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Resumo

O alerta das mudanças climáticas fizeram com que organizações ao redor do mundo

dispendessem esforços em programas de energia eficientes. Neste cenário, entender a

demanda de energia elétrica dos consumidores finais tem papel fundamental para o

planejamento da rede de distruibuição elétrica e avaliar a necessidade de novas usinas

de energia. Apesar do crescimento das tecnologias de medidores inteligentes, observar o

consumo individual ainda é caro. Por outro lado, curvas de consumo agregadas geralmente

são disponíveis em subestações de energia. A metodologia proposta separa o consumo de

energia agregado observado nessas subestações em curvas médias de consumo estimadas,

chamadas de curvas típicas, para cada tipo de consumidor abastecido. Nossa abordagem

supõe que cada curva típica de consumidor segue um Processo Gaussiano, cuja média

é dada pela curva típica e modelada em termos de covariáveis funcionais e escalares.

Além disso, levando em consideração as diferenças entre subestações devido a fatores

externos, propomos um modelo de agrupamento de subestações baseado na similaridade

de suas curvas típicas e estrutura de covariância. Para verificar o desempenho do modelo, a

metodologia é testada em uma série de experimentos sob oito cenários simulados diferentes

e aplicada a um conjunto de dados reais de monitoramento de consumo de energia elétrica

em subestações no Reino Unido.

Palavras-chave: Separação de sinal, modelo funcional, modelo funcional agregado, pro-

cessos gaussianos, expansão por funções base.



Abstract

The climate change alert pushed organizations worldwide to devote efforts to energy

efficiency programs. In this scenario, understanding electrical demand at the consumer

level plays an important role in planning the distribution of electrical networks and

evaluating the need for construction of new power plants. Despite the growth of smart

meter technology, observing individual consumption loads is still expensive. On the other

hand, aggregated load curves are normally available at the substation level. The proposed

methodology separates substation aggregated loads into estimated mean consumption

curves, called typical curves, one for each supplied customer type. The approach proposed

here assumes that each customer load curve follows a Gaussian process with a mean

given by the typical curve, which can be modelled in terms of explanatory scalar and

functional covariates. In addition, to account for the difference among substations due

to external factors, a model-based clustering approach for substations is proposed based

on the similarity of their consumers’ typical curves and covariance structures. To assess

model performance, the methodology is tested in a series of experiments under eight

simulated scenarios and applied to a real substation load monitoring dataset from the

United Kingdom.

Keywords: Blind source separation, functional aggregated model, Gaussian process, basis

function expansion.



List of symbols

i Replicates (date)

j Groups (substations)

c Subject type

m Subject (customer)

t Time

b Cluster

mj¨ Total number of subjects at group j

mjc Number of subjects of type c at group j

αcptq Mean signal (Typical curve) of subject type c

Wijmcptq Separated signal (individual consumption) of the i-th replicate of group

j for subject m of type c

Yijptq Aggregated signal (aggregated consumption) of replicate i for group j
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1 Introduction

1.1 Energy context in Brazil and worldwide

In 2017, 62.5% of the Brazilian energy matrix consisted of hydroelectric power

generation, mainly located in the South, Southeast and Northeast regions, where the

greatest metropolitan areas are located, followed by thermoelectric power, with 17.1%

(EMPRESA DE PESQUISA ENERGÉTICA – EPE, 2018). As an alternative to these

energy sources, a solar smart grid in the semiarid Brazilian Northeast is suggested as a

strategy to explore the large amount of solar radiation available and improve the economical

potential of the region (NOBRE et al., 2019). On the other hand, with smaller urban

areas, undersized industrial parks, and consequently lower electrical energy demand, the

Northeast region presents a distribution network shortage (NOBRE et al., 2019). However,

with Brazilian electrical energy consumption expected to grow exponentially by 2030, a

national rationing plan may be implemented if no programs for efficient electrical usage

are executed (MINISTÉRIO DE MINAS E ENERGIA, 2007). Therefore, it is of great

importance to have statistical and computational tools to understand demand at the

individual customer level to analyze and monitor the electrical load profiles of customers

and produce metrics for data-driven decisions, such as new power plants and network

distribution redesign.

Around the world, the United States (WILLIAMS et al., 2012), Canada (WEAVER

et al., 2007), the United Kingdom (BRISTOW et al., 2008) and several other countries

have committed to reduce greenhouse gas emissions by at least 80% by no later than

2050, in comparison to 1990. Denmark and Germany are leaders in feed-in tariffs to

accelerate investment in renewable energy technologies and are closest to meeting the

emission goal (LIPP, 2007). Reusable programs and carbon sequestration are attractive

options to reduce industrial carbon emissions (ALLWOOD; CULLEN; MILFORD, 2010).

At the commercial and domestic levels, initiatives like building energy modelling (SOUZA;

HECKMAN; XU, 2017) and prediction (ZHAO; MAGOULÈS, 2012) are also important

tools contributing to efficient energy consumption.

Increasing network distribution and the rise of smart grids have drawn attention

to load profile monitoring (WANG et al., 2015). Multiple articles have been published in

the literature proposing clustering techniques to segment customers and reduce variabil-

ity (PRAHASTONO; KING; OZVEREN, 2007; LI et al., 2015a). Efforts are also underway

to achieve short-term load forecasting using machine learning (SOUSA; JORGE; NEVES,

2014) and deep learning methods (SHI; XU; LI, 2017). Although load profile modeling

is an important task to comprehend electrical demand variability, it does not provide
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information on the customer level like smart meters (D’OCA; CORGNATI; BUSO, 2014;

GOUVEIA; SEIXAS, 2016), appliances monitoring (HART, 1992; ARGHIRA et al., 2012)

and disaggregation methods (SCHIRMER; MPORAS; PARASKEVAS, 2019).

Understanding individual customer consumption behaviour is essential to

comprehend electrical energy demand and consequently to take action to reduce substation

load, such as educational programs and off-peak tariff policies, or even to consider bigger

projects like new power plants and network distribution redesign. Solutions such as

the aggregated data model proposed in this thesis provide estimated typical curves for

each customer type based only on aggregated data and enhance comprehension of the

covariance structure to assess data uncertainty. Regions like the Brazilian Northeast may

not have smart meters to provide data on the individual level, and disaggregation methods

on substation electrical loads are interesting approaches to help authorities understand

electrical demand without major investments in individual load monitoring.

1.2 UK electrical data

The dataset analyzed in this thesis is composed of electrical load profile curves

from substations in the United Kingdom serving residential customers of two types.

Customers are labeled in two categories: unrestricted (C1) and “Economy 7” (C2) domestic

customers, with the latter referring to a program with cheaper electrical tariffs during the

off-peak period. Usually, researchers do not have access to individual residential electrical

load, but only to aggregated consumption at the substation level. Furthermore, the market

of each substation, that is, the number of C1 and C2 residences, is also known. The

first question to arise in this scenario is the following: “is it possible to estimate the

average consumption curve for each of the two types of customers based on the substation

aggregated information and its market?” The answer is yes, but it is essential to observe

more substations with different numbers of customers to create the variability required to

separate the aggregated consumption into customer-type specific curves, which are also

known as typical curves.

Figure 1 shows an example of aggregated load profiles from four substations in

the United Kingdom serving customers of types C1 and C2 as described above. The curves

represent the electrical load in KW/h over 61 working days from January 3 to March 30,

2013. Different shapes and scales are observed because substations A to D have distinct

customer distributions in their known markets, as shown in Table 1. The divergent peak

at substation D probably reflecs its majority of type C2 customers and provides evidence

of possibly different typical curves for each type of customer.

It is possible to obtain more information about the dataset, such as temperature

and geographical location, to account for the variability of the electrical load profile. For
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2020), wavelet component analysis (ZHU; LU, 2014) and K-Nearest-Neighbours (KIM et al.,

2014). Reviews and comparisons of multiple statistical methods for energy disaggregation

are available in literature (SCHIRMER; MPORAS; PARASKEVAS, 2019).

The approach to separate the aggregated load is related to Blind Source

Separation, where a single channel source is separated into multiple channels using a set of

restrictions and conditions (CARDOSO, 1998).Unlike blind source separation, the model

proposed in this work provides estimates for covariance structure and accommodates

scalar and functional explanatory variables. The proposed model approach offers flexibility

and desirable inference properties such as consistency and lack of bias. The estimated

covariance structure provides information on load measurement relationships over time and

load variability. Finally, the latent variable approach makes it possible to group electrical

substations by their common typical curves.

The family of aggregated data models considered in this work was first proposed

by (DIAS; GARCIA; MARTARELLI, 2009). Using the observed electrical load from energy

transformers and their market information, the authors composed a non-parametric model

to estimate the typical consumption curve of customers in the city of Campinas, Brazil,

using basis function expansion and the sample covariance matrix as the model covariance

structure. More sophisticated structures, under the Bayesian paradigm, were proposed to

study the transformer load curves (DIAS; GARCIA; SCHMIDT, 2013; DIAS et al., 2015).

Later, considering the market as random, the aggregated data model could identify errors

in energy customer classification (LENZI et al., 2017).

In this work, a generalization of the aggregated data model described above is

proposed. The novel approach performs the disaggregation task by assuming a Gaussian

process with mean functional response as an aggregated linear combination of the market,

typical customer curves, and explanatory variables. Additional functional variables are

incorporated in the typical curve model to comprehend, for example, the impact of tem-

perature on customer load profile. A model-based clustering approach is also proposed to

group energy substations with similar disaggregated curves using a mixture of Gaussian

processes (SHI; MURRAY-SMITH; TITTERINGTON, 2005; SHI; CHOI, 2011; TRESP,

2001) estimated by the Expectation-Maximization algorithm (DEMPSTER; LAIRD; RU-

BIN, 1977; MCLACHLAN; KRISHNAN, 2007). Finally, structured covariance functionals

are proposed to model load variability and correlation decay over time.

1.4 Code availability

The methodology proposed in this thesis is implemented as an R package

called aggrmodel, which is currently available online as an alpha version at the GitHub

repository github.com/gabrielfranco89/aggrmodel. The repository contains the functions
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used to perform all the analyses conducted in the thesis as well as examples to illustrate

package usability, which can be easily explored by the reader.

1.5 Thesis overview

This thesis is organized as follows: Chapter 2 describes the methodology by

introducing the simple aggregated data model and expanding it to the full model, where

explanatory variables and additional functional components are incorporated, and describes

the latent variable modelling to cluster substations based on their typical curves. Chapter

3 is made up of two simulation studies to evaluate the performance of the full-model

approach with explanatory variables, a temperature component, and the model-based

clustering approach to group substations. Chapter 4 presents an application to real data

consisting of electrical load profile data from substations in the United Kingdom.
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2 Methods

This section describes the statistical methods used to fit the aggregated data

model and is organized as follows: Section 2.1 introduces the simplest aggregated data

model followed by Section 2.2 which presents the main features needed to construct the

full model with explanatory variables, surface response and different covariance structures.

Section 2.3 describes the proposed clustering analysis followed by the estimation procedures

in Section 2.4. Section 2.5 concludes this chapter with model diagnosis. Well–established

concepts such as B-Spline expansion (RAMSAY; SILVERMAN, 2005; BOOR et al., 1978)

and Gaussian Processes (SHI; CHOI, 2011) can be found in the literature and will not be

described in detail in this thesis.

2.1 Modelling aggregated data: an introduction

The aggregated data model is here introduced in its simplest form, as in

in (DIAS; GARCIA; MARTARELLI, 2009). The observed data consist of aggregated

energy consumption curves for J substations observed over I days. Each substation

constitutes a distinct market with C types of consumers, – e.g., residential, industrial and

business. Each aggregated curve is the sum of all individual consumer curves served by

that substation. Suppose that Wijcmptq, the unobserved energy consumption of customer

m of type c at time t from substation j on day i, can be represented as

Wijcmptq “ αcptq ` εijmcptq, (2.1)

with αcp¨q being the typical curve of a customer of type c and εijmcptq a Gaussian Process

(GP) with zero mean and covariance structure Ψcp¨, ¨q to be detailed in Section 2.2.1.

Let Yijptq be the observable aggregated energy consumption at substation j,

day i and time t. Yijptq can then be represented as the sum of individual customer curves,

that is,

Yijptq “
C
ÿ

c“1

mjc
ÿ

m“1

Wijcmptq (2.2)

“
C
ÿ

c“1

mjc
ÿ

m“1

αcptq ` εijmcptq

“
C
ÿ

c“1

mjcαcptq ` εijptq,

with mjc being the number of customers of type c in substation j, εijp¨, ¨q „ GP
`

0, Σjp¨, ¨q
˘

,

where, assuming independence among individual customers, the covariance structure Σjp¨, ¨q
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can be written as

Σjps, tq “
C
ÿ

c“1

mjcΨcps, tq. (2.3)

2.1.1 Typical curve basis function expansion

The mean component αcp¨q in Equation (2.1) represents the typical curve of

customers of type c and can be modelled using a basis function expansion as

αcptq “
K
ÿ

k“1

φkptqβck “ φptqβc, (2.4)

where βc P R
K is the vector of expansion parameters or coefficients and φkp¨q the k-th

basis function, which can be B-Splines, Fourier transforms, wavelets or a polynomial basis.

In this thesis, it is assumed that the typical curves belong to a Sobolev space and that

they can be well approximated by uniform B-splines. For more details, see (REIF, 1997).

As in previous studies using aggregated data analysis (DIAS; GARCIA; MARTARELLI,

2009; DIAS; GARCIA; SCHMIDT, 2013; DIAS et al., 2015; LENZI et al., 2017), a cubic

B-Spline basis is used with the assumption that the number of basis functions K is known.

Several studies have provided methods to select the best number of basis functions, such

as (DEVORE; PETROVA; TEMLYAKOV, 2003), which extend the results of (DONOHO,

1993) to Lp, with p ‰ 2; (DIAS; GARCIA, 2007) which provided a consistent estimate of the

optimal number of basis functions by minimizing a penalized proxy of the Kullback–Leibler

distance; (KOHN; MARRON; YAU, 2000) for wavelets and fourier basis selection and

(LUO; WAHBA, 1997; DIAS, 1998) for adaptive methods. Ideally, K should be large

enough to capture function details, but still far from interpolating.

2.2 Full aggregated data model

In the electrical energy consumption example, suppose that the typical curve

depends not only on the time t, but also on functional covariates such as the air temperature

on day i, or in other words, it can be written as a function αic : R2 Ñ R`. It is possible to

write, for example, the functionals uptq “ t as the time and viptq as the air temperature on

day i at time t. In this case, αijp¨q can be expanded as a tensor product of basis functions

as follows:

αicptq “ αic

`

uptq, viptq
˘

“
K
ÿ

k“1

L
ÿ

l“1

φk

`

uptq
˘

ϕl

`

viptq
˘

βlkc, (2.5)

“ φiptqβc (2.6)

where φp¨q and ϕp¨q are basis functions and βlkc are expansion parameters.
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In addition, suppose that P explanatory variables related to the substations

are known, namely Dij1, . . . , DijP . Therefore, these variables can be incorporated to write

the full aggregated data model as:

Yijptq “
˜

C
ÿ

c“1

mjcαic

`

uptq, viptq
˘

¸

` Dij1γ1 ` ¨ ¨ ¨ ` DijP γP ` εijptq (2.7)

“
˜

C
ÿ

c“1

K
ÿ

k“1

L
ÿ

l“1

mjcφk

`

uptq
˘

ϕl

`

viptq
˘

βlkc

¸

` Dijγ ` εijptq. (2.8)

In vector representation,

Yijptq “
C
ÿ

c“1

mjcφiptqβc ` Dijγ ` εijptq (2.9)

with γ P R
P being the parameters corresponding to the substation explanatory variables

in Dij and

φiptq⊺ “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

φ1

`

uptq
˘

ϕ1

`

viptq
˘

φ1

`

uptq
˘

ϕ2

`

viptq
˘

...

φ1

`

uptq
˘

ϕL

`

viptq
˘

φ2

`

uptq
˘

ϕ1

`

viptq
˘

...

φ2

`

uptq
˘

ϕ2

`

viptq
˘

...

φ2

`

uptq
˘

ϕL

`

viptq
˘

...

φK

`

uptq
˘

ϕL

`

viptq
˘

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

and βc “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

β11c

β12c

...

β1Lc

β21c

β22c

...

β2Lc

...

βKLc

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (2.10)

Note that the simple model is nested inside the full aggregated data model,

because it represents the case when temperature and explanatory variables have no effect

on the typical curve.

2.2.1 Covariance structures

Let εijmcp¨q be the Gaussian Process introduced in Equation (2.1) with zero

mean and covariance structure defined by the functional Ψcp¨, ¨q. This presentation will

use the following decomposition (DIAS; GARCIA; SCHMIDT, 2013):

Ψcps, tq “ Cov
´

εijmcpsq, εijmcptq
¯

“ ηcpsq ρcps, tq ηcptq, (2.11)
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where ηcp¨q and ρcp¨, ¨q are variance and correlation functionals, respectively. To guarantee

the positive definiteness of the Gaussian Process covariance structure, ρcp¨, ¨q must be

a proper positively defined correlation functional. The following sections describe the

different nested forms of ηcp¨q and ρcp¨, ¨q.

2.2.1.1 Variance functionals

The variance functional ηcp¨q describes the variability of customers of type c

over time. The identifiability of the model is guaranteed only if ηcp¨q is positive, otherwise

any function multiplied by -1 is also an optimal solution. Hence, the results of (RAMSAY;

SILVERMAN, 2005) can be used, and the variance function ηcp¨q can be written as:

ηcp¨q “ exp

#

K1
ÿ

k“1

φ
η
kp¨qβ‹

kc

+

. (2.12)

Furthermore, nested functional variances can be created based on a differ-

ent parametrization of the expansion coefficients of Equation (2.12) (DIAS; GARCIA;

SCHMIDT, 2013). If

σ‹
c “ 1

K 1

K1
ÿ

k“1

β‹
kc (2.13)

β
η
kc “ β‹

kc ´ σ‹
c , (2.14)

then

ηcp¨q “ exp

#

σ‹
c `

K1
ÿ

k“1

φ
η
kp¨qβη

kc

+

, (2.15)

with
K1
ÿ

k“1

β
η
kc “ 0. Now if β

η
kc “ 0, @k, then there is a homogeneous variance σc “ eσ‹

c over

time for each customer type and if σc “ σ, @c we have an uniform homogeneity for all

types of customer. Hence, the three forms of nested variance functionals are

1. Homogeneous uniform: ηcptq “ σ, @c;

2. Homogeneous: ηcptq “ σc;

3. Complete: ηcp¨q “ σc exp

#

K1
ÿ

k“1

φ
η
kp¨qβη

kc

+

.

2.2.1.2 Correlation functional

The correlation functional ρcps, tq quantifies the relationship between the energy

consumption of a customer of type c at two points in time s and t in the time interval



Chapter 2. Methods 22

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

|t−s|/T

C
o

rr
e

la
ti
o

n

Omega 0.125 0.25 0.5 1

Figure 2 – Exponential correlation structure for different configurations of ω parameter.

r0, T s. It is assumed that this relationship is defined by an exponential decay proportional

to the absolute difference |t ´ s| and with parameter ωc ą 0, @c, that is,

ρcps, tq “ exp

#

´2
1
ωc

|t ´ s|
T

+

. (2.16)

2.2.2 Model likelihood

The full aggregated data model in Equation (2.7) includes an error εijp¨q,
which is a Gaussian Process with zero mean and covariance Σjp¨, ¨q. Therefore, Yijp¨q „
GP

´

µijp¨q, Σjp¨, ¨q
¯

with

µijptq “
C
ÿ

c“1

mjc φiptqβc ` Djγ and (2.17)

Σjps, tq “
C
ÿ

c“1

mjc ηcpsq ρcps, tq ηcptq. (2.18)

Given a sample y of N daily observations from J substations over I days, say

y “
!

yij : yij “
`

yijpt1q, . . . , yijptN q
˘

with i “ 1, . . . , I and j “ 1, . . . , J
)

. (2.19)

Note that y can be made up of substations observed on different days at different time

frequencies. However, to simplify the notation it is assumed that all data are observed on

the same days and at the same time frequency. Assuming independence among days and

substations and given a set of model parameters Θ, the likelihood of the aggregated data
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model can be written as

L

´

Θ|y
¯

“
I
ź

i“1

J
ź

j“1

f
´

yij; Θ
¯

(2.20)

“
I
ź

i“1

J
ź

j“1

1
a

p2πqn |Σj|
exp

"

´1
2

pµij ´ yijq⊺Σ´1

j pµij ´ yijq
*

, (2.21)

where

µij “
!

µijpt1q, . . . , µijptN q
)

and (2.22)

Σj “
!

Σj P R
NˆN with elements Σjps, tq : s “ t1, . . . , tN ; t “ t1, . . . , tN ;

)

. (2.23)

2.3 Model-based clustering analysis

Assume that substations can belong to B distinct clusters depending on the

similarity of their consumers typical curves. Let Zj be the latent variable that identifies

to which cluster substation j belongs, with πb being the probability of substation j

belonging to cluster b. In other words, for each substation j “ 1, . . . , J , let Zj be a random

multinomial variable such that

P

´

Zj “ b
¯

“ πb, for b “ 1, 2, . . . , B (2.24)

and
B
ÿ

b“1

πb “ 1.

It is assumed that given Zj “ b, the typical curve of a consumer of type c is

given by αcbp¨q and the aggregated load is a Gaussian process with mean function µjbp¨q
and covariance function Σjbp¨, ¨q, that is,

Yijp¨q|Zj “ b „ GP
´

µjbp¨q, Σjbp¨, ¨q
¯

, (2.25)

where µjbptq “
C
ÿ

c“1

mjcαcbptq and therefore the introduction of the latent variable Zj leads

to a mixture of Gaussian process regression (SHI; MURRAY-SMITH; TITTERINGTON,

2005).

2.3.1 Clustering model likelihood

Let y be the vector of observed aggregated energy consumption over I days at J

substations, as in Equation (2.19), let z “
`

z1, . . . , zJ

˘

be the vector of latent variables and
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π “
`

π1 . . . , πB

˘

its associated parameters. Consider y¨j “
´

y1j, . . . , yIj

¯

⊺

, the observed

data likelihood can be written as

L

´

Θ, π|y
¯

“
J
ź

j“1

B
ÿ

b“1

f
´

y¨j, zj|Θ, π
¯

, (2.26)

and the corresponding log-likelihood as

ℓ
´

Θ, π; y,
¯

“
J
ÿ

j“1

log

˜

B
ÿ

b“1

f
´

y¨j, zj|Θ, π
¯

¸

“
J
ÿ

j“1

log

˜

B
ÿ

b“1

πbf
´

y¨j|zj, Θ, π
¯

¸

. (2.27)

The direct optimization of Equation (2.27) is difficult due to the presence

of the logarithm of a summation. Section 2.4.2 presents an Expectation-Maximization

algorithm (MCLACHLAN; KRISHNAN, 2007; DEMPSTER; LAIRD; RUBIN, 1977),

which performs an iterative optimization of Equation (2.27) using the joint distribution of

yij and zj, with the so-called complete data likelihood given by:

L

´

Θ, π|y, z
¯

“
J
ź

j“1

f
´

y¨j, zj|Θ, π
¯

(2.28)

“
J
ź

j“1

f
´

y¨j|zj; Θ
¯

P

´

Zj “ zj|π
¯

(2.29)

“
J
ź

j“1

B
ź

b“1

˜

f
´

y¨j|zj; Θ
¯

P

´

Zj “ zj|π
¯

¸

I

`

zj“b

˘

. (2.30)

The components of (2.30) are further detailed in Section 2.4.2.

2.4 Estimation

The estimation procedure assumes that the aggregated load is a Gaussian

process and uses the least-squares approach for linear model parameter estimation. The

latter provides fast computation and consistent unbiased estimators under a normal

distribution (SHI; CHOI, 2011). The clustering analysis is performed by latent variable

modeling in the context of a mixture of Gaussian processes using the well-known EM

algorithm.

2.4.1 Aggregated data model

The mean function µijp¨q in Equation (2.17) can be written as the product of a

functional design matrix representation Xijp¨q and the vector of parameters β:

µijptq “ Xijptqβ, (2.31)
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where Xijp¨q is shown in (2.32) as a matrix composed of the basis functions multiplied by

its respective market mjc and the covariates Dj, whereas β is made up of the parameters

of the basis expansion and the coefficients of the explanatory variables shown in (2.33):

Xijptq “
´

mj1φiptq mj2φiptq ¨ ¨ ¨ mjCφiptq Dj

¯

1ˆpKLC`P q
, (2.32)

β⊺ “
´

β
1

β
2

¨ ¨ ¨ βC γ

¯

1ˆpKLC`P q
. (2.33)

With this vector representation, we can write the aggregated data model as

Yij “ Xijβ ` εij, (2.34)

where Xij and εij are row bindings of evaluations of Xijp¨q and εijp¨q at times t1, . . . , tN ,

or in other words

Xij “

¨

˚

˚

˚

˚

˝

Xijpt1q
Xijpt2q

...

XijptN q

˛

‹

‹

‹

‹

‚

NˆpKLC`P q

and εij “

¨

˚

˚

˚

˚

˝

εijpt1q
εijpt2q

...

εijptN q

˛

‹

‹

‹

‹

‚

Nˆ1

. (2.35)

Furthermore, the model can be represented across all J substations over I days

using a single vector Y, that is,

Y “ Xβ ` ε, (2.36)

where

y “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Y11

Y21

...

YI1

Y12

...

YIJ

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

NIJˆ1

, X “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

X11

X12

...

XI1

XI2

...

XIJ

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

NIJˆpKLC`P q

and ε “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

ε11

ε21

...

εI1

ε12

...

εIJ

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

NIJˆ1

. (2.37)

Thus the density fpy; Θq can be written as a Normal density with mean Xβ

and sparse block diagonal covariance matrix Σ P R
NIJˆNIJ , composed of the matrices

Σ1, . . . , ΣJ . Hence, the log-likelihood of the aggregated data model in Equation (2.21) can

be written as

ℓ
´

Θ; y
¯

“ log L

´

Θ; y
¯

9 ´ 1
2

log |Σ| ` ´1
2

`

Xβ ´ y
˘

⊺

Σ´1
`

Xβ ´ y
˘

. (2.38)
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Equation (2.38) configures a Gaussian process regression likelihood (SHI; CHOI,

2011; RAMSAY; SILVERMAN, 2005). The estimator of β is obtained using weighted

least squares and Σ is estimated using the BFGS Quasi-Newton numerical optimization

method. An alternative to estimate Σ, possibly avoiding local maxima, but with higher

computational cost is Simulated Annealing (FLETCHER, 2013; KIRKPATRICK; GELATT;

VECCHI, 1983; RUGGIERO; LOPES, 1997). The complete estimation procedure is

described below.

2.4.1.1 Estimation algorithm

Given a sample y and its log-likelihood in (2.38), the parameters in β and the

covariance parameters in ΘΣ “
`

σ, ω, βη
˘

are estimated using Algorithm 1 as described

below.

Algorithm 1. Fix a precision value ξ ą 0. Given a sample y, at run r “ 0 get initial

values for βp0q. At run r ą 0, do

1. Fix βpr´1q to obtain Θ
prq
Σ by optimizing the log-likelihood in (2.38).

2. Fix Θ
prq
Σ to obtain βprq via

βprq “
´

X⊺
`

Σprq
˘´1

X
¯´1

´

X⊺
`

Σprq
˘´1

y
¯

. (2.39)

3. If
ˇ

ˇ

ˇ
ℓ
`

Θprq; y
˘

´ ℓ
`

Θpr´1q; y
˘

ˇ

ˇ

ˇ
ă ξ,

then stop. If not, add one unit to run prq and repeat.

The precision value ξ ą 0, also called the convergence criterion, is typically set

to 10´6. Because the least squares estimator for β is unbiased and its expected value does

not depend on Σ, the initial values for β can be obtained by fitting a linear model with

no covariance structure for the aggregated data model.

To improve computational performance, (2.39) can be written in terms of the

covariance matrices for each substation in the block diagonal matrix Σ, that is,

βprq “
˜

I
ÿ

i“1

J
ÿ

j“1

X
⊺

ij

`

Σ
prq
j

˘´1

Xij

¸´1
˜

I
ÿ

i“1

J
ÿ

j“1

X
⊺

ij

`

Σ
prq
j

˘´1

yij

¸

. (2.40)

2.4.1.2 Conditions for identifiability

To ensure the existence of the inverse of the left-hand size of βprq in (2.39) the

number of substations in sample y must be greater than the number of subject types. In

other words, J ą C. Also, to avoid multicolinearity, markets must be linearly independent,

that is, there must be no M P R such that mj “ Mmj1 , for any j ‰ j1.
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2.4.2 Model-based clustering

The observed data likelihood of the clustering aggregated data model in Sec-

tion 2.3.1 depends on the latent variable Zj. Hence, the EM algorithm was used to estimate

all parameters of interest using the complete data likelihood. The following subsection

present the details of the E and M steps for the proposed model.

2.4.2.1 E-Step

Let Θ be the set of parameters of the distribution of Y given Z and π the set

of parameters of the distribution of Z, as defined in Section 2.3. Given the observed data

y and the unobserved data z, let ℓ be the complete data log-likelihood of parameters Θ

and π, which can be written as

ℓ
´

Θ, π|y, z
¯

“ log L

´

Θ, π|y, z
¯

9
J
ÿ

j“1

B
ÿ

b“1

I
`

zj “ b
˘

ˆ
˜

log πb ´ 1
2

I
ÿ

i“1

”

log
ˇ

ˇΣjb| ` pµjb ´ yijq⊺Σ´1

jb pµjb ´ yijq
ı

¸

. (2.41)

The E-Step of the EM algorithm calculates the expected values of ℓ
´

Θ, π|y
and z

¯

with respect to the conditional distribution of Z given the observed data and

current parameter estimates Θprq and πprq at run r to obtain

Q
´

Θ, π| Θprq, πprq
¯

” EZ|y,Θprq,πprq

«

ℓ
´

Θ, π|y, z
¯

ff

9
J
ÿ

j“1

B
ÿ

b“1

P

´

Zj “ b|y1j, . . . , yIj; Θprq, πprq
¯

ˆ
˜

log πb ´ I

2
log |Σjb| ´ 1

2

I
ÿ

i“1

pµjb ´ yijq⊺Σ´1

jb pµjb ´ yijq
¸

. (2.42)

The probability P

´

p
¯

¨q in Equation (2.42) can be computed using Bayes Theo-

rem and written as

P

´

Zj “ b|y¨j; Θprq, πprq
¯

–

f
´

y¨j|zj “ b; Θ
prq
b

¯

ˆ π
prq
b

řB

b1“1
f
´

y¨j|zj “ b1; Θ
prq
b1

¯

ˆ π
prq
b1

“

”

śI

i“1
f
´

yij|zj “ b; Θ
prq
b

¯ı

ˆ π
prq
b

řB

b1“1

”

śI

i“1
f
´

yij|zj “ b1; Θ
prq
b1

¯ı

ˆ π
prq
b1

, (2.43)

where the product of densities is possible because independence among days i “ 1, 2, . . . , I

is assumed.
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2.4.2.2 M-Step

Given (2.42) and (2.43), the M-Step maximizes the function Qp¨q in terms of

the parameters Θ “
 

β, ΘΣ

(

and π, where ΘΣ contains the parameters βη and ω of the

covariance matrix Σjb described in Section 2.2.2. Let

p
prq
jb “ P

´

Zj “ b|y¨j; Θprq, πprq
¯

(2.44)

and let Qp¨q be written as a sum of two terms: one that depends only on π and another

term that depends only on Θ, that is,

Q
´

Θ, π| Θprq, πprq
¯

“ Q1

´

π| Θprq, πprq
¯

` Q2

´

Θ| Θprq, πprq
¯

(2.45)

where

Q1

´

π| Θprq, πprq
¯

“
J
ÿ

j“1

B
ÿ

b“1

p
prq
jb log πb and (2.46)

Q2

´

Θ| Θprq, πprq
¯

“ ´1
2

J
ÿ

j“1

B
ÿ

b“1

p
prq
jb

´

log |Σjb|` (2.47)

I
ÿ

i“1

pXjβb ´ yijq⊺Σ´1

jb pXjβb ´ yijq
¯

. (2.48)

Because Q1 does not depend on Θ, π
pr`1q
b can be obtained by maximizing

Equation (2.46) with respect to πb, subject to
B
ÿ

b“1

πb “ 1. Therefore, using Lagrange

multipliers it can be shown that

π
pr`1q
b “ 1

J

J
ÿ

j“1

p
prq
jb , (2.49)

for b “ 1, . . . , B.

To obtain β
pr`1q
b and Θ

pr`1q
Σ , this study uses the so-called Expectation/Condi-

tional Maximization (ECM) algorithm (MENG; RUBIN, 1993; MCLACHLAN; KRISH-

NAN, 2007), where ΘΣ is set equal to Θ
prq
Σ and Q2 is maximized with respect to βb to

obtain

β
pr`1q
b “

´

I

J
ÿ

j“1

X
⊺

j

`

Σ‹
jb

˘´1

Xj

¯´1
´

I
ÿ

i“1

J
ÿ

j“1

X
⊺

j

`

Σ‹
jb

˘´1

yij

¯

, (2.50)

for b “ 1, . . . , B and Σ‹
jb “ p

prq
jb ˆ Σ´1

jb .

Next, βb is set to its updated value β
pr`1q
b and Q2 is maximized with respect

to ΘΣ through numerical optimization algorithms to obtain Θ
pr`1q
Σ .
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2.4.2.3 Estimation algorithm

Given the iterative forms of estimation of Θ and π, we present the following

steps based on the ECM algorithm.

Algorithm 2. Fix a precision value ξ ą 0. Given a sample y “ ty¨1, . . . , y¨Ju, at run

r “ 0, get initial values for βp0q, Θ
p0q
Σ and πp0q. For the following runs r ą 0, do

1. E-Step: for b “ 1, . . . , B, obtain p
prq
jb “ P

´

Zj “ b|y¨j; πprq, β
prq
b , Σ

prq
b

¯

.

2. M-Step: maximize Q‹
´

Θ|Θprq
¯

to obtain Θpr`1q:

a) Obtain π
pr`1q
b “ 1

J

J
ÿ

j“1

p
prq
jb .

b) Set ΘΣ to Θ
prq
Σ to obtain

β
pr`1q
b “

´

I

J
ÿ

j“1

X
⊺

j

`

Σ‹
jb

˘´1

Xj

¯´1
´

I
ÿ

i“1

J
ÿ

j“1

X
⊺

j

`

Σ‹
jb

˘´1

yij

¯

,

c) Set βb to β
pr`1q
b in item b) to obtain Θ

pr`1q
Σ by maximizing Equation (2.48) with

respect to ΘΣ.

3. Let ℓ
`

Θ, π; y
˘

be the observed data log-likelihood defined in Equation (2.27). If

ˇ

ˇ

ˇ
ℓ
`

Θprq, πprq; y
˘

´ ℓ
`

Θpr´1q, πpr´1q; y
˘

ˇ

ˇ

ˇ
ă ξ,

then stop. If not, add one unit to run prq and repeat.

2.4.2.4 Initial values and number of clusters

Obtaining initial values for all parameters might be a challenge if no previous

information is available to guide the initialization. In this work, an approach is proposed

to obtain cluster and — initial values, much like the approach in Section 2.4.1.1 for the

full aggregated data model.

The first step is to fix the number of clusters B and the number of trials G.

For each trial g P G, each substation is randomly assigned to a cluster, where the number

of substations in each cluster must be greater than the number of customer types to

preserve model identifiability. For each trial g, the clusters are split into datasets with their

respective substations, and a simple aggregated data model is fitted to each one. Then the

model with the smallest squared error among the G trials is selected to provide an initial

βb. The initial π is the proportion of substations in each cluster and the winning trial

can also be used to provide initial covariance parameters.
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The total number of clusters B is highly dependent on previous user information.

As a first step, one might use the suggested approach of multiple fits with different numbers

of clusters to select the configuration with the smallest squared error, which implies in

high computing cost, or one might use an approximation of Bayes factors to select the

best number of clusters B (SCHWARZ et al., 1978). The latter approach is detailed in

Section 2.5 and is the approach selected for this thesis.

It is also possible to assume that B is a random variable and obtain its

estimated value through its posterior probability using approaches like the reversible jump

algorithm (GREEN, 1995), but with intensive computation.

2.4.2.5 Identifiability condition

As in Section 2.4.1.2, there are necessary conditions for model fitting. Because

there are at least B times the number of parameters, the procedure requires J ą CB, that

is, the number of substations must be greater than the number of estimated typical curves.

Furthermore, substation markets must not be proportional to ensure full rank matrices in

least squares computations.

2.5 Model check

This section will examine how to assess the uncertainty of the estimated mean

curves and their covariance parameters. Inferences on the disaggregated mean curves can

be performed by taking the closed form of the parameters in (2.39) and (2.50), because

they are functions of the Gaussian process Yijp¨q (SHI; CHOI, 2011; TRESP, 2001). In

fact, it can be said that

β̂ „ Normal
´

β, AΣA⊺

¯

, (2.51)

with β P R
CK as the true expansion parameters and A P R

CKˆNIJ defined as

A “
´

X⊺Σ´1X
¯´1

X⊺Σ´1. (2.52)

Using the distribution of β̂ given by (2.51), confidence intervals can be deter-

mined based on the standard errors in the diagonal of AΣA⊺. On the other hand, the

covariance parameters ΘΣ are obtained by numerical optimization using the Quasi-Newton

methods available in the R language (FLETCHER, 2013; R Core Team, 2019), and the

parameter standard errors can be obtained from the observed Hessian matrix H, that is,

SE
`

Θcov

˘

“
c

diag
´

H´1

¯

. (2.53)

The proposed covariance structures make the aggregated data models a family

of nested models, where the uniformly homogeneous one is a particular case of the
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homogeneous model which is a particular case of the complete model. Two model fits

can be compared using the likelihood ratio test. Let M1 and M2 be the two aggregated

data models to be compared, with M1 nested in M2. Denote by ℓpM1q and ℓpM2q the

log-likelihood of models M1 and M1. Then the likelihood ratio statistic L is defined by

L “ ´2
´

ℓpM2q ´ ℓpM1q
¯

, (2.54)

where the test statistic is asymptotically χ2 distributed with degrees of freedom equal to

the difference in the number of parameters between models.

When comparing clustering models, if they have the same number of clusters

but different covariance structures, then the same approach can be used to compare them.

However, to compare models with distinct numbers of clusters, the Bayesian information

criterion (BIC) value comparison as in (SHI; WANG, 2008) is recommended. Let ℓ
`

Θ, π; y
˘

be the observed log-likelihood and let Θ̂ and π̂ be the maximum likelihood estimates,

then the BIC is given by

BIC “ ´2ℓ
´

Θ̂, π̂; y
¯

` H logpIJNq, (2.55)

where H is the total number of parameters, I the total number of days, J the number of

substationsand N the number of observed point in time. Simulation studies for Gaussian

process mixtures have shown that models with the smallest BIC tend to have the correct

number of clusters (SHI; WANG, 2008).

Some authors use the right-hand element of the sum in Equation 2.55 as

logpIJq, that is, they consider the number of observations as the number of curves, not

the number of observed data points (HULLAIT et al., 2020; LI; WANG; CARROLL, 2013;

WEI; ZHOU, 2010). In this thesis BIC is used as in Equation (2.55).

Finally, if a model has a good fit to the observed data, the residual curves can

be expected to oscillate randomly around the zero line.

2.5.1 Simulation performance measures

In simulation studies, the true parameters are known and are used to measure

the performance of the aggregated data models. To assess the performance of the estimated

typical curves, the relative residual curve Rcptq of the customer of type c is defined as

Rcptq “ α̂cptq ´ αcptq
αcptq

. (2.56)

Analogously, the relative residual curve of the estimated variance functionals is also defined

as

Rcptq “ η̂cptq ´ ηcptq
ηcptq

(2.57)
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.

Division by the true value in (2.56) and (2.57) is desirable to make the residual curves

comparable under different magnitudes.

Let Rrc be the relative residual curve of the customer of type c in the r-th

simulation run. Define the functional Mean Squared Relative Error (fMSRE) as the mean

of the integrals of the squared relative residual curves over time t. That is,

fMSREc “ 1
R

R
ÿ

r“1

ż T

0

R2

rcptqdt « 1
R

R
ÿ

r“1

#

T

N

tN
ÿ

t“t1

R2

rcptq
+

, (2.58)

where N is the number of observed points in time in the data set and T the upper limit of

the time domain. Because in this thesis the time frequencies are equally distanced, the

fraction T {N is the equally spaced time difference band that approximates the dt of the

integral on the left-hand side.
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3 Simulation studies

3.1 Overview

This chapter evaluates the proposed aggregated data model in simulated

scenarios. This approach provides control over the true model parameters that generate the

data and the possibility of assessing the performance of estimated parameters in multiple

simulation runs.

Two independent simulation studies were performed: one for the full aggregated

data model, and the other for the clustering aggregated data model. Section 3.2 introduces

the simulated scenarios for both studies. Section 3.3 presents the first study with its typical

surface, explanatory variables and functional variance; focusing on the precision of the

estimated parameters under two model fits: one considering a homogeneous covariance

structure and the other a complete structure as in data generation. Section 3.4 describes

the clustering aggregated data model and the results of its substation allocation under

two numbesr of clusters. All parameters used in this chapter are based on the estimated

typical curves and estimated covariance parameters obtained in Chapter 4 from the UK

electrical energy substation data.

3.2 Simulated scenario setup

The simulated scenarios are different combinations of number of observed days,

representing the amount of information available, and market balance, which is detailed

below.

In real substation data, it is sometimes observed that a particular customer

type may be overrepresented, with more than 95% of the market. If this dominance

occurs in all observed substations, this situation is called an unbalanced market scenario,

and a balanced market scenario otherwise. To study this phenomenon, the markets were

generated as follows:

• Unbalanced: all substations have markets with more customers of Type 1 than Type

2 with percentage varying between 70% and 95%.

• Balanced: six substations have most of their customers of Type 1 and six substations

have most of their customers of Type 2, with the majority percentages varying

between 70% and 95%.
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The percentages are relative to the number of customers for each substation, which is

displayed in Table 2. Annex A displays all the simulated markets for each scenario.

Table 2 – Fixed number of customers for each substation in the simulation study.

Substation 1 2 3 4 5 6 7 8 9 10 11 12

Total 231 151 156 109 225 172 206 182 175 160 254 69

The combinations of market balance and number of observed days compose the

eight different simulated scenarios presented in Table 3. Scenarios 1 to 4 are related to the

full aggregated data model study and Scenarios 5 to 8 to the clustering aggregated data

model study. Each scenario is composed of two types of customers observed at 30 minutes

time frequency at 12 substations and replicated 15 times. In other words, 15 datasets were

generated with these configurations and studied in detail, as described in Sections 3.3 and

3.4.

Table 3 – Covariance structure, number of clusters, number of observed days, market
balance and number of generated datasets (replicates). Eight simulated scenarios
were proposed: Scenarios 1 to 4 for the full aggregated data models and Scenarios
5 to 8 for the clustering aggregated data model.

Scenario Covariance Clusters Days Market Replications

1 Complete 1 5 Unbalanced 15
2 Complete 1 5 Balanced 15
3 Complete 1 30 Unbalanced 15
4 Complete 1 30 Balanced 15

5 Homogeneous 3 5 Unbalanced 15
6 Homogeneous 3 5 Balanced 15
7 Homogeneous 3 30 Unbalanced 15
8 Homogeneous 3 30 Balanced 15

3.3 Full aggregated data model

The full aggregated data model studies the typical surface together with

explanatory variables related to substations. In this case, the surface is a function of time

and daily air temperature, as presented in Section 2.2. Section 3.3.1 describes the air

temperature functional and the explanatory variables used in this simulation, Section 3.3.2

presents the main results and Section 3.3.2 contains a discussion and the conclusions of

this study.
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3.3.1 True parameters

Recall the typical surface in Equation (2.6) introduced in Section 2.2:

αicptq “ αic

`

uptq, viptq
˘

.

In this section, uptq “ t and viptq “ Tiptq are used as the temperature at day i. Then, the

typical surface is given by

αic

´

t, Tiptq
¯

“ bcptq ˆ
ˆ

1 ´ 1
2

Φ
`

Tiptq ´ 1
˘

˙

, (3.1)

with bcptq as the baseline curve for customer of type c and Φp¨q as the cumulative density

function of the standard normal distribution. Hence when the temperature drops below

1°C the typical surface area increases considerably.

Figure 3 shows the baseline curves, the variance functionals and the signal-to-

noise ratio (SNR) for each customer type. The SNR is simply the ratio of the typical curve

to the variance functional at time t. The baseline curves and variance functionals were

based on the estimated typical curves obtained from the real data, as will be described in

detail in Chapter 4. The type 1 baseline curve mimics the unrestricted domestic customer

with lower consumption in early morning, increasing after 8 AM and reaching its peak at

8 PM. The Type 2 curve mimics the “Economy 7” customer with peaks around 2am and

8pm but with considerably larger electrical load values than Type 1. Customers variance

functionals have higher values around the work period between 9am and 5pm, although

Type 1 has two peaks that possibly represent when people leave from and arrive at their

homes. The typical surfaces are shown in Figure 5.

The weather data containing temperature and air humidity were also based on

real measurements for winter 2013 in Wales, United Kingdom. For this study, three sets of

data were generated, representing three locations labelled T1, T2, and T3. Substations 1

to 4 were assigned to location T1, substations 5 to 8 to location T2, and the remaining

substations 9 to 12 to location T3. Figure 4 shows the temperature and air humidity

profiles for each location observed over 30 days. In fact, only data for scenarios 3, 4, 7, and

8 were generated in this manner. For scenarios 1, 2, 5, and 6, only the first five days were

considered. In this study, temperature was used as the second component of the typical

surface, and air humidity was used as an explanatory variable of the full aggregated data

model with constant coefficient.

Furthermore, two explanatory variables were considered: air humidity as a

functional variable, and a binary variable with value 1 for substations 1 and 2 and 0

otherwise, with associated coefficients 1{90 “ 0.0111 and 13, respectively. Therefore, from

Equation (2.7), the full aggregated complete model can be written as

Yijptq “
˜

C
ÿ

c“1

mjcαc

`

t, Tiptq
˘

¸

` 13 Dj1 ` 0.0111Dij2ptq ` εijptq, (3.2)
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Figure 3 – Baseline curves, true variance functionals and signal-to-noise ratio at time t of
the simulation study.
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Figure 4 – Air temperature and air humidity for each primary T1, T2 and T3 used in the
simulation study.

where Dj1 is the dummy variable for substations 1 and 2 and Dj2 “ Dij2ptq the air

humidity of substation j at time t of day i. Finally, the true covariance decay parameters

for each customer type were defined as ω1 “ 0.03 and ω2 “ 0.7.

3.3.2 Results

In this study, for each of Scenarios 1 to 4 in Table 3, two models were fitted:

one homogeneous and one complete aggregated data model. The homogeneous fit tests

the performance of typical surface estimation under an under-parameterized covariance

structure and the behaviour of the dispersion parameters by reducing the variance functional

to a scalar. On the other hand, the complete model tests check whether, under the correct

scenario, the proposed model performs well in terms of typical surface and covariance

parameter estimation.

Throughout this chapter, the number of observed days and the market balance

are explicitly shown to avoid consulting Table 3 to remember the scenario setup.

Starting with the homogeneous fit study, Figure 6 shows the estimated typical

surfaces αicpt, T ptqq for some temperature curves T ptq for every combination of observed

days and market balance. The first row in the panels represents a single instance of the

temperature T ptq on the first observed day in the simulated data and in its respective

primary group T1, T2 or T3. Observe that Figures 6a and 6b show estimated typical

surfaces with noticeable variability, where some curves assume negative values. However,

the balanced scenario in Figure 6a presents estimated curves for Type 2 with lower



Chapter 3. Simulation studies 38

Temperature
Time

TR

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) Typical surface for Type 1

Temperature
Time

TR

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

(b) Typical surface for Type 2

Figure 5 – Typical surfaces (TR) for each customer type as functions of time and the full
range of observed temperatures in the three primaries.
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variability than those in Figure 6b. On the lower panels, Figures 6c and 6d show lower

variability than the five-day scenarios. Furthermore, observe that the estimated curves for

Type 2 in Figure 6c have even lower variability. In general, the median curves in the four

scenarios show that the estimated curves are concentrated around their true values. This

proximity to the true curve is better visualized in the residual curves shown in Figure 7. As

presented in Section 2.5, these curves are standardized so that the scenario performance

can be compared. Note that the residual curves for Type 2 in the five-day scenarios have

lower variability in Figure 7a than their respective ones in Figure 7b, as mentioned earlier.

The same event occurs in the 30-day scenarios, but with lower variability than the five-day

scenarios. The four panels of Figure 7 show median curves oscillating around the horizontal

zero-reference line, with no major differences among scenarios. To summarize the precision

of the estimated typical surfaces shown in Figure 6, Table 4 shows the functional Mean

Squared Relative Error for Scenarios 1 to 4 fitted by the homogeneous model. Clearly,

the fMSRE for the estimated Type 1 typical curves is considerably higher in the five-day

scenarios. It seems that the magnitude of the curves influences the variability of the

estimates because the curves with greater magnitude in Type 2 have lower fMSRE than

those with lower magnitude in Type 1. Moreover, all fMSRE for the 30-day scenarios are

lower than the respective ones in the five-day scenarios.

Figure 8a shows violin plots of the relative error of the estimated coefficients

associated with the explanatory variables γ1 “ 13 and γ2 “ 0.0011. One run was excluded

from the plot in the balanced scenario because it showed an absolute relative error greater

than 38. In all scenarios, the estimates with γ2 have larger violins than those with γ1.

The 30-day scenarios have lower expected variability than the five-day scenario estimates,

but their median reference lines above the zero line show visible underestimation of the

parameter γ2. Furthermore, Table 5 shows the mean, median and square root of the Mean

Squared Relative Error (srMSRE) of the estimated parameters. Observe that parameter γ1

has estimates with considerably lower srMSRE than γ2. The underestimation is notable in

the mean and median values of γ2. Nevertheless, the statistics of parameter γ2 show slight

overestimation of the mean and larger srMSREs in all scenarios, especially the balanced

five-day scenario, the one that presented a run with relative error greater than 38.

The estimated covariance parameters for Scenarios 1 to 4 are displayed in

Figures 9 and 10 and Table 6. Figure 10 shows the estimated dispersion parameters

represented over the true variance functionals, Figure 9 the violin plots of the estimated

decay parameters and Table 6 the mean, median and square root of the Mean Squared

Relative Error (MSRE)of the estimated decay parameters. Because the homogeneous

model estimates a scalar as the dispersion parameter, the estimated values in Figure 10

are represented as constant lines over time. It seems that the horizontal lines are trying

to capture an average of the variance functionals over time. In fact, taking the average

of the variance functionals in Figure 10 over t P T yields 0.572 for Type 1 and 5.03 for
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Type 2, which are close to the respective median lines at 0.6324 and 4.6375. Moreover,

the visibly overestimated valuefor Type 1 and the underestimated one for Type 2 in the

unbalanced five-day scenario belong to the same run. On the other hand, the estimated

decay parameters show systematic underestimation for Type 2 in all scenarios, as shown

in Figure 9. The reduced estimate variability for the 30-day scenarios is observed only for

estimated values of ω2. Again, the difference in magnitude of the parameters seems to

have an influence on their performance, because ω2 ą ω1. Furthermore, Table 6 shows the

underestimation of ω2 in the median and mean values and smaller srMSREs in favour of

balanced markets in the five-day scenarios.

Figure 11 analogously shows the estimated typical surfaces for Scenarios 1 to

4 under the complete model fit. Again, observe that the estimated curve variability is

reduced in the 30-day scenarios, especially for Type 2 under balanced markets. In addition,

the advantage of balanced markets under the five-day scenarios can be seen from the

lower variability of the residual curves in Figure 12 and the lower fMSRE in Table 4. The

complete model does not present clear superiority in terms of fMSRE compared with the

homogeneous model study.

Figure 8b displays the relative errors of the estimated coefficients γ1 and γ2

associated with the explanatory variables. The characteristics of the violins are much like

the respective ones in the homogeneous model. In fact, note that the srMSREs in Table 5

of both studies have similar values. Consequently, the complete model case shares the

aspect of smaller srMSREs for estimates of γ1, especially in the 30-day scenarios.

Finally, Figure 13 shows the estimated variance functionals of the complete

model and Figure 14 their respective residual curves. As observed in the typical curves, the

30-day scenarios present lower estimate variability than the five-day scenarios. In general,

the estimates capture the main features of the true curves, such as the prolonged higher

values for customers of Type 1 and the decreasing values after 12 AM for Type 2. However,

in some regions, the estimated curves present behaviour different from the true curve. In all

scenarios, observe that the Type 1 curves begin almost at zero, whereas the true curve has

a small peak with rapid decay. Moreover, in the balanced 30-day scenario, the estimated

variance functionals for Type 2 customers present a nonexistent local peak at the end

of the day. The violin plots of the relative errors of the estimated decay parameters are

displayed in Figure 15 and their summary statistics in Table 6. Essentially, the complete

model offers estimates with smaller srMSRE compared with the homogeneous model, but

the underestimation of ω2 persists.

In addition, because the homogeneous model is nested in the complete model,

Table 22 in Annex A shows the likelihood ratio test for all runs in every scenario. In all

cases the test favours the complete model fit with p-values smaller than 0.0001.
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Table 4 – Functional mean squared relative errors of the estimated typical curves under
the homogeneous (Figure 6) and complete (Figure 11) model fit for Scenarios 1
to 4.

Model Days Type Market balance fMSRE

Balanced 17.6706
Type 1

Unbalanced 18.4121

Balanced 0.88995 days
Type 2

Unbalanced 4.6557

Balanced 1.9525
Type 1

Unbalanced 2.1867

Balanced 0.5814

Homogeneous

30 days
Type 2

Unbalanced 1.0923

Balanced 19.5322
Type 1

Unbalanced 14.9073

Balanced 0.97475 days
Type 2

Unbalanced 3.9616

Balanced 1.9122
Type 1

Unbalanced 1.9651

Balanced 0.7720

Complete

30 days
Type 2

Unbalanced 1.1850

precision and srMSRE (square root of the mean squared relative error) is not improved

under 30-day scenarios or balanced markets. In fact, the estimates present a systematic

underestimation of ω2 “ 0.70. Still on the covariance structure, the estimated variance

functionals in the complete study can capture the main features of the true ones, despite

an unexpected local peak in the 30-day scenario with balanced market.

In general, the advantages of balanced markets and 30-day scenarios is evident.

The complete model provides a functional variance structure that can capture different

dispersions over time. However, in terms of typical surface estimation, there is no clear

difference between the homogeneous and the complete model fit, which could be attributed

to the fact that the least-squares estimators are unbiased independently of the covariance

structure, as noted in Section 2.5.
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three non-convergent runs in both balanced and unbalanced five-day market scenarios,

four in the unbalanced 30-day scenario, and two in the balanced 30-day scenarios. The

runs that converged to local maxima presented anomalous estimated typical curves with

negative and discrepant values.

Let us begin with the two-cluster fit and its respective substation clustering

as shown in Table 9. In all runs, substations are assigned with high probability to the

same cluster configuration, and therefore Substations 1 to 6 were assigned to Cluster 1,

Substations 7 to 10 to Cluster 2, and Substations 11 and 12 to Cluster 3. Note that the

substations of true Cluster 3 were assigned to the larger Cluster 1 in the two-cluster model.

Recall also that the true Clusters 1 and 3 in Figure 16 have similar typical curves for Type

1 and Type 2 and that both have approximately the same magnitude and characteristics

over time, and hence it is reasonable that they merge into a single cluster in the two-cluster

model.

Figure 17 shows the estimated typical curves for Scenarios 5 to 8 under the two-

cluster model fit. In general, observe that Cluster 1 curves capture the main characteristics

of Clusters 1 and 3: the work period stability, the 8 PM peak of Type 1 curves, and the 2

AM and 8 PM peaks of Type 2 curves. The 30-day scenarios have slightly lower estimate

variability than the five-day scenarios, but note that the Type 2 curves in Cluster 1 have

runs with different estimated characteristics of the work period, as shown in Figures 17c

and 17d. In fact, the main difference between true Clusters 1 and 3 is the work period

characterization of Type 2, and therefore it is to be expected that some runs could estimate

typical curves in favour of the true Cluster 1 or Cluster 3.

Table 10 shows the summary statistics of the estimated covariance parameters

of the two-cluster model fit. Because the estimated Cluster 2 substations coincide with

the substations in the true Cluster 2, it is to be expected that their estimated covariance

parameters are close to their true values. Observe in Table 10that the median and mean

of the estimated parameters for Cluster 2 are close to their true values in the Reference

column, especially for 30-day scenarios. Under five-day scenarios, balanced markets have

better estimates in terms of precision. On the other hand, Cluster 1 estimates are located

between the true values of true Clusters 1 and 3, and therefore the Reference column

for Cluster 1 in Table 10 represents the mean of the covariance parameters of the true

Clusters 1 and 3. The proximity of estimated and true covariance parameters is greater

for customers of Type 2. In contrast, the Type 2 true dispersion parameters of Clusters 1

and 3 present the largest difference in Table 8, 1.54 and 5.18 respectively. Nonetheless,

there is no clear evidence that the estimated covariance parameters in Cluster 1 are close

to the average of the true parameters of Clusters 1 and 3.

The estimated typical curves of the three-cluster model are displayed in Fig-

ure 18 and their associated residual curves in Figure 19. In general, the median curves
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show that the estimated curves capture the main characteristics of the true typical curves,

although there are visible discrepant examples, more frequently seen in the unbalanced

scenarios, as shown in Figures 18b and 18c. Negative values could be avoided by restricting

the typical curve estimation, but to avoid overextending the computational burden of

this simulation, it was decided to retain the least-squares estimators in exchange for some

negative values, and also to show that in general the estimator is robust for different

scenarios because the median curves are positive along the entire time axis. Once more,

the residual curves show that the 30-day scenarios are more concentrated around the

zero-reference line than the five-day scenarios, with even better fits for balanced scenarios.

In this clustering approach, the relative residual curves for Cluster 3 in the unbalanced

scenario do not concentrate around the zero-reference line, as shown in Figures 19b and

19d. Furthermore, Cluster 1 has residual curves with lower variability than Cluster 3 in

all scenarios. In fact, Cluster 1 contains six substations, whereas Cluster 3 contains two

substations, the minimum number required for model identifiability. It seems that the

larger the number of substations in the cluster, the better is the precision, and consequently

this might be the reason for the Cluster 3 overestimation of the typical curves, particularly

under unbalanced scenarios.

The estimated covariance parameters of the three-cluster models are represented

by their mean, median and srMSRE in Table 11. As observed in previous results throughout

this chapter, smallest srMSRE are associated with parameters with larger magnitudes,

for example, σ22 “ 1.28 and σ23 “ 5.18. n contrast, the largest srMSRE are associated

with parameters with smaller magnitudes, for example, ω13 “ 0.02. In the latter case, the

unbalanced scenarios presented smaller srMSRE than the balanced markets. In cases like

ω22 “ 0.09, increasing the number of observation days from 5 to 30 improved srMSRE.

The same behaviour was observed in most parameters, particularly those with small

magnitude. On the other hand, parameters ω21 “ 0.03 and ω13 “ 0.02 were the smallest

parameters in the simulation, but the srMSREs of ω21 were mostly around 1.5, whereas

the srMSREs of ω13 had three values greater than 10. Recall that Cluster 3 contained

only two substations. Therefore, as mentioned earlier for typical curve estimation, both

the number of substations and the number of observation days are important to improve

parameter estimation in each cluster.

To avoid an overextended table in this section, the comparison of BIC values

between the two- and three-cluster models is presented in Table 23 in Annex A. In all

cases, the BIC is favourable to the three-cluster model with differences mostly of order

102.
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Table 11 – Mean, median and square root of the Mean Squared Relative Error (srMSRE) of

the estimated covariance parameters for Scenarios 5 to 8, under the three-cluster

model fit.

Parameter Days Market Median Mean
?

MSRE

Balanced 1.0862 1.0114 0.6470
30 days

Unbalanced 1.3929 1.2079 0.4677

Balanced 0.9430 0.8281 0.6991
σ11 “ 1.54

5 days
Unbalanced 1.3859 1.2022 0.4923

Balanced 0.3220 2.2018 3.5878
30 days

Unbalanced 0.1295 0.3441 1.1971

Balanced 3.9317 6.5328 6.3132
ω11 “ 0.16

5 days
Unbalanced 0.1274 0.9780 2.3491

Balanced 2.8842 2.9041 0.9477
30 days

Unbalanced 2.7891 2.8831 0.9404

Balanced 2.8640 2.9372 0.9590
σ21 “ 1.53

5 days
Unbalanced 2.7464 2.7632 0.9386

Balanced 0.0759 0.0777 1.2608
30 days

Unbalanced 0.0960 0.0985 1.5111

Balanced 0.0736 0.0807 1.3000
ω21 “ 0.03

5 days
Unbalanced 0.1057 0.4043 3.5322

Balanced 1.0274 1.0346 0.4578
30 days

Unbalanced 1.0810 1.1472 0.3197

Balanced 0.6081 0.6888 0.7774
σ12 “ 1.07

5 days
Unbalanced 1.2345 1.2259 0.4379

Balanced 0.1208 0.6763 2.1698
30 days

Unbalanced 0.1226 0.1344 0.4184

Balanced 1.4476 2.4465 4.4133
ω12 “ 0.12

5 days
Unbalanced 0.1083 0.5807 2.0123

Balanced 1.5417 1.5858 0.4888
30 days

Unbalanced 1.2823 1.2391 0.4312

Balanced 1.5092 1.5814 0.4852
σ22 “ 1.28

5 days
Unbalanced 0.0363 0.5207 0.9565

Balanced 0.0960 0.0965 0.2692
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Table 11 (continued)

Parameter Days Market Median Mean
?

MSRE

30 days
Unbalanced 0.1057 0.4156 1.9330

Balanced 0.0877 0.0884 0.2444
ω22 “ 0.09

5 days
Unbalanced 5.2492 5.6967 7.8929

Balanced 0.3390 1.4096 1.7326
30 days

Unbalanced 1.3438 1.4685 1.5540

Balanced 0.0282 0.4760 1.1353
σ13 “ 0.43

5 days
Unbalanced 1.0871 1.0075 1.3569

Balanced 3.9775 3.2759 12.7591
30 days

Unbalanced 0.1446 0.3754 4.2157

Balanced 9.9767 10.3302 22.7049
ω13 “ 0.02

5 days
Unbalanced 0.9252 2.7126 11.6030

Balanced 5.2455 5.0097 0.3249
30 days

Unbalanced 3.9596 3.3274 0.5980

Balanced 4.7792 4.6787 0.3502
σ23 “ 5.18

5 days
Unbalanced 4.0859 3.9616 0.4917

Balanced 0.2624 0.2492 0.5713
30 days

Unbalanced 0.2968 0.6871 1.1099

Balanced 0.1930 0.1960 0.6859
ω23 “ 0.37

5 days
Unbalanced 0.2759 0.8170 1.3016

3.4.3 Discussion and conclusion

In both fitted models, substations are allocated to the same clusters throughout

the series of runs. In the two-cluster model, Substations 11 and 12, which belong to the

true Cluster 3, are always assigned to Cluster 1 together with Substations 1 to 6. In

this case, with an underdetermined number of clusters, the method groups the clusters

with more similarity. Hence the estimated typical curves for Cluster 1 still capture the

main features of the true curves for Clusters 1 and 3. Similarly, the estimated covariance

parameters for Cluster 1 present values between the true covariance parameters of the true

Clusters 1 and 3. In the three-cluster model, substations are assigned to the correct cluster.

Consequently, except for some cases under unbalanced scenarios, estimated typical curves

for this model are well located around their true curves. In general, 30-day scenarios have

less dispersed estimates than five-day scenarios, and balanced markets have less dispersed
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estimates than unbalanced ones.

The differences among scenarios have a similar impact on the estimation of

covariance parameters. In addition, there is evidence that the number of substations in a

cluster is crucial to estimation performance, particularly for small-magnitude parameters.

The positive impact of increasing the number of substations on parameter estimation is

shown in (LENZI et al., 2017). Two parameters with small values for Clusters 1 and 3

have distinct srMSRE probably because the information available for Cluster 3 estimation

is less than for Cluster 1.

When comparing both models, the three-cluster model presents lower BIC

than the two-cluster model in all cases.In a real-world problem, where the true number of

clusters is unknown, the BIC can be a useful tool to decide between models.

Users of the clustering aggregated data model are encouraged to be careful with

the estimated covariance parameters and to try multiple models with different numbers

of clusters using these estimated values as input for their initial values. For example, the

estimated values of the aggregated two-cluster data model can be used as an input to

fit the aggregated three-cluster data model by repeating one of the results. As shown in

Section 2.5, after multiple fits, the user can compare the models using the likelihood test

ratio to help decide which model is the most adequate to the data.
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Table 5 – Mean, median and square root of the Mean Squared Relative Error (MSRE) of
the estimated explanatory variables parameters under the homogeneous and
complete model fit for Scenarios 1 to 4.

Model Parameter Days Market Mean Median
?

MSRE

Balanced 12.7193 12.0985 0.3054
30 days

Unbalanced 11.8776 12.1702 0.2516

Balanced 12.0501 12.1832 1.7045
γ1 “ 13

5 days
Unbalanced 17.2909 8.3669 1.6263

Balanced 0.0330 0.0421 3.4016
30 days

Unbalanced 0.0289 0.0328 2.9574

Balanced 0.0156 -0.0159 14.6551

Homogeneous

γ2 “ 0.0011
5 days

Unbalanced 0.0231 0.0334 5.6259

Balanced 13.3503 12.9929 0.2578
30 days

Unbalanced 11.8177 12.1773 0.2295

Balanced 11.3529 15.1660 1.6096
γ1 “ 13

5 days
Unbalanced 15.3926 9.1294 1.1091

Balanced 0.0330 0.0490 3.0979
30 days

Unbalanced 0.0283 0.0337 2.5957

Balanced 0.0254 0.0104 15.3070

Complete

γ2 “ 0.0011
5 days

Unbalanced 0.0274 0.0264 5.4715
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Table 6 – Mean, median and square root of the Mean Squared Relative Error (MSRE) of
the estimated decay parameters for Scenarios 1 to 4, under the homogeneous
model fit.

Model Parameter Days Market Median Mean
?

MSRE

Balanced 0.0257 0.0275 0.2549
30 days

Unbalanced 0.0382 0.0322 0.5544

Balanced 0.0270 0.0259 0.2107
ω1 “ 0.03

5 days
Unbalanced 0.0287 0.0764 6.6934

Balanced 0.5028 0.5079 0.2764
30 days

Unbalanced 0.5520 0.5562 0.2111

Balanced 0.5226 0.5251 0.2675

Homogeneous

ω2 “ 0.70
5 days

Unbalanced 0.5427 0.5073 0.3318

Balanced 0.0316 0.0298 0.4243
30 days

Unbalanced 0.0419 0.0418 0.4208

Balanced 0.0288 0.0291 0.2516
ω1 “ 0.03

5 days
Unbalanced 0.0312 0.0318 0.2065

Balanced 0.5169 0.5178 0.2621
30 days

Unbalanced 0.5899 0.5962 0.1521

Balanced 0.5323 0.5450 0.2418

Complete

ω2 “ 0.70
5 days

Unbalanced 0.5819 0.5831 0.1917

Table 7 – True cluster assignment for each substation in the simulation study.

Substation 1 2 3 4 5 6 7 8 9 10 11 12

True cluster 1 1 1 1 1 1 2 2 2 2 3 3
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Table 8 – True covariance parameters for clustering simulation considering three clusters
and two customer types.

Cluster Parameter Type Value

c “ 1 1.54
σcb c “ 2 1.53

c “ 1 0.16
b “ 1

ωcb c “ 2 0.03

c “ 1 1.07
σcb c “ 2 1.28

c “ 1 0.12
b “ 2

ωcb c “ 2 0.09

c “ 1 0.43
σcb c “ 2 5.18

c “ 1 0.02
b “ 3

ωcb c “ 2 0.37

Table 9 – Cluster allocation of the 12 substations under the clustering models with two
and three clusters. The proportion of runs assigned to that cluster are 100% in
all runs in both model fit.

Substation True two-cluster fit three-cluster fit

1 1 1 1
2 1 1 1
3 1 1 1
4 1 1 1
5 1 1 1
6 1 1 1

7 2 2 2
8 2 2 2
9 2 2 2
10 2 2 2

11 3 1 3
12 3 1 3
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Table 10 – Summary statistics for the estimated covariance parameters for Scenarios 5 to 8
under the two-cluster model fit. The reference column for Cluster 1 (parameter
subindex ending in 1) is the mean value between covariance parameters of the
true Clusters 1 and 3 and for Cluster 2 (parameter subindex ending in 2) is
the true covariance parameters for the true Cluster 2.

Parameter Days Market Ref Median Mean Std Dev

Balanced 0.985 1.3690 1.1717 0.6952
30 days

Unbalanced 0.985 1.4175 1.4324 0.1123

Balanced 0.985 1.2360 1.0226 0.5916
σ11

5 days
Unbalanced 0.985 1.3903 0.9552 0.7257

Balanced 0.090 0.1863 1.7907 3.2170
30 days

Unbalanced 0.090 0.1303 0.1457 0.0323

Balanced 0.090 0.2262 2.4892 3.6509
ω11

5 days
Unbalanced 0.090 0.4885 1.7235 2.2490

Balanced 3.355 3.3149 3.7087 1.0352
30 days

Unbalanced 3.355 3.8129 3.3212 0.7789

Balanced 3.355 4.0515 4.0523 0.7751
σ21

5 days
Unbalanced 3.355 3.7831 4.1194 0.9537

Balanced 0.200 0.1247 0.1559 0.0653
30 days

Unbalanced 0.200 0.1859 0.1728 0.0768

Balanced 0.200 0.1983 0.1848 0.0644
ω21

5 days
Unbalanced 0.200 0.2595 0.2048 0.0891

Balanced 1.070 1.1663 1.2281 0.3476
30 days

Unbalanced 1.070 1.0870 1.1621 0.1524

Balanced 1.070 1.0906 1.1274 0.3569
σ12

5 days
Unbalanced 1.070 1.2591 1.1776 0.3398

Balanced 0.120 0.1290 0.3108 0.7708
30 days

Unbalanced 0.120 0.1143 0.1152 0.0071

Balanced 0.120 0.1080 0.3592 1.0368
ω12

5 days
Unbalanced 0.120 0.1134 1.0093 2.3378

Balanced 1.280 1.4533 1.3147 0.3727
30 days

Unbalanced 1.280 1.3541 1.2999 0.8166

Balanced 1.280 1.4583 0.9738 0.7445
σ22

5 days
Unbalanced 1.280 0.3949 0.8713 1.0385

Balanced 0.090 0.0958 0.3894 0.8949
30 days

Unbalanced 0.090 0.1233 1.4038 2.7188

Balanced 0.090 0.0998 2.2790 3.1786
ω22

5 days
Unbalanced 0.090 3.6099 4.7933 4.9760
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4 Analysis of UK electrical substation data

This chapter applies the proposed clustering and full aggregated data models

to a real data set containing electrical load profiles from energy substations in the United

Kingdom. The first step is to fit the simple aggregated data model described in Section 2.1

to estimate the covariance parameters to be used as initial parameters in the full aggregated

data model described in Section 2.2, where air temperature data are used as an additional

functional component to create a typical surface to explain customer energy consumption

under different weather configurations. Finally, the model-based clustering approach

described in Section 2.3 is applied to investigate how substations are grouped according to

their estimated typical curves.

Section 4.1 presents the dataset characteristics and an exploratory data analysis.

Section 4.2 presents the results of the simple aggregated model fit, followed by the full

aggregated model in Section 4.3. Section 4.4 describes the clustering analysis results.

4.1 The dataset

Provided by Professor Gavin Shaddick, the dataset was analysed in two articles

co-authored by him: one to cluster and classify substations (LI et al., 2015a) and the other

to estimate peak-loads using clusterwise regression (LI et al., 2015b). The data contain

information on electrical load profiles observed every 10 minutes across 407 electrical

energy substations in the northwest portion of the United Kingdom. Observations were

taken from October 28, 2012, to March 30, 2013, for a total of 154 days.

Each substation supplies energy to up to eight types of customers. This eight-

customer division dates from the 1990s and is organized as two domestic types, unrestricted

and “Economy 7”; two non-domestic types, also unrestricted and “Economy 7”; and four

non-domestic classes of maximum-demand customers according to their peak-load factor.

This distribution has proven to be inefficient because a small delicatessen and a supermarket

can be assigned to the same customer type (WILKS, 2010). The variability of non-domestic

groups makes the aggregated data model unsuitable because there is no typical curve that

could, for example, represent both a supermarket and a small delicatessen. Hence, to apply

the proposed model, only a subset of the data, consisting of substations with only two

types of domestic customers, was considered, resulting in a data set with 12 substations

and the following two types of customers:
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• C1: Non restricted domestic customers;

• C2: Economy 7 domestic customers.

Type C2, the “Economy 7” domestic customers, corresponds to a differential

tariff provided by United Kingdom electricity suppliers with cheaper electricity during the

off-peak periods.

Only working days were considered in the dataset to remove the weekend effect

on electrical energy consumption because it is possibly different than the domestic routine

between Monday and Friday. Also, to avoid variability during the Christmas and New

Year holidays, observations from January 3 were used instead.

Temperature measurements were obtained through the API of the World

Weather Online (worldweatheronline.com) Web site, using the substation primary, generally

representing a community or a district in Wales, as the location reference, which will

be detailed in Section 4.1.1. The downloaded historical weather data, however, contain

observations only every three hours. Hence, to achieve the same observation frequency of

10 minutes as in the electrical load dataset, a cubic B-spline interpolation was performed

to incorporate temperature as a functional variable in the full aggregated data model.

4.1.1 Exploratory data analysis

Figure 20a provides a visualization of the electrical load profiles corresponding

to the 61 days from January 3 to March 30, 2013, for each one of the 12 substations,

coloured according to the temperature scale located above the panel. Figure 20b shows

the observed temperature at the five substation primaries (see Table 12) for the same 61

days as in Figure 20a. The associated market of each substation is displayed in Table 12,

which shows that the great majority of the customers are unrestricted domestic customers

(C1), dominating more than 90% of the market in 10 of 12 substations, whereas substation

S4 is the only one with a majority of “Economy 7” domestic customers (C2), representing

80.73% of its market.

Except for S4 and S12, all substations presented a similar pattern. Early

morning showed the lowest energy consumption until approximately 9 AM, with apparently

homogeneous variance during this period. The period between 10 AM and 4 PM showed

the largest variability, probably because this is the period when people tend to leave

their houses to work, but some stay at a home office, for example. From 5 PM onward,

the variability apparently stabilized again, even at the load peak at 7 PM. However,

substations S4 and S12 not only did not follow this pattern, but also were distinct one from

the other. Their peaks, at late night in substation S12 and before sunrise in S4, probably

occur because of lower tariffs at night, encouraging energy consumption outside daytime.
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Exceptionally, substation S12 has one-third of its market consisting of customers of type

C2, which results in relatively higher loads in early morning compared to substations with

a great majority of C1 customers, and more variability before 9 AM.

Many other factors such as humidity, precipitation, and temperature may

influence load profiles. Figure 20a is color-coded according to the observed air temperatures

shown in Figure 20b. There is no clear visual evidence of the impact of temperature on

electrical load consumption, although the information might be useful to explain the

variability of work periods. Indeed, most substations experience temperature fluctuations

during the daytime, whereas night periods tend to be more stable. Nonetheless, substation

S12 is an exception for the temperature pattern as well; it is the only one that shows

higher temperature values both day and night.

The particularity of substation S12 may be explained by its geographic location

within the Usk primary, shown in the Google Maps frame in Figure 21. S12 is in the town

of Monmouth, in the countryside of Wales, with a population of less than three thousand,

and is the smallest of all the primaries. To the southwest is Llantarnam, a community in

the suburb of Cwmbran, with a population size slightly larger than four thousand, where

substations S8 to S11 are located, all consisting mostly of customers of type C1. Not far

away is Ringland, in the city of Newport, where substations S6 and S7 are located, with

populations approximately double that of Llantarnam. Closer to the capital of Wales, there

are two primaries: Trowbridge and Cyncoed. Both are in communities with a population

greater than ten thousand (16,194 and 11,148, respectively) located in the urban area of

Cardiff Central. In fact, Cyncoed, the only substation with a majority of C2 customers,

has some of the highest property prices in the country. All cited demographic data are

Table 12 – Primaries, substation names, substation IDs and number of customers of types
C1 and C2.

Primary Substation Number C1 C2

S1 512017 228 3
S2 512050 146 5Trowbridge Primary
S3 512051 151 5

S4 513044 21 88
Cyncoed

S5 513049 218 7

S6 531834 155 17
Ringland Newport

S7 531835 194 12

S8 532204 173 9
S9 532205 163 12
S10 532206 158 2

Llantarnam Primary

S11 532207 244 10

Usk S12 535445 46 23
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Table 13 – Estimated covariance parameters of the simple homogeneous aggregated data
model for the UK electrical energy dataset.

Parameter Type Value 95% Confidence Interval

C1 0.6608 (0.6452, 0.6764)
σc C2 5.6094 (5.4494, 5.7693)

C1 0.0404 (0.0384, 0.0425)
ωc C2 0.8205 (0.7721, 0.8689)

maybe due to appliances with higher energy cost making use of cheaper tariffs. From 9am

onward both typical curves increase their loads up to a plateau until approximately 4pm,

where the consumption rapidly increase to the local peak. Furthermore, the confidence

band for the C2 typical curve is larger than for C1 because the C1 class contains most of the

market share (around 90% or more) in most substations (see Table 12), and consequently

the amount of information available to estimate the C1 typical curve is greater than for

C2.

The estimated covariance parameters for the homogeneous aggregated data

model are displayed in Table 13. The dispersion parameter for C2 is considerably greater

than for C1, with larger confidence bands in Figure 22. The small decay parameter for

C1 indicates that correlation between energy consumption at two distinct points in time

decays faster for C1 than for C2. This means that, given the same time window, energy

consumption in C2 has a stronger dependence on values in its time neighbourhood than

C1. Furthermore, the confidence intervals for the covariance parameters reveal no evidence

in favour of the homogeneous uniform model because the intervals for each customer type

do not overlap.

To evaluate whether the model is suitable for the available data, the fitted

aggregated curve is plotted along with the observed data in Figure 23a. Apparently,

the homogeneous model can capture the main features of the data, but fails to fit the

aggregated load in some substations such as S4 and S12: S4 has overestimated fitted curves,

whereas S12 has underestimated curves. This suggests that it might be interesting to add

dummy variables indicating these two substations in the full model approach because there

appears to be a vertical shift of the fitted curves. Other small discrepancies are visible in

other substations, but in general they follow the main features of the observed data.

Figure 23b shows the relative residual curves defined in Section 2.5 for each

substation with a reference line at zero and their median curve in green. Ideally, the

median should almost coincide with the zero-reference line, but note that there are curves

positioned above or below the zero reference. Specifically, substations S4 and S12 are

clearly under- and overestimated respectively. Furthermore, the homogeneous dispersion

hypothesis does not hold for these data because the dispersion of the residual curves varies
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for substations S4 and S12 suggests that indicator variables specific to these substations

could be used as explanatory variables in the full model. In addition, the air temperature

information is incorporated as a functional covariate to build the typical surface and

potentially reduce the residual curves dispersion in the work period between 9am and

5pm.

4.3 Full aggregated data model

The full aggregated data model enables a functional covariate to be incorporated

to produce typical surface responses for each customer type, as well as explanatory variables

to better explain the aggregated data variability. For the tensorial product expansion in

Equation (2.5), K “ 24 and L “ 6 are used to estimate the typical surface. In addition, two

explanatory variables are considered as indicators of substations S4 and S12, as mentioned

in Section 4.2. The variance functionals used in the complete covariance structure are

expanded as in Equation (2.12) with K 1 “ 6.

As mentioned in Section 4.1, temperature data were extracted for each primary

every three hours, interpolated by cubic B-Splines and displayed in Figure 20b. Table 14

shows the summary statistics of the observed temperatures for each primary.The simula-

tion studies in this project (Section 3.3) showed satisfactory estimated typical surfaces

for temperature intervals frequently observed in the data, but higher dispersion in the

estimate for rarely observed temperatures. In the case of real data, except for Trowbridge,

temperature data are concentrated approximately between 1°C and 4 °C, and therefore

the estimated typical surfaces may be well estimated within this range, but present some

difficulties outside it.

4.3.1 Full model fit results

Figure 24a shows the estimated typical curves for certain fixed temperature

values, and Figures 24b and 24c show the estimated typical surfaces for C1 and C2 customer

types, respectively, for temperatures between 1.21°C and 5.89°C. The selected temperature

Table 14 – Summary statistics of air temperature in degrees Celsius over the 61 observed
days in the dataset for each substation primary.

Primary Minimum 1st Quartile Median 3rd Quartile Maximum

Cyncoed -3.24 0.95 2.54 4.53 9.58
Llantarnam Primary -4.22 0.89 3.30 7.90 12.06
Ringland Newport -4.35 0.49 2.57 5.37 12.29
Trowbridge Primary -5.41 -0.78 1.26 3.29 9.44
Usk -6.27 1.00 5.74 8.07 12.22
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(a) Estimated typical curves for temperatures from 1.21°C to 5.89°C.
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(b) Estimated typical surface (TR) for C1 customers.
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(c) Estimated typical surface (TR) for C2 customers.

Figure 24 – (a) Estimated typical curves in kWh for customers of type C1 and C2 coloured
according to temperatures between 1.21°C and 5.89°, (b) estimated typical
surface response in kWh for customers of type C1 between 1.21°C and 5.89°C
and (c) estimated typical surface response in kWh for customers of type C2
between 1.21°C and 5.89°C. TR denotes the for typical response in kWh.
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range contains 60% of the observed values in the dataset and hence that interval where the

typical surfaces are well estimated, which avoids discrepant values that do not contribute

to the analysis as shown in Section 3.3. On the time axis, the estimated typical surfaces

have similar characteristics to the curves estimated by the simple aggregated model shown

in Figure 22. On the temperature axis, unrestricted domestic C1 customers present robust

behaviour for different temperatures, but C2 customers are subject to greater variation of

energy consumption between 12 PM and 8 PM at different temperatures. In the latter

case, extreme temperatures must be considered with caution because for values outside

the selected range, the typical curves are unstable and may present negative or extremely

high values.

The first two lines of Table 15 show the estimated effect values for the dummy

explanatory variables corresponding to substations S4 and S12. Note that the estimated

effect of substation S12 is a shift of 37.40, which is a considerable value because the

aggregated observations in this location are mainly around 50 kWh and 120 kWh. Substation

S4 results in an estimated effect of -8.20, but its 95% confidence interval contains zero,

revealing that it may have no effect on the aggregated load data. The remaining lines of

Table 15 present the estimated covariance decay parameters for C1 and C2 customers

(ωC1 and ωC2), which are much like to the ones obtained in Table 13. The correlation of

neighbouring observations is stronger in type C2, with a decay parameter estimated at

0.61 versus 0.03 for type C1.

Figure 25 shows the estimated variance functionals for C1 and C2 customers

along with their confidence bands built using their standard error as described in Section 2.5.

The left panel reveals the higher values of dispersion at 9 AM, when people tend to leave

their houses, and at 8 PM, the peak of the estimated typical curve. The lowest values

are observed in early morning, a period with few or no activities in residences. On the

right panel, note the peak around 10 AM and the lowest values around 10 PM and 3 AM.

Interestingly, except for midnight, the lower tariff period has lower dispersion values.

Figure 26a shows the fit for the full aggregated data model along with the

observed aggregated data. The over- and underestimation problem for substations S4 and

Table 15 – Estimated coefficients of explanatory variables and estimated covariance pa-
rameters followed by their 95% confidence intervals using the full aggregated
data model.

Parameter Value 95% Confidence Interval

S12 37.3968 (33.5605, 41.2331)

S4 -8.1977 (-19.9304, 3.5350)

ωC1 0.0333 (0.0313, 0.0353)
ωC2 0.6127 (0.5803, 0.6450)
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Table 16 – Functional mean squared relative errors of estimated versus predicted aggre-
gated data for each substation and fitted model.

Substation Model fMSRE

Homogeneous 0.1350
S1

Full 0.1295

Homogeneous 0.1527
S2

Full 0.1518

Homogeneous 0.1636
S3

Full 0.1629

Homogeneous 0.8097
S4

Full 0.3811

Homogeneous 0.1713
S5

Full 0.1690

Homogeneous 0.2390
S6

Full 0.2241

Homogeneous 0.2279
S7

Full 0.2221

Homogeneous 0.2485
S8

Full 0.2387

Homogeneous 0.1609
S9

Full 0.1680

Homogeneous 0.2763
S10

Full 0.2699

Homogeneous 0.1733
S11

Full 0.1693

Homogeneous 0.4389
S12

Full 0.2154

simple model as M2, the test statistic L can be computed as

L “ ´2
`

ℓpM1q ´ ℓpM2q
˘

“ ´2
`

´ 344, 770.3 ´ p´358, 204.1q
˘

“ 26, 867.67. (4.1)

Under the null hypothesis, the test statistic has a chi-square distribution with 254 degrees

of freedom obtained from the difference of the number of model parameters. Hence, the

difference between the models is statistically significant with p-value approximately zero.

Therefore, the full aggregated data model is a better fit, improving the explana-

tion of the aggregated load variability by adding the temperature component and dummy

variables. The assumption of a complete covariance structure could capture the variability

over time by means of the estimated variance functionals. Although the estimated surfaces
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might be used with caution in temperature ranges with few observations, in general they

are useful to assess electrical energy consumption under different weather conditions.

In addition, many other functional variables can be included in the model either as a

higher-dimensional surface of additive linear or non-linear terms or as other explanatory

variables, scalar or functional, to explain the aggregated data variability.

4.4 Clustering analysis

The clustering aggregated data model groups substations with similar typical

curves and covariance structure for domestic customers of type unrestricted and “Economy

7”. The model assumes that the aggregated observed data are a mixture of B aggregated

models with distinct mean curves, with B as the total number of clusters. This section

describes the fitting of a mixture of aggregated models with homogeneous covariance

structure considering two and three clusters to obtain the best substation clustering that

explains observed aggregated data variability using the Bayesian Information Criterion.

There will be no explanatory variables or temperature components in this model.

4.4.1 Two clusters

This first approach may be useful as a tool to explore data with faster compu-

tational performance because the number of covariance parameters to be estimated by

numerical optimization is B ˆ C ˆ P ; where B is the number of clusters, C the number of

customer types and P the number of parameters relative to the covariance structure. In

this case with two customer types, two clusters, and a homogeneous covariance structure,

eight covariance parameters must be estimated. The estimated typical curves are estimated

by least squares.

Figure 27 shows the estimated typical curves for customers of type C1 and C2

in Clusters 1 and 2. Type C1 curves share characteristics in both clusters like the increasing

load around 9am, the plateau in the middle of the day, and the highest consumption

at 8pm. Customers of type C2 have peaks at 2am in both clusters, but with different

magnitudes, with Cluster 1 being the smaller one. The clustering aggregated model reveals

new features for C2 customers, such as the different 8 PM peak, that could not be identified

with the aggregated data models in Section 4.3.

Table 17 shows the estimated probability p̂jb of substation j being allocated

to cluster b. Substations S5 and S12 are grouped in Cluster 2, and Cluster 1 gathers

the remaining substations into a large cluster with 10 elements. Interestingly, S12 is the

substation located far to the north, as shown in Figure 21, and one of the few substations

that does not show an extreme dominance of C1 customer types; on the other hand,

substation S5 has one of the markets dominated by C1 customers.
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Figure 28a shows the fitted values plotted along with observed aggregated

load data. Note that the model can explain most of the aggregated data variability. In

contrast to the full homogeneous aggregated data model, the impact of the clustering

approach is visible on substation S12. The fact that the model enables this substation

to have an estimated typical curve different than most of the others shows that this

clustering approach is sufficient to explain the electrical load variability without a dummy

explanatory variable to shift estimated fitted values. In substation S5, this impact is not

evident because C2 has only 3.11% of market share. Furthermore, the relative residual

curves in Figure 28b shows that the clustering aggregated model has median residual

curve oscillating around the zero reference line and indicating that it is well adjusted to

the observed data. However, the difference in variability over time in the residual curves

suggests that the complete covariance structure with variance functionals might be more

suitable.

The estimated covariance parameters for both clusters are displayed in Table 18.

When compared to the homogeneous model of Section 4.2, the estimated parameters of

Cluster 1 are closer to those presented in Table 13. Still in Cluster 1, the results present a

large estimated dispersion parameter for C2 customer types, possibly related to the small

number of customers in the market and the difficulty of representing the variability of the

period between 9 AM and 5 PM by a single typical curve.

In summary, the clustering aggregated data model with two clusters provides

satisfactory fitted curves (see Figure 28a) and typical curves that captures different

characteristics for each cluster, especially customers of type C2. Even with no explanatory

variables or additional temperature component it was possible to explain most of the

variability of the load profiles.

4.4.2 Three clusters

The next step was to consider three clusters to fit the clustering aggregated

data model assuming homogeneous covariance structure. Figure 29 shows the estimated

typical curves for C1 and C2 for the three clusters. The unrestricted customers C1 have

Table 17 – Estimated probability p̂jb of substation j belonging to cluster b, under the two
cluster fit.

Trowbridge Cyncoed Ringland Llantarnam Usk

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

p̂j1 1 1 1 1 0 1 1 1 1 1 1 0
p̂j2 0 0 0 0 1 0 0 0 0 0 0 1
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Table 18 – Estimated dispersion (σcb) and decay (ωcb) parameters for customer type c in
cluster b of the clustering aggregated model considering two clusters.

Parameter Value 95% Confidence Interval

σ11 0.7016 (0.6856, 0.7175)
σ21 4.3629 (4.2214, 4.5045)
ω11 0.0491 (0.0466, 0.0515)
ω21 1.0033 (0.9406, 1.0661)

σ12 1.5410 (1.4834, 1.5985)
σ22 1.5375 (1.461, 1.6139)
ω12 0.1588 (0.146, 0.1716)
ω22 0.0277 (0.0244, 0.0310)

once more similar curves in all clusters, with small observable differences during the work

period between 9 AM and 5 PM and at the 8 PM peak at night. In contrast, the “Economy

7” customers C2 have distinct estimated load profiles among clusters. The estimated

typical curve of Cluster 2 has unmistakably the lowest energy consumption and its only

peak in the early morning, whereas Clusters 1 and 3 share some characteristics like the

double peak right after midnight and at 8 PM, but minor differences in the morning and

during the work period.

The estimated probability of the cluster assignment is shown in Table 19, where

each substation is allocated with high probability to its cluster. Again, S5 and S12 form one

cluster whereas the large cluster of Section 4.4.1 is divided into a major cluster composed

by substations from Llantarnam primary and two from Trowbridge and another cluster

with Ringland substations plus S1 and S4. The clustering results show that the big cluster

in Section 4.4.1 with 10 of 12 substations was divided into two clusters with estimated

typical curves that share some characteristics, but representing different morning and work

period behaviors as seen in Figure 29.

The fitted curves over the observed aggregated data are displayed in Figure 30a.

There are no apparent differences in fitted values compared to the two-cluster approach in

Table 19 – Estimated probability p̂jb of substation j belonging to cluster b, under the three
cluster fit.

Trowbridge Cyncoed Ringland Llantarnam Usk

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

p̂j1 0 0 0 0 1 0 0 0 0 0 0 1
p̂j2 1 0 0 1 0 1 1 0 0 0 0 0
p̂j3 0 1 1 0 0 0 0 1 1 1 1 0
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Figure 28a. Recall that substation markets are mostly dominated by C1 customers, the

ones with similar estimated typical curves in all clusters, with substations with more C2

customers like S4 and S12 remaining in the same cluster. Hence, the impact of different

C2 typical curves for Llantarnam, for example, might not be evident in the estimated

aggregated load. Therefore, the residual curves in Figure 30b yield the same characteristics

as the two clusters residual plot in Figure 28b.he plot suggests a good model fit represented

by the median residual curves around the zero-reference line in most substations, except for

a slight overestimation in substation S6. Comparisons between the two- and three-cluster

models will be detailed in Section 4.4.4.

Table 20 displays the estimated covariance parameters for each combination of

cluster and customer type. Cluster 1 probably has a homogeneous dispersion because the

two values are close, and their 95% confidence intervals overlap. However, there is high

uncertainty in the decay parameters, especially for C2, where its confidence interval is large

enough to contain zero, although we know this is not possible due to the parameter positive

restriction. Cluster 2, the one with the lowest estimated C2 typical curves, has distinct

dispersion and decay parameters for both customers and narrow confidence intervals.

Lastly, Cluster 3 presents the largest distinction between dispersion parameters, which is

visible in the confidence bands of the estimated typical curve of type C2 in Figure 29.

In summary, the clustering aggregated data model with three clusters divided

the large cluster in the two-cluster approach into two groups represented mostly by their

primaries. The estimated typical curves for customers of type C1 still show similari-

ties between clusters, but now enable the estimated typical curves of C2 customers to

accommodate three different electrical energy consumption profiles.

Table 20 – Estimated dispersion (σcb) and decay (ωcb) parameters for customer type c in
cluster b of the aggregated three-cluster model.

Parameter Value 95% Confidence Interval

σ11 1.5367 (1.4798, 1.5936)
σ21 1.5269 (1.495, 1.5588)
ω11 0.1584 (0.091, 0.2258)
ω21 0.0272 (-0.1216, 0.1761)

σ12 1.0743 (1.0732, 1.0754)
σ22 1.2794 (1.2762, 1.2825)
ω12 0.1197 (0.1085, 0.1308)
ω22 0.0905 (0.0159, 0.1650)

σ13 0.4278 (0.4151, 0.4405)
σ23 5.1783 (5.1706, 5.1859)
ω13 0.0202 (0.0096, 0.0307)
ω23 0.3743 (0.3487, 0.3998)
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4.4.3 More than three clusters

Models with four or more clusters do not meet the condition of identifiability

to obtain typical curves and covariance parameter estimates because there are only 12

substations.

4.4.4 Model comparison

The two- and three-cluster aggregated data models resulted in good model fits

according to the fitted values (Figures 28a and 30a) and the residual curves (Figures 28b

and 30b). The difference between them can be observed in the large cluster with 10

substations for the two-cluster model, which is split into two clusters in the three-cluster

model (Tables 17 and 19).To decide which model is best suited to the observed aggregated

data, the model comparison tools described in Section 2.5 were used.

Table 21 shows the functional mean squared relative error (fMSRE) of the

fitted and observed data under the two- and three-cluster models at each substation. In

a comparison of substation fMSREs, S4 and S10 are highlighted because they have the

largest differences between models. Observing both the fitted over observed values and

the relative residual curves in Figures 28a and 28b under the two-cluster model, it is clear

how far their median curves are from the zero-reference line. On the other hand, observing

the same substations in Figures 30a and 30b under the three-cluster model, it is apparent

that their medians are closer to the zero line. In other words, the three-cluster model

improves the model fit for these substations and consequently reduces their fMSRE. The

other substations have minor differences between models in terms of fMSRE.

Another complementary tool is to compare the two models by their approxi-

mated BIC values. These values are given by:

• Two clusters BIC = 707, 308.3 and

• Three clusters BIC = 704, 571.4.

Because the selection is favourable to models with the smallest BIC values, it again favours

the aggregated three-cluster data model, although its BIC value is only 0.3% smaller than

the BIC for the two-cluster model. Remember that the BIC value approach has worked

well as a model selection criterion in simulated mixture Gaussian processes (SHI; WANG,

2008; SHI; CHOI, 2011).

Therefore, the aggregated three-cluster model performed better in terms of

fMSRE and BIC. Moreover, substations are grouped in a meaningful way, related to their

primaries and avoiding the large cluster in the two-cluster approach. Hence, the three-
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Table 21 – Functional mean squared relative error of fitted and observed data under the
two- and three-cluster models at each substation.

Substation Clusters fMSRE

2 0.1330
S1

3 0.1403

2 0.1552
S2

3 0.1569

2 0.1676
S3

3 0.1663

2 0.3009
S4

3 0.2354

2 0.1603
S5

3 0.1603

2 0.1818
S6

3 0.1678

2 0.1971
S7

3 0.1851

2 0.2284
S8

3 0.2636

2 0.1750
S9

3 0.1584

2 0.2689
S10

3 0.1739

2 0.1590
S11

3 0.1633

2 0.1977
S12

3 0.1977

cluster model seems to be a reasonable choice to group the electrical energy substations in

the UK electrical load data.
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5 Final considerations

The proposed aggregated data model has proved to be a useful tool to separate

substation aggregated electrical load data into typical curves for each type of supplied

customer and to comprehend their covariance structure. The model also proposes novel

approaches such as typical surface estimation as a function of time and temperature and

explanatory variables and substation clustering based on the similarity of their estimated

typical curves. The methodology based on basis function expansion and a Gaussian

process assumption brings the model into a family of functional models with favourable

mathematical properties and well-established inference methodology.

With both simulated and real data, the estimated typical curves demonstrated

robustness to wrong covariance structure assumptions. Under the assumption of an incorrect

number of clusters, the model groups substations with greater similarity. Furthermore,

this thesis has discussed the results of mis-specified scenarios and how they relate to the

true parameters, for example, when scalar dispersion parameters are assumed instead of

functional variances.

Scenarios based on more observed days tend to have better estimates, especially

if markets are balanced. In the clustering approach, clusters containing more substations

have improved precision in parameter estimation compared to clusters with the minimum

number of elements. Scenarios with few observed days still deliver good estimated typical

curves on average, but covariance parameter estimation may be a challenge. Nonetheless,

the proposed model provides standard errors to assess the variability of its estimated

parameters.

Some estimation methods were crucial to the success of the proposed model,

such as the least-squares estimator for the typical curves and the proposed initial value

evaluation in the clustering approach. This latter method drastically reduced computing

time and improved estimation performance by providing clustering setups close to reality

(see Section 2.4.2.4). With full control of model setup and robust methodology, users can

fit the best aggregated data model to their reseach.

The full aggregated model with explanatory variables and additional functional

component demonstrated sophistication and flexibility with both real and simulated data.

Suggestions on how to use the additional component properly were provided to avoid poor

decisions in temperature ranges with little information. In any case, when working with

real data, the confidence intervals of the estimated typical curves and surfaces will indicate

ranges of uncertainty.
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5.1 Future work

Two papers will result from this thesis and will be submitted to top-ranking

statistical journals. One paper will present the methodology of the proposed aggregated

model, and the other will present the R package aggrmodel to the scientific community.

The model offers several topics for future work. One would be to propose a

latent variable Zjc indexed both by group and by subject type. This approach assigns to

subject c in station j a probability of belonging to a cluster. With a well-written likelihood

function, the model might keep its base estimation routine and gain even more flexibility

to perform further analysis of aggregated data models.

Load monitoring of electrical appliances has attracted growing interest in

academic journals. The proposed aggregated data model could be used in referential

data sets such as ECO Data used in recent studies to evaluate energy disaggregation

models (BECKEL et al., 2014). Some adjustments might be necessary to fit the proposed

model, but this is an opportunity to compare it with several well-established statistical

approaches (SCHIRMER; MPORAS; PARASKEVAS, 2019; SCHIRMER; MPORAS, 2019;

SCHIRMER; MPORAS; SHEIKH-AKBARI, 2020).

The relationship between the aggregated data model and blind source separation

can be explored as well. Both have the same goal of separating an aggregated signal and

could have an interesting mathematical relationship to be investigated. Inserting the

aggregated model into an expanding area such as blind source separation may place the

method in a visible research area and attract researchers worldwide.

The opportunities mentioned above are perfectly suited for multiple levels

of research. Direct application in ECO Data might be an interesting project for an

undergraduate research assistant in partnership with a Master’s student to adapt the

model to appliance data. The new latent variable Zjc and the formal relationship with

blind source separation might also become a new PhD project.
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APPENDIX A – Covariance structure

mispecification study structure

The covariance structure of the aggregated data model describes the correla-

tion between two points of the observed functional response variable. Although it does

not influence the expected value of the disaggregated curve least square estimator, the

covariance matrix is important to build its confidence intervals.

The experiment below was designed to assess the impact of covariance structure

mispecification on typical curves estimation.

A.1 Setup

Four scenarios with R “ 30 simulated datasets composed by C “ 3 types of

customers and J “ 10 substations were generated:

• Scenario 9: Homogeneous uniform covariance structure with 5 days,

• Scenario 10 Homogeneous uniform covariance structure with 30 days,

• Scenario 11 Complete covariance structure with 5 days,

• Scenario 12 Complete covariance structure with 30 days.

For each scenario, a homogeneous uniform, a homogeneous and a complete

aggregated data model is fitted to observe the estimated typical curves. For this case,

markets of each dataset were generated as random numbers from 5 to 20.

Figure 31a shows the true typical curves used to simulate the datasets in the

four scenarios. Homogeneous uniform scenarios have covariance parameters set as σc “ 0.60

and ωc “ 0.50 for all customers of type c “ 1, 2, 3. On the other hand, complete scenarios

are composed by decay parameters ω1 “ 0.50, ω2 “ 0.25 and ω3 “ 0.125 and variance

functionals displayed in Figure 31b.

A.2 Homogeneous uniform scenarios

In this case, the homogeneous and the complete overparametrize the covariance

structure data because they are composed by covariance structures with more parameters

than the true homogeneous uniform scenario. Figures 32, 33 and 34 show the homogeneous



APPENDIX A. Covariance structure mispecification study structure 95

Type 1 Type 2 Type 3

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

0.75

1.00

1.25

1.50

Time

α
c
(t

)

(a) True typical curves.

type: 1 type: 2 type: 3

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

0.25

0.50

0.75

1.00

Time (t)

η
c
(t

)

(b) True variance functionals.

Figure 31 – (a) True typical curves for each custumer of type c “ 1, 2, 3 used to estimate
the simulated dataset in the four scenarios and (b) true variance functionals
for each customer of type c “ 1, 2, 3 of scenarios 11 and 12.

uniform, homogeneous and complete fit, respectively, for Scenarios 9 and 10. The three

figures show good typical curve estimation with estimated curves oscillating around the

true curve. As expected, the scenario with 30 days presents estimated curves closer to

their true curve in the three fitted models.

A.3 Complete scenarios

In this section, the homogeneous uniform and homogeneous fit are simpler cases

nested in the complete covariance structure. Figures 35, 36 and 37 show the homogeneous

uniform, homogeneous and complete fit, respectively, for Scenarios 11 and 12. Again, The

three figures show good typical curve estimation with estimated curves oscillating around

the true curve.
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ANNEX A – Supplementary tables

Table 22 – Likelihood ratio test comparison table of homogeneous and complete aggregated

data models in simulated datasets for each experimental run. The degrees of

freedom used to compute the p-value is 10 for all comparisons.

Log-likelihood

Days Run Homogeneous Complete Test statistic p-value

5 days 1 11356.44 11206.11 300.6677 <0.0001

5 days 2 11468.83 11279.91 377.8489 <0.0001

5 days 3 11329.26 11129.60 399.3154 <0.0001

5 days 4 11393.79 11237.21 313.1679 <0.0001

5 days 5 11380.05 11161.95 436.2019 <0.0001

5 days 6 11412.08 11240.27 343.6055 <0.0001

5 days 7 11409.96 11230.16 359.5910 <0.0001

5 days 8 11380.91 11221.02 319.7964 <0.0001

5 days 9 11296.43 11111.48 369.8967 <0.0001

5 days 10 11293.50 11131.60 323.7867 <0.0001

5 days 11 11297.66 11132.56 330.1824 <0.0001

5 days 12 11380.86 11204.74 352.2391 <0.0001

5 days 13 11305.42 11135.14 340.5573 <0.0001

5 days 14 11357.41 11182.27 350.2775 <0.0001

5 days 15 11337.32 11153.20 368.2447 <0.0001

5 days 16 12252.88 12167.35 171.0486 <0.0001

5 days 17 12199.07 12079.56 239.0298 <0.0001

5 days 18 12315.08 12222.54 185.0706 <0.0001

5 days 19 12394.19 12316.81 154.7764 <0.0001

5 days 20 12254.24 12160.62 187.2429 <0.0001

5 days 21 12286.01 12189.36 193.3048 <0.0001

5 days 22 12314.49 12225.54 177.8949 <0.0001

5 days 23 12173.57 12073.10 200.9313 <0.0001

5 days 24 12248.57 12150.72 195.6961 <0.0001

5 days 25 12197.71 12090.13 215.1580 <0.0001

5 days 26 12304.61 12196.86 215.4922 <0.0001

5 days 27 12135.35 12034.37 201.9598 <0.0001
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5 days 28 12385.44 12302.31 166.2589 <0.0001

5 days 29 12359.07 12253.33 211.4677 <0.0001

5 days 30 12249.15 12142.30 213.7031 <0.0001

30 days 1 68412.15 67418.28 1987.7512 <0.0001

30 days 2 68555.41 67692.07 1726.6639 <0.0001

30 days 3 68409.85 67507.56 1804.5693 <0.0001

30 days 4 68848.74 67854.20 1989.0811 <0.0001

30 days 5 68853.23 67912.53 1881.3950 <0.0001

30 days 6 68254.05 67181.14 2145.8196 <0.0001

30 days 7 68428.22 67442.46 1971.5111 <0.0001

30 days 8 68720.86 67794.68 1852.3555 <0.0001

30 days 9 68143.11 67241.85 1802.5107 <0.0001

30 days 10 68639.51 67645.38 1988.2693 <0.0001

30 days 11 68532.07 67568.32 1927.5025 <0.0001

30 days 12 68452.58 67430.66 2043.8409 <0.0001

30 days 13 68697.84 67687.06 2021.5609 <0.0001

30 days 14 68183.63 67221.51 1924.2479 <0.0001

30 days 15 68828.41 67972.03 1712.7790 <0.0001

30 days 16 73834.91 73325.45 1018.9162 <0.0001

30 days 17 74309.19 73894.94 828.4990 <0.0001

30 days 18 74396.67 73964.25 864.8214 <0.0001

30 days 19 74607.51 74136.77 941.4789 <0.0001

30 days 20 74741.17 74284.07 914.1883 <0.0001

30 days 21 74686.06 74273.96 824.1941 <0.0001

30 days 22 74678.44 74242.28 872.3236 <0.0001

30 days 23 74295.85 73798.20 995.2966 <0.0001

30 days 24 73439.84 72817.88 1243.9196 <0.0001

30 days 25 74510.71 74113.48 794.4602 <0.0001

30 days 26 74232.01 73790.03 883.9603 <0.0001

30 days 27 74783.54 74378.31 810.4463 <0.0001

30 days 28 74510.23 74068.60 883.2588 <0.0001

30 days 29 74963.07 74588.12 749.8957 <0.0001

30 days 30 74913.23 74506.08 814.3098 <0.0001
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Table 23 – BIC values for the clustering aggregated data models in simulated datasets at

each experimental runs. NA values represent the runs that did not converge.

BIC

Days Run 2 Clusters 3 Clusters BIC diff

5 days 1 22892.98 22653.75 239.24

5 days 2 23037.71 22728.32 309.38

5 days 3 22765.23 22522.55 242.68

5 days 4 23002.98 22632.54 370.44

5 days 5 NA NA NA

5 days 6 22867.82 22589.01 278.82

5 days 7 22928.48 22674.78 253.70

5 days 8 23057.19 NA NA

5 days 9 23110.73 22797.53 313.20

5 days 10 NA NA NA

5 days 11 23023.11 22788.12 234.99

5 days 12 22893.37 22633.57 259.80

5 days 13 23033.60 22798.68 234.93

5 days 14 22996.42 22713.55 282.87

5 days 15 23127.33 22832.22 295.11

5 days 16 24320.71 23984.69 336.02

5 days 17 24930.08 24283.66 646.42

5 days 18 24508.43 NA NA

5 days 19 24306.36 24053.74 252.62

5 days 20 24582.05 24364.63 217.42

5 days 21 24138.96 23911.80 227.16

5 days 22 24580.06 24236.24 343.83

5 days 23 24477.64 NA NA

5 days 24 24365.16 24106.78 258.37

5 days 25 NA NA NA

5 days 26 24842.38 24266.45 575.93

5 days 27 23893.08 23763.69 129.38

5 days 28 24568.87 24068.67 500.20

5 days 29 24718.34 24275.80 442.54

5 days 30 24304.65 24030.62 274.03

30 days 1 140732.75 139731.99 1000.75

30 days 2 137862.55 137674.83 187.73



ANNEX A. Supplementary tables 105

30 days 3 141129.86 140153.32 976.53

30 days 4 139429.37 NA NA

30 days 5 138120.81 137360.21 760.60

30 days 6 138909.99 NA NA

30 days 7 138244.85 NA NA

30 days 8 139216.20 138601.06 615.15

30 days 9 138597.82 137882.19 715.63

30 days 10 137915.18 NA NA

30 days 11 139329.72 138463.56 866.16

30 days 12 138265.27 NA NA

30 days 13 139177.05 138376.03 801.02

30 days 14 137716.41 136986.04 730.38

30 days 15 138839.29 138544.00 295.30

30 days 16 148793.81 NA NA

30 days 17 151598.28 149765.27 1833.01

30 days 18 148195.67 146904.43 1291.24

30 days 19 146444.55 145965.37 479.17

30 days 20 150741.62 148847.58 1894.04

30 days 21 145479.22 144462.94 1016.28

30 days 22 147632.69 146775.49 857.20

30 days 23 149746.58 148789.10 957.48

30 days 24 NA 148840.17 NA

30 days 25 151627.47 150116.68 1510.80

30 days 26 NA 150376.76 NA

30 days 27 150394.95 NA NA

30 days 28 149657.30 147460.43 2196.86

30 days 29 147228.13 146344.21 883.91

30 days 30 152994.93 150468.24 2526.69
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