. m

4.3 Illustrations with Hyperbolicity Ratio in Q

In this section we present some models realizing degenerate cycles through hyperbolic
saddles where the hyperbolicity ratio is a rational number. Moreover, we use these ex-
amples to illustrate how rich a system having a degenerate cycle through a saddle point
can be. Firstly, we study a class of vector fields having hyperbolicity ratio equal to 1.
After that, an example, also with hyperbolicity ratio equal to 1, is studied carefully taking
in account the whole system showing how rich the dynamic of this model is. Finally, a
model having hyperbolicity ratio r is studied numerically and the main objective of it is
to illustrate the existence of degenerate cycles, limit cycles and to study the graph of the
first return map when the hyperbolicity ratio is a rational number.

4.3.1 Class of Vector Fields with Hyperbolicity Ratio =1

Let A be the set of all discontinuous vector fields Z = (X,Y) € Q" where X has a
hyperbolic saddle Sx and, in a neighborhood of Sx, X is C?—conjugated to a vector field

W(x) = Ax + ¢, where
(0 a [ —ay
A= ( b0 ) and c= < e > (4.3.1)

with a,b > 0, Sx = (%,9), and 3 = h~'(0) where h(z,y) = y. Moreover, this conjugacy
preserves the discontinuity set X. Observe that the eigenvalues of A in equation 4.3.1 are
++/ab, therefore, for all Z € A, the hyperbolicity ratio of any Sy is equal to 1. Now,
by considering vector fields in V;, N A we perform an analysis of the first return map.
In order to do that, we proceed similarly to the analysis performed for the case r ¢ Q.
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The main difference is that we consider X fixed and the saddle point variable. Then, for
cach Z € Vz, N A, there is no loss of generality in assuming az = 0 (it is possible up to
translation maps) and the image of ay by conjugacy is also 0 (it is possible, because the
conjugacy preserves ).
Consider 7 C X% a transversal section to the flow of X such that, if Sy € X7,
is above Sx. In this case, the transition map of X near Sx is p; :

then 7
[0,07) — o with p;(2)
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being the projection on the first coordinate of the point where the trajectory of X passing
through (z,0) € [0,d7) x {0} meets 7 at the first (positive) time. Let my C {(z,¢) € R?}
be the transversal section to the flow of W for some € > 0 is such way that this section is
contained in the neighborhood where W and X are conjugated. Without loss of generality,
we assume that 7 is the image by conjugacy of oy .

Lemma 4.4. The transition map pw : [0,0) — ow can be differentially extended to an
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open neighborhood of 0.

Proof. The trajectories of W lie in the level curves of the function G(x,y) = bx? — ay® +
2c1x — 2c9y, where ¢; = —b% and ¢y = —ay. Assume that py is defined for 0 < x < 4.
Now, for each (z,0) € ¥ with 0 < x < ¢ we obtain

¢ 2¢q a 2¢9 c
pW(x) = _b+\/ﬂf2+b$+b€2+b€+b2-

Observe that the expression inside the square root which does not depends on z is a

(4.3.2)

2
polynomial of degree 2 in ¢, Q(¢) = %82 + %8 + Z—; We analyze this polynomial in three
different cases:
(i) if y < 0 we have ¢o > 0. As Px = (0,0) we must have ¢; = 0 and since a,b > 0 it
follows that Q(¢) > 0 for £ > 0;

(ii) if § = 0 then Sx = (0,0), consequently ¢; = co = 0 and Q(e) > 0 for € > 0;

(iii) if § > 0, then ¢; < 0. Imposing the condition that the stable manifold of Sx
intersects ¥ in (0,0) we obtain ¢; = —coy/b/a > 0. It implies that ¢ has only one

root, which is —co/a = g and Q(¢) > 0 for all € > 0 and ¢ # y. However, for our
proposes, € > . Thus, Q(¢) > 0 for ¢ > 7.

Therefore, choosing € > max{0, 7} we obtain () > 0 and we can find dy > 0 such that
the expression inside the square root in (4.3.2) is positive for x € (—dw, dw). It follows
that py can be differentially extended to an open neighborhood of 0. O

Since W is C?—conjugated to X in a neighborhood of Sy there exists a diffeomorphism
of class C2—, 1, defined in a neighborhood of Sy, such that ¥(Sy ) = Sx and

pi(@) =Y opw o (). (4.3.3)

It follows from this expression that p; can be, at least, C2—extended to an open neigh-
borhood of 0 and it allows us to calculate the Taylor series, until order 2, of 75 at z = 0.

Proposition 4.4. Consider Z = (X,Y) € ANVy, and let Sx = (Z,7) be the saddle point
associated with X. Suppose that, in the notation above, the first return map is defined
in a half-open interval [0,07), for some 6z > 0. Then the first return map of Z can be
written as

T7(x) = a+ k(B)x + ko (B)2* + h.o.t., (4.3.4)
where 0 < |k1(B)|< 1 if >0 and k1(B) =0, ko(B) > 0 if 5 < 0.

Proof. We have already shown the existence of the first return map 7z = ps o py 0 p; (see
4.1) and, as seen above, it can be, at least, C* extended to an open interval (—dz,dz).
Thus, it is possible to calculate its Taylor’s series until order 2 around x = 0, which is
given by ,
1
m2(x) = 72(0) + ‘Z;Z(O)x - Q!dd;z
Observe that py and ps are orientation reversing diffeomorphisms while v is an orien-
tation preserving diffeomorphism. Also, p; =1 o py o™t Ty = p3 0 py 0 py,

(0)22 + O(a*).

dow 0y — a1 and  LOW gy __ belas + 2c5)
dx \/a652 4 2bege + da? (abe? + 2bcoe + ¢3)3/2
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When § < 0 we assume ¢; = 0. It follows that 222 (0) = 0 and consequently 2X(0) = 0.
Also, ¢ > 0 then £2%(0) > 0 and £2:(0) > 0. Therefore, 22 (0) = 0 and £7Z(0) > 0.

dz? dz dz dzs
If § > 0 then ¢; = —c94/b/a > 0. For each fixed € > ¢, py depends continuously on g,
consequently 7z also depends continuously on ¢. Since ¢ is sufficiently small we conclude
that

dﬂ'z
0<—(0)<1
7. (0)
Finally, defining o = 72(0), 8 =, k1(8) = 42(0) and ky(8) = %d;;rgz (0) we achieve the
result. O
It follows from this result that for Z we have 75(0) = 0, %(0) =0 and dZQZ (0) > 0.

Let I" be the degenerate cycle of Z. Since the first return map is just defined in a half-open
interval there exists a neighborhood of I" such that the orbits of Z in this neighborhood,
through points where the first return map is defined, have I' as w—limit set. Another
consequence of this proposition, which has a similar prove as the one of Proposition 4.3,
is the following:

Corollary 4.1. Under the hypotheses in the Proposition 4.4, if Z € Vz, N A is such
that o > 0 then, for some x > 0 sufficiently small, Z has a stable limit cycle passing
through (x,0) € 3. Moreover, if Z is such that oo = 0, then there exists a degenerate cycle
I' having a neighborhood for which the orbits of Z in this neighborhood passing through
points where the first return map is defined have I' as w—Ilimit set.

Therefore, for Z € V;, N A the first return 7, has the graph given in Figure 4.6.
Moreover, depending on the structure of the local saddle-regular point, the bifurcation
diagram in this case is given in Figure 4.9, or 4.11, or 4.13.

4.3.2 Model with Hyperbolicity Ratio =1

Now, the objective is to illustrate how complex and rich a system having a degenerate
cycle through a saddle-regular can be. All systems in the considered family are piecewise
Hamiltonian, thus the hyperbolicity ratio of any saddle point is equal to 1. Moreover, the
cycle is, topologically, of type DSC4;.

Consider the 2—parameter family of discontinuous vector fields Z, 5 = (X,, Y3) with

1
_ | yta _
Xa_(ﬁ—x) and Yﬁ—(x_i_ﬁ).

In order to analyze the vector field Z, g we first analyze, separately, the vector fields
X, and V3.

Analysis of X,

The vector field X, has two singular points, one of them is a hyperbolic saddle S, =
(0, ), the other one is a center C, = (1,«). This is a Hamiltonian vector field with
Hamiltonian function given by

1 1, 1
Holw,y) = —5y" +ay — gz’ + 5o
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For a = 0, H; *(0) meets Y at the origin and at the points P = (2, O) and ) = (—;, 0).
There exists an homoclinic orbit through the origin which intersects the ¥ at P = (3/2,0).

Notice that, when a varies, we just have a translation, on axis y, of the phase portrait
for « = 0. The level curves of H, meet > at most in three distinct points. In fact, each
(z0,0) € ¥ belongs to the level hy = H,(z0,0) of H,, then to find the intersections of this
level with 3 it is necessary to solve, in z, the equation H,(z,0) = ho. It is equivalent to
find the roots of a third degree polynomial. Solving this problem we obtain the roots z
and x4, where

3z \/9+ 1270 — 123
=17y 1 -

w

1
Observe that, x4+ € R provided that —5 <z < 5 Moreover,
o if =3 <20 <0, then 0 <xz_(29) <1and 1< xy(z) < 3;
o if0< g < %, then —% <z (r9) <0and 0 < xy(x9) < %

When o < 0 the singular points of X, become virtual singularities for Z, g but two
tangency points merge in X in the same place where there are singularities for a = 0.
For this reason, the analysis on the existence of limit cycles for a@ < 0 is analogous to the
analysis for & = 0. So, we can restrict our investigation considering av > 0.

Consider the level h, = H,(0,a) of S,, a point (x,0) € ¥ belongs to this level if and
only if it is a root of R,(z) = H,(z,0) — h,. The map R, polynomial of degree 3 in
x, denote the roots of R, by x; = z;(«), 1 = 1,2, 3, satisfying ; < x5 < x3 when all
these roots are real. The biggest and smallest values of «a for which xq, x5, x3 € R are
o =+v3/3 and so x; = —1/2, x5 = 3 = 1 and h, = H,(1,0).

Since we are interested in small values of a we assume |a|< v/3/3. By analyzing R,
we obtain that x;(a) and z5(«) are increasing maps while z3(«) is a decreasing map.

Given Py = (20,0) € ¥ with x9 < xy < 1 there exists a unique P, = (p1(20),0) € X
that belongs to the same level Py and satisfies 1 < py(zg) < x3. Therefore, the trajectory
of X, through Py meets ¥ also in P;. Therefore, we can consider the map p; : [x2, 1] —
[1, 23] given by

V9 + 122 — 1222
1 )

o) =ai(0) =5~ 2 4

Analysis of Yj

The vector field Yz does not have singular points but it has a fold point Fjg = (3/4 +
$,0) € ¥. Given Fy = (20,0) € X, the trajectory of Y through ) meets again at
Py = (p2(x0),0) and, we consider the map

i (2] = Pesd

v = pale) =S - +28

Observe that py(0) = % + 24 and, if § = 0, then py(0) = % = p1(0). Therefore, Zy,

has a degenerate cycle through the hyperbolic saddle Sy at the origin, see Figure 4.15.
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S

Figure 4.15: Phase portrait of Zy.

Analysis of Z, 3
In order to analyze the behavior of Z, 3, it is necessary to determine the sewing,
sliding and escaping regions. Due to simplicity, we consider —3/4 < < 1/4 and, since
3
Xof - Yaf =2(x —1) (x— 1 —B) we obtain 3¢ = {(z,0);0 <z < f+3/4orz > 1},
Y ={(z,0);8+3/4 <z <1} and X°¢ = {(2,0);z < 0}.
The second step in this analysis is to study the sliding vector field, which is given by
1 alde —3—40) — dx(z — 1)
S a=———— (Yaf. X0 — XofYs) =
op Ygf—Xaf(ﬁf 1Y) dx — 3 — 48 — dx(z — 1)

Observe that, by assuming |3|< 1/4 the denominator, d(x, 3), in the expression of Z ;
is nonzero and

e d(f,z) <0ifx <0,ie,ifre X’
e d(B,x)>0if3/4+ 8 <z <1, ie,if zeX?

The numerator in the expression of Z3 5 is n(a, 8,7) = a(4r — 3 — 43) — dw(x — 1),

we have n(a, f,x) =0ifand only if x = sy = (1 +a =+ \/aQ —a(l+45)+1)/2. Observe
that, s € R when |3|< 1/4 and

e n(a,f,x) <0ifx < s_orx>sy;
e n(a,B,x) =0if x = s4;
o nla,f,2) >01if s_ <z < 5.

Now, we need to determine if sy € ¥* U X Observe that, s; € X¢ for |f|< 1/4. Since
1fl<1/4, s =0 a=0and s- <0« —1 < a <0, in both cases s_ is an attractor
for Z7, 5. Otherwise, if a > 0, n(a, 3, 2) < 0 and, consequently, Z, s(x) > 0 for x < 0 and
Zaplx) <0for3/4+p <z <1
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The third step is to investigate the existence of limit cycles through points in 3¢ with
Ty < x < 3/4+ B. Define,

Fa’gi {1’2,%4‘5} — R

i L (@) (4.3.5)

Notice that, F, 3(z) = 0 iff z = 2., where

3 9 — 243 — 4832

It is clear that 2z, > 3/4 4 3, thus it is not in the domain of F, 3. If a = 0 and
0 <3 <1/4 wehave o = 0 and 0 < z_ < 3/4 + 3. Under these conditions, z_ is an
increasing function in the variable 3 so, Fog(x) < 0if 0 < < z_ and Fyg(x) > 0 if
z_ < x < 3/4+ . Therefore, varying  continuously in (0,1/4), the degenerate cycle
for § = 0 becomes a limit cycle, with decreasing radius, degenerating in a point for
f =1/4. For @« = § = 0 we obtain Fyo(z) < 0 for 0 < x < 3/4, so the degenerate
cycle through the origin is repellor, see figure 4.15. If o > 0 it is not possible to find
algebraically the expression of 9, however it is known that, 5 = x9(«) and the equation
zo(a) = z_(f) defines, implicitly a curve 8 = ~,,(«), in the («, 3)—plane, for which
Ty =z_ if =), 12 < 2_ <3/4+ [ if B < py(a) and x5 > 2 if 5 < 7., ().

Finally, the last step in this analysis is to study connections between the singularities
in ¥. In order to simplify the notation consider b = 3+3/4, notice that if —=3/4 < 5 < 1/4
then 0 < b < 1.

Since the trajectories of Y cross ¥ in points having the fold F, = (b,0) as middle
point, we obtain some curves, b = b(«) = 3/4 + [(«), which provide direct connections
through the flow of Yj:

« by =0: F,=(0,0);

T+ .
o by="1 5 2. connection between P, = (z1,0) and Py = (25, 0);
1+ 1 .
e by = ——=: connection between P; and Cly;
2
T+ .
o by = ! 5 %, connection between Py and P = (x3,0);
x
o b = ?2: connection between 0 and P;
1
o b = 3" connection between 0 and Cj;
x
o by = 53: connection between 0 and Ps;
o+ 1 .
e bg = > ": connection between P, and Cly;
Ty +x .
« by=""2 5 2. connection between P, and Pi;

o bio=x9: Iy, = Py
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° bll =1: Fb - (1,0)

By means of numeric calculations, considering 0 < a < v/30/24, we obtain:
1 3
—5<I1<0<b2<b5<I2<b3<b6<b8<b4<b7<b9<1<$3§5.

Since |f|< 1/4 implies that 1/2 < b < 1 and bg(0) = 1/2 it is enough to consider
bs < b < 1. However, just for a clearer exposition, we consider smaller values for b.
Numeric calculations give some results:

« Connections of P, = (21,0):

Observe that in the curve defined by b3, we have a connection between P; and (1, 0)
also, in the curve defined by b4 we have a connection between P, and P;. Therefore,
for by < b < by there exists a sequence of disjoint curves (up to a = 0) b = v («),
converging to by when j — oo, with 7§ = b3 and satisfying:

— For 7213;2 <b< 7211'717 7 =1,2,..., the trajectory through P, crosses > 25 — 1
times before reaching the sliding region;

— For b = 721]-41, J = 1,2,..., then the trajectory through P; intersects ¥ 25 — 1
times before performing a connection with Fj;

— For 721]._1 <b< 721]-, 7 =1,2,..., the trajectory through P, crosses X 2j times
before reaching the sliding region;

— For b = y%j, j = 1,2, ..., then the trajectory through P; intersects ¥ 2j times
before performing a connection with (1,0). See Figure 4.16.

Figure 4.16: Ilustration of the phase portraits of Z, 3 with values in the sequence 'y;.

« Connections of 0 = (0,0):

Observe that in the curve defined by bg, we have a connection between the origin
and (1,0). Moreover, in the curve defined by b; we have a connection between the
origin and P5. Therefore, for bg < b < b; there exists a sequence of disjoint curves
(uptoa =0) b= 7?(04), converging to b; when j — oo, with 70 = b and satisfying:
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— For 79, , < b <79y, j =1,2,.., the trajectory through 0 crosses ¥ 2j — 1
times before reaching the sliding region;

— For b = fygj_l, 7 = 1,2, ..., the trajectory through 0 intersects > 25 — 1 times
before performing a connection with Fj;

— For 49, ; < b <y, j = 1,2,..., the trajectory through 0 crosses ¥ 2j times
before reaching the sliding region;

— For b = ygj, j =1,2,..., the trajectory through 0 intersects X 2j times before
performing a connection with (1,0). See Figure 4.17.

Figure 4.17: Illustration of the phase portraits of Z, 3 with values in the sequence 7?.

o Connections of P;: Observe that, in the curve defined by bg, we have a connection
between P, and (1,0). Moreover, in the curve defined by by we have a connection
between P, and Pj, this last connection provides a saddle connection. Therefore,
for bs < b < by there exists a sequence of disjoint curves (up to a = 0) b = 77 («),
converging to by when j — oo, with 72 = bg and satisfying:

— For 43,y < b <731, j=1,2,..., the trajectory through P, crosses ¥ 2j — 1
times before reaching the sliding region;

— For b = 722]-_1, J = 1,2, ..., the trajectory through P intersects X 27 — 1 times
before performing a connection with Fj;

— For 43, ; < b<n3;, j=1,2,..., the trajectory through P, crosses ¥ 2j times
before reaching the sliding region;

— For b= ﬁj, 7 =1,2,..., the trajectory through P, intersects ¥ 25 times before
performing a connection with (1,0). See Figure 4.18.

In addition to these cases we have:

e If yj < b <7, j=0,1,2,.., then, after it crosses ¥ j + 1 times, the trajectory
through P; can meet ¥° at the same point the trajectory through 0 meets 5 after
it crosses X j times, see Figure 4.19. It provides a new sequence 77]1.0 satisfying
%1 < 77J1~0 < 7}) where this connection happens.
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Figure 4.18: Ilustration of the phase portraits of Z, 3 with values in the sequence 7]2.

< N\
\ w@ :

(a) (b)
Figure 4.19: (a) in ni® and (b) in at n{°.

o There exists a sequence 77]1.2, satisfying 77]1-0 < 17]1.2 < 'y?, such that, for b = 7731.2, after
it crosses Y j + 1 times, the trajectory through P; meets ¥° at the same point the
trajectory through P, meets >° after crossing > j times, see Figure 4.20.

Figure 4.20: (a) in n3? and (b) in at n;?.
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o There exists a sequence 7)), satisfying 79 < 79 < 77, providing a connection be-
tween the origin and P, in a similar way we have seen above, see Figure 4.21.

Figure 4.21: (a) in nd% and (b) in at 792

For b > by there exists a repellor limit cycle through the sewing region. In fact, by
means of numeric calculations it is possible to show that z_ > x4, see Figure 4.18.
Moreover, x;(0) = 0 for i = 1,2, 23(0) = 3/2, and 7} — b9 for i = 1,2,3, where
b? is a sequence of points tending to 0 when j — oo. Also, _l)i\r/ng/gxl(a) = —% and
lim x;(a) =1 fori=2,3, so
a—/3/3

\
w
~—
I
>
J
—
™
~
w
N
|
—_
~
&

o b3(0) = bs(0) = bs(0) = —1/4;
e by(0) = br(0) = by(0) = 0.

So, for a = 0 we find some other sequences which are limits of the existent sequences for
a > 0. Observe that bl = bQ = b5 = blO = 0, by = bg = bg = 1/2, and b4 =b; = by = 3/4
In this case:

1
e For b= —:
or 5

There exists a heteroclinic connection between the origin and the point (1,0), which
is a center for Xy, see Figure 4.22.

1 3

e For — <b< —:

or 5 1
There exists a sequence b), with bj = 1/2, 1/2 < b9 < 3/4 and tending to 3/4 when

Jj — o0, satisfying
—if b, 5 < b < by;_;, j =1,2,..., the trajectory through the origin crosses X
27 — 1 times before reaching the sliding region;

—if b = ng;pj = 1,2,..., the trajectory through the origin crosses ¥ 25 — 1
times and it connects with Fjp;
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—if b, | < b < b, j=1,2,..., the trajectory through the origin crosses ¥ 2j
times before reaching the sliding region;

—ifb= bgj the trajectory through the origin crosses ¥ 25 times before connecting
wit (1,0). See Figure 4.22.

Figure 4.22: Illustration of the phase portraits of Z, g with values in the sequence b?.

3
o For b= —:
or 1

There exists a homoclinic connection through the origin, i.e., there exists a degen-
erate cycle through the saddle-regular point at the origin, see Figure 4.15 or Figure
4.22.

3
e For - <b< 1:
0r4

As seen above, there exists a repellor limit cycle through the sewing region, see 4.22.

Now, it remains to analyze the case when av < 0. In this case we have a similar structure
as in case a = 0 but for the existence of the pseudo equilibrium point @ = (s_,0). Thus,
the same sequences for a = 0 exist in this case, see Figure 4.23. Analogously to previous
analysis, there exists a sequence ¢;, providing a connection of the pseudo equilibrium @
and the points Fj and (1,0), see Figure 4.24.

In addition to these connections, it is also possible to connect ) and the origin by
means of a pseudo connection at the sliding region, and this last sequenceis named ¢, see
Figure 4.25.

Under these analysis we are ready to sketch the bifurcation curves, see Figure 4.26.
Observe that, for any neighborhood Vj of the («, 5)—plane origin, there exists n € N for
which all curves defined by the sequences with index > n have nonempty intersection with
Vb. By changing the parameters, the hyperbolicity ratio does not change, it is always equal
to one. We conclude that, despite the fact that the hyperbolicity ratio is not a irrational
number, the studied family has a bifurcation diagram of type DSC}5; given in Figure 4.13.
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Figure 4.24: Ilustration of the phase portraits of Z, g with values in the sequence §;.

4.3.3 Model with Hyperbolicity Ratio in Q

Now, we consider a model with hyperbolicity ratio » > 0 and we study how the system
evolve for some values of r € Q. Consider Z, = (X,,Y,) with a = (r,k,d,m), ¥ = h=1(0),
h(z,y) =y +x/4 —m, and

T —1
X“_(ry—x3—kx> and Y“_<—a:+d>' (4.3.6)

Now we consider the notation defined in Section 4.1.2. Observe that:
o forr>0,Sx, =5 =1(0,0)is a hyperbolic saddle of X, with hyperbolicity ratio r;

o W3S, Xo) = {(z,9) € Riz =0} and W*(S, X) = {(z,9) e R%y = — 2, — ke L,
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(a)
Figure 4.25: (a) in ¢{?

S

~

Figure 4.26: Sketch of the bifurcation diagram of Z, 5 with |3|< 1/2 and |a|< v/3/3.

e W3S, X,)NY = Py and W(S, X,) NS = {P,, P,, P;}, where P; = Py(r, k,m) =
(xj,—x;/4+m), j =1,3,4, P, = (0,m) and x4 < 21 < 3. If m > 0 then z; > 0,

(r+1—4k)(r+3)
W and

T3 = ”%. Then, for £ < 0, W*(S, X,) crosses X in three different points

if m = 0;

x1 <0 form <0, and x;1 =0 if m = 0. Also, for m =0, 4, = —

e Fy, = (xp,—xp/4+ m) is the fold point of X, near S for m # 0. Fy, is visible if

a

m > 0 and invisible if m < 0;
o [y= (d — i, —% + % — m) is the unique fold point of Y,, which is invisible;

o given pyg = (x9, —xo/4 + m) € X, the trajectory of Y, through py meets ¥ again at
the point (2d — 1/2 — xq, (xg — 2d)/4 4+ 1/8 4+ m). In this case, consider ps(xy) =
2d —1/2 — xo;

o for k<0, m=0,and d >0 S is a saddle-regular point of type BSs;
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by considering ¥ parametrized by the first coordinate (z +— (z,—xz/4 4+ m) ), the
4o + 42 + (4k — 4d — r) + 4mr

sliding vector field is Z°(z) = TGkt ot Amr T Ad—1

Observe that, for any two points p; and po in X, parameter d in such a way that they are
in the same trajectory of Y,. Phase portraits of X, and Y, for m =0, r > 0, and £k <0
are given in Figure 4.27.

()

Figure 4.27: Phase portraits of (a) X, and (b) Y, with m =0, r > 0, and k < 0.

In what follows, assume r > 0, £ < 0, and m ~ 0 sufficiently small such that
gWwH(S,X,) NY = 3. Fix r > 0 and k,0, for each m, by varying d, we obtain all
configurations given by the curves vp, vp,, vp,, and 7yp, defined in Section 4.1.2 depend-
ing on the signal of m. Therefore, by changing m and d we want to show that Z, realizes
bifurcation diagram DSCj5;y if r > 1 or DSC45, if < 1. In order to do that it is enough
to show the existence of the limit cycles given in that bifurcation diagrams and that
the pseudo-equilibrium appear when m > 0, i.e., when the saddle is virtual. Since the
algebraic accounts are not feasible, we illustrate it numerically.

Firstly, in Figures 4.28, 4.29, 4.30, and 4.31 we illustrate the position of the pseudo-
equilibrium Pg(Z,) in relation to F'(Z,), the invisible fold point of X, near the origin,
when d or m varies, for some values of r. Notice that, Pp(Z,) < F(Z,) for m > 0 it
implies that Pg(Z,) € ¥°, i.e., the pseudo-equilibrium exists when the saddle is virtual.
Analogously, Pr(Z,) > F(Z,) for m > 0 it implies that Pp(Z,) € ¢, i.e., there exists no
pseudo-equilibrium near the origin when the saddle is real.

Now, graphs of the first return map for some values of the parameters were done nu-
merically, all graphs are given with the variable x having start point at the correspondent
ay for which the first return is defined. See Figures 4.32,4.34, and 4.36 for some values of
r € Q satisfying 0 < r < 1 and see Figures 4.33, 4.35, and 4.37 for some values of r € Q
with » > 1. By observing that, for each m fixed, the first return map varies continuously
as the other parameters vary, we conclude the results found in Section 4.1.2 remains true
for this model. Therefore, cycles appear in the same way as seen for r ¢ Q. Moreover,
from the analysis of the pseudo-equilibrium, we have that the bifurcations of the degen-
erate cycles obey bifurcation diagrams given in Figure 4.13 if » > 1 and Figure 4.14 if
r < 1. As a complement to this analysis, we present some illustrations of the behavior of
Z,, for some values of parameters, with existence of limit cycles.
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Figure 4.40: Trajectories through p;
0.0002 € ¥ (red) and py = 0.005 €
(blue), with m = —0.5, k = =1, d
1.258, and r = 1/2.
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