
UNIVERSIDADE ESTADUAL DE
CAMPINAS

Instituto de Matemática, Estatística e
Computação Científica

DAVID ERNESTO CARO CONTRERAS

Toward Deep Neural Networks with Generalized
Morphological Components

Rumo a Redes Neurais Profundas com
Componentes Morfológicos Generalizados

Campinas

2020

David Ernesto Caro Contreras

Toward Deep Neural Networks with Generalized

Morphological Components

Rumo a Redes Neurais Profundas com Componentes

Morfológicos Generalizados

Tese apresentada ao Instituto de Matemática,
Estatística e Computação Científica da Uni-
versidade Estadual de Campinas como parte
dos requisitos exigidos para a obtenção do
título de Doutor em Matemática Aplicada.

Thesis presented to the Institute of Mathe-
matics, Statistics and Scientific Computing
of the University of Campinas in partial ful-
fillment of the requirements for the degree of
Doctor in Applied Mathematics.

Supervisor: Peter Sussner

Este exemplar corresponde à versão
final da Tese defendida pelo aluno
David Ernesto Caro Contreras e ori-
entada pelo Prof. Dr. Peter Sussner.

Campinas

2020

Tese de Doutorado defendida em 29 de maio de 2020 e aprovada

pela banca examinadora composta pelos Profs. Drs.

 Prof(a). Dr(a). PETER SUSSNER

 Prof(a). Dr(a). JOÃO BATISTA FLORINDO

 Prof(a). Dr(a). FERNANDO JOSÉ VON ZUBEN

 Prof(a). Dr(a). JUAN HUMBERTO SOSSA AZUELA

 Prof(a). Dr(a). GERHARD X. RITTER

A Ata da Defesa, assinada pelos membros da Comissão Examinadora, consta no
SIGA/Sistema de Fluxo de Dissertação/Tese e na Secretaria de Pós-Graduação do Instituto de
Matemática, Estatística e Computação Científica.

Acknowledgements

Agradezco infinitamente a mi familia, especialmente a mis padres, a mi Mama

I y a mis hermanos por su constante apoyo y cariño.

A mi amor Noemi que a mi lado recorre el camino, empero no existan palabras en el

lenguaje popular, es mi Crux cuando estoy perdido, el mejor de los sueños cuando no estoy

dormido y mi alegría al despertar.

A Eli, a Beatriz y a la profesora Maria Luisa que se volvieron mi familia brasileña y mi

soporte en los momentos más difíciles.

A mis compañeros y amigos de la UNICAMP: Priscila, Fidelis, Fernanda Rocha, Is-

rael, Alejandro, Fabio, Brunna, Aline, Dani, Fito, Nil, Rafael, Fernanda Bia, Silvia, Lis,

Geizane, Vanterler, Francis, Jenny, Luana, Marcia, Cristina, Vinicius, Ricardo, Aline,

Majid, Fernanda Teixera, Ciro, João, Renata, Elaine, Rebeca, Anderson, Melissa, Pam,

Kiwi, Thiago, Pau, Silvio, Chrislen, Isabelly, Leticia y a todas las personas con los que

compartí café, largas noches de estudios y fiestas. A los grupos de investigación de MiLab

y Bio-matemática con los que convivía y reía todos los días.

A mis amigos en Guadalajara, que continúan conmigo aún en la distancia.

A los profesores del IMECC que con paciencia y sapiencia comparten su conocimiento

y amor por la ciencia. Especialmente a los Profesores Wilson Castro Ferreira Jr, Laécio,

Marcos Valle por su dedicación como maestros. A los Profesores Fernando Torres y Luis

Casillas que aunque ya no están con nosotros nos dejan su alegría y su magnífica visión

del mundo. Al coordinador de posgraduación del IMECC, el Profesor Aurelio Casillas, que

me apoyó en todo momento. A los Profesores Von Zuben, Jõao Florindo, Estevão Esmi,

Humberto Sossa, Manuel Graña y Gerhard Ritter que contribuyeron con sus comentarios

en las bancas examinadoras. Especialmente agradezco al Profesor Peter Sussner que me

destinó su tiempo y me orientó con compromiso y dedicación.

Agradezco al Consejo Nacional de Ciencia y Tecnología de México (CONACYT) por

haber financiado este proyecto (CVU 367565). El apoyo institucional es indispensable

para el progreso de la investigación científica.

Resumo

Há um interesse muito alto nos métodos de aprendizagem profunda (DL), eles ganharam

um amplo reconhecimento na pesquisa experimental e têm mostrado excelentes resultados

em um grande número de aplicações. Particularmente, cabe destaque às arquiteturas

de DL desenvolvidas para executar a tarefa de classificação envolvendo métodos de

otimização para treinamento, como os algoritmos de descida estocástica do gradiente

(SGD) e backpropagation (BP). Os perceptrons morfológicos (MPs) podem ser definidos

como redes neurais morfológicas feedforward (MNNs) projetadas para realizar classificação.

Um neurônio de uma MNN usa uma operação de morgologia matemática (MM) para

agregar entradas neurais. Como as operações de MM geralmente não são diferenciáveis e o

SGD usa derivadas parciais (gradientes) para calcular as direções nas quais os parâmetros

são atualizados, algumas modificações para treinar MPs via SGD foram desenvolvidas por

alguns autores. As modificações visam calcular quais direções os parâmetros devem seguir

para obter melhores superfícies de decisão. Nesse sentido, duas estratégias envolvidas

nessa modificação são: o uso de funções de pulso suavizado e a inserção de valores zero

(sem direção) onde as derivadas parciais não existem. Embora existam alguns modelos

híbridos/morfológicos que fazem uso de algoritmos SGD modificados, houve menos estudos

anteriores procurando por uma perspectiva híbrida de DL/morfología. Além disso, até

onde sabemos, a hibridização entre MP e DL não foi uma questão central de nenhum

estudo anterior. Os objetivos desta tese foram desenvolver uma maneira de descrever

uma nova arquitetura híbrida DL/ morfológica envolvendo camadas tradicionais de DL

e camadas morfológicas; e comparar experimentalmente os resultados subsequentes com

outros classificadores existentes. Para esse fim, propomos uma extensão da estrutura dos

MPs para aneis arquimedianos totalmente ordenados. Analisamos operações elementares de

aneis arquimedianos totalmente ordenados em termos de MPs e estudamos essas operações

em termos de ideias geométricas das arquiteturas de MP. Dois operadores, os descritores

I-set e os agregadores L - fuzzy foram introduzidos. No processo, descobrimos uma unidade

de computação diferenciável que pode ser usada para executar uma estratégia semelhante

aos MPs tradicionais. Os resultados imediatos foram as relações entre as unidades de

computação dos MPs e nossa unidade de computação proposta em relação às distâncias L8

e L2, respectivamente. Isso nos levou ao desenvolvimento de uma arquitetura geral baseada

em reticulados que pode ser treinada pela SGD e, além disso, levou ao desenvolvimento de

camadas morfológicas, nas quais as funções forward pass e backward pass de BP podem

ser implementadas. Aqui, três classes de modelos foram propostas: uma rede morfológica

feedforward puramente baseada, na qual a nova camada morfológica é usada na fase final;

e dois modelos feedforward híbridos DL/morfológicos. O primeiro modelo híbrido utiliza

camadas lineares totalmente conectadas com ativação não linear como parte do DL. O

outro utiliza camadas convolucionais com métodos de ativação não linear, downsampling,

expansão de dados e regularização como parte do DL. Ambos os modelos híbridos utilizam

camadas morfológicas para realizar a classificação. Consequentemente, o modelo híbrido,

no qual a convolução está envolvida, é capaz de extrair características de estruturas

espaciais, como imagens. Além disso, a fim de melhorar os resultados, uma revisão dos

algoritmos SGD e técnicas conhecidas para melhorar os resultados da BP, como momento,

taxa de aprendizado, funções de perda e mini-lotes, foi revisada. O conjunto de modelos

híbridos/morfológicos foi validado experimentalmente. Os resultados e comparações de

desempenho com outros classificadores sugerem uma capacidade de generalização de alto

nível e algumas vantagens dessas novas abordagens. Esta tese oferece uma visão sobre

novas classes de técnicas baseadas em reticulados que podem ser combinadas com modelos

clásicos baseados em BP. Concluímos que a perspectiva da morfologia matemática pode

desempenhar um papel importante no desenvolvimento de novas técnicas de DL.

Palavras chave— aprendizado profundo, redes neurais convolucionais, morfologia matemática,

aprendizagem supervisionada

Abstract

There is a very high interest in deep learning (DL) methods and they have gained a

wide recognition as experimental research, and they have shown excellent results in a

large number of applications. Particularly, DL architectures were designed to perform

classification involving optimization methods for training, such as stochastic gradient

descent (SGD) and backpropagation (BP) algorithms. Morphological perceptrons (MPs)

can be defined as feedforward morphological neural networks (MNNs) designed to perform

classification. A neuron of an MNN uses an operation of mathematical morphology

(MM) in order to aggregate the neuronal input. Since operations of MM are usually not

differentiable and SGD uses partial derivatives (gradients) to compute the directions in

which the parameters are updated, some modifications to train MPs via SGD have been

developed by some authors. The modifications are intended to compute which directions

for parameter adjustment should be followed to achieve better decision surfaces. In this

sense, two strategies involved in these modification are: the use of smoothed pulse functions

and the insertion of zero values (no direction) whenever the partial derivatives do not exist.

Although there exist some morphological/linear models that make use of modified SGD

algorithms, there have been less previous studies from a hybrid morphological/linear based

on a DL perspective. Moreover, to our knowledge, hybridization between MP and DL has

not been a central issue of any previous study. The aims of this thesis were to develop a way

to describe a novel DL/morphological hybrid architecture involving traditional DL layers

and morphological layers; and to experimentally compare the subsequent results with other

existent classifiers. To this end, we propose an extension of MPs framework to archimedean

totally ordered rings. We analyzed elementary operations of archimedean totally ordered

rings in terms of MPs and we studied these operations in terms of the geometrical

ideas of MP architectures. Two operators, I-set descriptors and L-fuzzy aggregators were

introduced. In the process, we discovered a differentiable unit of computation that can be

used to perform a similar strategy of traditional MPs. Immediate results were the relations

between MPs units of computation and our proposed unit of computation with respect to

distances L8 and L2, respectively. Those relations led us to the development of a general

lattice based architecture that can be trained by SGD and furthermore, it led to the

development of morphological layers, in which forward and backward functions of BP can

be implemented. Here, three classes of models were proposed: a purely based morphological

feed forward network, in which the new morphological layer is used at the final stage; and

two hybrid feed forward DL/morphological models. The first hybrid model makes use of

linear fully connected layers with non-linear activation as the DL part. The other makes

use of convolutional layers with non-linear activation, downsampling, data expansion and

regularization methods as the DL part. Both hybrid models make use of morphological

layers to perform classification. Consequently, the hybrid model, in which convolution is

involved, is able to extract features from spatial structures, such as images. Moreover, in

order to improve the results, a review on SGD algorithms and well known techniques to

improve the results of BP such as momentum, learning factor, loss functions, mini-batches

were reviewed. The set of hybrid/morphological models was experimentally validated. The

results and comparisons of performance with other state of the art classifiers suggest a

high-level capacity of generalization and some advantages of these novel approaches. This

thesis offers an insight into new classes of lattice based techniques that can be hybridized

with BP based models. We conclude that the mathematical morphology perspective can

play an important role in the development of new DL techniques.

Keywords— deep learning, convolutional neural networks, mathematical morphology, supervised

learning

List of Figures

Figure 1 – The Lattice of Positive Integer Pairs Ordered Component-wise. 26

Figure 2 – Generated Sets by Aggregation-Descriptor Pairs 46

Figure 3 – Confusion Matrix . 58

Figure 4 – Contour Plots. 60

Figure 5 – Oscillations of SGD. 64

Figure 6 – Multilayer Perceptrons. 67

Figure 7 – Paths between Layers. 68

Figure 8 – Backpropagation Flow Diagram. 71

Figure 9 – Example of Average Pooling . 74

Figure 10 – Example of Max Pooling . 75

Figure 11 – Example of Dropout in FC layers . 77

Figure 12 – Example of Dropout . 78

Figure 13 – Example of Dropout Connect . 78

Figure 14 – Autoencoders . 82

Figure 15 – Basic CNN architecture . 83

Figure 16 – Example of CNN Processing - First layers. 84

Figure 17 – Example of CNN Processing - Max-pooling layer. 84

Figure 18 – Example of CNN Processing - Second Convolution and Average Layer. 85

Figure 19 – MP/CL s-th class module. 92

Figure 20 – Morphological Perceptron with Dendritic Structure 94

Figure 21 – Elimination and Merge Principles . 96

Figure 22 – MP/CL’s Decision Surface Example . 99

Figure 23 – HMLP Topology . 107

Figure 24 – Generalized Morphological Perceptron 111

Figure 25 – Spiral and Included Datasets . 117

Figure 26 – FC-SD-Softmax Model Test on Spiral and Included Datasets 118

Figure 27 – Accuracies on MNIST dataset . 131

Figure 28 – Conv-SD Bar-chart Common Errors for MNIST. 132

Figure 29 – MNIST Confusion Matrices . 132

Figure 30 – Set of Misclassified Images . 133

Figure 31 – Conv-FC Bar-chart Common Errors for the Models in the MNIST

Experiment . 134

Figure 32 – Results of Committees for Classification 134

Figure 33 – Design of the VBSL-UPV experiment 135

Figure 34 – ROBOTICS Analysis of the Results 139

Figure 35 – Examples of CIFAR-10 Images. 140

Figure 36 – CIFAR-10 Confusion Matrices . 142

List of Tables

Table 1 – Aggregation-Descriptors Pairs . 51

Table 2 – Activation Functions . 76

Table 3 – Reduced Notations to Describe Layers. 82

Table 4 – Algorithms Properties . 108

Table 5 – Hyperparameters computed for the datasets selected from UCI. 122

Table 6 – Classification Accuracies and F1-Scores in the Testing Stage. 126

Table 7 – Accuracy and Model’s Configuration for MNIST-1000 Digits Dataset . 129

Table 8 – MNIST Digits Dataset Results . 135

Table 9 – Number of Observations in the VBSL-UPV dataset. 136

Table 10 – Computed Hyperparameters for VSLR-UPV dataset. 137

Table 11 – Results on the VBSL-UPV dataset. 138

Table 12 – Results on the Dataset CIFAR-10 (Error rate %). 139

Table 13 – Configuration of the Conv-SD models for CIFAR-10 141

List of Algorithms

Algorithm 1 – Training Algorithm MP/CL . 98

Algorithm 2 – Divide and Conquer Training Algorithm 100

Algorithm 3 – Differential Evolution Training Algorithm 101

Algorithm 4 – Ellipsoid Training Algorithm . 103

Contents

1 Introduction . 16

2 Some Relevant Concepts of Lattice Theory 22

2.1 Historical Context . 22

2.2 Posets and Lattices. 24

2.3 Notions on Lattice Ordered Groups and Rings 31

2.4 Bounded Extensions of ℓ-groups and ℓ-rings 37

2.5 Mathematical Morphology on Complete Lattices 39

2.6 Aggregations and I-set Descriptors on Archimedean o-Rings 42

3 Notions on Classification using Backpropagation and Deep Learning. 52

3.1 Supervised Learning in Classification Problems 55

3.2 Introduction to Gradient Descent . 58

3.3 Deep Learning and Backpropagation . 65

3.4 Some Deep Learning Layers . 70

3.5 Some Deep Learning Architectures . 80

4 A Review of Morphological Perceptrons and Related Models 86

4.1 The Original Morphological Perceptron Model 88

4.2 Morphological Perceptron with Competitive Learning 91

4.3 Dendrite Morphological Neural Networks 92

4.4 MP and DMNN Training Algorithms . 96

4.5 Hybrid Morphological Models . 103

4.6 Challenges and Issues of Morphological Perceptrons 108

5 Generalized Morphological Perceptrons . 110

5.1 General Description of a GMP Model . 111

5.2 A Review on Aggregator and Descriptor Combinations 112

5.3 Generalized Morphological Perceptron in Deep Learning 113

5.4 The Sum-Dot Model . 114

5.5 FC-SD Models . 116

5.6 Conv-SD Models . 118

6 Some Experimental Results . 120

6.1 General Classification Problem Datasets 120

6.2 MNIST1000 Digits Dataset . 128

6.3 MNIST Digits Dataset . 130

6.4 Visual Self-Localization Dataset . 134

6.5 CIFAR-10 Dataset . 139

7 Conclusions . 143

BIBLIOGRAPHY . 145

16

1 Introduction

Generally speaking, MM is a theory related to set, lattice and algebra concepts,

and has a large number of applications in signal processing. In fact, MM was developed

as the PhD Thesis of Jean Serra under the supervision of Georges Matheron, who was

working on analysis of minerals (SERRA; VERCHERY, 1973). One of the results led

to the development of a device, named "Texture Analyser" that computes the so-called

binary hit-or-miss transformation (KLEIN; SERRA, 1972). The formal description of the

operations performed by this device were derived from the concepts of erosion and dilation

first studied in (MATHERON, 1975), resulting in many interesting operators for image

processing (MATHERON; SERRA, 2002). Then, binary images were the first focus of MM

until the middle of the 1970s (SERRA, 1983). Later, some approaches to extend the study

from binary to grayscale structures were developed (STERNBERG, 1986). For this study,

it is of interest to review the umbra approach to grayscale MM, as discussed in Chapter 4.

The subsequent algebraic generalization to complete lattices, which is the most accepted

framework of MM, is a fundamental piece of many MM applications (RONSE, 1990).

In the 1990s, besides a wider recognition and successful applications in the field of image

analysis, MM was adopted in the field of machine learning, especially in Morphological Neu-

ral Networks (MNNs) which are intimately related to Artificial Neural Networks (ANNs)

and are an important inspiration of this work. Some examples of applications are: land

mine detection (GADER; KELLER; NELSON, 2001); Dilation erosion linear perceptrons

(DELP) (ARAÚJO; OLIVEIRA; MEIRA, 2012) in time series prediction; Morphologi-

cal associative memories (MAMS) (RITTER; SUSSNER; LEON, 1998) in classification,

compression and hyperspectral image analysis (SUSSNER; VALLE, 2006b; VALDIVIEZO-

NAVARRO; URCID-SERRANO, 2007; SCHMALZ; RITTER, 2006; GRAÑA et al., 2003);

Fuzzy morphological associative memories (FMAMs) and intervalar FMAMs (IV-FMAMs)

in time series prediction, non-linear systems identification, image classification, among

others (SUSSNER; VALLE, 2006b; SUSSNER; VALLE, 2006a; VALLE; SUSSNER, 2008b;

ESMI et al., 2014; SUSSNER; SCHUSTER, 2018; SUSSNER; ESMI, 2019).

Broadly speaking, ANNs are connectionist systems vaguely inspired by biological neurons.

ANNs units of computation are known as artificial neuron. ANN models abstract some

elementary behaviours and operations that a biological neuron performs. A single artificial

neuron receives signals, then it processes the signal and produces an output that travels

to other units, similar to the axon signal flow process. So, every artificial neuron receives a

set of input signals that represents excitatory and inhibitory postsynaptic potentials at

neural dendrites and each connection between units resembles the synapses in a simplified

way. The output of each neuron is computed by some aggregation function followed by an

Chapter 1. Introduction 17

activation function (usually nonlinear). Applications of ANNs are widely spreading and

permeating the computer sciences, particularly, machine learning. In particular, MNNs are

a type of artificial neural network that performs an operation of mathematical morphology

at each node. As a generality, their nodes, morphological neurons, apply morphological

operators before some activation function. According to Heijmans, any attempt to define

morphological operators would be either very restrictive and will exclude operators, or,

too general, leading to a theory of everything (HEIJMANS, 1994). Nevertheless, four

definitions of elementary operators of mathematical morphology (MM) can be defined ac-

cording to the algebraic framework of MM: dilation, erosion, anti-dilation, and anti-erosion.

Specifically, (BANON; BARRERA, 1993) proved that all mappings from one complete

lattice to another can be established by combining those four fundamental operations. As

aforementioned, MNNs have been applied with great success in many problems of machine

learning.

Machine learning (ML) studies algorithmic models used to perform specific tasks without

the use of explicit instructions. Some of the most usual tasks studied in ML are: unsuper-

vised, supervised, and feature learning, anomaly detection, rule based association, among

many others. The differences between tasks studied in ML are: the type and manner

in which input and output are given, the type of external rewards and which behavior

is expected from the model. It should be noted that ANNs are present in almost the

entire spectrum of ML and all tasks are usually connected. For instance, supervised and

unsupervised learning can be improved by feature learning, selecting better and more

representative characteristics from the initial data. Inside an artificial neuron, the weights

and inputs of the synapses interact and are aggregated into a single value. The way a

neuron gathers the input from other previous neurons is called aggregation function. Once

an artificial neuron receives and aggregates the inputs from other neurons into a single

value, an activation function performs the computation of the final output. A prominent

example of aggregation function is the inner product drawn from linear algebra of the

synaptic weight vector and the input vector. Linear algebra is a subalgebra of image

algebra (RITTER; DAVIDSON; WILSON, 1987; DAVIDSON; SUN, 1991) and can be

used to formulate traditional ANN models.

A rigorous theoretical basis for MNNs introduced in (RITTER; SUSSNER, 1996) enabled

the possibility of transforming the traditional neural networks into morphological coun-

terparts and demonstrated the capability of MNNs to solve conventional computational

problems, for example: boolean logical gates, class separation and pattern reconstruction.

Binary morphological associative memories (MAMs) were studied as a morphological

counterpart of Hopfield networks. Furthermore, (SUSSNER, 1998) introduced the basis of

morphological perceptron (MP) and the first training algorithm, specifically the single layer

morphological perceptron (SLMP) analogous to the architecture of single layer Rosenblatt

perceptrons. This second approach is one of the main issues discussed in this work.

Chapter 1. Introduction 18

Some of the first efforts in research on MPs were to unify MPs, multilayer feed-forward

networks, adaptative filters and rank/linear nodes into one framework (PESSOA; MARA-

GOS, 1998). Modular neural networks and hybrid morphological/rank linear models (MRI)

were introduced and applied sucessfully (PESSOA; MARAGOS, 1998; AUDA; KAMEL,

1999; PESSOA, 1999). (PESSOA; MARAGOS, 2000) introduced a modified backpropaga-

tion optimization algorithm using a combination of typical perceptrons (sum of product

function) and MRL filters, achieving outstanding results in the handwritten classification

digits problem. This combination of neurons led to models that results in more complex

decision boundaries than the hyperboxes presented in previous works.

A plausible biological inspiration of MPs was studied in (RITTER; URCID, 2003; RIT-

TER; IANCU; URCID, 2003). Dendrite morphological neural networks (DMMNs) emerged

as an improvement of MNNs that incorporate a more realistic model of single neuron

computation in artificial neural networks(RITTER; URCID, 2003). In their work, Ritter

et al., tied the dendrite process of a neuron to the morphological operations executed by

the MNNs. Therefore, MP models were formally enhanced with a theoretical description

in terms of dendrites.

In (RITTER; IANCU, 2003; RITTER; IANCU; URCID, 2003) two algorithms to train

single layer dendritic morphological perceptrons for supervised learning were discussed .

Furthermore, a theoretical result on the capability of these models to separate compact

subsets collections was demonstrated. DMNNs applications to classification can be found

in (RITTER; URCID, 2007; SOSSA; GUEVARA, 2014; ZAMORA; SOSSA, 2017).

An important step forward was introduced in the second half of the 2000s in (SUSSNER;

ESMI, 2009b) who incorporated a winner take all output layer to the MP architecture.

The resulting model is called morphological perceptron with competitive layer (MP/CL).

Furthermore, they provided a more comprehensive lattice theoretical background for MPs

and developed a multiclass classification algorithm for MP/CL training, which does not

depend on the sequence in which the training data are presented to the network and

generates the number of morphological neurons in an automatic fashion. In addition, a

proof of the convergence in a finite number of steps was given in (SUSSNER; ESMI, 2009a;

SUSSNER; ESMI, 2009b).

Besides MNNs, a major topic to be investigated in this thesis is deep learning (DL),

both inspired in ideas of ANN. We are especially interested in hybrid methods that make

use of both morphological and deep learning notions. Broadly speaking, a deep learning

architecture uses a cascade of layers with nonlinear processing units to extract information

through the transformation of variables. Each layer uses the output of the previous layer

as input, and each processing unit performs a multivariable operation. The algorithms can

use supervised learning or unsupervised learning, and applications include data modeling

and pattern recognition. The goal is to learn more complex levels of representation that

correspond to different degrees of abstraction. In other words, a layer receives an abstract

Chapter 1. Introduction 19

representation learned by the previous layer and learns a new, higher-level representation,

forming a hierarchy of concepts. There is no single standard for the number of layers that

makes a neural network model deep. However, much of the literature considers that deep

learning involves at least two intermediate transformations (layers). In this thesis we are

focused on deep learning algorithms related with backpropagation (BP), in which the final

task is classification. In this way, a good example of deep learning architecture used to

perform classification are those MPL-BP with more than two hidden layer. Nevertheless,

other deep learning architectures such as convolutional Neural Networks (CNN) (LECUN;

BENGIO et al., 1995) and auto-encoders (GOODFELLOW; BENGIO; COURVILLE,

2016) fit the description of our interest.

Whereas DL has been strongly linked to gradient optimization techniques such as stochastic

gradient descent (SGD), BP and multilayered architectures, most morphological perceptron

algorithms are strongly concerned with constructive methods to combine morphological

neurons to enclose training patterns in bounding boxes, hyperplanes, parallel hyperboxes

and rotated ellipses to generate nonlinear decision surfaces. Specifically, in contrast to ANN

models proposed in (ROSENBLATT, 1961), most of the learning rules and algorithms

to train MPs build a set of hyperboxes by means of incremental processes (SUSSNER;

ESMI, 2009a). Since classical MP models are described by minimax algebra and minimax

operations, which are not differentiable, approaches purely based on gradient descent are

usually out of the question. Hence, Rosenblatt’s Perceptrons and MP models have taken

forked roads. A new approach is therefore needed for building a DL architecture with a

morphological part.

Some algorithms compute hyperboxes using approximation methods. In short, (ZAMORA;

SOSSA, 2017) show how the gradient descent principle can be applied to improve the

results computed by other constructive algorithms. Recently, (ARCE et al., 2017) replaced

hyperboxes by hyper-ellipses rotated by covariance matrices and presented a constructive

training procedure that relies on the inclusion nature of MP models. However, morpho-

logical learning rules purely based on SGD and related to DL have rarely been studied

directly.

An alternative, to make use of approximation methods such as SGD in the morphological

context, is to consider hybrid methods, in which a part of the whole net has morphological

nodes and the nodes of other parts compute some other non-linear function. For instance,

hybrid morphological linear perceptrons (HMLP), trained by extreme learning machine,

employ a random weights initialization of a layer composed of regularized linear nodes and

morphological ones (SUSSNER; CAMPIOTTI, 2020). Other methods, such as dilation

erosion linear perceptron (DELP) and MRI, make use of pulse functions to compute which

direction the set of parameters must follow to improve the output. In Chapter 4 we discuss

some hybrid morphological models and the ideas behind them.

The aim of this thesis is to develop a more sophisticated method for classification that

Chapter 1. Introduction 20

combines the deep learning with stochastic gradient and the MNN approaches, using

morphological operators in at least one layer. Although some researchers have developed

some morphological algorithms that make use of gradient descent algorithm (PESSOA;

MARAGOS, 1996; PESSOA, 1999; ARAÚJO; OLIVEIRA; MEIRA, 2012; ZAMORA;

SOSSA, 2017; HERNÁNDEZ; ZAMORA; SOSSA, 2018; SUSSNER; CAMPIOTTI, 2020),

no study, to our knowledge, has considered a DL method in which at least one layer

has morphological nodes. Especially when a gradient descent algorithm is used in DL,

morphological nodes are not considered due the differentiability problems of the operators

based on morphology. One way to overcome the non-differentiability problem of traditional

MNN models is to extend their framework. We are interested, especially in archimedean

ℓ-rings that were first introduced in (BIRKHOFF, 1987). In Chapter 2 these concepts are

reviewed and discussed.

In order to achieve this extension, we first review the morphological perceptron architec-

ture and its variants. Furthermore, we capture the geometrical nature of its elementary

operations and then, we describe a framework, in which two operators play an essential

role: I-set descriptors and L-fuzzy aggregators, described in terms of the lattice framework.

The main idea is to analyze the behavior of all elementary operators in totally ordered

archimedean ℓ-rings and to fit the geometrical ideas and classification rules of MPs. The

first insight is the fact that to every archimedean ℓ-ring an archimedean ℓ-group is attached.

These ℓ-groups can be extended to bounded lattice ordered groups in which minimax

algebra is defined. Therefore, most of the mathematical morphological models studied

before can be described in terms of ℓ-rings. As far as we know, no previous research has

considered archimedean totally ordered ℓ-rings as the framework of MPs.

Specifically, we examined the structure of MPs by means of I-set descriptors and L-fuzzy

aggregators and we present some novel results. We also analyze the dot operator introduced

in ℓ-rings as I-set descriptor. As a result, we describe a differentiable operator that fits

the geometrical and the learning rule ideas applied in MPs. Moreover, we developed an

architecture trainable by BP that comprises morphological nodes. The resulting architec-

ture was named generalized morphological perceptron (GMP). Moreover, once we have

an MM based differentiable unit of computation, backward and forward functions of a

morphological layer is described based in the aforementioned operators of Sum-Dot in

archimedean totally ordered ℓ-rings.

In addition, hybrid models with GMP layers based on elementary ℓ-rings operators are

fully described. In contrast to (ZAMORA; SOSSA, 2017), we present a morphological

architecture that learns by SGD without any constructive method involved. A second

architecture that involves one or more traditional fully connected layers followed by an

activation function and layer based in ℓ-rings with a softmax-logit loss function is also

explored. Unlike (HERNÁNDEZ; ZAMORA; SOSSA, 2018), in the last aforementioned

architecture the morphological layer performs a backpass function to previous layers.

Chapter 1. Introduction 21

Furthermore, a set of simulations were performed and a comparison among other lattice

and morphological methods for supervised learning was conducted. Moreover, a larger

comparison with state of the art methods for supervised learning is presented.

Therefore, we organized this text as follows:

Chapter 2 contains the theoretical concepts used throughout this thesis. In Sections 2.2

and 2.3, we review posets and lattices. Sections 2.4 and 2.5 contain reviews on bounded

ordered posets and an introduction to MM from the algebraic perspective. Last, in Section

2.6 a brief and intuitive discussion of the results is presented.

In Chapter 3, a brief review on machine learning is provided, with special emphasis on

multiclass classification, how SGD is applied and some DL theory related with BP. In

Section 3.2, some techniques that improve SGD such as learning step, momentum and

regularization are discussed. Sections 3.3 and 3.4 contain an introduction to DL and how

SGD is applied through BP. Besides, a set of existent layers relevant to us is listed. This

chapter concludes with some self-explanatory feed forward deep neural networks examples

trained by SGD, such as: autoencoders, convolutional neural networks.

Chapter 4 presents an introduction to MNNs, and specially MPs. Special attention to

morphological/hybrid architectures and its respective algorithms to train is given. Sections

4.1, 4.2 and 4.3 are focused on the historical and algebraic foundations of MPs. Last,

in Sections 4.4 and 4.5, we review some of the MP and hybrid architectures previously

described in literature.

Chapter 5 introduces the generalized morphological perceptron. Also, an alternative formu-

lation of MPs units of computation, in terms of I-set descriptors and L-fuzzy aggregators,

is presented. Moreover, we discuss the relation between this alternative formulation and

the results presented in Section 2.6. In Section 5.3, we present the architecture of the

generalized morphological perceptron. In particular, we present two layers, one layer that

computes an I-set descriptors and a L-fuzzy aggregator at each unit of computation, and

the other one that computes a union or a intersection of nodes by class. Sections 5.4, 5.5

and 5.6 introduce three hybrid models that make use of the aforementioned layers.

Experiments in classification using several datasets are presented in Chapter 6. The per-

formance of our proposed architectures are compared with some other algorithms from the

literature, in particular those based on lattice theory and some competitive DL classifiers.

Finally, conclusions and final remarks can be found in Chapter 7.

22

2 Some Relevant Concepts of Lattice Theory

I took a course in lattice theory

from Oystein Ore while a

graduate student at Yale in the

fall of 1954. The lectures were

scheduled at 8 a.m., and only

one other student attended

besides me, María Wonenburger.

It is the only course I have ever

attended that met at 8 o’clock

in the morning. The first lecture

was somewhat of a letdown,

beginning with the words: "I

think lattice theory is played

out".

Gian-Carlo Rota, The Many

Lives of Lattice Theory.

2.1 Historical Context

It is hard to follow the historical development of the idea behind lattices,

particularly before the 19th century. Nevertheless, the emergence and its formalization was

not in the middle of nowhere and some mathematicians worked together lattice structures

in the middle of nineteenth century, although their results did not have a great response.

The first lattice structure appears in Boolean algebras (BOOLE; GRATTAN-GUINNESS;

BORNET, 1999). Although the term lattice was not available, the interest in algebraic

logic was a paramount issue to the development and the future formalization of lattice

theory. Three mathematicians stand out in the contribution to studies of the algebraic

logic: G.Boole studied the logic as algebra, Ch. S. Peirce contributed to the axiomatization

and improvement of Boole’s calculus and, E. Schröder who proved the independence of the

distributive law in Boole’s calculus contrary to Peirce’s proposal (PEIRCE, 1880). This

generalization led Schröder to study two systems of algebraic logic with different lattice

structures which did not satisfy distributivity, the first non-distributive lattices. As a result

Schröder started to study two systems of algebraic logic, and therefore he distinguished

two lattice structures: “identity calculus” as the specialized Boolean algebra and “logical

calculus with groups” as a more general system which did not satisfy the distributive law

Chapter 2. Some Relevant Concepts of Lattice Theory 23

(SCHRÖDER, 1890).

Despite these advances, these abstract algebraic structures did not attract much attention

during the last decades of the nineteenth century. However, the mathematician Dedekind

established the foundations of number theory, an area that was fundamental for the

development of lattice theory.

After a long recess, Karl Menger introduced the axioms of projective geometries which

turned out to be modular lattices. Fritz Klein-Barmen introduced the German term Verband

(MEHRTENS, 1979) for lattice, and later, concentrated on an axiomatic formulation of the

theory. After, Garret Birkhoff, inspired by Hasse diagrams, introduced the word "lattice"

for the first time. Also, Birkhoff formulated lattice theory as an essential tool for algebra

in his book, Lattice Theory (BIRKHOFF, 1940) published in 1940.

However the study of abstract structures was not in fashion in the second half of the

ninteenth century, and therefore the systems of Schröder and Dedekind research did not

stimulate further investigation. It was not until the 1930’s that a research of this kind

obtained a wider response. In 1920, Karl Menger presented the set of axioms characterizing

projective geometries which are in fact complemented modular lattices. The biggest merits

in the early developments of lattice theory belong to Birkhoff who also conceived lattice

as a basic tool in algebra. In his early articles he rediscovered, amoung others, Schröder

and Dedekind’s results. The book Lattice Theory, published in 1940, attracted interest

from almost all areas of the mathematics and was the beginning of a proliferating list of

applications of the so-called "young brother of group theory".

An extended edition of the book Lattice Theory was published in 1948 including the

foundations of the next decades, which became a reference for modern algebra. Nevertheless,

the great expectation in this new area diminished in the 1950s. Rota’s historical review of

lattice theory claims: "Never in the history of mathematics has a mathematical theory

been the object of such vociferous vituperations as lattice theory. Dedekind, Jónsson,

Kurosh, Malcev, Ore, von Neumann, Tarski, and most prominently Garrett Birkhoff have

contributed to a new vision of mathematics, a vision that has been cursed by a conjunction

of misunderstanding, resentment, and raw prejudice" (ROTA, 1997).

In 1967 a third edition of the book "Lattice theory" (BIRKHOFF, 1967) refreshed the

subject, gathered the advances of the theory and launched the new challenges that appeared

until then. In this edition, Birkhoff points out that lattice theory had not had the attention

that it deserves,

The General Lattice Theory book published by Grätzer (GRÄTZER, 2002) in 1978 left

clear the transformation that mathematics underwent with the development of lattice

theory. From that time on, many of the advances made in the last decades in lattice theory

became specialized areas of study. Furthermore, lattice theore been a growing and fertile

field of research in terms of both its applications and its theoretical framework.

Chapter 2. Some Relevant Concepts of Lattice Theory 24

2.2 Posets and Lattices.

The conventional way to introduce the theory of lattice is to start from the

partially order relation which generalizes the concept of ordering or sequencing the elements

of a set. A more general concept is the pre-order concept from order theory, pre-orders

satisfy reflexivity and transitivity. Two specialized branches are defined as a symmetric

pre-order or equivalence relation and the anti-symmetric pre-order or partially ordered

set which is of our interest. To dive into lattice theory we will start with the definition of

partially ordered set.

Definition 1 (Partially ordered set). A pair pP,ďPq where P is a set and ďP is a binary

relation, is named partially ordered set (poset) if and only if for any x, y, z P P the pair

satisfies the following three conditions:

1. x ďP x (reflexivity).

2. x ďP y and y ďP x if and only if x “ y (antisymmetry).

3. x ďP y and y ďP z if and only if x ďP z (transitivity),

The notation ďP is used to avoid possible missinterpretation when there are

other binary relationships in the same context.

Two common examples of posets are: a set of n humans together with the binary relation

given by the genealogical descendancy; and a set of words ordered by the alphabetic

relation. In words, lattice theory is about the study of the binary relations read "is less or

equal", "is contained in", "is part of" that arises from the aforementioned conditions.

Every partially ordered set P gives rise to an opposite or dual partially ordered set

which is often denoted by P˚. This dual order is defined in the same set, but with the

inverse order, that is: x ďP˚ y holds in P˚ if and only if y ďP x holds in P or equivalently

x ěP y.

Definition 2 (Lower and upper bounded sets). Given a poset pP,ďq, for any M Ď P, the

upper bound and the lower bound sets are given by UpMq “ tu P P : x ď u, @x PMu
and VpMq “ tv P P : x ě v, @x PMu, respectively.

Informally speaking, an upper bound of the subset M Ď P is an element of P

"greater than or equal to" (ě) every element of the subset M . A dual statement can be

done for a lower bound using the relation "less than or equal to " pěq. Especial cases of

upper and lower bounds are the supremum and the infimum defined below.

Definition 3 (Supremum and infimum). The supremum or least upper bound (l.u.b)

of a subset M Ď P is denoted (
ł

M) and satisfies x P UpMq and x ď y, @y P UpMq.

Chapter 2. Some Relevant Concepts of Lattice Theory 25

Analogously, x P UpMq is called the infimum or greatest lower bound (g.l.b.) and denoted

(
ľ

M) if satisfies x P VpMq and x ě y, @y P VpMq.

It is easy to verify that if there exists a supremum (dually an infimum) then it

is unique. The supremum (join) and the infimum (meet) of a pair of elements is denoted

by _ and ^, respectively. For M Ď P we denote the supremum and infimum using the

symbols
ł

M and
ľ

M , whenever they exist. In additon, we say that M is bonded if
ł

M and
ľ

M exists.

Through these basic definitions is possible to prove the anti-circularity of a poset, that is:

Lemma 1. Given a poset pP,ďq and x1 . . . , xn P P, if x1 ď x2 ď . . . ď xn ď x1 then

x1 “ x2 “ . . . “ xn.

As we have mentioned before, a lattice is an abstract structure widely studied

in order theory and abstract algebra. A lattice is a partially ordered set in which every

pair of elements has a supremum and an infimum.

Definition 4 (Lattice). A poset pL,ďq is called lattice if and only if @x, y there exist

x_ y “
ł

x, y and x^ y “
ľ

x, y in L.

A lattice pL,ďq is called bounded if and only if L has a least element
ľ

L

and a greatest element
ł

L. The least
ľ

L and the greatest
ł

L elements of a bounded

lattice L are denoted by 0L and 1L.

A lattice pL,ďq is called complete if and only if for any M Ď L there exist
ł

M and
ľ

M in L. Obviously, every complete lattice is bounded and every lattice with a finite

number of elements is complete. Furthermore, a lattice pL,ďq is called totally ordered

or chain if x ď y or y ď x @x, y P L.

The Cartesian square of the natural numbers, ordered so that pa, bq ď pc, dq if a ď c and

b ď d is a common example of a lattice. The pair p0, 0q is the bottom element and there

is no top. In this case, the lattice is not upper bounded and it is not complete. Figure 1

shows a diagram of this example.

Definition 5 (Conditionally complete lattice). A lattice pL,ďq is said to be conditionally

complete if every non-empty bounded subset S Ă L has a supremum and an infimum in

L.

A subset M Ď L is a meet-sublattice of L if the infimum operation of a

lattice L is defined for any two x, y PM and is called join-sublattice if the supremum of

a lattice L is defined for any pair of elements of M. A subset M of L that is a join and a

meet-sublattice is called sublattice of L. In other words, a subset M Ď L is a sublattice

of L if M is a lattice and shares infimum and supremum operations with L.

Chapter 2. Some Relevant Concepts of Lattice Theory 27

Direct products over lattices maintain certain lattices properties which means

that it is possible to build lattice structures from direct products PˆQ.

Definition 7. The direct product PˆQ of two posets P and Q is the set of all pairs px, yq
with P P and y P Q, partially ordered by ď, following the rule:

px1, y1q ď px2, y2q ðñ x1 ďP x2 and y1 ďQ y2 (2.1)

Theorem 3. The direct product of any two lattices is a lattice.

Corollary 3 (Product Lattice). Given lattices tL1, . . . ,Lnu, a binary relation over their

product L1ˆ . . .ˆLn is defined by px1, . . . , xnq ď py1, ¨ ¨ ¨ , ynq ðñ xi ď yi, for i “ 1 ¨ ¨ ¨n
and xi, yi P Li form a product lattice.

If Li is complete for all i “ 1, . . . , n, then for all xj P pL1 ˆ . . .ˆ Ln) with j P J :

ł

jPJ

xj “ p
ł

jPJ

x
j
1, ¨ ¨ ¨ ,

ł

jPJ

xj
nq and

ľ

jPJ

xj “ p
ľ

jPJ

x
j
1, . . . ,

ľ

jPJ

xj
nq (2.2)

therefore, its product lattice is complete.

A set of lattices tL1, ¨ ¨ ¨ ,Lnu is named the set of constituent lattices. For a

lattice L and a natural number n ą 0, we denote n direct product of n-copies of L using

the symbol Ln.

A lattice can be also defined as an algebraic structure. A lattice is an algebraical structure

that comes with two binary operations, denoted by _ and ^ and named join and meet,

respectively.

Definition 8 (Algebraic lattice). An algebraic structure pL,_,^q consisting of a set L

and two binary operations _ and ^ on L is called lattice if the following identities holds

for any x, y, z P L:

Commutative laws.

x_ y “ y _ x
x^ y “ y ^ x

Associative laws.

x_ py _ zq “ px_ yq _ z
x^ py ^ zq “ px^ yq ^ z

Absorption laws.

x_ px^ yq “ x

x^ px_ yq “ x

The idempotent laws x _ x “ x and x ^ x “ x arise from the absorption

laws. It is easy to verify that a lattice consist of two commutative monoids pL,_q and

pL,^q interacting appropriately. Moreover, a bounded lattice satisfies the identity laws,

i.e., x_ 0L “ x and x^ 1L “ x for any x P L.

Lattice structures play an important role in universal algebra because meet and join are

commutative and associative, so lattice can be understood as two semigroup structures

with the same domain.

Chapter 2. Some Relevant Concepts of Lattice Theory 28

On the one hand, if pL,ďq is a lattice, then the partial order on a lattice L is given by

each of the next prescriptions:

x ď y ðñ x^ y “ x; or x ď y ðñ x_ y “ y. (2.3)

where x^ y and x_ y are defined for x, y P L.

On the other hand, x^ y and x_ y are given by the infimum and supremum operations.

Therefore, the algebraic definition 8 and definition 4 are equivalent.

Mappings between lattice have meaningful richness and they can be explored from the

notions below. A mapping φ of a poset P into a poset Q is order preserving if for any

x, y P P such that x ď y, then φpxq ď φpyq. An order preserving mapping is also called

isotone.

Lemma 2. In any lattice pL,ďq, the operations join and meet are isotone:

if y ď z, then x^ y ď x^ z and x_ y ď x_ y. (2.4)

Lemma 3. Any lattice pL,ďq satisfies the following distributive inequalities

x_ py ^ zq ď px_ yq ^ px_ zq (2.5)

x^ py _ zq ě px^ yq _ px^ zq (2.6)

Lemma 4. Any lattice pL,ďq satisfies the following modular inequality:

x ď z ùñ x_ py ^ zq ď px_ yq ^ z. (2.7)

Definition 9 (Lattice morphisms). Let L and M be lattices, a mapping ψ : L Ñ M

that satisfies ψpx_L yq “ ψpxq _M ψpyq and ψpx^L yq “ ψpxq ^M ψpyq is named lattice

homomorphism. If the lattice homomorphism is bijective (one to one), it is called lattice

isomorphism.

An isomorphism ψ : LÑ L from a lattice to itself is called automorphism.

Some remarks are: two lattices L and M are isomorphic if and only if there

exists an isomorphism between them. A lattice isomorphism φ is an order-embedding

that is, x ď y if and only if φpxq ď φpyq for all x, y P L. A lattice isomorphism is an

automorphism if L “M. A homomorphism between bounded lattices satisfies ψp0Lq “ 0M
and ψp1Lq “ 1M. Homomorphisms between lattices are isotone and satisfies preservation

of limits, this is, preserves infimum and supremum.

The distributive inequality in Lemma 3 is weaker than the distributive law. Since lattices

have two binary operations, it is necessary to study whether one of the operations distributes

over the other.

Definition 10. A lattice pL,ďq is said to be distributive if and only if satisfies the

following properties:

x_ py ^ zq “ px_ yq ^ px_ zq @ x, y, z P L (2.8)

x^ py _ zq “ px^ yq _ px^ zq @ x, y, z P L (2.9)

Chapter 2. Some Relevant Concepts of Lattice Theory 29

Theorem 4. For any lattice, the Properties 2.8 and 2.9 are equivalent.

Note that every chain is a distributive lattice, any sublattice of a distributive

lattice is distributive and any product lattice of distributive lattices is distributive.

We can also verify that for any distributive lattice:

if x^ z “ y ^ z and x_ z “ y _ z then x “ y. (2.10)

Definition 11. A complete lattice L is said to be Brouwerian if the infinite distributivity

property holds, this is:

x^ p
n

ł

i“1

yiq “
n

ł

i“1

px^ yiq (2.11)

Hence every Brouwerian lattice is distributive. This definition is different from

the usual definition given in (BIRKHOFF, 1967), but is equivalent to it (ANDERSON;

FEIL, 2012).

Complements play a primordial role in the studies of lattices. For instance, any comple-

mented distributive lattice forms a Boolean algebra and for a distributive lattice, the

complement of an elements x P L when it exists is unique.

Definition 12. By a complement of x in a bounded lattice pL,ďq is meant a pair of

element x, y P L such that x _ y “ 1L and x ^ y “ 0L. The lattice L is said to be

complemented if all its elements have complement.

If the complement is unique, we write x “ y and equivalently, y “ x. The

unary operation over L, called complementation, introduces an analogue of logical negation

into lattice theory. Nevertheless, in lattice theory, the term negation is reserved for another

specific class of operator.

Definition 13. An operator ν : LÑ L, where L is a complete lattice is called negation or

conjugate if it fulfill the following conditions: νpνpxqq “ x and x ď y implies νpyq ď νpxq.

Note that Definition 13 assumes that the operator φ is order reversing and an

involution. From these properties, it is possible to prove that νp0Lq “ 1L and νp1Lq “ 0L.

Particularly, a dual automorphism ν is named negation if ν is an involution.

Definition 14. An element x of a lower bounded lattice L is an atom if 0L ă x and there

is no y P L such that 0L ă y ă x. The lattice L is called atomic if for every z ‰ 0L, there

exists an atom x P L such that x ď z and is called atomistic lattice if every element

z P L is a least upper bound of a set of atoms.

Co-atom, co-atomic lattice and co-atomistic lattice notions can be

defined by duality.

Chapter 2. Some Relevant Concepts of Lattice Theory 30

Intervals are a natural and frequent option to describe closed sets. As we seen before a

convex sublattice of a lattice can be described in terms of closed intervals. In this section,

we review the so-called lattice of closed intervals.

Theorem 5 (Lattice of intervals). The class of closed sub-intervals of a lattice L,

I “ trw,ws : w,w P Lu together with the binary inclusion relation:

x ďIL y ðñ x Ď y, for any x “ rw,ws, y “ ry, ys P IL (2.12)

is a meet-sublattice of PpLq. The meet is given by:

rw,ws ^IL ry, ys “ rw,ws X ry, ys (2.13)

Even more, a standard join operator can be defined for IL:

rw,ws _IL ry, ys “ rw ^L y, w _L ys (2.14)

We will refer to the lattice pIL,^IL ,_ILq as lattice of closed intervals or, shortly, lattice

of intervals. As an observation, a closed interval rx, xs whose lower and upper bounds are

equal is an atom. We denote the set of atoms of L using the symbol apILq.

Theorem 6 (The Completeness of the Lattice of Intervals). Given a lattice L, its lattice

of intervals pIL,ďILq forms a lattice with 0IL “ H if the lattice L is bounded then IL has

an upper-bound given by 1IL “ r0L, 1Ls. Moreover, if L is a complete lattice then, its lattice

of intervals is also complete.

Closed intervals are the geometrical base of some lattice based applications, for

example: hyperboxes driven classifiers (PEDRYCZ; PARK; OH, 2008).

Definition 15. Given two lattices L and M, a mapping φ : L ˆ IL Ñ M together with

some rφ PM that satisfies the following conditions:

1. φpz, rw,wsq ě rφ if and only if z P rw,ws.

2. If for all y, z P L, rw,ws P IL such that y ď z ď w then, φpy, rw,wsq ď φpz, rw,wsq
where y, z P L.

3. If for all y, z P L, rw,ws P IL such that w ď y ď z then, φpz, rw,wsq ď φpy, rw,wsq
where y, z P L

is said to be an IL-set descriptor. In this case rφ is called the r-cut of φ.

As aforementioned, lattice-based classifiers such as fuzzy lattice neural networks,

MPs and θ-FAMs use closed intervals to perform classification. Specifically, MPs are

Chapter 2. Some Relevant Concepts of Lattice Theory 31

based on algebraic mathematical morphology which in turn have complete lattices as its

framework. Therefore, to analyze the behavior of I-set descriptors is essential to characterize

the described sets. Given an IL-set descriptor φ, the mapping Hφ : IL Ñ PpLq for any

interval rw,ws is represented by:

Hφprw,wsq “ tz P L : φpz, rw,wsq ě rφu (2.15)

where rφ is the r-cut of φ. This link between sets and I allows us to check if two different

I-set descriptors describe the same values.

Definition 16. Two IL-set descriptors φ1 and φ2 are isomorphic if and only if, for any

rw,ws, holds:

Hφ1
prw,ws “ Hφ2

prw,wq

2.3 Notions on Lattice Ordered Groups and Rings

Many interesting research of lattice theory concern lattice ordered structures

that have an addition, a multiplication or some other appropriate mapping. Some examples

are: lattice ordered groups, ordered monoids, lattice vector spaces, ordered rings and fields.

Here, we review two lattice ordered structures: ℓ-groups and ℓ-rings. The first one concerns

groups which are at the same time lattices with certain properties. Some basic equalities

and concepts are presented and abelian groups are characterized. Then, we discuss the

completeness of ℓ-groups and ℓ-rings. We conclude this section connecting the algebraic

operations presented here and the I-set descriptors described previously.

We will use the additive notation throughout this work, a group translation will be written

x Ñ z ` x ` z, the inverse of x will be denoted using the symbol ´x and the group

identity will be denoted e. For practical purposes, sometimes we will set e “ 0, following

the standard group notation.

A group is called lattice ordered group if its translations are order preserving, formally:

Definition 17. A group pG,`q such that pG,ďq is also partially ordered and satisfies:

x ď y, ùñ z ` x` z ď z ` y ` z (2.16)

is said to be a po-group.

A po-group G, which is at the same time a lattice is called lattice-ordered

group or ℓ-group. Furthermore, if the relation ď of an ℓ´ group is a total order then, G

is called a totally ordered group or o-group, for short. A commutative ℓ-group is called

abelian ℓ-group.

An immediate result of the Definition 17 is stated below:

Chapter 2. Some Relevant Concepts of Lattice Theory 32

Lemma 5. In any ℓ-group G, every group translation is an order automorphism.

Therefore, for any po-group G, the additive inverse is an dual automorphism

of the underlying poset.

The set G` “ tx P G : 0 ď xu is named the positive cone of the po-group G. An element

x in an po-group G is a positive element if 0 ď x (strictly positive if 0 ă x) and, for

any element x P G, the positive part x` of x is given by x_ 0 and the negative part

x´ “ ´x_ 0. For any po-group G the following statements are true:

x ď y ùñ ´z ` x` z ď ´z ` y ` z (2.17)

x ď y ùñ y ´ x P G` (2.18)

x ď y, z ď w ùñ x` z ď y ` w (2.19)

Theorem 7 (Theorem 2.1.1. of (STEINBERG, 2010)). If G is a po-group with a positive

cone G`, then

1. G` `G` Ď G`

2. ´x`G` ` x Ď G`

3. G` XG´ “ e

4. x ď y ðñ y ´ x P G`

for all x, y P G`.

Conversely, if G is a group and there exists a normal subsemigroup S that satisfies 7.3

then x ď y ðñ y ´ x P G` is a partial order of G which makes G into a po-group with

positive cone G` “ S.

Theorem 7 demonstrates that the partial orders of any po-group are in one to

one correspondence with the positive cone of G. In fact, the positive cone G` is usually

referred as the partial order of G.

A pair of elements in the po-group G are comparable exactly when their difference is

comparable to zero, thus if G “ G` YG´ then G is totally ordered. So, elements of any

o-group G satisfy trichotomy: every element x P G is either positive, negative, or zero.

Furthermore, If an o-group G is not trivial (i.e. |G| ‰ 1), then its positive cone is infinite,

since for all x P G`, x ‰ 0 then x` x ‰ x. In general, for x, y P G, where G is a po-group

satisfy the equation:

´px^ yq “ ´x_ y “ r0_ p´y ` xqs ´ x (2.20)

whenever these three expression exists. Particularly, a po-group G is an ℓ-group if and

only if x_ 0 px^ 0q exists for every x P G. Excluding the trivial case, an ℓ-group cannot

Chapter 2. Some Relevant Concepts of Lattice Theory 33

be a bounded lattice and therefore can not be a complete lattice in the usual sense. A

complete ℓ-group extension GY t`8,´8u can been defined as extension of an ℓ-group G

where G is conditionally complete and t˘8u denotes the bounds of G.

Recalling, for conditionally complete lattices the existence of supremum and infimum of

finite subsets is guaranteed. Some properties arise naturally in this context, for instance:

Theorem 8 (Theorem 2.1.3.(a) of (STEINBERG, 2010)). Every conditionally complete

ℓ-group G is Brouwerian and hence is distributive.

Besides, any po-group which is a meet-semilattice (or join-semilattice) is an

ℓ-group. From now on, we are especially concerned with ℓ-groups. In this sense, the lattice

operations and the group inverse of any ℓ-group satisfies the De Morgan’s laws:

Proposition 1 (Proposition 1.1.1 of (ANDERSON; FEIL, 2012)). Let G be an ℓ-group

then for any x, y P G, we have.

´px^ yq “ ´x_´y (2.21)

´px_ yq “ ´x^´y (2.22)

A pair x, y P G is disjoint if and only if x^ y “ 0. Any element of an ℓ-group

can be represented by the difference of two disjoint positive elements. This fact and the

uniqueness of the representation come from the following equations:

x` x´ “ x` (2.23)

x “ x` ´ x´ (2.24)

x` ^ x´ “ 0 (2.25)

And moreover, if every element x of a po-group G can be uniquely represented as the

difference of disjoint positive elements then G is an ℓ-group. In addition, Equation 2.25,

implies that disjoint elements commute.

The absolute value of an element in some structure may be viewed as the distance between

the element and zero. In terms of ℓ-groups, the absolute value of any element can be

defined in terms of its positive and negative part.

|x| “ x` ` x´ (2.26)

Note that |x| “ x` _ x´ “ x_´x and like usual absolute value |x| “ x whenever x P G`.

In addition, the absolute value satisfies a weak triangle inequality:

|x` y| ď |x| ` |y| ` |x| (2.27)

Besides, if x, y P G are disjoint then |x| ^ |y| “ 0. An abelian ℓ-group G satisfies the

triangle inequality.

Chapter 2. Some Relevant Concepts of Lattice Theory 34

Theorem 9. Let G be an abelian ℓ-group, then for any x, y P G we have:

|x` y| ď |x| ` |y| (2.28)

Conversely, if G is an ℓ-group and for any x, y P G Equation 2.28 holds true, then G is

an abelian ℓ-group.

The first part of Theorem 9 was stated in p.309 of (BIRKHOFF, 1987) and

the converse statement was proved in (KALMAN, 1960). The notation nx (where n P N
is a natural number) stands for the group sum of n copies of x. Recalling that x P G is

torsion element if exists a positive integer n such that nx “
n

ÿ

i“1

x “ 0, where 0 denotes

the identity element of the group and m a positive integer. If G has not torsion elements

besides the identity element, G is called a torsion free group.

Proposition 2 (Proposition 3.5 of (DARNEL, 1994)). Let G be an ℓ-group then the

underlying group of G is torsion free.

In (GLASS, 1999) it is shown that the converse is not true and therefore, the

class of torsion-free groups does not coincide with the class of groups that can be made

into ℓ-groups. Nevertheless, the torsion free property does imply ℓ-group orderability in

the abelian case.

Theorem 10 (Proposition 1.1.7 of (ANDERSON; FEIL, 2012)). For an abelian group

G, the following statements are equivalent:

1. G is torsion free.

2. G admits an o-group structure.

Consequently, any torsion free abelian group can be converted into an ℓ-group.

Note that totally ordered ℓ-groups are not necessarily abelian. Nevertheless, our focus

remains in the abelian case.

Abelian groups appear in many areas of study and are one of the most important concepts

in abstract algebra, from which many other concepts such as modules and rings are

developed, in fact, every ring is by definition abelian with respect to its addition operation.

Later, we will check some concepts related with commutativity but first we will review

the Archimedean property, a central issue concerning ℓ-groups.

Definition 18. An ℓ-group G is an Archimedean ℓ-group if for any elements x, y P G,

nx ď y for any n P N implies that x ď 0.

Note that Definition 18 implies that in Archimedean groups, for any two strictly

positive elements x, y P G there exist n,m P N such that nx ę y and my ę x. Therefore

Archimedean ℓ-groups are abelian and torsion free.

Chapter 2. Some Relevant Concepts of Lattice Theory 35

Theorem 11 (Theorem 2.2 of (ANDERSON; FEIL, 2012)). Any Archimedean ℓ-group

G is abelian.

Representation theorems for ℓ-groups have been widely studied. In particular,

Archimedean ℓ-groups representations were studied by Bernau’s (BERNAU, 1966). The

following theorem is a central issue in ℓ-group theory and links totally ordered Archimedean

groups to the Archimedean group of reals.

Theorem 12. The following statements are equivalent for any ℓ-group G.

1. G is an Archimedean o-group.

2. G is order isomorphic to a subgroup of the real numbers R

Last theorem is part of Hölder’s Theorem. A comprehensive proof of this

theorem is given in (STEINBERG, 2010) p.60. In addition, a more modern proof of

Hölder’s theorem can be found in: (VISWANATHAN, 1969). An immediate result of

Theorem 12 is that the unique non-trivial convex ℓ-subgroups of G are 0 and G itself.

The following example shows that non-Archimedean totally ordered groups are also

possible.

Example 1. Let G “ R2, given by Cartesian coordinates px, yq where x, y P R ordered by

lexicographic order and let the addition operation be the pointwise vector addition. The

ordered group G is abelian and totally ordered but it is not Archimedean.

Although non-Archimedean o-groups can be embedded in Rn for some n, they

cannot be embedded in the real numbers. Example 1 is the 2-dimensional case. A more

dedicated study on these result (Hahn’s theorem and Holder’s Theorem) can be found in

(FLEISCHER, 1981). Non-Archimedean ℓ-groups are beyond the scope of this research.

Since Archimedean ℓ-groups are abelian, it is in our best interest to study ℓ-ordered rings

in which the underlying additive group is Archimedean. In order to accomplish this goal,

we review some basics on the subject:

Definition 19. A partially ordered ring, or po-ring pA,`, ¨,ďq for short, is a ring

pA,`, ¨q with a partial order, in which the following conditions are satisfied:

x ď y ùñ x` z ď y ` z, @x, y, z P A (2.29)

0 ď x and 0 ď y ùñ 0 ď x ¨ y, @x, y P A`. (2.30)

A po-ring that satisfies x^ y, x_ y P A, for all x, y P A is called lattice ring

or ℓ-ring for short. If the relation order ď is a total order, then it is called totally ordered

ring or o-ring. An ℓ-ring is said to be commutative if x ¨ y “ y ¨ x @x, y P G. As in the

Chapter 2. Some Relevant Concepts of Lattice Theory 36

ℓ-groups case, the partial order of a po-ring can be identified with its positive cone and an

ℓ-ring is called Archimedean if its additive ℓ-group is Archimedean (STEINBERG, 2010).

The class of interesting po-rings are those with at least one non-trivial multiplication. In

particular, ℓ-rings is a rich class of po-rings and not every ring can be made into an ℓ-ring,

for example the rational complex numbers. For instance, in ℓ-ring A we have:

|x ¨ y| “ |x`y` ` x´y´ ´ x`y´ ´ x´y`|
ď x`y` ` x´y´ ´ x`y´ ´ x´y`

“ |x| ¨ |y|

for any x, y P A and therefore, the following equation holds:

|x ¨ y| ď |x| ¨ |y| (2.31)

A po-ring where the additive group is an Archimedean group with respect to the given

order is called Archimedean po-ring. The case where the po-ring is totally ordered and

commutative had been widely studied. A question that matter to us is about which especial

properties satisfy non-Archimedean and Archimedean commutative o-rings. The answer to

this questions is summarized in the following theorems and examples.

Theorem 13. Let A be any commutative o-ring, then:

1. The underlying additive group of A is an o-group.

2. x is either in the positive cone or in the negative cone of A.

3. 0 ď 1.

4. If A is not trivial, then it is infinite.

5. x2 P A`

for any x P A

All the statements in theorem 13 were proved using IsarMathLib, a library for

the Isabelle theorem prover, (KOLODYNSKI, 2018).

Example 2. Let Arλs denote the ring of polynomials in one indeterminate λ over the field

Q of rational numbers ordered lexicographically, with the constant term dominating. This

is: x0` x1λ`, . . . ,`xnλ
n ě 0 iff x0 ą 0, or x0 “ 0 and x1 ą 0 or,. . ., or x0 “ x1 “, . . . ,“

xn´1 “ 0 and xn ě 0. Then Arλs is a commutative o-ring but it is not Archimedean.

Last example leads us to an interesting observation: not any commutative o-ring

is Archimedean. In addition, the following example shows that there exist Archimedean

ℓ-rings which in fact are not totally ordered.

Chapter 2. Some Relevant Concepts of Lattice Theory 37

Example 3. Let X be a or Hausdorff space (or T2 space) (ARKHANGEL’SKII, 1990),

and CpXq the space of all continuous and real valued functions on X. Then CpXq is an

Archimedean ℓ-ring not totally ordered, under the point-wise operations:

• rf ` gspxq “ fpxq ` gpxq

• rf ¨ gspxq “ fpxq ¨ gpxq

• rf ^ gspxq “ fpxq ^ gpxq and rf _ gspxq “ fpxq _ gpxqq

for any x P X and f, g P CpXq

However, just as in the previously studied case of ordered groups, we are

especially interested in totally ordered rings which are also Archimedean. The following

statements summarize some properties of Archimedean o-rings (STEINBERG, 2010).

Theorem 14. Let A be an Archimedean o-ring then:

1. A can be embedded into the R ring.

2. A is commutative.

Note that Theorem 14 implies that the properties presented in Theorem 13

remain valid and it is also a consequence of Hölder Theorem (STEINBERG, 2010).

Examples of Archimedean o-groups and o-rings include: The sets of integers, rationals,

reals and even numbers together with the usual addition, multiplication and ordering.

Nevertheless, most of the practical applications, datasets and measures found in literature

are described in terms of R.

2.4 Bounded Extensions of ℓ-groups and ℓ-rings

In this section we will review some notions of the complete extension of an

ℓ-group with a underlying conditionally complete lattice. Besides, we study a bounded

extension on ℓ-rings, which extends its operators.

Note that excluding the trivial case, an ℓ-group cannot be a bounded lattice and therefore

can not be a complete lattice in the usual sense. A conditionally complete ℓ-group can be

extended to a complete lattice, adding its upper and lower bounds. Some concepts and

results relevant to us are listed next:

Definition 20 (Bounded ℓ-group extension). E is a bounded ℓ-group extension of

G if and only if E is a bounded lattice and G “ Ezt´8,8u is an ℓ-group. If G is a

conditionally complete ℓ ´ group, E is a complete lattice, then E is called complete

ℓ-group extension (SUSSNER; ESMI, 2011).

Chapter 2. Some Relevant Concepts of Lattice Theory 38

Note that a complete ℓ-group extension is an especial case of bounded ℓ-group

extensions. In order to make a group extension consistent, the ` operator must also be

defined in the extended structure. To simplify, we merely consider non-trivial ℓ-groups.

Since every group translation is a lattice automorphism, then for any x P G, we have:

´8 ď x ď 8. The addition ` of an ℓ-group G can be extended to E “ GY t`8,´8u,
using:

x` p`8q “ `8` x “ `8 (2.32)

x` p´8q “ ´8` x “ ´8 @ x P G (2.33)

Two extended operators denoted by ` and `1 : EˆEÑ E that satisfy the aforementioned

Equations 2.32 and 2.33 are considered. The difference between them lies in the following

rules:

p´8q ` p`8q “ p`8q ` p´8q “ ´8 (2.34)

p´8q `1 p`8q “ p`8q `1 p´8q “ `8 (2.35)

Therefore, bounded l-group extension can be built following Equations 2.32 to 2.33

(SUSSNER; ESMI, 2011). The existence of additive inverse in ℓ-groups is a sufficient

condition to define a lattice conjugate in bounded ℓ-group extensions.

Definition 21 (Conjugate). Given a bounded l-group extension E of G, the symbol x˚

denotes the conjugate of x.

x˚“

$

’

’

’

’

’

&

’

’

’

’

’

%

´x if x P G
´8 if x “ `8
`8 if x “ ´8

(2.36)

Note that the mapping ν : E Ñ E, given by νpxq “ x˚ is a negation on the

lattice E. Hence, a matrix A P Enˆm corresponds to a conjugate matrix A˚ where each

element a˚
ij “ rajis˚ and therefore A “ pA˚q˚. A bounded ℓ-group extension is denoted

pE,_,^,`,`1q or E when there is no ambiguity. Some bounded ℓ-group extensions

examples are:

• pR˘8,_,^,`,`1q and pZ˘8,_,^,`,`1q are complete ℓ-group extensions and they

are also chains.

• pRě0

`8,_,^, ¨, ¨1q where ¨ denotes the extended multiplication.

It can be verified that the underlying additive group of a partially ordered ring is always a

partially ordered group, that for an ℓ-ring, its additive group is an ℓ-group and, furthermore,

for any o-ring, the underlying additive group is an o-group.

In the same way that there are no bounded and non-trivial ℓ-groups, an ℓ-ring can not

Chapter 2. Some Relevant Concepts of Lattice Theory 39

be bounded. Since MM framework are complete lattices and we can complete the lattices

when they are conditionally complete, then we propose to extend conditionally complete

ℓ-rings, extending its additive ℓ-group and its multiplication ¨ operation:

Definition 22. E is a bounded ℓ-ring extension if and only if E is a bounded lattice

and A “ Ezt´8,8u is an ℓ-ring. In this case, pE is an extension of Aq.

Definition 23. The product ¨ of an ℓ-ring A can be extended to elements x P E, as follows:

x ¨ p`8q “ `8 ¨ x “ `8 for 0 ă x (2.37)

x ¨ p`8q “ `8 ¨ x “ ´8 for 0 ą x (2.38)

x ¨ p´8q “ ´8 ¨ x “ ´8 for 0 ă x (2.39)

x ¨ p´8q “ ´8 ¨ x “ `8 for 0 ą x (2.40)

As consequence, we have:

p`8q ¨ p´8q “ p´8q ¨ p`8q “ ´8 (2.41)

p`8q ¨ p`8q “ `8 (2.42)

p´8q ¨ p´8q “ `8 (2.43)

In order to be consistent with ℓ-rings, we consider 0 ¨ p´8q “ 0 ¨ p`8q “ 0. Furthermore,

addition and additive inverses in a ℓ-ring can be extended using the aforementioned

Equations: 2.34, 2.35 and Definition 21, respectively.

An important observation is that for a bounded extension E presented here, all observations

made in the previous sections remains valid for its underlying ℓ-group G.

2.5 Mathematical Morphology on Complete Lattices

Nowadays, lattice theory is playing an important role in computer science

(DAVIDSON; SUN, 1991; RITTER; SUSSNER, 1996; HEIJMANS, 1994; GRAÑA, 2008;

GRANA, 2008; VALLE; SUSSNER, 2008b; GANTER; STUMME; WILLE, 2005; GAN-

TER; WILLE, 2012; RITTER; URCID; VALDIVIEZO-N, 2014; VALLE; SOUZA, 2015;

SUSSNER; ESMI; JARDIM, 2019; DAN; HU; QIAO, 2020; SUSSNER; CAMPIOTTI,

2020). A specific application is mathematical morphology (MM), which emerged in the

mid-1960s and is concerned with the analysis of spatial structures, shapes and forms

of objects (SERRA, 1983). It is based, mostly in set theory and integral geometry but

its mathematical core is lattice theory. MM is used to research the interactions between

certain objects and a chosen structuring element.

There are two viewpoints on MM that have heavily influenced the development of morpho-

logical neural networks and their learning algorithms: From the geometrical or topological

perspective, MM represents a theory for processing and analyzing objects, i.e., images or

Chapter 2. Some Relevant Concepts of Lattice Theory 40

signals, by means of other objects called structuring elements. From the lattice algebraic

perspective, MM is a theory of operators on complete lattices (SERRA, 1988; HARALICK;

STERNBERG; ZHUANG, 1987; RONSE, 1990).

The basic operators of MM are erosion and dilation, together with its anti-erosion and

anti-dilation counterparts (GOUTSIAS; HEIJMANS, 2000).

Definition 24 (Basic morphological operators). The operators ε, ε̄, δ̄ : L Ñ M between

complete lattices are called algebraic erosion, dilation, anti-erosion and anti-dilation

if for any Y Ď L they, respectively, satisfy:

εp
ľ

Y q “
ľ

yPY

εpyq, (2.44)

δp
ł

Y q “
ł

yPY

δpyq (2.45)

ε̄p
ľ

Y q “
ł

yPY

ε̄pyq (2.46)

δ̄p
ł

Y q “
ľ

yPY

δ̄pyq (2.47)

It is common to refer to these concept as algebraic morphological operators to

avoid confusion with respect to mathematical morphology with structuring elements. A

first relationship between erosion and dilation is adjointness.

Definition 25 (Adjunction). Consider operators ε : M Ñ L and δ : L Ñ M, between

complete lattices. The pair (ε, δ) forms an adjunction if and only if for all x P L, y PM,

we have:

δpxq ď y ðñ x ď εpyq (2.48)

Let ν : LÑ L be an automorphism that reverses the lattice order. The following

result establishes a relationship between composition and algebraic morphological operators.

Theorem 15. Consider an erosion, dilation, anti-erosion and anti-dilation ε, δ, ε̄, δ̄ : LÑ
M where L and M are complete lattice. Given an operator ψ : M Ñ K where K is a

complete lattice, then the following statements hold:

1. if ψ is an erosion then, ψ ˝ ε is an erosion and ψ ˝ δ̄ is an anti-dilation.

2. if ψ is an dilation then, ψ ˝ δ is a dilation and ψ ˝ ε̄ is an anti-erosion.

An important result shown in (BANON; BARRERA, 1993) implies that any

mapping ψ between complete lattice can be expressed as combinations of the operators

given in Definition 24. Particularly, any mapping between two complete lattice ψ : LÑ L

can be expressed as the supremum of erosion and anti-dilations (dually as infimum of

Chapter 2. Some Relevant Concepts of Lattice Theory 41

dilations and anti-erosion). Formally, there exists erosions εi and anti-dilations δ̄i for some

index set I such that

ψ “
ł

iPI

pεi ^ δ̄iq (2.49)

Duality in MM is a central issue. Negation forms a duality that has been widely studied,

some well known results includes:

Theorem 16. If L and M are complete lattices with negations νL and νM, respectively and

ε, δ, ε, δ are an erosion, a dilation, an anti-erosion and anti-dilation, respectively. Then

the following statements are true:

1. An operator δ̄ is an anti-dilation if and only if δ̄ “ ε ˝ νL and δ̄ “ νM ˝ δ.

2. An operator ε̄ is an anti-erosion if and only if ε̄ “ δ ˝ νM and ε̄ “ νM ˝ ε.

for all x P L.

The proof of Theorem 16 can be found in (VALLE; SUSSNER, 2008b). Mor-

phological operators over complete ℓ-group extensions have been widely studied. Next, we

list a selection of some concepts and results on the topic.

Definition 26 (Matrix products in complete ℓ-group extensions.). Given a matrix A P
Gmˆp and a matrix B P Gpˆn, the max-product C “ A _ B and the min-product

D “ A^B are given by the following equations:

cij “
k

ł

ξ“1

a
ξ
i ` bj

ξ and dij “
k

ľ

ξ“1

a
ξ
i `1 b

j
ξ (2.50)

Theorem 17 (Morphology and ℓ-group extensions.). Consider a complete ℓ-group exten-

sion G and a matrix A P Gnˆm, then the operators ε, δ, ε, δ : Gn Ñ Gm given by:

εApxq “ AT ^ x and δApxq “ AT _ x (2.51)

εApxq “ AT _ x˚ and δApxq “ AT ^ x˚ (2.52)

are respectively an erosion, a dilation, an anti-erosion and an anti-dilation, where AT

denotes the transpose of the matrix A.

In bounded ℓ-group extensions the following statements can be verified using

the morphological elementary operators (SUSSNER; ESMI, 2011).

Theorem 18. Let E be a bounded ℓ-group extension of Gn and x,y, z P E. The following

statements are true:

1. z ď x ðñ εvpxq ě 0, where v “ z˚ or equivalently if ε̄wpxq ď 0 where w “ v

Chapter 2. Some Relevant Concepts of Lattice Theory 42

2. z ď x ðñ δvpxq ď 0, where v “ z˚ or equivalently if δ̄zpxq ě 0 where w “ z

In this section, we described some basics on how morphology is applied to

bounded ℓ-group extensions. A more detailed study on this subject and the proof of

Theorem 18 can be found in (SUSSNER; ESMI, 2011).

2.6 Aggregations and I-set Descriptors on Archimedean o-Rings

In this section, we review some notions on intervals in ℓ-groups and ℓ-rings.

Particularly, we are interested in functions that describe intervals in Archimedean o-groups

and o-rings. Also, we are concerned with how to aggregate the information collected by

I-set descriptors whenever an n-dimensional space composed of n individual Archimedean

ℓ-groups or ℓ-rings is considered. In order to achieve this analysis, first we focus our

attention to I-set descriptors and their previously studied properties.

Let us observe the following concerning the underlying compatible order of ℓ-groups in

Theorem 7 and Definition 15.

Theorem 19. Let be an ℓ-group G and the mapping φ^ : Gˆ IG Ñ G given by:

φ^pz, rw,wsq “ pz ´ wq ^ pw ´ zq (2.53)

is an IG-set descriptor with α-cut r “ 0.

Proof. there are three properties that we must prove, namely (1),(2),(3) of Definition

15. The first one is evident. (2) Let y ď z ď w ď w and φ^pz, rw,wsq “ z ´ w and

φ^py, rw,wsq “ y ´ w. Since y ´ w ď z ´ w, we have: φ^py, rw,wsq ď φ^pz, rw,wsq. The

proof of Property (3) is similar to the proof of (2).

We will refer to φ^ as the inf-descriptor. Although the last theorem applies

to any ℓ-group, not every ℓ-group has interesting geometrical properties to perform

classification. The intervals graphical representation of commutative o-group showed in

Example 1, do not match the graphical representation of hyperboxes illustrated in previous

works. Note that the o-group in Example 1 is totally ordered and abelian. Therefore,

it becomes necessary to explore which options fit better the models driven by intervals

presented in literature (SUSSNER, 1998; KABURLASOS; PETRIDIS, 2000; PEDRYCZ;

PARK; OH, 2008). Since Archimedean o-groups can be embedded in R, they are a viable

option to work as theoretical framework. Based on this argument, from now on we will

require the underlying structures to be Archimedean and totally ordered.

Theorem 20. Given an Archimedean o-ring A, the mapping φˆ : Aˆ IA Ñ A given by:

φˆpz, rw,wsq “ pz ´ wq ¨ pw ´ zq (2.54)

is an IA-set descriptor with α-cut r “ 0.

Chapter 2. Some Relevant Concepts of Lattice Theory 43

Proof. (1) Since, pz ´ wq and pw ´ zq are both positive if and only if z P rw,ws, the first

property is evident.

(2) Assume y ď z ď w ď w. We have both pz ´ wq and py ´ wq are negative or zero,

also py ´ wq ď py ´ wq. On the other hand pw ´ zq and pw ´ yq are positive, and also

pw ´ zq ď pw ´ yq. Therefore: φˆpy, rw,wsq ď φˆpz, rw,wsq.
The proof of property (3) is similar to the proof of (2).

Figure 2 (d) illustrates a visual representation of the Equation 2.54. When

necessary, we will refer to φˆ as the dot-descriptor.

Theorem 21. Let A be an Archimedean o-ring and G its underlying additive group, φ^

and φˆ be the I-set descriptors defined by 2.53 and 2.54, respectively. The φ^ and φˆ

represent the same set with respect to the mapping H : IG Ñ PpGq given by:

Hφprw,wsq “ tz P G : φpz, rw,ws ě 0qu, for any rw,ws P IG (2.55)

Proof. Assume z P Hφ^
prw,wsq for an arbitrary interval, then φ^pz, rw,wsq ě 0 which

means that pw ´ zq and pz ´ wq are both positive. Therefore φˆpz, rw,wsq ě 0. The

converse can be demonstrated in the same way.

It is important to remark that the I-set descriptors presented here arises

naturally from the ordered structures studied in the previous section. Nevertheless, I-set

descriptors may also be defined in other structures.

A question that concerns us is the dimensionality of datasets. A dataset is briefly a

collection of data. For example, a dataset lists values for each of the variables such as

luminance, weight or pixel value of an object, for each observation of the dataset.

It was also stated that any Archimedean o´group can be extended to an o-ring. Therefore,

we assume datasets can be represented by direct products An where A is an Archimedean

o-ring. In particular, datasets are associated with direct products of the Archimedean

o-ring R. Note that the two I-set descriptors φ^ and φˆ defined above have Archimedean

totally ordered co-domains.

The next step is to analyze the properties of previously studied operators in terms of

An. In order to describe how to aggregate the information computed by individual I-set

descriptors, we use an especial kind of operator called aggregation.

Definition 27. Given a bounded lattice L, an L-Fuzzy aggregation function
à

: PpLq Ñ L satisfies:

1.
1

à

i“1

x “ x for all txu P PpLq

2.
n

à

i“1

xi ď
n

à

i“1

yi for any tx1, ..., xnu, ty1, ..., ynu P PpLq such that xi ď yi, i “ 1, ..., n

Chapter 2. Some Relevant Concepts of Lattice Theory 44

3.
n

à

i“1

0L “ 0L and
n

à

i“1

1L “ 1L.

There exists a large collection of construction methods as well as different

important classes of aggregation operators. In particular, aggregation functions classes

in the fuzzy context pL “ r0, 1sq have been widely studied (BORKOTOKEY et al., 2017;

DAN; HU; QIAO, 2020) and many of algebraic properties and classes of aggregations have

been explored in (KOMORNÍKOVÁ; MESIAR, 2011; CALVO; MAYOR; MESIAR, 2012).

The strategy followed here is to study the operations that naturally arise from the

topological ordered structures studied in the last sections. In the same direction, we will

study operators (supremum, infimum, addition and multiplication) in terms of aggregation

functions and I-set descriptors.

Our first remark is that an Archimedean o-ring multiplication does not satisfy the first

property of Definition 27. However, the remaining operations satisfy all the properties

required by this definition.

Lemma 6. Let A be an Archimedean o-ring, An the direct product of n copies of A and let

E be the bounded extension of the underlying lattice of the direct product An. The following

statements hold:

1.
n

ľ

i“1

xi “ x1 ^ . . .^ xn

2.
n

ł

i“1

xi “ x1 _ . . ._ xn

3.
n

ÿ

i“1

xi “ x1 ` . . .` xn (equivalently, x1 `1 . . .`1 xn)

for any x “ px1, . . . , xnq P En are aggregation functions.

We will refer to these aggregation functions as inf-aggregation, sup-aggregation

and sum-aggregation, respectively. Note that, an aggregation can be used to combine I-set

descriptors applied to individual copies of A. Then, we define a mapping considering a

pair of an aggregation function
à

and I-set descriptor φ a follows:

Definition 28. Let A be an Archimedean ℓ ´ ring and P “ p
à

, φq be an aggregation-

descriptor pair. The P-descriptor mapping ψ : pAn, In
Aq Ñ A is given by:

ψpz, rw,wsq “
n

à

i“1

φpzi, rwi, wisq (2.56)

The next result, which in fact is a corollary of the last theorem, gives us

information about the relation between intervals and P-descriptors.

Chapter 2. Some Relevant Concepts of Lattice Theory 45

Corollary 4. Let A be an Archimedean o-ring and An the direct product of n copies of A.

For any IA-set descriptor φ and α-cut rφ “ 0, the following property holds for any z P An:

z P rw,ws ùñ ψpz, rw,wsq ě 0 (2.57)

where ψ is a P-descriptor with P “ p
à

, φq.

Proof. If z P rw,ws then, by Definition 15 xi “ φpzi, rxi, xisq ě 0 and therefore:

n
à

i“1

xi ě
n

à

i“1

0 “ 0

In particular, the converse of the statement 2.57 holds for
à

“
ľ

, this is:

z P rw,ws ðñ
n

ľ

i“1

φpzi, rwi, wisq ě 0 (2.58)

. On the other hand, the aggregation
à

“
ł

satisfies:

n
ł

i“1

φpzi, rwi, wisq ě 0 ðñ Dpj P t1, ..., nuq such that zj P rwj, wjs (2.59)

Some properties appear when aggregations P pairs are analyzed as sets.

Formally, given a pair P “ p
à

, φq, we can define the mapping J‘ : IL Ñ PpLq as follows:

J‘prw,wsq “ tz P An : ψpz, rw,wsq ě rφu (2.60)

that represent the set generated by an interval using a I-set descriptor φ and an aggregation
à

. We use the notation J‘
φ to avoid confusion, when necessary. In particular, the symbols

J^, J_, J` denote an aggregation function using
ľ

,
ł

and
ÿ

, respectively.

Theorem 22. Consider the IA-set descriptors φ^ and φˆ. The following equations hold:

J
Ź

φ^
prw,wsq “ J

Ź

φˆ
prw,wsq (2.61)

J
Ž

φ^
prw,wsq “ J

Ž

φˆ
prw,wsq (2.62)

for any rw,ws P In
A, where A is an Archimedean o-ring.

Proof. Both statements follow directly from Equations 2.58 and 2.59, respectively.

Figure 2 illustrates examples of possible aggregation and I-set descriptors

combinations on R2. We will refer to the shapes generated by a pair P “ p
à

, φq as

the geometry of P . The case of sum-aggregations does not fit in Theorem 22. A simple

counterexample can be visualized in Figures 2.c and 2.d. Note that the dot-descriptor and

Chapter 2. Some Relevant Concepts of Lattice Theory 46

Figure 2 – Generated Sets by Aggregation-Descriptor Pairs

(a) (b)

(c) (d)
Example in R2 for rw,ws “ rp´0.4,´0.4q, p0.4, 0.4qs using: (a) inf-aggregation (hyperbox)
(b) sup-aggregation (c) sum-aggregation and inf-descriptor (d) sum-aggregation and dot-
descriptor. The values φpx, rw,wsq ě 0 are colored in black.

inf-descriptor generate different set shapes when the sum-aggregation is considered.

Also, Theorem 22 shows that for the inf-aggregation (dually sup-aggregation) the generated

sets by J^ and J_ do not depend on I-set descriptors. Also note that Theorem 22 does not

guarantee equal values for different points. In general, it is not true that ψP1
pz, rw,wsq “

ψP2
pz, rw,wsq where P1 “ p

à

, φ^q and P2 “ p
à

, φˆq.

Theorem 23. Given an IA-set descriptor φ, the following relation is satisfied:

J^
φ prw,wsq Ď J`

φ prw,wsq Ď J_
φ prw,wsq (2.63)

for any rw,ws P In
A, where A is an Archimedean o-group.

We already know that for any In
A-set descriptor φ, z P J^

φ prw,wsq if and only if

z P rw,ws and z P J_
φ prw,wsq if and only if some i P 1, . . . , n exist such that zi P rwi,wis.

We know by the duality shown in Lemma 1 that any inf-aggregation can be expressed in

terms of a sup-aggregation. Hence, it becomes necessary to study the combinations that

involves sum-aggregation and inf-aggregation. Next, we analyze three particular cases of

pairs p
à

, φq in terms of distances and other properties given below. But first, we give

some definitions that will be used to analyze these mappings. We denote and define the

Chapter 2. Some Relevant Concepts of Lattice Theory 47

center of an interval of an Archimedean o-ring C : In
A Ñ Rn as follows:

Cprw,wsq “ w`w

2
(2.64)

where the division is by scalar and ` denotes the pointwise vector addition.

Definition 29. A real-valued differentiable function f defined on a non-empty convex

open set X in the finite-dimensional Euclidean space Rn is said to be pseudo-convex if,

for all x, y P X such that ∇fpxqT ¨ py ´ xq ě 0, we have fpyq ě fpxq, where ∇ f is the

gradient of f , that is:

∇f “
ˆ Bf
Bx1

, . . . ,
Bf
Bxn

˙T

(2.65)

Convexity and concavity are very well known concepts in several areas of

mathematics. We will define these concepts in terms of the Hessian matrix of second

partial derivatives. Note that a square matrix M P Rnˆn is positive semi-definite if for any

x P Rn satisfies xTMx ě 0 and negative semi definite if for all x P Rn satisfies xTMx ď 0.

Dually is a negative semi-definite matrix if xTMx ď 0 for all x P Rn.

Definition 30. A twice continuously differentiable function of several variables is convex

on a convex set if and only if its Hessian matrix of second partial derivatives is positive

semi-definite on the interior of the convex set. Dually, it is concave if its Hessian matrix

is negative semi-definite under the same conditions.

Inf-Aggregation and Inf-Descriptor Pair

In order to achieve a good analysis of these operations, notions on distance will

be used, recalling that Archimedean o-rings can be embedded into the real numbers R,

see Theorem 12.

Let A be an Archimedean o-ring and assume a
à

“ ^ and φ^ such that:

ψpz, rw,wsq “
n

ľ

i“1

φ^pzi, rwi, wisq “
n

ľ

i“1

pzi ´ wiq ^ pwi ´ ziq (2.66)

Theorem 24. Let A be an Archimedean o-ring and let ψ be defined by the Equation 2.66.

For every x P An we have:

z P J^
φ^
prw,wsq ùñ d8pc, zq ď d8pc,wq palternatively d8pc, zq ď d8pc,wqq (2.67)

where c “ Cprw,wsq is the center of the interval rw,ws P In
A and d8 denotes the usual

8-norm distance.

Chapter 2. Some Relevant Concepts of Lattice Theory 48

Proof. Note that w ď c ď w and d8pw, cq “ d8pw, cq ě 0.

ψpz, rw,wsq ´ d8pw, cq “
n

ľ

i“1

pzi ´ wiq ^ pwi ´ ziq ´
n

ł

i“1

xi ´
wi ` wi

2

“
n

ľ

i“1

pzi ´ wiq ^ pwi ´ ziq `
n

ľ

i“1

wi ` wi

2
´ wi

ď
n

ľ

i“1

pzi ´ wi ` xi ´
wi ` wi

2
q ^ pwi ´ zi ` xi ´

wi ` wi

2
q

“
n

ľ

i“1

pzi ´ ciq ^ pci ´ ziq

“
n

ľ

i“1

´|zi ´ ci| “ ´d8pc, zq

therefore ψpz, rw,wsq ě 0 ùñ d8pc, zq ď d8pc,wq

We already mentioned the differentiability problems of the infimum aggregation.

Therefore, neither convex/concave nor pseudo-convex analysis apply to this case.

Sum-Aggregation and Inf-Descriptor Pair

The second pair analyzed is P “ p
ÿ

, φ^q. Let A be an Archimedean o-ring, in

this part we assume the following operator:

ψpx, rw,wsq “
n

ÿ

i“1

φ^pxi, rwi, wisq “
n

ÿ

i“1

pxi ´ wiq ^ pwi ´ xiq (2.68)

First, we need to characterize the set of elements z P An that are included in J
ř

φ^
prw,wsq

where rw,ws P In
A.

Theorem 25. Let A be an Archimedean o-ring and let ψ be defined by the Equation 2.68

therefore, for z P An we have:

z P J
ř

φ^
prw,wsq ðñ d1pc, zq ď d1pc,wq palternatively d1pc,wq ď d1pc,wqq (2.69)

where c “ Cprw,wsq is the center of the interval, rw,ws P In
A and d1 denotes the usual

1-norm distance.

Proof. Note that w ď c ď w and d8pw, cq “ d8pw, cq ě 0.

ψpz, rw,wsq ´ d1pw, cq “
n

ÿ

i“1

pzi ´ wiq ^ pwi ´ ziq ´
n

ÿ

i“1

wi ´
wi ` wi

2

“
n

ÿ

i“1

pzi ´ wi ´ wi `
wi ` wi

2
q ^ pwi ´ zi ´ wi `

wi ` wi

2
q

“
n

ÿ

i“1

pzi ´
wi ` wi

2
q ^ pwi ` wi

2
´ ziq

“ ´d1pz, cq

Chapter 2. Some Relevant Concepts of Lattice Theory 49

therefore, ψpz, rw,wsq “ d1pw, cq ´ d1pz, cq ě 0 ðñ d1pc, zq ď d1pc,wq.

The set of points z P An such that z P J
ř

φ^
are characterized in the last theorem.

In this case, parameters of individual unit computations are differentiable almost every-

where. We can extend the derivatives of ψ with respect to parameters wi and wi and

zi:

Bψpz, rw,wsq
Bwi

“

$

&

%

0, if
wi ` wi

2
ă zi

´1 otherwise
(2.70)

Bψpz, rw,wsq
Bwi

“

$

&

%

1, if
wi ` wi

2
ă zi

0 otherwise
(2.71)

Bψpz, rw,wsq
Bzi

“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1, if
wi ` wi

2
ă zi

´1 if
wi ` wi

2
ą zi

0 otherwise

(2.72)

Note that the value 0 is assigned to those places where the derivative is not defined.

Therefore, Equations 2.70, 2.71 and 2.72 can be considered extensions of the usual

derivatives. Convexity, concavity and pseudo-convexity are other important properties

that can be explored. Nevertheless, in this case, it becomes hard since the derivative of ψ

is not defined everywhere. Therefore, this analysis does not apply. Note also the division

by 2 in the computing of the center of the interval c and in the derivatives, which means

that the aforementioned extended derivatives are defined in R.

Sum-Aggregation and Dot-Descriptor Pair

Again we assume A is an Archimedean o-ring and the pair P “ p
ÿ

, φˆq. The

equation analyzed in this part is given by:

ψpz, rw,wsq “
n

ÿ

i“1

φˆpzi, rwi, wisq “
n

ÿ

i“1

pzi ´ wiq ¨ pwi ´ ziq (2.73)

where z P An, rwi, wis P In
A.

Next theorem characterize the set generated by J
ř

φˆ
prw,wsq:

Theorem 26. Let A be an Archimedean o-ring and let ψ be defined by the Equation 2.73

therefore for any z P An we have:

ψpzq ě 0 ðñ d2

2
pc, zq ď d2

2
pc,wq palternatively d2

2
pc, zq ď d2

2
pc,wqq (2.74)

where c “ Cprw,wsq is the center of an interval rw,ws P In
A and d2 denotes the usual

euclidean-norm distance.

Chapter 2. Some Relevant Concepts of Lattice Theory 50

Proof. Following the same strategy as in the proof of the Theorem 25, we have:

ψpz, rw,wsq ´ d2

2
pw, cq “

n
ÿ

i“1

pzi ´ wiq ¨ pwi ´ ziq ´
n

ÿ

i“1

ˆ

wi ´
wi ` wi

2

˙

2

“ ´
n

ÿ

i“1

z2

i ´ zipwi ` wiq `
ˆ

wi ` wi

2

˙

2

“ ´
n

ÿ

i“1

ˆ

zi ´ pwi ` wi

2
q
˙

2

“ ´d2

2
pz, cq

Among the pairs studied in this part, the sum-aggregation and dot-descriptor

pair has some interesting properties that may be used later. For example, besides dif-

ferentiable and smooth, we can perform an analysis on pseudo-convexity and convexity

(concavity) of its inputs and parameters.

Next the derivatives for wj,k
i and w

j,k
i and xi:

Bτ j
kpxq
Bwj,k

i

“ xi ´ wj,k
i (2.75)

Bτ j
kpxq
Byi

“ xi ´ wj,k
i (2.76)

Bτ j
kpxq
Bxi

“ w
j,k
i ` wj,k

i ´ 2xi (2.77)

As the reader may notice the strategy we are following is to analyze each variable indepen-

dently, going in the same direction, we get the following results:

Theorem 27. Let ψ be defined as Equation 2.73 where z and w are constant, then ψ is

pseudo-convex.

It is also pseudo-convex if we consider z and w as constant.

In fact, the Hessian matrix in both cases is the null-matrix. Moreover, the analysis of ψ

with respect to x as variable lead us to the following result:

Theorem 28. Let ψ be defined as Equation 2.73 where w and w are constant, then ψ is

concave.

We summarize the properties of the three pairs studied here in Table 1. In this

section we defined two I-set descriptors and three aggregations taking basic operations

of Archimedean o-rings. We also studied some properties of these aggregations working

together with I-set descriptors, in terms of valued-functions and in terms of the sets that

they generates. Besides, we extended the theory used to build lattice based classifiers

Chapter 2. Some Relevant Concepts of Lattice Theory 51

Table 1 – Aggregation-Descriptors Pairs

Distance Differentiable Convex Analysis
´

ľ

, φ^

¯

Chebyshev No No
´

ÿ

, φ^

¯

Manhattan Almost everywhere No
´

ÿ

, φˆ

¯

Euclidean Yes Theorems: 27 and 28

Individual properties studied in this chapter.

(specifically morphological based) and we presented with novel results that relates certain

operators with distances.

The results studied here will be central issues in Chapter 5, in which we propose a

framework to describe lattice-based classifiers.

52

3 Notions on Classification using Backpropa-

gation and Deep Learning.

Just because you’re going

forwards. Doesn’t mean I’m

going backwards.

Billy Bragg, Life’s a Riot with

Spy Vs Spy Album

The first steps toward functional ANNs took place at the beginning of the

1940s, when Walter Pitts and Warren McCulloch wrote a paper on how the neurons might

work. The model was presented as a simple electrical circuit network represented by a

graph. Later, Donald Hebb pointed out that neural pathways are modified each time they

are used. At the end of the 1950s some of the first efforts to simulate a neural network

were conducted. In 1958, inspired by the operation of the eye of a fly, Frank Rosenblatt

began to work the perceptron. The Rosenblatt perceptron was designed to achieve binary

classification on continuous-valued sets. The proposed perceptron computes a weighted

sum of the inputs, performs a threshold operation and, as a result, passes a binary response.

Developed at the end of the 1960s, adaptative linear elements (ADALINE) and multiple

adapative linear elements (MADALINE) models stood out in the first years of ANNs

studies (WIDROW; LEHR, 1990). The Rosenblatt Perceptron is one of the oldest and

simplest learning algorithms out there. Both ADALINE and Perceptron are (single-layer)

neural network models. However, Some authors consider ADALINE/MADALINE an

improvement over the perceptron (WINTER; WIDROW, 1988). It is worth noting that

ADALINE and MADALINE models are applied to eliminate echoes on phone lines until

today (WIDROW; LEHR, 1990).

Meanwhile, the McCulloch-Pitts model lacked a mechanism for learning which was crucial

to be usable in practice. The Rosenblatt perceptron excelled the learning using a mecha-

nism inspired by the work of Donald Hebb. In his book "The organization of behaviour",

which inspired Hebbian Theory, it was stated: "When an axon of cell A is near enough to

excite a cell B and repeatedly or persistently takes part in firing it, some growth process

or metabolic change takes place in one or both cells such that A’s efficiency, as one of the

cells firing B, is increased" (HEBB, 2005). In this sense, Rosenblatt built a model following

a simple logic: increase the weight value if the perceptron output is too low compared

with the example target otherwise if the output is to high, decrease the synaptic weights

(ROSENBLATT, 1961). Thus, using this rule, an output of any Rosenblatt perceptron

Chapter 3. Notions on Classification using Backpropagation and Deep Learning. 53

neuron can be described as a simple linear function (A weighted sum) which is squashed by

a threshold. In this case, the simple linear function plays the role of synaptic aggregation,

meanwhile the threshold plays the role of a neuron activation function. Although, the

mathematical and neurologist background behind this model drastically raised the expecta-

tion on ANNs, the early success of some ANN led to an exaggeration of its capability and

therefore expectations went unfulfilled. These unrealistic affirmations about Rosenblatt

perceptron resulted in halting much of the funding destined to ANN research. Until the

early 1980s ANNs remained stoned. Moreover, Marvin Minsky and Seymour Papert showed

the limitations of the Rosenblatt model in their book Perceptrons (MINSKY; PAPERT,

1969).

In 1982, two events converged. On the one hand, John Hopfield presented an ANN related

paper to the National Academy of Sciences (HOPFIELD, 1982). The Hopfield’s neural

network was a novel recurrent ANN designed to work as associative memory. On the other

hand, US and Japan joined forces on the Conference on Cooperative/Competitive Neural

Networks. As a result, financing began to flow again. Those event led to a second boom

of ANNs research, at the beginning of the 1980s, hybrid models were extensively studied.

Later, in 1986, Bernard Widrow and Marcian Hoff described a least mean square method

(LMS) to train perceptrons (WIDROW; HOFF, 1960). Training by LMS goal is to minimize

the error given by the mean squared error over all training patterns. The base of this rule

was to follow gradients in order to update, by a rate (learning rate), the set of synaptic

weights, so as to minimize the net output and the target value difference. Consequently,

the idea of a multilayer perceptron became stronger and more feasible. Independently,

David Rumelhart et al., of the Stanford’s psychology department came up with an LMS

based multilayer perceptron which distributes pattern recognition errors throughout the

whole network. The resulting learning algorithm was named backpropagation (BP) and the

resultant ANN architecture was a multilayer perceptron(MLP) trained by backpropagation.

The general process of Backpropagation was mentioned in (RUMELHART; HINTON;

WILLIAMS, 1986), before it was developed and popularized by the same authors a year

later (RUMELHART; HINTON; WILLIAMS, 1985). Nevertheless, the technique described

by Rumelhart et al,. has many predecessors and it was developed and rediscovered over

and over in different periods of times (KELLEY, 1960; BRYSON, 1961). Particularly in

1962, Dreyfus published a simple derivation of the chain rule, which may be considered a

predecessor of backpropagation modern implementation.

Continuous activation functions became an important part of these models, for example:

hyperbolic tangent and sigmoid that were initially used to prove the universal approx-

imation theorem for multilayer perceptrons (CYBENKO, 1989). MLPs trained by BP

shown an excellent response in problems of regression and classification, being successfully

tested in many applications. MLP neurons are typically aggregated into layers and the

first models were designed considering input, hidden and output layers. The input layer

Chapter 3. Notions on Classification using Backpropagation and Deep Learning. 54

corresponds to the input vector in some cases applies some kind of normalization but

usually performs the identity function. The hidden layers have a parametrizable number

of neurons and the output layer have a number of neurons equal to the size of the target

vector. Broadly speaking, multilayer perceptron (MLP) is a cascade of single-layer percep-

trons (RUMELHART; HINTON; WILLIAMS, 1985). This idea considers a layer of input

nodes, a layer of output nodes, and one or more intermediate layers. The intermediate

layers are called “hidden layers” because they are not directly observable from the systems

inputs and the system outputs. MLP with BP algorithm (MPL-BP) trained through LMS,

minimizes the least mean square of the error signal. Therefore MLP layers can tackle

vastly more complicated problems than just a single layer, also gradient descent can be

easily implemented based on the chain rule and matrix algebra (rings). Application on

regression and classification of MLP models with one hidden layer and one output layer

were successfully applied. Nevertheless, the use of many hidden layers and more complex

networks became important cases of study. It is widely accepted to refer to those networks

with one hidden layer as shallow networks and to those networks with two or more hidden

layers as deep architectures. In fact, the study of deep architectures or deep learning has

become a widely researched branch of machine learning.

Deep Learning is a compilation of machine learning algorithms that attempts to model

high-level abstract features in data using computational procedures that focus on multiple,

iterative non-linear transformations. Deep learning is a class of ANNs that uses multiple

layers to extract refined features progressively from raw inputs. For example, a deep neural

network based on MLP-BP has at least four layers: an input, an output and, as minimum

two hidden layers.

The first networks with many non-linear transformations were published by Alexey

Ivakhnenko using the group method of data handling (IVAKHNENKO, b; IVAKHNENKO,

a). In 1980, Kunihiko Fukushima introduced the Neocognitron, which is a deep learning

model for visual pattern recognition with multiple layers and multiple non-linear transfor-

mations (FUKUSHIMA; MIYAKE, 1982). Nevertheless, those models were not related

with gradient descent and the training was manually performed using statistics. In 1989,

an application to image classification was developed by Yann LeCun et al. In this model,

the standard backpropagation algorithm was applied to learn convolution kernels in a deep

neural network with the purpose of recognize handwritten numbers on ZIP codes (LECUN

et al., 1989). Later, a model with seven layers named the LeNet-5 was introduced and it

was applied to image classification and speech recognition (LECUN; BENGIO et al., 1995;

LECUN et al., 1998). Then, the use of deep learning was spreading throughout the world

and industrial applications to large-scale were successfully implemented (SCHMIDHUBER,

2015).

Nowadays, DL has fueled great strides in a variety of computer vision problems, such as ob-

ject detection, action recognition, pose estimation, motion tracking, semantic segmentation

Chapter 3. Notions on Classification using Backpropagation and Deep Learning. 55

and (GOODFELLOW; BENGIO; COURVILLE, 2016; SHORTEN; KHOSHGOFTAAR,

2019). Then, DL has become a promising research subject in several areas of machine

learning. Since, deep learning processing is usually related with feature extraction, those

models are used for supervised, semi-supervised, unsupervised learning and reinforcement

learning. In certain ways, deep learning architectures such as autoencoders, long short-term

memory and convolutional neural network evolved from the MLP-BP model. Moreover, the

gradient descent optimization framework is widely accepted as the main learning process

of most of these architectures (GOODFELLOW; BENGIO; COURVILLE, 2016). Other

common examples of modern deep learning architectures are deep belief, convolutional

and recurrent neural network (MOHAMED; DAHL; HINTON, 2011; LECUN; BENGIO

et al., 1995; WENG et al., 2014).

We will start this chapter with a review of the concepts involved in supervised learning

and gradient descent. Besides, we will present some basic notions on classification used

throughout the development of this work.

3.1 Supervised Learning in Classification Problems

Supervised learning is the task of learning a function that maps an input to an

output from input-output pairs of examples (training dataset). Supervised learning came

from the idea that an algorithm can learn from a training dataset, which can be thought

of as the teacher (RUSSELL; NORVIG, 2016). Regression and classification are the two

main categories involved in supervised learning. Both share the concept of learning by

fitting a training dataset.

The main difference between regression and classification is how the output variable is

presented. So, meanwhile in classification the output is categorical, in regression the output

is numerical and continuous. In this section we focus on classification instead of regression.

Classification is the task of learning an operator h : X ˆ θ Ñ L that maps elements

(observations) x P X, to one set of finite predefined labels L where y P L is a class. It is

called multi-class classification when |L| ą 2. Formally:

Definition 31. The target function h is known as a classification model and the space

H of possible operators such that h P H is called the hypothesis space.

In these terms, y is a category that the mapping function h predicts. The

parameters θ, whenever they exist, could be matrices, vectors, numeric or categorical

valued (model dependent).

Some examples of classification problems are: Classifying credit card transactions as

legitimate or fraudulent. Predicting tumor cells as benign or malignant. Biometrics, land

classification in hyperspectral images, handwritten digits classification and so on.

There exists certain rules to create, validate and test a model in supervised fashion.

Chapter 3. Notions on Classification using Backpropagation and Deep Learning. 56

Definition 32. A set of k example pairs D “ tpx1, y1q, . . . , pxk, ykqu such that xi P X
is an observation (pattern) and yi P L is its class label, is called supervised learning

dataset (dataset for shortly).

Particularly, three disjoint datasets are used in different stages of learning:

Training (T), validation (Vq and test (Eq stages. In the multiple label case, there is no

restriction on how many labels an observation can be assigned to. However, we will focus

on the case when a single label is assigned to each observation.

A general approach to multi-class classification has the following characteristics:

1. First, the parameters θ of a model h are computed executing a strategy to fit a

dataset T Ă D.

2. In the validation stage observations V Ă D are used to evaluate the quality of

generalization.

3. The validated model with best characteristics is evaluated using a test dataset E Ă D.

This process is required by the learning algorithm to achieve a good performance not only

for the training data but also for other unseen observations. Thus, the goal of this process

is to build a classifier that not only fits the training dataset but classify new records with

an acceptable degree of accuracy.

The performance of a classifier is highly dependent on the characteristics of the data to be

classified. In that sense, there is no single classifier that performs best on all datasets.

Empirical tests and simulations are required to compare the performance and to find

which classifier fits better in some dataset. Numbers of test records that are correctly

(accuracy/performance) or incorrectly (error rate) predicted by the classification

model and the loss function error are common measures to evaluate a model.

Some terminology must be reviewed in order to define formally the measures used in this

work. A false positive (FP) occurs when you receive a positive result for a test but you

should have received a negative result. A false negative (FN) is an error in which you

receive a negative result for a test but you should have received a positive one.

In terms of classification, we can suppose that we have a pair px, yq P D where y P L is the

class assigned to the input x. Let h P H be an operator that is being tested and hpxq “ z

where z P L is the label assigned by the model to an input x. On the one hand, if y ‰ z we

said that occurs a false negative for the class y and a false positive for the class z. On the

other hand, when hpxq “ y a correct prediction is considered and we said that occurs a

true negative (TN) and a true positive (TP) for the class z and class y, respectively. Last,

but not least, the condition positive (P) and the condition negative (N) refers, respectively,

to the number of real positive cases and real negative cases in the dataset being tested.

Note that P “ TP ` FN and N “ TN ` FP . With this in mind, some measures are

Chapter 3. Notions on Classification using Backpropagation and Deep Learning. 57

helpful to understand and compare different classification models. Next we list some of

them.

1. TPR “ TP

P
. (True positive rate)

2. TNR “ TN

N
. (True negative rate)

3. FPR “ FP

N
. (False positive rate)

4. FNR “ FN

P
. (False negative rate)

5. PPV “ TP

TP ` FP (Positive predictive value)

6. NPV “ TN

TN ` FN (Negative predictive value)

7. ACC “ TP ` TN
P `N . (Accuracy)

8. ERR “ FP ` FN
P `N . (Error rate)

It is quite obvious that these statistical measures are dual or complementary by statistical

negation. For example, TPR “ 1 ´ FNR, TNR “ 1 ´ FPR and ACC “ 1 ´ ERR.

Accuracy is a simple measure that can be interpreted as how often a model is correct.

This single value is used to compare the quality of classification between different models,

in an efficient and easy way. One problem of the accuracy measure is that it does not

take into account the class distribution and the prior probabilities of a dataset. Therefore,

for imbalanced datasets it does not provide useful information about the behavior of

a classifier. Many different classification performance measures that deal better with

imbalanced datasets have been used in literature. Some examples are, precision, recall

and F1-score. Particularly, the F1-score considers the harmonic mean of the precision and

recall to take into account the class distribution for binary classification.

Furthermore, the simplicity of the accuracy measure has been criticized because it does not

tell us what the model is doing wrong or right. For that purpose there exists the confusion

matrix, which is a table that summarize some aforementioned measures. Confusion matrices

are valuable visual tools that present class-label and global classification information. Figure

3 shows an example of the configuration of confusion matrices.

Last, but not least, receiver operating characteristic curve (ROC curve) has been developed

as a visual tool to understand those classifiers with probabilistic output. In general, in

those classifiers, the resulting class is chosen by a winner takes all competition, or by

some contest system based on thresholds. ROC curves can plot TPR versus FPR rates for

different values of thresholds.

Chapter 3. Notions on Classification using Backpropagation and Deep Learning. 58

Figure 3 – Confusion Matrix

Simplified organization of a Confusion matrix.

We can quantify how well each test performs by finding the area under the ROC curve

(using integration). This allows us to quantitatively compare different tests or classes (and

even perform statistical hypothesis testing to determine if there is a statistically significant

difference between two tests). Note that this comparison does not require us to determine

a threshold in advance - we are in fact comparing the entire test, not just one specific

threshold. Moreover, it is also useful as a graphical tool to analyze the classification for

different classes.

This section was intended to introduce the multi-class problem, comparison measures and

the methodology that will be used to perform experiments in Chapter 6.

It is also needed to describe how the parameters θ of a model will be computed. Next

section presents a review of some gradient descent algorithms.

3.2 Introduction to Gradient Descent

In this section, a basic review of gradient descent applied to classification is

done. We are going to start with some basic notions and definitions. Next, we explain how

gradient descent is applied to classification, explaining some notions of optimization and

minimization. Finally, we will introduce the BP algorithm. Throughout this section we lay

the groundwork of the specific algorithms used to train the models presented in Chapter 5

and some models used to perform a comparative analysis in the experiments in Chapter 6.

Chapter 3. Notions on Classification using Backpropagation and Deep Learning. 59

Basic definitions and notions on Gradient Descent.

In vector analysis, the gradient of a multi-variable function f : Rn Ñ R at a

point z is a vector valued operator denoted ∇ : Rn Ñ Rn, whose components are the

partial derivatives of f at the point z:

∇fpzq “

»

—

—

—

—

–

Bf
Bx1

pzq
...

Bf
Bxn

pzq

fi

ffi

ffi

ffi

ffi

fl

.

There are two methods that make use of the gradient to find stationary points: gradient

ascent and gradient descent. Gradient descent (GD) is an optimization algorithm used for

computing the local of some function. Its strategy is to move iteratively and proportional

to the direction of steepest descent as defined by the negative of the gradient. Conversely,

the gradient ascent moves to the positive of the gradient. A formal description is given

next:

Definition 33. Given a multi-variable function f : Rn Ñ R which is defined and differen-

tiable around certain point z P Rn, then the value will decrease fastest if one goes from z0

in the direction of negative of the gradient ∇fpzq.

z˚ “ z´ γ∇fpzq (3.1)

If γ P R` is small enough, then fpz˚q ď fpzq. The gradient vector at a point z

is a zero vector if and only if z is a stationary point, otherwise the negative of the gradient

vector can be interpreted as the direction and rate of the fastest decrease of f at some

point z. Consider a starting point z0, GD can be described as the iterative application of

equation 3.1 to produce a monotonic sequence: pz0, z1, . . . , zkq, where:

zi`1 “ zi ´ γi∇fpziq (3.2)

which means that fpzkq ď fpzk´1q ď . . . ď fpz0q. We will refer to γi parameters as learning

rates. Learning rates γ play a fundamental role in the study of gradient descent algorithms

convergence and some techniques to improve its choice will be studied later.

Gradient descent is a simple and widely researched algorithm that have been extensively

used to develop training rules. Next, we detail the general idea behind a classifier trained

by gradient descent.

A General Classifier Model Trained by GD

As aforementioned, in supervised learning, the purpose of using SGD is to

find the parameters that make a function h : X ˆ θ Ñ L fit a training dataset. Then, two

Chapter 3. Notions on Classification using Backpropagation and Deep Learning. 60

Figure 4 – Contour Plots.

(a) Surface and contour plots of the function
fpx, yq “ x2{a ` y2{b, with constant values
a “ 1 and b “ 3.

(b) Velocity plot of the negative gradients
´∇fpx, yq of the hyper-paraboloid with the
same parameters in (a).

types of variables are involved in the computation of h, the dataset observations x and

the learnable parameters θ. In general, the second ones are directly involved in the

gradient descent process, so that learnable parameters change in order to minimize a cost

function. For instance, we can take a single element in the training dataset px, yq P T and

assume that the output of hpx, θ0q “ y˚, whenever the y ‰ y˚ the parameters θ0 must be

updated to θk using the sequence of updates showed in Equation 3.2 and at certain point

we expect to have hpx, θkq “ y. However, this simple example serves to show the difference

between observation variables and learnable parameters.

In order to use gradient descent, it is necessary to use a special kind of function named

loss (or cost) functions that represents the differences and loss between desired labels

and model outputs.

Loss Functions

Many loss functions have been proposed to measure classification model errors.

Next, we list some common examples.

Given a training dataset T “ tpx1, y1q, . . . , pxk, ykqu such that xj is an observation and yj

is it assigned label for j “ 1, . . . , k:

LMSEpT , θq “
1
k
¨

k
ÿ

j“1

phpxj, θq ´ yjq2 Mean Square Error pMSEq (3.3)

LMAEpT , θq “
1
k
¨

k
ÿ

j“1

|hpxj, θq ´ yj| Mean Absolute ErrorpMAEq (3.4)

LCEpT , θq “
k

ÿ

j“1

nc
ÿ

i“1

pyj
i q ¨ logphpxj, θqiq Cross Entropy pCEq (3.5)

Chapter 3. Notions on Classification using Backpropagation and Deep Learning. 61

Cross-entropy loss has been widely studied for multi-class classification problems (ROSASCO

et al., 2004; MURPHY, 2012). CE measures the performance of models with a probabilistic

output. In words, cross-entropy loss value increases as the predicted probability diverges

from the real labels yj. The symbol LpS, θq denotes the loss function for any subset S Ď T .

Assuming the parameters of the model h are at least differentiable, the most common

used strategy to produce this result is to compute the model outputs for each observation

x. Then, to compute the gradient vectors for those parameters and, finally, the model

is updated. This procedure occurs in the so-called training stage. It is important to

mention that functions used in classification tasks are assumed to be non-convex. Therefore,

the process is done iteratively until the model reaches a local minima that captures the

nature of the training dataset. We call a whole iteration over the dataset T an epoch.

However, this produces several limitations and problems related with the GD algorithm

that must be reviewed. To this end, next, we study some well known problems and some

modification to improve the response of GD algorithms. Hereafter, we assume that the

function h : X ˆ θ Ñ L is differentiable w.r.t. the parameters θ.

Gradient Descent Variants and Improvements

It is important to mention that gradient descent is not a bulletproof algorithm

and the differentiability of h is not enough to guarantee the convergence. Though, it is

not within the scope of this work, however, we will show some known problems and some

techniques to improve the gradient descent algorithm.

The problems of convergence and time needed to train a model are two issues that

appear when a gradient descent algorithm is considered. First, although the convexity and

pseudo-convexity of functions h where ∇h is Lipschitz continuous guarantee a theoretical

convergence to a global solution when a proper λ is chosen (ROBBINS; MONRO, 1951), in

practice numerical stability can interfere with the convergence of this algorithm, even when

convexity is assumed. Since we assume the function to be optimized is non-convex, the

numerical stability can be a major problem and harder to treat. Last, in order to minimize

the loss, it is necessary to update the internal learnable parameters for each observation.

Therefore, a computational time consuming problem appears when the training dataset

and the number of parameters is too big.

The optimal learning rate parameter is a big problem that we have to deal with. If the

learning rate is too high, the GD process will skip local minima and sometimes it will

never converge. If the learning rate is too low, GD process may never converge because it

is trying really hard to exactly find a local minima doing very small steps. The learning

rate can affect which minimum you reach and how quickly the local minima is reached

(SPALL, 2005).

Here, we will introduce some conventional improvements developed to improve the local

minima reached by the GD algorithm, such as the stochastic gradient descent (SGD)

Chapter 3. Notions on Classification using Backpropagation and Deep Learning. 62

and the mini-batch technique. Besides, in order to improve the convergence, we are going

to incorporate momentum and other techniques as part of the framework. Last we present

learning rate decay which is a basic technique to handle learning rate size problems.

There exist variants of GD, which differ in how much data we use to compute the gradient

values of the parameters. The amount of data used in training impacts the quality, accuracy

and the time it takes to compute an update of the parameters in gradient descent. Taking

this into account, some modifications have been proposed.

Batch Gradient Descent

A first insight is to use the whole training dataset to compute the gradient

before compute the update. This modification named batch gradient descent (BGD)

computes gradients using the entire training dataset.

θ “ θ ´ γ ¨∇LpT , θq (3.6)

where k is the number of observations in the training dataset and pxi, yiq P T .

The process is very simple: for a predetermined number of epochs, the gradient vector of

the loss function h, w.r.t. the parameters is computed considering the whole dataset. Then,

we update the learnable parameters in the opposite direction of the resulting gradient.

Therefore a unique update is done at each epoch.

Theoretically, if we consider a suitable learning rate, BGD converges to a global minimum

when the error surface is convex, or pseudo-convex and, hopefully, to a local minima when

the error surface is non-convex.

A very obvious drawback is that a unique update of parameters requires the calculation of

gradient for all observations. Hence, BGD can be intractable for datasets that do not fit

computational memory.

Single Stochastic Gradient Descent

Both, BGD and single stochastic gradient descent (S-SGD) updates to a

set of parameters in an iterative manner to minimize an error function are performed. The

main difference is that stochastic gradient descent algorithms use a random subset of the

training dataset at each iteration of the gradient descent process. Particularly, in S-SGD

gradients are computed using a single sample:

θ “ θ ´ γ ¨∇Lppxi, yiq, θq (3.7)

where pxi, yiq P T .

S-SGD in contrast to BGD performs a parameter update for each training observation

and in each epoch are computed k “ |T | updates. In addition, it is needed to shuffle the

training dataset at each epoch.

Chapter 3. Notions on Classification using Backpropagation and Deep Learning. 63

Mini-Batch Stochastic Gradient Descent

The main difference between mini-batch stochastic gradient descent (MB-

SGD) and the S-SGD described before is that MB-SGD uses multiple samples to compute

gradients. In other words, MB-SGD does a trade-off between learnable parameters updates

using the whole dataset and updates using single samples. Hence, MB-SGD takes the best

of BGD and S-SGD and performs an update for mini-batches of size n with n ď k:

θ “ θ ´ γ ¨∇
n

ÿ

i“1

Lppxnpj´1q`i, ynpj´1q`iq, θq (3.8)

where j P N is the number of the batch being processed and npj ´ 1q ` i ď k. The number

of samples in each mini-batch is a parameter that is problem dependent. In Chapter 6, we

perform a simple experiment to check the behavior. However, we can observe that this

algorithm also requires to shuffle the training data set at each epoch.

MB-SGD is typically the algorithm of choice for neural network training. The acronym

SGD is usually employed when mini-batches are considered. From now on, we are going to

refer to MB-SGD just as SGD. Also, to avoid confusion and for simplicity, we leave out

the index npj ´ 1q ` i in the rest of the chapter.

SGD can be impacted by many factor that deserve our attention: The choice of learning

rates and oscillations across the gradient directions are two examples treated next.

Learning Rate Schedules

It is clear that a learning rate that is too small leads to a slow convergence or

even to a numerical loss of stability and a learning rate that is too big can fluctuate around

a local minima, sometimes fluctuate around many local minima or even to diverge. A good

practice is to schedule a learning rate decay or, in other words, to have a learning rate

slowing down as the epoch number increases or as the error starts to decrease. Sometimes

both could be considered together.

As an example, let us consider a decay factor ǫ P r0, 1s that is multiplied by each

predefined number of epochs e so that when the SGD gets in advanced stages, the learning

rate becomes smaller.

γ “ γ ´ γ ¨ ǫ (3.9)

Besides its simplicity, an advantage of this strategy is its low computational cost. However,

the introduction of the decay factor parameter and how often the task is scheduled can be

a problem. For instance, decay factor values close to 1, or to apply the equation 3.9 many

times could reduce the learning factor too much and therefore, to stop the learning.

Momentum

Areas where the surface curves are much different from each other can represent

a problem to SGD. Specifically, oscillations can represent a challenge and slow down the

Chapter 3. Notions on Classification using Backpropagation and Deep Learning. 65

rates that differ for each parameter. Steps follow an average of the element-wise square of

the gradient components, for each parameter.

vt “ β ¨ vt´1 ` p1´ βq ¨ r∇θLpS, θqs2 (3.11)

where β P r0, 1s is the decay rate of the moving average and S Ď T . In order to normalize

the update of each individual parameters, the moving average is used as follows:

θ “ θ ´ γ ¨∇θLpS, θq?
vt ` ǫ

(3.12)

where the division and the square are performed element-wise and the small positive ǫ is

used to avoid zero division. RMSprop decreases or increase the learning rates of large or

small learnable parameters, respectively. This technique was introduced by Hinton in the

context of machine learning (HINTON; SRIVASTAVA; SWERSKY, 2012).

Adaptive Momentum Estimation

Adaptive Momentum Estimation (ADAM) was first introduced in (KINGMA;

BA, 2014). ADAM considers an adaptive learning rate for each parameter and is considered

an improvement of RMSprop. This is, besides it stores an exponential decaying average of

past squared gradients, it uses averages of the gradient values and uncentered variances

(or second momentum).

mt “ β1 ¨mt´1 ` p1´ β1q ¨∇θLpS, θq
vt “ β2 ¨ vt´1 ` p1´ β2q ¨ r∇θLpS, θqs2

(3.13)

where S is a mini batch, β1, β2 P r0, 1s are the decay of the momentum term and the decay

of the moving average, respectively. ADAM updates the parameters as follows:

θ “ θ ´ γ ¨mt?
vt ` ǫ

(3.14)

where division and the square are performed element-wise and ǫ avoid the zero division

possibility.

ADAM give priority to those gradient values that are that are similar over many iterations.

In addition, if the parameters have much noise, the moving average of the gradient become

slower and, therefore, the updates become smaller.

3.3 Deep Learning and Backpropagation

Until now, abstract models and parameters for SGD classification have been

considered. Deep Learning is a set of algorithms for machine learning that tries to

model abstractions of datasets using computational architectures that support multiple

Chapter 3. Notions on Classification using Backpropagation and Deep Learning. 66

cumulative non-linear transformations. There is not a unique definition of deep learning but

the different definitions have a common base: Multiple layers of non-linear processing units

and the progressive extraction of higher level features from a raw input (GOODFELLOW;

BENGIO; COURVILLE, 2016).

DL has been applied successfully to supervised learning. In fact, SGD has played a

fundamental role in the developing of some DL models. Besides, some deep learning models

are based on artificial neural networks and extend the multi-layer perceptron presented in

(MAKHZANI; FREY, 2013; SCHMIDHUBER, 2015).

One particular subclass of DL models for multiclass classification are the feedforward

DL models based on composition of functions. In this section we provide an abstract

definition of a deep feedforward network by means of composition of functions which allow

us to divide these kind of models in blocks. In addition, we provide a brief introduction

to the BP algorithm. Apart from the description of some functions that are part of this

feedforward framework, we present two examples of architectures that use this framework.

Deep Learning Models and Composition of Functions

The deep learning classifier networks considered here are operators O : X Ñ L

that map a set of observations to a set of labels defined by compositions of m functions:

Gℓpxq “

$

&

%

F1pxq : ℓ “ 1

pFℓ ˝Gℓ´1qpxq : ℓ ą 1
(3.15)

The operator O computes Opxq “ pGmpxqq where m is the overall length of the chain,

named the model depth.

We can divide the parts of a deep learning model defining some operations based on blocks

or layers. Particularly, a layer corresponds to one function Fℓ. In other words, the layer ℓ

is a block consisting of a set of computational units denoted by f ℓ
i , that act in parallel

where each unit represents a vector-to-scalar function. We can read the notation f ℓ
i as the

i-th computational unit (or node) of the layer ℓ-th. The number of computational units of

a layer Fℓ is called the width of the layer and is denoted |Fℓ|.
Each function f

j
i : Rd Ñ R can be computed, or not, with respect to certain learnable

parameters. It is obvious that it is possible to have Fℓ ‰ Fκ for two layers. Also, it is

possible that two computational units of the same layer ℓ compute its outputs w.r.t.

different parameters and therefore f ℓ
i px, θℓ,iq ‰ f ℓ

j px, θℓ,jq. In order to avoid confusion and

repeated indices, we adopt the following notation: f ℓ
j px, θq “ fpx, θℓ,jq whenever necessary.

Note that the function Fℓpxq can be regarded as a vector whose components are the unit

computations f ℓ
i for i “ 1, . . . , s, recalling s “ |Fℓ| represents the width of a layer Fℓ. The

notation f ℓ
i is used as the i-th vector component of Fℓ.

It was aforementioned the existence of a biological inspiration of the backpropagation

algorithms. In this case, each unit of computation resembles a biological neuron in the

Chapter 3. Notions on Classification using Backpropagation and Deep Learning. 69

of n independent variables. Then:

Bw
Btj

“ Bw
Bx1

¨ Bx1

Btj
` . . .` Bw

Bxm

¨ Bxm

Btj
“

m
ÿ

1

Bw
Bxm

¨ Bxm

Btj
(3.16)

for any j “ 1, . . . , n

The computational graph of a neural network does not have cycles and we can

compute gradients using a backward directed strategy by computing first the closest Fk

layer to the output layer, then to compute recursively for previous layers in terms of those

already computed. The gradient of a deep learning operator O is initialized using the loss

function:

∇pO, θq “ BLBθ (3.17)

The recursion to compute the gradient of the parameters for a j-th node in a layer ℓ, ∇f ℓ
j

is given, using the multi-variable chain rule, so the strategy to compute the gradient for a

certain function or parameter in a layer ℓ using the gradient vector of the layer ℓ` 1 in a

pretty organized way.

Vanishing and Exploding Gradients Problems.

Some of the first challenges faced by BP-based models include slow learning

and overfitting. In the first case BP needs thousands of iterations to fit the desired targets

and in the second case the production of an analysis that corresponds too closely or exactly

to a particular set of data, and may therefore fail to fit additional data or predict future

observations reliably. Stochastic gradient descent (SGD), mini-batch SGD, gradient descent

momentum, studies of dynamics learning rates, learning rate schedules and mini-batch

training are some useful techniques to battle slow learning. Meanwhile, validation models

try to reduce overfitting.

Other problems linked with gradient descent are vanishing and exploding gradients, first

described in (HOCHREITER et al., 2001). These problems arise during training of a

MLP-BP with n hidden layers when gradients are being propagated back all the way to the

initial layer. Specifically, the vanishing gradient problem occurs when gradients computed

from the deeper layers have to go through continuous matrix multiplications because of the

chain rule, resulting in gradient values that shrink until they vanish, muddling the update

of the parameters and the learning process. In the opposite direction, if the propagated

gradients become too large, a numerical crash of the system could occur. Hence, the

exploding gradient problem occurs when large gradients values crash the model. There

are many techniques to reduce exploding and vanishing problems in DL (BÜHLMANN;

GEER, 2011; GLOROT; BENGIO, 2010).

Chapter 3. Notions on Classification using Backpropagation and Deep Learning. 70

3.4 Some Deep Learning Layers

Backpropagation has been widely discussed in the literature and many well

succeeded implementations that consider GPU, parallel computation and dynamic pro-

gramming exist. Nevertheless, the perspective of this work is to explain a computational

model, in which the unitary objects are the layers. In this way, each layer Fℓ at least

performs a forward pass transformation Fℓ : R|Fℓ´1| Ñ R|Fℓ| using inputs coming from

the layer Fℓ´1 and a backward transformation ∇Fℓ : R|Fℓ`1| Ñ R|Fℓ| using the gradients

computed by the backward function of the layer Fℓ`1. This process allows us to review the

operations performed by a layer and to breakdown the process into abstract operations.

In this section, we review some concepts and notions on deep learning layers. Specifically,

we will see which parameters are involved in some well known layers from the literature.

This introductory part is intended for the reader to understand basics on the configuration

and operations involved in different layers, so that the reader may be able to use these

concepts on some standard implementations of deep learning such as (MATLAB, 2018;

CHOLLET et al., 2015; ABADI et al., 2015). Besides, we define the notation used in this

text to describe DL networks.

Some Notions on Deep Learning Layer

First, we will define some terms that are involved in the information flow of

the backpropagation algorithm.

• Forward pass function receives the forward output of a previous layer and com-

putes the output to the next layers.

• Backward pass function receives the function of error computed by the next layer

and the memory and it is responsible of the update of weights.

• Forward-backward memory is the information passed from forward pass to the

backward pass function of the same layer.

• Update weights process module updates the learnable parameters belonging

to the layer. Remembering that some layers do not have learnable parameters.

• Loss function: Is a statistical, probabilistic or a metric based cost function, i.e., a

function to be minimized. Loss functions are discussed in section 3.2.

• Initialization of parameters is a function that initialize the required learnable

(or not) parameters involved in the computation of a layer.

Chapter 3. Notions on Classification using Backpropagation and Deep Learning. 72

features of data observations. A convolutional layer convolves the input and passes its

result to the next layer.

In particular, the convolutional neural network makes use of masks (named also filters

or kernels) that are convolved across the data . Then, it applies a cross relation measure

between that mask and the slices of data (LECUN; BENGIO et al., 1995).

Convolutional layers were developed to be applied in visual imagery where the data has

spatial information and have shown an outstanding accuracy in several image classification

problems and are considered hidden layers. The weights of the kernels are involved in the

computation of a forward pass function and they work as learnable parameters.

It is not practical to totally connect units of computation to all the inputs, whenever we

deal with high-dimensional data with spatial information, such as images. Alternatively,

we can connect each unit of computation (neuron) to a local region of input volumes.

The size of this connectivity is the size of filter and is called the receptive field of the

neuron. The depth axis of the connectivity is equal to the depth of the data. Therefore,

the connections are local in the space but always totally connected to the entire depth of

inputs.

Example 4. Suppose that the input data has size of 28ˆ 28ˆ 1, a grayscale image and

assume the filter size is 3ˆ 3ˆ 1, so that each unit of computation in the convolutional

layer have 3 ˚ 3 ˚ 1 “ 9 parameters plus a bias parameter.

Observe that for higher dimensionality such as RGB the filter must have the same size but

with a depth 3. In the RGB case the number of parameters will be 3 ˚ 3 ˚ 3 “ 27.

It is also needed to discuss how many neurons there are in the output volume

and how they are organized. The depth, stride and zero-padding are hyper-parameters

that help to control the output size of a convolution layer. We discuss these next:

We need to specify the step size (stride) with which the filter will slide. For example,

when the stride is 2, the filter will jump two pixels at a time. In terms of spatial size,

higher values produce smaller outputs volumes.

It is convenient to pad the input data with zeros around the borders. The size of this

padding filled with zeros is itself a hyper-parameter. In general, it is used to preserve

the spatial size of an input. In other words, in order to make the input and output size

have same values, we use this zero-padding. Last but not least, we will refer to the set

of neurons that are computing the same region of the data as fibres or depth column

parameter.

Each output map may combine convolutions with multiple input maps possibly followed

by an activation function. Lets consider a set of r filters (column depth size is r) denoted

by Ki with a fixed pˆ p size and the activation function σpxq “ 1
1` e´x

. For simplicity

and symmetry we assume that it is an odd number and q “ ceilpp{2q, then a convolutional

Chapter 3. Notions on Classification using Backpropagation and Deep Learning. 73

layer Fℓ "simplified" forward pass computes:

fm “ σpI ˚Km ` bmq (3.18)

fmpi, jq “ σp
q

ÿ

u“´q

q
ÿ

v“´q

Ipi´ u, j ´ vq ¨Kmpu, vq ` bmq (3.19)

where I is an image, m “ 1, . . . , r, ˚ denotes the convolution operation and i, j are the row

and column indices of I pixels. For simplicity, we keep only those parts of the convolution

that are computed without pad, so the size of output is spatially smaller that the input,

also we are assuming depth of the dataset is one. Nevertheless, these last equations gives

a general idea of how the forward function could be implemented.

On the other hand, and regarding that the chain rule of a composition simplifies the

mathematics, we focus on calculation of the derivatives of the convolution:

Bfmpi, jq
BKmpu1, v1q “

B
BKmpu1, v1q

q
ÿ

u“´q

q
ÿ

v“´q

Ipi´ u, j ´ vq ¨Kmpu, vq ` bm (3.20)

since the derivative will be non-zero only when m “ m1 and n “ n1, we get:

Bfmpi, jq
BKpu1, v1q “ Ipi`m1, j ` n1q (3.21)

These gradients are used to update the parameters. The backward pass for a convolution

operation (for both the data and the weights) is also a convolution (but with the filters

flipped). Finally, to compute the backward pass function, we need to consider the con-

nections between layer and the derivative w.r.t. convolution functions. In this case, it is

assumed that a convolution layer is followed by a downsampling operation. Next, we do

a brief introduction to pooling layers, which apply a downsampling operation. However,

there are cases when specific positions and patterns have to be detected and the pooling

layer is omitted.

Other parameters that are required by some computational libraries are those used for

regularization, initial weights initialization and which activation function will be used,

details on these parameters were studied in (LECUN et al., 1990; GLOROT; BENGIO,

2010; HE et al., 2015).

Pooling Layers

In this part, pooling layers are introduced, which serve for mitigating the

sensitivity of convolutional layers to location and of spatially downsampling representations.

Pooling, like convolutional layers, make use of fixed-shape windows that are slid over the

input according to their stride. However, unlike convolutional layers, pooling layers use a

single filter and, in general, do not have learnable parameters. Therefore, the size of the

filter and the stride are the two parameters involved in pooling layers. Pooling operators

Chapter 3. Notions on Classification using Backpropagation and Deep Learning. 74

Figure 9 – Example of Average Pooling

(a) Original Sample 1

5 10 15 20 25

5

10

15

20

25

(b) Average-Pooling Layer Stride 3

2 4 6 8

2

4

6

8

(c) Original Sample 2

5 10 15 20 25

5

10

15

20

25

(d) Average-Pooling Layer Stride 3

2 4 6 8

2

4

6

8

Images (b) and (d) were obtained applying 3-stride average downsampling on images (a)
and (c), respetively.

compute an operator such as minimum, median, average or maximum over each single

slide of data. We will focus on max and average operators, which are the basic operations

of the so called max-pooling and average pooling layers.

In general, it is not possible to determine which method is better than the other. The

choice of the pooling operations is data dependent. On the one hand, average pooling

performs a downsampling smoothing original images. For a pixel pi, jq, the average pooling

back pass is computed summing the values of the forward function output in which pi, jq
is involved and the resulting value of that sum is then divided by the size of the filter

(MITTAL, 2018). Figure 9 illustrates the result of the forward function of an average

pooling layer with stride of 3, for two different samples. On the other hand, a max-pooling

layer is a sample-based discretization process that acts as router, allowing only those max

values in the slides pass to the next layer. To compute the backward pass function in a

max-pooling layer, it is common to keep track of the switch indices of max activation at

the forward pass of a pooling layer so that gradient routing is efficient during BP. In other

words, the values of gradients passed to the previous layer are zero except in those places

where values of input have the greatest value at the forward computation. A complete

description on max-pooling layers can be found in (NAGI et al., 2011; MITTAL, 2018).

Weighted Connected Layers

Weighted connected layers compute an output value aggregating inputs using

a vector of weights and a bias. Specially, fully weighted connected layers are hidden layers

that compute a sum of multiplication of some weights and inputs at each node. In contrast

to convolution layers, the receptive field of fully connected layers is all the input volume.

Chapter 3. Notions on Classification using Backpropagation and Deep Learning. 75

Figure 10 – Example of Max Pooling

(a) Original Sample 1

5 10 15 20 25

5

10

15

20

25

(b) Max-Pooling Layer Stride 3

2 4 6 8

2

4

6

8

(c) Original Sample 2

5 10 15 20 25

5

10

15

20

25

(d) Max-Pooling Layer Stride 3

2 4 6 8

2

4

6

8

Images (b) and (d) were obtained applying 32-stride max-pooling downsampling on
images (a) and (c), respetively.

Basically, fully weighted connected layers follow the same principle of traditional linear

layers of multi-layer perceptrons neural network (MLPs).

The learnable parameters of a fully connected layer are a set of vectors of weights for each

node and its respective bias values. In general, a layer represents the whole set of weights

as a matrix, where each row represents an individual set of neural weights and a vector

that represents a bias for each neuron. Hence, the forward pass computes:

Fℓpxq “ W ¨ x ` b, (3.22)

where W is the matrix of associated weights, b is a vector of bias values and x is the input

vector coming from the previous layer.

The backward pass simply computes the gradients of these functions taking into account

the gradient vector received from the next layer. A standard is to assume an activation

function after a fully connected layer.

A comprehensive and complete description of fully connected layers, their initialization

methods and regularization of parameters can be found in (GLOROT; BENGIO, 2010;

GOODFELLOW; BENGIO; COURVILLE, 2016).

Activation Layers

Activation layers are sometimes considered hidden layers and an abstraction

of the firing potential of a neuron function. It has been proven in MLP that non-linear

functions play a fundamental role in the neural network processing. For example, a set of

fully connected layer without any activation layer (or identity activation) is equivalent to

a single-layer model. On the other hand, when the activation functions of an architecture

Chapter 3. Notions on Classification using Backpropagation and Deep Learning. 77

overfitting. The main idea of “dropout” is to drop out units at hidden and visible layers in a

neural network. In that sense, at the training stage, dropout forward functions drop nodes

or regions out from the network with a probability p so that some parameters are excluded.

This strategy reduces interdependent learning and, therefore, smoothes overfitting. Here,

we discuss two kind of dropouts, dropout (DO) and connected dropout (CD) strategies.

On the one hand, in DO Layers a random fraction p of the input values is ignored (setting

zero values). DO strategy was first presented in (SRIVASTAVA et al., 2014) and can be

used after most types of layers, such as fully connected layers and convolutional layers.

For example, FC layers use most of the input to compute its transformations. Therefore,

nodes develop co-dependency among each other during training which leads to overfitting

and, consequently, poor feature learning. Figure 11 illustrates the case of DO applied to

FC layers.

On the one hand, the case of DO applied to spatial structures, such as images, can be

compared to the introduction of pepper noise to inputs and it is not as effective as in the

FC case. Figure 12 illustrates the case of DO applied to digit images.

On the other hand, CD layers use spatial information and is applied to special structures,

such as images and is only applied to those layers in which outputs have spatial information,

such as convolutional or pooling layers. Instead of introducing pepper noise, CD layers

introduce a kind of information occlusion per region. Hence, this layer ignores with

probability p sub-regions of the structure. Figure 13 shows an image obtained after CD

application on digit images.

Batch Normalization Layer

Batch normalization (BN) was developed to deal with the exploding and

vanishing gradient problems, which cause gradient values of early layers to reduce or

increase exponentially its magnitude. Besides, it helps to handle the internal covariance

Figure 11 – Example of Dropout in FC layers

Application of dropout operation with p “ .4 on FC Layers. Source:
passsrivastava2014dropout

Chapter 3. Notions on Classification using Backpropagation and Deep Learning. 78

Figure 12 – Example of Dropout

(a) Original Sample 1

5 10 15 20 25

5

10

15

20

25

(b) Dropout Layer Probability .4

5 10 15 20 25

5

10

15

20

25

(c) Original Sample 2

5 10 15 20 25

5

10

15

20

25

(d) Dropout Layer Probability .4

5 10 15 20 25

5

10

15

20

25

Figures (b) and (d) were obtained applying dropout in images with p “ .4 on images (a)
and (c), respetively.

shift, which is another issue that is common in backpropagation (IOFFE; SZEGEDY,

2015).

The internal covariance shift is related with changes of parameters during the training

phase, especially when inputs at early hidden layers are constantly changing and therefore,

inputs to later layers can become not stable causing a lower convergence during training.

Batch normalization is intended to deal with this lack of stability. In addition, BN layer

has shown reductions on the sensitivity to random network parameters initialization.

Normalization layers are added between hidden layers and its neurons create new features

Figure 13 – Example of Dropout Connect

(a) Original Sample 1

5 10 15 20 25

5

10

15

20

25

(b) Dropout Connect with p=.4

5 10 15 20 25

5

10

15

20

25

(c) Original Sample 2

5 10 15 20 25

5

10

15

20

25

(d) Dropout Connect with p=.4

5 10 15 20 25

5

10

15

20

25

Images (b) and (d) were obtained applying dropout connect with p “ .4 on images (a)
and (c), respetively.

Chapter 3. Notions on Classification using Backpropagation and Deep Learning. 79

that regulate the covariance. It has additional parameters µj and σj which are intended

to adjust the level of normalization of in the j ´ th unit. The parameters are trained by

mini-batches. The proposal is to compute the mean µj and variance σj over each single

mini-batch. A single node of a BN layer Fℓ computes the normalized activation:

x̂
j
i “

x
j
i ´ µi

a

σ2
i ` ǫ

(3.23)

where ǫ is a very small positive value that improves numerical stability, xj
i is the i-th

previous layer output of the j-th element of a batch and µ, σ are computed for a mini-batch

S with m instances as follows:

µi “
řm

j“1
x

j
i

m
@i (3.24)

σ2

i “
řm

j“1
pxj

i ´ µiq2
m

@i (3.25)

Finally, outputs are given shifting and scaling these activations, that is, for an element

zj P S that belong to the mini-batch being processed, xj “ Gℓ´1pzjq:

f ℓ
i pxjq “ γi ¨ x̂i

j ` βi @i, j (3.26)

Here, the offset β and the scale factor γ are learnable parameters. In general, these types

of layers perform better when applied before the activation functions (i.e., before the

application of a ReLu function and after the transformation.)

After training, the batch normalization layer recalculates the mean and the variance, taking

into account the whole dataset. When the network is used to make predictions on new

data it uses these new mean and variances to normalize the activations. The activations of

this normalization will depend on the relations between each example in the mini-batch.

We need to compute the backward pass function and gradients of the learnable parameters

γ and β, these derivatives are given by:

BL
Bβi

“
m
ÿ

j“1

BL
Bf ℓ

i pxjq (3.27)

BL
Bγi

“
m
ÿ

j“1

BL
Bf ℓ

i pxjq ¨ x̂
j
i (3.28)

In terms of xj
i , we have the following

BL
Bxj

i

“ BL
Bx̂j

i

¨ p 1
σi

q ` BL
Bµi

¨ p 1
m
q ` BL

Bσ2
i

¨ p2 ¨ x
j
i ´ µi

m
q (3.29)

where:

L

σ2
i

“ ´ 1
σ3

i

¨
m
ÿ

j“1

BL
Bf ℓ

i pxjq ¨ γi ¨ pxj
i ´ µiq (3.30)

BL
Bµi

“ ´γi

σi

m
ÿ

j“1

L

Bx̂j
i

` 1
3
¨
˜

m
ÿ

j“1

BL
Bf ℓ

i pxjqγi ¨ pxj
i ´ µiq

¸

¨
˜

řm

j“1
pxj

i ´ µiq
m

¸

(3.31)

Chapter 3. Notions on Classification using Backpropagation and Deep Learning. 80

BN layers also act as weight regularizers. Since individual points are used in terms of the

mini-batch, an observation xj could cause different updates depending on which batch it is

included in. In general, BN is used between fully weighted connected layers and activation

layers.

The Softmax Layer Case

The function softmax is computed with respect to multiple inputs and therefore,

is a special kind of activation function. In addition, softmax function is considered as an

output layer. In general, attached with the cross entropy loss function given by Equation

3.5.

The softmax layer Fℓ converts k “ |Fℓ´1| real-valued predictions coming from the previous

layer vi “ f ℓ´1

i pxq, using the following formula:

oi “ f ℓ
i pviq “

evi

řk

j“1
evj

@i “ 1, . . . , k (3.32)

A first insight is that if we try to use the chain rule to apply backpropagation then we have

to compute partial derivatives with respect to each input and output. However, when we

take into account the cross entropy loss and the softmax as the output layer, the equation

becomes:

L “ ´
k

ÿ

j“1

yj ¨ logpojq (3.33)

then the derivatives with respect to the layer Fℓ´1,
BL
Bvi

have a particularly simple form:

BL
Bvi

“
k

ÿ

j“1

BL
Boj

¨ Boj

Bvi

“ oi ´ yi (3.34)

In the case of architectures that use backpropagation with a coupled cross entropy loss

function, the error propagation goes first from the output layer to v1, . . . , vk, then the

backpropagation proceed normaly, following the structure of earlier layers. Softmax layers

are discussed in (GOODFELLOW; BENGIO; COURVILLE, 2016).

3.5 Some Deep Learning Architectures

It is not possible to get functional architectures stacking layers in a random

way and obviously the layer sequences must have a certain logic, recalling the objective is

to progressively extract features from raw inputs.

In this section, we present two functional and popular deep learning architectures that

make use of these previously studied layers.

Chapter 3. Notions on Classification using Backpropagation and Deep Learning. 81

Stacked Autoencoders Based Neural Network

An autoencoder was developed to learn data coding and to automatically

extract features from raw data in a unsupervised fashion (VINCENT et al., 2010). In

general, an autoencoder performs a reduction of dimensionality, training a hidden layer

with a reduced number of nodes, both functions are fully weighted connected layers,

possibly followed by an activation function. The idea is to generate an encoding as close

as possible to its original input. In particular, sparse regularized autoencoders apply

an L1 regularization on the weights (MAKHZANI; FREY, 2013; ARPIT et al., 2015).

Autoencoders are effective for feature extraction. The extracted features have been widely

used for subsequent classification.

Formally, a single autoencoder is composed of two parts, an encoder h : Rn Ñ Rm that

maps inputs to compressed representation and a decoder r : Rm Ñ Rn which maps encoded

representation into its original space (HINTON; SALAKHUTDINOV, 2006).

The idea to use these functions is simple: Given a set of unlabeled observations we would

like to learn the encoder and decoder functions h and r such that gpxq “ rphpxqq becomes

an approximation of the identity function. In words, an autoencoder is trained to produce

as output its own inputs such that the reconstruction error is minimized and it can be

trained by SGD, replacing the desired labels and putting output equal to input values.

Stacked autoencoders train a set of encoder in an organized manner. The idea is to train a

set of autoencoders gi, i “ 1, . . . , k progressively and then discard the decoder and keep

the encoding part h. The first stage is to train an encoder g1 using all data observation

in the training dataset and keep the function h1. Next, an autoencoder g2 is trained

using as input-output the transformations produced by the encoder h1. In this sense,

an autoencoder gj can be trained using the representation encoded by hj´1. The last

transformation hk is trained using a softmax layer, this time using the desired labels as an

output. Finally, a gradient descent runs over the whole stacked net which produces the

desired network. A single autoencoder and an example of stacked encoders are shown in

Figure 14. In that example, a set of encoders refines the data at each level and softmax

with a CE loss function perform the classification.

Convolutional Neural Network

Convolutional neural networks (CNN) have been widely discussed and there are

many articles, books and international publications on the subject. However, in this part,

we will introduce the idea behind CNN. In addition, an example of image decomposition

performed by CNN is presented.

CNNs are most commonly applied to image analysis and classification. Instead of the

fully weighted connected layers used in multilayer perceptron, a CNN makes use of the

previously discussed convolutional layers.

Chapter 3. Notions on Classification using Backpropagation and Deep Learning. 82

Figure 14 – Autoencoders

(a) Single Autoencoder and its parts. (b) Stacked Encoders h1, h2 and a Softmax layer.

Table 3 – Reduced Notations to Describe Layers.

Representation Parameters

Fully Connected Layer FC|n n: Represents the number of nodes.

Sliding Convolution
Layer

SC|n|f|s|p

n: Represents the number of filters.
f: Represents the size of the filters.
s: Represents the size of the stride.
p: If the layer has not zero padding.

Max Pooling Layer PM|s s: Represents the size of the stride.

Dropout Layer DO|p p: Dropout probability.

ReLu Activation Layer R none

Batch Normalization
Layer

BN none

Softmax Layer SM none

Chapter 3. Notions on Classification using Backpropagation and Deep Learning. 83

Figure 15 – Basic CNN architecture

An abstract example of a CNN that illustrates the convolutional and classification part of
the architecture.

CNN were inspired by the connectivity between biological neurons of the animal visual

cortex. Each neuron on the cortical area responds to a stimulus of a restricted region of

the visual field, which is named the receptive field. In order to simulate this behaviour,

CNNs make use of a process that involves filters over certain regions of input data.

Broadly speaking, CNNs have an input, an output layer and a set of hidden layers. A basic

CNN structure consists of a convolutional layer, followed by an activation and a pooling

layer. The output can be used as an input to repeat the process again. We refer to these

layers as the convolutional part of the model. Finally, a classifier system, or classification

part of the model gives the final output. For example, two fully connected layers, where in

the second layer each node represents a class, is a common choice for the classification

part. The softmax layer together with the cross entropy loss is one of the most used cost

functions to apply backpropagation. Figure 15 shows a visual representation of the process

and the involved parts.

There are many CNN architectures with different compositions, number of layers and

configurations. Let us introduce some notations to describe deep learning architectures used

throughout this work. Table 3 summarizes short notations of individual layers reviewed

in last section. Next, we present an example of an architecture and its description using

these short notations.

Example 5. Consider a convolutional neural network F with seven layers that is set to

perform classification on grayscale images with size 28 ˆ 28 and 10 classes and let the

configuration of the network as follows:

1. An input layer that performs an identity function over an image 28ˆ 28 denoted by

a matrix I that computes an identity function.

2. A convolution layer with 8 kernels, all 5ˆ 5 sized, with stride 1 and zero padding,

Chapter 3. Notions on Classification using Backpropagation and Deep Learning. 84

Figure 16 – Example of CNN Processing - First layers.

(a) Original Sample 1 (b) Convolution with 8 filters.

(c) Original Sample 2 (d) Convolution with 8 filters.

(a) and (c) are two original digits images used as an input for the network. (b) and (d)
represent, respectively, the transformation of these intputs by the SC16|3|1 + R with 8

filters.

denoted by SC6|8|1. Assume a ReLu activation function R. Figure 16 shows an

example of the transformation performed by the composition of these first three

layers.

3. A max-pooling layer F3 that performs downsampling operation using a 3ˆ 3 sized

window denoted by MP |3. An example of how this layer process samples is illustrated

in Figure 17. The input of this example is given by the output shown in Figure

Figure 17 – Example of CNN Processing - Max-pooling layer.

(a) Input 1 - Max-pooling with stride 3 (b) Input 2 - Max-pooling with stride 3

Transformation performed by a max-pooling. We consider as inputs, the output shown in
Figure 16

4. A second convolutional layer with 16 kernels all 5ˆ 5 sized, with zero padding and

stride of 1 denoted by SC16|5|1. A ReLu activation function is assumed.

Chapter 3. Notions on Classification using Backpropagation and Deep Learning. 85

5. A second pooling layer F5 that computes average downsampling and uses a 3ˆ3 sized

window, denoted PA|4. Figure 18 illustrates an example of the processing performed

by the second convolution layer and the average layer.

6. A fully connected layer with 10 nodes, each node representing a class is denoted

FC10.

7. The loss function used is given by the MSE given in Equation 3.3.

Figure 18 – Example of CNN Processing - Second Convolution and Average Layer.

(a) 2nd Convolution with 16 filters. (b) Average-pooling with stride 3

(c) 2nd Convolution with 16 filters. (d) Average-pooling with stride 3ti

Transformation performed by the layers described at 4, 5, 6 of the example. We consider
as inputs, the output shown in Figure 17

In this example, these layers described from point 1 to 6 constitute the convolutional part of

the network. On the other hand, layers described in points 7 and 8 work as the classification

part.

In general, the last example shows in a visual way the process of forward

decomposition of an image computed by convolutional neural networks.

Observe that there are many applications of DL, the case of CNNs discussed in this section

is a special case widely used for classification and it is an important case of study in this

thesis. Other architectures and applications are reviewed in (SCHMIDHUBER, 2015; HE

et al., 2016). Parameters initialization and activation functions are discussed in (GLOROT;

BENGIO, 2010; HE et al., 2015). A complete and well organized book that contains a

detailed discussion of DL was published by Goodfellow et al., (GOODFELLOW; BENGIO;

COURVILLE, 2016).

86

4 A Review of Morphological Perceptrons

and Related Models

There must be a trick to the

train of thought, a recursive

formula. A group of neurons

starts working automatically,

sometimes without external

impulse. It is a kind of iterative

process with a growing pattern.

It wanders about in the brain,

and the way it happens must

depend on the memory of

similar patterns.

Stanislaw M. Ulam, Adventures

of a Mathematician

In this chapter, we review the morphological perceptrons, some related models

and its geometrical interpretations. We also discuss some algorithms to train these archi-

tectures and the framework in which MPs have been developed.

The MP/CL idea is to decompose functions in terms of elementary MM operators. This

idea implicitly lies in the core of several MM training algorithms and models (SUSSNER;

ESMI, 2009b; SUSSNER; ESMI, 2011). A special emphasis was given to classification

problems in lattices Ln where the structure L is an ℓ-group. The competitive layer is a

maxout layer responsible for selecting the hyperbox that best approximates each target.

Despite these advances, the number of hyperboxes determined by Sussner’s and Esmi’s

algorithm tends to grow very quickly and as a consequence, becomes subject to overfitting.

In partcular, the MP/CL becomes subject to overfitting when applied to sparse, high-

dimensional data (SUSSNER; CAMPIOTTI, 2020). Nevertheless, among MPs, MP/CL

became a standard model and since then, new and more sophisticated MP algorithms

and learning techniques for calculating the hyperboxes that separate the classes have

appeared. This field is maturing, with a wealth of well understood methods and algorithms

to train MPs. Section 4.4 presents a brief review of some algorithms and architectures from

literature. Additionally, Section 4.5, summarizes hybrid models in which morphological

neurons are combined with other kinds of neurons.

As a result of Theorem 16, in order to define the four basic operations of MM in grayscale,

it is enough to define an algebraic erosion, dilation and negation. Note that a digital

Chapter 4. A Review of Morphological Perceptrons and Related Models 87

grayscale image can be viewed as a function X Ñ G, where G denotes the set of extended

real numbers R˘8 or the extended integer numbers Z˘8 and X is the set of pixels that is

usually given by a subset of Rd or Zd. A more general approach would be to consider G a

complete extension of an ℓ-group.

Observe that the basic computations in an MNN were first proposed on the complete

l-group extensions. A more general approach would be to consider a bounded l-group

extensions E . Observe that, the basic computations of MNN occurring in a morphological

network were first proposed on the algebraic complete lattice ordered group structures:

R˘8 and Z˘8. It was aforementioned that the operations ` and `1 only differ from

each other whenever the bounds 8 and ´8 are involved, as determined in Equations

2.34 and 2.35 and for any x P R the operations ` and `1 behave in the usual way:

p`8q ` x “ x` p`8q “ `8 and p´8q ` x “ x` p´8q “ ´8 (See Section 2.4).

Let a P GX be an image and s : X Ñ GX a structuring element and the operators

Dpa, sq, Epa, sq : X Ñ G defined by:

Dpa, sqpxq “
ł

yPX

papyq ` psypxqqq and Epa, sqpxq “
ľ

yPX

papyq `1 psxpyqq˚q (4.1)

Equations in 4.1 can be written in terms of max-product and min-product, whenever

the set |X|=n is finite. Therefore, following Theorem 17, D and E are a dilation and an

erosion, respectively. Note also that the structuring element s is varying in X.

MM is a theory focused on shape analysis for analysis of planar and spatial structures,

which is based on set theory, algebra and geometry. Although MM was developed for digital

image analysis, it can be employed in other object graphs, surface meshes, solids, and many

other spatial structures. However, the main idea of MM analysis is to extract information

from relationships between an image and a probe (named structuring element), which is a

predefined small shape that can be fixed or variable, which is the case of Equation 4.1. In

the case of images, morphological operators measure how a structuring element fits local

neighborhoods of the pixels. The morphological erosion of an image by some structuring

elements at certain point x, is computed by measuring how the translated structuring

elements fits at that point. For example, the fuzzy morphological erosion of an image a by

some structuring element s at a certain point x yields a degree of inclusion of subsethood

of a translated version of s in a.

Examples of MNN that perform algebraic dilations and erosions are: Grayscale Mor-

phological associative memories (SUSSNER, 2001; SUSSNER, 2003b; SUSSNER, 2003a;

VALLE; SUSSNER; GOMIDE, 2004), fuzzy morphological associative memories which

execute basic operations of fuzzy mathematical morphology in the recall phase (SUSSNER;

VALLE, 2006b; VALLE; SUSSNER, 2008b; SUSSNER; VALLE, 2006a; VALLE; SUSS-

NER, 2008a). Examples of MNNs that perform morphological operators of input vectors

by weight vectors or vice versa include: Kosko subsethood-FAMs (SUSSNER et al., 2012),

θ-FAMs (ESMI et al., 2014), fuzzy lattice reasoning models of Kaburlassos (PETRIDIS;

Chapter 4. A Review of Morphological Perceptrons and Related Models 88

KABURLASOS, 1998; KABURLASOS; PETRIDIS, 2000; KABURLASOS; KEHAGIAS,

2013) and, recently subsethod interval associative memories θ-FAMs (SUSSNER; ESMI;

JARDIM, 2019).

Definition 35. Morphological neural networks are a subclass of ANNs that perform

morphological operators at each node. Particularly, Morphological Perceptrons are part

of the MNNs and are strongly tied to supervised learning and regression. In a general way,

MPs can be defined as feedforward MNNs with applications on classification or regression.

MPs were first described in the mid 1990s in (SUSSNER, 1998). A learning

rule and a training algorithm for binary classification were given in (SUSSNER, 1998).

Minimax algebra allows an easy way to define real-valued parameters in MNNs. Grayscale

MM can be embedded into minimax algebra and is the framework in which MNNs are

described (DAVIDSON; HUMMER, 1993). Hence, it is not unexpected that several models

of MNNs employ the minimax algebra defined in (CUNINGHAME-GREEN, 1991).

In this chapter, we briefly review some models based on mathematical morphology. In

Section 4.1 is given a brief review of the first learning rule and algorithm to train MPs

(SUSSNER, 1998). In Section 4.2 the morphological perceptron with competitive learning

and the framework introduced by Sussner and Esmi (SUSSNER; ESMI, 2009b) are reviewed.

Moreover, in this section some relationships between MPs and concepts studied in Section

2.5 are deepened. In Section 4.3, the dendrite morphological neural network presented

in (RITTER; IANCU; URCID, 2003) is reviewed. In section 4.4 some architectures and

algorithms related with MPs are presented. Section 4.5 summarizes some of the relevant

hybrid and morphological related models developed to perform supervised learning tasks.

4.1 The Original Morphological Perceptron Model

The first architecture and approach to train a morphological neuron were

discussed in (RITTER; SUSSNER, 1996). The first supervised learning algorithm for

multilayer morphological perceptrons was introduced in (SUSSNER, 1998). The supervised

learning algorithm makes use of a hard-limiting activation function.

fpxq “

$

&

%

1, if x ě 0,

0, otherwise.
(4.2)

Let W “ tw1, . . . , wnu, where wi P R, x P Rn and a bias b P R and let y0 and y1 be two

labels, then the difference between the computation of MP and linear perceptron for binary

classification is:

Chapter 4. A Review of Morphological Perceptrons and Related Models 89

1. A linear perceptron assigns a pattern x to a class y0 if:

f

˜«

n
ÿ

i“1

xj ¨ wj

ff

´ b
¸

“ 0 (4.3)

and assign a class y1, otherwise.

2. A morphological perceptron assign a pattern x to a class y0 if:

f

˜«

n
ł

i“1

xj ` wj

ff

´ b
¸

“ 0, (4.4)

otherwise the assigned class is y1.

A dual model in which a pattern x belongs to a class y1 whenever:

f

˜«

n
ľ

i“1

xj `1 wj

ff

´ b
¸

“ 1 (4.5)

was also introduced. Since this duality between these two equations, the results and

argumentation of models involving 4.4 and 4.5 are similar.

It was also argued that the bias parameter was not required in the computation, it is:
˜

n
ł

j“1

xj ` wj

¸

´ b “
n

ł

j“1

xj ` pwj ´ bq (4.6)

and therefore weights W 1 “ pw1` b, . . . , wn` bq with b1 “ 0 do not change the behavior of

models. However, the surfaces that can be represented with these models are very limited.

To increase the power of representation a set of parameters aj P t´1, 1u, j “ 1, . . . , n

was introduced, the resulting model was called generalized single layer morphological

perceptron. The rule associated to this model assigns the label y0 to a pattern x P Rn

whenever

f

˜

n
ł

i“1

ajpxj ` wjq
¸

“ 0 (4.7)

where the parameter aj represent the j-th pre-synaptic response. If aj “ 1 the response is

said to be excitatory and if aj “ ´1 the pre-synaptic response is said to be inhibitory.

Just like the linear perceptron, an evident limitation of these model appears when consider-

ing the XOR problem. The feedforward two-layer morphological perceptron was presented

to deal with that problem. The correctness of the algorithm and solutions to solve XOR,

AND, OR problem were also proven (RITTER; SUSSNER, 1996). Moreover, solutions to

the generalized n-dimentional AND/OR problems and an algorithm that takes a training

set and determines the number of hidden nodes necessary to perform binary separation

were presented.

Sussner introduced a first supervised learning algorithm for a multi-layer morphological

Chapter 4. A Review of Morphological Perceptrons and Related Models 90

perceptron (SUSSNER, 1998). In this version, a set of hyperboxes acts as parameters

rwj,wjs for j “ 1, . . .m, this is:

gpxq “ fpp
ľ

i“1

pxi `1 pw1

i q˚q ^
ľ

i“1

pw1

i `1 pxiq˚qq _ . . .

_ p
ľ

i“1

pxi `1 pwm
i q˚q ^

ľ

i“1

pwm
i `1 pxiq˚qqq (4.8)

Remark that a pattern x P Rn belong to a class y0, whenever gpxq “ 1. So that the goal

of an algorithm is to encapsulate all patterns that belong to a certain class in hyperboxes.

Although a first functional algorithm to train MPs was presented, it only works for binary

classification.

It was already mentioned that MPs are feedforward MNNs designed to perform classification

or regression tasks. In this sense, Equation 4.8 can be written in terms of min-product

operators pairs as follows:

gpxq “ f

˜

m
ľ

j“1

`

pwjq˚^ x
˘

^
`

x˚^wj
˘

¸

, (4.9)

where w˚ denotes the conjugate of the vector w given in Definition 21 and _, ^ denote

max-product, min-product operators between two vectors given in Definition 26.

Equation 4.9 describes MPs in terms of minimax operators and makes clear the relationship

between minimax algebra and MPs. As aforementioned Equation 4.1 can be written in

terms of min-product and max-product, whenever x, w are dimensional finite, which is

the case of Equation 4.9.

Given the complete ℓ-group extension Rn
˘8, an input x P Rn

˘8 (in practice, datasets

are usually defined in Rn). If we consider Equations 4.1, synaptic weights are vector

w P pRnq˘8 and neurons in a hidden layer compute an output y according to one of the

following rules:

y “ fpεwpxqq where εwpxq “
n

ľ

i“1

pxi `1 wiq (4.10)

y “ fpδwpxqq where δwpxq “
n

ł

i“1

pxi ` wiq (4.11)

y “ fpεwpxqq where εwpxq “
n

ł

i“1

px˚
i ` wiq (4.12)

y “ fpδwpxqq where δwpxq “
n

ľ

i“1

px˚
i `1 wiq (4.13)

which are given by the max and min-product given in Definition 26. The units of computa-

tion of MPs were studied in terms of basic MM operators (SUSSNER; ESMI, 2009b). Since

mappings between complete lattice can be expressed in terms of the infimum of erosion

and anti-dilation or in terms of the supremum of dilation and anti-erosion operations.

Chapter 4. A Review of Morphological Perceptrons and Related Models 91

Sussner and Esmi proposed to perform the unit of computation of MPs using anti-dilation

and erosion operators (SUSSNER; ESMI, 2011), based on the aforementioned results of

(BANON; BARRERA, 1993).

Let us consider the operation:

gpxq “ εa˚pxq ^ δbpxq “
n

ľ

i“1

pxi `1 a˚
i q ^ px˚

i `1 biq (4.14)

where a ď b, ε is an erosion and δ is an anti-dilation. Using Theorem 18, we can assure that

x P Rn is contained in the interval or hyperbox ra,bs if and only if gpxq ě 0. Moreover,

note that Equation 4.14 can be computed in terms of two min-product operations. In

fact, these products are morphological operators in the geometrical way in which the

structuring element is variable. Moreover, this pairwise infimum of an erosion and anti-

dilation can be accomplished in a single operation using an erosion, in this case, the input

is a concatenation of x, x˚ and the weight vector is given by concatenating a and b.

Furthermore, Equation 4.14 can be expressed in terms of I-set descriptors (Definition 15)

and aggregators (Definition 27):

εa˚pxq ^ pδqbpxq “
n

ľ

i“1

pxi `1 paiq˚q ^
n

ľ

i“1

pbi `1 pxiq˚q

“
n

ľ

i“1

pxi `1 paiq˚q ^ pbi `1 pxiq˚q (4.15)

“
n

ľ

i“1

φ^pxi, rai, bisq

which is equivalent to the Equation 2.66. Note that ℓ-group extensions E “ R˘8 and

E “ Z˘8 are extensions of Archimedean o-groups R and Z.

4.2 Morphological Perceptron with Competitive Learning

In morphological perceptrons with competitive layers (MP/CL), the hard limiter

function f in equation 4.2 is replaced by an identity function and an argmax competition

is carried out between the neurons in the output layer.

An approach to develop multiclass classification algorithms to train MPs is to extend

binary classification training algorithms. Formally, let T “ tpx1, y1q, . . . , pxk, ykqu where

yi P L and L “ tc0, .., cncu is the label dataset for training with nc classes, and let T
s be

the set of patterns x associated with a class s for s P L.

For each s “ 1, . . . , nc a binary classification can be applied with Ĉ1 “ tpx, yq P T :

y P T
su, the set of patterns that belong to the class s and Ĉ0 “ tpx, yq P T : y R T

su,
the complement of Ĉ1. This way the extended algorithm creates a set of sub-modules

(hyperboxes) for each class s “ 1, . . . , nc and the output of each module is given by a

competition between sub-modules. We will refer to this process as the one vs all classes

Chapter 4. A Review of Morphological Perceptrons and Related Models 92

Figure 19 – MP/CL s-th class module.

(a) A graphical representation of a class module. (b) Maxnet competition between modules.

Source: (SUSSNER; ESMI, 2009a)

strategy. Lastly, the number of output neurons is equal to the number of labels in the

argmax competition stage. A graphical representation of this idea is illustrated in Figure

19a.

The output of a class-module s-th module is given by:

ys “
ms
ł

j“1

pεvs
j
pxq ^ δws

j
pxqq (4.16)

where ms is the number of hyperboxes of the s-th module. Observe that, the difference

between Equations 4.8 and 4.16 is the absence of activation function in the Equation 4.16.

However, it was mentioned that both equations are equivalent if we consider an identity

function as activation.

The parameters ws
j and vs

j are the weights of the j-th submodule of the s-th module.

Finally, an argmax competitions is done between all the modules. A winner takes all

competition is performed through an argmax function, which attributes the winner label

j to an input pattern. The Figure 19b shows how the competition between modules is

performed. Figure 19 illustrates the competition between class modules.

4.3 Dendrite Morphological Neural Networks

In the early 2000s, Ritter et al., introduced a biological interpretation of

MNNs in terms of neural dendrites (RITTER; IANCU; URCID, 2003). In dendrite

morphological neural networks (DMNNs), the dendrite dj of a neuron computes the output

Chapter 4. A Review of Morphological Perceptrons and Related Models 93

upon presentation of an input x using either one of the following equations:

djpxq “ pj

n
ł

i“1

ai,jpxi ` wiq (4.17)

djpxq “ pj

n
ľ

i“1

ai,jpxi `1 wiq (4.18)

where ai,j P t´1, 1u denote synaptic inhibition or excitation on the j-th neuron caused

by the i-th input and pj P t´1, 1u denotes the post synaptic output response (excitatory

or inhibitory) of the j-th neuron. In this perspective, the unit of computation of neural

networks are dendrites. We may observe that the contribution done in these models

considered in Equations 4.17 and 4.18 is the introduction of synaptic output responses pj.

From this perspective, the argument to view dendrites as unit of computation is that the

number of neuronal synapses is higher on the dendritic tree of the neuron and therefore,

there is where the information is processed. This argument is not new and it has been

widely studied in (SEGEV; RALL, 1988; MEL, 1993; KOCH; SEGEV et al., 1998; MEL,

1999). Besides, dendrites make up the largest component in both surface area and volume

of the brain. Thus, dendrites cannot be ignored when attempting to model artificial brain

networks, especially when some research have proposed that dendrites and not the neuron

itself are the unit of computation of the brain.

The mechanism proposed in (RITTER; SUSSNER, 1996) makes use of lattice framework

and replace the operation performed by a traditional neural network with lattice based

operations.

The single layer morphological perceptron is described as a single layer and feedforward

neural network with n input neurons and m output neurons (RITTER; IANCU, 2003). At

the output layer, neurons have dendritic structures that perform morphological operators

based on lattice algebra. The axonal branch of neurons Ni for i “ 1, . . . , n makes synapses

connection with dendrites of output neuron Mj, j “ 1, . . . ,m. In this model, the weight of

a connection between Ni and the k-th dendrite of an output neuron Mj is denoted by wℓ
i,j,k,

where the superscript ℓ P t0, 1u distinguish between excitatory (ℓ “ 1) and inhibitory

(ℓ “ 0) input to dendrite. The k-th dendrite of a j-th output neuron processes its inputs

x P Rn and will accept or inhibit the received signal, using the following formula:

τ
j
kpxq “ pk

j

n
ľ

i“1

ľ

ℓPL

p´1q1´ℓpxi ` wℓ
i,j,kq, (4.19)

where xi denotes the input value of the neuron Ni, and L “ 0, 1 denotes the set of terminal

fibers that synapse on the dendrite k and pk
j is the excitatory or inhibitory response of the

k-th of Mj neurons. In general, weight vectors are given by w1

j,k “ a and w0

j,k “ b where

ra,bs is an interval.

The set of values computed at dendrites τ j
k , k “ 1, ..., Kj, where Kj denotes the total

number of dendrites of the neuron Mj, are processed at the cell body of Mj using one of

Chapter 4. A Review of Morphological Perceptrons and Related Models 95

Equations 4.14 and 4.19 are equivalent whenever the output response pk
j “ 1 is excitatory.

Recalling that the computation of MPs unit is given by Equations 4.14 and 4.16. On the

other hand, If we consider a DMNN unit of computation, DMNN that involves inhibitory

output responses pk
j “ ´1 are mappings between complete lattices and, therefore, can

be expressed in terms of infimum of erosion and anti-dilation or in terms of supremum

of anti-erosion and anti-dilation operations (BANON; BARRERA, 1993). In particular,

assuming pj “ 1, we have:

n
ľ

i“1

ľ

ℓPL

p´1q1´ℓpxi `1 wℓ
i q “

n
ľ

i“1

pxi `1 w1

i q ^
n

ľ

i“1

px˚
i `1 pw0

i q˚q (4.23)

Hence, whenever pk
j “ 1 dendrite units of computation can be described in terms of erosion

and anti-dilation operators εv ^ δw with the configuration vi “ w1

i and wi “ pw0

i q˚, for

i “ 1, . . . , n.

If we consider units of computation of DMNNs with inhibitory output response pk
j “ ´1,

we have:
˜

n
ľ

i“1

pxi `1 w1

i q ^
n

ľ

i“1

px˚
i `1 pw0

i q˚q
¸˚

“
˜

n
ľ

i“1

pxi `1 w1

i q
¸˚

_
˜

n
ľ

i“1

px˚
i `1 pw0

i q˚q
¸˚

“ p
n

ł

i“1

pxi `1 w1

i q˚q _ p
n

ł

i“1

px˚
i `1 pw0

i q˚qq˚ (4.24)

“ p
n

ł

i“1

px˚
i ` pw1

i q˚qq _ p
n

ł

i“1

pxi ` pw0

i qqq

Therefore, whenever pk
j “ ´1, Equation 4.19 can be expressed in terms of dilation and

anti-erosion operations: εv _ δw with the configuration vi “ pw1

i q˚ and wi “ pw0

i q, for

i “ 1, . . . , n. In this case, a neuron in a hidden layer compute an output according to

rules described in Equations 4.11 and 4.12. Note that the conjugation operation extends

multiplication by -1, which can be seen as an extension of the function R Ñ R, to a

function R˘8 Ñ R˘8 from the extended reals to the extended reals.

Consequently, feedforward DMNN models developed to supervised learning are MPs in

the sense of Section 4.2 and 35. Moreover, Equation 4.24 shows that MP models have the

biological interpretation of DMNNs.

Since MP computations are drawn from minimax algebra, whose operations are neither

smooth nor differentiable. A training by conventional gradient descent or backpropagation

is not possible. However, algorithms that incrementally build the parameters have been

proposed. It becomes important to explore the properties and difference between these

algorithms. Next, we present some notions and examples on constructive algorithms to

train MPs.

Chapter 4. A Review of Morphological Perceptrons and Related Models 96

Figure 21 – Elimination and Merge Principles

Class separation by elimination (left) and by merge (right).
Source: (RITTER; IANCU; URCID, 2003)

4.4 MP and DMNN Training Algorithms

A constructive MP training algorithm builds hyperboxes incrementally following

some strategy. Next, a brief review on constructive algorithms for training MPs can be

found. We summarize some constructive algorithms developed to find the hyperboxes and

their properties. Besides, we review some algorithms that have proposed optimization

methods to train MPs and DMNNs.

Elimination - Merge Algorithm

Two strategies to accomplish the class separation using the dendritic model

were described in (RITTER; URCID, 2007). These strategies are also based in encapsulate

pattern in hyperboxes and each one makes use of inhibitory and excitatory dendrites.

Therefore, points that lie in a hyperbox w ď x ď w are computed as positive by excitatory

dendrites ppk
j “ 1q with vector weights rw,ws, meanwhile inhibitory dendrites ppk

j “ ´1q
compute negative values for points that lies in the hyperbox.

Figure 21 illustrates a visual interpretation of these two perspectives for binary classi-

fication. The elimination algorithm (EA-MP) separates distinct classes by means of an

intersection operation and, on the other hand, the merge algorithm uses a union operation.

Hence, merging is performed by computing the union of the regions recognized by the

dendrites and elimination is performed computing the intersection of regions.

On the left side of Figure 21, an elimination algorithm example is presented. Note that

solid dots and circles represent observations of two different classes. In this case, dendrite

D1 forms a hyperbox and it has an excitatory response, thus it will process every enclosed

Chapter 4. A Review of Morphological Perceptrons and Related Models 97

point as positive. Dendrites D2 and D3 process the values with an inhibitory response,

therefore every point outside their respective hyperboxes will have positive values. The

class C1 representation is done by the intersection of these three dendrites.

The right side of Figure 21 illustrates an example of the merge algorithm (MA-MP). Here,

the union of four dendrites D1, D2, D3 and D4 with an excitatory response make the class

separation possible. We can note that neurons used in the merge algorithm, where every

dendrite is excitatory, can be computed by the Equation 4.8 of multilayer generalized

morphological perceptron. In this way, besides inhibitory dendrites, the contribution of

dendrites is most descriptive. However, it is remarkable that two algorithms for multi-class

classification based on merge and elimination were also described in (RITTER; URCID,

2007). In addition, the following result was also demonstrated.

Theorem 29. If tX1, ..., Xmu is a collection of disjoint compact subsets of Rn and ǫ is a

positive number with ǫ ă ǫ0, then there exists a single layer lattice perceptron that assigns

each point x P Rn to a class Cj whenever x P Cj and j P t1, ...,mu,and to class Ci “
n

ď

j“1

Cj whenever dpx,Xiq ą ǫ, @i “ 1, ...,m. Furthermore, no point x is assigned to more than

one class.

Therefore, the convergence and a perfect class-separation is guaranteed.

MP/CL Algorithm

A learning algorithm that uses only dendrites with excitatory output responses

is discussed in (SUSSNER, 1998). It produces areas of indecision and may assign multiple

labels to the same output. In addition, the decision surface depends on the order in which

the training patterns are presented to the network. A new algorithm, called MP/CL that

overcome these disadvantages was presented for binary classification (SUSSNER; ESMI,

2009b; SUSSNER; ESMI, 2011). The pseudo-code of MP/CL for binary classification is

presented in Algorithm 1.

Consider the set of training data T “ tpx1, y1q, . . . , pxk, ykqu where xi P Rn and yi is its

desired class-label. The set X “ tx1, . . . ,xku denotes the observation. Lets T
s denote the

patterns associated with the class-label s and s “ 1, 2. The symbol C denotes the pattern

that are considered misclassified which is initialized as C “ X. The set of hyperboxes

of the s class is denoted Fs, for s “ 1, 2. Finally, two half-spaces denoted by H´
i pcq and

H`
i pcq and the hyperplane Pipcq are given by:

H´
i pcq “ tx P Rn : xi ă ciu, H`

i pcq “ tx P Rn : xi ą ciu and Pipcq “ tx P Rn : xi “ ciu

In addition, Algorithm 1 was extended to multiclass following a one vs all classes strategy.

Moreover, the next properties were demonstrated for MP/CL algorithm:

Chapter 4. A Review of Morphological Perceptrons and Related Models 98

Algorithm 1 – Training Algorithm MP/CL

begin
C “ X and Fs “ H, for s “ 1, 2;
while C ‰ do

(Select an arbitrary subset X)
X Ď C and C

s “ X
č

Cs for s “ 1, 2;

For s “ 1, 2, ras,bss “ r
ľ

C
s
,
ł

C
ss;

I “ ra,bs “ ra1,b1s X ra2,b2s;
if I “ H then

C “ CzX;
Fs “ Fs Y ras,bss for s“ 1, 2;

end
else

if ra1,b1s ‰ ra2,b2s then

Fs “ Fs Y
”

ľ

pH´
i paq X C

s
,
ł

pH´
i paq X C

s
ı

, s “ 1, 2 and

Fs “ Fs Y
”

ľ

pH`
i pbq X C

s
,
ł

pH`
i pbq X C

s
ı

, s “ 1, 2;

(After updating the families of hyperboxes Fs, we substitute X with
X X I in C, if X X I “ H;

C “ CzX
end
if I “ ra1, a1s “ ra1, a1s then

x “ b (An arbitrary vertex);
P “ tPipxq : |Pipbq XX| ď |Pjpbq XX| for i, j “ 1, . . . , nu and
U “

ď

P,P 1PP, P ‰P 1

pP X P 1q;

Fs “ Fs Y ttuu : u P U X Csu, s “ 1, 2 and X “ Xz
ď

P ;
P “ tP zU : P P Pu;
C “ C Y tX X P : P P P and X X P ‰ Hu

end

end

end

end

1. Convergence in a finite number of steps.

2. Perfect separation of the training data according to their class labels.

3. Hyperboxes with distinct class labels do not overlap.

4. Independence of the order in which the training patterns are presented to the network.

The MP/CL exhibited a good performance and fast convergence without requiring any

fine tuning of weights. Beside a MP/CL is able to produce complex decision surfaces

Chapter 4. A Review of Morphological Perceptrons and Related Models 99

Figure 22 – MP/CL’s Decision Surface Example

Decision surface produced by the MP/CL training algorithm for Ripley’s synthetic
problem. Source: (SUSSNER; ESMI, 2011)

to classify efficiently non-linearly separable data. Figure 22 illustrates an example of a

decision surface produced by the MP/CL.

Divide and Conquer

The divide and conquer algorithm (D&C) was first presented by Arce et al., as

an efficient training algorithm to train DMNN for supervised classification (ARCE et al.,

2017). The idea of this algorithm is to recursively divide hyperboxes into smaller regions

(which are also hyperboxes) and check how the a hyperbox is performed. When all these

smaller hyperboxes classify only a class j correctly, the whole region is considered a new

hyperbox of j. Applications and simulations that employ this algorithm can be found in

(ARCE et al., 2017). A drawback of this algorithm is that it computes too many regions.

Besides, when the dataset is sparse, a large number of hyperboxes can be computed and

overfitting can occur. Furthermore, this process may be expensive in terms of memory and

computation. Therefore, a memory problem could happen whenever dimension n is high.

Pseudo-code that shows the process of this method can be found in Algorithm 2. The

reader may notice that D&C algorithm makes use of post-synaptic excitatory dendrites.

Differential Evolution Training

A training algorithm that makes use of an evolutionary approach was introduced

in (ARCE et al., 2018), we will refer to this model as DE-MP. In this work, only excitatory

post-synaptic dendrites are used. The idea consists in initializing a population of hyperboxes

using the K++ means algorithm (ARTHUR; VASSILVITSKII, 2006). It is for each class

a fixed q number of hyperboxes is computed, automatically increasing the number of

Chapter 4. A Review of Morphological Perceptrons and Related Models 100

Algorithm 2 – Divide and Conquer Training Algorithm

begin
Initialize a box B that encloses all the patterns;
Add B to a list of boxes Bs;
while Bs ‰ H do

S=Bs(1);
if S only contains elements of a class j then

Add the hyperbox S to the list of boxes of the class F
j;

end
else

Divide S into 2n smaller hyperboxes and add them to Bs;
end
Remove S from Bs.

end

end

hyperboxes when the hyperbox error is too high.

The differential algorithm used to train MPs has the following components.

1. Initialization method to generate the initial population. Each individual is a set of

hyperboxes.

2. The fitness function to minimize the error. Particularly, it is used the number of

misclassified patterns divided by the total number of patterns(%).

3. The mutation operation performs a permutation of 30% of the rows, in order to

change the order of the classes.

4. A Differential evolutionary function creates a new populations using:

Lt “ La ` F pLb ´ Lcq (4.25)

where La are the best individual at some epoch, Lb and Lc are lists of random

elements of the same epoch.

5. The stopping conditions are a fixed number of epochs or an error lesser that some

ǫ .

The pseudo-code of this method is given in Algorithm 3.

Although DE algorithm has shown good experimental results in some simulations, it does

not guarantee perfect separation of classes or the same result independently of the order in

which the training patterns are presented to the network. However, a training algorithm that

makes use of iterative non-linear optimization techniques such as differential evolutionary

methods can get automatized solutions that could outperform other constructive algorithms

Chapter 4. A Review of Morphological Perceptrons and Related Models 101

Algorithm 3 – Differential Evolution Training Algorithm

begin
while Stop Conditions do

for d “ 1, ..., q do
Compute the Best Initial Population (K++ Means);
Compute the fitness value;
Select s solutions at random and the best parents s{2 parents;
Create s{2 offspring using DE equation (Equation 4.25);
for each offspring d1 do

If the fitness value is better for the offspring, worst parent is
replaced by d1.

end

end

end

end

in the test stage, it is, outperform in terms of solution generalization. Therefore, we can

observe that we considered this algorithm as constructive, although it uses an optimization

method to minimize a loss function. This follows the fact that it builds, incrementally,

hyperboxes based on the k++ means algorithm.

Tuning the Weights of Morphological Perceptrons using SGD Optimization

A method that involves SGD to train morphological perceptrons in terms of

DMNN was developed by Zamora and Sossa (ZAMORA; SOSSA, 2017). However, this

method was not only based on SGD, since it uses constructive methods to initialize

hyperboxes. We will refer to this model as DMNN-SGD.

In order to update the hyperboxes parameters and minimize a loss function, some modi-

fications were proposed to the original unit of computation of MPs (see Equation 4.19).

τ
j
kpxq “

n
ľ

i“1

pwj
ki ` bj

ki ´ xiq ^ pxi ´ wj
kiq (4.26)

In this case, instead of enclosing a pattern using interval-valued parameters rw,ws, a

parameter b P Rn
` that represents the length of an interval is used. Therefore, an implicit

interval-valued representation rw,w` bs is used to perform the basic computation of a

neuron. In addition, the competition layer is replaced by a softmax layer. Thus, a cross

entropy loss function is attached to this model. We can consider that this model uses only

excitatory output responses.

The probability that a pattern x belongs to the class j is given by Pjpxq. The cross entropy

between these probabilities and the targets (ideal probabilities) can be used as the target

Chapter 4. A Review of Morphological Perceptrons and Related Models 102

function J for a mini-batch Z “ tx1, . . . ,x
Qu:

JpZq “
Q

ÿ

q“1

nc
ÿ

j“1

ttq “ julogpPjpxqqq (4.27)

the gradient search direction for the parameters wj
ki and b

j
ki are:

dJ

dw
j
k

“ ´
Q

ÿ

q“1

r 0 0 ¨ ¨ ¨ fkj 0 0s (4.28)

and
dJ

db
j
k

“ ´
Q

ÿ

q“1

r 0 0 ¨ ¨ ¨ fkj 0 0s (4.29)

Note that the gradient directions are computed using only those parameters that contributes

to the output response, the others are ignored. Besides, search directions are set to zero in

the places where partial derivatives do not exist. Thus, we can observe that, in the best

case, each pattern x contributes with a single hyperbox parameter wj
ki modification for

each class. Therefore, a random initialization of the weights of this model is not possible.

To overcome this drawback, it was suggested to initialize the weights using a constructive

method. Consequently, this method is used to improve weights that were previously

computed by other method. Also, the algorithm can lead to overtraining whenever a

constructive algorithm that already guarantee a perfect training is considered to initialize

the weights. Note that this algorithm does not determine automatically the final number

of hyperboxes or perfect recall. Experimentally, some simulations with promising results

were presented in (ZAMORA; SOSSA, 2017).

Ellipsoidal Dendritical Neural Networks

A morphological perceptron that replaces hyperboxes with hyper-ellipsoids was

introduced by Arce et al., (ARCE et al., 2019). We will refer to this model as ellipsoidal

DNN (Ell-DNN). Furthermore, a training procedure based on k++ means was presented.

In this model the basic computation of a dendrite is given by:

τ
j
kpxq “ px ´ µkqTA´1

k px ´ µkq (4.30)

where µ is the mean vector related with the k-th hyper-ellipsoid of the j-th neuron and

A´1

k is a covariance matrix. The value of the j-th neuron is given computing the infimum

of K hyper-ellipsoids as follows:

τ jpxq “
K

ľ

j“1

τ
j
kpxq (4.31)

where K is also the number of dendrites of the neuron j-th. In this case, if τ jpxq “ 0 then

x is in the center of some hyper-ellipsoid k “ 1 . . . K, if τ jpxq ą 1 then x is outside of all

Chapter 4. A Review of Morphological Perceptrons and Related Models 103

the hyper-ellipsoids k “ 1 . . . K. This is, as the inputs move away from the hyper-ellipsoid

centroid, the output value grows. The process to train this model is given in Algorithm 4.

Note that it is needed to compute matrix inverses in this procedure. This can be taken as

Algorithm 4 – Ellipsoid Training Algorithm

begin
Given an initial number of dendrites per class K. Initialize a global error eg;
for each class Cj do

Initialize ek “ 8 set Kl “ K while ek ě eg do
Generate Kl clusters using K++-means;
for each cluster k “ 1, . . . , K do

Compute µk and
ÿ

k

;

Compute the inverse
´1
ÿ

k

;

Calculate the a hyperbox error for the class ek;
if ek ě eg then

Kl “ Kl ` 1
end

end

end

end

end

a drawback in two senses. Since matrix multiplications and inverses are involved in each

dendrite computation, the complexity of this algorithm is high. Besides, to store all the

matrices could be a problem in terms of memory. This method has been tested in few

simulations (ARCE et al., 2018). Nevertheless, in these particular problems it has shown a

competitive performance.

4.5 Hybrid Morphological Models

Morphological/Rank/Linear Networks

Morphological/Rank/Linear Neural Networks (MRL-NN) were first described

by Pessoa and Maragos (PESSOA; MARAGOS, 2000) as a multilayer feedforward network

that combines linear filters and operators of morphological perceptrons. Particularly, the

MRL-NN model combines morphological/rank neural networks (PESSOA; MARAGOS,

1996) (MRNN) and classical MLP operations. The unit of computation of an MRL-NN is

Chapter 4. A Review of Morphological Perceptrons and Related Models 104

called MRL-NN filter and it computes the convex combination:

y “ λα ` p1´ λqβ,
α “ Rrpx ` aq “ Rrpx1 ` a1, . . . , xn ` anq, (4.32)

β “ x ¨ bT ` t,

where λ P r0, 1s, x, a,b P Rn and the function Rrpzq is evaluated sorting the components zi

in decreasing order and picking the r-th element of the sorted list. The particular cases R1

and Rn become a morphological dilation and erosion, respectively. Therefore, the vector a

can be considered a structuring element. These units of computations are organized as a

layer. Note that whenever λ “ 0 the unit of computation becomes a classical computation

of an MLP node, and if λ “ 0 it becomes a computation of a MRNN. Therefore, this

model can be viewed as an extension of the classical perceptron model.

In their work, besides a solution to the parity problem using an MRL-NN model, Pessoa

and Maragos published an algorithm that modifies conventional BP to train MRL-NN

nodes. Observe that among all the functions involved in the computation of Equation

4.32, the rank filter is not differentiable. To deal with this problem, it was proposed to use

pulse functions (PESSOA; MARAGOS, 2000) and to compute parameters r in terms of

the function:

r “
Z

n´ Nl´1 ´ 1
1` expp´pq ` 0.5

^

, (4.33)

where n is the dimension of the output of the previous layer. This is an elegant way to

map from a variable p to an integer r. In this case, if p Ñ ´8 then Rr corresponds to

a minimum operation, if p “ 0 then it is equivalent to a median and if p Ñ 8 then it

represents the maximum operation. The set of weights for a node are represented by the

following vector w “ pa, p,b, t, λq. The partial derivatives with respect to p, which is the

one parameter involved with the rank filter, are given by:
Bα
Bp “ 1´ 1

1´Nl´1

Qpα1´ x ´ aq ¨ 1, (4.34)

where x are the inputs coming from the previous layer and Qpvq “ pqpv1q, . . . , qpvnqq
where qpviq “ 1, if vi “ 0 and qpviq “ 0, otherwise. The linear and convex parts of the

gradients can be derived as usual, using the chain rule. A common issue addressed in of

this approach is exploding gradients. Therefore, abrupt changes in the gradient estimation

can lead to numerical stability problems. Nevertheless, a simple solution to this problem

can be implemented using a smoothed version of qpviq such as qσpviq “ expp´1
2
vi{σq2q,

where σ ą 0 is a smoothing factor.

Dilation Erosion Linear Perceptron

The Dilation Erosion Linear Perceptron (DELP) was initially proposed by

Araújo et al., in (ARAÚJO; OLIVEIRA; MEIRA, 2012), a model composed of a combina-

tion of morphological and linear operators was presented. The learning process of DELP

Chapter 4. A Review of Morphological Perceptrons and Related Models 105

involves a backpropagation based method where the non-differentiability problem of the

morphological part is systematically circumcised using some observations from MRNN

framework and extending the ideas introduced in (ARAÚJO, 2011).

Each DELP unit of computation is represented by a balanced combination between dilation

and erosion operators and an activation function. The unit of computation outputs of a

DELP layer are given by:

yn “ fpunq for n “ 1, . . . , Nl,

un “ λnδnpxq ` p1´ λqεnpxq, λ P r0, 1s, (4.35)

δnpxq “
n

ł

i“1

pxi ` an,iq,

εnpxq “
n

ľ

i“1

pxi `1 bn,iq,

where x P Rn are the inputs coming from the previous layer and a,b P Rn are the dilation,

erosion weights, respectively. A common choice for activation function f is the sigmoid

function (see Table 2).

Following the strategy of (PESSOA; MARAGOS, 1996), a vector of weights wn “
pλ, an,bnq must by updated using backpropagation for each unit of computation in

a DELP layer. The main issue is the lack of differentiability of the dilation and erosion

operations. However, at it was mentioned, these operations can be regarded as particular

cases of rank operators.

n
ł

i“1

pxi ` an,iq “ R1px ` aq
n

ľ

i“1

pxi ` bn,iq “ Rnpx ` aq (4.36)

To deal with abrupt changes in gradient estimation, DELP also make use of smoothed

pulse functions with the form qσpviq “
1
2
exppvi

σ
q. Following these considerations, gradients

of parameters can be computed as follow:

Bεn

an

“ Qσpεn ¨ 1´ rx`1 bnsq
Qσpεn ¨ 1´ rx`1 bnsq ¨ 1

,

Bδn

an

“ Qσpδn ¨ 1´ rx`1 ansq
Qσpδn ¨ 1´ rx`1 ansq ¨ 1

, (4.37)

Bun

Bλn

“ δnpxq ´ εnpxq

These partial derivatives are used to compute the gradients. Then, a standard BP algorithm

can be applied.

The Convex-Concave Procedure

The Convex-Concave procedure (CCP) optimizes functions subject to weak

conditions that can be expressed as the sum of a concave and a convex part. CCP has been

Chapter 4. A Review of Morphological Perceptrons and Related Models 106

used to train binary classifiers such as support vector machines. This algorithm makes

use of gradients to optimize parameters and perform the minimization together with a

modified version of SGD. The idea is to build a convex cost function with constraint rules

that consist of difference-of-convex functions (DC). Then, the CCP is a general principle

which can be used to construct discrete time iterative dynamical systems for almost any

energy minimization problem (YUILLE; RANGARAJAN, 2002).

Charisopoulos et al., presented how to use this algorithm to train a classifier, which is in

fact, a modified morphological perceptron that makes use of erosion and dilation operators

(CHARISOPOULOS; MARAGOS, 2017).

Lets C0, C1 denote the class-labels of a binary hyperbox and let x P Rn be a pattern.

Minimize JpX,wq “
K
ÿ

j“1

maxpξj, 0q

s.t.

$

’

’

’

&

’

’

’

%

n
ł

i“1

wi ` xk
i ě ξj if xk P C0

´
n

ł

i“1

wi ` xk
i ě ξj : if xk P C1

(4.38)

The solution to this construction can be approximated by the CCP. The set of slack variables

ξk in the constraints are used to ensure that only misclassified observations contribute to

the cost function. However, in this approach (and most MPs based approaches), outliers

and feature extraction are not considered. To overcome this problem, (CHARISOPOULOS;

MARAGOS, 2017) also proposed to penalize those patterns with greatest chances of being

outliers. The penalization is computed using the distance (ℓp) between patterns and class

centroids.

µi “ 1
|Ci|s

ÿ

xkPCi

xk (4.39)

λk “ 1
||xk ´ µi||p

(4.40)

vk “ λk

maxk λk
(4.41)

So the minimization can be performed using:

Minimize JpX,wq “
K
ÿ

j“1

vk ¨maxpξj, 0q

s.t.

$

’

’

’

&

’

’

’

%

n
ł

i“1

wi ` xk
i ě ξj if xk P C0

´
n

ł

i“1

wi ` xk
i ě ξj : if xk P C1

(4.42)

This method is referred as WDCCP . Finally, the response is given by a dilation-erosion

linear combination.

ypxq “ λ
´

ł

i “ 1nwi ` xi

¯

` p1´ λq
´

ł

i “ 1nwi ` xi

¯

(4.43)

Chapter 4. A Review of Morphological Perceptrons and Related Models 107

Experiments and simulations using gradient descent with an MSE (Equation 3.3) and

WDCCP were conducted and described in (CHARISOPOULOS; MARAGOS, 2017).

Hybrid Morphological Linear Perceptron

A novel Hybrid Morphological Linear Perceptron (HMLP) model was presented

in (SUSSNER; CAMPIOTTI, 2020). In this approach, a set of linear and morphological

nodes are combined in the same layer. This proposal differs from the previous models

in several aspects. For example, instead of computing convex combinations of linear and

morphological operators at each node, individual nodes compute a normalized linear or

morphological operation of the form given by Equation 4.14. Also, HMPL does not compute

pulse function operations to calculate gradients of the morphological part. That is, instead

of training the morphological nodes at the hidden layer, it was proposed to make use of

extreme learning machine (HUANG; ZHU; SIEW, 2006; HUANG, 2014; HUANG, 2015).

The HMLP architecture is illustrated in Figure 23. The HMLP model is a feedforward

two-layer model with a hidden layer with morphological units as well as classical semi-

linear neurons with sigmoid activation functions (See Table 2). An output layer with only

semi-linear neurons performs the separation using the data of the hidden layer.

The HMLP model combines the approximation capabilities of the two-layer perceptron

Figure 23 – HMLP Topology

Source (SUSSNER; CAMPIOTTI, 2020)

having sigmoid activation functions with the capability of the MP to represent non-

differentiable functions. Hence, HMLP is a single hidden layer computational model in

which, morphological nodes compute εvpxq ^ δwpxq and linear nodes work as usual with a

slight modification, a constant term that regularizes the output of linear nodes.

The proposed process to train an HMLP uses extreme learning machine and therefore it

initializes randomly the hidden layer nodes (both morphological and semi-linear). Then,

Chapter 4. A Review of Morphological Perceptrons and Related Models 108

weights at the output layer are trained using a gradient descent approach (HUANG, 2015).

The resulting model is called HMLP-EL and it has shown very interesting properties in a

hyperbox experiments (SUSSNER; CAMPIOTTI, 2020).

4.6 Challenges and Issues of Morphological Perceptrons

To analyze the algorithms studied in the last section, we can start checking

the general properties that they satisfy. First, we can observe that all the models and

algorithms studied in the last section enclose patterns of a certain class in some geometrical

structures. For example, Ell-DNN presented in 4.4 makes uses of hyper-ellipsoids.

Another interesting property, which is related with the dendrite biological interpretation

given in 4.3, is the use of post-synaptic excitation and inhibition response at dendrites. As

example, elimination algorithm makes use of both types of post-synaptic responses, which

means that it uses hyperboxes that enclose patterns that do not belong to a class.

These algorithms can also be constructive, trained by some optimization method or use an

hybrid approach in which a constructive and an optimization method are used together.

Example of hybrid approaches are the DE-MP and the DMNN-SGD.

To guarantee a perfect recall on the training data and to get the same boundary decision

independently to the order in which the training data is presented, are desirable properties

for MP algorithms. Table 4 summarizes an analysis that considers those properties. In

Table 4 – Algorithms Properties

EO IO C O PR LB DO-I Geometry
MA-MP X X X X Hyperboxes
EA-MP X X X X X Hyperboxes
MP/CL X X X X X Hyperboxes

D&C X X X X Hyperboxes
WD.CCP X X X X Polytopes

DMNN-SGD X X X X Hyperboxes
Ell-DNN X X Hyper-Ellipsoids

EO and IO denote dendrites with excitatory and inhibitory response, respectively. C and
O stand for methods with constructive and optimization based algorithms. PR denotes
perfect recall for training dataset and DO-I means that the output is independent of
the data order. Lattice based method is denoted by LB and geometry denotes the basic
geometric-shape structure used by models.

general, MP training algorithms are highly geometrical procedures that take an input and

build the separation without any natural feature pre-processing. Unlike, neural networks

in which features and characteristics are automatically discovered from raw inputs and

then classified, MPs do a hyperbox directly from the raw inputs.

Chapter 4. A Review of Morphological Perceptrons and Related Models 109

With the exception of the WDCCP model, which uses a penalization to discard negative

effect from outliers, MP training algorithms do not have attached any special system to

analyze relation between class attributes, outliers, or pattern frequencies. This disadvantage

can be overcome including other operations and operators into the MP framework. Those

operation should have some special properties that allow a natural link between the

geometrical idea of MP and other techniques of processing.

In the following chapter, we will extend the framework of MPs, hopefully, it will allow us

to attach a natural feature-extractor or pre-processing techniques that improve the quality

of the hyperboxes computed by some algorithm. Besides, new MP models will be detailed.

110

5 Generalized Morphological Perceptrons

Numbers never lie, after all:

they simply tell different stories

depending on the math of the

tellers.

Luís Alberto Urrea, The Devil’s

Highway

Indisputably, classifiers come with their geometries that determine their classi-

fication capabilities and limitations. Therefore, the relative position of patterns belonging

to different classes in the feature space is a central issue in classification. Linear classifiers,

whose geometry relies on hyperplanes basis, non-linear classifiers that make possible to

separate instances that are not linearly separable or support vector machines that rely

on transform inputs to higher dimensions and classify the instances according to these

transformations are clear examples of different perspectives to accomplish the same task.

Interval calculus has been widely used to develop classifiers that dwell on the concept of

information granules. In classification based on granular information, it is assumed that

patterns that belong to the same class form information granules in the feature space.

Most classifiers that make use of granular information rely on the usage of techniques of

granular computing. In particular, intervals can be used to build hyperbox-driven classifiers

(PEDRYCZ; PARK; OH, 2008).

Many MP models and algorithms presented in Section 4.4 are hyperbox-driven, in which

intervals play an important role. The learning rules attached to its training rely on how

the elements of a certain class are enclosed by some geometric structure. Hence, it is in

the best of our interest to study the behavior of intervals in the framework of ℓ-groups

and ℓ-rings using I-set descriptors.

Next, we introduce another perspective to analyze and describe some models presented in

the last chapter. In order to achieve this task, we make use of lattice ordered structures.

Instead of describing the operations in terms of R˘8 and mathematical morphology, we

will focus our attention on operations that naturally arise from ordered structures studied

in Section 2.3. In particular, the use of Archimedean o-rings allows to describe new units

of computation that can be analyzed.

Besides, the biological interpretation of DMNN given in Section 4.3 is reviewed and adapted

to this framework.

Chapter 5. Generalized Morphological Perceptrons 111

Figure 24 – Generalized Morphological Perceptron

(a) Process of the k-th sub-module of the j-th
class.

(b) Process performed by the module of the j-th
class with K sub-modules, using the union
strategy and an identity activation function.

5.1 General Description of a GMP Model

In Generalized Morphological Perceptron (GMP), the compatible order and

operators of ℓ-groups and ℓ-rings are the main part of GMP individual values.

Lets An be an Archimedean o-ring, the k-th dendrite output of the j-th neuron is given

by:

ψ
j
kpxq “ pj

n
à

i“1

φpxi, rwj,k
i , w

j,k
i sq (5.1)

where pj P t´1, 1u for inhibitory/excitatory output response, x P An, rwi
j,k, wi

j,ks P IA, φ

is an IA-set descriptor and
à

is an aggregation function.

Therefore, a single dendrite k “ 1, . . . , K of a neuron measures some kind of relation

between a pattern x and an interval rwj,k,wj,ks. The j-th neuron can aggregate the outputs

of these dendrites using a union or an intersection strategy, following the next rule:

ψjpxq “
K

ľ

k“1

ψ
j
kpxq (5.2)

ψjpxq “
K

ł

k“1

ψ
j
kpxq (5.3)

Finally, an activation function determines the final output of the j-th neuron, as follows:

yj “ fpψjpxqq (5.4)

We let the activation function f be model dependent, instead of attaching some standard

activation function. 24a shows the data flow of a single sub-module j-th of k-th class

module. The final output is given by a winner-takes-all competition. Given a set of labels

L, class modules compete among each other to determine the assigned class label. Thus,

Chapter 5. Generalized Morphological Perceptrons 112

the assigned label to an input observation is given by a maxnet as follows:

opzq “ |L|
argmax

k“1

ykpzq (5.5)

Particularly, basic computations of the model described in Section 4.3, which are given

by Equation 4.19 can be expressed in terms of the inf-aggregation and inf-descriptors, as

follows:

τ
j
kpxq “ pk

j

n
ľ

i“1

ľ

ℓPt0,1u

p´1q1´ℓpxi ´ wℓ
i,j,kq “ pk

j

n
ľ

i“1

pw0

i,j,k ´ xiq ^ pxi ´ w0

i,j,kq

“ pk
j

n
ľ

i“1

φ^pxi, rw1

i,j,k, w
0

i,j,ksq (5.6)

which implies that algorithms expressed in terms of DMNN can be also expressed in terms

of I-set descriptors and aggregation functions.

Also, the MP models presented in 4.2 can be described in terms of aggregations and

I-set descriptors. In particular, their basic computation, given by Equation 4.14 can be

expressed as follows:

gpxq “ εa˚pxq ^ pδqbpxq “
«

n
ľ

i“1

pxi ´ aiq
ff

^
«

n
ľ

i“1

pbi ´ xiq
ff

“
n

ľ

i“1

pxi ´ aiq ^ pbi ´ xiq “
n

ľ

i“1

φ^pxi, rai, bisq, (5.7)

where ai ď bi for i “ 1, . . . , n. We conclude that the MP model described by means

of erosion and anti-dilation can be also expressed in terms of the inf-aggregation and

inf-descriptor with pk
j “ 1. Therefore, any algorithm expressed in terms of the model

reviewed in 4.2 can be described using operations of GMP.

Now that we have reviewed and unified these models into GMP, a first question that

naturally arise is: what will bring us this new perspective?

5.2 A Review on Aggregator and Descriptor Combinations

A first observation is that pairs consisting of an inf-aggregation and an inf-

descriptor produce non-differentiable and non-smooth functions. To overcome this draw-

back, we can define new models that at least are differentiable using other aggregations

and I-set descriptors.

In this chapter, we will review some properties on aggregations-descriptors pairs that

perform a unit computation of a GMP model (Equation 5.1).

The first task is to find which pairs of aggregations-descriptors from those studied in

Section 2.6 can be used with SGD. Let us start discarding those pairs that does not bring

something new. For example, we studied in Section 2.6 that pairs involving inf-aggregations

Chapter 5. Generalized Morphological Perceptrons 113

are not smooth and also, not differentiable everywhere. Also, following the equality given

in Equation 5.7, the pair inf-aggregation/inf-descriptor has been widely studied in DMNN

and MPs. Another result about the inf-descriptor and inf-aggregation pair is given in

Section 2.6. Another result about the inf-descriptor and inf-aggregation pair is given in

Section 2.6. In particular, Theorem 24 links the usual d8 distance with the computation

of MPs.

As stated in Theorem 22, if we consider the pair inf-aggregation, dot-descriptor, it does

not bring to us a different geometry from the one generated by the inf-aggregation and

inf-descriptor pair. Therefore, we can discard also this pair, which is neither smooth nor

differentiable.

On the other hand, sum-aggregations had not been the focus of MP models. Besides,

the dot-descriptor has not even been considered in terms of MPs. Hence, to use pairs

sum-aggregation, dot-descriptor to build GMP units of computation is a good choice.

5.3 Generalized Morphological Perceptron in Deep Learning

Considering that basic structures of deep learning, studied in Section 3.3, are

layers, it is in the best of our interest to define layers based on the GMP framework. To

accomplish this task, we use some observations studied in Section 5.2. Let us define two

GMP based layers.

The first is a fully connected layer and it has units that compute their outputs following

Equation 5.1. We refer to this layer as I-set decriptor-L-fuzzy aggregation layer. We

will focus on the I-set descriptor-L-fuzzy aggregation layer that makes use of the pair

P “ p
ÿ

, rφˆsq with excitatory output responses. We call Sum-Dot or SD layer, for short,

whenever the pair P “ p
ÿ

, rφˆsq is used. The computation of each unit of an SD layer is

given in Equation 5.8.

The second layer has exactly one node per class and computes a operation similar to

Equation 5.3, which implies that each unit performs the union or intersection strategy.

Sum-Dot GMP Layer

The Sum-Dot GMP Layer (SD) is a feedforward fully connected layer where

each node computes a forward pass function f ℓ
i : Rn Ñ R, where n “ |Fℓ´1| as follows:

f ℓ
i pxq “

n
ÿ

j“1

pxj ´ wi
jq ¨ pxj ´ wi

jq (5.8)

where x is the output of the previous layer. The values of gradients and the backward pass

functions are computed following the derivatives given in Equations 2.75, 2.76 and 2.77.

Note that this layer is fully connected.

The learnable parameters of a unit of computation at SD layers are intervals rwj,wjs in

Chapter 5. Generalized Morphological Perceptrons 114

In
R which are initialized as random hyperboxes. First, each wj

i is initialized with a random

value that considers a small Gaussian with mean 0 and variance according to the number of

inputs and outputs of the layer. Second, an ǫj
i is initialized using the same strategy. Then,

we compute wj “ wj
i ` |ǫj

i |. This strategy initializes the parameters as small intervals with

different lengths.

Observation #1: If the number of classes |L| and nodes |Fℓ| at SD layers are the same, the

class aggregation layer becomes unnecessary. Therefore, not every SD layer has a class

aggregation attached.

Observation #2: To have more than one SD unit of computation per class, it is necessary

to do a partition of the data. This way, the training data that belong to a certain is

partitioned in smaller subsets, an each one of these subsets is assigned to a one Sum-Dot

unit of computation. This solution is similar to the the solution proposed in (ZAMORA;

SOSSA, 2017). In this case, the training by SGD can be considered a tuning of weights

for other algorithms. Nevertheless, this process is not the focus of this thesis and we will

work without the class aggregation layer. Hence, we work with one unit of computation

per class.

Class Aggregation GMP Layer

The class aggregation GMP layer Fℓ computes the forward pass for each

unit of computation as follows:

f ℓ
i pxq “

ł

kPKi

xk, for i “ 1, . . . , |L| (5.9)

where x is the input coming from the previous layer, |L| is the number of available labels,

Ki ‰ H, for i ‰ j, Ki XKj “ H is the set of units of computation that belong to class i.

Therefore, the class aggregation GMP Layer acts as a router. The backward pass works in

the opposite direction, hence, the gradients passed to the previous layer are zero on these

places discarded at the forward pass. In this study we assume the use of Sum Dot as the

unit of computation of GMP layers, which we had proven is differentiable.

Observation #3: In order for these layers to become useful architectures in the deep

learning context, a proper structure must be defined. Hence, the next step is to define

some hybrid DL/morphological models and its training by SGD.

5.4 The Sum-Dot Model

In this section we present the simplest model that involves the layers defined

in Section 5.3.

This model can be considered a model with at least four layers that makes use of a Sum-Dot

layer to create the decision surface. The first layer F1 is the input layer that can perform a

Chapter 5. Generalized Morphological Perceptrons 115

zero-pad normalization, a gaussian filter or an identity function, as specified in Section 3.4.

The second is a GMP Layer F2 that computes some I-set descriptor and an aggregation at

each sub-module. We focus on the Sum-Dot pair, which is differentiable. The third layer is

a class aggregation and F3 that computes a union or intersection wise strategy. Note that,

layer F3 is optional if the number of nodes of layer F2 are already equal to the number

of classes. Next, we recommend a soft-max layer F4 that makes use of a cross entropy

loss function at layer F5. Note also that, layers F4 or F5 can be replaced by any other

mechanism that computes a loss function, such as those studied in 3.2. Nevertheless, we

stated before that we will focus our descriptions on Sum-Dot and softmax-cross entropy,

since softmax-cross entropy is a well succeeded loss function in classification.

The experiments of Chapter 6 assume this configuration. Besides, we assume that layer

F3 has exactly one node by class and, therefore, neither the union nor the intersection

strategy is required in the simulations.

Next, we present a backpropagation numerical example designed to understand the

behavior of this model. Let us assume a binary problem with L “ tc1, ..., cmu classes and a

training dataset T “ tpx1, y1q, . . . , pxk, ykqu such that the observations are vectors xi P Rn.

Without loss of generality, let the input layer perform an identity. Assume an SD layer

with two nodes so that each node represents one class. Hence, the class aggregation can be

omitted. Therefore, the learnable parameters are rws,wss, for s “ 1, 2. Finally, assume the

softmax-layer and CE loss function. As aforementioned, the gradients from the softmax

layer to the SD layer are given by equation 3.34, Therefore, the partial derivatives with

respect to ws
i and ws

i are given by:

BL
Bws

i

“ pxi ´ ws
i q ¨

m
ÿ

j“1

poj ´ yjq

BL
Bws

i

“ pxi ´ ws
i q ¨

m
ÿ

j“1

poj ´ yjq

BL
Bxi

“
m
ÿ

j“1

poj ´ yjq ¨ pwj
i ` wj

i ´ 2xiq

Example 6. Consider the same model presented above and an observation x “ r0.2, 0.5, 0.8s
that belong to the class c1. Assume that the weights of w1 “ r0.3, 0.40.6s, w1 “ r0.4, 0.6, 0.7s,
w2 “ r0, 0.5, 0.7s and w2 “ r0.2, 0.6, 0.7s. Thus, the outputs at the SD layer are:

y1 “ r´0.03,´0.01sT ;

and therefore, the softmax layer outputs are:

y2 “ r0.495, 0.505sT ;

which implies that the observation was misclassified.

In this example, the gradient values computed at the softmax layer are:

gd1 “ r´0.505, 0.505sT ;

Chapter 5. Generalized Morphological Perceptrons 116

And the gradients for the learnable parameters at the SD layer are:

∇
1

w “ r0.1010, 0.0505,´0.0505sT , ∇
2

w “ r0,´0.0505, 0.0505sT

∇
1

w “ r0.0505,´0.0505,´0.1010sT , ∇
2

w “ r0.1010, 0, 0.0505sT

Using a learning step γ “ 0.5, the new values of parameters at this iteration are:

w1 “ r0.3, 0.4, 0.6sT ´ 0.05∇
1

w “ r0.2495, 0.3748, 0.6252sT (5.10)

w1 “ r0.4, 0.6, 0.7sT ´ 0.05∇
1

w “ r0.3748, 0.6252, 0.7505sT (5.11)

w2 “ r0, 0.5, 0.7sT ´ 0.05∇
2

w “ r0, 0.5252, 0.6748sT (5.12)

w2 “ r0.2, 0.6, 0.7sT ´ 0.05∇
2

w “ r0.1495, 0.6000, 0.6748sT (5.13)

And with these new parameters, the new output is:

y1 “ r´0.0016,´0.0283sT

and therefore, the softmax layer output is:

y2 “ r0.5067, 0.4933s

which implies that the observation x was correctly classified.

In this simple example, we can analyze how the parameters vary with respect

to an input. Considering the class of x is c1, we saw that for i-th dimension, values w1

i , w
1

i

becomes smaller whenever xi ď wi
1. If we assume w1

i ď xiw
1

i then w1

i become smaller and

w1

i larger. Whenever w1

i ď xi, the values w1

i , w
1

i become larger.

On the other hand, w2

i , w
2

i become larger whenever xi ď w2

i . If we assume w2

i ď xiw
2

i then

w2

i becomes larger and w2

i smaller. Whenever w2

i ď xi, values w1

i , w
1

i become smaller.

The interpretation of this observation is simple: whenever x belongs to the s-th unit of

computation, the sequence of intervals rws,wss generated by the SGD algorithm will try

to enclose x. For the other units, the sequence will try to move away intervals from the

observation. In this model, the gradient values w.r.t. inputs x are not used, hence, the SD

Layer does not propagate their errors to any previous layer. Nevertheless, this perspective

can entail some problems. Figure 25 illustrates binary classification examples, in which

the separation using a single unit of computation per class is not possible. In that sense,

constructive algorithms presented in Section 4.4 propose to build units of computation

incrementally. However, we will propose a deeper topology in which other transformations

are performed before the computation of SD layer units to deal with these problems.

5.5 FC-SD Models

The second model proposed here propagates the gradient through the SD to

previous FC layers. In this hybrid model, one or a set of FC layers perform pre-processing

Chapter 5. Generalized Morphological Perceptrons 117

Figure 25 – Spiral and Included Datasets

Blue dots and red dots, represent observations of class C0 and C1 respectively. These
two datasets can’t be separated using a single unit of computation by class with the
SD-Softmax model.

of the data. In this hybrid method non-linear FC layers are followed by activation layers.

Then an SD layer performs classification.

FC-SD models tested in this thesis have at least seven layers. Next we specify a minimalist

model used here.

1. The first layer is the input layer.

2. The second layer is a weighted fully connected layer.

3. The third is a batch normalization layer. This layer is optional. However, since SD

parameters are intervals, the covariance shift may cause problems in earlier layers.

4. The fourth layer is an activation function, we recommend a linear rectifier.

5. Items from 2 to 4 can be applied in cascade more than once. (optional)

6. Next layer is an SD layer with a number of unit of computation equal to the number

of classes.

7. The last two layers compute a soft-max and a cross entropy loss function at training

stage.

Observation #1: Since this model relies on a set of linear transformations, which extract

features from an input and a SD layer that performs classification, we will refer to this

model as FC-SD.

Observation #2: Although the batch normalization layer is optional, it improves the

convergence and diminishes the oscillations of the BP algorithm, mainly at early stages.

In order to check if this model has the capacity to deal with the datasets illustrated in

Figure 25, we perform a simulation. In this simulation, the number of nodes at the FC

Chapter 5. Generalized Morphological Perceptrons 118

Figure 26 – FC-SD-Softmax Model Test on Spiral and Included Datasets

c
1
 outputs

c
2
 outputs

c
1
 patterns

c
2
 patterns

(a) Class separation of dataset using three
nodes at fully connected layer and two
nodes at SD.

c
1
 outputs

c
2
 outputs

c
1
 patterns

c
2
 patterns

(b) Class separation of included dataset using
six nodes at fully connected layer and two
nodes at SD.

c
1
 outputs

c
2
 outputs

c
1
 patterns

c
2
 patterns

(c) Class separation of spiral dataset using
eight nodes at fully connected layer and
two nodes at SD.

c
1
 outputs

c
2
 outputs

c
1
 patterns

c
2
 patterns

(d) Class separation of included dataset using
fifteen nodes at fully connected layer and
two nodes at SD.

layer is varying (cf. Figure 26).

We trained the FC-SD models using the entire datasets. Then, we plotted the resulting

decision surface generated by model. The reader can notice that a perfect class separation

was achieved in these cases. Nevertheless, in these simple examples we do not prove the

generalization capability of the model. In fact, it is only useful to check that the FC-SD-SM

model computes much more complex surfaces than the SD-SM model whenever a single

unit of computation per class is considered in the SD layer.

5.6 Conv-SD Models

The last hybrid model presented here uses GMP layers to perform classification

and a convolutional part that is responsible for feature extraction. This architecture has

at least 8 layers.

1. The first layer is the input layer and could perform some normalization function or

an identity.

2. The second layer is a convolutional layer. The configuration for convolution filters,

Chapter 5. Generalized Morphological Perceptrons 119

stride and padding is dependent of the problem. It is followed by some activation

functions. In general, as activation function BN+ReLu layers are recommended.

3. Next, a pooling layer computes a downsampling operation.

4. The layers described in items 2 and 3 can be applied in cascade more than once

(optional).

5. Note that, last layers belong to the convolution part. After some cascades of con-

volution and downsampling, we can consider the FC-SD model to perform the

classification part. Therefore, an architecture based in the FC-SD model presented

before can be attached to the convolutional part.

6. The last layers are concerned with generating a loss function. We recommend a

softmax and to use the cross entropy loss function at the training stage.

Observation #1 Since the last model makes use of convolution in the early layers, its use

is restricted to analyze datasets with spatial information.

Observation #2 The convolutional part of a Conv-SD model, may vary depending on the

problem.

Observation #3 The SD part of a Conv-SD model differs from a traditional CNN, or

Conv-FC to be more exact, in the next to last layer. Instead of using an FC layer with the

number of nodes equal to the number of classes, Conv-SD models make use of a GMP

layer. Specifically, we use an SD layer.

120

6 Some Experimental Results

Don’t compete! — competition

is always injurious to the

species, and you have plenty of

resources to avoid it!.

Peter Kropotkin, Mutual Aid: A

Factor of Evolution

The purpose of this chapter is to compare the classification performance of the

models presented in this work with some well-known related classifiers from the literature.

It is important to mention that the classification models proposed in Sections 5.4 and

5.5 do not depend on any spatial structure. In general, these classifiers work on any

classification dataset. On the other hand, the models proposed in Section 5.6, which make

use of convolutional operators, are designed to work with spatial structures such as images.

Hence, datasets to test Conv-SD are image datasets. Therefore, two types of datasets must

be considered to test the models presented in Chapter 5.

The first set of experiments concerns some of the datasets used in (SUSSNER; CAMPIOTTI,

2020) that were drawn from from the UCI Machine Learning Repository (ASUNCION;

NEWMAN, 2007). Besides traditional classification models, some lattice based and mor-

phological classifiers presented in Chapter 4 were selected to compare the performance

of the models proposed in Sections 5.4 and 5.5. A second experiment was made using a

subset of the MNIST digits database (LECUN et al., 1998).

The other experiments are concerned with image classification. The image datasets for

classification selected are the Robot Visual Self-Localization (COUNTRY.,), the MNIST

digits database (LECUN; CORTES, 2010) and the CIFAR-10 database (KRIZHEVSKY;

HINTON et al., 2009). Here, we test the models proposed in Chapter 5. Besides some

classifiers studied in Chapter 3, we selected some classifiers specialized in image processing

to compare results.

6.1 General Classification Problem Datasets

In this section we present an analysis of the SD and FC-SD models on ten

different datasets. The purpose is to compare the classification performance with some

related models presented in Chapter 4, namely:

• MP/CL (SUSSNER; ESMI, 2009b; SUSSNER; ESMI, 2011).

Chapter 6. Some Experimental Results 121

• DMNN-SGD (ZAMORA; SOSSA, 2017).

• DELP (ARAÚJO; OLIVEIRA; MEIRA, 2012).

• HMLP-EL (SUSSNER; CAMPIOTTI, 2020).

• MLP-EL (HUANG; ZHU; SIEW, 2006; HUANG, 2014).

• MLP-BP (HINTON; SRIVASTAVA; SWERSKY, 2012).

Besides morphological classifiers, other classifiers were considered, namely:

• Nearest Neighbors (ALTMAN, 1992).

• Naive Bayes (HASTIE; TIBSHIRANI; FRIEDMAN, 2009).

• Support Vector Machine (CORTES; VAPNIK, 1995).

• Bagging Random Forest (PRASAD; IVERSON; LIAW, 2006).

• XG-Boost with softmax (CHEN et al., 2015; CHEN; GUESTRIN, 2016).

The simulations were conducted on eleven datasets taken from UCI Machine Learning

Repository. ADAM, and learning decay schedule were considered for the following models:

SD, FC-SD and MLP-BP. The hyperparameters used to train these models were a Squared

decay factor of 0.999, a momentum of 0.95 for adaptive momentum and a learning rate

decay factor of 0.5. The decay schedule performs the decay factor of the learning rate 3

times, considering the max number of epochs. For the FC-SD and the MLP-BP models

fully connected weights and L2 regularization with a multiplier 0.0001 were applied. In

general, for SGD related models these parameters will be used in most of the experiments

performed in this chapter. The number of epochs, learning rates, nodes in the hidden

layers and other parameters were computed using a random search taking into account

mean accuracy.

The Iris Dataset

The Iris flower dataset or Iris Dataset (IRD), for shortly, is a dataset with

multiple measures introduced by Ronald Fisher in (FISHER, 1936).

The data consist of 150 well balanced observations from three different species of Iris (Iris

Setosa, Iris Virginica and Iris Versicolor). The features of each observation are: length

and width of sepals and petals, in centimeters. Hence is a dataset with four features. This

dataset became a typical test case for classification.

Chapter 6. Some Experimental Results 122

Table 5 – Hyperparameters computed for the datasets selected from UCI.

Names IRD PAD LED WID BCD IQD CAD DED LCD LYD SMD

SD-SM
Epochs 60 80 60 30 80 100 50 80 80 50 80

LR 0.05 0.010 0.010 0.050 0.050 0.01 0.05 0.05 0.01 0.080 0.010

Batches 16 128 256 9 8 32 15 16 8 32 64

FC-SD-SM

Epochs 60 80 80 80 50 50 60 60 50 40 80

LR 0.006 0.003 0.01 0.01 0.02 0.05 0.001 0.002 0.02 0.03 0.02

FC Layer 35 100 150 30 200 100 60 50 100 30 100

Batches 16 128 60 12 32 32 50 30 20 8 256

XGB
MaxDepth 5 4 8 5 3 5 5 4 6 5 8

LR 0.1 0.05 0.2 0.1 0.1 0.01 0.2 0.1 0.08 0.09 0.2

RF-BAG

Cycles 10 14 11 34 13 198 84 12 42 11 10

Split Crit gdi gdi t-ing gdi gdi dev gdi gdi dev dev t-ing

Min Leaf 2 5 2 1 3 2 1 3 2 2 1

Max Splits 88 471 7782 4 30 278 352 14 7 57 257

MP/CL Hyperparameters not required

TSGD-MP
LR 0.03 0.02 0.01 0.05 0.004 0.007 0.01 0.0001 0.01 0.05 0.04

Method K++ nHpC K++ HpC HpC HpC K-means HpC nHpC nHpC nHpC

Hyperboxes 4 2 1 - - - 2 0 2 8 4

DELP
Modules 60 150 250 50 150 200 200 80 150 120 200

LR 0.01 0.01 0.01 0.01 0.005 0.01 0.01 0.01 0.1 0.01 0.01

HMPL-EL
Linear Nodes 60 132 2000 3000 800 1000 500 200 100 200 1100

Morphs Mods 200 300 2300 2900 1000 1200 800 600 1000 500 1500

Linear Reg 0.0010 0.0200 0.1 1 1 1 1 0.9 0.1000 0.8 0.9

MLP-EL
Hidden 200 400 5000 3000 3500 1500 900 350 5000 5000 2000

Linear Reg 1.1 0.01 0.001 1 1 1 1 0.5 .01 .5 1

MLP-BP

Batches 16 128 60 12 32 32 50 30 20 8 256

LR 0.008 0.001 0.010 0.01 0.01 0.05 0.001 0.004 0.01 0.02 0.02

H. FC Layer 50 110 130 50 180 80 60 90 100 30 100

Epochs 60 80 80 80 50 50 60 60 50 40 80

KNN
Neighs. 3 5 1 1 3 1 11 8 1 14 1

Distance Euc Cos Euc CB CB CB Cos CB SP CB Corr

Naive Bayes
Width 0.15 0.34 0.44 0.11 0.22 0.11 31.07 0.21 1.1 0.43 1.8

Kernel N EP N N EP N EP N EP TR EP

SVM

Constraint 45.20 1.61 0.034 477.16 0.58 999.06 0.0040 0.34 9.8543 6.47 263

Kernel Scale 1.81 - - 285.01 - - - - - - -

Polynomials - 3 - - - - - - 3 - 3

Coding onevsall onevsall onevsall onevsone onevsone onevsone onevsall onevsall onevsone onevsall onevsone

Method G P L G L L L L P L P

We considered eleven datasets that belong to the UCI Machine Learning Repository
(ASUNCION; NEWMAN, 2007) and thirteen different classifiers.

Chapter 6. Some Experimental Results 123

The Pages Dataset

The Pages Dataset (PAD) was originally created by Donato Malerba (ESPOS-

ITO; MALERBA; SEMERARO, 1994; MALERBA; ESPOSITO; SEMERARO, 1996) The

dataset has 5,473 observation taken from 54 documents. Each observation has 10 attributes

that concern one block property and all these attributes are numeric. The dataset has 5

classes and it was designed to accomplish a task called document classification. Document

classification aims at identifying the membership class of a document, provided that

the user is able to define a set of classes that are relevant for his specific application

(ESPOSITO; MALERBA; SEMERARO, 1994; ASUNCION; NEWMAN, 2007).

The Letter Dataset

The Letter Dataset (LED) was originally created by David J. Slate and was

designed to identify each of a large number of black-and-white rectangular pixel displays

as one of the 26 capital letters in the English alphabet. Character images were based on

20 different fonts and each letter within these 20 fonts was randomly distorted to produce

a file of 20,000 unique observations. Each observation was converted into 16 primitive

numerical attributes (statistical moments and edge counts) which were then scaled to fit

into a range of integer values from 0 through 15. We train on the first 16,000 items and

then we used the resulting model to predict the letter category for the remaining 4,000

observations (FREY; SLATE, 1991; ASUNCION; NEWMAN, 2007).

The Wine Dataset

Data contained in the Wine Dataset (WID) is a result of chemical analysis

of wines grown in the same region of Italy and derived from three different cultivars.

Hence the data have 13 features with 3 classes defined by the 3 cultivars (AEBERHARD;

COOMANS; VEL, 1994). The analysis of the wine determined quantities for 13 properties

found in each of the three types of wines. Note that all attributes are continuous (FORINA

et al., 1988).

The Cancer Dataset

The Breast Cancer Diagnostic Dataset (BCD) is a binary classification dataset

and was initially proposed by W. Wolberg. The process to get the features involves an image

digitalization of a fine needle aspirate (FNA) of a breast mass (STREET; WOLBERG;

MANGASARIAN, 1993). The attributes of each observation describe characteristics of the

cell nuclei present in the image and there are ten features that describe each sample. The

task to be accomplished is automated cancer diagnosis using these characteristic taken

from the cell nuclei (DEMIR; YENER, 2005).

Chapter 6. Some Experimental Results 124

The Ionosphere Quality Dataset

The Ionosphere Quality Dataset (IQD) was collected by the Space Physics

Group of The Johns Hopkins University Applied Physics Laboratory. The data was

collected by a system in Goose Bay, Labrador and consists of a phased array of 16 high-

frequency antennas with a total transmitted power on the order of 6.4 kilowatts.

Broadly speaking, the radar operates by transmitting a multi-pulse pat-tern to the

ionosphere. Then, the receiver is turned on between pulses, and the target velocity is

determined by measuring the phase shift of the returns. The targets were free electrons in

the ionosphere. There were 17 pulse numbers for the Goose Bay system. Instances in this

database are described by 2 attributes per pulse number, corresponding to the complex

values returned by the function resulting from the complex electromagnetic signal. "Good"

radar returns are those showing evidence of some type of structure in the ionosphere.

"Bad" returns are those that do not; their signals pass through the ionosphere. Ionosphere

dataset is a binary classification problem with 34 continuous measures for each observation

(SIGILLITO et al., 1989). Nevertheless, since the second variable of the dataset has a 0

standard deviation, it was removed from the dataset. Hence, experiments were conduced

using 33 characteristics for each observation.

The Arrhythmia Dataset

The Cardiac Arrhythmia Dataset (CAD) contains 279 attributes, 206 of which

are linear valued and the rest are nominal. The aim is to distinguish between the presence

and absence of cardiac arrhythmia and to classify it in one of the 16 groups. Class 01

refers to ’normal’ ECG classes 02 to 15 refers to different classes of arrhythmia and class

16 refers to the rest of unclassified ones (GUVENIR et al., 1997).

It is important to mention that this dataset contains missing values. Attributes with

missing values were ignored. Besides, some attributes with redundant data were not

considered.

The Dermatology Dataset

The differential diagnosis of erythemato-squamous diseases is a difficult problem

in dermatology. They all share the clinical features of erythema and scaling, with very

few differences. The diseases in this group are psoriasis, seboreic dermatitis, lichen planus,

pityriasis rosea, chronic dermatitis and pityriasis rubra pilaris (GÜVENIR; DEMIRÖZ;

ILTER, 1998). The Dermatology Dataset (DED) is a classification dataset that considers

those diseases. Hence, the dermatology dataset is a multi-class problem with six classes.

The dataset contains 13 clinical and 22 histopathological features for each individual

observation. The clinical features considered include family history and symptomatic

characteristic observed in individuals. To collect hystopatological features, analysis of the

Chapter 6. Some Experimental Results 125

samples under a microscope were done. The number of observations of the dataset is 366,

which means that 366 individuals with erythemato-squamous diseases were considered.

The Lung Cancer Dataset

The Lung Cancer Dataset (LCD) describes 3 types of pathological lung cancers.

All the features are nominal and they take values from 0 to 3. We selected 54 of the 56

original features. In this case, we excluded two features with missing values. The dataset

describes 3 types of pathological lung cancers and it was introduced by Hong, and Yang

in 1991 (HONG; YANG, 1991).

The Lymphography Dataset

the Lymphography Dataset (LYD) was developed from the University Medical

Centre, Institute of Oncology in Yugoslavia (CESTNIK; KONONENKO; BRATKO, 1987).

This dataset has repeatedly appeared in the machine learning literature and it has been

widely studied (HUTTER; ZAFFALON, 2005). The idea is to classify the lymphograpy

and detect normal, metastases, malign or fibrosis lymph. The LYD is a classification

dataset with 4 classes and 148 observations.

The Segmentation Dataset

The Segmentation Dataset (SMD) was created by the Vision Group in the

University of Massachusetts and the observations were taken from a database of 7 outdoor

images. To create the instances the images were handsegmented and all the pixel were

processed. Then, each observation represents a 3ˆ 3 regions with 19 features (BAGIROV

et al., 2003).

Other Considerations

Each dataset was randomly partitioned, the training dataset consists of 80% of

the data and the test dataset consists of 20%. The set of hyper-parameters for the models

was computed considering a random search and the best classification performance in

the validation stage. In particular, we considered 20% of the original training dataset for

validation purposes. We used 512 different random hyperparameter configurations. This is,

in our simulations, the set of parameters tested in the random search for the SGD models

has the following configuration: The number of epochs considered were r5, 250s P N, the

initial learning rate has values in r0.00001, 1s and the number elements of the batches

has values in t8, 16, 32, 64, 128, 256u. In addition, for the models with hidden layers, we

consider 1 to 1000 nodes in the random search. Therefore, 512 random combinations of

Chapter 6. Some Experimental Results 126

Table 6 – Classification Accuracies and F1-Scores in the Testing Stage.

IRD PAD LED WID BCD IQD CAD DED LCD LYD SMD AVG

SD-SM
96.67 100 76.78 97.14 93.27 91.43 56.81 97.95 83.33 90.50 95.19 89.01
96.63 100 76.57 97.50 92.91 90.96 25.52 97.59 85.37 71.49 95.46 84.55

FC-SD-SM
96.67 100 96.40 97.14 95.58 93.14 70.22 97.12 80.67 90.21 97.49 92.24
96.63 100 96.40 97.50 95.32 92.70 26.45 96.65 76.07 64.35 97.65 85.43

XGB
96.67 100 94.98 100 95.58 90 74.73 94.52 66.67 89.29 96.97 90.85
96.63 100 94.97 100 95.29 89.23 32.73 93.35 66.67 50.99 97.12 83.36

SVM
96.67 100 94.83 97.14 97.35 87.14 70.33 97.26 66.67 89.66 95.45 90.23
96.63 100 94.82 97.44 97.22 85.84 29.16 96.86 66.67 60.61 95.64 83.72

RF-BAG
96.33 100 92.73 98.00 95.93 93.43 72.75 96.16 59.33 87.96 96.97 89.96
96.26 100 92.74 98.00 95.68 92.85 30.26 95.45 49.12 52.77 97.12 81.84

HMPL-EL
96.67 100 91.62 91.71 95.04 94.14 55.27 97.26 80 84.91 92.32 89.00
96.63 100 91.65 91.87 94.78 93.60 22.73 96.80 81.63 52.75 92.58 83.18

DMNN-SG
96.67 100 44.93 94.29 92.92 90 39.56 94.52 50 71.43 68.61 76.63
96.63 100 46.16 94.47 92.57 89.13 19.72 94.40 50 67.30 73.68 74.92

DELP
96.67 100 83.57 71.43 61.95 94.29 53.85 97.26 80 85.71 73.16 81.62
96.63 100 84.65 71.84 38.25 93.92 7.50 96.86 81.63 48.72 74,88 73.50

MPCL
96.67 99.82 61 94.29 95.58 90 51.65 87.67 50 65.52 91.56 80.34
96.63 99.51 64.04 94.47 95.29 89.56 20.71 86.27 50 75.91 92.58 78.63

MLP-EL
96.67 100 95.39 90.57 93.81 92.43 51.21 96.85 78 88.89 92.64 88.77
96.63 100 95.39 90.71 93.41 91.99 20.03 96.11 59.55 89.43 92.86 84.19

MLP-BP
96.67 100 93.49 92.86 93.81 93.57 58.24 97.26 66.67 87.93 93.83 88.57
96.63 100 93.47 93.44 93.41 93.18 28.93 96.6 66.67 59.7 94.09 83.28

E-KNN
96.67 99.91 94.87 100 98.23 94.29 62.64 97.26 40 89.66 94.81 88.03
96.63 99.75 94.83 100 98.14 93.92 25.08 96.34 22.22 61.26 94.95 80.28

NB
96.67 99.82 74.45 97.14 92.04 97.14 59.34 97.95 66.67 89.66 89.18 87.28
96.63 99.50 75.13 97.50 91.60 96.89 24.12 97.59 66.67 92.70 89.63 84.36

The performance was evaluated using the accuracy and the macro average F1-score
measurements (ASCH, 2013). For each model the first row represents accuracy and the
second row the macro average F1-score. In the last column the average (AVG) of both
measures for each model is presented.

elements of these sets of parameters are tested in the validation set, the set of hyper-

parameters with best accuracy is selected to train the model. For the SVM configuration

gaussian (G) linear (L) and polynomial (P) kernels were considered in the random search.

Besides, the onevsall and onevsone strategies for coding were selected in the validation

stage together with the constraint value. For the gaussian case the kernel scale was also

considered. In the case of the Naive Bayes Epanechnikov (EP), triangular (T) and normal

(N) kernels were considered in the validation stage (FRIEDMAN; HASTIE; TIBSHIRANI,

2001; BÜHLMANN; GEER, 2011). For the KNN ensemble, we considered the following

eleven distances: Cityblock (CB), Chebychev, Correlation (Corr), Cosine (Cos), euclidean

(Euc), Hamming, Jaccard, Mahalanobis, Minkowski, seuclidean and spearman (SP). It is

important to mention that Chebychev, Hamming, Jaccard, Mahalanobis, Minkowski and

seuclidean were not selected by the random search for any dataset. In the particular case

of MP/CL there are no hyper-parameters to compute. Therefore, the random search was

omitted in this case.

For the bagging random forest (RF-BAG), the split criterion, the number of cycles, the max

depth and the min leaf size were considered in the validation stage (STROBL; MALLEY;

Chapter 6. Some Experimental Results 127

TUTZ, 2009). The values for split criterion used in this case were gdi and deviance (LOH;

SHIH, 1997; LOH, 2011). In the case of XGBoost (XGB) the max depth and the learning

rate were considered in the validation stage. For the MLP-EL and HMPL-EL the linear

regularizer and the number of hidden nodes were considered in the random search. In the

case of the HMPL-EL the number of morphological nodes were also considered. Table

5 is a summary of the hyper-parameters values for each model and Table 6 shows the

performance of the classifiers in testing phase.

Table 6 reveals competitive results of some morphological based classifiers. It was already

pointed out in (SUSSNER; CAMPIOTTI, 2020) that the MP/CL model yields poor

generalization accuracy when sparsely distributed datasets are considered. Particularly,

the FC-SD model exhibited the best performance in four of the individual datasets and

the SD-model exhibited the best accuracy in five datasets. Furthermore, the FC-SD model

outperformed all the other models in terms of mean classification accuracy in the testing

stage. The second place in terms of mean classification accuracy went to the XG-boost

classifier, which achieved the best performance in four datasets. The ensemble of KNN

showed competitive results and achieved the best result in three datasets. Note that,

the SD model yields a poor accuracy in the Letter dataset, which is a dataset with 26

classes and 10 features. This poor generalization confirms our analysis on the SD and its

problems to deal with datasets in which one class is included in another class (see Figure

25). Observe that we are using a single node for each class in the morphological layers,

therefore to develop an algorithm that considers more nodes in the morphological layer

could improve the results. However, it was mentioned that the strategy followed in this

work is to rely on computing transformations before the morphological layer and to train

the whole network using SGD-optimization.

We can also check that the F1-score reveals problems for almost all models in the classifica-

tion of the CAD, LCD and LYD datasets. Especially in the CAD dataset. In that cases the

F1-score was very low for the classification models. Nevertheless, for the LCD and LYD,

the SD classifier performed a balanced classification with respect to the other classifiers.

In the case of LYD, the SD achieved the best accuracy. Nevertheless, the NB classifier

achieved the best F1-score. The DMNN-SG classifiers got the worst mean accuracy with a

value of 76.63%. The best average accuracy was achieved by the FC-SD-SM with a value

of 92.24%. The FC-SD-SM also achieved the best average F1-score with a value of 85.43%.

The worst average F1-score was obtained by the DELP model with a value of 73.50%. In

general, the results for the models presented in this work are competitive and it encourages

us to do experiments on other datasets. In the following section we perform a simulation

on a dataset with higher dimensionality.

Chapter 6. Some Experimental Results 128

6.2 MNIST1000 Digits Dataset

The MNIST database of handwritten digits has a training set of 60,000 ex-

amples, and a test set of 10,000 examples. The digits have been size-normalized and

centered in a fixed-size image in a 28x28 image by computing the center of mass of the

pixels(LECUN et al., 1990; LECUN; CORTES, 2010).

This dataset is widely used to train, validate and test classifiers. There have been many

efforts to achieve higher classification accuracies. In particular, some committees and

hierarchical systems that combine the output of multiple classifiers have achieved excellent

results. For example, the method presented in (KOWSARI et al., 2018) has been reported

an error rate of 0.18%. In (ROMANUKE, 2016), a committee of 5 CNNs that makes use

of data augmentation for training has an error rate of 0.21% (ROMANUKE, 2016). It is

important to mention that a formal analysis of these types of ensembles becomes a hard

task. Nevertheless, the common component between these results that have become the

state of art for this classification problem is the use of deep learning and convolutional

operations.

In order to perform a fair comparison between traditional Conv-FC and Conv-SD models,

a strategy must be developed. As already mentioned, since the difference between a

traditional Conv-FC model and the Conv-SD model presented here is in the classification

part of the model, an option is to perform a comparison between models with the same

topology except in the layer before softmax, where the FC layer of traditional CNNs can

be replaced by an SD layer in the Conv-SDs models.

The next experiment considers some state of the art morphological classifiers and a

reduced version of MNIST. In this case, we compare the results produced by some of the

classifiers presented in Chapter 4 using a 1,200 samples subset of the entire MNIST, setting

a 1,000 images for training/validation stages with a configuration of 80% for training and

20% for validation. The remaining 200 images were used for testing. A random search

was performed to compute the hyperparameters of the models using 512 trials. Then,

we selected the model set of hyperparameters with best accuracy. We will refer to this

dataset as MNIST1000. Additionally, SD, FC-SD and the Conv-SD model introduced in

Chapter 5 are included in this experiment. Table 7 shows the configuration computed in

the validation stage and some state of the art morphological classifiers. The convolutional

part of the Conv-SD model under consideration has the following configuration. The first

layer is a convolutional layer with 12 filters followed by a BN and a ReLu layers. An

average pooling layer performs downsampling in the fourth layer with size of 3 and stride 3.

Another convolutional layer with 24 filters followed by BN and ReLu layers. Downsampling

is applied once more using an average pooling with size of 3 and stride 3. Next, a FC layer

with 128 nodes followed by BN and a ReLu layer. The morphological part follows the

Conv part.

Additionally, a data-augmentation system was considered (PEREZ; WANG, 2017) for this

Chapter 6. Some Experimental Results 129

Table 7 – Accuracy and Model’s Configuration for MNIST-1000 Digits Dataset

Parameters Values Training Accuracy Test Accuracy

HMLP-EL
Linear

Morphs
Reg

5000
5000
0.1

100 94.00

MLNN
Morphs

LR
100

0.001
100 88.29

DMNN
Method

LR
HpC
0.001

80.08 65.55

DELP Modules 60 95.55 84.75

MLP-EL
Linear

Reg
830

0.001
100 93.00

SD

Epochs
LR

Batches
Method

80
0.01
64

ADAM

100 85.35

FC-SD

Epochs
FC Nodes

LR
Batches
Method
L2-Reg

30
64

0.001
64

SGDM
0.5

100 92.50

Conv-SD

Epochs
LR

Batches
Method
Pooling

25
0.001

64
SGDM
Average

100 96.50

DA-SD

Epochs
LR

Batches
Method

80
0.01
64

ADAM

85.20 87.20

DA-FC-SD

Epochs
FC Nodes

LR
Batches
Method

150
128
0.08
64

SGDM
0.5

99.40 95.50

DA-Conv-SD

Epochs
LR

Batches
Method
Pooling

150
0.08
64

SGDM
Average

99.70 98.85

experiment. The data-augmentation adopted here considers scaling, rotation, translation,

X-shear and Y-shear transformations. Instead of the off-line strategy reported in (RO-

MANUKE, 2016), in which 560,000 images are created using various transformations and

180,000 are selected to carry out a traditional BP training with the augmented dataset, we

use an online strategy, which is more dynamic. Note that in one epoch the entire dataset is

processed. An online strategy is applied to the aforementioned transformations to obtain

new images in each epoch and for each mini-batch. This way at each epoch an augmenta-

tion on the fly creates new datasets of 60,000 in each epoch for each mini-batch. Online

Chapter 6. Some Experimental Results 130

strategies are more suitable for larger datasets, because potentially explosive increase in

storage when off-line strategies are used is avoided (SHORTEN; KHOSHGOFTAAR, 2019).

A second test of the SD, FC-SD and Conv-SD is performed using the same architectures

but using data-augmentation. In this case, we use the acronyms DA-SD, DA-FC-SD, and

DA-Conv-SD, respectively. This data-augmentation strategy will be assumed in most of

the experiments presented here.

As expected, both Conv-SD methods achieved the highest classification accuracies on

the MNIST1000 dataset among the models we considered. This is understandable since

Conv-SD methods make use of the spatial information of the images. Also, the result

reveals a considerable increase of accuracy in those methods in which data-augmentation

was applied. The third best accuracy was obtained by DA-FC-SD that outperformed

HLMP and FC-SD models. This fact proves the importance of data augmentation in

FC-SD models. It is important to mention, in this case extreme learning machine strategies

were successful in reaching better local minima than other non-convolutional SGD-based

classifiers when data-augmentation was not applied. Nevertheless, we have to consider

that the number of morphological and linear nodes of the HMLP-EL to achieve a 94%

accuracy was 10,000. Besides, to train the HMLP-EL model it is necessary to perform the

computation of matrix inverses or pseudo-inverses, which makes virtually impossible to

use the HMLP-EL on the original MNIST or other larger datasets.

6.3 MNIST Digits Dataset

The next experiment considers the complete MNIST digit dataset. A Conv-SD

and a Conv-FC model with 26 layers were tested. The convolutional part of both, Conv-SD

and Conv-FC topology is:

The first layer is convolutional with 32 filter 3ˆ 3 sized, followed by BN and ReLu Layers.

Next, we repeat the same configuration of the first three layers. In the seventh layer we

perform downsampling, this time using a convolutional layer with 32 filters 5ˆ 5 sized

and stride size of 2, no padding is applied. The layers 8 and 9 are a BN and ReLu layer,

respectively. A dropout operation is applied in the DO layer 10. Next, a convolutional

layer with 64 filters, each one 3 ˆ 3 sized, followed by BN and ReLu Layers. Layers 14

to 16 have the same configuration of layers 11 to 13. Next, a downsampling is applied

using another convolution layer with 64 filters, size of 5, stride 2 and without padding.

The layers 18 and 19 are a BN and ReLu layer, respectively. The twentieth layer is a DO

layer with 0.4 dropout probability. Next, a FC layer with 128 nodes followed by a BN and

a ReLu layer constitute the last three layers of the Conv part. As in the other experiments

the difference between Conv-SD and Conv-FC is the use of an SD and a FC layer in the

ante-penultimate layer, respectively. For both models, a softmax and a cross entropy layer

are used to train the model.

Chapter 6. Some Experimental Results 131

One of the biggest problems with SGD based algorithms is the quality of the local minimum

reached. Due to the random initialization of the parameters, data-augmentation and the

stochastic nature of the algorithm, among other factors; the local minimum reached may

be different each time the algorithm is executed. Therefore, qualities of the extrapolation

depend of the local minimum reached. Our first analysis is exactly that, to measure the

quality of local minimums reached by the aforementioned model. For each model, the

training was performed 100 times, generating 100 different models. We present bar-charts

of their accuracy and an analysis of test observation that were misclassified by several

different models. Then, we show the set of test observations that were misclassified at

least, 50 times. The second analysis is performed on the classifiers with best accuracy per

architecture. We use a confusion matrix to analyze the performance achieved in test stage.

The following hyperparameters were chosen to train the model: The initial learning rate is

0.001, the learn drop period is 5, the learn drop factor is 0.5, the maximum number of

epochs is 40, the mini batch size is 256 and the SGD method used is Adam.

We perform an individual analysis of both models. In addition, we test some committee

configurations, in order to improve the classification.

Conv-SD: Results on MNIST

Next, we present an analysis of the results obtained by the Conv-SD model

in the MNIST experiment. Figure 27a illustrates the accuracy obtained in a bar-chart.

The minimum value achieved was 0.9961%, which means that the maximal number of

misclassified images is 39. The maximum value obtained was 0.9973%. The mean accuracy

was 99.68% with a standard deviation of 0.0003. Besides, accuracy of 99.71% has the

highest number of occurrences.

We analyzed which images were misclassified in the simulations. Figure 28 illustrates in a

Figure 27 – Accuracies on MNIST dataset

(a) Conv-SD

0
.9

9
6
1

0
.9

9
6
2

0
.9

9
6
3

0
.9

9
6
4

0
.9

9
6
5

0
.9

9
6
6

0
.9

9
6
7

0
.9

9
6
8

0
.9

9
6
9

0
.9

9
7

0
.9

9
7
1

0
.9

9
7
2

0
.9

9
7
3

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

(b) Conv-FC

0.9957 0.9958 0.9959 0.9961 0.9962 0.9963 0.9964 0.9965 0.9966 0.9967 0.9968 0.9969 0.997 0.9972 0.9974

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Accuracy Bar-charts on MNIST

bar-chart these digits that were misclassified with different number of occurrences. The

Chapter 6. Some Experimental Results 132

number of images that were misclassified at least one time by some of the 100 classifiers, is

108. The number of digits misclassified at least by 15% and at most 25% of the classifiers

is 8. The misclassified digits with more than 25% and at most 50% are 20. The number

of images misclassified by more than 50% of the classifiers was 23. The set of digits

misclassified by more than 50% of the classifiers is illustrated in Figure 30a. We refer to

them as the hard digits set for the Conv-SD architecture.

As aforementioned, among the 100 Conv-SD classifiers, the best accuracy reached was

Figure 28 – Conv-SD Bar-chart Common Errors for MNIST.

1
9
4

2
4
8

4
4
8

5
8
3

6
2
6

6
6
0

9
3
9

9
4
8

1
2
3
3

1
2
6
1

1
3
9
4

1
4
6
0

1
7
3
8

1
8
7
9

1
9
0
2

2
0
3
6

2
0
4
1

2
1
3
1

2
1
8
3

2
4
1
5

2
4
5
5

2
5
9
8

2
6
5
5

2
7
7
2

3
4
2
3

3
7
6
3

3
9
8
6

4
1
7
7

4
2
0
2

4
2
8
5

4
4
4
4

4
4
9
8

4
7
0
0

4
7
4
1

4
7
6
2

4
8
2
4

4
8
6
1

5
6
5
5

5
9
3
8

6
5
7
7

6
6
2
6

8
2
8
0

8
3
2
6

8
3
7
7

8
4
0
9

8
5
2
8

9
6
6
5

9
6
7
0

9
6
8
0

9
7
3
0

9
7
9
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

15 to 25%

25 to 50%

50 to 100%

0.9973%, which means that it misclassified 27 of the 10000 test images. The confusion

matrix of the classification performed can be visualized in Figure 29a.

In general, the results are satisfactory. Nevertheless, note that the set of hard digits is

Figure 29 – MNIST Confusion Matrices

(a) Conv-SD Confusion Matrix for MNIST.

0 1 2 3 4 5 6 7 8 9

Predicted Class

0

1

2

3

4

5

6

7

8

9

T
ru

e
 C

la
s
s

1

1 1

2

1

1

1

1

3

1

1

1

2

3

1

1

1

4

979

1135

1027

1009

978

889

954

1026

971

1005

0.1%

0.5%

0.1%

0.4%

0.3%

0.4%

0.2%

0.3%

0.4%

99.9%

100.0%

99.5%

99.9%

99.6%

99.7%

99.6%

99.8%

99.7%

99.6%

0.2% 0.3% 0.2% 0.2% 0.3% 0.3% 0.2% 0.4% 0.2% 0.4%

99.8% 99.7% 99.8% 99.8% 99.7% 99.7% 99.8% 99.6% 99.8% 99.6%

(b) Conv-FC Confusion Matrix for MNIST.

0 1 2 3 4 5 6 7 8 9

Predicted Class

0

1

2

3

4

5

6

7

8

9

T
ru

e
 C

la
s
s

1

1

2

1

1

1

1

2

1

3

1

1

1

3

1

1

1

3

979

1135

1027

1009

978

888

956

1025

971

1006

0.1%

0.5%

0.1%

0.4%

0.4%

0.2%

0.3%

0.3%

0.3%

99.9%

100.0%

99.5%

99.9%

99.6%

99.6%

99.8%

99.7%

99.7%

99.7%

0.2% 0.2% 0.3% 0.4% 0.3% 0.2% 0.1% 0.5% 0.1% 0.3%

99.8% 99.8% 99.7% 99.6% 99.7% 99.8% 99.9% 99.5% 99.9% 99.7%

In this plots we consider the model with the best accuracy achieved at the experiments.

25, therefore, even using committees with several Conv-SD to perform the classification,

Chapter 6. Some Experimental Results 133

we will not have certainty that all these digits would be correctly classified. The mean

accuracy value reached by a committee of 5 Conv-SD models randomly taken from the 100

trained models was 97.74%. In Table 8 it is shown the comparison between classifiers. This

comparison includes the mean of Conv-SD obtained in this experiment and the committee

mean result. The barcharts of Figure 32a and 32b illustrate the accuracy behavior of 100

committee models with 5 Conv-SD and Conv-FC, respectively.

Figure 30 – Set of Misclassified Images

(a) Conv-SD (b) Conv-FC

Digits misclassified by at least 50% of the classifiers.

Conv-FC: Results on MNIST

The same procedure was executed to analyze Conv-FC models. In Figure 27b

is illustrated the accuracy obtained in a bar-chart. Similar values were obtained for this

architecture. The minimum and maximum accuracy achieved were 0.9961% and 0.9974%,

respectively. The mean accuracy was 0.9966% with a standard deviation of 0.0003%,

accuracy of 0.9965% has the highest number of occurrences.

In Figure 31 is illustrated the bar-chart of misclassified with different number of occurrences.

The number of images, that were misclassified at least one time by some of the 100 classifiers,

is 112. The number of digits misclassified at least by 15% and at most 25% of the classifiers

is 6. The misclassified digits with more than 25% and at most 50% are 20. The number of

images misclassified by more than 50% of the classifiers was 23. The set of hard digits for

Conv-FC is illustrated in Figure 30b.

Table 8 summarizes the results for Conv-FC and Conv-SD models. Additionally, results

for committees of these models are presented.

Note that, Conv-FC and Conv-SD have similar values in the MNIST problem. Both can

Chapter 6. Some Experimental Results 134

be considered state of the art of classifiers with respect to this problem. Nevertheless, it is

important to test both classifiers in more difficult problems.

6.4 Visual Self-Localization Dataset

The problem of estimating a robot’s location relative to its environment is

an issue that can be related with supervised learning, in particular with classification.

The strategies to achieve an estimation may vary significantly depending on the type and

Figure 31 – Conv-FC Bar-chart Common Errors for the Models in the MNIST Experiment

2
4
8

4
4
8

5
8
3

6
2
6

6
6
0

6
7
5

9
4
8

1
2
3
3

1
2
6
1

1
3
9
4

1
4
6
0

1
7
3
8

1
8
7
9

1
9
0
2

2
0
3
6

2
0
4
1

2
1
3
1

2
2
9
4

2
4
1
5

2
4
5
5

2
4
6
3

2
5
9
8

2
7
7
2

2
9
4
0

3
4
2
3

3
5
5
9

3
7
6
3

4
1
7
7

4
2
8
5

4
4
4
4

4
4
9
8

4
7
0
0

4
7
4
1

4
7
6
2

4
8
2
4

4
8
6
1

5
6
5
5

5
9
3
8

6
5
7
2

6
5
7
7

6
5
9
8

6
6
2
6

8
2
8
0

8
3
2
6

8
4
0
9

8
5
2
8

9
6
1
4

9
6
6
5

9
6
7
0

9
6
8
0

9
6
9
3

9
7
3
0

9
7
9
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

15 to 25%

25 to 50%

50 to 100%

The histogram shows the frequency of the images misclassified.

Figure 32 – Results of Committees for Classification

(a) Committees of 5 Conv-SD

0.9968 0.997 0.9971 0.9972 0.9973 0.9974 0.9975 0.9976 0.9977 0.9978

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

(b) Committees of 5 Conv-FC

0.9
964

0.9
966

0.9
967

0.9
968

0.9
969

0.9
97

0.9
971

0.9
972

0.9
973

0.9
976

0

0.05

0.1

0.15

0.2

0.25

0.3

MNIST Accuracy Bar-charts for committees of five classifiers.

Chapter 6. Some Experimental Results 135

Table 8 – MNIST Digits Dataset Results

Conv-SD Conv-FC COMM Conv-SD COMM Conv-FC

Average 99.68 99.66 99.74 99.70

Figure 33 – Design of the VBSL-UPV experiment

Variation on the walks of the selected path inside the laboratory and position of
landmarks used to split regions. Source: (GRAÑA et al., 2012)

quantity of features used. We tested the image dataset for vision-based self-localization in

mobile robotics provided by the Universidad del Pais Vasco (VBSL-UPV) (COUNTRY., ;

VILLAVERDE; GRAÑA; D’ANJOU, 2006). The VBSL-UPV is a dataset for supervised

learning with eleven classes and 2265 grayscale images with a resolution of 79ˆ 61.

In this experiment, the location-area of a mobile robot is identified based on a visual

system. Typical applications in robotics require a robot to move around inside a building

looking for certain areas and locations. The VBSL-UPV dataset was collected to simulate

the task of recognizing indoor areas using a single mobile robot with an onboard camera.

The process to generate the dataset is given below.

First, a path along the laboratory was determined so that a sequence of images is captured

with an onboard optical camera, each time the mobile robot drives this path. Then, some

landmark positions were selected to divide the path into eleven regions without gaps. Doors,

hallway crossings, printers and windows were considered in order to select these landmarks.

Then, each sequence of images was split into eleven subsequences. Each subsequence

Chapter 6. Some Experimental Results 136

Table 9 – Number of Observations in the VBSL-UPV dataset.

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th Total
Walk 1 32 15 37 30 29 45 21 49 36 36 32 362
Walk 2 30 9 33 26 27 42 34 58 27 32 39 357
Walk 3 19 27 38 36 35 47 38 59 36 35 34 404
Walk 4 33 22 30 40 30 45 33 49 35 26 42 385
Walk 5 26 22 39 38 36 46 39 41 27 34 35 383
Walk 6 32 21 35 33 32 39 36 50 30 32 34 374
Total 172 116 212 203 189 264 201 306 191 195 216 2265

The number of images by class and by walk collected offline by the mobile robot’s camera.

represents a region. The data were collected traveling the path six times and each travel is

referred to as a walk. Therefore, the sequences of images collected using these six walks

were all partitioned into eleven subsequences using landmark references. Hence, classes

are based on the physical distances to the selected landmark positions. The class of each

image is given by the subsequence in which the image is included. This is, divisions are

used as a ground truth. Table 9 shows a summary of the performance obtained by walk

and some details of the observations contained this experiment.

The source of variation in this experiment are illumination and slight changes in the walks

carried out by the robot. Figure 33 illustrates a graphical representation of the experiment

and shows the landmarks. Note that slight variations in the path were considered in

each walk. The hardest problems of the VBSL-UPV dataset are images corresponding to

the boundaries of regions assigned to consecutive landmark positions, because they are

naturally very similar. These boundary images are an unavoidable source of confusion for

any classifier.

Some classifiers tested for the VBSL-UPV dataset were reported by (ESMI et al., 2014).

In order to extend this experiment, we followed the methodology described in (SUSSNER

et al., 2012; ESMI et al., 2014). This is, the first and second walk are used in the training

and validation stages and walks 3 to 6 make up the test data. Note that, for θ-FAMs the

parameters are reference images for each class and the set of these selected images acts

as weights of the model. In the training stage, subsets of images from the Walk 1 are

validated as hyperparameters in the walk 2. Then, The reference images for the θ-fam is

computed selecting the subset of images from the Walk 1 with better accuracy validation

in the Walk 2. Since in SGD we do not select reference images, this process is not necessary

for SGD related algorithms, therefore, we consider the Walk 1 and Walk 2 as a training

data for SGD related models.

In order to perform an extended experiment, we included some classifiers specialized in

images such as the AE (HINTON; SALAKHUTDINOV, 2006), HMLP-EL and CNN (see

3.5). Besides, three models proposed here were tested, the SD, FC-SD and a Conv-SD. The

CNN and Conv-SD networks were configured with the same architecture except the last

Chapter 6. Some Experimental Results 137

Table 10 – Computed Hyperparameters for VSLR-UPV dataset.

Parameters Description

HMLP-EL

LR
Morph Units
Linear Units HL2
Reg Parameter FC2

800
800
.5

Introduced in (SUSSNER; CAMPIOTTI, 2020).

AE (2)

LR
Epochs HL1
Epochs HL2
Epochs FT
Reg. FC1
Reg. FC2

0.001
400
200
400
0.004
0.002

Two FC Hidden layers. The first hidden layer with 200 nodes and the second
one with 50 nodes.
Sparsity and L2-regularization for the weights were applied to hidden layers.
A CE loss function was considered at training stage.
A final fine-tuning (FT)was applied to the whole net.

AE (3)

LR
Epochs HL1
Epochs HL2
Epochs HL3
Epochs FT
Reg. HL1
Reg. HL2
Reg HL3

0.001
400
200
200
400
0.004
0.002
0.001

Three FC Hidden layers. The first hidden layer with 200 nodes and the second
one with 100 nodes and the third one with 50 nodes.
Sparsity and L2-regularization were applied to hidden layers.
A CE loss function was considered in training stage and a final fine-tunning
was applied to the whole net.

SD
L.R.
Epochs
SGD Method

0.005
120
SGDM

An SD layer with 11 nodes. Each node represents a class. A softmax with a cross
entropy function was used in the training stage.

FC-SD
L.R
Epochs
SGD Method

0.001
200
SGDM

A FC layer with 256 nodes followed by an SD layer.
A CE loss function was used in training stage.

Conv-SD

L.R.
Epochs
Pooling
SGD Method

0.001
80
AV
ADAM

The convolutional part "Conv" of the network has 15 layers.
The classification part
has an FC hidden layer with 300 nodes. Then, a BN layer and a ReLu layer. Next, an SD
layer with
11 nodes is considered at the classification stage of the CNN.
Each node of the SD layer represents a class.
A CE loss function was used in training stage.

Conv-FC

L.R.
Epochs
Pooling
SGD Method

0.001
80
Max
ADAM

The convolutional part "Conv" of the network has 15 layers.
A FC hidden layer with 300 nodes and a BN with a ReLu activation and an SD
layer with
11 nodes were considered at the classification stage of the CNN.
Each node of the SD layer represents a class.
A CE loss function was used in training stage.
.

layer, in which an FC layer and a morphological SD layer are set for Conv-FC and Conv-SD

models respectively. A random search was performed using a k-fold cross validation, with

k “ 10 partitioned randomly, in order to determine the hyperparameters required for

the models. In this case, 512 trials were tested and the mean accuracy value of the cross

validation is used to select the best set of hyperparameters. The configurations used to set

up each model are detailed in Table 10.

The Conv part of the classifiers in which convolutional layers are involved has a similar

architecture: First an input layer computes identity function. The second layer is convolution

layer with 40 filters of size 3ˆ3 followed by BN and a ReLu activation. Next, a pooling layer

of size 3ˆ 3 with a stride size of 3 performs downsampling. The sixth layer is convolutional

and has 8 filters 3ˆ 3 sized followed by a BN and a ReLu activation. The ninth layer is a

pooling layer of size 3ˆ3 and stride 3. The remain part of the network consist of a FC with

300 nodes followed by BN, ReLu and dropout layer. The classification task in Conv-FC

and Conv-SD is performed by an FC layer and an SD layer respectively. On the one

hand, a significant difference found in the validation stage is that, average pooling layers

showed best performance in Conv-SD. On the other hand, max pooling layers achieved

Chapter 6. Some Experimental Results 138

Table 11 – Results on the VBSL-UPV dataset.

Walk-3 Walk-4 Walk-5 Walk-6 Average

Dual S
Ť

-Fam 0.78 0.72 0.78 0.77 0.76
Dual S

Ş

-Fam 0.79 0.72 0.79 0.77 0.77
AE-2 0.8292 0.7351 0.8956 0.8342 0.8235
AE-3 0.8936 0.7481 0.9034 0.8877 0.8582

HMLP-EL 0.8960 0.8649 0.9138 0.8850 0.8900
SD 0.9282 0.8649 0.9269 0.8930 0.9033

FC-SD 0.9703 0.8935 0.9504 0.9198 0.9335
Conv-SD 0.9777 0.9610 0.9608 0.9893 0.9722
Conv-FC 0.9431 0.8857 0.9556 0.9198 0.9260

For the AE-2, AE-3, HMLP-EL, SD, FC-SD, Conv-SD and Conv-FC the average accuracy
of 5 individual experiments was considered in this comparison.

best performance in the Conv-FC case. For this experiment, an online data-augmentation

performs aleatory scaling in the range -0.05% to 0.05%, aleatory X-translation in the

range -10 to pixels, aleatory X-shear and Y-shear transformations in the range of -3 to 3

degrees. Besides, contrast and brightness of the original images were modified with a low

and a high intensity factor of 1% using an offline strategy, doubling the amount of data for

training. This strategy was applied to the SD, FC-SD, Conv-SD and Conv-FC methods.

Table 11 shows the accuracy by walk and the average obtained by 5 analyzed classifiers.

The first observation is that all the new models introduced in this experiments outperformed

the results presented in (ESMI et al., 2014). In this dataset the best result was obtained

by the Conv-SD model. The second best result was obtained by the FC-SD model. Third

and fourth place are for the Conv-FC and SD classifiers. Note that, although the Conv-FC

model is more complex than FC-SD model, FC-SD outperformed the classical convolutional

net in this case. This may have occurred due to the nature of variations in the VBSL-UPV

dataset. This is, slight illumination and translation variations were easily captured by

the Conv-FC leading to more unstable local minima and overtraining. Nevertheless, the

inclusion measure nature of the Conv-SD model captured these translation and illumination

variations, which implies that an SD layer played a positive role in this specific problem.

Lastly, Figures 34a and 34b illustrate the confusion matrix and the ROC plot for the Conv-

SD model with the median accuracy, respectively. The median accuracy of the analyzed

model is 97.28%. The confusion chart reveals that most of the misclassified observations

lie in consecutive classes, this means that, as expected, most difficult observations are in

the boundaries of the regions.

Besides, a ROC curve analysis showed that classes 8 and 11 were harder to classify

for this model. Figure 34b illustrates the ROC curve using a threshold of 0.5 for the

probability output of the softmax layer. Nevertheless, this result encourages us to test the

Chapter 6. Some Experimental Results 139

Figure 34 – ROBOTICS Analysis of the Results

(a) Conv-SD Confusion Matrix.

1 2 3 4 5 6 7 8 9 10 11

Predicted Class

1

2

3

4

5

6

7

8

9

10

11

T
ru

e
 C

la
s
s

110

2

92

8 133

1

1

146

7 126

4

3

1

143

1

3

125

4

2

123

5 137

173

196

6.3%

0.7%

5.3%

2.3%

2.1%

1.5%

2.3%

3.1%

5.5%

100.0%

100.0%

93.7%

99.3%

94.7%

97.7%

97.9%

98.5%

97.7%

96.9%

94.5%

1.8% 8.0% 0.7% 5.2% 3.1% 2.3% 0.5% 5.3% 5.4%

98.2% 92.0% 99.3% 94.8% 96.9% 97.7% 100.0% 99.5% 94.7% 94.6% 100.0%

(b) Conv-SD ROC plot.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC

Class 1

Class 2

Class 3

Class 4

Class 5

Class 6

Class 7

Class 8

Class 9

Class 10

Class 11

VBSL-UPV dataset simulations results for Conv-SD.

Conv-SD model in other datasets. Finally, the user may observe that in order to make a

fair comparison, in this case we did not use the notion of committees.

6.5 CIFAR-10 Dataset

The CIFAR-10 dataset consists of 60, 000, 32ˆ 32 color images with ten classes.

The labels of the images are airplane, automobile, bird, cat, deer, dog, frog, horse, ship

and truck. Each image contains exactly one object of these available labels.

The dataset was originally partitioned into training and test sets by Krizhevsky et al. The

training and test sets consist of 50,000 and 10,000 images, respectively (KRIZHEVSKY;

HINTON et al., 2009). Figure 35 exemplifies some images of the CIFAR-10 dataset.

In this experiment we test a Conv-SD model and in the results are considered 5 Conv-SD

that were fully trained from scratch. Table 13 shows the general description of the Conv-

SD model considered in this experiment. The mean accuracy was 90.77%, considering

5 simulations. The maximum and the minimum accuracy obtained at these simulations

were 90.88% and 90.63%, respectively. The performance achieved by these classifiers were:

90.63%, 90.74%, 90.76%, 90.85% and 90.88%.

For the comparative study we used some well known models in DL, such as maxout

networks (GOODFELLOW et al., 2013), convolutional networks with dropconnect regu-

Table 12 – Results on the Dataset CIFAR-10 (Error rate %).

Conv-SD Comm Maxout DROP NIN ML-DNN ALL-CNN

Error 9.23 8.45 9.38 9.32 8.81 8.12 7.25
Parameters >6M >18M >6M > 6M >6M > 6M >1M

Chapter 6. Some Experimental Results 140

Figure 35 – Examples of CIFAR-10 Images.

CIFAR-10 observations are 32ˆ 32 RGB images of 10 different types of objects.

larization (DROP) (WAN et al., 2013), network in network (NIN) (LIN; CHEN; YAN,

2013), multi-loss regularized deep neural networks (ML-DNN) (XU et al., 2015) and the

all-convolutional neural network model (ALL-CNN) (SPRINGENBERG et al., 2014).

Besides, in order to perform a fair comparison, we only considered results with data

augmentation.

Finally, a committee of classifiers with 3 Conv-SD was included in the comparative study.

Table 12 summarizes the error rate obtained in the simulations.

ALL-CNN model outperformed the other classifiers achieving an error rate of 7.25%

in the test stage. Multi-loss regularized deep neural network obtained the second best

performance. A committee of 3 Conv-SD obtained the third place and individual Conv-SDs

achieved an error rate of 9.23%. As expected, the method presented in this work showed

a competitive result in this particular dataset. The reader may note that most of the

characteristics of ALL-CNN and MLR-DNN models and NIN are compatible with the

Conv-SD model and must be studied in future works. Finally, the confusion matrices for

the best individual Conv-SD result and the committee of 3 Conv-SD are illustrated in

Figure 36a and Figure 36b, respectively.

Chapter 6. Some Experimental Results 141

Table 13 – Configuration of the Conv-SD models for CIFAR-10

1 ’imageinput’ Image Input 32x32x3 images with ’zerocenter’ normalization

2 1conv11
1

Convolution 64 3x3x3 convolutions with stride [1 1]

3 1batchnorm1
1

Batch Normalization Batch normalization with 64 channels

4 1ReLu1
1

ReLu ReLu

5 1conv11
2

Convolution 64 3x3x64 convolutions with stride [1 1]

6 1batchnorm1
2

Batch Normalization Batch normalization with 64 channels

7 1ReLu1
2

ReLu ReLu

8 1maxpool1
1

Max Pooling 2x2 max pooling with stride [2 2]

9 ” Dropout 40% dropout

10 1conv21
1

Convolution 128 3x3x64 convolutions with stride [1 1]

11 1batchnorm1
3

Batch Normalization Batch normalization with 128 channels

12 1ReLu1
3

ReLu ReLu

13 1conv21
2

Convolution 128 3x3x128 convolutions with stride [1 1]

14 1batchnorm1
4

Batch Normalization Batch normalization with 128 channels

15 1ReLu1
4

ReLu ReLu

16 1maxpool1
2

Max Pooling 2x2 max pooling with stride [2 2]

17 ” Dropout 40% dropout

18 1conv31
1

Convolution 256 3x3x128 convolutions with stride [1 1]

19 1batchnorm1
5

Batch Normalization Batch normalization with 256 channels

20 1ReLu1
5

ReLu ReLu

21 1conv31
2

Convolution 256 3x3x256 convolutions with stride [1 1]

22 1batchnorm1
6

Batch Normalization Batch normalization with 256 channels

23 1ReLu1
6

ReLu ReLu

24 1maxpool1
3

Max Pooling 2x2 max pooling with stride [2 2]

25 1conv3pool1 Convolution 512 2x2x256 convolutions with stride [2 2]

26 1batchnorm1
7

Batch Normalization Batch normalization with 512 channels

27 1ReLu1
7

ReLu ReLu

28 1dropout1
3

Dropout 40% dropout

29 1fc1
1

Fully Connected 2048 fully connected layer

30 1batchnorm1
8

Batch Normalization Batch normalization with 2048 channels

31 1ReLu1
8

ReLu ReLu

32 1fc1
2

Fully Connected 256 fully connected layer

33 1batchnorm1
9

Batch Normalization Batch normalization with 256 channels

34 1ReLu1
9

ReLu ReLu

35 ’SD-Layer’ morphologicalClassificationLayerSD Morphological Classification Layer

36 ’softmax’ Softmax softmax

37 ’classoutput’ Classification Output crossentropyex with ’airplane’ and 9 other classes

Conv-SD with 37 layers for 32x32 RGB images.

Chapter 6. Some Experimental Results 142

Figure 36 – CIFAR-10 Confusion Matrices

(a) Best Conv-SD result

airplane automobile bird cat deer dog frog horse ship truck

Predicted Class

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Confusion Matrix for Test Data

2

22

14

3

9

4

7

40

9

7

5

3

7

1

1

8

38

15

34

25

16

3

3

4

3

12

9

64

6

3

1

17

24

25

5

17

11

72

5

13

1

4

31

52

26

24

2

1

1

6

2

12

12

12

24

2

22

5

3

11

2

3

2

11

14

17

3

15

2

6

4

4

9

928

974

889

761

913

822

975

948

937

941

7.2%

2.6%

11.1%

23.9%

8.7%

17.8%

2.5%

5.2%

6.3%

5.9%

92.8%

97.4%

88.9%

76.1%

91.3%

82.2%

97.5%

94.8%

93.7%

94.1%

10.6% 6.7% 10.1% 11.3% 8.9% 11.0% 12.6% 6.9% 5.9% 7.3%

89.4% 93.3% 89.9% 88.7% 91.1% 89.0% 87.4% 93.1% 94.1% 92.7%

(b) Committee of three Conv-SDs

1 2 3 4 5 6 7 8 9 10

Predicted Class

1

2

3

4

5

6

7

8

9

10

Confusion Matrix for Test Data

3

15

13

3

9

5

7

32

10

8

5

3

5

6

36

13

28

17

15

2

2

2

3

12

7

66

3

2

1

18

27

26

5

14

12

62

5

11

1

5

1

27

51

28

24

2

2

1

4

1

10

12

11

20

2

19

3

4

10

2

2

2

10

11

18

4

18

1

7

4

3

12

936

974

898

774

923

826

979

957

945

943

6.4%

2.6%

10.2%

22.6%

7.7%

17.4%

2.1%

4.3%

5.5%

5.7%

93.6%

97.4%

89.8%

77.4%

92.3%

82.6%

97.9%

95.7%

94.5%

94.3%

9.4% 6.1% 8.1% 10.7% 9.0% 9.9% 12.6% 5.9% 5.2% 7.6%

90.6% 93.9% 91.9% 89.3% 91.0% 90.1% 87.4% 94.1% 94.8% 92.4%

143

7 Conclusions

In this work, we extended the set of operations that are used in MPs to the

domain of ℓ “-rings. The study of this set of operations in ℓ-rings and the analysis of the

behavior of MP models led us to the definition of two operators: I-set descriptors φ and

aggregators
à

. Then, we described the foundations of the GMP model and we performed

a mathematical review of GMP units of computations based on the aforementioned pairs of

operators. As a result, a feedforward network that makes use of P-descriptor pairs p
à

, φq
as units of computation was fully developed. Furthermore, it was demonstrated that units

of computation of MPs and DMNNs fit the definition of GMP whenever P-descriptor pairs

P “ p
ľ

, φ^q are considered. Therefore, from this point of view GMPs are more general

than traditional MPs. Other results include a link between some P-descriptors and some

traditional distances, whenever an archimedean o-ring is considered.

Moreover, using the P-descriptor pair P “ p
ÿ

, φˆq, we described a unit of computation

in which differentiation is possible. This allowed us to develop the concept of GMP layers

in terms of the DL framework. Specifically, in feedforward DL models for supervised

classification trained by SGD. As mentioned before, the generalization proposed here

considers the units of computation of MP and DMNN models extending the set of

possible operations in the MP framework. Nevertheless, a stronger relationship between

the multiplication operation in ℓ-rings and mathematical morphology must be studied in

future research.

In this work, we described two layers. The first one is a fully connected layer with units

that compute P-descriptor mappings and the other one performs an aggregation by class.

However, we focused on the first type of layer, setting one unit of computation for each

class. Multiple unit of computation and class aggregation strategies are matters that are

subject to further research.

The next step was to define some models that make use of the aforementioned layers.

Therefore, we incrementally built three abstract architectures: the SD, the FC-SD and the

Conv-SD. The resulting models were experimentally tested in some simulations. The first

set of simulations was taken from the UCI Machine Learning Repository. The achieved

results reveal the competitive performance of the SD and FC-SD models. An additional

simulation was performed on the MNIST1000 dataset. The results reveal a competitive

performance for all the classifiers considered in this simulation. In particular, the Conv-SD

classifier outperformed all the other classifiers. A more extensive research on a hybridization

of HLMP-EL and the models presented in this thesis must be considered for future research

efforts.

Simulations on the MNIST digits and the VRSL-UPV datasets revealed an excellent

Chapter 7. Conclusions 144

generalization capability of our models, in particular the Conv-SD model. These results

encourage us to conduct experiments using other datasets and to continue this research in

future works.

As a final consideration, we remark that DL is a growing trend in machine learning.

Therefore, new algorithms, layers, models and techniques to improve the quality of DL

classifiers are reported every month. The user may note that we did not consider some

developments of DL framework. For instance, Maxout (GOODFELLOW et al., 2013),

NIN (LIN; CHEN; YAN, 2013) or multi-loss regularization (XU et al., 2015) are some

examples of models, in which the use of SD layers is possible. In future work, it is extremely

important to explore how the results presented in this thesis fit these aforementioned

developments in DL.

145

Bibliography

ABADI, M.; AGARWAL, A.; BARHAM, P.; BREVDO, E.; CHEN, Z.; CITRO,
C.; CORRADO, G. S.; DAVIS, A.; DEAN, J.; DEVIN, M.; GHEMAWAT, S.;
GOODFELLOW, I.; HARP, A.; IRVING, G.; ISARD, M.; JIA, Y.; JOZEFOWICZ, R.;
KAISER, L.; KUDLUR, M.; LEVENBERG, J.; MANé, D.; MONGA, R.; MOORE, S.;
MURRAY, D.; OLAH, C.; SCHUSTER, M.; SHLENS, J.; STEINER, B.; SUTSKEVER,
I.; TALWAR, K.; TUCKER, P.; VANHOUCKE, V.; VASUDEVAN, V.; VIéGAS, F.;
VINYALS, O.; WARDEN, P.; WATTENBERG, M.; WICKE, M.; YU, Y.; ZHENG, X.
TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015. Software
available from tensorflow.org. Cited on page 70.

AEBERHARD, S.; COOMANS, D.; VEL, O. D. Comparative analysis of statistical
pattern recognition methods in high dimensional settings. Pattern Recognition, Elsevier,
v. 27, n. 8, p. 1065–1077, 1994. Cited on page 123.

ALTMAN, N. S. An introduction to kernel and nearest-neighbor nonparametric regression.
The American Statistician, Taylor & Francis Group, v. 46, n. 3, p. 175–185, 1992. Cited
on page 121.

ANDERSON, M.; FEIL, T. Lattice-ordered groups: an introduction. [S.l.]: Springer Science
& Business Media, 2012. v. 4. Cited 4 times on pages 29, 33, 34, and 35.

ARAÚJO, R. d. A. A class of hybrid morphological perceptrons with application in time
series forecasting. Knowledge-Based Systems, Elsevier, v. 24, n. 4, p. 513–529, 2011. Cited
on page 105.

ARAÚJO, R. d. A.; OLIVEIRA, A. L.; MEIRA, S. R. A dilation-erosion-linear perceptron
for bovespa index prediction. In: SPRINGER. International Conference on Intelligent
Data Engineering and Automated Learning. [S.l.], 2012. p. 407–415. Cited 4 times on
pages 16, 20, 104, and 121.

ARCE, F.; ZAMORA, E.; FÓCIL-ARIAS, C.; SOSSA, H. Dendrite ellipsoidal neurons
based on k-means optimization. Evolving Systems, Springer, v. 10, n. 3, p. 381–396, 2019.
Cited on page 102.

ARCE, F.; ZAMORA, E.; HERNÁNDEZ, G.; SOSSA, H. Efficient lane detection based
on artificial neural networks. ISPRS Annals of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, Copernicus GmbH, v. 4, p. 13, 2017. Cited 2 times on
pages 19 and 99.

ARCE, F.; ZAMORA, E.; SOSSA, H.; BARRóN, R. Differential evolution training
algorithm for dendrite morphological neural networks. Applied Soft Computing, v. 68, p.
303 – 313, 2018. ISSN 1568-4946. Cited 2 times on pages 99 and 103.

ARKHANGEL’SKII, A. V. General topology I. Berlin New York: Springer-Verlag, 1990.
ISBN 3540181784. Cited on page 37.

ARPIT, D.; ZHOU, Y.; NGO, H.; GOVINDARAJU, V. Why regularized auto-encoders
learn sparse representation? arXiv preprint arXiv:1505.05561, 2015. Cited on page 81.

Bibliography 146

ARTHUR, D.; VASSILVITSKII, S. K-means++: The advantages of careful seeding. [S.l.],
2006. Cited on page 99.

ASCH, V. V. Macro-and micro-averaged evaluation measures. Belgium: CLiPS, v. 49,
2013. Cited on page 126.

ASUNCION, A.; NEWMAN, D. UCI Machine Learning Repository. 2007. Cited 3 times
on pages 120, 122, and 123.

AUDA, G.; KAMEL, M. Modular neural networks: a survey. International Journal of
Neural Systems, World Scientific, v. 9, n. 02, p. 129–151, 1999. Cited on page 18.

BAGIROV, A.; RUBINOV, A.; SOUKHOROUKOVA, N.; YEARWOOD, J. Unsupervised
and supervised data classification via nonsmooth and global optimization. Top, Springer,
v. 11, n. 1, p. 1–75, 2003. Cited on page 125.

BANON, G. J. F.; BARRERA, J. Decomposition of mappings between complete lattices
by mathematical morphology, part I. general lattices. Signal Processing, Elsevier, v. 30,
n. 3, p. 299–327, 1993. Cited 4 times on pages 17, 40, 91, and 95.

BERNAU, S. J. Unique representation of archimedean lattice groups and normal
archimedean lattice rings. Proceedings of the London Mathematical Society, Oxford
University Press, v. 3, n. 1, p. 384–384, 1966. Cited on page 35.

BIRKHOFF, G. Lattice theory. [S.l.]: American Mathematical Soc., 1940. v. 25. Cited on
page 23.

. Lattice theory. [S.l.]: American Mathematical Society, 1967. Cited 2 times on
pages 23 and 29.

. Lattice-ordered groups. Selected Papers on Algebra and Topology by Garrett
Birkhoff, Springer Science & Business Media, v. 43, n. 2, p. 412, 1987. Cited 2 times on
pages 20 and 34.

BOOLE, G.; GRATTAN-GUINNESS, I.; BORNET, G. George Boole: selected
manuscripts on logic and its philosophy. 1999. Cited on page 22.

BORKOTOKEY, S.; KOMORNÍKOVÁ, M.; LI, J.; MESIAR, R. Aggregation functions,
similarity and fuzzy measures. In: SPRINGER. International Summer School on
Aggregation Operators. [S.l.], 2017. p. 223–228. Cited on page 44.

BRYSON, A. E. A gradient method for optimizing multi-stage allocation processes. In:
Proc. Harvard Univ. Symposium on digital computers and their applications. [S.l.: s.n.],
1961. v. 72. Cited on page 53.

BÜHLMANN, P.; GEER, S. V. D. Statistics for high-dimensional data: methods, theory
and applications. [S.l.]: Springer Science & Business Media, 2011. Cited 2 times on pages
69 and 126.

CALVO, T.; MAYOR, G.; MESIAR, R. Aggregation operators: new trends and applications.
[S.l.]: Physica, 2012. v. 97. Cited on page 44.

CESTNIK, B.; KONONENKO, I.; BRATKO, I. Assistant 86: A knowledge-elicitation
tool for sophisticated users. In: Proceedings of the 2nd European Conference on European
Working Session on Learning. [S.l.: s.n.], 1987. p. 31–45. Cited on page 125.

Bibliography 147

CHARISOPOULOS, V.; MARAGOS, P. Morphological perceptrons: geometry and
training algorithms. In: SPRINGER. International Symposium on Mathematical
Morphology and Its Applications to Signal and Image Processing. [S.l.], 2017. p. 3–15.
Cited 2 times on pages 106 and 107.

CHEN, T.; GUESTRIN, C. Xgboost: A scalable tree boosting system. In: Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. [S.l.: s.n.], 2016. p. 785–794. Cited on page 121.

CHEN, T.; HE, T.; BENESTY, M.; KHOTILOVICH, V.; TANG, Y. Xgboost: extreme
gradient boosting. R package version 0.4-2, p. 1–4, 2015. Cited on page 121.

CHOLLET, F. et al. Keras. [S.l.]: GitHub, 2015. <https://github.com/fchollet/keras>.
Cited on page 70.

CORTES, C.; VAPNIK, V. Support-vector networks. Machine learning, Springer, v. 20,
n. 3, p. 273–297, 1995. Cited on page 121.

COUNTRY., C. I. G. of the University of the B. Image Database for Vision-Based
Self-Localization in Mobile Robotics. <http://www.ehu.es/ccwintco/index.php/Pioneer">,
year=. Cited 2 times on pages 120 and 135.

CUNINGHAME-GREEN, R. Minimax algebra and applications. Fuzzy Sets and Systems,
Elsevier, v. 41, n. 3, p. 251–267, 1991. Cited on page 88.

CYBENKO, G. Approximation by superpositions of a sigmoidal function. Mathematics of
control, signals and systems, Springer, v. 2, n. 4, p. 303–314, 1989. Cited 2 times on
pages 53 and 76.

DAN, Y.; HU, B. Q.; QIAO, J. General L-fuzzy aggregation functions based on complete
residuated lattices. Soft Computing, Springer, p. 1–26, 2020. Cited 2 times on pages 39
and 44.

DARNEL, M. Theory of lattice-ordered groups. [S.l.]: CRC Press, 1994. v. 187. Cited on
page 34.

DAVIDSON, J. L.; HUMMER, F. Morphology neural networks: An introduction with
applications. Circuits, Systems and Signal Processing, Springer, v. 12, n. 2, p. 177–210,
1993. Cited on page 88.

DAVIDSON, J. L.; SUN, K. Template learning in morphological neural nets. In: image
algebra and morphological image processing II. [S.l.]: International Society for Optics and
Photonics, 1991. v. 1568, p. 176–187. Cited 2 times on pages 17 and 39.

DEMIR, C.; YENER, B. Automated cancer diagnosis based on histopathological images:
a systematic survey. Rensselaer Polytechnic Institute, Tech. Rep, Citeseer, 2005. Cited on
page 123.

ESMI, E. L.; SUSSNER, P.; BUSTINCE, H.; FERNÁNDEZ, J. Theta-fuzzy associative
memories (Theta-FAMs). IEEE Transactions on Fuzzy Systems, IEEE, v. 23, n. 2, p.
313–326, 2014. Cited 4 times on pages 16, 87, 136, and 138.

Bibliography 148

ESPOSITO, F.; MALERBA, D.; SEMERARO, G. Multistrategy learning for document
recognition. Applied Artificial Intelligence an International Journal, Taylor & Francis,
v. 8, n. 1, p. 33–84, 1994. Cited on page 123.

FISHER, R. A. The use of multiple measurements in taxonomic problems. Annals of
eugenics, Wiley Online Library, v. 7, n. 2, p. 179–188, 1936. Cited on page 121.

FLEISCHER, I. The Hahn embedding theorem: analysis, refinements, proof. In: Algebra
Carbondale 1980. [S.l.]: Springer, 1981. p. 278–290. Cited on page 35.

FORINA, M.; LEARDI, R.; ARMANINO, C.; LANTERI, S.; CONTI, P.; PRINCI, P.
Parvus: An extendable package of programs for data exploration, classification and
correlation. Journal of Chemometrics, v. 4, n. 2, p. 191–193, 1988. Cited on page 123.

FREY, P. W.; SLATE, D. J. Letter recognition using holland-style adaptive classifiers.
Machine learning, Springer, v. 6, n. 2, p. 161–182, 1991. Cited on page 123.

FRIEDMAN, J.; HASTIE, T.; TIBSHIRANI, R. The elements of statistical learning.
[S.l.]: Springer series in statistics New York, 2001. v. 1. Cited on page 126.

FUKUSHIMA, K.; MIYAKE, S. Neocognitron: A self-organizing neural network model for
a mechanism of visual pattern recognition. In: Competition and cooperation in neural nets.
[S.l.]: Springer, 1982. p. 267–285. Cited on page 54.

GADER, P. D.; KELLER, J. M.; NELSON, B. N. Recognition technology for the
detection of buried land mines. IEEE Transactions on Fuzzy Systems, IEEE, v. 9, n. 1, p.
31–43, 2001. Cited on page 16.

GANTER, B.; STUMME, G.; WILLE, R. Formal concept analysis: foundations and
applications. [S.l.]: springer, 2005. v. 3626. Cited on page 39.

GANTER, B.; WILLE, R. Formal concept analysis: mathematical foundations. [S.l.]:
Springer Science & Business Media, 2012. Cited on page 39.

GLASS, A. M. W. Partially ordered groups. [S.l.]: World Scientific, 1999. v. 7. Cited on
page 34.

GLOROT, X.; BENGIO, Y. Understanding the difficulty of training deep feedforward
neural networks. In: Proceedings of the thirteenth international conference on artificial
intelligence and statistics. [S.l.: s.n.], 2010. p. 249–256. Cited 5 times on pages 69, 71, 73,
75, and 85.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep learning. [S.l.]: MIT press,
2016. Cited 7 times on pages 19, 55, 66, 67, 75, 80, and 85.

GOODFELLOW, I. J.; WARDE-FARLEY, D.; MIRZA, M.; COURVILLE, A.; BENGIO,
Y. Maxout networks. arXiv preprint arXiv:1302.4389, 2013. Cited 2 times on pages 139
and 144.

GOUTSIAS, J.; HEIJMANS, H. J. Mathematical morphology. [S.l.]: IOS press, 2000.
Cited on page 40.

GRAÑA, M. A brief review of lattice computing. In: IEEE. 2008 IEEE International
Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence).
[S.l.], 2008. p. 1777–1781. Cited on page 39.

Bibliography 149

GRANA, M. Lattice computing: lattice theory based computational intelligence. In: Proc.
Kosen Workshop on Mathematics, Technology, and Education (MTE). [S.l.: s.n.], 2008. p.
19–27. Cited on page 39.

GRAÑA, M.; GALLEGO, J.; TORREALDEA, F. J.; D’ANJOU, A. On the application of
associative morphological memories to hyperspectral image analysis. In: SPRINGER.
International Work-Conference on Artificial Neural Networks. [S.l.], 2003. p. 567–574.
Cited on page 16.

GRAÑA, M.; VILLAVERDE, I.; LOPEZ-GUEDE, J. M.; FERNANDEZ-GAUNA, B.
Lattice independent component analysis for appearance-based mobile robot localization.
Neural Computing and Applications, Springer, v. 21, n. 5, p. 1031–1042, 2012. Cited on
page 135.

GRÄTZER, G. General lattice theory. [S.l.]: Springer Science & Business Media, 2002.
Cited on page 23.

GUVENIR, H. A.; ACAR, B.; DEMIROZ, G.; CEKIN, A. A supervised machine learning
algorithm for arrhythmia analysis. In: Computers in Cardiology. [S.l.: s.n.], 1997. p.
433–436. Cited on page 124.

GÜVENIR, H. A.; DEMIRÖZ, G.; ILTER, N. Learning differential diagnosis of
erythemato-squamous diseases using voting feature intervals. Artificial intelligence in
medicine, Elsevier, v. 13, n. 3, p. 147–165, 1998. Cited on page 124.

HARALICK, R. M.; STERNBERG, S. R.; ZHUANG, X. Image analysis using
mathematical morphology. IEEE Transactions on Pattern Analysis and Machine
Intelligence, IEEE, n. 4, p. 532–550, 1987. Cited on page 40.

HASTIE, T.; TIBSHIRANI, R.; FRIEDMAN, J. The elements of statistical learning: data
mining, inference, and prediction. [S.l.]: Springer Science & Business Media, 2009. Cited
on page 121.

HE, K.; ZHANG, X.; REN, S.; SUN, J. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In: Proceedings of the IEEE
international conference on computer vision. [S.l.: s.n.], 2015. p. 1026–1034. Cited 2 times
on pages 73 and 85.

. Deep residual learning for image recognition. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. [S.l.: s.n.], 2016. p. 770–778. Cited
2 times on pages 71 and 85.

HEBB, D. O. The organization of behavior: A neuropsychological theory. [S.l.]: Psychology
Press, 2005. Cited on page 52.

HEIJMANS, H. J. Morphological image operators. [S.l.]: Academic Press Boston, 1994.
v. 4. Cited 2 times on pages 17 and 39.

HERNÁNDEZ, G.; ZAMORA, E.; SOSSA, H. Morphological-linear neural network. In:
IEEE. 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). [S.l.], 2018.
p. 1–6. Cited on page 20.

Bibliography 150

HINTON, G.; SRIVASTAVA, N.; SWERSKY, K. Neural networks for machine learning
lecture 6a overview of mini-batch gradient descent. Cited on, v. 14, n. 8, 2012. Cited 2
times on pages 65 and 121.

HINTON, G. E.; SALAKHUTDINOV, R. R. Reducing the dimensionality of data with
neural networks. Science, American Association for the Advancement of Science, v. 313,
n. 5786, p. 504–507, 2006. Cited 2 times on pages 81 and 136.

HOCHREITER, S.; BENGIO, Y.; FRASCONI, P.; SCHMIDHUBER, J. et al. Gradient
flow in recurrent nets: the difficulty of learning long-term dependencies. [S.l.]: A Field
Guide to Dynamical Recurrent Neural Networks. IEEE Press, 2001. Cited on page 69.

HONG, Z.-Q.; YANG, J.-Y. Optimal discriminant plane for a small number of samples
and design method of classifier on the plane. Pattern Recognition, Elsevier, v. 24, n. 4, p.
317–324, 1991. Cited on page 125.

HOPFIELD, J. J. Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the National Academy of Sciences, National
Academy Sciences, v. 79, n. 8, p. 2554–2558, 1982. Cited on page 53.

HUANG, G.-B. An insight into extreme learning machines: random neurons, random
features and kernels. Cognitive Computation, Springer, v. 6, n. 3, p. 376–390, 2014. Cited
2 times on pages 107 and 121.

. What are extreme learning machines? filling the gap between Frank Rosenblatt’s
dream and john von neumann’s puzzle. Cognitive Computation, Springer, v. 7, n. 3, p.
263–278, 2015. Cited 2 times on pages 107 and 108.

HUANG, G.-B.; ZHU, Q.-Y.; SIEW, C.-K. Extreme learning machine: theory and
applications. Neurocomputing, Elsevier, v. 70, n. 1-3, p. 489–501, 2006. Cited 2 times on
pages 107 and 121.

HUTTER, M.; ZAFFALON, M. Distribution of mutual information from complete and
incomplete data. Computational Statistics & Data Analysis, Elsevier, v. 48, n. 3, p.
633–657, 2005. Cited on page 125.

IOFFE, S.; SZEGEDY, C. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015. Cited on page
78.

IVAKHNENKO, A. Cybernetic predicting devices. [S.l.]. Cited on page 54.

. Cybernetics and forecasting techniques. Cited on page 54.

KABURLASOS, V. G.; KEHAGIAS, A. Fuzzy inference system (fis) extensions based on
the lattice theory. IEEE Transactions on Fuzzy Systems, IEEE, v. 22, n. 3, p. 531–546,
2013. Cited on page 88.

KABURLASOS, V. G.; PETRIDIS, V. Fuzzy lattice neurocomputing (fln) models. Neural
Networks, Elsevier, v. 13, n. 10, p. 1145–1170, 2000. Cited 2 times on pages 42 and 88.

KALMAN, J. Triangle inequality in l-groups. Proceedings of the American Mathematical
Society, v. 11, n. 3, p. 395, 1960. Cited on page 34.

Bibliography 151

KELLEY, H. J. Gradient theory of optimal flight paths. Ars Journal, v. 30, n. 10, p.
947–954, 1960. Cited on page 53.

KINGMA, D. P.; BA, J. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. Cited on page 65.

KLEIN, J.; SERRA, J. The texture analyser. Journal of Microscopy, Wiley Online
Library, v. 95, n. 2, p. 349–356, 1972. Cited on page 16.

KOCH, C.; SEGEV, I. et al. Methods in neuronal modeling: from ions to networks. [S.l.]:
MIT press, 1998. Cited on page 93.

KOLODYNSKI, S. IsarMathLib-a Formalized Mathematics Library for Isabelle/zf. In:
CICM Workshops. [S.l.: s.n.], 2018. Cited on page 36.

KOMORNÍKOVÁ, M.; MESIAR, R. Aggregation functions on bounded partially ordered
sets and their classification. Fuzzy Sets and Systems, Elsevier, v. 175, n. 1, p. 48–56, 2011.
Cited on page 44.

KOWSARI, K.; HEIDARYSAFA, M.; BROWN, D. E.; MEIMANDI, K. J.; BARNES,
L. E. RMDL: Random multimodel deep learning for classification. In: Proceedings of the
2nd International Conference on Information System and Data Mining. [S.l.: s.n.], 2018. p.
19–28. Cited on page 128.

KRIZHEVSKY, A.; HINTON, G. et al. Learning multiple layers of features from tiny
images. Citeseer, 2009. Cited 3 times on pages 71, 120, and 139.

LECUN, Y.; BENGIO, Y. et al. Convolutional networks for images, speech, and time
series. The handbook of brain theory and neural networks, v. 3361, n. 10, p. 1995, 1995.
Cited 4 times on pages 19, 54, 55, and 72.

LECUN, Y.; BOSER, B.; DENKER, J. S.; HENDERSON, D.; HOWARD, R. E.;
HUBBARD, W.; JACKEL, L. D. Backpropagation applied to handwritten zip code
recognition. Neural computation, MIT Press, v. 1, n. 4, p. 541–551, 1989. Cited on page
54.

LECUN, Y.; BOSER, B. E.; DENKER, J. S.; HENDERSON, D.; HOWARD, R. E.;
HUBBARD, W. E.; JACKEL, L. D. Handwritten digit recognition with a back-propagation
network. In: Advances in neural information processing systems. [S.l.: s.n.], 1990. p.
396–404. Cited 2 times on pages 73 and 128.

LECUN, Y.; BOTTOU, L.; BENGIO, Y.; HAFFNER, P. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, IEEE, v. 86, n. 11, p. 2278–2324, 1998.
Cited 2 times on pages 54 and 120.

LECUN, Y.; CORTES, C. MNIST handwritten digit database. 2010. Cited 2 times on
pages 120 and 128.

LECUN, Y.; TOURESKY, D.; HINTON, G.; SEJNOWSKI, T. A theoretical framework
for back-propagation. In: CMU, PITTSBURGH, PA: MORGAN KAUFMANN.
Proceedings of the 1988 connectionist models summer school. [S.l.], 1988. v. 1, p. 21–28.
Cited on page 67.

Bibliography 152

LIN, M.; CHEN, Q.; YAN, S. Network in network. arXiv preprint arXiv:1312.4400, 2013.
Cited 2 times on pages 140 and 144.

LOH, W.-Y. Classification and regression trees. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, Wiley Online Library, v. 1, n. 1, p. 14–23, 2011. Cited
on page 127.

LOH, W.-Y.; SHIH, Y.-S. Split selection methods for classification trees. Statistica sinica,
JSTOR, p. 815–840, 1997. Cited on page 127.

MAKHZANI, A.; FREY, B. K-sparse autoencoders. arXiv preprint arXiv:1312.5663, 2013.
Cited 2 times on pages 66 and 81.

MALERBA, D.; ESPOSITO, F.; SEMERARO, G. A further comparison of simplification
methods for decision-tree induction. In: Learning from data. [S.l.]: Springer, 1996. p.
365–374. Cited on page 123.

MATHERON, G. Random sets and integral geometry. 1975. Cited on page 16.

MATHERON, G.; SERRA, J. The birth of mathematical morphology. In: SYDNEY,
AUSTRALIA. Proc. 6th Intl. Symp. Mathematical Morphology. [S.l.], 2002. p. 1–16. Cited
on page 16.

MATLAB. 9.7.0.1190202 (R2019b). Natick, Massachusetts: The MathWorks Inc., 2018.
Cited 2 times on pages 70 and 71.

MEHRTENS, H. Die Entstehung der Verbandstheorie. [S.l.]: Gerstenberg, 1979. Cited on
page 23.

MEL, B. W. Synaptic integration in an excitable dendritic tree. Journal of Neurophysiology,
American Physiological Society Bethesda, MD, v. 70, n. 3, p. 1086–1101, 1993. Cited on
page 93.

. Why have dendrites? a computational perspective. Dendrites, Oxford University
Press New York, p. 271–289, 1999. Cited on page 93.

MINSKY, M.; PAPERT, S. Perceptrons. [S.l.]: MIT Press, 1969. Cited on page 53.

MITTAL, S. A survey of FPGA-based accelerators for convolutional neural networks.
Neural Computing and Applications, Springer, p. 1–31, 2018. Cited on page 74.

MOHAMED, A.-r.; DAHL, G. E.; HINTON, G. Acoustic modeling using deep belief
networks. IEEE Transactions on Audio, Speech, and Language Processing, IEEE, v. 20,
n. 1, p. 14–22, 2011. Cited on page 55.

MURPHY, K. P. Machine learning: a probabilistic perspective. [S.l.]: MIT press, 2012.
Cited on page 61.

NAGI, J.; DUCATELLE, F.; CARO, G. A. D.; CIREŞAN, D.; MEIER, U.; GIUSTI, A.;
NAGI, F.; SCHMIDHUBER, J.; GAMBARDELLA, L. M. Max-pooling convolutional
neural networks for vision-based hand gesture recognition. In: IEEE. 2011 IEEE
International Conference on Signal and Image Processing Applications (ICSIPA). [S.l.],
2011. p. 342–347. Cited on page 74.

Bibliography 153

PEDRYCZ, W.; PARK, B.-J.; OH, S.-K. The design of granular classifiers: A study in the
synergy of interval calculus and fuzzy sets in pattern recognition. Pattern Recognition,
Elsevier, v. 41, n. 12, p. 3720–3735, 2008. Cited 3 times on pages 30, 42, and 110.

PEIRCE, C. S. On the algebra of logic. American Journal of Mathematics, JSTOR, v. 3,
n. 1, p. 15–57, 1880. Cited on page 22.

PEREZ, L.; WANG, J. The effectiveness of data augmentation in image classification
using deep learning. ArXiv, abs/1712.04621, 2017. Cited on page 128.

PESSOA, L. F.; MARAGOS, P. Morphological/rank neural networks and their adaptive
optimal design for image processing. In: IEEE. 1996 IEEE International Conference on
Acoustics, Speech, and Signal Processing Conference Proceedings. [S.l.], 1996. v. 6, p.
3398–3401. Cited 3 times on pages 20, 103, and 105.

. Neural networks with hybrid morphological/rank/linear nodes and their
application to handwritten character recognition. In: IEEE. 9th European Signal
Processing Conference (EUSIPCO 1998). [S.l.], 1998. p. 1–4. Cited on page 18.

. Neural networks with hybrid morphological/rank/linear nodes: a unifying
framework with applications to handwritten character recognition. Pattern Recognition,
v. 33, n. 6, p. 945 – 960, 2000. ISSN 0031-3203. Cited 3 times on pages 18, 103, and 104.

PESSOA, L. F. C. Nonlinear systems and neural networks with hybrid morphologi-
cal/rank/linear nodes: Optimal design and applications to image processing and pattern
recognition. 1999. Cited 2 times on pages 18 and 20.

PETRIDIS, V.; KABURLASOS, V. G. Fuzzy lattice neural network (FLNN): a hybrid
model for learning. IEEE Transactions on Neural Networks, IEEE, v. 9, n. 5, p. 877–890,
1998. Cited on page 88.

PRASAD, A. M.; IVERSON, L. R.; LIAW, A. Newer classification and regression tree
techniques: bagging and random forests for ecological prediction. Ecosystems, Springer,
v. 9, n. 2, p. 181–199, 2006. Cited on page 121.

RITTER, G.; DAVIDSON, J.; WILSON, J. Beyond mathematical morphology. In: Visual
Communications and Image Processing II. [S.l.]: International Society for Optics and
Photonics, 1987. v. 845, p. 260–269. Cited on page 17.

RITTER, G.; IANCU, L. Single layer feedforward neural network based on lattice algebra.
In: IEEE. Proceedings of the International Joint Conference on Neural Networks, 2003.
[S.l.], 2003. v. 4, p. 2887–2892. Cited 2 times on pages 18 and 93.

RITTER, G. X.; IANCU, L.; URCID, G. Morphological perceptrons with dendritic
structure. In: IEEE. The 12th IEEE International Conference on Fuzzy Systems, 2003.
FUZZ’03. [S.l.], 2003. v. 2, p. 1296–1301. Cited 5 times on pages 18, 88, 92, 94, and 96.

RITTER, G. X.; SUSSNER, P. An introduction to morphological neural networks. In:
IEEE. Proceedings of 13th International Conference on Pattern Recognition. [S.l.], 1996.
v. 4, p. 709–717. Cited 5 times on pages 17, 39, 88, 89, and 93.

RITTER, G. X.; SUSSNER, P.; LEON, J. Diaz-de. Morphological associative memories.
IEEE Transactions on neural networks, IEEE, v. 9, n. 2, p. 281–293, 1998. Cited on page
16.

Bibliography 154

RITTER, G. X.; URCID, G. Lattice algebra approach to single-neuron computation.
IEEE Transactions on Neural Networks, IEEE, v. 14, n. 2, p. 282–295, 2003. Cited on
page 18.

. Learning in lattice neural networks that employ dendritic computing. In:
Computational Intelligence Based on Lattice Theory. [S.l.]: Springer, 2007. p. 25–44.
Cited 3 times on pages 18, 96, and 97.

RITTER, G. X.; URCID, G.; VALDIVIEZO-N, J.-C. Two lattice metrics dendritic
computing for pattern recognition. In: IEEE. 2014 IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE). [S.l.], 2014. p. 45–52. Cited on page 39.

ROBBINS, H.; MONRO, S. A stochastic approximation method. The annals of
mathematical statistics, JSTOR, p. 400–407, 1951. Cited on page 61.

ROMANUKE, V. V. Training data expansion and boosting of convolutional neural
networks for reducing the MNIST dataset error rate. kpi, 2016. Cited 2 times on pages
128 and 129.

RONSE, C. Why mathematical morphology needs complete lattices. Signal processing,
Elsevier, v. 21, n. 2, p. 129–154, 1990. Cited 2 times on pages 16 and 40.

ROSASCO, L.; VITO, E. D.; CAPONNETTO, A.; PIANA, M.; VERRI, A. Are loss
functions all the same? Neural Computation, MIT Press, v. 16, n. 5, p. 1063–1076, 2004.
Cited on page 61.

ROSENBLATT, F. Principles of neurodynamics. perceptrons and the theory of brain
mechanisms. [S.l.], 1961. Cited 2 times on pages 19 and 52.

ROTA, G.-C. The many lives of lattice theory. Notices of the AMS, v. 44, n. 11, p.
1440–1445, 1997. Cited on page 23.

RUMELHART, D. E.; HINTON, G. E.; WILLIAMS, R. J. Learning internal
representations by error propagation. [S.l.], 1985. Cited 3 times on pages 53, 54, and 64.

. Learning representations by back-propagating errors. Nature, Nature Publishing
Group, v. 323, n. 6088, p. 533–536, 1986. Cited on page 53.

RUSSELL, S. J.; NORVIG, P. Artificial intelligence: a modern approach. [S.l.]: Malaysia;
Pearson Education Limited„ 2016. Cited on page 55.

SCHMALZ, M. S.; RITTER, G. X. Hyperspectral endmember extraction and signal
classification with morphological networks. In: CITESEER. in Proceedings of the AMOS
2006 Conference, Maui HI. [S.l.], 2006. Cited on page 16.

SCHMIDHUBER, J. Deep learning in neural networks: An overview. Neural Networks,
Elsevier, v. 61, p. 85–117, 2015. Cited 3 times on pages 54, 66, and 85.

SCHRÖDER, E. Vorlesungen über die Algebra der Logik (exakte Logik), von Dr. Ernst
Schröder,... [S.l.]: BG Teubner., 1890. Cited on page 23.

SEGEV, I.; RALL, W. Computational study of an excitable dendritic spine. Journal of
Neurophysiology, American Physiological Society Bethesda, MD, v. 60, n. 2, p. 499–523,
1988. Cited on page 93.

Bibliography 155

SERRA, J. Image analysis and mathematical morphology. [S.l.]: Academic Press, Inc.,
1983. Cited 2 times on pages 16 and 39.

. Image Analysis and Mathematical Morphology: Vol.: 2: Theoretical Advances. [S.l.]:
Academic Press, 1988. Cited on page 40.

SERRA, J.; VERCHERY, G. Mathematical morphology applied to fibre composite
materials. Fibre Science and Technology, Elsevier, v. 6, n. 2, p. 141–158, 1973. Cited on
page 16.

SHORTEN, C.; KHOSHGOFTAAR, T. M. A survey on image data augmentation for
deep learning. Journal of Big Data, Springer, v. 6, n. 1, p. 60, 2019. Cited 2 times on
pages 55 and 130.

SIGILLITO, V. G.; WING, S. P.; HUTTON, L. V.; BAKER, K. B. Classification of radar
returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest,
v. 10, n. 3, p. 262–266, 1989. Cited on page 124.

SOSSA, H.; GUEVARA, E. Efficient training for dendrite morphological neural networks.
Neurocomputing, Elsevier, v. 131, p. 132–142, 2014. Cited on page 18.

SPALL, J. C. Introduction to stochastic search and optimization: estimation, simulation,
and control. [S.l.]: John Wiley & Sons, 2005. v. 65. Cited on page 61.

SPRINGENBERG, J. T.; DOSOVITSKIY, A.; BROX, T.; RIEDMILLER, M. Striving for
simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806, 2014. Cited on
page 140.

SRIVASTAVA, N.; HINTON, G.; KRIZHEVSKY, A.; SUTSKEVER, I.; SALAKHUTDI-
NOV, R. Dropout: a simple way to prevent neural networks from overfitting. The journal
of Machine Learning research, JMLR.org, v. 15, n. 1, p. 1929–1958, 2014. Cited on page
77.

STEINBERG, S. A. Lattice-ordered rings and modules. [S.l.]: Springer, 2010. Cited 5
times on pages 32, 33, 35, 36, and 37.

STERNBERG, S. R. Grayscale morphology. Computer Vision, Graphics, and Image
Processing, v. 35, n. 3, p. 333 – 355, 1986. ISSN 0734-189X. Cited on page 16.

STREET, W. N.; WOLBERG, W. H.; MANGASARIAN, O. L. Nuclear feature extraction
for breast tumor diagnosis. In: Biomedical image processing and biomedical visualization.
[S.l.]: International Society for Optics and Photonics, 1993. v. 1905, p. 861–870. Cited on
page 123.

STROBL, C.; MALLEY, J.; TUTZ, G. An introduction to recursive partitioning:
rationale, application, and characteristics of classification and regression trees, bagging,
and random forests. Psychological Methods, American Psychological Association, v. 14,
n. 4, p. 323, 2009. Cited on page 127.

SUSSNER, P. Morphological perceptron learning. In: IEEE. Proceedings of the 1998
IEEE International Symposium on Intelligent Control (ISIC) held jointly with IEEE
International Symposium on Computational Intelligence in Robotics and Automation
(CIRA) Intell. [S.l.], 1998. p. 477–482. Cited 5 times on pages 17, 42, 88, 90, and 97.

Bibliography 156

. A relationship between binary morphological autoassociative memories and fuzzy
set theory. In: IEEE. IJCNN’01. International Joint Conference on Neural Networks.
Proceedings (Cat. No. 01CH37222). [S.l.], 2001. v. 4, p. 2512–2517. Cited on page 87.

. A fuzzy autoassociative morphological memory. In: IEEE. Proceedings of the
International Joint Conference on Neural Networks, 2003. [S.l.], 2003. v. 1, p. 326–331.
Cited on page 87.

. Generalizing operations of binary autoassociative morphological memories using
fuzzy set theory. Journal of Mathematical Imaging and Vision, Springer, v. 19, n. 2, p.
81–93, 2003. Cited on page 87.

SUSSNER, P.; CAMPIOTTI, I. Extreme learning machine for a new hybrid
morphological/linear perceptron. Neural Networks, Elsevier, v. 123, p. 288–298, 2020.
Cited 11 times on pages 19, 20, 39, 86, 94, 107, 108, 120, 121, 127, and 137.

SUSSNER, P.; ESMI, E. Morphological perceptrons with competitive learning:
Lattice-theoretical framework and constructive learning algorithm. Information Sciences,
Elsevier, v. 181, n. 10, p. 1929–1950, 2011. Cited 9 times on pages 37, 38, 41, 42, 86, 91,
97, 99, and 120.

SUSSNER, P.; ESMI, E.; JARDIM, L. G. A subsethod interval associative memory with
competitive learning. In: SPRINGER. International Fuzzy Systems Association World
Congress. [S.l.], 2019. p. 643–654. Cited 2 times on pages 39 and 88.

SUSSNER, P.; ESMI, E. L. Constructive morphological neural networks: some theoretical
aspects and experimental results in classification. In: Constructive neural networks. [S.l.]:
Springer, 2009. p. 123–144. Cited 3 times on pages 18, 19, and 92.

. An introduction to morphological perceptrons with competitive learning. In: IEEE.
2009 international joint conference on neural networks. [S.l.], 2009. p. 3024–3031. Cited 6
times on pages 18, 86, 88, 90, 97, and 120.

. A subsethod interval associative memory with competitive learning. International
Fuzzy Systems Association, Springer, v. 19, n. 5, p. 643–654, 2019. Cited on page 16.

SUSSNER, P.; ESMI, E. L.; VILLAVERDE, I.; GRAÑA, M. The kosko subsethood fuzzy
associative memory (KS-FAM): Mathematical background and applications in computer
vision. Journal of Mathematical Imaging and Vision, Springer, v. 42, n. 2-3, p. 134–149,
2012. Cited 2 times on pages 87 and 136.

SUSSNER, P.; SCHUSTER, T. Interval-valued fuzzy morphological associative memories:
Some theoretical aspects and applications. Information Sciences, Elsevier, v. 438, p.
127–144, 2018. Cited on page 16.

SUSSNER, P.; VALLE, M. E. Implicative fuzzy associative memories. IEEE Transactions
on Fuzzy Systems, IEEE, v. 14, n. 6, p. 793–807, 2006. Cited 2 times on pages 16 and 87.

. Recall of patterns using morphological and certain fuzzy morphological associative
memories with applications in classification and prediction. In: IEEE. 2006 IEEE
International Conference on Fuzzy Systems. [S.l.], 2006. p. 209–216. Cited 2 times on
pages 16 and 87.

Bibliography 157

VALDIVIEZO-NAVARRO, J.-C.; URCID-SERRANO, G. Hyperspectral endmember
detection based on strong lattice independence. In: Applications of Digital Image
Processing XXX. [S.l.]: International Society for Optics and Photonics, 2007. v. 6696, p.
669625. Cited on page 16.

VALLE, M. E.; SOUZA, A. C. de. On the recall capability of recurrent exponential
fuzzy associative memories based on similarity measures. Mathware and Soft Computing
Magazine, v. 22, p. 33–39, 2015. Cited on page 39.

VALLE, M. E.; SUSSNER, P. Fuzzy morphological associative memories based on
uninorms. In: IEEE. 2008 IEEE International Conference on Fuzzy Systems (IEEE World
Congress on Computational Intelligence). [S.l.], 2008. p. 1582–1589. Cited on page 87.

. A general framework for fuzzy morphological associative memories. Fuzzy Sets
and Systems, Elsevier, v. 159, n. 7, p. 747–768, 2008. Cited 4 times on pages 16, 39, 41,
and 87.

VALLE, M. E.; SUSSNER, P.; GOMIDE, F. Introduction to implicative fuzzy associative
memories. In: IEEE. 2004 IEEE International Joint Conference on Neural Networks
(IEEE Cat. No. 04CH37541). [S.l.], 2004. v. 2, p. 925–930. Cited on page 87.

VILLAVERDE, I.; GRAÑA, M.; D’ANJOU, A. Morphological neural networks
for localization and mapping. In: IEEE. 2006 IEEE International Conference on
Computational Intelligence for Measurement Systems and Applications. [S.l.], 2006. p.
9–14. Cited on page 135.

VINCENT, P.; LAROCHELLE, H.; LAJOIE, I.; BENGIO, Y.; MANZAGOL, P.-A.
Stacked denoising autoencoders: Learning useful representations in a deep network with
a local denoising criterion. Journal of Machine Learning Research, v. 11, n. Dec, p.
3371–3408, 2010. Cited on page 81.

VISWANATHAN, T. Generalization of Hölder’s theorem to ordered modules. Canadian
Journal of Mathematics, Cambridge University Press, v. 21, p. 149–157, 1969. Cited on
page 35.

WAN, L.; ZEILER, M.; ZHANG, S.; CUN, Y. L.; FERGUS, R. Regularization of neural
networks using dropconnect. In: International Conference on Machine Learning. [S.l.:
s.n.], 2013. p. 1058–1066. Cited on page 140.

WENG, C.; YU, D.; WATANABE, S.; JUANG, B.-H. F. Recurrent deep neural networks
for robust speech recognition. In: IEEE. 2014 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). [S.l.], 2014. p. 5532–5536. Cited on page 55.

WIDROW, B.; HOFF, M. E. Adaptive switching circuits. [S.l.], 1960. Cited on page 53.

WIDROW, B.; LEHR, M. A. 30 years of adaptive neural networks: perceptron,
MADALINE, and backpropagation. Proceedings of the IEEE, IEEE, v. 78, n. 9, p.
1415–1442, 1990. Cited on page 52.

WINTER, C. R.; WIDROW, B. Madaline rule II: a training algorithm for neural networks.
In: Second Annual International Conference on Neural Networks. [S.l.: s.n.], 1988. p.
1–401. Cited on page 52.

Bibliography 158

XU, C.; LU, C.; LIANG, X.; GAO, J.; ZHENG, W.; WANG, T.; YAN, S. Multi-loss
regularized deep neural network. IEEE Transactions on Circuits and Systems for Video
Technology, IEEE, v. 26, n. 12, p. 2273–2283, 2015. Cited 2 times on pages 140 and 144.

YUILLE, A. L.; RANGARAJAN, A. The concave-convex procedure (CCCP). In:
Advances in neural information processing systems. [S.l.: s.n.], 2002. p. 1033–1040. Cited
on page 106.

ZAMORA, E.; SOSSA, H. Dendrite morphological neurons trained by stochastic gradient
descent. Neurocomputing, v. 260, p. 420 – 431, 2017. ISSN 0925-2312. Cited 7 times on
pages 18, 19, 20, 101, 102, 114, and 121.

	First page
	Title page
	Catalographic data
	Approval
	Acknowledgements
	Resumo
	Abstract
	List of Figures
	List of Tables
	List of Algorithms
	Contents
	Introduction
	Some Relevant Concepts of Lattice Theory
	Historical Context
	Posets and Lattices.
	Notions on Lattice Ordered Groups and Rings
	Bounded Extensions of -groups and -rings
	Mathematical Morphology on Complete Lattices
	Aggregations and I-set Descriptors on Archimedean o-Rings

	Notions on Classification using Backpropagation and Deep Learning.
	Supervised Learning in Classification Problems
	Introduction to Gradient Descent
	Deep Learning and Backpropagation
	Some Deep Learning Layers
	Some Deep Learning Architectures

	A Review of Morphological Perceptrons and Related Models
	The Original Morphological Perceptron Model
	Morphological Perceptron with Competitive Learning
	Dendrite Morphological Neural Networks
	MP and DMNN Training Algorithms
	Hybrid Morphological Models
	Challenges and Issues of Morphological Perceptrons

	Generalized Morphological Perceptrons
	General Description of a GMP Model
	A Review on Aggregator and Descriptor Combinations
	Generalized Morphological Perceptron in Deep Learning
	The Sum-Dot Model
	FC-SD Models
	Conv-SD Models

	Some Experimental Results
	General Classification Problem Datasets
	MNIST1000 Digits Dataset
	MNIST Digits Dataset
	Visual Self-Localization Dataset
	CIFAR-10 Dataset

	Conclusions
	Bibliography

