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Resumo

Este trabalho apresenta os resultados obtidos acerca da investigagao das propriedades dos
espacos de moduli das representacoes referenciais estaveis do quiver ADHM aumentado,
denominados variedades ADHM aumentadas. Dentre os resultados obtidos, destacamos que
estas variedades possuem correspondéncia biunivoca com o espaco de moduli de bandeira
de feixes no plano projetivo. Também foi obtido uma caracterizagao das variedades ADHM
aumentadas suaves. Ademais as variedades ADHM aumentadas sdo quasi-projetivas e
podem ser imersas em uma variedade hyperkahler. Devido a esta imersao, verifica-se
que, nos casos em que esta variedade é suave, obtemos que ela é Kahler e possui uma
2-forma, fechada, degenerada herdada pela variedade hyperkahler. Em outras palavras,
as variedades ADHM aumentadas podem ser dotadas de uma estrutura definida neste

trabalho denominada estrutura holomorfa pré-simplética.

Palavras-chave: representacoes de quivers. equacoes ADHM. teoria de moduli.



Abstract

This work presents the results obtained about the investigation of the properties of the
moduli spaces of framed stable representations of the enhanced ADHM quiver, called
enhanced ADHM quiver varieties, such as the bijection between the enhanced ADHM
quiver varieties and the moduli space of flag sheaves in the projective plane that we proved
it exists. Also it was proved a characterization of the smooth enhanced ADHM quiver
varieties. Moreover, these varieties are quasi-projective and they can be embedded in a
hyperkahler manifold. Because of the immersion, it was proved that when the enhanced
ADHM quiver variety is smooth, it is a Kéahler manifold and has a closed, degenerated
2-form inherited by the hyperkédhler manifold. In other words, smooth enhanced ADHM
quiver varieties can be endowed with a structure defined in the work as holomorphic

pre-symplectic structure.

Keywords: representations of quivers. ADHM equation. moduli theory.
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Introduction

The concept of ADHM quiver was defined by Atiyah, Drinfeld Hitchin and
Manin in 1978 in the paper [1]. There they described in terms of linear algebra in a unique
way all self-dual connections on euclidean 4-dimensional space (instantons). In order to
do this, they used the Ward’s correspondence and a few algebro-geometric techniques
(monads) introduced by Horrocks. Donaldson restarted in 1984 the ADHM description
in terms of maps between complex vector spaces, see [7]. One important result proved
by Donaldson in this paper is the fact that the regular solutions of the ADHM equation
modulo a specific G-action parametrizes the moduli space of holomorphic bundles on P?
that are framed at the line at infinity, where G is the general linear group over a fixed
vector space.

In 1999, Nakajima in [13] changed the regularity condition to a weaker stability
condition and obtained the moduli space of framed torsion free sheaves on P2. In particular,
Nakajima obtained an algebraic description of the Hilbert schemes of points on C* and
that it admits a hyperkahler structure.

The concept of enhanced ADHM quiver was defined by Bruzzo, Diaconescu,
Jardim, et al. in [4] and it appears as a tool to study the moduli space of supersymmetric
flat directions of a quantum mechanical potential. They noticed that this moduli space,
constructed using Geometric Invariant Theory techniques, is isomorphic to the moduli
space of framed stable representations of the enhanced ADHM quiver. Moreover, they
proved that it is a quasi-projective smooth irreducible variety.

In this thesis we define and study a quiver slightly different from the quiver
defined in [4] that shares many proprieties with it. Because of this similarity, it is also
called enhanced ADHM quiver. Here we proved that the moduli space of framed stable
representations of the enhanced ADHM quiver is a quasi-projective variety that can be
embedded in a hyperkdhler manifold, W, and it has a bijection with the moduli space
of flags of sheaves. Moreover, for some special cases, this moduli space is smooth and
irreducible. Also we present a study of the complex and holomorphic structures that can
be inherited by W. Defining new structures denominated holomorphic pre-symplectic
structures.

This thesis is divided in four chapters. In Chapter 1, it is presented briefly the
ADHM quiver and the moduli space of stable representations of this quiver. In Chapter
2, we defined the enhanced ADHM quiver and exposed the construction of the moduli
space of framed stable representations of this quiver. Also it is proved that for a special
case this moduli space is smooth. On Chapter 3 it is proved that this moduli space is a

subvariety of a hyperkahler manifold. In this chapter it is also defined the holomorphic
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pre-symplectic structure and it is checked that this moduli space admits this structure.
Finally, in Chapter 4 it is proved that the moduli space of framed stable representations

of the enhanced ADHM quiver has a bijection with the moduli space of flags of sheaves.
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1 Preliminaries

In this chapter it is presented briefly representations of quivers, ADHM equa-
tions and the ADHM varieties and a introduction to Kahler and hyperkahler verieties.
Here, the reader can find the main definitions and results relating to subrepresentations of
a quiver, morphisms between representations, smoothness of the set of stable solutions of
the ADHM equations and a few equivalences of the definition of Kéahler and hyperkéahler
manifolds.

In the first section, we will present the topics related to quivers and representa-
tion of quivers, in the second section, we will define the ADHM equations and the ADHM
varieties. Finally, in the third and las section we will talk briefly about the complexes

structures mentioned above.

1.1 Quivers and representation of quivers

It will be presented in this section the first definitions about quivers and
representations of quivers. We will talk about this very briefly, but the reader can find

more details about this topic in [12, Chapter 3].

Definition 1.1.1. A quiver is a quadruple @ = (Qq, @1, h,t) where Qy, Q1 are two finite

sets and
h,t: Q1 — Qo

maps.

In general, () is a set of vertices and @) is a set of arrows. The maps h and ¢
are called head and tail, respectively. Given an arrow s € Q1, t(s) and h(s) represent the
source and the target of s, respectively. In other words, a quiver can be view as a oriented

graph.

Definition 1.1.2. A relation in a quiver is a linear combination of concatenation of arrows

that have the same source and target.

Consider the following example.

Example 1.1.3 (ADHM quiver). Let @ = (Qo, Q1, h,t) a quiver such that Qy = {e1, ex},
Ql = {047575777} and h7t : Ql - QO are given by
t(S) _ 617 s€ Ss€ {O{, 67 77} h(S) _ 617 se SE€ {Oé, B? 5}
€w, se se{} ew, se se{n}

Then @ is the oriented graph
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Furthermore

af — Ba + n (L1)
is an example of relation in Q). The quiver @ = (e, ey, h,t) above with relation (1.1) is
called ADHM quiver.

Definition 1.1.4. Let Q = (Qo, @1, h,t) be a quiver. A representation E = (E;, ps) of Q
is a colection of vector spaces over a filed K, {E; : i € Qo}, and a colection of K-linear
maps,

{@s : Eys) — Eps); 5 € Qn}.
A morphism between representations E = (E;, ps) and F = (F}, ¢,) of the quiver @Q, is a
set of linear maps

f=1{fi: Ei — F;:ie Qo}
such that the diagram

Ei(s) —> En(s)

lft(s) lfh(s)
s

Fysy —= Fhs)
commutes for all s € 1. If these morphisms are isomorphisms, then (E;, p,) and (F;, ps)
are isomorphic and f is an isomorphism between . If E; < F;, for all i € @)y and the

morphisms f; are inclusions for all i € Qo, then (E;, p,) is a subrepresentation of (F;, ¢s).

Example 1.1.5 (Representetions od the ADHM quiver). Let @ be the ADHM quiver, as
Example 1.1.3. Let V', W be complex vector spaces. Let A, B€ Hom(V, V), I € Hom(W,V)
and J € Hom(V,W). Then, X = (W,V, A, B,I,J) is a representation of @ and V', W, A,
B, I, J, are identified with ey, e, a, 3, &, 1, respectively. Let X' = (V' W', A", B, I', J)

be another representation of @. Thus, X and X' are isomorphic, if there existe linear maps
f: vV —VvV, g: W — W

such that
fA:A/fa fI:I,ga fB:B,fa g‘]:‘]/f

Let Q = (Qo, @1, h,t) be a quiver. Let n be the the cardinality of Qy. The
numerical type or dimension vector of a representation E = (F;, ¢,) of @) is given by
the vector (dim Ey,...,dim E,) e Z". If X = (V,W, A, B,I,J) is a representation of the
ADHM quiver, the numerical type of X is (r,¢) = (dim W, dim V).
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1.2 ADHM equations and ADHM varieties

In this section we will present the stability conditions for representations of
the ADHM quiver and talk briefly how the moduli space of the stable representations of
the ADHM quiver can be found. Furthermore, we will present a few properties just for
further references. More details can be found in [10].

As we saw on Example 1.1.3 the quiver

a &
N

with the relation

af — Ba+ &n.

is called ADHM quiver. A representation of this quiver is given by X = (W,V, A, B, I, J),
such that W and V' are complex vector spaces, A, B € End(V'), I € Hom(W,V) and
J e Hom(V,W) and X satisfies

[A,B] +1J = 0.

This equation is called ADHM equation. The vector (dim(W), dim (V")) is called dimension

vector or numerical type of the representation.

One can express a representation X = (W, V. A, B, 1,J) as

A

B
N
1%

w

Definition 1.2.1. Let X = (W,V, A, B, I,J) be a representation of the ADHM quiver.

This representation X is called

(1) stable, if there is no subspace 0 & S < V such that A(S), B(S), (W) < S;
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(17) costable, if there is no 0 # S < V such that A(S), B(S) < S < ker(J);

(131) regular, if it is stable and costable.

Let V and W be complex vector spaces of dimension ¢ and r, respectively. We

define the ADHM data as the complex vector space given by

B := End(V)® End(V)® Hom(W,V)® Hom(V,W).
A point of B is called ADHM datum, if X = (A, B,1,J) with

A,Be End(V), I € Hom(W,V) and J € Hom(V, W)

where V and W are fixed vector spaces.

Denote by By := {X € B: X satisfies the ADHM equation and X is stable}.
Let G = GL(V) and consider the following G-action

GxB — B (1.2)
(h,X) +—> (hAR™', hBh™' LI, Jh™Y) (1.3)

Then, it is well known that the moduli space of the stable representations of
the ADHM quiver, M(r,¢) := By/G, is a hyperkéhler quotient with complex dimension
2rc. A proof of this can be found in [2, Section 3.1.1]. Moreover, it was proved in [10] that
M(r, c) is an irreducible quasi-affine variety. Consider the following result just for further

references.

Proposition 1.2.2. Let C(A) be a deformation complex of a stable ADHM datum
X = (A,B,1,]), ie.

End(V)®
do ) i
®
Hom(V, W)
with
do(a’) = ([CL, A]a [a’7 B]7 aI? —J(Z),
di(a,b,1,7) = |a,B]+[A0b]+ Ij+iJ.
Then,

H(C(A)) = H*(C(A)) = 0.

Proof. In order to prove this result, it is enough to check that dy is injective and d; is

surjective. Suppose that

do(a) = ([a, A], [a, B],al,—Ja) = 0. (1.4)
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We must to prove that
a=0.

Define S := ker(a). It follows from equation (1.4) that
aA = Aag; (1.5)

aB = Ba;

al =0 =wmlcS.
Let v € S. Then, it follows from equation (1.5) that
aAv=Aav =0 = Ave S forallveS.
Therefore, A(S) < S. Analogously one can prove that B(S) < S. Thus,
A(S), B(S), Im(Il)cS

and it follows from the stability of (A, B, I, J) that ker(a) = V. Therefore a = 0. Thus,
ker(dg) = 0 and H(C(A)) = 0. The proof of the surjectivity of d; can be found on [4,
Proposition 2.3.1]. O

1.3 Kahler and hyperkahler structures

This section is a brief introduction to Kéhler and hyperkahler structures. Those
theories are important to comprehend and work into the subjects presented on the other
chapters. The notions defined here will be useful to understand a tool to build hyperkahler
manifolds, called hyperkahler reductions or hyperkédhler quotients, that will be presented
in Chapter 3 of this thesis. The hyperkahler quotient was develop by Hitchin, Karlhede,
Lindstrom and Rocek in 1987 on the paper “Hyperkédhler Metrics and Supersymmetry”,
[9]. More details about hyperkahler quotients in portuguese can be find on [2].

Definition 1.3.1. Let (M, {, )) be a Riemannian manifold and I' a complex structure
defined in the tangent bundle of M. The triple (M, { , ),I") is a Kdihler manifold if satisfies

1. the complex structure I' is compatible with the Riemannian metric (, ), i.e., if
{Tu, Ivy = {u,v), para todo u, v e TM;

2. the non-degenerate 2-form w(-,-) := {I-,-) is closed, i.e., dw = 0.

The 2-form w above is, in particular, a symplectic form and is called Kdhler

form. Let (M,T") be a complex manifold. This manifold is called a holomorphic symplectic
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manifold, if it admits a symplectic form. A manifold is called hypercomplex manifold, if it

admits three complex structures on T'M, I'y, I'y and I's that satisfy the relation, i.e,
FP=J=K=1JK =—1. (1.6)

In 1965, Obata proved that there exists a unique torsion-free connection V on a hyper-
complex manifold (M, Ty, 'y, I'3) that satisfies

VI = VI, = VI3 =0 (1.7)

(see [14]).

Let (M,{, ), I'1,I'3,I'3) be a hypercomplex manifold endowed with a Rieman-
nian metric. This manifold is called a hyperkdhler manifold if the Riemannian metric { , )
is compatible with the complex structures I',,, for n € {1,2,3} and if the Levi-Civita con-
nection of (M,{ , )) satisfies (1.7). The next Proposition give to us equivalent definitions

of hyperkahler manifolds.

Proposition 1.3.2. Let (M,{, ), T'1,I'5,I'3) be a hypercomplex manifold endowed with
a Riemannian metric. Let w,(-,-) = (', ) for all n € {1,2,3}. The following sentences

are equivalents:

1. the Levi-Civita connection of (M, { , )) satisfies the equation (1.7);
2. Vw, =0, for all n € {1,2,3};

3. dw, =0, for all n € {1,2,3}.

The proof of this proposition can be found in [2, Proposition2.3.1]. It follows
from this Proposition that (M,{, ), T';,'5,'3) is a hyperkdhler manifold if and only if
(M, 5, T1), (M,{, ) Ty)and (M, ) T's) are Kdhler manifolds.

Let (M,{, ), I'1,T'5,T'3) be a hyperkéhler manifold. Let ws e w3 be the Kéhler
forms associated with the Kéhler varieties (M,{ , ),Ts) e (M,{, ), T's), respectivamente.

E verdade que w; e wg satisfazem

wa(u,v) = g(Ju,v) =g(lJu,Iv) = g(Ku, Iv) := ws(u, Iv); (1.8)
wy(u,v) = g(Ku,v)=g(llJu,Iv) = —g(Ju, Iv) := wy(u, Iv). (1.9)

Define Q := w; + v/—lwg. It is easy to check that Q is a symplectic form. Therefore,
(M,T,9Q) in a holomorphic symplectic manifold. On the other hand, if (M,T'1,Q) is a
irreducible compact holomorphic symplectic Kédhler manifold, then there exists a unique
hyperkahler manifold,(M,{ , ,T'1, Ty, I's) such that Q = wyy/—1ws. Ver [8, Theorem 5.11,
p. 26; Theorem 23.5, p. 179].

In the Chapter 3, we will define a new structures called holomorphic pre-

symplectic manifold and holomorphic pre-hyperkahler manifold and see that it satisfies
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one of the sides if a manifold has a holomorphic pre-hyperkéahler structure, then we can
construct a holomorphic pre-symplectic structure in this manifold. However, the reciprocate
is still unknown. We will also proof in Chapter 3 that if we fix a numerical type (1,2,1),
the moduli space of the framed stable representations of the enhanced ADHM quiver
admits a holomorphic pre-symplectic structure. The construction of this moduli space will

be presented in the next chapter.
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2 Enhanced ADHM varieties

In 2011, Bruzzo, Chuang, Diaconescu, Jardim, Pan and Zhang defined in [4,
Chapter 3] the enhanced ADHM quiver as the quiver

e}
¢ O n
el e e

Y U £
b (2.1)

with ideal generated by the relations

045—504+§777 a¢7 5¢—¢6/, 77¢7

, (2.2)
7, o, Ya, V8 — By.

In [4, Chapter 3], they proved the moduli space of the framed stable represen-
tations of the quiver (2.1) is a smooth, quasi-projective variety of dimension (2¢ — )r,
[4, Theorem 3.2]. In this thesis, the main object studied is the moduli space of framed
stable representations of another quiver quite similar to the quiver (2.1). The moduli space
presented here and the one worked on [4] also share a few properties and some propositions
are true for both of them. Because of those similarities the objects defined here will carry
the same name as the aforementioned paper. The definition and properties of this quiver

and its representations are presented in the following sections of this chapter.

2.1 Enhanced ADHM quiver and its representations

In this section we will present the enhanced ADHM quiver as the following.

Consider the quiver
/

« «

b 2 O 2
62\_/€1veoo
u 7 u ¢

B B
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with ideal generated by the the relations

af — Ba+ &n, (2.4)
o — B, (2.5)
ap — ga’, (2.6)

Bo — o, (2.7)

no, (2.8)

3 (2.9)

o7, (2.10)

ya —a'y, (2.11)

VB8 — By (2.12)

Note that the difference between the quiver above and the quiver (2.1) is the arrow o
and the relations (2.5), (2.6) and (2.11) that were adapted to this new arrow. This quiver
will also be called enhanced ADHM quiver.

A representation of the enhanced ADHM quiver of type (r,c,c’) in the category
of complex vector spaces is given by X = (W,V,V' A, B,I,J, A", B', F,G), where W, V,
V" are vector spaces of complex dimension r, ¢ and ¢, respectively, and A, B € End(V), I €
Hom(W,V), J € Hom(V,W), A", B" € End(V'), F € Hom(V',V) and G € Hom(V, V")
that satisfy the following equations called enhanced ADHM equations

[A,B]+1J=0, [A,B]=0, AF—FA =0, BF—FB =0, JF =0,

(2.13)
GI=0, FG=0, GA-AG=0, GB-BG=0.

A representation X = (W, V, V', A, B,I,J, A", B', F,G) can be illustrated as the diagram

below

A A
O r 0O
, — > —
v <y !
B’ B

Let o : W — C" be an isomorphism. Then, if X is a representation of the enhanced
ADHM, (X, ) is called a framed representation of the enhanced ADHM quiver. Two
framed representations (X, ) and (X, ) are said to be isomorphic if there exists an
isomorphism (&1,£2,8,) : X — X such that 3¢, = ¢

(61,62, 60) 1 X — X,
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such that P&, = . Since (&1,&2, &) is in particular a morphism between the representa-

tions X and X , the following diagrams commute

v A5y véw A T Ve

Jfl J{gla lﬁl lfooa l& l{zy l&z ¢ J{&-

VALY vemw vERY P
I G

In other words, (£1,£2,80) : X —> X isa morphism if and only if the following equations

are satisfied

GA= A6, aB=B&, Gl =16, &J=1J&, (2.14)
LA = X6, &B =B, GF =F&, &G =06,

2.2 Stability conditions

In order to construct the moduli space, first it is needed to introduce a stability
condition. In this sections two stability conditions will be presented and will be proved
that these are equivalent in a suitable chamber. The first one, called ©-stability condition,
is inspired in the stability condition presented by King in 1994 in [12]. The O-stability
condition is a good one because there exists techniques using Geometric Invariant Theory
to construct the moduli space of ©O-stable framed representations of quivers, as we prove
in the Section 2.3.

While the second stability condition is more resembling with the stability
condition usually defined for representations of the ADHM quiver. This resemblance
plays an important role to prove that the moduli space stable framed representation
of the enhanced ADHM quiver of numerical type (r, ¢, '), where ¢ > 2, is not smooth.

Furthermore, this condition is very useful to prove Lemma 2.3.8 and Proposition 4.0.3.

Definition 2.2.1. Let © = (0,6,0,,) € Q* a triple satisfying the relation
e+ 0 +rhy, = 0. (2.15)

A representation X of numerical type (r, ¢, ') is called ©—stable if X satisfies the following

conditions:
(i) Any subrepresentation 0 # X < X of numerical type (0,7, ¢) satisfies

0+ 0'¢ < 0; (2.16)

(ii) Any subrepresentation 0 # X © X of numerical type (7, ¢, ) satisfies

0.7 + 0C+0'¢! < 0. (2.17)
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A representation X of numerical type (r, ¢, ) is called ©—semistable if X satisfies

(iii) Any subrepresentation 0 # X — X of numerical type (0,7, ¢') satisfies

0 + 0/ < 0; (2.18)

(iv) Any subrepresentation 0 # X < X of numerical type (7, ¢) satisfies

0.7 + 0C+60'¢ < 0. (2.19)

Note that this stability condition is slightly different from the notion defined
by King, since here only the subrepresentations of numerical type (0, ¢, ) and (r, ¢, ).
However, this notion defined in [4] is enough to construct the moduli space of O-stable
framed representations of the enhanced ADHM quiver, as we will see in Section 2.3.
Let (r,c,c") be a fixed dimension vector. Then the space of stability parameters © =
(0,0',0,,) € Q° satisfying (2.15) can be identified with the (6, #")—plane in Q?, after solving
for 6. If the set of the representations X with numerical type (r, ¢, ¢’) which is strictly
©—semistable is nonempty, the parameter © is called critical of type (r,c,c’). Otherwise,
if this set is empty, the parameter © is called generic. The following lemma establishes the
existence of generic stability parameters for any given dimension vector (r, ¢, ¢’). Moreover,

this lemma is analogous to [4, Lemma 3.1] and a proof is written only for completeness.

Lemma 2.2.2. Fix a triple (r,¢,c) € (Z=)®. Suppose # > 0 and 6 + /¢’ < 0. Let
X =W, V,V' A B,I,J,A’, B', F,G) be a representation of numerical type (r, ¢, ). Then
the following are equivalent:
(i) X is ©—stable;
(ii) X is ©—semistable;
(iii) X satisfies the following conditions:
(S.1) F e Hom(V',V) is injective;
(S.2) The ADHM data A = (W,V, A, B,1,J) is stable, i.e., there is no proper

subspace 0 € S < V preserved by A, B and containing the image of I.

Proof. If X is ©—stable, then X is clearly ©—semistable.
Suppose that X is ©—semistable and F' is not injective. Then
Al(ker(F)) < ker(F)
B'(ker(F)) < ker(F)
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In fact, let v € ker(F'). Then it follows from the enhanced ADHM equations that

0= (BF - FB)v

-0
=B Fv —FBv
—

=0

= F(B'v) =0, for all v € ker(F)

= B'(v) € ker(F), for all v € ker(F)
= B'(ker(F)) < ker(F)

Analogously the same can be proved for the endomorphism A’.
Then, X = (0,0,ker(F),0,0,0,0, A ey, B'[xer(F), F lxex(r), 0) is a subrepre-
sentation of X with numerical type (7, ¢) in which # = & = 0 and ¢ = dim(ker(F)).

However,
e+ 0 = 6 - dim(ker(F)) > 0

and this contradicts the inequation (2.18).
Now suppose that X is ©—semistable and the condition (5.2) is false. Then,
there is a proper subspace 0 = S < V such that

A(S), B(S), Im(I) < S.

Therefore, X = (W, S, V' Als, Bls, I, J|s,0,0,0,0) is a subrepresentation with numerical
type (r,dim(S), ). However, it follows from the equation (2.15) and from conditions
0 > 0,0+ 0 <0 that dim(S)0 + ¢ + 6Or > 0. Indeed,

—

=—cO—c'0'

0 >0 0+ <0=0<0,

moreover,
dim(S)0 + 0+ Oor = (dim(S)—¢)8>0 (2.20)
——cO—cf! 0

and this contradicts the inequality (2.19). Thus, if X is ©—semistable, then X satisfies
the conditions (S.1) and (S.2).

Now suppose that X satisfies the conditions (S.1) and (5.2), thus X is ©—stable.
merical type (7, ¢, cN’) There are two cases to study: ¥ =r and 7 = 0.
First suppose ¥ = r. Since Wis a subspace of W, by definition, and 7 = r, W=Ww.
It follows from condition (S.2) that I # 0. Indeed, otherwise, 0 < V would satisfy
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A(0), B(0),Im(0) = 0 and then A = (W, V, A, B, I,J) is not stable. Since X is a subrep-

resentation of X, the diagram below commutes:

w L

o

w L

c;><

<

ie.,
Lol =1Toly. (2.21)

Thus, if ¢ = 0, I = 0, which is a contradiction. Therefore ¢ > 0.

If ¢ < ¢, then 0 c VcVisa proper subspace such that
AWV),B(V),Im(I) c V.
Indeed, since Xisa subrepresentation of X, the following diagram commutes:
[
VAL
thus,
Loﬁ:AOL:A\‘;C V.

Analogously, B preserves V. Moreover, it follows from (2.21) that Im(I) c V, and this
contradicts the condition (S.2). Therefore, ¢ = ¢. Since X isa proper subrepresentation,
¢ < ¢ and then

0 _C 40740, T =0c+0+ 00— (0c+0¢ +0,7)

—c = g
=0

=0(d—c)<0

Now suppose ¥ = 0. If ¢ = 0, since F' is injective, V< ker(F) = 0. Thus Vo= 0.
However, only nontrivial subrepresentations are being considered. Then ¢ > 0. If ¢ < ¢,
again 0 ¢ V < V contradicts the condition (5.2) and & = ¢. Since X is a proper

subrepresentation, ¢ < ¢. Thus
B+ 0 <0+0 <0
Therefore, X is ©—stable. O

The following corollary is trivial.

Corollary 2.2.3. Let X = (A,B,I,J, A", B',F,G) be a stable representation of the
enhanced ADHM quiver. Then G = 0.
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Proof. Note that F' is injective, see condition (S.1), and F'G = 0, see enhanced ADHM
equations (2.13). Then G = 0. O

Due to the Lemma 2.2.2, from now on a representation X of the enhanced
ADHM quiver will be called stable if X satisfies (S.1) and (S.2). Due to Corollary 2.2.3,
framed stable representations are quite simpler and easier to manipulate.

In this work almost always the representations of the enhanced ADHM quiver
considered are stable. Thus, sometimes it will be considered the following quiver as the
enhanced ADHM quiver

o a
e b
¢ — =
€y —> €1 - €
U U ¢
g B

with ideal generated by relations
O{B - 50'/ + 5777 O{¢ - ¢a/a BQS - ¢B/7 77¢a a/ﬂ/ - B/OJ/.

Then a representation of the quiver above is given by X = (A, B, I, J, A', B', F') such that
A, Be End(V),I € Hm(W,V),Je Hom(V,W), A", B e End(V') and F € Hom(V', V),

see the diagram below,

A A
g 0y

F —
V' v _ W
U O
B’ B

satisfying the equations
[A,B]+1J=0, AF—FA' =0, BF—FB' =0, JF =0, [A,B]=0, (222

which sometimes it will be also called enhanced ADHM equations in this work.

2.3  The Moduli Space

In this section the construction of the moduli spaces of framed ©—semistable
representation of the enhanced ADHM quiver is presented. In order to do this, Geometric
Invariant Theory techniques are used by analogy of [12] and [4, Section 3.2]. This con-

struction is presented in details just for completeness.
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Let V, V', W be complex vector spaces such that dimV = ¢, dim V' = ¢’ and
dim W = r. We define the space of enhanced ADHM data, denoted by X or X(r, ¢, ), as

the following complex vector space
X = End(V)® @ Hom(W, V) @® Hom(V, W) ® End(V')® @ Hom(V', V) ® Hom(V,V").
A vector X e X, X = (A, B,1,J, A", B', F,G), is called enhanced ADHM datum. Let
G = GL(V) x GL(V").
Consider the map

U: GxX — X
(hh',X) +—> (hAR™ hBh™ hI, Jh Y W AN W BK ™ hFL Y WGh™Y)
(2.23)

This map defines a G—action on X. Indeed, let (hy,h}), (he,hy) € G and
X = (A,B,I,J,A', B, F,G) € X. Denote
(h, W) - X :=U(h, 1, X).

Then
(ha, hy) - ((ha, b)) - X) = (la, hy) - (heAhy ' haBhy' hol, Jhy ' Ry Ay Wy B Ry

= hoFRhy Y hoGhyt)

—  (hiho ARG RTY, hyho BRG YWY, hohol, Jhy *hit, Ryhy ARG TR,
WAR, B RSN hyho FRSTRTY

—  (hihoA(hih) ™Y, hiho B(hihs) ™Y, hahol, J(hihg) ™,
hyhy AR RG) ™Y By B (W hy) ™ haho F(RGRG) ™)

= (hihg, hihg, By) - X.

Moreover, let 1y and 1y be the identities of GL(V') and GL(V'), respectively. Then

(1y,1y) - X = (1yAL 1y By v L J15Y 1y Ay 1y B Ty, 1y Flye, 1/Gy)
= X,

i.e., the map (2.23) is a G—action on X.

Proposition 2.3.1. The G—action (2.23) is free on stable points of the enhanced ADHM
data X.

Proof. Suppose that there exists (h,h') € G such that

(h,h') - X = X, for all X e X.
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Then, the following equations are satisfied

hALW™' = A, hA = Ah;

hBh™' = B, hB = Bh; (2.24)
hI =1, (h—1y)I =0; (2.25)

hA'h = A, hA = A'h;

hB'h' =B, hB' = B'h;

hFN ™' =F (2.26)

Let S := ker(h — 1y). It follows from the equation (2.25) that I'm(I) < S. We claim that
A(S), B(S) = S. Indeed, let v € S. Then,

(h—1y)v=0 = hv=nvo. (2.27)
Therefore, it follows from the equations (2.24) e (2.27) that

(h—1y)Bv = hBv— Bv

= Bhv— Bv
= Bv-Bv
= 0.

Hence Bv € S for all v € S, i.e., B(S) < S. Analogously, one can prove that A(S) < S.
Thus,
A(S), B(S), Im(I)cS.

It follows from the stability condition of the ADHM datum (A, B, I, J) that S = V. Then,

h=1y. (2.28)

We claim that h" = 1y/. Indeed, it follows from the equations (2.26) and (2.28) that
F(1y, — k1) = 0. Since F is injective, it follows that (1y» —h’~') = 0. Therefore, h' = 1y~
and (h,h’) = (1y, 1y/), which concludes the proof. O

The stabilizer of a given point X € X is denoted by Gx < G. It is easy to check
the following.

Lemma 2.3.2. Let Xy = Xy(r, ¢, ) © X(r, ¢, ¢') be the subscheme defined by the equations
(2.13). Then X, is preserved by the G-action (2.23).

Proof. It X = (A,B,I,J,A", B, F,G) € Xy and (h,h') € G, then

(h, 1) - X = (hAR"Y, hRBR~Y, hI, Jh™Y W AR~ W B'W = hFR Y, WGh™Y).
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Furthermore, it follows from the equations (2.13) that
[hAh™Y, hBh™'] + hIJh™" = hAh*hBh™ — hBh™*hAh™' + hIJh™!
= h(AB— BA+1J)h™"
-0
=0, (2.29)
[hlA/hl—l h/Blh/—l] _ hlA/hl—lh/Blhl—l o h/Blhl—lh/Alh/—l
= h (AB — BA) R
=0
=0, (2.30)
hAR'hER ™ — hFN'hA'R ™ = h (AF — FA' ) h!
=0
=0, (2.31)
JhhFR "t = JF K1
=0
=0, (2.32)
R'Gh™*hI =R GI
=0
=0, (2.33)
hFW'WGh™ ' =h _FB h!
=0
=0, (2.34)
WGh*hAh™ — WA'W'WGh™ =W (GA - AG)h™*
=0
= 0. (2.35)
Analogously to (2.31) and (2.35), one can obtain
hBh'hFR~" — hFK'hB'h~" = WGh™'"hBh™" — WB'W'"'"W'Gh™" = 0.
Therefore, the G-action mentioned preserves the equations (2.13). [

Remark 2.3.3. Each representation X = (W,V,V' A B,I,J A", B, F,G) corresponds

to a datum vector X € Xy. Moreover, two framed representations are isomorphic if and
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only if the corresponding points in X, are in the same orbit.

Indeed, let (X, ) and (X,3) be framed representations such that X =
(X, ) and ()N( , @) are isomorphic. Then, the corresponding points in X, are in the same
G—orbit. In fact, there is an isomorphism (&3, &2, &) such that the equations (2.14) are
satisfied and @&, = ¢. However, one can choose a basis for W and for W’ such that,
£x = lw. Then, the equations (2.14) reduce to

§1A = gglv ng = -§517 51] = ]~1Wa 1WJ = jgla
A = Ay, 6B =D&, §F =F&, 6HG =G

This means that X = (&1, &) - X where (&1,&) € G. On the other hand, if they are in the
same G—orbit, there is (h, h') € G such that X = (h, k') - X. In other words,

~

hAh™' = A, hBh ‘=B, hI=1, Jh''=J,
WA'W Y= A, WBRK =D, hFKW '=F, KWGh'=3G,
ie.,
hA = Ah, hB = Bh, hl=11y, 1lwJ =Jh,
WA = A'W, WB=DBWHN, hF=FI, KWG=Gh
and (h,h', 1) : X — X is an isomorphism. Moreover, one can take a basis such that,

¢ly = @ and (X, @) and (X, $) are isomorphic.

Now a recall of a few results about Geometric Invariant Theory for representa-
tions of quivers. More details can be found in [12]. First, the notion of x-(semi)stability
for a given character x : G —> C* will be defined. Then it will be proved that the notion
of ©-(semi)stability is equivalent to the notion of x-(semi)stability for a specific character
that will be defined below.

Definition 2.3.4. Let G be a reductive algebraic group acting on a vector space X. Given

an algebraic character
X - g - C*7

a point Xy € X is called:
(i) x-semistable , if there exists a polynomial function p(X) on X(r, ¢, ') satisfying:
p((h, 1) - Xo) = x(h, 1')'p(Xo), (2.36)
for some [ € Z~1, such that p(Xy) # 0;

(i) x-stable, if there exists a polynomial function p(X) on X(r, ¢, ¢') satisfying (2.36) for
some [ € Zx1, such that p(Xy) # 0 and such that

dim(G - Xy) = dim(G/A),



Chapter 2. Enhanced ADHM wvarieties 31

where A < G is the subgroup which acts trivially on X, and the action of G on
{r e X: p(x) # 0} is closed.

The next Lemma gives to us an equivalent definition of x-(semi)stability.
Lemma 2.3.5. Let G act on the direct product Xo(r, ¢,c’) x C by
(R, h') x (X, 2) — ((h, 1) - X, x(h, B) "' 2).

A point X € X is

(i) x-semistable if and only if the closure of the orbit G - (X, z) is disjoint from the zero
section X(r, ¢, ) x {0}, for all 2 # 0;

(ii) x-stable if and only if the orbit is closed in the complement of the zero section, and

the stabilizer G(x . is a finite index subgroup of A.

The proof of this Lemma can be found in [12, Lemma 2.2]. One can form the

quasi-projective scheme:

N;S (Ta ¢, Cl) = XO(Ta ¢, Cl)//Xg = PI'Oj (®n20A(X0(T7 ¢, C’))Q,Xn)’ (237>
in which
A(Xo(r, e, )7 = {f € AXo(r. e, d)); f((h, 1)-X) = x(h, B')" f(X), for all (h, ) € G}.

Remark 2.3.6. It is well known that N*(r, ¢, ¢') is projective over Spec(Xo(r, ¢, ¢')9), and
it is quasi-projective over C. Geometric Invariant Theory says that ./\/';s(r, ¢, ') is the space
of x-semistable orbits; moreover it contains an open subscheme N (r, ¢, ) € Ny*(r, ¢, )

consisting of y-stable orbits.

The following proposition holds by analogy with [12, Proposition 3.1, Theorem
4.1] and the proof is analogous to [4, Proposition 3.1]. The proof is given in details just for

completeness.
Proposition 2.3.7. Suppose that © = (0,0') € Z* and let yo : G —> C* be the character
xo(h, 1) = det(h)~? det(h')~7".

Let X = (W,V,V' A B,I,J, A", B, F,G) be a representation of the enhanced ADHM
quiver and X the corresponding point in Xy. Thus, X is ©-(semi)stable if and only if X is
Xo-(semi)stable.
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Proof. Suppose that X is ye-semistable. Let 0, € Z such that it satisfies (2.15). Suppose

~ ~ A~ A A A A~ S~ A A

~

of numerical type (r, ¢, c’) of the representation X such that 7= dim(W) € {0, r} satisfies
0+ 0 + 70, > 0.

First take 7 = 0. Then W = {0}. Since X is a subrepresentation of X, V and V' are
subspaces of V and V’, respectively, and it follows that

FV)cV, GWV)cV, AWV), BWV)cV, AWV, BV)<V, JV)=o0.
Thus, there exist direct sum decompositions

V;XN/@‘A/
{V’;V@ﬁ (2.38)

such that the linear maps A, B, A", B', F, G have block decomposition of the form

o] o

while the linear maps I and J have block decomposition of the form

IZH, i=[o -]

Consider a one-parameter subgroup of G of the form

h@:[fﬁf{r M@:[“V O]. (2.40)

It follows that the linear maps

(A(), B(1), I(1), J(1), A'(t), B'(t), F(t), G(t)) = (h(t), h'(1)) - X

% T
;] -

have block decomposition of the form

and
I(t)=[t*], J(t)z[o } (2.42)
However,
—0 AN
xo(h(t),h'(t))-z = [ det [ ty O ] det [ v 10 ] 2
_ (t—ez—efE/)—1 .
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with 6¢ + 0'¢ > 0. Therefore,

lim(R(t), ' (t) - (X, 2)) € X x {0},

t—0

which contradicts the yg-semistability condition.
Now suppose 7 = r. Thus, analogously to the case r = 0, one can obtain

FVYcSV,GV)c V', AWV), BV)cV, AWV, BV, I(W)cV.

Therefore, there exist direct sum decompositions like in (2.38) such that the maps A, B,
A", B, F and G have block form decomposition of the form (2.39), while I, J have block

form decompositions of the form

[:[;], J:[**]. (2.43)

Now consider a one-parameter subgroup of G of the form

h(t):[lV 0 ] h'(t):[“V 0 ] (2.44)

0 t'1; 0 t 'l
It follows that the linear maps
(A(t), B(1), (1), J(t), A'(t), B'(t), F(t), G(t)) = (h(t), (1)) - X

have block decomposition of the form (2.41) and

I(t):[;], J(t)z[* t*]. (2.45)
However,
1, 0 |’ tly 0 "\
xo(h(t),h'(t)) 2z = det[ (;/ t_llf,] det[ OV t_11‘7,] z

(t(z_c)0+(£'—c/)9') .

in which ((Z—¢)f + (¢ — ¢)#') > 0. Indeed

=)0+ (¢ - = (0+c0)—(ch+ )

>—700 =—rfoo

~

> — 7 O+ 1y

=r

Therefore,

lim(h(t), (1) - (X, 2)) = lim t(E0+=)0) . 7

t—0 t—0

=0e X x {0},
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which contradicts the yg-semistability condition since the closure of the orbit intersects
X(r, ¢, ") x {0} for some z # 0. Then, in both cases, xo-semistability implies ©-semistability.
Now suppose that X is ye-stable but it is not ©-stable. In particular if X is
Yo-stable, X is yg-semistable and thus ©-semistable in consequence. Therefore, there
exists a proper subrepresentation X of X with numerical type (7, C, p ) such that 7 € {0, r}
and
&+ 0 + 70, = 0.

There are two cases to consider, ¥ = 0 and 7 = r. In both cases, it will be
proved that X has a nontrivial stabilizer, which contradicts the yg-stability condition.

First, consider 7 = 0. As above, A, B, F', G, A" and B’ have block decom-
position of the form (2.39) the direct sum decomposition of V and V' like (2.38). Con-
sider a one-parameter subgroup, (h(t), h'(t)), of G of the form (2.40). The linear maps
(A(t), B(t),I(t), J(t), A'(t), B'(t), F(t),G(t)) = (h(t),h'(t)) - (X,2) have block form de-
composition of the form (2.41) and (2.42). Therefore, the limit of (h(t),h'(t)) - (X, 2) as

t — 0 has block decomposition of the form

* 0
0 =

On the other hand, since G - (X, 2) is closed for z # 0, the linear maps A, B, A, B', F, G

must have block decomposition of the form

i

while I, J have block decomposition of the form

Jfor A(t), B(t), A'(t), B'(t), F(t) and G(t), I(t) = [ 0 ] I = [ 0 = ]

Thus, the subgroup (h(t),h'(t)) stabilizes (X, z) which contradicts the ye-
stability condition.

Now consider ¥ = r. One can repeat the step above obtaining the block
decomposition in (2.39) for the linear maps A, B, A’, B', F', and G, while I and J have
the block decomposition in (2.43). Thus, let (h(t),h'(t)) be a one-parameter subgroup of
G of the form (2.44). Then, the linear maps

(A(t), B(t), 1(t), J(t), A'(t), B'(t), F(t), G(t)) = (h(t), (1)) - X
are such that A(t), B(t), A'(t), B'(t), F(t) and G(t) have block decomposition of

the form (2.41) while I(¢) and J(¢) have block decomposition of the form (2.45). Therefore,
the limit of (h(t),h'(t)) - (X, 2) as t — 0 have block decomposition of the form

* 0
0 =

Jor A(t), B(t), A'(t), B'(t), F(t) and G(¢), I(t) = [ ) ] , J(t) = [ = 0 ]
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Again, this implies that (X, z) have a nontrivial stabilizer leading to a contradiction.

The other side of this proof is analogous. O

Therefore, it follows from Lemma 2.2.2 and Proposition 2.3.7 that there exists
a chamber in Q? given by # > 0 and 6 + ¢’ < 0 such that all the stability conditions
defined until now are the same. Thus, given a representation of the enhanced ADHM
quiver X with numerical type (r,¢,c’) and © = (0, 6',0,,) satisfying 8" > 0 and 6 + ¢’ < 0

from now on X will be called stable if it satisfies one of the conditions below:

(i) X satisfies the conditions (S.1) and (S.2) of the Lemma 2.2.2;
(77) X is O-stable;
(14i) X is ©-semistable;
(1v) X is ye-stable;

(v) X is ye-semistable.

Then, in a suitable chamber, the moduli space of framed stable representations of numerical
type (r,¢,c) of the enhanced ADHM quiver denoted, N*(r, ¢,c') = N3*(r,c, ) is given
by the equation (2.37).

For further reference, let X = (W, V, V', A, B, I,J, A', B', F) be a framed stable
representation of numerical type (r, ¢, ) of the enhanced ADHM quiver. One can consider
the stable representation of the ADHM quiver X" = (W, V" A" B" 1", J") of numerical
type (r,c— ), where V" := V /Im(F) and the maps A", B" € End(V"), I € Hom(W,V")
and J € Hom(V", W) are inherited by the quotient V/Im(F). Moreover, X" is indeed
stable and satisfies the ADHM equation [A”, B"] + I"J" = 0. See the proof below.

Consider a basis in V such that
1y
F= [ v ] .
0

7T/ . V/ @ V// V/ 7T// . V/ @ V// V/l
5 .
(U/, U”) Ul ('U/, U//) U”

Then V can be decomposed as V = V' @V /Im(F) = V' @ V" and A", B", I", J" are
given by

Let

A// — A‘V”, B// _ B‘V”, I” _ 7_‘_// o [7 J// — :]‘V//-
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Therefore,

A", B") + 1"J" = [Alys, Blyd] + (" 0 I) o (J]y)
= [A.Bllvr + (L)
— ([A,B] + I D]y
=0

—0 (2.46)

and X" = (W, V" A" B" 1" J") is stable. Indeed, suppose that there exists 0 = S” < V"
a subspace of V" such that

A(S"), B'(S"), T'(W)< S
Then 0 < V' @ S” < V is a subspace such that
AV'®S"), B(V'@®S"), IW)cV' @S
In fact, fix (v',s") e V'@ S”. Thus

A, 5") = (Al (v'), Al (s"))
= (Al (v'), A"(s))
——— ——
eV %
cV'® S”,
which means that A(¢v',s") e V'@ S” for all (v/,s") e V'@ S" ie, AV ®S") V' @S5".
Analogously one can obtain that B(V' @ S”) < V' @ S”. Moreover,

W) = I(W) A V' & I(W) A V"
=7 o l(W)®r"oI(W)
=71 oI(W)®I"(W)
—_— ——
v cs"
V@S (2.47)

which contradicts the condition (S.2) of Lemma 2.2.2.

Therefore, if X = (W, V,V' A, B,I,J, A", B', F) is a framed stable representa-
tion of the enhanced ADHM quiver with numerical type (r, ¢, ), X" = (W, X" A", B" 1", J")
is a stable representation of the ADHM quiver of numerical type (r,c — ¢).

The following Lemma is analogous to [4, Lemma 3.2]. Again the proof can be

found below only for completeness.

Lemma 2.3.8. Let M(r,c — ¢) be the moduli space of the stable representations of the

ADHM quiver of numerical type (r,c¢ — ¢). There exists a surjective morphism

q: N (r e, c) — M(r,c— )
[(W, V.V'A B, I,J A B, F)] — [(W, v A" B" I, J”)]
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where (W, V,V' A, B, I,J, A", B', F)] and [(W, V", A", B", 1", J")] denote the isomorphism
class of the framed stable representation (W, V, V' A B, I, J A", B', F) of the enhanced
ADHM quiver and the isomorphism class of the stable representation (W, V" A", B" 1", J")
of the ADHM quiver constructed above, respectively.

Proof. The construction above shows the existence of the morphism q. It is enough to
prove that this morphism is surjective. So, fix an ADHM data (A", B”, 1", J") of numerical
type (r,c — ') and the morphisms A’ B' € End(V'). Set V =V’ '@ V" and

1y

F:’V

0

Now let A, Be End(V), I € Hom(W,V) and J € Hom(V, W) be of the following form

A—[A A ,I=[;],J=[Oﬂ],

o oA
according to the decomposition V' = V' @ V”. This means that

B B
0 B//

Y

A, Be Hom(V", V') and 1e Hom(W,V').

It is easy to check that

AF —FA = BF —FB = JF =0 (2.48)
and
A B =
[A,B]+IJ=0< A, B o N (2.49)
AB+AB"—B'A—BA"+1J" =
Indeed,
A A 1y A’ 1o
AF = TV = —| V' |.A=FA.
0o A" 0 0 0

Analogously, BF = F'B'. Moreover,

JF:[0°V]11§]:0

and
A A B B B B A A
[A,B]|+1J = : - :
0o A 0 B 0 B 0 A

]

- —AE—B%’A§+EW—Bﬁ—§N+iﬂ]

0 A//B/l _ B”A” + ]”J”
[A,B] AB+ AB"—BA—BA"+1J"
— 0 [A//, B”] + I”J//

~~
=0
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Thus the equations (2.48) and (2.49) are obtained. The map F' above is injective. In order
to conclude the proof, the following has to be proved. The ADHM data (A, B,1,J) is
stable if and only if it satisfies:

(i) at least on of the maps A, B and I is nontrivial;
(1) there is no proper subspace S’ < V' such that

~

AWV", B(WV"), TW)c§ and A(S),B'(S)c S (2.50)
In fact, first suppose that (A, B, I, J) is stable and A=B=1=0.Then

A0 B 0 0 .,
A_[O A//]’ B_[OB,, ) I—[I”],J—[OJ].

Fix (0,0") € 0 V". Thus,

A(0,0") = [ AT 0 ] [ v ] _ [ 0 A"(u") ]EO®V”

O Al/ U/

for all (0,v") € 0@ V", which means A(0® V") < 0 V". Analogously B(0@ V") c 0 V".

Moreover, fixing w e W

0 0 "
](W): [ Vi ] [w]: [ I”(w) ] c0eV

for all w € W. Therefore
Al0® V"), B(OaV"), IW)coaV”

which is a contradiction.

Now suppose that there exists a proper subspace S’ < V' such that the
conditions (2.50) are satisfied. Thus, S = S’@ V" < V is a subspace such that A(S), B(S),
I(W) < S. Indeed, let (s',v") € S’"@®V". Then

A A s’
O A// U”
for all (s',v") e '@ V" ie., A(S@®V") < S"@V". Analogously, B(S'®@V")c S'@V".

Moreover, fixing w e W

= | A+ AW AW |esT@V”

for all w € W. Therefore

AS"@ V"), B(S"@ V"), IW)c S@ V",
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which contradicts the stability condition. Therefore, if (A, B, I, J) is stable, it satisfies the
conditions (i) and (ii) above.

Now suppose that (A, B, I, J) satisfies the conditions (i) and (ii). One can
check that (A, B, I, J) is a stable data. Indeed, let S = S'@®S” < V such that A(S), B(S5),
I(W) c S and (s,5") € S. Thus,

/
S

A A
0 A//

o ] _ [ A/(S/) + E(S”) A”(S”) ] c S,@S”
for all (s',s") € S’ @ 5", which means that A'(S") + A(S") = &' and A"(S") < S".
Analogously, B'(S") + B"(S") ¢ §" and B"(S") < S". Moreover, given w € W

Iw) = [ ; ] 0] = [ e
However, since the ADHM data (A", B”, 1", J") is stable, S” = V”. Thus, S’ is a subspace
which satisfies the conditions in (2.50). It follows from (i7) that S = 0 or S" = V'. If
S" =0, A(V"), B(V"), W) c {0} and A = B = I = 0, which contradicts the condition
(i). Therefore, 8" = V' and S = V, i.e., the ADHM data (A, B,I,J) is in fact stable if
and only if (A, B, I, J) satisfies the conditions (z) and (i7) above.

In order to finish the proof, it is enough to show that there exists a nontrivial

c SI@ S//

solution for the equation (2.49) which satisfies the conditions (7) and (7). First choose a

basis {vy,...,vs} for V' and let A" and B’ be two diagonal matrix,
A" = diag(ay,...,ap), B =diag(f,...,B),
such that

a; # aj, fori # j
Bi# By, fori#j

Let I : W —> V' be a linear map of rank is 1 and [ m(f ) is generated by the vector

C/
vV = 2 V;.
i=1

Therefore, {v, B'v,..., B v} is a basis for V', otherwise, there would exist a nontrivial
linear relation of the form

-1

Z ;B = 0.

i=0
Thus, for B' = diag(f1, ..., 8e), xis are a solution for the linear system

Zﬂ;xz =0, for je{1,...,c},
i=1
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where B = 1,,. However, the discriminant of the linear system is the Vandermond

determinant

c/

ABy, .., Be) = [ (8 — 8:) #0,

i<j

since f3; # f3; for all ¢ # j. Thus, x; = 0, for all i € {1,..., ¢}, leading to a contradiction.

In conclusion, {v, B'v,..., B v} is a basis for V’. In particular, there is no subspace

0 < S < V' preserved by B’ and contained in the image of I. Analogously, there is no
subspace 0 = S" = V' preserved by A’ and contained in the image of I as well.

Fixing A’, B and I as above, the equation (2.49) is a linear system with ¢ (c—¢)

equations in the 2¢/(c — ¢) variables A, B. Such system a has a ¢(c — ¢)-dimensional space

of solutions. Any nontrivial solution determines a stable ADHM datum (A, B, 1,J). O

2.4 Deformation complex

Consider the following complex

End(V)®
&) End(V)
Hom(W,V) S o
End(V @ Hom V/7V 2
C(X) @< ) o, Hom(V, W) —> (@ ) —E Hom(v',v) (251)
End(V") @ Hom(V', W)
End(V")® @
&) End(V")
Hom(V',V)

with

do(h,h') = ([h,A],[h, B],hI,—Jh, [N, A"],[W,B'],hF — FI)
di(a,bi, j,d ¥, f) = ([a,B] +[A,b] +Ij+iJ, Af +aF — Fa' — fA'
Bf +bF — Fb — fB',jF + Jf,[d,B]+ [AV])
dy(c1, ca,c3,¢4,05) = 1 F + Beg — coB' + c3A" — Acs — Iey — Fes.

The differentials of the complex C(R) were obtained as follows, dy is the linearization
of the free action (2.23) and d; is the linearization of the equations in (2.2). Moreover,
Im(dy) < ker(dy), i.e.,

do(dy(a,b,i,j,d' b, f)) =0, for all (a,b,4,5,a’, ¥, f) € C(R)"
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Indeed,

do(dy(a,b,i, 5, b, f)) = do(la,B] + [Ab] + Ij +iJ,Af + aF — Fa' — fA,
Bf+bF —Fb — fB',jF+ Jf,[d,B']+[A,])
— [a,B]F + [Ab)F + [jF +i JF +BAf + BaF—
—

=0
— BF d —BfA' — AfB'—a FB' +FdB+
— ~—

—FB —BF
+fA'B"+ BfA'+b FA" —FVA'— fB'A'— ABf — ADF +
—AF
+ AF W+ AfB' —IjF — 1Jf — F([d,B'] + [A,1])
FA
= ([a B] +Ba—aB+ [A b] +bA — Ab+BA AB — IJ)F
o 0 —([4, B]HJ)
F(—B'd"+dB —[d,B]-bA"+ AV — [A’, V) + f[A, B']
N ;,0 AN ;(0 _ “ ~ o

= 0.

Therefore, d; is not a surjective map.

Theorem 2.4.1. Let X = (V,V' A, B,I,J, A", B', F) be a enhanced ADHM datum. Let
dim(W) = r, dim(V) = ¢ and dim(V") = ¢. Then

H(C(X)) = H*(C(X)) =0,

where C(X) is the complex (2.51).

Proof. The complex C(X)[1]" := C(X)"*" with (d;)ex)p) := (—1)di41 it is given by:
End(V)®’
@ End(V)
Hom(W,V) S .
@ g Hom(V' V)&
c(x)[] Hom(V,W) —> ® — Hom(V", V)
S Hom(V, W)
End(V"®’ @
@ End(V")
Hom(V', V)
with
do(a,b,i,5,a" V', f) = —([a,B]+[Ab] +1j+iJ,Af +aF — Fd' — fA',
Bf +bF — Fb — fB',jF + Jf,[d,B'] + [AV])
di(c1,ca,¢3,¢4,05) = —c1F — Beg + coB' — c3A'+ Acz + ey + Fos.

Consider the following complexes:

End(V)®
C(A) : End(V) —%- Hom?w’ >L End(V)

V
@
Hom(V, W)
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where
dO(a) = ([h’v A]7 [h'7 B]7 hIa _‘]h’>
di(a,bi ) = [a,B]+[Ab] + Ij +i;
C(B) : End(V') —2~ End(V") (2.52)
where
do(h') = [N, B];
and
Hom(V', V)%
Hom(V',V) 4 &) & )
C(.A, B) : @ — Hom(V', W) — Hom(V y V)
End(V") &)
End(V")
where
do(f,ad) = (“Af+fA ' —Fd,—Bf+ fB',—Jf,[d,B])

dl (CQa C3, C4, 05)

Define the map

p:

by
PO(h7 h,)

1 ((I, b7 ia ja bl)

pa(c1)

We claim that the map p is a morphim

—Bcy + CQB/ — CgA/ + Acs + Icy + Fes.

C(A) ®C(B) —> C(A, B)

(hF — FK,[W, A
(aF,bF — FUV,jF,[A")b])
ClF

. Indeed, the following diagram comutes

End(V)®*
S
End(V) Hom(W,V) .
@ ° @ ——FEnd(V)
End(V") Hom(V, W)
@
End(V")
PO o P2
Hom(V', V)&’
Hom(V',V) y &) 4
S —> Hom(V',W) —=Hom(V',V)
End(V) @
End(V")

Indeed,
pQ(dl (CL, b7 i: ja b/))

p2([a, B] + [A,b] + I +14J,0)
([a, B]F + [A,b]B + IjB +i_JF ,0)
——

=0

([a, B|F + [A,b]B + IjB,0),
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di(pi(a,b,i, V) = di((aF,bF — FV',jF,[A,V]))
= —BaF +a FB' —b FA +FVA + AbF — AF W
—— —— —
=BF =AF =FA
+IjF + F[A V]
= (aB — Ba)F + (Ab—bA)F + IjF + F(Y A" — A'V) + F[A V]

~-
=0

= [a,B]F + [A,b]B + 1B,

do(po(h, 1)) = do(hF — FN [N, A'])
— (—A(hF — FW) + (hF — FR)A' + F[I, A],
—B(hF — FI) + (hF — FR)B', J(hF — FK),[[I, 4], B])
= (—AhF + ﬂ h' + hiﬂ —Fh'A"+ F[W, A'],—BhF + BE h'+

=FA =AF =B’
h FB —FWB',—JhF+ JF I, [[A,B].K]+[A,[I,B]])
BF 0
= = =0

= ([h AJF + F[A0) + F[I', A'), [h, B)F — F[h, B'), —JhF, [A", [/, B']])
— ([h, AJF, [h, B]F — ;(Eh, B'], —JhF,[A, [h, B]))

and
pl(dﬂ(aab/» = pl([awA]a[avB]?&[’_Ja’[b/’B/D

= ([a, A]F,[a, B|F — F[b, B'], —JaF,[A,[b, B']]).

We assert that the cone of the map p is equivalent to C(X)[1]. In fact, denote
the cone by (C,d¢), it follows that

=C(A,B) @ (C(A) @c(B)*)
(di)e = ((di)ecasy — pirts —(dit1) cay+racmy+1)
Therefore,

C® = Hom(V' )@End( V') @ End(V)® @ Hom(W, V) ® Hom(V,W) @ End(V")
ct = Hom(V,V) “@® Hom(V,W)® End(V') @ End(V)
C?* = Hom(V'V)

(do)e(f,d'sa,b,i,5,0") = (do(f,a’) — pi(a,b,4,5,b), —di(a,b,4, 5, b))

(—Af+ fA+ Fd,—-Bf+ fB',—Jf,—[d,B'])—

aF,bF — FV,jF,[A'¥]), —[a, B] — [A,b] — I —iJ)
Af + fA+ Fd —aF,—Bf + fB' — bF + FU,

_Jf_]F7_[A/7bl]_[avB]7_[ ) ]_[Avb]_ ]_iJ)

(
(
(
(=

(d1)0(02,03,04705) = (d1(02,03,04,05) - 01(01), —dz(Cl))
= (—aF — Bey + 6oB" — c3A" + Acs + Icy + Fes,0).
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Hence the cone of the map p is equivalent to C(X|[1]). So, one can obtain the following

exact triangle

C(X)—=C(A) ®C(B) —L2~C(A,B) (2.53)
We obtain from Proposition 1.2.2 that
H°(C(A)) = H*(C(A)) = 0. (2.54)
Let us prove that H*(C(A, B)) = 0. In fact, the dual of the differential
dy : C(A,B)! — C(A, B)?
is given by

dy : Hom(V,V') — Hom(V,V)® ® Hom(W,V')® End(V")
v — (B —¢B,pA— Ap, oI, oF) '

Suppose that dy' (¢) = 0. Thus,
B'o—pB=Ap—pA=q¢pl=0.
Therefore,
Im(I), A(ker(p)), B(ker(y)) < ker(p).

The fact that Im(I) < ker(yp) is trivial. If v € B(ker(y)), then there exists w € ker(yp)
such that v = Bw. Then

Therefore v € ker(yp). Hence, B(ker(¢)) < ker(y). One can prove that A(ker(y)) < ker(p)
analogously. It follows from the stability of  that ker(¢) = 0 or ker(p) = V'. If ker(p) = 0,
then I = 0. This lead us to a contradiction. Therefore, ¢ = 0, i.e., dy’ it is injective and

hence d; it is surjective. So,

H*(C(A,B)) = coker(d,)

= Hom(V',V)/Im(d,)

= 0
Let us prove that H°(p) is injective. Since H°(C(A)) = 0,

HY(C(A)@C(B)) = 0@ H(C(B)).
Therefore,
H%(p): 0®H"(C(B)) — H"(C(AB))
(0, ') — (=FN, [N, A])

where 7 € H%(C) denotes the equivalence class of x € C, with C € {C(A),C(B),C(A,B)}.
Suppose that H°(p)(0, ') = 0. Then, —Fh = 0. Since F it is injective, it is true that
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W = 0. Hence H it is injective.

It follows from equation (2.54) that the exact sequence of cohomologies of (2.53)

is given by

H%(p)

0—— H°(C(R)) —— H°(C(B)) H°(C(A,B)) — ... (2.55)

. H (S(EB))HH (05?,3))$H3(C(R))_>0'

Thus, the map ¢ is injective. This proves the Theorem. O]

Remark 2.4.2. Since H%(p) it is injective,
Im(5) = ker(H"(p)) = 0.

Hence H(C(R)) = 0. It follows from the sequence (2.55) that the map ~ is surjective.
Since H*(C(A,B)) = 0, H*(C(R)) = 0. Moreover,

H%

0

H(C(B)) H'(C(R))

. H'(C(A) ® C(B) A H (C(A, B))—~H(C(R))—0

it is the exact sequence of cohomologies (2.53).

Now, we are going to consider the particular case ¢’ = dim(V") = 1. Since
[A")B'] =0, for all A, B € End(V'),

we can omit this equation from the set of enhanced ADHM equation, obtaining the

following enhanced ADHM equations
[A,B|+1J=0, AF—-FA'=0, BF—-FB =0, JF =0.

Consider C(X) the complex below

End(V)®
@
Hom(W,V) End(V)
End(V) @ N ® J
¢(X) ® = Hom(V,W) —= Hom(V',V)® —= Hom(V', V)
End(V") ® ®
End(V’)692 Hom(V', W)
@
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in which
do(h, 1)) = ([h. Al [k, B),hI, —Jh,[I, A, [F, B],aF — Fa')
di(a,b,i,5,a" 0, f) = ([a,B]+[A,b] +1j+iJ,Af + aF — Fa' — fA,
Bf +bF — Fb — fB',jF + Jf)
dg(Cl, Co, C3, C4) = C1F + BC2 - C2B/ + C3A/ - AC3 — IC4.

Moreover dj is the linearization of the action (2.23), d; is the linearization of the equations
(2.4) and ds is a map such that im(d;) < ker(ds), in particular d; it is not a surjective

map. In fact,

do(di(a,b,i,7,a 0, f)) = ds([a, B] +[A,b] + Ij+iJ,Af +aF — Fa' — fA,
Bf +bF — FV — fB',jF + Jf)
— [a, BIF + [A,b]F + [jF +i_ JF +BAf + BaF—
——

=0

— BF o —BfA' —AfB' —a FB +FdB + fADB+
— —

=FB’ =BF
/ /! / Al ! Al
+BfA +b Fi —FVA — fB'A'— ABf — AbF +
/ / .
+ fj V+AfB —IjF —1Jf
= ([a,B] + Ba—aB+[A,b] + bA— Ab+ BA— AB —1J)F
by 5 ——([A,B]+17)=0

F(dB —Bd + AV -V A) + f[A, B]

—

=0

= F([ala Bl] + [Alab/])

=0
Theorem 2.4.3. Let R = (A, B, I, J, A', B', F') be a stable enhanced ADHM datum which
satisfies the enhanced ADHM equations. Let dim(W) = r, dim(V) = ¢ and dim(V’) = 1.
Then the moduli space of stable solutions of the enhanced ADHM equations, N**(r, ¢, 1),

is non-singular, quasi-projective and its dimension is 2rc —r + 1.

Proof. Let C(A) and C(B) be the complex (2.4) and (2.52), respectively. Let C(A, B) be

the complex given by

Hom(V', V)&
HOm(V/, V) do @ dq ,
End(V") o
0
with
do(f,a) = (“Af+ fA"—Fd,—Bf + fB',—Jf,0)
dl(CQ, C3, 64) = —BCQ + CQB, — CgA, + ACg + IC4.

Define a map

p:C(A)®C(B) — C(A,B)
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given by
po(a,a) = (aF — Fd,[d,A)
pi1(a,b,i,7,0") = (aF,bF — FV,jF,0) .
pa(cr) = alF
We assert that p is a morphism and that the sequence
C(R) —=C(A)@C(B)—~C(A,B) (2.56)

is exact. Indeed, the following diagram commutes

End(V)®*
S
End(V) 4  Hom(W,V) 4
@ @ End(V)
End(V") Hom(V,W)
S
End(V')
P0 p2
p1
Hom(V', V)&
Hom(V',V) 4 D
® Hom(V',W) Hom(V', V)
End(V") D
0

Indeed,

pl(dO(aaa,)) = pl([a7A]7[a’ B],CL[,—JG,O)
= ([a, A|F, |a, B]F,—JaF,0)
= (aAF — AaF + FA'd' — Fd'A' + FO,

aBF—BaF+FB’a/—Fc[L)'B/,—JaF+ JF d',0)
I — -
= (—A(aF — Fd') + (aF — Fd')A" + FO,
—B(aF — Fd') + (aF — Fd')B', —J(aF — Fd),0)
= dy(aF — Fd',0)
= do(po(a,a’)),

p2(di(a,b,i,7,0)) = po(la, B] + [A,b] + 1] +iJ)
— [a,B|F + [Ab|F + [jF +i_ JF
0

= aBF — BaF — bAF + AbF — FV A" + FA'Y + IjF
= aFB' — BaF — (bF — Ft')A" + A(bF — FV') + IjF
= dy(aF,bF — FV,jF,0)

= di(pi(a,b,i,5,V)).
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Analogously to Theorem 2.4.1, one can prove that C(R)[1] = C(p), where C(p) denotes
the cone of p. Indeed,

End(V)®
D End(V)

Hom(W,V) &
® a6 Hom(V, V¥ 4

C(p) Hom(V,W) = D — Hom(V,V")

D Hom(V,W)

End(V")®* ®
@ 0

Hom(V',V)

with

do(a,b,i,5,a 0, f) = (—[a,B] —[A,b] — Ij —il,
(—Af+ fA+ Fd,—Bf + fB',—Jf,0) — (aF,bF — FU', jF,0))
= —d1<(l, b7i7j) a’/ablaf)

d1<01, Co,C3, Cy, O) = —ClF — BCQ + CQB/ — CgA, + ACg + ]C4

= —dy(ey,e9,03,04,0).
Hence, the sequence (2.56) is exact. Analogously to Theorem 2.4.1, one can prove that
H*(C(A,B)) = H*(C(R)) =0,
therefore

HO%

0

H°(C(B)) H'(C(R))

. —H'(C(A) ® C(B)) A H' (C(A, B))—~H>(C(R))—0

is the exact sequence of cohomologies (2.56).
To complete the proof, it remains to show that the obstruction H*(C(R)) = 0.
Since the sequence above it is exact, is enough to show that H'(p) is a surjective map. To

prove this, we are going to show that the map
Z\(p) : Z'(C(A) ® Z'(C(B)) — Z'(C(A, B)), (2.57)

in which Z'(C(A)) := ker(d,), with d; : C(A)" — C(A)? and Z;(p) is the induced map is
surjective. It is true that Z'(C(B)) = 0. In order to prove that Z;(p) is surjective, we are
going to prove that:
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1. the diagram

. 4~ —EndlV)
0—=Z2(CA)dZ (C(B))—=C(A) ®C(B) —— m—>0
Z1(p) P1 P2

i dy C(A,B 2
0 Z'(C(A, B)) C(A B —2~ CABI
=Hom(V',V)
comimutes;

2. the maps p; and psy are surjective;

3. forall pe Z'(C(A, B)), pi*(p) n (Z'(C(A)) @ Z'(C(B))) # 0 in C(A)' ®C(B)".

Proof of item 1: The map Z'(p) it is well-defined. Indeed, let (a, b, 7, j, V') € ker((d1)c(a@cs))-
Thus,
Ij = —[a,B] — [A,b] —iJ.

Therefore,

dl(pl)(a,b,z’,j,b') = dl(aF,bF—Fb',jF,O)
= —BaF+a FB' —b FA +F0A + AbF — AF V +IjF
— — —

=BF =AF =FA
— [a,B|F +[Ab|F +i_ JF +IjF — F[AV]
0
= =0
= ([a,B]+[Ab] +iJ)F + IjF
I[jF — IjF
= 0.

Hence, the map Z;(p) it is well-defined. Since p is a morphism, it follows that dyop; = pyods.
Moreover, i o Z'(p) = i o p;. Proof of item 2: Let p = (ca,c3,¢4,0) € C(A,B)". Let
E :V — V' such that EF = Idy.. Since F is injective, there exists a surjective map E.

Thus,
P1 (CQE, CgE, i, C4E, O) = (CQEF, CgEF — FO, C4EF, O)

= (6276376470)

Then, p; is surjective. In order to show that ps is surjective, consider ¢; € Hom(V', V).

Therefore
pQ(ClE) = (ClEF)
— Cl '
Hence ps is surjective.

Proof of item 3: Since p; is surjective, p;'(p) is a fiber over the linear space ker(p,) for all
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pe C(A,B). Since Z'(C(A))@® Z'(C(B)) it is a proper subspace C(A)' ®C(B)!, it remains
to show that

A = dim(ker(p;)) + dim(Z'(C(A)) ® Z'(C(B))) — dim(C(A)' ®C(B)") = 0.
Indeed,
A = dim(ker(p1)) — dim((C(A)' @ C(B)")\(Z'(C(A)) @ Z'(C(B)))

and A > 0 means that ker(p;) n (Z*(C(A)) ® Z*(C(B)) # 0 and this conclude the proof,

since the diagram above commutes. So, let us prove that A > 0

A = dim(C(A)' @ C(B)") — dim(Im(p,)) + dim(C(A)' ®C(B)")—
dim(Im(d;)) — dim(C(A)' ® C(B)")
= dim(C(A)' ®C(B)") — dim(Im(p;)) — dim(Im(d,))
= 2 +2rc+1—-2c—r—1-¢
= A +2(r—1)—r
= 0

At last, the dimension of the moduli space is equal to the dimension of H'(C(R)) which is

dim(h'(C(R))) = —dim(C(R))?+ dim(C(R))! — dim(C(R))? + dim(C(R))?
—(+ )+ (2 + 2 + 2rc+ ) — ( +2dc+ 1) + e
2rc +cd? —cr

= 2rc—r+ 1L
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3 Geometric Structures

In this chapter we will prove that the moduli space of framed stable represen-
tations of the enhanced ADHM quiver can be embedded into a hyperkéhler manifold of
complex dimension 2(rc¢ + ¢c’). Then, one can define a complex structure on A/ and a
closed degenerate 2-form such that it has a structure that it will be defined as holomorphic
pre-symplectic variety. It is still unknown in which points this form is degenerated or
non-degenerated. However, this study was done for the particular case N**(1,2,1).

In the first section, one can find the proof of the fact that N(r,c,c) is a
subvariety in a hyperkiahler manifold os complex dimension 2(rc + ¢c’). In the second
section, one can find a study of the holomorphic structures on N*(r,¢,1) and of the

holomorphic pre-symplectic 2-form € for the particular case N*(1,2,1).

3.1 Enhanced ADHM quiver varieties as a submanifold of a hyper-

kahler manifold

Let (M,w) be a symplectic variety, G a Lie group and ¥ : G — Sympl(M,w)

a symplectic action. The symplectic action W is called hamiltonian if there exists a map

poM— g*
which satisfies

(i) du* =iXew, for all € € g;

(i) Adyop=poV¥,, forall gegd,

where p* € C*°(M), 1*(p) := p(p)(€). A map p as above is called a moment map. The

next Lemma is useful and gives us a tool to find moment maps.

Lemma 3.1.1. Let (M,w) be a symplectic variety and G be a Lie group. Suppose that
there is a symplectic G-action on (M,w). If the 2-form w is exact, i.e. if w = df, and this
action preserves the 1-form 6, i.e. W70 = 0, for all g € G, then the map p: M — g* given
by

p(m)(§) = —0(m)(Xe)m

is a moment map for this G-action.
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The proof of this Lemma can be found on [2, Lemma 2.1.1]. Moreover, a

hyperkdhler moment map is a map

such that

(i) du* = izew, where pé : pe M — u(p)(€), for all £ € g;
(i1) po Wy, = Ady op, for all feq.
Theorem 3.1.2. Let G be a compact Lie group acting on a hyperkéhler variety
<M7< ) >7 Pla FQ: F3)

. Suppose that ¢ € g* @ R? is invariant by the coadjoint action. Suppose also that G acts
freely on p¢. Then My = = *(¢)/G is a smooth manifold and inherits the hyperkéhler
structure of M. This quotient is called hyperkdhler quotient.

The proof the this Theorem can be find at [2, Teorema 2.3.5].

Consider the following vector space

X = End(V)®*® Hom(W,V)® Hom(V,W)® End(V)®*® Hom(V',V)® Hom(V,V").

Define in X the following equations
[A,B]+IJ+FG=0, [A,B]-GF=0, (3.1)

where X = (A,B,I,J, A", B", F,G) € X. A vector X € X is called stable if it satisfies the
conditions (S.1) and (S.2) of Lemma 2.2.2, i.e., if F' is injective and the ADHM data given
by (A, B, I,J) is stable. Let

W =W(r,c, ) :={X € X: X satisfies (3.1) and X is stable}.

Note that the G-action in (2.23) is free on W and that the equations in (3.1)
are preserved by the G-action in (2.23). Indeed the freeness of this action has been already
proved in Proposition 2.3.1. Analogously to Lemma 2.3.2, one can prove that the equations
in (3.1) are preserved by the G-action (2.23). The same is true if the one consider the
action of U := U(V) x U(V") on W(r, ¢, ') given by (2.23), i.e.,

UxX — W

3.2
(hh',X) > (RAR™ , hBh™* hI, Jh Y W AW W B'R = hFI =t W Gh™) (3:2)

is a free action of U on W which preserves the equations (3.1). The moduli space of

stable points of W, W(r, ¢, '), can be constructed by using Geometric Invariant Theory
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techniques. Moreover, the moduli space of framed stable representations of the enhanced
ADHM quiver, N**(r, ¢, ') is embedded in W(r, ¢, ). In fact, if X € X is stable, than X

satisfies
[A,B]+1J=0, [A,B]=0, G=0.

Thus, X satisfies the equations (3.1) and X € W. In this section, it will be proved that the
moduli space W can be obtained by a hyperkihler reduction. In other words, N*(r, c, ')
is embedded in the hyperkéhler variety W(r, ¢, ¢'). The hyperkéhler reduction is presented
in details below.

In order to prove that W(r, ¢, ') is a hyperkéhler variety, consider the following

equations

{[A,AT]+[B,BT]+IIT—JTJ+FFT—GTG -0 33)

[A", AT+ [B',B""] - FTF + GG =0
where A" denotes the hermitian adjoint of the map A. It will be proved that the equations
(3.1) and (3.3) can be obtained as a hyperkahler moment map p. Thus, one can viewed the
hyperkéhler variety W := u~'(0)/U. However, it follows from the Kempf-Ness Theorem
that the moduli space W obtained above is isomorphic to the hyperkahler variety W.

The proof that one can find the hyperkahler variety W is below. Define on W

the hermitian metric

() TW x TW — C
given by
(@1, m9) = it’r‘(alag + CLWI + blbg + 5251 + 112£ + ZzlJ{ + J;h + ]I]2+
aay + ayal + V] + 050+ fL A+ L+ g8 + g201),

where x1 = (a1, by, 11, j1,a}, 0], f1,01) and xo = (ag, by, 2, jo, @y, by, fo, g2). Define in TW

the following complex structures. Let = = (a,b,14,j,a’, ', f,g9) € TW,

i(z) = (V—la,v/=1b,v/=1i,v/=1j,+/—1a', /=10, /=1 f,A/—1g)
Fg(%) = (_bTaaTv_jT7iTa_b/T>a/T7_gTafT)
[3(z) = Tyoly(z)

It is easy to check that I, n € {1, 2, 3}, satisfies the quaternion identities
Iy =150 =133 =111y = -1 (3.4)

where 1 : TW — T'W is the identity map.
In fact, it is trival that I'y\T'; = —1. Moreover, let u = (a, b, 1, j,a’, V', f,g) € TW,
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then
F2(F2(u)) = FQ(_bTa CLT) _jTa ZT: _b/Ta a/Ta _gT7 fT>
= (_(GT)T7 (_bT)Tv _(ZT)T7 (_jT)Ta _(a’/T)Tu (_b/T)T - (fT)T7 (_gT)T)
= —((I, b7 'L.ajv a'/7 bla f’ g)
= _1(aa b7 Z.ajv CLI, b/a f?g>
In order to prove that
3Ty — Ty ol — —1,

it is enough to check that

I'\[y = —ILT. (3.5)

Indeed, suppose that I'1I'y = —I'5I'y, thus

Wl =T ol Ty
—
—I'1 T2

= —IhIhTsTy

— —(-1)(-1)

- -1

Moreover, one can check that (3.5) is true. Indeed,

F1F2(u) :Fl(_bTa GJT7 _jTa ZT? _blTa a/Ta _gTa fT>
=(—v/—1b1 /=1d, —/=1jT, v/=1i", — /=10, /=17, —/— 14,

V—1fT)

=((V=10)", (—v=1a)", WV=15)T, (=V=10)I, (v=1b)"F, (—v/=1a)"", (vV=1g)',
— (V-1

= — (—(V=1b)", (vV=1a), = (v=1j)I, (v=10)", = (v=1b)"", (v =1a)", = (v~ 1g),
(V=1f)h)

= — Ty(v/—La, vV—1b,v/—Ti, /—1j, v/—1d', /=10, v/ —1f,v/—1g)
= - FQFI(G’v ba i7j7 ala bla f? g)

Therefore, I';,, n € {1,2,3} satisfies the quaternions identities (3.4). Thus, one has the

following

Lemma 3.1.3. Consider W, ( , ) T';,, n € {1,2,3} as above. Then (W, ) T';,T,T'3) is
a hyperkédhler manifold.
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Proof. First, note that ( , ) is compatible with I',,, n € {1,2, 3}. Indeed, let z1, x5 € TW.

Then
<LL’1, l’2> = <\/?1$1, \/?1I2> = <F1(2L’1>, F1($2)>

Moreover,

<F2($1>,F2(l’2)> = <(0J17b17i17j17a/17b/17 fl?gl) (a27627i27j27a/27 b/27f2792)>
= ( 17a17 jlulla_blaala_ghfl)( 27a27 ]27227_6 lT2a_g;7f2T)>

|
S

—; tr(by(b)" + 3(01)" + al(a3)" + ad(a)' + ()'5]) + (G5 + il (@2) '+
b (i) + 0 )+ 05 (0 + o (@) + o (@) + (D)) + () )+

)f
gl (g))" + gdgD)")
= ;tr(ala; + asal + bibh + bobl + ivib + inil + jlj1 + jljat
allag + aéa’f + bibg + 5/217/1T + ff o+ e+ agd + 929?)
= (w1, Ta).

and

T3(21), T3(22)) = (T1l2(21), T1la(22))
= (Ia(1), Ta(z2))
= (1), (v2))

Define the following 2-forms, w,(z1,x2) = (I'y(x1), z2), for all n € {1,2,3}.
Since ¢ , ) is non-degenerate, these 2-forms are non-degenerate too. Moreover, they are

antisymmetric. In fact, since { , ) is compatible with the complex structure I',, for all

n € {1,2,3}, one has from (3.4)
wn(xb 332) = <Fn($1), $2>
= (Inl(21), Do)

= (—(z1),Lpnz2)
= —(T(z2), 71)

= —wp (e, 71).

Therefore, w, is a Kahler form for all n € {1,2,3} and (W,{, ),T'1,T9,T'3) is in fact a
hyperkéhler variety. O

Moreover, the U-action (3.2) satisfies

{(hy ') - uy (hy ) -0y = (u,v)
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for all (h,h') € U and preserves the complex structures I',,, n € {1,2, 3}, i.e., it satisfies
Co((h, ') -u) = (h, ') - Ty (u)

for all n € {1,2,3} and for all (h,h") € U. Recall that

tr(abc) = tr(bca) = tr(cab) (3.6)
and
t = !
{ th _ hlfl ? (37)

for all he U(V) and b’ € U(V'). Thus, let u = (a,b,i,j,a’,V', f, g)

Ty ((hy ) -w) = Ty ((hah™t, hbh™", hi, jh= W a' W'=Y WY R hfh' =t W gh™))
= (h(v=1a)h™ !, h(v/=1b)h ™", h(v/=1i), (V—=15)h ",
W (V=1d )WY W (V=10 (V=1 B (V=1g)h™)
= (h, /) - (V=1a,v/—=1b,/=1i,v/=1j,v/=1d', V=10 ,v/=1f,v/~1g)
= (h,h') - T1(u),

Lo((h, B') - w) =Do((hah™', hbh™* hi, jh= Wa'W' =Y WO W= hfh'=" W gh™))
=Ty((hah', hbhY, hi, jhT W' W' WO R LfR'T W ghl))
( (hth) (h(lhT) (]hT)Tv (hl)Ta _(h,b/h/T)T7 (h/a/h/T)T7 _(h/ghT)T7
(hfh"))
( ( bT)hT ( T)hTah(_jT)a(iT)hTah/(_b/T)h/Tvh/(a/T)h/th(_gT>h/T7
h'(fMn)
=(h(=b"R~", h(a" ™t h(=5T), (YR W (=0T R B (@ TR
h(=g")R' = B (fH)pY)
= (b, 1) - (=b',at, =57, T, =", aT, 4", f7)
= (h,h') - Tao(u)

and finally,

L3((h, ) - u)

)1

i
1

2((h, 1) - w))
h,h') - Ta(u))
") - Tila(w)
") - T3(u)

Il
=3

—~



Chapter 3. Geometric Structures 57

Moreover, let x1 = (ag, b1, i1, j1, ay, b}, f1, 91) and zo = (ag, by, ia, jo, ay, by, fa, go).
Then it follows from the equations (3.6) and (3.7) that
(o B) -2y, (R W) - p) =((hayh™* hbyh™ hiy, b~ Rl W'=Y W ™Y hfy b= B gy h ™Y,
(hash™*, hboh ™", hig, joh ™" Wabh/=* WWLH' = hfoh! ™ W gah ™))
=;tr(ha1h_1((ha2h‘1)T, hash™ (hayh ™)+
hboyrh ™ (hboh ™), hbyh ™t (hbyh ™) + hiyh ™ (high ™),
hish™ (hith™)1 + (hjoh ) hj R 7Y, (haJyh ™) Thjah ™t +
ha, b=t (habh™)T, halyh ™ (ha)h ™) + RU AT (Wb, ™),
R (R AT + (hfok ™) Th LR (R D TR foh
Wb~ (1 g2h™")T 1 goh™ (B grh ™))
Z;tr(h(alaT V), hlasa)h ™ + h(bib))h ), h(bobh A+
h(iib)h ™), h(iai) )™ + (h(jajn)h ™), h(jij2)h ™'+
W (ahaf VW'=Y, B (ahal YW=t B (B R Y), B (b R
W (FLR ), B (faf DR + (h(ghg)h ™), h(glg2)h ™)
=;tr(a1a£ + asal + bibl + bobl + ivib + inil + Gl + jljat

rt o0t

ayay + ayay + 0y + 0L+ A+ A+ gigh + gagth)

=1, ).

(6.€) eu=uV) x u(V") = {(£.€) € GL(V) x GL(V'):E + €' = ¢ +¢1 =0},

One can compute the fundamental vector field (W) as following.
Let W e W and

(W(&f/))w = d\I]W(lV'v 1V’)(€7 g/)

where

\I/W: U — W
(h,h') — (h,B)- W

and consider the smooth curve

vi(—€€) — U

given by the ODE

7(0) = (Iy,1y)

d ,
%(’mt:o = (£¢)
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Thus,
jt(\IJWO'y)h o = (AU, ((0)) - jt(’y(())))
= d\IJW(lv, 1V/)(€7 6/)
= Weew
Consider

T U — U(V) o U — UV
(h,h)) — h (h,h) — N '

Since y(t) € U, for all t € (—¢, €), one has

for all ¢t € (—¢, €). Moreover,

d

ﬁ’Y(t)T = —%W(t),

for all ¢ € (—e¢, €). Hence,

W, (y(t) = (v(E)ay(t) ", v (E)by(t) 1 v (8)i, jy(t) Y,
(&) ay (@) @)y () A ) @) A ) gv() 7,

where on the right side of the equation above, v(t) and v(t)" denote 7 (v(t))

and my(7y(t)), respectively. Therefore, using the same notation,

(Wieen)w = (Tw 0 7)hco
(Bt + (B (1), T (1) + (D (),

d d d d
)i i St 1 ¢ ¢ —1 ¢ o t 1—1
dﬂ( )@,Jdtv( )" dﬂ( ya'y(@t) T + () a dﬂ( )

d d d d

A VA Y LA S0+ ) (e
d d

Y9y () + (1) g (6]t =0

= (§a —a&,&b—08,&i, —j§, &a’ — a'§, & = VE & f — f€.€ g — g€)
= ([gv a]’ [57 b]: 52, _j€7 [gv a/]7 [ga b/]a gf - fg/a flg - gg)

Now, in order to construct a moment map, one can prove that the Kéhler forms

wn, n € {1,2,3} are exact, i.e. that there exists a 1-form 6,, in W such that w,, = d#,,, for
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all n € {1,2,3}. First, note that for all z1, x5 € TW

w1(371,5€2) 1=<F156179€2>
=((v/—1ay, V—=1b1, v/ —=1iy, vV —1j1,vV/—1a},vV—=1b1,vV/—=1f1,vV—1q1),
(az,b,2ia, ja, ay, by, fa, 92))

1
=§tr(\/—1a1a£ + as(v/—1ay)t + v/— ble + by(v/—1by)T 4+ /= 1122

io(v=Tip)" + \/7]2.71 + (V=15 ]2\/7@1% + ay(v—1a)) "+
/100 + By(V=10)T + V= 1gigd + go(V—1g)T + V1 L+ (V1) fa)

-1 . . i .
5 ?57"(&1a£ — GQQ]; + blbg — b2b]; + 2122 — 2221 + 35]1 — Jbz-i'

ayay — ayal + 0005 — 0o+ 3~ o+ g198 — gagt)

Let m : W — W given by m(a,b,4,j,d",V', f,9) = (a,0,0,0,0,0,0,0), one
can introduce the following 2-form

dmy A dﬂq((alablailvjba/lab/lafl:gl)? (a17b27i27j27a/2ab/27f2792)) :alag - a2a§'

Defining m; : W — W as the projection in the i-th coordinate, one can write

wi as

—1
Wy = tr(dm A dﬂ +dmy A dﬂg + dms A dﬂg +dmy A dﬂ':[
+drl A drll + drly A drl + dir A drl + dig A d).

Therefore, 0, if you put

-1
0, = 5 tr(m /\dﬂ—l—m /\d7r£—|—7r3/\d7r§+7r4 /\dﬂ
+ 7l Adrl + 7 A dal + oA dal + 7 A dr),
wy = df;. Thus, it follows from Lemma 3.1.1 that one can find the moment

map g1 (W)(€,€) := =01 (Wiepin)w- Recall that since (€ € u(V)), &' = —¢, and then
[£,a]" = ()T — (a&)'. Analogously, [¢/,d'] = (¢'a)T — (a/¢)T. Moreover,
pr(w)(€,€) = = (Wieen)w
=Y iraf o]+ blE ' + (€ + (-6
d[€d T+ V[V + f(Ef = FE)) + g(€'g — g€)T)

~gptrlal(a)’ = (@)) + Hev) - 06 +ii's! — el

d(€a)! — (@) + (V) — (V) + ffle — f1 T+ gg'e" — g€ gt

sogltrtla.a] + 0]+ i = 5T + 11 = glo)e

tr([a’, T+ [0, 6] = fTf + gg"¢'].
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Identifying (V) x u(V') = u(V)* xu(V')* via the inner product (a,b) = tr(ab'),

one obtains the moment map

(QF)([ ]+ [0, 07 = [T + g9")).
Repeating this procedure for wy and ws, one can find
w21, T9) = — Etr(agbl — baay + 51@2 - alb + 1271 — J2t1 + Jily — 412

+b1a2 Tb? + aybi _b/a1+f291+91f2 92f1—f1Tg£)7

_\/7

wy(z1, 72) = tr(—agby + boay + bl a2 - a1bT —i2J1 + Jot1 + J1712 - Z1]2
+ 17/1Ta/2T Tb2 — apby + byal + 91f2 figr — ffgg + g2f1)

and the moment maps

o) =5 ([a, 0] + [l B+ i — 515 + fg — g7 f1)),
(1) + [a' 6] — o + 1g"))
and
ps() :2\%(([@, b] —[a', 6" +ij + j1i" + fg + 4" f1]),

([, 0] = [a', 0] — gf = f'g")).
Then, defining the moment map

pe(x) =(p2 + V—1ps)(x)
— (([a,b] + ij + fg), [d',b] — gf).

it follows from Theorem 3.1.2 that

it (0) N opct(0) W

W= u

is a hyperkahler variety, since the U-action acts freely on the stable points of

W. Moreover, its real dimension is given by
dimg(W) = 4(c® + re + ? + ) — 4(c® — ¢*) = 4(rc + )

This concludes the proof that the moduli space N (r, ¢, ¢') is a subvariety of the hyperhéhler
manifold (W,< s >, Fla F27 Fg)
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3.2 Holomorphic structures on N*(r, ¢, 1)

Let M be a complex manifold. We define holomorphic pre-symplectic variety as
the triple (M, T",Q), where Q is a holomorphic closed 2-form, non-degenerated in an open
dense subset defined on T'M and I' is a complex structure on M. Let (M, , ),I'1) be a
Kahler manifold. Let ws and w3 be two closed, not necessarily non-degenerated, 2-forms

defined on M satisfying

wa(u,v) = g(Ju,v) =g(lJu,Iv) = g(Ku, Iv) := ws(u, Iv); (3.8)
wy(u,v) = g(Ku,v) = g(llJu,Iv) = —g(Ju, Iv) := ws(u, [v), (3.9)

then (M, , ), T'1,ws,ws) is called pre-hyperkahler variety. 1t is easy to check that given
a pre-hyperkahler manifold, (M,{, ),I'1,ws,ws), one can obtain that (M,I'1,Q), with
Q 1= wy + v/—1lws, is a holomorphic pre-symplectic manifold.

The reciprocate is not proved, i.e., if (M, T'1, Q) has a holomorphic pre-symplectic
structure, is unknown if there exists unique pre-hyperkahler structure (M, , ), "1, wo, ws)
such that = wy + v/—1lws. However, if M is compact, ws and ws are symplectic forms,
is non-degenerate and (M, { , »,I'1,T's,T'3) a hyperkdhler manifold where T',,, for n € {2, 3}
is such that w,(-,) = (I';+,-), this is true and the reader can find a proof of this in [8,
Theorem 5.11, p. 26; Theorem 23.5, p. 179].

In this section, one can find the consequences of the fact that the moduli space
N(r,c, 1) is a subvariety of the hyperkahler manifold W(r, ¢, 1) = W, (, ), I'1,T9,T3). Tt
was proved in the last section that this is true for the general case N (r, ¢, ). However,
here it is fixed the moduli space of framed stable representations of the ADHM quiver of
numerical type (r, ¢, 1), because this is the only case in which the variety is smooth. First,

note that there exists the inclusion map

NSt(r7 c, 1) (% (W7< ) >7F17F27F3)'

Hence, associated with this inclusion, there exists a complex structure on
N*®(r,c,1) inherited by the pull-back, :*I';, and a closed degenerate 2-form Q = t*w, +
vV —11*ws. Indeed, let (a,b,i,7,a’, V', f,0) € N*(r,c,1). Thus,

FTi(a,byi, 7,0, f,0) =L1(tsa, b, 1y, 4], 0’ 10 Ly f, 0)

=(vV=1a,V=1b,v/=1i,v/=1j,v/—1d', /=11, v/=1f,0)

is clearly a complex structure on N*. Moreover, let z; = (a1, by, 41, j1,a}, b, f1,0) and
1y = (ag, by, ia, jo, ab, b, f2,0) in N*. It is easy to check that (N*,/*(, ) +*T';) has a
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Kahler structure. The 2-form €2 is given by,

Q(z1, 29) =(*we + V—11%ws) (21, 22)
=(wo + vV —1ws)(t4x1, L4T2)
:(WZ + V _1w3)((a1,bl,i1,j1,a/1, bll?flao)a (a27b27i27j27a/27b/27 f2>0))

1
- §tr(a2b1 — byay + b1a2 = ale +d9j1 — Joi1 + 3122 = 21j2

+ b'lTag — a'lTbg + ayby — bhay)—

v —1)2
2
+ b/lTag — a/lTbIQT — ayb] + bya))

tr(—aghy + beay + b1a2 — ale — 1271 + Jol1 + ]112 - 2192

1 4.
25”( asby + baay — b1a2 aIbT i2J1 + Jol1 — ]112 + ZI];

—vlalf + afvlf — albt + vha! + bfa — a0l — alb + bla

— agby + boay + blal — albl —isji + jaiy + jlib —il4h)

= tr(—agby + baay — igjy + W12 — ayb| + bhal).

Note that taking u = (0,0,0,0,0,0, f,0) € TN, Qx(u,v) = 0 for all v € TN,
i.e., Qis in fact a degenerate 2-form. Also, it is easy to check that the 2-forms (*wy and

t*ws satisfy

Cws(u,v) = —t*ws(u, Tov)

{L*WQ(U,'U) = ws(u, ')

Given the 2-form

Q:TN*(r,c,1) x TN®*(r,c,1) — C

as above, one can define the maps

Qx : TxN®(r,c,1) x TyN*(r,c,1) —> C

(u,v) — Qux,vx)

and
Qx(u,): TxN(r,e,1) —>

v — Qx(u,v)

It is still unknown in which points 2 x is non-degenerate in the general case. How-
ever, the investigation for the particular case for Qx defined in Ty N (1,2,1) x TxN(1,2,1)

is done as one can see below. First, we will proof an auxiliary Lemma.

Lemma 3.2.1. Let X = (W,V,V' A B, I,J, A", B, F,G) be a framed stable representa-
tion of the enhanced ADHM quiver of numerical type (1,2,1). Thus, there exists a change
of basis for V' such that
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A0 B0 1
(i) A= , B = , P = ,if A and B are diagonalizable;
0 (05} 0 b2 0
(A 1] (B B 1]
(ii) A = , B = 2 , B = , if A and B are not diagonalizable;
0 A 0 B 0

0 1l , if A is diagonalizable and B is not

diagonalizable.

1 B 1 1
(iii) A = A’ 0 B:[ ],F:

Proof. First, note that

AF(1)-F(1)A =0

BF(1)-F(1)B' =0’
i.e., (1) € V is an eigenvector of A and B. Also, A" and B’ are eigenvalues of A and B,
respectively, associated with the vector F'(1). Suppose that both A and B are diagonalizable.

Therefore, there exists a vector w € V' that satisfies
Aw —as - lyw = 0,

where A’ # ay € V'. There exists a change of basis for V such that

Thus, we obtain

0= AF — FA' — a1 a2 1 _ 1 A — (ln—A/
a21 A22 0 0 21

Hence _ _

A _ A/ 19

| 0 a22_

Analogously, we obtain ) .
B b

B— 12

L 0 b22_

Since as is an eigenvalue of A associated with the vector w € V', we get

A 0 0
0=Aw —ay - lyw = 2 - = 2
0 929 1 a9 99 — Q2

A0

0 (05}

Therefore,

A —
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Since r = 1, we have J = 0. Hence
A 0of(|B b B b
0=[A, B - 12| 12
0 a9 0 bao 0 bao

_ [A/B/ — B/A/ A,blg — bmdg] . [O blg(A/ — (12)]

0 a9 b22 — b22 a9 0 0

B/
B = 0 :

If both A and B are not diagonalizable, there exists w € V such that v :=

Aw — A’ - 1y is an eigenvector of A.There exist a change of basis for V' such that

Thus b5 = 0 and

1
F = , W= 0 ,
0 1
and _ .
v — A, a12 0 _ 0 o a12
0 a2 1 _A/ 92 — A/_
Hence,

!
0= Av— A -1yv = [’3 412

22

a12 a12
gy — A’] A A/]
22 _a22
_ (112(6122 - Al)
(a2 — A')?

A/ a12
0o A

i.e., a2 # 0 and agy = A’. Thus,

In the other hand,

A/
0=[A, B] = [0 ‘j;

|AB - BA Aby by — B b A
0 A/bgg — bQQA/

0 byp—B
0 0
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Therefore
_ B/ b12
0 B'|
Let
1 0
S = 0 1
a12
Then
g1 _ 1 0
0 ai
and we obtain
GAGT 1 ? A ap| |1 0] A1
0 af 0 A/ 0 a12 0 A/ ’
12 -
SBSil . 1 (1] _B/ b12 _1 0 _ B, blgalg
0 — [0 B[]0 ap 0o B |’
121 b -
1 0|y )
SE = 1 =
0 — 0 0
B a12 -

Denoting Bis = bisaqe, this concludes the proof of the case where A and B are both
non-diagonalizable. The last case, A diagonalizable and B not diagonalizable, is entirely

analogous. O

Now we can proof the next Proposition.

Proposition 3.2.2. Let A/(1,2, 1) be the moduli space of framed stable representations of
the enhanced ADHM quiver of numerical type (1,2, 1). Fix a framed stable representation
X =(A,B,I,J,A", B', F). Then the 2-form Qx defined on T'x N (1,2, 1) is non-degenerate

if and only if the matrices associated with the endomorphisms A and B are diagonalizable.

Proof. Recall that if » = 1, then the map J € Hom(V,W) is null, since X is stable (see
[13, Proposition 2.8]) and recall that if ¢’ = 1, thus [A’, B'] =0, for all A, B" € V'. Thus,
the enhanced ADHM equations are reduced to

[A,B] =0, AF—FA =0, BF—FB =0.
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Suppose that A and B are not diagonalizable. Thus, it follows from Lemma
3.2.1 (ii) that there exists change of basis for V' such that

A1 B B 1
A= , B= “l, F= (3.10)
0 A 0 B 0

In order to X = (A, B,I,J,A', B', F) is a stable representation of the enhanced ADHM

quiver,

=", (3.11)

Indeed, F' is clearly injective. Furthermore, Consider

[ =

Note that if i5 # 0, then there exists a basis of W such that i, = 1 and

| m
I= [ s ] (3.12)

for some p € C Indeed, suppose that there exists 0 = S < V such that
A(S),B(S), I(W)c S.
Let 0 # v e I(W), thus, there exists w € W such that
v=1Iw= [Zl ] cw = lélwles
19 1MW
Moreover, since v € S, A(v) B(v) € S by hypothesis. Hence
A1 )
A(U) _ / ) 1w _
0 A izw

Analogously,

A'iy

A’i1+@'2]
- w

B'iy 4+ Biyi
B(U):[ (31 ) 1212]_w
B’LQ

Then, if i, = 0, S = {4;) & V is a subset such that A(S), B(S),I(w) < S.
Indeed,

0
for all w e W, which means I(W) < S. Let s € S given by s = Aiy. Thus,

A1 [ iy ANy
. = €S
0 A 0 0

I(w) = W ] eS

Afs) =
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for all s € S. And therefore, A(S) = S. Analogously, B(S) < S. Thus, in order
to prove that X is stable, i # 0 and then there exists a basis of W such that [ is given by
(3.12). This concludes that if X is a framed stable representation of the enhanced ADHM
quiver, then A, B, I, A’, B, F are of the form (3.10), (3.11).

Now, consider v € Ty N given by v = (a,b,i,7,a’,V', f) such that X satisfies
(3.10) and (3.11). Then, if follows from Theorem 2.4.3 and from the fact that J = 0 that

j=0, [a,B]+[Ab] =0, fA +Fd —aF —Af=0, fB +FV—bF—Bf=0.

Then, denoting

one gets

fA' + Fa' —aF — Af = [fll-A'+

| asy
Therefore,
/ p—
FA 4+ Fd —aF —Af=0=1{ © ~ atfo (3.13)
91 = 0
Analogously,
/ J—
fB +FY —bF —Bf =0 < b= but Buf (3.14)
21 = 0
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It follows from equations (3.13) and (3.14) that

11 12 B B
[0, B)+ 140 = || s aw | [ 0 B ]
=0 |
A1 bin  bio
[ 0o A |’ bar by
) | =0
_ G a2 B' B B [ B" B '[an 12 ]+
0 a 0 B 0 B 0 ao
b b | [ A1 A 1] [ e b
0 by | | 0 4| OA’]' 0 ng
B [ an B’ Bisai + B'a B [ B'ayy B'aiy + Biaag ] n
0 as B’ 0 Blass
[ A'byy A'byy + b b A by + Albyy
0 A'by ] B by A ]
B 0 Biz(ai — ag) + by — bn
o 0
Therefore,
[a, B] + [A,b] = 0 < Bia(ain — age) + bay — by = 0. (3.15)

Thus, v = (a,b,1,7,a’,b, f) € TxN is such that

ailr aig ] b1 bio . 1
a= , b= , 7= ,
0 929 | 0 b22 Z.1
. fl r /I
f= f ) a = fo+an, b = Biafo + b11.
2

and satisfies (3.15).

f
Qx(u,v) = tr| - _ aii CEJQ . b biz | + _ Z;I .
0 axn 0 by 0

ailr aig _
| | | 0 929 |
—(ayy ‘1: f2)(b11 + Biaf2) + (b1y 4_‘ Bl2_f2)(a11 + f2) i
anbi  anbis + ajabey bi1a1n  biiaia + bisags
= tr| — + ~ -
baoag

RE
N =
N [\

| 0 (32099 | i 0 |
—ai1bi1 — a1 Biafo — fabi1 — fafoBia + buiann + biyfo + foBisan
+ fafaBi2

= (—a1bi — axnby + l;zan + b,;;am —anby —anBiafo — f2511+
+Z;1v1a11 + qufz + J?2312a11)

= (=2a0bu + 2bi1a1y — @oabas + basasy + fo(bil — arl) + falan — bir))

= (2(—an1bn + Z;Eau) — aaboy + ?22@22 + fQ(I;—i - C;I/l) + fé(an —b11)).
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Thus, if u € TxN satisfies

b = B
11 12411 ’ (3.16)
fo =0
then
Qx(u,v) = (2(616111 — a11B12a11) — axabas + 5;2%2)

Note that it follows from equation (3.15) that if Bisay; = by, then Bisagss = bas.

Thus one obtains

Qx(u,v) = 2(—anBisai + biiain) — a2 Biaags + basags

= 2CL11(511 - Bl2a11) + a22(b22 - 312022)
Since v € Tx N,
Bisay; — Bigaga + by — b1 =0 = by — Bisagy = byy — Biaay;.

Therefore

Qx(u,v) = 26L11(lq1 — Biaany) + a22(1;1 — Biaa11)

(2&11 + &22)(6; - Bl2é\JH>

Then, if u € TxN satisfies (3.16) and agy = —2a47,

Denote by [u] the equivalence class of u. It is easy to check that if aq; # 0,
[u] # [0]. Indeed, it follows from Theorem 2.4.3 that [u] = [0] if and only if u € Im(dy),

where

do: End(V)®End(V') — X
(h, 1) —— ([h, A}, [h, B], hI,—Jh, [N, A, [W,B'],hF — Fh')

Since ¢ = 1, [W/, A'] = 0. Then, if a;; # 0, since fo = 0 and @’ = a1 + fo,
a’ # 0. Therefore, there is no (h, h') € End(V)@® End(V') such that dy(h,h’) = u. In other

words,

B aip G2 Bizan b1z i fi
(A e R

is a non-null vector in TxN*(1,2,1) such that Qx(u,v) = 0, for all v e TxN*(1,2,1).
This concludes that if X satisfies (3.10), and (3.11), then Qx is degenerate.
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Now suppose that A is dianagolizable and B is non-diagonalizable. Analogously

to the previous case, one can check that u € Ty N (1,2, 1) is given by
0 by b '

u = 2 ) H = ) Z,l 70707b11 + f27 fl

0 ag 0 by 12 f2

QX(% U) = baoagy — axbay

and

Hence, taking ags = by = 0 € by # fo, i.e.,
0 bii b '
u— a2 ’ 11 012 ’ Z.1 [0,0,by1 + fo, Ji
0 0 0 O 19 fa

one gets Q,(u,v) = 0 for all v € TxN(1,2,1) with [u] # [0]. Thus Qx is degenerate.

In order to conclude the proof, we have now to prove that if
X =(AB,I,J, A" B F)

is such that A and B are diagonalizable matrices, then it follows from Lemma 3.2.1 that
there exists a change of basis for V' such that

A:[A’ 0], B- | F:H. 317)
0 a9 0

Moreover, analogously to the previous case, one can check that, in order for X
to be stable,

B 0
0 by

A
12[117 a; # az, by # by

and a vector u = (a,b,1,7,a’,V', f) € TxN is given by

ary aio bi1 dayz i S
u = ) . ,a, b,
falar — a2) 22 5f2(a1 —az) by 2 f2
Therefore, one can check that given u = (a,b,4,j,a’,V, f), v = (6,3,7, ja v, ]?) e TxN,

Qx(u,v) = 2(a11b11 — a11b11) + a22bas — a22b2.

Moreover, Qx(u,-) = 0 if and only if a;; = by; = aze = by = 0. Indeed, if
aj1 = byy = age = by = 0, it is trivial that Qx(u, ) = 0. Now suppose that Qx(u,-) =0
for all v € Tx . In particular, by taking

_ 0 aio ay dass 0 _ [ i ]
v = s 3 707a117 )
([ folar —as) 0 ] [ df2(ar —az)  @x ] [ iz ] RE )

B —bn a2 0 daip i — fi ]
w = _ 5 3 . 7_611707 .
([ fz(a1 —@2) —bao ] [ 5f2(a1 - a2) 0 ] [ 12 ] f2 )




Chapter 3. Geometric Structures

71

Qx(u,v) = Qx(u,w) = 0, but
Qx (u,v) = 2a11G11 + a0z,
and this vanishes if and only if a1; = ass = 0. Moreover,
Qx (u,w) = 2b11b11 + baoboy

and this vanishes if and only if by; = by = 0. Therefore, Q,(u,-) = 0 if and only if

0 a12 0 dais i1 fl
u = 5 ) 707()’ .
([fzwl—cm 0 ] [6f2<a1—a2> 0 ] H [fD

However, u = dy(h, h'), for

- arg +i1(th —i2) — Mar — az) fi G2
h = May — az) (a1 —az) |,
2 iz — Afa
2 +i1 — May —az) fi
Aay — ag) '

Indeed, one can check that

d()(h> h/) =

\h h hyy — R
(a1 — ax)H, (by —bo)H, | T2 00,0, ™
Aho1 + hag ha1

where

H— 0 —hio
ha1 0

and then, d(h, h') = w. This means that [u] = [0]. In other words, if X satisfies (3.17), Qx

is non-degenerate.

]
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4 Enhanced ADHM quiver varieties and flag

of sheaves

In this chapter it is discussed the relation between the moduli space of framed
stable representations of the enhanced ADHM quiver with numerical type (r, ¢, ¢’) and the
moduli space of flags of sheaves. We proved in details that there exists a bijection between
the moduli space N*(r, ¢, ') and the moduli space of flag of sheaves (E, F, ), where
(F, ) is a framed torsion free sheaf in P? with rank r and second Chern class (¢ — ¢),
(E, ) is a subsheaf of (F,¢) of rank r and second Chern class ¢ such that the support
of the quotient F'/E is given by ¢’ points outside the line at infinity /.. In this chapter,
F(E, F, ) the moduli space of flags of sheaves as above and (FE, F, ¢) denotes a single
flag of sheaves.

In literature one can find results which associate moduli space of stable repre-
sentations of the ADHM quiver with numerical type (r,¢) and the framed moduli space
of torsion-free sheaves on P? with rank r and second Chern class c¢. Most of them can
be found on [13, Chapter 2|. In the first section one can find the main facts that will be
used to prove the existence of the bijection above. In the second section it is proved this

existence, i.e., the following

Proposition 4.0.3. Let N*(r, ¢, ) be the moduli space of framed stable representations
of the enhanced ADHM quiver of numerical type (r,¢, ). Let (E, F,¢) be the moduli
space of the flag of sheave given by (F, ) a framed torsion free sheaf in P? with rank r
and second Chern class ¢, (E, ¢) is a subsheaf of (F, ) of rank r and second Chern class
(¢ — ') such that the support of the quotient F'/FE is given by ¢’ points outside the line in
infinity l,. Then there exists a bijection between N*(r, ¢, ') and (E, F, p).

Moreover, it was proved by Patricia Borges dos Santos in [16], that if » = 1, the
moduli space N*!(1, ¢, ¢)(C) and the nested Hilbert Scheme Hilb (C) are isomorphic.

4.1 Framed torsion free sheaves and stable representations of the

ADHM quiver

In this section one can find a few results that can be found on [13, Chapter 2],
[10, Chapter 5] and [15, Chapter II, Section 3|. These results will be presented briefly but

the reader can check the references for more details.

Definition 4.1.1. Let (z : y : 2) be fixed homogeneous coordinates in P?. Let X =
(W,V,A,B,I,J) be a representation of the ADHM quiver. An ADHM complex is a
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complex on P? of the form
EY :VR®0m(—1) —25 VOVOW)®Op —— V& Op(1)

where
zA + xly

a=| zB+yly |, 6=[—zB—y1V zA+ xly z[]
zJ

Note that the ADHM equation is equivalent to the condition Sa = 0. Indeed,

zA + xly
BOZ: [ —ZB—y].V ZA+LL’1V ZI] zB—i—ylV :ZQ([A,B]+[J)
zJ

Moreover, given a morphism (&, &;) between two representations X and X , one has the
following morphism £* = (§,@ 1y, (§1DEDE)® 1y, {1 ®1y) between the ADHM complexes
E% and E%

V®R0p(-1) —2= VOVeW)® 0k —— VE O0p(1)
lﬁl@lv J(§1@£1@£2)®1V lﬁl@lv
VR0p(-1) —2= VOVeW)® 0k —— VE Op(1)

From now on we will denote by A and Kom(P?) the abelian categories of
representations of the ADHM quiver and the category of complexes of sheaves on P?,

respectively.

Proposition 4.1.2. The functor
F: A—> Kom(P?)
given by
F(X) = Ex, F&,6)=¢"
is exact, full and faithful.
This Proposition was proved by Patricia Borges dos Santos and the proof can

be found in [16].

Lemma 4.1.3. Let us fix a representation X and the corresponding ADHM complex E%.
Then:
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(1) the sheaf map « is injective. The fiber maps ap are injective for every P e P? if and

only if X is costable;

(43) if X is stable, then H'(E%) = 0 and H°(E%) is a torsion free sheaf whose restriction

to Iy is trivial of rank r = dim W and second Chern class ¢ = dim V;

(i7i) for any X € A, H(H°(E%(—1)) = 0.

The proof of this Lemma can be found in [10, Lemma 5.2 and Lemma 5.4] and
[13, Section 2.1].

For further references, we state the following;:

Theorem 4.1.4. There exists bijection between the moduli space of torsion free sheaves
on P? with rank 7 and second Chern class ¢ and the moduli space M(r,¢c) of stable

representations of the ADHM quiver with numerical type (7, ¢).

The proof of this Theorem can be found on [13, Chapter 2] and [15, Chapter
I1, Section 3].
All results that are needed to prove the main Proposition of this Chapter were

enunciated here. This proof can be found in the next section.

4.2 Proof of the Proposition 4.0.3

First let X = (A, B,I,J, A", B', F) be a framed stable representation of the
enhanced ADHM quiver. Then F' is injective and the ADHM datum (A, B, I, J) is stable.

Thus one has the diagram
A B A B
N Q\VO

V/

) )

{0} —— W

Since X is stable, one can obtain the stable representation of the ADHM quiver with
numerical type (r,c — ), X" = (A", B",I",J") (see Lemma 2.3.8). Then, incluing this
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representation, one can obtains the diagram

B A// B//

B A
QD00 QD
v’ 14 v

<) AT PR (A B

{0} 14 W,

(4.1)
Denote by Z, S and Q the stable representations of the ADHM quiver

A B’ A" B

A B
N QD N
%4 1% v

< ) ’ I J and I’ J" ,

{0} 1474 w.

respectively. Thus, since F' is injective and there exists a surjective map between the moduli
spaces N*M"4) and M(r, ¢ — ¢), see Lemma 2.3.8, the diagram (4.1) can be expressed as

the exact sequence of representations

0 7 S Q 0. (4.2)

It follows from Proposition 4.1.2 the exactness of the sequence of monads

0 £ ES Eq 0,

where E7, Eg and Eq are the ADHM complexes on P? associated with the representations
of the ADHM quiver Z, S and Q, respectively.

from the exact sequence 4.2, one can construct the long exact sequence
0 —— H Y(Bp) —— H (B —— H(Ey) —— H(Ey) —— HUES) ——

—— HUEY) —— HI(Ey) —— HI(BS) —— H'(Eg) ——— 0

(4.3)

It follows from Lemma 4.1.3, that the exact sequence in (4.3) reduces to

0 —— H(By) —— H(E§) —— H(EY) —— H'(Ey) —— 0. (4.4)
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Indeed, it follows from Lemma 4.1.3 (i) that o', @ and " on the ADHM

complexes Ey, Eg and Eg, respectively, are injective maps. Thus,
W (By) = H () = H () = 0.
Moreover, since Eg and Eg, are stable, Lemma 4.1.3 (77) leads to
HO(ES) = HO(Eg) =0
and then one has the exact sequence (4.4). However, H°(Ey) = 0. Indeed,
By V' ®0p(—1) —2 (V'@V)®Op —— V'@ O0p(1) ,

and taking P = (x : y : 0) € [y, one obtains
xly
o = L 5/:[y1w lElv']-
yly

ker(p') =0

Thus,

for all P €. Since
HO(Ey) = ker(8')/Im(c),

the stalks of this sheaf vanishes at P. Therefore, the support of this sheaf is a

0-dimensional scheme, since it does not intersect the line at infinity (.. However,
H°(H'(Eg)) = H'(H"(EZ(-1)))
and according with Lemma 4.1.3 (i77),
H°(H'(EZ(-1))) = 0.
Therefore, since H°(E3) is supported at finitely many points,
HO(Ey) = 0.
Hence, finally one obtains the exact sequence
0 —— HUES) —— HUEY) —— H'(Ey) —— 0. (4.5)
Therefore, (H°(ES), H'(EQ), ¢) is a flag of sheaves, (H°(Eg), ¢) is a framed

torsion free sheaf with rank r and second Chern class (¢ — ¢’) and (H°(ES), ¢) a subsheaf

of (HO(Eé)gp) with rank r and second Chern class ¢, furthermore,

M (B7) = HO(EG)/H(E3)
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has rank 0 and consists of (¢ — (¢ — ¢’)) = ¢ points outside the line at infinity /..

Now suppose that (E, F, @) is a flag of sheaves with ranks and second Chern
classes as above. One can find a framed stable representation of the enhanced ADHM
quiver

X =W, V,V',A,B,1,J,A, B F)

such that its numerical type is (r, ¢, ¢'). In fact, since (E, F, ¢) is a flag of sheaves, (F, ¢)
and (E, ) are framed torsion free sheaves of rank r and second Chern class (¢ — ¢)
and ¢, respectively. It follows from Theorem 4.1.4 that there are stable representations
of the ADHM quiver Q = (W", V" A" B" 1" J") with numerical type (r,c — ') and
S =(W,V, A, B,1,J) with numerical type (r, ¢) associated with the torsion free sheaves
(F,¢) and (E, ), respectively. Thus one has the diagrama

A// B/l

A B
N N
1% v
I J ’ 1" J".

W Wl/
(4.6)

Suppose that there exists a surjective map

v:S-—Q,

then there are surjective maps ¥, € Hom(V,V") and Wy € Hom(W,W").
By putting V' = ker(¥;), one can define the representation of the ADHM quiver Z =
(0,ker(Wy), Alxer(wy)s Blrer(ws), 0,0). Denoting V' = ker(¥), A" = Alxer(w,) and B'|er(w,),

and defining by F : V' — V as the inclusion map, one gets the following diagram

! B A B A B’
QD0 DN D

V V//

< ) [ J’ [/l J”
v

0 —— w —2» w

This means that the framed stable representation of the enhanced ADHM quiver

X =W, V,V',A,B,1,J,A, B F)
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is such that the cohomology groups of the monads Egz, Eg and Eg associated
with the representations of the ADHM quiver Z, S and Q, respectively, lead to the exact
sequence in (4.5). Therefore, in order to conclude the proof, it is enough to show that the
surjection ¥ does exist.

First of all, it follows from the proof of Theorem 4.1.4 on [13, Chapter 2| that
there is a unique description in terms of monads of framed torsion-free sheaves on P2

According to this description, the sheaf (E, ) leads to the monad

E*:V@O0p(-1) = (VOVOW)®Op —— V& Op(1)

where
zA+ zly
a=| zB+uyly |, B= [ —z2B —yly zA+ xly zl]
zJ
and

V = H'(F(-1)), W = H(F|,)

while (F), ) leads to the monad

F* V" ®Op(—1) —— (V' @V @W") ® Opz —2— V" @ Op2(1)

where
ZA// + .Qflv//
o = ZB” + ylvﬂ 5 6 = [ —ZB” — ylvﬂ ZA” + l’lvﬂ ZI” ]
Z:]”
and

V"= HY (E(-1)), W"=HE|,).

Since (F, ) is a subsheaf of (F, ) there exists the exact sequence

0 E F Q 0

where Q = F'/E. Therefore, since @ is supported in finitely many points,

0 —— HY(E(-1)) — HY(F(-1)) —— HYQ(~1)) —— 0.
=V =y =0

In other words, there exists a surjection Wy : V' — V", Moreover, since (F, ¢)

and (E, ) have the same framing, E|, =~ F'|,. Then

W =H(F|,) =~ H'(E|,) =W"
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In other words, there exists an isomorphims Wy : W — W”. Then,

UV=(V®1, VeV eov)®1,¥,®1)

E*: VR0p(-1) —2— (VOVOW)® O —2— V@ Op(1)
l\l/ J{\h@l J{(\If1®‘1’1®‘1’2)®1 J{‘h@l
F*: V'@ Op2(—1) L (V' @V @W") @ Op: — V" @ Opa(1)

is a surjective maps between monads. It follows from Proposition 4.1.2 that
F(U) = (&1, &) is a surjective map between F(E®) = S and F(F*) = Q. This concludes
the proof.
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