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Resumo

Apresentamos um modelo integro-recursivo para a dispersão de uma planta que acopla uma
dinâmica de reprodução com efeito Allee e uma dinâmica de dispersão em um meio heterogêneo.
Propomos um modelo de difusão e sedimentação para derivar núcleos de dispersão teóricos, que
representem o padrão de dispersão de sementes gerado por pássaros fruǵıvoros em um meio het-
rogêneo. O núcleo gerado através do modelo é capaz de reproduzir o padrão espacial de agregação
de sementes gerado pelos pássaros fruǵıvoros sob condições naturais. Enquanto à dinâmica de
reprodução, consideramos um efeito Allee devido à limitação de pólem, que reduz a produção de
sementes. Introduzimos o efeito Allee através de uma função de probabilidade que depende da
densidade local de pantas. Analisa-se o comportamento da expansão da planta, e estima-se a
velocidade média de expansão. O modelo mostra uma invasão através de pulsos, que atribuimos
ao efeito Allee e ao comportamento de dispersão da planta .

Palavras-chave: Efeito Allee, núcleos de dispersão, plantas - dispersão.
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Abstract

We present an integro-difference model for a plant dispersal, which couples a reproductive dynamic
with Allee effect and a dispersal dynamic in an heterogeneous environment. We propose a diffusion
and settling model to derive theoretical dispersal kernels, that represent the seed dispersal pattern
generated by frugivores birds in a heterogenoeus environment. The dispersal kernel derived through
the model is able to reporduce the aggregate seed dispersal pattern generated by the frugivores
birds under field conditions. As for the reproductive dynamic, we consider an Allee effect due
to pollen limitation, which reduces seed production. We introduce the Allee effect through a
probability function, which depends on the local plant density. The plant expansion behavior is
analyzed, and the average expansion speed is estimated. The model shows a pulsed invasion, which
we attribute to the Allee effect and the plant dispersal behavior.

Keywords: Allee effect, dispersal kernel, plant dispersal.
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1 Núcleos de Dispersão Teóricos para plantas de frutos carnosos dispersadas por
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Introdução

Uma abordagem para o entendimento do processo de invasão de organismos é posśıvel através
de modelos matemáticos. Os modelos matemáticos que descrevem a expansão de uma população
basicamente acoplam uma dinâmica de reprodução e uma de dispersão. Os primeiros modelos
matemáticos a modelar a expansão de organismos foram os de Skellam (1951) e Fisher (1937).
Se bem que estes modelos baseados em equações de reação e difusão predizem razoavelmente a
expansão de algumas invasões, existem outros casos em que a predição da expansão dada por
estes modelos não é adequada (Hastings et al., 2005). Os modelos de Skellam e Fisher serviram
como plataforma para o desenvolvimento de outros modelos mais complexos e realistas (Hastings
et al., 2005; Taylor and Hastings, 2005). Existem modelos gerais sobre expansão e invasão, mas
também tem-se desenvolvido modelos espećıficos para espécies invasoras em particular (Johnson
et al., 2006; Takasu et al., 2000).

Novos modelos de invasão incorporam mais detalhes sobre o crescimento populacional e os mecan-
ismos de dispersão. Estes ingredientes tornam mais realistas os modelos, fornecendo informação
mais detalhada sobre o processo de invasão e como controlar as invasões. A recente utilização
de equações ı́ntegro-recursivas para a modelagem de expansão, abriu uma grande possibilidade de
incorporar diferentes padrões de dispersão (Kot et al., 1996). As equações ı́ntegro-recursivas incor-
poram diferentes padrões de dispersão através dos núcleos de dispersão. Os núcleos de dispersão
são distribuições de densidade de probabilidade, que resumem a probabilidade de um organismo
localizado em um ponto x, se dispersar a uma localidade y.

A derivação dos núcleos de dispersão é de muita importância, pois influenciam a dinâmica de ex-
pansão. Os núcleos de dispersão são obtidos principalmente de forma fenomenológica, ajustando
curvas de distribuições a dados experimentais de dispersão. No entanto, também há alguns exem-
plos e tentativas para desenvolver núcleos de dispersão teóricos. No caso de plantas, as sementes
são a fase da população que se dispersa. Modelos teóricos para descrever a dispersão de sementes
têm sido desenvolvidos satisfatoriamente para o caso daquelas dispersas pelo vento. Para o caso
de sementes zoócoras, aquelas dispersas por animais, o seu desenvolvimento é menor, principal-
mente pela dificuldade de modelar o movimento dos animais. Em teoria, a derivação de núcleos de
dispersão de sementes por animais, precisam da seguinte informação: a) comportamento e taxa de
movimentação dos animais, e b) taxa de passagem das sementes através do tracto digestivo.

No caṕıtulo primeiro desta tese, trataremos da derivação terica de núcleos de dispersão de se-
mentes por animais fruǵıvoros, isto é por animais que consomem os frutos carnosos de plantas e
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em consequência dispersam as sementes ingeridas. A derivação baseia-se nos trabalhos de Neu-
bert et al. (1995) e Powell and Zimmermann (2004). Estes autores propõem modelos de difusão e
sedimentação para a dispersão de sementes por animais. O modelo proposto nesta tese, introduz
de forma simples a movimentação dos animais num meio heterogêneo e incorpora uma taxa de
passagem de sementes. Através de técnicas de múltiplas escalas e homogeneização consegue-se
dar uma expressão anaĺıtica para a aproximação do núcleo de dispersão. Os núcleos de dispersão
gerados através do modelo proposto, geram uma distribuição espacial heterogênea das sementes,
caracterizando-se por apresentar pontos de agregação de sementes. Este padrão espacial é obser-
vado em plantas dispersas por aves fruǵıvoras.

Por outro lado, a incorporação do efeito Allee na dinâmica de reprodução nos modelos de invasão
tem-se tornado importante recentemente (Taylor and Hastings, 2005). O efeito Allee pode alterar
a dinâmica de invasão de várias formas como reduzindo a velocidade de expansão (Kot et al.,
1996), ou introduzindo limiares para o éxito de uma invasão (Lewis and Kareiva, 1993; Kot et al.,
1996). Também é considerado responsável dos peŕıodos de latência (”lag phase”) nas invasões
(Parker, 2004), e de formação de padrões (Petrovskii et al., 2002; Mistro et al., 2012). Estes dois
fenômenos fazem com que o comportamento da expansão da frente da invasão não seja de forma
suave e cont́ınua como predizem de forma geral os modelos IRE ou RDE. O efeito Allee pode
surgir sempre que a população apresente densidades muito baixas. Estas situações podem ocorrer
na fase de colonização, ou na frente de uma invasão. Em um estudo realizado por Davis et al.
(2004), encontrou-se que a população invasora da espécie Spartina alterniflora estava sujeita ao
efeito Allee devido a falta de pólem na frente da invasão.

O segundo caṕıtulo da tese, baseia-se na descoberta de (Davis et al., 2004) e analisa-se o com-
portamento da expansão da população de plantas, visando observar os efeitos de retardamento ou
formação de padrões atribúıdos ao efeito Allee. Modela-se a expansão de uma planta sujeita ao
efeito Allee devido à falta de pólen, e considera-se um comportamento de dispersão dacordo ao
núcleo de dispersão gerado no caṕıtulo um.



Caṕıtulo 1

Núcleos de Dispersão Teóricos para

plantas de frutos carnosos dispersadas

por pássaros

Theoretical Dispersal Kernels for fleshy fruited
plant species dispersed by birds

Abstract. We attempt to derive a theoretical seed dispersal kernel for a plant, whose seeds are
dispersed by frugivores animals, principally birds. We use a diffusion and settling model framework.
We assume that seeds follow the frugivores animals, and model the animals’ movement as the
continuos approximation of an unbiased brownian motion in heterogeneous environment. We
assume a periodic environment, where the frugivores diffuse at different rates, low diffusion rates
at sites where they use to settle and high diffusion rates between these sites. We use a multiplescale
and homogenization technique to obtain an analytical approximation to the dispersal kernel. The
technique approximated well the numerical solution of the dispersal kernel. Different dispersal
kernels arouse when varying the distance between the settling sites and the rates of movement of
the frugivores. Smaller distances between settling sites generate a more uneven seed distribution,
wether higher rates of diffusion yield dispersal kernels with fatter tails.

1.1 Introduction

Seed dispersal is a key process in plant spatial dynamics, it contributes to determine the local
frequency and abundance of plants. Models of seed dispersal have been important in representing
seed density distributions and investigating dispersal processes among other things. The spatial
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distribution of seeds dispersed, the ”seed shadow”, is represented by curves (one dimension) or
surfaces (two dimension) that summarizes the distribution of distances traveled by seeds. Dispersal
curves have been coined as distance distributions, dispersal kernels or probability density functions
(Nathan and Muller-Landau, 2000). In mathematical terms, a dispersal kernel, K(x−ξ), expresses
the probability of a seed dispersing a distance, |x− ξ|, from a parent located at ξ to a location x.
The number of seeds produced per plant multiplied by its dispersal kernel is referred as the ”seed
shadow”. The combination of seed shadows from different individuals of a plant species is known
as the seed rain. The entire distribution of dispersal distances is critical to range expansion rates,
recruitment patterns, genetic structure, etc. (Levin et al., 2003), hence, an accurate representation
of the seed shadow is of fundamental importance.

Dispersal kernels can be estimated by fitting a curve to field data on seed densities as a function of
distance from a source (phenomenological models) (Nathan and Muller-Landau, 2000). Dispersal
curves can in principle form any kind of distribution. However, three functional forms have been
commonly fitted to dispersal data: the Gaussian, the negative exponential and the inverse power
law (Levin et al., 2003; Nathan and Muller-Landau, 2000).

Dispersal kernels can be derived theoretically through mechanistic models. These models, use
precise knowledge of the characteristics of the seed dispersal process, to develop a theoretical
(mathematical) model, through which, a seed dispersal curve is derived.

To understand seed dispersal, requires the development of mechanistic models that can explain the
observed patterns. These models can predict the exact seed distribution from characteristics of
the dispersal processes. Mechanistic models for wind dispersed seeds have a long history (Okubo
and Levin, 1989). They use information on wind conditions and plant attributes to predict de
spatial pattern of the seeds dispersed (Nathan and Muller-Landau, 2000). In general, mechanistic
models for wind dispersed seeds predict a peak of seeds at the source or near it, and then a
continuos decline in seed density with distance from the peak (Okubo and Levin, 1989). Models of
seed dispersal by animals are less developed, in part, because such models require quantification
of behavioral information (Levin et al., 2003). In theory, knowledge of the animal behavior and
plant attributes can be combined to predict seed dispersal by animals (Nathan and Muller-Landau,
2000, Levin et al., 2003). Under field conditions it is observed that animal dispersed seed density,
does not decline in a continuos and simple way with distance from source (Kollmann, 2000).
Animal behavior is one of the main factors in determining the spatial pattern of animal dispersed
seeds (Russo et al. 2006, Westcott et al. 2005). Habitat heterogeneity plays a significant role
in determining seed distribution patterns, since animal behavior is affected by local vegetation
structure (Kollmann, 2000). Bird-mediated seed rain, for example, is generally sparse in open
areas, and heavily concentrated under perches such as isolated trees, or under clusters of bushes or
trees, forest gaps, etc. (Kollmann 2000). Some fruit bats tend to concentrate seeds under feeding
roosts. Perches and feeding roosts are commonly described as ”recruitment foci” (Kollmann, 2000).
The vegetation structure and the animal feeding behavior can generate a spatially aggregated
distribution of seeds. Hence, traditional dispersal curves may underestimate the clumping or
aggregated distribution of animal dispersed seeds. The aggregate distribution observed under field
conditions should be reflected in a multi-modality seed dispersal curve (Westcott et al., 2005,
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Russo et al., 2006). Models that attempt to describe the seed dispersal by animals are based
on seed passage times and mean displacement rates of animals (Murray, 1988, Westcott et al.,
2005), or on stochastic, spatially explicit models that incorporate animal movements (Russo et al.,
2006). These models describe, through frequency distributions of dispersal distance, the aggregated
spatial pattern of animal dispersed seeds (Westcott et al., 2005, Murray, 1988, Russo et al., 2006),
suggesting the use of a multi-modality function for the representation of the dispersal curve (Russo
et al., 2006). However, by fitting a curve or several curves to the frequency distributions, the
parameters of the resulting dispersal kernel, do not represent biological attributes of the dispersal
process. Although, these models use biological information to construct a dispersal kernel, they
lack a theoretical framework, that enables the analysis of the processes behind the patterns.

Few theoretical models have been developed to derive dispersal kernels for animal dispersed seeds
(Neubert et al., 1995, Powell and Zimmermann, 2004).

Neubert et al. (1995) modeled dispersal as the diffusion of propagules in a homogeneous envi-
ronment, that settle at ground at a certain rate. They modeled seed dispersal through brownian
motion in homogeneous environment. The model is simple and the dispersal kernel derived by the
model is expressed by an analytical function.

Powell and Zimmermann (2004) used same approach for dispersal of seeds by animals caching
seeds. They used Fickian diffusion in a heterogeneous environment to model animal dispersal, and
assumed a spatial seed deposition probability (where the animals cached seeds). The model is able
to represent the clumping distribution of seeds, but its solution is obtained by numerical methods.
A multi-scale analysis and a homogenization technique was applied to the model, in order to get
an analytical approximation of the dispersal kernel. Although, the approximation fail to reproduce
the aggregate distribution of seeds, it gave good estimates on expansion rates, which was the main
goal of their work.

In this paper, we propose a model for animal seed dispersal in a heterogeneous environment,
following Neubert et al. (1995) and Powell and Zimmermann (2004) approach. We aim to derive
a dispersal kernel which reflects the aggregate distribution of seeds. Through a multiple scale
analysis and homogenization technique we attempt to obtain an analytical approximation to the
kernel, which retains the clumping distribution of seeds dispersed.

1.2 The Model

Neubert et al. (1995) derived a theoretical dispersal kernel, modeling dispersal as the diffusion of
propagules that settle with a certain rate. If diffusion is taking as an unbiased random walk in a
homogeneous environment, and the propagules are released from a point ξ, the probability density
of propagules at any time t, in the air P (x, t) and at the ground S(x, t) satisfies:
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∂P
∂t

= D ∂2P
∂x2 − λ(t)P, ∂S

∂t
= λ(t)P

P (x, 0) = δ(x− ξ). S(x, 0) = 0.

where D is the diffusion coefficient and λ(t) is the settling rate. The dispersal kernel K(x− ξ) is
obtained as the distribution of seeds on the ground S(x, t) when time goes to infinity:

K(x− ξ) = lim
t→∞

S(x, t).

For a constant settle rate λ(t) = λ, Neubert et al. (1995) obtained the Laplace or double exponential
kernel,

K(x− ξ) =
1

2

√

λ

D
exp

(

−
√

λ

D
|x|
)

.

Powell and Zimmermann (2004) used Neubert et al. (1995) approach for the dispersal of seeds
by animal cashers. They modeled seed dispersal as the diffusion of animal dispersers that caches
seeds in certain locations. Since animal dispersers do not deposit seeds randomly or with equal
probability, Powell and Zimmermann (2004) considered that the diffusion of dispersers (D) and
‘settling’ or caching (λ) of seeds should be functions of space. Dispersers move seeds rapidly
(high D) between cache areas, where seeds are unlikely to be deposited (low λ). Conversely, seed
dispersers spend more time in a small area (low D) where the seeds are dropped and stored in small
cached areas (high λ). Thus, the diffusion and settling functions are anti-correlated. Using Fickian
diffusion, and a function representing the probability of caching seeds in space (λ(x)), the model
for seed dispersal by animal cashers from a point of release, becomes Powell and Zimmermann
(2004)







∂P
∂t

= ∂
∂x

(

D(x)∂P
∂x

)

− λ(x)P, ∂S
∂t

= λ(x)P

P (x, 0) = δ(x− ξ). S(x, 0) = 0.

For the diffusion and settling, Powell and Zimmermann (2004) used periodic piecewise constant
functions. Using a multi-scale analysis and homogenization techniques they obtained the homog-
enized kernel of the model:

Khom(x− ξ) =
1

2

√

λ̂

D̂
exp



−

√

λ̂

D̂
|x|



 .
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where D̂, λ̂ are the homogenized constants of the diffusion and settling parameters. These ho-
mogenized parameters are spatially independent and their values are the harmonic mean of the
diffusion and settling functions.

Following Neubert et al. (1995) and Powell and Zimmermann (2004), we want to derive, as simple
as possible, a theoretical kernel for an animal dispersed plant, which is able to represent the
aggregate spatial pattern observed under field conditions. This type of seed shadow is commonly
seen in fleshy-fruited plant species, which rely on birds or bats for its dispersal.

Animal seed dispersal is frequently modeled combining information on animal movement behavior
and seed gut passage time. Considering that seeds follow animal movements, we modeled seed
dispersal as the diffusion of animal dispersers that defecate seeds (’settling of seeds’) in the air at
a certain rate. We take diffusion as the continuos approximation of discrete uncorrelated random
walk performed by animal dispersers. This is a simple form to model animals’ movement without
directional persistence (Turchin, 1998). This type of diffusion is referred as ”ecological diffusion”
(Turchin, 1998) or ”biodiffusion” (Okubo and Levin, 2001). A clear and simple derivation of the
ecological diffusion may be found in Turchin (1998). Animals’ movement in general are affected
by the environment (vegetation structure for example) and time. Here we assume that animal
dispersers’ movement depends only on space. For the settling rate, we take the rate of seed
passage, and for simplicity, let us assume it, to be constant (λ(t) = λ). Our model for seed
dispersal by animals is







∂P
∂t

= ∂2

∂x2 (D(x)P )− λP, ∂S
∂t

= λP,

P (x, 0) = δ(x− ξ). S(x, 0) = 0.

(1.1)

where P (x, t) is the density of seeds in movement at any spatial location x and time t, S(x, t) is
the probability density distribution of seeds at ground at any time t. Diffusion, D(x), represents
the motility of the animal dispersers, hence, the motility of seeds. The desired dispersal kernel
K(x) is obtained as the limit of time to infinity of the distribution of seeds at ground: K(x) =
limt→∞ S(x, t).

The model can easily be extended spatially to two dimensions x = (x1, x2):







∂P
∂t

= ∇2(D(x)P )− λ(t)P, ∂S
∂t

= λ(t)P,

P (x, 0) = δ(x− ξ). S(x, 0) = 0.
(1.2)

Animals in general do not move constantly through time, they move and settle, then move again
and settle. Distance traveled, velocity and site of settling depends on the animals’ behavior and
on the environment. Animal dispersers such as birds or bats, tend to fly to their feeding plants,
spend some time picking fruits and then leave the plant, to settle in a perch, feeding roost, latrines,
different habitats like forest gaps or vegetation of different successional stages, etc. Thus, we have
a high motility (high D) of seeds when the animal disperser is in move (for example flying), and
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a low motility (low D) of seeds as the animal settles. Therefore, the diffusion function, D(x),
should vary in space between high and low D, furthermore, it may reach its minimum, Dmin, at
the settling sites and a maximum, Dmax, between settling sites.

Settling sites may be distributed in a heterogeneous and random way in space. To introduce
these heterogeneity in the model, we can hypothetically consider a landscape where the vegetation
features the animal uses to settle vary in a periodic way. A simple way to represent diffusion in
such environment is through positive trigonometric and periodic function.

1.3 Results

1.3.1 Non-dimensional Seed Dispersal Model and the Dispersal Kernel

Equation.

Let A be the difference between the maximum and minimum diffusion of the animal disperser
(A = Dmax − Dmin). The parameter A has dimension of diffusion [distance2/time]. The rate of
seed passage, λ, has dimension [1/time]. In order to obtain the non-dimensional models of (1.1)
and (1.2), we scale the spatial and time variables to the parameters A and λ.

1D Dispersal Model

Introducing the non-dimensional space ξ and time τ variables:

ξ =

√

λ

A
x, τ = λt, (1.3)

in equation (1.1), yields







∂P
∂τ

= ∂2

∂ξ2

(

1
A
D(ξ)P

)

− P, ∂S
∂τ

= P,

P (ξ, 0) = δ(ξ − ξ0). S(ξ, 0) = 0.

(1.4)

For the diffusion, we may choose the trigonometric periodic function

D(x) = A

[

1

2
sin
(

ax+
π

2

)

+
1

2

]

+B; (1.5)

where a is the frequency of settling sites, A and B are positive constants. Note that Dmax = A+B,
and Dmin = B. Introducing the non-dimensional parameters: γ = B/A and ω = a

√

A/λ, the non-
dimensional diffusion function is given by
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D(ωξ) =
1

A
D(ξ) =

1

2
sin
(

ωξ +
π

2

)

+
1

2
+ γ, (1.6)

where we have expressed the frequency, ω, explicitly in the diffusion’s argument. Integrating
equations in (1.4) in relation to the variable time τ , from τ = 0 to infinity we have that the
dispersal kernel K(ξ) = limτ→∞ S(ξ, τ) satisfies the equation

∂2

∂ξ2
(D(ξ)K)−K = −δ(ξ − ξ0), (1.7)

where K(ξ) =
∫∞

0
P (ξ, τ)dτ. For a standard nomenclature we may replace the variables (ξ,D) for

(x,D), thus the Dispersal Kernel equation may be written as

∂2

∂x2
(D(x)K)−K = −δ(x− ξ0). (1.8)

2D Dispersal Model

For the two dimensional model (1.2), we introduce the space ξ = (ξ1, ξ2) and time τ variables:

ξ =

√

λ

A
x, ξ1 =

√

λ

A
x1, ξ2 =

√

λ

A
x2, τ = λt. (1.9)

The non-dimensional model (1.2) becomes







∂P
∂τ

= ∇2( 1
A
D(ξ)P )− P, ∂S

∂τ
= P,

P (ξ, 0) = δ(ξ − ξ0). S(ξ, 0) = 0.
(1.10)

For the diffusion in two dimensions, we may choose the following trigonometric periodic func-
tions:

D(x) = A

[

1

2
sin

(

a
√

x2
1 + x2

2 +
π

2

)

+
1

2

]

+B; (1.11)

or (1.12)

D(x) = A

[

1

2
sin
(

ax1 +
π

2

)

sin
(

bx2 +
π

2

)

+
1

2

]

+B;

where a and b are the frequency of settling sites in the x1 and x2 directions respectively, Dmax =
A + B, and Dmin = B. Introducing the non-dimensional parameters: γ = B/A , ω1 = a

√

A/λ,

and ω2 = b
√

A/λ the non-dimensional diffusion function are given by
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D(ξ) =
1

2
sin

(

ω
√

ξ21 + ξ22 +
π

2

)

+
1

2
+ γ, (1.13)

(1.14)

D(ξ) =
1

2
sin
(

ω1ξ1 +
π

2

)

sin
(

ω2ξ2 +
π

2

)

+
1

2
+ γ.

Integrating equation (1.2) in the variable time τ ,from τ = 0 to infinity, we have that the dispersal
kernel in two dimensions K(ξ) = limτ→∞ S(ξ, τ) satisfies the equation

∇2(D(ξ)K)−K = −δ(ξ − ξ0), (1.15)

where K(ξ) =
∫∞

0
P (ξ, τ)dτ. Here too, we may replace (ξ,D) for (x, D), thus the two dimensional

dispersal kernel equation may be written as

∇2(D(x)K)−K = −δ(x− ξ0) (1.16)

1.3.2 Numerical Results

The non-dimensional models (1.8) and (1.13), depend on the 3 parameters: ω, γ and ξ0. The
parameter ξ0 represents the location of the source plant whose seeds are dispersed.

0-2.5 2.5 5
0
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0.75

Dmax

1.5
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DHxL

aL Diffusion

0-2.5 2.5 5
0
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-1

1.5
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-1

3.25

x

D-1HxL

bL Residence Index

Figure 1.1: a)Diffusion (D(x)). Maximum and minimum diffusion are shown, Dmax and Dmin respectively,
(dashed lines); b) Residence Index D−1. Maximum and minimum residence time are shown, D−1

max
= γ−1 and

D−1

min
respectively (dashed lines). Parameters used : γ = 0, 35; Diffusion function: D(ωx) = 1

2
sin(ωx+ π

2
) + 1

2
+ γ.

The frequency of the settling sites is given by the parameter ω. The inverse of the frequency [1/ω]
is a measure of the distance between the sites the animal disperser uses to settle. The parameter
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γ represents the minimum diffusion (Dmin) of the animal disperser or the seed in movement. The
inverse of the diffusion D−1, is referred as the residence index. It gives a measure of the time
spent by an animal at a given location (Turchin (1998), Okubo and Levin (2001), hence, γ−1

gives an estimate of the residence time of the the animal disperser at the settling sites. Figure
1.1. shows the graphs of diffusion and residence index for the diffusion function chosen for the
simulations.
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Figure 1.2: a) Dispersal Kernel. b) Residence Index D−1(x). Parameters used : ω = 7; γ = 0, 35; Diffusion
function: D(ωx) = 1

2
sin(ωx+ π

2
) + 1

2
+ γ.

First, we explore the effects of the parameters ω and γ on the one dimensional model, considering
the source plant located at the origin (ξ0 = 0). We solve the model (1.8) numerically, using finite
difference methods.
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Figure 1.2.a. shows the seed shadow generated by the 1D model for some fixed parameters. The
seed distribution shows various peaks of different seed densities. The location of the different peaks
or seed aggregations, corresponds to the settling sites in the environment. These sites are, where
the animal disperser shows its minimum diffusion, or in other words has its higher residence time
(Figure 1.2.b). The concentration of seeds at each peak declines with distance from the source, in
an exponentially way probably.

The effect of fixing the the residence time, (γ−1), of an animal disperser and varying the distance
between settling sites (ω) is shown in Figure 1.3.
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Figure 1.3: Dispersal Kernels varying the distance between settling sites ( 2π/ω): a)
2π/ω ≈ 1, 25; b) 2π/ω ≈ 0, 63;

c) 2π/ω ≈ 0, 42; and d) ω4 = 0, 5. Parameters used : γ = 0, 35; Diffusion function: D(ωx) = 1

2
sin(ωx+ π

2
) + 1

2
+ γ.

Smaller distances between settling sites (large ω), generate a more concentrated aggregation (higher
peaks) at the settling sites, with a narrow dispersion of seeds around them. As distance, between
these sites increases (smaller ω), the concentration at each peak declines, but the seeds are more
scattered around them.

For settling sites very far from each other, which means very small values of ω (ω < 1), and far
from the mother plant, the resulting seed shadow resembles the Laplace or double exponential
distribution (Figure 1.2.d.). In this case the time that takes an animal disperser to reach a settling
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site is greater than the seed passage time, so that the animal disperser has a higher probability of
defecating or dropping the seeds long before it reaches a perch or feeding roost, etc.

Differences in seed density, between slow and high motility sites, are greater for higher values of
ω, which generates a more heterogeneous seed distribution (Figure 1.3.c). Conversely, when ω is
small, a more quantity of seeds are allowed to be deposited in between settling sites, since they
are further away, creating a more even seed shadow (Figures 1.3.a and 1.3.d).

Now, the result of fixing the distance between the settling sites, and varying the residence time
at the settling sites is shown in Figure 1.4.. For larger residence times, the seeds tend to travel
shorter distances, making the distribution less dispersed, and with a thinner tail. On the other
hand, smaller residence times, result in a wider dispersal distribution with fatter tail. This means
that the seeds have a more probability to be dispersed further away and thus to increase the
probability of long distance dispersal.
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Figure 1.4: a) Dispersal Kernels varying the residence index at the settling sites (γ−1): solid line γ = 0, 2 ;
dashed line γ = 0, 4. b) Dispersal Kernel distribution tail:solid line γ = 0, 2; dashed line γ = 0, 4. Parameters used
: ω = 7, and D(ωx) = 1

2
sin(ωx+ π

2
) + 1

2
+ γ.

The parameter ξ0, determines the location of the mother plant. The location of the plant is
independent of the location of the settling sites, consequently, the seed source is independent of
the heterogeneity of the environment. Until now we have chosen the location of the plant at the
origin (ξ0 = 0). If we move the location of the mother plant, the resulting dispersal kernel may
not be symmetrical. Figure 1.5 shows an anti-symmetrical distribution for a different seed source
location.



14

-4 -2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

x

KHxL

Figure 1.5: Dispersal Kernels for a release point ξ0 = 0, 5. Parameters used: ω = 10; γ = 0, 35. Diffusion
function: D(ωx) = 1
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) + 1

2
+ γ.

We solve numerically the two dimensional dispersal kernel equation, using difference methods.
The 2D dispersal kernels have the same behavior as 1D, nonetheless, the heterogeneity of the
environment has a richer representation, varying differently the frequency of the settling sites in
the x and y directions. Figure 1.6. shows a 2D dispersal kernel and Figure 1.7. its contour
plot.
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Figure 1.6: Dispersal Kernels in two dimensions. Parameters used: ω = (8, 5); γ = 0, 35. Diffusion function:
D(ωx) = 1
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Here we find an analytical approximation to the solution of the Dispersal Kernel equation (1.8),
using multiple scales and homogenization technique.

1D Dispersal Model Approximation

In Figure 1.2 the numerical solution to the dispersal kernel equation (1.8) is shown for a particular
choice of parameters (ω, γ, ξ0) and using equation (1.6) as the diffusion function. It can be observed
from the graph that there are (at least) two space scales. There is a fast scale associated with the
oscillations in the solution, and there is a slower scale involved with the variation of the amplitude
of the oscillations. Oscillations take place at a scale proportional to the period of the oscillations
p = 2π/ω (ω is the frequency of the oscillations). We assume that variations at the fast scale are
of order O(1/ω), while the decay of the amplitude of the oscillations are of order (O(1)).

Given the disparity of the two length scales, we use a multiple scale technique to find an approxi-
mation of the solution of the dispersal kernel equation (Holmes, 1995). We begin by introducing
a small parameter ǫ < 1, which relates both space scales, and has a magnifying effect on the small
scale. Since the small scale is of order (O(1/ω)) we choose ǫ = 1/ω with ω > 1. To incorporate
the two space scales into the problem (1.8), we define the following space variables

y =
x

ǫ
, x = x. (1.17)

These variables represent the fast and slow scales respectively. Variations of order O(1) in the y
variable, become small variations (O(ǫ)) in the x variable. Introducing these variables into the
dispersal kernel equation, and treating them as independent variables, the differential equation
(1.8) with the diffusion function given by (1.6), takes the form (for details see Appendix A and
Holmes, 1995)

(∂2
y + 2∂y∂x + ǫ2∂2

x)(D(y)K)− ǫ2K = −ǫ2δ(x− ξ), (1.18)

where ∂y = ∂
∂y
. From (1.17) we have ωx = x/ǫ = y, so that the diffusion function (1.6) with the

new variables becomes

D(y) =
1

2
sin
(

y +
π

2

)

+
1

2
+ γ. (1.19)

Note that D(y) is 2π-periodic, and depends only on the fast variable. Now we assume a regular
asymptotic expansion for K of the form

K ∼ K0(x, y) + ǫK1(x, y) + ǫ2K(x, y) + · · · . (1.20)

and substitute in equation (1.18). The first term approximation to the solution of the partial
differential equation (1.18) is given by (see Appendix for details)
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K0(x, y) =
1

D(y)

1

2
√

〈D−1〉
exp−|x−ξ|

√
〈D−1〉, (1.21)

where 〈D−1〉 is the harmonic mean of the diffusion function (1.19) over the domain R

〈D−1〉 = lim
y→∞

1

2y

∫ y

−y

1

D(ζ)
dζ.

Since D(y) is a periodic function with period p = 2π, we can compute the harmonic mean as

〈D−1〉 = 1

2π

∫ 2π

0

D(ζ)dζ.

Expressing the approximate solution (1.21) in terms of the original variable x, we have

K0(x) =
1

D(ωx)

1

2
√

〈D−1〉
exp−|x−ξ|

√
〈D−1〉 . (1.22)

This expression shows the exponential decay of the amplitude of the oscillations, and reveals the
frequency of the oscillations.

A property of a dispersal kernel is that
∫∞

−∞
K(x)dx = 1, Since K0(x) is an approximation to the

true kernel, it may not satisfy this property. To circumvent this problem we can normalize the
approximate solution in order to sum a unity.

Figure 1.8 shows the normalized approximate solution (1.22) and the numerical solution. The
approximation gives a very accurate representation to the numerical solution of the dispersal
kernel equation.
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Figure 1.8: Numerical solution (continuous line) and Approximated solution (dashed line) to the Dispersal Kernel
equation. Parameters used: ω = 10; γ = 0, 35; Diffusion function: D(ωx) = 1
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2D Dispersal Kernel Approximation

For the 2D model, we also assume a positive periodic diffusion function, that is, D(x+xp) = D(x),
where x = (x1, x2) and xp = (x1p, x2p) is a periodic vector denoting with x1p and x2p the periodicity
of the components x1 and x2 respectively.

We follow the same spatial scale analysis as the 1D model, where the oscillations of the solution
take place at the small scale, and the exponential decay of the amplitude be the large scale.
Let ω = max{x1p, x2p}, and let the small parameter ǫ = 1/ω with ω > 1. We define the new
independent scale variables

y =
x

ǫ
, x = x. (1.23)

Here too, variations of order O(1) in the fast variable, y, become small variations of order O(ǫ)
in the slow variable x. Introducing the scale variables in the dispersal kernel equation (1.13), the
derivatives transform, with ∇ −→ ∇x +

1
ǫ
∇y, and ∇2 = ∇ · ∇ −→ ∇2

x +
2
ǫ
∇x∇y +

1
ǫ2
∇2

y, where
the subscripts denote the variable being differentiate (see Appendix B and Garlick et al., 2011 for
details). The dispersal kernel equation in the new scale variables becomes then

(∇2
x +

2
ǫ
∇x∇y +

1
ǫ2
∇2

y)(D(y)K)−K = δ(x− ξ). (1.24)

With the scale variables the diffusion function D(y) has a period vector yp = (y1p, y2p). Now we
assume a regular asymptotic expansion for K of the form

K ∼ K0(x,y) + ǫK1(x,y) + ǫ2K2(x,y) + · · · , (1.25)

and substitute into equation (1.24). The first term approximation of the solution of the partial
differential equation (1.24) is given by (see Appendix B for details)

K0(x,y) =
1

D(y)

〈D−1〉
2π

Ko

(

〈D−1〉‖x− ξ‖
)

, (1.26)

where Ko is the modified Bessel function of order zero, and 〈D−1〉 is the harmonic mean of the
diffusion over the whole domain R2. Since the diffusion is a positive and periodic function, with
period yp = (y1p, y2p), the harmonic mean can be computed by

〈D−1〉 = 1

A

∫ y1p

0

∫ y2p

0

1

D(y)
dy2pdy1p, (1.27)

where A is the area of the rectangle y1p × y2p. Returning to the original variables the approximate
solution (1.28) is given by
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K0(x) =
1

D(x/ǫ)

〈D−1〉
2π

Ko

(

〈D−1〉‖x− ξ‖
)

. (1.28)

Figure 1.9 shows the approximated and numerical solution to the dispersal kernel equation in 2D.
Here again, we can see the accurate approximation to the numerical solution.
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Figure 1.9: Numerical solution (continuous line) and Approximated solution (dashed line) to the Dispersal Kernel
equation. Parameters used: ω = (8, 5); γ = 0, 35; Diffusion function: D(ωx) == 1
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1.4 Discussion

The Model

Frequently, the seed shadow generated by animals, does not decline in a monotonous way from seed
source. For fleshy fruit plants dispersed by birds, a spatial pattern of seed rain emerges at a certain
spatial scale (Kollmann, 2000). Seeds are not dispersed in a randomly way, on the contrary, seeds
follow animal movements and are deposited with a higher probability at specific places, where the
animal tends to settle. The settling site may be perches, feeding roosts, latrines, some specific
habitats like forest gaps, etc. The feeding and movement behavior of the disperser result in an
aggregated spatial distribution of seeds .

Animal seed dispersal models are less developed than wind dispersal (Levin et al., 2003; Nathan
and Muller-Landau, 2000). Models for describing seed shadows generated by animals, combine data
on animal’s mean and rate of displacement and seed passage times (Levin et al., 2003). These
models provide frequency histograms of seed density against distance (Murray, 1988; Westcott
et al., 2005). Some of them fit various statistical distributions to accommodate the multimodality
of the seed distribution (Russo et al., 2006). Although these attempts describe the heterogeneous
and multimodal pattern of seed distribution, they lack a general and theoretical framework for the
understanding of the observed patterns.

Diffusion and settling models are theoretical models that have been used for deriving dispersal
kernels (Okubo and Levin, 2001; Neubert et al., 1995; Powell and Zimmermann, 2004). They
are simple and flexible to incorporate animal movements, animal behavior and seed passage rates.
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Diffusion and settling models may be a good theoretical framework to develop simple models for
animal dispersed seeds. Despite of the simplicity of the model, few authors have attempted to
use it for modelling animal seed dispersal. Our proposed model belongs to these type of models.
It incorporates general animal movements through the diffusion approximation of uncorrelated
random walks in a heterogeneous, yet periodic, environment, and takes a constant rate of seed
passage. The proposed model is able to reproduce the clumping pattern observed under field con-
ditions, showing peaks of seed densities at sites where the dispersers tend to settle (high residence
time). Although, the heterogeneous environment used in the model is hypothetical, it shows the
aggregation of seeds under the settling sites. Powell’s model for seed dispersal by animal cashers,
uses Fickian diffusion and a settling probability which depends on the spatial location. His model
also shows the aggregated pattern of seed distribution, but the multi-scale and homogenization
approximation looses the heterogeneity (Powell and Zimmermann, 2004).

Developing more realistic models under diffusion and settling model framework, certainly provides
a theoretical perspective to analyze the process behind the observed pattern of seed dispersal by
animals. Furthermore, it may provide other types of distributions other than the traditionally
used, distributions that capture the observed field patterns.

Multiple Scales and Homogenization Technique

One of the main purposes of a seed dispersal model is to derive a dispersal kernel for modelling plant
dispersal. An analytical expression for the dispersal kernel is always desired, but may be difficult to
obtain. A numerical solution to the dispersal kernel model can serve for the purpose of modelling
plant dispersal, nonetheless an analytical expression may have advantages computationally and
for further analytical analysis. Analytical solutions are frequently unavailable, but an attempt to
derive an analytical approximation is always recommended.

Perturbation methods are techniques to derive analytical approximation to differential equations
(Holmes, 1995). For our model we applied a multiple scales and homogenization technique to derive
an analytical approximation to the dispersal kernel. This technique proved to be suitable for our
model, since the approximation retained the heterogeneity of the environment, a feature we wanted
to preserve in the dispersal kernel. This characteristic is due to the type of diffusion we used to
model animal movement. The diffusion approximation of the uncorrelated random walk is referred
as ecological diffusion ( ∇2(D(x), K(x) ) (Turchin, 1998; Okubo and Levin, 2001). When applying
homogenization technique to ecological diffusion, the approximated solution preserves the fast
variable, which describes the environmental heterogeneity (Garlick et al., 2011), contrary to Fickian
diffusion ( ∇(D(x)∇K(x)) ), in which the process of homogenization soothes the heterogeneity of
the environment.

Powell and Zimmermann (2004) modeled animal seed dispersal using Fickian diffusion, and applied
multiple scales and homogenization techniques in order to derive an analytical expression for the
kernel. The resulting kernel did not preserved the heterogeneity of the diffusion function. On the
other hand, Garlick et al. (2011), modeled dispersal of chronic wasting disease by mule deer, using
ecological diffusion in a two dimension space. The approximated solution obtained, when applied
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homogenization technique, preserved the environmental heterogeneity. Besides the advantage of
retaining the heterogeneity, homogenization applied to ecological diffusion in multiple dimensions
is much simpler as Fickian diffusion.

Behavior of the Dispersal Kernel

The behavior of the dispersal kernel derived by our model is determined by two parameters. These
parameters represent the distance between settling sites and the residence time at those sites. The
distance between settling sites determines the heterogeneity of the seed shadow. The smaller the
distance the more difference in seed density between settling sites and the space between them.
This is reasonably, since the less spaced settling sites, the greater the opportunity of the disperser
to reach a settling site before dropping or defecating the seed on the way. On the other hand,
more space between settling sites, increases the probability of the seed to be deposited in between.
This generates a wider dispersion around the settling sites, which makes less heterogeneous the
seed shadow.

Now, the residence time of the dispersers at the settling sites, determines how far a seed may
travel. For greater residence times, the majority of seeds are dispersed around the source. The
longer the time the disperser spends at the settling site, increases the probability of dropping
the seed there. This means that with longer residence times, the seeds are dispersed with higher
probability to the nearby perches, feeding roosts, latrines, etc. Conversely, if the disperser behaves
with a high motility, and does not stop for long time at the settling sites, the probability of a seed
to be disperse longer distances is higher. This generates a dispersal kernel with a fatter tail. In
other words, the smaller the residence time, the further the seed may be dispersed. This may have
implications on the rate of plant expansion.

1.5 Conclusions

We consider that diffusion and settling models could be a general framework for developing animal
seed dispersal models. From simple and general assumptions on animal movements and seed
passage time, the model was able to reproduce the aggregated spatial pattern of animal dispersed
seeds. More realistic assumptions can be incorporated in the model to analyze and predict seed
shadows. Furthermore, in some cases it may be possible to have approximated analytical solutions
to the model, as is our case, a very desirable situation, for modeling plant dispersal.

Multiple scales and homogenization techniques proved to be suitable to treat ecological diffusion,
since it retains the heterogeneity of the environment in the approximated solution. Furthermore,
when modeling in a multiple-dimensions, the procedure of homogenization is much simpler than
Fickian diffusion.

Finally, the parameters that determines the behavior of the dispersal kernel can be obtained
experimentally, a chance to test the effectiveness of the model.
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1.6 Appendix

1.6.1 Appendix A: Approximate solution to the 1D Dispersal Ker-

nel Equation, using multiple scales and homogenization tech-

nique.

Case ω > 1

The non-dimensional differential equation of the dispersal kernel in one dimension is given by

d2

dx2
(D(x)K)−K = −δ(x− ξ), (1.29)

where D(x) is the diffusion function, which we assume to have the following properties:

i. D(x) is a limited, positive and continuos function, so that 0 < Dmin ≤ D(x) ≤ Dmax, ∀x ∈
R.

ii. D(x) is a periodic function with period xp = 2π/ω, so that, D(x + xp) = D(x); where ω is
the frequency.

A simple diffusion function satisfying the above assumption and that will be used through the
analysis is

D(x) =

[

1

2
sin(ωx+ π/2) +

1

2

]

+ γ, (1.30)

where 0 < γ < 1 and ω is the frequency of oscillation. It can be verified that Dmax = 1 + γ and
Dmin = γ. For further analysis we may write explicitly the frequency in the diffusion’s argument,
D = D(ωx).

Two spatial scales can be distinguished from the numerical solution of the differential equation
(1.29) (Figure 1.2)(see section Results). One fast scale, associated with the oscillations of the
solution, which we assume to be of order O(1/ω), and a slow scale of order O(1), which describes
the decay of the amplitudes of the oscillations. We introduce the small parameter ǫ = 1/ω , which
relates both scales. Let x be the slow scale variable, and y = x/ǫ the fast scale variable. Note
that variations of order O(1) in the fast y variable, become small variations of order O(ǫ) in the
slow x variable.

Introducing the scale variables x and y into the differential equation (1.29), and treating them
as independent, results in a partial differential equation of the unknown function K(x, y). The
spatial derivatives in (1.29) transform as follows (Holmes, 1995)

d

dx
→ ∂

∂x
+

1

ǫ

∂

∂y
,

d2

dx2
→ ∂2

∂x2
+

2

ǫ

∂

∂x

∂

∂y
+

1

ǫ2
∂2

∂y2
. (1.31)
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To simplify notation we use ∂x = ∂
∂x
. The differential equation for the dispersal kernel after

changing variables and multiplying by ǫ2 becomes then,

(∂2
y + 2∂y∂x + ǫ2∂2

x)(D(y)K)− ǫ2K = −ǫ2δ(x− ξ), (1.32)

Note that the diffusion D(ωx) = D(x/ǫ), became D(y) after changing variables, and has period
yp = 2π in the fast variable. We assume that K(x, y) is also yp-periodic in the fast variable,
this means that K(x, y + yp) = K(x, y). Moreover, if K(x, y) is smooth enough, we must have
∂yK(x, y + yp) = ∂yK(x, y) (Holmes, 1995).

We now consider a regular asymptotic expansion for K(x, y) of the form

K ∼ K0(x, y) + ǫK1(x, y) + ǫ2K(x, y) + · · · . (1.33)

Substituting this expansion in (1.32) and collecting terms, we obtain the following equations

O(1):

∂2
y(D(y)K0) = 0 (1.34)

whose general solution is

K0(x, y) =
a0(x)

D(y)
y +

b0(x)

D(y)
, (1.35)

where a0(x) and b0(x) are coefficient functions to be determined. Considering the periodic assump-
tion on the fast variable we must have a0(x) = 0, hence

K0(x, y) =
b0(x)

D(y)
. (1.36)

O(ǫ):

∂2
y(D(y)K1) + 2∂y∂x(D(y)K0) = 0. (1.37)

Substituting K0(x, y) in the above equation yields

∂2
y(D(y)K1) = 0, (1.38)

since
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∂y∂x(D(y)K0) = ∂y∂x

(

D(y)
b0(x)

D(y)

)

= ∂y∂x(b0(x)) = 0.

Considering again the periodic assumption of K(x, y) in the fast variable, the general solution to
the differential equation of order O(ǫ), is then

K1(x, y) =
b1(x)

D(y)
, (1.39)

where b1(x) is a coefficient function to be determined.

O(ǫ2) :

∂2
y(D(y)K2) + 2∂y∂x(D(y)K1) + ∂2

x(D(y)K0)−K0 = −δ(x− ξ). (1.40)

When substituting the expressions of K0(x, y) and K1(x, y) in the above equation, the second
and third term of the left hand of the equation become zero and ∂2

xb0(x) respectively, as shown
below

2nd. term:

∂y∂x(D(y)K1) = ∂y∂x

(

D(y)
b1(x)

D(y)

)

= ∂y∂x(b1(x)) = 0, (1.41)

3th. term:

∂2
x(D(y)K0) = ∂2

x

(

D(y)
b0(x)

D(y)

)

= ∂2
xb0(x) = b

′′

0(x) (1.42)

where we wrote ∂2
xb0(x) = b

′′

0(x). The O(ǫ2) differential equation can be written as

∂2
y(D(y)K2) + b

′′

0(x)−
b0(x)

D(y)
= −δ(x− ξ), (1.43)

or equivalently

∂2
y(D(y)K2) = −b

′′

0(x) +
b0(x)

D(y)
− δ(x− ξ). (1.44)

The unknown coefficient function b0(x) appears in the O(ǫ2) differential equation. In order to solve
for b0(x), we homogenized the equation (1.44) by averaging each term in the fast variable over a
period yp = 2π (Holmes 1995, Garlick et al. 2011). The average of a function v(x) over an interval
[a, b] is defined as
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〈v〉 = 1

b− a

∫ b

a

v(x)dx.

Averaging the equation (1.44) over a period yp = 2π, and using the fundamental theorem calculus
we have

〈

∂2
y(D(y)K2)

〉

=
1

2π

∫ 2π

0

∂2
y(D(y)K2) = ∂y(D(y)K2)

∣

∣

∣

2π

0
= 0, (1.45)

where the periodic assumption on K and D has been considered (∂y(D(y + yp)K(x, y + yp) =
∂y(D(y)K(x, y)). The other averaged terms are as follows

〈b′′0(x)〉 = b
′′

0(x) (1.46)

(1.47)

〈δ(x− ξ)〉 = δ(x− ξ)

(1.48)
〈b0(x)

D(y)

〉

= b0(x)
1

2π

∫ 2π

0

1

D(y)
dy.

We define 〈D−1〉 = 1
2π

∫ 2π

0
1

D(y)
dy, which represents the harmonic mean of the diffusion. Note that

〈D−1〉 is a constant. With the averaged terms the homogenized differential equation to (1.44) is
given by

b
′′

0(x)− 〈D−1〉b0(x) = −δ(x− ξ). (1.49)

We use the Fourier Transform method to solve the homogenized equation. First we make a
change of variables ζ = x− ξ, and then apply the Fourier Transform and its derivative properties,
yielding

−k2F{b0(ζ + ξ)} − 〈D−1〉F{b0(ζ + ξ)} = −F{δ(ζ)},

or

−(k2 + 〈D−1〉)F{b0(ζ + ξ} = − 1√
2π

,

F{b0(ζ + ξ} =
1√

2π (k2 + 〈D−1〉)
.

Applying the Fourier Inverse to the above equation we have
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b0(ζ + ξ) =
1

√

2〈D−1〉
exp−|ζ|

√
2〈D−1〉 .

Returning to the original variable, we arrive at the solution of the homogenized differential equa-
tion

b0(x) =
1

2
√

〈D−1〉
exp−|x−ξ|

√
〈D−1〉 .

Knowing the coefficient function b0(x) we have the first term approximation to the solution of the
dispersal kernel equation which is

K0(x, y) =
1

D(y)

1

2
√

〈D−1〉
exp−|x−ξ|

√
〈D−1〉,

so that K ∼ K0 +O(ǫ).

1.6.2 Appendix B: Approximate solution to the Dispersal Kernel in

2 dimensions, using multiple scales and homogenization tech-

niques.

The non-dimensional differential equation of the dispersal kernel in two dimensions (R2) is given
by

∇2(D(x)K)−K = −δ(x− ξ), (1.50)

where x ∈ R2, x = (x1, x2) and D(x) is the diffusion function, which we assume to have the
following properties:

i. D(x) is a limited, positive and smooth function, so that 0 < Dmin ≤ D(x) ≤ Dmax, ∀x ∈
R2.

ii. D(x) is a periodic function with period xp. This means, there is a period vector xp =
(2π/ω1

,2π /ω2
), so that D(x + xp) = D(x); where ω1 > 1 and ω2 > 1 are the frequencies of

oscillations in the coordinates x1 and x2 respectively.

A diffusion function satisfying the above assumption may be D(x) = 1
2
sin(ω1x1) sin(ω2x2) +

1
2
+

γ, γ > 0. In this case, the period vector is xp = ( 2π/ω1
, 2π/ω2

). The periodicity implies that if
we know the values of the function in the rectangle a ≤ x1 ≤ a+ 2π/ω1

and b ≤ x2 ≤ 2π/ω2
, where

a and b are arbitrary in the domain, then we can determine the diffusion function everywhere.
We define the frequency vector ω = (ω1, ω2), and for further analysis, we write the frequency in a
explicit way in the diffusion’s argument, D = D(ωx).
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For the 2D dispersal kernel equation, we proceed with the same spatial analysis as in the 1D
equation, assuming a fast spatial scale variable associated with the oscillations, and a slow variable
describing the decay of the amplitudes. Let ωmax = max{ω1, ω2}, and define ǫ = 1/ωmax

. Let x be
the slow scale variable and y = x/ǫ. Introducing these scale variables into the differential equation
(1.50), y), the unknown function becomes K(x,y), and following ? and Garlick et al. (2011) the
derivatives transform as follows

∇ → ∇x +
1

ǫ
∇y,

∇ · ∇ → (∇x +
1

ǫ
∇y) · (∇x +

1

ǫ
∇y) → ∇2

x +
2

ǫ
∇x∇y +

1

ǫ2
∇2

y.

where the subscript is the derivative of the variable being differentiated. Substituting the deriva-
tives and the unknown function in equation (1.50), and after multiplying by ǫ2, yields

(

∇2
y + 2ǫ∇y∇x + ǫ2∇2

y

)

(D(y)K)− ǫ2K = −ǫ2δ(x− ξ). (1.51)

Note that the diffusion function depends only on the fast variable y, with oscillations of period
yp = (y1p, y2p) where y1p = ωmax(

2π/ω1
) and y2p = ωmax(

2π/ω2
). We make the assumption that

K(x,y) is also yp-periodic in the fast variable, this means K(x,y + yp) = K(x,y), and that
∇yK(x,y + yp) = ∇yK(x,y).

Considering a regular asymptotic expansion for K(x,y) of the form

K(x,y) = K0(x,y) + ǫK(x,y) + ǫ2K(x,y) + · · · . (1.52)

Substituting this expansion into (1.51), and collecting terms in ǫ, we obtain the following equa-
tions:

O(1):

∇2
y(D(yy)K0) = 0,

whose general solution is

K0(x,y) =
a0(x)

D(y)
y +

b0(x)

D(y)
,

where a0(x) and b0(x) are coefficient functions to be determined. Considering the assumption that
K(x,y) is periodic in the fast variable, we must have a0(x) = 0, this leads to the solution
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K0(x,y) =
b0(x)

D(y)
. (1.53)

O(ǫ):

∇2
y(D(y)K1) + 2ǫ∇y∇x(D(y)K0) = 0. (1.54)

Substituting K0 in the above equation and simplifying ( ∇y∇x(D(y)K0) = 0), we get

∇2
y(D(y)K1) = 0. (1.55)

Using the periodic condition in the fast variable of K(x,y), the general solution of the equation
above, is

K1(x,y) =
b1(x)

D(y)
, (1.56)

where b1(x) is a coefficient function to be determined.

O(ǫ2):

∇2
y(D(y)K2) + 2∇y∇x(D(y)K1) +∇x(D(y)K0)−K0 = −δ(x− ξ). (1.57)

Substituting (1.53) and (1.56) into (1.58) and simplifying (∇y∇x(D(y)K1) = 0 and ∇2
x((D(y)K0) =

∇2
x(b0(x) ) yields

∇2
y(D(y)K2) +∇2

x((D(y)K0)−
b0()x

D(y)
= −δ(x− ξ),

or

∇2
y(D(y)K2) = −∇2

x(b0(x)) +
b0(x)

D(y)
− δ(x− ξ). (1.58)

The unknown coefficient function b0(x) appears in the differential equation above. In order to
solve for b0(x), we proceed to homogenized the equation (1.58) by averaging each term in relation
to the fast variable. Note that the diffusion D(y) depends only on the fast variable,with a period
vector yp = (y1p, y2p) . Let Ωp = [0, y1p]× [0, y2p], and |Ωp| be its area. Now we proceed to average
the equation over the region Ω, starting with the term on the left hand of the equation, and using
the divergence theorem and periodic conditions on the functions D(y) and K(x,y) we have
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〈∇2
y(D(y)K2)〉 =

1

|Ω|

∫

Ω

∇2
y(D(y)K2)dΩ =

1

|Ω|

∫

∂Ω

∇y(D(y)K2) · ndS = 0 (1.59)

where ∂Ω is the border of the region Ω and n̂ is the outward unitary normal vector of Ω. Averaging
the right hand terms of equation (1.58)

〈∇b0(x)〉 = ∇b0(x) (1.60)

(1.61)

〈δ(x− ξ)〉 = δ(x− ξ)

(1.62)
〈b0(x)

D(y)

〉

= b0(x)
1

|Ω|

∫

Ω

1

D(y)
dΩ.

We define 〈D−1〉 as

〈D−1〉 = 1

|Ω|

∫

Ω

1

D(y)
dΩ =

1

y1p × y2p

∫ y1p

0

∫ y2p

0

1

D(y1, y2)
dy2dy1.

Note that 〈D−1〉 is a constant, and does not depend on the fast variable anymore. After averaging
terms we arrive at the homogenized differential equation of (1.58)

∇2b0(x)− 〈D−1〉b0(x) = −δ(x− ξ) (1.63)

The differential equation above is a modified Helmholtz equation. For, r =
√

(x1 − ξ1)2 + (x2 − ξ2) >
0, (1.63) transforms into

d2

dr2
K(r)− 1

r

d

dr
K(r)− 〈D−1〉K(r) = 0, (1.64)

whose general solution is given by

K(r) = AIo(
√

〈D−1〉r) + BKo(
√

〈D−1〉r), (1.65)

where Io and Ko are the modified Bessel functions of order zero, A and B are constants to be
determined. Here we introduce a natural condition for the dispersal kernel, limr→∞ K(r) = 0,thus
we must have A = 0, since Io(r) is unbounded as r → ∞, this leads to the following solution,

K(r) = BKo(
√

〈D−1〉r). (1.66)
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In order to determine the constant B, we apply the Green’s function property of discontinuity
limǫ→0

∫

Ce
−∂K

∂n
ds = 1, where cǫ is a small circle with radius ǫ centered at (ξ1, ξ2),

lim
ǫ→0

∫

Ce

−∂K

∂n
ds = lim

ǫ→0

∫

Cǫ

−B
∂Ko

∂r
ds = lim

ǫ→0

∫ 2π

0

−ǫB
∂Ko

∂r
dθ = 1.

Asymptotically, Ko(
√

〈D−1〉r) ∼ ln( 1/√
〈D−1〉r

) as r → 0, so we may have form the above

limit

lim
ǫ→0

∫ 2π

0

−ǫB
∂Ko

∂r
dθ = 1 (1.67)

(1.68)

lim
ǫ→0

−2πǫB
∂Ko

∂r

∣

∣

∣

r=ǫ
= 1

(1.69)

lim
ǫ→0

2πǫB
1

ǫ
√

〈D−1〉
= 1

(1.70)

B =

√

〈D−1〉
2π

,

hence the first term approximation to the solution fo the dispersal kernel equation in 2D is

K0(x,y) =
1

D(y)

√

〈D−1〉
2π

Ko

(

√

〈D−1〉r
)

,

or in x = (x1, x2) coordinates,

K0(x) =
1

D(x/ǫ)

√

〈D−1〉
2π

Ko

(

√

〈D−1〉〉‖x− ξ‖
)

. (1.71)



Caṕıtulo 2

Invasão Biológica de uma planta de fruto

carnoso dispersada porpássaros e sujeita

a efeito Allee

Biological Invasion of a fleshy fruited plant
dispersed by birds and subject to Allee effect

Abstract. We use an integro-difference equation to model the dispersal of a fleshy fruited plant
dispersed by birds and subject to Allee effect. We developed the model in three steps: a) the
population growth model with Allee effect, b) development of the dispersal kernel, and c) the
dispersal process. The dispersal kernel showed the clumping distribution characterized by the
seed rain generated by frugivores birds under field conditions. The clumping pattern reflects the
heterogeneity of the environment which influences the animals’ movement. The model showed a
pulsed invasion behavior, contrary to a continuos and constant expansion. The pulsed invasion
behavior was characterized by front population stasis or stagnation followed by a jump or step
advance. This behavior was observed for strong intensities of Allee effect, but for subtle intensities,
the front population advanced at a roughly constant rate. For the expansion speed, we homogenized
the dispersal kernel, which yielded good approximations to the average expansion speeds.

2.1 Introduction

Plant population growth and seed dispersal are two major biological factors that determine the
success of an invasion and its expansion rate. Any factor (physical or biological) that influences
these two biological processes, alters the invasion dynamics. Biological or physical interactions

31
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are constantly modifying the population growth and seed dispersal of plants, and thus leading to
different invasion dynamics.

The Allee effect, from a demographic point of view, is a density-dependent effect, in which the
per capita growth rate of the population is increased with the population density (Stephens et al.,
1999). It mainly occurs at low population densities. At high densities, the Allee effect may not
be significant in comparison with the negative effect of the intraespecific competition. One of the
most documented factors that may induce an Allee effect in sexual populations, is mate finding
(Boukal and Berec, 2002). At low population densities, the probability of finding mates may be
too low, so that the population experiences a low per capita growth rate. The growth rate may be
sometimes too low, that is insufficient to maintain the population, and eventually the population
goes extinct. Here, an increase in the number of individuals, may rise the mate finding probability,
avoiding population extinction. In sexual populations, the Allee effect due to mate finding, may
be always present.

The Allee effect may be present whenever a sexual population experiences low densities. From
a biological invasion perspective, this may occur at the initial stages of the invasion or at the
front of it. Thus, Allee effect, has been considered lately when studying biological invasions of
sexual populations, since it has profound effects on the invasion dynamics Taylor and Hastings
(2005). One of the main effects is establishing colonization threshold for a successful invasion,
and reducing expansion speeds (Lewis and Kareiva, 1993; Kot et al., 1996; Davis et al., 2004). It
may be responsible for the lag phases observed in some plant invasions (Parker, 2004; Taylor and
Hastings, 2005), and also for pattern formations (Petrovskii et al., 2002; Mistro et al., 2012).

Allee effect has been reported in plants and may be not an uncommon situation (Groom, 1998).
Davis et al. (2004) detected an Allee effect, due to pollen limitation, at the front of an invasion
of Spartina alterniflora. Following (Davis et al., 2004) findings, we propose an integro-difference
(IDE) model for the study of an invasive plant subject to an Allee effect due to pollen limitations.
The IDE model couples population growth and dispersal.

The spatial distribution of seeds dispersed is often summarized in a probability distance distri-
bution, which is referred as the dispersal kernel. The seed production of an individual plant
multiplied by its dispersal kernel is known as the the pant’s seed shadow. Functional forms are
fitted to dispersal data to describe the seed density distributions. It is suggested that the entire
seed distribution (the local distribution and the tail) is important in determining the expansion
speed of a plant (Levin et al., 2003).

As for the dispersal process, the dispersal syndrome (ornithochory, anemochory, barochory, etc.)
a plant relies on to disperse its seeds, certainly influences the rate of the plant’s expansion. Plants
dispersed by birds or monkeys may have greater mean dispersal distance than wind dispersed seed
plants (Clark et al., 2005), and this may result in a greater expansion rate (Kot et al., 1996)
. Moreover different seed dispersal vectors shape in different forms the seed shadows of a plant
species. For wind dispersed plants, a t-Student function or Gaussian distributions accommodates
well the dispersal data for wind dispersed plants, while the seed distribution of an animal dispersed
plants may be better represented by an inverse power law (Clark et al., 2005). The Gaussian,
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inverse power law and the exponential are the functional forms that traditionally are used to fit
seed dispersal data. These functions are unimodal and decline monotonically with distance from
the source or modal location.

For fleshy fruited invasive plants, whose major dispersal agents are birds (Gosper et al., 2005), the
seed distribution may not decline in a simple way from source (Kollmann, 2000). Instead the seed
rain generated by birds is heterogeneous, with seed aggregations or clumps at particular sites (?,
and reference there in). It is suggested that various distributions should be used in order to capture
the multimodality of the seed distribution (Russo et al., 2006). The sites of seed aggregation or
clumping depend on bird’s behavior. Theses sites may be places where the bird settles to rest or
to feed, for example different habitats within a plant community or landscape such as forest gaps,
patches at different successional stages or some vegetation features such as clusters of shrubs or
isolated trees which the birds uses as perches or roosts (Kollmann 2000, Gosper et al. 2005).

The landscape or habitat structure together with the animals’ behavior may influence the seed
deposition pattern of an animal dispersed plant. It is suggested to incorporate these elements in
theoretical and mechanistical models to derive theoretical dispersal kernels (Clark et al., 2005),
which may be used to model plant dispersal.

Modelling plant dispersal under the framework of integrodifference- equations (IDE), has gained
popularity , because it is ideal for the plants’ nonoverlapping generations and for the flexibility
to incorporate different dispersal kernels (Kot et al., 1996; Kot, 1992; Neubert et al., 1995). The
majority of IDE models for the dispersal of organisms assume a homogeneous environment, but
models dealing with heterogeneous environments are beginning to appear (Kawasaki and Shige-
sada, 2007; Dewhirst and Lutscher, 2009). Some models introduce heterogeneity at the population
growth, others at both the population growth and seed dispersal process, and some others just at
the seed dispersal process . These models mainly assume a periodic heterogeneous environment
of alternating favorable and unfavorable habitats. Powell and Zimmermann (2004) used IDE to
model the expansion of a plant dispersed by animal cashers, where the cashing sites were peri-
odically distributed in the landscape. Their approach of introducing landscape heterogeneity is
different to the general assumption of good and bad habitats. The heterogeneity is introduced
into the dispersal process and was the result of modelling the seed shadows generated by animal
vectors. Here we follow a similar approach, we address to model the expansion of a plant, whose
seeds are dispersed by frugivores birds, using IDE. We introduce the environmental heterogeneity
at the seed dispersal process, since the seed rain generated by birds is affected by the landscape or
habitat structure. The dispersal kernel used in our model should reflect the landscape structure
and the birds’ behavior of dispersing seeds. We aim to analyze the expansion speeds in relation
to the landscape structure and the rate of animal movements. The influence of the Allee effect in
the expansion rate is analyzed and discussed.
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2.2 The model

The model couples a population growth and a dispersal dynamics of a fleshy fruited plant dispersed
by birds. We consider a perennial plant without a seed bank, and with a well defined small
reproductive season. For the model, we take the time from one reproductive season to the following
as the generational time, and divided into 3 phases: i) plant growth, ii) reproduction and seed
output and iii) seed dispersal.

The whole model was developed in two stages: a) the local population growth model, and b) the
dispersal process.

2.2.1 Local Dynamics: growth, reproduction and seed output

The model for the growth, reproduction and seed output follows the below diagram:

Plants +
Seedlings

Nt

dNt

dτ
, τ ∈ [0, 1]

Plants

At

rP (At)At

Nt(1)

St

Seeds

Plants +
Seedlings

Nt+1

At + βSt

Figure 2.1: Diagram of the local population dynamics: growth, reproduction and seed output.

The different stages are described in the following section:

Growth Phase

Let nt the population density at generation t, just after reproduction and seed establishment
as seedlings. Hence, seedlings and the survivors of the past generation compose the population
nt. The growth phase begins with the recruitment of plants (seedlings) and ends just before the
reproductive season. During this time, we assume that the population nt is subject just to natural
mortality and to a density dependent mortality, due to limited resources. We model the per capita
rate of change of the density of plants nt during the growth phase as follows:

1

nt(τ)

dnt

dτ
= −µ0 − µnt, (2.1)
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where µ0 is the mortality rate independent of the density, and µ is the mortality due to crowding
effect. The variable τ represents the time of the growth phase, and we take τ = 0 as the beginning
and τ = 1 as the end of the growth season. Solving the differential equation (2.1) with the initial
condition nt(0) = nt, yields,

nt(τ) =
nt(0)

eτµ0 + µ
µ0

(eτµ0 − 1)nt(0)
. (2.2)

From the above equation we have the population density right before the reproduction season
(τ = 1):

nt(1) =
nt(0)

eµ0 + µ
µ0

(eµ0 − 1)nt(0)
, (2.3)

which we may write as follows

nt(1) =
qnt

1 + cnt

, (2.4)

where,

q = e−µ0 , c =
µ

µ0

(1− e−µ0) and nt(0) = nt.

The parameter q represents the probability of survival the phase growth without crowding effect,
and c measures the per capita susceptibility of crowding. If we scale the population density to the
parameter c, and introduce the nondimensional density variables Nt(1) = cnt(1) and Nt = cnt we
have the nondimensional model for the population growth phase

Nt(1) =
qNt

1 +Nt

. (2.5)

The population Nt(1) is composed of the grown ups’ seedlings and the adult survivors of the last
generation. We may introduce the population At = Nt(1) to represent the adult population, thus
from (2.5) we have

At =
qNt

1 +Nt

. (2.6)
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Reproductive phase and seed output

We assume a very short period of reproduction compared to the growth phase, and consider no
mortality of the population during this period of time. Let γ be the proportion of mature plants
in the population At , and let r̂ be the seeds produces per mature plant, so that the density of
seeds produced by the mature plants (γAt) is given by

St = r̂γAt. (2.7)

Here we will introduce the Allee effect. Following Davis et al. (2004) we consider an Allee effect due
to pollen limitation, and that pollen availability is positively correlated with plant density. Since
seed production depends on pollen availability, we assume that the number of seeds produced
per plant depends on mature plant density r̂(γAt), and model seed density at generation t as
follows,

St(At) = r̂(γAt) γAt. (2.8)

We use the rectangular hyperbola (RH) functional form for the per capita seed production r̂(γAt, θ) =
r̂ γAt

θ + γAt
. The parameter θ is the density of mature plants , at which a mature plant can produce

half of its total seed output. Substituting equation (2.5) for At into the seed production equation
(2.8), and after some algebra yields

St(Nt) = r
( Nt

s+ (s+ 1)Nt

) qNt

1 +Nt

, (2.9)

where s = θ
γq

and r = r̂γ. The parameter s is the parameter θ scaled to the mature plants
survivors, and measures the strength of the Allee effect due to pollen limitation.

The population density after the growth phase is At, and the seeds produced by the mature plants
of the growth phase is St. Let β be the probability of a seed become a seedling. From equations
(2.5) and (2.8) we have the population density at the generation t+ 1 given by

Nt+1 = At + βSt(At), (2.10)

or in terms of the population density Nt we have

Nt+1 =
(

1 +
rNt

s+ (s+ 1)Nt

) qNt

1 +Nt

. (2.11)



37

2.2.2 Spatial Dynamics: Seed dispersal

After the plants have set their seeds, the seed dispersal process redistributes the seeds in space.
We model the dispersal process in a one dimensional infinite space. For the dispersal process we
introduce a dispersal kernel K(x, y), as a density function (PDF) which describes the probability
of a seed from a point x to be dispersed a distance |x − y| to the location y. As a PDF, the
dispersal kernel satisfies the property K(z) > 0 and

∫∞

∞
K(z)dz = 1.The seeds after the dispersal

process are redistributed according to the dispersal kernel. Let Nt(x) be the population density
at generation t at location x, St(x) be the seeds produced at that location, and Ŝt be the seeds
redistributed in space after dispersal. We model the distribution of the population of plants at
generation t+ 1 as

Nt+1(x) = At(x) + βŜt(x). (2.12)

where Ŝt(x) is given by

Ŝt(x) =

∫ ∞

−∞

K(x, y)St(y)dy. (2.13)

2.2.3 Dispersal Kernel

The Dispersal kernel describes the spatial probability distribution of the seeds dispersed from a
mother plant. It should represent the distribution of seeds generated by the plant’s dispersal
vector. We address now the modeling og the expansion of a plant dispersed by frugivores birds.
Hence, the dispersal kernel for our IDE model should reflect the seed shadow (spatial distribution
of seeds) generated by the frugivores birds.

Considering that seeds follow animal movement, we may use the theoretical dispersal kernel derived
in chapter 1, through an ecological diffusion and settling model (Powell and Zimmermann, 2004;
Neubert et al., 1995; Turchin, 1998),

K(x− ξ) =
1

D(ωx)

1

2
√

〈D−1〉
exp−|x−ξ|

√
〈D−1〉, (2.14)

where D(ωx) is the diffusion function of the animal disperser, or seed in move, and may have the
form:

D(ωx) =
[1

2
sin(ωx+

π

2
) +

1

2

]

+ γ, (2.15)

where γ is the minimum diffusion and ω is the frequency of the settling sites. The constant 〈D−1〉
represents the harmonic mean of the diffusion function (2.15). The inverse of the diffusion D−1 is
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known as the residence index, and gives an estimation of the time that the animal stays at a given
location (Turchin, 1998; Okubo and Levin, 2001). Hence the parameter γ−1 gives an estimation
of the time that the disperser spends at a settling site.

The dispersal kernel (2.14) represents the seed dispersal by frugivores animals with periodically
settling sites.

2.3 Results

The model is analyzed in three section: i) Local dynamics, ii) Spatial dynamics and iii) Homoge-
nization of the dispersal kernel and average expansion speed.

2.3.1 Local Dynamics: Growth model

The dynamics of the growth model will be analyzed through their equilibria points and stability.
For the analyses we use the expression (2.11), which we may write in the general form

Nt+1 = F (Nt) = Ntf(Nt), (2.16)

where, f(Nt) is the per capita population growth. From equation (2.16) we have that the equilibria
points N∗ satisfy, N∗ = 0 or f(N∗) = 1. The trivial point N∗

0 = 0 always exists. The real roots of
f(Nt) = 1 yield the non trivial equilibria

N∗
cr = −1

2

[

(1− q) +
s− rq

s+ 1

]

− 1

2

√

[

(1− q) +
s− rq

s+ 1

]2

− 4s(1− q)

s+ 1
, (2.17)

N∗
cr = −1

2

[

(1− q) +
s− rq

s+ 1

]

+
1

2

√

[

(1− q) +
s− rq

s+ 1

]2

− 4s(1− q)

s+ 1
, (2.18)

The non trivial equilibria depend on the parameters (s, r, q). The equation f(Nt) = 1 is a quadratic
polynomial, and applying Descartes rule, we may deduce the existence condition for real roots

s− rq

s+ 1
< q − 1. (2.19)

If condition (2.19) is satisfied, we have 3 equilibria, the trivial equilibrium (N∗
0 = 0) which is stable,

and two nontrivial equilibria, one unstable (N∗
cr) and the other stable (N∗

k ). The equilibrium point
N∗

cr, represents a critical density, below this density the population goes extinct, and above it, the
population strives and reaches its carrying capacity density, represented by the stable equilibrium
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(N∗
k ) (Figure 2.2). In this situation we have a strong Allee effect, which establishes critical density

in the dynamics of the population growth.
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Figure 2.2: Growth Function of a plant subject to an Allee effect. The carrying capacity density Nk and
the critical density Ncr are shown.To the left is an enlargement of the behavior of the growth function
for small densities. It can be observed that for densities N < Ncr, we have F (Nt) < 1 which implies a
decline in the population growth. Parameters used: s = 0, 53; r = 2, 75; q = 0, 82.

In Figure 2.3 the bifurcation diagram is shown in relation to the Allee effect for some fixed param-
eters r and q. It shows the variations of the carrying capacity and critical densities as the Allee
effect intensifies.
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Figure 2.3: Bifurcation diagram for the growth function in relation to the intensity of the Allee effect s.
Continuos line: N∗

k ; Dashed line: N∗
cr. Parameter values: r = 2, 75; q = 0, 82.
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2.3.2 Spatial Dynamics: Dispersal Process

First, we analyzed the IDE model for population growth and dispersal (2.12) through numerical
simulations. For all the simulations we used the following initial condition

N0(x) =

{

0, 8 for|x| ≤ 1,
0 otherwise.

(2.20)

The simulations allowed us to observe the expansion behavior of the plant, through the spatial
distribution of the population at any generation time and through the spatial displacement of the
invasion front. To find the location of the invasion front at any generation time, we chose a fixed
population density Nf , and determine the furthest point from origin at which the population ex-
ceeded the preset density. The difference between the front locations of two successive generations,
t and t+ 1, is the spatial displacement of the population.

Population Expansion and Allee effect

Starting with an initial population of (2.20), and for some fixed parameters, the IDE model solution
evolves into a propagating and oscillating wave. The population density increases and expands in
both directions symmetrically (Figure 2.4.a.). The front wave does not behave as a constant front
as a travelling wave, nor as a travelling periodic wave (TPW)(Figure 2.4.b). The shape of the
wave front changes from generation to generation, and we did not find any two superimposable
waves for any period.
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Figure 2.4: a) Spatial population density distribution after 60 generations. b) Population front displace-
ment (xt) over time (t) (60 generations). Parameter values: i) Growth model: r = 2, 75; q = 0, 82; s =
0, 53. b) Dispersal Kernel: ω = 7; γ = 0, 3.

An interesting feature is the population front displacement. Figure 2.4.b. shows the location of
the population front at each generation for some prescribed parameters. It can be observed that
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the population front does not advance at a constant rate from generation to generation, instead,
the front jumps an approximately constant distance at every 3 to 4 generations, for the group of
parameters used for simulation (Figure 2.4.b.). In other words, the population front stagnates at
a location, while increasing in density. At the same time seeds are dispersed forward, in larger
quantities to the animals’ settling sites. These sites may be seen as the potential colonization sites.
The population front advances as soon as the next colonization site reaches the preset density Nf .
Note that at the wave front, the population is unperceptive (N < Nf ) in between two successive
locations of the population front (xt and xt+3) (Figure 2.5.). The population emerges first as
an isolated populations at the potential colonization sites (or birds settling sites), and then the
population islands coalesce with the parent population after some generations, filling the space in
between the colonization sites.

xt xt+3
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Figure 2.5: Population front displacement. Bold line represents de spatial distribution of the population
after 62 generations, and the simple line represents the population distribution after 65 generations. The
population frontNf chosen is 0, 2 (horizontal dashed line). The front is located at (xt) after 62 generations,
and at xt+3 three generations later (t = 65). Parameter values: i) Growth model: r = 2, 75; q = 0, 82; s =
0, 53.; ii) Dispersal Kernel: ω = 7; γ = 0, 3.

The population front stagnation can be seen as the lag phase, in which the population being
unperceptive is increasing slowly until it pops up at a new location and then increases rapidly in
density. Figure 2.6. shows the population growth at a specific and fixed location. Initially, the
population increases slowly followed by a rapid growth, until it stabilizes. In the literature revised,
spatially implicit deterministic models have not reported the lag phase behavior observed in our
model.
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Figure 2.6: Population growth after 60 generations at a fixed location 10.5 distance units from origin.
Parameter values: i) Growth model: r = 2, 75; q = 0, 82; s = 0, 53.; ii) Dispersal Kernel: ω = 7; γ = 0, 3.

The intensity of the Allee effect determines the stagnation time of the front or the duration of
the lag phase. Figure 2.7 shows the front displacement for different intensities of Allee effect. It
is observed that without an Allee effect the front advances at a constant rate. For a subtle Allee
effect, the front advances almost at a constant rate, but with increasing intensity the lag phase
time of the population front grows, and the front advances at jumps.
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Figure 2.7: Population front for different intensities of the Allee effect (parameter s). a) Black Points:no
Allee effect; b) Empty squares: s = 0, 15; c) Open circles: s = 0, 53; d) Filled triangles: s = 0, 68.
Parameter values: i) Growth model: r = 2, 75; q = 0, 82.; ii) Dispersal Kernel: ω = 7; γ = 0, 3.
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Population expansion, residence time of dispersers and frequency of settling sites

In chapter 1 we concluded that for smaller values of residence time (γ−1), the tail of the kernel
becomes fatter. This means that a seed has a greater chance to travel further distances. We might
expect then, that for smaller values of residence time, the population advances faster. Figure 2.8
shows the spatial population distribution after 60 generations for two different values of residence
time and holding the other parameters fixed. In fact for a smaller residence time the population
expands faster. Figure 2.9.a. shows the front displacement for both values of residence time, and
2.9.b. the magnitude of the step advance of the front. The step advance for the two values of the
residence time is very similar, but the lag phase is slightly greater for the expansion with a higher
residence time. The difference in the lag phase, makes the population advance faster for a smaller
residence time.
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Figure 2.8: Population expansion after 60 generations for two different values of residence time index
(γ−1): Bold line: γ−1 = 5; Simple line: γ−1 = 2, 5. Parameters’ values: i) Growth model: r = 2, 75; q =
0, 82.s = 0, 53; ii) Dispersal Kernel: ω = 7.
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Figure 2.9: Front population location (xt) in relation to time, for two different values of residence time
index (γ−1). Open circles: γ−1 = 5; Filled circles: γ−1 = 2, 5. Parameters’ values: i) Growth model:
r = 2, 75; q = 0, 82; s = 0, 53; ii) Dispersal Kernel: ω = 7.

In relation to the distance between settling sites, the rate of population expansion was very similar
for different distances (Figure 2.10.).
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Figure 2.10: Front population location (xt) in relation to time, for two different frequencies of settling
sites. Open circles: ω−1 = 5; Filled circles: ω−1 = 10. Parameters’ values: i) Growth model: r =
2, 75; q = 0, 82; s = 0, 53; ii) Dispersal Kernel: γ = 0, 3.

Nonetheless, the way the population advances did differ. For shorter distances between settling
sites, the population has shorter lag phases, and advances with smaller jumps (Figure 2.11.b. and
c.) Conversely for larger distances the lag phase is longer, but the displacement jumps are also
bigger (Figure 2.11.a. and c.). As a result, the population advances at a similar rate for every
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settling site distance, but with a different expansion behavior. For shorter distances, the behavior
of the population expansion resembles more the expansion in homogeneous environments.
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Figure 2.11: Front population location (xt) in relation to time for two different distances of settling sites
(2πω ): a) ω1 = 5; b) ω2 = 10. c) Displacement of the front population at every generation time for the
two settling site distances : Open circles represent ω1 = 5 and filled circles ω2 = 10. Parameter values: i)
Growth model: r = 2, 75; q = 0, 82; s = 0, 53.; ii) Dispersal Kernel: γ = 0, 3.

Population expansion speed through an averaged dispersal kernel

In the preceding section we gave an analytical approximation to the step advance of the population
expansion. Nonetheless, the step advance does not tell us how fast the population is expanding,
unless we know the lag phase period. If we know the duration of the lag phase, we would be
able to obtain an averaged expansion speed of the population, dividing the step advance through
the lag phase period. From other works (Kot et al., 1996; Wang et al., 2002), we know that
for homogeneous environments using homogeneous (not oscillating) dispersal kernels, populations
subject to an Allee effect have a continuos expansion with a constant speed through space. This
is not our case, but if we could justify and represent our original oscillating dispersal kernel with
an averaged and homogeneous kernel, we could give an f an averaged expansion speed of the
population.

The dispersal kernel used for our population expansion model, represents the seed shadow generated
by frugivores birds. The spatial patterns in seed distribution generated by frugivores birds, occur at
a smaller scale (p.e. habitats within a community) in relation to the scale where plant population
expansion takes place (p.e landscape or regional scale) (Kollmann, 2000). From a macroscale
perspective, plant population expansion may be perceived as a continuos wave (advance), where
the heterogeneity has been blurred because of the scale, but its effect still remains in the resulting
expansion speed.

The oscillations in our dispersal kernel reflect the heterogeneity of the environment, more specif-
ically represent the motility of the animal dispersers through the environment (see chapter 1).
This heterogeneity occurs at a smaller scale than plant population expansion. Our objective is to
average the heterogeneity of the dispersal kernel in order to obtain an homogeneous kernel, which
retains the mean effect of the heterogeneous environment. The dispersal kernel used for modeling
population expansion has the expression
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K(x, y) =
1

D(x)

1

2
√

〈D−1〉
exp−|x−y|

√
〈D−1〉 . (2.21)

The term D−1(x) is responsible for the oscillating behavior of the kernel, and represents the
heterogeneity of the environment. We homogenized the dispersal kernel through averaging the
oscillating term as follows

〈D−1〉 = 1

p

∫ p

0

1

D(x)
dx, (2.22)

where p is the period of the function D−1(x). Thus the homogenized dispersal kernel is given
by

Khom(x, y) =
1

2

√

〈D−1〉 exp−|x−y|
√

〈D−1〉 . (2.23)

Figure 2.12. shows the original and the homogenized kernel. The homogenized kernel, does not
have the oscillating behavior, but retains the mean effect of the environmental heterogeneity. We
expect to obtain good estimations on the average expansion speed using this kernel.
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Figure 2.12: Dispersal Kernels: Homogenized dispersal kernel (continuos line); Original dispersal kernel
(dashed line). Parameters’ values: ω = 7; γ = 0, 3.

Table 2.1. compares the averaged expansion speeds with the two kernels (original and homoge-
nized) for some parameters of the dispersal kernel. The average expansion speed is calculated over
the last half of the generations simulated:
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c =
T
∑

t = T /2

xt+1 − xt

T/2
,

where xt is the position of the front at generation t, and T is the total generations simulated. It
can be observed that the homogenized kernel approximates well the averaged expansion speed of
the original kernel.

Relative error

γ 〈D−1〉 c chom
chom−c

c

0,4 1,33631 0,292041 0,302449 0,0356
0,3 1,60128 0,272245 0,276327 0,015
0,2 2,04124 0,220816 0,244694 0,108

Table 2.1: Average expansion (c, chom) speeds yielded by the original (c) and homogenized kernels (chom). Pa-
rameters values: i) Growth function: r = 2, 75; q = 0, 82, s = 0, 53; ii) Dispersal Kernel: ω = 7.

Figure 2.13. shows the front displacement for both dispersal kernels for some fixed parameters.
The graph shows how well the homogenized kernel approximates the front displacement. It can be
observed the linear displacement of the front when using the homogenized kernel, which represents
a constant and continuous advance of the front (without lag phases).
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Figure 2.13: Location of the front population (xt) in relation to time. Open circles: original kernel;
Filled circles: homogenized kernel. Parameters’ values: i) Growth model: r = 2, 75; q = 0, 82; s = 0, 53.;
ii) Dispersal Kernel: ω = 7; γ = 0, 3.
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The linear and continuous advance of the front results in a population expanding as a traveling
wave. Figure 2.14. compares the population expansion and distribution after 60 generations for
the original and homogenized kernel. With the homogenized kernel, the population advances as
a travelling wave with a constant front shape. It can be observed that the population behind the
front reaches a constant density which corresponds to the carrying capacity Nk.
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Figure 2.14: a) Population spatial distribution after 60 generations with homogenized kernel (bold line)
and original kernel (simple line). b) Front shape of the population expansion. Parameters’ values: i)
Growth model: r = 2, 75; q = 0, 82; s = 0, 53.; ii) Dispersal Kernel: ω = 7; γ = 0.3.

2.3.3 Discussion

Population Expansion Behavior

Deterministic models for the dispersal of organisms predict, in general, expansions as traveling
waves for homogeneous environments and periodic traveling waves for heterogeneous, yet periodic,
environments. Dispersal of organisms using IDE in heterogeneous environments, are beginning
to appear. The IDE model here proposed, predicts an expansion of the population as a sym-
metric propagating wave, without a constant front shape. Kawasaki and Shigesada (2007) also
documented a propagating wave without a constant front shape for an IDE in heterogeneous and
periodic environment.

An interesting feature in the behavior of the population expansion, is the advance of the invasion
front. Our IDE- model does not predict a constant advance of the front, as the majority of
deterministic models do (Reaction Diffusion or IDE models), instead our IDE- model predicts a
pulsed invasion. A pulsed invasion is defined as a ”regulary punctuated range expansion interspersed

among periods of range stasis” (Johnson et al., 2006). The spread of an organism is often not
continuous, but proceeds as discontinuous steps or jumps, forming isolated populations ahead, at



49

the front of the invasion. These isolated populations, eventually coalesce with the parent population
behind, as the space in between is occupied by the expanding population (Liebhold and Tobin,
2008). This expansion behavior is said to be due to a stratified diffusion (Shigesada et al., 1995) or
to the combination of stratified diffusion and Allee effect (Johnson et al., 2006). Stratified diffusion
is referred as the combination of local and long distance dispersal (Shigesada et al., 1995). From
our model, we argue that the pulsed invasion behavior is due to the heterogeneous distribution
of seeds dispersed due to the heterogeneity of the environment together with the Allee effect.
Dispersal models which involve either environmental heterogeneity or Allee effect alone, have not
been able to reproduce the pulsed invasion dynamics. Our results suggests that for small intensities
of Allee effect, the expansion proceeds at a roughly constant pace, but for stronger Allee effect a
pulsed invasion behavior appears. The term long distance dispersal is relative, and in accordance
with Shigesada et al. (1995), we may consider a long distance dispersal, the dispersal of seeds
at the periphery of the range, producing nascent colonies ahead of the parent range, which will
merge after a few generations. These type of stratified diffusion produces a biphasic expansion,
an initially slow advance followed by a greater and linear expansion rate (Shigesada et al., 1995).
Our model captures just the second phase of the linear expansion rate.

The Allee effect has been responsible for the lag phases observed in biological invasions. The
lag phase is the period of time that it takes for an invader to reach considerable numbers to be
noticed locally, and to be able to spread. The dynamics of our model, shows that, the Allee effect,
indeed, may be responsible for certain lag phases observed in some biological invasions. Traditional
dispersal models with Allee effect, have put in evidence the reduction in the expansion speed, but
have failed to show the lag phase. The front stagnation and the sudden jump of the front may
be an evidence of the lag phases at the front of the invasion. Through our model, it can be seen
that, during the front stasis at a certain location, the population is dispersing its seeds forward,
in larger amounts to those sites the animal dispersers use to settle. These settling sites may be
seen as the new localities of colonization. Here, the population begins to increase slowly, until it
reaches certain density levels and grows rapidly and pops up as a new colonization site, at the
periphery of the parent population range. The stronger the intensity of the Allee effect, the longer
the stagnation period and the lag phase.

Expansion Speed, Landscape Structure and Birds Motility

The landscape structure is introduced in the model through the frequency or distance between
settling site. The settling sites are habitats within a community or vegetation features in the
habitats, which the frugivores birds use to settle for longer periods of time. Our results suggest
that the distance between settling sites do not affect the expansion speed of the population. For
different distance between settling sites the expansion speed is very similar. Nonetheless, the
behavior of the front displacement did change. For larger distances, the population shows longer
lag phase, and the magnitude of the jump displacement is higher. Conversely, for smaller distances
the step of advance and the lag phase are smaller. As the settling sites become nearer from each
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other, the population advances in a more continuos and constant pace. For settling sites more
apart from each other, the impulsed invasion behavior is more evident. We may conclude that the
landscape structure may not influence the expansion speed, but it determines the behavior of the
expansion, if it is a roughly continuous or impulsed invasion.

On the other hand, the bird’s motility, has an effect on the expansion speed, since it modifies the
tail of the dispersal kernel (see chapter 1). For smaller residence time at the settling sites, the
dispersal kernel has a fatter tail, which increases expansion speeds (Kot et al., 1996). Conversely,
for larger residence time, we have a thinner tail, yielding a lower expansion speed. Our results
are in agreement with the above statements, having higher expansions speeds for smaller residence
time at the settling sites.

Average Dispersal Kernel and Expansion Speed

Our results show a pulsed invasion behavior for the population expansion. This expansion dynamics
is attributable to heterogeneous environment influencing the motility of the animals seed dispersers
and the Allee effect. The heterogeneity introduced in the model occurs at a smaller scale than
that of population expansion, hence this may justify a homogenization of the dispersal kernel. For
the purpose of calculating expansion speeds, the homogenization of the dispersal kernel proved
to be successful in estimating the averaged expansion speed. Although, the homogenized kernel
models population expansion, as if it is spreading in a homogeneous environment, its parameters
have the mean effect of the heterogenous environment. Homogenization techniques which averages
the effect of heterogeneous media have been useful in modeling the diffusion of substances or the
spreading of organisms (Holmes, 1995; Dewhirst and Lutscher, 2009, Powell and Zimmermann,
2004; Garlick et al., 2011).

2.4 Conclusions

In general, IDE or RDE (reaction diffusion equations) models for the dispersal of organisms, predict
a continuous and constant (or accelerated sometimes) advance of the population front. Our IDE
model for the dispersal of a plant in a heterogeneous environment and subject to Allee effect,
contrary to a continuos invasion, predicted a pulsed invasion behavior. As far as we know, these
behavior has not been reproduced by a IDE or RDE model.

The pulsed invasion is accentuated as the intensity of the Allee effect increases. For subtle inten-
sities of the Allee effect, the population advances at a roughly constant rate. We may conclude
that the pulsed invasion behavior is due to heterogeneity of the environment, and principally to
the Allee effect, as has been suggested by other authors as is the case of the gypsy moth (Johnson
et al., 2006)).
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Our model, also may support the hunch that the Allee effect may be responsible for the lag phase in
the invasion process (Parker, 2004; Taylor and Hastings, 2005). During the front stagnation, seeds
are dispersing ahead of the population, contributing to the formation of new colonies. Initially,
these new colonies may grow very slowly, due to the Allee effect, until they reach a density level
where they experience a rapid grow, popping up as an isolated colonies. These colonies will merge
after a few generations with the parent population.

Integro-difference model for the dispersal of organisms, use dispersal kernels which assume homo-
geneous environments. Our expansion speeds estimated with the dispersal kernel for heterogeneous
environment were well approximated by the speeds obtained by the homogenized dispersal ker-
nel. We may conclude that for expansion speeds we may take a dispersal kernel for homogeneous
environment, but its parameters should contain the mean effects of the heterogeneity.



Conclusões Gerais

Os modelos ı́ntegro- recursivos tem ganhado popularidade para a modelagem de dispersão de
organismos com fases bem definidas e separadas de reprodução e dispersão. A popularidade deve-
se principalmente, à fácil incorporação de diferentes padrões de dispersão através dos núcleos de
dispersão.

A derivação de núcleos de dispersão é um problema atual e de grande relevância pois influencia
a velocidade de expansão dos organismos. Para o caso de dispersão de plantas, em que as se-
mentes são a parte da população que se dispersa, tem-se utilizado distribuições que descrevem
uma diminuição cont́ınua da densidade de sementes com a distância desde a fonte (planta mãe).
Este comportamento pode não se aplica para plantas que se dispersam por animais, onde tem-se
observado uma distribuição de agregação.

Núcleos de dispersão teóricos para a sementes dispersadas por vento tem sido desenvolvidos sat-
isfatoriamente, porém para sementes dispersadas por animais, não ocorre o mesmo, principalmente
pela dificuldade de modelar o comportamento e movimento dos animais. No entanto existem al-
gumas tentativas, que se baseiam nos modelos de difusão e sedimentação. Seguindo este marco
teórico de difusão e sedimentação, e usando a ”difusão ecológica ” ao invés da difusão de Fick, para
a modelagem do movimento dos animais, conseguiu-se gerar um núcleo de dispersão que reproduz
a distribuição agregada das sementes dispersadas por animais. Os śıtios de acumulação de se-
mentes representam as localidades onde os animais apresentam menor movimentação no ambiente.
Observamos que quanto maior mobilidade apresentam os animais, a cauda da distribuição fica
mais grossa, o que repercute em um aumento na velocidade de expansão da população de plantas.
Consideramos que os modelos de difusão e sedimentação oferecem um marco teórico simples e
adequado para desenvolver núcleos de dispersão por animais.

A técnica de múltiplas escalas e homogeneização foi adequada para aproximar analiticamente o
núcleo de dispersão, pois a aproximação reteve a distribuição agregada das sementes.

A modelagem da expansão de uma planta sujeita a efeito Allee e com dispersão por animais
apresentou comportamentos não observados antes por modelos tradicionais de reação e difusão
e integrodiferenciais. Em geral estes modelos mostram uma expansão da população de forma
cont́ınua e constante. Através do modelo aqui proposto, observou-se uma expansão a pulsos
”pulsed invasion”, caracterizada por um estancamento da frente da invasão por um peŕıodo de
tempo e seguido de um avanço em forma de salto. Este comportamento é devido à combinação da
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heterogeneidade do ambiente e o efeito Allee. Este comportamento mais acentuado quanto maior
é a intensidade do efeito Allee. Este comportamento de expansão tem sido registrado em invasões
de alguns organismos como a invasão da mariposa cigana ”gypsy moth” nos Estados Unidos, e da
formiga argentina ”Linepithema humile” (Suarez et al., 2000).

Dos resultados, obtidos sobre o comportamento do avanço da população, conclúımos, que o efeito
Allee pode ser um dos fatores responsáveis do peŕıodo de latência ”lag phase” observado em
algumas invasões como sugerido por alguns autores (Parker, 2004, Taylor and Hastings, 2005).
Durante o peŕıodo de estancamento da frente, as colônias formando-se na frente da invasão crescem
aos poucos aparecerem como ilhas, que posteriormente fundem-se com o resto da população.

Para fins de estimar a velocidade de expansão da população resulta conveniente homogeneizar o
núcleo de dispersão, para obter a velocidade média de expansão da população. Se bem o núcleo
homogêneo prediz a velocidade de expansão, ele não apresenta o comportamento do avanço da
população, isto é a invasão através de pulsos. Conclúımos que núcleos resultantes de ambientes
homogêneos predizem bem a velocidade de expansão de populações, desde que os parâmetros
representem os efeitos médios dos ambientes heterogêneos.
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