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Resumo

Em muitos estudos, dados limitados ou censurados sio coletados. Isso ocorre em varias
situagOes praticas, devido as limitacdes dos equipamentos de medicdo ou pelo desenho
experimental. Dessa forma, as respostas podem ser censuradas a esquerda, a direita ou em
um intervalo. Por outro lado, os modelos parcialmente lineares sdo considerados como uma
extensdo flexivel dos modelos de regressao lineares incluindo uma componente ndo paramétrica
em alguma covaridvel. Neste trabalho, estudamos procedimentos de estimagdo e diagnostico
em modelos de regressdo parcialmente lineares com respostas censuradas sob a classe de
distribuicdes de mistura de escala normal (SMN). Esta familia de distribui¢des contém um
grupo de distribui¢des com caudas mais pesadas do que a normal que costumam ser usadas para
inferéncias robustas de dados simétricos, como a t de Student, a slash, a normal contaminada,
entre outras. Um algoritmo do tipo EM € apresentado para obter iterativamente as estimativas de
maxima verossimilhanca penalizada dos pardmetros dos modelos. Para examinar o desempenho
dos modelos propostos, técnicas de dele¢do de casos e de influéncia local sdao desenvolvidas para
mostrar a robustez contra observacdes potencialmente influentes e outliers. Isto € feito através
da anélise de sensibilidade das estimativas de maxima verossimilhan¢a penalizada com alguns
esquemas de perturbacdo no modelo ou nos dados e analisando alguns gréficos de diagndstico.
A eficicia do método proposto é avaliada através da andlise de conjuntos de dados simulados
e reais. O pacote PartCensReg implementado no R dd suporte computacional para este

trabalho.

Palavras-chave: Modelo de regressdo censurado, Algoritmo do tipo EM, Modelos lineares

parciais, Influéncia local, Misturas de escala da distribui¢do normal.



Abstract

In many studies, limited or censored data are collected. This occurs, in many situations
in practice, for reasons such as limitations of measuring instruments or due to experimental
design. So, the responses can be either left, interval or right censored. On the other hand,
partially linear models are considered as a flexible generalizations of linear regression models
by including a nonparametric component of some covariate in the linear predictor. In this
work, we discuss estimation and diagnostic procedures in partially linear censored regression
models with errors following a scale mixture of normal (SMN) distributions. This family of
distributions contains a group of well-known heavy-tailed distributions that are often used for
robust inference of symmetrical data, such as Student-t, slash and contaminated normal, among
others. A simple EM-type algorithm for iteratively computing maximum penalized likelihood
(MPL) estimates of the parameters is presented. To examine the performance of the proposed
model, case-deletion and local influence techniques are developed to show its robustness against
outlying and influential observations. This is performed by sensitivity analysis of the maximum
penalized likelihood estimates under some usual perturbation schemes, either in the model or in
the data, and by inspecting some proposed diagnostic graphs. We evaluate the finite sample
performance of the algorithm and the asymptotic properties of the MPL estimates through
empirical experiments. An application to a real dataset is presented to illustrate the effectiveness
of the proposed methods. The package PartCensReg implemented for the software R give

computational support to this work.

Keywords: Censored regression model, EM-type algorithm, Partially linear models, Local

influence, Scale mixtures of normal distributions.
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Chapter 1
Introduction

The problem of estimation of a regression model where the dependent variable is censored
has been studied in different fields, such as econometric analysis and clinical testing, among
many others. For example, in AIDS research, the viral load measures may be subject to some
lower and upper detection limits, below or above which they are not quantifiable. As a result,
the viral load responses are either left or right censored depending on the diagnostic assays

used (see, for instance, Wu, 2010).

In the framework of censored regression (CR) models, the random errors are routinely
assumed to follow a normal distribution for mathematical convenience. However, if the
random error distribution is non-normal, in particular, if its tails are heavier than normal
ones, then the accuracy of the ordinary least squares solutions is lost, introducing biases in
the parameter estimates. For more accurate models, a large number of parametric models
to extend well-known distributions and to provide flexibility in modeling data have been
investigated in recent years. For instance, Arellano-Valle et al. (2012) advocated the use of
the Student-t distribution in the context of CR models. More recently, Massuia et al. (2015)
developed diagnostic measures for CR models using the Student-t distribution, including
the implementation of an interesting (and simple) expectation-maximization (EM) algorithm
for maximum likelihood (ML) estimation. Garay et al. (2015, 2017) proposed a CR model
with observational errors following a SMN distribution (SMN-CR model) from Bayesian and
likelihood based perspectives, respectively. They demonstrated the robustness of the SMN-CR

model against outliers through extensive simulations.

Partially linear regression (PLR) models belong to the class of semiparametric regression
models (see, for instance, Hirdle et al., 2004). They are quite flexible since the nonparametric
component can model nonlinear behavior introduced by some covariate in the model. Linear

regression models can be seen as a limiting case of PLR models when the nonparametric
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component is not considered. Comprehensive surveys are available in Green and Silverman
(1993) and Hirdle et al. (2004). In the past few years, several works on PLR under flexible
error distributions have been published. For instance, Ibacache-Pulgar et al. (2013) developed
diagnostic measures for PLR models using the Student-t distribution, Relvas and Paula (2016)
derived an iterative estimation process and some diagnostic procedures in PLR with AR(1)
symmetrical errors. Ferreira and Paula (2017) proposed a PLR model allowing the errors to
follow a skew-normal (Azzalini, 1985) distribution. In the context of partial linear censored
regression (PCR) models, Vanegas and Paula (2017) proposed the log-symmetric regression
model, where the presence of non-informative censored observations is admitted. Castro et al.
(2014) advocated the use of the SMN class of distributions in PCR (SMN-PCR) models and

adopted a Bayesian framework to carry out posterior inference.

Since the classic normal model is very sensitive to outlying observations, the assessment
of robustness of the parameter estimates is an important concern. The deletion method,
which consists of studying the impact on the parameter estimates after dropping individual
observations, is probably the most employed technique to detect influential observations (see
Cook and Weisberg (1982) and the references therein). Nevertheless, research on the influence
of small perturbations in the model(or data) on the parameter estimates has received increasing
attention in recent years. This can be achieved by performing local influence analysis, a
general statistical technique used to assess the stability of the estimation outputs with respect
to the model inputs. This research area has received considerable attention in the statistical
literature for linear regression models since the seminal work of Cook (1986). However, for the
SMN-PCR model, the marginal log-likelihood function is too complex for many applications
and a direct application of Cook’s approach may be cumbersome, since first and second partial
derivatives of this function are involved. Zhu and Lee (2001) presented an approach to perform
local influence analysis for general statistical models with missing (or incomplete) data by
working with a ()-displacement function, closely related to the conditional expectation of
the complete-data log-likelihood used at the E-step of the ECME algorithm. This approach
produces results very similar to those obtained from Cook’s method. Moreover, case-deletion
can be also studied by using the ()-displacement function following the approach of Zhu et al.
(2001). These methods, and their variants, have been applied successfully to perform influence
analysis in several CR models, as seen in Matos et al. (2013) and Massuia et al. (2015),
among others. In this work, we develop a local influence approach using this method for the
SMN-PCR model, showing that it leads to simple influence measures. The proposed estimation
and diagnostic method are implemented in the R package PartCensReg (Lemus et al., 2018)
available in the CRAN repository.
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Although some works in PCR models with symmetrical distributions have been recently
published, so far, to the best of our knowledge, there is no attempt on studying the SMN-PCR
model from a likelihood based perspective. The goals of this dissertation is develop a fully
likelihood-based approach for computing the maximum penalized likelihood (MPL) estimates
of the parameters through of an efficient EM-type algorithm (the ECME algorithm) and also

propose diagnostic tools under this model.

1.1 Preliminaries

We begin by defining some notation and presenting the basic concepts which are used
throughout this work. A normal distribution with mean z and variance o? is denoted by
N(u, c?), where ¢ (+|p, 0%) denotes its probability density function (pdf). Also, ¢(-) and ®(-)
denote, respectively, the pdf and the cumulative distribution function (cdf) of the standard
normal distribution. On the other hand, Fsy/n(.), Fpy1:(+), Fs.(+) and Fen(+) represent the cdf
of the standard SMN, standard slash, standard Pearson type V' I and the standard contaminated
normal distributions, respectively. When a random variable X follows a Gamma(a,b)
distribution, we will consider the shape-rate parameterization, i.e., with mean a /b and variance
a/b*, where a > 0 and b > 0. We use the traditional convention of denoting a random variable
(or a random vector) by an upper-case letter and its realization by the corresponding lower-case

letter. Random vectors and matrices are denoted by boldface letters.

Definition 1. A random variable Y is said to have a SMN distribution with location parameter
p € R, scale parameter o € (0, 0o) and an auxiliary vector of parameters € R*, denoted by

Y ~ SMN(u, 0%, v), if it has the following stochastic representation:
Y L+ k(U)?Z, (1.1.1)

where Z and U are independent random variables, Z ~ N(0,0?), k(-) is a positive weight
function, U is a mixing positive random variable with cdf H(-|v), with v being a scalar or
vector parameter indexing the distribution of U and = means “has the same distribution as”. It
is easy to see from (1.1.1) that Y'|k(U) = k(u) ~ N(u, k(u)o?). Using conditional distribution,
the pdf of (1.1.1) is:

[e'e) 2
foun(ylp, 0%, v) = (2%02)*1/2/ k(u) " exp [—kl(u)(ygf)] dH(ulv). (1.1.2)
0 o
When it is considered k(U) = U~', the SMN class of distributions include as particular
cases the Student-t, slash, normal contaminated distributions, among others. Also include the

normal distribution as a special case (Andrews and Mallows, 1974).
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e If U is degenerated in 1,i.e. P(U = 1) = 1, then Y ~ N(u, 02).

* If U ~ Gamma(r/2,v/2), Y follows a Student-t distribution with v > 0, then we have
that Y ~ T(u, 02, v) and its pdf is

—v+1
L) dy)*\ *
ny:u70-27V = 2 1+ ) —0 <Y <0,
W ) Vrvo?'(%) v
with d(y) = “=#. The Student-t distribution reduces to the normal distribution when

v 1 oo. If v = 1, we have as a particular case the Cauchy distribution.
* If U ~ Beta(r, 1), Y follows a slash distribution with location parameter p1 € R, scale

0% € (0,00) and shape v > 0, denoted by Y ~ SL(u, 0%, v). The pdf is given by

1
fSL(y“La 0-27 V) = V/O UV_1¢(y; 2 u—102)d(u)’ —00 <y < 00.

When v 1 oo, the slash distribution reduces to the normal distribution.

» If U is a discrete random variable that assumes the following values

U— v with probability ©;
1 with probability (1 — ¢),

the associated density of U is
h(u,v) = olu=y) + (1 = )l w=1)-

And, the pdf of Y takes the form of

fen(ylu, o®,v) = 0d(y; p,y~"'0%) + (1= 9)o(ys p,0%),  —00 <y < 0.
So, we will denote by ¥ ~ CN(u,02 v), if Y follows a contaminated normal
distribution, with " = (¢,7)7,0 < ¢ < 1and 0 < v < 1. The parameter ¢ can
be interpreted as the proportion of outliers and ~ as a scale factor (Lachos et al., 2011).

In this case, if ¥ = 1, we have the normal distribution.

The EM algorithm and some of its extensions

Introduced by Dempster et al. (1977), the EM algorithm (Expectation—-Maximization) it is
an optimization method widely used to obtain maximum likelihood estimates when there is

presence of missing data, censoring, and/or latent variables. The fundamental idea is consider
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the representation of a model in which the observations are augmented in a structure of latent
observations based on a stochastic representation, this is, in terms of simpler distributions
that depend on unobservable quantities. The main characteristics of the EM algorithm is the
ease implementation in computational terms and the monotone convergence (McLachlan and
Krishnan, 2008). The algorithm maximizes the complete log-likelihood function £.(8; yobs, 2)
at each step, where z is the vector that contains all the information including the latent
observations and under mild regularity conditions converging quickly to a stationary point of
the observed log-likelihood denoted by ¢(8; yqns) (Wu, 1983). The algorithm consists of two

steps

» E-step: Replace the observed log-likelihood by the complete log-likelihood and compute
(k)

the conditional expectation (6|0 ) = Egyu [Ecp(0|z)\y0bs,§(k)], where 8" is the

estimate obtained in the k-th iteration.

* M-step: Maximize the function Q(0|§(k)) with respect to 6 to obtain 6""" such that

""" = arg max{Q(0|§(k))}.
6€0

In some situations, from the numerical point of view, maximize simultaneously all the
components of the vector @ is difficult, the complete-log likelihood itself may be complicated.
Meng and Rubin (1993) generalized the EM algorithm to the ECM algorithm. Here the
M-step is replaced with a set of conditional maximization steps, where the parameter vector
is partitioned into several subsets and the estimate is based on a conditional set of all the
others. However in some models, such as the one developed in this dissertation, it is convenient
to use an extension of the EM and ECM algorithms, the expectation-conditional maximize
either (ECME) algorithm (Liu and Rubin, 1994), where some or all CM-step of the ECM
algorithm are replaced by some steps that conditionally maximize the incomplete-data log
likelihood function and not the ()-function, i.e. each CM-step maximizes the conditional
expectation of the complete-data log likelihood and in others maximize the constrained actual
marginal likelihood function (CML-step). The convergence results hold for the ECM and
ECME algorithms. Finally, the algorithm is iterated until a certain convergence criterion is

small enough, like successive evaluations of the actual log-likelihood: ||£(8%*") — £(8™)|| or
16(6%7)/£(6%) —1]|.

1.2 Organization of the Dissertation

The dissertation is divided into four chapters and an appendix. In the present chapter
we briey discussed some preliminary results related to SMN class of distributions as well

as important results for the development of our proposed EM-type algorithm. In Chapter
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2 the SMN-PCR model is defined and the maximum penalized likelihood (MPL) estimation
procedure based in the EM-type algorithm is presented. We also introduce the procedure to
obtain the approximated standard errors via the observed information matrix and the influence
diagnostic techniques, considering case-deletion and local influence approaches. In Chapter
3 numerical examples using both simulated and real datasets are presented to evaluate and
illustrate the performance of the proposed methodology. Finally, in Chapter 4 we will provide

some conclusions remarks, with some recommendations for future research.



Chapter 2

The SMN-PCR model and diagnostic

analysis

Many data problems requires techniques goes beyond simple linear regression.
Semiparametric regression models are statistical models that allow the mean response of
interest to be linearly dependent on some explanatory variables and in other variable it not.
In general, we assume a decomposition of the explanatory variables in two components, the
first one consisting of continuous and categorical explanatory variables that influence the
response variable linearly, while the other component is characterized by a nonparametric
function (continuous variables). Therefore, these models allow the incorporation of important
characteristics of the data, such as the nonlinearity of some variables. In particular, we consider
the partially linear regression (PR) model Y; = x,' 8 + f(t;) + &;, where B and f(-) are the
regression parameters and the smooth function of the auxiliary variable ¢ to be estimated
respectively and ¢; denote an error term with mean zero and constant variance. The estimation
of B and f(-) has been studied in different contexts as smoothing splines (Heckman, 1986),
kernel smoothing (Speckman, 1988) and penalized splines (Green and Silverman, 1993;
Ruppert et al., 2003; Liang, 2006; Holland, 2017).

The data, in some situations, exhibit some important features should be considered. The
problem information loss often occurs in many scientific fields, such as environmental sciences,
biomedical and engineering, among others, where only partial information of some observations
is reported (Wu, 2010). These partial information is due to limits of quantification of the assay
used, that is, the real values of the observations may be bellow or above these limits. These
types of observations are known as censored data. The solution used by some practitioners for
this issue is disregard censored cases or replace these observations for the values associated
with the detection limits and consequently the results obtained will be biased. Besides, the

presence of atypical and influential observations is common and it is suggested in the literature

20
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use a more flexible class of distributions that allow to accommodate these kind of observations,
such as the scale mixtures of normal (SMN) distributions. In this Chapter, we have developed a
complete methodology for partially linear regression models with censored data under the SMN
distributions through of an efficient ECME algorithm for the maximum penalized likelihood

(MPL) estimates and diagnostics measures.

2.1 The model

Let us consider a partially linear model, where the responses Yi,...,Y, are random
variables with independent and identically distributed errors according to a SMN distribution.

To be more precise, let us write:

YVi=x/B+ f(t:i) + ¢, (2.1.1)
e "¢ SMN(0, 0, v),
where i = 1,...,n, Y] is the response for subject i, 8 = (B1,...,3,) " is a vector of regression
parameters of dimension p X 1; x; = (xli, el xpz.)T is a p x 1 vector of explanatory variable
values, t; is a scalar that may represent a value of a continuous variable, for example time and

f(+) is a smooth function. We have that x; it’s not colinear with f(-).

In this work, we are interested in censored observations in the response variable, i.e
observations for which the value assumed for Y; is not known, however it is deduced that
its value belongs to the interval .7. So, if the response variable is right-censored we have
T = |r,00) and it is left-censored, .7 = [—o0, 7). Therefore, an indicator variable V; is also
observed, which assumes the value of 1 when Y it is censored and O when it is not censored. In

the case we consider left-censored observations

v )T it Y < (2.12)
v i Vs, B
t = 1,...,n. We have chosen to work with the left censored case, but the results are easily

extendable to other censoring types. We call the model defined in Equations (2.1.1)-(2.1.2) the
SMN-PCR model. Alternatively, the model (2.1.1) can be written as:

Vi=x/B+n/f+e, (2.1.3)

where f = (f(t9),..., f(t%))T is an r x 1 vector with ¢{, ..., 2 being the distinct and ordered

values of ¢;; n; is an r X 1 incidence vector with the s-th element equal to the indicator function
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I(t; =19 for s = 1,...,r. In matrix form, model (2.1.3), can be written as:
Y = X8+ Nf +¢, (2.1.4)
where Y = (V3,...,Y,)" is the response vector of dimension n x 1, X is an n x p design

matrix, N is an n x r incidence matrix with the (7, s)-th element equal to the indicator function
I(t; =1%),fors=1,...,rand € = (g4, 9, ... ,an)T is an n X 1 vector of random errors with

elements belonging to the SMN class of distributions.

2.1.1 The log-likelihood function

Given an observed sample yops = (¥, - .. ,yn)T of Y = (Y3,... ,Yn)T, where there are
m censored values of the characteristic of interest, we can partition the observed sample
Yobs 1Nto two subsamples of m censored and n — m uncensored values, such that y,,s =
{71, s T, Yms1,- - -, Yn}. Then, the log-likelihood function of the parameter vector 6 =

(BT, f7,0% v")7T considering left-censored observation is given by:

() = log [ﬁ Fa ()] [fSMN<yz-|m,o%u>F‘“],

i=1 o

= Ytog|Fas ()] X tog[fanlulunctn)],  @19)
i=1 i=m+1
where 1, = x/B +n/f; I, = 1if y; < 7, and I; = 0 otherwise. Maximization of
Equation (2.1.5) without imposing restrictions over the function f(-) may cause over-fitting
and non-identification of B (see, for instance, Green, 1987). A well-known procedure is
based on the penalized log-likelihood, which consists of incorporating a penalty function in

the log-likelihood function, such that:
o
0,(0,a) = ((0)— §J(f), (2.1.6)

where /,(0, ) denotes the penalized log-likelihood function, J(f) is the penalty function over
f(-) and « is a smoothing parameter that controls the tradeoff between goodness-of-fit and the
estimated function’s smoothness. The MPL estimates are obtained by maximizing the penalized
log-likelihood defined in (2.1.6). The MPL estimation problem based on an efficient ECME

algorithm is considered in the next section.
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2.1.2 Parameter estimation via an ECME algorithm

To implement the EM method, we require a representation of the model in terms of missing
data. First, observe that by Equation (1.1.1) and given U; = u;, if Y; ~ SMN(p;, 02, v) then:

Yi|Ui = u; ~ N(pg,u; 'o?), (2.1.7)
Uy ~ H(|v).

This relationship is a convenient hierarchical representation of the SMN-PCR model,
and will be useful in E-step of the algorithm. The key to the development of our ECME
algorithm is to consider the augmented dataset z = {71, ..., Ton, Y1y - - Yn, ULy - - -, Up b AS
a consequence, we can use the representation in (2.1.7) to obtain the complete-data penalized
log-likelihood, given by:
lep(0]2) = ~logo® + ! ilogui - L iuz(yz — pi)® + znzlog h(ui|v) — gt](f) +C,

2 24 20% 3 i1 2
where (.,(6|z) is the complete penalized log-likelihood function, i(-|v) is the density of the
mixing variable U and C'is a constant independent of the parameter vector @ = (8", f7,02)".
Like Ibacache-Pulgar et al. (2013) and Ferreira and Paula (2017), we consider the following

penalty function:

where [f”(t)] denotes the second derivative of f(t) with [a, b] containing the values ¢

, for all
j =1,...,r. As in Green and Silverman (1993), we use the natural cubic spline as a solution
for the smoothing function f(-), therefore J(f) = fTKf, where K € R"™*" is a non-negative
definite matrix that depends only on the knot differences (see also Annex I). A complete

expression of K may be found, for instance, in Green and Silverman (1993).

In the E-step of the algorithm, we must obtain the so-called ()-function,

A (k) A (k)

Q(016") = Egw [(p(0]2) [Yors, 01,

in which the superscript (k) indicates the estimate of the related parameter at stage k of the

algorithm and E,, is the conditional expectation of the complete penalized log-likelihood

. . . (k) . .
function given the current estimate @ = 6 . Thus, dropping the constants and given 8 = 8,
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the ()-function can be written as:

(k) 1 &

(k) n -5 ~ S~ SO~ (k)2 QAT o
Q10 x -3 logo?  — 22(@ z:l {522_(9(10) _ 2&2' (o(k))uik) + 50i (9(k>)u§k> ] _ 5f(k) Kf®
1=
(2.1.8)
x —g log a2 i(k) (1, €8 —2u®Te® L TQ®gk) — %f(k)TKf(k>.
202

where € is a diagonal matrix with elements &, (6™) of dimension n x n, £ £ are vectors
. . . S (k) S () . _ .
of dimension n x 1 with elements &;,(0 ), £&2,(0 ) respectively, pn“*" is the n x 1 vector of

means at the k-th iteration and 1,, a (n x 1) vector of ones.

Therefore, it is clear that the expression of the ()-function depends completely on the

knowledge of the expectations
gsi (O(k)) = Eg(k> [U’i}/;slyobsi]a s = 07 17 2
Now, observe that

Egoo [Ui Y [Yani] = Eguo) {Egeo [Ui Y [Yi] [Yrs; }
= Egw {Y"Ego [Ui] Yi] Yo, } -

The following result is very important for the development of our proposed ECME algorithm. It
was provided and proved by Garay et al. (2017, Proposition 1), and is an extension of Theorem
1 and Corollary 1 in Geng (2013). Let Y ~ SMN(0, 1, v) with scale factor U and mixture
distribution H (-|v). Thus fora < b, E[U"Y*|Y € /| forr > 1, &/ = (a,b) and s = 0,1, 2 are
given by:

E[U"|Y € o] = ((a,b) [Ep (r,b) — Eg (1,a)], (2.1.9)

E[UTY|Y € o] = C(a,b) [Es (r — 0.5,a) — Ey (r — 0.5,b)] , (2.1.10)

E|[UY?Y € o] = ((a,b) [Ee (r — 1,b) — Ea (r = 1,0) + aEy (r — 0.5,a — bE, (r — 0.5,)],
@2.1.11)

with ¢(a,b) = (Fsyn (b) — Fsarw (a)) ™ and
Ey(r,h) =E [U’”qb (h U°-5)} — /OOO u' b (h u0-5) dH (ulv),

Eq (r,h) = E|U"® (hU"?)| = /OOO w'® (hu'®) dH (u]v).

As was previously mentioned, the SMN class of distributions include as particular cases the Student-t,

slash, contaminated normal and the normal distribution, among others. Therefore, the calculation of
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Ey (r,h) and Eg (r, h) will depend on the type of distribution (see Table 2.1). We refer to Garay et al.

(2017) for proofs and additional properties. For a censored observation i, Y; < 7;, we have
&5, (")) = B, [UY?|Y: < 7, (2.1.12)

which was obtained in Garay et al. (2017, Proposition 1) with expression given by the Equations (2.1.9)
to (2.1.11). Table 2.1 presents the expressions for some members of the family SMN.

Table 2.1: E4 (1, h) and Eg (1, h) for some members of the SMN family of distributions (Garay
et al., 2017).

Distribution E,(r,h) Eg (1, h)
F(u+2r) /2 (B2 _(V-g%") F(V—I—Qr) AT
Student-t W (5) < 3 ) F<§) (5) va”(h|l/ + 2T, l/)
v 2\ —(v+1) v
Slash = (%) T w+r050) (%) Faw(hly + 1)
Contaminated normal Y o(hy/7) + (1 — p)o(h) Y Fen(hlo,y) + (1 —~7)P(h)

On the other hand, for an uncensored observation i, we have
£5;(0%) = yiE g [Us]Yi). (2.1.13)

The values of EO“") [U;|Yi] were computed before by Osorio et al. (2007) and are presented in
Table 2.2, with d(8*), y;) = (y; — pi") /™. Here, £ will denote the vector containing the &, (6®)
elements in which, if the observation i is censored, it will be computed using &;(0") given in
(2.1.12), or else using &, (0*) as in (2.1.13), for s = 0, 1,2. Note that, Egw [log h(U;|v)|Yobs;] and
Eg [log (U;) |yobs, ] depend only on v, which is assumed known at this stage.

Table 2.2: Eg [U;]Y;] for some members of the SMN family of distributions.

Distribution
Student-t Slash Contaminated normal
(v+1) I'(v+15d*0%,5:)/2) 1— @+ @y'3et30-1d0® )

Eg(k) [Ui Iyz]

v+d*(0W, ;) T(v+0.5,d*0%,y:)/2) 1 — ¢+ py05e050-1d " )

Thus, the proposed ECME algorithm can be summarized in the following steps:
1. E-step: Given 0 = 8", compute 552.(5(’“)) or &, in matrix form, for s = 0,1, 2.

2. CM-step: Update 0" by maximizing Q(O\a(k>) over 0, which leads to the following expressions
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n -1 n
(k1) .
s [Z fo#’(“)"zxﬂ S xi [61,(0%) — &,(6%)m/ ]
i=1 i=1
_ (XTQ<k>X)_1 X7 (¢l - QONTE®)
n -1 5
Bk 5 ~ . ~
fl = [Z &,(0")n;n + a0 K] > my [61,(0%) — &0, (87)x] B
1=1 i=1
- (NTQ““)N +awq2" K> N (& - awxp"™™),
—5(k+1) 1 & ~ PR o
o = o [fzi (0") — 261, (™) + Eoi(e‘“)m“‘“ﬂ
i=1
= l(l;';ﬁ(;) _ 2ﬁ(k+1)T£(1k) + ﬁ(k+l)TQ(k)ﬁ(k+1)> ’
n

3. CML-step: Update v*) by maximizing the actual marginal log-likelihood function, obtaining

m T — ﬂ(-k+1)
pEH = arg;nax Zlog [FSN1N<M>

=1

n
_ (kD)
+ Y log [fSMN(inEkH)v o? 7”)}}'

i=m-+1

(2.1.14)

The vector of parameters v is just a scalar (the degrees of freedom) for the Student-t and slash cases,
whilev " = (¢, fy)T for the contaminated normal case. A more efficient CML-step (2.1.14) can be easily
accomplished by using, for instance, the optimize or optimx routines in the R software (R Core
Team, 2017). The algorithm iterates between the E- and CML-steps until reaching convergence, i.e., until
some distance involving two successive evaluations of the actual log-likelihood, like ||£(8*))—¢(0™)]|
or [[£(0%TV)/¢(8™)) — 1], is small enough. A set of reasonable starting values can be obtained by

. (0 —5(0 . . . .
computing B( " and 52" as the solution of the least squares regression model of Y on X, considering

—5(0)

the censoring values as observed and £ = (NTN + ac?  K) "IN (y — XA(O)).

2.1.3 Model selection and Estimation of «

In additive models, the Akaike information criterion (AIC) can be applied to select an appropriate .
Following Ferreira and Paula (2017), the AIC for PLR models is defined by:

AIC(a) = —200,(8, @) + 2[p + q + df(a)],

where p is the dimension of the regression parameters 3, ¢ the number of parameters of the SMN
distribution being considered and ecp(é, «) is evaluated at 6 for a fixed . The degrees of freedom
(df) is defined as the number of effective parameters involved in modeling the nonparametric effects and

can be approximated by (Hastie and Tibshirani, 1990):

df(a) = tr{I, + oL},
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where . = 02B~1/2KB~1/2, with B = NTN.

2.1.4 Standard error approximation

In this subsection, we obtain the standard error approximation of the MPL estimates. Analogously
to the parametric case, the approximate variance-covariance matrix of 8 = (BT, f7, 02)7 is derived

from the inverse of the observed information matrix (Mark et al., 1994). In effect, @appm(é) =
a zp,,z C))

I, (0]y) |@’ where Ipo(0)y) = — > 0:0" and /.y, (0) is the penalized log-likelihood function of
the SMN-PCR model, given by:
- n 1 1 o
Lep(8) = lep, ( Zlog + > {—210g27r - 51oga2 + 1og[¢i(9)}} - 5fTKf,
=1 i=m-+1

\I/i(e):/;o@[k Y2(u)Dy] dH (wilw) and 4;(0 / T exp[ ko (w )dl}dH(ullu)

where d; = (%;%)2 and D; = +/d; . Thus, the matrix of second derivatives Iy, (0|y) can be represented

as:
0%l ep, (
loo(8ly) = Z 59ng =11(6) +1°(6) + I°(6),

') = —i{ylog[\h(e)]}:m[ 1 0Wi(6) 0Wi(9) _ t a?qfi(e)]’

= 06007 P vZ2(0) 00 06" U,(0) 9000"
- 0? 1 1
2 — = L 2y T
I°(0) = —Z:%;rl{aaaeT —210g(27r) 2log(a) 2( f Kf }
3 o2 I L mwi( ) 1 9*i(0)
3 _ , _ _
) = i:%jﬂ{ agaeTlog[¢z(9)]} ;[ 70) 96 98T " i(8) 90987 |

The calculation of ;(0) and ¥;(0) involves, respectively, the pdf and cdf of the normal, Student-t,

slash and contaminated normal distributions, thus

ov;(0) oD; ui(0) 1, OD?0D; | g 9°D;

29 = L (1/2)55", Sa90T — 2k (3/2) 755 5 Tl (1/2)0960T’ (2.1.15)
Oi(8) 1.4 ad; Fyi(0) 1.4 dd; dd; 1.4 9%d;

59— ol B/25g o507 — 1 (5/2) 54 g7 2k (3/2)0060T' (2.1.16)
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Using the same notation as in Lachos et al. (2011), we have that:
(e%] _k—l . d
Hf’(w) :/ k= (u;)exp [2(%)1} dH (u;|v) (2.1.17)
0

Since I?(w) = —2 H? (w), for each distribution considered, the integral defined in (2.1.17) can be

V2

written as:

¢ Student-t distribution
V22T (w + &)

TT() (vt dy

¢ Slash distribution

¢ Contaminated normal distribution

(W) = V2r [pr* 26(Vdi':0,1/7) + (1 - 9)o(v/d;30,1)

1

Let x; = (x/,n])", n = (B87,f7)7, for the Equations (2.1.15) and (2.1.16), the first and

second derivatives of D;, d; for & = (n,0?), using the notation Eo(Di) = % Dy(d;) = %
Zu)ggT(Di) = ;;;;’T and D? . (d;) = 82203? are given by:
Dy(Di) = =%, Dpa(Dy) = 5 (i = xi ),
DfmT (Di) =0, D0202(Dz) = (022 (yi —x; m),
Di(,z (D;) = (0;)33/27
Dy(d;) = _%(X;yz‘ - x;xZTn), Dg2(d;) = _(U%)z (yi —x; n)?,
Dy o (di) = Zaxix; . Diapa(di) = iy (yi — x; m)* and
D22 (di) = g (xiyi — xix; ' m).
For I?(0), it is straightforward to find that 172777T = aK*, IZUQ =0andI2, , = —%, where K*

is a block diagonal matrix of dimension (p + ) X (p + r), given by:

0 0
K" = .
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2.2 Diagnostic analysis

After the estimation procedure, the next step is evaluation of model results to detect outlying and
influential observations in addition to possible deviations in the model, because in some cases the
character of the regression can be determined only by a few observations. For example, in the context
of simple linear regression, it is well known that inferences based on ordinary least squares regression
can be strongly influenced by only a few outlying observations in the data. In semiparametric regression
models, the effect of estimates under the influence of some observations is not an exception, the analysis
can be influenced by minor perturbations of the model (Choongrak et al., 2002; Zhu et al., 2003; Hadi,
2016). In these circumstances, Cook and Weisberg (1982) stated there are two alternatives to handle
this situation. The first consists of the development of robust estimation methods that require few
assumptions and the second is related to the development of diagnostic tools to detect possible influential
observations. So, we have the case-deletion approach (Cook, 1977), a traditional method for identifying
influential observations, and the local influence approach, with the aim of investigating the behavior
of some influence measures when we introduce small perturbations in the data and then monitor their

impact on the outcome of the analysis.

2.2.1 Case deletion

Case-deletion is a widely used approach that studies the effect on the final inferential results of
dropping the i-th case from the dataset. Hereafter, any subscript [—i] refers to the original dataset with
the i-th case deleted. In general, we consider y;_;; = (Y1, s, -, Yn_1) " as the complete dataset with the
i-th observation deleted. The complete-data penalized log-likelihood calculated after eliminating the
i-th observation is denoted by /.,(0|z_;), therefore let 5[,2.] = (B[T_ i],?[T_i], o?_;)" be the argument
that maximizes the function Q|_;(0]0) = E[lp(0]2—i))|Yobs—i, 0], where 6 = (B',f7,07)7 are the
MPL estimates obtained through ECME algorithm for 6.

To measure the influence of ¢-th observation in the MPL estimates of 8, we compare the difference
between 5[_1»] and 0. If this difference is large, then the i-th case can be considered influential, so it
will require special attention. Since 6|_; must be performed considering each individual separately for
¢t = 1,...,n, the computational effort can be high for large sample sizes. To circumvent this, Zhu and

Lee (2001) proposed the following one-step pseudo approximation:

0,_,=0+{-0010)}'Q.,(010) 22.1)
where Lo s 82Q(0)0) DA 8Q[7i](9|§)
QOIO) = g0 lo_g @4 QualIB) = =5, 5.

are the Hessian matrix and the individual score vector evaluated at 6, respectively.
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Thus, Q;_4(016) = (Q|_.,(88), Q4,(8]0), @ ,(6]8))" has its elements as:

. ~ 0 (6]|0 ~
Q@) = OO0 LS e - 0.
i#£]
. o 0Q, (0|0 ~ o o~
QL (010) = Q[-(?Jé’) AZAZ[& (a)njﬁj}—%Kf,
i#]
. S 0Q 000, 1 1
Q0,2 (610) = Wgzg—ﬁi#j{lg[szx ) — 261,(0)7i; + &, (0722 }-

Following Zhu and Lee (2001) to measure the distance between 5[,i] and 0 and therefore to assess

influential observations, we compute the generalized Cook’s distance as follows:
~ NT (e onn Y ~
GD; = (0[_” - 0) {—Q(B\E))}(é)[_i] - 0), i=1,...,n (2.2.2)

and by substituting Equation (2.2.2) into (2.2.1), we obtain the approximation of the generalized Cook’s

distance
1 . o P e s .
GD} = Q4(018)' {-Q(018)} ©4(618) i=1,...n (2.2.3)

Another measure used to calculate the difference between 5[_2-] and 0, similar to the likelihood
displacement defined in Cook (1986), is the Q-displacement (Zhu and Lee, 2001), defined as:

QD; =2{Q(016) - Q(B_40)} i=1,....n. (2.2.4)

The Hessian matrix, ()(6(6)

After some rearrangement of terms and evaluation of the derivatives at @ = 6, we obtain the Hessian

matrix Q(8|6) with elements given by:

~~ 9%Q(0]6) 1 &

Qul00) =507 o= = L O
0r@0) - TGO LS O] -
Q,2(016) = m = —% + (;12)3521{522( ) — 261,(0)7ii + &, (O) }
o (018) = az%’f'f) o izn;&)i (O)xin]
Op02(0]0) = 82%(;7@ == (;2)2 ZZZ;[& (O)x; — &, (O)xifui,
G0 @0) = 2200 L > [, O — o, O]
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2.2.2 Local influence

Local influence analysis seeks to verify if small perturbations in the model or in the data affect
the parameter estimates. Hence, to study the behavior of some influence measures, we will follow the
approach proposed by Zhu and Lee (2001), where the Q)-function is perturbed to assess the influence
of this perturbation on the estimation. Ibacache-Pulgar and Paula (2011) and Ferreira and Paula (2017)
applied this method successfully in the context of PLR models.

Consider a perturbation vector w = (wi,...,w,) ' restricted to some open subset £ € R". Let
lep(0,w]|z) be the complete-data penalized log-likelihood function of the perturbed model. Thus,
we assume that a wo € € exists such that £.,(0,w|z) = (.,(0]2) for all 6. Also, let O(w) =
(B(w)™,f(w)7,0%(w))T denote the maximum of the function Q(6,w|0) = E[fcp(0,w|z)\Yobs,a].
Then, the influence graph is defined as a(w) = (w', fo(w)) ", where fg(w) is the Q-displacement

function, defined as:

—

fo(w) =2[Q(810) - Q(B(w)[6)).

To approximate the ()-displacement function, the normal curvature C'y, p(0) of a(w) at wo in the
direction of a unit vector h (|| h ||= 1) is used to summarize the local behavior of fo(w). It can

be shown that:
Con(0) = —2h T Qu,h = 2hTAg’wO{Q(§|§)}*1A97w0h,

leading to

Oy = A (0018} g .

Additionally, ()(6]6) is the Hessian matrix of dimension (p + r + 1) x (p + r + 1) and Ag oy =
82@(07 w@)/aga‘*ﬁ = (Ag,wo’
at6 = 0.

The information provided by —Qwo is fundamental for detecting influential observations (Cook,

Af A2 MD)T is the matrix of dimension (p 4+ r 4+ 1) x n evaluated

1986). From the spectral decomposition of a symmetric matrix
. n
—2Quwo = > MV,
k=1

where (A1,v1), -+, (\n, vy) are the eigenvalue-eigenvector pairs of —2Qw0 with A\ > ... > A,
Ar+1 = ... = A, = 0 and orthonormal eigenvectors {vy, k = 1,..,n}. Zhu and Lee (2001) and Lee and
Xu (2004) proposed to examine all eigenvectors corresponding to nonzero eigenvalues to capture more
information. For this end, we have the expressions

A =

Ak 2 2 2 \T . 2
— vy = (Viq,...,V and M(0) = ALVi.
s v = (o) 0= 3 wwvk
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Let M(0); = Sh_; \xvZ, denote the I-th component of M (0). The evaluation of influential observations
is based on the visual inspection of M (0); plotted against the [-th index, for [ = 1, ..., n. There are some
disadvantages in using the normal curvature for influence analysis, since this measure may assume any
value (not bounded), meaning it is not invariant under uniform scaling changes. Instead, we use the

conformal normal curvature (Poon and Poon, 1999), given by:

CfQ,h(G) N Bf le {Q(0| } lgwo
Q>

)
Bran®) = S ST

(2.2.5)

where h; is a column vector in R" with the [-th entry equal to one, and zeros in the remaining positions.
Here, Al—;,wo corresponds to thA;rM. The conformal normal curvature defined in (2.2.5) has the
property that 0 < By, p, (0) < 1 and the calculation is computationally easier. Based on the work of
Zhu and Lee (2001), M (0); can be obtained via By, p, () for all I.

Currently, there is no general rule for determining a benchmark value to indicate whether an

observation is influential or not. Let A/ (0) and SM (0) be the mean and standard error of {M (0);, | =

.,n} respectively. Zhu and Lee (2001) showed that M (0) = 1/n and proposed M (0) + 2SM (0)
as benchmark value for //(0);. On the other hand, Lee and Xu (2004) presented a generalization and
also proposed to use M (0); > M(0) + ¢*SM(0), with ¢* being a selected constant greater than 2. The
choice of ¢* depends on the context of the application (Ferreira and Paula, 2017), where the [-th case is

considered as influential if M (0); is larger than the benchmark.

Perturbation schemes

We now evaluate the matrix Ag , 0 under four different perturbation schemes for the SMN-PCR

model.

(a) Case-weight perturbation

This case of perturbation is appropriate to detect observations with large contribution to the penalized
log-likelihood function and that may exercise strong influence on the maximum penalized likelihood
estimates. From Equation (2.1.8), the so-called perturbed )-function, considering an arbitrary attribution

of weights, we have:
6, w|0) = sz ep; (012)[Yops, 0] Z%Qz (6]6) — ?TK?, (2.2.6)

where w = (wi,...,w,)" € R" The original expected value of the penalized complete-data

log-likelihood corresponds to wg = (1,...,1)T. In this perturbation scheme, the matrix Ag wy, derived
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from (2.2.6) has elements given by:

9%Q(010) X;

AB iy = 080w, lwwo — 5 [glz(A) - foi(A)ﬂz} ,

9*Q(0)6 ; _ .
Arwy = an(&u’l) wewe % [ﬁli( ) — &o, ( )M] and

9*Q(06 1 1 - o o
Doy = G s o = 5+ g [68) 261,000+ €0,072].

(b) Scale perturbation

In order to study the behavior of the estimates when there are possible deviations from the assumption

of homogeneity, we assume that Y; ~ SMN(u;, 02(w;), v), with 0%(w;) = w; 'o?, w; > 0 for i =

1,...,n. The perturbed @-function under this scheme is expressed as:
a1 (P wr - ) Gy
Q(8,w[0) = z; —5108 o) 25 {521'(0) =261, (0)pi + §oi(9)ﬂi] -5 Kf, (227
1=

where w = (w1,...,w,)| € R™ is the vector of perturbations such that the non-perturbed model is
obtained when wo = (1,..., I)T. After some algebraic manipulations in (2.2.7), we obtain the elements
of the matrix Ag , -k

8*Q(6]0) Xi [, a .
ABwy = 0B0w; lw=wo o2 [&i( ) =&, )MZ} ’

9%Q(010) n; . .
Af,wo = W W=, = ? [512( ) - 501 (e)uz} and

2Q(016) 1 5 5\i 1 6o (8132
Ap2 wy = T0020w; lw=wo 2(c2)? [522-( ) — 261, (0) +foi(9)/fli} :

(c) Explanatory variable perturbation

Here, we are interested in perturbing a specific continuous explanatory variable. Let w =

(wW1,...,wy) " be the vector of perturbations, i = 1,...,n. So, the r-th explanatory variable of the
design matrix is perturbed as XL = xiT + wz-S,,e,T forr =1,...,p, where S, is the standard deviation

of the r-th explanatory variable and e, is a vector of dimension p x 1, with a one in the r-th position and

zero elsewhere. Under this scheme, we have that the perturbed ()-function is
P N U S 5o @] TG
Q(8,w[0) = —§log02 o 2[521'(0) — 261, (0) 17 + o, (0)11; } - Ef Kf, (2.2.8)
i=1

where w = (w1,...,w,)" € R"and if = XLB+nI?. Let wg = (0,...,0)" € R™ the vector of
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non-perturbations. Taking the second derivative of (2.2.8) we find

2Q(0]6) S,

DB = B0 wmiw = 2516400 = 0,(6) [ies +eBxi) },
0%Q(0|0 S, o
Arwy = 6f(8w’1) Wty _ﬁf‘%( Je, Bn; and
9%Q(010) S, PR .
Aot = 02, urmaon = (o (i Oier B = 61,(0)e] B].

(d) Response variable perturbation

In this case, to perturb the response variable values we replace Yobs, by Yobs, (wi) = Yobs, + Syw;
fori = 1,...,n, where S, is the standard deviation of Yj,. For the SMN-PCR model presented in
Equations (2.1.1) and (2.1.2) we have:

Ti(wi) if Y <
Y;(wz) if }/Z > T;.

Yobs; (wi) = {

Therefore, Y;(w;) = Y; — Syw; (Matos et al., 2013). So, the perturbed Q-function it is obtained replacing

Yobs; values by Yous, (wi), where w = (w1,...,w,)’ € R™ denotes the vector of perturbations and

wo = (0,...,0)7T is the corresponding non-perturbation vector such that Q(0, w|0) = Q(8, |6), with

n

QO.wI0) = —J1o() — = 3 [6,(6) — 261,6)S 1 + &0, (0)S27 — 261, O
g =1
+ 260, (0)S,wifii + &, (0)7iF] —EfTK?. (2.2.9)

The matrix Ag wo has elements given by:

~_ 9%Q(019) _ Sy, 5

_ 9%Q(018) _ Sy, 5

_ 9%Q(019) _ Sy N 5
B w0 = 5o2g00 lwewo o) [0, () — £1,(0)]

Local influence in sub-vectors

Cook (1986) extended the analysis of local influence to a subset of the parameters of interest. Let
us consider the partition & = (67,605)", where §; = B and 8, = (f",0?)". In PLR models for
complete data, some authors, such as Zhu et al. (2003), Ibacache-Pulgar and Paula (2011), Chen et al.
(2012) and Relvas and Paula (2016) have carried out local influence analysis on sub-vectors. In the
context of generalized linear mixed models with missing data, Zhu and Lee (2001) demonstrated that

Q(§|a) = f/cp, where Ecp is the penalized Hessian matrix. Thus, we can define an approximation to the
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partial conformal curvature of 81 = (3 in the unitary direction h as:
Cron(8) = KT Ag , {[Q08) " = G} Ag .

where (%2 = blockdiag{0, (Q?)_1

Of = 0¢(6]0) and Q°° = (,-(8]6
conformal normal curvature B forhu (B) based on Equation (2.2.5). The details of the proof are omitted.

(Q"2)_1} obtained from the partition of Q(é\é) according to 6, so
)

. Therefore, it is possible to define an approximation to the partial



Chapter 3

Results

In order to examine the performance of our proposed models and algorithm, in this chapter we
present some simulation studies through a Monte Carlo (MC) experiment and analyze a real dataset. In
relation to simulation studies, the first study is related to the parameter recovery and robustness of the
MPL estimates. The second simulation study evaluate the finite-sample performance of the parameter
estimates, e.i., we investigate the asymptotic properties of the MPL estimates from different cases of the
SMN-PCR model. The last study shows the capacity of the diagnostic measures in detect potentially

influential observations. Finally, we analyze a real dataset, the wage rate (Mroz, 1987).

3.1 Simulation study

In this section, the performance of the proposed algorithm is evaluated via simulation studies. These
computational procedures were implemented using the R software (R Core Team, 2017). In particular,

we consider the following PR model
Y, =x/B+ f(tj)+ei, i=1,...,n, (3.1.1)

where ¢; iid. SMN(0, 02, v). We generated left-censored samples from the model given in (3.1.1)
considering censoring levels 0%, 10%, 20% and 30% and sample sizes n = 200, 300,400 and 600.
For each combination of censoring level and sample size, we generated 500 samples from the
SMN-PCR model, in four different situations: N-PCR, T-PCR (v = 4), SL-PCR (v = 2) and CN-PCR

(vT =(0.1,0.1) ), for normal, Student-t, slash and contaminated normal distribution, respectively.

We performed all MC simulations setting 8 = (2,4)" and 0% = 2, with x; = (21, :1:21.)—r generated
independently from uniform distributions on the intervals U(0,1) and U(1,2), respectively. The true
nonparametric function was chosen as f(¢) = 10 sin(27t), with ¢ € (0, 1.5). We also assumed different

values for ¢, so the incidence matrix N was the identity matrix of order n x n.

36
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3.1.1 Parameter recovery and robustness of the MPL estimates.

We computed for each element of the parameter vector of interest 8, = (531, f2,02) ", its MC
mean (f),) and MC standard deviation (MC-SD) for its MPL estimates. Also, the average values
of the approximate standard errors obtained following Subsection 2.1.4 (OM-SD) were recorded for

comparison purposes. So, we have that:

_ | 5 \/500 _ 500
0 nG) ) _ A _ (J)
O = 50 9 MC-SD = Z@ k)?/499  OM-SD = SOOZSEG

Table 3.1 presents the MPL estimates of 8}, in the different scenarios considered. This table shows that
the model fits provide estimates that are close to the true values of the parameters and are less sensitive
to the variation of the censoring level. Besides this, the empirical standard deviations (MC-SD) are
close to the MC standard errors (OM-SD) and the difference tends to zero as the sample size increases,
indicating that the result of the standard errors (Subsection 2.1.4) is reliable. The results of the coverage
probability are presented in Table 3.2, where 95% confidence intervals were computed for each scenario
using the OM-SD. As expected, the “coverage probability” is stable and around 90% for the regression
parameters 31 and [2, but the percentage of coverage is somewhat impaired for the intervals built for

o2. Overall, the ECME algorithm produces satisfactory estimates for the SMN-PCR fitted models.

For the estimates of the nonparametric component, Figure 3.1 presents the behavior of the 500 MC
samples under the T-PCR model. We can note from this figure that when the censoring level increases,
the variability among the nonparametric estimates functions increases, however as the sample size
increases, the variability decreases. Similar results were obtained for the other models (see also the
Figures A.1, A.2 and A.3 of Appendix A).

On the other hand, we evaluate the robust aspects of the MPL estimates in the SMN-PCR model in
the presence of outliers in the response variable. From the simulation scenarios previously considered,
we generate 100 MC samples of size n = 200 under N-PCR model with left censored values, a = 0.0001
and two levels of censoring, 10% and 20%. The goal is study the influence of the change of 7 units in a
single observation. In this case, we contaminate and replace the observation #66 with yes(1) = Yes + 7,
forn € {2,4,6,8,10,12,14, 16}. In each replication, we obtained the MPL estimates with and without
the contaminated values. We define the relative change of the parameter of interest as:
0i(n) — :

=

RC(6;) = 7

where 671(17) is the MPL estimate obtained with the contaminated dataset and 0; is the estimate with the
initial dataset. Figure 3.2 illustrates the mean values of the relative changes for estimates of 31, 52 and
o2 for each value of 7 under N-PCR, T-PCR, SL-PCR and CN-PCR models respectively. As expected,
we can see that for the all parameters, the mean values of relative changes under the N-PCR model

increase significantly as the value of 7 increases, i.e. the estimates obtained in the N-PCR model are
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Table 3.1: Simulated data. Mean value, MC standard deviation (MC-SD) and approximated
standard errors (OM-SD) based in 500 artificial samples from the SMN-PCR model,
considering left censoring.

Model/Measure

N-PCR T-PCR SL-PCR CN-PCR

Parameter CL. 60, MC-SD OM-SD 8, MC-SD OM-SD 8, MC-SD OM-SD 0, MC-SD OM-SD

n=200

0% 1986  0.373 0339  2.060  0.448 0.405  2.008  0.459 0449  2.045 0421 0.381

10% 1983  0.384 0.347  2.070  0.446 0.412 2010 0459 0.456  2.035 0434 0.390

b 20% 1990 0.410 0367  2.080  0.487 0438  2.013  0.490 0483  2.055 0.470 0.414
30% 2.008  0.429 0.393  2.080  0.506 0468  2.028  0.535 0516  2.082  0.493 0.441

0% 4.072  0.360 0327  4.134  0.420 0.391  4.087 0.444 0435 4.115 0.397 0.369

10% 4.080  0.385 0345 4.146 0457 0412  4.086  0.462 0454  4.114  0.420 0.389

Bz 20% 4.087  0.406 0359 4.174  0.468 0428  4.117  0.492 0476  4.151  0.446 0.405
30% 4.116  0.402 0385 4224 0471 0460 4.168  0.504 0.507  4.188  0.433 0.434

0% 1712  0.199 0.175 1.689  0.232 0.231 1.740  0.231 0210  1.687  0.238 0.212

2 10% 1.702  0.213 0.183 1.674  0.243 0239  1.727  0.241 0219  1.677 0.242 0.221
20% 1.691  0.218 0.192  1.663  0.253 0252 1.727  0.252 0.231 1.673  0.254 0.234

30% 1.704  0.233 0206 1.672  0.263 0270  1.721  0.259 0246  1.675 0.273 0.251

n=300

0% 1985 0.290 0279  2.048  0.355 0.333  2.000  0.353 0.369  2.032  0.335 0.315
10% 1980  0.291 0286  2.052  0.360 0.341  2.001  0.365 0.378  2.033  0.339 0.323
hr 20% 1983  0.304 0302  2.054 0.387 0362  2.016 0.390 0.397  2.037 0.354 0.342
30% 1.998  0.325 0323  2.084  0.402 0.385 2.041 0412 0425 2063 0.374 0.365

0% 4096 0294 0271 4104 0348 0323 4082 0394 0358 4079 0327 0305
10% 4.093 0312 0283 4116 0366 0337 4084 0416 0371 4085 0353 0319

B2 20% 4113 0327 0299 4142 0388 0357 4.098 0444 0392 4101 0384 0338
30% 4.40 0321 0317 4200 0375 0378 4151 0431 0416 4141 0378 0358

0% 179 0.163  0.149 1788 0.197  0.198 1815 0.8 0177 1785 0.190  0.181

) 10% 1788 0.171  0.156 1781 0208 0206 1.810 0.198 0.8 1784 0203  0.191
20% 1782 0181  0.164 1787 0224 0218 1.802 0209 0196 1786 0215  0.202

30% 1790 0.195  0.177 1785 0244 0248 1.805 0225 0209 1786 0230 0217

n=400

0% 1998 0247 0238 2039 0298 028 2011 0305 0315 2033 0275  0.268
10% 1997 0253 0245 2041 0298 0291 2008 0309 0323 2026 0280 0275

g 20% 2004 0268 0261 2066 0327 0311 2022 0336 0344 2050 0298  0.294
30% 2012 0292 0280 2072 0365 0333 2053 0361 0368 2065 0318 0315

0% 4087 0279 0249 4127 0316 0296 4.115 0355 0328 4065 0296  0.280

10% 4.080 0289 0260 4133 0319 0309 4104 0370 0341 4081 0304 0292

B2 20% 4113 0305 0277 4184 0338 0329 4117 0397 0363 4117 0323 0312
30% 4123 0300 0293 4229 0314 0347 4186 0390 0384 4152 0314  0.330

0% 1.842 0138  0.132 1.832 0165 0174 1855 0.163 0156 1829 0.164  0.160

9 10% 1839 0.147  0.138 1.827 0173  0.182 1851 0.170  0.164 1818 0.166  0.167

7 20% 1.836  0.157 0.147  1.823  0.184 0.192  1.849 0.178 0.173  1.824  0.186 0.178
30% 1.839  0.167 0.157  1.837  0.197 0.207 1.848  0.195 0.185 1.830  0.194 0.191
n=600
0% 1996  0.206 0.196  2.027  0.239 0232 2.021  0.253 0.258 2.012 0.214 0.220
8 10% 2.001 0214 0204  2.040 0.238 0241  2.018 0.262 0266  2.006  0.226 0.230

20% 2.004 0226 0217  2.061  0.264 0.259  2.030  0.277 0.284  2.028  0.244 0.244
30% 2.010 0.244 0232  2.062  0.287 0275  2.053  0.295 0.304  2.027 0.261 0.261

0% 4061 0220 0203 4076 0257 0241 4085 0277 0268 4087 0230  0.228
10% 4062 0233 0211 4091 0265 0252 4096 0301 0278 4076 0242 0236

B2 20% 4105 0255 0225 4110 0275 0266 4.109 0319 0297 4111 0253  0.256
30% 4118 0250 0240 4164 0277 0286 4.160 0327 0317 4151 0263 0270

0% 1.891 0.117  0.110 1.880 0.138  0.145 1.892 0.134 0130 1882 0.136  0.134

9 10% 1882 0.121  0.116 1.882 0150  0.152 1.885 0.138 0136 1870 0.144  0.140
20% 1.881 0.129  0.122 1873 0156  0.161 1878 0.146  0.143 1881 0.156  0.149

30% 1.885 0.136  0.131 1883 0165  0.172 1882 0.156 0153 1867 0.162  0.158
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more sensitive to outliers. In addition, we may note that the estimates of the parameters /31 and o2 are
more affected by the presence of outliers and is greater when it increases the level of censoring (20%),
while B2 is more stable. In contrast, the SMN-PCR models with heavy tails (T, SL and CN) are less

affected by variations of 77 and therefore more robust than those under N-PCR.

Table 3.2: Simulated data. Coverage probability (%) based on 500 samples from the SMN-PCR
model, considering different left censoring levels (LCs).

N-PCR T-PCR SL-PCR CN-PCR

n LCs [ B2 o? b1 B2 o? B1 B2 o? b1 B1 o?

0% 924 912 88.8 934 926 89.0 956 942 896 930 920 81.8
10% 93.0 90.6 880 932 906 870 952 938 880 922 926 828
20% 934 910 882 918 910 860 956 912 898 928 91.6 850
30 932 932 83.0 932 930 806 948 920 81.6 922 93.0 87.0

200

0% 942 922 888 932 93.0 86.6 972 922 858 932 093.0 8438
10% 93.8 914 902 940 920 884 96.8 92.0 86.8 946 920 84.6
20% 952 914 812 932 916 892 958 914 880 952 90.0 850
30% 962 932 84.0 93.0 926 884 966 922 870 946 928 87.6

300

0% 946 910 834 946 904 936 956 912 918 948 932 88.0
10% 95.0 90.8 850 948 938 922 952 926 906 954 940 872
20% 96.0 90.0 846 926 906 906 962 922 91.6 948 93.0 88.6
30% 952 924 876 932 910 908 952 922 914 956 936 0912

400

0% 946 926 924 952 918 905 962 940 936 960 0952 922
10% 95.8 922 902 966 944 956 962 928 922 958 934 918
20% 93.6 91.0 888 948 934 958 966 928 952 946 944 924
30% 926 91.8 914 952 928 904 956 920 94.6 942 93.6 948

600
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Figure 3.1: Simulated data. Behavior of the nonparametric component based on 500 samples

from the T-PCR model. True curve (blue line) and adjusted curves (gray lines).
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Figure 3.2: Simulated data. Mean values of the relative changes on the MPL estimates fitting a
N-PCR, T-PCR, SL-PCR and CN-PCR models for different values of 7 on the observation 66.

3.1.2 Asymptotic properties

Now, to provide empirical evidence about the consistency of the MPL estimates. We analyzed the
mean of the absolute bias (Bias) and mean of the Mean square error (MSE) of MPL estimated obtained

from the fitted models in each Monte Carlo experiment. The Bias and MSE measures are given by:

500 1 500

) nG) 2
Bias(0k) = -5 2\9 0] and  MSE(0)) = 00 2 (9 — )2,

where 5,2’ ) is the MPL estimates of the parameter 6}, for the j-th MC sample, j = 1,...,500. Figures 3.3

and 3.4 shows a graphical representation of the asymptotic properties. From the scenarios considered,
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the least appropriate was for n = 200 and we can see that the estimates obtained between the uncensored
and most censored (30%) cases are quite similar. This gap is tolerably small and it becomes smaller
when simple size increases. For instance, o estimates for a 600 sample size, are almost equal regardless
of the censoring level and model. Thus, the results illustrate that Bias and MSE decrease as the sample
size increases and we can see that, independently of level of censoring and type of SMN distribution,
the properties for (31, 32 and o2 following patterns of convergence to zero. Hence, as a general rule the
MPL estimates based on the proposed ECME algorithm for the SMN-PCR models, do show desirable

asymptotic properties.
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Figure 3.3: Simulated data. Asymptotic properties. MC mean of bias for 3, 3, and o2 for
different sample sizes and levels of censoring in SMN-PCR models.
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Figure 3.4: Simulated data. Asymptotic properties. MC mean of the Mean square error (MSE)
for 31, B and o? for different sample sizes and levels of censoring in SMN-PCR models.

3.1.3 Diagnostic measures

Additionally, we illustrate the capacity of the proposed diagnostic measures to identify possible

influential observations. The diagnostic measures were computed from 200 MC simulations from a

N-PCR model considering a sample size n = 200, 10% censoring level, same nonparametric function
f(t) as before and the benchmark setting at ¢* = 3.5 (Subsection 2.2.2), for i = 1,...,200. Under this

scenario, we contaminated observation 82 as follows

(i) Replace in the parametric component 3 by 23 to generate the response of the observation #82

—7 Ysa.

(i) Replace 8 by 4.

(iii) Replace B by 83.
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Table 3.3 presents the percentage of times that observation #82 was correctly identified as the most
influential under different perturbation schemes considering the N-PCR model, and the percentage of
times that a lower weight ugs = &, (@) was assigned with heavy-tailed models, such as, Student-t
(T), slash (SL) and contaminated normal (CN). As expected, all percentages increase for higher
contamination rates. First group (success percentages) represents the ability to identify influential
observations in the normal model and the second one (preference percentages) indicates the robustness of
heavy-tailed distributions, since a smaller weight is attributed to influential observations and it increases
due to the high contamination rate. By way of illustration, Figures 3.5 and 3.6 present the behavior of
the diagnostic measures through index plots for the case-weight and explanatory variable perturbation
for one of the MC simulations (simulation No.3). Is clear the high sensitivity of the MPL estimates in
the presence of influential observations when a N-PCR model is used, however are more robust under
SMN-PCR models with heavy tails (T, SL and CN), since the observation #82 for these cases was not
detected. Similar results are found for the other schemes (see Figures A.4 and A.5 of Appendix A)).
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Figure 3.5: Simulated data. Index plot of M (0); for assessing local influence for contamination
rate 83. Case-weight perturbation (simulation No.3).
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Table 3.3: Simulated data. Success percentages for different perturbation schemes in the N-PCR
model and preference percentages under the T, SL and CN models, for different contamination
schemes.

Normal Heavy-tailed
Contamination Case-weight Scale Explanatory Response T SL CN
2B 71.5 71.5 72.5 70.5 71.5 70.5 71.5
43 95.5 95.5 94.5 89.0 94.0 94.0 94.0
83 97.5 97.5 96.5 96.5 96.5 96.5 95.5
N T
0.4 0.4
8.2
0.3 03
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Figure 3.6: Simulated data. Index plot of M (0), for assessing local influence for contamination
rate 8. Explanatory variable perturbation (simulation No.3).

3.2 Application: Wage rate data

In this section, we illustrate the performance of the proposed method by analyzing the wage rate
dataset described in Mroz (1987). The dataset comes from the University of Michigan Panel Study
of Income Dynamics (PSID) and describes the average hourly earnings or wage rates (the dependent
variable used in this application) of 753 married white women between the ages of 30 and 60, with 428

working at some time during the year 1975. For those who did not work in 1975, the wage rate is zero,
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so the variable can be classified as censored-uncensored, i.e., it follows Equation (2.1.12) with 7; = 0
for i = 1,...,753. This dataset presents left censored observations, since we can only observe its real
value if a woman worked for pay during 1975. Thus, our purpose is to model the wage rate as a function
of a set of control variables such as the wife’s age (96'11-), her years of schooling (in), husband’s hours
worked (7, ), husband’s wage in dollars (z,,), tax rate faced by the wife (', ), number of children
younger than six years old in the household (xG) and number of children between the ages of six and
nineteen (x; ) We also consider a nonlinear relation between the wage rates and the number of years
the wife worked since age 18 (see Figure 3.7). The dataset was analyzed previously by Arellano-Valle

et al. (2012), Castro et al. (2014) and Massuia et al. (2015).
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Figure 3.7: PSID-1975 dataset. Wage rates vs. number of years the wife worked (Experience).

3.2.1 Analyses of the fitted models

The data were analyzed using the SMIN-PCR models considering the Student-t (T-PCR), slash
(SL-PCR), contaminated normal (CN-PCR), and of course the normal distribution (N-PCR) for
comparative purposes. Table 3.4 contains the MPL estimates of the parameters for the four fitted
models, together with their corresponding standard errors calculated via the observed information
matrix as presented in Subsection 2.1.4. Note from this table that the estimated values of v are small,
indicating a heavy-tailed behavior and consequently the lack of adequacy of the N-PCR model for this
dataset. Further, we compare the results among the SMN-PCR models using the AIC value defined
in Subsection 2.1.3 and the log-likelihood values (5(5)). As expected, we can see that the SMN
distributions with heavy tails have a better performance compared with the normal one, evidencing once
again a clear departure from the normality assumption, with the SL-PCR model significantly better.
Regarding the smoothing parameter «, there is no difference between the models with heavy tails, but
in the N-PCR model the value of « is higher than the other ones. Finally, the values of the respective

standard errors (SE) of the heavy tails models are smaller than those under the normal assumption,
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indicating that the SMN-PCR models produce more precise estimates. Table A.1 of Appendix A
presents the estimates for fitting to the simple censored regression model considering SMN distributions
for the error, the SMN-CR models (see Garay et al. (2017) for more details ). According to the AIC

and £(0) values, the SMN-PCR models perform better than the SMN-CR models, which indicates that

including the nonparametric component improves the settings for this dataset.

Table 3.4: PSID-1975 dataset. Parameter estimates and standard errors (SE) for the SMN-PCR
models.

Model
Parameter N-PCR T-PCR SL-PCR CN-PCR
Estimate SE Estimate SE Estimate SE Estimate SE

51 0.7688  (0.0881) 0.6672 (0.0783) 0.6620 (0.0757) 0.6682  (0.0730)
Bo -0.0634  (0.0269) -0.0743 (0.0204) -0.0745 (0.0201) -0.0746  (0.0207)
53 -0.0008  (0.0004) -0.0004 (0.0003) -0.0004 (0.0003) -0.0005 (0.0003)
B4 -0.1801 (0.0742) -0.1321 (0.0642) -0.1403 (0.0622) -0.1527 (0.0605)
Bs -8.6192  (3.8726) -5.7045 (3.3936) -6.0435 (3.2619) -6.3471 (3.1808)
B¢ -1.8132  (0.4056) -1.7666 (0.3136) -1.7829 (0.3103) -1.7874 (0.3254)
B 0.3257 (0.1456) 0.1986  (0.1136) 0.2038  (0.1098) 0.2145 (0.1126)
o? 15.8854 (1.2320) 5.4806 (0.6375) 3.4223 (0.3788) 7.2270  (0.7089)
v - - 2.8655 - 1.1248 - - -

%) - - - - - - 0.1 -

y - - - - - - 0.1 -
6(5) -1378.2 - -1305.8 - -1303.3 - -1303.8 -
AIC 2852.2 - 2709.6 - 2704.5 - 2707.6 -

3.2.2 Diagnostics analysis

For the purpose of identifying possible observations that can affect the MPL estimates, we use the
diagnostic measures presented in Section 2.2 for the PSID-1975 dataset. From the results of the ECME
algorithm, Figure 3.8 shows the estimated weights u; = &, (@) 1 =1,...,753, versus the Mahalanobis
distance, which is defined by d? = (y; — x; 8 —n; f)? /o?. For the normal case, we have that u; = 1, Vi
(segmented red lines). We can observe from this figure that w; is inversely proportional to d, i.e., large
d; values imply smaller u; weights. Hence, using distributions with heavier tails than the normal leads

to smaller weights being attributed to possible influential observations (see also Figure A.6, Appendix A).

To identify influential observations in a global context and following the approach described in
Subsection 2.2.1, the index plots for the approximate generalized Cook’s distance GD; are shown in
Figure 3.9. High values of GD; suggest that the i-th observation has an impact on the MPL estimates.
We can note that, women #185, #210, #349, #357, #366, #369, #394, #408 and #692 are potentially
influential in the MPL estimates under the N-PCR (panel a), but for distributions with heavy tails these

women are no longer influential (panels b to d). Comparing Figures 3.8 and 3.9, we see that women
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who were considered influential for the normal case obtained small weights in the Student-t, slash and

contaminated normal cases, as expected.
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Figure 3.8: PSID-1975 dataset. Estimated weights u; vs Mahalanobis distance d; for: a) T-PCR,
b) SL-PCR and ¢) CN-PCR models, respectively.

Next, we study the local influence based on M (0) from the conformal normal curvature By, p, (6)
defined in Equation (2.2.5), considering the four perturbation schemes: case-weight perturbation, scale
perturbation, explanatory variable perturbation and response variable perturbation. We compute the
matrix Ae,wo for each perturbation scheme to analyze the respective local influence measures for 0
obtained from the best fitted model, that is the SL-PCR model. As benchmark, we use the criterion

M(0); > M(0) + ¢*SM(0), with ¢* = 4, to classify i-th observation as potentially influential.

Examining Figure 3.10, we have that for the three first perturbation schemes (see panels a to
f) women #185, #210, #349, #357, #3606, #369, #394, #408 and #692 in the N-PCR model are
considered influential. In addition, it is noteworthy that observations that were considered influential
in the case-weight perturbation were also found influential with scale perturbation. No observation
has a significant influence on the MPL estimates under the SL-PCR model, indicating the robustness
of the MPL estimates against potentially influential observations. However, for the response variable
perturbation (panels g to h), it was found that women #27, #55, #57, #87, #271, #298, #397 and
#598 have a moderate influence in both models (normal and slash) (see Figure A.7, Appendix A). We
infer that this is because the “experience” values in those cases are high, which naturally leads to a
moderate effect on the estimates of M (0);. For comparison, we use normal benchmarks for all local

influence graphs. The influence analyses for the remaining fitted models are shown in Figure A.8 given
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in Appendix A.
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Figure 3.9: PSID-1975 dataset. Approximate generalized Cook’s distance GD;. a) N-PCR, b)
T-PCR, c) SL-PCR and d) CN-PCR models, respectively.

3.2.3 Relative change in the MPL estimates

To detect the impact of the observations identified as potentially influential on the MPL estimates,

we define the relative change (RC) as

~ a - a[,l-,]
RC;(0) = 5 1 x 100%,
where 8 = (B,EE), and é[,zj] is the estimate of the parameters after the observations indexed

by the set Z; have been removed. From all possible combinations, we drop influential cases, one
by one and from all observations at the same time. Then, the sets of interest are Z, = {e;},
for j = 1,...,J and Z;,;, = FE, where FE is the set of all J influential case indexes, i.e.
E = {185,210, 349, 357, 366, 369, 394, 408, 692}.
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For our example, Table 3.5 presents the relative change of the MPL estimates after removing the
observations indexed by Z; and refitting the N-PCR and SL-PCR models, respectively. Note that the
biggest changes occur in the N-PCR model, particularly for the parameter o>. As expected, the results
indicate smaller changes in the MPL estimates under SL-PCR model, confirming the robust aspects
when distributions with heavier tails than the normal one are used. Although some relative changes are
significant, particularly with the normal distribution, most of times the SL-PCR model presented much
smaller RCs. In addition, the RC for the set of observations identified as influential under the response
variable perturbation scheme E* = {27,55,57,87,271,298, 397,598} were small and quite similar in
both models (see also Table A.2 of Appendix A).

Table 3.5: PSID-1975 dataset. Relative change (%) of maximum penalized likelihood estimates
of B and o2 in N-PCR and SL-PCR models.

Parameter

Model Dropped RCEl RCE} RC,§3 RC’E4 Rcﬁs RC,@; RCé\? RC(;\Q

185 1.908 7.551 11.70 7.446 2.109 6.693 4575 8.718

210 0.855 2244 3378 0.163 0.216 3.675 6.568  3.235

349 1.218 2028 6.792 2789 7210 0485 1248  8.291

357 2260 9.032 4944 4104 0.002 3.061 6400 3.677

N-PCR 366 0.030 1411 5085 1198 4974 0348 4.735 4.481
369 0425 8584 5543 13.18 2333 3420 3465 1.614

394 3.525 8433 3.675 2474 0.257 2077 2860 5467

408 0.335 3442 2979 1401 5536 7.793 1377 9.524

692 0.709 0.713 1587 1.687 0390 0.231 0921 0.576

E 1124 1558 1932 6.239 1459 10.10 1033  46.95

185 0.015 0.182 7.375 1.812 0923 0280 0.537 4.376

210 0.138 0.179 6497 0.733 0421 0.564 1.806  2.526

349 0.047 1.004 7.762 1.114 0277 0.026 0.163  4.353

357 0396 1.195 8373 1.625 0503 0458 2.160 2.235

SL-PCR 366 0.137 1293 8811 0.662 0.130 0.062 1466 2.854
369 0.262 2375 9.181 5238 1.036 1.063 2470 0.883

394 0355 0.678 8331 0.735 0566 0309 1.166 3.046

408 0.073  0.257 8.894 1.216 0412 0468 0.205 4.542

692 0358 0213 5980 1.120 0.103 0.044 0.534 0.355

E 1.445 8358 42.01 25,55 12.68 5076 2497 10.29
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Figure 3.10: PSID-1975 dataset.
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Index plots of M (0), for assessing local influence.

Different perturbations schemes (case-weight, scale, explanatory variable and response variable
perturbation) are shown in the rows from top to bottom. The N-PCR and SL-PCR models

correspond to the columns from left to right.



Chapter 4

Concluding remarks

4.1 Technical production

In this section we will describe the technical production developed in this dissertation.

4.1.1 Submitted paper

» Title: “Estimation and diagnostics for partially linear censored regression models based on
heavy-tailed distributions”.

Authors: Marcela N. Lemus, Victor H. Lachos, Larissa A. Matos and Christian E. Galarza.

4.1.2 R package

PartCensRegq : Partially linear censored regression models Based on Heavy-Tailed Distributions.

It estimates the parameters of a partially linear regression censored model via maximum penalized
likelihood through of ECME algorithm. The model belong to the semiparametric class, that including
a parametric and nonparametric component. The error term considered belongs to the scale-mixture
of normal (SMN) distribution, that includes well-known heavy tails distributions as the Student-t
distribution, among others. To examine the performance of the fitted model, case-deletion and local
influence techniques are provided to show its robust aspect against outlying and influential observations.

This work is based in Ferreira and Paula (2017) but considering the SMN family.

Description

The principal function of this package is the Cens.SMN.PCR, which return the MPL estimates
obtained through of ECME algorithm for partially linear regression models with censored data under
scale-mixture of normal (SMN) distributions (some members are the normal, Student-t, slash and
contaminated normal distribution). The types of censoring considered are left and right. Graphics for
diagnostic analysis such as case-deletion and local influence techniques are provided to show its robust

aspect against outlying and influential observations:
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R Code

Cens.SMN.PCR(x,y,c,cens = "left",tt,nu = NULL,error = 10"-6,

iter.max = 200,type = "Normal",alpha.FIX = TRUE,nu.FIX = TRUE,

alpha.in = 107-3,k = 1,Diagnostic = TRUE,a = 2)

Arguments

X Matrix or vector of covariates.

c Vector of censoring indicators. For each observation: 1 if censored and O if
non-censored.

v Vector of responses.

cens "left ' for left censoring and ' right ' for rigth censoring.

tt Vector of values of a continuous covariate for the nonparametric component of the
model.

nu Initial value of the parameter of the SMN family. In the case of the Student-t and slash
18 a scalar, in the contaminated normal is a vector bidimensional.

error The convergence maximum error. By default =10~ -6.

iter.max

type

alpha.FIX

nu.rFIX
alpha.in

k

Diagnostic

The maximum number of iterations of the ECME algorithm. By default =200.

Represents the type of distribution to be used in fitting: 'Normal' for normal,
'T' for Student-t, 'Slash' for slash and '"NormalC' for contaminated normal

distribution respectively. By default ='Normal"'.

TRUE or FALSE. Indicate if smoothing parameter will be estimated. By default
=TRUE.

TRUE or FALSE. Indicate if v will be estimated. By default =TRUE.
Initial value of smoothing parameter.

For the local influence in explanatory variable perturbation, indicates the k-th

explanatory variable (assumed continuous) of the design matrix X to be perturbed.

TRUE or FALSE. Indicates if diagnostic graph should be built for the fitted model
(index plot in local influence). By default =TRUE.

The value for a considered in the benchmark value for the index plot in local influence:

M(0); > M(0) + a + SM(0).
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Details

We consider a partial linear model which belongs to the class of semiparametric regression models
with vector of response Y = (Y7,...,Y,) and with errors ¢; which are independent and identically

distributed according to a SMN distribution. To be more precise,
Y =al'B+nlf+e,

fori = 1,...,n, where f = (f(t)),..., f(#")T is an r x 1 vector with ¢, ..., ¢? being the distinct and
ordered values of ¢;; n; is a r X 1 vector of incidence whose s-th element equals the indicator function
It =t)) fors =1,...,7.

Value

beta ECME estimates for the parametric component.

sigma2 ECME estimates for the scale parameter.

Alpha If alpha.FIX=FALSE, it returns the estimated value of the smoothing parameter,
else returns the initial value assigned in alpha.in.

AIC AIC criteria for model selection.

ff ECME estimates for the nonparametric component.

yest Predicted values of the model.

loglik Value of the log-likelihood under the fitted model.

iter Number of iterations of the ECME algorithm.

nu If nu.FIX=FALSE, it returns the estimated value of v parameter, else returns the
initial value assigned in nu.

MI Observed information matrix.

D A list of objects for diagnostic analysis that contains: the Hessian matrix (Hessian),

values for generalized Cook’s distance (GD1) and the values of the conformal normal
curvature for the following perturbation schemes: Case-weight (Curvature_W),
scale (Curvature_S), explanatory variable (Curvature_E) and response variable

(Curvature_R).

Observation 1. The package estimates the value v in each iteration taking as an estimate the argument
that maximizes the actual marginal log-likelihood function, already evaluated in the estimates of 8 and
o2. However, the diagnostic analysis is performed considering the estimated final value of 3, o2 and v

obtained in the last iteration of the ECME algorithm.
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Example

R Code
dtawage = get (data (PSID1976,package = "AER"))
y = dtawageS$Swage
cc = c(rep(0,428),rep(l,325))

tt = dtawageS$Sexper

X cbind (dtawage$Seducation, dtawageSage, dtawage$hhours,

dtawage$Shwage, dtawageStax, dtawage$youngkids, dtawage$Soldkids)

#Normal case by default with only 10 iterations
PCR.defaultl = Cens.SMN.PCR(x=x, y=y, c=cc, cens="left",tt =tt,
iter.max = 10,Diagnostic = FALSE)

4.2 Conclusion

In this work, we propose a maximum penalized likelihood implementation of a robust alternative to
the partially linear regression (PCR) model with censored response, where the normal distribution of the
random terms are replaced by a scale mixture of normal (SMN) distribution, which allow to work with
censored data and outliers. Special cases of the SMN distributions are Student-t, slash, contaminated
normal, normal, among others. Thus, this work generalizes the papers of Garay et al. (2017) and
Massuia et al. (2015) by incorporating a nonparametric component into the model that permits an easy

and flexible modeling of possible nonlinear pattern introduced by some covariate.

In Chapter 2, from a frequentist perspective, we develop SMN-PCR model, where the stochastic
representation of the model allows a simple implementation of an EM-type algorithm (ECME algorithm)
to get the MPL estimates. Expressions for the standard errors approximation were derived from the
inverse of the observed information matrix. We also propose influence diagnostic tools for detecting
influential observations in the context of PCR models with heavy-tailed distribution errors. The
diagnostic analysis is based on local influence techniques presented in Zhu and Lee (2001) and Zhu
et al. (2001).

Moreover, in Chapter 3, we carried out extensive simulation studies and an application to real dataset
to evaluate the performance of the proposed methodology. The results showed that the partially linear
regression model with censored response under scale mixtures of normal distribution errors is very robust
against outlying observations, outperforming traditional normal errors model. We also use simulation
to investigate asymptotic properties of the parameter estimates, where we could observe that for large

sample the MPL estimates has good asymptotic properties, i.e. the bias and MSE tends to zero. Besides,
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in the estimation of the nonparametric component the variability among estimates decreases when the
sample size increases. Further, we applied our method to a real dataset to illustrate how the procedure
developed can be used to evaluate model assumptions, identify outliers and obtain robust parameter
estimates. To the our knowledge, this work provides a first attempt to incorporate censoring in the
context of partially linear models with heavy-tailed distributions from a likelihood-based perspective.
The package PartCensReqg (Lemus et al., 2018) give computational support for estimation procedure

and diagnostic analysis. The package is available in the CRAN repository.

4.3 Future research

A natural extension would be to incorporate skewness and heavy tailedness simultaneously using
scale mixtures of skew-normal (SMSN) distributions, as proposed in Lachos et al. (2010). Other
extensions of the current work include considering semiparametric mixed effects models with censored
data, following the same lines of ideas proposed by Matos et al. (2013) and Matos et al. (2015). Finally,
extend the analysis of local influence to a subset of the parameters of interest (local influence analysis
on sub-vectors), following the work of Zhu et al. (2003), Ibacache-Pulgar and Paula (2011), Chen et al.
(2012) and Relvas and Paula (2016).
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Appendix A
Supplementary material for Chapter 3

We include here supplementary material of Chapter 3. Section A.l presents the behavior of the
500 MC samples of the nonparametric component for the N-PCR, SL-PCR and CN-PCR models
respectively. Also Figures A.4 and A.5 show the behavior of the diagnostic measures through index
plots for scale perturbation and response variable perturbation for the local influence approach described
in the Subsection 2.2.2 of Chapter 2. On the other hand, Section A.2 reports additional results of the
wage rate dataset of the Section 3.2, where some Figures in diagnostic analysis and relative change in
the estimates for observations identified as potentially influential in the response variable perturbation

are presented.

A.1 Simulation study
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Figure A.1: Simulated data. Behavior of the nonparametric component based on 500 samples
from the N-PCR model. True curve (blue line) and adjusted curves (gray lines).
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Figure A.2: Simulated data. Behavior of the nonparametric component based on 500 samples
from the SL-PCR model. True curve (blue line) and adjusted curves (gray lines).
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Figure A.3: Simulated data. Behavior of the nonparametric component based on 500 samples
from the CN-PCR model. True curve (blue line) and adjusted curves (gray lines).
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Figure A.4: Simulated data. Index plot of M (0), for assessing local influence for contamination
rate 83. Scale perturbation (simulation No.3).
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Figure A.5: Simulated data. Index plot of M (0), for assessing local influence for contamination
rate 8. Response variable perturbation (simulation No.3).



A.2

Application: Wage rate data
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Figure A.6: PSID-1975 dataset. Estimated weights u; for the:

CN-PCR models.
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Figure A.7: PSID-1975 dataset. Potentially influential observations are numbered.
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A.8:

PSID-1975 dataset.
Different perturbations schemes (case-weight, scale, explanatory variable and response variable
perturbation) are shown in the rows from top to bottom. The T-PCR and CN-PCR models
correspond to the columns from left to right.

Index plots of M (0); for assessing local influence.
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Table A.1: PSID-1975 dataset. Parameter estimates and standard errors (SE) for the SMN-CR
models (Garay et al. (2017)).

Model
Parameter N-CR T-CR SL-CR CN-CR
Estimate SE Estimate SE Estimate SE Estimate SE

51 0.9403 (0.0819) 0.8897 (0.0649) 0.8713 (0.0633) 0.8607 (0.0617)
B2 -0.0271  (0.0256) -0.0300 (0.0206) -0.0285 (0.0206) -0.0270 (0.0209)
B3 -0.0010  (0.0003) -0.0009 (0.0002) -0.0008 (0.0002) -0.0008 (0.0002)
B4 -0.2330  (0.0534) -0.2288 (0.0448) -0.2255 (0.0449) -0.2234 (0.0457)
55 -7.5911  (1.9007) -6.2931 (1.4196) -6.3275 (1.4247) -6.3931 (1.4381)
B¢ -2.4520  (0.4336) -2.5243 (0.3703) -2.4534 (0.3662) -2.4275 (0.3682)
B 0.1313 (0.1500) 0.0628  (0.1200) 0.0553  (0.1191) 0.0464 (0.1202)
o? 20.0093  (0.7680) 9.7277 (0.9340) 6.2229 (0.5879) 10.5138 (0.9266)
v - - 4.0058 - 1.3853 - - -

%) - - - - - - 0.1 -

y - - - - - - 0.1 -
6(5) -1464.173 - -1418.94 - -1415.26 - -1411.28 -
AIC 2944.345 - 2855.89 - 2848.52 - 2842.56 -

Table A.2: PSID-1975 dataset. Relative change (%) of maximum penalized likelihood estimates
of B and 02 in N-PCR and SL-PCR models, observations #27, #55, #57, #87, #271, #298, #397
and #598 and £-.

Parameter
Model Dropped ROEI RCEZ RCﬁs RO@ RCEE; RC;J;6 ROE7 RCC;\Q
27 0302 0458 3.506 0.141 0282 0.296 0.607 0.025
55 0.072 0208 2309 0371 0.052 0.069 0.206 0.464
57 0276 0226 2331 0316 0.093 0.037 0.071 0.133
87 0.069 0224 2298 0353 0.031 0.072 0.216 0.465
N-PCR 271 0.065 0204 2353 0349 0.077 0.069 0.160 0.426

298 0.270 0.174 2811 0.133 0.234 0.113 0.124  0.265
397 0.064 0.197 2518 0.001 0.082 0.076 0.131 0.193
598 0.010 0.014 2358 0.032 0.045 0.003 0.035 0.031

E* 0354 1318 3218 0.757 0.769 0.611 0.371 1.960
27 0.542 0200 8226 0.088 0570 0.180 0.294  0.037
55 0.044 0.025 6968 0.228 0.216 0.059 0.206 0.643
57 0.845 0.087 4966 0965 0.741 0.111 0405 0.110
&7 0.037 0.043 6944 0205 0.188 0.063 0.189 0.643

SL-PCR 271 0.028 0.043 6978 0.246 0.227 0.059 0.186  0.635
298 0.520 0.190 8.151 0.119 0511 0.179  0.289  0.044
397 0.818 0.079 4988 0956 0.767 0.105 0.392 0.121
598 0.005 0.065 6529 0031 0.059 0.003 0.006 0.010
£ 0.073 0.860 8504 0.052 0.854 0392 0.851 3.428




Annex I

Natural cubic splines

Smoothing splines is used in penalized least squares regression problem for find the function g(-)

with two continuous derivatives that minimizes the penalized sum of squares

n

b
S(9) = Y1~ gt +a [ lg" (@) d, 10.1)

i=1 a
where the first term in Equation (1.0.1) is the residual sum of squares and the second term is a roughness
penalty that ensures that the curve is determined not only by its goodness-of-fit to the data, quantified

by the residual sum of squares but also by its roughness [ g’

. Here, a > 0 is a smoothing parameter
in which large values produce smoother curves while smaller values more wiggly curves (Hastie and
Tibshirani, 1990). The aim of penalizing is to reduce the solution of the parametric space to avoid

overfitting. The g function can be characterized and computed through natural cubic spline.

Definition 2. Suppose that the values of a random variable are in the interval [a, b] and we have real
numbers ¢; satisfying a < ¢y,...,t, < b. A function g defined on [a, b] is a cubic spline if on each of
the intervals (a, t1), (t1,t2), ... (tn,b), g is a cubic polynomial and the polynomial pieces fit together at
the points with and its first and second derivatives are continuous at each ¢; and hence on the whole of
[a, b] (Green and Silverman, 1993). The points ¢; are called knots and has m = n — 2 internal knots.
Moreover, a cubic spline on an interval [a, b] will be said to be a natural cubic spline (NCS) if its second

and third derivatives are zero at a¢ and b (natural boundary conditions).
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