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Resumo

Esta tese explora aspectos combinatórios relacionados com a topologia/geometria das

variedades de Schubert.

O primeiro problema consiste em obter uma fórmula explícita para o cálculo dos coeficientes

do operador fronteira da homologia inteira das Grassmannianas isotrópicas e ortogonais

ímpares reais. Apesar da natureza geométrica deste problema, este cálculo depende apenas

da combinatória das permutações associadas às variedades de Schubert da decomposição

celular das Grassmannianas isotrópicas.

Também consideramos um estudo combinatório de permutações que se associam a uma

classe mais geral de variedades de Schubert, chamadas de permutações theta-vexillary

com sinal. O principal resultado é o desenvolvimento de descrições equivalentes para as

permutações theta-vexillary dadas em termos de pattern avoidance e do conjunto de cantos

do diagrama da permutação.

Palavras-chave: Variedades de Schubert, Topologia algébrica, Permutações, Permutações

evitando padrões.



Abstract

This thesis presents combinatorial aspects related to topology/geometry of Schubert

varieties.

The first problem consists to obtain an explicit formula to compute the coefficients of

the boundary operator of the integral homology of real isotropic and odd orthogonal

Grassmannians. Despite the geometric nature of this problem, this computation only

depends on the combinatorics of permutations associated to Schubert varieties of a cellular

decomposition of an isotropic Grassmannians.

We also consider a combinatorial study of permutations that are associated to an even

more general class of Schubert varieties called theta-vexillary signed permutations. The

main result is the development of equivalent descriptions of theta-vexillary permutations

in terms of pattern avoidance, and the set of corners of the permutation’s diagram.

Keywords: Schubert varieties, Algebraic topology, Permutations, Pattern-avoiding per-

mutations.
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Introduction

A real or complex flag manifold is a homogeneous space F “ G{P where G is a

semisimple Lie group and P is a parabolic subgroup of G. The Bruhat decomposition of a

flag manifold is a disjoint union of P -orbits that can be parametrized by certain elements

of the Weyl group W . A Schubert variety is the closure of some P -orbit associated to an

element w of the Weyl group. When G is a classical Lie group, points in a flag manifold

are flags L‚ “ pLi1
Ă Li2

Ă ¨ ¨ ¨ Ă Lir
Ă V q in a finite-dimensional vector space V over

the real or complex field, where each subspace Lij
has dimension ij and the sequence

pi1 ă ¨ ¨ ¨ ă irq is associated to the choice of parabolic subgroup P . Fixing a flag V‚, a

Schubert variety is also the loci of flags satisfying certain incidence conditions with V‚.

The main results provided by this thesis are essentially about some combina-

torial problems that comes from Schubert varieties. The first problem is to obtain an

explicit formula for integral homology of real isotropic and odd orthogonal Grassmannians.

The second one is to find equivalent ways of describing a specific kind of permutation in

the Weyl group W of type B (or C), called theta-vexillary signed permutations. Such

permutations are interesting because they contain all permutations that parametrize the

Schubert varieties of the isotropic and odd orthogonal Grassmannians. However, it is

important to say that both problems are independent of each other. In what follows a

short introduction of the main results of each one of these parts is given.

Homology of isotropic and odd orthogonal Grassmannians

Let G be one of the following classical split real Lie groups: the indefinite

special orthogonal group

SOp2n ` 1q :“ tg P Slp2n ` 1,Rq | ggT “ 1u,

or the symplectic group

Sppn,Rq :“ tg P Slp2n,Rq | gJngT “ 1u,

where,

Jn “

˜
0 ´Idn

Idn 0

¸
.
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Their respective Lie algebra g are sopn, n ` 1q, the Lie algebra of type B, or

sppn,Rq, the Lie algebra of type C. The simple root system Σ is the set of simple roots

a0, a1, . . . , an´1 such that: for type B, a0 is the unique short root; for type C, a0 is the

unique large root. In both situations, we denote as a0 the extreme root in the Dynkin with

the double bound, i.e., the roots are ordered as below

a0

Bn

. . .

a1 an−2 an−1 a0

Cn

. . .

a1 an−2 an−1

Given some k “ 0, . . . , n ´ 1, odd orthogonal real Grassmannians and isotropic

real Grassmannians are, respectively, the minimal flag manifold SOpn, n ` 1q{Ppkq and

Sppn,Rq{Ppkq, where pkq “ Σztaku is the maximal proper subset of simple roots that does

not contain ak, and Ppkq is a maximal parabolic subgroup associated to pkq.

Both Grassmannians can be geometric realized as a set whose points are

flags. The orthogonal Grassmannian of type B is the set of pn ´ kq-dimensional isotropic

subspaces in the vector space V “ R
2n`1 equipped with a inner product. It will be denoted

by OGpn´k, 2n`1q. The isotropic Grassmannian of type C is the set of pn´kq-dimensional

isotropic subspaces in the symplectic vector space V “ R
2n. This set will be denoted by

IGpn ´ k, 2nq. They have the same Weyl group, namely, the hyperoctahedral group: the

elemens are permutations in the symmetric group Sn with a sign, positive or negative,

attached to each entry. This group were introduced by Young [45] in 1930s.

In the general context of flag manifolds, the topology of the complex flag

manifolds is well known and its first results date back to Ehresmann in the 1930s (cf.

[18]). Yet the first results about the topology of real flag manifolds dates to the 1970s (cf.

Burghelea–Hangan–Moscovici–Verona [10]) and 1980s (cf. Duistermaat-Kolk-Varadarajan

[16]). Only in the 1990s a complete description of its integral homology was done by

Kocherlakota [30]. A more sophisticated point of view is developed by Casian-Stanton [15].

From the point of view of cellular decomposition, the main difficulty met in the context of

real flag manifolds is the existence of cells in all dimensions whereas the complex one has

only even dimensional cells.

In both the real and complex cases, the Schubert varieties form a cellular

decomposition for the flag manifold, hence the integral homology can be determined

if the boundary operator is known. For a general real flag manifold, a formula for the

boundary map was obtained by Kocherlakota [30] via Morse homology. The same result

was also developed by Rabelo and San Martin [36] in the 2010s, where they computed

directly the boundary map using the Bruhat decomposition as a CW complex. According

to Kocherlakota, the data required to compute the boundary operators depends exclusively

on the permutations, and they are extracted from the set Πw of positive roots sent to

negative ones by w´1 for a Weyl group element w in W . However, it is not easy to compute
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the formula even for classical Lie groups, including the odd orthogonal and isotropic

groups, and the task of computing homology of such Grassmannians becomes hard even

for a computer.

Every element w in the Weyl group of type B and C can be represented

as a signed permutation, and thus Πw can be associated with the set of inversions

of w. Pragacz and Ratajski in [33] have shown that there is a bijection between the

permutations that parametrize Schubert varieties for the Grassmannians and a specific

set constituted of pairs of partitions pα, λq, where α “ pα1 ě ¨ ¨ ¨ ě αk ą 0q is a partition,

and λ “ pλ1 ą ¨ ¨ ¨ ą λr ą 0q is a strict partition such that αk ě r. Such pair can be

represented as a diagram of boxes that we call half-shifted Young diagrams (HSYD).

Namely, a half-shifted Young diagram is composed by two parts: the top part is the Young

diagram of α in a rectangle; and the bottom part is the shifted Young diagram of λ in a

staircase shape.

In this thesis, we show that there is a straight relationship between the set

of inversions Πw and the half-shifted Young diagrams associated with the permutation

w. Namely, the boxes of a HSYD can be filled in with a unique inversion in Πw. In the

context of the maximal Grassmannians G{Pp0q, this was done by Ikeda-Naruse [28] and

Graham-Kreiman [23].

The half-shifted Young diagrams described here are slight modifications of

the diagrams defined by Pragacz and Ratajski, and they are also related to the k-strict

partitions defined by Buch, Kresch and Tamvakis in [39]. The purpose of such change was

to get an easy row-reading of the permutation as well as to insert the inversions in Πw

inside the diagrams similarily to what is done in [28] and [23]. Another consequence is the

occurrence of removable boxes in these diagrams. Given a Schubert variety, some boxes can

be removed from its diagram to get another Schubert variety that drops the dimension by

one. Such pairs of Schubert varieties appear as the possible cases of non-trivial coefficients

of the boundary map.

One of the main results of the present work is to apply the above construction

to get an explicit formula for the coefficients of the boundary map of the integral homology

groups of G{Ppkq (cf. Theorem 2.7). This formula is not as elegant to state as the general

theorem of Kocherlakota, but it is clearly easier to compute since it is described in terms

of removable boxes of the half-shifted Young diagrams of permutations. The formula is

also a generalization of the work of Rabelo [35] in which these coefficients are obtained

when k “ 0, the Lagrangian and maximal orthogonal Grassmannians. The method to

compute integral homology of the usual Grassmannians of type A may be obtained as a

particular case.

This study is developed in the first two chapters of this thesis. Chapter 1

describes all the basic tools required to deal with the half-shifted Young diagrams. The first



Introduction 14

section is devoted to the preliminaries on Lie theory, which includes the formal definition of

the Grassmannians subject to our study. After we define a half-shifted Young diagram and

establish its relationship to some permutations in the Weyl group, we can introduce the

idea of H-relation and V-relation in the half-shifted Young diagram. Then the removable

boxes in a HSYD can be classified according to their positions in the diagram. Finally, we

present a correlation between the set of inversions Πw and the HSYD associated to the

permutation w.

In Chapter 2 we state and prove the main result describing the boundary

maps of the cellular homology of Grassmannians of type B and C. The homology of the

isotropic Grassmannian IGp2, 8q is computed as an example. We also have some results

about orientability, 1- and 2-homology, and a brief explanation about the cohomology of

such Grassmannians.

Theta-vexillary signed permutations

For classical complex Lie groups, a Schubert variety of some permutation w is a

subvariety of some flag manifold F, where it is the loci of flags satisfying certain incidence

conditions. This idea of set of flags that characterizes a Schubert variety can be extended

to flags of subbundles over some arbitrary variety. Consider, in a first moment, the type

A case where the complex Lie group is special linear group Slpn,Cq and the Weyl group

is Sn. Let V be an vector bundle of rank n over some arbitrary variety X, and flags of

subbundles E1 Ă E2 Ă ¨ ¨ ¨ Ă En Ă V and Fn Ă Fn´1 Ă ¨ ¨ ¨ Ă F1 Ă V where Ei has rank i

and Fi has rank n ´ i. Given a permutation w P Sn, the degeneracy locus is a subvariety

Ωw Ă X defined by

Ωw :“ tx P X | dimpEppxq X Fqpxqq ě rA
wpq, pq, for every 1 ď p, q ď nu,

where rA
wpq, pq is the cardinality of the set twp1q, wp2q, . . . , wppqu X tq ` 1, q ` 2, . . . , nu.

The Schubert varieties are the particular case where X is chosen as the flag manifold F “

Slpn,Cq{P , and E1 Ă E2 Ă ¨ ¨ ¨ Ă En Ă V is some fixed flag bundle. This generalization is

better than considering only the Schubert varieties because, for certain sets of permutations,

it is possible to determine a formula for the cohomology class rΩws of the degeneracy locus

as a polynomial in the Chern classes of the vectors bundles involved.

In order to understand the theta-vexillary signed permutations, it is helpful to

discuss about two classes of permutations that inspired them: the vexillary permutations,

and its particular case, the vexillary signed permutations.

A first class of permutation that we will consider are the vexillary permutations

in Sn, in which the easiest definition is given in terms of pattern avoidance as it follows:

a permutation w is called vexillary if and only if it avoids the patters r2 1 4 3s, i.e.,
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there are no indices a ă b ă c ă d such that wpbq ă wpaq ă wpdq ă wpcq. The vexillary

permutations were found by Lascoux and Schützenberger [31] in the 1980s. Fulton [20] in

the 1990s obtained other equivalent characterizations for the vexillary permutations: in

addition to the pattern avoidance criterion, he figured out one in terms of the essential

set of a permutation, among others. Since Sn is the Weyl group of type A, the vexillary

permutations represent Schubert varieties in some flag manifold where the Lie group is

G “ Slpn,Cq.

A few years later, the notion of vexillary signed permutations were introduced

by Billy and Lam [6] in the hyperoctaedral group, i.e., in the Weyl group of type B or C.

Recently, Anderson and Fulton [1, 2] provided a diffent characterization for the vexillary

signed permutations. They defined them by using the notion of associated triple of integers:

given three s-tuple of positive integers τ “ pk, p, qq, where k “ p0 ă k1 ă ¨ ¨ ¨ ă ksq,

p “ pp1 ě ¨ ¨ ¨ ě ps ą 0q, and q “ pq1 ě ¨ ¨ ¨ ě qs ą 0q, satisfying pi ´ pi`1 ` qi ´ qi`1 ą

ki`1 ´ ki for 1 ď i ď s ´ 1, one constructs a signed permutation w “ wpτ q. Since the Weyl

group of type B can be included in the group S2n`1, a signed permutation w in Wn is

vexillary if and only if its inclusion ιpwq in S2n`1 is a vexillary permutation as mentioned

above. Anderson and Fulton in [1] provided two other characterizations of vexillary signed

permutations: one in terms of essential sets and other by pattern avoidance of a signed

permutation.

In this thesis, we obtained alternative characterizations for an even more general

class of signed permutations called theta-vexillary signed permutations. As well as vexillary

signed permutations, they are defined using a triple of integers τ “ pk, p, qq, where we

allow negative values for q, which requires adding many other conditions to the triple.

The precise definition of a theta-vexillary permutation w “ wpτ q in terms of a triple τ

can be found in Chapter 5. These triples also have a geometric interpretation in terms of

degeneracy loci. For our purpose, it is easier to denote the hyperoctahedral group as the

Weyl group of type B. Consider a vector bundle V of rank 2n ` 1 over X, equipped with

a nondegenerate form and two flags of bundles E‚ “ pEp1
Ă Ep2

Ă ¨ ¨ ¨ Ă Eps
Ă V q and

F‚ “ pFq1
Ă Fq2

Ă ¨ ¨ ¨ Ă Fqs
Ă V q such that: for q ą 0, the subbundles Fq are isotropic, of

rank n ` 1 ´ q; for q ă 0, Fq is coisotropic, of corank n ` q; and all the subbundles Ep are

isotropic, of rank n ` 1 ´ p. The degeneracy locus of w “ wpτ q is

Ωw “ Ωτ :“ tx P X | dimpEpi
X Fqi

q ě ki, for 1 ď i ď su.

If a triple is chosen such that all values pi are constant and equal to p, then the

permutation w “ wpτ q are the ones associated to the Grassmannian Schubert varieties.

The following diagram helps to understand how these three different classes of permutations

are related to each other.

The conditions for the triples associated to theta-vexillary permutations were
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Theta-vexillary signed permutations

Hyperoctaedral group Wn

Vexillary signed permutations

Symmetric group S2n+1

Grassmannians

Vexillary permutations

ι(Wn)

→֒

introduced by Anderson and Fulton in [3]. They figured out that the cohomology class

rΩτ s is given in terms of the Chern classes of the vector bundles Epi
and Fqi

, applied to

multi-theta-polynomials Θλ, which derives from the theta-polynomials defined via raising

operators by Bush, Kresch, and Tamvakis [9].

If a permutation w in the Weyl group Wn of type B is represented as a matrix

of dots in a p2n ` 1q ˆ n array of boxes, the (Rothe) extended diagram is the subset

of boxes that remains after striking out the boxes weakly south or east of each dot.

The southeast (SE) corners in the extended diagram form the set of corners C pwq. One

characterization of theta-vexillary signed permutations is the set of corners C pwq is the

disjoint union of the set Nepwq which is composed by all corners that form a piecewise

path that goes to the northeast direction, and the set Upwq of unessential corners. We

also have a characterization via pattern avoidance.

Theorem. Let w be a signed permutation. The following are equivalent:

1. w is theta-vexillary, i.e., there is a triple τ such that w “ wpτ q;

2. the set of corner C pwq is the disjoint union

C pwq “ Nepwq 9YUpwq,

3. w avoids the follow thirteen signed patterns r1 3 2s, r2 3 1s, r3 2 1s, r3 2 1s, r2 1 4 3s,

r2 3 4 1s, r2 3 4 1s, r3 4 1 2s, r3 4 1 2s, r3 4 1 2s, r3 4 1 2s, r4 1 2 3s, and r4 1 2 3s.

This theorem is consequence of Propositions 4.8 and 4.14 and it is similar

to the vexillary signed permutation’s version. It is interesting to notice that, comparing

to the vexillary case, we admit some SE corners in the diagram that are not in an

ordered northeast path, which we call the unessential corners. Besides, the characterization

via signed pattern avoidance for the Theta-vexillary permutations has eight patterns in

common with those for the vexillary case and r2 1s is the unique not present in this list.

It worth to notice that if we consider the pattern avoidance criterion, the

theta-vexillary signed permutations are not listed yet in the “Database of Permutation
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Pattern Avoidance” maintained by Tenner [42]. Hence, they form a whole new class of

permutations among other 51 classes that already belongs to the database.

In Chapter 3 we define some basic conceptions of the combinatorics of permu-

tations in Sn and Wn the Weyl group of type B, and their associated diagrams, and we

describe the vexillary and vexillary signed permutations. The definition of vexillary permu-

tations (signed or not) are not require to define the theta-vexillary signed permutations

but it would certainly facilitate the understanding about constructions and properties

related to theta-vexillary permutations. Chapter 4 proves the theorem stated above by

making use of several combinatorics tools. Finally, in Appendix A we give the geometric

interpretation of such types of permutations, their association to the Schubert varieties

and degeneracy loci, as well as the formulas for the cohomology class of such associated

Schubert varieties.
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Chapter 1

Young diagrams of isotropic and odd

orthogonal Grassmannians

In this chapter, we introduce the basic definitions about Lie theory and isotropic

Grassmannians required to deal with the problem in the next chapter. We also establish all

the concepts around the half-shifted Young diagrams, such as the row-reading, H-related

and V-related columns, removable boxes, and the set of inversions.

1.1 Preliminaries

The main facts about semi-simple Lie Groups and flag manifolds may be found

in Helgason [24], Knapp [29], Warner [43], and San Martin [37]. We also refer Björner

and Brenti [7] for some results about the Weyl group. Flag manifolds are defined as

homogeneous spaces G{P where G is a non-compact semi-simple Lie group and P is a

parabolic subgroup of G. Let g be a non-compact real semi-simple Lie algebra.

Let G be a non-compact semi-simple Lie group. Take a Cartan decomposition

g “ k ‘ s and let a be a maximal abelian sub-algebra contained in s. We denote by Π

the set of roots of the pair pg, aq and fix a simple system of roots Σ Ă Π. Denote by

Π˘ the set of positive and negative roots, respectively, and by a` the Weyl chamber

a` “ tH P a : αpHq ą 0 for all α P Σu. Let n “
ÿ

αPΠ`

gα be the direct sum of root

spaces corresponding to the positive roots. The Iwasawa decomposition of g is given by

g “ k ‘ a ‘ n. The notations K and N are used to indicate the connected subgroups

whose Lie algebras are k and n respectively. A sub-algebra h Ă g is said to be a Cartan

sub-algebra if hC is a Cartan sub-algebra of gC.

A minimal parabolic sub-algebra of g is given by p “ m‘ a‘ n, where m is the

centralizer of a in k. Let P be the minimal parabolic subgroup with Lie algebra p. Note

that P is the normalizer of p in G. We call F “ G{P the maximal flag manifold of G and
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denote by b0 the base point 1 ¨ P in G{P .

Associated to a subset of simple roots Θ Ă Σ there are several Lie algebras

and groups. We write gpΘq for the semi-simple Lie algebra generated by g˘α, α P Θ. Let

GpΘq be the connected group with Lie algebra gpΘq. Moreover, let nΘ be the sub-algebra

generated by the roots spaces g´α, α P Θ and put pΘ “ nΘ ‘ p.

The normalizer PΘ of pΘ in G is a standard parabolic subgroup which contains

P . The corresponding flag manifold FΘ “ G{PΘ is called a partial flag manifold of G or

flag manifold of type Θ. We denote by bΘ the base point 1 ¨ PΘ in G{PΘ.

A central role in our context will be played by the Weyl group W associated

to a. This is the finite group generated by the reflections over the root hyperplanes α “ 0

contained in a, α P Σ. Alternatively, it may be given as the quotient NKpaq{ZKpaq where

NKpaq and M “ ZKpaq are respectively the normalizer and the centralizer of a in K (the

Lie algebra of M is m).

The elements in the Weyl group W of G also can be described as product of

simple reflections si “ sαi
through simple roots αi P Σ. The length ℓpwq of w P W is the

number of simple reflections in any reduced decomposition of w. There is a partial order in

the Weyl group called the Bruhat-Chevalley order: we say that w1 ď w2 if given a reduced

decomposition w2 “ sj1
¨ ¨ ¨ sjr

then w1 “ sji1
¨ ¨ ¨ sjik

for some 1 ď i1 ď ¨ ¨ ¨ ď ir ď r.

For a subset Θ Ă Σ, the subgroup WΘ is defined to be the stabilizer of

aΘ “ tH P a : αpHq “ 0, α P Θu. Alternatively, WΘ may be seen as the subgroup of the

Weyl group generated by the reflections with respect to the roots α P Θ.

We also define the subset W
Θ of W by

W
Θ “ tw P W : ℓpwsαq “ ℓpwq ` 1 , α P Θu.

There exists a unique element wΘ P W
Θ of minimal length in each coset wWΘ. The set

W
Θ is called the subset of minimal representatives of the cosets of WΘ in W .

The Bruhat decomposition presents the flag manifolds as union of disjoint

N -orbits, namely,

FΘ “
ž

wPW{WΘ

N ¨ wbΘ

where N ¨ w1bΘ “ N ¨ w2bΘ if w1WΘ “ w2WΘ.

Each N -orbit through w is diffeomorphic to an euclidean space. Such an orbit

N ¨ wbΘ is called a Bruhat cell. Its dimension is given by the formula

dim pN ¨ wbΘq “
ÿ

αPΠwzxΘy

mα

where mα “ dimpgαq is the multiplicity of the root space gα and xΘy denotes the roots in

Π` generated by Θ.
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Given any w P W{WΘ, in order to establish a relationship between the dimen-

sion dim pN ¨ wbΘq and the length ℓpwq, we must choose the minimal representative for w

in W
Θ. In this case, for w “ sj1

¨ ¨ ¨ sjr
P W

Θ, dim pN ¨ wbΘq “
rÿ

i“1

mαji
` m2αji

(see [44],

Corollary 2.6).

A Schubert variety is the closure of a Bruhat cell, i.e., S
Θ

w “ clpN ¨ wbΘq. The

Bruhat-Chevalley order defines an order between the Schubert varieties by S
Θ

w1
Ă S

Θ

w2
if,

and only if, w1 ď w2.

A particular case of Lie algebra is the split real form. If h “ a is a Cartan

sub-algebra of g we say that g is a split real form of gC. In this case, we have that m “ 0,

mα “ 1, and m2α “ 0 for α P Π. Clearly, we conclude that dim pN ¨ wbΘq “ ℓpwq.

1.1.1 Isotropic and odd orthogonal Grassmannians

Let us briefly describe the two different types of Grassmannians studied here:

the isotropic IGpn ´ k, 2nq and the odd orthogonal OGpn ´ k, 2n ` 1q.

First of all, we require some basic algebraic concepts. Suppose that V is vector

space of dimension 2n and equipped with symplectic bilinear form ω. Given a subspace W of

V , the perpendicular of W is the subspace W K “ tv P W | ωpv, wq “ 0 for every w P W u.

A subspace W of V is called

• isotropic: if the symplectic form vanishes in W , i.e., W Ă W K;

• coisotropic: if the symplectic form vanishes in W K, i.e., W K Ă W .

The same definition of (co)isotropic space applies to a vector space V of

dimension 2n ` 1 and equipped with a inner product.

Consider the isotropic Grassmannian IGpn ´ k, 2nq which parametrizes pn ´ kq-

dimensional isotropic subspaces of a real 2n-dimensional symplectic vector space considered

as a minimal flag manifold of the symplectic group Sppn,Rq with the Lie algebra sppn,Rq.

The root system of type C is realized as a set of vectors

Π “ t˘εi ˘ εj | 1 ď i ă j ď nu Y t˘2εi | 1 ď i ď nu

in the Euclidean space R
n “ ‘n

i“1
Rεi. Denote the simple roots1 by a0 “ 2ε1 and ai “

εi`1 ´ εi for 1 ď i ă n. The isotropic Grassmannians are minimal flag manifolds

IGpn ´ k, 2nq “ Sppn,Rq{Ppkq

1 In contrast to the usual definition of simple root given in the previous section, from now on we are

going to denote a simple root by ak because the alpha symbol “α” will be used to denote a partition.
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where pkq “ Σztaku is the maximal proper subset of the simple set of roots that does not

contain the simple root ak.

Now, consider the Grassmannian OGpn ´ k, 2n ` 1q which parametrizes pn ´ kq-

dimensional isotropic subspaces of a real p2n ` 1q-dimensional vector space equipped with

a inner product considered as a minimal flag manifold of the indefinite special orthogonal

group SOpn, n ` 1q with Lie algebra sopn, n ` 1q of type B.

The root system of type B is realized as a set of vectors

Π “ t˘εi ˘ εj | 1 ď i ă j ď nu Y t˘εi | 1 ď i ď nu

in the Euclidean space Rn “ ‘n
i“1

Rεi. Denote the simple roots by a0 “ ε1 and ai “ εi`1 ´εi

for 1 ď i ă n. The odd orthogonal Grassmannians are minimal flag manifolds

OGpn ´ k, 2n ` 1q “ SOp2n ` 1,Rq{Ppkq

where pkq “ Σztaku is the maximal proper subset of the simple set of roots that does not

contain the simple root ak.

The Weyl group Wn for the root system Bn and Cn are equal and it is isomorphic

to the semidirect product Sn ˙ Z
n
2
, i.e., they are given by permutations in Sn with a sign

attached to each entry. We will write these elements as barred permutations of the form

n, . . . , 2, 1, 1, 2, . . . , n

using the bar to denote a negative sign, and we take the natural order on them, as above.

The hyperoctahedral group Wn has simple reflections s0, . . . , sn´1 which acts on the right

of the semidirect product Sn ˙ Z
n
2

by

px1, x2, . . . , xnqs0 “ px1, x2, . . . , xnq;

px1, . . . , xi, xi`1, . . . , xnqsi “ px1, . . . , xi`1, xi, . . . , xnq, for 1 ď i ď n ´ 1,

where each xi is an integer value between n and n.

If Wk is the parabolic subgroup generated by tsi : i ‰ ku then the set W
pkq Ă

Wn of minimal length coset representatives of Wk parametrizes the Schubert varieties in

IGpn ´ k, 2nq and OGpn ´ k, 2n ` 1q. This indexing set W
pkq can be identified as the set

of barred permutations of the form

w “ wu,λ “ puk, . . . , u1, λ1, . . . , λr, vn´k´r, . . . , v1q (1.1.1)

where r ď n ´ k and the sets λ “ pλ1, . . . , λrq, u “ pu1, . . . , ukq, and v “ pv1, . . . , vn´k´rq

satisfy

λ1 ą λ2 ą ¨ ¨ ¨ ą λr ą 0;

0 ă uk ă ¨ ¨ ¨ ă u1;

0 ă vn´k´r ă ¨ ¨ ¨ ă v1.
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This description follows the notation given by Tamvakis [39]. A general version,

for any choice of Θ, is also described by Stanley [38].

1.2 Half-shifted Young diagrams

The goal of this section is to provide the main tool for dealing with the

combinatorics of isotropic and odd orthogonal Grassmannians.

A (standard) integer partition is a set of non-increasing integers α “ pα1 ě

α2 ě ¨ ¨ ¨ ě αm ą 0q. Partitions can be graphically represented with a finite collection of

boxes, arranged in left-justified rows, with rows lengths equal to αi. This representation

is called a Young diagram. Let Rpm, nq denote the set of integer partitions α “ pα1 ě

α2 ě ¨ ¨ ¨ ě αm ą 0q with α1 ď n so that the Young diagram of each α fits inside an m ˆ n

rectangle. For instance, α “ p5, 5, 4q is represented as the Young diagram in Figure 1.

A strict integer partition is a set of decreasing integers λ “ pλ1 ą λ2 ą ¨ ¨ ¨ ą

λr ą 0q. Strict partitions also can be graphically represented with a finite collection of

boxes, arranged in a staircase shape, with rows lengths equal to λi. This representation is

called a strict Young diagram. Define Dn as the set of all strict partitions λ “ pλ1 ą λ2 ą

¨ ¨ ¨ ą λr ą 0q with λ1 ď n. For instance, λ “ p8, 7, 4, 1q is represented as the strict Young

diagram in Figure 1.

In both cases, the number of nonzero entries in the partition α and in the strict

partition λ is denoted by ℓpαq and ℓpλq, respectively.

α = (5, 5, 4) λ = (8, 7, 4, 1)

Figure 1 – Young diagram of α “ p5, 5, 4q and strict Young diagram of λ “ p8, 7, 4, 1q. In
this case, ℓpαq “ 3 and ℓpλq “ 4.

Pragacz and Ratajski in [33] describe the elements of W
pkq by means of Young

diagrams, which combines one standard and one strict partition. Each element wu,λ P W
pkq

corresponds to a double partition Λ “ α|λ where α “ αpu, λq is defined by

αi “ ui ` i ´ k ´ 1 ` di (1.2.1)

for 1 ď i ď k and di “ #tj | λj ą uiu. We will call α the top partition of Λ and λ the

bottom partition of Λ. The length of w is ℓ “ ℓpwq “ |α| ` |λ|, where |α| :“
kÿ

j“1

αj and

|λ| :“
rÿ

j“1

λj.
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For example, consider the permutation w “ p2, 5, 6, 8, 7, 4, 1, 3q in IGp5, 16q.

From Equation (1.1.1), the strict partition λ correspond to the negtive entries of w, i.e.,

λ “ p8, 7, 4, 1q. Using Equation (1.2.1), the partition α is α “ p5, 5, 4q. Both partitions are

the ones given in Figure 1.

Define Ppk, nq as the set of pairs Λ “ α|λ with α P Rpk, n ´ kq and λ P Dn

such that αk ě ℓpλq, i.e., Λ satisfies

n ´ k ě α1 ě ¨ ¨ ¨ αk ě 0,

n ě λ1 ą ¨ ¨ ¨ ą λr ą 0, (1.2.2)

αk ě ℓpλq.

Lemma 1.1 ([33], Lemma 1.2). There is a bijection between W
pkq and Ppk, nq.

The bijection allows us to consider the Schubert varieties SΛ, parametrized by

the set Ppk, nq of double partitions. When we want to emphasize that a permutation w is

associated to some double partition Λ, we denote the permutation by wΛ.

Previous works already represented a partition Λ as a diagram of arranged boxes,

but they do not fit in our purpose. We may arrange the top and the bottom partition in

boxes in a Young diagram’s style. This diagrams will be called half-shifted Young diagrams

(HSYD), which corresponds to a half-shifted diagram in the sense presented by Tamvakis

[39].

Consider the top diagram α left justified in the k ˆ pn´kq rectangle and denote

by Dα the set of square boxes with coordinates pi, jq in this rectangle arranged such that

p1, 1q is the upper left box. Also, consider, for each 1 ď i ď r, that the i-th row of λ is

shifted to the right pi ´ 1q units. With that shift, the bottom diagram may be seen inside

a staircase partition with n rows and define SDλ the set of square boxes with coordinates

pi, jq of the bottom diagram arranged such that p1, 1q is the upper left box.

The diagram DΛ of Λ “ α|λ is the juxtaposition of Dα and SDλ. Boxes, rows,

or columns that are contained in the top part Dα (resp. bottom part SDλ) will be called

top (resp. bottom) boxes, rows or columns. Note that the condition αk ě ℓpλq implies that

the number of rows in the bottom diagram does not exceed the number of boxes in the

last row of the top diagram. For instance, Figure 2 presents the half-shifted diagram of

the partition Λ “ 5, 5, 4|8, 7, 4, 1 of a Schubert variety in IGp5, 16q and how to read an

pi, jq box in each diagram. It is very important to keep in mind this example of partition

because it will be used throughout Chapters 1 and 2.

The advantage of arranging the boxes of a double partition Λ as the half-

shifted Young diagram is because there is a easy way get the permutation wΛ in terms

of simple reflections si. This is known as the row-reading expression of wΛ P W
pkq, where

Λ “ α|λ P Ppk, nq. With respect to the top partition α, let sT : Dα Ñ ts1, . . . , sn´1u be
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i

j

i

j

Dα

SDλ

top

bottom

Figure 2 – Half-shifted Young diagram of Λ “ 5, 5, 4|8, 7, 4, 1 in IGp5, 16q. It shows the
direction to read the boxes of Dα and SDλ.

defined, for 1 ď i ď k and 1 ď j ď n ´ k, by

sT pi, jq “ sj´i`k. (1.2.3)

For a given partition α P Rpk, n ´ kq associated with Λ “ α|λ P Ppk, nq, the

row-reading map is a bijection ηT : Dα Ñ t1, 2, . . . , |α|u defined by assigning the numbers

increasingly to the boxes of Dα from right to left starting from the bottom row to the top

row. Then, we can form a word

wα “ si1
¨ ¨ ¨ si|α|

(1.2.4)

where sil
“ sT ppηT q´1plqq, for all 1 ď l ď |α|.

With respect to the bottom partition λ, let sB : SDλ Ñ ts0, . . . , sn´1u, for

1 ď i ď n ´ k, 1 ď j ď n and i ď j, by

sBpi, jq “ sj´i. (1.2.5)

As before, for a given partition λ P Dn associated with Λ “ α|λ P Ppk, nq, the row-reading

map is a bijection ηB : SDλ Ñ t1, 2, . . . , |λ|u defined by assign the numbers increasingly

to the boxes of SDλ from right to left starting from the bottom row to the top row. Then,

we can form a word

wλ “ sj1
¨ ¨ ¨ sj|λ|

(1.2.6)

where sjl
“ sBppηBq´1plqq, for all 1 ď l ď |λ|. The concatenation of expressions (1.2.6)

and (1.2.4) gives

w “ wΛ “ wλwα. (1.2.7)

The maps sT , sB, ηT , and ηB for the Schubert variety given by the parti-

tion 5, 5, 4|8, 7, 4, 1 of IGp5, 16q are illustrated in Figure 3. Then, wλ “ s0 ¨ s3s2s1s0 ¨

s6s5s4s3s2s1s0 ¨ s7s6s5s4s3s2s1s0 and wα “ s4s3s2s1 ¨ s6s5s4s3s2 ¨ s7s6s5s4s3.
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s0

sT :

sB:

s1 s2 s3 s4 s5 s6 s7

ηT :

ηB:

1

2

s0 s1 s2 s3 s4 s5 s6

s0 s1 s2 s3

s0

s1 s2 s3 s4

s3 s4 s5 s6 s7

s2 s3 s4 s5 s6

345

6789101112

1314151617181920

1234

56789

1011121314

Figure 3 – Row-reading of 5, 5, 4|8, 7, 4, 1 in IGp5, 16q.

1.2.1 Related bottom columns

The HSYD gives us an easy way to get the permutation w when we know the

double partition Λ “ α|λ, due to Tamvakis [39].

First of all, we need to establish a relationship between top rows and top

columns with bottom columns of DΛ.

Given any top row 1 ď i ď k, the pαi ` k ´ i ` 1q-th bottom column in the

n ˆ n staircase shape will be called horizontal-related, or simply H-related. This definition

has a geometrical explanation in DΛ: a bottom column is H-related if we can draw a

45-degree line from the center of the first box in this column to the center of rightmost

box of some top row. For example, the H-related columns of Λ “ 5, 5, 4|8, 7, 4, 1 are the

bottom columns with gray lines in the left diagram of Figure 4.

b

b

b

b

b

b

b

b

b

b

b

b

b

u1

u2

u3

bc

bc

bc

v1

Figure 4 – The left figure presents the H-related columns (marked by the gray lines) and
the right one presents the V-related columns (marked by the dashed gray lines)
for Λ “ 5, 5, 4|8, 7, 4, 1. The number of dots of each bottom column are their
vacant length.

On the other hand, given any top column 1 ď j ď n ´ k, it also can be

associated with some bottom column. The conjugate partition α˚ of α is a partition in

Rpn ´ k, kq defined by α˚
i “ #tj | αj ě iu, for all 1 ď i ď n ´ k, i.e., α˚ is the partition

given by the columns of α. For instance, if α “ p5, 5, 4q then the respective conjugate

partition is α˚ “ p3, 3, 3, 2q.
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For any top column 1 ď j ď n ´ k, the pk ` j ´ α˚
j q-th bottom column in the

n ˆ n staircase shape will be called vertical-related, or simply V-related. Geometrically in

DΛ, suppose that a t-th bottom column is chosen: (a) if t ď αk then such bottom column

is V-related; (b) else, if we can draw a 45-degree line from the center of the first box in this

column to the center of the blank box immediately below a box of Dα, then this bottom

column is V-related. For example, the V-related columns of Λ “ 5, 5, 4|8, 7, 4, 1 are the

bottom columns with dash gray lines in the right diagram of Figure 4.

In short:

H-relation: i-th top row ÐÑ pαi ` k ´ i ` 1q-th bottom column;

V-relation: j-th top column ÐÑ pk ` j ´ α˚
j q-th bottom column.

Lemma 1.2. We have the following properties:

1. Any bottom column is either H-related or V-related;

2. Let Λ “ α|λ be a double partition, and suppose that we admit the extreme values

α0 “ n ´ k and αk`1 “ 0. For any i P t0, . . . , ku, then all pαi ´ αi`1q bottom columns

between the columns H-related to the i-th and pi ` 1q-th top rows are V-related, as

indicated in Figure 5.

i

i+ 1

bottom column
(αi+k−i+1)-th

︸ ︷︷ ︸

V-related
(αi+1+k−i)-th
bottom column

columns

.
.
.

.
.
.

Figure 5 – Interpretation of Lemma 1.2 in the HSYD.

Proof. Suppose that the t-th bottom column is, simultaneously, H-related and V-related.

Then, there are i and j such that t “ αi ` k ´ i ` 1 “ k ` l ´ α˚
j , i.e., αi ´ j ` 1 “ i ´ α˚

j .

If αi ě j then i ´ α˚
j ě 1 and α˚

j “ #tl | αl ě ju ě i, a contradiction. On the other hand,

if αi ă j then i ´ α˚
j ď 0 and α˚

j “ #tl | αl ě ju ă i, also a contradiction. Hence, no

bottom column can be, simultaneously, H-related and V-related. Since there are exactly k

H-related bottom columns and pn ´ kq V-related bottom columns, a bottom column is

either H-related or V-related.

For the second statement, observe that if t ă i then αt `k ´t`1 ą αi `k ´ i`1

or if t ą i ` 1 then αt ` k ´ t ` 1 ă αi`1 ` k ´ i. So, all the H-related bottom columns occur

either to the left of the pαi`1 ` k ´ iq-th column or to the right of the pαi ` k ´ i ` 1q-th

column. Hence, there is no H-related column between them.
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Notice that the previous lemma still works even if k “ 0. In this situation, all

bottom columns are V-related.

The vacant length of a bottom column is the number of empty boxes below the

boxes of λ in the staircase n ˆ n shape. Explicitly, the vacant length of the j-th bottom

column is the number j ´ #ti | λi ` i ą ju.

We may recover the permutation associated with such diagram by taking the

vacant length of the H-related and V-related bottom columns. Namely, the permutation

element for Λ “ α|λ is defined by wu,λ in the Equation (1.1.1), where 0 ă uk ă . . . ă u1

are the vacant length of the H-related columns, and 0 ă vn´k´ℓpλq ă ¨ ¨ ¨ ă v1 are the

vacant length of the V-related columns. For example, the partition Λ “ 5, 5, 4|8, 7, 4, 1 (cf.

Figure 4) corresponds to the element w “ p2, 5, 6, 8, 7, 4, 1, 3q since u1 “ 6, u2 “ 5, u3 “ 2

and v1 “ 3.

Remark 1.3. The notion of (H-)related boxes is defined in [9] using the model of k-strict

partitions. Our definition is an adaptation of this in the context of HSYD in terms of

columns, instead of diagonals.

Recall that the definition of α depends mainly on u (see Equation (1.2.1)). On

the other hand, the next proposition says that the conjugate α˚ is essentially given in

terms of v.

Proposition 1.4. Let Λ “ α|λ be a partition associated with w. The conjugate partition

α˚ P Rpn ´ k, kq can be written as

α˚
j “

#
k , if 1 ď j ď ℓpλq;

´vn´k´j`1 ` j ` k ´ rdj , if ℓpλq ă j ď n ´ k;

where rdj “ #tl | λl ą vn´k´j`1u.

Proof. By definition of Λ, we know that αk ě ℓpλq. If 1 ď j ď ℓpλq then α˚
j “ k, the

number of rows of α.

If ℓpλq ă j ď n ´ k then the pk ` j ´ α˚
j q-th bottom column is V-related.

Denoting t :“ k ` j ´ α˚
j , such t-th column has vacant length vm, for some m. Let us figure

out m.

Since v1 ą v2 ą ¨ ¨ ¨ ą vn´k´ℓpλq ą 0, observe that v1 is the vacant length of the

rightmost V-related column, which is associated with the pn ´ kq-th top column; v2 is

the vacant length of the second V-related column from right to left, which is associated

with the pn ´ k ´ 1q-th top column. Inductively, vm is the vacant length of a V-related

column associated with the pn ´ k ´ m ` 1q-th top column, which is the j-th column.

Hence, m “ n ´ k ´ j ` 1.
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The t-th bottom column has t rows in the staircase shape n ˆ n, which

implies that t is equal to the vacant length of such column plus rdj, which represents the

number of boxes filled by λ in such column. In short, t “ vn´k´j`1 ` rdj and, therefore,

α˚
j “ ´vn´k´j`1 ` k ` j ´ rdj.

1.3 Removable boxes of a double partition

Given any permutation w P W
pkq, it is important to ask what are all the

possible permutations w1 ď w such that ℓpw1q “ ℓpwq ´ 1. To answer this question we

should look at the HSYD.

1.3.1 Corners of a double partition

Let Λ “ α|λ be a double partition related to a permutation wΛ. A corner of

Λ is a box of the HSYD such that if we delete it from DΛ then the resulting diagram

DΛ1 is the HSYD of a double partition Λ1, which is associated to a permutation w1 that

satisfies the Equations (1.2.2). Therefore, a corner of a diagram is the rightmost box of

a row where there is no box just below it. Additionally, we also consider the rightmost

corner of the last row of α being a corner if the strict inequality αk ą ℓpλq holds. In other

words, there is a corner in the i-th top row if and only if αi ą αi`1, for i ă k “ ℓpαq, or

αk ą ℓpλq, and there is a corner in the i-th bottom row if and only if λi ` 1 ą λi`1. The

last row of λ always contains a corner.

Corners that are contained in the top part Dα (resp. bottom part SDλ) will be

called top (resp. bottom) corners. We will sort the corners in different classes based on

their location in the diagram. We call:

• T-corner any top corner;

• D-corner any bottom corner that lies in a diagonal box pi, iq P SDλ;

• H-corner any bottom corner that lies in an H-related bottom column;

• V-corner any bottom corner that lies in a V-related bottom column and it is not

diagonal.

Figure 6 illustrates the corners of the double partition 5, 5, 4|8, 7, 4, 1 in IGp5, 16q.

Observe that it contains all four types of corners and the last top row does not contain a

corner since α3 “ ℓpλq.

The following lemma gives a different way to determine the bottom corners by

using u, v, and λ as written in Equation (1.1.1).
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D
V

T

H

Figure 6 – Corners of 5, 5, 4|8, 7, 4, 1 in IGp5, 16q. They are labeled according to their type.

Lemma 1.5. Let w be a permutation in W
pkq and Λ “ α|λ be the associated double

partition. Suppose that the t-th bottom row contains a bottom corner C. Then C is

1. a D-corner if, and only if, λt “ 1 and t “ ℓpλq;

2. an H-corner if, and only if, there is some 1 ď pC ď k such that upC
“ λt ´ 1;

3. a V-corner if, and only if, there is some 1 ď qC ď n´k ´ ℓpλq such that vqC
“ λt ´1.

Proof. A corner only lies in the diagonal iff it is unique in the row, proving the first

statement. For the others, observe that the vacant length of the column of carrying such

corner is, by symmetry, λt ´ 1. Being this an H-related or V-related column, either some

up or some vq is equal to λt ´ 1.

The integer pC of some H-corner (resp. qC of some V-corner) C of Λ is the

pC-th H-related bottom column (resp. qC-th V-related bottom column) counted from right

to left (see Equation (1.1.1)). In Figure 6, for instance, pC “ 1 for the H-corner because it

lays in the 1st H-related bottom column, and qC “ 1 for the V-corner since it belongs to

the 1st V-related column.

1.3.2 Middle bottom boxes

Let Λ “ α|λ be a double partition related to a permutation wΛ. Given 1 ď t ď

ℓpλq and 1 ď x ď λt, suppose that C is a bottom box that lies in the t-th bottom row and

the pt ` x ´ 1q-th bottom column. Then C is called a middle bottom box or an M-box of Λ

if it satisfies the following conditions:

• C is neither a corner nor a diagonal box, i.e., 1 ă x ă λt;

• C belongs to an H-related column;

• x ą λt`1 ` 1;

• λt ´x`αpC
ď αpC´1, where pC is the index 1 ď pC ď k such that αpC

`k ´pC ` 1 “

t ` x ´ 1.
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For instance, the highlighted box in Figure 7 (left) is the unique middle bottom

box of 5, 5, 4|8, 7, 4, 1.

M

Λ Λ′

Figure 7 – The unique M-box of 5, 5, 4|8, 7, 4, 1 in IGp5, 16q. To remove this box, we need
to move the last box in this row to the last row of α (the H-related top row of
the M-box) to get a valid partition such that wΛ1 ď wΛ.

Notice that if we just remove such M-box, we do not get a Young diagram.

But, if we remove C and move the last pλt ´ xq boxes from the t-th bottom row to the

pC-th top row, we get a partition. In fact, this partition Λ1 “ α1|λ1 is given as following:

α1
i “

#
αi ` λt ´ x , if i “ pC ;

αi , otherwise;
λ1

j “

#
x ´ 1 , if j “ t;

λj , otherwise.
(1.3.1)

Hence, the permutation wΛ1 associated to Λ1 satisfies that wΛ1 ď wΛ and

ℓpΛq “ ℓpΛ1q ` 1. We call Λ1 the rearrangement of Λ with respect to the M-box C.

The conditions of an M-box C implies that all boxes to the right of C lie in a

V-related bottom column. Indeed, Lemma 1.2 says that there are pαpC´1 ´ αpC
q V-related

columns after to the right of C and all boxes to the right fit in such range.

We also have a formula of upC
for M-boxes likely for corners in Lemma 1.5.

Given an M-box C, the index pC also satisfies that

upC
“ x ´ 1. (1.3.2)

1.3.3 Bruhat order and Young’s graph

The Young’s graph is defined by the graph whose vertices are all the HSYD of

Λ P Ppk, nq and the edges are defined by Λ Ñ Λ1 where wΛ1 ď wΛ and ℓpΛq “ ℓpΛ1q ` 1.

In other word, Λ Ñ Λ1 if, and only if, one of the following happens

• Λ1 is obtained by deleting for some corner C from Λ; or

• Λ1 is a rearrangement of Λ with respect to the M-box C.

In the Grassmannian IGpn ´ k, 2nq or OGpn ´ k, 2n ` 1q, the top cell Sw˝

corresponding to the longest element w˝ P W
pkq has associated double diagram Λ˝ “
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n ´ k, . . . , n ´ k|n, n ´ 1, . . . , k ` 1, which represents the k ˆ pn ´ kq rectangle for α and

all the n ´ k rows in the staircase shape for λ. Then, we can construct the corresponding

Young’s graph from the larger diagram Λ˝ and get all the vertices and edges by deleting

corners and M-boxes. Figure 8 illustrates this process and presents the Young’s graph for

IGp2, 8q and OGp2, 9q, where n “ 4 and k “ 2.

− −→

− −→

− −→

− −→

− −→

− −→

− −→

− −→

− −→

− −→

− −→

− −→

− −→

− −→

− −→

− −→

− −→

−
−
→

−
−
→

−
−
→

−
−
→

−
−
→

−
−
→

−
−
→

−
−
→

−
−
→

−
−
→

−
−
→

−
−
→

−
−
→

−
−
→

−
−
→

−
−
→

−
−
→

−
−
→

∅

D

DDD

D

D

T

T

T

T

T

T

T

T

T

TT

TT

T

H

H

H

H

H

H

HHH

HH

V

V

V

H

−−−−−−−−−−−−−
−
→

M

M

−−−−−−−−−−−−
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Figure 8 – Young’s graph for IGp2, 8q and OGp2, 9q. The highlighted boxes are the corners
and M-boxes, and the letters inside them tell us their type.

1.3.4 Lagrangian and maximal odd orthogonal Grassmannians

As a particular case of what was described above, the minimal flag manifolds

Fp0q yields the Lagrangian Grassmannian Lpn, 2nq “ IGpn, 2nq for type C and the maximal

odd orthogonal Grassmannian OGpn, 2n ` 1q for type B.

The double permutation is Λ “ H|λ, i.e., Λ “ λ and there is no top diagram.



Chapter 1. Young diagrams of isotropic and odd orthogonal Grassmannians 32

Hence, W
p0q corresponds to all strict partitions in Dλ. Moreover, there is no H-related

columns and only two types of corners occur, namely, D-corners and V-corners.

By the row-reading expression (1.2.7), recall that any Weyl group element is

written as w “ wλwα. In particular, if k “ 0, then w “ wλ and we may consider wλ as an

element of W
p0q. The remark below explains how we can obtain the permutation wλ (the

bottom row-reading) once the permutation w is known.

Remark 1.6. If k “ 0, there is no top partition and the permutation Λ is only given by a

strict partition λ. Hence, wλ “ w is a permutation in W
p0q and Equation (1.1.1) for wλ is

wλ “ pλ1, . . . , λr, rvn´k, . . . , rv1q (1.3.3)

where 0 ă rvn´k ă ¨ ¨ ¨ ă rv1. Then, for any double permutation Λ “ α|λ chosen from an

isotropic Grassmannian, wλ is written as in Equation (1.3.3). But recall from Equation

(1.1.1) that wα does not contain the simple reflection s0. Since w “ wλwα and the simple

reflections act on the right, it follows that wα simply permutes the entries of the permutation

wλ. Therefore, wλ can be obtained from w by reordering the entries increasingly.

For example, considering Λ “ 5, 5, 4|8, 7, 4, 1 in IGp5, 16q, we can reorder the

entries of wΛ “ p2, 5, 6, 8, 7, 4, 1, 3q in order to get wλ “ p8, 7, 4, 1, 2, 3, 5, 6q.

1.4 Inversions and Young diagrams

This section is devoted to show how to fill in the half-shifted Young diagrams

with roots of the set of inversions. As far as we know, such description has not been done

elsewhere. In particular, this will be very useful to compute boundary maps of cellular

homology.

Let w “ sj1
¨ ¨ ¨ sjr

P W
pkq be a reduced decomposition of w, where r “ ℓpwq.

Define the β-sequences of w as the roots

βt “ sj1
¨ ¨ ¨ sjt´1

pajt
q , for 1 ď t ď r. (1.4.1)

Consider the set Πw “ Π` X wΠ´ of positive roots sent to negative roots by

w´1, which is also called set of inversions of w. Using a reduced decomposition of w, it is

known that

Πw “ tβ1, . . . , βru.

Although the definition of β-sequences of w depends on the choice of a reduced

decomposition, different reduced decompositions can be obtained by permuting such roots.

Since |Λ| is equal to the cardinality of Πw where Λ is the double diagram of w,

we aim to describe each β-sequence of w P W
pkq using the position pi, jq of a box in DΛ of

w.
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Let SΛ be the Schubert variety parametrized by Λ “ α|λ in Ppk, nq. Denote

by βα
t and βλ

t the β-sequences of wα and wλ, respectively.

Given a bottom box pi, jq in SDλ set βB
i,j :“ βλ

ηBpi,jq and given a top box pi, jq

in Dα set βT
i,j :“ wλ ¨ βα

ηT pi,jq, where ηT and ηB are the row-reading maps of DΛ.

Proposition 1.7. Every β-sequence of Λ can be obtained from boxes in Dλ as follows:

1. For top boxes: βT
i,j “ εwpk´i`1q ´ εwpk`jq, for pi, jq P Dα;

2. For bottom boxes, it depends on the type of G:

a) Type C: βB
i,j “ εwλp2n`1´iq ´ εwλpjq, for pi, jq P SDλ;

b) Type B: βB
i,j “ 2´δij pεwλp2n`1´iq ´ εwλpjqq, for pi, jq P SDλ.

Proof. By definition, βB
t is the β-sequence for wλ and this formula is done in [28]. Lemma

3 of [28] says that βα
ηT pi,jq “ εwαpk´i`1q ´ εwαpk`jq. Therefore,

βT
i,j “ wλpεwαpk´i`1q ´ εwαpk`jqq “ εwpk´i`1q ´ εwpk`jq.

Clearly, this proposition describes all β-sequences of w. Notice that βB
i,j, in

both cases, is obtained from wλ instead of w.

We can use this proposition to compute the set Πw of all β-sequences by placing

such roots into each box of the HSYD of w. Let us start with the top part: label all k rows

of the top diagram with wp1q, . . . , wpkq from the bottom upwards, and label all the n ´ k

columns with wpk ` 1q, . . . , wpnq from left to right. Then, the β-sequence associated with

each box pi, jq P Dα is the root εa ´ εb, where a and b are the labels of i-th row and j-th

column, respectively. For example, considering Λ “ 5, 5, 4|8, 7, 4, 1 in IGp5, 16q, we label it

as in Figure 9. Notice that the top box p1, 1q P Dα has labels 6 and 8 for row and column,

respectively, implying that βT
p1,1q “ ε6 ´ ε

8
“ ε6 ` ε8.

Now, for the bottom part, start labeling the n columns of the bottom diagram

with wλp1q, . . . , wλpnq from left to right, and label the n rows with wλp1q, . . . , wλpnq from

top to bottom. The β-sequence associated with each box pi, jq P SDλ is the root εa ´ εb,

where a and b are the labels of i-th row and j-th column, respectively. Figure 9 gives an

example of how to label the bottom part and what are the β-sequences of each box.
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w(1)=2

=

8 7 4 1 3 8 7 4 1 32 65

ε2+ε8ε2+ε7ε2+ε4ε1+ε2

ε5−ε3ε1+ε5ε4+ε5ε5+ε7ε5+ε8

ε6−ε3ε1+ε6ε4+ε6ε6+ε7ε6+ε8 2ε8

2ε7

2ε1

2ε4

ε7+ε8ε4+ε8ε1+ε8ε8−ε2ε8−ε3ε8−ε5ε8−ε6

ε4+ε7ε1+ε7ε7−ε2ε7−ε3ε7−ε5ε7−ε6

ε1+ε4ε4−ε2ε4−ε3

w(4) w(5) w(6) w(7) w(8)

w(2)=5

w(3)=6
= = = = =wλ(4) wλ(5) wλ(6) wλ(7) wλ(8)= = = ==wλ(1) wλ(2) wλ(3)= =

wλ(1)=8

wλ(2)=7

wλ(3)=4

wλ(4)=1

Figure 9 – β-sequences associated with the partition 5, 5, 4|8, 7, 4, 1.
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Chapter 2

Homology of isotropic and odd

orthogonal Grassmannians

In this Chapter, we state and prove the theorem about the coefficients of the

boundary map of isotropic and odd orthogonal Grassmannians.

2.1 Boundary map and integral homology of real flag manifolds

A general formula for the boundary map of real flags manifolds was first

obtained by Kocherlakota [30] by a Morse homology approach. The same result was

developed by Rabelo and San Martin [36], where they computed directly the boundary

map using the Bruhat decomposition as a CW complex. We choose to summarize these

results using [36] since it follows the same notation we presented in the previous chapter.

Consider first a maximal flag manifold F. Its cellular homology is defined from

a cellular decomposition provided by the Schubert varieties. Given a Schubert variety Sw,

we fix once and for all reduced decompositions

w “ sj1
¨ ¨ ¨ sjr

as a product of simple reflections, for each w P W, and si “ sαi
, αi P Σ. Let C be the

Z-module freely generated by Sw, for every element w of the Weyl group W . The boundary

maps B : C Ñ C are defined by

BSw “
ÿ

w1

cpw, w1qSw1 (2.1.1)

for some coefficients cpw, w1q P Z. First of all, if ℓpwq ´ ℓpw1q ‰ 1 or if w1 and w are not

comparable by the Bruhat-Chevalley order “ď” then set cpw, w1q “ 0. Now, it is only missing

to define cpw, w1q when w1 ď w and ℓpwq “ ℓpw1q ` 1, i.e., when dim Sw ´ dim Sw1 “ 1.

Proposition 2.1 ([36], Proposition 4.1). Let w, w1 P W. The following statements are

equivalent.
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1. Sw1 Ă Sw and dim Sw ´ dim Sw1 “ 1.

2. Given a the reduced decomposition w “ sj1
¨ ¨ ¨ sjr

then a reduce decomposition

of w1 can be obtained from w by removing some simple reflection sji
, i.e., w1 “

sj1
¨ ¨ ¨ psji

¨ ¨ ¨ sjr
.

The first main result is that the coefficient cpw, w1q is the sum of the degree of

two sphere homeomorphisms which have degree one.

Theorem 2.2 ([36], Theorem 4.3). For any w, w1 P W such that dim Sw ´ dim Sw1 “ 1,

the coefficient cpw, w1q “ 0, ˘2.

Suppose that g is a split real form. It is possible to get a more accurate

expression for the coefficients cpw, w1q in terms of roots. For w P W , define

σpwq “
ÿ

βPΠw

β (2.1.2)

the sum of β-sequences Πw “ Π` X wΠ´.

Given w and w1 of W
pkq such that w1 ď w and ℓpwq “ ℓpw1q ` 1, denote by

w “ sj1
¨ ¨ ¨ sjr

and w1 “ sj1
¨ ¨ ¨ psji

¨ ¨ ¨ sjr
a reduced decomposition for them. Let γ be the

unique root (not necessarily simple) satisfying w “ sγw1, that is, γ “ sj1
¨ ¨ ¨ sji´1

paji
q.

Theorem 2.3 ([30], Thm. 1.1.4 and [36], Theorem 4.9). Suppose that w1 ď w and

ℓpwq “ ℓpw1q ` 1, i.e., there is a root γ such that w “ sγw1. Then

σpwq ´ σpw1q “ κ ¨ γ (2.1.3)

for some integer κ “ κpw, w1q. Moreover, no nontrivial multiple of γ is a root, so that κ is

a well-defined integer. Then the coefficient cpw, w1q is given as follows:

cpw, w1q “ ˘p1 ` p´1qκq “

#
0 , if κ is odd,

˘2 , if κ is even.
(2.1.4)

Thus, the signs on cpw, w1q can be chosen so that B2 “ 0 and the homology of pC, Bq is the

integral homology of F.

The sign of cpw, w1q “ ˘2 depends on the choice of a reduced decomposition

of the elements in the Weyl group, but observe that the sign is not relevant in order

to compute the homology. Besides, in our context, we have a fixed choice of reduced

decompositions.

Remark 2.4. The formula (2.1.4) as stated in [36] includes another ˘1 factor which

is omitted here because the reduced decompositions for the Weyl group elements are

previously defined.



Chapter 2. Homology of isotropic and odd orthogonal Grassmannians 37

In the context of the partial flag manifolds FΘ, recall that the Schubert varieties

are S
Θ

w are the closure of the Bruhat cells N ¨ wbΘ, for w P W
Θ. Let C

Θ be the Z-module

freely generated by S
Θ

w , for every element w of W
Θ. The boundary maps BΘ : C

Θ Ñ C
Θ

are defined by

BΘ
S

Θ

w “
ÿ

w1PWΘ

cΘpw, w1qSΘ

w1

for some coefficients cΘpw, w1q P Z.

Theorem 2.5 ([36], Theorem 5.4). The integral homology of the flag manifold FΘ “ G{PΘ

is isomorphic to the homology of pCΘ, BΘq, where BΘ obtained by restricting B and projecting

it onto C
Θ.

Hence the coefficients cΘpw, w1q for the boundary map BΘ of the cellular ho-

mology of the partial flag manifolds FΘ is

cΘpw, w1q “ cpw, w1q.

and the computation of cΘpw, w1q reduces to a computation of cpw, w1q on F.

In short, to compute the boundary map of any flag manifold, we need to be

able to compute κ for any given w, w1 P W
Θ such that w1 ď w and ℓpwq “ ℓpw1q ` 1, as in

Equation (2.1.3).

2.2 Integral homology of isotropic and odd orthogonal Grassman-

nians

Let G be either an indefinite odd orthogonal or a symplectic group. Then the

flag manifold Fpkq with respect to the set pkq “ Σ ´ taku is, respectively, the isotropic

Grassmannian IGpn ´ k, 2nq or odd orthogonal Grassmannians OGpn ´ k, 2n ` 1q.

The integral homology H˚pFpkq,Zq can be computed after we determine the

boundary map as given in Theorem 2.3 which gives us a neat general formula for the

boundary coefficients cpw, w1q. In the sequel, we will state our main theorem as a conse-

quence of the next proposition that provides an explicit combinatorial expression of κ in

terms of the half-shifted Young diagrams used to index the Schubert varieties.

Remember that given w, w1 P W
pkq and their respective double diagrams Λ, Λ1,

then w1 ď w and ℓpwq “ ℓpw1q ` 1 if, and only if, one of the following happens

• Λ1 is obtained by deleting for some corner C from Λ; or

• Λ1 is a rearrangement of Λ with respect to the M-box C.
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Also recall from Lemma 1.5 that if C is an H-corner (resp. a V-corner) and

t is the t-th bottom row containing C then there is a positive integer pC ď k such that

upC
“ λt ´ 1 (resp. there is a positive integer qC ď n ´ k ´ ℓpλq such that vqC

“ λt ´ 1).

Proposition 2.6. Let Λ “ α|λ be the double diagram associated with a permutation w and

C either a corner or an M-box of DΛ. Denote by w1 the permutation associated with the

diagram Λ1 obtained by deleting C (and rearranging it with respect to an M-box). Suppose

that t is either the t-th top row of Dα or the t-th bottom row of SDλ containing C. Then,

σpwq ´ σpw1q “ κ ¨ γ,

where γ is a root such that w “ sγw1 and κ is an integer that depends on the type of the

group G as following:

1. If Fpkq is an isotropic Grassmannian (i.e., G is of type C), then

κ “

$
’’’’&
’’’’%

t ` αt ´ 1 , if C is a T-corner;

t ` k , if C is a D-corner;

t ` 2k ´ pC ` 1 , if C is an H-corner or an M-box;

t ` n ` k ´ qC ` 1 , if C is a V-corner.

2. If Fpkq is an odd orthogonal Grassmannian (i.e., G is of type B), then

κ “

$
’’’’&
’’’’%

t ` αt ´ 1 , if C is a T-corner;

2t ` 2k ´ 1 , if C is a D-corner;

t ` 2k ´ pC , if C is an H-corner or an M-box;

t ` n ` k ´ qC , if C is a V-corner.

This proposition will be proved in section 2.4. Now, we can rewrite Theorem

2.3 for isotropic and odd orthogonal Grassmannians as follows:

Theorem 2.7. Consider the hypothesis of Proposition 2.6. The coefficients cpw, w1q are

non-zero for the cases described below.

1. Suppose that Fpkq is an isotropic Grassmannian. Then cpw, w1q “ ˘2 if, and only if,

the box C satisfies one of the following statements:

a) C is a T-corner and t ` αt ” 1 mod 2,

b) C is a D-corner and t ` k ” 0 mod 2,

c) C is an H-corner or an M-box and t ` pC ” 1 mod 2,

d) C is a V-corner and t ` n ` k ` qC ” 1 mod 2,

2. Suppose that Fpkq is an odd orthogonal Grassmannian. Then cpw, w1q “ ˘2 if, and

only if, the box C satisfies one of the following statements:
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a) C is a T-corner and t ` αt ” 1 mod 2,

b) C is an H-corner or an M-box and t ` pC ” 0 mod 2,

c) C is a V-corner and t ` n ` k ` qC ” 0 mod 2.

Proof. Clearly, this theorem takes the formulas of κ in Proposition 2.6 and states when it

should be even.

In order to compute the boundary map, we are going to modify the Young’s

graph so that the graph can carry the information of cpw, w1q. If cpw, w1q “ ˘2, replace the

edge Ñ between the respective vertices by ñ in the Young’s graph. Casian and Kodama

in [14] call such graph the incidence graph of a Grassmannian. Notice that the incidence

graph encodes the information about the boundary map.

Let us compute an explicit example of homology for some Grassmannian.

Consider the isotropic Grassmannian IGp2, 8q, which is a case where n “ 4 and k “ 2.

First of all, we need to get the incidence graph in this situation. We will compute four

examples of cpw, w1q, one for each type of corner.

• Suppose that

w “ p1, 2, 4, 3q “ pu2, u1, λ1, λ2q;

w1 “ p1, 3, 4, 2q “ pu2, u1 ` 1, λ1, λ2 ´ 1q

are the permutations which corresponds to the partitions Λ “ 2, 2|4, 3 and Λ1 “

2, 2|4, 2, respectively, as below:

− −→
C

Notice that C is an H-corner because it is H-related to the first row, and t “ 2 since

C is the corner at the 2nd bottom row of DΛ. On the other hand, remember that

there is some integer pC such that upC
“ λt ´ 1 when C is an H-corner. Since we

have the relation u1 “ λ2 ´ 1, then pC “ 1. Therefore, applying 1.c of Theorem 2.7,

we have that t ` pC “ 3 ” 1 mod 2 and cpw, w1q “ ˘2.

• Suppose that

w “ p2, 3, 4, 1q “ pu2, u1, λ1, λ2q;

w1 “ p2, 3, 4, 1q “ pu2, u1, λ1, λ2q

are the permutations which corresponds to the partitions Λ “ 2, 2|4, 1 and Λ1 “ 2, 2|4,

respectively, as below:
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− −→
C

Notice that C is a D-corner, and t “ 2. Therefore, applying 1.b of Theorem 2.7, we

have that t ` k “ 4 ” 0 mod 2 and cpw, w1q “ ˘2.

• Suppose that

w “ p2, 3, 4, 1q “ pu2, u1, λ1, v1q;

w1 “ p1, 3, 4, 2q “ pv1, u1, λ1, u2q

are the permutations which corresponds to the partitions Λ “ 2, 2|4 and Λ1 “ 2, 1|4,

respectively, as below:

− −→C

Notice that C is a T-corner, and t “ 2 since C is the corner at the 2nd top row of

DΛ. Therefore, applying 1.a of Theorem 2.7, we have that t ` αt “ 4 ” 0 mod 2 and

cpw, w1q “ 0.

• Suppose that

w “ p1, 4, 3, 2q “ pu2, u1, λ1, v1q;

w1 “ p1, 4, 2, 3q “ pu2, u1, λ1 ´ 1, v1 ` 1q

are the permutations which corresponds to the partitions Λ “ 2, 1|3 and Λ1 “ 2, 1|2,

respectively, as below:

− −→
C

Notice that C is a V-corner because it is neither D-related nor H-related to any top

row, and t “ 1 since C is the corner at the 1st bottom row of DΛ. On the other

hand, remember that there is some integer qC such that vqC
“ λt ´ 1 when C is a

V-corner. Since we have the relation v1 “ λ1 ´ 1, then qC “ 1. Therefore, applying

1.d of Theorem 2.7, we have that t ` n ` k ` qC “ 8 ” 0 mod 2 and cpw, w1q “ 0.

• Suppose that

w “ p1, 4, 3, 2q “ pu2, u1, λ1, v1q;

w1 “ p3, 4, 1, 2q “ pu2 ` 2, u1, λ1 ´ 2, v1q
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− −→
C

are the permutations which corresponds to the partitions Λ “ 2, 1|3 and Λ1 “ 2, 2|1,

respectively, as below:

Notice that for x “ 2 and t “ 1, we have C is an M-box because: it is neither a

corner nor a diagonal box; it is H-related to the second row, i.e., pC “ 2; x ą λ2 “ 0;

and λ1 ´ x ` α2 ď α1. Therefore, applying 1.e of Theorem 2.7, we have that

t ` pC “ 3 ” 1 mod 2 and cpw, w1q “ ˘2.
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Figure 10 – Incidence graph of IGp2, 8q.

Proceeding as above, we can get all the coefficients cpw, w1q for any pair w, w1.

The incidence graph of the isotropic Grassmannian IGp2, 8q is given in Figure 10. The

boundary map is given below, where they are presented considering each cell dimension.



Chapter 2. Homology of isotropic and odd orthogonal Grassmannians 42

11-dim: BS2,2|4,3 “ ˘2S2,2|4,2;

10-dim: BS2,2|4,2 “ 0;

9-dim: BS2,2|3,2 “ 0 and BS2,2|4,1 “ ˘2S2,2|4;

8-dim: BS2,2|3,1 “ ˘2S2,2|2,1 ˘ 2S2,2|3 and BS2,2|4 “ 0;

7-dim: BS2,2|2,1 “ ˘2S2,2|2 and BS2,2|3 “ ˘2S2,2|2 and BS2,1|4 “ ˘2S1,1|4;

6-dim: BS2,2|2 “ 0 and BS2,1|3 “ ˘2S1,1|3 ˘ 2S2,2|1 and BS1,1|4 “ 0;

5-dim: BS2,2|1 “ 0 and BS2,1|2 “ ˘2S2,1|1 ˘ 2S1,1|2 and BS1,1|3 “ 0;

4-dim: BS2,2|H “ 0 and BS2,1|1 “ ˘2BS1,1|1 and BS1,1|2 “ ˘2BS1,1|1;

3-dim: BS2,1|H “ ˘2S2,0|H ˘ 2S1,1|H and BS1,1|1 “ 0;

2-dim: BS2,0|H “ ˘2S1,0|H and BS1,1|H “ ˘2S1,0|H;

1-dim: BS1,0|H “ 0.

Therefore, the integral homology of IGp2, 8q is

H11pIGp2, 8q,Zq “ 0; H5pIGp2, 8q,Zq “ Z ‘ Z2;

H10pIGp2, 8q,Zq “ Z2; H4pIGp2, 8q,Zq “ Z ‘ Z2;

H9pIGp2, 8q,Zq “ Z; H3pIGp2, 8q,Zq “ Z2;

H8pIGp2, 8q,Zq “ Z2; H2pIGp2, 8q,Zq “ Z2;

H7pIGp2, 8q,Zq “ Z2; H1pIGp2, 8q,Zq “ Z2;

H6pIGp2, 8q,Zq “ Z2 ‘ Z2; H0pIGp2, 8q,Zq “ Z.

Notice that IGp2, 8q is not orientable. The following corollary states when a

Grassmannian is orientable.

Corollary 2.8. About the orientability of isotropic or odd orthogonal Grassmannians:

1. IGpn ´ k, 2nq is orientable if, and only if, n ´ k is odd.

2. For k ą 0, OGpn ´ k, 2n ` 1q is orientable if, and only if, n ´ k is even. If k “ 0,

OGpn, 2n ` 1q is orientable for every n.

Proof. The top cell Sw˝ corresponding to the longest element w˝ P W
pkq has associated

double diagram Λ˝ “ n ´ k, . . . , n ´ k|n, n ´ 1, . . . , k ` 1. Hence, the associated double

diagram associated with the unique codimension one cell Sw1
˝

is Λ1
˝ “ n´k, . . . , n´k|n, n´

1, . . . , k `2, k and there is a corner C in the diagram DΛ˝ of w˝ such that DΛ1
˝

“ DΛ˝ ´tCu.
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Being orientable is equivalent to boundary map in the top cell equals zero. The analysis is

divided in two cases. If k ą 0 then the corner C is an H-corner in the pn ´ kq-th bottom

row with pC “ 1, by Lemma 1.5. Hence, by Theorem 2.7,

• IGpn ´ k, 2nq is orientable iff t ` pC “ pn ´ kq ` 1 ” 0 mod 2 iff n ´ k is odd.

• OGpn ´ k, 2n ` 1q is orientable iff t ` pC “ pn ´ kq ` 1 ” 1 mod 2 iff n ´ k is even.

Now if k “ 0, the corner C is a D-corner in n-th bottom row. By Theorem

2.7, the odd orthogonal Grassmannian is orientable for every n and the Lagrangian

Grassmannian is orientable iff n ` k ” 1 mod 2 iff n is odd.

Corollary 2.9. Let G be an isotropic or odd orthogonal Grassmannians. The 1-homology

and 2-homology of G are:

H1pG,Zq “

$
’’’’&
’’’’%

Z , if k “ 0 and G is of type C,

Z , if k “ 0, n “ 1, and G is of type B,

Z , if k “ 1, n “ 2, and G is of type B,

Z2 , otherwise.

H2pG,Zq “

$
’&
’%

0 , if k “ 0, and G is of type B,

0 , if k “ 1, n “ 2, and G is of type C,

Z2 , otherwise.

Proof. We will proof using the incidence graph related to Schubert varieties of dimension

1, 2, and 3. It requires to split in some cases.

• k “ 0:

In this case, there is no top part and the incidence graph is

− =⇒− −→− −→ − −→− =⇒

−
=
⇒

−
−
→

∅ − −→∅

Type C Type B

Then, for n ě 1, we have that

H1pIGpn, 2nqq “ Z, H1pOGp1, 2qq “ Z,

H2pIGpn, 2nqq “ Z2, H1pOGpn, 2nqq “ Z2 pn ą 1q,

H2pOGpn, 2nqq “ 0.
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• k “ 1 and n “ 2:

In this case, the incidence graph is

− −→ − −→− =⇒ ∅

Type C

− −→ − −→− =⇒ ∅

Type B

Then, we have that

H1pIGp1, 4qq “ Z2, H1pOGp1, 4qq “ Z,

H2pIGp1, 4qq “ 0, H2pOGp1, 4qq “ Z2.

• k “ 1 and n ą 2: In this case, the incidence graph is

−
−
→

−
−
→

−
−
→

−
=
⇒

−
=
⇒

− =⇒− −→

− =⇒

− −→∅

Type C

− =⇒− −→

− =⇒

− −→∅

Type B

−
=
⇒

Then, for n ą 2, we have that

H1pIGpn ´ 1, 2nqq “ Z2, H1pOGpn ´ 1, 2nqq “ Z2,

H2pIGpn ´ 1, 2nqq “ Z2, H2pOGpn ´ 1, 2nqq “ Z2.

• k ě 2: In this case, the incidence graph is

−
−
→

−
=
⇒

−
=
⇒

− =⇒− −→

− =⇒

− −→∅

?

The coefficient in the question mark depends on the choice of G. But this won’t

affect the result since it image through B2 does not belongs to the kernel of B1.

Then, for n ą k ě 2, we have that

H1pIGpn ´ k, 2nqq “ Z2, H1pOGpn ´ k, 2nqq “ Z2,

H2pIGpn ´ k, 2nqq “ Z2, H2pOGpn ´ k, 2nqq “ Z2.
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2.3 Cohomology groups of isotropic and odd orthogonal Grass-

mannians

Before we prove Proposition 2.6, we will provide a brief discussion about the

cohomology of isotropic and odd orthogonal Grassmannians.

The problem of compute the integral cohomology of some real flag manifold

was developed by Casian and Kodama in [11]. They found a way to determine the

(cohomological) incidence graph for the coboundary map for the Bruhat decomposition of

a flag manifold G{PΘ. Indeed, they managed to relate the value of the coefficient cpw, w1q,

i.e., determine if an edge in the incidence graph is either ÝÑ (simple) or ùñ (double) in

term of the set of singularities (blow-up points) of the trajectories of the Toda lattice.

In [14], Casian and Kodama worked on the special case of a standard real

Grassmannian Grpk, nq “ Slpnq{Ppkq, where they found out how to get the incidence

graph by the standard Young diagrams associated to each Schubert cell in the cellular

decomposition of Grpk, nq. In fact, their process to compute the coefficients cpw, w1q for

the real Grassmannians Grpk, nq are pretty similar to what we show in case of a T-corner

in the proof of Proposition 2.6.

We do not plan to show this construction in this text but we can compute the

cohomology using the universal coefficient theorem for cohomology once we know are able

to get the integral homology of the isotropic and odd orthogonal Grassmannians.

In general, let pC, Bq be a chain complex of free abelian groups, where Bi :

Ci Ñ Ci´1 is the boundary map, and G be any group. Denote the cochain groups by the

homomorphism groups C
˚
i “ HompCi, Gq and the coboundary map δi “ B˚

i : C
˚
i´1

Ñ C
˚
i the

dual map of B. The cohomology group H ipC; Gq is defined by the quotient Ker δ{Im δ. The

universal coefficient theorem says that the cohomology groups H ipC; Gq are determined

solely by G and the homology groups HipCq.

Theorem 2.10 (Universal coefficient theorem). If a chain complex C of free abelian groups

has homology groups HipCq, then the cohomology groups H ipC; Gq of the cochain complex

HompC, Gq are determined by split exact sequences

0 ÝÑ ExtpHi´1pCq, Gq ÝÑ H ipC; Gq ÝÑ HompHipCq, Gq ÝÑ 0.

Consider the special case of computing the integral cohomology groups of a

CW complex X. In this situation, HipX,Zq is finitely generated and

HipX;Zq – Z
βipXq ‘ Ti

where βipXq are the Betti numbers of X and Ti is the torsion part of HipX,Zq. Using
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some properties of Hom and Ext, we have that

HompHipX,Zq,Zq – HompZβipXq,Zq ‘ HompTi,Zq – Z
βipXq,

ExtpHipX,Zq,Zq – ExtpZβipXq,Zq ‘ ExtpTi,Zq – Ti

Hence, the universal coefficient theorem says that the integral cohomology

groups H ipX,Zq of X are

H ipX,Zq – Z
βipXq ‘ Ti´1 “ FreepHkpX,Zqq ‘ TorsionpHk´1pX,Zqq.

This theorem allows us to easily compute the integral cohomology groups of

isotropic and odd orthogonal Grassmannians since we can determine their homology groups

using Theorem 2.7.

For instance, the integral cohomology of the isotropic Grassmannian IGp2, 8q is

H11pIGp2, 8q,Zq “ Z2; H5pIGp2, 8q,Zq “ Z ‘ Z2;

H10pIGp2, 8q,Zq “ 0; H4pIGp2, 8q,Zq “ Z ‘ Z2;

H9pIGp2, 8q,Zq “ Z ‘ Z2; H3pIGp2, 8q,Zq “ Z2;

H8pIGp2, 8q,Zq “ Z2; H2pIGp2, 8q,Zq “ Z2;

H7pIGp2, 8q,Zq “ Z2 ‘ Z2; H1pIGp2, 8q,Zq “ 0;

H6pIGp2, 8q,Zq “ Z2; H0pIGp2, 8q,Zq “ Z.

Notice that this process only allow us to compute the integral cohomology

groups of such Grassmannians and the problem of compute the cohomology ring remains

unsolved. In fact, even for the standard real Grassmannians Grpk, nq, this problem was not

solved yet, although Casian and Kodama in [14, Conjecture 6.1] conjectured a solution.

2.4 Proof of Proposition 2.6

To get the boundary operator, we must compute σpwq ´ σpw1q, for w1 ă w

and ℓpw1q “ ℓpwq ´ 1, where σpwq “
ÿ

αPΠw

α is the sum of the elements in the β-sequence

of w. The analysis for each possible kind of corners for C must be computed separately.

Furthermore, the top and the bottom part, for each type of corners, will be worked out

one by one. Denote by β1 the β-sequences associated with w1. From now on, it will be

useful to write σpwq ´ σpw1q “ ST pw, w1q ` SBpw, w1q, where

ST pw, w1q “
ÿ

pi,jqPDα

βT
i,j ´

ÿ

pi,jqPDα1

pβ1qT
i,j, (2.4.1)

SBpw, w1q “
ÿ

pi,jqPSDλ

βB
i,j ´

ÿ

pi,jqPSDλ1

pβ1qB
i,j. (2.4.2)
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The proof will be concentrated in the computation of the top part ST pw, w1q

whereas the bottom part SBpw, w1q will be described in the next proposition using the

result of [35].

Proposition 2.11. Consider the hypothesis of Proposition 2.6. If C is a corner then

SBpw, wq “ σpwλq ´ σpwλ1q “ κpwλ, wλ1q ¨ γ (2.4.3)

where γ is the given as in Equation (2.1.3) and κpwλ, wλ1q is described below:

1. If Fpkq is an isotropic Grassmannian (i.e., of type C), then

κpwλ, wλ1q“

$
’&
’%

0 , if C is a T-corner;

t , if C is a D-corner pλt “ 1q;

λt ` 2t ´ 1 , if C is an H-corner or a V-corner pλt ą 1q..

2. If Fpkq is a maximal odd orthogonal Grassmannian (i.e., of type B), then

κpwλ, wλ1q “

#
0 , if C is a T-corner;

λt ` 2pt ´ 1q , if C is any other kind of corner.

Proof. It follows directly from definition of βB
i,j that SBpw, w1q “ σpwλq ´ σpwλ1q “

κpwλ, wλ1q ¨ δ, for some root δ. We know that w “ wλwα and w “ sγw1. Since w1 “ wλ1wα

it follows that wλ “ sγwλ1 and, hence, δ “ γ.

If C is a T-corner then wλ “ wλ1 and the bottom β-sequences βB of w and w1

agree, implying that SBpw, w1q is zero.

If C is a D-corner, H-corner or V-corner then, by Proposition 1.7, the β-

sequences and β1-sequences of the bottom part depends only on wλ instead of w. This

corresponds to the case k “ 0 as observed in Remark 1.6. Hence, κpwλ, wλ1q is given by

Proposition 6.4 of [35].

Proposition 2.12. Consider the hypothesis of Proposition 2.6. If C is an M-box in the

pt ` x ´ 1q-th column then

SBpw, wq “ σpwλq ´ σpwλ1q “ κpwλ, wλ1q ¨ γ `
λt´xÿ

j“1

`
ελt

´ εwpk`αpC
`jq

˘
(2.4.4)

where γ is the given as in Equation (2.1.3) and κpwλ, wλ1q is described below:

1. If Fpkq is an isotropic Grassmannian (i.e., of type C), then

κpwλ, wλ1q “ x ` 2t ´ 1
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2. If Fpkq is a maximal odd orthogonal Grassmannian (i.e., of type B), then

κpwλ, wλ1q “ x ` 2pt ´ 1q

Proof. The formula of κpwλ, wλ1q is proved as it was for H-related corners. It only differs

by the fact that we also remove the last λt ´ x boxes from the t-th row of λ to get λ1, then

the sum
λt´xÿ

i“1

βB
t,x`j cannot be canceled. Then, we have

SBpw, wq “ σpwλq ´ σpwλ1q “ κpwλ, wλ1q ¨ γ `
λt´xÿ

j“1

βB
t,x`j. (2.4.5)

Notice that βB
t,x`j “ ελt

´ εwλpt´1`x`jq. Hence, we just need to show that

wλpt´1`x`jq “ wpk `αpC
`jq. By the definition of pC for an M-box, wλpt´1`x`jq “

wλpαpC
` k ´ pC ` 1 ` jq.

Equation (1.3.2) says that the index 1 ď pC ď k satisfies upC
“ x ´ 1 and the

permutation is

w “ puk, . . . , x ´ 1, . . . , u1, λ1, . . . , λt, . . . , λℓpλq, vn´k´ℓpλq, . . . , v1q.

Denote yj “ αpC
` k ` j for each 1 ď j ď λt ´ x. We know that the all the

pλt ´ xq boxes we remove from λt are in V-related columns and w is written as following

w “ puk, . . . , x ´ 1, . . . , u1, λ1, . . . , λt, . . . , λℓpλq, vn´k´ℓpλq, . . . , wpy1q, . . . , wpyλt´xq, . . . , v1q.

Recall that wλ is obtained from w by reordering its entries in an increasing

order. Then, we need to count how many entries to the left of yj are bigger than wpyjq,

because after reordering it they will appear to the right of wpyjq. In other words, we need

to find a value zj such that wpyjq “ wλpyj ´ zjq.

Now, the entries of w can be comparable as following:

uk ă ¨ ¨ ¨ ă upC`1 ă x ´ 1 ă wpyjq,

wpyjq ă upC´1 ă ¨ ¨ ¨ ă u1

λ1 ă . . . ă λℓpλq ă wpyjq,

vn´k´ℓpλq ă ¨ ¨ ¨ ă wpy1q ă wpy2q ă ¨ ¨ ¨ ă wpyλy´xq,

for all 1 ď j ď λt ´ x. Hence, we see that zj “ pC ´ 1 for all j, since only upC´1, ¨ ¨ ¨ , u1

are greater than wpyjq. This shows that wλpt ´ 1 ` x ` jq “ wpk ` αpC
` jq.

Remember that the permutation of w associated with Λ “ α|λ can be written

as

wu,λ “ puk, . . . , u1, λ1, . . . , λr, vn´k´r, . . . , v1q
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and these values are obtained by counting the vacant length of H-related and V-related

bottom columns.

C is a T-corner: Consider C in the t-th top row of Dα, which is H-related to the

pαt ` k ´ t ` 1q-th bottom column in Dλ.

Since C is a T-corner, αt`1 ă αt and the pαt ` k ´ tq-th bottom column must

be V-related, by Lemma 1.2.

Now, we need to find out the vacant length of the pαt ` k ´ t ` 1q-th and

pαt ` k ´ tq-th bottom columns. There are pt ´ 1q H-related columns to the right of the

pαt ` k ´ t ` 1q-th which have vacant length u1 ą ¨ ¨ ¨ ą ut´1. Then the vacant length

of the pαt ` k ´ t ` 1q-th column is ut. On the other hand, by Lemma 1.2, there are

α0 ´ αt “ pα0 ´ α1q ` ¨ ¨ ¨ ` pαt´1 ´ αtq “ n ´ k ´ αt V-related columns to the right of

the pαt ` k ´ tq-th column which have vacant length v1 ą ¨ ¨ ¨ ą vn´k´αt
. Then the vacant

length of the pαt ` k ´ tq-th column is vn´k´αt`1. Define q :“ n ´ k ´ αt ` 1.

After remove the corner C, the H-related pαt ` k ´ t ` 1q-th and V-related

pαt ` k ´ tq-th columns of w switch their role in the permutation and they become,

respectively, V-related and H-related columns of w1. Then, the permutation of w1 is

obtained from w by swapping ut and vq:

w1 “ puk, . . . , vq, . . . , u1, λ1, . . . , λr, vn´k´r, . . . , ut, . . . , v1q.

That is,

wpk ´ t ` 1q “ ut, w1pk ´ t ` 1q “ vq,

wpk ` αtq “ vq, w1pk ` αtq “ ut.

Using Proposition 1.7, the top β-sequences βT of w and w1 are

βT
t,αt

“ εwpk´t`1q ´ εwpk`αtq “ εut
´ εvq

;

βT
i,αt

“ εwpk´i`1q ´ εvq
and pβ1qT

i,αt
“ εwpk´i`1q ´ εut

, for 1 ď i ă t;

βT
t,j “ εut

´ εwpk`jq and pβ1qT
t,j “ εvq

´ εwpk`jq, for 1 ď j ă αt;

pβ1qT
i,j “ βT

i,j, for pi, jq P Dα1 , i ‰ t and j ‰ αt.

Hence, reordering the terms of ST pw, w1q, we get

ST pw, w1q “ βT
t,αt

`
ÿ

pi,jqPDα1

`
βT

i,j ´ pβ1qT
i,j

˘

“ βT
t,αt

`
ÿ

1ďiăt

`
βT

i,αt
´ pβ1qT

i,αt

˘
`

ÿ

1ďjăαt

`
βT

t,j ´ pβ1qT
t,j

˘

“ pεut
´ εvq

q ` pt ´ 1qpεut
´ εvq

q ` pαt ´ 1qpεut
´ εvq

q

“ pt ` αt ´ 1qpεut
´ εvq

q.
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By Proposition 2.11, the sum SBpw, w1q is zero and, therefore,

σpwq ´ σpw1q “ pt ` αt ´ 1qpεut
´ εvn´k´αt`1

q.

Notice that the positive root εut
´ εvn´k´αt`1

is not necessarily a simple root.

We may visualize the above computations directly in the diagram DΛ. In this

case where C is a T-corner, besides the box C, we fill in the remaining boxes in the t-th

row and in the αt-th column with 1’s. It follows that κ is the sum of such 1’s in DΛ as

shown in Figure 11.

1

1 b b b

b

b

b

t

αt

1

Figure 11 – For a T-corner, fill DΛ as shown. The sum of these numbers is κ.

Remark 2.13. We should notice that the Schubert varieties of usual Grassmannian (of type

A) are parametrized by the standard Young diagrams which correspond to a particular

case of the half-shifted Young diagrams when the bottom part λ “ H. Hence, we only

have T-corners and the homology coefficients for the usual Grassmannians is computed

exactly as done above.

C is a D-corner: Consider C in the t-th bottom row of SDλ. Lemma 1.5 says that

t “ ℓpλq and λt “ 1 and the permutation of w is

w “ puk, . . . , u1, λ1, . . . , λt´1, 1, vn´k´t, . . . , v1q.

The double partition of w1 is Λ1 “ α|λ1, where λ1 “ pλ1, . . . , λt´1q. Observe

that C belongs to a V-related bottom column of vacant length zero in DΛ, but when C is

removed it adds 1 to the vacant length of such column in DΛ1 . Hence, the permutation w1

is gotten from w by deleting the sign of 1, i.e.,

w1 “ puk, . . . , u1, λ1, . . . , λt´1, 1, vn´k´t, . . . , v1q.

That is, wpk`tq “ 1 and w1pk`tq “ 1. By Proposition 1.7, the top β-sequences

βT of w and w1 are

βT
i,t “ εwpk´i`1q ` ε1 and pβ1qT

i,t “ εwpk´i`1q ´ ε1, for 1 ď i ď k;

pβ1qT
i,j “ βT

i,j, for pi, jq P Dα, j ‰ t.
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Consequently we have that

ST pw, w1q “
ÿ

pi,jqPDα

`
βT

i,j ´ pβ1qT
i,j

˘
“

ÿ

1ďiďk

`
βT

i,t ´ pβ1qT
i,t

˘
“ 2kε1.

For type C, a1 “ 2ε which gives that ST pw, w1q “ ka1. By Proposition 2.11,

SBpw, w1q “ ta1. Therefore,

σpwq ´ σpw1q “ ST pw, w1q ` SBpw, w1q “ pk ` tqa1.

For type B, a1 “ ε which gives that ST pw, w1q “ p2kqa1. By Proposition 2.11,

SBpw, w1q “ p2t ´ 1qa1. Therefore,

σpwq ´ σpw1q “ ST pw, w1q ` SBpw, w1q “ p2k ` 2t ´ 1qa1.

We can also visualize the above computations only using the diagram DΛ. In

this case where C is a D-corner, we simply fill in the t-column of DΛ as shown in Figure

12. It follows that κ is the sum of such numbers in DΛ.

b

b

b

t

t

1

1

1

1
b

b

b

b

b

b

t

t

2

2

2

2
b

b

b

Type BType C

1 1

Figure 12 – For a D-corner, fill DΛ as shown and according to the type of the group. The
sum of these numbers is κ.

C is an H-corner: Consider C in the t-th bottom row of SDλ. Lemma 1.5 says that

there is 1 ď pC ď k such that upC
“ λt ´ 1 and the permutation is

w “ puk, . . . , λt ´ 1, . . . , u1, λ1, . . . , λt, . . . , λℓpλq, vn´k´ℓpλq, . . . , v1q.

The double partition of w1 is Λ1 “ α|λ1, where λ1 “ pλ1, . . . , λt ´ 1, . . . , λℓpλqq.

When C is removed it adds 1 to the vacant length of such H-related column in DΛ1 , which

is pC ` 1 “ λt. Hence, the permutation w1 is

w1 “ puk, . . . , λt, . . . , u1, λ1, . . . , λt ´ 1, . . . , λℓpλq, vn´k´ℓpλq, . . . , v1q.

That is,

wpk ´ pC ` 1q “ λt ´ 1, w1pk ´ pC ` 1q “ λt,

wpk ` tq “ λt, w1pk ` tq “ λt ´ 1.
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By Proposition 1.7, the top β-sequences βT of w and w1 are

βT
i,t “ εwpk´i`1q ` ελt

and pβ1qT
i,t “ εwpk´i`1q ` ελt´1, for 1 ď i ď k;

βT
pC ,j “ ελt´1 ´ εwpk`jq and pβ1qT

pC ,j “ ελt
´ εwpk`jq, for 1 ď j ď αpC

;

pβ1qT
i,j “ βT

i,j, for pi, jq P Dα, i ‰ αpC
and j ‰ t.

Then,

ST pw, w1q “
ÿ

pi,jqPDα

`
βT

i,j ´ pβ1qT
i,j

˘

“ βT
pC ,t ´ pβ1qT

pC ,t `
ÿ

1ďiďk
i‰pC

`
βT

i,t ´ pβ1qT
i,t

˘
`

ÿ

1ďjďαpC
j‰t

`
βT

pC ,j ´ pβ1qT
pC ,j

˘

“ 0 ` pk ´ 1qpελt
´ ελt´1q ` pαpC

´ 1qp´ελt
` ελt´1q

“ pk ´ αpC
qpελt

´ ελt´1q.

The definition of α in Equation (1.2.1) implies that αpC
“ λt ` pC ´ k ´ 2 ` dpC

,

where dpC
“ #tj | λj ą upC

u “ t. Hence, ST pw, w1q “ p2k ´ λt ´ pC ´ t ` 2qaλt
.

For type C, by Proposition 2.11, SBpw, w1q “ pλt ` 2t ´ 1qaλt
. Therefore,

σpwq ´ σpw1q “ ST pw, w1q ` SBpw, w1q “ p2k ´ pC ` t ` 1qaλt
.

For type B, by Proposition 2.11, SBpw, w1q “ pλt ` 2t ´ 2qaλt
. Therefore,

σpwq ´ σpw1q “ ST pw, w1q ` SBpw, w1q “ p2k ´ pC ` tqaλt
.

We also can compute κ only using the diagram DΛ. In this case where C is an

H-corner, the pC-th top row is filled in with ´1’s while the t-th column is filled in with 1’s

except the box ppC , tq which is filled in with zero. Besides, the t-th bottom row is filled in

with 1’s (except for type C where the diagonal box is filled in with 2) and both the t-th

and the H-related bottom columns are filled in with 1’s. So κ is the sum of such numbers

as shown in Figure 13.

C is a V-corner: Consider C in the t-th bottom row of SDλ. Lemma 1.5 says that there

is some 1 ď qC ď n ´ k ´ ℓpλq such that vqC
“ λt ´ 1 and the permutation is

w “ puk, . . . , u1, λ1, . . . , λt, . . . , λℓpλq, vn´k´ℓpλq, . . . , λt ´ 1, . . . , v1q.

The double partition of w1 is Λ1 “ α|λ1, where λ1 “ pλ1, . . . , λt ´ 1, . . . , λℓpλqq.

When C is removed it adds 1 to the vacant length of such V-related column in DΛ1 , which

is qC ` 1 “ λt. Hence, the permutation w1 is

w1 “ puk, . . . , u1, λ1, . . . , λt ´ 1, . . . , λℓpλq, vn´k´ℓpλq, . . . , λt, . . . , v1q.
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Figure 13 – For an H-corner, fill DΛ as shown and according to the type of the group. The
sum of these numbers is κ.

Observe that the entries λt ´ 1 and λt of w and w1, resp., are at position

n ´ qC ` 1. Defining the value m :“ n ´ k ´ qC ` 1, we have that n ´ qC ` 1 “ k ` m and

1 ď t ď ℓpλq ă m ď n ´ k. That means,

wpk ` tq “ λt, w1pk ` tq “ λt ´ 1,

wpk ` mq “ λt ´ 1, w1pk ` mq “ λt.

Remember that the conjugate partition α˚ of α is a partition in Rpn ´ k, kq

defined by α˚
i “ #tj | αj ě iu, for all 1 ď i ď n ´ k. By Proposition 1.7, the top

β-sequences βT of w and w1 are

βT
i,t “ εwpk´i`1q ` ελt

and pβ1qT
i,t “ εwpk´i`1q ` ελt´1, for 1 ď i ď k;

βT
i,m “ εwpk´i`1q ´ ελt´1 and pβ1qT

i,m “ εwpk´i`1q ´ ελt
, for 1 ď i ď α˚

m;

pβ1qT
i,j “ βT

i,j, for pi, jq P Dα, j ‰ t and j ‰ m.

Then,

ST pw, w1q “
ÿ

pi,jqPDα

`
βT

i,j ´ pβ1qT
i,j

˘

“
ÿ

1ďiďk

`
βT

i,t ´ pβ1qT
i,t

˘
`

ÿ

1ďiďα˚
m

`
βT

i,m ´ pβ1qT
i,m

˘

“ kpελt
´ ελt´1q ` α˚

mpελt
´ ελt´1q

“ pk ` α˚
mqpελt

´ ελt´1q.

Since m ą ℓpλq, it follows from Proposition 1.4 that α˚
m “ ´vn´k´m`1 `

m ` k ´ rdm, where rdm “ #tl | λl ą vn´k´m`1u “ #tl | λl ą vqC
u “ t. Thus, α˚

m “

´vqC
` n ´ qC ` 1 ´ t “ ´λt ` n ´ qC ´ t ` 2 and

ST pw, w1q “ pk ´ λt ` n ´ qC ´ t ` 2qaλt
.
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For type C, by Proposition 2.11, SBpw, wq “ pλt ` 2t ´ 1qaλt
. Therefore,

σpwq ´ σpw1q “ ST pw, w1q ` SBpw, w1q “ pk ` n ´ qC ` t ` 1qaλt
.

For type B, by Proposition 2.11, SBpw, w1q “ pλt ` 2t ´ 2qaλt
. Therefore,

σpwq ´ σpw1q “ ST pw, w1q ` SBpw, w1q “ pk ` n ´ qC ` tqaλt
.

We can also illustrate the computation of κ in the diagram DΛ. In this case

where C is a V-corner, we fill in with 1’s both the t-th and pn ´ k ´ qC ` 1q-th top columns.

Besides, the t-th bottom row is filled in with 1’s (except for type C where the diagonal

box is filled in with 2) and both the t-th and the V-related bottom columns are filled in

with 1’s. Hence, κ is the sum of such numbers as shown in Figure 14.
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Figure 14 – For a V-corner, fill DΛ as shown and according to the type of the group. The
sum of these numbers is κ.

C is an M-box: Consider C in the t-th bottom row and in the pt ` x ´ 1q-th bottom

column of SDλ. Equation (1.3.2) says that the index 1 ď pC ď k satisfies upC
“ x ´ 1 and

the permutation is

w “ puk, . . . , x ´ 1, . . . , u1, λ1, . . . , λt, . . . , λℓpλq, vn´k´ℓpλq, . . . , v1q.

The double partition of w1 is Λ1 “ α1|λ1, where α1 “ pα1, . . . , αpC
`λt´x, . . . , αkq

and λ1 “ pλ1, . . . , x ´ 1, . . . , λℓpλqq. Hence, the permutation w1 is

w1 “ puk, . . . , λt, . . . , u1, λ1, . . . , x ´ 1, . . . , λℓpλq, vn´k´ℓpλq, . . . , v1q.

That is,

wpk ´ pC ` 1q “ x ´ 1, w1pk ´ pC ` 1q “ λt,

wpk ` tq “ λt, w1pk ` tq “ x ´ 1.
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By Proposition 1.7, the top β-sequences βT of w and w1 are

βT
i,t “ εwpk´i`1q ` ελt

and pβ1qT
i,t “ εwpk´i`1q ` εx´1, for 1 ď i ď k;

βT
pC ,j “ εx´1 ´ εwpk`jq and pβ1qT

pC ,j “ ελt
´ εwpk`jq, for 1 ď j ď αpC

;

pβ1qT
i,j “ βT

i,j, for pi, jq P Dα, i ‰ αpC
and j ‰ t.

But, remember that we added pλt ´ xq boxes to the pC-th row of α1, which

implies that

pβ1qT
pC ,αpC

`j “ ελt
´ εwpk`αpC

`jq, for 1 ď j ď λt ´ x.

Then,

ST pw, w1q “
ÿ

pi,jqPDα

βT
i,j ´

ÿ

pi,jqPDα1

pβ1qT
i,j

“ βT
pC ,t ´ pβ1qT

pC ,t `
ÿ

1ďiďk
i‰pC

`
βT

i,t ´ pβ1qT
i,t

˘
`

ÿ

1ďjďαpC
`λt´x

j‰t

`
βT

pC ,j ´ pβ1qT
pC ,j

˘

“ 0 ` pk ´ 1qpελt
´ εx´1q ` pαpC

´ 1qp´ελt
` εx´1q ´

λt´xÿ

j“1

pβT q1
pC ,αpC

`j

“ pk ´ αpC
qpελt

´ εx´1q ´
λt´xÿ

j“1

`
ελt

´ εwpk`αpC
`jq

˘
.

The definition of α in Equation (1.2.1) implies that αpC
“ x ` pC ´ k ´ 2 ` dpC

,

where dpC
“ #tj | λj ą upC

u “ t. Hence, ST pw, w1q “ p2k ´ x ´ pC ´ t ` 2qaλt
´

λt´xÿ

j“1

`
ελt

´ εwpk`αpC
`jq

˘
.

For type C, by Proposition 2.12, SBpw, w1q “
λt´xÿ

j“1

`
ελt

´ εwpk`αpC
`jq

˘
` px `

2t ´ 1qaλt
. Therefore,

σpwq ´ σpw1q “ ST pw, w1q ` SBpw, w1q “ p2k ´ pC ` t ` 1qaλt
.

For type B, by Proposition 2.12, SBpw, w1q “
λt´xÿ

j“1

`
ελt

´ εwpk`αpC
`jq

˘
` px `

2t ´ 2qaλt
. Therefore,

σpwq ´ σpw1q “ ST pw, w1q ` SBpw, w1q “ p2k ´ pC ` tqaλt
.

It is exactly the same formula of deleting an H-corner and we can compute it

as shown in Figure 13.

This concludes the proof of Proposition 2.6.
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Remark 2.14. Notice that Theorem 2.7 can be easily used in a computational algorithm to

obtain the boundary map of any isotropic or odd orthogonal Grassmannian. On the human

viewpoint, applying such theorem to compute the coefficient for some bigger diagram

becomes a harder task, since it requires us to compute pC or qC when C is, respectively,

an H-corner or a V-corner. So, instead of using Theorem 2.7, we can get κ as in Figures

11, 12, 13 and 14 according to the type of the corner C, and then we apply Theorem 2.3

which says that cpw, w1q “ 0 if κ is odd and cpw, w1q “ ˘2 is κ is even.

For instance, consider Λ “ 5, 5, 4|8, 7, 4, 1 in the isotropic Grassmannian

IGp5, 16q and the four types of corners according to the Figure 6. Let us denote by

• Λ1 “5, 4, 4|8, 7, 4, 1 the partition obtained when the T-corner is removed;

• Λ2 “5, 5, 4|8, 7, 4 the partition obtained when the D-corner is removed;

• Λ3 “5, 5, 4|8, 6, 4, 1 the partition obtained when the H-corner is removed;

• Λ4 “5, 5, 4|8, 7, 3, 1 the partition obtained when the V-corner is removed.

• Λ5 “5, 5, 5|8, 7, 2, 1 the partition obtained when the M-box is removed and rearranged.
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Figure 15 – Computation of κ for Λ “ 5, 5, 4|8, 7, 4, 1 and each possible removable box, as
described in Figures 11, 12, 13 and 14.

Let w, w1, w2, w3, w4, and w5 be the respective Weyl group elements. In order

to compute cpw, wiq for i “ 1, 2, 3, 4, 5, instead of using Theorem 2.7, we will compute κ

and apply it to Theorem 2.3.
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Figure 15 shows us how to fill the Young diagram for each pair pw, wiq. The

value κpw, wiq is the sum of values in the each diagram. Then, we have that

σpwq ´ σpw1q “ 6pε5 ´ ε3q; σpwq ´ σpw2q “ 7p2ε1q;

σpwq ´ σpw3q “ 8pε7 ´ ε6q; σpwq ´ σpw4q “ 14pε4 ´ ε3q;

σpwq ´ σpw5q “ 7pε4 ´ ε2q.

Therefore, the coefficients cpw, wiq are

cpw, w1q “ ˘2; cpw, w2q “ 0;

cpw, w3q “ ˘2; cpw, w4q “ ˘2;

cpw, w5q “ 0.
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Chapter 3

Permutations and diagrams

This chapter starts the second part of this dissertation. Here, we develop

all the basic combinatorial concepts required to state and prove the main result about

theta-vexillary signed permutations.

Understanding the idea behind the construction of a vexillary signed permuta-

tion will facilitate the comprehension of the theta-vexillary signed permutation that we

will present in the next chapter. In short, a vexillary signed permutation is a special case

of the vexillary permutations. This chapter compiles results and notations from Anderson

and Fulton [1, 2, 3, 4], and Fulton [20].

All the geometric construction that associates the vexillary and vexillary signed

permutations to the Schubert varieties is described in Appendix A.

3.1 Permutations in Sn

First of all, we are going to study the usual permutations Sn. We will see that

such permutations are required to understand the vexillary permutations. The notation

presented in this section is slightly different from [20], in order to match the notation we

will use afterwards.

Permutations are chosen to be finite, that means wpmq “ m whenever |m|

is sufficiently large. Usually, the permutations will be written in Sn using the one-line

notation wp1q wp2q ¨ ¨ ¨ wpnq.

Given a permutation w, it has a descent at position i if wpiq ą wpi ` 1q for

some integer i.

A permutation belongs to Sn if wpmq “ m for all m ą n; remember that the

permutation group Sn is the Weyl group of type An. The group Sn is generated by the

simple transpositions s1, . . . , sn, where for i ą 0, right-multiplication by si exchanges

entries in positions i. Every permutation w can be written as w “ si1
¨ ¨ ¨ siℓ

such that ℓ
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is minimal. This number ℓ “ ℓpwq is called the length of w and it can be determined by

counting the number of inversions of w, i.e.,

ℓpwq “ #t1 ď i ă j ď n | wpiq ą wpjqu.

3.1.1 Diagram of a permutation in Sn

Consider an n ˆ n array of boxes with rows and columns indexed by integers

r1, ns :“ t1, . . . , nu in matrix style. The permutation matrix associated to a permutation

w P Sn is obtained by placing dots in positions pwpiq, iq, for all 1 ď i ď n, in the array.

The diagram of w is the collection of boxes that remain after removing those which are

south and east of a dot in the permutation matrix. In other words, the diagram Dpwq is

defined by

Dpwq “ tpi, jq P r1, ns ˆ r1, ns | wpjq ą i and w´1piq ą ju.

For example, take w “ 4 8 6 2 7 3 1 5. Figure 16 presents the permutation

matrix of w. The dots indicate the points pwpiq, iq, the shaded boxes are south or east of

a dot, and the white boxes make up the diagram Dpwq.

b4
5
6

1 2 3 4 5 6 7 8

1
2
3

7
8 b

b

b

b

b

b

b

Figure 16 – Diagram for w “ 4 8 6 2 7 3 1 5.

The number of boxes in the diagram is equal to the length of the permutation.

In fact, if l “ w´1piq then

#Dpwq “ #tpl, jq P r1, ns ˆ r1, ns | wpjq ą wplq and l ą ju

“ #tj ă l | wpjq ą wplqu “ ℓpwq

For any permutation w in Sn and any 1 ď p, q ď n, the type A rank function

of a permutation w for a pair pq, pq counts the number of dots strictly south and weakly

west of the box pq, pq in the permutation matrix of w, i.e., this function is defined by

rA
wpq, pq “ #ti ď p | wpiq ą qu

“ #ptwp1q, wp2q, . . . , wppqu X tq ` 1, q ` 2, . . . , nuq.
(3.1.1)

A permutation is clearly determined by its rank functions. However, in many

cases, we want to figure out a smaller set of rank functions that also determine such

permutation.
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Remark 3.1. We use a different definition of rA
w in comparison with [20]. Instead of defining

the rank function as the number of dots to the left and above the box pq, pq in the

diagram, we define it as the number of dots to the left and below pq, pq. In other words,

r̃wpq, pq “ p´rA
wpq, pq is the rank function as defined by Fulton. We changed this definition

in order to give a better intuition for the type B case.

We say that a box pa, bq is a southeast (SE) corner of the diagram of w if w

has a descent at b, with a lying in the interval of the jump, and w´1 has a descent at a,

with b lying in the interval of the jump. This can be written as

wpbq ą a ě wpb ` 1q and

w´1paq ą b ě w´1pa ` 1q.
(3.1.2)

A essential position of w is a pair pq, pq such that the box pq, pq is a southeast

(SE) corner of the diagram Dpwq of w. Define the essential set Esspwq of w to be the set

of triples pk, p, qq such that pq, pq is a SE corner and k “ rA
wpq, pq is the value of the rank

function. Although k is given by the pair pq, pq, it will be important to preserve the value

of the rank function.

A basic triple (of type A) is a triple pk, q, pq such that k ą maxt0, 1 ´ p ´ qu.

Observe that the elements of Esspwq are basic triples since pk, p, qq in Esspwq implies that

k ą 0.

Using the example above of w “ 4 8 6 2 7 3 1 5, Figure 17 outlines the boxes

labelling essential positions with the corresponding values of the rank inside. The essential

set in this example is

Esspwq “ tp1, 2, 7q, p2, 3, 5q, p3, 3, 3q, p3, 5, 5q, p4, 5, 3q, p6, 6, 1qu.
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Figure 17 – SE corners and rank values for w “ 4 8 6 2 7 3 1 5.

3.2 Vexillary permutations on Sn

We say that a permutation w P Sn is vexillary if there is no subpermutation

isomorphic to the permutation r2 1 4 3s; in other words, there do not exist four numbers
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a ă b ă c ă d such that wpbq ă wpaq ă wpdq ă wpcq. A vexillary permutation also called

a 2143-avoiding permutation.

Now, we want to describe vexillary permutations in a different way, and for

that we define a triple of type A. We say that a three s-tuples τ “ pk, p, qq of non-negative

integer is a triple of type A if they satisfy

k “ p0 ă k1 ă k2 ă ¨ ¨ ¨ ă ksq,

p “ p0 ă p1 ď p2 ď ¨ ¨ ¨ ď psq,

q “ pq1 ě q2 ě ¨ ¨ ¨ ě qs ą 0q,

and, setting li “ qi ´ pi ` ki, we also require that

l1 ą l2 ą ¨ ¨ ¨ ą ls ą 0. (3.2.1)

Notice that Equation (3.2.1) is equivalent to the following

pi`1 ´ pi ` qi ´ qi`1 ą ki`1 ´ ki (3.2.2)

for every 1 ď i ď s, and we have the extreme value pks`1, ps`1, qs`1q “ pn, n, 0q for some

integer n ą maxtks, ps, q1u.

Related to a triple of type A there is a partition λ “ λpτ q, which is defined

by taking λki
“ li for each 1 ď i ď s, and filling the remaining parts minimally so that

λ1 ě λ2 ě ¨ ¨ ¨ ě λks
ą 0. Since li ą li`1, then all corners of the Young diagram associated

to the (standard) partition of λ are in the rows ki and they carry information about the

triple τ .

The next theorem, due to Fulton, show us how to associate a vexillary permu-

tation with a triple of type A.

Theorem 3.2 ([20] Proposition 9.6). Let w be a permutation of Sn. Then, w is a vexillary

permutation if and only if there is a unique triple τ “ pk, p, qq of type A such that the

essential set Esspwq is given by

Esspwq “ tpk1, q1, p1q, pk2, q2, p2q, . . . , pks, qs, psqu,

where

ki “ rA
wpqi, piq , for 1 ď i ď s.

This theorem also gives another equivalence for such permutations. A permuta-

tion w is vexillary if and only if the essential corners of w strung to the northeast direction,

i.e., there are no essential positions pq, pq and pq1, p1q such that q ă q1 and p ă p1.

Given a triple τ of type A, we can construct the vexillary permutation w “ wpτ q

using the following steps:
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(1) Ending in the p1 position, place k1 consecutive entries to the left, in increasing order,

starting with q1 ` 1. Mark these numbers as “used”;

(i) For 1 ă i ď s, ending in the pi position, or the next available position to the left,

fill the next available ki ´ ki´1 positions with entries chosen consecutively from the

unused integers, in increasing order, stating with qi ` 1 or, if it is not available, the

smallest unused integer above qi ` 1. Again, mark these numbers as “used”;

(s ` 1) Fill the remaining available positions with the unused positive integers, in increas-

ing order.

For instance, consider the triple τ “ pk, p, qq such that

k “ p1, 3, 4q,

p “ p2, 4, 7q,

q “ p9, 7, 5q.

In this case, notice that l “ p8, 6, 2q satisfies Equation (3.2.1) and, then, τ is

triple of type A. We can obtain w using the steps above as follows: put 10 in position 2;

then, put 8 and 9 in positions 3 and 4; then put 6 in position 7; finally, fill the remaining

positions with unused integers from 1 to 10. In short, we can represent these four steps as

follows:
¨ 10 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

¨ 10 8 9 ¨ ¨ ¨ ¨ ¨ ¨

¨ 10 8 9 ¨ ¨ 6 ¨ ¨ ¨

w “ 1 10 8 9 2 3 6 4 5 7.

Since τ is a triple of type A, then the permutation w “ 1 10 8 9 2 3 6 4 5 7

is vexillary. If we draw the diagram Dpwq then, by Theorem 3.2, we can verify that the

essential positions lie in a northeast path, as in Figure 18.

1 2 3 4 5 6 7 8 9 10
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b

b

1

3

4

Figure 18 – Diagram for the vexillary permutation w “ 1 10 8 9 2 3 6 4 5 7.
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Also notice that the permutation given in Figure 17 is not a vexillary permuta-

tion since the essential positions does not satisfy the conditions in Theorem 3.2.

The geometric setup of vexillary permutations and their association to the

Schubert varieties is developed in the first section of Appendix A.

3.3 Signed permutations in Wn

The notation present here is the same used in [4]. We also refer [7, §8.1] for

further details.

Consider the permutation of positive and negative integers, where the bar over

the number denotes the negative sign, and consider the natural order of them

. . . , n, . . . , 2, 1, 0, 1, . . . , n, . . .

A signed permutation is a permutation w satisfying that wpıq “ wpiq, for each i.

A signed permutation belongs to Wn if wpmq “ m for all m ą n; this is a group isomorphic

to the hyperoctahedral group, the Weyl group of types Bn and Cn. Since wpıq “ wpiq, we

just need the positive positions when writing signed permutation in one-line notation, i.e.,

a permutation w P Wn is represented by wp1q wp2q ¨ ¨ ¨ wpnq. For example, the full form of

the signed permutation w “ 2 1 3 in W3 is 3 1 2 0 2 1 3, but we can omit the values at the

position 3, 2, 1 and 0. The group Wn is generated by the simple transpositions s0, . . . , sn,

where for i ą 0, right-multiplication by si exchanges entries in positions i and i ` 1, and

right-multiplication by s0 replaces wp1q with wp1q. Every signed permutation w can be

written as w “ si1
¨ ¨ ¨ siℓ

such that ℓ is minimal; call the number ℓ “ ℓpwq the length of w.

This value counts the number of inversions of w P Wn, and it is given by the formula

ℓpwq “ #t1 ď i ă j ď n | wpiq ą wpjqu ` #t1 ď i ď j ď n | wp´iq ą wpjqu. (3.3.1)

The element wpnq
˝ “ 1 2 ¨ ¨ ¨ n is the longest element in Wn and it is called the

involution of Wn. Notice that the involution wpnq
˝ has length n2.

The group of permutations Wn can be embedded in the symmetric group S2n`1,

considering S2n`1 the permutations of n, . . . , 0, . . . , n. Indeed, define the odd embedding

by ι : Wn ãÑ S2n`1 where it sends w “ wp1q wp2q ¨ ¨ ¨ wpnq to the permutation

wpnq ¨ ¨ ¨ wp2q wp1q 0 wp1q wp2q ¨ ¨ ¨ wpnq

in S2n`1. The embedding ι will be used when it is necessary to highlight that we need the

full permutation of w.

There is also a even embedding ι1 : Wn ãÑ S2n defined by omitting the value

wp0q “ 0.
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Considering the natural inclusions Wn Ă Wn`1 Ă ¨ ¨ ¨ , we get the infinite Weyl

group W8 “ YWn. When the value n is understood or irrelevant, we can consider w as

an element of W8. The odd embeddings are compatible with the corresponding inclusions

S2n`1 Ă S2n`3 Ă ¨ ¨ ¨ .

3.3.1 Diagram of a permutation in S2n`1

Let us consider the specific case where the permutation group is S2n`1. It is

important to consider this case because we need to do some modification in the notation

that will be useful for us.

Consider a p2n`1qˆp2n`1q arrays of boxes with rows and columns indexed by

integers rn, ns “ tn, . . . , 1, 0, 1, . . . , nu in matrix style. The permutation matrix associated

to a permutation w P S2n`1 is obtained by placing dots in positions pwpiq, iq, for all

n ď i ď n, in the array. Again the diagram of w is the collection of boxes that remain after

removing those which are (weakly) south and east of a dot in the permutation matrix.

Observe that the number of boxes in the diagram is equal to the length of the permutation.

The rank function of a permutation w P S2n`1 for a pair pp, qq, where n ď

p, q ď n, is the number of dots strictly south and weakly west of the box pq ´ 1, pq in the

permutation matrix of w. In other words, it will be defined by

rwpp, qq :“ #ti ď p | wpiq ě qu, (3.3.2)

for n ď p, q ď n. Notice that we defined a different rank function for w P S2n`1 compared

to Sn: the rank function rw of a pair pp, qq is, in some sense, the type A rank function rA
w

associated to the box pq ´ 1, pq. This change is going to make easier to deal with signed

permutations.

A corner position of w is a pair pp, qq such that the box pq ´ 1, pq is a southeast

(SE) corner of the diagram of w. The set of corners of w is the set C pwq of triples pk, p, qq

such that pp, qq is a corner position and k “ rwpp, qq.

Remark 3.3. Observe that the definition of C pwq is exactly the same definition of essential

set Esspwq that we gave in the previous section. The reason we are using here C pwq instead

of Esspwq is because the essential set of a signed permutation defined by Anderson and

Fulton (Definition 1.2 of [4]) is properly contained in the set of corner for some signed

permutations, since their definition removes some “redundant” corners positions. In the

present work, we won’t disconsider such corners in our constructions and, from now on,

we will use the expression “corner” in place of “essential” to avoid some later misuse of

the definition of essential set of a signed permutation.

For example, consider w “ ιp2 3 1q “ 1 3 2 0 2 3 1. Figure 19 shows the

diagram of w. The SE corners pq ´ 1, pq are highlighted and they are filled with the rank
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function values rwpp, qq. In this case, the set of corners is

C pwq “ tp1, 3, 1q, p1, 1, 2q, p3, 0, 1q, p2, 2, 2qu.

b

b

b

b

b

b1

1 3

21
2
3

1
2
3

0

1 2 3123 0

b

Figure 19 – Diagram for w “ ιp2 3 1q “ 1 3 2 0 2 3 1. The circle corners connected with
dashad lines illustrate the symmetry of Lemma 3.4

Notice that if a box pq ´ 1, pq is a SE corner that satisfies (3.1.2), then pp, qq is

a corner position and k “ rwpp, qq.

3.3.2 Extended diagram of a signed permutation in Wn

We know that signed permutations must satisfy the relation wpıq “ wpiq, then

the negative positions can be obtained from the positive ones. Hence, a signed permutation

w P Wn corresponds to a p2n ` 1q ˆ n array of boxes, with rows indexed by tn, . . . , nu

and the columns indexed by tn, . . . , 1u, where the dots are placed in the boxes pwpiq, iq

for n ď i ď 1.

For each dot, we place an “ˆ” in those boxes pa, bq such that a “ wpiq and

i ď b, in other words, an ˆ is placed in the same column and opposite along with the

boxes to the right of this ˆ.

The extended diagram D`pwq of a signed permutation w is the collection of

boxes in the p2n ` 1q ˆ n rectangle that remain after removing those which are south or

east of a dot. The diagram Dpwq Ď D`pwq is obtained from extended diagram D`pwq by

removing the ones marked with ˆ. Namely, Dpwq is defined by

Dpwq “ tpi, jq P rn, 1s ˆ rn, ns | wpiq ą j, w´1pjq ą i, and w´1p´jq ą iu.

The number of boxes of Dpwq is equal to the length of w. Indeed, if define

J “ tj P rn, ns | w´1pjq ă 0u then define the following set

D1pwq “ tpi, jq P Dpwq | j P Ju.
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Notice that w´1p´jq ą i is trivially satisfied because w´1p´jq ą 0. If we denote

l “ ´w´1pjq and m “ ´i then

#D1pwq “ #tpi, jq P rn, 1s ˆ J | wpiq ą j and w´1pjq ą iu

“ #tpl, mq P r1, ns ˆ r1, ns | wplq ą wpmq and l ă mu

“ #t1 ď l ă m ď n | wplq ą wpmqu.

On the other hand, if we define the set

D2pwq “ tpi, jq P Dpwq | j R Ju

then w´1pjq ą i is trivially satisfied because w´1pjq ě 0. So, denoting l “ w´1pjq and

m “ ´i

#D2pwq “ #tpi, jq P rn, 1s ˆ prn, ns ´ Jq | wpiq ą j and w´1p´jq ą iu

“ #tpl, mq P r0, ns ˆ r1, ns | wp´lq ą wpmq and l ă mu

“ #tpl, mq P r1, ns ˆ r1, ns | wp´lq ą wpmq and l ď mu

“ #t1 ď l ď m ď n | wp´lq ą wpmqu.

Hence, Dpwq is the disjoint union D1pwq Y D2pwq and, by Equation (3.3.1),

#Dw “ ℓpwq.

Observe that if we use the embedding ι : Wn ãÑ S2n`1, the matrix and extended

diagram of w P Wn corresponds, respectively, to the first n columns of the matrix and

diagram of ιpwq. The notation ιpD`pwqq will be used when we need to use the respective

p2n ` 1q ˆ p2n ` 1q diagram of ιpwq.

The rank function of a permutation w in Wn is defined by

rwpp, qq “ #ti ě p | wpiq ď qu, (3.3.3)

for 1 ď p ď n, and n ď q ď n.

Since wpıq “ wpiq, then the rank function rwpp, qq is also equal to #ti ď

p | wpiq ě qu, so the rank functions rw coincides to rιpwq.

We say that integers pk, p, qq form a basic triple (of type B) if it a basic triple

of type A, i.e., it satisfies k ą maxt0, 1 ´ p ´ qu along with the following conditions: p ą 0,

q ‰ 0 and if p “ 1 then q ą 0.

Given w P Wn, the next lemma states that there is a symmetry about the

origin of the corner positions corresponding to ιpwq. In order to simplify the notation,

given pk, p, qq a basic triple of type A, define the reflected basic triple pk, p, qqK by pk `

p ` q ´ 1, p ` 1, q ` 1q.
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Lemma 3.4 ([4], Lemma 1.1). For w P Wn, the set of corners of ιpwq P S2n`1 has the

following symmetry: pk, p, qq is in C pιpwqq if and only if pk, p, qqK is in C pιpwqq.

We can see in Figure 19 that both corners in the left half of the diagram are

symmetric by the origin to other two corners in the right side. This behavior will happen

for every signed permutation w, implying that half of C pιpwqq suffices to determine the

signed permutation w; we will consider those corners appearing in the first n columns.

A corner position of signed permutation w is a pair pp, qq such that the box

pq ´ 1, pq is a southeast (SE) corner of the extended diagram of w. The set of corners of a

signed permutation w is the set pk, p, qq such that pq ´ 1, pq is a SE corner of the extended

diagram D`pwq and k “ rwpp, qq, except for corner positions pp, qq where p “ 1 and q ă 0.

This exception comes from the fact that p1, qq, for q ă 0, is not a corner position in ιpwq

because the respective box pq ´ 1, 1q cannot be a SE corner since wp0q “ 0.

Observe that every element pk, p, qq in the set of corners C pwq is also a basic

triple of type B. Since the integer k is the rank of w in pp, qq, sometimes we can simply

say that the corner position pp, qq P C pwq, instead of the basic triple pk, p, qq.

The Figure 20 illustrates the extended diagram and the set of cornet of the

signed permutation w “ 10 1 5 3 2 4 6 9 8 7.
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ℓ(w) = 65

(9, 2, 6)}
(6, 4, 3), (6, 2, 1), (7, 2, 3),

C (w) = {(3, 8, 7), (4, 6, 4), (5, 5, 2),

Figure 20 – Diagram and set of corners of a signed permutation.

To make the diagrams look cleaner, from now on we won’t denote ˆ in the

extended diagrams D`pwq. During the text, it can happen that we omit the word “extended”
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since we are only interested in studying the extended diagram of a signed permutation w

so that the diagram Dpwq won’t be useful for us.

3.4 Vexillary signed permutations on Wn

In this section, we will figure out what is a vexillary permutation in Wn. Recall

that there is an inclusion ι : Wn Ñ S2n`1, so that makes sense to think about permutations

w P Wn such that its inclusion ιpwq is a vexillary permutation in S2n`1. Indeed, the

symmetry in the diagram of ιpwq allows us to get a description of a vexillary signed

permutation intrinsically in Wn.

A triple of type B is a three s-tuples τ “ pk, p, qq of non-negative integer such

that

k “ p0 ă k1 ă k2 ă ¨ ¨ ¨ ă ksq,

p “ pp1 ě p2 ě ¨ ¨ ¨ ě ps ą 0q,

q “ pq1 ě q2 ě ¨ ¨ ¨ ě qs ą 0q,

satisfying

pi ´ pi`1 ` qi ´ qi`1 ą ki`1 ´ ki

for every 1 ď i ď s, and we have the extreme value pks`1, ps`1, qs`1q “ pn, 0, ´nq for some

integer n ą maxtks, ps, q1u (when i “ s, we have that ps ` qs ` ks ą 0). Notice that this

definition is similar to the definition of a triple of type A.

Given a triple of type B, we can construct a permutation wpτ q as follows:

(1) Starting in the p1 position, place k1 consecutive entries, in increasing order, ending

with q1. Mark these numbers as “used”;

(i) For 1 ă i ď s, starting in the pi position, or the next available position to the right,

fill the next available ki ´ ki´1 positions with entries chosen consecutively from the

unused absolute numbers, in increasing order, ending with qi or, if it is not available,

the biggest unused number below qi. Again, mark these numbers as “used”;

(s ` 1) Fill the remaining available positions with the unused positive numbers, in in-

creasing order.

Let us consider the following example. Suppose that τ “ p1 3 4 5 8, 9 9 6 4 3,

12 9 8 8 5q. The six steps to obtain wpτ q are:
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(1): pk1, p1, q1q “ p1, 9, 12q. From position p1 “ 9 we are going to place k1 “ 1 consecutive

numbers, ending with q1 “ 12. Then,

wp9q “ 12.

We also need to keep tracking what positions and values where have already been

used. Used positions: 9; Used values: 12.

(2): pk2, p2, q2q “ p3, 9, 9q. From position p2 “ 9 we are going to place k2 ´ k1 “ 2

consecutive numbers, ending with q2 “ 9. Since we already set a value in position 9,

then we go to the next available position. Then,

wp10q “ 10, wp11q “ 9.

Used positions: 9, 10, 11; Used values: 12, 10, 9.

(3): pk3, p3, q3q “ p4, 6, 8q. From position p3 “ 6 we are going to place k3 ´ k2 “ 1

consecutive numbers, ending with q3 “ 8. Then,

wp6q “ 8.

Used positions: 6, 9, 10, 11; Used values: 12, 10, 9, 8.

(4): pk4, p4, q4q “ p5, 4, 8q. From position p3 “ 4 we are going to place k4 ´ k3 “ 1

consecutive numbers, ending with q4 “ 8. We have already used 8, so we are going

to use the biggest available value smaller than 8. Then,

wp4q “ 11.

Used positions: 4, 6, 9, 10, 11; Used values: 12, 11, 10, 9, 8.

(5): pk5, p5, q5q “ p8, 3, 5q. From position p3 “ 3 we are going to place k5 ´ k4 “ 3

consecutive numbers, ending with q5 “ 5. We cannot place values in positions 4 and

6, so we need to skip them. Then,

wp3q “ 7, wp5q “ 6, wp7q “ 5.

Used positions: 3, 4, 5, 6, 7, 9, 10, 11; Used values: 12, 11, 10, 9, 8, 7, 6, 5.

(6:) The final step fills the vacant positions with unused positive values. Then,

wp1q “ 1, wp2q “ 2, wp8q “ 3, wp12q “ 4.
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In short, we can represent these six steps as follows:

¨ ¨ ¨ ¨ ¨ ¨ ¨ 12 ¨ ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨ ¨ 12 10 9 ¨ ¨

¨ ¨ ¨ ¨ 8 ¨ ¨ 12 10 9 ¨ ¨

¨ ¨ 11 ¨ 8 ¨ ¨ 12 10 9 ¨ ¨

¨ 7 11 6 8 5 ¨ 12 10 9 ¨ ¨

w “ 1 2 7 11 6 8 5 3 12 10 9 4.

A signed permutation w P Wn is called a vexillary signed permutation if there

is some triple τ “ pk, p, qq of type B such that w “ wpτ q.

We can determine the corner positions of a vexillary signed permutation as in

Theorem 3.2 for vexillary permutation. Remember that a corner position is a pair pp, qq

such that the box pq ´ 1, pq in the extended diagram D`pwq is a SE corner. The set C pwq

is the set of all triples pk, p, qq such that pp, qq is a corner position and k “ rwpp, qq, except

for corner positions pp, qq where p “ 1 and q ă 0.

Proposition 3.5 ([1], Lemma 2.4). Let w “ wpτ q be a vexillary signed permutation, for

a triple τ “ pk, p, qq. Then the set of corners C pwq is

C pwq “ tpk1, q1, p1q, pk2, q2, p2q, . . . , pks, qs, psqu,

In other words, all SE corners of the diagram of w are the boxes pqi ´ 1, piq, and ki is the

number of dots strictly south and weakly west of the i-th SE corner in the diagram.

In order to give all possible ways to determine a vexillary signed permutation,

we need to define the concept of pattern avoidance. Given a signed permutation w P Wn

and a signed pattern π “ rπp1q πp2q ¨ ¨ ¨ πpmqs in Wm, m ă n, we say that w contains π if

there is a subsequence wpi1q ¨ ¨ ¨ wpimq such that the signs of wpijq and πpjq are the same

for all j, and also the absolute values of the subsequence are in the same relative order as

the absolute values of π. Otherwise w avoids π.

For example, 5 1 3 2 4 contains the pattern r3 2 1s, as the subsequence 5 3 2,

but 5 1 2 3 4 avoids r3 2 1s.

The following theorem gives four characterizations of vexillary signed permuta-

tions.

Theorem 3.6 ([1]). Let w be a signed permutation in Wn. The following are equivalent:

1. w is vexillary, i.e., there is a triple τ of type B such that w “ wpτ q;

2. ιpwq is vexillary, as a permutation in S2n`1;
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3. The corner positions of w can be ordered pp1, q1q, . . . , pps, qsq, so that p1 ě ¨ ¨ ¨ ě ps ą

0 and q1 ě ¨ ¨ ¨ ě qs ą 0;

4. w avoids the nine signed patterns r2 1s, r3 2 1s, r2 3 4 1s, r2 3 4 1s, r3 4 1 2s,

r3 4 1 2s, r3 4 1 2s, r4 1 2 3s and r4 1 2 3s.

The geometric setup of vexillary signed permutations and their association to

the Schubert varieties is developed in the second section of Appendix A.

3.5 NE path and unessential corners

Suppose that w P Wn is any signed permutation. There are two notable classes

of SE corner in the set C pwq that we will be important to our main theorem stated in the

next chapter. They are the corners in the northeast path and the unessential corners.

Given any signed permutation w, consider a (strict) partial order for the

set of corners C pwq by pp, qq ă pp1, q1q if and only if p ą p1 and q ă q1, for corner

positions pp, qq, pp1, q1q P C pwq. For example, in Figure 20, the unique possible relation is

p4, 3q ă p2, 2q, the two boxes filled in with the value 6.

Define the northeast (NE) path as the set Nepwq of minimal elements of

C pwq relative to the poset “ă”. Using the same example in Figure 20, we have that

Nepwq “ C pwq ´ tp6, 2, 1qu, since all the corners are minimal under this poset except the

basic triple p6, 2, 1q.

The positions ppi, qiq of the NE path Nepwq can be ordered so that p1 ě p2 ě

¨ ¨ ¨ ě pr ą 0 and q1 ě q2 ě ¨ ¨ ¨ ě qr. In fact, suppose that we order p1 ě p2 ě ¨ ¨ ¨ ě pr ą 0

but there is i such that and qi ă qi`1. If pi “ pi`1 then we can exchange i and i ` 1.

Otherwise, if pi ą pi`1 then ppi, qiq ă ppi`1, qi`1q and ppi`1, qi`1q does not belongs to the

NE path.

Given a signed permutation w, we say that a corner position pp, qq of C pwq

is unessential if there are corners pp1, q1q, pp2, q2q and pp3, q3q in the NE path Nepwq

satisfying the following conditions:

p1 “ p and q1 ă q ă 0;

p2 ą 0 and q2 “ q ` 1;

pp3, q3q ă pp, qq.

In other words, pp, qq is not a minimal corner in the poset in the upper half of

the diagram, the box pq1 ´ 1, p1q lays above and in the same column of the box pq ´ 1, pq,

and the box pq2, p2 ´ 1q reflected from pq2 ´ 1, p2q lays to the right and in the same row of

pq ´ 1, pq, as shown in Figure 21. Define by Upwq the set of all unessential corners of w.
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(q1 − 1, p1)

(q2, p2 − 1)

(q − 1, p)

b

(q2 − 1, p2)

(q3 − 1, p3)

Figure 21 – Configuration of an unessential corner pp, qq. The highlighted box pq ´ 1, pq
satisfies all the conditions.

It is important to emphasize that we require all three corners pp1, q1q, pp2, q2q

and pp3, q3q must belong to the NE path Nepwq.

Considering the example above for a signed permutation w “ 10 1 5 3 2 4 6 9 8 7,

the set of unessential corners Upwq only contains the triple p6, 2, 1q. In fact, Figure 22

shows that the corner p6, 2, 2q is an unessential corner and there are no other one since

this is the unique non-minimal corner for this case.
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Figure 22 – Part of the diagram C pιpwqq showing that p6, 2, 2q is an unessential corner for
w “ 10 1 5 3 2 4 6 9 8 7.
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Chapter 4

Theta-vexillary signed permutations

In this chapter, we will define a class of degeneracy loci that generalize the

ones got from a vexillary signed permutation. Such permutations are the ones such that

the cohomolgy classes rΩws are represented by a polynomial Θ, that generalize the raising

operators associated to the vexillary and vexillary signed permutations.

4.1 Theta-triples and theta-vexillary permutations

A theta-triple is three s-tuples τ “ pk, p, qq with

k “ p0 ă k1 ă k2 ă ¨ ¨ ¨ ă ksq,

p “ pp1 ě p2 ě ¨ ¨ ¨ ě ps ą 0q, (4.1.1)

q “ pq1 ě q2 ě ¨ ¨ ¨ ě qsq,

where qi is allowed to be negative and satisfying eight conditions. The first three are

A1. qi ‰ 0 for all i;

A2. qi ‰ ´qj, for any i ‰ j.

A3. If qs ă 0 then ps ą 1;

Now, let a “ apτ q be the integer such that qa´1 ą 0 ą qa, allowing a “ 1 and

a “ s ` 1 for the cases where all q’s are negative or all q’s are positive, respectively. For

all i ě a, denote by Rpiq (or Rpiqτ to specify the triple) the unique integer such that

qRpiq ą ´qi ą qRpiq`1; is necessary consider k0 “ 0, p0 “ `8, q0 “ `8, and Rpa´1q “ a´1.

The next three conditions are

B1. ppi ´ pi`1q ` pqi ´ qi`1q ą ki`1 ´ ki, for 1 ď i ă a ´ 1;

B2. ppi ´ pi`1q ` pqi ´ qi`1q ą pki`1 ´ kiq ` pkRpiq ´ kRpi`1qq, for a ď i ă s;
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B3. ps ` qs ` ks ą kRpsq ` 1, if a ď s.

It is important to observe that none of the above conditions compare indexes

a ´ 1 and a. Finally, consider a ď i ď s and let Lpiq “ Lτ piq be the biggest integer j in

tRpiq ` 1, . . . , a ´ 1u satisfying kj ´ kRpiq`1 ě qRpiq`1 ´ qj, i.e., Lpiq “ maxtRpiq ` 1 ď j ď

a ´ 1 | kj ´ kRpiq`1 ě qRpiq`1 ´ qju. The last two conditions are

C1. ´qi ě ki ´ kRpiq for all a ď i ď s;

C2. ´qi ě qLpiq ` kLpiq ´ kRpiq for all a ď i ď s.

Notice that we intentionally divided the conditions in three blocks. We are

going to see that conditions in the same block share common characteristics.

Given a theta-triple τ , we can construct a permutation wpτ q using the same

step-by-step construction given for a triple of type B as follows:

(1) Starting in the p1 position, place k1 consecutive entries, in increasing order, ending

with ´q1. Mark the absolute value of these numbers as “used”;

(i) For 1 ă i ď s, starting in the pi position, or the next available position to the right,

fill the next available ki ´ ki´1 positions with entries chosen consecutively from

the unused absolute numbers, in increasing order, ending with ´qi or, if it is not

available, the biggest unused number below ´qi. Again, mark the absolute value of

these numbers as “used”;

(s ` 1) Fill the remaining available positions with the unused positive numbers, in in-

creasing order.

Notice that we should mark as used the absolute of the placed values because

we allow negative qi for a theta-triple.

A signed permutation w P Wn is called theta-vexillary if w “ wpτ q comes from

some theta-triple τ “ pk, p, qq.

Example 1. The permutation w given in Figure 20 can be obtained from the triple

τ “ p3 4 5 6 9, 8 6 5 4 2, 7 4 2 3 6q using the steps as follows:

¨ ¨ ¨ ¨ ¨ ¨ ¨ 9 8 7

¨ ¨ ¨ ¨ ¨ 4 ¨ 9 8 7

¨ ¨ ¨ ¨ 2 4 ¨ 9 8 7

¨ ¨ ¨ 3 2 4 ¨ 9 8 7

¨ 1 5 3 2 4 6 9 8 7

w “ 10 1 5 3 2 4 6 9 8 7
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We can check that τ is a theta-triple: clearly τ satisfies A1, A2, A3. Then, the

smaller index where qa ă 0 is a “ 4. We also have that the inequalities

q2 ą ´q4 ą q3, q1 ą ´q5 ą q2,

implies that Rp4q “ 2 and Rp5q “ 1, respectively. Then, the inequalities

pp1 ´ p2q ` pq1 ´ q2q “ 5 ą 1 “ k2 ´ k1

pp2 ´ p3q ` pq2 ´ q3q “ 3 ą 1 “ k3 ´ k2

prove that B1 is satisfied,

pp4 ´ p5q ` pq4 ´ q5q “ 5 ą 4 “ pk5 ´ k4q ` pkRp4q ´ kRp5qq

prove that B2 is satisfied,

p5 ` q5 ` k5 “ 5 ą 4 “ kRp5q ` 1

prove that B3 is satisfied, and

´q4 “ 3 ě 2 “ k4 ´ kRp4q

´q5 “ 6 “ k5 ´ kRp5q

prove that C1 is satisfied. Finally, remember that Lpiq “ maxtRpiq ` 1 ď j ď a ´ 1 | kj ´

kRpiq`1 ě qRpiq`1 ´ qju, then Lp4q “ 3 and Lp5q “ 2. So, C2 is satisfied because

´q4 “ 3 “ qLp4q ` kLp4q ´ kRp4q

´q5 “ 6 ě 5 “ qLp5q ` kLp5q ´ kRp5q

Hence, w is theta-vexillary signed permutation. Observe that every pk, p, qq in

this triple is also a corner position in the diagram. In fact, this is not a coincidence, and

we will show that every theta-triple are corner positions on the permutation.

Notice in this construction that it does not create a descent inside a step, i.e.,

if a ă b are positions placed by a Step piq then wpaq ă wpbq.

The geometric setup of theta-vexillary signed permutations and their association

to the Schubert varieties is developed in the second section of Appendix A.

4.2 Descents of theta-vexillary permutations

A theta-triple τ also can be seen as a set of basic triples of type B pki, pi, qiq,

satisfying the eight conditions. We aim to prove that τ Ă C pwq. In other words, every

basic triple pki, pi, qiq of a theta-triple τ is a corner position in the extended diagram of
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wpτ q. This requires us to study descents in a theta-vexillary signed permutation, which

proofs are extentions of the one’s given by Anderson and Fulton for Lemmas 2.2, 2.3 and

2.4 of [1].

Before we study descents in a theta-vexillary signed permutation, we need some

properties related to the conditions and the step-by-step construction of a permutation

from a triple.

First of all, consider the following interpretation of the eight conditions of a

theta-triple.

Conditions A1, A2 and A3 are required in order to guarantee that wpτ q is a

signed permutation, i.e., the elements pki, pi, qiq are basic triples of type B.

Conditions B1, B2 and B3, in some sense, characterize a theta-vexillary permu-

tations as well as the condition ppi ´ pi`1q ` pqi ´ qi`1q ą ki`1 ´ ki does for the vexillary

permutations. For B2, an extra kRpiq ´ kRpi`1q is added to the right side because Step piq

skips an equal number of entries, since they have already been used from Step pRpi`1q`1q

to pRpiqq. Moreover, condition B3 is equivalent to apply i “ s in condition B2, where we

consider the extreme cases pk0, p0, q0q “ p0, n, nq and pks`1, ps`1, qs`1q “ pn, 1, ´nq.

Finally, for conditions C1 and C2, we have the following lemma:

Lemma 4.1. The conditions C1 and C2 are equivalent, respectively, to

C11. Given any a ď i ď s, all entries placed by Steps paq to piq are positive;

C21. Given any a ď i ď s, all entries placed by Steps pRpiq ` 1q to pa ´ 1q are strictly

bigger than qi.

Proof. For the first statement, observe that all Steps from paq to piq must skip at most

ka´1 ´kRpiq values because they were already used in Steps pRpiq `1q to pa´1q and denote

by α :“ ´qi ´ pka´1 ´ kRpiqq the number of available positive entries from 1 to qi that can

be used by Steps paq to piq. Then, condition C1 is equivalent to say that α ě ki ´ ka´1,

i.e., there is enough positive values available to be placed by Steps paq to piq.

For the second assertion, remember that the definition of Lpiq says that it is the

biggest integer in tRpiq ` 1, . . . , a ´ 1u where kLpiq ´ kRpiq`1 ě qRpiq`1 ´ qLpiq. The smallest

possible entry placed by Steps pRpiq`1q to pLpiqq is limited below by qLpiq ` kLpiq ´ kRpiq`1.

Since for any Step pjq after Lpiq, we have that kj ´ kRpiq`1 ă qRpiq`1 ´ qj, then no entry

placed by such step cannot be smaller than qLpiq. So, every entry placed by Steps pRpiq ` 1q

to pa ´ 1q is limited below by qLpiq ` kLpiq ´ kRpiq ` 1, and we conclude that both conditions

C2 and C21 imply that qi ă qLpiq ` kLpiq ´ kRpiq ` 1.
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In other words, conditions C1 and C2 guarantee that given i ě a, then all

values placed by Steps pRpiq ` 1q to piq ranges from qi to qi.

Lemma 4.2. Let w “ wpτ q be a theta-vexillary permutation and τ be a triple. Then,

for each a ď i ď s the Step piq places only positive integers in the construction of the

permutation w.

Proof. Observe that Step piq must skip at most ki´1 ´ kRpiq values because they were

already used in Steps pRpiq ` 1q to pi ´ 1q. Then, α “ ´qi ´ pki´1 ´ kRpiqq represent the

number of available positive entries from 1 to qi that can be placed by Step piq. Using

the condition (iv), α ě pki ´ kRpiqq ´ pki´1 ´ kRpiqq ě ki ´ ki´1, which means that all the

ki ´ ki´1 positive entries to be placed in Step piq fit in the positive entries 1 to qi.

Proposition 4.3. Let w “ wpτ q be a theta-vexillary signed permutation and τ “ pk, p, qq

be a theta-triple. Then all the descents of w are at positions pi ´ 1, i.e, for each i, we have

wppi ´ 1q ą qi ě wppiq and there are no other descents.

Proof. In Step p1q, no descents are created, unless p1 “ 1, in which case the permutation

has a single descent at 0. For 1 ă i ă a, this is proved in Lemma 2.2 of [1]. Now, supposing

that a ď i ď s and i ě 2, assume inductively that for j ă i, there is a descent at position

pj ´ 1 whenever this positions has been filled, satisfying wppj ´ 1q ą qj ě wppjq, and

there are no other descents. By Lemma 4.1, only positive entries are placed in consecutive

vacant positions of Step piq, from left to right, at position pi (or the next vacant position

to the right, if pi´1 “ pi). We consider “sub-steps” of Step piq, where we are placing an

entry at position p ě pi, and distinguish three cases. First, suppose we are at position p,

with p ă pi´1 ´ 1. In this case, the previous entry placed in Step piq (if any) was placed at

position p ´ 1, so we did not create a descent at p ´ 1. Position p ` 1 is still vacant, so no

new descents are created.

To clarify this proof, let τ “ p3 4 5 6 9, 8 6 5 4 2, 7 4 2 3 6q as in Example 1. In

Step p5q, the first entry placed is 1 and it does not create a descent:

w “ ¨ 1 ¨ 3 2 4 ¨ 9 8 7

Next, suppose we are at position p “ pi´1 ´ 1. This means that pi´1 ´ pi ď

ki ´ ki´1, so let β “ pki ´ ki´1q ´ ppi´1 ´ piq be the number of entries remaining to be

placed in Step piq, after placing the current at position p. Condition (v1) tell us that

qi ď qi ` β ă qi´1, then considering the integer interval Ii “ tqi´1 ` 1, . . . , qiu, it must

be non-empty. We claim that the entry wppq “ wppi´1 ´ 1q lies in Ii and therefore

wppi´1 ´ 1q ą qi´1 ě wppi´1q, proving this situation. Remember that the step-by-step

construction must skip those entries that its absolute value have already been used, and
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then this claim is equivalent to say that even removing from Ii those repetitions, there

still is some value to be picked by wppq in Ii.

To prove that claim, lets count how many values in Ii were used in previous

steps. For a ď j ă i, any entry x of Steps pjq satisfies x ď qj ď qi´1, that means x R Ii. If

1 ď j ď Rpiq then any entry x placed in Steps pjq satisfies x ď qj ď qRpiq ă qi, implying

that x R Ii. If Rpi ´ 1q ă j ă a then by condition (viii1), any entry x placed in Steps

pjq satisfies x ą qi´1, implying that x R Ii. Finally, if Rpiq ă j ď Rpi ´ 1q then by

condition (viii1), any entry x placed in Step pjq satisfies qi ă x ď qj ď qRpi´1q ă qi´1,

hence, x P Ii. We conclude that the only absolute values placed in previous steps that

belongs to the interval Ii are all the ones from Steps pRpiq ` 1q to pRpi ´ 1qq. So there

are α :“ kRpi´1q ´ kRpiq values in Ii that cannot be used in the Step piq in position p. In

order to place the correct value for position p of Step piq, we need to consider that the

values which are going to be placed after position p also must belong to Ii and are bigger

than wppq, i.e., it also is required to skip the β biggest values in Ii. Since the number of

elements of Ii is qi ´ qi´1, follows from condition (vi1) that #pIiq ą α ` β and, therefore,

there is some value in Ii to pick for wppq.

Continuing the example, in Step p5q, the second entry placed is 5, creating an

descent at position 3:

w “ ¨ 1 5 3 2 4 ¨ 9 8 7

Finally, suppose we are at position p ě pi´1. Using the previous case, the entry

to be placed is some x P Ii. When an entry is placed in a vacant position to the right of

a filled position, it does not create a descent since either all entries already placed the

previous steps are smaller than qi´1 ă x or the entries placed in this step is smaller than

x. When it is placed to the left of a filled position, which can only happen at positions

pj ´ 1 for some j ă i ´ 1, and it does create a descent at the position pj ´ 1 satisfying

wppj ´ 1q ą qi´1 ě qj ě wppjq

In Step p5q of our example, it remains to place the 3rd value 6 in the next

vacant position, which occurs at position 7. Observe that we do not create a descent at

the filled position to its left, but we do create a descent at position 7, since the position 8

is already filled:

w “ ¨ 1 5 3 2 4 6 9 8 7

At the Step ps ` 1q, we can apply the previous case for i “ s ` 1, adding the

values ks`1 “ n, ps`1 “ 0, qs`1 “ ´n ` 1 to τ . This procedure will create descents only at

those pj ´ 1 which are still vacant.

Given a triple τ “ pk, p, qq, the dual triple is defined by τ
˚ “ pk, q, pq, where

p and q were switched. Clearly, a dual triple could not be a theta-vexillary permutation,
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but the dual triple is useful to compute the inverse of wpτ q.

The dual triple τ
˚ “ pk, q, pq determines a signed permutation ιpwpτ ˚qq in

S2n`1 using the follow steps:

(0) Put a zero at the position 0;

(1) Starting in the q1 position, place k1 consecutive entries, in increasing order, ending

with ´p1. Mark the absolute value of these numbers as “used” and fill the reflection

through 0 with the respective reflection wpaq “ wpaq;

(i) For 1 ă i ď s, starting in the qi position (if qi ă 0 then use a position before zero),

or the next available position to the right, fill the next available ki ´ ki´1 positions

with entries chosen consecutively from the unused absolute numbers, in increasing

order, ending with ´pi or, if it is not available, the biggest unused number below ´pi.

Again, mark the absolute value of these numbers as “used” and fill the reflection

through 0 with the respective reflection wpaq “ wpaq;

(s+1) Fill the remaining available positions after 0 with the unused positive numbers, in

increasing order.

The difference here compared to the construction using the theta-vexillary

permutation is that we allow to have negative positions, so we need the full form of the

permutation. The signed permutation wpτ ˚q is obtained from ιpwpτ ˚qq by restricting it to

the positions t1, . . . , nu .

Lemma 4.4. We have wpτ ˚q “ wpτ q´1.

Proof. We can prove in the same way as Lemma 2.3 of [1], adding the fact that for

a ď i ď s, the permutation ιpwq maps the set apiq to bpiq and, hence, the inverse ιpwq´1

maps bpiq to apiq.

Example 2. Consider the dual triple τ
˚ “ p3 4 5 6 9, 7 4 2 3 6, 8 6 5 4 2q of the one gave in

Example 1. The permutation ιpwpτ ˚qq is constructed as follows:

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

¨ 8 9 10 ¨ ¨ ¨ ¨ ¨ ¨ 0 ¨ ¨ ¨ ¨ ¨ ¨ 10 9 8 ¨

¨ 8 9 10 ¨ ¨ 6 ¨ ¨ ¨ 0 ¨ ¨ ¨ 6 ¨ ¨ 10 9 8 ¨

¨ 8 9 10 ¨ ¨ 6 ¨ 5 ¨ 0 ¨ 5 ¨ 6 ¨ ¨ 10 9 8 ¨

¨ 8 9 10 ¨ ¨ 6 4 5 ¨ 0 ¨ 5 4 6 ¨ ¨ 10 9 8 ¨

¨ 8 9 10 7 3 6 4 5 2 0 2 5 4 6 3 7 10 9 8 ¨

1 8 9 10 7 3 6 4 5 2 0 2 5 4 6 3 7 10 9 8 1
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For each step, the bold numbers represent the values placed for such step, and

the italic ones are their reflection through zero.

So, wpτ ˚q “ 2 5 4 6 3 7 10 9 8 1 and we can easily verify that this permutation is

the inverse of w “ 10 1 5 3 2 4 6 9 8 7.

Although wpτ ˚q is not theta-vexillary, a similar version of Proposition 4.3 holds

for this case and the proof follows that same idea.

Proposition 4.5. Let w “ wpτ q be a theta-vexillary signed permutation, for a theta-triple

τ “ pk, p, qq. Then all the descents of w´1 are at positions qi ´ 1, when i ă a, and qi,

when i ě a. In fact, we have

w´1pqi ´ 1q ą pi ě w´1pqiq , for i ă a;

w´1pqiq ą pi ´ 1 ě w´1pqi ` 1q , for i ě a;

and there are no other descents.

4.3 Extended diagrams for theta-vexillary permutations

In this section, we aim to understand how a theta-vexillary permutation looks

like in the extended diagram.

Given a position pp, qq in the extended diagram D`pwq, define the left lower

region of pp, qq by the set boxes in the extended diagram strictly south and weakly west of

the SE corner pq ´ 1, pq. In other words, denoting it by Λpp, qq, this set is

Λpp, qq :“ tpa, bq P D`pwq | a ě q, b ď pu.

Notice that the step-by-step construction of a theta-vexillary permutation can

also be seen as a process of placing dots in the extended diagram, since each pair pwpiq, iq

corresponds to a dot in the diagram. We can say that a Step piq places dots in the diagram

using the following rule: if an entry x is placed at a position z in the permutation, i.e.,

wpzq “ x, then it produces a dot at the box px, zq in the diagram. For instance, Figure 23

shows how each step places dots in the diagram of the triple τ “ p34569, 86542, 74236q

(c.f. Example 1). The first step places the entries 9, 8 and 7, respectively, at position 8, 9

and 10. This means that the dots for Step p1q are placed in boxes p9, 8q, p8, 9q and p7, 10q.

The same idea happens for all steps. It is important to notice in this example that each

step “creates” a SE corner, but not all of then. In fact, two SE corners must appeared in

the diagram after the last step. This is the moment in which we can establish a relationship

between theta-triples and corners in the extended diagram. The next proposition states

how are some SE corners since we know the theta-triple.
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Figure 23 – Placing dots during a step-by-step construction. The thicker line encloses the
region Λppi, qiq.

Proposition 4.6. Let w “ wpτ q be a theta-vexillary signed permutation and τ “ pk, p, qq

be a theta-triple. Then we have the following:

1. The boxes pqi ´ 1, piq and their reflection pqi, pi ´ 1q are SE corners of the diagram

of ιpwq (not necessary all of them);
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2. For any 1 ď i ď s ` 1, all the dots placed by Step piq in the diagram are inside region

Λppi, qiq and outside Λppi´1, qi´1q;

3. ki is the number of dots inside the region Λppi, qiq.

Proof. Lemma 3.4 says that there is a symmetry between boxes pqi ´ 1, piq and their

reflection pqi, pi ´1q. Then, it suffices to prove that every pqi ´1, piq is a SE corner. If p ą 0,

then a signed permutation w has a descent at position p ´ 1 if and only if ipwq has descents

at position p ´ 1 and p. By proposition 4.3, ιpwq satisfies ιpwqppi ´ 1q ą qi ě ιpwqppiq, and

it implies that

ιpwqppiq ą qi ´ 1 ě ιpwqppi ` 1q.

On the other hand, by Proposition 4.5, ιpwq´1 satisfies

ιpwq´1pqi ´ 1q ą pi ě ιpwq´1pqiq,

for any i. This proves that pqi ´ 1, piq satisfies Equation 3.1.2, which proves item (1).

For item (2), first of all, observe that every entry x placed at position z in Step

piq satisfies pi ď z and x ď qi, implying that the correspondent dot at box px, zq in the

diagram belongs to Λppi, qiq.

Now, we need to check that all dots placed by Step piq are outside Λppi´1, qi´1q.

It is enough to verify that whenever in Step piq we are placing an entry x at a position

z ě pi´1 in the permutation, then x ą qi´1. Set β “ pki ´ ki´1q ´ ppi´1 ´ piq the number of

entries to be placed after the position pi´1 during the Step piq. If 1 ď i ă a then condition

B11 implies that β ă qi´1 ´ qi. The entries that will be placed are qi ` β ` 1, . . . , qi and

they are all strictly greater than qi´1 (in the diagram, it is equivalent to say that we have

qi´1 ´ qi available rows to place the dots above qi´1 but we only need β rows). If i “ a

then by Lemma 4.1, x ą 0 ą qi´1.

If a ă i ď s`1 then condition B21 implies that β ă pqi´1 ´qiq´pkRpi´iq ´kRpiqq,

which means that have pqi´1 ´ qiq ´ pkRpi´1q ´ kRpiqq available rows in the diagram to place

the dots above qi´1 but we only need β rows. Observe that we must skip kRpi´1q ´ kRpiq

rows in the diagram since their reflection have already been used between Steps pRpiq ` 1q

to pRpi ´ 1qq. This proves item (2).

Finally for (3), ki is the total of dots placed until Step piq and they are all

placed inside the region Λppi, qiq. Any other dot placed after this step is placed outside

Λppi, qiq.

Portraying τ as a set of corner positions ppi, qiq, item (1) of Proposition 4.6

simply says that τ Ă C pwq.
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Remember that there is a poset “ă” in the set of corners C pwq where two

corners positions satisfy pp, qq ă pp1, q1q if and only if p ą p1 and q ă q1. Also remember

that the NE path Nepwq Ă C pwq is the set of minimal elements of this poset.

Lemma 4.7. Let w “ wpτ q be a theta-vexillary signed permutation, and τ “ pk, p, qq be

a theta-triple. Then every corner position ppi, qiq of τ is minimal in the poset “ă”, i.e.,

τ Ă Nepwq.

Proof. Suppose that there is a pair ppi, qiq of τ and a corner position pp, qq P C pwq such

that pp, qq ă ppi, qiq, i.e., p ą pi and q ă qi. The pair pp, qq is not in τ because p and q

are strictly decreasing s-tuples. Since the box pq ´ 1, pq is a SE corner, Equation (3.1.2)

implies that

q ă x and p ď y, (4.3.1)

where x :“ wpp ´ 1q and y :“ w´1pqq.

When we use the step-by-step construction to produce the permutation w,

observe that the position p ´ 1 must be filled by some step and the entry q must be placed

in some step. So, there must be integers 1 ď m, l ď s ` 1 such that:

a) The entry x is placed in the position p ´ 1 during some Step pmq. This places a dot

at the box px, p ` 1q P Λppm, qmq;

b) The entry q is placed in the position y during some Step plq. This places a dot at

the box pq, yq P Λppl, qlq.

Although there exist such integers m and i, we are going to show that they

cannot be either equal, smaller or greater than each other. Hence, this contradicts the

assumption that ppi, qiq is not minimal in the poset.

If m “ l then, using Equation 4.3.1, p ´ 1 ă y are positions in Step pm “ lq

and the entry in such positions are wpp ´ 1q “ x ą q “ wpyq, i.e., there is a descent in it.

This contradicts the fact that there are no descents in a step.

If m ă l then, using Equation 4.3.1, we got that y ď p and q ď x ď qm

(the former relation comes from the fact that every entry placed by Step pmq is weakly

smaller than qm). This implies that the box pq, yq also belongs to the region Λppm, qmq, a

contradiction of item 2 of Proposition 4.6.

If m ą l then observe that Step plq must fill all positions from pl to y in the

step-by-step construction of the permutation w. Since y ą p ´ 1 ě pi ě pl (because i ă l),

we have that the position p ´ 1 is also filled by Step plq, which contradicts the fact that it

is filled during Step pmq.
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Recall that a corner position pp, qq of C pwq is unessential if there are corners

pp1, q1q, pp2, q2q and pp3, q3q in the NE path Nepwq such that pp, qq is not a minimal corner

in the poset in the upper half of the diagram, the box pq1 ´ 1, p1q lays above and in the

same column of the box pq ´ 1, pq, and the box pq2, p2 ´ 1q reflected from pq2 ´ 1, p2q lays

to the right and in the same row of pq ´ 1, pq, as we can see in figure Figure 21.

Proposition 4.8. Given w P Wn, suppose that the set of corner C pwq is the disjoint

union

C pwq “ Nepwq 9YUpwq.

Then w is a theta-vexillary.

Proof. Suppose that the set of corners C pwq of a permutation w is given by the disjoint

union of the NE path Nepwq and the set of unessential corners Upwq. Since all corner

positions ppi, qiq of Nepwq can be ordered so that p1 ě p2 ě ¨ ¨ ¨ ě pr ą 0 and q1 ě q2 ě

¨ ¨ ¨ ě qr, set ki as the rank rwppi, qiq and define the triple τ
1 “ pk, p, qq. We will prove

that τ is almost a theta-vexillary triple, i.e., it satisfies A1, A2, A3, C1, C2, and B1. In

order to get B2 and B3, occasionally some elements pki, pi, qiq should be removed from τ
1.

Conditions A1, A2 and A3 are true because w is a signed permutation in Wn.

In fact, A1 and A3 come direct from the fact that there is no SE corner at row ´1 or

above the middle in column ´1 since wp0q “ 0, and A2 is satisfied just because we cannot

have dots laying in opposite rows.

Now, a and Rpiq, for a ď i ď s, can be defined. Let us prove that τ satisfies

conditions C1 and C2. Consider the diagrams sketched in Figure 24.

For condition C1, let a ď i ď s and consider the regions A and B as in Figure

24. Denote by dpAq and dpBq the number of dots in each one of them. The definition of Rpiq

can be translated to the diagram as follows: Rpiq is the unique index smaller than a such

that there is no other corner of τ laying to the right of it and in the rows qRpiq ´ 1, . . . , qi.

Suppose that there is a dot in the darker region A of Figure 24. This dot must be placed

by some Step pjq, for j ą Rpiq, which implies that the corner position ppj, qjq is located

above the row qi and it also places a dot above qi. However, the construction of a step says

that we must fill all entries between them, including qi. So, we should have a dot at row

qi and another in the row qi, a contradiction of condition A2. Hence, dpAq “ 0. On the

other hand, dpBq ď ´qi because condition A2 says that we cannot have dots in opposite

rows. Thus, ´qi ě dpAq ` dpBq “ ki ´ kRpiq, since dpAq ` dpBq is the amount of dots to

be placed from Step pRpiq ` 1q to piq.

By Lemma 4.1, we may show that τ satisfies condition C21 instead of C2. In

the previous case, we proved that region A contains no dots. It means that no step from

pRpiq ` 1q to pa ´ 1q place dots in A, which is equivalent to say that all entries placed by

Steps pRpiq ` 1q to pa ´ 1q are strictly bigger than qi, proving C21.
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B

A

b

i

R(i)

qi

qi

qR(i) b

Conditions C1 and C2

Figure 24 – Configuration required to get conditions C1 and C2.

In order to show that τ satisfies conditions B1, B2, and B3, consider the

diagrams sketched in Figure 25.

For condition B1, let 1 ď i ă a ´ 1 and consider the rectangular regions A and

B as in Figure 25 (left). Denote by dpAq and dpBq the number of dots in each one of them.

Notice that the number of dots in each rectangle is limited by the length of their sides, and

dpAq`dpBq is the number of dots in Step piq. If pi “ pi`1 then dpBq “ 0 and dpAq ă qi´qi`1,

since we cannot place a dot in row qi´1. So, ppi´pi`1q`pqi´qi`1q ą dpBq`dpAq “ ki`1´ki.

If pi ą pi`1 then, we cannot have the dot in column pi ` 1 inside B because it would not

create a SE corner pqi ´ 1, piq. Hence, ppi ´ pi`1q ` pqi ´ qi`1q ą dpBq ` dpAq “ ki`1 ´ ki.

For conditions B2 and B3, let a ď i ď s and consider the rectangular regions A,

B and C of Figure 25 (right). Suppose that pi ą pi`1. Using the same argument of condition

C1, all dots between the rows qi and qi`1 are in rectangle C and the number of dots in

this region is dpCq “ kRpiq ´ kRpi`1q. As well as the previous case, dpBq ă pi ´ pi`1 and the

number of dots in region A is dpAq ď pqi´qi`1q´dpCq, since we cannot have dots in opposite

rows. Therefore, ppi´pi`1q`pqi´qi`1q ą dpBq`dpAq`dpCq “ pki`1´kiq`pkRpiq ´kRpi`1qq.

The difficulty appears when pi “ pi`1. In this case, dpBq “ 0 and dpAq ď

pqi ´ qi`1q ´ dpCq. Then, ppi ´ pi`1q ` pqi ´ qi`1q ě dpBq ` dpAq ` dpCq “ pki`1 ´ kiq `

pkRpiq ´ kRpi`1qq, which means that the equality can happen. So, we need to remove these

elements from τ
1 where the equality holds. Denote the set of index I “ Iτ

1 Ă r1, ss by

I “ ti ě a | ppi ´ pi`1q ` pqi ´ qi`1q “ pki`1 ´ kiq ` pkRpiq ´ kRpi`1qqu
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i+ 1
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pi pi+1
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i

qi+1

qi

pi pi+1

A

C
b

b

b

b

R(i)

R(i+1)
qi+1

qi

Condition B1 Conditions B2 and B3

A

Figure 25 – Configuration required to get conditions B1, B2, and B3.

Define τ the triple

τ :“ tpki, pi, qiq P τ
1 | i R Iu

Clearly, τ satisfies A1, A2, A3, C1, C2, and B1. Suppose that a ď i ă j are

integers such that i, j R I and i ` 1, i ` 2, . . . , j ´ 1 P I, i.e., i and j are consecutive indexes

in τ . Then they satisfy

ppi ´ pi`1q ` pqi ´ qi`1q ą pki`1 ´ kiq ` pkRpiq ´ kRpi`1qq,

ppi`1 ´ pi`2q ` pqi`1 ´ qi`2q “ pki`2 ´ ki`1q ` pkRpi`1q ´ kRpi`2qq,

ppi`2 ´ pi`3q ` pqi`2 ´ qi`3q “ pki`3 ´ ki`2q ` pkRpi`2q ´ kRpi`3qq,

...

ppj´1 ´ pjq ` pqj´1 ´ qjq “ pkj ´ kj´1q ` pkRpj´1q ´ kRpjqq.

Therefore,

ppi ´ pjq ` pqi ´ qjq ą pkj ´ kiq ` pkRpiq ´ kRpjqq,

and τ also satisfies B2 and B3.

Finally, observe that the extended diagram of wpτ q is exactly the extended

diagram of w, which means that wpτ q “ w.
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Now, we aim to proof the converse of this proposition.

Let w be a theta-vexillary permutation and τ a theta-triple. Denote by ιpτ q Ă

C pιpwqq the set of all corner positions of τ and their reflections, i.e.,

ιpτ q “
sď

i“1

tpki, pi, qiq Y pki, pi, qiq
Ku.

Remember that Propositions 4.3 and 4.5 state that all descents of w and w´1

are exclusively determined by elements in τ . More over, this assertion can be extended

to the diagram Dpιpwqqq of ιpwq: all descents of ιpwq are at position pi ´ 1 and pi, and

all descents of ιpwq´1 are at position qi ´ 1 and qi, where i ranges from 1 to s. Thus, if

there is other SE corner, it should not create descents, but it must match existing descents.

For instance, considering τ of Example 1 and its diagram in Figure 20, observe that the

corner position p2, 3q R ιpτ q but it is in the same row of p4, 3q P ιpτ q and same column of

p2, 6q P ιpτ q.

We conclude that if there exists a corner position T R ιpτ q then there are corner

positions T 1, T 2 P ιpτ q such that T 1 is in the same column of T , and T 2 is in the same row

of T .

Now, consider the following situation: suppose that T 1 “ ppi, qiq and T 2 “

ppj, qjq, for some i ă j such that qi ą qj ą 0. Is there possible, for instance, that the

descent of ιpwq at position ppi ´ 1q and the decent of ιpwq´1 at position qj create a corner

T “ ppi, qjq, at the box pqj ´ 1, piq? The answer depends on the arrangement of the dots

in the diagram, as shown in Figure 26.

T ′

b

T ′′

b

T ′

b

T ′′

b

T

Figure 26 – Example of combination of two descents. On the left, we can observe that the
dots are placed in a such way that there is a corner T . On the other hand, the
figure to the right does not have a corner T because the dots are not arranged
properly to create it.

This question allow us to figure out where we can find all the corner of w by

combination of descents of corner T 1 and T 2 in ιpτ q.

Next lemma states a first situation where a SE corner cannot occur.

Lemma 4.9. Let w “ wpτ q be a theta-vexillary signed permutation, and τ “ pk, p, qq be

a theta-triple. Then for any 1 ď i ď s such that pi ą pi`1, there is no corner position pp, qq
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different of ppi, qiq satisfying p ą pi`1 and qi ě q. In other words, ppi, qiq is the unique SE

corner in the region highlighted in Figure 27.

i+ 1

i

Figure 27 – Region in the extended diagram where we cannot have a SE corner.

Proof. Suppose that there is pp, qq for some i such that p ą pi`1. If pi ą p ą pi`1 then the

position p ´ 1 is a descent of w, which is impossible since all descents of w are at positions

pi ´ 1 and no one matches to p ´ 1.

If pi “ p and q ą qi then the box pq ´ 1, piq is a SE corner, and the dots in row

q and column pi ` 1 are placed as in Figure 28. The dot placed in row q lies inside the

region Λppi`1, qi`1q, and outside Λppi, qiq, implying that such dot is placed during Step

pi ` 1q.

b

b

b

i

i+ 1

Figure 28 – Sketch for proof of Lemma 4.9.

Notice that the dot at column pi ` 1 cannot be placed during Step pi ` 1q

because it would create a descent in Step pi ` 1q. Then, there is j ą i ` 1 such that

Step pjq placed such dot. In this case, Step pi ` 1q should skip column pi ` 1, which is

impossible (by construction, this step places dots in all available columns between w´1pq

and pi`1).

The NE path also can contain another kind of SE corner defined as follows:

given theta-vexillary signed permutation w and theta-triple τ , a corner position pp, qq R τ

is called optional if there are a ď i ď s and 1 ď j ă a such that p “ pi, qi ă q “ qj ` 1

and qi´1 ě q ą qi. In other words, pp, qq belongs to the NE path just between the corners

ppi´1, qi´1q and ppi, qiq, and the box pqi ´ 1, piq lays above and in the same column of

pq ´ 1, pq, as shown in Figure 29. Denote by Opτ pwq the set of all optional corners and

observe that Opτ pwq Ă Nepwq.

Observe that such box only occurs if the number of available rows between qi

and q is smaller than the number of dots to be placed by Step piq, which is ki ´ ki´1. In
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i

j⊥

(q − 1, p)

b

j

i− 1

Figure 29 – Configuration of an optional corner pp, qq.

other words, we need to have enough dots to place during Step piq such that some of them

are placed below the corner pp, qq. This implies that the equation

q ´ qi “ ki ´ k ` kj ´ kRpiq (4.3.2)

is satisfied. Thus, a triple τ
1 obtained by adding pk, p, qq to τ also gives the same permu-

tation but it is not a theta-triple anymore.

Lemma 4.10. Let w be a theta-vexillary and τ be a theta-triple. Then, the set of corners

is the disjoint union

C pwq “ τ 9Y Opτ pwq 9Y Upwq.

Proof. Consider the diagram Dpιpwqq divided in quadrants as in Figure 30. As we can see,

a box pa, bq P Dpιpwqq belongs to

• Quadrant A if a ě 0 and b ă 0;

• Quadrant B if a ă 0 and b ă 0;

• Quadrant C if a ă 0 and b ě 0;

• Quadrant D if a ě 0 and b ě 0.

B

n · · · 1
n

1 · · ·n

1

...

1

n

... A

C

D

0

0 b

Figure 30 – Quadrants of the diagram.

Then, given pp, qq P ιpτ q, we say that the SE corner pq ´ 1, pq belongs to:
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• Quadrant A if pp, qq “ ppi, qiq for some i ă a;

• Quadrant B if pp, qq “ ppi, qiq for some i ě a;

• Quadrant C if pp, qq “ ppi, qiq
K for some i ă a;

• Quadrant D if pp, qq “ ppi, qiq
K for some i ě a.

Considering T 1 “ pp1, q1q and T 2 “ pp2, q2q in ιpτ q such that p1 ą p2 and q1 ‰ q2

(T 1 and T 2 are in different rows and columns), we say that T 1 and T 2 has a cross descent

box pa, bq of type

• α if q1 ą q2 and pa, bq “ pq2 ´ 1, p1q;

• β if q1 ą q2 and pa, bq “ pq1 ´ 1, p2q;

• γ if q1 ă q2 and pa, bq “ pq2 ´ 1, p1q;

• δ if q1 ă q2 and pa, bq “ pq1 ´ 1, p2q.

Figure 31 shows how the cross descents boxes are arranged in the diagram for

given T 1 and T 2.

Type α Type β Type γ Type δ

T
′

T
′′

T
′

T
′′

T
′

T
′′

T
′

T
′′

Figure 31 – Possible cross descents boxes.

Suppose that T 1 “ pp1, q1q and T 2 “ pp2, q2q are two corners of ιpτq. Consider

that T 1 lays in some quadrant X, T 2 lays in some quadrant Y, and cross descent box pa, bq

has type ξ, where X, Y P tA, B, C, Du and ξ P tα, β, γ, δu. We say that this configuration

has shape XξY. Also denote by cξpT 1, T 2q “ pa, bq the respective cross descent box. For

instance, Figure 31 shows a shape AαA.

First of all, we need to figure out all possible shapes and, then, verify if such

shapes can create a SE corner from the cross descent box.

There are 64 different combination of shapes XξY, where X, Y P tA, B, C, Du

and ξ P tα, β, γ, δu. However, not every shape is possible because τ is a theta-triple and

T 1, T 2 are chosen in ιpτ q. An example of impossible shape is AδA since, by definition,

there is no i ă j where T 1 “ ppi, qiq and T 2 “ ppj, qjq such that qi ă qj. Thus, it remains

only 24 possible shapes. We listed them in Table 1, divided in two categories: the shapes
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Table 1 – Possible shapes

Shapes XξY where cξpT 1, T 2q Shapes XξY where cξpT 1, T 2q
belongs to A or B: belongs to C or D:
AαA, AαB, AαC, CβC, DβC, AβC,
AαD, BαB, BαC, BβC, DβD, AβD,
AβA, AβB, BβB, CαC, DαC, DαD,
AγD, BγC, BγD. BδC, AδD, BδD.

XξY where the cross descent box cξpT 1, T 2q belongs to the quadrants A or B, and the

shapes XξY where cξpT 1, T 2q belongs to the quadrants C of D.

However, observe that if cξpT 1, T 2q belongs to quadrants C or D then its

reflection cξpT 1, T 2qK belongs to quadrant A or B and corresponds to the cross descent

box of corners pT 2qK “ pp2 ` 1, q2 ` 1q and pT 1qK “ pp1 ` 1, q1 ` 1q. In other words, each

shape in the left column of Table 1 is equivalent to another one to the right column. Hence,

let us consider only the 12 shapes where cξpT 1, T 2q belongs to quadrants A or B.

It follows from Lemma 4.7 that τ X Upwq “ ∅ because no unessential corner is

minimal in the poset. By definition of optional corner, we also have that τ X Opτ pwq “ ∅

and Opτ pwq X Upwq “ ∅. Then, all the sets are disjoint.

Suppose that T 1 “ pp1, q1q and T 2 “ pp2, q2q of ιpτq has some shape XξY, where

X, Y P tA, B, C, Du and ξ P tα, β, γ, δu, such that the cross descent box cξpT 1, T 2q is a SE

corner in quadrant A or B which does not belongs to τ . Then, analyzing each situation in

the first column of Table 1, we must show that either cξpT 1, T 2q P Opτ pwq 9Y Upwq or it

leads us to a contradiction.

Consider ξ “ α, where p1 ą p2, q1 ą q2, and T “ pp1, q2q is a SE corner

pq2 ´ 1, p1q not in τ and satisfying the following conditions

ιpwqpp1 ´ 1q ą q2 ě ιpwqpp1q

ιpwq´1pq2q ą p1 ´ 1 ě ιpwq´1pq2 ` 1q.
(4.3.3)

• If XξY is a shape AαA, AαB or BαB, then T 1 “ ppi, qiq, T 2 “ ppj, qjq, where

1 ď i ă j ď s, and T “ ppi, qjq is a SE corner pqj ´ 1, piq. But Lemma 4.9 says that

T cannot be a corner.

• If XξY is a shape AαC or BαC, then T 1 “ ppi, qiq, for some i, T 2 “ ppj, qjqK “

ppj ` 1, qj ` 1q, for some j ă a, and qi ą qj ` 1. We can assume that i is chosen such

that there is no l ą i satisfying pi “ pl and qi ą ql ą qj ` 1, i.e., there is no corner

of τ in the same column and between the SE corners T 1 and T . If pi ą pi`1 then

Lemma 4.9 is contradicted. Thus, we have that pi “ pi`1 and qi ą qj ` 1 ą qi`1,

implying that T is an optional SE corner.
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• If XξY is a shape AαD, then T 1 “ ppi, qiq, for some i ă a, T 2 “ ppj, qjqK “

ppj ` 1, qj ` 1q, for some a ď j ď s, and qi ą qj ` 1. As in the previous case,

we can assume that i is chosen such that there is no l ą i satisfying pi “ pl and

qi ą ql ą qj ` 1, i.e., there is no corner of τ in the same column and between the

SE corners T 1 and T . If pi ą pi`1, then the corner T contradict Lemma 4.9. Thus,

pi “ pi`1, qi ą qj ` 1 ą qi`1 and i “ Rpjq. Notice that the dot in the row qj ` 1 is

between rows qi and qj since T is a corner, which is impossible as shown in proof of

Proposition 4.8 (see Figure 32).

j⊥

i = R(j)

brow (qj + 1) →

row qi →

i+ 1

Figure 32 – Sketch for the shape AαD.

Consider ξ “ β, where p1 ą p2, q1 ą q2, and T “ pp2, q1q is a SE corner

pq1 ´ 1, p2q is a SE corner not in τ and satisfying the following conditions

ιpwqpp2 ´ 1q ą q1 ě ιpwqpp2q

ιpwq´1pq1q ą p2 ´ 1 ě ιpwq´1pq1 ` 1q.
(4.3.4)

• If XξY is a shape AβA or AβB, then T 1 “ ppi, qiq and T 2 “ ppj, qjq, for some i ă a

and i ă j. Observe that the dots at column pj and row qj are placed by Step pjq (or

some previous one). Then, by construction, the dot at row qi ´ 1 must be placed by

some Step plq for l ď j. Thus, ιpwq´1pqi ´ 1q ě pj, contradicting Equation (4.3.4).

• If XξY is a shape BβB, then T 1 “ ppi, qiq and T 2 “ ppj, qjq, for some a ď i ă j ď s.

If ιpwq´1pqi ´ 1q ă 0, i.e., the dot in the row qi ´ 1 is in quadrant B then we can

proceed as the previous case. If ιpwq´1pqi ´ 1q ą 0 then belongs to the quadrant C is

a reflection of a dot placed during some Step plq for l ă a. Since ιpwqpqiq ă pj `1 ď 0,

then ql “ qi ` 1 and the corner ppl, qlq lays in row qi ` 1. Therefore, the reflection

ppl, qlq
K is in the row qi ´ 1, and the corner T is optional or unessential (see Figure

33).

Consider ξ “ γ, where p1 ą p2, q1 ă q2, and T “ pp1, q2q is a SE corner

pq2 ´ 1, p1q is a SE corner not in τ and satisfying the following conditions

ιpwqpp1 ´ 1q ą q2 ě ιpwqpp1q

ιpwq´1pq2q ą p1 ´ 1 ě ιpwq´1pq2 ` 1q.
(4.3.5)
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b

b
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b

i

j

l

l⊥

Figure 33 – Sketch for the shape BβB.

• If XξY is a shape AγD or BγD, then T 1 “ ppi, qiq, for any i, T 2 “ ppj, qjqK “ ppj `

1, qj ` 1q, for some a ď j ď s, and qi ă qj ` 1. By Equation (4.3.5), qj ´ 1 ě ιpwqppiq

and ιpwq´1pqj ´ 1q ą pi ´ 1 ě 0 ą ιpwq´1pqjq, implying that no Step plq, for l ă a,

can place the dot at row qj. Hence, qRpjq “ qj ` 1 and T is exactly the corner

ppRpjq, qRpjqq of τ (see Figure 34).

j⊥

i

b

b

Row qj → b

Figure 34 – Sketch for the shape AγD or BγD.

• If XξY is a shape BγC, then we clearly have that T is an unessential or optional

corner.

Proposition 4.11. For w P Wn, w is theta-vexillary if and only if the set of corner C pwq

is the disjoint union

C pwq “ Nepwq 9YUpwq.

Proof. Suppose that wpτ q is theta-vexillary. From Lemma 4.7, τ Y Opτ pwq Ă Nepwq. On

the other hand, Lemma 4.10 implies that Nepwq Ă τ Y Opτ pwq since Nepwq X Upwq “

∅.

Remark 4.12. If w is a theta-vexillary signed permutation but we don’t know a theta-triple

such that w “ wpτ q, we can use the process in the proof of Proposition 4.8 to get τ .
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Basically, set τ with all the corners in the NE path Nepwq. Then, withdraw all the optional

corners from it, which results in a valid theta-triple τ of w.

Proposition 4.13. The theta-triple is unique for each theta-vexillary signed permutation.

Proof. Suppose that τ and τ̃ are two different theta-triples such that w “ wpτ q “ wpτ̃ q.

Then, τ 9YOpτ pwq “ Nepwq “ τ̃ 9YOpτ̃ . If there is a corner position pp, q1q P Opτ X τ̃ then

there is q2 ą q1 such that pp, q2q P τ is a corner position immediately above it. Notice

that pp, q2q does not belong to τ̃ , otherwise condition B2 of τ̃ for both corners would

contradict Equation (4.3.2) for the optional corner pp, q1q. Then, pp, q2q P Opτ̃ X τ . For

the same reason, there is q3 ą q2 such that pp, q3q P Opτ X τ̃ , and keep going. Hence, this

process should be repeated forever, which is impossible since the sets are finite. Therefore,

Opτ X τ̃ “ H, and by the same reason Opτ̃ X τ “ H, which implies that τ “ τ̃ .

4.4 Pattern avoidance

Recall that given a signed pattern π “ πp1q πp2q ¨ ¨ ¨ πpmq in Wm, a signed

permutation w contains π if there is a subsequence wpi1q ¨ ¨ ¨ wpimq such that the signs of

wpijq and πpjq are the same for all j, and also the absolute values of the subsequence are

in the same relative order as the absolute values of π. Otherwise w avoids π.

Proposition 4.14. A signed permutation w is theta-vexillary if and only if w avoids the

follow thirteen signed patterns r1 3 2s, r2 3 1s, r3 2 1s, r3 2 1s, r2 1 4 3s, r2 3 4 1s, r2 3 4 1s,

r3 4 1 2s, r3 4 1 2s, r3 4 1 2s, r3 4 1 2s, r4 1 2 3s, and r4 1 2 3s.

Proof. We know, by Proposition 4.8, how to describe a theta-vexillary permutation by the

SE corners of the extended diagram.

b

b

b

abc

w(a)

w(c)

w(b)

T

T ′
b

abc

w(a)

w(c)

w(b) b

b

T ′

T

Figure 35 – Suppose that w contains r1 3 2s. We can restrict the diagram of w to the
pattern r1 3 2s.
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b

[3 2 1]

b

b

b

[3 2 1]

b

b

b

[2 3 1]

b

b

b

[1 3 2]

b

b

b

[4 1 2 3]

b

b

b

b

[4 1 2 3]

b

b

b

b

[3 4 1 2]

b

b

b

b

[3 4 1 2]

b

b

b

b

[2 3 4 1]

b

b

b

b

[2 3 4 1]

b

b

b

b

[3 4 1 2]

b

b

b

b

[3 4 1 2]

b

b

b

Figure 36 – Diagram of w restricted to 12 different patterns.

Suppose that w is a theta-vexillary signed permutation. To prove that it avoids

all these 13 patterns, we will assume if one of these patterns is contained in w, then show

that there is a SE corner T such that T R Nepwq Y Upwq.

Assume that w contains r1 3 2s as a subsequence pwpaq wpbq wpcqq satisfying

wpaq ă wpcq ă wpbq for some a ă b ă c. Figure 35 shows the diagram of w and its

restriction to the columns a, b, c and rows 0, ˘wpaq, ˘wpbq, ˘wpcq. Notice that the box T

(resp. T 1) is not necessarily a SE corner in the diagram of w, but certainly there is a SE

corner in the shaded area. So, we can assume that T and T 1 are SE corner when restricting
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it. Clearly, T is neither an unessential corner nor minimal under the poset.

We can use the same idea to prove that other 11 patterns should be avoided,

as shown in Figure 36. Only the pattern r2 1 4 3s requires more arguments to show that it

also is avoided.

Assume that w contains r2 1 4 3s as a subsequence pwpaq wpbq wpcq wpdqq

satisfying wpbq ă wpaq ă wpdq ă wpcq for some a ă b ă c ă d (see Figure 37). Suppose

that T and T 1 are SE corner in the respective shaded area. Clearly T R Nepwq, but it

could be an unessential corner. If τ is a theta-triple of w then notice that there are i and j

such that Step piq and pjq place a dot in the column b and a, respectively. It follows from

the step-by-step construction that a ă i ă j, however it also lead us to a contradiction

because we cannot place a dot in the row wpbq during Step piq and skip the row wpaq since

it will be place further.

b

abc

w(a)

w(c)

w(b)

b

b

T ′

b

w(d)

d

T

i

j

Figure 37 – Suppose that w contains r2 1 4 3s.

Now, let us assume that w is permutation that avoids all the thirteen patterns

listed above. We are going to prove that C pwq “ Nepwq Y Upwq, and hence, w is a

theta-vexillary permutation.

Suppose that there are corners T “ pp, qq and T 1 “ pp1, q1q such that q ą 0 ą q1

and p1 ą p ą 0, i.e., T is in quadrant A, T 1 is in quadrant B, and T 1 ă T . If we

denote a :“ p, b :“ p1 ´ 1 and c :“ w´1pq1q, then they satisfy 0 ă a ă b ă c and

wpaq ă 0 ă wpcq ă wpbq. Observe that a, b, c are the columns of the dots in Figure 38.

In order to relate the subsequence pwpaq wpbq wpcqq of w to some 3-pattern π,

we need describe all possible orderings of wpaq, wpbq and wpcq.

• If wpaq ă wpcq ă wpbq then π “ r1 3 2s;
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b

b

b

a

b

c

T

T ′

Figure 38 – Sketch for the case where T is in quadrant A, T 1 is in quadrant B, and T 1 ă T .

• If wpcq ă wpaq ă wpbq then π “ r2 3 1s;

• If wpcq ă wpbq ă wpaq then π “ r3 2 1s.

By hypothesis, the pattern in each case should be avoid. Hence the configuration

in Figure 38 is impossible.

Now, suppose that there are corners T “ pp, qq and T 1 “ pp1, q1q such that

q ą q1 ą 0 and p1 ą p ą 0, i.e., both T and T 1 are in quadrant A and T 1 ă T . Denote

i :“ w´1pq ` 1q, a “ p, b “ p1 ´ 1 and c “ w´1pq1q.

If i ą 0, then they satisfy 0 ă i ă a ă b ă c and wpaq ă wpiq ă wpcq ă wpbq.

Observe that ı, a, b, c are the columns of the dots in Figure 39 (left).

b

b

a

b

c

T

T ′

i

bc

bc

b

b

a

b

c

T

T ′

ı

bc

bc w(ı)

w(i)

Figure 39 – Sketch for the case where both T and T 1 are in quadrant A, and T 1 ă T .

In order to relate the subsequence pwpiq wpaq wpbq wpcqq of w to some 4-pattern

π, we need to describe all possible orderings of wpiq, wpaq, wpcq and ˘wpbq.

• If wpbq ă wpcq ă wpiq ă wpaq then π “ r3 4 1 2s;

• If wpbq ă wpcq ă wpiq ă wpaq then π “ r3 4 1 2s;

• If wpcq ă wpbq ă wpiq ă wpaq then π “ r3 4 2 1s;
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• If wpcq ă wpiq ă wpbq ă wpaq then π “ r2 4 3 1s;

• If wpcq ă wpiq ă wpaq ă wpbq then π “ r2 3 4 1s.

By hypothesis, the pattern in each case should be avoided (in some cases, the

highlighted parts are avoid by r3 2 1s). Hence this configuration is impossible.

If i ă 0 then we have four possibilities to place ı ą 0 in the sequence 0 ă

a ă b ă c. Observe that i, a, b, c are the columns of the dots in Figure 39 (right). Table

2 combines all this possibilities along with all possible orderings of wpıq, wpaq, wpcq and

˘wpbq, in order to get the respective 4-pattern π relative to the correspondent subsequence

of w.

Table 2 – Combinations to get the respective 4-pattern of the subsequence of w.

ıăaăbăc aă ıăbăc aăbă ıăc aăbăcă ı

wpbqăwpcqăwpıqăwpaq r3 4 1 2s r4 3 1 2s r4 1 3 2s r4 1 2 3s

wpbqăwpcqăwpıqăwpaq r3 4 1 2s r4 3 1 2s r4 1 3 2s r4 1 2 3s

wpcqăwpbqăwpıqăwpaq r3 4 2 1s r4 3 2 1s r4 2 3 1s r4 2 1 3s

wpcqăwpıqăwpbqăwpaq r2 4 3 1s r4 2 3 1s r4 3 2 1s r4 3 1 2s

wpcqăwpıqăwpaqăwpbq r2 3 4 1s r3 2 4 1s r3 4 2 1s r3 4 1 2s

By hypothesis, the pattern in each case should be avoid and, hence, this case

is impossible.

Finally, suppose that there are corners T “ pp, qq and T 1 “ pp1, q1q such that

0 ą q ą q1 and p1 ą p ą 0, i.e., both T and T 1 are in quadrant B, and T 1 ă T . If we

denote i “ w´1pq ` 1q, a “ p ´ 1, b “ p, c “ p1 ´ 1 and d “ w´1pq1q, then they satisfy

i ă a ă b ă c ă d, wpbq ă wpaq and wpbq ă wpiq ă wpdq ă wpcq. Observe that ı, a, b, c are

the columns of the dots in Figure 40 (left).

Consider the following situations:

• If wpbq ă 0 then the subsequence pwpbq wpcq wpdqq of w is a 3-pattern π equal to

r1 3 2s, r2 3 1s or r3 2 1s, which is impossible;

• If 0 ă wpbq ă wpaq ă wpdq ă wpcq then the subsequence pwpaq wpbq wpcq wpdqq is a

4-pattern π “ r2 1 4 3s and also should be avoided;

• If i ą 0 and wpbq ą 0 then the subsequence pwpiq wpbq wpcq wpdqq is a 4-pattern

π “ r2 1 4 3s and also should be avoided;

• If 0 ą i ą c and wpbq ą 0 then the subsequence pwpıq wpcq wpdqq of w is a 3-pattern

π equal to r1 3 2s, r2 3 1s or r3 2 1s, which is impossible;
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b

c

T

T ′

b

b

d

b
i

b

b

a
c

T

T ′

b

b

d

b

ı

S′

S

q

q

w(ı)

w(i)

Figure 40 – Sketch for the case where both T and T 1 are in quadrant B, and T 1 ă T .

• If i ă c and 0 ă wpbq ă wpdq ă wpaq then clearly there are SE corners S and S 1 as

in Figure 40 (right). Therefore, such construction implies that T is an unessential

box.

Therefore, Propositions 4.8, 4.11, and 4.14 prove the main theorem.

Theorem 4.15. Let w be a signed permutation. The following are equivalent:

1. w is theta-vexillary, i.e., there is a triple τ such that w “ wpτ q;

2. the set of corner C pwq is the disjoint union

C pwq “ Nepwq 9YUpwq,

3. w avoids the follow thirteen signed patterns r1 3 2s, r2 3 1s, r3 2 1s, r3 2 1s, r2 1 4 3s,

r2 3 4 1s, r2 3 4 1s, r3 4 1 2s, r3 4 1 2s, r3 4 1 2s, r3 4 1 2s, r4 1 2 3s, and r4 1 2 3s.

4.5 Particular case: Grassmannian permutations

Recall that all Schubert varieties of a odd orthogonal Grassmannian OGpn ´

k, 2n ` 1q are parametrized by elements in set W
pkq of minimal representatives of the coset

of Wpkq in the Weyl group Wn. This permutations can be denoted, by Equation (1.1.1), as

follows

w “ wu,λ “ puk, . . . , u1, λ1, . . . , λr, vn´k´r, . . . , v1q

where r ď n ´ k, λ “ pλ1 ą λ2 ą ¨ ¨ ¨ ą λr ą 0q, u “ pu1 ą u2 ą ¨ ¨ ¨ ą uk ą 0q, and

v “ pv1 ą v2ą ¨ ¨ ¨ ą vn´k´r ą 0q.

Observe that each w P W
pkq avoids all the thirteen signed patterns in Theorem

4.15 by construction of w. Hence, every w in W
pkq is a theta-vexillary signed permutation.
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The unique descent of w P W
pkq is in position k since wpkq “ u1 ą λ1 “ wpk`1q,

and wpiq ă wpi ` 1q for i ‰ k. If τ “ pk, p, qq is the theta-triple of w then, by Proposition

4.3, all decents of w are in position pi ´ 1, so we conclude that p1 “ p2 “ ¨ ¨ ¨ “ ps “ k ` 1.

Moreover, all the SE corners C pwq of the extended diagram of w lie in the column k ` 1.

For instance, consider the permutation w “ p2, 5, 6, 8, 7, 4, 1, 3q given by the

double partition of Figure 2. The extended diagram of this permutation is given in Figure

41.

1
2
3

1
2
3

0

6 5 48 7

6
5
4

8
7

8

6
5
4

7

123

b

b

b

b

b

b

b

b

2

3

4

5

Figure 41 – Extended diagram of corners of a Grassmannian permutation.

As expected, all SE corners lies in column 4 (remember that, by definition,

the white boxes in the top half of column 1 are not considered SE corners). Furthermore,

there is neither unessential nor optional corners. Hence, we can obtain the theta-triple of

w as in the proof of Proposition 4.8, where τ is given by the corners in the NE path, i.e.,

τ “ p2 3 4 5, 4 4 4 4, 7 4 1 3q.
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APPENDIX A

Degeneraci loci and Chern class

formulas

In this appendix, we give the geometric construction that explains the vexillary

permutations (signed or not) and the theta-vexillary signed permutations. We recommend

the reading of this appendix after a complete understanding of definition of each type of

permutation.

This chapter is a compilation of Anderson and Fulton [1, 2, 3, 4], Fulton [20],

and Manivel [32].

A.1 Degeneraci loci of type A

Let X be an arbitrary nonsingular complex variety (or scheme). Consider

h : E Ñ rF a map of vector bundles over the variety X, and

E1 ãÑ E2 ãÑ ¨ ¨ ¨ ãÑ En “ E
h
ÝÑ rF “ rFn ։

rFn´1 ։ ¨ ¨ ¨ ։ rF1,

are flags of subbundles, where each Ei and rFi are vector bundles over X of rank i. Notice

that for any 1 ď p, q ď n, there is an induced map Ep Ñ rFq. The degeneracy locus

corresponding to a permutation w P Sn is a subvariety Ωw Ď X defined by

Ωw “ tx P X | rankpEppxq Ñ rFqpxqq ď p ´ rA
wpq, pq, for every 1 ď p, q ď nu. (A.1.1)

Notice that the degeneracy loci depend on h, E‚, and rF‚. If we consider

r̃wpp, qq “ p ´ rA
wpq, pq as given in Remark 3.1, the conditions are written as rankpEppxq Ñ

Fqpxqq ď r̃wpq, pq.

If the map h : E Ñ rF is sufficiently generic, the degeneracy locus Ωv is a

subvariety of X of codimension ℓpvq. In other word, the sufficiently generic condition

means that Ωv is a subvariety of X of codimension ℓpvq for “almost all” maps h : E Ñ rF .
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Now, we are going to consider a particular construction. Let V be a vector

bundle on X of rank n, and two flags of vector bundles over X,

E1 Ă E2 Ă ¨ ¨ ¨ Ă En Ă V,

Fn Ă Fn´1 Ă ¨ ¨ ¨ Ă F1 Ă V

where Ei has rank i and Fi has rank n ´ i. In this case, set rFi :“ V {Fi with rank i, and

observe that

E1 Ă E2 Ă ¨ ¨ ¨ Ă En Ă V ։
rFn ։

rFn´1 ։ ¨ ¨ ¨ ։ rF1.

Let us rewrite the conditions for the degeneracy locus Ωw. If fp,q,x : Eppxq Ñ
rFqpxq “ V {Fqpxq is the induced map, then it follows, by the rank-nullity theorem, that

rankpfp,q,xq “ dim Eppxq ´ dim Kerpfp,q,xq “ p ´ dimpEppxq X Fqpxqq.

Hence, the degeneracy locus of w is

Ωw “ tx P X | dimpEppxq X Fqpxqq ě rA
wpq, pq, for every 1 ď p, q ď nu. (A.1.2)

For our purposes, it is enough to consider the degeneracy locus for this particular situation.

The Schubert varieties are the special cases for X being a complex flag manifold

FΘ “ Slpn,Cq{PΘ. Let V “ C
n be the complex vector of dimension n. It is known that a

flag manifold FΘ is homeomorphic to the set FℓpV q “ Fℓi1,i2,¨¨¨ ,ir
pV q of all flags

L‚ “ pLi1
Ă Li2

Ă ¨ ¨ ¨ Lir
Ă V q

where dim Lij
“ ij for any j. In order to simplify our notation, suppose that FℓpV q is the

complete flag manifold where any element of the flag manifold is L‚ “ pL1 Ă L2 Ă ¨ ¨ ¨ Ă

Ln “ V q.

Fix a complete flag V‚ of vector spaces in V . For each w in Sn, we are going to

construct the degeneracy locus Ωw in the variety X “ FℓpV q associated to some choice of

vector bundles E1 Ă ¨ ¨ ¨ Ă En and Fn Ă ¨ ¨ ¨ Ă F1.

Let us define E1, . . . , En as follows: the vector bundle Ei on the flag manifold

FℓpV q consists of the vector bundle whose total space is

Ti “ tpL‚, vq P FℓpV q ˆ V | v P Liu

so that it projects the pair pL‚, uq on L‚. Notice that the fiber on L‚ is EipL‚q “ Li. This

also can be constructed using the tautological bundles over CPpV q. Define Fi as the trivial

bundle of Vn´i on FℓpV q, where, for every L‚, the fiber is FipL‚q “ Vn´i. Clearly, we have

that Fn Ă ¨ ¨ ¨ Ă F1 Ă V and rankp rFiq “ rankpV {Fiq “ i. Hence, the degeneracy locus for

a permutation w in Sn is as in Equation (A.1.2) becomes

ΩwpV‚q “ tL‚ P FℓpV q | dimpLp X Vn´qq ě rA
wpq, pq, for every 1 ď p, q ď nu.
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Recall from Chapter 1 that we defined a Schubert variety by Sw “ clpN ¨ wbΘq,

and it has dimension ℓpwq. Instead of defining the Schubert variety as a subset of the

homogeneous space G{PΘ, it can be written as a subset of FℓpV q as follows

Sw “ SwpV‚q “ tL‚ P FℓpV q | dimpLp X Vqq ě p ´ rA
wpq, pq, for every 1 ď p, q ď nu.

Observe that the choice of V‚ is associated to the point bΘ “ 1 ¨ PΘ in the flag

FΘ. Clearly, SwpV‚q and ΩwpV‚q are not equal since they have, respectively, dimension and

codimension ℓpwq. However, we can find a relation between them.

Let w˝ P Sn be the involution, i.e., w˝piq “ n ´ i ` 1. For all p, q, the condition

dimpLp X Vn´qq ě rA
wpq, pq is equivalent to

dimpLp X Vqq ě rA
wpn ´ q, pq

“ #ti ď p | wpiq ą n ´ qu

“ #ti ď p | w˝wpiq ď qu

“ p ´ #ti ď p | w˝wpiq ą qu

“ p ´ rA
w˝¨wpq, pq.

Therefore, we have that

Ωw “ Sw˝¨w.

A.1.1 Chern class formula of vexillary permutations

Observe that the definition of the degeneracy locus Ωw on a variety X takes

into account every pq, pq in the diagram Dpwq, i.e., there are n2 conditions to satisfy. But,

there exists a subset of these n2 conditions which defines the same locus more efficiently,

given by the essential set of w, as if follows:

Proposition A.1 ([20] Proposition 4.2). The degeneracy locus Ωw is also defined by

Ωw “ tx P X | dimpEppxq X Fqpxqq ě rA
wpq, pq, for every pq, pq P Esspwqu.

This proposition tell us that we require only the essential set of a permutation

to determine its degeneracy locus. Thus, if w is a vexillary permutation then we can

use Theorem 3.2 and define the degeneracy locus of w by its associated triple of type A

τ “ pk, p, qq. Given two flags vector bundles

Ep1
Ă Ep2

Ă ¨ ¨ ¨ Ă Eps
Ă V,

Fq1
Ă Fq2

Ă ¨ ¨ ¨ Ă Fqs
Ă V,
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the degeneracy locus of the vexillary permutation τ is

Ωτ “ Ωw “ tx P X | dimpEpi
pxq X Fqi

pxqq ě ki, for every 1 ď i ď su.

Now, consider the integral cohomology ring H‚pXq “ H‚pX,Zq. The cohomol-

ogy class rΩws belongs to the cohomology ring H2ℓpwqpXq. In fact, since X is a nonsingular

complex variety of dimension m, it is an oriented real 2m-manifold, and the group H2mpXq

has a canonical generator rXs; then, the Poincaré duality map H ipXq Ñ H2m´ipXq is

an isomorphism. The (closed) subvariety Ωw determines a class denoted rΩws in H2dpXq,

where d is the dimension of Ωw. By Poincaré duality, we have rΩws P H2dpXq “ H2ℓpwqpXq

since ℓpwq is the codimension of Ωw in X.

It is reasonable to ask if there is any formula that describes the cohomology

class rΩws. Indeed, the class rΩws is a polynomial that depends on the total Chern classes

of Epi
and Fqi

.

Recall that, given any vector bundle E on a variety X of rank r, cohomology

classes cjpV q “ H2jpXq, for j “ 0, 1, 2, . . . , are called Chern classes for the bundle V if

they are invariant under vector bundle isomorphisms and satisfy certain axioms. The total

Chern class of E is the sum cpEq “ 1 ` c1pEq ` c2pEq ` ¨ ¨ ¨ ` crpEq.

Back to the vexillary permutations, denote

cpkiq :“ cpFqi
´ Epi

q “ cpFqi
q{cpEpi

q , for every 1 ď i ď s, and

cpkq :“ cpkiq , whenever ki´1 ă k ď ki.

where, by convention, we set k0 “ 0. Since H‚pXq is a graded ring, we can decompose

cpkq, for every k, as follows

cpkq “ 1 ` c1pkq ` c2pkq ` ¨ ¨ ¨ ,

where cipkq P H2ipXq. The next theorem gives the explicit formula for class rΩws for a

vexillary permutation w.

Theorem A.2 ([20] Proposition 9.6). Let w P Sn be a vexillary permutation such that τ

is the respective triple of type A and λpτ q “ pλ1, . . . , λrq is the partition as defined above,

where r “ ks. Then we have

rΩτ s “ ∆λpτ qpcp1q, . . . , cprqq :“ detpcλi`j´ipiqq1ďi,jďr.

The polynomial given by this determinant is also known as Schur determinant.

The polynomial ∆λ has a variation where it is described as a raising operator as follows:

given i ă j, we define Rijpλq the function that adds 1 to λi, and subtracts 1 from λj, i.e.,

Rijpλq “ pλ1, . . . , λi ` 1, . . . , λj ´ 1, . . . , λrq.
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A raising operator R is any monomial in these Rij’s. Set mλ “
ź

i

cλi
piq and R ¨ mλ “ mRλ

where R acts on the monomial mλ. If r ą 0 is any integer and Rprq is the raising operator

defined by

Rprq “
ź

1ďiăjďr

p1 ´ Rijq

then an application of the Vandermonde identity shows that the cohomology class rΩτ s is

given by

rΩτ s “ ∆λpcp1q, . . . , cprqq “ Rprq ¨ mλ “ Rprq ¨ pcλ1
p1q ¨ ¨ ¨ cλr

prqq.

Such description of rΩτ s in terms of the raising operator Rprq will inspire an equivalent

result for the theta-vexillary signed permutation, where the raising operator will be slighted

modified.

For the general case where w P Sn is any permutation we consider the double

Schubert polynomial, which can be found in [20, 32].

A.2 Degeneraci loci of type B

Let V be a vector bundle of rank 2n ` 1 on a variety X, equipped with a

nondegenerate quadratic form. Consider two flags of vector isotropic subbundles on X,

En Ă En´1 Ă ¨ ¨ ¨ Ă E1 Ă V,

Fn Ă Fn´1 Ă ¨ ¨ ¨ Ă F1 Ă V

where Ei and Fi have rank n ` 1 ´ i. We can extend Fi to complete the flag in V , by

setting Fq :“ F K
q`1

when q ą 0. Then,

Fn Ă ¨ ¨ ¨ Ă F1 Ă F0 Ă F
1

Ă ¨ ¨ ¨ Ă Fn “ V

We can define the degeneracy locus Ωw Ă X of a signed permutation w P Wn,

as in Equation (A.1.2), by

Ωw “ tx P X | dimpEppxq X Fqpxqq ě rwpp, qq, for every 1 ď p ď n and n ď q ď nu.

As for Sn, we also have an interpretation of Schubert varieties as degeneracy

loci for a signed permutation in Wn. We will give a brief explaination of such relation.

The Schubert varieties are the special cases for X being any complex flag

manifold FΘ “ SOp2n ` 1,Cq{PΘ. Indeed, let V “ C
2n`1 be the complex vector space with

nondegenerate quadratic form. Fix a complete isotropic flag V‚ “ p0 Ă Vn Ă Vn´1 Ă ¨ ¨ ¨ Ă
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V1 Ă V q of isotropic vector spaces in V , where Vq has dimension n ` 1 ´ q. Set Vq :“ V K
q`1

when q ą 0. Then, the Schubert variety ΩwpV‚q of a signed permutation is

ΩwpV‚q “ tL‚ P FΘ | dimpLp X Vqq ě rwpp, qq, for every 1 ď p ď n and n ď q ď nu.

This degeneracy locus is a Schubert variety of codimension ℓpwq, and it is related to the

Schubert variety Sw as follows:

Ωw “ Sw˝¨w,

where w˝ is the involution in Wn.

Notice that the definition of the degeneracy locus Ωw on a variety X takes into

account every pp, qq in the extended diagram D`pwq, i.e., there are p2n2 ` nq conditions

to satisfy. A version of Proposition A.1 for signed permutations was given by Anderson

and Fulton.

Proposition A.3 ([4] Corollary 2.6). The degeneracy locus Ωw is also defined by

Ωw “ tx P X | dimpEppxq X Fqpxqq ě rwpp, qq, for every pp, qq P C pwqu.

A.2.1 Chern class formula of vexillary signed permutations

If w “ wpτ q is a vexillary signed permutation then, by Proposition A.3, the

degeneracy locus of the triple τ “ pk, p, qq of type B is

Ωτ “ Ωw “ tx P X | dimpEpi
pxq X Fqi

pxqq ě ki, for every 1 ď i ď su.

Given τ , we define a strict partition λ “ λpτ q “ pλ1 ą λ2 ą ¨ ¨ ¨ ą λks
ą 0q

such that

λki
“ pi ` qi ´ 1, for every 1 ď i ď s,

and we set the remaining parts λk “ λki
´ pki ´ kq for ki´1 ă k ă ki.

The cohomology class rΩws is belongs to the cohomology ring H2ℓpwqpXq. Denote

the total Chern classes

cpkiq :“ cpV ´ Eqi
´ Fpi

q , for every 1 ď i ď s, and

cpkq :“ cpkiq , whenever ki´1 ă k ď ki.

where, by convention, we set k0 “ 0. Then, we get the explicit formula for the cohomology

class rΩws.

Theorem A.4 ([3]). Let w P Wn be a vexillary signed permutation such that τ is the

respective triple of type B and λpτ q “ pλ1, . . . , λrq is the strict partition as defined above,

where r “ ks. Then,

2r ¨ rΩτ s “ Pfλpτ qpcp1q, . . . , cprqq :“

˜
ź

1ďiăjďr

1 ´ Rij

1 ` Rij

¸
¨ pcλ1

p1q ¨ ¨ ¨ cλr
prqq
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Remark A.5. This construction is based on the inclusion of Wn in the odd permutations

S2n`1. We could also consider a signed permutation as an even permutation in S2n. In

this case, a triple τ of type C is defined as a triple of type B, and the geometry starts

with a vector bundle V on X of rank 2n equipped with a symplectic form. Given two flag

isotropic subbundles En Ă En´1 Ă ¨ ¨ ¨ Ă E1 Ă V and Fn Ă Fn´1 Ă ¨ ¨ ¨ Ă F1 Ă V , the

degeneracy locus Ωτ of a triple τ of type C is

Ωτ “ Ωw “ tx P X | dimpEpi
pxq X Fqi

pxqq ě ki, for every 1 ď i ď su,

and the cohomology class of Ωτ is

rΩτ s “ Pfλpτ qpcp1q, . . . , cprqq “

˜
ź

1ďiăjďr

1 ´ Rij

1 ` Rij

¸
¨ pcλ1

p1q ¨ ¨ ¨ cλr
prqq

It follows that the cohomology class rΩτ s for a triple of type C differs by the

term 2r when compared to a triple of type B.

A.2.2 Chern class formula of theta-vexillary signed permutations

If w “ wpτ q is a theta-vexillary signed permutation then the degeneracy locus

of a theta-triple τ “ pk, p, qq is

Ωτ “ Ωw “ tx P X | dimpEpi
pxq X Fqi

pxqq ě ki, for every 1 ď i ď su.

Consider the sequence ρpτ q “ pρ1, ρ2, . . . , ρks
q defined by

ρk “

#
k ´ 1 , if k ď ka´1,

kRpiq , if k ą ka´1 and ki´1 ă k ď ki.

Now, we can define a partition λpτ q “ pλ1, λ2, . . . , λks
q as follows: first of all,

set the values of λ for ki by

λki
“

#
pi ` qi ´ 1 , if i ă a,

pi ` qi ` ki ´ 1 ´ ρki
, if i ě a.

Since τ is a theta-triple, we got the following inequalities:

• Condition B1 implies that λki
ě λki`1

` pki`1 ´ kiq for i ă a ´ 1;

• Condition B2 implies that λki
ě λki`1

for a ď i ă s;

• Condition B3 implies that λks
ě 0;

• Condition C1 implies that λka´1
ą λka

.
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Then, we can fill the other parts of λ minimally, subject to the requirement

λ1 ą ¨ ¨ ¨ ą λka´1
ą λka

ě ¨ ¨ ¨ ě λks
ě 0. (A.2.1)

In general, a sequence of nonnegative integers ρ “ pρ1, . . . , ρrq, a ρ-strict

partition is a partition λ “ pλ1 ě ¨ ¨ ¨ ě λrq such that λ ` ρ “ pλ1 ` ρ1, . . . , λr ` ρrq is also

a partition. In particular, the partition λpτ q is a ρpτ q-strict partition.

For instance, given the triple τ “ p3 4 5 6 9, 8 6 5 4 2, 7 4 2 3 6q from Example

1, we have that ρ1 “ 0, ρ2 “ 1, ρ3 “ 2, ρ4 “ 3, ρ5 “ 4, ρ6 “ ρk4
“ kRp4q “ k2 “ 4, and

ρ9 “ ρk5
“ kRp5q “ k1 “ 3. Then,

ρpτ q “ p0, 1, 2, 3, 4, 4, 3, 3, 3q.

We also have that λ3 “ λk1
“ 14, λ4 “ λk2

“ 9, λ5 “ λk3
“ 6, λ6 “ λk4

“ 2,

and λ9 “ λk5
“ 1. Filling λ minimally to satisfy Equation (A.2.1), then

λpτ q “ p16, 15, 14, 9, 6, 2, 1, 1, 1q

Since ρ ` λ “ p16, 16, 16, 12, 10, 6, 4, 4, 4q is a partition, then λ is a ρ-strict

partition. This partition can be illustrated in a skew shape Young diagram as Figure 42.

Figure 42 – The skew shape for λpτ q (white boxes) and ρpτ q (shaded boxes).

Given an integer r ą 0, and a sequence of nonnegative integers ρ “ pρ1, . . . , ρrq

with ρi ă i, define the raising operator

Rpρ,rq “

˜
ź

1ďiăjďr

p1 ´ Rijq

¸ ˜
ź

1ďiďρjăjďr

p1 ` Rijq´1

¸
.

The theta-polynomial for a ρ-strict partition λ is defined as

Θ
pρq
λ pcp1q, . . . , cprqq “ Rpρ,rq ¨ pcλ1

p1q ¨ ¨ ¨ cλr
prqq,

where cpiq “ 1 ` c1piq ` c2piq ` ¨ ¨ ¨ are indexed variables. Observe that when ρ “ H, Θλ

is a Schur determinant ∆λ, and when ρj “ j ´ 1, Θ
pρq
λ is a Pfaffian Pfλ.

Denote the total Chern classes cpkiq :“ cpV ´ Eqi
´ Fpi

q for every 1 ď i ď s and

cpkq :“ cpkiq whenever ki´1 ă k ď ki. Then, we get the explicit formula for the cohomology

class rΩws.
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Theorem A.6 ([3]). Let w P Wn be a vexillary signed permutation with theta-triple τ .

Then,

2r ¨ rΩτ s “ Θ
pρq
λ pcp1q, . . . , cprqq

Remark A.7. This dissertation also contributes with a formal definition of theta-vexillary

signed permutations. Indeed, Anderson and Fulton in [3] managed to describe the conditions

of a (theta-)triple using the sequence ρpτ q and partition λpτ q, which is equivalent to our

eight conditions. But they are not worried about the permutation w associated to such

triple. Worth mentioning that the name “theta-vexillary” comes from Theorem A.6 by

suggestion of David Anderson and Sara Billey.
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