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Resumo

Este trabalho apresenta os resultados obtidos acerca da investigação das propriedades dos

espaços de moduli das representações referenciais estáveis do quiver ADHM aumentado,

denominados variedades ADHM aumentadas. Dentre os resultados obtidos, destacamos que

estas variedades possuem correspondência biunívoca com o espaço de moduli de bandeira

de feixes no plano projetivo. Também foi obtido uma caracterização das variedades ADHM

aumentadas suaves. Ademais as variedades ADHM aumentadas são quasi-projetivas e

podem ser imersas em uma variedade hyperkähler. Devido a esta imersão, verifica-se

que, nos casos em que esta variedade é suave, obtemos que ela é Kähler e possui uma

2-forma, fechada, degenerada herdada pela variedade hyperkähler. Em outras palavras,

as variedades ADHM aumentadas podem ser dotadas de uma estrutura definida neste

trabalho denominada estrutura holomorfa pré-simplética.

Palavras-chave: representações de quivers. equações ADHM. teoria de moduli.



Abstract

This work presents the results obtained about the investigation of the properties of the

moduli spaces of framed stable representations of the enhanced ADHM quiver, called

enhanced ADHM quiver varieties, such as the bijection between the enhanced ADHM

quiver varieties and the moduli space of flag sheaves in the projective plane that we proved

it exists. Also it was proved a characterization of the smooth enhanced ADHM quiver

varieties. Moreover, these varieties are quasi-projective and they can be embedded in a

hyperkähler manifold. Because of the immersion, it was proved that when the enhanced

ADHM quiver variety is smooth, it is a Kähler manifold and has a closed, degenerated

2-form inherited by the hyperkähler manifold. In other words, smooth enhanced ADHM

quiver varieties can be endowed with a structure defined in the work as holomorphic

pre-symplectic structure.

Keywords: representations of quivers. ADHM equation. moduli theory.
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Introduction

The concept of ADHM quiver was defined by Atiyah, Drinfeld Hitchin and

Manin in 1978 in the paper [1]. There they described in terms of linear algebra in a unique

way all self-dual connections on euclidean 4-dimensional space pinstantonsq. In order to

do this, they used the Ward’s correspondence and a few algebro-geometric techniques

pmonadsq introduced by Horrocks. Donaldson restarted in 1984 the ADHM description

in terms of maps between complex vector spaces, see [7]. One important result proved

by Donaldson in this paper is the fact that the regular solutions of the ADHM equation

modulo a specific G-action parametrizes the moduli space of holomorphic bundles on P2

that are framed at the line at infinity, where G is the general linear group over a fixed

vector space.

In 1999, Nakajima in [13] changed the regularity condition to a weaker stability

condition and obtained the moduli space of framed torsion free sheaves on P2. In particular,

Nakajima obtained an algebraic description of the Hilbert schemes of points on C2 and

that it admits a hyperkähler structure.

The concept of enhanced ADHM quiver was defined by Bruzzo, Diaconescu,

Jardim, et al. in [4] and it appears as a tool to study the moduli space of supersymmetric

flat directions of a quantum mechanical potential. They noticed that this moduli space,

constructed using Geometric Invariant Theory techniques, is isomorphic to the moduli

space of framed stable representations of the enhanced ADHM quiver. Moreover, they

proved that it is a quasi-projective smooth irreducible variety.

In this thesis we define and study a quiver slightly different from the quiver

defined in [4] that shares many proprieties with it. Because of this similarity, it is also

called enhanced ADHM quiver. Here we proved that the moduli space of framed stable

representations of the enhanced ADHM quiver is a quasi-projective variety that can be

embedded in a hyperkähler manifold, W, and it has a bijection with the moduli space

of flags of sheaves. Moreover, for some special cases, this moduli space is smooth and

irreducible. Also we present a study of the complex and holomorphic structures that can

be inherited by W. Defining new structures denominated holomorphic pre-symplectic

structures.

This thesis is divided in four chapters. In Chapter 1, it is presented briefly the

ADHM quiver and the moduli space of stable representations of this quiver. In Chapter

2, we defined the enhanced ADHM quiver and exposed the construction of the moduli

space of framed stable representations of this quiver. Also it is proved that for a special

case this moduli space is smooth. On Chapter 3 it is proved that this moduli space is a

subvariety of a hyperkähler manifold. In this chapter it is also defined the holomorphic
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pre-symplectic structure and it is checked that this moduli space admits this structure.

Finally, in Chapter 4 it is proved that the moduli space of framed stable representations

of the enhanced ADHM quiver has a bijection with the moduli space of flags of sheaves.
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1 Preliminaries

In this chapter it is presented briefly representations of quivers, ADHM equa-

tions and the ADHM varieties and a introduction to Kähler and hyperkähler verieties.

Here, the reader can find the main definitions and results relating to subrepresentations of

a quiver, morphisms between representations, smoothness of the set of stable solutions of

the ADHM equations and a few equivalences of the definition of Kähler and hyperkähler

manifolds.

In the first section, we will present the topics related to quivers and representa-

tion of quivers, in the second section, we will define the ADHM equations and the ADHM

varieties. Finally, in the third and las section we will talk briefly about the complexes

structures mentioned above.

1.1 Quivers and representation of quivers

It will be presented in this section the first definitions about quivers and

representations of quivers. We will talk about this very briefly, but the reader can find

more details about this topic in [12, Chapter 3].

Definition 1.1.1. A quiver is a quadruple Q “ pQ0, Q1, h, tq where Q0, Q1 are two finite

sets and

h, t : Q1 ÝÑ Q0

maps.

In general, Q0 is a set of vertices and Q1 is a set of arrows. The maps h and t

are called head and tail, respectively. Given an arrow s P Q1, tpsq and hpsq represent the

source and the target of s, respectively. In other words, a quiver can be view as a oriented

graph.

Definition 1.1.2. A relation in a quiver is a linear combination of concatenation of arrows

that have the same source and target.

Consider the following example.

Example 1.1.3 (ADHM quiver). Let Q “ pQ0, Q1, h, tq a quiver such that Q0 “ te1, e8u,

Q1 “ tα, β, ξ, ηu and h, t : Q1 ÝÑ Q0 are given by

tpsq “
#

e1, se s P tα, β, ηu
e8, se s P tξu

hpsq “
#

e1, se s P tα, β, ξu
e8, se s P tηu

.

Then Q is the oriented graph



Chapter 1. Preliminaries 14

e1 e8 .

β

α

η

ξ

Furthermore

αβ ´ βα ` ξη (1.1)

is an example of relation in Q. The quiver Q “ pe1, e8, h, tq above with relation (1.1) is

called ADHM quiver.

Definition 1.1.4. Let Q “ pQ0, Q1, h, tq be a quiver. A representation E “ pEi, ϕsq of Q

is a colection of vector spaces over a filed K, tEi : i P Q0u, and a colection of K-linear

maps,

tϕs : Etpsq ÝÑ Ehpsq; s P Q1u.

A morphism between representations E “ pEi, ϕsq and F “ pFi, φsq of the quiver Q, is a

set of linear maps

f “ tfi : Ei ÝÑ Fi : i P Q0u
such that the diagram

Etpsq
ϕs

//

ftpsq

��

Ehpsq

fhpsq

��

Ftpsq
φs

// Fhpsq

commutes for all s P Q1. If these morphisms are isomorphisms, then pEi, ϕsq and pFi, ϕsq
are isomorphic and f is an isomorphism between . If Ei Ă Fi, for all i P Q0 and the

morphisms fi are inclusions for all i P Q0, then pEi, ϕsq is a subrepresentation of pFi, ϕsq.

Example 1.1.5 (Representetions od the ADHM quiver). Let Q be the ADHM quiver, as

Example 1.1.3. Let V , W be complex vector spaces. Let A, B P HompV, V q, I P HompW, V q
and J P HompV, W q. Then, X “ pW, V, A, B, I, Jq is a representation of Q and V , W , A,

B, I, J , are identified with e1, e8, α, β, ξ, η, respectively. Let X 1 “ pV 1, W 1, A1, B1, I 1, J 1q
be another representation of Q. Thus, X and X 1 are isomorphic, if there existe linear maps

f : V ÝÑ V 1, g : W ÝÑ W 1

such that

fA “ A1f, fI “ I 1g, fB “ B1f, gJ “ J 1f.

Let Q “ pQ0, Q1, h, tq be a quiver. Let n be the the cardinality of Q0. The

numerical type or dimension vector of a representation E “ pEi, ϕsq of Q is given by

the vector pdim E1, . . . , dim Enq P Zn. If X “ pV, W, A, B, I, Jq is a representation of the

ADHM quiver, the numerical type of X is pr, cq “ pdim W, dim V q.
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1.2 ADHM equations and ADHM varieties

In this section we will present the stability conditions for representations of

the ADHM quiver and talk briefly how the moduli space of the stable representations of

the ADHM quiver can be found. Furthermore, we will present a few properties just for

further references. More details can be found in [10].

As we saw on Example 1.1.3 the quiver

e1

e8

βα

ηξ

with the relation

αβ ´ βα ` ξη.

is called ADHM quiver. A representation of this quiver is given by X “ pW, V, A, B, I, Jq,
such that W and V are complex vector spaces, A, B P EndpV q, I P HompW, V q and

J P HompV, W q and X satisfies

rA, Bs ` IJ “ 0.

This equation is called ADHM equation. The vector pdimpW q, dimpV qq is called dimension

vector or numerical type of the representation.

One can express a representation X “ pW, V, A, B, I, Jq as

V

W

BA

JI

Definition 1.2.1. Let X “ pW, V, A, B, I, Jq be a representation of the ADHM quiver.

This representation X is called

piq stable, if there is no subspace 0 Ĺ S Ă V such that ApSq, BpSq, IpW q Ă S;
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piiq costable, if there is no 0 ‰ S Ă V such that ApSq, BpSq Ă S Ă kerpJq;

piiiq regular, if it is stable and costable.

Let V and W be complex vector spaces of dimension c and r, respectively. We

define the ADHM data as the complex vector space given by

B :“ EndpV q ‘ EndpV q ‘ HompW, V q ‘ HompV, W q.

A point of B is called ADHM datum, if X “ pA, B, I, Jq with

A, B P EndpV q, I P HompW, V q and J P HompV, W q

where V and W are fixed vector spaces.

Denote by B0 :“ tX P B : X satisfies the ADHM equation and X is stableu.

Let G “ GLpV q and consider the following G-action

G ˆ B ÝÑ B (1.2)

ph, Xq ÞÝÑ phAh´1, hBh´1, hI, Jh´1q (1.3)

Then, it is well known that the moduli space of the stable representations of

the ADHM quiver, Mpr, cq :“ B0{G, is a hyperkähler quotient with complex dimension

2rc. A proof of this can be found in [2, Section 3.1.1]. Moreover, it was proved in [10] that

Mpr, cq is an irreducible quasi-affine variety. Consider the following result just for further

references.

Proposition 1.2.2. Let CpAq be a deformation complex of a stable ADHM datum

X “ pA, B, I, Jq, i.e.,

CpAq : EndpV q d0
//

EndpV q‘2

‘
HompW, V q

‘
HompV, W q

d1
// EndpV q

with
d0paq “ pra, As, ra, Bs, aI, ´Jaq;

d1pa, b, i, jq “ ra, Bs ` rA, bs ` Ij ` iJ.

Then,

H0pCpAqq “ H2pCpAqq “ 0.

Proof. In order to prove this result, it is enough to check that d0 is injective and d1 is

surjective. Suppose that

d0paq “ pra, As, ra, Bs, aI, ´Jaq “ 0. (1.4)
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We must to prove that

a “ 0.

Define S :“ kerpaq. It follows from equation (1.4) that

aA “ Aa; (1.5)

aB “ Ba;

aI “ 0 ñ imI Ă S.

Let v P S. Then, it follows from equation (1.5) that

aAv “ Aav “ 0 ñ Av P S, for all v P S.

Therefore, ApSq Ă S. Analogously one can prove that BpSq Ă S. Thus,

ApSq, BpSq, ImpIq Ă S

and it follows from the stability of pA, B, I, Jq that kerpaq “ V . Therefore a “ 0. Thus,

kerpd0q “ 0 and H0pCpAqq “ 0. The proof of the surjectivity of d1 can be found on [4,

Proposition 2.3.1].

1.3 Kähler and hyperkähler structures

This section is a brief introduction to Kähler and hyperkähler structures. Those

theories are important to comprehend and work into the subjects presented on the other

chapters. The notions defined here will be useful to understand a tool to build hyperkähler

manifolds, called hyperkähler reductions or hyperkähler quotients, that will be presented

in Chapter 3 of this thesis. The hyperkähler quotient was develop by Hitchin, Karlhede,

Lindström and Roček in 1987 on the paper “Hyperkähler Metrics and Supersymmetry”,

[9]. More details about hyperkähler quotients in portuguese can be find on [2].

Definition 1.3.1. Let pM, x , yq be a Riemannian manifold and Γ a complex structure

defined in the tangent bundle of M . The triple pM, x , y, Γq is a Kähler manifold if satisfies

1. the complex structure Γ is compatible with the Riemannian metric x , y, i.e., if

xIu, Ivy “ xu, vy, para todo u, v P TM ;

2. the non-degenerate 2-form ωp¨, ¨q :“ xI¨, ¨y is closed, i.e., dw “ 0.

The 2-form ω above is, in particular, a symplectic form and is called Kähler

form. Let pM, Γq be a complex manifold. This manifold is called a holomorphic symplectic
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manifold, if it admits a symplectic form. A manifold is called hypercomplex manifold, if it

admits three complex structures on TM , Γ1, Γ2 and Γ3 that satisfy the relation, i.e,

I2 “ J2 “ K2 “ IJK “ ´1. (1.6)

In 1965, Obata proved that there exists a unique torsion-free connection ∇ on a hyper-

complex manifold pM, Γ1, Γ2, Γ3q that satisfies

∇Γ1 “ ∇Γ2 “ ∇Γ3 “ 0 (1.7)

(see [14]).

Let pM, x , y, Γ1, Γ2, Γ3q be a hypercomplex manifold endowed with a Rieman-

nian metric. This manifold is called a hyperkähler manifold if the Riemannian metric x , y
is compatible with the complex structures Γn, for n P t1, 2, 3u and if the Levi-Civita con-

nection of pM, x , yq satisfies (1.7). The next Proposition give to us equivalent definitions

of hyperkähler manifolds.

Proposition 1.3.2. Let pM, x , y, Γ1, Γ2, Γ3q be a hypercomplex manifold endowed with

a Riemannian metric. Let ωnp¨, ¨q “ xΓn¨, ¨y for all n P t1, 2, 3u. The following sentences

are equivalents:

1. the Levi-Civita connection of pM, x , yq satisfies the equation (1.7);

2. ∇ωn “ 0, for all n P t1, 2, 3u;

3. dωn “ 0, for all n P t1, 2, 3u.

The proof of this proposition can be found in [2, Proposition2.3.1]. It follows

from this Proposition that pM, x , y, Γ1, Γ2, Γ3q is a hyperkähler manifold if and only if

pM, x , y, Γ1q, pM, x , y, Γ2q and pM, x , y, Γ3q are Kähler manifolds.

Let pM, x , y, Γ1, Γ2, Γ3q be a hyperkähler manifold. Let ω2 e ω3 be the Kähler

forms associated with the Kähler varieties pM, x , y, Γ2q e pM, x , y, Γ3q, respectivamente.

É verdade que ωJ e ωK satisfazem

ω2pu, vq :“ gpJu, vq “ gpIJu, Ivq “ gpKu, Ivq :“ ω3pu, Ivq; (1.8)

ω3pu, vq :“ gpKu, vq “ gpIIJu, Ivq “ ´gpJu, Ivq :“ ω2pu, Ivq. (1.9)

Define Ω :“ ωJ `
?

´1ωK . It is easy to check that Ω is a symplectic form. Therefore,

pM, Γ, Ωq in a holomorphic symplectic manifold. On the other hand, if pM, Γ1, Ωq is a

irreducible compact holomorphic symplectic Kähler manifold, then there exists a unique

hyperkähler manifold,pM, x , y, Γ1, Γ2, Γ3q such that Ω “ ω2

?
´1ω3. Ver [8, Theorem 5.11,

p. 26; Theorem 23.5, p. 179].

In the Chapter 3, we will define a new structures called holomorphic pre-

symplectic manifold and holomorphic pre-hyperkähler manifold and see that it satisfies
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one of the sides if a manifold has a holomorphic pre-hyperkähler structure, then we can

construct a holomorphic pre-symplectic structure in this manifold. However, the reciprocate

is still unknown. We will also proof in Chapter 3 that if we fix a numerical type p1, 2, 1q,
the moduli space of the framed stable representations of the enhanced ADHM quiver

admits a holomorphic pre-symplectic structure. The construction of this moduli space will

be presented in the next chapter.
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2 Enhanced ADHM varieties

In 2011, Bruzzo, Chuang, Diaconescu, Jardim, Pan and Zhang defined in [4,

Chapter 3] the enhanced ADHM quiver as the quiver

e1e2 e8

α

β

η

γ

β1

φ

ξ

(2.1)

with ideal generated by the relations

αβ ´ βα ` ξη, αφ, βφ ´ φβ1, ηφ,

γξ, φγ, γα, γβ ´ β1γ.
(2.2)

In [4, Chapter 3], they proved the moduli space of the framed stable represen-

tations of the quiver (2.1) is a smooth, quasi-projective variety of dimension p2c ´ c1qr,

[4, Theorem 3.2]. In this thesis, the main object studied is the moduli space of framed

stable representations of another quiver quite similar to the quiver (2.1). The moduli space

presented here and the one worked on [4] also share a few properties and some propositions

are true for both of them. Because of those similarities the objects defined here will carry

the same name as the aforementioned paper. The definition and properties of this quiver

and its representations are presented in the following sections of this chapter.

2.1 Enhanced ADHM quiver and its representations

In this section we will present the enhanced ADHM quiver as the following.

Consider the quiver

e1e2 e8

α

β

η

γ

α1

β1

φ

ξ

(2.3)



Chapter 2. Enhanced ADHM varieties 21

with ideal generated by the the relations

αβ ´ βα ` ξη, (2.4)

α1β1 ´ β1α1, (2.5)

αφ ´ φα1, (2.6)

βφ ´ φβ1, (2.7)

ηφ, (2.8)

γξ, (2.9)

φγ, (2.10)

γα ´ α1γ, (2.11)

γβ ´ β1γ. (2.12)

Note that the difference between the quiver above and the quiver (2.1) is the arrow α1

and the relations (2.5), (2.6) and (2.11) that were adapted to this new arrow. This quiver

will also be called enhanced ADHM quiver.

A representation of the enhanced ADHM quiver of type pr, c, c1q in the category

of complex vector spaces is given by X “ pW, V, V 1, A, B, I, J, A1, B1, F, Gq, where W , V ,

V 1 are vector spaces of complex dimension r, c and c1, respectively, and A, B P EndpV q, I P
HompW, V q, J P HompV, W q, A1, B1 P EndpV 1q, F P HompV 1, V q and G P HompV, V 1q
that satisfy the following equations called enhanced ADHM equations

rA, Bs ` IJ “ 0, rA1, B1s “ 0, AF ´ FA1 “ 0, BF ´ FB1 “ 0, JF “ 0,

GI “ 0, FG “ 0, GA ´ A1G “ 0, GB ´ B1G “ 0.
(2.13)

A representation X “ pW, V, V 1, A, B, I, J, A1, B1, F, Gq can be illustrated as the diagram

below

VV 1 W .

A

B

J

G

A1

B1

F

I

Let ϕ : W ÝÑ Cr be an isomorphism. Then, if X is a representation of the enhanced

ADHM, pX, ϕq is called a framed representation of the enhanced ADHM quiver. Two

framed representations pX, ϕq and p rX, rϕq are said to be isomorphic if there exists an

isomorphism pξ1, ξ2, ξ8q : X ÝÑ rX such that rϕξ8 “ ϕ.

pξ1, ξ2, ξ8q : X ÝÑ rX,
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such that rϕξ8 “ ϕ. Since pξ1, ξ2, ξ8q is in particular a morphism between the representa-

tions X and rX, the following diagrams commute

V V

rV rV

A, B

ξ1 ξ1

rA, rB

,

V W

rV ĂW

J

ξ1 ξ8

I

rJ

rI

,

V 1 V 1

ĂV 1 ĂV 1

A1, B1

ξ2 ξ2

ĂA1, ĂB1

,

V 1 V

ĂV 1 rV

F

ξ2 ξ1

G

rF

rG

.

In other words, pξ1, ξ2, ξ8q : X ÝÑ rX is a morphism if and only if the following equations

are satisfied

ξ1A “ rAξ1, ξ1B “ rBξ1, ξ1I “ rIξ8, ξ8J “ rJξ1,

ξ2A
1 “ rA1ξ2, ξ2B

1 “ ĂB1ξ2, ξ1F “ rFξ2, ξ2G “ rGξ2.
(2.14)

2.2 Stability conditions

In order to construct the moduli space, first it is needed to introduce a stability

condition. In this sections two stability conditions will be presented and will be proved

that these are equivalent in a suitable chamber. The first one, called Θ-stability condition,

is inspired in the stability condition presented by King in 1994 in [12]. The Θ-stability

condition is a good one because there exists techniques using Geometric Invariant Theory

to construct the moduli space of Θ-stable framed representations of quivers, as we prove

in the Section 2.3.

While the second stability condition is more resembling with the stability

condition usually defined for representations of the ADHM quiver. This resemblance

plays an important role to prove that the moduli space stable framed representation

of the enhanced ADHM quiver of numerical type pr, c, c1q, where c1 ě 2, is not smooth.

Furthermore, this condition is very useful to prove Lemma 2.3.8 and Proposition 4.0.3.

Definition 2.2.1. Let Θ “ pθ, θ1, θ8q P Q3 a triple satisfying the relation

cθ ` c1θ1 ` rθ8 “ 0. (2.15)

A representation X of numerical type pr, c, c1q is called Θ´stable if X satisfies the following

conditions:

piq Any subrepresentation 0 ‰ rX Ă X of numerical type p0, rc, rc1q satisfies

θrc ` θ1rc1 ă 0; (2.16)

piiq Any subrepresentation 0 ‰ rX Ă X of numerical type prr, rc, rc1q satisfies

θ8rr ` θrc ` θ1rc1 ă 0. (2.17)
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A representation X of numerical type pr, c, c1q is called Θ´semistable if X satisfies

piiiq Any subrepresentation 0 ‰ rX Ă X of numerical type p0, rc, rc1q satisfies

θrc ` θ1rc1 ď 0; (2.18)

pivq Any subrepresentation 0 ‰ rX Ă X of numerical type prr, rc, rc1q satisfies

θ8rr ` θrc ` θ1rc1 ď 0. (2.19)

Note that this stability condition is slightly different from the notion defined

by King, since here only the subrepresentations of numerical type p0, c, c1q and pr, c, c1q.
However, this notion defined in [4] is enough to construct the moduli space of Θ-stable

framed representations of the enhanced ADHM quiver, as we will see in Section 2.3.

Let pr, c, c1q be a fixed dimension vector. Then the space of stability parameters Θ “
pθ, θ1, θ8q P Q3 satisfying (2.15) can be identified with the pθ, θ1q´plane in Q2, after solving

for θ8. If the set of the representations X with numerical type pr, c, c1q which is strictly

Θ´semistable is nonempty, the parameter Θ is called critical of type pr, c, c1q. Otherwise,

if this set is empty, the parameter Θ is called generic. The following lemma establishes the

existence of generic stability parameters for any given dimension vector pr, c, c1q. Moreover,

this lemma is analogous to [4, Lemma 3.1] and a proof is written only for completeness.

Lemma 2.2.2. Fix a triple pr, c, c1q P pZą0q3. Suppose θ1 ą 0 and θ ` c1θ1 ă 0. Let

X “ pW, V, V 1, A, B, I, J, A1, B1, F, Gq be a representation of numerical type pr, c, c1q. Then

the following are equivalent:

piq X is Θ´stable;

piiq X is Θ´semistable;

piiiq X satisfies the following conditions:

pS.1q F P HompV 1, V q is injective;

pS.2q The ADHM data A “ pW, V, A, B, I, Jq is stable, i.e., there is no proper

subspace 0 Ă S Ĺ V preserved by A, B and containing the image of I.

Proof. If X is Θ´stable, then X is clearly Θ´semistable.

Suppose that X is Θ´semistable and F is not injective. Then

A1pkerpF qq Ă kerpF q
B1pkerpF qq Ă kerpF q
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In fact, let v P kerpF q. Then it follows from the enhanced ADHM equations that

0 “ pBF ´ FB1qloooooomoooooon
“0

v

“ B Fvloomoon
“0

´FB1v

ñ F pB1vq “ 0, for all v P kerpF q
ñ B1pvq P kerpF q, for all v P kerpF q
ñ B1pkerpF qq Ă kerpF q

Analogously the same can be proved for the endomorphism A1.

Then, rX “ p0, 0, kerpF q, 0, 0, 0, 0, A1|kerpF q, B1|kerpF q, F |kerpF q, 0q is a subrepre-

sentation of X with numerical type prr, rc, rc1q in which rr “ rc “ 0 and rc1 “ dimpkerpF qq.
However,

rcθ ` rc1θ1 “ θ1 ¨ dimpkerpF qq ą 0

and this contradicts the inequation (2.18).

Now suppose that X is Θ´semistable and the condition pS.2q is false. Then,

there is a proper subspace 0 Ă S Ĺ V such that

ApSq, BpSq, ImpIq Ď S.

Therefore, rX “ pW, S, V 1, A|S, B|S, I, J |S, 0, 0, 0, 0q is a subrepresentation with numerical

type pr, dimpSq, c1q. However, it follows from the equation (2.15) and from conditions

θ1 ą 0, θ ` c1θ1 ă 0 that dimpSqθ ` c1θ1 ` θ8rloomoon
“´cθ´c1θ1

ą 0. Indeed,

θ1 ą 0, θ ` c1θ1 ă 0 ñ θ ă 0,

moreover,

dimpSqθ ` c1θ1 ` θ8rloomoon
“´cθ´c1θ1

“ pdimpSq ´ cqloooooomoooooon
ă0

θ ą 0 (2.20)

and this contradicts the inequality (2.19). Thus, if X is Θ´semistable, then X satisfies

the conditions pS.1q and pS.2q.
Now suppose that X satisfies the conditions pS.1q and pS.2q, thus X is Θ´stable.

Indeed, let rX “ pĂW, rV , ĂV 1, rA, rB, rI, rJ, rA1, ĂB1, rF , rGq be a subrepresentation of X with nu-

merical type prr, rc, rc1q. There are two cases to study: rr “ r and rr “ 0.

First suppose rr “ r. Since ĂW is a subspace of W , by definition, and rr “ r, ĂW “ W .

It follows from condition pS.2q that I ‰ 0. Indeed, otherwise, 0 Ă V would satisfy
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Ap0q, Bp0q, Imp0q “ 0 and then A “ pW, V, A, B, I, Jq is not stable. Since rX is a subrep-

resentation of X, the diagram below commutes:

W V

W rV

I

1W

rI

ι

i.e.,

ι ˝ rI “ I ˝ 1W . (2.21)

Thus, if rc “ 0, I ” 0, which is a contradiction. Therefore rc ą 0.

If rc ă c, then 0 Ă rV Ĺ V is a proper subspace such that

AprV q, BprV q, ImpIq Ă rV .

Indeed, since rX is a subrepresentation of X, the following diagram commutes:

V V

rV rV

A

ι

rA

ι

thus,

ι ˝ rA “ A ˝ ι ñ A|rV Ă rV .

Analogously, B preserves rV . Moreover, it follows from (2.21) that ImpIq Ă rV , and this

contradicts the condition pS.2q. Therefore, rc “ c. Since rX is a proper subrepresentation,
rc1 ă c1 and then

θ rcloomoon
“c

`θ1rc1 ` θ8 rrloomoon
“r

“ θc ` θ1rc1 ` θ8r ´ pθc ` θ1c1 ` θ8rqlooooooooomooooooooon
“0

“ θ1prc1 ´ c1q ă 0

Now suppose rr “ 0. If rc “ 0, since F is injective, ĂV 1 Ă kerpF q “ 0. Thus ĂV 1 “ 0.

However, only nontrivial subrepresentations are being considered. Then rc ą 0. If rc ă c,

again 0 Ă rV Ĺ V contradicts the condition pS.2q and rc “ c. Since rX is a proper

subrepresentation, rc1 ă c. Thus

rcθ ` rc1θ1 ď θ ` c1θ1 ă 0

Therefore, X is Θ´stable.

The following corollary is trivial.

Corollary 2.2.3. Let X “ pA, B, I, J, A1, B1, F, Gq be a stable representation of the

enhanced ADHM quiver. Then G ” 0.
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Proof. Note that F is injective, see condition pS.1q, and FG “ 0, see enhanced ADHM

equations (2.13). Then G “ 0.

Due to the Lemma 2.2.2, from now on a representation X of the enhanced

ADHM quiver will be called stable if X satisfies pS.1q and pS.2q. Due to Corollary 2.2.3,

framed stable representations are quite simpler and easier to manipulate.

In this work almost always the representations of the enhanced ADHM quiver

considered are stable. Thus, sometimes it will be considered the following quiver as the

enhanced ADHM quiver

e1e2 e8

α

β

η

α1

β1

φ

ξ

with ideal generated by relations

αβ ´ βα ` ξη, αφ ´ φα1, βφ ´ φβ1, ηφ, α1β1 ´ β1α1.

Then a representation of the quiver above is given by X “ pA, B, I, J, A1, B1, F q such that

A, B P EndpV q, I P HompW, V q, J P HompV, W q, A1, B1 P EndpV 1q and F P HompV 1, V q,
see the diagram below,

VV 1 W

A

B

J

A1

B1

F

I

satisfying the equations

rA, Bs ` IJ “ 0, AF ´ FA1 “ 0, BF ´ FB1 “ 0, JF “ 0, rA1, B1s “ 0, (2.22)

which sometimes it will be also called enhanced ADHM equations in this work.

2.3 The Moduli Space

In this section the construction of the moduli spaces of framed Θ´semistable

representation of the enhanced ADHM quiver is presented. In order to do this, Geometric

Invariant Theory techniques are used by analogy of [12] and [4, Section 3.2]. This con-

struction is presented in details just for completeness.
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Let V , V 1, W be complex vector spaces such that dim V “ c, dim V 1 “ c1 and

dim W “ r. We define the space of enhanced ADHM data, denoted by X or Xpr, c, c1q, as

the following complex vector space

X “ EndpV q‘2 ‘ HompW, V q ‘ HompV, W q ‘ EndpV 1q‘2 ‘ HompV 1, V q ‘ HompV, V 1q.

A vector X P X, X “ pA, B, I, J, A1, B1, F, Gq, is called enhanced ADHM datum. Let

G “ GLpV q ˆ GLpV 1q.

Consider the map

Ψ : G ˆ X ÝÑ X

ph, h1, Xq ÞÝÑ phAh´1, hBh´1, hI, Jh´1, h1A1h1´1, h1B1h1´1, hFh1´1, h1Gh´1q
.

(2.23)

This map defines a G´action on X. Indeed, let ph1, h1
1
q, ph2, h1

2
q P G and

X “ pA, B, I, J, A1, B1, F, Gq P X. Denote

ph, h1q ¨ X :“ Ψph, h1, Xq.

Then

ph1, h1
1
q ¨ pph2, h1

2
q ¨ Xq “ ph1, h1

1
q ¨ ph2Ah´1

2
, h2Bh´1

2
, h2I, Jh´1

2
, h1

2
A1h1´1

2
, h1

2
B1h1´1

2
,

“ h2Fh1´1

2
, h1

2
Gh´1

2
q

“ ph1h2Ah´1

2
h´1

1
, h1h2Bh´1

2
h´1

1
, h1h2I, Jh´1

2
h´1

1
, h1

1
h1

2
A1h1´1

2
h1´1

1
,

h1´1

1
h1

2
B1h1´1

2
h1´1

1
, h1h2Fh1´1

2
h1´1

1
q

“ ph1h2Aph1h2q´1, h1h2Bph1h2q´1, h1h2I, Jph1h2q´1,

h1
1
h1

2
Aph1

1
h1

2
q´1, h1´1

1
h1

2
B1ph1

1
h1

2
q´1, h1h2F ph1

1
h1

2
q´1q

“ ph1h2, h1
1
h2, h1

2
q ¨ X.

Moreover, let 1V and 1V 1 be the identities of GLpV q and GLpV 1q, respectively. Then

p1V , 1V 1q ¨ X “ p1V A1´1

V , 1V B1´1

V , 1V I, J1´1

V , 1V 1A11V 1 , 1V 1B11V 1 , 1V F1V 1 , 1V 1G1V q
“ X,

i.e., the map (2.23) is a G´action on X.

Proposition 2.3.1. The G´action (2.23) is free on stable points of the enhanced ADHM

data X.

Proof. Suppose that there exists ph, h1q P G such that

ph, h1q ¨ X “ X, for all X P X.
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Then, the following equations are satisfied

hAh´1 “ A, hA “ Ah;

hBh´1 “ B, hB “ Bh; (2.24)

hI “ I, ph ´ 1V qI “ 0; (2.25)

hA1h´1 “ A1, hA1 “ A1h;

hB1h´1 “ B1, hB1 “ B1h;

hFh1´1 “ F (2.26)

Let S :“ kerph ´ 1V q. It follows from the equation (2.25) that ImpIq Ă S. We claim that

ApSq, BpSq Ă S. Indeed, let v P S. Then,

ph ´ 1V qv “ 0 ñ hv “ v. (2.27)

Therefore, it follows from the equations (2.24) e (2.27) that

ph ´ 1V qBv “ hBv ´ Bv

“ Bhv ´ Bv

“ Bv ´ Bv

“ 0.

Hence Bv P S for all v P S, i.e., BpSq Ă S. Analogously, one can prove that ApSq Ă S.

Thus,

ApSq, BpSq, ImpIq Ă S.

It follows from the stability condition of the ADHM datum pA, B, I, Jq that S “ V . Then,

h “ 1V . (2.28)

We claim that h1 “ 1V 1 . Indeed, it follows from the equations (2.26) and (2.28) that

F p1V 1 ´ h1´1q “ 0. Since F is injective, it follows that p1V 1 ´ h1´1q “ 0. Therefore, h1 “ 1V 1

and ph, h1q “ p1V , 1V 1q, which concludes the proof.

The stabilizer of a given point X P X is denoted by GX Ă G. It is easy to check

the following.

Lemma 2.3.2. Let X0 “ X0pr, c, c1q Ă Xpr, c, c1q be the subscheme defined by the equations

(2.13). Then X0 is preserved by the G-action (2.23).

Proof. If X “ pA, B, I, J, A1, B1, F, Gq P X0 and ph, h1q P G, then

ph, h1q ¨ X “ phAh´1, hBh´1, hI, Jh´1, h1A1h1´1, h1B1h1´1, hFh1´1, h1Gh´1q.
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Furthermore, it follows from the equations (2.13) that

rhAh´1, hBh´1s ` hIJh´1 “ hAh´1hBh´1 ´ hBh´1hAh´1 ` hIJh´1

“ hpAB ´ BA ` IJloooooooomoooooooon
“0

qh´1

“ 0, (2.29)

rh1A1h1´1, h1B1h1´1s “ h1A1h1´1h1B1h1´1 ´ h1B1h1´1h1A1h1´1

“ h1 pAB ´ BAqlooooomooooon
“0

h1´1

“ 0, (2.30)

hAh´1hFh1´1 ´ hFh1´1hA1h1´1 “ h pAF ´ FA1qloooooomoooooon
“0

h´1

“ 0, (2.31)

Jh´1hFh1´1 “ JFloomoon
“0

h1´1

“ 0, (2.32)

h1Gh´1hI “ h1 GIloomoon
“0

“ 0, (2.33)

hFh1´1h1Gh´1 “ h FBloomoon
“0

h´1

“ 0, (2.34)

h1Gh´1hAh´1 ´ h1A1h1´1h1Gh´1 “ h1 pGA ´ A1Gqloooooomoooooon
“0

h´1

“ 0. (2.35)

Analogously to (2.31) and (2.35), one can obtain

hBh´1hFh1´1 ´ hFh1´1hB1h1´1 “ h1Gh´1hBh´1 ´ h1B1h1´1h1Gh´1 “ 0.

Therefore, the G-action mentioned preserves the equations (2.13).

Remark 2.3.3. Each representation X “ pW, V, V 1, A, B, I, J, A1, B1, F, Gq corresponds

to a datum vector X P X0. Moreover, two framed representations are isomorphic if and
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only if the corresponding points in X0 are in the same orbit.

Indeed, let pX, ϕq and p rX, rϕq be framed representations such that X “
pW, V, V 1, A, B, I, J, A1, B1, F, Gq and rX “ pW, V, V 1, rA, rB, rI, rJ, rA1, ĂB1, rF , rGq. Suppose that

pX, ϕq and p rX, rϕq are isomorphic. Then, the corresponding points in X0 are in the same

G´orbit. In fact, there is an isomorphism pξ1, ξ2, ξ8q such that the equations (2.14) are

satisfied and rϕξ8 “ ϕ. However, one can choose a basis for W and for W 1 such that,

ξ8 “ 1W . Then, the equations (2.14) reduce to

ξ1A “ rAξ1, ξ1B “ rBξ1, ξ1I “ rI1W , 1W J “ rJξ1,

ξ2A
1 “ rA1ξ2, ξ2B “ ĂB1ξ2, ξ1F “ rFξ2, ξ2G “ rGξ2.

This means that X “ pξ1, ξ2q ¨ rX where pξ1, ξ2q P G. On the other hand, if they are in the

same G´orbit, there is ph, h1q P G such that X “ ph, h1q ¨ rX. In other words,

hAh´1 “ rA, hBh´1 “ rB, hI “ rI, Jh´1 “ rJ,

h1A1h1´1 “ rA1, h1B1h1´1 “ ĂB1, hFh1´1 “ rF , h1Gh´1 “ rG,

i.e.,
hA “ rAh, hB “ rBh, hI “ rI1W , 1W J “ rJh,

h1A1 “ rA1h1, h1B “ ĂB1h1, hF “ rFh1, h1G “ rGh

and ph, h1, 1W q : X ÝÑ rX is an isomorphism. Moreover, one can take a basis such that,

ϕ1W “ rϕ and pX, ϕq and p rX, rϕq are isomorphic.

Now a recall of a few results about Geometric Invariant Theory for representa-

tions of quivers. More details can be found in [12]. First, the notion of χ-(semi)stability

for a given character χ : G ÝÑ C˚ will be defined. Then it will be proved that the notion

of Θ-(semi)stability is equivalent to the notion of χ-(semi)stability for a specific character

that will be defined below.

Definition 2.3.4. Let G be a reductive algebraic group acting on a vector space X. Given

an algebraic character

χ : G ÝÑ C˚,

a point X0 P X is called:

(i) χ-semistable , if there exists a polynomial function ppXq on Xpr, c, c1q satisfying:

ppph, h1q ¨ X0q “ χph, h1qlppX0q, (2.36)

for some l P Zě1, such that ppX0q ‰ 0;

(ii) χ-stable, if there exists a polynomial function ppXq on Xpr, c, c1q satisfying (2.36) for

some l P Zě1, such that ppX0q ‰ 0 and such that

dimpG ¨ X0q “ dimpG{∆q,
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where ∆ Ă G is the subgroup which acts trivially on X, and the action of G on

tx P X : ppxq ‰ 0u is closed.

The next Lemma gives to us an equivalent definition of χ-(semi)stability.

Lemma 2.3.5. Let G act on the direct product X0pr, c, c1q ˆ C by

ph, h1q ˆ pX, zq ÞÝÑ pph, h1q ¨ X, χph, h1q´1zq.

A point X P X is

(i) χ-semistable if and only if the closure of the orbit G ¨ pX, zq is disjoint from the zero

section Xpr, c, c1q ˆ t0u, for all z ‰ 0;

(ii) χ-stable if and only if the orbit is closed in the complement of the zero section, and

the stabilizer GpX,zq is a finite index subgroup of ∆.

The proof of this Lemma can be found in [12, Lemma 2.2]. One can form the

quasi-projective scheme:

N ss
χ pr, c, c1q “ X0pr, c, c1q{{χG :“ Projp‘ně0ApX0pr, c, c1qqG,χnq, (2.37)

in which

ApX0pr, c, c1qqG,χn

:“ tf P ApX0pr, c, c1qq; fpph, h1q¨Xq “ χph, h1qnfpXq, for all ph, h1q P Gu.

Remark 2.3.6. It is well known that N ss
χ pr, c, c1q is projective over SpecpX0pr, c, c1qGq, and

it is quasi-projective over C. Geometric Invariant Theory says that N ss
χ pr, c, c1q is the space

of χ-semistable orbits; moreover it contains an open subscheme N s
θ pr, c, c1q Ď N ss

θ pr, c, c1q
consisting of χ-stable orbits.

The following proposition holds by analogy with [12, Proposition 3.1, Theorem

4.1] and the proof is analogous to [4, Proposition 3.1]. The proof is given in details just for

completeness.

Proposition 2.3.7. Suppose that Θ “ pθ, θ1q P Z2 and let χΘ : G ÝÑ C˚ be the character

χΘph, h1q “ detphq´θ detph1q´θ1

.

Let X “ pW, V, V 1, A, B, I, J, A1, B1, F, Gq be a representation of the enhanced ADHM

quiver and X the corresponding point in X0. Thus, X is Θ-(semi)stable if and only if X is

χΘ-(semi)stable.
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Proof. Suppose that X is χΘ-semistable. Let θ8 P Z such that it satisfies (2.15). Suppose

that there exists a nontrivial proper subrepresentation rX “ pĂW, rV , ĂV 1, rA, rB, rI, rJ, rA1, ĂB1, rF , rGq
of numerical type pr, c, c1q of the representation X such that rr “ dimpĂW q P t0, ru satisfies

rcθ ` rc1θ1 ` rrθ8 ą 0.

First take rr “ 0. Then ĂW “ t0u. Since rX is a subrepresentation of X, rV and ĂV 1 are

subspaces of V and V 1, respectively, and it follows that

F pĂV 1q Ď rV , GprV q Ď ĂV 1, AprV q, BprV q Ď rV , A1pĂV 1q, B1pĂV 1q Ď ĂV 1, JprV q “ 0.

Thus, there exist direct sum decompositions
#

V – rV ‘ pV
V 1 – ĂV 1 ‘ xV 1

(2.38)

such that the linear maps A, B, A1, B1, F , G have block decomposition of the form
«

˚ ˚
0 ˚

ff
(2.39)

while the linear maps I and J have block decomposition of the form

I “
«

˚
˚

ff
, J “

”
0 ˚

ı
.

Consider a one-parameter subgroup of G of the form

hptq “
«

t1rV 0

0 1pV

ff
, h1ptq “

«
t1rV 0

0 1xV 1

ff
. (2.40)

It follows that the linear maps

pAptq, Bptq, Iptq, Jptq, A1ptq, B1ptq, F ptq, Gptqq “ phptq, h1ptqq ¨ X

have block decomposition of the form
«

˚ t˚
0 ˚

ff
(2.41)

and

Iptq “
«

t˚
˚

ff
, Jptq “

”
0 ˚

ı
. (2.42)

However,

χΘphptq, h1ptqq ¨ z “

¨
˝det

«
t1rV 0

0 1pV

ff´θ

det

«
t1rV 0

0 1xV 1

ff´θ1
˛
‚

´1

¨ z

“ pt´θrc´θ1 rc1q´1 ¨ z

“ tθrc`θ1 rc1 ¨ z
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with θrc ` θ1rc1 ą 0. Therefore,

lim
tÑ0

phptq, h1ptq ¨ pX, zqq P X ˆ t0u,

which contradicts the χΘ-semistability condition.

Now suppose rr “ r. Thus, analogously to the case r “ 0, one can obtain

F pĂV 1q Ď rV , GprV q Ď ĂV 1, AprV q, BprV q Ď rV , A1pĂV 1q, B1pĂV 1q, IpĂW q Ď ĂV 1.

Therefore, there exist direct sum decompositions like in (2.38) such that the maps A, B,

A1, B1, F and G have block form decomposition of the form (2.39), while I, J have block

form decompositions of the form

I “
«

˚
0

ff
, J “

”
˚ ˚

ı
. (2.43)

Now consider a one-parameter subgroup of G of the form

hptq “
«

1rV 0

0 t´11pV

ff
, h1ptq “

«
t1rV 0

0 t´11xV 1

ff
. (2.44)

It follows that the linear maps

pAptq, Bptq, Iptq, Jptq, A1ptq, B1ptq, F ptq, Gptqq “ phptq, h1ptqq ¨ X

have block decomposition of the form (2.41) and

Iptq “
«

˚
0

ff
, Jptq “

”
˚ t˚

ı
. (2.45)

However,

χΘphptq, h1ptqq ¨ z “

¨
˝det

«
1rV 0

0 t´11pV

ff´θ

det

«
t1rV 0

0 t´11xV 1

ff´θ1
˛
‚

´1

¨ z

“ ptprc´cqθ`prc1´c1qθ1q ¨ z

in which pprc ´ cqθ ` prc1 ´ c1qθ1q ą 0. Indeed

prc ´ cqθ ` prc1 ´ c1qθ1 “ prcθ ` rc1θ1qloooomoooon
ą´rrθ8

´ pcθ ` c1θ1qloooomoooon
“´rθ8

ą ´ rrloomoon
“r

θ8 ` rθ8

“ 0

Therefore,

lim
tÑ0

phptq, h1ptq ¨ pX, zqq “ lim
tÑ0

tpprc´cqθ`prc1´c1qθ1q ¨ Z

“ 0 P X ˆ t0u,
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which contradicts the χΘ-semistability condition since the closure of the orbit intersects

Xpr, c, c1qˆt0u for some z ‰ 0. Then, in both cases, χΘ-semistability implies Θ-semistability.

Now suppose that X is χΘ-stable but it is not Θ-stable. In particular if X is

χΘ-stable, X is χΘ-semistable and thus Θ-semistable in consequence. Therefore, there

exists a proper subrepresentation rX of X with numerical type prr, rc, rc1q such that rr P t0, ru
and

rcθ ` rc1θ1 ` rrθ8 “ 0.

There are two cases to consider, rr “ 0 and rr “ r. In both cases, it will be

proved that X has a nontrivial stabilizer, which contradicts the χΘ-stability condition.

First, consider rr “ 0. As above, A, B, F , G, A1 and B1 have block decom-

position of the form (2.39) the direct sum decomposition of V and V 1 like (2.38). Con-

sider a one-parameter subgroup, phptq, h1ptqq, of G of the form (2.40). The linear maps

pAptq, Bptq, Iptq, Jptq, A1ptq, B1ptq, F ptq, Gptqq “ phptq, h1ptqq ¨ pX, zq have block form de-

composition of the form (2.41) and (2.42). Therefore, the limit of phptq, h1ptqq ¨ pX, zq as

t Ñ 0 has block decomposition of the form
«

˚ 0

0 ˚

ff
, for Aptq, Bptq, A1ptq, B1ptq, F ptq and Gptq, Iptq “

«
0

˚

ff
, Jptq “

”
0 ˚

ı

On the other hand, since G ¨ pX, zq is closed for z ‰ 0, the linear maps A, B, A1, B1, F , G

must have block decomposition of the form
«

˚ 0

0 ˚

ff

while I, J have block decomposition of the form

I “
«

0

˚

ff
, J “

”
0 ˚

ı
.

Thus, the subgroup phptq, h1ptqq stabilizes pX, zq which contradicts the χΘ-

stability condition.

Now consider rr “ r. One can repeat the step above obtaining the block

decomposition in (2.39) for the linear maps A, B, A1, B1, F , and G, while I and J have

the block decomposition in (2.43). Thus, let phptq, h1ptqq be a one-parameter subgroup of

G of the form (2.44). Then, the linear maps

pAptq, Bptq, Iptq, Jptq, A1ptq, B1ptq, F ptq, Gptqq “ phptq, h1ptqq ¨ X

are such that Aptq, Bptq, A1ptq, B1ptq, F ptq and Gptq have block decomposition of

the form (2.41) while Iptq and Jptq have block decomposition of the form (2.45). Therefore,

the limit of phptq, h1ptqq ¨ pX, zq as t Ñ 0 have block decomposition of the form
«

˚ 0

0 ˚

ff
, for Aptq, Bptq, A1ptq, B1ptq, F ptq and Gptq, Iptq “

«
˚
0

ff
, Jptq “

”
˚ 0

ı
.
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Again, this implies that pX, zq have a nontrivial stabilizer leading to a contradiction.

The other side of this proof is analogous.

Therefore, it follows from Lemma 2.2.2 and Proposition 2.3.7 that there exists

a chamber in Q2 given by θ1 ą 0 and θ ` c1θ1 ă 0 such that all the stability conditions

defined until now are the same. Thus, given a representation of the enhanced ADHM

quiver X with numerical type pr, c, c1q and Θ “ pθ, θ1, θ8q satisfying θ1 ą 0 and θ ` c1θ1 ă 0

from now on X will be called stable if it satisfies one of the conditions below:

piq X satisfies the conditions pS.1q and pS.2q of the Lemma 2.2.2;

piiq X is Θ-stable;

piiiq X is Θ-semistable;

pivq X is χΘ-stable;

pvq X is χΘ-semistable.

Then, in a suitable chamber, the moduli space of framed stable representations of numerical

type pr, c, c1q of the enhanced ADHM quiver denoted, N stpr, c, c1q “ N ss
χ pr, c, c1q is given

by the equation (2.37).

For further reference, let X “ pW, V, V 1, A, B, I, J, A1, B1, F q be a framed stable

representation of numerical type pr, c, c1q of the enhanced ADHM quiver. One can consider

the stable representation of the ADHM quiver X2 “ pW, V 2, A2, B2, I2, J2q of numerical

type pr, c ´ c1q, where V 2 :“ V {ImpF q and the maps A2, B2 P EndpV 2q, I P HompW, V 2q
and J P HompV 2, W q are inherited by the quotient V {ImpF q. Moreover, X2 is indeed

stable and satisfies the ADHM equation rA2, B2s ` I2J2 “ 0. See the proof below.

Consider a basis in V such that

F “
«

1V 1

0

ff
.

Let
π1 : V 1 ‘ V 2 ÝÑ V 1

pv1, v2q ÞÝÑ v1
,

π2 : V 1 ‘ V 2 ÝÑ V 2

pv1, v2q ÞÝÑ v2
.

Then V can be decomposed as V “ V 1 ‘ V {ImpF q “ V 1 ‘ V 2 and A2, B2, I2, J2 are

given by

A2 “ A|V 2 , B2 “ B|V 2 , I2 “ π2 ˝ I, J2 “ J |V 2 .
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Therefore,

rA2, B2s ` I2J2 “ rA|V 2 , B|V 2s ` pπ2 ˝ Iq ˝ pJ |V 2q
“ rA, Bs|V 2 ` pIJq|V 2

“ prA, Bs ` IJlooooomooooon
“0

q|V 2

“ 0 (2.46)

and X2 “ pW, V 2, A2, B2, I2, J2q is stable. Indeed, suppose that there exists 0 Ă S2 Ĺ V 2

a subspace of V 2 such that

A2pS2q, B2pS2q, I2pW q Ă S2.

Then 0 Ă V 1 ‘ S2 Ĺ V is a subspace such that

ApV 1 ‘ S2q, BpV 1 ‘ S2q, IpW q Ă V 1 ‘ S2.

In fact, fix pv1, s2q P V 1 ‘ S2. Thus

Apv1, s2q “ pA|V 1pv1q, A|V 2ps2qq
“ pA|V 1pv1qlooomooon

PV 1

, A2psqloomoon
PS2

q

P V 1 ‘ S2,

which means that Apv1, s2q P V 1 ‘ S2 for all pv1, s2q P V 1 ‘ S2, i.e., ApV 1 ‘ S2q Ă V 1 ‘ S2.

Analogously one can obtain that BpV 1 ‘ S2q Ă V 1 ‘ S2. Moreover,

IpW q “ IpW q X V 1 ‘ IpW q X V 2

“ π1 ˝ IpW q ‘ π2 ˝ IpW q
“ π1 ˝ IpW qloooomoooon

ĂV 1

‘ I2pW qloomoon
ĂS2

Ă V 1 ‘ S2 (2.47)

which contradicts the condition pS.2q of Lemma 2.2.2.

Therefore, if X “ pW, V, V 1, A, B, I, J, A1, B1, F q is a framed stable representa-

tion of the enhanced ADHM quiver with numerical type pr, c, c1q, X2 “ pW, X2, A2, B2, I2, J2q
is a stable representation of the ADHM quiver of numerical type pr, c ´ c1q.

The following Lemma is analogous to [4, Lemma 3.2]. Again the proof can be

found below only for completeness.

Lemma 2.3.8. Let Mpr, c ´ c1q be the moduli space of the stable representations of the

ADHM quiver of numerical type pr, c ´ c1q. There exists a surjective morphism

q : N stpr, c, c1q ÝÑ Mpr, c ´ c1q
rpW, V, V 1, A, B, I, J, A1, B1, F qs ÞÝÑ rpW, V 2, A2, B2, I2, J2qs
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where rpW, V, V 1, A, B, I, J, A1, B1, F qs and rpW, V 2, A2, B2, I2, J2qs denote the isomorphism

class of the framed stable representation pW, V, V 1, A, B, I, J, A1, B1, F q of the enhanced

ADHM quiver and the isomorphism class of the stable representation pW, V 2, A2, B2, I2, J2q
of the ADHM quiver constructed above, respectively.

Proof. The construction above shows the existence of the morphism q. It is enough to

prove that this morphism is surjective. So, fix an ADHM data pA2, B2, I2, J2q of numerical

type pr, c ´ c1q and the morphisms A1, B1 P EndpV 1q. Set V “ V 1 ‘ V 2 and

F “
«

1V 1

0

ff
.

Now let A, B P EndpV q, I P HompW, V q and J P HompV, W q be of the following form

A “
«

A1 rA
0 A2

ff
, B “

«
B1 rB
0 B2

ff
, I “

« rI
I2

ff
, J “

”
0 J2

ı
,

according to the decomposition V “ V 1 ‘ V 2. This means that

rA, rB P HompV 2, V 1q and rI P HompW, V 1q.

It is easy to check that

AF ´ FA1 “ BF ´ FB1 “ JF “ 0 (2.48)

and

rA, Bs ` IJ “ 0 ô
#

rA1, B1s “ 0

A1 rB ` rAB2 ´ B1 rA ´ rBA2 ` rIJ2 “ 0
. (2.49)

Indeed,

AF “
«

A1 rA
0 A2

ff
¨
«

1V 1

0

ff
“

«
A1

0

ff
“

«
1V 1

0

ff
¨ A1 “ FA1.

Analogously, BF “ FB1. Moreover,

JF “
”

0 J2
ı

¨
«

1V 1

0

ff
“ 0

and

rA, Bs ` IJ “
«

A1 rA
0 A2

ff
¨
«

B1 rB
0 B2

ff
´

«
B1 rB
0 B2

ff
¨
«

A1 rA
0 A2

ff
`

« rI
I2

ff
¨
”

0 J2
ı

“
«

A1B1 ´ B1A1 A1 rB ` rAB2 ´ B1 rA ´ rBA2 ` rIJ2

0 A2B2 ´ B2A2 ` I2J2

ff

“

»
—–

rA, Bs A1 rB ` rAB2 ´ B1 rA ´ rBA2 ` rIJ2

0 rA2, B2s ` I2J2loooooooomoooooooon
“0

fi
ffifl

.
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Thus the equations (2.48) and (2.49) are obtained. The map F above is injective. In order

to conclude the proof, the following has to be proved. The ADHM data pA, B, I, Jq is

stable if and only if it satisfies:

piq at least on of the maps rA, rB and rI is nontrivial;

piiq there is no proper subspace S 1 Ĺ V 1 such that

rApV 2q, rBpV 2q, rIpW q Ă S 1 and A1pSq, B1pSq Ă S 1. (2.50)

In fact, first suppose that pA, B, I, Jq is stable and rA “ rB “ rI “ 0. Then

A “
«

A1 0

0 A2

ff
, B “

«
B1 0

0 B2

ff
, I “

«
0

I2

ff
, J “

”
0 J2

ı
.

Fix p0, v2q P 0 ‘ V 2. Thus,

Ap0, v2q “
«

A1 0

0 A2

ff «
0

v2

ff
“

”
0 A2pv2q

ı
P 0 ‘ V 2

for all p0, v2q P 0 ‘ V 2, which means Ap0 ‘ V 2q Ă 0 ‘ V 2. Analogously Bp0 ‘ V 2q Ă 0 ‘ V 2.

Moreover, fixing w P W

IpW q “
«

0

I2

ff
rws “

«
0

I2pwq

ff
P 0 ‘ V 2

for all w P W . Therefore

Ap0 ‘ V 2q, Bp0 ‘ V 2q, IpW q Ă 0 ‘ V 2,

which is a contradiction.

Now suppose that there exists a proper subspace S 1 Ĺ V 1 such that the

conditions (2.50) are satisfied. Thus, S “ S 1 ‘ V 2 Ĺ V is a subspace such that ApSq, BpSq,
IpW q Ă S. Indeed, let ps1, v2q P S 1 ‘ V 2. Then

Aps1, v2q “
«

A1 rA
0 A2

ff «
s1

v2

ff
“

”
A1ps1q ` rApv2q A2pv2q

ı
P S 1 ‘ V 2

for all ps1, v2q P S 1 ‘ V 2, i.e., ApS 1 ‘ V 2q Ă S 1 ‘ V 2. Analogously, BpS 1 ‘ V 2q Ă S 1 ‘ V 2.

Moreover, fixing w P W

IpW q “
« rI

I2

ff
rws “

« rIpwq
I2pwq

ff
P S 1 ‘ V 2

for all w P W . Therefore

ApS 1 ‘ V 2q, BpS 1 ‘ V 2q, IpW q Ă S 1 ‘ V 2,
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which contradicts the stability condition. Therefore, if pA, B, I, Jq is stable, it satisfies the

conditions piq and piiq above.

Now suppose that pA, B, I, Jq satisfies the conditions piq and piiq. One can

check that pA, B, I, Jq is a stable data. Indeed, let S “ S 1 ‘ S2 Ă V such that ApSq, BpSq,
IpW q Ă S and ps1, s2q P S. Thus,

Aps1, s2q “
«

A1 rA
0 A2

ff «
s1

s2

ff
“

”
A1ps1q ` rAps2q A2ps2q

ı
P S 1 ‘ S2

for all ps1, s2q P S 1 ‘ S2, which means that A1pS 1q ` rApS2q Ă S 1 and A2pS2q Ă S2.

Analogously, B1pS 1q ` B2pS2q Ă S 1 and B2pS2q Ă S2. Moreover, given w P W

Ipwq “
« rI

I2

ff
rws “

« rIpwq
I2pwq

ff
P S 1 ‘ S2

However, since the ADHM data pA2, B2, I2, J2q is stable, S2 “ V 2. Thus, S 1 is a subspace

which satisfies the conditions in (2.50). It follows from piiq that S 1 “ 0 or S 1 “ V 1. If

S 1 “ 0, rApV 2q, rBpV 2q, rIpW q Ă t0u and rA “ rB “ rI “ 0, which contradicts the condition

piq. Therefore, S 1 “ V 1 and S “ V , i.e., the ADHM data pA, B, I, Jq is in fact stable if

and only if pA, B, I, Jq satisfies the conditions piq and piiq above.

In order to finish the proof, it is enough to show that there exists a nontrivial

solution for the equation (2.49) which satisfies the conditions piq and piiq. First choose a

basis tv1, . . . , vc1u for V 1 and let A1 and B1 be two diagonal matrix,

A1 “ diagpα1, . . . , αc1q, B1 “ diagpβ1, . . . , βc1q,

such that #
αi ‰ αj, fori ‰ j

βi ‰ βj, for i ‰ j
.

Let rI : W ÝÑ V 1 be a linear map of rank is 1 and ImprIq is generated by the vector

v “
c1ÿ

i“1

vi.

Therefore, tv, B1v, . . . , B1c1´1vu is a basis for V 1, otherwise, there would exist a nontrivial

linear relation of the form
c1´1ÿ

i“0

xiB
1iv “ 0.

Thus, for B1 “ diagpβ1, . . . , βc1q, x1
is are a solution for the linear system

c1ÿ

i“1

βi
jxi “ 0, for j P t1, . . . , c1u,
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where B10 “ 1V 1 . However, the discriminant of the linear system is the Vandermond

determinant

∆pβ1, . . . , βc1q “
c1ź

iăj

pβj ´ βiq ‰ 0,

since βi ‰ βj for all i ‰ j. Thus, xi “ 0, for all i P t1, . . . , c1u, leading to a contradiction.

In conclusion, tv, B1v, . . . , B1c´1vu is a basis for V 1. In particular, there is no subspace

0 Ă S 1 Ă V 1 preserved by B1 and contained in the image of rI. Analogously, there is no

subspace 0 Ă S 1 Ă V 1 preserved by A1 and contained in the image of rI as well.

Fixing A1, B1 and rI as above, the equation (2.49) is a linear system with c1pc´c1q
equations in the 2c1pc ´ c1q variables rA, rB. Such system a has a c1pc ´ c1q-dimensional space

of solutions. Any nontrivial solution determines a stable ADHM datum pA, B, I, Jq.

2.4 Deformation complex

Consider the following complex

CpXq :
EndpV q

‘
EndpV 1q

d0
//

EndpV q‘2

‘
HompW, V q

‘
HompV, W q

‘
EndpV 1q‘2

‘
HompV 1, V q

d1
//

EndpV q
‘

HompV 1, V q‘2

‘
HompV 1, W q

‘
EndpV 1q

d2
//
HompV 1, V q (2.51)

with

d0ph, h1q “ prh, As, rh, Bs, hI, ´Jh, rh1, A1s, rh1, B1s, hF ´ Fh1q
d1pa, b, i, j, a1, b1, fq “ pra, Bs ` rA, bs ` Ij ` iJ, Af ` aF ´ Fa1 ´ fA1,

Bf ` bF ´ Fb1 ´ fB1, jF ` Jf, ra1, B1s ` rA1, b1sq
d2pc1, c2, c3, c4, c5q “ c1F ` Bc2 ´ c2B

1 ` c3A
1 ´ Ac3 ´ Ic4 ´ Fc5.

The differentials of the complex CpRq were obtained as follows, d0 is the linearization

of the free action (2.23) and d1 is the linearization of the equations in (2.2). Moreover,

Impd1q Ă kerpd2q, i.e.,

d2pd1pa, b, i, j, a1, b1, fqq “ 0, for all pa, b, i, j, a1, b1, fq P CpRq1
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Indeed,

d2pd1pa, b, i, j, a1, b1, fqq “ d2pra, Bs ` rA, bs ` Ij ` iJ, Af ` aF ´ Fa1 ´ fA1,

Bf ` bF ´ Fb1 ´ fB1, jF ` Jf, ra1, B1s ` rA1, b1sq
“ ra, BsF ` rA, bsF ` IjF ` i JFloomoon

“0

`BAf ` BaF ´

´ BFloomoon
“F B1

a1 ´ BfA1 ´ AfB1 ´ a FB1loomoon
“BF

`Fa1B1`

`fA1B1 ` BfA1 ` b FA1loomoon
“AF

´Fb1A1 ´ fB1A1 ´ ABf ´ AbF `

` AFloomoon
F A1

b1 ` AfB1 ´ IjF ´ IJf ´ F pra1, B1s ` rA1, b1sq

“ pra, Bs ` Ba ´ aBlooooooooomooooooooon
“0

` rA, bs ` bA ´ Ablooooooooomooooooooon
“0

` BA ´ AB ´ IJloooooooomoooooooon
“´prA,Bs`IJq“0

qF

F p´B1a1 ` a1B1 ´ ra1, B1slooooooooooooomooooooooooooon
“0

´b1A1 ` A1b1 ´ rA1, b1sloooooooooooomoooooooooooon
“0

q ` f rA1, B1sloomoon
“0

“ 0.

Therefore, d1 is not a surjective map.

Theorem 2.4.1. Let X “ pV, V 1, A, B, I, J, A1, B1, F q be a enhanced ADHM datum. Let

dimpW q “ r, dimpV q “ c and dimpV 1q “ c1. Then

H0pCpXqq “ H3pCpXqq “ 0,

where CpXq is the complex (2.51).

Proof. The complex CpXqr1si :“ CpXqi`1 with pdiqCpXqr1s :“ p´1qdi`1 it is given by:

CpXqr1s :

EndpV q‘2

‘
HompW, V q

‘
HompV, W q

‘
EndpV 1q‘2

‘
HompV 1, V q

d0
//

EndpV q
‘

HompV 1, V q‘2

‘
HompV, W q

‘
EndpV 1q

d1
//
HompV 1, V q

with

d0pa, b, i, j, a1, b1, fq “ ´pra, Bs ` rA, bs ` Ij ` iJ, Af ` aF ´ Fa1 ´ fA1,

Bf ` bF ´ Fb1 ´ fB1, jF ` Jf, ra1, B1s ` rA1, b1sq
d1pc1, c2, c3, c4, c5q “ ´c1F ´ Bc2 ` c2B

1 ´ c3A
1 ` Ac3 ` Ic4 ` Fc5.

Consider the following complexes:

CpAq : EndpV q d0
//

EndpV q‘2

‘
HompW, V q

‘
HompV, W q

d1
// EndpV q
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where
d0paq “ prh, As, rh, Bs, hI, ´Jhq

d1pa, b, i, jq “ ra, Bs ` rA, bs ` Ij ` iJ ;

CpBq : EndpV 1q d0
// EndpV 1q (2.52)

where

d0ph1q “ rh1, Bs;

and

CpA, Bq :
HompV 1, V q

‘
EndpV 1q

d0
//

HompV 1, V q‘2

‘
HompV 1, W q

‘
EndpV 1q

d1
// HompV 1, V q

where
d0pf, a1q “ p´Af ` fA1 ´ Fa1, ´Bf ` fB1, ´Jf, ra1, B1sq
d1pc2, c3, c4, c5q “ ´Bc2 ` c2B

1 ´ c3A
1 ` Ac3 ` Ic4 ` Fc5.

Define the map

ρ : CpAq ‘ CpBq ÝÑ CpA, Bq

by
ρ0ph, h1q “ phF ´ Fh1, rh1, A1sq
ρ1pa, b, i, j, b1q “ paF, bF ´ Fb1, jF, rA1, b1sq
ρ2pc1q “ c1F

We claim that the map ρ is a morphim. Indeed, the following diagram comutes

EndpV q
‘

EndpV 1q
d0

//

ρ0

��

EndpV q‘2

‘
HompW, V q

‘
HompV, W q

‘
EndpV 1q

d1
//

ρ1

��

EndpV q

ρ2

��
HompV 1, V q

‘
EndpV q

d0
//

HompV 1, V q‘2

‘
HompV 1, W q

‘
EndpV 1q

d1
//HompV 1, V q

Indeed,
ρ2pd1pa, b, i, j, b1qq “ ρ2pra, Bs ` rA, bs ` Ij ` iJ, 0q

“ pra, BsF ` rA, bsB ` IjB ` i JFloomoon
“0

, 0q

“ pra, BsF ` rA, bsB ` IjB, 0q,
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d1pρ1pa, b, i, j, b1qq “ d1ppaF, bF ´ Fb1, jF, rA1, b1sqq
“ ´BaF ` a FB1loomoon

“BF

´b FA1loomoon
“AF

`Fb1A1 ` AbF ´ AFloomoon
“F A1

b1

`IjF ` F rA1, b1s
“ paB ´ BaqF ` pAb ´ bAqF ` IjF ` F pb1A1 ´ A1b1q ` F rA1, b1slooooooooooooooomooooooooooooooon

“0

“ ra, BsF ` rA, bsB ` IjB,

d0pρ0ph, h1qq “ d0phF ´ Fh1, rh1, A1sq
“ p´AphF ´ Fh1q ` phF ´ Fh1qA1 ` F rh1, As,

´BphF ´ Fh1q ` phF ´ Fh1qB1, JphF ´ Fh1q, rrh1, A1s, B1sq
“ p´AhF ` AFloomoon

“F A1

h1 ` h FA1loomoon
“AF

´Fh1A1 ` F rh1, A1s, ´BhF ` BFloomoon
“F B1

h1`

h FB1loomoon
“BF

´Fh1B1, ´JhF ` JFloomoon
“0

h1, rrA1, B1sloomoon
“0

, h1s ` rA1, rh1, Bssq

“ prh, AsF ` F rA1, b1s ` F rh1, A1slooooooooooomooooooooooon
“0

, rh, BsF ´ F rh, B1s, ´JhF, rA1, rh1, B1ssq

“ prh, AsF, rh, BsF ´ F rh, B1s, ´JhF, rA, rh, B1ssq
and

ρ1pd0pa, b1qq “ ρ1pra, As, ra, Bs, aI, ´Ja, rb1, B1sq
“ pra, AsF, ra, BsF ´ F rb, B1s, ´JaF, rA, rb, B1ssq.

We assert that the cone of the map ρ is equivalent to CpXqr1s. In fact, denote

the cone by pC, dCq, it follows that
#

Ci “ CpA, Bqi ‘ pCpAqi`1 ‘ CpBqi`1q
pdiqC “ ppdiqCpA,Bqi ´ ρi`1, ´pdi`1qpCpAqi`1‘CpBqi`1qq

.

Therefore,

C0 “ HompV 1, V q ‘ EndpV 1q ‘ EndpV q‘2 ‘ HompW, V q ‘ HompV, W q ‘ EndpV 1q
C1 “ HompV 1, V q‘2 ‘ HompV, W q ‘ EndpV 1q ‘ EndpV q
C2 “ HompV 1, V q

pd0qCpf, a1, a, b, i, j, b1q “ pd0pf, a1q ´ ρ1pa, b, i, j, b1q, ´d1pa, b, i, j, b1qq
“ pp´Af ` fA1 ` Fa1, ´Bf ` fB1, ´Jf, ´ra1, B1sq´
“ paF, bF ´ Fb1, jF, rA1, b1sq, ´ra, Bs ´ rA, bs ´ Ij ´ iJq
“ p´Af ` fA1 ` Fa1 ´ aF, ´Bf ` fB1 ´ bF ` Fb1,

´Jf ´ jF, ´rA1, b1s ´ ra, B1s, ´ra, Bs ´ rA, bs ´ Ij ´ iJq

pd1qCpc2, c3, c4, c5q “ pd1pc2, c3, c4, c5q ´ ρ1pc1q, ´d2pc1qq
“ p´c1F ´ Bc2 ` c2B

1 ´ c3A
1 ` Ac3 ` Ic4 ` Fc5, 0q.
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Hence the cone of the map ρ is equivalent to CpXr1sq. So, one can obtain the following

exact triangle

CpXq // CpAq ‘ CpBq ρ
// CpA, Bq (2.53)

We obtain from Proposition 1.2.2 that

H0pCpAqq “ H2pCpAqq “ 0. (2.54)

Let us prove that H2pCpA, Bqq “ 0. In fact, the dual of the differential

d1 : CpA, Bq1 ÝÑ CpA, Bq2

is given by

d_
1

: HompV, V 1q ÝÑ HompV, V 1q‘2 ‘ HompW, V 1q ‘ EndpV 1q
ϕ ÞÝÑ pB1ϕ ´ ϕB, ϕA ´ A1ϕ, ϕI, ϕF q

.

Suppose that d_
1

pϕq “ 0. Thus,

B1ϕ ´ ϕB “ A1ϕ ´ ϕA “ ϕI “ 0.

Therefore,

ImpIq, Apkerpϕqq, Bpkerpϕqq Ď kerpϕq.

The fact that ImpIq Ď kerpϕq is trivial. If v P Bpkerpϕqq, then there exists w P kerpϕq
such that v “ Bw. Then

ϕpvq “ ϕpBpwqq “ B1pϕpwqq “ B1p0q “ 0.

Therefore v P kerpϕq. Hence, Bpkerpϕqq Ď kerpϕq. One can prove that Apkerpϕqq Ď kerpϕq
analogously. It follows from the stability of x that kerpϕq “ 0 or kerpϕq “ V 1. If kerpϕq “ 0,

then I ” 0. This lead us to a contradiction. Therefore, ϕ “ 0, i.e., d_
1

it is injective and

hence d1 it is surjective. So,

H2pCpA, Bqq “ cokerpd1q
“ HompV 1, V q{Impd1q
“ 0

Let us prove that H0pρq is injective. Since H0pCpAqq “ 0,

H0pCpAq ‘ CpBqq “ 0 ‘ H0pCpBqq.

Therefore,
H0pρq : 0 ‘ H0pCpBqq ÝÑ H0pCpA, Bqq

p0, h1q ÞÝÑ p´Fh1, rh1, Asq
where x P H0pCq denotes the equivalence class of x P C, with C P tCpAq, CpBq, CpA, Bqu.

Suppose that H0pρqp0, h1q “ 0. Then, ´Fh1 “ 0. Since F it is injective, it is true that
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h1 “ 0. Hence H0ρ it is injective.

It follows from equation (2.54) that the exact sequence of cohomologies of (2.53)

is given by

0 // H0pCpRqq δ
// H0pCpBqq H0pρq

// H0pCpA, Bqq // . . .

. . . // H
2pCpBqqloooomoooon

“0

// H
2pCpA, Bqqloooooomoooooon

“0

γ
// H3pCpRqq // 0.

(2.55)

Thus, the map δ is injective.This proves the Theorem.

Remark 2.4.2. Since H0pρq it is injective,

Impδq “ kerpH0pρqq “ 0.

Hence H0pCpRqq “ 0. It follows from the sequence (2.55) that the map γ is surjective.

Since H2pCpA, Bqq “ 0, H3pCpRqq “ 0. Moreover,

0 // H0pCpBqq H0ρ
// H1pCpRqq // . . .

. . . //H1pCpAq ‘ CpBqq H1ρ
//H1pCpA, Bqq //H2pCpRqq // 0

it is the exact sequence of cohomologies (2.53).

Now, we are going to consider the particular case c1 “ dimpV 1q “ 1. Since

rA1, B1s “ 0, for all A1, B1 P EndpV 1q,

we can omit this equation from the set of enhanced ADHM equation, obtaining the

following enhanced ADHM equations

rA, Bs ` IJ “ 0, AF ´ FA1 “ 0, BF ´ FB1 “ 0, JF “ 0.

Consider CpXq the complex below

CpXq :
EndpV q

‘
EndpV 1q

d0
//

EndpV q‘2

‘
HompW, V q

‘
HompV, W q

‘
EndpV 1q‘2

‘
HompV 1, V q

d1
//

EndpV q
‘

HompV 1, V q‘2

‘
HompV 1, W q

d2
//
HompV 1, V q
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in which

d0ph, h1q “ prh, As, rh, Bs, hI, ´Jh, rh1, A1s, rh1, B1s, aF ´ Fa1q
d1pa, b, i, j, a1, b1, fq “ pra, Bs ` rA, bs ` Ij ` iJ, Af ` aF ´ Fa1 ´ fA1,

Bf ` bF ´ Fb1 ´ fB1, jF ` Jfq
d2pc1, c2, c3, c4q “ c1F ` Bc2 ´ c2B

1 ` c3A
1 ´ Ac3 ´ Ic4.

Moreover d0 is the linearization of the action (2.23), d1 is the linearization of the equations

(2.4) and d2 is a map such that impd1q Ă kerpd2q, in particular d1 it is not a surjective

map. In fact,

d2pd1pa, b, i, j, a1, b1, fqq “ d2pra, Bs ` rA, bs ` Ij ` iJ, Af ` aF ´ Fa1 ´ fA1,

Bf ` bF ´ Fb1 ´ fB1, jF ` Jfq
“ ra, BsF ` rA, bsF ` IjF ` i JFloomoon

“0

`BAf ` BaF ´

´ BFloomoon
“F B1

a1 ´ BfA1 ´ AfB1 ´ a FB1loomoon
“BF

`Fa1B1 ` fA1B1`

`BfA1 ` b FA1loomoon
“AF

´Fb1A1 ´ fB1A1 ´ ABf ´ AbF `

` AFloomoon
F A1

b1 ` AfB1 ´ IjF ´ IJf

“ pra, Bs ` Ba ´ aBlooooooooomooooooooon
“0

` rA, bs ` bA ´ Ablooooooooomooooooooon
“0

` BA ´ AB ´ IJloooooooomoooooooon
“´prA,Bs`IJq“0

qF

F pa1B1 ´ B1a1 ` A1b1 ´ b1A1q ` f rA1, B1sloomoon
“0

“ F pra1, B1s ` rA1, b1sq
“ 0

Theorem 2.4.3. Let R “ pA, B, I, J, A1, B1, F q be a stable enhanced ADHM datum which

satisfies the enhanced ADHM equations. Let dimpW q “ r, dimpV q “ c and dimpV 1q “ 1.

Then the moduli space of stable solutions of the enhanced ADHM equations, N stpr, c, 1q,
is non-singular, quasi-projective and its dimension is 2rc ´ r ` 1.

Proof. Let CpAq and CpBq be the complex (2.4) and (2.52), respectively. Let CpA, Bq be

the complex given by

CpA, Bq :
HompV 1, V q

‘
EndpV 1q

d0
//

HompV 1, V q‘2

‘
HompV 1, W q

‘
0

d1
// HompV 1, V q

with
d0pf, a1q “ p´Af ` fA1 ´ Fa1, ´Bf ` fB1, ´Jf, 0q
d1pc2, c3, c4q “ ´Bc2 ` c2B

1 ´ c3A
1 ` Ac3 ` Ic4.

Define a map

ρ : CpAq ‘ CpBq ÝÑ CpA, Bq
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given by
ρ0pa, a1q “ paF ´ Fa1, ra1, A1sq
ρ1pa, b, i, j, b1q “ paF, bF ´ Fb1, jF, 0q
ρ2pc1q “ c1F

.

We assert that ρ is a morphism and that the sequence

CpRq // CpAq ‘ CpBq ρ
// CpA, Bq (2.56)

is exact. Indeed, the following diagram commutes

EndpV q
‘

EndpV 1q

d0
//

ρ0

��

EndpV q‘2

‘
HompW, V q

‘
HompV, W q

‘
EndpV 1q

d1
//

ρ1

��

EndpV q

ρ2

��HompV 1, V q
‘

EndpV 1q

d0
//

HompV 1, V q‘2

‘
HompV 1, W q

‘
0

d1
//
HompV 1, V q

.

Indeed,

ρ1pd0pa, a1qq “ ρ1pra, As, ra, Bs, aI, ´Ja, 0q
“ pra, AsF, ra, BsF, ´JaF, 0q
“ paAF ´ AaF ` FA1a1 ´ Fa1A1 ` F0looooooooooomooooooooooon

“0

,

aBF ´ BaF ` FB1a1 ´ Fa1B1loooooooomoooooooon
“0

, ´JaF ` JFloomoon
“0

a1, 0q

“ p´ApaF ´ Fa1q ` paF ´ Fa1qA1 ` F0,

´BpaF ´ Fa1q ` paF ´ Fa1qB1, ´JpaF ´ Fa1q, 0q
“ d0paF ´ Fa1, 0q
“ d0pρ0pa, a1qq,

ρ2pd1pa, b, i, j, b1qq “ ρ2pra, Bs ` rA, bs ` Ij ` iJq
“ ra, BsF ` rA, bsF ` IjF ` i JFloomoon

“0

“ aBF ´ BaF ´ bAF ` AbF ´ Fb1A1 ` FA1b1 ` IjF

“ aFB1 ´ BaF ´ pbF ´ Fb1qA1 ` ApbF ´ Fb1q ` IjF

“ d1paF, bF ´ Fb1, jF, 0q
“ d1pρ1pa, b, i, j, b1qq.
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Analogously to Theorem 2.4.1, one can prove that CpRqr1s “ Cpρq, where Cpρq denotes

the cone of ρ. Indeed,

Cpρq :

EndpV q‘2

‘
HompW, V q

‘
HompV, W q

‘
EndpV 1q‘2

‘
HompV 1, V q

d0
//

EndpV q
‘

HompV, V 1q‘2

‘
HompV, W q

‘
0

d1
//
HompV, V 1q

with

d0pa, b, i, j, a1, b1, fq “ p´ra, Bs ´ rA, bs ´ Ij ´ iJ,

p´Af ` fA1 ` Fa1, ´Bf ` fB1, ´Jf, 0q ´ paF, bF ´ Fb1, jF, 0qq
“ ´d1pa, b, i, j, a1, b1, fq

d1pc1, c2, c3, c4, 0q “ ´c1F ´ Bc2 ` c2B
1 ´ c3A

1 ` Ac3 ` Ic4

“ ´d2pc1, c2, c3, c4, 0q.

Hence, the sequence (2.56) is exact. Analogously to Theorem 2.4.1, one can prove that

H2pCpA, Bqq “ H3pCpRqq “ 0,

therefore

0 // H0pCpBqq H0ρ
// H1pCpRqq // . . .

. . . //H1pCpAq ‘ CpBqq H1ρ
//H1pCpA, Bqq //H2pCpRqq // 0

is the exact sequence of cohomologies (2.56).

To complete the proof, it remains to show that the obstruction H2pCpRqq “ 0.

Since the sequence above it is exact, is enough to show that H1pρq is a surjective map. To

prove this, we are going to show that the map

Z1pρq : Z1pCpAqq ‘ Z1pCpBqq ÝÑ Z1pCpA, Bqq, (2.57)

in which Z1pCpAqq :“ kerpd1q, with d1 : CpAq1 ÝÑ CpAq2 and Z1pρq is the induced map is

surjective. It is true that Z1pCpBqq “ 0. In order to prove that Z1pρq is surjective, we are

going to prove that:
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1. the diagram

0 // Z1pCpAqq ‘ Z1pCpBqq

Z1pρq

��

i
// CpAq1 ‘ CpBq1 d1

//

ρ1

��

“EndpV qhkkikkj
CpAq2

//

ρ2

��

0

0 // Z1pCpA, Bqq i
// CpA, Bq1 d1

// CpA, Bq2looomooon
“HompV 1,V q

// 0

commutes;

2. the maps ρ1 and ρ2 are surjective;

3. for all p P Z1pCpA, Bqq, ρ´1

1
ppq X pZ1pCpAqq ‘ Z1pCpBqqq ‰ 0 in CpAq1 ‘ CpBq1.

Proof of item 1: The map Z1pρq it is well-defined. Indeed, let pa, b, i, j, b1q P kerppd1qCpAq‘CpBqq.
Thus,

Ij “ ´ra, Bs ´ rA, bs ´ iJ.

Therefore,

d1pρ1qpa, b, i, j, b1q “ d1paF, bF ´ Fb1, jF, 0q
“ ´BaF ` a FB1loomoon

“BF

´b FA1loomoon
“AF

`Fb1A1 ` AbF ´ AFloomoon
“F A1

b1 ` IjF

“ ra, BsF ` rA, bsF ` i JFloomoon
“0

`IjF ´ F rA1, b1sloomoon
“0

“ pra, Bs ` rA, bs ` iJqF ` IjF

“ IjF ´ IjF

“ 0.

Hence, the map Z1pρq it is well-defined. Since ρ is a morphism, it follows that d1˝ρ1 “ ρ2˝d1.

Moreover, i ˝ Z1pρq “ i ˝ ρ1. Proof of item 2: Let p “ pc2, c3, c4, 0q P CpA, Bq1. Let

E : V ÝÑ V 1, such that EF “ IdV 1 . Since F is injective, there exists a surjective map E.

Thus,
ρ1pc2E, c3E, i, c4E, 0q “ pc2EF, c3EF ´ F0, c4EF, 0q

“ pc2, c3, c4, 0q
.

Then, ρ1 is surjective. In order to show that ρ2 is surjective, consider c1 P HompV 1, V q.
Therefore

ρ2pc1Eq “ pc1EF q
“ c1

.

Hence ρ2 is surjective.

Proof of item 3: Since ρ1 is surjective, ρ´1

1
ppq is a fiber over the linear space kerpρ1q for all
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p P CpA, Bq1. Since Z1pCpAqq ‘ Z1pCpBqq it is a proper subspace CpAq1 ‘ CpBq1, it remains

to show that

∆ “ dimpkerpρ1qq ` dimpZ1pCpAqq ‘ Z1pCpBqqq ´ dimpCpAq1 ‘ CpBq1q ě 0.

Indeed,

∆ “ dimpkerpρ1qq ´ dimppCpAq1 ‘ CpBq1qzpZ1pCpAqq ‘ Z1pCpBqqq

and ∆ ě 0 means that kerpρ1q X pZ1pCpAqq ‘ Z1pCpBqq ‰ 0 and this conclude the proof,

since the diagram above commutes. So, let us prove that ∆ ě 0

∆ “ dimpCpAq1 ‘ CpBq1q ´ dimpImpρ1qq ` dimpCpAq1 ‘ CpBq1q´
dimpImpd1qq ´ dimpCpAq1 ‘ CpBq1q

“ dimpCpAq1 ‘ CpBq1q ´ dimpImpρ1qq ´ dimpImpd1qq
“ 2c2 ` 2rc ` 1 ´ 2c ´ r ´ 1 ´ c2

“ c2 ` 2cpr ´ 1q ´ r

ě 0

At last, the dimension of the moduli space is equal to the dimension of H1pCpRqq which is

dimph1pCpRqqq “ ´ dimpCpRqq0 ` dimpCpRqq1 ´ dimpCpRqq2 ` dimpCpRqq3

“ ´pc2 ` c12q ` p2c2 ` 2c12 ` 2rc ` cc1q ´ pc2 ` 2c1c ` c1rq ` cc1

“ 2rc ` c12 ´ c1r

“ 2rc ´ r ` 1.
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3 Geometric Structures

In this chapter we will prove that the moduli space of framed stable represen-

tations of the enhanced ADHM quiver can be embedded into a hyperkähler manifold of

complex dimension 2prc ` cc1q. Then, one can define a complex structure on N and a

closed degenerate 2-form such that it has a structure that it will be defined as holomorphic

pre-symplectic variety. It is still unknown in which points this form is degenerated or

non-degenerated. However, this study was done for the particular case N stp1, 2, 1q.
In the first section, one can find the proof of the fact that N stpr, c, c1q is a

subvariety in a hyperkähler manifold os complex dimension 2prc ` cc1q. In the second

section, one can find a study of the holomorphic structures on N stpr, c, 1q and of the

holomorphic pre-symplectic 2-form Ω for the particular case N stp1, 2, 1q.

3.1 Enhanced ADHM quiver varieties as a submanifold of a hyper-

kähler manifold

Let pM, ωq be a symplectic variety, G a Lie group and Ψ : G ÝÑ SymplpM, ωq
a symplectic action. The symplectic action Ψ is called hamiltonian if there exists a map

µ : M ÝÑ g
˚

which satisfies

piq dµξ “ iXξω, for all ξ P g;

piiq Ad˚
g ˝ µ “ µ ˝ Ψg, for all g P G,

where µξ P C8pMq, µξppq :“ µppqpξq. A map µ as above is called a moment map. The

next Lemma is useful and gives us a tool to find moment maps.

Lemma 3.1.1. Let pM, ωq be a symplectic variety and G be a Lie group. Suppose that

there is a symplectic G-action on pM, ωq. If the 2-form ω is exact, i.e. if ω “ dθ, and this

action preserves the 1-form θ, i.e. Ψ˚
gθ “ θ, for all g P G, then the map µ : M ÝÑ g

˚ given

by

µpmqpξq “ ´θpmqpXξqm

is a moment map for this G-action.
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The proof of this Lemma can be found on [2, Lemma 2.1.1]. Moreover, a

hyperkähler moment map is a map

µ :ÝÑ g
˚ b R3

such that

piq dµξ “ ixξω, where µξ : p P M ÞÝÑ µppqpξq, for all ξ P g;

piiq µ ˝ Ψh “ Ad˚
h ˝ µ, for all f P G.

Theorem 3.1.2. Let G be a compact Lie group acting on a hyperkähler variety

pM, x , y, Γ1, Γ2, Γ3q

. Suppose that ζ P g
˚ b R3 is invariant by the coadjoint action. Suppose also that G acts

freely on µζ . Then Mζ “ µ´1pζq{G is a smooth manifold and inherits the hyperkähler

structure of M . This quotient is called hyperkähler quotient.

The proof the this Theorem can be find at [2, Teorema 2.3.5].

Consider the following vector space

X “ EndpV q‘2 ‘ HompW, V q ‘ HompV, W q ‘ EndpV 1q‘2 ‘ HompV 1, V q ‘ HompV, V 1q.

Define in X the following equations

rA, Bs ` IJ ` FG “ 0, rA1, B1s ´ GF “ 0, (3.1)

where X “ pA, B, I, J, A1, B1, F, Gq P X. A vector X P X is called stable if it satisfies the

conditions pS.1q and pS.2q of Lemma 2.2.2, i.e., if F is injective and the ADHM data given

by pA, B, I, Jq is stable. Let

W “ Wpr, c, c1q :“ tX P X : X satisfies (3.1) and X is stableu.

Note that the G-action in (2.23) is free on W and that the equations in (3.1)

are preserved by the G-action in (2.23). Indeed the freeness of this action has been already

proved in Proposition 2.3.1. Analogously to Lemma 2.3.2, one can prove that the equations

in (3.1) are preserved by the G-action (2.23). The same is true if the one consider the

action of U :“ UpV q ˆ UpV 1q on Wpr, c, c1q given by (2.23), i.e.,

U ˆ X ÝÑ W

ph, h1, Xq ÞÝÑ phAh´1, hBh´1, hI, Jh´1, h1A1h1´1, h1B1h1´1, hFh1´1, h1Gh´1q
(3.2)

is a free action of U on W which preserves the equations (3.1). The moduli space of

stable points of W, Wpr, c, c1q, can be constructed by using Geometric Invariant Theory
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techniques. Moreover, the moduli space of framed stable representations of the enhanced

ADHM quiver, N stpr, c, c1q is embedded in Wpr, c, c1q. In fact, if X P X0 is stable, than X

satisfies

rA, Bs ` IJ “ 0, rA1, B1s “ 0, G ” 0.

Thus, X satisfies the equations (3.1) and X P W. In this section, it will be proved that the

moduli space W can be obtained by a hyperkähler reduction. In other words, N stpr, c, c1q
is embedded in the hyperkähler variety Wpr, c, c1q. The hyperkähler reduction is presented

in details below.

In order to prove that Wpr, c, c1q is a hyperkähler variety, consider the following

equations #
rA, A:s ` rB, B:s ` II: ´ J:J ` FF : ´ G:G “ 0

rA1, A1:s ` rB1, B1:s ´ F :F ` GG: “ 0
, (3.3)

where A: denotes the hermitian adjoint of the map A. It will be proved that the equations

(3.1) and (3.3) can be obtained as a hyperkähler moment map µ. Thus, one can viewed the

hyperkähler variety ĂW :“ µ´1p0q{U . However, it follows from the Kempf-Ness Theorem

that the moduli space W obtained above is isomorphic to the hyperkähler variety ĂW .

The proof that one can find the hyperkähler variety ĂW is below. Define on W

the hermitian metric

x , y : TW ˆ TW ÝÑ C

given by

xx1, x2y “ 1
2

trpa1a
:
2 ` a2a

:
1 ` b1b

:
2 ` b2b

:
1 ` i1i

:
2 ` i2i

:
1 ` j

:
2j1 ` j

:
1j2`

a1
1
a

1:
2 ` a1

2
a

1:
1 ` b1

1
b

1:
2 ` b1

2
b

1:
1 ` f

:
2f1 ` f

:
1f2 ` g1g

1:
2 ` g2g

1:
1 q,

where x1 “ pa1, b1, i1, j1, a1
1
, b1

1
, f1, g1q and x2 “ pa2, b2, i2, j2, a1

2
, b1

2
, f2, g2q. Define in TW

the following complex structures. Let x “ pa, b, i, j, a1, b1, f, gq P TW,

$
’&
’%

Γ1pxq “ p
?

´1a,
?

´1b,
?

´1i,
?

´1j,
?

´1a1,
?

´1b1,
?

´1f,
?

´1gq
Γ2pxq “ p´b:, a:, ´j:, i:, ´b1:, a1:, ´g:, f :q
Γ3pxq “ Γ1 ˝ Γ2pxq

.

It is easy to check that Γn, n P t1, 2, 3u, satisfies the quaternion identities

Γ1Γ1 “ Γ2Γ2 “ Γ3Γ3 “ Γ1Γ2Γ3 “ ´1 (3.4)

where 1 : TW ÝÑ TW is the identity map.

In fact, it is trival that Γ1Γ1 “ ´1. Moreover, let u “ pa, b, i, j, a1, b1, f, gq P TW ,
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then

Γ2pΓ2puqq “ Γ2p´b:, a:, ´j:, i:, ´b1:, a1:, ´g:, f :q
“ p´pa:q:, p´b:q:, ´pi:q:, p´j:q:, ´pa1:q:, p´b1:q: ´ pf :q:, p´g:q:q
“ ´pa, b, i, j, a1, b1, f, gq
“ ´1pa, b, i, j, a1, b1, f, gq.

In order to prove that

Γ3Γ3 “ Γ1Γ2Γ3 “ ´1,

it is enough to check that

Γ1Γ2 “ ´Γ2Γ1. (3.5)

Indeed, suppose that Γ1Γ2 “ ´Γ2Γ1, thus

Γ1Γ2Γ3 “ Γ1 Γ2Γ1loomoon
´Γ1Γ2

Γ2

“ ´Γ1Γ1Γ2Γ2

“ ´p´1qp´1q
“ ´1.

Moreover, one can check that (3.5) is true. Indeed,

Γ1Γ2puq “Γ1p´b:, a:, ´j:, i:, ´b1:, a1:, ´g:, f :q
“p´

?
´1b:,

?
´1a:, ´

?
´1j:,

?
´1i:, ´

?
´1b1:,

?
´1a1:, ´

?
´1g:,

?
´1f :q

“pp
?

´1bq:, p´
?

´1aq:, p
?

´1jq:, p´
?

´1iq:, p
?

´1bq1:, p´
?

´1aq1:, p
?

´1gq:,

´ p
?

´1fq:q
“ ´ p´p

?
´1bq:, p

?
´1aq:, ´p

?
´1jq:, p

?
´1iq:, ´p

?
´1bq1:, p

?
´1aq1:, ´p

?
´1gq:,

p
?

´1fq:q
“ ´ Γ2p

?
´1a,

?
´1b,

?
´1i,

?
´1j,

?
´1a1,

?
´1b1,

?
´1f,

?
´1gq

“ ´ Γ2Γ1pa, b, i, j, a1, b1, f, gq

Therefore, Γn, n P t1, 2, 3u satisfies the quaternions identities (3.4). Thus, one has the

following

Lemma 3.1.3. Consider W, x , y, Γn, n P t1, 2, 3u as above. Then pW, x , y, Γ1, Γ2, Γ3q is

a hyperkähler manifold.
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Proof. First, note that x , y is compatible with Γn, n P t1, 2, 3u. Indeed, let x1, x2 P TW.

Then

xx1, x2y “ x
?

´1x1,
?

´1x2y “ xΓ1px1q, Γ1px2qy.

Moreover,

xΓ2px1q, Γ2px2qy “ xpa1, b1, i1, j1, a1
1
, b1

1
, f1, g1q, pa2, b2, i2, j2, a1

2
, b1

2
, f2, g2qy

“ xp´b
:
1, a

:
1, ´j

:
1, i

:
1, ´b

1:
1 , a

1:
1 , ´g

:
1, f

:
1q, p´b

:
2, a

:
2, ´j

:
2, i

:
2, ´b

1:
2 1:2, ´g

:
2, f

:
2qy

“ 1
2

trpb:
1pb:

2q: ` b
:
2pb:

1q: ` a
:
1pa:

2q: ` a
:
2pa:

1q: ` pj:
2q:j

:
1q ` pj:

1q:j
:
2q ` i

:
1pi:

2q:`

i
:
2pi:

1q: ` b
1:
1 pb1:

2 q: ` b
1:
2 pb1:

1 q: ` a
1:
1 pa1:

2 q: ` a
1:
2 pa1:

1 q: ` pf :
2 q:f

:
1q ` pf :

1q:f
:
2q`

g
:
1pg:

2q: ` g
:
2pg:

1q:q

“ 1
2

trpa1a
:
2 ` a2a

:
1 ` b1b

:
2 ` b2b

:
1 ` i1i

:
2 ` i2i

:
1 ` j

:
2j1 ` j

:
1j2`

a1
1
a

1:
2 ` a1

2
a

1:
1 ` b1

1
b

1:
2 ` b1

2
b

1:
1 ` f

:
2f1 ` f

:
1f2 ` g1g

1:
2 ` g2g

1:
1 q

“ xx1, x2y.

and

xΓ3px1q, Γ3px2qy “ xΓ1Γ2px1q, Γ1Γ2px2qy
“ xΓ2px1q, Γ2px2qy
“ xpx1q, px2qy

Define the following 2-forms, ωnpx1, x2q :“ xΓnpx1q, x2y, for all n P t1, 2, 3u.

Since x , y is non-degenerate, these 2-forms are non-degenerate too. Moreover, they are

antisymmetric. In fact, since x , y is compatible with the complex structure Γn, for all

n P t1, 2, 3u, one has from (3.4)

ωnpx1, x2q “ xΓnpx1q, x2y
“ xΓnΓnpx1q, Γnx2y
“ x´px1q, Γnx2y
“ ´xΓnpx2q, x1y
“ ´ωnpx2, x1q.

Therefore, ωn is a Kähler form for all n P t1, 2, 3u and pW, x , y, Γ1, Γ2, Γ3q is in fact a

hyperkähler variety.

Moreover, the U -action (3.2) satisfies

xph, h1q ¨ u, ph, h1q ¨ vy “ xu, vy
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for all ph, h1q P U and preserves the complex structures Γn, n P t1, 2, 3u, i.e., it satisfies

Γnpph, h1q ¨ uq “ ph, h1q ¨ Γnpuq

for all n P t1, 2, 3u and for all ph, h1q P U . Recall that

trpabcq “ trpbcaq “ trpcabq (3.6)

and #
h: “ h´1

h1: “ h1´1
, (3.7)

for all h P UpV q and h1 P UpV 1q. Thus, let u “ pa, b, i, j, a1, b1, f, gq

Γ1pph, h1q ¨ uq “ Γ1pphah´1, hbh´1, hi, jh´1, h1a1h1´1, h1b1h1´1, hfh1´1, h1gh´1qq
“ php

?
´1aqh´1, hp

?
´1bqh´1, hp

?
´1iq, p

?
´1jqh´1,

h1p
?

´1a1qh1´1, h1p
?

´1b1qh1´1, hp
?

´1fqh1´1, h1p
?

´1gqh´1q
“ ph, h1q ¨ p

?
´1a,

?
´1b,

?
´1i,

?
´1j,

?
´1a1,

?
´1b1,

?
´1f,

?
´1gq

“ ph, h1q ¨ Γ1puq,

Γ2pph, h1q ¨ uq “Γ2pphah´1, hbh´1, hi, jh´1, h1a1h1´1, h1b1h1´1, hfh1´1, h1gh´1qq
“Γ2pphah:, hbh:, hi, jh:, h1a1h1:, h1b1h1:, hfh1:, h1gh:qq
“p´phbh:q:, phah:q:, ´pjh:q:, phiq:, ´ph1b1h1:q:, ph1a1h1:q:, ´ph1gh:q:,

phfh1:q:q
“php´b:qh:, hpa:qh:, hp´j:q, pi:qh:, h1p´b1:qh1:, h1pa1:qh1:, hp´g:qh1:,

h1pf :qh:q
“php´b:qh´1, hpa:qh´1, hp´j:q, pi:qh´1, h1p´b1:qh1´1, h1pa1:qh1´1,

hp´g:qh1´1, h1pf :qh´1q
“ ph, h1q ¨ p´b:, a:, ´j:, i:, ´b1:, a1:, ´g:, f :q
“ ph, h1q ¨ Γ2puq

and finally,

Γ3pph, h1q ¨ uq “ Γ1pΓ2pph, h1q ¨ uqq
“ Γ1pph, h1q ¨ Γ2puqq
“ ph, h1q ¨ Γ1Γ2puq
“ ph, h1q ¨ Γ3puq
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Moreover, let x1 “ pa1, b1, i1, j1, a1
1
, b1

1
, f1, g1q and x2 “ pa2, b2, i2, j2, a1

2
, b1

2
, f2, g2q.

Then it follows from the equations (3.6) and (3.7) that

xph, h1q ¨ x1, ph, h1q ¨ x2y “xpha1h
´1, hb1h

´1, hi1, j1h
´1, h1a1

1
h1´1, h1b1

1
h1´1, hf1h

1´1, h1g1h
´1q,

pha2h
´1, hb2h

´1, hi2, j2h
´1, h1a1

2
h1´1, h1b1

2
h1´1, hf2h

1´1, h1g2h
´1qy

“1
2

trpha1h
´1ppha2h

´1q:, ha2h
´1pha1h

´1q:`

hb1h
´1phb2h

´1q:, hb2h
´1phb1h

´1q: ` hi1h
´1phi2h

´1q:,

hi2h
´1phi1h

´1q: ` phj2h
´1q:hj1h

´1, phaJ1h
´1q:hj2h

´1`
ha1

1
h´1pha1

2
h´1q:, ha1

2
h´1pha1

1
h´1q: ` hb1

1
h´1phb1

2
h´1q:,

hb1
2
h´1phb1

1
h´1q: ` phf2h

1´1q:hf1h
1´1, phf1h

1´1q:hf2h
1´1`

h1g1h
´1ph1g2h

´1q:, h1g2h
´1ph1g1h

´1q:q

“1
2

trphpa1a
:
2qh´1q, hpa2a

:
1qh´1 ` hpb1b

:
2qh´1q, hpb2b

:
1qh´1`

hpi1i
:
2qh´1q, hpi2i

:
1qh´1 ` phpj:

2j1qh´1q, hpj:
1j2qh´1`

h1pa1
1
a

1:
2 qh1´1q, h1pa1

2
a

1:
1 qh1´1 ` h1pb1

1
b

1:
2 qh1´1q, h1pb1

2
b

1:
1 qh1´1`

h1pf1f
:
2 qh1´1q, h1pf2f

:
1qh1´1 ` phpg:

2g1qh´1q, hpg:
1g2qh´1q

“1
2

trpa1a
:
2 ` a2a

:
1 ` b1b

:
2 ` b2b

:
1 ` i1i

:
2 ` i2i

:
1 ` j

:
2j1 ` j

:
1j2`

a1
1
a

1:
2 ` a1

2
a

1:
1 ` b1

1
b

1:
2 ` b1

2
b

1:
1 ` f

:
2f1 ` f

:
1f2 ` g1g

1:
2 ` g2g

1:
1 q

“xx1, x2y.

Let

pξ, ξ1q P u “ upV q ˆ upV 1q :“ tpξ, ξ1q P GLpV q ˆ GLpV 1q; ξ ` ξ: “ ξ1 ` ξ1: “ 0u.

One can compute the fundamental vector field pWpξ,ξ1qq as following.

Let W P W and

pWpξ,ξ1qqW “ dΨW p1V , 1V 1qpξ, ξ1q

where
ΨW : U ÝÑ W

ph, h1q ÞÝÑ ph, h1q ¨ W

and consider the smooth curve

γ : p´ǫ, ǫq ÝÑ U

given by the ODE
$
&
%

γp0q “ p1V , 1V 1q
d

dt
pγq|t“0 “ pξ, ξ1q

.
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Thus,

d

dt
pΨW ˝ γq|t“0 “ pdΨwpγp0qq ¨ d

dt
pγp0qqq

“ dΨW p1V , 1V 1qpξ, ξ1q
“ pWξ,ξ1qW

Consider

π1 : U ÝÑ UpV q
ph, h1q ÞÝÑ h

,
π2 : U ÝÑ UpV 1q

ph, h1q ÞÝÑ h1
.

Since γptq P U , for all t P p´ǫ, ǫq, one has

γptq: “ γptq´1,

for all t P p´ǫ, ǫq. Moreover,

d

dt
γptq: “ ´ d

dt
γptq,

for all t P p´ǫ, ǫq. Hence,

Ψxpγptqq “ pγptqaγptq´1, γptqbγptq´1, γptqi, jγptq´1,

γptq1a1γptq1´1, γptq1b1γptq1´1, γptqfγptq1´1, γptq1gγptq´1q,

where on the right side of the equation above, γptq and γptq1 denote π1pγptqq
and π2pγptqq, respectively. Therefore, using the same notation,

pWpξ,ξ1qqW “ d

dt
pΨW ˝ γq|t“0

“p d

dt
γptqaγptq´1 ` γptqa d

dt
γptq´1,

d

dt
γptqbγptq´1 ` γptqb d

dt
γptq´1,

d

dt
γptqi, j

d

dt
γptq´1,

d

dt
γptq1a1γptq1´1 ` γptq1a1 d

dt
γptq1´1,

d

dt
γptq1b1γptq1´1 ` γptq1b1 d

dt
γptq1´1,

d

dt
γptqfγptq1´1 ` γptqf d

dt
γptq1´1,

d

dt
γptq1gγptq´1 ` γptq1g

d

dt
γptq´1q|t “ 0

“ pξa ´ aξ, ξb ´ bß, ξi, ´jξ, ξa1 ´ a1ξ, ξb1 ´ b1ξ, ξf ´ fξ1, ξ1g ´ gξq
“ prξ, as, rξ, bs, ξi, ´jξ, rξ, a1s, rξ, b1s, ξf ´ fξ1, ξ1g ´ gξq

Now, in order to construct a moment map, one can prove that the Kähler forms

ωn, n P t1, 2, 3u are exact, i.e. that there exists a 1-form θn in W such that ωn “ dθn, for
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all n P t1, 2, 3u. First, note that for all x1, x2 P TW

ω1px1, x2q :“xΓ1x1, x2y
“xp

?
´1a1,

?
´1b1,

?
´1i1,

?
´1j1,

?
´1a1

1
,
?

´1b1
1
,
?

´1f1,
?

´1g1q,
pa2, b,2i2, j2, a1

2
, b1

2
, f2, g2qy

“1
2

trp
?

´1a1a
:
2 ` a2p

?
´1a1q: `

?
´1b1b

:
2 ` b2p

?
´1b1q: `

?
´1i1i

:
2`

i2p
?

´1i1q: `
?

´1j
:
2j1 ` p

?
´1j1q:j2

?
´1a1

1
a

1:
2 ` a1

2
p
?

´1a1
1
q:`

`
?

´1b1
1
b

1:
2 ` b1

2
p
?

´1b1
1
q: `

?
´1g1g

:
2 ` g2p

?
´1g1q: `

?
´1f

:
2f1 ` p

?
´1f1q:f2q

“
?

´1
2

trpa1a
:
2 ´ a2a

:
1 ` b1b

:
2 ´ b2b

:
1 ` i1i

:
2 ´ i2i

:
1 ` j

:
2j1 ´ j

:
1j2`

a1
1
a

1:
2 ´ a1

2
a

1:
1 ` b1

1
b

1:
2 ´ b1

2
b

1:
1 ` f

:
2f1 ´ f

:
1f2 ` g1g

1:
2 ´ g2g

1:
1 q

Let π1 : W ÝÑ W given by π1pa, b, i, j, a1, b1, f, gq “ pa, 0, 0, 0, 0, 0, 0, 0q, one

can introduce the following 2-form

dπ1 ^ dπ
:
1ppa1, b1, i1, j1, a1

1
, b1

1
, f1, g1q, pa1, b2, i2, j2, a1

2
, b1

2
, f2, g2qq “a1a

:
2 ´ a2a

:
1.

Defining πi : W ÝÑ W as the projection in the i-th coordinate, one can write

ω1 as

ω1 “
?

´1
2

trpdπ1 ^ dπ
:
1 ` dπ2 ^ dπ

:
2 ` dπ3 ^ dπ

:
3 ` dπ4 ^ dπ

:
4

` dπ1
5

^ dπ
1:
5 ` dπ1

6
^ dπ

1:
6 ` dπ7 ^ dπ

:
7 ` dπ8 ^ dπ

:
8q.

Therefore, θ1 if you put

θ1 “
?

´1
2

trpπ1 ^ dπ
:
1 ` π2 ^ dπ

:
2 ` π3 ^ dπ

:
3 ` π4 ^ dπ

:
4

` π1
5

^ dπ
1:
5 ` π1

6
^ dπ

1:
6 ` π7 ^ dπ

:
7 ` π8 ^ dπ

:
8q,

ω1 “ dθ1. Thus, it follows from Lemma 3.1.1 that one can find the moment

map µ1pW qpξ, ξ1q :“ ´θ1pWpξ,xi1qqW . Recall that since pξ P upV qq, ξ: “ ´ξ, and then

rξ, as: “ pξaq: ´ paξq:. Analogously, rξ1, a1s: “ pξ1a1q: ´ pa1ξ1q:. Moreover,

µ1pwqpξ, ξ1q “ ´ θ1pWpξ,ξ1qqw

“´
?

´1
2

trparξ, as: ` brξ, bs: ` ipξiq: ` jp´jξq:

a1rξ1, a1s: ` b1rξ1, b1s: ` fpξf ´ fξ1q:q ` gpξ1g ´ gξq:q

“ 1
2
?

´1
trpappξaq: ´ paξq:q ` bpξbq: ´ pbξq: ` ii:ξ: ´ jξ:j:

a1pξ1a1q: ´ pa1ξ1q: ` b1pξ1b1q: ´ pb1ξ1q: ` ff :ξ: ´ fξ1:f : ` gg:ξ1: ´ gξ1g:
1

2
?

´1
rtrpra, a:s ` rb, b:s ` ii: ´ j:j ` ff : ´ g:gqξ`

trpra1, a1:s ` rb1, b1:s ´ f :f ` gg:qξ1s.
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Identifying upV qˆupV 1q – upV q˚ˆupV 1q˚ via the inner product pa, bq “ trpab:q,
one obtains the moment map

µ1pxq “pp 1
2
?

´1
ra, a:s ` rb, b:s ` ii: ´ j:j ` ff : ´ g:gqq,

p 1
2
?

´1
qpra1, a1:s ` rb1, b1:s ´ f :f ` gg:qq.

Repeating this procedure for ω2 and ω3, one can find

ω2px1, x2q “ ´ 1
2

trpa2b1 ´ b2a1 ` b
:
1a

:
2 ´ a

:
1b

:
2 ` i2j1 ´ j2i1 ` j

:
1i

:
2 ´ i

:
1j

:
2

` b
1:
1 a

1:
2 ´ a

1:
1 b

1:
2 ` a1

2
b1

1
´ b1

2
a1

1
` f2g1 ` g

:
1f

:
2 ´ g2f1 ´ f

:
1g

:
2q,

ω3px1, x2q “ ´ ´
?

´1
2

trp´a2b1 ` b2a1 ` b
:
1a

:
2 ´ a

:
1b

:
2 ´ i2j1 ` j2i1 ` j

:
1i

:
2 ´ i

:
1j

:
2

` b
1:
1 a

1:
2 ´ a

1:
1 b

1:
2 ´ a1

2
b1

1
` b1

2
a1

1
` g

:
1f

:
2 ´ f1g1 ´ f

:
1g

:
2 ` g2f1q

and the moment maps

µ2pxq “´1
2

ppra, bs ` ra:, b: ` ij ´ j:i: ` fg ´ g:f :sq,

pra1, b1s ` ra:, b:s ´ gf ` f :g:qq

and

µ3pxq “ ´1
2
?

´1
ppra, bs ´ ra:, b: ` ij ` j:i: ` fg ` g:f :sq,

pra1, b1s ´ ra:, b:s ´ gf ´ f :g:qq.

Then, defining the moment map

µCpxq “pµ2 `
?

´1µ3qpxq
“ ´ ppra, bs ` ij ` fgq, ra1, b1s ´ gfq.

it follows from Theorem 3.1.2 that

W “ µ´1

1 p0q X µ´1

C p0q X W

U

is a hyperkähler variety, since the U -action acts freely on the stable points of

W. Moreover, its real dimension is given by

dimRpWq “ 4pc2 ` rc ` c12 ` cc1q ´ 4pc2 ´ c12q “ 4prc ` cc1q

This concludes the proof that the moduli space N stpr, c, c1q is a subvariety of the hyperhähler

manifold pW , x , y, Γ1, Γ2, Γ3q.
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3.2 Holomorphic structures on N stpr, c, 1q
Let M be a complex manifold. We define holomorphic pre-symplectic variety as

the triple pM, Γ, Ωq, where Ω is a holomorphic closed 2-form, non-degenerated in an open

dense subset defined on TM and Γ is a complex structure on M . Let pM, x , y, Γ1q be a

Kähler manifold. Let ω2 and ω3 be two closed, not necessarily non-degenerated, 2-forms

defined on M satisfying

ω2pu, vq :“ gpJu, vq “ gpIJu, Ivq “ gpKu, Ivq :“ ω3pu, Ivq; (3.8)

ω3pu, vq :“ gpKu, vq “ gpIIJu, Ivq “ ´gpJu, Ivq :“ ω2pu, Ivq, (3.9)

then pM, x , y, Γ1, ω2, ω3q is called pre-hyperkähler variety. It is easy to check that given

a pre-hyperkähler manifold, pM, x , y, Γ1, ω2, ω3q, one can obtain that pM, Γ1, Ωq, with

Ω :“ ω2 `
?

´1ω3, is a holomorphic pre-symplectic manifold.

The reciprocate is not proved, i.e., if pM, Γ1, Ωq has a holomorphic pre-symplectic

structure, is unknown if there exists unique pre-hyperkähler structure pM, x , y, Γ1, ω2, ω3q
such that Ω “ ω2 `

?
´1ω3. However, if M is compact, ω2 and ω3 are symplectic forms, Ω

is non-degenerate and pM, x , y, Γ1, Γ2, Γ3q a hyperkähler manifold where Γn, for n P t2, 3u
is such that ωnp¨, ¨q “ xΓn¨, ¨y, this is true and the reader can find a proof of this in [8,

Theorem 5.11, p. 26; Theorem 23.5, p. 179].

In this section, one can find the consequences of the fact that the moduli space

N pr, c, 1q is a subvariety of the hyperkähler manifold Wpr, c, 1q “ pW , x , y, Γ1, Γ2, Γ3q. It

was proved in the last section that this is true for the general case N pr, c, c1q. However,

here it is fixed the moduli space of framed stable representations of the ADHM quiver of

numerical type pr, c, 1q, because this is the only case in which the variety is smooth. First,

note that there exists the inclusion map

N stpr, c, 1q pW , x , y, Γ1, Γ2, Γ3q.ι

Hence, associated with this inclusion, there exists a complex structure on

N stpr, c, 1q inherited by the pull-back, ι˚Γ1, and a closed degenerate 2-form Ω “ ι˚ω2 `?
´1ι˚ω3. Indeed, let pa, b, i, j, a1, b1, f, 0q P N stpr, c, 1q. Thus,

ι˚Γ1pa, b, i, j, a1, b1, f, 0q “Γ1pι˚a, ι˚b, ι˚i, ι˚j, ι˚a1, ι˚b1, ι˚f, 0q
“p

?
´1a,

?
´1b,

?
´1i,

?
´1j,

?
´1a1,

?
´1b1,

?
´1f, 0q

is clearly a complex structure on N st. Moreover, let x1 “ pa1, b1, i1, j1, a1
1
, b1

1
, f1, 0q and

x2 “ pa2, b2, i2, j2, a1
2
, b1

2
, f2, 0q in N st. It is easy to check that pN st, ι˚x , y, ι˚Γ1q has a
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Kähler structure. The 2-form Ω is given by,

Ωpx1, x2q “pι˚ω2 `
?

´1ι˚ω3qpx1, x2q
“pω2 `

?
´1ω3qpι˚x1, ι˚x2q

“pω2 `
?

´1ω3qppa1, b1, i1, j1, a1
1
, b1

1
, f1, 0q, pa2, b2, i2, j2, a1

2
, b1

2
, f2, 0qq

“ ´ 1
2

trpa2b1 ´ b2a1 ` b
:
1a

:
2 ´ a

:
1b

:
2 ` i2j1 ´ j2i1 ` j

:
1i

:
2 ´ i

:
1j

:
2

` b
1:
1 a

1:
2 ´ a

1:
1 b

1:
2 ` a1

2
b1

1
´ b1

2
a1

1
q´

´ p
?

´1q2

2
trp´a2b1 ` b2a1 ` b

:
1a

:
2 ´ a

:
1b

:
2 ´ i2j1 ` j2i1 ` j

:
1i

:
2 ´ i

:
1j

:
2

` b
1:
1 a

1:
2 ´ a

1:
1 b

1:
2 ´ a1

2
b1

1
` b1

2
a1

1
q

“1
2

trp´a2b1 ` b2a1 ´ b
:
1a

:
2 ` a

:
1b

:
2 ´ i2j1 ` j2i1 ´ j

:
1i

:
2 ` i

:
1j

:
2

´ b
1:
1 a

1:
2 ` a

1:
1 b

1:
2 ´ a1

2
b1

1
` b1

2
a1

1
` b

1:
1 a

1:
2 ´ a

1:
1 b

1:
2 ´ a1

2
b1

1
` b1

2
a1

1
´

´ a2b1 ` b2a1 ` b
:
1a

:
2 ´ a

:
1b

:
2 ´ i2j1 ` j2i1 ` j

:
1i

:
2 ´ i

:
1j

:
2q

“ trp´a2b1 ` b2a1 ´ i2j1 ` i1j2 ´ a1
2
b1

1
` b1

2
a1

1
q.

Note that taking u “ p0, 0, 0, 0, 0, 0, f, 0q P TN st, ΩXpu, vq ” 0 for all v P TN st,

i.e., Ω is in fact a degenerate 2-form. Also, it is easy to check that the 2-forms ι˚ω2 and

ι˚ω3 satisfy #
ι˚ω2pu, vq “ ι˚ω3pu, Γ1vq
ι˚ω3pu, vq “ ´ι˚ω2pu, Γ1vq

.

Given the 2-form

Ω : TN stpr, c, 1q ˆ TN stpr, c, 1q ÝÑ C

as above, one can define the maps

ΩX : TXN stpr, c, 1q ˆ TXN stpr, c, 1q ÝÑ C

pu, vq ÞÝÑ ΩpuX , vXq

and
ΩXpu, ¨q : TXN pr, c, 1q ÝÑ C

v ÞÝÑ ΩXpu, vq

It is still unknown in which points ΩX is non-degenerate in the general case. How-

ever, the investigation for the particular case for ΩX defined in TXN p1, 2, 1q ˆTXN p1, 2, 1q
is done as one can see below. First, we will proof an auxiliary Lemma.

Lemma 3.2.1. Let X “ pW, V, V 1, A, B, I, J, A1, B1, F, Gq be a framed stable representa-

tion of the enhanced ADHM quiver of numerical type p1, 2, 1q. Thus, there exists a change

of basis for V such that
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(i) A “
«

A1 0

0 a2

ff
, B “

«
B1 0

0 b2

ff
, F “

«
1

0

ff
, if A and B are diagonalizable;

(ii) A “
«

A1 1

0 A1

ff
, B “

«
B1 B12

0 B1

ff
, F “

«
1

0

ff
, if A and B are not diagonalizable;

(iii) A “ A1

«
1 0

0 1

ff
, B “

«
B1 1

0 B1

ff
, F “

«
1

0

ff
, if A is diagonalizable and B is not

diagonalizable.

Proof. First, note that #
AF p1q ´ F p1qA1 “ 0

BF p1q ´ F p1qB1 “ 0
,

i.e., F p1q P V is an eigenvector of A and B. Also, A1 and B1 are eigenvalues of A and B,

respectively, associated with the vector F p1q. Suppose that both A and B are diagonalizable.

Therefore, there exists a vector w P V that satisfies

Aw ´ a2 ¨ 1V w “ 0,

where A1 ‰ a2 P V 1. There exists a change of basis for V such that

F “
«

1

0

ff
, w “

«
0

1

ff
.

Thus, we obtain

0 “ AF ´ FA1 “
«

a11 a12

a21 a22

ff «
1

0

ff
´

«
1

0

ff
A1 “

«
a11 ´ A1

a21

ff
.

Hence

A “
«

A1 a12

0 a22

ff
.

Analogously, we obtain

B “
«

B1 b12

0 b22

ff
.

Since a2 is an eigenvalue of A associated with the vector w P V , we get

0 “ Aw ´ a2 ¨ 1V w “
«

A1 a12

0 a22

ff «
0

1

ff
´

«
0

a2

ff
“

«
a12

a22 ´ a2

ff

Therefore,

A “
«

A1 0

0 a2

ff
.
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Since r “ 1, we have J “ 0. Hence

0 “ rA, Bs “
«

A1 0

0 a2

ff «
B1 b12

0 b22

ff
´

«
B1 b12

0 b22

ff «
A1 0

0 a2

ff

“
«

A1B1 ´ B1A1 A1b12 ´ b12a2

0 a2b22 ´ b22a2

ff
“

«
0 b12pA1 ´ a2q
0 0

ff
.

Thus b12 “ 0 and

B “
«

B1 0

0 b22

ff
.

If both A and B are not diagonalizable, there exists w P V such that v :“
Aw ´ A1 ¨ 1V is an eigenvector of A.There exist a change of basis for V such that

F “
«

1

0

ff
, w “

«
0

1

ff
,

and

v “
«

A1 a12

0 a22

ff «
0

1

ff
´

«
0

A1

ff
“

«
a12

a22 ´ A1

ff

Hence,

0 “ Av ´ A1 ¨ 1V v “
«

A1 a12

0 a22

ff «
a12

a22 ´ A1

ff
´ A1

«
a12

a22 ´ A1

ff

“
«

a12pa22 ´ A1q
pa22 ´ A1q2

ff
,

i.e., a12 ‰ 0 and a22 “ A1. Thus,

A “
«

A1 a12

0 A1

ff
.

In the other hand,

0 “ rA, Bs “
«

A1 a12

0 A1

ff «
B1 b12

0 b22

ff
´

«
B1 b12

0 b22

ff «
A1 a12

0 A1

ff

“
«

A1B1 ´ B1A1 A1b12 ` b22 ´ B1 ´ b12A
1

0 A1b22 ´ b22A
1

ff
“

«
0 b22 ´ B1

0 0

ff
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Therefore

B “
«

B1 b12

0 B1

ff
.

Let

S “

»
–

1 0

0
1

a12

fi
fl .

Then

S´1 “
«

1 0

0 a12

ff

and we obtain

SAS´1 “

»
–

1 0

0
1

a12

fi
fl

«
A1 a12

0 A1

ff «
1 0

0 a12

ff
“

«
A1 1

0 A1

ff
,

SBS´1 “

»
–

1 0

0
1

a12

fi
fl

«
B1 b12

0 B1

ff «
1 0

0 a12

ff
“

«
B1 b12a12

0 B1

ff
,

SF “

»
–

1 0

0
1

a12

fi
fl

«
1

0

ff
“

«
1

0

ff
.

Denoting B12 “ b12a12, this concludes the proof of the case where A and B are both

non-diagonalizable. The last case, A diagonalizable and B not diagonalizable, is entirely

analogous.

Now we can proof the next Proposition.

Proposition 3.2.2. Let N p1, 2, 1q be the moduli space of framed stable representations of

the enhanced ADHM quiver of numerical type p1, 2, 1q. Fix a framed stable representation

X “ pA, B, I, J, A1, B1, F q. Then the 2-form ΩX defined on TXN p1, 2, 1q is non-degenerate

if and only if the matrices associated with the endomorphisms A and B are diagonalizable.

Proof. Recall that if r “ 1, then the map J P HompV, W q is null, since X is stable (see

[13, Proposition 2.8]) and recall that if c1 “ 1, thus rA1, B1s “ 0, for all A1, B1 P V 1. Thus,

the enhanced ADHM equations are reduced to

rA, Bs “ 0, AF ´ FA1 “ 0, BF ´ FB1 “ 0.
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Suppose that A and B are not diagonalizable. Thus, it follows from Lemma

3.2.1 (ii) that there exists change of basis for V such that

A “
«

A1 1

0 A1

ff
, B “

«
B1 B12

0 B1

ff
, F “

«
1

0

ff
(3.10)

In order to X “ pA, B, I, J, A1, B1, F q is a stable representation of the enhanced ADHM

quiver,

I “
«

µ

1

ff
. (3.11)

Indeed, F is clearly injective. Furthermore, Consider

I “
«

i1

i2

ff
.

Note that if i2 ‰ 0, then there exists a basis of W such that i2 “ 1 and

I “
«

µ

1

ff
(3.12)

for some µ P C Indeed, suppose that there exists 0 Ă S Ă V such that

ApSq, BpSq, IpW q Ă S.

Let 0 ‰ v P IpW q, thus, there exists w P W such that

v “ Iw “
«

i1

i2

ff
¨ w “

«
i1w

i2w

ff
P S

Moreover, since v P S, Apvq Bpvq P S by hypothesis. Hence

Apvq “
«

A1 1

0 A1

ff
¨
«

i1w

i2w

ff
“

«
A1i1 ` i2

A1i2

ff
¨ w

Analogously,

Bpvq “
«

B1i1 ` B12i2

B1i2

ff
¨ w

Then, if i2 “ 0, S “ xi1y Ĺ V is a subset such that ApSq, BpSq, Ipwq Ă S.

Indeed,

Ipwq “
«

i1w

0

ff
P S

for all w P W , which means IpW q Ă S. Let s P S given by s “ λi1. Thus,

Apsq “
«

A1 1

0 A1

ff
¨
«

λi1

0

ff
“

«
A1λi1

0

ff
P S
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for all s P S. And therefore, ApSq Ă S. Analogously, BpSq Ă S. Thus, in order

to prove that X is stable, i2 ‰ 0 and then there exists a basis of W such that I is given by

(3.12). This concludes that if X is a framed stable representation of the enhanced ADHM

quiver, then A, B, I, A1, B1, F are of the form (3.10), (3.11).

Now, consider v P TXN given by v “ pa, b, i, j, a1, b1, fq such that X satisfies

(3.10) and (3.11). Then, if follows from Theorem 2.4.3 and from the fact that J “ 0 that

j “ 0, ra, Bs ` rA, bs “ 0, fA1 ` Fa1 ´ aF ´ Af “ 0, fB1 ` Fb1 ´ bF ´ Bf “ 0.

Then, denoting

a “
«

a11 a12

a21 a22

ff
, b “

«
b11 b12

b21 b22

ff
, i “

«
i1

i1

ff
, f “

«
f1

f2

ff

one gets

fA1 ` Fa1 ´ aF ´ Af “
«

f1

f2

ff
¨ A1 `

«
1

0

ff
¨ a1 ´

«
a11 a12

a21 a22

ff
¨
«

1

0

ff
´

´
«

A1 1

0 A1

ff
¨
«

f1

f2

ff

“
«

A1f1

A1f2

ff
`

«
a1

0

ff
´

«
a11

a21

ff
´

«
A1f1 ` f2

f2A
1

ff

“
«

a1 ´ a11 ´ f2

a21

ff

.

Therefore,

fA1 ` Fa1 ´ aF ´ Af “ 0 ô
#

a1 “ a11 ` f2

a21 “ 0
. (3.13)

Analogously,

fB1 ` Fb1 ´ bF ´ Bf “ 0 ô
#

b1 “ b11 ` B12f2

b21 “ 0
(3.14)
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It follows from equations (3.13) and (3.14) that

ra, Bs ` rA, bs “

»
—–

»
—–

a11 a12

a21loomoon
“0

a22

fi
ffifl ,

«
B1 B12

0 B1

fffi
ffifl `

`

»
—–

«
A1 1

0 A1

ff
,

»
—–

b11 b12

b21loomoon
“0

b22

fi
ffifl

fi
ffifl

“
«

a11 a12

0 a22

ff
¨
«

B1 B12

0 B1

ff
´

«
B1 B12

0 B1

ff
¨
«

a11 a12

0 a22

ff
`

«
b11 b12

0 b22

ff
¨
«

A1 1

0 A1

ff
´

«
A1 1

0 A1

ff
¨
«

b11 b12

0 b22

ff

“
«

a11B
1 B12a11 ` B1a12

0 a22B
1

ff
´

«
B1a11 B1a12 ` B12a22

0 B1a22

ff
`

«
A1b11 A1b12 ` b22

0 A1b22

ff
´

«
b11A

1 b11 ` A1b12

0 b22A
1

ff

“
«

0 B12pa11 ´ a22q ` b22 ´ b11

0 0

ff

Therefore,

ra, Bs ` rA, bs “ 0 ô B12pa11 ´ a22q ` b22 ´ b11 “ 0. (3.15)

Thus, v “ pa, b, i, j, a1, b1, fq P TXN is such that

a “
«

a11 a12

0 a22

ff
, b “

«
b11 b12

0 b22

ff
, i “

«
i1

i1

ff
,

f “
«

f1

f2

ff
, a1 “ f2 ` a11, b1 “ B12f2 ` b11.

and satisfies (3.15).

Thus, for u “ pa, b, i, j, a1, b1, fq and v “ pra,rb,ri, ra1, rb1, rfq P TXN ,

ΩXpu, vq “ tr

˜
´

«
Ăa11 Ăa12

0 Ăa22

ff
¨
«

b11 b12

0 b22

ff
`

« Ăb11
Ăb12

0 Ăb22

ff
¨
«

a11 a12

0 a22

ff¸
´

´p Ăa11 ` rf2qpb11 ` B12f2q ` pĂb11 ` B12
rf2qpa11 ` f2q

“ tr

˜
´

«
Ăa11b11 Ăa11b12 ` Ăa12b22

0 Ăa22b22

ff
`

« Ăb11a11
Ăb11a12 ` Ăb12a22

0 Ăb22a22

ff¸
´

´ Ăa11b11 ´ Ăa11B12f2 ´ rf2b11 ´ rf2f2B12 ` Ăb11a11 ` Ăb11f2 ` rf2B12a11

` rf2f2B12

“ p´ Ăa11b11 ´ Ăa22b22 ` Ăb11a11 ` Ăb22a22 ´ Ăa11b11 ´ Ăa11B12f2 ´ rf2b11`
`Ăb11a11 ` Ăb11f2 ` rf2B12a11q

“ p´2Ăa11b11 ` 2Ăb11a11 ´ Ăa22b22 ` Ăb22a22 ` f2p Ăb11 ´ Ăa11q ` rf2pa11 ´ b11qq
“ p2p´ Ăa11b11 ` Ăb11a11q ´ Ăa22b22 ` Ăb22a22 ` f2p Ăb11 ´ Ăa11q ` rf2pa11 ´ b11qq.
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Thus, if u P TXN satisfies
#

b11 “ B12a11

f2 “ 0
, (3.16)

then

ΩXpu, vq “ p2pĂb11a11 ´ Ăa11B12a11q ´ Ăa22b22 ` Ăb22a22q

Note that it follows from equation (3.15) that if B12a11 “ b11, then B12a22 “ b22.

Thus one obtains

ΩXpu, vq “ 2p´ Ăa11B12a11 ` Ăb11a11q ´ Ăa22B12a22 ` Ăb22a22

“ 2a11pĂb11 ´ B12 Ăa11q ` a22pĂb22 ´ B12 Ăa22q
.

Since v P TXN ,

B12 Ăa11 ´ B12 Ăa22 ` Ăb22 ´ Ăb11 “ 0 ñ Ăb22 ´ B12 Ăa22 “ Ăb11 ´ B12 Ăa11.

Therefore

ΩXpu, vq “ 2a11pĂb11 ´ B12 Ăa11q ` a22pĂb11 ´ B12 Ăa11q
“ p2a11 ` a22qpĂb11 ´ B12 Ăa11q

Then, if u P TXN satisfies (3.16) and a22 “ ´2a11,

ΩXpu, ¨q ” 0

Denote by rus the equivalence class of u. It is easy to check that if a11 ‰ 0,

rus ‰ r0s. Indeed, it follows from Theorem 2.4.3 that rus “ r0s if and only if u P Impd0q,
where

do : EndpV q ‘ EndpV 1q ÝÑ X

ph, h1q ÞÝÑ prh, As, rh, Bs, hI, ´Jh, rh1, A1s, rh1, B1s, hF ´ Fh1q
.

Since c1 “ 1, rh1, A1s “ 0. Then, if a11 ‰ 0, since f2 “ 0 and a1 “ a11 ` f2,

a1 ‰ 0. Therefore, there is no ph, h1q P EndpV q ‘ EndpV 1q such that d0ph, h1q “ u. In other

words,

rus “
«˜«

a11 a12

0 ´2a11

ff
,

«
B12a11 b12

0 ´2B12a11

ff
,

«
i1

i2

ff
, a11, a11,

«
f1

0

ff¸ff
‰ r0s

is a non-null vector in TXN stp1, 2, 1q such that ΩXpu, vq “ 0, for all v P TXN stp1, 2, 1q.
This concludes that if X satisfies (3.10), and (3.11), then ΩX is degenerate.
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Now suppose that A is dianagolizable and B is non-diagonalizable. Analogously

to the previous case, one can check that u P TXN p1, 2, 1q is given by

u “
˜˜

0 a12

0 a22

¸
,

˜
b11 b12

0 b22

¸
,

˜
i1

i2

¸
, 0, 0, b11 ` f2,

˜
f1

f2

¸¸

and

ΩXpu, vq “ Ăb22a22 ´ Ăa22b22

Hence, taking a22 “ b22 “ 0 e b11 ‰ f2, i.e.,

u “
˜˜

0 a12

0 0

¸
,

˜
b11 b12

0 0

¸
,

˜
i1

i2

¸
, 0, 0, b11 ` f2,

˜
f1

f2

¸¸

one gets Ωxpu, vq “ 0 for all v P TXN p1, 2, 1q with rus ‰ r0s. Thus ΩX is degenerate.

In order to conclude the proof, we have now to prove that if

X “ pA, B, I, J, A1, B1, F q

is such that A and B are diagonalizable matrices, then it follows from Lemma 3.2.1 that

there exists a change of basis for V such that

A “
«

A1 0

0 a2

ff
, B “

«
B1 0

0 b2

ff
, F “

«
1

0

ff
. (3.17)

Moreover, analogously to the previous case, one can check that, in order for X

to be stable,

I “
«

λ

1

ff
, a1 ‰ a2, b1 ‰ b2

and a vector u “ pa, b, i, j, a1, b1, fq P TXN is given by

u “
˜«

a11 a12

f2pa1 ´ a2q a22

ff
,

«
b11 δa12

δf2pa1 ´ a2q b22

ff
,

«
i1

i2

ff
, a11, b11,

«
f1

f2

ff¸

Therefore, one can check that given u “ pa, b, i, j, a1, b1, fq, v “ pra,rb,ri,rj, ra1, rb1, rfq P TXN ,

ΩXpu, vq “ 2pa11
Ăb11 ´ Ăa11b11q ` a22

Ăb22 ´ Ăa22b22.

Moreover, ΩXpu, ¨q ” 0 if and only if a11 “ b11 “ a22 “ b22 “ 0. Indeed, if

a11 “ b11 “ a22 “ b22 “ 0, it is trivial that ΩXpu, ¨q ” 0. Now suppose that ΩXpu, ¨q “ 0

for all v P TXN . In particular, by taking

v “
˜«

0 a12

f2pa1 ´ a2q 0

ff
,

«
a11 δa12

δf2pa1 ´ a2q a22

ff
,

«
i1

i2

ff
, 0, a11,

«
f1

f2

ff¸
,

w “
˜«

´b11 a12

f2pa1 ´ a2q ´b22

ff
,

«
0 δa12

δf2pa1 ´ a2q 0

ff
,

«
i1

i2

ff
, ´b11, 0,

«
f1

f2

ff¸
.
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ΩXpu, vq “ ΩXpu, wq “ 0, but

ΩXpu, vq “ 2a11a11 ` a22a22,

and this vanishes if and only if a11 “ a22 “ 0. Moreover,

ΩXpu, wq “ 2b11b11 ` b22b22

and this vanishes if and only if b11 “ b22 “ 0. Therefore, Ωxpu, ¨q ” 0 if and only if

u “
˜«

0 a12

f2pa1 ´ a2q 0

ff
,

«
0 δa12

δf2pa1 ´ a2q 0

ff
,

«
i1

i2

ff
, 0, 0,

«
f1

f2

ff¸
.

However, u “ d0ph, h1q, for

h “

»
– f1 ´ a12 ` i1pi1 ´ i2q ´ λpa1 ´ a2qf1

λpa1 ´ a2q ´ a12

pa1 ´ a2q
f2 i2 ´ λf2

fi
fl ,

h1 “a12 ` i1 ´ λpa1 ´ a2qf1

λpa1 ´ a2q .

Indeed, one can check that

d0ph, h1q “˜
pa1 ´ a2qH, pb1 ´ b2qH,

«
λh11 ` h12

λh21 ` h22

ff
, 0, 0, 0,

«
h11 ´ h1

h21

ff ¸

where

H “
«

0 ´h12

h21 0

ff

and then, dph, h1q “ u. This means that rus “ r0s. In other words, if X satisfies (3.17), ΩX

is non-degenerate.
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4 Enhanced ADHM quiver varieties and flag

of sheaves

In this chapter it is discussed the relation between the moduli space of framed

stable representations of the enhanced ADHM quiver with numerical type pr, c, c1q and the

moduli space of flags of sheaves. We proved in details that there exists a bijection between

the moduli space N stpr, c, c1q and the moduli space of flag of sheaves pE, F, ϕq, where

pF, ϕq is a framed torsion free sheaf in P2 with rank r and second Chern class pc ´ c1q,
pE, ϕq is a subsheaf of pF, ϕq of rank r and second Chern class c such that the support

of the quotient F {E is given by c1 points outside the line at infinity l8. In this chapter,

FpE, F, ϕq the moduli space of flags of sheaves as above and pE, F, ϕq denotes a single

flag of sheaves.

In literature one can find results which associate moduli space of stable repre-

sentations of the ADHM quiver with numerical type pr, cq and the framed moduli space

of torsion-free sheaves on P2 with rank r and second Chern class c. Most of them can

be found on [13, Chapter 2]. In the first section one can find the main facts that will be

used to prove the existence of the bijection above. In the second section it is proved this

existence, i.e., the following

Proposition 4.0.3. Let N stpr, c, c1q be the moduli space of framed stable representations

of the enhanced ADHM quiver of numerical type pr, c, c1q. Let pE, F, ϕq be the moduli

space of the flag of sheave given by pF, ϕq a framed torsion free sheaf in P2 with rank r

and second Chern class c, pE, ϕq is a subsheaf of pF, ϕq of rank r and second Chern class

pc ´ c1q such that the support of the quotient F {E is given by c1 points outside the line in

infinity l8. Then there exists a bijection between N stpr, c, c1q and pE, F, ϕq.

Moreover, it was proved by Patrícia Borges dos Santos in [16], that if r “ 1, the

moduli space N stp1, c, c1qpCq and the nested Hilbert Scheme Hilbc´c1,cpCq are isomorphic.

4.1 Framed torsion free sheaves and stable representations of the

ADHM quiver

In this section one can find a few results that can be found on [13, Chapter 2],

[10, Chapter 5] and [15, Chapter II, Section 3]. These results will be presented briefly but

the reader can check the references for more details.

Definition 4.1.1. Let px : y : zq be fixed homogeneous coordinates in P2. Let X “
pW, V, A, B, I, Jq be a representation of the ADHM quiver. An ADHM complex is a
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complex on P2 of the form

E‚
X : V b OP2p´1q pV ‘ V ‘ W q b OP2 V b OP2p1qα β

where

α “

»
—–

zA ` x1V

zB ` y1V

zJ

fi
ffifl , β “

”
´zB ´ y1V zA ` x1V zI

ı
.

Note that the ADHM equation is equivalent to the condition βα “ 0. Indeed,

βα “
”

´zB ´ y1V zA ` x1V zI

ı
¨

»
—–

zA ` x1V

zB ` y1V

zJ

fi
ffifl “ z2prA, Bs ` IJq.

Moreover, given a morphism pξ1, ξ2q between two representations X and rX, one has the

following morphism ξ‚ “ pξ1 ‘1V , pξ1 ‘ξ1 ‘ξ2qb1V , ξ1 b1V q between the ADHM complexes

E‚
X and E‚

rX

V b OP2p´1q pV ‘ V ‘ W q b OP2 V b OP2p1q

V b OP2p´1q pV ‘ V ‘ W q b OP2 V b OP2p1q

α

ξ1‘1V

β

pξ1‘ξ1‘ξ2qb1V ξ1b1V

rα rβ

From now on we will denote by A and KompP2q the abelian categories of

representations of the ADHM quiver and the category of complexes of sheaves on P2,

respectively.

Proposition 4.1.2. The functor

F : A ÝÑ KompP2q

given by

FpXq “ E‚
X , Fpξ1, ξ2q “ ξ‚.

is exact, full and faithful.

This Proposition was proved by Patrícia Borges dos Santos and the proof can

be found in [16].

Lemma 4.1.3. Let us fix a representation X and the corresponding ADHM complex E‚
X .

Then:
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piq the sheaf map α is injective. The fiber maps αP are injective for every P P P2 if and

only if X is costable;

piiq if X is stable, then H1pE‚
Xq “ 0 and H0pE‚

Xq is a torsion free sheaf whose restriction

to l8 is trivial of rank r “ dim W and second Chern class c “ dim V ;

piiiq for any X P A, H0pH0pE‚
Xp´1qq “ 0.

The proof of this Lemma can be found in [10, Lemma 5.2 and Lemma 5.4] and

[13, Section 2.1].

For further references, we state the following:

Theorem 4.1.4. There exists bijection between the moduli space of torsion free sheaves

on P2 with rank r and second Chern class c and the moduli space Mpr, cq of stable

representations of the ADHM quiver with numerical type pr, cq.

The proof of this Theorem can be found on [13, Chapter 2] and [15, Chapter

II, Section 3].

All results that are needed to prove the main Proposition of this Chapter were

enunciated here. This proof can be found in the next section.

4.2 Proof of the Proposition 4.0.3

First let X “ pA, B, I, J, A1, B1, F q be a framed stable representation of the

enhanced ADHM quiver. Then F is injective and the ADHM datum pA, B, I, Jq is stable.

Thus one has the diagram

VV 1

W.t0u

BA

J

B1A1

F

I

Since X is stable, one can obtain the stable representation of the ADHM quiver with

numerical type pr, c ´ c1q, X2 “ pA2, B2, I2, J2q (see Lemma 2.3.8). Then, incluing this
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representation, one can obtains the diagram

VV 1

Wt0u

V 2

W.

BA

J

B1A1

F

I

B2A2

J2I2

(4.1)

Denote by Z, S and Q the stable representations of the ADHM quiver

V 1

t0u

B1A1

,

V

W

BA

J andI

V 2

W.

B2A2

J2 ,I2

respectively. Thus, since F is injective and there exists a surjective map between the moduli

spaces N stpr,c,c1q and Mpr, c ´ c1q, see Lemma 2.3.8, the diagram (4.1) can be expressed as

the exact sequence of representations

0 Z S Q 0. (4.2)

It follows from Proposition 4.1.2 the exactness of the sequence of monads

0 E‚
Z E‚

S E‚
Q 0,

where E‚
Z, E‚

S and E‚
Q are the ADHM complexes on P2 associated with the representations

of the ADHM quiver Z, S and Q, respectively.

from the exact sequence 4.2, one can construct the long exact sequence

0 H´1pE‚
Zq H´1pE‚

Sq H´1pE‚
Qq H0pE‚

Zq H0pE‚
Sq

H0pE‚
Qq H1pE‚

Zq H1pE‚
Sq H1pE‚

Qq 0

.

(4.3)

It follows from Lemma 4.1.3, that the exact sequence in (4.3) reduces to

0 H0pE‚
Zq H0pE‚

Sq H0pE‚
Qq H1pE‚

Zq 0. (4.4)
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Indeed, it follows from Lemma 4.1.3 piq that α1, α and α2 on the ADHM

complexes E‚
Z, E‚

S and E‚
Q, respectively, are injective maps. Thus,

H´1pE‚
Zq “ H´1pE‚

Sq “ H´1pE‚
Qq “ 0.

Moreover, since E‚
S and E‚

Q are stable, Lemma 4.1.3 piiq leads to

H0pE‚
Sq “ H0pE‚

Qq “ 0

and then one has the exact sequence (4.4). However, H0pE‚
Zq “ 0. Indeed,

E‚
Z : V 1 b OP2p´1q pV 1 ‘ V 1q b OP2 V 1 b OP2p1qα β

,

and taking P “ px : y : 0q P l8, one obtains

α1 “
«

x1V 1

y1V 1

ff
, β1 “

”
y1V 1 x1V 1

ı
.

Thus,

kerpβ1q “ 0

for all P P l8. Since

H0pE‚
Zq “ kerpβ1q{Impα1q,

the stalks of this sheaf vanishes at P . Therefore, the support of this sheaf is a

0-dimensional scheme, since it does not intersect the line at infinity l8. However,

H0pH0pE‚
Zqq “ H0pH0pE‚

Zp´1qqq

and according with Lemma 4.1.3 piiiq,

H0pH0pE‚
Zp´1qqq “ 0.

Therefore, since H0pE‚
Zq is supported at finitely many points,

H0pE‚
Zq “ 0.

Hence, finally one obtains the exact sequence

0 H0pE‚
Sq H0pE‚

Qq H1pE‚
Zq 0.

ϕ
(4.5)

Therefore, pH0pE‚
Sq, H0pE‚

Qq, ϕq is a flag of sheaves, pH0pE‚
Qq, ϕq is a framed

torsion free sheaf with rank r and second Chern class pc ´ c1q and pH0pE‚
Sq, ϕq a subsheaf

of pH0pE‚
Qqϕq with rank r and second Chern class c, furthermore,

H1pE‚
Zq – H0pE‚

Qq{H0pE‚
Sq
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has rank 0 and consists of pc ´ pc ´ c1qq “ c1 points outside the line at infinity l8.

Now suppose that pE, F, ϕq is a flag of sheaves with ranks and second Chern

classes as above. One can find a framed stable representation of the enhanced ADHM

quiver

X “ pW, V, V 1, A, B, I, J, A1, B1, F q

such that its numerical type is pr, c, c1q. In fact, since pE, F, ϕq is a flag of sheaves, pF, ϕq
and pE, ϕq are framed torsion free sheaves of rank r and second Chern class pc ´ c1q
and c, respectively. It follows from Theorem 4.1.4 that there are stable representations

of the ADHM quiver Q “ pW 2, V 2, A2, B2, I2, J2q with numerical type pr, c ´ c1q and

S “ pW, V, A, B, I, Jq with numerical type pr, cq associated with the torsion free sheaves

pF, ϕq and pE, ϕq, respectively. Thus one has the diagrama

V

W

BA

J ,I

V 2

W 2

B2A2

J2.I2

(4.6)

Suppose that there exists a surjective map

Ψ : S ÝÑ Q,

then there are surjective maps Ψ1 P HompV, V 2q and Ψ2 P HompW, W 2q.
By putting V 1 “ kerpΨ1q, one can define the representation of the ADHM quiver Z “
p0, kerpΨ1q, A|kerpΨ1q, B|kerpΨ1q, 0, 0q. Denoting V 1 “ kerpΨ1q, A1 “ A|kerpΨ1q and B1|kerpΨ1q,

and defining by F : V 1 ÝÑ V as the inclusion map, one gets the following diagram

VV 1

Wt0u

V 2

W

BA

J

Ψ1

B1A1

F

I

Ψ2

B2A2

J2 .I2

(4.7)

This means that the framed stable representation of the enhanced ADHM quiver

X “ pW, V, V 1, A, B, I, J, A1, B1, F q
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is such that the cohomology groups of the monads E‚
Z, E‚

S and E‚
Q associated

with the representations of the ADHM quiver Z, S and Q, respectively, lead to the exact

sequence in (4.5). Therefore, in order to conclude the proof, it is enough to show that the

surjection Ψ does exist.

First of all, it follows from the proof of Theorem 4.1.4 on [13, Chapter 2] that

there is a unique description in terms of monads of framed torsion-free sheaves on P2.

According to this description, the sheaf pE, ϕq leads to the monad

E‚ : V b OP2p´1q pV ‘ V ‘ W q b OP2 V b OP2p1qα β

where

α “

»
—–

zA ` x1V

zB ` y1V

zJ

fi
ffifl , β “

”
´zB ´ y1V zA ` x1V zI

ı

and

V “ H1pF p´1qq, W “ H0pF |l8q

while pF, ϕq leads to the monad

F ‚ : V 2 b OP2p´1q pV 2 ‘ V 2 ‘ W 2q b OP2 V 2 b OP2p1qα2 β2

where

α “

»
—–

zA2 ` x1V 2

zB2 ` y1V 2

zJ2

fi
ffifl , β “

”
´zB2 ´ y1V 2 zA2 ` x1V 2 zI2

ı

and

V 2 “ H1pEp´1qq, W 2 “ H0pE|l8q.

Since pE, ϕq is a subsheaf of pF, ϕq there exists the exact sequence

0 E F Q 0

where Q “ F {E. Therefore, since Q is supported in finitely many points,

0 H1pEp´1qqlooooomooooon
“V

H1pF p´1qqlooooomooooon
“V 2

H1pQp´1qqlooooomooooon
“0

0.
Ψ1

In other words, there exists a surjection Ψ1 : V ÝÑ V 2. Moreover, since pF, ϕq
and pE, ϕq have the same framing, E|8 – F |8. Then

W “ H0pF |l8q – H0pE|l8q “ W 2.
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In other words, there exists an isomorphims Ψ2 : W ÝÑ W 2. Then,

Ψ “ pΨ1 b 1, pΨ1 ‘ Ψ1 ‘ Ψ2q b 1, Ψ1 b 1q

E‚ : V b OP2p´1q pV ‘ V ‘ W q b OP2 V b OP2p1q

F ‚ : V 2 b OP2p´1q pV 2 ‘ V 2 ‘ W 2q b OP2 V 2 b OP2p1q

Ψ

α

Ψ1b1

β

pΨ1‘Ψ1‘Ψ2qb1 Ψ1b1

α2 β2

is a surjective maps between monads. It follows from Proposition 4.1.2 that

FpΨq “ pξ1, ξ2q is a surjective map between FpE‚q “ S and FpF ‚q “ Q. This concludes

the proof.
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