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Resumo

Neste trabalho investigamos o comportamento assintotico de modelos matematicos que
descrevem o escoamento de fluidos incompressiveis nao-Newtonianos, com e sem termos
de retardo. Supomos que o fluido ocupa um dominio limitado com fronteira regular em
duas ou trés dimensoes. Nestes modelos o tensor de estresse, associado a viscosidade do
fluido, é caracterizado como sendo uma funcao que satisfaz condi¢oes de p-coercividade e

(p — 1)-crescimento.

Para o modelo sem termo de retardo, além de resultados de existéncia, unicidade e
regularidade de solugao, mostramos existéncia de atratores do tipo pullback sobre universos
temperados nos espacos de Banach (L?)" e (W, *)" com divergente nulo, denotados por H
e Vp, respectivamente. Em H, o comportamento assintotico pullback ¢ analisado usando
um método de energia para p = 1 + 2n/(n + 2). Neste caso, as solugoes fracas definem um
processo multivoco que é semi-continuo superiormente e fechado. Para o estudo de atratores
do tipo pullback em V), além de maior regularidade na forca externa, serd necessario que
o tensor de estresse seja um potencial e p = 5/2 se n =3 ou p > 2 se n = 2. Assim, o
processo definido sobre V), torna-se um processo univoco, devido a unicidade da solucao

fraca. Finalmente, mostramos um resultado de comparagao dos atratores em H e V.

Para o modelo com termos de retardo, primeiramente mostramos a existéncia de solugoes
fracas para p = 1 + 2n/(n + 2). A partir das solugoes fracas é definido um processo
multivoco e provada a existéncia de atratores do tipo pullback, em universos temperados,
definidos sobre dois espacos de Banach diferentes. A existéncia dos atratores dependera de
p e de um parametro relacionado aos coeficientes de viscosidade do tensor de estresse e

aos parametros associados aos termos de retardo.

Palavras-chave: fluidos incompressiveis nao-Newtonianos; atratores pullback; processo

multivoco; retardos; modelo de Ladyzhenskaya.



Abstract

In this work, we investigate the asymptotic behavior of mathematical models that describe
the flow of non-Newtonian incompressible fluids, with and without delay terms. We assume
that the fluid occupies a smooth bounded domain in two or three dimensions. In these
models, the stress tensor, associated with fluid viscosity, is characterized as a function

that satisfies p-coercivity and (p — 1)-growth conditions.

For the model without delay term, in addition to results of existence, uniqueness and
regularity of the solution, we show the existence of pullback attractors on tempered
universes in the Banach spaces (L?)" and (W, ?)" with divergence-free, denoted by H and
Vp, respectively. In H, the pullback asymptotic behavior is analyzed by an energy method
for p = 14 2n/(n + 2). In this case, weak solutions define a multi-valued process that
is upper semi-continuous with closed values. For the study of pullback attractors in V,,
besides the higher regularity on the external force, it will be necessary the stress tensor
to be a potential and p > 5/2 if n = 3 or p > 2 if n = 2. Thus, the process defined on V,
becomes a single-valued process, due to the uniqueness of the weak solution. Finally, we

show a comparison result between the attractors in A and V.

For the model with delay terms, we first show the existence of weak solutions for p >
1+2n/(n+2). From the weak solutions, a multi-valued process is defined and the existence
of pullback attractors, in tempered universes, defined over two different Banach spaces
is proven. The existence of the attractors will depend on p and a parameter related to
the viscosity coefficients of the stress tensor and the parameters associated with the delay

terms.

Keywords: incompressible non-Newtonian fluids; pullback attractors; multi-valued process;

delays; Ladyzhenskaya model
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12

Introduction

Mathematical models that describe the behavior of fluid flows as the air, water,
oil, blood, and many other magnitudes have been subject of interest in the last two hundred
years to the chemistry, physics, biology, economics, among others areas. Let us do a little
and brief tour through the history of dynamical systems and its importance. Let us start in
the 16th century with big minds like Issac Newton, who contributed to the mathematical
modeling through the formalization of classical mechanics, and Johannes Kepler, who
contributed with works in celestial mechanics. They started new mathematical concepts,

extracted from physics, such as the dynamical systems that are still studied today.

Isaac Newton (1642-1727) Johannes Kepler (1571-1630)

French mathematician Henri Poincaré is considered one of the creators of the
modern theory of the dynamical systems. His work “Les méthodes nouvelles de mécanique
céleste”, published in 1892 [52], allows us to understand the stability, periodicity, and
asymptotic behavior of solutions of a differential equation without the need to explicitly

know them.

In 1927, the American mathematician George Birkhoff, internationally rec-
ognized by the so-called Ergodic Theorem, published the work Dynamical Systems [5],

considered the first book in the area of dynamical systems.

Following this timeline, let us think about the next question “Does the flap of
a butterfly’s wings in Brazil set off a tornado in Texas?” This question can be interpreted
like is it possible that two relatively close objects, as they evolve over time, could differ

greatly? The answer to this question can be found in chaos theory.

The chaos theory is a branch of nonlinear dynamical systems theory which is
very sensitive to variations in initial conditions. One of the pioneers in the chaos theory was

Edward Lorenz, American meteorologist, mathematician, and philosopher. He contributed
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Henri Poincaré (1854-1912)
George Birkhoff (1884-1944)

with a mathematical model that describes the behavior of convection in the atmosphere.
With this model, he realized that at minimal alterations in the initial data, they resulted in
widely divergent solutions, whose phenomenon is known as the “butterfly effect”. Another
interesting observation is that solutions oscillate irregularly without repeating themselves

in a bounded region of the phase space; in a modern language, this is known as an attractor.

Edward Lorenz (1917-2008) Lorenz Attractor

== =3
i A

The study of the asymptotic behavior of solutions to differential equations is
fundamentally important to understand the behavior of the solutions for long periods of

time. And for this study, the concept of attractor has been widely used in recent years.

An attractor is a subset of the phase-space toward which a system tends to
evolve, for a wide variety of starting conditions of the system. System values that get
close enough to the attractor values remain close even if they are slightly disturbed. For
autonomous dynamical systems, the concept of a global attractor is widely employed,
see, for instance, [34, 49, 54, 56]. For non-autonomous dynamical systems, the study of
pullback attractors has received a lot of attention, since it can be seen as a generalization
of the global attractor, see, among others, [17, 35]. This is not the only approach, uniform

attractors, skew-product flows and attractors are other valid options.

An example where the existence and uniqueness of the solution, and their
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asymptotic behavior which are studied in the autonomous and non-autonomous cases,
is the well-known Navier-Stokes system, named after Claude-Louis Navier and George

Gabriel Stokes; [23, 42, 45, 54]. This system is obtained by applying the principles of

Claude L. H. Navier (1785-1836) George G. Stokes (1819-1903)

conservation and thermodynamics to a volume of fluid. This system is useful to describe

the velocity and pressure of incompressible Newtonian fluids and it is given by

0 0
a—ltl—l/oAu = —;uia;—V]H—f in Q x (0,0), (1)
div,u = 0 in Q x (0,00), (2)
where u = (uq, - - -, u,) is the fluid velocity, p is the pressure, f an external force, vy > 0 is

the viscosity and €2 < R" is a domain.

Solutions of the Navier—Stokes equations often include turbulence, which re-
mains one of the greatest unsolved problems in Physics, despite its immense importance
in other science as Engineering. For the Navier—Stokes existence and smoothness prob-
lem, mathematicians have not proved yet that given smooth initial conditions, for the
three-dimensional Navier-Stokes system, the smooth solutions always exist; and if they
existed, they would have bounded energy. This is called the Navier-Stokes existence and
smoothness problem. In May 2000, the Clay Mathematics Institute made this problem
one of its seven Millennium Prize problems in mathematics. The institute offers a US$
1,000,000 prize to the first person who provides a solution for a specific statement of the
problem [16].

On the other hand, regarding the asymptotic behavior of the solutions of the
Navier-Stokes system in the autonomous case, i.e., when the external force f is independent
of t, on a smooth bounded domain 2 = R?, the existence of global attractor can be proved
“easily”, since the solutions are regular, [42, 54, 56]. But, the three-dimensional case is
more involved because the uniqueness of the solution is still unknown. Therefore, other

concepts are introduced to be able to investigate the asymptotic behavior of solutions,
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(17,19, 23, 24, 57]. In the non-autonomous case, i.e., when the external force f(¢) depends
on t, the asymptotic behavior of the solutions was analyzed by several approaches cited
above, in particular, within the framework of pullback attractors. For example, in the
two-dimensional case, the pullback dynamics was analyzed by using the energy method
on the spaces H and V, which consist, roughly speaking, of all functions in L?(2)? and
Wy2()? with divergence-free, respectively; see [27, 28, 31]. Other related results about
the Navier-Stokes system can be seen in [10, 11, 48, 55].

There are also other types of fluids in nature that in mathematical physics
are called non-Newtonian fluids [23, 39, 42, 45]; for example, blood, butter, lava, etc.;
unlike the Newtonian fluids, their viscosity varies as the temperature and shear stress are
applied. In 1969, Russian mathematician Olga Aleksandrovna Ladyzhenskaya proposed
some mathematical models, known as Ladyzhenskaya models [21, 37, 38, 39, 41], for

incompressible viscous flows or incompressible non-Newtonian fluids.

Olga Ladyzhenskaya (1922-2004)

N 0 (g I o T R
= ,;xk( w(e(n) = ;uax 5, F I 2 (0,00), (3)
div,u = 0 in Q x (0,00), (4)

i=1,2and j=1,20r j =1,2,3, and S(e(u)) is defined by
$'(e(u)) = vie(u) + vole(u)~e(u),

or its special case

$%(e(u)) = (v1 + velle(u)|7z - )e(w),
where vy, 15 > 0 are the viscosity coefficients, $'(e(u)), i = 1 or 2, are the stress tensors
associated to this system and e(u) = 5 (Vu’ +Vu) is the symmetric gradient. Many models,
also known as variants of the Navier-Stokes system or modified Navier-Stokes equations

are characterized by the stress tensor that we will denote by S. When $(e(u)) = 2ve(u)

with v > 0, then the equations are reduced to the Navier-Stokes equations (1).
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For non-Newtonian fluids, in general, the stress tensor is a nonlinear convex
function (in some cases the stress tensor is a potential, see definition 1.48) and satisfies
the following conditions: there exist constants C;,Cs > 0 and parameters p > 1 and
q € [p— 1,p) such that, for all M € R"

sym?
S(M): M > C,|MJ? (p - coercivity condition),
IS(M)| < Ca(1 + |M])? (q - growth condition).

For non-Newtonian fluids, in typical cases, the stress tensor has the form:

p—2

S(e(u)) = 2(v + wle()[P?)e(u) or S(e(u)) =2(v + ryle(u)|*) =z e(u), p>1,

with v, g > 0.

Therefore, the motion of incompressible non-Newtonian fluids on a domain
Q c R", n=2orn =3, can be characterized by the velocity field u = (uy, - -, u,) and

the pressure m, and governed by the system of n + 1 equations given by

u_ div,S(e(u)) = —divy(u®u)— V.7 +£(t) in Q.7 (5)

ot
div,u = 0 in Q,r, (6)

subject to initial and boundary conditions. Here, {2 < R",n = 2, 3, is a bounded domain
with smooth boundary 02, 7 < T, where we have denoted by Q.7 := (7,7) x Q and

u®u = (wu;);.

Next, we recall some results about existence, uniqueness and asymptotic be-
havior of the solutions associated with the system (5)-(6) in the autonomous and non-
autonomous cases. Let us start with the autonomous case, i.e., when the external force
f is independent of time ¢. J. Necas et al. [45, chapter 5] studied the uniqueness and
existence of measure-valued, weak, and strong solutions subject to space-periodic boundary
conditions and Dirichlet conditions. J. Malek and J. Necas [44] proved the existence of a
global attractor with finite fractal dimension for three-dimensional flow of incompressible
fluids. J. Malek and D. Prazdk [46] introduced a new criterion for the finiteness of the
fractal dimension of the attractor through the method of short trajectories for the cases:
two-dimensional if p > 2 and three-dimensional if p > 11/5, subject to space-periodic
boundary conditions. E. Feireisl and D. Prazak [23] analyzed on the asymptotic behavior
on L*()" for incompressible non-Newtonian fluids when p > 2 and for 1 < p < 2 only
in the two-dimensional case. D. Prazak and J. Zabensky [53] showed that there exists an
exponential attractor for a perturbed three-dimensional Ladyzhenskaya model. Finally,
for the non-autonomous case, i.e., the external force f = f(¢) dependents of time ¢, very
recently, Yang et al. [60] showed a result that establishes the existence of finite-dimensional
pullback attractors in a general setting involving tempered universes for one of the models

proposed by Ladyzhenskaya. Other results can be seen in [63, 64, 65].
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As we can see, there exist many results on the theory of the existence of
solutions and global attractors for the autonomous case. However, the pullback dynamics
for incompressible non-Newtonian fluids is much less explored. Therefore, the first aim of

this thesis is to investigate the existence of pullback attractors for this kind of problems.

We observe that there are some difficulties in analyzing the pullback dynamics
of non-Newtonian fluids in comparison to Newtonian fluids. Even though if it were possible
to consider the three-dimensional case with the uniqueness of solutions in the case that p
is large enough; there would still be some additional obstacles in proving the asymptotic
compactness of the process. This happens mainly because there is no higher regularity, for
instance W2? - regularity, to the solution. In this way, we have to explore the p-integrability
of the solutions as well as the regularity of the time partial derivative to achieve our

objective.

The second aim of this thesis is to study the well-posedness and the existence

of pullback attractors on tempered universes, for the system (5)-(6) with a delay term:

O;l; —div,S(e(u)) + divy(u®u) = —V,m+f(t)+g(t,u;) in Q r, (7)
div,u = 0 in Q. p, (8)

u =0 on (r,T)x0Q, 9)

u(r,z) = u'(z) zeQ, (10)

u(r+t,z) = o(t,x) in Qp, (11)

where u” is the velocity of fluid in the initial time ¢t = 7, g(-,u.) is the delay term, with
w,(s) = u(t+s) forall s € (—h,0), and ¢ is the initial condition defined on €2, := (—h,0) x .

Delay differential equations, also known as functional differential equations
were originated in problems in geometry and number theory, see [3, 58]; and it has been
studied for at least 200 years. The subject gained much attention after 1940 due to the
consideration of meaningful models to physical systems and control. It is probably true
that many scientists of that time were well aware of the fact that hereditary effects occur in
physical systems, but this effect was often ignored because of the lack of a well-established

theory.

This kind of equations appears in various applications, such as viscoelasticity,
mechanics, nuclear reactors, distributed networks, heat flow, neural networks, combustion,
the interaction of species, microbiology, learning models, epidemiology, physiology, as well

as many others, see Kolmanovskii and Myshkis [36].

Let us mention some historical facts about systems with delays. For instance,
at the IV-International Congress of Mathematicians, based in Rome in 1908, the French
mathematician Charles Emile Picard [1, 51] made the following statements about the

importance of considering hereditary effects in physical systems:
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Les équations différentielles de la mécanique classique sont telles qu’il en résulte
que le mouvement est déterminé par la simple connaissance des positions et des vitesses,

c’est-da-dire par ’état a un instant donné et a l’instant infiniment voison.

Les états antérieurs n’y intervenant pas, I’hérédité y est un vain mot. L application
de ces équations ot le passé ne se distingue pas de l’avenir, ot les mouvements sont de

nature réversible, sont donc inapplicables aux étres vivants.

Nous pouvons réver d’équations fonctionnelles plus compliquées que les équations
classiques parce qu’elles renfermeront en outre des intégrales prises entre un temps passé

trés éloigné et le temps actuel, qui apporteront la part de ’hérédité.

The Italian mathematician and physicist Vito Volterra studied integro-differential
equations that model viscoelasticity [33], and in 1930, he wrote a book on the impact of

hereditary effects on models for the interaction of species [58].

Nowadays, there is a vast literature regarding systems of equations with delays,
for example, see [3, 43]. Concerning with delay systems for incompressible Newtonian fluids,
we must mention T. Caraballo and J. Real [13, 14, 15]. In these papers, the authors showed
the existence of weak solutions to 2D Navier—Stokes equations, when their external force
contains some hereditary characteristics and besides that, they proved the existence of
pullback attractors. J. Garcia-Luengo, P. Marin-Rubio and J. Real [29, 30] analyzed some
new regularity results of pullback attractors for 2D Navier-Stokes equations with delays.
In the case of incompressible non-Newtonian fluids with delays involving fourth-order
operators, C. Zhao et al. [62, 66] investigated the existence of solutions and pullback

attractors and L. Liu, T. Caraballo and X. Fu [43] analyzed their exponential stability.

Having mentioned some historical facts about the development of physical and
mathematical concepts for a better understanding of the importance about the study of
attractors for differential equations with and without delay, we present the organization of

this thesis and describe the main results.

In Chapter 1, we give the preliminaries, notations and results that we will use
in the development of all this work, as interpolation theorems in Banach space, compact
embeddings, existence and uniqueness of solutions for ordinary differential equations with
delay and without delay (DODE), (ODE). We recall the theory of the existence of
pullback attractors for upper-semicontinuous multi-valued process and closed process.
Finally, we give a brief introduction about the theory of incompressible and compressible

non-Newtonian fluids.

In Chapter 2, concerning the existence and uniqueness of weak solutions, we
start with the formulation and justification of the problem with Cauchy-Dirichlet conditions
(5)-(6) and the stress tensor satisfying p-coercivity and (p — 1)-growth conditions. Then,

we recall and prove the existence of weak solutions, when p = 1 + 2n/(n + 2) (this proof
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is similar to the one described in [42, Theorem 5.1]). Moreover, we show the uniqueness
of weak solution, in the cases: p > 2 if n = 2, and if the weak solutions belong to
L%(T, T;V,) for n = 3 (this result can also be found in [23, Theorem 7.6]). Finally, we
give a regularity result for weak solutions that can be approximated by sequences of regular
solutions in the following cases: p = 12/5 when n = 3, and p > 2 when n = 2 (this result
can be found in [23, Theorem 7.32]). In section 2.5, we show the existence of pullback
attractors on tempered universes for the non-autonomous incompressible non-Newtonian
fluids on the Hilbert space H for p > 1+2n/(n+2). To this end, we perform an analysis on
a multi-valued process defined from weak solutions, since the uniqueness of weak solutions
is not guaranteed. We conclude this chapter showing the existence of pullback attractors
on V. In order to do that, we built tempered universes on V), from tempered universes
defined on H, for p > 5/2 if n = 3 and for p > 2 if n = 2. Here, it is necessary to ask for
more regularity on the external force and initial conditions. Moreover, the stress tensor
should be a potential (see definition 1.48) to make the estimates that allow us to show

that the process defined on V), is asymptotically compact.

In Chapter 3, we first establish the formulation of the problem with Cauchy-
Dirichlet condition for incompressible non-Newtonian fluids with delay, given by the system
(7)-(11). After that we show the existence and uniqueness of weak solutions, when the
initial conditions belong to H and to L3, = L*(—h,0; H), with A > 0. In section 3.4,
we show the existence of pullback attractors for the upper-semicontinuous multi-valued
process in tempered universes defined on the phase spaces Cy := C([—h,0]; H) and
M3 = H x L*(—h,0; H) when p > 1+ 2n/(n + 2). Finally, we prove that the process is a

continuous process on the Banach spaces C; and M} when p > (n + 2)/2.

In Chapter 4, we show a summary of all results established in this research,

and finally, we conclude with some observations and future proposals.
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1 Notations and Important Results

In this section, we introduce notations that are used in functional analysis,
partial differential equations and the theory of dynamical systems. Moreover, we state
some important results that we will use in the development of all the work, as interpolation
theorems in Banach spaces, compact embeddings, existence and uniqueness of solutions for
ordinary differential equations with delay and without delay. We recall the theory of the
existence of pullback attractors for upper-semicontinuous multi-valued process and closed
process. Finally, we give an introduction to the theory of incompressible and compressible
non-Newtonian fluids. All results can be found in the books [2, 7, 22, 23, 25, 42, 50, 45].

1.1 Notations

1.1.1 Basic Notations

e We denote by IN and R the sets of the natural and real numbers, respectively.

° (IR", |- |) is the n-dimensional Euclidean spaces, for n = 1,2, 3, ..., and their elements

will be denoted by a = (aq, ..., a,).
e We denote by R3 = {(s,t) e R* : s < t}.

e Given a,b € R" | the scalar product of vectors a = (ay,...,a,) and b = (by, ..., b,) is
denoted by

e In general, we are going to consider {2 an open bounded subset of R".
e 0€) will denote the boundary of the set €.
o Given T, 7 € R, with T" > 7, we denote by 2,7 = (7,7) xQ and by X, 7 = (7,T") x 0€2.

e The set R™ will denote the set of square matrices n x n, and their elements will
be denoted by A = (a;;);;—;- And ]jom will denote the set of symmetric square

matrices.
e The transpose of a square matrix A = (a;;);;_; is AT = (aj)i=1-

e The scalar product of tensors A = (a;;);';—1, B = (b;;);;_; reads

n
A B = ) aishii = by

4,j=1
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The symbol a ® b denotes the tensor product of vectors a, b, specifically,
a® b= (a ® b)i,j = aibj.
The product of a matrix A with a vector b is a vector Ab whose components are

(Ab)z = Z Ai,jbj fOT’ Z = 1, e n.
j=1

The product of a matrix A = (a;;);;_; and a matrix B = (b;;);_, is a matrix AB

with components

(AB)iJ = Z ai,rbr,j'
r=1

1.1.2 Functional Spaces

C(2) ={f:Q2— R: fis continuous function}.
C*(Q) ={f:Q— R: fis k-times continuously differentiable}.
C*Q) ={f:Q— R: fis k-times continuously differentiable}.

C*(Q) = Ny, C*(Q) and C*(Q) = Ny, C*(Q).

CH(Q) = {f e C*(Q) : supp(f) is compact}, supp(f) = {z € Q: f(z) # 0}.

D(R) is the space C°(12), with the following sense of convergence: f, — f in D(Q), if
there exists a compact K < Q such that {f,} < C(K) and D*f,, — D f uniformly
for any «, where o denoted the multi-index. We say that D(f) is the space of test

functions.
D'(Q) will denote the topological dual of D(Q).

For p € [1,400), LP(£2) is the set of all the p-integrable measurable functions, with

1/p
£l = 1flzrey = ( f | f(ac)|pdx> |

For p = +0o, L*(Q) is the set of all the essentially bounded measurable functions,

norm defined by

with norm defined by
| flee = 1fllze= (@) := ess supqlf].

P ={f = (f1,..., fn): fi € LP(Q), Vi =1,...,n}, with norm

n 1/p
18], = (Z Ifz-IIZ) .
k=1
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o Let 7 < T be and h > 0. Given a space X and a function u : [7 — h,T] — X, for
each t € [1,T] we denote by w; : [—h,0] — X such that u,(s) = u(t + s) for all
€ [—h,0].

Remark 1.1. For all p € [1, +0], we know that (LP(Q),| - |,) is a Banach space, and

for the particular case p = 2, the space L*(Q) is a Hilbert space with inner product

_ Lf(fc)g(fc)dx

We will denote the norm in L*(2) by | - |2

Remark 1.2. For all p € [1,+)], we know that (LP()", || - |,) is a Banach space, and
for the particular case p = 2, the space L*(Q)" is a Hilbert space with inner product

f g = Z fzagz
We will denote the norm in L*(2)" by | - |a.

o WHP(Q) = {f:D"f e LP(Q), V|a| < k} with k € IN, p € [0, 0], a is a multi-index
and D f is the derivative of order a of f in the sense of the distributions. This space

is provided with the norm

(S 1) " it pe 10,

[ fllkp = sk _
DD e if p=c0.

la|<k

_— wk,
o WEr(Q) =C2)" ", with the norm of W*(Q)

c

o WHP( Q) = {f = (fi,..., fn): fi € WFP(Q)}, with norm
- 1/p
£l = (D 1517,

o WoP(Q)" = {f = (fi,---, fu)  fi € Wy"()}, with the norm of WH?(Q)".

e Let X be a Banach space with norm | - | x, for —o0 <7 < T < +0, we denote by
C([r,T]; X) the space of the continuous functions from [7,T] into X, which is a

Banach space with norm

Ifllcqrrx) = sup [[f()]x.

te[r,T]
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e For 1 <p< +owand —o <7 <T < 40w, then LP(7,T; X) is the Banach space of

all measurable functions in Bochner sense f : (7,7) — X for which the norm

T 1/p
T ( | f<t>|szdt)

T

is finite.

e For p = o, L®(7,T; X) is the Banach space of all measurable functions in Bochner

sense f : (17,7) — X for which the norm

|| oo (rx) = ess sup [[f(t)]x
te(r,T)

is finite.
e Given the sets X and Y, we denote by C(X,Y) = {f : X — Y : f is continuous}.

e Given a Banach space X, n > 0 and ¢ € [1, +0), we denote by Z%" = {f € L] (R, X) :

loc
0
f e £ (s) % ds < o0}
—00

1.1.3 Notation of Functional Analysis

e Let X be a normed space, with norm | - ||x. Let X™ be its topological dual.

(a) We say that x; converges to x in the weak topology of X, or that x; converges
weakly to z in X, if f(xy) — f(x), for any f € X*. And we denote by

T, — 2 in X.

(b) We say that f; converges to f in the weak-+ topology of X*, or that f; converges
weakly-+ to f in X*, if fy(x) — f(x), for any x € X. And we denote by

e Let X and Y be Banach spaces such that X < Y. We say that X is continuously
embedded in Y and denote it by
X Y,

Y

if there exists a constant C' > 0 such that, ||z]y < C|z||x, for all z € X.

e Let X and Y be Banach spaces such that X < Y. We say that, X is compactly
embedded in Y, and denote it by

X oY,

if X — Y and each bounded sequence in X is relatively compact in Y.
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1.2 Results of Analysis and Topology

Theorem 1.3. (Ascoli Theorem) Let X be a space and let (Y,d) be a metric space.
Consider C(X,Y') with the topology of compact convergence; let F be subset of C(X,Y).

(a) If F is equicontinuous under d and the set

Fo={f(a): feF}

has compact closure for each a € X, then F is contained in a compact subspace of

C(X,Y).

(b) The converse holds if X is locally compact Hausdorff.

Proof. See [50, Theorem 47.1, pg. 290]. O

Lemma 1.4. (Green Theorem) Let ) = R" be an open bounded with 02 € C*' or
Q=R"and let v = (vy,...,1,) be the outward normal vector. Then for u e WHH(Q) we

have

ou
Q ox;

(a:)da:zf uvdS i=1,...,n
o0

where the values of uw on 0S) are understood in the sense of traces.

Proof. See [45, Lemma 2.20, pg. 29]. O

1.3 Results of Functional Analysis

1.3.1 Compactness, Inequalities and Embedding Results

Theorem 1.5. (Alaoglu weak-+ compactness) Let X be a separable Banach space

and let (f,) be a bounded sequence in X*. Then (f,) has a weak-+ convergent subsequence.

Proof. See [45, Theorem 2.1 pg. 21]. O

Corollary 1.6. (Reflerive weak compactness) Let X be a reflexive Banach space

and let (x,) be a bounded sequence in X. Then (x,) has a subsequence that converges

weakly in X.

Proof. 1t follows from Theorem 1.5. [
Proposition 1.7. (Hélder Inequality) For functions f € LP(Q), g € L), with
1 1

— + = =1, we have that fge L*(Q) and

p q

L F@)g(@)dz < | fl,lls
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When p = q = 2, Hélder inequality reduces to well known Schwarz inequality.

Theorem 1.8. (Korn Inequality) Let 1 < p < co. Then there exists a constant c(p) =
c(p)(Q) such that the inequality

IVlip < clp)lle(v) ],
is fulfilled for all v e WyP(Q)", where Q < R" is open bounded domain with 092 € C%
1
and e(v) = §(VV + vvT).

Proof. See [45, Theorem 1.10 pg. 196]. O

In all this work we will denote ¢y = ¢(2) if p = 2 and ¢, = ¢(p) if p # 2, to the

constants that appear in the Korn inequality.

Theorem 1.9. (General Sobolev Inequalities) Consider 2 < R"™ an open bounded
with 0Q e C*! and let 0 < j <k, 1 <p, ¢ < 0. Put

1
and m=— if mgy # 0.
p n mo

o Assume mg > 0. Then

WHE(Q) < W™ (),
WHEP(Q) eses WH™(Q), my < m,
WHEP(R™) < WH™(R™).

o Assume my < 0. Then for a € [0,1)

a WHP(Q) — C7*(Q),
mo + — = 0= k .
n WEP(R™) < CF(R™),

mo + % < 0= WhP(Q) > C(Q).
e Assume mg = 0. Then
WHEP(Q) > WH(Q) qe[l,0).
Proof. The proof can be seen in [45, Theorem 2.17 pg. 28| or [22]. O

Let H be a Hilbert space with a scalar product (-,-)y and let X be a Banach

space such that
X > H~H"— X* (1.1)

and
X is dense in H. (1.2)
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du
Then, if u € LP(I; X), with I an interval, we denote by pn the element of the space

1 1
LI(I; X*) (Where = + — = 1) such that

J < _L(u(t),V)Hé’(t)dt

for all ve X and ¢ € D(I

Theorem 1.10. Let (1.1), (1.2) be satisfied and let p € (1,00). Then
d
o W={ue L(rT;X) | ZF e L7 T X7) | — C(7.T): H);

e Forallu,veW and all s,t e [1,T]

(), v(E))w — (u(s), v(s)u f( d‘;g),v(r) N d‘;(tr)7u(r)>>dr.

r) : u(r)>dr,

In particular for u = v,

1

2 1 2
Sl = St =

for all s, t e |1,T].

Proof. See [45, Lemma 2.45, pg. 35]. ]

Theorem 1.11. (Aubin-Lions-Simon) Let By — By < By be three Banach spaces. We
assume that the embedding of By in By is continuous and that the embedding of By in B
is compact. Let p, r such that 1 < p, r < +00. For T' > 7, we define

d
E,, = {u e LP(r,T; By) | d—‘; e L'(7,T; BZ)}

i) If p < 40, the embedding of E, .. into LP(7,T; By) is compact.
(1) 9 2

(il) Ifp = +o0 and if r > 1, the embedding of E,, into C([1,T]; By) is compact.

Proof. See [6, Theorem 11.5.16, pg. 102]. O

Proposition 1.12. Let X,Y be Banach spaces such that X is reflexive and X —
Y. Assume that w, is bounded sequence in L*(tg,T; X) such that v, — u weakly in
Li(tg, T; X) for some q € [1,0) and u € C([ty,T];Y). Then u(t) € X and |u(t)|x <

hyILEloIolf HunHLoo(tOVT;X) fOT’ allt e [to, T]

Proof. See [45, Lemma 11.2; pg. 288] or [28, Lemma 4.9)]. O

Proposition 1.13. Let X and Y be Banach spaces, with X reflexive and X — Y. If
ue L%(r,T;X) nCy([1,T],Y), then u € Cu([7,T],X) and u(t) belongs to X for all
tel[r,T].

Proof. See [2, Theorem 1.6, pg. 21]. O
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1.3.2 Interpolation Results

Theorem 1.14. (Interpolation in LF) Assume 1 < ps < p < p; and u € LP*(Q) n
LP*(Q). Then
lully < fulp, lulp,
1 o 1-«a

where — = — +
p P1 D2

, ae0,1].

Proof. See [45, Corollary 2.10 pg. 26]. O
Theorem 1.15. Let Q < R" be a bounded, reqular domain, and g < n < p < . then
ol [l
luf, < éfualy " |[Vulsz, (1.3)

for anyu e W&”(Q)” Here the constant ¢ is scaling invariant, but tends to o0 as p — 0.

Proof. See [23, Theorem 9.1, pg. 259]. ]

Remark 1.16. A special case of the above result for two-dimensional domain is called

Ladyzhenskaya inequality, for u e Wy?()?
1 1
[uls < éful3[Vul3. (1.4)

Theorem 1.17. (Interpolation of Gagliardo-Nirenberg) Let Q) be a bounded domain
of R™ with oS of class C™ and let ue W™ (Q) n LY(Q), 1 < r, ¢ < co. For any integer j,
0 < j <m, and for any number a in the interval [j/m, 1], such that

V_J tom _ ok
§—n+a(r n)+(1 a)q.

If m — j — n/r is not a non-negative integer, then
| D7, < Clulf, ,Julg™, (1.5)
where the constant C' depends only on 0, r, q, m, j and a.

If 1 <r <ooand m—j—n/r is a non-negative integer, then (1.5) holds for ac € [j/m,1).

Proof. See [25, Theorem 10.1]. O

1.3.3 Basis Consisting of Eigenfunctions

The next results can be found in [45, Appendix A.4 pg. 288|.
For s > 1 and p > 1, let us define

Vi={peCr(Q)" : divyp = 0};

H = closure of V in the L*(Q)" — norm;

V,, = closure of V in the W'?(Q)" — norm;
V¢ = closure of V' in the W%*(Q)" — norm.
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If s =1 or p=2, then V will denote the spaces Vs, V!, respectively. Let us
denote the dual space of V, by V" and (-, ) the duality between V,, and V", the scalar
product in H is marked by (-,-) while the scalar product in V* is marked by ((-,-))s.

The spaces V,, and V* can be characterized, as:
V, = {ue Wy*(Q)" : div,u = 0},
Ve ={ue W**(Q)": y(u) = 0 at 09, div,u = 0},
where 7y is the trace operator given by
v WHHQ) > HY2(0Q)
u —  uf.
By H~'2(69Q)" we mean the dual space of H?(9Q)". Defining
E(Q) ={ue L*(Q)": div,ue L*(Q)},
it is possible to construct a trace operator
7 B(Q) — H (o),

such that 7(u) = u- n for ue C'(Q2), n being an outer normal unit vector of 9. Then it
holds that
H={ue L*(Q)":7() =0, div,u=0 in D'(Q)}.

We are interested in the following spectral problem: Find w" € V* and A\, € R
satisfying
(W',v)s = AN(W',v) veV?: (1.6)

Theorem 1.18. There exist a countable set {\,}j—, and a corresponding family of eigen-

vectors {w*}?_| solving problem (1.6) such that
o (W ,w/)=26;; Vi,jeN,

e < \i<\<..and \, > 0 as k — o,

{ J
w w ))5=(5i7j Vi,jEIN,

d ((ﬁ7ﬁ

o {w},_, forms a basis of V°.

Moreover, defining H™ = span{w', ..., w™} (a linear hull) and P™ : V* — H™ by
P"(v) = ) (v, w')w',
i=1

we obtain

HPmHE(VS,VS) < 1, HPm||L((VS)*7(Vs)*) < 1, HPmH[Z(H,H) < 1.

Proof. See [45, Appendix: A.4 pg. 290]. O
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1.4 Ordinary Differential Equations

1.4.1 Ordinary Differential Equations (ODE)

Given ty € R and § > 0 let us denote by I5 = (to — §,tg + ). Let us consider

for c : Is — R", the system of ordinary differential equations

dc
E(15) =f(t,c(t)) tels,

C(to) = Cp € R".

(1.7)

Assume f : [ x K > R", where K = {c e R" : |c — ¢o| < M} for some M > 0.

Definition 1.19. A function f : Is x K — R" is said to satisfy the Carathéodory

Conditions if

e ¢ — Fj(t,c) is continuous for almost all t € I,
o t— Fi(t,c) is measurable for alli = 1,...,n and for all c € K,
o There exists an integrable function G : Is — R such that

IE(t,e)| < G(t) Y(te)elsxK, Yi=1,..n.

Theorem 1.20. Assume that f satisfies the Carathéodory conditions. Then there exist

do € (0,0) and a continuous function c : Is, — R™ such that

c
o — cuists for almost all t € I,

dt

e c solves (1.20).

Proof. See [45, Theorem 3.4 pg. 287]. O

Lemma 1.21. (Gronwall inequality) Let y : (1,7) — R and g : (7,T7) — R be

non-negative functions, g € L*(,T). Suppose that inequality

t

y(t) <C + j g(s)y(s)ds,

T

holds for t € (1,T) with C € R. Then
t

y(t) < Cexpf g(s)ds te(r,T).

T

Proof. See [45, Lemma 3.5 pg. 288]. O



Chapter 1. Notations and Important Results 30

1.4.2 Delay Ordinary Differential Equations (DODE)

Delay differential equations arise from various applications, like biology, medicine,
control theory, climate models, and many others. Their independent variables are the time
t and one or more dimensional variable z , which usually represents the position in space
but may also represent relative DNA content, size of cells, or their maturation level, or
other values. The solutions (dependent variables) of delay partial differential equations
may represent fluid velocity, temperature, voltage, concentrations or densities of various

particles, for example cells, bacteria, chemicals, animals and so on.

Let us first establish suitable assumptions on the term in which the delay is

present. Let X and Y be two separable Banach spaces and
g:[r,T] x C([-h,0];X) >Y

such that the following holds.

(I) For all £ € C([—h,0]; X), the mapping t € [7,T] — g(t,£) € Y is measurable.

(IT) For each t € [, T], g(¢,0) = 0.

(ITI) There exists L, > 0 such that, for all s € [7,T] and for any &,n € C([—h,0]; X),
lg(s,€) = g(s,m)lly < Lgll€ = nllo-no:x):

(IV) There exists C, > 0 such that, for all ¢ € [7,T"] and for any u,v € C([7 — h,T]; X),

J lg(s, us) = g(s,v.)[F-ds < ij lu(s) — v(s)| xds.

7—h

Remark 1.22. Observe that conditions (I)-(III) above imply that, given u € C([T —
h,T]; X), the function g, : t € [1,T] — Y defined by g,(t) = g(t,u;), Yt € [1,T], is
measurable and, in fact, belongs to L*(1,T;Y"). Then, thanks to (I'V), the mapping

G:ueCO(r—hT);X)— g€ L*(1,T;Y)

has a unique extension to a mapping 5, which is uniformly continuous from L*(7—h,T; X)
into L*(7,T;Y'). From now on, we will write g(t,u;) = G(t) for each uw e L*(r — h,T; X),
and thus for all t € [7,T] and any u,v e L*(t — h, T; X), we get

t

f l9(s.us) — g(s, v2) 3ds < C2 f Ju(s) — v(s)|%ds.

T—h
Theorem 1.23. Letuy € R", ¢ € L*(—h,0;R™), ke L*(0,T;R"), g : [0, T]xC([0, T]; R") —
R™ satisfying hypotheses (I)-(IV) with X =Y = R", and £ : [0,T] x R" — R" a contin-
uous function such that £(t,0) = 0 and for all m > 0 there ezists L,, > 0 such that
f(t,u) —£(t,v)| < Lpju—v|, Yjul <m, |v|]<m, Vtel0,T]

Then
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(a) For each t, € [0,T] there exists at most one solution to problem

to findu e L*(—h,t; R™) n C([0,t.]; R") such that
u(t) = o(t), te[=h,0] (1.8)

u(t) =uy + Lt f(s,u(s))ds + Jot g(s,us)ds + f k(s)ds Vte[0,t.];

0

(b) there exists t, € [0,T] such that there ezists one (and only one) solution to problem
(18);

(c) suppose that there exists a constant C' > 0 such that if t, € [0, T] is such that there is

a solution u of (1.8), then trr[hatx] lu(t)| < C. Then, under this additional assumption,
€U, lx

there exists a solution to problem (1.8) with t, =T.

Proof. See [13, Appendix A]. O

1.5 Pullback Attractors

In this section we are going to study the existence of pullback attractors for
upper-semicontinuous multi-valued process and for closed process. At the end of this
section we will give a comparison result for pullback attractors. All the results in the next
subsections can be found in [17, 12, 28, 8, 32, 61, 18, 2].

Let (X,dx) be a metric space and R = {(t,s) € R* : t > s}. In what follows,
we denote by P(X) the family of all nonempty subsets of X.

We denote by distx (O, Oy) the Hausdorff semi-distance in X between two
sets O and O,, defined as

distx (01, 0s) = sup inf dx(z,y) for 0,05 c X.

xEOl yeli

We consider a universe D, that is a nonempty class of families parameterized in
time D = {D(t) : t e R} < P(X) and a family of nonempty sets Dy = {Do(t) :te R}
P(X).

Definition 1.24. A universe D is inclusion-closed if given D € D and D' = {D'(t) : t
R} < P(X) with D(t) < D'(t) for all t € R, it fulfils that D' eD.

1.5.1 Pullback Attractor for Closed Process

Definition 1.25. A process on X is a family of mappings U(t, ) : X — X for any pairs
(t,7) € R3, such that
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1. U(r,m)x =z VT e R Vre X,

2. U(t,7) =Ul(t,s)U(s,7) V7T < s < t.

As a convenient shorthand, we will refer to the process U(-, ) rather than the

process U(t,7) : X — X for any pairs (¢, 7) € R2 in all that follows.

Definition 1.26. A process U(-,-) on X 1is said to be closed if for any T < t, and any
sequence {xy} < X with x, > x € X and U(t,7)xy — ye€ X, then U(t,T)r = y.

Definition 1.27. The family ﬁo is said to be pullback D-absorbing for a closed process
U(-,) on X if for any D e D, there exists a To(t, ZA?) < t such that

U(t,7)D(7) S Do(t) for all T < 7o(t, D).

Definition 1.28. Given a family of nonempty sets D = {D(t):te R} « P(X), a closed
process U(+,-) on X is pullback ﬁ-asymptotically compact if, for any t € R, any sequence
{mx} < (—0,t] and {xx} < X such that 7, - —o0 and x, € D(7) for all k € N, the

sequence {U(t, 7)xy} is relatively compact in X.

Definition 1.29. A closed process U(-,-) on X is pullback D-asymptotically compact if it
s pullback ﬁ—asymptotz’cally compact for all DeD.

Definition 1.30. A pullback D-attractor for a closed process U(-,-) on X is a family
Ap = {Ap(t) : t e R} < P(X) such that

1. for any t € R, the set Ap(t) is a nonempty compact subset of X;
2. Ap is pullback D-attracting, i.e.

lim distx(U(t,7)D(7), Ap(t)) =0 YD e DVt e R,

T——00
3. Ap is invariant, i.e.

Ap(t) = U(t,7)Ap(T) V(t,7) € R

A pullback D-attractor Ap is said to be minimal if it satisfies that if there exists another
family of closed sets C' = {C(t) : t € R} such that it is pullback D-attracting, then
Ap(t) = C(t) for all t € R. The inclusion of minimality guarantees the uniqueness of the

pullback attractor.

Denote by

me:ﬂUmmwmfva (1.9)

o<t T<Oo

where {---}" is the closure in X.
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Proposition 1.31. If 130 is pullback D-absorbing for a closed process U(-,-), then
A(D,t) = A(Do,t) forall DeD, teR.
In addition, if lA)O € D, then
A(Do,t) = Do(t) for all teR.

Proof. The proof can be seen in [28§]. O

Proposition 1.32. Assume that lA)O is pullback D-absorbing for a closed process U(-,-) on
X, which is pullback ﬁo—asymptotz'cally compact. Then, the process S(-,-) is also pullback
D-asymptotically compact.

Proof. The proof can be seen in [28]. O

Theorem 1.33. Consider a closed process U : R3 x X — X, a universe D in P(X),
and a family Do P(X) which pullback D-absorbing, and assume that U(-,-) is pullback
Do-asymptotically compact. Then, the family Ap = {Ap(t) : t € R} © P(X) defined by

Ap(t) = | JAD), teR,

DeD
is the minimal pullback attractor for the closed process U(-,-) on X. Besides, if lA)o eD,
then Ap(t) = A(ZA)O,t) - Do(t)X, for allt e R.
Proof. The proof can be seen in [28]. O

Remark 1.34. If Ap € D, then it is the unique family of closed subsets in D that satisfies
1 - 8 of the Definition 1.30. A sufficient condition for Ap € D is to have that lA)O € D, the
set ﬁo(t) is closed for all t € R, and the family D is inclusion-closed.

1.5.2 Pullback Attractor for Multi-valued Process

Definition 1.35. A multi-valued process (also called multi-valued non-autonomous dy-
namical system) U(-,-) on X is a family of mappings U(t,7) : X — P(X) for any pairs
(t,7) € R, such that

1. U(r,m)x ={z} Ve RVre X,

2. U(t,m)x < U(t,s)(U(s,7)x) V7 < s <t Ve X, where U(t, 7)W := U U(t,T)y .

yeW

Observe that if the relationship given in 2 is an equality instead of an inclusion,

the multi-valued process U(-,-) is called strict.



Chapter 1. Notations and Important Results 34

Definition 1.36. A multi-valued process U(-,-) on X is upper-semicontinuous if the
mapping U(t,T) is upper-semicontinuous from X into P(X) for all (t,7) € R3, i.e. for
any x € X and for every neighborhood N in X of the set U(t,T)x there exists a value
€ > 0 such that U(t,7)y < N provided that dx(x,y) < e.

Definition 1.37. The family lA?O s said to be pullback D-absorbing for a multi-valued
process U(-,-) on X if for every t € R and D € D, there exists a 7o(t, D) < t such that

~

U(t,7)D(1) < Dy(t) ¥ 1 < 70(t, D).

Definition 1.38. Given a family of nonempty sets D = {D(t) : t € R} <« P(X), a
multi-valued process U(-,-) on X is pullback ﬁ—asymptotz’cally compact if for anyt € R
and any sequences {1y} < (—o0,t] and {x;} < X such that 7, > —0 and xy € D(1y), it

fulfils that any sequence {yx} is relatively compact in X, where yy, € U(t, )z for all k.

Definition 1.39. A multi-valued process U(-,-) on X is pullback D-asymptotically compact
if it is pullback ﬁ—asymptotically compact for any DeD.

Definition 1.40. A pullback D-attractor for a multi-valued process U(-,-) on X is a
family Ap = {Ap(t) : t e R} < P(X) such that

1. for any t € R, the set Ap(t) is a nonempty compact subset of X;

2. Ap is pullback D-attracting, i.e.

lim_distx(U(t,7)D(7), Ap(t)) = 0 YD e DVt e R,
where distx(-,-) denotes the Hausdorff semi-distance in X between two subsets of X;
3. Ap is negatively invariant, i.e.
Ap(t) c U(t,7)Ap(T) V(t,7) € R

A pullback D-attractor Ap is said to be minimal if it satisfies that if there exists another

family of closed sets C = {C(t) : t € R} such that it is pullback D-attracting, then
Ap(t) = C(t) for allt € R.

Remark 1.41. Observe that pullback attractors are not unique in general (cf. [17]);
however, the minimal pullback attractor is, therefore, in the sense of minimality, one

recovers uniqueness of pullback attractor.

We denote the omega-limit set of lA?O at time ¢ by

ADot) = U Ut Do(r)

o<t T<0o

where {- - -}X is the closure in X.
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Theorem 1.42. Assume that U(-,-) is an upper-semicontinuous multi-valued process with
closed values, lA?O € D pullback D-absorbing family and also suppose that U(-,-) on X is
pullback ﬁo—asymptotically compact. Then, the family Ap = {Ap(t) : t € R} defined by

Ap(t) = [JAD 1) VieR,

DeD
is the minimal pullback D-attractor and Ap(t) Do(t)X for allt € R.

Proof. The proof can be seen in [8, 30]. O

Remark 1.43. If Ap € D, then it is the unique family of D that satisfies the properties
1 — 3 given above. In addition, if the multi-valued process U(-,-) is strict, then Ap is

strictly invariant under the process U(-,-), i.e.

Ap(t) = U(t,7)Ap(T) Y(t,7) e R2.

1.5.3 Comparison of attractors

We will denote by D3 the universe of fixed nonempty bounded subsets of X i.e.
the class of all families D of the form D = {D(t) = D :teR} with D a fixed nonempty
bounded subset of X.

Corollary 1.44. Under the assumptions of Theorem 1.42, if the universe D contains the
universe Dy, then Apx = {Apx(t) : t € R} where

X
B bounded
is the minimal pullback Dy -attractor for the multi-valued process U(-,-) and the following

relationship holds
Ang (t) c Ap(t) VteR.

Proof. The proof can be seen in [8, 30]. O

Remark 1.45. [t can be proved (see [47]) that, under the assumptions of the preceding
Corollary, if for some T € R the set U Dy(t) is a bounded subset of X, then

t<T

Apx () = Ap(t) Vt<T.

Now, we establish an abstract result that allows to compare two attractors for

a process under appropriate assumptions.
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Theorem 1.46. Let {(X;, dx,)}i=1.2 be two metric space such that X1 < Xy with continuous
injection, and for i = 1,2, let D; be a universe in P(X;), with D; < Dy. Assume that we
have a map U(-,-) that acts as a process in both cases, i.e. U : R x X; — X; fori=1,2

1S a process.

For each t € R, let us denote

ﬁiEDi
where the subscript in i in the symbol of the omega-limit set A; is used to denote the

dependence of the respective topology.

Then,
.Al (t) e .AQ(t) Vvt e R.

Suppose moreover that the two following conditions are satisfied:

(1) Ai(t) is a compact subset Xy for allt e R,

(ii) for any 152 € Dy and any t € R, there exist a family 51 € Dy and t%l <t (both possibly
depending on t and BQ), such that U(-,-) is pullback ﬁl-asymptotically compact, for

any s < t%l there exists a 7, < s such that
U(s,7)Dy(1) < D1(s) for all T < 7.
Then, under all the conditions above,

.Al (t) = Ag(t) Vvt e R.

Proof. See [8, 30]. O

Remark 1.47. It is important to observe that all the results established in this subsection
are still valid for upper-semicontinuous multi-valued process being the proofs analogous,
see [8, 9].

1.6 Compressible and Incompressible Fluids

The aim of this section is to give a brief introduction to mathematical models
of fluids in partial differential equations for a better physical understanding and to show
the importance of the development of this work. The next physical concepts were extracted
from the book [45, Chapter 1]. See also [23, 4, 20, 40, 39].

The following equations represent the governing principles in fluid mechanics:
conservation of mass, momentum, and energy. These laws are presented in differential form,

applicable at a point or to a fluid particle. All quantities are evaluated at (t,z) € [7,T") x €,
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where [7,T) is an interval of time and 2 < R" that can be physically interpreted as a

domain occupied by the material at an instant of time ¢t € [7,T).

e Law of conservation of mass: States that the rate at which mass enters the
system is equal to the rate at which mass leaves the system plus the accumulation

of mass within the system.
p , Apvy)
ot aa:j

— 0, (1.11)

e Law of balance of momentum: The local conservation of momentum is expressed

by the Cauchy momentum equations

d(pvi) | dpviv;) 0Ty ,

e Law of balance of energy:

d(pe) | dpev;)  A(Tyvp)  0g;
A F R (1.13)

where p is fluid density, v = (vy, ..., v,) is the fluid velocity, f = (f1,..., f,) is an external
force, T = (T;) is the Cauchy stress tensor, e = E + |[v|?/2 with E the specific internal
energy of the material, q = (qi, ..., ¢,) is the spatial heat flux vector and r is the rate of

external communication of heat to the body through radiation.

Next, we will present some of the most known and studied systems in fluid

mechanics, which are deduced from the conservation laws.

I. Compressible non-Newtonian Fluids: Euler equations describe the movement of
a non-viscous compressible fluid and the stress tensor is determined by the pressure,
see [45], i.e.,
T = —P(p,0)1,

where 6 is the temperature and I is the identity matrix. If we take into consideration
the viscous effects, the dependence of T on other quantities, say Vv, V6, should be
assumed. In this case

T = T(p,0,V0,Vv).

However, when the motion of the material is isothermal, i.e. the temperature 6 =

6y > 0 is constant, the tensor function T does not depend on 6 and V. Thus,

T = T(p,Vv). (1.14)

Consequently, the equations (1.11)-(1.12) are not coupled with (1.13) and can be
considered separately. Thus, we can determine p and v from (1.11), (1.12) and then

use (1.13) to calculate the remaining thermodynamical quantities.
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It can be shows that (1.14) has the form

T = —P(e)l + T(p,e), (1.15)

1
where e = e(v) = i(Vv + Vv') is the symmetric part of the velocity gradient Vv.

Under the previous assumptions, system (1.11), (1.12) reads

o, Apevi) _
ot 0w _ (1.16)
o) | Apoy) _ 0P 0Ty |
z i el O

fori=1,...,n.

II. Incompressible non-Newtonian Fluids: If a material is incompressible and homo-
geneous, p(t,z) = po > 0 for all (t,z) € [7,T) x §2, and we consider an isothermal

process, then

e from (1.14) it follows that
T=—nl+7" ,

where 7 is the so-called undetermined pressure and 7% is the extra stress tensor;

e system (1.16) reduces to

div,v = 0,

v ov; _ on N 87’5 ‘oo

) (1.17)
PGt TP, T Tan, T ox,

fori=1,...,n.

For this type of fluids it is usual to assume that the extra stress 77 is given by
the sum of two symmetric tensors depending on e = e(v). This means that, for all
(t,x)e[r,T) x Q,

7 =8(e(v)) + ole(v)),

or equivalently

8 =S(e) + o(e).
Usually, instead of $, it is employed the notation 7. However, to avoid confusion
with the initial time ¢t = 7, we choose to use $.

In general, the p-coercivity and g-growth conditions are required on $ and o, i.e.

there exist constants C,Cy > 0 and parameters p > 1 and ¢ € [p — 1, p) such that

for all M e R™ it holds
S(M): M
cM): M

sym?

VAR

C1|MJP,
0

)
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IS(M) + o(M)| < Co(1 + | M)~

Now, in order to develop a mathematical theory, the minimal conditions that

. . . pn? n? .
we will require on the stress tensor 5 : Ry ,, — Rf,,, are:

$(0) = o,
m(1+p(Al+B))"JA-BP,  (1.18)
S(A) —S(B)| < e (1+pu(Al+B])" ’|A-B|,

£
Z
|
s
=
>
|
=
v

sym*

forall A;B e R . We conveniently denote by u = (Q)Pf2 ifp#2and pu=1ifp =2,
V1

where vy, 15 are the viscosities (critical physical parameters of the problem).

Note that from (1.18) it follows the p-coercivity and (p — 1)-growth conditions
of 3, that is: there exist positive constants cs, c3 such that, for all p > 2 the stress tensor $

satisfies:

SD):D > c(n|D|? + 1|DJP),
SMD)| < el + pu/DP,

for all D € R™

sym*
Now, we are going to introduce some definitions and results related to the

stress tensor $. Then, we will present most known systems of equations for incompressible

non-Newtonian fluids, such as the Ladyzhenskaya models and fluids of type power-law.

Definition 1.48. A function S : R” —R™ hasa potential if there exists a function

sym sym

®:R" — [0, +00) such that ® is a C*— function,

oAP(A) = $S(A), (1.19)
®(0) = 0a®(0) =0, (1.20)
vo| AP7BJ,
APA):(BR®B) = O or (1.21)
vi(1+ ulA)P7* B,
[0AP(A)| < Con (1 + plAl)P2, (1.22)

for all A,B e R™

sym*

We denote the components of the stress tensor S by 7;; := S;;, with this the
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expressions in (1.19)-(1.22) can be written as

®(0) = 0)=0

(0) = 5 (0) =0
va| AP2[B,

7()“6114 = 01 or

m(1+ plAl)P?BP,
‘ < Covi (1 + plA|)P2,

P2D(A)
6aij8alk

for all A = (a;;),B = (b;) € R™.

sym*
Next Lemmas furnish some algebraic properties satisfied when S has a potential.

®: R — R satisfy (1.19)-(1.22). Then

n2
sym

Lemma 1.49. Letp>1 and S : RY —R"

sym sym’

there exist positive constants ¢y, ¢z, c3, C3, Cy and Cy such that for all e € R

T el (et = 1) = Ca(lel - 1),
[mij(e)| < earn (1 + ple)P (1.24)
i,7=1,....n, and for all e,é € ]jom
(1:(e) — 73;(€))(es; — €5) = 0. (1.25)
Further, the inequality (1.23)y can be replaced by
Tij(e)e;; = Csmin{le|?, |e[’}. (1.26)
Moreover, if p = 2 then
T,-j(e)eij = CQ(V1|6|2 + 1/2|e|p), (127)
and there exists ¢; such that
N A~ V?‘e - é|p7
(1ij(e) — 7ij()) (e — €i5) = &1 19 . (1.28)
vile — é|* + 1nle — éfP.
If pe (1,2) and |e|,|é| < R then there exists C5 = C5(R) such that
(ri(e) — (&) ey — &) = Csle — &, (1.29)

Proof. See [45, Lemma 1.19 pg. 198].
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®:R" — R satisfy (1.19)-(1.22). Then

n2
sym

Lemma 1.50. Letp>1 and S : R” —R"

sym sym’

there exist positive constants cs, cg and Cg such that for all e e R

lef?,
ce(1+ |e))P = D(e) = Cs B (1.30)
lef(Jel"~" —1).
If p = 2 then
csvi(1 + ple|)P2le* < ®(e). (1.31)
Proof. See [45, Lemma 1.35 pg. 201]. O

Observe that, by Lemma 1.49, if the stress tensor S satisfies (1.19)-(1.22), then,

also satisfies (1.18). In particular, it satisfies the p-coercivity and (p — 1)-growth conditions.

Example 1.51. (Stokes’ Law) If the dependence of S on e is linear, i.e.
S(e) =2ve v >0, (1.32)

and o =0, system (1.17) turns into the well-known Navier-Stokes system

div,v =0,
ov; ov; om
- + i = — + vAv; + i

fori=1,2,....n. We observe that in this case
S(M) : M = 2v|M?.

Therefore, the p-coercivity condition is satisfied with p = 2.

)

Definition 1.52. An incompressible fluid, the behavior of which is characterized by Stokes
law (1.32), is called Newtonian fluid. Fluids that cannot be described by (1.32) are

usually called non-Newtonian fluids.

Remark 1.53. The main points on non-Newtonian fluid behavior are: the ability of the
fluid to shear thin or shear thicken in shear flows; the presence of non-zero normal stress
differences in shear flows; the ability of the fluid to exhibit stress relaxation and the ability
of fluid to creep [26, pg. 129].

Example 1.54. (Ladyzhenskaya models) In 1969 O. Ladyzhenskaya proposed new

equations for the description of the motion of viscous incompressible fluids [39)]:

ov ov
(LM1) P (vo + V1\VV‘§)AV + Uk&Tck = —Vp+ £t z),
div,v = 0,

where vy, v1 > 0, or
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— T (e, , -t
(LMz) ] B amy Lren(V) Fuealv) = =5

+fia

div,v =0,

1
where, ¢ = T — §|v]2 and ey, (v) are the components of the symmetric gradient e(v), or its

special case

an 0

(02 + vl )B)ea (V)] + vea(v) = 2

+fi7

(LM3)<{ ot Oz
div,v = 0,

where vy, v3 > 0.

For the system (LM2), the following hypotheses for the functions T (ej(v))

are assumed:

(i) Tix = Tri, Tir(es(v)) are continuous functions on e;(v) for all j,l =1,...,n and
Taplen ()] < c(1 + le()P¥)le(v)|  with i > 1/4,
(ii)
Ti(en(v))] = vale(v)[* (1 + ele(v)[*)  where vi,e >0,

(iii) for any solenoidal vector functions u,v € W'2(Q)" n W22 with u = v on

0S), the following inequality holds
| [Pt = Tueatvleatw) - entv) = vs [ Sentu) - eatv)?
Q Q ik
where vs > 0.

Conditions (%)-(%ii) are satisfied, for instance, by
Ti(en(v)) = Blle(v))ew(v)

if the “viscosity coefficient” B(s) is a positive monotonically increasing function of s = 0

such that for large s the inequality
st < B(s) < s with ep,co >0 and p = 1/4.

Remark 1.55. In a recent publication, the asymptotic pullback behavior of the solutions
of system (LM1) was analyzed. Furthermore, the finite fractal dimension of the attractor
is studied, see [60)].



Chapter 1. Notations and Important Results 43

Example 1.56. (Generalized Newtonian fluid and power-law fluid) Let S be
given by

S(e) = 2u(le[)e = 2/i(e)e, (1.33)
and o = 0. The potential ® is defined by

lef?
d(e) = f w(s)ds. (1.34)
0
If, in particular we take
w(s) = vps"?, (1.35)

then
2V0

®e) =775

and we see that the p-coercivity condition holds for p = r + 2.

—le|"™* and S(e):e=2le|e:e=2ile[ ">

Remark 1.57. The fluids characterized by (1.33) are called generalized Newtonian
fluids (even if they are non-Newtonian ones). The fluids described by (1.33) and (1.85)

are called power-law fluids.

Example 1.58. (Various variants of power-law fluids) Let us consider

(a) 5'(e) = 2umle|"e

(b) S°(e) = 20n(1 + [ef . (1.36)
(c) 5(e) = 2vp(1 + [e]*)"%e,

(d) $*tie) =2upe + S, i=1,2,3,

where vy and vy, are positive constants. Using (1.33) and (1.34) it is easy to observe that
the potential ®" corresponding to the tensor S' defined in (1.36) forr > —1 and i = 1, ..., 6,

are as follows:

2
(a) P'(e) = el
i 2 2
b @2 _ 0 1 r+2 0 1 ’I"+1 0
(b) (e) 7’2+2( +lel) 1+ lel) Y ID0 T
de) = 220 [(1 |
(c) (é) — +|§|) B
(d) P*(e) = vyle* + ®'(e), i=1,2,3.

Observe that the Ladyzhenskaya model (LM3) is a type of power-law fluid, since the stress

tensor associated to the system (LM3) is similar at the tensor given by S* with r = 2.
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2 A Class of incompressible non-Newtonian
Fluids

In this chapter we will discuss several topics starting with the formulation and
statement of the problem, which consists of a model for incompressible non-Newtonian
fluids. Moreover, with the Faedo-Galerkin method, we will prove existence of weak solutions.
Regarding the uniqueness of weak solution, this result will be shown for weak solutions with
a certain preset regularity. Also, we will show a regularity result, for which we will assume
some additional hypotheses on the external force, the initial condition and the stress tensor.
Finally, we will prove the existence of pullback attractors for an upper-semicontinuous
multi-valued process defined on the Hilbert space H for tempered universes, and the
existence of pullback attractors for a closed process defined on the Banach space V), in

tempered universes built from the tempered universes of H.

2.1 Statement of the Problem

The physical properties of the fluids that we are interested in are encoded in

the stress tensor $, which is a function of e(u) : R" — R” . that is the symmetric part

sym?

of the gradient of the fluid velocity u, whose components are defined by
1, 0u;  Ouy
R G
2 (9xj (%Z

) with 4,7 =1,...,n.

Typical examples of stress tensors are
S(e(u)) = rie(u) + vole(u)~e(u), (2.1)

or its special case
S(e(u)) = (1/1 + l/gle(u)g)e(u). (2.2)

As we saw in Section 1.6, Example 1.54, they were suggested by O. Ladyzhenskaya
[41, 39, 40, 23]. They are known as Ladyzhenskaya Models or power-law fluids or rate-type

fluids, and belong to a class so-called generalized Navier-Stokes fluids.

In this work, we are going to consider general assumptions on the behavior of
stress tensor, conditions that will be given in (2.7) below, and, in particular, it satisfies
the p-coercivity and the (p — 1)-growth conditions. Let us move on to the formulation of

the problem.
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Let be Q@ < R", n = 2 or n = 3, an open bounded domain with regular

boundary 0€2. For s > 1 and p > 1, let us recall the following spaces

Vi={peCr(Q)" : divyp = 0};
H = closure of V in the L*(Q)" — norm;
V,, = closure of V in the W'?(Q)" — norm;
V¢ = closure of V' in the W%%(Q)" — norm.

Given 7 and T, with 7 < T, we consider the following system of partial
differential equations with Dirichlet boundary condition for incompressible non-Newtonian
fluids, that we will call problem (LM):

?tl —div,5(e(u)) = —divy(u®u)—Vr+1£(t) inQ.r, (2.3)
div,u = 0 in Q- r, (2.4)

a = 0 on (1,T) x 09, (2.5)

u(r,z) = u.(x) x €, (2.6)

where Q.1 = (7,7) xQ, u = (uy, -, uy) is the fluid velocity, = the pressure, £ = (f1, -+, fn)
an external force, u, is the velocity of fluid at the initial time ¢ = 7 and S : jom — R{,m

is the stress tensor satisfying:

$(0) = o,
(S(A)—S(B)): (A-B) = u(1+u(Al+B]) ’|A-BJ (2.7)
S(A) —S(B)| < cwn(1+u(Al+[B) A - B,

for all A,B € R™ . We conveniently denote by p = (@)ﬁ if p#2and p =1 if
41

sym*
p = 2, where vy, 15 are the viscosities (critical physical parameters of the problem), see for
example (2.1) or (2.2).

Note that from (2.7) it follows the p-coercivity and (p — 1)-growth conditions
of §, that is: there exist positive constants s, c3 such that, for all p > 2 the tensor stress $

satisfies
S(D):D = cy(vi|D* + 1u|DP), (2.8)
and for all p > 1 the tensor stress $ satisfies
S(D)] < espa(1 + pDI), (2.9)
for all D e R”, .

Remark 2.1. At some point in this work, we will have to work with the components of

the function S(D) and we will conveniently denote by 7,;(D) := $,;(D).
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In order to obtain an operator formulation to system (LM), we introduce some

operators, related to the stress tensor $ and the matrix u® u = (u;u;). See, for instance,
[44].

Lemma 2.2. Let 7:Q — R and ¢,u: Q — R" be functions such that ¢p,u e V. Then
Loy
(Vmo) =~ [ 75 =0
Q

ox;

and

(mwm®up@=fuém@m

Proof. As u and ¢ are smooth functions with div,u = 0, by the Green Theorem (Lemma
1.4), we have that

(divx(u ® u)v ¢) = J (UZUJ) ¢z

Q &i[fj
ou; ou;
= | u;— qb,dm + f Uj— J gbzdm
f oz, o 0xj
— J guz oidw,
since div,u = 0. On the other hand
0p;
(Vm,¢) = - Qwé’xi =0.

The proofs of the next Lemmas can be found in [44].

Lemma 2.3. Letue L*(1,T; H) n LP(7,T;V,) be arbitrary. Then

J f u]a vzdxdt< o0

for allve LP(1,T;V,) if p =1+ 2n/(n +2).

Proof. We will proof this lemma for the case p < n, since the case p > n is easy. Thus, note
that, due to the embedding W' (Q)" < L7"5(€2)" (Theorem 1.9) and the interpolation
inequality (Theorem 1.14)

(0 —2)np
o(np —2(n —p))

[ulle < July™ulfymp with o= (2.10)

holds provided that 2 < o < np/(n — p).

Next, we will to verify that if ue LP(r,T;V,) n L™(7,T; H) then

ue L7(Qp)" = L7(r, T; L7 (Q)"), (2.11)
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2 np
with 0 = ip. Indeed, again due to the embedding W?(Q)" < L»=7(Q)", i.e., there

n
exists a constant d > 0 such that |u|.p/m—p) < d||t|1p. Then, from (2.10), we obtain

T T ( T p(c—2)n
o np—2(n—
|tz < |l gt < bl T a2

T T T

(0 —2)n

The right hand side of (2.12) is finite if ————
np —2(n —p)

= 1. Thus (2.11) is

proved.

Now, integrating by parts and by using the Holder inequality

T a T
L fujﬁx]vzdx‘dt J

where g = L.
p—1

Since 2¢ < o (< p =1+ 2n/(n +2)) and using (2.12), we have

f f |ui(x, )| *dwdt HOlédeT J J |u; (x "dmdt)
= ([ pgar)?
- TT 2q
<cq(f Julfdt)

T

s 2 tide|dt < VYoo, [0,
Q 0Tj ’

where C' = C (dHuH LOO(TT H)) . Therefore, we conclude that

j | St tdalit < OV o gl iy <2 (213
]

Remark 2.4. From the previous Lemma, we observe that forue L™ (7, T; H)nL*(1,T;V,),

Ou;
it holds u; - (Q.r) withq=p/(p—1), if p=1+2n/(n+2).
Jax )
j

Definition 2.5. Let us define the operator B : L (7, T; H) n LP(7,T;V,) — Li(7,T; V')
g a i(x,t
J (B(u)(t), v(t))dt = f f wy(a, ) 25 o Dt

ox;

Lemma 2.6. Ifp > 1+ 2n/(n+ 2), then
B: LP(1,T;V,) n L*(7,T; H) — L(7, T} V),

1S a continuous operator.
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Proof. From (2.13), we know that

2p
f (B(w)(®), VD)t < CIVV] o0l s

therefore, B is well defined.

Now, let {u,,} be a sequence belonging to L”(7,T;V,) n L= (7,T; H) such that

u, >u in LY(1,T;H),

(2.14)
u, —u in LP(1,T;V},).

Then we have that

JT<B( )— B >dt—JJ - —up) g dt+JTJ(-m+ w2
) u,, ,V ) u;)( u; oz T y uult + uju; 3z T

— 2J J ujui—id:r;dt =1 + I,
T JQ axj

] ! 6x]~ ’
m m ﬁvi T (%Z-
[2 = J:r JQ(UZUJ + Uj;U, )axj QJ; J;Z ujuzad:cdt

By inequality (2.13), we get

where

2p (2.14)
T,T)Hum U—”LwTTHHU-m qup(T,T;Vp) - 0.

1] < OV

Observe that from the convergence in (2.14), we have |I3| — 0. Therefore, we conclude

that B is a continuous operator. O

Definition 2.7. Let us define the operator T : LP(7,T;V,) — L(7,T;V,}) by

f@r(u)( (£)dt — J f S(e (v)dadt.

Lemma 2.8. Let S be a stress tensor satisfying (2.7). Then, for p > 1 we have that
T: LP(r,T;V,) — L7, T; V) is a continuous operator.

Proof.

[ 1] stetwn s eantar 2 ean [ [ (1 ptetw =t aaa

Hilder T N T bk
<7 can( [ 11+ le(llgd) T ([ e(wlar)?.

T T

Therefore, since p > 1 then, the operator T is well defined. Besides that, from the previous
inequality and with the similar arguments as in Lemma 2.6, the operator T : LP(7,T;V,) —
L, T; V') is continuous. ]
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With the help of the previous Lemmas, we can now introduce the weak formu-
lation to (LM).

Definition 2.9. Let p > 1, u, € H and f € L7, T;V)"), where q = ? _ Then a

p—1
function u is a weak solution to system (LM) if
0
ue L?(r, T; H) n L(1,T;V,) with % e LY(r, T; V¥), (2.15)
and u satisfy -
(S5 + (D), v) + (Blu),v) = (£, V), (2.16)
forallveV,, and ae. 7 <t <T, and
u(7) = u,. (2.17)

Remark 2.10. By Theorem 1.10 a weak solution has a representative in the class
ueC([r,T]; H), (2.18)

whereby (2.17) makes sense. Besides, for any functions u, v, belonging to the class (2.15),

it holds
it v~ e vie) = [ ((Goy s (Gap)a e

where on the right-hand side (-, -) stands for the duality between V* and V.

2.2 Existence of Weak Solutions to (LM)

The proof of existence of weak solutions is standard and similar demonstrations
can be found in [42, 45].

Theorem 2.11. (Ezxistence) Given 7, T with 7 < T, u, € H and £ € L7, T;V}).
2
Then, if p =1+ %, there exists at least one weak solution of the problem (LM).
n

Proof. Let us consider

s > g + 1. (2.20)

From Theorem 1.18 there exists a set {w,},—, formed by the eigenfunctions to

problem

(Wr,0))s = Ar(Wr0) Vo e V2, (2.21)
which are orthonormal in H and orthogonal in V*. We choose s satisfying (2.20) because
of the following: if v.e W*?(Q)" then Vv € W*12(Q)" and by Theorem 1.9

s—1
n

1
Ws=t2(Q) — L*(Q) if i <0,

which is just (2.20). Consequently, for all p > 1 we have Vv e LP(Q)”2 and V* — V.
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e Galerkin system and a priori estimates:

Let us define u,, (¢, x) = Z Y (t)w,., where the coefficients 4" (t) solve the so-called
r=1

Galerkin system

d .
7 (Wn(t), w;) + (T(un(t)), wy) + (B(un(t)), wj) = E(t), wj) 1<j<m,
u,(7) = P"u,.
(2.22)
Here, P™ is the orthogonal projector of H onto the linear hull of the first m

eigenvectors w;, j = 1,...,m, (see Theorem 1.18), therefore

P™u, —u, in L*(Q)". (2.23)

Observe that (2.22) is a system of ordinary differential equations in the unknown
Y™(t) = (A(E), - - -, 70 (t)). The existence and uniqueness of solutions follow from
Theorem 1.20, so there exists one solution defined in an interval [7,¢,,) with 7 <

t,m < T. However, as can be deduced by the a priori estimates below, ¢,, = T

We multiply the j—th equation of the Galerkin system (2.22) by ~;"(t) and add the

equations. The result can be written in the form

1d
5 g o O + | S(elun) s ewn)de = <6(0) ). (2.24)
Q
since J ul’ ou; u;"dx = 0.
o 7 0x;

Given € > 0, by (2.8), the Korn inequality and applying the the Young inequality in
the right-hand side of (2.24), one has

d 2 2621/1 2 2021/2 2eP p 2 q
Gl SV & (5 = IV ualg < IR
1 1
where — + — = 1.
p q

Integrating from 7 to ¢, we deduce

202 1] 2€P

2621/1 t 2 t p
5 Vu,,(s)|3ds + ( T 7) IV, (s)|pds
0 T 0 p T

(D2 +
[, (2)]5 .

2 t
<Prafi [ lees)as
qe? ),

We know that |P™u,|s < |u,|o. So we choose € > 0 small enough and conclude that
tm, =T,Yme N, and

{u,}_y is bounded in L*(7,T; H),

2.25
{u,,}_, is bounded in LP(7,T;V,). (2.25)
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From (2.22) we have that

‘9‘;“ — —P™T(u,) — P"B(u,,) + P"f. (2.26)
C

Oy y .
Therefore, from Lemmas 2.6 and 2.8, the sequence {%} is bounded in LI(7, T; V).

e Limiting process 1

From (2.25), (2.26), the compactness theorems (Theorem 1.5 and Corollary 1.6) and
the Aubin-Lions Theorem (Theorem 1.11), it follows that, up to subsequences,

u, ~u in L®(r,T;H),

u, —u in LP(7,T;V,),

ou, Ju .

= T Li(r, T V), (2.27)
u, > u in L*(r,T;H) and a.e. in H and Q, 7,

T(u,) =& in L7, T;V)).

Now, we are going to show that
T T
f (B(u,,(s)), vyds "=" f (B(u(s)),vyds Yvel, (2.28)

For each w, with r € IN, we have

T
f f(u;n ut — u]u, dedt f f " —uj)u ’dxdt
T JQ a

o ft =

=5+ I

Then,

T T

. (2.25)
i, — ulofu™pdt 2 o|vwr||oof t, — ulpdt

T

L] < [Vl j

T

which tends to zero due to (2.27). On the other hand the weak convergence in (2.27),
implies |I3] — 0 as m — oo. Since span{w,} is dense in V,, given v € V,, there exists
a sequence {vy} in span{w,} such that v, — v in V,. Then from estimate (2.13)

given in Lemma 2.3, we obtain
J (B(u,,) — B(u), vyt
_ f (B(un), v — viddt + f (B(u,,) — B(u), vi)dt + f (B(u),v — vyt

~ 2p 2p
< Crrlv = vilip (Il for v,y + 10l orry,) + J (B(uy) = B(u), vydt.
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Thus (2.28) is true.
From (2.22), (2.27), and (2.28), we obtain

G+ AN By =€) Wvel, andaet (229

To conclude the proof of this theorem, we have to show that u(7) = u, and T'(u) = X.

e Limiting process 11
Observe that

d

= (Wn(t), wr) + (T(un(?)), wr) + (Blun(t)), wp) = (E(t), wr),

is true, for all w,., 1 <r < m.

Thus, integrating from 7 to t, we obtain

t

(an(t). w)+

T

((T(un(s)), W)+ B(n(s)), w,))ds = (an(7), Wr)+f (E(s), wids,

forall w,, 1 <r <m.

From (2.23), (2.27) and passing to the limit in m, we have

t

(ult).w,) + |

T

(<X7 w, ) + (B(u(s)), WT>)dS = (u,,w,) + J (£(s), w,)ds,

for all w,.. Thus, by a density argument, we conclude that

t

(u(t),v) + J (<X, v) + (B(u(s)), v>) ds = (u;,v) + J (f(s),v)ds, (2.30)

T

for all veV,.

Now, integrating (2.29) from 7 to ¢t and using (2.19), it follows that

t

(u(t),v) + f ((X,v) +(B(u(s)),v))ds = (u(r),v) + J (f(s), v)ds. (2.31)

T

Therefore, comparing (2.30) and (2.31), we conclude that

u(r) = u,.

The next argument is justified by the fact that the function u(t) cannot be chosen
as a test function in the weak formulation, since, for the moment, it is only valid for
all v € V,. Therefore, from u we build a function v(t) (regularization of u) that is
defined in V), for each t € [7,T1.
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We consider s,, s €]7,T[, s, < s; and 6, a continuous function, linear by parts on
2 1 1
[7,T], 0(t) =1if s, + — <t <s——,0,()=0ift >s— —ort <s,+—;and
m m m m
pr a standard mollifier function in D(R), px(t) = pe(—1),

+00 1 1
pr(t)dt =1, supp(py) = [ =, 7]

—0o0

For k > 2m, we introduce
v = ((Hmu) * P * pk)Gm. (2.32)

0
We denote by u’ := a—ltl, then note that

T T
f o, vydt = J O, (0,,10) = pp = pydt
T TT T l
=j<wa*mmmmwpwﬁ—j<mmxmmwpwpoﬁ

T T
= —J 0, (O1) = pj, * prodt — —f 00, [ul2dt, ask — .

T

From (2.32) there follows
J (B(u),v)dt "=" J 02(B(u),updt = 0, (since (B(u),uy =0VYuel,).

From the above, we obtain that

T T T
f (—eme;n)|u|§dt+f 02 (X, u)dt = J 0% (f, u)dt. (2.33)

T

By the continuity of u and when m — oo, we note that

T , 1 1
| Ont e (o) - SfusP ..

T

As a consequence
1 9 s 1 9 N
5\u(s)| + | (X, uydt = §|u(sT)| + | f,u)dt Vs,s;. (2.34)

Again, since u € C([7,T]; H) then, if s;; — 7 we have u(s,;) — u(7) in H, therefore,
we conclude

u(s,;;) —u, in H. (2.35)

We fix s in (2.34), and we take s, = s;. Thanks to (2.35), we deduce

1 s 1 s
§|u(s)]2 + f (X, u)dt = §\u7]2 + J {f,u)dt Vs. (2.36)
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For ¢ € LP(7,T;V,), we define
s 1
X = [ W) = T — ot + Sfun(o) (237)

Recall that from (2.26) it holds

W, (s) —u(s) ae. se(r,T)in H.

Observe that, if ¢, o € LP(7,T;V,), from (2.7), we obtain the monotonicity of the

operator T
f (T(p1) = T(p2), 1 — @aydt = 0.

Hence, we deduce from (2.37) that
lim inf X7, > ;|u(s)|g a.e. se (1,7T). (2.38)
By re-writing X, (see 2.24) and thanks to (2.27), it follows
X, = | e+ San(n) = [ (P, ot = [ D)= it X

where

S 1 S S
X = [ wat gl - [ (Xt [ ehu- o
From (2.36) and (2.38), we obtain that

f (X =T(p),u—ydt =0, Ve LP(r,T;V,).

Taking ¢ = u — \¢, where ¢ € LP(7,T;V,), together with the limit A — 07, yields

J (X —T(u),¢ydt >0 ¥oe LP(r,T;V,).
Since ¢ is arbitrary, we conclude that X = T(u).

O

Lemma 2.12. (Energy Equality) Under conditions of Theorem 2.11, any function
v in the class (2.15) can be taken as a test function in the weak formulation (2.16).

Consequently, the energy equality holds

1d

§%|u|§ + JQ S(e(u)) :e(u)dr = {f,uy a.e te(r,T). (2.39)
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Proof. The proof of this result follows from the application of the Lemma 2.6 and the

Lemma 2.8, and from a similar argument of density used to show (2.29), but with the fact
l

that the functions of the form Z o (t)wy with ¢, € D(R), are dense in L™ (7, T; H) N

k=1
LP(7,T;V,). For more information see [23, Lemma 7.3 pg. 175]. ]

The following Proposition states that, if we have a sequence of weak solutions of
(LM), it is possible to extract a subsequence that converges to a weak solution of (LM).
This Proposition is going to be used to justify the existence of weak solutions of (LM),
built from sequences of weak solutions of (LM), to show, for example, the asymptotic
compactness of the process. And besides that, the proof of this Proposition allows us to
have regularity of convergence in the sense of continuity, for bounded sequences of weak

solutions of (LM), using the Arzela-Ascoli compactness Theorem.

Proposition 2.13. Let {u,,} be a sequence of weak solutions to (LM) such that u,,(T) —
u, in H. Then {u,,} is bounded in the spaces (2.15), and there exists w such that (up to a
subsequence) u,, — u in the sense specified in (2.27), and u is again a weak solution to

(LM).

Proof. Using the energy equality given in Lemma 2.12, we can deduce that there exists a
constant K > 0, such that

T
sup |, (t)[3 + f IV, [Pdt < K.

te [T,T] T

From above estimate and the argument in the proof of Theorem 2.11, we deduce,

up to subsequences,
u, —u in LP(1,T;V),),
ou ou
—" = in LY, T;VF
at at ln (T7 ) P )7
T(u,) =& in LY7,T;V)).
With this information, it is a standard procedure to pass to the limit in all

terms as in (2.29) and obtain

<(f;tl’ v) +{X,v)+{(B(u),v) =(f,v), (2.40)

for all ve V, and a.e. t e (1,7).

It remains to show that T(u) = X. The key fact is that the weak solutions can
be taken as a test function and the monotonicity of the stress tensor S will allow to show
that u is weak solution to (LM).

First observe that {u,,} is equicontinuous in V" on [7,7T] and that {u,,} is

bounded in C([r,T]; H). Therefore, by the Arzela-Ascoli Theorem, up to a subsequence,
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there follows that
u, —u strongly in C([7,T]; V).

From this and the boundedness of {u,,} in C([7,T]; H) we conclude that

Un,(s) —u(s) weaklyin H V7<s<T. (2.41)

Now, as in Lemma 2.12, we can replace v by u in (2.40), and then integrating

between 7 and T', we obtain

T

g [ = S+ [ @, 2.0

T

Let ¢ € L*(7,T; H) n LP(7,T;V,) be arbitrary. Thanks to the monotonicity of

the stress tensor S(-) we have
0< f (S(e(un)) —S(e(9)) : (e(un) — e(¢)))dxdt
Q1

_ L S(e(um)):e(um)dxdt—J S(e(wn)) : e(¢)dudt

QT,T

- L S(e(6)) : e(t, — ¢)dadt.

By Lemma 2.12 to u,,, we obtain

L S(e(w,)) : e(wy)drdt — ;\um(f)g— ;|um(T)|§+ J (F, .

T

Combining with the previous inequality, it follows

(T3 < ;um(7)|§+£ <f,um>dt—L S(e(un)) : e(@)dudt

T, T

- L S(e(9)) : e(u,, — ¢)dxdt.

Letting m — o0, we can pass to the limit on the right-hand side, while on the
left-hand side, we employ (2.41) together with the weak lower semicontinuity of the norm,

lu(T)]s < lim inf |u,,,(T")|2, which preserves the inequality. Hence,

;|u(T)\§ < ;\u(T)y§+L <f,u>dt—£ <X,¢>dt—L S(e(9)) : e(u — ¢)dxdt.

T, T
Subtracting (2.42) leads to

0 < f (X~ T(6),u - $ydt;

T

and we conclude that X = T(u), in the same way as in Theorem 2.11. O
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2.3 Uniqueness of Weak Solutions to (LM)

The proof of the next Theorem can be found in [23]. In [42] the proof is for the
power p = (n + 2)/2.

Theorem 2.14. (Uniqueness) Given 7, T with 7 <T, u. € H and f € L(1,T;V,),
then:
1. if n = 2, the weak solutions to (LM) are unique,

2. and, if n = 3, any weak solution to (LM) that has additional regularity
ue L% (r,T;V,) (2.43)
is unique in the class of weak solutions.

Proof. Let us assume that there exist two weak solutions u and v to (LM). Setting

w = v — u, and using w as a test function, we obtain

1d

577wl + (T(v) = T(w), w) + (B(v) = B(w),w) = 0.

We know that

(B(v) — B(u),w) = —J (VRV—-—u®u): Vwdz.

Q

On the right-hand side, we insert +(u ® v), and use integration by parts to

arrive at

J (WRV): VW + (u®w) : Vwdz = —f (W®w): Vudr < J |w|?|Vulda.
0 0

Q

Using (2.7), we deduce that

d
W+ ile(w)[; + vafle(w)[ < 2 L [w|*|Vuldz.

e Casen =2
Let us consider £; > 0. Using the Ladyzhenskaya inequality (1.4) for n = 2 (Theorem
1.15) to estimate
| wIvade < wizi vl
< /C\|W|2|VW|2|V11|2

&1 c
< E\VW@ + T&\VUEIW@.
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From the previous estimate, we have
d 21/1 2V2 ¢
I+ (5 = =) [Vl + 22| Vwll < S pwVuls
Choosing ¢, = V—; and integrating from 7 to ¢, we obtain
&0
é t
2 2 2
WOl < £ | [wis)Val)Bds
The case n = 2, follows by applying the Gronwall inequality.
e Casen =3
Applying the Holder inequality
| IwPIvalde < fwi, [ Vul,
Using the interpolation inequality (Theorem 1.17) for r = 7]31’ r1 =6, ry =2 and
p J—

a = 3/2p, we obtain

2p—3 3
[w 2o < [wl™ [wl"
p—1

2p—3

< diwl,” [wly

since WH2(Q) — L°(Q).

By plugging this inequality in the previous one, we have

L w2 Vuldr < [wl, |Vul,

2p—3
<diwl,” [Vwlf|Vul,

2p

<12 S VW + | Va7 w3,
2p—3
where ki, = pi%dd -3 with e = (p—V;)S/Qp.
2pe 6cg

Therefore

< Fip HVU )13 wis) 3ds.

2p

t
We conclude by applying the Gronwall inequality, since | [Vu(t)];"dt < .
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Remark 2.15. The condition p = (n+ 2)/2 implies that u € L%(T, T;V,), (for the case

n = 3), from which the uniqueness of solution follows by Theorem 2.1/.

Remark 2.16. Observe that, by a little modification of the proof of Theorem 2.1/, we can

have an expression as follows

|11(t) - V<t)‘2 < K(p)|u7' - V7—|2 Vt > T,
where K(p) is a positive constant, and u and v are two weak solutions to problem (LM)
with initial conditions u, and v, respectively.

This is a very important fact, since weak solutions of problem (LM) satisfying

assumptions of Theorem 2.14, define a continuous process on H.

2.4 A Regularity Result

For this section, we assume that S has a potential, that is, § satisfies the
conditions of the Definition 1.48. Moreover, we will assume more regularity on the external

force f.

We denote by WS the set of all weak solutions u to (LM) such that

e u can be approximated by a sequence {u,,} of smoothly regular functions with u,,

satisfying the weak formulation (2.16) for each m € IN,

the sequence {u,,} converges to u in the sense of (2.27),

e u,(7) — u(r) in H, and

ouy,
% can be taken as test function in the weak formulation (2.16) for each m € IN.

ot
Remark 2.17. Observe that for p > 1+ 2n/(n + 2) the set WS # &, since it contains

the weak solution built from a sequence of Galerkin approximations.

Proposition 2.18. Given T,7 € R with 7 < T, u, € H and £ € L*(r,T; L*(Q)"). We
consider two cases: when n =2 and p > 2 and when n = 3 and p > 12/5. Then, in both
cases, any weak solution u € WS, associated to the initial condition u,, satisfy:

ue L”(r+¢,T;V,) and aaltl e L*(r +¢,T; H),
for all e > 0 such that T +¢ <T.

ou
Proof. Since u € WS there exists a sequence {u,,} such that we can use —— as a test

ot

function in the weak formulation. So, we have

ou,, |2 ou,, OUpni OUni _ ou,,
o ‘ + L Tij(e(um))ei]’<ﬁ>dw + L Umj dr = <f(t), W) (2.44)

2 T
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Observe that, as S is a potential

[ motetumaes(Gtias = [ Etetun)es(Ftis = [ Ztelna)) G (et
d

d
= Q‘I’(e(um))dx = S 12e(un))ls.

Now, from (2.44) and the Holder inequality, it follows that

1iou,, 12 d
— == —||®(e(u,, <ft2+f w2 Vu,, 2dz
P (et < RO+ [ a9l

<65 + erlum|F lam]3,6-2)-

(2.45)

Now, we are going to consider three cases: for n = 3 with 12/5 < p < 3, for

n = 3 with p > 3 and for n = 2 with p > 2.

Case 1 n =3 with 12/5 < p < 3:

We know that u,, = u,,(t) € V, n H. By the interpolation inequality (Theorem 1.17),

we have
_6 5p—12
[l 2p/p-2) < dwm |75, [0l

where d is the constant of interpolation that depends on €2 and p.

By Lemma 1.50 we deduce that, there exist positive constants cg and cg such that
cslumlf, < |[®(e(un))r < o1+ [unli,). (2.46)

The right-hand side of (2.45) can be estimated as

d2Hu ” Hu Hp(lﬁ 5p)/(5p—6) 2(5p—12)/(5p—6)

HumnlpHumHQp/p 2) = ’ m‘

d? _ _ _
< o)) [, [FGO75 GO gy, |30P =120 (9 47)
From (2.45), (2.46) and (2.47), we have

d d? - _ _
e ()] < I + =7 () 57 [0

(2.48)
From this inequality, in particular we obtain
t
[®(e(um(t)))]x < [P(e(un(s)))l +J [£(6)[3d0
+ [ olean @)l OO (@),

for all s € [7,t].
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Now, applying the Gronwall inequality, there follows
¢
@(eunO)ls < (1ote(un()li+ [ Ir0)30)

C7d2 t p(;G:Zp) 72-(21):(132) (249>
coxp (25 [ un @12, T (o), 7 a9)

forallt > s> .

Given ¢ > 0 such that 7 + ¢ < T and integrating in s, from 7 to 7 + ¢,
1 t t
fotetan(e)lh < (£ [ 1otetan(olads + [ I£)2a0)

C7d2 t p<é672p) 2(217*‘152)
< exp (Cs [Caa™is de),
T

forallt > 7+ e.

Observe that all terms of the right-hand side of the above inequality are bounded. In

fact: from Theorem 2.13 we have that the sequence {u,,} is bounded in L?(7,T;V},) N

t p(16—5p)
L*(7,T; H), and to conclude, only remains to prove that | [, (r)|,,”" dr <o
and (5p — 12)/(5p — 6) = 0, what is true since p > 12/5.
Case 2 n = 3 with p > 3:
. . . 1.2 n 2p_ n - 2p 2n . .
Since the imbedding W*=(2)" — L»2(Q)" is true for 5 < 5 which is
p— n—

equivalent to p > n, we can estimate (2.45)

d
—l®(e(wn))ly < [F(O) + JQ [ [* [V, [*de < [£(2)]5 + crd® [ |7 a7 5. (2.50)

d d
Let us denote by U := 1 + |P(e(u,,))|1, and observe that %L{ = %Hfb(e(um))ﬂl.

Therefore, from (2.46) and the above estimate, we obtain that

d ~
U< If(t)[2 + Cod*, (2.51)

Now, if 4 < p, then U*P < U, since Y > 1, with this and (2.51)

d ~
U< £(t)|3 + Oald,

By applying the Gronwall inequality we conclude the proof as in the previous case.

2
Now, if 3 < p < 4, let us consider p = (2p — 4)/p, then u € [5’ 1). Multiplying by
U"t to (2.51), we obtain that

d ~ ~
e U*) < |E@)U =" + Cod < [E(1)]5 + Col,

: -1
since U* 7 < 1.

We conclude the boundedness of U as before.
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Case 3 n=2and p > 2:
Observe that 2p/(p — 2) > 2, therefore by Theorem 1.15, we get

2 —2
[ [l 2p/p—2) < Cl(P)|um|2/p|VUm|§p I (2.52)

Integrating from s to t with s € [7,¢] in (2.45) and using inequality (2.52), we have

t t
1(e(un(®))]h < [(e(un(s)]: + f £(r)Rdr + G f [ |27, [ dr.

Again, we conclude applying the Gronwall inequality as in the previous cases, since
(4p—4)/p <p.

From (2.46) we conclude that for ¢ > 0 with 7 + ¢ < T the sequence {u,,} is
bounded in L*(7 +¢,T;V,) and from (2.27), u,, — u weakly in L”(7,T;V,). Moreover,
by (2.18) u e C(|r,T]; H). Therefore, applying Proposition 1.12 for X =V, and Y = H,
we obtain that

[a(r) 1 < it ] e rserg
for all r € [T 4+ ¢, T, from which we have ue L*(7 +¢,T;V,). By Proposition 1.13 follows
that u € C,((7,7T];V,). It remains only to prove that ?tl e L*(t +¢,T; H), but this is

immediate consequence of (2.45). O

2.5 Existence of Pullback Attractors

2.5.1 Pullback attractor in H

In order to study asymptotic behavior of solutions in H, we consider the

following assumptions on the stress tensor S, power p and external force f:

(I) The stress tensor S satisfies the conditions given in (2.7),
(II) p=1+2n/(n+2),

(II1) fe LL (R; V).

loc

Observe that, by Theorem 2.11, conditions (I), (II) and (III) guarantee
existence of weak solutions for the system (LM), but not the uniqueness. We denote by
®(7,u,) the set of weak solutions to (LM) in [7, +00) with initial datum u, € H.

By Theorem 2.11 the set ®(7,u,) is not empty. Besides that, we can define a
multi-valued map U(-,-) : R3 x H — P(H), given by

Ut,7)u, = {u(t) :ue ®(r,u,)} u.eH and (¢,7)e R2. (2.53)
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Theorem 2.19. Under assumptions (I),(II) and (III), the multi-valued map U(-,-)
defined in (2.53) is a strict multi-valued process in H.

Proof. 1t follows from Theorem 2.11 and the fact that any weak solution to (LM) is

continuous. O

Proposition 2.20. Consider that assumptions (I),(II) and (III) are satisfied. Let
{u"} € H and u, € H be such that u" — u, in H. Then, for any sequence {u,,}, where
u, € ®(r,ul), for all m € N, there exist a subsequence of {u,,} (relabeled the same) and
u e O(r,u,), such that

u,,(s) — u(s) strongly in H Vs > T. (2.54)

Proof. Given any 7 < T, observe that by Proposition 2.13 the sequence {u,,} is bounded
u,
in L*(7,T; H) n LP(1,T;V,) and the sequence {%} is bounded in L(7,T; V).
Therefore, there exist a subsequence of {u,,} (relabeled the same) and u €

L*(r,T;H) n LP(7,T;V,) with aaltl e L7, T;V;') such that

u, >u x-weakly in L*(7,T; H),
u, —u weakly in LP(7,T;V}),
ou,, ou

T weakly in L(7,T; V),

u,, —»u strongly in L*(r,T; H).

Again by Proposition 2.13, we have that u e ®(7,u,).

It remains to prove (2.54). Observe that {u,,} is equicontinuous in V,* on [, T]
and that {u,,} is bounded in C([7,T]; H). Therefore, by the Arzela-Ascoli Theorem, up

to a subsequence, there follows that
u,, —u strongly in C([7,T]; V).
From this and the boundedness of {u,,} in C([7,T]; H) we conclude that
Un,(s) —u(s) weaklyin H V7 <s<T. (2.55)
Now, since the following estimate
() < [als) 2 [ KOO0, T<s<r<T
holds for z = u,, and z = u, it follows that the functions J,,, J : [7,T] — R defined by

(1) = [ (r) —2J<f w,(6))d0,
J(r) = |u —2f<f (0)>d0,
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are non-increasing and continuous, and satisfy
I (r) — J(r) ae. re (1,7T).

To prove that J,,(r) — J(r) ¥r € [1,T] consider a fixed t* € (7,T] and an increasing
sequence ty 1 t* such that J,,(tx) — J(t;) for all £ > 1. Thus, for any € > 0 there exist
M, K > 0 such that

| J(te) = J(¢7)] <

2
| Jn(tr) — J(tk)] <

(NN e

Since J,, is a non-increasing function, we have that
I (%) = J(87) < |Jm(t) = J(tx)| + | (t) = J(1)[ < e

for all m = M, and consequently lim sup J,,,(t*) < J(t*). Taking into account that

m—00

f £(0), 0 (0))d0 — f (£(0), u(6))db,

we deduce that limsup |u,,(t*)] < |u(t*)|. Hence, by the weak convergence (2.55) we
m—00

conclude that (2.54) holds for all s € [r,T]. By increasing intervals and a diagonal

argument we see that, for a suitable subsequence, (2.54) holds true for any s > 7. The

proof is complete. n

Corollary 2.21. Consider that assumptions (I),(II) and (III) are satisfied. The multi-

valued process U(+,-) is upper-semicontinuous with closed values.

Proof. We proceed by contradiction. So, let suppose that the multi-valued process U(-, )
is not upper-semicontinuous. Thus, there exist (¢,7) € ]Rd, a neighbourhood N(U(t, 7)u,)
and a sequence {z;} which fulfil that each z, € U(t,7)u” , where u* — u, in (L*(Q2))",
but for all k € N z;, ¢ N(U(t,7)u,). Since each z;, € U(t, T)u there exists u; € (7, u")
such that z; = ug(t). Now, by applying Proposition 2.20, we deduce that there exists a
subsequence of {u(t)} (relabeled the same) which converges to a function u(t) € U(¢, 7)u.,.
This is contradictory because z ¢ N (U(t, 7)u,) for all k€ N. Tt follows from Proposition
2.13 that the process is closed. O

Definition 2.22. (Universe in H) Given n > 0, we denote by Dgl the class of all
families of nonempty subsets D = {D(t) :te R} < P(H) such that

lim (em sup |V\§) =0. (2.56)

T veD(r)

Denote by DY the class of all families D = {D(t) = D : t € R} with D a fized nonempty
bounded subset of H.



Chapter 2. A Class of incompressible non-Newtonian Fluids 65

Remark 2.23. Observe that DY < Df and that Df is inclusion-closed.

Definition 2.24. Given X a Banach space, q € [1,00] and n > 0, let us denote by Z%"
the set of all f € L} (R; X) such that

loc

0
J e £ (s) |4 ds < . (2.57)
—Q0

Remark 2.25. Observe that the condition (2.57) is equivalent to

t
| emitsgas <,
-0
for allt e R.

For the next Lemma, we are going to distinguish two cases in relation to p,
since the choice of 7 will depend on this. Although we are with hypothesis (II), p can be

greater or equal than 2, therefore we will treat two cases, when p > 2 and when p = 2.

Lemma 2.26. Consider p > 2 and f fulfilling (I),(1I),(I11I) with ¢ = p/(p — 1) and
a constant n > 0. Then, there exist positive constants c,,, and Cy such that any weak
solution to (LM) satisfies

|u(t7 T, u7'>| Rl p>2(t; T, T/) vt = T,
t

2.58
f IVu(l; 7, ur)[Pd < Ropsol(t;7,m) Vit ( )

\%
\]

where R
t

—n(t—s) Cl

Rl p>2(t T,n) =e it |u7’2 + Cop | €7 I£(s)|l%ds + ?

T

& o [*
Rayoaltirin) = R pftimn) + 222 [ je(o)]ds.

Col

Proof. From the energy equality (2.12), and Korn and Young inequalities, we obtain

1d Colq
2 dt u|§ ’V |2

Colg

1 q €P »
p < —IElE + — [Vl
qe p

Choosing €’ /p = cavn/ (208) and denoting c¢,, , = 2/(qe?), after the Poincaré inequality

d, o 2001\ C2 2
dt|u|2 o luf; +

£ a.et > 7. (2.59)

p < Cuy P

e Casen < 202u1)\100 :
From (2.59) we have

2621/1)\1

d
Zlalz + nlalz + ( —n)ul3 + < Culf]? aet > 7.

0

Multiplying by e™ and integrating from 7 to ¢, we obtain
t

() < e“tﬂw)b+@wfe”“”ﬂﬂﬁw-

T
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e Case n > 2021/1)\100_2:

202V1)\1
a4
Wy (Q)" < L2(Q)", i.e. lul; < C7|Vul,. Then the Young inequality yields

Denote 0 < 8 = n — . Consider also C; a constant of the embedding

(p 2)0213/10 2)

P4
Hv H p/yp/(p 2)

[uf; <

/2

2
il _ Gl

P2~ 28p

Putting we gain

Col/9 ~
uf} < G2 1vuls +

~  (p-2)C8

where C = P . Then (2.59) reduces to

Col/o ~
22V ulp, < o1 + o
0

Sl + nfulf +

Multiplying by e™ and integrating from 7 to ¢, we obtain

_ _r 6—77(75_‘") t . s 1
()3 < e u(r)3 - 7 +Cu2,pf e £ (s)|1ds + r

T

From the previous cases, the first estimate in (2.58) is deduced.

Now, from (2.59), we infer that

¢ ot e ¢
0 2 0*v2,p
| Ivuts)izas < ou+ 2 [ yes)jgas
From this, we obtain the second estimate in (2.58). O

The case p = 2 is simpler, nevertheless we include it for the sake of completeness.
Observe that from (2.7), for p = 2 it holds that ¢; = 1 and v, = 0 in (2.8).

Lemma 2.27. Assume (I),(II),(III) hold for p = q = 2,. Then, for anyn € (0,2v;\1cy?)
there exists a constant > 0 such that any weak solution to (LM) satisfies

)\ t
()3 < e u(r)f + 51J e M £(s)[2ds. (2.60)

Proof. The energy equality (2.12) and the Korn inequality yield
d 2V1
ulf; + T|V uf; < 2(f, w).

Fix a value 7 € (0, 2v1\¢; 2). Arranging coefficients in the Cauchy inequality

in the right-hand side, we obtain
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d i A
£|u|3 + )\TWU@ < Elania

where 3 := 2v1\¢y2 — 1 > 0. By the Poincaré inequality and the Gronwall inequality,
(2.60) holds. O

From now on we assume that f € LY

loe(R; V), and satisfies f € Z" for some
n > 0, where Z2" := TTJ.
p

Corollary 2.28. If there exists 1 > 0 (if p = 2, n € (0,2v1\1¢;?)) such that £ € T4,
then the multi-valued process U(-,-) on H, defined in (2.53), has a pullback Df-absorbmg
family By = {By(t) : t € R} with By(t) = By (0, Rp=2(t)), where

C t
RE(0) =1+ =y | () 2ds
n —o
(if p =2, Bo(t) = By (0, Rp—2(t))). Moreover, By e Df.

Proof. It follows directly from Lemma 2.26 for the case p > 2 and from Lemma 2.27 for
the case p = 2. O

Lemma 2.29. Consider p > 2 and suppose that there exist n > 0 such that f € Lj,.(R; V,")

loc

satisfies £ € ZI". Then for any t € R and De Df, there exists 7'1(13, t) <t —3, such that
for any 7 < 71(D,t), u, € D() and u € ®(7,u,), it holds

lu(r;m,u;)|e < prp=2(t) forallre [t —3,t],
r 2.61
f [Vu(0; T, uT)Hgde < pops2(t)  forallre [t —2,t], ( )
1

r—

where

A~

C t
&M@=1+;+%WW”ffﬁW@wa
—00

& o che '
t) = ¢ 2P f(s)||%ds.
paealt) = () + T2 [ 16(s) 2

~

Proof. Fix t € R. From (2.58) there exists 71(D,t) <t — 3 such that

e <1 Vr < 7(D,1).

Therefore it follows from (2.58) that
lu(r;7,u,)]y < pfa(t) forallrelt—3,t], 7 < 7(D,t) with u, € D(7),

where

A~

C !
Pipa(t) = 1+ 771 + €Y J e [[£(s)[5ds.
—



Chapter 2. A Class of incompressible non-Newtonian Fluids 68

Now, from the energy equality (Lemma 2.12), we deduce that

1d

5O + conle(w)l; + emsfle(u)]f < (E(X), (). (2.62)

Applying the Korn and Young inequalities with € > 0, it follows that

d 9 2021/2

D@+ 222 22 1vunz < 2 Ju)]:
< P ges -

ColV
We choose e = p;épz and integrating from r — 1 to r inequality (2.62), we get that
0

Cal/

~ f [Vu(s)[bds < [u(r — 1)[ + CVzPJ [£(s)[%ds.
Cg r—1 g ’

r—1

Therefore, we deduce that
J IVu(t; 7, u,) [Pd0 < papso(t), forallre[t—2,t], 7< Tl(ﬁ,t), u, € D,
r—1
where
&

Caol/

cpcl,Qp

pagoalt) = 22 () + jnﬂww
coly

]

Lemma 2.30. Consider p = 2 and suppose that there exists n € (0,21/1)\1052) such
that £ € L;, (R;V;") satisfies £ € I>". Then for any t € R and D e Df, there exists
7(D,t) <t —3, such that for any T < 71(D,t), u, € D(7) and u, € ®(7,u,) it holds

u(r;7,u,)|s < prp=2(t) forallre |t —3,t],
r ?p

J Vu(6;7,0,) 200 < poys(t) for allre [t —2,1],
r—1

where \ .
1 - s
Plpmalt) = 14 S0 [ erje(o)|ias,
—o0
A 2 [
papealt) = 2ityealt) + 5 |16

where B > 0 is given in the Lemma 2.27.

Proof. The first estimate follows from (2.60). For the second one, from Lemma 2.27, we
obtain that

d o 0 o _ A g2
—ul; + —|Vul; < —|/f|z.
G+ SVl < S
Integrating from r — 1 to r the previous inequality, we have that

B | Su(s)2ds < [utr — DR + fnfm
)‘1 r—1
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Therefore, we deduce

f Vu(s)2ds < papos(t), forallre[t—1,t], r <n(D.t), use D,
1

r—

where \ 2
1 9 1 2
—o(t) = —p1 ot —&-J f(s)|zds.
p2.p=2(1) P o(t) )., I£(s)]

O

Proposition 2.31. Consider p = 2 and suppose that there exists n > 0 (for the case
p=2ne(0,2v1\c;?)), such that £ € L}, (R; V) satisfies £ € I, Then, the process

loc

U(-,-) is pullback Eo-asymptotz'cally compagct.

Proof. We prove the result for p > 2, since the case p = 2 is analogous. Let t € R, and
let us consider the sequence {u,, } with u, € By(7,), where {7,,} < (—o0,t) satisfies that
Tm — —00 as m — o and denote by u,, = w,,(-; 7, u,, ) any sequence of weak solutions
with u,, € (7, u,,,) for each m € IN. We will prove that the sequence {u,,} is relatively

compact in H.

It follows from Lemma 2.29 that there exists mg(t) such that 7, <t — 2 for

m = mg(t) and

(W (r)]2 < prp=2(t) Vre[t—2,t], Ym = mg(t). (2.63)

|| Tan(s) s < pupealt) Vi £ =2,81, Vi > o).

ou
Furthermore the sequence of time derivatives {a—:} is bounded in LI(t —

2,t;V.¥). Then, using in particular the Aubin-Lions compactness Theorem, there exists

0
an element ue LO(t —2,t; H) n LP(t — 2,t;V,) with % e LUt —2,t; V), such that for a
subsequence (relabeled the same) the following convergences hold

-

u, ~u =-weakin L*(t—2,t;H),

u, —u weakin LP(t—2,t;V,),
own, 0
3 % ~ a—‘; weak in Lt — 2,4 V), (2.64)

u,, —»u strongly in L*(t —2,t; H),
u,(s) —u(s) in Hae se(t—2t).

Observe also that u € C([t — 2,t]; H). Moreover, for any sequence {t,,} in
[t —2,t], with t,, — t*, one has

W, (ty,) —u(t*) in H. (2.65)
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Indeed, we know that

(n(),0) = (un(s).0) = [ 500 vsrefr-2a) se,

ouy,
This, jointly with the fact that {%} is bounded in L(t — 2,¢; V,¥), we obtain
[ (1) = W (8) [« < Clr — s|P Vs, re [t —2,t].

Therefore {u,,} is a equicontinuous sequence in C([t — 2,t]; V,*). Since H << V¥, follow
from Arzeld-Ascoli Theorem that there exists a subsequence (relabeled the same) of {u,,}
and @ e C([t — 2,t]; V'), such that

u, —u in C([t—2,t;V)).

From (2.64) there exists S < [t — 1,¢] with |S| = 0 such that u,,(s) — u(s) in H for all
se [t —2,t]\S. Now, let s € [t — 2,¢]\S be, as H < V¥, from the above it follows that

[um(s) —u(s)|s < Clup(s) —u(s)l = 0, m — .
Thus, from the uniqueness of the limit, we have that
u(s) =u(s) Vsel[t—2,t]\5,
and therefore, we conclude that

u, »>u in C([t—2,t;V)).

Now, by (2.63), we know that {u,,(t,,)} in bounded in H, then, there exists
v € H, such that u,,(t,) — v in H. We will prove that v = u(t): Let ¢ €V},

(W (tm) —u(t?), &) = (Wn(tm) = wn(t), ¢) + (W (t*) —u(t*), 9)
< () = wn () [0 1p + lum (%) = u(@®) ] o)1
Since {u,,} is equicontinuous and u,, — u in C([t — 2,]; V"), we obtain that
Uy () —u(t*) in V7

But, we know that u,,(t,,) — v in H, so we conclude (2.65) is true.
Then, from Proposition 2.13 u(-) is also a weak solution to (LM) on (¢t — 2,t).

By the energy equality and hypothesis (I) on potential S, we obtain

(1) < a(5) + 2 [ (8(6),2(0))a

forallt —1<s <r <t where z = u,, or z = u.
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The maps Jp,, J : [t — 2,t] = R defined by
Inlr) = (1) —2 j | 0) (08
1) = ) =2 | <t(6),u@)a,
are non-increasing and continuous, and satisfy

I(r) — J(r) ae. re(t—2t). (2.66)

We will use the functionals J,, and J to deduce that u,, — uin C([t—1,t]; H).

If this no true, then there exist £* > 0 a subsequence and {t,,} < [t — 1,t], with t,, — t*,
such that

W () —u(t™))]2 =% Ym = my(t). (2.67)

Let us fix ¢ > 0. Observe that ¢t* € [t — 1,¢] and therefore, by (2.66) and the

continuity and non-increasing character of J, there exists t — 2 < . < t* such that

lim J,(f) = J (), (2.68)
and
0< J(t)—J(t*) <e. (2.69)

< | T(te) = J(E)| + [ (Ee) = T(t)]
< |Jm(£€) - J(£€)| t+eé

for all m = m,, and consequently, by (2.68), limsup J,,,(t,,) < J(t*) + e. Thus, as € > 0 is
m—00
arbitrary, we deduce that
limsup J, (t,) < J(t%). (2.70)

m—00

Taking into account that t,, — t* and

J CE(0), 1w >d6—>J CE(0), u(6))d0,

from (2.70) we deduce that hm L SUp lu™(t;m)]2 < [u(t*)]2. This last inequality and (2.65),
imply that w,,(¢,,) — u(t*) strongly in H, which is contradiction with (2.67). We have
thus proved that u,, — uin C([t — 1,t]; H). We obtain in particular that u,,(t) — u(t)
in H. [l
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Theorem 2.32. Under assumptions (I), (II) and (III) and assume that there exists
n >0 (forp=2,n¢€ (0,2r1\cy?)) such that f € T". Then, there exist the minimal
pullback D -attractor Apn = {Apu(t) : t € R} and the minimal pullback Df—attmctor
Apy = {Apu(t) : t € R} for the process U : Rg x H — P(H). The minimal pullback
Df-attmctor belongs to Df and the following relationships hold

Apit(t) © Aps (1) = Bo(t) = B (0, Rysa(t)) Vi€ R. (2.71)

Proof. The existence of pullback attractor for the multi-valued process U(:,-) in the
universe Df follows from Theorem 1.42, and the existence of pullback attractor in the

universe Df with the inclusion (2.71) is given by Corollary 1.44. O

Remark 2.33. Iff e L], .(R; V") satisfies that

loc

sup (e‘”sf e"r|f(r)|;{dr> < o, (2.72)
—00

s<0

we guarantee that for all T € R, U By(t) is a bounded subset of H, (see pyp=2 in Lemma
t<T

2.29). Therefore, it follows from Remark 1.45 that
ADg (t) = AD? (t). (2.73)

Remark 2.34. Observe that, if f € L], .(R; V") satisfies that f € T} for some n > 0, then

loc

f e Z9" for all e (n,+), (for the case p = 2, for all € (n,2v1\1c;?)). Hence, it holds
that Df c Df. Thus, for all € (n,+00) there exists the corresponding minimal pullback

Df-attmctor, Apﬁz )

Since Df c Df, it follow from Theorem 1.46 that, for anyt € R, Apg (t) <

Apu(t) for all pu e (n, +0).
Moreover, if £ satisfies (2.72), then

sup (e‘“sf 6”r’f(7”)(id7“) <o forallpe (n,+0),
—w

s<0

therefore, by (2.73) we conclude that

Api(t) = Apu(t) = Apu(t) for all e (n, +0).

2.5.2 Pullback Attractor in V),

In order to prove the existence of a pullback attractor in V},, we have to assume

some hypotheses on the stress tensor S, the power p and the external force f:

(2.I) The stress tensor S has a potential, i.e., S satisfies the conditions of the Definition
1.48,
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(2.II) If n = 3 we consider p > 5/2 and if n = 2 we consider p > 2,

(2.III) fe W,;”(R; L*(2)"), observe that this implies that f € L{, (R; V).

By Lemma 1.49 the stress tensor $ satisfies the p-coercivity and (p — 1)-growth
conditions. Thus, all the results established concerning existence, uniqueness, regularity of
weak solutions and existence of pullback attractors in H to (LM) are valid when S is a

potential.

Condition (2.IT) guarantees that system (LM) has a unique weak solution
(Theorem 2.14 for p > (n + 2)/2). This will allow us obtain any estimates for u through
the Galerkin sequence. If we assume the hypotheses of Proposition 2.18 for n = 3, i.e.
p = 12/5, the uniqueness of weak solutions is not guaranteed. But, as in the case of
pullback attractor in H, we could define a multi-valued process on V,,. The difficulty here
is that “at the moment” we cannot ensure well properties for this process; for example, the
upper semi-continuity, which we require to show existence of pullback attractor associated

to a multi-valued process.

Now, by Proposition 2.18, all the weak solutions of problem (LM), u =
u(t; 7,u,), belong to the space L*(7 + ¢,t;V,,), for all 7 < ¢ and any ¢ > 0 with 7 + ¢ < t.

Moreover, we can define the process U(-,-) on V, for each (¢,7) € R3. We observe that

0
conditions (2.I) and (2.IIT) will allow us to estimate a—ltl in the space L*(t — 1,t; H) for
any t large enough with respect to 7, to show that the process U(-,-) defined on V,, is

asymptotically compact.

Definition 2.35. (Universe in V,) We will denote by Df]{’vp the class of all families Dvp
of elements of P(V,) of the form f)vp — {D(t)"V, : t e R}, where D = {D(t) : te R} e D,IZ{.
And we will denote by Dy? the class of all families D = {D(t) = D : t € R} with D a fived
nonempty bounded subset of V.

Remark 2.36. Observe that Dg” c Df’vp and that Df’vp is inclusion-closed.

Remark 2.37. We can apply Proposition 1.13 to ensure that the map U (-, -) : IR,Z xV, =V,
defined by
Ut,7)u, = u(t;7,u,), (2.74)

where u is the weak solution to (LM), is well-defined for all (t,7) € R3. Indeed, consider
X =V, andY = H then, we know that the weak solution u of problem (LM) is in
C([r,T]; H) and, by Proposition 2.18, we L*(t +¢,T;V,) for alle > 0 with T +¢ < T.
Therefore, it follows from Proposition 1.13 that u € Cy((7,T];V,) and u(t) is defined on
Vy, for all t € (1,T]. If the initial condition u, € V),, then the process U(-,-) is defined for
all t € [1,T].
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Proposition 2.38. Assume that (2.1) and (2.1I) are satisfied and suppose that f €
L7 .(R; L*()™). Then, the map defined by (2.74), U(-,-) : R x V,, — V,, is a closed process

loc
on V,.

Proof. From Remark 2.37 and Theorem 2.14, we have that U(-,-) : R x V, — V,, is a
well-defined. Next, we prove that U(-,-) is a closed process. Given t € R with ¢ > 7,
suppose that {u’j} is a sequence in V,,, with uf. — u, in V,, as k — o0, and also assume that
Ut,7)uf = u(t;7;u¥) — y in V,, as k — o0. We will show that y = U(t, 7)u,. In effect,
we know that the process U(-,-) : ]R?l x H — H is a closed process in H (as p > 71—21—2 the
process is continuous, see Remark 2.16). Therefore U(t, 7)u® — U(t, 7)u, in H, as k — o,

and as V,, — H then, by the uniqueness of limit, we have that y = U(¢, 7)u,. O

Corollary 2.39. Assume that (2.1) and (2.11) are satisfied and suppose that there ezists
n > 0 such that f € L;, (R; L*(Q)™) N Z¢". Then the family

loc
Bov, = {Bov,(t) = Bu(0, Ry=a(t)) NV, : t € R}

belongs to Df’vp and satisfies that for any t € R and any De Df, there exists T(ﬁ, t) <t
such that
U(t,7)D(1) < Boy,(t) forall < 7(D,1).

In particular, the family EO’VP is pullback Df,{’vp -absorbing for the process U : RZ x Vp — V.
Proof. Follows directly from the Corollary 2.28 ]

The next lemma is based on estimates given in Proposition 2.18 (high-regularity
result). The demonstration will be presented only for the case n = 3 with p > 5/2, but for

the case n = 2 with p > 2 it is also valid.

Lemma 2.40. Consider assumptions (2.1) and (2.11), and suppose that there exists
n >0 such that f € L2 (R; L*(Q)") n I". Then for any t € R and D € DY, there ewists

loc n
(D, t) <t—3, such that for any T < 7 (D,t) and u, € D(7), holds
lu(r;m,ur)|1, < ps(t)  forall re|t—2,t], (2.75)
" Ou 5
|§(0;T, u,)|5df < py(t) for all re[t—1,t], (2.76)
r—1

where
p3(t) = max{Ri(t), R2(t), Rs(t)},

with R1(t), Ra(t) and Rs(t) given in (2.78), (2.80) and (2.81) respectively, and

deqcy 2(5p—12) p(16—5p)

pa(t) = 2co(1 + Pg(t))[l + (pl,p>2(t)) o (Ps(t)) e ] + £3 |£(0)[5d6.

Cs
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Proof. Let {u;} be the Galerkin approximation of u.

e Casen =3, when 5/2 < p < 3:

By estimate (2.49) given in Proposition 2.18, we have that

r

fote(u(r))ls < (jotetu(s))ls+ [ [60)30)
<o (O [ @1y ), )

7p
8 Jr—1
forall re [t —2,t] and se [r—1,7].

Observe that the constants do not depend on k. Integrating this last inequality for s
between r — 1 and r, we obtain

T T

[(elun(s))luds + [ 18(6)300)

r—1

(el < (|

r—1

c7d2 r p%G:Z”) 2<§p:é2>
cexp (T [ @), f0)l, " o).
1

r—

By Lemma 2.29 and (2.46), we know that

|| 1otetanelds < a1 + pagmalt). (2.77)

forall re [t —2t], T < Tl(ﬁ,t), u, € D.

Again from Lemma 2.29 and the Young inequality

T p(;G—Zp) 2(??-(152) 2(sp—12) [T pgéﬁ:gf)
f [0 2 Jur@)y ™ db < [prpma(t)] 5 f (@), do
—1 —1
" 2(5p—12) " 16—5p

< [prp=2(t)] 0 [pap=2(t)] "0,

forall 7 e [t —2,t], 7 < m(D,t), u, € D.

From this last inequality and (2.77), we obtain that

[ag(r)ip < Rai(?),

~

forall 7€ [t — 2,t], 7 < 7(D,t) and u, € D, where

RE(t) = 018[((;9(1 + pap=a(t)) + Lg [£(6)[546]

d2c7 2(5p—12) 16—5p (2'78>
X exp {c (Pl,p>2(t)) (5p—6) (p2,p>2(t)) 5p—6 }
8

e Case n =3, when p > 3:



Chapter 2. A Class of incompressible non-Newtonian Fluids 76

By estimate (2.50) given in Proposition 2.18 and the embedding W'?(Q)" <

2 2
LP%(Q)” (which is true for P =
p—2 n-—2

< p = n) we have that
d 2 2 2 2 2)11 (12 2
g1 2(e(uw)l < IE@)]; + . e[ [Vug[“de < [£(2)]5 + crdug |7, [u]i -

Let us denote by U := 1 + ||®(e(uy))|1, and observe that iL{ = iHCI)(e(uk))Hl.

dt dt
Therefore, from (2.46) and the above estimate, we obtain that
d ~
U< If(t)|2 + Cold*¥P. (2.79)

Now, if 4 < p, then U*? < U, since U > 1, with this and (2.79)

d o
P £(2)|5 + Cald.

Integrating from r to s, with r € [t — 2,¢] and s € [r — 1, r], we have

T T

|£(0)[5d6 + C*gf U(6)do.

r—1

Ur) <U(s) + f

r—1

Integrating this last inequality in s between » — 1 and r, we get

U(r) <f

r—1

T s T

f(9)\3d9+52j U(6)do.

r—1

U(s)ds +J

r—1
Therefore, by Lemma 2.29 and (2.46), it follows that
[k, < Ra(?),

forall re[t—2,t], 7 < Tl(ﬁ,t) and u, € D, where

Ry - LG 0o oy [ ke e

Cs Cg

2
Now, if 3 < p < 4, let us consider u = (2p — 4)/p, then p € [g, 1). Multiplying by
U"t to (2.79), we obtain that

d N N
po () < JEOBU + Ot < £ + O,

: -1
since U* " < 1.

Similarly, as in the last case, we have that

r

pt (r) < (o + Co) J U(s)ds + J;_?’ If(s)[5ds,

r—1

for all r e [t —2,1].
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Thus, of this last inequality, we obtain
Jaefrp < Rs(t),

for all r € [t — 2,¢], 7 < 71(D, t) and u, € D, where

~ 1/p

+ C c 1t

R&ﬂ=<ﬂ%2+iﬂ+mpN®+MJ3Wﬂﬁg . (2.81)
t_

Therefore, from (2.78), (2.80) and (2.81), we conclude that

[ ()1 < ps(t),

forall re[t—2,t], 7 < Tl(ﬁ,t) and u, € D, where
p3(t) = max{R1(t), Ra(t), Rs(t)}.

Finally, from (2.45) we know that

1 8uk2

d 2 2 2
S| S+ SRl < @B + el ol o

Therefore, based on this last estimate and the previous cases, we conclude the proof. [J

The proof of next Lemma is based on a technique used in [59], which, formally,

ou
consists in deriving the equation and multiplying by a5 obtaining a new formulation and
0
ou
with this, to obtain estimates for — in the uniform norm.

ot
Lemma 2.41. Under assumptions (2.1), (2.11) and (2.1II), suppose that there exists
n > 0 such that £ € ZM". Then for any t € R, De Df, there exists 7'1(13, t) <t—3, such
that for any T < Tl(ﬁ, t) and u, € D(1), it holds

a—u(r;T, u.)| <ps(t) forall relt—1,t],
ot 5
where
9 S22 Lo P
P = a2 + )T} + [ | Do) ds.
t—2 ot 2

Proof. We will make formal calculations that can be justified by using the Galerkin

approximations, since u does not have enough regularity.
By differentiating of (2.3) in time, we get

Pu ) du . (du Ju oP of
o div, ((3D®(e(u))e(at)> + div, ((% Qu+u® 8t> + Vg <(%) =
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ou
Multiplying the above equality by a0 integrating over €2, we obtain that
C

1d|oul’ 5 du,_ ou du _ou of ou
st 3], J obetetme( G eGhins [ (Folt): Ve - (5.5, @5
since & 5
u u
and ? ? du_ @
u u u u
u® — :Vz—f (@ ) V. u.
L ( 515) ot o \ ot — ot
Using (2.82) and the properties of ®, we have that
1d|oul’ ou, |” 1|of”  1]oul’ du _ou
el P=2a( Z| = ol Dl IR -
2 di at2+”1f9(1+’“‘|e<“>|> (G| “=3\@|, T ala), )y Oar Ve
From this, it follows that
1%‘1‘12 (811)2 1@2 8u + |yl @2
2dt| o), Var’|, S 2lae), " 2l ], T |
with 1 + 1 = 1.
p q

By the interpolation inequality (Theorem 1. 17) for n = 3 (for n = 2 we use the

0
Ladyzhenskaya inequality, Theorem 1.15), we have H o qu ‘ ;tl 22;; 5/ H Hg/ *? Thus
(
the Korn and the Young inequalities give us
1d|oul’ ou|* _1|of[> 1]oul’ H 223 | 1|
2 dt | ot Hotl,, = 2let], " 2|ot], Lp ot |,
Integrating from s to r, with 7 < r — 1 < s < r, we have
ou, | |ou Tt | " |ou " 2/(2p5)| O
— =) do+ | |50 de #/(2p=3) 9d9
20| < &<>—5L464>2 o] |G e | e o)

forallr —1<s<r.

Integrating this last inequality for s between r — 1 and r, we obtain

o <2 [ Reofase [ |Fofare [ e Polw
ot |, T ) et ilat ), 2] ot
By Lemma 2.40, we conclude the proof. O]

Theorem 2.42. Consider assumptions (2.1), (2.11) and (2.111), and suppose that there
exists n > 0 such that £ € ZI". Then, the process U(-,-) is pullback Df’vp-asymptotically

compact.
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Proof. Given De D,IZ{ V> and t € R, we will see that, {U(¢, 7, )u,,, } is relatively compact in
V,, where u,,, € D(7,,,) for each m € N and 7,,, — —o0. Let us denote by u,, := u,,(t) :=

U(t, Tm)u,, . Next, we prove that the sequence {u,,} has a Cauchy subsequence in V.

From Lemma 2.40, we know that {u,,} is relatively compact in H. Without
loss of generality, we assume that {u,,(¢)} is a Cauchy sequence in H. In the following, we

prove that {u,,} is a Cauchy sequence in V,.

Now, we deduce from (2.7) that there exists 6 > 0 such that
(S(e(w)) —S(e(v)). e(u) —e(v)) = dlu—v|7,,

for all u, v e V,, (p-coercivity of $ ).

Using the p-coercivity of $ , Lemma 2.12, Lemma 2.29, Lemma 2.40 and Lemma
2.41, we have that

O ay, —wi[[f,, < (S(e(ur)) — S(e(w)), e(ur) — e(u;))
. ﬁuk 8ul

— (G- T —w) + Ru —w W) : Vi, —w)d
(825 n uy, ul) L (uk u; — ul) (u, — wy)dz

0 0
<G G e el
ou, ou
<\% " 2|uk —wlz + gl |ug — ulH%q
2p—3 3
ép )/pHuk: - ul”l,/g

< 2p5(t)|llk — ul|2 + dpg(t”llk — ul|
<2

ps(t)[we — wla + d|QFP5/P py (1) PP HO/P |y, — | I,

Observe that we have used the interpolation inequality (Theorem 1.17) for
n = 3 to estimate |u, — w2, But, for n = 2 it is also valid, since we can use the

Ladyzhenskaya inequality (Theorem 1.15).

Therefore, this last estimate combined with the fact that {u,,} is a Cauchy

sequence in H, allow us to conclude that {u,,} is a Cauchy sequence in V,. O

Theorem 2.43. Consider assumptions (2.1), (2.11) and (2.1I1), and suppose that there
exists n > 0 such that £ € Z1". Then, there exist the minimal pullback Dg”—attmctor
AD?) = {Apu(t) : t € R} and the minimal pullback DIYe-attractor A,D;{,Vp = {A,Df]z,vp (t) :
t € R} for the closed process U : R3 x V,, — V,, defined in (2.74). The minimal pullback
Df’vf'—attmctor belongs to Df’vp and the following relationships hold

Apa(t) = Appr(t) € Apg () = Apnaa(t) VE€ R, (2.83)

Dg

where Ang and .AD# are the respectively the minimal pullback DE-attractor and the
minimal pullback Df-attmctor for the "multi-valued” process U : R x H — H, whose

existence is guaranteed by Theorem 2.32.
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Proof. The existence of pullback attractor for the closed process U(-,-) on V), in the
universe Df]{ V2 follows from Theorem 1.33, and the existence of pullback attractor in the

universe D;” with the inclusion (2.83) are given by Corollary 1.44 and Theorem 1.46. [J

Remark 2.44. Observe that by (2.83), in particular, the following pullback attraction
result in V), holds:

lim disty,(U(t,7)D(7), Apu(t)) =0 forall te R and any De Df.

T——00

Remark 2.45. If f € T1" satisfies that

S
sup (e‘"sj e””|f(r)|‘idr> < o,
s<0 —®

then
ADZP (t) = ADI},I (t) = AD{]{ (t) = ADf’VP (t) Vit e ]R7

where the equality A v, (t) = Apu(t) is a consequence of Theorem 1.40.
F
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3 A Class of Incompressible non-Newtonian
Fluid with Delay

A delay partial differential equation is an equation which involves: at least two
independent variables, an unknown function of the independent variables, the behavior
of the unknown function at some prior values of the independent variables and partial

derivatives of the unknown function with respect to the independent variables.

Thus, a delay partial differential equation, in contrast with a partial differential
equation, depends not only on the solution at a present moment but also on the solution
at some past times. If, in addition, the equation depends on the derivatives of the solution

at some past times, then it is called a neutral delay partial differential equation.

Delay partial differential equations are also called partial functional differential

equations as their unknown solutions are used in these equations as functional arguments.

In this chapter we are going to present a mathematical model with delay for
incompressible non-Newtonian fluids. We will study the existence and uniqueness of weak
solutions. Moreover, we will prove the existence of pullback attractors for the multi-valued
process defined from the weak solution in the Banach spaces Cy = C([—h,0]; H) and
M3 = H x L*(—h,0; H), with h > 0.

3.1 Statement of the Problem

Let Q < R", with n = 2 or n = 3, be an open bounded domain with regular
boundary 0€2. Given 7 and T" with 7 < T', we consider following system of partial differential
equations with delay and Dirichlet boundary condition for incompressible non-Newtonian
fluids, to which we will refer by (LMD):

(21; —div,S(e(u)) + divy,(u®u) + Vomr = £(t) + g(t,w) in Q. 7, (3.1)
div,u = 0 in Qrr, (3.2)

u = 0 on (1, T) x 09, (3.3)

u(r,z) = u’(z) with x €9, (3.4)

u(t+t,z) = ¢(t,z) in Qs (3.5)

where Q.17 = (1,7) x Q, Q, = (—=h,0) x Q with h > 0, u = (uq, - - -, u,) is the fluid flow
velocity vector field, u,(s) = u(t + s) for any s € (—h,0), u” is the velocity of fluid at the
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initial time ¢ = 7, 7 is the pressure, g(t,u;) is the delay term, ¢ is the initial condition

with memory, f is an external force and S : R — R™  is the tensor stress satisfying

$(0) = o,
(S(A)—S(B)): (A-B) = u(1+u(Al+[B])" ’|A-BJ (3.6)
S(A) —$(B)| < ecm(1+pu(|A] +|BJ)" *|A - B,

for all A,B e R

sym

and p > 2.
We denote by Cy the Banach space C([—h,0]; H), with norm

[¢llcy = sup |o(s)l2 ¢eCh

s€[—h,0]

and by L% the Hilbert space L?(—h,0; H), with norm
0
ol = | lowlds e L

In order to state the problem in the correct framework, let us first establish

suitable assumptions on the delay term g.

In a general way, let X and Y be two separable Banach space and
g:[r,T] x C([-h,0];X) =Y (3.7)
such that the following conditions hold,
(3.I) For all £ € C([—h,0]; X), the mapping t € [7,T] — g(t,£) € Y is measurable.
(3.IT) For each t € [r,T], g(t,0) = 0.
(3.IIT) There exists Lg > 0 such that, for all s € [7,T], for any &,n € C([—h,0]; X),

Ig(s,8) —g(s,m)lly < Lgl§ — nleq-no;x)-

(3.IV) There exists Cg > 0 such that, for all ¢ € [7,T], for any u,v e C([r — h,T]; X),

t t
f (s, ) — (s, va) [ds < C2 f u(s) — v(s)|%ds.

T—h

Observe that conditions (3.I)-(3.IIT) above imply that, given u € C([7 —
h,T]; X), the function g, : t € [1,T] — Y defined by gu(t) = g(t,w), Vt € [7,T7], is
measurable and, in fact, belongs to L™ (7, T;Y"). Then, thanks to (3.IV), the mapping

G:uelC([r—hT;X)—gue L*(1,T;Y)
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has a unique extension to a mapping G , which is uniformly continuous from L?*(7 —h, T; X)
into L2(7, T;Y). From now on, we will write g(¢, u;) = G(t) for each u e L*(r — h,T; X),
and thus for all t € [7,7] and any u,v € L*(1 — h, T; X), it holds,

t

t
f (s, u) — (s, va) [Bds < C2 f Ju(s) = v(s) s
The delay term g in (LMD) is defined by
g [7,T] x C([=h,0]; H) — L2(Q)" (3.8)

satisfying hypotheses (3.1)-(3.IV) with X = H, Y = L*(Q)".

An example of delay term verifying hypotheses (3.I)-(3.IV) can be constructed
as follows, see [13, Section 3].

Let G : [1,T] x R" — R" be a measurable function satisfying G(¢,0) = 0 for
all t € [7,T], and assume that there exists L; > 0 such that

G(t,x) = Gt,y)| < Lalx —y| Vx,yeR"

Let 6(t) be a function such that § € C*([r,T]), 6(t) = 0 for all t € [7,T], h = trr[lagﬁ] i(t) >0
e[,

and 0, = tn%a%{] §'(t) < 1. Then g(t,u;) = G(t,u(t—4(t))) satisfies hypotheses (3.1)-(3.IV)
e[,
Ly

1—0,

with X = H, Y = L*(Q)" and C? =
g

3.2 Existence of Weak Solutions to (LMD)

For the following definition of weak solution to (LMD), as in Section 2.1, we
consider the operators B : LP(7,T; V,)nL*(7,T; H) — Li(7,T; V) and T : LP(7,T5V},) —
Li(r,T; V) given by Definitions 2.5 and 2.7, respectively, where ¢ = p/(p — 1).

Definition 3.1. By a weak solution to (LMD) we understand a function u, belonging to
the class

u

ue L*(t—h,T;H)n LF(1,T;V,) n L*(7,T; H) with =

e LR TVY),  (39)

which satisfies the weak formulation

<(;1tl, v) 4+ (T(u(t)),v) +{(B(u(t)),v) = £(t),v) + (g(t,us), v), (3.10)

forallveV,and a.e. 7<t<T, and

u(r7) =u’ and u(r +s) = ¢(s) se(—h,0). (3.11)
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Remark 3.2. By Theorem 1.10, the weak solution has a representative in the class
ue C([r,T]; H). (3.12)

whereby (3.11) makes sense. Besides, for any functions u, v, belonging to the class (3.9),

it holds
ou ov

(ulta), v(ts)) — (u(tr), v(t1)) = L( E,v>+<g,u>)dt. (3.13)
And further observe that, if ¢ € C([—h,0]; H) thenue C([t — h,T]; H).

We only sketch the proof of the next Theorem about the existence of weak

solution of (LMD) since it is similar to the proof of Theorem 2.11.

Theorem 3.3. (Existence) Let us consider 7, T with T <T,u, € H, ¢ € L*(—h,0; H),
fe L7, T;V)), and assume that

g:[r,T] x C([~h,0]; H) — L*(Q)",

satisfies hypotheses (3.1)-(3.IV) with X = H, Y = L*(Q)".

Therefore, if p = 1+ 2n/(n + 2), then there exists at least one weak solution of
problem (LMD ).

Proof. Let {w;}2, be the basis defined in (2.21), which is orthonormal in / and orthogonal

in V* with s > n/2 + 1.

e (alerkin system and a priori estimates

Let us define u™(t,z) = Z Y (t)w,., where the coefficients 7" () solve the so-called
r=1

Galerkin system

r jt(um(t% w;) + (T(u™(t)), w;) + (Bu™(t)), w;) = {£(t), w;)

) +(g(t, w"), w;) for I <j<m, (3.14)

| u”(7) = P™u” and u™(7 +1) = P"¢(t) with t€ (=h,0).

Here, P™ is the orthogonal continuous projector of H onto the linear hull of the first

m eigenvectors w;, j = 1,...,m, therefore

P™u” —u” in L*(Q),

oY . (3.15)
Pmé(t) — ¢(t) in L2(—h,0; H).

Observe that (3.14) is a system of delay ordinary differential equations in the unknown
Y™(t) = (1", -y 7). By Theorem 1.23 it has one solution defined on an interval
(1 — h,t,,) with 7 < t,, < T'. The priori estimates below us to show that ¢,, =T
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We multiply the jth equation of the Galerkin system (3.14) by +;"(¢) and add the

equations. The result can be written in the form

1d
OB + | Ste(u™) s e(u)ds = (K0, ™) + (gl 0w, (316
because f ul" iul u"dx = 0.
Q ° 0T

0
Using the fact that |[P™u"|; < [u”|s, f |P™¢(s)|3ds < ||¢||%%I and the hypotheses
—h
on g, it follows in the same way as in (2.25) that
{u™}*_, is bounded in L*(7 — h,T; H),

{u™}>_, is bounded in L*(7,T; H), (3.17)
{u™}r_, is bounded in LP(7,T;V,).

Ju™ @
From (3.14), we deduce that {%} is bounded in L(7,T; V).
m=1

e Limiting process

From (3.17), (3.IV), the Alaoglu Theorem 1.5, the Aubin-Lions compactness result

(Theorem 1.11) there follows, up to a subsequence, that

u” — u, in L*(tr—h,T;H),

u” =, in L®(1,T;H),

u” — u, in LP(1,T;V,), and a.e.in Q,r,

ou™  Ou . . (3.18)
ot - o in LI(r, T;V;; )

T(u™) — X, in LY, T, VZD*),
g(t,u) - g(t,uy), in L*(7,T;L*(Q)").

These convergences allow to pass to the limit in (3.14) and obtain

<(ZI;,V> + (X, v)+(B(u),v) ={{,v)+ (g(t,u),v) Vvel,. (3.19)

It is standard to prove that

u(7) = u, and u(7 +t) = ¢(t) with t € (—h,0).

To finish the proof we have to show that T(u) = X. This is done exactly as in the
proof of Theorem 2.11, noting that

T

JT<g(t7 u),u™)dt 3" f (g(t,u;),u)dt.

T T
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Indeed, we have that

T

T

< f (g(t, ") — glt, w), w™)de + f (g(t, ), u™ — w)|dt

T

rf (gt w), w™)d — f (&(t, w), w)dt]
_ T

< gt u) — gt w)ll 2w 0™ | L2 (1)

+ e, w)l 2 0™ = W) 2 rimy — 0

as m — 0.

[]

Lemma 3.4. (Energy Equality) Under conditions of Theorem 3.3 and the hypotheses
on g, any function v in the class (5.9) can be taken as a test function in the weak

formulation (3.10). Consequently, the enerqy equality

;jt ul; + L S(e(u)) : e(u)dz = (f, w) + (g(t, u), u), (3.20)

holds a.e. t € (1,T).
Proof. The proof is similar that proof of Lemma 2.12. n

The importance of the following Proposition will be clear in Section 3.4, about
existence of pullback attractors, since it will allow us to show that the multi-valued

processes, defined from weak solutions, are closed.

Proposition 3.5. Let {u™} be a sequence of weak solution to (LMD) associated to the
initial conditions (0™ (7),¢™), such that ¢™ — ¢ in L*(—h,0; H) and u™(7) — u’ in
H. Then, {u™} is bounded in the spaces (3.9), and there exists u such that (up to a
subsequence) u™ — u in the sense specified in (3.18), and u is again a weak solution to
(LMD) associated to the initial condition (u”, @) .

Proof. The proof is similar that proof of Proposition 2.13. ]

3.3 Uniqueness of Weak Solution to (LMD)

Let us denote by M7 = H x L3, the Hilbert space whose elements are of the
form (v, ¢) € M3, with ve H and ¢ € L3, = L*(—h,0; H), with norm defined by

v, ) By = VI3 + 16125, for (v, @) e M}
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Theorem 3.6. (Uniqueness) Let us consider f € LU(7,T;V)), g : R x Cy — L*(Q)"
satisfying (3.1)-(3.1V), defined in (3.8). Given (v7, 1) and (u”, ¢o) in M, let us denote
by v(:) =v(;7, (vVT,¢1)) and u(-) = u(-; 7, (U, ¢o)) two weak solutions to (LMD), with
initial conditions (V7,¢1) and (U7, ¢9), respectively. Then, there exist positive constants
K, Ky and K3 such that

(1) Ifn=2:

V() ~u(t)} < Cel (v, 1) — (U7, 62)[ 35 oxp { f (K + Kz\Vu(s)\é)ds}, (3.21)

T

forall T <t < T, where 6'g = max{1, K1},.

(i) Ifn=3 andu,ve L%(T, T;V,), then

2p

V) — w0 < Gl 00) = (a7 exp | [ (Ko + Kl V(o)) s
' (3.22)

forallT<t<T.
In particular, weak solutions to (LMD) are unique.

Proof. Setting w = v — u, and by Lemma 3.4, using w as a test function in the weak
formulation (3.10), we obtain

1d

577 Wl + (T(v) = T(w), w) + (B(v) = B(w),w) = (g(t, vi) — ga(t, w), W).

In the same way as in Theorem 2.14 and using (2.7), we thus have

d
ZWls + 2comle(w)l; + 2eomsfe(w)]} < 2[ wl*[Vulde + 2(g(t, vi) — g(t, ), w).
Q
e We consider first n = 2. Let e > 0 to be chosen. We use the Ladyzhenskaya
inequality (1.4), to estimate

L WP Vuldz < w2 Vuls

< /C\|W|2|VW|2|VU|2
~2
&1 C
< EWW@ + 2?1|V11|%|W|3-
For any €5 > 0 and from the previous estimate, we have

~2
Cc
[Vl < alWl%IVng

d, 5 2c011 N 9 | 2017
— —&A —¢€ +
dt w3 ( C(Q) 1M1 2)|W|2 &

1
+ ;|g2(t7 Vt) - g2<t7 ut>|§
2
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Caoly CoV1 A
We choose €, = —5~ and &3 = 5
¢ g

0
(3.IV), there follows

. Integrating from 7 to t, and hypothesis

t t
w(t)3 < [w(r)} + K f w(s) 2 Vu(s)ds + K, f w(s)[2ds,

T—h
2 262
where K; = —2 and K, = 22—, Therefore, we have that
€2 Caln

t

t
WO < (D + Kalor = 623, + Ko | [w(s)BIValo)ds + Ki | [w(s)lds
i . (3.23)

Applying the Gronwall inequality, we conclude that

V() = ()3 < Cgl(v7, 1) — (U7, 62) |32 exp { f (K + K2|Vu<s>|3>ds}, (3.24)

where CN'g = max{1, K;}. Thus, (i) is proved.

e Now we consider n = 3. Applying the Holder inequality we have

w2 |Vuldx < |w|? 2 Vul,. 3.25
| 1wEIvald < w2 s 19, (3.25)

Using the interpolation inequality (Theorem 1.17) for r =

pl,r1=6, ro = 2 and

a = 3/2p, we obtain

2p—3 3
2 2
I, 2, < P [l

2p-3 3
< duly™ [Vuly”,

since W2(Q) — L5(Q).

From this it follows that

| 1wV alds < wl? 2 (Val,
Q Lr=1(Q)
2p—3 3
< diwl,” [Vwl3 [Vul,
41 2 2553 2
< D Vw4 K| Vul 7w
G

2p
2p — 3)d»—3
—( P )Qp , with € = (%)3/%.

where K3 = 5
2pe?—3 23

Thus we obtain
2p t

w(b)2 < [w(r)2 + K j [Vu(s) |7 [w(s) 2ds + K, f w(s)2ds.  (3.26)

T—h
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2

t 2
We know that J |Vu(t)|;"~*dt < oo. Then, applying Gronwall inequality, we con-
clude that

2p

V() —u(t)} < Cy|(v7,61) — (07, 60) 3z exp { f (K + Ko Vu(s) |37 )ds},

T

forall T <t <T.

3.4 Existence of Pullback Attractors in Cyy and M3

In this section we are interested in analysing the asymptotic behaviour of the
weak solutions of the system (LMD) on the Banach spaces Cy and M3. Since the proof

of the results on Cy and M3 are similar, both cases will be treated in the same statements.

An important point to take into account is that we consider the “minimum”

hypotheses to obtain the existence of pullback attractors, that are:

(A) The tensor stress $ satisfies (2.7) and p = 1 + 2n/(n + 2),

loc

(B) fe Li.(R; V),
(C) g: [r,T] x C([~h,0]; H) — L*(Q)" satisfying (3.I)-(3.IV), given by (3.7), with

X =H and Y = L*(Q)" with uniform constants Cg and Lg for any —o0 <7 < T <

0.

Under conditions (A)-(C), Theorem 3.3 guarantees the existence of weak solu-
tions for problem (LMD), but not the uniqueness. Analogously to Section 2.5.1 (pullback
attractor in H) let us define the sets: ®¢,, (75 (¢4(0), ¢)) as the set of all weak solutions
to (LMD) defined on [T — h,00) with initial condition ¢ € Cy and by @y (7; (0", ¢))
the set of all weak solutions to (LIMD) defined (a.e.) on (7 — h,00) with initial condition
(u”,¢) e M.

Now, let us define the bi-parametric families of mappings U(-,-) : R2 x Cy —
P(Ch), and S(-,-) : R x M}, — P(Mj;), given by

U(t7 T)Qb = {ut('; T, ¢<O>7 ¢) ‘ue cI)CH (T; (¢<0)7 ¢))} (327>
with ¢ € Cy and (¢,7) € R3, and
S(t,m)(u", ) = {(u(t;7. 0", ¢), w (7,07, 9)) :ue Pyp (15 (07, )} (3.28)

with (u”, ¢) € M7 and (t,7) € R2.
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Proposition 3.7. Consider hypotheses (A)-(C). Let {¢"} < Cy and ¢ € Cy be such
that ¢™ — ¢ in Cy. Then, for any sequence {u™}, where u™ € ®¢,, (1; (¢™(0), ¢™)), for
all m € N, there exist a subsequence of {u™} (relabeled the same) and u e ®(7, (4(0), ¢)),
such that

ul' > us strongly in Cyg Vs > . (3.29)

Proof. The proof is similar to that of Proposition 2.20. But now we introduce the energy

functionals

J(r) = 9 J (£(0), u(0))d — Cir (3.30)
and
T(r) = ) J (E(0), w™(6)5d6 — Cr, (3.31)
for all 7 > 7 and some constant C' > 0 given later in (3.52).
With this, we can prove that u™(r) — u(r) strongly in H for all » > 7. Since

¢™ — ¢ in Cy, we conclude that, for each s > 7 fixed and for any 6 € [—h, 0]

u'(d) =u"(s+6) > u(s+60) =us(f) strongly in H.

Thus, we conclude that u* — ug strongly in Cy, since [—h, 0] is compact. [

Proposition 3.8. Consider hypotheses (A)-(C). Let {(u™, ¢™)} = M3 and (07, ¢) €
M?, be such that (™, ¢™) — (u”, ¢) in Mz. Then, for any sequence {u™}, where u™ e
Dypz (15 (u™, ¢™)), for all m € N, there exist a subsequence of {u™} (relabeled the same)
and w € @y (1,(u’, ¢)), such that

u”(s) — u(s) strong‘ly 27; H, (3.32)
u," —us strongly in Ly,
foralls =T
Proof. As in Proposition 3.7, we consider the energy functionals
I(r) = 9 J CE(0), u(0))d — Cir. (3.33)
and
() = 9 J CE(0), u™(0))d0 — Cir, (3.34)

forallr > 7.
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Therefore, as in the above Proposition we have that for all s = 7, u™(s) — u(s)

strongly in H. Since ¢™ — ¢ in L%, we deduce that for each s > 7 fixed

S

J_Oh [ul(r) — uy(r)|3dr = J [u™ (r) — u(r)|3dr

s—h

< | e - ampdr+ [ ) - ar

T—h

~ " = ol + [ ")~ a0 as -

We conclude that

u” —u, strongly in L%.

]

Corollary 3.9. Consider hypotheses (A)-(C). Then, U(-,-) is an upper-semicontinuous

multi-valued process with closed values.

Proof. 1t follows by Proposition 3.5 that U(, -) is a multi-valued process with closed values.
We suppose that the multi-valued process U(-,-) is not upper-semicontinuous. Therefore,
there exist (t,7) € R3, a neighbourhood N (U(t,7)¢) and a sequence {z"} which fulfils
that each z* € U(t,7)¢" , where ¢* — ¢ in Cy, but for all k € N z" ¢ N(U(L,7)9).
Since each z* € U(t, 7)¢*, there exists u” € ®¢,, (7; (¢"(0), ¢*)) such that z* = u’. Now,
applying Proposition 3.7, we deduce that there exists a subsequence of {uf} (relabeled
the same) which converges to a function u, € U(t,7)¢. This is contradictory because
zF ¢ N(U(t, 7)) for all ke IN. O

Corollary 3.10. Under the hypotheses of Theorem 3.3. Then, S(-,-) is an upper-semicontinuous

multi-valued process with closed values.

Proof. 1t follows by Proposition 3.5 that S(-,-) is a multi-valued process with closed
values. We suppose that the multi-valued process S(-,-) is not upper-semicontinuous.
Therefore, there exist (t,7) € R3, a neighbourhood N (S(¢,7)(u”,¢)) and a sequence
{z"} which fulfils that each z* e S(¢,7)(u™,¢") , where (u™,¢") — (u",¢) in M%,
but for all k € N z" ¢ N(S(t,7)(u",¢)). Since each z* € S(t,7)(u™,#*), there exists
u e Py (73 (u™, ¢*)) such that z* = (u*(¢),ul). Now, applying Proposition 3.8, we
deduce that there exists a subsequence of {(u*(t), uf)} (relabeled the same) which converges
to a pair (u(t),u;) € S(t,7)(u", $). This is contradictory because z* ¢ N(S(t,7)(u", ¢) for
all ke IN. O

In addition to hypotheses (3.1)-(3.IV) on the function g : [7, T|xC([—h,0]; H) —

L*(Q)™, we also consider
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(3.V) There exists a value > 0 such that for all u e L*(1 — h,t; H),

t

t
| erlgtsuds < 2 [ erfuts)fas

T T—h

Remark 3.11. We denote by 7j := covr\icy . Then, 1 satisfying hypothesis (3.V) can
take the values 0 < n <7 orn > 7. As in the section 2.5, for p = 2 we assume hypothesis
(3.V) for some n € (0,2v1\1¢,2].

In the next Lemma we are going to suppose the existence of some n > 0

satisfying the hypothesis (3.V) and we will analyse in two cases, when 1 € (0,7] and when
n € (7, +).

Lemma 3.12. Let p > 2. Assume that hypotheses (A)-(C) and (3.1)-(83.V), for the
delay term g, are satisfied. Then, for any (07, ¢) € M, there exist positive constants, CN’Lg

and Ch, such that any weak solution u € Py (13 (u”, ¢)) to (LMD) satisfies the following

estimate for all T <t

M

~ o -7 t*f—g s
() < Cuge ™ FIN W) + [T, + Kt D (335

Proof. From energy equality (3.20) and (2.7), we deduce

1d

57 M0 + erle(u)ls + comsfe(u)[f < (1), u(®)) + (g(t; w), w).

From the Korn, the Young and the Poincaré inequalities we obtain
d 2 — 2 p
218z + 20fuly + 202Vl < 2[£(0) [Vl + 2/g(t, ue)l2|ulz

2 q eﬁ’ » 1 9 9
——EO]% + —=[Vu[} + —|g(t, w)[5 + e2[uls,
€ p €2

where 77 = c2y1)\1052, N = 02; and £1,e9 > 0 to be chosen.
0
Choosing ¢; = né/pp and 9 = 7, there follows
d 2 | =12 P q 1 2
g1 a )z + 7uf; +nefVulp < Ko f@)[5 + %\g(tv uy)[3, (3.36)
94
where K, = q/T

2
To finish the proof, we consider two cases: when 0 < 7 <7 and when is n > 7.

e Case 0 <n<7n:
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Multiplying (3.36) by e, integrating from 7 to ¢ and, using hypothesis (3.V),

we have

t

t 02
() < Crye | ), + [ e Kilf(s)Izds + 25 | erlu(s) s

CQ
where C; g = max{l, —} Applying the Gronwall inequality, give us

t

N N
(O < Cue™ P ) + K 0D

T

Tg
n

CIE(s)4ds.

e Casen >1:

C2V1)\1

Denote 0 < 8 :=1n — . Consider also C; the constant of the embedding W, *(Q)" ¢
L2 Q)" ie. July < C’I||Vu\|p. Then the Young inequality yields

(p -2
ryp/(p 2)

HV 5 +

[uf; <

/ 2
,yp/ 2 Coly

/2 25

Putting —

lul; <

vy Cy,

N 9 O2p/ p—2)
where C] = (p—2) ﬁ
pf)/P/(P 2)

. Then (3.36) reduces to

d 2 1 A
@ +nluls + F[Valf < K ()] + %|g(t7ut)!§ +Ch.

Multiplying by €, integrating from 7 to ¢, and using hypothesis (3.V) in (3.36), we have

t

- t =R 02
ﬁ%@&@%WMﬂM%+JW@wKN@W%+;JW%®@&

2
where C g = max{l, —2}. Applying the Gronwall inequality, we arrive at
n

~ Ca t g ~
|w%<agﬂﬂmﬂmn@@+ffoWWa+mwwwwva

T

O

Remark 3.13. For the case p = 2, we can assume that co = 1 and vy = 0. With this, as
in Lemma 3.12, for some n € (0,2v1\1cy 2] satisfying hypothesis (3.V), we obtain

Sy R Sy
\Wﬁ<%y“wmWMwM%+&fem”WWWMw (3.37)

2
where Ny = 21/1)\1052, Cyg = max{l, ﬁ—g} and K5 > 0.
2
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Since in the asymptotic pullback analysis, we study the behavior of solutions
2

when the initial time 7 tends to —oo it is necessary, for the case p > 2, that n > —2
1

see (3.35). Besides that, in this case, there is no restrictions for constants Cy and 77. On
the other hand, for the case p = 2, as we saw in Remark 3.13, we obtain an estimate for

lu(t)|, for n € (0,7,], see (3.37). Therefore, for the study of asymptotic pullback behavior
in this case, we have to assume 7 > —2 for some 71 € (0,7,], and this is possible whenever

T2
02
7y > Cg. To simplify the calculations, we will denote by o, :=n — —Z.
n

In the remainder of this section, we are going to consider the case p > 2 because

the case p = 2 is analogous.

Lemma 3.14. Let be p > 2. Assume that hypotheses (A)-(C) and (8.1)-(8.V) for some
2

n > —2& are satisfied. Then, given t € R with t > T we have:
n

(i) If (u",¢) € M}, any u e Py (1, (0", 9)) satisfies the following estimate in Ly

t
[wi[7s < em"Coge | (07, 0) |3, + he”" f e IOy + Ky[£(s)|)ds,

i (3.38)
where C~‘2,g =1+ hCN’Lg.

(i) If o € Cy, anyue O¢, (7;(0(0), @) satisfies the following estimate in Cy

t

lu2, < e " Cage™ D@2, + e " f eI (Cy + Ky|f(s)|2)ds  (3.39)

T

where Csg = 1+ (14 h)Ch .

Proof. (i) From (3.35) for 7 + h < t, we obtain

t+r
u(t +7)[5 < Crge™ ™7 |(u7, )32 + J e~ I (O + Ky[f(s)|)ds,

for all r € (—h,0).
Thus, integrating in r between —h and 0, we have that

t

a2, < hhgerhe T ), + he [ eIy + KE(5) 2)ds,

i (3.40)
forallt = 7+ h.
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Now, suppose that 7 <t < 7+ h. Then

0 ¢
e""(t_h)HutH%%{dr < J e (t + r)|2dr = J " [u(r)|3dr
~h t—h
t

= J e lu(r)|3dr + J e’ " u(r)|dr
t—h

r
t

3.35) ~ OnS (A
< @617z, + hCrge™ (07, 6)l3p + f e (Cy + Ka£(5)]4)ds.

T

(

Therefore, from both estimates above we conclude that

t
fuf, < e Cage (W, 0) g + b [ e Gk Kalg(9)2)ds.

T

for all 7 < t, where 6'28 =1+ hCN’Lg.

(ii) Let be t = 7 and s € [—h, 0], and suppose that ¢ + s > 7. Then from (3.35) we have

t+s =R
[u(t + )3 < Crge™ (w7, 6) 3 + f e~ (Cy 4+ K£(6)[4)do

-
t

< (14 h)e @ Chge o7 |g)2, + " f e~ =0(Cy + K4|[£(0)]2)do.

T

Now, suppose that ¢t + s < 7, and observe that

e u(t + 5)[3 < e Iu(t + )3 < g3,

Therefore, from last inequalities we conclude that
t

< o Cage g, + e | (G + KR(0) 2)as

T

where Csg := 1+ (1 4 h)Cig.
[l

Definition 3.15. (Universe in Cy) Given o > 0, we will denote by D,(Cy) the class
of all families of nonempty subsets D = {D(t) : t e R} « P(Cy) such that

lim (e’ sup |v|? )z().
Jim (e s VI,

And we will denote by Dp(Cy) the class of all families D = {D(t) = D : t € R} with D a
fixed nonempty bounded subset of Cy.

Definition 3.16. (Universe in M3 ) Given o > 0, we will denote by Dy(M3,) the class
of all families of nonempty subsets D = {D(t) : t e R} « P(M?%) such that

i, (e sup (vl ) =0
(

T—=>=0 v,0)eD(T)

And we will denote by Dp(M%) the class of all families D = {D(t) = D : t € R} with D a
fized nonempty bounded subset of M.
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2
In the following, we will assume that there exists n > —Z satisfying the
hypothesis (3.V) and

0
f e\ £(s)||2ds < oo, (3.41)
—
or in other words f € Z}7".

Remark 3.17. Observing that f € Li, (R, V"), assumption (3.41) is equivalent to

loc
t
f eons
—o0

Corollary 3.18. Let be p > 2. Under the hypotheses (A)-(C) and (8.1)-(8.V) for some
02

n > —2 are satisfied and assume that f € L{, (R; V") satisfies (3.41). Then, the families
n

loc

f(s)|lds < o VteR.

Bo,cy = {Baycu(t) : t € R} with By, ¢, () = Be, (0,R(t)), and By, vz = {B,, a2 (t) -
t € R} with B, a2 (t) = EM%I(O,R(t)), are pullback Dy, (Ch) -absorbing for the process
U(-,-) and pullback Dgn(M?{) -absorbing for the process S(-,-), respectively, where

t
R2(t) =14 (1 + h)e™" J e~ (C + K4 |£(0)]2)db. (3.42)
—0

Proof. Tt follows directly from Lemmas 3.12 and 3.14. m

Lemma 3.19. Let be p > 2. Under the hypotheses (A)-(C) and (3.1)-(3.V) for some
2

C
n > %g are satisfied and assume that £ € Lj,.(R; V") satisfies (3.41). Then for any t € R

loc
and D € D,,(Ch) (13 € D,, (M};)) there exists Tl(lA),t, h) <t —h —2 such that for all
7 <7(D,t,h) and any ¢ € D(7) ((u”,¢7) € D(7)) it holds

b (67(0), ) < @1(t) Vrelt—h-2.1),
. HVU(Q;T, (QbT(O), ¢7‘>)H};d9 < QQ(t) Vr e [t _h— 1,t], (343)

r—

where ,
() = 1+ e~on(t-20-2) f 7By + Kal[£(s)])ds, (3.44)
—Q0
1 L? Ky (1
Qtz—i-gQQt-i-J f(s)|%ds. 3.45
0= G i+ 5[ e (3.49)

Proof. From Lemma 3.12, choose 71(15, t) <t — h — 2 such that

CN’l,geion(tiT)MﬁbT(O),QbT)H?w?{ <1,

for all ™ € D(7), ((u”,¢") € D(1)), with 7 < 7'1(15, t). Thus, we obtain the first estimate.
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Now, observe that u e C([t — h —1,t]; H). Therefore, integrating between r — 1
and r (3.36), with r € (t — h — 1,t) and using hypothesis (3.III), we have

T T 2 rr
w | IVals) s <t~ DB + K [ 1) zds < 22 [,
—1 —1

T r r—1
Therefore, from (3.44), we conclude

T 1 L2 K4 t
Vu(s)|[Pds < +992t+f f(s)|%ds,
[ ivueas < s 2 - T o)

forall e [t —h—1,t], 7 < (D, t) and ¢" € D(7) ( for all (u”,¢") € D(7)). O

Theorem 3.20. Let be p > 2. Under the hypothesis (A)-(C) and (3.1)-(3.V) for
2

C
some 1 > —2 are satisfied and assume that £ € L, (R; V') satisfies (3.41). Then, the
n

loc

processes U(+,-) and S(-,-) are pullback é%cH -asymptotically compact and pullback EamMé'

asymptotically compact respectively.

Proof. Given ty € R, and any sequence {¢™} with ¢™ € B, ¢, (7,) (or (u™,¢™) €
B%M%(Tm)), where 7,, > —o0 as m — . Denote by u™ = u™(-;7,,,9"(0), ™) any
sequence of weak solutions to (LMD) with u™ € ®¢,, (7™; (¢™(0), ¢)) (and denote by u™ =
u” (7, u™, ™) any sequence of weak solution to (LMD) with u™ € @2 (77; (u™, ¢))).
We will prove that the sequence {u;} is relatively compact in Cp, ({(u™(to),uz)} is

relatively compact in MZ).

It follows from Lemma 3.19 that there exists mg(to, h) such that

\um(r)lg < Ql(t(]) Vr e [to —h— Q,to] Ym > mo(to, h), (346)

J Hum(S)”If’pdS < QQ(to) Vr e [t() —h— 1, to] Ym = mo(t(), h) (347)

r—1
On the other hand, for each m = mg(to, k), the function u™ is a weak solution

to (LMD) on [ty — h — 1,ty]. Thus, from (3.46) and (3.47), there exist a subsequence

(relabeled the same) and a function u such that

u™ S u  weakly-+ in L*(tg — h — 1,t9; H),

u” —u  weakly in LP(ty —h —1,t0;V,),
oum  oOu _ .
& A weakly in L(to — h — 1,to; V), (3.48)

u™ —u strongly in L*(to — h — 1,to; H),
u”(t) > u(t) ae te(to—h—1,1) in H.

Observe also that ue C([to — h — 1,t0]; H), and that for any sequence {t,,} €
[to — h — 1,to] with ¢, — t*, one has

u”(t,) —u(t*) in V. (3.49)
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Moreover, by (3.III) and Lemma 3.19, we obtain

[ tetsouryads < 1300+ Vst

Thus, eventually extracting a subsequence, there exists ¢ € L*(ty — h — 1,t; L*(2)") such
that
g(-,u™) — ¢ weakly in L*(tg — h — 1,t0; L*(Q)"),

and observe that, again by (3.III) and Lemma 3.19, we get
f lg(s,u™(s))|ads < C(t — s),
f £(r) Bdr < tim mff (s, u™(s))[2ds < C(t — s), (3.50)

forall tg —h—1< s <t <ty where C = Lé‘QQ(tO). Then, in a standard way, one can

prove that u(-) is a weak solution to the problem

. aaz — div,(S(e(v))) + divy (v V) + Vi = £(t) + £(t) in (to—h —1,1) x Q,

div,v =0 in (tg —h —1,%9) x Q,
v=0 on (to—h—1t) x 09,
v(to—h—1,2)=u(to—h—1,2), xeQ.

A

\

(3.51)
By the energy equality, Lemma 3.4, and (3.50), we obtain
1
SO < 5la(s)3 + f (), 2(r)yds + C(t — ), (3.52)
forallto—h—l<s<t<t0,whereé’=0ﬁ_l,andz=umorz=u.
Then, the maps Jp,,, J : [to — h — 1,to] — R defined by
1 t ~
Int) = S @B~ | <t - o
2 to—h—1
1 ¢ -
IO = Sla®B = [ @), ul)dr - Ct
to—h—1
are non-increasing and continuous, and satisfy
Jn(t) = J(t) ae. te(to—h—1t). (3.53)

We can use the functionals J,, and J to deduce that u™ — win C([to—h, t]; H).
If this is not, then there exist ¢* > 0, and subsequences {u™} < {u™},>m,n) and
{tm} < [to — h, to], with t,, — t*, such that

lu™(tp,) —u(t*))]s =" Vm. (3.54)
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Let us fix € > 0. Observe that t* € [ty — h, ty] and therefore, by (3.53) and the

continuity and non-increasing character of .J, there exists tg — h — 1 < £. < t* such that

lim J(t.) = J (), (3.55)
and
0<J(t.)— J(t*) <e. (3.56)
Since t,, — t*, there exists m. such that {. < t,, for all m = m.. Then, by
(3.56)

< | m(le) = J(E)|2 + [T (Ee) = J(t)]2
< | Jn(le) = J(E)|2 + ¢

for all m = m,, and consequently, by (3.55), limsup J,,,(t,,) < J(t*) + e. Thus, as € > 0 is
m—a0
arbitrary, we deduce that

lim sup Jp, (¢,,) < J(t%). (3.57)

m—0o0

Taking into account that ¢,, — t* and

¥

tm
| i [ ) utyan
to—h—1 to—h—1
from (3.57) we deduce that limsup [u™(t,,)|2 < |u(t*)|z. This last inequality and (3.49),
m—00
imply that u™(¢,,) — u(t*) strongly in H, which is contradiction with (3.54).

We have thus prove that u™ — win C([to—h, to]; H) and we obtain in particular

that:
u; —u,, in C([-h,0]; H),
u”(ty) — u(ty) in H, (3.58)
u; — uy, in L*(—h,0; H),

This finishes the proof. O

Theorem 3.21. Let be p > 2. Under the hypotheses (A)-(C) and (3.1)-(3.V) for some
2

C
n > —£ are satisfied and assume that f € L (R; V) satisfies (5.41). Then, there exist
n

loc

the minimal pullback Dp(Cy)-attractor Ap,cy) = {Appcm)(t) 1 t € R} and the minimal
pullback Dy, (Crr)-attractor Ap, (cy) = {Ap,, cn)(t) : t € R} for the multi-valued process
U:R; x Cy — P(Cy). The minimal pullback Dy, (Crr)-attractor belongs to Dy, (Crr) and
the following relationships hold

Appen)(t) = Ap,, ) (t) = Bey (0,R(t) VteR. (3.59)
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Proof. The existence of pullback attractors for the multi-valued process U(-,-) in the
universes D, (Cy) and Dp(Ch) follows from Theorem 1.42. The inclusions (3.59) are
given by the Corollary 1.44. m
Theorem 3.22. Let be p > 2. Under the hypotheses (A)-(C) and (3.1)-(3.V) for some

CQ
n > —£ are satisfied and assume that £ € Lj, (R;V)") satisfies (3.41). Then, there exist
n

the minimal pullback Dp(MF)-attractor Apzy = {Apyuz)(t) : t € R} and the minimal
pullback D,, (M})-attractor Ap,, o) = {Ap, uz)(t) : t € R} for the multi-valued process
S : R x Mp — P(M}). The minimal pullback Dy, (Mf)-attractor belongs to D, (M)
and the following relationships hold

Appuiz)(t) © Ap, iz (t) © Bz (0,R(t) VteR. (3.60)

Proof. The existence of pullback attractors for the multi-valued process S(-,-) in the
universes D,,(M}) and Dp(Mj;) follows from Theorem 1.42. The inclusions (3.60) are
given by the Corollary 1.44. O]

Remark 3.23. Iff € L] (R;V?) satisfies that

loc P

s<0

sup <ew J e””f(r)idr> <o (3.61)
—©

we guarantee that for all T € R, UECH(O,R(IS)) and UEM?{(O,R(t)) are bounded

t<T t<T
subsets of Cyr and M3, respectively (see estimate (3.42)) since

sup (e"”sf e’n” (CAH + |f(r)|;{)dr) < 0. (3.62)

S<0 —00

Therefore, from Remark 1.45 we obtain that

Appcn(t) = Ap,, cn(t) and  Ap, ) (t) = Ap, (sz)(1). (3.63)

Remark 3.24. Observe that, if £ € Lj,.(R;V,") satisfies that £ € T} for some n > 0,
then £ € I8 for all p € (n, +0), and besides that, D,, (Cy) < Dy, (Cy) and D,, (M}) ©
DUM(MIQ_I). Thus, for all u € (n,+0w) there exists the corresponding minimal pullback

D,, (Cx)-attractor, Ap, (cy)-
Since Dy, (Cu) < Dy, (Cu) and Dy, (M7;) < Do, (M},), there follow from The-
orem 1.46 that, for any t € R, Ap, (c,)(t) © Ap, (i) (t) and Ap, 2)(t) = Ap, (z)(t)
for all € (n,+0).
Moreover, if £ satisfies (3.61), then
sup (e‘”“sj e””\f(r)\idr) <o for allp e (n,+0),
—00

s<0



Chapter 3. A Class of Incompressible non-Newtonian Fluid with Delay 101

therefore, by (3.63) we get

Appem(t) = Ap, (cn)(t) = Ap,, (o) (t)  for all pe (n, +o0).

and
-ADF(M,?{)(t) = ADUn(Mfl)(t) = AD(,M(M?,)(t) for all p e (n, +o0).

Remark 3.25. We consider the canonical injection j : Cy — M3 defined by j(¢) =
(0(0), ¢). Thus, we can identify

J(Appcm)(t) © Apparz)(t)  and  j(Ap,, (1)) = Ap, rz)(t),

for allt € R.

It is simple to show that j(Ap,, (cy)(t)) = Ap,, ) (t). Then, to get the other
inclusion we use the fact that, j € L(Cy, M%) with 17 cecmmzy < (1+ h)Y2. Then, for
T<t—h

distygz (S(t,7)D(7), j(Ap,, (c)(t)))

= distysz (S(t, 7+ h)(S( + h,7)D(7)), j(Ap,, cm(®))

= distyz (S(t, 7+ h) (j (72 (S(T + h,7)D(7))), 5 (Ap,, () (1))
(S(t, 7+ h)(H(D"())), i (Ap,, (1))

2 (4 (Ut 7+ h)(D"(7))), 5 (Ap,, 0 (1))

< (L+ h)Pdistc, (U(t, 7+ h)(D"(7)), Ap,, ) (1)),

where Tz M3, — L3, with T2 (W, @) = ¢, for all (u, ) € M%, and D"(s) = T2 (S(s +
h,s)D(s)) for all s € R. Observe that D" e D,,(Cr). Then, since Ap, (cy) s pull-
back D,, (Cg)-attracting, from previous inequality we obtain that j(ADUn(CH)) is pullback
D,, (M})-attracting in Dy, (Mf;). Thus, since Ap,, (2)(t) is the minimal closed set that
pullback attracts any family D e D,, (M3), we conclude thatj(Apan(cH)(t)) < Ap,, (az)(t)
for allt e R.

3.5 Continuity of the Processes U(+,-) and S(-,-)

Remember that in Section 3.4, about the assumptions given in Theorem 3.3,
we define the process U(-,-) : R2 x Cy — P(Cy), and S(-,-) : R2 x M3 — P(M%), given
by

U(t,m)¢ = {u(7,0(0),0) : ue Oe,, (75 (6(0), 9)) }

with ¢ € Oy and (¢,7) € R2, and

S(t,7)(u", ) = {(ult; 7,07, 0), w (7,07, 9)) 1 wE Py (15 (07, 0))}
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with (u”, ¢) € M% and (t,7) € R2.
Observe that under assumptions given in Theorem 3.6, the process U(+,-) and
S(-,-) are uni-valued, i.e.: the processes are reduced to U(-,-) : R x Cy — Cp, and
S(-,-) : R3 x M}, — M3, given by
U(t77)¢ = ut(';’ra ¢(O)a¢) (364)

with ¢ € Cjy and (¢,7) € R3, and

S(t,7)(u", ¢) = (u(t;T, u’, ), w(-; T, uT,¢)) (3.65)
with (u”,¢) € M% and (¢,7) € R3.

The following results show that the processes defined in (3.64) and (3.65) are

continuous processes.

Lemma 3.26. Let us consider f € L(7,T;V)), and g : R x Cyg — L*(Q)™ satisfying
(3.1)-(3.IV) defined in (3.8). Given (v7, ¢1) and (u”, ¢o) in Mz, let us denote by v(-) =
v(; 7, (VT ¢1)) and u(-) = u(-;7, (a0, ¢s)) two weak solutions to (LMD), with initial

conditions (v7,¢1) and (U7, ¢9), respectively. Then
(i) Ifn=2:

Iv(t>—u<t>|§<(7g|(vi¢1)—(uT,cbz)llﬁg,eXp{ | (Kl+k2|w<s>|§>ds}, (3.66)

T

~ 20 20 24
forall T <t < T, where ngmax{l,M}, K, = %8 nd ko = %t
20 20 4

Therefore, it also holds

vi— i, < Cel(v7. 1) — (07, 62) |3 exp { | i K2|Vu<s>|§>ds}, (3.67)

T

forallT+h<t<T.

(ii) Ifn=3 andu,ve L%(T, T;V,), then

2p

Vo)~ a0 = Gyl 60 - (7 0y exp [ (K + Kol V(o)) s |
' (3.68)

2p

2p — 3)d»=3
—( P 3)2p , with € = (@)3/210.

2pe =3 2¢§

forallT <t <T, where K3 =

Therefore, it also holds

T

t 2p
o2, < Gl (v 1) — (07, 6a)|3p; exp { [ (K1+K3vll<s>;“>ds}, (3.69)

forallt+h<t<T.
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Proof. For (i), inequalities (3.66) and (3.68) are consequence of Theorem 3.6.

Now, if t = 7 + h then for any s € (—h,0) we have that ¢ + s > 7. thus by
(3.66) for t + s, we obtain that

T

V(t+5) —ult + ) < Cal (v, 61) — (07, 62) 32 exp { | (K K2|Vu<e>|3)d9}

< G0 - (g exp ] [ (13 + Kl Tu(o))as

T

since t >t + s> 7. Due tou,veC([r,T]; H), we can take the maximum on s € [—h, 0]

and we conclude that

v il < Gl 00— (o) e { [ (K + Kl Fu(o) 7 as .

T

for all 74+ h <t < T. Thus, (3.67) is proved.
In the same way we demonstrate case (ii). O
Theorem 3.27. Under the hypotheses of Lemma 3.26, the applications U(t,7) : Cy — Cy

and S(t,T) : M} — M}, are continuous for each (t,7) € R3.

Proof. We prove this Theorem for n = 3, since for n = 2 is analogous.

From the uniqueness of solution, we obtain that U(-,-) and S(-,) are processes.

To prove the continuity of both processes, we will use the Lemma 3.26.
e U(t,7): Cy — Cy is continuous for each (¢,7) € R3:

Let be ¥, ¢ € Cy, and consider the solutions u(-) = u(-; 7, (¥(0), 1)), v(-) = v(;; 7, (¢(0), ¢))
to (LMD). We deduce from (3.68) that

S

[v(t) —u(t)]; <

1(6(0), 6) — (8(0), ) |22 exp { | 0+ Vi) ) }

T

= 8,(00) - VOB + o~ ol exp { [ (80+ Kl V(o)) s}

T

t
< 3,((1+ Yo — v, ) exp { | @1+ K vu(s) 77 } I
For s € [—h,0] and ¢ > 7, we consider two cases. The first case is when t+s > 7,

and the second case is when s + ¢ < 7. Then, for the first case, we use the inequality above

V(t+5) —ult + 5)3 < 5g<<1+h>|¢¢éH)exp{f (K + K| Vu(s) |7 }

T

<5g(<1+h>|¢wa,)exp{f (K + Ky Vu(s)|37)d }

T
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For the second case (s +t < 7), it is direct to see

Vit +s)—ut+s)i=[(s+t—7)—p(s+t—17)|3
<[ -9¢l2,

<&y o= vl ) e [ (K0 K Pu(o) s |

T

Thus, it follows from the inequalities above that, for all 7 < t and s € [—h, 0]

[V(t+s) —u(t+s)<C ((1+h)|!¢—¢%H)eXp{f (K1 + K3 Vu(s |k 7Y }

T

By applying the maximum in s, we obtain

vimul, <G mio— vz ew [ (K KIvaEIF st 12

T—h

Therefore, we conclude that U(t, 7) is continuous for all 7 < t.
e S(t,7): M} — M3 is continuous for each (t,7) € R2:

Let (u”,%),(v",¢) € M, and consider the solutions u(-) = u(-;7, (u", %)),
v(-) =v(;7, (v, ¢)) to (LMD). We deduce from (3.69) that, for 7 + h <t

0
ol = [ v+ 0) — ule+ 0)a9
—h

< 10| (v ) (W 9) eXpUt (K1 + K3 Vu(s )H% 3) }

On the other hand, if 7 <t < 7+ h we deduce

—h

= [ vt = uiar = [ ) —uar < [ 100 - st + [ ivie) — uirta
<l ol + [ oo — o e | [ (0 Kl Puls) ) as b

T

0 t
vl = | (v 0) —ute+ 0)3d0 = [ vir) - ulr)ar
t—h

3

< | — 6l + hC, (W™ w) — (07, §)[2 exp { | @0+ Kl vu(s)17) }

T

Thus, we have for all 7 <t

T

v~ il < 10— dley + A, (W) — (w7, &)3 exp { | @0+ Kl Tu(s)177)d }

< (€, 4 v ol + 11y = wB)esp { [ (8 + Kol Va7 )as),

and the continuity of S(¢,7) follows immediately from (3.22) and this inequality. O
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Remark 3.28. The results established in this section can be seen as more general results
given in section 3.3, about the uniqueness of weak solution to (LMD). In summary we

have shown continuity in relation to the initial conditions.

Remark 3.29. As last observation to end this section, the existence of pullback attractors
in the Banach space Cy = C([—h,0]; H) and the Hilbert space M7, = H x L*(—h,0; H)
with h > 0, established in Theorem 3.21 and Theorem 3.22, is also valid for continuous
processes U(-,-) and S(-,-) (see books [17, 45, 54]).
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4 Final comments and future proposals

In this section we start by collecting, in a didactic way, all the results shown in
this work. The symbol v* indicates that it has been proved and x nothing is affirmed.

Tables 1 and 2 summarize the results established in Sections 2.2, 2.3 and 2.4
on the existence, uniqueness and regularity of weak solution to (LM).

Table 1 — Existence, uniqueness and regularity of weak solutions to (LM) for n = 2

Table 2 — Existence, uniqueness and regularity of weak solutions to (LM) for n = 3

n=2 values of p
Solution features | p =2 | (2, +0)
Existence v v
Uniqueness v v

Higher regularity X v

n=3 values of p
Solution features | [2,11/5) | [11/5,12/5) | [12/5,5/2) | [5/2, )
Existence X v v v
Uniqueness X X X v
Higher regularity X X v v

Tables 3 and 4 give a summary of the results established in Subsections 2.5.1

and 2.5.2 on the existence of pullback attractors in H and V.

Table 3 — Existence of pullback attractors to (LM) for n = 2

n=2 values of p
Pullback Attractor | p =2 | (2, +0)
H v v
Vo X v

Table 4 — Existence of pullback attractors to (LM) for n = 3

n=3 values of p
Pullback Attractor | [2,11/5) | [11/5,12/5) | [12/5,5/2) | [5/2, )
H X v v v
Vi X X X v

Remark 4.1. A relevant fact is that it seems feasible to show existence of pullback
attractors in V), for the multi-valued case, i.e., when p = 1+2n/(n+2). The main obstacle

in this case was the upper-semicontinuity of the multi-valued process. This is an entirely
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topological problem, but the viability is suggested, since the weak solutions are weakly

continuous on V.

Tables 5 and 6 furnish a summary of the results established in Sections 3.2 and

3.3 on the existence and uniqueness of weak solution to (LMD).

Table 5 — Existence and uniqueness of weak solution to (LMD) for n = 2

n=2 values of p
Solution features | [2,+0)
Existence v
Uniqueness v

Table 6 — Existence and uniqueness of weak solution to (LMD) for n = 3

n=3 values of p
Solution features | [2,11/5) | [11/5,12/5) | [12/5,5/2) | [5/2, )
Existence X v v v
Uniqueness X X X v

Tables 7 and 8 compile the results established in Section 3.4 on the existence
of pullback attractors in Cy = C([—h,0]; H), M3 = H x L*(—h,0; H) and My, =

V, x LP(—h,0;V,), with h > 0.

Table 7 — Existence of pullback attractors to (LMD) for n = 2

n=2 values of p
Pullback Attractor | [2,+400)
C H and M]Q{ v
MY, X

Table 8 — Existence of pullback attractors to (LMD) for n = 3

n=3 values of p
Pullback Attractor | [2,11/5) | [11/5,12/5) | [12/5,5/2) | [5/2, %)
Cy and M3, X v v v
My, X X X X

Although, in all this work we have never mentioned the Banach space M{}p, it

is conveniently introduced in this chapter in order to formulate new problems.

Remark 4.2. As in the case of regularity study of the pullback attractors on V, for the
system (LM), we can think of an equivalent analysis for the system with delay (LMD ).
From the existence of pullback attractors in M3 build and analyze the existence of pullback

attractors in My,
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We finish this section commenting on some future proposals. But before that,

let us make a brief introduction about fractal dimension.

The geometry of the attractors for autonomous and non-autonomous systems
can be complex and difficult to describe. Therefore, it is useful to have quantitative
characterizations of such geometric objects. Maybe the most basic characterization of this

type is the dimension of the attractor.

The treatment of this concept is necessarily abstract, since the application of
the results generally makes use of certain properties of differentiability and which need to

be carefully reviewed in each particular application.

There are many possible definitions of dimension, but in the field of dynamic
systems the most used are the Hausdorff dimension and the Fractal dimension (also called

box-counting dimension).

We will focus on the fractal dimension for two reasons: it always provides an
upper limit to the Hausdorff dimension, and it is known that any set with a finite fractal
dimension can be introduced into a finite dimensional Euclidean space using a linear
application, whose inverse is Holder continuous. This result is not true if we assume that

the Hausdorff dimension is finite; see [17, pg. 72].

The fractal dimension of a compact subset K of a metric space X is defined by

log Nx (K
dimp(K) = lim sup log Nx (K, r)
r—0 —logr
where Nx (K, ) is the minimum number of balls of radius r, centered at some point K,

which covers K.

With this short introduction on the concept of fractal dimension for compact
subsets in metric spaces, and with the analysis made in this work, it is natural to raise

and discuss the following problems:

e To show results of regularity of the pullback attractors of H and V, for other powers
p for the system (LM) and analyse their fractal dimensions.

e To show higher regularity of different families of pullback attractors on Cy, M3 and

My, for the system (LMD) and analyse their fractal dimensions.

e To obtain results for tempered behavior of pullback attractors in both cases.
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