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“The task is not so much

to see what no one yet has seen,

but to think what no body yet has thought

about that which everyone sees."

(Arthur Schopenhauer)

“A tarefa não é tanto

ver aquilo que ninguém viu,

mas pensar o que ninguém ainda pensou

sobre aquilo que todo mundo vê."

(Arthur Schopenhauer)



Resumo

Neste trabalho, apresentamos uma abordagem para o problema de contagem de

semigrupos numéricos pelo gênero, usando o fato de que cada semigrupo numérico de

gênero g possui uma quantidade de lacunas pares γ e o número ng dos semigrupos de

gênero g pode ser calculado como a soma dos números Nγ♣gq, que denota a quantidade

de semigrupos numéricos de gênero g e γ lacunas pares. Um dos principais resultados do

trabalho é o fato de Nγ♣gq é constante para γ fixado e g ➙ 3γ. De forma natural estudamos

o comportamento da sequência Nγ♣3γq.

Motivados pela similaridade entre as sequências de Fibonacci e ♣ngq, estudamos o

comportamento assintótico de sequências envolvendo os números ng. Usando as ideias

do Capítulo 2 deste trabalho, estudamos uma generalização natural de semigrupo γ-

hiperelíptico. Ao final do trabalho, introduzimos o conceito de patterns e tentamos entender

como eles podem ser aplicados a problemas envolvendo semigrupos numéricos.

Palavras-chave: semigrupos numéricos. semigrupos γ-hiperelípticos. gênero. patterns.



Abstract

In this work, we present an approach to the problem of counting numerical semigroups

by genus, using the fact that each numerical semigroup with genus g has a number of

even gaps γ and the number ng, that denotes the number of numerical semigroups of

genus g, can be computed as a sum of the numbers Nγ♣gq, which denotes the number of

numerical semigroups with genus g and γ even gaps. One of the results of this work is the

fact that Nγ♣gq is constant for a fixed γ and g ➙ 3γ. Naturally, we study the behaviour of

the sequence Nγ♣3γq.

Motivated by similarity between the Fibonacci and ♣ngq sequences, we study the

asymptotic behaviour of sequences involving the numbers ng. By using some ideas of

Chapter 2 of this work, we study a natural generalization of γ-hyperelliptic semigroup. At

the end, we introduce the concept of patterns and we try to understand how they can be

applied to the problems involving numerical semigroups.

Keywords: numerical semigroups. γ-hyperelliptic semigroups. genus. patterns
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Introduction

A numerical semigroup S is a cofinite submonoid of N0. The elements of

G♣Sq :✏ N0③S are the gaps of S and the cardinality of G♣Sq is the genus of S, denoted by

g♣Sq. The Frobenius number of S, denoted by F ♣Sq, is the largest element of G♣Sq, while

the multiplicity of S, denoted by m♣Sq, is the first positive integer in S.

Given a non-negative integer g, what is the number ng of numerical semigroups

with genus g? One can prove that ng is always finite (see Corollary 1.1), but it seems that

determining its exactly value is a difficult task. For instance, n0 ✏ 1, since N0 is the only

numerical semigroup with genus 0, n1 ✏ 1, since N0③t1✉ is the only numerical semigroup

with genus 1 and n2 ✏ 2, since N0③t1, 2✉ and N0③t1, 3✉ are the numerical semigroups with

genus 2.

In 2007, Bras-Amorós and de Mier (7) used representation of a numerical

semigroup by Dyck paths to prove that ng ↕ Cg ✏ 1
g � 1

✂
2g

g

✡
, for all g, where Cg is the

Catalan number of order g.

A natural approach to computing ng is the so called semigroup tree; see (4), (6).

In 2008, Bras-Amorós (3) calculated the 50 first elements of that sequence being some of

them 1, 1, 2, 4, 7, 12, 23, 39, . . .. By using these computations, she conjectured the following

statements:

(I) lim
gÑ✽

ng�1

ng

✏ ϕ :✏ 1 �❄
5

2
(golden ratio);

(II) lim
gÑ✽

ng � ng�1

ng�2

✏ 1.

(III) ng � ng�1 ↕ ng�2, for all g positive integer;

Notice that (I) above implies (II), since
ng�1 � ng

ng�2

✏ ng�1

ng�2

� ng

ng�1

☎ ng�1

ng�2

and

1
ϕ
� 1

ϕ2
✏ 1 (ϕ is a root of x2 ✁ x ✁ 1 ✏ 0).

In 2009, Bras-Amorós (4) used some techniques in multisets and the semigroup

tree to prove that 2Fg ↕ ng ↕ 1 � 3 ☎ 2g✁3, for all g ➙ 3, where ♣Fnq is the Fibonacci

sequence. Here, the lower and upper bounds are interesting, since they are well known.

In 2010, Elizalde (11) used generating functions and improved the former

bounds. He proved that there are ag and cg coefficients of explicit generating functions

such that ag ↕ ng ↕ cg, for all g ➙ 1.



Introduction 16

Also in 2010, Zhao (30) worked on this problem and realized that most of

numerical semigroups with a fixed genus satisfy the following property: the Frobenius

number of the numerical semigroup is less than three times its multiplicity. He defined tg

as the number of numerical semigroups S with genus g such that F ♣Sq ➔ 3 ☎ m♣Sq and

he conjectured that lim
gÑ✽

tg

ng

✏ 1. In that paper, he also proved the interesting fact that

the number of numerical semigroups S with genus g such that F ♣Sq ➔ 2 ☎m♣Sq is exactly

Fg�1, the Fibonacci number of order g � 1.

Finally, in 2013, Zhai (29) proved that Bras-Amorós was right about the

asymptotic behaviour of ♣ngq sequence, confirming Zhao’s conjecture. In fact, he proved

the following:

(A) If tg is the number of numerical semigroups S with genus g that satisfy F ♣Sq ➔ 3m♣Sq,
then sup

gPN

tg

ϕg
➔ ✽. In particular, lim

gÑ✽

tg

ϕg
✏ µ is a real number.

(B) lim
gÑ✽

tg

ng

✏ 1. In particular, lim
gÑ✽

ng

ϕg
✏ µ.

More precisely,

Zhai’s Theorem. Let ♣ngq be the sequence of number of numerical semigroups with genus

g. Then

lim
gÑ✽

ng

ϕg
✏ µ,

where µ is a constant greater then 3.78.

Since
ng�1

ng

✏ ng�1

ϕg�1
☎ ϕg

ng

☎ ϕ, one can conclude that lim
gÑ✽

ng�1

ng

✏ ϕ and

lim
gÑ✽

ng�1 � ng

ng�2

✏ 1, as we pointed out before. Although, checking if ng � ng�1 ↕ ng�2, for

all g remains as an open problem and it seems to be a very hard problem according to its

asymptotic behaviour. In fact, even the weaker version of this problem remains open. We

present it as

Question 1.

Is it true that ng ➔ ng�1 for g → 0?

We do observe that (I) above implies the existance of a positive constant C0

such that ng ➔ ng�1 holds for g ➙ C0; however the true value of C0 seems to be out of

reach. Even if we knew C0, it would still probably be difficult to answer Question 1. We

can justify this statement as follows: up to 2015, n67 ✏ 377 866 907 506 273 is the greatest

ng known so far; see (12).
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In 2012, some authors worked with other invariant of numerical semigroups

to count them by genus. For instance, Blanco and Rosales (2) considered the following

partition of Sg:
2g✁1↕
F✏g

S♣F, gq, where S♣F, gq denotes the set of numerical semigroups with

genus g and Frobenius number F .

Kaplan (14) counted numerical semigroups by genus and multiplicity. It is

possible to rewrite

ng ✏
g�1➳
m✏0

N♣m, gq,

where N♣m, gq denotes the number of numerical semigroups with multiplicity m and genus

g. He proved that if 2g ➔ 3m, then N♣m, gq ✏ N♣m✁ 1, g✁ 1q �N♣m✁ 1, g✁ 2q by using

some combinatorial methods; see also (15).

Bras-Amorós (5) counted numerical semigroups by genus and ordinarization

number (see Definition 1.1). It is possible to rewrite

ng ✏
t g

2
✉➳

r✏0

ng,r,

where ng,r denotes the number of numerical semigroups with ordinarization number r and

genus g. She proved that if r → max
✧

g

3
� 1,

❩
g � 1

2

❫
✁ 14

✯
, then ng,r ↕ ng�1,r. She also

conjectured that if r → g

3
, then ng,r ↕ ng�1,r.

In 1997, Torres (27) was interested in some aspects of algebraic curves. He

worked with Weierstrass semigroups at ramified points of double covering of curves of

large genus. The link between this work and computing ng is the so called γ-hyperelliptic

semigroups which simply are numerical semigroups having γ even gaps. In fact, we compute

ng as follows. Let Nγ♣gq be the number of γ-hyperelliptic semigroups with genus g. Then

(see Lemma 2.1)

ng ✏
t 2g

3
✉➳

γ✏0

Nγ♣gq.

In Chapter 1, we present some well-known results about numerical semigroups,

which are fundamental for this work.

In Chapter 2, we present γ-hyperelliptic semigroups so we count numerical

semigroups by genus and even gaps. It gives an approach to deal with Question 1. In

particular, we obtain some interesting results about the sequence Nγ♣gq such as:

Theorem 2.1. Let g ➙ 3γ. Then Nγ♣gq ✏ Nγ♣3γq.

Theorem 2.2. Let g ➔ 3γ. Then Nγ♣gq ➔ Nγ♣3γq.
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In Chapter 3, motivated by Theorem 2.1 we study the sequence ♣Nγ♣3γqq.
Surprisely enough, we prove that it coincides with the sequence ♣fγq introduced by

Bras-Amorós in (5) in connection with ordinarization transform (see Definition 1.1) of a

numerical semigroup. We have

Theorem 3.1. Let γ be a non-negative integer. Then fγ ✏ Nγ♣3γq.

Next we compute some particular values of Nγ♣3γq in order to understand the

asymptotic behaviour of the sequence. We prove

Theorem 3.2. Let ǫ → 0. Then

lim
γÑ✽

fγ

♣2ϕ� ǫqγ ✏ 0 and lim
γÑ✽

fγ

2γ
✏ ✽.

This result shows that there is a function A such that 2γ ➔ A♣γq ↕ ♣2ϕqγ and

fγ ✒ A♣γq, for large enough γ. By making some calculations, it seems that A♣γq ✏ n2γ.

More precisely, we conjecture that there is a positive constant C such that lim
γÑ✽

fγ

n2γ

✏ C.

We prove the following

Theorem 3.3. If there is a positive constant C such that lim
γÑ✽

fγ

n2γ

✏ C, then lim
γÑ✽

fγ

fγ✁1

✏
ϕ2.

By using some other techniques, we also prove the following conditional result

Theorem 3.4. If lim
γÑ✽

fγ

fγ✁1

✏ ϕ2, then lim
γÑ✽

fγ�1➦γ

i✏0 fi

✏ ϕ.

In Chapter 4, we present some other Fibonacci-like behaviour of the sequence

♣ngq. The main technique for those results are based on the proof of Theorem 3.4; in fact,

the following limits hold true (their inspiration comes from some asymptotic properties of

Fibonacci numbers - see Corollary 4.1):

Theorem 4.1. Let ♣ngq be the sequence of number of numerical semigroups with genus g.

Then

♣1q lim
gÑ✽

ng�1

ng

✏ ϕ and lim
gÑ✽

ng✁1 � ng

ng�1

✏ 1.

♣2q lim
gÑ✽

n2
g

ng�1ng✁1

✏ 1.

♣3q lim
gÑ✽

➦g

i✏0 ni

ng�1

✏ ϕ. and lim
gÑ✽

➦g✁1

i✏0 ni

ng�1

✏ 1.

♣4q lim
gÑ✽

➦g

i✏0 n2
i

n2
g

✏ ϕ and lim
gÑ✽

➦g

i✏0 n2
i

n2
g�1

✏ 1
ϕ

.
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♣5q lim
gÑ✽

➦g

i✏0 n2i

n2g

✏ ϕ and lim
gÑ✽

➦g

i✏0 n2i

n2g�1

✏ 1.

We also prove an asymptotic property of the sequence ♣ngq which is different

from Fibonacci sequence. We recall that
F 2

g � F 2
g�1

F2g�1

✏ 1, for all g. We prove the following

Theorem 4.2. Let ♣ngq be the sequence of number of numerical semigroups with genus g.

Then

lim
gÑ✽

n2
g � n2

g�1

n2g�1

✏
❄

5µ → 8.

In Chapter 5, we generalize γ-hyperelliptic semigroups by considering ♣M, γq-
semigroups and proving some analogous results. We also realize that it also generalizes

numerical semigroups containing a fixed integer. In particular, we prove

Theorem 5.1. Let S be a ♣M, γq-hyperelliptic semigroup with genus g. Then

2g ➙ ♣M � 1qγ.

We also prove that, in general, this bound is sharp.

Finally, in Chapter 6, we present patterns on numerical semigroups. In par-

ticular, we study linear patterns with length two; we prove some results in order to try to

characterize the ones which are admitted by a fixed numerical semigroup. Summarizing:

Theorem 6.1. Let S be a numerical semigroup and let p♣X, Y q ✏ aX ✁ bY be a pattern

which is not admitted by S. Then either

• a ✏ b ✏ h, with h P G♣Sq.

•
c♣Sq
m♣Sq → a✁ b ➙ 1, with a and b P G♣Sq③PF ♣Sq.
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1 Basic results on numerical semigroups

A numerical semigroup S is a cofinite submonoid of N0, i.e., S is subset of N0

such that 0 P S, S is closed under addition and the complement of S in N0 is finite. For a

numerical semigroup S, there are some invariants associated to it. We present them below

as following:

• G♣Sq :✏ N0③S is the set of gaps of S,

• g♣Sq :✏ #G♣Sq is the genus of S,

• m♣Sq :✏ mints P S : s ✘ 0✉ is the multiplicity of S,

• c♣Sq :✏ mints P S : s � n P S, ❅n P N0✉ is the conductor of S,

• F ♣Sq :✏ c♣Sq ✁ 1 is the Frobenius number of S.

We also consider the set of gaps of a numerical semigroup with genus g as

tℓ1 ➔ ☎ ☎ ☎ ➔ ℓg✉. To complete our first definitions: Sg :✏ tS : g♣Sq ✏ g✉ and ng :✏ #Sg are

the set of numerical semigroups with genus g and the number of numerical semigroups

with genus g, respectively.

Throughout this chapter, we will recall some properties of numerical semigroups.

A good reference for this topic is (21) and for sake of completeness, we state proofs of the

results. We start with a well-known result:

Proposition 1.1. Let S be a numerical semigroup with genus g. Then 2g � N0 ❸ S.

Proof. If g ✏ 0, then S ✏ N0 and the lemma follows. If g ➙ 1, then there are, at least,

g non-gaps in r1, 2gs (otherwise, S would have more than g gaps). Let ρ1 ➔ ☎ ☎ ☎ ➔ ρg be

those non-gaps and suppose that there is some gap ℓ ➙ 2g. Then all the numbers ℓ ✁ ρi

are gaps (otherwise, S ◗ ♣ℓ ✁ ρiq � ρi ✏ ℓ ❘ S). Thus, S would have, at least, g � 1 gaps,

which is a contradiction. Hence, all gaps of S are lower than 2g and the result follows.

Next result proves that each number ng is finite.

Corollary 1.1. If g ➙ 1, then

ng ↕
✂

2g ✁ 2
g ✁ 1

✡
.
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Proof. Let S be a numerical semigroup with genus g ➙ 1. We know that 1 is a gap of S

and, by Proposition 1.1, all gaps of S are less than 2g. Hence there are exactly 2g ✁ 2

possibilities for other gaps of S so we choose g ✁ 1 as gaps and the result follows.

We recall that the integer part of a real number x, denoted by tx✉, is the

greatest integer which is lower than or equal to x. From this definition, if x is a real

number, then

x ✁ 1 ➔ tx✉ ↕ x.

Another consequence of Proposition 1.1 is about the generators of a numerical semigroup.

Corollary 1.2. Every numerical semigroup is finitely generated.

Proof. Let S be a numerical semigroup with genus g and write S❳r0, 2g✁1s ✏ tα1, . . . , αg✉.
We claim that Γ :✏ tα1, . . . , αg, 2g, 2g � 1, . . . , 4g ✁ 1✉ generates S. In fact, let s P S with

s ➙ 4g. Using Euclides algorithm, we rewrite s ✏ ♣k✁ 1q ☎ 2g� ℓ, where k ✏
❩

s

2g

❫
➙ 2 and

2g ↕ ℓ ↕ 4g ✁ 1. Thus, s is a linear combination of two elements of Γ and we conclude

that the finite set Γ generates S.

If S is generated by ta1, . . . , an✉, then we write S ✏ ①a1, . . . , an②. On the other

hand, given positive integers a1, . . . , an, the set ①a1, . . . , an② is a numerical semigroup if and

only if gcd♣a1, . . . , anq ✏ 1 to ensure condition on the complement of S in N0. If there is no

subset of ta1, . . . , an✉ that generates S, we say that it is the minimal set of generators. One

can prove that it is unique. The number of elements of the minimal system of generators

of a numerical semigroup S is called embedding dimension of S and it is denoted by e♣Sq.
Notice that the procedure we did in last corollary implies that a numerical semigroup with

genus g satisfies e ↕ 3g.

There are some relations between the genus of a numerical semugroup and

other invariants of it. Now, we do a brief survey:

Proposition 1.2. Let S be a numerical semigroup with genus g and conductor c. Then

g � 1 ↕ c ↕ 2g.

Proof. Proposition 1.1 ensures the upper bound, since c ↕ 2g. For computing the lower

bound, suppose that there is a numerical semigroup with conductor c and genus g satisfying

c ↕ g. Then the number of gaps of it would be, at most, g ✁ 1 and this is a contradiction.

Hence c ➙ g � 1.

Remark 1.1. In general, those bounds are sharp. In fact, Sg�1 ✏ t0, g � 1,Ñ✉ has

conductor g � 1 and genus g and Hg ✏ t0, 2, 4, . . . , 2g,Ñ✉ has conductor 2g and genus g.

The numerical semigroups Sg�1 and Hg are called ordinary semigroup with genus g and

hyperelliptic semigroup with genus g, respectively.
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Remark 1.2. Numerical semigroups with genus g and concuctor c that satisfy c ✏ 2g are

called symmetric semigroups. The ones that satisfy c ✏ 2g ✁ 1 are called pseudo-symmetric

semigroups. Notice that all hyperelliptic semigroups are symmetric semigroups, but the

converse is false. For instance, t0, 3, 4, 6,Ñ✉ has genus 3 and conductor 6, thus it is

symmetric.

Observe that the hyperelliptic semigroup with genus g can be written as

①2, 2g � 1② and t0, 3, 4, 6,Ñ✉ can be written as ①3, 4②; both of them have two generators.

A well known result by Sylvester (24) is about genus and conductor of two-generated

semigroups: let a and b be coprime integers. If S ✏ ①a, b②, then c♣Sq ✏ ♣a ✁ 1q♣b ✁ 1q and

g♣Sq ✏ ♣a ✁ 1q♣b ✁ 1q④2. This proves that two-generated numerical semigroups are always

symmetric. On the other hand, ①4, 6, 7② is not a two-generated numerical semigroup, but

it is symmetric (g ✏ 5 and c ✏ 10).

There is a construction by Kunz and Waldi (16) that shows us a way to find

all symmetric semigroups containing an integer p ➙ 3. In fact, one can prove that, looking

at numerical semigroups containing an integer p as integer points of a polyhedral at Rp

(under a bijective map), symmetric semigroups are associated with points of some faces of

this polyhedral.

Next result relates the multiplicity and the genus of a numerical semigroup.

Proposition 1.3. Let S be a numerical semigroup with genus g and multiplicity m. Then

m ↕ g � 1.

Proof. If a numerical semigroup has multiplicity m and genus g satisfying m ➙ g � 2,

then the number of gaps would be, at least, g � 1 and this is a contradiction. Hence

m ↕ g � 1.

Remark 1.3. Ordinary semigroups attain maximum multiplicity.

The Apéry set of an element k of a numerical semigroup S is

Ap♣S, kq :✏ ts P S : s ✁ k ❘ S✉.

A consequence of this definition is that #Ap♣S, kq ✏ k. In fact, for each

i P r0, k✁ 1s, let si :✏ mintℓ P S : ℓ ✑ i ♣mod kq✉. Then, Ap♣S, kq ✏ ts0 ✏ 0, s1, . . . , sk✁1✉.
It is natural considering the Apéry set of the multiplicity of a numerical

semigroup. This set has m elements and tm✉ ❨ Ap♣S, mq③t0✉ generates S, since each

element s P S can be written as s ✏ k1 ☎m� i ✏ k2 ☎m� si, for some i. Thus, e ↕ m. Using

Proposition 1.3, we conclude that a numerical semigroup with genus g and embedding
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dimension e satisfies e ↕ g � 1. In fact this bound is sharp, since the ordinary semigroup

of genus g has embedding dimension g � 1; it can be written as ①g � 1, g � 2, . . . , 2g � 1②.
On the other hand, 1 is a lower bound for embedding dimension of a numerical

semigroup. The unique numerical semigroup with embedding dimension 1 is N0 and, for

each k ➙ 2, there are infinitely many numerical semigroups with embedding dimension

k (if a1, . . . , ak are coprime, then ①a1, . . . , ak② is a numerical semigroup). Looking for a

better lower bound for embedding dimension of a numerical semigroup S depending

on its invariants seems to be an interesting problem and, in fact, it is an old one. In

1978, Wilf (28) conjectured that F ♣Sq � 1 ↕ e♣Sqn♣Sq, for every numerical semigroup

S, where n♣Sq ✏ #S ❳ r0, F ♣Sqs. It can be written as e♣Sq ➙ F ♣Sq � 1
F ♣Sq � 1 ✁ g♣Sq , since

n♣Sq ✏ F ♣Sq � 1✁ g♣Sq. Several authors investigated this problem, giving partial answers,

but it remains as an open problem, up to now.

Bras-Amorós (5) introduced the notion of ordinarization transform of a nu-

merical semigroup. Let S be a non-ordinary semigroup with Frobenius number F ♣Sq
and multiplicity m♣Sq. The ordinarization transform of S is the numerical semigroup

S ✶ ✏ tF ♣Sq✉❨S③tm♣Sq✉ which has also genus g. For example, if S ✏ N0③t1, 2, 3, 6, 7✉, then

S ✶ ✏ N0③t1, 2, 3, 4, 6✉, since F ♣Sq ✏ 7 and m♣Sq ✏ 4. Clearly, if we make this operation

several times, we obtain an ordinary semigroup. Hence, for a fixed S, we can consider the

least number r♣Sq of such operations we should do to obtain an ordinary semigroup. This

number is called ordinarization number of S. Naturally, the ordinarization number of an

ordinary semigroup is 0. More precisely:

Definition 1.1. Let Sg be the set of all numerical semigroups with genus g and let Sg�1

be the ordinary semigroup with genus g. Consider the map:

T : Sg③tSg�1✉ Ñ Sg

S ÞÑ ♣S ❨ tF ♣Sq✉q③tm♣Sq✉,
The image T♣Sq is the ordinarization tranform of S and the integer r♣Sq :✏ mintr P N :

Tr♣Sq ✏ Sg�1✉ is the ordinarization number of S. Naturally, r♣Sg�1q :✏ 0.

In that paper, she proved that

Proposition 1.4. (5, Lemma 2) Let S be a numerical semigroup with genus g and

ordinarization number r. Then r ↕
❨g

2

❪
.

Proof. We recall that an ordinary semigroup has multiplicity g � 1. Writing S ❳ r1, gs ✏
ts1 ➔ ☎ ☎ ☎ ➔ sk✉, we conclude that k is exactly the number of ordinarization of S, since all

numbers less than g must be changed with all gaps greater than g for some ordinarization

step. Hence, r ✏ k. Notice that

s1, . . . , sr, s1 � sr, . . . , sr � sr
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are 2r different non-gaps of S greater than 0 and less than 2g. Since S ❳ r1, 2gs ✏ g, we

conclude that 2r ↕ g. Thus, r ↕
❨g

2

❪
(because r is an integer).

Remark 1.4. (5, Lemma 4) This bound is sharp, since the hyperelliptic semigroup with

genus g has ordinarization number r ✏
❨g

2

❪
.

The so called semigroup tree is an useful combinatorial object in this theory.

First evidences for it are (20) and (22). In 2009, Bras-Amorós (4) introduced formally the

semigroup tree. Each numerical semigroup is represented once and the construction is

inductive. This representation is interesting, since it splits numerical semigroups by genus

in each depth.

Here, we give an idea of its construction, following (4), where the set of minimal

generators and Frobenius number of a numerical semigroup play an important role. The root

of this tree is N0, which is the unique numerical semigroup of genus 0 and can be written as

①1②. The unique generator of this numerical semigroup is 1 and it is greater than Frobenius

number ✁1 (it is a convention). For next depth, we take out 1 of numerical semigroup,

creating the semigroup ①2, 3②. The Frobenius number of this numerical semigroup is 1

and all minimal generators are greater than 1. By taking out 2, we obtain the numerical

semigroup ①3, 4, 5② and by taking out 3, we obtain the numerical semigroup ①2, 5②. We can

do this procedure as many times as we want. One can contruct all numerical semigroups

with genus up to 4.

①1②
1

①2, 3②
2

①3, 4, 5②
3

①2, 5②
3

①4, 5, 6, 7②
4

①3, 5, 7②

5

①3, 4②

5

①2, 7②
4

①5, 6, 7, 8, 9②
5

①4, 6, 7, 9②
6

①4, 5, 7②
7

①4, 5, 6②
5

①3, 7, 8②

7

①3, 5②
7

①2, 9②
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2 Counting numerical semigroups by genus

and even gaps

In this chapter, we deal with Question 1 by taking into consideration the effect

of even gaps on the structure of numerical semigroups (cf (27)). Thus we use γ-hyperelliptic

semigroups, which simply are numerical semigroups with γ even gaps. This terminology

comes from theory of double covering (cf (25)). Some examples are ①2, 2g � 1②, which are

the only 0-hyperelliptic semigroups (also named hyperelliptic) and N0③t1, 2✉, which is

1-hyperelliptic. Notice that a γ-hyperelliptic semigroup with genus g satisfies γ ↕ g. For g

and γ non-negative integers, we set

Sγ♣gq :✏ tS P Sg : γ♣Sq ✏ γ✉ and Nγ♣gq :✏ #Sγ♣gq.

Each numerical semigroup S with genus g has a number of even gaps that lies

in r0, gs ❳ Z. Then we can write

Sg :✏
g↕

γ✏0

Sγ♣gq and ng ✏
g➳

γ✏0

Nγ♣gq. (2.1)

By using this approach, finding out precise values or even lower and upper

bound for Nγ♣gq are of interest. In this chapter we prove the following:

Theorem 2.1. Let g ➙ 3γ. Then Nγ♣gq ✏ Nγ♣3γq.

This result states that, for a fixed γ, the sequence ♣Nγ♣gqqg is constant for

g ➙ 3γ and it is equal to Nγ♣3γq. Another result we prove in this chapter is:

Theorem 2.2. Let g ➔ 3γ. Then Nγ♣gq ➔ Nγ♣3γq.

2.1 On γ-hyperelliptic semigroups

In this section, we recall some important results about γ-hyperelliptic semi-

groups. Some of them can be found in (27), where there is a geometric interest; see also (18)

and (19). Here, we are interested only in arithmetic properties of numerical semigroups.

Lemma 2.1. (27, Lemma 2.1) Let S be a γ-hyperelliptic semigroup with genus g. Then

2g ➙ 3γ.
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Proof. If g ➙ 2γ, then 2g ➙ 4γ ➙ 3γ and the lemma follows. Assume g ↕ 2γ ✁ 1. The

numerical semigroup S has γ even gaps and g ✁ γ odd gaps in r1, 2g ✁ 1s. Hence, S has

g ✁ γ even non-gaps and γ odd non-gaps in r1, 2gs. Let q1 ➔ ☎ ☎ ☎ ➔ qγ be the even gaps of

S and let rγ ➔ ☎ ☎ ☎ ➔ r1 be the odd non-gaps in S ❳ r1, 2gs. Notice that qγ ✁ ri ❘ S, for all

i P t1, . . . , γ✉ (otherwise, S ◗ ri � ♣qγ ✁ riq ✏ qγ ❘ S). For each i such that qγ ✁ ri ➙ 1, all

numbers qγ ✁ ri are odd gaps.

Claim. qγ ↕ 4g ✁ 4γ.

Suppose qγ ➙ 4g ✁ 4γ � 2. Since ri ↕ 2g ✁ 2i � 1, then for all i ➙ 2γ ✁ g ♣➙ 1q,

qγ ✁ ri ➙ ♣4g ✁ 4γ � 2q ✁ ♣2g ✁ 2i � 1q
➙ 2g ✁ 4γ � 1 � 2i

➙ 2g ✁ 4γ � 1 � 4γ ✁ 2g ✏ 1.

We proved that all numbers qγ ✁ r2γ✁g ➔ ☎ ☎ ☎ ➔ qγ ✁ rγ are different gaps of S, so there

are, at least, γ ✁ ♣2γ ✁ gq � 1 ✏ g ✁ γ � 1 different odd gaps in S ❳ r1, 2gs, which is a

contradiction. Hence, qγ ↕ 4g ✁ 4γ.

There are 2g ✁ 2γ even numbers in r2, 4g ✁ 4γs, which γ of them are gaps.

Hence, 2g ✁ 2γ ➙ γ and we conclude that 2g ➙ 3γ.

Remark 2.1. If γ is even, then N0③♣t2, 4, . . . , 2γ✉ ❨ t1, 3, . . . , γ ✁ 1✉q is a numerical

semigroup with genus g ✏ γ � γ

2
, i.e, 2g ✏ 3γ. This proves that the bound found in Lemma

2.1 is sharp. All those numerical semigroups are of maximal embedding dimension and

they can be described as ①γ � 1, γ � 3, . . . , 3γ � 1② (see example 2.1 for uniqueness).

Using Lemma 2.1, we can rewrite (2.1) as

Sg :✏
t 2g

3
✉↕

γ✏0

Sγ♣gq and ng ✏
t 2g

3
✉➳

γ✏0

Nγ♣gq.

Definition 2.1. The one half of a numerical semigroup S is S④2 :✏ ts P N0 : 2s P S✉.

Proposition 2.1. Let S be a γ-hyperelliptic semigroup. Then 4γ � 2N0 ❸ S.

Proof. We prove that S④2 is a numerical semigroup with genus γ:

• S④2 ❸ N0 by definition;

• 0 P S④2: it follows from the fact that 0 ✏ 2 ☎ 0;

• a, b P S④2 ñ a � b P S④2: by definition 2a and 2b P S. Since S is a numerical

semigroup, then 2a � 2b ✏ 2♣a � bq P S and it proves that a � b P S④2.
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• N0③♣S④2q has γ elements: notice that N0③♣S④2q ✏ tℓ P N0 : 2ℓ ❘ S✉. Those elements

are the even gaps of S and we know that there are exactly γ of them.

By Lemma 1.1, 2γ � N0 ❸ S④2. Then 4γ � 2N0 ❸ 2♣S④2q ⑨ S and the result follows.

From now on, we assume g and γ non-negative integers such that 2g ➙ 3γ. We

have a natural parametrization of the family Sγ♣gq onto Sγ given by

xg : Sγ♣gq Ñ Sγ

S ÞÑ S④2

which is a surjective map. In fact, given T P Sγ, we have xg♣Sq ✏ T , for

S :✏ 2T ❨ t2g ✁ 2γ � i : i P N✉ P Sγ♣gq,

being 2T :✏ t2t : t P T ✉. If g ✏ 3γ, we denote x :✏ x3γ.

Remark 2.2. Indeed, any S P Sγ♣gq can be uniquely written as

S ✏ 2♣S④2q ❨ toγ ➔ . . . ➔ o1✉ ❨ S2g

where oγ, . . . , o1 are certain odd numbers in r1, 2g ✁ 1s.

Remark 2.3. For g and γ non-negative integers, we can write

Nγ♣gq ✏
➳

TPSγ

#x✁1
g ♣T q.

Let S P Sγ♣gq. Remark 2.2 tell us that there is natural way to obtain the even

gaps (and non-gaps) of S from a numerical semigroup T P Sγ : if t2q1, . . . , 2qγ✉ is the set of

even gaps of S, then it can be obtained by duplicating the gaps from N0③tq1, . . . , qγ✉ P Sγ .

Moreover, T is uniquely determined (T ✏ S④2).

Reciprocally, given T P Sγ we can obtain a γ-hyperelliptic semigroup S of some

genus g by duplicating the gaps of T and making a suitable choice on the odd numbers that

are gaps or non-gaps of S. Notice that not all choices for odd integers return numerical

semigroups (some sets are not closed under addition) and in general S is not uniquely

determined (in general, the fiber x✁1
g ♣T q has more than one element).

Now we look for conditions that a γ-hyperelliptic semigroup with some genus

g ➙ 3γ④2 has to attain. In fact, let T P Sγ and consider all sets

S ✏ 2T ❨ toγ ➔ . . . ➔ o1✉ ❨ S2g,

where the numbers oi are odd integers in r1, 2g ✁ 1s.
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of Lemma 2.1, we have that the largest even gap of S is at most 4g ✁ 4γ and there are

2g ✁ 3γ even numbers in r2, 4g ✁ 4γs ❳ S. Hence, oγ � o4γ✁2g is an even non-gap of S

greater than or equal to 4g ✁ 4γ � 2. Also, for all i P t1, . . . , 4γ ✁ 2g✉, oi ↕ 2g ✁ ♣2i ✁ 1q.
Hence, oγ ➙ ♣4g ✁ 4γ � 2q ✁ ♣2g ✁ 2♣4γ ✁ 2gq � 1q ✏ 4γ ✁ 2g � 1.

Remark 2.4. We can rewrite the bounds of Lemma 2.2 as ⑤2g✁4γ⑤�1 ↕ O ↕ 2g✁2γ�1.

Example 2.1. We study γ-hyperelliptic semigroups S with genus g that attain extremal

cases for the inequality 2g ➙ 3γ. In particular, we prove that Nγ♣3γ④2q ✏ 1, if γ is even

and Nγ♣♣3γ � 1q④2q ✏ ♣γ � 3q④2 if γ is odd (see Tables 1, 2 and 3 for more details).

Case γ even. We look for 2g ✏ 3γ. If γ ✏ 0, then g ✏ 0 and the numerical semigroup

is N0. By Remark 2.4, we conclude that γ � 1 ↕ O ↕ γ � 1, i.e., O ✏ γ � 1. In the

interval rγ � 1, 2g ✁ 1s ✏ rγ � 1, 3γ ✁ 1s, there are γ odd numbers. Hence, we conclude

that ♣oγ, . . . , o1q ✏ ♣γ � 1, . . . , 3γ ✁ 1q. By closed under addition property of numerical

semigroups, we conclude that t2γ � 2i : i P N✉ ⑨ S and the set of even gaps of S is

t2, . . . , 2γ✉. Hence there is exactly one γ-hyperelliptic semigroup with genus 3γ④2.

Case γ odd. We look for 2g ✏ 3γ � 1. By Remark 2.4, we conclude that γ ↕ O ↕ γ � 2,

i.e., O ✏ γ or O ✏ γ � 2. By Claim in proof of Lemma 2.1, the largest even gap is at most

4g ✁ 4γ ✏ 2γ � 2. Thus, t2γ � 2i � 2 : i P N✉ ⑨ S and the γ even gaps of S are elements

of t2, . . . , 2γ � 2✉, i.e., there is exactly one even non-gap in that set.

Case O ✏ γ � 2. The interval rγ � 2, 2g ✁ 1s ✏ rγ � 2, 3γs contains exactly γ odd

numbers. Thus, ♣oγ, . . . , o1q ✏ ♣γ � 2, . . . , 3γq. The possibilities for that even non-gap are

γ � 3, γ � 5, . . . , 2γ � 2 (if we choose some x ↕ γ � 1, then 2x ↕ 2γ � 2 would lies in S

and S would not be γ-hyperelliptic). Hence, there are exactly ♣γ � 1q④2 γ-hyperelliptic

semigroup with genus ♣3γ � 1q④2 and O ✏ γ � 2.

Case O ✏ γ. In this case, we conlude that 2γ P S. Hence, the set of even gaps is

t2, . . . , 2γ ✁ 2, 2γ � 2✉. If γ � 2 is an odd non-gap, then γ � ♣γ � 2q ✏ 2γ � 2 is a non-gap

and this is a contradiction. Hence, ♣oγ, . . . , o1q ✏ ♣γ, γ � 4, . . . , 3γq and there is exactly

one γ-hyperelliptic semigroup with genus ♣3γ � 1q④2 and O ✏ γ.

2.2 Proofs of Theorems 2.1 and 2.2

We introduce a definition we use in this section.

Definition 2.2. Let t P Z. The t-translation of a numerical semigroup S is the map

Φt : S Ñ Z defined by

s ÞÑ
✩✫
✪s if s ✑ 0 ♣mod 2q ,

s ✁ 2t otherwise .
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Before proving Theorem 2.1, we explain why we have to consider g ➙ 3γ.

Observe the Figure 1: in that case, Lemma 2.2 implies that O ➙ 2γ � 1 → qγ ➙ qi, for all i

and there is no situations like qi ✏ O � 2qj or qi ✏ O � 2tj. If qi ✏ O � 2qj, then a green

point O � 2qj on Figure 2 is automatically a red point, changing the global configuration.

If qi ✏ O� 2tj, then a blue point O� 2tj on Figure 2 is also a red point qi, which leads to

a contradiction. Also, all sum of odd non-gaps lies in the numerical semigroup, since, for

O1 and O2 odd non-gaps, O1 �O2 ➙ 2O ➙ 4γ � 2.

Theorem 2.1. Let g ➙ 3γ. Then Nγ♣gq ✏ Nγ♣3γq.

Proof. We only have to prove that map Φ̃ defined above is surjective. For a given T P Sγ♣3γq,
natural candidate for pre-image of it under Φ̃ is S, which is obtained from T by a ♣✁tq-
translation (t :✏ g ✁ 3γ ➙ 0). Notice that:

• g♣Sq ✏ g♣S♣3γqq � t ✏ 3γ � ♣g ✁ 3γq ✏ g;

• γ♣Sq ✏ γ, since γ♣S♣3γqq ✏ γ;

• S is closed under addition, since T is closed under addition and the first odd integer

in S is greater than or equal to the first odd integer in T .

Thus, S P Sγ♣3γq.

For a given g, we can rewrite ng and ng�1 as

ng ✏
t g

3
✉➳

γ✏0

Nγ♣gq �
t 2g

3
✉➳

γ✏t g

3
✉�1

Nγ♣gq

and

ng�1 ✏
t g

3
✉➳

γ✏0

Nγ♣g � 1q �
t 2♣g�1q

3
✉➳

γ✏t g

3
✉�1

Nγ♣g � 1q.

Theorem 2.1 states that Nγ♣gq ✏ Nγ♣g � 1q, for γ ↕ g

3
. Then we have the following

equivalence to Question 1.

Corollary 2.1. ng ↕ ng�1 if, and only if,

t 2g

3
✉➳

γ✏t g

3
✉�1

Nγ♣gq ↕
t 2♣g�1q

3
✉➳

γ✏t g

3
✉�1

Nγ♣g � 1q.

By using GAP (13) and the package NumericalSgps (10), we computed, with

help of Maria Bras-Amorós and Pedro A. García-Sánchez, a few values of Nγ♣gq. We thank

them for their valuable contribution.
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g γ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ng

0 1 1
1 1 1
2 1 1 2
3 1 2 1 4
4 1 2 4 7
5 1 2 6 3 12
6 1 2 7 12 1 23
7 1 2 7 19 10 39
8 1 2 7 21 32 4 67
9 1 2 7 23 51 33 1 118
10 1 2 7 23 62 91 18 204
11 1 2 7 23 65 142 98 5 343
12 1 2 7 23 68 174 257 59 1 592
13 1 2 7 23 68 192 412 271 25 1001
14 1 2 7 23 68 197 514 678 197 6 1693
15 1 2 7 23 68 200 570 1100 793 92 1 2857
16 1 2 7 23 68 200 602 1409 1855 606 33 4806
17 1 2 7 23 68 200 609 1595 2999 2191 343 7 8045
18 1 2 7 23 68 200 615 1693 3890 4993 1836 138 1 13467
19 1 2 7 23 68 200 615 1744 4472 8126 6033 1130 43 22464
20 1 2 7 23 68 200 615 1756 4797 10723 13317 5335 544 8 37396
21 1 2 7 23 68 200 615 1764 4959 12528 21764 16447 3624 191 1 62194
22 1 2 7 23 68 200 615 1764 5034 13616 29209 35392 15365 1897 53 103246
23 1 2 7 23 68 200 615 1764 5053 14191 34628 57925 44575 11098 804 9 170963
24 1 2 7 23 68 200 615 1764 5060 14469 38096 78602 93919 43262 6485 254 1 282828

Table 1 – A few values for Nγ♣gq (part 1)
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g γ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
25 1 2 7 23 68 200 615 1764 5060 14589 40098 94469 154077 119669 33525 3013 64
26 1 2 7 23 68 200 615 1764 5060 14611 41086 105074 211576 247756 120881 20945 1153
27 1 2 7 23 68 200 615 1764 5060 14626 41541 111426 257734 407238 320649 98104 10873
28 1 2 7 23 68 200 615 1764 5060 14626 41725 114889 290192 565331 652952 ? ?
29 1 2 7 23 68 200 615 1764 5060 14626 41765 116546 310511 697502 1073955 853254 ?
30 1 2 7 23 68 200 615 1764 5060 14626 41785 117238 322103 794314 1504305 1714253 ?
31 1 2 7 23 68 200 615 1764 5060 14626 41785 117497 328098 858020 1877733 2822586 2264348
32 1 2 7 23 68 200 615 1764 5060 14626 41785 117555 330854 895949 2162304 3988248 4493022
33 1 2 7 23 68 200 615 1764 5060 14626 41785 117573 331977 916624 2356790 5034455 7403032
34 1 2 7 23 68 200 615 1764 5060 14626 41785 117573 332373 926905 2477817 5861266 10542852
35 1 2 7 23 68 200 615 1764 5060 14626 41785 117573 332439 931437 2546526 6448122 13450037

Table 2 – A few values for Nγ♣gq (part 2)
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g γ 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 ng

25 467224
26 10 770832
27 335 1 1270267
28 ? ? 2091030
29 ? ? 11 3437839
30 ? ? ? 1 5646773
31 ? ? ? ? 9266788
32 ? ? ? ? 12 15195070
33 5987936 ? ? ? ? 1 24896206
34 11753434 ? ? ? ? ? 40761087
35 19377030 15796993 ? ? ? ? 13 66687201

Table 3 – A few values for Nγ♣gq (part 3)
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Using this table, we conjecture a stronger condition in relation to any of the

equivalences in last Corollary.

Conjecture 2.1. Let γ be a non-negative integer. Then

Nγ♣gq ↕ Nγ♣g � 1q, ❅g.

Notice that Theorem 2.1 ensures that, when γ is fixed, then Conjecture 2.1 is

true for all g ➙ 3γ. Now we prove Theorem 2.2.

Theorem 2.2. Let g ➔ 3γ. Then Nγ♣gq ➔ Nγ♣3γq.

Proof. If γ ✏ 0 or 1, then first two columns on Table 1 ensure the condition. Suppose

γ ➙ 2. We prove that Φ̃ is not surjective. Let

T ✏ N0③♣t2, 6, . . . , 4γ ✁ 2✉ ❨ t1, 3, . . . , 2γ ✁ 1, 2γ � 3, 2γ � 7, . . . , 6γ ✁ 1✉q P Sγ♣3γq,

which has first odd non-gap O ✏ 2γ � 1 and 4γ ✁ 2 as a gap that is greater than or equal

to 6. Suppose that there is S P Sγ♣gq such that Φ̃♣Sq ✏ T and let t :✏ g ✁ 3γ. If g ➔ 2γ,

then 1 or 3 is the first odd number in S. If g ➙ 2γ, then O � 2t ✏ 2g ✁ 4γ � 1 is the first

odd number in S. Then✩✫
✪S ◗ 2 ☎ ♣2g ✁ 4γ � 1q ✏ 4♣g ✁ 2γq � 2 ❘ S, if 2γ ↕ g ➔ 3γ

S ◗ 1 � 1 ✏ 2 ❘ S or S ◗ 3 � 3 ✏ 6 ❘ S, if 3γ④2 ↕ g ➔ 2γ

and this is a contradiction. Hence, there is no S P Sγ♣gq such that Φ̃♣Sq ✏ T .

To end up this section, we prove a result about symmetric semigroups. At first,

it will not contribute for solving Conjecture 2.1, but it is an interesting result in itself.

Proposition 2.4. Let g ➙ 3γ. Then there are, at least, nγ γ-hyperelliptic semigroups with

genus g which are symmetric.

Proof. Let T P Sγ and write T ✏ N0③tq1, . . . , qγ✉. We prove that if

S :✏ 2T ❨ t2g ✁ 1 ✁ 2t : t P Z③T ✉,

then S P Sγ♣gq and it is symmetric.

• S has γ even gaps, since 2T ✏ 2N0③t2q1, . . . , 2qγ✉.
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• #♣N0③Sq ✏ g:

We showed that S has γ even gaps. We have to prove that S has g ✁ γ odd gaps.

Since Z③T ✏ t. . . ,✁2,✁1, q1, . . . , qγ✉, then odd gaps of S is t2g ✁ 1 ✁ 2qγ, . . . , 2g ✁
1 ✁ 2q1, 2g � 1,Ñ✉. Notice that 2g ✁ 1 ✁ 2qγ ➙ 2γ � 1 ➙ 1, since g ➙ 3γ and

qγ ↕ 2γ ✁ 1 (here, it would be enought g ➙ 2γ). Then the set of odd gaps of S is

♣r1, 2g ✁ 1s ❳ ♣2Z� 1qq③t2g ✁ 1 ✁ 2qγ, . . . , 2g ✁ 1 ✁ 2q1✉, which has g ✁ γ elements.

• S is a numerical semigroup:

We already proved that N0③S is a finite set. Since 0 P T , then 0 ✏ 2 ☎ 0 P 2T ⑨ S. We

show that S is closed under addition. Let 2t1 and 2t2, with t1 and t2 P T , be even

elements of S. Then 2t1 � 2t2 ✏ 2♣t1 � t2q P S, since T is closed under addition. Let

2t1 and 2g ✁ 1 ✁ 2t2, with t1 P T and t2 P Z③T , be an even element of S and an odd

element of S, respectively. Then a :✏ 2t1�♣2g✁1✁2t2q ✏ 2g✁1✁2♣t2✁ t1q. Notice

that t2 ✁ t1 P Z③T . Otherwise, T ◗ ♣t2 ✁ t1q � t1 ✏ t2 ❘ T . Hence a P S. Finally, let

2g ✁ 1 ✁ 2t1 and 2g ✁ 1 ✁ 2t2, with t1 and t2 P Z③T , be odd elements of S. Then

b :✏ ♣2g ✁ 1✁ 2t1q � ♣2g ✁ 1✁ 2t2q ✏ 2♣2g ✁ ♣t1 � t2q ✁ 1q. Since t1, t2 ↕ 2γ ✁ 1 and

g ➙ 3γ, then 2g ✁ ♣t1 � t2q ✁ 1 ➙ 2γ � 1. Hence, b ➙ 4γ � 2 and b P S.

• S is symmetric:

We proved that the odd part of S is

t2g ✁ 1 ✁ 2qγ ➔ . . . ➔ 2g ✁ 1 ✁ 2q1 ➔ 2g � 1,Ñ✉.

Since q1 → 0, then 2g ✁ 1 ❘ S. Hence, Frobenius number of S is 2g ✁ 1 and we

conclude that S is symmetric.

There are exactly nγ possibilities for T under this construction, hence the result

follows.

Remark 2.5. In this construction, we chose oi ✏ 2g ✁ 1 ✁ 2qi.

Corollary 2.2. Let g and γ be non-negative integers such that g ➙ 3γ. Then Nγ♣gq ➙ nγ.

Proof. By Remark 2.3 and Proposition 2.4, we have

Nγ♣gq ✏
➳

TPSγ

#x✁1
g ♣T q ➙

➳
TPSγ

1 ✏ nγ.
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3 On the sequence ♣Nγ♣3γqq

Bras-Amorós (5) introduced the ordinarization transform of a numerical semi-

group. By making some calculations, she obtained a sequence ♣fγq. After some nice

discussions with Maria Bras-Amorós, we prove the following:

Theorem 3.1. Let γ be a non-negative integer. Then fγ ✏ Nγ♣3γq.

At first, these sequences do not seem to have a closely relation. We also prove

an asymptotic result for the sequence fγ:

Theorem 3.2. Let ǫ → 0. Then

lim
γÑ✽

fγ

♣2ϕ� ǫqγ ✏ 0 and lim
γÑ✽

fγ

2γ
✏ ✽.

Finally, we prove two conditional results based on the following conjecture we

did on the sequence ♣fγq.

Conjecture 3.1. There is a positive constant C such that lim
γÑ✽

fγ

n2γ

✏ C.

Theorem 3.3. If Conjecture 3.1 holds, then lim
γÑ✽

fγ

fγ✁1

✏ ϕ2.

Theorem 3.4. If lim
γÑ✽

fγ

fγ✁1

✏ ϕ2, then lim
γÑ✽

fγ�1➦γ

i✏0 fi

✏ ϕ.

3.1 A relation with Bras-Amorós’ sequence

Bras-Amorós (5) proved that if g and r are integers such that
g � 2

3
↕ r ↕

❨g

2

❪
,

then the number of numerical semigroups with genus g and ordinarization number r

depends only on γ :✏
❨g

2

❪
✁ r. She constructed a sequence ♣fγq that returns this number

of numerical semigroups. In this section, we prove that her sequence ♣fγq and our sequence

♣Nγ♣3γqq are the same. Before that, we recall some definitions.

Definition 3.1. (5, p. 2514) Let S be a numerical semigroup.

♣1q A finite set B ❸ N0 is called S-closed if for b P B and s P S we have either b� s P B

or b� s → max♣Bq.

♣2q We let C♣S, iq denote the collection of S-closed sets B such that 0 P B and #B ✏ i.
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Observe that if B P C♣S, iq, then we can write B ✏ t0 ✏ b0 ➔ ☎ ☎ ☎ ➔ bi✁1 ✏
max B✉.

Proposition 3.1. Let S P Sγ. If B P C♣S, γ � 1q, then max B ↕ 2γ.

Proof. Suppose that max B → 2γ. Since 0 P B, then, for all s P S, we have 0� s ✏ s P B

or 0� s ✏ s → 2γ. Hence, S ❳ r0, 2γs ❸ B③tmax B✉. Notice that #♣B③tmax B✉q ✏ γ and

#♣S ❳ r0, 2γsq ✏ γ � 1, since g♣Sq ✏ γ and this is a contradiction.

If γ in a non-negative integer, then fγ is defined as

fγ :✏
➳

SPSγ

#C♣S, γ � 1q.

Now we are ready to conclude that the sequences coincide.

Theorem 3.1. Let γ be a non-negative integer. Then fγ ✏ Nγ♣3γq.

Proof. For a fixed γ, let Sγ ✏
nγ↕
i✏1

Ti, where each numerical semigroup with genus γ is

represented by exactly one Ti. We can write

fγ ✏ #C♣T1, γ � 1q � ☎ ☎ ☎ � #C♣Tnγ
, γ � 1q,

and, by Remark 2.3,

Nγ♣3γq ✏ #x✁1♣T1q � ☎ ☎ ☎ � #x✁1♣Tnγ
q.

We prove that #C♣Ti, γ � 1q ✏ #x✁1♣Tiq, for each i P t1, . . . , nγ✉ and the result follows.

Following Bras-Amorós construction, in (5, Theorem 13), define, for each

i P t1, . . . , nγ✉,

ϕi : C♣Ti, γ � 1q ÝÑ x✁1♣Tiq
B ✏ t0 ✏ b0 ➔ ☎ ☎ ☎ ➔ bγ✉ ÞÝÑ 2Ti ❨ t2b ✁ 2bγ � 6γ � 1 : b P B✉ ❨ ♣6γ � 3� N0q.

Now we prove that ϕi is a bijection.

• ϕi is injective:

Clearly, for B1 ✘ B2, we have ϕi♣B1q ✘ ϕi♣B2q.

• ϕi is well defined:

✍ ϕi♣Bq has γ even gaps, since Ti has genus γ and all even gaps of ϕi♣Bq lies in

2Ti.
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✍ ϕi♣Bq has 2γ odd gaps:

First of all, notice that, from Proposition 3.1

2b ✁ 2bγ � 6γ � 1 ➙ 2 ☎ 0 ✁ 2 ☎ 2γ � 6γ � 1 ✏ 2γ � 1.

Hence, condition on the first odd integer in ϕi♣Bq is verified (this proves that

for g ➔ 3γ the construction is not good). There are 3γ � 1 odd numbers in

r1, 6γ � 1s, which γ � 1 belongs to B. Hence, S has 2γ odd gaps.

✍ ϕi♣Bq is closed under addition:

We already know that even part of ϕi♣Bq is closed under addition, since Ti

is a numerical semigroup. Let 2t be an even number in ϕi♣Bq (t P Ti) and

2b✁ 2bγ � 6γ � 1 and 2b✶ ✁ 2bγ � 6γ � 1 be odd numbers in S (b, b✶ P B). Then

- a :✏ 2t � ♣2b ✁ 2bγ � 6γ � 1q ✏ 2♣t � bq ✁ 2bγ � 6γ � 1. Since t � b P B or

t � b ➙ bγ, we conclude that a P t2b ✁ 2bγ � 6γ � 1 : b P B✉ ⑨ ϕi♣Bq or

a ➙ 6γ � 1 (then a P ϕi♣Bq).
- c :✏ ♣2b✁ 2bγ � 6γ � 1q � ♣2b✶✁ 2bγ � 6γ � 1q ✏ 2♣b� b✶q ✁ 4bγ � 12γ � 2 ➙

2 ☎ 0 ✁ 8γ � 12γ � 2 ✏ 4γ � 2. Since Ti has genus γ, then, by Proposition

2.1, c P ϕi♣Bq.

• ϕi is surjective:

Let S P x✁1♣T q. Since the genus of S is 3γ, we conclude that ♣6γ � 1q � N0 ❸ S.

There are 3γ odd numbers in r1, 6γ ✁ 1s, which γ are non-gaps and 2γ are gaps.

Hence, we can write S ✏ 2Ti ❨ tO0 ➔ . . . ➔ Oγ ✏ 6γ � 1✉ ❨ ♣6γ � 3�N0q. We prove

that S ✏ ϕi♣Bq, where

B ✏
✧

Oi ✁ O0

2
: i P t0, . . . , γ✉

✯
.

Notice that ϕi♣Bq is equal to

2Ti ❨
✧

2 ☎ Oi ✁ O0

2
✁ 2 ☎ Oγ ✁ O0

2
� 6γ � 1 : i P t0, . . . , γ✉

✯
❨ ♣6γ � 3 � N0q

✏ 2Ti ❨ t♣Oi ✁ O0q ✁ ♣6γ � 1 ✁ O0q � 6γ � 1 : i P t0, . . . , γ✉✉ ❨ ♣6γ � 3 � N0q
✏ 2Ti ❨ tOi : i P t0, . . . , γ✉✉ ❨ ♣6γ � 3 � N0q ✏ S.

To finish, we prove that B P C♣Ti, γ � 1q. In fact, ♣O0 ✁ O0q④2 ✏ 0 P B and

#B ✏ #t0, . . . , γ✉ ✏ γ � 1. Also, B is a Ti-closed set: we prove that bk � t P B or

bk � t → bγ, where bk ✏ ♣Ok ✁ O0q④2 P B and t P Ti.

Ok ✁ O0

2
� t P B ô ❉j such that

Ok ✁ O0

2
� t ✏ Oj ✁ O0

2
ô Ok � 2t ✏ Oj

and
Ok ✁ O0

2
� t → Oγ ✁ O0

2
ô Ok � 2t → Oγ ✏ 6γ � 1.
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Since S is closed under addition, we conclude that one of situations above occur.

Hence, B is a Ti-closed set.

3.2 Bounds for fγ

In Section 2.2, we proved that Nγ♣gq is constant for g ➙ 3γ and it is equal to

Nγ♣3γq. In last section, we proved that fγ ✏ Nγ♣3γq, where ♣fγq is the sequence introduced

by Bras-Amorós (5). In this section, we are interested in finding bounds for the sequence

fγ (in sense of Nγ♣3γq definition), specially to estimate its asymptotic behaviour.

We recall that x : Sγ♣3γq Ñ Sγ, S ÞÑ S④2, is a surjective map and computing

#x✁1♣T q, for each T , is enough to calculate fγ, since

fγ ✏
➳

TPSγ

#x✁1♣T q. (3.1)

Let S P Sγ♣3γq. There are T P Sγ and oγ ➔ ☎ ☎ ☎ ➔ o1 odd integers in r2γ �
1, 6γ ✁ 1s such that

S ✏ 2T ❨ toγ ➔ ☎ ☎ ☎ ➔ o1✉ ❨ S6γ . (3.2)

Question 3.1. Which sets given by (3.2), with T P Sγ and oγ ➔ ☎ ☎ ☎ ➔ o1 odd integers in

r2γ � 1, 6γ ✁ 1s, are in fact numerical semigroups?

Proposition 3.2. A necessary and sufficient condition on S given in (3.2) so it lies in

Sγ♣3γq is checking the properties 2t � oi ✏ oj or 2t � oi ➙ 6γ � 1, for all t P T and

i, j P t1, . . . , γ✉.

Proof. By construction, S ❸ N0, 0 P S, #♣N0③Sq ✏ 3γ, #♣2N0③2T q ✏ γ, 2T � 2T ❸ 2T

and oi � oj ➙ 2oγ ➙ 4γ � 2 (thus, oi � oj P 2T ). Hence, a necessary and sufficient condition

so S P Sγ♣3γq is that 2T � toj : j P t1, . . . , γ✉✉ ❸ S and it is equivalent to 2t � oi ✏ oj or

2t � oi ➙ 6γ � 1, for all t P T and i, j P t1, . . . , γ✉.

Remark 3.1. In our opinion, Proposition 3.2 is the main connection between the sequences

♣Nγ♣3γqq and ♣fγq.

If S P Sγ♣3γq given in (3.2), then, by Lemma 2.2, 2γ � 1 ↕ oγ ↕ 4γ � 1. Hence,

we can write oγ ✏ 2γ � 2i � 1, for some i P t0, . . . , γ✉. It is natural to define, for each i,

x✁1♣T iq :✏ tS P x✁1♣T q : oγ♣Sq ✏ 2γ � 2i � 1✉,
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and we can rewrite equation (3.1) as

fγ ✏
➳

TPSγ

γ➳
i✏0

#x✁1♣T iq. (3.3)

Proposition 3.3. Let T P Sγ. Then #x✁1♣T iq ➙ 1, for all i P t0, . . . , γ✉.

Proof. For T P Sγ and oγ ✏ 2γ � 2i � 1, rewrite the set S as

S ✏ 2T ❨ toγ � 2t : t P T and t ↕ 2γ ✁ i ✁ 1✉ ❨ X ❨ S6γ .

If X has the largest odd integers of the set r2γ�1, 6γ✁1s③toγ�2t : t P T and t ↕ 2γ✁i✁1✉
such that #X � #toγ � 2t : t P T and t ↕ 2γ ✁ i ✁ 1✉ ✏ γ, then S P x✁1♣T iq and the the

result follows.

Corollary 3.1. Let γ be a non-negative integer. Then fγ ➙ ♣γ � 1q ☎ nγ.

Proof. By (3.3),

fγ ➙
➳

TPSγ

γ➳
i✏0

1 ✏ ♣γ � 1q ☎ nγ .

Remark 3.2. We have #x✁1♣T 0q ✏ 1 ✏ #x✁1♣T γq, for all T P Sγ.

1) Let i ✏ 0. One can easily see that

toγ ➔ ☎ ☎ ☎ ➔ o1✉ ✏ t2γ � 1 � t : t P T and t ↕ 2γ ✁ 1✉,

since #T ❳ r0, 2γ ✁ 1s ✏ γ.

2) Let i ✏ γ. One can easily see that

toγ ➔ ☎ ☎ ☎ ➔ o1✉ ✏ t4γ � 1, 4γ � 3, . . . , 6γ ✁ 1✉.

In particular, f0 ✏
➳

TPS0

1 ✏ n0 ✏ 1 and f1 ✏
➳

TPS1

2 ✏ 2n1 ✏ 2.

Now we point out other approach to Question 3.1. The interval r2γ � 1, 6γ ✁ 1s
has 2γ odd integers and we can write

r2γ � 1, 6γ ✁ 1s ❳ ♣2Z� 1q ✏ toγ ➔ ☎ ☎ ☎ ➔ o1✉ ❨ tω1 ➔ ☎ ☎ ☎ ➔ ωγ✉.

We keep the notation oγ ✏ 2γ � 2i � 1 and now we assume 1 ↕ i ↕ γ ✁ 1. By

construction, we conclude that

♣ω1, . . . , ωiq ✏ ♣2γ � 1, . . . , 2γ � 2i ✁ 1q.
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Hence, for each i P r1, γ ✁ 1s ❳ Z, we have to look for good choices for odd

integers tωi�1, ☎ ☎ ☎ , ωγ✉ in the following context: given T P Sγ, we have to check which

choices for tωi�1 ➔ . . . ➔ ωγ✉ (from the set toγ � 2q : q P G♣T q and q ↕ 2γ ✁ i ✁ 1✉, by

Proposition 3.2) such that

r2γ�1, 6γ✁1s❳♣2Z�1q③t2γ�1 ➔ ☎ ☎ ☎ ➔ 2γ�2i✁1 ➔ ωi�1 ➔ ☎ ☎ ☎ ➔ ωγ✉ ✏ toγ ➔ ☎ ☎ ☎ ➔ o1✉

gives a positive answer to Question 3.1.

At first, it gives an upper bound to #x✁1♣T iq, for all i and T .

Proposition 3.4. Let T P Sγ. Then #x✁1♣T iq ↕
✂

γ

i

✡
, for all i P t0, . . . , γ✉.

Proof. If 1 ↕ i ↕ γ ✁ 1, then #toγ � 2q : q P G♣T q and q ↕ 2γ ✁ i ✁ 1✉ ↕ #toγ � 2q : q P
G♣T q✉ ✏ γ. Thus, there are, at most,

✂
γ

γ ✁ i

✡
possibilities for choosing ω✶js. The symmetry

of binomial coefficient and Remark 3.2 complete the proof.

Corollary 3.2. Let γ be a non-negative integer. Then fγ ↕ 2γ ☎ nγ.

Proof. By (3.3),

fγ ↕
➳

TPSγ

γ➳
i✏0

✂
γ

i

✡
✏ 2γ ☎ nγ .

Putting together Corollaries 3.1 and 3.2, we obtain

Proposition 3.5. Let γ be a non-negative integer. Then

nγ ☎ ♣γ � 1q ↕ fγ ↕ nγ ☎ 2γ.

Corollary 3.3. Let ϕ be the golden ratio. Then

1) lim
γÑ✽

fγ

ϕγ
✏ ✽;

2) for ǫ → 0, lim
γÑ✽

fγ

♣2ϕ � ǫqγ
✏ 0.

Proof. We recall that (29, Theorem 1), lim
γÑ✽

nγ

ϕγ
is a real number µ.

1) By Proposition 3.5,
fγ

ϕγ
➙ nγ

ϕγ
☎ ♣γ � 1q.

The right-hand of this inequality goes to ✽ as γ goes to ✽, so result follows.
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2) By Proposition 3.5, for each ǫ → 0,

fγ

♣2ϕ � ǫqγ ↕ nγ

ϕγ
☎ ϕγ ☎ 2γ

♣2ϕ � ǫqγ ✏ nγ

ϕγ
☎
✂

2ϕ

2ϕ � ǫ

✡γ

.

The right-hand of this inequality goes to 0 as γ goes to ✽, so result follows.

Remark 3.3. We can make a similar procedure to compute Nγ♣gq, for any g such that

2g ➙ 3γ. In fact, consider xg : Sγ♣gq Ñ Sγ, S ÞÑ S④2. We know that calculating #x✁1♣T q,
for each T P Sg, is enough to calculate Nγ♣gq, since

Nγ♣gq ✏
➳

TPSγ

#x✁1
g ♣T q.

Given S P Sγ♣gq, there are T P Sγ and oγ ➔ ☎ ☎ ☎ ➔ o1 odd integers in r2g✁ 4γ �
1, 2g ✁ 2γ ✁ 1s such that

S ✏ 2T ❨ toγ ➔ . . . ➔ o1✉ ❨ S2g .

Notice that if g ➙ 3γ, then 2g ✁ 4γ � 1 ➙ 2γ � 1. Then all possible oi’s are

greater than or equal to 2γ � 1. Hence, all elements of the set toi : i P t1, . . . , γ✉✉ satisfy

oi � oj ➙ 4γ � 2, hence oi � oj P 2T . It gives us a way to see what is t-translation, in

Definition 2.2. If g ➔ 3γ, we can have situation such as oi ↕ 2γ ✁ 1 and oi � oj ❘ 2T . It

gives us a way to see that not all t-translations work well in this case.

Remark 3.4. Forgetting for a moment our results from Section 2.1, we observe that, with

this construction, Proposition 3.5 can be extended for all g ➙ 3γ. In particular, inequality

Nγ♣gq ↕ nγ ☎ 2γ still holds for all g ➙ 3γ. Notice that upper bound does not depend on

g. It implies that for a fixed γ, Nγ♣gq is an integer and a bounded sequence. By using

Bolzano-Weierstrass theorem, we conclude that there is an integer sequence tgn✉ such that

Nγ♣giq ✏ Nγ♣gjq. It could be a previous evidence for Theorem 2.1.

In general, we have a self-inclusion tωi�1 ➔ ☎ ☎ ☎ ➔ ωγ✉ ⑨ toγ � 2q : q P
G♣T q and q ↕ 2γ ✁ i ✁ 1✉. In these cases, choosing the numbers ωi�1 ➔ ☎ ☎ ☎ ➔ ωγ implies,

automatically, in the existence of q P G♣T q and q ↕ 2γ ✁ i ✁ 1 such that oj ✏ oγ � 2q.

Depending on the index i and the numerical semigroup T , it is possible that exist more

than one q in this situation.

Thus, we are again concerned with closed under addition condition. We have to

check, among the elements of the form oγ �2q, with q P G♣T q and q ↕ 2γ✁ i✁1, for which

of them there are t P T and q̃ P G♣T q and q̃ ↕ 2γ ✁ i✁ 1 such that oγ � 2q � 2t ✏ oγ � 2q̃?

Last equality is equivalent to t ✏ q̃ ✁ q and implies the following





Chapter 3. On the sequence ♣Nγ♣3γqq 45

Following same idea in Example 3.1, we compute f2.

Example 3.2. (γ ✏ 2 and g ✏ 6)

Numerical semigroups with genus 2 are ①3, 4, 5② ✏ N0③t1, 2✉ and ①2, 5② ✏ N0③t1, 3✉. Observe

that 2γ � 2i � 1 ✏ 5 � 2i, 2γ ✁ i ✁ 1 ✏ 3 ✁ i.

The graph related to A1 :✏ N0③t1, 2✉ is the following

Figure 4 – Graph related to A1 ✏ N0③t1, 2✉

Now, we compute #x✁1♣A1
1q. Observe that t7 � 2q : q P G♣T q and q ↕

2✉ ✏ t9, 11✉. Hence, we have to choose tω2✉ among t9, 11✉ with no restriction. Thus,

#x✁1♣A1
1q ✏

✂
2
1

✡
✏ 2 and we obtain #x✁1♣A1q ✏

2➳
i✏0

#x✁1♣Ai
1q ✏ 1 � 2 � 1 ✏ 4.

The graph related to A2 :✏ N0③t1, 3✉ is the following

Figure 5 – Graph related to A2 ✏ N0③t1, 3✉

Now, we compute #x✁1♣A1
2q. Observe that t7�2q : q P G♣T q and q ↕ 2✉ ✏ t9✉.

Hence, we have to choose tω2✉ among t9✉ with no restriction. Thus, #x✁1♣A1
2q ✏

✂
1
1

✡
✏ 1

and we obtain #x✁1♣A2q ✏
2➳

i✏0

#x✁1♣Ai
2q ✏ 1 � 1 � 1 ✏ 3.

Thus, we conclude that f2 ✏ #x✁1♣A1q � #x✁1♣A2q ✏ 4 � 3 ✏ 7.

With a similar process for other values of γ we obtain the following table:
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γ nγ ☎ ♣γ � 1q fγ nγ ☎ 2γ

0 1 1 1
1 2 2 2
2 6 7 8
3 16 23 32
4 35 68 112
5 72 200 384
6 161 615 1472
7 312 1764 4992
8 603 5060 17152

Table 4 – First bounds for fγ

First values of γ show us that the bounds obtained in Proposition 3.5 are far

from fγ, so it is of interest getting better bounds.

For γ ➙ 2, we define, for each k P t0, . . . , γ ✁ 1✉,

Tk ✏ N0③t1, . . . , γ ✁ 1, γ � k✉ P Sγ.

For a fixed k, we are interested in finding out which sets of the form

S ✏ 2Tk ❨ toγ ➔ ☎ ☎ ☎ ➔ o1✉ ❨ S6γ

with oγ ➔ . . . ➔ o1 odd integers in r2γ � 1, 6γ ✁ 1s are numerical semigroups, i.e., which of

them returns a positive answers to Question 3.1, with T ✏ Tk.

As usually, we write oγ ✏ 2γ � 2i � 1, for some i P t0, . . . , γ✉. With same

procedure we did, we know that it is equivalent to find out, for a fixed Tk, which choices

for tωi�1 ➔ ☎ ☎ ☎ ➔ ωγ✉ from the set toγ � 2q : q P G♣Tkq and q ↕ 2γ ✁ i ✁ 1✉ such that

r2γ�1, 6γ✁1s❳♣2Z�1q③t2γ�1 ➔ ☎ ☎ ☎ ➔ 2γ�2i✁1 ➔ ωi�1 ➔ ☎ ☎ ☎ ➔ ωγ✉ ✏ toγ ➔ ☎ ☎ ☎ ➔ o1✉
gives a positive answer to Question 3.1.

For all i P t0, . . . , γ✉, one has

toγ � 2, . . . , oγ � 2γ ✁ 2, oγ � 2γ � 2k✉ ❹ toγ � 2q : q P G♣Tkq and q ↕ 2γ ✁ i ✁ 1✉

and

toγ � 2q : q P G♣Tkq and q ↕ 2γ ✁ i ✁ 1✉ ❹ toγ � 2, . . . , oγ � 2γ ✁ 2✉.

Observe that

1. If γ � k ↕ 2γ ✁ i ✁ 1, i.e., i ↕ γ ✁ k ✁ 1, then

toγ � 2q : q P G♣Tkq and q ↕ 2γ ✁ i ✁ 1✉ ✏ toγ � 2, . . . , oγ � 2γ ✁ 2, oγ � 2γ � 2k✉❧♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♥
γ elements

.
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Proof. By last computations, we have

#x✁1♣Tkq ✏
γ➳

i✏0

#x✁1♣T i
kq

✏ 2 �
γ✁k✁1➳

i✏1

✒✂
γ ✁ 1
γ ✁ i

✡
�
✂

γ ✁ 1 ✁ k

γ ✁ i ✁ k ✁ 1

✡✚
�

γ✁1➳
i✏γ✁k

✂
γ ✁ 1
γ ✁ i

✡

✏ 2 �
γ✁1➳
i✏1

✂
γ ✁ 1
γ ✁ i

✡
�

γ✁k✁1➳
i✏1

✂
γ ✁ 1 ✁ k

γ ✁ i ✁ k ✁ 1

✡

✏ 2 �
γ✁1➳
i✏1

✂
γ ✁ 1
i ✁ 1

✡
�

γ✁k✁1➳
i✏1

✂
γ ✁ 1 ✁ k

i

✡

✏ 2 � ♣2γ✁1 ✁ 1q � ♣2γ✁1✁k ✁ 1q
✏ 2γ✁1 ☎

✂
1 � 1

2k

✡
.

Corollary 3.4. Let Mγ :✏ 2γ
✁

1 � γ

2

✠
✁ 1. Then

Mγ � ♣nγ ✁ γq♣γ � 1q ↕ fγ ↕ Mγ � ♣nγ ✁ γq ☎ 2γ

Proof. It follows from the equality Mγ ✏
γ✁1➳
k✏0

#x✁1♣Tkq and Proposition 3.5.

With those bounds, we construct the following table:

γ Mγ � ♣nγ ✁ γq ☎ ♣γ � 1q fγ Mγ � ♣nγ ✁ γq ☎ 2γ

0 1 1 1
1 2 2 2
2 7 7 7
3 23 23 27
4 62 68 95
5 153 200 266
6 374 615 1343
7 831 1764 4671
8 1810 5060 16383

Table 5 – Better bounds for fγ

For γ ➙ 3, we can make a similar procedure with the numerical semigroups

Uk ✏ N0③t1, . . . , γ ✁ 2, γ, γ � k✉ P Sγ,

for k P t1, . . . , γ ✁ 1✉③tγ ✁ 2✉.
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It is possible to show that, in this case,

γ✁3➳
k✏1

#x✁1♣Ukq � #x✁1♣Uγ✁1q ✏ 2γ

✂
3γ

8
✁ 5

16

✡
✁ 3.

However, asymptotic behaviour of this function is still of type γ ☎ 2γ and we cannot get

significantly better bounds.

Nevertheless, we can use Corollary 3.4 to prove the following:

Corollary 3.5.

lim
γÑ✽

fγ

2γ
✏ ✽.

Proof. From last Corollary, we have fγ ➙ Mγ � ♣nγ ✁ γq ☎ ♣γ � 1q. Then,

fγ

2γ
➙

✁γ

2
� 1
✠
✁ 1

2γ
� ♣γ � 1q ☎ nγ

2γ
✁ γ2 � γ

2γ

➙
✁γ

2
� 1
✠
✁ 1

2γ
✁ γ2 � γ

2γ
.

Since the right-hand of this inequality goes to ✽ as γ goes to ✽, we conclude that

lim
γÑ✽

fγ

2γ
✏ ✽.

Corollaries 3.3 and 3.5 can be put together and we have the following result

about the asymptotic behaviour of fγ:

Theorem 3.2. Let ǫ → 0. Then

lim
γÑ✽

fγ

♣2ϕ � ǫqγ
✏ 0 and lim

γÑ✽

fγ

2γ
✏ ✽.

This result ensures that if fγ grows exponentially, then it grows like βγ, for

some β P ♣2, 2ϕs. We construct a table with a few values of fγ and fγ④fγ✁1:
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γ fγ fγ④fγ✁1

0 1
1 2 2.00
2 7 3.50
3 23 3.29
4 68 2.96
5 200 2.94
6 615 3.08
7 1764 2.87
8 5060 2.87
9 14626 2.89
10 41785 2.86
11 117573 2.81
12 332475 2.83
13 933891 2.81
14 2609832 2.79

Table 6 – A few values of fγ and fγ④fγ✁1

By using those values, we suspect that lim
γÑ✽

fγ

fγ✁1

✏ ϕ2 ✓ 2.618 and this is a

previous evidence that β ✏ ϕ2. Next table shows us that first values of fγ are closely to

n2γ. We recall that from Zhai’s Theorem, the sequence ♣n2γq grows like ϕ2γ.

γ fγ n2γ fγ④n2γ

0 1 1 1.00
1 2 2 1.00
2 7 7 1.00
3 23 23 1.00
4 68 67 1.01
5 200 204 0.98
6 615 592 1.04
7 1764 1693 1.04
8 5060 4806 1.05
9 14626 13467 1.09
10 41785 37396 1.12
11 117573 103246 1.14
12 332475 282828 1.18
13 933891 770832 1.21
14 2609832 2091030 1.25

Table 7 – A few values of fγ, n2γ and fγ④n2γ

By using Table 7, we conjecture that the sequence fγ grows like n2γ. More

precisely:
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Conjecture 3.1. There is a positive constant C such that

lim
γÑ✽

fγ

n2γ

✏ C.

Proposition 3.8. Conjecture 3.1 is equivalent to the following: there is a positive constant

C̃ such that

lim
γÑ✽

fγ

ϕ2γ
✏ C̃.

Proof. On one hand, we write
fγ

ϕ2γ
✏ fγ

n2γ

☎ n2γ

ϕ2γ
. On the other hand,

fγ

n2γ

✏ fγ

ϕ2γ
☎ ϕ2γ

n2γ

. Now,

we use Zhai’s Theorem and the proof follows.

3.3 Further results

In Section 3.2, we conjectured an item about the asymptotic behaviour of fγ . In

this section, we prove some conditional results based on that conjecture. Those suspecting

get stronger when we look at the following table:

γ fγ n2γ fγ④fγ✁1 fγ④n2γ fγ�1④
γ➳

i✏0

fi

0 1 1 1.00 2.00
1 2 2 2.00 1.00 2.33
2 7 7 3.50 1.00 2.30
3 23 23 3.29 1.00 2.06
4 68 67 2.96 1.01 1.98
5 200 204 2.94 0.98 2.04
6 615 592 3.08 1.04 1.93
7 1764 1693 2.87 1.04 1.89
8 5060 4806 2.87 1.05 1.89
9 14626 13467 2.89 1.09 1.87
10 41785 37396 2.86 1.12 1.83
11 117573 103246 2.81 1.14 1.83
12 332475 282828 2.83 1.18 1.82
13 933891 770832 2.81 1.21 1.80
14 2609832 2091030 2.79 1.25

Table 8 – A few values of fγ, n2γ, fγ④fγ✁1, fγ④n2γ and fγ�1④
γ➳

i✏0

fi

Theorem 3.3. If Conjecture 3.1 holds, then lim
γÑ✽

fγ

fγ✁1

✏ ϕ2.

Proof. We can rewrite
fγ

fγ✁1

✏ fγ

n2γ

☎ n2γ

n2γ✁1

☎ n2γ✁1

n2γ✁2

☎ n2♣γ✁1q

fγ✁1

. Then



Chapter 3. On the sequence ♣Nγ♣3γqq 52

lim
γÑ✽

fγ

fγ✁1

✏ lim
γÑ✽

fγ

n2γ

☎ lim
γÑ✽

n2γ

n2γ✁1

☎ lim
γÑ✽

n2γ✁1

n2γ✁2

☎ lim
γÑ✽

n2♣γ✁1q

fγ✁1

,

since all limits involved exist. Hence,

lim
γÑ✽

fγ

fγ✁1

✏ C ☎ ϕ ☎ ϕ ☎ 1
C
✏ ϕ2.

Theorem 3.4. If lim
γÑ✽

fγ

fγ✁1

✏ ϕ2, then lim
γÑ✽

fγ�1➦γ

i✏0 fi

✏ ϕ.

Proof. First of all, notice that
1
ϕ2

✓ 0.382. Since lim
γÑ✽

fγ

fγ�1

✏ 1
ϕ2

, let, for each ǫ P
✂

0,
1
3

✡
,

γ0♣ǫq :✏ min
✧

i P N :
1
ϕ2

✁ ǫ ➔ fj

fj�1

➔ 1
ϕ2

� ǫ, ❅j ➙ i

✯
.

For γ → γ0♣ǫq ✏ γ0,

f0 � ☎ ☎ ☎ � fγ0✁1 � fγ0
� ☎ ☎ ☎ � fγ

fγ�1

✏ f0 � ☎ ☎ ☎ � fγ0✁1

fγ�1

� fγ0

fγ�1

� fγ0�1

fγ�1

� ☎ ☎ ☎ � fγ

fγ�1

✏ f0 � ☎ ☎ ☎ � fγ0✁1

fγ�1

� fγ0

fγ0�1

☎ fγ0�1

fγ0�2

☎ . . . ☎ fγ

fγ�1

�

�fγ0�1

fγ0�2

☎ fγ0�2

fγ0�3

☎ . . . ☎ fγ

fγ�1

� ☎ ☎ ☎ � fγ

fγ�1

➔ f0 � ☎ ☎ ☎ � fγ0✁1

fγ�1

�
✂

1
ϕ2

� ǫ

✡γ✁γ0�1

�

�
✂

1
ϕ2

� ǫ

✡γ✁γ0

� ☎ ☎ ☎ �
✂

1
ϕ2

� ǫ

✡

For each ǫ P
✂

0,
1
3

✡
, f0 � ☎ ☎ ☎ � fγ0♣ǫq✁1 is a finite number. Also, by hypothesis,

♣fγq is an increasing sequence, for large enough γ. If the sequence is bounded, then it

converges to a number. Thus lim
γÑ✽

fγ

fγ✁1

✏ 1, which is a contradiction. Hence, the sequence

is not bounded and we conclude that lim
γÑ✽

fγ ✏ ✽ and

lim
γÑ✽

f0 � ☎ ☎ ☎ � fγ0♣ǫq✁1

fγ�1

✏ 0.

Notice that

lim
γÑ✽

✓✂
1
ϕ2

� ǫ

✡γ✁γ0�1

�
✂

1
ϕ2

� ǫ

✡γ✁γ0

� ☎ ☎ ☎ �
✂

1
ϕ2

� ǫ

✡✛
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is the geometric series with radius
1
ϕ2

� ǫ that lies in ♣0.38, 0.72q. Thus, this value is

1
ϕ2 � ǫ

1✁
✁

1
ϕ2 � ǫ

✠ ✏ 1� ǫϕ2

ϕ2 ✁ ♣1� ǫϕ2q .

Hence, if A♣ǫ, γq :✏ f0 � ☎ ☎ ☎ � fγ0✁1

fγ�1

�
✂

1
ϕ2

� ǫ

✡γ✁γ0�1

�
✂

1
ϕ2

� ǫ

✡γ✁γ0

�☎ ☎ ☎�
✂

1
ϕ2

� ǫ

✡
,

then, for each ǫ P
✂

0,
1
3

✡
,

f0 � ☎ ☎ ☎ � fγ0♣ǫq✁1 � fγ0♣ǫq � ☎ ☎ ☎ � fγ

fγ�1

➔ A♣ǫ, γq γÑ✽ÝÝÝÑ 1� ǫϕ2

ϕ2 ✁ ♣1� ǫϕ2q .

By making similar process, we conclude that

f0 � ☎ ☎ ☎ � fγ0♣ǫq✁1 � fγ0♣ǫq � ☎ ☎ ☎ � fγ

fγ�1

→ f0 � ☎ ☎ ☎ � fγ0♣ǫq✁1

fγ�1

�
✂

1
ϕ2

✁ ǫ

✡γ✁γ0�1

�

�
✂

1
ϕ2

✁ ǫ

✡γ✁γ0

� ☎ ☎ ☎ �
✂

1
ϕ2

✁ ǫ

✡
γÑ✽ÝÝÝÑ 1✁ ǫϕ2

ϕ2 ✁ ♣1✁ ǫϕ2q .

Observe that, in this case, the geometric series radius is
1
ϕ2

✁ ǫ that lies in

♣0.04, 0.39q.

Hence, for all ǫ P
✂

0,
1
3

✡

1✁ ǫϕ2

ϕ2 ✁ ♣1✁ ǫϕ2q ↕ lim
γÑ✽

f0 � ☎ ☎ ☎ � fγ

fγ�1

↕ 1� ǫϕ2

ϕ2 ✁ ♣1� ǫϕ2q .

By making ǫ Ñ 0, we conclude that

lim
γÑ✽

➦γ

i✏0 fi

fγ�1

✏ 1
ϕ2 ✁ 1

✏ 1
ϕ

,

thus

lim
γÑ✽

fγ�1➦γ

i✏0 fi

✏ ϕ,

completing the proof.
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4 Fibonacci like and not like behaviour of

♣ngq

Let ♣Fnq be the Fibonacci sequence, i.e., F0 ✏ 0, F1 ✏ 1 and Fn�2 ✏ Fn�1 �Fn,

for all n P N0. The first few numbers in this sequence are ♣0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .q.
We recall that Bras-Amorós (3) conjectured two items about asymptotic be-

haviour of ♣ngq (being them similar to Fibonacci sequence) and Zhai (29) proved that she

was right.

In this chapter, we prove some other asymptotic properties of ♣ngq sequence

that are the same as Fibonacci sequence. We also prove an asymptotic property of ♣ngq
that is different from Fibonacci sequence.

4.1 Fibonacci like behaviour of ♣ngq

In this section, we prove analogous asymptotic properties of sequence ♣ngq that

are similar to Fibonacci sequence.

Proprieties. Let ♣Fnq be the Fibonacci sequence. Then

♣1q Fn ✏ ϕn ✁ ♣✁ϕq✁n

❄
5

(Binet’s formula).

♣2q F 2
n ✏ Fn�1Fn✁1 � ♣✁1qn.

♣3q F0 � F1 � ☎ ☎ ☎ � Fn✁1 ✏ Fn�1 ✁ 1.

♣4q F 2
0 � F 2

1 � ☎ ☎ ☎ � F 2
n ✏ FnFn�1.

♣5q F0 � F2 � ☎ ☎ ☎ � F2n ✏ F2n�1.

Corollary 4.1. Let ♣Fnq be the Fibonacci sequence. Then

♣1q lim
nÑ✽

Fn�1

Fn

✏ ϕ and lim
nÑ✽

Fn✁1 � Fn

Fn�1

✏ 1.

♣2q lim
nÑ✽

F 2
n

Fn�1Fn✁1

✏ 1.

♣3q lim
nÑ✽

➦n

i✏0 Fi

Fn�1

✏ ϕ and lim
nÑ✽

➦n✁1

i✏0 Fi

Fn�1

✏ 1.

♣4q lim
nÑ✽

➦n

i✏0 F 2
i

F 2
n

✏ ϕ and lim
nÑ✽

➦n

i✏0 F 2
i

F 2
n�1

✏ 1
ϕ

.

♣5q lim
nÑ✽

➦n

i✏0 F2i

F2n

✏ ϕ and lim
nÑ✽

➦n

i✏0 F2i

F2n�1

✏ 1.
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Theorem 4.1. Let ♣ngq be the sequence of number of numerical semigroups with genus g.

Then

♣1q lim
gÑ✽

ng�1

ng

✏ ϕ and lim
gÑ✽

ng✁1 � ng

ng�1

✏ 1.

♣2q lim
gÑ✽

n2
g

ng�1ng✁1

✏ 1.

♣3q lim
gÑ✽

➦g

i✏0 ni

ng�1

✏ ϕ. and lim
gÑ✽

➦g✁1

i✏0 ni

ng�1

✏ 1.

♣4q lim
gÑ✽

➦g

i✏0 n2
i

n2
g

✏ ϕ and lim
gÑ✽

➦g

i✏0 n2
i

n2
g�1

✏ 1
ϕ

.

♣5q lim
gÑ✽

➦g

i✏0 n2i

n2g

✏ ϕ and lim
gÑ✽

➦g

i✏0 n2i

n2g�1

✏ 1.

Item ♣1q is a consequence of Zhai’s Theorem, noticed by him. Item ♣2q is a

consequence of ♣1q. For items ♣3q, ♣4q and ♣5q, we use same ideas we used in proof of

Theorem 3.4.

Proof. (of item ♣2q) We only have to observe that

n2
g

ng�1ng✁1

✏ ng

ng�1❧♦♦♠♦♦♥
Ñ 1

ϕ

☎ ng

ng✁1❧♦♦♠♦♦♥
Ñϕ

gÑ✽ÝÝÝÑ 1.

Proof. (of item ♣3q) We enumerate the steps of the proof:

I. lim
gÑ✽

ng

ng�1

✏ 1
ϕ
✓ 0.62.

II. For each ǫ P
✂

0,
1
3

✡
define g0♣ǫq :✏ min

✧
i P N :

1
ϕ
✁ ǫ ➔ nj

nj�1

➔ 1
ϕ
� ǫ, ❅j ➙ i

✯
.

III. For g ✧ 0, ♣ngq is increasing. Since lim
gÑ✽

ng

ng�1

✘ 1, then lim
gÑ✽

ng ✏ ✽.

IV. For g → g0♣ǫq ✏ g0,

n0 � ☎ ☎ ☎ � ng0✁1 � ng0
� ☎ ☎ ☎ � ng

ng�1

➔ n0 � ☎ ☎ ☎ � ng0✁1

ng�1

�
✂

1
ϕ
� ǫ

✡g✁g0�1

�

�
✂

1
ϕ
� ǫ

✡g✁g0

� ☎ ☎ ☎ �
✂

1
ϕ
� ǫ

✡
gÑ✽ÝÝÝÑ 1� ǫϕ

ϕ✁ ♣1� ǫϕ2q .
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and

n0 � ☎ ☎ ☎ � ng0✁1 � ng0
� ☎ ☎ ☎ � ng

ng�1

→ n0 � ☎ ☎ ☎ � ng0✁1

ng�1

�
✂

1
ϕ
✁ ǫ

✡g✁g0�1

�

�
✂

1
ϕ
✁ ǫ

✡g✁g0

� ☎ ☎ ☎ �
✂

1
ϕ
✁ ǫ

✡
gÑ✽ÝÝÝÑ 1✁ ǫϕ

ϕ✁ ♣1✁ ǫϕ2q .

V. Hence, for all ǫ P
✂

0,
1
3

✡
,

1✁ ǫϕ

ϕ✁ ♣1✁ ǫϕq ↕ lim
gÑ✽

n0 � ☎ ☎ ☎ � ng

ng�1

↕ 1� ǫϕ

ϕ✁ ♣1� ǫϕq .

VI. By making ǫ Ñ 0, we conclude that lim
gÑ✽

➦g

i✏0 ni

ng�1

✏ 1
ϕ✁ 1

✏ ϕ.

To the other part, notice that

n0 � ☎ ☎ ☎ � ng

ng�1❧♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♥
Ñϕ

✏ n0 � ☎ ☎ ☎ � ng✁1

ng�1

� ng

ng�1❧♦♦♠♦♦♥
Ñ 1

ϕ

.

Hence

lim
gÑ✽

➦g✁1

i✏0 ni

ng�1

✏ ϕ✁ 1
ϕ
✏ 1,

compliting the proof.

Proof. (of item ♣4q) We enumerate the steps of the proof:

I. lim
gÑ✽

ng

ng�1

✏ 1
ϕ
✓ 0.62.

II. For each ǫ P
✂

0,
1
3

✡
define g0♣ǫq :✏ min

✧
i P N :

1
ϕ
✁ ǫ ➔ nj

nj�1

➔ 1
ϕ
� ǫ, ❅j ➙ i

✯
.

III. For g ✧ 0, ♣ngq is increasing. Since lim
gÑ✽

ng

ng�1

✘ 1, then lim
gÑ✽

ng ✏ ✽.

IV. For g → g0♣ǫq ✏ g0,

n2
0 � ☎ ☎ ☎ � n2

g0✁1 � n2
g0
� ☎ ☎ ☎ � n2

g

n2
g

➔ n2
0 � ☎ ☎ ☎ � n2

g0✁1

n2
g

�
✓✂

1
ϕ
� ǫ

✡2
✛g✁g0�1

�

�
✓✂

1
ϕ
� ǫ

✡2
✛g✁g0

� ☎ ☎ ☎ �
✂

1
ϕ
� ǫ

✡2

� 1

gÑ✽ÝÝÝÑ ϕ2

ϕ2 ✁ ♣1� 2ϕǫ� ϕ2ǫ2q .
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and

n2
0 � ☎ ☎ ☎ � n2

g0✁1 � n2
g0
� ☎ ☎ ☎ � n2

g

n2
g

→ n2
0 � ☎ ☎ ☎ � n2

g0✁1

n2
g

�
✓✂

1
ϕ
✁ ǫ

✡2
✛g✁g0�1

�

�
✓✂

1
ϕ
✁ ǫ

✡2
✛g✁g0

� ☎ ☎ ☎ �
✂

1
ϕ
✁ ǫ

✡2

� 1

gÑ✽ÝÝÝÑ ϕ2

ϕ2 ✁ ♣1✁ 2ϕǫ� ϕ2ǫ2q .

V. Hence, for all ǫ P
✂

0,
1
3

✡
,

ϕ2

ϕ2 ✁ ♣1✁ 2ϕǫ� ϕ2ǫ2q ↕ lim
gÑ✽

n2
0 � ☎ ☎ ☎ � n2

g

n2
g

↕ ϕ2

ϕ2 ✁ ♣1� 2ϕǫ� ϕ2ǫ2q .

VI. By making ǫ Ñ 0, we conclude that lim
gÑ✽

➦g

i✏0 n2
i

n2
g

✏ ϕ2

ϕ2 ✁ 1
✏ ϕ2

ϕ
✏ ϕ.

Since
➦g

i✏0 n2
i

n2
g�1

✏
➦g

i✏0 n2
i

n2
g

☎ n2
g

n2
g�1

, then lim
gÑ✽

➦g

i✏0 n2
i

n2
g�1

✏ ϕ ☎ 1
ϕ2

✏ 1
ϕ

.

Proof. (of item ♣5q) We enumerate the steps of the proof:

I. lim
gÑ✽

ng

ng�2

✏ 1
ϕ2

✓ 0.38.

II. For each ǫ P
✂

0,
1
3

✡
define g0♣ǫq :✏ min

✧
i P 2N :

1
ϕ2
✁ ǫ ➔ nj

nj�2

➔ 1
ϕ2
� ǫ, ❅j ➙ i

✯
.

III. For g ✧ 0, ♣ngq is increasing. Since lim
gÑ✽

ng

ng�1

✘ 1, then lim
gÑ✽

ng ✏ ✽.

IV. For g → g0♣ǫq ✏ g0,

n0 � n2 ☎ ☎ ☎ � ng0✁2 � ng0
� ☎ ☎ ☎ � n2g

n2g

➔ n0 � ☎ ☎ ☎ � ng0✁2

n2g

�
✂

1
ϕ2
� ǫ

✡g✁
g0

2

�

�
✂

1
ϕ2
� ǫ

✡g✁
g0

2
✁1

� ☎ ☎ ☎ �
✂

1
ϕ2
� ǫ

✡
� 1

gÑ✽ÝÝÝÑ ϕ2

ϕ2 ✁ ♣1� ϕ2ǫq .

and

n0 � n2 ☎ ☎ ☎ � ng0✁2 � ng0
� ☎ ☎ ☎ � n2g

n2g

→ n0 � ☎ ☎ ☎ � ng0✁2

n2g

�
✂

1
ϕ2
✁ ǫ

✡g✁
g0

2

�

�
✂

1
ϕ2
✁ ǫ

✡g✁
g0

2
✁1

� ☎ ☎ ☎ �
✂

1
ϕ2
✁ ǫ

✡
� 1

gÑ✽ÝÝÝÑ ϕ2

ϕ2 ✁ ♣1✁ ϕ2ǫq .
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V. Hence, for all ǫ P
✂

0,
1
3

✡
,

ϕ2

ϕ2 ✁ ♣1✁ ϕ2ǫq ↕ lim
gÑ✽

n0 � ☎ ☎ ☎ � n2g

n2g

↕ ϕ2

ϕ2 ✁ ♣1� ϕ2ǫq .

VI. By making ǫ Ñ 0, we conclude that lim
gÑ✽

➦g

i✏0 n2i

n2g

✏ ϕ2

ϕ2 ✁ 1
✏ ϕ2

ϕ
✏ ϕ.

Since
➦g

i✏0 n2i

n2g�1

✏
➦g

i✏0 n2i

n2g

☎ n2g

n2g�1

, then lim
gÑ✽

➦g

i✏0 n2i

n2g�1

✏ ϕ ☎ 1
ϕ
✏ 1.

4.2 Fibonacci not like behaviour of ♣ngq

Zhai’s Theorem shows us that

lim
gÑ✽

ng

ϕg
✏ µ,

where µ is a constant greater than 3.78. By Binet’s formula, we have

lim
nÑ✽

Fn

ϕn
✏ 1❄

5
✓ 0.45.

It shows us that ♣ngq and ♣Fnq are not (asymptotically) the same. In Theorem 4.1,

we obtained some asymptotic properties of sequence ♣ngq that are exactly the same as

the Fibonacci sequence. Now we prove an asymptotic property that ♣ngq satisfy that is

different from Fibonacci sequence. We know that F 2
n � F 2

n�1 ✏ F2n�1, for all n. Thus,

lim
nÑ✽

F 2
n � F 2

n�1

F2n�1

✏ 1. We prove

Theorem 4.2. Let ♣ngq be the sequence of number of numerical semigroups with genus g.

Then

lim
gÑ✽

n2
g � n2

g�1

n2g�1

✏
❄

5µ → 8.

Proof. We can rewrite

n2
g � n2

g�1

n2g�1

✏ n2
g

ϕ2g
☎ ϕ2g�1

n2g�1

☎ 1
ϕ
� n2

g�1

ϕ2♣g�1q
☎ ϕ2g�1

n2g�1

☎ ϕ

✏
✂

ng

ϕg

✡2

❧♦♦♠♦♦♥
Ñµ2

☎ ϕ2g�1

n2g�1❧♦♦♠♦♦♥
Ñ 1

µ

☎ 1
ϕ
�
✂

ng�1

ϕg�1

✡2

❧♦♦♦♦♠♦♦♦♦♥
Ñµ2

☎ ϕ2g�1

n2g�1❧♦♦♠♦♦♥
Ñ 1

µ

☎ϕ

gÑ✽ÝÝÝÑ µ

✂
1
ϕ
� ϕ

✡
✏ µ

❄
5 → 8,

completing the proof.
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5 A generalization of γ-hyperelliptic semi-

groups

In this chapter, we generalize the idea of γ-hyperelliptic semigroups (cf. (26))

and prove some basic results which naturally generalizes results from Chapter 2. Torres

(26) studied some arithmetic properties of generalized γ-hyperelliptic semigroups, when he

was dealing with M -sheeted covering of curves (in particular, it generalizes the double

covering of curves).

Let S P Sg with set of gaps G♣Sq. For a positive integer M , we define

γM♣Sq ✏ #tk P G♣Sq : k ✑ 0 ♣mod Mq✉.

If γM♣Sq ✏ γ, we say that S is a ♣M, γq-hyperelliptic semigroup. Notice that a ♣1, γq-
hyperelliptic semigroup is a numerical semigroup with genus γ and a ♣2, γq-hyperelliptic

semigroup is a γ-hyperelliptic semigroup.

Let γ, g and M non-negative integers. We define S♣M,γq♣gq :✏ tS P Sg : γM♣Sq ✏
γ✉ and N♣M,γq♣gq :✏ #S♣M,γq♣gq. Throughout this chapter M is an integer greater than or

equal to 2 and we write ♣✑M iq to denote the set of integers congruent to i modulo M

and ♣✙M iq for its complement in Z.

Proposition 5.1. Let S be a ♣M, γq-hyperelliptic semigroup with genus g. Then

γ ↕
❩

2g

M

❫
.

Proof. The gaps of S lies in r1, 2gs, but there are
❩

2g

M

❫
multiples of M in that interval;

the result follows.

In order to generalize last proposition, we follow the ideas of Lemma 2.1 to get

a sharper bound relating γ, g and M for ♣M, γq-hyperelliptic semigroups with genus g.

Theorem 5.1. Let S be a ♣M, γq-hyperelliptic semigroup with genus g. Then

2g ➙ ♣M � 1qγ.

Proof. If 2g ➙ 2Mγ, then 2g ➙ ♣M � 1qγ, since 2M ➙ M � 1, for all M ➙ 1. Suppose

2g ➔ 2Mγ. In r1, 2gs, there are
❩

2g

M

❫
numbers ♣✑M 0q, which γ are gaps and

❩
2g

M

❫
✁γ are
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non-gaps, and 2g✁
❩

2g

M

❫
numbers ♣✙M 0q, which g✁γ are gaps and g✁

❩
2g

M

❫
�γ are non-

gaps. Let q1 ➔ ☎ ☎ ☎ ➔ qγ be the gaps ♣✑M 0q of S and r
g✁t 2g

M ✉�γ
➔ ☎ ☎ ☎ ➔ r1 be the non gaps

♣✙M 0q in r1, 2gs. Notice that qγ ✁ ri ❘ S, for all i (otherwise, S ◗ ri � ♣qγ ✁ riq ✏ qγ ❘ S).

For i such that qγ ✁ ri ➙ 0, all numbers qγ ✁ ri are gaps ♣✙M 0q. Notice that

✩✬✬✬✬✬✬✫
✬✬✬✬✬✬✪

r♣M✁1qℓ�1 ↕ 2g ✁ ♣Mℓ � 1q ✏ 2g ✁ r♣M ✁ 1qℓ � 1s ✁ ℓ

r♣M✁1qℓ�2 ↕ 2g ✁ ♣Mℓ � 2q ✏ 2g ✁ r♣M ✁ 1qℓ � 2s ✁ ℓ
...

r♣M✁1qℓ�M✁1 ↕ 2g ✁ ♣Mℓ � M ✁ 1q ✏ 2g ✁ r♣M ✁ 1qℓ � M ✁ 1s ✁ ℓ

Writing i ✏ ♣M ✁ 1qℓ � k, with k P t1, . . . , M ✁ 1✉, we conclude that

ri ↕ 2g ✁ i ✁
❩

i

M ✁ 1

❫
� ǫ

where ǫ ✏ 0, if k ✘ M ✁ 1 and ǫ ✏ 1, if k ✏ M ✁ 1.

Claim. qγ ↕ 2♣g ✁ γq M

M ✁ 1
.

We follow the idea of the proof of the Claim in Lemma 2.1: we suppose

qγ ➙ 2♣g ✁ γq M

M ✁ 1
� 1 and we construct g ✁ γ � 1 gaps ♣✙M 0q, which leads to a

contradiction.

We know that for i P
✧

2γ ✁
❩

2g

M

❫
, . . . , g ✁

❩
2g

M

❫
� γ

✯
, qγ ✁ri is a gap ♣✙M 0q.

For all i ➙ 2γ ✁
❩

2g

M

❫
, we obtain

qγ ✁ ri ➙
✒
2♣g ✁ γq M

M ✁ 1
� 1

✚
✁
✒
2g ✁ i ✁

❩
i

M ✁ 1

❫
� ǫ

✚

✏ 2♣g ✁ γq M

M ✁ 1
� 1 ✁ 2g � i �

❩
i

M ✁ 1

❫
✁ ǫ

➙ 2M

M ✁ 1
g ✁ 2M

M ✁ 1
γ � 1 ✁ 2g �

✂
2γ ✁

❩
2g

M

❫✡
�
❩�

2γ ✁ ❳
2g

M

❭✟
M ✁ 1

❫
✁ ǫ

→ 2g

✂
M

M ✁ 1
✁ 1

✡
✁ 2γ

✂
M

M ✁ 1
✁ 1

✡
� 1 ✁ 2g

M
� 2γ ✁ ❳

2g

M

❭
M ✁ 1

✁ 1 ✁ ǫ

➙ 2g

✂
1

M ✁ 1

✡
✁ 2γ

✂
1

M ✁ 1

✡
✁ 2g

M
� 2γ

M ✁ 1
✁

❳
2g

M

❭
M ✁ 1

✁ ǫ

➙ 2g

✂
1

M ✁ 1
✁ 1

M

✡
✁ 2g

M♣M ✁ 1q ✁ ǫ

➙ 2g

✂
1

M♣M ✁ 1q ✁
1

M♣M ✁ 1q
✡
✁ 1

✏ ✁1.
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Thus, qγ✁ri ➙ 0, for all i ➙ 2γ✁
❩

2g

M

❫
. Then, there are, at least, g✁γ�1 different

gaps ♣✙M 0q. In fact, we proved that all numbers qγ ✁ r
2γ✁t 2g

M ✉ ➔ ☎ ☎ ☎ ➔ qγ ✁ r
g✁t 2g

M ✉�γ
are

different gaps (✙M 0) and this is a contradiction. Thus, qγ ↕ 2♣g ✁ γq M

M ✁ 1
.

There are

❬
2♣g ✁ γq M

M✁1

M

❴
✏
❩

2♣g ✁ γq
M ✁ 1

❫
numbers ♣✑M 0q in

✒
M, 2♣g ✁ γq M

M ✁ 1

✚
,

where γ are gaps. Thus,
2♣g ✁ γq
M ✁ 1

➙
❩

2♣g ✁ γq
M ✁ 1

❫
➙ γ and we conclude that 2g ✁ 2γ ➙

♣M ✁ 1qγ. Hence, 2g ➙ ♣M � 1qγ.

Proposition 5.2. Theorem 5.1 is sharp.

Proof. We construct a ♣M, γq-hyperelliptic semigroup with genus g that satisfies the

equality 2g ✏ ♣M � 1qγ. We consider two cases: γ even and γ odd.

• If γ is even:

In this case, a numerical semigroup satisfying 2g ✏ ♣M � 1qγ is

S :✏ N0③
✄
tM, 2M, . . . , Mγ✉ ❨

M✁1↕
i✏1

✦
i, M � i, . . . , M

✁γ

2
✁ 1

✠
� i
✮☛

.

Notice that 0 P S and S has γ gaps (✑M 0). For each i P t1, . . . , M ✁ 1✉, there are γ④2
gaps (✑M i). Hence, g♣Sq ✏ γ � ♣M ✁ 1qγ④2 ✏ ♣M � 1qγ④2.

For each i ✙M 0, the first non-gap (✑M i) is Mγ④2 � i and all numbers

Mγ④2� ki, with k P N are non-gaps. The first non-gap (✑M 0) is M♣γ � 1q. Hence, for all

a, b P S, it follows that a � b → Mγ④2 � Mγ④2 ✏ Mγ and a � b P S.

• If γ is odd:

In this case, M must be odd (otherwise, equality does not occur). Let

S ✶ :✏ N0③
✄
tM, 2M, . . . , Mγ✉ ❨

M✁1↕
i✏1

✧
i, M � i, . . . , M

✂
γ ✁ 1

2
✁ 1

✡
� i

✯☛
.

With a similar procedure to the other case, we obtain g♣S ✶q ✏ γ � ♣M ✁ 1q♣γ ✁
1q④2 ✏ ♣M � 1q♣γ ✁ 1q④2 � 1. We want to construct S turning some non-gaps of S ✶ into

gaps of S such that g♣Sq ✏ ♣M � 1qγ④2. Hence, we have open ♣M ✁ 1q④2 non-gaps (✙M 0)

carefully. In order to obtain a closed under addition set, we can open first ♣M ✁ 1q④2
numbers of form M♣γ ✁ 1q④2 � i. Hence,

S ✏ S ✶③
✧

M♣γ ✁ 1q
2

� 1, . . . ,
M♣γ ✁ 1q

2
� M ✁ 1

2

✯
.
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Now we show that S is, in fact, closed under addition. Let a, b P S with a ✑M i

and b ✑M j.

✍ If i ✏ j ✏ 0, then a � b P S, since a � b ✑M 0 and a � b ➙ M♣γ � 1q.

✍ If i ✏ 0 and j ✘ 0, then a � b P S, since a � b ✑M j and a � b ➙ b.

✍ If 0 ➔ i, j ↕ ♣M ✁ 1q④2, then a ✏ M♣γ � 1q④2 � i and b ✏ M♣γ � 1q④2 � j. Thus,

a � b ✏ M♣γ � 1q � ♣i � jq P S.

✍ If 0 ➔ i ↕ ♣M ✁ 1q④2 ➔ j ↕ M ✁ 1, then a ✏ M♣γ� 1q④2� i and b ✏ M♣γ✁ 1q④2� j.

Thus, a � b ✏ Mγ � ♣i � jq P S.

✍ If i, j → ♣M ✁ 1q④2, then a ✏ M♣γ ✁ 1q④2 � i and b ✏ M♣γ ✁ 1q④2 � j. Thus,

a � b ✏ M♣γ ✁ 1q � ♣i � jq → M♣γ ✁ 1q � ♣M ✁ 1q ✏ Mγ ✁ 1. Since i � j ✙M 0,

a � b → Mγ and we conclude that a � b P S.

Remark 5.1. Theorem 5.1 improves the Proposition 5.1. For example, if M ✏ 3, Propo-

sition 5.1 gives g ➙ 3γ

2
and Theorem 5.1 gives 2g ➙ 4γ, i.e., g ➙ 2γ.

Definition 5.1. The quocient of a numerical semigroup S by a positive integer M is

S④M :✏ ts P N0 : Ms P S✉.

Let γ be a non-negative integer. There is a natural parametrization of the

family S♣M,γq♣gq onto Sγ given by

xM,g : S♣M,γq♣gq Ñ Sγ

S ÞÑ S④M

which is a surjective map.

Remark 5.2. Indeed, any S P S♣M,γq♣gq can be uniquely written as

S ✏ M♣S④Mq ❨ to
g�γ✁t 2g

M ✉ ➔ ☎ ☎ ☎ ➔ o1✉ ❨ S2g

where o
g�γ✁t 2g

M ✉, . . . , o1 are certain numbers ♣✙0 Mq in r1, 2g ✁ 1s.

Remark 5.3. For g and γ non-negative integers, we write

N♣M,γq♣gq ✏
➳

TPSγ

#x✁1
M,g♣T q.
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Let S P S♣M,γq♣gq. Remark 5.2 tell us that there is natural way to obtain the

gaps and non-gaps ♣✑M 0q of S from a numerical semigroup T P Sγ : if tMq1, . . . , Mqγ✉ is

the set of gaps ♣✑M 0q of S, then it can be obtained by multiplying by M the gaps from

N0③tq1, . . . , qγ✉ P Sγ. Moreover, T is uniquely determined (T ✏ S④M).

Reciprocally, given T P Sγ we can obtain a ♣M, γq-hyperelliptic semigroup S

of some genus g by multiplying by M the gaps of T and making a suitable choice on the

numbers ♣✙M 0q that are gaps or non-gaps of S. Notice that not all choices for those

integers return numerical semigroups (some sets are not closed under addition) and in

general S is not uniquely determined (in general, the fiber x✁1
M,g♣T q has more than one

element).

Now we look for conditions that a ♣M, γq-hyperelliptic semigroup with some

genus g ➙ ♣M � 1qγ④2 has to attain. In fact, let T P Sγ and consider all sets

S ✏ MT ❨ to
g�γ✁t 2g

M ✉ ➔ . . . ➔ o1✉ ❨ S2g,

where the numbers oi are numbers ♣✙M 0q less than 2g.

From definition, S ❸ N0, 0 P S and N0③S has γ elements ♣✙M 0q. There are

2g ✁
❩

2g

M

❫
numbers ♣✙M 0q in r1, 2g ✁ 1s, such that g � γ ✁

❩
2g

M

❫
of them lies in S. Thus

N0③S has g ✁ γ elements ♣✙M 0q and #♣N0③Sq ✏ g. Hence we conclude that S P S♣M,γq♣gq
if, and only if, S is closed under addition. Moreover, the part ♣✑M 0q of S is closed under

addition, since T is.

Let T P Sγ, where T ✏ N0③tq1, . . . , qγ✉ and T ❳ r0, 2γs ✏ tt0 ✏ 0, t1, . . . , tγ ✏
2γ✉, we have that Mt0 ✏ 0 ➔ Mt1 ➔ ☎ ☎ ☎ ➔ Mtγ✁1 ➔ Mtγ ✏ 2Mγ are non-gaps ♣✑M 0q of

S and Mq1 ➔ . . . ➔ Mqγ are the gaps ♣✙M 0q of S.

Let Oi :✏ mints P S : s ✑ i ♣mod Mq✉ ✏ Mki � i, for i P t1, . . . M ✁ 1✉. By

closed under addition condition, we conclude that Oj � 2ti must be a non-gap of S, for all

i and j and ♣Oj � 2Mγq � N0 ❸ S, for all j. Notice that, at first, there are no necessary

conditions on each number Oj � Mqi. We illustrate it below:
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Figure 7 – Configuration of a ♣M, γq-hyperelliptic semigroup

We obtain upper and lower bounds for the sum of the numbers Oi’s in a

♣M, γq-hyperelliptic semigroup S with genus g only depending on γ, g and M .

Proposition 5.3. Let S be a ♣M, γq-hyperelliptic semigroup with genus g and

Oi :✏ mints P S : s ✑ i ♣mod Mq✉, for i P t1, . . . , M ✁ 1✉. Then

Mg ✁ M2γ �
✂

M

2

✡
↕

M✁1➳
i✏1

Oi ↕ Mg ✁Mγ �
✂

M

2

✡
.

Proof. For each i, let Oi ✏ Mki � i and Mq1, . . . , Mqγ be the gaps ♣✑M 0q of S. Then the

ki numbers i, . . . , Mki ✁ ♣M ✁ iq are gaps ♣✑M iq of S and the only possibilities for other

gaps ♣✑M iq of S are Oi �Mq1, . . . , Oi �Mqγ . Thus γ �
➳

i

ki ↕ g ↕ γ �
➳

i

ki �♣M ✁ 1qγ

and g✁Mγ ↕
➳

i

ki ↕ g✁ γ. Multiplying last inequality by M and adding
➳

i

i, we obtain

Mg ✁M2γ �
M✁1➳
i✏1

i ↕
M✁1➳
i✏1

♣Mki � iq ↕ Mg ✁Mγ �
M✁1➳
i✏1

i, i.e.,

Mg ✁ M2γ �
✂

M

2

✡
↕

M✁1➳
i✏1

Oi ↕ Mg ✁Mγ �
✂

M

2

✡
.

In particular, last result improves an immediate consequence of (26, Lemma

2.1). He proves that for in an integer O in a ♣M, γq-hyperelliptic semigroup with genus g

such that gcd♣O, Mq ✏ 1, the following holds

O ➙ 2g ✁ 2Mγ

M ✁ 1
� 1.



Chapter 5. A generalization of γ-hyperelliptic semigroups 65

This implies that

M✁1➳
i✏1

Oi ➙ 2g ✁ 2Mγ � ♣M ✁ 1q.

Remark 5.4. Notice that our ♣M, 0q-hyperelliptic semigroups are those considered by

Kunz-Waldi (16, p.1). In fact, N♣M,0q♣gq is the number of numerical semigroups with genus

g containing the integer M .

We recall that a quasipolynomial of degree d is a function f : NÑ C of the form

f♣nq ✏ cd♣nqnd � cd✁1♣nqnd✁1 � . . . � c0♣nq such that each ci♣nq is a periodic functions,

with integer periods and cd ✘ 0. This means ci depends only on the congruence class

modulo an integer.

Using Kunz and Waldi (16) results, we conclude that N♣M,0q♣gq agrees with a

quasipolynomial of degree M ✁ 2. For instance,

N♣2,0q♣gq ✏ 1, N♣3,0q♣gq ✏
❨g

3

❪
� 1 and N♣4,0q♣gq ✏

❩
g2

12
� g

2

❫
� 1.

We compute some values of N♣3,γq♣gq and N♣4,γq♣gq with GAP (13) and the

package NumericalSgps (10). There are two tables with those computations in the end of

this chapter.

We would not be a surprise if the following holds: let γ be a non-negative

integer. Then, for all M ➙ 2, N♣M,γq♣gq ↕ N♣M,γq♣g � 1q, for all g.

Remark 5.5. If there is some M such that

N♣M,γq♣gq ↕ N♣M,γq♣g � 1q, for all g,

then ng ↕ ng�1, for all g, since

ng ✏
t 2g

M�1
✉➳

γ✏0

N♣M,γq♣gq.



C
h
a
p
ter

5
.

A
gen

era
liza

tio
n

o
f

γ
-h

y
perellip

tic
sem

igro
u
p
s

6
6

g γ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 ng

0 1 1
1 1 1
2 1 1 2
3 2 2 4
4 2 4 1 7
5 2 4 6 12
6 3 6 12 2 23
7 3 8 19 9 39
8 3 8 26 28 2 67
9 4 10 33 57 14 118
10 4 12 41 94 51 2 204
11 4 12 49 127 132 19 343
12 5 14 57 170 255 88 3 592
13 5 16 66 208 414 263 29 1001
14 5 16 74 250 591 618 136 3 1693
15 6 18 82 300 787 1153 478 33 2857
16 6 20 91 345 998 1858 1282 203 3 4806
17 6 20 99 388 1199 2688 2800 801 44 8045
18 7 22 107 440 1423 3622 5153 2406 283 4 13467
19 7 24 116 485 1671 4632 8345 5885 1244 55 22464
20 7 24 124 529 1898 5694 12266 12285 4174 391 4 37396
21 8 26 132 581 2142 6787 16814 22260 11502 1878 64 62194
22 8 28 141 626 2398 7962 21818 36073 26731 6951 506 4 103246
23 8 28 149 670 2630 9176 27162 53527 53950 20882 2707 74 170963
24 9 30 157 722 2876 10406 32819 74283 96496 53441 10926 658 5 282828
25 9 32 166 767 3133 11665 38677 97756 156275 118854 36000 3796 94 467224
26 9 32 174 811 3365 12936 44744 123272 233470 234058 100478 16633 845 5 770832

Table 9 – A few values for N♣3,γq♣gq
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g γ 0 1 2 3 4 5 6 7 8 9 10 ng

0 1 1
1 1 1
2 2 2
3 3 1 4
4 4 3 7
5 5 5 2 12
6 7 10 6 23
7 8 16 15 39
8 10 22 33 2 67
9 12 31 58 17 118
10 14 42 96 49 3 204
11 16 52 141 118 16 343
12 19 65 205 247 56 592
13 21 80 285 441 171 3 1001
14 24 94 378 735 425 37 1693
15 27 111 487 1122 939 167 4 2857
16 30 130 618 1627 1838 532 31 4806
17 33 148 757 2258 3239 1470 470 8045
18 37 169 913 3036 5331 3437 540 4 13467
19 40 192 1089 3971 8215 7141 1752 64 22464
20 44 214 1275 5065 12043 13515 4838 397 5 37396
21 48 239 1476 6325 16971 23554 11916 1614 51 62194
22 52 266 1699 7735 23097 38547 26180 5383 287 103246
23 56 292 1929 9301 30480 59635 52515 15452 1298 5 170963
24 61 321 2177 11028 39281 88113 97443 39302 5004 98 282828
25 65 352 2444 12909 49572 125218 168717 90543 16632 766 6 467224

Table 10 – A few values for N♣4,γq♣gq
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6 Patterns on numerical semigroups

In this chapter, we discuss another topic related to numerical semigroups. We

forget, for a moment, the problem of counting numerical semigroups by genus and we now

study the concept of Patterns. It was introduced by Bras-Amorós and García-Sánchez (8)

as a generalization of Arf semigroups (numerical semigroups S that satisfies the following:

for all x ➙ y ➙ z, with x, y and z P S, x� y ✁ z P S); see (1) and (17). A linear pattern is

a linear homogeneous polynomial with non-zero and integer coefficients. In 2013, Bras-

Amorós, García-Sánchez and Vico-Oton (9) introduced non-homogeneous patterns and in

2016, Stokes (23) worked with patterns of ideal of numerical semigroups.

6.1 Some definitions and previous results on patterns

In this section, we present definitions and important results. Some of them can

be found in (8) and (23).

Following (8), a pattern p of length n is a homogeneous linear polynomial

p ✏
n➳

i✏1

aiXi, where ai P Z③t0✉ and the set tp♣s1, . . . , snq : s1 ➙ ☎ ☎ ☎ ➙ sn, si P S✉ is denoted

by p♣Sq. A numerical semigroup S admits a pattern p if p♣Sq ❸ S and a pattern p is said

admissible if there is a numerical semigroup S that admits p.

Lemma 6.1. (8, Theorem 12) Let p ✏
n➳

i✏1

aiXi be a pattern. The following are equivalent:

1) p is admissible.

2)
n✶➳

i✏1

ai ➙ 0, for all n✶ ↕ n.

3) p♣N0q ❸ N0.

Proof. 1q ñ 2q : Suppose that there is n✶ such that
n✶➳

i✏1

ai ➔ 0. If S is a numerical semigroup

and s is a non-zero element of S, then p♣s, . . . , s❧♦♦♠♦♦♥
n✶

, 0, . . . , 0q ✏ s ☎
n✶➳

i✏1

ai ➔ 0, thus not in S.

Hence, p is not admissible.

2q ñ 3q : Let z1 ➙ ☎ ☎ ☎ ➙ zn be non-negative integers. Then p♣z1, . . . , znq ➙ zn ☎
n➳

i✏1

ai ➙ 0,

thus a non-negative integer.

3q ñ 1q : It follows from the fact that N0 admits p.



Chapter 6. Patterns on numerical semigroups 69

A pattern p is strongly admissible if p and p✶ are admissible, where

p✶ ✏
✩✫
✪p✁ x1, if a1 → 1

p♣0, x1, . . . , xn✁1q, otherwise.

Lemma 6.2. (23, p. 186) Let p ✏
n➳

i✏1

aiXi be a pattern. Then p is a strongly admissible

pattern if, and only if,
n✶➳

i✏1

ai ➙ 1, for all n✶ ↕ n.

Proof. By Proposition 6.1, we have
n✶➳

i✏1

ai ➙ 0, ❅n✶ ↕ n.

• Let a1 ✏ 1:

Since p✶ ✏
n➳

i✏2

aiXi✁1 is admissible, then
n✶➳

i✏2

ai ➙ 0, ❅n✶ ↕ n. Thus,
n✶➳

i✏1

ai ➙ 1, ❅n✶ ↕ n.

• Let a1 → 1:

Since p✶ ✏ ♣a1 ✁ 1qX1 �
n➳

i✏2

aiXi is admissible, then ✁1�
n✶➳

i✏1

ai ➙ 0, ❅n✶ ↕ n. Thus,

n✶➳
i✏1

ai ➙ 1, ❅n✶ ↕ n.

Now assume that
n✶➳

i✏1

ai ➙ 1 → 0, for all n✶ ↕ n. By Lemma 6.1, p is admissible. Next we

show that p✶ is also admissible.

• Let a1 ✏ 1:

In this case, p✶ ✏
n➳

i✏2

aiXi✁1. Then
n✶➳

i✏2

ai ➙ 1✁ a1 ✏ 0, for all n✶ such that 2 ↕ n✶ ↕ n.

Thus, p✶ is admissible.

• Let a1 → 1:

In this case, p✶ ✏ ♣a1 ✁ 1qX1 �
n➳

i✏2

aiXi. Then ✁1�
n✶➳

i✏1

ai ➙ 0, for all n✶ ↕ n. Thus,

p✶ is admissible.

Let S be a numerical semigroup and let p be a pattern (from now on, a pattern

means an admissible pattern). Now, we look for conditions on the set p♣Sq so it is a

numerical semigroup. Notice that p♣Sq ❸ N0, 0 ✏ p♣0, . . . , 0q P p♣Sq and p♣Sq is closed

under addition. In fact, if s1 ➙ ☎ ☎ ☎ ➙ sn and r1 ➙ ☎ ☎ ☎ ➙ rn, with si and rj P S, then

s1�r1 ➙ ☎ ☎ ☎ ➙ sn�rn are all elements in S; since p is linear, p♣s1, . . . , snq�p♣r1, . . . , rnq ✏
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p♣s1 � r1, . . . , sn � rnq P S. Thus, p♣Sq is a numerical semigroup if, and only if, N0③p♣Sq is

finite.

A pattern p ✏
n➳

i✏1

aiXi is premonic if there is n✶ ↕ n such that
n✶➳

i✏1

ai ✏ 1 and it

is monic if a1 ✏ 1. In particular, all monic patterns are also premonic.

Lemma 6.3. (8, Proposition 22) Let p be a premonic pattern and S be a numerical

semigroup. Then p♣Sq is a numerical semigroup.

Proof. We show that S ❸ p♣Sq and then N0③p♣Sq ❸ N0③S, being the last one a finite set,

since S is a numerical semigroup. Let s P S and observe that there is n✶ ↕ n such that
n✶➳

i✏1

ai ✏ 1. Then s ✏ s ☎ 1� 0 ✏
n✶➳

i✏1

ai ☎ s�
n➳

i✏n✶�1

ai ☎ 0 ✏ p♣s, . . . , s❧♦♦♠♦♦♥
n✶

, 0 . . . , 0q.

Corollary 6.1. Let p be a premonic pattern admitted by a numerical semigroup S. Then

p♣Sq ✏ S.

Proof. It follows from the inclusion p♣Sq ❸ S.

A pattern p ✏
n➳

i✏1

aiXi is primitive if gcd♣a1, . . . , anq ✏ 1. By gcd properties, a

premonic pattern is also a primitive pattern. Next result improves Proposition 6.3.

Lemma 6.4. (23, Corollary 4) Let p ✏
n➳

i✏1

aiXi be a pattern and S be a numerical

semigroup. The set p♣Sq is a numerical semigroup if, and only if, p is primitive.

Proof. We only have to prove that N0③p♣Sq is finite if, and only if, p is primitive.

Suppose p not primitive, i.e., gcd♣a1, . . . , anq ✏ d → 1. Then p♣Sq ❸ dN0 and

N0③p♣Sq is an infinite set. On the other hand, suppose p primitive.

Claim. p♣Sq ❶ dZ, for all d → 1.

Let d be an integer greater than 1, c ✏ c♣Sq be the conductor of S and s P S❳dZ,

with s ➙ c. By hypothesis, s � d → s � 1 → s are elements of S, with d ⑤ s, d ⑤ s � d and

s� 1 ✑ 1 ♣mod dq. Also, there is ak such that d ∤ ak. Then,

p♣Sq ◗ p♣s� d, . . . , s� d❧♦♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♦♥
k✁1

, s� 1, s, . . . , s❧♦♦♠♦♦♥
n✁k

q ✑ ak♣s� 1q ✑ ak ✙ 0 ♣mod dq

and the Claim follows.

Now, since p♣Sq is closed under addition and p♣Sq ❶ dZ, for all d → 1, it follows

that p♣Sq has finite complement in S.
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Next, we obtain a condition involving the multiplicities of the numerical semi-

groups S and p♣Sq.

Proposition 6.1. Let S be a numerical semigroup of multiplicity m♣Sq ✏ m and p ✏
n➳

i✏1

aiXi be a strongly admissible primitive pattern. Then m ⑤ m♣p♣Sqq.

Proof. First of all, notice that p♣Sq is a numerical semigroup, since p is primitive. We

show that there is j P t1, . . . , n✉ such that m♣p♣Sqq ✏ m ☎
j➳

i✏1

ai. Let k P t1, . . . , n✉ and

s1, . . . , sk P S③t0✉ such that s1 ➙ ☎ ☎ ☎ ➙ sk. Then

p♣s1, . . . , sk, 0, . . . , 0q ✏ a1s1 � a2s2 � ☎ ☎ ☎ � aksk

➙ ♣a1 � a2qs2 � a3s3 � ☎ ☎ ☎ � aksk

➙ ♣a1 � a2 � a3qs3 � ☎ ☎ ☎ � aksk

...

➙ ♣a1 � ☎ ☎ ☎ � akqsk

➙ m ☎
k➳

i✏1

ai

✏ p♣m, . . . , m❧♦♦♦♦♠♦♦♦♦♥
k

, 0, . . . , 0q.

Let j P t1, . . . , n✉ such that
j➳

i✏1

ai ↕
k➳

i✏1

ai, for all k. Thus, p♣m, . . . , m❧♦♦♦♦♠♦♦♦♦♥
j

, 0, . . . , 0q ↕

p♣m, . . . , m❧♦♦♦♦♠♦♦♦♦♥
k

, 0, . . . , 0q and we conclude that m♣p♣Sqq ✏ p♣m, . . . , m❧♦♦♦♦♠♦♦♦♦♥
j

, 0, . . . , 0q ✏ m ☎
j➳

i✏1

ai.

Let P
d
n♣Sq be the set of patterns of length at most n and degree at most d

admitted by S. We write Pn♣Sq to denote the set of linear patterns of length at most n

admitted by a numerical semigroup S.

Lemma 6.5. (23, Lemma 31) The set P
d
n♣Sq with the usual sum is a monoid, for all

numerical semigroups S.

Proof. Let S be a numerical semigroup. It is clear that 0 is admitted by S. Let p and

q P P
d
n♣Sq. Since ♣p � qq♣s1, . . . , snq ✏ p♣s1, . . . , snq � q♣s1, . . . , snq P S, ❅s1 ➙ ☎ ☎ ☎ ➙ sn,

with si P S, then p � q is also admitted by S.
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Proof. Rewrite p♣X, Y q ✏ a♣X ✁ Y q � ♣a✁ bqY and let s1 and s2 P S, with s1 ➙ s2. Then

p♣s1, s2q ✏ a♣s1 ✁ s2q � ♣a✁ bqs2 ✏ a♣s1 ✁ s2q.
(ñ) Since s1 and s2 are arbitrary numbers in S, we can choose them such that s1 ✁ s2 ✏ 1

(for example, s2 is the conductor of S and s1 ✏ s2 � 1 ). In this case, p♣s1, s2q ✏ a. Since p

is admitted by S, we conclude that a P S.

(ð) Since a P S and s1 ➙ s2, then p♣s1, s2q ✏ a♣s1✁s2q P S. Then, p is admitted by S.

Next result characterizes all patterns of length two admitted by hyperelliptic

or ordinary semigroups.

Proposition 6.4. If S is hyperelliptic or ordinary, then the only patterns of length two

not admitted by S are of the form

p♣X, Y q ✏ hX ✁ hY, with h P G♣Sq.

Proof. Let p♣X, Y q ✏ aX ✁ bY be an admissible pattern (so a ➙ 1, b → 0 and a✁ b ➙ 0).

For s P S, p♣s, sq ✏ ♣a ✁ bqs P S. Let s1 and s2 P S, with s1 → s2. Write p♣s1, s2q ✏
a♣s1 ✁ s2q � ♣a✁ bqs2.

• If a, b ➙ 1 and a✁ b ✏ 0, then we can apply Proposition 6.3. We conclude that p is

not admitted by S if, and only if, p♣X, Y q ✏ hX ✁ hY , with h P G♣Sq.

• If a, b ➙ 1 and a✁ b ➙ 1, then p♣s1, s2q ✏ a♣s1✁ s2q� ♣a✁ bqs2 ➙ s1. If S is ordinary,

then s1 ➙ c♣Sq, for all s1 P S (notice that s1 → s2 implies s1 ✘ 0), hence p♣s1, s2q P S

and p is admitted by S. If S is hyperelliptic, then there are two possibilities for s1:

s1 ➙ c♣Sq, which is similar to the previous case, or s1 even, which implies that s2 is

also even and we conclude that p♣s1, s2q is also even. Thus p♣s1, s2q P S. Hence p is

always admitted by S.

By using similar proof, we generalize the last result.

Corollary 6.2. Let A be a positive integer and S :✏ AN0 ❨ tc♣Sq,Ñ✉. Then the only

patterns of length two not admitted by S are of the form

p♣X, Y q ✏ hX ✁ hY, with h P G♣Sq.

Remark 6.1. The numerical semigroup S ✏ ①3, 4② does not admit p♣X, Y q ✏ 2X ✁ Y ,

since p♣4, 3q ✏ 5 ❘ S. This is an example of a numerical semigroup that does not admit a

pattern of length two different from p♣X, Y q ✏ hX ✁ hY , with h P G♣Sq.
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Proposition 6.5. Let S be a numerical semigroup and p♣X, Y q ✏ aX ✁ bY . If a P S or

b P S, then p is admitted by S.

Proof. If a P S, write p♣X, Y q ✏ a♣X ✁ Y q � ♣a ✁ bqY . Let s1 ➙ s2, with s1 and s2 P S.

Then

p♣s1, s2q ✏ a❧♦♦♠♦♦♥
PS

♣s1 ✁ s2q❧♦♦♦♠♦♦♦♥
➙0

�♣a ✁ bq❧♦♦♠♦♦♥
➙0

s2❧♦♦♠♦♦♥
PS

P S.

If b P S, write p♣X, Y q ✏ ♣a ✁ bqX � b♣X ✁ Y q. Let s1 ➙ s2, with s1 and s2 P S. Then

p♣s1, s2q ✏ ♣a ✁ bq❧♦♦♠♦♦♥
➙0

s1❧♦♦♠♦♦♥
PS

� b❧♦♦♠♦♦♥
PS

♣s1 ✁ s2q❧♦♦♦♠♦♦♦♥
➙0

P S.

We have already characterized all patterns p♣X, Y q ✏ aX ✁ bY admitted by

all numerical semigroup with a ✏ b. From now on, we assume a ✁ b ➙ 1, in other words,

that p is strongly admissible.

We recall that the pseudo-Frobenius set of a numerical semigroup S is

PF ♣Sq ✏ tx P Z : x ❘ S and x � s P S, ❅s P S③t0✉✉.

In particular, F ♣Sq P PF ♣Sq.

Lemma 6.6. Let z P PF ♣Sq and k be a non-negative integer. Then kz P PF ♣Sq or kz P S.

Proof. If k ✏ 0, then kz � s ✏ s P S, for all s P S. If k ➙ 1 and kz P S, then we are

done. Now, suppose k ➙ 1 and kz ❘ S. We proceed by induction on k. Let k ✏ 1. Since

z P PF ♣Sq, then for all s P S③t0✉, z � s P S. For any positive integer k and all s P S, we

write kz � s ✏ ♣k ✁ 1qz � s � z. By induction hypothesis, ♣k ✁ 1qz � s P S and the proof

follows.

Proposition 6.6. Let S be a numerical semigroup and p♣X, Y q ✏ aX✁bY , with a✁b ➙ 1.

If a P PF ♣Sq or b P PF ♣Sq, then p is admitted by S.

Proof. If a P PF ♣Sq, write p♣X, Y q ✏ a♣X ✁ Y q � ♣a ✁ bqY . Let s1 ➙ s2, with s1 and

s2 P S. Then

p♣s1, s2q ✏ a❧♦♦♠♦♦♥
PP F ♣Sq

♣s1 ✁ s2q❧♦♦♦♠♦♦♦♥
➙0❧♦♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♦♥

PS or PP F ♣Sq, by Lemma 6.6

�♣a ✁ bq❧♦♦♠♦♦♥
➙1

s2❧♦♦♠♦♦♥
PS❧♦♦♦♦♦♦♦♠♦♦♦♦♦♦♦♥

PS

P S.

If b P PF ♣Sq, write p♣X, Y q ✏ ♣a ✁ bqX � b♣X ✁ Y q. Similarly, for s1 ➙ s2,

with s1 and s2 P S p♣s1, s2q ✏ ♣a ✁ bqs1 � b♣s1 ✁ s2q P S.



Chapter 6. Patterns on numerical semigroups 75

Proposition 6.7. Let p♣X, Y q ✏ aX ✁ bY be a pattern and S be a numerical semigroup,

with conductor c♣Sq and pseudo-Frobenius set PF ♣Sq. If a♣s1 ✁ s2q P S ❨ PF ♣Sq, for all

s1 → s2 P S with s2 ➔ c♣Sq
a ✁ b

, then p is admitted by S.

Proof. Rewrite p♣X, Y q ✏ a♣X✁Y q�♣a✁bqY . If s2 ➙ c♣Sq
a ✁ b

, then ♣a✁bqs2 ➙ c♣Sq. Hence,

for all s1 ➙ s2, p♣s1, s2q ✏ a♣s1 ✁ s2q � ♣a ✁ bqs2 P S. If s2 ➔ c♣Sq
a ✁ b

, then ♣a ✁ bqs2 P S,

because a✁ b ➙ 0 and s2 P S. Since a♣s1 ✁ s2q P S ❨ PF ♣Sq, then p♣s1, s2q is the sum of a

pseudo-Frobenius (or an element of S) and an element of S, hence, by Lemma 6.6, it lies

in S.

Proposition 6.8. Let p♣X, Y q ✏ aX✁bY be a pattern and let S be a numerical semigroup

with conductor c♣Sq and multiplicity m♣Sq. If a ✁ b ➙ c♣Sq
m♣Sq , then p is admitted by S.

Proof. Let s1 ➙ s2, with s1 and s2 P S. If s2 ✏ 0, then p♣s1, s2q ✏ as1 P S. Otherwise,

rewrite p♣X, Y q ✏ a♣X ✁ Y q � ♣a✁ bqY . Then p♣s1, s2q ➙ a♣s1 ✁ s2q � ♣a✁ bqm♣Sq ➙ c♣Sq
and the proof follows.

We can summarize the results obtained in this section as

Theorem 6.1. Let S be a numerical semigroup and let p♣X, Y q ✏ aX ✁ bY be a pattern

which is not admitted by S. Then either

• a ✏ b ✏ h, with h P G♣Sq.

•
c♣Sq
m♣Sq → a ✁ b ➙ 1, with a and b P G♣Sq③PF ♣Sq.

Remark 6.2. If S is a numerical semigroup, then all patterns p♣X, Y q ✏ hX ✁ hY , with

h P G♣Sq, are not admitted by S.

Theorem 6.1 provides an algorithm to decide which patterns p of length two

are admitted by a fixed numerical semigroup S.

Example 6.1. Let S ✏ ①3, 4②. Then G♣Sq ✏ t1, 2, 5✉, PF ♣Sq ✏ t5✉, c♣Sq ✏ 6, m♣Sq ✏ 3

and c♣Sq④m♣Sq ✏ 2. All possible patterns that do not admit S are

X ✁ Y

2X ✁ Y 2X ✁ 2Y

✍ ✍ 5X ✁ 5Y

Remark 6.2 ensures that X ✁ Y, 2X ✁ 2Y and 5X ✁ 5Y are not admitted by S. Also,

2X ✁ Y is not admitted, since 2 ☎ 4 ✁ 3 ✏ 5 ❘ S.
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With this algorithm, we can compute lower and upper bounds for the quantity

of linear patters of length two which are not admitted by a fixed numerical semigroup S.

We recall that the type of a numerical semigroup is the number of elements in PF ♣Sq and

it is denoted by t♣Sq.

Proposition 6.9. Let S be a numerical semigroup and define Np♣Sq as the number of

patterns of length two not admitted by S. Then

g♣Sq ↕ Np♣Sq ↕ g♣Sq �
✂

g♣Sq ✁ t♣Sq
2

✡
.

Proof. We justify the lower bound by using Proposition 6.3. If p♣X, Y q ✏ aX ✁ bY is a

pattern not admitted by S, then a ✏ b ✏ h P G♣Sq or a ✁ b ➙ 1 and a, b P G♣Sq③PF ♣Sq.
There are exactly g♣Sq �

✂
g♣Sq ✁ t♣Sq

2

✡
of such elements.

Remark 6.3. Hyperelliptic semigroups and ordinary semigroups reach the lower bound

and ①3, 4② reaches the upper bound.

6.3 An interplay between patterns, the counting problem and ♣M, γq-

hyperelliptic semigroups

As we mentioned before, Zhao and Zhai considered numerical semigroups S

with genus g such that F ♣Sq ➔ 3 ☎ m♣Sq, i.e., c♣Sq④m♣Sq ↕ 3. We recall that the number

of those numerical semigroups is denoted by tg. Zhai proved that lim
gÑ✽

tg

ng

✏ 1. Hence, for

g ✧ 0, most of numerical semigroups S satisfy c♣Sq④m♣Sq ↕ 3. It is clear that hyperelliptic

semigroups S with genus g satisfy c♣Sq④m♣Sq ✏ g. Thus, if g ➙ 4, then tg ➔ ng. For

hyperelliptic semigroups, Proposition 6.4 ensures that the patterns not admitted by them

are p♣X, Y q ✏ hX ✁ hY , with h P G♣Sq.
Proposition 6.8 shows that for numerical semigroups S such that c♣Sq④m♣Sq ↕ 3

the only possibilities for patterns of length two not admitted by S are p♣X, Y q ✏ aX ✁ bY ,

where a ✁ b P t1, 2✉ and a, b P G♣Sq③PF ♣Sq.
In this way, patterns p♣X, Y q ✏ aX ✁ bY , with a ✁ b ➙ 3, not admitted by a

numerical semigroup can be rare. In fact, the only possibilities for that is if the numerical

semigroup does not satisfy c♣Sq④m♣Sq ↕ 3. However, next proposition comes to show that

we can obtain pattern p♣X, Y q ✏ aX ✁ bY not admitted by a numerical semigroup, with

a ✁ b arbitrarily large. It also generalizes Example 6.1.

Proposition 6.10. Let S ✏ ①k � 1, k � 2②, with k ➙ 1. Then p♣X, Y q ✏ kX ✁ Y is not

admitted by S.
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Proof. Notice that m♣Sq ✏ k � 1, c♣Sq ✏ k♣k � 1q and c♣Sq④m♣Sq ✏ k. We show that

p♣k� 2, k� 1q is the Frobenius number of S. In fact, p♣k� 2, k� 1q ✏ k♣k� 2q✁ ♣k� 1q ✏
k2 � k ✁ 1. On the other hand, F ♣Sq ✏ k♣k � 1q ✁ 1 ✏ k2 � k ✁ 1 and we are done.

Remark 6.4. Proposition 6.8 shows that there is no pattern p♣X, Y q ✏ aX ✁ bY , with

a ✁ b ➙ k not admitted by the numerical semigroup presented Proposition 6.10. Thus, the

pattern presented there is extremal.

To end up this chapter we propose an approach to compute ♣M, γq-hyperelliptic

semigroups by using patterns, as follows.

Let p♣X1, . . . , Xnq ✏
➳

aiXi be a linear admissible pattern and S be a

numerical semigroup with genus γ. By Lemma 6.4, p♣Sq is a numerical semigroup if,

and only if, gcd♣a1, . . . , anq ✏ 1. In those cases, it is clear that all numbers of the form

a1 ☎ s P p♣Sq, for s P S. Hence, we can think p♣Sq as a ♣a1, γ̃q-hyperelliptic semigroup,

where γ̃ ↕ γ. For instance, if a1 ✏ 2, then we are dealing with γ-hyperelliptic semigroups.

Let S be a numerical semigroup and p♣X, Y q ✏ 2X ✁ bY be an admissible

primitive pattern, i.e., b is odd and b ↕ 1. One can prove that if b ✘ 1, then p is always

admitted by S, i.e., p♣Sq ❸ S. Hence, when we start with a numerical semigroup S and

we apply the pattern p, we obtain a numerical semigroup p♣Sq such that g♣p♣Sqq ➙ g♣Sq.
For the cases that b ✏ 1, the pattern 2X ✁ Y is premonic and it is also equivalent to the

Arf pattern. Hence, if S is an Arf semigroup, then p♣Sq ✏ S. By this reason, the interest

seems to be working with non-Arf semigroups A. In those cases, p♣Aq ❺ A. For instance,

if A ✏ ①3, 4② ✏ N0③t1, 2, 5✉, then p♣Aq ✏ ①3, 4, 5② ✏ N0③t1, 2✉ .
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7 Main results and future work

We left some open questions in this work. Here we summarize our contribution

and what remains open. We also give some ideas that can be useful to solve them.

Chapter 2

We proved that the sequence Nγ♣gq satisfy the following:

• If g ➙ 3γ, then Nγ♣gq ✏ Nγ♣3γq.

• If g ➔ 3γ, then Nγ♣gq ➔ Nγ♣3γq.

At first, we cannot compare the numbers Nγ♣g1q and Nγ♣g2q, if
3γ

2
↕ g1 ➔

g2 ➔ 3γ. It seems that, under this hypothesis, Nγ♣g1q ➔ Nγ♣g2q. We tried some similar

techniques to prove it, but we could not solve the problem completely. It remains as an

open problem. It is important to recall that if one can prove that, then it implies that the

sequence ♣ngq is increasing, giving a positive answer to Question 1.

An interesting fact arises when we do observe Tables 1, 2 and 3 is the following:

when g is fixed, the sequence ♣Nγ♣gqqγ seems to be increasing up to
❨g

2

❪
and decreasing

then. A future work is studying it.

Chapter 3

We studied the sequence ♣Nγ♣3γqq and we proved that it coincides with the

sequence ♣fγq considered by Bras-Amorós. We also proved some asymptotic properties of

this sequence (ϕ is the golden ratio and ǫ is any positive number):

• lim
γÑ✽

fγ

♣2ϕ� ǫqγ ✏ 0.

• lim
γÑ✽

fγ

2γ
✏ ✽.

It means that the sequence fγ grows more quickly than 2γ and more slowly

than or equal to ♣2ϕqγ. Some computational experiments suggest that fγ grows like ϕ2γ.

Proving it remains as an open problem.

We also proved that if fγ grows like ϕ2γ , then the following asymptotic properties

of fγ holds true:
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• lim
γÑ✽

fγ

fγ✁1

✏ ϕ2.

• lim
γÑ✽

fγ�1➦γ

i✏0 fi

✏ ϕ.

Chapter 4

This chapter was constructed just after we realized that the ideas of the proof

of Theorem 3.4 could be applied on some Fibonacci like asymptotic properties of the

sequence ♣ngq. We also realized that there is an asymptotic property of it that do not

coincides with the Fibonacci sequence. As a future work, we can compare some other

properties between those sequences.

Chapter 5

We studied a natural generalization of γ-hyperelliptic semigroups, the so called

♣M, γq-hyperelliptic semigroups. We proved that all those semigroups with a fixed genus g

satisfy

• 2g ➙ ♣M � 1qγ and this bound is sharp.

We also prove that if Oi is the first element congruent to i modulo M in a

♣M, γq-hyperelliptic semigroup with genus g, then

• Mg ✁M2γ �
✂

M

2

✡
↕

M✁1➳
i✏1

Oi ↕ Mg ✁Mγ �
✂

M

2

✡
.

We also realized that this generalization can be applied to deal with the problem

of deciding if the sequence ♣ngq is increasing by considering the numbers N♣M,γq♣gq. Some

computational experiments we did with M ✏ 3 and M ✏ 4 suggest that, when γ is fixed,

the sequence ♣N♣M,γq♣gqqg is increasing. If this sequence is in fact increasing for some

integer M , then it implies that the sequence ♣ngq is also increasing.

As a future work, we can approach this problem by trying to find a bijection

with Kunz and Waldi’s approach to deal with numerical semigroups that contain a fixed

integer M .
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Chapter 6

In this chapter, we deal with patterns on numerical semigroups, specially the

ones that can be written as p♣X, Y q ✏ aX ✁ bY , with non-negative integers a ➙ b. We

proved that if p is not admitted by a fixed numerical semigroup S, then either

• a ✏ b ✏ h, with h P G♣Sq;

•
c♣Sq
m♣Sq → a ✁ b ➙ 1, with a and b P G♣Sq③PF ♣Sq.

We also prove that there are numerical semigroups that attains last upper

bound. More precisely,

• ①k � 1, k � 2②, with k ➙ 1 does not admit p♣X, Y q ✏ kX ✁ Y .

As a future work, we can consider admissible primitive patterns p♣X, Y q ✏
MX ✁ bY (and in general, p ✏ MX1 �

➳
aiXi with length greater than 2) to construct

numerical semigroups. In fact, p♣Sq is a ♣M, γ̃q-hyperelliptic semigroup, with γ̃ ↕ g♣Sq. Is

it possible to apply those ideas on the problem of the sequence ♣ngq?
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