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“... Many places I have been
Many sorrows I have seen

But I don’t regret
Nor will I forget

All who took the road with me

Night is now falling
So ends this day

The road is now calling
And I must away

Over hill and under tree
Through lands where never light has shone
By silver streams that run down to the sea

To these memories I will hold
With your blessing I will go

To turn at last to paths that lead home
And though where the road then takes me

I cannot tell
We came all this way

But now comes the day
To bid you farewell

I bid you all a very fond farewell”

(Billy Boyd, The Last Goodbye in The Hobbit: The Battle of Five Armies)



Resumo

Neste trabalho, estuda-se ciclos que ocorrem tipicamente em campos vetoriais descon-
tínuos, planares definidos em duas zonas, 𝑍 = (𝑋, 𝑌 ), com variedade de descontinuidade
dada pela imagem inversa do 0 por uma função suave h, definida no plano e assumindo
valores reais, para a qual 0 é um valor regular. Primeiramente, mostra-se que, se 𝑋 e 𝑌
são campos vetoriais analíticos e 𝐶 é um policiclo de 𝑍, então, genericamente, não existem
ciclos limite se acumulando em 𝐶. Depois disso, o objetivo é estudar bifurcações de ciclos
típicos contendo um ponto do tipo sela-regular. Mais especificamente, considera-se ciclos
compostos por um segmento de órbita regular de 𝑍, que cruza a variedade de descon-
tinuidade transversalmente, e um ponto do tipo sela-regular resultando numa conexão
quase-homoclínica. São apresentados diagramas de bifurcação para o caso onde o raio de
hiperbolicidade do ponto de sela é um número irracional, o caso onde o raio de hiper-
bolicidade da sela é um número racional é ilustrado com alguns modelos. Finalmente,
dois modelos comuns em aplicações e que apresentam tal ciclo são estudados por meio de
cálculos numéricos.

Palavras-chave: Campos vetoriais descontínuos, Teoria de bifurcação, Problema de
Dulac, Ciclos.



Abstract

In this work, a study is performed on cycles occurring typically in planar discontinuous
vector fields in two zones, 𝑍 = (𝑋, 𝑌 ), with switching manifold being the inverse image
of 0 by a smooth function ℎ, defined on the plane and assuming real values, for which 0
is a regular value. Firstly, it is shown that if 𝑋 and 𝑌 are analytic vector fields and 𝐶
is a polycycle of 𝑍, then, generically, 𝐶 cannot have limit cycles accumulating onto it.
After that, the objective is to study the bifurcations of typical cycles through a saddle-
regular point. More specifically, we consider a cycle composed by one segment of a regular
orbit of 𝑍, which crosses the switching manifold transversally, and a saddle-regular point,
resulting in a homoclinic-like connection. Bifurcation diagrams are presented for the case
where the hyperbolicity ratio of the saddle point is a irrational number, the case where
hyperbolicity ratio is a rational number is illustrated with models. Finally, two application
models presenting cycles through saddle-regular points are studied by means of numeric
calculations.

Keywords: Discontinuous vector fields, Bifurcation theory, Dulac’s problem, Cy-
cles.
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Introduction

The concept of limit cycles has arisen in 1882, introduced by the French mathemati-
cian Jules Henri Poincaré, in his work “Mémoire sur ler courbes définies par une équation
différentielle (II)”, see [32]. Few years later, in 1900, during the 2𝑛𝑑 International Con-
ference of Mathematicians, in Paris, the German mathematician David Hilbert proposed
a collection of twenty-three problems that could influence the development of the math-
ematics of that century. The Hilbert’s sixteenth problem is split in two parts, the first
one is related with algebraic topology and the second one with limit cycles in polynomial
vector fields. This second part can be written as:

- Determine the maximum number of limit cycles admitted by a polynomial vector field
of degree 𝑛 on R2.

A preliminary step towards the solution of the second part of Hilbert’s sixteenth
problem is proving the following finiteness result:

- A polynomial vector field on R2 has at most a finite number of limit cycles.
This last question can be extended to analytic vector fields and it can be reduced to

the problem of non-accumulation of limit cycles, see [35]:
- An elementary polycycle of an analytic vector fields cannot have limit cycles accu-

mulating onto it.
In 1923, the French mathematician Henri Dulac, who was the first to study this non-

accumulation problem, gave an incomplete proof which was noticed much later, thus the
problem turned out to be called the Dulac’s Problem. In 1986, a correct proof was given for
quadratic vector fields by R. Bamon [4]. The finiteness result was estated independently by
Yu Il’Yashenko [18] (see [19] for more details) in 1984 and by J. Ecalle [12] in 1992. Finally,
the complete proof of the second part of the Hilbert’s sixteenth problem was recently
announced by J. Llibre and P. Pedregal, see [26]. In general, investigations on cycles
in smooth systems have always motivated many researchers and plenty of mathematical
tools are developed from these studies.

In addition to the study in smooth systems, cycles can be studied in the context of
discontinuous vector fields. Let 𝑈 be an open subset of R2 with compact closure, i.e.,
the set 𝑈 is compact. Consider a smooth embedded submanifold Σ = ℎ⊗1(0) ∩ 𝑈 , where
𝑓 : 𝑈 ⊃ R is a smooth function for which 0 is a regular value. In this way, Σ splits 𝑈 in
two open regions

Σ+ = ¶𝑝 ∈ 𝑈 ; 𝑓(𝑝) > 0♢ and Σ⊗ = ¶𝑝 ∈ 𝑈 ; 𝑓(𝑝) < 0♢.

A discontinuous vector field in 𝑈 is of the form

𝑍(𝑝) =

{︃
𝑋(𝑝), 𝑝 ∈ Σ+,
𝑌 (𝑝), 𝑝 ∈ Σ⊗,

where 𝑋 and 𝑌 are vector fields of class 𝐶𝑟 in 𝑈 . The Russian mathematician Filippov
has formalized some aspects of the theory of discontinuous vector fields and presented
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a convention for the study of the dynamics in the discontinuity manifold Σ, [14]. For
this reason, discontinuous vector fields, defined as above with Filippov’s convention, are
commonly refereed as Filippov vector fields. Many authors also refer to discontinuous
vector fields as piecewise smooth vector fields. In the course of this work, we have adopted
the terminology “discontinuous vector fields” and we assume Filippov’s convention for
solutions through the switching manifold Σ.

In 1984, Koslova worked with generic discontinuous vector fields, [21]. In the last years,
the theory of discontinuous vector fields has become stronger with growing importance
at the frontier between mathematics, physics, engineering, and the life sciences. Interest
stems, particularly, from discontinuous dynamical models in control theory [5], nonlinear
oscillations [2, 28], impact and friction mechanics [8], economics [20, 16], biology [6], etc.
Also, in [27] the authors present a review, focused on bifurcation theory of discontinuous
dynamical systems, an introductory state-of-the-art and some open problems are also
presented.

The present work concerns the study of degenerate cycles that appear typically for
planar discontinuous vector field, see [24, 31, 42]. There exist lots of different typical
degenerate cycle and we focus on the particular case where the cycle contains a saddle-
regular point. Also, this type of cycle is a particular class of hyperbolic polycycles, i.e.,
cycles composed by finitely many hyperbolic singular points and regular orbits, it is an
extension of the same concept existent for smooth vector fields. Therefore, one natural
question arrives by questioning if, or under which conditions, the Dulac’s problem can
be extended to discontinuous vector fields. This work is composed by two parts: the
first one concerns the Dulac’s problem in the discontinuous context and, in the second
one, it is performed a study of the bifurcation diagrams of a degenerate cycle through a
saddle-regular point.

Setting Problems and Main Goals

I. Dulac’s Problem
As seen above, Dulac’s problem was originally proposed for smooth vector fields. It

has arisen from a mistake made for Dulac by trying to prove the finiteness part of the
Hilbert’s sixteenth problem. In this context, polycycles admit hyperbolic and elementary
singularities. A next step in this direction is to replace analytic by piecewise-analytic
vector fields. In this direction, we propose a version of this problem for discontinuous
vector fields considering polycycles with hyperbolic singularities.

Consider a planar discontinuous vector field 𝑍 = (𝑋, 𝑌 ) where 𝑋 and 𝑌 are analytic
vector fields in R2 and assume 𝑍 admits a hyperbolic polycycle Γ, Definition 2.1. The
question we want to answer is

- Can a hyperbolic polycycle Γ of a piecewise analytic vector field have limit cycles
accumulating onto it?

In other words, we want to know if the scenario outlined in Figure 1 is realizable for a
piecewise analytic vector field. If the polycycle is hyperbolic, we prove that the answer for
this question is no. Moreover, we show an example of class a 𝐶𝑘 vector field, 1 < 𝑘 < ∞,
having a limit cycle that admits two sequences of limit cycles accumulating onto it.

If a polycycle Γ does not intersect the switching manifold, then the problem can be
reduced to the smooth one. Thus, we also suppose Γ ∩ Σ ̸= ∅. In order to answer this
question we follow the same steps for the smooth case in [35]. Our objective is to give an
extension for discontinuous vector fields of all concepts and results existent for hyperbolic
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well as proposals of improvements and completeness of the results obtained in this work.
Appendix A is a one page proof of a specific Cauchy’s inequality, used in Chapter 2, that
is not so obvious. In order to simplify the exposition, since it is just a technical tool, it
was not included in that chapter.

In what follows, we summarize the main results obtained in this thesis:

• Transition maps at saddle points, with invariant manifolds transversal in Σ, are
quasi-regular homeomorphisms: Theorem 2.5 in Chapter 2.

• Transition maps at fold points are quasi-regular homeomorphisms and quasi-analytic
maps: Theorems 2.6 and 2.7 in Chapter 2.

• Description of the bifurcation diagrams of degenerate cycles through fold-regular
points: Theorem 3.1 in Chapter 3.

• Description of the bifurcation diagrams of degenerate cycle through saddle-regular
points, in Chapter 4,

⊗ Cases 𝐷𝑆𝐶11 and 𝐷𝑆𝐶12: Theorems A, B, and C;

⊗ Cases 𝐷𝑆𝐶21 and 𝐷𝑆𝐶22: Theorems D and E;

⊗ Cases 𝐷𝑆𝐶31 and 𝐷𝑆𝐶32: Theorems F, G, and H.

• Study of application models realizing degenerate cycles through saddle-regular points
in Chapter 5.



Chapter 1

Preliminaries

In this chapter, some basic concepts, results, and tools necessary to the development
of this thesis are presented. The main objective is to fix the notation and the definitions
that will be used through this thesis. We assume that the most part of the concepts
are already known by the reader, so the exposition is short and direct. Most part of the
results are given without proof, but references where they can be found are included.

Firstly, some facts on smooth vector fields in manifolds without boundary are estab-
lished. After that, some concepts are extended to manifolds with boundary. Finally, the
theory of discontinuous vector fields is explored.

1.1 Smooth Vector Fields

Let 𝑈 be an open subset of R2. A 𝒞𝑟 vector field in 𝑈 , 1 ⊘ 𝑟 ⊘ ∞ or 𝑟 = æ (𝑟 = æ
means the vector field is analytic), is a map 𝑋 : 𝑈 ⊃ R2 which is of class 𝒞𝑟 in 𝑈 . A
vector field 𝑋 is associated with an ordinary differential equation (ODE)

�̇� = 𝑋(𝑥). (1.1.1)

Analogously, an ODE, as the one in equation (1.1.1), is associated with a vector field. A
solution of the equation (1.1.1) is a map 𝜙 : 𝐼 ⊆ R ⊃ 𝑈 such that, for all 𝑡 ∈ 𝐼,

𝑑

𝑑𝑡
𝜙(𝑡) = 𝑋(𝜙(𝑡)).

This solution is called trajectory (or integral curve) of the vector field 𝑋 or even of
the ODE (1.1.1). The association of the vector field 𝑋 with the ODE (1.1.1) can be
geometrically interpreted as following: 𝜙 : 𝐼 ⊃ 𝑈 is a trajectory of 𝑋 if and only if the
tangent vector 𝑑

𝑑𝑡
𝜙(𝑡) coincides with 𝑋 at 𝜙(𝑡), for all 𝑡 ∈ 𝐼, see Figure 1.1. For this kind

of differential equation there are plenty of basic results, see [3], [17], [30], [36], and [37]
among others.

Definition 1.1. A point 𝑝 ∈ 𝑈 for which 𝑋(𝑝) = 0 is called a singular point of 𝑋,
otherwise it is called a regular point. Moreover, a singular point 𝑝 of 𝑋 is said to be
hyperbolic if all eigenvalues of 𝐷𝑋(𝑝) has nonzero real part.

Given 𝑝 ∈ 𝑈 , denote by 𝜙(𝑡, 𝑝) the trajectory of 𝑋 satisfying 𝜙(0, 𝑝) = 𝜙(0) = 𝑝,
defined in the interval 𝐼𝑝. If 𝑝 is considered as a variable we call 𝜙(𝑡, 𝑝) the flow of 𝑋.
The set Ò𝑝 = ¶𝜙(𝑡, 𝑝); 𝑡 ∈ 𝐼𝑝♢ is called orbit of 𝑋 through 𝑝, the orbits are orientated
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if there exists a homeomorphism (resp. 𝒞𝑘⊗diffeomorphism) ℎ : 𝑈1 ⊃ 𝑈2 such that
ℎ(𝜙𝑋(𝑡, 𝑝)) = 𝜙𝑌 (𝑡, ℎ(𝑝)).

Denote by ä𝑟 the set of all 𝒞𝑟 vector fields defined in R2 endowed with the 𝒞𝑟⊗topology.
A vector field 𝑋 ∈ ä𝑟 is structurally stable in ä𝑟 if there exists a neighborhood 𝑉 , of 𝑋
in ä𝑟, such that all 𝑌 ∈ 𝑉 is topologically equivalent to 𝑋.

Definition 1.4. Let 𝜙(𝑡, 𝑝) : R ⊃ R2 be the trajectory of 𝑋 through 𝑝. The set æ(𝑝) =
¶𝑞 ∈ R2; ∃ (𝑡𝑛) with 𝑡𝑛 ⊃ +∞ and 𝜙(𝑡𝑛, 𝑞) ⊃ 𝑝, when 𝑛 ⊃ ∞♢ is called the æ⊗limit
set of 𝑝. Analogously, the set Ð(𝑝) = ¶𝑞 ∈ R2; ∃ (𝑡𝑛) with 𝑡𝑛 ⊃ ⊗∞ and 𝜙(𝑡𝑛, 𝑞) ⊃
𝑝, when 𝑛 ⊃ ∞♢ is called the Ð⊗limit set of 𝑝. The æ⊗limit set (resp. the Ð⊗limit set)
of an orbit Ò is the set æ(𝑝) (resp. Ð(𝑝)) for any 𝑝 ∈ Ò.

For 𝑋 ∈ ä𝑟 with singular point 𝑝 ∈ R2, the set 𝑊 𝑠(𝑝) (resp. 𝑊 𝑢(𝑝)) of all points in
R2 having 𝑝 as æ⊗limit (resp. Ð⊗limit) is called stable (resp. unstable) manifold of 𝑝.
Thus, 𝑊 𝑠(𝑝) and 𝑊 𝑢(𝑝) are invariant by the flow of 𝑋. Given Ñ > 0, let 𝐵Ñ(𝑝) denote
the open ball of R2 with center at 𝑝 and radius Ñ.

Definition 1.5. Consider 𝑋 ∈ ä𝑟 having 𝑝 as a singular point and let 𝜙(𝑡, 𝑞) be the flow
of 𝑋. The sets

𝑊 𝑠
Ñ(𝑝) = ¶𝑞 ∈ 𝐵Ñ(𝑝);𝜙(𝑡, 𝑞) ∈ 𝐵Ñ(𝑝),∀𝑡 ⊙ 0 and 𝜙(𝑡, 𝑞) ⊃ 𝑝 as 𝑡 ⊃ +∞♢

𝑊 𝑢
Ñ (𝑝) = ¶𝑞 ∈ 𝐵Ñ(𝑝);𝜙(𝑡, 𝑞) ∈ 𝐵Ñ(𝑝),∀𝑡 ⊘ 0 and 𝜙(𝑡, 𝑞) ⊃ 𝑝 as 𝑡 ⊃ ⊗∞♢,

are called stable and unstable local manifolds (of size Ñ) of 𝑋 at 𝑝.

Remark 1.1. Observe that, for Ñ > 0, 𝑊 𝑠(𝑝) =
⎷

𝑡⊘0
𝜙𝑡(𝑊 𝑠

Ñ(𝑝)) and 𝑊 𝑢(𝑝) =
⎷

𝑡⊙0
𝜙𝑡(𝑊 𝑢

Ñ (𝑝)),

where 𝜙𝑡(≤) = 𝜙(𝑡, ≤). For more details see [29, 30, 36].

For further references, if necessary, we use 𝑊 𝑗(𝑝) = 𝑊 𝑗(𝑝,𝑋), 𝑗 = 𝑠, 𝑢, to specify
that we are considering the stable or unstable manifold at 𝑝 related to the vector field 𝑋.

1.1.1 Normal Form at a Hyperbolic Saddle Point

Consider the vector field 𝑋 ∈ ä∞ and suppose that 𝑋 has a hyperbolic saddle 𝑠 ∈ R2,
i.e., 𝑠 is a hyperbolic singular point of 𝑋 and det(𝐷𝑋(𝑠)) < 0. The main interest here is
to study 𝑋 in a neighborhood of 𝑠 so, without loss of generality, we suppose 𝑠 = (0, 0) and
𝑋 is defined in a neighborhood of 𝑠, 𝒱0 ⊆ R2. Due to the hyperbolicity we also assume 𝑠
is the unique singular point of 𝑋 in 𝒱0.

Assume the local unstable and stable manifolds of 𝑋 at 𝑠 are given by 𝑊 𝑢 = 0𝑥 ∩ 𝒱0

and 𝑊 𝑠 = 0𝑦 ∩ 𝒱0 (see [29], pages 79 ⊗ 81). Let Ú1 and Ú2 be the eigenvalues of 𝐷𝑋(𝑠)

with Ú2 < 0 < Ú1 and let 𝑟 = ⊗Ú2

Ú1

be the ratio of hyperbolicity of 𝑋 at 𝑠.

Notice that one can assume Ú1 = 1 so Ú2 = ⊗𝑟, thus the 1⊗jet (or the linear part) of
𝑋, at 𝑠, is equal to

𝑗1𝑋(0) = 𝑥
𝜕

𝜕𝑥
⊗ 𝑟𝑦

𝜕

𝜕𝑦
. (1.1.2)

In fact, the hyperbolicity of 𝑠 implies that, by means of a linear change of coordinates,
the linear part of 𝑋 at 𝑠 becomes diagonal. After that it is enough to consider the change
of coordinates (𝑥, 𝑦) ↦⊃ (𝑥/Ú1, 𝑦). Moreover, since Ú1 > 0, both change of coordinates can
be taken as orientation preserving diffeomorphisms.

For hyperbolic singular points we give an important result which is proved by Bonck-
aert in [7].
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Proposition 1.1. Let 𝑋 be a germ of a vector field with the conventions above. There
exists a function 𝐾 : N ⊃ N, with 𝐾(𝑘) ⊃ ∞ as 𝑘 ⊃ ∞, and such that, if �̄� is any
germ of an analytic vector field, at 𝑠, with the property

𝑗𝐾(𝑘)(�̄� ⊗𝑋)(0) = 0, (1.1.3)

then the two germs 𝑋 and �̄� are 𝐶𝑘⊗conjugate.

This result allows us to replace 𝑋 by a polynomial vector field up to 𝐶𝑘⊗conjugacy.
Parallel to this result, we have the Dulac-Poincaré normal form theorem, see [34, 35],
which proof can be easily extended from the prove done in [34] for the case 𝑝 = 𝑞 = 1.
This proof is really extensive, so we will just give a sketch of it, pointing the main parts.
See [10] for an introductory theory of normal forms.

Theorem 1.1. Let 𝑋 be a 𝒞∞ vector field having a hyperbolic saddle at 𝑠 = 0 as defined
above, with hyperbolicity ratio 𝑟.

1. Suppose that 𝑟 /∈ Q. Then, for any 𝑁 ∈ N,

𝑗𝑁+1𝑋(𝑠) ≍ 𝑥
𝜕

𝜕𝑥
⊗ 𝑟𝑦

𝜕

𝜕𝑦
.

2. Suppose that 𝑟 = 𝑝
𝑞

∈ Q, with 𝑝 and 𝑞 without common factors. Then, for any
𝑁 ∈ N,

𝑗(𝑝+𝑞)𝑁+1𝑋(𝑠) ≍ 𝑥
𝜕

𝜕𝑥
+

(︃
⊗𝑟 +

1
𝑞

𝑁∑︁

𝑖=1

Ð𝑖+1 (𝑥𝑝𝑦𝑞)𝑖

⎜
𝑦
𝜕

𝜕𝑦
,

with Ð𝑖 ∈ R, 𝑖 ∈ R. Where the sign ≍ means equivalence of jets.

Proof. As seen above, there exists a 𝐶∞⊗conjugation that brings

𝑗1𝑋(0) ≍ 𝑥
𝜕

𝜕𝑥
⊗ 𝑟𝑦

𝜕

𝜕𝑦
.

If 𝑟 /∈ Q then, there is no resonance and the result follows from the Poincaré Linearization
Theorem, see [10].

If 𝑟 = 𝑝
𝑞

∈ Q, all resonance relations Ú𝑖 ⊗
2∑︀

𝑘=1
𝑛𝑘Ú𝑘 = 0, 𝑖 = 1, 2 and 𝑛𝑘 ∈ N, are

generated by the unique relation 𝑝Ú1 + 𝑞Ú2 = 0. Now, the prove is completed by using
induction on 𝑁 . Suppose that we have found Ð2, Ð3, . . . , Ð𝑁 ∈ R such that

𝑗(𝑝+𝑞)𝑁+1𝑋(0) ≍ 𝑥
𝜕

𝜕𝑥
+

(︃
⊗𝑟 +

1
𝑞

𝑁∑︁

𝑖=1

Ð𝑖+1 (𝑥𝑝𝑦𝑞)𝑖

⎜
𝑦
𝜕

𝜕𝑦
= 𝑋𝑁 . (1.1.4)

So, we have to prove that the equivalence for 𝑗(𝑝+𝑞)(𝑁+1)+1𝑋(0). Notice that

𝑗(𝑝+𝑞)(𝑁+1)+1𝑋(0) = 𝑗(𝑝+𝑞)𝑁+1𝑋(0) +𝑋(𝑝+𝑞)𝑁+2 + ≤ ≤ ≤ +𝑋(𝑝+𝑞)𝑁+𝑠+1 + ≤ ≤ ≤ +𝑋(𝑝+𝑞)(𝑁+1)+1,

where 𝑋(𝑝+𝑞)𝑁+𝑠+1 ∈ 𝐻
(𝑝+𝑞)𝑁+𝑠+1
2 for all 1 ⊘ 𝑠 ⊘ 𝑝 + 𝑞 (𝐻𝑘

2 is the space of homogeneous
polynomials of order 𝑘 in two variables). Then,

𝑗(𝑝+𝑞)(𝑁+1)+1𝑋(0) ≍ 𝑋𝑁 +
𝑝+𝑞∑︁

𝑠=1

𝑌(𝑝+𝑞)𝑁+𝑠+1,
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where 𝑌(𝑝+𝑞)𝑁+𝑠+1 ∈ 𝐻
(𝑝+𝑞)𝑁+𝑠+1
2 for 1 ⊘ 𝑠 ⊘ 𝑝+ 𝑞.

In order reach our objective, we prove the equivalence for 𝑗(𝑝+𝑞)𝑁+1+𝑖𝑋(0), for 𝑖 =
1, . . . , 𝑝+ 𝑞. The Lie bracket in 𝐻𝑘

2 , defined as

ℒ𝑘 : 𝐻𝑘
2 ⊃ 𝐻𝑘

2

Ý(𝑥, 𝑦) ↦⊃ 𝐷Ý(𝑥, 𝑦)(𝑋1) ⊗𝑋1(Ý(𝑥, 𝑦)),

is the key to finish the proof. Normal form theory and the remark done above on the
resonance relations provide a basis of 𝐻(𝑝+𝑞)𝑁+𝑠+1

2 ,

ℬ𝑠 =

{︃(︃
𝑥Ð𝑦Ñ

0

⎜
,

(︃
0

𝑥Ð𝑦Ñ

⎜
;Ð+ Ñ = (𝑝+ 𝑞)𝑁 + 𝑠+ 1

⨀︀
,

for which ℒ(𝑝+𝑞)𝑁+𝑠+1 is diagonal, 1 ⊘ 𝑠 ⊘ 𝑝 + 𝑞 ⊗ 1, and it has no zero eigenvalues. By
means of an inductive process, successive conjugations bring

𝑗(𝑝+𝑞)(𝑁+1)+1𝑋(0) ≍ 𝑋𝑁 + 𝑌(𝑝+𝑞)(𝑁+1)+1,

with 𝑌(𝑝+𝑞)(𝑁+1)+1 ∈ 𝐻
(𝑝+𝑞)(𝑁+1)+1
2 . Finally, by using the resonance relation we obtain

𝒦 = Ker(ℒ(𝑝+𝑞)(𝑁+1)+1) =

⨀︁{︃
(𝑥𝑝𝑦𝑞)𝑁+1𝑥

𝜕

𝜕𝑥
, (𝑥𝑝𝑦𝑞)𝑁+1𝑦

𝜕

𝜕𝑦

⨀︀⨁︀
and

ℐ = Im(ℒ(𝑝+𝑞)(𝑁+1)+1) =

⨀︁{︃(︃
𝑥Ð𝑦Ñ

0

⎜
,

(︃
0

𝑥Ò𝑦Ó

⎜
;
α + β = (p + q)(N + 1) + 1 = γ + δ,

β ̸= q(N + 1), and γ ̸= p(N + 1)

⨀︀⨁︀
.

Thus, ℒ(𝑝+𝑞)(𝑁+1)+1♣ℐ : ℐ ⊃ ℐ is a linear map that is diagonal with relation to the basis
of ℐ given above and no zero eigenvalues. It implies that

𝑗(𝑝+𝑞)(𝑁+1)+1𝑋(0) ≍ 𝑋𝑁 +𝐵,

where 𝐵 ∈ 𝒦. From this, some algebraic calculation provides Ð𝑁+2 such that

𝑗(𝑝+𝑞)(𝑁+1)+1𝑋(0) ≍ 𝑋𝑁 + Ð𝑁+2(𝑥𝑝𝑦𝑞)𝑁+1𝑦 = 𝑥
𝜕

𝜕𝑥
+

(︃
⊗𝑟 +

1
𝑞

𝑁+1∑︁

𝑖=1

Ð𝑖+1(𝑥𝑝𝑦𝑞)𝑖𝑦

⎜
.

Therefore, by induction we have that equation 1.1.4 holds for any 𝑁 ∈ N. It completes
the proof.

Now, by combining Proposition 1.1 and Theorem 1.1 we get the following useful result.

Theorem 1.2. Let 𝑋 be a 𝐶∞ vector field as above. Then, there exists a function
𝑁 : N ⊃ N such that, in some neighborhood of the saddle point 𝑠, 𝑋 is 𝐶𝑘⊗equivalent to
the polynomial vector field

𝑥
𝜕

𝜕𝑥
+

∏︀
∐︁⊗𝑟 +

1
𝑞

𝑁(𝑘)∑︁

𝑖=1

Ð𝑖+1(𝑥𝑝𝑦𝑞)𝑖

∫︀
⎠ 𝑦

𝜕

𝜕𝑦
, (1.1.5)

if 𝑟 = 𝑝
𝑞

∈ Q. If 𝑟 /∈ Q, 𝑋 is 𝐶𝑘⊗equivalent to the linear vector field

𝑥
𝜕

𝜕𝑥
⊗ 𝑟𝑦

𝜕

𝜕𝑦
. (1.1.6)
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Proof. Define a sequence 𝑁(𝑘) satisfying (𝑝 + 𝑞)𝑁(𝑘) + 1 > 𝐾(𝑘) if 𝑟 = 𝑝
𝑞

∈ Q and
𝑁(𝑘) + 1 > 𝐾(𝑘) if 𝑟 /∈ Q, where 𝐾(𝑘) is given in Proposition 1.1. Now, to obtain the
result, it is enough to apply Proposition 1.1 and Theorem 1.1.

Remark 1.2. Under some simple adaptations, Proposition 1.1 and Theorem 1.1 still hold
for 𝐶∞⊗families of vector fields. So, Theorem 1.2 also holds for 𝐶∞⊗families of vector
fields. Since we are not interested in families, we have presented a simpler versions of
these results. A more general exposition was given by Roussarie in Chapter 5 of [35].

1.2 Vector Fields in Manifolds with Boundary

Let 𝑀 be an embedded submanifold of R2 with boundary. Two vector fields, 𝑋 and
𝑌 , in R2 are germ equivalent in 𝑀 if there exists a neighborhood of 𝑀 in R2 where 𝑋
and 𝑌 coincide.

Definition 1.6. A vector field 𝑋 in 𝑀 is a class of vector fields in R2 that are germ
equivalent in 𝑀 . 𝑋 is said to be of class 𝒞𝑟 if it has a representative of class 𝒞𝑟 in R2.

Let 𝑋 be a vector field in 𝑀 and let �̃� be a representative of 𝑋 with flow 𝜙�̃� , then
the flow of 𝑋 is the restriction to 𝑀 of the flow of �̃�, i.e., 𝜙𝑋 = 𝜙�̃� ♣𝑀 . It is clear that
this definition does not depends on the choice of the representative of 𝑋.

Definition 1.7. Two vector fields, 𝑋 and 𝑌 , in 𝑀 are topologically equivalent if there
exist a homeomorphism ℎ : 𝑀 ⊃ 𝑀 that sends trajectories of 𝑋 in trajectories of 𝑌 ,
preserving their orientation.

Denote by ä𝑟(𝑀) the set of all vector fields of class 𝒞𝑟 in 𝑀 . A vector field 𝑋 ∈ ä𝑟(𝑀)
is structurally stable in ä𝑟(𝑀) if there exists a neighborhood 𝑉 of 𝑋 in ä𝑟(𝑀) such that
any 𝑌 ∈ 𝑉 is topologically equivalent to 𝑋.

Assume 𝜕𝑀 = ℎ⊗1(0) where ℎ : R2 ⊃ R is a smooth map having 0 as a regular value
and Int(𝑀) = ¶𝑝 ∈ R2;ℎ(𝑝) > 0♢.

Definition 1.8. A vector field 𝑋 in 𝑀 has a fold singularity (or a quadratic tangency) at
𝑝 ∈ 𝜕𝑀 if 𝑋ℎ(𝑝) = 0 and 𝑋2ℎ(𝑝) ̸= 0. Moreover, a fold 𝑝 of 𝑋 is visible if 𝑋2ℎ(𝑝) > 0
and invisible if 𝑋2ℎ(𝑝) < 0, see Figure 1.3.

Where 𝑋ℎ(𝑝) = ⟨𝑋,∇ℎ⟩(𝑝), is the Lie derivative of ℎ with respect to 𝑋 at 𝑝, and
𝑋𝑗ℎ(𝑝) = ⟨𝑋,∇𝑋𝑗⊗1ℎ⟩(𝑝) for 𝑗 ⊙ 2.

Suppose 𝑝 ∈ 𝜕𝑀 is a fold point of 𝑋, without loss of generality assume that 𝑝 is at
the origin. In [40] it is proved that, by means of a 𝐶∞⊗change of coordinates, near the
fold point 𝑝 = 0 ∈ 𝜕𝑀 , 𝑋 is given by 𝑋(𝑥, 𝑦) = (𝑎, 𝑏𝑥)𝑇 , with 𝑎, 𝑏 ̸= 0.

1.2.1 Transition Map at a Fold Point

Consider 𝑋 ∈ ä𝑟(𝑀), 𝑟 ⊙ 2, having a visible fold point at 𝑝 ∈ Σ = 𝜕𝑀 . We want
to study 𝑋 in a neighborhood of 𝑝, so, without loss of generality, assume 𝑝 = (0, 0) and
ℎ(𝑥, 𝑦) = 𝑦. For 𝜀 > 0 sufficiently small such that, for some Ó0 > 0, á = ¶(𝑥, 𝜀) ∈ R2; 0 ⊘
𝑥 < Ó0♢ is contained in the neighborhood of 𝑝 where the local assumption above holds
and á is a transversal section for the flow of 𝑋 up to 𝑥 = 0. Our objective is to calculate
the transition map, from Σ to á , given by the flow of 𝑋. In order to do that, assume
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we obtain

𝑑

𝑑𝑥
𝜌(0) =

𝜕

𝜕𝑥
[𝜙1(𝑡(𝑥), 𝑥)] ♣𝑥=0= 𝑋01(0)

𝑑

𝑑𝑥
𝑡(0) +

𝜕

𝜕𝑥
𝜙1(𝑡(0), 0).

and
𝑑

𝑑𝑥
𝑡(0) = ⊗

𝜕
𝜕𝑥
𝜙2(𝑡(0), 0)
𝑋01(0)

.

Observe that æ(𝑡) = 𝜕
𝜕𝑥
𝜙�̃�(𝑡, 0) and ǣ(𝑡) = 1

𝑋01(0)
𝑋(𝜙�̃�(𝑡, 0)) are both solutions of the

Cauchy’s problem {︃
æ̇ = D𝑋0(𝜙�̃�(𝑡, 0))æ
æ(0) = (1, 0)𝑇 .

By means of the Theorem of Existence and Uniqueness we obtain, for 𝑖 = 1, 2, 𝜕
𝜕𝑥
𝜙𝑖(𝑡(0), 0)

= 𝑋0i(0)
𝑋01(0)

. Therefore, 𝑑
𝑑𝑥
𝜌(0) = 0. In [33] it is proved that

𝑑2

𝑑𝑥2
𝜌(0) > 0, which follows from

theorems on uniqueness of solutions and it concludes the proof.

1.3 Discontinuous Vector Fields

In this work we concern about planar discontinuous vector fields defined in two zones,
for this reason we just present definitions for this type of vector fields. More general
definitions and concepts can be found in [11, 14, 15] among others.

Consider two connected, open, and disjoint sets, Σ+, Σ⊗ ⊆ R2, such that the common
frontier of these sets is a codimension 1 submanifold Σ ⊆ R2 and Σ+ ∪ Σ⊗ ∪ Σ = R2.
Let 𝑋 and 𝑌 be vector fields in ä𝑟 restricted to Σ+ and Σ⊗, respectively. Under these
conditions, a discontinuous vector field is defined as following

𝑍(𝑝) =

{︃
𝑋(𝑝), 𝑝 ∈ Σ+,
𝑌 (𝑝), 𝑝 ∈ Σ⊗,

(1.3.1)

Σ is called switching manifold or even discontinuity manifold.
Denote by Ω𝑟 the set of all discontinuous vector fields in R2 defined as above. For

each 𝑍 ∈ Ω𝑟 write 𝑍 = (𝑋, 𝑌 ) so, we can identify Ω𝑟 with ä𝑟 × ä𝑟. We consider this
set endowed with the product topology, where ä𝑟 is endowed with the 𝒞𝑟⊗topology. In
this context, the definition of trajectories of such a discontinuous vector field follows the
Filippov’s convention, see [14].

Throughout this work, we suppose Σ = ℎ⊗1(0) is an embedded submanifold of R2,
where ℎ : R ⊃ R is a smooth function for which 0 is a regular value. In addition, we
assume, without loss of generality, Σ+ = ¶𝑝 ∈ R2;ℎ(𝑝) > 0♢ and Σ⊗ = ¶𝑝 ∈ R2;ℎ(𝑝) < 0♢.
So, the definition in equation 1.3.1 becomes

𝑍(𝑝) =

{︃
𝑋(𝑝) if ℎ(𝑝) > 0,
𝑌 (𝑝) if ℎ(𝑝) < 0,

(1.3.2)

where 𝑝 ∈ R2, 𝑋, 𝑌 ∈ ä𝑟. Observe that we can think on 𝑋 and 𝑌 as being vector fields
defined in the manifolds with boundary Σ+ ∪ Σ and Σ⊗ ∪ Σ, respectively.

Having these assumptions established, on the switching manifold Σ the following re-
gions can be distinguished, depending on the directions of 𝑋 and 𝑌 ,

• the crossing (or sewing) region: Σ𝑐 = ¶𝑝 ∈ Σ; 𝑋ℎ≤𝑌 ℎ(𝑝) > 0♢, Figure 1.5⊗(𝑎)⊗(𝑏);
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For simplicity, we consider a trajectory of 𝑍 = (𝑋, 𝑌 ) through 𝑝 ∈ Σ𝑠 ∪ Σ𝑒 as being
multivalued, i.e., it can be any trajectory of 𝑋, 𝑌 or 𝑍𝑠 through 𝑝. More details can be
found in [39].

Those singular points of 𝑋 (resp. 𝑌 ) that lie on Σ+ (resp. Σ⊗) are called real singular
points. Conversely, those singular points of 𝑋 (resp. 𝑌 ) that lie on Σ⊗ (resp. Σ+) are
called virtual singular points and, although they are called “singular points” they are not
singularities of the discontinuous vector field 𝑍. Also, those singular points of 𝑋 or 𝑌
that lie on Σ are called boundary singular points. The singularities of 𝑍 = (𝑋, 𝑌 ) are
split in two classes

• distinguished singularities: real and boundary singular points, pseudo-equilibria or
singular tangency points;

• non-distinguished singularities: regular tangency points.

The points that are not singularities are called regular points.

Definition 1.10. A discontinuous vector field 𝑍 = (𝑋, 𝑌 ) has a fold singularity at 𝑝 ∈ Σ
if 𝑝 is a fold singularity for 𝑋 or 𝑌 seen as vector fields defined in the manifold with
boundary Σ+ ∪ Σ or Σ⊗ ∪ Σ, respectively. If 𝑝 is a fold for 𝑋 and a regular point for 𝑌
or vice-versa then 𝑝 is a fold-regular point for 𝑍. Moreover, if 𝑝 is a fold for both, 𝑋 and
𝑌 , then 𝑝 is a fold-fold point for 𝑍.

Observe that, from Definition 1.8, a fold point 𝑝 ∈ Σ is visible if it is a fold for 𝑋
(resp. 𝑌 ) and 𝑋2ℎ(𝑝) > 0 (resp. 𝑌 2ℎ(𝑝) < 0) and it is invisible provided it is a fold for
𝑋 (resp. 𝑌 ) and 𝑋2ℎ(𝑝) < 0 (resp. 𝑌 2ℎ(𝑝) > 0).

Definition 1.11. A discontinuous vector field 𝑍 has a saddle-regular point at 𝑝 ∈ Σ if 𝑝
is a saddle point for 𝑋 (resp. 𝑌 ) and 𝑌 (resp. 𝑋) is transversal to Σ at 𝑝.

Given a trajectory 𝜙𝑍(𝑡, 𝑞) ∈ Σ+∪Σ⊗ and 𝑝 ∈ Σ, 𝑝 is said to be a departing point (resp.
arriving point) of 𝜙𝑍(𝑡, 𝑞) if there exists 𝑡0 < 0 (resp. 𝑡0 > 0) such that lim𝑡⊃𝑡+

0
𝜙𝑋(𝑡, 𝑞) = 𝑝

(resp. lim𝑡⊃𝑡⊗

0
𝜙𝑍(𝑡, 𝑞) = 𝑝). With these definitions if 𝑝 ∈ Σ𝑐, then it is a departing point

(resp. arriving point) of 𝜙𝑋(𝑡, 𝑞) for any 𝑞 ∈ Ò+(𝑝) (resp. 𝑞 ∈ Ò⊗(𝑝)), where

Ò+(𝑝) = ¶𝜙𝑍(𝑡, 𝑝); 𝑡 ∈ 𝐼 ∩ ¶𝑡 ⊙ 0♢♢ and Ò⊗(𝑝) = ¶𝜙𝑍(𝑡, 𝑝); 𝑡 ∈ 𝐼 ∩ ¶𝑡 ⊘ 0♢♢,

are the positive and negative trajectories through 𝑝, respectively. Now, we are able to
give definitions of cycles, connections and separatrices.

Definition 1.12. Let 𝑍 = (𝑋, 𝑌 ) ∈ Ω𝑟 be a discontinuous vector field. A continuous
closed curve Γ is said to be a cycle of the vector field 𝑍 if it is composed by a finite union
of segments of regular orbits and singularities of 𝑍, Ò1, Ò2, . . . , Ò𝑛. For a cycle Γ there are
the following possibilities:

• Γ is a simple cycle, i.e, none of Ò𝑖’s are singular points and the set Ò𝑖 ∩ Σ is either
empty or composed only by points of Σ𝑐, ∀ 𝑖 = 1, . . . , 𝑛. If such a cycle is isolated
in the set of all simple cycles of 𝑍, then it is called limit cycle. See Figure 1.6(𝑎);

• Γ is a regular polycycle, i.e., for all 𝑖 = 1, . . . , 𝑛, the set Ò𝑖 ∩ Σ is empty and at least
one of Ò′

𝑖s is a singular point or, for some 𝑖 = 1, . . . , 𝑛, Ò𝑖 ∩ Σ ⊆ Σ𝑐 is nonempty.
See figures 1.6(𝑏) and 1.6(𝑐);
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Now, it is necessary to discuss about equivalences in Ω𝑟. For discontinuous vector
fields there are different notions of topological equivalence.

Definition 1.15. Consider two discontinuous vector fields 𝑍 and 𝑍 defined in open sets,
𝑈 and �̃� , of R2 with discontinuity curves Σ and Σ̃, respectively. Then,

• 𝑍 and 𝑍 are Σ⊗equivalent if there exists an orientation preserving homeomorphism
ℎ : 𝑈 ⊃ �̃� that sends Σ to Σ̃ and sends orbits of 𝑍 to orbits of 𝑍;

• 𝑍 and 𝑍 are topologically equivalent if there exists an orientation preserving home-
omorphism ℎ : 𝑈 ⊃ �̃� that sends orbits of 𝑍 to orbits of 𝑍.

Observe that Σ⊗equivalence implies topologically equivalence but the reverse is not
true, for an example illustrating that these definitions are not equivalent see [15].

Through this work we consider Σ⊗equivalences. Thus, a vector field 𝑍0 ∈ Ω𝑟 is
structurally stable if there exists a neighborhood 𝒱𝑍0

, of 𝑍0 in Ω𝑟, such that, any 𝑍 ∈ 𝒱𝑍0

is Σ⊗equivalent to 𝑍0.



Chapter 2

Dulac’s Problem

In this chapter we present a version of the Dulac’s problem for discontinuous vector
fields. The original problem due to Dulac concerns about vector fields that are analytic in
R2, piecewise analytic ones are not considered. The main difference between the discon-
tinuous and the continuous cases is the analysis of the transition map near the singularity.
We emphasize that the extension obtained here is not a particular case of the original
problem, there are some considerable differences in the structure of the first return maps.

It is worthwhile to emphasize the original Dulac’s problem is true for elementary singu-
lar points but here we just consider hyperbolic singularities. Moreover, as a generalization,
we show the result remains true if we change hyperbolic saddles by fold points, this kind
of cycle does not exist for smooth vector fields.

2.1 The Problem

Let 𝑍 = (𝑋, 𝑌 ) be a discontinuous vector field, where 𝑋 and 𝑌 are smooth enough
for our purposes. The first thing to do is to extend the concept of hyperbolic polycycle.

Definition 2.1. A continuous closed curve Γ is said to be a hyperbolic polycycle of the
vector field 𝑍 if it is composed by a finite union of segments of regular orbits of 𝑍,
Ò1, Ò2, . . . , Ò𝑛, and hyperbolic saddles, 𝑝1, 𝑝2, . . . , 𝑝𝑛, such that for each 1 ⊘ 𝑖 ⊘ 𝑛, the
æ, Ð⊗limit sets of Ò𝑖 are 𝑝𝑖 and 𝑝𝑖+1, respectively. Moreover,

• Ò𝑖 ∩ Σ ⊆ Σ𝑐, for all 𝑖 = 1, . . . , 𝑛;

• if 𝑝𝑖 ∈ Σ then 𝑝𝑖 ∈ Σ𝑐 and 𝑝𝑖 is a saddle-regular or saddle-saddle point of 𝑍 for
which the invariant manifolds of the saddle are transversal to Σ at this point;

• there exists a first return map defined in one of the two regions (bounded or un-
bounded) delimited by Γ.

Remark 2.1. If Γ ∩ Σ = ∅ then Γ is a hyperbolic polycycle for one of the smooth vector
fields 𝑋 or 𝑌 . In this case, the problem is reduced to the hyperbolic version of the classic
Dulac’s Problem
- A hyperbolic polycycle of an analytic vector field cannot have limit cycles accumulating
onto it.

Theorem 2.1 (Dulac’s Problem). A hyperbolic polycycle of a piecewise analytic vector
field 𝑍 ∈ Ωæ cannot have limit cycles accumulated onto it.
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Proof. We have seen that 𝒟 is a group with respect to the composition of maps. Moreover,
diffeomorphisms fixing the origin and transition maps near a hyperbolic saddle are quasi-
regular. Therefore, the result follows from the expression of 𝑃 given in equation 2.1.1.

Now, we proceed to show that 𝑃 being quasi-regular is enough to give an affirmative
answer for Theorem 2.1.

Lemma 2.1. Suppose that ̂︀𝑃 (𝑥) ̸⊕ 𝑥, then the Dulac series of 𝑃 (𝑥) ⊗ 𝑥 is non-zero.

Proof. By definition, it is possible to write ̂︀𝑃 (𝑥) =
∞∑︀

𝑖=1
𝑥Úi𝑃𝑖(ln 𝑥) with 0 < Ú1 < Ú2 < ≤ ≤ ≤

and Ú𝑛 ⊃ ∞ when 𝑛 ⊃ ∞. In order to write a Dulac series for 𝑃 ⊗ 𝐼𝑑, let 𝑖0 ⊙ 1 be the
smaller positive integer for which Ú𝑖0

⊙ 1. If Ú𝑖0
= 1, define Ú̄𝑖 = Ú𝑖 for all 𝑖 ⊙ 1, 𝑃𝑖 ⊕ 𝑃𝑖

for 𝑖 ̸= 𝑖0, and 𝑃𝑖0
(𝑡) = 𝑃𝑖0

(𝑡) ⊗ 1. If Ú𝑖0
> 1 then it follows from the definition of 𝑖0 that

Ú𝑖0⊗1 < 1 < Ú𝑖0
, in this case define

• Ú̄𝑖 = Ú𝑖, 𝑃𝑖 ⊕ 𝑃𝑖 for all 1 ⊘ 𝑖 ⊘ 𝑖0 ⊗ 1,

• Ú̄𝑖0
= 1, 𝑃𝑖0

⊕ ⊗1, and

• Ú̄𝑖 = Ú𝑖⊗1, 𝑃𝑖 ⊕ 𝑃𝑖⊗1 for all 𝑖 ⊙ 𝑖0.

Then, we have a Dulac series for 𝑃 ⊗ Id given by

𝑃 ⊗ Id(𝑥) =
∞∑︁

𝑖=1

𝑥Ú̄i𝑃𝑖(ln 𝑥),

in fact the asymptotic condition is trivially satisfied from the construction of this series.
Notice that this series is identically zero if and only if 𝑃𝑖 ⊕ 0 for all 𝑖 ⊙ 1. But, since
the Dulac series of the identity map coincides with its Taylor series, if the series above is
identically zero, from the construction above, ̂︀𝑃 (𝑥) ⊕ ̂︁Id(𝑥) ⊕ 𝑥. Hence, from hypothesis
̂︀𝑃 (𝑥) ̸⊕ 𝑥 we have 𝑃 ⊗ Id(𝑥) ̸⊕ 0.

Now, a result about the accumulation of limit cycles.

Proposition 2.2. If there exists a sequence of limit cycles accumulating onto the hyper-
bolic polycycle Γ, then ̂︀𝑃 (𝑥) ⊕ 𝑥.

Proof. Suppose by contradiction that ̂︀𝑃 (𝑥) ̸⊕ 𝑥 then, from Lemma 2.1 the Dulac series of

𝑃 (𝑥) ⊗ 𝑥 is non-zero. Thus, 𝑃 ⊗ Id(𝑥) = 𝑥Ú̄k𝑃𝑘(ln 𝑥) +
∞∑︀

𝑖=𝑘+1
𝑥Ú̄i𝑃𝑖(ln 𝑥), with 𝑃𝑘(𝑡) ̸⊕ 0.

Then, there exists 𝑥0 > 0 such that 𝑥Ú̄k𝑃𝑘(ln 𝑥) ̸= 0 for all 𝑥 ∈ (0, 𝑥0) and, consequently,
𝑃 ⊗ Id(𝑥) ̸= 0 for all 𝑥 ∈ (0, 𝑥0). Since 𝑃 (𝑥) ⊗ 𝑥 is asymptotic to its Dulac series, 𝑥0 can
be chosen such that 𝑃 (𝑥) ⊗ 𝑥 has no roots in (0, 𝑥0). In fact, otherwise it should exists a
sequence 𝑥𝑛 ⊃ 0 such that 𝑃 (𝑥𝑛) ⊗ 𝑥𝑛 ⊕ 0 and

⧹︃⧹︃⧹︃𝑥Ú̄k
𝑛 𝑃𝑘(ln 𝑥𝑛)

⧹︃⧹︃⧹︃ = 𝑂(𝑥Ú̄k
𝑛 ), consequently ♣𝑃𝑘(ln 𝑥𝑛)♣= 𝑂(𝑥Ú̄k

𝑛 )

𝑥Ú̄k
𝑛

.

Now, 𝑃𝑘 is non-zero so lim
𝑛⊃∞

𝑃𝑘(ln 𝑥𝑛) ̸= 0 (because ln 𝑥 ⊃ ⊗∞ when 𝑥 ⊃ 0+ and 𝑃𝑘

is a polynomial) while the factor on the right-hand side of the last equality tends to 0
when 𝑛 ⊃ ∞, so it is a contradiction. Thus, 𝑃 (𝑥) ⊗ 𝑥 = 0 has no roots in (0, 𝑥0) and,
consequently, Γ is not accumulated by limit cycles contradicting the initial hypothesis.
Therefore, ̂︀𝑃 (𝑥) ⊕ 𝑥.
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With these results, to prove Theorem 2.1, it is enough to show that if ̂︀𝑃 ⊕ 𝑥 then
𝑃 ⊕ 𝑥. In order to do that we need more technical results.

Definition 2.4. A germ of a map 𝑓 : [0, Ó) ⊃ R is quasi-analytic if

1. 𝑓 is quasi-regular;

2. the map 𝑥 ⊃ 𝑓◇exp(⊗𝑥) has a bounded holomorphic extension 𝐹 (𝑧) in some domain
∆𝑏 of C, defined by ∆𝑏 = ¶𝑧 = 𝑢 + 𝑖𝑣; 𝑢 > 𝑏(1 + 𝑣2)1/4♢ where 𝑏 is a positive real
number.

For quasi-analytic functions the wanted result holds. The following result is proved in
Chapter 3 of [35] (pages 45 ⊗ 49).

Theorem 2.2. If a quasi-analytic function 𝑓 is such that ̂︀𝑓 ⊕ 0, then 𝑓 ⊕ 0. Moreover,
the transition map, 𝐷, at a hyperbolic saddle singularity is quasi-analytic. Consequently,
the first return map 𝑃 of a hyperbolic polycycle is quasi-analytic.

Now, we are ready to prove the Theorem 2.1.

Theorem 2.3. If the transition maps at hyperbolic saddle points are quasi-regular then a
hyperbolic polycycle of 𝑍 ∈ Ωæ cannot have limit cycles accumulating onto it.

Proof. The proof follows by contradiction. From Theorem 2.2 we know that the first re-
turn map 𝑃 is quasi-analytic. Proposition 2.2 gives that, if Γ has limit cycles accumulating
onto it, then ̂︀𝑃 (𝑥) ⊕ 𝑥 and, again from Theorem 2.2, we obtain 𝑃 (𝑥) ⊕ 𝑥. Therefore, all
trajectories of 𝑍 are closed in the half-open neighborhood where 𝑃 is defined. It contra-
dicts the existence of limit cycles (which are isolated closed orbits) accumulating onto Γ.
Hence, Γ cannot have limit cycles accumulating onto it.

Remark 2.2. It follows from Theorem 2.3 that, we just need to prove that transition
maps at hyperbolic saddles are quasi-regular, to prove the Theorem 2.1. Moreover, the
only difference from the classical case for smooth vector fields is the construction of the
first return map.

Now, we proceed to prove the quasi-regularity of transition maps at hyperbolic saddle
points, what first requires technical results. The case 𝐶1, when the saddle point does not
belong to Σ or it belongs to Σ and Σ do not cross the region where the first return map is
defined, is done in Chapter 5 of [35]. Now, we will adapt that proof to the case 𝐶3 where
the saddle is in Σ, Σ cross the region where the first return map is defined and we have
a saddle for the vector field defined in Σ⊗. Having proved thi result, the case 𝐶2 follows
directly from the fact that the set 𝒟 of quasi-regular maps is a group with composition.

2.2 Transition Maps

Without loss of generality we suppose the saddle point is at the origin of the system
of coordinates (𝑥, 𝑦) and consider 𝑉0 be the neighborhood of the saddle point where the
normal form given in Chapter 1 holds. Let 𝜀 > 0 be a real number small enough such
that the transversal sections à𝜀, where the transition map is defined, and á𝜀, which is
the counter-domain of the transition map, are contained in 𝑉0. Denote by 𝜙(𝑡, 𝑥, 𝑦) =
(𝜙1(𝑡, 𝑥, 𝑦), 𝜙2(𝑡, 𝑥, 𝑦)) the flow of the vector field 𝑋 defined in Σ⊗, then, from Theorem
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and we obtain 𝑡 = 𝑡1(𝑥) = ⊗ ln 𝑥. In this case the transition map is𝐷1(𝑥) = 𝜙2(𝑡1(𝑥), 𝑥, 1).
𝐶2⊗ We have à2 = à1 and á2 = ¶(𝑥, 𝑥) ∈ R2;𝑥 ∈ (⊗Ó, Ó)♢ ⊆ Σ, for some Ó > 0. Let

𝑡2(𝑥) be transition time from à2 to á2, then 𝐷2(𝑥) = 𝜙1(𝑡2(𝑥), 𝑥, 1) = 𝜙2(𝑡2(𝑥), 𝑥, 1). We
will not study this case now. We will show that 𝐷1 and 𝐷3 (to be defined below) are
quasi-regular, so, as we have seen above, it is enough to obtain the quasi-regularity of 𝐷2.

𝐶3⊗ We have à3 = á2 and á3 = ¶(1, 𝑦) ∈ R2; ♣𝑦♣< Ó3♢ ⊆ Σ, for some Ó3 > 0. So, if
𝑡3(𝑥) is the transition time from à3 to á3, then

𝜙1(𝑡3(𝑥), 𝑥, 𝑥) = 1,

so 𝑡3(𝑥) = ⊗ ln 𝑥 and 𝐷3(𝑥) = 𝜙2(𝑡3(𝑥), 𝑥, 𝑥).

2.2.1 Quasi-Regularity of Transition Maps

The normal form considered has two different expressions provided 𝑟 ∈ Q or 𝑟 /∈ Q.
For this reason we have two different situations to explore. Moreover, from Remark 2.3
we have 𝐷1(𝑥) = 𝐷3 ◇ 𝐷2(𝑥). From the fact that 𝒟 is a group with the composition of
maps it is enough to prove that two of them are quasi-regular, and we are going to prove
that 𝐷1, 𝐷3 ∈ 𝒟.

I) Case: 𝑟 /∈ Q

If 𝑟 /∈ Q then 𝜙2(𝑡, 𝑥, 𝑦) = 𝑒⊗𝑟𝑡𝑦. We obtain 𝐷1(𝑥) = 𝑥𝑟 which is an analytic map that
coincides with its Dulac series

�̂�1(𝑥) =
∞∑︁

𝑖=1

𝑥Ú1
i𝑃 1

𝑖 (ln 𝑥),

where Ú1
1 < Ú1

2 < ≤ ≤ ≤ is an increasing sequence tending to infinity with Ú1
1 = 𝑟 > 0,

𝑃 1
1 (𝑢) ⊕ 1 and 𝑃 1

𝑖 (𝑢) ⊕ 0 for all 𝑖 > 1. Hence, 𝐷1(𝑥) is a quasi-regular homeomorphism.
Also, 𝐷3(𝑥) = 𝑒⊗𝑟𝑡3(𝑥)𝑥 = 𝑥1+𝑟 which is an analytic map that coincides with the Dulac

series

�̂�3(𝑥) =
∞∑︁

𝑖=1

𝑥Ú3
i𝑃 3

𝑖 (ln 𝑥),

where Ú3
1 < Ú3

2 < ≤ ≤ ≤ is an increasing sequence tending to infinity with Ú3
1 = 1 + 𝑟,

𝑃 3
1 (𝑢) ⊕ 1 and 𝑃 3

𝑖 (𝑢) ⊕ 0 for all 𝑖 > 1. Hence, 𝐷3(𝑥) is a quasi-regular homeomorphism.
Hence, 𝐷1, 𝐷2 and 𝐷3 are quasi-regular homeomorphisms.

II) Case: 𝑟 =
𝑝

𝑞
∈ Q, 𝑝 and 𝑞 without common factors

If 𝑟 ∈ Q then we cannot find the flow of 𝑋 explicitly and it makes a huge difference in
the analysis. It is not possible to obtain an algebraically expression for 𝐷𝑖(𝑥) however it is
possible to prove that 𝐷𝑖 is a quasi-regular homeomorphism for 𝑖 = 1, 3 and, consequently,
for 𝑖 = 2.

When 𝑟 = 𝑝
𝑞

∈ Q we have one characterization of 𝑋, up to 𝐶𝑘⊗conjugacy, given in
the Theorem 1.1.

More generally, we can consider the analytic vector field

𝑋 = 𝑥
𝜕

𝜕𝑥
+

1
𝑞

(︃
⊗𝑝+

∞∑︁

𝑖=0

Ð𝑖+1(𝑥𝑝𝑦𝑞)𝑖

⎜
𝑦
𝜕

𝜕𝑦
, (2.2.1)
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where 𝑃Ð(𝑧) =
∞∑︀

𝑖=1
Ð𝑖𝑧

𝑖 is an analytic function of 𝑧 ∈ R, and Ð = (Ð1, Ð2, . . .) ∈ 𝒜, where

𝒜 is the set
𝒜 =

⎭
Ð = (Ð1, Ð2, . . .); ♣Ð1♣<

1
2
, ♣Ð𝑖♣< 𝑀 for 𝑖 ⊙ 2

}︂
(2.2.2)

and 𝑀 > 0 is a fixed constant. Now, we need to study the properties of 𝐷𝑖(𝑥) at 𝑥 = 0
for 𝑖 = 1, 3.

Consider the singular change of coordinates 𝑥 = 𝑥, 𝑢 = 𝑥𝑝𝑦𝑞, so the differential
equation associated with 𝑋 becomes

∏︁
⨄︁
⋃︁
�̇� = 𝑥

�̇� = 𝑃Ð(𝑢) =
∞∑︀

𝑖=1
Ð𝑖𝑢

𝑖.
(2.2.3)

Now, system (2.2.3) has separable variables and 𝜙1(𝑡, 𝑥) = 𝑒𝑡𝑥 is the solution for the
first equation satisfying 𝜙1(0, 𝑥) = 𝑥. For the second one, 𝑃Ð is analytic for Ð ∈ 𝒜. Let
𝜙2(𝑡, 𝑢) be the solution of this equation, which is analytic, verifying 𝜙2(0, 𝑢) = 𝑢.

We can expand 𝜙(𝑡, 𝑢) in series in 𝑢 for each 𝑡,

𝜙2(𝑡, 𝑢) =
∞∑︁

𝑖=1

𝑔𝑖(𝑡)𝑢𝑖. (2.2.4)

Using this expression we obtain:

Lemma 2.2. Consider 𝜙2(𝑡, 𝑢) as defined above, then 𝑔1(𝑡) = 𝑒Ð1𝑡 and 𝑔𝑖(0) = 0 for
𝑖 ⊙ 2.

Proof. From equation 2.2.4 we obtain

𝜕

𝜕𝑡
𝜙2(𝑡, 𝑢) =

𝜕

𝜕𝑡

(︃
∞∑︁

𝑖=1

𝑔𝑖(𝑡)𝑢𝑖

⎜
=

∞∑︁

𝑖=1

�̇�𝑖(𝑡)𝑢𝑖,

where the change in the order of the limits above is possible due to the analyticity of the
solution and from the fact that power series which converges also converges uniformly.
Since 𝜙2(𝑡, 𝑢) is the solution of the second equation in 2.2.3, we have

𝜕

𝜕𝑡
𝜙2(𝑡, 𝑢) = 𝑃Ð(𝜙2(𝑡, 𝑢)) =

∞∑︁

𝑖=1

Ð𝑖

∏︀
∐︁

∞∑︁

𝑗=1

𝑔𝑗(𝑡)𝑢𝑗

∫︀
⎠

𝑖

.

From these two equalities and the uniqueness of the Taylor series we obtain the following
system

𝐸𝑔 =

∏︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⨄︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋃︁

�̇�1(𝑡) = Ð1𝑔1(𝑡)
�̇�2(𝑡) = Ð1𝑔2(𝑡) + Ð2𝑔

2
1(𝑡)

�̇�3(𝑡) = Ð1𝑔3(𝑡) + 2Ð2𝑔1(𝑡)𝑔2(𝑡) + Ð3𝑔
3
1(𝑡)

...
�̇�𝑘(𝑡) = Ð1𝑔𝑘(𝑡) + 𝑃𝑘(Ð2, . . . , Ð𝑘; 𝑔1, . . . , 𝑔𝑘⊗1),

(2.2.5)

where, for each 𝑘 > 1, 𝑃𝑘 is a polynomial in Ð2, . . . , Ð𝑘, 𝑔1, . . . , 𝑔𝑘⊗1 with positive rational
coefficients.

Therefore, 𝑔1(𝑡) = 𝑒Ð1𝑡𝑔1(0). Furthermore, from 𝑃Ð(𝑢) = 𝑃Ð(𝜙2(0, 𝑢)) we obtain
𝑔1(0) = 1 and 𝑔𝑖(0) = 0 for 𝑖 ⊙ 2.
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We want to study the structure of the functions 𝑔𝑖 and the convergence of the series∑︀∞
𝑖=1 𝑔𝑖(𝑡)𝑢𝑖 as a function of 𝑡. In order to do this, consider the following equation, which

will be referred as hyperbolic equation:

�̇� =
1
2
𝑈 +𝑀

∞∑︁

𝑖=1

𝑈 𝑖+1. (2.2.6)

Then, the following statement holds:

Lemma 2.3. Let 𝑈(𝑡, 𝑢) =
∞∑︀

𝑖=1
𝐺𝑖(𝑡)𝑢𝑖 be the power series expansion of the trajectories of

(2.2.6). Then, for each 𝑖 ⊙ 1 and 𝑡 ⊙ 0, ♣𝑔𝑖(𝑡)♣⊘ 𝐺𝑖(𝑡) for any Ð ∈ 𝒜.

Proof. The proof of this lemma can be found in [35] (Lemma 18, page 95). Notice that
�̇� = 𝑃Ð(𝑈) with Ð =

(︁
1
2
,𝑀,𝑀, . . .

⎡
, so the functions 𝐺𝑖(𝑡) must verify

𝐸𝐺 =

∏︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⨄︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋃︁

�̇�1(𝑡) = 1
2
𝐺1(𝑡)

�̇�2(𝑡) = 1
2
𝐺2(𝑡) +𝑀𝐺2

1(𝑡)
�̇�3(𝑡) = 1

2
𝐺3(𝑡) + 2𝑀𝐺1(𝑡)𝐺2(𝑡) +𝑀𝐺3

1(𝑡)
...

�̇�𝑘(𝑡) = 1
2
𝐺𝑘(𝑡) + 𝑃𝑘(𝑀, . . . ,𝑀 ;𝐺1, . . . , 𝐺𝑘⊗1),

(2.2.7)

where, for each 𝑘 > 1, 𝑃𝑘 is a polynomial as in system 2.2.5.
Then, 𝐺1(𝑡) = 𝑒

t
2 > 0 and 𝐺𝑖(0) = 0, for 𝑖 ⊙ 0. So, �̇�2(𝑡) = 1/2𝐺2(𝑡) + 𝑀𝑒𝑡 and we

obtain
𝐺2(𝑡) = 𝑒

t
2

∫︁ 𝑡

0
𝑀𝐺2

1(𝑠)𝑒
⊗ s

2 ds ⊙ 0.

More generally, we obtain

𝐺𝑘(𝑡) = 𝑒
t
2

∫︁ 𝑡

0
𝑃𝑘(𝑀, . . . ,𝑀 ;𝐺1(𝑠), . . . , 𝐺𝑘⊗1(𝑠))𝑒⊗ s

2 ds ⊙ 0.

Notice that 𝐺𝑘(𝑡) > 0 if 𝑡 > 0.
Now, we are going to prove the result by induction. For Ð ∈ 𝒜, Ð1 < 1/2 so

♣𝑔1(𝑡)♣= 𝑒Ð1𝑡 ⊘ 𝑒
t
2 = 𝐺1(𝑡), for all 𝑡 ⊙ 0.

Suppose, by induction hypothesis, that ♣𝑔𝑘(𝑡)♣⊘ 𝐺𝑘(𝑡) for each 1 ⊘ 𝑘 ⊘ 𝑖 ⊗ 1 and 𝑡 ⊙ 0.
We have,

�̇�𝑖(𝑡) = Ð1𝑔𝑖(𝑡) + 𝑃𝑖(Ð2, . . . , Ð𝑖; 𝑔1, . . . , 𝑔𝑖⊗1)

and
�̇�𝑖(𝑡) =

1
2
𝐺𝑖(𝑡) + 𝑃𝑖(𝑀, . . . ,𝑀 ;𝐺1, . . . , 𝐺𝑖⊗1),

where 𝑃𝑖 are polynomials with positive coefficients, then

♣𝑃𝑖(Ð2, . . . , Ð𝑖; 𝑔1, . . . , 𝑔𝑖⊗1)♣ ⊘ 𝑃𝑖(♣Ð2♣, . . . , ♣Ð𝑖♣; ♣𝑔1♣, . . . , ♣𝑔𝑖⊗1♣)

⊘ ♣𝑃𝑘(𝑀, . . . ,𝑀 ;𝐺1, . . . , 𝐺𝑘⊗1)♣.

Now, we know that 𝑔1(0) = 1, 𝐺1(0) = 1 and 𝑔𝑘(0) = 𝐺𝑘(0) = 0 for 𝑘 ⊙ 2, hence

�̇�𝑘(0) = 𝑃𝑘(𝑀, . . .𝑀 ;𝐺1(0), . . . , 𝐺𝑘⊗1(0)) = 𝑀𝐺𝑘
1(0) = 𝑀, for all 𝑘 ⊙ 2,
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and
♣�̇�𝑖(0)♣⊘ ♣Ð𝑖𝑔1(0)𝑖♣= ♣Ð𝑖♣< 𝑀, for all 𝑘 ⊙ 2.

Then, ♣�̇�𝑘(0)♣< �̇�𝑘(0), for all 𝑘 ⊙ 2. By continuity, there exists Ó > 0 small enough
such that ♣�̇�𝑖(𝑡)♣< 𝐺𝑖(0) for all 𝑡 ∈ [0, Ó). It means that 𝐺𝑖 increases faster than ♣𝑔𝑖♣, so
♣𝑔𝑖(𝑡)♣< 𝐺𝑖(𝑡) for all 𝑡 ∈ (0, Ó). Now, suppose by contradiction that there exists 𝑡0 > 0 such
that ♣�̇�𝑖(𝑡0)♣⊙ �̇�𝑖(𝑡0) and ♣�̇�𝑖(𝑡)♣< �̇�𝑖(𝑡) for all 𝑡 ∈ [0, 𝑡0). Then, from continuity we must
have ♣𝑔𝑖(𝑡0)♣< 𝐺𝑖(𝑡0). Induction hypothesis gives us ♣𝑔𝑘(𝑡0) ⊘ 𝐺𝑘(𝑡0) for all 1 ⊘ 𝑘 ⊘ 𝑖⊗ 1,
then for 𝑡 = 𝑡0

�̇�𝑖(𝑡0) = Ð1𝑔𝑖(𝑡0) + 𝑃𝑖(Ð2, . . . , Ð𝑖; 𝑔1(𝑡0), . . . , 𝑔𝑖⊗1(𝑡0))

and
�̇�𝑖(𝑡0) =

1
2
𝐺𝑖(𝑡0) + 𝑃𝑖(𝑀, . . . ,𝑀 ;𝐺1(𝑡0), . . . , 𝐺𝑖⊗1(𝑡0)).

So,

♣�̇�𝑖(𝑡0)♣ = ♣Ð1♣♣𝑔𝑖(𝑡0)♣+𝑃𝑖(♣Ð2♣, . . . , ♣Ð𝑖♣; ♣𝑔1(𝑡0)♣, . . . , ♣𝑔𝑖⊗1(𝑡0)♣)

<
1
2
𝐺𝑖(𝑡0) + 𝑃𝑖(𝑀, . . . ,𝑀 ;𝐺𝑖(𝑡0), . . . , 𝐺𝑖⊗1(𝑡0)) = �̇�𝑖(𝑡0),

so we have a contradiction with our assumption on 𝑡0. It implies that ♣�̇�𝑖(𝑡)♣< �̇�𝑖(𝑡) for
all 𝑡 ⊙ 0. Therefore, ♣𝑔𝑖(𝑡)♣⊘ 𝐺𝑖(𝑡) for all 𝑡 ⊙ 0. Finally, we have the result proved by
induction.

Next, we have more estimations to prove.

Lemma 2.4. There exist constants 𝐶,𝐶0 > 0 such that

♣𝑔𝑖(𝑡)♣⊘ 𝐶0(𝐶𝑒𝑡/2)𝑖 for any 𝑖 ⊙ 1, 𝑡 ⊙ 0 and any Ð ∈ 𝒜.

Proof. The proof of this lemma can be found in[35] (Lemma 19, page 97 ). From Lemma
2.3 it is enough to prove that 𝐺𝑖(𝑡) ⊘ 𝐶0(𝐶𝑒

t
2 )𝑖 for some positive constants 𝐶0 and 𝐶

and for all 𝑖 ⊙ 1, 𝑡 ⊙ 0 and Ð ∈ 𝒜. Since 𝑈(𝑡, 𝑢) =
∑︀

𝑖⊙1 𝐺𝑖(𝑡)𝑢𝑖 is a trajectory of

the hyperbolic equation �̇� = 𝑃 (𝑢) or, equivalently, of the vector field 𝑋 = 𝑃 (𝑢)
𝜕

𝜕𝑢
with

𝑃 (𝑢) = 1
2
𝑢+𝑀

∑︀
𝑖⊙1 𝑢

𝑖+1.
The Linearization Theorem of Poincaré (see [10], page 71) ensures that there exists

an analytic diffeomorphism Ý(𝑢) = 𝑢 + 𝑂(𝑢), converging for ♣𝑢♣⊘ 𝐾1, 𝐾1 > 0 a fixed
constant, such that

Ý*

(︃
𝑃 (𝑢)

𝜕

𝜕𝑢

⎜
=

1
2
𝑢
𝜕

𝜕𝑢
.

Moreover, this diffeomorphism sends the flow 𝑈(𝑡, 𝑢) of 𝑃 (𝑢)
𝜕

𝜕𝑢
into the flow 𝑈0(𝑡, 𝑢) =

𝑢𝑒
t
2 of 1

2
𝑢 𝜕

𝜕𝑢
. It means that 𝑈0(𝑡, Ý(𝑢)) = Ý(𝑈(𝑡, 𝑢)) for ♣𝑢♣, ♣𝑈(𝑡, 𝑢)♣⊘ 𝐾1.

Now, we want to show that there exist constants 0 < 𝑏 < 𝐵 such that 𝑏♣𝑢♣⊘ ♣Ý(𝑢)♣⊘
𝐵♣𝑢♣, for ♣𝑢♣⊘ 𝐾1. In fact, Ý is a diffeomorphism then it satisfies the Lipschitz condition,
i.e., there exists 𝐵 > 0 such that ♣Ý(𝑢)♣⊘ 𝐵♣𝑢♣, for all ♣𝑢♣⊘ 𝐾1. Also, Ý⊗1 is a diffeomor-
phism, so there exists 𝑘1 > 0 such that ♣Ý⊗1(𝑣)♣⊘ 𝑘1♣𝑣♣, for all ♣𝑣♣⊘ max

♣𝑢♣⊘𝐾1

♣Ý(𝑢)♣. Then,

for 𝑣 = Ý(𝑢), ♣𝑢♣⊘ 𝐾1, we have ♣𝑢♣= ♣Ý⊗1(𝑣)♣⊘ 𝑘1♣𝑣♣= 𝑘1♣Ý(𝑢)♣. So, taking 𝑏 = 1/𝑘1 we
achieve the wanted inequalities.
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Notice that, 0 < 𝑏
𝐵
𝑒

⊗t
2 < 1 for all 𝑡 ⊙ 0, so by defining 𝑅(𝑡) = 𝑏

𝐵
𝐾1𝑒

⊗ t
2 we have 𝑅(𝑡) ⊘

𝐾1 for all 𝑡 ⊙ 0. We now can restrict ♣𝑢♣⊘ 𝑅(𝑡), then ♣Ý(𝑢)♣⊘ 𝐵♣𝑢♣⊘ 𝐵𝑅(𝑡) = 𝑏𝐾1𝑒
⊗ t

2 . It
implies that ♣𝑈0(𝑡, Ý(𝑢))♣= ♣Ý(𝑢)♣𝑒 t

2 ⊘ 𝑏𝐾1. Since 𝑈(𝑡, 𝑢) = Ý⊗1(𝑈0(𝑡, Ý(𝑢))) we have

♣𝑈(𝑡, 𝑢)♣= ♣Ý⊗1(𝑈0(𝑡, Ý(𝑢)))♣⊘ 1
𝑏
♣𝑈0(𝑡, Ý(𝑢))♣⊘ 1

𝑏
𝑏𝐾1 = 𝐾1.

By definition, 𝑈(𝑡, 𝑢) =
∑︀

𝑖⊙1 𝐺𝑖(𝑡)𝑢𝑖 so,
𝜕𝑖

𝜕𝑢𝑖
𝑈(𝑡, 𝑢) ♣𝑢=0 = 𝑖!𝐺𝑖(𝑡) and by applying

Cauchy’s inequalities (see Appendix A) for the coefficients 𝐺𝑖(𝑡) we find, for all 𝑖 ⊙ 1 and
𝑡 ⊙ 0,

♣𝐺𝑖(𝑡)♣⊘
1

𝑅𝑖(𝑡)
sup¶♣𝑈(𝑡, 𝑢)♣; ♣𝑢♣= 𝑅(𝑡)♢ ⊘ 𝐾1

𝑅𝑖(𝑡)
. (2.2.8)

So, for all 𝑖 ⊙ 1 and 𝑡 ⊙ 0,

♣𝑔𝑖(𝑡)♣⊘ 𝐺𝑖(𝑡) ⊘ 𝐾1

𝑅𝑖(𝑡)
= 𝐾1

⎦⎤
𝐵

𝑏
𝐾⊗1

⎣
𝑒

t
2

⎢𝑖

.

Therefore, the result is achieved by choosing 𝐶0 = 𝐾1 and 𝐶 = 𝐵
𝑏
𝐾⊗1

1 .

Lemma 2.5. For each 𝑘 ⊙ 1, there exists a constant 𝐶𝑘 > 0 such that
⧹︃⧹︃⧹︃⧹︃⧹︃
𝑑𝑘𝑔𝑖

𝑑𝑡𝑘
(𝑡)

⧹︃⧹︃⧹︃⧹︃⧹︃ ⊘ 𝐶𝑘(𝐶𝑒𝑡/2)𝑖 for any 𝑖 ⊙ 1, 𝑡 ⊙ 0, Ð ∈ 𝒜, (2.2.9)

where 𝐶 is the same constant as in Lemma 2.4.

Proof. This result is proved in [35] (Lemma 20, page 98). Notice that the series in 𝑢

of
𝜕

𝜕𝑡
𝜙2 has the same radius of convergence as 𝜙(𝑡, 𝑢), it happens because

𝜕

𝜕𝑡
𝜙2(𝑡, 𝑢) =

𝑃Ð(𝜙2(𝑡, 𝑢)). Similarly, we obtain, by induction on 𝑘, that
𝜕𝑘

𝜕𝑡𝑘
𝜙2(𝑡, 𝑢) has the same radius

of convergence for all 𝑘 ⊙ 1.
By means of the Cauchy’s inequality we obtain

⧹︃⧹︃⧹︃⧹︃⧹︃
𝑑𝑘

𝑑𝑡𝑘
𝑔𝑖(𝑡)

⧹︃⧹︃⧹︃⧹︃⧹︃ ⊘ 1
𝑅𝑖(𝑡)

sup

{︃⧹︃⧹︃⧹︃⧹︃⧹︃
𝜕𝑘

𝜕𝑡𝑘
𝜙2(𝑡, 𝑢)

⧹︃⧹︃⧹︃⧹︃⧹︃ ; ♣𝑢♣= 𝑅(𝑡)

⨀︀
.

Now, for 𝐶 = 𝐵
𝑏
𝐾⊗1

1 and some 𝐶𝑘 > 0 we have

⧹︃⧹︃⧹︃⧹︃⧹︃
𝑑𝑘

𝑑𝑡𝑘
𝑔𝑖(𝑡)

⧹︃⧹︃⧹︃⧹︃⧹︃ ⊘ 𝐶𝑘(𝐶𝑒𝑡/2)𝑖.

In order to obtain a more precise form for the functions 𝑔𝑖(𝑡) we introduce the function

Ω(Ð1, 𝑡) =

∏︁
⋁︁⨄︁
⋁︁⋃︁

𝑒Ð1𝑡 ⊗ 1
Ð1

for Ð1 ̸= 0

𝑡 for Ð1 = 0
.

Thus, we have the following

Proposition 2.3. For each 𝑘 ⊙ 1, 𝑔𝑘(𝑡) = 𝑒Ð1𝑡𝑄𝑘(𝑡), where 𝑄𝑘 is a polynomial of degree
⊘ 𝑘 ⊗ 1 in Ω. The coefficients of 𝑄𝑘 are polynomials in Ð1, . . . , Ð𝑘. More precisely,

𝑄𝑘 = Ð𝑘 + �̄�𝑘(Ð1, . . . , Ð𝑘,Ω), (2.2.10)

where �̄�𝑘 is a polynomial of degree ⊘ 𝑘 ⊗ 1 in Ω with coefficients in ℐ(Ð1, . . . , Ð𝑘⊗1) ∩
ℐ(Ð1, . . . , Ð𝑘)2

⊆ Q[Ð1, . . . , Ð𝑘].
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Proof. This result is proved in [35] (Proposition 10, page 99). Since 𝜙2(𝑡, 𝑢) =
∑︀

𝑖⊙1 𝑔𝑖(𝑡)𝑢𝑖

is solution of �̇� = 𝑃Ð(𝑢) with 𝜙(0, 𝑢) = 𝑢, we have from system 𝐸𝑔 in equation 2.2.5 that
�̇�𝑘(𝑡) = Ð1𝑔𝑘(𝑡) + 𝑃𝑘(Ð2, . . . , Ð𝑘; 𝑔1(𝑡), . . . , 𝑔𝑘⊗1(𝑡)) where 𝑃𝑘 is polynomial of degree ⊘ 𝑘
in 𝑔1, 𝑔1, . . . , 𝑔𝑘⊗1 and coefficients polynomial linear in Ð2, Ð3, . . . , Ð𝑘. Observe that the

monomials in 𝑃𝑘 are of the form 𝑔𝑙1
1 𝑔

𝑙2
2 ≤ ≤ ≤ 𝑔𝑙k⊗1

𝑘⊗1 with
𝑘⊗1∑︀
𝑗=1

𝑗 ≤ 𝑙𝑗 = 𝑘 and 2 ⊘
𝑘⊗1∑︀
𝑗=1

𝑙𝑗 ⊘ 𝑘.

Also, from 𝐸𝑔 system we obtain 𝑔1(𝑡) = 𝑒Ð1𝑡, 𝑔2(𝑡) = Ð2𝑒
Ð1𝑡
(︁

𝑒α1t⊗1
Ð1

⎡
= Ð2𝑒

Ð1𝑡Ω and,
more generally,

𝑔𝑘(𝑡) = 𝑒Ð1𝑡
∫︁ 𝑡

0
𝑒⊗Ð1𝑠𝑃𝑘(Ð2, . . . , Ð𝑘; 𝑔1(𝑠), . . . , 𝑔𝑘⊗1(𝑠))ds.

Observe that, 𝑒Ð1𝑡 = 1+Ð1Ω. We are going to use induction to prove that 𝑔𝑘(𝑡) = 𝑒Ð1𝑡𝑄𝑘(𝑡)
with 𝑄𝑘 polynomial of degree ⊘ 𝑘 in Ω and coefficients polynomial in Ð1, . . . , Ð𝑘. As seen
above, the result is true for 𝑘 = 1 and 𝑘 = 2, so suppose that it true for all 𝑗 ⊘ 𝑘 ⊗ 1.
Consider the equation

�̇�𝑘 = Ð1𝑔𝑘 + 𝑃𝑘(Ð2, . . . , Ð𝑘; 𝑔1, . . . , 𝑔𝑘⊗1),

𝑃𝑘 has monomials of the form 𝑔𝑙1
1 𝑔

𝑙2
2 ≤ ≤ ≤ 𝑔𝑙k⊗1

𝑘⊗1 , then by induction hypothesis, 𝑔𝑗 = 𝑒Ði𝑡𝑄𝑗(𝑡)

for 1 ⊘ 𝑗 ⊘ 𝑘⊗1. Hence, for 𝑖, 𝑗 ⊘ 𝑘⊗1 we have 𝑔𝑖 ≤𝑔𝑗 = 𝑒2Ð1𝑡𝑄𝑖(𝑡)𝑄𝑗(𝑡). Since
𝑘⊗1∑︀
𝑗=1

𝑙𝑗 ⊙ 2

we have
𝑔𝑙1

1 𝑔
𝑙2
2 ≤ ≤ ≤ 𝑔𝑙k⊗1

𝑘⊗1 = 𝑒2Ð1𝑡�̄�𝑘(𝑡),

where �̄�𝑘 is a polynomial of degree ⊘ 𝑘 ⊗ 2 in 𝑔1, . . . , 𝑔𝑘⊗1. Now, since 𝑒Ð1𝑡 = 1 + Ð1Ω

we have that 𝑔𝑙1
1 𝑔

𝑙2
2 ≤ ≤ ≤ 𝑔𝑙k⊗1

𝑘⊗1 is polynomial of degree ⊘
𝑘⊗1∑︀
𝑗=1

𝑗 ≤ 𝑙𝑗 = 𝑘 in Ω. Therefore,

𝑃𝑘(Ð2, . . . , Ð𝑘; 𝑔1, . . . , 𝑔𝑘⊗1) = 𝑒2Ð1𝑡𝑋𝑘(Ω) where 𝑋𝑘 is polynomial of degree ⊘ 𝑘 ⊗ 2 in Ω.
So,

𝑔𝑘(𝑡) = 𝑒Ð1𝑡
∫︁ 𝑡

0
𝑒⊗Ð1𝑠𝑒2Ð1𝑠𝑋𝑘(Ω(𝑠))ds

= 𝑒Ð1𝑡
∫︁ 𝑡

0
𝑒Ð1𝑠𝑋𝑘(Ω(𝑠))ds

= 𝑒Ð1𝑡
∫︁ 𝑡

0
(1 + Ð1Ω(𝑠))𝑋𝑘(Ω(𝑠))ds,

therefore, 𝑔𝑘(𝑡) = 𝑒Ð1𝑡𝑄𝑘(𝑡) with 𝑄𝑘 polynomial of degree ⊘ 𝑘 ⊗ 1 in Ω and coefficients
polynomial in Ð1, . . . , Ð𝑘.

Observe that 𝑃𝑘(Ð2, . . . , Ð𝑘; 𝑔1, . . . , 𝑔𝑘⊗1) = Ð𝑘𝑔
𝑘
1 + 𝑃𝑘(Ð2, . . . , Ð𝑘⊗1; 𝑔1, . . . , 𝑔𝑘⊗1), for

𝑘 ⊙ 2, where 𝑃𝑘 is linear in Ð2, . . . , Ð𝑘⊗1 and each monomial in 𝑃𝑘 contains at least one
of 𝑔𝑖 with 𝑖 ⊙ 2. Moreover, the coefficients of 𝑔𝑖 are in ℐ(Ð1, . . . , Ð𝑖) and 𝑃𝑘 contains, at
least, one term multiplied by Ð𝑖Ð𝑗𝑔𝑖𝑔𝑗, so the coefficients of 𝑃𝑘 are in ℐ(Ð2, . . . , Ð𝑘⊗1)2 ∩
ℐ(Ð1, . . . , Ð𝑘⊗1). Now,

𝑄𝑘 =
∫︁ 𝑡

0
𝑒⊗Ð1𝑠𝑃𝑘(Ð2, . . . , Ð𝑘; 𝑔1, . . . , 𝑔𝑘⊗1)ds

=
∫︁ 𝑡

0
𝑒⊗Ð1𝑠(Ð𝑘𝑔

𝑘
1 + 𝑃𝑘(Ð2, . . . , Ð𝑘⊗1; 𝑔1, . . . , 𝑔𝑘⊗1))ds

=
∫︁ 𝑡

0
Ð𝑘𝑒

⊗Ð1𝑠𝑒𝑘Ð1𝑠ds +
∫︁ 𝑡

0
𝑒⊗Ð1𝑡𝑃𝑘(Ð2, . . . , Ð𝑘; 𝑔1, . . . , 𝑔𝑘⊗1)ds.
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The first term in this sum is

𝐼1 =
Ð𝑘

Ð1(𝑘 ⊗ 1)

(︁
𝑒(𝑘⊗1)Ð1𝑡 ⊗ 1

⎡
=

Ð𝑘

Ð1(𝑘 ⊗ 1)

(︁
(1 + Ð1Ω)(𝑘⊗1) ⊗ 1

⎡
= Ð𝑘Ω +

Ð1Ð𝑘

𝑘 ⊗ 1
𝑆(Ω),

where 𝑆(Ω) is a polynomial of degree ⊙ 2 and ⊘ ⊗2 in Ω. The second term in the
expression of 𝑄𝑘 is

𝐼2 =
∫︁ 𝑡

0
𝑒⊗Ð1𝑠𝑃𝑘(𝑠)ds,

since 𝑃𝑘 has at least one term in 𝑔𝑖 we have 𝑃𝑘(𝑠) = 𝑒Ð1𝑠𝑃𝑘(𝑠) where 𝑃𝑘 has degree ⊘ 𝑘⊗2
in Ω. So, 𝐼2 is polynomial in Ω with coefficients in ℐ(Ð1, . . . , Ð𝑘⊗1) ∩ ℐ(Ð2, . . . , Ð𝑘⊗1)2.
Therefore, 𝑄𝑘 = 𝐼1 + 𝐼2 = Ð𝑘Ω + �̄�𝑘 where �̄�𝑘 is a polynomial in Ω with coefficients in
ℐ(Ð1, . . . , Ð𝑘⊗1) ∩ ℐ(Ð2, . . . , Ð𝑘)2 ⊆ Q[Ð1, . . . , Ð𝑘].

Now we are ready to go back to the transition maps. The results above enable us to
study the transition map 𝐷𝑖, 𝑖 = 1, 3. We know that, in both cases, the time spent to go
from à to á is equal to 𝑡(𝑥) = ⊗ ln 𝑥. Therefore, we have

• 𝑢♣à1
= 𝑥𝑝1𝑞 = 𝑥𝑝 and 𝑢♣á1

= (𝑒𝑡(𝑥)𝑥)𝑝𝐷1(𝑥)𝑞 = 𝐷1(𝑥)𝑞. Also, 𝑢♣á1
= 𝑢(𝑡(𝑥), 𝑢♣à1

), i.e.,

𝑢♣á1
= 𝑢 (⊗ ln 𝑥, 𝑥𝑝) =

∑︁

𝑖⊙1

𝑔𝑖 (⊗ ln 𝑥)𝑥𝑝𝑖,

if this series converges for 𝑡 = ⊗ ln 𝑥. Therefore, we have

𝐷1(𝑥)𝑞 =
∑︀
𝑖⊙1

𝑔𝑖 (⊗ ln 𝑥)𝑥𝑝𝑖, (2.2.11)

for 𝑥 > 0 and 𝐷1(0) = 0.

• 𝑢♣à3
= 𝑥𝑝𝑥𝑞 = 𝑥𝑝+𝑞 and 𝑢♣á3

= (𝑒𝑡(𝑥)𝑥)𝑝𝐷3(𝑥)𝑞 = 𝐷3(𝑥)𝑞. Also, 𝑢♣á3
= 𝑢(𝑡(𝑥), 𝑢♣à3

),
i.e.,

𝑢♣á3
= 𝑢

(︁
⊗ ln 𝑥, 𝑥𝑝+𝑞

⎡
=
∑︁

𝑖⊙1

𝑔𝑖 (⊗ ln 𝑥)𝑥(𝑝+𝑞)𝑖,

if this series converges for 𝑡 = ⊗ ln 𝑥. In this case, we have

𝐷3(𝑥)𝑞 =
∑︀
𝑖⊙1

𝑔𝑖 (⊗ ln 𝑥)𝑥(𝑝+𝑞)𝑖, (2.2.12)

for 𝑥 > 0 and 𝐷3(0) = 0.

Notice that 𝐷𝑖, 𝑖 = 1, 3, is well defined for 𝑥 ∈ [0, 𝜖], where 𝜖 > 0 is a real number,
and it is analytic in (𝑥, Ð), for 𝑥 ̸= 0, Ð ∈ 𝒜. In fact, for 𝑥 ̸= 0 and each 𝑡 ⊘ 0 the
convergence of the series in the expression of 𝐷𝑞

𝑖 is due to Lemma 2.4 and from this
lemma we obtain that the convergence radius of the series

∑︀
𝑖⊙1

𝑔𝑖 (𝑡)𝑢𝑖 is, for each 𝑡 ⊙ 0,

greater than or equal to 𝑒⊗
t
2

𝐶
. It implies that, for 𝑥 small enough, the series converges for

each 𝑡 < ⊗2 ln 𝑥. In particular, the series converges when 𝑡 = ⊗ ln 𝑥, so the expressions
in (2.2.11) and (2.2.12), for 𝐷𝑞

1 and 𝐷𝑞
3, hold. Furthermore, the convergence is normal on

the interval [0, 𝜖].

Lemma 2.6. The series
∑︀
𝑖⊙1

𝑔𝑖 (⊗ ln 𝑥)𝑥𝑎𝑖 is normally convergent for 𝑥 ∈ (0, 𝜖] for some

𝜖 > 0, where 𝑎 ⊙ 1 is a fixed constant.
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Proof. By definition, this series is normally convergent in a set 𝑆 if the series∑︀
𝑖⊙1

sup
𝑆

♣𝑔𝑖 (⊗ ln 𝑥)𝑥𝑎𝑖♣ converges. It follows from Lemma 2.4 that, for all 𝑡 ⊙ 0,

♣𝑔𝑖 (⊗ ln 𝑥)𝑥𝑎𝑖♣ = ♣𝑔𝑖 (⊗ ln 𝑥) ♣♣𝑥♣𝑎𝑖⊘ 𝐶0♣𝐶𝑒
⊗ ln x

2 ♣𝑖♣𝑥♣𝑎𝑖= 𝐶0♣𝐶𝑥𝑎⊗ 1

2 ♣𝑖.

So, by fixing a positive constant 0 < 𝑏 < 1 we can choose 𝜖 > 0 small enough such that
♣𝐶𝑥𝑎⊗ 1

2 ♣< 𝑏 < 1 for all 0 ⊘ 𝑥 ⊘ 𝜖. It implies that, sup
𝑥∈[0,𝜖]

♣𝑔𝑖 (⊗ ln 𝑥)𝑥𝑎𝑖♣ ⊘ 𝐶0𝑏
𝑖. Since

0 < 𝑏 < 1, it follows that
∑︀
𝑖⊙1

sup
𝑥∈[0,𝜖]

♣𝑔𝑖 (⊗ ln 𝑥)𝑥𝑎𝑖♣ is convergent and we have the result.

Remark 2.5. From the proof above, we have that lim𝑡⊃0+ 𝑔𝑖(⊗ ln 𝑥) = 0. Since 𝐷𝑗(0) = 0,
𝑗 = 1, 3, we can assume the series in Lemma 2.6 is normally convergent in [0, 𝜖].

Before stating the next result, the following definition is needed.

Definition 2.5. A function 𝑓 : R𝑛 ⊃ R of class 𝒞𝑘 is said to be 𝒞𝑘⊗flat in the coordinate

𝑗, at 𝑥𝑗 = 𝑥0
𝑗 , if

𝜕𝑓

𝜕𝑥𝑗

(𝑥0) = ≤ ≤ ≤ =
𝜕𝑘𝑓

𝜕𝑥𝑘
𝑗

(𝑥0) = 0, where 𝑥0 = (𝑥1, . . . , 𝑥𝑗⊗1, 𝑥
0
𝑗 , 𝑥𝑗+1, . . . , 𝑥𝑛)

.

From now on, we consider 𝑎 ∈ ¶𝑝, 𝑝+ 𝑞♢ and we show that 𝐷𝑎(𝑥), satisfying 𝐷𝑞
𝑎(𝑥) =∑︀

𝑖⊙1
𝑔𝑖(⊗ ln 𝑥)𝑥𝑎𝑖, is quasi-regular. By doing that, we obtain the quasi-regularity of 𝐷1 and

𝐷3.

Proposition 2.4. For any 𝑘 ∈ N there exists 𝐾(𝑘) ∈ N such that

𝐷𝑞
𝑎(𝑥) =

𝐾(𝑘)∑︁

𝑖=1

𝑔𝑖(⊗ ln 𝑥)𝑥𝑎𝑖 + å𝑘(𝑥, Ð), (2.2.13)

where å𝑘(𝑥, Ð) is a function of class 𝒞𝑘𝑎 in (𝑥, Ð) (with Ð ∈ 𝒜) and 𝑘𝑎⊗flat at 𝑥 = 0.

Proof. From the expression of 𝐷𝑞
𝑎(𝑥), given 𝑘 > 0 we want to find 𝐾(𝑘) such that

(𝐷𝑞
𝑎)𝐾(𝑥) =

∞∑︁

𝑗=𝐾(𝑘)+1

𝑔𝑗(⊗ ln 𝑥)𝑥𝑎𝑗

is a 𝒞𝑘𝑎⊗flat function. It is clear that (𝐷𝑞
Ð)𝐾(0) = 0, for all 𝐾. This is equivalent to

showing that
∑︀

𝑗⊙𝐾(𝑘)+1

𝑑𝑠

𝑑𝑥𝑠
[𝑔𝑗(⊗ ln 𝑥)𝑥𝑎𝑗] converges and it is equal to zero at 𝑥 = 0 for all

𝑠 ⊘ 𝑘𝑎.
Suppose that, for all 𝑠 ⊘ 𝑘𝑎,

⧹︃⧹︃⧹︃⧹︃⧹︃
𝑑𝑠

𝑑𝑥𝑠

[︁
𝑔𝑗(⊗ ln 𝑥)𝑥𝑎𝑗

]︁⧹︃⧹︃⧹︃⧹︃⧹︃ ⊘ Ñ𝑗(𝑥),

where
∑︀

𝑗⊙𝐾(𝑘)+1
Ñ𝑗(𝑥) < ∞ and Ñ𝑗(0) = 0. In this case,

∑︁

𝑗⊙𝐾(𝑘)+1

𝑑𝑠

𝑑𝑥𝑠

[︁
𝑔𝑗(⊗ ln 𝑥)𝑥𝑎𝑗

]︁
⊘

∑︁

𝑗⊙𝐾(𝑘)+1

⧹︃⧹︃⧹︃⧹︃⧹︃
𝑑𝑠

𝑑𝑥𝑠

[︁
𝑔𝑗(⊗ ln 𝑥)𝑥𝑎𝑗

]︁⧹︃⧹︃⧹︃⧹︃⧹︃ ⊘
∑︁

𝑗⊙𝐾(𝑘)+1

Ñ𝑗(𝑥) < ∞,
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moreover, Ñ(0) = 0 implies that

⧹︃⧹︃⧹︃⧹︃⧹︃
𝑑𝑠

𝑑𝑥𝑠
[𝑔𝑗(⊗ ln 𝑥)𝑥𝑎𝑗]

⧹︃⧹︃⧹︃⧹︃⧹︃ converges to 0 when 𝑥 ⊃ 0+. Then,

the result we want is proved. Now, we will show that our assumption holds. Notice that,

𝑑

𝑑𝑥

[︁
𝑔𝑗(⊗ ln 𝑥)𝑥𝑎𝑗

]︁
=

(︃
⊗𝑑𝑔𝑗

𝑑𝑥
(⊗ ln 𝑥) + 𝑎𝑗𝑔𝑗(⊗ ln 𝑥)

⎜
𝑥𝑎𝑗⊗1

𝑑2

𝑑𝑥2

[︁
𝑔𝑗(⊗ ln 𝑥)𝑥𝑎𝑗

]︁
=

(︃
𝑑2

𝑑𝑥2
𝑔𝑗(⊗ ln 𝑥) ⊗ (2𝑎𝑗⊗1)

𝑑

𝑑𝑥
𝑔𝑗(⊗ ln 𝑥) + 𝑎𝑗(𝑎𝑗 ⊗ 1)𝑔𝑗(⊗ ln 𝑥)

⎜
𝑥𝑎𝑗⊗2

...

𝑑𝑠

𝑑𝑥𝑠

[︁
𝑔𝑗(⊗ ln 𝑥)𝑥𝑎𝑗

]︁
=

(︃
(⊗1)𝑠 𝑑

𝑠

𝑑𝑥𝑠
𝑔𝑗(⊗ ln 𝑥) +

𝑠⊗1∑︁

𝑙=1

𝐹𝑙(𝑎𝑗)
𝑑𝑠⊗𝑙

𝑑𝑥𝑠⊗𝑙
𝑔𝑗(⊗ ln 𝑥)

+
𝑎𝑗!

(𝑎𝑗 ⊗ 𝑠)!
𝑔𝑗(⊗ ln 𝑥)

⎜
𝑥𝑎𝑗⊗𝑠,

where 𝐹𝑙 are polynomial of degree ⊘ 𝑙 in 𝑎𝑗 for 1 ⊘ 𝑙 ⊘ 𝑠 ⊗ 1. So, by defining 𝐹0(𝑎𝑗) =

(⊗1)𝑠 and 𝐹𝑠(𝑎𝑗) =
𝑎𝑗!

(𝑎𝑗 ⊗ 𝑠)!
, we can write

𝑑𝑠

𝑑𝑥𝑠

[︁
𝑔𝑗(⊗ ln 𝑥)𝑥𝑎𝑗

]︁
=

(︃
𝑠∑︁

𝑙=0

𝐹𝑙(𝑎𝑗)
𝑑𝑠⊗𝑙

𝑑𝑥𝑠⊗𝑙
𝑔𝑗(⊗ ln 𝑥)

⎜
𝑥𝑎𝑗⊗𝑠,

where 𝐹𝑙 is polynomial of degree ⊘ 𝑙 in 𝑎𝑗 for 0 ⊘ 𝑙 ⊘ 𝑠. For each 0 ⊘ 𝑙 ⊘ 𝑠 write

𝐹𝑙(𝑦) = Û𝑙0 + Û𝑙1𝑦 + ≤ ≤ ≤ + Û𝑙𝑙𝑦
𝑙,

where Û𝑙𝑖 ∈ R for all 0 ⊘ 𝑖 ⊘ 𝑙 and 0 ⊘ 𝑙 ⊘ 𝑠. So, for 𝑦 ⊙ 1, we have 𝑦𝑠 ⊙ 𝑦𝑙 for 0 ⊘ 𝑙 ⊘ 𝑠
and

♣𝐹𝑙(𝑦)♣ ⊘
𝑙∑︁

𝑖=0

♣Û𝑙𝑖♣𝑦𝑖 ⊘
𝑙∑︁

𝑖=0

♣Û𝑙𝑖♣𝑦𝑠.

Define �̄�𝑙 =
𝑙∑︀

𝑖=0
♣Û𝑙𝑖♣, then ♣𝐹𝑙(𝑦)♣ ⊘ �̄�𝑙𝑦

𝑠 for all 0 ⊘ 𝑙 ⊘ 𝑠. Therefore, by means of

Lemmas 2.4 and 2.5, for 𝑥 ⊙ 0, we obtain
⧹︃⧹︃⧹︃⧹︃⧹︃
𝑑𝑠

𝑑𝑥𝑠

[︁
𝑔𝑗(⊗ ln 𝑥)𝑥𝑎𝑖

]︁⧹︃⧹︃⧹︃⧹︃⧹︃ ⊘
𝑠∑︁

𝑙=0

♣𝐹𝑙(𝑎𝑗)♣
⧹︃⧹︃⧹︃⧹︃⧹︃
𝑑𝑠⊗𝑙

𝑑𝑥𝑠⊗𝑙
𝑔𝑗(⊗ ln 𝑥)

⧹︃⧹︃⧹︃⧹︃⧹︃ 𝑥
𝑎𝑗⊗𝑠

⊘
𝑠∑︁

𝑙=0

�̄�𝑙(𝑎𝑗)𝑠𝐶𝑠⊗𝑙(𝐶𝑥⊗ 1

2 )𝑗𝑥𝑎𝑗⊗𝑠

⊘ (𝑎𝑗)𝑠(𝐶𝑥𝑎⊗ 1

2 )𝑗𝑥⊗𝑠
𝑠∑︁

𝑙=0

�̄�𝑙𝐶𝑠⊗𝑙

⊘ 𝑀𝑠(𝑎𝑗)𝑠(𝐶𝑥𝑎⊗ 1

2 )𝑗𝑥⊗𝑠,

where 𝑀𝑠 =
𝑠∑︀

𝑙=0
�̄�𝑙𝐶𝑠⊗𝑙. Now, for each 𝑗 ⊙ 𝑗0 (𝑗0 to be defined below) and 𝑥 ⊙ 0, define

Ñ𝑗(𝑥) = 𝑀𝑠(𝑎𝑗)𝑠(𝐶𝑥𝑎⊗ 1

2 )𝑗𝑥⊗𝑠. Observe that,

Ñ𝑗+1(𝑥)
Ñ𝑗(𝑥)

=

(︃
𝑗 + 1
𝑗

⎜𝑠

𝐶𝑥𝑎⊗ 1

2 ,



47

so lim
𝑗⊃∞

Ñj+1(𝑥)

Ñj(𝑥)
= 𝐶𝑥𝑎⊗ 1

2 . Since 𝑎 ⊙ 1, for Ó > 0 small enough, we have 𝐶𝑥𝑎⊗ 1

2 < 1 for all

𝑥 ∈ [0, Ó). Now, D’Alembert criterion for convergence ensures that
∑︀

𝑗⊙𝑗0

Ñ𝑗(𝑥) converges

for each 𝑥 ∈ [0, Ó). Moreover, Ñ𝑗(0) = 0 for all 𝑗 ⊙ 𝑗0. We want to find a 𝑗0 such that
(𝑎⊗ 1

2
)𝑗0 ⊗ 𝑠 (it is necessary to make Ñ𝑗 well defined for 𝑗 ⊙ 𝑗0) and, for each 𝑘 ∈ N, the

found result holds for all 𝑠 ⊘ 𝑘𝑎. So it is enough to choose 𝑗0 > 2𝑎(𝑘 + 1) ⊗ 1. Now, the
proof is completed by choosing 𝐾(𝑘) = 2𝑎(𝑘 + 1).

Let æ(𝑥, Ð1) be the function defined by

æ(𝑥, Ð1) =

∏︁
⋁︁⨄︁
⋁︁⋃︁

𝑥⊗Ð1 ⊗ 1
Ð1

if Ð1 ̸= 0,

⊗ ln 𝑥 if Ð1 = 0.

With this definition we have æ(𝑥, Ð1) = Ω(Ð1,⊗ ln 𝑥), where Ω(Ð1, 𝑡) was previously
defined. Also, for each 𝑘 > 0, 𝑥𝑘æ ⊃ ⊗𝑥𝑘 ln 𝑥, as Ð1 ⊃ 0 and the convergence is uniform
for 𝑥 ∈ [0, 𝜖], where 𝜖 > 0 is fixed.

Let 𝑖, 𝑗 be natural numbers such that 0 ⊘ 𝑗 ⊘ 𝑖 and consider monomials of the
form 𝑥𝑖æ𝑗. These monomial functions form a totally ordered set with the following order
relation:

𝑥𝑖æ𝑗 ∼ 𝑥𝑖′

æ𝑗′ ⇐⇒ 𝑖′ > 𝑖 or 𝑖 = 𝑖′ and 𝑗 > 𝑗′.

Thus, we have 1 ∼ 𝑥æ ∼ 𝑥 ∼ 𝑥2æ2 ∼ 𝑥2æ ∼ 𝑥2 ∼ ≤ ≤ ≤. Now we will look to a
(𝑥, æ)⊗expansion, of order 𝑘, of the transition map 𝐷𝑎.

Theorem 2.4. The transition map 𝐷𝑎 defined by (2.2.13), has the following (𝑥, æ)⊗
expansion for order 𝑘𝑝

𝐷𝑞
𝑎(𝑥) = 𝑥𝑎 + Ð1[𝑥𝑎æ + ≤ ≤ ≤] + Ð2[𝑥𝑎æ + ≤ ≤ ≤] + ≤ ≤ ≤

+Ð𝐾 [𝑥𝐾𝑎 + ≤ ≤ ≤] + å𝑘(𝑥, Ð),
(2.2.14)

for any 𝑘 ∈ N. The index 𝐾 = 𝐾(𝑘) is defined in Proposition 2.4, and each term between
brackets is a finite combination of monomials 𝑥𝑖æ𝑗 with the following convention:

a) the notation 𝑥𝑖æ𝑗 + ≤ ≤ ≤ means that after the sign + we find a finite combination of
𝑥𝑖′

æ𝑗′

of strictly greater order;

b) the coefficients of the unwritten monomials after signs + are polynomial functions
of Ð1, . . . , Ð𝐾, which are zero if Ð = 0.

The remainder å𝑘 is a 𝒞𝑘𝑎⊗function in (𝑥, Ð), which is 𝑘𝑎⊗flat at 𝑥 = 0.

Proof. From Proposition 2.3 𝑔𝑘(𝑡) = 𝑒Ð1𝑡𝑄𝑘(𝑡). For 𝑡 = ⊗ ln 𝑥 it becomes

𝑔𝑘(⊗ ln 𝑥) = 𝑥⊗Ð1𝑄𝑘(⊗ ln 𝑥) = 𝑥⊗Ð1(Ð𝑘æ + �̄�𝑘(Ð1, . . . , Ð𝑘;æ)), (2.2.15)

where �̄�𝑘 is polynomial of degree ⊘ 𝑘 ⊗ 1 in æ with coefficients in ℐ(Ð1, . . . , Ð𝑘⊗1) ∩
ℐ(Ð2, . . . , Ð𝑘)2. Hence, the general term 𝑔𝑘(⊗ ln 𝑥)𝑥𝑎𝑘 in 𝐷𝑞

𝑎(𝑥) is given by

𝑔𝑘(⊗ ln 𝑥)𝑥𝑎𝑘 = 𝑥𝑎𝑘⊗Ð1(Ð𝑘æ + �̄�𝑘(Ð1, . . . , Ð𝑘, æ)). (2.2.16)

Notice that 𝑥⊗Ð1 = Ð1æ + 1 then, rewriting the equation (2.2.16), we obtain, for 𝑘 ⊙ 2,

𝑔𝑘(⊗ ln 𝑥)𝑥𝑎𝑘 = 𝑥𝑎𝑘(Ð1æ + 1)(Ð𝑘æ + �̄�𝑘(Ð1, . . . , Ð𝑘, æ))

= Ð1Ð𝑘𝑥
𝑎𝑘æ2 + Ð𝑘æ𝑥

𝑎𝑘 + (1 + Ð1æ)𝑥𝑎𝑘�̄�𝑘,
(2.2.17)
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and, since 𝑄1 ⊕ 1, 𝑔1(⊗ ln 𝑥)𝑥𝑎 = 𝑥𝑎𝑘⊗Ð1 = 𝑥𝑎𝑘(Ð1æ + 1) = 𝑥𝑎𝑘 + Ð1𝑥
𝑝æ. Proposition 2.4

gives

𝐷𝑞
𝑎(𝑥) =

∑︀𝐾
𝑖=1 𝑔𝑖(⊗ ln 𝑥)𝑥𝑎𝑘 + å𝑘

= Ð1𝑥
𝑎æ + 𝑥𝑎 + Ð1Ð2𝑥

2𝑎æ2 + Ð2𝑥
2𝑎æ + (1 + Ð1æ)𝑥2𝑎�̄�2 + Ð1Ð3𝑥

3𝑎æ2

+Ð3𝑥
3𝑎æ + (1 + Ð1æ)𝑥3𝑎�̄�3 + ≤ ≤ ≤ + å𝑘,

(2.2.18)
where + ≤ ≤ ≤ is the expansion of 𝑔𝑠(⊗ ln 𝑥)𝑥𝑠𝑎 for 4 ⊘ 𝑠 ⊘ 𝐾. Now, we rearrange the sum
above in the following way: first, take all the terms whose coefficients are divisible by Ð1

(if Ð1 = 0 start from the second step). Next, all the remainders (they will not be divisible
by Ð1) divisible by Ð2 and so on until Ð𝐾 . From the characterization of �̄�𝑠(Ð1, . . . , Ð𝑠, æ)
we can write it as

�̄�𝑠(Ð1, . . . , Ð𝑠, æ) = 𝑏0(Ð1, . . . , Ð𝑠) + 𝑏1(Ð1, . . . , Ð𝑠)æ + ≤ ≤ ≤ + 𝑏𝑠⊗1(Ð1, . . . , Ð𝑠)æ𝑠⊗1,

where 𝑏𝑖(Ð1, . . . , Ð𝑠) ∈ ℐ(Ð1, . . . , Ð𝑠⊗1) ∩ ℐ(Ð2, . . . , Ð𝑠)2, for 𝑖 = 0, . . . , 𝑠⊗ 1. If �̄�𝑠 ⊕ 0 we
have nothing to do. When �̄�𝑠 ̸⊕ 0 then, 𝑏𝑖 is non-zero for some 𝑖 = 0, . . . , 𝑠⊗ 1, and this
term is divisible by some Ð𝑗, with 1 ⊘ 𝑗 ⊘ 𝑠. Thus, each non-zero term of �̄�𝑠 is divisible
by some Ð𝑗, 1 ⊘ 𝑗 ⊘ 𝑠. In this way, we obtain

𝐷𝑞
𝑎(𝑥) = 𝑥𝑎 + Ð1

[︁
𝑥𝑎æ + Ð2𝑥

2𝑎æ2 + 𝑥2𝑎æ�̄�2 + Ð3𝑥
3𝑎æ2 + ≤ ≤ ≤

]︁

+ Ð2 [𝑥2𝑎æ + Θ2] + Ð3 [𝑥3𝑎æ + Θ3]
...

+ Ð𝐾𝑥
𝐾𝑎æ + å𝑘(𝑥, Ð),

where Θ𝑗’ are composed by the terms in 𝑥(𝑗+1)𝑎�̄�𝑗+1, . . . , 𝑥
𝐾𝑎�̄�𝐾 divisible by Ð𝑗 but not

divisible by any Ð𝑖 with 𝑖 = 1, . . . , 𝑗 ⊗ 1. It is clear that, each term after 𝑥𝑠𝑎æ in the
bracket related to Ð𝑠 is of order greater than 𝑥𝑠𝑎æ and has coefficients in ℐ(Ð1, . . . , Ð𝐾).
The Proposition 2.4 gives that the remainder å𝑘 is a 𝑘𝑎⊗flat function at 𝑥 = 0, thus
finishing the proof.

Now, returning to the vector field 𝑋, Theorem 1.1 establishes a 𝒞𝑘⊗equivalence be-
tween 𝑋 and 𝑋𝑁(𝑘). This equivalence defines diffeomorphisms, Φ and Ψ, on R, in a
neighborhood of 0 = Φ(0) = Ψ(0), such that if 𝐷𝑎 is the transition map for 𝑋𝑁(𝑘), then,

𝐷𝑎(𝑥) = Ψ ◇𝐷𝑎 ◇ Φ(𝑥). (2.2.19)

Theorem 2.5. Transition maps at saddle-regular, saddle-saddle or real saddle points are
quasi-regular.

Proof. The expansion of order 𝑘 in (æ, 𝑥), given by Theorem 2.4, depends only on
Ð1, . . . , Ð𝑁 because all Ð𝑖(Ú) ⊕ 0 for 𝑖 ⊙ 𝑁 + 1, then

𝐷𝑞
𝑎(𝑥) = 𝑥𝑎 + Ð1[𝑥𝑎æ + ≤ ≤ ≤] + ≤ ≤ ≤ + Ð𝑁𝑥

𝑁𝑎æ + å𝑘(𝑥, Ú). (2.2.20)

The resonant coefficients Ð𝑖 are independent of 𝑘, but it does not happen for the expan-
sions in the brackets. To study the transition map for the vector field 𝑋, we have Ð1 ⊕ 0
and, thus, æ = ⊗ ln 𝑥. Hence, 𝐷(𝑥) = Ψ ◇𝐷𝑎 ◇ Φ(𝑥) is the transition map of 𝑋, with

𝐷𝑞
𝑎(𝑥) = 𝑥𝑎 + Ð2𝑥

2𝑎(⊗ ln(𝑥)) + ≤ ≤ ≤ + Ð𝑁𝑥
𝑁𝑎(⊗ ln 𝑥) + å𝑘(𝑥),
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where å𝑘 is of class 𝒞𝑘𝑎 and 𝑘𝑎⊗flat at 𝑥 = 0. So, for a fixed 𝑘, we have

𝐷𝑎(𝑥) = 𝑥
a
q

(︁
1 + Ð2𝑥

𝑎(⊗ ln(𝑥)) + ≤ ≤ ≤ + Ð𝑁𝑥
(𝑁⊗1)𝑎(⊗ ln 𝑥) + å𝑘(𝑥)

⎡1/𝑞
.

Consider the Taylor series of 𝑦 ↦⊃ (1 + 𝑦)Ü and 𝑦 ↦⊃ ln(1 + 𝑦) around 𝑦 = 0, then

(1 + 𝑦)Ü = 1 + 𝑎1𝑦 + 𝑎2𝑦
2 + ≤ ≤ ≤ = 1 +

∞∑︁

𝑖=1

𝑎𝑖𝑦
𝑖

with 𝑎𝑖 = 𝑎𝑖(Ü) for all 𝑖 ⊙ 1, and

ln(1 + 𝑦) = 𝑏1𝑦 + 𝑏2𝑦
2 + ≤ ≤ ≤ =

∞∑︁

𝑖=1

𝑏𝑖𝑦
𝑖.

Since Φ and Ψ are diffeomorphisms with Φ(0) = 0 = Ψ(0), we can write them as

Φ(𝑦) =
∞∑︁

𝑖=1

Ñ𝑖𝑦
𝑖 and Ψ(𝑦) =

∞∑︁

𝑖=1

Ö𝑖𝑦
𝑖,

with Ñ1Ö1 ̸= 0. Now, expanding 𝐷 and ordering the terms, we obtain that, for any 𝑘 ∈ N,
there exists a sequence of coefficients Ú𝑖, with Ú1 = 𝑎

𝑞
< Ú2 < ≤ ≤ ≤ < Ú𝑁(𝑘), and a sequence

of polynomials, 𝑃1 ⊕ 𝐴 (positive constant), 𝑃2,. . . ,𝑃𝑁(𝑘), such that

𝐷(𝑥) = Ψ ◇𝐷𝑎 ◇ Φ(𝑥) =
𝑁(𝑘)∑︁

𝑖=1

𝑥Úi𝑃𝑖(ln 𝑥) + å̄𝑘(𝑥), (2.2.21)

where å̄𝑘 is of class 𝒞𝑘 and 𝑘⊗flat. The coefficients Ú𝑖 and the polynomials 𝑃𝑖 are inde-
pendent of 𝑘, so they are well defined. This means that taking 𝑘′ > 𝑘, the sequence for 𝑘
is the sequence for 𝑘′ truncated at order 𝑁(𝑘).

Therefore, taking 𝑘 arbitrarily large, we have a well defined infinite formal series

�̂�(𝑥) =
∞∑︀

𝑖=1
𝑥Úi𝑃𝑖(𝑥) which is asymptotic to 𝐷(𝑥) in the following sense:

For any 𝑠 ∈ N⊗¶0♢,
⧹︃⧹︃⧹︃⧹︃𝐷(𝑥) ⊗

𝑠∑︀
𝑖=1

𝑥Úi𝑃𝑖(ln 𝑥)
⧹︃⧹︃⧹︃⧹︃ = 𝑂(𝑥Ús) where Ú1 = 𝑟 < Ú2 < ≤ ≤ ≤ < Ú𝑠 <

≤ ≤ ≤ is an infinite sequence of positive coefficients tending to +∞, and 𝑃1, 𝑃2, . . . , 𝑃𝑠, . . . is
an infinite sequence of polynomials with 𝑃1 ⊕ 𝐴 (positive constant). Hence, the transition
map 𝐷 is quasi-regular as required.

2.3 A Cycle Having Limit Cycles Accumulating onto

It

Consider the planar system of ordinary differential equations given in polar coordinates
(𝑥 = 𝜌 cos 𝜃, 𝑦 = 𝜌 sin 𝜃) {︃

�̇� = 𝑓(𝜌),
𝜃 = ⊗1,

(2.3.1)

where,

𝑓(𝜌) =

∏︁
⋁︁⨄︁
⋁︁⋃︁
𝜌(𝜌2 ⊗ 1)3 sin

(︃
1

𝜌2 ⊗ 1

⎜
if 𝜌 ̸= 1,

0 if 𝜌 = 1.
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• 𝐷(𝑥) = 𝜙 ◇𝐷⊗
𝑎𝑏 ◇ å(𝑥) if 𝑎 < 0.

Since the set 𝒟, of all quasi-regular homeomorphisms, is a group which contains the set
Diff0 of all diffeomorphisms fixing the origin, it is enough to show that 𝐷∘

𝑎𝑏 are quasi-
regular homeomorphisms.

Observe that, for 𝑎 > 0, 𝐷+
𝑎𝑏 can be 𝐶∞⊗extended to an open neighborhood of the

origin. Then, we can calculate the infinity formal Taylor series
∞∑︁

𝑖=1

1
𝑖!
𝑑𝑖

𝑑𝑥𝑖
𝐷+

𝑎𝑏(0)𝑥𝑖,

where, for each 𝑛 ∈ N, we have

⧹︃⧹︃⧹︃⧹︃⧹︃𝐷
+
𝑎𝑏(𝑥) ⊗

𝑛∑︀
𝑖=1

1
𝑖!
𝑑

𝑑𝑥
𝐷+

𝑎𝑏(0)𝑥𝑖

⧹︃⧹︃⧹︃⧹︃⧹︃ = 𝑂(𝑥𝑛). Moreover, 𝑑
𝑑𝑥
𝐷+

𝑎𝑏(0)

= 0 and 𝑑2

𝑑𝑥2𝐷
+
𝑎𝑏(0) =

(︁
2𝑎
𝑏
𝜀
⎡⊗ 1

2 > 0. Therefore, we obtain an asymptotic Dulac series by

doing Ú𝑖 = 𝑖+ 1 and 𝑃𝑖(𝑢) ⊕ 1
(𝑖+1)!

𝑑i+1

𝑑𝑥i+1𝐷
+
𝑎𝑏(0) for all 𝑖 ⊙ 2, and so

�̂�+
𝑎𝑏(𝑥) =

∞∑︁

𝑖=1

𝑥Úi𝑃𝑖(ln 𝑥),

with 𝑃1 ⊕
(︁

2𝑎
𝑏
𝜀
⎡⊗ 1

2 > 0. Hence, 𝐷+
𝑎𝑏 is a quasi-regular homeomorphism. Now, observe

that 𝐷+
𝑎𝑏 ◇ 𝐷⊗

𝑎𝑏(𝑥) ⊕ 𝑥, so 𝐷+
𝑎𝑏 ◇ 𝐷⊗

𝑎𝑏 = Id. Since the set 𝒟 is a group and 𝐷+
𝑎𝑏 and Id

are quasi-regular, we get that 𝐷⊗
𝑎𝑏 is a quasi-regular homeomorphism. Therefore, we have

proved the result.

Now, we proceed to prove the quasi-analyticity of the transition regular map at fold-
regular points.

Theorem 2.7. Transition maps at fold-regular points are quasi-analytic.

Proof. It is enough to show that 𝐷+
𝑎𝑏 is quasi-analytic. From Theorem 2.7 it is enough to

show the second part of Definition 2.4.
Let 𝑚 be any positive real number and consider 𝑔(𝑥) = 𝐷+

𝑎𝑏(𝑒
⊗𝑥) =

√︁
𝑒⊗2𝑥 + 2𝑎

𝑏
𝜀 ⊗√︁

2𝑎
𝑏
𝜀. Since 𝑒⊗𝑥 is a decreasing map, we have that 𝑒⊗𝑥 < 𝑒⊗𝑚 for all 𝑥 > 𝑏, moreover

𝑒⊗𝑥 ⊃ 0 as 𝑥 ⊃ +∞. Therefore, 𝑒⊗2𝑥 is bounded in the set ¶𝑥 ∈ R;𝑥 > 𝑚♢. Now, define
the following complex extension of g,

𝐺 :
C ⊗⊃ C

𝑧 ↦⊃
√︁
𝑒⊗2𝑧 + 2𝑎

𝑏
𝜀⊗

√︁
2𝑎
𝑏
𝜀
.

As 𝑎, 𝑏, 𝜀 > 0, 𝐺 is a composition of holomorphic maps, 𝐺 is thus a holomorphic map.
Observe that, for 𝑧 = 𝑢 + 𝑖𝑣 ∈ C, ♣𝑒⊗2𝑧♣= ♣𝑒⊗2𝑢⊗2𝑣𝑖♣= ♣𝑒⊗2𝑢(cos(2𝑣) ⊗ 𝑖 sin(2𝑣))♣⊘ 𝑒⊗2𝑢.
Moreover, ∆𝑚 = ¶𝑧 = 𝑢 + 𝑖𝑣;𝑢 > 𝑚(1 + 𝑣2)1/4♢ ⊆ ¶𝑧 = 𝑢 + 𝑖𝑣;𝑢 > 𝑚♢. Therefore, 𝐺 is
bounded in the set ∆𝑚 = ¶𝑧 = 𝑢+ 𝑖𝑣;𝑢 > 𝑚(1 + 𝑣2)1/4♢ and it concludes the proof.

Now, a straight consequence of this result and from the fact 𝒟 is a group.

Corollary 2.1. Transition maps, near fold-fold points of piecewise 𝐶∞ vector fields, are
quasi-regular homeomorphisms and quasi-analytic maps.

Remark 2.6. From Theorem 2.7 and Corollary 2.1 we conclude the result obtained for
hyperbolic polycycles does not change if fold points are allowed instead of saddle points.
More specifically, polycycles for which all singular points are hyperbolic saddles (with
invariant manifolds transversal to Σ if the saddle is on the switching manifold) and/or
fold points cannot have limit cycles accumulating onto it.



Chapter 3

Degenerate Cycle Through a Visible
Fold-Regular Point

In this chapter we present a study of bifurcations of a degenerate cycles through
visible fold-regular points. This kind of cycle has already been mentioned in literature,
[9, 24, 31]. It is included in this work for completeness, since it appears in bifurcations
of the degenerate cycles through hyperbolic saddle-regular points that will be studied in
the next chapter. Moreover, we give a more complete study of the first return map and
models realizing these cycles.

3.1 Generic Conditions

Consider a discontinuous vector field 𝑍 = (𝑋, 𝑌 ) ∈ Ω𝑟. We say that 𝑍 satisfies the
condition

- 𝐹𝐶(1): if 𝑍 has a visible fold-regular point 𝐹𝑍 ∈ Σ, being a fold point for 𝑋 and
regular for 𝑌 ;

- 𝐹𝐶(2): if the unstable separatrix of the fold point, 𝑊 𝑢
+(𝑋,𝐹𝑍), intersects Σ transver-

sally at a point 𝑄𝑍 ̸= 𝐹𝑍 ;

- 𝐹𝐶(3): if 𝑌 is transversal to Σ at 𝑄𝑍 and the positive trajectory of 𝑌 through 𝑄𝑍

meets Σ transversally at 𝐹𝑍 ;

Notice that, if 𝑍 satisfies 𝐹𝐶(1)⊗𝐹𝐶(3) then 𝑍 has a degenerate cycle Ò𝑍 passing through
a visible fold-regular point. Moreover, in this case, 𝑍 satisfies:

- 𝐹𝐶(4): there exists a first return map defined in a half open neighborhood of 𝐹𝑍

contained in:

(a) the bounded region in R2 delimited by Ò𝑍 ;

(b) the unbounded region in R2 delimited by Ò𝑍 .

Definition 3.1. Given 𝑍 = (𝑋, 𝑌 ) ∈ Ω𝑟 satisfying 𝐹𝐶(1) ⊗ 𝐹𝐶(3) with cycle Ò𝑍. Then
Ò𝑍 is of type

• 𝐷𝐹𝐶1: if 𝑍 satisfies 𝐹𝐶(4) ⊗ (𝑎), see Figure 3.1⊗(𝑎);

• 𝐷𝐹𝐶2: if 𝑍 satisfies 𝐹𝐶(4) ⊗ (𝑏), see Figure 3.1⊗(𝑏).
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neighborhood of Ò0 there is no problem in assuming that Σ coincides, around the origin,
with the 𝑥⊗axis and ℎ(𝑥, 𝑦) = 𝑦. Under these assumptions, by writing 𝑋0 = (𝑋01, 𝑋02)
we have 𝑋0ℎ(0) = 𝑋02(0) = 0. As 0 is not a singular point of 𝑋0 assume, without loss of
generality, that 𝑋01(0) > 0. The case 𝑋01(0) < 0 is treated analogously.

From Proposition 3.1 and continuous dependence, we obtain a neighborhood 𝒱𝑍0
⊆ Ω𝑟

of 𝑍0 for which there is a well defined first return map defined in a half open interval con-
tained in Σ. In fact, condition 𝐹𝐶(2) guarantees that, for some positive time, 𝑊 𝑢

+(𝑋0, 0)
intersects Σ transversely at 𝑄0. Then, reducing 𝒱𝑍0

if necessary, by continuity we have
that given 𝑍 = (𝑋, 𝑌 ) ∈ 𝒱𝑍0

the unstable separatrix 𝑊 𝑢
+(𝑋,𝐹𝑍) through the fold-regular

point 𝐹𝑍 = (𝑎𝑍 , 0) ∈ 𝑉0 intersects Σ transversely at a point𝑄𝑍 ∈ Σ, for some positive time
and 𝑄𝑍 ≡ 𝑄0. It implies that, for each 𝑥 ⊙ 𝑎𝑍 small enough, there exists 0 < 𝑡(𝑥) < ∞
satisfying 𝜙𝑋(𝑡(𝑥), (𝑥, 0)) ∈ 𝐼1

𝑍 , where 𝐼1
𝑍 ⊆ Σ is an open neighborhood of 𝑄0 in Σ and

𝑡(𝑥) is of class 𝐶𝑟. Moreover, 𝜙𝑋(𝑡(𝑎𝑍), 𝐹𝑍) = 𝑄𝑍 and the map 𝑍 ∈ 𝒱𝑍0
↦⊃ 𝑄𝑍 is 𝐶𝑟.

Similarly, condition 𝐹𝐶(3) ensures that, reducing 𝐼1
𝑍 if necessary, given 𝑄 ∈ 𝐼1

𝑍 there
exists 0 < 𝑡(𝑄) < ∞ such that 𝜙𝑌 (𝑡(𝑄), 𝑄) ∈ 𝐼0

𝑍 where 𝐼0
𝑍 ⊆ Σ is an open neighborhood

of the origin. Define 𝑅𝑍 = 𝜙𝑌 (𝑡(𝑄𝑍), 𝑄𝑍) ∈ 𝐼0
𝑍 , then the map 𝑄𝑍 ∈ 𝐼1

𝑍 ↦⊃ 𝑅𝑍 ∈ 𝐼0
𝑍 is

also of class 𝐶𝑟.
In order to describe the unfolding of the cycle Ò0 of 𝑍0 it is necessary to study the

first return map, near 𝐹𝑍 , of all 𝑍 ∈ 𝒱𝑍0
. Both cases, 𝐹𝐶(4) ⊗ (𝑎) and 𝐹𝐶(4) ⊗ (𝑏), are

analyzed with the same approach. The return map of 𝑍0 is defined in a half-open interval
[0, Ó0) ⊆ Σ ∩ 𝑉0 for some Ó0 > 0.

Proposition 3.2. Consider 𝑍 ∈ 𝒱𝑍0
and let 𝐹𝑍 = (𝑎𝑍 , 0) be the fold-regular point of 𝑍

in Σ ∩ 𝑉0. Then, the first return map of 𝑍 near 𝐹𝑍 can be written as

Þ𝑍(𝑥) = 𝑏𝑍 + Ù2(𝑥⊗ 𝑎𝑍)2 +𝑂3(𝑥⊗ 𝑎𝑍), (3.1.1)

where 𝑥 ∈ [𝑎𝑍 , Ó𝑍) ⊆ Σ ∩ 𝑉0 and Ù2 > 0.

Proof. According to what we have seen above, the first return map for 𝑍 is defined in a
half-open interval [𝑎𝑍 , Ó𝑍) ⊆ Σ ∩ 𝑉0 for some Ó𝑍 > 0, where 𝑎𝑍 corresponds to the fold
point of 𝑋. Let á𝜀 ⊆ Σ+ be a transversal section to the flow of 𝑍 at 𝑃𝜀 ∈ 𝑊 𝑢

+(𝑋,𝐹𝑍).
For 𝜀 > 0 small enough, assume á𝜀 ⊆ ¶(𝑥, 𝜀);𝑥 ∈ R♢ and 𝑃𝜀 = (𝑝𝜀, 𝜀). We identify á𝜀

with an interval of R under projection on the first coordinate (the projection map on the
𝑖 ⊗ 𝑡ℎ coordinate is denoted by Þ𝑖, 𝑖 = 1, 2). We also identify 𝐼0

𝑍 with an open interval
of R through projection on the first coordinate. So, for all 𝑥 ∈ [𝑎𝑍 , Ó𝑍) ⊆ 𝐼0

𝑍 there exists
0 < 𝑡1(𝑥) < ∞ satisfying Þ2 ◇ 𝜙𝑋(𝑡1(𝑥), (𝑥, 0)) = 𝜀. So, the following transition map is
well defined

𝜌1 : [𝑎𝑍 , Ó𝑍) ⊗⊃ á𝜀

𝑥 ↦⊃ Þ1 ◇ 𝜙𝑋(𝑡1(𝑥), (𝑥, 0))
.

From Proposition 1.2 (originally proved in [33]), for Ó𝑍 > 0 small enough, we have:

𝜌1(𝑥) = 𝑝𝜀 + Ð2(𝑥⊗ 𝑎𝑍)2 +𝑂((𝑥⊗ 𝑎𝑍)3), (3.1.2)

with Ð2 > 0, Figure 3.2. The flow of 𝑋 defines a diffeomorphism from á𝜀 to 𝐼1
𝑍 :

𝜌2 : á𝜀 ⊗⊃ 𝐼1
𝑍

𝑢 ↦⊃ 𝜙𝑋(𝑡2(𝑢), 𝑢)
,

where, for all 𝑢 ∈ á𝜀, 0 < 𝑡2(𝑢) < ∞ is the time spent by the trajectory of 𝑋 through
𝑃 = (𝑢, 𝜀) to reach 𝐼1

𝑍 . Identify 𝐼1
𝑍 with an open interval 𝐼 ⊆ R through a parametrization
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We are interested in the fixed points of ÞÑ, i.e., in the solutions of ÞÑ(𝑥) = 𝑥 with
𝑥 ∈ [0, 1 + Ñ). This equation has two solutions 𝑥∘ = 1 + Ñ ∘ √

1 ⊗ 2Ñ ⊗ 3Ñ2. For
0 < Ñ < 1/3 we have 𝑥+ > 1 + Ñ and 0 ⊘ 𝑥⊗ < 1 + Ñ then, only 𝑥⊗ corresponds to an
acceptable fixed point. Moreover, ♣Þ′

Ñ(𝑥⊗)♣< 1 so 𝑥⊗ corresponds to an attractor limit
cycle of 𝑍Ñ. For ⊗1 < Ñ < 0 there exists no limit cycle.

In order to complete the study of the family 𝑍Ñ it is necessary to analyze the sliding
vector field. The sliding and escaping regions are

Σ𝑠 = ¶(𝑥, 0) ∈ Σ;𝑥 < 0♢ and Σ𝑒 = ¶(𝑥, 0) ∈ Σ; 1 + Ñ < 𝑥 < 4/3♢ ,

the sliding vector field is given by

𝑍𝑠
Ñ(𝑥) =

1 + Ñ + 3𝑥⊗ 3𝑥2

1 + Ñ ⊗ 5𝑥+ 3𝑥2
. (3.3.2)

The equation 𝑍𝑠
Ñ(𝑥) = 0 has two solutions, 𝑧∘ = 1

2
∘ 1

6

√
21 + 12Ñ, satisfying:

• 𝑧⊗ < 0 and 𝑍 ′
Ñ(𝑧⊗) > 0 for Ñ > ⊗1. Then, 𝑧⊗ ∈ Σ𝑠 is a pseudo-saddle for 𝑍Ñ;

• 𝑧+ ∈ (1+Ñ, 4/3) and 𝑍 ′
Ñ(𝑧+) > 0 for ⊗7/4 < Ñ < 1/3. Then, 𝑧+ ∈ Σ𝑒 is an unstable

pseudo-node for 𝑍Ñ;

• 𝑧⊗ = 0 for Ñ = ⊗1 then, 𝑃⊗ = (𝑧⊗, 0) coincides with the visible fold point of 𝑋 and
it is a repellor for 𝑍𝑠

Ñ;

• 𝑧+ = 4/3 for Ñ = 1/3 then, 𝑃+ = (𝑧+, 0) coincides with the invisible fold point of
𝑋 and it is a repellor for 𝑍𝑠

Ñ.

Observe that, when Ñ < 0, the points 𝐹0 and 𝑃⊗ can be connected with 𝐹Ñ, 𝑃+ or 𝐹1.
In fact, for Ñ = 0 we have a homoclinic-like connection of 𝐹0, for Ñ = Ñ0 = 7

24
⊗ 1

24

√
97 we

have an heteroclinic connection between 𝐹0 and 𝑃⊗. It follows from continuity that for
Ñ ∈ (Ñ0, 0) we have ÞÑ(𝐹0) ∈ (𝑧⊗, 0) and for ⊗1 < Ñ < Ñ0 we have ÞÑ(𝐹0) < 𝑧⊗. There
exist lots of possible heteroclinic connections for this system, since our intention is just
to show how rich this system can be we restrict our study for Ñ0 < Ñ < 1/3.

Under some restrictions on Ñ, the negative trajectory of 𝑍Ñ through 𝑃⊗ intersects Σ in
a point with first coordinate greater than 2, so there exists no connections between this
point and 𝐹Ñ, 𝑃+, 𝐹1 or 𝐹0. Therefore, we just need to analyze the connections of 𝐹0. By
using the software Mathematica and continuous dependence criteria we obtain

(1) for Ñ = Ñ1 = ⊗1/3 a trajectory of 𝑌Ñ connects 𝐹1 and 𝐹0 without intersecting Σ in
any other point;

(2) for Ñ = Ñ3 = ⊗1/7 the trajectory of 𝑍Ñ through 𝐹Ñ meets 𝐹0 after crossing Σ
transversely once;

(3) items (1) and (2) imply in the existence of Ñ2 ∈ (Ñ1, Ñ3) for which the trajectory of
𝑍Ñ through 𝑃+ meets 𝐹0 after crossing Σ once;

(4) for Ñ = Ñ5 = (⊗3 +
√

6)/9 ∈ (Ñ3, 0) the trajectory of 𝑍Ñ through 𝐹1 meets 𝐹0 after
crossing Σ transversely twice;

(5) items (2) and (4) imply in the existence of Ñ4 ∈ (Ñ3, Ñ5) for which the trajectory of
𝑍Ñ through 𝑃+ meets 𝐹0 after crossing Σ twice.







Chapter 4

Degenerate Cycle Through a
Saddle-Regular Point

In this chapter we present a study on a degenerate cycle passing through a hyperbolic
saddle-regular point. Cycles through saddle points have been studied in the literature, see
[18, 31, 41, 42], but all these works present either a real saddle with invariant manifolds
crossing the switching manifold Σ transversely twice or a boundary saddle with invari-
ant manifolds crossing Σ only at the saddle point. Our interest lies on the study of a
boundary saddle with one of the invariant manifolds crossing Σ transversely at another
point, different from the saddle. A systematical approach of the study of the bifurcations
of this kind of cycle is presented here. The first step in this analysis is the study of local
bifurcations of a saddle-regular point and then an analysis of the first return map defined
near the cycle. Finally, we present all bifurcation diagrams for a family of vector fields
𝑍Ð,Ñ = (𝑋Ð,Ñ, 𝑌Ð,Ñ), such that 𝑍0,0 has a degenerate cycle of this type and the hyperbol-
icity ratios of the saddle point of 𝑋Ð,Ñ is an irrational number. Moreover, some models
realizing the cycle and having saddle with hyperbolicity ratio as a rational number are
studied.

4.1 Generic Conditions

We start by establishing the necessary generic conditions to obtain a degenerate cycle
with lower possible codimension. Consider a discontinuous vector field 𝑍0 = (𝑋0, 𝑌0) ∈ Ω𝑟

satisfying the following conditions

- 𝐵𝑆(1) : 𝑋0 has a hyperbolic saddle at 𝑆𝑋0
∈ Σ and the invariant manifolds of 𝑋0 at

the saddle point 𝑆𝑋0
, 𝑊 𝑢(𝑋0, 𝑆𝑋0

) and 𝑊 𝑠(𝑋0, 𝑆𝑋0
), are transversal to Σ at 𝑆𝑋0

;

- 𝐵𝑆(2) : 𝑌0 is transversal to Σ, 𝑊 𝑢(𝑋0, 𝑆𝑋0
), and 𝑊 𝑠(𝑋0, 𝑆𝑋0

) at 𝑆𝑋0
;

- 𝐵𝑆(3) : the sliding vector field near the saddle point has 𝑆𝑋0
as a non-degenerate

singularity, i.e., by taking 𝑥 as a local chart on Σ at 𝑆𝑋0
, 𝑍𝑠(𝑥) = Û𝑥+𝑂(𝑥2) with

Û ̸= 0;

- 𝐵𝑆𝐶(1) : the unstable manifold of the saddle which lies in Σ+, 𝑊 𝑢
+(𝑋0, 𝑆𝑋0

), is
transversal to Σ at 𝑃𝑋0

̸= 𝑆𝑋0
;
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looking at the unfolding of the local saddle-regular bifurcation, then we perform a study
on the first return map defined near the cycle. Finally, we state the main results and
bifurcation diagrams.

4.1.1 Bifurcations of a Saddle-Regular Point

We are interested in the simplest case, i.e., the codimension 1 case studied in [15, 22,
23]. So, consider a discontinuous vector field 𝑍0 = (𝑋0, 𝑌0) ∈ Ω𝑟 satisfying conditions
𝐵𝑆(1) ⊗ 𝐵𝑆(3) and 𝐵𝑆𝐶(3). In order to study local bifurcations of 𝑍0 near 𝑆𝑋0

, the
following result, which is proved in [38] (Lemma 8.1, page 79), is an important tool. It
describes bifurcations of a hyperbolic saddle point on the boundary Σ of the manifold
with boundary Σ+ = Σ ∪ Σ+.

Lemma 4.1. Let 𝑝 ∈ Σ be a hyperbolic saddle point of 𝑋0♣Σ+, where 𝑋0 ∈ ä𝑟. Then,
there exist neighborhoods 𝐵0 of 𝑝 in R2 and 𝒱0 of 𝑋0 in ä𝑟, and a 𝐶𝑟⊗map Ñ : 𝒱0 ⊃ R,
such that:

(a) Ñ(𝑋) = 0 if and only if 𝑋 has a unique equilibrium 𝑝𝑋 ∈ Σ∩𝐵0 which is a hyperbolic
saddle point;

(b) if Ñ(𝑋) > 0, 𝑋 has a unique equilibrium 𝑝𝑋 ∈ 𝐵0 ∩ int(Σ+) which is a hyperbolic
saddle point;

(c) if Ñ(𝑋) < 0, 𝑋 has no equilibria in 𝐵0 ∩ Σ+.

Since 𝑌0 is transversal to Σ at 𝑆𝑋0
, there exist neighborhoods 𝐵1, of 𝑆𝑋0

in Σ, and
𝒱1, of 𝑌0 in ä𝑟, such that for any 𝑌 ∈ 𝒱1 and 𝑝 ∈ 𝐵1, 𝑌 is transversal to Σ at 𝑝. So,
reducing 𝐵0 given in Lemma 4.1 and 𝐵1 if necessary, we consider 𝐵0 ∩ Σ = 𝐵1 and the
neighborhood 𝒱𝑍0

= 𝒱0 × 𝒱1 of 𝑍0 in Ω𝑟.
Notice that, if Ñ(𝑋) ̸= 0, for 𝑋 ∈ 𝒱0, there exists a fold point of 𝑋 in Σ ∩ 𝐵0. The

fold point is located between the points where the invariant manifolds of the saddle cross
Σ. Moreover, the map 𝑠 : 𝒱0 ⊃ Σ that associates each 𝑋 ∈ 𝒱0 to a tangent point 𝐹𝑋 ∈ Σ
is of class 𝒞𝑟, 𝐹𝑋 is visible fold point if Ñ(𝑋) < 0, 𝐹𝑋 is a hyperbolic saddle point if
Ñ(𝑋) = 0, 𝐹𝑋 is an invisible point if Ñ(𝑋) > 0.

Given 𝑍 = (𝑋, 𝑌 ) ∈ 𝒱𝑍0
, we associate two curves, 𝑇𝑋 and 𝑃𝐸𝑍 , defined as following:

(i) 𝑇𝑋 is the curve given implicitly by the equation 𝑋ℎ(𝑝) = 0, i.e., 𝑇𝑋 is formed by
the point where 𝑋 is parallel to Σ. Therefore, the intersection of 𝑇𝑋 with Σ gives
the fold point 𝐹𝑋 ;

(ii) 𝑃𝐸𝑍 is the curve given implicitly by the equation 𝑋(𝑝) = Ú(𝑝)𝑌 (𝑝), where Ú(𝑝) ∈ R,
i.e., 𝑃𝐸𝑍 is composed by those points where 𝑋 and 𝑌 are parallel. So, when the
intersection of 𝑃𝐸𝑍 with Σ is in Σ𝑠 ∪ Σ𝑒, this intersection gives the position of the
pseudo-equilibrium point.

Observe that the maps 𝑋 ↦⊃ 𝑇𝑋 and 𝑍 ↦⊃ 𝑃𝐸𝑍 are of class 𝐶𝑟. It follows from conditions
𝐵𝑆(1) ⊗ 𝐵𝑆(3) that the curves 𝑇𝑋0

, 𝑃𝐸𝑍0
, 𝑊 𝑢(𝑋0, 𝑆𝑋0

) and 𝑊 𝑠(𝑋0, 𝑆𝑋0
) have empty

intersection in 𝐵0 up to the saddle point 𝑋. In fact, all these curves contain the singular
point 𝑆𝑋0

. Condition 𝐵𝑆(2) guarantees that 𝑃𝐸𝑍0
, 𝑊 𝑢(𝑋0, 𝑆𝑋0

) and 𝑊 𝑠(𝑋0, 𝑆𝑋0
) do not

coincide in 𝐵0 up to the saddle point, see [15, 23]. Condition 𝐵𝑆(2) also ensures that 𝑇𝑋0

and 𝑃𝐸𝑍0
are different in 𝐵0 except at 𝑆𝑋0

, otherwise 𝑌0 would be tangent to Σ in 𝐵1.
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Given that the orbit of 𝑌0 connecting 𝑃𝑋0
and 𝑆𝑋0

= 0 (by hypothesis) is transversal
to Σ in these two points there exist neighborhoods 𝒱3 of 𝑌0 in ä𝑟 and 𝐼0 of 𝑃𝑋0

in Σ
such that, for any 𝑌 ∈ 𝒱3 and for any 𝑝 ∈ 𝐼0, the trajectory of 𝑌 passing through 𝑝 is
transversal to Σ at this point and meets Σ, again transversely, in a neighborhood of 0 in
Σ that we can suppose to be 𝐵1. Moreover, the segment of this trajectory is contained in
Σ⊗.

The vector field𝑋0 has a hyperbolic saddle point at the origin such that the eigenspaces
of 𝐷𝑋0(0) are transverse to Σ in 0. From Lemma 4.1 we have neighborhoods 𝒱0 of 𝑋0

in ä𝑟 and 𝐵0 of 0 in R2 such that any 𝑋 ∈ 𝒱0 has a hyperbolic saddle 𝑆𝑋 ∈ 𝐵0 as
the only singularity of 𝑋 in a neighborhood 𝐵0 of 0 and the eigenspaces of 𝐷𝑋(𝑆𝑋) are
transverse to Σ at the origin. Therefore, if Ñ(𝑋) ̸= 0, the invariant manifolds of 𝑋 at 𝑆𝑋

are transversal to Σ a neighborhood of 0. Moreover, since 𝑊 𝑢
+(𝑋0, 0) is transversal to Σ

at 𝑃𝑋0
, there exist a neighborhood 𝒱2 of 𝑋0 in ä𝑟 and a neighborhood 𝐼1 ⊆ 𝐼0 of 𝑃𝑋0

in
Σ such that, for any 𝑋 ∈ 𝒱2, 𝑊 𝑢

+(𝑋,𝑆𝑋) also meets Σ transversely at a point in 𝐼1.
When the saddle of 𝑋 ∈ 𝒱0 ∩ 𝒱2 is not in Σ, there are at least three different points in

which the invariant manifolds 𝑊 𝑢,𝑠(𝑋,𝑆𝑋) meet Σ. Denote these points by 𝑃 𝑖
𝑋 , 𝑖 = 1, 2, 3,

where 𝑃 1
𝑋 , 𝑃

2
𝑋 ∈ 𝐵1 and 𝑃 3

𝑋 ∈ 𝐼1. Moreover, assume 𝑃 1
𝑋 , 𝑃

3
𝑋 ∈ 𝑊 𝑢(𝑆𝑋 , 𝑋) ∩ Σ and

𝑃 2
𝑋 ∈ 𝑊 𝑠(𝑆𝑋 , 𝑋) ∩ Σ. We keep this notation if the saddle of 𝑋 ∈ 𝒱0 ∩ 𝒱2 is in Σ, the

difference is 𝑃 1
𝑋 = 𝑃 2

𝑋 = 𝑆𝑋 . Since we have assumed 𝑆𝑋0
∈ 𝜕Σ𝑠 ∪ 𝜕Σ𝑐 (the other case is

analogous), by taking 𝑥 as a local chart for Σ near 0 (with 𝑥 < 0 corresponding to sliding
region and 𝑥 > 0 corresponding to crossing region) and by denoting 𝑃 𝑖

𝑋 = 𝑥𝑖, 𝑖 = 1, 2, we
have 𝑥1 ⊘ 𝑥2. As seen before, if 𝑆𝑋 /∈ Σ then there exists a tangency point 𝐹𝑋 ∈ 𝐵1, also
𝑆𝑋 = 𝐹𝑋 when the saddle is on the boundary. Considering the chart taken for Σ, denote
𝐹𝑋 = 𝑥𝑓 , then 𝑥1 ⊘ 𝑥𝑓 ⊘ 𝑥2, see Figure 4.6. Observe that, lim𝑍⊃𝑍0

𝑥𝑖 = 0, for 𝑖 = 1, 2, 𝑓 .
Now, redefine 𝒱𝑍0

= (𝒱0 ∩ 𝒱2) × (𝒱1 ∩ 𝒱3), and for 𝑍 ∈ 𝒱𝑍 let 𝑎𝑍 be defined by:

• if Ñ(𝑋) < 0, then 𝑎𝑍 = 𝑥𝑓 . The trajectory through the fold point crosses Σ in 𝐼1

(flow of 𝑋) and, after that, it crosses Σ in 𝐵1 (flow of 𝑌 );

• if Ñ(𝑋) = 0, then 𝑎𝑍 = 𝑥1 = 𝑥2. The unstable manifold of 𝑆𝑋 crosses Σ in 𝐼1 (flow
of 𝑋) and, after that, it crosses Σ in 𝐵1;

• if Ñ(𝑋) > 0, then 𝑎𝑍 = 𝑥2. The stable manifold of the saddle crosses Σ at 𝑃 2
𝑋

unstable manifold of 𝑆𝑋 crosses Σ in 𝐼1 (flow of 𝑋) and, after that, it crosses Σ in
𝐵1.

Therefore, by continuity, for 𝑥 > 𝑎𝑍 ∈ 𝐵1 the trajectory of 𝑍 through this point will
return to 𝐵1 after a positive finite time. Thus, by choosing Ó𝑍 > 0 small enough such
that [𝑎𝑍 , 𝑎𝑍 + Ó𝑍) ⊆ 𝐵1 we reach the result.

The next step is the presentation of a more precise form for this return map. It is
done as follows.

Proposition 4.1. Consider the discontinuous vector field 𝑍0 satisfying the conditions
𝐵𝑆(1) ⊗ 𝐵𝑆(3) and 𝐵𝑆𝐶(1) ⊗ 𝐵𝑆𝐶(2) with 𝑆𝑋0

= (0, 0). Then, by considering the
notation in Lemma 4.2, the first return map of 𝑍 can be written as

Þ𝑍 : [𝑎𝑍 , 𝑎𝑍 + Ó𝑍) ⊗⊃ 𝐽𝑌

𝑥 ↦⊃ 𝜌3 ◇ 𝜌2 ◇ 𝜌1(𝑥)
, (4.1.1)

where 𝜌2 and 𝜌3 are orientation reversing diffeomorphisms and 𝜌1 is a transition map near
a saddle or a fold point.
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As seen in Chapter 1, for each 𝑍 = (𝑋, 𝑌 ) ∈ 𝒱𝑍0
, we can assume that, around 𝑆𝑋 ,

𝑋 is 𝐶𝑘⊗conjugated to the normal form given in Theorem 1.2. By performing a change
of coordinates 𝑥 ↦⊃ 𝑦 and 𝑦 ↦⊃ 𝑥 in these normal forms we can consider axis 𝑦 being the
local unstable manifold and axis 𝑥 being the local stable manifold of 𝑆𝑋 . Moreover, we
assume that Σ = ℎ⊗1

𝑘 (0), where ℎ𝑘(𝑥, 𝑦) = 𝑦 ⊗ 𝑥 + 𝑘. Observe that Σ intersects the axis
at the points (0,⊗𝑘) and (𝑘, 0), it means that, if the saddle is real, 𝑘 > 0, if it is on the
boundary, 𝑘 = 0. and if it is virtual, 𝑘 < 0.

Moreover, as seen in Chapter 2, we can assume 𝜀 = 1 in the definition of à and
à ⊆ ¶(𝑥, 1) ∈ R2;𝑥 ∈ R♢. Since we high differentiability classes are needed, we assume
𝑍0 = (𝑋0, 𝑌0) ∈ Ω∞ and 𝒱𝑍0

⊆ Ω∞.
Hereinafter, 𝑟 will denote the hyperbolicity ratio of𝑋, i.e., 𝑟 = ⊗Ú2/Ú1 where Ú2 < 0 <

Ú1 are the eigenvalues of 𝐷𝑋(𝑆𝑋). Also, denote by 𝜙�̃�(𝑡, 𝑥, 𝑦) = (𝜙1(𝑡, 𝑥, 𝑦), 𝜙2(𝑡, 𝑥, 𝑦))𝑇

the flow of �̃� given in the normal forms below.

(i) Suppose 𝑟 /∈ Q. Then,

�̃�(𝑥, 𝑦) = ⊗𝑟𝑥 𝜕
𝜕𝑥

+ 𝑦
𝜕

𝜕𝑦
. (4.1.2)

In this case, the transition time from Σ to à is easily calculated and it is given
by 𝑡1(𝑥) = ⊗ ln (𝑥⊗ 𝑘) for each (𝑥, 𝑥 ⊗ 𝑘) ∈ Σ. Therefore, the transition map
𝜌, from Σ to à, is given by 𝜌(𝑥) = 𝜙2(𝑡1(𝑥), 𝑥, 𝑥 ⊗ 𝑘) = 𝑒⊗𝑟𝑡1(𝑥)𝑥 = 𝑥(𝑥 ⊗ 𝑘)𝑟 =
𝑘(𝑥⊗ 𝑘)𝑟 + (𝑥⊗ 𝑘)𝑟+1.

(ii) Suppose 𝑟 =
𝑝

𝑞
∈ Q, 𝑝, 𝑞 ∈ N without common factors. Then,

�̃�(𝑥, 𝑦) = 𝑦
𝜕

𝜕𝑦
+

(︃
⊗𝑟 +

1
𝑞

𝑁∑︁

𝑖=1

Ð𝑖+1(𝑦𝑝𝑥𝑞)𝑖

⎜
𝑥
𝜕

𝜕𝑥
. (4.1.3)

In this case, the transition time from Σ to à is also 𝑡1(𝑥) = ⊗ ln (𝑥⊗ 𝑘) for each
(𝑥, 𝑥 ⊗ 𝑘) ∈ Σ. Thus, the transition map 𝜌, from Σ to à, is given by 𝜌(𝑥) =
𝜙2(𝑡1(𝑥), 𝑥, 𝑥⊗ 𝑘) which we cannot to calculate explicitly.

For now, we focus on the case 𝑟 /∈ Q.

Transition map for 𝑟 /∈ Q

As seen in Chapter 1, there exist diffeomorphisms ã and å, defined in a neighborhood
of the origin, such that 𝜌 = ã ◇ 𝜌 ◇ å and å(0) = ã(0) = 0. More specifically, ã = å⊗1.
We can also assume �̃� = å(𝑎𝑍) is equivalent to 𝑎𝑍 for �̃�. i.e., the transition map 𝜌 of �̃�
is defined in [�̃�, �̃�+ Ó̃). With the notations established above we have:

• if 𝑘 ⊙ 0, then �̃� = 𝑘. This means 𝑃2 = (𝑘, 0) for 𝑘 > 0 and 𝑆𝑋 = (0, 0) for 𝑘 = 0.
See Figures 4.7-(𝑎) and 4.7-(𝑏);

• if 𝑘 < 0, then 𝑘 < �̃� =
𝑘

1 + 𝑟
< 0. This means that 𝐹𝑋 =

(︃
𝑘

1 + 𝑟
,

⊗𝑘𝑟
1 + 𝑟

⎜
. See

Figure 4.7-(𝑐).

Lemma 4.3. Let 𝑟 be the hyperbolicity radius of the saddle of �̃�, 𝑟 /∈ Q, and suppose
�̃� is given by equation 4.1.2. Define 𝑠 = [𝑟], i.e., 𝑠 is the highest integer smaller than 𝑟.
Then, the transition map 𝜌 of �̃� satisfies:
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Proposition 4.2. Consider 𝑍 = (𝑋, 𝑌 ) ∈ 𝒱𝑍0
, let 𝑟 /∈ Q be the hyperbolicity ratio of 𝑆𝑋

and 𝑠 = [𝑟]. Let Ñ = Ñ(𝑋) be defined in Lemma 4.1 and Þ𝑍 defined in Proposition 4.1.
Then,

(i)
𝑑

𝑑𝑥
Þ𝑍(𝑎𝑍) = 0 and

𝑑2

𝑑𝑥2
Þ𝑍(𝑎𝑍) > 0 if Ñ < 0;

(ii) lim
𝑥⊃𝑎+

Z

𝑑

𝑑𝑥
Þ𝑍(𝑥) = ≤ ≤ ≤ = lim

𝑥⊃𝑎+

Z

𝑑𝑠+1

𝑑𝑥𝑠+1
Þ𝑍(𝑥) = 0 and lim

𝑥⊃𝑎+

Z

𝑑𝑠+2

𝑑𝑥𝑠+2
Þ𝑍(𝑥) = +∞ > 0 if

Ñ = 0 and 𝑟 > 1;

(iii) lim
𝑥⊃𝑎+

Z

𝑑

𝑑𝑥
Þ𝑍(𝑥) = +∞ if Ñ ⊘ 0 and 𝑟 < 1;

(iv) lim
𝑥⊃𝑎+

Z

𝑑

𝑑𝑥
Þ𝑍(𝑥) = ≤ ≤ ≤ = lim

𝑥⊃𝑎+

Z

𝑑𝑠

𝑑𝑥𝑠
Þ𝑍(𝑥) = 0 and lim

𝑥⊃𝑎+

Z

𝑑𝑠+1

𝑑𝑥𝑠+1
Þ𝑍(𝑥) = +∞ if Ñ > 0

and 𝑟 > 1.

Proof. From Proposition 4.1 we know Þ𝑍 = 𝜌3 ◇ 𝜌2 ◇ 𝜌1. Observe that 𝜌2 and 𝜌3 are
orientation reversing diffeomorphisms of class 𝐶∞. Also, from Theorem 1.2, we obtain
𝜌1 = ã ◇ 𝜌 ◇ å where ã and å are orientation preserving diffeomorphisms of class 𝒞𝑙,
𝑙 > 𝑠 + 2. Define Φ = 𝜌3 ◇ 𝜌2 ◇ ã, then Þ𝑍 = Φ ◇ 𝜌 ◇ å, where Φ and å are orientation
preserving diffeomorphisms of class 𝒞𝑙, 𝑙 > 𝑠 + 2. By definition, �̃� = å(𝑎𝑍). Let 𝐼0

be a neighborhood of 𝑎𝑍 where Þ𝑍 = Φ ◇ 𝜌 ◇ å(𝑥) is well defined for 𝑥 ∈ 𝐼0. Then, the
derivatives of order 1 ⊘ 𝑖 ⊘ 𝑠+2 of Φ and å are limited in 𝐼0. Moreover, 𝜌 is differentiable
in (�̃�, �̃�+ Ó̃) for Ó̃ > 0 sufficiently small.

Now,
𝑑

𝑑𝑥
Þ𝑍(𝑥) =

𝑑

𝑑𝑥
Φ(𝜌(å(𝑥)))

𝑑

𝑑𝑥
𝜌(å(𝑥))

𝑑

𝑑𝑥
å(𝑥).

Thus, for each 1 < 𝑖 ⊘ 𝑠 + 2, by using the Chain and Product Rules for derivatives, we
have

𝑑𝑖

𝑑𝑥𝑖
Þ𝑍(𝑥) =

𝑑𝑖

𝑑𝑥𝑖
Φ(𝜌(å(𝑥)))

⎟
𝑑

𝑑𝑥
𝜌(å(𝑥))

𝑑

𝑑𝑥
å(𝑥)

⟨𝑖

+
𝑑

𝑑𝑥
Φ(𝜌(å(𝑥)))

𝑑𝑖

𝑑𝑥𝑖
𝜌(å(𝑥))

⎟
𝑑

𝑑𝑥
å(𝑥)

⟨𝑖

+
𝑑

𝑑𝑥
Φ(𝜌(å(𝑥)))

𝑑

𝑑𝑥
𝜌(å(𝑥))

𝑑𝑖

𝑑𝑥𝑖
å(𝑥) + 𝑆(𝑥),

where 𝑆(𝑥) is a sum of terms of composed by products of derivatives of order < 𝑖 of Φ,
𝜌, and å, at 𝜌å(𝑥), å(𝑥), and 𝑥, respectively. From Lemma 4.3 we obtain

lim
𝑥⊃𝑎+

Z

𝑑𝑖

𝑑𝑥𝑖
Þ𝑍(𝑥) = lim

𝑥⊃𝑎+

Z

𝑑

𝑑𝑥
Φ(𝜌(å(𝑥)))

𝑑𝑖

𝑑𝑥𝑖
𝜌(å(𝑥))

⎟
𝑑

𝑑𝑥
å(𝑥)

⟨𝑖

=
𝑑

𝑑𝑥
Φ(𝜌(å(𝑎𝑍)))

⎟
lim

𝑥⊃𝑎+

Z

𝑑𝑖

𝑑𝑥𝑖
𝜌(å(𝑥))

⟨ ⎟
𝑑

𝑑𝑥
å(𝑎𝑍)

⟨𝑖

.

Therefore, the result follows directly from the fact that å(𝑥) ⊃ �̃�+ when 𝑥 ⊃ 𝑎+
𝑍 and

from Lemma 4.2.

Proposition 4.3. Consider 𝑍 = (𝑋, 𝑌 ) ∈ 𝒱𝑍0
and suppose that 𝑟 /∈ Q is the hyperbolicity

ratio of 𝑆𝑋 . Then, the following statements hold:
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fixed point of Þ𝑍 which corresponds to a degenerate cycle 𝑍. The definition of 𝑎𝑍 gives
the different types of cycles as listed in item (𝑖𝑖). Analogously, if Þ𝑍(𝑎𝑍) = 𝑎𝑍 , 𝑟 < 1
and Ñ(𝑍) > 0, 𝑎𝑍 is the unique fixed point of 𝑝𝑍 in [𝑎𝑍 , 𝑎𝑍 + Ó𝑍) and Þ𝑍(𝑥) > 𝑥 for all
𝑥 ∈ (𝑎𝑍 , 𝑎𝑍 +Ó𝑍). Then, 𝑎𝑍 is a repellor for Þ𝑍 which corresponds to a repellor degenerate
cycle of 𝑍 through a real saddle point. It proves item (𝑖𝑖).

If Þ𝑍(𝑎𝑍) > 𝑎𝑍 and either 𝑟 > 1 or 𝑟 < 1 and Ñ(𝑍) ⊘ 0, the analysis is similar to
the case in item (𝑖𝑖), the only difference is that the fixed point will change. Indeed, since
in these cases the tangent vector of the graph of Þ𝑍 tends to be horizontal at 𝑎𝑍 , for 𝑍
sufficiently near 𝑍0 (reducing 𝒱𝑍0

if necessary), the graph of Þ𝑍 intersects the graph of
the identity map at a point 𝑥0 ∈ (𝑎𝑍 , 𝑎𝑍 + Ó𝑍). Also, Þ𝑍(𝑥) > 𝑥 for all 𝑥 ∈ [𝑎𝑍 , 𝑥0) and
Þ𝑍(𝑥) < 𝑥 for all 𝑥 ∈ (𝑥0, 𝑎𝑍 + Ó𝑍). It proves item (𝑖).

Finally, to prove item (𝑖𝑖𝑖) it is enough to observe that, since the tangent vector of the
graph of Þ𝑍 tends to be vertical at 𝑎𝑍 , we obtain that the graph of Þ𝑍 will cross the graph
of the identity map at a point 𝑥0 ∈ (𝑎𝑍 , 𝑎𝑍 + Ó𝑍). Also, Þ𝑍(𝑥) < 𝑥 for all 𝑥 ∈ [𝑎𝑍 , 𝑥0) and
Þ𝑍(𝑥) > 𝑥 for all 𝑥 ∈ (𝑥0, 𝑎𝑍 + Ó𝑍). It completes the proof.

4.2 Main Results and Bifurcation Diagrams

Let 𝒱𝑍0
be a neighborhood of 𝑍0 where all results found above hold. As seen before,

we have some continuous correspondences, where Σ is identified with R,

• for 𝑍 = (𝑋, 𝑌 ) ∈ 𝒱𝑍0
it is associated the hyperbolic saddle 𝑆𝑋 of 𝑋,

𝑆 : 𝒱(𝑍0) ⊃ R2

(𝑋, 𝑌 ) ↦⊃ 𝑆𝑋
.

• for 𝑍 = (𝑋, 𝑌 ) ∈ 𝒱𝑍0
it is associated a map that determines if the saddle of 𝑋 is

real, on the boundary, or virtual. This map was determined for 𝑋 seen as a vector
field in a Manifold with boundary in Lemma 4.1, now we extend this map to a 𝒱𝑍0

and we will again call it Ñ,

Ñ : 𝒱(𝑍0) ⊃ R

(𝑋, 𝑌 ) ↦⊃ Ñ(𝑋)
.

• for 𝑍 = (𝑋, 𝑌 ) ∈ 𝒱𝑍0
it is associated the tangency point 𝐹𝑋 of 𝑋 with Σ,

𝐹 : 𝒱(𝑍0) ⊃ Σ ♠ R

(𝑋, 𝑌 ) ↦⊃ 𝐹𝑋
.

Observe that 𝐹𝑋 is an invisible fold-regular point if Ñ(𝑍) > 0, a visible fold-regular
point if Ñ(𝑍) < 0, and a saddle-regular point if Ñ(𝑍) = 0.

• for 𝑍 = (𝑋, 𝑌 ) ∈ 𝒱𝑍0
it is associated the points in Σ where the invariant manifolds

of 𝑋 at 𝑆𝑋 cross Σ. The relative order in Σ of the points 𝑃𝑖, for 𝑖 = 1, 2, 3, where
established above.

𝑃𝑖 : 𝒱(𝑍0) ⊃ Σ ♠ R

(𝑋, 𝑌 ) ↦⊃ 𝑃 𝑖
𝑋
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• for 𝑍 = (𝑋, 𝑌 ) ∈ 𝒱𝑍0
it is associated the point Σ ∩ 𝑃𝐸𝑍 , where 𝑃𝐸𝑍 is the curve

where 𝑋 is parallel to 𝑌 ,

𝑃𝐸 : 𝒱(𝑍0) ⊃ Σ ♠ R

𝑍 ↦⊃ Σ ∩ 𝑃𝐸𝑍
.

Observe that 𝑃𝐸(𝑍) is a pseudo-equilibrium point of 𝑍 when 𝑃𝐸(𝑍) ∈ Σ𝑠 ∪ Σ𝑒.

• finally, for 𝑍 = (𝑋, 𝑌 ) ∈ 𝒱𝑍0
, it is associated a first return map Þ𝑍 . Thus, we can

associate to 𝑍 a number that defines the existence of a degenerate cycle,

Ð : 𝒱(𝑍0) ⊃ R

𝑍 ↦⊃ Þ𝑍(𝑎𝑍) ⊗ 𝑎𝑍
.

Observe that, despite the fact that 𝑎𝑍 was defined in terms of Sgn(Ñ), the quantity
Ð(𝑍) is an intrinsic feature of 𝑍, it means that this dependence is just used in order
to clarify the exposition.

Notice that Ð = Ð(𝑍) and Ñ = Ñ(𝑍) are bifurcation parameters from which we can
obtain all the bifurcations of the degenerate cycle, Γ0, of 𝑍0 in 𝑉𝑍0

. Consider 𝑍0 satisfying
𝐵𝑆(1) ⊗ 𝐵𝑆(3) and 𝐵𝑆𝐶(1) ⊗ 𝐵𝑆𝐶(2) with hyperbolicity ratio of 𝑋0 being irrational,
from the study performed above it becomes clear that, to study these bifurcations, we
have six cases to analyze:

- 𝐷𝑆𝐶11: 𝑍0 has a saddle-regular point of type 𝐵𝑆1 and the hyperbolicity ratio of
𝑋0 is greater than one;

- 𝐷𝑆𝐶12: 𝑍0 has a saddle-regular point of type 𝐵𝑆1 and the hyperbolicity ratio of
𝑋0 is smaller than one;

- 𝐷𝑆𝐶21: 𝑍0 has a saddle-regular point of type 𝐵𝑆2 and the hyperbolicity ratio of
𝑋0 is greater than one;

- 𝐷𝑆𝐶22: 𝑍0 has a saddle-regular point of type 𝐵𝑆2 and the hyperbolicity ratio of
𝑋0 is smaller than one;

- 𝐷𝑆𝐶31: 𝑍0 has a saddle-regular point of type 𝐵𝑆3 and the hyperbolicity ratio of
𝑋0 is greater than one;

- 𝐷𝑆𝐶32: 𝑍0 has a saddle-regular point of type 𝐵𝑆3 and the hyperbolicity ratio of
𝑋0 is smaller than one.

Define 𝒱0 = ¶𝑍 = (𝑋, 𝑌 ) ∈ 𝒱𝑍0
;𝑆𝑋 has irrational hyperbolicity ratio♢. From now on

we will consider vector fields in 𝒱0 and describe the bifurcations of 𝑍0 em 𝒱0. In order
to do that, consider a family of discontinuous vector fields 𝑍Ð,Ñ of vector fields in 𝒱0,
(Ð, Ñ) ∈ ℬ0 ⊆ R2, such that ℬ0 is an open neighborhood of 0 ∈ R2, 𝑍0,0 = 𝑍0 and Ð, Ñ
are the bifurcation parameters discussed above. All the cases 𝐷𝑆𝐶(1) ⊗𝐷𝑆𝐶(6) have at
least four bifurcation curves, in the (Ð, Ñ)⊗plane, given implicitly as functions of Ð and
Ñ:

• let Ò𝑃E
be the curve implicitly defined by Þ(𝑎𝑍α,β

) ⊗ 𝑃𝐸(𝑍Ð,Ñ) = 0, i.e., Ò𝑃E
=

¶(Ð, Ñ) ∈ ℬ0; Þ(𝑎𝑍α,β
) ⊗ 𝑃𝐸(𝑍Ð,Ñ) = 0♢. Then Ò𝑃E

is the curve where there exists
a connection between the pseudo equilibrium and the point corresponding to 𝑎𝑍α,β

.
Thus, this curve lies either on the half plane Ñ > 0 or in the half plane Ñ < 0;
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• define Ò𝐹 = ¶(Ð, Ñ) ∈ ℬ0; Þ(𝑎𝑍α,β
) ⊗ 𝐹 (𝑍Ð,Ñ) = 0♢. Then, Ò𝐹 is the curve providing

a connection between the fold point 𝐹𝑋α,β
and the point corresponding to 𝑎𝑍α,β

. So,
for Ñ ⊘ 0 this curve coincides with the axis Ð;

• for 𝑖 = 1, 2 the curve Ò𝑃i
= ¶(Ð, Ñ) ∈ ℬ0; Ñ ⊙ 0 and Þ(𝑎𝑍α,β

) ⊗ 𝑃𝑖(𝑍Ð,Ñ) = 0♢
provides a connection between 𝑃𝑖(𝑍Ð,Ñ) and the saddle point (𝑎𝑍α,β

corresponds to
the saddle point if Ñ ⊙ 0). For 𝑖 = 1 this connection i pseudo-homoclinic and it is
homoclinic for 𝑖 = 2. Moreover, Ò𝑃2

coincides with the half axis ¶(0, Ñ); Ñ ⊙ 0♢.

These curves will be illustrated later and the relative position between them depends on
the case being analyzed. In some cases extra bifurcation curves will merge and they will
be defined when it is necessary. In order to obtain an order relation between the curves,
we use the abuse of notation Ò𝑗(Ð, Ñ) = Þ(𝑎𝑍α,β

) ⊗ 𝑗(𝑍Ð,Ñ) ∈ R, for 𝑗 = 𝑃𝐸, 𝐹, 𝑃1.
Now, we are ready to describe the bifurcation diagrams for the family 𝑍Ð,Ñ. We observe

that all results follows almost directly from the analysis and constructions performed
previously.

The first three theorems concern about cycles of types 𝐷𝑆𝐶11 and 𝐷𝑆𝐶12.

Theorem A. Suppose that 𝑍0 is in the case 𝐷𝑆𝐶11 and Ñ > 0. Then, for the family
𝑍Ð,Ñ = (𝑋Ð,Ñ, 𝑌Ð,Ñ) defined above, bifurcation curves, Ò𝑃E

, Ò𝑃1
, and Ò𝑃F

, merge from the
origin, there exists an attractor pseudo-node, and the following statements hold:

(a) if (Ð, Ñ) ∈ 𝑅1
7, where 𝑅1

7 = ¶(Ð, Ñ); 0 < Ñ < Ò𝑃E
(Ð, Ñ)♢, then there exists a sliding

polycycle passing through 𝑆𝑋α,β
and 𝑃𝐸(𝑍Ð,Ñ), which contains two segments of sliding

orbits;

(b) if (Ð, Ñ) ∈ Ò𝑃E
, then there exists a sliding polycycle passing through 𝑆𝑋α,β

and
𝑃𝐸(𝑍Ð,Ñ), which contains just one segment of sliding orbit;

(c) if (Ð, Ñ) ∈ 𝑅1
6 = ¶(Ð, Ñ); Ò𝑃E

(Ð, Ñ) < Ñ < Ò𝑃1
(Ð, Ñ)♢, then there exists a sliding

pseudo-cycle passing through 𝑆𝑋α,β
;

(d) if (Ð, Ñ) ∈ Ò𝑃1
, then there exists a pseudo-cycle passing through 𝑆𝑋α,β

;

(e) if (Ð, Ñ) ∈ 𝑅1
5 = ¶(Ð, Ñ); Ò𝑃1

(Ð, Ñ) < Ñ < Ò𝐹 (Ð, Ñ)♢, then there exists a sliding
pseudo-cycle passing through 𝑆𝑋α,β

;

(f) if (Ð, Ñ) ∈ Ò𝐹 , then there exists a sliding pseudo-polycycle passing through 𝑆𝑋α,β
and

𝐹 (𝑍Ð,Ñ);

(g) if (Ð, Ñ) ∈ 𝑅1
4 = ¶(Ð, Ñ); Ò𝐹 (Ð, Ñ) < Ñ and Ð < 0♢, then there exists a sliding

pseudo-cycle passing through 𝑆𝑋α,β
;

(h) if Ð = 0 and Ñ > 0, then there exists an attractor degenerate cycle passing through
𝑆𝑋α,β

;

(i) if (Ð, Ñ) ∈ 𝑅1
3 = ¶(Ð, Ñ); Ñ > 0 and Ð > 0♢, then there exists an attractor limit cycle

through Σ𝑐.

The bifurcation diagram is illustrated in Figure 4.9.
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Proof. For Ñ > 0 we have a real saddle 𝑆𝑋α,β
. Since 𝑍0 is in the case 𝐷𝑆𝐶11, the saddle-

regular point of 𝑍0 is in the case 𝐵𝑆1, so there exists an attractor pseudo-node, 𝑃𝐸(𝑍Ð,Ñ),
satisfying 𝑃𝐸(𝑍Ð,Ñ) < 𝑃1(𝑍Ð,Ñ) in Σ. Also, 𝑃1(𝑍Ð,Ñ) < 𝐹 (𝑍Ð,Ñ) < 𝑃2(𝑍Ð,Ñ) and, for
𝑖 = 1, 2, 𝐸, lim

(Ð,Ñ)⊃(0,0)
𝐹 (𝑍Ð,Ñ) = lim

(Ð,Ñ)⊃(0,0)
𝑃𝑖(𝑍Ð,Ñ) = 0⊗. So, the curves Ò𝐹Z

, Ò𝑃1
, and Ò𝐹

merge from the origin and lie on ¶(Ð, Ñ);Ð < 0 and Ñ > 0♢. The existence of the limit
cycle follows from Proposition 4.3. Now, the result is achieved by analyzing the dynamic
of the system for the possible values of Þ𝑍α,β

(𝑎𝑍α,β
).

Theorem B. Suppose that 𝑍0 is in the case 𝐷𝑆𝐶12 and Ñ > 0. Then, for the family
𝑍Ð,Ñ = (𝑋Ð,Ñ, 𝑌Ð,Ñ) defined above, bifurcation curves, Ò𝑃E

, Ò𝑃1
, and Ò𝑃F

, merge from the
origin, there exists an attractor pseudo-node, and the following statements hold:

(a) if (Ð, Ñ) ∈ 𝑅1
7, where 𝑅1

7 = ¶(Ð, Ñ); 0 < Ñ < Ò𝑃E
(Ð, Ñ)♢, then a repellor limit cycle

through Σ𝑐 coexists with a sliding polycycle passing through 𝑆𝑋α,β
and 𝑃𝐸(𝑍Ð,Ñ),

which contains two segments of sliding orbits;

(b) if (Ð, Ñ) ∈ Ò𝑃E
, then a repellor limit cycle through Σ𝑐 coexists with a sliding polycycle

passing through 𝑆𝑋α,β
and 𝑃𝐸(𝑍Ð,Ñ), which contains only one segment of sliding

orbit;

(c) if (Ð, Ñ) ∈ 𝑅1
6 = ¶(Ð, Ñ); Ò𝑃E

(Ð, Ñ) < Ñ < Ò𝑃1
(Ð, Ñ)♢, then a repellor limit cycle

through Σ𝑐 coexists with a sliding pseudo-cycle passing through 𝑆𝑋α,β
;

(d) if (Ð, Ñ) ∈ Ò𝑃1
, then a repellor limit cycle through Σ𝑐 coexists with a pseudo-cycle

passing through 𝑆𝑋α,β
;

(e) if (Ð, Ñ) ∈ 𝑅1
5 = ¶(Ð, Ñ); Ò𝑃1

(Ð, Ñ) < Ñ < Ò𝐹 (Ð, Ñ)♢, then a repellor limit cycle
through Σ𝑐 coexists with a sliding pseudo-cycle passing through 𝑆𝑋α,β

;

(f) if (Ð, Ñ) ∈ Ò𝐹 , then a repellor limit cycle through Σ𝑐 coexists with a sliding pseudo-
polycycle passing through 𝑆𝑋α,β

and 𝐹 (𝑍Ð,Ñ);

(g) if (Ð, Ñ) ∈ 𝑅1
4 = ¶(Ð, Ñ); Ò𝐹 (Ð, Ñ) < Ñ and Ð < 0♢, then a repellor limit cycle

through Σ𝑐 coexists with a sliding pseudo-cycle passing through 𝑆𝑋α,β
;

(h) if Ð = 0 and Ñ > 0, then there exists a repellor degenerate cycle passing through
𝑆𝑋α,β

;

(i) if (Ð, Ñ) ∈ 𝑅1
3 = ¶(Ð, Ñ); Ñ > 0 and Ð > 0♢, there exists no cycle.

The bifurcation diagram is illustrated in Figure 4.10.

Proof. The proof is identical to the proof of Theorem A up to the fact that, as seen in
Proposition 4.3, limit cycles appear for Ð < 0 and the degenerate cycle for Ð = 0 is a
repellor.

Theorem C. Suppose that 𝑍0 is in the case 𝐷𝑆𝐶11 or 𝐷𝑆𝐶12 and Ñ ⊘ 0. Then, the
family 𝑍Ð,Ñ = (𝑋Ð,Ñ, 𝑌Ð,Ñ) defined above satisfies: there exists no pseudo-equilibrium, 𝑆𝑋α,β

is as attractor for the sliding vector field, and:

(a) if Ñ = 0 and Ð < 0, then there exists a sliding cycle passing through the 𝑆𝑋α,β
;
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respectively.

Proof. If Ñ = 0 then 𝐹 (𝑍Ð,Ñ) = 𝑆𝑋α,β
∈ Σ. Items 𝑏 and 𝑐 follow directly from Proposition

4.3. If Ð < 0 then the unstable manifold of the saddle in Σ+ intersects Σ, after that it
follows the flow of 𝑌Ð,0 and it intersects the sliding region. Since 𝐹 (𝑍Ð,Ñ) is an attractor
for the sliding vector field (see the bifurcation of a saddle-regular point of type 𝐵𝑆1), then
there exists a sliding cycle through the saddle-regular point. If Ñ < 0, then the saddle
is virtual and there is no pseudo-equilibrium, the only distinguished singularity is the
fold-regular point. Now, the result is achieved similarly to the proof of Theorem B.

Now, the theorems concerning with cycles of type 𝐷𝑆𝐶21 and 𝐷𝑆𝐶22 are presented.

Theorem D. Suppose that 𝑍0 is in the case 𝐷𝑆𝐶21. Then, for the family 𝑍Ð,Ñ =
(𝑋Ð,Ñ, 𝑌Ð,Ñ) defined above, bifurcation curves, Ò𝑃E

, Ò̃𝑃E
, Ò𝑃1

, and Ò𝑃F
, merge from the

origin and the following statements hold:

1. for Ñ ⊘ 0: identical to the cases given in Theorem C.

2. for Ñ > 0: there exists an attractor pseudo-node and

(a) if (Ð, Ñ) ∈ 𝑅2
8 = ¶(Ð, Ñ); 0 < Ñ < Ò𝑃1

(Ð, Ñ)♢, then there exists a sliding
pseudo-cycle passing through 𝑆𝑋α,β

;

(b) if (Ð, Ñ) ∈ Ò𝑃1
then there exists a pseudo-cycle passing through 𝑆𝑋α,β

;

(c) if (Ð, Ñ) ∈ 𝑅2
7 = ¶(Ð, Ñ); Ò𝑃1

(Ð, Ñ) < Ñ < Ò𝑃E
(Ð, Ñ)♢, then there exists a

sliding pseudo-cycle passing through 𝑆𝑋α,β
;

(d) if (Ð, Ñ) ∈ Ò𝑃E
, then there exists a sliding polycycle passing through 𝑆𝑋α,β

and 𝑃𝐸(𝑍Ð,Ñ), which contains only one segment of sliding orbits;

(e) if (Ð, Ñ) ∈ 𝑅2
6 = ¶(Ð, Ñ); Ò𝑃E

(Ð, Ñ) < Ñ < Ò𝐹 (Ð, Ñ)♢, then there exists a
sliding polycycle passing through 𝑆𝑋α,β

and 𝑃𝐸(𝑍Ð,Ñ), which contains two segments
of sliding orbits;

(f) if (Ð, Ñ) ∈ Ò𝐹 , then there exists a sliding polycycle passing through 𝑆𝑋α,β
,

𝑃𝐸(𝑍Ð,Ñ) and 𝐹 (𝑍Ð,Ñ);

(g) if (Ð, Ñ) ∈ 𝑅2
5 = ¶(Ð, Ñ); Ò𝐹 (Ð, Ñ) < Ñ < Ò̃𝑃E

(Ð, Ñ)♢, then there exists a
sliding pseudo-cycle passing through 𝑆𝑋α,β

;

(h) if (Ð, Ñ) ∈ Ò̃𝑃E
then there exists a sliding polycycle passing through 𝑆𝑋α,β

and 𝑄𝑍α,β
, which contains only one sliding segment;

(i) if (Ð, Ñ) ∈ 𝑅2
4 = ¶(Ð, Ñ); Ñ > Ò̃𝑃E

(Ð, Ñ) and Ð < 0♢, then there exists a
sliding polycycle passing through 𝑆𝑋α,β

and 𝑃𝐸(𝑍Ð,Ñ), which contains two sliding
segments;

(j) if Ð = 0 and Ñ > 0, then there exists an attractor degenerate cycle through
𝑆𝑋α,β

;

(k) if (Ð, Ñ) ∈ 𝑅2
3 = ¶(Ð, Ñ); Ñ > 0 and Ð > 0♢, then there exists an attractor

limit cycle passing through the crossing region near 𝑃𝑋α,β
.

The bifurcation diagram is illustrated in Figure 4.11.
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Proof. Since 𝑍0 is in the case 𝐷𝑆𝐶21 the saddle-regular point is in case 𝐵𝑆2, the position
of the curves Ò𝑃E

and Ò𝑃1
changes in relation to cases 𝐷𝑆𝐶11 and 𝐷𝑆𝐶12. For this reason,

a new bifurcation curve, Ò̃𝑃E
, merges from the origin in the half plane where Ñ > 0. In

fact, since Ð < 0 and Ò𝐹 < Ñ < 0, then 𝐹 (𝑍Ð,Ñ) < Þ𝑍α,β
(𝑎𝑍α,β

) < 𝑎𝑍α,β
, it means that

the trajectory which contains the unstable manifold of the saddle cross the sewing region
twice before reach the sliding region from Σ+. Therefore, by continuity, there exist values
of Ð and Ñ so that this trajectory reaches Σ𝑠 at the pseudo-equilibrium point. This new
curve provides a connection between 𝑆𝑋α,β

and 𝑃𝐸(𝑍Ð,Ñ). The rest of the proof is similar
to the proof of Theorem A.

Theorem E. Suppose that 𝑍0 is in the case 𝐷𝑆𝐶22. Then, for the family 𝑍Ð,Ñ =
(𝑋Ð,Ñ, 𝑌Ð,Ñ) defined above, bifurcation curves, Ò𝑃E

, Ò̃𝑃E
, Ò𝑃1

, and Ò𝑃F
, merge from the

origin and the following statements hold:

1. for Ñ ⊘ 0: identical to the cases given in Theorem C.

2. for Ñ > 0: there exists a pseudo-node which is an attractor for the sliding vector
field and

(a) if (Ð, Ñ) ∈ 𝑅2
8 = ¶(Ð, Ñ); 0 < Ñ < Ò𝑃1

(Ð, Ñ)♢, then a repellor limit cycle
through Σ𝑐 coexists with a sliding pseudo-cycle passing through 𝑆𝑋α,β

;

(b) if (Ð, Ñ) ∈ Ò𝑃1
then a repellor limit cycle through Σ𝑐 coexists with a pseudo-

cycle passing through 𝑆𝑋α,β
;

(c) if (Ð, Ñ) ∈ 𝑅2
7 = ¶(Ð, Ñ); Ò𝑃1

(Ð, Ñ) < Ñ < Ò𝑃E
(Ð, Ñ)♢, then a repellor limit

cycle through Σ𝑐 coexists with a sliding pseudo-cycle passing through 𝑆𝑋α,β
;

(d) if (Ð, Ñ) ∈ Ò𝑃E
, then a repellor limit cycle through Σ𝑐 coexists with a sliding

polycycle passing through 𝑆𝑋α,β
and 𝑃𝐸(𝑍Ð,Ñ), which contains only one segment of

sliding orbits;

(e) if (Ð, Ñ) ∈ 𝑅2
6 = ¶(Ð, Ñ); Ò𝑃E

(Ð, Ñ) < Ñ < Ò𝐹 (Ð, Ñ)♢, then a repellor limit
cycle through Σ𝑐 coexists with a sliding polycycle passing through 𝑆𝑋α,β

and 𝑃𝐸(𝑍Ð,Ñ),
which contains two segments of sliding orbits;

(f) if (Ð, Ñ) ∈ Ò𝐹 , then a repellor limit cycle through Σ𝑐 coexists with a sliding
polycycle passing through 𝑆𝑋α,β

, 𝑃𝐸(𝑍Ð,Ñ) and 𝐹 (𝑍Ð,Ñ);

(g) if (Ð, Ñ) ∈ 𝑅2
5 = ¶(Ð, Ñ); Ò𝐹 (Ð, Ñ) < Ñ < Ò̃𝑃E

(Ð, Ñ)♢, then a repellor limit
cycle through Σ𝑐 coexists with a sliding pseudo-cycle passing through 𝑆𝑋α,β

;

(h) if (Ð, Ñ) ∈ Ò̃𝑃E
, a repellor limit cycle through Σ𝑐 coexists with a sliding

polycycle passing through 𝑆𝑋α,β
and 𝑄𝑍α,β

, which contains only one sliding segment;

(i) if (Ð, Ñ) ∈ 𝑅2
4 = ¶(Ð, Ñ); Ñ > Ò̃𝑃E

(Ð, Ñ) and Ð < 0♢, then a repellor limit
cycle through Σ𝑐 coexists with a sliding polycycle passing through 𝑆𝑋α,β

and 𝑃𝐸(𝑍Ð,Ñ),
which contains two sliding segments;

(j) if Ð = 0 and Ñ > 0, then there exists a repellor degenerate cycle through
𝑆𝑋α,β

;

(k) if (Ð, Ñ) ∈ 𝑅2
3 = ¶(Ð, Ñ); Ñ > 0 and Ð > 0♢, then there exist no cycles.

The bifurcation diagram is illustrated in Figure 4.12.
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(c) if (Ð, Ñ) ∈ 𝑅3
6 = ¶(Ð, Ñ); Ò𝑃1

(Ð, Ñ) < Ñ < Ò𝐹 (Ð, Ñ)♢, then there exists a sliding
pseudo-cycle through 𝑆𝑋α,β

;

(d) if (Ð, Ñ) ∈ Ò𝐹 , then there exists a sliding pseudo-polycycle through 𝑆𝑋α,β
and 𝐹 (𝑍Ð,Ñ);

(e) if (Ð, Ñ) ∈ 𝑅3
5 = ¶(Ð, Ñ); Ò𝐹 (Ð, Ñ) < Ñ and Ð < 0♢, then there exists a sliding

pseudo-cycle through 𝑆𝑋α,β
;

(f) if Ð = 0 and Ñ > 0, then there exists an attractor degenerate cycle through 𝑆𝑋α,β
;

(g) if (Ð, Ñ) ∈ 𝑅3
4 = ¶(Ð, Ñ); Ñ > 0 and Ð > 0♢, then there exists a limit cycle passing

through Σ𝑠.

The bifurcation diagram is illustrated in Figure 4.13.

Proof. Since 𝑍0 is in case 𝐷𝑆𝐶31, the saddle-regular point is of type 𝐵𝑆3, i.e., the pseudo-
equilibrium points appear when the saddle is virtual (Ñ < 0). Thus, there is no pseudo-
equilibrium for Ñ > 0. The position of the limit cycles given in Proposition 4.3 implies
that they happen for Ð > 0. The rest of the proof is similar to the proof of Theorem
A.

Theorem G. Suppose that 𝑍0 is in the case 𝐷𝑆𝐶32 and Ñ > 0. Then, for the family
𝑍Ð,Ñ = (𝑋Ð,Ñ, 𝑌Ð,Ñ) defined above, bifurcation curves, Ò𝑃1

and Ò𝑃F
merge from the origin,

there exists no pseudo-equilibrium, 𝑆𝑋α,β
is a repellor for the sliding vector field, and the

following statements hold:

(a) if (Ð, Ñ) ∈ 𝑅1
7, where 𝑅3

7 = ¶(Ð, Ñ); 0 < Ñ < Ò𝑃1
(Ð, Ñ)♢, then a repellor limit cycle

through Σ𝑐 coexists with a sliding pseudo-cycle through 𝑆𝑋α,β
;

(b) if (Ð, Ñ) ∈ Ò𝑃1
, then a repellor limit cycle through Σ𝑐 coexists with a pseudo-cycle

passing through 𝑆𝑋α,β
;

(c) if (Ð, Ñ) ∈ 𝑅3
6 = ¶(Ð, Ñ); Ò𝑃1

(Ð, Ñ) < Ñ < Ò𝐹 (Ð, Ñ)♢, then a repellor limit cycle
through Σ𝑐 coexists with a sliding pseudo-cycle through 𝑆𝑋α,β

;

(d) if (Ð, Ñ) ∈ Ò𝐹 , then a repellor limit cycle through Σ𝑐 coexists with a sliding pseudo-
polycycle through 𝑆𝑋α,β

and 𝐹 (𝑍Ð,Ñ);

(e) if (Ð, Ñ) ∈ 𝑅3
5 = ¶(Ð, Ñ); Ò𝐹 (Ð, Ñ) < Ñ and Ð < 0♢, then a repellor limit cycle

through Σ𝑐 coexists with a sliding pseudo-cycle through 𝑆𝑋α,β
;

(f) if Ð = 0 and Ñ > 0, then there exists a repellor degenerate cycle through 𝑆𝑋α,β
;

(g) if (Ð, Ñ) ∈ 𝑅3
4 = ¶(Ð, Ñ); Ñ > 0 and Ð > 0♢, then there exists no cycles passing

through Σ𝑠.

The bifurcation diagram is illustrated in Figure 4.14.

Proof. The position of the limit cycles given in Proposition 4.3 implies that they happen
for Ð < 0. The rest of the proof is similar to the proof of Theorem F.

Theorem H. Suppose that 𝑍0 is in the case 𝐷𝑆𝐶31 or 𝐷𝑆𝐶32 and Ñ ⊘ 0. Then, the
family 𝑍Ð,Ñ = (𝑋Ð,Ñ, 𝑌Ð,Ñ) defined above satisfies: there exists no pseudo-equilibrium, 𝑆𝑋α,β

is an attractor for the sliding vector field, and:
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(a) if Ñ = 0 and Ð < 0, then there exists a sliding cycle passing through the 𝑆𝑋α,β
;

(b) if Ð = 0 = Ñ, then there exists an attractor degenerate cycle passing through 𝑆𝑋0,0
;

(c) if Ñ = 0 and Ð > 0, then there exists an attractor limit cycle through Σ𝑐;

(d) if (Ð, Ñ) ∈ 𝑅3
1 = ¶(Ð, Ñ); Ò𝑃E

(Ð, Ñ) < Ñ < 0♢, then there exists a sliding cycle passing
through the fold-regular point 𝐹 (𝑍Ð,Ñ);

(e) if (Ð, Ñ) ∈ Ò𝑃E
, there exists a polycycle passing through 𝐹 (𝑍Ð,Ñ) and 𝑃𝐸(𝑍Ð,Ñ);

(f) if (Ð, Ñ) ∈ 𝑅3
2 = ¶(Ð, Ñ);Ð < 0 and Ñ < Ò𝑃E

(Ð, Ñ)♢, then there exists a sliding cycle
passing through 𝑃𝑋α,β

;

(g) if Ð = 0 and Ñ < 0, then an attractor degenerate cycle through 𝐹 (𝑍Ð,Ñ);

(h) if (Ð, Ñ) ∈ 𝑅3
3 = ¶(Ð, Ñ); Ñ < 0 and Ð > 0♢, then there exists an attractor limit cycle

through Σ+.

The bifurcation diagram for 𝐷𝑆𝐶31 and 𝐷𝑆𝐶32 are illustrated in Figures 4.13 and 4.14,
respectively.

Proof. The position of the limit cycles given in Proposition 4.3 implies that they happen
for Ð > 0. The rest of the proof is similar to the proof of Theorem A.

4.3 Illustrations with Hyperbolicity Ratio in Q

In this section we present some models realizing degenerate cycles through hyperbolic
saddles where the hyperbolicity ratio is a rational number. Moreover, we use these ex-
amples to illustrate how rich a system having a degenerate cycle through a saddle point
can be. Firstly, we study a class of vector fields having hyperbolicity ratio equal to 1.
After that, an example, also with hyperbolicity ratio equal to 1, is studied carefully taking
in account the whole system showing how rich the dynamic of this model is. Finally, a
model having hyperbolicity ratio 𝑟 is studied numerically and the main objective of it is
to illustrate the existence of degenerate cycles, limit cycles and to study the graph of the
first return map when the hyperbolicity ratio is a rational number.

4.3.1 Class of Vector Fields with Hyperbolicity Ratio = 1

Let 𝒜 be the set of all discontinuous vector fields 𝑍 = (𝑋, 𝑌 ) ∈ Ω𝑟 where 𝑋 has a
hyperbolic saddle 𝑆𝑋 and, in a neighborhood of 𝑆𝑋 , 𝑋 is 𝒞2⊗conjugated to a vector field
𝑊 (x) = 𝐴x + c, where

𝐴 =

(︃
0 𝑎
𝑏 0

⎜
and c =

(︃
⊗𝑎𝑦
⊗𝑏�̃�

⎜
(4.3.1)

with 𝑎, 𝑏 > 0, 𝑆𝑋 = (�̃�, 𝑦), and Σ = ℎ⊗1(0) where ℎ(𝑥, 𝑦) = 𝑦. Moreover, this conjugacy
preserves the discontinuity set Σ. Observe that the eigenvalues of 𝐴 in equation 4.3.1 are
∘

√
𝑎𝑏, therefore, for all 𝑍 ∈ 𝒜, the hyperbolicity ratio of any 𝑆𝑋 is equal to 1. Now,

by considering vector fields in 𝒱𝑍0
∩ 𝒜 we perform an analysis of the first return map.

In order to do that, we proceed similarly to the analysis performed for the case 𝑟 /∈ Q.
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open neighborhood of 0.

Proof. The trajectories of 𝑊 lie in the level curves of the function 𝐺(𝑥, 𝑦) = 𝑏𝑥2 ⊗ 𝑎𝑦2 +
2𝑐1𝑥 ⊗ 2𝑐2𝑦, where 𝑐1 = ⊗𝑏�̃� and 𝑐2 = ⊗𝑎𝑦. Assume that 𝜌𝑊 is defined for 0 ⊘ 𝑥 < Ó.
Now, for each (𝑥, 0) ∈ Σ with 0 ⊘ 𝑥 < Ó we obtain

𝜌𝑊 (𝑥) = ⊗𝑐1

𝑏
+

√︃

𝑥2 +
2𝑐1

𝑏
𝑥+

𝑎

𝑏
𝜀2 +

2𝑐2

𝑏
𝜀+

𝑐2
1

𝑏2
. (4.3.2)

Observe that the expression inside the square root which does not depends on 𝑥 is a

polynomial of degree 2 in 𝜀, 𝑄(𝜀) =
𝑎

𝑏
𝜀2 +

2𝑐2

𝑏
𝜀+

𝑐2
1

𝑏2
. We analyze this polynomial in three

different cases:

(i) if 𝑦 < 0 we have 𝑐2 > 0. As 𝑃𝑋 = (0, 0) we must have 𝑐1 = 0 and since 𝑎, 𝑏 > 0 it
follows that 𝑄(𝜀) > 0 for 𝜀 > 0;

(ii) if 𝑦 = 0 then 𝑆𝑋 = (0, 0), consequently 𝑐1 = 𝑐2 = 0 and 𝑄(𝜀) > 0 for 𝜀 > 0;

(iii) if 𝑦 > 0, then 𝑐2 < 0. Imposing the condition that the stable manifold of 𝑆𝑋

intersects Σ in (0, 0) we obtain 𝑐1 = ⊗𝑐2

√︁
𝑏/𝑎 > 0. It implies that 𝑄 has only one

root, which is ⊗𝑐2/𝑎 = 𝑦 and 𝑄(𝜀) > 0 for all 𝜀 > 0 and 𝜀 ̸= 𝑦. However, for our
proposes, 𝜀 > 𝑦. Thus, 𝑄(𝜀) > 0 for 𝜀 > 𝑦.

Therefore, choosing 𝜀 > max¶0, 𝑦♢ we obtain 𝑄(𝜀) > 0 and we can find Ó𝑊 > 0 such that
the expression inside the square root in (4.3.2) is positive for 𝑥 ∈ (⊗Ó𝑊 , Ó𝑊 ). It follows
that 𝜌𝑊 can be differentially extended to an open neighborhood of 0.

Since 𝑊 is 𝒞2⊗conjugated to 𝑋 in a neighborhood of 𝑆𝑋 there exists a diffeomorphism
of class 𝒞2⊗, å, defined in a neighborhood of 𝑆𝑋 , such that å(𝑆𝑊 ) = 𝑆𝑋 and

𝜌1(𝑥) = å ◇ 𝜌𝑊 ◇ å⊗1(𝑥). (4.3.3)

It follows from this expression that 𝜌1 can be, at least, 𝒞2⊗extended to an open neigh-
borhood of 0 and it allows us to calculate the Taylor series, until order 2, of Þ𝑍 at 𝑥 = 0.

Proposition 4.4. Consider 𝑍 = (𝑋, 𝑌 ) ∈ 𝒜∩𝒱𝑍0
and let 𝑆𝑋 = (�̃�, 𝑦) be the saddle point

associated with 𝑋. Suppose that, in the notation above, the first return map is defined
in a half-open interval [0, Ó𝑍), for some Ó𝑍 > 0. Then the first return map of 𝑍 can be
written as

Þ𝑍(𝑥) = Ð+ 𝑘1(Ñ)𝑥+ 𝑘2(Ñ)𝑥2 + h.o.t., (4.3.4)

where 0 < ♣𝑘1(Ñ)♣< 1 if Ñ > 0 and 𝑘1(Ñ) = 0, 𝑘2(Ñ) > 0 if Ñ ⊘ 0.

Proof. We have already shown the existence of the first return map Þ𝑍 = 𝜌3 ◇ 𝜌2 ◇ 𝜌1 (see
4.1) and, as seen above, it can be, at least, 𝒞2 extended to an open interval (⊗Ó𝑍 , Ó𝑍).
Thus, it is possible to calculate its Taylor’s series until order 2 around 𝑥 = 0, which is
given by

Þ𝑍(𝑥) = Þ𝑍(0) +
𝑑Þ𝑍

𝑑𝑥
(0)𝑥+

1
2!
𝑑2Þ𝑍

𝑑𝑥2
(0)𝑥2 + O(𝑥3).

Observe that 𝜌2 and 𝜌3 are orientation reversing diffeomorphisms while å is an orien-
tation preserving diffeomorphism. Also, 𝜌1 = å ◇ 𝜌𝑊 ◇ å⊗1, Þ𝑍 = 𝜌3 ◇ 𝜌2 ◇ 𝜌1,

𝑑𝜌𝑊

𝑑𝑥
(0) =

𝑐1√︁
𝑎𝑏𝜀2 + 2𝑏𝑐2𝜀+ 𝑐2

1

and
𝑑2𝜌𝑊

𝑑𝑥2
(0) =

𝑏2𝜀(𝑎𝜀+ 2𝑐2)
(𝑎𝑏𝜀2 + 2𝑏𝑐2𝜀+ 𝑐2

1)3/2
.
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When 𝑦 ⊘ 0 we assume 𝑐1 = 0. It follows that 𝑑𝜌W

𝑑𝑥
(0) = 0 and consequently 𝑑𝜌1

𝑑𝑥
(0) = 0.

Also, 𝑐2 ⊙ 0 then 𝑑2𝜌W

𝑑𝑥2 (0) > 0 and 𝑑2𝜌1

𝑑𝑥2 (0) > 0. Therefore, 𝑑ÞZ

𝑑𝑥
(0) = 0 and 𝑑2ÞZ

𝑑𝑥š
(0) > 0.

If 𝑦 > 0 then 𝑐1 = ⊗𝑐2

√︁
𝑏/𝑎 > 0. For each fixed 𝜀 > 𝑦, 𝜌𝑊 depends continuously on 𝑦,

consequently Þ𝑍 also depends continuously on 𝑦. Since 𝑦 is sufficiently small we conclude
that

0 <
𝑑Þ𝑍

𝑑𝑥
(0) < 1

Finally, defining Ð = Þ𝑍(0), Ñ = 𝑦, 𝑘1(Ñ) = 𝑑ÞZ

𝑑𝑥
(0) and 𝑘2(Ñ) = 1

2!
𝑑2ÞZ

𝑑𝑥2 (0) we achieve the
result.

It follows from this result that for 𝑍 we have Þ𝑍(0) = 0, 𝑑ÞZ̄

𝑑𝑥
(0) = 0 and 𝑑2ÞZ̄

𝑑𝑥2 (0) > 0.
Let Γ be the degenerate cycle of 𝑍. Since the first return map is just defined in a half-open
interval there exists a neighborhood of Γ such that the orbits of 𝑍 in this neighborhood,
through points where the first return map is defined, have Γ as æ⊗limit set. Another
consequence of this proposition, which has a similar prove as the one of Proposition 4.3,
is the following:

Corollary 4.1. Under the hypotheses in the Proposition 4.4, if 𝑍 ∈ 𝒱𝑍0
∩ 𝒜 is such

that Ð > 0 then, for some 𝑥 > 0 sufficiently small, 𝑍 has a stable limit cycle passing
through (𝑥, 0) ∈ Σ. Moreover, if 𝑍 is such that Ð = 0, then there exists a degenerate cycle
Γ having a neighborhood for which the orbits of 𝑍 in this neighborhood passing through
points where the first return map is defined have Γ as æ⊗limit set.

Therefore, for 𝑍 ∈ 𝒱𝑍0
∩ 𝒜 the first return Þ𝑍 has the graph given in Figure 4.6.

Moreover, depending on the structure of the local saddle-regular point, the bifurcation
diagram in this case is given in Figure 4.9, or 4.11, or 4.13.

4.3.2 Model with Hyperbolicity Ratio = 1

Now, the objective is to illustrate how complex and rich a system having a degenerate
cycle through a saddle-regular can be. All systems in the considered family are piecewise
Hamiltonian, thus the hyperbolicity ratio of any saddle point is equal to 1. Moreover, the
cycle is, topologically, of type 𝐷𝑆𝐶31.

Consider the 2⊗parameter family of discontinuous vector fields 𝑍Ð,Ñ = (𝑋Ð, 𝑌Ñ) with

𝑋Ð =

(︃
⊗𝑦 + Ð
𝑥2 ⊗ 𝑥

⎜
and 𝑌Ñ =

∏︀
∐︁

1

𝑥⊗ 3
4

⊗ Ñ

∫︀
⎠ .

In order to analyze the vector field 𝑍Ð,Ñ we first analyze, separately, the vector fields
𝑋Ð and 𝑌Ñ.

Analysis of 𝑋Ð

The vector field 𝑋Ð has two singular points, one of them is a hyperbolic saddle 𝑆Ð =
(0, Ð), the other one is a center 𝐶Ð = (1, Ð). This is a Hamiltonian vector field with
Hamiltonian function given by

𝐻Ð(𝑥, 𝑦) = ⊗1
2
𝑦2 + Ð𝑦 ⊗ 1

3
𝑥3 +

1
2
𝑥2.
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For Ð = 0, 𝐻⊗1
0 (0) meets Σ at the origin and at the points 𝑃 =

⎤3
2
, 0
⎣

and 𝑄 =
⎤

⊗1
2
, 0
⎣

.

There exists an homoclinic orbit through the origin which intersects the Σ at 𝑃 = (3/2, 0).
Notice that, when Ð varies, we just have a translation, on axis 𝑦, of the phase portrait

for Ð = 0. The level curves of 𝐻Ð meet Σ at most in three distinct points. In fact, each
(𝑥0, 0) ∈ Σ belongs to the level ℎ0 = 𝐻Ð(𝑥0, 0) of 𝐻Ð, then to find the intersections of this
level with Σ it is necessary to solve, in 𝑥, the equation 𝐻Ð(𝑥, 0) = ℎ0. It is equivalent to
find the roots of a third degree polynomial. Solving this problem we obtain the roots 𝑥0

and 𝑥∘, where

𝑥∘ =
3
4

⊗ 𝑥0

2
∘
√︁

9 + 12𝑥0 ⊗ 12𝑥2
0

4
.

Observe that, 𝑥∘ ∈ R provided that ⊗1
2

⊘ 𝑥0 ⊘ 3
2

. Moreover,

• if ⊗1
2

⊘ 𝑥0 ⊘ 0, then 0 ⊘ 𝑥⊗(𝑥0) ⊘ 1 and 1 ⊘ 𝑥+(𝑥0) ⊘ 3
2
;

• if 0 ⊘ 𝑥0 ⊘ 3
2
, then ⊗1

2
⊘ 𝑥⊗(𝑥0) ⊘ 0 and 0 ⊘ 𝑥+(𝑥0) ⊘ 3

2
.

When Ð < 0 the singular points of 𝑋Ð become virtual singularities for 𝑍Ð,Ñ but two
tangency points merge in Σ in the same place where there are singularities for Ð = 0.
For this reason, the analysis on the existence of limit cycles for Ð < 0 is analogous to the
analysis for Ð = 0. So, we can restrict our investigation considering Ð ⊙ 0.

Consider the level ℎÐ = 𝐻Ð(0, Ð) of 𝑆Ð, a point (𝑥, 0) ∈ Σ belongs to this level if and
only if it is a root of 𝑅Ð(𝑥) = 𝐻Ð(𝑥, 0) ⊗ ℎÐ. The map 𝑅Ð polynomial of degree 3 in
𝑥, denote the roots of 𝑅Ð by 𝑥𝑖 = 𝑥𝑖(Ð), 𝑖 = 1, 2, 3, satisfying 𝑥1 ⊘ 𝑥2 ⊘ 𝑥3 when all
these roots are real. The biggest and smallest values of Ð for which 𝑥1, 𝑥2, 𝑥3 ∈ R are
Ð = ∘

√
3/3 and so 𝑥1 = ⊗1/2, 𝑥2 = 𝑥3 = 1 and ℎÐ = 𝐻Ð(1, 0).

Since we are interested in small values of Ð we assume ♣Ð♣⊘
√

3/3. By analyzing 𝑅Ð

we obtain that 𝑥1(Ð) and 𝑥2(Ð) are increasing maps while 𝑥3(Ð) is a decreasing map.
Given 𝑃0 = (𝑥0, 0) ∈ Σ with 𝑥2 ⊘ 𝑥0 ⊘ 1 there exists a unique 𝑃1 = (𝜌1(𝑥0), 0) ∈ Σ

that belongs to the same level 𝑃0 and satisfies 1 ⊘ 𝜌1(𝑥0) ⊘ 𝑥3. Therefore, the trajectory
of 𝑋Ð through 𝑃0 meets Σ also in 𝑃1. Therefore, we can consider the map 𝜌1 : [𝑥2, 1] ⊗⊃
[1, 𝑥3] given by

𝜌1(𝑥) = 𝑥+(𝑥) =
3
4

⊗ 𝑥

2
+

√
9 + 12𝑥⊗ 12𝑥2

4
.

Analysis of 𝑌Ñ

The vector field 𝑌Ñ does not have singular points but it has a fold point 𝐹Ñ = (3/4 +
Ñ, 0) ∈ Σ. Given 𝑃0 = (𝑥0, 0) ∈ Σ, the trajectory of 𝑌Ñ through 𝑃0 meets again at
𝑃2 = (𝜌2(𝑥0), 0) and, we consider the map

𝜌2 :
⎤

⊗∞,
3
4

+ Ñ
⎢

⊗⊃
⎦3
4

+ Ñ,+∞
⎣

𝑥 ↦⊃ 𝜌2(𝑥) =
3
2

⊗ 𝑥+ 2Ñ
.

Observe that 𝜌2(0) = 3
2

+ 2Ñ and, if Ñ = 0, then 𝜌2(0) = 3
2

= 𝜌1(0). Therefore, 𝑍0,0

has a degenerate cycle through the hyperbolic saddle 𝑆0 at the origin, see Figure 4.15.
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The third step is to investigate the existence of limit cycles through points in Σ𝑐 with
𝑥2 < 𝑥 < 3/4 + Ñ. Define,

𝐹Ð,Ñ :
[︁
𝑥2,

3
4

+ Ñ
]︁

⊗⊃ R

𝑥 ↦⊃ (𝜌2 ⊗ 𝜌1) (𝑥)
. (4.3.5)

Notice that, 𝐹Ð,Ñ(𝑧) = 0 iff 𝑧 = 𝑧∘, where

𝑧∘ =
3
4

+ Ñ ∘
√

9 ⊗ 24Ñ ⊗ 48Ñ2

4
.

It is clear that 𝑧+ ⊙ 3/4 + Ñ, thus it is not in the domain of 𝐹Ð,Ñ. If Ð = 0 and
0 ⊘ Ñ ⊘ 1/4 we have 𝑥2 = 0 and 0 < 𝑧⊗ < 3/4 + Ñ. Under these conditions, 𝑧⊗ is an
increasing function in the variable Ñ so, 𝐹0,Ñ(𝑥) < 0 if 0 < 𝑥 < 𝑧⊗ and 𝐹0,Ñ(𝑥) > 0 if
𝑧⊗ < 𝑥 < 3/4 + Ñ. Therefore, varying Ñ continuously in (0, 1/4), the degenerate cycle
for Ñ = 0 becomes a limit cycle, with decreasing radius, degenerating in a point for
Ñ = 1/4. For Ð = Ñ = 0 we obtain 𝐹0,0(𝑥) < 0 for 0 < 𝑥 < 3/4, so the degenerate
cycle through the origin is repellor, see figure 4.15. If Ð > 0 it is not possible to find
algebraically the expression of 𝑥2, however it is known that, 𝑥2 = 𝑥2(Ð) and the equation
𝑥2(Ð) = 𝑧⊗(Ñ) defines, implicitly a curve Ñ = Ò𝑥2

(Ð), in the (Ð, Ñ)⊗plane, for which
𝑥2 = 𝑧⊗ if Ñ = Ò𝑥2

(Ð), 𝑥2 < 𝑧⊗ < 3/4 + Ñ if Ñ < Ò𝑥2
(Ð) and 𝑥2 > 𝑧⊗ if Ñ < Ò𝑥2

(Ð).
Finally, the last step in this analysis is to study connections between the singularities

in Σ. In order to simplify the notation consider 𝑏 = Ñ+3/4, notice that if ⊗3/4 ⊘ Ñ ⊘ 1/4
then 0 ⊘ 𝑏 ⊘ 1.

Since the trajectories of 𝑌Ñ cross Σ in points having the fold 𝐹𝑏 = (𝑏, 0) as middle
point, we obtain some curves, 𝑏 = 𝑏(Ð) = 3/4 + Ñ(Ð), which provide direct connections
through the flow of 𝑌Ñ:

• 𝑏1 = 0: 𝐹𝑏 = (0, 0);

• 𝑏2 =
𝑥1 + 𝑥2

2
: connection between 𝑃1 = (𝑥1, 0) and 𝑃2 = (𝑥2, 0);

• 𝑏3 =
𝑥1 + 1

2
: connection between 𝑃1 and 𝐶Ð;

• 𝑏4 =
𝑥1 + 𝑥3

2
: connection between 𝑃1 and 𝑃3 = (𝑥3, 0);

• 𝑏5 =
𝑥2

2
: connection between 0 and 𝑃2;

• 𝑏6 =
1
2

: connection between 0 and 𝐶Ð;

• 𝑏7 =
𝑥3

2
: connection between 0 and 𝑃3;

• 𝑏8 =
𝑥2 + 1

2
: connection between 𝑃2 and 𝐶Ð;

• 𝑏9 =
𝑥2 + 𝑥3

2
: connection between 𝑃2 and 𝑃3;

• 𝑏10 = 𝑥2: 𝐹𝑏 = 𝑃2;



























Chapter 5

Applications

As important as exposing a theory is showing how useful and feasible it is. There are
plenty of phenomena that are modeled by systems of ordinary differential equations, for
instance see [2], [5] and [28]. Amid this variety of models, two “classes” will be presented
here. The first concerns about a simple and particular example of oscillator, the pendulum.
The second is included in the class of the integrable systems, the Hamiltonian ones.

The main objective of the present chapter is to illustrate that degenerate cycles through
saddle-regular points are present in common models of applications. The study presented
here is, in its majority, numeric and all calculations were performed by using the software
Mathematica. The basic theory and construction of the models are not in the scope of
this thesis, we just present the models without precise, physical, biological, economics,
etc., interpretations. Moreover, the objects of our study focus on systems with the form:

𝑍(𝑥, 𝑦) =

(︃
𝑔1(𝑥, 𝑦)
𝑔2(𝑥, 𝑦)

⎜
+

(︃
Ðã(𝑥, 𝑦)

(1 ⊗ Ð)ã(𝑥, 𝑦)

⎜
, (5.0.1)

where 𝑔𝑖 : R2 ⊃ R, 𝑖 = 1, 2, are smooth functions, Ð = 0 or Ð = 1, and ã : R2 ⊃ R is a
piecewise smooth function:

ã(𝑝) =

{︃
ã1(𝑝) 𝑝 ∈ Σ+,
ã2(𝑝) 𝑝 ∈ Σ⊗.

In other words, we work with planar discontinuous vector fields 𝑍 = (𝑋, 𝑌 ), where 𝑋
and 𝑌 coincide up to one coordinate. Moreover, in each model, a different discontinuity
manifold is considered, the choice of these manifolds is purely technical.

5.1 Pendulum Model

Pendulum is one of the simplest types of oscillators, many models and more details
can be found in [2] and [28].

Consider the model for a simple pendulum with damping given by
(︃
�̇�
�̇�

⎜
=

(︃
𝑦

𝑎1𝑦 ⊗ sin(𝑥)

⎜
= 𝑋𝑎1

(𝑥, 𝑦), (5.1.1)

where 𝑥 is the angle with the vertical axis, 𝑦 = �̇� is the angular speed and 𝑎1 is a negative
constant.
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Suppose that a simple pendulum with damping is governed by the following law: if
�̇� > 𝑎3⊗𝑎4(𝑥+Þ) it is given by system (5.1.1) and if �̇� < 𝑎3⊗𝑎4(𝑥+Þ) it is given by system

(5.1.1) with an extra driving force, 𝑎2

(︁
𝑥+ Þ

2

⎡ 𝜕

𝜕𝑦
, being applied on it. This phenomenon

can be modeled as a discontinuous system associated to the discontinuous vector field
𝑍𝑎 = (𝑋𝑎1

, 𝑌𝑎1,𝑎2
) with 𝑎 = (𝑎1, 𝑎2, 𝑎3, 𝑎4), Σ = ¶(𝑥, 𝑦) ∈ R2; 𝑦 + 𝑎4(𝑥+ Þ) = 𝑎3♢, and

𝑌𝑎1,𝑎2
(𝑥, 𝑦) =

∏︀
∐︁

𝑦

𝑎1𝑦 ⊗ sin(𝑥) + 𝑎2

⎤
𝑥+

Þ

2

⎣
∫︀
⎠ .

Now, 𝑆𝑋 = (⊗Þ, 0) is a saddle point of𝑋𝑎1
, with hyperbolicity ratio 𝑟(𝑎1)=⊗𝑎1⊗

√
𝑎2

1
+4

𝑎1+
√

𝑎2
1
+4

.

𝑆𝑋 is a real saddle when 𝑎3 < 0, a boundary saddle when 𝑎3 = 0, and a virtual saddle
when 𝑎3 > 0. For 𝑎3 ≡ 0 there exists a tangency point, in Σ, near 𝑆𝑋 which is called 𝑃𝑍a

and the first coordinate of this point will be denoted by 𝑝𝑎. Notice that 𝑃𝑍a
coincides

with 𝑆𝑋 when 𝑎3 = 0 and it is a fold point if 𝑎3 ̸= 0. A direct verification gives that,
for 𝑥 ≡ 𝑝𝑎, there exists a crossing region when 𝑥 > 𝑝𝑎 and there is a sliding region when
𝑥 < 𝑝𝑎.

In what follows, we are going to check if this model realizes the degenerate cycle we
are interested in. Let 𝑥0 be a point in Σ+ ∪ Σ𝑐, sufficiently near the saddle point, and
consider Þ𝑎(𝑥0) as the first coordinate of the point were the trajectory passing through 𝑥0

meets Σ for the second time. By using numeric calculations we analyze some trajectories,
see Table 5.1.

𝑎 = (𝑎1, 𝑎2, 𝑎3, 𝑎4) 𝑥0 Þ𝑎(𝑥0)
(⊗0.1,⊗0.77, 0, 0.1) (⊗2.8,⊗0.1(Þ ⊗ 2.8)) ⊗4.33775 . . .
(⊗0.1,⊗0.77, 0, 0.1) (⊗Þ, 0.5) ⊗4.54177 . . .
(⊗0.2,⊗0.77, 0, 0.1) (⊗2.8,⊗0.1(Þ ⊗ 2.8)) ⊗2.93979 . . .
(⊗0.2,⊗0.77, 0, 0.1) (⊗Þ, 0.5) ⊗3.02473 . . .

Table 5.1: Data for some values of the parameters of 𝑍𝑎.

The trajectories with values given in Table 5.1 are illustrated in Figure 5.1. The first
two values imply that the unstable manifold of the saddle in Σ+ meets Σ in the sliding
region, after it passes through Σ𝑐. The last two values imply that the unstable manifold of
𝑆𝑋 in Σ+ meets Σ in the crossing region twice. It follows from continuity that 𝑍𝑎 presents
a degenerate cycle through a saddle-regular point for 𝑎2 = ⊗0.77, 𝑎3 = 0, 𝑎4 = 0.1 and
some 𝑎1 ∈ (⊗0.2,⊗0.1).

Moreover, this system represents the case 𝐷𝑆𝐶11 given in Chapter 4. Now, we will
show this system realizes each one of the regions in the bifurcation diagram in Figure 4.9.
In Table 5.1 we have values of the parameter for which the vector field lies on the negative
and positive parts of axes Ð of that bifurcation diagram. Just for simplicity, let 𝑞𝑎 be the
first coordinate of the point 𝑄𝑍a

(near 𝑃𝑍a
) which vanishes the sliding vector field, i.e.,

𝑄𝑍a
is the pseudo-equilibrium point when it is in the sliding region.

• Region 𝑅1
1

Consider the following values of parameters and initial conditions: 𝑎 = (⊗0.1,⊗0.77,
0.1, 0.1), 𝑥01 = (⊗Þ, 05) ∈ Σ, and 𝑥02 = (⊗2.8, 0.1 ⊗ 0.1(Þ ⊗ 2.8)) ∈ Σ+. For
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where

ã𝑎,𝑏,𝑐(𝑥, 𝑦) =

{︃
𝑎⊗ 𝑦 if 𝑥 ⊘ 𝑏(𝑦 + 1) + 𝑐
0 if 𝑥 ⊙ 𝑏(𝑦 + 1) + 𝑐

.

Thus, 𝑍𝑎,𝑏,𝑐 = (𝑋𝑎, 𝑌 ) where Σ = ℎ⊗1(0), ℎ(𝑥, 𝑦) = 𝑏(𝑦 + 1) ⊗ 𝑥+ 𝑐, and

𝑋𝑎(𝑥, 𝑦) =

(︃
1 + 𝑎⊗ 𝑦 ⊗ 𝑦2

𝑥

⎜
and 𝑌 (𝑥, 𝑦) =

(︃
1 ⊗ 𝑦2

𝑥

⎜
.

Observe that 𝑍𝑎,𝑏,𝑐 is a piecewise Hamiltonian system, with associated Hamiltonian func-
tions given by

𝐻𝑋a
(𝑥, 𝑦) = ⊗𝑦3

3
⊗ 𝑦2

2
⊗ 𝑥2

2
+ (1 + 𝑎)𝑦 and 𝐻𝑌 (𝑥, 𝑦) = ⊗𝑦3

3
⊗ 𝑥2

2
+ 𝑦.

The vector field 𝑌 satisfies:

(i) it has two singular points 𝑃∘ = (0,∘1)𝑇 , where 𝑃⊗ is a saddle and 𝑃+ is a center;

(ii) 𝑃⊗ ∈ Σ if, and only if, 𝑐 = 0, 𝑃⊗ ∈ Σ+ iff 𝑐 > 0, and 𝑃⊗ ∈ Σ⊗ iff 𝑐 < 0;

(iii) 𝑃⊗ has associated eigenvalues ∘
√

2 and 𝐸𝑠 = [(
√

2, 1)𝑇 ] and 𝐸𝑢 = [(
√

2,⊗1)𝑇 ] are
the stable and unstable eigenspaces, respectively.

The vector field 𝑋𝑎 satisfies:

(i) if 𝑎 > ⊗5/4 = ⊗1.25 it has two singular points, 𝑄∘ = (0, (⊗1 ∘
√

5 + 4𝑎)/2)𝑇 ,
where 𝑄+ is a center and 𝑄⊗ is a saddle point;

(ii) if ⊗1 < 𝑎 < 1, then, ordering by the second coordinate, 𝑄⊗ < 𝑃⊗ < 𝑄+ < 𝑃+. Also
𝑋𝑎(0,⊗1) = (1 + 𝑎, 0)𝑇 .

We are going to show that, for 𝑐 = 0, the system (5.2.2) admits a degenerate cycle of type
𝐷𝑆𝐶11 studied in Chapter 4. Consider ♣𝑎♣< 1, 0 < 𝑏 <

√
2, and 𝑐 small enough in order

to have defined a first return map in Σ. Let 𝑉0 be a neighborhood of the saddle 𝑃⊗, if
for 𝑝 ∈ 𝑉0 the trajectory through 𝑝 crosses Σ twice, define 𝑝 ∈ 𝑉0 ↦⊃ Þ(𝑝) ∈ Σ the map
that associates to 𝑝 the second coordinate of the point in Σ where this second intersection
happens. Now, we have some numeric results.

(I) Realizing the degenerate cycle

The unstable manifold of saddle in Σ⊗, 𝑊 𝑢
⊗, is located between the trajectories through

(0.05,⊗0.9)
∈ Σ and (0.3,⊗1) ∈ Σ⊗ for all positive time. Having the values in Table 5.2, we obtain
that 𝑊 𝑢

⊗ crosses Σ, at the second time, “above” the saddle point for 𝑎 = 0.5 = 𝑏 and
𝑐 = 0. Moreover, 𝑊 𝑢

⊗ crosses Σ, at the second time,“below” the saddle point for 𝑎 = 0.25,
𝑏 = 0.5, and 𝑐 = 0. So, by continuity, 𝑊 𝑢

⊗ crosses Σ at 𝑃⊗ for some 𝑎 ∈ (0.25; 0.5).

(II) Existence of limit cycles

For 𝑎 = 𝑏 = 0.5 and 𝑐 = 0 (boundary saddle), consider the points 𝑝0 = (0.1,⊗0.8) and
𝑝1 = (0.3,⊗0.4) in Σ. With values in Table 5.3 we obtain that the trajectory through
𝑝0 returns to Σ “below” 𝑝0 while the trajectory through 𝑝1 returns to Σ “above” 𝑝1.
Therefore, by continuity, Þ has an attractor fixed point 𝑝 = (0.5(𝑦 + 1), 𝑦) ∈ Σ with









Chapter 6

Future Work

In this chapter, we state some open questions remaining from the studies performed
in this thesis as well as some related problems.

6.1 On the Dulac’s Problem

The techniques used in Chapter 2 were used to study higher codimension of homoclinic
connections for smooth vector fields, [35]. So, try to extend these results doing the
necessary adaptations is the next step in this part of the work. Moreover, another direction
is to give a step back and try to extend some results concerning with the finiteness of
limit cycles in piecewise polynomial vector fields.

6.2 On Degenerate Cycles

We present two different approaches, to extend the results obtained for more complex
cycles having boundary saddle points or to study a different class of typical cycles.

6.2.1 Cycles Through Hyperbolic Boundary Saddles

Based on the studies already performed some directions are the following:

• to study the first return map for saddles having hyperbolicity ratio in Q and to
obtain the complete bifurcation diagrams for the cycle proposed in Chapter 4;

• to study the bifurcations of a degenerate cycle through a saddle-regular point by
breaking some of the generic conditions imposed in Chapter 4. For instance, to
admit tangency between the invariant manifolds of the saddle and the switching
manifold or to allow non-hyperbolic pseudo-equilibrium points;

• to perform similar analysis for cycles having more than one singularity, i.e., having
two saddle-regular points (Figure 6.1⊗(𝑎)), a saddle-saddle point (Figure 6.1⊗(𝑏)),
a saddle-regular and a fold-regular point (Figure 6.1⊗(𝑐)), or even a saddle-fold
point (Figure 6.1⊗(𝑑)).

116





Bibliography

[1] L. V. Ahlfors, Complex analysis an introduction to the theory of analytic functions
of one complex variable (3rd edition), McGraw-Hill Book Company, 1966.

[2] A. A. Andronov, A. A. Vitt, and S. E. Khaikin, Theory of oscillators, Translated
from the Russian by F. Immirzi; translation edited and abridged by W. Fishwick,
Pergamon Press, Oxford-New York-Toronto, Ont., 1966.

[3] D. K. Arrowsmith and C. M. Place, An introduction to dynamical systems, Cambridge
University Press, 1990.

[4] R. Bamón, Quadratic vector fields in the plane have a finite number of limit cycles,
Publications Mathématiques de l’IHÉS 64 (1986), 111–142.

[5] E. A. Barbashin, Introduction to the theory of stability, Wolters-Noordhoff, 1970.

[6] A. D. Bazykin, A. I. Khibnik, and B. Krauskopf, Nonlinear dynamics of interacting
populations, vol. 11, World Scientific, 1998.

[7] P. Bonckaert, On the continuous dependence of the smooth change of coordinates in
parametrized normal form theorems, Journal of Differential Equations 106 (1993),
no. 1, 107–120.

[8] B. Brogliato, Nonsmooth mechanics: models, dynamics and control, Springer Science
& Business Media, 2012.

[9] C. A. Buzzi, T. de Carvalho, and M. A. Teixeira, On 3-parameter families of piecewise
smooth vector fields in the plane, SIAM Journal on Applied Dynamical Systems 11
(2012), no. 4, 1402–1424.

[10] S. Chow, C. Li, and D. Wang, Normal forms and bifurcation of planar vector fields,
Cambridge University Press, 1994.

[11] M. di Bernardo, C. J. Budd, A. R. Champneys, and P. Kowalczyk, Piecewise-smooth
dynamical systems, Applied Mathematical Sciences, vol. 163, Springer-Verlag Lon-
don, Ltd., London, 2008, Theory and Applications.

[12] J. Ecalle, Introduction aux fonctions analysables et preuve constructive de la conjec-
ture de Dulac, Actualités Mathématiques, Hermann, Paris, 1992.

[13] M. I. Feigin, On the behavior of dynamic systems in the vicinity of existence bound-
aries of periodic motions: Pmm vol. 41, n. 4, 1977, pp. 628–636, Journal of Applied
Mathematics and Mechanics 41 (1977), no. 4, 642–650.

118



119

[14] A. F. Filippov, Differential equations with discontinuous right-hand sides: control
systems, Mathematics and its Applications. Soviet Series, Kluwer Academic Publ,
Dordrecht, 1988.

[15] M. Guardia, T. M. Seara, and M. A. Teixeira, Generic bifurcations of low codimension
of planar Filippov systems, J. Differential Equations 250 (2011), no. 4, 1967–2023.

[16] C. Henry, Differential equations with discontinuous right-hand side for planning pro-
cedures, Journal of Economic Theory 4 (1972), no. 3, 545–551.

[17] M. W. Hirsch, S. Smale, and R. L. Devaney, Differential equations, dynamical sys-
tems, and an introduction to chaos, Academic Press, 2012.

[18] Y. S. Il’Yashenko, Limit cycles of polynomial vector fields with nondegenerate singular
points on the real plane, Functional Analysis and its Applications 18 (1984), no. 3,
199–209.

[19] , Finiteness theorems for limit cycles, Translations of Mathematical Mono-
graphs, no. 94, American Mathematical Soc., 1991.

[20] T. Ito, A Filippov solution of a system of differential equations with discontinuous
right-hand sides, Economics Letters 4 (1979), no. 4, 349–354.

[21] V. S. Kozlova, Roughness of a discontinuous system, Vestnik Moskovskogo Univer-
siteta Seriya 1 Matematika Mekhanika (1984), no. 5, 16–20.

[22] Y. A. Kuznetsov, S. Rinaldi, and A. Gragnani, One-parameter bifurcations in planar
Filippov systems, Int. J. Bifurc. Chaos 13 (2003), 215–218.

[23] J. F. Larrosa, Bifurcações genéricas em sistemas de Filippov (in portuguese), Master
Thesis (Unicamp) (2012).

[24] F. Liang and M. Han, The stability of some kinds of generalized homoclinic loops in
planar piecewise smooth systems, International Journal of Bifurcation and Chaos 23
(2013), no. 02, 1350027.

[25] Y. Liu and V. G. Romanovski, Limit cycle bifurcations in a class of piecewise smooth
systems with a double homoclinic loop, Applied Mathematics and Computation 248
(2014), 235–245.

[26] J. Llibre and P. Pedregal, Hilbert’s 16th problem. when variational principles meet
differential systems, arXiv preprint arXiv:1411.6814 (2014).

[27] O. Makarenkov and J. S. W. Lamb, Dynamics and bifurcations of nonsmooth systems:
a survey, Physica D: Nonlinear Phenomena 241 (2012), no. 22, 1826–1844.

[28] N. Minorsky and T. Teichmann, Nonlinear oscillations, Physics Today 15 (2009),
no. 9, 63–65.

[29] J. Palis Jr. and W. De Melo, Geometric theory of dynamical systems: an introduction,
Springer Science & Business Media, 2012.

[30] L. Perko, Differential equations and dynamical systems, vol. 7, Springer Science &
Business Media, 2013.



120

[31] D. Pi, J. Yu, and X. Zhang, On the sliding bifurcation of a class of planar Filippov
systems, International Journal of Bifurcation and Chaos 23 (2013), no. 03, 1350040.

[32] H. Poincaré, Mémoire sur les courbes définies par une équation différentielle (ii),
Journal de Mathématiques Pures et Appliquées (1882), 251–296.

[33] C. B. Revés and T. M. Seara, Regularization of sliding global bifurcations derived
from the local fold singularity of Filippov systems, arXiv preprint arXiv:1402.5237
(2014).

[34] R. Roussarie, On the number of limit cycles which appear by perturbation of separatrix
loop of planar vector fields, Bulletin of the Brazilian Mathematical Society 17 (1986),
no. 2, 67–101.

[35] , Bifurcation of planar vector fields and Hilbert’s sixteenth problem, Springer,
1998.

[36] J. Sotomayor, Lições de equações diferenciais ordinárias (in portuguese), vol. 11,
Instituto de Matemática Pura e Aplicada, CNPq, 1979.

[37] , Curvas definidas por equações diferenciais no plano (in portuguese), Insti-
tuto de Matemática Pura e Aplicada, 1981.

[38] M. A. Teixeira, Generic bifurcation in manifolds with boundary, Journal of Differen-
tial Equations 25 (1977), no. 1, 65–89.

[39] , Perturbation theory for non-smooth systems, Mathematics of Complexity
and Dynamical Systems, Springer, 2012, pp. 1325–1336.

[40] S. M. Vishik, Vector fields near the boundary of a manifold, Vestnik Moskovskogo
Universiteta Matematika 27 (1972), no. 1, 21–28.

[41] Li. Wei, F. Liang, and S. Lu, Limit cycle bifurcations near a generalized homoclinic
loop in piecewise smooth systems with a hyperbolic saddle on a switch line, Applied
Mathematics and Computation 243 (2014), 298–310.

[42] Y. Xiong and M. Han, Limit cycle bifurcations in a class of perturbed piecewise smooth
systems, Applied Mathematics and Computation 242 (2014), 47–64.



Appendix A

Cauchy’s Inequality

The only objective of this appendix is to prove the Cauchy inequality used in Chapter
2. For a more complete study on this topic, see [1]. A key tool here is the well known
Chauchy’s integral formulas, i.e., if 𝑓 is analytic inside and on the boundary 𝐶, of a simply
connected region 𝑅 ⊆ C, and 𝑎 is any point inside 𝐶, then:

𝑓 (𝑛)(𝑎) =
𝑛!
2Þ𝑖

⌊︁

𝐶

𝑓(𝑧)
(𝑧 ⊗ 𝑎)𝑛+1

𝑑𝑧,

where 𝐶 is traveled in the positive direction and 𝑛 = 0, 1, 2, . . .. Another important fact
for line integrals, is ⧹︃⧹︃⧹︃⧹︃

⌊︁

𝐶
𝑔(𝑧)𝑑𝑧

⧹︃⧹︃⧹︃⧹︃ ⊘ 𝑁𝐿,

where 𝑁 = sup¶♣𝑔(𝑧)♣; 𝑧 ∈ C♢, 𝐿 = length of 𝐶 and 𝑔 is integrable along 𝐶. Now, the
required result can be proved.

Lemma A.1. If 𝑓 : 𝑈 ⊆ C ⊃ C is analytic inside 𝐵(𝑎, 𝑟) ⊆ 𝑈 , then

⧹︃⧹︃⧹︃𝑓 (𝑛)(𝑎)
⧹︃⧹︃⧹︃ ⊘ 𝑀 ≤ 𝑛!

𝑟𝑛
, 𝑛 = 0, 1, 2, . . . ,

where 𝐵(𝑎, 𝑟) is the open ball with center 𝑎 and radius 𝑟 > 0 and 𝑀 > 0 is a constant
such that ♣𝑓(𝑧)♣⊘ 𝑀 for all 𝑧 ∈ 𝜕𝐵(𝑎, 𝑟).

Proof. For 𝑅 = 𝐵(𝑎, 𝑟) and 𝐶 = 𝜕𝐵(𝑎, 𝑟), by applying the Cauchy’s integral formula we
obtain

♣𝑓 (𝑛)(𝑎)♣=
⧹︃⧹︃⧹︃⧹︃⧹︃
𝑛!
2Þ𝑖

⌊︁

𝐶

𝑓(𝑧)
(𝑧 ⊗ 𝑎)𝑛+1

𝑑𝑧

⧹︃⧹︃⧹︃⧹︃⧹︃ =
𝑛!
2Þ

⧹︃⧹︃⧹︃⧹︃⧹︃

⌊︁

𝐶

𝑓(𝑧)
(𝑧 ⊗ 𝑎)𝑛+1

𝑑𝑧

⧹︃⧹︃⧹︃⧹︃⧹︃ .

Since 𝐶 = ¶𝑧 ∈ C; ♣𝑧 ⊗ 𝑎♣= 𝑟♢, the length of 𝐶 is equal to 2Þ𝑟 and, for any 𝑧 ∈ 𝐶,
⧹︃⧹︃⧹︃⧹︃⧹︃

𝑓(𝑧)
(𝑧 ⊗ 𝑎)𝑛+1

⧹︃⧹︃⧹︃⧹︃⧹︃ ⊘ 1
𝑟𝑛+1

sup¶♣𝑓(𝑧)♣; 𝑧 ∈ 𝐶♢ =
𝑀

𝑟𝑛+1
⇒

⧹︃⧹︃⧹︃⧹︃⧹︃

⌊︁

𝐶

𝑓(𝑧)
(𝑧 ⊗ 𝑎)𝑛+1

⧹︃⧹︃⧹︃⧹︃⧹︃ ⊘ 2Þ𝑀
𝑟𝑛

.

Therefore, for 𝑛 = 0, 1, 2, . . ., we obtain ♣𝑓 (𝑛)(𝑎)♣⊘ 𝑀 ≤ 𝑛!
𝑟𝑛

.
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