








Ao meu irmão Igor, que mesmo não podendo ver esse trabalho concluído sempre foi meu

maior apoiador.



Agradecimentos

Agradeço a minha mãe Vilma que sempre batalhou mais que tudo para que eu

chagasse até aqui, e que mesmo nas horas mais difíceis me apoiava e era compreensiva em

relação a tudo. Agradeço a minha irmã Lilian que compartilhando do mesmo caminho,

mesmo que em áreas opostas, sempre serviu de exemplo e inspiração para seguir em frente

e buscar novos horizontes.

Aos meus amigos Charles, Gabriel, Victor, Marcelo, Vanessa, Thaís, Giuliana

e Luísa, que tornaram prazerosos dias que seriam insuportáveis e me permitiram nisso

seguir em frente.

Ao meu orientador Serguei Popov não tenho palavras pra agradecer, pois ele

que despertou em mim o fascínio pela pesquisa e o gosto pelo descobrir, e sempre me

deu a segurança necessária para poder seguir em frente, não importa os males que me

atingissem. Se eu um dia posso me considerar um pesquisador é por completo mérito dele.

Aos membros da Banca Examinadora Anatoli Iambartsev, Augusto Quadros

Teixeira, Christophe Frédéric Gallesco e Elcio Lebensztayn pelo seu auxilio na versão final

desse trabalho.

À FAPESP, o qual financiamento do projeto proporcionou esse trabalho possível,

bem como todo meu crescimento como pesquisador nesses quase quatro anos.

Por fim um agradecimento especial ao meu irmão Igor que não pôde ver o fim

de meu trabalho, mas viu o fim da pessoa que ele ajudou a moldar: eu. Espero que de

onde ele esteja eu esteja vivendo honrando toda confiança e apoio que sempre depositou

em mim.



Resumo

Baseado na construção dos entrelaçamentos aleatórios bidimensionais (Comets, F.; Popov,

S.; Vachkovskaia, M., 2016), definimos a versão unidimensional do processo. Para isso,

consideramos passeios aleatórios condicionados a não entrar na origem. Nós comparamos

esse processo com o passeio aleatório condicionado no grafo anel. Nossos resultados são

a convergência do conjunto vacante do passeio no grafo anel em lei para o conjunto

vacante dos entrelaçamentos, um teorema central do limite para os tempos locais dos

entrelaçamentos e a convergência em lei dos tempos locais do passeio no grafo anel para

os tempos locais dos entrelaçamentos.

Palavras-chave: entrelaçamentos aleatórios. tempos locais. passeio aleatório em uma

faixa. passeio aleatório condicional. transformada h de Doob.



Abstract

Based on the construction of the two-dimensional random interlacements (Comets, F.;

Popov, S.; Vachkovskaia, M., 2016), we define the one-dimensional version of the process.

For this, we consider simple random walks conditioned on never hitting the origin. We

compare this process to the conditional random walk on the ring graph. Our results are

the convergence of the vacant set on the ring graph to the vacant set of one-dimensional

random interlacements, a central limit theorem for the interlacements’ local time and the

convergence in law of the local times of the conditional walk on the ring graph to the

interlacements’ local times.

Keywords: random interlacements. local times. random walk on a stripe. conditional

random walk. Doob’s h-transform.



List of symbols

Zn ✏ Z④nZ Ring graph or one-dimensional torus.

Zd
n ✏ ♣Z④nZqd d-dimensional torus.

Xra,bs Range of stochastic process Xt on the time interval ra, bs.

B
� Borel sigma-algebra of R�.

Qu Probability measure for the original random interlacements model at

level u with d ➙ 3.

I
α
d Interlacement set for the random interlacements in dimension d, includ-

ing the cases d ✏ 1, 2.

V
α
d Vacant set for the random interlacements in dimension d, including the

cases d ✏ 1, 2.

ℓ♣xq Local time for the one-dimensional random interlacements model at site

x P Z.

Ln♣xq Local time for the conditional random walk on Zn started on tn④2✉ and

running up to time tαn3④♣2π2q✉.

a♣xq Potential kernel for the simple random walk.

Cap♣Aq Capacity of set A.

rP Probability measure of the conditional walk on Z�.

♣Pt Probability measure for the conditional random walk on Zn, running

up to time t.

Px Probability measure for the simple random walk on Z starting on x.

hn♣x, tq Probability that a simple random walk started on x avoids 0 and n up

to time t
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1 Introduction

1.1 The original random interlacements process

The process of random interlacements was initially introduced by Alain Sol

Sznitman in (Sznitman, A. S., 2010). The original problem that motivates its definition

comes from the fragmentation of a d-dimensional torus (with d ➙ 3) by a random

walk. Let Zd
n ✏ ♣Z④nZqd be the d dimensional torus of size n and let Xt be the simple

symmetric random walk on Zd
n. If we denote the range of the random walk at time

t by Xr0,ts ✏ tX0, X1, . . . , Xt✉, then the vacant set of the torus by time t is defined by

Vt ✏ Zd
n③Xr0,ts. It turns out that one can find non-trivial fractal properties on Vt considering

times of the form tu ✏ und, which includes a phase transition on u about the fragmentation

of the torus.

Roughly speaking, the random interlacements process can be viewed as a

Poissonian soup of (transient) doubly infinite trajectories of simple random walks in Zd for

d ➙ 3. To be defined rigorously, consider the following space of doubly-infinite trajectories

W ✏ tω : Z Ñ Zd : ⑥ω♣k � 1q ✁ ω♣kq⑥ ✏ 1 and ⑤ω✁1♣tx✉q⑤ ➔ ✽ for all k P Z and x P Zd✉.

This space has an issue, where different elements represent the same trajectory in Zd, to

solve this we consider an equivalence relation ✒, where

ω ✒ ω✶ ô ω♣☎q ✑ ω✶♣☎ � kq for some k P Z.

We denote the space of trajectories modulo the equivalence relations by W ✝ ✏
W ③ ✒ and denote the σ-algebra generated by the canonical projections of this space by

W
✝. There is a positive parameter u entering the intensity measure of the corresponding

Poisson process on the space of such trajectories. The process is then defined as a Poisson

point process on the space ♣W ✝✂R�, W
✝✂B

�q. The use of the space R� is a coupling to

construct the process for all parameters at once. If we denote each point of the Poisson

point process by ♣ω, vq, then the process at level u is the restriction of the points where

v ↕ u.

In this definition we are intentionally omitting the intensity measure of the

Poisson point process due to the complexity of its definition. We refer to equation ♣3.9q of

(Teixeira, A.; Černỳ, J., 2012) to the definition of the measure and for Theorem 3.1 of

(Teixeira, A.; Černỳ, J., 2012) to a proof of existence and uniqueness of such measure.

The process is then almost-surely characterized by the law of its vacant set by

PrA ⑨ V
us ✏ exp

✥✁ u Cap♣Aq✭,



Chapter 1. Introduction 12

where Cap stands for the classical capacity for the simple random walk.

The main initial questions about the process were about percolative properties

of the vacant set (i.e. the set of unvisited sites), where Theorem 3.4 of (Sznitman, A. S.;

Sidoravicius, V., 2009) says that for d ➙ 3 we have a non-trivial phase transition for the

vacant set percolation, i.e. there exist a positive finite u✝ such that

If u ➔ u✝, then Qurthere is a infinite connected component inside V
us ✏ 1;

If u → u✝, then Qurthere is a infinite connected component inside V
us ➔ 1,

where Qu stands for the probability measure of the random interlacements at level u.

We give the full definition of the process in Section 2.1.

1.2 The two-dimensional random interlacements process

In (Comets, F.; Popov, S.; Vachkovskaia, M., 2016; Comets, F.; Popov, S.,

2017) the model of random interlacements in two dimensions was introduced and studied.

This process could not be defined using the classical approach, as the simple random walk

in two dimensions is recurrent and so just one trajectory would cover the entire discrete

plane Z2, leaving nothing to be seen. Therefore, in order to construct the process, one uses

simple random walks conditioned to never hitting the origin. This conditioning makes the

walk transient and the construction of the process becomes possible, at cost of losing the

stationarity (there is, however, a so-called conditional stationarity, see Theorem 2.3 (i)

of (Comets, F.; Popov, S.; Vachkovskaia, M., 2016)). In its construction a parameter

change was made to make the formulas cleaner, so the law of the vacant set is characterized

by

PrA ⑨ V
αs ✏ e✁απ Cap♣A❨t0✉q. (1.1)

Later we will introduce this model properties with more details.

1.3 Introduction to the model and objectives

Here we base ourselves on the approach of (Comets, F.; Popov, S.; Vachkovskaia,

M., 2016) to construct the one-dimensional random interlacements process. Analogously to

the two-dimensional case, we define the process making use of conditional random walks

in this construction. It turns out that for any A ⑨ Z an analogous to (2.3) formula holds:

PrA ⑨ V
αs ✏ e✁α Cap♣A❨t0✉q ✏ e✁α Diam♣A❨t0✉q④2, (1.2)

where Diam♣Aq stands for the diameter of the set.

As usual in dimension 1, percolation questions are not of interest, since our

vacant set is an interval containing the origin; so, we focus on other problems, mainly
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about the relation to random walks on the ring graph (the “one-dimensional torus”) and

the local times of the process.

A well studied problem about random interlacements is how it represents the

local picture of a random walk on a torus, when it is left to run for a certain fixed time.

Consider the d-dimensional torus Zd④nZd and denote the trace left for a random walk

until time t for Xr0,ts. In Theorem 1.1 of (Teixeira, A.; Windisch, D., 2011) it was shown

that for any u → 0, δ → 0 and ε P ♣0, 1q one can construct a coupling between the random

interlacements and the random walk on this torus in such a way that for a constant c

depending on u, δ, ε we have

PrIu♣1✁εq ❳ A ❸ Xr0,tund✉s ❳ A ❸ I
u♣1�εq ❳ As ➙ 1✁ cn✁δ, (1.3)

where A is a “mesoscopic” d-dimensional box of size n♣1✁εq (i.e., of volume n♣1✁εqd). More

recently in Theorem 4.1 of (Černỳ, J.; Teixeira, A., 2016) this result was improved for a

box of size ♣1✁ δqn and success probability 1✁C1 expt✁C2n
C3✉, where C1, C2 and C3 are

constants. From now on we will work with weak convergence between random subsets of

the torus and Zd. To be precise, let π : Zd
n Ñ Zd be the canonical projection between the

torus and Zd. We will say that a random set An ⑨ Zd
n converges weakly to A ⑨ Zd and

denote this by An
lawñ A iff for every fixed B ⑨ Zd

n (with n large enough to contain B) it

holds

lim
nÑ✽PrB ⑨ Ans ✏ Prπ♣Bq ⑨ As.

Denoting the vacant set left by the random walk on the torus by V d
t ✏ ♣Z④nZqd③Xr0,ts for

d ➙ 3, it holds that

V d
tund✉

lawñ V
u
d ,

where V
u
d stands for the vacant set for the random interlacements in Zd.

In Theorem 2.6 of (Comets, F.; Popov, S.; Vachkovskaia, M., 2016) this result

was extended to the random interlacements in two dimensions and a simple random walk

on the torus conditioned to never hitting the origin. For d ✏ 2 we use an analogous

notation for the multidimensional version of vacant set, only with conditional random

walks. So, let tX̂t✉t➙0 be the random walk on the two-dimensional torus conditioned to

never hitting the origin and X̂r0,ts its trajectory until time t. Denoting Vt ✏ Z2③X̂r0,ts,

Theorem 2.6 of (Comets, F.; Popov, S.; Vachkovskaia, M., 2016) states that

V 2

t 4α
π

n2 ln2 n✉
lawñ V

α
2 . (1.4)

1.3.1 Main Theorems

The first result we prove is the one-dimensional random interlacements version

of this theorem. The one-dimensional discrete torus Zn :✏ Z④nZ with n sites is in fact a

“ring” graph with n vertices; we usually identify Zn with t0, . . . , n✁ 1✉, remembering that



Chapter 1. Introduction 14

the sites 0 and n ✁ 1 are neighbors as well. In the following, we will consider a simple

random walk conditioned to never hitting the origin (i.e., the site 0 P Zn).

Theorem 1.3.1. Let Xt be the conditional random walk on Zn started at tn④2✉ and

Vt ✏ tx P Zn ⑤ Xk ✘ x for all k ↕ t✉. Then

V❨
αn3

2π2

❪ lawñ V
α
1 , as n Ñ ✽.

Our next results are about the local times (sometimes called occupation times)

of the random walk. For random interlacements, the local time in x is the total number

of visits to x of all particles. Some previous results regarding local times of random

interlacements, such as a Ray-Knight-type theorems and large deviations, can be found

in (Sznitman, A.S., 2012) and (Li, X; Sznitman, A.S., 2015).

Theorem 1.3.2. Let ℓ♣xq be the local time of the one-dimensional random interlacements

for x P Z�, and let Z be a Standard Normal random variable. Then, as x Ñ ✽
ℓ♣xq ✁ αx2

x
❛

α♣4x✁ 1q
lawñ Z.

Our last result is about the local times convergence for the random walk on

the ring graph. Our approach in the proof is to construct a coupling of local times with

independent trajectories of the conditional random walk in Z�.

Theorem 1.3.3. Let ℓ♣xq be the local time in x of the one-dimensional random interlace-

ments, and Ln♣xq the local time in x for the random walk in Zn started at tn④2✉ up to time

tαn3④♣2π2q✉ conditioned on not hitting the origin. Then as n Ñ ✽

Ln♣xq lawñ ℓ♣xq.

Observe that Theorem 1.3.1 is, in fact, a corollary of Theorem 1.3.3. We opted

to state the former one separately because the proof of Theorem 1.3.1 is much more simple

and straightforward than that of Theorem 1.3.3.
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2 Preliminaries

2.1 Random Interlacements

Now we will give the rigorous definition of the original random interlacements

process. As before, we first consider the space of doubly-infinite trajectories

W ✏ tω : ZÑ Zd : ⑥ω♣k � 1q ✁ ω♣kq⑥1 ✏ 1 for every k P Z

and ⑤ω✁1♣tx✉q⑤ ➔ ✽ for every x P Zd✉.

Where ω✁1♣☎q stands for the inverse image of the function ω. We will also consider the

space W� which is the space of trajectories with a initial point (therefore they are not

doubly-infinite).

W� ✏ tω : NÑ Zd : ⑥ω♣k � 1q ✁ ω♣kq⑥1 ✏ 1 for every k P N

and ⑤ω✁1♣tx✉q⑤ ➔ ✽ for every x P Zd✉.

Observe that here we have a space of functions, but the graph of each of those

functions represents a trajectory of a simple random walk in Zd , and it also also replicates

the random walk behavior of only visiting finite subsets for a finite amount of time. Using

these spaces we consider the σ-algebras generated by the canonical projections, W and

W
� respectively.

For A ⑨ Zd we define the space WA of trajectories that visits A at some point,

i.e.

WA ✏ tω P W : ω♣kq P A for some k P Z.

We also denote by θk the time-shift operator, i.e.

θk♣ωq♣☎q ✏ ω♣☎ � kq, for k P Z.

The shift operator points out to a representation problem in the space W , where multiple

different functions represent the same trajectory, and to solve this problem we consider an

equivalence relation ✒ defined as

ω ✒ ω✶ ô ω♣☎q ✑ ω✶♣☎ � kq for some k P Z.

With this we can consider the space W ✝ ✏ W ④ ✒ of trajectories modulo time shifts. In

this space we consider elements in which we have the same trajectory and order of visits

to be the same.
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If π✝ denotes the canonical projection from W to W ✝, i.e. the mapping that

takes each element ω P W to its corresponding equivalence class in W ✝. Using π✝ we

induce a sigma algebra on W ✝ by

W
✝ ✏ tA ⑨ W ✝ : ♣π✝q✁1♣Aq P W✉.

Which is the largest σ-algebra such that the mapping π✝ from ♣W, Wq to ♣W ✝, W
✝q is

measurable. Analogously to the definition of WA, for A ⑨ Zd we can define the space W ✝
A

of trajectories that visit A modulo time-shifts

W ✝
A ✏ π✝♣WAq.

The random interlacements process will then be a Poisson point process on the space

♣W ✝ ✂ R�, W
✝ ❜ B♣R�qq with intensity measure τ ✂ λ, where λ stands for the Lebesgue

measure and η will be a suitable measure, which we will define now.

Consider the coordinate mapping Xn ✏ Xn♣ωq ✏ ω♣nq for the elements of W .

To define the measure η first we define the measure QA on (♣W, Wq by

QAr♣X✁nqn➙0 P F, X0 ✏ x, ♣Xnqn➙0 P Gs ✏ PxrF ⑤τA ➔ ✽seA♣xqPxrGs.

The intensity measure of the Poisson point process defining the random interlacements, η,

is then defined as the unique σ-finite measure on the space ♣W ✝, W
✝q satisfying, for every

finite set A ⑨ Zd the following relation

✶W✝
A
☎ η ✏ π✝ ✆QA.

Consider the space Ω of finite point measures on W

Ω ✏
✦

ρ ✏
➳
i➙1

δ♣ωi,uiq : ωi P W ✝, ui P R�

and ρ♣W ✝
G ✂ r0, usq ➔ ✽ for all finite G ⑨ Zd and u ➙ 0

✮
.

We endow this space with the σ-algebra A generated by the evaluation maps ρ Ñ ρ♣Dq
for D P W

✝ ❜ B♣R�q.

2.2 Capacity in one dimension

To work with capacity in lower dimensions we need to make use of the potential

kernel of the random walk. The potential kernel a♣xq for any random walk Xt in Zd is

defined in section 4.4 of (Lawler, G.; Limic, V., 2010) by

a♣xq ✏
✽➳

k✏0

�
P0rXk ✏ 0s ✁ P0rXk ✏ xs✟.
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If the random walk is transient, then we can relate a♣xq to the Green function G♣xq by

a♣xq ✏ G♣0q ✁ G♣xq, but if the random walk is recurrent, the Green function does not

exist. Theorem 4.4.8 of (Lawler, G.; Limic, V., 2010) states that for the simple random

walk in one dimension the potential kernel is given by a♣xq ✏ ⑤x⑤.
Now we define the capacity for one dimension, this definition is analogous to

the one of section 6.6 of (Lawler, G.; Limic, V., 2010) for two dimensions and also used

in (Comets, F.; Popov, S.; Vachkovskaia, M., 2016). The capacity of a set A ⑨ Z containing

the origin is defined for any z P A as

Cap♣Aq :✏
➳
xPA

hmA♣xqa♣x ✁ zq

✏ 1
2

✁
a♣max Aq � a♣min Aq

✠
.

and for any other subset B the capacity is given by the capacity of any translation of B

that contains the origin.

As the harmonic measure can only be non null on the extremal points of a set,

we have that Cap♣Aq ✏ Cap♣rmin A; max Asq. The explicit form of the harmonic measure

and the translation invariance of capacity then imply that for any finite subset A of Z we

have

Cap♣Aq ✏ Diam♣Aq
2

.

2.3 The conditional random walk

Here we construct random walks conditioned on never hitting 0; since such a

walk never changes its sign, let us consider it only on Z�. Let x ➙ 1 be a positive integer,

and let us figure out the “right” way to define a simple random walk ♣Xtqt➙0 started at x

and conditioned on not hitting 0. To define the law of Xt, let us condition it on hitting N

before 0 and take a limit in law. So for x ➔ N we have the following transition probabilities

px,x�1 ✏ 1 ✁ px,x✁1

✏ PxrX1 ✏ x � 1⑤τ0 → τN s

✏ PxrX1 ✏ x � 1sPx�1rτ0 → τN s
Pxrτ0 → τN s

✏ x � 1
2x

. (2.1)

We then send N to infinity to take the restriction on x off, thus obtaining transition

probabilities from any site x ➙ 1. Now, the “canonical” way to define this kind of

conditioned random walk is to apply the Doob’s h-transform, using the potential kernel

for one dimension a♣xq ✏ ⑤x⑤. The Doob’s h-transform with a non-negative function h

defined on the state space S and a Markov chain with transitions P ♣x, yq, such that h is
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P -harmonic outside the set tx : h♣xq ✏ 0✉, is defined in the following way. For all sites x

with h♣xq ✘ 0 the new transition probabilities P ✝♣x, yq are

P ✝♣x, yq ✏ P ♣x, yqh♣yq
h♣xq ; (2.2)

note that P ✝♣☎, ☎q are indeed transition probabilities due to the harmonicity condition

h♣xq ✏
➳
y

P ♣x, yqh♣yq.

So, when we apply the Doob’s h-transform for the simple random walk St with

constant transition probabilities P ♣x, x � 1q ✏ 1④2 we get a new random walk Xt with

transition probabilities given by

P ✝♣x, x � 1q ✏ a♣x � 1qP ♣x, x � 1q
a♣xq ✏ x � 1

2x

The same walk could also be seen as a random walk with conductances on Z�, where the

conductances are given by cx,x�1 ✏ a♣xqa♣x � 1q ✏ x♣x � 1q.
The following lemma is a standard fact, which is usually very useful for calcu-

lating exit probabilities and alike for the conditioned walk.

Lema 2.1. Let ♣Xtqt➙0 be a Markov chain in a countable state space S with transition

probabilities P ♣x, yq. Let ♣X✝
t qt➙0 be the Doob’s h-transform of ♣Xtqt➙0 with respect to a

function h, which is non-negative and harmonic outside the set tx : h♣xq ✏ 0✉. Let

S✝ ✏ ✥
x P S : there exists y with P ♣x, yq → 0 and h♣yq ✏ 0

✭
.

Then the process
�♣h♣X✝

t❫τS✝
qq✁1

✟
t➙0

with h♣X0q ✘ 0 is a martingale.

Proof. Recall the definition (2.2). The following is just a straightforward calculation; being

tFt✉t➙0 the associated filtration for the process ♣♣h♣Xt❫τS✝
qq✁1qt➙0, we have

E
✏♣h♣X✝

♣t�1q❫τS✝
qq✁1 ⑤ Ft

✘ ✏ ➳
yPS:h♣yq✘0

♣h♣yqq✁1P ✝♣X✝
t❫τS✝

, yq

✏
➳

yPS:h♣yq✘0

1
h♣yq

P ♣X✝
t❫τS✝

, yqh♣yq
h♣X✝

t❫τS✝
q

✏
➳

yPS:h♣yq✘0

P ♣X✝
t❫τS✝

, yq
h♣X✝

t❫τS✝
q

✏ ♣h♣X✝
t❫τS✝

qq✁1P
✏
h♣X✝

♣t�1q❫τS✝
q ✘ 0 ⑤ Ft

✘
✏ ♣h♣X✝

t❫τS✝
qq✁1,

and this completes the proof.

For the conditional random walk Xt, Lemma 2.1 implies that the process

t♣Xt❫τ1
q✁1✉t➙0 is a martingale. This fact will help us with calculations.
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From now on rP will stand for the probability measure of the conditional walk

on Z�. Next, we need

Lema 2.2. Let Xt be the conditional random walk on Z� started at y with N → y → x → 1.

Then

(i) rPyrτx ➔ τN s ✏ x♣N ✁ yq
y♣N ✁ xq ,

(ii) rPyrτx ➔ ✽s ✏ x

y
,

(iii) rPxrτx ✏ ✽s ✏ 1
2x

.

Proof. These are also very straightforward calculations using the optional stopping theorem.

The first result comes from using the martingale ♣Xt❫τ1
q✁1 with the stopping time τ♣Nq ❫

τ♣xq:
1
y
✏ 1

x
rPyrτx ➔ τN s � 1

N
♣1✁ rPyrτx ➔ τN sq,

and then isolating the probability in the expression give us the desired result. For the

second relation we just need to take limit in N , as clearly τN will diverge. For the last

expression we observe that the first step should be to x� 1 and then

rPxrτx ✏ ✽s ✏ P ♣x, x� 1qrPx�1rτx ✏ ✽s
✏ x� 1

2x

✁
1✁ x

x� 1

✠
✏ 1

2x
.

This concludes the proof.

An important consequence of Lemma 2.2 (iii) is that the random walk condi-

tioned on never hitting the origin is transient.

2.4 The two dimensional random interlacements

Most definition we use here, as potential kernel and capacity are analogous

to the one-dimensional versions previously defined and therefore we will not define them

again unless necessary.

Differently from the original version of the random interlacements, which is

based on what is left of the torus when corroded by a random walk for some time such

that this set have fractal properties, the two dimensional version of the process is defined

based on another problem, which is: what does the last particle to be covered by a random

walk in the two dimensional torus see around her? not only this model has a different

construction than the original one, but the percolative properties and overall behavior are

completely unexpected. This model is more interesting when defining the one dimensional



Chapter 2. Preliminaries 20

version of the interlacements, since they share the problem keeping the original definition

of working at all: recurrence.

We cannot define the random interlacements in dimension d ✏ 2 directly

because of the recurrence of the random walk, which means that each trajectory covers the

entire plane and therefore the vacant set and interlacements set are trivial. One simple way

to solve this would be to consider conditional random walks, which are basically simple

random walks conditioned on never hitting the origin. Although it is intuitive what we

mean when we say "define the random interlacements using conditional random walks", to

rigorously define it we use (Teixeira, A., 2009), which defines the interlacements for any

weighted graph in which the random walk is transient.

This definition is possible because the conditional random walk is the same

as the simple random walk transformed by Doob’s h-transform using as the h function

the two dimensional potential kernel a♣xq, later we will see the same holds for the one

dimensional process. Observing the transition probabilities we can tell that the conditional

random walk is then the same as a random walk on the weighted lattice Z2, where each

edge exy has weight a♣xqa♣yq.
Using this random walk with the construction of (Teixeira, A., 2009) we have

the two dimensional version of the process, which analogously to the original process is

characterized by its vacant set law by

PrA ⑨ V
α
2 s ✏ e✁απ Cap♣A❨t0✉q. (2.3)

As stated before, the constant π was introduced to simplify all formulas and expressions,

and being just a scaling of the parameter α, it makes no difference for the process behavior,

but only to the parameter related to such behaviors.

The first meaningful difference between the behavior of the two dimensional

version of the process and the original one is the fact that the two dimensional version

has two phase-transitions, while in the original process both phase transitions coincide.

The following theorem of (Comets, F.; Popov, S.; Vachkovskaia, M., 2016) shows these

phase-transitions.

Theorem 2.4.1. • Let B♣rq be the two dimensional ball with radius r, then it holds

E⑤Vα
2 ❳B♣rq⑤ ✒

✩✬✬✫✬✬✪
2πCα

2✁ α
✂ r2✁α, for α ➔ 2,

2πCα ✂ ln r, for α ✏ 2,

Constant, for α → 2.

• For α → 1 it holds that V
α
2 is finite almost surely. Moreover PrVα

2 ✏ t0✉s → 0 and

PrVα
2 ✏ t0✉s Ñ 0 as α Ñ ✽.
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• For α P ♣0, 1q, we have ⑤Vα
2 ⑤ ✏ ✽ almost surely. Moreover,

PrVα
2 ❳ �

B♣rq③B♣r④2q✟s ↕ r✁2♣1✁❄αq�o♣1q.

This shows that we have an interval for the parameter α where the process’s

vacant set is almost surely finite, but the expectation of its size is infinite. More recently

it was shown in (Comets, F.; Popov, S., 2017) that for α ✏ 1 the vacant set of the two

dimensional random interlacements is infinite.

Another result worth mentioning is part ♣iiiq of Theorem 2.3 from (Comets,

F.; Popov, S.; Vachkovskaia, M., 2016), which states that for A such that 0 P A ⑨ B♣rq
and x P Z2 such hat ⑥x⑥ ➙ 2r it holds

PrA ⑨ V
α
2 ⑤ x P V

α
2 s ✏ exp

✄
✁πα

4
Cap♣aq

1 � O
�

r ln r ln ⑥x⑥
⑥x⑥

✟
1 ✁ Cap♣Aq

2a♣xq � O
�

r ln r
⑥x⑥

✟☛ .

With this, if we consider any finite A and take the limit with⑥x⑥ Ñ ✽ we get

lim
⑥x⑥Ñ✽

PrA ⑨ V
α
2 ⑤ x P V

α
2 s ✏ exp

✁
✁ πα

4
Cap♣aq

✠
.

So conditioned on a infinitely far point being vacant, the rate of the process in some fixed

set A get reduced to 1④4 of the original process, this is not only interesting but it also

shows that we do not have asymptotic independence between sites.

2.5 Definition of the process

Even though there is a rigorous way to define the process that uses the Poisson

process of trajectories, we first will present a constructive approach which also works

in higher dimensions (substituting the conditioned random walks by its unconditioned

version) and heuristically make it easier to understand the process behavior.

Recall that α is a parameter that rules over the number of trajectories in our

process. Consider the following procedure depending on N :

• Consider p♣α, Nq ✒ Poisson♣αNq independent particles.

• Each particle choose a starting point at random from N and ✁N .

• Each particle realize an independent conditional random walk, which is transient.

• Taking limit in N and then we have the random interlacements process.

Now to define rigorously the process, we will use the construction of (Teixeira, A.,

2009), where the process of random interlacements is constructed for any weighted transient
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graph (i.e., a graph on which the random walk is transient). The graph considered here is

Z, so our weights (or conductances) cx,y are only positive if ⑤x✁ y⑤ ✏ 1. The conductances

that generate the conditional random walk defined in (2.1) are

cx,x�1 ✏ cx�1,x ✏ x♣x � 1q
2

.

Then, the random walk on the graph with conductances is reversible with reversible

measure µx :✏ cx,x�1 � cx,x✁1 ✏ x2, and its transition probabilities are

P ♣x, x � 1q ✏ cx,x�1

µx

✏ x � 1
2x

,

as it should be. In accordance to (Teixeira, A., 2009), the capacity (denoted here by

Cap♣Aq) with respect to the conditional walk is defined by

Cap♣Aq ✏
➳
xPA

eA♣xq, (2.4)

where eA♣xq is the equilibrium measure defined by

eA♣xq ✏ ✶rx P AsrPxrτA ✏ ✽sµx.

This definition uses the equilibrium measure of the conditional random walk, so its

straightforward to see that for any finite A ⑨ Z we have Cap♣Aq ✏ Cap♣A ❨ t0✉q.
We now show that for any set A containing the origin we have

Cap♣Aq ✏ Cap♣Aq.

Since the capacity of any finite set A is the same as the capacity of the shortest interval

containing it, we can assume without loss of generality that A ✏ ra, bs. In the definition

of Cap♣Aq we consider a set containing the origin, and for any other set we consider a

translation of it containing the origin (this capacity is translation invariant). So we consider

here a ➔ 0 and b → 0, and then by Lemma 2.2 we have

Cap♣ra, bsq ✏
b➳

x✏a

era,bs♣xq

✏ era,bs♣aq � era,bs♣bq
✏ rParτa ✏ ✽sa2 � rPbrτ b ✏ ✽sb2

✏ b ✁ a

2
✏ Cap♣ra, bsq.

With this we can relate both capacities by

Cap♣Aq ✏ Cap♣A ❨ t0✉q.

Let W ✝ be the space of doubly infinite trajectories that spend a finite time in each finite

set, the random interlacements process is defined as a Poisson point process on the space
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W ✝ ✂ R� with intensity by a measure ν ☎ λ, where λ is the Lebesgue measure on R� and

ν is a measure on W ✝ characterized by

ν♣tω✝ P W ✝ : ω✝♣Zq ❳ A ✘ ❍✉q ✏ Cap♣Aq.

With this we can characterize the law of the process as

PrA ⑨ V
αs ✏ expt✁ν♣tω✝ P W ✝ : ω♣Zq ❳ A ✘ ❍✉q ✂ λ♣r0, αsq✉
✏ expt✁α Cap♣Aq✉.

For a complete description of the construction see (Teixeira, A., 2009).

One property of the construction that will be useful is that the number of

trajectories that hit a set A (we will denote it by NA) in the random interlacements process

at level α is such that

NA ✒ Poisson♣α Cap♣A ❨ t0✉qq ✒ Poisson
✁

α
Diam♣A ❨ t0✉q

2

✠
.

2.6 Local times

The local time or occupation time of a transient random walk in site x can be

defined as the time the random walk spends at site x. By the symmetry of the process

around 0, we will consider x → 0 in this section. The local time of the random interlacements

process is the sum of the local times of each trajectory. We know we have Poisson
�
αx④2✟

trajectories that hit x. For each of those trajectories, at each visit to x a particle has

a constant probability of escaping, making the local time of each particle a geometric

random variable with success probability ♣2xq✁1 (see Lemma 2.2). Therefore, the random

interlacements local time at x is a compound Poisson variable

ℓ♣xq ✏
Ntx✉➳
k✏1

Vk,

where Vk are i.i.d. Geometric♣♣2xq✁1q, i.e., PrVk ✏ js ✏ 1
2x

�
1 ✁ 1

2x

✟j✁1
.

Lema 2.3. For any x → 0 the characteristic function of ℓ♣xq is

ϕℓ♣xq♣tq ✏ exp
✧

αx2 ♣eit ✁ 1q
2x ✁ ♣2x ✁ 1qeit

✯
.

Proof. This follows from a straightforward calculation of the characteristic function of a

compound Poisson of geometric random variables with Ntx✉ being a Poisson variable with

parameter α Cap♣t0, x✉q ✏ αx④2. The characteristic function of geometric variables is also



Chapter 2. Preliminaries 24

well-known, so we have

ϕℓ♣xq♣tq ✏ exp

✩✫✪αx

2

☎✆ 1
2x

eit

1 ✁
✁

1 ✁ 1
2x

✠
eit

✁ 1

☞✌✱✳✲
✏ exp

✧
αx2 ♣eit ✁ 1q

2x ✁ ♣2x ✁ 1qeit

✯
. (2.5)

2.7 Random walk on the ring graph

In higher dimensions it is known that we can approximate the trace left by the

random walk in a torus by the random interlacements process, main results about this

can be found in (Teixeira, A.; Windisch, D., 2011) and more recently for two-dimensional

random interlacements in (Comets, F.; Popov, S.; Vachkovskaia, M., 2016). Here we wish

to establish the same fact in dimension one.

For the simple random walk (on the ring) conditioned on not hitting the origin

until time t, we denote its law by ♣Pt and its respective vacant set by Vt. This random walk

can be seen as a random walk on Z conditioned to not hitting 0 and n. Let us define the

quantity

hn♣x, tq ✏ Pxrτt0,n✉ → ts.
Then the law for the walk conditioned on not hitting 0 P Zn until time s is given by♣Ps

xrX1 ✏ x � 1s ✏ 1 ✁ ♣Ps
xrX1 ✏ x ✁ 1s

✏ PxrX1 ✏ x � 1⑤τt0,n✉ → ss

✏ PxrX1 ✏ x � 1, τt0,n✉ → ss
Pxrτt0,n✉ → ss

✏ hn♣x � 1, s ✁ 1q
2hn♣x, sq ,

and then the probability of a path γ of size m starting at x when the remaining time is t

is given by (note that γm is the last site of that path)

♣Pt
xrγs ✏

hn♣γm, t ✁ mq
2mhn♣x, tq . (2.6)

Observe also that the conditional random walk law for the same path (as it is always a

valid path in Z�) is rPxrγs ✏ γm

2mx
. (2.7)

Now we need to understand better the asymptotic behavior of hn♣x, tq, this

will be crucial in all the results we will prove.

We now analyze hn♣x, tq. First we present an application of result 5.7 from

chapter XIV of (Feller, W., 1968).
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Lema 2.4. Consider the simple random walk in Z, if 0 ➔ x ➔ n it holds that

Pxrτ0 ➔ τn, τ0 ✏ ks ✏ 1
n

n✁1➳
j✏1

cosk✁1
✁πj

n

✠
sin
✁πj

n

✠
sin
✁πxj

n

✠
.

The utility of this comes from the fact that it includes the symmetric case

Pxrτ0 → τn, τn ✏ ks ✏ Pn✁xrτ0 ➔ τn, τ0 ✏ ks and so we can write

Pxrτt0,n✉ ✏ ks ✏ Pxrτ0 ➔ τn, τ0 ✏ ks � Pxrτ0 → τn, τn ✏ ks. (2.8)

With this we can obtain an expression for hn♣x, tq:

Lema 2.5. For any integer x P r0, ns it holds

hn♣x, tq ✏ 2
n

tn④2✉➳
j✏1

cost
✁π♣2j ✁ 1q

n

✠
cot
✁π♣2j ✁ 1q

2n

✠
sin
✁πx♣2j ✁ 1q

n

✠
. (2.9)

Proof. Observe that

Pxrτ0 → τn, τn ✏ ks ✏ Pn✁xrτ0 ➔ τn, τ0 ✏ ks

✏ 1
n

n✁1➳
j✏1

cosk✁1
✁πj

n

✠
sin
✁πj

n

✠
sin
✁π♣n ✁ xqj

n

✠
✏ 1

n

n✁1➳
j✏1

♣✁1qj�1 cosk✁1
✁πj

n

✠
sin
✁πj

n

✠
sin
✁πxj

n

✠
.

So when we sum the probabilities in (2.8) and use Lemma 2.4, all terms with even j’s

disappear and we get

Pxrτt0,n✉ ✏ ks ✏ Pxrτ0 ➔ τn, τ0 ✏ ks � Pxrτ0 → τn, τn ✏ ks

✏ 2
n

tn④2✉➳
j✏1

cosk✁1
✁π♣2j ✁ 1q

n

✠
sin
✁π♣2j ✁ 1q

n

✠
sin
✁πx♣2j ✁ 1q

n

✠
,

and then finally

hn♣x, tq ✏ 2
n

✽➳
k✏t�1

tn④2✉➳
j✏1

cosk✁1
✁π♣2j ✁ 1q

n

✠
sin
✁π♣2j ✁ 1q

n

✠
sin
✁πx♣2j ✁ 1q

n

✠

✏ 2
n

tn④2✉➳
j✏1

sin
✁

π♣2j✁1q
n

✠
1 ✁ cos

✁
π♣2j✁1q

n

✠ sin
✁πx♣2j ✁ 1q

n

✠
cost

✁π♣2j ✁ 1q
n

✠

✏ 2
n

tn④2✉➳
j✏1

cost
✁π♣2j ✁ 1q

n

✠
cot
✁π♣2j ✁ 1q

2n

✠
sin
✁πx♣2j ✁ 1q

n

✠
.

This concludes the proof.
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Our main concern now is to turn the expression in Lemma 2.5 into something

tractable. In order to do this we first need to show that the only term asymptotically

relevant in the sum is the first one.

Lema 2.6. If t ✏ t♣nq satisfies

lim inf
nÑ✽

t

n2 ln n
➙ 4

π2
, (2.10)

then the asymptotic behavior of hn♣x, tq as n Ñ ✽ is

hn♣x, tq ✏
✁

1�O♣n✁2q
✠ 4

π
cost

✁π

n

✠
sin

✁πx

n

✠
✒ 4

π
cost

✁π

n

✠
sin

✁πx

n

✠
.

Proof. First we get an upper bound for (2.9) without the first term. Let us denote the first

term of (2.9) by T1; using the fact that cos and cot are decreasing functions on r0, π④2s we

have

✞✞hn♣x, tq ✁ T1

✞✞ ✏
✞✞✞✞✞✞ 2n

t n
2
✉➳

j✏2

cost
✁π♣2j ✁ 1q

n

✠
cot

✁π♣2j ✁ 1q
2n

✠
sin

✁πx♣2j ✁ 1q
n

✠✞✞✞✞✞✞
↕ 2

n

t n
2
✉➳

j✏2

✞✞✞✞cost
✁π♣2j ✁ 1q

n

✠✞✞✞✞ ✞✞✞✞cot
✁π♣2j ✁ 1q

2n

✠✞✞✞✞
↕ 2

n

✁ ❨n

2

❪
✁ 1

✠ ✞✞✞✞cost
✁2π

n

✠✞✞✞✞ ✞✞✞cot
✁π

n

✠✞✞✞
↕
✞✞✞✞cost

✁2π

n

✠✞✞✞✞ ✞✞✞cot
✁π

n

✠✞✞✞ .
Dividing both sides by T1 we get✞✞✞✞hn♣x, tq

T1

✁ 1

✞✞✞✞ ↕
✞✞✞✞✞✞
cost

✁
2π
n

✠
cost

✁
π
n

✠
✞✞✞✞✞✞
✞✞✞✞✞✞
cot

✁
π
n

✠
cot

✁
π
2n

✠
✞✞✞✞✞✞ 1✞✞✞sin✁πx

n

✠✞✞✞ . (2.11)

Let us study the asymptotic behavior of the right-hand side of (2.11). We have that

cos♣xq ✏ e✁x2④2♣1�O♣x4qq and cot♣xq ✏ x✁1♣1�O♣x2qq as x Ñ 0. Using this in the above

display

cost
✁

2π
n

✠
cost

✁
π
n

✠ ✏ ♣1�O♣tn✁4qqe✁3tπ2④♣2n2q and
cot

✁
π
n

✠
cot

✁
π
2n

✠ ✏ 1
2
♣1�O♣n✁2qq.

So, we obtain✞✞✞✞hn♣x, tq
T1

✁ 1

✞✞✞✞ ↕
✞✞✞✞✞✞
cost

✁
2π
n

✠
cost

✁
π
n

✠
✞✞✞✞✞✞
✞✞✞✞✞✞
cot

✁
π
n

✠
cot

✁
π
2n

✠
✞✞✞✞✞✞ 1✞✞✞sin✁πx

n

✠✞✞✞
✏ ♣1�O♣tn✁4q �O♣x2n✁2qq 1

2 sin
✁

πx
n

✠e✁3tπ2④♣2n2q.
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If x ✒ cn, then our bound is O♣e✁3tπ2④♣2n2qq and if x ✏ o♣nq then our bound is O♣nx✁1e✁3tπ2④♣2n2qq.
As we do not need really sharp estimates at this point, we will just work with the worst

case bound, so ✞✞✞✞hn♣x, tq
T1

✁ 1

✞✞✞✞ ✏ O♣ne✁3tπ2④♣2n2qq.

Since for sufficiently large n we have
3tπ2

2n2
➙ 3 ln n, then ne✁3tπ2④♣2n2q ↕ n✁2. Therefore

hn♣x, tq ✏ ♣1�O♣ne✁3tπ2④♣2n2qqqT1 (2.12)

✏ ♣1�O♣n✁2qq 2
n

cost
✁π

n

✠
cot

✁ π

2n

✠
sin

✁πx

n

✠
,

and again using the asymptotic expression of cot x, we obtain

2
n

cot
✁ π

2n

✠
✏ 2

n

✁2n

π
�O♣n✁1q

✠
✏ 4

π
♣1�O♣n✁2qq.

and this gives us the asymptotic relation for hn♣x, tq.

This concludes the preliminaries we need in order to prove our main results.
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3 Convergence of vacant set law

We want to show that the random walk on the torus conditioned on not hitting

the origin for a fixed time has as a limit the random interlacements process when we look

at a fixed subset around the origin. The main question here is about how much time the

conditional walk on the ring graph (the one-dimensional discrete torus) needs in order to

match the random interlacements behavior. It turns out that here the time for the random

interlacements convergence will be

tα,n ✏ αn3

2π2
. (3.1)

Now let us begin the proof.

Proof of Theorem 1.3.1. Although we already specified the value of tn,α, here we will work

with a generic t and then find the “right” value. The only assumption we have here is that

t should satisfy the condition of Lemma 2.6.

Our aim here is to find a time t such that for any fixed interval r✁a, bs with

a, b → 0 we have for a starting point x ✏ tn④2✉ outside the interval

♣Pt
x

✏r✁a, bs ⑨ Vt

✘ Ñ exp
✧
✁α♣a � bq

2

✯
.

The choice of x ✏ tn④2✉ is to keep the walk starting sufficiently away from the limit points

of the interval so that the initial points do not affect the law of the vacant set. For this

consider the conditional random walk on the ring graph as a random walk on Z conditioned

on not hitting 0 or n for time t, so the site ✁a will be equivalent of point n ✁ a in this

walk.

With this we have

♣Pt
x

✏r✁a, bs ⑨ Vt

✘ ✏ Pxrτtb,n✁a✉ → t ⑤ τt0,n✉ → ts

✏ Pxrτtb,n✁a✉ → ts
Pxrτt0,n✉ → ts ; (3.2)

here we used that the simple random walk necessarily needs to hit tb, n✁a✉ in order to hit

t0, n✉. Now that we are working with the simple random walk, we can use its symmetry

to rewrite the probability in the numerator of (3.2):

Pxrτtb,n✁a✉ → ts ✏ Px✁brτt0,n✁a✁b✉ → ts.

Using this in (3.2), we obtain

♣Pt
x

✏r✁a, bs ⑨ Vt

✘ ✏ hn✁a✁b♣x ✁ b, tq
hn♣x, tq .



Chapter 3. Convergence of vacant set law 29

Now using Lemma 2.6 we have

♣Pt
x

✏r✁a, bs ⑨ Vt

✘ ✒ cost
✁

π
n✁a✁b

✠
sin

✁
π♣x✁bq
n✁a✁b

✠
cost

✁
π
n

✠
sin

✁
πx
n

✠ .

As x ✏ tn④2✉, both sines in the above expression are asymptotic to 1. Then,

using again the asymptotic relation cos x ✒ e✁x2④2 as x Ñ 0

♣Pt
x

✏r✁a, bs ⑨ Vt

✘ ✒ exp
✦

✁tπ2

2♣n✁a✁bq2
✮

exp
✦
✁tπ2

2n2

✮
✒ exp

✦
✁ tπ2♣a� bq

n3

✮
.

So, by continuity of the exponential function we need this exponent to be asymptotic to

α♣a� bq④2, this means

t ✒ αn3

aπ2
. (3.3)

Now, we just need to observe that this value of t of (3.3) satisfies the condition on

Lemma 2.6:

lim inf
nÑ✽

t

n2 ln n
✏ ✽.

This concludes the proof of Theorem 1.3.1, as for any fixed interval r✁a, bs

♣Pαn3④♣aπ2q
z

✏r✁a, bs ⑨ Vtαn3④♣aπ2q✉
✘ ✒ exp

✧
✁α♣a� bq

2

✯
.

Therefore,

Vtαn3④♣aπ2q✉
lawñ V

α,

as desired.
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4 Central Limit Theorem

Now we prove the central limit theorem for the local times. This will be done

using the characteristic function of the local time together with Lévy’s continuity theorem.

Proof of Theorem 1.3.2. By Lemma 2.3, the characteristic function of the local time is

ϕℓ♣xq♣tq ✏ exp
✧

αx2 ♣eit ✁ 1q
2x✁ ♣2x✁ 1qeit

✯
.

We need to study the asymptotic behavior of the exponent when t Ñ 0 and x Ñ ✽. Here

we need not only the main term, but also the error to see under which conditions the

convergence holds. Write

ϕℓ♣xq✁αx2♣tq ✏ exp
✧

αx2 ♣eit ✁ 1q
2x✁ ♣2x✁ 1qeit

✁ αx2it

✯
✏ exp

✧
αx2

✂ ♣eit ✁ 1q
2x✁ ♣2x✁ 1qeit

✁ it

✡✯
. (4.1)

Next, we obtain

♣eit ✁ 1q
2x✁ ♣2x✁ 1qeit

✁ it ✏ ♣eit ✁ 1q ✁ it♣2x✁ ♣2x✁ 1qeitq
2x✁ ♣2x✁ 1qeit

✏ ♣it✁ t2

2
�O♣t3qq ✁ it♣2x✁ ♣2x✁ 1q♣1� it✁ t2

2
�O♣t3qqq

1✁O♣xtq
✏ ✁t2

2
♣4x✁ 1q �O♣x2t3q,

and using the asymptotic expansion

eit ✁ 1 ✏ it✁ t2

2
�O♣t3q,

together with

2x✁ ♣2x✁ 1qeit ✏ 1� ♣2x✁ 1q♣1✁ eitq
✏ 1✁O♣xtq,

therefore

♣eit ✁ 1q ✁ it♣2x✁ ♣2x✁ 1qeitq
2x✁ ♣2x✁ 1qeit

✏ ♣it✁ t2

2
�O♣t3qq ✁ it♣2x✁ ♣2x✁ 1q♣1� it✁ t2

2
�O♣t3qqq

1✁O♣xtq
✏ ✁t2

2
♣4x✁ 1q �O♣x2t3q,
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and then, coming back to (4.1),

ϕℓ♣xq✁αx2♣tq ✏ exp
✧

αx2

✂
✁t2

2
♣4x✁ 1q �O♣x2t3q

✡✯
✏ exp

✧
✁α♣4x✁ 1qx2t2

2
�O♣x4t3q

✯
. (4.2)

So,

ϕℓ✝♣xq♣tq ✏ exp
✧
✁t2

2
�O

✂
t3

❄
x

✡✯
, where ℓ✝♣xq ✏ ℓ♣xq ✁ αx2❛

α♣4x✁ 1qx.

Then, as x Ñ ✽ this characteristic function converges to the one of the standard normal

distribution, and, by the continuity theorem (see e.g. Theorem 9.5.2 of (Resnick, S., 2013)),

we conclude our proof.
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5 Convergence of Local Times

5.1 Lemmas

In order to prove Theorem 1.3.3 we need more preliminaries. Again we will

represent the conditional random walk in the ring graph as the simple random walk in

Z conditioned to the event τ0,n → t✝, where t✝ ✏ αn3④♣2π2q is the random interlacements

convergence time.

Lema 5.1. Consider the conditional random walk on the ring graph with n sites. Let

t ✏ t♣nq and ∆ ✏ ∆♣nq be such that t, ∆ and t ✁ ∆ satisfy condition (2.10). For any

1 ➔ x ➔ tn④2✉ the time until the conditional random walk hits the site tn④2✉ satisfies

♣Pt
xrτtn④2✉ → ∆s ↕ ♣1 � O♣∆n✁3qq 8

π
cos

✁πx

n

✠
exp

✦
✁ 3π2∆

2n2

✮
.

Proof. Splitting the above probability into the sum of the probabilities of each path, we

consider the set Γ of paths which does not include the sites 0 or tn④2✉ and have length ∆.

Then by (2.6) we have ♣Pt
xrτtn④2✉ → ∆s ✏

➳
γPΓ

♣Pt
xrγs

✏
➳
γPΓ

hn♣γ∆, t ✁ ∆q
2∆hn♣x, tq .

As t and t ✁ ∆ satisfy condition (2.10), we can use Lemma 2.6 to obtain that

♣Pt
xrτtn④2✉ → ∆s ✏ ♣1 � O♣n✁2qq

➳
γPΓ

cos✁∆
✁π

n

✠ sin
✁

πγ∆

n

✠
2∆ sin

✁
πx
n

✠
✏ ♣1 � O♣n✁2qq

cos✁∆

✁
π
n

✠
sin

✁
πx
n

✠ Ex

✑
sin

✁πX∆

n

✠
✶rτt0,tn④2✉✉ → ∆s

✙

↕ ♣1 � O♣n✁2qq
cos✁∆

✁
π
n

✠
sin

✁
πx
n

✠ htn④2✉♣x, ∆q.

Now, as ∆ also satisfies condition (2.10), we again use Lemma 2.6 and get

♣Pt
xrτn → ∆s ↕ ♣1 � O♣n✁2qq

4 sin
✁

πx
tn④2✉

✠
π sin

✁
πx
n

✠ cos∆

✁
π

tn④2✉

✠
cos∆

✁
π
n

✠
✏ ♣1 � O♣n✁1qq 8

π
cos

✁πx

n

✠cos∆

✁
π

tn④2✉

✠
cos∆

✁
π
n

✠ .
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Using the asymptotic expansion of cosine cos♣xq ✏ e✁x2④2♣1 � O♣x4qq we have

♣Pt
xrτn → ∆s ↕ ♣1 � O♣n✁1qq♣1 � O♣∆n✁4qq 8

π
cos

✁πx

n

✠
exp

✦
✁ π2∆

2

✁ 1

tn④2✉2
✁ 1

n2

✠✮
✏ ♣1 � O♣∆n✁3qq 8

π
cos

✁πx

n

✠
exp

✦
✁ 3π2∆

2n2

✮
.

This concludes the proof.

Lema 5.2. Let tXt✉tPZ� be a simple random walk on Z. Consider ∆ ✏ ∆♣nq satisfying

condition (2.10). Then for any a P t1, . . . , n ✁ 1✉ we have

Ea

✑
sin

✁πX∆

n

✠
⑤ τt0,n✉ → ∆

✙
✏ ♣1 � O♣n✁2qqπ

4
.

Proof. Consider a quantity t → ∆ such that t ✁ ∆ satisfies (2.10). Then we have

hn♣a, tq ✏ Parτt0,n✉ → ts
✏ Parτt0,n✉ → ∆sParτt0,n✉ → t ⑤ τt0,n✉ → ∆s.

Using the Markov property we obtain

Parτt0,n✉ → t ⑤ τt0,n✉ → ∆s ✏ EarPX∆
rτt0,n✉ → t ✁ ∆s ⑤ τt0,n✉ → ∆s

✏ Earhn♣X∆, t ✁ ∆q ⑤ τt0,n✉ → ∆s.
That gives the relation

hn♣a, tq ✏ hn♣a, ∆q ☎ Earhn♣X∆, t ✁ ∆q ⑤ τt0,n✉ → ∆s

or, equivalently

Earhn♣X∆, t ✁ ∆q ⑤ τt0,n✉ → ∆s ✏ hn♣a, tq
hn♣a, ∆q .

Here, as t, ∆ and t ✁ ∆ satisfy (2.10), we can use Lemma 2.6 and obtain

Ea

✑ 4

π
cost✁∆

✁π

n

✠
sin

✁πX∆

n

✠
⑤ τt0,n✉ → ∆

✙
✏ ♣1 � O♣n✁2qq

cost
✁

π
n

✠
sin

✁
πa
n

✠
cos∆

✁
π
n

✠
sin

✁
πa
n

✠ .

Rearranging the terms, we obtain

Ea

✑
sin

✁πX∆

n

✠
⑤ τt0,n✉ → ∆

✙
✏ ♣1 � O♣n✁2qqπ

4
,

which concludes the proof of Lemma 5.2.

Lema 5.3. Consider the conditional random walk on the ring graph with n sites, Zn.

Assume x P Z� is fixed, t ✏ t♣nq and ∆ ✏ ∆♣nq are such that both ∆ and t ✁ ∆ satisfy

(2.10). Then as n Ñ ✽ we have

♣Pt
tn④2✉rτx → ∆s ✏ ♣1 � O♣n✁1q � O♣n✁4∆qq exp

✦
✁ ∆xπ2

n3

✮
.
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Proof. First we calculate the probability that there will be no visits to a fixed site x in

this interval by the random walk with initial site n:

♣Pt
tn④2✉rτx → ∆s ✏ Ptn④2✉rτx → ∆ ⑤ τt0,n✉ → ts

✏ Ptn④2✉rτtx,n✉ → ∆sPtn④2✉rτt0,n✉ → t ⑤ τtx,n✉ → ∆s
Ptn④2✉rτt0,n✉ → ts

✏ Ptn④2✉✁xrτt0,n✁x✉ → ∆sPtn④2✉rτt0,n✉ → t ⑤ τtx,n✉ → ∆s
Ptn④2✉rτt0,n✉ → ts

✏ hn✁x♣tn④2✉ ✁ x, ∆q
hn♣tn④2✉, tq Ptn④2✉rτt0,n✉ → t ⑤ τtx,n✉ → ∆s

✏ hn✁x♣tn④2✉ ✁ x, ∆q
hn♣tn④2✉, tq Etn④2✉rhn♣X∆, t ✁ ∆q ⑤ τtx,n✉ → ∆s.

We can use Lemma 2.6 to obtain

hn✁x♣tn④2✉ ✁ x, ∆q
hn♣tn④2✉, tq Etn④2✉rhn♣X∆, t ✁ ∆q ⑤ τtx,n✉ → ∆s

✏ ♣1 � O♣n✁2qq
4
π

cos∆

✁
π

n✁x

✠
sin

✁
π♣tn④2✉✁xq

n✁x

✠
4
π

cost

✁
π
n

✠
sin

✁
πtn④2✉

n

✠ Etn④2✉

✑ 4

π
cost✁∆

✁π

n

✠
sin

✁πX∆

n

✠
⑤ τtx,n✉ → ∆

✙

✏ ♣1 � O♣n✁2qq 4

π

☎✆cos
✁

π
n✁x

✠
cos

✁
π
n

✠
☞✌∆

Etn④2✉

✑
sin

✁πX∆

n

✠
⑤ τtx,n✉ → ∆

✙
.

Again using cos x ✏ e✁
x2

2 ♣1 � O♣x4qq we have

♣1�O♣n✁2qqq 4

π

☎✆cos
✁

π
n✁x

✠
cos

✁
π
n

✠
☞✌∆

Etn④2✉

✑
sin

✁πX∆

n

✠
⑤ τtx,n✉ → ∆

✙
✏ ♣1 � O♣∆n✁4qq 4

π
e✁∆π2♣♣n✁xq✁2✁n✁2q④2Etn④2✉

✑
sin

✁πX∆

n

✠
⑤ τtx,n✉ → ∆

✙
✏ ♣1 � O♣∆n✁4qq 4

π
e✁∆xπ2④♣n3qEtn④2✉

✑
sin

✁πX∆

n

✠
⑤ τtx,n✉ → ∆

✙
. (5.1)

An important point here is that this probability asymptotically does not depend on t,

just on n, ∆ and x. Now, to work with the expectation, we will show that its value is

asymptotically equal to π④4, using Lemma 5.2 for this. Consider the set Γn,∆ of all paths

started in tn④2✉ and of length ∆, so we can write the following expectation in terms of a
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sum of probabilities of paths and use translation invariance of simple random walk:

Etn④2✉

✑
sin

✁πX∆

n

✠
⑤ τtx,n✉ → ∆

✙
✏

➳
γPΓn,∆

sin
✁πγ∆

n

✠
Ptn④2✉rγ ⑤ τtx,n✉ → ∆s

✏
➳

γPΓn,∆

sin
✁πγ∆

n

✠Ptn④2✉rγ, τtx,n✉ → ∆s
Ptn④2✉rτtx,n✉ → ∆s

✏
➳

γPΓtn④2✉✁x,∆

sin
✁π♣x � γ∆q

n

✠Ptn④2✉✁xrγ, τt0,n✁x✉ → ∆s
Ptn④2✉✁xrτt0,n✁x✉ → ∆s

✏ Etn④2✉✁x

✑
sin

✁π♣x � X∆q
n

✠
⑤ τt0,n✁x✉ → ∆

✙
. (5.2)

We can write

Etn④2✉✁x

✑
sin

✁π♣x � X∆q
n

✠
⑤ τt0,n✁x✉ → ∆

✙
✏ sin

✁πx

n

✠
Etn④2✉✁x

✑
cos

✁πX∆

n

✠
⑤ τt0,n✁x✉ → ∆

✙
� cos

✁πx

n

✠
Etn④2✉✁x

✑
sin

✁πX∆

n

✠
⑤ τt0,n✁x✉ → ∆

✙
(5.3)

✏ O♣n✁1q � ♣1 ✁ O♣n✁2qqEtn④2✉✁xrsin
✁πX∆

n

✠
⑤ τt0,n✁x✉ → ∆s. (5.4)

Now working with the sine in the expectation

Etn④2✉✁x

✑
sin

✁πX∆

n

✠
⑤ τt0,n✁x✉ → ∆

✙
✏ Etn④2✉✁x

✑
sin

✁ πX∆

n ✁ x

✁
1 ✁ x

n

✠✠
⑤ τt0,n✁x✉ → ∆

✙
✏ Etn④2✉✁x

✑
sin

✁ πX∆

n ✁ x

✠
cos

✁ πxX∆

n♣n ✁ xq
✠
⑤ τt0,n✁x✉ → ∆

✙
✁ Etn④2✉✁x

✑
cos

✁ πX∆

n ✁ x

✠
sin

✁ πxX∆

n♣n ✁ xq
✠
⑤ τt0,n✁x✉ → ∆

✙
.

As 0 ➔ X∆ ➔ n ✁ x we have the following asymptotic behavior,

cos
✁ πxX∆

n♣n ✁ xq
✠
✏ 1 ✁ O

✁ ♣πxX∆q2

2♣n♣n ✁ xqq2

✠
✏ 1 ✁ O♣n✁2q,

and

sin
✁ πxX∆

n♣n ✁ xq
✠
✏ O

✁ πxX∆

n♣n ✁ xq
✠

✏ O♣n✁1q.

So with this we get

Etn④2✉✁x

✑
sin

✁πX∆

n

✠
⑤ τt0,n✁x✉ → ∆

✙
✏ ♣1 ✁ O♣n✁2qqEtn④2✉✁x

✑
sin

✁ πX∆

n ✁ x

✠
⑤ τt0,n✁x✉ → ∆

✙
� O♣n✁1q. (5.5)
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By Lemma 5.2 we have

Etn④2✉✁x

✑
sin
✁ πX∆

n ✁ x

✠
⑤ τt0,n✁x✉ → ∆

✙
✏ π

4
♣1 � O♣n✁2qq.

Then using this in (5.5) we get

Etn④2✉✁x

✑
sin
✁πX∆

n

✠
⑤ τt0,n✁x✉ → ∆

✙
✏ π

4
♣1 � O♣n✁1qq.

Finally, using this in (5.4) and then in (5.2) we get

Etn④2✉

✑
sin
✁πX∆

n

✠
⑤ τtx,n✉ → ∆

✙
✏ π

4
♣1 � O♣n✁1qq. (5.6)

Using this in (5.1), we conclude the proof of Lemma 5.3.

Lema 5.4. Suppose x → 1 is fixed and y2 ✏ o♣∆q. It holds that

rPxrX∆ ↕ ys ✏ PxrX∆ ↕ y ⑤ τ0 ✏ ✽s ✏
❝

2

π

y3

3∆3④2 ♣1 � O♣y2∆✁1qq.

Proof. Let us calculate this probability by splitting it according to the endpoints of the

paths:

rPxrX∆ ↕ ys ✏
y➳

k✏1

k

x2∆
⑤tγ : γ0 ✏ x, γi ✘ 0, γ∆ ✏ y✉⑤, (5.7)

where ⑤A⑤ stands for the cardinality of the set A. We need to estimate Nk :✏ ⑤tγ : γ0 ✏
x, γi ✘ 0, γ∆ ✏ k✉⑤. In this sum we have some problems with parity. If ∆ is even, then

both x and γ∆ need to have the same parity. Otherwise they need to have opposite parity.

As we are mostly interested in asymptotic results, let us assume that ∆ is even and so x

and k are of the same parity.

Let us consider paths from ♣0, xq to ♣∆, yq that do not touch the line y ✏ 0.

The value of Nk can be explicitly calculated using the reflection principle (see section 1 of

chapter III of (Feller, W., 1968)), so we have:

Nk ✏
✂

∆
∆�k✁x

2

✡
✁
✂

∆
∆✁x✁k

2

✡

✏
✂

∆
∆�k✁x

2

✡☎✆1 ✁
✁

∆�k✁x
2

✠
!
✁

∆✁k�x
2

✠
!✁

∆�k�x
2

✠
!
✁

∆✁k✁x
2

✠
!

☞✌.

We have two fractions to work with, so as ∆ � k goes to infinity, we use the asymptotic

expansions valid for any real constant a:

Γ♣n � a � 1q
Γ♣n ✁ a � 1q ✏ n2a

✁
1 � a

n
� O♣n✁2q

✠
.
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Then

Nk ✏
✂

∆
∆�k✁x

2

✡✂
1 ✁

✁∆ ✁ k

∆ � k

✠x✁
1 ✁ x

∆ � k
� O♣∆✁2q

✠✡
✏
✂

∆
∆�k✁x

2

✡✂
1 ✁

✁
1 ✁ 2kx

∆ � k
� O♣k2∆✁2q

✠✁
1 ✁ x

∆ � k
� O♣∆✁2q

✠✡
✏
✂

∆
∆�k✁x

2

✡✂♣2k � 1qx
∆

� O♣k2∆✁2q
✡

. (5.8)

Using the Stirling approximation n! ✏
❄

2πn♣n④eqn♣1 � O♣n✁1qq we can work with the

asymptotic expression of the remaining binomial term:✂
∆

∆�k✁x
2

✡
✏ ∆!

∆�k✁x
2

!∆✁k�x
2

!

✏
❄

2π∆
✁

∆
e

✠∆

π
❛

∆2 ✁ ♣k ✁ xq2

✁
∆�k✁x

2e

✠♣∆�k✁xq④2✁
∆✁k�x

2e

✠♣∆✁k�xq④2 ♣1 � O♣∆✁1qq

✏ 2∆

❝
2

π∆
♣1 � O♣k2∆✁1qq.

Now using this in (5.8) we get

Nk ✏ 2∆

❝
2

π

♣2k � 1qx
∆3④2 ♣1 � O♣k2∆✁1qq. (5.9)

We want to use (5.9) in (5.7), but we need to worry about the parity before. First, if x is

even we get

rPxrX∆ ↕ ys ✏
❝

2

π

x

x∆3④2

ty④2✉➳
k✏1

2k♣4k � 1q♣1 � O♣k2∆✁1qq

✏
❝

2

π

y3

3∆3④2 ♣1 � O♣y2∆✁1qq. (5.10)

It is straightforward to see that rPxrX∆ ↕ ys is decreasing in x. This monotonicity property

allow us to extend (5.10) to any value of x. The same argument can be used for ∆, as

the positive drift makes rPxrX∆ ↕ ys also decreasing in ∆. This makes this asymptotic

expression valid for all x, y, and ∆ satisfying the condition in the hypothesis, which

concludes the proof of Lemma 5.4.

Corollary 5.1.1. Consider the conditional random walk on the ring graph of size n. For

a fixed x → 0, consider quantities ∆ and y possibly depending on n such that ∆ ✏ o♣n2q,
y2 ✏ o♣∆q, y ✏ o♣nq and t satisfy Condition (2.10). Then

♣Pt
xrX∆ ↕ ys ✏ ♣1 � O♣∆n✁2q � O♣y2∆✁1qq

❝
2

π

y3

3∆3④2 .
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Proof. Consider the set Γ of paths γ of length ∆ with the property: γ0 ✏ x, γi ❘ t0, n✉ for

all i and γ∆ ↕ y. Then, using Lemma 5.4

♣Pt
xrX∆ ↕ ys ✏

➳
γPΓ

♣Pt
xrγs

✏
➳
γPΓ

hn♣γ∆, t ✁ ∆q
2∆hn♣x, tq

✏ ♣1 � O♣n✁2qq
cos✁∆

✁
π
n

✠
sin
✁

πx
n

✠ ➳
γPΓ

sin
✁

πγ∆

n

✠
2∆

✏ ♣1 � O♣y2n✁2qqcos✁∆
✁π

n

✠➳
γPΓ

γ∆

x2∆

✏ ♣1 � O♣∆n✁2q � O♣y2n✁2qqrPxrX∆ ↕ ys

✏ ♣1 � O♣∆n✁2q � O♣y2∆✁1qq
❝

2

π

y3

3∆3④2 .

This concludes the proof of Corollary 5.1.1.

5.2 Proof

Now we prove the convergence of the local time for a fixed x. First we present

a sketch of the proof: Let Xt be our conditional random walk on the ring. We will define a

second walk Yt such that with high probability Xt ✏ Yt for all t and for Yt we can prove

that its local times converge to these of the random interlacements.

• The particle Yt will follow Xt until the time Xt hits x.

• When Yt hits x, Yt will follow the law of the conditional random walk on Z� for a

fixed time T (that will depend on n and will be specified later).

• During this time T we will consider this pieces of trajectory as random elements and

couple the walks Xt and Yt using the maximal coupling.

• After T , if Xt and Yt are on the same site (i.e. the maximal coupling worked), they

will continue moving together afterwards. Otherwise we say our coupling procedure

failed.

To make our calculations work, we will also impose a condition on the number

of pieces of trajectories of length T . For this we split our time interval (from 0 to

t✝ ✏ αn3④♣2π2q) in m ✏ tln n✉ intervals, and only allow at most one “initial” visit to x

(and therefore at most one alteration of Yt for each interval). If this does not hold, we will

also say our procedure failed.
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As we are only interested in the situation where the procedure worked (which

we will prove that have a high probability), we will refer to any particle as Xt during the

proof.

Now in the proof of Theorem 1.3.3 we will rigorously define the terms used in

the sketch.

Proof of Theorem 1.3.3. We begin by considering the ring graph of size n with the condi-

tional random walk started at site tn④2✉. The vacant set convergence time is t✝ ✏ αn3④♣2π2q
by Theorem 1.3.1. We will split this interval in m ✏ tln n✉ random intervals. For this

purpose let us define the sequence of points Aj in the following way: Let η ✏ tt✝④ ln n✉ and

with it define

A0 ✏ 0;

Aj�1 ✏ inftt ➙ Aj � η : Xt ✏ tn④2✉✉, if j ➔ m;

Am�1 ✏ t✝.

Then, the interval Ij for j ↕ m is defined as

Ij :✏ rAj✁1, Ajq, (5.11)

and the remaining time interval R is defined as

R :✏ rAm, Am�1s. (5.12)

Now we want to show that, almost surely, the lengths of all above intervals are asymptotic

to η; by definition of Ij we can say that its length can be represented as Ij ✏ η�Tj, where

Tj satisfies

PrTj ✏ as ✏ Etn④2✉

✏♣Pt✝✁Aj✁1✁η

Xη
rτtn④2✉ ✏ as ⑤ τt0,n✉ → t✝ ✁ Aj✁1

✘
. (5.13)

This is because from the moment Aj✁1 on, the process still has t✝ ✁ Aj✁1 steps to run

without hitting the origin. Also, we want the first time where Xt ✏ tn④2✉ after η, so the

starting point is Xη, and from there we are considering the hitting time of tn④2✉, which

justifies the expression for the probability inside the expectation.

Consider j ➔ m, then, for any ε → 0 we have

Pr⑤Ij⑤ → ♣1 � εqηs ✏ PrTj → εηs
✏ Etn④2✉r♣Pt✝✁Aj✁1✁η

Xη
rτn → εηs ⑤ τt0,n✉ → t✝ ✁ Aj✁1s. (5.14)
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Observe also that εη, t✝ ✁ Aj✁1 ✁ η, and the difference t✝ ✁ Aj✁1 ✁ ♣1 � εqη all satisfy

condition (2.10), so we use Lemma 5.1 and get

Pr⑤Ij⑤ → ♣1 � εqηs ↕ ♣1 � o♣1qq 8

π
exp

✁
✁ 3π2εη

2n2

✠
Etn④2✉

✑
cos

✁πXη

n

✠
⑤ τt0,n✉ → t✝ ✁ Aj✁1

✙
↕ ♣1 � o♣1qq 8

π
exp

✁
✁ 3π2εη

2n2

✠
✏ ♣1 � o♣1qq 8

π
exp

✁
✁ 3αεn

4 ln n

✠
.

So, we have a summable bound (in n) for the tail probability, and therefore this shows

that Ij ✒ η a.s..

Before constructing the coupling, let us discuss the probability of a successful

coupling between trajectories of conditional random walks on the ring graph up to time

t and on Z�. Assume that t is of order n3 and let x be a fixed value, we are interested

in coupling the paths of both processes up to a time T ✏ nµ (where µ ➔ 1), using the

maximal coupling. Then the coupling event probability PrCs can be estimated using the

expressions for the laws (2.6) and (2.7). Let Γ be the set of all paths started in x and with

length T .

We have the following expression for the coupling event probability

PrC❆s ✏ 1

2

➳
γPΓ

✞✞rPxrγs ✁ ♣Pt
xrγs

✞✞.
We use Lemma 2.6, but we have the stronger condition that t is of order n3; so, instead

we use expression (2.12) inside the proof and for each term in the sum we have✞✞rPxrγs ✁ ♣Pt
xrγs

✞✞ ✏ ✞✞✞✞ γT

2T x
✁ hn♣γT , t ✁ T q

2T hn♣x, tq
✞✞✞✞

✏ 1

2T

✞✞✞✞✞✞γT

x
✁ ♣1 � O♣ne✁3tπ2④♣2n2qqq cos✁T

✁π

n

✠sin
✁

πγT

n

✠
sin

✁
πx
n

✠
✞✞✞✞✞✞ .

As cos✁T
✁π

n

✠
✏ 1 ✁ O♣n✁2T q, the error term in the cosine asymptotic approximation

dominates the error term in expression (2.12) and then

♣1 � O♣ne✁3tπ2④♣2n2qqq cos✁T
✁π

n

✠
✏ 1 ✁ O♣n✁2T q.

So, we have

✞✞rPxrγs ✁ ♣Pt
xrγs

✞✞ ✏ 1

2T

✞✞✞✞✞✞γT

x
✁ ♣1 ✁ O♣n✁2T qq

sin
✁

πγT

n

✠
sin

✁
πx
n

✠
✞✞✞✞✞✞

↕ 1

2T

✞✞✞✞✞✞γT

x
✁

sin
✁

πγT

n

✠
sin

✁
πx
n

✠
✞✞✞✞✞✞� O♣n✁2T q

sin
✁

πγT

n

✠
2T sin

✁
πx
n

✠ . (5.15)
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Next, we sum the second terms in (5.15) in γ P Γ to obtain

➳
γPΓ

sin
✁

πγT

n

✠
2T sin

✁
πx
n

✠ ✏
Ex

✑
sin

✁
πXT

n

✠
✶rτ0 → T s

✙
sin

✁
πx
n

✠
↕

Ex sin
✁

πXT

n

✠
sin

✁
πx
n

✠
As the sine is concave on the interval r0, πs we can use Jensen’s inequality and get

Ex sin
✁

πXT

n

✠
sin

✁
πx
n

✠ ↕
Ex sin

✁
πXT

n

✠
sin

✁
πx
n

✠
↕

sin
✁

πExXT

n

✠
sin

✁
πx
n

✠ ✏ 1. (5.16)

Now we sum the first term of (5.15) in Γ to get

➳
γPΓ

1

2T

✞✞✞✞✞✞γT

x
✁

sin
✁

πγT

n

✠
sin

✁
πx
n

✠
✞✞✞✞✞✞ ↕ Ex

✞✞✞✞✞✞XT

x
✁

sin
✁

πXT

n

✠
sin

✁
πx
n

✠
✞✞✞✞✞✞ .

As the maximum value that XT can achieve starting at x is x�T , we have that XT ✏ o♣nq
and then we can use the asymptotic expression for the sine and get

Ex

✞✞✞✞✞✞XT

x
✁

sin
✁

πXT

n

✠
sin

✁
πx
n

✠
✞✞✞✞✞✞ ✏ Ex

✞✞✞✞XT

x
✁ XT ✁ O♣X3

T n✁2q
x ✁ O♣n✁2q

✞✞✞✞
✏ Ex

✞✞✞✞XT

x
O♣X2

T n✁2q
✞✞✞✞

✏ O♣n✁2qEx ⑤XT ⑤3 . (5.17)

By the fact that XT is a simple random walk, we can represent the steps as a sequence

of i.i.d. random variables Yi, where Yi take values �1 and ✁1 with probability 1④2, so

Xt ✏ x � St, where St ✏ Y1 � Y2 � . . . � Yt. We will use this to bound Ex ⑤XT ⑤3.

Ex ⑤XT ⑤3 ✏ E ⑤x � St⑤3

↕ E ⑤ST ⑤3 � 3xEx ⑤ST ⑤2 � O♣T 1④2q
✏ E ⑤ST ⑤3 � O♣T q

Theorem 7.1.1 of (Matoušek, J.; Vondrák, J., 2001) shows that for the simple random

walk St started at 0 and positive x it holds

PrSt ➙ xs ➔ exp
✦
✁ x2

2t

✮
.
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For any constant β → 0 we have

Pr⑤ST ⑤3 ➙ βT 2s ✏ 2PrST ➙ β
1

3 T
2

3 s

↕ 2 exp
✦
✁ β

2

3 T
1

3

2

✮
,

a stretched exponential bound in T .

With this we can finally estimate Ex ⑤ST ⑤3. Let D be the event t⑤ST ⑤3 ➙ βT 2✉,
then, since ⑤ST ⑤ ↕ T , we have

E ⑤ST ⑤3 ✏ PrDsEr⑤ST ⑤3 ⑤ Ds � PrDCsEr⑤ST ⑤3 ⑤ DCs

↕ 2 exp
✦
✁ β2④3T 1④3

2

✮
T 3 � βT 2 ✏ O♣T 2q.

Finally,

Ex

✞✞XT
3
✞✞ ↕ E ⑤ST ⑤3 � O♣T q ✏ O♣T 2q. (5.18)

Then we can bound the coupling event probability. Using (5.16), (5.17) and (5.18) together

we have

2PrC❆s ✏
➳
γPΓ

✞✞rPxrγs ✁ ♣Pt
xrγs

✞✞
✏ O♣n✁2qO♣T 2q � O♣n✁2T q ✏ O♣n✁2T 2q. (5.19)

We still have to estimate the probability that our procedure fails because the

random walk has at least two excursions in at least one of the intervals.

Let us consider excursions of length T starting at x. The initial times of the

first and (possibly) second excursion starting in x are denoted by

τ 1
x♣kq ✏ inftt P Ik : Xt ✏ x✉,

τ 2
x♣kq ✏ inftt → τ 1

x♣kq � T : Xt ✏ x✉.

Observe that we do not necessarily have τ 2
x♣kq P Ik, so the event that two or more excursions

happen during Ik is tτ 2
x♣kq P Ik✉. We want to calculate the probability of this event. The

initial point of interval Ik is Ak✁1, so the process still has time t✝ ✁ Ak✁1 to run. So, using

the Markov property, we have

♣Pt✝✁Ak✁1

tn④2✉ rτ 2
x♣kq P Iks

✏ ♣Pt✝✁Ak✁1

tn④2✉ rτ 1
x♣kq P Iks ☎ ♣Pt✝✁Ak✁1

tn④2✉ rτ 2
x♣kq P Ik ⑤ τ 1

x♣kq P Iks. (5.20)

Now let us work with each term of (5.20) separately. As both ⑤Ik⑤ and t✝ ✁ Ak✁1 ✁ ⑤Ik⑤
satisfy almost surely condition (2.10), we can use Lemma 5.3 and the fact that ⑤Ik⑤ is of
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order n3♣ln nq✁1, then we get

♣Pt✝✁Ak✁1

tn④2✉ rτ 1
x♣kq P Iks ✏ Ptn④2✉rτx ↕ ⑤Ik⑤ ⑤ τt0,n✉ → t✝ ✁ Ak✁1s

✏ E

✑
E
✏
Ptn④2✉rτx ↕ ⑤Ik⑤ ⑤ τt0,n✉ → t✝ ✁ Ak✁1s ⑤ σ♣Ikq

✘✙
✏ 1 ✁ E

✏
Er♣1 � O♣n✁1q � O♣⑤Ik⑤n✁4qqe✁⑤Ik⑤π2x④n3 ⑤ σ♣Ikqs

✘
✏ 1 ✁ ♣1 � O♣n✁1qqEe✁⑤Ik⑤π2x④n3

✏ 1 ✁ ♣1 � O♣n✁1qqe✁ηπ2x④n3

Ee✁Tkπ2x④n3

.

Using Lemma 5.1 in the same way as we did in (5.14), we have

Ee✁Tkπ2x④n3 ✏ PrTk → n2 ln n④π2sEre✁Tkπ2x④n3 ⑤ Tk → n2 ln n④π2s
� PrTk ↕ n2 ln n④π2sEre✁Tkπ2x④n3 ⑤ Tk ↕ n2 ln n④π2s

✏ O♣n✁ 3

2 q � ♣1 ✁ O♣n✁ 3

2 qqsEre✁Tkπ2x④n3 ⑤ Tk ↕ n2 ln n④π2s
✏ O♣n✁ 3

2 q � ♣1 ✁ O♣n✁ 3

2 qq♣1 ✁ O♣n✁1 ln nqq
✏ 1 ✁ O♣n✁1 ln nq,

and therefore

♣Pt✝✁Ak✁1

tn④2✉ rτ 1
x♣kq P Iks ✏ 1 ✁ ♣1 � O♣n✁1 ln nqqe✁ηπ2x④n3

✏ 1 ✁ ♣1 � O♣n✁1 ln nqqe✁αx④♣2 ln nq.

As e✁αx④♣2 ln nq ✏ 1 ✁ αx

2 ln n
� O♣♣ln nq✁2q, we obtain

♣Pt✝✁Ak✁1

tn④2✉ rτ 1
x♣kq P Iks ✏ 1 ✁ ♣1 � O♣n✁1 ln nqq

✁
1 ✁ αx

2 ln n
� O♣♣ln nq✁2q

✠
✏ αx

2 ln n
� O♣n✁1 ln nq. (5.21)

Now we work with the second probability of (5.20):

♣Pt✝✁Ak✁1

tn④2✉ rτ 2
x♣kq P Ik ⑤ τ 1

x♣kq P Iks
✏ ♣Et✝✁Ak✁1

x PXT
rτx ↕ ⑤Ik⑤ ✁ τ 1

x♣kq ✁ T ⑤ τt0,n✉ → t✝ ✁ Pk✁1 ✁ τ 1
x♣kqs.

Let us abbreviate t✝✝ ✏ t✝ ✁ Ak✁1. Again we use Corollary 5.1.1 and Lemma 5.3; then, as
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T ✏ nµ we get

♣Et✝✝

x PXT
rτx ↕ ⑤Ik⑤ ✁ τ 1

x♣kq ✁ T ⑤ τt0,2n✉ → t✝ ✁ Ak✁1 ✁ τ 1
x♣kqs

✏ ♣Pt✝✝

x rXT ↕ n
µ
3 s♣Et✝✝

x

�
PXT

rτx ↕ ⑤Ik⑤ ✁ τ 1
x♣kq ✁ T ⑤ τt0,n✉ → t✝ ✁ Pk✁1 ✁ τ 1

x♣kqs ⑤ XT ↕ n
µ
3

✟
� ♣Pt✝✝

x rXT → n
µ
3 s♣Et✝✝

x

�
PXT

rτx ↕ ⑤Ik⑤ ✁ τ 1
x♣kq ✁ T ⑤ τt0,n✉ → t✝ ✁ Pk✁1 ✁ τ 1

x♣kqs ⑤ XT → n
µ
3

✟
✏ O♣n✁µ

2 q � ♣1 ✁ O♣n✁µ
2 qq
✁

1 ✁ ♣1 � O♣n✁1qq♣Et✝✝

x e✁♣⑤Ik⑤✁τ1
x♣kq✁T qxπ2④n3

✠
↕ O♣n✁µ

2 q � ♣1 ✁ O♣n✁µ
2 qq
✁

1 ✁ ♣1 � O♣n✁1 ln nqq♣Et✝✝

x e✁⑤Ik⑤xπ2④n3

✠
✏ O♣n✁µ

2 q � ♣1 ✁ O♣n✁µ
2 qq
✁

1 ✁ ♣1 � O♣n✁1 ln nqqe✁αx④♣2 ln nq
✠

✏ O♣n✁µ
2 q � ♣1 ✁ O♣n✁µ

2 qq
✁

1 ✁ ♣1 � O♣n✁1 ln nqq
✁

1 ✁ αx

2 ln n

✠✠
✏ αx

2 ln n
♣1 � O♣n✁µ

2 ln nqq.

So, we can bound the probability that a specific interval Ij contains at least two excursions

to x:

♣Pt✝✁Ak✁1

tn④2✉ rτ 2
x♣kq P Iks ↕

✁ αx

2 ln n
� O♣n✁1 ln nq

✠✁ αx

2 ln n
� O♣n✁µ

2 q
✠

✏ α2x2

4 ln2 n
� O♣n✁µ

2 ♣ln nq✁1q.

Finally we bound the probability that at least one interval contain at least two excursions:

♣Pt✝

tn④2✉

✑ m↕
k✏1

tτ 2
x♣kq P Ik✉

✙
↕

m➳
k✏1

♣Pt✝✁Ak✁1

tn④2✉ rτ 2
x♣kq P Iks

↕ m
✁ α2x2

4 ln2 n
� O♣n✁µ

2 ♣ln nq✁1q
✠

✏ α2x2

4 ln n
� O♣♣ln nq✁2q Ñ 0 as n Ñ ✽. (5.22)

After this we only need to worry about the remaining time R. We surely have

that it is smaller than any of the intervals, as for any j ↕ m we have ⑤Ij⑤ ➙ η, but

♣m � 1qη → t✝. Let us bound the probability that the process visits x in the remaining

time.

We want to estimate ♣PR
tn④2✉rτx → Rs; consider the function f : Z� Ñ r0, 1s

defined by

f♣tq ✏ ♣Pt
tn④2✉rτx → ts

By definition we have

♣Pt
tn④2✉rτx → ts ✏ Ptn④2✉rτtx,n✉ → ts

Ptn④2✉rτt0,n✉ → t

✏ hn✁x♣tn④2✉✁ x, tq
hn♣tn④2✉, tq .
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If t ✏ t♣nq satisfies condition (2.10) we have an asymptotic expression in n for f♣tq

f♣tq ✏ ♣1 � O♣n✁2qq
sin

✁
π♣tn④2✉✁xq

n✁x

✠
sin

✁
πtn④2✉

n

✠ cost
✁

π
n✁x

✠
cost

✁
π
n

✠
✏ ♣1 � O♣tn✁4qqq exp

✦
✁ tπ2x

n3

✮
.

So, asymptotically the function is decreasing. We now show that R satisfies condition (2.10).

Fix a constant β → 4④π2, then write

PrR → βn2 ln ns ✏ P

✑
t✝ ✁ mη ✁

m➳
k✏1

Tk → βn2 ln n
✙

✏ P

✑ m➳
k✏1

Tk ➔ t✝ ✁ mη ✁ βn2 ln n
✙

➙ 1 ✁
➦m

k✏1 ETk

t✝ ✁ mβηn2 ln n
. (5.23)

To bound the expectations in (5.23) we use (5.13) and Lemma 5.1:

P

✑
Tk → 4n2 ln n

π2

✙
✏ ♣Etn④2✉

✑♣Pt✝✁Ak✁1✁η

Xη

✑
τtn④2✉ → 4n2 ln n

π2

✙
⑤ τt0,n✉ → t✝ ✁ Ak✁1

✙
↕ ♣1 � O♣n✁2 ln nqq 8

π
n✁6.

Also, as each Tk is bounded by t✝, we have

ETk ✏ E

✑
Tk ⑤ Tk → 4n2 ln n

π2

✙
P

✑
Tk → 4n2 ln n

π2

✙
� E

✑
Tk ⑤ Tk ↕ 4n2 ln n

π2

✙
P

✑
Tk ↕ 4n2 ln n

π2

✙
↕ O♣t✝n✁6q � 4n2 ln n

π2
♣1 ✁ O♣n✁6qq

↕ 16n2 ln n

π2
� O♣n✁3q.

Now observe that

t✝ ✁ mη ✏ t✝ ✁ tln n✉

❩
t✝

ln n

❫
✏ O♣t✝♣ln nq✁1q.

Therefore

PrR → βn2 ln ns ➙ 1 ✁
➦m

k✏1 ETk

t✝ ✁ mη ✁ βn2 ln n

➙ 1 ✁
m
✁

16n2 ln n④π2 � O♣n✁3q
✠

O♣t✝♣ln nq✁1q
✏ 1 ✁ O♣♣ln nq3n✁1q.
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Then with high probability R satisfies condition (2.10), consequently

♣PR
tn④2✉rτx → Rs ✏ Ef♣Rq

➙ Erf♣Rq ⑤ R → βn2 ln nsPrR → βn2 ln ns
✏ Er♣1 � O♣Rn✁4qqqe✁Rπ2x④n3 ⑤ R → βn2 ln ns♣1 ✁ O♣♣ln nq3n✁1qq
➙ e✁β ln nπ2x④n♣1 ✁ O♣♣ln nq3n✁1qq
✏ 1 ✁ O♣♣ln nq3n✁1q. (5.24)

So, we have that ♣PR
n rτx ↕ Rs ✏ O♣♣ln nq3n✁1q, which is an upper bound for the probability

of a visit in the remaining time.

Now, we construct the coupling. The motivation behind the procedure is that

all visits to x usually happen in “batches”, so when a initial visit to x happens, the walk

visits x again at some moments during a small time interval and then goes away again.

When trying to couple the entire process we get an error of large order that turns the

coupling almost impossible to happen, so, as we are only interested in the visits to x, we

just need to couple then for these small time intervals of the excursions.

As x is fixed and we are working with asymptotic behaviors, these “batches” of

visits are rare and, since we splitted our time in the intervals defined in (5.11) such that

in each of them probability of hitting x is almost the same; this makes our calculations

possible. So, again let us recall our definitions and the coupling procedure:

• Consider a conditional random walk on the ring graph of size n that will run for a

time t✝ ✏ αn3④♣2π2q. We split the time into m intervals as defined in (5.11) and the

remaining time.

• In each interval we have a small chance of visiting x. When the visit happens, from

that moment on we couple the walk on the ring with the conditional random walk

on Z� for a time T ✏ nµ.

Our procedure can fail if and only if any of the following happens:

• At least one of the m intervals has 2 or more excursions.

• There is a visit to x in the remaining time.

• The maximal coupling fails for at least one excursion.

Let us denote these three events by F1, F2 and F3 respectively, and the event that the

coupling fails by F , so F ✏ F1 ❨ F2 ❨ F3. Also, denote the local time of this walk in site x

by Ln♣xq.
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The probability of F1 was already bounded in (5.22) and we bounded the

probability of F3 in (5.24). As for F2, the probability that the coupling of one excursion

fails was dealt with in (5.19); since we have at most m excursions, it holds that

PrF2s ↕ mO♣n✁2T 2q ✏ O♣n✁2♣1✁µq ln nq.

Consequently,

PrF s ↕ PrF1s � PrF2s � PrF3s

↕ α2x2

4 ln n
� O♣♣ln nq✁2q � O♣n✁2♣1✁µq ln nq � O♣♣ln nq3n✁1q

✏ α2x2

4 ln n
� O♣♣ln nq✁2q.

Now we have an estimate on the probability that the procedure fails; we need

then to see which is the distribution of the number of visits to x of an excursion. We have

a conditional random walk on Z� running up to time nµ. Let us consider each excursion

as a part of a random walk in Z� started in x and denote by Vi the number of visits of

ith random walk to x if we let it run indefinitely; also denote by Ti,k the time between the

kth and ♣k � 1qth visits. With this the number of visits of ith excursion Wi can be defined

as the number of visits of the walk up to time nµ and be represented as

Wi ✏
Vi➳

j✏1

✶

✓
j✁1➳
k✏1

Ti,k ↕ nµ

✛
.

Since
Vi✁1➳
k✏1

Ti,k is the time of the last visit; by Lemma 2.2 it is finite as the number of visits

is finite. This means that Wi Ñ Vi almost surely, and since ⑤eitWi ⑤ ✏ 1, by the dominated

convergence theorem

ϕWi
♣tq ✏ EeitWi Ñ ϕVi

♣tq.

Each coupled excursion is independent, so if we denote by Bi the Bernoulli

random variable indicating if the visit in x at interval Ii happened. Then Ln♣xq can be

written as

Ln♣xq ✏
m➳

i✏1

BiWi,

where the variables Wi and Bi are independent. Therefore

ϕLn♣xq♣tq ✏ EeitLn♣xq

✏
m➵

i✏1

rPrBi ✏ 0s � PrBi ✏ 1sϕW ♣tqs.
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The probability that the interval Ii has a visit (and then an excursion) was calculated in

(5.21), so we write

ϕLn♣xq♣tq ✏
m➵

i✏1

✁
1✁ αx

2 ln n
� O♣n✁1q �

✁ αx

2 ln n
� O♣n✁1q

✠
ϕW ♣tq

✠
✏
✁

1� αx

2 ln n
♣ϕW ♣tq ✁ 1q � O♣n✁1q

✠m

✏ exp
✦

m ln
✁

1� αx

2 ln n
♣ϕW ♣tq ✁ 1q � O♣n✁1q

✠✮
.

As ⑤ϕW ♣tq ✁ 1⑤ ↕ 2, we can use the asymptotic expansion ln♣1� xq ✏ x � O♣x2q and

ϕLn♣xq♣tq ✏ exp
✦mxα

2 ln n
♣ϕW ♣tq ✁ 1q � O♣m♣ln nq✁2q

✮
and, since m ✏ tln n✉, this becomes

ϕLn♣xq♣tq ✏ exp
✦αx

2
♣ϕW ♣tq ✁ 1q � O♣♣ln nq✁1q

✮
Ñ exp

✦αx

2
♣ϕV ♣tq ✁ 1q

✮
.

Now, using Lemma 2.2, we have that V is Geometric with PrV ✏ ks ✏
1

2x
♣1✁ 1

2x
qk✁1 and, finally,

ϕLn♣xq♣tq Ñ exp
✦

αx2 ♣eit ✁ 1q
2x ✁ ♣2x ✁ 1qeit

✮
✏ ϕℓ♣xq♣tq.

Then, since ϕℓ♣xq♣tq is continuous at 0, one can use the continuity theorem (cf. e.g.

Theorem 9.5.2 of (Resnick, S., 2013)) and obtain that

Ln♣xq lawñ ℓ♣xq,

as desired. This concludes the proof of Theorem 1.3.3.
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