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Resumo

Os problemas discutidos nesta tese estao no ambito da teoria de representacoes de superalgebras
de Lie de fungdes. Considere uma superalgebra de Lie da forma g ® A, onde A é uma C-dlgebra
associativa, comutativa e com unidade, e g € uma superalgebra de Lie. Dada uma a¢ao de um grupo
finito I' em A e g, por automofismos, ndés consideramos agora a subalgebra de g ® A formada por
todos os elementos que sao invariantes com respeito a acao associada de I'. Tal algebra é chamada
de uma superalgebra de funcoes equivariantes. Na primeira parte desta tese, classificaremos todas
as representagoes irredutiveis e de dimensao finita de uma superalgebra de fungoes equivariantes
de tipo queer (i.e. quando a superalgebra de Lie g é q(n), n > 2) para o caso em que I' é
abeliano e age livremente em MaxSpec(A). Mostraremos que as classes de isomorfismo de tais
representacoes sao parametrizadas por um certo conjunto de fungoes I'-equivariantes de suporte
finito de MaxSpec(A) no conjunto das classes de isomorfismo das representagoes irredutiveis de
dimenséo finita de q(n). No caso particular em que A é o anel de coordenadas do toro, obteremos
a classificacao das representagoes irredutiveis de dimensao finita das superalgebras de lagos de tipo
queer torcidas. Na segunda parte da tese, introduzimos os modulos de Weyl globais e locais para
g® A, onde g é uma superalgebra de Lie bésica ou sl(n,n), n > 2. Sob certas condigdes, provaremos
que tais modulos satisfazem certas propriedades universais, os médulos locais tem dimensao finita
e que podem ser isomorfos a produtos tensoriais de moédulos de Weyl com pesos maximos menores.
Também definimos os super-funtores de Weyl e provamos varias propriedades que sao semelhantes
aquelas satisteitas pelos funtores de Weyl no contexto de algebras de Lie. Além disso, apontaremos
alguns fatos que sao novos no super contexto.

Palavras-chave: superalgebras de Lie, queer superalgebra de Lie, superalgebras de Lie basicas,
superalgebras de fungoes equivariantes, representacao de dimensao finita, médulos de Weyl.



Abstract

This thesis is concerned with the representation theory of map Lie superalgebras. We consider
a Lie superalgebra of the form g ® A, where A is an associative commutative unital C-algebra and
g is Lie superalgebra. Given actions of a finite group I" on both A and g, by automorphisms, we
also consider the subalgebra of g ® A of points fixed by the associated action of I'; which will be
called an equivariant map superalgebra. In the first part of the thesis we classify all irreducible
finite-dimensional representations of the equivariant map queer Lie superalgebras (i.e. when the
Lie superalgebra g is q(n), n > 2) under the assumption that T" is abelian and acts freely on
MaxSpec(A). We show that the isomorphism classes of such representations are parametrized by
a set of ['-equivariant finitely supported maps from MaxSpec(A) to the set of isomorphism classes
of irreducible finite-dimensional representations of g. In the special case that A is the coordinate
ring of the torus, we obtain a classification of all irreducible finite-dimensional representations
of the twisted loop queer superalgebra. In the second part of the thesis, we define global and
local Weyl modules for g ® A with g a basic Lie superalgebra or sl(n,n), n > 2. Under some
mild assumptions, we prove universality, finite-dimensionality, and tensor product decomposition
properties for these modules. We define super-Weyl functors for these Lie superalgebras and we
prove several properties that are analogues of those of Weyl functors in the non-super setting. We
also point out some features that are new in the super case.

Keywords: Lie superalgebra, queer Lie superalgebra, basic Lie superalgebra, equivariant map
superalgebra, finite-dimensional representation, Weyl module.



Contents

Acknowledgments

Introduction

1

3

Background

1.1 Extentions and projectives . . . . . . .. ..o
1.2 Commutative algebras . . . . . . . . ...
1.3 Associative superalgebras . . . . . . ... .. L
1.4 Lie superalgebras . . . . . . . . ..
1.5 Representations of Lie superalgebras . . . . . . . .. .. ... ... ... ...,
1.6 Equivariant map superalgebras . . . . . . . ... 0oL
1.7 Representations of (g @ A)Y . . . ...

Equivariant map queer Lie superalgebras
2.1 Equivariant map queer Lie superalgebras . . . . . . . . ... ... ...
2.2 Irreducible finite-dimensional representations of the Cartan subalgebra . . . . . ..
2.3 Highest weight modules . . . . . . . . . ..o
2.4 Evaluation representations and their

irreducible products . . . . . ...
2.5 Classification of finite-dimensional representations . . . . . . .. . ... . ... ...

Weyl moduldes for Lie superalgebras

3.1 A good system of simpleroots I . . . . . . . .. ...
3.2 Generalized Kacmodules . . . . . . . . ...
3.3 Global Weyl modules . . . . . . . . . .
3.4 Local Weyl modules . . . . .. ..
3.5 Tensor product decomposition . . . . . . . .. ...
3.6 Appendix . . ... e

Super-Weyl functors

4.1 A good system of simpleroots II . . . . . . . . ... ... .. .. ... ... ...
4.2 Projective objects . . . . . .. Lo
4.3 The super-Weyl functor . . . . . . . . . .o
4.4 The right Ay-module W(X) . . .. ..

10

14
14
15
16
17
23
24
25

27
27
28
30

34
39

42
42
44
45
47
53
95



4.5 A tensor product property

4.6 Recovering the local Weyl modules . . . . . .. .. .. ... o000

5 Further directions

Bibliography



Introduction

Equivariant map algebras can be viewed as a generalization of (twisted) current algebras and
loop algebras. Namely, let X be an algebraic variety (or, more generally, a scheme) and let g be
a finite-dimensional Lie algebra, both defined over the field of complex numbers. Furthermore,
suppose that a finite group I' acts on both X and g by automorphisms. The equivariant map
algebra M (X, g)" is defined to be the Lie algebra of T'-equivariant regular maps from X to g.
Equivalently, consider the induced action of T' on the coordinate ring A of X. Then M (X, g)" is
isomorphic to (g ® A)r', the Lie algebra of fixed points of the diagonal action of I' on g ® A. In the
case that g is a finite-dimensional simple Lie algebra and A is the algebra of Laurent polynomials
Cl[t,t™'] (or equivalently, when X is the torus), the representations of g ® A were investigated by
V. Chary and A. Pressley in [Cha86, CP86]. Recently, the representation theory of equivariant
map algebras, either in full generality or in special cases, has been the subject of much research.
We refer the reader to the survey [NS13] for an overview.

Lie superalgebras are generalizations of Lie algebras and are an important tool for physicists
in the study of supersymmetries. The finite-dimensional simple complex Lie superalgebras were
classified by Victor Kac in [Kac77], and the irreducible finite-dimensional representations of the
so-called basic classical Lie superalgebras were classified in [Kac77] and [Kac78]. It is thus natural
to consider equivariant map superalgebras, where the target Lie algebra g mentioned above is
replaced by a finite-dimensional Lie superalgebra. In [Sav14], the irreducible finite-dimensional
representations of M (X, g)! when g is a basic classical Lie superalgebra, X has a finitely-generated
coordinate ring, and I' is an abelian group acting freely on the set of rational points of X, were
classified. These assumptions make much of the theory parallel to the non-super setting. The
first part of this thesis (Chapter 2) was submitted and accepted for publication in the Canadian
Journal of Mathematics (see [CMS15]). There we move beyond the setting of basic classical Lie
superalgebras. In particular, we address the case where g is the so-called queer Lie superalgebra.
In this case, almost nothing is known about the representation theory of the equivariant map Lie
superalgebra, even when I is trivial or X is the affine plane or torus (the current and loop cases,
respectively), although the representations of the corresponding affine Lie superalgebra have been
studied in [GS08].

The queer Lie superalgebra ¢(n) was introduced by Victor Kac in [Kac77]. It is a simple
subquotient of the Lie superalegbra of endomorphisms of C™" that commute with an odd involution
(see Remark 1.4.6). It is closely related to the Lie algebra sl(n+1), in the sense that ¢(n) is a direct
sum of one even and one odd copy of sl(n + 1). Although the queer Lie superalgebra is classical,
its properties are quite different from those of the other classical Lie superalgebras. In particular,
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the Cartan subalgebra of q(n) is not abelian. (Here, and throughout the paper, we use the term
subalgebra even in the super setting, and avoid the use of the cumbersome term subsuperalgebra.)
For this reason, the corresponding theory of weight modules is much more complicated. The
theory requires Clifford algebra methods, since the highest weight space of an irreducible highest
weight q(n)-module has a Clifford module structure. Nevertheless, the theory of finite-dimensional
q(n)-modules is well developed (see, for example, [Pen86, PS97, Gor06]).

To investigate the representation theory of the Lie superalgebra q(n) ® A, where A is a commu-
tative unital associative algebra, the first step is to understand the irreducible finite-dimensional
representations of its Cartan subalgebra h ® A, where b is the standard Cartan subalgebra of q(n).
Therefore, we first give a characterization of the irreducible finite-dimensional h ® A-modules (The-
orem 2.2.3). Next, we give a characterization of quasifinite irreducible highest weight q(n) ® A-
modules in Theorem 2.3.6. Using these results, we are able to give a complete classification of
the irreducible finite-dimensional representations of the equivariant map queer Lie superalgebra
in the case that the algebra A is finitely generated and the group I' is abelian and acts freely on
MaxSpec(A). Our main result in this direction, Theorem 2.5.4, states that the irreducible finite-
dimensional modules are parameterized by a certain set of I'-equivariant finitely supported maps
defined on MaxSpec(A). In the special cases that X is the torus or affine line, our results yield
a classification of the irreducible finite-dimensional representations of the twisted loop queer Lie
superalgebra and twisted current queer Lie superalgebra, respectively.

In the second part of the thesis (Chapters 3 and 4), we are interested in the study of Weyl
modules and super-Weyl functors. The content of Chapter 3 was already submitted for publication
(see [CLS]).

The global and local Weyl modules are universal objects with respect to certain highest weight
properties. The local Weyl modules are finite-dimensional but not, in general, irreducible. They
were first defined, in the loop case, in [CPO1] and extended to the map case in [FL0O4]. These
modules had not been defined in the super setting, except for a quantum analogue in the loop case
for g = sl(m,n) considered in [Zhal4]. In [CLS], we initiate the study of Weyl modules for Lie
superalgebras. In particular, we define global and local Weyl modules for Lie superalgebras of the
form g A, where A is an associative commutative unital C-algebra and g is a basic Lie superalgebra
orsl(n,n), n > 2. After defining global Weyl modules in the super setting (Definition 3.3.6), we give
a presentation in terms of generators and relations (Proposition 3.3.7) and prove that these modules
are universal highest weight objects in a certain category (Proposition 3.3.8). We then define local
Weyl modules (Definition 3.4.1), prove that they are finite-dimensional (Theorem 3.4.13), and that
they also satisfy a certain univeral property with respect to so-called highest map-weight modules
(Proposition 3.4.14). Finally, we show that the local Weyl modules satisfy a nice tensor product
property (Theorem 3.5.1).

Once we have defined global Weyl modules in the super setting, we are able to define the
super-Weyl functors (Definition 4.3.3). These are functors from the category of modules for a
certain commutative algebra acting naturally on the global Weyl module to the category of mod-
ules for the map Lie superalgebra g ® A. The super-Weyl functors are the super version of the
functors defined in [CFK10]. The final part of the thesis is dedicated to the study of such func-
tors. We show that they satisfy nice homological properties (Theorems 4.3.7 and 4.3.8). Under
some assumptions, we prove that images of finitely-generated (finite-dimensional) modules under
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super-Weyl functors are finitely-generated (finite-dimensional) modules (Corollary 4.4.4). We also
prove that is possible to recover the local Weyl modules via these functors by showing that the
images of one-dimensional irreducible modules under the super-Weyl functors are isomorphic to
local Weyl modules (Theorem 4.6.1).

The above-mentioned results show that the Weyl modules and the Weyl functors defined in
this Thesis satisfy many of the properties that their non-super analogues do. However, there are
some important differences. First of all, the Borel subalgebras of basic Lie superalgebras are not
all conjugate under the action of the Weyl group, in contrast to the situation for finite-dimensional
simple Lie algebras. For this reason, our definitions of Weyl modules depend on a choice of system
of simple roots. Second, the category of finite-dimensional modules for a basic Lie superalgebra
is not semisimple in general, again in contrast to the non-super setting. For this reason, the
so-called Kac modules play an important role in the representation theory. These are maximal
finite-dimensional modules of a given highest weight. The Weyl modules defined in the current
Thesis can be viewed as a unification of several types modules in the following sense. If g is a
simple Lie algebra, then our definitions reduce to the usual ones. Thus, the Weyl modules defined
here are generalizations of the Weyl modules in the non-super case. On the other hand, if A = C,
then the global and local Weyl modules are equal and coincide with the (generalized) Kac module,
which, if g is a simple Lie algebra, is the irreducible module (of a given highest weight). These
relationships can be summarized in the following diagram:

super non-super

general A global/local Weyl (super)module~~~s global/local Weyl module

A=C generalized Kac module ~mnnnss jrreducible module

The text is organized in five chapters. In the first chapter we briefly review some results on
commutative algebras, associative superalgebras (in particular Clifford algebras), Lie superalge-
bras (especially basic Lie superalgebras and the queer Lie superalgebra), and its representations.
We also recall the definition of equivariant map Lie superalgebras and the classification of its ir-
reducible finite-dimensional representations. In the second chapter we state and prove our main
results involving irreducible finite-dimensional representations of q(n) ® A and (q(n) ® A)F. We
show that the isomorphism classes of such representations are parametrized by a certain set of
equivariant maps with finite support. In particular, we obtain the classification of all irreducible
finite-dimensional representations of the twisted loop queer Lie superalgebras. In the third chapter
we introduce global and local Weyl modules for map Lie superalgebras of basic type. Under some
mild assumptions, we prove that they satisfy certain universal properties, that the local Weyl
modules are finite dimensional, and that they might be isomorphic to tensor products of Weyl
modules with smaller highest weights. These properties are similar to those of Weyl modules for
equivariant map Lie algebras. In the fourth chapter we define super-Weyl functors. Via such
functors, we recover the local Weyl modules. We also prove several properties that are analogues

12



of those of Weyl functors in the non-super setting. Finally, in Chapter 5 we conclude this work by
listing a number of directions of possible further research.

13



Chapter 1

Background

In this chapter, we collect the basic definitions and some important results that will be used
throughout the thesis.

Notation

We let Z be the ring of integers, N be the set of nonnegative integers and Z, = {0,1} be the
quotient ring 7Z/27. Vector spaces, algebras, tensor products, etc. are defined over the field of
complex numbers C unless otherwise stated. Whenever we refer to the dimension of an algebra or
ideal, we refer to its dimension over C.

1.1 Extentions and projectives

Let M be an abelian category. An object P in this category is projective if and only if
Hom (P, —) is an exact functor. We say the category M has enough projectives if any object in
M is a quotient of a projective object.

Assume that M has enough projectives and for M € M consider a projective resolution

R R ANy NI V=Y (1.1.1)

of M. For N € M we apply the functor Homp(—, N) to the complex obtained by deleting M
from the resolution (1.1.1) to obtain the new complex

Hotn(Po, N) 2 Homu(Py, N) 3 Homp (P, N) 3 - (1.1.2)

For all n € N, we define Ext’\,(M, N) = H"(Hom (P, N)) (the nth cohomology of the complex
(1.1.2)). Tt can be shown that this is independent of the choice of the projective resolution (see
[Rot09, Th. 6.9]).

Now we list some properties of Ext}, that will be used in the sequel.

a. The functor Exty(—, N): M — Ab is additive and contravariant for all n > 0.

14



b. The functors Exty,(—, N) and Hom(—, N) are naturally equivalent for all N € Ob M.

c. For any projective object P € Ob M and any N € Ob M we have Ext’,(P, N) = 0 for all
n>1.

d. For any short exact sequence

00— M —- M — My, —0

and any N € Ob M, there is a long exact sequence given by

0 — Hom(Ms, N) — Hompa (M, N) — Homp (M, N) —
— BExti,(My, N) — Exth (M, N) = Ext (M, N) —
— BExt},(My, N) — Exti (M, N) — Ext} (M, N) — - -

1.2 Commutative algebras

Let A denote a commutative associative unital algebra and let MaxSpec(A) be the set of all
maximal ideals of A.

Definition 1.2.1 (Supp(7)). The support of an ideal I C A is defined to be the set
Supp(/) = {m € MaxSpec(A) | I C m}.
Lemma 1.2.2. Let I, J be ideals of A.
a. For all positive integer n, we have Supp(I) = Supp(I™).

b. If I is of finite codimension, then Supp(I) is finite.

c. If A is finitely generated, then the support of I is finite if and only if I has finite codimension
in A.

d. Suppose Supp(I) NSupp(J) =&. Then [+ J =Aand [J=1NJ.
e. If A is Noetherian, then every ideal of A contains a power of its radical.

Proof. The proofs of parts (b), (c¢), (d) and (e) can be found in [Sav14, §2.1]. It remains to prove
part (a). Fix a positive integer n. It is clear that Supp(/) C Supp(/™). The reverse inclusion follows
from the fact that maximal ideals are prime. Indeed, suppose m is a maximal ideal containing
IV, In particular, for all a € I, we have a® € m. But since maximal ideals are prime ideals, this
implies that a € m. O
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1.3 Associative superalgebras

Let V = V5@ Vf be a Zy-graded vector space. The parity of a homogeneous element v € V; will
be denoted by |v|=1, i € Zy. An element in Vj is called even, while an element in V; is called odd.
A subspace of V' is a Zg-graded vector space W = W5 @& W7 C V such that W; C V; for i € Zy. We
denote by C™" the vector space C™ @ C", where the elements of the first (resp. second) summand
are even (resp. odd).

An associative superalgebra A is a Zs-graded vector space A = A & Aj equipped with a
bilinear associative multiplication (with unit element) such that A;A; C A, ;, for i,j € Zy. A
homomorphism between two superalgebras A and B is a map ¢g: A — B which is a homomorphism
between the underlying algebras, and, in addition, g(A;) C B; for i € Z,. The tensor product A® B
is the superalgebra whose vector space is the tensor product of the vector spaces of A and B, with
the induced Z,-grading and multiplication defined by (a1 ® b1)(ay ® by) = (—1)l%lP1lg a5 @ byby,
for homogeneous elements a; € A, and b; € B. An A-module M is always understood in the
Zs-graded sense, that is, M = Mz @ Mz such that A;M; C M, ;, for i,j € Zy. Subalgebras and
ideals of superalgebras are Z,-graded subalgebras and ideals. A superalgebra having no nontrivial
(graded) ideal is called simple. A homomorphism between A-modules M and N is a linear map
f: M — N such that f(zm) = xzf(m), for all z € A and m € M. A homomorphism is of degree
|f|€ ZQ, if f(Mz) Q NZ+|f\ for ¢ € ZQ.

We denote by M (m|n) the superalgebra of complex matrices in m|n-block form

(e

whose even subspace consists of the matrices with b = 0 and ¢ = 0, and whose odd subspace
consists of the matrices with @ = 0 and d = 0. If V = V5 & Vj is a Zs-graded vector space
with dim V5 = m and dim V; = n, then the endomorphism superalgebra End (V) is the associative
superalgebra of endomorphisms of V', where

End(V); = {T € End(V) | T(V}) C Viuj, j € Lo}, i € Lo,

Note that fixing ordered bases for V5 and V; gives an isomorphism between End(V') and M (m|n).
For m > 1, let P € M(m|m) be the matrix

0L,
I, 0)’

and define Q(m); := {T € M(m|m); | TP = (—1)'PT}, for i € Zy. Then Q(m) = Q(m); & Q(m);
is the subalgebra of M (m|m) consisting of matrices of the form

(). (13.1)

where a and b are arbitrary m x m matrices.
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Theorem 1.3.1 ([CW12, p. 94]). Consider C™" as an M (m|n)-module via matriz multiplica-
tion. Then the unique irreducible finite-dimensional module, up to isomorphism, of M (m|n) (resp.

Q(m)) is C™" (resp. C™m™).

For an associative superalgebra A, we shall denote by |A| the underlying (i.e. ungraded) algebra.
Denote by Z(]A|) the center of |A|. Note that Z(|A|) = Z(|A|); ® Z(|A]);, where Z(|A|); =
Z<|A|) N Ai, for 7 € ZQ.

Theorem 1.3.2 ([CW12, Th. 3.1]). Let A be a finite-dimensional simple associative superalgebra.
a. If Z(|A]); =0, then A is isomorphic to M (m|n), for some m and n.
b. If Z(|A|)1 # 0, then A is isomorphic to Q(m), for some m.

Definition 1.3.3 (Clifford algebra). Let V' be a finite-dimensional vector space and f:V xV — C
be a symmetric bilinear form. We call the pair (V, f) a quadratic pair. Let J be the ideal of the
tensor algebra T'(V') generated by the elements

ZL’®ZL‘—f(ZL‘7fL’>17 ZEE‘/:

and set C(V, f) := T(V)/J. The algebra C(V, f) is called the Clifford algebra of the pair (V, f)
over C.

Remark 1.3.4 ([Hus94, Ch. 12, Def. 4.1 and Th. 4.2]). For a quadratic pair (V, f), there exists a
linear map 0: V' — C(V, f) such that the pair (C(V, f), @) has the following universal property: For
all linear maps u: V' — A such that u(v)? = f(v,v)14 for all v € V, where A is a unital algebra,
there exists a unique algebra homomorphism u': C(V, f) — A such that v'6 = w.

Clifford algebras also have a natural superalgebra structure. Indeed, T'(V) possesses a Zo-
grading (by even and odd tensor powers) such that J is homogeneous, so the grading descends to
C(V, f). Thus, the resulting superalgebra C(V, f) is sometimes called the Clifford superalgebra.

Lemma 1.3.5 ([Musl2, Th. A.3.6]). Let (V, f) be a quadratic pair with f nondegenerate. Then
C(V, f) is a simple associative superalgebra.

Remark 1.3.6. It follows from Lemma 1.3.5, together with Theorems 1.3.1 and 1.3.2, that any
Clifford superalgebra associated to a nondegenerate pair (i.e. the symmetric bilinear form asso-
ciated to this pair is nondegenerate) has only one irreducible finite-dimensional module up to
isomorphism.

1.4 Lie superalgebras

Definition 1.4.1 (Lie superalgebra). A Lie superalgebra is a Zo-graded vector space g = g5 @ g1
with a bilinear multiplication [-, -] satisfying the following axioms:

a. The multiplication respects the grading: [g;, g;] C giy; for all i, j € Zs.
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b. Skew-supersymmetry: [a,b] = —(—1)14*![b, a], for all homogeneous elements a,b € g.

c. Super Jacobi Identity: [a,[b,c]] = [[a,b], ] + (=1)IPI[b, [a, c]], for all homogeneous elements
a,b,ceg.

Example 1.4.2. Let A = Aj @ Aj be an associative superalgebra. We can make A into a Lie
superalgebra by letting [a, b] := ab — (—1)l*I’lba, for all homogeneous a,b € A, and extending [-, -]
by linearity. We call this the Lie superalgebra associated to A. The Lie superalgebra associated to
End(V) (resp. M(m|n)) is called the general linear Lie superalgebra and is denoted by gl(V') (resp
gl(m|n)).

Observe that gg inherits the structure of a Lie algebra and that g7 inherits the structure of
a gg-module. A Lie superalgebra g is said to be simple if there are no nonzero proper (graded)
ideals, that is, there are no nonzero proper graded subspaces i C g such that [i,g] C i. A finite-
dimensional simple Lie superalgebra g = gy ® g7 is said to be classical if the gg-module g7 is
completely reducible. Otherwise, it is said to be of Cartan type.

For a classical Lie superalgebra g, the gg-module g7 is either irreducible or a direct sum of two
irreducible representations. In the first case, g is said to be of type II, and in the second case, g
is said to be of type I. A classical Lie superalgebra is said to be basic if it admits a nondegenerate
invariant bilinear form. Otherwise, it is said to be strange. In chapters 3 and 4 we will mostly
be concerned with basic Lie superalgebras. However, the majority of our results also hold for
the Lie superalgebra sl(n,n), n > 2, which is a 1-dimensional central extension of the basic Lie
superalgebra A(n — 1,n — 1). (Throughout the paper we will somewhat abuse terminology by
talking of the Lie superalgebras A(m,n), B(m,n), etc., instead of the Lie superalgebras of type
A(m,n), B(m,n), etc.)

In Table 1.2 we list all of the basic classical Lie superalgebras (up to isomorphism) that are not
Lie algebras, together with their even part and their type. We also include the Lie superalgebra
sl(n,n), n > 2, which is a 1-dimensional central extension of A(n,n).

g % Type
A(m,n), m>n>0 A, DA, oC I
A(n,n), n>1 A, DA, I
slin,n), n>2 A1 ®A,1dC N/A
Cn+1),n>1 C,eC I
B(m,n), m>0,n>1 B, ® C, 11
D(m,n), m>2n>1 D,, & C, IT
F(4) A @ By 11
G(3) Ye) 1

D(2,1;a), Oé7£0,—1 Al@Al@Al 11

Table 1.1: The basic classical Lie superalgebras that are not Lie algebras, together with their even
part and their type

Given a Lie superalgebra g, its universal enveloping superalgebra U(g) is an associative super-
algebra and it satisfies the graded version of the usual universal property. Then a g-module is
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the same as a left U(g)-module. The set of g-homomorphisms between two g-modules U and V'
is defined to be Homy ) (U, V)5. In other words, all morphism between g-modules are even. The
category of g-modules will be denoted by g-mod. The set of morphism between two g-modules
U,V is denoted by Homg4(U, V). Let g-mod denote the category of g-modules. Such a category is
abelian.

Remark 1.4.3. It is worth to notice that if we allow morphism of arbitrary degree, and not just
even morphism, then the category g-mod would not be abelian. Indeed, suppose it is abelian
and for V,W € Obg-mod, consider ¢, € Homy(V,W)5 and ¢; € Homy(V,W);. Since we are
assuming g-mod is an abelian category, in particular Homg(V, W) must be an abelian group.
Thus ¢ = @y + ¢1 € Homy(V, W) and ker ¢ must be a (Zs-graded) submodule of V. Thus
ker o = ker pNVy@ker pNV;. But this would imply that ker ¢ C ker pgNker ¢;. It is easy to find two
maps g and ¢ that do not satisfy such a condition. As an example, consider any Lie superalgebra
g acting trivially on C''. Let @o: C'1" — C'', where ¢q(a,b) = (a,b), and ¢;: C'1" — C'', where
¢1(a,b) = (b,a). Obviously, ker ¢y Nker ¢ = {(0,0)}, but ker p = {(a, —a) | a € C}.

The following proposition is a special case of the well known Kiinneth formula. A proof can be
obtained by using universal enveloping algebras and modifying [Wei94, Th. 3.6.3].

Proposition 1.4.4. Let g', g* be finite-dimensional Lie superalgebras, Uy, Vy be finite-dimensional
gt-modules and Us,, Vy be finite-dimensional g*-modules. Then

Eth1@gg(U1 X UQ,‘/l X Vé) = @ EXtIg)l(Ul, ‘/1) & Ethg(UQ, ‘/2), n Z 0. (141)

pt+g=n

1.4.1 Contragredient Lie superalgebras

Contragredient Lie superalgebras give a unified way to construct most of the classical Lie
superalgebras as well as Kac-Moody Lie algebras and superalgebras. The construction of these
Lie superalgebras proceeds as follows: let I = {1,...,n}, let A = (a;;);jer be a complex matrix,
and let p: I — Zs be a set map. Fix an even vector space hh of dimension 2n — rank A and linearly
independent «; € b*, i € I, and H; € b, i € I, such that o;(H;) = a;;, for all ¢, 7 € 1. We define
g(A) to be the Lie superalgebra generated by the even vector space h and elements X;,Y;, ¢ € I,
with the parity of X; and Y; equal to p(7), and subject to the relations

[(Xi,Yj] = 0yH;, [H H'|=0, [H X]=o(H)X; [HY]=-aH)Y,

fori,7 € I and H,H' € .

The contragredient Lie superalgebra g = g(A) is defined to be the quotient of g(A) by the ideal
that is maximal among all the ideals that intersects b trivially (see [Mus12, §5.2]). The images of
the elements X;,Y;, H;, i € I, in g(A) are denoted by the same symbols.

Since the action of h on g is diagonalizable, we have a root space decomposition

g=hoPg, ACH,

a€A
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where every root space g, is either purely even or purely odd. A root « is called even (resp. odd)
if go C g5 (resp. go C g7). We denote by Ay and A the sets of even and odd roots respectively.
A linearly independent subset ¥ = {f;,...,8,} C A is called a base if we can find Xj, € gp, and
Ys, €9-p,1=1,...,n,such that {Xs,,Ys, |i=1,...,n} Ub generates g(A), and

[Xﬁivyﬁj] = 0 for @ # j.

Defining Hg, = [Xg,, Y3, it follows that the elements Xp,, Y3 and Hp, satisfy the following rela-
tions:

[Hﬁj7Xﬂi] = Bi(‘Hﬁj)Xﬂi? [Hﬁjayﬂi] - _/Bi(HBj>Y,8i7 [Xﬁmyﬂj] - 5inBi7 WAS {17 s ,TL}. (142>

The matrix Ay, = (b;;), where b;; = 5;(Hg,), is called the Cartan matriz with respect to the base
Y. The original set IT = {ay,...,a,} is called the standard base. It is clear that A is the Cartan
matrix associated to II, i.e. A = Ap. The relations (1.4.2) imply that every root is a purely positive
or purely negative integer linear combination of elements in >. We call such a root positive or
negative, respectively, and we have the decomposition A = AT (X) U A~ (X), where AT(3) and
A~ (X) denote the set of positive and negative roots, respectively. A positive root is called simple
if it cannot be written as a sum of two positive roots. It is clear that a root is simple if and only
if it lies in 2. Thus, X is a system of simple roots in the usual sense. We define ¥, := ¥ N A, and
AZ(X) := A, NAX(Y) for z € Zy. The triangular decomposition of g induced by X is given by

g=n" ()@ hent (%),

where n*(X) (resp. n= (X)) is the subalgebra generated by Xz (resp. Yz), 8 € ¥. The subalgebra
b(X) = h@nt(2) is called the Borel subalgebra corresponding to ¥. Note that AZ(X) is a system
of positive roots for the Lie algebra gg. We denote by 3(gg) the set of simple roots of g with
respect to this system.

Suppose that g is equal to A(m,n) with m # n, gl(n,n), B(m,n), C(n), D(m,n), D(2,1;a),
F(4), or G(3). By [Mus12, Theorems 5.3.2, 5.3.3 and 5.3.5], we have that g is a contragredient Lie
superalgebra. The Lie superalgebra sl(n,n) (resp. A(n,n)) is isomorphic to [gl(n,n), gl(n,n)] (resp.
[gl(n,n),gl(n,n)]/C, where C' is a one-dimensional center). The image of X € sl(n,n) in A(n,n)
will be denoted by the same symbol. Fixing a base ¥ of gl(n,n), the triangular decomposition
gl(n,n) =n"(X) & h@dn (X) induces the triangular decompositions

siin,n)=n"(X)dh &n™(X) and An,n)=n"(2)® (§/C) & n (),

where b’ is the subspace of h generated by Hg, 5 € ¥ (see [Musl2, Lem. 5.2.3]). In particular, any
root of sl(n,n) or A(n,n) is a purely positive or a purely negative integer linear combination of
elements in 3. Therefore A = AT(X)UA™(X) is a decomposition of the system of roots of sl(n,n)
and A(n,n). The matrix Ay is also called the Cartan matrix of sl(n,n) and A(n,n) corresponding
to 2.

Remark 1.4.5. Assume g is a basic Lie superalgebra, gl(n,n) with n > 2, or sl(n,n) with n > 3.
Then [ga, 98] # 0 if o, B, + 5 € A. In particular, the parity of a + 5 is the sum of the parities
of @ and . Moreover, if g # A(1,1), then dimg, = 1 for all « € A (see [Mus12, Ch. 2]).
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1.4.2 The remaining Lie superalgebras

The following table contains the list of the simple finite-dimensional Lie superalgebras which
are not basic.

p(n) ifn>3
q(n) ifn>3
Wi(n) ifn>2
S(n) ifn>3
S(n) ifnis even and n > 2
H(n) itn>4

Table 1.2: The simple Lie superalgebras that are not basic

The structure of these Lie superalgebras is very different from that of semissimple Lie alge-
bras. For instance, they do not have any invariant non-degenerated bilinear form, neither a nice
decomposition in root spaces. Most of the study for these Lie superalgebras is carried out in a
case by case. The representation theory of those of Cartan type (the last four in the above table)
have been studied in [BL79], [BL82], [Sha78|, and [Sha87] for instance, using a very diverse array
of methods. This is also the case for the algebras p(n) and q(n) (see [Gor06], [CW12], [Ser02]).

1.4.3 The queer Lie superalgebra

Recall the superalgebra Q(m) defined in Section 1.3. If m = n + 1, then the Lie superalgebra
associated to @(m) will be denoted by q(n). The derived subalgebra q(n) = [q(n), §(n)] consists
of matrices of the form (1.3.1), where the trace of B is zero. Note that q(n) has a one-dimensional
center spanned by the identity matrix Is,,o. The queer Lie superalgebra is defined to be the
quotient superalgebra

q(n) = q(n)/Clania.
By abuse of notation, we denote the image in q(n) of a matrix X € q(n) again by X. The Lie
superalgebra q(n) has even part isomorphic to sl{(n+ 1) and odd part isomorphic (as a module over
the even part) to the adjoint module. One can show that q(n) is simple for n > 2 (see [Musl2,
§2.4.2]). From now on, q = q(n) where n > 2.

Remark 1.4.6. Some references refer to q(n) as the queer Lie superalegbra. However, in this
thesis, we reserve this name for the simple Lie superalgebra ¢(n).

Denote by N=, H, N* the subset of strictly lower triangular, diagonal, and strictly upper
triangular matrices in sl(n 4 1), respectively. We define

n={(50) [} w={(5rg) o).
= { () faened e {(12) rens).

h=hy@bhy, and n*=ni@ni.
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Lemma 1.4.7 ([Musl2, Lem. 2.4.1]). We have a vector space decomposition
qg=n"®©bhon" (1.4.3)

such that wt and b are graded subalgebras of q ,with w* nilpotent. The subalgebra b is called the
standard Cartan subalgebra of q.

We now describe the roots of q with respect to bg. For each i =1,...,n + 1, define ¢; € b by

E’L 0 h - a’l?

where h is the diagonal matrix with entries (aq,...,a,41). For 1 <i,j <n+1, we let E;; denote
the (n+ 1) x (n+ 1) matrix with a 1 in position (4, j) and zeros elsewhere, and we set

[ By 0 ;o 0| Es;
e j = ( 0 E, ) and € ; = ( E., 0 ) :
Given a € b3, let

o ={z € q| [h,z] = a(h)z for all h € bh5}.

We call a a root if v # 0 and q, # 0. Let A denote the set of all roots. Note that qo = b and, for
a=¢€—¢€,1<i#j<n+1, wehave

Jo = (Cei,j D Ce;’j.

In particular,

1= P da

aehg

A root is called positive (resp. negative) if g, N\n™ # 0 (resp. qo N~ # 0). We denote by A™ (resp.
A~) the subset of positive (resp. negative) roots. A positive root « is called simple if it cannot be
expressed as a sum of two positive roots. We denote by II the set of simple roots. Thus,

A+:{€l—63‘1§2<j§n+1}, H:{EZ—€Z+1|1SZ§’R+1},
A~ =AY, A=ATUA"

It follows that

=@ g. and = P qa.

acAt aEA~

The subalgebra b = h & n' is called the standard Borel subalgebra of q.

Notice that, since n > 2, we have [, h1] = bhg. Indeed, for all i, 5 € {1,...,n + 1} with i # j,
we can choose k € {1,...,n + 1} such that k # ¢, k # j, and then

1
Cii = €5 = 56 = €y i+ €y = 26kl

Thus, the result follows from the fact that elements of the form e;; —e;;, fori,5 € {1,...,n+1}
and i # j, generate bjg.
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1.5 Representations of Lie superalgebras

Just as for Lie algebras, a finite-dimensional Lie superalgebra g is said to be solvable if g™ =0
for some n > 0, where we define inductively g® = g and g™ = [g""=V, g»= V] for n > 1.

Lemma 1.5.1 ([Kac77, Prop. 5.2.4]). Let g = g5 D g1 be a finite-dimensional solvable Lie su-
peralgebra such that g1, 91] C [95, 95 Then every irreducible finite-dimensional g-module is one-
dimensional.

Lemma 1.5.2 ([Savl4, Lem. 2.6]). Suppose g is a Lie superalgebra and V is an irreducible g-
module such that Juv = 0 for some ideal J of g and nonzero vector v € V.. Then JV = 0.

The next two results are super versions of well-known results in representation theory. Namely,
the Poincaré-Birkhoff-Witt Theorem (or PBW Theorem) and Schur’s Lemma, respectively.

Lemma 1.5.3 ([Musl2, Th. 6.1.1]). Let g = gg® g1 be a Lie superalgebra and let By, By be totally
ordered bases for gz and g1, respectively. Then the monomials

Uy UV Vs, U; € By, v, €B1 and up < - <, v <00 < U,

form a basis of the universal enveloping superalgebra U(g). In particular, if g is finite-dimensional
and gy = 0, then U(g) is finite-dimensional.

Lemma 1.5.4 ([Kac77, Schur’s Lemma, p. 18]). Let g be a Lie superalgebra and V' be an irreducible
g-module. Define Endy(V); :={T € End(V); | [T,g] =0}, fori € Zy. Then,

Endy(V)y = Cid, Endy(V); = Ce,
where ¢ = 0 or ¢* = —id.

Assume that g is a basic Lie superalgebra, sl(n,n), n > 2 or q = q(n), n > 2. In the case g is
basic or sl(n,n), n > 2, we fix a system of simple roots 3, define

AT = AF(Z) for all z € Z,

and let g =n~ @ h @ n' be the triangular decomposition induced by ¥, i.e. n* = n*(X). When g
is sl(n,n) or A(n,n), we consider the triangular decomposition induced by gl(n,n). For the case
g = g, we fix the triangular decomposition of q given in (1.4.3).

Lemma 1.5.5 ([Musl2, Prop. 8.2.2]).  a. For every A € b, there exists a unique irreducible
h-module U(N) such that hv = A(h)v, for all h € bz and v € U(N).

b. Any irreducible finite-dimensional h-module is isomorphic to U(X) for some X € bg.

c. If g # q, then U()\) is one-dimensional.
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Let V' be an irreducible finite-dimensional g-module. For p € b} (recall that b # bg only if
g=14(n)), let
Vo={veV | hv=pu(h)v, forall h € hg} CV
be the u-weight space of V. Since b is an abelian Lie algebra and the dimension of V' is finite, we
have V, # 0 for some p € h;. We also have g,V,, C V14, for all & € A. Then, by the simplicity
of V', we have the weight space decomposition

V=V,
webs
Since V' has finite dimension, there exists A € b such that Vy # 0 and g,V) = 0 for all @ € A*.
Since [hg, h] = 0, each weight space is an h-submodule of V. If U is an irreducible h-submodule of
V), then U = U(A) by Lemma 1.5.5. Now, the irreducibility of V' together with the PBW Theorem
(Lemma 1.5.3), implies that

Va2 U and U )Vi=V.

In particular, this shows that any irreducible finite-dimensional g-module is a highest weight mod-
ule, where the highest weight space is an irreducible h-module. On the other hand, given an
irreducible finite-dimensional h-module U(\), we can consider the Verma type module associated
to it. Namely, regard U()\) as a b-module, where n*U(\) = 0, and consider the induced g-module
U(g) ®u(e) U(A). This module has a unique proper maximal submodule which we denote by N ().
Define V/(A) = (U(g) Qu) U(N))/N(A). Then V(A) is an irreducible g-module and every weight
of V/(A) is of the form
A — Zmaa, m,, € N for all o € II.
a€ll

Remark 1.5.6. In order to simplify some statements concerning representation theory of the
Lie superalgebra q(n), we will allow homomorphism of ¢(n)-modules to be nonhomogeneous. If
we were to require such homomorphisms to be purely even, the Clifford algebra associated to a
nondegenerate pair could have two irreducible representations (see Remark 1.3.6) and q(n) could
have two irreducible highest weight representations of a given highest weight.

Let P(A\) = {p € b5 | V(N\), # 0}. We will fix the partial order on P(X) given by p; > puy if
and only if pu; — po € QF, where QT := 3,y Na denotes the positive root lattice of q.

1.6 Equivariant map superalgebras

In this section, by algebra we will mean a commutative associative unital C-algebra, unless
otherwise specified. We now introduce the main objects of the study: the map Lie superalgebras.

Definition 1.6.1 (Map superalgebra). Let g be a Lie superalgebra and let A be an algebra. We
consider the Lie superalgebra g ® A, where the Z,-grading is given by (g ® A); =g, ® A, j € Zs,
and the bracket is determined by [z ® a1, 22 ® as] = [x1, 23] ® ayay for z; € g, a; € A, i € {1,2}.
We refer to a superalgebra of this form as a map Lie superalgebra, inspired by the case where A is
the ring of regular functions on an algebraic variety. Throughout the thesis, we consider g C g® A
as a subalgebra via the natural isomorphism g = g ® C.
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An action of a group I' on a Lie superalgebra g and on an algebra A will always be assumed
to be by Lie superalgebra automorphisms of g and by algebra automorphisms of A.

Definition 1.6.2 (Equivariant map superalgebra). Let I' be a group acting on an algebra A and
on a Lie superalgebra g by automorphisms. Then I" acts naturally on g ® A by extending the map
Yu® f)=(yu)® (vf),ye€T,ueg, fe€ A by linearity. We define

(@A) ={ucg®A|y=p Vyel}

to be the subsuperalgebra of points fixed under this action. In other words, if A is the coordinate
ring of a scheme X, then (g® A)l is the subsuperalgebra of g® A consisting of ['-equivariant maps
from X to g. We call (g ® A)" an equivariant map (Lie) superalgebra. Note that if T is the trivial
group, this definition reduces to Definition 1.6.1.

Example 1.6.3 (Multiloop superalgebras). Fix positive integers n,mq, ..., m,. Let
=M, s | w =1 vy, =7 V1<i,j<n)2Z/mZx ... xZ/m,Z,

and suppose that I" acts on g. Note that this is equivalent to specifying commuting automorphisms
oi,i=1,...,n, of g such that ¢;"* =id. For i = 1,...,n, let & be a primitive m;-th root of unity.
Let X = Spec A, where A = C[t{™, ... t:!] is the C-algebra of Laurent polynomials in n variables
(in other words, X is the n-dimensional torus (C*)"), and define an action of I on X by

Yi(Z1y oy zn) = (21, - -5 2ic1, &%y Zid1s - -+ Zn)-
Then
M(g,00,...,00,m1,...,my,) = (g A" (1.6.1)
is the (twisted) multiloop superalgebra of g relative to (o1,...,0,) and (mq,...,m,). In the case
that T' is trivial (i.e. m; = 1 for all ¢ = 1,...,n), we call often call it an untwisted multiloop

superalgebra. If n =1, M (g, 01, my) is simply called a (twisted or untwisted) loop superalgebra.

1.7 Representations of (g ® A)"

Suppose g is a reductive Lie algebra, a basic classical Lie superalgebra, or sl(n,n), n > 2.
In this section we explain the classification of all irreducible finite-dimensional representations of
(g A)L.

Suppose my, ..., my € MaxSpec(A) are distinct and ny, ..., n, are positive integers. The asso-
ciated generalized evaluation map is the composition

14
i, e 88 A~ (@8 A)/ (g Tmi') = P9 @ (4/mi)).
=1

Let V; be a finite-dimensional g® (A/m}"*)—module with corresponding representation p;. Then
the composition

eanl ..... mne ¢ . lf_~ i ¢
(68 4) = OB (g @ (A/me)) 222 Bnd (@ vz)
=1

=1
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is called a generalized evaluation representation of g ® A and is denoted eVm’fl,...,mzf(Pla oo pe). If
niy = --- = ny = 1, then the above is called evaluation representation. We define evf;nl g (P1s--5p0)
1My

to be the restriction of ev i o ne (P15, pe) to (@A), These are also called (twisted) generalized
evaluation representations.

In [Sav14], it was shown that all irreducible finite-dimensional representations (g@A)" are (up to
isomorphism) twisted generalized evaluation representations. This shows that (up to isomorphism)
all the irreducible finite-dimensional representations of g ® A are tensor product of single point
generalized evaluation representations. In particular, we recover [Sav14, Th. 4.16] which states

that all irreducible finite-dimensional representations of g ® A are highest weight representations.

Remark 1.7.1. For the Lie algebra case, the classification of the irreducible finite-dimensional
representations of g ® C[t,¢7!] (the loop case) in terms of tensor products of evaluation repre-
sentations was given by V. Chary and A. Pressley [Cha86, CP86]. The context of equivariant
map algebras was recently considered by E. Neher, A. Savage and P. Senesi in [NSS12]. There
it was shown that all such representations are tensor products of evaluation representations and
one-dimensional representations. In the special case when A is the coordinate ring of the torus,
the work of A. Savage [Sav14] gives a classification of all irreducible finite-dimensional representa-
tions of the multiloop superalgebras. In the untwisted case, this recovers the classification given
in [ERZ04, ER13].
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Chapter 2

Equivariant map queer Lie superalgebras

In this chapter we classify all irreducible finite-dimensional representations of the equivariant
map queer Lie superalgebras under the assumption that I is abelian and acts freely on MaxSpec(A).
We show that such representations are parameterized by a certain set of '-equivariant finitely sup-
ported maps from MaxSpec(A) to the set of isomorphism classes of irreducible finite-dimensional
representations of q. In the special case where A is the coordinate ring of the torus, we ob-
tain a classification of the irreducible finite-dimensional representations of the twisted loop queer
superalgebra.

2.1 Equivariant map queer Lie superalgebras

Let A denote a commutative associative unital C-algebra and let ¢ = q(n), with n > 2 be the
queer Lie superalgebra. Recall the map Lie superalgebra q ® A, where the Zy-grading is given
by (q® A); = q; ® A,j € Zy, and the multiplication is determined by extending the bracket
[21® f1,29® fo] = [21,22) ® f1fo, wmi€q, fi €A, i€ {l,2}, by linearity. We will refer such a Lie
superalgebra as a map queer Lie superalgebra. If I is a group acting on A and q by automorphisms,
then

(@A ={z€q®A|yz=2zforall y €T}
is the Lie subalgebra of q ® A of points fixed under the diagonal action of I' on q ® A. We call
(q @ A)' an equivariant map queer Lie superalgebra. See § 1.6 for details.

Example 2.1.1 (Multiloop queer superalgebras). Let k,mq, ..., my be positive integers and con-
sider the group

k
D=y, ...o%w | %" =1 vy =" V1<ij<k)=EPZ/mZ.
=1

An action of " on q is equivalent to a choice of commuting automorphisms o; of q such that
ol =id, foralli = 1,..., k. Let A= C[t{,...,t{] be the algebra of Laurent polynomials in k

(2

variables and let X = Spec(A) (in other words, X is the k-torus (C*)*). For each i = 1,...,k, let
& € C be a primitive m;-th root of unity, and define an action of I' on X by

’%(2’1, Ce ,Zk> = (Zl, e ,Zi_l,&‘zi, Zid1y - - - ,Zk).
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This induces an action on A and we call
M(q,01,...,08,my,...,mg) = (q ®A)F

the (twisted) multiloop queer superalgebra relative to (o1, ...,0%) and (my,...,my). If I is trivial,
we call it an untwisted multiloop queer superalgebra. If n = 1, then M(q, 01, m,) is called a (twisted
or untwisted) loop queer superalgebra. These have been classified, up to isomorphism, in [GP04,
Th. 4.4]. This classification uses the fact that the outer automorphism group of q is isomorphic to
Zy (see [Ser84, Th. 1]).

Definition 2.1.2 (Anns(V), Supp(V)). Let V be a (q ® A)'-module. We define Ann4 (V) to
be the sum of all -invariant ideals I C A, such that (q @ I)'V = 0. If p is the associated
representation, we set Anny(p) := Anny (V). We define the support of V' to be the support of
Anny (V) (see Definition 1.2.1). We say that V' has reduced support if Anny (V) is a radical ideal.

2.2 Irreducible finite-dimensional representations of the
Cartan subalgebra

In this section we study irreducible finite-dimensional h ® A-modules. The goal is to show that,
for each such module, there exists a finite-codimensional ideal I C A, such that I is maximal with
respect to the property (h ® I)V = 0. Once this is done, we can proceed using similar arguments
to those used in the study of irreducible finite-dimensional h-modules (see [Musl2, Prop. 8.2.1] or
[CW12, §1.5.4] for example).

Lemma 2.2.1. Let V' be an irreducible finite-dimensional h @ A-module and let I C A be an ideal
such that (hg @ 1)V =0. Then (h1 @ I)V = 0.

Proof. Let p be the associated representation of h ® A on V. We must prove that p(h; ® I) = 0.
Note that

[p(b® A), p(bi @ I)] = p([b ® A, b @ I]) € p([h, bi] ® 1) € p(by @ I) = 0.

Thus, p(hy ® I) C Endyga(V)7. Suppose that p(z) # 0 for some z € h; @ I. Then, possibly
after multiplying z by a nonzero scalar, we may assume, by Schur’s Lemma (Lemma 1.5.4), that

p(z)? = —id. But then we obtain the contradiction
—2id = 2p(2)* = [p(2), p(2)] = p([2,2]) = 0,
where the last equality follows from the fact that [z, z] € hy @ I. O

Proposition 2.2.2. Let V' be an irreducible h @ A-module. Then V' is finite-dimensional if and
only if there exists a finite-codimensional ideal I of A such that (h @ 1)V = 0.
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Proof. Suppose V is an irreducible finite-dimensional h ® A-module, and let p be the associated
representation. Let I be the kernel of the linear map

p:A— Homc(V®@hV), a—n (v@h—ph®a)), acA veV, heh.

Since V' is finite-dimensional, I is a linear subspace of A of finite-codimension. We claim that I is
an ideal of A. Indeed, if r € A, a € I and v € V, then we have

p(ra)(v® bg) = p(hy @ ra)v = p([b1, bi] ® ra)v
p([br @ 7, b1 ® a])v = p(h @ r)p(hi ® a)v + p(hi ® a)p(hy @ 1)v = 0.

Thus ¢(ra)(V @ bg) =0 for all r € A, a € I, or equivalently, p(hg ® AI) = 0. In particular,
[p(br @ AI), p(b ® A)] € p(hg ® AI) =0,

which implies that p(h; ® AI) C Endpga(V)i. Suppose now that p(ra)(v® h) # 0 for some v € V
and h € h1. Then p(h ® ra) # 0, with h ® ra € h; ® AI. Thus, as in the proof of Lemma 2.2.1,
we are lead to the contradiction (possibly after rescaling h ® ra):

—2id = 2p(h @ ra)* = [p(h @ ra), p(h ® ra)] € p(ho ® (rar)a) =0,

where, in the last equality, we used that p(hs® AI) = 0. Since V ® by is spanned by simple tensors
of the form v ® h, v € V', h € by, it follows that ¢(ra)(V @ h7) = 0, and so ra € I. Thus [ is a
finite-codimensional ideal of A such that (h @ I)V = 0.

Conversely, suppose that (h ® I)V = 0 for some ideal I C A of finite codimension. Then V'
factors to an irreducible h ® A/I-module with (hg ® A/I)v C Cv for all v € V' by Schur’s Lemma
(Lemma 1.5.4). On the other hand, let {z1,...,zx} be a basis of h; ® A/I. Since V is irreducible,
the PBW Theorem (Lemma 1.5.3) implies that

V=UbeA/lv= Y @y x,Co,

1<iy <-<is <k
where iq,...,is € {1,...,k}. Hence, V is finite-dimensional. ]
Let
LA ={Ye(hi®A)" | Y(hg®I) =0, for some finite-codimensional ideal I C A}

and let R(h ® A) denote the set of isomorphism classes of irreducible finite-dimensional h ® A-
modules. If ¢ € LIGh®A) and S = {I C A | [ is an ideal, and ¢(hg® 1) = 0}, we set [, = > ;e 1.
Recall that we allow homomorphism of ¢(n)-modules to be nonhomogeneous (see Remark 1.5.6).

Theorem 2.2.3. For any ¢ € L(h ® A), there exists a unique, up to isomorphism, irreducible
finite-dimensional b ® A-module H (1)) such that zv = (z)v, for all x € hg ® A and v € H ().
Conversely, any irreducible finite-dimensional ) ® A-module is isomorphic to H(1), for some
e L(hR A). In other words, the map

LORA) =>RO®A), ©— H®),

s a bijection.
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Proof. Assume first that V' is an irreducible finite-dimensional b ® A-module and that xv = 0 for
all z € hy ® A and v € V. Then, by Lemma 2.2.1, we have (h ® A)V = 0. So we take H(0) to be
the trivial module.
Assume now ¢ € L(h® A) and ¢ # 0. Define a symmetric bilinear form f,, on by == bh; ® A/1
by
f¢($,y) :¢([$,y]), T,y E bw' (221)

Let hi ={x € by | fy(x,hy) =0} denote the radical of fy, and set

C heAL, he® AL by
VT (kery) @b kery by

We can regard 1 as a linear functional on (¢y)g. Since ¢ # 0, and dim((cy)5) = 1, there exists a
unique z € (¢y)g such that ¢(z) = 1. Define the factor algebra A, := U(cy)/(z —1). Consider the
natural linear maps 4: (cy)7 < T'((cy)1) and p: T((cy)7) = Ay. It is straightforward to check, via
the universal property of Clifford algebras (see Remark 1.3.4), that the pair (A, poi) is isomorphic
to the Clifford algebra of ((c¢y)1, 3.fs). By Remark 1.3.6, this Clifford algebra admits only one, up
to isomorphism, irreducible finite-dimensional module. Let H (1)) denote such a module. We can
consider an action of h ® A on H(v) via the map

h®A_»CL/J(_>U(C¢>_»A¢'

Note that H(v) is an irreducible U(cy,)-module (and thus an irreducible ¢,-module). Therefore,
H(v) is an irreducible finite-dimensional h ® A-module. In particular we have that

xv =1P(z)v, forall z € hy® A and v € H(y).

It remains to prove the converse statement in the lemma. Let V' be any irreducible finite-
dimensional h ® A-module with associated representation p. Since hy ® A is central in h ® A, there
exists ¥ € (hg ® A)* such that zv = ¢ (x)v, for all z € h ® A, v € V. On the other hand, by
Proposition 2.2.2, there exists an ideal I of A of finite-codimension such that (h ® I)V = 0. In
particular, we have that ¥(hg ® I) = 0, so ¥ € L(h ® A), and that V factors to an irreducible
b ® A/I,-module. If by is defined to be the radical of the bilinear form (2.2.1), then p(hy;) C gl(V)
is central. Since p is irreducible and p(h;;) consists of odd elements, it follows that p(hy;) = 0.
Hence, V is an irreducible finite-dimensional C((¢y)1, 5 fy)-module, and so V = H(¢). O

2.3 Highest weight modules

In [Sav14], the category of irreducible finite-dimensional modules of an equivariant map Lie
superalgebra was investigated in the case that the target Lie superalgebra is basic. In particular, it
was proved that such modules are either generalized evaluation modules or quotients of analogues
of Kac modules of some evaluation modules for a reductive Lie algebra. It was heavily used that
the highest weight space of any irreducible finite-dimensional module is one-dimensional, and also
that tensor products of irreducible modules with disjoint supports are again irreducible modules.
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In Section 2.2, we saw that irreducible finite-dimensional modules for the Cartan superalgebra
h ® A are irreducible modules for certain Clifford algebras. In particular, the dimension of such
modules is not necessarily equal to one. In addition, it is not true, in general, that the tensor
product of irreducible modules with disjoint supports is irreducible (see Example 2.4.1). Thus, the
arguments used in [Sav14] require modification.

From now on, we consider g C q® A as a Lie subalgebra via the natural isomorphism q = q® C.
We also fix the triangular decomposition of ¢ given in (1.4.3).

Definition 2.3.1 (Weight module). Let V be a q ® A-module. We say V' is a weight module if it
is a sum of its weight spaces, i.e.,

V=@V, whereVy={veV|hv=Ah)vforallhe bhs}.

Aeh*

If V\ # 0, then A € b is called a weight of V' and the nonzero elements of V) are called weight
vectors of weight \.

Definition 2.3.2 (Quasifinite module). A weight q® A-module is called quasifinite if all its weight
spaces are finite-dimensional.

Definition 2.3.3 (Highest weight module). A ¢ ® A-module V is called a highest weight module
if there exists a nonzero vector v € V such that

UgeAv=V, mt@Aw=0, and U(h;® A)v=Co. (2.3.1)
We call v a highest weight vector.

Proposition 2.3.4. If V is an irreducible finite-dimensional q ® A-module, then V is a highest
weight module. Moreover, the weight space associated to the highest weight is an irreducible h ® A-
module.

Proof. Since bp is an abelian Lie algebra and the dimension of V' is finite, V,, # 0 for some p € b.
Also note that (qo ® A)V, C V44, for all @ € A. Then, by the simplicity of V, it is a weight
module. Since V' is finite-dimensional, there exists a maximal weight A € b3, such that V) # 0. It
follows immediately that

(‘I’lJr X A) V)\ =0.

Considering V) as an h ® A-module, we can choose an irreducible h ® A-submodule H () C V).
Thus U(hy @ A)v C Cu, for all v € H(¢»). Now by the simplicity of V', we have U(q® A)v =V for
any v € H(v). In particular, the PBW Theorem (Lemma 1.5.3) implies that V) = H(v). O

Fix ¢ € L(h ® A) and define an action of b ® A on H () by declaring n™ ® A to act by zero.
Consider the induced module

V() =U@® A) Qupea) H(¥).
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This is a highest weight module, and a submodule of V(@D) is proper if and only if its intersection
with H (1) is zero. Moreover any q ® A-submodule of a weight module is also a weight module.
Hence, if W C V(¢) is a proper q ® A-submodule, then

W = @ W,
HFEX

where A = ¢|,.. Therefore V(¢) has a unique maximal proper submodule N(¢) and

V() =V(¥)/N()

is an irreducible highest weight ¢ ® A-module.

By Proposition 2.3.4, every irreducible finite-dimensional q ® A-module is isomorphic to V' (¢)
for some ¢ € L(h ® A). Notice also that the highest weight space of V(¢) is isomorphic, as an
h ® A-module, to H ().

Lemma 2.3.5. Let ¢ € L(h ® A) and let I be an ideal of A. Then (b @ I) = 0 if and only if
(@ NV (y) =0.

Proof. Suppose that 1(bg ® I) = 0 and set A = ;. We know that V(¢), & H(¢¥) as h ® A-
modules, and, by Lemma 2.2.1, we have that (h ® I)V (1)), = 0. Now, let v be a nonzero vector in
V(¢)x. By Lemma 1.5.2, to prove that (q® 1)V (¢) = 0, it is enough to prove that (q@I)v =0. It
is clear that (h ® I)v = 0 and, since v is a highest weight vector, we also have that (n™ ® Iv = 0.
It remains to show that (n~ ® I)v = 0.

For a =Y | a;a;, with a; € N and where the o; are the simple roots of q, we define the height
of a to be

ht(a) = iai.

By induction on the height of o, we will show that (q_, ® I)v = 0. We already have the result for
ht(a) = 0 (since gqp = h). Suppose that, for some m > 0, the results holds whenever ht(a) < m.
Fix a € A" with ht(«) = m + 1. Then

M @A) (qea@ N C M RA G0 @v+ (ga®@)(n" @ A)v = (n*,q_0] @ v =0, (2.3.2)

where the last equality follows from the induction hypothesis, since any element of [n* q_,] is
either an element of q_., with ht(y) < ht(«), or an element of n*. Now suppose that there exists
a nonzero vector w € (q_o ® I)v C Vy_,. By (2.3.2), we have (n" ® A)w = 0, and, since V is
irreducible, we have V = U(q® A)w. But, by the PBW Theorem (Lemma 1.5.3), this implies that
V(¥)x = 0, which is a contradiction. This completes the proof of the forward implication. The
reverse implication is obvious. O

Theorem 2.3.6. Let i) € L(h @ A). The following conditions are equivalent:
a. The module V(1) is quasifinite.

b. There exists a finite-codimensional ideal I of A such that (q @ I)V(¢) = 0.
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c. There ezists a finite-codimensional ideal I of A such that (b ® I) = 0.
If A is finitely generated, then the above conditions are also equivalent to:
d. The module V (1)) has finite support.

Proof. (a) = (b): Let A = [y, be the highest weight of V' (¢)). Let a be a positive root of q and
let I, be the kernel of the linear map

A — Homec(V()A @ o, V(¥)ra), fr(v@u— (u® flv), feA veV(), u€q_q-

Since V(1) is quasifinite, I, is a linear subspace of A of finite-codimension. We claim that I, is,
in fact, an ideal of A. Indeed, since a # 0, we can choose h € b5 such that a(h) # 0. Then, for all
ge A, fel,,veV(),and u € q_,, we have

0 = (h@g)(ud flv
[h®g,u® flo+ (ue f)(h® gy
—a(h)(u®gflv+ (u® f)(h® g)v.

Since (h ® g)v € V(1)) and f € I,, the last term above is zero. Since we also have a(h) # 0, this
implies that (u ® gf)v = 0. As this holds for all v € V(¢), and u € q_,, we have gf € I,. Hence
I, is an ideal of A.

Let I be the intersection of all the [,. Since q is finite-dimensional (and thus has a finite
number of positive roots), this intersection is finite and thus [ is also an ideal of A of finite-
codimension. We then have (n~ ® I)V(¢), = 0. Since A is the highest weight of V(¢), we also
have (nt @ I)V (1), = 0. Then, since h @ I C [nt ® A,n~ ® I], we have (h @ I)V(¢), = 0. Thus
(q@ 1)V (¢)x =0. Since V(¥), # 0, it follows from Lemma 1.5.2 that (q® I)V(¢) = 0.

(b) = (c): Let v be a highest weight vector of V(). Then ¢(z)v = zv = 0, for any = € hz® I.
Thus ¢(hy @ 1) = 0.

(c) = (a): If ¥(hg® I) = 0, then, by Lemma 2.3.5, we have (q ® I)V(¢) = 0. Then V(¢) is
naturally a module for the finite-dimensional Lie superalgebra q ® A/I. By the PBW Theorem
(Lemma 1.5.3), we have

V() =Ula@ A/DV()y = Uw @ A/DHV ()i,

and V' (1), is finite-dimensional. Another standard application of the PBW Theorem completes
the proof.

Now suppose A is finitely generated. We prove that (b) < (d). By definition, Supp4(V (¢)) =
Supp(Anny (V' (1))), where Anns(V (¢)) is the largest ideal of A such that (q® I)V (¢)) = 0. Thus
(b) is true if and only of Anna(V(¢)) is of finite-codimension. Since A is finitely generated,
Ann,(V (1)) is of finite-codimension if and only if it has finite support (see Lemma 1.2.2, parts (b)
and (c)). O

Corollary 2.3.7. Let V' be an irreducible finite-dimensional ¢ ® A-module. Then, there ezists an
ideal I of A of finite-codimension such that (q @ I)V = 0.

Proof. Since finite-dimensional modules are clearly quasifinite, the result follows from Theorem 2.3.6.
O
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2.4 Evaluation representations and their
irreducible products

If R and S are associative unital algebras, all irreducible finite-dimensional modules for R ® S
are of the form Vi ® Vs, where Vi and Vg are irreducible finite-dimensional modules for R and
S, respectively. Furthermore, all such modules are irreducible. When R and S are allowed to
be superalgebras, the situation is somewhat different. In particular, Vx ® Vs is not necessarily
irreducible, as seen in the next example.

Example 2.4.1. By Remark 1.3.6, the unique irreducible finite-dimensional Q(1)-module is C!I.
However, C'I! @ C!! is not an irreducible Q(1) ® Q(1)-module, since Q(1) ® Q(1) = M(1]1) as
associative superalgebras and, again by Remark 1.3.6, the unique irreducible finite-dimensional
M (1]1)-module is also C'.

In general, if g', g? are two finite-dimensional Lie superalgebras, and V' is an irreducible
finite-dimensional g‘-module, for ¢ = 1,2, then the g! @ g?>-module V! ® V? is irreducible only if
Endgi (V%) = 0, for some i = 1,2 (recall that dim(Endg(V?)1) # 0 implies, by Schur’s Lemma
(Lemma 1.5.4), that Endgi (V)1 = Cy;, where ¢? = —1). When Endgi (V)1 = Cy;, 7 = —1, for
¢t =1 and 7 = 2, we have that

V= {ve Vi V? | (P1 @ p2)v =0}, where ¢1 = V=14,

is an irreducible g' @ g2-submodule of V! ® V2 such that V' @ V22V @ V (see [Che95, p. 27]).
Set henceforth
VigV? if V1 ® V2 is irreducible,

> 1 2 . 1 2 . . . (24]‘)
VeV eV if V:®V?isnot irreducible.

VigV? = {
In [Che95, Prop. 8.4], it is proved that every irreducible finite-dimensional g' @& g®-module
is isomorphic to a module of the form V!'®V?, where V' is an irreducible finite-dimensional g'-
module for i = 1,2. If p; denotes the representation associated to the gi-module V?, then p1®ps
will denote the representation associated to the g' @ g?>-module V'®@V?2. Inductively, we define the
gt @ --- @ gF-module
VG 3V = (V1& .. GV Davh
with associated representation denoted by p1® - - - ®py. We will call ® the irreducible product. As
the next lemma shows, it is associative, up to isomorphism.

Lemma 2.4.2. For i = 1,2,3, let g° be a Lie superalgebra and let V' be an irreducible finite-
dimensional g'-module. Then, (V'@V?)@V? 2 VIg(VIQV?) as g' @ g ® g*-modules.

Proof. By [Che95, Prop. 8.4], the unique, up to isomorphism, irreducible finite-dimensional g' @
(g% @ g®)-module contained in V! ® (V2 ® V?) is VI®(V2®V?). On the other hand, the unique
irreducible finite-dimensional (g! @ g%) @ g®-module contained in (V! ®@V?) @ V3 is (VI@VHRV3.
Now, since g' ®g?®g> = g' @ (gD g®) = (g' ©g?) D g® as Lie superalgebras, and (V@ V)@ V3
Vi@ (V2@ V3) as gt @ g2 @ g3-modules, we conclude that (VI@V?)&V?3 = VIg(ViQV?). O
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Proposition 2.4.3. Let V(¢1) and V(q), for 1,10 € L(h ® A), be two irreducible finite-
dimensional g ® A-modules with disjoint supports. Then

V(’Lﬁl + l/JQ), or
V(1 + 1) @ V(1 + ¢2).

Proof. Let I; = Anny (V' (¢;)) and let p; be the representation corresponding to V' (¢;), for i = 1, 2.
Then the representation p; ® ps factors through the composition

VW0®VWﬁ%{

IOAS (@A) @A) S e A/L) e (qoA/D), (24.2)

where A is the diagonal embedding and the second map is the obvious projection on each summand.
By Lemma 1.2.2(d), we have that I; N Iy = I 15, since the supports of I; and I, are disjoint. Thus
A=1 +1I, and so A/I1I, = (A/I,) ® (A/Iy). We therefore have the following commutative
diagram:

A2 (q® A)® (q© A)

R

q® A/LI (@ A/L)® (@@ A/ly)

It follows that the composition (2.4.2) is surjective. However, as a (q ® A/I1) ® (q ® A/I)-
module, V' (1)1) ® V (1)9) is either irreducible or is isomorphic to V@V, where V' ¢ V (11) @ V (1)9)
is an irreducible (q ® A/I}) ® (q ® A/Iy)-module. Then the result follows from the fact that

A >~

V(1) ® V(1h,), and hence V @V, is generated by vectors on which h ® A acts by 11 + s. O
Note that if V' (¢/1) and V(1)) satisfy the hypothesis of Proposition 2.4.3, then

V()QV (¢2) =V (1hy + ).
In general, the following result follows by induction.

Corollary 2.4.4. Suppose that V (¢1), ...,V () are q® A-modules with pairwise disjoint supports.

Then - .
X, V) =V (Z m) .
i=1

Now assume I is a finite abelian group acting on both q and A by automorphisms. We also
assume that A is finitely generated and that I acts freely on MaxSpec(A).

Definition 2.4.5 (Evaluation map). Suppose my,..., m; are pairwise distinct maximal ideals of
A. The associated evaluation map is the composition

Ve 0® A (46 A>/<q g 1_11mi) ~ D@ A/m).

=1

We let evy, . denote the restriction of evm,  m, to (q® A).
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Let mq, ..., mg be pairwise distinct maximal ideals of A, and for each ¢ =1,...,k, let V; be an
irreducible finite-dimensional g ® A/m;-module, with corresponding representation p;: q @ A/m; —
gl(V;). Then the representation given by the composition

X k
49 4 "% @ (q o (4/m;) S Bud <® V)
i=1
is denoted by
Vg omi (P - - Pk) (2.4.3)

and the corresponding module is denoted by
6\\"m1,...,mk(‘/1, s )Vk) (244)

We define é\\/ghwmk(pl,...,pk) to be the restriction of &Vm,.  m.(p1,---,pr) to (q @ A)F. The
notation é‘\’al,...,mk (Vi,..., Vi) is defined similarly.

If we consider tensor products instead of irreducible products, then the above are called eval-
uation representations and evaluation modules, respectively.

Remark 2.4.6. Observe that, by definition,

—k

é\\/ml ..... mp (,017 C mok) = ®i:1 eVmi(Pi)~

Proposition 2.4.7. An irreducible finite-dimensional representation of q ® A is isomorphic to a
representation of the form (2.4.3) if and only if it has finite reduced support.

Proof. Let p be an irreducible finite-dimensional representation of q ® A. Assume

P = Vmyme (P15 PR

where mq, ..., my are pairwise distinct maximal ideals of A and p; is an irreducible representation
of q® A/mZ Let I =TI, m;. Then Supp(/ ) ={my,...,mg} and p(q® I) = 0. Thus p has finite
support. Furthermore we have that vI = ", m; = [[*., m; = I and hence I is a radical ideal.
This proves the forward implication.

Suppose now that p(q® I) = 0 for some radical ideal I of A of finite support. Thus I = VI =
[T, m; for some distinct maximal ideals my, ..., m; of A. Hence, p factors through the map

k

qRA—» (g A)/ <q®Hm> >~ P(qge A/m;).

=1

Then, by [Che95, Prop. 8.4], there exist irreducible finite-dimensional representations p; of q® A/m;,
1 =1,...,k, such that

p = ® ele pz - é\\’ml,...,mk (Pl; s 7/)k)

Thus p is isomorphic to a representation of the form (2.4.3). This completes the proof of the
reverse implication. O

36



Definition 2.4.8 (X,). Let X, denote the set of finite subsets M C MaxSpec(A) having the
property that m’ ¢ I'm for distinct m, m’ € M.

Lemma 2.4.9 ([Savl4, Lem. 5.6]). If {my,...,my} € X, then the map &v,,, is surjective.

7777 mg

Let R(q) denote the set of isomorphism classes of irreducible finite-dimensional representations
of g. Then I' acts on R(q) by

X R() = R@, (1 [6) =1l = oY),
where [p] € R(q) denotes the isomorphism class of a representation p of .

Definition 2.4.10 (£(q, A), £(q, A)"). Let £(q, A) denote the set of finitely supported functions
U: MaxSpec(A) — R(q) and let £(q, A)F denote the subset of £(g, A) consisting of those functions
that are I'-equivariant. Here the support of ¥, denoted Supp(V), is the set of all m € MaxSpec(A)
for which W(m) # 0, where 0 denotes the isomorphism class of the trivial (one-dimensional)
representation.

If p and p’ are isomorphic representations of g, then the representations evy,(p) and evy(p')
are also isomorphic, for any m € MaxSpec A. Therefore, for [p| € R(q), we can define evy[p]
to be the isomorphism class of evy,(p), and this is independent of the representative p. For
U € £(q,A) such that Supp(V) = {my,...,m;}, we define évy to be the isomorphism class of
V..., mp (W(my), ..., ¥(myg)), which is well-defined by the above comments and Remark 2.4.6. If
VU is the map that is identically 0 on MaxSpec(A), then, by definition, vy is the isomorphism
class of the trivial (one-dimensional) representation of q ® A.

Lemma 2.4.11. Let ¥ € £(q, A)'' and m € MaxSpec(A). Then, for ally € T,
S (U()) = 6 (1T ()) = ¥y (T (7)),
Proof. If ¥(m) = p, then ¥(ym) = - p, and so
Ny (U (ym))(2) = &Vym(y - p)(2) = poy ™'z +ym) = p(y 'z + m) = p(z + m) = &¥n(p)(2),
forall z € (g A)". O

Definition 2.4.12 (&vy,). Let ¥ € £(q, A)" and let M = {my,..., m;} € X, contain one element
from each T-orbit in Supp(¥). We define vy, :=&vy, m (P(my), ..., ¥(myg)). By Lemma 2.4.11,
@E is independent of the choice of M. If ¥ = 0, we define @E, to be the isomorphism class of the

trivial (one-dimensional) representation of (q @ A)'.

Proposition 2.4.13. The map ¥V — evy from E(q,A) to the set of isomorphism classes of irre-
ducible finite-dimensional representations of q ® A is injective.

Proof. If W # W' € £(q, A), then there exists m € MaxSpec(A) such that ¥(m) # ¥'(m). Without
loss of generality, we may assume that W(m) # 0. Let Supp(¥) U Supp(¥’') = {my,..., mg}, where
m = m; and consider the following ideal of A:

I =my---my.
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Note that a = q ® I is a Lie subalgebra of q ® A such that evy(a) = q and evy,(a) = 0 for
i=2 .k
Suppose that evy = evy, and define

P i= Vg (U(M2))E -+ Vi, (U(Me)) and /= Vi (U (M2))E -+ @ e¥im, (W' (),

with associated modules V' and V', respectively. Then p(a) = p'(a) = 0. We divide the proof into
three cases.
For the first case, assume that we have isomorphisms of ¢ ® A-modules

eV, (U(m)) @ p=pBp and  eve, (V'(m)) @ p' =5 &7

where p and p’ are subrepresentations of evy,, (V(m;))®p and evy, (¥/(m;))®p', respectively. Since
evy = evys, we must have p = p', and so

eVin, (U (my)) &Y 2 (evim, (T(m1)) ® p)]a= (9 & )]o= (7' @ §')la
2 (eVim, (W'(M1)) ® p)]o= evim, (¥'(my)) "V,

where the first isomorphism follows from the fact that p(a) = 0 and the last follows from the fact
that p'(a) = 0. But this is a contradiction, since ¥(my) # ¥'(my).
For the second case, assume

evm, (¥'(my1)) ® p' is irreducible  and  evy,, (V(my)) @ p = pd p,
@ p

where p C evp,, (¥(my)) ® p is a subrepresentation. Thus p = evy,, (V/(my)) ® p’, which implies
that

Vo, (L(m0)Z ™Y (5.8 )]s (evim, ((m1)) © )] v, ((my)) 220"

So again we have a contradiction.
The remaining case, when both evp,, (V'(m;)) ® p’ and evy, (¥(m;)) ® p are irreducible q ® A-
modules, is similar. O

Corollary 2.4.14. For all ¥ € £(q, A)Y, we have that 6\75, is the isomorphism class of an irre-
ducible finite-dimensional representation. Furthermore, the map ¥ — eAVE from E(q, A)Y to the set
of isomorphism classes of irreducible finite-dimensional representations of (q @ A)' is injective.

Proof. The first statement follows from Lemma 2.4.9 and the definition of the irreducible prod-
uct. Suppose ¥, ¥ € £(q, A)" such that &y, = &vy,. Let M = {my,...,m;} € X, contain one
element of each T-orbit in Supp(¥)USupp(¥’). Then &vy, and &vy, are the restrictions to (g® A)"
of €V, m, (U(my),...,¥(my)) and eV, m, (P (My),..., V' (my)), respectively. By Lemma 2.4.9,
it follows that €V,  m,(V(my1),...,¥(mg)) = Vmy.m, (V'(M1),..., ¥ (mg)). Then, by Proposi-
tion 2.4.13, we have U(m;) = ¥'(m;) fori =1,..., k. Thus ¥ = V' O

Remark 2.4.15. If the target Lie superalgebra q is replaced by a Lie algebra or a basic classi-
cal Lie superalgebra g, then the tensor product of irreducible finite-dimensional representations
with disjoint supports is always irreducible (see [NSS12, Prop. 4.9] for Lie algebras and [Sav14,
Prop. 4.12] for basic classical Lie superalgebras). In particular, the evaluation representation evy
is an irreducible finite-dimensional representation for all ¥ € &£(g, A), where evy is defined by
replacing the irreducible product by the tensor product in the definition of evy.
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2.5 Classification of finite-dimensional representations

In this section we present our main result for the first part of this Thesis: the classification
of the irreducible finite-dimensional q ® A-modules and (q ® A)'-modules. We assume that A is
finitely generated.

Theorem 2.5.1. The map
E(q,A) > R(q® A), U i— evy, (2.5.1)

is a bijection, where R(q ® A) is the set of isomorphism classes of irreducible finite-dimensional
representations of @ @ A. In particular, all irreducible finite-dimensional representations are rep-
resentations of the form (2.4.3).

Proof. By Proposition 2.4.13, it is enough to show that all irreducible finite-dimensional represen-
tations of ¢ ® A are of the form (2.4.3). Thus, it suffices, by Proposition 2.4.7, to show that, for
every irreducible finite-dimensional q ® A-module V', we have (q® J)V = 0 for some radical ideal
J C A of finite-codimension.

By Corollary 2.3.7, we have that (q® I)V = 0 for some ideal I of A of finite codimension. Let
J = /T be the radical of I. To prove that (q® J)V =0, it suffices, by Lemma 1.5.2, to show that
(q® J)v = 0 for some nonzero vector v € V.

Consider now V as a q ® A/I-module. We will show that (q ® (J/I))v = 0 for some nonzero
v € V. Since A is finitely generated, and hence Noetherian, we have J* C I for some k € N, by
Lemma 1.2.2(e). Hence, (q ® (J/I))® = q® @ (J*¥/I) = 0, and so q ® (J/I) is solvable. On the
other hand, since qg is a simple Lie algebra, we have

[(@® (J/ D)1, (a@ (J/D)1] = [ar,q1] @ (J*/1) € a @ (J*/])
= (90, 90] ® (J*/1) = [(a & (J/T))o, (a ® (J/T))o].

Then, by Lemma 1.5.1, there exists a one-dimensional q ® (J/I)-submodule of V. Thus, we have
a nonzero vector v € V and 6 € (q ® J)*, such that

pv = 0(p)v, forall p€qe J.

We want to prove that § = 0. If u € n* ® J, then 0(u)™v = u™v = 0 for m sufficiently large, since
V is finite dimensional and hence has a finite number of nonzero weight spaces. Thus #(n*®.J) = 0.
It remains to show that #(h ® J) = 0. Denote by 6’ the restriction of 6 to g5 ® J. Then 6" defines
a one-dimensional representation of the Lie algebra gy ® J, and hence the kernel of #" must be an
ideal of q5 ® J of codimension at most one. Because qg is a simple finite-dimensional Lie algebra,
it is easy to see that this kernel must be all of q5 ® J, and hence #' = 0. Since h; C qg, we also
have that 0(hg ® J) = 0. Therefore, Lemma 2.2.1 implies that (h ® J)v = 0. ]

Now assume I' is a finite abelian group acting on both q and A by automorphisms. We also
assume that I" acts freely on MaxSpec(A).

39



Proposition 2.5.2. Every finite-dimensional (q @ A)'-module V is the restriction of a q ® A-
module V' whose support is an element of X,. Furthermore, V 1is irreducible if and only if V'
18.

Proof. Let V be a finite dimensional (q ® A)'-module and let p : (q ® A)' — EndV denote
the corresponding representation. By [Sav14, Prop. 8.1 and Lem. 8.4], the kernel of p is of the
form (q ® I)' for some I'-invariant ideal I of A with finite support. Since A is finitely generated,
Lemma 1.2.2c implies that [ is of finite codimension in A. The support of [ is a I'-invariant subset
of Xt Let M C X, contain one point from each I'-orbit in the support of I. Then

I: H ,}/Ima

meM, vel

where [, is an ideal with support {m} for each m € M,. Thus

@A/ goD) = (g A/D)"

(q® ) A/(va))

meM, vel

Il

( D (q®A/(71m))>

meM, vel’

D (a @ A/In)

meM

=@qed)/(a), J=1]] In,

meM

112

where, in the second-to-last isomorphism, we use the fact that, for m € M, the group I' permutes
the summands q ® A/(yIn), v € T.

We now have the following commutative diagram, where 7 is the above isomorphism, 7 is the
natural projection, and p is the map induced by p.

q® A . (q@A)/(q J)

] :

(q@ A)" (@A) /(g )"

End(V)

It is clear that po 7! o7 is a representation of q ® A that, when restricted to (q ® A)', coincides
with p. Since both representations factor through the quotient (q® A)'/(q® I)', one is irreducible
if and only if the other is. O

Remark 2.5.3. The proof of Proposition 2.5.2 is the same as the proof of [Sav14, Prop. 8.5].
Although that reference assumes that the target Lie superalgebra g is basic classical, the proof of
this result only requires g to be a simple finite-dimensional Lie superalgebra.
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Theorem 2.5.4. Suppose A is a finitely generated unital associative C-algebra and I' is a finite
abelian group acting on A and q by automorphisms. Furthermore, suppose that the induced action
of I' on MaxSpec(A) is free. Then the map

g(qv A)F - R<q7 A>F7 s @ga (252>

is a bijection, where R(q, A)' is the set of isomorphism classes of irreducible finite-dimensional
representations of (q @ A)L.

Proof. The map (2.5.2) is surjective by Proposition 2.5.2, while injectivity follows from Corol-
lary 2.4.14. O]
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Chapter 3

Weyl moduldes for Lie superalgebras

In this chapter we define global and local Weyl modules for Lie superalgebras g ® A, where g
is a basic Lie superalgebra or sl(n,n), n > 2. Under some mild assumptions, we prove universal-
ity, finite-dimensionality, and tensor product decomposition properties for these modules. These
properties are analogues of those of Weyl modules in the non-super setting.

Throughout this chapter, we assume that g is a basic Lie superalgebra or sl(n,n), n > 2.

3.1 A good system of simple roots I

In Section 3.4, we will be particularly interested in systems of simple roots ¥ satisfying the
following property:

For all v € &3, there exists o/ € A (X) such that o+ o’ € A(X). (3.1.1)

Note that such an element o + o’ is necessarily an even root. Our next goal is to show that a
system of simple roots satisfying (3.1.1) always exists.

Let 3 be a system of simple roots and suppose that § € ¥ is an odd root with 5(Hg) = 0.
(Such a root is known as an isotropic odd root.) Then define the reflection rg: ¥ — A with respect

to B by

ra(B) = =5,
T,B(ﬁ,) = B/a for B/ € Z? 5/ 7é 67 B(Hﬁ’) = B/(Hﬁ> = 07
7”5(6’) = 6 + 6/, fOI‘ 5/ - Z, B/ 7£ 6, 6(]‘[5/) 7é 0 or 5’([’[5) 7é 0

By [CW12, Lem. 1.30], r3(X) is a system of simple roots, and
AT (rg(E)\{=8} = AT () \ {8} (3.1.2)

(We use here the fact that gl(n,n) and sl(n,n) have the same system of simple roots as A(n,n).)

If g is a basic Lie superalgebra, gl(n,n), n > 2, or sl(n,n), n > 2, then g admits a system of
simple roots with only one odd root (see [Musl12, Tables 3.4.4 and 5.3.1]). Let Il = {v,..., 7.}
denote such a system and let v, be the unique odd root that lies in II. The system II is often called
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a distinguished system of simple roots. When g # B(0,n), we have that v is an odd isotropic
regular root. Then we can consider the odd reflection r,, with respect to .

Proposition 3.1.1. Let II be a distinguished system of simple roots for g.
a. If g is a basic Lie superalgebra of type 11, then 11 satisfies condition (3.1.1).

b. If g is gl(n,n), n > 2, sl(n,n), n > 2, or a basic Lie superalgebra other than B(0,n), then
. (II) satisfies condition (3.1.1).

In particular, g admits at least one system of simple roots satisfying (3.1.1).

Proof. Part (a) follows from direct examination of the distinguished root systems in type II. We list
below (using the notation of Section 3.6) this simple odd root 7, € Ilj, together with an element
7" € Af such that v+~ € A.

Sy

m,n), m>0,n>1 v =a;y =a,+ 20,1+ + 204m

Il
S

m, n) m > 2, n > 17 Vs = Qn; 7/ = oy + 2an+1 +- 204n+m—2 + Qntm-1 + Qpim

g
g
g 3); Vs = a1; ¥ = a1 + dag + 203
g

(
(
F(4); vs = a1; v = a1 + 3as + 2a3 + ay
G(
D(2,

2 La),a#0, -1, vs=a1;7 =1 + as + a3

One sees that, in each case, v, +9" € A.

Now suppose that 75 is isotropic and let II' = ., (II). To prove part (b), we will show that
o+ 1y, (7s) € AZ(IT'), for all odd roots a € II' \ {r,,(7,)}. First assume that g is gl(n,n) (n > 2),
sl(n,m) (n > 2), or a basic Lie superalgebra other than B(0,n) or D(2,1;«). One can verify, by
looking at each distinguished Cartan matrix, that v,(H,..,) = —1 (when 1 < s£1 < n) and
Ys(H,,,;) = 0 when j > 2 (and 1 < s £j < n). (See Section 3.6. The odd root v, is indicated
there by an X on the corresponding node in the Dynkin diagram.) Thus

Toe(Vs) = —Vss  Tow (Ys1) = Vs + Vsx1 and 7, (Vsxj) = Ysj, for all j > 2.

Since the only odd root in II is 75, the odd roots of II' are precisely 7., (Vs—1); T, (Vs)s Tys (Vs41)-
Now, by (3.1.2), we have A*(IT) \ {7} = AT(II')\ {r+,(75)}, which implies that A (IT) = AZ(IT').
Thus

T (Ysx1) + 79, (V5) = Ys1 € Ag (ID) = Ag (IT).

Finally, assume g = D(2,1;a). Then II = {v1,72,73}, where s = 1 and v,(H,,) = —1, for
J = 2,3 (see Section 3.6). Then every element of II' = {r., (m), 7y, (72),7, (73) } is odd, and again
ron (33) + (1) = 5 € Ag(IT) = AF(IT'), for j = 2,3. O

Remark 3.1.2. There exist systems of simple roots that do not satisfy (3.1.1). For instance, if g
is of type I, then a distinguished system II does not satisfy (3.1.1). This follows from the fact that
the induced Z-grading is of the form g_; @ go ® g1 (see [Kac78, Prop. 1.6]).
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3.2 Generalized Kac modules

Recall that g is a basic Lie superalgebra or sl(n,n), n > 2, and fix a system of simple roots .

Define

Af = AF (D) for all z € Z,,
and let g =n~ @ b @ nt be the triangular decomposition induced by ¥, i.e. n* = n*(X). In the
case that g is sl(n,n) or A(n,n), we consider the triangular decomposition induced by gl(n,n).
Recall that the elements X,, Y,, @ € X, generate the subalgebras n™ and n™, respectively.

Since gg is a reductive Lie algebra, for each even root o we can choose elements X, € g,,Y, €
0o, and H, € B, such that the subalgebra generated by these elements is isomorphic to sl(2),
with these elements satisfying the relations for the standard Chevalley generators. In this case, we
say the set {X,,Y,, H,} is an sl(2)-triple.

We denote the irreducible highest weight g-module with highest weight A € h* by V()A). Define

AT=AT(Z)={ e bh* | dimV(\) < oco}. (3.2.1)
Note that, for A € A™, since V(\) is finite dimensional, we have A\(H,) € N, for all o € ¥(gg).

Definition 3.2.1 (The module V())). For A € A*, we define V() to be the g-module generated
by a vector vy with defining relations

ntoy =0, hoy= ARy, Y EIFy =0 forallheh, ae X(g). (3.2.2)
Proposition 3.2.2. For all A € AT, the module V ()) is finite-dimensional.

Proof. Let L(\) be the irreducible gg-module of highest weight A. Since gg is a reductive Lie
algebra and A\(H,) € N, for all a € ¥(g;), we have that L()) is finite dimensional. Moreover, it
is well known that L(\) is isomorphic to the gg-module generated by a vector uy with defining
relations

nfuy =0, huy = Ah)u,, Y MH+ 0, forall he b, ae X(gp).
Let V' = U(gg)va € V(A) be the gg-submodule of V(\) generated by vy. Then the map given by
©: L(A) = V', zuy v+ zvy, forall z € U(gg),

is a well-defined epimorphism of gg-modules. Thus, V" is finite dimensional. Then it follows from
the PBW Theorem for Lie superalgebras (see Lemma 1.5.3) that V' (\) is finite dimensional. [

Lemma 3.2.3. Suppose V' is a finite-dimensional g-module generated by a highest weight vector
of weight X € A*. Then there exists an unique submodule W of V/(X\) such that V(A)/W =2V as
g-modules.

Proof. Let v € V) be a highest weight vector. Then the first two relations in (3.2.2) are satisfied by
v, by the definition of a highest weight vector. The fact that gg is a reductive Lie algebra and V is
finite dimensional implies that v also satisfies the last relation in (3.2.2). Thus the map V() — V
defined by extending the assignment vy + v is a well-defined epimorphism of g-modules. Since
dim V), =1 = dim V()\) » and homomorphisms between modules preserve weight spaces, this map
is unique up to scalar multiple. Thus, the kernel W of this map is unique. O
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Since every irreducible finite-dimensional g-module is generated by a highest weight vector of
weight A € AT, Lemma 3.2.3 applies to irreducible finite-dimensional g-modules.

Remark 3.2.4. It follows from Lemma 3.2.3 that V' ()\) coincides with the generalized Kac module
defined in [Cou, p. 8]. Thus, when ¥ is a distinguished root system, it follows from [Cou, Lem. 3.5]
that V() is isomorphic to the usual Kac module defined in [Kac78, p. 613].

3.3 Global Weyl modules

Let g be either a basic classical Lie superalgebra or sl(n,n), n > 2, and let A be an associative
commutative unital C-algebra. We can then consider the map Lie superalgebra g @c A (see
Section 1.6 for details). From now on, we consider g C g ® A as a subalgebra via the natural
isomorphism g = g ® C.

Definition 3.3.1 (The category Za(g ® A, gg)). Let Z be the full subcategory of the category of
gg-modules whose objects are those modules that are isomorphic to direct sums of irreducible finite-
dimensional gg-modules. Note that, if V' € Z, then every element of V' lies in a finite-dimensional
gg-submodule of V. Let Z(g® A, g5) denote the full subcategory of the category of g ® A-modules
whose objects are the g ® A-modules whose restriction to gg lies in Z.

If V is a g-module, then, by the PBW Theorem, we have an isomorphism of vector spaces
PA(V) = Ulg® A) B V = U(g ® 4,) @c V. (33.1)

where A, is a vector space complement to C C A. We will view V' as a g-submodule of P4(V) via
the natural identification V=C ® V C P4 (V).

Lemma 3.3.2. If V is a direct sum of irreducible finite-dimensional gg-modules, then so is the
tensor algebra T(V) := @2, V&™.

Proof. This follows from the fact that the action of gg preserves each summand V®" which clearly
has the given property. O

Lemma 3.3.3. Let V' be a g-module whose restriction to gg lies in Z. Then Pa(V) € Z(g® A, g5)-

Proof. Consider the action of gz on g ® A given by the restriction of the adjoint action on the
first factor. Since g is a completely reducible gg-module, it follows that g ® A is a direct sum of
irreducible finite-dimensional gg-modules. Then, by Lemma 3.3.2, we have that T (g® A), and hence
U(g ® A), are direct sums of irreducible finite-dimensional gg-modules. Since the tensor product
is distributive over direct sums, U(g ® A) ®c V is a direct sum of irreducible finite-dimensional
gg-modules, hence so is its quotient P4 (V). Thus P4(V) € ObZ4. O

Proposition 3.3.4. If A\ € A™, then P4(V()\)) is generated, as a U(g® A)-module, by the element
vy, with defining relations

ntoy =0, hoy=AR)vy, Y2 HI Ly =0 forallh €h, a € S(gg). (3.3.2)

[0}
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Proof. 1t is obvious that the element vy € P4(V (X)) satisfies the relations (3.3.2). To check that
these are all the relations, let W be the g ® A-module generated by a vector w with defining
relations (3.3.2). Then we have a surjective homomorphism of g ® A-modules 7,: W — P(V(\))
which maps w to vy. Now, by relations (3.3.2), w € W generates a g-submodule of W isomorphic

to V(A). Thus, we have an epimorphism

ot P(V(N) = W, wy ®ug) ugvx = uiugw, uy € U(g® A),us € U(g).

Since m; = 75 ', we have W = P(V()\)). O
Forve AT and V € Z(g® A, g5), we let V¥ be the unique maximal g ® A-module quotient of
V such that the weights of V¥ lie in v — Q%, where QT = Y5, Nav is the positive root lattice of
g. In other words,
Vvr=Vv/ Z U(g® A)V,.
pEr—Qt
Note that a morphism ¢: V' — W of objects in Z4(g® A, g5) induces a morphism ¢”: V¥ — W,

Definition 3.3.5 (The category Z%(g ® A, g5)). Let Z4(g ® A,gs) be the full subcategory of
Z4(g® A, gg) whose objects are those V € Z4(g ® A, gg5) such that V¥ = V.

Proposition 3.2.2 and Lemma 3.3.3 imply that P4(V(\)) € Z(g® A, gg) for all A € AT,

Definition 3.3.6 (Global Weyl module). We define the global Weyl module associated to A € A
to be B
W(A) := Pa(V(M))™

We let w)y denote the image of vy in W ().

Proposition 3.3.7. For A\ € AT, the global Weyl module W () is generated by wy, with defining
relations

(n" @ Awy =0, hwy = Ah)wy, Y M)y =0, forallh €h, ac X(g;). (3.3.3)

a

Proof. Since the weights of W(\) lie in A — Q*, it follows that (n™ ® A)wy = 0. The remaining
relations are clear since they are already satisfied by vy. To prove that these are the only relations,
let W be the module generated by an element w with relations (3.3.3), so that we have an epi-
morphism 71: W — W () sending w to wy. Since the relations (3.3.3) imply the relations (3.2.2),
the vector w € W generates a g-submodule of W isomorphic to a quotient of V' (\). Thus we have
a surjective homomorphism

mo: PA(V(A)) = W, w1 ®u(q) u2vn — wupw, uy € U(g® A), up € U(g).

Since the g-weights of W are bounded above by A, it follows that 7o induces a map W(\) — W
inverse to . ]

In the non-super setting, Proposition 3.3.7 was proved in [CFK10, Prop. 4].
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Proposition 3.3.8. The global Weyl module W (X) is the unique object of T(g ® A, gg), up to
isomorphism, that is generated by a highest weight vector of weight X and admits a surjective
homomorphism to any object of (g ® A, g5) also generated by a highest weight vector of weight \.

Proof. Let V € T(g® A, g5) be generated by a highest weight vector v of weight A. Then
mt®@Av=0, hv=Ah)v, forallheb.

Since the gg-module generated by v is finite-dimensional, we have that Y Ha)+1y = 0 for all
a € ¥(gg). Thus, by Proposition 3.3.7, we have a surjective homomorphism W (\) —» V such that
W)y — V.

Suppose that W is another object of Z(g® A, g5) that is generated by a highest weight vector w
of weight A and admits a surjective homomorphism to any object of Z(g® A, g;) also generated by
a highest weight vector of weight \. In particular, we have a surjective homomorphism 71: W —»
W (). It follows from the PBW Theorem that W (), = U(h® A, )®@cwy. The only elements of this
weight space that generate W (\) are the C-multiples of wy. Thus, possibly after rescaling, we have
m(w) = wy. Now, as above, w satisfies the relations (3.3.3). Thus there exists a homomorphism
mo: W(A) — W sending w)y to w. It follows that m; and 7y are mutually inverse homomorphisms,

and so W = W (\). O

Note that, when A = C, the global Weyl module I ()) coincides with the generalized Kac mod-
ule V(A). In this case, Proposition 3.3.8 reduces to the universal property given in Lemma 3.2.3.

3.4 Local Weyl modules

Recall that g is either a basic classical Lie superalgebra or sl(n,n), n > 2, and that A is an
associative commutative unital C-algebra. The aim now is to describe, in terms of generators and
relations, a universal object in the full subcategory of Z(g ® A, gg) whose objects are the finite-
dimensional modules generated by a highest map-weight vector of a fixed highest map-weight (see
Definition 3.4.2).

Definition 3.4.1 (Local Weyl module). Let ¢ € (h ® A)* such that ¢|,€ A*. We define the local
Weyl module W (1)) associated to ¢ to be the g® A-module generated by a vector w,, with defining
relations

(nt @ Awy, =0, zwy = ()wy, Y HI Ty, =0, forallzeh® A, a € X(gg). (3.4.1)

«

Definition 3.4.2 (Highest map-weight module). A g ® A-module generated by a vector w,, sat-
isfying the first and second relations of (3.4.1) is called a highest map-weight module with highest
map-weight 1. The vector wy, is called a highest map-weight vector of map-weight 1.

Recall that, for each v € AJ, we have an sl(2)-triple {X,, Ya, Ha}-

Lemma 3.4.3. Suppose 1 € (h @ A)* such that X = ¢|ye AT, If o € AY, then Y H) Ty, = 0.
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Proof. The vector Y He) ¥y, has weight A — (A\(H,) + 1)a. On the other hand, it follows from
Proposition 3.3.7 that W (1)) is a quotient of the global Weyl module W (\), and so it is a direct sum
of irreducible finite-dimensional gg-modules. This implies that the weights of W () are invariant

under the action of the Weyl group of gz. But, if s, denotes the reflection associated to the root
a, then s,(A — (A(H,) + 1)a) = A + a does not lie below A. Therefore, Y Ho) 41y, = 0. O

Let v be an indeterminate and, for a € A, o € Ag, define the following power series with
coefficients in U(h ® A):

00 Ha i
p(a,a) = exp (— > ® ¢ u’) : (3.4.2)
i=1
For i € N, let p(a, «); denote the coefficient of u’ in p(a, ). In particular, p(a,a)y = 1.
Lemma 3.4.4. Suppose m € N, a € A, and o € A . Then
(Xoa ®a)"(Yo @)™ — (=1)™ Y (Yo ® a™ ")p(a,a); € U(g® A)(n ® A). (3.4.3)
1=0

Proof. This formula was proved in [Gar78, Lem. 7.5 for the algebra generated by the elements

toE, j>0,
tQF j§>1,
Y oH, j>1,

where ¢ € C[t] and the set {E, F, H} is an s[(2)-triple. Now, applying the Lie algebra homomor-
phism
sl(2)@C[t] = sl(2)®@ A, z@t"—a2z®ad”, meN, zesl(2),

gives our result. O

Remark 3.4.5. Similar relations as the one given in Lemma 3.4.4 were proved in various settings.
See for instance [BC14, Chal3].

For the rest of the chapter we assume that
A is finitely generated.

Proposition 3.4.6. Suppose ¢ € (h ® A)* such that X\ = ¢lye AT. Ifa € A , a1,0g,...,0; € A,
and mq,...,m; € N, then

(Yo ®@a™ - al)w, € spang {(Ya ®@al - a)wy |0 < b < MHy), i=1,...,t}. (3.4.4)

In particular, (Y, ® A)wy, is finite dimensionall.
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Proof. From the first and third relations in (3.4.1), together with (3.4.3), it follows that, for a € A
and m > A\(H,), we have

0=(Xo®a)™(Yo® )" wy = (—=1)™(Ya @ a™ )p(a, a)iwy,
i=0
for any a € A. Since p(a,«)y = 1, we have
(Yo ® a™)wy € spang{ (Yo ® a)wy | 0 < £ < m}.
This implies, by induction, that
(Yo ® a™)wy, € spanc{(Yy ® a)wy | 0 <L < A\(Hy)}, forallmeN, ac A (3.4.5)

We will now prove (3.4.4) by induction on ¢. The case t = 1 follows immediately from (4.4.2).
Assume that (3.4.4) holds for some ¢ > 1. Let my,...,my;1 € N and choose h € b such that
a(h) # 0. Then

(h®aii)(Ya®a™ -0 Jwy = (= a(M) (Yo @ai™ - arf{") + (Ya ®ai™ - 0" ) (h @ aifT") Jwy,
and so

(MDA (Va8 - P wtal(h)(Ya@al™ - - alt Yy, € spanc] (Ya@al™ - - al )y}, (3.4.6)
since (h ® a;}7")wy € Cwy. By the inductive hypothesis, we have
(Yo®a -+ - a7 )w,y, € spang {(h ® a7 (Yo @ alt - atwy, (Yo @ all -+ at)wy | 0 < 6 < )\(Ha)} .
Then, by (4.4.3) (with m; = ¢; for i =1,...,t), we have

(Yo ®@a™ - a}{" )wy € spang {(Ya ®al' - atal T wy, (Yo @ all - alwy | 0 < 4 < )\(Ha)} :

Since the above inclusion holds for all my,...,m;y; € N, we can interchange the roles of m; and
myy1 to obtain

(Yo ®@a™ - a}{" )wy € spang {(Ya ®@alt - alart wy | 0 < 4 < )\(Ha)} :

This completes the proof of the inductive step. The final statement of the lemma follows from the
fact that A is finitely generated. m

Let
LA ={Yve(hxA)"|YhHaI) =0, for some finite-codimensional ideal I of A}.

Proposition 3.4.7. Suppose ¥ € (h @ A)* such that X\ = ¥|y€ AT. If ¢ & L(h ® A), then
W) = 0.
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Proof. Let a € Aar and let I, be the kernel of the linear map

A— HOHI(C (W(@D))\ @ 9—a (g—a ® A>w¢) )
a— (VQui (ua)v), ac€A veW), ueEg .

Since g_, = CY,, Proposition 3.4.6 implies that (g_, ® A)w,, is finite dimensional. Thus, I, is
a linear subspace of A of finite codimension. We claim that I, is, in fact, an ideal of A. Indeed,
since o # 0, we can choose h € b such that a(h) # 0. Then, for all g € A, a € I,, v € W(1),, and
U € g_q, we have

O0=0reg)(ueav=[heguditueadhegl=—-abh)(uega+(uea)(he g

Since (h® g)v € W(¥), and a € I, the last term above is zero. Since we also have a(h) # 0, this
implies that (u ® ga)v = 0. As this holds for all v € W (), and u € g_,, we have ga € I,. Hence
1, is an ideal of A.

Let I be the intersection of all the I,, a € AE]L. Since g has a finite number of positive roots,
this intersection is finite, and thus I is also an ideal of A of finite-codimension. We have

(s @ W), =0 and (n* @ AW (), =0.

Then, since h ® I C [n* ® A,ng ® I], we have (h ® )W ())x = 0. In particular, (h ® I)w, = 0.
Assume ¢ ¢ L(h ® A). Then there exists a € I such that ¢(h ® a) # 0 for some h € b, which
implies that wy, = 0, since
0= (h®a)wy =1Y(h® a)w,,.

Therefore W () = 0. O

Definition 3.4.8 (The ideal I,). For ¢ € (h ® A)* with ¢|,€ AT, let I, be the sum of all ideals
I C A such that (h ® I)w, = 0.

Remark 3.4.9. It follows from the proof of Proposition 3.4.7 that I, has finite codimension in A
and that (Y, ® I;)wy, = 0 for all & € AF. Furthermore, by Lemma 1.2.2, parts (a) and (c), since
I, has finite codimension and A is finitely generated, we have that ]é,V has finite codimension, for

all N € N.
For the rest of the chapter, we assume that
Y is a system of simple roots for g satisfying (3.1.1).
Recall that, by Proposition 3.1.1, such a system always exists.

Lemma 3.4.10. Suppose ¢ € (h ® A)* with |y€ AT. Then there exists Ny € N such that

(- & 1) wy =0,
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Proof. Recall from Section 1.4.1 that the set {Y, | « € X} generates n~. We claim that
(Yo ® Iy)wy =0, forall a € 3. (3.4.7)

By Remark 3.4.9, it suffices to consider the case a € ¥j. Fix such an a. By (3.1.1), there exists
o € Aj such that §:=a+a’ € A
First suppose g is not A(1,1) or sl(2,2). Then dimg, = 1 for any v € A (see Remark 1.4.5).
Thus, rescaling if necessary,
(Xo, Y3 =Y,. (3.4.8)

Then,
(Ya & I¢)w¢ = [Xa/ X A, Yg X I¢]w¢ Q (XO/ X A)(Yg X Iw)ww + (Yg X Lp)(Xa/ X A)w¢ == 0,

where the last equality follows from the fact that (Y3 ® I,)wy = 0 by Remark 3.4.9 and (Xy ®
A)wy, = 0 by the first relation in (3.4.1). This proves (3.4.7).

To prove (3.4.7) for s1(2,2) and A(1,1), we consider g = gl(2,2) and we let b be the subalgebra
of diagonal matrices of g. Denote by {¢; | i =1,...,4} the basis of h* dual to {E;; | i =1,...,4}.
In this case,

Ag={E(e; —€),t(e3 —€4)}, A7 ={E(e; —€3),2(e1 —€q), £(e2 — €3), (€2 — €4)},

and g.,_., = CE, 4, for 1 <r # s < 4. In particular, if we fix o € X7 and o € A{’ such that
f:=a+a € A, then there exist k, ¢, p,q € {1,2,3,4} with k # ¢ and p # ¢, such that g, = CEj
and g_g = CE,,. Since § € AT and o/ € AT, Remark 3.4.9 and the first relation in (3.4.1) give
us that ([Exy, Epq] ® Iy)wy = 0. Regarding the sl(2,2) case, we choose Y, = [Eyy, E,,]. For the
A(1,1) case, we choose Y, to be the image of [Ey 4, E, | in A(1,1). Then (Y, ® I;)wy, = 0. Since
the choice of a € X7 was arbitrary, we conclude that (Y, ® I)w, = 0 for all roots a € Xj.

Now, for f = Y0 .s maaor € AT, we define the height of 5 to be ht 5 := 3" .5, m,. We prove, by
induction on the height of 5, that (Y ® Iitﬁ Jwy = 0 for all 5 € A*. Since g is finite dimensional,
the heights of elements of AT are bounded above, and thus the lemma will follow.

The base case of height one is precisely (3.4.7). Suppose § € AT with ht 5 > 1. Then there
exist ', 5" € AT with ht 8’,ht " < ht 5 such that Y3 € C[Yy, Yz/]. Then

(Vs @ L Ywy = Yo @ I Yar @ 1wy, = 0. O
Corollary 3.4.11. Suppose ¢ € (h @ A)* with |y€ AT, and let Ny, be as in Lemma 4.4.3. Then

Proof. 1t follows from the first relation in (3.4.1) that (n+®lgw)ww = 0. Since (h®Iy)w, = 0 by the
definition of I,,, we have (h®]$"’)ww = 0. Finally Lemma 4.4.3 implies that (n~ ®Ig"’)w¢ =0. O
Lemma 3.4.12. For all A € (h ® A)* with ¢|y€ AT, the set of g-weights (equivalently, gg-weights)
of W (1) is finite.
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Proof. Since the weights of W (\) are contained in A — @7, finitely many of weights of W (\) are
dominant integral. Since W () is a direct sum of gg-modules, its weights are invariant under the
(finite) Weyl group of g5. The result follows. O

Recall that A is finitely generated and the system of simple roots 3 satisfies (3.1.1)

Theorem 3.4.13. The local Weyl module W (1)) is finite dimensional for all ¥ € (h @ A)* such
that ¢|h€ AT,

Proof. By Definition 3.4.1, we have W(¢) = U(n~ ® A)wy. By Lemma 4.4.3, we have (n~ ®
Ny

I," )wy = 0. Thus W(¢) =U(n~ ® A/Ig’”)ww. By Lemma 3.4.12, there exists N € N such that
W) =U, (n_ ® A/]ivl") wy, foralln > N,

where U(a) = >0°,Uy(a) is the usual filtration on the universal enveloping algebra of a Lie
superalgebra a induced from the natural grading on the tensor algebra. Since the Lie superalgebra
n®A/ Liv ¥ is finite dimensional (see Remark 3.4.9), W () is also finite dimensional. O

In the non-super setting, Theorem 3.4.13 was proved in [CPO1, Th. 1] for A = C[¢t,¢7!], and in
[FLO4, Th. 1] for A the algebra of functions on a complex affine variety.

Proposition 3.4.14. Let ¢ € L(h® A) such that Y|y= X € AT. Then the local Weyl module W ()
is the unique (up to isomorphism) finite-dimensional object of T(g ® A, gg) that is generated by a
highest map-weight vector of map-weight 1) and admits a surjective homomorphism to any finite-
dimensional object of T(g ® A,gg) also generated by a highest map-weight vector of map-weight

.

Proof. Let V be a finite-dimensional object of Z(g ® A, gg) that is generated by a highest map-
weight vector v of map-weight 1. It follows immediately from the definition of a highest map-weight
g® A-module that the two first relations in (3.4.1) are satisfied by v. Since the gg-module generated
by v must be finite dimensional, we have also that Y (#)*1y = 0, for all o € ¥(gg). Therefore,
there exists a surjective homomorphism W (y) — V sending w,, to v.

To show that W(v) is the unique representation with the given property, suppose that W is
another module with this property. Then W is a quotient of W (1) and vice-versa. Since both
modules are finite dimensional, it follows that W () = W. O

Corollary 3.4.15. Let v € L(h ® A) such that Y|y= A € AT. Then the local Weyl module
W (1) is the mazimal finite-dimensional quotient of the global Weyl module W () that is a highest
map-weight module of highest map-weight 1.

By [Sav14, Th. 4.16], any irreducible finite-dimensional g ® A-module is a highest map-weight
module, for some ¢ € L(h®A) with ¢|y€ AT. Then, by Proposition 3.4.14, there exists a surjective
homomorphism from the local Weyl module W (v)) to such an irreducible module. In other words,
all irreducible finite-dimensional g ® A-modules are quotients of local Weyl modules.
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3.5 Tensor product decomposition

We conclude this chapter by showing that the local Weyl modules possess a tensor product
property analogous to the one satisfied in the non-super setting (see, [CP01, Th. 2] and [FL04,
Th. 2]). Recall that we are assuming that A is finitely generated and the system of simple roots
¥ satisfies (3.1.1).

Theorem 3.5.1. Fori= 1,2, let ¢; € LIH® A) with \; = ;€ AT, and suppose that I, and I,
have disjoint support. Then

W (1 +1b2) = W (1) @ W (3h2)
as g ® A-modules.

Proof. By Corollary 3.4.11, there exist Ny, Ny € N such that (g ® Iﬁ,")wwi =0 for i = 1,2. Then
the action of g® A on W (1) ® W (1) factors through the composition

G0 AL (geA) @ (geA) > (o A/ e (go A/I2), (3.5.1)

where d is the diagonal embedding. Since Supp(Iy, ) NSupp({y,) = &, Lemma 1.2.2(a) implies that

Supp([ﬁl) N Supp([fp\f) = . Then, by Lemma 1.2.2(d), we have A = Lﬁl + Ié)\f and [ﬁl N Ié}\f =

éﬁllﬁz. Thus, A/L’]b\il]qi\;2 ~ (A/I)1) @ (A/1)?). We therefore have the following commutative
iagram:

g A- & (g2 A) @ (5o A)

(a3

g® A/INE

1

(@ A/ @ (g® A/L)?)

It follows that the composition (3.5.1) is surjective.

Since W (1) ® W (1) is generated as a (g ® A/[ﬁl) @ (g® A/If;f)—module by the vector
Wy, @ Wy, it follows from the above that it is also generated by this vector as a g ® A-module.
Moreover, h ® A acts on wy, ® wy, via ¥ := 1 + 1. Thus W (1) @ W(1)2) is a finite-dimensional
highest map-weight module of highest map-weight . Therefore, by Proposition 3.4.14, it is a
quotient of W (v)).

To simplify notation, let I} = I, Iy = Iy, and N = Ny. Let I = I1Iy = I, N I,. Then I C I.
Therefore, the action of b ® A on Cw,, descends to an action of b @ A/I"V on Cw,. Consider the
induced module

M) :=U(g® A/I") @upeas) Cwy.

It follows from Corollary 3.4.11 that W (1) is a quotient of M (¢)). On the other hand, it is clear
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that the one-dimensional b ® A-modules Cw,, and Cw,, ® Cw,, are isomorphic. Hence,

M) =U(g @ A/IV) @ueparv) Cwy
=U (9 ® (A/I1N D A/IzN)) Qu e/ Naa/ny (Cwy, @ Cwy,)
= (U (9 ® (A/va)) ®U (9 ® (A/]2N>)) Qu(ba(a/1N)eUbeA/1Y)) (Cwy, @ Cwy,)
= (U (9 ® (A/[fv)) Qu(ba(A/IN)) wal) ® (U (9 ® (A/[éV» Qu(ba(A/1Y)) waz)
= M(¢1) @ M(¢2).

So W (1)) is a quotient of M (1)1) ® M (1)s). Fix a surjection 8: M (1) @ M (g) — W (2).
We claim that the image of M (1), ® M(1)2), under 6 is zero except for a finite number of
weights 1 and v. By Lemma 3.4.12, the set D of weights occurring in W (%)) is finite. Thus, the

sets
Di=M-QN(=A+D+Q") and Dy= N —-Q)N(=\ +D+Q")

are also finite. Since, for i = 1,2, the weights of M (1);) are contained in \; — Q7, the image of
M (1), @ M(t)2), under 6 is zero unless p € Ay — Q*, v € Ay — Q" and p+ v € D. Thus it is
nonzero only if 4 € Dy and v € D, and hence the claim is proved.

For i = 1,2, let M(1;)’ be the submodule of M(1);) generated by the weight subspaces M (1;),
with o ¢ Dy, and let M(v;) = M(¢;)/M ;). Then W(v) is a quotient of M (1;) @ M (1y).
Because I; has finite codimension and there are only a finite number of weights occurring in the
quotient M (1);), this module is a finite-dimensional highest map-weight module of highest map-
weight ;. Then, by Proposition 3.4.14, it is a quotient of W (¢;). Thus, M (1) ® M (1) is a
quotient of W (1) ® W (1)), which implies that W (1)) is a quotient of W (1) ® W (13). Since the
modules W () and W () @ W (12) are both finite dimensional, the fact that one is a quotient of
the other implies the isomorphism in the statement of the theorem. O
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3.6 Appendix

In this appendix we describe the root systems, the distinguished system of simple roots and the
distinguished Cartan matrix of all basic Lie superalgebras. See [FSS00, Tables 3.54, 3.57-3.60],
for details.

Recall that if g is either a basic Lie superalgebra or sl(n,n), n > 2, then a Cartan subalgebra
of g is the same as a Cartan subalgebra of the reductive Lie algebra g;.

3.6.1 The non-exceptional cases

In all the cases in this section, the Cartan subalgebra of g is a subspace of a space of diagonal
matrices. In what follows, the roots will be expressed in terms of the functionals given by

sz-(diag(al, P ,CLN)) = Qa;,

for any diagonal matrix.

The basic Lie superalgebra g = A(m — 1,n —1).

In this case gy = sl(m) @ sl(n) & C. Set §; := eppj, for 1 < j <mn. If1<i%#j<mand
1 <k +#/{¢<n,then

A ={e; —¢j, 6p— s, €i— Ok, O — &},
Ay ={ei—¢&j, o —oc}, Ay={e; =0, o — i}
The distinguished system of simple roots II is given by
a1 =01 —02, ..., Qp_1=0,_1—0p, Q =0, — &1,
Qpt1 =E1— €2, -y Opim—1 = Em—1 — Em,

where «, is the only odd root in II. The distinguished Cartan matrix is

0 - 0
: -1
0 0 -1 2|-1
-1 0| 1
1] 2 -1 0 0
-1
0 0
0 0 0 -1 2
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The basic Lie superalgebra g = A(n — 1,n —1).

In this case g5 = sl(n) @ sl(n). Set §; == g,4;, for 1 <j <n. If1 <i%#j<n,then

A= {51' — Efj, 52 — 5j7 E;i — (5]', 5j — 81'},
Ag={ei—¢j 0:—0;}, Ar={e— 0, 0; —ei}.

The distinguished system of simple roots II is given by

051:51—(52, ceey Oénflz(snfl_(sna Oénzén—€1,

Opt1 = €1 — €2, ..., Oop_1 = Ep—1 — Enp,

where o, is the only odd root in II. The distinguished Cartan matrix is

2 -1 0 -+ O---]--- e 0
0o . .0
S SO
0 0 -1 2|-1
-1} 0] 1
-1 2 -1 0 0
-1
0 0
1
0 0 0 -1 2

The basic Lie superalgebra g = B(m,n).

In this case g5 = s0(2m + 1) @ sp(2n). Set §; 1= gyqj, for 1 < j <n. If 1 <i# j < m and
1 <k+#/{<n,then

A= {:|:<€Z + Ej, :l:é?i, :|:5k + 5@, :|:25k, :|:€Z' + 5k; :|:5k},
A() = {:i:€Z + €j, :l:€i, :l:5k + 5@, :i:25k}, AI = {:l:&l + 5k, :Edk}

The distinguished system of simple roots II is given by

041:51—(52, ceey Oénflz(snfl_dna an:é‘n_gla

Opnt1 = €1 — €25 ooy Opym—1 = Em—1 — Emy Um4n = Em,
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where o, is the only odd root in II. The distinguished Cartan matrix is

0 - 0
L
0 0 -1 2|-1
-1 0| 1
1| 2 -1 0 0
-1
0 -1 0
-1 2 -1
0 0 0 -2 2

The basic Lie superalgebra g = B(0,n).
In this case g5 = sp(2n). Set §; :=¢;, for 1 < j<n. If 1 <k # ¢ <n, then

A = {£0y, £ bp, £205, £0i},
Aj = {£0y + g, £20,}, A7 = {£0;}.
The distinguished system of simple roots II is given by
y Qp—1 = 5n—1 - 5m Qp = 571;

a1:51—52,

where «, is the only odd root in II. The distinguished Cartan matrix is

2 -1 0 0
-1 2 :

0

: 2 -1 0

: -1 2 -1

0 0 -2 2

The basic Lie superalgebra g = C(n + 1).
In this case g5 = s0(2) @ sp(2n). Set §; :=e94;j, for 1 < j <n. If 1 <k # ¢ <n, then

A= {ﬂ:(sk + (Sg, :l:25k7 :i:€1 + 5k},
A(’) = {:ték + (54, :tQ(Sk}7 Ai = {:]:81 + 6k}
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The distinguished system of simple roots II is given by
ap=¢€1 —01, @g =01 — 0, ..., Qp =0p_1— O, Qpy1 = 20y,

where o, is the only odd root in II. The distinguished Cartan matrix is

ol 1 0 -+ .. 0
-1/ 2 -1 0 0
0—-1 :
0 0 -1 0
-1 2 =2

0 0o -1 2

The basic Lie superalgebra g = D(m,n).

In this case g5 = s0(2m) @ sp(2n). Set §; = €4y, for 1 < j < n. If1 <i# 5 < m and
1 <k +#/{¢<n,then

A= {:i:{:‘l + €j, j:ék + (Sg, :l:2(5k, :|:8i + (5k},
A() = {:f:a’:‘Z + €js +0, + 5(, i26k}, Ai = {j:gl + 5kz}

The distinguished system of simple roots II is given by

O51:51_527 ) an—lzén—l_(sna O-/n:(sn_gla

Opy1 = &1 — €2, -+, Opnim—1 =Em—-1 — Emy U¥min = Em—1 + Emy

where o, is the only odd root in II. The distinguished Cartan matrix is

0 . 0
o
0 0 -1 2|-1
~1] 0] 1
1| 2 -1 o0 0
-1
0 1 -1
-1 2 0
0 0 -1 0 2
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3.6.2 The exceptional cases

Recall that basic Lie superalgebras possesses a non-degenerated bilinear form. Let (-, -) denote
such a form.

The basic Lie superalgebra g = F'(4).

In this case g5 = s[(2) ® s0(7). Consider the vectors ey, e, e3 (corresponding to s0(7)) and §
(corresponding to sl(2)) such that (g;,¢;) = 05, (0,6) = =3, and (g;,0) = 0. In terms of these
vectors, we have that

1
A:{:]:(S, :t&fi:téfj, :t&fi, a(igliggiggié)},
1
Ag = {£0, xe,*¢;, £}, Ar= {§(i51 +tegtez3td)}

The distinguished system of simple roots II is given by

1
a1=§(5—61—€2—63), Qg = €3, Q3 = €9 — €3, Qg = €1 — €2,

where «; is the only odd root in II. The distinguished Cartan matrix is

0o 1 0 0
-1 2 =2 0
0o -1 2 -1
0O 0 -1 2

The basic Lie superalgebra g = G(3).

In this case gz = sl(2) @ Gy. Consider the vectors €1, e5,e5 (corresponding to Gs) and §
(corresponding to sl(2)) such that &1 + 2 +¢e3 =0, (g5,¢5) = 1 — 38,5, (0,6) = 2, and (&;,9) = 0.
In terms of these vectors, we have that

A= {:l:25, :|:€i, & — €&y, j:(;, :|:8i + 5},
Ag = {£20, *e;, €, —¢;}, Ap={=£d, e £ 6}

The distinguished system of simple roots II is given as follows:
ap =0 +e3, az=¢;, a3 =&y — €y,

where a4 is the only odd root in II. The distinguished Cartan matrix is

0O 1 0
-1 2 =3
0 -1 2
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The basic Lie superalgebra g = D(2,1;a).

In this case gy = sl(2) @ s[(2) @ s[(2). Consider the vectors €1, 9,3 (each one corresponding
to one of the copies of s[(2)) such that (e1,61) = —(1 + @) /2, (£9,€2) = 1/2, (€3,€3) = /2, and
(€i,65) = 01if i £ j. In terms of these vectors, we have that

A= {:i:2€i, +e; £y £ 83},
A() = {:l:2€z}, Ai = {:|:€1 + E9 + 83}.

The distinguished system of simple roots II is given by
Q] = &1 — &9 — &3, Qg = 262, Q3 — 283,

where oy is the only odd root in II. The distinguished Cartan matrix is

_—_ o

1
2
0

o o R
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Chapter 4

Super-Weyl functors

In this chapter we study Weyl modules from the point of view of Weyl functors, i.e., we
introduce the super version of the functors defined in [CFK10]. We consider map superalgebras
g ® A, where A is an associative commutative unital C-algebra and g is a basic Lie superalgebra
or sl(n,n), n > 2. Via such functors, we recover the local Weyl modules. We also prove properties
that are analogues of those of Weyl functors in the non-super setting.

4.1 A good system of simple roots I1

In Section 4.4, we will be interested in systems of simple roots > satisfying the following
property:
If 0 is the lowest root of g with respect to

the triangular decomposition induced by ¥, then 6 is even. (4.1.1)

Recall that IT = {v1,...,7,} denotes a distinguished system of simple roots of g, where ~; is
the only odd root in IT. The next proposition shows that a system of simple roots satisfying (4.1.1)
always exists.

Proposition 4.1.1. Let IT be a distinguished system of simple roots for g.
a. If g is a basic Lie superalgebra of type II, then 11 satisfies condition (4.1.1).

b. If g is gl(n,n), n > 2, sl(n,n), n > 2, or a basic Lie superalgebra other than B(0,n), then
. (II) satisfies condition (4.1.1).

In particular, g admits at least one system of simple roots satisfying (4.1.1).

Proof. Part (a) follows from the fact that the Z-grading of g induced by II gives us g_» # 0 and
g = 0 for all k> 2. This implies that the lowest root vector of g lies in g_», and so § € Aj.

To prove part (b), notice that if g is of type I, then the Z-grading of g induced by II is of the
form g_; @ go ® g1. In particular, a highest (resp. lowest) vector root of g lies in gy (resp. g_1),
and so a distinguished system II does not satisfies (4.1.1). Let X3 € gg be a highest weight of g
with respect to 11, it is clear that it is an element of g;. On the other hand, since g is simple and
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go # 0 we must have that [Y, , X3] = Z # 0. Notice that Z € go = gg. We claim that Z is a
highest weight vector with respect to r,(Il) = II'. To prove this, we will see that [X./, Z] = 0 for
all v/ € II". Recall from the proof of Proposition 3.1.1 that if g is gl(n,n) (n > 2), sl(n,n) (n > 2),
or a basic Lie superalgebra other than B(0,n) or D(2,1;«a), then

Ve =Ty (Vs) = —Vsr Vo1 = Ty (Vs1) = Vs + Vo1 and Viu; = 1y, (Vo)) = Yoy, for all j > 2.

Thus
[X%?Z] = [Y%?[ Vs ] = [[ Vs %] XB] [st[ stXﬁH 0,
[X’ygipz] = [X73+'Ysil7|: Vs ]] = [ YsF+Vs+10 ’Ys] ] [ ’st[ 'Ys+’*/sj:17X ]] = 07
[X Viis? 2] = [X’Ys:tj’ [Y%vX,BH = HX’YS:I:j7Y’Ys]’X5] + [szv [X%ij’XBH =0, for all j > 2,

where the first line follows from the fact that [Y, Y, | = 0, the second line follows from the fact
that X3 is a highest weigh vector with respect to II, and the third line follows from the fact that
(X, Y5.] = 0 along with the fact that X3 is a highest weight vector with respect to IL.

If g = D(2,1;a), then again by the proof of Proposition 3.1.1, we have that II' = {—~;,7 +

v2,71 + 73}. Thus

[X’Yi Z] = [Yv%? [Y%’XﬂH HY%’Y%] Xﬁ] - [YY17 [YvuXﬂH = Oa
[XW;-’ Z] = [X"ﬂ-l-”/j: [Y%?Xﬂn = [[XWH—W? Y%]: Xﬁ] + [Y"ﬂ? [X71+7j7X5H =0, forall j =1,2,

where the first line follows from the fact that [Y,,,Y,,] = 0, and the second line follows from the
fact that X3 is a highest weigh vector with respect to II.

Therefore we have proved that Z € gz is a highest vector with respect to the triangular
decomposition induced by IT'. In particular, 8 — v, (resp. 5 — 71, for g = D(2,1;«)) is the root

associated to Z. Thus 6 = v, — (3 (resp. 71 — f3, for g = D(2,1;«)) is the lowest root desired. [

Remark 4.1.2. There are finite-dimensional simple Lie superalgebras that are not contragredient
Lie superalgebras. In particular, we do not have systems of simple roots satisfying nice properties
as those given in Section 1.4.1. On the other hand, any finite-dimensional simple Lie superalge-
bra has a triangular decomposition. So it make sense talk about highest (or lowest) root with
respect to such a decomposition. Due this fact, Property 4.1.1 is a more applicable condition than
Property 3.1.1.

4.2 Projective objects

Let g be either a basic classical Lie superalgebra or sl(n,n), n > 2, and let A be an associative
commutative unital C-algebra. Let A\ € A*. Throughout this chapter we let Z) (resp. Z4) denote
the category Z5(g ® A, g5) (resp. Za(g ® A, g5)). See Section 3.3, for details.

For all V' € Ob g-mod, consider the module P4(V') given by (3.3.1). Recall that one can regard
V as a g-submodule of P4(V) via the natural identification V=C @ V C P4(V).
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Lemma 4.2.1. Let V be a g-module whose restriction to gy lies in Z. Then Pa(V') is a projective
object in L. Further, there exists a surjective homomorphism Pa(V) — V' given by u @ v — uv.
In particular, the category L has enough projectives.

Proof. Recall that by Proposition 3.3.3, the module P4 (V') is an object in Z4. The fact that P4(V)
is projective in this category is a particular case of a standard result proved in [Hoc56, Lem. 2].
The map in the statement is clearly a surjective homomorphism of g ® A-modules. Finally, the
fact that any V' € Z4 is a quotient of P4(V'), which is a projective object in Z,, implies that Z4
has enough projectives. O]

Recall that P4(V (X)) € Z, for all A € AT,

Corollary 4.2.2. For any A\ € AT and V € I}, the module P,(V)* is a projective object in T7.
In particular, the category I has enough projectives.

Proof. Let W € ObZj. Notice that any homomorphism from P4(V) to W descends to a homo-
morphism from P4(V)* to W. On the other hand, P4(V) is a projective object in Z4, and Z} is a
subcategory of Z4. Thus P,(V)? is a projective object in Z7. O

4.3 The super-Weyl functor

Let A be an associative commutative unital C-algebra and let g be either a basic Lie superalge-
bra or sl(n,n), n > 2. In this section we define the super-Weyl functors. These are the analogues,
in the super setting, of the Weyl functors defined in [CFK10, p. 525].

For A € AT, we set

Anngga(wy) ={u € U(g® A) | uwy = 0},
Anngga(wy) = Anngga(wy) NU(Hh @ A).

It is easy to see that Anngga(w,) is an ideal of U(h ® A).
Definition 4.3.1 (The algebra A,). We define the quotient algebra
A, =U(h® A)/Annyga(wy). (4.3.1)
Lemma 4.3.2. The g ® A-module W () is a right h @ A-module, where
(vwy)x = uzwy, forallue U(g® A) andz € U(h® A).
Proof. We shall prove that
uwy = v'wy = urwy = u'zwy, for all u,u’ € U(g® A).
Or equivalently,
(u—u)wy =0= (u—u)zwy, =0, for all u,u’ € U(g® A).

Note that it is enough to prove that zw, satisfies the relations (3.3.3), for all x € A,. Since
xr € A,, it follows that zw, € W (), and hence the first and second relations in (3.3.3) are held.
Since the gg-module generated by aw, is finite-dimensional, the second relation in (3.3.3) is also
satisfied. O]
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By Lemma 4.3.2, W()) is a (g® A, A\)-bimodule, where each weight space W (), is a right A -
submodule. In particular, the assignment W (\), — A, such that wy +— 1a,, defines a surjective
homomorphism of A -modules whose kernel is Annyga(w,). Thus we have that

WM\ = Ay

as right A y-modules.
For A € A™, we let A, -mod denote the category of left Ay-modules. Let M, M’ € Ob A -mod
and let f € Homa, (M, M"). Since id: W(X) — W(A) is even, it is clear that

id®f: WA()\) XA, M — WA()\) KA, M’
is also an even homomorphism of g ® A-modules.

Definition 4.3.3 (The super-Weyl functor W}). Let A € AT. The super-Weyl functor is defined
to be
W Ay-mod — Iy, WAIM =W\ ®a, M, Wif=id®f,

for all M, M’ € Ob Ay -mod and f € Hom(M, M').

Note that
WAA, =W (N)

as U(g ® A)-modules. Moreover
(WAIM)pu =2 W(N), ®a, M, as Ay-modules for all weights € h* and M € Ob A, -mod.
Lemma 4.3.4. For all A € AT and V € I}, we have (Annyga(wy))Vy = 0.

Proof. If v € Vj, then it is clear that n*v = 0 and hv = A(h)v, for all h € . Since the U(gg)v C V
is a finite-dimensional gg-submodule, we have also that Y H#e)*ly = 0, for all o € X(gg). Thus
the g-submodule U(g)v C V is a quotient of V(\). If 7 : V(\) — U(g)v is a projection, then after
rescaling, if necessary, we may assume that 7(vy) = v'. We therefore have an even linear map

0:U(g® A) Qu(y VN =V, wu Qugv—ur(v), ucU(gRA),ve V),
where
Unt® A) @ vy C ker .
Thus ¢ descends to a homomorphism ¢ : W(A\) — V sending wy to v'. In particular, if u €
Anngga(wy), then uv = @(uw,) = ¢(0) = 0. O

It follows from Lemma 4.3.4 that the left action of U(h® A) on V' € ObZ7} induces a left action
of Ay on V). The resulting left A -module will be denoted by R4 V. Furthermore, it is clear that
for m € Homgy (V, V'), the restriction my : Vi — Vy is a morphism of A-module. Thus

Vi RYV, 7 Rim =Ty

defines a functor R} : Z) — A, -mod. Notice that R’ is exact since the restriction to a weight
space is exact.

In the non-super setting, the next proposition was proved in [CFK10, Prop. 5] (in the untwisted
case) and in [FMS15, Prop. 4.8] (in the twisted case).
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Proposition 4.3.5. The functors W? and R satisfy the following properties:
a. RYW? = idA, -moda as functors.
b. W7 is left adjoint to R.
c. The functor W’ maps projective objects to projective objects.
Proof. To prove part (a), consider M € Ob A, -mod and note that
RYWAM = (WAM), = W(N), @, M = Ay @a, M2 M.
To prove part (b), we need to find natural transformations
e: WiR) — idfﬁ’ 7+ ida, -med — RAWY,
such that for any M € Ob A, -mod and V € ObZ)}, we have the following equality of morphisms
idwa v = €wu © Wi (nar), idpyy = Rii(ev) o RV - (4.3.2)
Let us start defining 7, for M € Ob A, -mod. Let
s M = RYWAM,  m— wy @ m.
It is easy to see that for any M, M’ € Ob A, -mod and f € Homa, (M, M’), we have that
mr o f=RAWA(S) o

Thus, the collection {ny € Homa, (M, RYWAM)|M € Ob Ay -mod} defines a natural transfor-
mation 7 : ida, -moa — RQWQ.

For € we proceed in the following way: for each V € ObZ}, one regards W(\) ®c RV as
a left g ® A-module via the action of g ® A on W(\). With respect to this action, we have a
homomorphism of g ® A-modules denoted by ¢, : W(\) @c R4V — V| such that uwy ® v + v
for u e U(g® A) and v € V). Next, notice that for any a € Ay, u € U(g® A) and v € V),

e1(uwya @ v) = €1 (uawy @ v) = uav = € (uwy @ av).
Thus the map €; factors through a homomorphism of g ® A-modules
ey : W(A) ®a, R}V = WARLV — V.

One can see that the collection {e € Homgga(WARAV, V)|V € ObZ)} defines a natural trans-
formation € : RQWQ — id A, -mod-
Finally, for any M € Ob A, -mod and m € M, we have

(ewr s © W (nar)) (uwy, @ m) = ewu (UW) ® wy ® m) = uwy @ m,
and for V€ ObZ}, m € RV
(R (ev) 0 nray)(m) = R (ev) (wy @ m) = m.

Then part (b) is proved.
Part (c) follows from the fact that W7 is left adjoint to a right exact functor. O
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Corollary 4.3.6. For any A € A™, the global Weyl module W (\) is a projective object in ).

Proof. Since A, is a projective object in Ay-mod and W4 A, = W (), the result follows from
Proposition 4.3.5(c). O

By Corollary 4.2.2, the category Z} has enough projectives. Thus, for M, N € ObZ)} and
n € N, we can consider Extgj4 (M, N) as defined in Section 1.1.

Theorem 4.3.7. Let V € I). ThenV = WARAV if and only if for any U € I) such that Uy = 0,
we have

Homgzy (V,U) =0, Extp(V.U) =0. (4.3.3)

Proof. Let V € ObZ) with V= WARAV. Let U € ObZ} with Uy = 0 and let ¢ € HomIQ(V, U).
Since we are assuming V = WARAV, we have that vy @ Vy generates V as a U(g® A)-module. On
the other hand, it is clear that homomorphisms of modules preserve weights, and so p(v) ® Vy) C
Uy =0. Thus ¢ = 0.

For the second statement, we first notice that the category A,-mod has enough projectives.
Therefore, there exists a surjective homomorphism 7 : P — R}V, where P is a projective object
in A -mod. Since the functor W¥ is exact, we have an epimorphims of g ® A-modules

l@m: WYP — WiR\V 2V,

where, by Proposition 4.3.5(c), WA P is a projective module. Since id @7 is even, K = ker(1 ® 7)
is a submodule of WP, and so we have the short exact sequence

0= K —WiP =V 0. (4.3.4)

Notice now that K = W(\) ®a, ker7 is generated by W (\)) ®a, ker 7. Again, since homomor-
phisms between modules preserve weights, and U, = 0, we must have that Homzz(K ,U) = 0.
Now, the long exact sequence obtained by applying the functor Homzx (—,U) to (4.3.4) is given by

0 — Homgy (V,U) — Homgy (W3 P,U) — Homp, (K, U) —
— Extyy (V,U) — Extp, (WA P, U) = Exty (K,U) = -,

where Exté (WA P,U) =0 (since WA P is projective) and Homyz (K,U) = 0. But this shows that
Ext%z(v, U) =0, as we wanted.

Conversely, suppose V € ObZ} satisfies (4.3.3). Set V' = U(g ® A)Vy. It is clear that V/V' €
ObZ) and (V/V’), = 0. Thus, the first condition in (4.3.3) implies that Homz (V, V/V') =0, and
hence V = V'. Consider now the homomorphism of g ® A-modules ¢;, : WARAV — V defined in
the proof of Proposition 4.3.5. Notice that V' = V implies that such a map is surjective. Since ey
is even, we have that U = ker ey is a submodule of WARAV. We claim that Uy = 0. Indeed, an
arbitrary element of (WQRQV)A is of the form v = wya ®a, v, where a € A and v € V). If such
an element is in U, then 0 = ey (wya ®a, v) = av. Thus v/ = wy ®a, av = 0.
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Consider the short exact sequence
0—=U—WAR\V =V —0.
The long exact sequence yielded by applying Homgx (—,U) is
0 — Homz (V,U) — Homgy (WARZV,U) — Homgpy (U, U) — Extyy (V,U) = -+,

where Ext%j‘(v, U) = 0 (by hypotheses) and Homgx (WARAV,U) = 0 (by the first part). Thus
HomIQ(U, U) = 0, which implies that U = 0. Therefore €, defines an isomorphism between
WARAV and V. 0

Theorem 4.3.8. The functor W% is exact if and only if
Extzy (WAV.U) =0, (4.3.5)
for all V€ Ob A)-mod, and for all U € Ij“, with Uy = 0.
Proof. Let V€ Ob A -mod and consider a short exact sequence of A -modules
0-V"'>V =V =0
If the condition (4.3.5) is satisfied, we can consider the induced short exact sequence
0= K —= WiV = WiV =0,
where K is the kernel of the map W4V” — WAV. Applying Homgzx (—,U) to this sequence gives
0 — Homgy (W3V',U) — Homgy (WRV,U) — Homp (K, U) — Extp, (WRV', U) —
— Extz, (WAV,U) = Extpy (K,U) — Extz,(WRV,U) — -
Thus Theorem 4.3.7 (applied to W4V and W} V’) along with condition (4.3.5) imply that
Homzy (K,U) =0, and Extp (K,U)=0, forall U € ObZ} such that Uy = 0.

Hence, again by Theorem 4.3.7, K = WARAK = WA K,. Let now M be the kernel of the map
WAV"” — K. Using the fact that RYW? = ida, moq and that the map V" — V' is injective, we
obtain that M, = 0. Applying Homgz, (—, M) to the short exact sequence

0—M-—=WiYV' - K—=0
we get the long exact sequence

0 — Homgy (K, M) — Homgpy (WAV", M) — Homgy (M, M) — Extp, (K, M) — -+,
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where Ext%z(K, M) =0 (since My = 0) and Homg, (WAV” M) = 0 (by Theorem 4.3.7). Thus
Homgp (M, M) = 0, and so is M.

Conversely, suppose W% is exact. Let V € ObAjy-mod and let P — V be a surjective
homomorphism of A,-modules, where P is a projective object in A -mod. Let V' be the kernel
of this map and consider the short exact sequence 0 — V' — P — V — 0. Since W7, is exact, the

sequence
0— WiV — WiP — WiV =0

is exact as well. If U € T} with Uy = 0, then we can apply HomI?l (—,U) to the above sequence to
get the long exact sequence

0 — Homzy (W3V,U) — Homzy (W3 P, U) — Homzy (WRV', U) — Exty, (WAV,U) —
— Ext, (WP, U) = Exty, (W3V', U) — Extz (WRV,U) — Ext7, (WA P,U) -,
where EXt%j, (WAV',U) = 0 by Theorem 4.3.7 (here we are using that WAR)(WAV') = WAV'),
and Ext%jx (WA P,U) =0, since W) P is projective in Z}. Thus Ext%i (WAV,U) =0. O

In the non-super setting, Theorems 4.3.7 and 4.3.8 were proved in [CFK10, Th. 1 and Cor. 3]
and in [FMS15, Prop. 4.8], for untwisted and twisted cases, respectively.

4.4 The right A,-module W (\)

For the remainder of the chapter, we assume that
A is finitely generated.

Lemma 4.4.1. If A e AT, o € AT,

ai,as,...,a; € A, and mq,...,my € N, then
(Yo @ a™ ---a)wy € spang {(Yo @ all---a)wyAy |0 <l < MNHy), i=1,...,t}. (44.1)
In particular, (Yo ® A)wy is a finitely generated right A-module.

Proof. By Lemma 3.4.3, we have that Y X(#«)+1y, = 0. Thus from the first and third relations in
(3.3.7) along with (3.4.3), it follows that for a € A and m > \(H,)

0= (Xo®a)"(Yo®1)" wy =3 (=1)"(Ya @ " ")pla, a)iws,
i=0
for any a € A. Since p(a, )y = 1, this shows that
(Yo ® a™)wy, € spanc{(Yy ® a)wyA, | 0 < £ < m}.
This implies, by induction, that

(Yo ® a™wy € spanc{ (Y, ® a)wyAy |0 < L < A(H,)}, forallm €N, ac A (4.4.2)

68



We will now prove (4.4.1) by induction on ¢. The case t = 1 follows immediately from (4.4.2).
Assume that (4.4.1) holds for some ¢ > 1. Let my,...,my1 € N and choose h € b such that
a(h) # 0. Then

(h@a ) (Ya@al™ - a)wy = (—a(h)(Yo@a™ - a7") + (Yo @a™ - -af")(h @ a{"))wa,
and so

(h @ al ) (Yo @ a -+ al )wy + a(h) (Yo @ ai™ - - a7 wy € spanc{(Ya @ ai™ - - - a" )wyA,},

(4.4.3)
since (h ® a;y7" )wy € wyA,. By the inductive hypothesis, we have that elements of the form
(Yo ®ai™ -+ a;}{" )wy are in

spang {(h @ ap T (Yo @ alt - al)wrAy, (Yo @ alt - al)wyAy |0 < 4 < )\(Ha)} :
Then, by (4.4.3) (with m; = ¢; for i = 1,...,t), we have
(Yo®a™ - - - a; 7" )wy € spang {(Ya ®al - altal Ty, (Ya @ all - ai ) waAy |0 < 6 < )\(Ha)} :

Since the above inclusion holds for all mq,...,m;y; € N, we can interchange the roles of m; and
myy1 to obtain

(Yo ®a™ -+ - a7 )wy € spang {(Ya ®att--- affafff)wAA,\ |0<¢ < )\(Ha)} .

This completes the proof of the inductive step. The final statement of the lemma follows from the
fact that A is finitely generated. O

Proposition 4.4.2. For all A € A, the algebra A is finitely generated.

Proof. Suppose a1, as,...,a; € A is a set of generators of A and let mq, ms,...,m; € N. One can
see from the proof of Lemma 4.4.1 that (Y, ®a7™ - - - ay"*)wy can be written as a linear combination
of elements of the form (Y, ®at! - - - ai')P(a, {1, . . ., €y)wy, where 0 < £; < X\(H,), foralli = 1,...,t,
and each P(a,fy,...,¢;) is a linear combination of finite products of elements of U(h ® A) of the
form (H, ® af ---al*).

On the other hand,

(Ha @ - = [Xa ® 1, Yo ® " -y = (Xo @ 1)(Ya @ @} - -~ a Yy,
where the last is a linear combination of elements of the form
(Xo @ D) (Y @alt---a)Pla, by, ... 0wy = (Hy ®@al - al)Pla, by, . .. L) wy.
Hence, we obtain that
H, ® (af,...,a" ) wy = P(a,mq, ..., my)wy,

where P(a,mq,...,my) lies in the subalgebra of U(h ® A) generated by the elements of the form
H, ® (a',... a"), with 1 < ¢y,...,¢ < A(hg). This implies that A, is a quotient of a finitely
generated algebra, and so it is finitely generated as well. O]
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For the remainder of the section, we assume that
Y is a system of simple roots for g satisfying (4.1.1).

Recall that, by Proposition 4.1.1, such a system always exists. Furthermore, since 6 is even,
Lemma 4.4.1 implies that for all a1, as,...,a; € A, and mq,...,m; € N

(Yo @ ai™ ---al™)wy € spang {(Yo @ al' ---a)wyAy | 0 < 6 < M(Hy), i =1,...,t}.

Theorem 4.4.3. For all A € AT, the global Weyl module W () is a finitely generated right A-
module

Proof. Since § € Ay is a highest root and g is simple, any element in g lies in the span of
{[Xiy, [ Xy [ [ X, Yol -2 )] | 41, ik € I, k € N}. Suppose aq,aq,...,a; € A, and my,...,my; €

)

N. Let us prove, by induction on k € N, that ([ Xy [Xigs [ - - [ X, Yo - ]] ceai"wy €
spanc{([Xi,, [Xiy, [ - [Xi,, Yo] .- ]l @ aft - af ) wnAy | 0 < € < MN(Hy), i = t} Indeed, for
any ¢ € I we have

(X5, Yol @ ai™ - af"ywn = [Xi @ 1, Yy @ " -~ ]y
=(X;@1)(Yg®al™---af")wy
€ spanc{([X;, Yp] ® ay' - - a; )waAy | 0 < 0; < M(Hy), i =1,...,t},

where the last line follows from Lemma 4.4.1 applied to 6 € Ay. Considering iq,...,ix € I, k € N,
we get

([Xip [Xi2> [ [Xlk’ Yb] o 'm®a71nl o 'a:nt)wA = [Xi1®17 [Xi2®17 [ o [Xik®1’ YV9®a71n1 Y a;nt] o 'mwA
= [Xi1®17 [Xi27 [ [X2k7 }/9] o ']]®aml T a?t]ub\ - (Xil ®1)([Xi27 [ o [Xiw Yb] o 'H®a§m o -CL?%)U))\
6{([ 117[ %27[' [XWYO]"']H®a€1“‘aft)wAAA|0§€i</\<H9)7 izlv"'vt}’

where the last line follows by induction.
Since g is finite dimensional, there exists N € N such that [X;,, [X,,,[ - - [Xi,, Ys] = 0 for all

k > N. Thus the theorem follows. O]

Corollary 4.4.4. If M € A,-mod is finitely generated (resp. finite dimensional), then WM is
a finite generated (resp. finite dimensional) g ® A-module. [

Remark 4.4.5. In the non-super setting, Proposition 4.4.2 and Theorem 4.4.3 were first proved
for the untwisted case in [CFK10, Th. 2(i)]. The twisted version of these results was proved later
in [NS13, Theorems 5.8 and 5.10]. We would like to point out that in both cases the analogues of
Theorem 4.4.3 do not depend on the choice of the system of simple roots.
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4.5 A tensor product property

Recall that g is a basic Lie superalgebra or sl(n, n), n > 2. Let C be an associative, commutative
unital C-algebra and let A:U(h®@C) — U(h® C)@U(h® C) be the diagonal map. Let A, u € A™,
and consider the Weyl modules WA (X + ), WA(A) and W4(). Since

A (Annpge(wasy)) € Anngge(wy) @ U(h ® C) + U(h ® C) ® Anngge(wy),

the map A induces a homomorphism of algebras A, ,: Cy;, — C\ ® C, (recall that the symbol
C. is defined to be the quotient U(h ® C)/Annggc(w,)). If M € Cy-mod and N € C, -mod, then
the tensor product M ® N can be view as a left C,,,, where the action is induced by A, ,. We
denote this Cy;,-module by A} (M ® N).

Let m:C' — A be a surjective homomorphism of algebras. The map idm:g® C — g® A
is clearly even, and so it is a homomorphism of superalgebras. This homomorphism induces an
action of g ® C on any g ® A-module V. We let (id ®@7)*(V') denote such a g ® C-module.

In the non-super setting, the next results in this section were proved in [CFK10, §4].

Proposition 4.5.1. Assume that A and B are commutative, associative unital C-algebras. Let
C=A®B, and let m5:C' — A and wg: C — B be the two canonical surjective homomorphisms
of algebras. If \,p € AT, M € ObAy-mod and N € ObB,-mod, then there exists a surjective
homomorphism of g ® C'-modules

W™ (A3, (M ® N)) = (id@ma) (WiM) @ (id @mp)" (WEN).

Proof. Since g C = (g A) @ (g® B), the g C-module (id @m4)*(Wa(N)) ® (id @7p)* (Wg(p)) is
generated by the vector wy ® w,. Such a vector satisfies (3.3.3). Therefore there exists a surjective
homomorphism ¢: We(A + 1) — (id @7ma)*(Wa(N)) @ (id @7p)*(Wg(u)) of g ® C-modules, such
that o(wyy,) = wa®@w,. Since (id @m4)*(Wa(A)) is a right Cy-module and (id ®7g)*(Wg(p)) is a
right C,-module, we have that the tensor product (id ®m4)*(W4(N\)) ® (id @7p)*(Wg(n)) is a right
Cy ® Cy-module, and so A3 ((id @ma)*(Wa(\)) ® (id®@7p)*(Wg(1))) is a right Cyy,-module. Tt
is clear that ¢ is also a homomorphism of right C,,,-modules. Thus

WeA+ 1) @cyy, A3 (M @ N) — A3 ((Jd @ma)" (Wa(A) @ (id @7p)" (Wa(p)) @c,,, (M @ N)

Wryp DCy,, (m®n) = (wy® wu) Qciiy, (m®n)
defines a surjective homomorphism of (g ® C, Cy4,)-bimodules. On the other hand, the map

AL ((d @) (Wa(N) @ (id@mp) (Wa(p))) ®c,,, (M & N) = (id@74) (WHM) ® (id@rp) (WEN)
(w@w') ®c,,, (MOn) = (wec, m)® (W ®c, n)

is an isomorphism of (g ® C, Cy4,)-bimodules. The composition of these two maps yields the
desired map. O

The next theorem gives a refinement Theorem 4.3.7.
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Lemma 4.5.2. Let \,p € AT with X\ £ p and p ¢ X. If U € ObZY is irreducible and U, # 0,
then:

a. For all M € Ob A, -mod, we have

Ext? (WAM,U) =0, form=0,1.

b. Let V € ObZ) with dimVy < co. Then WARAV = V| if and only if,
Ext? (V,U) =0, form=0,1, (4.5.1)
for all U € ObZ} with dimU < oo and Uy = 0.

Proof. For (a), consider an irreducible module U € ObZ)} and observe that any nonzero morphism
©: WAM — U must be surjective. However this is not possible because (W4M), = 0, and
homomorphisms preserve weight spaces. This proves that 0 = Hom(WX M, U) = Ext} L(WAM,U).
Next, suppose that

0—=U—=V—=WiM—0

is a short exact sequence of objects in Z3. Then V) # 0, the weights of V are contained in
(p—QNHUMN—-QT) and (nT ® A)V) =0, since A £ pu. If V! = U(g® A)V,, then weights of V' lie
in A — @Q". In order to prove that the sequence splits, it suffices to show that V' NU = 0. Indeed,
since U is irreducible, if the intersection is not zero, then U NV’ = U, which would imply that
p € p— QF, contradicting the fact that 4 £ A. Thus the sequence splits, and so the only element
in Ext' (WM, U) is 0 (due to the 1-1 correspondence between classes of extensions of WM by
U and elements of Ext'(WAM,U), see [Wei94]).

For part (b), notice that the forward implication follows from Theorem 4.3.7. Now, let us
prove that WARAV = V if (4.5.1) holds for all irreducible finite-dimensional module U € ObZ}
such that U, = 0. Repeating the arguments used in the proof of Theorem 4.3.7, one prove that
V =U(g® A)V,. Then the map €y of the proof of Proposition 4.3.5 is surjective, and we have an

exact sequence
0= K= WiV, %V =0,

By Corollary 4.4.4, dim W% V) < oo, since dim V), < oo. Thus dim K < oo, and Ky = 0. Suppose
K # 0. Then Homgzx (K,U) # 0 for some irreducible module U € 79 with U, = 0. Next, applying

Homgz, (—,U), we get the following long exact sequence
0 — Homzy (V,U) — Homgy (W3iVy, U) — Homgy (K, U) — Extyy (V,U) = -+,

where Homp (V,U) = Ext%?‘(\/, U) = 0, since V satisfies (4.5.1), and Homqy (WAVy,U) = 0 by
part (a). But this implies Homzx (K, U) = 0, which is a contradiction. Therefore K = 0, proving

ARAMY — WAL, X
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Theorem 4.5.3. Suppose that A and B are finite-dimensional commutative, associative unital
C-algebras and let t4: A ® B — A and mg: A@® B — B be the canonical projections. Assume that
the system of simple roots ¥ satisfies (4.1.1). If M € ObAy-mod, N € ObA,,, dim M < oo and
dim N < oo, then

Wit (A3,(M @ N)) 2 (id 0ma) (WAM) @ (id @) (WHN).
as g ® (A @ B)-modules.

Proof. To simplify notation in this proof, we denote the g ® (A @ B)-modules A} (M ® N),
(id @m4)* (WA M) and (id @7p)*(W/5N) by M ® N, M and N, respectively.
By Proposition 4.5.1, we have an epimorphism of g ® (A & B)-modules

Wit (M @ N) - WAM @ WHN.
Using Lemma 4.5.2(a), to prove that this epimorphism is an isomorphism, it suffices to prove that

Ext?, (WAM @ WEN,U) =0, m=0,1
A®B

for all irreducible U € ObI;\xa;’fB with U4, = 0. By [Sav14, Cor. 4.11] we have that U = Uy ® Up,
where Uy (resp. Up) is an irreducible g ® A-module (resp. g ® B-module). Moreover, if v4 and
vp are the highest weights of Uy and Ug, respectively, then vs +vg € A+ u— Q% (i.e. va+vp
lies in the set of weights of U).

Notice that g ® A and g ® B are finite-dimensional Lie superalgebras, and that the modules
WM, Uy and Ug are finite-dimensional as well. Thus, by (1.4.1), if either

Extyy (WAM, Ua) = 0 or Extz(WEN,Up) = 0 for m =0, 1, (4.5.2)

then we have our result.

Assume first that either Uy € ObZ) or Ug € ObZl. The fact that Uy, = 0, implies that either
(Ua)y, = 0 or (Up),, = 0. Thus, since WARA(WAM) =2 WAM and WERE(WEN) = WiN,
(4.5.2) follows from Lemma 4.5.2(b). Now assume v4 £ A and vg £ p. Since va +vp < X+ i, we
have that either A £ v4 or u £ vp and therefore (4.5.2) follows from Lemma 4.5.2(a). O

4.6 Recovering the local Weyl modules

Assume that g is either a basic classical Lie superalgebra or sl(n,n), n > 2, and that A is a
finitely-generated associative commutative unital C-algebra. Let A € A™. In this section, using
the super-Weyl functors, we recover the local Weyl modules defined in Section 3.4.

Since A, is a finitely generated abelian algebra, any irreducible finite-dimensional A ) -module
is one-dimensional. For ¢ € (h ® A)* such that |,€ AT, we let H (1)) denote the one-dimensional
irreducible Ay-module, where zv = ¢(z)v for all x € A, and v € H(¢). The next result shows
that it is possible to recover the local Weyl module via the super-Weyl functor.
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Theorem 4.6.1. Let ¢ € (h @ A)* such that |y AT. Then
WAH (1) = W(0).

Proof. Let V.= WiRAW (¢). Since W (¢)) = U(g® A)wy, the map ey () : WIRAW (¢) — W (¥)
is surjective (see Proposition 4.3.5). On the other hand, if U = V/W (%), then U, = 0. Thus, by
Theorem 4.3.7, Homzx (V,U) = 0, which implies that

W(¥) = WAIRLW (v) = WLH (¢). 0

The next corollary was proved in the non-super setting, for the twisted case, in [NS13, Lem. 7.5].

Corollary 4.6.2. A g ® A-module V is isomorphic to the local Weyl module W () if and only if
it satisfies the following conditions:

a. V € ObIﬁ‘l, where X\ = |y;
b. RYV = H(v);

¢. Hompy (V,U) = 0 and Extéﬁ(V, U) = 0, for all irreducible finite-dimensional U € ObZI}
with U)\ =0.

Proof. 1f V satisfies all three conditions, then it follows from Theorem 4.3.7 that
V= WIRLV = WHH(Y) = W ().

Conversely, notice that the local Weyl module W () satisfy the two first properties by definition.
Furthermore, it follows from the proof of Theorem 4.6.1 that W () = WARAW (¢0). Therefore
the last property follows again by Theorem 4.3.7. O]

Remark 4.6.3. As a consequence of Theorem 4.6.1 and Corollary 4.4.4, we obtain that the local
Weyl module is finite-dimensional if the system of simple roots satisfies Property (4.1.1).
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Chapter 5

Further directions

The definition of global and local Weyl modules for Lie superalgebras given in Chapter 3 opens
a number of directions of possible further research. We conclude this thesis by listing some of
these.

(a) One should be able to define Weyl modules when g is not basic. For example, in Chapter 2,
the finite-dimensional irreducible g ® A-modules have been classified in the case that g is the queer
Lie superalgebra. The nature of the classification (in terms of evaluation modules) seems to indicate
that the theory of Weyl modules should be relatively similar to the case considered in this Thesis.

(b) Twisted versions of Weyl modules have been defined and investigated in the non-super
setting (see [CFS08, FMS13, FKKS12, FMS15]). One should similarly be able to develop a twisted
theory of Weyl modules for equivariant map Lie superalgebras.

(¢) Kac modules related to different systems of simple roots were compared in [Serll, Coul.
Since the Weyl modules defined in this Thesis generalizes Kac modules, it is natural to ask what
kind of relations do we have between Weyl modules related to different systems. Also, most of
properties concerning local Weyl modules were proved under a specific choice of a system of simple
roots (see Section 3.4). So it would be interesting to verify if such properties depend on this choice.

(d) Recently, in [SVV, BHLW], local Weyl modules for current algebras have appeared as trace
decategorifications of categories used to categorify quantum groups. It is natural to ask how the
super analogues of Weyl modules defined in the current paper are related to the super analogues,
defined in [KKT], of the afore-mentioned categories.
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