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RESUMO

A propriedade da aproximação foi introduzida por Grothendieck (GROTHENDIECK,

1955). Enflo (ENFLO, 1973) deu o primeiro exemplo de um espaço de Banach sem a

propriedade da aproximação. O contraexemplo de Enflo é um espaço de Banach construído

artificialmente. O primeiro espaço de Banach sem a propriedade da aproximação definido

naturalmente foi dado por Szankowski (SZANKOWSKI, 1981), que provou que o espaço

L♣ℓ2; ℓ2q de todos os operadores lineares e contínuos em ℓ2 não tem a propriedade da

aproximação. Recentemente Dineen e Mujica (DINEEN; MUJICA, 2015) provaram que

se 1 ➔ p ↕ q ➔ ✽, então L♣ℓp; ℓqq não tem a propriedade da aproximação. Eles também

provaram que se 1 ➔ p ➔ ✽, então o espaço P♣nℓpq de todos os polinômios n-homogêneos

contínuos em ℓp não tem a propriedade da aproximação para cada n ➙ p. Primeiramente,

neste trabalho usamos os métodos de Dineen e Mujica (DINEEN; MUJICA, 2015) e

Godefroy e Saphar (GODEFROY; SAPHAR, 1989) para apresentar alguns exemplos

naturais de espaços de Banach de operadores lineares e polinômios homogêneos sem a

propriedade da aproximação.

Emmanuele (EMMANUELE, 1992) e John (JOHN, 1992) mostraram que se

c0 está imerso no espaço LK♣E;F q de todos os operadores compactos de E em F , então

LK♣E;F q não é complementado no espaço L♣E;F q de todos os operadores lineares e

contínuos de E em F para cada E e F espaços de Banach de dimensão infinita. Seja

PK♣
nE;F q (resp. Pw♣

nE;F q) o subespaço de todos os polinômios n- homogêneos contínuos

P P P♣nE;F q que são compactos (resp. fracamente contínuos em conjuntos limitados).

Neste trabalho mostramos que se PK♣
nE;F q contém uma cópia isomorfa de c0, então

PK♣
nE;F q não é complementado em P♣nE;F q. Da mesma maneira, nós mostramos que

se Pw♣
nE;F q contém uma cópia isomorfa de c0, então Pw♣

nE;F q não é complementado

em P♣nE;F q.

Finalmente, nesta tese nós provamos que se E e F são espaços de Banach

reflexivos e G é um subespaço linear fechado de LK♣E;F q, então G somente pode ser

reflexivo ou não isomorfo a um espaço dual. Esse resultado generaliza (FEDER, 1975,

Theorem 2) e dá a solução para o problema proposto por Feder (FEDER et al., 1980,

Problem 1).

Palavras-chave: Espaço de Banach, operador linear, operador compacto,

polinômio homogêneo, propriedade da aproximação, subespaço complementado.



ABSTRACT

The approximation property was introduced by Grothendieck (GROTHENDIECK, 1955).

Enflo (ENFLO, 1973) gave the first example of a Banach space without the approxima-

tion property. Enflo’s counterexample is an artificially constructed Banach space. The

first naturally defined Banach space without the approximation property was given by

Szankowski (SZANKOWSKI, 1981), who proved that the space L♣ℓ2; ℓ2q of continuous

linear operators on ℓ2 does not have the approximation property. Recently Dineen and

Mujica (DINEEN; MUJICA, 2015) proved that if 1 ➔ p ↕ q ➔ ✽, then L♣ℓp; ℓqq does not

have the approximation property. They also proved that if 1 ➔ p ➔ ✽, then the space

P♣nℓpq of continuous n-homogeneous polynomials on ℓp does not have the approximation

property for every n ➙ p. Firstly, in this work by using the methods of Dineen and Mujica

(DINEEN; MUJICA, 2015) and Godefroy and Saphar (GODEFROY; SAPHAR, 1989), we

present many naturally examples of Banach spaces of linear operators and homogeneous

polynomials which do not have the approximation property.

Emmanuele (EMMANUELE, 1992) and John (JOHN, 1992) showed that if c0

embeds on the space LK♣E;F q of all compact operators from E into F , then LK♣E;F q is

not complemented on the space L♣E;F q of all continuous linear operators from E into F

for every E and F infinite dimensional Banach spaces. Let PK♣
nE;F q (resp. Pw♣

nE;F q)

denote the subspace of all continuous n- homogeneous polynomials P P P♣nE;F q which

are compact (resp. weakly continuous on bounded sets). In this work we show that if

PK♣
nE;F q contains an isomorphic copy of c0, then PK♣

nE;F q is not complemented in

P♣nE;F q. Likewise, we show that if Pw♣
nE;F q contains an isomorphic copy of c0, then

Pw♣
nE;F q is not complemented in P♣nE;F q.

Finally, in this thesis we prove that if E and F are reflexive Banach spaces and

G is a closed linear subspace of LK♣E;F q then G is either reflexive or non-isomorphic to

a dual space. This result generalizes (FEDER, 1975, Theorem 2) and gives the solution to

a problem posed by Feder (FEDER et al., 1980, Problem 1).

Keywords: Banach space, linear operator, compact operator, homogeneous

polynomial, approximation property, complemented subspace.



List of symbols

N The natural numbers.

R The real numbers.

C The complex numbers.

K The scalar field R or C.

E,F Banach spaces.

BE The closed unit ball in E.

B♣a; rq tx P E :‖ x✁ a ‖➔ r✉.

E ✶ The topological dual of E.

L♣E;F q The space of all bounded linear operators from E into F .

F♣E;F q The space of finite rank operators from E into F .

LK♣E;F q The subspace of all T P L♣E;F q which are compact.

LwK♣E;F q The subspace of all T P L♣E;F q which are weakly compact.

JE The canonical embedding from E into E✷.

E ãÑ F The space E is isomorphic to a subspace of F .

d♣w, pq The Lorentz sequence space.

ℓ✽ The collection of bounded sequences of scalars x ✏ ♣xnq, with the norm

⑥x⑥✽ ✏ sup
nPN

⑤xn⑤.

c0 The sequences of scalars that converges to zero endowed with the norm

⑥ ☎ ⑥✽.

T ✶ The adjoint operator of T .

La♣
nE;F q The vector space of all n linear mappings A : E ✂ E ✂ . . .✂ E❧♦♦♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♦♦♥

n

Ñ F .

L♣nE;F q The subspace of all A P La♣
nE;F q which are continuous.

Pa♣
nE;F q The vector space of all n-homogeneous polynomials from E into F .

P♣nE;F q The subspace of all P P Pa♣
nE;F q which are continuous.



Pf ♣
nE;F q The subspace of P♣nE;F q generated by all polynomials of the form

P ♣xq ✏ ♣φ♣xqqnb, with φ P E ✶ and b P F .

PA♣
nE;F q Pf ♣nE;F q

⑥☎⑥
.

Pw♣
nE;F q The subspace of all P P P♣nE;F q which are weakly continuous on

bounded sets.

PK♣
nE;F q The subspace of all P P P♣nE;F q which are compact.

PwK♣
nE;F q The subspace of all P P P♣nE;F q which are weakly compact.

❜nE The n- fold tensor product of E.

❜n,sE The n- fold symmetric tensor product of E.

❜̂n,s,πE The n- fold symmetric projective tensor product of E.

τc The compact-open topology.

M❑ The annihilator of M in E ✶, that is, the collection of all continuous

linear functionals on the Banach space E which vanish on the subset

M of E.

σ♣E;E ✶q Weak topology on E.

σ♣E ✶;Eq Weak-star topology on E ✶.

AP Approximation property.

BAP Bounded approximation property.

CAP Compact approximation property.

w.u.C. Weakly unconditionally Cauchy.
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Introduction

Recall that a Banach space E has the approximation property if the identity

operator on E can be approximated by finite rank operators uniformly on compact sets of

E. The approximation property was introduced by A. Grothendieck (GROTHENDIECK,

1955) in 1955, but the origins of the notion trace back to the Lwów School of Mathematics

of 1930s. A result which goes back to the beginnings of functional analysis asserts that

the compact operators on a Hilbert space are exactly those operators which are limits

in norm of operators of finite rank. One part of this assertion is trivially true for every

pair of Banach spaces E and F . More precisely, if L♣E;F q denotes the Banach space of

all bounded linear operators from E into F with the sup norm, then each T P L♣E;F q

for which lim
nÑ✽

⑥Tn ✁ T ⑥ ✏ 0 for suitable ♣TnqnPN ❸ L♣E;F q, with dimTn♣Eq ➔ ✽, is a

compact operator. It was realized a long ago that the converse assertion is also true for

many examples of spaces E and F besides Hilbert spaces, for example, if F is a Banach

space with a Schauder basis. The question whether the converse assertion is true for

arbitrary Banach spaces E and F (which was called for obvious reasons the approximation

problem) remained open for a long time.

The Problem 153 of the Scottish Book (MAULDIN, ) was enunciated as follows:

Given a continuous function f ✏ f♣s, tq defined on r0, 1s ✂ r0, 1s and a number

ǫ → 0; do there exist numbers a1, a2, . . . , an; b1, b2, . . . , bn; c1, c2, . . . , cn, such that✞✞✞✞f♣s, tq ✁ n➳
k✏1

akf♣s, bkqf♣ck, tq

✞✞✞✞ ➔ ǫ

for all s, t P r0, 1s?

This problem was posed by Mazur in 1936 and according to Pelczyński

(PIETSCH, 2007, p.287) Mazur knew that the positive answer to Problem 153 would

imply the positive answer to the approximation problem.

A related open question, the basis problem, asked whether every separable

Banach space has a Schauder basis. A negative solution to the approximation problem

also gives a negative solution to the basis problem, because every Banach space with a

Schauder basis satisfies the approximation property.

The approximation problem was solved (in the negative) by Per Enflo in 1972.

Enflo constructed a separable reflexive Banach space without the approximation property

and consequently gave a negative solution to the basis problem. The result of Enflo was

improved by Davie (DAVIE, 1973),(DAVIE, 1975), Figiel (FIGIEL, 1974) and Szankowski

(SZANKOWSKI, 1978) as follows:
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For every p P r1,✽s, p ✘ 2, there exists a subspace Ep of the space ℓp which

does not have the approximation property. Moreover, E✽ ⑨ c0.

Enflo’s counterexample is an artificially constructed Banach space. The first

natural example of a Banach space without the approximation property was given by

Szankowski (SZANKOWSKI, 1981) in 1981, who proved that the space L♣ℓ2; ℓ2q of

continuous linear operators on ℓ2 does not have the approximation property. The situation

for L♣ℓ1; ℓ1q remains open. In 1989 Godefroy and Saphar (GODEFROY; SAPHAR, 1989)

proved that, if LK♣ℓ2; ℓ2q denotes the subspace of all compact members of L♣ℓ2; ℓ2q, then the

quotient L♣ℓ2; ℓ2q④LK♣ℓ2; ℓ2q does not have the approximation property. Recently Dineen

and Mujica (DINEEN; MUJICA, 2015) proved that if 1 ➔ p ↕ q ➔ ✽, then L♣ℓp; ℓqq does

not have the approximation property. They also proved that if 1 ➔ p ➔ ✽, then the space

P♣nℓpq of continuous n-homogeneous polynomials on ℓp does not have the approximation

property, for every n ➙ p.

In this work we will give new natural examples of Banach spaces of linear

operators and homogeneous polynomials which do not have the approximation property.

We use the methods of Dineen and Mujica (DINEEN; MUJICA, 2015) and Godefroy and

Saphar (GODEFROY; SAPHAR, 1989) to achieve our aim. Among other results, the

main results that we prove are the following:

Theorem 0.0.1. If 1 ➔ p ↕ q ➔ ✽, and E and F are closed infinite dimensional subspaces

of ℓp and ℓq, respectively, then L♣E;F q does not have the approximation property.

This result improves a previous result of Dineen and Mujica (DINEEN; MU-

JICA, 2015). We also show that:

Theorem 0.0.2. If 1 ➔ p ↕ q ➔ ✽, and E and F are closed infinite dimensional

subspaces of ℓp and ℓq, respectively, then the quotient L♣E;F q④LK♣E;F q does not have the

approximation property.

This result improves a previous result of Godefroy and Saphar (GODEFROY;

SAPHAR, 1989).

We also present examples of Banach spaces of linear operators defined on

Pelczynski’s universal space U1, Orlicz sequence spaces ℓMp
and Lorentz sequence spaces

d♣w, pq which do not have the approximation property.

Finally, we present examples of Banach spaces of homogeneous polynomials

without the approximation property, such as the following:

Theorem 0.0.3. If 1 ➔ p ➔ ✽ and E is a closed infinite dimensional subspace of ℓp, then

P♣nEq does not have the approximation property, for every n ➙ p.
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This result improves another result of Dineen and Mujica (DINEEN; MUJICA,

2015).

Theorem 0.0.4. If 1 ➔ p ↕ q ➔ ✽, and E and F are closed infinite dimensional subspaces

of ℓp and ℓq, respectively, then P♣nE;F q does not have the approximation property, for

every n ➙ 1.

We also show that if n ➔ p ↕ q ➔ ✽, and E and F are closed infinite

dimensional subspaces of ℓp and ℓq, respectively, then the quotient P♣nE;F q④PK♣
nE;F q

does not have the approximation property.

Now, let us consider the long standing conjecture:

The space LK♣E;F q of compact linear operators is either equal to the space

L♣E;F q or uncomplemented in L♣E;F q.

Several authors have treated this problem and gave an affirmative answer in

certain cases (see for instance Kalton (KALTON, 1974), Emmanuelle (EMMANUELE,

1992), John (JOHN, 1992), Bator and Lewis (GHENCIU, 2005a) and Ghenciu (GHENCIU,

2005b), among others).

Kalton (KALTON, 1974) studied the structure of the space LK♣E;F q and he

showed in particular the following result:

Theorem. Let E be a Banach space with an unconditional finite dimensional expansion

of the identity ♣AnqnPN. If F is any infinite dimensional Banach space, the following are

equivalent.

1. LK♣E;F q ✏ L♣E;F q.

2. LK♣E;F q contains no copy of c0.

3. L♣E;F q contains no copy of ℓ✽.

4. LK♣E;F q is complemented in L♣E;F q.

5. For T P L♣E;F q, the series
✽➳

n✏1

T ✆ An converges in norm.

Emmanuele (EMMANUELE, 1992) and John (JOHN, 1992) showed indepen-

dently that if c0 embeds in LK♣E;F q then LK♣E;F q is not complemented in L♣E;F q, for

every infinite dimensional Banach spaces E and F . John (JOHN, 1992) gave a sufficient

condition for LK♣E;F q to contain a copy of c0, more precisely he proved that if there

is a noncompact operator T : E Ñ F which factors through a Banach space G having

an unconditional basis, then LK♣E;F q contains a copy of c0. John also proved that if
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E and F are infinite dimensional Banach spaces such that each non compact operator

T P L♣E;F q factors through a Banach space G with an unconditional basis, then the

following conditions are equivalent:

1. LK♣E;F q ✏ L♣E;F q.

2. L♣E;F q contains no copy of ℓ✽.

3. LK♣E;F q contains no copy of c0.

4. LK♣E;F q is complemented in L♣E;F q.

Let Pw♣
nE;F q be the space of all n-homogeneous polynomials from E into F

which are weakly continuous on bounded sets. When n ✏ 1 we have Pw♣
nE;F q ✏ LK♣E;F q.

González and Gutiérrez (GONZÁLEZ; GUTIÉRREZ, 2000) obtained a polynomial version

of the aforementioned result of Kalton. They proved the following result:

Theorem. Suppose that E has an unconditional finite dimensional expansion of the

identity and let n P N ♣n → 1q. Then the following assertions are equivalent:

1. P♣nE;F q ✏ Pw♣
nE;F q.

2. Pw♣
nE;F q contains no copy of c0.

3. P♣nE;F q contains no copy of ℓ✽.

4. Pw♣
nE;F q is complemented in P♣nE;F q.

Ghenciu (GHENCIU, 2005b) obtained the following result:

Let E and F be Banach spaces, and let G be a Banach space with an uncondi-

tional basis ♣gnq and coordinate functionals ♣g✶nq.

(a) If there exist operators R P L♣G;F q and S P L♣E;Gq such that ♣R♣gnqq is a

seminormalized basic sequence in F and ♣S ✶♣g✶nqq is not relatively compact in E ✶,

then LK♣E;F q is not complemented in L♣E;F q.

(b) If there exist operators R P L♣G;F q and S P L♣E;Gq such that ♣R♣gnqq is a

seminormalized basic sequence in F and ♣S ✶♣g✶nqq is not relatively weakly compact in

E ✶, then LwK♣E;F q is not complemented in L♣E;F q.

This result generalizes results of several authors (see for instance (EMMANUELE,

1991; GHENCIU, 2005a; FEDER, 1982)). In this thesis we obtain polynomial versions of

the preceding results.

The most important results obtained are the following:
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Theorem 0.0.5. Let E and F be Banach spaces, and let G be a Banach space with

an unconditional basis ♣gnq and coordinate functionals ♣g✶
nq. If there exist operators R P

L♣G;F q and S P L♣E;Gq such that ♣R♣gnqq is a seminormalized basic sequence in F and

♣S ✶♣g✶
nqq is not relatively compact in E ✶, then Pw♣

nE;F q is not complemented in P♣nE;F q

for every n P N.

The next proposition is a polynomial version of (EMMANUELE, 1992, Theorem

2) and (JOHN, 1992, Theorem 1).

Proposition 0.0.6. Let E be an infinite dimensional Banach space and n → 1. If

Pw♣
nE;F q contains a copy of c0, then Pw♣

nE;F q is not complemented in P♣nE;F q.

The following theorem is a polynomial version of (JOHN, 1992, Theorem 2 ).

Theorem 0.0.7. Let E and F be Banach spaces and P P P♣nE;F q such that P ❘

Pw♣
nE;F q. Suppose that P admits a factorization P ✏ Q ✆ T through a Banach space G

with an unconditional finite dimensional expansion of the identity, where T P L♣E;Gq

and Q P P♣nG;F q. Then Pw♣
nE;F q contains a copy of c0 and thus Pw♣

nE;F q is not

complemented in P♣nE;F q.

We say that E is a dual space if there exists a Banach space X such that E is

isometrically isomorphic to X ✶. In 1957 R. Schatten (SCHATTEN, 1957) proved that, if

H is an infinite dimensional Hilbert space, then the space LK♣H;Hq is not a dual space.

In this moment it was natural to ask if it was possible to generalize the result of Schatten.

We know that, in special cases, LK♣E;F q is reflexive (for example, if E ✏ ℓp, F ✏ ℓq,

1 ➔ q ➔ p ➔ ✽, see. J. R. Holub (HOLUB, 1971)). In 1975 Feder and Saphar (FEDER,

1975) proved that, if E and F are reflexive Banach spaces and G is a closed linear subspace

of LK♣E;F q which contains the space F♣E,F q of all finite rank linear operators from E

into F , then G is either reflexive or is not a dual space. Later, in 1980 Feder (FEDER

et al., 1980) showed that if E and F are reflexive Banach spaces such that F or E ✶ is a

subspace of a Banach space with an unconditional basis, then the space LK♣E;F q is either

reflexive or non-isomorphic to a dual space. But the following question posed in (FEDER

et al., 1980) remains open:

Question. Let E and F be reflexive Banach spaces. Is LK♣E;F q either reflexive or

non-isomorphic to a dual space?

In this work, we obtain a positive answer for the previous question. In fact, we

prove the following more general result:

Theorem 0.0.8. Let E and F be reflexive Banach spaces and G be a closed linear subspace

of LK♣E;F q. Then G is either reflexive or non-isomorphic to a dual space.
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We also prove that if E and F are reflexive Banach spaces, then the space

Pw♣
nE;F q of all n-homogeneous polynomials from E into F which are weakly continuous on

bounded sets is either reflexive or non-isomorphic to a dual space. As other consequences

of this result we also obtain two conditions, one that ensures that Pw♣
nE;F q is non-

isomorphic to a dual space and other such that Pw♣
nE;Eq is non-isomorphic to a dual

space. More specifically, we prove the following corollaries:

Corollary 0.0.9. Let E and F be reflexive Banach spaces such that E has the CAP.

If Pw♣
nE;F q ✘ P♣nE;F q, then Pw♣

mE;F q is not isomorphic to a dual space for every

m ➙ n.

Corollary 0.0.10. Let E be a reflexive infinite dimensional Banach space with the CAP.

Then Pw♣
nE;Eq is non-isomorphic to a dual space for every n P N.

Finally, we prove that if E and F are reflexive Banach spaces, then the space

PA♣
nE;F q is either reflexive or non-isomorphic to a dual space. Hence, we obtain a

generalization of a result due to Boyd and Ryan (BOYD; RYAN, 2001, Theorem 21).

This work is organized as follows:

In Chapter 1 we introduce basic definitions and properties of Banach space

theory that we will use in next sections.

In Chapter 2 we prove Theorems 0.0.1, 0.0.2,0.0.3 and 0.0.4, among others.

In Chapter 3 we mainly show Proposition 0.0.6 and Theorems 0.0.5 and 0.0.7.

We also obtain a generalization of González and Gutiérrez (GONZÁLEZ; GUTIÉRREZ,

2000, Theorem 7).

Finally, in Chapter 4 we present the proof of Theorem 0.0.8 and Corollaries

0.0.9 and 0.0.10.
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1 Preliminaries

In this chapter we introduce basic concepts and essential notation to the

development of the next chapters. In Section 1 we present basic definitions and properties

concerning Banach spaces. In Section 2 we study multilinear mappings which will be

used later to define homogeneous polynomials. In Section 3 we define the symmetric

projective tensor product for stating a linearization theorem due to Ryan. In Section 4

we analyse the main results obtained for Banach spaces of linear operators without the

approximation property that will be generalized in the next chapter. Finally, in the last

section we enunciate some theorems about reflexivity and copies of c0 in spaces of compact

operators that will be extended to homogeneous polynomials.

1.1 Basic concepts in Banach spaces

Definition 1.1.1. Let E and F be Banach spaces. The space of all bounded linear

operators from E into F is denoted by L♣E;F q. If F ✏ K, L♣E;F q is the topological dual

of E that is denoted by E ✶.

The following spaces are special classes of bounded linear operators.

Definition 1.1.2. Let F♣E;F q denote the subspace of L♣E;F q generated by all bounded

linear operators of the form T ♣xq ✏ φ♣xqb, with φ P E ✶ and b P F . The normed space

F♣E;F q is called the space of finite rank operators.

Definition 1.1.3. Let LK♣E;F q denote the subspace of all T P L♣E;F q which are compact,

that is which map bounded sets onto relatively compact sets.

Definition 1.1.4. Let LwK♣E;F q denote the subspace of all T P L♣E;F q which are weakly

compact, that is which map bounded sets onto relatively weakly compact sets.

Given f P E ✶ and x P E we shall often write

〈

f, x

〉

instead of f♣xq.

Definition 1.1.5. Let JE : E Ñ E✷ denote the canonical injection from E into E✷ defined

as follows: given x P E, the map f Ñ

〈

f, x

〉

is a continuous linear functional on E ✶; thus

it is an element of E✷, which we denote by JE♣xq. We have
〈

JE♣xq, f

〉

✏

〈

f, x

〉

for all x P E and f P E ✶. The Banach space E is said to be reflexive if JE♣Eq ✏ E✷.
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Definition 1.1.6. An isomorphism between Banach spaces E and F is an linear operator

T : E Ñ F bijective, such that T and its inverse T✁1 are continuous. An isomorphism T

is an isometric isomorphism if ⑥T ♣xq⑥ ✏ ⑥x⑥ for each x P E. We say that E is isomorphic

or isometrically isomorphic to F , if there is an isomorphism or an isometric isomorphism

between E and F , respectively.

Definition 1.1.7. We say that E is a dual space if there exists a Banach space X, such

that E is isometrically isomorphic to X ✶.

Definition 1.1.8. The series
✽➳

n✏1

xn of elements of E is unconditionally convergent if

✽➳
n✏1

xπ♣nq converges (in norm) over all permutations π of N.

Definition 1.1.9. The series
✽➳

n✏1

xn of elements of E is weakly unconditionally Cauchy

(w.u.C. in short) if
✽➳

n✏1

⑤x✶♣xnq⑤ ➔ ✽ for all x✶ P E ✶ or, equivalently if

sup
✧✎✎✎✎ ➳

nPF

xn

✎✎✎✎;F ⑨ N, Ffinite

✯
➔ ✽.

Definition 1.1.10. A sequence ♣enqnPN in E is said to be a Schauder basis if each x P E

has a unique series representation of the form x ✏
✽➳

n✏1

e✶n♣xqen, where e✶n♣xq P K for every

n P N. A sequence ♣xnqnPN which is a Schauder basis of its closed linear span is called a

basic sequence.

Remark 1.1.11. If E has a Schauder basis ♣enqnPN then the coordinate functionals e✶n :

x P E Ñ e✶n♣xq P K and the mappings Tn : x P E Ñ
n➳

i✏1

e✶i♣xqei P E are linear. If En

denotes the subspace generated by e1, e2, . . . , en then Tn is a projection from E onto En.

Example 1.1.12. The unit vectors en ✏ ♣0, 0, . . . , 1❧♦♦♠♦♦♥
n

, 0, . . .q form a Schauder basis

for c0 and ℓp with 1 ↕ p ➔ ✽. An example of a basis in the space c of convergent

sequences of scalars, is given by x1 ✏ ♣1, 1, . . .q and xn ✏ en✁1 for n → 1. The expansion

of x ✏ ♣a1, a2, . . .q P c with respect to this basis is

x ✏ ♣ lim
nÑ✽

anqx1 � ♣a1 ✁ lim
nÑ✽

anqx2 � ♣a2 ✁ lim
nÑ✽

anqx3 � . . .

Definition 1.1.13. Let ♣enqnPN be a basic sequence in a Banach space E. A sequence

of non-zero vectors ♣ujqjPN in E of the form uj ✏

pj�1➳
n✏pj�1

anen, with ♣anqnPN scalars and

p1 ➔ p2 ➔ . . . an increasing sequence of integers, is called a block basis sequence of ♣enqnPN.
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Definition 1.1.14. A Schauder basis ♣enqnPN ⑨ E is shrinking if the coordinate functionals

♣e✶nqnPN form a basis of the dual space E ✶.

Definition 1.1.15. A sequence ♣xnqnPN ⑨ E is a semi-normalized basic sequence if

♣xnqnPN is a Schauder basis for the closed subspace M ✏ rxn : n P Ns, and moreover there

are constant a and b such that 0 ➔ a ➔ ⑥xn⑥ ➔ b for all n P N.

Definition 1.1.16. A Schauder basis ♣xnqnPN ⑨ E is unconditional if whenever the series
✽➳

n✏1

αnxn converges, it converges unconditionally. A Schauder basis ♣xnqnPN is unconditional

if and only if, there is C ➙ 0 such that✎✎✎✎ n➳
k✏1

ǫkαkxk

✎✎✎✎ ↕ C

✎✎✎✎ n➳
k✏1

αkxk

✎✎✎✎
for all n P N, all scalar coefficients αk and all signs ǫk ✏ ✟1.

Definition 1.1.17. A Banach space E contains a copy of F if there exists a closed

subspace Z of E, such that F is isomorphic to Z. We write F ãÑ E when E contains a

copy of F .

Definition 1.1.18. Two bases, ♣enqnPN of E and ♣fnqnPN of F , are called equivalent if

there is an isomorphism T from E onto F for which T ♣enq ✏ fn for all n P N.

The following spaces will be used in the next chapter.

Theorem 1.1.19. ((LINDENSTRAUSS; TZAFRIRI, , Theorem 2.d.10)) There exists

a separable Banach space U1 having an unconditional basis ♣enqnPN such that every un-

conditional basic sequence (in an arbitrary separable Banach space) is equivalent to a

subsequence of ♣enqnPN.

Definition 1.1.20. (see (LINDENSTRAUSS; TZAFRIRI, , p. 175)) Let 1 ↕ p ➔ ✽

and let w ✏ twn✉
✽
n✏1

be a nonincreasing sequence of positive numbers such that w1 ✏ 1,

lim
nÑ✽

wn ✏ 0 and
✽➳

n✏1

wn ✏ ✽. Let

d♣w, pq ✏

✧
x ✏ ♣ξnq

✽
n✏1

⑨ K : ⑥x⑥ ✏ sup
π

✂ ✽➳
n✏1

⑤ξπ♣nq⑤
pwn

✡
1④p

➔ ✽

✯
,

where π ranges over all permutations of N. Then d♣w, pq is a Banach space, called a

Lorentz sequence space.

Proposition 1.1.21. ((LINDENSTRAUSS; TZAFRIRI, , Theorem 4.e.3)) Let ♣enqnPN be

the unit vector basis of a Lorentz sequence space d♣w, pq with p ➙ 1. Then every normalized

block basis sequence un ✏
qn�1➳

i✏qn�1

aiei, n ✏ 1, 2, . . . such that lim
iÑ✽

ai ✏ 0 contains, for every
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ǫ → 0, a subsequence ♣unj
qjPN which is 1� ǫ equivalent to the unit vector basis of ℓp and so

that runj
sjPN is complemented in d♣w, pq. Consequently, every infinite dimensional subspace

of d♣w, pq contains complemented subspaces which are nearly isometric to ℓp.

The following result due to Bessaga and Pelczyński characterizes w.u.C. series.

Theorem 1.1.22. ((BESSAGA; PEŁCZYŃSKI, 1958, Lemma 2)) or ((DIESTEL, 2012,

Theorem 6)) The following statements regarding a formal series
✽➳

n✏1

xn in a Banach space

are equivalent:

1.
✽➳

n✏1

xn is w.u.C.

2. There is a C → 0 such that for any ♣tnqnPN P ℓ✽

sup
nPN

✎✎✎✎ n➳
k✏1

tkxk

✎✎✎✎ ↕ C sup
nPN

⑤tn⑤.

3. For any ♣tnqnPN P c0,
✽➳

n✏1

tnxn converges.

Theorem 1.1.23. ((DIESTEL, 2012, Theorem 8)) Let E be a Banach space. Then, in

order that each series
✽➳

n✏1

xn in E with
✽➳

n✏1

⑤x✶♣xnq⑤ ➔ ✽ for each x✶ P E ✶ be unconditionally

convergent, it is both necessary and sufficient that E contains no copy of c0.

Definition 1.1.24. Let E be a Banach space. We say that E has an unconditional finite

dimensional expansion of the identity if there is a sequence of bounded linear operators

An : E Ñ E of finite rank, such that for x P E

✽➳
n✏1

An♣xq ✏ x

unconditionally.

Remark 1.1.25. In particular, each Banach space with an unconditional Schauder basis

has an unconditional finite dimensional expansion of the identity.

Definition 1.1.26. A function µ from a field Σ of subsets of a set Ω to a Banach space

E is called a finitely additive measure, or simply a vector measure, if whenever E1 and

E2 are disjoint members of Σ then µ♣E1 ❨ E2q ✏ µ♣E1q � µ♣E2q.

Definition 1.1.27. Let Σ be a field of subsets of a set Ω, and let µ : Σ Ñ E be a vector

measure. µ is said to be strongly additive if the series
✽➳

n✏1

µ♣Anq converges in norm for

each sequence ♣Anq of pairwise disjoint members of Σ.
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Theorem 1.1.28. (DIESTEL-FAIRES)((DIESTEL; UHL, 1977, Theorem 2)) Let Σ be

a field of subsets of the set Ω and G : Σ Ñ E be a bounded vector measure. If G is not

strongly additive, then E contains a copy of c0. If in addition Σ is a σ- field, then the

above statement remains true if the space c0 is replaced by the space ℓ✽.

Definition 1.1.29. Let T : E Ñ F be a bounded linear operator. Then the adjoint operator

T ✶ : F ✶ Ñ E ✶ of T is defined by
〈

T ✶♣gq, x
〉

✏
〈

g, T ♣xq
〉

for all g P F ✶ and x P E.

Definition 1.1.30. Let E be a Banach space and let F be a closed subspace of E. We say

that F is a complemented subspace of E if there exists a projection π : E Ñ E such that

π♣Eq ✏ F .

Definition 1.1.31. If M ⑨ E is a linear subspace we set

M❑ ✏ tf P E ✶; f♣xq ✏ 0, ❅x PM✉.

We say that M❑ is the annihilator or the space orthogonal to M .

Definition 1.1.32. Let E and F be Banach spaces, and U ⑨ E be an open subset of E.

A function f : E Ñ F is called Fréchet differentiable at x P U if there exists T P L♣E;F q

such that

lim
hÑ0

⑥f♣x� hq ✁ f♣xq ✁ A♣hq⑥

⑥h⑥
✏ 0.

Definition 1.1.33. A subset of a Banach space is called conditionally weakly compact if

every sequence in it has a weakly Cauchy subsequence.

Definition 1.1.34. A sequence ♣xnq in a Banach space E is called weakly Cauchy if for

every ϕ P E ✶ the sequence ♣ϕ♣xnqq is Cauchy in the scalar field.

Definition 1.1.35. A Banach space E is weakly sequentially complete if every weakly

Cauchy sequence is weakly convergent in E.

Example 1.1.36. If E is reflexive, then BE is weakly compact. It follows from Smulian

Theorem that every bounded sequence in E admits a weakly convergent subsequence. In

particular, every reflexive Banach space is weakly sequentially complete.

1.2 Homogeneous polynomials

This section is devoted to the study of homogeneous polynomials in Banach

spaces, this concept is the basis for this work. Firstly, we introduce the concept of multilinear

mappings.
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Definition 1.2.1. For each n P N we shall denote by La♣
nE;F q the vector space of all

n- linear mappings A : E ✂ E ✂ . . .✂ E❧♦♦♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♦♦♥
n

Ñ F , whereas we shall denote by L♣nE;F q the

subspace of all continuous members of La♣
nE;F q. For each A P La♣

nE;F q we define

⑥A⑥ ✏ supt⑥A♣x1, x2, . . . , xnq⑥ : xj P E,max
j

⑥xj⑥ ↕ 1✉.

When n ✏ 1, we shall write La♣
1E;F q ✏ La♣E;F q and L♣1E;F q ✏ L♣E;F q. When F ✏ K,

we shall write La♣
nE;Kq ✏ La♣

nEq and L♣nE;Kq ✏ L♣nEq.

Example 1.2.2. Given ϕ1, ϕ2, . . . , ϕn P E
✶, then the n- linear mapping

A♣x1, x2, . . . , xnq ✏ ϕ1♣x1qϕ2♣x2q . . . ϕn♣xnq

for all x1, x2, . . . , xn P E, belongs to L♣nE;Kq.

Proposition 1.2.3. ((MUJICA, 1985, Proposition 1.2)) For each A P La♣
nE;F q the

following conditions are equivalent:

1. A is continuous.

2. A is continuous at the origin.

3. ⑥A⑥ ➔ ✽.

Proposition 1.2.4. ((MUJICA, 1985, Proposition 1.3)) L♣nE;F q is a Banach space

under the norm AÑ ⑥A⑥.

Definition 1.2.5. Ls♣nE;F q denotes the subspace of all A P L♣nE;F q which are sym-

metric, that is A♣x1, x2, . . . , xnq ✏ A♣xσ♣1q, xσ♣2q, . . . , xσ♣nqq for each permutation σ of

t1, 2, . . . , n✉. When F ✏ K, we write Ls♣nEq instead of Ls♣nE;Kq. Sn denotes the group

of all permutations of t1, 2, . . . , n✉. For each A P La♣
nE;F q and x P E, we define

Axn ✏ A♣x, x, . . . , x❧♦♦♦♦♠♦♦♦♦♥
n

q ✏ Â♣xq.

Definition 1.2.6. A mapping P : E Ñ F is said to be an n- homogeneous polynomial

if there exists A P La♣
nE;F q such that P ♣xq ✏ Axn ✏ ♣A♣xq for every x P E. We shall

denote by Pa♣
nE;F q the vector space of all n- homogeneous polynomials from E into F .

We shall represent by P♣nE;F q the subspace of all continuous members of Pa♣
nE;F q. For

each P P P♣nE;F q we define

⑥P ⑥ ✏ supt⑥P ♣xq⑥ : x P E, ⑥x⑥ ↕ 1✉.

When F ✏ K, we shall write Pa♣
nE;Kq ✏ Pa♣

nEq and P♣nE;Kq ✏ P♣nEq.
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Example 1.2.7. Let P ♣♣xnqnPNq ✏
✽➳

n✏1

xm
n , for ♣xnqnPN P ℓ2 and m ➙ 2. Then P P P♣mℓ2q.

Proposition 1.2.8. ((MUJICA, 1985, Corollary 2.3))

1. A polynomial P P Pa♣
nE;F q is continuous if and only if ⑥P ⑥ ➔ ✽.

2. P♣nE;F q is a Banach space under the norm P Ñ ⑥P ⑥.

3. The mapping AÑ Â induces an isomorphism between Ls♣nE;F q and P♣nE;F q.

The following definitions give us special classes of homogeneous polynomials.

Definition 1.2.9. Let Pf ♣
nE;F q denote the subspace of P♣nE;F q generated by all poly-

nomials of the form P ♣xq ✏ ♣φ♣xqqnb, with φ P E ✶ and b P F . We denote by PA♣
nE;F q the

closure of Pf ♣
nE;F q with respect to the norm topology.

Definition 1.2.10. Let Pw♣
nE;F q denote the subspace of P♣nE;F q formed by all P which

are weakly continuous on bounded sets, that is the restriction P ⑤B : B Ñ F is continuous

for each bounded set B ⑨ E, when B and F are endowed with the weak topology and the

norm topology, respectively.

Definition 1.2.11. The subspace PK♣
nE;F q of compact polynomials of P♣nE;F q is

formed by all polynomials that send bounded sets onto relatively compact sets.

Definition 1.2.12. The subspace PwK♣
nE;F q of weakly compact polynomials of P♣nE;F q

is formed by all polynomials that send bounded sets onto relatively weakly compact sets.

We always have the inclusions

Pf ♣
nE;F q ⑨ PA♣

nE;F q ⑨ Pw♣
nE;F q ⑨ PK♣

nE;F q ⑨ PwK♣
nE;F q ⑨ P♣nE;F q.

We refer to (DINEEN, 2012) or (MUJICA, 1985) for background information on the theory

of polynomials on Banach spaces.

Remark 1.2.13. ((DINEEN; MUJICA, 2015, Remark 3.3)) If 1 ➔ p ➔ ✽ and n ➔ p,

then P♣nℓpq is a reflexive Banach space with a Schauder basis.

Proposition 1.2.14. ((ARON; SCHOTTENLOHER, 1976, Proposition 5.3))or ((BLASCO,

1997, Proposition 5)) Let m,n P N, m ↕ n. Then P♣mE;F q is isomorphic to a comple-

mented subspace of P♣nE;F q.

The following lemma is a special case of (GONZÁLEZ; GUTIÉRREZ, 1995,

Corollary 5). This lemma will be very important to prove the main result proposed in the

last chapter.
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Lemma 1.2.15. ((BU; JI; WONG, 2015, Lemma 4.1)) Let E and F be reflexive Banach

spaces. Let Pm, P P Pw♣
nE,F q for each m P N. Then lim

mÑ✽
Pm ✏ P weakly in Pw♣

nE,F q

if and only if lim
mÑ✽

y✶♣Pm♣xqq ✏ y✶♣P ♣xqq for every x P E and every y✶ P F ✶.

Theorem 1.2.16. ((GONZÁLEZ; GUTIÉRREZ, 2000, Theorem 3)) The space Pw♣
nE;F q

contains a copy of ℓ✽ if and only if either F contains a copy of ℓ✽ or E contains a

complemented copy of ℓ1.

Theorem 1.2.17. ((GONZÁLEZ; GUTIÉRREZ, 2000, Lemma 6)) Suppose E has an

unconditional finite dimensional expansion of the identity and let P P P♣nE;F q. Then

there is a w.u.C. series
✽➳

i✏1

Pi in Pw♣
nE;F q such that, for all x P E, P ♣xq ✏

✽➳
i✏1

Pi♣xq

unconditionally.

1.3 Linearization theorem for n-homogeneous polynomials

An important tool in this work is a linearization theorem due to Ryan (RYAN,

1980).

The n- fold tensor product, ❜nE, of the vector space E can be constructed as

a space of linear functionals on La♣
nEq, in the following way: for x1, x2, . . . , xn P E, we

denote by x1 ❜ x2 ❜ . . .❜ xn the funcional given by evaluation at the point ♣x1, x2, . . . , xnq.

In other words,

♣x1 ❜ x2 ❜ . . .❜ xnq♣Aq ✏
〈

A, x1 ❜ x2 ❜ . . .❜ xn

〉

✏ A♣x1, x2, . . . , xnq

for each n- linear form A P La♣
nEq. The n- fold tensor product ❜nE is the subspace of

the algebraic dual of La♣
nEq spanned by these elements. Thus, a typical tensor in ❜nE

has the form

u ✏
m➳

j✏1

λjx
1

j ❜ x2

j ❜ . . .❜ xn
j ,

where λj P K and xi
j P E for 1 ↕ j ↕ m, 1 ↕ i ↕ n.

Proposition 1.3.1. ((RYAN, 2002, Proposition 2.1)) If
m➳

j✏1

λjx
1

j ❜ x2

j ❜ . . . ❜ xn
j is a

representation of u, then

π♣uq ✏ inf
✧ m➳

j✏1

⑤λj⑤⑥x
1

j⑥⑥x
2

j⑥ . . . ⑥x
n
j ⑥ : u ✏

m➳
j✏1

λjx
1

j ❜ x2

j ❜ . . .❜ xn
j

✯

is a norm on ❜nE. Moreover, π♣x1❜x2❜. . .❜xnq ✏ ⑥x1⑥⑥x2⑥ . . . ⑥xn⑥ for every x1, x2, . . . , xn P

E.
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Definition 1.3.2. For x1 ❜ x2 ❜ . . . ❜ xn P ❜nE, let x1 ❜s x2 ❜s . . . ❜s xn denote its

symmetrization, that is,

x1 ❜s x2 ❜s . . .❜s xn ✏
1
n!

➳
σPSn

xσ♣1q ❜ xσ♣2q ❜ . . .❜ xσ♣nq,

let ❜n,sE denote the n- fold symmetric tensor product of E, that is, the linear span of

tx1❜sx2❜s . . .❜sxn : x1, x2, . . . , xn P E✉ in ❜nE. Let ❜̂n,s,πE denote the n- fold symmetric

projective tensor product of E, that is, the completion of ❜n,sE, under the symmetric

projective tensor norm π defined previously.

The next important theorem is due to Blasco.

Theorem 1.3.3. ((BLASCO, 1997, Theorem 3)) The space ❜n,s,πE is a complemented

subspace of ❜n�1,s,πE, for each positive integer n.

Definition 1.3.4. Let C♣E;F q denote the vector space of all continuous mappings from

E into F . When F ✏ K we shall write C♣E;Kq ✏ C♣Eq. The compact-open topology or

topology of compact convergence is the locally convex topology τc on C♣E;F q which is

generated by the seminorms of the form f Ñ sup
xPK

⑥f♣xq⑥, where K varies among all the

compact subsets of E.

We will use the following version of Ryan’s linearization theorem, which ap-

peared in (MUJICA, 1991).

Theorem 1.3.5. For each Banach space E and each n P N let

Q♣nEq ✏ ♣P♣nEq, τcq
✶,

with the norm induced by P♣nEq, and let

δn : x P E Ñ δx P Q♣
nEq

denote the evaluation mapping, that is, δx♣P q ✏ P ♣xq for all x P E and P P P♣nEq. Then

Q♣nEq is a Banach space and δn P P♣nE;Q♣nEqq. The pair ♣Q♣nEq, δnq has the following

universal property: for each Banach space F and each P P P♣nE;F q, there is a unique

operator Tp P L♣Q♣nEq;F q such that Tp ✆ δn ✏ P . The mapping

P P P♣nE;F q Ñ Tp P L♣Q♣nEq;F q

is an isometric isomorphism. Moreover P P PK♣
nE;F q if and only if Tp P LK♣Q♣

nEq;F q,

and P P PwK♣
nE;F q if and only if Tp P LwK♣Q♣

nEq;F q. Furthermore Q♣nEq is isometri-

cally isomorphic to ❜̂n,s,πE.

Definition 1.3.6. Consider a linear ordering ➔ of N2 such that ♣1, 1q ➔ ♣2, 1q ➔ ♣2, 2q ➔

♣1, 2q ➔ ♣3, 1q ➔ ♣3, 2q ➔ ♣3, 3q ➔ ♣2, 3q ➔ ♣1, 3q ➔ ♣4, 1q ➔ . . .. Clearly ♣N2,➔q, as a

linearly ordered set, is isomorphic to the usual integers ♣N,➔q.
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The next theorem will be used in the next chapter.

Theorem 1.3.7. ((FABIAN et al., 2011, Corollary 16.69)) Let E be a Banach space

with a shrinking Schauder basis ♣enqnPN, and F be a Banach space with a Schauder basis

♣fnqnPN. Then te✶n ❜ fj✉♣n, jq P ♣N
2,➔q is a Schauder basis of LK♣E;F q. Moreover, if both

♣e✶nqnPN and ♣fnqnPN are shrinking, then te✶n ❜ fj✉♣n, jq P ♣N
2,➔q is a shrinking basis of

LK♣E;F q.

Finally, we introduce the concept of holomorphic function.

Definition 1.3.8. Let U be an open subset of E. A mapping f : U Ñ F is said to be

holomorphic or analytic if for each a P U there exists a ball B♣a; rq ⑨ U and a sequence

of polynomials Pn P P♣nE;F q such that

f♣xq ✏
✽➳

n✏0

Pn♣x✁ aq

uniformly for x P B♣a; rq. We shall denote by H♣U ;F q the vector space of all holomorphic

mappings from U into F . When F ✏ K then we shall write H♣U ;Kq ✏ H♣Uq.

1.4 The approximation property

In this section we enunciate some theorems about the approximation property

that will be used in the next chapter.

Definition 1.4.1. Let E be a Banach space. E is said to have the approximation property

(AP in short) if given K ⑨ E compact and ǫ → 0, there exists T P F♣E;Eq such that

⑥Tx✁ x⑥ ➔ ǫ for every x P K.

Definition 1.4.2. A Banach space E is said to have the bounded approximation property

(BAP in short) if there exists λ ➙ 1 so that for every compact K ⑨ E and for every ǫ → 0,

there exists T P F♣E;Eq such that ⑥T ⑥ ↕ λ and ⑥Tx✁ x⑥ ➔ ǫ for every x P K.

Example 1.4.3. ((MUJICA, 1985, Theorem 27.4)) Every Banach space with Schauder

basis has the BAP.

Proposition 1.4.4. ((MUJICA, 1985, Proposition 27.2)) For a Banach space E the

following conditions are equivalent:

1. E has the approximation property.

2. Each T P L♣E;Eq can be uniformly approximated on compact sets by operators of

finite rank.
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3. For each Banach space F , each T P L♣E;F q can be uniformly approximated on

compact sets by operators of finite rank.

4. For each Banach space F , each T P L♣F ;Eq can be uniformly approximated on

compact sets by operators of finite rank.

Definition 1.4.5. A Banach space E is said to have the compact approximation property

(CAP in short) if given K ⑨ E compact and ǫ → 0, there exists T P LK♣E;Eq such that

⑥Tx✁ x⑥ ➔ ǫ for every x P K.

The following results give us examples of Banach spaces without the approxi-

mation property. These examples will be used to prove some results in the next chapter.

Proposition 1.4.6. ((DINEEN; MUJICA, 2015, Proposition 2.1)) If 1 ➔ p, q ➔ ✽,

then L♣Lpr0, 1s;Lqr0, 1sq contains a complemented subspace isomorphic to L♣ℓ2; ℓ2q. In

particular L♣Lpr0, 1s;Lqr0, 1sq does not have the approximation property.

Proposition 1.4.7. ((DINEEN; MUJICA, 2015, Proposition 2.2)) If 1 ➔ p ↕ q ➔ ✽,

then L♣ℓp; ℓqq contains a complemented subspace isomorphic to L♣ℓ2; ℓ2q. In particular

L♣ℓp; ℓqq does not have the approximation property.

Proposition 1.4.8. ((DINEEN; MUJICA, 2015, Proposition 2.4))

1. If E and F contain complemented subspaces isomorphic to ℓ2, then L♣E;F q contains

a complemented subspace isomorphic to L♣ℓ2; ℓ2q. In particular, L♣E;F q does not

have the approximation property.

2. If E contains a complemented subspace isomorphic to ℓ2, then L♣E;E ✶q contains

a complemented subspace isomorphic to L♣ℓ2; ℓ2q. In particular, L♣E;E ✶q does not

have the approximation property.

Theorem 1.4.9. ((DINEEN; MUJICA, 2015, Theorem 3.2)) If 1 ➔ p ➔ ✽ and n ➙ p,

then P♣nℓpq contains a complemented subspace isomorphic to L♣ℓ2; ℓ2q. In particular,

P♣nℓpq does not have the approximation property.

Corollary 1.4.10. ((BU; JI; WONG, 2015, Corollary 4.4)) Assume that both E and F

are reflexive.

1. If Pw♣
nE;F q ✏ P♣nE;F q, then Pw♣

nE;F q is reflexive.

2. If E has the CAP, then Pw♣
nE;F q is reflexive if and only if Pw♣

nE;F q ✏ P♣nE;F q.

Theorem 1.4.11. ((PEŁCZYŃSKI, 1960, Lemma 2) or (LINDENSTRAUSS; TZAFRIRI,

, Proposition 2.a.2)) Let E be an infinite dimensional subspace of ℓp, 1 ↕ p ➔ ✽. Then E

contains a subspace F which has a complement in ℓp and is isomorphic to ℓp.
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Theorem 1.4.12. ((BANACH, 1987, p.206, 12.5)) Let 2 ➔ p ➔ ✽ and let E be a subspace

of Lpr0; 1s not isomorphic to any Hilbert space. Then E contains a complemented subspace

isomorphic to ℓp.

Theorem 1.4.13. ((GODEFROY; SAPHAR, 1989, Theorem 2.4)) Let E be a Banach

space and M be a closed subspace of E such that M❑ is complemented in E ✶. If M has the

BAP, then E④M has the AP implies that E has the AP.

Theorem 1.4.14. ((GODEFROY; SAPHAR, 1989, Corollary 2.8)) Let H be an infinite

dimensional Hilbert space, and LK♣H;Hq be the space of compact operators on H. Then

the quotient algebra L♣H;Hq④LK♣H;Hq does not have the A.P.

Lemma 1.4.15. ((JOHNSON, 1979, Lemma 1)) Let E and F be Banach spaces and

suppose F has the BAP. Then there is a projection P on L♣E;F q✶ such that ⑥P ⑥ ↕ λ,

the range of P is isomorphic to LK♣E;F q✶ (isometric if λ ✏ 1) and the kernel of P is

LK♣E;F q❑.

1.5 Complemented subspaces and reflexivity in the space of bounded

linear operators

In this section we enunciate some important results about copies of c0 and

reflexivity in spaces of compact operators. The following three theorems will be generalized

in the last chapter.

Theorem 1.5.1. ((FEDER, 1975, Theorem 2)) Let E and F be reflexive Banach spaces

and G a closed linear subspace of LK♣E;F q which contains the space F♣E,F q of all finite

rank linear operators from E into F . Then G is either reflexive or is not a dual space.

Theorem 1.5.2. ((FEDER et al., 1980, Theorem 5)) Let E and F be reflexive Banach

spaces such that F or E ✶ is a subspace of a Banach space with an unconditional basis.

Then LK♣E;F q is either reflexive or non-isomorphic to a dual space.

Definition 1.5.3. If E is a Banach space then P P Pα♣
nEq is an integral polynomial or

a polynomial of integral type if there exists a regular Borel measure µ of finite variation

on ♣BE✶ , σ♣E ✶;Eqq such that

P ♣xq ✏

➺
BE✶

φ♣xqndµ♣φq (1.1)

for all x P E. We write PI♣
nEq for the space of all n- homogeneous integral polynomials on

E. We define the integral norm of an integral polynomial P , ⑥P ⑥I , as the infimum of ⑥µ⑥

taken over all regular Borel measures which satisfy ♣1.1q. With the integral norm PI♣
nEq

becomes a Banach space.



Chapter 1. Preliminaries 30

Theorem 1.5.4. ((BOYD; RYAN, 2001, Theorem 21)) Let E be a reflexive Banach space

with one of the following conditions holding:

1. BE✶ has a Fréchet differentiable norm.

2. E is separable and PI♣
nE ✶q is weakly sequentially complete.

Then PA♣
nEq is either reflexive or not isometric to a dual space.

The following corollaries will be generalized in Chapter 3.

Corollary 1.5.5. ((GHENCIU, 2005b, Corollary 2)) If c0 ãÑ F and E ✶ contains a w✶ null

sequence ♣x✶
nqnPN which is not w null, then LwK♣E;F q is not complemented in L♣E;F q.

Corollary 1.5.6. ((GHENCIU, 2005b, Corollary 3)) Assume that E contains a comple-

mented copy of c0 and c0 ãÑ F . Then LwK♣E;F q is not complemented in L♣E;F q.

Corollary 1.5.7. ((GHENCIU, 2005b, Corollary 4)) If c0 ãÑ F and E is an infinite

dimensional Banach space, then LK♣E;F q is not complemented in L♣E;F q.

Corollary 1.5.8. ((GHENCIU, 2005b, Corollary 5)) Assume that L♣E; ℓ1q ✘ LK♣E; ℓ1q

and that F contains a copy of ℓ1. Then LwK♣E;F q is not complemented in L♣E;F q.

Corollary 1.5.9. ((GHENCIU, 2005b, Corollary 6)) If E contains a complemented copy

of ℓ1 and F is infinite dimensional, then LK♣E;F q is not complemented in L♣E;F q.

Theorem 1.5.10. ((EMMANUELE, 1992, Theorem 2)),((JOHN, 1992, Theorem 1)) or

((GHENCIU; LEWIS, 2011, Corollary 11)) Assume that c0 ãÑ LK♣E;F q. Then LK♣E;F q

is not complemented in L♣E;F q.

Lemma 1.5.11. ((GONZÁLEZ; GUTIÉRREZ, 2000, Lemma 5)) Suppose E contains

a complemented copy of ℓ1. Then Pw♣
nE;F q is not complemented in P♣nE;F q for all F

and n → 1.

Theorem 1.5.12. ((JOHN, 1992, Theorem 2)) Let E, F be arbitrary Banach spaces

and T : E Ñ F a non-compact operator. Suppose that T admits a factorization T ✏ AB

through a Banach space Z with an unconditional basis (countable or uncountable). Then the

space LK♣E;F q contains an isomorphic copy of c0 and thus LK♣E;F q is not complemented

in L♣E;F q.

The following results will be generalized in chapter 3.

Theorem 1.5.13. ((KALTON, 1974, Theorem 6)) Let E be a Banach space with an

unconditional finite dimensional expansion of the identity ♣AnqnPN. If F is any infinite

dimensional Banach space the following are equivalent.
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1. LK♣E;F q ✏ L♣E;F q.

2. LK♣E;F q contains no copy of c0.

3. L♣E;F q contains no copy of ℓ✽.

4. LK♣E;F q is complemented in L♣E;F q.

Theorem 1.5.14. ((GONZÁLEZ; GUTIÉRREZ, 2000, Theorem 7)) Suppose E has an

unconditional finite dimensional expansion of the identity and let n → 1. Then the following

conditions are equivalent:

1. Pw♣
nE;F q ✏ P♣nE;F q.

2. Pw♣
nE;F q contains no copy of c0.

3. P♣nE;F q contains no copy of ℓ✽.

4. Pw♣
nE;F q is complemented in P♣nE;F q.

Theorem 1.5.15. ((JOHN, 1992, Remark 3e))) Suppose that E and F are infinite

dimensional Banach spaces, such that each non compact operator T P L♣E;F q factors

through a Banach space Z with an unconditional basis, then the following conditions are

equivalent:

1. LK♣E;F q contains a copy of c0.

2. L♣E;F q contains a copy of c0.

3. L♣E;F q contains a copy of ℓ✽.

4. LK♣E;F q ✘ L♣E;F q.

5. LK♣E;F q is not complemented in L♣E;F q.
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2 Banach spaces of linear operators and ho-

mogeneous polynomials without the ap-

proximation property

In this Chapter, by using the methods of Dineen and Mujica (DINEEN; MU-

JICA, 2015) and Godefroy and Saphar (GODEFROY; SAPHAR, 1989), we present many

examples of Banach spaces of linear operators and homogeneous polynomials which do

not have the approximation property.

In Section 2.1 we present some examples of Banach spaces of linear operators

without the approximation property. Among other results, we show that if 1 ➔ p ↕ q ➔ ✽,

and E and F are closed infinite dimensional subspaces of ℓp and ℓq, respectively, then

L♣E;F q does not have the approximation property. This improves a result of Dineen and

Mujica (DINEEN; MUJICA, 2015). We also show that if 1 ➔ p ↕ q ➔ ✽, and E and

F are closed infinite dimensional subspaces of ℓp and ℓq, respectively, then the quotient

L♣E;F q④LK♣E;F q does not have the approximation property. This improves a result of

Godefroy and Saphar (GODEFROY; SAPHAR, 1989).

In Section 2.2 we present more examples of Banach spaces of linear operators

without the approximation property. Our examples are Banach spaces of linear operators

on Pelczynski’s universal space U1, on Orlicz sequence spaces ℓMp
, and on Lorentz sequence

spaces d♣w, pq.

In Section 2.3 we present examples of Banach spaces of homogeneous polynomi-

als without the approximation property. Among other results we show that if 1 ➔ p ➔ ✽

and E is a closed infinite dimensional subspace of ℓp, then P♣nEq does not have the

approximation property for every n ➙ p. This improves another result of Dineen and

Mujica (DINEEN; MUJICA, 2015). We also show that if 1 ➔ p ↕ q ➔ ✽, and E and F are

closed infinite dimensional subspaces of ℓp and ℓq, respectively, then P♣nE;F q does not

have the approximation property for every n ➙ 1. We also prove that if n ➔ p ↕ q ➔ ✽,

and E and F are closed infinite dimensional subspaces of ℓp and ℓq, respectively, then the

quotient P♣nE;F q④PK♣
nE;F q does not have the approximation property.
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2.1 Banach spaces of linear operators without the approximation

property

The following well-known proposition will be repeatedly used throughout this

chapter.

Proposition 2.1.1. Let E and F be Banach spaces. E is isomorphic to a complemented

subspace of F if and only if there are A P L♣E;F q and B P L♣F ;Eq such that B ✆ A ✏ I.

Proof. ♣ñq Let ϕ : E Ñ M be an isomorphism, where M is a complemented subspace

of F . Denote by j : M Ñ F the inclusion map and π : F ÑM the projection. Consider

A ✏ j ✆ ϕ and B ✏ ϕ✁1 ✆ π, then B ✆ A♣eq ✏ ϕ✁1 ✆ π ✆ j ✆ ϕ♣eq ✏ ϕ✁1 ✆ j ✆ ϕ♣eq ✏ e for

every e P E. Therefore B ✆ A ✏ I.

♣ðq Let M ✏ A♣Eq. Since B ✆ A ✏ I, then A is an injective operator, thus

M is isomorphic to E. We take π ✏ A ✆ B : F Ñ M , then π is a projection. Hence E is

isomorphic to a complemented subspace of F .

Proposition 2.1.2. Let E, F , M , and N be Banach spaces. If E and F contain comple-

mented subspaces isomorphic to M and N , respectively, then L♣E;F q contains a comple-

mented subspace isomorphic to L♣M ;Nq.

Proof. By hypothesis there are A1 P L♣M ;Eq, B1 P L♣E;Mq, A2 P L♣N ;F q, B2 P L♣F ;Nq

such that B1 ✆ A1 ✏ I and B2 ✆ A2 ✏ I. Consider the operators

C : S P L♣M ;Nq Ñ A2 ✆ S ✆B1 P L♣E;F q

and

D : T P L♣E;F q Ñ B2 ✆ T ✆ A1 P L♣M ;Nq.

Then D ✆ C ✏ I and the desired conclusion follows.

The next theorem improves Proposition 1.4.8.

Theorem 2.1.3. Let 1 ➔ p ↕ q ➔ ✽. If E and F contain complemented subspaces

isomorphic to ℓp and ℓq, respectively, then L♣E;F q does not have the approximation

property.

Proof. By Proposition 2.1.2 L♣E;F q contains a complemented subspace isomorphic to

L♣ℓp; ℓqq. Then the conclusion follows from Proposition 1.4.7.

The next result improves Proposition 1.4.7.

Theorem 2.1.4. Let 1 ➔ p ↕ q ➔ ✽, and let E and F be closed infinite dimensional

subspaces of ℓp and ℓq, respectively. Then L♣E;F q does not have the approximation property.
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Proof. By Theorem 1.4.11 E and F contain complemented subspaces isomorphic to ℓp

and ℓq, respectively. Then the desired conclusion follows from Theorem 2.1.3.

The next result complements Proposition 1.4.6.

Theorem 2.1.5. Let 2 ➔ p ↕ q ➔ ✽, and let E and F be closed infinite dimensional

subspaces of Lpr0, 1s and Lqr0, 1s, respectively, with F not isomorphic to ℓ2. Then L♣E;F q

does not have the approximation property.

Proof. (i) If E is not isomorphic to ℓ2, then it follows from Theorem 1.4.12 that E and

F contain complemented subspaces isomorphic to ℓp and ℓq, respectively. Then the

desired conclusion follows from Theorem 2.1.3.

(ii) If E is isomorphic to ℓ2, then the same argument shows that L♣E;F q contains a

complemented subspace isomorphic to L♣ℓ2; ℓqq, and the desired conclusion follows

as before.

The next result improves Theorem 1.4.14.

Theorem 2.1.6. If 1 ➔ p ↕ q ➔ ✽, then L♣ℓp; ℓqq④LK♣ℓp; ℓqq does not have the approxi-

mation property.

Proof. By Lemma 1.4.15 LK♣ℓp; ℓqq
❑ is a complemented subspace of L♣ℓp; ℓqq

✶. By The-

orem 1.3.7, LK♣ℓp; ℓqq has a Schauder basis. If we assume that L♣ℓp; ℓqq④LK♣ℓp; ℓqq has

the approximation property, then Theorem 1.4.13 would imply that L♣ℓp; ℓqq has the

approximation property, thus contradicting Proposition 1.4.7.

Remark 2.1.7. If 1 ➔ q ➔ p ➔ ✽, then L♣ℓp; ℓqq ✏ LK♣ℓp; ℓqq by a result of Pitt (PITT,

1936). Hence the restriction p ↕ q in the preceding theorem cannot be deleted.

Proposition 2.1.8. If E and F contain complemented subspaces isomorphic to M and

N , respectively, then L♣E;F q④LK♣E;F q contains a complemented subspace isomorphic to

L♣M ;Nq④LK♣M ;Nq.

Proof. By hypothesis there are A1 P L♣M ;Eq, B1 P L♣E;Mq, A2 P L♣N ;F q, B2 P

L♣F ;Nq such that B1 ✆ A1 ✏ I and B2 ✆ A2 ✏ I. Let C : L♣M ;Nq Ñ L♣E;F q and

D : L♣E;F q Ñ L♣M ;Nq be the operators from the proof of Proposition 2.1.2. Since

C♣LK♣M ;Nqq ⑨ LK♣E;F q and D♣LK♣E;F qq ⑨ LK♣M ;Nq, the operators

C̃ : rSs P L♣M ;Nq④LK♣M ;Nq Ñ rA2 ✆ S ✆B1s P L♣E;F q④LK♣E;F q

and

D̃ : rT s P L♣E;F q④LK♣E;F q Ñ rB2 ✆ T ✆ A1s P L♣M ;Nq④LK♣M ;Nq
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are well defined, and D̃ ✆ C̃ ✏ I, thus completing the proof.

Theorem 2.1.9. Let 1 ➔ p ↕ q ➔ ✽. If E and F contain complemented subspaces isomor-

phic to ℓp and ℓq, respectively, then L♣E;F q④LK♣E;F q does not have the approximation

property.

Proof. By Proposition 2.1.8 L♣E;F q④LK♣E;F q contains a complemented subspace isomor-

phic to L♣ℓp; ℓqq④LK♣ℓp; ℓqq. Then the desired conclusion follows from Theorem 2.1.6.

By combining Theorem 2.1.9 and Theorem 1.4.11 we obtain the following

theorem.

Theorem 2.1.10. Let 1 ➔ p ↕ q ➔ ✽, and let E and F be closed infinite dimensional sub-

spaces of ℓp and ℓq, respectively. Then L♣E;F q④LK♣E;F q does not have the approximation

property.

2.2 Concrete examples of Banach spaces of linear operators with-

out the approximation property

Applying Theorem 2.1.3 we obtain particular examples of Banach spaces

without the approximation property.

Example 2.2.1. Let U1 denote the universal space of Pelczynski (see Theorem 1.1.19).

U1 is a Banach space with an unconditional basis with the property that every Banach

space with an unconditional basis is isomorphic to a complemented subspace of U1. Since

every ℓp ♣1 ↕ p ➔ ✽q has an unconditional basis, it follows that every ℓp ♣1 ↕ p ➔ ✽q

is isomorphic to a complemented subspace of U1. By Theorem 2.1.3 none of the spaces

L♣U1;U1q, L♣U1; ℓqq ♣1 ➔ q ➔ ✽q or L♣ℓp;U1q ♣1 ➔ p ➔ ✽q have the approximation

property.

Definition 2.2.2. (see (LINDENSTRAUSS; TZAFRIRI, , p. 137))

An Orlicz function M is a continuous convex nondecreasing function M :

r0,✽q Ñ R such that M♣0q ✏ 0 and lim
tÑ✽

M♣tq ✏ ✽. Let

ℓM ✏

✧
x ✏ ♣ξnq

✽
n✏1

⑨ K :
✽➳

n✏1

M♣⑤ξn⑤④ρq ➔ ✽ for some ρ → 0
✯
.

Then ℓM is a Banach space with the norm

⑥x⑥ ✏ inf
✧
ρ → 0;

✽➳
n✏1

M♣⑤ξn⑤④ρq ↕ 1
✯
.

ℓM is called an Orlicz sequence space.
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Example 2.2.3. Consider the Orlicz function Mp♣tq ✏ tp♣1�⑤ log t⑤q if t → 0 and M♣0q ✏

0, for 1 ➔ p ➔ ✽. Then the Orlicz sequence space ℓMp
contains complemented subspaces

isomorphic to ℓp (see (LINDENSTRAUSS; TZAFRIRI, , p. 157)). If 1 ➔ p ↕ q ➔ ✽,

then by Theorem 2.1.3, L♣ℓMp
; ℓMq

q does not have the approximation property.

Example 2.2.4. It follows from Proposition 1.1.21 that every closed infinite dimensional

subspace of the Lorentz sequence space d♣w, pq contains a complemented subspace isomorphic

to ℓp. By Theorem 2.1.3, if 1 ➔ p ↕ q ➔ ✽, and E and F are closed infinite dimensional

subspaces of d♣w, pq and d♣w, qq, respectively, then L♣E;F q does not have the approximation

property.

2.3 Spaces of homogeneous polynomials without the approxima-

tion property

An important tool in this section is a linearization theorem due to Ryan

(Theorem 1.3.5).

Proposition 2.3.1. If E and F contain complemented subspaces isomorphic to M and N ,

respectively, then P♣nE;F q contains a complemented subspace isomorphic to P♣nM ;Nq.

Proof. By hypothesis there are A1 P L♣M ;Eq, B1 P L♣E;Mq, A2 P L♣N ;F q, B2 P L♣F ;Nq

such that B1 ✆ A1 ✏ I and B2 ✆ A2 ✏ I. Consider the operators

C : P P P♣nM ;Nq Ñ A2 ✆ P ✆B1 P P♣nE;F q

and

D : Q P P♣nE;F q Ñ B2 ✆Q ✆ A1 P P♣nM ;Nq.

Then D ✆ C ✏ I and the desired conclusion follows.

Corollary 2.3.2. If E contains a complemented subspace isomorphic to M , then P♣nEq

contains a complemented subspace isomorphic to P♣nMq.

Proof. Take F ✏ N ✏ K in Proposition 2.3.1.

The next result improves Theorem 1.4.9.

Theorem 2.3.3. Let 1 ➔ p ➔ ✽. If E contains a complemented subspace isomorphic to

ℓp, then P♣nEq does not have the approximation property for every n ➙ p.

Proof. By Corollary 2.3.2 P♣nEq contains a complemented subspace isomorphic to P♣nℓpq.

Then the conclusion follows from Theorem 1.4.9.
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Theorem 2.3.3 can be used to produce many additional counterexamples. For

instance, by combining Theorem 2.3.3 and Theorem 1.4.11 we obtain the following result.

Theorem 2.3.4. Let 1 ➔ p ➔ ✽ and let E be a closed infinite dimensional subspace of ℓp.

Then P♣nEq does not have the approximation property for every n ➙ p.

In a similar way we may obtain scalar-valued polynomial versions of Theorem

2.1.5 and Examples 2.2.1, 2.2.3 and 2.2.4.

Theorem 2.3.5. Let 1 ➔ p ↕ q ➔ ✽. If E and F contain complemented subspaces

isomorphic to ℓp and ℓq, respectively, then P♣nE;F q does not have the approximation

property for every n ➙ 1.

Proof. By Proposition 1.2.14 L♣E;F q is isomorphic to a complemented subspace of

P♣nE;F q. Then the desired conclusion follows from Theorem 2.1.3.

Theorem 2.3.5 can be used to produce many additional counterexamples. For

instance, by combining Theorem 2.3.5 and Theorem 1.4.11 we obtain the following result.

Theorem 2.3.6. Let 1 ➔ p ↕ q ➔ ✽ and let E and F be closed infinite dimensional

subspaces of ℓp and ℓq, respectively. Then P♣nE;F q does not have the approximation

property for every n ➙ 1.

In a similar way we may obtain vector-valued polynomial versions of Theorem

2.1.5 and Examples 2.2.1, 2.2.3 and 2.2.4. We leave the details to the reader.

Theorem 2.3.7. If n ➔ p ↕ q ➔ ✽. Then P♣nℓp; ℓqq④PK♣
nℓp; ℓqq does not have the

approximation property.

Proof. By Theorem 1.3.5 we can write

P♣nℓp; ℓqq ✏ L♣Q♣nℓpq; ℓqq

and

PK♣
nℓp; ℓqq ✏ LK♣Q♣

nℓpq; ℓqq.

We apply Theorem 1.4.13. By Lemma 1.4.15 LK♣Q♣
nℓpq; ℓqq

❑ is a complemented subspace of

L♣Q♣nℓpq; ℓqq
✶. By Remark 1.2.13 P♣nℓpq is a reflexive Banach space with a Schauder basis.

Hence Q♣nℓpq is also a reflexive Banach space with a Schauder basis. Then by Theorem

1.3.7 LK♣Q♣
nℓpq; ℓqq has a Schauder basis. If we assume that L♣Q♣nℓpq; ℓqq④LK♣Q♣

nℓpq; ℓqq

has the approximation property, then Theorem 1.4.13 would imply that L♣Q♣nℓpq; ℓqq has

the approximation property. But this contradicts Theorem 2.1.3, since ℓp ✏ Q♣1ℓpq is a

complemented subspace of Q♣nℓpq, by Theorem 1.3.3. This completes the proof.
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Proposition 2.3.8. If E and F contain complemented subspaces isomorphic to M and

N , respectively, then P♣nE;F q④PK♣
nE;F q contains a complemented subspace isomorphic

to P♣nM ;Nq④PK♣
nM ;Nq.

Proof. By hypothesis there are A1 P L♣M ;Eq, B1 P L♣E;Mq, A2 P L♣N ;F q, B2 P L♣F ;Nq

such that B1 ✆ A1 ✏ I and B2 ✆ A2 ✏ I. Let

C : P♣nM ;Nq Ñ P♣nE;F q

and

D : P♣nE;F q Ñ P♣nM ;Nq

be the operators from the proof of Proposition 2.3.1. Since C♣PK♣
nM ;Nqq ⑨ PK♣

nE;F q

and D♣PK♣
nE;F qq ⑨ PK♣

nM ;Nq, the operators

C̃ : rP s P P♣nM ;Nq④PK♣
nM ;Nq Ñ rA2 ✆ P ✆B1s P P♣nE;F q④PK♣

nE;F q

and

D̃ : rQs P P♣nE;F q④PK♣
nE;F q Ñ rB2 ✆Q ✆ A1s P P♣nM ;Nq④PK♣

nM ;Nq

are well-defined and D̃ ✆ C̃ ✏ I, thus completing the proof.

Theorem 2.3.9. Let n ➔ p ↕ q ➔ ✽. If E and F contain complemented subspaces isomor-

phic to ℓp and ℓq, respectively, then P♣nE;F q④PK♣
nE;F q does not have the approximation

property.

Proof. By Proposition 2.3.8 P♣nE;F q④PK♣
nE;F q contains a complemented subspace

isomorphic to P♣nℓp; ℓqq④PK♣
nℓp; ℓqq. Thus the desired conclusion follows from Theorem

2.3.7.

Theorem 2.3.9 can be used to produce many additional counterexamples. For

instance by combining Theorem 2.3.9 and Theorem 1.4.11 we obtain the following theorem.

Theorem 2.3.10. Let n ➔ p ↕ q ➔ ✽, and let E and F be closed infinite dimen-

sional subspaces of ℓp and ℓq, respectively. Then P♣nE;F q④PK♣
nE;F q does not have the

approximation property.

The interest in the study of the approximation property in spaces of homo-

geneous polynomials begun in 1976 with a paper of Aron and Schottenloher (ARON;

SCHOTTENLOHER, 1976). They began the study of the approximation property on the

space H♣Eq of all holomorphic functions on E under various topologies. Among many other
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results they proved that ♣H♣Eq, τwq has the approximation property if and only if P♣nEq

has the approximation property for every n P N. Here τw denotes the compact-ported

topology introduced by Nachbin. They also proved that P♣nℓ1q has the approximation

property for every n P N. Ryan (RYAN, 1980) proved that P♣nc0q has a Schauder basis, and

in particular has the approximation property, for every n P N. Tsirelson (TSIREL’SON,

1974) constructed a reflexive Banach space X, with an unconditional Schauder basis,

which contains no subspace isomorphic to any ℓp. By using a result of Alencar, Aron and

Dineen (ALENCAR; ARON; DINEEN, 1984), Alencar (ALENCAR, 1985) proved that

P♣nXq has a Schauder basis, and in particular has the approximation property, for every

n P N. In a series of papers Dineen and Mujica (DINEEN; MUJICA, 2004) (DINEEN;

MUJICA, 2010) (DINEEN; MUJICA, 2012) have extended some of the results of Aron and

Schottenloher (ARON; SCHOTTENLOHER, 1976) to spaces of holomorphic functions

defined on arbitrary open sets.
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3 Complemented subspaces of homogeneous

polynomials

3.1 The main results

The proofs of our main results rests mainly on the following theorem of

Ghenciu (GHENCIU, 2005b), which generalizes results of several authors (EMMANUELE,

1991),(GHENCIU, 2005a), (FEDER, 1982).

Theorem 3.1.1. ((GHENCIU, 2005b, Theorem 1)) Let E and F be Banach spaces, and

let G be a Banach space with an unconditional basis ♣gnq and coordinate functionals ♣g✶
nq.

(a) If there exist operators R P L♣G;F q and S P L♣E;Gq such that ♣R♣gnqq is a semi-

normalized basic sequence in F and ♣S ✶♣g✶
nqq is not relatively compact in E ✶, then

LK♣E;F q is not complemented in L♣E;F q.

(b) If there exist operators R P L♣G;F q and S P L♣E;Gq such that ♣R♣gnqq is a semi-

normalized basic sequence in F and ♣S ✶♣g✶
nqq is not relatively weakly compact in E ✶,

then LwK♣E;F q is not complemented in L♣E;F q.

Emmanuele (EMMANUELE, 1992) and John (JOHN, 1992) independently

proved that if LK♣E;F q contains a copy of c0, then LK♣E;F q is not complemented in

L♣E;F q (see Theorem 1.5.10). They also proved that if there exists a noncompact operator

T P L♣E;F q which factors through a Banach space with an unconditional basis, then

LK♣E;F q contains a copy of c0. Clearly Theorem 3.1.1 ♣aq follows from these results.

The following results are polynomial versions of Theorem 3.1.1.

Theorem 3.1.2. Let E and F be Banach spaces, and let G be a Banach space with an

unconditional basis ♣gnq and coordinate functionals ♣g✶
nq.

(a) If there exist operators R P L♣G;F q and S P L♣E;Gq such that ♣R♣gnqq is a semi-

normalized basic sequence in F and ♣S ✶♣g✶
nqq is not relatively compact in E ✶, then

PK♣nE;F q is not complemented in P♣nE;F q for every n P N.

(b) If there exist operators R P L♣G;F q and S P L♣E;Gq such that ♣R♣gnqq is a semi-

normalized basic sequence in F and ♣S ✶♣g✶
nqq is not relatively weakly compact in E ✶,

then PwK♣nE;F q is not complemented in P♣nE;F q for every n P N.



Chapter 3. Complemented subspaces of homogeneous polynomials 41

Proof. ♣aq The case n ✏ 1 follows from Theorem 3.1.1 ♣aq. If n P N, then by Theorem

1.3.5 there exists an isomorphism

P P P♣nE;F q Ñ TP P L♣❜̂n,s,πE;F q.

Furthermore P P PK♣
nE;F q if and only if TP P LK♣❜̂n,s,πE;F q. Suppose that PK♣

nE;F q

is complemented in P♣nE;F q. Then LK♣❜̂n,s,πE;F q is complemented in L♣❜̂n,s,πE;F q. Let

π : L♣❜̂n,s,πE;F q Ñ LK♣❜̂n,s,πE;F q be a projection. By Theorem 1.3.3 E is isomorphic

to a complemented subspace of ❜̂n,s,πE. Hence there exist operators A P L♣E; ❜̂n,s,πEq

and B P L♣❜̂n,s,πE;Eq such that B ✆ A ✏ I. Consider the operator

ρ : T P L♣E;F q Ñ π♣T ✆Bq ✆ A P LK♣E;F q.

If T P LK♣E;F q, then T ✆B P LK♣❜̂n,s,πE;F q and therefore π♣T ✆Bq ✆A ✏ T ✆B ✆A ✏ T .

Thus ρ : L♣E;F q Ñ LK♣E;F q is a projection, contradicting the case n ✏ 1.

♣bq The proof of ♣bq is almost identical to the proof of ♣aq, but using that

P P PwK♣
nE;F q if and only if TP P LwK♣❜̂n,s,πE;F q, Theorem 1.3.5.

The method of the proof of Theorem 3.1.2 does not work to prove the next the-

orem, since it is not true in general that P P Pw♣
nE;F q if and only if TP P Lw♣❜̂n,s,πE;F q

(for example, the polynomial P ♣xq ✏
✽➳

n✏1

x2

n for all x ✏ ♣xnq P ℓ2, is such that P P

PK♣
2ℓ2q ✁ Pw♣

2ℓ2q and TP P LK♣❜̂2,s,πℓ2q ✏ Lw♣❜̂2,s,πℓ2q, see ((ARON; HERVÉS; VAL-

DIVIA, 1983, p. 192)). Thus we have to proceed differently.

Theorem 3.1.3. Let E and F be Banach spaces, and let G be a Banach space with

an unconditional basis ♣gnq and coordinate functionals ♣g✶nq. If there exist operators R P

L♣G;F q and S P L♣E;Gq such that ♣R♣gnqq is a seminormalized basic sequence in F and

♣S ✶♣g✶nqq is not relatively compact in E ✶, then Pw♣
nE;F q is not complemented in P♣nE;F q

for every n P N.

Proof. It follows from results of Aron and Prolla (ARON; PROLLA, 1980) and Aron, Hervés

and Valdivia (ARON; HERVÉS; VALDIVIA, 1983) that Pw♣
nE;F q ⑨ PK♣

nE;F q for every

n P N, and the fact that Pw♣
1E;F q ✏ PK♣

1E;F q follows from (ARON; PROLLA, 1980,

Proposition 2.5). Thus the case n ✏ 1 follows from Theorem 3.1.1 ♣aq. To prove the theorem

by induction on n it suffices to prove that if Pw♣
n�1E;F q is complemented in P♣n�1E;F q,

then Pw♣
nE;F q is complemented in P♣nE;F q. Aron and Schottenloher (ARON; SCHOT-

TENLOHER, 1976, Proposition 5.3) proved that P♣nE;F q is isomorphic to a complemented

subspace of P♣n�1E;F q when F is the scalar field, but their proof works equally well

when F is an arbitrary Banach space (see (BLASCO, 1997, Proposition 5)). Thus there

exist operators A P L♣P♣nE;F q; P♣n�1E;F qq and B P L♣P♣n�1E;F q; P♣nE;F qq such that

B ✆ A ✏ I. The operator A is of the form

A♣P q♣xq ✏ ϕ0♣xqP ♣xq
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for every P P P♣nE;F q and x P E, where ϕ0 P E
✶ verifies that ⑥ϕ0⑥ ✏ 1 ✏ ϕ0♣x0q, where

x0 P E and ⑥x0⑥ ✏ 1. It is clear that if P P Pw♣
nE;F q, then A♣P q P Pw♣

n�1E;F q. On

the other hand, the operator B is of the form B ✏ A✁1 ✆ D, where D : P♣n�1E;F q Ñ

P♣n�1E;F q is defined by D♣P q♣xq ✏ P ♣xq ✁ P ♣x ✁ ϕ0♣xqx0q for every P P P♣n�1E;F q

and x P E. Is not difficult to prove that B♣Pw♣
n�1E;F qq ⑨ Pw♣

nE;F q, (see (CA;, 2012,

p. 597)). Let us assume that Pw♣
n�1E;F q is complemented in P♣n�1E;F q, and let π :

P♣n�1E;F q Ñ Pw♣
n�1E;F q be a projection. Consider the operator

ρ ✏ B ✆ π ✆ A : P♣nE;F q Ñ Pw♣
nE;F q.

If P P Pw♣
nE;F q, then A♣P q P Pw♣

n�1E;F q, and therefore

ρ♣P q ✏ B ✆ π ✆ A♣P q ✏ B ✆ A♣P q ✏ P.

Thus ρ : P♣nE;F q Ñ Pw♣
nE;F q is a projection, and therefore Pw♣

nE;F q is complemented

in P♣nE;F q. This completes the proof.

Ghenciu (GHENCIU, 2005b) derived as corollaries of Theorem 3.1.1 results of

several authors (EMMANUELE, 1991), (GHENCIU, 2005a), (FEDER, 1982), (KALTON,

1974) and (JOHN, 1992). We now apply Theorems 3.1.2 and 3.1.3 to obtain polynomial

versions of those corollaries.

Corollary 3.1.4. If F contains a copy of c0 and E ✶ contains a weak-star null sequence

which is not weakly null, then PwK♣
nE;F q is not complemented in P♣nE;F q for every

n P N.

Corollary 3.1.5. If F contains a copy of c0 and E contains a complemented copy of c0,

then PwK♣
nE;F q is not complemented in P♣nE;F q for every n P N.

Corollary 3.1.6. If F contains a copy of ℓ1 and L♣E; ℓ1q ✘ LK♣E; ℓ1q, then PwK♣
nE;F q

is not complemented in P♣nE;F q for every n P N.

When n ✏ 1, Corollaries 3.1.4, 3.1.5 and 3.1.6 correspond to Corollaries 1.5.5,

1.5.6 and 1.5.8, respectively. Ghenciu derived those corollaries by observing that E and

F satisfy the hypothesis of Theorem 3.1.1 ♣bq. Since the hypothesis of Theorem 3.1.1 ♣bq

coincides with the hypothesis of Theorem 3.1.2 ♣bq, we see that Corollaries 3.1.4, 3.1.5 and

3.1.6 follow from Theorem 3.1.2 ♣bq.

Corollary 3.1.7. If F contains a copy of c0 and E is infinite dimensional, then:

(a) PK♣
nE;F q is not complemented in P♣nE;F q for every n P N.

(b) Pw♣
nE;F q is not complemented in P♣nE;F q for every n P N.
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Corollary 3.1.8. If E contains a complemented copy of ℓ1 and F is infinite dimensional,

then:

(a) PK♣
nE;F q is not complemented in P♣nE;F q for every n P N.

(b) Pw♣
nE;F q is not complemented in P♣nE;F q for every n P N.

When n ✏ 1 Corollaries 3.1.7 and 3.1.8 correspond to Corollaries 1.5.7 and

1.5.9, respectively. Ghenciu derived those corollaries by observing that E and F satisfy

the hypothesis of Theorem 3.1.1 ♣aq. Since the hypothesis of Theorem 3.1.1 ♣aq coincide

with the hypothesis of Theorems 3.1.2 ♣aq and 3.1.3, we see that Corollaries 3.1.7 and

3.1.8 follow from Theorems 3.1.2 ♣aq and 3.1.3.

Finally we present the following corollary.

Corollary 3.1.9. If E contains a copy of ℓ1 and F contains a copy of ℓp, with 2 ↕ p ➔ ✽,

then:

(a) PK♣
nE;F q is not complemented in P♣nE;F q for every n P N.

(b) Pw♣
nE;F q is not complemented in P♣nE;F q for every n P N.

Proof. We follow an argument of Emmanuele (EMMANUELE, 1992, p. 334 ). By a

result of Pelczynski (PELCZYNSKI, 1968), if E contains a copy of ℓ1, then E has a

quotient isomorphic to ℓ2 (see also the proof of (ARON; DIESTEL; RAJAPPA, 1985)).

Let S : E Ñ ℓ2 be the quotient mapping, and let R : ℓ2 ãÑ ℓp ⑨ F be the natural inclusion.

Since S ✶ : ℓ2 Ñ E ✶ is an embedding, the hypothesis of Theorems 3.1.2 ♣aq and 3.1.3 are

clearly satisfied.

Proposition 3.1.10. Let E and F be infinite dimensional Banach spaces. If PK♣
nE;F q

contains a copy of c0, then PK♣
nE;F q is not complemented in P♣nE;F q.

Proof. By Theorem 1.3.5 we have that P P PK♣
nE;F q if and only if TP P LK♣❜̂n,s,πE;F q.

Thus the result follows from Theorem 1.5.10.

The next proposition is a polynomial version of Theorem 1.5.10. The proof is

based on ideas of (GHENCIU; LEWIS, 2011, Corollary 11 ).

Proposition 3.1.11. Let E be an infinite dimensional Banach space and n → 1. If

Pw♣
nE;F q contains a copy of c0, then Pw♣

nE;F q is not complemented in P♣nE;F q.

Proof. By Corollary 3.1.7 and Lemma 1.5.11 we may suppose without loss of generality

that F contains no copy of c0 and E contains no complemented copy of ℓ1. By Theorem
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1.2.16, Pw♣
nE;F q contains no copy of ℓ✽. Let ♣Piq be a copy of the unit vector basis ♣eiq

of c0 in Pw♣
nE;F q. Then

sup
✧✎✎✎✎➳

iPF

ei

✎✎✎✎;F ⑨ N, Ffinite

✯
✏ 1.

By a result of Bessaga and Pelczynski (BESSAGA; PEŁCZYŃSKI, 1958) (see also Theorem

1.1.22) the series
✽➳

i✏1

ei is weakly unconditionally Cauchy in c0. This implies that the series

✽➳
i✏1

Pi is weakly unconditionally Cauchy in Pw♣
nE;F q. For every ϕ P F ✶ and x P E we

consider the continuous linear functional

ψ : P P Pw♣
nE;F q Ñ ϕ♣P ♣xqq P K.

Since the series
✽➳

i✏1

Pi is weakly unconditionally Cauchy in Pw♣
nE;F q,

✽➳
i✏1

⑤ψ♣Piq⑤ ✏
✽➳

i✏1

⑤ϕ♣Pi♣xqq⑤ ➔ ✽

for every ϕ P F ✶ and x P E. This shows that
✽➳

i✏1

Pi♣xq is weakly unconditionally Cauchy

in F for each x P E. Finally, since F contains no copy of c0, an application of Theorem

1.1.23 shows that
✽➳

i✏1

Pi♣xq converges unconditionally in F for each x P E. Let µ : ℘♣Nq Ñ

P♣nE;F q be the finitely additive vector measure defined by µ♣Aq♣xq ✏
➳
iPA

Pi♣xq for each

x P E and A ⑨ N. Suppose there is a projection π : P♣nE;F q Ñ Pw♣
nE;F q. Then

π♣Piq ✏ Pi for each i P N. If the sequence ♣⑥Pi⑥q does not converge to zero, then there is

ǫ → 0 and a subsequence ♣ikq of N, such that ⑥Pik
⑥ → ǫ for each k P N. But this implies that

the measure π ✆ µ : ℘♣Nq Ñ Pw♣
nE;F q is not strongly additive. Then the Diestel-Faires

Theorem 1.1.28 would imply that Pw♣
nE;F q contains a copy of ℓ✽. Therefore ⑥Pi⑥ Ñ 0,

but this is absurd too, because ♣Piq is a copy of ♣eiq. This complete the proof.

The following theorem is a polynomial version of Theorem 1.5.12.

Theorem 3.1.12. Let E and F be Banach spaces and P P P♣nE;F q such that P ❘

Pw♣
nE;F q. Suppose that P admits a factorization P ✏ Q ✆ T through a Banach space G

with an unconditional finite dimensional expansion of the identity, where T P L♣E;Gq

and Q P P♣nG;F q. Then Pw♣
nE;F q contains a copy of c0 and thus Pw♣

nE;F q is not

complemented in P♣nE;F q.

Proof. The case n ✏ 1 follows from Theorem 1.5.12.
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Case n → 1: Since G has an unconditional finite dimensional expansion of the

identity, by Theorem 1.2.17 there is a sequence ♣Qiq ⑨ Pw♣
nG;F q so that Q♣zq ✏

✽➳
i✏1

Qi♣zq

unconditionally for each z P G. Hence P ♣xq ✏
✽➳

i✏1

Qi♣T ♣xqq unconditionally for each x P E.

Since Qi P Pw♣
nG;F q for every i P N, it follows that Qi ✆ T P Pw♣

nE;F q for every i P N.

By the uniform boundedness principle, we have

sup
✧✎✎✎✎➳

iPF

Qi ✆ T

✎✎✎✎;F ⑨ N, Ffinite

✯
➔ ✽.

Again by Theorem 1.1.22 the series
✽➳

i✏1

Qi✆T is weakly unconditionally Cauchy in Pw♣
nE;F q.

Since P ❘ Pw♣
nE;F q, an application of Theorem 1.1.23 shows that Pw♣

nE;F q contains

a copy of c0, and therefore by Proposition 3.1.11 Pw♣
nE;F q is not complemented in

P♣nE;F q.

Corollary 3.1.13. Let E and F be Banach spaces, with E infinite dimensional, and let

n → 1. If each P P P♣nE;F q such that P ❘ Pw♣
nE;F q admits a factorization P ✏ Q ✆ T ,

where T P L♣E;Gq, Q P P♣nG;F q and G is a Banach space with an unconditional finite

dimensional expansion of the identity, then the following conditions are equivalent:

(1) Pw♣
nE;F q contains a copy of c0.

(1✶) PK♣
nE;F q contains a copy of c0.

(2) Pw♣
nE;F q is not complemented in P♣nE;F q.

(2✶) PK♣
nE;F q is not complemented in P♣nE;F q.

(3) Pw♣
nE;F q ✘ P♣nE;F q.

(3✶) PK♣
nE;F q ✘ P♣nE;F q.

(4) P♣nE;F q contains a copy of c0.

(5) P♣nE;F q contains a copy of ℓ✽.

Proof. ♣1q ñ ♣2q by Proposition 3.1.11.

♣2q ñ ♣3q is obvious.

♣3q ñ ♣1q by Theorem 3.1.12.

♣1q ñ ♣4q is obvious.

♣4q ñ ♣3q suppose ♣4q holds and ♣3q does not hold. Then Pw♣
nE;F q ✏

P♣nE;F q ⑩ c0. Thus ♣1q holds, and therefore ♣3q holds, a contradiction.
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♣5q ñ ♣4q is obvious.

♣4q ñ ♣5q Since ♣4q ñ ♣1✶q PK♣
nE;F q contains a copy of c0. By Theo-

rem 1.3.5 P♣nE;F q and PK♣
nE;F q are isometrically isomorphic to L♣♣❜n,s,πE;F q and

LK♣♣❜n,s,πE;F q, respectively. Thus LK♣♣❜n,s,πE;F q contains a copy of c0. Since E is infinite

dimensional, ♣❜n,s,πE is also infinite dimensional.Then by combining the proofs of Theorem

1.5.13 ♣iiiq ñ ♣iiq and Theorem 1.5.15 ♣2q ñ ♣3q we can conclude that L♣♣❜n,s,πE;F q

contains a copy of ℓ✽ and the result follows.

Thus ♣1q, ♣2q, ♣3q, ♣4q and ♣5q are equivalent.

♣1q ñ ♣1✶q is obvious.

♣1✶q ñ ♣2✶q by Proposition 3.1.10.

♣2✶q ñ ♣3✶q is obvious.

♣3✶q ñ ♣3q is obvious.

Since ♣3q ñ ♣1q and ♣1q ñ ♣1✶q, the proof of the corollary is complete.

Remark 3.1.14. In particular if E has an unconditional finite dimensional expansion of

the identity we obtain Theorem 1.5.14. The assumptions of this corollary apply also if F

is a complemented subspace of a space with an unconditional basis.
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4 On the reflexivity of Pw♣nE;F q

An important result of Feder (FEDER et al., 1980) states that if E and F

are reflexive Banach spaces such that F or E ✶ is a subspace of a Banach space with an

unconditional basis, then the space LK♣E;F q of all compact linear operators from E to F

is either reflexive or non-isomorphic to a dual space. In (FEDER, 1975), Feder and Saphar

proved that if E and F are reflexive Banach spaces and G is a closed linear subspace of

LK♣E;F q which contains the space F♣E,F q of all finite rank linear operators from E to

F , then G is either reflexive or is not a dual space. But the following question posed in

(FEDER et al., 1980) remains open:

Question. Let E and F be reflexive Banach spaces. Is LK♣E;F q either reflexive or

non-isomorphic to a dual space?.

In this Chapter, we obtain a positive answer for the previous question. In fact,

we prove the following more general result:

Theorem. Let E and F be reflexive Banach spaces and G be a closed linear subspace of

LK♣E;F q. Then G is either reflexive or non-isomorphic to a dual space.

We also prove that if E and F are reflexive Banach spaces, then the space

Pw♣
nE;F q of all n-homogeneous polynomials from E into F which are weakly continuous on

bounded sets is either reflexive or non-isomorphic to a dual space. As other consequences

of this result we also obtain two conditions, one that ensures that Pw♣
nE;F q is non-

isomorphic to a dual space and other such that Pw♣
nE;Eq is non-isomorphic to a dual

space (see Corollaries 4.1.8 and 4.1.9 ). Finally, we prove that if E and F are reflexive

Banach spaces, then the space PA♣
nE;F q is either reflexive or non-isomorphic to a dual

space. Hence, we obtain a generalization of Boyd and Ryan Theorem 1.5.4.

4.1 The main result

To prove the main result, we need the following proposition, which is a special

case of (Bu, 2013, Theorem 2.5).

Proposition 4.1.1. Let E and F be reflexive Banach spaces and G be a closed linear

subspace of LK♣E;F q. Then G is reflexive if and only if it is weakly sequentially complete.

Proof. ♣ñq Obvious.
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♣ðq By (Bu, 2013, Lemma 2.4) BG is conditionally weakly compact and hence,

relatively weakly compact if G is weakly sequentially complete. Therefore G is reflexive.

The following lemma is a special case of (KALTON, 1974, Corollary 3).

Lemma 4.1.2. Let E and F be reflexive Banach spaces and G be a closed linear subspace

of LK♣E;F q. Let Tm, T P G for each m P N. Then lim
mÑ✽

Tm ✏ T weakly in G if and only

if lim
mÑ✽

y✶♣Tm♣xqq ✏ y✶♣T ♣xqq for every x P E and every y✶ P F ✶.

Proof. ♣ñq For every y✶ P F ✶ and x P E, consider the linear functional

ψy✶,x : T P GÑ y✶♣T ♣xqq P K.

Since ψy✶,x P G✶ and lim
mÑ✽

Tm ✏ T weakly in G, then it follows that lim
mÑ✽

y✶♣Tm♣xqq ✏

y✶♣T ♣xqq for every x P E and every y✶ P F ✶.

♣ðq Let ϕ P G✶. By the Hahn-Banach Theorem there is rϕ P LK♣E;F q✶ such

that rϕ⑤G✶ ✏ ϕ. On the other hand, by (KALTON, 1974, Corollary 3) lim
mÑ✽

Tm ✏ T weakly in

LK♣E;F q, that is, lim
mÑ✽

ϕ♣Tmq ✏ lim
mÑ✽

rϕ♣Tmq ✏ rϕ♣T q ✏ ϕ♣T q. This complete the proof.

Theorem 4.1.3. Let E and F be reflexive Banach spaces and G be a closed linear subspace

of LK♣E;F q. Then G is either reflexive or non-isomorphic to a dual space.

Proof. Suppose that G is isomorphic to the conjugate of a Banach space X. Let ϕ : X ✶ Ñ G

be an isomorphism. By using Proposition 4.1.1 we only need to prove that G is weakly

sequentially complete. Let ♣Tmq be a weakly Cauchy sequence in G. For every y✶ P F ✶ and

x P E, consider the linear functional

ψy✶,x : T P GÑ y✶♣T ♣xqq P K.

Since ψy✶,x P G
✶ we have that

lim
mÑ✽

ψy✶,x♣Tmq ✏ lim
mÑ✽

y✶♣Tm♣xqq

exists for every y✶ P F ✶ and x P E. Let ♣JG♣Tmqq in G✷. By the Banach-Alaoglu-Bourbaki

Theorem, there exists a subnet ♣JG♣Tαqq of ♣JG♣Tmqq and θ P G✷ such that lim JG♣Tαq ✏ θ

in the σ♣G✷, G✶q-topology. In particular, lim
〈

JG♣Tαq, ψy✶,x

〉

✏ lim y✶♣Tα♣xqq ✏ θ♣ψy✶,xq

for every y✶ P F ✶ and x P E. Since lim
mÑ✽

y✶♣Tm♣xqq exists and ♣y✶♣Tα♣xqqq is a subnet of

♣y✶♣Tm♣xqqq for every y✶ P F ✶ and x P E, it follows that

lim
mÑ✽

y✶♣Tm♣xqq ✏ lim y✶♣Tα♣xqq ✏ θ♣ψy✶,xq

for every y✶ P F ✶ and x P E. Now, we want to prove that

π : φ P G✷ Ñ JG ✆ ϕ ✆ J
✶
X ✆ ♣ϕ✷q✁1♣φq P JG♣Gq
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is a projection. Note that

〈

J ✶X ✆ ♣ϕ✷q✁1♣JG♣T qq, z
〉

✏
〈

♣ϕ✷q✁1♣JG♣T qq, JX♣zq
〉

✏
〈

♣ϕ✁1q✷♣JG♣T qq, JX♣zq
〉

✏
〈

JG♣T q, ♣ϕ
✁1q✶♣JX♣zqq

〉

✏
〈

♣ϕ✁1q✶♣JX♣zqq, T
〉

✏
〈

JX♣zq, ϕ
✁1♣T q

〉

✏
〈

ϕ✁1♣T q, z
〉

for each T P G and z P X. This implies that

J ✶X ✆ ♣ϕ✷q✁1♣JG♣T qq ✏ ϕ✁1♣T q

and then π ✆ JG ✏ JG. Thus π is a projection and so

G✷ ✏ JG♣Gq ❵ ker♣πq.

Let T P G and η P ker♣πq be such that θ ✏ JG♣T q � η. Since η P ker♣πq and JG ✆ ϕ is

injective, we have J ✶X ✆ ♣ϕ✷q✁1♣ηq ✏ 0. On the other hand,

η♣ψy✶,xq ✏
〈

♣ϕ✷q✁1♣ηq, ϕ✶♣ψy✶,xq
〉

✏
〈

J✷X♣ϕ
✶♣ψy✶,xq, ♣ϕ

✷q✁1♣ηq
〉

✏
〈

ϕ✶♣ψy✶,xq, J
✶
X✆♣ϕ

✷q✁1♣ηq
〉

✏ 0.

Hence

lim
mÑ✽

y✶♣Tm♣xqq ✏ θ♣ψy✶,xq ✏
〈

JG♣T q, ψy✶,x

〉

�
〈

η, ψy✶,x

〉

✏ y✶♣T ♣xqq,

for every y✶ P F ✶ and x P E. By Lemma 4.1.2 it follows that lim
mÑ✽

Tm ✏ T weakly in G.

This completes the proof.

The previous result gives an affirmative answer of (FEDER et al., 1980, Problem

1) and consequently is a generalization of (FEDER, 1975, Theorem 2) and (FEDER et al.,

1980, Theorem 5).

The proof of the next theorem is similar to the proof of Theorem 4.1.3, but

using (BU; JI; WONG, 2015, Lemma 4.1) and (BU; JI; WONG, 2015, Theorem 4.2)

instead of Lemma 4.1.2 and Proposition 4.1.1, respectively.

Theorem 4.1.4. Let E and F be reflexive Banach spaces, then Pw♣
nE;F q is either

reflexive or non-isomorphic to a dual space for every n P N.

Remark 4.1.5. Note that Theorem 4.1.4 does not work for PK♣
nE;F q instead of Pw♣

nE;F q.

In fact, PK♣
2ℓ2q ✏ P♣2ℓ2q ✏ L♣ℓ2; ℓ2q ✏ ♣❜̂2,s,πℓ2q

✶ is a dual space that is not reflexive.

Corollary 4.1.6. Let E and F be reflexive Banach spaces. If P♣nE;F q is isomorphic to

Pw♣
nE;F q, then P♣nE;F q is reflexive.

Proof. Since P♣nE;F q is a dual space, then the conclusion follows from Theorem 4.1.4.
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The next proposition is a particular case of (ALENCAR; ARON; DINEEN,

1984, Proposition 5.3).

Proposition 4.1.7. Let E and F be Banach spaces. Then Pw♣
nE;F q is isomorphic to a

closed subspace of Pw♣
mE;F q for every m ➙ n.

Proof. To prove the proposition by induction on n it suffices to prove that Pw♣
nE;F q is

isomorphic to a closed subspace of P♣n�1E;F q. Choose ϕ P E ✶ such that ϕ ✘ 0. Define

ρ : Pw♣
nE;F q Ñ Pw♣

n�1E;F q by ρ♣Qq♣xq ✏ ϕ♣xqQ♣xq for all x P E. It is clear that ρ

is an injective linear operator. Therefore Pw♣
nE;F q is isomorphic to ρ♣Pw♣

nE;F qq ⑨

Pw♣
n�1E;F q. This completes the proof.

Corollary 4.1.8. Let E and F be reflexive Banach spaces such that E has the CAP.

If Pw♣
nE;F q ✘ P♣nE;F q, then Pw♣

mE;F q is not isomorphic to a dual space for every

m ➙ n.

Proof. By Theorem 4.1.4 we only need to prove that Pw♣
mE;F q is not reflexive for every

m ➙ n. By Proposition 4.1.7 we have that Pw♣
nE;F q is isomorphic to a closed subspace of

Pw♣
mE;F q for every m ➙ n. If we assume that Pw♣

mE;F q is reflexive for some m ➙ n, then

Pw♣
nE;F q is also reflexive. Since E has the CAP, then by (BU; JI; WONG, 2015, Corollary

4.4) we have that Pw♣
nE;F q ✏ P♣nE;F q, but this contradicts the hypothesis.

Corollary 4.1.9. Let E be a reflexive infinite dimensional Banach space with the CAP.

Then Pw♣
nE;Eq is non-isomorphic to a dual space for every n P N.

Proof. By the Riesz Theorem LK♣E;Eq ✘ L♣E;Eq. Now the result follows from Corollary

4.1.8.

Definition 4.1.10. For every P P P♣nE;F q, consider AP P L♣nE;F q such that P ♣xq ✏

ÂP ♣xq for each x P E. We define d̂n✁1P : E Ñ P♣n✁1E;F q, see (DINEEN, 2012, p.13 ),

by

d̂n✁1P ♣xq♣yq ✏ AP ♣x, y, . . . , yq,

for every x, y in E.

Proposition 4.1.11. Let E and F be Banach spaces. If P P PA♣
nE;F q then d̂n✁1P ♣xq P

PA♣
n✁1E;F q for every x P E.

Proof. Firstly, we want to prove that if P P Pf ♣
nE;F q then d̂n✁1P ♣xq P Pf ♣

n✁1E;F q for

every x P E. For each P P Pf ♣
nE;F q there exists φj P E

✶ and bj P F with 1 ↕ j ↕ m,

such that P ♣xq ✏
m➳

j✏1

φn
j ♣xqbj for each x P E. Thus d̂n✁1P ♣xq♣yq ✏

m➳
j✏1

φn✁1

j ♣yqφj♣xqbj for

each y P E. Therefore d̂n✁1P ♣xq P Pf ♣
n✁1E;F q for every x P E. Now, if P P PA♣

nE;F q
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then there exists a sequence ♣Pkq in Pf ♣
nE;F q, such that lim

kÑ✽
⑥Pk ✁ P ⑥ ✏ 0. If ⑥x⑥ ✏ 0

then d̂n✁1P ♣xq is a null polynomial, for this reason we only need taking ⑥x⑥ → 0. Now,

lim
kÑ✽

⑥d̂n✁1Pk♣xq ✁ d̂n✁1P ♣xq⑥ ✏ ⑥x⑥ lim
kÑ✽

sup
⑥y⑥✏1

✎✎✎✎APk

✂
x

⑥x⑥
, y, . . . , y

✡
✁ AP

✂
x

⑥x⑥
, y, . . . , y

✡✎✎✎✎
↕ ⑥x⑥ lim

kÑ✽
⑥APk

✁ AP ⑥ ↕ ⑥x⑥
nn

n!
lim
kÑ✽

⑥Pk ✁ P ⑥ ✏ 0.

Hence d̂n✁1P ♣xq P PA♣
n✁1E;F q for every x P E.

The proof of the next theorem is based on ideas of (BU; JI; WONG, 2015,

Theorem 4.2 ).

Lemma 4.1.12. Let E and F be reflexive Banach spaces. Then PA♣
nE;F q is reflexive if

and only if it is weakly sequentially complete.

Proof. ♣ñq Immediate.

♣ðq It follows from Proposition 4.1.1 that the theorem holds for n ✏ 1. Using

induction, we assume that the theorem holds for n✁ 1 and we will show that the theorem

holds for n, where n ➙ 2.

To do this, we suppose that PA♣
nE;F q is weakly sequentially complete. We want

to show that PA♣
nE;F q is reflexive. It follows from Proposition 4.1.7 that PA♣

n✁1E;F q is

isomorphic to a closed subspace of PA♣
nE;F q. Thus PA♣

n✁1E;F q is also weakly sequentially

complete. By the induction hypothesis, PA♣
n✁1E;F q is reflexive. To show that PA♣

nE;F q

is reflexive, we only need to show that every bounded sequence in PA♣
nE;F q has a weakly

Cauchy subsequence. Take any bounded sequence ♣Pkq in PA♣
nE;F q. By (DINEEN, 2012,

p.88, Proposition 2.6 ) d̂n✁1Pk P LK♣E; P♣n✁1E;F qq. Since Pk P PA♣
nE;F q, it follows

from Proposition 4.1.11 that d̂n✁1Pk♣xq P PA♣
n✁1E;F q for every x P E, and hence,

d̂n✁1Pk P LK♣E; PA♣
n✁1E;F qq. Note that E and PA♣

n✁1E;F q are reflexive and note that

♣d̂n✁1Pkq is a bounded sequence in LK♣E; PA♣
n✁1E;F qq, It follows from (Bu, 2013, Lemma

2.4 ) that ♣d̂n✁1Pkq has a weakly Cauchy subsequence, without loss of generality, say

♣d̂n✁1Pkq.

For every x P E and every y✶ P F ✶, define a linear functional φx,y✶ in PA♣
n✁1E;F q

by φx,y✶♣P q ✏
〈

P ♣xq, y✶
〉

for every P P PA♣
n✁1E;F q. Then φx,y✶ P PA♣

n✁1E;F q✶. Since

♣d̂n✁1Pkq is a weakly Cauchy sequence in LK

�
E; PA♣

n✁1E;F q
✟
, it follows that

✂
〈

d̂n✁1Pk♣xq, φx,y✶

〉

✡

is a Cauchy sequence. Note that
〈

d̂n✁1Pk♣xq, φx,y✶

〉

✏
〈

Pk♣xq, y
✶
〉

. Thus
✂

〈

Pk♣xq, y
✶
〉

✡
is

a Cauchy sequence. By (BU; JI; WONG, 2015, Lemma 4.1 ), ♣Pkq is a weakly Cauchy

sequence in PA♣
nE;F q. This complete the proof.
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The proof of the following theorem is almost identical to the proof of Theorem

4.1.3, but using (BU; JI; WONG, 2015, Lemma 4.1) and Lemma 4.1.12 instead of Lemma

4.1.2 and Proposition 4.1.1, respectively.

Theorem 4.1.13. Let E and F be reflexive Banach spaces. Then PA♣
nE;F q is either

reflexive or non-isomorphic to a dual space for every n P N.

The next result is a generalization of Theorem 1.5.4.

Corollary 4.1.14. Let E be a reflexive Banach space. Then PA♣
nEq is either reflexive or

non-isomorphic to a dual space for every n P N.

Proof. Take F ✏ K in Theorem 4.1.13.
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