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Resumo

Os problemas discutidos nesta tese estão no âmbito da teoria de representações de superalgebras
de Lie de funções. Considere uma superalgebra de Lie da forma g · 𝐴, onde 𝐴 é uma C-álgebra
associativa, comutativa e com unidade, e g é uma superalgebra de Lie. Dada uma ação de um grupo
finito Γ em 𝐴 e g, por automofismos, nós consideramos agora a subalgebra de g · 𝐴 formada por
todos os elementos que são invariantes com respeito a ação associada de Γ. Tal álgebra é chamada
de uma superalgebra de funções equivariantes. Na primeira parte desta tese, classificaremos todas
as representações irredutíveis e de dimensão finita de uma superalgebra de funções equivariantes
de tipo queer (i.e. quando a superalgebra de Lie g é q(𝑛), 𝑛 ⊙ 2) para o caso em que Γ é
abeliano e age livremente em MaxSpec(𝐴). Mostraremos que as classes de isomorfismo de tais
representações são parametrizadas por um certo conjunto de funções Γ-equivariantes de suporte
finito de MaxSpec(𝐴) no conjunto das classes de isomorfismo das representações irredutíveis de
dimensão finita de q(𝑛). No caso particular em que 𝐴 é o anel de coordenadas do toro, obteremos
a classificação das representações irredutíveis de dimensão finita das superálgebras de laços de tipo
queer torcidas. Na segunda parte da tese, introduzimos os módulos de Weyl globais e locais para
g·𝐴, onde g é uma superalgebra de Lie básica ou sl(𝑛, 𝑛), 𝑛 ⊙ 2. Sob certas condições, provaremos
que tais módulos satisfazem certas propriedades universais, os módulos locais tem dimensão finita
e que podem ser isomorfos a produtos tensoriais de módulos de Weyl com pesos máximos menores.
Também definimos os super-funtores de Weyl e provamos varias propriedades que são semelhantes
àquelas satisteitas pelos funtores de Weyl no contexto de álgebras de Lie. Além disso, apontaremos
alguns fatos que são novos no super contexto.

Palavras-chave: superalgebras de Lie, queer superalgebra de Lie, superalgebras de Lie básicas,
superalgebras de funções equivariantes, representação de dimensão finita, módulos de Weyl.



Abstract

This thesis is concerned with the representation theory of map Lie superalgebras. We consider
a Lie superalgebra of the form g·𝐴, where 𝐴 is an associative commutative unital C-algebra and
g is Lie superalgebra. Given actions of a finite group Γ on both 𝐴 and g, by automorphisms, we
also consider the subalgebra of g · 𝐴 of points fixed by the associated action of Γ, which will be
called an equivariant map superalgebra. In the first part of the thesis we classify all irreducible
finite-dimensional representations of the equivariant map queer Lie superalgebras (i.e. when the
Lie superalgebra g is q(𝑛), 𝑛 ⊙ 2) under the assumption that Γ is abelian and acts freely on
MaxSpec(𝐴). We show that the isomorphism classes of such representations are parametrized by
a set of Γ-equivariant finitely supported maps from MaxSpec(𝐴) to the set of isomorphism classes
of irreducible finite-dimensional representations of g. In the special case that 𝐴 is the coordinate
ring of the torus, we obtain a classification of all irreducible finite-dimensional representations
of the twisted loop queer superalgebra. In the second part of the thesis, we define global and
local Weyl modules for g · 𝐴 with g a basic Lie superalgebra or sl(𝑛, 𝑛), 𝑛 ⊙ 2. Under some
mild assumptions, we prove universality, finite-dimensionality, and tensor product decomposition
properties for these modules. We define super-Weyl functors for these Lie superalgebras and we
prove several properties that are analogues of those of Weyl functors in the non-super setting. We
also point out some features that are new in the super case.

Keywords: Lie superalgebra, queer Lie superalgebra, basic Lie superalgebra, equivariant map
superalgebra, finite-dimensional representation, Weyl module.
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Introduction

Equivariant map algebras can be viewed as a generalization of (twisted) current algebras and
loop algebras. Namely, let 𝑋 be an algebraic variety (or, more generally, a scheme) and let g be
a finite-dimensional Lie algebra, both defined over the field of complex numbers. Furthermore,
suppose that a finite group Γ acts on both 𝑋 and g by automorphisms. The equivariant map
algebra 𝑀(𝑋, g)Γ is defined to be the Lie algebra of Γ-equivariant regular maps from 𝑋 to g.
Equivalently, consider the induced action of Γ on the coordinate ring 𝐴 of 𝑋. Then 𝑀(𝑋, g)Γ is
isomorphic to (g·𝐴)Γ, the Lie algebra of fixed points of the diagonal action of Γ on g·𝐴. In the
case that g is a finite-dimensional simple Lie algebra and 𝐴 is the algebra of Laurent polynomials
C[𝑡, 𝑡⊗1] (or equivalently, when 𝑋 is the torus), the representations of g · 𝐴 were investigated by
V. Chary and A. Pressley in [Cha86, CP86]. Recently, the representation theory of equivariant
map algebras, either in full generality or in special cases, has been the subject of much research.
We refer the reader to the survey [NS13] for an overview.

Lie superalgebras are generalizations of Lie algebras and are an important tool for physicists
in the study of supersymmetries. The finite-dimensional simple complex Lie superalgebras were
classified by Victor Kac in [Kac77], and the irreducible finite-dimensional representations of the
so-called basic classical Lie superalgebras were classified in [Kac77] and [Kac78]. It is thus natural
to consider equivariant map superalgebras, where the target Lie algebra g mentioned above is
replaced by a finite-dimensional Lie superalgebra. In [Sav14], the irreducible finite-dimensional
representations of 𝑀(𝑋, g)Γ when g is a basic classical Lie superalgebra, 𝑋 has a finitely-generated
coordinate ring, and Γ is an abelian group acting freely on the set of rational points of 𝑋, were
classified. These assumptions make much of the theory parallel to the non-super setting. The
first part of this thesis (Chapter 2) was submitted and accepted for publication in the Canadian
Journal of Mathematics (see [CMS15]). There we move beyond the setting of basic classical Lie
superalgebras. In particular, we address the case where g is the so-called queer Lie superalgebra.
In this case, almost nothing is known about the representation theory of the equivariant map Lie
superalgebra, even when Γ is trivial or 𝑋 is the affine plane or torus (the current and loop cases,
respectively), although the representations of the corresponding affine Lie superalgebra have been
studied in [GS08].

The queer Lie superalgebra q(𝑛) was introduced by Victor Kac in [Kac77]. It is a simple
subquotient of the Lie superalegbra of endomorphisms of C𝑛♣𝑛 that commute with an odd involution
(see Remark 1.4.6). It is closely related to the Lie algebra sl(𝑛+1), in the sense that q(𝑛) is a direct
sum of one even and one odd copy of sl(𝑛 + 1). Although the queer Lie superalgebra is classical,
its properties are quite different from those of the other classical Lie superalgebras. In particular,

10



the Cartan subalgebra of q(𝑛) is not abelian. (Here, and throughout the paper, we use the term
subalgebra even in the super setting, and avoid the use of the cumbersome term subsuperalgebra.)
For this reason, the corresponding theory of weight modules is much more complicated. The
theory requires Clifford algebra methods, since the highest weight space of an irreducible highest
weight q(𝑛)-module has a Clifford module structure. Nevertheless, the theory of finite-dimensional
q(𝑛)-modules is well developed (see, for example, [Pen86, PS97, Gor06]).

To investigate the representation theory of the Lie superalgebra q(𝑛)·𝐴, where 𝐴 is a commu-
tative unital associative algebra, the first step is to understand the irreducible finite-dimensional
representations of its Cartan subalgebra h·𝐴, where h is the standard Cartan subalgebra of q(𝑛).
Therefore, we first give a characterization of the irreducible finite-dimensional h·𝐴-modules (The-
orem 2.2.3). Next, we give a characterization of quasifinite irreducible highest weight q(𝑛) · 𝐴-
modules in Theorem 2.3.6. Using these results, we are able to give a complete classification of
the irreducible finite-dimensional representations of the equivariant map queer Lie superalgebra
in the case that the algebra 𝐴 is finitely generated and the group Γ is abelian and acts freely on
MaxSpec(𝐴). Our main result in this direction, Theorem 2.5.4, states that the irreducible finite-
dimensional modules are parameterized by a certain set of Γ-equivariant finitely supported maps
defined on MaxSpec(𝐴). In the special cases that 𝑋 is the torus or affine line, our results yield
a classification of the irreducible finite-dimensional representations of the twisted loop queer Lie
superalgebra and twisted current queer Lie superalgebra, respectively.

In the second part of the thesis (Chapters 3 and 4), we are interested in the study of Weyl
modules and super-Weyl functors. The content of Chapter 3 was already submitted for publication
(see [CLS]).

The global and local Weyl modules are universal objects with respect to certain highest weight
properties. The local Weyl modules are finite-dimensional but not, in general, irreducible. They
were first defined, in the loop case, in [CP01] and extended to the map case in [FL04]. These
modules had not been defined in the super setting, except for a quantum analogue in the loop case
for g = sl(𝑚,𝑛) considered in [Zha14]. In [CLS], we initiate the study of Weyl modules for Lie
superalgebras. In particular, we define global and local Weyl modules for Lie superalgebras of the
form g·𝐴, where 𝐴 is an associative commutative unital C-algebra and g is a basic Lie superalgebra
or sl(𝑛, 𝑛), 𝑛 ⊙ 2. After defining global Weyl modules in the super setting (Definition 3.3.6), we give
a presentation in terms of generators and relations (Proposition 3.3.7) and prove that these modules
are universal highest weight objects in a certain category (Proposition 3.3.8). We then define local
Weyl modules (Definition 3.4.1), prove that they are finite-dimensional (Theorem 3.4.13), and that
they also satisfy a certain univeral property with respect to so-called highest map-weight modules
(Proposition 3.4.14). Finally, we show that the local Weyl modules satisfy a nice tensor product
property (Theorem 3.5.1).

Once we have defined global Weyl modules in the super setting, we are able to define the
super-Weyl functors (Definition 4.3.3). These are functors from the category of modules for a
certain commutative algebra acting naturally on the global Weyl module to the category of mod-
ules for the map Lie superalgebra g · 𝐴. The super-Weyl functors are the super version of the
functors defined in [CFK10]. The final part of the thesis is dedicated to the study of such func-
tors. We show that they satisfy nice homological properties (Theorems 4.3.7 and 4.3.8). Under
some assumptions, we prove that images of finitely-generated (finite-dimensional) modules under
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super-Weyl functors are finitely-generated (finite-dimensional) modules (Corollary 4.4.4). We also
prove that is possible to recover the local Weyl modules via these functors by showing that the
images of one-dimensional irreducible modules under the super-Weyl functors are isomorphic to
local Weyl modules (Theorem 4.6.1).

The above-mentioned results show that the Weyl modules and the Weyl functors defined in
this Thesis satisfy many of the properties that their non-super analogues do. However, there are
some important differences. First of all, the Borel subalgebras of basic Lie superalgebras are not
all conjugate under the action of the Weyl group, in contrast to the situation for finite-dimensional
simple Lie algebras. For this reason, our definitions of Weyl modules depend on a choice of system
of simple roots. Second, the category of finite-dimensional modules for a basic Lie superalgebra
is not semisimple in general, again in contrast to the non-super setting. For this reason, the
so-called Kac modules play an important role in the representation theory. These are maximal
finite-dimensional modules of a given highest weight. The Weyl modules defined in the current
Thesis can be viewed as a unification of several types modules in the following sense. If g is a
simple Lie algebra, then our definitions reduce to the usual ones. Thus, the Weyl modules defined
here are generalizations of the Weyl modules in the non-super case. On the other hand, if 𝐴 = C,
then the global and local Weyl modules are equal and coincide with the (generalized) Kac module,
which, if g is a simple Lie algebra, is the irreducible module (of a given highest weight). These
relationships can be summarized in the following diagram:

super non-super

general 𝐴

𝐴 = C

global/local Weyl (super)module global/local Weyl module

generalized Kac module irreducible module

The text is organized in five chapters. In the first chapter we briefly review some results on
commutative algebras, associative superalgebras (in particular Clifford algebras), Lie superalge-
bras (especially basic Lie superalgebras and the queer Lie superalgebra), and its representations.
We also recall the definition of equivariant map Lie superalgebras and the classification of its ir-
reducible finite-dimensional representations. In the second chapter we state and prove our main
results involving irreducible finite-dimensional representations of q(𝑛) · 𝐴 and (q(𝑛) · 𝐴)Γ. We
show that the isomorphism classes of such representations are parametrized by a certain set of
equivariant maps with finite support. In particular, we obtain the classification of all irreducible
finite-dimensional representations of the twisted loop queer Lie superalgebras. In the third chapter
we introduce global and local Weyl modules for map Lie superalgebras of basic type. Under some
mild assumptions, we prove that they satisfy certain universal properties, that the local Weyl
modules are finite dimensional, and that they might be isomorphic to tensor products of Weyl
modules with smaller highest weights. These properties are similar to those of Weyl modules for
equivariant map Lie algebras. In the fourth chapter we define super-Weyl functors. Via such
functors, we recover the local Weyl modules. We also prove several properties that are analogues
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of those of Weyl functors in the non-super setting. Finally, in Chapter 5 we conclude this work by
listing a number of directions of possible further research.
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Chapter 1

Background

In this chapter, we collect the basic definitions and some important results that will be used
throughout the thesis.

Notation

We let Z be the ring of integers, N be the set of nonnegative integers and Z2 = ¶0̄, 1̄♢ be the
quotient ring Z/2Z. Vector spaces, algebras, tensor products, etc. are defined over the field of
complex numbers C unless otherwise stated. Whenever we refer to the dimension of an algebra or
ideal, we refer to its dimension over C.

1.1 Extentions and projectives

Let ℳ be an abelian category. An object 𝑃 in this category is projective if and only if
Homℳ(𝑃,⊗) is an exact functor. We say the category ℳ has enough projectives if any object in
ℳ is a quotient of a projective object.

Assume that ℳ has enough projectives and for 𝑀 ∈ ℳ consider a projective resolution

≤ ≤ ≤ ⊃ 𝑃2
Ó2⊗⊃ 𝑃1

Ó1⊗⊃ 𝑃0
Ó0⊗⊃ 𝑀 ⊃ 0 (1.1.1)

of 𝑀 . For 𝑁 ∈ ℳ we apply the functor Homℳ(⊗, 𝑁) to the complex obtained by deleting 𝑀
from the resolution (1.1.1) to obtain the new complex

Homℳ(𝑃0, 𝑁)
Ó*

1⊃ Homℳ(𝑃1, 𝑁)
Ó*

2⊃ Homℳ(𝑃2, 𝑁)
Ó*

3⊃ ≤ ≤ ≤ . (1.1.2)

For all 𝑛 ∈ N, we define Ext𝑛ℳ(𝑀,𝑁) = H𝑛(Homℳ(𝑃∙, 𝑁)) (the nth cohomology of the complex
(1.1.2)). It can be shown that this is independent of the choice of the projective resolution (see
[Rot09, Th. 6.9]).

Now we list some properties of Ext∙
ℳ that will be used in the sequel.

a. The functor Ext𝑛ℳ(⊗, 𝑁): ℳ ⊃ Ab is additive and contravariant for all 𝑛 ⊙ 0.
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b. The functors Ext0
ℳ(⊗, 𝑁) and Homℳ(⊗, 𝑁) are naturally equivalent for all 𝑁 ∈ Ob ℳ.

c. For any projective object 𝑃 ∈ Ob ℳ and any 𝑁 ∈ Ob ℳ we have Ext𝑛ℳ(𝑃,𝑁) = 0 for all
𝑛 ⊙ 1.

d. For any short exact sequence

0 ⊃ 𝑀1 ⊃ 𝑀 ⊃ 𝑀2 ⊃ 0

and any 𝑁 ∈ Ob ℳ, there is a long exact sequence given by

0 ⊃ Homℳ(𝑀2, 𝑁) ⊃ Homℳ(𝑀,𝑁) ⊃ Homℳ(𝑀1, 𝑁) ⊃
⊃ Ext1

ℳ(𝑀2, 𝑁) ⊃ Ext1
ℳ(𝑀,𝑁) ⊃ Ext1

ℳ(𝑀1, 𝑁) ⊃
⊃ Ext2

ℳ(𝑀2, 𝑁) ⊃ Ext2
ℳ(𝑀,𝑁) ⊃ Ext2

ℳ(𝑀1, 𝑁) ⊃ ≤ ≤ ≤

1.2 Commutative algebras

Let 𝐴 denote a commutative associative unital algebra and let MaxSpec(𝐴) be the set of all
maximal ideals of 𝐴.

Definition 1.2.1 (Supp(𝐼)). The support of an ideal 𝐼 ⊖ 𝐴 is defined to be the set

Supp(𝐼) = ¶m ∈ MaxSpec(𝐴) ♣ 𝐼 ⊖ m♢.

Lemma 1.2.2. Let 𝐼, 𝐽 be ideals of 𝐴.

a. For all positive integer 𝑛, we have Supp(𝐼) = Supp(𝐼𝑛).

b. If 𝐼 is of finite codimension, then Supp(𝐼) is finite.

c. If 𝐴 is finitely generated, then the support of 𝐼 is finite if and only if 𝐼 has finite codimension
in 𝐴.

d. Suppose Supp(𝐼) ∩ Supp(𝐽) = ∅. Then 𝐼 + 𝐽 = 𝐴 and 𝐼𝐽 = 𝐼 ∩ 𝐽 .

e. If 𝐴 is Noetherian, then every ideal of 𝐴 contains a power of its radical.

Proof. The proofs of parts (b), (c), (d) and (e) can be found in [Sav14, §2.1]. It remains to prove
part (a). Fix a positive integer 𝑛. It is clear that Supp(𝐼) ⊖ Supp(𝐼𝑛). The reverse inclusion follows
from the fact that maximal ideals are prime. Indeed, suppose m is a maximal ideal containing
𝐼𝑁 . In particular, for all 𝑎 ∈ 𝐼, we have 𝑎𝑛 ∈ m. But since maximal ideals are prime ideals, this
implies that 𝑎 ∈ m.
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1.3 Associative superalgebras

Let 𝑉 = 𝑉0̄ ⊕𝑉1̄ be a Z2-graded vector space. The parity of a homogeneous element 𝑣 ∈ 𝑉𝑖 will
be denoted by ♣𝑣♣= 𝑖, 𝑖 ∈ Z2. An element in 𝑉0̄ is called even, while an element in 𝑉1̄ is called odd.
A subspace of 𝑉 is a Z2-graded vector space 𝑊 = 𝑊0̄ ⊕𝑊1̄ ⊖ 𝑉 such that 𝑊𝑖 ⊖ 𝑉𝑖 for 𝑖 ∈ Z2. We
denote by C𝑚♣𝑛 the vector space C𝑚 ⊕C𝑛, where the elements of the first (resp. second) summand
are even (resp. odd).

An associative superalgebra 𝐴 is a Z2-graded vector space 𝐴 = 𝐴0̄ ⊕ 𝐴1̄ equipped with a
bilinear associative multiplication (with unit element) such that 𝐴𝑖𝐴𝑗 ⊖ 𝐴𝑖+𝑗, for 𝑖, 𝑗 ∈ Z2. A
homomorphism between two superalgebras 𝐴 and 𝐵 is a map 𝑔:𝐴 ⊃ 𝐵 which is a homomorphism
between the underlying algebras, and, in addition, 𝑔(𝐴𝑖) ⊖ 𝐵𝑖 for 𝑖 ∈ Z2. The tensor product 𝐴·𝐵
is the superalgebra whose vector space is the tensor product of the vector spaces of 𝐴 and 𝐵, with
the induced Z2-grading and multiplication defined by (𝑎1 · 𝑏1)(𝑎2 · 𝑏2) = (⊗1)♣𝑎2♣♣𝑏1♣𝑎1𝑎2 · 𝑏1𝑏2,
for homogeneous elements 𝑎𝑖 ∈ 𝐴, and 𝑏𝑖 ∈ 𝐵. An 𝐴-module 𝑀 is always understood in the
Z2-graded sense, that is, 𝑀 = 𝑀0̄ ⊕ 𝑀1̄ such that 𝐴𝑖𝑀𝑗 ⊖ 𝑀𝑖+𝑗, for 𝑖, 𝑗 ∈ Z2. Subalgebras and
ideals of superalgebras are Z2-graded subalgebras and ideals. A superalgebra having no nontrivial
(graded) ideal is called simple. A homomorphism between 𝐴-modules 𝑀 and 𝑁 is a linear map
𝑓 :𝑀 ⊃ 𝑁 such that 𝑓(𝑥𝑚) = 𝑥𝑓(𝑚), for all 𝑥 ∈ 𝐴 and 𝑚 ∈ 𝑀 . A homomorphism is of degree
♣𝑓 ♣∈ Z2, if 𝑓(𝑀𝑖) ⊖ 𝑁𝑖+♣𝑓 ♣ for 𝑖 ∈ Z2.

We denote by 𝑀(𝑚♣𝑛) the superalgebra of complex matrices in 𝑚♣𝑛-block form

(︃
𝑎 𝑏
𝑐 𝑑

)︃
,

whose even subspace consists of the matrices with 𝑏 = 0 and 𝑐 = 0, and whose odd subspace
consists of the matrices with 𝑎 = 0 and 𝑑 = 0. If 𝑉 = 𝑉0̄ ⊕ 𝑉1̄ is a Z2-graded vector space
with dim 𝑉0̄ = 𝑚 and dim𝑉1̄ = 𝑛, then the endomorphism superalgebra End(𝑉 ) is the associative
superalgebra of endomorphisms of 𝑉 , where

End(𝑉 )𝑖 = ¶𝑇 ∈ End(𝑉 ) ♣ 𝑇 (𝑉𝑗) ⊖ 𝑉𝑖+𝑗, 𝑗 ∈ Z2♢, 𝑖 ∈ Z2.

Note that fixing ordered bases for 𝑉0̄ and 𝑉1̄ gives an isomorphism between End(𝑉 ) and 𝑀(𝑚♣𝑛).
For 𝑚 ⊙ 1, let 𝑃 ∈ 𝑀(𝑚♣𝑚) be the matrix

(︃
0 𝐼𝑚

⊗𝐼𝑚 0

)︃
,

and define 𝑄(𝑚)𝑖 := ¶𝑇 ∈ 𝑀(𝑚♣𝑚)𝑖 ♣ 𝑇𝑃 = (⊗1)𝑖𝑃𝑇♢, for 𝑖 ∈ Z2. Then 𝑄(𝑚) = 𝑄(𝑚)0̄ ⊕𝑄(𝑚)1̄

is the subalgebra of 𝑀(𝑚♣𝑚) consisting of matrices of the form

(︃
𝑎 𝑏
𝑏 𝑎

)︃
, (1.3.1)

where 𝑎 and 𝑏 are arbitrary 𝑚×𝑚 matrices.
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Theorem 1.3.1 ([CW12, p. 94]). Consider C𝑚♣𝑛 as an 𝑀(𝑚♣𝑛)-module via matrix multiplica-
tion. Then the unique irreducible finite-dimensional module, up to isomorphism, of 𝑀(𝑚♣𝑛) (resp.
𝑄(𝑚)) is C𝑚♣𝑛 (resp. C𝑚♣𝑚).

For an associative superalgebra 𝐴, we shall denote by ♣𝐴♣ the underlying (i.e. ungraded) algebra.
Denote by 𝑍(♣𝐴♣) the center of ♣𝐴♣. Note that 𝑍(♣𝐴♣) = 𝑍(♣𝐴♣)0̄ ⊕ 𝑍(♣𝐴♣)1̄, where 𝑍(♣𝐴♣)𝑖 =
𝑍(♣𝐴♣) ∩ 𝐴𝑖, for 𝑖 ∈ Z2.

Theorem 1.3.2 ([CW12, Th. 3.1]). Let 𝐴 be a finite-dimensional simple associative superalgebra.

a. If 𝑍(♣𝐴♣)1̄ = 0, then 𝐴 is isomorphic to 𝑀(𝑚♣𝑛), for some 𝑚 and 𝑛.

b. If 𝑍(♣𝐴♣)1̄ ̸= 0, then 𝐴 is isomorphic to 𝑄(𝑚), for some 𝑚.

Definition 1.3.3 (Clifford algebra). Let 𝑉 be a finite-dimensional vector space and 𝑓 :𝑉 ×𝑉 ⊃ C
be a symmetric bilinear form. We call the pair (𝑉, 𝑓) a quadratic pair. Let 𝐽 be the ideal of the
tensor algebra 𝑇 (𝑉 ) generated by the elements

𝑥· 𝑥⊗ 𝑓(𝑥, 𝑥)1, 𝑥 ∈ 𝑉,

and set 𝐶(𝑉, 𝑓) := 𝑇 (𝑉 )/𝐽 . The algebra 𝐶(𝑉, 𝑓) is called the Clifford algebra of the pair (𝑉, 𝑓)
over C.

Remark 1.3.4 ([Hus94, Ch. 12, Def. 4.1 and Th. 4.2]). For a quadratic pair (𝑉, 𝑓), there exists a
linear map 𝜃:𝑉 ⊃ 𝐶(𝑉, 𝑓) such that the pair (𝐶(𝑉, 𝑓), 𝜃) has the following universal property: For
all linear maps 𝑢:𝑉 ⊃ 𝐴 such that 𝑢(𝑣)2 = 𝑓(𝑣, 𝑣)1𝐴 for all 𝑣 ∈ 𝑉 , where 𝐴 is a unital algebra,
there exists a unique algebra homomorphism 𝑢′:𝐶(𝑉, 𝑓) ⊃ 𝐴 such that 𝑢′𝜃 = 𝑢.

Clifford algebras also have a natural superalgebra structure. Indeed, 𝑇 (𝑉 ) possesses a Z2-
grading (by even and odd tensor powers) such that 𝐽 is homogeneous, so the grading descends to
𝐶(𝑉, 𝑓). Thus, the resulting superalgebra 𝐶(𝑉, 𝑓) is sometimes called the Clifford superalgebra.

Lemma 1.3.5 ([Mus12, Th. A.3.6]). Let (𝑉, 𝑓) be a quadratic pair with 𝑓 nondegenerate. Then
𝐶(𝑉, 𝑓) is a simple associative superalgebra.

Remark 1.3.6. It follows from Lemma 1.3.5, together with Theorems 1.3.1 and 1.3.2, that any
Clifford superalgebra associated to a nondegenerate pair (i.e. the symmetric bilinear form asso-
ciated to this pair is nondegenerate) has only one irreducible finite-dimensional module up to
isomorphism.

1.4 Lie superalgebras

Definition 1.4.1 (Lie superalgebra). A Lie superalgebra is a Z2-graded vector space g = g0̄ ⊕ g1̄

with a bilinear multiplication [≤, ≤] satisfying the following axioms:

a. The multiplication respects the grading: [g𝑖, g𝑗] ⊖ g𝑖+𝑗 for all 𝑖, 𝑗 ∈ Z2.
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b. Skew-supersymmetry: [𝑎, 𝑏] = ⊗(⊗1)♣𝑎♣♣𝑏♣[𝑏, 𝑎], for all homogeneous elements 𝑎, 𝑏 ∈ g.

c. Super Jacobi Identity: [𝑎, [𝑏, 𝑐]] = [[𝑎, 𝑏], 𝑐] + (⊗1)♣𝑎♣♣𝑏♣[𝑏, [𝑎, 𝑐]], for all homogeneous elements
𝑎, 𝑏, 𝑐 ∈ g.

Example 1.4.2. Let 𝐴 = 𝐴0̄ ⊕ 𝐴1̄ be an associative superalgebra. We can make 𝐴 into a Lie
superalgebra by letting [𝑎, 𝑏] := 𝑎𝑏⊗ (⊗1)♣𝑎♣♣𝑏♣𝑏𝑎, for all homogeneous 𝑎, 𝑏 ∈ 𝐴, and extending [≤, ≤]
by linearity. We call this the Lie superalgebra associated to 𝐴. The Lie superalgebra associated to
End(𝑉 ) (resp. 𝑀(𝑚♣𝑛)) is called the general linear Lie superalgebra and is denoted by gl(𝑉 ) (resp
gl(𝑚♣𝑛)).

Observe that g0̄ inherits the structure of a Lie algebra and that g1̄ inherits the structure of
a g0̄-module. A Lie superalgebra g is said to be simple if there are no nonzero proper (graded)
ideals, that is, there are no nonzero proper graded subspaces i ⊖ g such that [i, g] ⊖ i. A finite-
dimensional simple Lie superalgebra g = g0̄ ⊕ g1̄ is said to be classical if the g0̄-module g1̄ is
completely reducible. Otherwise, it is said to be of Cartan type.

For a classical Lie superalgebra g, the g0̄-module g1̄ is either irreducible or a direct sum of two
irreducible representations. In the first case, g is said to be of type II, and in the second case, g
is said to be of type I. A classical Lie superalgebra is said to be basic if it admits a nondegenerate
invariant bilinear form. Otherwise, it is said to be strange. In chapters 3 and 4 we will mostly
be concerned with basic Lie superalgebras. However, the majority of our results also hold for
the Lie superalgebra sl(𝑛, 𝑛), 𝑛 ⊙ 2, which is a 1-dimensional central extension of the basic Lie
superalgebra 𝐴(𝑛 ⊗ 1, 𝑛 ⊗ 1). (Throughout the paper we will somewhat abuse terminology by
talking of the Lie superalgebras 𝐴(𝑚,𝑛), 𝐵(𝑚,𝑛), etc., instead of the Lie superalgebras of type
𝐴(𝑚,𝑛), 𝐵(𝑚,𝑛), etc.)

In Table 1.2 we list all of the basic classical Lie superalgebras (up to isomorphism) that are not
Lie algebras, together with their even part and their type. We also include the Lie superalgebra
𝑠𝑙(𝑛, 𝑛), 𝑛 ⊙ 2, which is a 1-dimensional central extension of 𝐴(𝑛, 𝑛).

g g0̄ Type

𝐴(𝑚,𝑛), 𝑚 > 𝑛 ⊙ 0 𝐴𝑚 ⊕ 𝐴𝑛 ⊕ C I
𝐴(𝑛, 𝑛), 𝑛 ⊙ 1 𝐴𝑛 ⊕ 𝐴𝑛 I
sl(𝑛, 𝑛), 𝑛 ⊙ 2 𝐴𝑛⊗1 ⊕ 𝐴𝑛⊗1 ⊕ C N/A
𝐶(𝑛+ 1), 𝑛 ⊙ 1 𝐶𝑛 ⊕ C I

𝐵(𝑚,𝑛), 𝑚 ⊙ 0, 𝑛 ⊙ 1 𝐵𝑚 ⊕ 𝐶𝑛 II
𝐷(𝑚,𝑛), 𝑚 ⊙ 2, 𝑛 ⊙ 1 𝐷𝑚 ⊕ 𝐶𝑛 II

𝐹 (4) 𝐴1 ⊕𝐵3 II
𝐺(3) 𝐴1 ⊕𝐺2 II

𝐷(2, 1;Ð), Ð ̸= 0,⊗1 𝐴1 ⊕ 𝐴1 ⊕ 𝐴1 II

Table 1.1: The basic classical Lie superalgebras that are not Lie algebras, together with their even
part and their type

Given a Lie superalgebra g, its universal enveloping superalgebra 𝑈(g) is an associative super-
algebra and it satisfies the graded version of the usual universal property. Then a g-module is

18



the same as a left 𝑈(g)-module. The set of g-homomorphisms between two g-modules 𝑈 and 𝑉
is defined to be Hom𝑈(g)(𝑈, 𝑉 )0̄. In other words, all morphism between g-modules are even. The
category of g-modules will be denoted by g -mod. The set of morphism between two g-modules
𝑈, 𝑉 is denoted by Homg(𝑈, 𝑉 ). Let g -mod denote the category of g-modules. Such a category is
abelian.

Remark 1.4.3. It is worth to notice that if we allow morphism of arbitrary degree, and not just
even morphism, then the category g -mod would not be abelian. Indeed, suppose it is abelian
and for 𝑉,𝑊 ∈ Ob g -mod, consider 𝜙0 ∈ Homg(𝑉,𝑊 )0̄ and 𝜙1 ∈ Homg(𝑉,𝑊 )1̄. Since we are
assuming g -mod is an abelian category, in particular Homg(𝑉,𝑊 ) must be an abelian group.
Thus 𝜙 = 𝜙0 + 𝜙1 ∈ Homg(𝑉,𝑊 ) and ker𝜙 must be a (Z2-graded) submodule of 𝑉 . Thus
ker𝜙 = ker𝜙∩𝑉0⊕ker𝜙∩𝑉1. But this would imply that ker𝜙 ⊖ ker𝜙0∩ker𝜙1. It is easy to find two
maps 𝜙0 and 𝜙1 that do not satisfy such a condition. As an example, consider any Lie superalgebra
g acting trivially on C1♣1. Let 𝜙0:C1♣1 ⊃ C1♣1, where 𝜙0(𝑎, 𝑏) = (𝑎, 𝑏), and 𝜙1:C1♣1 ⊃ C1♣1, where
𝜙1(𝑎, 𝑏) = (𝑏, 𝑎). Obviously, ker𝜙0 ∩ ker𝜙1 = ¶(0, 0)♢, but ker𝜙 = ¶(𝑎,⊗𝑎) ♣ 𝑎 ∈ C♢.

The following proposition is a special case of the well known Künneth formula. A proof can be
obtained by using universal enveloping algebras and modifying [Wei94, Th. 3.6.3].

Proposition 1.4.4. Let g1, g2 be finite-dimensional Lie superalgebras, 𝑈1, 𝑉1 be finite-dimensional
g1-modules and 𝑈2, 𝑉2 be finite-dimensional g2-modules. Then

Ext𝑛g1⊕g2(𝑈1 · 𝑈2, 𝑉1 · 𝑉2) ≍=
⨁︁

𝑝+𝑞=𝑛

Ext𝑝g1(𝑈1, 𝑉1) · Ext𝑞g2(𝑈2, 𝑉2), 𝑛 ⊙ 0. (1.4.1)

1.4.1 Contragredient Lie superalgebras

Contragredient Lie superalgebras give a unified way to construct most of the classical Lie
superalgebras as well as Kac-Moody Lie algebras and superalgebras. The construction of these
Lie superalgebras proceeds as follows: let 𝐼 = ¶1, . . . , 𝑛♢, let 𝐴 = (𝑎𝑖𝑗)𝑖,𝑗∈𝐼 be a complex matrix,
and let 𝑝: 𝐼 ⊃ Z2 be a set map. Fix an even vector space h of dimension 2𝑛⊗ rank𝐴 and linearly
independent Ð𝑖 ∈ h*, 𝑖 ∈ 𝐼, and 𝐻𝑖 ∈ h, 𝑖 ∈ 𝐼, such that Ð𝑗(𝐻𝑖) = 𝑎𝑖𝑗, for all 𝑖, 𝑗 ∈ 𝐼. We define
g̃(𝐴) to be the Lie superalgebra generated by the even vector space h and elements 𝑋𝑖, 𝑌𝑖, 𝑖 ∈ 𝐼,
with the parity of 𝑋𝑖 and 𝑌𝑖 equal to 𝑝(𝑖), and subject to the relations

[𝑋𝑖, 𝑌𝑗] = Ó𝑖𝑗𝐻𝑖, [𝐻,𝐻 ′] = 0, [𝐻,𝑋𝑖] = Ð𝑖(𝐻)𝑋𝑖, [𝐻,𝑌𝑖] = ⊗Ð𝑖(𝐻)𝑌𝑖,

for 𝑖, 𝑗 ∈ 𝐼 and 𝐻,𝐻 ′ ∈ h.
The contragredient Lie superalgebra g = g(𝐴) is defined to be the quotient of g̃(𝐴) by the ideal

that is maximal among all the ideals that intersects h trivially (see [Mus12, §5.2]). The images of
the elements 𝑋𝑖, 𝑌𝑖, 𝐻𝑖, 𝑖 ∈ 𝐼, in g(𝐴) are denoted by the same symbols.

Since the action of h on g is diagonalizable, we have a root space decomposition

g = h ⊕
⨁︁

Ð∈∆

gÐ, ∆ ⊖ h*,
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where every root space gÐ is either purely even or purely odd. A root Ð is called even (resp. odd)
if gÐ ⊖ g0̄ (resp. gÐ ⊖ g1̄). We denote by ∆0̄ and ∆1̄ the sets of even and odd roots respectively.
A linearly independent subset Σ = ¶Ñ1, . . . , Ñ𝑛♢ ⊖ ∆ is called a base if we can find 𝑋Ñ𝑖 ∈ gÑ𝑖 and
𝑌Ñ𝑖 ∈ g⊗Ñ𝑖 , 𝑖 = 1, . . . , 𝑛, such that ¶𝑋Ñ𝑖 , 𝑌Ñ𝑖 ♣ 𝑖 = 1, . . . , 𝑛♢ ∪ h generates g(𝐴), and

[𝑋Ñ𝑖 , 𝑌Ñ𝑗 ] = 0 for 𝑖 ̸= 𝑗.

Defining 𝐻Ñ𝑖 = [𝑋Ñ𝑖 , 𝑌Ñ𝑖 ], it follows that the elements 𝑋Ñ𝑖 , 𝑌Ñ𝑖 and 𝐻Ñ𝑖 satisfy the following rela-
tions:

[𝐻Ñ𝑗 , 𝑋Ñ𝑖 ] = Ñ𝑖(𝐻Ñ𝑗)𝑋Ñ𝑖 , [𝐻Ñ𝑗 , 𝑌Ñ𝑖 ] = ⊗Ñ𝑖(𝐻Ñ𝑗)𝑌Ñ𝑖 , [𝑋Ñ𝑖 , 𝑌Ñ𝑗 ] = Ó𝑖𝑗𝐻Ñ𝑖 , 𝑖, 𝑗 ∈ ¶1, . . . , 𝑛♢. (1.4.2)

The matrix 𝐴Σ = (𝑏𝑖𝑗), where 𝑏𝑖𝑗 = Ñ𝑗(𝐻Ñ𝑖), is called the Cartan matrix with respect to the base
Σ. The original set Π = ¶Ð1, . . . , Ð𝑛♢ is called the standard base. It is clear that 𝐴 is the Cartan
matrix associated to Π, i.e. 𝐴 = 𝐴Π. The relations (1.4.2) imply that every root is a purely positive
or purely negative integer linear combination of elements in Σ. We call such a root positive or
negative, respectively, and we have the decomposition ∆ = ∆+(Σ) ⊔ ∆⊗(Σ), where ∆+(Σ) and
∆⊗(Σ) denote the set of positive and negative roots, respectively. A positive root is called simple
if it cannot be written as a sum of two positive roots. It is clear that a root is simple if and only
if it lies in Σ. Thus, Σ is a system of simple roots in the usual sense. We define Σ𝑧 := Σ ∩ ∆𝑧 and
∆∘
𝑧 (Σ) := ∆𝑧 ∩ ∆∘(Σ) for 𝑧 ∈ Z2. The triangular decomposition of g induced by Σ is given by

g = n⊗(Σ) ⊕ h ⊕ n+(Σ),

where n+(Σ) (resp. n⊗(Σ)) is the subalgebra generated by 𝑋Ñ (resp. 𝑌Ñ), Ñ ∈ Σ. The subalgebra
b(Σ) = h⊕ n+(Σ) is called the Borel subalgebra corresponding to Σ. Note that ∆+

0̄
(Σ) is a system

of positive roots for the Lie algebra g0̄. We denote by Σ(g0̄) the set of simple roots of g0̄ with
respect to this system.

Suppose that g is equal to 𝐴(𝑚,𝑛) with 𝑚 ̸= 𝑛, gl(𝑛, 𝑛), 𝐵(𝑚,𝑛), 𝐶(𝑛), 𝐷(𝑚,𝑛), 𝐷(2, 1;Ð),
𝐹 (4), or 𝐺(3). By [Mus12, Theorems 5.3.2, 5.3.3 and 5.3.5], we have that g is a contragredient Lie
superalgebra. The Lie superalgebra sl(𝑛, 𝑛) (resp. 𝐴(𝑛, 𝑛)) is isomorphic to [gl(𝑛, 𝑛), gl(𝑛, 𝑛)] (resp.
[gl(𝑛, 𝑛), gl(𝑛, 𝑛)]/𝐶, where 𝐶 is a one-dimensional center). The image of 𝑋 ∈ sl(𝑛, 𝑛) in 𝐴(𝑛, 𝑛)
will be denoted by the same symbol. Fixing a base Σ of gl(𝑛, 𝑛), the triangular decomposition
gl(𝑛, 𝑛) = n⊗(Σ) ⊕ h ⊕ n⊗(Σ) induces the triangular decompositions

sl(𝑛, 𝑛) = n⊗(Σ) ⊕ h′ ⊕ n+(Σ) and 𝐴(𝑛, 𝑛) = n⊗(Σ) ⊕ (h′/𝐶) ⊕ n+(Σ),

where h′ is the subspace of h generated by 𝐻Ñ, Ñ ∈ Σ (see [Mus12, Lem. 5.2.3]). In particular, any
root of sl(𝑛, 𝑛) or 𝐴(𝑛, 𝑛) is a purely positive or a purely negative integer linear combination of
elements in Σ. Therefore ∆ = ∆+(Σ)⊔∆⊗(Σ) is a decomposition of the system of roots of sl(𝑛, 𝑛)
and 𝐴(𝑛, 𝑛). The matrix 𝐴Σ is also called the Cartan matrix of sl(𝑛, 𝑛) and 𝐴(𝑛, 𝑛) corresponding
to Σ.

Remark 1.4.5. Assume g is a basic Lie superalgebra, gl(𝑛, 𝑛) with 𝑛 ⊙ 2, or sl(𝑛, 𝑛) with 𝑛 ⊙ 3.
Then [gÐ, gÑ] ̸= 0 if Ð, Ñ, Ð + Ñ ∈ ∆. In particular, the parity of Ð + Ñ is the sum of the parities
of Ð and Ñ. Moreover, if g ̸= 𝐴(1, 1), then dim gÐ = 1 for all Ð ∈ ∆ (see [Mus12, Ch. 2]).
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1.4.2 The remaining Lie superalgebras

The following table contains the list of the simple finite-dimensional Lie superalgebras which
are not basic.

p(𝑛) if 𝑛 ⊙ 3
q(𝑛) if 𝑛 ⊙ 3
𝑊 (𝑛) if 𝑛 ⊙ 2
𝑆(𝑛) if 𝑛 ⊙ 3
̃︀𝑆(𝑛) if 𝑛 is even and 𝑛 ⊙ 2
𝐻(𝑛) if 𝑛 ⊙ 4

Table 1.2: The simple Lie superalgebras that are not basic

The structure of these Lie superalgebras is very different from that of semissimple Lie alge-
bras. For instance, they do not have any invariant non-degenerated bilinear form, neither a nice
decomposition in root spaces. Most of the study for these Lie superalgebras is carried out in a
case by case. The representation theory of those of Cartan type (the last four in the above table)
have been studied in [BL79], [BL82], [Sha78], and [Sha87] for instance, using a very diverse array
of methods. This is also the case for the algebras p(n) and q(𝑛) (see [Gor06], [CW12], [Ser02]).

1.4.3 The queer Lie superalgebra

Recall the superalgebra 𝑄(𝑚) defined in Section 1.3. If 𝑚 = 𝑛 + 1, then the Lie superalgebra
associated to 𝑄(𝑚) will be denoted by q̂(𝑛). The derived subalgebra q̃(𝑛) = [q̂(𝑛), q̂(𝑛)] consists
of matrices of the form (1.3.1), where the trace of 𝐵 is zero. Note that q̃(𝑛) has a one-dimensional
center spanned by the identity matrix 𝐼2𝑛+2. The queer Lie superalgebra is defined to be the
quotient superalgebra

q(𝑛) = q̃(𝑛)/C𝐼2𝑛+2.

By abuse of notation, we denote the image in q(𝑛) of a matrix 𝑋 ∈ q̃(𝑛) again by 𝑋. The Lie
superalgebra q(𝑛) has even part isomorphic to sl(𝑛+1) and odd part isomorphic (as a module over
the even part) to the adjoint module. One can show that q(𝑛) is simple for 𝑛 ⊙ 2 (see [Mus12,
§2.4.2]). From now on, q = q(𝑛) where 𝑛 ⊙ 2.

Remark 1.4.6. Some references refer to q̂(𝑛) as the queer Lie superalegbra. However, in this
thesis, we reserve this name for the simple Lie superalgebra q(𝑛).

Denote by 𝑁⊗, 𝐻, 𝑁+ the subset of strictly lower triangular, diagonal, and strictly upper
triangular matrices in sl(𝑛+ 1), respectively. We define

h0̄ =

∮︁(︃
𝑎 0
0 𝑎

)︃ ⧹︃⧹︃⧹︃ 𝑎 ∈ 𝐻

⨀︀
, h1̄ =

∮︁(︃
0 𝑏
𝑏 0

)︃ ⧹︃⧹︃⧹︃ 𝑏 ∈ 𝐻

⨀︀
,

n∘
0̄

=

∮︁(︃
𝑎 0
0 𝑎

)︃ ⧹︃⧹︃⧹︃ 𝑎 ∈ 𝑁∘

⨀︀
, n∘

1̄
=

∮︁(︃
0 𝑏
𝑏 0

)︃ ⧹︃⧹︃⧹︃ 𝑏 ∈ 𝑁∘

⨀︀
,

h = h0̄ ⊕ h1̄, and n∘ = n∘
0̄

⊕ n∘
1̄
.
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Lemma 1.4.7 ([Mus12, Lem. 2.4.1]). We have a vector space decomposition

q = n⊗ ⊕ h ⊕ n+ (1.4.3)

such that n∘ and h are graded subalgebras of q ,with n∘ nilpotent. The subalgebra h is called the
standard Cartan subalgebra of q.

We now describe the roots of q with respect to h0̄. For each 𝑖 = 1, . . . , 𝑛+ 1, define 𝜖𝑖 ∈ h*
0̄ by

𝜖𝑖

(︃
ℎ 0
0 ℎ

)︃
= 𝑎𝑖,

where ℎ is the diagonal matrix with entries (𝑎1, . . . , 𝑎𝑛+1). For 1 ⊘ 𝑖, 𝑗 ⊘ 𝑛+ 1, we let 𝐸𝑖,𝑗 denote
the (𝑛+ 1) × (𝑛+ 1) matrix with a 1 in position (𝑖, 𝑗) and zeros elsewhere, and we set

𝑒𝑖,𝑗 =

(︃
𝐸𝑖,𝑗 0

0 𝐸𝑖,𝑗

)︃
and 𝑒′

𝑖,𝑗 =

(︃
0 𝐸𝑖,𝑗

𝐸𝑖,𝑗 0

)︃
.

Given Ð ∈ h*
0̄, let

qÐ = ¶𝑥 ∈ q ♣ [ℎ, 𝑥] = Ð(ℎ)𝑥 for all ℎ ∈ h0̄♢.
We call Ð a root if Ð ̸= 0 and qÐ ̸= 0. Let ∆ denote the set of all roots. Note that q0 = h and, for
Ð = 𝜖𝑖 ⊗ 𝜖𝑗, 1 ⊘ 𝑖 ̸= 𝑗 ⊘ 𝑛+ 1, we have

qÐ = C𝑒𝑖,𝑗 ⊕ C𝑒′
𝑖,𝑗.

In particular,
q =

⨁︁

Ð∈h*

0̄

qÐ.

A root is called positive (resp. negative) if qÐ∩n+ ̸= 0 (resp. qÐ∩n⊗ ̸= 0). We denote by ∆+ (resp.
∆⊗) the subset of positive (resp. negative) roots. A positive root Ð is called simple if it cannot be
expressed as a sum of two positive roots. We denote by Π the set of simple roots. Thus,

∆+ = ¶𝜖𝑖 ⊗ 𝜖𝑗 ♣ 1 ⊘ 𝑖 < 𝑗 ⊘ 𝑛+ 1♢, Π = ¶𝜖𝑖 ⊗ 𝜖𝑖+1 ♣ 1 ⊘ 𝑖 ⊘ 𝑛+ 1♢,
∆⊗ = ⊗∆+, ∆ = ∆+ ∪ ∆⊗.

It follows that
n+ =

⨁︁

Ð∈∆+

qÐ and n⊗ =
⨁︁

Ð∈∆⊗

qÐ.

The subalgebra b = h ⊕ n+ is called the standard Borel subalgebra of q.
Notice that, since 𝑛 ⊙ 2, we have [h1̄, h1̄] = h0̄. Indeed, for all 𝑖, 𝑗 ∈ ¶1, . . . , 𝑛+ 1♢ with 𝑖 ̸= 𝑗,

we can choose 𝑘 ∈ ¶1, . . . , 𝑛+ 1♢ such that 𝑘 ̸= 𝑖, 𝑘 ̸= 𝑗, and then

𝑒𝑖,𝑖 ⊗ 𝑒𝑗,𝑗 =
1

2
[𝑒′
𝑖,𝑖 ⊗ 𝑒′

𝑗,𝑗, 𝑒
′
𝑖,𝑖 + 𝑒′

𝑗,𝑗 ⊗ 2𝑒′
𝑘,𝑘].

Thus, the result follows from the fact that elements of the form 𝑒𝑖,𝑖 ⊗ 𝑒𝑗,𝑗, for 𝑖, 𝑗 ∈ ¶1, . . . , 𝑛+ 1♢
and 𝑖 ̸= 𝑗, generate h0̄.
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1.5 Representations of Lie superalgebras

Just as for Lie algebras, a finite-dimensional Lie superalgebra g is said to be solvable if g(𝑛) = 0
for some 𝑛 ⊙ 0, where we define inductively g(0) = g and g(𝑛) = [g(𝑛⊗1), g(𝑛⊗1)] for 𝑛 ⊙ 1.

Lemma 1.5.1 ([Kac77, Prop. 5.2.4]). Let g = g0̄ ⊕ g1̄ be a finite-dimensional solvable Lie su-
peralgebra such that [g1̄, g1̄] ⊖ [g0̄, g0̄]. Then every irreducible finite-dimensional g-module is one-
dimensional.

Lemma 1.5.2 ([Sav14, Lem. 2.6]). Suppose g is a Lie superalgebra and 𝑉 is an irreducible g-
module such that J𝑣 = 0 for some ideal J of g and nonzero vector 𝑣 ∈ 𝑉 . Then J𝑉 = 0.

The next two results are super versions of well-known results in representation theory. Namely,
the Poincaré-Birkhoff-Witt Theorem (or PBW Theorem) and Schur’s Lemma, respectively.

Lemma 1.5.3 ([Mus12, Th. 6.1.1]). Let g = g0̄ ⊕g1̄ be a Lie superalgebra and let 𝐵0, 𝐵1 be totally
ordered bases for g0̄ and g1̄, respectively. Then the monomials

𝑢1 ≤ ≤ ≤𝑢𝑟𝑣1 ≤ ≤ ≤ 𝑣𝑠, 𝑢𝑖 ∈ 𝐵0, 𝑣𝑖 ∈ 𝐵1 and 𝑢1 ⊘ ≤ ≤ ≤ ⊘ 𝑢𝑟, 𝑣1 < ≤ ≤ ≤ < 𝑣𝑠,

form a basis of the universal enveloping superalgebra 𝑈(g). In particular, if g is finite-dimensional
and g0̄ = 0, then 𝑈(g) is finite-dimensional.

Lemma 1.5.4 ([Kac77, Schur’s Lemma, p. 18]). Let g be a Lie superalgebra and 𝑉 be an irreducible
g-module. Define Endg(𝑉 )𝑖 := ¶𝑇 ∈ End(𝑉 )𝑖 ♣ [𝑇, g] = 0♢, for 𝑖 ∈ Z2. Then,

Endg(𝑉 )0̄ = C id, Endg(𝑉 )1̄ = C𝜙,

where 𝜙 = 0 or 𝜙2 = ⊗ id.

Assume that g is a basic Lie superalgebra, sl(𝑛, 𝑛), 𝑛 ⊙ 2 or q = q(𝑛), 𝑛 ⊙ 2. In the case g is
basic or sl(𝑛, 𝑛), 𝑛 ⊙ 2, we fix a system of simple roots Σ, define

∆+
𝑧 = ∆+

𝑧 (Σ) for all 𝑧 ∈ Z2,

and let g = n⊗ ⊕ h ⊕ n+ be the triangular decomposition induced by Σ, i.e. n∘ = n∘(Σ). When g

is sl(𝑛, 𝑛) or 𝐴(𝑛, 𝑛), we consider the triangular decomposition induced by gl(𝑛, 𝑛). For the case
g = q, we fix the triangular decomposition of q given in (1.4.3).

Lemma 1.5.5 ([Mus12, Prop. 8.2.2]). a. For every Ú ∈ h*
0̄, there exists a unique irreducible

h-module 𝑈(Ú) such that ℎ𝑣 = Ú(ℎ)𝑣, for all ℎ ∈ h0̄ and 𝑣 ∈ 𝑈(Ú).

b. Any irreducible finite-dimensional h-module is isomorphic to 𝑈(Ú) for some Ú ∈ h*
0̄.

c. If g ̸= q, then 𝑈(Ú) is one-dimensional.
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Let 𝑉 be an irreducible finite-dimensional g-module. For Û ∈ h*
0̄ (recall that h ̸= h0̄ only if

g = q(𝑛)), let
𝑉Û = ¶𝑣 ∈ 𝑉 ♣ ℎ𝑣 = Û(ℎ)𝑣, for all ℎ ∈ h0̄♢ ⊖ 𝑉

be the Û-weight space of 𝑉 . Since h0̄ is an abelian Lie algebra and the dimension of 𝑉 is finite, we
have 𝑉Û ̸= 0 for some Û ∈ h*

0̄. We also have gÐ𝑉Û ⊖ 𝑉Û+Ð, for all Ð ∈ ∆. Then, by the simplicity
of 𝑉 , we have the weight space decomposition

𝑉 =
⨁︁

Û∈h*

0̄

𝑉Û.

Since 𝑉 has finite dimension, there exists Ú ∈ h*
0̄ such that 𝑉Ú ̸= 0 and gÐ𝑉Ú = 0 for all Ð ∈ ∆+.

Since [h0̄, h] = 0, each weight space is an h-submodule of 𝑉 . If 𝑈 is an irreducible h-submodule of
𝑉Ú, then 𝑈 ≍= 𝑈(Ú) by Lemma 1.5.5. Now, the irreducibility of 𝑉 together with the PBW Theorem
(Lemma 1.5.3), implies that

𝑉Ú ≍= 𝑈(Ú) and 𝑈(n⊗)𝑉Ú = 𝑉.

In particular, this shows that any irreducible finite-dimensional g-module is a highest weight mod-
ule, where the highest weight space is an irreducible h-module. On the other hand, given an
irreducible finite-dimensional h-module 𝑈(Ú), we can consider the Verma type module associated
to it. Namely, regard 𝑈(Ú) as a b-module, where n+𝑈(Ú) = 0, and consider the induced g-module
𝑈(g) ·𝑈(b)𝑈(Ú). This module has a unique proper maximal submodule which we denote by 𝑁(Ú).
Define 𝑉 (Ú) = (𝑈(g) ·𝑈(b) 𝑈(Ú))/𝑁(Ú). Then 𝑉 (Ú) is an irreducible g-module and every weight
of 𝑉 (Ú) is of the form

Ú⊗
∑︁

Ð∈Π

𝑚ÐÐ, 𝑚Ð ∈ N for all Ð ∈ Π.

Remark 1.5.6. In order to simplify some statements concerning representation theory of the
Lie superalgebra q(𝑛), we will allow homomorphism of q(𝑛)-modules to be nonhomogeneous. If
we were to require such homomorphisms to be purely even, the Clifford algebra associated to a
nondegenerate pair could have two irreducible representations (see Remark 1.3.6) and q(𝑛) could
have two irreducible highest weight representations of a given highest weight.

Let 𝑃 (Ú) = ¶Û ∈ h*
0̄ ♣ 𝑉 (Ú)Û ̸= 0♢. We will fix the partial order on 𝑃 (Ú) given by Û1 ⊙ Û2 if

and only if Û1 ⊗ Û2 ∈ 𝑄+, where 𝑄+ :=
√︁
Ð∈ΠNÐ denotes the positive root lattice of q.

1.6 Equivariant map superalgebras

In this section, by algebra we will mean a commutative associative unital C-algebra, unless
otherwise specified. We now introduce the main objects of the study: the map Lie superalgebras.

Definition 1.6.1 (Map superalgebra). Let g be a Lie superalgebra and let 𝐴 be an algebra. We
consider the Lie superalgebra g · 𝐴, where the Z2-grading is given by (g · 𝐴)𝑗 = g𝑗 · 𝐴, 𝑗 ∈ Z2,
and the bracket is determined by [𝑥1 · 𝑎1, 𝑥2 · 𝑎2] = [𝑥1, 𝑥2] · 𝑎1𝑎2 for 𝑥𝑖 ∈ g, 𝑎𝑖 ∈ 𝐴, 𝑖 ∈ ¶1, 2♢.
We refer to a superalgebra of this form as a map Lie superalgebra, inspired by the case where 𝐴 is
the ring of regular functions on an algebraic variety. Throughout the thesis, we consider g ⊖ g·𝐴
as a subalgebra via the natural isomorphism g ≍= g · C.
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An action of a group Γ on a Lie superalgebra g and on an algebra 𝐴 will always be assumed
to be by Lie superalgebra automorphisms of g and by algebra automorphisms of 𝐴.

Definition 1.6.2 (Equivariant map superalgebra). Let Γ be a group acting on an algebra 𝐴 and
on a Lie superalgebra g by automorphisms. Then Γ acts naturally on g·𝐴 by extending the map
Ò(𝑢· 𝑓) = (Ò𝑢) · (Ò𝑓), Ò ∈ Γ, 𝑢 ∈ g, 𝑓 ∈ 𝐴, by linearity. We define

(g · 𝐴)Γ = ¶Û ∈ g · 𝐴 ♣ ÒÛ = Û, ∀ Ò ∈ Γ♢

to be the subsuperalgebra of points fixed under this action. In other words, if 𝐴 is the coordinate
ring of a scheme 𝑋, then (g·𝐴)Γ is the subsuperalgebra of g·𝐴 consisting of Γ-equivariant maps
from 𝑋 to g. We call (g ·𝐴)Γ an equivariant map (Lie) superalgebra. Note that if Γ is the trivial
group, this definition reduces to Definition 1.6.1.

Example 1.6.3 (Multiloop superalgebras). Fix positive integers 𝑛,𝑚1, . . . ,𝑚𝑛. Let

Γ = ⟨Ò1, . . . , Ò𝑛 ♣ Ò𝑚𝑖𝑖 = 1, Ò𝑖Ò𝑗 = Ò𝑗Ò𝑖, ∀ 1 ⊘ 𝑖, 𝑗 ⊘ 𝑛⟩ ≍= Z/𝑚1Z× . . .× Z/𝑚𝑛Z,

and suppose that Γ acts on g. Note that this is equivalent to specifying commuting automorphisms
à𝑖, 𝑖 = 1, . . . , 𝑛, of g such that à𝑚𝑖𝑖 = id. For 𝑖 = 1, . . . , 𝑛, let Ý𝑖 be a primitive 𝑚𝑖-th root of unity.
Let 𝑋 = Spec𝐴, where 𝐴 = C[𝑡∘1

1 , . . . , 𝑡∘1
𝑛 ] is the C-algebra of Laurent polynomials in 𝑛 variables

(in other words, 𝑋 is the 𝑛-dimensional torus (C×)𝑛), and define an action of Γ on 𝑋 by

Ò𝑖(𝑧1, . . . , 𝑧𝑛) = (𝑧1, . . . , 𝑧𝑖⊗1, Ý𝑖𝑧𝑖, 𝑧𝑖+1, . . . , 𝑧𝑛).

Then
𝑀(g, à1, . . . , à𝑛,𝑚1, . . . ,𝑚𝑛) := (g · 𝐴)Γ (1.6.1)

is the (twisted) multiloop superalgebra of g relative to (à1, . . . , à𝑛) and (𝑚1, . . . ,𝑚𝑛). In the case
that Γ is trivial (i.e. 𝑚𝑖 = 1 for all 𝑖 = 1, . . . , 𝑛), we call often call it an untwisted multiloop
superalgebra. If 𝑛 = 1, 𝑀(g, à1,𝑚1) is simply called a (twisted or untwisted) loop superalgebra.

1.7 Representations of (g · 𝐴)Γ

Suppose g is a reductive Lie algebra, a basic classical Lie superalgebra, or sl(𝑛, 𝑛), 𝑛 ⊙ 2.
In this section we explain the classification of all irreducible finite-dimensional representations of
(g · 𝐴)Γ.

Suppose m1, . . . ,mℓ ∈ MaxSpec(𝐴) are distinct and 𝑛1, . . . , 𝑛ℓ are positive integers. The asso-
ciated generalized evaluation map is the composition

ev
m
𝑛1
1
,...,m

𝑛ℓ
𝑙

: g · 𝐴։ (g · 𝐴)/
(︁
g · Πℓ

𝑖=1m
𝑛𝑖
𝑖

⎡ ≍=
ℓ⨁︁

𝑖=1

(g · (𝐴/m𝑛𝑖
𝑖 )) .

Let 𝑉𝑖 be a finite-dimensional g·(𝐴/m𝑛𝑖
𝑖 )⊗module with corresponding representation 𝜌𝑖. Then

the composition

(g · 𝐴)
ev

m
𝑛1
1
,...,m

𝑛ℓ
ℓ⊗⊗⊗⊗⊗⊗⊗⊃

ℓ⨁︁

𝑖=1

(g · (𝐴/m𝑛𝑖
𝑖 ))

·ℓ𝑖=𝑖𝜌𝑖⊗⊗⊗⊃ End

(︃
ℓ√︀

𝑖=1

𝑉𝑖

)︃
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is called a generalized evaluation representation of g ·𝐴 and is denoted ev
m
𝑛1
1
,...,m

𝑛ℓ
ℓ

(𝜌1, . . . , 𝜌ℓ). If

𝑛1 = ≤ ≤ ≤ = 𝑛ℓ = 1, then the above is called evaluation representation. We define evΓ
m
𝑛1
1
,...,m

𝑛ℓ
ℓ

(𝜌1, . . . , 𝜌ℓ)

to be the restriction of ev
m
𝑛1
1
,...,m

𝑛ℓ
ℓ

(𝜌1, . . . , 𝜌ℓ) to (g·𝐴)Γ. These are also called (twisted) generalized

evaluation representations.
In [Sav14], it was shown that all irreducible finite-dimensional representations (g·𝐴)Γ are (up to

isomorphism) twisted generalized evaluation representations. This shows that (up to isomorphism)
all the irreducible finite-dimensional representations of g · 𝐴 are tensor product of single point
generalized evaluation representations. In particular, we recover [Sav14, Th. 4.16] which states
that all irreducible finite-dimensional representations of g ·𝐴 are highest weight representations.

Remark 1.7.1. For the Lie algebra case, the classification of the irreducible finite-dimensional
representations of g · C[𝑡, 𝑡⊗1] (the loop case) in terms of tensor products of evaluation repre-
sentations was given by V. Chary and A. Pressley [Cha86, CP86]. The context of equivariant
map algebras was recently considered by E. Neher, A. Savage and P. Senesi in [NSS12]. There
it was shown that all such representations are tensor products of evaluation representations and
one-dimensional representations. In the special case when 𝐴 is the coordinate ring of the torus,
the work of A. Savage [Sav14] gives a classification of all irreducible finite-dimensional representa-
tions of the multiloop superalgebras. In the untwisted case, this recovers the classification given
in [ERZ04, ER13].
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Chapter 2

Equivariant map queer Lie superalgebras

In this chapter we classify all irreducible finite-dimensional representations of the equivariant
map queer Lie superalgebras under the assumption that Γ is abelian and acts freely on MaxSpec(𝐴).
We show that such representations are parameterized by a certain set of Γ-equivariant finitely sup-
ported maps from MaxSpec(𝐴) to the set of isomorphism classes of irreducible finite-dimensional
representations of q. In the special case where 𝐴 is the coordinate ring of the torus, we ob-
tain a classification of the irreducible finite-dimensional representations of the twisted loop queer
superalgebra.

2.1 Equivariant map queer Lie superalgebras

Let 𝐴 denote a commutative associative unital C-algebra and let q = q(𝑛), with 𝑛 ⊙ 2 be the
queer Lie superalgebra. Recall the map Lie superalgebra q · 𝐴, where the Z2-grading is given
by (q · 𝐴)𝑗 = q𝑗 · 𝐴, 𝑗 ∈ Z2, and the multiplication is determined by extending the bracket
[𝑥1 ·𝑓1, 𝑥2 ·𝑓2] = [𝑥1, 𝑥2]·𝑓1𝑓2, 𝑥𝑖 ∈ q, 𝑓𝑖 ∈ 𝐴, 𝑖 ∈ ¶1, 2♢, by linearity. We will refer such a Lie
superalgebra as a map queer Lie superalgebra. If Γ is a group acting on 𝐴 and q by automorphisms,
then

(q · 𝐴)Γ = ¶𝑧 ∈ q · 𝐴 ♣ Ò𝑧 = 𝑧 for all Ò ∈ Γ♢
is the Lie subalgebra of q · 𝐴 of points fixed under the diagonal action of Γ on q · 𝐴. We call
(q · 𝐴)Γ an equivariant map queer Lie superalgebra. See § 1.6 for details.

Example 2.1.1 (Multiloop queer superalgebras). Let 𝑘,𝑚1, . . . ,𝑚𝑘 be positive integers and con-
sider the group

Γ = ⟨Ò1, . . . , Ò𝑘 ♣ Ò𝑚𝑖𝑖 = 1, Ò𝑖Ò𝑗 = Ò𝑗Ò𝑖, ∀ 1 ⊘ 𝑖, 𝑗 ⊘ 𝑘⟩ ≍=
𝑘⨁︁

𝑖=1

Z/𝑚𝑖Z.

An action of Γ on q is equivalent to a choice of commuting automorphisms à𝑖 of q such that
à𝑚𝑖𝑖 = id, for all 𝑖 = 1, . . . , 𝑘. Let 𝐴 = C[𝑡∘1 , . . . , 𝑡

∘
𝑘 ] be the algebra of Laurent polynomials in 𝑘

variables and let 𝑋 = Spec(𝐴) (in other words, 𝑋 is the 𝑘-torus (C×)𝑘). For each 𝑖 = 1, . . . , 𝑘, let
Ý𝑖 ∈ C be a primitive 𝑚𝑖-th root of unity, and define an action of Γ on 𝑋 by

Ò𝑖(𝑧1, . . . , 𝑧𝑘) = (𝑧1, . . . , 𝑧𝑖⊗1, Ý𝑖𝑧𝑖, 𝑧𝑖+1, . . . , 𝑧𝑘).
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This induces an action on 𝐴 and we call

𝑀(q, à1, . . . , à𝑘,𝑚1, . . . ,𝑚𝑘) := (q · 𝐴)Γ

the (twisted) multiloop queer superalgebra relative to (à1, . . . , à𝑘) and (𝑚1, . . . ,𝑚𝑘). If Γ is trivial,
we call it an untwisted multiloop queer superalgebra. If 𝑛 = 1, then 𝑀(q, à1,𝑚1) is called a (twisted
or untwisted) loop queer superalgebra. These have been classified, up to isomorphism, in [GP04,
Th. 4.4]. This classification uses the fact that the outer automorphism group of q is isomorphic to
Z4 (see [Ser84, Th. 1]).

Definition 2.1.2 (Ann𝐴(𝑉 ), Supp(𝑉 )). Let 𝑉 be a (q · 𝐴)Γ-module. We define Ann𝐴(𝑉 ) to
be the sum of all Γ-invariant ideals 𝐼 ⊖ 𝐴, such that (q · 𝐼)Γ𝑉 = 0. If 𝜌 is the associated
representation, we set Ann𝐴(𝜌) := Ann𝐴(𝑉 ). We define the support of 𝑉 to be the support of
Ann𝐴(𝑉 ) (see Definition 1.2.1). We say that 𝑉 has reduced support if Ann𝐴(𝑉 ) is a radical ideal.

2.2 Irreducible finite-dimensional representations of the

Cartan subalgebra

In this section we study irreducible finite-dimensional h·𝐴-modules. The goal is to show that,
for each such module, there exists a finite-codimensional ideal 𝐼 ⊖ 𝐴, such that 𝐼 is maximal with
respect to the property (h · 𝐼)𝑉 = 0. Once this is done, we can proceed using similar arguments
to those used in the study of irreducible finite-dimensional h-modules (see [Mus12, Prop. 8.2.1] or
[CW12, §1.5.4] for example).

Lemma 2.2.1. Let 𝑉 be an irreducible finite-dimensional h·𝐴-module and let 𝐼 ⊖ 𝐴 be an ideal
such that (h0̄ · 𝐼)𝑉 = 0. Then (h1̄ · 𝐼)𝑉 = 0.

Proof. Let 𝜌 be the associated representation of h · 𝐴 on 𝑉 . We must prove that 𝜌(h1̄ · 𝐼) = 0.
Note that

[𝜌(h · 𝐴), 𝜌(h1̄ · 𝐼)] = 𝜌([h · 𝐴, h1̄ · 𝐼]) ⊖ 𝜌([h, h1̄] · 𝐼) ⊖ 𝜌(h0̄ · 𝐼) = 0.

Thus, 𝜌(h1̄ · 𝐼) ⊖ Endh·𝐴(𝑉 )1̄. Suppose that 𝜌(𝑧) ̸= 0 for some 𝑧 ∈ h1̄ · 𝐼. Then, possibly
after multiplying 𝑧 by a nonzero scalar, we may assume, by Schur’s Lemma (Lemma 1.5.4), that
𝜌(𝑧)2 = ⊗ id. But then we obtain the contradiction

⊗2 id = 2𝜌(𝑧)2 = [𝜌(𝑧), 𝜌(𝑧)] = 𝜌([𝑧, 𝑧]) = 0,

where the last equality follows from the fact that [𝑧, 𝑧] ∈ h0̄ · 𝐼.

Proposition 2.2.2. Let 𝑉 be an irreducible h · 𝐴-module. Then 𝑉 is finite-dimensional if and
only if there exists a finite-codimensional ideal 𝐼 of 𝐴 such that (h · 𝐼)𝑉 = 0.
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Proof. Suppose 𝑉 is an irreducible finite-dimensional h · 𝐴-module, and let 𝜌 be the associated
representation. Let 𝐼 be the kernel of the linear map

𝜙 : 𝐴 ⊃ HomC(𝑉 · h, 𝑉 ), 𝑎 ↦⊃ (𝑣 · ℎ ↦⊃ 𝜌(ℎ· 𝑎)𝑣), 𝑎 ∈ 𝐴, 𝑣 ∈ 𝑉, ℎ ∈ h.

Since 𝑉 is finite-dimensional, 𝐼 is a linear subspace of 𝐴 of finite-codimension. We claim that 𝐼 is
an ideal of A. Indeed, if 𝑟 ∈ 𝐴, 𝑎 ∈ 𝐼 and 𝑣 ∈ 𝑉 , then we have

𝜙(𝑟𝑎)(𝑣 · h0̄) = 𝜌(h0̄ · 𝑟𝑎)𝑣 = 𝜌([h1̄, h1̄] · 𝑟𝑎)𝑣

𝜌([h1̄ · 𝑟, h1̄ · 𝑎])𝑣 = 𝜌(h1̄ · 𝑟)𝜌(h1̄ · 𝑎)𝑣 + 𝜌(h1̄ · 𝑎)𝜌(h1̄ · 𝑟)𝑣 = 0.

Thus 𝜙(𝑟𝑎)(𝑉 · h0̄) = 0 for all 𝑟 ∈ 𝐴, 𝑎 ∈ 𝐼, or equivalently, 𝜌(h0̄ · 𝐴𝐼) = 0. In particular,

[𝜌(h1̄ · 𝐴𝐼), 𝜌(h · 𝐴)] ⊖ 𝜌(h0̄ · 𝐴𝐼) = 0,

which implies that 𝜌(h1̄ ·𝐴𝐼) ⊖ Endh·𝐴(𝑉 )1̄. Suppose now that 𝜙(𝑟𝑎)(𝑣· ℎ) ̸= 0 for some 𝑣 ∈ 𝑉
and ℎ ∈ h1̄. Then 𝜌(ℎ · 𝑟𝑎) ̸= 0, with ℎ · 𝑟𝑎 ∈ h1̄ · 𝐴𝐼. Thus, as in the proof of Lemma 2.2.1,
we are lead to the contradiction (possibly after rescaling ℎ· 𝑟𝑎):

⊗2 id = 2𝜌(ℎ· 𝑟𝑎)2 = [𝜌(ℎ· 𝑟𝑎), 𝜌(ℎ· 𝑟𝑎)] ∈ 𝜌(h0̄ · (𝑟𝑎𝑟)𝑎) = 0,

where, in the last equality, we used that 𝜌(h0̄ ·𝐴𝐼) = 0. Since 𝑉 ·h1̄ is spanned by simple tensors
of the form 𝑣 · ℎ, 𝑣 ∈ 𝑉 , ℎ ∈ h1̄, it follows that 𝜙(𝑟𝑎)(𝑉 · h1̄) = 0, and so 𝑟𝑎 ∈ 𝐼. Thus 𝐼 is a
finite-codimensional ideal of 𝐴 such that (h · 𝐼)𝑉 = 0.

Conversely, suppose that (h · 𝐼)𝑉 = 0 for some ideal 𝐼 ⊖ 𝐴 of finite codimension. Then 𝑉
factors to an irreducible h · 𝐴/𝐼-module with (h0̄ · 𝐴/𝐼)𝑣 ⊖ C𝑣 for all 𝑣 ∈ 𝑉 by Schur’s Lemma
(Lemma 1.5.4). On the other hand, let ¶𝑥1, . . . , 𝑥𝑘♢ be a basis of h1̄ ·𝐴/𝐼. Since 𝑉 is irreducible,
the PBW Theorem (Lemma 1.5.3) implies that

𝑉 = 𝑈(h · 𝐴/𝐼)𝑣 =
∑︁

1⊘𝑖1<≤≤≤<𝑖𝑠⊘𝑘

𝑥𝑖1 ≤ ≤ ≤𝑥𝑖𝑠C𝑣,

where 𝑖1, . . . , 𝑖𝑠 ∈ ¶1, . . . , 𝑘♢. Hence, 𝑉 is finite-dimensional.

Let

ℒ(h · 𝐴) = ¶å ∈ (h0̄ · 𝐴)* ♣ å(h0̄ · 𝐼) = 0, for some finite-codimensional ideal 𝐼 ⊖ 𝐴♢

and let ℛ(h · 𝐴) denote the set of isomorphism classes of irreducible finite-dimensional h · 𝐴-
modules. If å ∈ ℒ(h·𝐴) and 𝑆 = ¶𝐼 ⊖ 𝐴 ♣ 𝐼 is an ideal, and å(h0̄ · 𝐼) = 0♢, we set 𝐼å =

√︁
𝐼∈𝑆 𝐼.

Recall that we allow homomorphism of q(𝑛)-modules to be nonhomogeneous (see Remark 1.5.6).

Theorem 2.2.3. For any å ∈ ℒ(h · 𝐴), there exists a unique, up to isomorphism, irreducible
finite-dimensional h · 𝐴-module 𝐻(å) such that 𝑥𝑣 = å(𝑥)𝑣, for all 𝑥 ∈ h0̄ · 𝐴 and 𝑣 ∈ 𝐻(å).
Conversely, any irreducible finite-dimensional h · 𝐴-module is isomorphic to 𝐻(å), for some
å ∈ ℒ(h · 𝐴). In other words, the map

ℒ(h · 𝐴) ⊃ ℛ(h · 𝐴), å ↦⊃ 𝐻(å),

is a bijection.
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Proof. Assume first that 𝑉 is an irreducible finite-dimensional h · 𝐴-module and that 𝑥𝑣 = 0 for
all 𝑥 ∈ h0̄ · 𝐴 and 𝑣 ∈ 𝑉 . Then, by Lemma 2.2.1, we have (h · 𝐴)𝑉 = 0. So we take 𝐻(0) to be
the trivial module.

Assume now å ∈ ℒ(h·𝐴) and å ̸= 0. Define a symmetric bilinear form 𝑓å on hå := h1̄ ·𝐴/𝐼å
by

𝑓å(𝑥, 𝑦) = å([𝑥, 𝑦]), 𝑥, 𝑦 ∈ hå. (2.2.1)

Let h⊥
å = ¶𝑥 ∈ hå ♣ 𝑓å(𝑥, hå) = 0♢ denote the radical of 𝑓å, and set

cå :=
h · 𝐴/𝐼å

(kerå) ⊕ h⊥
å

≍= h0̄ · 𝐴/𝐼å
kerå

⊕ hå

h⊥
å

.

We can regard å as a linear functional on (cå)0̄. Since å ̸= 0, and dim((cå)0̄) = 1, there exists a
unique 𝑧 ∈ (cå)0̄ such that å(𝑧) = 1. Define the factor algebra 𝐴å := 𝑈(cå)/(𝑧 ⊗ 1). Consider the
natural linear maps 𝑖: (cå)1̄ ⊃˓ 𝑇 ((cå)1̄) and 𝑝:𝑇 ((cå)1̄) ։ 𝐴å. It is straightforward to check, via
the universal property of Clifford algebras (see Remark 1.3.4), that the pair (𝐴å, 𝑝◇𝑖) is isomorphic
to the Clifford algebra of ((cå)1̄,

1
2
𝑓å). By Remark 1.3.6, this Clifford algebra admits only one, up

to isomorphism, irreducible finite-dimensional module. Let 𝐻(å) denote such a module. We can
consider an action of h · 𝐴 on 𝐻(å) via the map

h · 𝐴։ cå ⊃˓ 𝑈(cå) ։ 𝐴å.

Note that 𝐻(å) is an irreducible 𝑈(cå)-module (and thus an irreducible cå-module). Therefore,
𝐻(å) is an irreducible finite-dimensional h · 𝐴-module. In particular we have that

𝑥𝑣 = å(𝑥)𝑣, for all 𝑥 ∈ h0̄ · 𝐴 and 𝑣 ∈ 𝐻(å).

It remains to prove the converse statement in the lemma. Let 𝑉 be any irreducible finite-
dimensional h·𝐴-module with associated representation 𝜌. Since h0̄ ·𝐴 is central in h·𝐴, there
exists å ∈ (h0̄ · 𝐴)* such that 𝑥𝑣 = å(𝑥)𝑣, for all 𝑥 ∈ h0̄ · 𝐴, 𝑣 ∈ 𝑉 . On the other hand, by
Proposition 2.2.2, there exists an ideal 𝐼 of 𝐴 of finite-codimension such that (h · 𝐼)𝑉 = 0. In
particular, we have that å(h0̄ · 𝐼) = 0, so å ∈ ℒ(h · 𝐴), and that 𝑉 factors to an irreducible
h·𝐴/𝐼å-module. If h⊥

å is defined to be the radical of the bilinear form (2.2.1), then 𝜌(h⊥
å ) ⊖ gl(𝑉 )

is central. Since 𝜌 is irreducible and 𝜌(h⊥
å ) consists of odd elements, it follows that 𝜌(h⊥

å ) = 0.
Hence, 𝑉 is an irreducible finite-dimensional 𝐶((cå)1̄,

1
2
𝑓å)-module, and so 𝑉 ≍= 𝐻(å).

2.3 Highest weight modules

In [Sav14], the category of irreducible finite-dimensional modules of an equivariant map Lie
superalgebra was investigated in the case that the target Lie superalgebra is basic. In particular, it
was proved that such modules are either generalized evaluation modules or quotients of analogues
of Kac modules of some evaluation modules for a reductive Lie algebra. It was heavily used that
the highest weight space of any irreducible finite-dimensional module is one-dimensional, and also
that tensor products of irreducible modules with disjoint supports are again irreducible modules.
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In Section 2.2, we saw that irreducible finite-dimensional modules for the Cartan superalgebra
h · 𝐴 are irreducible modules for certain Clifford algebras. In particular, the dimension of such
modules is not necessarily equal to one. In addition, it is not true, in general, that the tensor
product of irreducible modules with disjoint supports is irreducible (see Example 2.4.1). Thus, the
arguments used in [Sav14] require modification.

From now on, we consider q ⊖ q·𝐴 as a Lie subalgebra via the natural isomorphism q ≍= q·C.
We also fix the triangular decomposition of q given in (1.4.3).

Definition 2.3.1 (Weight module). Let 𝑉 be a q ·𝐴-module. We say 𝑉 is a weight module if it
is a sum of its weight spaces, i.e.,

𝑉 =
⨁︁

Ú∈h*

𝑉Ú, where 𝑉Ú = ¶𝑣 ∈ 𝑉 ♣ ℎ𝑣 = Ú(ℎ)𝑣 for all ℎ ∈ h0̄♢.

If 𝑉Ú ̸= 0, then Ú ∈ h*
0̄ is called a weight of 𝑉 and the nonzero elements of 𝑉Ú are called weight

vectors of weight Ú.

Definition 2.3.2 (Quasifinite module). A weight q·𝐴-module is called quasifinite if all its weight
spaces are finite-dimensional.

Definition 2.3.3 (Highest weight module). A q · 𝐴-module 𝑉 is called a highest weight module
if there exists a nonzero vector 𝑣 ∈ 𝑉 such that

𝑈(q · 𝐴)𝑣 = 𝑉, (n+ · 𝐴)𝑣 = 0, and 𝑈(h0̄ · 𝐴)𝑣 = C𝑣. (2.3.1)

We call 𝑣 a highest weight vector.

Proposition 2.3.4. If 𝑉 is an irreducible finite-dimensional q · 𝐴-module, then 𝑉 is a highest
weight module. Moreover, the weight space associated to the highest weight is an irreducible h·𝐴-
module.

Proof. Since h0̄ is an abelian Lie algebra and the dimension of 𝑉 is finite, 𝑉Û ̸= 0 for some Û ∈ h*
0̄.

Also note that (qÐ · 𝐴)𝑉Û ⊖ 𝑉Û+Ð, for all Ð ∈ ∆. Then, by the simplicity of 𝑉 , it is a weight
module. Since 𝑉 is finite-dimensional, there exists a maximal weight Ú ∈ h*

0̄, such that 𝑉Ú ̸= 0. It
follows immediately that

(n+ · 𝐴)𝑉Ú = 0.

Considering 𝑉Ú as an h · 𝐴-module, we can choose an irreducible h · 𝐴-submodule 𝐻(å) ⊖ 𝑉Ú.
Thus 𝑈(h0̄ ·𝐴)𝑣 ⊖ C𝑣, for all 𝑣 ∈ 𝐻(å). Now by the simplicity of 𝑉 , we have 𝑈(q·𝐴)𝑣 = 𝑉 for
any 𝑣 ∈ 𝐻(å). In particular, the PBW Theorem (Lemma 1.5.3) implies that 𝑉Ú = 𝐻(å).

Fix å ∈ ℒ(h · 𝐴) and define an action of b · 𝐴 on 𝐻(å) by declaring n+ · 𝐴 to act by zero.
Consider the induced module

𝑉 (å) = 𝑈(q · 𝐴) ·𝑈(b·𝐴) 𝐻(å).
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This is a highest weight module, and a submodule of 𝑉 (å) is proper if and only if its intersection
with 𝐻(å) is zero. Moreover any q · 𝐴-submodule of a weight module is also a weight module.
Hence, if 𝑊 ⊖ 𝑉 (å) is a proper q · 𝐴-submodule, then

𝑊 =
⨁︁

Û ̸=Ú

𝑊Û,

where Ú = å♣h0̄
. Therefore 𝑉 (å) has a unique maximal proper submodule 𝑁(å) and

𝑉 (å) = 𝑉 (å)/𝑁(å)

is an irreducible highest weight q · 𝐴-module.
By Proposition 2.3.4, every irreducible finite-dimensional q ·𝐴-module is isomorphic to 𝑉 (å)

for some å ∈ ℒ(h · 𝐴). Notice also that the highest weight space of 𝑉 (å) is isomorphic, as an
h · 𝐴-module, to 𝐻(å).

Lemma 2.3.5. Let å ∈ ℒ(h · 𝐴) and let 𝐼 be an ideal of 𝐴. Then å(h0̄ · 𝐼) = 0 if and only if
(q · 𝐼)𝑉 (å) = 0.

Proof. Suppose that å(h0̄ · 𝐼) = 0 and set Ú = å♣h0̄
. We know that 𝑉 (å)Ú ≍= 𝐻(å) as h · 𝐴-

modules, and, by Lemma 2.2.1, we have that (h· 𝐼)𝑉 (å)Ú = 0. Now, let 𝑣 be a nonzero vector in
𝑉 (å)Ú. By Lemma 1.5.2, to prove that (q· 𝐼)𝑉 (å) = 0, it is enough to prove that (q· 𝐼)𝑣 = 0. It
is clear that (h · 𝐼)𝑣 = 0 and, since 𝑣 is a highest weight vector, we also have that (n+ · 𝐼)𝑣 = 0.
It remains to show that (n⊗ · 𝐼)𝑣 = 0.

For Ð =
√︁𝑛
𝑖=1 𝑎𝑖Ð𝑖, with 𝑎𝑖 ∈ N and where the Ð𝑖 are the simple roots of q, we define the height

of Ð to be

ht(Ð) =
𝑛∑︁

𝑖=1

𝑎𝑖.

By induction on the height of Ð, we will show that (q⊗Ð · 𝐼)𝑣 = 0. We already have the result for
ht(Ð) = 0 (since q0 = h). Suppose that, for some 𝑚 ⊙ 0, the results holds whenever ht(Ð) ⊘ 𝑚.
Fix Ð ∈ ∆+ with ht(Ð) = 𝑚+ 1. Then

(n+ · 𝐴)(q⊗Ð · 𝐼)𝑣 ⊖ [n+ · 𝐴, q⊗Ð · 𝐼]𝑣 + (q⊗Ð · 𝐼)(n+ · 𝐴)𝑣 = ([n+, q⊗Ð] · 𝐼)𝑣 = 0, (2.3.2)

where the last equality follows from the induction hypothesis, since any element of [n+, q⊗Ð] is
either an element of q⊗Ò, with ht(Ò) < ht(Ð), or an element of n+. Now suppose that there exists
a nonzero vector 𝑤 ∈ (q⊗Ð · 𝐼)𝑣 ⊖ 𝑉Ú⊗Ð. By (2.3.2), we have (n+ · 𝐴)𝑤 = 0, and, since 𝑉 is
irreducible, we have 𝑉 = 𝑈(q·𝐴)𝑤. But, by the PBW Theorem (Lemma 1.5.3), this implies that
𝑉 (å)Ú = 0, which is a contradiction. This completes the proof of the forward implication. The
reverse implication is obvious.

Theorem 2.3.6. Let å ∈ ℒ(h · 𝐴). The following conditions are equivalent:

a. The module 𝑉 (å) is quasifinite.

b. There exists a finite-codimensional ideal 𝐼 of 𝐴 such that (q · 𝐼)𝑉 (å) = 0.
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c. There exists a finite-codimensional ideal 𝐼 of 𝐴 such that å(h0̄ · 𝐼) = 0.

If 𝐴 is finitely generated, then the above conditions are also equivalent to:

d. The module 𝑉 (å) has finite support.

Proof. (a) ⇒ (b): Let Ú = å♣h0̄
be the highest weight of 𝑉 (å). Let Ð be a positive root of q and

let 𝐼Ð be the kernel of the linear map

𝐴 ⊃ HomC(𝑉 (å)Ú · q⊗Ð, 𝑉 (å)Ú⊗Ð), 𝑓 ↦⊃ (𝑣 · 𝑢 ↦⊃ (𝑢· 𝑓)𝑣), 𝑓 ∈ 𝐴, 𝑣 ∈ 𝑉 (å)Ú, 𝑢 ∈ q⊗Ð.

Since 𝑉 (å) is quasifinite, 𝐼Ð is a linear subspace of 𝐴 of finite-codimension. We claim that 𝐼Ð is,
in fact, an ideal of A. Indeed, since Ð ̸= 0, we can choose ℎ ∈ h0̄ such that Ð(ℎ) ̸= 0. Then, for all
𝑔 ∈ 𝐴, 𝑓 ∈ 𝐼Ð, 𝑣 ∈ 𝑉 (å)Ú and 𝑢 ∈ q⊗Ð, we have

0 = (ℎ· 𝑔)(𝑢· 𝑓)𝑣

= [ℎ· 𝑔, 𝑢· 𝑓 ]𝑣 + (𝑢· 𝑓)(ℎ· 𝑔)𝑣

= ⊗Ð(ℎ)(𝑢· 𝑔𝑓)𝑣 + (𝑢· 𝑓)(ℎ· 𝑔)𝑣.

Since (ℎ· 𝑔)𝑣 ∈ 𝑉 (å)Ú and 𝑓 ∈ 𝐼Ð, the last term above is zero. Since we also have Ð(ℎ) ̸= 0, this
implies that (𝑢· 𝑔𝑓)𝑣 = 0. As this holds for all 𝑣 ∈ 𝑉 (å)Ú and 𝑢 ∈ q⊗Ð, we have 𝑔𝑓 ∈ 𝐼Ð. Hence
𝐼Ð is an ideal of 𝐴.

Let 𝐼 be the intersection of all the 𝐼Ð. Since q is finite-dimensional (and thus has a finite
number of positive roots), this intersection is finite and thus 𝐼 is also an ideal of 𝐴 of finite-
codimension. We then have (n⊗ · 𝐼)𝑉 (å)Ú = 0. Since Ú is the highest weight of 𝑉 (å), we also
have (n+ · 𝐼)𝑉 (å)Ú = 0. Then, since h · 𝐼 ⊖ [n+ · 𝐴, n⊗ · 𝐼], we have (h · 𝐼)𝑉 (å)Ú = 0. Thus
(q · 𝐼)𝑉 (å)Ú = 0. Since 𝑉 (å)Ú ̸= 0, it follows from Lemma 1.5.2 that (q · 𝐼)𝑉 (å) = 0.

(b) ⇒ (c): Let 𝑣 be a highest weight vector of 𝑉 (å). Then å(𝑥)𝑣 = 𝑥𝑣 = 0, for any 𝑥 ∈ h0̄ · 𝐼.
Thus å(h0̄ · 𝐼) = 0.

(c) ⇒ (a): If å(h0̄ · 𝐼) = 0, then, by Lemma 2.3.5, we have (q · 𝐼)𝑉 (å) = 0. Then 𝑉 (å) is
naturally a module for the finite-dimensional Lie superalgebra q · 𝐴/𝐼. By the PBW Theorem
(Lemma 1.5.3), we have

𝑉 (å) = 𝑈(q · 𝐴/𝐼)𝑉 (å)Ú = 𝑈(n⊗ · 𝐴/𝐼)𝑉 (å)Ú,

and 𝑉 (å)Ú is finite-dimensional. Another standard application of the PBW Theorem completes
the proof.

Now suppose 𝐴 is finitely generated. We prove that (b) ⇔ (d). By definition, Supp𝐴(𝑉 (å)) =
Supp(Ann𝐴(𝑉 (å))), where Ann𝐴(𝑉 (å)) is the largest ideal of 𝐴 such that (q· 𝐼)𝑉 (å) = 0. Thus
(b) is true if and only of Ann𝐴(𝑉 (å)) is of finite-codimension. Since 𝐴 is finitely generated,
Ann𝐴(𝑉 (å)) is of finite-codimension if and only if it has finite support (see Lemma 1.2.2, parts (b)
and (c)).

Corollary 2.3.7. Let 𝑉 be an irreducible finite-dimensional q ·𝐴-module. Then, there exists an
ideal 𝐼 of 𝐴 of finite-codimension such that (q · 𝐼)𝑉 = 0.

Proof. Since finite-dimensional modules are clearly quasifinite, the result follows from Theorem 2.3.6.
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2.4 Evaluation representations and their

irreducible products

If 𝑅 and 𝑆 are associative unital algebras, all irreducible finite-dimensional modules for 𝑅· 𝑆
are of the form 𝑉𝑅 · 𝑉𝑆, where 𝑉𝑅 and 𝑉𝑆 are irreducible finite-dimensional modules for 𝑅 and
𝑆, respectively. Furthermore, all such modules are irreducible. When 𝑅 and 𝑆 are allowed to
be superalgebras, the situation is somewhat different. In particular, 𝑉𝑅 · 𝑉𝑆 is not necessarily
irreducible, as seen in the next example.

Example 2.4.1. By Remark 1.3.6, the unique irreducible finite-dimensional 𝑄(1)-module is C1♣1.
However, C1♣1 · C1♣1 is not an irreducible 𝑄(1) · 𝑄(1)-module, since 𝑄(1) · 𝑄(1) ≍= 𝑀(1♣1) as
associative superalgebras and, again by Remark 1.3.6, the unique irreducible finite-dimensional
𝑀(1♣1)-module is also C1♣1.

In general, if g1, g2 are two finite-dimensional Lie superalgebras, and 𝑉 𝑖 is an irreducible
finite-dimensional g𝑖-module, for 𝑖 = 1, 2, then the g1 ⊕ g2-module 𝑉 1 · 𝑉 2 is irreducible only if
Endg𝑖(𝑉

𝑖)1̄ = 0, for some 𝑖 = 1, 2 (recall that dim(Endg𝑖(𝑉
𝑖)1̄) ̸= 0 implies, by Schur’s Lemma

(Lemma 1.5.4), that Endg𝑖(𝑉
𝑖)1̄ = C𝜙𝑖, where 𝜙2

𝑖 = ⊗1). When Endg𝑖(𝑉
𝑖)1̄ = C𝜙𝑖, 𝜙2

𝑖 = ⊗1, for
𝑖 = 1 and 𝑖 = 2, we have that

̂︀𝑉 = ¶𝑣 ∈ 𝑉 1 · 𝑉 2 ♣ (𝜙1 · 𝜙2)𝑣 = 𝑣♢, where 𝜙1 =
√

⊗1𝜙1,

is an irreducible g1 ⊕ g2-submodule of 𝑉 1 · 𝑉 2 such that 𝑉 1 · 𝑉 2 ≍= ̂︀𝑉 ⊕ ̂︀𝑉 (see [Che95, p. 27]).
Set henceforth

𝑉 1 ̂︀·𝑉 2 =

⎧
⨄︁
⋃︁
𝑉 1 · 𝑉 2 if 𝑉 1 · 𝑉 2 is irreducible,
̂︀𝑉  𝑉 1 · 𝑉 2 if 𝑉 1 · 𝑉 2 is not irreducible.

(2.4.1)

In [Che95, Prop. 8.4], it is proved that every irreducible finite-dimensional g1 ⊕ g2-module
is isomorphic to a module of the form 𝑉 1 ̂︀·𝑉 2, where 𝑉 𝑖 is an irreducible finite-dimensional g𝑖-
module for 𝑖 = 1, 2. If 𝜌𝑖 denotes the representation associated to the g𝑖-module 𝑉 𝑖, then 𝜌1

̂︀·𝜌2

will denote the representation associated to the g1 ⊕ g2-module 𝑉 1 ̂︀·𝑉 2. Inductively, we define the
g1 ⊕ ≤ ≤ ≤ ⊕ g𝑘-module

𝑉 1 ̂︀· ≤ ≤ ≤ ̂︀·𝑉 𝑘 := (𝑉 1 ̂︀· ≤ ≤ ≤ ̂︀·𝑉 𝑘⊗1) ̂︀·𝑉 𝑘

with associated representation denoted by 𝜌1
̂︀· ≤ ≤ ≤ ̂︀·𝜌𝑘. We will call ̂︀· the irreducible product. As

the next lemma shows, it is associative, up to isomorphism.

Lemma 2.4.2. For 𝑖 = 1, 2, 3, let g𝑖 be a Lie superalgebra and let 𝑉 𝑖 be an irreducible finite-
dimensional g𝑖-module. Then, (𝑉 1 ̂︀·𝑉 2) ̂︀·𝑉 3 ≍= 𝑉 1 ̂︀·(𝑉 2 ̂︀·𝑉 3) as g1 ⊕ g2 ⊕ g3-modules.

Proof. By [Che95, Prop. 8.4], the unique, up to isomorphism, irreducible finite-dimensional g1 ⊕
(g2 ⊕ g3)-module contained in 𝑉 1 · (𝑉 2 · 𝑉 3) is 𝑉 1 ̂︀·(𝑉 2 ̂︀·𝑉 3). On the other hand, the unique
irreducible finite-dimensional (g1 ⊕ g2) ⊕ g3-module contained in (𝑉 1 · 𝑉 2) · 𝑉 3 is (𝑉 1 ̂︀·𝑉 2) ̂︀·𝑉 3.
Now, since g1 ⊕g2 ⊕g3 ≍= g1 ⊕(g2 ⊕g3) ≍= (g1 ⊕g2)⊕g3 as Lie superalgebras, and (𝑉 1 ·𝑉 2)·𝑉 3 ≍=
𝑉 1 · (𝑉 2 · 𝑉 3) as g1 ⊕ g2 ⊕ g3-modules, we conclude that (𝑉 1 ̂︀·𝑉 2) ̂︀·𝑉 3 ≍= 𝑉 1 ̂︀·(𝑉 2 ̂︀·𝑉 3).
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Proposition 2.4.3. Let 𝑉 (å1) and 𝑉 (å2), for å1, å2 ∈ ℒ(h · 𝐴), be two irreducible finite-
dimensional g · 𝐴-modules with disjoint supports. Then

𝑉 (å1) · 𝑉 (å2) ≍=
⎧
⨄︁
⋃︁
𝑉 (å1 + å2), or

𝑉 (å1 + å2) ⊕ 𝑉 (å1 + å2).

Proof. Let 𝐼𝑖 = Ann𝐴(𝑉 (å𝑖)) and let 𝜌𝑖 be the representation corresponding to 𝑉 (å𝑖), for 𝑖 = 1, 2.
Then the representation 𝜌1 · 𝜌2 factors through the composition

q · 𝐴
∆⊃˓ (q · 𝐴) ⊕ (q · 𝐴)

Þ
։ (q · 𝐴/𝐼1) ⊕ (q · 𝐴/𝐼2), (2.4.2)

where ∆ is the diagonal embedding and the second map is the obvious projection on each summand.
By Lemma 1.2.2(d), we have that 𝐼1 ∩ 𝐼2 = 𝐼1𝐼2, since the supports of 𝐼1 and 𝐼2 are disjoint. Thus
𝐴 = 𝐼1 + 𝐼2, and so 𝐴/𝐼1𝐼2

≍= (𝐴/𝐼1) ⊕ (𝐴/𝐼2). We therefore have the following commutative
diagram:

q · 𝐴 (q · 𝐴) ⊕ (q · 𝐴)

q · 𝐴/𝐼1𝐼2 (q · 𝐴/𝐼1) ⊕ (q · 𝐴/𝐼2)

∆

≍=

It follows that the composition (2.4.2) is surjective. However, as a (q · 𝐴/𝐼1) ⊕ (q · 𝐴/𝐼2)-
module, 𝑉 (å1) · 𝑉 (å2) is either irreducible or is isomorphic to ̂︀𝑉 ⊕ ̂︀𝑉 , where ̂︀𝑉  𝑉 (å1) · 𝑉 (å2)
is an irreducible (q · 𝐴/𝐼1) ⊕ (q · 𝐴/𝐼2)-module. Then the result follows from the fact that
𝑉 (å1) · 𝑉 (å2), and hence ̂︀𝑉 ⊕ ̂︀𝑉 , is generated by vectors on which h · 𝐴 acts by å1 + å2.

Note that if 𝑉 (å1) and 𝑉 (å2) satisfy the hypothesis of Proposition 2.4.3, then

𝑉 (å1) ̂︀·𝑉 (å2) ≍= 𝑉 (å1 + å2).

In general, the following result follows by induction.

Corollary 2.4.4. Suppose that 𝑉 (å1), . . . , 𝑉 (å𝑘) are q·𝐴-modules with pairwise disjoint supports.
Then

̂︂√︀𝑛

𝑖=1
𝑉 (å𝑖) ≍= 𝑉

(︃
𝑛∑︁

𝑖=1

å𝑖

)︃
.

Now assume Γ is a finite abelian group acting on both q and 𝐴 by automorphisms. We also
assume that 𝐴 is finitely generated and that Γ acts freely on MaxSpec(𝐴).

Definition 2.4.5 (Evaluation map). Suppose m1, . . . ,m𝑘 are pairwise distinct maximal ideals of
𝐴. The associated evaluation map is the composition

evm1,...,m𝑘
: q · 𝐴։ (q · 𝐴)/

(︃
q ·

𝑘∏︁

𝑖=1

m𝑖

)︃
≍=

𝑘⨁︁

𝑖=1

(q · 𝐴/m𝑖).

We let evΓ
m1,...,m𝑘

denote the restriction of evm1,...,m𝑘
to (q · 𝐴)Γ.
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Let m1, . . . ,m𝑘 be pairwise distinct maximal ideals of 𝐴, and for each 𝑖 = 1, . . . , 𝑘, let 𝑉𝑖 be an
irreducible finite-dimensional q·𝐴/m𝑖-module, with corresponding representation 𝜌𝑖: q·𝐴/m𝑖 ⊃
gl(𝑉𝑖). Then the representation given by the composition

q · 𝐴
evm1,...,m𝑘⊗⊗⊗⊗⊗⊃

𝑘⨁︁

𝑖=1

(q · (𝐴/m𝑖))
̂︁⨂︀𝑘

𝑖=1
𝜌𝑖⊗⊗⊗⊗⊃ End

(︃
̂︂√︀𝑘

𝑖=1
𝑉𝑖

)︃

is denoted by
̂︁evm1,...,m𝑘

(𝜌1, . . . , 𝜌𝑘) (2.4.3)

and the corresponding module is denoted by

̂︁evm1,...,m𝑘
(𝑉1, . . . , 𝑉𝑘). (2.4.4)

We define ̂︁evΓ
m1,...,m𝑘

(𝜌1, . . . , 𝜌𝑘) to be the restriction of ̂︁evm1,...,m𝑘
(𝜌1, . . . , 𝜌𝑘) to (q · 𝐴)Γ. The

notation ̂︁evΓ
m1,...,m𝑘

(𝑉1, . . . , 𝑉𝑘) is defined similarly.
If we consider tensor products instead of irreducible products, then the above are called eval-

uation representations and evaluation modules, respectively.

Remark 2.4.6. Observe that, by definition,

̂︁evm1,...,m𝑘
(𝜌1, . . . , 𝜌𝑘) ≍= ̂︂√︀𝑘

𝑖=1
evm𝑖

(𝜌𝑖).

Proposition 2.4.7. An irreducible finite-dimensional representation of q · 𝐴 is isomorphic to a
representation of the form (2.4.3) if and only if it has finite reduced support.

Proof. Let 𝜌 be an irreducible finite-dimensional representation of q · 𝐴. Assume

𝜌 ≍= ̂︁evm1,...,m𝑘
(𝜌1, . . . , 𝜌𝑘),

where m1, . . . ,m𝑘 are pairwise distinct maximal ideals of 𝐴 and 𝜌𝑖 is an irreducible representation
of q · 𝐴/m𝑖. Let 𝐼 =

√︂𝑘
𝑖=1 m𝑖. Then Supp(𝐼) = ¶m1, . . . ,m𝑘♢ and 𝜌(q · 𝐼) = 0. Thus 𝜌 has finite

support. Furthermore we have that
√
𝐼 =

⎸𝑘
𝑖=1 m𝑖 =

√︂𝑘
𝑖=1 m𝑖 = 𝐼 and hence 𝐼 is a radical ideal.

This proves the forward implication.
Suppose now that 𝜌(q · 𝐼) = 0 for some radical ideal 𝐼 of 𝐴 of finite support. Thus 𝐼 =

√
𝐼 =√︂𝑛

𝑖=1 m𝑖 for some distinct maximal ideals m1, . . . ,m𝑘 of 𝐴. Hence, 𝜌 factors through the map

q · 𝐴։ (q · 𝐴)/

(︃
q ·

𝑘∏︁

𝑖=1

m𝑖

)︃
≍=

𝑘⨁︁

𝑖=1

(q · 𝐴/m𝑖).

Then, by [Che95, Prop. 8.4], there exist irreducible finite-dimensional representations 𝜌𝑖 of q·𝐴/m𝑖,
𝑖 = 1, . . . , 𝑘, such that

𝜌 ≍= ̂︂√︀𝑘

𝑖=1
evm𝑖

(𝜌𝑖) ≍= ̂︁evm1,...,m𝑘
(𝜌1, . . . , 𝜌𝑘).

Thus 𝜌 is isomorphic to a representation of the form (2.4.3). This completes the proof of the
reverse implication.
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Definition 2.4.8 (𝑋*). Let 𝑋* denote the set of finite subsets M ⊖ MaxSpec(𝐴) having the
property that m

′ /∈ Γm for distinct m,m′ ∈ M.

Lemma 2.4.9 ([Sav14, Lem. 5.6]). If ¶m1, . . . ,m𝑘♢ ∈ 𝑋*, then the map ̂︁evΓ
m1,...,m𝑘

is surjective.

Let ℛ(q) denote the set of isomorphism classes of irreducible finite-dimensional representations
of q. Then Γ acts on ℛ(q) by

Γ × ℛ(q) ⊃ ℛ(q), (Ò, [𝜌]) ↦⊃ Ò[𝜌] := [𝜌 ◇ Ò⊗1],

where [𝜌] ∈ ℛ(q) denotes the isomorphism class of a representation 𝜌 of q.

Definition 2.4.10 (ℰ(q, 𝐴), ℰ(q, 𝐴)Γ). Let ℰ(q, 𝐴) denote the set of finitely supported functions
Ψ: MaxSpec(𝐴) ⊃ ℛ(q) and let ℰ(q, 𝐴)Γ denote the subset of ℰ(q, 𝐴) consisting of those functions
that are Γ-equivariant. Here the support of Ψ, denoted Supp(Ψ), is the set of all m ∈ MaxSpec(𝐴)
for which Ψ(m) ̸= 0, where 0 denotes the isomorphism class of the trivial (one-dimensional)
representation.

If 𝜌 and 𝜌′ are isomorphic representations of q, then the representations evm(𝜌) and evm(𝜌′)
are also isomorphic, for any m ∈ MaxSpec𝐴. Therefore, for [𝜌] ∈ ℛ(q), we can define evm[𝜌]
to be the isomorphism class of evm(𝜌), and this is independent of the representative 𝜌. For
Ψ ∈ ℰ(q, 𝐴) such that Supp(Ψ) = ¶m1, . . . ,m𝑘♢, we define ̂︁evΨ to be the isomorphism class of
̂︁evm1,...,m𝑘

(Ψ(m1), . . . ,Ψ(m𝑘)), which is well-defined by the above comments and Remark 2.4.6. If
Ψ is the map that is identically 0 on MaxSpec(𝐴), then, by definition, ̂︁evΨ is the isomorphism
class of the trivial (one-dimensional) representation of q · 𝐴.

Lemma 2.4.11. Let Ψ ∈ ℰ(q, 𝐴)Γ and m ∈ MaxSpec(𝐴). Then, for all Ò ∈ Γ,

̂︁evm(Ψ(m)) = ̂︁evÒm(ÒΨ(m)) = ̂︁evÒm(Ψ(Òm)).

Proof. If Ψ(m) = 𝜌, then Ψ(Òm) = Ò ≤ 𝜌, and so

̂︁evÒm(Ψ(Òm))(𝑥) = ̂︁evÒm(Ò ≤ 𝜌)(𝑥) = 𝜌 ◇ Ò⊗1(𝑥+ Òm) = 𝜌(Ò⊗1𝑥+ m) = 𝜌(𝑥+ m) = ̂︁evm(𝜌)(𝑥),

for all 𝑥 ∈ (g · 𝐴)Γ.

Definition 2.4.12 (̂︁evΓ
Ψ). Let Ψ ∈ ℰ(q, 𝐴)Γ and let M = ¶m1, . . . ,m𝑘♢ ∈ 𝑋* contain one element

from each Γ-orbit in Supp(Ψ). We define ̂︁evΓ
Ψ := ̂︁evΓ

m1,...,m𝑘
(Ψ(m1), . . . ,Ψ(m𝑘)). By Lemma 2.4.11,

̂︁evΓ
Ψ is independent of the choice of M. If Ψ = 0, we define ̂︁evΓ

Ψ to be the isomorphism class of the
trivial (one-dimensional) representation of (q · 𝐴)Γ.

Proposition 2.4.13. The map Ψ ↦⊃ ̂︁evΨ from ℰ(q, 𝐴) to the set of isomorphism classes of irre-
ducible finite-dimensional representations of q · 𝐴 is injective.

Proof. If Ψ ̸= Ψ′ ∈ ℰ(q, 𝐴), then there exists m ∈ MaxSpec(𝐴) such that Ψ(m) ̸= Ψ′(m). Without
loss of generality, we may assume that Ψ(m) ̸= 0. Let Supp(Ψ) ∪ Supp(Ψ′) = ¶m1, . . . ,m𝑘♢, where
m = m1 and consider the following ideal of 𝐴:

𝐼 = m2 ≤ ≤ ≤ m𝑘.
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Note that a = q · 𝐼 is a Lie subalgebra of q · 𝐴 such that evm(a) ≍= q and evm𝑗
(a) = 0 for

𝑗 = 2, . . . , 𝑘.
Suppose that ̂︁evΨ

≍= ̂︁evΨ′ , and define

𝜌 := evm2
(Ψ(m2)) ̂︀· ≤ ≤ ≤ ̂︀· evm𝑘

(Ψ(m𝑘)) and 𝜌′ := evm2
(Ψ′(m2)) ̂︀· ≤ ≤ ≤ ̂︀· evm𝑘

(Ψ′(m𝑘)),

with associated modules 𝑉 and 𝑉 ′, respectively. Then 𝜌(a) = 𝜌′(a) = 0. We divide the proof into
three cases.

For the first case, assume that we have isomorphisms of q · 𝐴-modules

evm1
(Ψ(m1)) · 𝜌 ≍= 𝜌⊕ 𝜌 and evm1

(Ψ′(m1)) · 𝜌′ ≍= 𝜌′ ⊕ 𝜌′,

where 𝜌 and 𝜌′ are subrepresentations of evm1
(Ψ(m1))·𝜌 and evm1

(Ψ′(m1))·𝜌′, respectively. Since
̂︁evΨ

≍= ̂︁evΨ′ , we must have 𝜌 ≍= 𝜌′, and so

evm1
(Ψ(m1))

⊕ dim𝑉 ≍= (evm1
(Ψ(m1)) · 𝜌)♣a≍= (𝜌⊕ 𝜌)♣a≍= (𝜌′ ⊕ 𝜌′)♣a

≍= (evm1
(Ψ′(m1)) · 𝜌′)♣a≍= evm1

(Ψ′(m1))
⊕ dim𝑉 ′

,

where the first isomorphism follows from the fact that 𝜌(a) = 0 and the last follows from the fact
that 𝜌′(a) = 0. But this is a contradiction, since Ψ(m1) ̸= Ψ′(m1).

For the second case, assume

evm1
(Ψ′(m1)) · 𝜌′ is irreducible and evm1

(Ψ(m1)) · 𝜌 ≍= 𝜌⊕ 𝜌,

where 𝜌 ⊖ evm1
(Ψ(m1)) · 𝜌 is a subrepresentation. Thus 𝜌 ≍= evm1

(Ψ′(m1)) · 𝜌′, which implies
that

evm1
(Ψ(m1))

⊕ dim𝑉 ≍= (𝜌⊕ 𝜌)♣a≍= (evm1
(Ψ′(m1)) · 𝜌′)⊕2♣a≍= evm1

(Ψ′(m1))
⊕2 dim𝑉 ′

.

So again we have a contradiction.
The remaining case, when both evm1

(Ψ′(m1)) · 𝜌′ and evm1
(Ψ(m1)) · 𝜌 are irreducible q · 𝐴-

modules, is similar.

Corollary 2.4.14. For all Ψ ∈ ℰ(q, 𝐴)Γ, we have that ̂︁evΓ
Ψ is the isomorphism class of an irre-

ducible finite-dimensional representation. Furthermore, the map Ψ ↦⊃ ̂︁evΓ
Ψ from ℰ(q, 𝐴)Γ to the set

of isomorphism classes of irreducible finite-dimensional representations of (q · 𝐴)Γ is injective.

Proof. The first statement follows from Lemma 2.4.9 and the definition of the irreducible prod-
uct. Suppose Ψ,Ψ′ ∈ ℰ(q, 𝐴)Γ such that ̂︁evΓ

Ψ = ̂︁evΓ
Ψ′ . Let M = ¶m1, . . . ,m𝑘♢ ∈ 𝑋* contain one

element of each Γ-orbit in Supp(Ψ)∪Supp(Ψ′). Then ̂︁evΓ
Ψ and ̂︁evΓ

Ψ′ are the restrictions to (g·𝐴)Γ

of ̂︁evm1,...,m𝑘
(Ψ(m1), . . . ,Ψ(m𝑘)) and ̂︁evm1,...,m𝑘

(Ψ′(m1), . . . ,Ψ
′(m𝑘)), respectively. By Lemma 2.4.9,

it follows that ̂︁evm1,...,m𝑘
(Ψ(m1), . . . ,Ψ(m𝑘)) = ̂︁evm1,...,m𝑘

(Ψ′(m1), . . . ,Ψ
′(m𝑘)). Then, by Proposi-

tion 2.4.13, we have Ψ(m𝑖) = Ψ′(m𝑖) for 𝑖 = 1, . . . , 𝑘. Thus Ψ = Ψ′.

Remark 2.4.15. If the target Lie superalgebra q is replaced by a Lie algebra or a basic classi-
cal Lie superalgebra g, then the tensor product of irreducible finite-dimensional representations
with disjoint supports is always irreducible (see [NSS12, Prop. 4.9] for Lie algebras and [Sav14,
Prop. 4.12] for basic classical Lie superalgebras). In particular, the evaluation representation evΨ

is an irreducible finite-dimensional representation for all Ψ ∈ ℰ(g, 𝐴), where evΨ is defined by
replacing the irreducible product by the tensor product in the definition of ̂︁evΨ.
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2.5 Classification of finite-dimensional representations

In this section we present our main result for the first part of this Thesis: the classification
of the irreducible finite-dimensional q · 𝐴-modules and (q · 𝐴)Γ-modules. We assume that 𝐴 is
finitely generated.

Theorem 2.5.1. The map

ℰ(q, 𝐴) ⊃ ℛ(q · 𝐴), Ψ ↦⊃ ̂︁evΨ, (2.5.1)

is a bijection, where ℛ(q · 𝐴) is the set of isomorphism classes of irreducible finite-dimensional
representations of q · 𝐴. In particular, all irreducible finite-dimensional representations are rep-
resentations of the form (2.4.3).

Proof. By Proposition 2.4.13, it is enough to show that all irreducible finite-dimensional represen-
tations of q · 𝐴 are of the form (2.4.3). Thus, it suffices, by Proposition 2.4.7, to show that, for
every irreducible finite-dimensional q ·𝐴-module 𝑉 , we have (q · 𝐽)𝑉 = 0 for some radical ideal
𝐽 ⊖ 𝐴 of finite-codimension.

By Corollary 2.3.7, we have that (q· 𝐼)𝑉 = 0 for some ideal 𝐼 of 𝐴 of finite codimension. Let
𝐽 =

√
𝐼 be the radical of 𝐼. To prove that (q· 𝐽)𝑉 = 0, it suffices, by Lemma 1.5.2, to show that

(q · 𝐽)𝑣 = 0 for some nonzero vector 𝑣 ∈ 𝑉 .
Consider now 𝑉 as a q · 𝐴/𝐼-module. We will show that (q · (𝐽/𝐼))𝑣 = 0 for some nonzero

𝑣 ∈ 𝑉 . Since 𝐴 is finitely generated, and hence Noetherian, we have 𝐽𝑘 ⊖ 𝐼 for some 𝑘 ∈ N, by
Lemma 1.2.2(e). Hence, (q · (𝐽/𝐼))(𝑘) = q(𝑘) · (𝐽𝑘/𝐼) = 0, and so q · (𝐽/𝐼) is solvable. On the
other hand, since q0̄ is a simple Lie algebra, we have

[(q · (𝐽/𝐼))1̄, (q · (𝐽/𝐼))1̄] = [q1̄, q1̄] · (𝐽2/𝐼) ⊖ q0̄ · (𝐽2/𝐼)

= [q0̄, q0̄] · (𝐽2/𝐼) = [(q · (𝐽/𝐼))0̄, (q · (𝐽/𝐼))0̄].

Then, by Lemma 1.5.1, there exists a one-dimensional q · (𝐽/𝐼)-submodule of 𝑉 . Thus, we have
a nonzero vector 𝑣 ∈ 𝑉 and 𝜃 ∈ (q · 𝐽)*, such that

Û𝑣 = 𝜃(Û)𝑣, for all Û ∈ q · 𝐽.

We want to prove that 𝜃 = 0. If Û ∈ n∘ · 𝐽 , then 𝜃(Û)𝑚𝑣 = Û𝑚𝑣 = 0 for 𝑚 sufficiently large, since
𝑉 is finite dimensional and hence has a finite number of nonzero weight spaces. Thus 𝜃(n∘·𝐽) = 0.
It remains to show that 𝜃(h · 𝐽) = 0. Denote by 𝜃′ the restriction of 𝜃 to q0̄ · 𝐽 . Then 𝜃′ defines
a one-dimensional representation of the Lie algebra q0̄ · 𝐽 , and hence the kernel of 𝜃′ must be an
ideal of q0̄ · 𝐽 of codimension at most one. Because q0̄ is a simple finite-dimensional Lie algebra,
it is easy to see that this kernel must be all of q0̄ · 𝐽 , and hence 𝜃′ = 0. Since h0̄ ⊖ q0̄, we also
have that 𝜃(h0̄ · 𝐽) = 0. Therefore, Lemma 2.2.1 implies that (h · 𝐽)𝑣 = 0.

Now assume Γ is a finite abelian group acting on both q and 𝐴 by automorphisms. We also
assume that Γ acts freely on MaxSpec(𝐴).
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Proposition 2.5.2. Every finite-dimensional (q · 𝐴)Γ-module 𝑉 is the restriction of a q · 𝐴-
module 𝑉 ′ whose support is an element of 𝑋*. Furthermore, 𝑉 is irreducible if and only if 𝑉 ′

is.

Proof. Let 𝑉 be a finite dimensional (q · 𝐴)Γ-module and let 𝜌 : (q · 𝐴)Γ ⊃ End𝑉 denote
the corresponding representation. By [Sav14, Prop. 8.1 and Lem. 8.4], the kernel of 𝜌 is of the
form (q · 𝐼)Γ for some Γ-invariant ideal 𝐼 of 𝐴 with finite support. Since 𝐴 is finitely generated,
Lemma 1.2.2c implies that 𝐼 is of finite codimension in 𝐴. The support of 𝐼 is a Γ-invariant subset
of 𝑋rat. Let M ⊖ 𝑋* contain one point from each Γ-orbit in the support of 𝐼. Then

𝐼 =
∏︁

m∈M, Ò∈Γ

Ò𝐼m,

where 𝐼m is an ideal with support ¶m♢ for each m ∈ M,. Thus

(q · 𝐴)Γ/(q · 𝐼)Γ ≍= (q · 𝐴/𝐼)Γ

≍=
⎛
∐︁q ·

⨁︁

m∈M, Ò∈Γ

𝐴/(Ò𝐼m)

∫︀
⎠

Γ

≍=
⎛
∐︁ ⨁︁

m∈M, Ò∈Γ

(q · 𝐴/(Ò𝐼m))

∫︀
⎠

Γ

≍=
⨁︁

m∈M

(q · 𝐴/𝐼m)

≍= (q · 𝐴)/(q · 𝐽), 𝐽 =
∏︁

m∈M

𝐼m,

where, in the second-to-last isomorphism, we use the fact that, for m ∈ M, the group Γ permutes
the summands q · 𝐴/(Ò𝐼m), Ò ∈ Γ.

We now have the following commutative diagram, where á is the above isomorphism, Þ is the
natural projection, and 𝜌 is the map induced by 𝜌.

q · 𝐴 (q · 𝐴)/(q · 𝐽)

(q · 𝐴)Γ (q · 𝐴)Γ/(q · 𝐼)Γ End(𝑉 )

Þ

á

𝜌

It is clear that 𝜌 ◇ á⊗1 ◇ Þ is a representation of q ·𝐴 that, when restricted to (q ·𝐴)Γ, coincides
with 𝜌. Since both representations factor through the quotient (q·𝐴)Γ/(q·𝐼)Γ, one is irreducible
if and only if the other is.

Remark 2.5.3. The proof of Proposition 2.5.2 is the same as the proof of [Sav14, Prop. 8.5].
Although that reference assumes that the target Lie superalgebra g is basic classical, the proof of
this result only requires g to be a simple finite-dimensional Lie superalgebra.
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Theorem 2.5.4. Suppose 𝐴 is a finitely generated unital associative C-algebra and Γ is a finite
abelian group acting on 𝐴 and q by automorphisms. Furthermore, suppose that the induced action
of Γ on MaxSpec(𝐴) is free. Then the map

ℰ(q, 𝐴)Γ ⊃ ℛ(q, 𝐴)Γ, Ψ ↦⊃ ̂︁evΓ
Ψ, (2.5.2)

is a bijection, where ℛ(q, 𝐴)Γ is the set of isomorphism classes of irreducible finite-dimensional
representations of (q · 𝐴)Γ.

Proof. The map (2.5.2) is surjective by Proposition 2.5.2, while injectivity follows from Corol-
lary 2.4.14.
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Chapter 3

Weyl moduldes for Lie superalgebras

In this chapter we define global and local Weyl modules for Lie superalgebras g · 𝐴, where g

is a basic Lie superalgebra or sl(𝑛, 𝑛), 𝑛 ⊙ 2. Under some mild assumptions, we prove universal-
ity, finite-dimensionality, and tensor product decomposition properties for these modules. These
properties are analogues of those of Weyl modules in the non-super setting.

Throughout this chapter, we assume that g is a basic Lie superalgebra or sl(𝑛, 𝑛), 𝑛 ⊙ 2.

3.1 A good system of simple roots I

In Section 3.4, we will be particularly interested in systems of simple roots Σ satisfying the
following property:

For all Ð ∈ Σ1̄, there exists Ð′ ∈ ∆+
1̄

(Σ) such that Ð+ Ð′ ∈ ∆(Σ). (3.1.1)

Note that such an element Ð + Ð′ is necessarily an even root. Our next goal is to show that a
system of simple roots satisfying (3.1.1) always exists.

Let Σ be a system of simple roots and suppose that Ñ ∈ Σ is an odd root with Ñ(𝐻Ñ) = 0.
(Such a root is known as an isotropic odd root.) Then define the reflection 𝑟Ñ: Σ ⊃ ∆ with respect
to Ñ by

𝑟Ñ(Ñ) = ⊗Ñ,
𝑟Ñ(Ñ′) = Ñ′, for Ñ′ ∈ Σ, Ñ′ ̸= Ñ, Ñ(𝐻Ñ′) = Ñ′(𝐻Ñ) = 0,

𝑟Ñ(Ñ′) = Ñ + Ñ′, for Ñ′ ∈ Σ, Ñ′ ̸= Ñ, Ñ(𝐻Ñ′) ̸= 0 or Ñ′(𝐻Ñ) ̸= 0.

By [CW12, Lem. 1.30], 𝑟Ñ(Σ) is a system of simple roots, and

∆+(𝑟Ñ(Σ)) ∖ ¶⊗Ñ♢ = ∆+(Σ) ∖ ¶Ñ♢. (3.1.2)

(We use here the fact that gl(𝑛, 𝑛) and sl(𝑛, 𝑛) have the same system of simple roots as 𝐴(𝑛, 𝑛).)
If g is a basic Lie superalgebra, gl(𝑛, 𝑛), 𝑛 ⊙ 2, or sl(𝑛, 𝑛), 𝑛 ⊙ 2, then g admits a system of

simple roots with only one odd root (see [Mus12, Tables 3.4.4 and 5.3.1]). Let Π = ¶Ò1, . . . , Ò𝑛♢
denote such a system and let Ò𝑠 be the unique odd root that lies in Π. The system Π is often called
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a distinguished system of simple roots. When g ̸= 𝐵(0, 𝑛), we have that Ò𝑠 is an odd isotropic
regular root. Then we can consider the odd reflection 𝑟Ò𝑠 with respect to Ò𝑠.

Proposition 3.1.1. Let Π be a distinguished system of simple roots for g.

a. If g is a basic Lie superalgebra of type II, then Π satisfies condition (3.1.1).

b. If g is gl(𝑛, 𝑛), 𝑛 ⊙ 2, sl(𝑛, 𝑛), 𝑛 ⊙ 2, or a basic Lie superalgebra other than 𝐵(0, 𝑛), then
𝑟Ò𝑠(Π) satisfies condition (3.1.1).

In particular, g admits at least one system of simple roots satisfying (3.1.1).

Proof. Part (a) follows from direct examination of the distinguished root systems in type II. We list
below (using the notation of Section 3.6) this simple odd root Ò𝑠 ∈ Π1̄, together with an element
Ò′ ∈ ∆+

1̄
such that Ò + Ò′ ∈ ∆.

• g = 𝐵(𝑚,𝑛), 𝑚 ⊙ 0, 𝑛 ⊙ 1; Ò𝑠 = Ð𝑛; Ò′ = Ð𝑛 + 2Ð𝑛+1 + ≤ ≤ ≤ + 2Ð𝑛+𝑚

• g = 𝐷(𝑚,𝑛), 𝑚 ⊙ 2, 𝑛 ⊙ 1; Ò𝑠 = Ð𝑛; Ò′ = Ð𝑛 + 2Ð𝑛+1 + ≤ ≤ ≤ + 2Ð𝑛+𝑚⊗2 + Ð𝑛+𝑚⊗1 + Ð𝑛+𝑚

• g = 𝐹 (4); Ò𝑠 = Ð1; Ò
′ = Ð1 + 3Ð2 + 2Ð3 + Ð4

• g = 𝐺(3); Ò𝑠 = Ð1; Ò
′ = Ð1 + 4Ð2 + 2Ð3

• g = 𝐷(2, 1;Ð), Ð ̸= 0,⊗1; Ò𝑠 = Ð1; Ò
′ = Ð1 + Ð2 + Ð3

One sees that, in each case, Ò𝑠 + Ò′ ∈ ∆.
Now suppose that Ò𝑠 is isotropic and let Π′ = 𝑟Ò𝑠(Π). To prove part (b), we will show that

Ð+ 𝑟Ò𝑠(Ò𝑠) ∈ ∆+
0̄

(Π′), for all odd roots Ð ∈ Π′ ∖ ¶𝑟Ò𝑠(Ò𝑠)♢. First assume that g is gl(𝑛, 𝑛) (𝑛 ⊙ 2),
sl(𝑛, 𝑛) (𝑛 ⊙ 2), or a basic Lie superalgebra other than 𝐵(0, 𝑛) or 𝐷(2, 1;Ð). One can verify, by
looking at each distinguished Cartan matrix, that Ò𝑠(𝐻Ò𝑠∘1

) = ⊗1 (when 1 ⊘ 𝑠 ∘ 1 ⊘ 𝑛) and
Ò𝑠(𝐻Ò𝑠∘𝑗

) = 0 when 𝑗 ⊙ 2 (and 1 ⊘ 𝑠 ∘ 𝑗 ⊘ 𝑛). (See Section 3.6. The odd root Ò𝑠 is indicated
there by an X on the corresponding node in the Dynkin diagram.) Thus

𝑟Ò𝑠(Ò𝑠) = ⊗Ò𝑠, 𝑟Ò𝑠(Ò𝑠∘1) = Ò𝑠 + Ò𝑠∘1 and 𝑟Ò𝑠(Ò𝑠∘𝑗) = Ò𝑠∘𝑗, for all 𝑗 ⊙ 2.

Since the only odd root in Π is Ò𝑠, the odd roots of Π′ are precisely 𝑟Ò𝑠(Ò𝑠⊗1), 𝑟Ò𝑠(Ò𝑠), 𝑟Ò𝑠(Ò𝑠+1).
Now, by (3.1.2), we have ∆+(Π) ∖ ¶Ò𝑠♢ = ∆+(Π′) ∖ ¶𝑟Ò𝑠(Ò𝑠)♢, which implies that ∆+

0̄
(Π) = ∆+

0̄
(Π′).

Thus
𝑟Ò𝑠(Ò𝑠∘1) + 𝑟Ò𝑠(Ò𝑠) = Ò𝑠∘1 ∈ ∆+

0̄
(Π) = ∆+

0̄
(Π′).

Finally, assume g = 𝐷(2, 1;Ð). Then Π = ¶Ò1, Ò2, Ò3♢, where 𝑠 = 1 and Ò1(𝐻Ò𝑗) = ⊗1, for
𝑗 = 2, 3 (see Section 3.6). Then every element of Π′ = ¶𝑟Ò1

(Ò1), 𝑟Ò1
(Ò2), 𝑟Ò1

(Ò3)♢ is odd, and again
𝑟Ò1

(Ò𝑗) + 𝑟Ò1
(Ò1) = Ò𝑗 ∈ ∆+

0̄
(Π) = ∆+

0̄
(Π′), for 𝑗 = 2, 3.

Remark 3.1.2. There exist systems of simple roots that do not satisfy (3.1.1). For instance, if g
is of type I, then a distinguished system Π does not satisfy (3.1.1). This follows from the fact that
the induced Z-grading is of the form g⊗1 ⊕ g0 ⊕ g1 (see [Kac78, Prop. 1.6]).
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3.2 Generalized Kac modules

Recall that g is a basic Lie superalgebra or sl(𝑛, 𝑛), 𝑛 ⊙ 2, and fix a system of simple roots Σ.
Define

∆+
𝑧 = ∆+

𝑧 (Σ) for all 𝑧 ∈ Z2,

and let g = n⊗ ⊕ h ⊕ n+ be the triangular decomposition induced by Σ, i.e. n∘ = n∘(Σ). In the
case that g is sl(𝑛, 𝑛) or 𝐴(𝑛, 𝑛), we consider the triangular decomposition induced by gl(𝑛, 𝑛).
Recall that the elements 𝑋Ð, 𝑌Ð, Ð ∈ Σ, generate the subalgebras n+ and n⊗, respectively.

Since g0̄ is a reductive Lie algebra, for each even root Ð we can choose elements 𝑋Ð ∈ gÐ, 𝑌Ð ∈
g⊗Ð, and 𝐻Ð ∈ h, such that the subalgebra generated by these elements is isomorphic to sl(2),
with these elements satisfying the relations for the standard Chevalley generators. In this case, we
say the set ¶𝑋Ð, 𝑌Ð, 𝐻Ð♢ is an sl(2)-triple.

We denote the irreducible highest weight g-module with highest weight Ú ∈ h* by 𝑉 (Ú). Define

Λ+ = Λ+(Σ) = ¶Ú ∈ h* ♣ dim 𝑉 (Ú) < ∞♢. (3.2.1)

Note that, for Ú ∈ Λ+, since 𝑉 (Ú) is finite dimensional, we have Ú(𝐻Ð) ∈ N, for all Ð ∈ Σ(g0̄).

Definition 3.2.1 (The module 𝑉 (Ú)). For Ú ∈ Λ+, we define 𝑉 (Ú) to be the g-module generated
by a vector 𝑣Ú with defining relations

n+𝑣Ú = 0, ℎ𝑣Ú = Ú(ℎ)𝑣Ú, 𝑌 Ú(𝐻Ð)+1
Ð 𝑣Ú = 0, for all ℎ ∈ h, Ð ∈ Σ(g0̄). (3.2.2)

Proposition 3.2.2. For all Ú ∈ Λ+, the module 𝑉 (Ú) is finite-dimensional.

Proof. Let 𝐿(Ú) be the irreducible g0̄-module of highest weight Ú. Since g0̄ is a reductive Lie
algebra and Ú(𝐻Ð) ∈ N, for all Ð ∈ Σ(g0̄), we have that 𝐿(Ú) is finite dimensional. Moreover, it
is well known that 𝐿(Ú) is isomorphic to the g0̄-module generated by a vector 𝑢Ú with defining
relations

n+
0̄
𝑢Ú = 0, ℎ𝑢Ú = Ú(ℎ)𝑢Ú, 𝑌 Ú(𝐻Ð)+1

Ð 𝑢Ú = 0, for all ℎ ∈ h, Ð ∈ Σ(g0̄).

Let 𝑉 ′ = 𝑈(g0̄)𝑣Ú ⊖ 𝑉 (Ú) be the g0̄-submodule of 𝑉 (Ú) generated by 𝑣Ú. Then the map given by

𝜙:𝐿(Ú) ⊃ 𝑉 ′, 𝑥𝑢Ú ↦⊃ 𝑥𝑣Ú, for all 𝑥 ∈ 𝑈(g0̄),

is a well-defined epimorphism of g0̄-modules. Thus, 𝑉 ′ is finite dimensional. Then it follows from
the PBW Theorem for Lie superalgebras (see Lemma 1.5.3) that 𝑉 (Ú) is finite dimensional.

Lemma 3.2.3. Suppose 𝑉 is a finite-dimensional g-module generated by a highest weight vector
of weight Ú ∈ Λ+. Then there exists an unique submodule 𝑊 of 𝑉 (Ú) such that 𝑉 (Ú)/𝑊 ≍= 𝑉 as
g-modules.

Proof. Let 𝑣 ∈ 𝑉Ú be a highest weight vector. Then the first two relations in (3.2.2) are satisfied by
𝑣, by the definition of a highest weight vector. The fact that g0̄ is a reductive Lie algebra and 𝑉 is
finite dimensional implies that 𝑣 also satisfies the last relation in (3.2.2). Thus the map 𝑉 (Ú) ⊃ 𝑉
defined by extending the assignment 𝑣Ú ↦⊃ 𝑣 is a well-defined epimorphism of g-modules. Since
dim 𝑉Ú = 1 = dim𝑉 (Ú)Ú and homomorphisms between modules preserve weight spaces, this map
is unique up to scalar multiple. Thus, the kernel 𝑊 of this map is unique.
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Since every irreducible finite-dimensional g-module is generated by a highest weight vector of
weight Ú ∈ Λ+, Lemma 3.2.3 applies to irreducible finite-dimensional g-modules.

Remark 3.2.4. It follows from Lemma 3.2.3 that 𝑉 (Ú) coincides with the generalized Kac module
defined in [Cou, p. 8]. Thus, when Σ is a distinguished root system, it follows from [Cou, Lem. 3.5]
that 𝑉 (Ú) is isomorphic to the usual Kac module defined in [Kac78, p. 613].

3.3 Global Weyl modules

Let g be either a basic classical Lie superalgebra or sl(𝑛, 𝑛), 𝑛 ⊙ 2, and let 𝐴 be an associative
commutative unital C-algebra. We can then consider the map Lie superalgebra g ·C 𝐴 (see
Section 1.6 for details). From now on, we consider g ⊖ g · 𝐴 as a subalgebra via the natural
isomorphism g ≍= g · C.

Definition 3.3.1 (The category ℐ𝐴(g · 𝐴, g0̄)). Let ℐ be the full subcategory of the category of
g0̄-modules whose objects are those modules that are isomorphic to direct sums of irreducible finite-
dimensional g0̄-modules. Note that, if 𝑉 ∈ ℐ, then every element of 𝑉 lies in a finite-dimensional
g0̄-submodule of 𝑉 . Let ℐ(g·𝐴, g0̄) denote the full subcategory of the category of g·𝐴-modules
whose objects are the g · 𝐴-modules whose restriction to g0̄ lies in ℐ.

If 𝑉 is a g-module, then, by the PBW Theorem, we have an isomorphism of vector spaces

𝑃𝐴(𝑉 ) := 𝑈(g · 𝐴) ·𝑈(g) 𝑉 ≍= 𝑈(g · 𝐴+) ·C 𝑉, (3.3.1)

where 𝐴+ is a vector space complement to C ⊖ 𝐴. We will view 𝑉 as a g-submodule of 𝑃𝐴(𝑉 ) via
the natural identification 𝑉 ≍= C· 𝑉 ⊖ 𝑃𝐴(𝑉 ).

Lemma 3.3.2. If 𝑉 is a direct sum of irreducible finite-dimensional g0̄-modules, then so is the
tensor algebra 𝑇 (𝑉 ) :=

⌉︁∞
𝑛=0 𝑉

·𝑛.

Proof. This follows from the fact that the action of g0̄ preserves each summand 𝑉 ·𝑛, which clearly
has the given property.

Lemma 3.3.3. Let 𝑉 be a g-module whose restriction to g0̄ lies in ℐ. Then 𝑃𝐴(𝑉 ) ∈ ℐ(g·𝐴, g0̄).

Proof. Consider the action of g0̄ on g · 𝐴 given by the restriction of the adjoint action on the
first factor. Since g is a completely reducible g0̄-module, it follows that g · 𝐴 is a direct sum of
irreducible finite-dimensional g0̄-modules. Then, by Lemma 3.3.2, we have that 𝑇 (g·𝐴), and hence
𝑈(g · 𝐴), are direct sums of irreducible finite-dimensional g0̄-modules. Since the tensor product
is distributive over direct sums, 𝑈(g · 𝐴) ·C 𝑉 is a direct sum of irreducible finite-dimensional
g0̄-modules, hence so is its quotient 𝑃𝐴(𝑉 ). Thus 𝑃𝐴(𝑉 ) ∈ Ob ℐ𝐴.

Proposition 3.3.4. If Ú ∈ Λ+, then 𝑃𝐴(𝑉 (Ú)) is generated, as a 𝑈(g·𝐴)-module, by the element
𝑣Ú, with defining relations

n+𝑣Ú = 0, ℎ𝑣Ú = Ú(ℎ)𝑣Ú, 𝑌 Ú(𝐻Ð)+1
Ð 𝑣Ú = 0, for all ℎ ∈ h, Ð ∈ Σ(g0̄). (3.3.2)
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Proof. It is obvious that the element 𝑣Ú ∈ 𝑃𝐴(𝑉 (Ú)) satisfies the relations (3.3.2). To check that
these are all the relations, let 𝑊 be the g · 𝐴-module generated by a vector 𝑤 with defining
relations (3.3.2). Then we have a surjective homomorphism of g · 𝐴-modules Þ1:𝑊 ⊃ 𝑃 (𝑉 (Ú))
which maps 𝑤 to 𝑣Ú. Now, by relations (3.3.2), 𝑤 ∈ 𝑊 generates a g-submodule of 𝑊 isomorphic
to 𝑉 (Ú). Thus, we have an epimorphism

Þ2 : 𝑃 (𝑉 (Ú)) ⊃ 𝑊, 𝑢1 ·𝑈(g) 𝑢2𝑣Ú ↦⊃ 𝑢1𝑢2𝑤, 𝑢1 ∈ 𝑈(g · 𝐴), 𝑢2 ∈ 𝑈(g).

Since Þ1 = Þ⊗1
2 , we have 𝑊 ≍= 𝑃 (𝑉 (Ú)).

For Ü ∈ Λ+ and 𝑉 ∈ ℐ(g ·𝐴, g0̄), we let 𝑉 Ü be the unique maximal g ·𝐴-module quotient of
𝑉 such that the weights of 𝑉 Ü lie in Ü ⊗ 𝑄+, where 𝑄+ =

√︁
Ð∈ΣNÐ is the positive root lattice of

g. In other words,
𝑉 Ü = 𝑉/

∑︁

Û ̸∈Ü⊗𝑄+

𝑈(g · 𝐴)𝑉Û.

Note that a morphism 𝜙:𝑉 ⊃ 𝑊 of objects in ℐ𝐴(g·𝐴, g0̄) induces a morphism 𝜙Ü :𝑉 Ü ⊃ 𝑊 Ü .

Definition 3.3.5 (The category ℐÜ𝐴(g · 𝐴, g0̄)). Let ℐÜ𝐴(g · 𝐴, g0̄) be the full subcategory of
ℐ𝐴(g · 𝐴, g0̄) whose objects are those 𝑉 ∈ ℐ𝐴(g · 𝐴, g0̄) such that 𝑉 Ü = 𝑉 .

Proposition 3.2.2 and Lemma 3.3.3 imply that 𝑃𝐴(𝑉 (Ú)) ∈ ℐ(g · 𝐴, g0̄) for all Ú ∈ Λ+.

Definition 3.3.6 (Global Weyl module). We define the global Weyl module associated to Ú ∈ Λ+

to be
𝑊 (Ú) := 𝑃𝐴(𝑉 (Ú))Ú.

We let 𝑤Ú denote the image of 𝑣Ú in 𝑊 (Ú).

Proposition 3.3.7. For Ú ∈ Λ+, the global Weyl module 𝑊 (Ú) is generated by 𝑤Ú, with defining
relations

(n+ · 𝐴)𝑤Ú = 0, ℎ𝑤Ú = Ú(ℎ)𝑤Ú, 𝑌 Ú(𝐻Ð)+1
Ð 𝑤Ú = 0, for all ℎ ∈ h, Ð ∈ Σ(g0̄). (3.3.3)

Proof. Since the weights of 𝑊 (Ú) lie in Ú ⊗ 𝑄+, it follows that (n+ · 𝐴)𝑤Ú = 0. The remaining
relations are clear since they are already satisfied by 𝑣Ú. To prove that these are the only relations,
let 𝑊 be the module generated by an element 𝑤 with relations (3.3.3), so that we have an epi-
morphism Þ1:𝑊 ։ 𝑊 (Ú) sending 𝑤 to 𝑤Ú. Since the relations (3.3.3) imply the relations (3.2.2),
the vector 𝑤 ∈ 𝑊 generates a g-submodule of 𝑊 isomorphic to a quotient of 𝑉 (Ú). Thus we have
a surjective homomorphism

Þ2:𝑃𝐴(𝑉 (Ú)) ⊃ 𝑊, 𝑢1 ·𝑈(g) 𝑢2𝑣Ú ↦⊃ 𝑢1𝑢2𝑤, 𝑢1 ∈ 𝑈(g · 𝐴), 𝑢2 ∈ 𝑈(g).

Since the g-weights of 𝑊 are bounded above by Ú, it follows that Þ2 induces a map 𝑊 (Ú) ⊃ 𝑊
inverse to Þ1.

In the non-super setting, Proposition 3.3.7 was proved in [CFK10, Prop. 4].
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Proposition 3.3.8. The global Weyl module 𝑊 (Ú) is the unique object of ℐ(g · 𝐴, g0̄), up to
isomorphism, that is generated by a highest weight vector of weight Ú and admits a surjective
homomorphism to any object of ℐ(g·𝐴, g0̄) also generated by a highest weight vector of weight Ú.

Proof. Let 𝑉 ∈ ℐ(g · 𝐴, g0̄) be generated by a highest weight vector 𝑣 of weight Ú. Then

(n+ · 𝐴)𝑣 = 0, ℎ𝑣 = Ú(ℎ)𝑣, for all ℎ ∈ h.

Since the g0̄-module generated by 𝑣 is finite-dimensional, we have that 𝑌 Ú(𝐻Ð)+1
Ð 𝑣 = 0 for all

Ð ∈ Σ(g0̄). Thus, by Proposition 3.3.7, we have a surjective homomorphism 𝑊 (Ú) ։ 𝑉 such that
𝑤Ú ↦⊃ 𝑣.

Suppose that 𝑊 is another object of ℐ(g·𝐴, g0̄) that is generated by a highest weight vector 𝑤
of weight Ú and admits a surjective homomorphism to any object of ℐ(g·𝐴, g0̄) also generated by
a highest weight vector of weight Ú. In particular, we have a surjective homomorphism Þ1:𝑊 ։

𝑊 (Ú). It follows from the PBW Theorem that 𝑊 (Ú)Ú = 𝑈(h·𝐴+)·C𝑤Ú. The only elements of this
weight space that generate 𝑊 (Ú) are the C-multiples of 𝑤Ú. Thus, possibly after rescaling, we have
Þ1(𝑤) = 𝑤Ú. Now, as above, 𝑤 satisfies the relations (3.3.3). Thus there exists a homomorphism
Þ2:𝑊 (Ú) ⊃ 𝑊 sending 𝑤Ú to 𝑤. It follows that Þ1 and Þ2 are mutually inverse homomorphisms,
and so 𝑊 ≍= 𝑊 (Ú).

Note that, when 𝐴 = C, the global Weyl module 𝑊 (Ú) coincides with the generalized Kac mod-
ule 𝑉 (Ú). In this case, Proposition 3.3.8 reduces to the universal property given in Lemma 3.2.3.

3.4 Local Weyl modules

Recall that g is either a basic classical Lie superalgebra or sl(𝑛, 𝑛), 𝑛 ⊙ 2, and that 𝐴 is an
associative commutative unital C-algebra. The aim now is to describe, in terms of generators and
relations, a universal object in the full subcategory of ℐ(g · 𝐴, g0̄) whose objects are the finite-
dimensional modules generated by a highest map-weight vector of a fixed highest map-weight (see
Definition 3.4.2).

Definition 3.4.1 (Local Weyl module). Let å ∈ (h·𝐴)* such that å♣h∈ Λ+. We define the local
Weyl module 𝑊 (å) associated to å to be the g·𝐴-module generated by a vector 𝑤å with defining
relations

(n+ · 𝐴)𝑤å = 0, 𝑥𝑤å = å(𝑥)𝑤å, 𝑌 Ú(𝐻Ð)+1
Ð 𝑤å = 0, for all 𝑥 ∈ h · 𝐴, Ð ∈ Σ(g0̄). (3.4.1)

Definition 3.4.2 (Highest map-weight module). A g · 𝐴-module generated by a vector 𝑤å sat-
isfying the first and second relations of (3.4.1) is called a highest map-weight module with highest
map-weight å. The vector 𝑤å is called a highest map-weight vector of map-weight å.

Recall that, for each Ð ∈ ∆+
0̄

, we have an sl(2)-triple ¶𝑋Ð, 𝑌Ð, 𝐻Ð♢.

Lemma 3.4.3. Suppose å ∈ (h · 𝐴)* such that Ú = å♣h∈ Λ+. If Ð ∈ ∆+
0̄

, then 𝑌 Ú(𝐻Ð)+1
Ð 𝑤å = 0.
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Proof. The vector 𝑌 Ú(𝐻Ð)+1
Ð 𝑤å has weight Ú ⊗ (Ú(𝐻Ð) + 1)Ð. On the other hand, it follows from

Proposition 3.3.7 that 𝑊 (å) is a quotient of the global Weyl module 𝑊 (Ú), and so it is a direct sum
of irreducible finite-dimensional g0̄-modules. This implies that the weights of 𝑊 (Ú) are invariant
under the action of the Weyl group of g0̄. But, if 𝑠Ð denotes the reflection associated to the root
Ð, then 𝑠Ð(Ú⊗ (Ú(𝐻Ð) + 1)Ð) = Ú+ Ð does not lie below Ú. Therefore, 𝑌 Ú(𝐻Ð)+1

Ð 𝑤å = 0.

Let 𝑢 be an indeterminate and, for 𝑎 ∈ 𝐴, Ð ∈ ∆+
0̄

, define the following power series with
coefficients in 𝑈(h · 𝐴):

𝑝(𝑎, Ð) = exp

(︃
⊗

∞∑︁

𝑖=1

𝐻Ð · 𝑎𝑖

𝑖
𝑢𝑖
)︃
. (3.4.2)

For 𝑖 ∈ N, let 𝑝(𝑎, Ð)𝑖 denote the coefficient of 𝑢𝑖 in 𝑝(𝑎, Ð). In particular, 𝑝(𝑎, Ð)0 = 1.

Lemma 3.4.4. Suppose 𝑚 ∈ N, 𝑎 ∈ 𝐴, and Ð ∈ ∆+
0̄

. Then

(𝑋Ð · 𝑎)𝑚(𝑌Ð · 1)𝑚+1 ⊗ (⊗1)𝑚
𝑚∑︁

𝑖=0

(𝑌Ð · 𝑎𝑚⊗𝑖)𝑝(𝑎, Ð)𝑖 ∈ 𝑈(g · 𝐴)(n+ · 𝐴). (3.4.3)

Proof. This formula was proved in [Gar78, Lem. 7.5] for the algebra generated by the elements

𝑡𝑗 · 𝐸, 𝑗 ⊙ 0,

𝑡𝑗 · 𝐹, 𝑗 ⊙ 1,

𝑡𝑗 ·𝐻, 𝑗 ⊙ 1,

where 𝑡 ∈ C[𝑡] and the set ¶𝐸, 𝐹, 𝐻♢ is an sl(2)-triple. Now, applying the Lie algebra homomor-
phism

sl(2) · C[𝑡] ⊃ sl(2) · 𝐴, 𝑥· 𝑡𝑚 ↦⊃ 𝑥· 𝑎𝑚, 𝑚 ∈ N, 𝑥 ∈ sl(2),

gives our result.

Remark 3.4.5. Similar relations as the one given in Lemma 3.4.4 were proved in various settings.
See for instance [BC14, Cha13].

For the rest of the chapter we assume that

𝐴 is finitely generated.

Proposition 3.4.6. Suppose å ∈ (h · 𝐴)* such that Ú = å♣h∈ Λ+. If Ð ∈ ∆+
0̄

, 𝑎1, 𝑎2, . . . , 𝑎𝑡 ∈ 𝐴,
and 𝑚1, . . . ,𝑚𝑡 ∈ N, then

(𝑌Ð · 𝑎𝑚1

1 ≤ ≤ ≤ 𝑎𝑚𝑡𝑡 )𝑤å ∈ spanC ¶(𝑌Ð · 𝑎ℓ11 ≤ ≤ ≤ 𝑎ℓ𝑡𝑡 )𝑤å ♣ 0 ⊘ ℓ𝑖 < Ú(𝐻Ð), 𝑖 = 1, . . . , 𝑡♢. (3.4.4)

In particular, (𝑌Ð · 𝐴)𝑤å is finite dimensional.
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Proof. From the first and third relations in (3.4.1), together with (3.4.3), it follows that, for 𝑎 ∈ 𝐴
and 𝑚 ⊙ Ú(𝐻Ð), we have

0 = (𝑋Ð · 𝑎)𝑚(𝑌Ð · 1)𝑚+1𝑤å =
𝑚∑︁

𝑖=0

(⊗1)𝑚(𝑌Ð · 𝑎𝑚⊗𝑖)𝑝(𝑎, Ð)𝑖𝑤å,

for any 𝑎 ∈ 𝐴. Since 𝑝(𝑎, Ð)0 = 1, we have

(𝑌Ð · 𝑎𝑚)𝑤å ∈ spanC¶(𝑌Ð · 𝑎ℓ)𝑤å ♣ 0 ⊘ ℓ < 𝑚♢.

This implies, by induction, that

(𝑌Ð · 𝑎𝑚)𝑤å ∈ spanC¶(𝑌Ð · 𝑎ℓ)𝑤å ♣ 0 ⊘ ℓ < Ú(𝐻Ð)♢, for all 𝑚 ∈ N, 𝑎 ∈ 𝐴. (3.4.5)

We will now prove (3.4.4) by induction on 𝑡. The case 𝑡 = 1 follows immediately from (4.4.2).
Assume that (3.4.4) holds for some 𝑡 ⊙ 1. Let 𝑚1, . . . ,𝑚𝑡+1 ∈ N and choose ℎ ∈ h such that
Ð(ℎ) ̸= 0. Then

(ℎ· 𝑎
𝑚𝑡+1

𝑡+1 )(𝑌Ð · 𝑎𝑚1

1 ≤ ≤ ≤ 𝑎𝑚𝑡𝑡 )𝑤å = ( ⊗ Ð(ℎ)(𝑌Ð · 𝑎𝑚1

1 ≤ ≤ ≤ 𝑎𝑚𝑡+1

𝑡+1 ) + (𝑌Ð · 𝑎𝑚1

1 ≤ ≤ ≤ 𝑎𝑚𝑡𝑡 )(ℎ· 𝑎
𝑚𝑡+1

𝑡+1 ))𝑤å,

and so

(ℎ·𝑎𝑚𝑡+1

𝑡+1 )(𝑌Ð·𝑎𝑚1

1 ≤ ≤ ≤ 𝑎𝑚𝑡𝑡 )𝑤å+Ð(ℎ)(𝑌Ð·𝑎𝑚1

1 ≤ ≤ ≤ 𝑎𝑚𝑡+1

𝑡+1 )𝑤å ∈ spanC¶(𝑌Ð·𝑎𝑚1

1 ≤ ≤ ≤ 𝑎𝑚𝑡𝑡 )𝑤å♢, (3.4.6)

since (ℎ· 𝑎
𝑚𝑡+1

𝑡+1 )𝑤å ∈ C𝑤å. By the inductive hypothesis, we have

(𝑌Ð·𝑎𝑚1

1 ≤ ≤ ≤ 𝑎𝑚𝑡+1

𝑡+1 )𝑤å ∈ spanC
{︁
(ℎ· 𝑎

𝑚𝑡+1

𝑡+1 )(𝑌Ð · 𝑎ℓ11 ≤ ≤ ≤ 𝑎ℓ𝑡𝑡 )𝑤å, (𝑌Ð · 𝑎ℓ11 ≤ ≤ ≤ 𝑎ℓ𝑡𝑡 )𝑤å ♣ 0 ⊘ ℓ𝑖 < Ú(𝐻Ð)
}︁
.

Then, by (4.4.3) (with 𝑚𝑖 = ℓ𝑖 for 𝑖 = 1, . . . , 𝑡), we have

(𝑌Ð · 𝑎𝑚1

1 ≤ ≤ ≤ 𝑎𝑚𝑡+1

𝑡+1 )𝑤å ∈ spanC
{︁
(𝑌Ð · 𝑎ℓ11 ≤ ≤ ≤ 𝑎ℓ𝑡𝑡 𝑎

𝑚𝑡+1

𝑡+1 )𝑤å, (𝑌Ð · 𝑎ℓ11 ≤ ≤ ≤ 𝑎ℓ𝑡𝑡 )𝑤å ♣ 0 ⊘ ℓ𝑖 < Ú(𝐻Ð)
}︁
.

Since the above inclusion holds for all 𝑚1, . . . ,𝑚𝑡+1 ∈ N, we can interchange the roles of 𝑚1 and
𝑚𝑡+1 to obtain

(𝑌Ð · 𝑎𝑚1

1 ≤ ≤ ≤ 𝑎𝑚𝑡+1

𝑡+1 )𝑤å ∈ spanC
{︁
(𝑌Ð · 𝑎ℓ11 ≤ ≤ ≤ 𝑎ℓ𝑡𝑡 𝑎

ℓ𝑡+1

𝑡+1 )𝑤å ♣ 0 ⊘ ℓ𝑖 < Ú(𝐻Ð)
}︁
.

This completes the proof of the inductive step. The final statement of the lemma follows from the
fact that 𝐴 is finitely generated.

Let

ℒ(h · 𝐴) = ¶å ∈ (h · 𝐴)* ♣ å(h · 𝐼) = 0, for some finite-codimensional ideal 𝐼 of 𝐴♢.

Proposition 3.4.7. Suppose å ∈ (h · 𝐴)* such that Ú = å♣h∈ Λ+. If å ̸∈ ℒ(h · 𝐴), then
𝑊 (å) = 0.
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Proof. Let Ð ∈ ∆+
0̄

and let 𝐼Ð be the kernel of the linear map

𝐴 ⊃ HomC (𝑊 (å)Ú · g⊗Ð, (g⊗Ð · 𝐴)𝑤å) ,

𝑎 ↦⊃ (𝑣 · 𝑢 ↦⊃ (𝑢· 𝑎)𝑣), 𝑎 ∈ 𝐴, 𝑣 ∈ 𝑊 (å)Ú, 𝑢 ∈ g⊗Ð.

Since g⊗Ð = C𝑌Ð, Proposition 3.4.6 implies that (g⊗Ð · 𝐴)𝑤å is finite dimensional. Thus, 𝐼Ð is
a linear subspace of 𝐴 of finite codimension. We claim that 𝐼Ð is, in fact, an ideal of A. Indeed,
since Ð ̸= 0, we can choose ℎ ∈ h such that Ð(ℎ) ̸= 0. Then, for all 𝑔 ∈ 𝐴, 𝑎 ∈ 𝐼Ð, 𝑣 ∈ 𝑊 (å)Ú, and
𝑢 ∈ g⊗Ð, we have

0 = (ℎ· 𝑔)(𝑢· 𝑎)𝑣 = [ℎ· 𝑔, 𝑢· 𝑎]𝑣 + (𝑢· 𝑎)(ℎ· 𝑔)𝑣 = ⊗Ð(ℎ)(𝑢· 𝑔𝑎)𝑣 + (𝑢· 𝑎)(ℎ· 𝑔)𝑣.

Since (ℎ· 𝑔)𝑣 ∈ 𝑊 (å)Ú and 𝑎 ∈ 𝐼Ð, the last term above is zero. Since we also have Ð(ℎ) ̸= 0, this
implies that (𝑢· 𝑔𝑎)𝑣 = 0. As this holds for all 𝑣 ∈ 𝑊 (å)Ú and 𝑢 ∈ g⊗Ð, we have 𝑔𝑎 ∈ 𝐼Ð. Hence
𝐼Ð is an ideal of 𝐴.

Let 𝐼 be the intersection of all the 𝐼Ð, Ð ∈ ∆+
0̄

. Since g has a finite number of positive roots,
this intersection is finite, and thus 𝐼 is also an ideal of 𝐴 of finite-codimension. We have

(n⊗
0̄

· 𝐼)𝑊 (å)Ú = 0 and (n+ · 𝐴)𝑊 (å)Ú = 0.

Then, since h · 𝐼 ⊖ [n+ · 𝐴, n⊗
0̄

· 𝐼], we have (h · 𝐼)𝑊 (å)Ú = 0. In particular, (h · 𝐼)𝑤å = 0.
Assume å /∈ ℒ(h · 𝐴). Then there exists 𝑎 ∈ 𝐼 such that å(ℎ· 𝑎) ̸= 0 for some ℎ ∈ h, which

implies that 𝑤å = 0, since
0 = (ℎ· 𝑎)𝑤å = å(ℎ· 𝑎)𝑤å.

Therefore 𝑊 (å) = 0.

Definition 3.4.8 (The ideal 𝐼å). For å ∈ (h · 𝐴)* with å♣h∈ Λ+, let 𝐼å be the sum of all ideals
𝐼 ⊖ 𝐴 such that (h · 𝐼)𝑤å = 0.

Remark 3.4.9. It follows from the proof of Proposition 3.4.7 that 𝐼å has finite codimension in 𝐴
and that (𝑌Ð · 𝐼å)𝑤å = 0 for all Ð ∈ ∆+

0̄
. Furthermore, by Lemma 1.2.2, parts (a) and (c), since

𝐼å has finite codimension and 𝐴 is finitely generated, we have that 𝐼𝑁å has finite codimension, for
all 𝑁 ∈ N.

For the rest of the chapter, we assume that

Σ is a system of simple roots for g satisfying (3.1.1).

Recall that, by Proposition 3.1.1, such a system always exists.

Lemma 3.4.10. Suppose å ∈ (h · 𝐴)* with å♣h∈ Λ+. Then there exists 𝑁å ∈ N such that

(︁
n⊗ · 𝐼

𝑁å
å

⎡
𝑤å = 0.
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Proof. Recall from Section 1.4.1 that the set ¶𝑌Ð ♣ Ð ∈ Σ♢ generates n⊗. We claim that

(𝑌Ð · 𝐼å)𝑤å = 0, for all Ð ∈ Σ. (3.4.7)

By Remark 3.4.9, it suffices to consider the case Ð ∈ Σ1̄. Fix such an Ð. By (3.1.1), there exists
Ð′ ∈ ∆1̄ such that Ñ := Ð+ Ð′ ∈ ∆+

0̄
.

First suppose g is not 𝐴(1, 1) or sl(2, 2). Then dim gÜ = 1 for any Ü ∈ ∆ (see Remark 1.4.5).
Thus, rescaling if necessary,

[𝑋Ð′ , 𝑌Ñ] = 𝑌Ð. (3.4.8)

Then,

(𝑌Ð · 𝐼å)𝑤å = [𝑋Ð′ · 𝐴, 𝑌Ñ · 𝐼å]𝑤å ⊖ (𝑋Ð′ · 𝐴)(𝑌Ñ · 𝐼å)𝑤å + (𝑌Ñ · 𝐼å)(𝑋Ð′ · 𝐴)𝑤å = 0,

where the last equality follows from the fact that (𝑌Ñ · 𝐼å)𝑤å = 0 by Remark 3.4.9 and (𝑋Ð′ ·
𝐴)𝑤å = 0 by the first relation in (3.4.1). This proves (3.4.7).

To prove (3.4.7) for sl(2, 2) and 𝐴(1, 1), we consider g = gl(2, 2) and we let h be the subalgebra
of diagonal matrices of g. Denote by ¶𝜖𝑖 ♣ 𝑖 = 1, . . . , 4♢ the basis of h* dual to ¶𝐸𝑖,𝑖 ♣ 𝑖 = 1, . . . , 4♢.
In this case,

∆0̄ = ¶∘(𝜖1 ⊗ 𝜖2),∘(𝜖3 ⊗ 𝜖4)♢, ∆1̄ = ¶∘(𝜖1 ⊗ 𝜖3),∘(𝜖1 ⊗ 𝜖4),∘(𝜖2 ⊗ 𝜖3),∘(𝜖2 ⊗ 𝜖4)♢,

and g𝜖𝑟⊗𝜖𝑠 = C𝐸𝑟,𝑠, for 1 ⊘ 𝑟 ̸= 𝑠 ⊘ 4. In particular, if we fix Ð ∈ Σ1̄ and Ð′ ∈ ∆+
1̄

such that
Ñ := Ð+Ð′ ∈ ∆, then there exist 𝑘, ℓ, 𝑝, 𝑞 ∈ ¶1, 2, 3, 4♢ with 𝑘 ̸= ℓ and 𝑝 ̸= 𝑞, such that gÐ′ = C𝐸𝑘,ℓ
and g⊗Ñ = C𝐸𝑝,𝑞. Since Ñ ∈ ∆+

0̄
and Ð′ ∈ ∆+

1̄
, Remark 3.4.9 and the first relation in (3.4.1) give

us that ([𝐸𝑘,ℓ, 𝐸𝑝,𝑞] · 𝐼å)𝑤å = 0. Regarding the sl(2, 2) case, we choose 𝑌Ð = [𝐸𝑘,ℓ, 𝐸𝑝,𝑞]. For the
𝐴(1, 1) case, we choose 𝑌Ð to be the image of [𝐸𝑘,ℓ, 𝐸𝑝,𝑞] in 𝐴(1, 1). Then (𝑌Ð · 𝐼å)𝑤å = 0. Since
the choice of Ð ∈ Σ1̄ was arbitrary, we conclude that (𝑌Ð · 𝐼å)𝑤å = 0 for all roots Ð ∈ Σ1̄.

Now, for Ñ =
√︁𝑛
Ð∈Σ 𝑚ÐÐ ∈ ∆+, we define the height of Ñ to be htÑ :=

√︁𝑛
Ð∈Σ 𝑚Ð. We prove, by

induction on the height of Ñ, that (𝑌Ñ · 𝐼htÑ
å )𝑤å = 0 for all Ñ ∈ ∆+. Since g is finite dimensional,

the heights of elements of ∆+ are bounded above, and thus the lemma will follow.
The base case of height one is precisely (3.4.7). Suppose Ñ ∈ ∆+ with ht Ñ > 1. Then there

exist Ñ′, Ñ′′ ∈ ∆+ with ht Ñ′, ht Ñ′′ < ht Ñ such that 𝑌Ñ ∈ C[𝑌Ñ′ , 𝑌Ñ′′ ]. Then

(𝑌Ñ · 𝐼htÑ
å )𝑤å = [𝑌Ñ′ · 𝐼htÑ′

å , 𝑌Ñ′′ · 𝐼htÑ′′

å ]𝑤å = 0.

Corollary 3.4.11. Suppose å ∈ (h · 𝐴)* with å♣h∈ Λ+, and let 𝑁å be as in Lemma 4.4.3. Then

(︁
g · 𝐼

𝑁å
å

⎡
𝑤å = 0.

Proof. It follows from the first relation in (3.4.1) that (n+·𝐼𝑁åå )𝑤å = 0. Since (h·𝐼å)𝑤å = 0 by the

definition of 𝐼å, we have (h·𝐼
𝑁å
å )𝑤å = 0. Finally Lemma 4.4.3 implies that (n⊗ ·𝐼

𝑁å
å )𝑤å = 0.

Lemma 3.4.12. For all Ú ∈ (h·𝐴)* with å♣h∈ Λ+, the set of g-weights (equivalently, g0̄-weights)
of 𝑊 (å) is finite.
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Proof. Since the weights of 𝑊 (Ú) are contained in Ú ⊗ 𝑄+, finitely many of weights of 𝑊 (Ú) are
dominant integral. Since 𝑊 (Ú) is a direct sum of g0̄-modules, its weights are invariant under the
(finite) Weyl group of g0̄. The result follows.

Recall that 𝐴 is finitely generated and the system of simple roots Σ satisfies (3.1.1)

Theorem 3.4.13. The local Weyl module 𝑊 (å) is finite dimensional for all å ∈ (h · 𝐴)* such
that å♣h∈ Λ+.

Proof. By Definition 3.4.1, we have 𝑊 (å) = 𝑈(n⊗ · 𝐴)𝑤å. By Lemma 4.4.3, we have (n⊗ ·
𝐼
𝑁å
å )𝑤å = 0. Thus 𝑊 (å) = 𝑈(n⊗ · 𝐴/𝐼

𝑁å
å )𝑤å. By Lemma 3.4.12, there exists 𝑁 ∈ N such that

𝑊 (å) = 𝑈𝑛
(︁
n⊗ · 𝐴/𝐼

𝑁å
å

⎡
𝑤å, for all 𝑛 ⊙ 𝑁,

where 𝑈(a) =
√︁∞
𝑛=0 𝑈𝑛(a) is the usual filtration on the universal enveloping algebra of a Lie

superalgebra a induced from the natural grading on the tensor algebra. Since the Lie superalgebra

n⊗ · 𝐴/𝐼
𝑁å
å is finite dimensional (see Remark 3.4.9), 𝑊 (å) is also finite dimensional.

In the non-super setting, Theorem 3.4.13 was proved in [CP01, Th. 1] for 𝐴 = C[𝑡, 𝑡⊗1], and in
[FL04, Th. 1] for 𝐴 the algebra of functions on a complex affine variety.

Proposition 3.4.14. Let å ∈ ℒ(h·𝐴) such that å♣h= Ú ∈ Λ+. Then the local Weyl module 𝑊 (å)
is the unique (up to isomorphism) finite-dimensional object of ℐ(g · 𝐴, g0̄) that is generated by a
highest map-weight vector of map-weight å and admits a surjective homomorphism to any finite-
dimensional object of ℐ(g · 𝐴, g0̄) also generated by a highest map-weight vector of map-weight
å.

Proof. Let 𝑉 be a finite-dimensional object of ℐ(g · 𝐴, g0̄) that is generated by a highest map-
weight vector 𝑣 of map-weight å. It follows immediately from the definition of a highest map-weight
g·𝐴-module that the two first relations in (3.4.1) are satisfied by 𝑣. Since the g0̄-module generated
by 𝑣 must be finite dimensional, we have also that 𝑌 Ú(𝐻Ð)+1

Ð 𝑣 = 0, for all Ð ∈ Σ(g0̄). Therefore,
there exists a surjective homomorphism 𝑊 (å) ⊃ 𝑉 sending 𝑤å to 𝑣.

To show that 𝑊 (å) is the unique representation with the given property, suppose that 𝑊 is
another module with this property. Then 𝑊 is a quotient of 𝑊 (å) and vice-versa. Since both
modules are finite dimensional, it follows that 𝑊 (å) ≍= 𝑊 .

Corollary 3.4.15. Let å ∈ ℒ(h · 𝐴) such that å♣h= Ú ∈ Λ+. Then the local Weyl module
𝑊 (å) is the maximal finite-dimensional quotient of the global Weyl module 𝑊 (Ú) that is a highest
map-weight module of highest map-weight å.

By [Sav14, Th. 4.16], any irreducible finite-dimensional g ·𝐴-module is a highest map-weight
module, for some å ∈ ℒ(h·𝐴) with å♣h∈ Λ+. Then, by Proposition 3.4.14, there exists a surjective
homomorphism from the local Weyl module 𝑊 (å) to such an irreducible module. In other words,
all irreducible finite-dimensional g · 𝐴-modules are quotients of local Weyl modules.
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3.5 Tensor product decomposition

We conclude this chapter by showing that the local Weyl modules possess a tensor product
property analogous to the one satisfied in the non-super setting (see, [CP01, Th. 2] and [FL04,
Th. 2]). Recall that we are assuming that 𝐴 is finitely generated and the system of simple roots
Σ satisfies (3.1.1).

Theorem 3.5.1. For 𝑖 = 1, 2, let å𝑖 ∈ ℒ(h·𝐴) with Ú𝑖 = å𝑖♣h∈ Λ+, and suppose that 𝐼å1
and 𝐼å2

have disjoint support. Then
𝑊 (å1 + å2) ≍= 𝑊 (å1) ·𝑊 (å2)

as g · 𝐴-modules.

Proof. By Corollary 3.4.11, there exist 𝑁1, 𝑁2 ∈ N such that (g · 𝐼𝑁𝑖å𝑖 )𝑤å𝑖 = 0 for 𝑖 = 1, 2. Then
the action of g · 𝐴 on 𝑊 (å1) ·𝑊 (å2) factors through the composition

g · 𝐴
𝑑⊃˓ (g · 𝐴) ⊕ (g · 𝐴)

Þ
։ (g · 𝐴/𝐼𝑁1

å1
) ⊕ (g · 𝐴/𝐼𝑁2

å2
), (3.5.1)

where 𝑑 is the diagonal embedding. Since Supp(𝐼å1
)∩Supp(𝐼å2

) = ∅, Lemma 1.2.2(a) implies that
Supp(𝐼𝑁1

å1
) ∩ Supp(𝐼𝑁2

å2
) = ∅. Then, by Lemma 1.2.2(d), we have 𝐴 = 𝐼𝑁1

å1
+ 𝐼𝑁2

å2
and 𝐼𝑁1

å1
∩ 𝐼𝑁2

å2
=

𝐼𝑁1

å1
𝐼𝑁2

å2
. Thus, 𝐴/𝐼𝑁1

å1
𝐼𝑁2

å2

≍= (𝐴/𝐼𝑁1

å1
) ⊕ (𝐴/𝐼𝑁2

å2
). We therefore have the following commutative

diagram:

g · 𝐴 (g · 𝐴) ⊕ (g · 𝐴)

g · 𝐴/𝐼𝑁1

å1
𝐼𝑁2

å2
(g · 𝐴/𝐼𝑁1

å1
) ⊕ (g · 𝐴/𝐼𝑁2

å2
)

𝑑

≍=

It follows that the composition (3.5.1) is surjective.
Since 𝑊 (å1) · 𝑊 (å2) is generated as a (g · 𝐴/𝐼𝑁1

å1
) ⊕ (g · 𝐴/𝐼𝑁2

å2
)-module by the vector

𝑤å1
· 𝑤å2

, it follows from the above that it is also generated by this vector as a g · 𝐴-module.
Moreover, h·𝐴 acts on 𝑤å1

·𝑤å2
via å := å1 +å2. Thus 𝑊 (å1) ·𝑊 (å2) is a finite-dimensional

highest map-weight module of highest map-weight å. Therefore, by Proposition 3.4.14, it is a
quotient of 𝑊 (å).

To simplify notation, let 𝐼1 = 𝐼å1
, 𝐼2 = 𝐼å2

and 𝑁 = 𝑁å. Let 𝐼 = 𝐼1𝐼2 = 𝐼1 ∩ 𝐼2. Then 𝐼 ⊖ 𝐼å.
Therefore, the action of b · 𝐴 on C𝑤å descends to an action of b · 𝐴/𝐼𝑁 on C𝑤å. Consider the
induced module

𝑀(å) := 𝑈(g · 𝐴/𝐼𝑁) ·𝑈(b·𝐴/𝐼𝑁 ) C𝑤å.

It follows from Corollary 3.4.11 that 𝑊 (å) is a quotient of 𝑀(å). On the other hand, it is clear
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that the one-dimensional b · 𝐴-modules C𝑤å and C𝑤å1
· C𝑤å2

are isomorphic. Hence,

𝑀(å) = 𝑈(g · 𝐴/𝐼𝑁) ·𝑈(b·𝐴/𝐼𝑁 ) C𝑤å
≍= 𝑈

(︁
g ·

(︁
𝐴/𝐼𝑁1 ⊕ 𝐴/𝐼𝑁2

⎡⎡
·𝑈(b·(𝐴/𝐼𝑁

1
⊕𝐴/𝐼𝑁

2
)) (C𝑤å1

· C𝑤å2
)

≍=
(︁
𝑈
(︁
g ·

(︁
𝐴/𝐼𝑁1

⎡⎡
· 𝑈

(︁
g ·

(︁
𝐴/𝐼𝑁2

⎡⎡⎡
·𝑈(b·(𝐴/𝐼𝑁

1
))·𝑈(b·(𝐴/𝐼𝑁

2
)) (C𝑤å1

· C𝑤å2
)

≍=
(︁
𝑈
(︁
g ·

(︁
𝐴/𝐼𝑁1

⎡⎡
·𝑈(b·(𝐴/𝐼𝑁

1
)) C𝑤å1

⎡
·
(︁
𝑈
(︁
g ·

(︁
𝐴/𝐼𝑁2

⎡⎡
·𝑈(b·(𝐴/𝐼𝑁

2
)) C𝑤å2

⎡

= 𝑀(å1) ·𝑀(å2).

So 𝑊 (å) is a quotient of 𝑀(å1) ·𝑀(å2). Fix a surjection 𝜃:𝑀(å1) ·𝑀(å2) ⊃ 𝑊 (å).
We claim that the image of 𝑀(å1)Û · 𝑀(å2)Ü under 𝜃 is zero except for a finite number of

weights Û and Ü. By Lemma 3.4.12, the set 𝐷 of weights occurring in 𝑊 (å) is finite. Thus, the
sets

𝐷1 = (Ú1 ⊗𝑄+) ∩ (⊗Ú2 +𝐷 +𝑄+) and 𝐷2 = (Ú2 ⊗𝑄+) ∩ (⊗Ú1 +𝐷 +𝑄+)

are also finite. Since, for 𝑖 = 1, 2, the weights of 𝑀(å𝑖) are contained in Ú𝑖 ⊗ 𝑄+, the image of
𝑀(å1)Û · 𝑀(å2)Ü under 𝜃 is zero unless Û ∈ Ú1 ⊗ 𝑄+, Ü ∈ Ú2 ⊗ 𝑄+ and Û + Ü ∈ 𝐷. Thus it is
nonzero only if Û ∈ 𝐷1 and Ü ∈ 𝐷2, and hence the claim is proved.

For 𝑖 = 1, 2, let 𝑀(å𝑖)
′ be the submodule of 𝑀(å𝑖) generated by the weight subspaces 𝑀(å𝑖)Û

with Û /∈ 𝐷𝑖, and let 𝑀̄(å𝑖) = 𝑀(å𝑖)/𝑀(å𝑖)
′. Then 𝑊 (å) is a quotient of 𝑀̄(å1) · 𝑀̄(å2).

Because 𝐼𝑖 has finite codimension and there are only a finite number of weights occurring in the
quotient 𝑀̄(å𝑖), this module is a finite-dimensional highest map-weight module of highest map-
weight å𝑖. Then, by Proposition 3.4.14, it is a quotient of 𝑊 (å𝑖). Thus, 𝑀̄(å1) · 𝑀̄(å2) is a
quotient of 𝑊 (å1) ·𝑊 (å2), which implies that 𝑊 (å) is a quotient of 𝑊 (å1) ·𝑊 (å2). Since the
modules 𝑊 (å) and 𝑊 (å1) ·𝑊 (å2) are both finite dimensional, the fact that one is a quotient of
the other implies the isomorphism in the statement of the theorem.
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3.6 Appendix

In this appendix we describe the root systems, the distinguished system of simple roots and the
distinguished Cartan matrix of all basic Lie superalgebras. See [FSS00, Tables 3.54, 3.57–3.60],
for details.

Recall that if g is either a basic Lie superalgebra or sl(𝑛, 𝑛), 𝑛 ⊙ 2, then a Cartan subalgebra
of g is the same as a Cartan subalgebra of the reductive Lie algebra g0̄.

3.6.1 The non-exceptional cases

In all the cases in this section, the Cartan subalgebra of g is a subspace of a space of diagonal
matrices. In what follows, the roots will be expressed in terms of the functionals given by

𝜀𝑖(diag(𝑎1, . . . , 𝑎𝑁)) = 𝑎𝑖,

for any diagonal matrix.

The basic Lie superalgebra g = 𝐴(𝑚⊗ 1, 𝑛⊗ 1).

In this case g0̄ = sl(𝑚) ⊕ sl(𝑛) ⊕ C. Set Ó𝑗 := 𝜀𝑚+𝑗, for 1 ⊘ 𝑗 ⊘ 𝑛. If 1 ⊘ 𝑖 ̸= 𝑗 ⊘ 𝑚 and
1 ⊘ 𝑘 ̸= ℓ ⊘ 𝑛, then

∆ = ¶𝜀𝑖 ⊗ 𝜀𝑗, Ó𝑘 ⊗ Óℓ, 𝜀𝑖 ⊗ Ó𝑘, Ó𝑘 ⊗ 𝜀𝑖♢,
∆0̄ = ¶𝜀𝑖 ⊗ 𝜀𝑗, Ó𝑘 ⊗ Óℓ♢, ∆1̄ = ¶𝜀𝑖 ⊗ Ó𝑘, Ó𝑘 ⊗ 𝜀𝑖♢.

The distinguished system of simple roots Π is given by

Ð1 = Ó1 ⊗ Ó2, . . . , Ð𝑛⊗1 = Ó𝑛⊗1 ⊗ Ó𝑛, Ð𝑛 = Ó𝑛 ⊗ 𝜀1,

Ð𝑛+1 = 𝜀1 ⊗ 𝜀2, . . . , Ð𝑛+𝑚⊗1 = 𝜀𝑚⊗1 ⊗ 𝜀𝑚,

where Ð𝑛 is the only odd root in Π. The distinguished Cartan matrix is
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜∐︁

2 ⊗1 0 ≤ ≤ ≤ 0 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ 0

⊗1
. . . . . . . . .

...

0
. . . . . . 0

...
. . . . . . . . . ⊗1

. . .

0 0 ⊗1 2 ⊗1
. . .

...
...

. . . ⊗1 0 1
. . .

...
...

. . . ⊗1 2 ⊗1 0 0
. . . ⊗1

. . . . . . . . .
...

0
. . . . . . 0
. . . . . . . . . ⊗1

0 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ 0 ≤ ≤ ≤ 0 ⊗1 2

∫︀
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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The basic Lie superalgebra g = 𝐴(𝑛⊗ 1, 𝑛⊗ 1).

In this case g0̄ = sl(𝑛) ⊕ sl(𝑛). Set Ó𝑗 := 𝜀𝑛+𝑗, for 1 ⊘ 𝑗 ⊘ 𝑛. If 1 ⊘ 𝑖 ̸= 𝑗 ⊘ 𝑛, then

∆ = ¶𝜀𝑖 ⊗ 𝜀𝑗, Ó𝑖 ⊗ Ó𝑗, 𝜀𝑖 ⊗ Ó𝑗, Ó𝑗 ⊗ 𝜀𝑖♢,
∆0̄ = ¶𝜀𝑖 ⊗ 𝜀𝑗, Ó𝑖 ⊗ Ó𝑗♢, ∆1̄ = ¶𝜀𝑖 ⊗ Ó𝑗, Ó𝑗 ⊗ 𝜀𝑖♢.

The distinguished system of simple roots Π is given by

Ð1 = Ó1 ⊗ Ó2, . . . , Ð𝑛⊗1 = Ó𝑛⊗1 ⊗ Ó𝑛, Ð𝑛 = Ó𝑛 ⊗ 𝜀1,

Ð𝑛+1 = 𝜀1 ⊗ 𝜀2, . . . , Ð2𝑛⊗1 = 𝜀𝑛⊗1 ⊗ 𝜀𝑛,

where Ð𝑛 is the only odd root in Π. The distinguished Cartan matrix is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜∐︁

2 ⊗1 0 ≤ ≤ ≤ 0 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ 0

⊗1
. . . . . . . . .

...

0
. . . . . . 0

...
. . . . . . . . . ⊗1

. . .

0 0 ⊗1 2 ⊗1
. . .

...
...

. . . ⊗1 0 1
. . .

...
...

. . . ⊗1 2 ⊗1 0 0
. . . ⊗1

. . . . . . . . .
...

0
. . . . . . 0
. . . . . . . . . ⊗1

0 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ 0 ≤ ≤ ≤ 0 ⊗1 2

∫︀
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The basic Lie superalgebra g = 𝐵(𝑚,𝑛).

In this case g0̄ = so(2𝑚 + 1) ⊕ sp(2𝑛). Set Ó𝑗 := 𝜀𝑚+𝑗, for 1 ⊘ 𝑗 ⊘ 𝑛. If 1 ⊘ 𝑖 ̸= 𝑗 ⊘ 𝑚 and
1 ⊘ 𝑘 ̸= ℓ ⊘ 𝑛, then

∆ = ¶∘𝜀𝑖 ∘ 𝜀𝑗, ∘𝜀𝑖, ∘Ó𝑘 ∘ Óℓ, ∘2Ó𝑘, ∘𝜀𝑖 ∘ Ó𝑘, ∘Ó𝑘♢,
∆0̄ = ¶∘𝜀𝑖 ∘ 𝜀𝑗, ∘𝜀𝑖, ∘Ó𝑘 ∘ Óℓ, ∘2Ó𝑘♢, ∆1̄ = ¶∘𝜀𝑖 ∘ Ó𝑘, ∘Ó𝑘♢.

The distinguished system of simple roots Π is given by

Ð1 = Ó1 ⊗ Ó2, . . . , Ð𝑛⊗1 = Ó𝑛⊗1 ⊗ Ó𝑛, Ð𝑛 = Ó𝑛 ⊗ 𝜀1,

Ð𝑛+1 = 𝜀1 ⊗ 𝜀2, . . . , Ð𝑛+𝑚⊗1 = 𝜀𝑚⊗1 ⊗ 𝜀𝑚, Ð𝑚+𝑛 = 𝜀𝑚,
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where Ð𝑛 is the only odd root in Π. The distinguished Cartan matrix is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜∐︁

2 ⊗1 0 ≤ ≤ ≤ 0 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ 0

⊗1
. . . . . . . . .

...

0
. . . . . . 0

...
. . . . . . . . . ⊗1

. . .

0 0 ⊗1 2 ⊗1
. . .

...
...

. . . ⊗1 0 1
. . .

...
...

. . . ⊗1 2 ⊗1 0 0
. . . ⊗1

. . . . . . . . .
...

0
. . . . . . ⊗1 0
. . . ⊗1 2 ⊗1

0 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ 0 ≤ ≤ ≤ 0 ⊗2 2

∫︀
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The basic Lie superalgebra g = 𝐵(0, 𝑛).

In this case g0̄ = sp(2𝑛). Set Ó𝑗 := 𝜀𝑗, for 1 ⊘ 𝑗 ⊘ 𝑛. If 1 ⊘ 𝑘 ̸= ℓ ⊘ 𝑛, then

∆ = ¶∘Ó𝑘 ∘ Óℓ, ∘2Ó𝑘, ∘Ó𝑘♢,
∆0̄ = ¶∘Ó𝑘 ∘ Óℓ, ∘2Ó𝑘♢, ∆1̄ = ¶∘Ó𝑘♢.

The distinguished system of simple roots Π is given by

Ð1 = Ó1 ⊗ Ó2, . . . , Ð𝑛⊗1 = Ó𝑛⊗1 ⊗ Ó𝑛, Ð𝑛 = Ó𝑛,

where Ð𝑛 is the only odd root in Π. The distinguished Cartan matrix is
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜∐︁

2 ⊗1 0 ≤ ≤ ≤ ≤ ≤ ≤ 0

⊗1 2
. . . . . .

...

0
. . . . . . . . . . . .

...
...

. . . . . . 2 ⊗1 0
...

. . . ⊗1 2 ⊗1
0 ≤ ≤ ≤ ≤ ≤ ≤ 0 ⊗2 2

∫︀
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The basic Lie superalgebra g = 𝐶(𝑛+ 1).

In this case g0̄ = so(2) ⊕ sp(2𝑛). Set Ó𝑗 := 𝜀2+𝑗, for 1 ⊘ 𝑗 ⊘ 𝑛. If 1 ⊘ 𝑘 ̸= ℓ ⊘ 𝑛, then

∆ = ¶∘Ó𝑘 ∘ Óℓ, ∘2Ó𝑘, ∘𝜀1 ∘ Ó𝑘♢,
∆0̄ = ¶∘Ó𝑘 ∘ Óℓ, ∘2Ó𝑘♢, ∆1̄ = ¶∘𝜀1 ∘ Ó𝑘♢.
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The distinguished system of simple roots Π is given by

Ð1 = 𝜀1 ⊗ Ó1, Ð2 = Ó1 ⊗ Ó2, . . . , Ð𝑛 = Ó𝑛⊗1 ⊗ Ó𝑛, Ð𝑛+1 = 2Ó𝑛,

where Ð𝑛 is the only odd root in Π. The distinguished Cartan matrix is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜∐︁

0 1 0 ≤ ≤ ≤ ≤ ≤ ≤ 0
⊗1 2 ⊗1 0 0

0 ⊗1
. . . . . . . . .

...

0 0
. . . . . . ⊗1 0

...
. . . ⊗1 2 ⊗2

0 ≤ ≤ ≤ ≤ ≤ ≤ 0 ⊗1 2

∫︀
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The basic Lie superalgebra g = 𝐷(𝑚,𝑛).

In this case g0̄ = so(2𝑚) ⊕ sp(2𝑛). Set Ó𝑗 := 𝜀𝑚+𝑗, for 1 ⊘ 𝑗 ⊘ 𝑛. If 1 ⊘ 𝑖 ̸= 𝑗 ⊘ 𝑚 and
1 ⊘ 𝑘 ̸= ℓ ⊘ 𝑛, then

∆ = ¶∘𝜀𝑖 ∘ 𝜀𝑗, ∘Ó𝑘 ∘ Óℓ, ∘2Ó𝑘, ∘𝜀𝑖 ∘ Ó𝑘♢,
∆0̄ = ¶∘𝜀𝑖 ∘ 𝜀𝑗, ∘Ó𝑘 ∘ Óℓ, ∘2Ó𝑘♢, ∆1̄ = ¶∘𝜀𝑖 ∘ Ó𝑘♢.

The distinguished system of simple roots Π is given by

Ð1 = Ó1 ⊗ Ó2, . . . , Ð𝑛⊗1 = Ó𝑛⊗1 ⊗ Ó𝑛, Ð𝑛 = Ó𝑛 ⊗ 𝜀1,

Ð𝑛+1 = 𝜀1 ⊗ 𝜀2, . . . , Ð𝑛+𝑚⊗1 = 𝜀𝑚⊗1 ⊗ 𝜀𝑚, Ð𝑚+𝑛 = 𝜀𝑚⊗1 + 𝜀𝑚,

where Ð𝑛 is the only odd root in Π. The distinguished Cartan matrix is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜∐︁

2 ⊗1 0 ≤ ≤ ≤ 0 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ 0

⊗1
. . . . . . . . .

...

0
. . . . . . 0

...
. . . . . . . . . ⊗1

. . .

0 0 ⊗1 2 ⊗1
. . .

...
...

. . . ⊗1 0 1
. . .

...
...

. . . ⊗1 2 ⊗1 0 0
. . . ⊗1

. . . . . . . . .
...

0
. . . . . . ⊗1 ⊗1
. . . ⊗1 2 0

0 ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ 0 ≤ ≤ ≤ ⊗1 0 2

∫︀
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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3.6.2 The exceptional cases

Recall that basic Lie superalgebras possesses a non-degenerated bilinear form. Let (≤, ≤) denote
such a form.

The basic Lie superalgebra g = 𝐹 (4).

In this case g0̄ = sl(2) ⊕ so(7). Consider the vectors 𝜀1, 𝜀2, 𝜀3 (corresponding to so(7)) and Ó
(corresponding to sl(2)) such that (𝜀𝑖, 𝜀𝑗) = Ó𝑖𝑗, (Ó, Ó) = ⊗3, and (𝜀𝑖, Ó) = 0. In terms of these
vectors, we have that

∆ = ¶∘Ó, ∘𝜀𝑖 ∘ 𝜀𝑗, ∘𝜀𝑖,
1

2
(∘𝜀1 ∘ 𝜀2 ∘ 𝜀3 ∘ Ó)♢,

∆0̄ = ¶∘Ó, ∘𝜀𝑖 ∘ 𝜀𝑗, ∘𝜀𝑖♢, ∆1̄ = ¶1

2
(∘𝜀1 ∘ 𝜀2 ∘ 𝜀3 ∘ Ó)♢.

The distinguished system of simple roots Π is given by

Ð1 =
1

2
(Ó ⊗ 𝜀1 ⊗ 𝜀2 ⊗ 𝜀3), Ð2 = 𝜀3, Ð3 = 𝜀2 ⊗ 𝜀3, Ð4 = 𝜀1 ⊗ 𝜀2,

where Ð1 is the only odd root in Π. The distinguished Cartan matrix is

⎛
⎜⎜⎜∐︁

0 1 0 0
⊗1 2 ⊗2 0

0 ⊗1 2 ⊗1
0 0 ⊗1 2

∫︀
⎟⎟⎟⎠ .

The basic Lie superalgebra g = 𝐺(3).

In this case g0̄ = sl(2) ⊕ 𝐺2. Consider the vectors 𝜀1, 𝜀2, 𝜀3 (corresponding to 𝐺2) and Ó
(corresponding to sl(2)) such that 𝜀1 + 𝜀2 + 𝜀3 = 0, (𝜀𝑖, 𝜀𝑗) = 1 ⊗ 3Ó𝑖𝑗, (Ó, Ó) = 2, and (𝜀𝑖, Ó) = 0.
In terms of these vectors, we have that

∆ = ¶∘2Ó, ∘𝜀𝑖, 𝜀𝑖 ⊗ 𝜀𝑗, ∘Ó, ∘𝜀𝑖 ∘ Ó♢,
∆0̄ = ¶∘2Ó, ∘𝜀𝑖, 𝜀𝑖 ⊗ 𝜀𝑗♢, ∆1̄ = ¶∘Ó,∘𝜀𝑖 ∘ Ó♢.

The distinguished system of simple roots Π is given as follows:

Ð1 = Ó + 𝜀3, Ð2 = 𝜀1, Ð3 = 𝜀2 ⊗ 𝜀1,

where Ð1 is the only odd root in Π. The distinguished Cartan matrix is

⎛
⎜∐︁

0 1 0
⊗1 2 ⊗3

0 ⊗1 2

∫︀
⎟⎠ .
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The basic Lie superalgebra g = 𝐷(2, 1;Ð).

In this case g0̄ = sl(2) ⊕ sl(2) ⊕ sl(2). Consider the vectors 𝜀1, 𝜀2, 𝜀3 (each one corresponding
to one of the copies of sl(2)) such that (𝜀1, 𝜀1) = ⊗(1 + Ð)/2, (𝜀2, 𝜀2) = 1/2, (𝜀3, 𝜀3) = Ð/2, and
(𝜀𝑖, 𝜀𝑗) = 0 if 𝑖 ̸= 𝑗. In terms of these vectors, we have that

∆ = ¶∘2𝜀𝑖, ∘𝜀1 ∘ 𝜀2 ∘ 𝜀3♢,
∆0̄ = ¶∘2𝜀𝑖♢, ∆1̄ = ¶∘𝜀1 ∘ 𝜀2 ∘ 𝜀3♢.

The distinguished system of simple roots Π is given by

Ð1 = 𝜀1 ⊗ 𝜀2 ⊗ 𝜀3, Ð2 = 2𝜀2, Ð3 = 2𝜀3,

where Ð1 is the only odd root in Π. The distinguished Cartan matrix is

⎛
⎜∐︁

0 1 Ð
⊗1 2 0
⊗1 0 2

∫︀
⎟⎠ .
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Chapter 4

Super-Weyl functors

In this chapter we study Weyl modules from the point of view of Weyl functors, i.e., we
introduce the super version of the functors defined in [CFK10]. We consider map superalgebras
g · 𝐴, where 𝐴 is an associative commutative unital C-algebra and g is a basic Lie superalgebra
or sl(𝑛, 𝑛), 𝑛 ⊙ 2. Via such functors, we recover the local Weyl modules. We also prove properties
that are analogues of those of Weyl functors in the non-super setting.

4.1 A good system of simple roots II

In Section 4.4, we will be interested in systems of simple roots Σ satisfying the following
property:

If 𝜃 is the lowest root of g with respect to
the triangular decomposition induced by Σ, then 𝜃 is even.

(4.1.1)

Recall that Π = ¶Ò1, . . . , Ò𝑛♢ denotes a distinguished system of simple roots of g, where Ò𝑠 is
the only odd root in Π. The next proposition shows that a system of simple roots satisfying (4.1.1)
always exists.

Proposition 4.1.1. Let Π be a distinguished system of simple roots for g.

a. If g is a basic Lie superalgebra of type II, then Π satisfies condition (4.1.1).

b. If g is gl(𝑛, 𝑛), 𝑛 ⊙ 2, sl(𝑛, 𝑛), 𝑛 ⊙ 2, or a basic Lie superalgebra other than 𝐵(0, 𝑛), then
𝑟Ò𝑠(Π) satisfies condition (4.1.1).

In particular, g admits at least one system of simple roots satisfying (4.1.1).

Proof. Part (a) follows from the fact that the Z-grading of g induced by Π gives us g⊗2 ̸= 0 and
g⊗𝑘 = 0 for all 𝑘 > 2. This implies that the lowest root vector of g lies in g⊗2, and so 𝜃 ∈ ∆⊗

0̄
.

To prove part (b), notice that if g is of type I, then the Z-grading of g induced by Π is of the
form g⊗1 ⊕ g0 ⊕ g1. In particular, a highest (resp. lowest) vector root of g lies in g1 (resp. g⊗1),
and so a distinguished system Π does not satisfies (4.1.1). Let 𝑋Ñ ∈ gÑ be a highest weight of g
with respect to Π, it is clear that it is an element of g1. On the other hand, since g is simple and
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g0 ̸= 0 we must have that [𝑌Ò𝑠 , 𝑋Ñ] = 𝑍 ̸= 0. Notice that 𝑍 ∈ g0 = g0̄. We claim that 𝑍 is a
highest weight vector with respect to 𝑟Ð(Π) = Π′. To prove this, we will see that [𝑋Ò′ , 𝑍] = 0 for
all Ò′ ∈ Π′. Recall from the proof of Proposition 3.1.1 that if g is gl(𝑛, 𝑛) (𝑛 ⊙ 2), sl(𝑛, 𝑛) (𝑛 ⊙ 2),
or a basic Lie superalgebra other than 𝐵(0, 𝑛) or 𝐷(2, 1;Ð), then

Ò′
𝑠 = 𝑟Ò𝑠(Ò𝑠) = ⊗Ò𝑠, Ò′

𝑠∘1 = 𝑟Ò𝑠(Ò𝑠∘1) = Ò𝑠 + Ò𝑠∘1 and Ò′
𝑠∘𝑗 = 𝑟Ò𝑠(Ò𝑠∘𝑗) = Ò𝑠∘𝑗, for all 𝑗 ⊙ 2.

Thus

[𝑋Ò′
𝑠
, 𝑍] = [𝑌Ò𝑠 , [𝑌Ò𝑠 , 𝑋Ñ]] = [[𝑌Ò𝑠 , 𝑌Ò𝑠 ], 𝑋Ñ] ⊗ [𝑌Ò𝑠 , [𝑌Ò𝑠 , 𝑋Ñ]] = 0,

[𝑋Ò′
𝑠∘1
, 𝑍] = [𝑋Ò𝑠+Ò𝑠∘1

, [𝑌Ò𝑠 , 𝑋Ñ]] = [[𝑋Ò𝑠+Ò𝑠∘1
, 𝑌Ò𝑠 ], 𝑋Ñ] + [𝑌Ò𝑠 , [𝑋Ò𝑠+Ò𝑠∘1

, 𝑋Ñ]] = 0,

[𝑋Ò′
𝑠∘𝑗
, 𝑍] = [𝑋Ò𝑠∘𝑗

, [𝑌Ò𝑠 , 𝑋Ñ]] = [[𝑋Ò𝑠∘𝑗
, 𝑌Ò𝑠 ], 𝑋Ñ] + [𝑌Ò𝑠 , [𝑋Ò𝑠∘𝑗

, 𝑋Ñ]] = 0, for all 𝑗 ⊙ 2,

where the first line follows from the fact that [𝑌Ò𝑠 , 𝑌Ò𝑠 ] = 0, the second line follows from the fact
that 𝑋Ñ is a highest weigh vector with respect to Π, and the third line follows from the fact that
[𝑋Ò𝑠∘𝑗

, 𝑌Ò𝑠 ] = 0 along with the fact that 𝑋Ñ is a highest weight vector with respect to Π.
If g = 𝐷(2, 1;Ð), then again by the proof of Proposition 3.1.1, we have that Π′ = ¶⊗Ò1, Ò1 +

Ò2, Ò1 + Ò3♢. Thus

[𝑋Ò′
1
, 𝑍] = [𝑌Ò1

, [𝑌Ò1
, 𝑋Ñ]] = [[𝑌Ò1

, 𝑌Ò1
], 𝑋Ñ] ⊗ [𝑌Ò1

, [𝑌Ò1
, 𝑋Ñ]] = 0,

[𝑋Ò′
𝑗
, 𝑍] = [𝑋Ò1+Ò𝑗 , [𝑌Ò1

, 𝑋Ñ]] = [[𝑋Ò1+Ò𝑗 , 𝑌Ò1
], 𝑋Ñ] + [𝑌Ò1

, [𝑋Ò1+Ò𝑗 , 𝑋Ñ]] = 0, for all 𝑗 = 1, 2,

where the first line follows from the fact that [𝑌Ò1
, 𝑌Ò1

] = 0, and the second line follows from the
fact that 𝑋Ñ is a highest weigh vector with respect to Π.

Therefore we have proved that 𝑍 ∈ g0̄ is a highest vector with respect to the triangular
decomposition induced by Π′. In particular, Ñ ⊗ Ò𝑠 (resp. Ñ ⊗ Ò1, for g = 𝐷(2, 1;Ð)) is the root
associated to 𝑍. Thus 𝜃 = Ò𝑠 ⊗ Ñ (resp. Ò1 ⊗ Ñ, for g = 𝐷(2, 1;Ð)) is the lowest root desired.

Remark 4.1.2. There are finite-dimensional simple Lie superalgebras that are not contragredient
Lie superalgebras. In particular, we do not have systems of simple roots satisfying nice properties
as those given in Section 1.4.1. On the other hand, any finite-dimensional simple Lie superalge-
bra has a triangular decomposition. So it make sense talk about highest (or lowest) root with
respect to such a decomposition. Due this fact, Property 4.1.1 is a more applicable condition than
Property 3.1.1.

4.2 Projective objects

Let g be either a basic classical Lie superalgebra or sl(𝑛, 𝑛), 𝑛 ⊙ 2, and let 𝐴 be an associative
commutative unital C-algebra. Let Ú ∈ Λ+. Throughout this chapter we let ℐÚ𝐴 (resp. ℐ𝐴) denote
the category ℐÚ𝐴(g · 𝐴, g0̄) (resp. ℐ𝐴(g · 𝐴, g0̄)). See Section 3.3, for details.

For all 𝑉 ∈ Ob g -mod, consider the module 𝑃𝐴(𝑉 ) given by (3.3.1). Recall that one can regard
𝑉 as a g-submodule of 𝑃𝐴(𝑉 ) via the natural identification 𝑉 ≍= C· 𝑉 ⊖ 𝑃𝐴(𝑉 ).
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Lemma 4.2.1. Let 𝑉 be a g-module whose restriction to g0̄ lies in ℐ. Then 𝑃𝐴(𝑉 ) is a projective
object in ℐ𝐴. Further, there exists a surjective homomorphism 𝑃𝐴(𝑉 ) ⊃ 𝑉 given by 𝑢 · 𝑣 ↦⊃ 𝑢𝑣.
In particular, the category ℐ𝐴 has enough projectives.

Proof. Recall that by Proposition 3.3.3, the module 𝑃𝐴(𝑉 ) is an object in ℐ𝐴. The fact that 𝑃𝐴(𝑉 )
is projective in this category is a particular case of a standard result proved in [Hoc56, Lem. 2].
The map in the statement is clearly a surjective homomorphism of g · 𝐴-modules. Finally, the
fact that any 𝑉 ∈ ℐ𝐴 is a quotient of 𝑃𝐴(𝑉 ), which is a projective object in ℐ𝐴, implies that ℐ𝐴
has enough projectives.

Recall that 𝑃𝐴(𝑉 (Ú)) ∈ ℐ𝐴 for all Ú ∈ Λ+.

Corollary 4.2.2. For any Ú ∈ Λ+ and 𝑉 ∈ ℐÚ𝐴, the module 𝑃𝐴(𝑉 )Ú is a projective object in ℐÚ𝐴.
In particular, the category ℐÚ𝐴 has enough projectives.

Proof. Let 𝑊 ∈ Ob ℐÚ𝐴. Notice that any homomorphism from 𝑃𝐴(𝑉 ) to 𝑊 descends to a homo-
morphism from 𝑃𝐴(𝑉 )Ú to 𝑊 . On the other hand, 𝑃𝐴(𝑉 ) is a projective object in ℐ𝐴, and ℐÚ𝐴 is a
subcategory of ℐ𝐴. Thus 𝑃𝐴(𝑉 )Ú is a projective object in ℐÚ𝐴.

4.3 The super-Weyl functor

Let 𝐴 be an associative commutative unital C-algebra and let g be either a basic Lie superalge-
bra or sl(𝑛, 𝑛), 𝑛 ⊙ 2. In this section we define the super-Weyl functors. These are the analogues,
in the super setting, of the Weyl functors defined in [CFK10, p. 525].

For Ú ∈ Λ+, we set

Anng·𝐴(𝑤Ú) = ¶𝑢 ∈ 𝑈(g · 𝐴) ♣𝑢𝑤Ú = 0♢,
Annh·𝐴(𝑤Ú) = Anng·𝐴(𝑤Ú) ∩ 𝑈(h · 𝐴).

It is easy to see that Annh·𝐴(𝑤Ú) is an ideal of 𝑈(h · 𝐴).

Definition 4.3.1 (The algebra AÚ). We define the quotient algebra

AÚ = 𝑈(h · 𝐴)/Annh·𝐴(𝑤Ú). (4.3.1)

Lemma 4.3.2. The g · 𝐴-module 𝑊 (Ú) is a right h · 𝐴-module, where

(𝑢𝑤Ú)𝑥 = 𝑢𝑥𝑤Ú, for all 𝑢 ∈ 𝑈(g · 𝐴) and 𝑥 ∈ 𝑈(h · 𝐴).

Proof. We shall prove that

𝑢𝑤Ú = 𝑢′𝑤Ú ⇒ 𝑢𝑥𝑤Ú = 𝑢′𝑥𝑤Ú, for all 𝑢, 𝑢′ ∈ 𝑈(g · 𝐴).

Or equivalently,

(𝑢⊗ 𝑢′)𝑤Ú = 0 ⇒ (𝑢⊗ 𝑢′)𝑥𝑤Ú = 0, for all 𝑢, 𝑢′ ∈ 𝑈(g · 𝐴).

Note that it is enough to prove that 𝑥𝑤Ú satisfies the relations (3.3.3), for all 𝑥 ∈ AÚ. Since
𝑥 ∈ AÚ, it follows that 𝑥𝑤Ú ∈ 𝑊 (Ú)Ú and hence the first and second relations in (3.3.3) are held.
Since the g0̄-module generated by 𝑎𝑤Ú is finite-dimensional, the second relation in (3.3.3) is also
satisfied.
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By Lemma 4.3.2, 𝑊 (Ú) is a (g·𝐴,AÚ)-bimodule, where each weight space 𝑊 (Ú)Û is a right AÚ-
submodule. In particular, the assignment 𝑊 (Ú)Ú ⊃ AÚ such that 𝑤Ú ↦⊃ 1AÚ

, defines a surjective
homomorphism of AÚ-modules whose kernel is Annh·𝐴(𝑤Ú). Thus we have that

𝑊 (Ú)Ú ≍= AÚ

as right AÚ-modules.
For Ú ∈ Λ+, we let AÚ -mod denote the category of left AÚ-modules. Let 𝑀,𝑀 ′ ∈ Ob AÚ -mod

and let 𝑓 ∈ HomAÚ
(𝑀,𝑀 ′). Since id:𝑊 (Ú) ⊃ 𝑊 (Ú) is even, it is clear that

id ·𝑓 :𝑊𝐴(Ú) ·AÚ
𝑀 ⊃ 𝑊𝐴(Ú) ·AÚ

𝑀 ′

is also an even homomorphism of g · 𝐴-modules.

Definition 4.3.3 (The super-Weyl functor WÚ
𝐴). Let Ú ∈ Λ+. The super-Weyl functor is defined

to be
WÚ

𝐴 : AÚ -mod ⊃ ℐÚ𝐴, WÚ
𝐴𝑀 = 𝑊 (Ú) ·AÚ

𝑀, WÚ
𝐴𝑓 = id ·𝑓,

for all 𝑀,𝑀 ′ ∈ Ob AÚ -mod and 𝑓 ∈ Hom(𝑀,𝑀 ′).

Note that
WÚ

𝐴AÚ
≍= 𝑊 (Ú)

as 𝑈(g · 𝐴)-modules. Moreover

(WÚ
𝐴𝑀)Û ≍= 𝑊 (Ú)Û ·AÚ

𝑀, as AÚ-modules for all weights Û ∈ h* and 𝑀 ∈ Ob AÚ -mod .

Lemma 4.3.4. For all Ú ∈ Λ+ and 𝑉 ∈ ℐÚ𝐴, we have (Annh·𝐴(𝑤Ú))𝑉Ú = 0.

Proof. If 𝑣 ∈ 𝑉Ú, then it is clear that n+𝑣 = 0 and ℎ𝑣 = Ú(ℎ)𝑣, for all ℎ ∈ h. Since the 𝑈(g0̄)𝑣 ⊖ 𝑉
is a finite-dimensional g0̄-submodule, we have also that 𝑌 Ú(𝐻Ð)+1

Ð 𝑣 = 0, for all Ð ∈ Σ(g0̄). Thus
the g-submodule 𝑈(g)𝑣 ⊖ 𝑉 is a quotient of 𝑉 (Ú). If Þ : 𝑉 (Ú) ։ 𝑈(g)𝑣 is a projection, then after
rescaling, if necessary, we may assume that Þ(𝑣Ú) = 𝑣′. We therefore have an even linear map

𝜙 : 𝑈(g · 𝐴) ·𝑈(g) 𝑉 (Ú) ⊃ 𝑉, 𝑢·𝑈(g) 𝑣 ↦⊃ 𝑢Þ(𝑣), 𝑢 ∈ 𝑈(g · 𝐴), 𝑣 ∈ 𝑉 (Ú),

where
𝑈(n+ · 𝐴) · 𝑣Ú ⊖ ker𝜙.

Thus 𝜙 descends to a homomorphism 𝜙 : 𝑊 (Ú) ⊃ 𝑉 sending 𝑤Ú to 𝑣′. In particular, if 𝑢 ∈
Annh·𝐴(𝑤Ú), then 𝑢𝑣 = 𝜙(𝑢𝑤Ú) = 𝜙(0) = 0.

It follows from Lemma 4.3.4 that the left action of 𝑈(h·𝐴) on 𝑉 ∈ Ob ℐÚ𝐴 induces a left action
of AÚ on 𝑉Ú. The resulting left AÚ-module will be denoted by RÚ

𝐴𝑉 . Furthermore, it is clear that
for Þ ∈ HomℐÚ

𝐴
(𝑉, 𝑉 ′), the restriction ÞÚ : 𝑉Ú ⊃ 𝑉 ′

Ú is a morphism of AÚ-module. Thus

𝑉 ↦⊃ RÚ
𝐴𝑉, Þ ↦⊃ RÚ

𝐴Þ = ÞÚ

defines a functor RÚ
𝐴 : ℐÚ𝐴 ⊃ AÚ -mod. Notice that RÚ

𝐴 is exact since the restriction to a weight
space is exact.

In the non-super setting, the next proposition was proved in [CFK10, Prop. 5] (in the untwisted
case) and in [FMS15, Prop. 4.8] (in the twisted case).
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Proposition 4.3.5. The functors WÚ
𝐴 and RÚ

𝐴 satisfy the following properties:

a. RÚ
𝐴WÚ

𝐴
≍= idAÚ -mod as functors.

b. WÚ
𝐴 is left adjoint to RÚ

𝐴.

c. The functor WÚ
𝐴 maps projective objects to projective objects.

Proof. To prove part (a), consider 𝑀 ∈ Ob AÚ -mod and note that

RÚ
𝐴WÚ

𝐴𝑀 = (WÚ
𝐴𝑀)Ú = 𝑊 (Ú)Ú ·AÚ

𝑀 ≍= AÚ ·AÚ
𝑀 ≍= 𝑀.

To prove part (b), we need to find natural transformations

𝜖 : WÚ
𝐴RÚ

𝐴 ↦⊃ idℐÚ
𝐴
, Ö : idAÚ -mod ↦⊃ RÚ

𝐴WÚ
𝐴,

such that for any 𝑀 ∈ Ob AÚ -mod and 𝑉 ∈ Ob ℐÚ𝐴, we have the following equality of morphisms

idWÚ
𝐴
𝑀 = 𝜖WÚ

𝐴
𝑀 ◇ WÚ

𝐴(Ö𝑀), idRÚ
𝐴
𝑉 = RÚ

𝐴(𝜖𝑉 ) ◇ ÖRÚ
𝐴
𝑉 . (4.3.2)

Let us start defining Ö𝑀 , for 𝑀 ∈ Ob AÚ -mod. Let

Ö𝑀 : 𝑀 ⊃ RÚ
𝐴WÚ

𝐴𝑀, 𝑚 ↦⊃ 𝑤Ú ·𝑚.

It is easy to see that for any 𝑀,𝑀 ′ ∈ Ob AÚ -mod and 𝑓 ∈ HomAÚ
(𝑀,𝑀 ′), we have that

Ö𝑀 ′ ◇ 𝑓 = RÚ
𝐴WÚ

𝐴(𝑓) ◇ Ö𝑀 .
Thus, the collection ¶Ö𝑀 ∈ HomAÚ

(𝑀,RÚ
𝐴WÚ

𝐴𝑀) ♣𝑀 ∈ Ob AÚ -mod♢ defines a natural transfor-
mation Ö : idAÚ -mod ⊃ RÚ

𝐴WÚ
𝐴.

For 𝜖 we proceed in the following way: for each 𝑉 ∈ Ob ℐÚ𝐴, one regards 𝑊 (Ú) ·C RÚ
𝐴𝑉 as

a left g · 𝐴-module via the action of g · 𝐴 on 𝑊 (Ú). With respect to this action, we have a
homomorphism of g · 𝐴-modules denoted by 𝜖1 : 𝑊 (Ú) ·C RÚ

𝐴𝑉 ⊃ 𝑉 , such that 𝑢𝑤Ú · 𝑣 ↦⊃ 𝑢𝑣
for 𝑢 ∈ 𝑈(g · 𝐴) and 𝑣 ∈ 𝑉Ú. Next, notice that for any 𝑎 ∈ AÚ, 𝑢 ∈ 𝑈(g · 𝐴) and 𝑣 ∈ 𝑉Ú

𝜖1(𝑢𝑤Ú𝑎· 𝑣) = 𝜖1(𝑢𝑎𝑤Ú · 𝑣) = 𝑢𝑎𝑣 = 𝜖1(𝑢𝑤Ú · 𝑎𝑣).

Thus the map 𝜖1 factors through a homomorphism of g · 𝐴-modules

𝜖𝑉 : 𝑊 (Ú) ·AÚ
RÚ
𝐴𝑉 = WÚ

𝐴RÚ
𝐴𝑉 ⊃ 𝑉.

One can see that the collection ¶𝜖𝑉 ∈ Homg·𝐴(WÚ
𝐴RÚ

𝐴𝑉, 𝑉 ) ♣𝑉 ∈ Ob ℐÚ𝐴♢ defines a natural trans-
formation 𝜖 : RÚ

𝐴WÚ
𝐴 ⊃ idAÚ -mod.

Finally, for any 𝑀 ∈ Ob AÚ -mod and 𝑚 ∈ 𝑀 , we have

(𝜖WÚ
𝐴
𝑀 ◇ WÚ

𝐴(Ö𝑀))(𝑢𝑤Ú ·𝑚) = 𝜖WÚ
𝐴
𝑀(𝑢𝑤Ú · 𝑤Ú ·𝑚) = 𝑢𝑤Ú ·𝑚,

and for 𝑉 ∈ Ob ℐÚ𝐴, 𝑚 ∈ RÚ
𝐴𝑉

(RÚ
𝐴(𝜖𝑉 ) ◇ ÖRÚ

𝐴
𝑉 )(𝑚) = RÚ

𝐴(𝜖𝑉 )(𝑤Ú ·𝑚) = 𝑚.

Then part (b) is proved.
Part (c) follows from the fact that WÚ

𝐴 is left adjoint to a right exact functor.
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Corollary 4.3.6. For any Ú ∈ Λ+, the global Weyl module 𝑊 (Ú) is a projective object in ℐÚ𝐴.

Proof. Since AÚ is a projective object in AÚ -mod and WÚ
𝐴AÚ

≍= 𝑊 (Ú), the result follows from
Proposition 4.3.5(c).

By Corollary 4.2.2, the category ℐÚ𝐴 has enough projectives. Thus, for 𝑀, 𝑁 ∈ Ob ℐÚ𝐴 and
𝑛 ∈ N, we can consider Ext𝑛ℐÚ

𝐴
(𝑀,𝑁) as defined in Section 1.1.

Theorem 4.3.7. Let 𝑉 ∈ ℐÚ𝐴. Then 𝑉 ≍= WÚ
𝐴RÚ

𝐴𝑉 if and only if for any 𝑈 ∈ ℐÚ𝐴 such that 𝑈Ú = 0,
we have

HomℐÚ
𝐴
(𝑉, 𝑈) = 0, Ext1

ℐÚ
𝐴
(𝑉, 𝑈) = 0. (4.3.3)

Proof. Let 𝑉 ∈ Ob ℐÚ𝐴 with 𝑉 ≍= WÚ
𝐴RÚ

𝐴𝑉 . Let 𝑈 ∈ Ob ℐÚ𝐴 with 𝑈Ú = 0 and let 𝜙 ∈ HomℐÚ
𝐴
(𝑉, 𝑈).

Since we are assuming 𝑉 ≍= WÚ
𝐴RÚ

𝐴𝑉 , we have that 𝑣Ú·𝑉Ú generates 𝑉 as a 𝑈(g·𝐴)-module. On
the other hand, it is clear that homomorphisms of modules preserve weights, and so 𝜙(𝑣Ú · 𝑉Ú) ⊖
𝑈Ú = 0. Thus 𝜙 = 0.

For the second statement, we first notice that the category AÚ -mod has enough projectives.
Therefore, there exists a surjective homomorphism Þ : 𝑃 ⊃ RÚ

𝐴𝑉 , where 𝑃 is a projective object
in AÚ -mod. Since the functor WÚ

𝐴 is exact, we have an epimorphims of g · 𝐴-modules

1 · Þ : WÚ
𝐴𝑃 ⊃ WÚ

𝐴RÚ
𝐴𝑉

≍= 𝑉,

where, by Proposition 4.3.5(c), WÚ
𝐴𝑃 is a projective module. Since id ·Þ is even, 𝐾 = ker(1 · Þ)

is a submodule of WÚ
Ú𝑃 , and so we have the short exact sequence

0 ⊃ 𝐾 ⊃ WÚ
𝐴𝑃 ⊃ 𝑉 ⊃ 0. (4.3.4)

Notice now that 𝐾 = 𝑊 (Ú) ·AÚ
kerÞ is generated by 𝑊 (Ú)Ú ·AÚ

kerÞ. Again, since homomor-
phisms between modules preserve weights, and 𝑈Ú = 0, we must have that HomℐÚ

𝐴
(𝐾,𝑈) = 0.

Now, the long exact sequence obtained by applying the functor HomℐÚ
𝐴
(⊗, 𝑈) to (4.3.4) is given by

0 ⊃ HomℐÚ
𝐴
(𝑉, 𝑈) ⊃ HomℐÚ

𝐴
(WÚ

𝐴𝑃,𝑈) ⊃ HomℐÚ
𝐴
(𝐾,𝑈) ⊃

⊃ Ext1
ℐÚ
𝐴
(𝑉, 𝑈) ⊃ Ext1

ℐÚ
𝐴
(WÚ

𝐴𝑃,𝑈) ⊃ Ext1
ℐÚ
𝐴
(𝐾,𝑈) ⊃ ≤ ≤ ≤ ,

where Ext1
ℐÚ
𝐴
(WÚ

𝐴𝑃,𝑈) = 0 (since WÚ
𝐴𝑃 is projective) and HomℐÚ

𝐴
(𝐾,𝑈) = 0. But this shows that

Ext1
ℐÚ
𝐴
(𝑉, 𝑈) = 0, as we wanted.

Conversely, suppose 𝑉 ∈ Ob ℐÚ𝐴 satisfies (4.3.3). Set 𝑉 ′ = 𝑈(g · 𝐴)𝑉Ú. It is clear that 𝑉/𝑉 ′ ∈
Ob ℐÚ𝐴 and (𝑉/𝑉 ′)Ú = 0. Thus, the first condition in (4.3.3) implies that HomℐÚ

𝐴
(𝑉, 𝑉/𝑉 ′) = 0, and

hence 𝑉 = 𝑉 ′. Consider now the homomorphism of g · 𝐴-modules 𝜖𝑉 : WÚ
𝐴RÚ

𝐴𝑉 ⊃ 𝑉 defined in
the proof of Proposition 4.3.5. Notice that 𝑉 ′ = 𝑉 implies that such a map is surjective. Since 𝜖𝑉
is even, we have that 𝑈 = ker 𝜖𝑉 is a submodule of WÚ

𝐴RÚ
𝐴𝑉 . We claim that 𝑈Ú = 0. Indeed, an

arbitrary element of (WÚ
𝐴RÚ

𝐴𝑉 )Ú is of the form 𝑣′ = 𝑤Ú𝑎·AÚ
𝑣, where 𝑎 ∈ AÚ and 𝑣 ∈ 𝑉Ú. If such

an element is in 𝑈 , then 0 = 𝜖𝑉 (𝑤Ú𝑎·AÚ
𝑣) = 𝑎𝑣. Thus 𝑣′ = 𝑤Ú ·AÚ

𝑎𝑣 = 0.
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Consider the short exact sequence

0 ⊃ 𝑈 ⊃ WÚ
𝐴RÚ

𝐴𝑉 ⊃ 𝑉 ⊃ 0.

The long exact sequence yielded by applying HomℐÚ
𝐴
(⊗, 𝑈) is

0 ⊃ HomℐÚ
𝐴
(𝑉, 𝑈) ⊃ HomℐÚ

𝐴
(WÚ

𝐴RÚ
𝐴𝑉, 𝑈) ⊃ HomℐÚ

𝐴
(𝑈,𝑈) ⊃ Ext1

ℐÚ
𝐴
(𝑉, 𝑈) ⊃ ≤ ≤ ≤ ,

where Ext1
ℐÚ
𝐴
(𝑉, 𝑈) = 0 (by hypotheses) and HomℐÚ

𝐴
(WÚ

𝐴RÚ
𝐴𝑉, 𝑈) = 0 (by the first part). Thus

HomℐÚ
𝐴
(𝑈,𝑈) = 0, which implies that 𝑈 = 0. Therefore 𝜖𝑉 defines an isomorphism between

WÚ
𝐴RÚ

𝐴𝑉 and 𝑉 .

Theorem 4.3.8. The functor WÚ
𝐴 is exact if and only if

Ext2
ℐÚ
𝐴
(WÚ

𝐴𝑉, 𝑈) = 0, (4.3.5)

for all 𝑉 ∈ Ob AÚ -mod, and for all 𝑈 ∈ ℐÚ𝐴, with 𝑈Ú = 0.

Proof. Let 𝑉 ∈ Ob AÚ -mod and consider a short exact sequence of AÚ-modules

0 ⊃ 𝑉 ′′ ⊃ 𝑉 ⊃ 𝑉 ′ ⊃ 0.

If the condition (4.3.5) is satisfied, we can consider the induced short exact sequence

0 ⊃ 𝐾 ⊃ WÚ
𝐴𝑉 ⊃ WÚ

𝐴𝑉
′ ⊃ 0,

where 𝐾 is the kernel of the map WÚ
𝐴𝑉

′′ ⊃ WÚ
𝐴𝑉 . Applying HomℐÚ

𝐴
(⊗, 𝑈) to this sequence gives

0 ⊃ HomℐÚ
𝐴
(WÚ

𝐴𝑉
′, 𝑈) ⊃ HomℐÚ

𝐴
(WÚ

𝐴𝑉, 𝑈) ⊃ HomℐÚ
𝐴
(𝐾,𝑈) ⊃ Ext1

ℐÚ
𝐴
(WÚ

𝐴𝑉
′, 𝑈) ⊃

⊃ Ext1
ℐÚ
𝐴
(WÚ

𝐴𝑉, 𝑈) ⊃ Ext1
ℐÚ
𝐴
(𝐾,𝑈) ⊃ Ext2

ℐÚ
𝐴
(WÚ

𝐴𝑉
′, 𝑈) ⊃ ≤ ≤ ≤ .

Thus Theorem 4.3.7 (applied to WÚ
𝐴𝑉 and WÚ

𝐴𝑉
′) along with condition (4.3.5) imply that

HomℐÚ
𝐴
(𝐾,𝑈) = 0, and Ext1

ℐÚ
𝐴
(𝐾,𝑈) = 0, for all 𝑈 ∈ Ob ℐÚ𝐴 such that 𝑈Ú = 0.

Hence, again by Theorem 4.3.7, 𝐾 ≍= WÚ
𝐴RÚ

𝐴𝐾
≍= WÚ

𝐴𝐾Ú. Let now 𝑀 be the kernel of the map
WÚ

𝐴𝑉
′′ ⊃ 𝐾. Using the fact that RÚ

𝐴WÚ
𝐴

≍= idAÚ -mod and that the map 𝑉 ′′ ⊃ 𝑉 ′ is injective, we
obtain that 𝑀Ú = 0. Applying HomℐÚ

𝐴
(⊗,𝑀) to the short exact sequence

0 ⊃ 𝑀 ⊃ WÚ
𝐴𝑉

′′ ⊃ 𝐾 ⊃ 0

we get the long exact sequence

0 ⊃ HomℐÚ
𝐴
(𝐾,𝑀) ⊃ HomℐÚ

𝐴
(WÚ

𝐴𝑉
′′,𝑀) ⊃ HomℐÚ

𝐴
(𝑀,𝑀) ⊃ Ext1

ℐÚ
𝐴
(𝐾,𝑀) ⊃ ≤ ≤ ≤ ,
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where Ext1
ℐÚ
𝐴
(𝐾,𝑀) = 0 (since 𝑀Ú = 0) and HomℐÚ

𝐴
(WÚ

𝐴𝑉
′′,𝑀) = 0 (by Theorem 4.3.7). Thus

HomℐÚ
𝐴
(𝑀,𝑀) = 0, and so is 𝑀 .

Conversely, suppose WÚ
𝐴 is exact. Let 𝑉 ∈ Ob AÚ -mod and let 𝑃 ⊃ 𝑉 be a surjective

homomorphism of AÚ-modules, where 𝑃 is a projective object in AÚ -mod. Let 𝑉 ′ be the kernel
of this map and consider the short exact sequence 0 ⊃ 𝑉 ′ ⊃ 𝑃 ⊃ 𝑉 ⊃ 0. Since WÚ

𝐴 is exact, the
sequence

0 ⊃ WÚ
𝐴𝑉

′ ⊃ WÚ
𝐴𝑃 ⊃ WÚ

𝐴𝑉 ⊃ 0

is exact as well. If 𝑈 ∈ ℐÚ𝐴 with 𝑈Ú = 0, then we can apply HomℐÚ
𝐴
(⊗, 𝑈) to the above sequence to

get the long exact sequence

0 ⊃ HomℐÚ
𝐴
(WÚ

𝐴𝑉, 𝑈) ⊃ HomℐÚ
𝐴
(WÚ

𝐴𝑃,𝑈) ⊃ HomℐÚ
𝐴
(WÚ

𝐴𝑉
′, 𝑈) ⊃ Ext1

ℐÚ
𝐴
(WÚ

𝐴𝑉, 𝑈) ⊃
⊃ Ext1

ℐÚ
𝐴
(WÚ

𝐴𝑃,𝑈) ⊃ Ext1
ℐÚ
𝐴
(WÚ

𝐴𝑉
′, 𝑈) ⊃ Ext2

ℐÚ
𝐴
(WÚ

𝐴𝑉, 𝑈) ⊃ Ext2
ℐÚ
𝐴
(WÚ

𝐴𝑃,𝑈) ≤ ≤ ≤ ,

where Ext1
ℐÚ
𝐴
(WÚ

𝐴𝑉
′, 𝑈) = 0 by Theorem 4.3.7 (here we are using that WÚ

𝐴RÚ
𝐴(WÚ

𝐴𝑉
′) ≍= WÚ

𝐴𝑉
′),

and Ext2
ℐÚ
𝐴
(WÚ

𝐴𝑃,𝑈) = 0, since WÚ
𝐴𝑃 is projective in ℐÚ𝐴. Thus Ext2

ℐÚ
𝐴
(WÚ

𝐴𝑉, 𝑈) = 0.

In the non-super setting, Theorems 4.3.7 and 4.3.8 were proved in [CFK10, Th. 1 and Cor. 3]
and in [FMS15, Prop. 4.8], for untwisted and twisted cases, respectively.

4.4 The right AÚ-module 𝑊 (Ú)

For the remainder of the chapter, we assume that

𝐴 is finitely generated.

Lemma 4.4.1. If Ú ∈ Λ+, Ð ∈ ∆+
0̄

, 𝑎1, 𝑎2, . . . , 𝑎𝑡 ∈ 𝐴, and 𝑚1, . . . ,𝑚𝑡 ∈ N, then

(𝑌Ð · 𝑎𝑚1

1 ≤ ≤ ≤ 𝑎𝑚𝑡𝑡 )𝑤Ú ∈ spanC ¶(𝑌Ð · 𝑎ℓ11 ≤ ≤ ≤ 𝑎ℓ𝑡𝑡 )𝑤ÚAÚ ♣ 0 ⊘ ℓ𝑖 < Ú(𝐻Ð), 𝑖 = 1, . . . , 𝑡♢. (4.4.1)

In particular, (𝑌Ð · 𝐴)𝑤Ú is a finitely generated right AÚ-module.

Proof. By Lemma 3.4.3, we have that 𝑌 Ú(𝐻Ð)+1
Ð 𝑤Ú = 0. Thus from the first and third relations in

(3.3.7) along with (3.4.3), it follows that for 𝑎 ∈ 𝐴 and 𝑚 ⊙ Ú(𝐻Ð)

0 = (𝑋Ð · 𝑎)𝑚(𝑌Ð · 1)𝑚+1𝑤Ú =
𝑚∑︁

𝑖=0

(⊗1)𝑚(𝑌Ð · 𝑎𝑚⊗𝑖)𝑝(𝑎, Ð)𝑖𝑤Ú,

for any 𝑎 ∈ 𝐴. Since 𝑝(𝑎, Ð)0 = 1, this shows that

(𝑌Ð · 𝑎𝑚)𝑤Ú ∈ spanC¶(𝑌Ð · 𝑎ℓ)𝑤ÚAÚ ♣ 0 ⊘ ℓ < 𝑚♢.

This implies, by induction, that

(𝑌Ð · 𝑎𝑚)𝑤Ú ∈ spanC¶(𝑌Ð · 𝑎ℓ)𝑤ÚAÚ ♣ 0 ⊘ ℓ < Ú(𝐻Ð)♢, for all 𝑚 ∈ N, 𝑎 ∈ 𝐴. (4.4.2)
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We will now prove (4.4.1) by induction on 𝑡. The case 𝑡 = 1 follows immediately from (4.4.2).
Assume that (4.4.1) holds for some 𝑡 ⊙ 1. Let 𝑚1, . . . ,𝑚𝑡+1 ∈ N and choose ℎ ∈ h such that
Ð(ℎ) ̸= 0. Then

(ℎ· 𝑎
𝑚𝑡+1

𝑡+1 )(𝑌Ð · 𝑎𝑚1

1 ≤ ≤ ≤ 𝑎𝑚𝑡𝑡 )𝑤Ú = ( ⊗ Ð(ℎ)(𝑌Ð · 𝑎𝑚1

1 ≤ ≤ ≤ 𝑎𝑚𝑡+1

𝑡+1 ) + (𝑌Ð · 𝑎𝑚1

1 ≤ ≤ ≤ 𝑎𝑚𝑡𝑡 )(ℎ· 𝑎
𝑚𝑡+1

𝑡+1 ))𝑤Ú,

and so

(ℎ· 𝑎
𝑚𝑡+1

𝑡+1 )(𝑌Ð · 𝑎𝑚1

1 ≤ ≤ ≤ 𝑎𝑚𝑡𝑡 )𝑤Ú + Ð(ℎ)(𝑌Ð · 𝑎𝑚1

1 ≤ ≤ ≤ 𝑎𝑚𝑡+1

𝑡+1 )𝑤Ú ∈ spanC¶(𝑌Ð · 𝑎𝑚1

1 ≤ ≤ ≤ 𝑎𝑚𝑡𝑡 )𝑤ÚAÚ♢,
(4.4.3)

since (ℎ · 𝑎
𝑚𝑡+1

𝑡+1 )𝑤Ú ∈ 𝑤ÚAÚ. By the inductive hypothesis, we have that elements of the form
(𝑌Ð · 𝑎𝑚1

1 ≤ ≤ ≤ 𝑎𝑚𝑡+1

𝑡+1 )𝑤Ú are in

spanC
{︁
(ℎ· 𝑎

𝑚𝑡+1

𝑡+1 )(𝑌Ð · 𝑎ℓ11 ≤ ≤ ≤ 𝑎ℓ𝑡𝑡 )𝑤ÚAÚ, (𝑌Ð · 𝑎ℓ11 ≤ ≤ ≤ 𝑎ℓ𝑡𝑡 )𝑤ÚAÚ ♣ 0 ⊘ ℓ𝑖 < Ú(𝐻Ð)
}︁
.

Then, by (4.4.3) (with 𝑚𝑖 = ℓ𝑖 for 𝑖 = 1, . . . , 𝑡), we have

(𝑌Ð·𝑎𝑚1

1 ≤ ≤ ≤ 𝑎𝑚𝑡+1

𝑡+1 )𝑤Ú ∈ spanC
{︁
(𝑌Ð · 𝑎ℓ11 ≤ ≤ ≤ 𝑎ℓ𝑡𝑡 𝑎

𝑚𝑡+1

𝑡+1 )𝑤Ú, (𝑌Ð · 𝑎ℓ11 ≤ ≤ ≤ 𝑎ℓ𝑡𝑡 )𝑤ÚAÚ ♣ 0 ⊘ ℓ𝑖 < Ú(𝐻Ð)
}︁
.

Since the above inclusion holds for all 𝑚1, . . . ,𝑚𝑡+1 ∈ N, we can interchange the roles of 𝑚1 and
𝑚𝑡+1 to obtain

(𝑌Ð · 𝑎𝑚1

1 ≤ ≤ ≤ 𝑎𝑚𝑡+1

𝑡+1 )𝑤Ú ∈ spanC
{︁
(𝑌Ð · 𝑎ℓ11 ≤ ≤ ≤ 𝑎ℓ𝑡𝑡 𝑎

ℓ𝑡+1

𝑡+1 )𝑤ÚAÚ ♣ 0 ⊘ ℓ𝑖 < Ú(𝐻Ð)
}︁
.

This completes the proof of the inductive step. The final statement of the lemma follows from the
fact that 𝐴 is finitely generated.

Proposition 4.4.2. For all Ú ∈ Λ+, the algebra AÚ is finitely generated.

Proof. Suppose 𝑎1, 𝑎2, . . . , 𝑎𝑡 ∈ 𝐴 is a set of generators of 𝐴 and let 𝑚1,𝑚2, . . . ,𝑚𝑡 ∈ N. One can
see from the proof of Lemma 4.4.1 that (𝑌Ð·𝑎𝑚1

1 ≤ ≤ ≤ 𝑎𝑚𝑡𝑡 )𝑤Ú can be written as a linear combination
of elements of the form (𝑌Ð·𝑎ℓ11 ≤ ≤ ≤ 𝑎ℓ𝑡𝑡 )𝑃 (Ð, ℓ1, . . . , ℓ𝑡)𝑤Ú, where 0 ⊘ ℓ𝑖 ⊘ Ú(𝐻Ú), for all 𝑖 = 1, . . . , 𝑡,
and each 𝑃 (Ð, ℓ1, . . . , ℓ𝑡) is a linear combination of finite products of elements of 𝑈(h · 𝐴) of the
form (𝐻Ð · 𝑎ℓ11 ≤ ≤ ≤ 𝑎ℓ𝑡𝑡 ).

On the other hand,

(𝐻Ð · 𝑎𝑚1

1 ≤ ≤ ≤ 𝑎𝑚𝑡𝑡 )𝑤Ú = [𝑋Ð · 1, 𝑌Ð · 𝑎𝑚1

1 ≤ ≤ ≤ 𝑎𝑚𝑡𝑡 ]𝑤Ú = (𝑋Ð · 1)(𝑌Ð · 𝑎𝑚1

1 ≤ ≤ ≤ 𝑎𝑚𝑡𝑡 )𝑤Ú,

where the last is a linear combination of elements of the form

(𝑋Ð · 1)(𝑌Ð · 𝑎ℓ11 ≤ ≤ ≤ 𝑎ℓ𝑡𝑡 )𝑃 (Ð, ℓ1, . . . , ℓ𝑡)𝑤Ú = (𝐻Ð · 𝑎ℓ11 ≤ ≤ ≤ 𝑎ℓ𝑡𝑡 )𝑃 (Ð, ℓ1, . . . , ℓ𝑡)𝑤Ú.

Hence, we obtain that

𝐻Ð · (𝑎𝑚1

1 , . . . , 𝑎𝑚𝑡𝑡 )𝑤Ú = 𝑃 (Ð,𝑚1, . . . ,𝑚𝑡)𝑤Ú,

where 𝑃 (Ð,𝑚1, . . . ,𝑚𝑡) lies in the subalgebra of 𝑈(h · 𝐴) generated by the elements of the form
𝐻Ð · (𝑎ℓ11 , . . . , 𝑎

ℓ𝑡
𝑡 ), with 1 ⊘ ℓ1, . . . , ℓ𝑡 ⊘ Ú(ℎÐ). This implies that AÚ is a quotient of a finitely

generated algebra, and so it is finitely generated as well.
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For the remainder of the section, we assume that

Σ is a system of simple roots for g satisfying (4.1.1).

Recall that, by Proposition 4.1.1, such a system always exists. Furthermore, since 𝜃 is even,
Lemma 4.4.1 implies that for all 𝑎1, 𝑎2, . . . , 𝑎𝑡 ∈ 𝐴, and 𝑚1, . . . ,𝑚𝑡 ∈ N

(𝑌𝜃 · 𝑎𝑚1

1 ≤ ≤ ≤ 𝑎𝑚𝑡𝑡 )𝑤Ú ∈ spanC ¶(𝑌𝜃 · 𝑎ℓ11 ≤ ≤ ≤ 𝑎ℓ𝑡𝑡 )𝑤ÚAÚ ♣ 0 ⊘ ℓ𝑖 < Ú(𝐻𝜃), 𝑖 = 1, . . . , 𝑡♢.

Theorem 4.4.3. For all Ú ∈ Λ+, the global Weyl module 𝑊 (Ú) is a finitely generated right AÚ-
module

Proof. Since 𝜃 ∈ ∆0̄ is a highest root and g is simple, any element in g lies in the span of
¶[𝑋𝑖1 , [𝑋𝑖2 , [. . . [𝑋𝑖𝑘 , 𝑌𝜃] . . .]] ♣ 𝑖1, . . . , 𝑖𝑘 ∈ 𝐼, 𝑘 ∈ N♢. Suppose 𝑎1, 𝑎2, . . . , 𝑎𝑡 ∈ 𝐴, and 𝑚1, . . . ,𝑚𝑡 ∈
N. Let us prove, by induction on 𝑘 ∈ N, that ([𝑋𝑖1 , [𝑋𝑖2 , [. . . [𝑋𝑖𝑘 , 𝑌𝜃] . . .]] · 𝑎𝑚1

1 ≤ ≤ ≤ 𝑎𝑚𝑡𝑡 )𝑤Ú ∈
spanC¶([𝑋𝑖1 , [𝑋𝑖2 , [. . . [𝑋𝑖𝑘 , 𝑌𝜃] . . .]] · 𝑎ℓ11 ≤ ≤ ≤ 𝑎ℓ𝑡𝑡 )𝑤ÚAÚ ♣ 0 ⊘ ℓ𝑖 < Ú(𝐻𝜃), 𝑖 = 1, . . . , 𝑡♢. Indeed, for
any 𝑖 ∈ 𝐼 we have

([𝑋𝑖, 𝑌𝜃] · 𝑎𝑚1

1 ≤ ≤ ≤ 𝑎𝑚𝑡𝑡 )𝑤Ú = [𝑋𝑖 · 1, 𝑌𝜃 · 𝑎𝑚1

1 ≤ ≤ ≤ 𝑎𝑚𝑡𝑡 ]𝑤Ú

= (𝑋𝑖 · 1)(𝑌𝜃 · 𝑎𝑚1

1 ≤ ≤ ≤ 𝑎𝑚𝑡𝑡 )𝑤Ú

∈ spanC¶([𝑋𝑖, 𝑌𝜃] · 𝑎ℓ11 ≤ ≤ ≤ 𝑎ℓ𝑡𝑡 )𝑤ÚAÚ ♣ 0 ⊘ ℓ𝑖 < Ú(𝐻𝜃), 𝑖 = 1, . . . , 𝑡♢,

where the last line follows from Lemma 4.4.1 applied to 𝜃 ∈ ∆0̄. Considering 𝑖1, . . . , 𝑖𝑘 ∈ 𝐼, 𝑘 ∈ N,
we get

([𝑋𝑖1 , [𝑋𝑖2 , [≤ ≤ ≤ [𝑋𝑖𝑘 , 𝑌𝜃] ≤ ≤ ≤]]]·𝑎𝑚1

1 ≤ ≤ ≤ 𝑎𝑚𝑡𝑡 )𝑤Ú = [𝑋𝑖1·1, [𝑋𝑖2·1, [≤ ≤ ≤ [𝑋𝑖𝑘·1, 𝑌𝜃·𝑎𝑚1

1 ≤ ≤ ≤ 𝑎𝑚𝑡𝑡 ] ≤ ≤ ≤]]]𝑤Ú
= [𝑋𝑖1·1, [𝑋𝑖2 , [≤ ≤ ≤ [𝑋𝑖𝑘 , 𝑌𝜃] ≤ ≤ ≤]]·𝑎𝑚1

1 ≤ ≤ ≤ 𝑎𝑚𝑡𝑡 ]𝑤Ú = (𝑋𝑖1·1)([𝑋𝑖2 , [≤ ≤ ≤ [𝑋𝑖𝑘 , 𝑌𝜃] ≤ ≤ ≤]]·𝑎𝑚1

1 ≤ ≤ ≤ 𝑎𝑚𝑡𝑡 )𝑤Ú

∈ ¶([𝑋𝑖1 , [𝑋𝑖2 , [≤ ≤ ≤ [𝑋𝑖𝑘 , 𝑌𝜃] ≤ ≤ ≤]]] · 𝑎ℓ11 ≤ ≤ ≤ 𝑎ℓ𝑡𝑡 )𝑤ÚAÚ ♣ 0 ⊘ ℓ𝑖 < Ú(𝐻𝜃), 𝑖 = 1, . . . , 𝑡♢,

where the last line follows by induction.
Since g is finite dimensional, there exists 𝑁 ∈ N such that [𝑋𝑖1 , [𝑋𝑖2 , [≤ ≤ ≤ [𝑋𝑖𝑘 , 𝑌𝜃] = 0 for all

𝑘 ⊙ 𝑁 . Thus the theorem follows.

Corollary 4.4.4. If 𝑀 ∈ AÚ -mod is finitely generated (resp. finite dimensional), then WÚ
𝐴𝑀 is

a finite generated (resp. finite dimensional) g · 𝐴-module.

Remark 4.4.5. In the non-super setting, Proposition 4.4.2 and Theorem 4.4.3 were first proved
for the untwisted case in [CFK10, Th. 2(i)]. The twisted version of these results was proved later
in [NS13, Theorems 5.8 and 5.10]. We would like to point out that in both cases the analogues of
Theorem 4.4.3 do not depend on the choice of the system of simple roots.
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4.5 A tensor product property

Recall that g is a basic Lie superalgebra or sl(𝑛, 𝑛), 𝑛 ⊙ 2. Let 𝐶 be an associative, commutative
unital C-algebra and let ∆:𝑈(h·𝐶) ⊃ 𝑈(h·𝐶) ·𝑈(h·𝐶) be the diagonal map. Let Ú, Û ∈ Λ+,
and consider the Weyl modules 𝑊 Ú+Û

𝐶 (Ú+ Û), 𝑊 Ú
𝐶(Ú) and 𝑊 Û

𝐶(Û). Since

∆ (Annh·𝐶(𝑤Ú+Û)) ⊖ Annh·𝐶(𝑤Ú) · 𝑈(h · 𝐶) + 𝑈(h · 𝐶) · Annh·𝐶(𝑤Û),

the map ∆ induces a homomorphism of algebras ∆Ú,Û: CÚ+Û ⊃ CÚ · CÛ (recall that the symbol
C∙ is defined to be the quotient 𝑈(h·𝐶)/Annh·𝐶(𝑤∙)). If 𝑀 ∈ CÚ -mod and 𝑁 ∈ CÛ -mod, then
the tensor product 𝑀 · 𝑁 can be view as a left CÚ+Û, where the action is induced by ∆Ú,Û. We
denote this CÚ+Û-module by ∆*

Ú,Û(𝑀 ·𝑁).
Let Þ:𝐶 ։ 𝐴 be a surjective homomorphism of algebras. The map id ·Þ: g · 𝐶 ⊃ g · 𝐴

is clearly even, and so it is a homomorphism of superalgebras. This homomorphism induces an
action of g · 𝐶 on any g · 𝐴-module 𝑉 . We let (id ·Þ)*(𝑉 ) denote such a g · 𝐶-module.

In the non-super setting, the next results in this section were proved in [CFK10, §4].

Proposition 4.5.1. Assume that 𝐴 and 𝐵 are commutative, associative unital C-algebras. Let
𝐶 = 𝐴 ⊕ 𝐵, and let Þ𝐴:𝐶 ։ 𝐴 and Þ𝐵:𝐶 ։ 𝐵 be the two canonical surjective homomorphisms
of algebras. If Ú, Û ∈ Λ+, 𝑀 ∈ Ob AÚ -mod and 𝑁 ∈ Ob BÛ -mod, then there exists a surjective
homomorphism of g · 𝐶-modules

W
Ú+Û
𝐶

(︁
∆*
Ú,Û(𝑀 ·𝑁)

⎡
։ (id ·Þ𝐴)*(WÚ

𝐴𝑀) · (id ·Þ𝐵)*(WÛ
𝐵𝑁).

Proof. Since g·𝐶 ≍= (g·𝐴)⊕(g·𝐵), the g·𝐶-module (id ·Þ𝐴)*(𝑊𝐴(Ú))·(id ·Þ𝐵)*(𝑊𝐵(Û)) is
generated by the vector 𝑤Ú·𝑤Û. Such a vector satisfies (3.3.3). Therefore there exists a surjective
homomorphism 𝜙:𝑊𝐶(Ú + Û) ։ (id ·Þ𝐴)*(𝑊𝐴(Ú)) · (id ·Þ𝐵)*(𝑊𝐵(Û)) of g · 𝐶-modules, such
that 𝜙(𝑤Ú+Û) = 𝑤Ú·𝑤Û. Since (id ·Þ𝐴)*(𝑊𝐴(Ú)) is a right CÚ-module and (id ·Þ𝐵)*(𝑊𝐵(Û)) is a
right CÛ-module, we have that the tensor product (id ·Þ𝐴)*(𝑊𝐴(Ú))·(id ·Þ𝐵)*(𝑊𝐵(Û)) is a right
CÚ · CÛ-module, and so ∆*

Ú,Û((id ·Þ𝐴)*(𝑊𝐴(Ú)) · (id ·Þ𝐵)*(𝑊𝐵(Û))) is a right CÚ+Û-module. It
is clear that 𝜙 is also a homomorphism of right CÚ+Û-modules. Thus

𝑊𝐶(Ú+ Û) ·CÚ+Û
∆*
Ú,Û(𝑀 ·𝑁) ։ ∆*

Ú,Û((id ·Þ𝐴)*(𝑊𝐴(Ú)) · (id ·Þ𝐵)*(𝑊𝐵(Û))) ·CÚ+Û
(𝑀 ·𝑁)

𝑤Ú+Û ·CÚ+Û
(𝑚· 𝑛) ↦⊃ (𝑤Ú · 𝑤Û) ·CÚ+Û

(𝑚· 𝑛)

defines a surjective homomorphism of (g · 𝐶,CÚ+Û)-bimodules. On the other hand, the map

∆*
Ú,Û((id ·Þ𝐴)*(𝑊𝐴(Ú)) · (id ·Þ𝐵)*(𝑊𝐵(Û))) ·CÚ+Û

(𝑀 ·𝑁) ⊃ (id ·Þ𝐴)*(WÚ
𝐴𝑀) · (id ·Þ𝐵)*(WÛ

𝐵𝑁)

(𝑤 · 𝑤′) ·CÚ+Û
(𝑚· 𝑛) ↦⊃ (𝑤 ·CÚ

𝑚) · (𝑤′ ·CÛ
𝑛)

is an isomorphism of (g · 𝐶,CÚ+Û)-bimodules. The composition of these two maps yields the
desired map.

The next theorem gives a refinement Theorem 4.3.7.
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Lemma 4.5.2. Let Ú, Û ∈ Λ+ with Ú � Û and Û � Ú. If 𝑈 ∈ Ob ℐÛ𝐴 is irreducible and 𝑈Û ̸= 0,
then:

a. For all 𝑀 ∈ Ob AÚ -mod, we have

Ext𝑚ℐ𝐴(WÚ
𝐴𝑀,𝑈) = 0, for 𝑚 = 0, 1.

b. Let 𝑉 ∈ Ob ℐÚ𝐴 with dim 𝑉Ú < ∞. Then WÚ
𝐴RÚ

𝐴𝑉
≍= 𝑉 , if and only if,

Ext𝑚ℐ𝐴(𝑉, 𝑈) = 0, for 𝑚 = 0, 1, (4.5.1)

for all 𝑈 ∈ Ob ℐÚ𝐴 with dim𝑈 < ∞ and 𝑈Ú = 0.

Proof. For (a), consider an irreducible module 𝑈 ∈ Ob ℐÚ𝐴 and observe that any nonzero morphism
𝜙: WÚ

𝐴𝑀 ⊃ 𝑈 must be surjective. However this is not possible because (WÚ
𝐴𝑀)Û = 0, and

homomorphisms preserve weight spaces. This proves that 0 = Hom(WÚ
𝐴𝑀,𝑈) = Ext0

ℐ𝐴
(WÚ

𝐴𝑀,𝑈).
Next, suppose that

0 ⊃ 𝑈 ⊃ 𝑉 ⊃ WÚ
𝐴𝑀 ⊃ 0

is a short exact sequence of objects in ℐÚ𝐴. Then 𝑉Ú ̸= 0, the weights of 𝑉 are contained in
(Û⊗𝑄+) ∪ (Ú⊗𝑄+) and (n+ ·𝐴)𝑉Ú = 0, since Ú � Û. If 𝑉 ′ = 𝑈(g·𝐴)𝑉Ú, then weights of 𝑉 ′ lie
in Ú⊗𝑄+. In order to prove that the sequence splits, it suffices to show that 𝑉 ′ ∩ 𝑈 = 0. Indeed,
since 𝑈 is irreducible, if the intersection is not zero, then 𝑈 ∩ 𝑉 ′ = 𝑈 , which would imply that
Û ∈ Û⊗𝑄+, contradicting the fact that Û � Ú. Thus the sequence splits, and so the only element
in Ext1(WÚ

𝐴𝑀,𝑈) is 0 (due to the 1-1 correspondence between classes of extensions of WÚ
𝐴𝑀 by

𝑈 and elements of Ext1(WÚ
𝐴𝑀,𝑈), see [Wei94]).

For part (b), notice that the forward implication follows from Theorem 4.3.7. Now, let us
prove that WÚ

𝐴RÚ
𝐴𝑉 = 𝑉 if (4.5.1) holds for all irreducible finite-dimensional module 𝑈 ∈ Ob ℐÚ𝐴

such that 𝑈Ú = 0. Repeating the arguments used in the proof of Theorem 4.3.7, one prove that
𝑉 = 𝑈(g ·𝐴)𝑉Ú. Then the map 𝜖𝑉 of the proof of Proposition 4.3.5 is surjective, and we have an
exact sequence

0 ⊃ 𝐾 ⊃ WÚ
𝐴𝑉Ú

𝜖𝑉⊃ 𝑉 ⊃ 0.

By Corollary 4.4.4, dim WÚ
𝐴𝑉Ú < ∞, since dim 𝑉Ú < ∞. Thus dim𝐾 < ∞, and 𝐾Ú = 0. Suppose

𝐾 ̸= 0. Then HomℐÚ
𝐴
(𝐾,𝑈) ̸= 0 for some irreducible module 𝑈 ∈ ℐÚ𝐴 with 𝑈Ú = 0. Next, applying

HomℐÚ
𝐴
(⊗, 𝑈), we get the following long exact sequence

0 ⊃ HomℐÚ
𝐴
(𝑉, 𝑈) ⊃ HomℐÚ

𝐴
(WÚ

𝐴𝑉Ú, 𝑈) ⊃ HomℐÚ
𝐴
(𝐾,𝑈) ⊃ Ext1

ℐÚ
𝐴
(𝑉, 𝑈) ⊃ ≤ ≤ ≤ ,

where HomℐÚ
𝐴
(𝑉, 𝑈) = Ext1

ℐÚ
𝐴
(𝑉, 𝑈) = 0, since 𝑉 satisfies (4.5.1), and HomℐÚ

𝐴
(WÚ

𝐴𝑉Ú, 𝑈) = 0 by

part (a). But this implies HomℐÚ
𝐴
(𝐾,𝑈) = 0, which is a contradiction. Therefore 𝐾 = 0, proving

that WÚ
𝐴RÚ

𝐴𝑉 = WÚ
𝐴𝑉Ú

𝜖𝑉≍= 𝑉 .
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Theorem 4.5.3. Suppose that 𝐴 and 𝐵 are finite-dimensional commutative, associative unital
C-algebras and let Þ𝐴:𝐴⊕𝐵 ։ 𝐴 and Þ𝐵:𝐴⊕𝐵 ։ 𝐵 be the canonical projections. Assume that
the system of simple roots Σ satisfies (4.1.1). If 𝑀 ∈ Ob AÚ -mod, 𝑁 ∈ Ob AÛ, dim𝑀 < ∞ and
dim𝑁 < ∞, then

W
Ú+Û
𝐴⊕𝐵

(︁
∆*
Ú,Û(𝑀 ·𝑁)

⎡ ≍= (id ·Þ𝐴)*(WÚ
𝐴𝑀) · (id ·Þ𝐵)*(WÛ

𝐵𝑁).

as g · (𝐴⊕𝐵)-modules.

Proof. To simplify notation in this proof, we denote the g · (𝐴 ⊕ 𝐵)-modules ∆*
Ú,Û(𝑀 · 𝑁),

(id ·Þ𝐴)*(WÚ
𝐴𝑀) and (id ·Þ𝐵)*(WÛ

𝐵𝑁) by 𝑀 ·𝑁 , 𝑀 and 𝑁 , respectively.
By Proposition 4.5.1, we have an epimorphism of g · (𝐴⊕𝐵)-modules

W
Ú+Û
𝐴⊕𝐵(𝑀 ·𝑁) ։ WÚ

𝐴𝑀 · W
Û
𝐵𝑁.

Using Lemma 4.5.2(a), to prove that this epimorphism is an isomorphism, it suffices to prove that

Ext𝑚
ℐÚ+Û
𝐴⊕𝐵

(WÚ
𝐴𝑀 · W

Û
𝐵𝑁,𝑈) = 0, 𝑚 = 0, 1

for all irreducible 𝑈 ∈ Ob ℐÚ+Û
𝐴⊕𝐵 with 𝑈Ú+Û = 0. By [Sav14, Cor. 4.11] we have that 𝑈 ≍= 𝑈𝐴 ·𝑈𝐵,

where 𝑈𝐴 (resp. 𝑈𝐵) is an irreducible g · 𝐴-module (resp. g · 𝐵-module). Moreover, if Ü𝐴 and
Ü𝐵 are the highest weights of 𝑈𝐴 and 𝑈𝐵, respectively, then Ü𝐴 + Ü𝐵 ∈ Ú + Û ⊗ 𝑄+ (i.e. Ü𝐴 + Ü𝐵
lies in the set of weights of 𝑈).

Notice that g · 𝐴 and g · 𝐵 are finite-dimensional Lie superalgebras, and that the modules
WÚ

Ú𝑀 , 𝑈𝐴 and 𝑈𝐵 are finite-dimensional as well. Thus, by (1.4.1), if either

Ext𝑚ℐÚ
𝐴
(WÚ

𝐴𝑀,𝑈𝐴) = 0 or Ext𝑚ℐÛ
𝐵

(WÛ
𝐵𝑁,𝑈𝐵) = 0 for 𝑚 = 0, 1, (4.5.2)

then we have our result.
Assume first that either 𝑈𝐴 ∈ Ob ℐÚ𝐴 or 𝑈𝐵 ∈ Ob ℐÛ𝐵. The fact that 𝑈Ú+Û = 0, implies that either

(𝑈𝐴)Ü𝐴 = 0 or (𝑈𝐵)Ü𝐵 = 0. Thus, since WÚ
𝐴RÚ

𝐴(WÚ
𝐴𝑀) ≍= WÚ

𝐴𝑀 and W
Û
𝐵R

Û
𝐵(WÛ

𝐵𝑁) ≍= WÚ
𝐵𝑁 ,

(4.5.2) follows from Lemma 4.5.2(b). Now assume Ü𝐴 � Ú and Ü𝐵 � Û. Since Ü𝐴 + Ü𝐵 < Ú+ Û, we
have that either Ú � Ü𝐴 or Û � Ü𝐵 and therefore (4.5.2) follows from Lemma 4.5.2(a).

4.6 Recovering the local Weyl modules

Assume that g is either a basic classical Lie superalgebra or sl(𝑛, 𝑛), 𝑛 ⊙ 2, and that 𝐴 is a
finitely-generated associative commutative unital C-algebra. Let Ú ∈ Λ+. In this section, using
the super-Weyl functors, we recover the local Weyl modules defined in Section 3.4.

Since AÚ is a finitely generated abelian algebra, any irreducible finite-dimensional AÚ-module
is one-dimensional. For å ∈ (h ·𝐴)* such that å♣h∈ Λ+, we let 𝐻(å) denote the one-dimensional
irreducible AÚ-module, where 𝑥𝑣 = å(𝑥)𝑣 for all 𝑥 ∈ AÚ and 𝑣 ∈ 𝐻(å). The next result shows
that it is possible to recover the local Weyl module via the super-Weyl functor.
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Theorem 4.6.1. Let å ∈ (h · 𝐴)* such that å♣h∈ Λ+. Then

WÚ
𝐴𝐻(å) ≍= 𝑊 (å).

Proof. Let 𝑉 = WÚ
𝐴RÚ

𝐴𝑊 (å). Since 𝑊 (å) = 𝑈(g·𝐴)𝑤å, the map 𝜖𝑊 (å) : WÚ
𝐴RÚ

𝐴𝑊 (å) ⊃ 𝑊 (å)
is surjective (see Proposition 4.3.5). On the other hand, if 𝑈 = 𝑉/𝑊 (å), then 𝑈Ú = 0. Thus, by
Theorem 4.3.7, HomℐÚ

𝐴
(𝑉, 𝑈) = 0, which implies that

𝑊 (å) ≍= WÚ
𝐴RÚ

𝐴𝑊 (å) = WÚ
𝐴𝐻(å).

The next corollary was proved in the non-super setting, for the twisted case, in [NS13, Lem. 7.5].

Corollary 4.6.2. A g · 𝐴-module 𝑉 is isomorphic to the local Weyl module 𝑊 (å) if and only if
it satisfies the following conditions:

a. 𝑉 ∈ Ob ℐÚ𝐴, where Ú = å♣h;

b. RÚ
𝐴𝑉

≍= 𝐻(å);

c. HomℐÚ
𝐴
(𝑉, 𝑈) = 0 and Ext1

ℐÚ
𝐴
(𝑉, 𝑈) = 0, for all irreducible finite-dimensional 𝑈 ∈ Ob ℐÚ𝐴

with 𝑈Ú = 0.

Proof. If 𝑉 satisfies all three conditions, then it follows from Theorem 4.3.7 that

𝑉 ≍= WÚ
𝐴RÚ

𝐴𝑉
≍= WÚ

𝐴𝐻(å) = 𝑊 (å).

Conversely, notice that the local Weyl module𝑊 (Ú) satisfy the two first properties by definition.
Furthermore, it follows from the proof of Theorem 4.6.1 that 𝑊 (å) ≍= WÚ

𝐴RÚ
𝐴𝑊 (å). Therefore

the last property follows again by Theorem 4.3.7.

Remark 4.6.3. As a consequence of Theorem 4.6.1 and Corollary 4.4.4, we obtain that the local
Weyl module is finite-dimensional if the system of simple roots satisfies Property (4.1.1).
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Chapter 5

Further directions

The definition of global and local Weyl modules for Lie superalgebras given in Chapter 3 opens
a number of directions of possible further research. We conclude this thesis by listing some of
these.

(a) One should be able to define Weyl modules when g is not basic. For example, in Chapter 2,
the finite-dimensional irreducible g·𝐴-modules have been classified in the case that g is the queer
Lie superalgebra. The nature of the classification (in terms of evaluation modules) seems to indicate
that the theory of Weyl modules should be relatively similar to the case considered in this Thesis.

(b) Twisted versions of Weyl modules have been defined and investigated in the non-super
setting (see [CFS08, FMS13, FKKS12, FMS15]). One should similarly be able to develop a twisted
theory of Weyl modules for equivariant map Lie superalgebras.

(c) Kac modules related to different systems of simple roots were compared in [Ser11, Cou].
Since the Weyl modules defined in this Thesis generalizes Kac modules, it is natural to ask what
kind of relations do we have between Weyl modules related to different systems. Also, most of
properties concerning local Weyl modules were proved under a specific choice of a system of simple
roots (see Section 3.4). So it would be interesting to verify if such properties depend on this choice.

(d) Recently, in [SVV, BHLW], local Weyl modules for current algebras have appeared as trace
decategorifications of categories used to categorify quantum groups. It is natural to ask how the
super analogues of Weyl modules defined in the current paper are related to the super analogues,
defined in [KKT], of the afore-mentioned categories.
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