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Resumo

Fibrados instanton são um importante link entre a física matemática e a geometria algébrica.

Desde a década de 1970 o estudo dessa família de fibrados e de seus espaços de moduli despertam

um grande interesse na comunidade matemática. Mas o estudo desses espaços de moduli pode se

tornar muito complicado se considerarmos fibrados de posto mais alto ou variedades projetivas

de dimensão alta. Por este motivo, muitos autores estudam fibrados instanton com uma estrutura

adicional. O foco deste trabalho serão os fibrados instanton ortogonais.

A fim de obter critérios de existência para fibrados instanton ortogonais em Pn, construímos

uma bijeção entre classes de equivalência de fibrados instanton ortogonais sem seções globais e

formas simétricas. Usando esta correspondência fomos capazes de construir exemplos explícitos

de fibrados instanton ortogonais sem seções globais em Pn e provar que todo fibrado instanton

ortogonal sem seções globais em Pn com carga c tem posto ♣n ✁ 1qc, para n, c ➙ 3. Também

provamos que MO

Pn♣cq, o espaço de moduli de fibrados instanton ortogonais sem seções globais

em Pn, com carga c e posto ♣n✁ 1qc, para n, c ➙ 3 é afim. Por último, construímos módulos de

Kronecker para determinar o tipo de splitting dos fibrados em MO

Pn♣cq.

Palavras-chave: Fibrados instanton ortogonais. Formas simétricas. Espaços de moduli. Teoria

geométrica dos invariantes. Tipo de splitting. Módulos de Kronecker.



Abstract

Instanton bundles are an important link between mathematical physics and algebraic geometry.

Since the 1970’s the study of this family of bundles and its moduli space awakes great interest

in the mathematical community. But the study of its moduli space can be very complicated

if we consider bundles of higher rank or higher dimensional projective spaces. Because of this,

several authors study instanton bundles with an additional structure. In this work, we will focus

on orthogonal instanton bundles.

In order to obtain existence criteria for orthogonal instanton bundles on Pn, we provide a

bijection between equivalence classes of orthogonal instanton bundles with no global sections

and symmetric forms. Using such correspondence we are able to provide explicit examples of

orthogonal instanton bundles with no global sections on Pn and prove that every orthogonal

instanton bundle with no global sections on Pn and charge c has rank ♣n✁ 1qc, for n, c ➙ 3. We

also prove that MO

Pn♣cq the coarse moduli space of orthogonal instanton bundles with no global

sections on Pn, charge c and rank ♣n✁ 1qc, for n, c ➙ 3 is affine. Last, we construct Kronecker

modules to determine the splitting type of the bundles of MO

Pn♣cq.

Keywords: Orthogonal intanton bundles. Symmetric forms. Moduli spaces. Geometric invariant

theory. Splitting type. Kronecker modules.



Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1 PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1.1 Serre duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.1.2 Chern Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.1.3 Splitting type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.1.4 Monads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.1.5 Hyperdeterminants of matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.2 Instanton bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.3 Moduli space and Geometric invariant theory . . . . . . . . . . . . . . . . 33

1.3.1 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.3.2 Quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2 ORTHOGONAL INSTANTON BUNDLES AND SYMMETRIC FORMS . 40

2.1 The equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2 Moduli space of Orthogonal instanton bundles on Pn . . . . . . . . . . . . 53

3 SOME PROPERTIES OF ORTHOGONAL INSTANTON BUNDLES . . 58

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



11

Introduction

The study of vector bundles in projective varieties has been a topic of great interest in algebraic

geometry, see for instance Hartshorne’s problems list in [25]. Specifically, in the case of instanton

bundles the main interest in the past has been the link that they provide between algebraic

geometry and mathematical physics. Since the 1970’s the "instantons" or pseudo-particle solutions

of the classical Yang-Mills equations in the Euclidean 4-space has awaken great interest in the

physical and mathematical communities (see [5] and [6]). In [5] Atiyah, Hitchin and Singer

proved that instantons correspond to certain real algebraic bundles on CP3 and also proved that

the complete set of solutions depends on 8c✁ 3 parameters, where c is the quantum number

(or charge) of the instanton. Atiyah and Ward in [6] used the Penrose’s program (see [43]) to

construct explicit solutions. In [4], Atiyah, Drinfield, Hitchin and Manin, using tools of linear

algebra, provided the classical "ADHM construction of instantons". The moduli space MP3♣cq

of the c-instanton bundles on P3, i.e. of stable 2–bundles E with Chern classes ♣c1, c2q ✏ ♣0, cq

and H1♣E♣✁2qq ✏ 0 is expected to be a smooth and irreducible variety with dimension 8c✁ 3

for c ➙ 1. For c ✏ 1, MP3♣1q is isomorphic to the complement in P5 of the Grassmann manifold

of lines in P3 (see [40] - Theorem 4.3.4). In [24], Hartshorne described MP3♣2q as a smooth and

irreducible fibration. In [16] Ellingsrud and Strømme proved that MP3♣3q is smooth irreducible

of dimension 21. LePotier proved in [35] that MP3♣4q is smooth and in [7] Barth proved that

MP3♣4q is irreducible. Katsylo and Ottavianni proved in [34] that MP3♣5q is smooth. In [12]

Coandă, Tikhomirov and Trautmann proved that MP3♣5q is irreducible and smooth, unifying

the proof of this previous results for n ↕ 4. In [45] and [46] Tikhomirov proved the irreducibility

of MP3♣cq for arbitrary c ➙ 1. The question about the smoothness was solved on CP3 by Jardim

and Verbitsky (see [33]), but it is important to highlight that the smoothness on P3, that means

for any 3-dimensional projective space over an algebraically closed field of characteristic 0 is

still open.

In 1986 Okonek and Spindler in [41] used a Salamon’s generalization of the Penrose transformation

to extend the definition of instanton bundles. They defined the so called mathematical instanton

bundles on P2n�1 (n ➙ 1), i.e. holomorphic 2n-rank bundles E on P2n�1, with Chern polynomial

ct♣Eq ✏

✂
1

1✁ t2

✡c

and natural cohomology Hq♣E♣lqq in the range ✁2n✁ 1 ↕ l ↕ 0. In addition,

these bundles are simple, trivial on generic lines and have a symplectic structure. For c ✏ 1 and

n ➙ 1 we have the so called Nullcorrelation bundles (see [40]), while for n ✏ 1 and c ➙ 1 we

have all the mathematical instanton bundles, which came from physics (see [47]). In CP2n�1

the mathematical instanton bundles are generalizations of special instanton bundles over CP3,

also called special ’t Hooft bundles. Spindler and Trautmann proved in [44] that any special
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instanton bundle E of charge c on P2n�1 can be defined by an exact sequence

0 // O♣✁1q❵c // S❴ // E // 0,

where S is a Schwarzenberger bundle of rank 2n� c.

Ancona and Ottaviani in [2] defined mathematical instanton bundles without assuming that

they are all symplectic and proved that every special symplectic instanton bundles is stable.

Let MP2n�1♣cq denote the moduli space of stable instanton bundles on P2n�1, with charge c. In

[3] Ancona and Ottaviani proved that MP2n�1♣2q is smooth and irreducible, while MP2n�1♣3q

and MP2n�1♣4q are singular. Costa and Ottaviani in [14] proved that MP2n�1♣cq is affine and

introduced an invariant which allowed Farnik, Frapporti and Marchesi to prove in [17] that there

are no orthogonal instanton bundles with rank 2n on P2n�1. In [37] Miró-Roig and Orus-Lacort

proved that MP2n�1♣cq is singular for n ➙ 2 and c ➙ 3. Hoffmann proved in [28] that MP2n�1♣cq

is rational for n ➙ 1 and c ➙ 2. Later, in [13] Costa, Hoffmann, Miró-Roig and Schmitt proved

that the moduli space all symplectic instanton bundles on P2n�1 with n ➙ 2 is reducible.

In order to understand moduli spaces of stable vector bundles over a projective variety, in

[31] Jardim extended the definition of instantons to even-dimensional projective spaces and

allowed non-locally-free sheaves of arbitrary rank. Jardim defined an instanton sheaf on Pn

(n ➙ 2) as a torsion-free coherent sheaf E on Pn with first Chern class c1♣Eq ✏ 0 satisfying some

cohomological conditions (see Definition 1.2.4 for details). If E is locally-free, E is called an

instanton bundle. In addition, if E is a 2n-rank bundle on P2n�1 with trivial splitting type, E is a

mathematical instanton bundle as defined by Okonek and Spindler. In that paper Jardim showed

that every instanton sheaf is the cohomology of a linear monad, and that rank r instanton

sheaves on Pn exist if and only if r ➙ n✁ 1. But to study the moduli space of instanton bundles

becomes more complicated for higher dimensional projective spaces or higher rank, because of

this many authors have considered instanton bundles with some additional structure: special,

symplectic, orthogonal for instance. Using the ADHM construction introduced by Henni, Jardim

and Martins in [26], Jardim, Marchesi and Wißdorf in [32] consider autodual instantons of

arbitrary rank on projective spaces, with focus on symplectic and orthogonal instantons. They

describe the moduli space of framed autodual instanton bundles and showed that there are no

orthogonal instanton bundles of trivial splitting type, arbitrary rank r and charge 2 or odd on

Pn.

While in [1] Abauf and Boralevi proved that the moduli space of rank r stable orthogonal

bundles on P2, with Chern classes ♣c1, c2q ✏ ♣0, cq and trivial splitting type on the general line,

is smooth and irreducible for r ✏ c and c ➙ 4, and r ✏ c✁ 1 and c ➙ 8, the results of Farnik,

Frapport and Marchesi in [17] and Jardim, Marchesi and Wißdorf in [32], already mentioned,

show us that orthogonal instanton bundles on Pn, n ➙ 3 are for some reason hard to find and
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that it is interesting to establish existence criteria for orthogonal instanton bundles with higher

rank on projective spaces.

The main goal of this work is to provide existence criteria for orthogonal instanton bundles with

higher rank on Pn, for n ➙ 3 and then to study their moduli space and splitting type.

Overview. We will now give a short overview of the contents of this thesis.

Chapter 1: we introduce some preliminaries necessary through the text. In the first section we

give a brief summary of some of the algebraic geometry concepts and tools that we use: from

the definition of torsion-free sheaf, passing by splitting type and monads till hyperdeterminants.

In the second section we recall the definition of instanton bundles and some important results

and properties that we will need. In the third section we present the definition of moduli space

and a collection of results in geometric invariant theory necessary to construct moduli spaces.

Chapter 2: in the first section, in order to establish existence criteria for orthogonal intanton

bundles on Pn, for n ➙ 3 we define certain equivalence classes of orthogonal instanton bundles

and provide a bijection between those classes and symmetric forms which give us our first main

result (see Theorem 2.1.3). Using such correspondence we prove the following result.

Theorem 2.1.4 Let c be an integer, with c ➙ 3. Every orthogonal instanton bundle with no

global sections on Pn and charge c has rank ♣n✁1qc. Moreover, there are no orthogonal instanton

bundles with no global sections, and charge c equal 1 or 2 on Pn.

These results translate our existence problem in to a linear problem: to find invertible symmetric

matrices and give us a very useful tool to construct explicit examples of orthogonal instanton

bundles with no global sections, and charge c ➙ 3 on Pn, for n ➙ 3.

In the second section, we first define an algebraic action on our parameter space in order to

determine an orbit space (see Theorem 2.2.2). After this we prove that this orbit space is in fact

an affine coarse moduli space for our problem (see Theorem 2.2.3).

Chapter 3: given an orthogonal instanton bundle E on Pn with charge c, rank ♣n ✁ 1qc and

no global sections, for c, n ➙ 3, we construct a Kronecker module to determine if E has trivial

splitting type. In fact, we have the following result.

Theorem 3.0.3 Let E be an orthogonal instanton bundle on Pn ✏ P♣V q, with charge c, rank

♣n✁1qc and no global sections, for n, c ➙ 3. Let γ be its Kronecker module associated. If L ⑨ Pn

is the line defined by v1, v2 P V , v1 ❫ v2 ✘ 0, the the restriction E ⑤L is trivial if and only if
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γ♣v1 ❫ v2q is an isomorphism.
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1 Preliminaries

The purpose of this chapter is to introduce the tools and fix the notation that we will use

throughout this work. In the first section we summarize some fundamental results in algebraic

geometry necessary to understand this text. In the second section we introduce our main object

of study: the instanton bundles. Finally, in the last section we introduce some results about

moduli spaces and geometric invariant theory that will be necessary in the construction of the

moduli space of orthogonal instanton bundles on Chapter 2. For more details see [23], [38], [39]

and [40].

1.1 Basic concepts

Through this work, K is an algebraically closed field of characteristic zero, V is a K-vector space

with dimension n� 1 and Pn ✏ P♣V q the associated projective space of lines in V .

Definition 1.1.1. Let X be a scheme over K with structure sheaf OX . Let F be a coherent

sheaf on X and denote by Fx the stalk of F at a point x P X. We define the dual of F as

F❴ :✏ Hom♣F ,OXq and say that

(a) F is torsion-free if and only if the natural morphism F Ñ F❴❴ is a monomorphism,

or equivalently if for all x P X and all sections s P OX,x③t0✉, the multiplication map

✂s : Fx Ñ Fx is injective.

(b) F is locally-free of rank r if Fx ✕ O❵r
X,x for all x P X.

(c) F is reflexive if the natural morphism F Ñ F❴❴ is an isomorphism.

(d) F is simple if End♣Fq ✏ Hom♣F ,Fq ✕ K.

Concerning to the properties of coherent sheaves defined above, we have the following relations

(see [40] - Chapter 2)

locally-free ñ reflexive ñ torsion-free.

But the converse is not always true (see Example 1.1.28 and Example 1.1.29).

Let E and F be two sheaves on a scheme X. A morphism of sheaves φ : E Ñ F consists of a

morphism φU : E♣Uq Ñ F♣Uq for each open set U of X, such that for all inclusion V ⑨ U we
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have the following commutative diagram.

E♣Uq
φ♣Uq

//

ρE

UV

��

F♣Uq

ρF

UV

��

E♣Uq
φ♣V q

// F♣Uq,

where ρE and ρF are the restriction maps in E and F , respectively.

Definition 1.1.2. A vector bundle of rank r (or line bundle if r ✏ 1) over an algebraic

variety X is an algebraic variety F equipped with a surjective morphism π : F Ñ X such that

there exists a covering X ✏
↕
iPI

Ui by (Zariski) open subsets such that:

(i) For each i P I there is an isomorphism ψi : π✁1♣Uiq Ñ Ui ✂ Kr satisfying that the

composition π ✆ ψ✁1
i : Ui ✂Kr Ñ Ui is the first projection.

(ii) For each i, j P I there is an invertible ♣r ✂ rq-matrix Aij (called transition matrix, or

transition function if r ✏ 1) whose entries are regular functions in Ui ❳ Uj satisfying

that the composition

ϕij ✏ ψj ✆ ψ
✁1
i⑤Ui❳Uj

: ♣Ui ❳ Ujq ✂Kr Ñ ♣Ui ❳ Ujq Ñ ♣Ui ❳ Ujq ✂Kr

takes the form

ϕij♣x, vq ✏ ♣x,Aij♣xqvq.

Let πE : E Ñ X and πF : F Ñ X be two vector bundles over an algebraic variety X. A

morphism of vector bundles φ : E Ñ F is given by a commutative diagram

E
φ

//

πE
��

F ,

πF
~~

X

where for any x P X the map φx : Ex Ñ Fx is a linear map.

For any vector bundle of rank r over a scheme X we have a locally free sheaf of rank r, which is

nothing but the sheaf of sections. So in what follows we will not distinguish locally free shaves

and vector bundles on a scheme, and this is justified by the following theorem.

Theorem 1.1.3 ([23] - Chapter 2 - Exercise 5.18). There exists an equivalence of the category

of locally free sheaves of rank r and the category of vector bundles of rank r over a scheme X.

Definition 1.1.4. We call a vector bundle E autodual if it is isomorphic to its dual, i.e.

there exists an isomorphism φ : E Ñ E❴. If the isomorphism φ satisfies φ❴ ✏ ✁φ the vector

bundle is called symplectic. If the isomorphism φ satisfies φ❴ ✏ φ the vector bundle is called

orthogonal.
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Example 1.1.5. Recall the well know Euler sequence

0 // Ω1
Pn♣1q // O

❵♣n�1q
Pn

α // OPn♣1q // 0 ,

where α ✏
✁
x0 x1 ☎ ☎ ☎ xn

✠
and ♣x0, ☎ ☎ ☎ , xnq is a basis of V ❴ with Pn ✏ P♣V q.

The kernel of α♣✁1q is the cotangent bundle of Pn. With its dual TPn the tangent bundle

of Pn we can construct an example of symplectic vector bundle. Indeed, for odd n the kernel of

a bundle epimorphism

TPn♣✁1q Ñ OPn♣1q,

also known as the null correlation bundle is a symplectic bundle (For more details see [40] -

Chapter 1 - Section 4.2).

1.1.1 Serre duality

For a coherent sheaf F over a scheme X we will denote by Hi♣X,Fq the i-th cohomology

module and by hi♣X,Fq :✏ dimK Hi♣X,Fq its dimension. When the scheme X is clear in the

context we will omit it.

Definition 1.1.6. A coherent sheaf E has natural cohomology in the range a ↕ k ↕ b if

for the values of k in this range, at most one of the cohomology modules Hq♣E♣kqq is nontrivial,

for any q.

Theorem 1.1.7. For each short exact sequence 0 Ñ A✶ Ñ A Ñ A✷ Ñ 0 of coherent sheaves

over a scheme X there exists a natural morphism δi : Hi♣A✷q Ñ Hi�1♣A✶q, such that we obtain

a long exact sequence

0 // H0♣A✶q // H0♣Aq // H0♣A✷q δ0

// ☎ ☎ ☎ // Hi♣A✷q δi
// Hi�1♣A✶q // ☎ ☎ ☎

Proof. See [23] - Chapter 3 - Theorem 1.1A.

Theorem 1.1.8 (Serre). Let X be a projective scheme over a noetherian ring A, and let OX♣1q

be a very ample invertible sheaf on X over Spec A. Let F be a coherent sheaf on X. Then:

(a) for each i ➙ 0, Hi♣Fq is finitely generated A-module;

(b) there is an integer n0, depending on F , such that for each i → 0 and each n ➙ n0,

Hi♣F♣nqq ✏ 0.

Proof. See [23] - Chapter 3 - Theorem 5.2.
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Let X be a projective scheme of dimension n over a field K, and let F be a coherent sheaf on

X. We have Hi♣X,Fq ✏ 0 for all i → n and by the condition ♣aq of the previous theorem Hi♣Fq

is a K-vector space of finite dimension. Therefore we define the Euler characteristic of F by

χ♣Fq ✏
n➳

i✏0

♣✁1qi dimK Hi♣X,Fq.

An important tool in the computation of the dimension of cohomology modules of coherent

sheaves is the Serre duality which now we present a brief overview.

Definition 1.1.9. Let ♣X,OXq be a ringed space, and let F be an OX-module. We define the

functors Exti♣F , ☎q as the right derived functors of Hom♣F , ☎q.

According to [23] - Chapter 3 - Section 6, let L be a locally-free sheaf of finite rank. For any

coherent sheaves F and G we have

Exti♣OX ,Fq ✕ Hi♣X,Fq,

and

Exti♣F ❜ L,Gq ✕ Exti♣F ,L❴ ❜ Gq,

for all i ➙ 0.

Theorem 1.1.10 (Serre Duality). Let X be a projective scheme of dimension n over an

algebraically closed field K and let F be a coherent sheaf over X. Let ωX be the dualizing sheaf

on X, and let OX♣1q be a very ample sheaf on X, then for all i ➙ 0 there is natural functorial

isomorphism

Exti♣F , ωXq Ñ Hn✁i♣X,Fq❴.

Proof. See [23] - Chapter 3 - Theorem 7.6.

Example 1.1.11. Let F be a locally-free sheaf on Pn, we have ωPn ✕ OPn♣✁n ✁ 1q. By the

results above, for all i ➙ 0 we have

Hn✁i♣Pn,Fq❴ ✕ Exti♣F , ωPnq

✕ Exti♣OPn ,F❴ ❜OPn♣✁n✁ 1qq

✕ Hi♣Pn,F❴ ❜OPn♣✁n✁ 1qq

✕ Hi♣Pn,F❴♣✁n✁ 1qq

the Serre duality on Pn.
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1.1.2 Chern Classes

Let X be a projective variety over K. A cycle of codimension r on X is an element of the

free abelian group Z♣Xq generated by the closed irreducible subvarieties of X of codimension r.

We say that two cycles C1, C2 P Z♣Xq are rationally equivalent if exists a cycle over P1 ✂X

such that the restriction in two fibres tt1✉ ✂X and tt2✉ ✂X are C1 and C2, respectively.

For each integer r let Ar♣Xq be the group of cycles of codimension r on X modulo rational

equivalence. The Chow group A♣Xq ✏
à

i

Ai♣Xq is the group of cycles modulo rational

equivalence. If X is a smooth projective variety A♣Xq is a commutative associative graded ring

called Chow ring, whose product is given by the intersection of equivalence class of cycles.

Definition 1.1.12. Let E be a locally-free sheaf of rank r on a nonsingular quasi-projective

variety X, let P♣Eq be the associated projective space bundle, and let ξ P A1♣P♣Eqq be the class

of divisor corresponding to OP♣Eq♣1q. For each i ✏ 0, 1, ☎ ☎ ☎ , r we define the ith Chern class to

be the element ci♣Eq P A
i♣Xq, with the requirement c0♣Eq ✏ 1, and

r➳
i✏0

♣✁1qici♣Eqξ
r✁1 ✏ 0

in Ar♣P♣Eqq.

For convenience we define the total Chern class

c♣Eq ✏ c0♣Eq � c1♣Eq � ☎ ☎ ☎ � cr♣Eq

and the Chern polynomial

ct♣Eq ✏ c0♣Eq � c1♣Eqt� ☎ ☎ ☎ � cr♣Eqt
r.

Let E be a rank r vector bundle on a nonsingular projective variety X. We have the following

properties.

(C1) [Normalization] Let E ✕ OX♣Dq be the line bundle associated to a divisor D. Then

ct♣Eq ✏ 1 � Dt.

(C2) [Pullback] If f : X ✶ Ñ X is a morphism, then for each i

ci♣f
✝Eq ✏ f✝ci♣Eq,

where f✝ is the pullback of f .

(C3) [Cartan formula] If 0 Ñ E ✶ Ñ E Ñ E✷ Ñ 0 is an exact sequence of locally free sheaves on

X, then

ct♣Eq ✏ ct♣E
✶q ☎ ct♣E

✷q.
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(C4) If E has a filtration E ✏ E0 ❹ E1 ❹ ☎ ☎ ☎ ❹ Es ✏ 0 whose successive quotients L1, ☎ ☎ ☎ ,Ls are

all invertible sheaves, then

ct♣Eq ✏
s➵

i✏1

ct♣Liq.

(C5) Let E ,F be locally free sheaves of rank r and s, respectively. Write

ct♣Eq ✏
r➵

i✏1

♣1� aitq

and

ct♣Fq ✏
s➵

i✏1

♣1� bitq,

then we have

ct♣E ❜ Fq ✏
➵
i,j

♣1� ♣ai � bjqtq

ct♣
p➞

Eq ✏
➵

1↕i1↕☎☎☎↕ip↕r

♣1� ♣ai1
� ☎ ☎ ☎ � aip

qtq

ct♣E
❴q ✏ c✁t♣Eq.

The properties (C1)-(C3) and the requirement c0♣Eq ✏ 1 define the Chern Classes uniquely. For

more details see [23] - Appendix A.

Example 1.1.13. If we tensor the Euler sequence

0 Ñ OPn♣✁1q Ñ O
❵♣n�1q
Pn Ñ TPn♣✁1q Ñ 0

with OPn♣1q, one gets the exact sequence

0 Ñ OPn Ñ O
❵♣n�1q
Pn ♣1q Ñ TPn Ñ 0,

thus by ♣C1q and ♣C3q

ct♣TPnq ✏ ♣1� tqn�1.

Therefore ci♣TPnq ✏

✂
n� 1

i

✡
ti and we often write ci ✏

✂
n� 1

i

✡
.

Let

ct♣Eq ✏
r➵

i✏1

♣1� aitq

as above, where the ai are formal symbols. Then we define the exponential Chern character

ch♣Eq ✏
r➳

i✏1

eai ,
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and the Todd class of E ,

td♣Eq ✏
r➵

i✏1

ai

1✁ e✁ai
,

where
x

1✁ e✁x
✏ 1�

1

2
x�

1

12
x2 ✁

1

720
x4 � ☎ ☎ ☎ .

Theorem 1.1.14 (Hirzebruch-Riemann-Roch). For a locally free sheaf E of rank r on a

nonsingular projective variety X of dimension n,

χ♣Eq ✏ deg♣ch♣Eq ☎ td♣TXqqn,

where ♣qn denotes the component of degree n P A♣Xq ❜Q.

This theorem was proved in [27] by Hirzebruch over C and by Grothendieck in a generalized

form over any algebraically closed field [10].

Example 1.1.15. Let X be a curve of genus g and D a divisor on X. If E ✏ OX♣Dq, we have

ch♣Eq ✏ 1�D. The tangent sheaf is given by TX ✕ OX♣✁Kq, where K is the canonical divisor,

thus td♣TXq ✏ 1✁
1

2
K. Therefore, by the Hirzebruch-Riemann-Roch theorem, we have

χ♣OX♣Dqq ✏ deg♣♣1�Dq♣1✁
1

2
Kqq1

✏ deg♣D ✁
1

2
Kq.

For D ✏ 0, we have 1✁ g ✏
1

2
K, thus we can write

χ♣OX♣Dqq ✏ degD � 1✁ g

which is the Riemann-Roch theorem for curves.

1.1.3 Splitting type

We shall say that a rank r vector bundle splits when it can be represented as a direct sum of r

line bundles. On the projective line we have the following.

Theorem 1.1.16 (Grothendieck). Every rank r vector bundle E over P1 has the form

E ✏ OP1♣a1q ❵ ☎ ☎ ☎ ❵OP1♣arq

with uniquely determined numbers a1, ☎ ☎ ☎ , ar P Z and a1 ➙ a2 ➙ ☎ ☎ ☎ ➙ ar.

Proof. See [40] - Theorem 2.1.1.
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By the Cartan formula it follows that for a vector bundle E ✏ OP1♣a1q ❵ ☎ ☎ ☎ ❵ OP1♣arq over P1

the first Chern class is

c1♣Eq ✏
r➳

i✏1

ai.

Let E be a rank r vector bundle over Pn. Let Gn be the Grassmann manifold of lines in Pn.

Denote by l the point of Gn which corresponds to a projective line L ⑨ Pn. By Grothendieck’s

theorem for every l P Gn there is a r-tuple ♣a1, ☎ ☎ ☎ , arq P Zr, with a1 ➙ ☎ ☎ ☎ ➙ ar such that

E ⑤L ✕ ❵r
i✏1OL♣aiq. The r-tuple ♣a1, ☎ ☎ ☎ , arq P Zr is called the splitting type of E on L.

Definition 1.1.17. Let E be a rank r vector bundle over Pn. Let L ⑨ Pn be a line. We say that

E has trivial splitting type on L if E ⑤L ✕ O
➚

r
L . Moreover, if E has trivial splitting type on

L, an isomorphism Φ : E ⑤L Ñ O❵r
L is called a framing.

1.1.4 Monads

Monads were first introduced by Horrocks in [29] which has shown that every vector bundle on

P2 and P3 is the cohomology bundle of a monad. In [8] Barth and Hulek generalized this result

on Pn.

Definition 1.1.18. A monad over X a projective variety is a complex,

M :✏ 0 // A
a // B

b // C // 0 (1.1)

of coherent sheaves over X which is exact at A and at C, that means ba ✏ 0, a is injective and

b is surjective. The coherent sheaf E :✏ ker ♣bq④Im ♣aq will be called cohomology of M and

also denoted by H✌♣Mq ✏ E .

A cohomology sheaf E need not be locally free, even if the sheaves in the monad (1.1) are locally

free. The degeneration locus of the monad (1.1) is defined as

Σ♣Mq :✏ tx P X ⑤ the stalk Ex is not a free OX,x-module✉ ,

and E is locally free if and only if Σ♣Mq is empty. In this case E is said a cohomology bundle.

Next we will give an example of a cohomology sheaf which is not a bundle. First we will need

the following lemma.

Lemma 1.1.19. Let

M :✏ 0 // A
a // B

b // C // 0

be a monad of locally free sheaves on a projective variety X. Then
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Σ♣Mq ✏ tx P X ⑤ a♣xq is not injective✉ .

Proof. See [19] - Lemma 4.

Example 1.1.20. Let ♣x0, ☎ ☎ ☎ , x3q be a basis of V ❴ and P3 ✏ P♣V q. Consider the monad

M1 :✏ 0 // OP3♣✁1q a // O❵4
P3

b // OP3♣1q // 0,

where a ✏

☎✝✝✝✝✆
x0

x1

0

0

☞✍✍✍✍✌and b ✏
✁
✁x1 x0 x2 x3

✠
.

Note that b ✆ a ✏ 0 and b is surjective. Moreover a is injective if and only if x0 ✘ 0 or x1 ✘ 0.

By Lemma 1.1.19 we have

Σ♣M1q ✏ ttx0 ✏ 0✉ ❳ tx1 ✏ 0✉✉ .

Thus Σ♣M1q ✘ ❍, therefore the cohomology sheaf E1 of M1 is not locally-free.

Now let us see an example of a monad whose cohomology sheaf is a bundle.

Example 1.1.21. Let ♣x0, ☎ ☎ ☎ , x3q be a basis of V ❴ and P3 ✏ P♣V q. Consider the monad

M2 :✏ 0 // OP3♣✁1q a // O❵4
P3

b // OP3♣1q // 0,

where a ✏

☎✝✝✝✝✆
x0

x1

x2

x3

☞✍✍✍✍✌and b ✏
✁
✁x1 x0 ✁x3 x2

✠
.

Note that b ✆ a ✏ 0, b is surjective and a is injective. Then by Lemma 1.1.19, Σ♣M2q ✏ ❍ and

therefore the cohomology sheaf E2 of M2 is locally-free.

A monad M has a so called display defined bellow.
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Definition 1.1.22. The display of a monad M is the following commutative diagram with

exact rows and columns:

0

��

0

��

0 // A // K //

��

E

��

// 0

0 // A
a // B

b

��

// Q //

��

0

C

��

C

��

0 0

where K ✏ ker b and Q ✏ coker a.

From the display one deduces the following.

Lemma 1.1.23. If E is the cohomology of the monad M, then the rank and Chern polynomial

of E are given by

rkE ✏ rkB ✁ rkA ✁ rkC

ct♣Eq ✏ ct♣Bqct♣Aq✁1ct♣Cq
✁1.

Definition 1.1.24. Let M be a monad of locally-free shaves over a projective variety X, whose

cohomology sheaf is locally-free. The complex

M❴ :✏ 0 // C❴
b❴ // B❴

a❴ // A❴ // 0

is called the dual monad associated at M.

The condition on the cohomology of the monad being locally-free is crucial. As we can see in

the next example.

Example 1.1.25. Consider the monad M1 of the Example 1.1.20. Dualizing this complex we

obtain

0 // OP3♣✁1q b❴ // O❵4
P3

a❴ // OP3♣1q // ☎ ☎ ☎ .

Since a❴ is not surjective in the set ttx0 ✏ 0✉ ❳ tx1 ✏ 0✉✉, therefore this complex is not a

monad.

Given two monads
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M :✏ 0 // A
a // B

b // C // 0

M✶ :✏ 0 // A✶ a✶
// B✶ b✶

// C✶ // 0 ,

a morphism of monads is a morphism of complexes, i.e. is a triple of morphisms ♣f, g, hq

such that the following diagram is commutative

M :✏ 0 // A

f
��

a // B

g

��

b // C

h
��

// 0

M✶ :✏ 0 // A✶ a✶
// B✶ b✶

// C✶ // 0

.

In addition, if f , g and h are isomorphisms we say that the monads are isomorphic.

Definition 1.1.26. Let X be a projective scheme and let OX be a very ample line bundle on

X. A monad over X is called linear if it is of the form

0 // OX♣✁1q❵a // O❵b
X

// OX♣1q
❵c // 0 .

The cohomology sheaf of a linear monad is called linear sheaf.

We have the following useful result.

Proposition 1.1.27. Let E be a linear sheaf.

(i) E is reflexive if and only if its degeneration locus is a subvariety of codimension at least 3;

(ii) E is torsion-free if and only if its degeneration locus is a subvariety of codimension at least

2.

Proof. See [31] - Proposition 4.

By this proposition we have the following.

Example 1.1.28. The sheaf E1 given in the Example 1.1.20 is torsion-free, but is not reflexive.

Next we will give an example of a sheaf that is reflexive but is not locally-free.

Example 1.1.29. Let ♣x0, ☎ ☎ ☎ , x3q be a basis of V ❴ and P3 ✏ P♣V q. Consider the monad

M1 :✏ 0 // OP3♣✁1q a // O❵5
P3

b // OP3♣1q // 0,
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where a ✏

☎✝✝✝✝✝✝✆
x0

x1

0

0

x2

☞✍✍✍✍✍✍✌and b ✏
✁
✁x1 x0 x2 x3 0

✠
.

Note that b ✆ a ✏ 0, b is surjective and moreover a is injective if and only if x0 ✘ 0, x1 ✘ 0 and

x2 ✘ 0. By Lemma 1.1.19 we have

Σ♣M3q ✏ ttx0 ✏ 0✉ ❳ tx1 ✏ 0✉ ❳ tx2 ✏ 0✉✉ .

Thus Σ♣M3q ✏ tr0 : 0 : 0 : 1s✉, therefore by Proposition 1.1.27 the cohomology sheaf E3 of M3

is reflexive and is not locally-free.

The existence of linear monads on Pn was completely characterized by Fløystad in [18] and

generalize to projective varieties for Marchesi, Marques and Soares in [36].

Lemma 1.1.30. Let E ✏ H✌♣Mq, E ✶ ✏ H✌♣M✶q be the cohomology bundles of the two monads

M :✏ 0 // A
a // B

b // C // 0

M✶ :✏ 0 // A✶ a✶
// B✶ b✶

// C✶ // 0

of locally-free sheaves over a projective variety X. The mapping

h : Hom♣M,M✶q Ñ Hom♣E , E ✶q

which associates to each homomorphism of monads the induced homomorphism of cohomology

bundles is bijective if the following hypotheses are satisfied:

Hom♣B,A✶q ✏ Hom♣C,B✶q ✏ 0

H1♣X, C❴ ❜ A✶q ✏ H1♣X,B❴ ❜ A✶q ✏ H1♣X, C❴ ❜ B✶q ✏ H2♣X, C❴ ❜ A✶q ✏ 0.

Proof. See [41] - Lemma 4.1.3.

From this lemma we draw the following two conclusions.

Corollary 1.1.31. If the hypotheses of the Lemma 1.1.30 are satisfied for the pairs of monads

♣M,Mq, ♣M,M✶q, ♣M✶,Mq and ♣M✶,M✶q, then the isomorphisms of the monads M, M✶

correspond bijectively (under h) to the isomorphisms of the cohomology bundles E , E ✶.



Chapter 1. Preliminaries 27

Corollary 1.1.32. Let

M :✏ 0 // A
a // B

b // C // 0

be a monad of locally-free sheaves with cohomology bundle E ✏ H✌♣Mq, and

M❴ :✏ 0 // C❴
b❴ // B❴

a❴ // A❴ // 0

be the dual monad. Furthermore suppose that the hypotheses of the lemma are satisfied for the

pairs of monads ♣M,Mq, ♣M,M❴q, ♣M❴,Mq and ♣M❴,M❴q.

If f : E Ñ E❴ is a symplectic (respectively an orthogonal) isomorphism of the cohomology

bundles, then there are isomorphisms

h : C Ñ A❴ and q : B Ñ B❴,

such that q❴ ✏ ✁q (respectively q❴ ✏ q) and h ✆ b ✏ a❴ ✆ q.

Proof. See [8] - Proposition 5.

Now we present the theorems of Beilinson about spectral sequences, for the proof and more

details see [40] - Chapter 2 - Section 3.

Theorem 1.1.33 (Beilinson, Theorem I). Let E be a vector bundle over Pn of rank r. There is

a spectral sequence Epq
r with E1-term

E
pq
1 ✏ Hq♣Pn, E♣pqq ❜ Ω✁p

Pn ♣✁pq,

which converges to

Ei ✏

★
E for i ✏ 0

0 otherwise,

i.e., Epq
✽ ✏ 0, for p� q ✏ 0 and

nà
p✏0

E✁p,p
✽ is the associated graded sheaf of a filtration of E .

Theorem 1.1.34 (Beilinson, Theorem II). Let E be a vector bundle over Pn of rank r. There

is a spectral sequence Epq
r with E1-term

E
pq
1 ✏ Hq♣Pn, E ❜ Ω✁p

Pn ♣✁pqq ❜OPn♣pq,

which converges to

Ei ✏

★
E for i ✏ 0

0 otherwise,

i.e., Epq
✽ ✏ 0, for p� q ✏ 0 and

nà
p✏0

E✁p,p
✽ is the associated graded sheaf of a filtration of E .
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1.1.5 Hyperdeterminants of matrices

In [20] Gelfand, Zelevinsky and Kapranov provide a higher-dimensional generalization of the

classical notion of the determinant of a square matrix: the hyperdeterminant. The goal of this

subsection is to present the relation between hyperdeterminants and degeneracy of bilinear

maps. For more details see [42] and [[21] - Chapter 14].

Let r ➙ 2 be an integer. By a r-dimensional matrix we shall mean an array A ✏ ♣ai1,☎☎☎ ,ir
q

with entries on K, where each index ranges over some finite set, i.e. 0 ↕ ij ↕ kj.

The definition of the hyperderminant of A can be stated in geometric, analytic or algebraic

terms. Let us give all three formulations.

Geometrically: consider the product X ✏ Pk1 ✂ ☎ ☎ ☎ ✂ Pkr of several projective spaces in the

Segre embedding into the projective space P♣k1�1q☎☎☎♣kr�1q✁1 (if Pkj is the projectivization of a

K-vector space V ❴
j ✏ Kkj�1 then the ambient projective space is P♣V ❴

1 ❜ ☎ ☎ ☎ ❜ V ❴
r qq. Let X❴ be

the projective dual variety of X consisting of all hyperplanes in P♣k1�1q☎☎☎♣kr�1q✁1 tangent at X at

some point. The hyperdeterminant of format ♣k1 � 1q✂ ☎ ☎ ☎ ✂ ♣kr � 1q is the X-discriminant,

i.e. a homogeneous polynomial function on V1 ❜ ☎ ☎ ☎ ❜ Vr which is a defining equation of X❴. We

denote the hyperdeterminant by Det. If X❴ is not a hypersurface, we set Det equal to 1, and

refer to this case as trivial. If each Vj is equipped with a basis then an element f P V1 ❜ ☎ ☎ ☎❜Vr

is represented by a matrix A ✏ ♣ai1,☎☎☎ ,ir
q, 0 ↕ ij ↕ kj as above, and so Det♣Aq is a polynomial

function of matrix entries.

Analytically: the hyperplane tf ✏ 0✉ belongs to X❴ if and only if f vanishes at some point of

X with all its first derivatives. If we choose a coordinate system x♣jq ✏ ♣x
♣jq
0 , x

♣jq
1 , ☎ ☎ ☎ , x

♣jq
kj
q on

each V ❴
j then f P V1 ❜ ☎ ☎ ☎ ❜ Vr is represented after restriction on X by a multilinear form

f♣x♣1q, ☎ ☎ ☎ , x♣rqq ✏
➳

i1,☎☎☎ ,ir

ai1,☎☎☎ ,ir
, x

♣1q
i1
☎ ☎ ☎x

♣rq
ir
.

Therefore, the condition Det♣Aq ✏ 0 means that for i, j the system of equations

f♣xq ✏
❇f♣xq

❇x
♣jq
i

✏ 0,

has solution x ✏ ♣x
♣1q
i1
, ☎ ☎ ☎ , x

♣rq
ir
q with all x♣jq ✘ 0. We say that a multilinear form f (or a matrix

A) satisfying this condition is degenerate.

Algebraically: the degeneracy of a form f can be characterized as follows. We denote by K♣fq

(or K♣Aq) the set of points

x ✏ ♣x♣1q, ☎ ☎ ☎ , x♣rqq P Pk1 ✂ ☎ ☎ ☎ ✂ Pkr
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such that

f♣x♣1q, ☎ ☎ ☎ , x♣j✁1q, y, x♣j�1q, ☎ ☎ ☎ , x♣rqq ✏ 0

for every j ✏ 1, ☎ ☎ ☎ , r and every y P V ❴
j . We shall sometimes call K♣Aq the kernel of A. For a

bilinear form f♣x, yq, there is a notion of left and right kernels

Kl♣fq ✏ tx⑤f♣x, yq ✏ 0, for all y✉,

Kr♣fq ✏ ty⑤f♣x, yq ✏ 0, for all x✉

and K♣fq ✏ Kl♣fq ✂ Kr♣fq.

Proposition 1.1.35. A form f is degenerate if and only if K♣fq is non-empty.

Proof. See [21] - Chapter 14 - Proposition 1.1.

Remark 1.1.36. In particular, for r ✏ 2 when f is a bilinear form with a matrix A, the

degeneracy of f just defined coincides with the usual notion of degeneracy and means that A is

not of maximal rank. Obviously, this condition is of codimension one if and only if A is a square

matrix, and in this case Det♣Aq coincides with the ordinary determinant det♣Aq.

1.2 Instanton bundles

In [4] Atiyah, Drinfeld, Hitchin and Manin showed that instanton bundles on P3 are holomorphic

vector bundles on P3 in correspondence to self-dual solutions of the SU♣2q Yang Mills equations

over the 4-dimensional sphere S4 via the Penrose-Ward correspondence.

In [41] Okonek and Spindler used the Salamon’s generalization of the Penrose-Ward correspon-

dence to extend the definition of instanton bundles to odd dimensional projective spaces as

follows.

Definition 1.2.1. An algebraic rank-2n bundle E on P2n�1 is a mathematical instanton

bundle with quantum number (or charge) c ➙ 1 if it has the following properties:

(i) the Chern polynomial of E is ct♣Eq ✏

✂
1

1 ✁ t2

✡c

;

(ii) E has natural cohomology in the range ✁2n✁ 1 ↕ l ↕ 0;

(iii) E has trivial splitting type;

(iv) E is simple;

(v) E has a symplectic structure.
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The authors also proved in [41] that a mathematical instanton bundle is the cohomology of a

linear monad.

Theorem 1.2.2. Any mathematical instanton bundle E can be represented as the cohomology

of a monad of the form

0 // H1♣E ❜ Ω2♣1qq ❜OP2n�1♣✁1q // H1♣E ❜ Ω1qq ❜OP2n�1
//

// H1♣E♣✁1qq ❜OP2n�1♣1q // 0.

Proof. See [41] - Corollary 1.4.

In [2] Ancona and Ottaviani proved that every 2n-bundle satisfying (i) and (ii) is simple

(Proposition 2.11), thus the condition (iv) is superfluous. In this paper the authors also defined

the mathematical instanton bundles excluding the condition (v), which on P3 is superfluous.

The condition (iii) is also superfluous on P3, since simple rank 2 bundles E with first Chern

class equals to zero has trivial splitting type by the Grauert-Mülich theorem (See [40]).

In order to extend the study to even-dimensional projective spaces, in [31] Jardim considers a

more general class of objects.

Definition 1.2.3. A coherent sheaf E on Pn is called an instanton sheaf of charge c and rank

r if it is defined as the cohomology of a linear monad

0 Ñ O❵c
Pn ♣✁1q Ñ O

❵♣r�2cq
Pn Ñ O❵c

Pn ♣1q Ñ 0.

Moreover, if E is locally free, we call it an instanton bundle.

The Chern polynomial of an instanton sheaf is then ct♣Eq ✏

✂
1

1✁ t2

✡c

. In particular, we have

c1♣Eq ✏ 0 and c2♣Eq ✏ c → 0.

In [31] Jardim gave the following alternative cohomological characterization.

Definition 1.2.4. An instanton sheaf on Pn (n ➙ 2) is a torsion-free coherent sheaf E on

Pn with c1 ✏ 0 satisfying the following cohomological conditions:

(1) H0♣E♣✁1qq ✏ Hn♣E♣✁nqq ✏ 0;

(2) H1♣E♣✁2qq ✏ Hn✁1♣E♣1✁ nqq ✏ 0, if n ➙ 3;
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(3) Hi♣E♣✁kqq ✏ 0 for 2 ↕ p ↕ n✁ 2 and all k, if n ➙ 4.

The integer c ✏ ✁χ♣E♣✁1qq is called charge of E .

In addition, if E is a rank 2n bundle on P2n�1 with trivial splitting type, then E is a mathematical

instanton bundle as defined above. In [31] Jardim generalized the Theorem 1.2.2 for any torsion-

free sheaf on Pn satisfying the cohomological conditions (1)-(3) of Definition 1.2.4.

Theorem 1.2.5. If E is a torsion-free sheaf on Pn satisfying:

(1) H0♣E♣✁1qq ✏ Hn♣E♣✁nqq ✏ 0;

(2) H1♣E♣✁2qq ✏ Hn✁1♣E♣1✁ nqq ✏ 0, if n ➙ 3;

(3) Hi♣E♣✁kqq ✏ 0 for 2 ↕ p ↕ n✁ 2 and all k, if n ➙ 4.

then E is linear, and can be represented as the cohomology of the monad:

0 // H1♣E ❜ Ω2♣1qq ❜OPn♣✁1q // H1♣E ❜ Ω1qq ❜OPn //

// H1♣E♣✁1qq ❜OPn♣1q // 0.

Proof. See [31] - Theorem 3.

As we can see in the next result, the dual of an instanton bundle E is a instanton bundle and

cohomology of the dual monad of E .

Lemma 1.2.6. If E is an instanton bundle, then its dual bundle E❴ is the cohomology of the

monad which is dual to the monad that defines E . In particular, E❴ is again instanton.

Proof. See [32] - Lemma 2.2.

Let E be an orthogonal instanton bundle over Pn (n ➙ 3), i. e., an instanton vector bundle on Pn

which is orthogonal, with charge c, rank r and no global sections (H0♣Eq ✏ 0). Let us compute

some of the cohomology groups that will be needed in the next chapter.

By the instantons cohomological conditions in Definition 1.2.4 one has

(1) H0♣E♣✁1qq ✏ Hn♣E♣✁nqq ✏ 0;
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(2) H1♣E♣✁2qq ✏ Hn✁1♣E♣1 ✁ nqq ✏ 0, if n ➙ 3;

(3) Hi♣E♣✁kqq ✏ 0 for 2 ↕ p ↕ n✁ 2 and all k, if n ➙ 4.

Consider the following exact sequence

0 // E♣✁i✁ 1q // E♣✁iq // E♣✁iq ⑤Pn✁1
// 0 .

For i ✏ 0, one has H0♣E♣✁1qq ✏ 0.

For i ✏ 1, one has H0♣E♣✁2qq ✏ H0♣E♣✁1q ⑤Pn✁1q ✏ 0.

For i ✏ 2, one has H1♣E♣✁3qq ✏ H0♣E♣✁3qq ✏ H0♣E♣✁2q ⑤Pn✁1q ✏ 0.

For i ✏ 3, one has H1♣E♣✁4qq ✏ H0♣E♣✁4qq ✏ H0♣E♣✁3q ⑤Pn✁1q ✏ 0.

For i ✏ 4, one has H1♣E♣✁5qq ✏ H0♣E♣✁5qq ✏ H0♣E♣✁4q ⑤Pn✁1q ✏ 0.

Continuing this process, one has H0♣E♣✁iq ⑤Pn✁1q ✏ 0 for all i ➙ 1, H0♣E♣✁iqq ✏ 0 for all i ➙ 0

and H1♣E♣✁iqq ✏ 0 for all i ➙ 2. So by Serre duality one has

Pn, n ➙ 3 E♣✁n✁ 1q E♣✁nq E♣1 ✁ nq . . . E♣✁2q E♣✁1q E

h0 0 0 0 0 0 0 0

h1 0 0 0 0 0 ✝ ✝

h2 0 0 0 0 0 0 0
... 0 0 0 0 0 0 0

hn✁2 0 0 0 0 0 0 0

hn✁1 ✝ ✝ 0 0 0 0 0

hn 0 0 0 0 0 0 0

Recall that the charge c ✏ ✁χ♣E♣✁1qq, thus by Serre duality we have hn✁1♣E♣✁nqq ✏ h1♣E♣✁1qq ✏

c. Now we can use Hirzebruch-Riemann-Roch theorem to complete the table.
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As we saw in Example 1.1.13 the Chern classes of tangent bundle TPn on Pn are given by

ci :✏ ci♣TPnq ✏

✂
n� 1

i

✡
, and therefore the Todd class of TPn is given by

td♣TPnq ✏ 1 �
c1

2
�
c2

1 � c2

12
�
c1c2

24
� . . .

On the other hand, the Chern character of E is given by

ch♣Eq ✏ r � c1♣Eq �
c1♣Eq

2 � 2c2♣Eq

2
�
c1♣Eq

3 ✁ 3c1♣Eqc2♣Eq � 3c3♣Eq

6
� . . .

So by Hirzebruch-Riemann-Roch theorem one has

χ♣Eq ✏ deg ♣ch♣Eq.td♣TPnqqn

✏ ♣n✁ 1qc✁ r.

Since, H0♣Eq ✏ H2♣Eq ✏ ☎ ☎ ☎ ✏ Hn♣Eq ✏ 0 and

χ♣Eq ✏
n➳

i✏0

♣✁1qihi♣Eq

we have

h1♣Eq ✏ ♣n✁ 1qc✁ r,

and by Serre Duality

h1♣Eq ✏ hn✁1♣E♣✁n✁ 1qq ✏ ♣n✁ 1qc✁ r.

Therefore, for n ➙ 3 and ✁n✁ 1 ↕ k ↕ 0, we have

hi♣E♣kqq ✏

✩✬✫✬✪
c, if ♣i, kq P t♣1,✁1q, ♣n✁ 1,✁nq✉;

♣n✁ 1qc✁ r, if ♣i, kq P t♣1, 0q, ♣n✁ 1,✁n✁ 1q✉;

0, otherwise.

1.3 Moduli space and Geometric invariant theory

A moduli problem is essentially a classification problem. Given a collection of algebraic objects

A and an equivalence relation ✒ on A our goal is to describe the set of equivalence classes A④ ✒.

Moreover, we would like to endow the set A④ ✒ with an algebraic structure which reflects the

algebraic structure it is on A.

Definition 1.3.1. A naive moduli problem (in algebraic geometry) is a collection A of

algebraic objects and an equivalence relation ✒ on A.
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Example 1.3.2. Let A be the collection of vector bundles on a fixed scheme X and ✒ be the

relation given by isomorphisms of vector bundles.

Definition 1.3.3. Let ♣A,✒q be a naive moduli problem. Then an (extended) moduli

problem is given by

(1) sets AX of families over X and an equivalence relation ✒X on AX , for all schemes X;

(2) pullback maps f✝ : AY Ñ AX , for every morphism of schemes X Ñ Y , satisfying the

following properties:

(i) ♣ASpec K,✒Spec Kq ✏ ♣A,✒q;

(ii) for the identity Id : X Ñ X and any family F over X, we have Id✝F ✏ F ;

(iii) for a morphism f : Y Ñ X and equivalent families F ✒X G over X, we have

f✝F ✒Y f✝G;

(iv) for morphisms f : X Ñ Y and g : Y Ñ Z, and a family F over Z, we have an

equivalence ♣g ✆ fq✝F ✒X f✝g✝F ;

For a family F over X and a point s : Spec K Ñ X, we write Fs :✏ s✝F to denote the

corresponding family over Spec K.

Definition 1.3.4. Given a moduli problem M, we say that a family F over a scheme X has

the local universal property if for any family G over a scheme Y and for any point y P Y ,

there exists a neighbourhood U of y in Y and a morphism f : U Ñ X such that G⑤U ✒U f✝F .

A moduli problem defines a contravariant functor M : Sch Ñ Set from the category of schemes

to the category of sets, given by

M♣Xq :✏ tfamilies over X✉④ ✒S

M♣f : Y Ñ Xq :✏ f✝ : M♣Xq Ñ M♣Y q.

The contravariant functor defined above is called moduli functor. We will often refer to a

moduli problem simply by its moduli functor.

Definition 1.3.5. We say that a moduli functor M : Sch Ñ Set is represented by an object M P

Ob♣Schq if it is isomorphic to hM the functor of points of M , defined by hM♣Xq ✏ HomC♣X,Mq.

The object M is called a fine moduli space for the moduli functor M.

If a fine moduli space exists, then it is unique up to isomorphism. Unfortunately there are many

moduli problems which not admit a fine moduli space. Therefore it is necessary to find some

weaker condition which nevertheless determines a unique algebraic structure on A④ ✒.
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Definition 1.3.6. We say that a moduli functor M : Sch Ñ Set is corepresented by an object

M P Ob♣Schq if there is a natural transformation η : M Ñ hM such that η♣tpt✉q is bijective

and for any object N P Ob♣Schq and for any natural transformation β : M Ñ hN there exists

a unique morphism γ : M Ñ N such that β ✏ hγη. The object M is called a coarse moduli

space for the contravariant moduli functor M.

If a coarse moduli space exists, then it is unique up to isomorphism. A fine moduli space for a

given contravariant moduli functor M is always a coarse moduli space for this moduli functor

but the reciprocal is not true in general.

Proposition 1.3.7. . Let ♣M, ηq be a coarse moduli space for a moduli problem M. Then

♣M, ηq is a fine moduli space if and only if

(1) there exists a family U over M such that ηM♣Uq ✏ IdM ;

(2) for families F and G over a scheme S, we have F ✒S G ô ηS♣Fq ✏ ηS♣Gq.

Proof. See [39] - Proposition 1.8.

Unfortunately, sometimes is not even possible to obtain a coarse moduli space, as we can see in

the following result.

Lemma 1.3.8. Let M be a moduli problem and suppose there exists a family F over A1 such

that Fs ✒ F1 for all s ✘ 0 and F0 ✚ F1. Then for any scheme M and natural transformation

η : M Ñ hM , we have that ηA1♣Fq : A1 Ñ M is constant. In particular, there is no coarse

moduli space for this moduli problem.

Proof. See [30] - Lemma 2.27.

1.3.1 Actions

In this subsection we introduce some concepts about actions of algebraic groups.

Definition 1.3.9. An algebraic group over K is a scheme G over K with morphisms e :

Spec KÑ G (identity element), m : G✂GÑ G (group law) and i : GÑ G (group inversion)

such that we have commutative diagrams

G✂G✂G

m✂Id

��

Id✂m
// G✂G

m

��

SpecK✂G
e✂Id

//

✕
''

G✂G

m

��

G✂ SpecK

✕
xx

Id✂e
oo

G✂G m
// G G
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G
♣i,Idq

//

a

��

G✂G

m

��

G

a

��

♣Id,iq
oo

SpecK e
// G SpecK,e

oo

where a : GÑ SpecK sends all elements g P G into the single point tpt✉ P Spec K.

We say G is an affine algebraic group if the underlying scheme G is affine. A homomorphism

of algebraic groups G and H is a morphism of schemes f : G Ñ H such that the following

diagram commutes

G✂G
mG //

f✂f

��

G

f

��

H ✂H mH

// H.

An algebraic subgroup of G is a closed subscheme H such that the immersion H ãÑ G

is a homomorphism of algebraic groups. We say that an algebraic group G✶ is an algebraic

quotient of G if there is a homomorphism of algebraic groups f : G Ñ G✶ which is flat and

surjective.

Many of the groups that we are already familiar with are affine algebraic groups.

Example 1.3.10. The general linear group GLn over K is an affine algebraic group.

Definition 1.3.11. A linear algebraic group is a subgroup of GLn which is defined by

polynomial equations.

In particular, any linear algebraic group is an affine algebraic group. In fact, the converse

statement is also true: any affine algebraic group is a linear algebraic group (See [30] - Theorem

3.9). Moreover, any linear algebraic group G possesses an unique maximal connected normal

solvable subgroup, called radical.

Definition 1.3.12. An algebraic group G is called reductive if the radical of G is a torus.

Example 1.3.13. The algebraic groups GLn, SLn and PGLn are all reductive.

Definition 1.3.14. An algebraic action of an affine algebraic group G on a K✁scheme X is a

morphism of schemes σ : G✂X Ñ X such that the following diagrams commute:

SpecK✂X
e✂IdX //

✕
''

G✂X

σ

��

G✂G✂X

mG✂IdX

��

IdG✂σ
// G✂X

σ

��

X G✂X σ
// X
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Definition 1.3.15. Let G be an affine algebraic group acting on a scheme X by σ : G✂X Ñ X

and let x P X be a point.

(i) The stabiliser G ☎ x of x is the subset

Gx ✏ tg P G⑤σ♣g, xq ✏ x✉.

(ii) The orbit Gx of x is the closed subgroup of G

O♣xq ✏ tσ♣g, xq⑤ for all g P G✉.

If all the orbits are closed subsets of X, we say that the action of G is closed.

A point x (subset W ) of X is said to be invariant under G if σ♣g, xq ✏ x (σ♣g,W q ✏ W ) for

every g P G. Given actions of G on two schemes X and Y , we say that the morphism φ : X Ñ Y

is a G-morphism if φ♣σX♣g, xqq ✏ σY ♣g, φ♣xqq, for all g P G, x P X. In particular, when G acts

trivially on Y (i.e. σY ♣g, yq ✏ y), φ is said a G-invariant morphism.

If only the IdG has fixed points (i.e. σ♣g, xq ✏ x for some x P X implies g ✏ e) then we say the

action is free. Moreover, if the action is free, then all the orbits are closed (See [9] - Chapter 1 -

Section 1.8).

1.3.2 Quotients

In this subsection we introduce the definition of categorical quotient and its relation with moduli

spaces.

Definition 1.3.16. A categorical quotient for the action of G on X is a pair ♣Y, πq, where

π : X Ñ Y is a G-invariant morphism of schemes which is universal; that is, every other

G-invariant morphism f : X Ñ Z factors uniquely through π so that there exists a unique

morphism h : Y Ñ Z such that the following diagram is commutative.

X
π //

f
  

Y

❉!h
��

Z

Furthermore, if the preimage of each point in Y is a unique orbit, then we say π is an orbit

space.

We shall often speak of the scheme as a categorical quotient or orbit space without mention of

the morphism ϕ and use the following notation Y ✏ X④④G. A categorical quotient is determined

up to isomorphism.
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Definition 1.3.17. A categorical quotient ♣Y, πq for the action of G on X is a universal

categorical quotient if the following holds: Let Y ✶ be an algebraic variety and Y ✶ Ñ Y a

morphism. Consider the action of G on X ✂Y Y
✶ given by the fiber product. If p2 denotes the

projection X ✂Y Y
✶ Ñ Y ✶, then ♣Y ✶, p2q is a categorical quotient of X ✂Y Y

✶ by G. In this case

we say also that Y is a universal categorical quotient of X by G, without mention the morphism.

Let G be an affine algebraic group acting on a scheme X over K. The group G acts on the

K-algebra O♣Xq of regular functions on X by g ☎ f♣xq ✏ f♣g✁1 ☎ xq. We denote the subalgebra

of invariant functions by

O♣XqG :✏ tf P O♣Xq⑤g ☎ f ✏ f for all g P G✉.

Similarly if U ⑨ X is a subset which is G-invariant, then G acts on OX♣Uq and we denote by

OX♣Uq
G the subalgebra of invariant functions.

Definition 1.3.18. A good quotient for the action of G on X is a pair ♣Y, πq, where

(i) π is G-invariant.

(ii) π is surjective.

(iii) If U ⑨ Y is an open subset, the morphism OY ♣Uq Ñ OX♣π
✁1♣Uqq is an isomorphism onto

the G-invariant functions OX♣π
✁1♣UqqG.

(iv) If W ⑨ X is a G-invariant closed subset of X, its image π♣W q is closed in Y .

(v) If W1 and W2 are disjoint G-invariant closed subsets, then π♣W1q and π♣W2q are disjoint.

(vi) π is affine.

Moreover, if the preimage of each point is an unique orbit then we say π is a geometric

quotient.

In particular, any good quotient is a categorical quotient.

Proposition 1.3.19. Let G be an affine algebraic group acting on a scheme X and suppose

we have a morphism π : X Ñ Y satisfying properties (i), (iii), (iv) and (v) of Definition 1.3.18.

Then π is a categorical quotient.

Proof. See [30] - Proposition 3.30.

In some cases, a good quotient X④④G shares the same properties of X.
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Proposition 1.3.20. Let G be an algebraic group acting on an scheme X, and suppose that a

good quotient ♣X④④G, πq of X by G exists. Then

(i) If X is reduced, then ♣X④④Gq is reduced.

(ii) If X is connected, then ♣X④④Gq is connected.

(iii) If X is irreducible, then ♣X④④Gq is irreducible.

(iv) If X is normal, then ♣X④④Gq is normal.

Proof. See [15] - Proposition 2.15.

Our interest in the existence of categorical quotients and orbit spaces lies in the fact that they

can be related with moduli spaces as show the following results.

Proposition 1.3.21. For a moduli problem M, let F be a family with the local universal

property over a scheme X. Furthermore, suppose that there is an algebraic group G acting on

X such that two points x, y lie in the same G-orbit if and only if Fx ✒ Fy. Then

(i) any coarse moduli space is a categorical quotient of the G-action on X;

(ii) a categorical quotient of the G-action on X is a coarse moduli space if and only if it is an

orbit space.

Proof. See [30] - Proposition 3.35.

Theorem 1.3.22. Let G be a reductive group acting on an affine scheme X. Then a good

quotient of X by G exists, and X④④G is affine scheme. Moreover it is an universal categorical

quotient.

Proof. See [15] - Theorem 2.16.
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2 Orthogonal instanton bundles and symmetric

forms

The focus of this chapter is the study of orthogonal instanton bundles on Pn, n ➙ 3. In the first

section we provide a bijection between equivalence classes of orthogonal instanton bundles with

no global sections and symmetric forms, this construction was inspired by the work of Bruzzo,

Markushevich and Tikhomirov which in [11] relate symplectic instanton bundles on P3 and the

space of hyperwebs of quadrics. Using such correspondence we are able to construct explicit

examples of orthogonal instanton bundles on Pn with no global sections and charge c ➙ 3. In

the second section we use the techniques of geometric invariant theory described on Chapter

1 to construct MO

Pn the moduli space of orthogonal instanton bundles on Pn with no global

sections and charge c ➙ 3.

2.1 The equivalence

From now on, let us consider Pn ✏ P♣V q, where V is a ♣n� 1q-dimensional K-vector space, for

n ➙ 3. Let Hc be a c-dimensional K-vector space, with c ➙ 1.

Let E be an orthogonal instanton bundle on Pn with charge c, rank r and no global sections.

We saw in the previous chapter that dim Hn✁1♣E♣✁nqq ✏ c. Thus consider a triple ♣E , φ, fq,

where f : Hc
✕

// Hn✁1♣E♣✁nqq and φ is an orthogonal structure of E , i.e. an isomorphism

φ : E
✕

// E❴ , such that φ❴ ✏ φ. Consider the set of all triples ♣E , φ, fq, next we will define

an equivalence relation between triples which makes the orthogonal structures φ and the

isomorphisms f compatible.

Definition 2.1.1. Two triples ♣E1, φ1, f1q and ♣E2, φ2, f2q are called equivalent if there is an

isomorphism g : E1
✕

// E2 such that the following diagrams commute

E1
φ1

//

g

��

E❴1 Hc

f1
//

λIdc

��

Hn✁1♣E1♣✁nqq

g✝

��

E2
φ2

// E❴2

g❴

OO

Hc
f2

// Hn✁1♣E2♣✁nqq,

where g✝ : Hn✁1♣E1♣✁nqq
✕

// Hn✁1♣E2♣✁nqq is the induced isomorphism in cohomology and

λ P t✁1, 1✉.
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We denote by rE , φ, f s the equivalence class of a triple ♣E , φ, fq.

Fixing the integers c and r, we will denote by Erc, rs the set of all equivalence classes rE , φ, f s

of orthogonal instanton bundles, with charge c, rank r and no global sections over Pn. Consider

the Euler exact sequence

0 // Ω1
Pn

i1 // V ❴ ❜ OPn♣✁1q ev // OPn // 0 (2.1)

and the sequences

0 // Ωi�1
Pn

// ❫i�1V ❴ ❜ OPn♣✁i✁ 1q // Ωi
Pn

// 0 , (2.2)

with 1 ↕ i ↕ n✁ 2, and

0 //
➍n�1

V ❴ ❜ OPn♣✁n✁ 1q //
➍n

V ❴ ❜ OPn♣✁nq
i2 // Ωn✁1

Pn
// 0 (2.3)

induced by the Koszul complex of V ❴ ❜ OPn♣✁1q ev // OPn , where ev denotes the canonical

evaluation map.

Tensoring these sequences with E :

(i) from (2.1) we obtain Hi♣E ❜ Ω1
Pnq ✏ 0, for i ✏ 0, 3, . . . , n and the exact sequence

0 // H1♣E ❜ Ω1
Pnq

i1 // H1♣V ❴ ❜ E♣✁1qq // H1♣Eq // H2♣E ❜ Ω1
Pnq // 0; (2.4)

(ii) from (2.2) we obtain

Hj♣E ❜ Ωi
Pnq ✕ Hj�1♣E ❜ Ωi�1

Pn q (2.5)

and H0♣E ❜ Ωi
Pnq ✏ Hn✁1♣E ❜ Ωi�1

Pn q ✏ 0, for 1 ↕ i ↕ n✁ 2 and 0 ↕ j ↕ n✁ 1;

(iii) from (2.3) we obtain Hi♣E ❜ Ωn✁1
Pn q ✏ 0, for i ✏ 0, . . . , n✁ 3, n and the exact sequence

0 // Hn✁2♣E ❜ Ωn✁1
Pn q // Hn✁1♣

➍n�1
V ❴ ❜ E♣✁n✁ 1qq //

// Hn✁1♣
➍n

V ❴ ❜ E♣✁nqq
i2 // Hn✁1♣E ❜ Ωn✁1

Pn q // 0.

(2.6)

Therefore we have

H2♣E ❜ Ω1
Pnq ✏ H3♣E ❜ Ω2

Pnq ✏ ☎ ☎ ☎ ✏ Hn♣E ❜ Ωn✁1
Pn q ✏ 0,
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Hn✁2♣E ❜ Ωn✁1
Pn q ✏ Hn✁3♣E ❜ Ωn✁2

Pn q ✏ ☎ ☎ ☎ ✏ H0♣E ❜ Ω1
Pnq ✏ 0, and

hn✁1♣E ❜ Ωn✁1
Pn q ✏ h1♣E ❜ Ω1

Pnq ✏ h1♣V ❴ ❜ E♣✁1qq ✁ h1♣Eq ✏ 2c� r.

and one has the exact sequences

0 // Hn✁1♣E♣✁n ✁ 1qq ❜
➍n�1 V ❴

a // Hn✁1♣E♣✁nqq ❜
➍n V ❴

i2 // Hn✁1♣E ❜ Ωn✁1

Pn q // 0

and

0 // H1♣E ❜ Ω1
Pnq

i1 // H1♣E♣✁1qq ❜ V ❴ b // H1♣Eq // 0. (2.7)

Now observe that by the functoriality of the Serre duality we have i1 ✏ i❴2 . And moreover, since

E is orthogonal by Theorem 1.2.5 and Corollary 1.1.32, there exists a symmetric isomorphism

❇❜ Id : H1♣E ❜Ω1qq❜OPn Ñ Hn✁1♣E ❜Ωn✁1q❜OPn . Thus we have the diagram with exact rows

0 // Hn✁1♣E♣✁n ✁ 1qq ❜
➍n�1 V ❴

a // Hn✁1♣E♣✁nqq ❜
➍n V ❴

A✶

��

i2 // Hn✁1♣E ❜ Ωn✁1

Pn q // 0

0 H1♣Eqoo H1♣E♣✁1qq ❜ V ❴
boo H1♣E ❜ Ω1

Pn q
i❴
2oo

✕❇

OO

0oo

(2.8)

where A✶ ✏ i❴2 ✆ ❇✁1 ✆ i2.

The Euler exact sequence (2.1) yields the canonical isomorphism ωPn
✕

//
➍n�1

V ❴ ❜ OPn♣✁n ✁ 1q .

So fixing an isomorphism τ : K
✕

//
➍n�1

V ❴ we have the isomorphisms

τ1 : V
✕

//
➍n

V ❴ and τ2 : ωPn
✕

// OPn♣✁n✁ 1q . (2.9)

Thus each class rE , f, φs P E defines a morphism A : Hc ❜ V // H❴
c ❜ V ❴ by the following

composition

A : Hc ❜ V
Id❜τ1 // Hc ❜

➍n V ❴
f❜Id

// Hn✁1♣E♣✁nqq ❜
➍n V ❴

A✶
// H1♣E♣✁1qq ❜ V ❴

φ❜Id
// H1♣E❴♣✁1qq ❜ V ❴

SD❜Id
// Hn✁1♣E♣1q ❜ ωPn q❴ ❜ V ❴

τ2❜Id
// Hn✁1♣E♣✁nqq❴ ❜ V ❴

f❴❜Id
// H❴

c ❜ V ❴,

where SD is the Serre duality isomorphism.
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Therefore we can write

A ✏ ♣♣f❴ ✆ τ2 ✆ SD ✆ φq ❜ Idq ✆ A✶ ✆ ♣f ❜ τ1q. (2.10)

Note that, since τ is a multiplication by scalar, A does not depend on the choice of τ . And

moreover, note that A is symmetric, indeed

(i) first note that A✶ ✏ A✶❴, this follows from

A✶❴ ✏ ♣i❴2 ✆ ❇✁1 ✆ i2q
❴ ✏ i❴2 ✆ ♣❇✁1q❴ ✆ i2 ✏ i❴2 ✆ ❇✁1 ✆ i2 ✏ A✶.

(ii) SD is functorial and auto-dual, so SD❴ ✏ SD and it commutes with every morphism.

(iii) the maps φ and A✶ commute, because the cohomology groups of E and E❴ are isomorphic,

since φ : E
✕

// E❴.

(iv) As τ : K : ✔ //
➍n�1

V ❴ , one has that τ is a multiplication by a scalar λ. So τ1 ✏ λId

and τ2 is also a multiplication by λ. It follows that τ1 and τ2 are both auto-dual and

commute with every morphism.

Then
A❴ ✏ ♣f❴ ❜ τ❴1 q ✆ A

✶❴ ✆ ♣♣φ❴ ✆ SD❴ ✆ τ❴2 ✆ fq ❜ Idq

✏ ♣f❴ ❜ τ1q ✆ A
✶❴ ✆ ♣♣φ ✆ SD ✆ τ2 ✆ fq ❜ Idq

✏ ♣♣f❴ ✆ τ2 ✆ SD ✆ φq ❜ Idq ✆ A✶ ✆ ♣f ❜ τ1q

✏ A,

so

A P ♣S2H❴
c ❜ S2V ❴q ❵ ♣

2➞
H❴

c ❜
2➞
V ❴q. (2.11)

Now we will show that A P
2➞
H❴

c ❜
2➞
V ❴.
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Denote W ✏
Hc ❜ V

Ker A
. By (2.8) and (2.10) we have the commutative diagram of exact rows

Hc ❜ V

A

��

f❜τ1

��

0 // Hn✁1♣E♣✁n ✁ 1qq ❜
➍n�1

V ❴ a // Hn✁1♣E♣✁nqq ❜
➍n

V ❴

A✶

��

i2 // Hn✁1♣E ❜ Ωn✁1
Pnq q

// 0

0 H1♣Eqoo H1♣E♣✁1qq ❜ V ❴boo

♣f❴✆τ2✆SD✆φq❜Id

��

H1♣E ❜ ΩPnqq
i❴
2oo

✕❇

OO

0oo

H❴
c ❜ V ❴

(2.12)

Thus
Ker ♣Aq ✕ Ker ♣A✶q and Im ♣Aq ✕ Im ♣A✶q

✕ Ker ♣i❴2 ✆ ❇
✁1 ✆ i2q ✕ Im ♣i❴2 ✆ ❇

✁1 ✆ i2q

✕ Ker ♣i2q ✕ Im ♣i❴2 q

✕ Im ♣aq ✕ Ker ♣bq

and
dim W ✏ dim♣Hc ❜ V q ✁ dim ♣kerAq

✏ dim ♣Hc ❜ V q ✁ dim ♣Im aq

✏ dim ♣Hc ❜ V q ✁ dim ♣H n✁1♣E♣✁n✁ 1q ❜
n�1➞

V ❴q

✏ ♣n� 1qc✁ ♣♣n✁ 1qc✁ rq

✏ 2c� r.

Hence, we have the diagram

0 // Ker A // Hc ❜ V

A

��

p
//W //

✕ qA

��

0

0 Ker A❴oo H❴
c ❜ V ❴oo W❴p❴

oo 0.oo

(2.13)

where p is the canonical projection.

Combining A ✏ p❴ ✆ qA ✆ p and A ✏ A❴ we have p❴ ✆ qA ✆ p ✏ p❴ ✆ q❴A ✆ p. But the projection

is an epimorphism and its dual a monomorphism, hence q❴A ✏ qA and qA : W
✕

//W❴ is a

symmetric isomorphism.
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So we can define the induced morphism of sheaves

a❴A : W❴ ❜OPn

p❴❜Id
// H❴

c ❜ V ❴ ❜OPn
Id❜ev

// H❴
c ❜OPn♣1q (2.14)

which is surjective, therefore a❴ is injective and the composition

ψ : Hc ❜OPn♣✁1q
aA //W ❜OPn

qA❜Id
//W❴ ❜OPn

a❴
A // H❴

c ❜OPn♣1q

is zero. Indeed, by the diagram (2.12) we have

ψ ✏ a❴A ✆ ♣qA ❜ Idq ✆ aA

✏ ♣Id ✆ evq ✆ ♣A❜ Idq ✆ ♣Id❜ ev❴q

✏ ♣Id ✆ evq ✆ ♣♣♣♣f❴ ✆ τ2 ✆ SD ✆ φq ❜ Idq ✆ A✶ ✆ ♣f ❜ τ1qq ❜ Idq ✆ ♣Id❜ ev❴q

✏ ♣♣f❴ ✆ τ2 ✆ SD ✆ φq ❜ evq ✆ ♣A✶ ❜ Idq ✆ ♣♣f ❜ τ1q ❜ ev❴q

✏ ♣♣f❴ ✆ τ2 ✆ SD ✆ φq ❜ evq ✆ ♣♣c ✆ ❇✁1 ✆ bq ❜ idq ✆ ♣♣f ❜ τ1q ❜ ev❴q

✏ 0,

since by (2.1) Im i❴2 ⑨ ker ev.

Now let us prove that A P
2➞
H❴

c ❜
2➞
V ❴. Since A is symmetric, we can write A ✏ A1 � A2,

where A1 P
2➞
H❴

c ❜
2➞
V ❴ and A2 P S

2H❴
c ❜ S2V ❴. By the Euler sequence (2.1) we have

0 //
➍2♣Ω♣1qq //

➍2
V ❴ ❜O

♣Id❜evq✆♣i❜Idq
// V ❴ ❜O♣1q ev // O♣2q // 0, (2.15)

where i :
2➞
V ❴

ãÑ V ❴ ❜ V ❴ is the inclusion.

Note that ψ ✏ ♣Id❜ evq ✆ A ✆ ♣Id❜ ev❴q, thus

ψ ✏ ♣Id❜ evq ✆ A1 ✆ ♣Id❜ ev❴q � ♣Id❜ evq ✆ A2 ✆ ♣Id❜ ev❴q.

By the sequence (2.15), we have ImA1 ⑨ ker ev and therefore ψ ✏ ♣Id❜ evq ✆ A2 ✆ ♣Id❜ ev❴q.

Moreover, ImA2 ⑨ S2H❴
c ❜ S2V ❴ ❶ ker ev, otherwise the evaluation map would be the zero

map. Hence, ψ ✏ 0 implies A2 ✏ 0 and therefore A P
2➞
H❴

c ❜
2➞
V ❴.

For each A P
2➞
H❴

c ❜
2➞
V ❴, by the discussion of the previous paragraph we have ♣Id❜ evq ✆

A ✆ ♣Id❜ ev❴q ✏ 0, therefore we can associate the monad

MA : Hc ❜OPn♣✁1q
aA //W ❜OPn

a❴
A
✆♣qA❜Idq

// H❴
c ❜OPn♣1q, (2.16)
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whose cohomology sheaf is defined by

EA :✏
Ker ♣a❴A ✆ ♣qA ❜ Idqq

Im aA

. (2.17)

Recall that A is called non-degenerate if A♣h❜ vq ✘ 0 for any non-zero decomposable tensor

h❜ v P Hc ❜ V . Hence similar to [12] the following are equivalent:

(i) a❴A ✆ ♣qA ❜ Idq is surjective;

(ii) the image of aA is a subbundle;

(iii) A is non-degenerate.

Indeed, the conditions ♣iq and ♣iiq are equivalent by definition. Now a❴A ✆ ♣qA ❜ Idq is surjective

if and only if for any ➔ v →P P♣V q the induced homomorphism W Ñ H❴
c ❜ ➔ v →❴ on the fibre

is surjective, or equivalently, that Hc❜ ➔ v → A // H❴
c ❜ V ❴ is injective.

From the previous observation, the map A defined by (2.10) has the following properties:

(A1) rank ♣A : Hc ❜ V Ñ H❴
c ❜ V ❴q ✏ 2c� r;

(A2) A is non degenerate;

(A3) there exists qA : W
✕

//W❴ symmetric, where W ✏
Hc ❜ V

Ker A
.

Consider the set

Arc, rs :✏

★
A P

2➞
H❴

c ❜
2➞
V ❴; such that (A1)-(A3) holds

✰
,

our next step is to prove a bijection between sets Arc, rs and Erc, rs. To do so, we will need the

next lemma.

Lemma 2.1.2. For any A P Arc, rs, there are isomorphisms

Hc ✕ Hn✁1♣EA ❜ Ωn♣1qq W ✕ H1♣EA ❜ Ω1q kerA❴ ✕ H1♣EAq

H❴
c ✕ H1♣EA♣✁1qq W❴ ✕ Hn✁1♣EA ❜ Ωn✁1q

which are compatible with the Serre duality and the orthogonal structure EA ✕ E❴A and give the

following commutative diagram

Hc ❜ V //

✕

��

W❴

✕

��

W
qAoo //

✕

��

H❴
c ❜ V ❴ //

✕

��

kerA❴ //

✕

��

0

Hn✁1♣EA ❜ Ωn♣1qq ❜ V // Hn✁1♣EA ❜ Ωn✁1q H1♣EA ❜ Ω1q
✕

oo // H1♣EA♣✁1qq ❜ V ❴ // H1♣EAq
// 0
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Proof. Given A P Arc, rs we have the monad

MA : Hc ❜ OPn♣✁1q
aA //W ❜ OPn

a❴
A
✆♣qA❜Idq

// H❴
c ❜ OPn♣1q, (2.18)

whose cohomology bundle is EA. On the other hand, applying the Beilinson spectral sequence

(Theorem 1.1.34) to EA♣✁1q, one has

E
p,q
1 ✏ Hq♣EA♣✁1q ❜ Ω✁p

Pn ♣✁pqq ❜ OPn♣pq

d
p,q
1 : Ep,q

1 Ñ E
p�1,q
1

E
p,q
2 ✏

Ker dp,q
1

Im d
p✁1,q
1

and

d
p,q
2 : Ep,q

2 Ñ E
p�2,q✁1
2

Thus dp,q
2 ✏ 0, for all p, q and

E
p,q
2 ✏ Ep,q

✽ .

So we have d✁2,1
2 ✏ Ker dp,q

1 ✏ 0 and d
0,1
2 ✏

Ker d0,1
1

Im d
✁1,1
1

✏
E

0,1
1

Im d
✁1,1
1

✏ Coker d✁1,1
1 ✏ 0. Thus d✁2,1

1

is a monomorphism, d✁1,1
1 is an epimorphism, and

EA♣✁1q ✕
Ker d✁1,1

1

Im d
✁2,1
1

.

Therefore we obtain the monad

0 // H1♣EA♣1q ❜ Ω2
Pnq ❜ OPn♣✁2q

d
✁2,1
1 // H1♣EA ❜ Ω1

Pnq ❜ OPn♣✁1q
d
✁1,1
1 // H1♣EA♣✁1qq ❜ OPn // 0 ,

and tensoring this monad by OPn♣1q, we obtain the monad

0 // H1♣EA♣1q ❜ Ω2
P3q ❜ OPn♣✁1q

d
✁2,1
1 // H1♣EA ❜ Ω1

Pnq ❜ OPn

d
✁1,1
1 // H1♣EA♣✁1qq ❜ OPn♣1q // 0 ,

(2.19)

whose cohomology is isomorphic to EA.

Obviously, EA ✕ EA thus by Corollary 1.1.31 we have the isomorphism of the monads (2.18)

and (2.19), which gives us the isomorphisms Hc ✕ H1♣EA ❜ Ω2♣1qq ✕ Hn✁1♣EA ❜ Ωn♣1qq,

W ✕ H1♣EA ❜ Ω1q and H❴
c ✕ H1♣EA♣✁1qq. By Serre duality, we have W❴ ✕ H1♣EA ❜ Ω1q❴ ✕

Hn✁1♣EA ❜ Ωn✁1q. The last isomorphism follows by (2.13) and (2.7).

Finally the commutativity of the diagram follows by the functoriality of Serre-duality (compare

the sequences (2.4) and (2.6) with the diagram (2.13)).
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Thanks to the previous lemma, we have the following result.

Theorem 2.1.3. There exists a bijection between the equivalence classes rE, φ, f s P Erc, rs of

orthogonal instanton bundles of charge c, rank r, with no global sections on Pn and the set

A P Arc, rs.

Proof. By the previous construction, given an equivalence class rE , φ, f s P Erc, rs, there exists

A P
2➞
H❴

c ❜
2➞
V ❴ which satisfies (A1)-(A3). Reciprocally, given A P Arc, rs, there exists a

monad

MA : Hc ❜ OPn♣✁1q
aA //W ❜ OPn

a❴
A
✆♣qA❜Idq

// H❴
c ❜ OPn♣1q . (2.20)

Now, by Theorem 1.2.5, E is cohomology of the monad

0 // H1♣E♣1q ❜ Ω2
P3q ❜ OPn♣✁1q

d
✁2,1
1 // H1♣E ❜ Ω1

Pnq ❜ OPn

d
✁1,1
1 // H1♣E♣✁1qq ❜ OPn♣1q // 0 .

(2.21)

By the Lemma (2.1.2) the monads (2.20) and (2.21) are isomorphic, thus by Corollary 1.1.31,

A defines a monad whose cohomology sheaf EA is isomorphic to E .

Tensoring MA by OPn♣✁nq and using (2.17), we obtain Hn✁1♣EA♣✁nqq ✕ Hn♣Hc❜OPn♣✁n✁1qq.

Note that dimKHn♣Hc ❜ OPn♣✁n✁ 1qq ✏ c, then there exists fA : Hc
✕

// Hn✁1♣EA♣✁nqq .

Furthermore, the symmetric map qA induces a canonical isomorphism of monads

MA :

ΦA

��

Hc ❜ OPn♣✁1q
aA //

Id
��

W ❜ OPn

qa❜Id

��

a❴
A
✆♣qA❜Idq

// H❴
n ❜ OPn♣1q

Id
��

M❴
A : Hc ❜ OPn♣✁1q

♣qA❜Idq✆aA

//W❴ ❜ OPn
a❴

A

// H❴
c ❜ OPn♣1q

which by Corollary 1.1.31 induces a symmetric isomorphism of vector bundles φA : EA
✕

// E❴A .

By Lemma 1.2.6 we have that E❴A is the cohomology bundle of M❴
A.

Thus, the data rEA, φA, fAs can be recovered from A.

By Theorem 2.1.3 the existence of orthogonal instanton bundles, with charge c, rank r and no

global sections on Pn is related with the existence of symmetric and non-degenerate linear forms.

This approach will be extremely helpful in the proof of the next result.
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Theorem 2.1.4. Let c be an integer, with c ➙ 3. Every orthogonal instanton bundle with

no global sections on Pn and charge c has rank ♣n ✁ 1qc. Moreover, there are no orthogonal

instanton bundles with no global sections, and charge c equal 1 or 2 on Pn.

Proof. First suppose that there exists an orthogonal instanton bundle E with no global sections,

with charge c and rank r over Pn and consider its equivalence class rE , φ, f s. By Theorem 2.1.3

there exists A P Arc, rs associated with rE , φ, f s.

Given A P Arc, rs, with some abuse of notation, let us also denote by A the matrix associated

with the morphism A : Hc ❜ V // H❴
c ❜ V ❴ . By Proposition 1.1.35 and Remark 1.1.36, A is

non degenerate if and only if detA ✘ 0. This means that A is invertible and we have

rank A ✏ 2c� r ✏ ♣n� 1qc, (2.22)

therefore rank E ✏ r ✏ ♣n� 1qc✁ 2c ✏ ♣n✁ 1qc.

Finally, if c ✏ 1, then A P
2➞
H❴

1 ❜
2➞
V ❴ ✕ 0, but the zero map is degenerate.

If c ✏ 2, then A P
2➞
H❴

2 ❜
2➞
V ❴ ✕ K ❜

2➞
V ❴, so A is skew-symmetric. But A is also

symmetric, hence A is the zero map.

Therefore there are no orthogonal instanton bundles, with no global sections and charge 1 or 2

on Pn.

Now, we will show how to use the equivalence of Theorem 2.1.3 to construct explicit examples

of orthogonal instanton bundles on Pn. To compute the next examples we use Macaulay2 [22].

By Theorem 2.1.4, we can rewrite the diagram (2.13) as

0 // kerA // Hc ❜ V

A

��

Id //W //

✕ qA

��

0

0 kerA❴oo H❴
c ❜ V ❴oo W❴Idoo 0,oo

then A ✕ qA. Moreover, we have
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a❴A : W❴ ❜ OP3

Id // H❴
n ❜ V ❴ ❜ OP3

ev // H❴
n ❜ OP3♣1q.

So if tx0, x1, . . . , xn✉ is a basis of V ❴, we have the monad

MA : Hc ❜ OPn♣✁1q
aA //W ❜ OPn

a❴
A
✆♣A❜Idq

// H❴
c ❜ OPn♣1q , (2.23)

where a❴A is given by

a❴A ✏

☎✝✆
x0 x1 . . . xn 0 0 . . . 0 ☎ ☎ ☎

0 0 . . . 0 x0 x1 . . . xn ☎ ☎ ☎

. . .

☎ ☎ ☎ 0 0 . . . 0 x0 x1 . . . xn

☞✍✌
♣n�1q✂♣n�1qc.

Theorem 2.1.3 combined with Proposition 1.1.35 simplifies the search for orthogonal instanton

bundles, indeed it translates our existence problem in a linear algebra problem: we have to look

for invertible matrices in
2➞
H❴

c ❜
2➞
V ❴. Recall that every skew-symmetric matrix M can be

written as a block diagonal matrix

☎✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✆

0 λ1

0

✁λ1 0 ☎ ☎ ☎ 0

0 λ2

0 0

✁λ2 0
...

. . .
...

0 λl

0 0 ☎ ☎ ☎

✁λl 0

☞✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✌
2l✂2l

. (2.24)

where ✟iλi are the non-zero eigenvalues of M . In order to build examples of orthogonal instanton

bundles with charge c even on Pn, with n odd, we can take two matrices B an C as in (2.24),

where:

• B is a c✂ c skew-symmetric matrix;

• C is an ♣n� 1q ✂ ♣n� 1q skew-symmetric matrix.

So if we consider A ✏ B ❜ C, then A P
2➞
H❴

c ❜
2➞
V ❴.
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Example 2.1.5. Let us construct an example of orthogonal instanton bundle with no global

sections and charge 6 on P3. Let tx0, x1, x2, x3✉ be a basis for V ❴. Consider

B ✏

☎✝✝✝✝✝✝✝✝✝✆

0 2 0 0 0 0

✁2 0 0 0 0 0

0 0 0 ✁1 0 0

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 ✁1 0

☞✍✍✍✍✍✍✍✍✍✌
and C ✏

☎✝✝✝✝✆
0 1 0 0

✁1 0 0 0

0 0 0 ✁3

0 0 3 0

☞✍✍✍✍✌.

Let A ✏ B ❜ C P
2➞
H❴

6 ❜
2➞
V ❴. We have that rank A ✏ 24, so A is invertible and therefore

non degenarate by Theorem 1.1.35 and Remark 1.1.36. Thus by Theorem 2.1.3 and Theorem

2.1.4 we have the monad

O6
P3♣✁1q α // O24

P3

β
// O6

P3♣1q

where

α ✏

☎✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✆

x0 0 0 0 0 0

x1 0 0 0 0 0

x2 0 0 0 0 0

x3 0 0 0 0 0

0 x0 0 0 0 0

0 x1 0 0 0 0

0 x2 0 0 0 0

0 x3 0 0 0 0

0 0 x0 0 0 0

0 0 x1 0 0 0

0 0 x2 0 0 0

0 0 x3 0 0 0

0 0 0 x0 0 0

0 0 0 x1 0 0

0 0 0 x2 0 0

0 0 0 x3 0 0

0 0 0 0 x0 0

0 0 0 0 x1 0

0 0 0 0 x2 0

0 0 0 0 x3 0

0 0 0 0 0 x0

0 0 0 0 0 x1

0 0 0 0 0 x2

0 0 0 0 0 x3

☞✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✌

, βt ✏

☎✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✆

0 2x1 0 0 0 0

0 ✁2x0 0 0 0 0

0 ✁6x3 0 0 0 0

0 6x2 0 0 0 0

✁2x1 0 0 0 0 0

2x0 0 0 0 0 0

6x3 0 0 0 0 0

✁6x2 0 0 0 0 0

0 0 0 ✁x1 0 0

0 0 0 x0 0 0

0 0 0 ✁3x3 0 0

0 0 0 3x2 0 0

0 0 x1 0 0 0

0 0 x0 0 0 0

0 0 ✁3x3 0 0 0

0 0 3x2 0 0 0

0 0 0 0 0 x1

0 0 0 0 0 ✁x0

0 0 0 0 0 ✁3x3

0 0 0 0 0 3x2

0 0 0 0 ✁x1 0

0 0 0 0 x0 0

0 0 0 0 3x3 0

0 0 0 0 ✁3x2 0

☞✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✌
whose cohomology bundle is an orthogonal instanton bundle with no global sections, charge 6

and rank 12 on P3.
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As the reader can see in the next example, when c is odd or n is even, we need to be a little

more careful, because skew-symmetric matrices of odd order do not have complete rank.

Example 2.1.6. For c ✏ 5 and n ✏ 3, consider

B1 ✏

☎✝✝✝✝✝✝✆
0 1 0 0 0

✁1 0 1 0 0

0 ✁1 0 0 0

0 0 0 0 0

0 0 0 0 0

☞✍✍✍✍✍✍✌B2 ✏

☎✝✝✝✝✝✝✆
0 0 1 0 1

0 0 0 0 0

✁1 0 0 0 0

0 0 0 0 1

✁1 0 0 ✁1 0

☞✍✍✍✍✍✍✌B3 ✏

☎✝✝✝✝✝✝✆
0 0 0 0 0

0 0 0 1 0

0 0 0 0 1

0 ✁1 0 0 0

0 0 ✁1 0 0

☞✍✍✍✍✍✍✌

C1 ✏

☎✝✝✝✝✆
0 1 0 0

✁1 0 0 0

0 0 0 1

0 0 ✁1 0

☞✍✍✍✍✌C2 ✏

☎✝✝✝✝✆
0 0 0 1

0 0 1 0

0 ✁1 0 0

✁1 0 0 0

☞✍✍✍✍✌C3 ✏

☎✝✝✝✝✆
0 0 0 1

0 0 0 0

0 0 0 1

✁1 0 ✁1 0

☞✍✍✍✍✌.

And let A ✏ B1 ❜ C1 �B2 ❜ C2 �B3 ❜ C3. We have that rank A ✏ 20, so A is invertible and

therefore non degenarate by Theorem 1.1.35 and Remark 1.1.36. Thus by Theorem 2.1.3 and

Theorem 2.1.4 we have the monad

O5
P3♣✁1q α // O20

P3

β
// O5

P3♣1q

where

α ✏

☎✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✆

x0 0 0 0

x1 0 0 0 0

x2 0 0 0 0

x3 0 0 0 0

0 x0 0 0 0

0 x1 0 0 0

0 x2 0 0 0

0 x3 0 0 0

0 0 x0 0 0

0 0 x1 0 0

0 0 x2 0 0

0 0 x3 0 0

0 0 0 x0 0

0 0 0 x1 0

0 0 0 x2 0

0 0 0 x3 0

0 0 0 0 x0

0 0 0 0 x1

0 0 0 0 x2

0 0 0 0 x3

☞✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✌

and βt ✏

☎✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✆

0 x1 x3 0 x3

0 ✁x0 x2 0 x2

0 x3 ✁x1 0 ✁x1

0 ✁x2 ✁x0 0 ✁x0

✁x1 0 x1 x3 0

x0 0 ✁x0 0 0

✁x3 0 x3 x3 0

x2 0 ✁x2 ✁x0 ✁ x2 0

✁x3 ✁x1 0 0 x3

x2 x0 0 0 0

x1 ✁x3 0 0 x3

x0 x2 0 0 ✁x0 ✁ x2

0 ✁x3 0 0 ✁x3

0 0 0 0 x2

0 ✁x3 0 0 ✁x1

0 x0 � x2 0 0 ✁x0

✁x3 0 ✁x3 ✁x3 0

✁x2 0 0 ✁x2 0

✁x3 0 ✁x3 0 0

x0 0 x0 � x2 x0 0

☞✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✌
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as constructed before. The vector bundle cohomology of the monad (2.1.6) is an orthogonal

instanton bundle with no global sections, charge 5 and rank 10.

2.2 Moduli space of Orthogonal instanton bundles on Pn

Now that we ensured the existence of orthogonal instanton bundles of higher rank, with no

global sections on Pn, it is natural to ask: can we give to this family of bundles a structure of

moduli space? In this section we will describe how we use techniques of geometric invariant

theory (GIT) to construct MO
Pn♣cq, the moduli space of orthogonal instanton bundles with

charge c, rank ♣n✁ 1qc and no global sections on Pn, for n, c ➙ 3.

First note that if r ✏ ♣n✁ 1qc, the conditions (A1) and (A3) are superfluous, and we have that

Arc, ♣n✁ 1qcs ✏ tA P
2➞
H❴

c ❜
2➞
V ❴;A is non degenerate✉.

Denote Ec ✏ Erc, ♣n✁1qcs, Ac ✏ Arc, ♣n✁1qcs, G ✏ Gl♣Hcq, and let⑨Ec be the set of isomorphism

classes rE , φs such that rE , φ, f s P Ec. Consider the action

α : G✂
2➞
H❴

c ❜
2➞
V ❴ Ñ

2➞
H❴

c ❜
2➞
V ❴

♣h,Aq ÞÑ ♣h❜ IdqA♣h❴ ❜ Idq.

We will need the following lemmas in order to prove the main theorem of this section.

Lemma 2.2.1. The set Ac is a G-invariant subset of
2➞
H❴

c ❜
2➞
V ❴.

Proof. Let h P G, A P
2➞
H❴

c ❜
2➞
V ❴ and B ✏ α♣h,Aq the image of h and A by the previous

action, that means

B ✏ ♣h❜ IdqA♣h❴ ❜ Idq.

We can write A ✏
➳

i

♣Ci ❜Diq, where Ci P
2➞
H❴

c and Di P
2➞
V ❴ for all integer i. Thus

B ✏ ♣h❜ Idq♣
➳

i

♣Ci ❜Diqq♣h
❴ ❜ Idq

✏
➳

i

♣♣hCih
❴q ❜Diq.

Since hCih
❴ P

2➞
H❴

c for all integer i, it follows that B P
2➞
H❴

c ❜
2➞
V ❴.
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The bijection given in the next theorem is the key ingredient to construct the MO

Pn♣cq moduli

space of orthogonal instanton bundles with charge c, rank ♣n✁ 1qc and no global sections on Pn,

for n, c ➙ 3.

Theorem 2.2.2. There is a bijection from the set of isomorphism classes ⑨Ec with the orbit

space Ac④G. The isotropy group in each point is t✟IdHc
✉.

Proof. Given A P Ac by Theorem 2.1.3 and Theorem 2.1.4 there exists rEA, φA, fAs P Ec, then

we can define

Ψ : Ac Ñ ⑨Ec

A ÞÑ rEA, φAs.

We will prove that Ψ④G : Ac④GÑ⑨Ec is a bijection.

First note that Ψ factors through Ac④G. Indeed, consider A,B P Ac such that there exists h P G

with α♣h,Aq ✏ B. Thus we have the following commutative diagram.

Hc ❜ V
A //

h❜Id

��

H❴
c ❜ V ❴

♣h❴q✁1❜Id

��

Hc ❜ V
B

// H❴
c ❜ V ❴.

Since A,B P Ac, we have A and B invertible and by diagram (2.13), we have the following

commutative diagram,

Hc ❜ OPn♣✁1q
Id❜ev❴

//

h❜Id
��

WA ❜ OPn
A❜Id

//

h❜Id

��

W❴
A ❜ OPn

♣h❴q✁1❜Id

��

Id❜ev
// H❴

c OPn♣1q

♣h❴q✁1❜Id
��

Hc ❜ OPn♣✁1q
ev❴

//WB ❜ OPn
B❜Id

//W❴
B ❜ OPn

ev
// H❴

c OPn♣1q.

Thus we have the following isomorphism of monads

MA : 0 // Hc ❜ OPn♣✁1q
aA //

h❜Id
��

WA ❜ OPn

a❴
A
✆♣A❜Idq

//

h❜Id

��

H❴
c ❜ OPn♣1q //

♣h❴q✁1❜Id
��

0

MB : 0 // Hc ❜ OPn♣✁1q aB

//WB ❜ OPn
a❴

B
✆♣B❜Idq

// H❴
c ❜ OPn♣1q // 0.
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Considering the cohomology of the previous monads MA and MB, by Corollary 1.1.31 and

Corollary 1.1.32 we get Ψ♣Aq ✏ rEA, φAs ✏ rEB, φBs ✏ Ψ♣Bq. Thus we have the following

commutative diagram

Ac
Ψ //

π
""

⑨Ec

Ac④G

Ψ④G

==

The projection π is surjective by definition and we have by Theorem 2.1.3 and Theorem 2.1.4

that Ψ is surjective as well. This implies that Ψ④G is surjective.

We need now to prove that Ψ④G is injective. Indeed, let A,B P Ac such that Ψ♣Aq ✏ rEA, φAs ✏

rEB, φBs ✏ Ψ♣Bq, we will show that there exists h P G such that A ✏ α♣h,Bq. If rEA, φAs ✏

rEB, φBs, then by definition there exists an isomorphism g : EA
✕

// EB such that the following

diagram is commutative

EA

φA
//

g

��

E❴
A

EB
φB

// E❴
B .

g❴

OO

Thus by Lemma 2.1.2 we have the following commutative diagram

Hc ❜ V //

✕

��

A

++
WA

qA //

✕

��

W❴
A

//

✕

��

H❴
c ❜ V ❴ //

✕

��

ker A❴ //

✕

��

0

Hn✁1♣EA ❜ Ωn♣1qq ❜ V //

g✝

��

Hn✁1♣EA ❜ Ωn✁1q

g✝

��

H1♣EA ❜ Ω1q
✕
oo //

g✝

��

H1♣EA♣✁1qq ❜ V ❴ //

g✝

��

H1♣EAq
//

g✝

��

0

Hn✁1♣EB ❜ Ωn♣1qq ❜ V // Hn✁1♣EB ❜ Ωn✁1q H1♣EB ❜ Ω1q
✕
oo // H1♣EB♣✁1qq ❜ V ❴ // H1♣EBq

// 0

Hc ❜ V //

✕

OO

B

33WB qB

//

✕

OO

W❴
B

//

✕

OO

H❴
c ❜ V ❴ //

✕

OO

ker B❴ //

✕

OO

0,

where g✝ denotes the morphisms induced by g on the cohomology groups. Thus, the middle

blocks are commutative and the commutativity of the top and bottom blocks follows by Lemma

2.1.2. Therefore, there exists h P G such that B ✏ α♣h,Aq.

Finally, we will prove that the isotropy group (i.e. the stabiliser of the action) is given by

t✟IdHc
✉. Let h P G and A P Ac, such that A ✏ α♣h,Aq. Thus by Theorem 2.1.3 we have
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rEA, φA, fAs ✏ rEα♣h,Aq, φα♣h,Aq, fα♣h,Aqs, since they came from the same symmetric map. Therefore,

there exists an isomorphism g : EA
✕

// Eα♣h,Aq such that the following diagrams commute

EA

φA
//

g

��

E❴A Hc

fA
//

λIdc

��

Hn✁1♣EA♣✁nqq

g✝

��

Eα♣h,Aqφα♣h,Aq

// E❴α♣h,Aq

g❴

OO

Hc
fα♣h,Aq

// Hn✁1♣Eα♣h,Aq♣✁nqq,

with λ P t✁1, 1✉.

Thus

g✝ ✆ fA ✏ ✟fα♣h,Aq. (2.25)

On the other hand, since A ✏ α♣h,Aq by Lemma 2.1.2 we have the following commutative

diagram

Hc ❜ V //

fA

��

A

++

h

��

WA

qA //

��

W❴
A

//

��

H❴
c ❜ V ❴

♣f❴
A
q✁1

��

♣h❴q✁1

��

Hn✁1♣EA ❜ Ωn♣1qq ❜ V //

g✝

��

Hn✁1♣EA ❜ Ωn✁1q

g✝

��

H1♣EA ❜ Ω1q
✕

oo //

g✝

��

H1♣EA♣✁1qq ❜ V ❴

g✝

��

Hn✁1♣Eα♣h,Aq ❜ Ωn♣1qq ❜ V // Hn✁1♣Eα♣h,Aq ❜ Ωn✁1q H1♣Eα♣h,Aq ❜ Ω1q
✕
oo // H1♣Eα♣h,Aq♣✁1qq ❜ V ❴

Hc ❜ V //

fα♣h,Aq

OO

α♣h,Aq

33WB qα♣h,Aq

//

OO

W❴
α♣h,Aq

//

OO

H❴
c ❜ V ❴.

♣f❴
α♣h,Aq

q✁1

OO

Therefore looking at the left column we have

h ✏ ♣fα♣h,Aqq
✁1 ✆ g✝ ✆ fA

✏ ♣fα♣h,Aqq
✁1 ✆ ♣✟fα♣h,Aqq (By (2.25))

✏ ✟IdHc
,

hence the isotropy group is t✟IdHc
✉.

Since G ✏ Gl♣Hcq is a reductive group, and once that its isotropy group ✟tIdHc
✉ is a discreet

subgroup, the quotient G0 ✏ G④t✟IdHc
✉ is also reductive. Moreover, the action of G0 on Ac is

free. Keeping this on mind we have all the ingredients to prove the next result, which gives the

structure of moduli space that we are looking for.



Chapter 2. Orthogonal instanton bundles and symmetric forms 57

Theorem 2.2.3. The geometric quotient MO
Pn♣cq :✏ Ac④④G0 is an affine coarse moduli space

of dimension

✂
c

2

✡✂
n� 1

2

✡
✁ c2 for orthogonal instanton bundles with charge c, rank ♣n✁ 1qc

and no global sections on Pn, for n, c ➙ 3.

Proof. First note that Ac is an open dense subset of
2➞
H❴

c ❜
2➞
V ❴ which is affine, thus Ac is

also affine. Moreover note that G0 is reductive, then by Theorem 1.3.22, MO
Pn♣cq :✏ Ac④④G0 is

an affine good quotient. By Proposition 1.3.19 MO
Pn♣cq is an affine categorical quotient, therefore

by Proposition 1.3.21 is an affine coarse moduli space.

The dimension of MO
Pn♣cq is

dim Ac ✁ dimG0 ✏ dim♣
2➞
H❴

c ❜
2➞
V ❴q ✁ dimG

✏

✂
c

2

✡✂
n� 1

2

✡
✁ c2.
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3 Some properties of orthogonal instanton bun-

dles

The goal of this chapter is to determine the splitting type of orthogonal instanton bundles

on MO

Pn♣cq for n, c ➙ 3. As described before the mathematical instanton bundles on P2n�1

have trivial splitting type by definition, but they are all symplectic instanton bundles. Jardim,

Marchesi and Wißdorf proved in ([32] - Lemma 4.3 and Theorem 4.4) that there are no orthogonal

instanton bundles of trivial splitting type, arbitrary rank r, and charge 2 or odd on Pn. But

what can be said about the splitting type of orthogonal instanton bundles with even charge?

The main theorem of this chapter gives us an important tool to answer this question.

In order to determine the splitting type of the orthogonal instanton bundles E P MO
Pn♣cq, with

n, c ➙ 3 we will associate these bundles to Kronecker modules.

Definition 3.0.1. A Kronecker module of rank r is a linear map

γ :
2➞
V Ñ Hom♣Hc, H

❴
c q,

such that for the associated linear map,

γ̂ : V ❜Hc Ñ V ❴ ❜H❴
c ,

defined by γ̂♣v1 ❜ h1q♣v2 ❜ h2q ✏ rγ♣v1 ❫ v2q♣h1qs♣h2q, the followings hold

(K1) γ̂♣v ❜✁q : Hc Ñ V ❴ ❜H❴
c is injective for all v ✘ 0.

(K2) If v❴❴ : V ❴ ❜ H❴
c Ñ H❴

c is the evaluation map associated to v P V , then v❴❴ ✆ γ̂ :

V ❜Hc Ñ H❴
c is surjective for all v ✘ 0.

(K3) rank γ̂ ✏ 2n� r.

Additionally, a Kronecker module is said

(a) symmetric (respectively skew-symmetric): if the image of γ lies in the subspace

S2H❴
c ⑨ Hom♣Hc, H

❴
c q (respectively

2➞
H❴

c ⑨ Hom♣Hc, H
❴
c q), i.e. if γ̂ is symplectic

(respectively symmetric).

(b) simple: if for each pair ϕ1, ϕ2 P End♣Hcq with ϕ❴2 γ ✏ γϕ1 it follows that ϕ1 ✏ ϕ2 ✏ λIdH ,

with λ P K.
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(c) non-degenerate: if for almost all v1, v2 P V the bilinear form γ♣v1❫v2q is non-degenerate.

(d) irreducible: if U P Hc, U
✶ P H❴

c are linear subspaces, such that U ✶ ✘ 0, U ✶ ✘ H❴
c and

γ♣v1 ❫ v2q♣Uq ⑨ U ✶ for linearly independent v1, v2 P V , then dimU ➔ dimU ✶.

In Chapter 2 we saw that given E P MO
Pn♣cq, with n, c ➙ 3, by Theorem 2.1.3 there exists A P Ac

and the monad below

MA : 0 // Hc ❜OPn♣✁1q
aA //W ❜OPn

a❴
A
✆♣qA❜Idq

// H❴
c ❜OPn♣1q // 0 , (3.1)

whose cohomological bundle EA is isomorphic to E .

Now let us use the maps aA and bA ✏ a❴A ✆♣qA❜ Idq on the monad (3.1) to construct a Kronecker

module associated to E . We can associate to aA and bA the linear maps α P Hom♣V,Hom♣Hc,W qq

and β P Hom♣V,Hom♣W,H❴
c qq as follows

α : V Ñ Hom♣Hc,W q

v ÞÑ α♣vq : Hc Ñ W

h ÞÑ aA♣xq♣h❜ vq

and

β : V Ñ Hom♣W,H❴
c q

v ÞÑ β♣vq : W Ñ H❴
c

w ÞÑ bA♣xq♣wq♣h❜ vq

where x ✏ P♣Kvq.

First note that bA♣xq♣wq♣h ❜ vq ✏ qA♣wq♣α♣vq♣hqq, this is why β it is also known as the

transpose map of α (with respect to qA : W Ñ W❴).

This pair of maps ♣α, βq has the following properties.

(P1) α♣vq : Hc Ñ W is injective for all v ✘ 0;

(P2) β♣vq ✆ α♣vq : Hc Ñ H❴
c is the zero mapping for all v P V ;

(P3) the map α̂ : V ❜Hc Ñ W is surjective, with α̂♣v ❜ hq ✏ α♣vq♣hq.

The property (P1) happens if and only if aA is injective in each fibre.



Chapter 3. Some properties of orthogonal instanton bundles 60

The property (P2) is equivalent to the composition a❴A ✆ ♣qA ❜ Idq ✆ aA be the zero mapping in

each fibre. Indeed, for each x P P♣Kvq P Pn, we have

♣bA ✆ aAq♣xq♣h❜ vq ✏ ra❴A ✆ ♣qA ❜ Idq ✆ aAs♣xq♣h❜ vq

✏ qA♣α♣vq♣hqq♣α♣vq♣hqq

✏ β♣vq ✆ α♣vq.

Now, let us prove that (P3) happens if and only if the cohomology bundle of (3.1) has no global

sections. Indeed, by the display of the monad (3.1), we have the following exact sequences.

0 // Hc ❜OPn♣✁1q
aA // ker♣bAq // EA

// 0

0 // ker♣bAq //W ❜OPn
bA // H❴

c ❜OPn♣1q // 0,

Thus,

H0♣EAq ✕ H0♣ker♣bAqq ✕ ker♣W Ñ H❴
c ❜ V ❴q,

that means H0♣EAq ✏ 0 if and only if H0♣bAq : W Ñ H❴
c ❜ V ❴ is injective, if and only if

α̂ : V ❜Hc Ñ W is surjective.

Now let us define

γ✶ : V ✂ V Ñ Hom♣Hc, H
❴
c q

♣v1, v2qq ÞÑ β♣v2q ✆ α♣v1q,
(3.2)

which defines an element γ P Hom♣
2➞
V,Hom♣Hc, H

❴
c qq. The map γ is a Kronecker module of

rank ♣n✁ 1qc as we can see in the next result.

Lemma 3.0.2. The element γ P Hom♣
2➞
V,Hom♣Hc, H

❴
c qq constructed as above is a Kronecker

module of rank ♣n✁ 1qc.

Proof. Let α̂ : V ❜ Hc Ñ W , β̂ : W Ñ V ❴ ❜ H❴
c and γ̂ : Hc ❜ V Ñ H❴

c ❜ V ❴ be the linear

maps associated to α, β and γ, respectively. By the definition of γ✶ in (3.2) we have γ̂ ✏ β̂ ✆ α̂.

Now let us prove that γ satisfies the properties (K1)-(K3) of Definition 3.0.1.

For each v ✘ 0 we have

γ̂♣v ❜ hqrγ♣v ❫ v1q♣hqs♣h1q,

but
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rγ✶♣v ❫ v1q♣hqs♣h1q ✏ rβ♣v1q ✆ α♣vqs♣hq♣h1q

✏ q♣α♣vq♣hqq♣α♣v1q♣h1qq.

Thus (K1) follows by property (P1). Also observe that v❴❴ ✆ γ̂ ✏ γ̂♣v ❜ ✁q❴, therefore (K1)

implies (K2).

By (P3) we have that α̂ is injective and β̂ is surjective, thus it follows that rank γ̂ ✏ ♣n� 1qc.

Moreover, since γ̂ ✏ β̂ ✆ α̂, we have rank γ ✏ ♣n✁ 1qc and the property (P3).

Therefore γ is a Kronecker module of rank ♣n✁ 1qc

Let K be the set of all stable Kronecker modules of rank ♣n✁ 1qc. The following result describes

how we can obtain the splitting type of a bundle by the Kronecker module associated with it by

(3.2).

Theorem 3.0.3. Let E be an orthogonal instanton bundle on Pn, with charge c, rank ♣n✁ 1qc

and no global sections, for n, c ➙ 3. Let γ be its Kronecker module associated by the previous

construction. If L ⑨ Pn is the line defined by v1, v2 P V , v1 ❫ v2 ✘ 0, the the restriction E⑤L is

trivial if and only if γ♣v1 ❫ v2q is an isomorphism.

Proof. Given E P MO

Pn♣cq consider the maps ♣α, βq and the Kronecker module γ constructed

above. Let v1, v2 P V such that v1 ❫ v2 ✘ 0, and consider the K-subspace K ✏ Kv1 �Kv2. The

restriction of the monad (3.1) to L ✏ P♣Kq is the monad

MA : 0 // Hc ❜ OL♣✁1q
aA⑤L

//W ❜ OL

bA⑤L
// H❴

c ❜ OL♣1q // 0. (3.3)

The display of the monad (3.3) gives the exact sequences

0 // Hc ❜ OL♣✁1q
aA⑤L

// ker♣bA⑤Lq // E ⑤L // 0,

0 // ker♣bA⑤Lq //W ❜ OL

bA⑤L
// H❴

c ❜ OL♣1q // 0.

Thus

H0♣L, E ⑤Lq ✕ H0♣L, ker♣bA⑤Lqq ✕ ker♣W Ñ H❴
c ❜K❴q.

Observe that E ⑤L has trivial splitting type if and only if no section s P H0♣L, E ⑤Lq③t0✉ has zeros.

Indeed, suppose that E ⑤L is trivial, then E ⑤L ✕ Or
L, and H0♣L, E ⑤Lq ✕ H0♣L,Or

Lq ✕ Kr. Thus if
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s P H0♣L, E ⑤Lq③t0✉, then s ✏ ♣k1, ☎ ☎ ☎ , krq P Kr③t0✉. Therefore s has no zeros. Reciprocally, if

s P H0♣L, E ⑤Lq has no zeros, suppose that E ⑤L has no trivial splitting type, i.e. E ⑤L ✕
rà

i✏1

OL♣aiq,

where at least on ai ➙ 0, because ci♣Eq ✏ 0. But
r➳

i✏1

ai ✏ 0, so without loss of generality we can

assume a1 → 0. Let s1 P H
0♣L,OL♣a1qq, then s ✏ ♣s1, 0, ☎ ☎ ☎ , 0q P H

0♣L, E ⑤Lq and has zeros, a

contradiction.

Now we will show that this happens if and only if γ♣v1❫v2q is invertible. Consider the inclusions

Hc ❜ OL♣✁1q
i

ãÑ ker♣bA⑤Lq
j

ãÑ W ❜ OL.

Let s P H0♣L, ker♣bA⑤Lqqq ✕ H0♣L, E ⑤Lq be a section. Being H0♣W ❜ OLq ✕ W , there exists

w P W with j ✆ s♣xq ✏ w for all x P L. So the section s✶ P H0♣L, E ⑤Lq defined by s has zeros

at x ✏ P♣Kvq P L if and only if s♣xq lies in the image of the inclusion i♣xq : Hc ❜ OL♣✁1q ãÑ

ker♣bA⑤Lq♣xq, i.e. if and only if there exists h P Hc with α♣vq♣hq ✏ w. Because s is a section in

ker♣bA⑤Lq, for every v✶ P K we must have β♣v✶q♣wq ✏ 0. Thus E ⑤L has no trivial section with

zeros if and only if

Imα♣vq ⑨
↔

v✶PK

ker β♣v✶q,

for at least one vector v P K③t0✉. Which means that for any basis v, v✶ P K of K the map

γ♣v ❫ v✶q ✏ β♣v✶q ✆ α♣vq

is not an isomorphism.

Now let us use the Theorem 3.0.3 to determine the type of splitting of the orthogonal instanton

bundle with no global sections, charge 6 and rank 12 on P3 that we obtained in Chapter 2 -

Example 2.1.5.

Example 3.0.4. Let tx0, x1, x2, x3✉ be a basis for V ❴. In Example 2.1.5 we saw that the

cohomology bundle E of the monad

O6
P3♣✁1q α // O24

P3

β
// O6

P3♣1q

where
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α ✏

☎✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✆

x0 0 0 0 0 0

x1 0 0 0 0 0

x2 0 0 0 0 0

x3 0 0 0 0 0

0 x0 0 0 0 0

0 x1 0 0 0 0

0 x2 0 0 0 0

0 x3 0 0 0 0

0 0 x0 0 0 0

0 0 x1 0 0 0

0 0 x2 0 0 0

0 0 x3 0 0 0

0 0 0 x0 0 0

0 0 0 x1 0 0

0 0 0 x2 0 0

0 0 0 x3 0 0

0 0 0 0 x0 0

0 0 0 0 x1 0

0 0 0 0 x2 0

0 0 0 0 x3 0

0 0 0 0 0 x0

0 0 0 0 0 x1

0 0 0 0 0 x2

0 0 0 0 0 x3

☞✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✌

, βt ✏

☎✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✆

0 2x1 0 0 0 0

0 ✁2x0 0 0 0 0

0 ✁6x3 0 0 0 0

0 6x2 0 0 0 0

✁2x1 0 0 0 0 0

2x0 0 0 0 0 0

6x3 0 0 0 0 0

✁6x2 0 0 0 0 0

0 0 0 ✁x1 0 0

0 0 0 x0 0 0

0 0 0 ✁3x3 0 0

0 0 0 3x2 0 0

0 0 x1 0 0 0

0 0 x0 0 0 0

0 0 ✁3x3 0 0 0

0 0 3x2 0 0 0

0 0 0 0 0 x1

0 0 0 0 0 ✁x0

0 0 0 0 0 ✁3x3

0 0 0 0 0 3x2

0 0 0 0 ✁x1 0

0 0 0 0 x0 0

0 0 0 0 3x3 0

0 0 0 0 ✁3x2 0

☞✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✌
is an orthogonal instanton bundle with no global sections, charge 6 and rank 12 on P3.

Let L P P3 be the line joining the general points P ✏ ra : b : c : ds and Q ✏ re : f : g : hs. By

Theorem 3.0.3 E ⑤L is trivial if and only if β♣Qqα♣P q is invertible. Indeed,

β♣Qqα♣P q ✏

☎✝✝✝✝✝✝✝✝✝✆

0 λ1 0 0 0 0

✁λ1 0 0 0 0 0

0 0 0 ✁λ2 0 0

0 0 λ2 0 0 0

0 0 0 0 0 λ3

0 0 0 0 ✁λ3 0

☞✍✍✍✍✍✍✍✍✍✌
where λ1 ✏ 2be✁ 2af ✁ 6dg � 6ch, λ2 ✏ ✁be� af � 3dg ✁ 3ch and λ3 ✏ be✁ af ✁ 3dg � 3ch.

Thus β♣Qqα♣P q is invertible and therefore E ⑤L is trivial. Since the points are general this is also

true for every general line, therefore E has trivial splitting type.

On the other hand, let L0 be the line joining the points P ✏ r1 : 0 : 0 : 0s and Q ✏ r0 : 0 : 0 : 1s.

By the previous construction β♣Qqα♣P q ✏ 0, therefore by Theorem 3.0.3 E ⑤L0
is not trivial,

hence L0 is a jumping line for E .

Finally, we can see in the next example that the orthogonal instanton bundle of Example 2.1.6

has no trivial splitting type, as expected ([32] - Lemma 4.3).
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Example 3.0.5. Again let tx0, x1, x2, x3✉ be a basis for V ❴. In Example 2.1.6 we saw that the

cohomology bundle E of the monad

O5
P3♣✁1q α // O20

P3

β
// O5

P3♣1q

where

α ✏

☎✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✆

x0 0 0 0

x1 0 0 0 0

x2 0 0 0 0

x3 0 0 0 0

0 x0 0 0 0

0 x1 0 0 0

0 x2 0 0 0

0 x3 0 0 0

0 0 x0 0 0

0 0 x1 0 0

0 0 x2 0 0

0 0 x3 0 0

0 0 0 x0 0

0 0 0 x1 0

0 0 0 x2 0

0 0 0 x3 0

0 0 0 0 x0

0 0 0 0 x1

0 0 0 0 x2

0 0 0 0 x3

☞✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✌

and βt ✏

☎✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✆

0 x1 x3 0 x3

0 ✁x0 x2 0 x2

0 x3 ✁x1 0 ✁x1

0 ✁x2 ✁x0 0 ✁x0

✁x1 0 x1 x3 0

x0 0 ✁x0 0 0

✁x3 0 x3 x3 0

x2 0 ✁x2 ✁x0 ✁ x2 0

✁x3 ✁x1 0 0 x3

x2 x0 0 0 0

x1 ✁x3 0 0 x3

x0 x2 0 0 ✁x0 ✁ x2

0 ✁x3 0 0 ✁x3

0 0 0 0 x2

0 ✁x3 0 0 ✁x1

0 x0 � x2 0 0 ✁x0

✁x3 0 ✁x3 ✁x3 0

✁x2 0 0 ✁x2 0

✁x3 0 ✁x3 0 0

x0 0 x0 � x2 x0 0

☞✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✌
is an orthogonal instanton bundle with no global sections, charge 5 and rank 10 on P3.

Let L P P3 be the line joint the points P ✏ ra : b : c : ds and Q ✏ re : f : g : hs. We have

β♣Qqα♣P q ✏

☎✝✝✝✝✝✝✆
0 λ1 λ2 0 λ2

✁λ1 0 λ1 λ2 0

✁λ2 ✁λ1 0 0 λ2

0 ✁λ2 0 0 λ2

✁λ2 0 ✁λ2 ✁λ2 0

☞✍✍✍✍✍✍✌
where λ1 ✏ be✁ af � dg✁ ch and λ2 ✏ de� cf ✁ bg✁ ah. Since β♣Qqα♣P q is a skew-symmetric

matrix of odd order, β♣Qqα♣P q is not invertible for all P and Q. Thus by Theorem 3.0.3 E ⑤L is

not trivial for every line L P P3. Therefore E has no trivial splitting type.
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