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Resumo

Neste trabalho investigamos o comportamento assintótico de modelos matemáticos que

descrevem o escoamento de fluidos incompressíveis não-Newtonianos, com e sem termos

de retardo. Supomos que o fluido ocupa um domínio limitado com fronteira regular em

duas ou três dimensões. Nestes modelos o tensor de estresse, associado à viscosidade do

fluido, é caracterizado como sendo uma função que satisfaz condições de p-coercividade e

pp ´ 1q-crescimento.

Para o modelo sem termo de retardo, além de resultados de existência, unicidade e

regularidade de solução, mostramos existência de atratores do tipo pullback sobre universos

temperados nos espaços de Banach pL2qn e pW 1,p
0 qn com divergente nulo, denotados por H

e Vp, respectivamente. Em H, o comportamento assintótico pullback é analisado usando

um método de energia para p ě 1 ` 2n{pn` 2q. Neste caso, as soluções fracas definem um

processo multívoco que é semi-contínuo superiormente e fechado. Para o estudo de atratores

do tipo pullback em Vp, além de maior regularidade na força externa, será necessário que

o tensor de estresse seja um potencial e p ě 5{2 se n “ 3 ou p ą 2 se n “ 2. Assim, o

processo definido sobre Vp torna-se um processo unívoco, devido à unicidade da solução

fraca. Finalmente, mostramos um resultado de comparação dos atratores em H e Vp.

Para o modelo com termos de retardo, primeiramente mostramos a existência de soluções

fracas para p ě 1 ` 2n{pn ` 2q. A partir das soluções fracas é definido um processo

multívoco e provada a existência de atratores do tipo pullback, em universos temperados,

definidos sobre dois espaços de Banach diferentes. A existência dos atratores dependerá de

p e de um parâmetro relacionado aos coeficientes de viscosidade do tensor de estresse e

aos parâmetros associados aos termos de retardo.

Palavras-chave: fluidos incompressíveis não-Newtonianos; atratores pullback; processo

multívoco; retardos; modelo de Ladyzhenskaya.



Abstract

In this work, we investigate the asymptotic behavior of mathematical models that describe

the flow of non-Newtonian incompressible fluids, with and without delay terms. We assume

that the fluid occupies a smooth bounded domain in two or three dimensions. In these

models, the stress tensor, associated with fluid viscosity, is characterized as a function

that satisfies p-coercivity and pp ´ 1q-growth conditions.

For the model without delay term, in addition to results of existence, uniqueness and

regularity of the solution, we show the existence of pullback attractors on tempered

universes in the Banach spaces pL2qn and pW 1,p
0 qn with divergence-free, denoted by H and

Vp, respectively. In H, the pullback asymptotic behavior is analyzed by an energy method

for p ě 1 ` 2n{pn ` 2q. In this case, weak solutions define a multi-valued process that

is upper semi-continuous with closed values. For the study of pullback attractors in Vp,

besides the higher regularity on the external force, it will be necessary the stress tensor

to be a potential and p ě 5{2 if n “ 3 or p ą 2 if n “ 2. Thus, the process defined on Vp

becomes a single-valued process, due to the uniqueness of the weak solution. Finally, we

show a comparison result between the attractors in H and Vp.

For the model with delay terms, we first show the existence of weak solutions for p ě
1`2n{pn`2q. From the weak solutions, a multi-valued process is defined and the existence

of pullback attractors, in tempered universes, defined over two different Banach spaces

is proven. The existence of the attractors will depend on p and a parameter related to

the viscosity coefficients of the stress tensor and the parameters associated with the delay

terms.

Keywords: incompressible non-Newtonian fluids; pullback attractors; multi-valued process;

delays; Ladyzhenskaya model
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Introduction

Mathematical models that describe the behavior of fluid flows as the air, water,

oil, blood, and many other magnitudes have been subject of interest in the last two hundred

years to the chemistry, physics, biology, economics, among others areas. Let us do a little

and brief tour through the history of dynamical systems and its importance. Let us start in

the 16th century with big minds like Issac Newton, who contributed to the mathematical

modeling through the formalization of classical mechanics, and Johannes Kepler, who

contributed with works in celestial mechanics. They started new mathematical concepts,

extracted from physics, such as the dynamical systems that are still studied today.

Isaac Newton (1642-1727) Johannes Kepler (1571-1630)

French mathematician Henri Poincaré is considered one of the creators of the

modern theory of the dynamical systems. His work “Les méthodes nouvelles de mécanique

céleste”, published in 1892 [52], allows us to understand the stability, periodicity, and

asymptotic behavior of solutions of a differential equation without the need to explicitly

know them.

In 1927, the American mathematician George Birkhoff, internationally rec-

ognized by the so-called Ergodic Theorem, published the work Dynamical Systems [5],

considered the first book in the area of dynamical systems.

Following this timeline, let us think about the next question “Does the flap of

a butterfly’s wings in Brazil set off a tornado in Texas?” This question can be interpreted

like is it possible that two relatively close objects, as they evolve over time, could differ

greatly? The answer to this question can be found in chaos theory.

The chaos theory is a branch of nonlinear dynamical systems theory which is

very sensitive to variations in initial conditions. One of the pioneers in the chaos theory was

Edward Lorenz, American meteorologist, mathematician, and philosopher. He contributed
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Henri Poincaré (1854-1912)
George Birkhoff (1884-1944)

with a mathematical model that describes the behavior of convection in the atmosphere.

With this model, he realized that at minimal alterations in the initial data, they resulted in

widely divergent solutions, whose phenomenon is known as the “butterfly effect”. Another

interesting observation is that solutions oscillate irregularly without repeating themselves

in a bounded region of the phase space; in a modern language, this is known as an attractor.

Edward Lorenz (1917-2008) Lorenz Attractor

The study of the asymptotic behavior of solutions to differential equations is

fundamentally important to understand the behavior of the solutions for long periods of

time. And for this study, the concept of attractor has been widely used in recent years.

An attractor is a subset of the phase-space toward which a system tends to

evolve, for a wide variety of starting conditions of the system. System values that get

close enough to the attractor values remain close even if they are slightly disturbed. For

autonomous dynamical systems, the concept of a global attractor is widely employed,

see, for instance, [34, 49, 54, 56]. For non-autonomous dynamical systems, the study of

pullback attractors has received a lot of attention, since it can be seen as a generalization

of the global attractor, see, among others, [17, 35]. This is not the only approach, uniform

attractors, skew-product flows and attractors are other valid options.

An example where the existence and uniqueness of the solution, and their
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asymptotic behavior which are studied in the autonomous and non-autonomous cases,

is the well-known Navier-Stokes system, named after Claude-Louis Navier and George

Gabriel Stokes; [23, 42, 45, 54]. This system is obtained by applying the principles of

Claude L. H. Navier (1785-1836) George G. Stokes (1819-1903)

conservation and thermodynamics to a volume of fluid. This system is useful to describe

the velocity and pressure of incompressible Newtonian fluids and it is given by

Bu

Bt ´ ν0∆u “ ´
nÿ

i“1

ui

Bu

Bxi

´ ∇p ` f in Ω ˆ p0,8q, (1)

divxu “ 0 in Ω ˆ p0,8q, (2)

where u “ pu1, ¨ ¨ ¨, unq is the fluid velocity, p is the pressure, f an external force, ν0 ą 0 is

the viscosity and Ω Ă R
n is a domain.

Solutions of the Navier–Stokes equations often include turbulence, which re-

mains one of the greatest unsolved problems in Physics, despite its immense importance

in other science as Engineering. For the Navier–Stokes existence and smoothness prob-

lem, mathematicians have not proved yet that given smooth initial conditions, for the

three-dimensional Navier-Stokes system, the smooth solutions always exist; and if they

existed, they would have bounded energy. This is called the Navier–Stokes existence and

smoothness problem. In May 2000, the Clay Mathematics Institute made this problem

one of its seven Millennium Prize problems in mathematics. The institute offers a US$

1,000,000 prize to the first person who provides a solution for a specific statement of the

problem [16].

On the other hand, regarding the asymptotic behavior of the solutions of the

Navier-Stokes system in the autonomous case, i.e., when the external force f is independent

of t, on a smooth bounded domain Ω Ă R
2, the existence of global attractor can be proved

“easily”, since the solutions are regular, [42, 54, 56]. But, the three-dimensional case is

more involved because the uniqueness of the solution is still unknown. Therefore, other

concepts are introduced to be able to investigate the asymptotic behavior of solutions,



Introduction 15

[17, 19, 23, 24, 57]. In the non-autonomous case, i.e., when the external force fptq depends

on t, the asymptotic behavior of the solutions was analyzed by several approaches cited

above, in particular, within the framework of pullback attractors. For example, in the

two-dimensional case, the pullback dynamics was analyzed by using the energy method

on the spaces H and V , which consist, roughly speaking, of all functions in L2pΩq2 and

W
1,2
0 pΩq2 with divergence-free, respectively; see [27, 28, 31]. Other related results about

the Navier-Stokes system can be seen in [10, 11, 48, 55].

There are also other types of fluids in nature that in mathematical physics

are called non-Newtonian fluids [23, 39, 42, 45]; for example, blood, butter, lava, etc.;

unlike the Newtonian fluids, their viscosity varies as the temperature and shear stress are

applied. In 1969, Russian mathematician Olga Aleksandrovna Ladyzhenskaya proposed

some mathematical models, known as Ladyzhenskaya models [21, 37, 38, 39, 41], for

incompressible viscous flows or incompressible non-Newtonian fluids.

Olga Ladyzhenskaya (1922-2004)

They are described by

Buj

Bt ´
nÿ

k“1

B
Bxk

`
S

i
jkpepuqq

˘
“ ´

nÿ

i“1

ui

Buj

Bxi

´ Bp
Bxj

` fj in Ω ˆ p0,8q, (3)

divxu “ 0 in Ω ˆ p0,8q, (4)

i “ 1, 2 and j “ 1, 2 or j “ 1, 2, 3, and Spepuqq is defined by

S
1pepuqq “ ν1epuq ` ν2|epuq|p´2epuq,

or its special case

S
2pepuqq “

`
ν1 ` ν2}epuq}2

L2pΩqn

˘
epuq,

where ν1, ν2 ą 0 are the viscosity coefficients, Sipepuqq, i “ 1 or 2, are the stress tensors

associated to this system and epuq “ 1
2

p∇uT `∇uq is the symmetric gradient. Many models,

also known as variants of the Navier-Stokes system or modified Navier-Stokes equations

are characterized by the stress tensor that we will denote by S. When Spepuqq “ 2νepuq
with ν ą 0, then the equations are reduced to the Navier-Stokes equations (1).
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For non-Newtonian fluids, in general, the stress tensor is a nonlinear convex

function (in some cases the stress tensor is a potential, see definition 1.48) and satisfies

the following conditions: there exist constants C1, C2 ą 0 and parameters p ą 1 and

q P rp ´ 1, pq such that, for all M P R
n2

sym,

SpMq : M ě C1|M|p (p - coercivity condition),

|SpMq| ď C2p1 ` |M|qq (q - growth condition).

For non-Newtonian fluids, in typical cases, the stress tensor has the form:

Spepuqq “ 2pν ` ν0|epuq|p´2qepuq or Spepuqq “ 2pν ` ν0|epuq|2q p´2

2 epuq, p ą 1,

with ν, ν0 ą 0.

Therefore, the motion of incompressible non-Newtonian fluids on a domain

Ω Ă R
n, n “ 2 or n “ 3, can be characterized by the velocity field u “ pu1, ¨ ¨ ¨, unq and

the pressure π, and governed by the system of n ` 1 equations given by

Bu

Bt ´ divxSpepuqq “ ´divxpu b uq ´ ∇xπ ` fptq in Ωτ,T , (5)

divxu “ 0 in Ωτ,T , (6)

subject to initial and boundary conditions. Here, Ω Ă R
n, n “ 2, 3, is a bounded domain

with smooth boundary BΩ, τ ă T , where we have denoted by Ωτ,T :“ pτ, T q ˆ Ω and

u b u “ puiujqi,j.

Next, we recall some results about existence, uniqueness and asymptotic be-

havior of the solutions associated with the system (5)-(6) in the autonomous and non-

autonomous cases. Let us start with the autonomous case, i.e., when the external force

f is independent of time t. J. Nečas et al. [45, chapter 5] studied the uniqueness and

existence of measure-valued, weak, and strong solutions subject to space-periodic boundary

conditions and Dirichlet conditions. J. Málek and J. Nečas [44] proved the existence of a

global attractor with finite fractal dimension for three-dimensional flow of incompressible

fluids. J. Málek and D. Pražák [46] introduced a new criterion for the finiteness of the

fractal dimension of the attractor through the method of short trajectories for the cases:

two-dimensional if p ě 2 and three-dimensional if p ě 11{5, subject to space-periodic

boundary conditions. E. Feireisl and D. Pražák [23] analyzed on the asymptotic behavior

on L2pΩqn for incompressible non-Newtonian fluids when p ě 2 and for 1 ă p ă 2 only

in the two-dimensional case. D. Pražák and J. Žabenský [53] showed that there exists an

exponential attractor for a perturbed three-dimensional Ladyzhenskaya model. Finally,

for the non-autonomous case, i.e., the external force f “ fptq dependents of time t, very

recently, Yang et al. [60] showed a result that establishes the existence of finite-dimensional

pullback attractors in a general setting involving tempered universes for one of the models

proposed by Ladyzhenskaya. Other results can be seen in [63, 64, 65].
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As we can see, there exist many results on the theory of the existence of

solutions and global attractors for the autonomous case. However, the pullback dynamics

for incompressible non-Newtonian fluids is much less explored. Therefore, the first aim of

this thesis is to investigate the existence of pullback attractors for this kind of problems.

We observe that there are some difficulties in analyzing the pullback dynamics

of non-Newtonian fluids in comparison to Newtonian fluids. Even though if it were possible

to consider the three-dimensional case with the uniqueness of solutions in the case that p

is large enough; there would still be some additional obstacles in proving the asymptotic

compactness of the process. This happens mainly because there is no higher regularity, for

instance W 2,2 - regularity, to the solution. In this way, we have to explore the p-integrability

of the solutions as well as the regularity of the time partial derivative to achieve our

objective.

The second aim of this thesis is to study the well-posedness and the existence

of pullback attractors on tempered universes, for the system (5)-(6) with a delay term:

Bu

Bt ´ divxSpepuqq ` divxpu b uq “ ´∇xπ ` fptq ` gpt,utq in Ωτ,T , (7)

divxu “ 0 in Ωτ,T , (8)

u “ 0 on pτ, T q ˆ BΩ, (9)

upτ, xq “ uτ pxq x P Ω, (10)

upτ ` t, xq “ φpt, xq in Ωh, (11)

where uτ is the velocity of fluid in the initial time t “ τ , gp¨,u¨q is the delay term, with

utpsq “ upt`sq for all s P p´h, 0q, and φ is the initial condition defined on Ωh :“ p´h, 0qˆΩ.

Delay differential equations, also known as functional differential equations

were originated in problems in geometry and number theory, see [3, 58]; and it has been

studied for at least 200 years. The subject gained much attention after 1940 due to the

consideration of meaningful models to physical systems and control. It is probably true

that many scientists of that time were well aware of the fact that hereditary effects occur in

physical systems, but this effect was often ignored because of the lack of a well-established

theory.

This kind of equations appears in various applications, such as viscoelasticity,

mechanics, nuclear reactors, distributed networks, heat flow, neural networks, combustion,

the interaction of species, microbiology, learning models, epidemiology, physiology, as well

as many others, see Kolmanovskii and Myshkis [36].

Let us mention some historical facts about systems with delays. For instance,

at the IV-International Congress of Mathematicians, based in Rome in 1908, the French

mathematician Charles Émile Picard [1, 51] made the following statements about the

importance of considering hereditary effects in physical systems:
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Les équations différentielles de la mécanique classique sont telles qu’il en résulte

que le mouvement est déterminé par la simple connaissance des positions et des vitesses,

c’est-à-dire par l’état à un instant donné et à l’instant infiniment voison.

Les états antérieurs n’y intervenant pas, l’hérédité y est un vain mot. L’application

de ces équations oú le passé ne se distingue pas de l’avenir, oú les mouvements sont de

nature réversible, sont donc inapplicables aux êtres vivants.

Nous pouvons réver d’équations fonctionnelles plus compliquées que les équations

classiques parce qu’elles renfermeront en outre des intégrales prises entre un temps passé

trés éloigné et le temps actuel, qui apporteront la part de l’hérédité.

The Italian mathematician and physicist Vito Volterra studied integro-differential

equations that model viscoelasticity [33], and in 1930, he wrote a book on the impact of

hereditary effects on models for the interaction of species [58].

Nowadays, there is a vast literature regarding systems of equations with delays,

for example, see [3, 43]. Concerning with delay systems for incompressible Newtonian fluids,

we must mention T. Caraballo and J. Real [13, 14, 15]. In these papers, the authors showed

the existence of weak solutions to 2D Navier–Stokes equations, when their external force

contains some hereditary characteristics and besides that, they proved the existence of

pullback attractors. J. García-Luengo, P. Marín-Rubio and J. Real [29, 30] analyzed some

new regularity results of pullback attractors for 2D Navier-Stokes equations with delays.

In the case of incompressible non-Newtonian fluids with delays involving fourth-order

operators, C. Zhao et al. [62, 66] investigated the existence of solutions and pullback

attractors and L. Liu, T. Caraballo and X. Fu [43] analyzed their exponential stability.

Having mentioned some historical facts about the development of physical and

mathematical concepts for a better understanding of the importance about the study of

attractors for differential equations with and without delay, we present the organization of

this thesis and describe the main results.

In Chapter 1, we give the preliminaries, notations and results that we will use

in the development of all this work, as interpolation theorems in Banach space, compact

embeddings, existence and uniqueness of solutions for ordinary differential equations with

delay and without delay (DODE), (ODE). We recall the theory of the existence of

pullback attractors for upper-semicontinuous multi-valued process and closed process.

Finally, we give a brief introduction about the theory of incompressible and compressible

non-Newtonian fluids.

In Chapter 2, concerning the existence and uniqueness of weak solutions, we

start with the formulation and justification of the problem with Cauchy-Dirichlet conditions

(5)-(6) and the stress tensor satisfying p-coercivity and pp ´ 1q-growth conditions. Then,

we recall and prove the existence of weak solutions, when p ě 1 ` 2n{pn ` 2q (this proof
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is similar to the one described in [42, Theorem 5.1]). Moreover, we show the uniqueness

of weak solution, in the cases: p ě 2 if n “ 2, and if the weak solutions belong to

L
2p

2p´3 pτ, T ;Vpq for n “ 3 (this result can also be found in [23, Theorem 7.6]). Finally, we

give a regularity result for weak solutions that can be approximated by sequences of regular

solutions in the following cases: p ě 12{5 when n “ 3, and p ą 2 when n “ 2 (this result

can be found in [23, Theorem 7.32]). In section 2.5, we show the existence of pullback

attractors on tempered universes for the non-autonomous incompressible non-Newtonian

fluids on the Hilbert space H for p ě 1`2n{pn`2q. To this end, we perform an analysis on

a multi-valued process defined from weak solutions, since the uniqueness of weak solutions

is not guaranteed. We conclude this chapter showing the existence of pullback attractors

on Vp. In order to do that, we built tempered universes on Vp from tempered universes

defined on H, for p ě 5{2 if n “ 3 and for p ą 2 if n “ 2. Here, it is necessary to ask for

more regularity on the external force and initial conditions. Moreover, the stress tensor

should be a potential (see definition 1.48) to make the estimates that allow us to show

that the process defined on Vp is asymptotically compact.

In Chapter 3, we first establish the formulation of the problem with Cauchy-

Dirichlet condition for incompressible non-Newtonian fluids with delay, given by the system

(7)-(11). After that we show the existence and uniqueness of weak solutions, when the

initial conditions belong to H and to L2
H “ L2p´h, 0;Hq, with h ą 0. In section 3.4,

we show the existence of pullback attractors for the upper-semicontinuous multi-valued

process in tempered universes defined on the phase spaces CH :“ Cpr´h, 0s;Hq and

M2
H :“ H ˆ L2p´h, 0;Hq when p ě 1 ` 2n{pn` 2q. Finally, we prove that the process is a

continuous process on the Banach spaces CH and M2
H when p ě pn ` 2q{2.

In Chapter 4, we show a summary of all results established in this research,

and finally, we conclude with some observations and future proposals.
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1 Notations and Important Results

In this section, we introduce notations that are used in functional analysis,

partial differential equations and the theory of dynamical systems. Moreover, we state

some important results that we will use in the development of all the work, as interpolation

theorems in Banach spaces, compact embeddings, existence and uniqueness of solutions for

ordinary differential equations with delay and without delay. We recall the theory of the

existence of pullback attractors for upper-semicontinuous multi-valued process and closed

process. Finally, we give an introduction to the theory of incompressible and compressible

non-Newtonian fluids. All results can be found in the books [2, 7, 22, 23, 25, 42, 50, 45].

1.1 Notations

1.1.1 Basic Notations

• We denote by N and R the sets of the natural and real numbers, respectively.

•
`
R

n, | ¨ |
˘

is the n-dimensional Euclidean spaces, for n “ 1, 2, 3, ..., and their elements

will be denoted by a “ pa1, ..., anq.

• We denote by R
2
d “ tps, tq P R

2 : s ď tu.

• Given a,b P R
n , the scalar product of vectors a “ pa1, ..., anq and b “ pb1, ..., bnq is

denoted by

a ¨ b “
nÿ

i“1

aibi “ aibi.

• In general, we are going to consider Ω an open bounded subset of Rn.

• BΩ will denote the boundary of the set Ω.

• Given T, τ P R, with T ą τ , we denote by Ωτ,T “ pτ, T qˆΩ and by Στ,T “ pτ, T qˆBΩ.

• The set R
n2

will denote the set of square matrices n ˆ n, and their elements will

be denoted by A “ pai,jqn
i,j“1. And R

n2

sym will denote the set of symmetric square

matrices.

• The transpose of a square matrix A “ pai,jqn
i,j“1 is AT “ paj,iqn

i,j“1.

• The scalar product of tensors A “ pai,jqn
i,j“1, B “ pbi,jqn

i,j“1 reads

A : B “
nÿ

i,j“1

ai,jbj,i “ ai,jbj,i.
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• The symbol a b b denotes the tensor product of vectors a, b, specifically,

a b b “ pa b bqi,j “ aibj.

• The product of a matrix A with a vector b is a vector Ab whose components are

pAbqi “
nÿ

j“1

Ai,jbj for i “ 1, ¨ ¨ ¨, n.

• The product of a matrix A “ pai,jqn
i,j“1 and a matrix B “ pbi,jqn

i,j“1 is a matrix AB

with components

pABqi,j “
nÿ

r“1

ai,rbr,j.

1.1.2 Functional Spaces

• CpΩq “ tf : Ω Ñ R : f is continuous functionu.

• CkpΩq “ tf : Ω Ñ R : f is k-times continuously differentiableu.

• CkpΩq “ tf : Ω Ñ R : f is k-times continuously differentiableu.

• C8pΩq “ X8
k“1C

kpΩq and C8pΩq “ X8
k“1C

kpΩq.

• Ck
c pΩq “ tf P CkpΩq : supppfq is compactu, supppfq “ tx P Ω : fpxq ‰ 0u.

• DpΩq is the space C8
c pΩq, with the following sense of convergence: fn Ñ f in DpΩq, if

there exists a compact K Ă Ω such that tfnu Ă C8
c pKq and Dαfn Ñ Dαf uniformly

for any α, where α denoted the multi-index. We say that DpΩq is the space of test

functions.

• D1pΩq will denote the topological dual of DpΩq.

• For p P r1,`8q, LppΩq is the set of all the p-integrable measurable functions, with

norm defined by

}f}p “ }f}LppΩq “
ˆż

Ω

|fpxq|pdx
˙1{p

.

• For p “ `8, L8pΩq is the set of all the essentially bounded measurable functions,

with norm defined by

}f}8 “ }f}L8pΩq :“ ess supΩ|f |.

• LppΩqn “ tf “ pf1, . . . , fnq : fi P LppΩq, @i “ 1, ..., nu, with norm

}f}p “
ˆ nÿ

k“1

}fi}p
p

˙1{p

.
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• Let τ ď T be and h ą 0. Given a space X and a function u : rτ ´ h, T s Ñ X, for

each t P rτ, T s we denote by ut : r´h, 0s Ñ X such that utpsq “ upt ` sq for all

s P r´h, 0s.

Remark 1.1. For all p P r1,`8s, we know that
`
LppΩq, } ¨ }p

˘
is a Banach space, and

for the particular case p “ 2, the space L2pΩq is a Hilbert space with inner product

pf, gq “
ż

Ω

fpxqgpxqdx.

We will denote the norm in L2pΩq by | ¨ |2.

Remark 1.2. For all p P r1,`8s, we know that
`
LppΩqn, } ¨ }p

˘
is a Banach space, and

for the particular case p “ 2, the space L2pΩqn is a Hilbert space with inner product

pf ,gq “
nÿ

i“1

pfi, giq.

We will denote the norm in L2pΩqn by | ¨ |2.

• W k,ppΩq “ tf : Dαf P LppΩq, @|α| ď ku with k P N, p P r0,8s, α is a multi-index

and Dαf is the derivative of order α of f in the sense of the distributions. This space

is provided with the norm

}f}k,p “

$
’’’&
’’’%

´ ÿ

|α|ďk

}Dαf}p
p

¯1{p

if p P r1,8q,
ÿ

|α|ďk

}Dαf}8 if p “ 8.

• W
k,p
0 pΩq “ C8

c pΩqW k,ppΩq
, with the norm of W k,ppΩq

• W k,ppΩqn “ tf “ pf1, . . . , fnq : fi P W k,ppΩqu, with norm

}f}k,p “
´ nÿ

i“1

}fi}p
k,p

¯1{p

• W
k,p
0 pΩqn “ tf “ pf1, . . . , fnq : fi P W k,p

0 pΩqu, with the norm of W k,ppΩqn.

• Let X be a Banach space with norm } ¨ }X , for ´8 ă τ ă T ă `8, we denote by

Cprτ, T s;Xq the space of the continuous functions from rτ, T s into X, which is a

Banach space with norm

}f}Cprτ,T s;Xq “ sup
tPrτ,T s

}fptq}X .



Chapter 1. Notations and Important Results 23

• For 1 ď p ă `8 and ´8 ď τ ă T ď `8, then Lppτ, T ;Xq is the Banach space of

all measurable functions in Bochner sense f : pτ, T q Ñ X for which the norm

}f}Lppτ,T ;Xq “
ˆż T

τ

}fptq}p
Xdt

˙1{p

is finite.

• For p “ 8, L8pτ, T ;Xq is the Banach space of all measurable functions in Bochner

sense f : pτ, T q Ñ X for which the norm

}f}L8pτ,T ;Xq “ ess sup
tPpτ,T q

}fptq}X

is finite.

• Given the sets X and Y , we denote by CpX, Y q “ tf : X Ñ Y : f is continuousu.

• Given a Banach space X, η ą 0 and q P r1,`8q, we denote by I
q,η
X “ tf P Lq

locpR, Xq :ż 0

´8

eηs}fpsq}q
Xds ă 8}.

1.1.3 Notation of Functional Analysis

• Let X be a normed space, with norm } ¨ }X . Let X˚ be its topological dual.

(a) We say that xk converges to x in the weak topology of X, or that xk converges

weakly to x in X, if fpxkq Ñ fpxq, for any f P X˚. And we denote by

xk á x in X.

(b) We say that fk converges to f in the weak-˚ topology of X˚, or that fk converges

weakly-˚ to f in X˚, if fkpxq Ñ fpxq, for any x P X. And we denote by

fk
˚á f in X˚.

• Let X and Y be Banach spaces such that X Ă Y . We say that X is continuously

embedded in Y and denote it by

X ãÑ Y,

if there exists a constant C ą 0 such that, }x}Y ď C}x}X , for all x P X.

• Let X and Y be Banach spaces such that X Ă Y . We say that, X is compactly

embedded in Y , and denote it by

X ãÑãÑ Y,

if X ãÑ Y and each bounded sequence in X is relatively compact in Y .



Chapter 1. Notations and Important Results 24

1.2 Results of Analysis and Topology

Theorem 1.3. (Ascoli Theorem) Let X be a space and let pY, dq be a metric space.

Consider CpX, Y q with the topology of compact convergence; let F be subset of CpX, Y q.

(a) If F is equicontinuous under d and the set

Fa “ tfpaq : f P Fu

has compact closure for each a P X, then F is contained in a compact subspace of

CpX, Y q.

(b) The converse holds if X is locally compact Hausdorff.

Proof. See [50, Theorem 47.1, pg. 290].

Lemma 1.4. (Green Theorem) Let Ω Ă R
n be an open bounded with BΩ P C0,1 or

Ω “ R
n and let ν “ pν1, . . . , νnq be the outward normal vector. Then for u P W 1,1pΩq we

have ż

Ω

Bu
Bxi

pxqdx “
ż

BΩ

uνidS i “ 1, . . . , n

where the values of u on BΩ are understood in the sense of traces.

Proof. See [45, Lemma 2.20, pg. 29].

1.3 Results of Functional Analysis

1.3.1 Compactness, Inequalities and Embedding Results

Theorem 1.5. (Alaoglu weak-˚ compactness) Let X be a separable Banach space

and let pfnq be a bounded sequence in X˚. Then pfnq has a weak-˚ convergent subsequence.

Proof. See [45, Theorem 2.1 pg. 21].

Corollary 1.6. (Reflexive weak compactness) Let X be a reflexive Banach space

and let pxnq be a bounded sequence in X. Then pxnq has a subsequence that converges

weakly in X.

Proof. It follows from Theorem 1.5.

Proposition 1.7. (Hölder Inequality) For functions f P LppΩq, g P LqpΩq, with
1
p

` 1
q

“ 1, we have that fg P L1pΩq and

ż

Ω

fpxqgpxqdx ď }f}p}g}q.
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When p “ q “ 2, Hölder inequality reduces to well known Schwarz inequality.

Theorem 1.8. (Korn Inequality) Let 1 ă p ă 8. Then there exists a constant cppq “
cppqpΩq such that the inequality

}v}1,p ď cppq}epvq}p

is fulfilled for all v P W 1,p
0 pΩqn, where Ω Ă R

n is open bounded domain with BΩ P C0,1

and epvq “ 1
2

p∇v ` ∇vT q.

Proof. See [45, Theorem 1.10 pg. 196].

In all this work we will denote c0 “ cp2q if p “ 2 and c̃0 “ cppq if p ‰ 2, to the

constants that appear in the Korn inequality.

Theorem 1.9. (General Sobolev Inequalities) Consider Ω Ă R
n an open bounded

with BΩ P C0,1 and let 0 ď j ă k, 1 ď p, q ă 8. Put

m0 ” 1
p

´ k ´ j

n
and m ” 1

m0

if m0 ‰ 0.

• Assume m0 ą 0. Then

W k,ppΩq ãÑ W j,mpΩq,
W k,ppΩq ãÑãÑ W j,m1pΩq, m1 ă m,

W k,ppRnq ãÑ W j,mpRnq.

• Assume m0 ă 0. Then for α P r0, 1q

m0 ` α

n
“ 0 ñ

#
W k,ppΩq ãÑ Cj,αpΩq,
W k,ppRnq ãÑ Cj,αpRnq,

m0 ` α

n
ă 0 ñ W k,ppΩq ãÑãÑ Cj,αpΩq.

• Assume m0 “ 0. Then

W k,ppΩq ãÑãÑ W j,qpΩq q P r1,8q.

Proof. The proof can be seen in [45, Theorem 2.17 pg. 28] or [22].

Let H be a Hilbert space with a scalar product p¨, ¨qH and let X be a Banach

space such that

X ãÑ H » H˚
ãÑ X˚, (1.1)

and

X is dense in H. (1.2)
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Then, if u P LppI;Xq, with I an interval, we denote by
du

dt
the element of the space

LqpI;X˚q (where
1
p

` 1
q

“ 1) such that
ż

I

Adu
dt
,v
E
φptqdt “ ´

ż

I

puptq,vqHφ
1ptqdt,

for all v P X and φ P DpIq.

Theorem 1.10. Let (1.1), (1.2) be satisfied and let p P p1,8q. Then

• W ”
!

u P Lppτ, T ;Xq | du
dt

P Lqpτ, T ;X˚q
)

ãÑ Cprτ, T s;Hq;

• For all u,v P W and all s, t P rτ, T s

puptq,vptqqH ´ pupsq,vpsqqH “
ż t

s

´Aduprq
dt

,vprq
E

`
Advprq

dt
,uprq

E¯
dr.

In particular for u “ v,

1
2

}uptq}2
H ´ 1

2
}upsq}2

H “
ż t

s

Aduprq
dt

,uprq
E
dr,

for all s, t P rτ, T s.

Proof. See [45, Lemma 2.45, pg. 35].

Theorem 1.11. (Aubin-Lions-Simon) Let B0 Ă B1 Ă B2 be three Banach spaces. We

assume that the embedding of B1 in B2 is continuous and that the embedding of B0 in B1

is compact. Let p, r such that 1 ď p, r ď `8. For T ą τ , we define

Ep,r “
!

u P Lppτ, T ;B0q | du
dt

P Lrpτ, T ;B2q
)

(i) If p ă `8, the embedding of Ep,r into Lppτ, T ;B1q is compact.

(ii) If p “ `8 and if r ą 1, the embedding of Ep,r into Cprτ, T s;B1q is compact.

Proof. See [6, Theorem II.5.16, pg. 102].

Proposition 1.12. Let X, Y be Banach spaces such that X is reflexive and X ãÑ
Y . Assume that un is bounded sequence in L8pt0, T ;Xq such that un á u weakly in

Lqpt0, T ;Xq for some q P r1,8q and u P Cprt0, T s;Y q. Then uptq P X and }uptq}X ď
lim inf

nÑ8
}un}L8pt0,T ;Xq for all t P rt0, T s.

Proof. See [45, Lemma 11.2, pg. 288] or [28, Lemma 4.9].

Proposition 1.13. Let X and Y be Banach spaces, with X reflexive and X ãÑ Y . If

u P L8pτ, T ;Xq X Cwprτ, T s, Y q, then u P Cwprτ, T s, Xq and uptq belongs to X for all

t P rτ, T s.

Proof. See [2, Theorem 1.6, pg. 21].
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1.3.2 Interpolation Results

Theorem 1.14. (Interpolation in Lp) Assume 1 ď p2 ď p ď p1 and u P Lp1pΩq X
Lp2pΩq. Then

}u}p ď }u}α
p1

}u}1´α
p2

,

where
1
p

“ α

p1

` 1 ´ α

p2

, α P r0, 1s.

Proof. See [45, Corollary 2.10 pg. 26].

Theorem 1.15. Let Ω Ă R
n be a bounded, regular domain, and q ď n ď p ă 8. then

}u}p ď ĉ}u}1´ q

p
q }∇u}

q

p
n , (1.3)

for any u P W 1,n
0 pΩqn. Here the constant ĉ is scaling invariant, but tends to 8 as p Ñ 8.

Proof. See [23, Theorem 9.1, pg. 259].

Remark 1.16. A special case of the above result for two-dimensional domain is called

Ladyzhenskaya inequality, for u P W 1,2
0 pΩq2

}u}4 ď ĉ|u|
1

2

2 |∇u|
1

2

2 . (1.4)

Theorem 1.17. (Interpolation of Gagliardo-Nirenberg) Let Ω be a bounded domain

of Rn with BΩ of class Cm and let u P Wm,rpΩq X LqpΩq, 1 ď r, q ď 8. For any integer j,

0 ď j ă m, and for any number α in the interval rj{m, 1s, such that

1
p

“ j

n
` α

`1
r

´ m

n

˘
` p1 ´ αq1

q
.

If m ´ j ´ n{r is not a non-negative integer, then

}Dju}p ď C}u}α
m,r}u}1´α

q , (1.5)

where the constant C depends only on Ω, r, q, m, j and α.

If 1 ă r ă 8 and m ´ j ´ n{r is a non-negative integer, then (1.5) holds for α P rj{m, 1q.

Proof. See [25, Theorem 10.1].

1.3.3 Basis Consisting of Eigenfunctions

The next results can be found in [45, Appendix A.4 pg. 288].

For s ě 1 and p ą 1, let us define

V :“ tϕ P C8
c pΩqn : divxϕ “ 0u;

H “ closure of V in the L2pΩqn ´ norm;

Vp “ closure of V in the W 1,ppΩqn ´ norm;

V s “ closure of V in the W s,2pΩqn ´ norm.
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If s “ 1 or p “ 2, then V will denote the spaces V2, V 1, respectively. Let us

denote the dual space of Vp by V ˚
p and x¨, ¨y the duality between Vp and V ˚

p , the scalar

product in H is marked by p¨, ¨q while the scalar product in V s is marked by pp¨, ¨qqs.

The spaces Vp and V s can be characterized, as:

Vp “ tu P W 1,p
0 pΩqn : divxu “ 0u,

V s “ tu P W s,2pΩqn : γpuq “ 0 at BΩ, divxu “ 0u,
where γ is the trace operator given by

γ : W 1,2pΩq ãÑ H1{2pBΩq
u ÞÑ u|BΩ.

By H´1{2pBΩqn we mean the dual space of H1{2pBΩqn. Defining

EpΩq ” tu P L2pΩqn : divxu P L2pΩqu,

it is possible to construct a trace operator

pγ : EpΩq ãÑ H´1{2pBΩqn,

such that pγpuq “ u ¨ n for u P C1pΩq, n being an outer normal unit vector of BΩ. Then it

holds that

H “ tu P L2pΩqn : pγpuq “ 0, divxu “ 0 in D1pΩqu.

We are interested in the following spectral problem: Find wr P V s and λr P R

satisfying

ppwr,vqqs “ λrpwr,vq v P V s. (1.6)

Theorem 1.18. There exist a countable set tλku8
k“1 and a corresponding family of eigen-

vectors twku8
k“1 solving problem (1.6) such that

• pwi,wjq “ δi,j @i, j P N,

• 0 ă λ1 ď λ2 ď ... and λk Ñ 8 as k Ñ 8,

• pp wi

?
λi

,
wj

a
λj

qqs “ δi,j @i, j P N,

• twu8
k“1 forms a basis of V s.

Moreover, defining Hm ” spantw1, ...,wmu (a linear hull) and Pm : V s Ñ Hm by

Pmpvq “
mÿ

i“1

pv,wiqwi,

we obtain

}Pm}LpV s,V sq ď 1, }Pm}LppV sq˚,pV sq˚q ď 1, }Pm}LpH,Hq ď 1.

Proof. See [45, Appendix: A.4 pg. 290].
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1.4 Ordinary Differential Equations

1.4.1 Ordinary Differential Equations (ODE)

Given t0 P R and δ ą 0 let us denote by Iδ “ pt0 ´ δ, t0 ` δq. Let us consider

for c : Iδ Ñ R
n, the system of ordinary differential equations

$
&
%

dc

dt
ptq “ fpt, cptqq t P Iδ,

cpt0q “ c0 P R
n.

(1.7)

Assume f : Iδ ˆ K Ñ R
n, where K “ tc P R

n : |c ´ c0| ă Mu for some M ą 0.

Definition 1.19. A function f : Iδ ˆ K Ñ R
n is said to satisfy the Carathéodory

Conditions if

• c ÞÑ Fipt, cq is continuous for almost all t P Iδ,

• t ÞÑ Fipt, cq is measurable for all i “ 1, ..., n and for all c P K,

• There exists an integrable function G : Iδ Ñ R such that

|Fipt, cq| ď Gptq @pt, cq P Iδ ˆ K, @i “ 1, ..., n.

Theorem 1.20. Assume that f satisfies the Carathéodory conditions. Then there exist

δ0 P p0, δq and a continuous function c : Iδ0
Ñ R

n such that

•
dc

dt
exists for almost all t P Iδ0

,

• c solves (1.20).

Proof. See [45, Theorem 3.4 pg. 287].

Lemma 1.21. (Gronwall inequality) Let y : pτ, T q Ñ R and g : pτ, T q Ñ R be

non-negative functions, g P L1pτ, T q. Suppose that inequality

yptq ď C `
ż t

τ

gpsqypsqds,

holds for t P pτ, T q with C P R. Then

yptq ď Cexp
ż t

τ

gpsqds t P pτ, T q.

Proof. See [45, Lemma 3.5 pg. 288].
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1.4.2 Delay Ordinary Differential Equations (DODE)

Delay differential equations arise from various applications, like biology, medicine,

control theory, climate models, and many others. Their independent variables are the time

t and one or more dimensional variable x , which usually represents the position in space

but may also represent relative DNA content, size of cells, or their maturation level, or

other values. The solutions (dependent variables) of delay partial differential equations

may represent fluid velocity, temperature, voltage, concentrations or densities of various

particles, for example cells, bacteria, chemicals, animals and so on.

Let us first establish suitable assumptions on the term in which the delay is

present. Let X and Y be two separable Banach spaces and

g : rτ, T s ˆ Cpr´h, 0s;Xq Ñ Y

such that the following holds.

(I) For all ξ P Cpr´h, 0s;Xq, the mapping t P rτ, T s Ñ gpt, ξq P Y is measurable.

(II) For each t P rτ, T s, gpt, 0q “ 0.

(III) There exists Lg ą 0 such that, for all s P rτ, T s and for any ξ, η P Cpr´h, 0s;Xq,

}gps, ξq ´ gps, ηq}Y ď Lg}ξ ´ η}Cpr´h,0s;Xq.

(IV) There exists Cg ą 0 such that, for all t P rτ, T s and for any u, v P Cprτ ´ h, T s;Xq,
ż t

τ

}gps, usq ´ gps, vsq}2
Y ds ď C2

g

ż t

τ´h

}upsq ´ vpsq}Xds.

Remark 1.22. Observe that conditions (I)-(III) above imply that, given u P Cprτ ´
h, T s;Xq, the function gu : t P rτ, T s Ñ Y defined by guptq “ gpt, utq, @t P rτ, T s, is

measurable and, in fact, belongs to L8pτ, T ;Y q. Then, thanks to (IV), the mapping

G : u P Cprτ ´ h, T s;Xq Ñ gu P L2pτ, T ;Y q

has a unique extension to a mapping rG, which is uniformly continuous from L2pτ´h, T ;Xq
into L2pτ, T ;Y q. From now on, we will write gpt, utq “ rGptq for each u P L2pτ ´ h, T ;Xq,
and thus for all t P rτ, T s and any u, v P L2pτ ´ h, T ;Xq, we get

ż t

τ

}gps, usq ´ gps, vsq}2
Y ds ď C2

g

ż t

τ´h

}upsq ´ vpsq}2
Xds.

Theorem 1.23. Let u0 P R
n, φ P L2p´h, 0;Rnq, k P L2p0, T ;Rnq, g : r0, T sˆCpr0, T s;Rnq Ñ

R
n satisfying hypotheses (I)-(IV) with X “ Y “ R

n, and f : r0, T s ˆ R
n Ñ R

n a contin-

uous function such that fpt, 0q “ 0 and for all m ą 0 there exists Lm ą 0 such that

|fpt,uq ´ fpt,vq| ď Lm|u ´ v|, @|u| ď m, |v| ď m, @t P r0, T s.

Then
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(a) For each t˚ P r0, T s there exists at most one solution to problem

$
’’’&
’’’%

to find u P L2p´h, t˚;Rnq X Cpr0, t˚s;Rnq such that

uptq “ φptq, t P r´h, 0s

uptq “ u0 `
ż t

0

fps,upsqqds `
ż t

0

gps,usqds `
ż t

0

kpsqds @t P r0, t˚s;
(1.8)

(b) there exists t˚ P r0, T s such that there exists one (and only one) solution to problem

(1.8);

(c) suppose that there exists a constant C ą 0 such that if t˚ P r0, T s is such that there is

a solution u of (1.8), then max
tPr0,t˚s

|uptq| ď C. Then, under this additional assumption,

there exists a solution to problem (1.8) with t˚ “ T .

Proof. See [13, Appendix A].

1.5 Pullback Attractors

In this section we are going to study the existence of pullback attractors for

upper-semicontinuous multi-valued process and for closed process. At the end of this

section we will give a comparison result for pullback attractors. All the results in the next

subsections can be found in [17, 12, 28, 8, 32, 61, 18, 2].

Let pX, dXq be a metric space and R
2
d “ tpt, sq P R

2 : t ě su. In what follows,

we denote by PpXq the family of all nonempty subsets of X.

We denote by distXpO1,O2q the Hausdorff semi-distance in X between two

sets O1 and O2, defined as

distXpO1,O2q “ sup
xPO1

inf
yPO2

dXpx, yq for O1,O2 Ă X.

We consider a universe D, that is a nonempty class of families parameterized in

time pD “ tDptq : t P Ru Ă PpXq and a family of nonempty sets pD0 “ tD0ptq : t P Ru Ă
PpXq.

Definition 1.24. A universe D is inclusion-closed if given pD P D and pD1 “ tD1ptq : t P
Ru Ă PpXq with Dptq Ă D1ptq for all t P R, it fulfils that pD1 P D.

1.5.1 Pullback Attractor for Closed Process

Definition 1.25. A process on X is a family of mappings Upt, τq : X Ñ X for any pairs

pt, τq P R
2
d, such that
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1. Upτ, τqx “ x @τ P R @x P X,

2. Upt, τq “ Upt, sqUps, τq @τ ď s ď t.

As a convenient shorthand, we will refer to the process Up¨, ¨q rather than the

process Upt, τq : X Ñ X for any pairs pt, τq P R
2
d in all that follows.

Definition 1.26. A process Up¨, ¨q on X is said to be closed if for any τ ď t, and any

sequence txku Ă X with xk Ñ x P X and Upt, τqxk Ñ y P X, then Upt, τqx “ y.

Definition 1.27. The family pD0 is said to be pullback D-absorbing for a closed process

Up¨, ¨q on X if for any pD P D, there exists a τ0pt, pDq ď t such that

Upt, τqDpτq Ď D0ptq for all τ ď τ0pt, pDq.

Definition 1.28. Given a family of nonempty sets pD “ tDptq : t P Ru Ă PpXq, a closed

process Up¨, ¨q on X is pullback pD-asymptotically compact if, for any t P R, any sequence

tτku Ă p´8, ts and txku Ă X such that τk Ñ ´8 and xk P Dpτkq for all k P N, the

sequence tUpt, τkqxku is relatively compact in X.

Definition 1.29. A closed process Up¨, ¨q on X is pullback D-asymptotically compact if it

is pullback pD-asymptotically compact for all pD P D.

Definition 1.30. A pullback D-attractor for a closed process Up¨, ¨q on X is a family

AD “ tADptq : t P Ru Ă PpXq such that

1. for any t P R, the set ADptq is a nonempty compact subset of X;

2. AD is pullback D-attracting, i.e.

lim
τÑ´8

distXpUpt, τqDpτq,ADptqq “ 0 @ pD P D @t P R,

3. AD is invariant, i.e.

ADptq “ Upt, τqADpτq @pt, τq P R
2
d.

A pullback D-attractor AD is said to be minimal if it satisfies that if there exists another

family of closed sets pC “ tCptq : t P Ru such that it is pullback D-attracting, then

ADptq Ă Cptq for all t P R. The inclusion of minimality guarantees the uniqueness of the

pullback attractor.

Denote by

Λp pD0, tq :“
č

σďt

ď

τďσ

Upt, τqD0pτq
X

@t P R (1.9)

where t¨ ¨ ¨uX
is the closure in X.
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Proposition 1.31. If pD0 is pullback D-absorbing for a closed process Up¨, ¨q, then

Λp pD, tq Ă Λp pD0, tq for all pD P D, t P R.

In addition, if pD0 P D, then

Λp pD0, tq Ă D0ptq for all t P R.

Proof. The proof can be seen in [28].

Proposition 1.32. Assume that pD0 is pullback D-absorbing for a closed process Up¨, ¨q on

X, which is pullback pD0-asymptotically compact. Then, the process Sp¨, ¨q is also pullback

D-asymptotically compact.

Proof. The proof can be seen in [28].

Theorem 1.33. Consider a closed process U : R2
d ˆ X Ñ X, a universe D in PpXq,

and a family pD0 Ă PpXq which pullback D-absorbing, and assume that Up¨, ¨q is pullback
pD0-asymptotically compact. Then, the family AD “ tADptq : t P Ru Ă PpXq defined by

ADptq “
ď

pDPD

Λp pD, tq
X

, t P R,

is the minimal pullback attractor for the closed process Up¨, ¨q on X. Besides, if pD0 P D,

then ADptq “ Λp pD0, tq Ă D0ptqX
, for all t P R.

Proof. The proof can be seen in [28].

Remark 1.34. If AD P D, then it is the unique family of closed subsets in D that satisfies

1 - 3 of the Definition 1.30. A sufficient condition for AD P D is to have that pD0 P D, the

set pD0ptq is closed for all t P R, and the family D is inclusion-closed.

1.5.2 Pullback Attractor for Multi-valued Process

Definition 1.35. A multi-valued process (also called multi-valued non-autonomous dy-

namical system) Up¨, ¨q on X is a family of mappings Upt, τq : X Ñ PpXq for any pairs

pt, τq P R
2
d, such that

1. Upτ, τqx “ txu @τ P R @x P X,

2. Upt, τqx Ă Upt, sq
`
Ups, τqx

˘
@τ ď s ď t @x P X, where Upt, τqW :“

ď

yPW

Upt, τqy .

Observe that if the relationship given in 2 is an equality instead of an inclusion,

the multi-valued process Up¨, ¨q is called strict.
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Definition 1.36. A multi-valued process Up¨, ¨q on X is upper-semicontinuous if the

mapping Upt, τq is upper-semicontinuous from X into PpXq for all pt, τq P R
2
d, i.e. for

any x P X and for every neighborhood N in X of the set Upt, τqx there exists a value

ǫ ą 0 such that Upt, τqy Ă N provided that dXpx, yq ă ǫ.

Definition 1.37. The family pD0 is said to be pullback D-absorbing for a multi-valued

process Up¨, ¨q on X if for every t P R and pD P D, there exists a τ0pt, pDq ď t such that

Upt, τqDpτq Ď D0ptq @ τ ď τ0pt, pDq.

Definition 1.38. Given a family of nonempty sets pD “ tDptq : t P Ru Ă PpXq, a

multi-valued process Up¨, ¨q on X is pullback pD-asymptotically compact if for any t P R

and any sequences tτku Ă p´8, ts and txku Ă X such that τk Ñ ´8 and xk P Dpτkq, it

fulfils that any sequence tyku is relatively compact in X, where yk P Upt, τkqxk for all k.

Definition 1.39. A multi-valued process Up¨, ¨q on X is pullback D-asymptotically compact

if it is pullback pD-asymptotically compact for any pD P D.

Definition 1.40. A pullback D-attractor for a multi-valued process Up¨, ¨q on X is a

family AD “ tADptq : t P Ru Ă PpXq such that

1. for any t P R, the set ADptq is a nonempty compact subset of X;

2. AD is pullback D-attracting, i.e.

lim
τÑ´8

distXpUpt, τqDpτq,ADptqq “ 0 @ pD P D @t P R,

where distXp¨, ¨q denotes the Hausdorff semi-distance in X between two subsets of X;

3. AD is negatively invariant, i.e.

ADptq Ă Upt, τqADpτq @pt, τq P R
2
d.

A pullback D-attractor AD is said to be minimal if it satisfies that if there exists another

family of closed sets pC “ tCptq : t P Ru such that it is pullback D-attracting, then

ADptq Ă Cptq for all t P R.

Remark 1.41. Observe that pullback attractors are not unique in general (cf. [17]);

however, the minimal pullback attractor is, therefore, in the sense of minimality, one

recovers uniqueness of pullback attractor.

We denote the omega-limit set of pD0 at time t by

Λp pD0, tq :“
č

σďt

ď

τďσ

Upt, τqD0pτq
X

,

where t¨ ¨ ¨uX
is the closure in X.
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Theorem 1.42. Assume that Up¨, ¨q is an upper-semicontinuous multi-valued process with

closed values, pD0 P D pullback D-absorbing family and also suppose that Up¨, ¨q on X is

pullback pD0-asymptotically compact. Then, the family AD “ tADptq : t P Ru defined by

ADptq “
ď

pDPD

Λp pD, tq
X

@t P R,

is the minimal pullback D-attractor and ADptq Ă D0ptqX
for all t P R.

Proof. The proof can be seen in [8, 30].

Remark 1.43. If AD P D, then it is the unique family of D that satisfies the properties

1 ´ 3 given above. In addition, if the multi-valued process Up¨, ¨q is strict, then AD is

strictly invariant under the process Up¨, ¨q, i.e.

ADptq “ Upt, τqADpτq @pt, τq P R
2
d.

1.5.3 Comparison of attractors

We will denote by DX
F the universe of fixed nonempty bounded subsets of X, i.e.

the class of all families pD of the form pD “ tDptq “ D : t P Ru with D a fixed nonempty

bounded subset of X.

Corollary 1.44. Under the assumptions of Theorem 1.42, if the universe D contains the

universe DX
F , then ADX

F
“ tADX

F
ptq : t P Ru where

ADX
F

ptq “
ď

B bounded

ΛpB, tq
X

, (1.10)

is the minimal pullback DX
F -attractor for the multi-valued process Up¨, ¨q and the following

relationship holds

ADX
F

ptq Ă ADptq @t P R.

Proof. The proof can be seen in [8, 30].

Remark 1.45. It can be proved (see [47]) that, under the assumptions of the preceding

Corollary, if for some T P R the set
ď

tďT

D0ptq is a bounded subset of X, then

ADX
F

ptq “ ADptq @t ď T.

Now, we establish an abstract result that allows to compare two attractors for

a process under appropriate assumptions.
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Theorem 1.46. Let tpXi, dXi
qui“1,2 be two metric space such that X1 Ă X2 with continuous

injection, and for i “ 1, 2, let Di be a universe in PpXiq, with D1 Ă D2. Assume that we

have a map Up¨, ¨q that acts as a process in both cases, i.e. U : R2
d ˆ Xi Ñ Xi for i “ 1, 2

is a process.

For each t P R, let us denote

Aiptq “
ď

pDiPDi

Λip pDi, tq
Xi

, i “ 1, 2,

where the subscript in i in the symbol of the omega-limit set Λi is used to denote the

dependence of the respective topology.

Then,

A1ptq Ă A2ptq @t P R.

Suppose moreover that the two following conditions are satisfied:

(i) A1ptq is a compact subset X1 for all t P R,

(ii) for any pD2 P D2 and any t P R, there exist a family pD1 P D1 and t˚pD1

ď t (both possibly

depending on t and pD2), such that Up¨, ¨q is pullback pD1-asymptotically compact, for

any s ď t˚pD1

there exists a τs ď s such that

Ups, τqD2pτq Ă D1psq for all τ ď τs.

Then, under all the conditions above,

A1ptq “ A2ptq @t P R.

Proof. See [8, 30].

Remark 1.47. It is important to observe that all the results established in this subsection

are still valid for upper-semicontinuous multi-valued process being the proofs analogous,

see [8, 9].

1.6 Compressible and Incompressible Fluids

The aim of this section is to give a brief introduction to mathematical models

of fluids in partial differential equations for a better physical understanding and to show

the importance of the development of this work. The next physical concepts were extracted

from the book [45, Chapter 1]. See also [23, 4, 20, 40, 39].

The following equations represent the governing principles in fluid mechanics:

conservation of mass, momentum, and energy. These laws are presented in differential form,

applicable at a point or to a fluid particle. All quantities are evaluated at pt, xq P rτ, T qˆΩ,
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where rτ, T q is an interval of time and Ω Ă R
n that can be physically interpreted as a

domain occupied by the material at an instant of time t P rτ, T q.

• Law of conservation of mass: States that the rate at which mass enters the

system is equal to the rate at which mass leaves the system plus the accumulation

of mass within the system.
Bρ
Bt ` Bpρvjq

Bxj

“ 0, (1.11)

• Law of balance of momentum: The local conservation of momentum is expressed

by the Cauchy momentum equations

Bpρviq
Bt ` Bpρvivjq

Bxj

“ BTij

Bxj

` ρfi, (1.12)

• Law of balance of energy:

Bpρeq
Bt ` Bpρevjq

Bxj

“ BpTijvkq
Bxj

´ Bqj

Bxj

` ρr ` ρfivj, (1.13)

where ρ is fluid density, v “ pv1, . . . , vnq is the fluid velocity, f “ pf1, . . . , fnq is an external

force, T “ pTijq is the Cauchy stress tensor, e “ E ` |v|2{2 with E the specific internal

energy of the material, q “ pq1, ..., qnq is the spatial heat flux vector and r is the rate of

external communication of heat to the body through radiation.

Next, we will present some of the most known and studied systems in fluid

mechanics, which are deduced from the conservation laws.

I. Compressible non-Newtonian Fluids: Euler equations describe the movement of

a non-viscous compressible fluid and the stress tensor is determined by the pressure,

see [45], i.e.,

T “ ´P pρ, θqI,

where θ is the temperature and I is the identity matrix. If we take into consideration

the viscous effects, the dependence of T on other quantities, say ∇v, ∇θ, should be

assumed. In this case

T “ T̂pρ, θ,∇θ,∇vq.

However, when the motion of the material is isothermal, i.e. the temperature θ “
θ0 ą 0 is constant, the tensor function T̂ does not depend on θ and ∇θ. Thus,

T “ T̄pρ,∇vq. (1.14)

Consequently, the equations (1.11)-(1.12) are not coupled with (1.13) and can be

considered separately. Thus, we can determine ρ and v from (1.11), (1.12) and then

use (1.13) to calculate the remaining thermodynamical quantities.
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It can be shows that (1.14) has the form

T “ ´P peqI ` T̃pρ, eq, (1.15)

where e “ epvq “ 1
2

p∇v ` ∇vT q is the symmetric part of the velocity gradient ∇v.

Under the previous assumptions, system (1.11), (1.12) reads

Bρ
Bt ` Bpρvjq

Bxj

“ 0,

Bpρviq
Bt ` Bpρvivjq

Bxj

“ ´ BP
Bxi

` BT̃ij

Bxj

` ρfi,

(1.16)

for i “ 1, ..., n.

II. Incompressible non-Newtonian Fluids: If a material is incompressible and homo-

geneous, ρpt, xq “ ρ0 ą 0 for all pt, xq P rτ, T q ˆ Ω, and we consider an isothermal

process, then

• from (1.14) it follows that

T “ ´πI ` τE,

where π is the so-called undetermined pressure and τE is the extra stress tensor;

• system (1.16) reduces to

divxv “ 0,

ρ0

Bvi

Bt ` ρ0vj

Bvi

Bxj

“ ´ Bπ
Bxi

` BτE
ij

Bxj

` ρ0fi,
(1.17)

for i “ 1, . . . , n.

For this type of fluids it is usual to assume that the extra stress τE is given by

the sum of two symmetric tensors depending on e “ epvq. This means that, for all

pt, xq P rτ, T q ˆ Ω,

τE “ Spepvqq ` σpepvqq,

or equivalently

τE “ Speq ` σpeq.

Usually, instead of S, it is employed the notation τ . However, to avoid confusion

with the initial time t “ τ , we choose to use S.

In general, the p-coercivity and q-growth conditions are required on S and σ, i.e.

there exist constants C1, C2 ą 0 and parameters p ą 1 and q P rp´ 1, pq such that

for all M P R
n2

sym, it holds

#
SpMq : M ě C1|M|p,
σpMq : M ě 0,
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|SpMq ` σpMq| ď C2p1 ` |M|qq.

Now, in order to develop a mathematical theory, the minimal conditions that

we will require on the stress tensor S : Rn2

sym Ñ R
n2

sym are:

Sp0q “ 0,
`
SpAq ´ SpBq

˘
: pA ´ Bq ě ν1

`
1 ` µp|A| ` |B|q

˘p´2|A ´ B|2, (1.18)

|SpAq ´ SpBq| ď c1ν1

`
1 ` µp|A| ` |B|q

˘p´2|A ´ B|,

for all A,B P R
n2

sym. We conveniently denote by µ “
`ν2

ν1

˘ 1

p´2 if p ‰ 2 and µ “ 1 if p “ 2,

where ν1, ν2 are the viscosities (critical physical parameters of the problem).

Note that from (1.18) it follows the p-coercivity and pp ´ 1q-growth conditions

of S, that is: there exist positive constants c2, c3 such that, for all p ě 2 the stress tensor S

satisfies:

SpDq : D ě c2pν1|D|2 ` ν2|D|pq,
|SpDq| ď c3ν1p1 ` µ|D|qp´1,

for all D P R
n2

sym.

Now, we are going to introduce some definitions and results related to the

stress tensor S. Then, we will present most known systems of equations for incompressible

non-Newtonian fluids, such as the Ladyzhenskaya models and fluids of type power-law.

Definition 1.48. A function S : Rn2

sym Ñ R
n2

sym has a potential if there exists a function

Φ : Rn2 Ñ r0,`8q such that Φ is a C2´ function,

BAΦpAq “ SpAq, (1.19)

Φp0q “ BAΦp0q “ 0, (1.20)

B2
AΦpAq : pB b Bq ě C1

$
’&
’%

ν2|A|p´2|B|2,
or

ν1p1 ` µ|A|qp´2|B|2,
(1.21)

|B2
AΦpAq| ď C2ν1p1 ` µ|A|qp´2, (1.22)

for all A,B P R
n2

sym.

We denote the components of the stress tensor S by τij :“ Sij, with this the
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expressions in (1.19)-(1.22) can be written as

BΦ
Baij

pAq “ τijpAq,

Φp0q “ BΦ
Baij

p0q “ 0,

B2ΦpAq
BaijBalk

bijblk ě C1

$
’&
’%

ν2|A|p´2|B|2,
or

ν1p1 ` µ|A|qp´2|B|2,
ˇ̌B2ΦpAq
BaijBalk

ˇ̌
ď C2ν1p1 ` µ|A|qp´2,

for all A “ paijq,B “ pbijq P R
n2

sym.

Next Lemmas furnish some algebraic properties satisfied when S has a potential.

Lemma 1.49. Let p ą 1 and S : Rn2

sym Ñ R
n2

sym, Φ : Rn2 Ñ R satisfy (1.19)-(1.22). Then

there exist positive constants c1, c2, c3, C3, C4 and C5 such that for all e P R
n2

sym

τijpeqeij ě C3

#
ν2|e|p,
ν1|e|pµp´1|e|p´1 ´ 1q ě C4p|e|p ´ 1q,

(1.23)

|τijpeq| ď c3ν1p1 ` µ|e|qp´1, (1.24)

i, j “ 1, . . . , n, and for all e, ê P R
n2

sym

pτijpeq ´ τijpêqqpeij ´ êijq ě 0. (1.25)

Further, the inequality (1.23)2 can be replaced by

τijpeqeij ě C3 mint|e|2, |e|pu. (1.26)

Moreover, if p ě 2 then

τijpeqeij ě c2pν1|e|2 ` ν2|e|pq, (1.27)

and there exists c1 such that

pτijpeq ´ τijpêqqpeij ´ êijq ě c1

#
ν2|e ´ ê|p,
ν1|e ´ ê|2 ` ν2|e ´ ê|p.

(1.28)

If p P p1, 2q and |e|, |ê| ď R then there exists C5 “ C5pRq such that

pτijpeq ´ τijpêqqpeij ´ êijq ě C5|e ´ ê|2. (1.29)

Proof. See [45, Lemma 1.19 pg. 198].
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Lemma 1.50. Let p ą 1 and S : Rn2

sym Ñ R
n2

sym, Φ : Rn2 Ñ R satisfy (1.19)-(1.22). Then

there exist positive constants c5, c6 and C6 such that for all e P R
n2

sym

c6p1 ` |e|qp ě Φpeq ě C6

#
|e|p,
|e|p|e|p´1 ´ 1q.

(1.30)

If p ě 2 then

c5ν1p1 ` µ|e|qp´2|e|2 ď Φpeq. (1.31)

Proof. See [45, Lemma 1.35 pg. 201].

Observe that, by Lemma 1.49, if the stress tensor S satisfies (1.19)-(1.22), then,

also satisfies (1.18). In particular, it satisfies the p-coercivity and pp´ 1q-growth conditions.

Example 1.51. (Stokes’ Law) If the dependence of S on e is linear, i.e.

Speq “ 2νe ν ą 0, (1.32)

and σ ” 0, system (1.17) turns into the well-known Navier-Stokes system

divxv “ 0,

ρ0

Bvi

Bt ` ρ0vj

Bvi

Bxj

“ ´ Bπ
Bxi

` ν∆vi ` ρ0fi,

for i “ 1, 2, ..., n. We observe that in this case

SpMq : M “ 2ν|M|2.

Therefore, the p-coercivity condition is satisfied with p “ 2.

Definition 1.52. An incompressible fluid, the behavior of which is characterized by Stokes’

law (1.32), is called Newtonian fluid. Fluids that cannot be described by (1.32) are

usually called non-Newtonian fluids.

Remark 1.53. The main points on non-Newtonian fluid behavior are: the ability of the

fluid to shear thin or shear thicken in shear flows; the presence of non-zero normal stress

differences in shear flows; the ability of the fluid to exhibit stress relaxation and the ability

of fluid to creep [26, pg. 129].

Example 1.54. (Ladyzhenskaya models) In 1969 O. Ladyzhenskaya proposed new

equations for the description of the motion of viscous incompressible fluids [39]:

(LM1)

$
&
%

Bv

Bt ´ pν0 ` ν1|∇v|22q∆v ` vk

Bv

Bxk

“ ´∇p ` fpt, xq,
divxv “ 0,

where ν0, ν1 ą 0, or
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(LM2)

$
&
%

Bvi

Bt ´ B
Bxk

Tikpejlpvqq ` vkeikpvq “ ´ Bq
Bxi

` fi,

divxv “ 0,

where, q “ π ´ 1
2

|v|2 and eikpvq are the components of the symmetric gradient epvq, or its

special case

(LM3)

$
&
%

Bvi

Bt ´ B
Bxk

rpν2 ` ν3|epvq|22qeikpvqs ` vkeikpvq “ ´ Bπ
Bxi

` fi,

divxv “ 0,

where ν2, ν3 ą 0.

For the system (LM2), the following hypotheses for the functions Tikpejlpvqq
are assumed:

(i) Tik “ Tki, Tikpejlpvqq are continuous functions on ejlpvq for all j, l “ 1, . . . , n and

|Tikpejlpvqq| ď c
`
1 ` |epvq|2µ

˘
|epvq| with µ ě 1{4,

(ii)

|Tikpejlpvqq| ě ν4|epvq|2
`
1 ` ε|epvq|2µ

˘
where ν4, ε ą 0,

(iii) for any solenoidal vector functions u,v P W 1,2pΩqn X W 1,2`2µpΩqn with u “ v on

BΩ, the following inequality holds

ż

Ω

rTikpejlpuqq ´ Tikpejlpvqqspeikpuq ´ eikpvqq ě ν5

ż

Ω

ÿ

ik

peikpuq ´ eikpvqq2,

where ν5 ą 0.

Conditions (i)-(iii) are satisfied, for instance, by

Tikpejlpvqq “ βp|epvq|22qeikpvq

if the “viscosity coefficient” βpsq is a positive monotonically increasing function of s ě 0

such that for large s the inequality

c1s
µ ď βpsq ď c2s

µ with c1, c2 ą 0 and µ ě 1{4.

Remark 1.55. In a recent publication, the asymptotic pullback behavior of the solutions

of system (LM1) was analyzed. Furthermore, the finite fractal dimension of the attractor

is studied, see [60].
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Example 1.56. (Generalized Newtonian fluid and power-law fluid) Let S be

given by

Speq “ 2µp|e|2qe “ 2µ̃peqe, (1.33)

and σ ” 0. The potential Φ is defined by

Φpeq “
ż |e|2

0

µpsqds. (1.34)

If, in particular we take

µpsq “ ν0s
r{2, (1.35)

then

Φpeq “ 2ν0

r ` 2
|e|r`2 and Speq : e “ 2ν0|e|re : e “ 2ν0|e|r`2

and we see that the p-coercivity condition holds for p “ r ` 2.

Remark 1.57. The fluids characterized by (1.33) are called generalized Newtonian

fluids (even if they are non-Newtonian ones). The fluids described by (1.33) and (1.35)

are called power-law fluids.

Example 1.58. (Various variants of power-law fluids) Let us consider

paq S
1peq “ 2ν0|e|re,

pbq S
2peq “ 2ν0p1 ` |e|rqe,

pcq S
3peq “ 2ν0p1 ` |e|2qr{2e,

pdq S
3`ipeq “ 2ν8e ` S

i, i “ 1, 2, 3,

(1.36)

where ν0 and ν8 are positive constants. Using (1.33) and (1.34) it is easy to observe that

the potential Φi corresponding to the tensor S
i defined in (1.36) for r ą ´1 and i “ 1, ..., 6,

are as follows:

paq Φ1peq “ 2ν0

r ` 2
|e|r`2,

pbq Φ2peq “ 2ν0

r ` 2
p1 ` |e|qr`2 ´ 2ν0

r ` 1
p1 ` |e|qr`1 ` 2ν0

pr ` 1qpr ` 2q ,

pcq Φ3peq “ 2ν0

r ` 2

“
p1 ` |e|2q r`2

2 ´ 1
‰
,

pdq Φ3`ipeq “ ν8|e|2 ` Φipeq, i “ 1, 2, 3.

Observe that the Ladyzhenskaya model (LM3) is a type of power-law fluid, since the stress

tensor associated to the system (LM3) is similar at the tensor given by S
4 with r “ 2.
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2 A Class of incompressible non-Newtonian

Fluids

In this chapter we will discuss several topics starting with the formulation and

statement of the problem, which consists of a model for incompressible non-Newtonian

fluids. Moreover, with the Faedo-Galerkin method, we will prove existence of weak solutions.

Regarding the uniqueness of weak solution, this result will be shown for weak solutions with

a certain preset regularity. Also, we will show a regularity result, for which we will assume

some additional hypotheses on the external force, the initial condition and the stress tensor.

Finally, we will prove the existence of pullback attractors for an upper-semicontinuous

multi-valued process defined on the Hilbert space H for tempered universes, and the

existence of pullback attractors for a closed process defined on the Banach space Vp, in

tempered universes built from the tempered universes of H.

2.1 Statement of the Problem

The physical properties of the fluids that we are interested in are encoded in

the stress tensor S, which is a function of epuq : Rn Ñ R
n2

sym, that is the symmetric part

of the gradient of the fluid velocity u, whose components are defined by

eij “ 1
2

p Bui

Bxj

` Buj

Bxi

q with i, j “ 1, . . . , n.

Typical examples of stress tensors are

Spepuqq “ ν1epuq ` ν2|epuq|p´2epuq, (2.1)

or its special case

Spepuqq “
`
ν1 ` ν2|epuq|22

˘
epuq. (2.2)

As we saw in Section 1.6, Example 1.54, they were suggested by O. Ladyzhenskaya

[41, 39, 40, 23]. They are known as Ladyzhenskaya Models or power-law fluids or rate-type

fluids, and belong to a class so-called generalized Navier-Stokes fluids.

In this work, we are going to consider general assumptions on the behavior of

stress tensor, conditions that will be given in (2.7) below, and, in particular, it satisfies

the p-coercivity and the pp ´ 1q-growth conditions. Let us move on to the formulation of

the problem.
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Let be Ω Ă R
n, n “ 2 or n “ 3, an open bounded domain with regular

boundary BΩ. For s ě 1 and p ą 1, let us recall the following spaces

V :“ tϕ P C8
c pΩqn : divxϕ “ 0u;

H “ closure of V in the L2pΩqn ´ norm;

Vp “ closure of V in the W 1,ppΩqn ´ norm;

V s “ closure of V in the W s,2pΩqn ´ norm.

Given τ and T , with τ ă T , we consider the following system of partial

differential equations with Dirichlet boundary condition for incompressible non-Newtonian

fluids, that we will call problem (LM):

Bu

Bt ´ divxSpepuqq “ ´divxpu b uq ´ ∇π ` fptq in Ωτ,T , (2.3)

divxu “ 0 in Ωτ,T , (2.4)

u “ 0 on pτ, T q ˆ BΩ, (2.5)

upτ, xq “ uτ pxq x P Ω, (2.6)

where Ωτ,T “ pτ, T qˆΩ, u “ pu1, ¨¨¨, unq is the fluid velocity, π the pressure, f “ pf1, ¨¨¨, fnq
an external force, uτ is the velocity of fluid at the initial time t “ τ and S : Rn2

sym Ñ R
n2

sym

is the stress tensor satisfying:

Sp0q “ 0,
`
SpAq ´ SpBq

˘
: pA ´ Bq ě ν1

`
1 ` µp|A| ` |B|q

˘p´2|A ´ B|2, (2.7)

|SpAq ´ SpBq| ď c1ν1

`
1 ` µp|A| ` |B|q

˘p´2|A ´ B|,

for all A,B P R
n2

sym. We conveniently denote by µ “
`ν2

ν1

˘ 1

p´2 if p ‰ 2 and µ “ 1 if

p “ 2, where ν1, ν2 are the viscosities (critical physical parameters of the problem), see for

example (2.1) or (2.2).

Note that from (2.7) it follows the p-coercivity and pp ´ 1q-growth conditions

of S, that is: there exist positive constants c2, c3 such that, for all p ě 2 the tensor stress S

satisfies

SpDq : D ě c2pν1|D|2 ` ν2|D|pq, (2.8)

and for all p ą 1 the tensor stress S satisfies

|SpDq| ď c3ν1p1 ` µ|D|qp´1, (2.9)

for all D P R
n2

sym.

Remark 2.1. At some point in this work, we will have to work with the components of

the function SpDq and we will conveniently denote by τijpDq :“ SijpDq.
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In order to obtain an operator formulation to system (LM), we introduce some

operators, related to the stress tensor S and the matrix u b u “ puiujq. See, for instance,

[44].

Lemma 2.2. Let π : Ω Ñ R and φ,u : Ω Ñ R
n be functions such that φ,u P V. Then

p∇π, φq “ ´
ż

Ω

π
Bφi

Bxi

“ 0,

and

pdivxpu b uq, φq “
ż

Ω

uj

Bui

Bxj

φidx.

Proof. As u and φ are smooth functions with divxu “ 0, by the Green Theorem (Lemma

1.4), we have that

pdivxpu b uq, φq “
ż

Ω

Bpuiujq
Bxj

φidx

“
ż

Ω

uj

Bui

Bxj

φidx `
ż

Ω

ui

Buj

Bxj

φidx

“
ż

Ω

uj

Bui

Bxj

φidx,

since divxu “ 0. On the other hand

p∇π, φq “
ż

Ω

Bπ
Bxi

φidx “ ´
ż

Ω

π
Bφi

Bxi

“ 0.

The proofs of the next Lemmas can be found in [44].

Lemma 2.3. Let u P L8pτ, T ;Hq X Lppτ, T ;Vpq be arbitrary. Then

ż T

τ

ż

Ω

uj

Bui

Bxj

vidxdt ă 8

for all v P Lppτ, T ;Vpq if p ě 1 ` 2n{pn ` 2q.

Proof. We will proof this lemma for the case p ă n, since the case p ě n is easy. Thus, note

that, due to the embedding W 1,ppΩqn
ãÑ L

np

n´p pΩqn (Theorem 1.9) and the interpolation

inequality (Theorem 1.14)

}u}σ ď }u}1´α
2 }u}α

np{pn´pq with α “ pσ ´ 2qnp
σpnp ´ 2pn ´ pqq (2.10)

holds provided that 2 ď σ ď np{pn ´ pq.

Next, we will to verify that if u P Lppτ, T ;Vpq X L8pτ, T ;Hq then

u P LσpΩτ,T qn “ Lσpτ, T ;LσpΩqnq, (2.11)
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with σ “ n ` 2
n

p. Indeed, again due to the embedding W 1,ppΩqn
ãÑ L

np

n´p pΩqn, i.e., there

exists a constant d ą 0 such that }u}np{pn´pq ď d}u}1,p. Then, from (2.10), we obtain

ż T

τ

}u}σ
σdt ď

ż T

τ

|u|p1´αqσ
2 }u}ασ

np{pn´pqdt ď d}u}p1´αqσ

L8pτ,T ;Hq

ż T

τ

}u}
ppσ´2qn

pnp´2pn´pqq

1,p dt. (2.12)

The right hand side of (2.12) is finite if
pσ ´ 2qn

np ´ 2pn ´ pq “ 1. Thus (2.11) is

proved.

Now, integrating by parts and by using the Hölder inequality

ż T

τ

ˇ̌
ˇ
ż

Ω

uj

Bui

Bxj

vidx
ˇ̌
ˇdt “

ż T

τ

ˇ̌
ˇ
ż

Ω

uj

Bvi

Bxj

uidx
ˇ̌
ˇdt ď }∇v}LppΩτ,T qn}u}2

L2qpΩτ,T qn ,

where q “ p

p ´ 1
.

Since 2q ď σ (ô p ě 1 ` 2n{pn ` 2q) and using (2.12), we have

ż T

τ

ż

Ω

|uipx, tq|2qdxdt
H:olderď C

´ż T

τ

ż

Ω

|uipx, tq|σdxdt
¯ 2q

σ

“ C
´ż T

τ

}u}σ
σdt

¯ 2q

σ

ď rCq
´ż T

τ

}u}p
1,pdt

¯ 2q

σ

,

where rC “ C
`
d}u}p1´αqσ

L8pτ,T ;Hq

˘ 2

σ . Therefore, we conclude that

ż T

τ

|
ż

Ω

puj

Bui

Bxj

viqpx, tqdx|dt ď rC}∇v}LppΩτ,T qn}u}
2p

σ

Lppτ,T ;Vpq ă 8. (2.13)

Remark 2.4. From the previous Lemma, we observe that for u P L8pτ, T ;HqXLppτ, T ;Vpq,
it holds uj

Bui

Bxj

P LqpΩτ,T q with q “ p{pp ´ 1q, if p ě 1 ` 2n{pn ` 2q.

Definition 2.5. Let us define the operator B : L8pτ, T ;Hq X Lppτ, T ;Vpq Ñ Lqpτ, T ;V ˚
p q

ż T

τ

xBpuqptq,vptqydt “
ż T

τ

ż

Ω

ujpx, tqBuipx, tq
Bxj

vipx, tqdxdt.

Lemma 2.6. If p ě 1 ` 2n{pn ` 2q, then

B : Lppτ, T ;Vpq X L8pτ, T ;Hq Ñ Lqpτ, T ;V ˚
p q,

is a continuous operator.
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Proof. From (2.13), we know that
ż T

τ

xBpuqptq,vptqydt ď rC}∇v}LppΩτ,T q}u}
2p

σ

Lppτ,T ;Vpq,

therefore, B is well defined.

Now, let tumu be a sequence belonging to Lppτ, T ;Vpq XL8pτ, T ;Hq such that

um Ñ u in L8pτ, T ;Hq,
um Ñ u in Lppτ, T ;Vpq.

(2.14)

Then we have that
ż T

τ

xBpumq ´ Bpuq,vydt “
ż T

τ

ż

Ω

pum
j ´ ujqpum

i ´ uiq
Bvi

Bxj

dxdt `
ż T

τ

ż

Ω

puiu
m
j ` uju

m
i q Bvi

Bxj

dxdt

´ 2
ż T

τ

ż

Ω

ujui

Bvi

Bxj

dxdt “ I1 ` I2,

where

I1 “
ż T

τ

ż

Ω

pum
j ´ ujqpum

i ´ uiq
Bvi

Bxj

dxdt,

I2 “
ż T

τ

ż

Ω

puiu
m
j ` uju

m
i q Bvi

Bxj

dxdt ´ 2
ż T

τ

ż

Ω

ujui

Bvi

Bxj

dxdt.

By inequality (2.13), we get

|I1| ď pC}∇v}LppΩτ,T q}um ´ u}2p1´αq
L8pτ,T ;Hq}um ´ u}

2p

σ

Lppτ,T ;Vpq

p2.14qÑ 0.

Observe that from the convergence in (2.14), we have |I2| Ñ 0. Therefore, we conclude

that B is a continuous operator.

Definition 2.7. Let us define the operator T : Lppτ, T ;Vpq Ñ Lqpτ, T ;V ˚
p q by

ż T

τ

xTpuqptq,vptqydt “
ż T

τ

ż

Ω

Spepuqq : epvqdxdt.

Lemma 2.8. Let S be a stress tensor satisfying (2.7). Then, for p ą 1 we have that

T : Lppτ, T ;Vpq Ñ Lqpτ, T ;V ˚
p q is a continuous operator.

Proof.

ż T

τ

|
ż

Ω

Spepuqq : epvqdx|dt
p2.9q
ď c3ν1

ż T

τ

ż

Ω

p1 ` µ|epuq|qp´1|epvq|dxdt

H:olderď c3ν1

` ż T

τ

}1 ` µ|epuq|}p
pdt

˘ p´1

p
` ż T

τ

}epvq}p
pdt

˘ 1

p .

Therefore, since p ą 1 then, the operator T is well defined. Besides that, from the previous

inequality and with the similar arguments as in Lemma 2.6, the operator T : Lppτ, T ;Vpq Ñ
Lqpτ, T ;V ˚

p q is continuous.
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With the help of the previous Lemmas, we can now introduce the weak formu-

lation to (LM).

Definition 2.9. Let p ą 1, uτ P H and f P Lqpτ, T ;V ˚
p q, where q “ p

p ´ 1
. Then a

function u is a weak solution to system (LM) if

u P L8pτ, T ;Hq X Lppτ, T ;Vpq with
Bu

Bt P Lqpτ, T ;V ˚
p q, (2.15)

and u satisfy

xBu

Bt ,vy ` xTpuq,vy ` xBpuq,vy “ xf ,vy, (2.16)

for all v P Vp, and a.e. τ ď t ď T , and

upτq “ uτ . (2.17)

Remark 2.10. By Theorem 1.10 a weak solution has a representative in the class

u P Cprτ, T s;Hq, (2.18)

whereby (2.17) makes sense. Besides, for any functions u, v, belonging to the class (2.15),

it holds

pupt2q,vpt2qq ´ pupt1q,vpt1qq “
ż t2

t1

´ABu

Bt ,v
E

`
ABv

Bt ,u
E¯
dt, (2.19)

where on the right-hand side x¨, ¨y stands for the duality between V ˚
p and Vp.

2.2 Existence of Weak Solutions to (LM)

The proof of existence of weak solutions is standard and similar demonstrations

can be found in [42, 45].

Theorem 2.11. (Existence) Given τ , T with τ ă T , uτ P H and f P Lqpτ, T ;V ˚
p q.

Then, if p ě 1 ` 2n
n ` 2

, there exists at least one weak solution of the problem (LM).

Proof. Let us consider

s ą n

2
` 1. (2.20)

From Theorem 1.18 there exists a set twru8
r“1 formed by the eigenfunctions to

problem

ppwr, ϕqqs “ λrpwr, ϕq @ϕ P V s, (2.21)

which are orthonormal in H and orthogonal in V s. We choose s satisfying (2.20) because

of the following: if v P W s,2pΩqn then ∇v P W s´1,2pΩqn2

and by Theorem 1.9

W s´1,2pΩq ãÑ L8pΩq if
1
2

´ s ´ 1
n

ă 0,

which is just (2.20). Consequently, for all p ą 1 we have ∇v P LppΩqn2

and V s
ãÑ Vp.
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• Galerkin system and a priori estimates:

Let us define umpt, xq “
mÿ

r“1

γm
r ptqwr, where the coefficients γm

r ptq solve the so-called

Galerkin system
$
&
%

d

dt
pumptq,wjq ` xTpumptqq,wjy ` xBpumptqq,wjy “ xfptq,wjy 1 ď j ď m,

umpτq “ Pmuτ .

(2.22)

Here, Pm is the orthogonal projector of H onto the linear hull of the first m

eigenvectors wj, j “ 1, ...,m, (see Theorem 1.18), therefore

Pmuτ Ñ uτ in L2pΩqn. (2.23)

Observe that (2.22) is a system of ordinary differential equations in the unknown

γmptq “ pγm
1 ptq, ¨ ¨ ¨, γm

mptqq. The existence and uniqueness of solutions follow from

Theorem 1.20, so there exists one solution defined in an interval rτ, tmq with τ ă
tm ď T . However, as can be deduced by the a priori estimates below, tm “ T .

We multiply the j´th equation of the Galerkin system (2.22) by γm
j ptq and add the

equations. The result can be written in the form

1
2
d

dt
|umptq|22 `

ż

Ω

Spepumqq : epumqdx “ xfptq,umy, (2.24)

since
ż

Ω

um
j

Bum
i

Bxj

um
i dx “ 0.

Given ǫ ą 0, by (2.8), the Korn inequality and applying the the Young inequality in

the right-hand side of (2.24), one has

d

dt
|um|22 ` 2c2ν1

c2
0

|∇um|22 `
`2c2ν2

c̃
p
0

´ 2ǫp

p

˘
}∇um}p

p ď 2
qǫq

}fptq}q
˚

where
1
p

` 1
q

“ 1.

Integrating from τ to t, we deduce

|umptq|22 ` 2c2ν1

c2
0

ż t

τ

|∇umpsq|22ds `
`2c2ν2

c̃
p
0

´ 2ǫp

p

˘ ż t

τ

}∇umpsq}p
pds

ď |Pmuτ |22 ` 2
qǫq

ż t

τ

}fpsq}q
˚ds.

We know that |Pmuτ |2 ď |uτ |2. So we choose ǫ ą 0 small enough and conclude that

tm “ T , @m P N, and

tumu8
m“1 is bounded in L8pτ, T ;Hq,

tumu8
m“1 is bounded in Lppτ, T ;Vpq.

(2.25)
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From (2.22) we have that

Bum

Bt “ ´Pm
Tpumq ´ PmBpumq ` Pmf . (2.26)

Therefore, from Lemmas 2.6 and 2.8, the sequence
 Bum

Bt
(

is bounded in Lqpτ, T ;V ˚
p q.

• Limiting process I

From (2.25), (2.26), the compactness theorems (Theorem 1.5 and Corollary 1.6) and

the Aubin-Lions Theorem (Theorem 1.11), it follows that, up to subsequences,

um
˚á u in L8pτ, T ;Hq,

um á u in Lppτ, T ;Vpq,
Bum

Bt á Bu

Bt in Lqpτ, T ;V ˚
p q,

um Ñ u in L2pτ, T ;Hq and a.e. in H and Ωτ,T ,

Tpumq á X in Lqpτ, T ;V ˚
p q.

(2.27)

Now, we are going to show that
ż T

τ

xBpumpsqq,vyds mÑ8Ñ
ż T

τ

xBpupsqq,vyds @v P Vp. (2.28)

For each wr with r P N, we have
ż T

τ

ż

Ω

pum
j u

m
i ´ ujuiq

Bwr
i

Bxj

dxdt “
ż T

τ

ż

Ω

pum
j ´ ujqum

i

Bwr
i

Bxj

dxdt

`
ż T

τ

ż

Ω

ujpum
i ´ uiq

Bwr
i

Bxj

dxdt

“ I1 ` I2.

Then,

|I1| ď }∇wr}8

ż T

τ

|um ´ u|2|um|2dt
p2.25q

ď C}∇wr}8

ż T

τ

|um ´ u|2dt

which tends to zero due to (2.27). On the other hand the weak convergence in (2.27),

implies |I2| Ñ 0 as m Ñ 8. Since spantwru is dense in Vp, given v P Vp there exists

a sequence tvku in spantwru such that vk Ñ v in Vp. Then from estimate (2.13)

given in Lemma 2.3, we obtain
ż T

τ

xBpumq ´ Bpuq,vydt

“
ż T

τ

xBpumq,v ´ vkydt `
ż T

τ

xBpumq ´ Bpuq,vkydt `
ż T

τ

xBpuq,v ´ vkydt

ď rCτ,T }v ´ vk}1,p

`
}um}

2p

σ

Lppτ,T ;Vpq ` }u}
2p

σ

Lppτ,T ;Vpq

˘
`
ż T

τ

xBpumq ´ Bpuq,vkydt.
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Thus (2.28) is true.

From (2.22), (2.27), and (2.28), we obtain

xBu

Bt ,vy ` xX ,vy ` xBpuq,vy “ xf ,vy @v P Vp and a.e. t. (2.29)

To conclude the proof of this theorem, we have to show that upτq “ uτ and Tpuq “ X .

• Limiting process II

Observe that

d

dt
pumptq,wrq ` xTpumptqq,wry ` xBpumptqq,wry “ xfptq,wry,

is true, for all wr, 1 ď r ď m.

Thus, integrating from τ to t, we obtain

pumptq,wrq`
ż t

τ

`
xTpumpsqq,wry`xBpumpsqq,wry

˘
ds “ pumpτq,wrq`

ż t

τ

xfpsq,wryds,

for all wr, 1 ď r ď m.

From (2.23), (2.27) and passing to the limit in m, we have

puptq,wrq `
ż t

τ

`
xX ,wry ` xBpupsqq,wry

˘
ds “ puτ ,wrq `

ż t

τ

xfpsq,wryds,

for all wr. Thus, by a density argument, we conclude that

puptq,vq `
ż t

τ

`
xX ,vy ` xBpupsqq,vy

˘
ds “ puτ ,vq `

ż t

τ

xfpsq,vyds, (2.30)

for all v P Vp.

Now, integrating (2.29) from τ to t and using (2.19), it follows that

puptq,vq `
ż t

τ

`
xX ,vy ` xBpupsqq,vy

˘
ds “ pupτq,vq `

ż t

τ

xfpsq,vyds. (2.31)

Therefore, comparing (2.30) and (2.31), we conclude that

upτq “ uτ .

The next argument is justified by the fact that the function uptq cannot be chosen

as a test function in the weak formulation, since, for the moment, it is only valid for

all v P Vp. Therefore, from u we build a function vptq (regularization of u) that is

defined in Vp for each t P rτ, T s.
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We consider sτ , s Psτ, T r, sτ ă s; and θm a continuous function, linear by parts on

rτ, T s, θmptq “ 1 if sτ ` 2
m

ă t ă s´ 2
m

, θmptq “ 0 if t ą s´ 1
m

or t ă sτ ` 1
m

; and

ρk a standard mollifier function in DpRq, ρkptq “ ρkp´tq,
ż `8

´8

ρkptqdt “ 1, supppρkq Ă
“

´ 1
k
,

1
k

‰
.

For k ą 2m, we introduce

v “
`
pθmuq ˚ ρk ˚ ρk

˘
θm. (2.32)

We denote by u1 :“ Bu

Bt , then note that

ż T

τ

xu1,vydt “
ż T

τ

xθmu1, pθmuq ˚ ρk ˚ ρkydt

“
ż T

τ

xpθmuq1 ˚ ρk, pθmuq ˚ ρkydt ´
ż T

τ

xθ1

mu, pθmuq ˚ ρk ˚ ρkydt

“ ´
ż T

τ

xθ1

mu, pθmuq ˚ ρk ˚ ρkydt Ñ ´
ż T

τ

θmθ
1

m|u|22dt, as k Ñ 8.

From (2.32) there follows

ż T

τ

xBpuq,vydt kÑ8Ñ
ż T

τ

θ2
mxBpuq,uydt “ 0,

`
since xBpuq,uy “ 0 @u P Vp

˘
.

From the above, we obtain that

ż T

τ

p´θmθ
1

mq|u|22dt `
ż T

τ

θ2
mxX ,uydt “

ż T

τ

θ2
mxf ,uydt. (2.33)

By the continuity of u and when m Ñ 8, we note that

ż T

τ

p´θmθ
1

mq|u|22dt Ñ 1
2

|upsq|2 ´ 1
2

|upsτ q|2 @ s, sτ .

As a consequence

1
2

|upsq|2 `
ż s

sτ

xX ,uydt “ 1
2

|upsτ q|2 `
ż s

sτ

xf ,uydt @ s, sτ . (2.34)

Again, since u P Cprτ, T s;Hq then, if sτk Ñ τ we have upsτkq Ñ upτq in H, therefore,

we conclude

upsτkq Ñ uτ in H. (2.35)

We fix s in (2.34), and we take sτ “ sτk. Thanks to (2.35), we deduce

1
2

|upsq|2 `
ż s

τ

xX ,uydt “ 1
2

|uτ |2 `
ż s

τ

xf ,uydt @s. (2.36)
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For ϕ P Lppτ, T ;Vpq, we define

Xs
m “

ż s

τ

xTpumq ´ Tpϕq,um ´ ϕydt ` 1
2

|umpsq|22. (2.37)

Recall that from (2.26) it holds

umpsq á upsq a.e. s P pτ, T q in H.

Observe that, if ϕ1, ϕ2 P Lppτ, T ;Vpq, from (2.7), we obtain the monotonicity of the

operator T ż s

τ

xTpϕ1q ´ Tpϕ2q, ϕ1 ´ ϕ2ydt ě 0.

Hence, we deduce from (2.37) that

lim inf
mÑ8

Xs
m ě 1

2
|upsq|22 a.e. s P pτ, T q. (2.38)

By re-writing Xs
m (see 2.24) and thanks to (2.27), it follows

Xs
m “

ż s

τ

xf ,umydt ` 1
2

|umpτq|22 ´
ż s

τ

xTpumq, ϕydt ´
ż s

τ

xTpϕq,um ´ ϕydt Ñ Xs,

where

Xs “
ż s

τ

xf ,uydt ` 1
2

|uτ |22 ´
ż s

τ

xX , ϕydt ´
ż s

τ

xTpϕq,u ´ ϕydt.

From (2.36) and (2.38), we obtain that
ż s

τ

xX ´ Tpϕq,u ´ ϕydt ě 0, @ϕ P Lppτ, T ;Vpq.

Taking ϕ “ u ´ λφ, where φ P Lppτ, T ;Vpq, together with the limit λ Ñ 0`, yields
ż s

τ

xX ´ Tpuq, φydt ě 0 @φ P Lppτ, T ;Vpq.

Since φ is arbitrary, we conclude that X “ Tpuq.

Lemma 2.12. (Energy Equality) Under conditions of Theorem 2.11, any function

v in the class (2.15) can be taken as a test function in the weak formulation (2.16).

Consequently, the energy equality holds

1
2
d

dt
|u|22 `

ż

Ω

Spepuqq : epuqdx “ xf ,uy a.e. t P pτ, T q. (2.39)
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Proof. The proof of this result follows from the application of the Lemma 2.6 and the

Lemma 2.8, and from a similar argument of density used to show (2.29), but with the fact

that the functions of the form
lÿ

k“1

φkptqwk with φk P DpRq, are dense in L8pτ, T ;Hq X

Lppτ, T ;Vpq. For more information see [23, Lemma 7.3 pg. 175].

The following Proposition states that, if we have a sequence of weak solutions of

(LM), it is possible to extract a subsequence that converges to a weak solution of (LM).

This Proposition is going to be used to justify the existence of weak solutions of (LM),

built from sequences of weak solutions of (LM), to show, for example, the asymptotic

compactness of the process. And besides that, the proof of this Proposition allows us to

have regularity of convergence in the sense of continuity, for bounded sequences of weak

solutions of (LM), using the Arzelà-Ascoli compactness Theorem.

Proposition 2.13. Let tumu be a sequence of weak solutions to (LM) such that umpτq Ñ
uτ in H. Then tumu is bounded in the spaces (2.15), and there exists u such that (up to a

subsequence) um Ñ u in the sense specified in (2.27), and u is again a weak solution to

(LM).

Proof. Using the energy equality given in Lemma 2.12, we can deduce that there exists a

constant K ą 0, such that

sup
tPrτ,T s

|umptq|22 `
ż T

τ

}∇um}p
pdt ď K.

From above estimate and the argument in the proof of Theorem 2.11, we deduce,

up to subsequences,
um á u in Lppτ, T ;Vpq,
Bum

Bt á Bu

Bt in Lqpτ, T ;V ˚
p q,

Tpumq á X in Lqpτ, T ;V ˚
p q.

With this information, it is a standard procedure to pass to the limit in all

terms as in (2.29) and obtain

xBu

Bt ,vy ` xX ,vy ` xBpuq,vy “ xf ,vy, (2.40)

for all v P Vp and a.e. t P pτ, T q.

It remains to show that Tpuq “ X . The key fact is that the weak solutions can

be taken as a test function and the monotonicity of the stress tensor S will allow to show

that u is weak solution to (LM).

First observe that tumu is equicontinuous in V ˚
p on rτ, T s and that tumu is

bounded in Cprτ, T s;Hq. Therefore, by the Arzelà-Ascoli Theorem, up to a subsequence,
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there follows that

um Ñ u strongly in Cprτ, T s;V ˚
p q.

From this and the boundedness of tumu in Cprτ, T s;Hq we conclude that

umpsq á upsq weakly in H @ τ ď s ď T. (2.41)

Now, as in Lemma 2.12, we can replace v by u in (2.40), and then integrating

between τ and T , we obtain

1
2

|upT q|22 `
ż T

τ

xX ,uy “ 1
2

|upτq|22 `
ż T

τ

xf ,uy. (2.42)

Let φ P L8pτ, T ;Hq X Lppτ, T ;Vpq be arbitrary. Thanks to the monotonicity of

the stress tensor Sp¨q we have

0 ď
ż

Ωτ,T

`
Spepumqq ´ Spepφqq :

`
epumq ´ epφq

˘˘
dxdt

“
ż

Ωτ,T

Spepumqq : epumqdxdt ´
ż

Ωτ,T

Spepumqq : epφqdxdt

´
ż

Ωτ,T

Spepφqq : epum ´ φqdxdt.

By Lemma 2.12 to um, we obtain
ż

Ωτ,T

Spepumqq : epumqdxdt “ 1
2

|umpτq|22 ´ 1
2

|umpT q|22 `
ż T

τ

xf ,umydt.

Combining with the previous inequality, it follows

1
2

|umpT q|22 ď 1
2

|umpτq|22 `
ż T

τ

xf ,umydt ´
ż

Ωτ,T

Spepumqq : epφqdxdt

´
ż

Ωτ,T

Spepφqq : epum ´ φqdxdt.

Letting m Ñ 8, we can pass to the limit on the right-hand side, while on the

left-hand side, we employ (2.41) together with the weak lower semicontinuity of the norm,

|upT q|2 ď lim inf
mÑ8

|umpT q|2, which preserves the inequality. Hence,

1
2

|upT q|22 ď 1
2

|upτq|22 `
ż T

τ

xf ,uydt ´
ż T

τ

xX , φydt ´
ż

Ωτ,T

Spepφqq : epu ´ φqdxdt.

Subtracting (2.42) leads to

0 ď
ż T

τ

xX ´ Tpφq,u ´ φydt;

and we conclude that X “ Tpuq, in the same way as in Theorem 2.11.
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2.3 Uniqueness of Weak Solutions to (LM)

The proof of the next Theorem can be found in [23]. In [42] the proof is for the

power p ě pn ` 2q{2.

Theorem 2.14. (Uniqueness) Given τ , T with τ ă T , uτ P H and f P Lqpτ, T ;V ˚
p q,

then:

1. if n “ 2, the weak solutions to (LM) are unique,

2. and, if n “ 3, any weak solution to (LM) that has additional regularity

u P L
2p

2p´3 pτ, T ;Vpq (2.43)

is unique in the class of weak solutions.

Proof. Let us assume that there exist two weak solutions u and v to (LM). Setting

w “ v ´ u, and using w as a test function, we obtain

1
2
d

dt
|w|22 ` xTpvq ´ Tpuq,wy ` xBpvq ´ Bpuq,wy “ 0.

We know that

xBpvq ´ Bpuq,wy “ ´
ż

Ω

pv b v ´ u b uq : ∇wdx.

On the right-hand side, we insert ˘pu b vq, and use integration by parts to

arrive at
ż

Ω

pw b vq : ∇w ` pu b wq : ∇wdx “ ´
ż

Ω

pw b wq : ∇udx ď
ż

Ω

|w|2|∇u|dx.

Using (2.7), we deduce that

d

dt
|w|22 ` ν1|epwq|22 ` ν2}epwq}p

p ď 2
ż

Ω

|w|2|∇u|dx.

• Case n “ 2

Let us consider ε1 ą 0. Using the Ladyzhenskaya inequality (1.4) for n “ 2 (Theorem

1.15) to estimate
ż

Ω

|w|2|∇u|dx ď }w}2
4|∇u|2

ď pc|w|2|∇w|2|∇u|2

ď ε1

2
|∇w|22 ` pc

2ε1

|∇u|22|w|22.
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From the previous estimate, we have

d

dt
|w|22 `

`2ν1

c2
0

´ ε1

˘
|∇w|22 ` 2ν2

c̃
p
0

}∇w}p
p ď ĉ

ε1

|w|22|∇u|22.

Choosing ε1 “ ν1

c2
0

and integrating from τ to t, we obtain

|wptq|22 ď ĉ

ε1

ż t

τ

|wpsq|22|∇upsq|22ds.

The case n “ 2, follows by applying the Gronwall inequality.

• Case n “ 3

Applying the Holder inequality
ż

Ω

|w|2|∇u|dx ď }w}2
2p

p´1

}∇u}p.

Using the interpolation inequality (Theorem 1.17) for r “ 2p
p ´ 1

, r1 “ 6, r2 “ 2 and

α “ 3{2p, we obtain

}w} 2p

p´1

ď |w|
2p´3

2p

2 }w}
3

2p

6

ď d|w|
2p´3

2p

2 |∇w|
3

2p

2 ,

since W 1,2pΩq ãÑ L6pΩq.

By plugging this inequality in the previous one, we have
ż

Ω

|w|2|∇u|dx ď }w}2
2p

p´1

}∇u}p

ď d|w|
2p´3

p

2 |∇w|
3

p

2 }∇u}p

ď ν1

4c2
0

|∇w|22 ` k1,p}∇u}
2p

2p´3

p |w|22,

where k1,p “ 2p ´ 3

2pε
2p´3

2p

d
2p

2p´3 , with ε “
`pν1

6c2
0

˘3{2p
.

Therefore

|wptq|22 ď k1,p

ż t

τ

}∇upsq}
2p

2p´3

p |wpsq|22ds.

We conclude by applying the Gronwall inequality, since
ż t

τ

}∇uptq}
2p

2p´3

p dt ă 8.
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Remark 2.15. The condition p ě pn` 2q{2 implies that u P L
2p

2p´3 pτ, T ;Vpq, (for the case

n “ 3), from which the uniqueness of solution follows by Theorem 2.14.

Remark 2.16. Observe that, by a little modification of the proof of Theorem 2.14, we can

have an expression as follows

|uptq ´ vptq|2 ď Kppq|uτ ´ vτ |2 @t ě τ,

where Kppq is a positive constant, and u and v are two weak solutions to problem (LM)

with initial conditions uτ and vτ , respectively.

This is a very important fact, since weak solutions of problem (LM) satisfying

assumptions of Theorem 2.14, define a continuous process on H.

2.4 A Regularity Result

For this section, we assume that S has a potential, that is, S satisfies the

conditions of the Definition 1.48. Moreover, we will assume more regularity on the external

force f .

We denote by WS the set of all weak solutions u to (LM) such that

• u can be approximated by a sequence tumu of smoothly regular functions with um

satisfying the weak formulation (2.16) for each m P N,

• the sequence tumu converges to u in the sense of (2.27),

• umpτq Ñ upτq in H, and

•
Bum

Bt can be taken as test function in the weak formulation (2.16) for each m P N.

Remark 2.17. Observe that for p ě 1 ` 2n{pn ` 2q the set WS ‰ H, since it contains

the weak solution built from a sequence of Galerkin approximations.

Proposition 2.18. Given T, τ P R with τ ă T , uτ P H and f P L2pτ, T ;L2pΩqnq. We

consider two cases: when n “ 2 and p ą 2 and when n “ 3 and p ě 12{5. Then, in both

cases, any weak solution u P WS, associated to the initial condition uτ , satisfy:

u P L8pτ ` ε, T ;Vpq and
Bu

Bt P L2pτ ` ε, T ;Hq,

for all ε ą 0 such that τ ` ε ď T .

Proof. Since u P WS there exists a sequence tumu such that we can use
Bum

Bt as a test

function in the weak formulation. So, we have
ˇ̌
ˇBum

Bt
ˇ̌
ˇ
2

2
`
ż

Ω

τijpepumqqeij

´Bum

Bt
¯
dx `

ż

Ω

umj

Bumi

Bxj

Bumi

Bt dx “
´

fptq, Bum

Bt
¯
. (2.44)
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Observe that, as S is a potential
ż

Ω

τijpepumqqeijpdum

dt
qdx “

ż

Ω

BΦ
Beij

pepumqqeijpBum

Bt qdx “
ż

Ω

BΦ
Beij

pepumqq B
Btpeijpumqqdx

“ d

dt

ż

Ω

Φpepumqqdx “ d

dt
}Φpepumqq}1.

Now, from (2.44) and the Hölder inequality, it follows that

1
2

ˇ̌
ˇBum

Bt
ˇ̌
ˇ
2

2
` d

dt
}Φpepumqq}1 ď |fptq|22 `

ż

Ω

|um|2|∇um|2dx

ď |fptq|22 ` c7}um}2
1,p}um}2

2p{pp´2q.

(2.45)

Now, we are going to consider three cases: for n “ 3 with 12{5 ď p ă 3, for

n “ 3 with p ě 3 and for n “ 2 with p ą 2.

Case 1 n “ 3 with 12{5 ď p ă 3:

We know that um “ umptq P Vp XH. By the interpolation inequality (Theorem 1.17),

we have

}um}2p{pp´2q ď d}um}
6

5p´6

1,p |um|
5p´12

5p´6

2 ,

where d is the constant of interpolation that depends on Ω and p.

By Lemma 1.50 we deduce that, there exist positive constants c8 and c9 such that

c8}um}p
1,p ď }Φpepumqq}1 ď c9p1 ` }um}p

1,pq. (2.46)

The right-hand side of (2.45) can be estimated as

}um}2
1,p}um}2

2p{pp´2q ď d2}um}p
1,p}um}pp16´5pq{p5p´6q

1,p |um|2p5p´12q{p5p´6q
2

ď d2

c8

}Φpepumqq}1}um}pp16´5pq{p5p´6q
1,p |um|2p5p´12q{p5p´6q

2 . (2.47)

From (2.45), (2.46) and (2.47), we have

d

dt
}Φpepumptqqq}1 ď |fptq|22 ` c7d

2

c8

}Φpepumqq}1}um}pp16´5pq{p5p´6q
1,p |um|2p5p´12q{p5p´6q

2 .

(2.48)

From this inequality, in particular we obtain

}Φpepumptqqq}1 ď }Φpepumpsqqq}1 `
ż t

τ

|fpθq|22dθ

` c7d
2

c8

ż t

τ

}Φpepumpθqqq}1}umpθq}pp16´5pq{p5p´6q
1,p |upθq|2p5p´12q{p5p´6q

2 dθ.

for all s P rτ, ts.
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Now, applying the Gronwall inequality, there follows

}Φpepumptqqq}1 ď
ˆ

}Φpepumpsqqq}1 `
ż t

τ

|fpθq|22dθ
˙

ˆ exp
ˆ
c7d

2

c8

ż t

τ

}umpθq}
pp16´5pq

5p´6

1,p |umpθq|
2p5p´12q

5p´6

2 dθ

˙ (2.49)

for all t ě s ě τ .

Given ε ą 0 such that τ ` ε ď T and integrating in s, from τ to τ ` ε,

}Φpepumptqqq}1 ď
ˆ

1
ε

ż t

τ

}Φpepumpsqqq}1ds `
ż t

τ

|fpθq|22dθ
˙

ˆ exp
ˆ
c7d

2

c8

ż t

τ

}umpθq}
pp16´5pq

5p´6

1,p |umpθq|
2p5p´12q

5p´6

2 dθ

˙
,

for all t ě τ ` ε.

Observe that all terms of the right-hand side of the above inequality are bounded. In

fact: from Theorem 2.13 we have that the sequence tumu is bounded in Lppτ, T ;VpqX
L8pτ, T ;Hq, and to conclude, only remains to prove that

ż t

τ

}umprq}
pp16´5pq

5p´6

1,p dr ă 8
and p5p ´ 12q{p5p ´ 6q ě 0, what is true since p ě 12{5.

Case 2 n “ 3 with p ě 3:

Since the imbedding W 1,2pΩqn
ãÑ L

2p

p´2 pΩqn is true for
2p
p ´ 2

ď 2n
n ´ 2

, which is

equivalent to p ě n, we can estimate (2.45)

d

dt
}Φpepumqq}1 ď |fptq|22 `

ż

Ω

|um|2|∇um|2dx ď |fptq|22 ` c7d
2}um}2

1,p}um}2
1,2. (2.50)

Let us denote by U :“ 1 ` }Φpepumqq}1, and observe that
d

dt
U “ d

dt
}Φpepumqq}1.

Therefore, from (2.46) and the above estimate, we obtain that

d

dt
U ď |fptq|22 ` rC2U

4{p, (2.51)

Now, if 4 ď p, then U4{p ď U , since U ě 1, with this and (2.51)

d

dt
U ď |fptq|22 ` rC2U ,

By applying the Gronwall inequality we conclude the proof as in the previous case.

Now, if 3 ď p ă 4, let us consider µ “ p2p ´ 4q{p, then µ P r2
3
, 1q. Multiplying by

Uµ´1 to (2.51), we obtain that

µ
d

dt

`
Uµ

˘
ď |fptq|22Uµ´1 ` rC2U ď |fptq|22 ` rC2U ,

since Uµ´1 ď 1.

We conclude the boundedness of U as before.
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Case 3 n “ 2 and p ą 2:

Observe that 2p{pp ´ 2q ą 2, therefore by Theorem 1.15, we get

}um}2p{pp´2q ď c1ppq|um|2{p
2 |∇um|pp´2q{p

2 (2.52)

Integrating from s to t with s P rτ, ts in (2.45) and using inequality (2.52), we have

}Φpepumptqqq}1 ď }Φpepumpsqqq}1 `
ż t

τ

|fprq|22dr ` pC7

ż t

τ

}um}p4p´4q{p
1,p |um|4{p

2 dr.

Again, we conclude applying the Gronwall inequality as in the previous cases, since

p4p ´ 4q{p ď p.

From (2.46) we conclude that for ε ą 0 with τ ` ε ď T the sequence tumu is

bounded in L8pτ ` ε, T ;Vpq and from (2.27), um á u weakly in Lppτ, T ;Vpq. Moreover,

by (2.18) u P Cprτ, T s;Hq. Therefore, applying Proposition 1.12 for X “ Vp and Y “ H,

we obtain that

}uprq}1,p ď lim inf
mÑ8

}um}L8pτ`ε,T ;Vpq,

for all r P rτ ` ε, T s, from which we have u P L8pτ ` ε, T ;Vpq. By Proposition 1.13 follows

that u P Cwppτ, T s;Vpq. It remains only to prove that
Bu

Bt P L2pτ ` ε, T ;Hq, but this is

immediate consequence of (2.45).

2.5 Existence of Pullback Attractors

2.5.1 Pullback attractor in H

In order to study asymptotic behavior of solutions in H, we consider the

following assumptions on the stress tensor S, power p and external force f :

(I) The stress tensor S satisfies the conditions given in (2.7),

(II) p ě 1 ` 2n{pn ` 2q,

(III) f P Lq
locpR;V ˚

p q.

Observe that, by Theorem 2.11, conditions (I), (II) and (III) guarantee

existence of weak solutions for the system (LM), but not the uniqueness. We denote by

Φpτ,uτ q the set of weak solutions to (LM) in rτ,`8q with initial datum uτ P H.

By Theorem 2.11 the set Φpτ,uτ q is not empty. Besides that, we can define a

multi-valued map Up¨, ¨q : R2
d ˆ H Ñ PpHq, given by

Upt, τquτ “ tuptq : u P Φpτ,uτ qu uτ P H and pt, τq P R
2
d. (2.53)
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Theorem 2.19. Under assumptions (I),(II) and (III), the multi-valued map Up¨, ¨q
defined in (2.53) is a strict multi-valued process in H.

Proof. It follows from Theorem 2.11 and the fact that any weak solution to (LM) is

continuous.

Proposition 2.20. Consider that assumptions (I),(II) and (III) are satisfied. Let

tum
τ u Ă H and uτ P H be such that um

τ Ñ uτ in H. Then, for any sequence tumu, where

um P Φpτ,um
τ q, for all m P N, there exist a subsequence of tumu (relabeled the same) and

u P Φpτ, uτ q, such that

umpsq Ñ upsq strongly in H @s ě τ. (2.54)

Proof. Given any τ ă T , observe that by Proposition 2.13 the sequence tumu is bounded

in L8pτ, T ;Hq X Lppτ, T ;Vpq and the sequence tBum

Bt u is bounded in Lqpτ, T ;V ˚
p q.

Therefore, there exist a subsequence of tumu (relabeled the same) and u P
L8pτ, T ;Hq X Lppτ, T ;Vpq with

Bu

Bt P Lqpτ, T ;V ˚
p q such that

um
˚á u ˚ -weakly in L8pτ, T ;Hq,

um á u weakly in Lppτ, T ;Vpq,
Bum

Bt á Bu

Bt weakly in Lqpτ, T ;V ˚
p q,

um Ñ u strongly in L2pτ, T ;Hq.

Again by Proposition 2.13, we have that u P Φpτ,uτ q.

It remains to prove (2.54). Observe that tumu is equicontinuous in V ˚
p on rτ, T s

and that tumu is bounded in Cprτ, T s;Hq. Therefore, by the Arzelà-Ascoli Theorem, up

to a subsequence, there follows that

um Ñ u strongly in Cprτ, T s;V ˚
p q.

From this and the boundedness of tumu in Cprτ, T s;Hq we conclude that

umpsq á upsq weakly in H @ τ ď s ď T. (2.55)

Now, since the following estimate

|zprq|2 ď |zpsq|2 ` 2
ż r

s

xfpθq, zpθqydθ, τ ď s ď r ď T.

holds for z “ um and z “ u, it follows that the functions Jm, J : rτ, T s Ñ R defined by

Jmprq “ |umprq|2 ´ 2
ż r

τ

xfpθq,umpθqydθ,

Jprq “ |uprq|2 ´ 2
ż r

τ

xfpθq,upθqydθ,
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are non-increasing and continuous, and satisfy

Jmprq Ñ Jprq a.e. r P pτ, T q.

To prove that Jmprq Ñ Jprq @r P rτ, T s consider a fixed t˚ P pτ, T s and an increasing

sequence tk Ò t˚ such that Jmptkq Ñ Jptkq for all k ě 1. Thus, for any ǫ ą 0 there exist

M,K ą 0 such that

|Jptkq ´ Jpt˚q| ď ǫ

2
for k ě K,

|JmptKq ´ JptKq| ď ǫ

2
for m ě M.

Since Jm is a non-increasing function, we have that

Jmpt˚q ´ Jpt˚q ď |JmptKq ´ JptKq| ` |JptKq ´ Jpt˚q| ď ǫ

for all m ě M , and consequently lim sup
mÑ8

Jmpt˚q ď Jpt˚q. Taking into account that

ż t˚

τ

xfpθq,umpθqydθ Ñ
ż t˚

τ

xfpθq,upθqydθ,

we deduce that lim sup
mÑ8

|umpt˚q| ď |upt˚q|. Hence, by the weak convergence (2.55) we

conclude that (2.54) holds for all s P rτ, T s. By increasing intervals and a diagonal

argument we see that, for a suitable subsequence, (2.54) holds true for any s ě τ . The

proof is complete.

Corollary 2.21. Consider that assumptions (I),(II) and (III) are satisfied. The multi-

valued process Up¨, ¨q is upper-semicontinuous with closed values.

Proof. We proceed by contradiction. So, let suppose that the multi-valued process Up¨, ¨q
is not upper-semicontinuous. Thus, there exist pt, τq P R

2
d, a neighbourhood N pUpt, τquτ q

and a sequence tzku which fulfil that each zk P Upt, τquk
τ , where uk

τ Ñ uτ in pL2pΩqqn,

but for all k P N zk R N pUpt, τquτ q. Since each zk P Upt, τquk
τ , there exists uk P Φpτ,uk

τ q
such that zk “ ukptq. Now, by applying Proposition 2.20, we deduce that there exists a

subsequence of tukptqu (relabeled the same) which converges to a function uptq P Upt, τquτ .

This is contradictory because zk R N pUpt, τquτ q for all k P N. It follows from Proposition

2.13 that the process is closed.

Definition 2.22. (Universe in H) Given η ą 0, we denote by DH
η the class of all

families of nonempty subsets pD “ tDptq : t P Ru Ă PpHq such that

lim
τÑ´8

ˆ
eητ sup

vPDpτq
|v|22

˙
“ 0. (2.56)

Denote by DH
F the class of all families pD “ tDptq “ D : t P Ru with D a fixed nonempty

bounded subset of H.
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Remark 2.23. Observe that DH
F Ă DH

η and that DH
η is inclusion-closed.

Definition 2.24. Given X a Banach space, q P r1,8s and η ą 0, let us denote by I
q,η
X

the set of all f P Lq
locpR;Xq such that

ż 0

´8

eηs}fpsq}q
Xds ă 8. (2.57)

Remark 2.25. Observe that the condition (2.57) is equivalent to
ż t

´8

eηs}fpsq}q
Xds ă 8,

for all t P R.

For the next Lemma, we are going to distinguish two cases in relation to p,

since the choice of η will depend on this. Although we are with hypothesis (II), p can be

greater or equal than 2, therefore we will treat two cases, when p ą 2 and when p “ 2.

Lemma 2.26. Consider p ą 2 and f fulfilling (I),(II),(III) with q “ p{pp ´ 1q and

a constant η ą 0. Then, there exist positive constants cν2,p and pC1 such that any weak

solution to (LM) satisfies

|upt; τ,uτ q|22 ď R2
1,pą2pt; τ, ηq @t ě τ,ż t

τ

}∇upθ; τ,uτ q}p
pdθ ď R2,pą2pt; τ, ηq @t ě τ.

(2.58)

where

R2
1,pą2pt; τ, ηq “ e´ηpt´τq|uτ |22 ` cν2,p

ż t

τ

e´ηpt´sq}fpsq}q
˚ds `

pC1

η

R2,pą2pt; τ, ηq “ c̃
p
0

c2ν2

R2
1,pą2pt; τ, ηq ` c̃

p
0cν2,p

c2ν2

ż t

τ

}fpsq}q
˚ds.

Proof. From the energy equality (2.12), and Korn and Young inequalities, we obtain

1
2
d

dt
|u|22 ` c2ν1

c2
0

|∇u|22 ` c2ν2

c̃
p
0

}∇u}p
p ď 1

qǫq
}f}q

˚ ` ǫp

p
}∇u}p

p.

Choosing ǫp{p “ c2ν2{p2c̃p
0q and denoting cν2,p “ 2{pqǫqq, after the Poincaré inequality

d

dt
|u|22 ` 2c2ν1λ1

c2
0

|u|22 ` c2ν2

c̃
p
0

}∇u}p
p ď cν2,p}f}q

˚ a.e.t ą τ. (2.59)

• Case η ď 2c2ν1λ1c
´2
0 :

From (2.59) we have

d

dt
|u|22 ` η|u|22 ` p2c2ν1λ1

c2
0

´ ηq|u|22 ` c2ν2

c̃
p
0

}∇u}p
p ď cν2,p}f}q

˚ a.e.t ą τ.

Multiplying by eηt and integrating from τ to t, we obtain

|uptq|22 ď e´ηpt´τq|upτq|22 ` cν2,p

ż t

τ

e´ηpt´sq}fpsq}q
˚ds.
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• Case η ą 2c2ν1λ1c
´2
0 :

Denote 0 ă β “ η ´ 2c2ν1λ1

c2
0

. Consider also CI a constant of the embedding

W
1,p
0 pΩqn Ă L2pΩqn, i.e. |u|2 ď CI}∇u}p. Then the Young inequality yields

|u|22 ď γp{2

p{2
}∇u}p

p ` pp ´ 2qC2p{pp´2q
I

pγp{pp´2q
.

Putting
γp{2

p{2
“ c2ν2

2c̃p
0β

we gain

β|u|22 ď c2ν2

2c̃p
0

}∇u}p
p ` pC1,

where pC1 “ pp ´ 2qC2p{pp´2q
I β

pγp{pp´2q
. Then (2.59) reduces to

d

dt
|u|22 ` η|u|22 ` c2ν2

2c̃p
0

}∇u}p
p ď cν2,p}f}q

˚ ` pC1.

Multiplying by eηt and integrating from τ to t, we obtain

|uptq|22 ď e´ηpt´τq|upτq|22 ´ e´ηpt´τq

η
` cν2,p

ż t

τ

e´ηpt´sq}fpsq}q
˚ds `

pC1

η
.

From the previous cases, the first estimate in (2.58) is deduced.

Now, from (2.59), we infer that
ż t

τ

}∇upsq}p
pds ď c̃

p
0

c2ν2

|upτq|22 ` c̃
p
0cν2,p

c2ν2

ż t

τ

}fpsq}q
˚ds.

From this, we obtain the second estimate in (2.58).

The case p “ 2 is simpler, nevertheless we include it for the sake of completeness.

Observe that from (2.7), for p “ 2 it holds that c2 “ 1 and ν2 “ 0 in (2.8).

Lemma 2.27. Assume (I),(II),(III) hold for p “ q “ 2,. Then, for any η P p0, 2ν1λ1c
´2
0 q

there exists a constant β ą 0 such that any weak solution to (LM) satisfies

|uptq|22 ď e´ηpt´τq|upτq|22 ` λ1

β

ż t

τ

e´ηpt´sq}fpsq}2
˚ds. (2.60)

Proof. The energy equality (2.12) and the Korn inequality yield

d

dt
|u|22 ` 2ν1

c2
0

|∇u|22 ď 2xf ,uy.

Fix a value η P p0, 2ν1λ1c
´2
0 q. Arranging coefficients in the Cauchy inequality

in the right-hand side, we obtain
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d

dt
|u|22 ` η

λ1

|∇u|22 ď λ1

β
}f}2

˚,

where β :“ 2ν1λ1c
´2
0 ´ η ą 0. By the Poincaré inequality and the Gronwall inequality,

(2.60) holds.

From now on we assume that f P Lq
locpR;V ˚

p q, and satisfies f P Iq,η
˚ for some

η ą 0, where Iq,η
˚ :“ I

q,η

V ˚
p

.

Corollary 2.28. If there exists η ą 0 (if p “ 2, η P p0, 2ν1λ1c
´2
0 q) such that f P Iq,η

˚ ,

then the multi-valued process Up¨, ¨q on H, defined in (2.53), has a pullback DH
η -absorbing

family pB0 “ tB0ptq : t P Ru with B0ptq “ BHp0,Rpą2ptqq, where

R2
pą2ptq “ 1 ` C1

η
` cν2,p

ż t

´8

e´ηpt´sq}fpsq}q
˚ds

(if p “ 2, B0ptq “ BHp0,Rp“2ptqq). Moreover, pB0 P DH
η .

Proof. It follows directly from Lemma 2.26 for the case p ą 2 and from Lemma 2.27 for

the case p “ 2.

Lemma 2.29. Consider p ą 2 and suppose that there exist η ą 0 such that f P Lq
locpR;V ˚

p q
satisfies f P Iq,η

˚ . Then for any t P R and pD P DH
η , there exists τ1p pD, tq ă t ´ 3, such that

for any τ ď τ1p pD, tq, uτ P Dpτq and u P Φpτ,uτ q, it holds

$
&
%

|upr; τ,uτ q|2 ď ρ1,pą2ptq for all r P rt ´ 3, ts,ż r

r´1

}∇upθ; τ,uτ q}p
pdθ ď ρ2,pą2ptq for all r P rt ´ 2, ts, (2.61)

where

ρ2
1,pą2ptq “ 1 `

pC1

η
` cν2,pe

ηp3´tq

ż t

´8

eηs}fpsq}q
˚ds,

ρ2,pą2ptq “ c̃
p
0

c2ν2

ρ2
1,pą2ptq ` c̃

p
0cν2,p

c2ν2

ż t

t´3

}fpsq}q
˚ds.

Proof. Fix t P R. From (2.58) there exists τ1p pD, tq ă t ´ 3 such that

e´ηpt´τq|uτ |22 ď 1 @τ ď τ1p pD, tq.

Therefore it follows from (2.58) that

|upr; τ,uτ q|2 ď ρ2
1,pą2ptq for all r P rt ´ 3, ts, τ ď τ1p pD, tq with uτ P Dpτq,

where

ρ2
1,pą2ptq “ 1 `

pC1

η
` cν2,pe

ηp3´tq

ż t

´8

eηs}fpsq}q
˚ds.
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Now, from the energy equality (Lemma 2.12), we deduce that

1
2
d

dt
|uptq|22 ` c1ν1|epuq|22 ` c2ν2}epuq}p

p ď xfptq,uptqy. (2.62)

Applying the Korn and Young inequalities with ε ą 0, it follows that

d

dt
|uptq|22 ` p2c2ν2

c̃
p
0

´ 2εp

p
q}∇uptq}p

p ď 2
qεq

}uptq}q
˚.

We choose εp “ pc2ν2

2c̃p
0

and integrating from r ´ 1 to r inequality (2.62), we get that

c2ν2

c̃
p
0

ż r

r´1

}∇upsq}p
pds ď |upr ´ 1q|22 ` cν2,p

ż r

r´1

}fpsq}q
˚ds.

Therefore, we deduce that
ż r

r´1

}∇upθ; τ,uτ q}p
pdθ ď ρ2,pą2ptq, for all r P rt ´ 2, ts, τ ď τ1p pD, tq, uτ P pD,

where

ρ2,pą2ptq “ c̃
p
0

c2ν2

ρ2
1,pą2ptq ` c̃

p
0cν2,p

c2ν2

ż t

t´3

}fpsq}q
˚ds.

Lemma 2.30. Consider p “ 2 and suppose that there exists η P p0, 2ν1λ1c
´2
0 q such

that f P L2
locpR;V ˚

2 q satisfies f P I2,η
˚ . Then for any t P R and pD P DH

η , there exists

τ1p pD, tq ă t ´ 3, such that for any τ ď τ1p pD, tq, uτ P Dpτq and uτ P Φpτ,uτ q it holds

$
&
%

|upr; τ,uτ q|2 ď ρ1,p“2ptq for all r P rt ´ 3, ts,ż r

r´1

|∇upθ; τ,uτ q|22dθ ď ρ2,p“2ptq for all r P rt ´ 2, ts,

where

ρ2
1,p“2ptq “ 1 ` λ1

β
eηp3´tq

ż t

´8

eηs}fpsq}2
˚ds,

ρ2,p“2ptq “ λ1

η
ρ2

1,p“2ptq ` λ2
1

βη

ż t

t´3

}fpsq}2
˚ds,

where β ą 0 is given in the Lemma 2.27.

Proof. The first estimate follows from (2.60). For the second one, from Lemma 2.27, we

obtain that
d

dt
|u|22 ` η

λ1

|∇u|22 ď λ1

β
}f}2

˚.

Integrating from r ´ 1 to r the previous inequality, we have that

µ

λ1

ż r

r´1

|∇upsq|22ds ď |upr ´ 1q|22 ` λ1

β

ż r

r´1

}fpsq}2
˚ds.
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Therefore, we deduce
ż r

r´1

|∇upsq|22ds ď ρ2,p“2ptq, for all r P rt ´ 1, ts, τ ď τ1p pD, tq, uτ P pD,

where

ρ2,p“2ptq “ λ1

η
ρ2

1,p“2ptq ` λ2
1

βη

ż t

t´3

}fpsq}2
˚ds.

Proposition 2.31. Consider p ě 2 and suppose that there exists η ą 0 (for the case

p “ 2, η P p0, 2ν1λ1c
´2
0 q), such that f P L

q
locpR;V ˚

p q satisfies f P Iq,η
˚ . Then, the process

Up¨, ¨q is pullback pB0-asymptotically compact.

Proof. We prove the result for p ą 2, since the case p “ 2 is analogous. Let t P R, and

let us consider the sequence tuτm
u with uτm

P B0pτnq, where tτmu Ă p´8, tq satisfies that

τm Ñ ´8 as m Ñ 8 and denote by um “ ump¨; τm,uτm
q any sequence of weak solutions

with um P Φpτm,uτm
q for each m P N. We will prove that the sequence tumu is relatively

compact in H.

It follows from Lemma 2.29 that there exists m0ptq such that τm ă t ´ 2 for

m ě m0ptq and

|umprq|2 ď ρ1,pą2ptq @r P rt ´ 2, ts, @m ě m0ptq. (2.63)
ż r

r´1

}umpsq}p
Vp
ds ď ρ2,pą2ptq @r P rt ´ 2, ts, @m ě m0ptq.

Furthermore the sequence of time derivatives tBum

Bt u is bounded in Lqpt ´
2, t;V ˚

p q. Then, using in particular the Aubin-Lions compactness Theorem, there exists

an element u P L8pt´ 2, t;Hq X Lppt´ 2, t;Vpq with
Bu

Bt P Lqpt´ 2, t;V ˚
p q, such that for a

subsequence (relabeled the same) the following convergences hold

$
’’’’’’’&
’’’’’’’%

um
˚á u ˚ -weak in L8pt ´ 2, t;Hq,

um á u weak in Lppt ´ 2, t;Vpq,
Bum

Bt á Bu

Bt weak in Lqpt ´ 2, t;V ˚
p q,

um Ñ u strongly in L2pt ´ 2, t;Hq,
umpsq Ñ upsq in H a.e. s P pt ´ 2, tq.

(2.64)

Observe also that u P Cprt ´ 2, ts;Hq. Moreover, for any sequence ttmu in

rt ´ 2, ts, with tm Ñ t˚, one has

umptmq á upt˚q in H. (2.65)
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Indeed, we know that

pumprq, φq ´ pumpsq, φq “
ż r

s

xBumpθq
Bt , φydθ @s, r P rt ´ 2, ts, φ P Vp.

This, jointly with the fact that tBum

Bt u is bounded in Lqpt ´ 2, t;V ˚
p q, we obtain

}umprq ´ umpsq}˚ ď C|r ´ s|1{p @s, r P rt ´ 2, ts.

Therefore tumu is a equicontinuous sequence in Cprt ´ 2, ts;V ˚
p q. Since H ãÑãÑ V ˚

p , follow

from Arzelá-Ascoli Theorem that there exists a subsequence (relabeled the same) of tumu
and ũ P Cprt ´ 2, ts;V ˚

p q, such that

um Ñ ũ in Cprt ´ 2, ts;V ˚
p q.

From (2.64) there exists S Ă rt ´ 1, ts with |S| “ 0 such that umpsq Ñ upsq in H for all

s P rt ´ 2, tszS. Now, let s P rt ´ 2, tszS be, as H ãÑ V ˚
p , from the above it follows that

}umpsq ´ upsq}˚ ď C|umpsq ´ upsq|2 Ñ 0, m Ñ 8.

Thus, from the uniqueness of the limit, we have that

ũpsq “ upsq @s P rt ´ 2, tszS,

and therefore, we conclude that

um Ñ u in Cprt ´ 2, ts;V ˚
p q.

Now, by (2.63), we know that tumptmqu in bounded in H, then, there exists

v P H, such that umptmq á v in H. We will prove that v “ uptq: Let φ P Vp

pumptmq ´ upt˚q, φq “ pumptmq ´ umpt˚q, φq ` pumpt˚q ´ upt˚q, φq
ď }unptmq ´ umpt˚q}˚}φ}1,p ` }umpt˚q ´ upt˚q}˚}φ}1,p.

Since tumu is equicontinuous and um Ñ u in Cprt ´ 2, ts;V ˚
p q, we obtain that

umptmq á upt˚q in V ˚
p .

But, we know that umptmq á v in H, so we conclude (2.65) is true.

Then, from Proposition 2.13 up¨q is also a weak solution to (LM) on pt ´ 2, tq.

By the energy equality and hypothesis (I) on potential S, we obtain

|zprq|22 ď |zpsq|22 ` 2
ż r

s

xfpθq, zpθqydθ

for all t ´ 1 ď s ď r ď t, where z “ um or z “ u.
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The maps Jm, J : rt ´ 2, ts Ñ R defined by

Jmprq “ |umprq|22 ´ 2
ż r

t´2

xfpθq,umpθqydθ

Jprq “ |uprq|22 ´ 2
ż r

t´2

xfpθq,upθqydθ,

are non-increasing and continuous, and satisfy

Jmprq Ñ Jprq a.e. r P pt ´ 2, tq. (2.66)

We will use the functionals Jm and J to deduce that um Ñ u in Cprt´ 1, ts;Hq.
If this no true, then there exist ε˚ ą 0 a subsequence and ttmu Ă rt´ 1, ts, with tm Ñ t˚,

such that

|umptmq ´ upt˚qq|2 ě ε˚ @m ě m0ptq. (2.67)

Let us fix ε ą 0. Observe that t˚ P rt ´ 1, ts and therefore, by (2.66) and the

continuity and non-increasing character of J , there exists t ´ 2 ă t̂ε ă t˚ such that

lim
mÑ8

Jmpt̂εq “ Jpt̂εq, (2.68)

and

0 ď Jpt̂εq ´ Jpt˚q ď ε. (2.69)

As tm Ñ t˚, there exists mε such that t̂ε ă tm for all m ě mε. Then, by (2.69)

Jmptmq ´ Jpt˚q ď Jmpt̂εq ´ Jpt˚q
ď |Jmpt̂εq ´ Jpt̂εq| ` |Jpt̂εq ´ Jpt˚q|
ď |Jmpt̂εq ´ Jpt̂εq| ` ε

for all m ě mε, and consequently, by (2.68), lim sup
mÑ8

Jmptmq ď Jpt˚q ` ε. Thus, as ε ą 0 is

arbitrary, we deduce that

lim sup
mÑ8

Jmptmq ď Jpt˚q. (2.70)

Taking into account that tm Ñ t˚ and

ż tm

t´2

xfpθq,umpθqydθ Ñ
ż t˚

t´2

xfpθq,upθqydθ,

from (2.70) we deduce that lim sup
mÑ8

|umptmq|2 ď |upt˚q|2. This last inequality and (2.65),

imply that umptmq Ñ upt˚q strongly in H, which is contradiction with (2.67). We have

thus proved that um Ñ u in Cprt´ 1, ts;Hq. We obtain in particular that umptq Ñ uptq
in H.
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Theorem 2.32. Under assumptions (I), (II) and (III) and assume that there exists

η ą 0 (for p “ 2, η P p0, 2ν1λ1c
´2
0 q) such that f P Iq,η

˚ . Then, there exist the minimal

pullback DH
F -attractor ADH

F
“ tADH

F
ptq : t P Ru and the minimal pullback DH

η -attractor

ADH
η

“ tADH
η

ptq : t P Ru for the process U : R2
d ˆ H Ñ PpHq. The minimal pullback

DH
η -attractor belongs to DH

η and the following relationships hold

ADH
F

ptq Ă ADH
η

ptq Ă B0ptq “ BHp0,Rpą2ptqq @t P R. (2.71)

Proof. The existence of pullback attractor for the multi-valued process Up¨, ¨q in the

universe DH
η follows from Theorem 1.42, and the existence of pullback attractor in the

universe DH
F with the inclusion (2.71) is given by Corollary 1.44.

Remark 2.33. If f P Lq
locpR;V ˚

p q satisfies that

sup
sď0

ˆ
e´ηs

ż s

´8

eηr}fprq}q
˚dr

˙
ă 8, (2.72)

we guarantee that for all T P R,
ď

tďT

B0ptq is a bounded subset of H, (see ρ1,pą2 in Lemma

2.29). Therefore, it follows from Remark 1.45 that

ADH
F

ptq “ ADH
η

ptq. (2.73)

Remark 2.34. Observe that, if f P Lq
locpR;V ˚

p q satisfies that f P Iq,η
˚ for some η ą 0, then

f P Iq,µ
˚ for all µ P pη,`8q, (for the case p “ 2, for all µ P pη, 2ν1λ1c

´2
0 q). Hence, it holds

that DH
η Ă DH

µ . Thus, for all µ P pη,`8q there exists the corresponding minimal pullback

DH
µ -attractor, ADH

µ
.

Since DH
η Ă DH

µ , it follow from Theorem 1.46 that, for any t P R, ADH
η

ptq Ă
ADH

µ
ptq for all µ P pη,`8q.

Moreover, if f satisfies (2.72), then

sup
sď0

ˆ
e´µs

ż s

´8

eµr}fprq}q
˚dr

˙
ă 8 for all µ P pη,`8q,

therefore, by (2.73) we conclude that

ADH
F

ptq “ ADH
η

ptq “ ADH
µ

ptq for all µ P pη,`8q.

2.5.2 Pullback Attractor in Vp

In order to prove the existence of a pullback attractor in Vp, we have to assume

some hypotheses on the stress tensor S, the power p and the external force f :

(2.I) The stress tensor S has a potential, i.e., S satisfies the conditions of the Definition

1.48,
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(2.II) If n “ 3 we consider p ě 5{2 and if n “ 2 we consider p ą 2,

(2.III) f P W 1,2
loc pR;L2pΩqnq, observe that this implies that f P Lq

locpR;V ˚
p q.

By Lemma 1.49 the stress tensor S satisfies the p-coercivity and pp´ 1q-growth

conditions. Thus, all the results established concerning existence, uniqueness, regularity of

weak solutions and existence of pullback attractors in H to (LM) are valid when S is a

potential.

Condition (2.II) guarantees that system (LM) has a unique weak solution

(Theorem 2.14 for p ě pn ` 2q{2). This will allow us obtain any estimates for u through

the Galerkin sequence. If we assume the hypotheses of Proposition 2.18 for n “ 3, i.e.

p ě 12{5, the uniqueness of weak solutions is not guaranteed. But, as in the case of

pullback attractor in H, we could define a multi-valued process on Vp. The difficulty here

is that “at the moment” we cannot ensure well properties for this process; for example, the

upper semi-continuity, which we require to show existence of pullback attractor associated

to a multi-valued process.

Now, by Proposition 2.18, all the weak solutions of problem (LM), u “
upt; τ,uτ q, belong to the space L8pτ ` ε, t;Vpq, for all τ ă t and any ε ą 0 with τ ` ε ă t.

Moreover, we can define the process Up¨, ¨q on Vp for each pt, τq P R
2
d. We observe that

conditions (2.I) and (2.III) will allow us to estimate
Bu

Bt in the space L8pt ´ 1, t;Hq for

any t large enough with respect to τ , to show that the process Up¨, ¨q defined on Vp is

asymptotically compact.

Definition 2.35. (Universe in Vp) We will denote by DH,Vp

η the class of all families D̂Vp

of elements of PpVpq of the form D̂Vp
“ tDptqXVp : t P Ru, where D̂ “ tDptq : t P Ru P DH

η .

And we will denote by D
Vp

F the class of all families pD “ tDptq “ D : t P Ru with D a fixed

nonempty bounded subset of Vp.

Remark 2.36. Observe that D
Vp

F Ă DH,Vp

η and that DH,Vp

η is inclusion-closed.

Remark 2.37. We can apply Proposition 1.13 to ensure that the map Up¨, ¨q : R2
dˆVp Ñ Vp

defined by

Upt, τquτ “ upt; τ,uτ q, (2.74)

where u is the weak solution to (LM), is well-defined for all pt, τq P R
2
d. Indeed, consider

X “ Vp and Y “ H then, we know that the weak solution u of problem (LM) is in

Cprτ, T s;Hq and, by Proposition 2.18, u P L8pτ ` ε, T ;Vpq for all ε ą 0 with τ ` ε ď T .

Therefore, it follows from Proposition 1.13 that u P Cwppτ, T s;Vpq and uptq is defined on

Vp, for all t P pτ, T s. If the initial condition uτ P Vp, then the process Up¨, ¨q is defined for

all t P rτ, T s.



Chapter 2. A Class of incompressible non-Newtonian Fluids 74

Proposition 2.38. Assume that (2.I) and (2.II) are satisfied and suppose that f P
L2

locpR;L2pΩqnq. Then, the map defined by (2.74), Up¨, ¨q : R2
d ˆVp Ñ Vp is a closed process

on Vp.

Proof. From Remark 2.37 and Theorem 2.14, we have that Up¨, ¨q : R2
d ˆ Vp Ñ Vp is a

well-defined. Next, we prove that Up¨, ¨q is a closed process. Given t P R with t ě τ ,

suppose that tuk
τ u is a sequence in Vp, with uk

τ Ñ uτ in Vp, as k Ñ 8, and also assume that

Upt, τquk
τ “ upt; τ ; uk

τ q Ñ y in Vp, as k Ñ 8. We will show that y “ Upt, τquτ . In effect,

we know that the process Up¨, ¨q : R2
d ˆH Ñ H is a closed process in H (as p ě n ` 2

2
the

process is continuous, see Remark 2.16). Therefore Upt, τquk
τ Ñ Upt, τquτ in H, as k Ñ 8,

and as Vp ãÑ H then, by the uniqueness of limit, we have that y “ Upt, τquτ .

Corollary 2.39. Assume that (2.I) and (2.II) are satisfied and suppose that there exists

η ą 0 such that f P L2
locpR;L2pΩqnq X Iq,η

˚ . Then the family

pB0,Vp
“ tB0,Vp

ptq “ BHp0,Rpą2ptqq X Vp : t P Ru

belongs to DH,Vp

η and satisfies that for any t P R and any pD P DH
η , there exists τp pD, tq ă t

such that

Upt, τqDpτq Ă B0,Vp
ptq for all τ ď τp pD, tq.

In particular, the family pB0,Vp
is pullback DH,Vp

η -absorbing for the process U : R2
d ˆVp Ñ Vp.

Proof. Follows directly from the Corollary 2.28

The next lemma is based on estimates given in Proposition 2.18 (high-regularity

result). The demonstration will be presented only for the case n “ 3 with p ě 5{2, but for

the case n “ 2 with p ą 2 it is also valid.

Lemma 2.40. Consider assumptions (2.I) and (2.II), and suppose that there exists

η ą 0 such that f P L2
locpR;L2pΩqnq X Iq,η

˚ . Then for any t P R and pD P DH
η , there exists

τ1p pD, tq ă t ´ 3, such that for any τ ď τ1p pD, tq and uτ P Dpτq, holds

}upr; τ,uτ q}1,p ď ρ3ptq for all r P rt ´ 2, ts, (2.75)

ż r

r´1

|Bu

Bt pθ; τ,uτ q|22dθ ď ρ4ptq for all r P rt ´ 1, ts, (2.76)

where

ρ3ptq “ maxtR1ptq,R2ptq,R3ptqu,

with R1ptq, R2ptq and R3ptq given in (2.78), (2.80) and (2.81) respectively, and

ρ4ptq “ 2c9p1 ` ρ
p
3ptqq

“
1 ` dc7c9

c8

`
ρ1,pą2ptq

˘ 2p5p´12q
5p´6

`
ρ3ptq

˘ pp16´5pq
5p´6

‰
`
ż t

t´3

|fpθq|22dθ.
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Proof. Let tuku be the Galerkin approximation of u.

• Case n “ 3, when 5{2 ď p ă 3:

By estimate (2.49) given in Proposition 2.18, we have that

}Φpepukprqqq}1 ď
`
}Φpepukpsqqq}1 `

ż r

r´1

|fpθq|22dθ
˘

ˆ exp
`c7d

2

c8

ż r

r´1

}ukpθq}
pp16´5pq

p5p´6q

1,p |ukpθq|
2p5p´12q

p5p´6q

2 dθ
˘

for all r P rt ´ 2, ts and s P rr ´ 1, rs.

Observe that the constants do not depend on k. Integrating this last inequality for s

between r ´ 1 and r, we obtain

}Φpepukprqqq}1 ď
` ż r

r´1

}Φpepukpsqqq}1ds `
ż r

r´1

|fpθq|22dθ
˘

ˆ exp
`c7d

2

c8

ż r

r´1

}ukpθq}
pp16´5pq

5p´6

1,p |ukpθq|
2p5p´12q

5p´6

2 dθ
˘
.

By Lemma 2.29 and (2.46), we know that
ż r

r´1

}Φpepukpsqqq}1ds ď c9p1 ` ρ2,pą2ptqq, (2.77)

for all r P rt ´ 2, ts, τ ď τ1p pD, tq, uτ P pD.

Again from Lemma 2.29 and the Young inequality
ż r

r´1

}ukpθq}
pp16´5pq

5p´6

1,p |ukpθq|
2p5p´12q

5p´6

2 dθ ď rρ1,pą2ptqs
2p5p´12q

5p´6

ż r

r´1

}ukpθq}
pp16´5pq

p5p´6q

1,p dθ

ď rρ1,pą2ptqs
2p5p´12q

5p´6 rρ2,pą2ptqs
16´5p

5p´6 ,

for all r P rt ´ 2, ts, τ ď τ1p pD, tq, uτ P pD.

From this last inequality and (2.77), we obtain that

}ukprq}1,p ď R1ptq,

for all r P rt ´ 2, ts, τ ď τ1p pD, tq and uτ P pD, where

R
p
1ptq “ 1

c8

“
pc9

`
1 ` ρ2,pą2ptqq `

ż t

t´3

|fpθq|22dθ
‰

ˆ exp
"
d2c7

c8

`
ρ1,pą2ptq

˘ 2p5p´12q
p5p´6q

`
ρ2,pą2ptq

˘ 16´5p

5p´6

*
.

(2.78)

• Case n “ 3, when p ě 3:
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By estimate (2.50) given in Proposition 2.18 and the embedding W 1,2pΩqn
ãÑ

L
2p

p´2 pΩqn (which is true for
2p
p ´ 2

ď 2n
n ´ 2

ô p ě n) we have that

d

dt
}Φpepukqq}1 ď |fptq|22 `

ż

Ω

|uk|2|∇uk|2dx ď |fptq|22 ` c7d
2}uk}2

1,p}uk}2
1,2.

Let us denote by U :“ 1 ` }Φpepukqq}1, and observe that
d

dt
U “ d

dt
}Φpepukqq}1.

Therefore, from (2.46) and the above estimate, we obtain that

d

dt
U ď |fptq|22 ` rC2U

4{p. (2.79)

Now, if 4 ď p, then U4{p ď U , since U ě 1, with this and (2.79)

d

dt
U ď |fptq|22 ` rC2U .

Integrating from r to s, with r P rt ´ 2, ts and s P rr ´ 1, rs, we have

Uprq ď Upsq `
ż r

r´1

|fpθq|22dθ ` rC2

ż r

r´1

Upθqdθ.

Integrating this last inequality in s between r ´ 1 and r, we get

Uprq ď
ż r

r´1

Upsqds `
ż r

r´1

|fpθq|22dθ ` rC2

ż r

r´1

Upθqdθ.

Therefore, by Lemma 2.29 and (2.46), it follows that

}uk}1,p ď R2ptq,

for all r P rt ´ 2, ts, τ ď τ1p pD, tq and uτ P pD, where

R
p
2ptq “ p1 ` rC2q

c8

` p1 ` rC2qc9

c8

p1 ` ρ2,pą2ptqq `
ż t

t´3

|fpθq|22dθ. (2.80)

Now, if 3 ď p ă 4, let us consider µ “ p2p ´ 4q{p, then µ P
”2

3
, 1
¯

. Multiplying by

Uµ´1 to (2.79), we obtain that

µ
d

dt

`
Uµ

˘
ď |fptq|22Uµ´1 ` rC2U ď |fptq|22 ` rC2U ,

since Uµ´1 ď 1.

Similarly, as in the last case, we have that

µUµprq ď pµ ` rC2q
ż r

r´1

Upsqds `
ż t

t´3

|fpsq|22ds,

for all r P rt ´ 2, ts.
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Thus, of this last inequality, we obtain

}uk}1,p ď R3ptq,

for all r P rt ´ 2, ts, τ ď τ1p pD, tq and uτ P pD, where

R
p
3ptq “

˜
µ ` rC2

c8

` c9

µ
p1 ` ρ2,pą2ptqq ` 1

µ

ż t

t´3

|fpsq|22ds
¸1{µ

. (2.81)

Therefore, from (2.78), (2.80) and (2.81), we conclude that

}ukprq}1,p ď ρ3ptq,

for all r P rt ´ 2, ts, τ ď τ1p pD, tq and uτ P pD, where

ρ3ptq “ maxtR1ptq,R2ptq,R3ptqu.

Finally, from (2.45) we know that

1
2

ˇ̌
ˇBuk

Bt
ˇ̌
ˇ
2

2
` d

dt
}Φpepukqq}1 ď |fptq|22 ` c7}uk}2

1,p}uk}2
2p{pp´2q.

Therefore, based on this last estimate and the previous cases, we conclude the proof.

The proof of next Lemma is based on a technique used in [59], which, formally,

consists in deriving the equation and multiplying by
Bu

Bt obtaining a new formulation and

with this, to obtain estimates for
Bu

Bt in the uniform norm.

Lemma 2.41. Under assumptions (2.I), (2.II) and (2.III), suppose that there exists

η ą 0 such that f P Iq,η
˚ . Then for any t P R, pD P DH

η , there exists τ1p pD, tq ă t ´ 3, such

that for any τ ď τ1p pD, tq and uτ P Dpτq, it holds

ˇ̌
ˇ̌Bu

Bt pr; τ,uτ q
ˇ̌
ˇ̌
2

ď ρ5ptq for all r P rt ´ 1, ts,

where

ρ2
5ptq “ ρ4ptq

 
2 ` c2

“
ρ3ptq

‰ 2p

2p´3

(
`
ż t

t´2

ˇ̌
ˇ̌Bf

Bt psq
ˇ̌
ˇ̌
2

2

ds.

Proof. We will make formal calculations that can be justified by using the Galerkin

approximations, since u does not have enough regularity.

By differentiating of (2.3) in time, we get

B2u

Bt2 ´ divx

ˆ
B2

DΦpepuqqepBu

Bt q
˙

` divx

ˆBu

Bt b u ` u b Bu

Bt

˙
` ∇x

ˆBP
Bt

˙
“ Bf

Bt .



Chapter 2. A Class of incompressible non-Newtonian Fluids 78

Multiplying the above equality by
Bu

Bt , integrating over Ω, we obtain that

1
2
d

dt

ˇ̌
ˇ̌Bu

Bt

ˇ̌
ˇ̌
2

2

`
ż

Ω

B2
DΦpepuqqepBu

Bt q : epBu

Bt qdx`
ż

Ω

ˆBu

Bt b Bu

Bt

˙
: ∇xudx “ pBf

Bt ,
Bu

Bt q, (2.82)

since ż

Ω

ˆBu

Bt b u

˙
: ∇

Bu

Bt “ 0,

and ż

Ω

ˆ
u b Bu

Bt

˙
: ∇

Bu

Bt “ ´
ż

Ω

ˆBu

Bt b Bu

Bt

˙
: ∇xu.

Using (2.82) and the properties of Φ, we have that

1
2
d

dt

ˇ̌
ˇ̌Bu

Bt

ˇ̌
ˇ̌
2

2

` ν1

ż

Ω

p1 ` µ|epuq|qp´2

ˇ̌
ˇ̌e
`Bu

Bt
˘ˇ̌ˇ̌

2

dx ď 1
2

ˇ̌
ˇ̌Bf

Bt

ˇ̌
ˇ̌
2

2

` 1
2

ˇ̌
ˇ̌Bu

Bt

ˇ̌
ˇ̌
2

2

´
ż

Ω

Bu

Bt b Bu

Bt : ∇xudx.

From this, it follows that

1
2
d

dt

ˇ̌
ˇ̌Bu

Bt

ˇ̌
ˇ̌
2

2

` ν1

ˇ̌
ˇ̌e
`Bu

Bt
˘ˇ̌ˇ̌

2

2

ď 1
2

ˇ̌
ˇ̌Bf

Bt

ˇ̌
ˇ̌
2

2

` 1
2

ˇ̌
ˇ̌Bu

Bt

ˇ̌
ˇ̌
2

2

` }u}1,p

››››
Bu

Bt

››››
2

2q

,

with
1
p

` 1
q

“ 1.

By the interpolation inequality (Theorem 1.17) for n “ 3 (for n “ 2 we use the

Ladyzhenskaya inequality, Theorem 1.15), we have
››Bu

Bt
››

2q
ď d

ˇ̌Bu

Bt
ˇ̌p2p´3q{2p

2

››Bu

Bt
››3{2p

1,2
. Thus,

the Korn and the Young inequalities give us

1
2
d

dt

ˇ̌
ˇ̌Bu

Bt

ˇ̌
ˇ̌
2

2

` c1

››››
Bu

Bt

››››
2

1,2

ď 1
2

ˇ̌
ˇ̌Bf

Bt

ˇ̌
ˇ̌
2

2

` 1
2

ˇ̌
ˇ̌Bu

Bt

ˇ̌
ˇ̌
2

2

` c2

2
}u}2p{p2p´3q

1,p

ˇ̌
ˇ̌Bu

Bt

ˇ̌
ˇ̌
2

2

.

Integrating from s to r, with τ ď r ´ 1 ď s ď r, we have
ˇ̌
ˇ̌Bu

Bt prq
ˇ̌
ˇ̌
2

2

ď
ˇ̌
ˇ̌Bu

Bt psq
ˇ̌
ˇ̌
2

2

`
ż r

r´1

ˇ̌
ˇ̌Bf

Bt pθq
ˇ̌
ˇ̌
2

2

dθ`
ż r

r´1

ˇ̌
ˇ̌Bu

Bt pθq
ˇ̌
ˇ̌
2

2

dθ` c2

ż r

r´1

}upθq}2p{p2p´3q
1,p

ˇ̌
ˇ̌Bu

Bt pθq
ˇ̌
ˇ̌
2

2

dθ,

for all r ´ 1 ď s ď r.

Integrating this last inequality for s between r ´ 1 and r, we obtain
ˇ̌
ˇ̌Bu

Bt prq
ˇ̌
ˇ̌
2

2

ď 2
ż r

r´1

ˇ̌
ˇ̌Bu

Bt psq
ˇ̌
ˇ̌
2

2

ds `
ż r

r´1

ˇ̌
ˇ̌Bf

Bt pθq
ˇ̌
ˇ̌
2

2

dθ ` c2

ż r

r´1

}upθq}2p{p2p´3q
1,p

ˇ̌
ˇ̌Bu

Bt pθq
ˇ̌
ˇ̌
2

2

dθ.

By Lemma 2.40, we conclude the proof.

Theorem 2.42. Consider assumptions (2.I), (2.II) and (2.III), and suppose that there

exists η ą 0 such that f P Iq,η
˚ . Then, the process Up¨, ¨q is pullback DH,Vp

η -asymptotically

compact.
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Proof. Given pD P DH,Vp

η and t P R, we will see that, tUpt, τmquτm
u is relatively compact in

Vp, where uτm
P Dpτmq for each m P N and τm Ñ ´8. Let us denote by um :“ umptq :“

Upt, τmquτm
. Next, we prove that the sequence tumu has a Cauchy subsequence in Vp.

From Lemma 2.40, we know that tumu is relatively compact in H. Without

loss of generality, we assume that tumptqu is a Cauchy sequence in H. In the following, we

prove that tumu is a Cauchy sequence in Vp.

Now, we deduce from (2.7) that there exists δ ą 0 such that

`
Spepuqq ´ Spepvqq, epuq ´ epvq

˘
ě δ}u ´ v}p

1,p,

for all u,v P Vp (p-coercivity of S ).

Using the p-coercivity of S , Lemma 2.12, Lemma 2.29, Lemma 2.40 and Lemma

2.41, we have that

δ}uk ´ ul}p
1,p ď

`
Spepukqq ´ Spepulqq, epukq ´ epulq

˘

“
`Buk

Bt ´ Bul

Bt ,uk ´ ul

˘
`
ż

Ω

`
uk b uk ´ ul b ul

˘
: ∇puk ´ ulqdx

ď
ˇ̌
ˇ̌Buk

Bt ´ Bul

Bt

ˇ̌
ˇ̌
2

|uk ´ ul|2 `
ż

Ω

|uk ´ ul||∇uk|dx

ď
ˇ̌
ˇ̌Buk

Bt ´ Bul

Bt

ˇ̌
ˇ̌
2

|uk ´ ul|2 ` }uk}1,p}uk ´ ul}2
2q

ď 2ρ5ptq|uk ´ ul|2 ` dρ3ptq|uk ´ ul|p2p´3q{p
2 }uk ´ ul}3{p

1,2

ď 2ρ5ptq|uk ´ ul|2 ` d|Ω|3p´6{p2

ρ3ptqpp2`6q{p2 |uk ´ ul|p2p´3q{p
2 .

Observe that we have used the interpolation inequality (Theorem 1.17) for

n “ 3 to estimate }uk ´ ul}2q. But, for n “ 2 it is also valid, since we can use the

Ladyzhenskaya inequality (Theorem 1.15).

Therefore, this last estimate combined with the fact that tumu is a Cauchy

sequence in H, allow us to conclude that tumu is a Cauchy sequence in Vp.

Theorem 2.43. Consider assumptions (2.I), (2.II) and (2.III), and suppose that there

exists η ą 0 such that f P Iq,η
˚ . Then, there exist the minimal pullback D

Vp

F -attractor

A
D

Vp
F

“ tADH
F

ptq : t P Ru and the minimal pullback DH,Vp

η -attractor A
D

H,Vp
η

“ tA
D

H,Vp
η

ptq :

t P Ru for the closed process U : R2
d ˆ Vp Ñ Vp defined in (2.74). The minimal pullback

DH,Vp

η -attractor belongs to DH,Vp

η and the following relationships hold

A
D

Vp
F

ptq Ă ADH
F

ptq Ă ADH
η

ptq “ A
D

H,Vp
η

ptq @t P R, (2.83)

where ADH
F

and ADH
η

are the respectively the minimal pullback DH
F -attractor and the

minimal pullback DH
η -attractor for the ”multi-valued” process U : R2

d ˆ H Ñ H, whose

existence is guaranteed by Theorem 2.32.
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Proof. The existence of pullback attractor for the closed process Up¨, ¨q on Vp, in the

universe DH,Vp

η follows from Theorem 1.33, and the existence of pullback attractor in the

universe D
Vp

F with the inclusion (2.83) are given by Corollary 1.44 and Theorem 1.46.

Remark 2.44. Observe that by (2.83), in particular, the following pullback attraction

result in Vp holds:

lim
τÑ´8

distVp
pUpt, τqDpτq,ADH

η
ptqq “ 0 for all t P R and any pD P DH

η .

Remark 2.45. If f P Iq,η
˚ satisfies that

sup
sď0

ˆ
e´ηs

ż s

´8

eηr}fprq}q
˚dr

˙
ă 8,

then

A
D

Vp
F

ptq “ ADH
F

ptq “ ADH
η

ptq “ A
D

H,Vp
η

ptq @t P R,

where the equality A
D

Vp
F

ptq “ ADH
F

ptq is a consequence of Theorem 1.46.
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3 A Class of Incompressible non-Newtonian

Fluid with Delay

A delay partial differential equation is an equation which involves: at least two

independent variables, an unknown function of the independent variables, the behavior

of the unknown function at some prior values of the independent variables and partial

derivatives of the unknown function with respect to the independent variables.

Thus, a delay partial differential equation, in contrast with a partial differential

equation, depends not only on the solution at a present moment but also on the solution

at some past times. If, in addition, the equation depends on the derivatives of the solution

at some past times, then it is called a neutral delay partial differential equation.

Delay partial differential equations are also called partial functional differential

equations as their unknown solutions are used in these equations as functional arguments.

In this chapter we are going to present a mathematical model with delay for

incompressible non-Newtonian fluids. We will study the existence and uniqueness of weak

solutions. Moreover, we will prove the existence of pullback attractors for the multi-valued

process defined from the weak solution in the Banach spaces CH “ Cpr´h, 0s;Hq and

M2
H “ H ˆ L2p´h, 0;Hq, with h ą 0.

3.1 Statement of the Problem

Let Ω Ă R
n, with n “ 2 or n “ 3, be an open bounded domain with regular

boundary BΩ. Given τ and T with τ ă T , we consider following system of partial differential

equations with delay and Dirichlet boundary condition for incompressible non-Newtonian

fluids, to which we will refer by (LMD):

Bu

Bt ´ divxSpepuqq ` divxpu b uq ` ∇xπ “ fptq ` gpt,utq in Ωτ,T , (3.1)

divxu “ 0 in Ωτ,T , (3.2)

u “ 0 on pτ, T q ˆ BΩ, (3.3)

upτ, xq “ uτ pxq with x P Ω, (3.4)

upτ ` t, xq “ φpt, xq in Ωh, (3.5)

where Ωτ,T “ pτ, T q ˆ Ω, Ωh “ p´h, 0q ˆ Ω with h ą 0, u “ pu1, ¨ ¨ ¨, unq is the fluid flow

velocity vector field, utpsq “ upt ` sq for any s P p´h, 0q, uτ is the velocity of fluid at the
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initial time t “ τ , π is the pressure, gpt,utq is the delay term, φ is the initial condition

with memory, f is an external force and S : Rn2

sym Ñ R
n2

sym is the tensor stress satisfying

Sp0q “ 0,
`
SpAq ´ SpBq

˘
: pA ´ Bq ě ν1

`
1 ` µp|A| ` |B|q

˘p´2|A ´ B|2, (3.6)

|SpAq ´ SpBq| ď c1ν1

`
1 ` µp|A| ` |B|q

˘p´2|A ´ B|,

for all A,B P R
n2

sym and p ě 2.

We denote by CH the Banach space Cpr´h, 0s;Hq, with norm

}φ}CH
“ sup

sPr´h,0s
|φpsq|2 φ P CH

and by L2
H the Hilbert space L2p´h, 0;Hq, with norm

}φ}2
L2

H
“
ż 0

´h

|φpsq|22ds φ P L2
H .

In order to state the problem in the correct framework, let us first establish

suitable assumptions on the delay term g.

In a general way, let X and Y be two separable Banach space and

g : rτ, T s ˆ Cpr´h, 0s;Xq Ñ Y (3.7)

such that the following conditions hold,

(3.I) For all ξ P Cpr´h, 0s;Xq, the mapping t P rτ, T s Ñ gpt, ξq P Y is measurable.

(3.II) For each t P rτ, T s, gpt, 0q “ 0.

(3.III) There exists Lg ą 0 such that, for all s P rτ, T s, for any ξ, η P Cpr´h, 0s;Xq,

}gps, ξq ´ gps, ηq}Y ď Lg}ξ ´ η}Cpr´h,0s;Xq.

(3.IV) There exists Cg ą 0 such that, for all t P rτ, T s, for any u,v P Cprτ ´ h, T s;Xq,
ż t

τ

}gps,usq ´ gps,vsq}2
Y ds ď C2

g

ż t

τ´h

}upsq ´ vpsq}2
Xds.

Observe that conditions (3.I)-(3.III) above imply that, given u P Cprτ ´
h, T s;Xq, the function gu : t P rτ, T s Ñ Y defined by guptq “ gpt,utq, @t P rτ, T s, is

measurable and, in fact, belongs to L8pτ, T ;Y q. Then, thanks to (3.IV), the mapping

G : u P Cprτ ´ h, T s;Xq Ñ gu P L2pτ, T ;Y q
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has a unique extension to a mapping rG, which is uniformly continuous from L2pτ´h, T ;Xq
into L2pτ, T ;Y q. From now on, we will write gpt,utq “ rGptq for each u P L2pτ ´ h, T ;Xq,
and thus for all t P rτ, T s and any u,v P L2pτ ´ h, T ;Xq, it holds,

ż t

τ

}gps,usq ´ gps,vsq}2
Y ds ď C2

g

ż t

τ´h

}upsq ´ vpsq}2
Xds.

The delay term g in (LMD) is defined by

g : rτ, T s ˆ Cpr´h, 0s;Hq Ñ L2pΩqn (3.8)

satisfying hypotheses (3.I)-(3.IV) with X “ H, Y “ L2pΩqn.

An example of delay term verifying hypotheses (3.I)-(3.IV) can be constructed

as follows, see [13, Section 3].

Let G : rτ, T s ˆ R
n Ñ R

n be a measurable function satisfying Gpt,0q “ 0 for

all t P rτ, T s, and assume that there exists L1 ą 0 such that

|Gpt,xq ´ Gpt,yq| ď L1|x ´ y| @x,y P R
n.

Let δptq be a function such that δ P C1prτ, T sq, δptq ě 0 for all t P rτ, T s, h “ max
tPrτ,T s

δptq ą 0

and δ˚ “ max
tPrτ,T s

δ1ptq ă 1. Then gpt,utq “ Gpt,upt´δptqqq satisfies hypotheses (3.I)-(3.IV)

with X “ H, Y “ L2pΩqn and C2
g “ L2

1

1 ´ δ˚
.

3.2 Existence of Weak Solutions to (LMD)

For the following definition of weak solution to (LMD), as in Section 2.1, we

consider the operatorsB : Lppτ, T ;VpqXL8pτ, T ;Hq Ñ Lqpτ, T ;V ˚
p q and T : Lppτ, T ;Vpq Ñ

Lqpτ, T ;V ˚
p q given by Definitions 2.5 and 2.7, respectively, where q “ p{pp ´ 1q.

Definition 3.1. By a weak solution to (LMD) we understand a function u, belonging to

the class

u P L2pτ ´ h, T ;Hq X Lppτ, T ;Vpq X L8pτ, T ;Hq with
Bu

Bt P Lqpτ, T ;V ˚
p q, (3.9)

which satisfies the weak formulation

xBu

Bt ,vy ` xTpuptqq,vy ` xBpuptqq,vy “ xfptq,vy ` pgpt,utq,vq, (3.10)

for all v P Vp and a.e. τ ď t ď T , and

upτq “ uτ and upτ ` sq “ φpsq s P p´h, 0q. (3.11)
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Remark 3.2. By Theorem 1.10, the weak solution has a representative in the class

u P Cprτ, T s;Hq. (3.12)

whereby (3.11) makes sense. Besides, for any functions u, v, belonging to the class (3.9),

it holds

pupt2q,vpt2qq ´ pupt1q,vpt1qq “
ż t2

t1

´ABu

Bt ,v
E

`
ABv

Bt ,u
E¯
dt. (3.13)

And further observe that, if φ P Cpr´h, 0s;Hq then u P Cprτ ´ h, T s;Hq.

We only sketch the proof of the next Theorem about the existence of weak

solution of (LMD) since it is similar to the proof of Theorem 2.11.

Theorem 3.3. (Existence) Let us consider τ , T with τ ă T , uτ P H, φ P L2p´h, 0;Hq,
f P Lqpτ, T ;V ˚

p q, and assume that

g : rτ, T s ˆ Cpr´h, 0s;Hq Ñ L2pΩqn,

satisfies hypotheses (3.I)-(3.IV) with X “ H, Y “ L2pΩqn.

Therefore, if p ě 1 ` 2n{pn` 2q, then there exists at least one weak solution of

problem (LMD).

Proof. Let twju8
j“1 be the basis defined in (2.21), which is orthonormal in H and orthogonal

in V s with s ą n{2 ` 1.

• Galerkin system and a priori estimates

Let us define umpt, xq “
mÿ

r“1

γm
r ptqwr, where the coefficients γm

r ptq solve the so-called

Galerkin system
$
’’’’’&
’’’’’%

d

dt
pumptq,wjq ` xTpumptqq,wjy ` xBpumptqq,wjy “ xfptq,wjy

`pgpt,um
t q,wjq for 1 ď j ď m,

umpτq “ Pmuτ and umpτ ` tq “ Pmφptq with t P p´h, 0q.

(3.14)

Here, Pm is the orthogonal continuous projector of H onto the linear hull of the first

m eigenvectors wj, j “ 1, ...,m, therefore

Pmuτ Ñ uτ in L2pΩq,
Pmφptq Ñ φptq in L2p´h, 0;Hq.

. (3.15)

Observe that (3.14) is a system of delay ordinary differential equations in the unknown

γmptq “ pγm
1 , ..., γ

m
mq. By Theorem 1.23 it has one solution defined on an interval

pτ ´ h, tmq with τ ă tm ď T . The priori estimates below us to show that tm “ T .
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We multiply the jth equation of the Galerkin system (3.14) by γm
j ptq and add the

equations. The result can be written in the form

1
2
d

dt
|umptq|22 `

ż

Ω

Spepumqq : epumqdx “ xfptq,umy ` pgpt,um
t q,umq, (3.16)

because
ż

Ω

um
j

Bum
i

Bxj

um
i dx “ 0.

Using the fact that |Pmuτ |2 ď |uτ |2,
ż 0

´h

|Pmφpsq|22ds ď }φ}2
L2

H
and the hypotheses

on g, it follows in the same way as in (2.25) that

tumu8
m“1 is bounded in L2pτ ´ h, T ;Hq,

tumu8
m“1 is bounded in L8pτ, T ;Hq,

tumu8
m“1 is bounded in Lppτ, T ;Vpq.

(3.17)

From (3.14), we deduce that
!Bum

Bt
)8

m“1
is bounded in Lqpτ, T ;V ˚

p q.

• Limiting process

From (3.17), (3.IV), the Alaoglu Theorem 1.5, the Aubin-Lions compactness result

(Theorem 1.11) there follows, up to a subsequence, that

um Ñ u, in L2pτ ´ h, T ;Hq,
um ˚á u, in L8pτ, T ;Hq,
um á u, in Lppτ, T ;Vpq, and a.e. in Ωτ,T ,
Bum

Bt á Bu

Bt , in Lqpτ, T ;V ˚
p q,

Tpumq á X , in Lqpτ, T ;V ˚
p q,

gpt,um
t q Ñ gpt,utq, in L2pτ, T ;L2pΩqnq.

(3.18)

These convergences allow to pass to the limit in (3.14) and obtain

xBu

Bt ,vy ` xX ,vy ` xBpuq,vy “ xf ,vy ` pgpt,utq,vq @v P Vp. (3.19)

It is standard to prove that

upτq “ uτ and upτ ` tq “ φptq with t P p´h, 0q.

To finish the proof we have to show that Tpuq “ X . This is done exactly as in the

proof of Theorem 2.11, noting that

ż T

τ

pgpt,um
t q,umqdt mÑ8Ñ

ż T

τ

pgpt,utq,uqdt.
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Indeed, we have that

|
ż T

τ

pgpt,um
t q,umqdt ´

ż T

τ

pgpt,utq,uqdt|

ď
ż T

τ

|pgpt,um
t q ´ gpt,utq,umq|dt `

ż T

τ

|pgpt,utq,um ´ uq|dt

ď }gpt,um
t q ´ gpt,utq}L2pτ,T ;Hq}um}L2pτ,T ;Hq

` }gpt,utq}L2pτ,T ;Hq}um ´ uq}L2pτ,T ;Hq Ñ 0

as m Ñ 8.

Lemma 3.4. (Energy Equality) Under conditions of Theorem 3.3 and the hypotheses

on g, any function v in the class (3.9) can be taken as a test function in the weak

formulation (3.10). Consequently, the energy equality

1
2
d

dt
|u|22 `

ż

Ω

Spepuqq : epuqdx “ xf ,uy ` pgpt,utq,uq, (3.20)

holds a.e. t P pτ, T q.

Proof. The proof is similar that proof of Lemma 2.12.

The importance of the following Proposition will be clear in Section 3.4, about

existence of pullback attractors, since it will allow us to show that the multi-valued

processes, defined from weak solutions, are closed.

Proposition 3.5. Let tumu be a sequence of weak solution to (LMD) associated to the

initial conditions pumpτq, φmq, such that φm Ñ φ in L2p´h, 0;Hq and umpτq Ñ uτ in

H. Then, tumu is bounded in the spaces (3.9), and there exists u such that (up to a

subsequence) um Ñ u in the sense specified in (3.18), and u is again a weak solution to

(LMD) associated to the initial condition puτ , φq .

Proof. The proof is similar that proof of Proposition 2.13.

3.3 Uniqueness of Weak Solution to (LMD)

Let us denote by M2
H “ H ˆ L2

H the Hilbert space whose elements are of the

form pv, φq P M2
H , with v P H and φ P L2

H “ L2p´h, 0;Hq, with norm defined by

}pv, φq}2
M2

H
“ |v|22 ` }φ}2

L2

H
for pv, φq P M2

H .
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Theorem 3.6. (Uniqueness) Let us consider f P Lqpτ, T ;V ˚
p q, g : R ˆ CH Ñ L2pΩqn

satisfying (3.I)-(3.IV), defined in (3.8). Given pvτ , φ1q and puτ , φ2q in M2
H , let us denote

by vp¨q “ vp¨; τ, pvτ , φ1qq and up¨q “ up¨; τ, puτ , φ2qq two weak solutions to (LMD), with

initial conditions pvτ , φ1q and puτ , φ2q, respectively. Then, there exist positive constants

K1, K2 and K3 such that

(i) If n “ 2:

|vptq ´ uptq|22 ď rCg}pvτ , φ1q ´ puτ , φ2q}2
M2

H
exp

"ż t

τ

`
K1 ` K2|∇upsq|22

˘
ds

*
, (3.21)

for all τ ď t ď T , where rCg “ maxt1, K1u,.

(ii) If n “ 3 and u,v P L
2p

2p´3 pτ, T ;Vpq, then

|vptq ´ uptq|22 ď rCg}pvτ , φ1q ´ puτ , φ2q}2
M2

H
exp

"ż t

τ

`
K1 ` K3}∇upsq}

2p

2p´3

p

˘
ds

*
,

(3.22)

for all τ ď t ď T .

In particular, weak solutions to (LMD) are unique.

Proof. Setting w “ v ´ u, and by Lemma 3.4, using w as a test function in the weak

formulation (3.10), we obtain

1
2
d

dt
|w|22 ` xTpvq ´ Tpuq,wy ` xBpvq ´ Bpuq,wy “ pgpt,vtq ´ g2pt,utq,wq.

In the same way as in Theorem 2.14 and using (2.7), we thus have

d

dt
|w|22 ` 2c2ν1|epwq|22 ` 2c2ν2}epwq}p

p ď 2
ż

Ω

|w|2|∇u|dx ` 2pgpt,vtq ´ gpt,utq,wq.

• We consider first n “ 2. Let ε1 ą 0 to be chosen. We use the Ladyzhenskaya

inequality (1.4), to estimate
ż

Ω

|w|2|∇u|dx ď }w}2
L4pΩq|∇u|2

ď pc|w|2|∇w|2|∇u|2

ď ε1

2
|∇w|22 ` pc2

2ε1

|∇u|22|w|22.

For any ε2 ą 0 and from the previous estimate, we have

d

dt
|w|22 `

`2c2ν1λ1

c2
0

´ ε1λ1 ´ ε2

˘
|w|22 ` 2c2ν2

c̃
p
0

}∇w}p
p ď pc2

ε1

|w|22|∇w|22

` 1
ε2

|g2pt,vtq ´ g2pt,utq|22.
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We choose ε1 “ c2ν1

c2
0

and ε2 “ c2ν1λ1

c2
0

. Integrating from τ to t, and hypothesis

(3.IV), there follows

|wptq|22 ď |wpτq|22 ` K2

ż t

τ

|wpsq|22|∇upsq|22ds ` K1

ż t

τ´h

|wpsq|22ds,

where K1 “ C2
g

ε2

and K2 “ c2
0pc2

c2ν1

. Therefore, we have that

|wptq|22 ď |wpτq|22 ` K1}φ1 ´ φ2}2
L2

H
` K2

ż t

τ

|wpsq|22|∇upsq|22ds ` K1

ż t

τ

|wpsq|22ds.
(3.23)

Applying the Gronwall inequality, we conclude that

|vptq ´ uptq|22 ď rCg}pvτ , φ1q ´ puτ , φ2q}2
M2

H
exp

"ż t

τ

`
K1 ` K2|∇upsq|22

˘
ds

*
, (3.24)

where rCg “ maxt1, K1u. Thus, (i) is proved.

• Now we consider n “ 3. Applying the Hölder inequality we have
ż

Ω

|w|2|∇u|dx ď }w}2

L
2p

p´1 pΩq
}∇u}p. (3.25)

Using the interpolation inequality (Theorem 1.17) for r “ 2p
p ´ 1

, r1 “ 6, r2 “ 2 and

α “ 3{2p, we obtain

}w}
L

2p
p´1 pΩq

ď |u|
2p´3

2p

2 }u}
3

2p

6

ď d|u|
2p´3

2p

2 |∇u|
3

2p

2 ,

since W 1,2pΩq ãÑ L6pΩq.

From this it follows that
ż

Ω

|w|2|∇u|dx ď }w}2

L
2p

p´1 pΩq
}∇u}p

ď d|w|
2p´3

p

2 |∇w|
3

p

2 }∇u}p

ď ν1

2c2
0

|∇w|22 ` K3}∇u}
2p

2p´3

p |w|22,

where K3 “ p2p ´ 3qd
2p

2p´3

2pε
2p

2p´3

, with ε “
`pν1

2c2
0

˘3{2p
.

Thus we obtain

|wptq|22 ď |wpτq|22 ` K3

ż t

τ

}∇upsq}
2p

2p´3

p |wpsq|22ds ` K1

ż t

τ´h

|wpsq|22ds. (3.26)
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We know that
ż t

τ

}∇uptq}
2p

2p´3

p dt ă 8. Then, applying Gronwall inequality, we con-

clude that

|vptq ´ uptq|22 ď rCg}pvτ , φ1q ´ puτ , φ2q}2
M2

H
exp

"ż t

τ

`
K1 ` K3}∇upsq}

2p

2p´3

p

˘
ds

*
,

for all τ ď t ď T .

3.4 Existence of Pullback Attractors in CH and M 2
H

In this section we are interested in analysing the asymptotic behaviour of the

weak solutions of the system (LMD) on the Banach spaces CH and M2
H . Since the proof

of the results on CH and M2
H are similar, both cases will be treated in the same statements.

An important point to take into account is that we consider the “minimum”

hypotheses to obtain the existence of pullback attractors, that are:

(A) The tensor stress S satisfies (2.7) and p ě 1 ` 2n{pn ` 2q,

(B) f P Lq
locpR;V ˚

p q,

(C) g : rτ, T s ˆ Cpr´h, 0s;Hq Ñ L2pΩqn satisfying (3.I)-(3.IV), given by (3.7), with

X “ H and Y “ L2pΩqn with uniform constants Cg and Lg for any ´8 ă τ ď T ă
8.

Under conditions (A)-(C), Theorem 3.3 guarantees the existence of weak solu-

tions for problem (LMD), but not the uniqueness. Analogously to Section 2.5.1 (pullback

attractor in H) let us define the sets: ΦCH
pτ ; pφp0q, φqq as the set of all weak solutions

to (LMD) defined on rτ ´ h,8q with initial condition φ P CH and by ΦM2

H
pτ ; puτ , φqq

the set of all weak solutions to (LMD) defined (a.e.) on pτ ´ h,8q with initial condition

puτ , φq P M2
H .

Now, let us define the bi-parametric families of mappings Up¨, ¨q : R2
d ˆ CH Ñ

PpCHq, and Sp¨, ¨q : R2
d ˆ M2

H Ñ PpM2
Hq, given by

Upt, τqφ “
 
utp¨; τ, φp0q, φq : u P ΦCH

pτ ; pφp0q, φqq
(

(3.27)

with φ P CH and pt, τq P R
2
d, and

Spt, τqpuτ , φq “
 `

upt; τ,uτ , φq,utp¨; τ,uτ , φq
˘

: u P ΦM2

H
pτ ; puτ , φqq

(
(3.28)

with puτ , φq P M2
H and pt, τq P R

2
d.



Chapter 3. A Class of Incompressible non-Newtonian Fluid with Delay 90

Proposition 3.7. Consider hypotheses (A)-(C). Let tφmu Ă CH and φ P CH be such

that φm Ñ φ in CH . Then, for any sequence tumu, where um P ΦCH
pτ ; pφmp0q, φmqq, for

all m P N, there exist a subsequence of tumu (relabeled the same) and u P Φpτ, pφp0q, φqq,
such that

um
s Ñ us strongly in CH @s ě τ. (3.29)

Proof. The proof is similar to that of Proposition 2.20. But now we introduce the energy

functionals

Jprq “ |uprq|2 ´ 2
ż r

τ

xfpθq,upθqydθ ´ C̃r (3.30)

and

Jmprq “ |umprq|2 ´ 2
ż r

τ

xfpθq,umpθqydθ ´ C̃r, (3.31)

for all r ě τ and some constant C̃ ą 0 given later in (3.52).

With this, we can prove that umprq Ñ uprq strongly in H for all r ě τ . Since

φm Ñ φ in CH , we conclude that, for each s ě τ fixed and for any θ P r´h, 0s

um
s pθq “ umps ` θq Ñ ups ` θq “ uspθq strongly in H.

Thus, we conclude that um
s Ñ us strongly in CH , since r´h, 0s is compact.

Proposition 3.8. Consider hypotheses (A)-(C). Let tpuτm , φmqu Ă M2
H and puτ , φq P

M2
H be such that puτm , φmq Ñ puτ , φq in M2

H . Then, for any sequence tumu, where um P
ΦM2

H
pτ ; puτm , φmqq, for all m P N, there exist a subsequence of tumu (relabeled the same)

and u P ΦM2

H
pτ, puτ , φqq, such that

#
umpsq Ñ upsq strongly in H,

um
s Ñ us strongly in L2

H ,
(3.32)

for all s ě τ.

Proof. As in Proposition 3.7, we consider the energy functionals

Jprq “ |uprq|2 ´ 2
ż r

τ

xfpθq,upθqydθ ´ C̃r, (3.33)

and

Jmprq “ |umprq|2 ´ 2
ż r

τ

xfpθq,umpθqydθ ´ C̃r, (3.34)

for all r ě τ .
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Therefore, as in the above Proposition we have that for all s ě τ , umpsq Ñ upsq
strongly in H. Since φm Ñ φ in L2

H , we deduce that for each s ě τ fixed

ż 0

´h

|um
s prq ´ usprq|22dr “

ż s

s´h

|umprq ´ uprq|22dr

ď
ż τ

τ´h

|umprq ´ uprq|22dr `
ż s

τ

|umprq ´ uprq|22dr

“ }φm ´ φ}2
L2

H
`
ż s

τ

|umprq ´ uprq|22dr Ñ 0 as m Ñ 8.

We conclude that

um
s Ñ us strongly in L2

H .

Corollary 3.9. Consider hypotheses (A)-(C). Then, Up¨, ¨q is an upper-semicontinuous

multi-valued process with closed values.

Proof. It follows by Proposition 3.5 that Up¨, ¨q is a multi-valued process with closed values.

We suppose that the multi-valued process Up¨, ¨q is not upper-semicontinuous. Therefore,

there exist pt, τq P R
2
d, a neighbourhood N pUpt, τqφq and a sequence tzku which fulfils

that each zk P Upt, τqφk , where φk Ñ φ in CH , but for all k P N zk R N pUpt, τqφq.
Since each zk P Upt, τqφk, there exists uk P ΦCH

pτ ; pφkp0q, φkqq such that zk “ uk
t . Now,

applying Proposition 3.7, we deduce that there exists a subsequence of tuk
t u (relabeled

the same) which converges to a function ut P Upt, τqφ. This is contradictory because

zk R N pUpt, τqφq for all k P N.

Corollary 3.10. Under the hypotheses of Theorem 3.3. Then, Sp¨, ¨q is an upper-semicontinuous

multi-valued process with closed values.

Proof. It follows by Proposition 3.5 that Sp¨, ¨q is a multi-valued process with closed

values. We suppose that the multi-valued process Sp¨, ¨q is not upper-semicontinuous.

Therefore, there exist pt, τq P R
2
d, a neighbourhood N pSpt, τqpuτ , φqq and a sequence

tzku which fulfils that each zk P Spt, τqpuτk , φkq , where puτk , φkq Ñ puτ , φq in M2
H ,

but for all k P N zk R N pSpt, τqpuτ , φqq. Since each zk P Spt, τqpuτk , φkq, there exists

uk P ΦM2

H
pτ ; puτk , φkqq such that zk “ pukptq,uk

t q. Now, applying Proposition 3.8, we

deduce that there exists a subsequence of tpukptq,uk
t qu (relabeled the same) which converges

to a pair puptq,utq P Spt, τqpuτ , φq. This is contradictory because zk R N pSpt, τqpuτ , φq for

all k P N.

In addition to hypotheses (3.I)-(3.IV) on the function g : rτ, T sˆCpr´h, 0s;Hq Ñ
L2pΩqn, we also consider
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(3.V) There exists a value η ą 0 such that for all u P L2pτ ´ h, t;Hq,
ż t

τ

eηs|gps,usq|22ds ď C2
g

ż t

τ´h

eηs|upsq|22ds.

Remark 3.11. We denote by η :“ c2ν1λ1c
´2
0 . Then, η satisfying hypothesis (3.V) can

take the values 0 ă η ď η or η ą η. As in the section 2.5, for p “ 2 we assume hypothesis

(3.V) for some η P p0, 2ν1λ1c
´2
0 s.

In the next Lemma we are going to suppose the existence of some η ą 0

satisfying the hypothesis (3.V) and we will analyse in two cases, when η P p0, ηs and when

η P pη,`8q.

Lemma 3.12. Let p ą 2. Assume that hypotheses (A)-(C) and (3.I)-(3.V), for the

delay term g, are satisfied. Then, for any puτ , φq P M2
H , there exist positive constants, rC1,g

and pC1, such that any weak solution u P ΦM2

H
pτ ; puτ , φqq to (LMD) satisfies the following

estimate for all τ ď t:

|uptq|22 ď rC1,ge
´pη´

C2
g

η
qpt´τq}puτ , φq}2

M2

H
`
ż t

τ

e
´pη´

C2
g

η
qpt´sqp pC1 ` K4}fpsq}q

˚qds. (3.35)

Proof. From energy equality (3.20) and (2.7), we deduce

1
2
d

dt
|uptq|22 ` c2ν1|epuq|22 ` c2ν2}epuq}p

p ď xfptq,uptqy ` pgpt,utq,uq.

From the Korn, the Young and the Poincaré inequalities we obtain

d

dt
|uptq|22 ` 2η|u|22 ` 2η2}∇u}p

p ď 2}fptq}˚}∇u}p ` 2|gpt,utq|2|u|2

ď 2q

ε
q
1q

}fptq}q
˚ ` ε

p
1

p
}∇u}p

p ` 1
ε2

|gpt,utq|22 ` ε2|u|22,

where η “ c2ν1λ1c
´2
0 , η2 “ c2ν2

c̃
p
0

and ε1, ε2 ą 0 to be chosen.

Choosing ε1 “ η
1{p
2 p and ε2 “ η, there follows

d

dt
|uptq|22 ` η|u|22 ` η2}∇u}p

p ď K4}fptq}q
˚ ` 1

η
|gpt,utq|22, (3.36)

where K4 “ 2q

η
q{p
2 pqq

.

To finish the proof, we consider two cases: when 0 ă η ď η and when is η ą η.

• Case 0 ă η ď η :
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Multiplying (3.36) by eηt, integrating from τ to t and, using hypothesis (3.V),

we have

eηt|uptq|22 ď rC1,ge
ητ }puτ , φq}2

M2

H
`
ż t

τ

eηsK4}fpsq}q
˚ds ` C2

g

η

ż t

τ

eηs|upsq|22ds,

where rC1,g “ maxt1,
C2

g

η
u. Applying the Gronwall inequality, give us

|uptq|22 ď rC1,ge
´pη´

C2
g

η
qpt´τq}puτ , φq}2

M2

H
` K4

ż t

τ

e
´pη´

C2
g

η
qpt´sq}fpsq}q

˚ds.

• Case η ą η :

Denote 0 ă β :“ η ´ c2ν1λ1

c2
0

. Consider also CI the constant of the embedding W 1,p
0 pΩqn Ă

L2pΩqn, i.e. |u|2 ď CI}∇u}p. Then the Young inequality yields

|u|22 ď γp{2

p{2
}∇u}p

p ` pp ´ 2qC2p{pp´2q
I

pγp{pp´2q
.

Putting
γp{2

p{2
“ c2ν2

2c̃p
0β

we gain

β|u|22 ď c2ν2

2c̃p
0

}∇u}p
p ` pC1,

where pC1 “ pp ´ 2qC2p{pp´2q
I β

pγp{pp´2q
. Then (3.36) reduces to

d

dt
|uptq|22 ` η|u|22 ` η2

2
}∇u}p

p ď K4}fptq}q
˚ ` 1

η
|gpt,utq|22 ` pC1.

Multiplying by eηt, integrating from τ to t, and using hypothesis (3.V) in (3.36), we have

eηt|uptq|22 ď rC1,ge
ητ }puτ , φq}2

M2

H
`
ż t

τ

eηsp pC1 ` K4}fpsq}q
˚qds ` C2

g

η

ż t

τ

eηs|upsq|22ds,

where rC1,g “ maxt1,
C2

g

η
u. Applying the Gronwall inequality, we arrive at

|uptq|22 ď rC1,ge
´pη´

C2
g

η
qpt´τq}puτ , φq}2

M2

H
`
ż t

τ

e
´pη´

C2
g

η
qpt´sqp pC1 ` K4}fpsq}q

˚qds @τ ď t.

Remark 3.13. For the case p “ 2, we can assume that c2 “ 1 and ν2 “ 0. With this, as

in Lemma 3.12, for some η P p0, 2ν1λ1c
´2
0 s satisfying hypothesis (3.V), we obtain

|uptq|22 ď rC2,ge
´pη´

C2
g

η2
qpt´τq}puτ , φq}2

M2

H
` K5

ż t

τ

e
´pη´

C2
g

η2
qpt´sq}fpsq}2

˚ds, (3.37)

where η2 “ 2ν1λ1c
´2
0 , rC2,g “ maxt1,

C2
g

η2

u and K5 ą 0.
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Since in the asymptotic pullback analysis, we study the behavior of solutions

when the initial time τ tends to ´8 it is necessary, for the case p ą 2, that η ą C2
g

η
,

see (3.35). Besides that, in this case, there is no restrictions for constants Cg and η. On

the other hand, for the case p “ 2, as we saw in Remark 3.13, we obtain an estimate for

|uptq|2 for η P p0, η2s, see (3.37). Therefore, for the study of asymptotic pullback behavior

in this case, we have to assume η ą Cg

η2

for some η P p0, η2s, and this is possible whenever

η2 ą Cg. To simplify the calculations, we will denote by ση :“ η ´ C2
g

η
.

In the remainder of this section, we are going to consider the case p ą 2 because

the case p “ 2 is analogous.

Lemma 3.14. Let be p ą 2. Assume that hypotheses (A)-(C) and (3.I)-(3.V) for some

η ą C2
g

η
are satisfied. Then, given t P R with t ě τ we have:

(i) If puτ , φq P M2
H , any u P ΦM2

H
pτ, puτ , φqq satisfies the following estimate in L2

H

}ut}2
L2

H
ď eσηh rC2,ge

´σηpt´τq}puτ , φq}2
M2

H
` heσηh

ż t

τ

e´σηpt´sqp pC1 ` K4}fpsq}q
˚qds,

(3.38)

where rC2,g “ 1 ` h rC1,g.

(ii) If φ P CH , any u P ΦCH
pτ ; pφp0q, φqq satisfies the following estimate in CH

}ut}2
CH

ď e´σηh rC3,ge
´σηpt´τq}φ}2

CH
` eσηh

ż t

τ

e´σηpt´sqp pC1 ` K4}fpsq}q
˚qds (3.39)

where rC3,g “ 1 ` p1 ` hq rC1,g.

Proof. (i) From (3.35) for τ ` h ď t, we obtain

|upt ` rq|22 ď rC1,ge
σηpt`r´τq}puτ , φq}2

M2

H
`
ż t`r

τ

e´σηpt`r´sqp pC1 ` K4}fpsq}q
˚qds,

for all r P p´h, 0q.

Thus, integrating in r between ´h and 0, we have that

}ut}2
L2

H
ď h rC1,ge

σηhe´σηpt´τq}puτ , φq}2
M2

H
` heσηh

ż t

τ

e´σηpt´sqp pC1 ` K4}fpsq}q
˚qds,
(3.40)

for all t ě τ ` h.
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Now, suppose that τ ď t ď τ ` h. Then

eσηpt´hq}ut}2
L2

H
dr ď

ż 0

´h

eσηpt`rq|upt ` rq|22dr “
ż t

t´h

eσηr|uprq|22dr

“
ż τ

t´h

eσηr|uprq|22dr `
ż t

τ

eσηr|uprq|dr

p3.35q
ď eσητ }φ}2

L2

H
` h rC1,ge

σητ }puτ , φq}2
M2

H
` h

ż t

τ

eσηsp pC1 ` K4}fpsq}q
˚qds.

Therefore, from both estimates above we conclude that

}ut}2
L2

H
ď eσηh rC2,ge

´σηpt´τq}puτ , φq}2
M2

H
` heσηh

ż t

τ

e´σηpt´sqp pC1 ` K4}fpsq}q
˚qds,

for all τ ď t, where rC2,g “ 1 ` h rC1,g.

(ii) Let be t ě τ and s P r´h, 0s, and suppose that t ` s ě τ . Then from (3.35) we have

|upt ` sq|22 ď rC1,ge
´σηpt`s´τq}puτ , φq}2

M2

H
`
ż t`s

τ

e´σηpt`s´θqp pC1 ` K4}fpθq}q
˚qdθ

ď p1 ` hqe´σηh rC1,ge
´σηpt´τq}φ}2

CH
` eσηh

ż t

τ

e´σηpt´θqp pC1 ` K4}fpθq}q
˚qdθ.

Now, suppose that t ` s ď τ , and observe that

eσηpt`hq|upt ` sq|22 ď eσηpt`sq|upt ` sq|22 ď eσητ }φ}2
CH
.

Therefore, from last inequalities we conclude that

}ut}2
CH

ď e´σηh rC3,ge
´σηpt´τq}φ}2

CH
` eσηh

ż t

τ

e´σηpt´θqp pC1 ` K4}fpθq}q
˚qdθ

where rC3,g :“ 1 ` p1 ` hq rC1,g.

Definition 3.15. (Universe in CH) Given σ ą 0, we will denote by DσpCHq the class

of all families of nonempty subsets pD “ tDptq : t P Ru Ă PpCHq such that

lim
τÑ´8

ˆ
eστ sup

vPDpτq
}v}2

CH

˙
“ 0.

And we will denote by DF pCHq the class of all families pD “ tDptq “ D : t P Ru with D a

fixed nonempty bounded subset of CH .

Definition 3.16. (Universe in M2
H) Given σ ą 0, we will denote by DσpM2

Hq the class

of all families of nonempty subsets pD “ tDptq : t P Ru Ă PpM2
Hq such that

lim
τÑ´8

ˆ
eστ sup

pv,φqPDpτq
}pv, φq}2

M2

H

˙
“ 0.

And we will denote by DF pM2
Hq the class of all families pD “ tDptq “ D : t P Ru with D a

fixed nonempty bounded subset of M2
H .
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In the following, we will assume that there exists η ą C2
g

η
satisfying the

hypothesis (3.V) and ż 0

´8

eσηs}fpsq}q
˚ds ă 8, (3.41)

or in other words f P Iq,ση

˚ .

Remark 3.17. Observing that f P Lq
locpR, V ˚

p q, assumption (3.41) is equivalent to

ż t

´8

eσηs}fpsq}q
˚ds ă 8 @t P R.

Corollary 3.18. Let be p ą 2. Under the hypotheses (A)-(C) and (3.I)-(3.V) for some

η ą C2
g

η
are satisfied and assume that f P Lq

locpR;V ˚
p q satisfies (3.41). Then, the families

pBση ,CH
“ tBση ,CH

ptq : t P Ru with Bση ,CH
ptq “ BCH

p0,Rptqq, and pBση ,M2

H
“ tBση ,M2

H
ptq :

t P Ru with Bση ,M2

H
ptq “ BM2

H
p0,Rptqq, are pullback Dση

pCHq -absorbing for the process

Up¨, ¨q and pullback Dση
pM2

Hq -absorbing for the process Sp¨, ¨q, respectively, where

R2ptq “ 1 ` p1 ` hqeσηh

ż t

´8

e´σηpt´θqp pC1 ` K4}fpθq}q
˚qdθ. (3.42)

Proof. It follows directly from Lemmas 3.12 and 3.14.

Lemma 3.19. Let be p ą 2. Under the hypotheses (A)-(C) and (3.I)-(3.V) for some

η ą C2
g

η
are satisfied and assume that f P Lq

locpR;V ˚
p q satisfies (3.41). Then for any t P R

and pD P Dση
pCHq ( pD P Dση

pM2
Hq) there exists τ1p pD, t, hq ă t ´ h ´ 2 such that for all

τ ď τ1p pD, t, hq and any φτ P Dpτq (puτ , φτ q P Dpτq) it holds

|upr; τ, pφτ p0q, φτ qq|2 ď ̺1ptq @r P rt ´ h ´ 2, ts,ż r

r´1

}∇upθ; τ, pφτ p0q, φτ qq}p
pdθ ď ̺2ptq @r P rt ´ h ´ 1, ts, (3.43)

where

̺2
1ptq “ 1 ` e´σηpt´2h´2q

ż t

´8

eσηsp pC1 ` K4}fpsq}q
˚qds, (3.44)

̺2ptq “ p 1
η2

` L2
g

ηη2

q̺2
1ptq ` K4

η2

ż t

t´h´2

}fpsq}q
˚ds. (3.45)

Proof. From Lemma 3.12, choose τ1p pD, tq ă t ´ h ´ 2 such that

rC1,ge
´σηpt´τq}pφτ p0q, φτ q}2

M2

H
ă 1,

for all φτ P Dpτq, (puτ , φτ q P Dpτq), with τ ď τ1p pD, tq. Thus, we obtain the first estimate.
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Now, observe that u P Cprt´ h´ 1, ts;Hq. Therefore, integrating between r´ 1

and r (3.36), with r P pt ´ h ´ 1, tq and using hypothesis (3.III), we have

η2

ż r

r´1

}∇upsq}p
pds ď |upr ´ 1q|22 ` K4

ż r

r´1

}fpsq}q
˚ds ` L2

g

η

ż r

r´1

|us|2CH
ds.

Therefore, from (3.44), we conclude
ż r

r´1

}∇upsq}p
pds ď p 1

η2

` L2
g

ηη2

q̺2
1ptq ` K4

η2

ż t

t´h´2

}fpsq}q
˚ds,

for all r P rt ´ h ´ 1, ts, τ ď τ1p pD, tq and φτ P Dpτq ( for all puτ , φτ q P Dpτq).

Theorem 3.20. Let be p ą 2. Under the hypothesis (A)-(C) and (3.I)-(3.V) for

some η ą C2
g

η
are satisfied and assume that f P L

q
locpR;V ˚

p q satisfies (3.41). Then, the

processes Up¨, ¨q and Sp¨, ¨q are pullback pBση ,CH
-asymptotically compact and pullback pBση ,M2

H
-

asymptotically compact respectively.

Proof. Given t0 P R, and any sequence tφmu with φm P Bση ,CH
pτmq (or puτm , φmq P

Bση ,M2

H
pτmq), where τm Ñ ´8 as m Ñ 8. Denote by um “ ump¨; τm, φ

mp0q, φmq any

sequence of weak solutions to (LMD) with um P ΦCH
pτm; pφmp0q, φqq (and denote by um “

ump¨; τm,u
τm , φmq any sequence of weak solution to (LMD) with um P ΦM2

H
pτm; puτm , φqq).

We will prove that the sequence tum
t0

u is relatively compact in CH , (tpumpt0q,um
t0

qu is

relatively compact in M2
H).

It follows from Lemma 3.19 that there exists m0pt0, hq such that

|umprq|2 ď ̺1pt0q @r P rt0 ´ h ´ 2, t0s @m ě m0pt0, hq, (3.46)

ż r

r´1

}umpsq}p
1,pds ď ̺2pt0q @r P rt0 ´ h ´ 1, t0s @m ě m0pt0, hq. (3.47)

On the other hand, for each m ě m0pt0, hq, the function um is a weak solution

to (LMD) on rt0 ´ h ´ 1, t0s. Thus, from (3.46) and (3.47), there exist a subsequence

(relabeled the same) and a function u such that

um ˚á u weakly-˚ in L8pt0 ´ h ´ 1, t0;Hq,
um á u weakly in Lppt0 ´ h ´ 1, t0;Vpq,
Bum

Bt á Bu

Bt weakly in Lqpt0 ´ h ´ 1, t0;V ˚
p q,

um Ñ u strongly in L2pt0 ´ h ´ 1, t0;Hq,
umptq Ñ uptq a.e. t P pt0 ´ h ´ 1, t0q in H.

(3.48)

Observe also that u P Cprt0 ´ h´ 1, t0s;Hq, and that for any sequence ttmu P
rt0 ´ h ´ 1, t0s with tm Ñ t˚, one has

umptmq Ñ upt˚q in V ˚
p . (3.49)



Chapter 3. A Class of Incompressible non-Newtonian Fluid with Delay 98

Moreover, by (3.III) and Lemma 3.19, we obtain
ż t0

t0´h´1

|gps,um
s q|22ds ď L2

gph ` 1q̺2pt0q.

Thus, eventually extracting a subsequence, there exists ξ P L2pt0 ´ h ´ 1, t0;L2pΩqnq such

that

gp¨,um
¨ q á ξ weakly in L2pt0 ´ h ´ 1, t0;L2pΩqnq,

and observe that, again by (3.III) and Lemma 3.19, we get
ż t

s

|gps,umpsqq|22ds ď Cpt ´ sq,
ż t

s

|ξprq|22dr ď lim inf
mÑ8

ż t

s

|gps,umpsqq|22ds ď Cpt ´ sq, (3.50)

for all t0 ´ h ´ 1 ď s ď t ď t0, where C “ L2
g̺2pt0q. Then, in a standard way, one can

prove that up¨q is a weak solution to the problem
$
’’’’’&
’’’’’%

Bv

Bt ´ divxpSpepvqqq ` divxpv b vq ` ∇π “ fptq ` ξptq in pt0 ´ h ´ 1, t0q ˆ Ω,

divxv “ 0 in pt0 ´ h ´ 1, t0q ˆ Ω,

v “ 0 on pt0 ´ h ´ 1, t0q ˆ BΩ,

vpt0 ´ h ´ 1, xq “ upt0 ´ h ´ 1, xq, x P Ω.
(3.51)

By the energy equality, Lemma 3.4, and (3.50), we obtain

1
2

|zptq|22 ď 1
2

|zpsq|22 `
ż t

s

xfprq, zprqyds ` C̃pt ´ sq, (3.52)

for all t0 ´ h ´ 1 ď s ď t ď t0, where C̃ “ Cη´1, and z “ um or z “ u.

Then, the maps Jm, J : rt0 ´ h ´ 1, t0s Ñ R defined by

Jmptq “ 1
2

|umptq|22 ´
ż t

t0´h´1

xfprq,umprqydr ´ C̃t

Jptq “ 1
2

|uptq|22 ´
ż t

t0´h´1

xfprq,uprqydr ´ C̃t,

are non-increasing and continuous, and satisfy

Jmptq Ñ Jptq a.e. t P pt0 ´ h ´ 1, t0q. (3.53)

We can use the functionals Jm and J to deduce that um Ñ u in Cprt0´h, t0s;Hq.
If this is not, then there exist ε˚ ą 0, and subsequences tumu Ă tumuměm0pt0,hq and

ttmu Ă rt0 ´ h, t0s, with tm Ñ t˚, such that

|umptmq ´ upt˚qq|2 ě ε˚ @m. (3.54)
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Let us fix ε ą 0. Observe that t˚ P rt0 ´ h, t0s and therefore, by (3.53) and the

continuity and non-increasing character of J , there exists t0 ´ h ´ 1 ă t̂ε ă t˚ such that

lim
mÑ8

Jmpt̂εq “ Jpt̂εq, (3.55)

and

0 ď Jpt̂εq ´ Jpt˚q ď ε. (3.56)

Since tm Ñ t˚, there exists mε such that t̂ε ă tm for all m ě mε. Then, by

(3.56)

Jmptmq ´ Jpt˚q ď Jmpt̂εq ´ Jpt˚q
ď |Jmpt̂εq ´ Jpt̂εq|2 ` |Jpt̂εq ´ Jpt˚q|2
ď |Jmpt̂εq ´ Jpt̂εq|2 ` ε

for all m ě mε, and consequently, by (3.55), lim sup
mÑ8

Jmptmq ď Jpt˚q ` ε. Thus, as ε ą 0 is

arbitrary, we deduce that

lim sup
mÑ8

Jmptmq ď Jpt˚q. (3.57)

Taking into account that tm Ñ t˚ and

ż tm

t0´h´1

xfprq,umprqydr Ñ
ż t˚

t0´h´1

xfprq,uprqydr,

from (3.57) we deduce that lim sup
mÑ8

|umptmq|2 ď |upt˚q|2. This last inequality and (3.49),

imply that umptmq Ñ upt˚q strongly in H, which is contradiction with (3.54).

We have thus prove that um Ñ u in Cprt0´h, t0s;Hq and we obtain in particular

that: $
’&
’%

um
t0

Ñ ut0
in Cpr´h, 0s;Hq,

umpt0q Ñ upt0q in H,

um
t0

Ñ ut0
in L2p´h, 0;Hq,

(3.58)

This finishes the proof.

Theorem 3.21. Let be p ą 2. Under the hypotheses (A)-(C) and (3.I)-(3.V) for some

η ą C2
g

η
are satisfied and assume that f P Lq

locpR;V ˚
p q satisfies (3.41). Then, there exist

the minimal pullback DF pCHq-attractor ADF pCH q “ tADF pCH qptq : t P Ru and the minimal

pullback Dση
pCHq-attractor ADση pCH q “ tADση pCH qptq : t P Ru for the multi-valued process

U : R2
d ˆCH Ñ PpCHq. The minimal pullback Dση

pCHq-attractor belongs to Dση
pCHq and

the following relationships hold

ADF pCH qptq Ă ADση pCH qptq Ă BCH
p0,Rptqq @t P R. (3.59)
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Proof. The existence of pullback attractors for the multi-valued process Up¨, ¨q in the

universes Dση
pCHq and DF pCHq follows from Theorem 1.42. The inclusions (3.59) are

given by the Corollary 1.44.

Theorem 3.22. Let be p ą 2. Under the hypotheses (A)-(C) and (3.I)-(3.V) for some

η ą C2
g

η
are satisfied and assume that f P Lq

locpR;V ˚
p q satisfies (3.41). Then, there exist

the minimal pullback DF pM2
Hq-attractor ADF pM2

H
q “ tADF pM2

H
qptq : t P Ru and the minimal

pullback Dση
pM2

Hq-attractor ADση pM2

H
q “ tADση pM2

H
qptq : t P Ru for the multi-valued process

S : R2
d ˆ M2

H Ñ PpM2
Hq. The minimal pullback Dση

pM2
Hq-attractor belongs to Dση

pM2
Hq

and the following relationships hold

ADF pM2

H
qptq Ă ADση pM2

H
qptq Ă BM2

H
p0,Rptqq @t P R. (3.60)

Proof. The existence of pullback attractors for the multi-valued process Sp¨, ¨q in the

universes DσηpM2
Hq and DF pM2

Hq follows from Theorem 1.42. The inclusions (3.60) are

given by the Corollary 1.44.

Remark 3.23. If f P Lq
locpR;V ˚

p q satisfies that

sup
sď0

ˆ
e´σηs

ż s

´8

eσηr}fprq}q
˚dr

˙
ă 8, (3.61)

we guarantee that for all T P R,
ď

tďT

BCH
p0,Rptqq and

ď

tďT

BM2

H
p0,Rptqq are bounded

subsets of CH and M2
H respectively (see estimate (3.42)) since

sup
sď0

ˆ
e´σηs

ż s

´8

eσηr
` pC1 ` }fprq}q

˚

˘
dr

˙
ă 8. (3.62)

Therefore, from Remark 1.45 we obtain that

ADF pCH qptq “ ADση pCH qptq and ADF pM2

H
qptq “ ADση pM2

H
qptq. (3.63)

Remark 3.24. Observe that, if f P L
q
locpR;V ˚

p q satisfies that f P Iq,ση

˚ for some η ą 0,

then f P Iq,σµ

˚ for all µ P pη,`8q, and besides that, Dση
pCHq Ă Dσµ

pCHq and Dση
pM2

Hq Ă
Dσµ

pM2
Hq. Thus, for all µ P pη,`8q there exists the corresponding minimal pullback

Dσµ
pCHq-attractor, ADσµ pCH q.

Since Dση
pCHq Ă Dσµ

pCHq and Dση
pM2

Hq Ă Dσµ
pM2

Hq, there follow from The-

orem 1.46 that, for any t P R, ADση pCH qptq Ă ADσµ pCH qptq and ADση pM2

H
qptq Ă ADσµ pM2

H
qptq

for all µ P pη,`8q.

Moreover, if f satisfies (3.61), then

sup
sď0

ˆ
e´σµs

ż s

´8

eσµr}fprq}q
˚dr

˙
ă 8 for all µ P pη,`8q,
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therefore, by (3.63) we get

ADF pCH qptq “ ADση pCH qptq “ ADσµ pCH qptq for all µ P pη,`8q.

and

ADF pM2

H
qptq “ ADση pM2

H
qptq “ ADσµ pM2

H
qptq for all µ P pη,`8q.

Remark 3.25. We consider the canonical injection j : CH Ñ M2
H defined by jpφq “

pφp0q, φq. Thus, we can identify

jpADF pCH qptqq Ă ADF pM2

H
qptq and jpADση pCH qptqq “ ADσµ pM2

H
qptq,

for all t P R.

It is simple to show that jpADση pCH qptqq Ă ADσµ pM2

H
qptq. Then, to get the other

inclusion we use the fact that, j P LpCH ,M
2
Hq with }j}LpCH ,M2

H
q ď p1 ` hq1{2. Then, for

τ ď t ´ h

distM2

H

`
Spt, τqDpτq, jpADση pCH qptqq

˘

“ distM2

H

`
Spt, τ ` hq

`
Spτ ` h, τqDpτq

˘
, jpADση pCH qptqq

˘

“ distM2

H

`
Spt, τ ` hq

`
jpπL2

H
pSpτ ` h, τqDpτqq

˘
, jpADση pCH qptqq

˘

“ distM2

H

`
Spt, τ ` hq

`
jpDhpτqq

˘
, jpADση pCH qptqq

˘

“ distM2

H

`
j
`
Upt, τ ` hqpDhpτqq

˘
, jpADση pCH qptqq

˘

ď p1 ` hq1{2distCH

`
Upt, τ ` hqpDhpτqq,ADση pCH qptq

˘
,

where πL2

H
: M2

H Ñ L2
H with πL2

H
pu, φq “ φ, for all pu, φq P M2

H , and Dhpsq “ πL2

H
pSps `

h, sqDpsqq for all s P R. Observe that pDh P Dση
pCHq. Then, since ADση pCH q is pull-

back Dση
pCHq-attracting, from previous inequality we obtain that jpADση pCH qq is pullback

Dση
pM2

Hq-attracting in Dση
pM2

Hq. Thus, since ADση pM2

H
qptq is the minimal closed set that

pullback attracts any family pD P Dση
pM2

Hq, we conclude that j
`
ADση pCH qptq

˘
Ă ADση pM2

H
qptq

for all t P R.

3.5 Continuity of the Processes Up¨, ¨q and Sp¨, ¨q
Remember that in Section 3.4, about the assumptions given in Theorem 3.3,

we define the process Up¨, ¨q : R2
d ˆ CH Ñ PpCHq, and Sp¨, ¨q : R2

d ˆ M2
H Ñ PpM2

Hq, given

by

Upt, τqφ “
 
utp¨; τ, φp0q, φq : u P ΦCH

pτ ; pφp0q, φqq
(

with φ P CH and pt, τq P R
2
d, and

Spt, τqpuτ , φq “
 `

upt; τ,uτ , φq,utp¨; τ,uτ , φq
˘

: u P ΦM2

H
pτ ; puτ , φqq

(
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with puτ , φq P M2
H and pt, τq P R

2
d.

Observe that under assumptions given in Theorem 3.6, the process Up¨, ¨q and

Sp¨, ¨q are uni-valued, i.e.: the processes are reduced to Up¨, ¨q : R
2
d ˆ CH Ñ CH , and

Sp¨, ¨q : R2
d ˆ M2

H Ñ M2
H , given by

Upt, τqφ “ utp¨; τ, φp0q, φq (3.64)

with φ P CH and pt, τq P R
2
d, and

Spt, τqpuτ , φq “
`
upt; τ,uτ , φq,utp¨; τ,uτ , φq

˘
(3.65)

with puτ , φq P M2
H and pt, τq P R

2
d.

The following results show that the processes defined in (3.64) and (3.65) are

continuous processes.

Lemma 3.26. Let us consider f P Lqpτ, T ;V ˚
p q, and g : R ˆ CH Ñ L2pΩqn satisfying

(3.I)-(3.IV) defined in (3.8). Given pvτ , φ1q and puτ , φ2q in M2
H , let us denote by vp¨q “

vp¨; τ, pvτ , φ1qq and up¨q “ up¨; τ, puτ , φ2qq two weak solutions to (LMD), with initial

conditions pvτ , φ1q and puτ , φ2q, respectively. Then

(i) If n “ 2:

|vptq ´ uptq|22 ď rCg}pvτ , φ1q ´ puτ , φ2q}2
M2

H
exp

"ż t

τ

`
K1 ` k2|∇upsq|22

˘
ds

*
, (3.66)

for all τ ď t ď T , where rCg “ maxt1,
c2

0Cg

ν1λ1

u, K1 “ c2
0Cg

ν1λ1

and k2 “ c2
0ĉ

ν1

.

Therefore, it also holds

}vt ´ ut}2
CH

ď rCg}pvτ , φ1q ´ puτ , φ2q}2
M2

H
exp

"ż t

τ

`
K1 ` K2|∇upsq|22

˘
ds

*
, (3.67)

for all τ ` h ď t ď T .

(ii) If n “ 3 and u,v P L
2p

2p´3 pτ, T ;Vpq, then

|vptq ´ uptq|22 ď rCg}pvτ , φ1q ´ puτ , φ2q}2
M2

H
exp

"ż t

τ

`
K1 ` K3}∇upsq}

2p

2p´3

p

˘
ds

*
,

(3.68)

for all τ ď t ď T , where K3 “ p2p ´ 3qd
2p

2p´3

2pε
2p

2p´3

, with ε “
`pν1

2c2
0

˘3{2p
.

Therefore, it also holds

}vt ´ut}2
CH

ď rCg}pvτ , φ1q´puτ , φ2q}2
M2

H
exp

"ż t

τ

`
K1 `K3}∇upsq}

2p

2p´3

p

˘
ds

*
, (3.69)

for all τ ` h ď t ď T .
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Proof. For (i), inequalities (3.66) and (3.68) are consequence of Theorem 3.6.

Now, if t ě τ ` h then for any s P p´h, 0q we have that t ` s ě τ . thus by

(3.66) for t ` s, we obtain that

|vpt ` sq ´ upt ` sq|22 ď rCg}pvτ , φ1q ´ puτ , φ2q}2
M2

H
exp

"ż t`s

τ

`
K1 ` K2|∇upθq|22

˘
dθ

*

ď rCg}pvτ , φ1q ´ puτ , φ2q}2
M2

H
exp

"ż t

τ

`
K1 ` K2|∇upθq|22

˘
dθ

*
,

since t ě t ` s ě τ . Due to u,v P Cprτ, T s;Hq, we can take the maximum on s P r´h, 0s
and we conclude that

}vt ´ ut}2
CH

ď rCg}pvτ , φ1q ´ puτ , φ2q}2
M2

H
exp

"ż t

τ

`
K1 ` K3}∇upsq}

2p

2p´3

p

˘
ds

*
,

for all τ ` h ď t ď T . Thus, (3.67) is proved.

In the same way we demonstrate case (ii).

Theorem 3.27. Under the hypotheses of Lemma 3.26, the applications Upt, τq : CH Ñ CH

and Spt, τq : M2
H Ñ M2

H are continuous for each pt, τq P R
2
d.

Proof. We prove this Theorem for n “ 3, since for n “ 2 is analogous.

From the uniqueness of solution, we obtain that Up¨, ¨q and Sp¨, ¨q are processes.

To prove the continuity of both processes, we will use the Lemma 3.26.

• Upt, τq : CH Ñ CH is continuous for each pt, τq P R
2
d:

Let be ψ, φ P CH , and consider the solutions up¨q “ up¨; τ, pψp0q, ψqq, vp¨q “ vp¨; τ, pφp0q, φqq
to (LMD). We deduce from (3.68) that

|vptq ´ uptq|22 ď rCg}pφp0q, φq ´ pψp0q, ψq}2
M2

H
exp

"ż t

τ

`
K1 ` K3}∇upsq}

2p

2p´3

p

˘
ds

*

“ rCg

`
|φp0q ´ ψp0q|22 ` }φ ´ ψ}2

L2

H

˘
exp

"ż t

τ

`
K1 ` K3}∇upsq}

2p

2p´3

p

˘
ds

*

ď rCg

`
p1 ` hq}φ ´ ψ}2

CH

˘
exp

"ż t

τ

`
K1 ` K3}∇upsq}

2p

2p´3

p

˘
ds

*
t ě τ.

For s P r´h, 0s and t ě τ , we consider two cases. The first case is when t`s ě τ ,

and the second case is when s` t ď τ . Then, for the first case, we use the inequality above

|vpt ` sq ´ upt ` sq|22 ď rCg

`
p1 ` hq}φ ´ ψ}2

CH

˘
exp

"ż t`s

τ

`
K1 ` K3}∇upsq}

2p

2p´3

p

˘
ds

*

ď rCg

`
p1 ` hq}φ ´ ψ}2

CH

˘
exp

"ż t

τ

`
K1 ` K3}∇upsq}

2p

2p´3

p

˘
ds

*
.
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For the second case ps ` t ď τq, it is direct to see

|vpt ` sq ´ upt ` sq|22 “ |ψps ` t ´ τq ´ φps ` t ´ τq|22
ď }ψ ´ φ}2

CH

ď rCg

`
p1 ` hq}φ ´ ψ}2

CH

˘
exp

"ż t

τ

`
K1 ` K3}∇upsq}

2p

2p´3

p

˘
ds

*
.

Thus, it follows from the inequalities above that, for all τ ď t and s P r´h, 0s

|vpt ` sq ´ upt ` sq|22 ď rCg

`
p1 ` hq}φ ´ ψ}2

CH

˘
exp

"ż t

τ

`
K1 ` K3}∇upsq}

2p

2p´3

p

˘
ds

*
.

By applying the maximum in s, we obtain

}vt ´ ut}2
CH

ď rCg

`
p1 ` hq}φ ´ ψ}2

CH

˘
exp

"ż t

τ´h

`
K1 ` K3}∇upsq}

2p

2p´3

p

˘
ds

*
, t ě τ.

Therefore, we conclude that Upt, τq is continuous for all τ ď t.

• Spt, τq : M2
H Ñ M2

H is continuous for each pt, τq P R
2
d:

Let puτ , ψq, pvτ , φq P M2
H , and consider the solutions up¨q “ up¨; τ, puτ , ψqq,

vp¨q “ vp¨; τ, pvτ , φqq to (LMD). We deduce from (3.69) that, for τ ` h ď t

}vt ´ ut}2
L2

H
“
ż 0

´h

|vpt ` θq ´ upt ` θq|22dθ

ď h rCg}pvτ , ψq ´ puτ , φq}2
M2

H
exp

"ż t

τ

`
K1 ` K3}∇upsq}

2p

2p´3

p

˘
ds

*
.

On the other hand, if τ ď t ď τ ` h we deduce

}vt ´ ut}2
L2

H
“
ż 0

´h

|vpt ` θq ´ upt ` θq|22dθ “
ż t

t´h

|vprq ´ uprq|22dr

“
ż τ

t´h

|vprq ´ uprq|22dr `
ż t

τ

|vprq ´ uprq|22dr ď
ż 0

´h

|ψprq ´ φprq|22dr `
ż t

τ

|vprq ´ uprq|22dr

ď }ψ ´ φ}2
CH

`
ż t

τ

rCg}pwτ , ψq ´ puτ , φq}2
M2

H
exp

"ż r

τ

`
K1 ` K3}∇upsq}

2p

2p´3

p

˘
ds

*
dr

ď }ψ ´ φ}2
CH

` h rCg}pwτ , ψq ´ puτ , φq}2
M2

H
exp

"ż t

τ

`
K1 ` K3}∇upsq}

2p

2p´3

p

˘
ds

*
.

Thus, we have for all τ ď t

}vt ´ ut}2
L2

H
ď }ψ ´ φ}CH

` h rCg}pwτ , ψq ´ puτ , φq}2
M2

H
exp

"ż t

τ

`
K1 ` K3}∇upsq}

2p

2p´3

p

˘
ds

*

ď
`
ph rCg ` 1q}ψ ´ φ}2

CH
` h|vτ ´ uτ |22

˘
exp

"ż t

τ

`
K1 ` K3}∇upsq}

2p

2p´3

p

˘
ds

*
,

and the continuity of Spt, τq follows immediately from (3.22) and this inequality.
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Remark 3.28. The results established in this section can be seen as more general results

given in section 3.3, about the uniqueness of weak solution to (LMD). In summary we

have shown continuity in relation to the initial conditions.

Remark 3.29. As last observation to end this section, the existence of pullback attractors

in the Banach space CH “ Cpr´h, 0s;Hq and the Hilbert space M2
H “ H ˆ L2p´h, 0;Hq

with h ą 0, established in Theorem 3.21 and Theorem 3.22, is also valid for continuous

processes Up¨, ¨q and Sp¨, ¨q (see books [17, 45, 54]).
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4 Final comments and future proposals

In this section we start by collecting, in a didactic way, all the results shown in

this work. The symbol X indicates that it has been proved and χ nothing is affirmed.

Tables 1 and 2 summarize the results established in Sections 2.2, 2.3 and 2.4

on the existence, uniqueness and regularity of weak solution to (LM).

Table 1 – Existence, uniqueness and regularity of weak solutions to (LM) for n “ 2

n “ 2 values of p
Solution features p “ 2 p2,`8q

Existence X X

Uniqueness X X

Higher regularity χ X

Table 2 – Existence, uniqueness and regularity of weak solutions to (LM) for n “ 3

n “ 3 values of p
Solution features r2, 11{5q r11{5, 12{5q r12{5, 5{2q r5{2,8q

Existence χ X X X

Uniqueness χ χ χ X

Higher regularity χ χ X X

Tables 3 and 4 give a summary of the results established in Subsections 2.5.1

and 2.5.2 on the existence of pullback attractors in H and Vp.

Table 3 – Existence of pullback attractors to (LM) for n “ 2

n “ 2 values of p
Pullback Attractor p “ 2 p2,`8q

H X X

Vp χ X

Table 4 – Existence of pullback attractors to (LM) for n “ 3

n “ 3 values of p
Pullback Attractor r2, 11{5q r11{5, 12{5q r12{5, 5{2q r5{2,8q

H χ X X X

Vp χ χ χ X

Remark 4.1. A relevant fact is that it seems feasible to show existence of pullback

attractors in Vp for the multi-valued case, i.e., when p ě 1 ` 2n{pn` 2q. The main obstacle

in this case was the upper-semicontinuity of the multi-valued process. This is an entirely
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topological problem, but the viability is suggested, since the weak solutions are weakly

continuous on Vp.

Tables 5 and 6 furnish a summary of the results established in Sections 3.2 and

3.3 on the existence and uniqueness of weak solution to (LMD).

Table 5 – Existence and uniqueness of weak solution to (LMD) for n “ 2

n “ 2 values of p
Solution features r2,`8q

Existence X

Uniqueness X

Table 6 – Existence and uniqueness of weak solution to (LMD) for n “ 3

n “ 3 values of p
Solution features r2, 11{5q r11{5, 12{5q r12{5, 5{2q r5{2,8q

Existence χ X X X

Uniqueness χ χ χ X

Tables 7 and 8 compile the results established in Section 3.4 on the existence

of pullback attractors in CH “ Cpr´h, 0s;Hq, M2
H “ H ˆ L2p´h, 0;Hq and M

p
Vp

“
Vp ˆ Lpp´h, 0;Vpq, with h ą 0.

Table 7 – Existence of pullback attractors to (LMD) for n “ 2

n “ 2 values of p
Pullback Attractor r2,`8q

CH and M2
H X

M
p
Vp

χ

Table 8 – Existence of pullback attractors to (LMD) for n “ 3

n “ 3 values of p
Pullback Attractor r2, 11{5q r11{5, 12{5q r12{5, 5{2q r5{2,8q

CH and M2
H χ X X X

M
p
Vp

χ χ χ χ

Although, in all this work we have never mentioned the Banach space Mp
Vp

, it

is conveniently introduced in this chapter in order to formulate new problems.

Remark 4.2. As in the case of regularity study of the pullback attractors on Vp for the

system (LM), we can think of an equivalent analysis for the system with delay (LMD).

From the existence of pullback attractors in M2
H build and analyze the existence of pullback

attractors in M
p
Vp
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We finish this section commenting on some future proposals. But before that,

let us make a brief introduction about fractal dimension.

The geometry of the attractors for autonomous and non-autonomous systems

can be complex and difficult to describe. Therefore, it is useful to have quantitative

characterizations of such geometric objects. Maybe the most basic characterization of this

type is the dimension of the attractor.

The treatment of this concept is necessarily abstract, since the application of

the results generally makes use of certain properties of differentiability and which need to

be carefully reviewed in each particular application.

There are many possible definitions of dimension, but in the field of dynamic

systems the most used are the Hausdorff dimension and the Fractal dimension (also called

box-counting dimension).

We will focus on the fractal dimension for two reasons: it always provides an

upper limit to the Hausdorff dimension, and it is known that any set with a finite fractal

dimension can be introduced into a finite dimensional Euclidean space using a linear

application, whose inverse is Hölder continuous. This result is not true if we assume that

the Hausdorff dimension is finite; see [17, pg. 72].

The fractal dimension of a compact subset K of a metric space X is defined by

dimBpKq “ lim sup
rÑ0

logNXpK, rq
´ log r

,

where NXpK, rq is the minimum number of balls of radius r, centered at some point K,

which covers K.

With this short introduction on the concept of fractal dimension for compact

subsets in metric spaces, and with the analysis made in this work, it is natural to raise

and discuss the following problems:

• To show results of regularity of the pullback attractors of H and Vp for other powers

p for the system (LM) and analyse their fractal dimensions.

• To show higher regularity of different families of pullback attractors on CH , M2
H and

M
p
Vp

for the system (LMD) and analyse their fractal dimensions.

• To obtain results for tempered behavior of pullback attractors in both cases.
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