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Resumo

Esta tese explora aspectos combinatorios relacionados com a topologia/geometria das
variedades de Schubert.

O primeiro problema consiste em obter uma féormula explicita para o calculo dos coeficientes
do operador fronteira da homologia inteira das Grassmannianas isotropicas e ortogonais
impares reais. Apesar da natureza geométrica deste problema, este calculo depende apenas
da combinatoéria das permutacoes associadas as variedades de Schubert da decomposicao

celular das Grassmannianas isotropicas.

Também consideramos um estudo combinatério de permutacoes que se associam a uma
classe mais geral de variedades de Schubert, chamadas de permutagoes theta-vexillary
com sinal. O principal resultado é o desenvolvimento de descri¢des equivalentes para as
permutacoes theta-vexillary dadas em termos de pattern avoidance e do conjunto de cantos

do diagrama da permutacao.

Palavras-chave: Variedades de Schubert, Topologia algébrica, Permutagoes, Permutacgoes

evitando padroes.



Abstract

This thesis presents combinatorial aspects related to topology/geometry of Schubert

varieties.

The first problem consists to obtain an explicit formula to compute the coefficients of
the boundary operator of the integral homology of real isotropic and odd orthogonal
Grassmannians. Despite the geometric nature of this problem, this computation only
depends on the combinatorics of permutations associated to Schubert varieties of a cellular

decomposition of an isotropic Grassmannians.

We also consider a combinatorial study of permutations that are associated to an even
more general class of Schubert varieties called theta-vexillary signed permutations. The
main result is the development of equivalent descriptions of theta-vexillary permutations

in terms of pattern avoidance, and the set of corners of the permutation’s diagram.

Keywords: Schubert varieties, Algebraic topology, Permutations, Pattern-avoiding per-

mutations.
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Introduction

A real or complex flag manifold is a homogeneous space F = G/P where G is a
semisimple Lie group and P is a parabolic subgroup of GG. The Bruhat decomposition of a
flag manifold is a disjoint union of P-orbits that can be parametrized by certain elements
of the Weyl group W. A Schubert variety is the closure of some P-orbit associated to an
element w of the Weyl group. When G is a classical Lie group, points in a flag manifold
are flags L, = (L;; < L;, € --- < L;, < V) in a finite-dimensional vector space V over
the real or complex field, where each subspace L;, has dimension i; and the sequence
(17 < -+ < 1,) is associated to the choice of parabolic subgroup P. Fixing a flag V,, a

Schubert variety is also the loci of flags satisfying certain incidence conditions with V.

The main results provided by this thesis are essentially about some combina-
torial problems that comes from Schubert varieties. The first problem is to obtain an
explicit formula for integral homology of real isotropic and odd orthogonal Grassmannians.
The second one is to find equivalent ways of describing a specific kind of permutation in
the Weyl group W of type B (or (), called theta-vexillary signed permutations. Such
permutations are interesting because they contain all permutations that parametrize the
Schubert varieties of the isotropic and odd orthogonal Grassmannians. However, it is
important to say that both problems are independent of each other. In what follows a

short introduction of the main results of each one of these parts is given.

Homology of isotropic and odd orthogonal Grassmannians

Let G be one of the following classical split real Lie groups: the indefinite

special orthogonal group
SO(2n + 1) := {geSl(2n + 1,R) | g¢© =1},
or the symplectic group

Sp(n,R) := {g € SI(2n,R) | gJng’ = 1},

0 -Id,
Ip = .
( Id, 0 )

where,
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Their respective Lie algebra g are so(n,n + 1), the Lie algebra of type B, or
sp(n,R), the Lie algebra of type C. The simple root system X is the set of simple roots
ag, ai,..., a,_1 such that: for type B, aq is the unique short root; for type C, ag is the
unique large root. In both situations, we denote as aq the extreme root in the Dynkin with

the double bound, i.e., the roots are ordered as below

B, Ch
ag aq Up—2 Gp—1 ap ai Up—2 Gp—1
Given some k = 0,...,n — 1, odd orthogonal real Grassmannians and isotropic

real Grassmannians are, respectively, the minimal flag manifold SO(n,n + 1)/Py, and
Sp(n,R)/Pyy, where (k) = ¥\{ay} is the maximal proper subset of simple roots that does

not contain ay, and Py, is a maximal parabolic subgroup associated to (k).

Both Grassmannians can be geometric realized as a set whose points are
flags. The orthogonal Grassmannian of type B is the set of (n — k)-dimensional isotropic

R?*"*1 equipped with a inner product. It will be denoted

subspaces in the vector space V' =
by OG(n—k,2n+1). The isotropic Grassmannian of type C'is the set of (n—k)-dimensional
isotropic subspaces in the symplectic vector space V = R?*". This set will be denoted by
IG(n — k,2n). They have the same Weyl group, namely, the hyperoctahedral group: the
elemens are permutations in the symmetric group S,, with a sign, positive or negative,

attached to each entry. This group were introduced by Young [45] in 1930s.

In the general context of flag manifolds, the topology of the complex flag
manifolds is well known and its first results date back to Ehresmann in the 1930s (cf.
[18]). Yet the first results about the topology of real flag manifolds dates to the 1970s (cf.
Burghelea—Hangan—Moscovici—Verona [10]) and 1980s (cf. Duistermaat-Kolk-Varadarajan
[16]). Only in the 1990s a complete description of its integral homology was done by
Kocherlakota [30]. A more sophisticated point of view is developed by Casian-Stanton [15].
From the point of view of cellular decomposition, the main difficulty met in the context of
real flag manifolds is the existence of cells in all dimensions whereas the complex one has

only even dimensional cells.

In both the real and complex cases, the Schubert varieties form a cellular
decomposition for the flag manifold, hence the integral homology can be determined
if the boundary operator is known. For a general real flag manifold, a formula for the
boundary map was obtained by Kocherlakota [30] via Morse homology. The same result
was also developed by Rabelo and San Martin [36] in the 2010s, where they computed
directly the boundary map using the Bruhat decomposition as a CW complex. According
to Kocherlakota, the data required to compute the boundary operators depends exclusively
on the permutations, and they are extracted from the set II,, of positive roots sent to

negative ones by w™! for a Weyl group element w in W. However, it is not easy to compute
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the formula even for classical Lie groups, including the odd orthogonal and isotropic
groups, and the task of computing homology of such Grassmannians becomes hard even

for a computer.

Every element w in the Weyl group of type B and C can be represented
as a signed permutation, and thus II, can be associated with the set of inversions
of w. Pragacz and Ratajski in [33] have shown that there is a bijection between the
permutations that parametrize Schubert varieties for the Grassmannians and a specific
set constituted of pairs of partitions («, A), where o = (g = --- = oy > 0) is a partition,
and A = (A\; > --- > A\, > 0) is a strict partition such that oy > r. Such pair can be
represented as a diagram of boxes that we call half-shifted Young diagrams (HSYD).
Namely, a half-shifted Young diagram is composed by two parts: the top part is the Young
diagram of « in a rectangle; and the bottom part is the shifted Young diagram of A in a

staircase shape.

In this thesis, we show that there is a straight relationship between the set
of inversions II,, and the half-shifted Young diagrams associated with the permutation
w. Namely, the boxes of a HSYD can be filled in with a unique inversion in II,,. In the
context of the maximal Grassmannians G/ Py, this was done by Ikeda-Naruse [28] and
Graham-Kreiman [23].

The half-shifted Young diagrams described here are slight modifications of
the diagrams defined by Pragacz and Ratajski, and they are also related to the k-strict
partitions defined by Buch, Kresch and Tamvakis in [39]. The purpose of such change was
to get an easy row-reading of the permutation as well as to insert the inversions in I,
inside the diagrams similarily to what is done in [28] and [23]. Another consequence is the
occurrence of removable boxes in these diagrams. Given a Schubert variety, some boxes can
be removed from its diagram to get another Schubert variety that drops the dimension by
one. Such pairs of Schubert varieties appear as the possible cases of non-trivial coefficients

of the boundary map.

One of the main results of the present work is to apply the above construction
to get an explicit formula for the coefficients of the boundary map of the integral homology
groups of G//P) (cf. Theorem 2.7). This formula is not as elegant to state as the general
theorem of Kocherlakota, but it is clearly easier to compute since it is described in terms
of removable boxes of the half-shifted Young diagrams of permutations. The formula is
also a generalization of the work of Rabelo [35] in which these coefficients are obtained
when k& = 0, the Lagrangian and maximal orthogonal Grassmannians. The method to
compute integral homology of the usual Grassmannians of type A may be obtained as a

particular case.

This study is developed in the first two chapters of this thesis. Chapter 1
describes all the basic tools required to deal with the half-shifted Young diagrams. The first
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section is devoted to the preliminaries on Lie theory, which includes the formal definition of
the Grassmannians subject to our study. After we define a half-shifted Young diagram and
establish its relationship to some permutations in the Weyl group, we can introduce the
idea of H-relation and V-relation in the half-shifted Young diagram. Then the removable
boxes in a HSYD can be classified according to their positions in the diagram. Finally, we
present a correlation between the set of inversions 11, and the HSYD associated to the

permutation w.

In Chapter 2 we state and prove the main result describing the boundary
maps of the cellular homology of Grassmannians of type B and C. The homology of the
isotropic Grassmannian IG(2,8) is computed as an example. We also have some results
about orientability, 1- and 2-homology, and a brief explanation about the cohomology of

such Grassmannians.

Theta-vexillary signed permutations

For classical complex Lie groups, a Schubert variety of some permutation w is a
subvariety of some flag manifold IF, where it is the loci of flags satisfying certain incidence
conditions. This idea of set of flags that characterizes a Schubert variety can be extended
to flags of subbundles over some arbitrary variety. Consider, in a first moment, the type
A case where the complex Lie group is special linear group Sl(n, C) and the Weyl group
is S,. Let V be an vector bundle of rank n over some arbitrary variety X, and flags of
subbundles £, c By c ---c B, cVand F,, c F,,_y < --- < F; ¢ V where E; has rank ¢
and F; has rank n — . Given a permutation w € S,,, the degeneracy locus is a subvariety
Q, < X defined by

Q= {r e X | dim(B,(z) n Fy(x)) = ri(g,p), for every 1 <p,q <n},

where (¢, p) is the cardinality of the set {w(1),w(2),...,w(p)} n{g+ 1,q+2,...,n}.
The Schubert varieties are the particular case where X is chosen as the flag manifold F =
Sl(n,C)/P, and F; ¢ Ey < ---  E, < V is some fixed flag bundle. This generalization is
better than considering only the Schubert varieties because, for certain sets of permutations,
it is possible to determine a formula for the cohomology class [€2,,] of the degeneracy locus

as a polynomial in the Chern classes of the vectors bundles involved.

In order to understand the theta-vexillary signed permutations, it is helpful to
discuss about two classes of permutations that inspired them: the vexillary permutations,

and its particular case, the vexillary signed permutations.

A first class of permutation that we will consider are the vexillary permutations
in 5, in which the easiest definition is given in terms of pattern avoidance as it follows:

a permutation w is called vexillary if and only if it avoids the patters [2 1 4 3], i.e.,
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there are no indices a < b < ¢ < d such that w(b) < w(a) < w(d) < w(c). The vexillary
permutations were found by Lascoux and Schiitzenberger [31] in the 1980s. Fulton [20] in
the 1990s obtained other equivalent characterizations for the vexillary permutations: in
addition to the pattern avoidance criterion, he figured out one in terms of the essential
set of a permutation, among others. Since S, is the Weyl group of type A, the vexillary
permutations represent Schubert varieties in some flag manifold where the Lie group is
G = Sl(n,C).

A few years later, the notion of vexillary signed permutations were introduced
by Billy and Lam [6] in the hyperoctaedral group, i.e., in the Weyl group of type B or C.
Recently, Anderson and Fulton [1, 2] provided a diffent characterization for the vexillary
signed permutations. They defined them by using the notion of associated triple of integers:
given three s-tuple of positive integers 7 = (k,p,q), where k = (0 < k1 < -+ < k),
p=@m=-2p;,>0),andq= (1 = = ¢ > 0), satisfying p; — piy1 + ¢ — giy1 >
kiv1 — ki for 1 <i < s—1, one constructs a signed permutation w = w(7). Since the Weyl
group of type B can be included in the group Ss,.1, a signed permutation w in W, is
vexillary if and only if its inclusion ¢(w) in Sy, is a vexillary permutation as mentioned
above. Anderson and Fulton in [1] provided two other characterizations of vexillary signed
permutations: one in terms of essential sets and other by pattern avoidance of a signed

permutation.

In this thesis, we obtained alternative characterizations for an even more general
class of signed permutations called theta-vexillary signed permutations. As well as vexillary
signed permutations, they are defined using a triple of integers T = (k, p,q), where we
allow negative values for q, which requires adding many other conditions to the triple.
The precise definition of a theta-vexillary permutation w = w(7) in terms of a triple T
can be found in Chapter 5. These triples also have a geometric interpretation in terms of
degeneracy loci. For our purpose, it is easier to denote the hyperoctahedral group as the
Weyl group of type B. Consider a vector bundle V' of rank 2n + 1 over X, equipped with
a nondegenerate form and two flags of bundles E, = (E,, € E,, < --- < E, < V) and
F,=(F, c F,, c---c F, c V) such that: for ¢ > 0, the subbundles F} are isotropic, of
rank n + 1 — g; for ¢ < 0, Fj, is coisotropic, of corank n + ¢; and all the subbundles £, are

isotropic, of rank n + 1 — p. The degeneracy locus of w = w(7) is

Ny =Q; ={reX | dim(E, nF,) =k, for 1 <i<s}.

If a triple is chosen such that all values p; are constant and equal to p, then the
permutation w = w(7) are the ones associated to the Grassmannian Schubert varieties.
The following diagram helps to understand how these three different classes of permutations

are related to each other.

The conditions for the triples associated to theta-vexillary permutations were
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Hyperoctaedral group W,, ~< Symmetric group S2,41

Theta-vexillary signed permutations
t(Wn)

% v permutations

introduced by Anderson and Fulton in [3]. They figured out that the cohomology class
[©2;] is given in terms of the Chern classes of the vector bundles E,, and F,, applied to
multi-theta-polynomials ©,, which derives from the theta-polynomials defined via raising

operators by Bush, Kresch, and Tamvakis [9].

If a permutation w in the Weyl group W, of type B is represented as a matrix
of dots in a (2n + 1) x n array of boxes, the (Rothe) extended diagram is the subset
of boxes that remains after striking out the boxes weakly south or east of each dot.
The southeast (SE) corners in the extended diagram form the set of corners €' (w). One
characterization of theta-vexillary signed permutations is the set of corners ¢’ (w) is the
disjoint union of the set A4e(w) which is composed by all corners that form a piecewise
path that goes to the northeast direction, and the set %/(w) of unessential corners. We

also have a characterization via pattern avoidance.

Theorem. Let w be a signed permutation. The following are equivalent:

1. w is theta-vexillary, i.e., there is a triple T such that w = w(T);

2. the set of corner € (w) is the disjoint union

C(w) = Ae(w) V% (w),

3. w avoids the follow thirteen signed patterns [13 2], [23 1], [321],[321],[214 3],
[2341],[2341],[3412],[3412],[3412],[3412],[4123],and[41 2 3].

This theorem is consequence of Propositions 4.8 and 4.14 and it is similar
to the vexillary signed permutation’s version. It is interesting to notice that, comparing
to the vexillary case, we admit some SE corners in the diagram that are not in an
ordered northeast path, which we call the unessential corners. Besides, the characterization
via signed pattern avoidance for the Theta-vexillary permutations has eight patterns in

common with those for the vexillary case and [2 1] is the unique not present in this list.

It worth to notice that if we consider the pattern avoidance criterion, the

theta-vexillary signed permutations are not listed yet in the “Database of Permutation
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Pattern Avoidance” maintained by Tenner [42]. Hence, they form a whole new class of

permutations among other 51 classes that already belongs to the database.

In Chapter 3 we define some basic conceptions of the combinatorics of permu-
tations in .S, and W, the Weyl group of type B, and their associated diagrams, and we
describe the vexillary and vexillary signed permutations. The definition of vexillary permu-
tations (signed or not) are not require to define the theta-vexillary signed permutations
but it would certainly facilitate the understanding about constructions and properties
related to theta-vexillary permutations. Chapter 4 proves the theorem stated above by
making use of several combinatorics tools. Finally, in Appendix A we give the geometric
interpretation of such types of permutations, their association to the Schubert varieties
and degeneracy loci, as well as the formulas for the cohomology class of such associated

Schubert varieties.
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Chapter 1

Young diagrams of isotropic and odd

orthogonal Grassmannians

In this chapter, we introduce the basic definitions about Lie theory and isotropic
Grassmannians required to deal with the problem in the next chapter. We also establish all
the concepts around the half-shifted Young diagrams, such as the row-reading, H-related

and V-related columns, removable boxes, and the set of inversions.

1.1 Preliminaries

The main facts about semi-simple Lie Groups and flag manifolds may be found
in Helgason [24], Knapp [29], Warner [43], and San Martin [37]. We also refer Bjorner
and Brenti [7] for some results about the Weyl group. Flag manifolds are defined as
homogeneous spaces GG/P where G is a non-compact semi-simple Lie group and P is a

parabolic subgroup of G. Let g be a non-compact real semi-simple Lie algebra.

Let G be a non-compact semi-simple Lie group. Take a Cartan decomposition
g = t@s and let a be a maximal abelian sub-algebra contained in s. We denote by II
the set of roots of the pair (g,a) and fix a simple system of roots ¥ < II. Denote by
II* the set of positive and negative roots, respectively, and by a™ the Weyl chamber
at = {Hea:alH)>O0foralla e 3}. Let n = Z go be the direct sum of root

aellt
spaces corresponding to the positive roots. The Iwasawa decomposition of g is given by

g = t®D a®n. The notations K and N are used to indicate the connected subgroups
whose Lie algebras are £ and n respectively. A sub-algebra hh < g is said to be a Cartan

sub-algebra if h¢ is a Cartan sub-algebra of gc.

A minimal parabolic sub-algebra of g is given by p = m@ a@®n, where m is the
centralizer of a in €. Let P be the minimal parabolic subgroup with Lie algebra p. Note
that P is the normalizer of p in G. We call F = GG/P the maximal flag manifold of G and
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denote by by the base point 1- P in G/P.

Associated to a subset of simple roots © — X there are several Lie algebras
and groups. We write g(©) for the semi-simple Lie algebra generated by g4, o € ©. Let
G(©) be the connected group with Lie algebra g(©). Moreover, let ng be the sub-algebra
generated by the roots spaces g_,, a € © and put pg = ng @ p.

The normalizer Py of pg in G is a standard parabolic subgroup which contains
P. The corresponding flag manifold Fg = G/ Pg is called a partial flag manifold of G or
flag manifold of type ©. We denote by bg the base point 1- Pg in G/Pe.

A central role in our context will be played by the Weyl group W associated
to a. This is the finite group generated by the reflections over the root hyperplanes o = 0
contained in a, « € 2. Alternatively, it may be given as the quotient N (a)/Zx(a) where
Nk (a) and M = Zk(a) are respectively the normalizer and the centralizer of a in K (the
Lie algebra of M is m).

The elements in the Weyl group W of G also can be described as product of
simple reflections s; = s,, through simple roots a; € 3. The length ¢(w) of w e W is the
number of simple reflections in any reduced decomposition of w. There is a partial order in
the Weyl group called the Bruhat-Chevalley order: we say that w; < wsy if given a reduced

decomposition wy = sj, - -+ s;, then wy = sj, ---s;, forsome 1 <ip <--- <ip <7

For a subset © < X, the subgroup Weg is defined to be the stabilizer of
ag = {H €a:a(H) =0,ac 0}. Alternatively, We may be seen as the subgroup of the
Weyl group generated by the reflections with respect to the roots o € ©.

We also define the subset W® of W by
WP ={weW:l(ws,) =lw)+1, aeB}.

There exists a unique element w® € W® of minimal length in each coset wWe. The set

W is called the subset of minimal representatives of the cosets of We in W.

The Bruhat decomposition presents the flag manifolds as union of disjoint

N-orbits, namely,

F@ = H N - wb@
wEW/W(-)

where N - wibg = N - wybg if wiWe = wayWe.
Each N-orbit through w is diffeomorphic to an euclidean space. Such an orbit
N - wbg is called a Bruhat cell. Its dimension is given by the formula
dim (N - wbg) = Z M,
a€ll,, \(©)

where m,, = dim(g,) is the multiplicity of the root space g, and (O) denotes the roots in
II" generated by O.
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Given any w € W/We, in order to establish a relationship between the dimen-
sion dim (N - wbg) and the length ¢(w), we must choose the minimal representative for w
in W®. In this case, for w = s, -~ s;, € W, dim (N - wbg) = Zm% + Maq,, (see [44],

i=1

Corollary 2.6).

A Schubert variety is the closure of a Bruhat cell, i.e., SO = cl(N - wbe). The
Bruhat-Chevalley order defines an order between the Schubert varieties by 85)1 c SSQ if,

and only if, w; < ws.

A particular case of Lie algebra is the split real form. If h = a is a Cartan
sub-algebra of g we say that g is a split real form of g¢. In this case, we have that m = 0,

me = 1, and may, = 0 for o € II. Clearly, we conclude that dim (N - wbe) = ¢(w).

1.1.1 Isotropic and odd orthogonal Grassmannians

Let us briefly describe the two different types of Grassmannians studied here:
the isotropic IG(n — k, 2n) and the odd orthogonal OG(n — k,2n + 1).

First of all, we require some basic algebraic concepts. Suppose that V is vector
space of dimension 2n and equipped with symplectic bilinear form w. Given a subspace W of
V', the perpendicular of W is the subspace W+ = {v e W | w(v,w) = 0 for every w e W}.
A subspace W of V is called

e isotropic: if the symplectic form vanishes in W, i.e., W < W+;

e coisotropic: if the symplectic form vanishes in W+, i.e., W+ < W.

The same definition of (co)isotropic space applies to a vector space V of

dimension 2n + 1 and equipped with a inner product.

Consider the isotropic Grassmannian IG(n — k, 2n) which parametrizes (n — k)-
dimensional isotropic subspaces of a real 2n-dimensional symplectic vector space considered

as a minimal flag manifold of the symplectic group Sp(n,R) with the Lie algebra sp(n,R).

The root system of type C' is realized as a set of vectors
M={te;te;|1<i<j<nfu{£2e|1<i<n}

in the Euclidean space R" = @] ;Re;. Denote the simple roots' by ay = 2¢; and a; =

gi11 — &; for 1 <1 < n. The isotropic Grassmannians are minimal flag manifolds

IG(n — k,2n) = Sp(n,R)/Py,

1 In contrast to the usual definition of simple root given in the previous section, from now on we are

going to denote a simple root by a; because the alpha symbol “a” will be used to denote a partition.
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where (k) = ¥\{ax} is the maximal proper subset of the simple set of roots that does not

contain the simple root ay.

Now, consider the Grassmannian OG(n — k, 2n + 1) which parametrizes (n — k)-
dimensional isotropic subspaces of a real (2n + 1)-dimensional vector space equipped with
a inner product considered as a minimal flag manifold of the indefinite special orthogonal

group SO(n,n + 1) with Lie algebra so(n,n + 1) of type B.
The root system of type B is realized as a set of vectors
Hz{iﬁiiﬁj |1<i<j<N}U{i€i |1<i<n}

in the Euclidean space R" = @;"_;Re;. Denote the simple roots by ag = 1 and a; = €;41 —¢;

for 1 <7 < n. The odd orthogonal Grassmannians are minimal flag manifolds
OG(n —k,2n+ 1) = SO(2n + 1,R) /Py,

where (k) = ¥\{ay} is the maximal proper subset of the simple set of roots that does not

contain the simple root ay.

The Weyl group W, for the root system B,, and C,, are equal and it is isomorphic
to the semidirect product S,, x Z3j, i.e., they are given by permutations in .S,, with a sign

attached to each entry. We will write these elements as barred permutations of the form
n,...,2,1,1,2,....n

using the bar to denote a negative sign, and we take the natural order on them, as above.
The hyperoctahedral group W, has simple reflections sy, ..., s,_; which acts on the right
of the semidirect product S,, x Z5 by

(x17x27 s 7xn)30 = (Tlax% cee 7$n)a

(T4 ooy Ty i1y ey Tp)Si = (X1, oo Ty, Ty oo, ), for 1 <0 <n— 1,
where each x; is an integer value between 7 and n.

If W, is the parabolic subgroup generated by {s; : i # k} then the set W® <
W,, of minimal length coset representatives of W, parametrizes the Schubert varieties in
IG(n — k,2n) and OG(n — k, 2n + 1). This indexing set W*) can be identified as the set

of barred permutations of the form

W= Wy ) = (Uky oy ULy ALy ooy Ay Uiy« + 5 V1) (1.1.1)

where r <n — k and the sets A = (Aq, ..., A\), u= (ug,...,ux), and v = (vy, ..., Vp_g_p)
satisfy
A >N > >\ >0
0<up <--- <u;

0 < vVp_peyp < -+ <.
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This description follows the notation given by Tamvakis [39]. A general version,

for any choice of ©, is also described by Stanley [38].

1.2 Half-shifted Young diagrams

The goal of this section is to provide the main tool for dealing with the

combinatorics of isotropic and odd orthogonal Grassmannians.

A (standard) integer partition is a set of non-increasing integers a = (ay >
ag = -+ = oy, > 0). Partitions can be graphically represented with a finite collection of
boxes, arranged in left-justified rows, with rows lengths equal to «;. This representation
is called a Young diagram. Let R(m,n) denote the set of integer partitions a = (ag >
ag = -+ =y > 0) with o < n so that the Young diagram of each « fits inside an m x n

rectangle. For instance, o = (5, 5,4) is represented as the Young diagram in Figure 1.

A strict integer partition is a set of decreasing integers A = (A > Ay > -+ >
A > 0). Strict partitions also can be graphically represented with a finite collection of
boxes, arranged in a staircase shape, with rows lengths equal to A;. This representation is
called a strict Young diagram. Define D,, as the set of all strict partitions A = (A} > Ay >
-+ > ). > 0) with \; < n. For instance, A = (8,7,4, 1) is represented as the strict Young

diagram in Figure 1.

In both cases, the number of nonzero entries in the partition o and in the strict

partition A is denoted by ¢(«) and £()\), respectively.

a=(5,5,4) A=(8,7,4,1)

Figure 1 — Young diagram of a = (5,5,4) and strict Young diagram of A = (8,7,4,1). In
this case, (o) = 3 and £(\) = 4.

Pragacz and Ratajski in [33] describe the elements of W% by means of Young
diagrams, which combines one standard and one strict partition. Each element w,, ) € w)

corresponds to a double partition A = a|\ where o = a(u, A) is defined by
for 1 <i<kandd, =#{j | \; > w;}. We will call « the top partition of A and X the

k
bottom partition of A. The length of w is £ = £(w) = |a| + |A|, where |a] := Z a; and
=1

RESDIPY
j=1
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For example, consider the permutation w = (2,5,6,8,7,4,1,3) in IG(5, 16).
From Equation (1.1.1), the strict partition A correspond to the negtive entries of w, i.e.,
A= (8,7,4,1). Using Equation (1.2.1), the partition « is « = (5,5, 4). Both partitions are

the ones given in Figure 1.

Define P(k,n) as the set of pairs A = o\ with a € R(k,n — k) and A € D,
such that oy > £(\), i.e., A satisfies

n—k>o =05 =0,
n=A>-->\>0, (1.2.2)
ag = ((N).

Lemma 1.1 ([33], Lemma 1.2). There is a bijection between W and P(k,n).

The bijection allows us to consider the Schubert varieties Sy, parametrized by
the set P(k,n) of double partitions. When we want to emphasize that a permutation w is

associated to some double partition A, we denote the permutation by wj.

Previous works already represented a partition A as a diagram of arranged boxes,
but they do not fit in our purpose. We may arrange the top and the bottom partition in
boxes in a Young diagram’s style. This diagrams will be called half-shifted Young diagrams
(HSYD), which corresponds to a half-shifted diagram in the sense presented by Tamvakis
[39].

Consider the top diagram « left justified in the k x (n — k) rectangle and denote
by D, the set of square boxes with coordinates (i, 7) in this rectangle arranged such that
(1,1) is the upper left box. Also, consider, for each 1 < ¢ < r, that the i-th row of A is
shifted to the right (¢ — 1) units. With that shift, the bottom diagram may be seen inside
a staircase partition with n rows and define SD, the set of square boxes with coordinates

(1, 7) of the bottom diagram arranged such that (1,1) is the upper left box.

The diagram D, of A = |\ is the juxtaposition of D, and SD,. Boxes, rows,
or columns that are contained in the top part D, (resp. bottom part SD,) will be called
top (resp. bottom) boxes, rows or columns. Note that the condition oy = ¢(\) implies that
the number of rows in the bottom diagram does not exceed the number of boxes in the
last row of the top diagram. For instance, Figure 2 presents the half-shifted diagram of
the partition A = 5,5,4|8,7,4,1 of a Schubert variety in IG(5,16) and how to read an
(,7) box in each diagram. It is very important to keep in mind this example of partition

because it will be used throughout Chapters 1 and 2.

The advantage of arranging the boxes of a double partition A as the half-
shifted Young diagram is because there is a easy way get the permutation w, in terms
of simple reflections s;. This is known as the row-reading expression of wy € W where
A = a|X e P(k,n). With respect to the top partition o, let s* : D, — {s1,...,8,_1} be
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J
ir’Da

J
i l—> SDy bottom

'
,,,,,,

top

Figure 2 — Half-shifted Young diagram of A = 5,5,4|8,7,4,1 in IG(5,16). It shows the
direction to read the boxes of D, and SD,.

defined, for 1 <i< kand 1 <j<n-—k, by
sT(1,7) = Sj it (1.2.3)

For a given partition o € R(k,n — k) associated with A = a|X € P(k,n), the
row-reading map is a bijection n* : D, — {1,2,...,|a|} defined by assigning the numbers
increasingly to the boxes of D, from right to left starting from the bottom row to the top

row. Then, we can form a word
Wo = Sy " Sy, (1.2.4)

where s;, = s7((n") (1)), for all 1 <1 < |al.
With respect to the bottom partition A, let s® : SDy — {sg,..., 8,1}, for
1<i<n—k 1<j<nandi<j, by

sB(i,7) = sj_.. (1.2.5)

As before, for a given partition A € D,, associated with A = a|\ € P(k, n), the row-reading
map is a bijection n® : SDy — {1,2,...,|)A|} defined by assign the numbers increasingly
to the boxes of SD, from right to left starting from the bottom row to the top row. Then,

we can form a word
Wy = Sj, " Sjy (1.2.6)

where s;, = s%((n”)7(1)), for all 1 <[ < |A]. The concatenation of expressions (1.2.6)
and (1.2.4) gives

W= WA = W)Wy (1.2.7)

The maps s, sZ, n”, and n® for the Schubert variety given by the parti-
tion 5,5,4(8,7,4,1 of IG(5,16) are illustrated in Figure 3. Then, wy = s - $3528180

56555453525150 * $756555453525150 and Wea = 54535951 * S655545352 * S7565554S53.
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S3(s4|85|s6|s7 14(13|12|11|10
sT. [52]s3]sa]s5]s6 nT: |9[8|7]6]|5
S1|s2|s3|s4 41321
S0 [S1|82(S3|S4[S5(|S6|S7 20(19|18|17(16|15|14|13
sB. 50|51 82|53 (54|55 (56 nB: 12(11{10{ 9|8 |7 |6
S0 |S1|s2](s3 514|13]|2
0] 1]

Figure 3 — Row-reading of 5,5,4(8,7,4, 1 in IG(5, 16).

1.2.1 Related bottom columns

The HSYD gives us an easy way to get the permutation w when we know the
double partition A = |\, due to Tamvakis [39].

First of all, we need to establish a relationship between top rows and top

columns with bottom columns of Dj.

Given any top row 1 < i < k, the (a; + k — i + 1)-th bottom column in the
n x n staircase shape will be called horizontal-related, or simply H-related. This definition
has a geometrical explanation in Dy: a bottom column is H-related if we can draw a
45-degree line from the center of the first box in this column to the center of rightmost
box of some top row. For example, the H-related columns of A = 5,5,4|8,7,4,1 are the

bottom columns with gray lines in the left diagram of Figure 4.

Figure 4 — The left figure presents the H-related columns (marked by the gray lines) and
the right one presents the V-related columns (marked by the dashed gray lines)
for A =5,5,4|8,7,4,1. The number of dots of each bottom column are their
vacant length.

On the other hand, given any top column 1 < 57 < n — k, it also can be
associated with some bottom column. The conjugate partition o™ of « is a partition in
R(n — k, k) defined by of = #{j | oj =i}, for all 1 <i<n—k,ie., a* is the partition
given by the columns of . For instance, if a = (5,5,4) then the respective conjugate
partition is o™ = (3,3, 3,2).
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For any top column 1 < j <n —k, the (k + j — af)-th bottom column in the
n x n staircase shape will be called vertical-related, or simply V-related. Geometrically in
Dy, suppose that a t-th bottom column is chosen: (a) if ¢ < o then such bottom column
is V-related; (b) else, if we can draw a 45-degree line from the center of the first box in this
column to the center of the blank box immediately below a box of D,, then this bottom
column is V-related. For example, the V-related columns of A = 5,5,4/8,7,4,1 are the

bottom columns with dash gray lines in the right diagram of Figure 4.

In short:

H-relation: i-th top row «— (a; + k — i + 1)-th bottom column;
V-relation: j-th top column «— (k + j — aj)-th bottom column.

Lemma 1.2. We have the following properties:

1. Any bottom column is either H-related or V-related;

2. Let A = a|X be a double partition, and suppose that we admit the extreme values
ag =n—k and agy = 0. Forany i € {0,...,k}, then all (a; — a;41) bottom columns
between the columns H-related to the i-th and (i + 1)-th top rows are V-related, as

indicated in Figure 5.

b

P41

J5 VP PR DR B

" (@i+k—it1)-th
bottom column

(a'H—l +k—i)—th h

I —
bottom column  Y-Telated

columns

Figure 5 — Interpretation of Lemma 1.2 in the HSYD.

Proof. Suppose that the ¢-th bottom column is, simultaneously, H-related and V-related.
Then, there are + and j such that t = a; +k—i+1 = k—i—l—a;‘, e, —7+1 zi—a;-‘.
If ; > j then i —aj > 1 and of = #{l | oy = j} >, a contradiction. On the other hand,
if a; < jtheni—aj <0andaj =#{l | o > j} <1, also a contradiction. Hence, no
bottom column can be, simultaneously, H-related and V-related. Since there are exactly k
H-related bottom columns and (n — k) V-related bottom columns, a bottom column is

either H-related or V-related.

For the second statement, observe that if ¢t < ¢ then oy +k—t+1 > a; +k—i+1
orift>i+1thena,+k—t+1 < ;.1 +k—1. So, all the H-related bottom columns occur
either to the left of the (a;41 + k — i)-th column or to the right of the (a; + k — ¢ + 1)-th

column. Hence, there is no H-related column between them. O
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Notice that the previous lemma still works even if £ = 0. In this situation, all

bottom columns are V-related.

The vacant length of a bottom column is the number of empty boxes below the
boxes of A in the staircase n x n shape. Explicitly, the vacant length of the j-th bottom
column is the number j — #{i | \; +i > j}.

We may recover the permutation associated with such diagram by taking the
vacant length of the H-related and V-related bottom columns. Namely, the permutation
element for A = a|A is defined by w, » in the Equation (1.1.1), where 0 < uj, < ... < uy
are the vacant length of the H-related columns, and 0 < v,_p_g) < -+ < vy are the
vacant length of the V-related columns. For example, the partition A = 5,5,4(8,7,4,1 (cf.
Figure 4) corresponds to the element w = (2,5,6,8,7,4,1,3) since u; = 6, ug =5, uz = 2

and v, = 3.

Remark 1.3. The notion of (H-)related boxes is defined in [9] using the model of k-strict
partitions. Our definition is an adaptation of this in the context of HSYD in terms of

columns, instead of diagonals.

Recall that the definition of o depends mainly on u (see Equation (1.2.1)). On
the other hand, the next proposition says that the conjugate o™ is essentially given in

terms of v.

Proposition 1.4. Let A = a|)\ be a partition associated with w. The conjugate partition

a* € R(n — k, k) can be written as

«

. _ k Sl <G <)
_vn—k—j-&-l—’_j—’_k_@ ’ ng()‘)<j<n_ka

where CZ =#{l | N\ > vpp—ji1}-

Proof. By definition of A, we know that ap > ¢(\). If 1 < j < ¢()\) then o =k, the

number of rows of «.

If {(A\) < j < n —k then the (k + j — af)-th bottom column is V-related.
Denoting t := k+j — Oz;‘, such t-th column has vacant length v,,, for some m. Let us figure

out m.

Since vy > vy > -+ > v,_p_yn) > 0, observe that v, is the vacant length of the
rightmost V-related column, which is associated with the (n — k)-th top column; v, is
the vacant length of the second V-related column from right to left, which is associated
with the (n — k — 1)-th top column. Inductively, v, is the vacant length of a V-related
column associated with the (n — k — m + 1)-th top column, which is the j-th column.

Hence, m=n—k—j+ 1.
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The t-th bottom column has ¢ rows in the staircase shape n x n, which
implies that ¢ is equal to the vacant length of such column plus Jj, which represents the

number of boxes filled by A in such column. In short, t = v,_p_j 41 + c@ and, therefore,

Oé;l-< = —Un—k—j+1 +k +j — g] ]

1.3 Removable boxes of a double partition

Given any permutation w € W®) it is important to ask what are all the
possible permutations w’ < w such that ¢(w") = ¢(w) — 1. To answer this question we
should look at the HSYD.

1.3.1 Corners of a double partition

Let A = a|\ be a double partition related to a permutation wy. A corner of
A is a box of the HSYD such that if we delete it from D, then the resulting diagram
Dy is the HSYD of a double partition A’, which is associated to a permutation w’ that
satisfies the Equations (1.2.2). Therefore, a corner of a diagram is the rightmost box of
a row where there is no box just below it. Additionally, we also consider the rightmost
corner of the last row of a being a corner if the strict inequality ay > ¢(\) holds. In other
words, there is a corner in the i-th top row if and only if «; > 41, for i < k = ¢(«a), or
ay > £()), and there is a corner in the i-th bottom row if and only if A\; + 1 > A\;;1. The

last row of A always contains a corner.

Corners that are contained in the top part D, (resp. bottom part SD,) will be
called top (resp. bottom) corners. We will sort the corners in different classes based on

their location in the diagram. We call:
e T-corner any top corner;
e D-corner any bottom corner that lies in a diagonal box (i,7) € SDjy;

e H-corner any bottom corner that lies in an H-related bottom column;

e V-corner any bottom corner that lies in a V-related bottom column and it is not

diagonal.

Figure 6 illustrates the corners of the double partition 5,5,4|8,7,4, 1 in IG(5, 16).
Observe that it contains all four types of corners and the last top row does not contain a

corner since ag = £(\).

The following lemma gives a different way to determine the bottom corners by

using u, v, and A as written in Equation (1.1.1).
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WY

D

Figure 6 — Corners of 5,5,4|8,7,4,1 in IG(5, 16). They are labeled according to their type.

Lemma 1.5. Let w be a permutation in W* and A = a|\ be the associated double

partition. Suppose that the t-th bottom row contains a bottom corner C'. Then C is

1. a D-corner if, and only if, \y = 1 and t = £(\);
2. an H-corner if, and only if, there is some 1 < pc < k such that u,, = A\, — 1;

3. a V-corner if, and only if, there is some 1 < go < n—k—{(\) such that vy, = A\ —1.

Proof. A corner only lies in the diagonal iff it is unique in the row, proving the first
statement. For the others, observe that the vacant length of the column of carrying such
corner is, by symmetry, A\; — 1. Being this an H-related or V-related column, either some

u, or some v, is equal to Ay — 1. O

The integer pc of some H-corner (resp. gc of some V-corner) C' of A is the
po-th H-related bottom column (resp. go-th V-related bottom column) counted from right
to left (see Equation (1.1.1)). In Figure 6, for instance, pc = 1 for the H-corner because it
lays in the 1st H-related bottom column, and go = 1 for the V-corner since it belongs to
the 1st V-related column.

1.3.2 Middle bottom boxes

Let A = aJ)\ be a double partition related to a permutation wy. Given 1 <t <
¢(X\) and 1 < & < A\, suppose that C' is a bottom box that lies in the ¢-th bottom row and
the (t + x — 1)-th bottom column. Then C is called a middle bottom box or an M-box of A

if it satisfies the following conditions:

C is neither a corner nor a diagonal box, i.e., 1 < x < A¢;

C belongs to an H-related column;

$>)\t+1+1;

At — X+ ., < Q. —1, Where pe is the index 1 < pe < k such that oy, +k—pc+1 =
t+x—1.
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For instance, the highlighted box in Figure 7 (left) is the unique middle bottom
box of 5,5,4(8,7,4, 1.

M i

Figure 7 — The unique M-box of 5,5,4(8,7,4,1 in IG(5, 16). To remove this box, we need
to move the last box in this row to the last row of o (the H-related top row of
the M-box) to get a valid partition such that wy < wj.

Notice that if we just remove such M-box, we do not get a Young diagram.
But, if we remove C' and move the last (\; — z) boxes from the ¢t-th bottom row to the

pc-th top row, we get a partition. In fact, this partition A" = /| \" is given as following;:

ag:{aimt—x it i = pe; )\;.:{w_l Jifj =t (13.1)

Q; , otherwise; Aj , otherwise.
Hence, the permutation wy, associated to A’ satisfies that wy < wa and

((A) = ¢(A') + 1. We call A’ the rearrangement of A with respect to the M-box C.

The conditions of an M-box C' implies that all boxes to the right of C' lie in a
V-related bottom column. Indeed, Lemma 1.2 says that there are (cy,.—1 — o) V-related

columns after to the right of C' and all boxes to the right fit in such range.

We also have a formula of u,, for M-boxes likely for corners in Lemma 1.5.

Given an M-box C', the index po also satisfies that

Up, = ¢ — L. (1.3.2)

1.3.3 Bruhat order and Young’s graph

The Young’s graph is defined by the graph whose vertices are all the HSYD of
A € P(k,n) and the edges are defined by A — A’ where wy, < wy and ¢(A) = £(A') + 1.
In other word, A — A’ if, and only if, one of the following happens

e A’ is obtained by deleting for some corner C' from A; or

e A’ is a rearrangement of A with respect to the M-box C.

In the Grassmannian IG(n — k,2n) or OG(n — k,2n + 1), the top cell S,

corresponding to the longest element w, € W% has associated double diagram A, =
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n—=k,...,n—kln,n—1,...,k+ 1, which represents the k x (n — k) rectangle for a and
all the n — k rows in the staircase shape for A\. Then, we can construct the corresponding
Young’s graph from the larger diagram A, and get all the vertices and edges by deleting
corners and M-boxes. Figure 8 illustrates this process and presents the Young’s graph for
IG(2,8) and OG(2,9), where n = 4 and k = 2.

T ]
; ; N S N ;
i1} 5] [i1] | ] % 4
H H D
~ ~ ~ \L \L
T ]
; s =L ; ;
H] H] MV [H]
H D
! | | |
T ]
> o : :
V [H] [H]
D

~
~

Figure 8 — Young’s graph for IG(2,8) and OG(2,9). The highlighted boxes are the corners
and M-boxes, and the letters inside them tell us their type.

1.3.4 Lagrangian and maximal odd orthogonal Grassmannians

As a particular case of what was described above, the minimal flag manifolds
(o) yields the Lagrangian Grassmannian L(n, 2n) = 1G(n, 2n) for type C' and the maximal
odd orthogonal Grassmannian OG(n,2n + 1) for type B.

The double permutation is A = |\, i.e., A = A and there is no top diagram.
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Hence, W corresponds to all strict partitions in Dy. Moreover, there is no H-related

columns and only two types of corners occur, namely, D-corners and V-corners.

By the row-reading expression (1.2.7), recall that any Weyl group element is
written as w = wyw,. In particular, if £ = 0, then w = w, and we may consider w) as an
element of W, The remark below explains how we can obtain the permutation wj (the

bottom row-reading) once the permutation w is known.

Remark 1.6. If k = 0, there is no top partition and the permutation A is only given by a

strict partition A. Hence, wy = w is a permutation in W and Equation (1.1.1) for wy is
Wx = (X17"'7X7“7ﬁnfk7"'71~]1) (133)

where 0 < 0,y < -+ < 01. Then, for any double permutation A = a|\ chosen from an
isotropic Grassmannian, w) is written as in Equation (1.3.3). But recall from Equation
(1.1.1) that w, does not contain the simple reflection sq. Since w = wyw, and the simple
reflections act on the right, it follows that w,, simply permutes the entries of the permutation

wy. Therefore, w, can be obtained from w by reordering the entries increasingly.

For example, considering A = 5,5,48,7,4,1 in IG(5, 16), we can reorder the
entries of wy = (2,5,6,8,7,4,1,3) in order to get wy = (8,7,4,1,2, 3,5,6).

1.4 Inversions and Young diagrams

This section is devoted to show how to fill in the half-shifted Young diagrams
with roots of the set of inversions. As far as we know, such description has not been done
elsewhere. In particular, this will be very useful to compute boundary maps of cellular

homology.

Let w = s, ---5;, € W® be a reduced decomposition of w, where r = £(w).

Define the [-sequences of w as the roots

Be =i -S4 (aj,), for 1 <t < (1.4.1)

Consider the set II,, = II"™ n wIl~ of positive roots sent to negative roots by
w™!, which is also called set of inversions of w. Using a reduced decomposition of w, it is

known that
Hw = {517 cee 767'}-

Although the definition of S-sequences of w depends on the choice of a reduced

decomposition, different reduced decompositions can be obtained by permuting such roots.

Since |A| is equal to the cardinality of IT,, where A is the double diagram of w,
we aim to describe each S-sequence of w € W®*) using the position (7, j) of a box in Dy of

w.
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Let Sp be the Schubert variety parametrized by A = «|X in P(k,n). Denote

by A% and 3} the B-sequences of w, and wy, respectively.

Given a bottom box (i, 7) in SDjy set Bﬁ = 5{7\3(2-J

in D, set BZTJ 1= wy - Byr(; j), where n” and np are the row-reading maps of D.

) and given a top box (i, j)

Proposition 1.7. Fvery (-sequence of A can be obtained from boxes in Dy as follows:

1. For top bozxes: @T] = Ew(k—it+1) — Ew(ktj), Jor (i,7) € Da;
2. For bottom bozes, it depends on the type of G:

CL) Typ@ C: fj = 5w>\(2n-‘r1—i) - 6wA(j); fO?" (Zvj) € SDA;'
b) Typ@ B: ﬁfy = 275” <€wx(2n+1—i) - 5wx(j))7 fOT’ (Zaj) € SD,.

Proof. By definition, ﬁtB is the f-sequence for wy and this formula is done in [28]. Lemma

3 of [28] says that B)r(; ;) = Euwa(k—i+1) — Ewa(k+j)- Lherefore,

Bl = WA(Ewa(h—it1) = Ewalkri) = Ewlh—i+1) — Ewlh+i)- O

B

Clearly, this proposition describes all S-sequences of w. Notice that 3,7, in

both cases, is obtained from w, instead of w.

We can use this proposition to compute the set I1,, of all 5-sequences by placing
such roots into each box of the HSYD of w. Let us start with the top part: label all k£ rows
of the top diagram with w(1),...,w(k) from the bottom upwards, and label all the n — k
columns with w(k + 1),...,w(n) from left to right. Then, the S-sequence associated with
each box (i,7) € D, is the root ¢, — &;, where a and b are the labels of i-th row and j-th
column, respectively. For example, considering A = 5,5,4|8,7,4,1 in IG(5, 16), we label it
as in Figure 9. Notice that the top box (1,1) € D, has labels 6 and 8 for row and column,

respectively, implying that B(Ji,l) =g — g = €6 + €s.

Now, for the bottom part, start labeling the n columns of the bottom diagram
with wy(1),...,wx(n) from left to right, and label the n rows with wy(1), ..., wx(n) from
top to bottom. The f-sequence associated with each box (7, j) € SD, is the root ¢, — &y,
where a and b are the labels of i-th row and j-th column, respectively. Figure 9 gives an

example of how to label the bottom part and what are the -sequences of each box.
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w(4) w(5) w(6) w(7) w(8)

I
8

I
7

I
4

il
1

Il
3

w(3)=6 [ge+ey

c6+€7

e4t€q

£1+¢€¢

€6 —€3

w(2)=5 |es+eq

e5+en

e4tesy

e1tes

e5—eg

w(l) =2 |ea+eg

e2t+e7

ea+e4

£1+€2

wy(1)=8

g

A2)=7

wy(3)=4

w>\(4) =1

wx(1) wa(2) wa(3) wx(4) wa(5) wA(6) wA(7T) wA(8)

8 7 4 1 2 3 5 6
2eg |e7tegeategel +eges—Egeg—E3es —EnES —E¢
2e7 |eateqe1tefET—EJET—EYET—EBET—Eq

|

2e4 le1tedes—edes—es | I
e !
| | | !
2e1 | | | :
o J__J__J___

Figure 9 — 5-sequences associated with the partition 5,5,4/8,7,4, 1.
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Chapter 2

Homology of isotropic and odd

orthogonal Grassmannians

In this Chapter, we state and prove the theorem about the coefficients of the

boundary map of isotropic and odd orthogonal Grassmannians.

2.1 Boundary map and integral homology of real flag manifolds

A general formula for the boundary map of real flags manifolds was first
obtained by Kocherlakota [30] by a Morse homology approach. The same result was
developed by Rabelo and San Martin [36], where they computed directly the boundary
map using the Bruhat decomposition as a CW complex. We choose to summarize these

results using [36] since it follows the same notation we presented in the previous chapter.

Consider first a maximal flag manifold F. Its cellular homology is defined from
a cellular decomposition provided by the Schubert varieties. Given a Schubert variety S,,,

we fix once and for all reduced decompositions

T

w:sjl...sj

as a product of simple reflections, for each w € W, and s, = s,,, a; € X. Let C be the
Z-module freely generated by S, for every element w of the Weyl group W. The boundary
maps 0 : C — C are defined by

08, = Y c(w,w)S,y (2.1.1)
for some coefficients c¢(w,w') € Z. First of all, if £(w) — £(w’) # 1 or if w" and w are not

comparable by the Bruhat-Chevalley order “<” then set ¢(w,w') = 0. Now, it is only missing

to define ¢(w,w’) when v’ < w and ¢(w) = ¢(w') + 1, i.e., when dim S,, — dim S, = 1.

Proposition 2.1 ([36], Proposition 4.1). Let w,w" € W. The following statements are

equivalent.
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1. § <S8, and dimS,, — dim S, = 1.

2. Given a the reduced decomposition w = s; ---s; then a reduce decomposition
of w' can be obtained from w by removing some simple reflection s;,, i.e., w' =
Sjl ...:S\ji ...Sjr.

The first main result is that the coefficient ¢(w, w’) is the sum of the degree of

two sphere homeomorphisms which have degree one.

Theorem 2.2 ([36], Theorem 4.3). For any w,w' € W such that dim S,, — dim S,y = 1,
the coefficient c(w,w') = 0, £2.

Suppose that g is a split real form. It is possible to get a more accurate

expression for the coefficients ¢(w, w') in terms of roots. For w € W, define

o(w)= > B (2.1.2)

Belly
the sum of 3-sequences I, = ITT A~ wIl™.

Given w and w’ of W® such that v’ < w and £(w) = £(w') + 1, denote by

w=s;--s; and w' =sj, ---§j, -+ s; areduced decomposition for them. Let vy be the

T

unique root (not necessarily simple) satisfying w = s,w’, that is, v = s;, - -+ s;,_, (a;,).

Theorem 2.3 ([30], Thm. 1.1.4 and [36], Theorem 4.9). Suppose that w' < w and
l(w) = L(w') + 1, i.e., there is a root y such that w = s,w'. Then

o(w)—o(w) =k~ (2.1.3)
for some integer k = r(w,w"). Moreover, no nontrivial multiple of v is a root, so that  is
a well-defined integer. Then the coefficient c(w,w’) is given as follows:

c(w,w') = £(1+ (=1)) =

{ 0 ,if Kk is odd, (2.14)

+2 , if k is even.

Thus, the signs on c(w,w') can be chosen so that 0* = 0 and the homology of (C,0) is the
integral homology of .

The sign of ¢(w,w") = +2 depends on the choice of a reduced decomposition
of the elements in the Weyl group, but observe that the sign is not relevant in order
to compute the homology. Besides, in our context, we have a fixed choice of reduced

decompositions.

Remark 2.4. The formula (2.1.4) as stated in [36] includes another +1 factor which
is omitted here because the reduced decompositions for the Weyl group elements are

previously defined.
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In the context of the partial flag manifolds Fg, recall that the Schubert varieties
are SO are the closure of the Bruhat cells N - wbe, for w € W®. Let C® be the Z-module
freely generated by S2, for every element w of W®. The boundary maps 0° : C° — C°
are defined by

0989 = Z ©(w,w')SS,
w/'eW®

for some coefficients ¢®(w, w’) € Z.

Theorem 2.5 ([36], Theorem 5.4). The integral homology of the flag manifold Fg = G/Pg
is isomorphic to the homology of (C®,0°), where 0° obtained by restricting 0 and projecting

it onto C°.

Hence the coefficients ¢®(w, w’) for the boundary map 6 of the cellular ho-

mology of the partial flag manifolds Fg is
P (w,w') = c(w,w').

and the computation of ¢®(w,w’) reduces to a computation of ¢(w,w’) on F.

In short, to compute the boundary map of any flag manifold, we need to be
able to compute & for any given w,w’ € W® such that v’ < w and ¢(w) = £(w') + 1, as in
Equation (2.1.3).

2.2 Integral homology of isotropic and odd orthogonal Grassman-

nians

Let G be either an indefinite odd orthogonal or a symplectic group. Then the
flag manifold F () with respect to the set (k) = ¥ — {ax} is, respectively, the isotropic

Grassmannian IG(n — k&, 2n) or odd orthogonal Grassmannians OG(n — k,2n + 1).

The integral homology H.(F),Z) can be computed after we determine the
boundary map as given in Theorem 2.3 which gives us a neat general formula for the
boundary coefficients c(w, w’). In the sequel, we will state our main theorem as a conse-
quence of the next proposition that provides an explicit combinatorial expression of x in

terms of the half-shifted Young diagrams used to index the Schubert varieties.

Remember that given w,w'’ € W®) and their respective double diagrams A, A,

then w' < w and ¢(w) = {(w') + 1 if, and only if, one of the following happens

e A’ is obtained by deleting for some corner C' from A; or

e A’ is a rearrangement of A with respect to the M-box C.
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Also recall from Lemma 1.5 that if C' is an H-corner (resp. a V-corner) and
t is the t-th bottom row containing C' then there is a positive integer pc < k such that

Up. = A¢ — 1 (resp. there is a positive integer go < n — k — ¢(X) such that v, = A\, — 1).

Proposition 2.6. Let A = a|\ be the double diagram associated with a permutation w and
C' either a corner or an M-box of Dy. Denote by w' the permutation associated with the
diagram N’ obtained by deleting C' (and rearranging it with respect to an M-box). Suppose
that t is either the t-th top row of D, or the t-th bottom row of SD, containing C'. Then,

o(w) —o(w') = k-7,

where 7y is a root such that w = s,w' and K is an integer that depends on the type of the

group G as following:

1. If Fay is an isotropic Grassmannian (i.e., G is of type C), then

t+aop—1 ,if C is a T-corner;
B t+k , if C'is a D-corner;
t+2k—pc+1 , if C' is an H-corner or an M-box;

t+n+k—qgoc+1 ,if Cisa V-corner.

2. If Fy is an odd orthogonal Grassmannian (i.e., G is of type B), then

t+a;—1 ,if C is a T-corner;
_ 2t + 2k — 1 ,if C is a D-corner;
t+ 2k —po ,if C is an H-corner or an M-box;

t+n+k—qc ,if Cisa V-corner.

This proposition will be proved in section 2.4. Now, we can rewrite Theorem

2.3 for isotropic and odd orthogonal Grassmannians as follows:

Theorem 2.7. Consider the hypothesis of Proposition 2.6. The coefficients c(w,w") are

non-zero for the cases described below.

1. Suppose that Fy is an isotropic Grassmannian. Then c(w,w') = +2 if, and only if,
the box C satisfies one of the following statements:
a) C is a T-corner and t + oy = 1 mod 2,
b) C is a D-corner and t + k =0 mod 2,
c) C is an H-corner or an M-bozx and t + pc =1 mod 2,
d) Cis a V-corner andt +n+k+ qgc =1 mod 2,

2. Suppose that F( is an odd orthogonal Grassmannian. Then c(w,w") = +2 if, and

only if, the box C' satisfies one of the following statements:
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a) Cis a T-corner and t + oy = 1 mod 2,
b) C is an H-corner or an M-box and t + pc = 0 mod 2,

c) Cis a V-corner and t+n + k + gc = 0 mod 2.

Proof. Clearly, this theorem takes the formulas of x in Proposition 2.6 and states when it
should be even. ]

In order to compute the boundary map, we are going to modify the Young’s
graph so that the graph can carry the information of ¢(w,w"). If ¢(w, w") = +2, replace the
edge — between the respective vertices by = in the Young’s graph. Casian and Kodama
in [14] call such graph the incidence graph of a Grassmannian. Notice that the incidence

graph encodes the information about the boundary map.

Let us compute an explicit example of homology for some Grassmannian.
Consider the isotropic Grassmannian 1G(2,8), which is a case where n = 4 and k = 2.
First of all, we need to get the incidence graph in this situation. We will compute four

examples of c(w,w"), one for each type of corner.

e Suppose that

N

73) = (u27u17)\717)\72);
) = (UQ,Ul + 17)\717)\2 - 1)

(1,
(1,

are the permutations which corresponds to the partitions A = 2,2|4,3 and A" =

w
/
w

|
DO

2,
3,

9

2,24, 2, respectively, as below:

~

¢

Notice that C' is an H-corner because it is H-related to the first row, and ¢ = 2 since
C is the corner at the 2nd bottom row of D,. On the other hand, remember that
there is some integer pc such that u,, = Ay —1 when C' is an H-corner. Since we
have the relation u; = Ay — 1, then pe = 1. Therefore, applying 1.c of Theorem 2.7,
we have that ¢t + pc = 3 =1 mod 2 and ¢(w,w') = +2.

e Suppose that

are the permutations which corresponds to the partitions A = 2,2|4,1 and A" = 2, 2[4,

respectively, as below:
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~

[

Notice that C' is a D-corner, and ¢t = 2. Therefore, applying 1.b of Theorem 2.7, we
have that ¢t + k =4 = 0 mod 2 and ¢(w,w') = +2.

e Suppose that

N

(27 71) (u27ula)\717 Ul);
1,3,1,2)

w =
w' = (

3, =
3a = (Uhula)\ila u?)
are the permutations which corresponds to the partitions A = 2,2[4 and A" = 2, 1[4,

respectively, as below:

~

Notice that C' is a T-corner, and ¢t = 2 since C' is the corner at the 2nd top row of
Dy . Therefore, applying 1.a of Theorem 2.7, we have that ¢t + oy = 4 = 0 mod 2 and

c(w,w") = 0.
e Suppose that

(u27 U’la)\ih Ul);

(
(

'3,2)

4
4,2,3)

(u2,u1, )\1 — 1,’(}1 + 1)

w 1, =
w' = (1, =

are the permutations which corresponds to the partitions A = 2,1|3 and A’ = 2, 1|2,

respectively, as below:

| |

~

Notice that C' is a V-corner because it is neither D-related nor H-related to any top
row, and t = 1 since C' is the corner at the 1st bottom row of D,. On the other
hand, remember that there is some integer gc such that v,, = Ay —1 when C' is a
V-corner. Since we have the relation v; = Ay — 1, then go = 1. Therefore, applying
1.d of Theorem 2.7, we have that t + n + k + gc = 8 = 0 mod 2 and ¢(w, w') = 0.

e Suppose that

w = (1a4)§7 2) = (u27u1a)\71a Ul);

’U)/ = (3,4,T, 2) = (UQ + 2,U1,>\1 — 2,1)1>
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|
cl |

~

are the permutations which corresponds to the partitions A = 2,1]3 and A" = 2, 2|1,

respectively, as below:

Notice that for x+ = 2 and ¢t = 1, we have C' is an M-box because: it is neither a
corner nor a diagonal box; it is H-related to the second row, i.e., po = 2; x > Ay = 0;
and \; —  + as < ay. Therefore, applying 1.e of Theorem 2.7, we have that
t+pc=3=1mod 2 and c¢(w,w') = +2.

~

~
~

—
— -
-
«

~

~

= —

Figure 10 — Incidence graph of 1G(2,8).

Proceeding as above, we can get all the coefficients ¢(w, w’) for any pair w, w'.
The incidence graph of the isotropic Grassmannian IG(2,8) is given in Figure 10. The

boundary map is given below, where they are presented considering each cell dimension.
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11-dim: 085943 = 12855 9j42;

10-dim: 08,942 = 0;

9-dim: 0832 = 0 and 0S5 94,1 = £285 4;

8-dim: 0831 = £285221 + 285293 and 0S5 54 = 0;

7-dim: 08,21 = £2852)2 and 08,93 = £285 912 and 0814 = 28 145
6-dim: 08,2 = 0 and 05513 = £281,13 £ 28591 and 08, 114 = 0;
5-dim: 08,51 = 0 and 08512 = £285,11 £ 285112 and 9S4 = 0;
4-dim: 08595 = 0 and 08,1y = £208 1)1 and 08,12 = £208; 1)1;
3-dim: 08,5 = £2S50 £ 251,1) and 08, 11 = 0;

2-dim: 08, /g = £251,0)z and 08111 = 12851 0/5;

1-dim: 08 oz = 0.

Therefore, the integral homology of 1G(2, 8) is

Hy1(1G(2,8),Z) = 0; H5(1G(2,8),Z) = Z.& Zy;
Hyo(1G(2,8),Z) = Z; H,(1G(2,8),7) = Z.® Zy;
Hy(1G(2,8),Z) = Z; Hs(1G(2,8),Z) = Zy;
Hy(1G(2,8),Z) = Zy; H,(1G(2,8),Z) = Zy;
H7(1G(2,8),Z) = Zy; Hy(1G(2,8),Z) = Zs;
He(1G(2,8),Z) = Zy @ Zy; Hy(1IG(2,8),Z) = Z.

Notice that IG(2,8) is not orientable. The following corollary states when a

Grassmannian is orientable.

Corollary 2.8. About the orientability of isotropic or odd orthogonal Grassmannians:

1. 1G(n — k,2n) is orientable if, and only if, n — k is odd.

2. For k>0, OG(n — k,2n + 1) is orientable if, and only if, n — k is even. If k = 0,
OG(n,2n + 1) is orientable for every n.

Proof. The top cell §,,, corresponding to the longest element w, € W® has associated
double diagram A, =n —k,...,n—kln,n —1,... k + 1. Hence, the associated double
diagram associated with the unique codimension one cell S,y is AL = n—k,...,n—k|n,n—
1,...,k+2, k and there is a corner C'in the diagram D, of w, such that Dy, = Dy, —{C}.
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Being orientable is equivalent to boundary map in the top cell equals zero. The analysis is
divided in two cases. If k > 0 then the corner C' is an H-corner in the (n — k)-th bottom

row with po = 1, by Lemma 1.5. Hence, by Theorem 2.7,

e IG(n — k,2n) is orientable iff t + pc = (n — k) + 1 = 0 mod 2 iff n — k is odd.

e OG(n—k,2n+ 1) is orientable iff t + pc = (n — k) + 1 = 1 mod 2 iff n — £ is even.

Now if k = 0, the corner C' is a D-corner in n-th bottom row. By Theorem
2.7, the odd orthogonal Grassmannian is orientable for every n and the Lagrangian

Grassmannian is orientable iff n + k =1 mod 2 iff n is odd. O

Corollary 2.9. Let G be an isotropic or odd orthogonal Grassmannians. The 1-homology

and 2-homology of G are:

7 ,if k=0 and G is of type C,
Z ,ifk=0,n=1, and G is of type B,
Z ifk=1,n=2,and G is of type B,
Zo , otherwise.

,if k=0, and G is of type B,
Hy(G,Z)=< 0 ,ifk=1,n=2, and G is of type C,

Zo , otherwise.

Hl(G7Z) = <

Proof. We will proof using the incidence graph related to Schubert varieties of dimension

1, 2, and 3. It requires to split in some cases.

e £L=0:

In this case, there is no top part and the incidence graph is

Type C _u Type B
O =T O (A lunnindun (] 0
Then, for n > 1, we have that
Hy(1G(n, 2n)) = Z, H,(0G(1,2)) = Z,
Hy(1G(n, 20)) = Zo, H(OG(n,2n)) = Zs (n > 1),

Hy(OG(n,2n)) = 0.
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e k=1landn =2:
In this case, the incidence graph is

Type C Type B

Then, we have that
Hy(IG(1,4)) = Zo, H,(0G(1,4)) = Z,
Hy(IG(1,4)) =0, Hy(0G(1,4)) = Zs.

e k=1 and n > 2: In this case, the incidence graph is

Type C | Type B |

LI LI [ v | L ST [ ()

Then, for n > 2, we have that
H\(IG(n — 1,2n)) = Zs, H\(0OG(n —1,2n)) = Zy,
Hy(IG(n — 1,2n)) = Zs, Hy(0G(n —1,2n)) = Zs.

-

P =F
Il

>|_|_| :D _>@

e k > 2: In this case, the incidence graph is

The coefficient in the question mark depends on the choice of G. But this won’t

affect the result since it image through Jdy does not belongs to the kernel of 0.
Then, for n > k > 2, we have that

H(IG(n — k,2n)) = Zs, H(OG(n — k,2n)) = Zs,

Hy(IG(n — k,2n)) = Zs, Hy(OG(n — k,2n)) = Zs. O
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2.3 Cohomology groups of isotropic and odd orthogonal Grass-

mannians

Before we prove Proposition 2.6, we will provide a brief discussion about the

cohomology of isotropic and odd orthogonal Grassmannians.

The problem of compute the integral cohomology of some real flag manifold
was developed by Casian and Kodama in [11]. They found a way to determine the
(cohomological) incidence graph for the coboundary map for the Bruhat decomposition of
a flag manifold G/Pg. Indeed, they managed to relate the value of the coefficient ¢(w, w'),
i.e., determine if an edge in the incidence graph is either — (simple) or = (double) in

term of the set of singularities (blow-up points) of the trajectories of the Toda lattice.

In [14], Casian and Kodama worked on the special case of a standard real
Grassmannian Gr(k,n) = Sl(n)/Pgy,, where they found out how to get the incidence
graph by the standard Young diagrams associated to each Schubert cell in the cellular
decomposition of Gr(k, n). In fact, their process to compute the coefficients ¢(w,w") for
the real Grassmannians Gr(k,n) are pretty similar to what we show in case of a T-corner

in the proof of Proposition 2.6.

We do not plan to show this construction in this text but we can compute the
cohomology using the universal coefficient theorem for cohomology once we know are able

to get the integral homology of the isotropic and odd orthogonal Grassmannians.

In general, let (C,0) be a chain complex of free abelian groups, where ¢; :
C; — C;_1 is the boundary map, and G be any group. Denote the cochain groups by the
homomorphism groups C; = Hom(C;, G) and the coboundary map §; = 0/ : C}' | — C the
dual map of 0. The cohomology group H'(C; G) is defined by the quotient Ker §/Im 6. The
universal coefficient theorem says that the cohomology groups H'(C;G) are determined

solely by G and the homology groups H;(C).

Theorem 2.10 (Universal coefficient theorem). If a chain complex C of free abelian groups
has homology groups H;(C), then the cohomology groups H'(C;G) of the cochain complex

Hom(C, G) are determined by split exact sequences

0 — Ext(Hi_,(C),G) — H(C;G) — Hom(H,(C),G) — 0.

Consider the special case of computing the integral cohomology groups of a
CW complex X. In this situation, H;(X,Z) is finitely generated and

H(X;Z) = 727X 9T,

where 3;(X) are the Betti numbers of X and 7; is the torsion part of H;(X,Z). Using



Chapter 2. Homology of isotropic and odd orthogonal Grassmannians 46

some properties of Hom and Ext, we have that

Hom(H; (X, Z),Z) = Hom(Z*™), Z) ® Hom(T;, ) = 2%,
Ext(H;(X,Z),Z) = Ext(Z%%), 7) @ Ext(T}, Z) = T,

Hence, the universal coefficient theorem says that the integral cohomology
groups H'(X,Z) of X are
H(X,Z) = 27X @ T,_, = Free(H,(X,Z)) ® Torsion(Hy_(X,Z)).
This theorem allows us to easily compute the integral cohomology groups of

isotropic and odd orthogonal Grassmannians since we can determine their homology groups

using Theorem 2.7.

For instance, the integral cohomology of the isotropic Grassmannian IG(2, 8) is

HY™(1G(2,8),Z) = Zs; H(1G(2,8),Z) = Z @ Zs;
H"™(1G(2,8),Z) = 0; H*(1G(2,8),7Z) = 7.® Zy;
H°(1G(2,8),7) = 7.® Zy; H*(1G(2,8),7) = Zo;
H3(1G(2,8),7) = Zo; H*(1G(2,8),7) = Zo;
H(1G(2,8),7) = 7o @ Zy; H'(1G(2,8),Z) = 0;
H®(1G(2,8),7Z) = Zs; H°(1G(2,8),Z) = Z.

Notice that this process only allow us to compute the integral cohomology
groups of such Grassmannians and the problem of compute the cohomology ring remains
unsolved. In fact, even for the standard real Grassmannians Gr(k, n), this problem was not

solved yet, although Casian and Kodama in [14, Conjecture 6.1] conjectured a solution.

2.4 Proof of Proposition 2.6

To get the boundary operator, we must compute o(w) — o(w'), for v’ < w

and ((w') = (w) — 1, where o(w) = Z « is the sum of the elements in the -sequence

a€elly,
of w. The analysis for each possible kind of corners for C' must be computed separately.

Furthermore, the top and the bottom part, for each type of corners, will be worked out
one by one. Denote by 3’ the 3-sequences associated with w’. From now on, it will be

useful to write o(w) — o(w') = ST (w,w’) + S&(w,w’), where

- > - > B (2.4.1)

(4,7)€EDq (4,5)€D 41

= D B 2 B (2.4.2)

(4,7)€SDx (4,5)eSD s
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The proof will be concentrated in the computation of the top part S7 (w,w’)
whereas the bottom part SZ(w,w’) will be described in the next proposition using the

result of [35].

Proposition 2.11. Consider the hypothesis of Proposition 2.6. If C' is a corner then
SB(w,w) = o(wy) — o(wy) = k(wy, wy) - (2.4.3)
where 7 is the given as in Equation (2.1.3) and k(wy,wy) is described below:

1. If Fy is an isotropic Grassmannian (i.e., of type C), then

0 ,if Cis a T-corner;
K(wy, wy) = t ,if C is a D-corner (A, = 1);
A +2t—1 ,if C is an H-corner or a V-corner (A\; > 1)..

2. If Fy is a mazimal odd orthogonal Grassmannian (i.e., of type B), then

0 ,if Cis a T-corner;
M +2(t—=1) ,if C is any other kind of corner.

/{(w,\, w)\/) = {

Proof. Tt follows directly from definition of Bﬁ that S%(w,w') = o(wy) — o(wy) =
k(wy, wy) - 6§, for some root §. We know that w = wyw, and w = s,w’. Since w' = wyw,
it follows that wy = s,wy and, hence, 6 = 7.

If C is a T-corner then w, = wy and the bottom S-sequences 32 of w and w’
agree, implying that S (w,w’) is zero.

If C is a D-corner, H-corner or V-corner then, by Proposition 1.7, the (-
sequences and 3’-sequences of the bottom part depends only on w) instead of w. This
corresponds to the case k = 0 as observed in Remark 1.6. Hence, x(wy,wy/) is given by
Proposition 6.4 of [35]. O

Proposition 2.12. Consider the hypothesis of Proposition 2.6. If C' is an M-box in the
(t + x — 1)-th column then

)\tf.'L‘
SB(w,w) = o(wy) — o(wx) = k(wx, wy) -y + (ex, — 6w(k+apc+j)) (2.4.4)
j=1
where 7 is the given as in Equation (2.1.3) and k(wy,wy) is described below:

1. If Ry is an isotropic Grassmannian (i.e., of type C), then

K(wy,wy) =+ 2t — 1
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2. If Fy is a mazimal odd orthogonal Grassmannian (i.e., of type B), then

/f(w)\,w,\/) =T+ 2(t — 1)

Proof. The formula of k(wy,wy) is proved as it was for H-related corners. It only differs

by the fact that we also remove the last \; — x boxes from the ¢-th row of A to get \’, then

)\t—il?
the sum 5593 +; cannot be canceled. Then, we have
i=1
At—T
§%(w,w) = o(wy) — olwy) = Klws,wn) -7+ O BE. (2.4.5)
j=1

Notice that foﬂ' = E), — Euwy(t—142+j)- Hence, we just need to show that
wy(t—1+2z+7) = w(k+a,. + 7). By the definition of pe for an M-box, wy(t—1+x+j) =
wr(ope +k —po+1+7).

Equation (1.3.2) says that the index 1 < po < k satisfies u,, = x — 1 and the

permutation is

w = (uk,...,x—1,...,ul,x,...,/\7,...,)\g(A),vn_k_g(A),...,vl).

Denote y; = ap, + k + j for each 1 < j < Ay — 2. We know that the all the
(At — x) boxes we remove from ), are in V-related columns and w is written as following

w = (Ug,...,T — 1,...,ul,)\T,...,)\7,...,)\g(,\),vn,k,w\),...,w(yl),...,w(yAt_x),...,vl).

Recall that w) is obtained from w by reordering its entries in an increasing
order. Then, we need to count how many entries to the left of y; are bigger than w(y;),
because after reordering it they will appear to the right of w(y;). In other words, we need

to find a value z; such that w(y;) = wa(y; — z;).
Now, the entries of w can be comparable as following:
up < - < Upgr1 < — 1 <w(yy)),
w(y;) < Upp—1 < - <y
A< < Ay < w(yy),
Up—k—e(n) < - < w(y) < w(yz) < - < w(yxy—z),

for all 1 < j < A\ — 2. Hence, we see that z; = pc — 1 for all j, since only up,—1, -+,
are greater than w(y;). This shows that wy(t — 1+ 2z + j) = w(k + o, + J). O

Remember that the permutation of w associated with A = |\ can be written

as

Wy, \ = (uk’a s 7u17)\17 s 7)‘7“7Un—k’—7’7 B 71}1)
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and these values are obtained by counting the vacant length of H-related and V-related

bottom columns.

C is a T-corner: Consider C' in the t-th top row of D,, which is H-related to the
(o + k —t + 1)-th bottom column in Dj.

Since C'is a T-corner, ay 1 < oy and the (ay + k — t)-th bottom column must
be V-related, by Lemma 1.2.

Now, we need to find out the vacant length of the (ay + k —t + 1)-th and
(o + k — t)-th bottom columns. There are (¢ — 1) H-related columns to the right of the
(oy + k — t + 1)-th which have vacant length u; > --- > w;_;. Then the vacant length
of the (ay + k —t + 1)-th column is u;. On the other hand, by Lemma 1.2, there are
ag—oy = (g —ag) + -+ (q_1 — ay) =n—k — oy V-related columns to the right of
the (ay + k — t)-th column which have vacant length vy > -+ > v,_x_,,. Then the vacant

length of the (o + k — t)-th column is v, _j_q, 1. Define g :=n —k — oy + 1.

After remove the corner C, the H-related (o + k —t + 1)-th and V-related
(ar + k — t)-th columns of w switch their role in the permutation and they become,
respectively, V-related and H-related columns of w’. Then, the permutation of w’ is

obtained from w by swapping u,; and v,:

W = (Wky ooy Vgy ooy ULy ALy ooy Ay Unbigy « « oy Uy« o, V1),
That is,
w(k —t+1) = uy, w'(k—t+1) =,
w(k + o) = vy, w'(k + o) = .

Using Proposition 1.7, the top S-sequences 57 of w and w' are

T .

Bt,ozt = Ew(k—t+1) — Cw(k+ar) = Cur — Ewyy
g = - d (B, = 1) — for 1 <i <t
iap — Cw(k—itl) T Ey, AN iar = Cw(k—itl) T Euyy 10T 1 X7 )

T NT ~ .
Bij = €u — Cwkrjy and (B')i; = €u, — wryj), for 1 <j <oy

(6')% = 1TJ, for (i,7) € Dyryi # t and j # ay.

Hence, reordering the terms of ST (w,w’), we get

ST (w,w') = Bl + Do (B —(8))

(i,j)EDa/
= Btj:at + Z (Bgat - (6,>,i1:04t) + Z (ﬁtjjj o (5/)3:])
1<i<t 1<j<on

= (Eu, — 5vq> + (= 1) (6w, — 5vq) + (o = 1) (6w, — 5vq)
= (t+ o —1)(gu, — €0,)-
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By Proposition 2.11, the sum S?(w, w’) is zero and, therefore,
U(w) - O-(w/) = (t + at - 1)(6ut - EvnfkfatJrl)'

Notice that the positive root ¢, is not necessarily a simple root.

— oot

We may visualize the above computations directly in the diagram D,. In this
case where C' is a T-corner, besides the box C', we fill in the remaining boxes in the t-th
row and in the au-th column with 1’s. It follows that x is the sum of such 1’s in Dy as

shown in Figure 11.

Figure 11 — For a T-corner, fill Dy as shown. The sum of these numbers is .

Remark 2.13. We should notice that the Schubert varieties of usual Grassmannian (of type
A) are parametrized by the standard Young diagrams which correspond to a particular
case of the half-shifted Young diagrams when the bottom part A = ¢#. Hence, we only
have T-corners and the homology coefficients for the usual Grassmannians is computed

exactly as done above.

C' is a D-corner: Consider C in the t-th bottom row of SD,. Lemma 1.5 says that
t = ¢(\) and \; = 1 and the permutation of w is

w = (uka SR 7u17)\17 . '7)\1‘,71) 17/Un7k7t7 B 7U1)-

The double partition of w’ is A" = «|)\', where X = (A,...,\_1). Observe
that C belongs to a V-related bottom column of vacant length zero in D,, but when C' is
removed it adds 1 to the vacant length of such column in Dy,. Hence, the permutation w'’

is gotten from w by deleting the sign of 1, i.e.,

, J— -
w = (uk’v s 7u17)\17 .- 'a)\t—17 17Un—k:—t7 s 7U1)-

That is, w(k+t) = T and w'(k+t) = 1. By Proposition 1.7, the top S-sequences

BT of w and w' are

@T,t = Ey(k—i+1) + €1 and (6’)Zt = Ey(k—it1) — €1, for 1 <i<k;

(BE =Bl for (i,j) € Dy, j # t.

i,J (R
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Consequently we have that

STww')y = Y (B =) = D) (BL = (B)],) = 2ke:.

(i,j)€Da 1<i<k

For type C, a; = 2¢ which gives that S (w,w’) = ka;. By Proposition 2.11,

SB(w,w') = ta;. Therefore,
o(w) —o(w') = ST (w,w") + S (w,w') = (k + t)a;.
For type B, a; = & which gives that S*(w,w’) = (2k)a;. By Proposition 2.11,
SB(w,w') = (2t — 1)a;. Therefore,
o(w) —o(w') = ST (w,w") + SP(w,w') = (2k + 2t — 1)a;.
We can also visualize the above computations only using the diagram D,. In

this case where C' is a D-corner, we simply fill in the ¢-column of D, as shown in Figure

12. It follows that & is the sum of such numbers in Djy.

t t

1] ] 2
: l : l
1 2
1 2
t 1 t 1
Type C Type B

Figure 12 — For a D-corner, fill D, as shown and according to the type of the group. The
sum of these numbers is .

C is an H-corner: Consider C in the t-th bottom row of SD,. Lemma 1.5 says that

there is 1 < pc < k such that u,, = A\; — 1 and the permutation is

w = (uk7"'7>\t_]-7"'7u17)\717"‘7/\7157"'7)\€(A)7vn—k—€()\)a"'7U1)-

The double partition of w’ is A" = a|X’, where X = (A1,..., A —1,..., Agn).
When C' is removed it adds 1 to the vacant length of such H-related column in D,., which

is pc + 1 = \.. Hence, the permutation w’ is

’LU/ = (uk,...,/\t,...,ul,x,...,)\t - 1,...,)\g()\),vn,k,g()\),...,?Jl).
That is,
w(k—pc—i-l):)\t—l, w'(k—pc+1):)\t,

wk +1t) =N, w'(k+t) =X\ — 1.
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By Proposition 1.7, the top S-sequences 57 of w and w' are

Bﬁ = Ew(k—i+1) T €x, and (B’)Zt = Euw(k—it1) + Ex—1, for 1 <i <k;

)

T _ nNT
ped — =1 T Ew(k+j) and (ﬁ )pc,j = Ex¢ T Cw(k+j)s for 1 <5< Apos

(BYE = B, for (i,7) € Da,i # ap, and j # t.

7,7 2,77
Then,
ST (w,w') = > (85— (B))
('J) €D,

- pc, pc,t+ Z zt Zt + Z(ﬁgc,j_(ﬁl)gcd)

1<i<k 1<j<aps
i#pC j#t

=0+ (k - 1)(€>\t - 5>\t—1) + (aPC - 1)(_€>\t + 5>\t—1)

= (k - Ozpo)(g)\t - €>\t—1)'

The definition of a in Equation (1.2.1) implies that o, = A +pe —k —2+d,,.,
where d,,.. = #{j | \; > u,.} = t. Hence, ST (w,w') = (2k — N\ — po — t + 2)ay,.

For type C, by Proposition 2.11, S®(w,w’) = (\; + 2t — 1)ay,. Therefore,

o(w) —o(w) = ST (w,w') + S (w,w') = (2k — pc +t + 1)ay,.

For type B, by Proposition 2.11, S (w,w’) = (\; + 2t — 2)ay,. Therefore,

o(w) —o(w') = ST (w,w') + SB(w,w') = (2k — pc + t)ay,.

We also can compute s only using the diagram D,. In this case where C' is an
H-corner, the pe-th top row is filled in with —1’s while the ¢-th column is filled in with 1’s
except the box (pc,t) which is filled in with zero. Besides, the ¢-th bottom row is filled in
with 1’s (except for type C where the diagonal box is filled in with 2) and both the ¢-th
and the H-related bottom columns are filled in with 1’s. So & is the sum of such numbers

as shown in Figure 13.

C is a V-corner: Consider C in the ¢-th bottom row of SD,. Lemma 1.5 says that there

is some 1 < g < n —k — {(\) such that v,, = A\; — 1 and the permutation is

w = (ukv"'7u1a)\71a'-'7/\7757"'a)\é(z\)avnfk‘ff()\)a"'a)\t_1a"'>vl)'

The double partition of w’ is A" = o\, where X = (A,..., A —1,..., An).
When (' is removed it adds 1 to the vacant length of such V-related column in D,/, which

is go + 1 = \;. Hence, the permutation w'’ is

’LU/ = (uk,...,ul,)\i,...,)\t—1,...,)\4(,\),vn,k,g(>\),...,)\t,...,vl).



Chapter 2. Homology of isotropic and odd orthogonal Grassmannians 53

1 1
1 1
pcl—1 —1| 0 [—1 —1 pcl—1 —1| 0 [—1 —1|
1 1
1 1 1 1
1 1 1 1
t D L |eeel T [[ece|| 1L t 11| |1}|-|1
Type C Type B

Figure 13 — For an H-corner, fill D, as shown and according to the type of the group. The
sum of these numbers is k.

Observe that the entries A\, — 1 and \; of w and w’, resp., are at position
n — qc + 1. Defining the value m :=n — k — qo + 1, we have that n — gc + 1 = k +m and
1 <t < /() <m <n—k. That means,

wk +1t) =N, w'(k+t)=MN—1,
w(k +m) =X \—1, w'(k+m) = \.

Remember that the conjugate partition o of « is a partition in R(n — k, k)
defined by o = #{j | o; = i}, for all 1 < i < n — k. By Proposition 1.7, the top

B-sequences A7 of w and w' are

T NT . )
Bit = Cwk—isn) T ex, and  (8)i; = Cwr—it1) T Ex,—1, for 1 <i<Kk;
T NT . *

Bi,m = Cw(k—i+1) — Ex—1 and (5 )i,m = Ew(k—i+1) — Exgs forl <1< .,

(BYE = BE., for (i,7) € Do, j # t and j # m.

,J 4,57
Then,
ST(U),U},) = Z (ﬁzT,] - (6/)3;])
(4,5)€Da
= 2 BL-G)+ X (B (9))
1<i<k 1<i<af,
= k‘({:‘/\t - ‘C:)\t—l) + Oé:(n(E)\t - 5)\15—1)
= (k+an)(ex, —ex-1).
Since m > /((A), it follows from Proposition 1.4 that o) = —v,_p_ms1 +

m + k:—c?m, where c?m = H#{ | N > Vppemir} = #{ | M > ve} = t. Thus, o), =
Vg *N—qgc+1—t=-A\+n—qgc—t+2and

ST(w,w') = (k=X +n—qc—t+2)ay,.
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For type C, by Proposition 2.11, S%(w,w) = (\; + 2t — 1)ay,. Therefore,

o(w) — o) = ST (w,w') + SE(w,w') = (k+n —qc +t+ ay,.

For type B, by Proposition 2.11, SZ(w,w') = (A + 2t — 2)a,,. Therefore,

o(w) —o(w') = ST (w,w') + SP(w,w') = (k+n — qc + t)ay,.

We can also illustrate the computation of x in the diagram D,. In this case
where C is a V-corner, we fill in with 1’s both the ¢-th and (n — k — g¢ + 1)-th top columns.
Besides, the t-th bottom row is filled in with 1’s (except for type C where the diagonal
box is filled in with 2) and both the ¢-th and the V-related bottom columns are filled in

with 1’s. Hence, x is the sum of such numbers as shown in Figure 14.

tn—k‘—qc-H tn—k—qc—l-l
S——— S~———
1 1 1 1
1 1 1 1
1 1
1 1 1 1
1 1 1 1
t 2 (1] [1]-[1 t RNERER
Type C Type B

Figure 14 — For a V-corner, fill D, as shown and according to the type of the group. The
sum of these numbers is k.

C' is an M-box: Consider C' in the t-th bottom row and in the (¢ +  — 1)-th bottom
column of SDj,. Equation (1.3.2) says that the index 1 < po < k satisfies u,, = x — 1 and

the permutation is

w = (Ug,...,Tr — 1,...,u1,)\71,...,)\7,...,)\g(,\),vn_k_g()\),...,vl).
The double partition of w’ is A" = o/| X, where o = (ay, ..., qp.+N—x,. .., )
and X' = (Aq,..., 2z —1,..., Ay)). Hence, the permutation w’ is
W= (Wky vy Ay UL, ALy, T = Loy Ay Une ket () - - - V1)
That is,
wk —pc+1)=xz—1, w'(k—pc+1) =N\,

w(k +1t) =N, w(k+t)=z—-1
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By Proposition 1.7, the top S-sequences 57 of w and w' are

T T ~
Biv = €wh—ivn) +ex, and  (B8');; = Cw(k—ir1) + €1, for 1 <i <k;

T NT . )
pog = Eo-1— Culktg)  Aand (B). 5 = ex — Euray), for 1< <ape;

(BYE. =Bl for (i,§) € Dy,i # ap, and j # t.

.3 1,57

But, remember that we added (\; — z) boxes to the po-th row of o/, which
implies that

(5/)§Cv%c+j =&\ — 5w(k+apc+j)7 for 1 < J < At — .
Then,
STw,w’) = 0 Bl = D, (B
(4,4)€Da (4,9)€D o
- gcﬂt o (ﬁl)lj;cﬂf + Z ( ZTJ B (5,)?15) + Z (/61?077‘ o (ﬁ/)lj;cyj)
1.<z'<k léjsapc+)\tfw
1#pC j#t
)\tfx
=0+ (k—1)(ex, —€2-1) + (ape — 1)(—x, + E2-1) — Z (5T);c,apc+j
j=1
At—T
= (k= ape)(Ex, — €a-1) = Y (En = Cuwlhrapy+1)) -
j=1

The definition of o in Equation (1.2.1) implies that oy, =  +pc—k —2+d,,,
where d,. = #{j | \; > up.} = t. Hence, ST (w,w') = (2k —x — pc — t + 2)ay, —

At—T

Z (8)\1 - 6w(k+apc+j))'

j=1
At—T
For type C, by Proposition 2.12, S®(w,w') = Z (5& — ew(k+apc+j)) + (z +

j=1
2t — 1)a,,. Therefore,

o(w) —o(w') = ST (w,w') + SP(w,w') = (2k — pc +t + Day,.

At—x
For type B, by Proposition 2.12, S (w,w') = Z (sAt — €w(k-+apc+j)) + (z +
j=1
2t — 2)ay,. Therefore,

o(w) —o(w') = ST (w,w") + SP(w,w') = (2k — po + t)ay, .

It is exactly the same formula of deleting an H-corner and we can compute it

as shown in Figure 13.

This concludes the proof of Proposition 2.6.
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Remark 2.14. Notice that Theorem 2.7 can be easily used in a computational algorithm to
obtain the boundary map of any isotropic or odd orthogonal Grassmannian. On the human
viewpoint, applying such theorem to compute the coefficient for some bigger diagram
becomes a harder task, since it requires us to compute pe or ¢ when C' is, respectively,
an H-corner or a V-corner. So, instead of using Theorem 2.7, we can get s as in Figures
11, 12, 13 and 14 according to the type of the corner ', and then we apply Theorem 2.3

which says that c(w,w’) = 0 if £ is odd and c¢(w,w') = £2 is & is even.

For instance, consider A = 5,5,4|8,7,4,1 in the isotropic Grassmannian

IG(5,16) and the four types of corners according to the Figure 6. Let us denote by

e A;=5,4,4|8,7,4,1 the partition obtained when the T-corner is removed;

Ay=5,5,4|8,7,4 the partition obtained when the D-corner is removed;

A3=5,5,4]8,6,4,1 the partition obtained when the H-corner is removed;

Ay=5,5,4]8,7,3,1 the partition obtained when the V-corner is removed.

A5=5,5,5|8,7,2, 1 the partition obtained when the M-box is removed and rearranged.

1 1 -1|10|-1]-1|-1
1|1)1(1]1 1 1
1 1
1 1 1
1 2|11 (1|1|1|1]1
1
1
k(w,w) =6 k(w,wy) =7 k(w,ws) =8
1 1 1
1 1 1
1 -1|-1/0|-1
1 1 1 1
1 1 1 1
2(1(1]1 21111
k(w,wy) =14 klw,ws) =7

Figure 15 — Computation of x for A = 5,5,4|8,7,4,1 and each possible removable box, as
described in Figures 11, 12, 13 and 14.

Let w, wy, wy, w3, wy, and ws be the respective Weyl group elements. In order
to compute c(w,w;) for i = 1,2,3,4,5, instead of using Theorem 2.7, we will compute &

and apply it to Theorem 2.3.
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Figure 15 shows us how to fill the Young diagram for each pair (w,w;). The

value k(w,w;) is the sum of values in the each diagram. Then, we have that

o(w) — o(wy) = 6(e5 — €3); o(w) — o(wg) = 7(2);
o(w) — o(wsz) = 8(e7 — &¢); o(w) —o(wy) = 14(e4 — €3);
o(w) — o(ws) = T(eq — &2).

Therefore, the coefficients ¢(w, w;) are

c(w,wy) = £2; c(w,wy) = 0;
c(w,ws) = £2; c(w,wy) = £2;
c(w,ws) = 0.
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Chapter 3

Permutations and diagrams

This chapter starts the second part of this dissertation. Here, we develop
all the basic combinatorial concepts required to state and prove the main result about

theta-vexillary signed permutations.

Understanding the idea behind the construction of a vexillary signed permuta-
tion will facilitate the comprehension of the theta-vexillary signed permutation that we
will present in the next chapter. In short, a vexillary signed permutation is a special case
of the vexillary permutations. This chapter compiles results and notations from Anderson
and Fulton [1, 2, 3, 4], and Fulton [20].

All the geometric construction that associates the vexillary and vexillary signed

permutations to the Schubert varieties is described in Appendix A.

3.1 Permutations in S,

First of all, we are going to study the usual permutations .S,,. We will see that
such permutations are required to understand the vexillary permutations. The notation
presented in this section is slightly different from [20], in order to match the notation we

will use afterwards.

Permutations are chosen to be finite, that means w(m) = m whenever |m)|
is sufficiently large. Usually, the permutations will be written in S,, using the one-line

notation w(1) w(2)---w(n).

Given a permutation w, it has a descent at position i if w(i) > w(i + 1) for

some integer i.

A permutation belongs to S, if w(m) = m for all m > n; remember that the
permutation group S, is the Weyl group of type A,.. The group S, is generated by the
simple transpositions Sy, ...,S,, where for ¢ > 0, right-multiplication by s; exchanges

entries in positions ¢. Every permutation w can be written as w = s;, - - - s;, such that ¢
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is minimal. This number ¢ = {(w) is called the length of w and it can be determined by

counting the number of inversions of w, i.e.,

fw) = #{1 < i < j <n | wli) > w(j)}.

3.1.1 Diagram of a permutation in S,

Consider an n x n array of boxes with rows and columns indexed by integers
[1,n] :={1,...,n} in matrix style. The permutation matriz associated to a permutation
w € S, is obtained by placing dots in positions (w(i),7), for all 1 < ¢ < n, in the array.
The diagram of w is the collection of boxes that remain after removing those which are
south and east of a dot in the permutation matrix. In other words, the diagram D(w) is
defined by

D(w) = {(i,§) € [1,n] x [1,n] | w(j) > i and w™'(i) > j}.

For example, take w =4 8 6 27 3 1 5. Figure 16 presents the permutation
matrix of w. The dots indicate the points (w(i), %), the shaded boxes are south or east of

a dot, and the white boxes make up the diagram D(w).

12345678

OO T W
([ ]

Figure 16 — Diagram for w =486 273 1 5.

The number of boxes in the diagram is equal to the length of the permutation.
In fact, if [ = w™'(i) then

#D(w) = ##{(1,j) € [1,n] x [L,n] [ w(j) > w(l) and | > 7}
=i <l w(g) >wl)} = f(w)

For any permutation w in S, and any 1 < p,q < n, the type A rank function
of a permutation w for a pair (g, p) counts the number of dots strictly south and weakly

west of the box (g, p) in the permutation matrix of w, i.e., this function is defined by
rale,p) = #{i <p | w(i) > g}

(3.1.1)
= #{w(1),w(2),...,wpP)}n{g+1,¢+2,...,n}).

A permutation is clearly determined by its rank functions. However, in many
cases, we want to figure out a smaller set of rank functions that also determine such

permutation.
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Remark 3.1. We use a different definition of 72 in comparison with [20]. Instead of defining
the rank function as the number of dots to the left and above the box (¢,p) in the
diagram, we define it as the number of dots to the left and below (g, p). In other words,
Fu(q,p) = p—72(q, p) is the rank function as defined by Fulton. We changed this definition

in order to give a better intuition for the type B case.

We say that a box (a,b) is a southeast (SE) corner of the diagram of w if w
has a descent at b, with a lying in the interval of the jump, and w™' has a descent at a,

with b lying in the interval of the jump. This can be written as

>w({b+1) and

w(b) > a
. (3.1.2)
>b=w (a+1).

w(a)

A essential position of w is a pair (g, p) such that the box (¢, p) is a southeast
(SE) corner of the diagram D(w) of w. Define the essential set &ss(w) of w to be the set
of triples (k,p, q) such that (¢, p) is a SE corner and k = r7}(¢, p) is the value of the rank
function. Although k is given by the pair (g, p), it will be important to preserve the value

of the rank function.

A basic triple (of type A) is a triple (k, ¢, p) such that k > max{0,1 —p — ¢}.
Observe that the elements of &ss(w) are basic triples since (k, p,q) in &ss(w) implies that
k> 0.

Using the example above of w =48 6 27 3 1 5, Figure 17 outlines the boxes
labelling essential positions with the corresponding values of the rank inside. The essential

set in this example is

&ss(w) ={(1,2,7),(2,3,5),(3,3,3),(3,5,5), (4,5,3),(6,6,1)}.

12345678
6le

31 |4]e

0O U W
[\Y)
w
[ ]

Figure 17 — SE corners and rank values forw =48 627 3 1 5.

3.2 Vexillary permutations on .5,

We say that a permutation w € .S, is vezillary if there is no subpermutation

isomorphic to the permutation [2 1 4 3]; in other words, there do not exist four numbers
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a <b < c<dsuch that w(b) < w(a) < w(d) < w(c). A vexillary permutation also called

a 2143-avoiding permutation.

Now, we want to describe vexillary permutations in a different way, and for
that we define a triple of type A. We say that a three s-tuples 7 = (k, p, q) of non-negative
integer is a triple of type A if they satisfy

k=(0</{?1<k2<"'<ks>7
p=(0<p <ps <-- < py),
gq=(@=q@=->q >0),

and, setting l; = ¢; — p; + k;, we also require that

L >1l>--->1,>0. (3.2.1)

Notice that Equation (3.2.1) is equivalent to the following
Pit1 —Di + G — Giv1 > ki1 — ki (3.2.2)

for every 1 < i < s, and we have the extreme value (ks. 1, psi1,¢st1) = (n,n,0) for some

integer n > max{ks, ps, 1}

Related to a triple of type A there is a partition A\ = A(7), which is defined
by taking A\, = [; for each 1 < ¢ < s, and filling the remaining parts minimally so that
A1 = A =+ = A\, > 0. Since [; > l;41, then all corners of the Young diagram associated
to the (standard) partition of A are in the rows k; and they carry information about the

triple .

The next theorem, due to Fulton, show us how to associate a vexillary permu-

tation with a triple of type A.

Theorem 3.2 ([20] Proposition 9.6). Let w be a permutation of S,. Then, w is a vezillary
permutation if and only if there is a unique triple T = (k, p,q) of type A such that the

essential set &ss(w) is given by

588(11)) = {(k17QI7p1)7 (k27q27p2>7 sy (kS7QS7ps>}7

where

ki = rﬁ(ql-,pi) L for1 <1 <s.

This theorem also gives another equivalence for such permutations. A permuta-
tion w is vexillary if and only if the essential corners of w strung to the northeast direction,

i.e., there are no essential positions (¢, p) and (¢',p’) such that ¢ < ¢ and p < p'.

Given a triple T of type A, we can construct the vexillary permutation w = w(7)

using the following steps:
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(1) Ending in the p; position, place k; consecutive entries to the left, in increasing order,

starting with ¢; + 1. Mark these numbers as “used”;

(i) For 1 < i < s, ending in the p; position, or the next available position to the left,
fill the next available k; — k;_; positions with entries chosen consecutively from the
unused integers, in increasing order, stating with ¢; + 1 or, if it is not available, the

smallest unused integer above ¢; + 1. Again, mark these numbers as “used”;

(s + 1) Fill the remaining available positions with the unused positive integers, in increas-

ing order.

For instance, consider the triple 7 = (k, p, q) such that

k = (1,3,4),
p=(2,4,7),
q=(9,7,5).

In this case, notice that [ = (8, 6,2) satisfies Equation (3.2.1) and, then, 7 is
triple of type A. We can obtain w using the steps above as follows: put 10 in position 2;
then, put 8 and 9 in positions 3 and 4; then put 6 in position 7; finally, fill the remaining

positions with unused integers from 1 to 10. In short, we can represent these four steps as

follows:
10
10 8 9
00 89 - - 6
w= 1 10 8 9 2 3 6 4 5 T.

Since T is a triple of type A, then the permutation w =1108 9236457
is vexillary. If we draw the diagram D(w) then, by Theorem 3.2, we can verify that the

essential positions lie in a northeast path, as in Figure 18.

12345678910

1 |e

2 °

3 °

4 °

5 4 °
6 °

7 3 o
8 °

9 1 °

10 °

Figure 18 — Diagram for the vexillary permutation w =110892364 5 7.
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Also notice that the permutation given in Figure 17 is not a vexillary permuta-

tion since the essential positions does not satisfy the conditions in Theorem 3.2.

The geometric setup of vexillary permutations and their association to the

Schubert varieties is developed in the first section of Appendix A.

3.3 Signed permutations in W,

The notation present here is the same used in [4]. We also refer [7, §8.1] for
further details.

Consider the permutation of positive and negative integers, where the bar over

the number denotes the negative sign, and consider the natural order of them

om0, 2,1,0,1,.. .0, ...

A signed permutation is a permutation w satisfying that w(7) = W@'), for each .
A signed permutation belongs to W, if w(m) = m for all m > n; this is a group isomorphic
to the hyperoctahedral group, the Weyl group of types B, and C,. Since w(7) = w(i), we
just need the positive positions when writing signed permutation in one-line notation, i.e.,
a permutation w € W, is represented by w(1) w(2) --- w(n). For example, the full form of
the signed permutation w =21 3in W5 is 3120 2 1 3, but we can omit the values at the
position 3,2, 1 and 0. The group W, is generated by the simple transpositions s, ..., Sp,
where for ¢ > 0, right-multiplication by s; exchanges entries in positions ¢ and 7 + 1, and
right-multiplication by sq replaces w(1) with w(1). Every signed permutation w can be
written as w = s;, - - - s;, such that ¢ is minimal; call the number ¢ = ¢(w) the length of w.

This value counts the number of inversions of w € W,,, and it is given by the formula

fw) = #{l<i<j<n|wi)>w()} +#1<i<j<n|w-i)>uw()} (331)

The element w(™ =T 2.7 is the longest element in W, and it is called the

involution of W,. Notice that the involution w(™ has length n?.

The group of permutations W, can be embedded in the symmetric group So,,41,
considering S, 41 the permutations of @,...,0,...,n. Indeed, define the odd embedding

by ¢ : W,, < Sa,41 where it sends w = w(1) w(2) -+ w(n) to the permutation

w(n) - w(2) w(l) 0w(l) w(2) - win)
in So,+1. The embedding ¢ will be used when it is necessary to highlight that we need the
full permutation of w.

There is also a even embedding ' : W,, < Sy, defined by omitting the value
w(0) = 0.
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Considering the natural inclusions W,, € W,,;1 < - -+, we get the infinite Weyl
group Wy, = UW,,. When the value n is understood or irrelevant, we can consider w as
an element of W,,. The odd embeddings are compatible with the corresponding inclusions

Sont+1 © Sopts C -+

3.3.1 Diagram of a permutation in S, 1

Let us consider the specific case where the permutation group is S, 1. It is
important to consider this case because we need to do some modification in the notation

that will be useful for us.

Consider a (2n+1) x (2n+ 1) arrays of boxes with rows and columns indexed by
integers [, n| = {m,...,1,0,1,...,n} in matrix style. The permutation matriz associated
to a permutation w € Ss,41 is obtained by placing dots in positions (w(i),1), for all
m < i < n, in the array. Again the diagram of w is the collection of boxes that remain after
removing those which are (weakly) south and east of a dot in the permutation matrix.

Observe that the number of boxes in the diagram is equal to the length of the permutation.

The rank function of a permutation w € Ss, ;1 for a pair (p,q), where m <
p,q < n, is the number of dots strictly south and weakly west of the box (¢ — 1,p) in the

permutation matrix of w. In other words, it will be defined by

ro(p,q) = #{i <p | w(i) = g}, (3.3.2)

for m < p, g < n. Notice that we defined a different rank function for w € S, .1 compared
to Sp: the rank function r,, of a pair (p, ¢) is, in some sense, the type A rank function r;ﬁ
associated to the box (¢ — 1,p). This change is going to make easier to deal with signed

permutations.

A corner position of w is a pair (p, q¢) such that the box (¢ —1,7) is a southeast
(SE) corner of the diagram of w. The set of corners of w is the set € (w) of triples (k, p, q)
such that (p,q) is a corner position and k = r,(p, q).

Remark 3.3. Observe that the definition of € (w) is exactly the same definition of essential
set &ss(w) that we gave in the previous section. The reason we are using here %’ (w) instead
of &ss(w) is because the essential set of a signed permutation defined by Anderson and
Fulton (Definition 1.2 of [4]) is properly contained in the set of corner for some signed
permutations, since their definition removes some “redundant” corners positions. In the
present work, we won’t disconsider such corners in our constructions and, from now on,
we will use the expression “corner” in place of “essential” to avoid some later misuse of

the definition of essential set of a signed permutation.

For example, consider w = ¢(2 3 1) = 1320 2 3 1. Figure 19 shows the
diagram of w. The SE corners (¢ — 1,p) are highlighted and they are filled with the rank
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function values 7, (p, ¢). In this case, the set of corners is

% (w)=1{(1,3,1),(1,1,2),(3,0,1),(2,2,2)}.

3210123

3 °

2 3]e
INDANID;

0 .

1 ll ~ °
2 ./ L
3 °

Figure 19 — Diagram for w = +(23 1) =13 2 0 2 3 1. The circle corners connected with
dashad lines illustrate the symmetry of Lemma 3.4

Notice that if a box (¢ — 1,p) is a SE corner that satisfies (3.1.2), then (p, q) is

a corner position and k = r,(p, q).

3.3.2 Extended diagram of a signed permutation in W,

We know that signed permutations must satisfy the relation w(z7) = w(i), then
the negative positions can be obtained from the positive ones. Hence, a signed permutation
w € W, corresponds to a (2n + 1) x n array of boxes, with rows indexed by {7, ..., n}
and the columns indexed by {7, ..., 1}, where the dots are placed in the boxes (w(i), )

form<i<I.

“x” in those boxes (a,b) such that a = w(i) and
1 < b, in other words, an x is placed in the same column and opposite along with the
boxes to the right of this x.

For each dot, we place an

The extended diagram D™ (w) of a signed permutation w is the collection of
boxes in the (2n + 1) x n rectangle that remain after removing those which are south or
east of a dot. The diagram D(w) < D" (w) is obtained from extended diagram D" (w) by

removing the ones marked with x. Namely, D(w) is defined by

D(w) = {(i,j) € [, 1] x [m,n] | w(i) > j,w ' (j) >4, and w™(—j) > i}.

The number of boxes of D(w) is equal to the length of w. Indeed, if define
J={je[n,n]|w'(j) <0} then define the following set

Dy(w) = {(i,j) € D(w) | j € J}.
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Notice that w™*(—j) > i is trivially satisfied because w'(—75) > 0. If we denote

| = —w () and m = —i then

#D1(w) = #{(i,j) € [0, 1] x J [ w(i) > j and w™'(j) > i}
=#{(l,m) e [1,n] x [1,n] | w(l) > w(m) and | < m}
=#{1<l<m<n|wl) >wim)}.

On the other hand, if we define the set

Dy(w) = {(i,j) € D(w) | j ¢ J}

then w™'(j) > i is trivially satisfied because w™'(j) = 0. So, denoting | = w™*(j) and

m = —1

#Do(w) = ##{(i, 5) € [0, 1] x ([, n] = J) | w(i) > j and w™'(—j) > i}

=#{(l,m) e [0,n] x [1,n] | w(=I) > w(m) and | < m}
= #{(l,m) e [1,n] x [1,n] | w(—I) > w(m) and | < m}
gl <l<men] w(-l) > w(m)}.

Hence, D(w) is the disjoint union D;(w) u Ds(w) and, by Equation (3.3.1),
#D,, = l(w).

Observe that if we use the embedding ¢ : W,, < Ss,,11, the matrix and extended
diagram of w € W,, corresponds, respectively, to the first n columns of the matrix and
diagram of +(w). The notation +(D™*(w)) will be used when we need to use the respective
(2n + 1) x (2n + 1) diagram of ¢(w).

The rank function of a permutation w in W, is defined by

rw(p,q) = #{i = p | w(i) < g}, (3.3.3)

forl<p<n,andm<q<n.

Since w(7) = w(i), then the rank function r,(p,q) is also equal to #{i <

p | w(i) = ¢}, so the rank functions r,, coincides to 7).

We say that integers (k,p, q) form a basic triple (of type B) if it a basic triple
of type A, i.e., it satisfies £ > max{0,1 — p — ¢} along with the following conditions: p > 0,
g # 0 and if p = 1 then ¢ > 0.

Given w € W, the next lemma states that there is a symmetry about the
origin of the corner positions corresponding to ¢(w). In order to simplify the notation,
given (k,p,q) a basic triple of type A, define the reflected basic triple (k,p, q)* by (k +
p+q—1,p+1,q+1).
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Lemma 3.4 ([4], Lemma 1.1). For w e W, the set of corners of t(w) € Sany1 has the
following symmetry: (k,p,q) is in € (v(w)) if and only if (k,p,q)* is in € (L(w)).

We can see in Figure 19 that both corners in the left half of the diagram are
symmetric by the origin to other two corners in the right side. This behavior will happen
for every signed permutation w, implying that half of €’(:(w)) suffices to determine the

signed permutation w; we will consider those corners appearing in the first n columns.

A corner position of signed permutation w is a pair (p,q) such that the box
(¢ — 1,p) is a southeast (SE) corner of the extended diagram of w. The set of corners of a
signed permutation w is the set (k, p, q) such that (¢ —1,7p) is a SE corner of the extended
diagram D" (w) and k = r,(p, q), except for corner positions (p, q¢) where p = 1 and ¢ < 0.
This exception comes from the fact that (1,¢), for ¢ < 0, is not a corner position in ¢(w)

because the respective box (¢ — 1,1) cannot be a SE corner since w(0) = 0.

Observe that every element (k,p,q) in the set of corners € (w) is also a basic
triple of type B. Since the integer k is the rank of w in (p, q), sometimes we can simply

say that the corner position (p, q) € € (w), instead of the basic triple (k, p, q).

The Figure 20 illustrates the extended diagram and the set of cornet of the
signed permutation w =1015324698 7.

0

g X| X[ X| X| X[ X[ X

g X[ X X| X| X[ X[ X] X

7 X[ X[ X X| X| X| X[ X

6

5

Z X[ X

3 w=10153226987

) I

T

0 ¢ (w)={(3,8,7),(4,6,4),(5,5,2),
! > (6,4,3),(6,2,1),(7,2,3),
3 4 (97276>}

4

5 l(w) =65

6 3

7

8

9

10

Figure 20 — Diagram and set of corners of a signed permutation.

To make the diagrams look cleaner, from now on we won’t denote x in the

extended diagrams D" (w). During the text, it can happen that we omit the word “extended”
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since we are only interested in studying the extended diagram of a signed permutation w

so that the diagram D(w) won’t be useful for us.

3.4 Vexillary signed permutations on W,

In this section, we will figure out what is a vexillary permutation in W,,. Recall
that there is an inclusion ¢ : W,, — Ss,,11, so that makes sense to think about permutations
w € W, such that its inclusion ((w) is a vexillary permutation in Ss,,;. Indeed, the
symmetry in the diagram of ((w) allows us to get a description of a vexillary signed

permutation intrinsically in W,,.

A triple of type B is a three s-tuples 7 = (k, p, q) of non-negative integer such

that
k=(0<l{31<l€2<-"<k‘s>,
p=p1=p=-=ps>0),
a=(@=q@=>->q>0),
satisfying

Pi — Dit1 + ¢ — Gip1 > ki1 — K

for every 1 < i < s, and we have the extreme value (ksi1,psi1,qs+1) = (n,0,—n) for some
integer n > max{ks, ps,q1} (when i = s, we have that p; + ¢; + ks > 0). Notice that this
definition is similar to the definition of a triple of type A.

Given a triple of type B, we can construct a permutation w(7) as follows:

(1) Starting in the p; position, place k; consecutive entries, in increasing order, ending

with g;. Mark these numbers as “used”;

(1) For 1 < i < s, starting in the p; position, or the next available position to the right,
fill the next available k; — k;_1 positions with entries chosen consecutively from the
unused absolute numbers, in increasing order, ending with @; or, if it is not available,

the biggest unused number below g;. Again, mark these numbers as “used”;

(s + 1) Fill the remaining available positions with the unused positive numbers, in in-

creasing order.

Let us consider the following example. Suppose that 7= (13458, 996 4 3,
12 9 8 8 5). The six steps to obtain w(7) are:
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(1): (k1,p1,q1) = (1,9,12). From position p; = 9 we are going to place k; = 1 consecutive
numbers, ending with g; = 12. Then,

w(9) = 12.

We also need to keep tracking what positions and values where have already been

used. Used positions: 9; Used values: 12.

(2): (k2,p2,q2) = (3,9,9). From position p; = 9 we are going to place ko — k; = 2
consecutive numbers, ending with g5 = 9. Since we already set a value in position 9,

then we go to the next available position. Then,

w(10) = 10, w(11) = 0.

Used positions: 9,10, 11; Used values: 12, 10, 9.

(3): (ks,p3,q3) = (4,6,8). From position p3 = 6 we are going to place k3 — ko = 1

consecutive numbers, ending with g3 = 8. Then,

Used positions: 6,9,10,11; Used values: 12,10, 9, 8.

(4): (k4,pa,q4) = (5,4,8). From position p; = 4 we are going to place ky — k3 = 1
consecutive numbers, ending with gz = 8. We have already used 8, so we are going

to use the biggest available value smaller than 8. Then,

w(4) = 11.

Used positions: 4,6,9,10,11; Used values: 12,11, 10,9, 8.

(5): (ks,ps,q95) = (8,3,5). From position p3 = 3 we are going to place ks — ky = 3
consecutive numbers, ending with g5 = 5. We cannot place values in positions 4 and

6, so we need to skip them. Then,

w(3) =7, w(5) = 6, w(7) = 5.
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In short, we can represent these six steps as follows:

12
12 10 9
8 12 10 9
11 8 12 10 9
7 11 6 8 5 12 10 9
w= 12 7 11 6 8 5 3 12 10 9 4.

A signed permutation w € W, is called a vexillary signed permutation if there

is some triple 7 = (k, p, q) of type B such that w = w(7).

We can determine the corner positions of a vexillary signed permutation as in
Theorem 3.2 for vexillary permutation. Remember that a corner position is a pair (p, q)
such that the box (¢ — 1,p) in the extended diagram D™ (w) is a SE corner. The set € (w)
is the set of all triples (k, p, q) such that (p, q) is a corner position and k = r(p, q), except

for corner positions (p, q) where p =1 and ¢ < 0.

Proposition 3.5 ([1], Lemma 2.4). Let w = w(T) be a vezillary signed permutation, for

a triple 7 = (k,p,q). Then the set of corners € (w) is

(g(w) = {(kh q17p1)7 (k27 qQ7p2)7 ey (ksu QSapS)}7

In other words, all SE corners of the diagram of w are the boxes (q; — 1,7;), and k; is the

number of dots strictly south and weakly west of the i-th SE corner in the diagram.

In order to give all possible ways to determine a vexillary signed permutation,
we need to define the concept of pattern avoidance. Given a signed permutation w € W,
and a signed pattern 7 = [7(1) w(2)---7(m)] in W,,,, m < n, we say that w contains 7 if
there is a subsequence w(iy) - - - w(iy,,) such that the signs of w(i;) and 7(j) are the same
for all 7, and also the absolute values of the subsequence are in the same relative order as

the absolute values of . Otherwise w avoids 7.

For example, 5 1 3 2 4 contains the pattern [3 2 1], as the subsequence 5 3 2,
but 512 3 4 avoids [3 2 1].

The following theorem gives four characterizations of vexillary signed permuta-

tions.

Theorem 3.6 ([1]). Let w be a signed permutation in W,,. The following are equivalent:

1. w is vezillary, i.e., there is a triple T of type B such that w = w(T);

2. 1(w) is vexillary, as a permutation in Sg,.1;
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3. The corner positions of w can be ordered (p1,q1), ..., (ps,qs), so that p1 = -+ = ps >
0and g =+ =qs>0;

4. w avoids the nine signed patterns [2 1], [32 1], [23 4 1],[2341],[341 2],
[3412],[34712],[4123]and[412 3].

The geometric setup of vexillary signed permutations and their association to

the Schubert varieties is developed in the second section of Appendix A.

3.5 NE path and unessential corners

Suppose that w € W, is any signed permutation. There are two notable classes
of SE corner in the set € (w) that we will be important to our main theorem stated in the

next chapter. They are the corners in the northeast path and the unessential corners.

Given any signed permutation w, consider a (strict) partial order for the
set of corners €(w) by (p,q) < (p/,¢) if and only if p > p’ and ¢ < ¢, for corner
positions (p, q), (p',q') € €(w). For example, in Figure 20, the unique possible relation is
(4,3) < (2,2), the two boxes filled in with the value 6.

Define the northeast (NE) path as the set .fe(w) of minimal elements of
% (w) relative to the poset “<”. Using the same example in Figure 20, we have that
Ne(w) = € (w) — {(6,2,1)}, since all the corners are minimal under this poset except the
basic triple (6,2, 1).

The positions (p;, g;) of the NE path #e(w) can be ordered so that p; = ps >
co-zp.>0and ¢ = q = -+ = q,. In fact, suppose that we order py = ps = --- = p, >0
but there is ¢ such that and ¢; < ¢;41. If p; = p;11 then we can exchange ¢ and @ + 1.
Otherwise, if p; > p;11 then (p;, ¢;) < (pit+1, @i+1) and (pi41, gi+1) does not belongs to the
NE path.

Given a signed permutation w, we say that a corner position (p,q) of € (w)
is unessential if there are corners (p1,q1), (p2,q2) and (ps,q3) in the NE path Ae(w)

satisfying the following conditions:

pr=pand ¢ <q<0;
po > 0and ¢ =G+ 1;
(p3,q3) < (P, q).

In other words, (p, q) is not a minimal corner in the poset in the upper half of
the diagram, the box (¢; — 1,p1) lays above and in the same column of the box (¢ — 1,7),
and the box (qz, p2 — 1) reflected from (go — 1,P3) lays to the right and in the same row of

(¢ — 1,p), as shown in Figure 21. Define by %(w) the set of all unessential corners of w.
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Figure 21 — Configuration of an unessential corner (p, ¢). The highlighted box (¢ — 1, )
satisfies all the conditions.

It is important to emphasize that we require all three corners (p1,¢1), (p2, ¢2)
and (ps, ¢3) must belong to the NE path Ae(w).

Considering the example above for a signed permutation w = 10153246987,
the set of unessential corners %(w) only contains the triple (6,2,1). In fact, Figure 22
shows that the corner (6,2,2) is an unessential corner and there are no other one since

this is the unique non-minimal corner for this case.

N = O N ol x| o]

Figure 22 — Part of the diagram %’(:(w)) showing that (6,2,2) is an unessential corner for
w=10153246987.
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Chapter 4

Theta-vexillary signed permutations

In this chapter, we will define a class of degeneracy loci that generalize the
ones got from a vexillary signed permutation. Such permutations are the ones such that
the cohomolgy classes [€),] are represented by a polynomial ©, that generalize the raising

operators associated to the vexillary and vexillary signed permutations.

4.1 Theta-triples and theta-vexillary permutations

A theta-triple is three s-tuples 7 = (k, p,q) with

k=(0<k <ky<--<ks),
P=(i=2p2=-2=ps>0), (4.1.1)
a=(q@=>@==q),

where ¢; is allowed to be negative and satisfying eight conditions. The first three are

Al. g; # 0 for all 7;
A2. g # —qj, for any i # j.

A3. If gs < 0 then p, > 1;

Now, let a = a(7) be the integer such that ¢,_1 > 0 > ¢,, allowing a = 1 and
a = s + 1 for the cases where all ¢’s are negative or all ¢’s are positive, respectively. For
all i > a, denote by R(i) (or R(i), to specify the triple) the unique integer such that
qr(i) > —0i > qRr(i)+1; is necessary consider kg = 0, py = 40, gy = +0, and R(a—1) = a—1.

The next three conditions are

BL. (pi — pit1) + (¢ — Gis1) > kiy1 — ks, for 1 <i < a—1;

B2. (Pz‘ - pz'+1) + (%’ - Qi+1) > (ki+1 - kz) + (kR(i) - kR(i+1))a fora <@ <'s;
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B3. ps +qs + ks > k) + 1, if a < s.

It is important to observe that none of the above conditions compare indexes
a — 1 and a. Finally, consider a < ¢ < s and let L(i) = L, (i) be the biggest integer j in
{R(i) +1,...,a — 1} satisfying k; — kr(s)+1 = qr)+1 — @5, i-e., L(1) = max{R(i) +1 < j <

a—1|Fkj —kri@)+1 = qr()+1 — ¢;}- The last two conditions are

Cl. —q; = k; — kg for all a < i < s;

C2. —qi = qru) + kru) — kre for all a <1 < s.

Notice that we intentionally divided the conditions in three blocks. We are

going to see that conditions in the same block share common characteristics.

Given a theta-triple 7, we can construct a permutation w(7) using the same

step-by-step construction given for a triple of type B as follows:

(1) Starting in the p; position, place k; consecutive entries, in increasing order, ending

with —q;. Mark the absolute value of these numbers as “used”;

() For 1 < i < s, starting in the p; position, or the next available position to the right,
fill the next available k; — k;_; positions with entries chosen consecutively from
the unused absolute numbers, in increasing order, ending with —g; or, if it is not
available, the biggest unused number below —¢g;. Again, mark the absolute value of

these numbers as “used”;

(s + 1) Fill the remaining available positions with the unused positive numbers, in in-

creasing order.

Notice that we should mark as used the absolute of the placed values because

we allow negative ¢; for a theta-triple.

A signed permutation w € W, is called theta-vezillary if w = w(7T) comes from

some theta-triple 7 = (k, p, q).

FExample 1. The permutation w given in Figure 20 can be obtained from the triple
T=(34569,86542, 74236) using the steps as follows:
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We can check that 7 is a theta-triple: clearly 7 satisfies A1, A2, A3. Then, the

smaller index where g, < 0 is a = 4. We also have that the inequalities
42 > —qa > q3, 41> —q5 > 42,
implies that R(4) = 2 and R(5) = 1, respectively. Then, the inequalities

(p1—p2)+ (1 —q) =5>1=ko— kK
(po—ps3)+(q2—¢q3) =3>1=ky —ky

prove that Bl is satisfied,
(P2 —ps5) + (@2 — q5) =5 >4 = (ks — ka) + (kr@) — krs))
prove that B2 is satisfied,
Ps+qs + ks =5>4=kps +1
prove that B3 is satisfied, and

—qs =322 =ky — kpu)
—@s = 6 = k5 — kg(s)

prove that C1 is satisfied. Finally, remember that L(i) = max{R(i) +1 <j<a—1|k; —
Er()y+1 = qr@)+1 — ¢;}, then L(4) = 3 and L(5) = 2. So, C2 is satisfied because

—qs = 3 = qr) + k@) — kra
—q5s =6 =5 = qr5) + krs) — kres)

Hence, w is theta-vexillary signed permutation. Observe that every (k,p,q) in
this triple is also a corner position in the diagram. In fact, this is not a coincidence, and

we will show that every theta-triple are corner positions on the permutation.

Notice in this construction that it does not create a descent inside a step, i.e.,

if a < b are positions placed by a Step (i) then w(a) < w(b).

The geometric setup of theta-vexillary signed permutations and their association

to the Schubert varieties is developed in the second section of Appendix A.

4.2 Descents of theta-vexillary permutations

A theta-triple 7 also can be seen as a set of basic triples of type B (k;, p;i, ¢i),
satisfying the eight conditions. We aim to prove that 7 < % (w). In other words, every

basic triple (k;, pi, q;) of a theta-triple 7 is a corner position in the extended diagram of
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w(7). This requires us to study descents in a theta-vexillary signed permutation, which
proofs are extentions of the one’s given by Anderson and Fulton for Lemmas 2.2, 2.3 and

2.4 of [1].

Before we study descents in a theta-vexillary signed permutation, we need some
properties related to the conditions and the step-by-step construction of a permutation

from a triple.

First of all, consider the following interpretation of the eight conditions of a

theta-triple.

Conditions A1, A2 and A3 are required in order to guarantee that w(7) is a

signed permutation, i.e., the elements (k;, p;, g;) are basic triples of type B.

Conditions B1, B2 and B3, in some sense, characterize a theta-vexillary permu-
tations as well as the condition (p; — pi+1) + (¢ — Giv1) > kiv1 — ki does for the vexillary
permutations. For B2, an extra kg — kgr@+1) is added to the right side because Step (7)
skips an equal number of entries, since they have already been used from Step (R(i+1)+1)
to (R(7)). Moreover, condition B3 is equivalent to apply ¢ = s in condition B2, where we

consider the extreme cases (ko, po, qo) = (0,n,n) and (ksy1,Psi1,qse1) = (n, 1, —n).

Finally, for conditions C1 and C2, we have the following lemma:

Lemma 4.1. The conditions C1 and C2 are equivalent, respectively, to

C1'. Given any a < i < s, all entries placed by Steps (a) to (i) are positive;

C2'. Given any a < i < s, all entries placed by Steps (R(i) + 1) to (a — 1) are strictly
bigger than q;.

Proof. For the first statement, observe that all Steps from (a) to (i) must skip at most
ka—1 — kR values because they were already used in Steps (R(i) + 1) to (e —1) and denote
by a := —¢; — (ka—1 — kg()) the number of available positive entries from 1 to g that can
be used by Steps (a) to (7). Then, condition C1 is equivalent to say that a > k; — k1,

i.e., there is enough positive values available to be placed by Steps (a) to (7).

For the second assertion, remember that the definition of L(7) says that it is the
biggest integer in {R(i) + 1,...,a — 1} where kru) — Kr()+1 = qri)+1 — qr@)- The smallest
possible entry placed by Steps (R(7)+1) to (L(7)) is limited below by qr¢;) + kru) — kr@e) +1.

Since for any Step (j) after L(i), we have that k; — kpuy41 < qr(i)+1 — ¢j, then no entry
placed by such step cannot be smaller than gz;). So, every entry placed by Steps (R(i) 4+ 1)

to (a—1) is limited below by qrq) + kL) — kr@) + 1, and we conclude that both conditions
C2 and C2' imply that ¢; < qru) + kre) — kre) + 1. O
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In other words, conditions C1 and C2 guarantee that given i > a, then all

values placed by Steps (R(i) 4+ 1) to (7) ranges from ¢; to G.

Lemma 4.2. Let w = w(T) be a theta-vexillary permutation and T be a triple. Then,
for each a < i < s the Step (i) places only positive integers in the construction of the

permutation w.

Proof. Observe that Step (i) must skip at most k;_1 — kp(;) values because they were
already used in Steps (R(i) + 1) to (i —1). Then, o = —¢; — (ki—1 — kpg(;)) represent the
number of available positive entries from 1 to g; that can be placed by Step (7). Using
the condition (iv), o = (k; — kr()) — (ki—1 — kr(:)) = ki — ki—1, which means that all the
k; — k;_1 positive entries to be placed in Step (i) fit in the positive entries 1 to . O

Proposition 4.3. Let w = w(7) be a theta-vexillary signed permutation and T = (k, p,q)
be a theta-triple. Then all the descents of w are at positions p; — 1, i.e, for each i, we have

w(p; — 1) > G = w(p;) and there are no other descents.

Proof. In Step (1), no descents are created, unless p; = 1, in which case the permutation
has a single descent at 0. For 1 < i < a, this is proved in Lemma 2.2 of [1]. Now, supposing
that a < i < s and ¢ > 2, assume inductively that for j < ¢, there is a descent at position
p; — 1 whenever this positions has been filled, satisfying w(p; — 1) > q; = w(p;), and
there are no other descents. By Lemma 4.1, only positive entries are placed in consecutive
vacant positions of Step (7), from left to right, at position p; (or the next vacant position
to the right, if p; 1 = p;). We consider “sub-steps” of Step (i), where we are placing an
entry at position p > p;, and distinguish three cases. First, suppose we are at position p,
with p < p;_1 — 1. In this case, the previous entry placed in Step (i) (if any) was placed at
position p — 1, so we did not create a descent at p — 1. Position p + 1 is still vacant, so no

new descents are created.

To clarify this proof, let 7 = (34569, 86542, 74236) as in Example 1. In
Step (5), the first entry placed is 1 and it does not create a descent:

w=-1-324-987

Next, suppose we are at position p = p;_1 — 1. This means that p; 1 — p; <
ki — ki_1, solet B = (k; — ki—1) — (pi—1 — p;) be the number of entries remaining to be
placed in Step (i), after placing the current at position p. Condition (v') tell us that
¢ < ¢ + 0 < qi—1, then considering the integer interval Z; = {g;—_1 + 1,...,q}, it must
be non-empty. We claim that the entry w(p) = w(p;—1 — 1) lies in Z; and therefore
w(pi—1 — 1) > @1 = w(pi_1), proving this situation. Remember that the step-by-step

construction must skip those entries that its absolute value have already been used, and
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then this claim is equivalent to say that even removing from Z; those repetitions, there

still is some value to be picked by w(p) in Z;.

To prove that claim, lets count how many values in Z; were used in previous
steps. For a < j < ¢, any entry z of Steps (j) satisfies © < §; < ¢;_1, that means « ¢ Z,. If
1 < j < R(i) then any entry « placed in Steps (j) satisfies z < §j < Trp) < ¢;, implying
that T ¢ Z;. If R(: — 1) < j < a then by condition (viii'), any entry z placed in Steps
(7) satisfies x > ¢;_1, implying that T ¢ Z;. Finally, if R(i) < j < R(i — 1) then by
condition (viii’), any entry z placed in Step (j) satisfies ¢; < * < G < Tre—1) < @1,
hence, T € Z;. We conclude that the only absolute values placed in previous steps that
belongs to the interval Z; are all the ones from Steps (R(i) + 1) to (R(i — 1)). So there
are « := kg(j—1) — kgr(;) values in Z; that cannot be used in the Step () in position p. In
order to place the correct value for position p of Step (i), we need to consider that the
values which are going to be placed after position p also must belong to Z; and are bigger
than w(p), i.e., it also is required to skip the [ biggest values in Z;. Since the number of
elements of Z; is §; — ¢;_1, follows from condition (vi') that #(Z;) > «a + 8 and, therefore,

there is some value in Z; to pick for w(p).

Continuing the example, in Step (5), the second entry placed is 5, creating an
descent at position 3:
w=-15324-987

Finally, suppose we are at position p > p;_;. Using the previous case, the entry
to be placed is some z € Z;. When an entry is placed in a vacant position to the right of
a filled position, it does not create a descent since either all entries already placed the
previous steps are smaller than §;—; < x or the entries placed in this step is smaller than
x. When it is placed to the left of a filled position, which can only happen at positions
p; — 1 for some j <7 — 1, and it does create a descent at the position p; — 1 satisfying
w(p; —1) > Gi—1 2 GG = w(p))

In Step (5) of our example, it remains to place the 3rd value 6 in the next
vacant position, which occurs at position 7. Observe that we do not create a descent at
the filled position to its left, but we do create a descent at position 7, since the position 8
is already filled:

w=-153246987

At the Step (s + 1), we can apply the previous case for i = s + 1, adding the
values kg1 =n, psi1 = 0,¢s01 = —n + 1 to 7. This procedure will create descents only at

those p; — 1 which are still vacant. O

Given a triple T = (k, p, q), the dual triple is defined by 7* = (k, q, p), where

p and ¢ were switched. Clearly, a dual triple could not be a theta-vexillary permutation,
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but the dual triple is useful to compute the inverse of w(r).

The dual triple 7% = (k, ¢, p) determines a signed permutation ¢(w(7*)) in

Sons1 using the follow steps:

(0) Put a zero at the position 0;

(1) Starting in the ¢; position, place k; consecutive entries, in increasing order, ending
with —p;. Mark the absolute value of these numbers as “used” and fill the reflection

through 0 with the respective reflection w(a) = w(a);

(i) For 1 < i < s, starting in the ¢; position (if ¢; < 0 then use a position before zero),
or the next available position to the right, fill the next available k; — k;_; positions
with entries chosen consecutively from the unused absolute numbers, in increasing
order, ending with —p; or, if it is not available, the biggest unused number below —p;.
Again, mark the absolute value of these numbers as “used” and fill the reflection

through 0 with the respective reflection w(a) = w(a);

(s+1) Fill the remaining available positions after 0 with the unused positive numbers, in

increasing order.

The difference here compared to the construction using the theta-vexillary
permutation is that we allow to have negative positions, so we need the full form of the
permutation. The signed permutation w(7*) is obtained from ¢(w(7*)) by restricting it to

the positions {1,...,n} .
Lemma 4.4. We have w(T*) = w(7)™".

Proof. We can prove in the same way as Lemma 2.3 of [1], adding the fact that for
a <1 < s, the permutation +(w) maps the set a(i) to b(i) and, hence, the inverse +(w)™"

maps b(7) to a(i). O

Ezample 2. Consider the dual triple 7% = (34569, 74236, 8654 2) of the one gave in

Example 1. The permutation ¢(w(7*)) is constructed as follows:

0
§ 9 10 0 10 9 8
8 9 10 6 0 6 0 9 8
8 9 10 6 5 0 5 - 6 0 9 8
8 9 10 6 4 5 0 5 4 6 00 9 8
8 9 10 7 3 6 4 5 2|02 5 4 6 7 10 9 8
789 10 736 45 2(0[/25 46 37109 381
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For each step, the bold numbers represent the values placed for such step, and

the italic ones are their reflection through zero.

So, w(T*) =2546371098 1 and we can easily verify that this permutation is
the inverse of w =1015324698 7.

Although w(7*) is not theta-vexillary, a similar version of Proposition 4.3 holds

for this case and the proof follows that same idea.

Proposition 4.5. Let w = w(1) be a theta-vexillary signed permutation, for a theta-triple
T = (k,p,q). Then all the descents of w™' are at positions q; — 1, when i < a, and G,
when © = a. In fact, we have
w g —1) > =w N q) , fori<a
wl(@) >pi— 12w (G+1), fori>a

and there are no other descents.

4.3 Extended diagrams for theta-vexillary permutations

In this section, we aim to understand how a theta-vexillary permutation looks

like in the extended diagram.

Given a position (p, ) in the extended diagram D" (w), define the left lower
region of (p, q) by the set boxes in the extended diagram strictly south and weakly west of
the SE corner (¢ — 1,p). In other words, denoting it by A(p, q), this set is

A(p,q) == {(a,b) € D™ (w) | a > ¢,b <P}

Notice that the step-by-step construction of a theta-vexillary permutation can
also be seen as a process of placing dots in the extended diagram, since each pair (w(i), )
corresponds to a dot in the diagram. We can say that a Step (i) places dots in the diagram
using the following rule: if an entry x is placed at a position z in the permutation, i.e.,
w(z) = z, then it produces a dot at the box (7, %) in the diagram. For instance, Figure 23
shows how each step places dots in the diagram of the triple 7 = (34569, 86542, 74236)
(c.f. Example 1). The first step places the entries 9, 8 and 7, respectively, at position 8, 9
and 10. This means that the dots for Step (1) are placed in boxes (9, 8), (8,9) and (7, 10).
The same idea happens for all steps. It is important to notice in this example that each
step “creates” a SE corner, but not all of then. In fact, two SE corners must appeared in
the diagram after the last step. This is the moment in which we can establish a relationship
between theta-triples and corners in the extended diagram. The next proposition states

how are some SE corners since we know the theta-triple.
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Figure 23 — Placing dots during a step-by-step construction. The thicker line encloses the
region A(p;, ;).

Proposition 4.6. Let w = w(T) be a theta-vezillary signed permutation and 7 = (k, p,q)

be a theta-triple. Then we have the following:

1. The bozes (q; — 1,p;) and their reflection (G;,p; — 1) are SE corners of the diagram

of L(w) (not necessary all of them);
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2. For any 1 <i < s+1, all the dots placed by Step (i) in the diagram are inside region
A(p’w QZ) and outside A(pi—b Qi—l);‘

3. k; is the number of dots inside the region A(p;, ;).

Proof. Lemma 3.4 says that there is a symmetry between boxes (¢; — 1,p;) and their
reflection (g;, p; —1). Then, it suffices to prove that every (¢; — 1,7;) is a SE corner. If p > 0,
then a signed permutation w has a descent at position p —1 if and only if i(w) has descents
at position p — 1 and p. By proposition 4.3, ¢(w) satisfies t(w)(p; — 1) > @ = t(w)(p;), and
it implies that

vw)(Pi) > ¢ — 1= 1(w)(pi + 1).
On the other hand, by Proposition 4.5, L(w)’1 satisfies

Uw) g = 1) > pi = o(w) " (@),

for any 7. This proves that (¢; — 1, ;) satisfies Equation 3.1.2, which proves item (1).

For item (2), first of all, observe that every entry = placed at position z in Step
(1) satisfies p; < z and = < @, implying that the correspondent dot at box (7, %) in the

diagram belongs to A(p;, ;).

Now, we need to check that all dots placed by Step (i) are outside A(p;—1, qi—1)-
It is enough to verify that whenever in Step (i) we are placing an entry x at a position
2 = p;_1 in the permutation, then z > g;_7. Set 8 = (k; — k;_1) — (pi—1 — p;) the number of
entries to be placed after the position p;_; during the Step (7). If 1 < i < a then condition
B1’' implies that 8 < ¢;_; — ¢;. The entries that will be placed are ¢; + 8 + 1,...,7 and
they are all strictly greater than g;—7 (in the diagram, it is equivalent to say that we have
¢i—1 — q; available rows to place the dots above ¢;_; but we only need 5 rows). If i = a

then by Lemma 4.1, x > 0 > ;1.

If @ < i < s+1 then condition B2 implies that 8 < (¢i—1 — @) — (kr(i—i) — kr@))
which means that have (¢;—1 — ¢;) — (kg@i—1) — kr(;)) available rows in the diagram to place
the dots above ¢;_; but we only need 3 rows. Observe that we must skip kri—1) — kr()
rows in the diagram since their reflection have already been used between Steps (R(i) + 1)
to (R(i — 1)). This proves item (2).

Finally for (3), k; is the total of dots placed until Step (i) and they are all
placed inside the region A(p;, ¢;). Any other dot placed after this step is placed outside

Portraying 7 as a set of corner positions (p;, ¢;), item (1) of Proposition 4.6

simply says that 7 < €(w).
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Remember that there is a poset “<” in the set of corners € (w) where two
corners positions satisfy (p,q) < (p/,¢') if and only if p > p’ and ¢ < ¢’. Also remember
that the NE path Ae(w) < €' (w) is the set of minimal elements of this poset.

Lemma 4.7. Let w = w(7) be a theta-vezillary signed permutation, and T = (k, p,q) be

a theta-triple. Then every corner position (p;,q;) of T is minimal in the poset “<”, i.e.,

T < Se(w).

Proof. Suppose that there is a pair (p;, ¢;) of T and a corner position (p,q) € € (w) such
that (p,q) < (pi,q), i-e., p > p; and ¢ < ¢;. The pair (p, ¢) is not in 7 because p and q
are strictly decreasing s-tuples. Since the box (¢ — 1,p) is a SE corner, Equation (3.1.2)
implies that

g<z and p<y, (4.3.1)

where 7 := w(p — 1) and y := w ' (q).

When we use the step-by-step construction to produce the permutation w,
observe that the position p — 1 must be filled by some step and the entry § must be placed

in some step. So, there must be integers 1 < m,l < s + 1 such that:

a) The entry x is placed in the position p — 1 during some Step (m). This places a dot
at the box (T, + 1) € AP, Gim);

b) The entry g is placed in the position y during some Step (). This places a dot at
the box (¢,7) € Api, @1)-

Although there exist such integers m and i, we are going to show that they
cannot be either equal, smaller or greater than each other. Hence, this contradicts the

assumption that (p;, ¢;) is not minimal in the poset.

If m = [ then, using Equation 4.3.1, p — 1 < y are positions in Step (m =)
and the entry in such positions are w(p — 1) = x > § = w(y), i.e., there is a descent in it.

This contradicts the fact that there are no descents in a step.

If m < [ then, using Equation 4.3.1, we got that 7 < pand § < = < @,
(the former relation comes from the fact that every entry placed by Step (m) is weakly
smaller than @,,). This implies that the box (¢q,7) also belongs to the region A(p,, gm), &

contradiction of item 2 of Proposition 4.6.

If m > [ then observe that Step (I) must fill all positions from p; to y in the
step-by-step construction of the permutation w. Since y > p — 1 = p; = p; (because i < [),
we have that the position p — 1 is also filled by Step (1), which contradicts the fact that it
is filled during Step (m). O
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Recall that a corner position (p, q) of € (w) is unessential if there are corners
(p1,q1), (p2,¢2) and (ps, g3) in the NE path Ae(w) such that (p,¢) is not a minimal corner
in the poset in the upper half of the diagram, the box (¢; — 1,p7) lays above and in the
same column of the box (¢ — 1,p), and the box (G2, p2 — 1) reflected from (g, — 1, p3) lays

to the right and in the same row of (¢ — 1,7), as we can see in figure Figure 21.

Proposition 4.8. Given w € W,, suppose that the set of corner € (w) is the disjoint
union

C(w) = Ae(w)OU(w).

Then w s a theta-vexillary.

Proof. Suppose that the set of corners @ (w) of a permutation w is given by the disjoint
union of the NE path .4e(w) and the set of unessential corners %(w). Since all corner
positions (p;, ¢;) of Ae(w) can be ordered so that p; = py = ---=p. >0and ¢; = ¢ >
< =@y, set k; as the rank 7,(p;, ¢;) and define the triple 7/ = (k, p,q). We will prove
that 7 is almost a theta-vexillary triple, i.e., it satisfies A1, A2, A3, C1, C2, and Bl. In

order to get B2 and B3, occasionally some elements (k;, p;, ¢;) should be removed from 7'

Conditions A1, A2 and A3 are true because w is a signed permutation in W,.
In fact, A1 and A3 come direct from the fact that there is no SE corner at row —1 or
above the middle in column —1 since w(0) = 0, and A2 is satisfied just because we cannot

have dots laying in opposite rows.

Now, a and R(i), for a < i < s, can be defined. Let us prove that 7 satisfies
conditions C'1 and C2. Consider the diagrams sketched in Figure 24.

For condition C1, let a < ¢ < s and consider the regions A and B as in Figure
24. Denote by d(A) and d(B) the number of dots in each one of them. The definition of R(7)
can be translated to the diagram as follows: R(i) is the unique index smaller than a such
that there is no other corner of 7 laying to the right of it and in the rows qps) —1,..., .
Suppose that there is a dot in the darker region A of Figure 24. This dot must be placed
by some Step (j), for j > R(7), which implies that the corner position (p;, ¢;) is located
above the row §; and it also places a dot above g;. However, the construction of a step says
that we must fill all entries between them, including ¢;. So, we should have a dot at row
¢; and another in the row g, a contradiction of condition A2. Hence, d(A) = 0. On the
other hand, d(B) < —¢; because condition A2 says that we cannot have dots in opposite
rows. Thus, —¢; > d(A) + d(B) = k; — kg, since d(A) + d(B) is the amount of dots to
be placed from Step (R(i) + 1) to (i).

By Lemma 4.1, we may show that 7 satisfies condition C2' instead of C2. In
the previous case, we proved that region A contains no dots. It means that no step from
(R(7) + 1) to (a — 1) place dots in A, which is equivalent to say that all entries placed by
Steps (R(7) + 1) to (a — 1) are strictly bigger than ¢;, proving C2'.
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Conditions C1 and C2

qi-___' ______ El

ey IR }

IrG) [ o R(i)I

|
|
|
AV
|
|
|

Figure 24 — Configuration required to get conditions C1 and C2.

In order to show that 7 satisfies conditions B1, B2, and B3, consider the

diagrams sketched in Figure 25.

For condition B1, let 1 <7 < a — 1 and consider the rectangular regions A and
B as in Figure 25 (left). Denote by d(A) and d(B) the number of dots in each one of them.
Notice that the number of dots in each rectangle is limited by the length of their sides, and
d(A)+d(B) is the number of dots in Step (7). If p; = p;11 then d(B) = 0 and d(A) < ¢;—qi+1,
since we cannot place a dot in row ¢;—1. So, (p;—pi+1)+(¢i—Gi+1) > d(B)+d(A) = ki 1—k;.
If p; > p;11 then, we cannot have the dot in column p; 4+ 1 inside B because it would not
create a SE corner (¢; — 1,7;). Hence, (p; — pis1) + (¢ — ¢iv1) > d(B) + d(A) = kip1 — ki.

For conditions B2 and B3, let a < ¢ < s and consider the rectangular regions A,
B and C of Figure 25 (right). Suppose that p; > p; ;1. Using the same argument of condition
C1, all dots between the rows q; and g;;1 are in rectangle C' and the number of dots in
this region is d(C') = kg@;) — kr@i+1)- As well as the previous case, d(B) < p; — pi11 and the
number of dots in region A is d(A) < (¢;—¢qi+1)—d(C), since we cannot have dots in opposite
rows. Therefore, (p; —pi41) + (¢ — Giv1) > d(B)+d(A)+d(C) = (kix1— ki) + (kre) —Kr@+1))-

The difficulty appears when p; = p;;1. In this case, d(B) = 0 and d(A) <
(¢ — qiv1) — d(C). Then, (p; — piv1) + (¢ — Giy1) = d(B) + d(A) + d(C) = (ki1 — ki) +
(kr(i) — kR(i+1)), which means that the equality can happen. So, we need to remove these

elements from 7" where the equality holds. Denote the set of index I = I, < [1, s] by

I'={iza|(pi—pis1) + (@ — @is1) = (kig1 — ki) + (kR(i) - kR(i-ﬁ—l))}
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Condition B1 Conditions B2 and B3
i+1
___________ []
qi+1 ° |
............. 0
_______ [V 7z
G T |
N
| |
| I
; |
| |
i+1 ! !
J IR I I AR i |
R, Gy R [
N i RO |
A [ N Q2 |
I NN 7%/ TN
440 BN
Qi o0, ' R(+1) | |
| |
N BEEEN
X I | [ 1
Di Dit1 Pi D1
Figure 25 — Configuration required to get conditions B1, B2, and B3.
Define T the triple
T = {(ki,pi, ) e T | i ¢ I}
Clearly, T satisfies A1, A2, A3, C1, C2, and B1. Suppose that a < i < j are

integers such that ¢,7 ¢ I and ¢+ 1,2+2,...,7—1€ I, i.e., ¢ and j are consecutive indexes

in 7. Then they satisfy

(Di — Pirv1) + (6 — Giv1) > (Kip1 — k‘z) + (kR(i) - kR(iJrl))a

(Pis1 — Piv2) + (Gir1 — Giv2) = (Kig2 — kip1) + (kR(iJrl) - kR(i+2))>
(Pi+2 - pi+3) + (Qi+2 - Qi+3) = ( i+3 z+2) (kR(i+2) - kR(i+3))>

(pj—1 —pj) + (@51 — q5) = (kj — kj—1) + (kr(i—1) — kr@))-

Therefore,

(pi = p5) + (@ — q;5) > (kj — ki) + (kr) — kr()),

and 7 also satisfies B2 and B3.

Finally, observe that the extended diagram of w(7) is exactly the extended

diagram of w, which means that w(7) = w.

]
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Now, we aim to proof the converse of this proposition.

Let w be a theta-vexillary permutation and 7 a theta-triple. Denote by «(T) <

% (1(w)) the set of all corner positions of 7 and their reflections, i.e.,
u(T) = U{(khpiaqi) Y (kiapiaQi)L}'
i=1

Remember that Propositions 4.3 and 4.5 state that all descents of w and w™!
are exclusively determined by elements in 7. More over, this assertion can be extended
to the diagram D(t(w))) of t(w): all descents of ((w) are at position p; — 1 and p;, and
all descents of t(w)™! are at position ¢; — 1 and g, where i ranges from 1 to s. Thus, if
there is other SE corner, it should not create descents, but it must match existing descents.
For instance, considering 7 of Example 1 and its diagram in Figure 20, observe that the

corner position (2,3) ¢ ¢(7) but it is in the same row of (4,3) € «(7) and same column of

(2,6) € (7).

We conclude that if there exists a corner position 7" ¢ «(7) then there are corner
positions 7", T" € 1(7) such that T" is in the same column of 7', and 7" is in the same row
of T

Now, consider the following situation: suppose that 7" = (p;,¢;) and T" =
(pj,q;), for some i < j such that ¢; > g; > 0. Is there possible, for instance, that the
descent of ¢(w) at position (p; — 1) and the decent of ¢(w)~! at position gj create a corner
T = (pi,q;), at the box (g; — 1,7;)? The answer depends on the arrangement of the dots

in the diagram, as shown in Figure 26.

Figure 26 — Example of combination of two descents. On the left, we can observe that the
dots are placed in a such way that there is a corner 7. On the other hand, the
figure to the right does not have a corner T" because the dots are not arranged
properly to create it.

This question allow us to figure out where we can find all the corner of w by

combination of descents of corner 7" and T" in (7).

Next lemma states a first situation where a SE corner cannot occur.

Lemma 4.9. Let w = w(T) be a theta-vexillary signed permutation, and T = (k,p,q) be

a theta-triple. Then for any 1 < i < s such that p; > p;11, there is no corner position (p, q)
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different of (pi, q;) satisfying p > pi+1 and q; = q. In other words, (p;, q;) is the unique SE
corner in the region highlighted in Figure 27.

Figure 27 — Region in the extended diagram where we cannot have a SE corner.

Proof. Suppose that there is (p, q) for some i such that p > p; 1. If p; > p > p;;1 then the
position p — 1 is a descent of w, which is impossible since all descents of w are at positions

p; — 1 and no one matches to p — 1.

If p; = p and ¢ > ¢; then the box (¢ — 1,7;) is a SE corner, and the dots in row
g and column p; + 1 are placed as in Figure 28. The dot placed in row q lies inside the
region A(p;y1,qiv1), and outside A(p;, ¢;), implying that such dot is placed during Step
(i+1).

Figure 28 — Sketch for proof of Lemma 4.9.

Notice that the dot at column p; + 1 cannot be placed during Step (i + 1)
because it would create a descent in Step (i + 1). Then, there is j > i + 1 such that
Step () placed such dot. In this case, Step (i + 1) should skip column p; + 1, which is
impossible (by construction, this step places dots in all available columns between w (g

and piy1). [

The NE path also can contain another kind of SE corner defined as follows:
given theta-vexillary signed permutation w and theta-triple 7, a corner position (p, q) ¢ T
is called optional if there are a <i < sand 1 <j<asuchthatp=p;, ¢ <qg=7G+1
and ¢;_; = ¢ > ¢;. In other words, (p, q) belongs to the NE path just between the corners
(pi—1,qi—1) and (p;, q;), and the box (¢; — 1,p;) lays above and in the same column of
(¢ — 1,P), as shown in Figure 29. Denote by Op,(w) the set of all optional corners and
observe that Op,(w) < Ae(w).

Observe that such box only occurs if the number of available rows between g;

and ¢ is smaller than the number of dots to be placed by Step (¢), which is k; — k;—1. In
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Figure 29 — Configuration of an optional corner (p, q).

other words, we need to have enough dots to place during Step (7) such that some of them

are placed below the corner (p, q). This implies that the equation

is satisfied. Thus, a triple 7" obtained by adding (k,p,q) to T also gives the same permu-

tation but it is not a theta-triple anymore.

Lemma 4.10. Let w be a theta-vexillary and T be a theta-triple. Then, the set of corners
is the disjoint union

C(w) =71 U Opr(w) U «w).

Proof. Consider the diagram D(:(w)) divided in quadrants as in Figure 30. As we can see,
a box (a,b) € D(t(w)) belongs to

e Quadrant A if a >0 and b < 0;
e Quadrant B if a < 0 and b < 0;
e Quadrant C if a <0 and b > 0;

e Quadrant D if a > 0 and b > 0.

0B | C
1 :

0 ......... C

1

A D

Figure 30 — Quadrants of the diagram.

Then, given (p, q) € ¢(7), we say that the SE corner (¢ — 1,p) belongs to:
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e Quadrant A if (p,q) = (p;, ¢;) for some i < a;
e Quadrant B if (p,q) = (p;, ¢;) for some i > a;
e Quadrant C if (p,q) = (ps;, ¢;)* for some i < a;

e Quadrant D if (p,q) = (p;, ¢;)" for some i > a.

Considering T = (p/,¢") and T" = (p”,¢") in +(7) such that p’ > p" and ¢’ # ¢”
(T" and T" are in different rows and columns), we say that 7" and 7" has a cross descent
box (a,b) of type

e aif ¢ >¢" and (a,b) = (¢" — 1,p');
e 3if ¢ >¢q" and (a,b) = (¢ — 1,p");

o vif ¢ <¢" and (a,0) = (¢" — 1,p');

e §if ¢ <¢"and (a,b) = (¢ — 1,1").

Figure 31 shows how the cross descents boxes are arranged in the diagram for

given 7" and T".

[1___ 1 1 ___1]

L o o L

___I1 [1--C
Type a Type Type v Type §

Figure 31 — Possible cross descents boxes.

Suppose that 7" = (p', ¢') and T" = (p”, ¢") are two corners of (7). Consider
that 7" lays in some quadrant X, T” lays in some quadrant Y, and cross descent box (a, b)
has type &, where X, Y € {A,B,C,D} and ¢ € {a, 3,7, d}. We say that this configuration
has shape X¢Y. Also denote by ce(T",T") = (a,b) the respective cross descent box. For

instance, Figure 31 shows a shape AaA.

First of all, we need to figure out all possible shapes and, then, verify if such

shapes can create a SE corner from the cross descent box.

There are 64 different combination of shapes X£Y, where X, Y € {A, B, C,D}
and £ € {a, 3,7, 0}. However, not every shape is possible because 7 is a theta-triple and
T',T" are chosen in (7). An example of impossible shape is AJA since, by definition,
there is no i < j where 7" = (p;, ¢;) and T" = (p;, ¢;) such that ¢; < ¢;. Thus, it remains
only 24 possible shapes. We listed them in Table 1, divided in two categories: the shapes
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Table 1 — Possible shapes

Shapes XY where ¢¢(T",T") | Shapes XY where c¢(T",T")
belongs to A or B: belongs to C or D:
AcaA; AaB, AaC, C5C, DSC, AjC,
AaD, BaB, BaC, BAC, DAD, ASD,
ABA, ASB, BB, CaC. DaC, DaD,
A+D, B7C, BAD. BSC, AsD, BiD.

X&Y where the cross descent box cg(7",T") belongs to the quadrants A or B, and the
shapes X¢Y where ¢¢(T",T") belongs to the quadrants C of D.

However, observe that if ¢(7",T7") belongs to quadrants C or D then its
reflection c¢ (7", T")* belongs to quadrant A or B and corresponds to the cross descent
box of corners (T")* = (p” + 1,¢" + 1) and (T')* = (p/ + 1,¢' + 1). In other words, each
shape in the left column of Table 1 is equivalent to another one to the right column. Hence,

let us consider only the 12 shapes where c¢(7",7") belongs to quadrants A or B.

It follows from Lemma 4.7 that 7 n %(w) = @ because no unessential corner is
minimal in the poset. By definition of optional corner, we also have that 7 n Op,(w) = @
and Op,(w) N % (w) = &. Then, all the sets are disjoint.

Suppose that T" = (p',¢") and T" = (p”, ¢") of t(7) has some shape X£Y, where
X,Y € {A,B,C,D} and € € {«, 3,7, 0}, such that the cross descent box c¢(7",T") is a SE
corner in quadrant A or B which does not belongs to 7. Then, analyzing each situation in
the first column of Table 1, we must show that either ¢(7",7") € Op,(w) U %(w) or it

leads us to a contradiction.

Consider ¢ = «, where p' > p", ¢ > ¢", and T = (p,q") is a SE corner

(¢" — 1,p/) not in 7 and satisfying the following conditions

vw)(p' 1) >¢" = L(w)(?z/) (4.3.3)

Uw)™Hq") > P = 1= (w) " (¢" +1).

o If XY is a shape AaA, AaB or BaB, then T" = (p;,¢:), T" = (pj,q;), where
1<i<j<s,and T = (p;,q;) is a SE corner (¢; — 1,p;). But Lemma 4.9 says that

T cannot be a corner.

e If X£Y is a shape AaC or BaC, then 7" = (p;, ), for some i, T" = (p;,q;)* =
(p; +1,g; + 1), for some j < a, and ¢; > @; + 1. We can assume that ¢ is chosen such
that there is no [ > ¢ satisfying p; = p; and ¢; > ¢ > g; + 1, i.e., there is no corner
of 7 in the same column and between the SE corners 7" and T. If p; > p;;1 then
Lemma 4.9 is contradicted. Thus, we have that p; = p;41 and ¢ > GG + 1 > ¢i41,

implying that 7" is an optional SE corner.
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If X£Y is a shape AaD, then T = (p;, q;), for some i < a, T" = (p;,q;)" =
(p; + 1,g; + 1), for some a < j < s, and ¢; > @; + 1. As in the previous case,
we can assume that ¢ is chosen such that there is no [ > 7 satisfying p; = p; and
¢ > q > @; + 1, i.e., there is no corner of 7 in the same column and between the
SE corners 7" and T'. If p; > p;;1, then the corner T contradict Lemma 4.9. Thus,
Di = Pi+1, ¢ > @ + 1 > ¢ip1 and i = R(j). Notice that the dot in the row g; + 1 is
between rows ¢; and g since 1" is a corner, which is impossible as shown in proof of

Proposition 4.8 (see Figure 32).

row (g +1)— e 11 Gt
row ¢; — Iji:R(j)
Figure 32 — Sketch for the shape AaD.

Consider ¢ = 3, where p' > p"’, ¢ > ¢", and T = (p",¢') is a SE corner

1,p") is a SE corner not in 7 and satisfying the following conditions

Ww)(p" = 1) > ¢ = u(w)(p")

- . (4.3.4)
vw) ™) > p" = 1= u(w) (g + 1)

If X¢Y is a shape ASA or AGB, then T' = (p;, ¢;) and T" = (p;, q;), for some i < a
and ¢ < j. Observe that the dots at column p; and row ¢; are placed by Step (j) (or
some previous one). Then, by construction, the dot at row ¢; — 1 must be placed by

some Step (1) for I < j. Thus, t(w) " (¢; — 1) > p;, contradicting Equation (4.3.4).

If X¢Y is a shape BOB, then 7" = (p;, ¢;) and T" = (p;, q;), for some a < i < j < s.
If o(w)"*(g; — 1) < 0, i.e., the dot in the row ¢; — 1 is in quadrant B then we can
proceed as the previous case. If t(w) ' (g; — 1) > 0 then belongs to the quadrant C is
a reflection of a dot placed during some Step (1) for [ < a. Since «(w)(g;) <P;+1 <0,
then ¢, = @ + 1 and the corner (p;, ¢;) lays in row g; + 1. Therefore, the reflection
(pr, )" is in the row ¢; — 1, and the corner T is optional or unessential (see Figure

33).

Consider & = v, where p' > p" ¢ < ¢', and T = (p',q¢") is a SE corner

(¢" —1,p/) is a SE corner not in 7 and satisfying the following conditions

(4.3.5)
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Figure 33 — Sketch for the shape BSB.

o If XEY is a shape AyD or ByD, then T" = (p;, ¢;), for any i, T
1,g;+1), for some a < j < s, and ¢; < g; + 1. By Equation (4.3.5), ¢; —

(pjan)l = (E"{_
1= u(w)(p;)
and ¢(w)'(¢; — 1) > p; — 1 = 0 > 1«(w)"!(g;), implying that no Step (1), for [ < a,

can place the dot at row ¢;. Hence, qr;) = ¢; + 1 and T' is exactly the corner

(Pr()» 4r(j)) of T (see Figure 34).

Figure 34 — Sketch for the shape AyD or ByD.

o If X£Y is a shape ByC, then we clearly have that T is an unessential or optional
O

corner.

Proposition 4.11. For w e W, w is theta-vexillary if and only if the set of corner € (w)
is the disjoint union

C(w) = Se(w) O« (w).

Proof. Suppose that w(7) is theta-vexillary. From Lemma 4.7, 7 U Op,(w) < Ae(w). On
the other hand, Lemma 4.10 implies that Afe(w) < 7 U Op,(w) since Se(w) N % (w) =
. [

Remark 4.12. If w is a theta-vexillary signed permutation but we don’t know a theta-triple

such that w = w(7), we can use the process in the proof of Proposition 4.8 to get .
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Basically, set 7 with all the corners in the NE path .#e(w). Then, withdraw all the optional

corners from it, which results in a valid theta-triple 7 of w.

Proposition 4.13. The theta-triple is unique for each theta-vexillary signed permutation.

Proof. Suppose that 7 and 7 are two different theta-triples such that w = w(7) = w(F).
Then, TU0p,(w) = Ae(w) = TUOpz. If there is a corner position (p, q1) € Op,; N T then
there is ga > ¢ such that (p,g2) € T is a corner position immediately above it. Notice
that (p,g2) does not belong to 7, otherwise condition B2 of # for both corners would
contradict Equation (4.3.2) for the optional corner (p,q;). Then, (p,q2) € Opz n 7. For
the same reason, there is g3 > ¢y such that (p, ¢3) € Op, N T, and keep going. Hence, this
process should be repeated forever, which is impossible since the sets are finite. Therefore,

Opr n T = &, and by the same reason Op;z N 7 = ¢, which implies that 7 = 7. O

4.4  Pattern avoidance

Recall that given a signed pattern 7 = w(1) 7(2)---7(m) in W,,, a signed
permutation w contains 7 if there is a subsequence w(iy) - - - w(i,,) such that the signs of
w(i;) and 7(j) are the same for all j, and also the absolute values of the subsequence are

in the same relative order as the absolute values of . Otherwise w avoids 7.

Proposition 4.14. A signed permutation w is theta-vexillary if and only if w avoids the
follow thirteen signed patterns [13 2], [231],[321],[321],[2143],[2341],[234T],
[3412],[3412],[3412],[3412],[4123],and[41 2 3].

Proof. We know, by Proposition 4.8, how to describe a theta-vexillary permutation by the

SE corners of the extended diagram.

c b a
w(b) C
. O
w(e) .
T
w(a) S . R R

Figure 35 — Suppose that w contains [I 3 2]. We can restrict the diagram of w to the
pattern [1 3 2].
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Figure 36 — Diagram of w restricted to 12 different patterns.

Suppose that w is a theta-vexillary signed permutation. To prove that it avoids

all these 13 patterns, we will assume if one of these patterns is contained in w, then show
that there is a SE corner T' such that T' ¢ Ae(w) v %(w).

Assume that w contains [1 3 2] as a subsequence (w(a) w(b) w(c)) satisfying
w(a) < w(c) < w(b) for some a < b < c. Figure 35 shows the diagram of w and its
restriction to the columns @, b, ¢ and rows 0, +w(@), +w(b), +w(¢). Notice that the box T'
(resp. T") is not necessarily a SE corner in the diagram of w, but certainly there is a SE

corner in the shaded area. So, we can assume that 7" and 7" are SE corner when restricting
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it. Clearly, T is neither an unessential corner nor minimal under the poset.

We can use the same idea to prove that other 11 patterns should be avoided,
as shown in Figure 36. Only the pattern [2 1 4 3] requires more arguments to show that it

also is avoided.

Assume that w contains [2 1 4 3] as a subsequence (w(a) w(b) w(c) w(d))
satisfying w(b) < w(a) < w(d) < w(c) for some a < b < ¢ < d (see Figure 37). Suppose
that 7" and T" are SE corner in the respective shaded area. Clearly T ¢ Afe(w), but it
could be an unessential corner. If 7 is a theta-triple of w then notice that there are ¢ and j
such that Step (i) and (j) place a dot in the column b and @, respectively. It follows from
the step-by-step construction that a < ¢ < j, however it also lead us to a contradiction

because we cannot place a dot in the row w(b) during Step (7) and skip the row w(a) since

it will be place further.

Figure 37 — Suppose that w contains [2 1 4 3].

Now, let us assume that w is permutation that avoids all the thirteen patterns
listed above. We are going to prove that €(w) = Ae(w) U Z(w), and hence, w is a

theta-vexillary permutation.

Suppose that there are corners T' = (p,q) and T" = (p/, ¢') such that ¢ > 0 > ¢
and p’ > p > 0, i.e.,, T is in quadrant A, 7" is in quadrant B, and 77 < T. If we
denote @ := p, b := p' — 1 and ¢ := w (¢), then they satisfy 0 < a < b < ¢ and

w(a) < 0 < w(c) < w(b). Observe that @, b, ¢ are the columns of the dots in Figure 38.

In order to relate the subsequence (w(a) w(b) w(c)) of w to some 3-pattern m,

we need describe all possible orderings of w(a), w(b) and w(c).

o If w(a) < w(c) < w(b) then m = [1 3 2];
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Figure 38 — Sketch for the case where T is in quadrant A, 7" is in quadrant B, and 7" < T'.

o If w(c) < w(a) <w(b) then 7 = [2 3 1];

e If w(c) < w(b) < w(a) then 7 = [3 2 1].

By hypothesis, the pattern in each case should be avoid. Hence the configuration

in Figure 38 is impossible.

Now, suppose that there are corners T' = (p,q) and T" = (p',¢’) such that
g>¢q >0andp >p>0,ie., bothT and T" are in quadrant A and 7" < T. Denote
i=w ' (@+1),a=p,b=p —1land c=w'(¢).

If © > 0, then they satisfy 0 < < a < b < ¢ and w(a) < w(z) < w(c) < w(b).

Observe that 7,a, b, ¢ are the columns of the dots in Figure 39 (left).

....................... e | w@
7
b b
° ‘e
<o I
............ . | e
. . 1 . .
‘e °
a a

Figure 39 — Sketch for the case where both 7" and 7" are in quadrant A, and 7" < T'.

In order to relate the subsequence (w(i) w(a) w(b) w(c)) of w to some 4-pattern

7, we need to describe all possible orderings of w(i), w(a), w(c) and +w(b).

o If w(b) <w(c) <w(i) <w(a)then m=[3412];

o If w(b) <w(c) <w(i) <w(a) then 7 =[341 2]

o If w(c) <w(b) <w(i) <w(a) then 7 =[3421];
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o Ifw(c) < w(i) < w(b) <w(a) then 7 = [24 3 T;

o If w(c) <w(i) <w(a) <w(b) then 7 =234 1].

By hypothesis, the pattern in each case should be avoided (in some cases, the

highlighted parts are avoid by [3 2 1]). Hence this configuration is impossible.

If © < 0 then we have four possibilities to place 7 > 0 in the sequence 0 <
a < b < c. Observe that i,a, b, ¢ are the columns of the dots in Figure 39 (right). Table
2 combines all this possibilities along with all possible orderings of w(7),w(a), w(c) and
+w(b), in order to get the respective 4-pattern 7 relative to the correspondent subsequence

of w.

Table 2 — Combinations to get the respective 4-pattern of the subsequence of w.

1<a<b<c | a<i<b<c | a<b<i<c | a<b<c<?
w(d) <w(c)<w@) <w(a) | [3412] [4312] [4132] [412 3]
w(b) <w(c)<w(@)<w(a) | [3412] [4312] [4132] [412 3]
w(e) <w(b)<w(@)<w(a) | [3421] [4321] [4231] [421 3]
w(c)<w(@) <w(b)<w(a) | [2431] [4231] [4321] [4312]
w(c)<w(@) <w(a)<wd) | [2341] [3241] [3421] 341 2]

By hypothesis, the pattern in each case should be avoid and, hence, this case

is impossible.

Finally, suppose that there are corners T' = (p,q) and T" = (p',¢’) such that
0>qg>¢ and p’ > p >0, ie., both T and T are in quadrant B, and 7" < T'. If we
denote i = w ' (g+1),a=p—1,b=p, c=p —1and d = w *(¢), then they satisfy
i<a<b<c<d, wb)<wla)and wb) <w(i) < w(d) <w(c). Observe that 7,a, b, ¢ are
the columns of the dots in Figure 40 (left).

Consider the following situations:

If w(b) < 0 then the subsequence (w(b) w(c) w(d)) of w is a 3-pattern 7 equal to
[T32],[23 1] or [3 2 1], which is impossible;

If 0 < w(b) <w(a) < w(d) <w(c) then the subsequence (w(a) w(b) w(c) w(d)) is a
4-pattern m = [2 1 4 3] and also should be avoided;

If > 0 and w(b) > 0 then the subsequence (w(i) w(b) w(c) w(d)) is a 4-pattern
m = {2 14 3] and also should be avoided;

e If 0 > ¢ >z and w(b) > 0 then the subsequence (w(7) w(c) w(d)) of w is a 3-pattern
7 equal to [1 3 2], [2 3 1] or [3 2 1], which is impossible;



Chapter 4. Theta-vezillary signed permutations 99

‘e a
. z
c Lo Do
‘o a d : s
Lo ‘e ° : S
d : D Lo
L SR A w(?)
[T] : e . q
. B q
b L w(i)
7

Figure 40 — Sketch for the case where both 7' and 7" are in quadrant B, and 7" < T.

e If i <cand 0 < w(b) < w(d) < w(a) then clearly there are SE corners S and S’ as
in Figure 40 (right). Therefore, such construction implies that 7" is an unessential
box. 0

Therefore, Propositions 4.8, 4.11, and 4.14 prove the main theorem.

Theorem 4.15. Let w be a signed permutation. The following are equivalent:

1. w is theta-vexillary, i.e., there is a triple T such that w = w(T);

2. the set of corner € (w) is the disjoint union

C(w) = Se(w) V% (w),

1 B21],[2143],

3. w avoids the follow thirteen signed patterns [1 3 2], [2 3 1], [3 2
4123],and [4123].

1,321
23471, [2341],[3412],[3412],[3212],[3412],[@1

4.5 Particular case: Grassmannian permutations

Recall that all Schubert varieties of a odd orthogonal Grassmannian OG(n —
k,2n + 1) are parametrized by elements in set W®) of minimal representatives of the coset
of Wy in the Weyl group W,. This permutations can be denoted, by Equation (1.1.1), as
follows

W = Wy = (U/k,...,Ul,)\h...,)\T,Un_k_r,...,vl)

where r <m—k, A=A >X> >\ >0),u=(ug >uy>--+>u, >0), and
v = (Ul > Vogs o0 > Up—key > O)
Observe that each w € W) ayoids all the thirteen signed patterns in Theorem

4.15 by construction of w. Hence, every w in W) is a theta-vexillary signed permutation.
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The unique descent of w € W™ is in position k since w(k) = uy > A\ = w(k+1),
and w(i) < w(i+1) for i # k. If 7 = (k, p, q) is the theta-triple of w then, by Proposition
4.3, all decents of w are in position p; — 1, so we conclude that p; = ps = -+~ =p, =k + 1.

Moreover, all the SE corners € (w) of the extended diagram of w lie in the column & + 1.

For instance, consider the permutation w = (2,5,6,8,7,4,1,3) given by the
double partition of Figure 2. The extended diagram of this permutation is given in Figure
41.

8 7654321

8
7

6 °

5 °
4 5

3 |e

2 °
1

0 4

1 °

2

3 3

4 °

5

6 2

7 )

8 °

Figure 41 — Extended diagram of corners of a Grassmannian permutation.

As expected, all SE corners lies in column 4 (remember that, by definition,
the white boxes in the top half of column T are not considered SE corners). Furthermore,
there is neither unessential nor optional corners. Hence, we can obtain the theta-triple of
w as in the proof of Proposition 4.8, where 7 is given by the corners in the NE path, i.e.,
T=(23454444,7413).
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APPENDIX A

Degeneraci loci and Chern class

formulas

In this appendix, we give the geometric construction that explains the vexillary
permutations (signed or not) and the theta-vexillary signed permutations. We recommend
the reading of this appendix after a complete understanding of definition of each type of

permutation.

This chapter is a compilation of Anderson and Fulton [1, 2, 3, 4], Fulton [20],
and Manivel [32].

A.1 Degeneraci loci of type A

Let X be an arbitrary nonsingular complex variety (or scheme). Consider

h:E—Fa map of vector bundles over the variety X, and

~ ~ ~

B> B —>E=E5F=F—>F > >k,
are flags of subbundles, where each E; and f’l are vector bundles over X of rank i. Notice

that for any 1 < p,q < n, there is an induced map FE, — ﬁq. The degeneracy locus

corresponding to a permutation w € S,, is a subvariety 2, € X defined by

Q, = {ze X | rank(E,(z) — ﬁq(x)) <p—riqp), forevery 1 <p,g<n}. (A.L1)

Notice that the degeneracy loci depend on h, F,, and F,. If we consider

7u(p,q) = p—1:(g,p) as given in Remark 3.1, the conditions are written as rank(E,(z) —
Fy(x)) < Fulg, p)-

If the map h : £ — Fis sufficiently generic, the degeneracy locus 2, is a
subvariety of X of codimension ¢(v). In other word, the sufficiently generic condition

means that €2, is a subvariety of X of codimension ¢(v) for “almost all” maps h : E — F.
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Now, we are going to consider a particular construction. Let V' be a vector

bundle on X of rank n, and two flags of vector bundles over X,
EFicEyc---cE,CV,
F,cF,,c---cFcV

where E; has rank ¢ and F; has rank n — . In this case, set F; := V' /F; with rank i, and

observe that

~

ElcE2C"'CETLCV_»ﬁn_»ﬁn71_»"'—»Fl.

Let us rewrite the conditions for the degeneracy locus Q. If f, .. : E,(z) —
E,(z) = V/F,(x) is the induced map, then it follows, by the rank-nullity theorem, that

rank(f,,.) = dim E,(z) — dim Ker(f, ,.) = p — dim(E,(z) n F,(z)).
Hence, the degeneracy locus of w is
Qp = {re X | dim(E,(z) n F,(z)) = r2(q,p), for every 1 < p,q < n}. (A.1.2)
For our purposes, it is enough to consider the degeneracy locus for this particular situation.

The Schubert varieties are the special cases for X being a complex flag manifold
Fo = Sl(n,C)/Po. Let V' = C" be the complex vector of dimension n. It is known that a
flag manifold Fg is homeomorphic to the set FU(V) = F{;, ;, ... (V) of all flags

L.I(L“CLWCLZTCV)

where dim L;; = i; for any j. In order to simplify our notation, suppose that F'¢(V) is the
complete flag manifold where any element of the flag manifold is L, = (L; € Ly < ---
L,=V).

Fix a complete flag V, of vector spaces in V. For each w in S,,, we are going to

construct the degeneracy locus €, in the variety X = F/{(V') associated to some choice of

vector bundles £, ¢ ---c E,, and F,, c ---  F].

Let us define F, ..., E, as follows: the vector bundle E; on the flag manifold

FU(V') consists of the vector bundle whose total space is
T, ={(Ls,v) € FL(V) xV |ve L;}

so that it projects the pair (Lo, u) on L,. Notice that the fiber on L, is F;(L.) = L;. This
also can be constructed using the tautological bundles over CP(V'). Define F; as the trivial
bundle of V,,_; on F¢(V'), where, for every L,, the fiber is F;(L.) = V,,_;. Clearly, we have
that F, © --- < F; ¢ V and rank(F;) = rank(V/F}) = i. Hence, the degeneracy locus for

a permutation w in S, is as in Equation (A.1.2) becomes

Qu(Va) = {Lee FU(V) | dim(L, N V,_,) = r2(q,p), for every 1 < p,q < n}.
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Recall from Chapter 1 that we defined a Schubert variety by S,, = cl(IV - wbe),
and it has dimension ¢(w). Instead of defining the Schubert variety as a subset of the

homogeneous space G/Pg, it can be written as a subset of F¢(V') as follows

Su=8u(V) = {La€ FUV) | dim(L, A V,) = p— r(a.p), for every 1 < p,q <n}.

Observe that the choice of V, is associated to the point bg = 1 - Pg in the flag
Fgo. Clearly, S,,(V4) and €2,,(V4) are not equal since they have, respectively, dimension and

codimension ¢(w). However, we can find a relation between them.

Let w, € S,, be the involution, i.e., w,(i) = n — i + 1. For all p, ¢, the condition

dim(L, N V,,_,) = ri(q,p) is equivalent to

dim(L, N Vy) = r5(n — q,p)
=#{i<plw(i)>n-q}
= #{i <p | wow(i) < ¢}
=p—#{i <p| wow(i) > q}

=P~ (a0, D)-
Therefore, we have that
Quw = Su,w-

A.1.1 Chern class formula of vexillary permutations

Observe that the definition of the degeneracy locus €2, on a variety X takes
into account every (g, p) in the diagram D(w), i.e., there are n* conditions to satisfy. But,
there exists a subset of these n* conditions which defines the same locus more efficiently,

given by the essential set of w, as if follows:

Proposition A.1 ([20] Proposition 4.2). The degeneracy locus €, is also defined by

Q, = {re X | dim(E,(x) n F,(x)) = r(q,p), for every (q,p) € Ess(w)}.

This proposition tell us that we require only the essential set of a permutation
to determine its degeneracy locus. Thus, if w is a vexillary permutation then we can
use Theorem 3.2 and define the degeneracy locus of w by its associated triple of type A
T = (k,p,q). Given two flags vector bundles

E,cE,c---cE, cV,
F,cF,c---cF,cV,
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the degeneracy locus of the vexillary permutation 7 is

Q =Q, ={reX| dim(E,,(z) n F,(x)) = k;, for every 1 <i < s}.

Now, consider the integral cohomology ring H*(X) = H*(X,Z). The cohomol-
ogy class [€,] belongs to the cohomology ring H**)(X). In fact, since X is a nonsingular
complex variety of dimension m, it is an oriented real 2m-manifold, and the group Hs,,(X)
has a canonical generator [X]; then, the Poincaré duality map H'(X) — Hoy,,_s(X) is
an isomorphism. The (closed) subvariety €2, determines a class denoted [€2,] in Haq(X),
where d is the dimension of €,,. By Poincaré duality, we have [Q,] € Haq(X) = H*™(X)

since ¢(w) is the codimension of €, in X.

It is reasonable to ask if there is any formula that describes the cohomology
class [, ]. Indeed, the class [€2,] is a polynomial that depends on the total Chern classes
of E,, and F,.

Recall that, given any vector bundle E on a variety X of rank r, cohomology
classes ¢;(V) = HY(X), for j = 0,1,2,..., are called Chern classes for the bundle V if
they are invariant under vector bundle isomorphisms and satisfy certain axioms. The total
Chern class of F is the sum ¢(E) = 1+ ¢1(F) + c2(E) + -+ + ¢,.(E).

Back to the vexillary permutations, denote

c(k;) == c(F,, — E,,) = c(Fy,)/c(Ep,) , forevery 1 <i<'s, and

c
c(k) :=c(k;) , whenever k; 1 <k < k;.

where, by convention, we set kg = 0. Since H*(X) is a graded ring, we can decompose

c(k), for every k, as follows
c(k) =1+ ci(k)+ co(k) + -+,

where ¢;(k) € H*(X). The next theorem gives the explicit formula for class [€,] for a

vexillary permutation w.

Theorem A.2 ([20] Proposition 9.6). Let w € S,, be a vexillary permutation such that T
is the respective triple of type A and A\(T) = (A1,..., \.) is the partition as defined above,

where r = ky. Then we have
[Q:] = Axry(e(1), .- e(r)) == det(en,+j—i() )1<ij<r-

The polynomial given by this determinant is also known as Schur determinant.
The polynomial Ay has a variation where it is described as a raising operator as follows:

given ¢ < j, we define R;;(\) the function that adds 1 to \;, and subtracts 1 from \;, i.e.,

R\ = (A, A+ 1,00 =1 ).
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A raising operator R is any monomial in these R;;’s. Set my = H ey, (1) and R-my = mpy

where R acts on the monomial my. If 7 > 0 is any integer and R™ is the raising operator
defined by

R = T[] (1-Ry)
1<i<j<r
then an application of the Vandermonde identity shows that the cohomology class [€2,] is
given by
[Q] = Ax(c(1),...,¢(r)) = R™ -my = RD - (ex, (1) e (7).

Such description of [€2;] in terms of the raising operator R will inspire an equivalent
result for the theta-vexillary signed permutation, where the raising operator will be slighted
modified.

For the general case where w € .S, is any permutation we consider the double

Schubert polynomial, which can be found in [20, 32].

A.2  Degeneraci loci of type B

Let V be a vector bundle of rank 2n + 1 on a variety X, equipped with a

nondegenerate quadratic form. Consider two flags of vector isotropic subbundles on X,

E,ckE,c---cE cV,
F,cF, c---cFkFcV

where F; and F; have rank n + 1 — i. We can extend F; to complete the flag in V', by

setting I := Fi

s+1 when ¢ > 0. Then,

F,c--.chcFkclkic - --cF=V

We can define the degeneracy locus €2, € X of a signed permutation w € W,
as in Equation (A.1.2), by

Qp ={ze X | dim(E,(x) n Fy(z)) = ru(p,q), for every 1 <p<nandn

N

q < nj.

As for S, we also have an interpretation of Schubert varieties as degeneracy

loci for a signed permutation in W,,. We will give a brief explaination of such relation.

The Schubert varieties are the special cases for X being any complex flag
manifold Fg = SO(2n +1,C)/Pe. Indeed, let V' = C***! be the complex vector space with

nondegenerate quadratic form. Fix a complete isotropic flag V, = (0 c V,, c V,,_y c ---
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Vi < V) of isotropic vector spaces in V', where V, has dimension n + 1 — ¢. Set V5 := Vqﬁl

when ¢ > 0. Then, the Schubert variety €,(V.) of a signed permutation is
Qu(Ve) ={Le e Fo | dim(L, nV,) = ry(p,q), for every 1 <p<nandn < ¢ <n}.

This degeneracy locus is a Schubert variety of codimension /(w), and it is related to the

Schubert variety S,, as follows:
Qw = Swo-wa
where w, is the involution in W,,.

Notice that the definition of the degeneracy locus €2, on a variety X takes into
account every (p,q) in the extended diagram D*(w), i.e., there are (2n? + n) conditions
to satisfy. A version of Proposition A.1 for signed permutations was given by Anderson
and Fulton.

Proposition A.3 ([4] Corollary 2.6). The degeneracy locus €, is also defined by

Q= {re X | dim(E,(z) n Fy(x)) = ru(p, q), for every (p,q) € € (w)}.

A.2.1 Chern class formula of vexillary signed permutations

If w = w(7) is a vexillary signed permutation then, by Proposition A.3, the

degeneracy locus of the triple 7 = (k, p, q) of type B is
Qr =Q, ={reX | dim(E,(z) n F,(x)) = k;, for every 1 <i < s}.
Given 7, we define a strict partition A = A\(7) = (A > Ag > -+ > A\, > 0)
such that
M, =pi +q¢ — 1, forevery 1 <i<s,
and we set the remaining parts A\, = \g, — (k; — k) for ki1 < k < k;.

The cohomology class [€2,,] is belongs to the cohomology ring H 20(w) (X). Denote

the total Chern classes
c(k;) :=c(V—-E, —F,) , forevery 1 <i<s, and
k

c(k) :=c(k;) , whenever k;_; < k < k;.

where, by convention, we set ky = 0. Then, we get the explicit formula for the cohomology

class [Qy]-

Theorem A.4 ([3]). Let w € W, be a vexillary signed permutation such that T is the
respective triple of type B and A\(T) = (A1,...,\) is the strict partition as defined above,

where r = ky. Then,

2" [Q] = Phymy(c(1),...,c(r)) := ( I 1_R”'> (en (1) -en (1)

1<i<j<r L+ Rj;
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Remark A.5. This construction is based on the inclusion of W, in the odd permutations
Sont1. We could also consider a signed permutation as an even permutation in Sy,. In
this case, a triple 7 of type C is defined as a triple of type B, and the geometry starts
with a vector bundle V' on X of rank 2n equipped with a symplectic form. Given two flag
isotropic subbundles F,, c F,, 1 ¢ ---c Fy <V and F, c F,,_1 < --- < F; < V, the
degeneracy locus €2 of a triple T of type C is

Q =Q, ={re X | dim(E,(z) n F,(x)) = k;, for every 1 <i < s},

and the cohomology class of €1, is

1<i<j<r 1+ Ry

[m=Pfx<f><c<1>,...,c<r>>=( |1 1_R”)-<cx1<1>---cxr<r>>

It follows that the cohomology class [€2,] for a triple of type C differs by the

term 2" when compared to a triple of type B.

A.2.2 Chern class formula of theta-vexillary signed permutations

If w = w(7) is a theta-vexillary signed permutation then the degeneracy locus

of a theta-triple 7 = (k, p,q) is

Q =Q, ={re X | dim(E,(z) n F,(x)) = k;, for every 1 <i < s}.

Consider the sequence p(7) = (p1, p2, . . ., px.) defined by

k=1 ik <k,
P kR(z) , it k> ka—l and l{iz’_l <k< ]fz

Now, we can define a partition A\(7) = (A1, A, ..., A, ) as follows: first of all,

set the values of A\ for k; by

pi+q—1 Jifi < a,
Akl: . .
pi+q+ki—1—p, ifi>a.

Since T is a theta-triple, we got the following inequalities:

Condition B1 implies that Ay, = Ag,,, + (kip1 — ki) for i < a —1;

Condition B2 implies that Ay, = Ag,,, for a <@ <s;

Condition B3 implies that Ay, > 0;

Condition C1 implies that A\x, | > Ag,.
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Then, we can fill the other parts of A minimally, subject to the requirement

E]

A > >N > A, == M, = 0. (A.2.1)

In general, a sequence of nonnegative integers p = (p1,...,p,), a p-strict
partition is a partition A = (A = --- = \,) such that A+ p = (A; + p1,..., A\ + p,) is also
a partition. In particular, the partition \(7) is a p(7)-strict partition.

For instance, given the triple 7 = (34569, 86542, 74236) from Example
1, we have that p; = 0, po = 1, p3 =2, ps = 3, p5s = 4, ps = pr, = kru)y = k2 = 4, and
Py = pPrs = kgrs) = k1 = 3. Then,

p(T) = (0,1,2,3,4,4,3,3,3).

We also have that A\s = A\, = 14, Ay = A\p, = 9, A5 = Ay, = 6, Ag = g, = 2
and \g = A\, = 1. Filling A\ minimally to satisfy Equation (A.2.1), then

Y

A(T) = (16,15,14,9,6,2,1,1,1)

Since p + A = (16,16, 16,12,10,6,4,4,4) is a partition, then \ is a p-strict

partition. This partition can be illustrated in a skew shape Young diagram as Figure 42.

Figure 42 — The skew shape for A(7) (white boxes) and p(7) (shaded boxes).

Given an integer r > 0, and a sequence of nonnegative integers p = (p1,. .., pr)

with p; < 7, define the raising operator

RW:( I (1—Rij)>< ] (1+Rij)1>.

1<i<j<r I<igpj<j<r
The theta-polynomial for a p-strict partition A is defined as

O (c(1),...,c(r)) = R - (e, (1) -~ e, (1)),

where ¢(i) = 14 ¢1(i) + co(i) + - - - are indexed variables. Observe that when p = 5, ©,
is a Schur determinant Ay, and when p; = j — 1, @&p) is a Pfaffian Pf).

Denote the total Chern classes c(k;) := c¢(V — E,, — F},) for every 1 < i < s and

c(k) := ¢(k;) whenever k; 1 < k < k;. Then, we get the explicit formula for the cohomology
class [Qy].
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Theorem A.6 ([3]). Let w e W, be a vezillary signed permutation with theta-triple T.
Then,

Remark A.7. This dissertation also contributes with a formal definition of theta-vexillary
signed permutations. Indeed, Anderson and Fulton in [3] managed to describe the conditions
of a (theta-)triple using the sequence p(7) and partition A(7), which is equivalent to our
eight conditions. But they are not worried about the permutation w associated to such
triple. Worth mentioning that the name “theta-vexillary” comes from Theorem A.6 by

suggestion of David Anderson and Sara Billey.
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