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Resumo

Por muitos anos, os quatro sorotipos do vírus da dengue têm causado doença variando de

assintomática à dengue grave e potencialmente fatal em milhões de pessoas por ano. A

primeira infecção por dengue fornece uma proteção para a vida toda contra a reinfecção

com o mesmo sorotipo, mas apenas proteção parcial contra outros sorotipos. Acredita-se

que os anticorpos existentes contra um sorotipo pode aumentar a gravidade da doença,

um fenômeno conhecido como Reforço dependente de anticorpo. Nesta tese, nosso foco

foi o tratamento matemático da interação entre o sistema imunológico e vírus da dengue.

Primeiramente, desenvolvemos um modelo matemático da resposta imune adaptativa ao

vírus da dengue na infecção primária, onde se considera que a ativação da resposta imune

celular e humoral é mediada pela diferenciação de células auxiliadoras Th. Conclui-se que

o vírus da dengue é eficazmente eliminado pela resposta imunológica celular, se ocorrer

uma intensa proliferação de células citotóxicas. Caso contrário, em uma proliferação fraca,

o vírus da dengue é removido por uma proliferação potente de células B ativadas ou/e a

inibição da ativação de células auxiliadoras Th1. Além disso, as simulações com dados

clínicos mostram que a atividade citotóxica é inibida no início da infecção, enquanto que as

células B ativadas realizam a primeira resposta imunológica, o que pode ser uma estratégia

do vírus da dengue para se propagar no corpo. Após a primeira etapa, formulamos um

modelo matemático para explorar o reforço dependente de anticorpos na segunda infecção

pelo vírus da dengue e determinamos um limiar para o parâmetro de proliferação das

células B de memória. É possível ver que acima deste parâmetro, a elevada proliferação

dos anticorpos não neutralizantes aumenta a possibilidade de formação do complexo

anticorpo-antigêno, levando consequentemente, a uma maior probabilidade de opsonização

por células imunitárias, enquanto que abaixo desse parâmetro ou as partículas virais são

eliminadas ou atingem o nível mínimo. Finalmente, usamos um método direto de Lyapunov

para estudar a estabilidade global de um modelo de dinâmica de vírus considerando uma

resposta imune humoral e celular. Observamos que, se o número líquido de vírus é menor

ou igual a um, o equilíbrio livre de vírus é globalmente e assintoticamente estável. A

estabilidade global do equilíbrio com presença de vírus foi estabelecida se a taxa de entrada

viral nas células de alvo for menor ou igual a um.

Palavras-chave: Vírus da Dengue. Reforço dependente de anticorpos. Sistema imunológico

adaptativo. Método direto de Lyapunov.



Abstract

For many years, the four serotypes of dengue virus have caused asymptomatic to severe

and potentially fatal dengue disease in millions of individuals each year. The first dengue

infection provides a protection for life against reinfection with the same serotype, but

only partial protection against other serotypes. It is believed that existing antibodies

against one serotype may increase the severity of the disease, a phenomenon known as

antibody dependent enhancement. In this thesis, we focus on the mathematical treatment

of the interaction between the immune system and dengue virus. First, we develop a

mathematical model of the adaptive immune response to dengue virus in the primary

infection, in which it is considered that the differentiation of the helper cell mediates the

activation of the cellular and humoral immune response. We conclude that the dengue

virus is effectively eliminated by the cellular immune response if there exists an intense

proliferation of cytotoxic cells. By contrast, in a weak proliferation, the dengue virus

is removed by a potent proliferation of activated B cells and/or the inhibition of the

activation of Th1 helper cells. Further, the simulations with clinical data demonstrate

that cytotoxic activity is inhibited at the beginning of infection, whereas the activated

B cells perform the first immune response, which could be a dengue virus strategy for

spreading throughout the body. Second, we formulate a mathematical model to explore

the antibody-dependent enhancement of dengue disease. We found a threshold for the

proliferation parameter of B memory cells. We can see that above this threshold, the high

proliferation of non-neutralizing antibodies increases the possibility that antibody-antigen

complex will form. Consequently, opsonization by immune cells would become more likely,

whereas those below this threshold or the viral particles are either eliminated or reach the

minimum level. Finally, we use a Lyapunov direct method to study the global stability of

a model of virus dynamics while considering the humoral and cellular immune responses.

We found that if the net number of viruses is less than or equal to one, the virus-free

equilibrium is globally asymptotically stable. By contrast, the global stability of virus-

presence equilibrium is established if the viral entrance rate in the target cells is less than

or equal to one.

Keywords: Dengue virus. Antibody dependent enhancement. Adaptive immune system.

Direct Lyapunov method.
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Introduction

Dengue is an endemic viral disease present in more than 100 countries, with

approximately 50–100 million new infections occurring annually. Dengue exerts a huge

impact on the economy because it directly affects the population and health systems, and

its incidence has increased 30-fold in the past decade [1]. Dengue virus (DENV) is a virus of

the family Flaviviridae that is transmitted by the bite of an infected female mosquito of the

species Aedes aegypti or Aedes albopictus [2],[3]. A dengue infection could be asymptomatic

or symptomatic. When it is symptomatic, it is called dengue fever or severe dengue (dengue

hemorrhagic fever and dengue shock syndrome). Dengue fever includes a high fever and

at least two of the following symptoms: severe headache, pain behind the eyes, muscle

and joint pain, nausea, vomiting, swollen glands or rash. Symptoms usually last for 2–7

days. Severe dengue is most serious manifestation of the disease due to plasma leaking,

fluid accumulation, respiratory distress, severe bleeding, or organ impairment, which need

proper medical care to prevent complications and reduce the risk of death [4],[5]. There

are four serotypes of DENV (DENV-1, DENV-2, DENV-3 and DENV-4), and all can

generate the clinical manifestations described above. A primary dengue infection provides

protection for life against reinfection with the same serotype, but only partial protection

against other serotypes. Generally, most primary infections are dengue fever and few

develop severe dengue, but epidemiological studies suggest that a secondary infection by a

different serotype of DENV could increase the risk of severe dengue [4],[6]. Furthermore,

severe dengue could occur in primary DENV infections of infants born to dengue-immune

mothers [7], [8].

When a DENV-infected female mosquito feeds on a healthy person, it inoculates

some amount of DENV. The initial targets of the virus are the most common skin cells, the

keratinocytes [9],[10]. The virus replicates in the dendritic cells of the skin, the Langerhans

cells [11], [12], [13],[14]. These cells are specialized in antigen presentation. They belong

to the skin’s immune system and transport antigens to regional lymph nodes. In this

journey to the lymph nodes, the white cells–monocytes and macrophages–try to destroy

the pathogen and are consequently infected by DENV [15],[16]. The rise and spread of

the virus results in viremia. Once the innate immune system is unable to stop the DENV,

the immune system looks for another strategy, which is normally called adaptive immune

response, a fundamental immune response to the recovery of any disease. Generally, the

adaptive immune response is activated by the Th helper cells, which are in turn activated

and differentiated by the stimulus of antigen-presenting cells. The infected cells produce

and release cytokines that help the immune system to recognize and protect DENV-infected

and uninfected cells, respectively. Based on the types of cytokine production, Th cells are
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categorized as Th1 and Th2. Activated Th1 produces IFN-γ, IL-2, and IL-12, whereas

Th2 produces IL-4, IL-5, IL-10, and IL-13 [17]. If the Th cell differentiates into a Th1 cell,

it will activate macrophages and cytotoxic T cells, a process known as cellular immune

response that is responsible for eliminating the intracellular pathogens, i.e. killing the

infected cells. However, if a Th helper cell differentiates into a Th2 cell, it can stimulate B

cells to make most classes of antibodies. This is known as a humoral immune response,

and it defends the host from extracellular pathogens. Therefore, getting a cellular and/or

humoral immune response will depend on how Th helper cells are differentiated. The

immunologic responses in dengue disease have been reported in an activated Th1-type

cytokine response in dengue fever and an activated Th2-type cytokine response in severe

dengue [18]. A person previously infected with DENV has antibodies against this serotype

for life. However, for the remaining three serotypes, immunity is lost after a short time

and the person becomes susceptible [19]. Studies show that a person exposed to a different

serotype of DENV a second time is more likely to develop severe dengue compared to

those who have not been exposed [20], [21]. Generally, the B and T memory cells remain in

the body to react to pathogens responsible for earlier infections. However, it seems these

antibodies are not effective against another DENV serotype. By contrast, the infection

is worse. The first researchers who observed this were Dr. Scott Halstead and colleagues

who called this phenomenon as antibody dependent enhancement (ADE) [6]. In vitro

studies show that the ADE works in the following way: the preexistent antibodies from

a previous DENV infection bind to the dengue virus antigens, especially to E or prM

antigens, but these are unable to neutralize the virus. This antigen-antibody complex is

better opsonized via Fc receptor-bearing cells such as monocytes and macrophages, which

are major replication cells in vivo that could increase the titer of the virus in the blood

[22].

In this thesis, the aim is to study the mathematical dynamics of dengue virus

and the immune system by trying to express the principal process of the immune system

to stop the spread of dengue virus in primary and secondary infections. In the chapter 1,

we develop a mathematical model to describe the immune response to dengue virus when

there is no previous infection. In this model, we consider the fact that cellular and humoral

immune responses are activated by the differentiation of helper T cells, and we evaluate

the contribution of each immune response to the clearance of dengue virus. In chapter

2, we propose a mathematical model to study the antibody-dependent enhancement. In

this model, we consider the existence of an immunological memory that defends against

a certain dengue serotype. It is shown when there will be a strong increase in the viral

load and infected cells, which will depend on an immunological threshold. In chapter 3

we propose a mathematical simplification of the model in chapter 1 and study the global

stability using the direct Lyapunov method. Finally, we discuss the conclusions of this

thesis and the future work arising from these studies are discussed in chapter 4.
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1 Mathematical model of the immune re-

sponse to dengue virus

Abstract. Dengue disease is caused by an infected mosquito’s bite and manifests in

different clinical symptoms. The complexity of the pathogenesis of dengue virus and the

limitations of biological models have been barriers to completely understanding this disease.

To address this concern, we developed a mathematical model of the immune response to

dengue virus, which evaluated the impact of cellular and humoral immune responses. We

also performed global sensitivity analysis and parameter estimation using clinical data. We

concluded that to prevent instability and control the viral load, a strong proliferation of

cytotoxic cells must prevail. However, if there exists a weak proliferation of cytotoxic cells,

the way to avoid instabilities is to either inhibit the differentiation of T helper cells into

Th1 cells or increase the proliferation of B cells. In addition, our results based on clinical

data showed that cellular response is inhibited initially but strongly activated later, which

could be a spreading strategy of the virus that is not completely effective because of the

strong proliferation of cytotoxic activity to stop the infection in target cells.

1.1 Introduction

Dengue virus belongs to the virus family Flaviviridae and genus flavivirus, which

includes yellow fever, West Nile virus fever, Japanese encephalitis virus fever, tick-borne

encephalitis virus and Zika virus. There are four DENV serotypes (DENV-1, DENV-2,

DENV-3 and DENV-4), which are transmitted by the bite of an infected female mosquito of

the species Aedes aegypti or Aedes albopictus. After dengue virus is inoculated into the skin,

a small battle to stop the virus is initiated by our innate immune system. Unfortunately,

not all battles are won, and it will depend on many factors influencing the disease, like

host genetics, virulence, the strain of the virus and host immunity [23]. Generally, it

is accepted that the major target cells are dendritic cells and monocytes/macrophages.

Infection of these cells induces cytokine production and cell activation and maturation

[24],[25]. The chemical signaling of infected cells activates the humoral and cellular immune

responses, which are crucial in the protection and clearance of DENV. In relation to the

humoral immune response, the process starts when the B cells are activated. Once the

activated B cells improve affinity, they are going to differentiate into plasma cells. These,

in turn, will release the antibodies that are crucial mechanisms in the neutralization of

DENV infectivity. A similar process occurs for cellular immune response. The activated

T cells proliferate, and these cells will kill the cells infected by dengue virus. These
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cytotoxic cells are necessary and decisive for clearing dengue virus. Actually, there are few

mathematical models of dengue virus that describe the interaction between dengue virus

and the target cells or the interaction of dengue virus, the target cells and the immune

system [26],[27],[28],[29].Beyond taking into account dengue virus and target cells, our

model considers the T helper cells and how their differentiation into Th1 or Th2 influences

the immune response. The aim of this paper is to investigate and asses the implications

of humoral and cellular immune responses in the dengue viral clearance. To do this, we

assume that there are no previous antibodies from a primary dengue infection.

1.2 Model formulation

We consider an infection by DENV and a possible reaction of adaptive immune

response. In this way, the model considers: the target cells S, infected cells I, dengue

virus V , and the cells of immune system, the helper cells Th0, Th1 and Th2 denoted

by T0, T1 and T2, B and CD8+ cells in rest and activated states; Br, Tcr and Ba, Tca

represents these states. The target cells S are produced in the bone marrow at rate ks, have

death rate µs, and got infected at rate β
I
. These infected cells I have an additional death

rate by apoptosis µ
I
. The dengue virus V has death rate µv, and its number increases

proportionally to the presence of infected cells I at rate N1pµs ` µ
I
q, where N1 is the

number of virus particles released on average by a productively infected cell during its

lifetime. Besides, we considerer that more than one particle of virus are trying to infect each

cell. This number is denoted by N2. So the simplest model, considering these descriptions

is

dS

dt
“ ks ´ β

I
SV ´ µsS

dI

dt
“ β

I
SV ´ pµs ` µ

I
qI

dV

dt
“ N1pµs ` µ

I
qI ´ N2βI

SV ´ µvV.

If the innate immune system is not able to stop the disease, then the infected cells travel

to lymph node to activate the adaptive immune response. The different signals emitted

by the infected cells and the innate immune response will differentiate the helper cells

into helper cells Th1 or Th2, which in turn will activate a balanced humoral and cellular

immune responses to try stop the dengue infection. The helper cells T0 are produced in

the bone marrow at rate k0 and are capable of differentiating into T1 by the signalization

of cytokine IL-12 and into T2 by the cytokine IL-4. In our model we consider that this

differentiation is possible by the presence and the stimulus of infected cells and virus, at

rates γ1 and γ2 respectively. The death rate of these helper cells are µ0, µ1 and µ2. The

resting Br cells are produced in the bone marrow at rate kr and are stimulated by the
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signals emitted by the T2 cells at rate αr and decay at µr. The activated Ba cells are

going to proliferate in the presence of dengue virus at rate αa and decay at rate µa. The

proliferation of Ba cells allow these cells to improve its affinity, which means that they

are effective to clear the dengue infection, we consider that this happen at rate αv. In the

same way the CD8+ cells Tcr are activated by the cells T1 at rate αcr and have death rate

µcr. The activated cells Tca have cloning rate αca and decay at rate µca; those Tca cells

receiving the correct signal will perform the lysis of infected cells at rate α
I
. Consequently

the model considering a humoral and cellular immune responses is

dS

dt
“ ks ´ β

I
SV ´ µsS

dI

dt
“ β

I
SV ´ α

I
ITca ´ pµs ` µ

I
qI

dV

dt
“ N1pµs ` µ

I
qI ´ N2βI

SV ´ αvBaV ´ µvV

dT0

dt
“ k0 ´ γ1T0I ´ γ2T0V ´ µ0T0

dT1

dt
“ γ1T0I ´ µ1T1

dT2

dt
“ γ2T0V ´ µ2T2

dBr

dt
“ kr ´ αrBrT2 ´ µrBr

dBa

dt
“ αrBrT2 ` αaBaV ´ µaBa

dTcr

dt
“ kcr ´ αcrTcrT1 ´ µcrTcr

dTca

dt
“ αcrTcrT1 ` αcaTcaI ´ µcaTca.

(1.1)

The set of biological interest is given by

A “
"
P P R

10
` : N1S ` NI ` V ` T0 ` T1 ` T2 ` αv

αa

pBr ` Baq ` θ pTcr ` Tcaq ď k̄

δ

*
,

(1.2)

where P “ pS, I, V, T0, T1, T2, Br, Ba, Tcr, Tcaq, N “ pN1 ` N2q, θ “ Nα
I

αca

, k̄ “ k0 `

N1ks ` αv

αa

kr ` θkcr and δ “ min
"
µs, µv, µ0, µ1, µ2, µr, µa, µcr, µca,

N2pµs ` µ
I
q

N

*
.

Lemma 1.1. The set A is positively invariant with respect to system (1.1).

Proof. let P0 P A be the initial condition of the system (1.1) and

Φ “ N1S ` NI ` V ` T0 ` T1 ` T2 ` αv

αa

pBr ` Baq ` θ pTcr ` Tcaq . (1.3)

Taking the derivative of Φ with respect to t, we have:
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dΦ
dt

“ N1ks ´ N1µsS ´ N2pµs ` µ
I
qI ´ µvV ` k0 ´ µ0T0 ´ µ1T1 ´ µ2T2

` αv

αa

rkr ´ pµrBr ` µaBaqs ` θ rkcr ´ pµcrTcr ` µcaTcaqs ,

which can be written as

dΦ
dt

` N1µsS ` N2pµs ` µ
I
qI ` µvV ` µ0T0 ` µ1T1 ` µ2T2

` αv

αa

pµrBr ` µaBaq ` θ pµcrTcr ` µcaTcaq “ k̄,

where k̄ “ k0 ` N1ks ` αv

αa

kr ` θkcr.

If we choose δ “ min
"
µs, µv, µ0, µ1, µ2, µr, µa, µcr, µca,

N2pµs ` µ
I
q

N

*
, we conclude that,

dΦ
dt

` δΦ ď k̄,

then

Φ ď k̄

δ
`
ˆ

Φp0q ´ k̄

δ

˙
e´δt, for all t ě 0,

wich implies

Φ ď k̄

δ
.

1.3 Mathematical analysis

The immune system is very complex and every disease generates different

immune responses and challenges for the researchers, but there are some well known

reactions, like the inhibition of differentiation between the helper cells T1 and T2. This

inhibition occurs by chemical signaling; the T1 cells are inhibited by the citokines IL-4

and IL-10 which are produced by the T2 cells, which in turn, can be inhibited by citokines

IFN-γ produced by the T1 cells. In the model the action of those citokines is not considered

explicitly, instead of, we contemplate its action in the parameters γ1 and γ2. Therefore

in the model (1.1) we study initially two scenarios: a) The T2 cells are going to inhibit

completely the differentiation into cells T1, this means that the parameter of differentiation

of T0 cells into T1 has to be zero, i.e. γ1 “ 0 (This situation will generate a type of immune

response which is known as humoral immune response); b) The total inhibition of the T2

cells by T1 will happen when the parameter of differentiation of T0 cells into T2 is zero,
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i.e. γ2 “ 0 (This type of response is known as cellular immune response). This section

is divided into three topics: in the subsection 1.3.1 we present an analysis of the model

considering the humoral immune response, in the subsection 1.3.2 the cellular immune

response is studied, finally in the subsection 1.3.3 we present the mathematical analysis of

the model considering both immune responses.

1.3.1 Humoral immune response to dengue virus

We consider a total inhibition of T1 cells, therefore it is considered a humoral

immune response when the parameter γ1 “ 0. The model is

dS

dt
“ ks ´ β

I
SV ´ µsS

dI

dt
“ β

I
SV ´ pµs ` µ

I
qI

dV

dt
“ N1pµs ` µ

I
qI ´ N2βI

SV ´ αvBaV ´ µvV

dT0

dt
“ k0 ´ γ2T0V ´ µ0T0

dT2

dt
“ γ2T0V ´ µ2T2

dBr

dt
“ kr ´ αrBrT2 ´ µrBr

dBa

dt
“ αrBrT2 ` αaBaV ´ µaBa.

(1.4)

1.3.1.1 Virus-free equilibrium for humoral model

The model has the virus-free equilibrium Ph0 “
ˆ
ks

µs

, 0, 0,
k0

µ0

, 0,
kr

µr

, 0
˙

. The

characteristic polynomial evaluated at point Ph0 is

phpλq “
ź

ϑ

pλ`µϑq
„
λ2 `

ˆ
µs ` µ

I
` µv ` β

I
ks N2

µs

˙
λ ` pµs ` µ

I
q
ˆ
µv ` β

I
ks N2

µs

´ β
I
ks N1

µs

˙
,

with ϑ P t0, 2, s, r, au. Observe that the last term of the polynomial inside the brackets

can be written as,

pµs ` µ
I
qµv p1 ´ R0q ,

where R0 “ β
I
pN1 ´ N2qks

µvµs

. To prove stability at this point, it is necessary that the roots

of previous polynomial at Ph0 be negative or have negative real part. Then by the Routh

Hurwitz criteria [30] (pg 230), the virus-free equilibrium Ph0 is locally asymptotically

stable, if the coefficients of polynomial of second degree are positives, i.e. if R0 ă 1 and it

is unstable if R0 ą 1. We summarize these considerations in the following theorem

Theorem 1.1. The virus-free equilibrium Ph0 is locally asymptotically stable if R0 ă 1

and is unstable if R0 ą 1.
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1.3.1.2 Virus-presence equilibrium for humoral model

The model has a virus-presence point pS˚, I˚, V ˚, T ˚
0 , T

˚
2 , B

˚
r , B

˚
a q, which exists

if R0 ą 1, with

S˚ “ ks

β
I
V ˚ ` µs

I˚ “ β
I
ksV

˚

pµ
I

` µsqpβ
I
V ˚ ` µsq

T ˚
0 “ k0

γ2V ˚ ` µ0

T ˚
2 “ γ2k0V

˚

µ2pγ2V ˚ ` µ0q

B˚
r “ krµ2pγ2V

˚ ` µ0q
pαrk0 ` µ2µrqγ2V ˚ ` µ0µ2µr

B˚
a “ αrγ2k0krV

˚

pµa ´ αaV ˚qrpαrk0 ` µ2µrqγ2V ˚ ` µ0µ2µrs .

(1.5)

The last equation of (1.5) has biological sense if it is positive, so we need to have V ˚ ă µa

αa

.

The values of V ˚ are the roots of the third degree polynomial

PhpV q “ µvpµa´αaV qrpαrk0`µ2µrqγ2V`µ0µ2µrsrµspR0´1q´β
I
V s´αvαrγ2k0krV pβ

I
V`µsq.

This polynomial has a unique root in the interval
ˆ

0,
µa

αa

˙
. To show this, note that the

coefficient of term V 3 is positive. Then PhpV q Ñ `8 if V Ñ `8 and PhpV q Ñ ´8 if

V Ñ ´8, besides

Php0q “ µsµvµ0µ2µrµapR0 ´ 1q ą 0,

and

Ph

ˆ
µa

αa

˙
“ ´αvαrγ2k0kr

µa

αa

ˆ
β

I

µa

αa

` µs

˙
ă 0.

Therefore, the polynomial Ph has one negative root in p´8, 0q and two positive roots, one

in the interval
ˆ

0,
µa

αa

˙
and the other in

ˆ
µa

αa

,8
˙

.

Then this virus-presence equilibrium always exists for R0 ą 1, besides, in the

polynomial Ph, it is possible to observe that if αa Ñ 8, then V Ñ 0. This means that it

is always possible to decrease the viral load V when the proliferation of Ba cells is big.

Remark 1.1. Note that for R0 ă 1, the polynomial Ph has no positive roots less than
µa

αa

.

In fact, let’s write

Ph “ P3h ´ P2h,

with P3h “ µvpµa ´ αaV qrpαrk0 ` µ2µrqγ2V ` µ0µ2µrsrµspR0 ´ 1q ´ β
I
V s and

P2h “ αvαrγ2k0krV pβ
I
V ` µsq. It is clear that the polynomial P3h has two negative roots,



Chapter 1. Mathematical model of the immune response to dengue virus 18

µspR0 ´ 1q
β

I

, ´ µ0µ2µr

pαrk0 ` µ2µrqγ2

and one positive,
µa

αa

. Whereas that the polynomial P2h has

the roots ´µs

β
I

and 0. All these considerations implies that the equation P3hpV q “ P2hpV q

has a positive root greater than
µa

αa

, and two negative, as we can see in the following figure.

Figure 1 – This shows that for R0 ă 1, there is no a positive root less than
µa

αa

The stability analysis of virus-presence equilibrium is done by numeric simula-

tions. The characteristic polynomial evaluated at this point is

px ` µ2qpx ` αrT
˚
2 ` µrqpx ` γ2V

˚ ` µ0qpx4 ` a1x
3 ` a2x

2 ` a3x ` a4q,

where

a1 “ pβ
I
V ˚ ` 2µs ` µ

I
` β

I
S˚N1 ` µa ´ αaV

˚q
a2 “ pβ

I
V ˚ ` µsqpµs ` µ

I
q ` β

I
S˚N1µs ` β

I
S˚pN1 ´ N2qβ

I
V ˚

´ pαaV
˚ ´ µaqpβ

I
V ˚ ` 2µs ` µ

I
` β

I
S˚N1q ` αaB

˚
aαvV

˚

a3 “ αaB
˚
aαvV

˚pβ
I
V ˚ ` 2µs ` µ

I
q ` β

I
S˚pµs ` µ

I
qpN1 ´ N2qβ

I
V ˚

´ pαaV
˚ ´ µaq rpβ

I
V ˚ ` µsqpµs ` µ

I
q ` β

I
S˚N1µs ` βIS

˚pN1 ´ N2qβIV
˚s

a4 “ αaB
˚
aαvV

˚pβIV
˚ ` 2µs ` µ

I
q ´ pαaV

˚ ´ µaqβ
I
S˚pµs ` µ

I
qpN1 ´ N2qβ

I
V ˚.

The above polynomial has three negative roots and the others depend on the fourth

degree polynomial. This polynomial satisfies the necessary condition of Ruth-Hurwitz

criteria (a1, a2, a3, a4 ą 0 ), because N1 ą N2 and V ˚ ă µa

αa

. For the sufficient condition

(a3pa1a2´a3q´a2
1a4 ą 0) were done numerical simulations varying the principal parameters,
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the parameter of activation of activation of B cells, γ2, and the parameter of proliferation

of the activated B cells, αa. Figure 2a shows the values of equilibrium V ˚ when αa varies

and the green (gray) color represents local stability of the virus-presence equilibrium. It is

possible to see that for high values of αa, the viral load is decreased, while in the figure 2b

it is represented the local stability of virus-presence equilibrium when the parameters γ2

and αa vary.
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Figure 2 – (a) The figure shows the viral load equilibrium V ˚ as a function of the parameter
of proliferation ofBa cells, αa. The green(gray) color represents the local stability
of virus-presence equilibrium for this αa values. Note that the equilibrium is
always locally asymptotically stable and the viral load is decreased when the
proliferation parameter αa is raised. (b) The figure shows that for whatever
parameters γ2 and αa, the humoral sub-model is locally asymptotically stable.
The parameters used for this simulations are presented in Table 1 (pg 23).

1.3.1.3 Discussion

In this subsection, it is considered a sub-model of immune response to control

dengue virus, by assuming that there exists a inhibition for the cellular immune response

and consequently, the humoral immune response is activated to fight against dengue virus.

In our simulations we found that the parameter of proliferation αa affects drastically the

viral load but it does not alter the local stability of the virus-presence equilibrium. This

means that the humoral immune response controls effectively the spread of dengue virus,

by rising the action of activated B cells which will assure a greater amount of clones with

better affinity that will differentiate into plasma cells and release antibodies to stop the

spread of dengue virus.
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1.3.2 Cellular immune response to dengue virus

In this subsection we consider the inhibition by chemistry signaling induced by

T1 cells against differentiation of the cells T0 into the cells T2. This means that the model

(1.1) is reduced to the cellular immune response model, given by

dS

dt
“ ks ´ β

I
SV ´ µsS

dI

dt
“ β

I
SV ´ α

I
ITca ´ pµs ` µ

I
qI

dV

dt
“ N1pµs ` µ

I
qI ´ N2βI

SV ´ µvV

dT0

dt
“ k0 ´ γ1T0I ´ µ0T0

dT1

dt
“ γ1T0I ´ µ1T1

dTcr

dt
“ kcr ´ αcrTcrT1 ´ µcrTcr

dTca

dt
“ αcrTcrT1 ` αcaTcaI ´ µcaTca.

(1.6)

1.3.2.1 Virus free equilibrium for the cellular model

The model has a virus-free equilibrium which is denoted

by Pc0 “
ˆ
ks

µs

, 0, 0,
k0

µ0

, 0,
kcr

µcr

, 0
˙

. The characteristic polynomial evaluated at point Pc0 is

pcpλq “
ź

̟

pλ ` µ̟q
„
λ2 `

ˆ
µs ` µ

I
` µv ` β

I
ks N2

µs

˙
λ ` pµs ` µ

I
qµv p1 ´ R0q


,

with ̟ P t0, 1, s, cr, cau and R0 “ β
I
pN1 ´ N2qks

µvµs

. Then, by the Routh Hurwitz criteria [30]

(pg 230), the virus-free equilibrium Ph0 is locally asymptotically stable if the coefficients

of polynomial of second degree are positive, i.e., if R0 ă 1 and it is unstable if R0 ą 1. We

summarize these considerations in the following theorem

Theorem 1.2. The virus-free equilibrium Pc0 is locally asymptotically stable if R0 ă 1

and is unstable if R0 ą 1.
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1.3.2.2 Virus presence equilibrium for cellular model

The model (1.6) presents a unique virus-presence equilibrium point when

I˚ ă µca

αca

and R0 ą 1. This point is denoted by pS˚, I˚, V ˚, T ˚
0 , T

˚
1 , T

˚
cr, T

˚
caq, with

S˚ “ ks

β
I
V ˚ ` µs

I˚ “ pN2βI
S˚ ` µvqV ˚

σ1

T ˚
0 “ k0σ1

pN2βI
S˚ ` µvqγ1V ˚ ` µ0σ1

T ˚
1 “ γ1k0pN2βI

S˚ ` µvqV ˚

µ1rpN2βI
S˚ ` µvqγ1V ˚ ` µ0σ1s

T ˚
cr “ kcrµ1rpN2βI

S˚ ` µvqγ1V
˚ ` µ0σ1s

pN2βI
S˚ ` µvqσ2V ˚ ` µ0µ1µcrσ1

T ˚
ca “ αcrγ1k0kcrV

˚pN2βI
S˚ ` µvq

rµca ´ αcaI˚srpN2βI
S˚ ` µvqσ2V ˚ ` µ0µ1µcrσ1s ;

(1.7)

where σ1 “ N1pµs ` µ
I
q, σ2 “ pαcrk0 ` µ1µcrqγ1, and V ˚ is a solution of the equation

PcpV ˚q “ χcpV ˚q ´ gcpV ˚q “ 0, (1.8)

with

χcpV q “ µvrµspR0 ´ 1q ´ β
I
V sh1pV qh2pV q

h1pV q “ rpµcaσ1 ´ αcaµvV qpβ
I
V ` µsq ´ αcaN2βI

ksV s
h2pV q “ rN2βI

ksσ2V ` pµvσ2V ` µ0µ1µcrσ1qpβ
I
V ` µsqs

gcpV q “ α
I
αcrγ1k0kcrN1V pβ

I
V ` µsqpN2βI

ks ` µsµv ` µvβI
V q2.

The equation (1.8) has five solutions, but only two are real and positive and just one

positive solution satisfies R0 ą 1 and I˚ ă µca

αca

. To prove this, note that the polynomial

gc has three negative roots and gcp0q “ 0. Besides, the polynomial χc is a product of one

degree polynomial and two second degree polynomial. Then it has five roots, two positive

and three negative because the second degree polynomial h2 has all its coefficients positive

which means that all its roots are negatives or has negative real part and the polynomial

h1 has one positive root and the other negative. Then the positive roots of χc are

V1 “ µs

β
I

pR0 ´ 1q ,

and

V2 “ 1
2

¨
˝µca

αca

σ1

µv

´ µs

β
I

´ N2

ks

µv

`
dˆ

µca

αca

σ1

µv

´ µs

β
I

´ N2

ks

µv

˙2

` 4
µca

αca

σ1µs

β
I
µv

˛
‚,
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note that V2 is always positive
ˆ

1
2

´
a `

?
a2 ` b

¯
ą 0 for all a P R and b ą 0

˙
. Now

remembering that the polynomial gc is always positive for V ą 0, so the positive roots of

Pc are between the positive roots of χc. In fact

Pcp0q “ χcp0q ´ gcp0q “ µvµspR0 ´ 1qhp0q ą 0,

because R0 ą 1 and hcp0q ą 0. Besides

PcpViq “ χcpViq ´ gcpViq “ ´gcpViq ă 0, for i “ 1, 2.

This means that in the interval p0, Viq for i “ 1, 2., exists a positive root of the polynomial

Pc. Meanwhile if we impose the requirement that I˚ has to be less than
µca

αca

, then from

second equation of (1.7), we have V ˚ ă V2. It means that in the interval p0, V2q there

exists a positive root of polynomial Pc. Additionally, the coefficient of term V 5 is positive,

consequently P Ñ `8 when V Ñ `8. Then in the interval pV2,8q there exists another

positive root, but it is not feasible.

Remark 1.2. Similarity to the remark 1.1, for R0 ă 1, the polynomial Pc has no positive

roots less than V2. Because the polynomial χc has just one positive root, V2 and the others

negative. Whereas that the polynomial gc has a zero as root and the others negative. Then

the equation χcpV q “ gcpV q has a positive root greater than V2 and the others are negative.

The virus-presence equilibrium (1.7) is locally asymptotically stable for some

parameters. For example in the figure 3a, we can see that if the parameter of proliferation

of Tca cells, αca, is low, there exists instability (blue (black) color), but if it is high, the

system is locally asymptotically stable and the viral load decreases as this parameter

raises (see figure 3a green(grey) color). On the other hand, if we vary the differentiation

parameter of the T0 cells into T1 cells, γ1, and the proliferation parameter αca (see Figure

3b), we can infer that to obtain stability when the parameter γ1 is high, the parameter of

proliferation αca has to be high too (green(grey) color). But if the parameter αca is high,

not necessarily the parameter γ1 has to be high.
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Figure 3 – (a) The figure shows the viral load V ˚ as function of proliferation parameter αca.
The color indicate the stability in the virus-presence equilibrium, the blue(black)
color designate the unstable region, meanwhile the green(grey) color the stable
region. (b) This sub-figure presents the local stability of the system (1.6) when
the differentiation parameter of T0 cells into T1, γ1 and proliferation parameter
αca are varied. The parameters used for this simulations appear in table 1.

In the figure 4 we observe the rise of oscillations as the parameter αca is

decreased. When the parameter αca is varied, the system loses stability and a periodic

orbit is expected. In the next subsection we proof that there exists a Hopf bifurcation in

relation to the parameter αca.
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(c) αca “ 0.19

Figure 4 – The figure shows the viral dynamics in relation to proliferation parameter of
Tca cells. If this parameter is raised, the viral load is reduced to very low levels
and the system is locally asymptotically stable, but if the parameter αca is too
small, the system loses stability and a limit cycle emerges. The parameters
used for this simulations are presented in Table 1
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1.3.2.3 Hopf bifurcation

We can prove the existence of a hopf bifurcation if the transversality condition

(definition 1.1) and the first Lyapunov coefficient (lemma 1.2) are different of zero. To do

this, we start finding the function F defined in appendix 1.A.1 in equation (1.12). Initially,

the Jacobian is computed at the virus-presence equilibrium (1.7) to obtain

A “
˜
M N

L Q

¸
,

with

M “

¨
˚̋

´βI V
˚ ´ µs 0 ´βI S

˚

βI V
˚ ´α

I
T ˚

ca ´ µs ´ µi βI S
˚

´βI N2 V
˚ pµs ` µiq N1 ´βI N2 S

˚ ´ µv

˛
‹‚N “

¨
˚̋

0 0 0 0

0 0 0 ´α
I
I˚

0 0 0 0

˛
‹‚

L “

¨
˚̊
˚̊
˝

0 ´γ1 T
˚
0 0

0 γ1 T
˚
0 0

0 0 0

0 αca T
˚
ca 0

˛
‹‹‹‹‚
Q “

¨
˚̊
˚̊
˝

´γ1 I
˚ ´ µ0 0 0 0

γ1 I
˚ ´µ1 0 0

0 ´αcr T
˚
cr ´αcr T

˚
1 ´ µcr 0

0 αcr T
˚
cr αcr T

˚
1 αca I

˚ ´ µca

˛
‹‹‹‹‚
.

Now compute the functions B̄ and C defined in the appendix 1.A.1 by the equations (1.13)

and (1.14) respectively. Therefore Cpx, y, zq “ 0 and B̄px, yq “ pB̄1px, yq, . . . , B̄7px, yqqT ,

with

B̄1px, yq “ ´βI px1y3 ` x3y1q B̄2px, yq “ βI px1y3 ` x3y1q ´ α
I

px2y7 ` x7y2q
B̄3px, yq “ ´N2βI px1y3 ` x3y1q B̄4px, yq “ ´γ1 px2y4 ` x4y2q
B̄5px, yq “ γ1 px2y4 ` x4y2q B̄6px, yq “ ´αcr px5y6 ` x6y5q
B̄7px, yq “ αca px2y7 ` x7y2q ` αcr px5y6 ` x6y5q .

Using the parameters in table 1, the virus-presence equilibrium of the cellular model (1.6)

is x0 “ p1.8998, 0.0056, 4.2529 ˆ 10´4, 0.9949, 0.0051, 0.7294, 0.0933q and the Jacobian A

at this point has eigenvalues

λ1 “ ´5.4305 λ2 “ ´0.0471

λ3 “ ´0.0171 λ4 “ ´0.0110

λ5 “ ´0.0110 λ6,7 “ ˘0.0241i.
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From equations (1.15)-(1.17) defined in the appendix 1.A.1, the eigenvectors q and p are

q “

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̋

0.1495 ` 0.3787i

0.0530 ´ 0.0807i

0.0039 ´ 0.0062i

0.0192 ` 0.0307i

´0.0192 ´ 0.0307i

0.7447

´0.4365 ´ 0.2776i

˛
‹‹‹‹‹‹‹‹‹‹‹‚

p “

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̋

´3.0278 ˆ 1011 ´ 5.02557 ˆ 1013i

8.5927 ˆ 1015 ´ 6.2925 ˆ 1015i

2.668 ˆ 1015 ` 1.9567 ˆ 1015i

5.0382 ˆ 1013 ´ 1.4947 ˆ 1013i

1.6255 ˆ 1016 ` 1.8577 ˆ 1016i

1.1371 ˆ 1014 ` 1.2995 ˆ 1014i

´3.4652 ˆ 1014 ` 1.151 ˆ 1015i

˛
‹‹‹‹‹‹‹‹‹‹‹‚

.

Parameter Value Units

Parameters common to both sub-models
ks 0.033 C ˆ d´1

k0 0.011 C ˆ d´1

β
I

0.87 C´1 ˆ d´1

µs 0.017 d´1

µ
I

0.033 d´1

µv 2 d´1

µ0 0.011 d´1

N1 8
N2 2

Parameters for cellular sub-model
kcr 0.011 C ˆ d´1

α
I

0.8 C´1 ˆ d´1

γ1 0.01 C´1 ˆ d´1

αcr 0.8 C´1 ˆ d´1

αca 0.1912001193283 C´1 ˆ d´1

µ1 0.011 d´1

µcr 0.011 d´1

µca 0.033 d´1

Parameters for humoral sub-model
kr 0.056 C´1 ˆ d´1

αv 0.08 C´1 ˆ d´1

γ2 0.84 C´1 ˆ d´1

αr 0.7 C´1 ˆ d´1

αa 0.04 C´1 ˆ d´1

µ2 0.011 d´1

µr 0.011 d´1

µa 0.033 d´1

Table 1 – Parameter of the humoral and cellular immune response model. For the value of
parameter αca there exists a Hopf bifurcation in cellular sub-model.
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Once we calculate the function F and the vectors p and q, we need to know if

the pair of complex-conjugate eigenvalues crosses the imaginary axis with nonzero speed,

i.e. if the Transversality condition is verified.

Transversality condition From equation (1.18) defined in the appendix 1.A.1, we can

see that we need to compute A1pαcaq, and this implies that we need to compute
d V

dαca

. In

order to do this, let us consider the equation (1.8) expliciting the dependence on alphaca,

i.e. PcpV pαcaq, αcaq “ 0, then

d V

dαca

“ ´
B P

B αca

B P
B V

“ ´
B χc

B αca

B P
B V

.

From this formula we can compute the derivatives of S, T0, T1, Tcr, Tca with respect to αca,

to obtain

A1pαcaq “
˜
M 1pαcaq N 1pαcaq
L1pαcaq Q1pαcaq

¸
,

and

xp,A1pαcaqqy “ ´3.4327 ˆ 1013 ` 1.1823 ˆ 1013i.

From the equation (1.18) we have that the trasnversality condition is

µ1pαcaq “ ´3.4327 ˆ 1013.

First Lyapunov coefficient To find the first Lyapunov coefficient we start calculating

the vectors q1 and q2 defined in the lemma 1.2, to obtain

q1 “

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̋

0.2573

´0.0446

´0.0045

0.0375

´0.0375

´0.0718

0.0084

˛
‹‹‹‹‹‹‹‹‹‹‹‚

, q2 “

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̋

0.0243 ´ 0.0103i

´0.0539 ´ 0.1256i

´0.0070 ´ 0.0091i

0.0022 ´ 0.0008i

´0.0022 ` 0.0008i

0.0630 ´ 0.0398i

´0.0564 ` 0.0694i

˛
‹‹‹‹‹‹‹‹‹‹‹‚

,

and from equation (1.19) we have

l1pαcaq “ ´6.4531 ˆ 1013.

Hence the Hopf bifurcation is supercritical and the limit cycle is stable (see figure 5).



Chapter 1. Mathematical model of the immune response to dengue virus 27

1.8 1.85 1.9 1.95 2
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

S

I

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

I

T
c
a

0 0.01 0.02 0.03 0.04 0.05

0.98

1

1.02
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

VT0

I

0

0.02

0.04

0.650.70.750.80.85

0

0.05

0.1

0.15

0.2

I
Tcr

T
c
a

Figure 5 – The figure shows the stable limit cycle in the cellular immune response model.
The red(black) dot is the virus-presence equilibrium point and the green(grey)
dot is the initial condition of the system.

1.3.2.4 Discussion

Here we evaluate a sub-model considering that there is an inhibition of the T2

cells, which means that there is a cellular immune response. In this situation we found that

the proliferation of activated cytotoxic cells Tca is the most important parameter of this

sub-model and the model stability and virus presence control depend on this parameter. If

the parameter αca is raised, the local stability is assured. Besides, the infected cells and

viral load are decreased by effect of large number of cytotoxic cells. Meanwhile if the αca

is small, the model stability is compromised and for a particular value of this parameter

there exists a supercritical Hopf bifurcation. The parameters used in this model are not

necessarily realistic and may have not a specific meaning for dengue virus disease .
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1.3.3 Humoral and cellular immune response to dengue virus

In this section we discuss the joint action of the humoral and the cellular

immune responses of the model (1.1). First we analyze the local stability of virus-free

equilibrium and we give an interpretation for R0. Second we review the existence of

virus-presence equilibrium, and we use parameters from medical literature to perform

sensitive global analysis and parameter estimation using viral load from dengue patients.

Finally, we analyze the influence in the general model (1.1) of the sub-models considered

in the last two subsections.

1.3.3.1 Stability of virus-free equilibrium

Let P0 be the virus-free equilibrium point which is obtained when we assume

that non particle of dengue virus is in the body, i.e., V “ 0, then

P0 “
ˆ
ks

µs

, 0, 0,
k0

µ0

, 0, 0,
kr

µr

, 0,
kcr

µcr

, 0
˙
.

For this point, the local stability is analyzed, and the threshold R0 is obtained. To prove

the local stability at point P0, we show that the eigenvalues of the Jacobian matrix of the

system (1.1) at P0 are negative or have negative real part . The characteristic polynomial

evaluated at point P0 is ppλq “ |A ´ λI3ˆ3||B ´ λI7ˆ7|, where

A “

¨
˚̊
˚̊
˚̋

´µs 0 ´β
I
ks

µs

0 ´µs ´ µ
I

β
I
ks

µs

0 pµs ` µ
I
q N1 ´β

I
ks N2

µs

´ µv

˛
‹‹‹‹‹‚
,

B “

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

´µ0 0 0 0 0 0 0

0 ´µ1 0 0 0 0 0

0 0 ´µ2 0 0 0 0

0 0 ´αr kr

µr

´µr 0 0 0

0 0
αr kr

µr

0 ´µa 0 0

0 ´αcr kcr

µcr

0 0 0 ´µcr 0

0
αcr kcr

µcr

0 0 0 0 ´µca

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

.

The roots of polynomial ppλq are given by ´µs, ´µ0, ´µ1, ´µ2, ´µr, ´µa, ´µcr, ´µca

and by the solutions of following polynomial of second degree:

λ2 `
ˆ
µs ` µ

I
` µv ` β

I
ks N2

µs

˙
λ ` pµs ` µ

I
qµv p1 ´ R0q .
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where R0 “ β
I
pN1 ´ N2qks

µvµs

. Then by the Routh Hurwitz criteria [30] (pg 230), the virus-

free equilibrium P0 is locally asymptotically stable if the coefficients of polynomial of

second degree are positive, i.e. if R0 ă 1 and it is unstable if R0 ą 1. We summarize these

considerations in the following theorem.

Theorem 1.3. The virus-free equilibrium P0 is locally asymptotically stable if R0 ă 1 and

is unstable if R0 ą 1.

Basic reproduction number of virus We are considering that an infected mosquito

feeds on a healthy person. In this process it inoculates an amount of dengue virus in the

body, and the infection depends on the different reactions of the immune system to stop

or decline the infection, so it’s natural ask if the infection is going to spread or not. The

number R0 found in last theorem can tell us when the infection by dengue virus is going

to progress (R0 ą 1) or when the virus will be cleared (R0 ă 1).

This number can be interpreted as follow: One virus during its average lifetime,
1
µv

, infects

one target cell, with rate β
I

ks

µs

. This cell releases N1 virus, but N2 virus will infect one cell

with rate
ˆ
β

I

ks

µs

˙
. The term of entrance of virus into target cells N2 in general is at least

one or less than the number of virus released by the infected cells N1, i.e., 1 ď N2 ă N1.

Then R0 is the net number of viruses produced by one virus.

1.3.3.2 Virus presence equilibrium

In the proof of theorem 1.3, it is possible to see that the basic reproductive

number R0 is a parameter of bifurcation. When R0 ą 1 the system has two more equilibria

which depend on the positive solutions of a function of V , but just one of this solution

is biologically feasible (positive). Let P1 “ pS˚, I˚, V ˚, T ˚
0 , T

˚
1 , T

˚
2 , B

˚
r , B

˚
a , T

˚
cr, T

˚
caq be the
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feasible point, the equations describing this point are:

S˚ “ ks

β
I
V ˚ ` µs

I˚ “ φpV ˚qV ˚

N1pµ
I

` µsq

T ˚
0 “ k0N1pµ

I
` µsq

ψpV ˚q

T ˚
1 “ γ1k0φpV ˚qV ˚

µ1ψpV ˚q

T ˚
2 “ γ2k0N1pµ

I
` µsqV ˚

µ2ψpV ˚q

B˚
r “ krµ2ψpV ˚q

αrγ2k0N1pµ
I

` µsqV ˚ ` µrµ2ψpV ˚q

B˚
a “ ´ϕpV ˚q `

a
ϕpV ˚q2 ` 4pµa ´ αaV ˚qξηV ˚2

2pµa ´ αaV ˚qξV ˚

T ˚
cr “ kcrµ1ψpV ˚q

θφpV ˚qV ˚ ` µcrµ1σ̄pV ˚q

T ˚
ca “ αcrkcrγ1k0φpV ˚qV ˚

pµca ´ αcaI˚qtθφpV ˚qV ˚ ` µcrµ1σ̄pV ˚qu ,

(1.9)

where

ξ “ µrµ2γ1αv

η “ αrkrγ2k0N1pµ
I

` µsq
θ “ pαcrγ1k0 ` µcrµ1γ1q

ϕpV ˚q “ pµa ´ αaV
˚q
"
η

kr

V ˚ ` µrµ2rγ1pN2βI
S˚ ` µvqV ˚ ` pγ2V

˚ ` µ0qN1pµ
I

` µsqs
*

φpV ˚q “ αv

`
´ϕpV ˚q `

a
ϕpV ˚q2 ` 4pµa ´ αaV ˚qξηV ˚2

˘

2pµa ´ αaV ˚qξV ˚
` N2βI

ks

pβ
I
V ˚ ` µsq ` µv

ψpV ˚q “ γ1φpV ˚qV ˚ ` pγ2V
˚ ` µ0qN1pµ

I
` µsq

σ̄pV ˚q “ pγ2V
˚ ` µ0qN1pµ

I
` µsq,

and the values of V are solutions of the equation

χpV q “ χ1pV qχ2pV qχ3pV q ´ gpV q “ 0, (1.10)
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where

χ1pV q “rppN1 ´ N2qβ
I
ks ´ µvpβ

I
V ` µsqq2pµa ´ αaV qξV ´ αvB̄apβ

I
V ` µsqs

χ2pV q “rpµcaN1pµ
I

` µsq ´ αcaµvV qpβ
I
V ` µsq ´ αcaN2βI

ksV s2pµa ´ αaV qξ ´ αcaαvB̄apβ
I
V ` µsq

χ3pV q “trθpN2βI
ks ` µvpβ

I
V ` µsqqV ` µcrµ1σ̄pβ

I
V ` µsqs2pµa ´ αaV qξ ` θαvB̄apβ

I
V ` µsqu

gpV q “ξb
“
pN2βI

ks ` µvpβ
I
V ` µsqq2pµa ´ αaV qξV ` αvB̄apβ

I
V ` µsq

‰2
2pµa ´ αaV qpβ

I
V ` µsq

B̄a “2pµa ´ αaV qξV Ba

b “N1αI
αcrkcrγ1k0.

The equation (1.10) shows two positive points for V , but just one is feasible if we impose

the restrictions V ˚ ă µa

αa

and I˚ ă µca

αca

. The next figures show some numeric examples of

the function defined in (1.10). We consider the next cases: αca ą αa (figure 6), αca “ αa

(figure 7) and αca ă αa (figure 8). In all these three cases, there exists just one feasible

solution.
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Figure 6 – Graph of the function defined in (1.10) when αca ą αa. In this case, there exist
two points satisfying V ă µa

αa

, but just one of these points meets the inequality

I ă µca

αca

. The feasible point is V “ 2.594 ˆ 10´6, I “ 3.489 ˆ 10´5, while the

thresholds are
µa

αa

“ 8.25 ˆ 10´2 and
µca

αca

“ 8.25 ˆ 10´5.
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Figure 7 – Graph of the function defined in (1.10) when αca “ αa. There exists just one
point that satisfies the constraints, V ă µa

αa

and I ă µca

αca

. The values of the

point are V “ 5.2519 ˆ 10´6 ă µa

αa

“ 8.25 ˆ 10´2 and I “ 7.87 ˆ 10´2 ă µca

αca

“
8.25 ˆ 10´2

0 1 2 3 4 5 6 7 8 9

x 10
−5

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

2
x 10

−37

V

f

V <
µ a

α a

e

I <
µ c a

α c a

Figure 8 – Graph of the function defined in (1.10) when αca ă αa. In this situation
there exists just one possible point satisfying V ă µa

αa

and I ă µca

αca

. The

point is V “ 5.2512 ˆ 10´6 and I “ 7.0632 ˆ 10´5, while the thresholds are
µa

αa

“ 8.25 ˆ 10´2 and
µca

αca

“ 8.25 ˆ 10´5.



Chapter 1. Mathematical model of the immune response to dengue virus 33

1.3.3.3 Numerical simulation

Parameters of the model

The half life of the monocytes/macrophages in vivo is between 1 to 2 months [31], so

we assume the value µs “ 1
60

“ 0.017. The activated macrophages has a half life of 7

days and because the virus induces apoptosis [32],[33], the death rate of the infected

cells is taken as µ
I

“ 0.2. There are in average 4 ˆ 105 monocytes per milliliter of blood

in humans [34], this will be the initial quantity of monocytes Sp0q, so this implies that

ks “ µsSp0q “ 6.8ˆ103. In healthy humans, the cells CD4` and CD8` survive in average

87 and 77 days, respectively [35], it means that the death rate µ0, µ1, µ2 have the value

0.011 and µcr “ 0.013. The initial values of T0p0q and Tcrp0q are 1 ˆ 106 per milliliter

of blood, which are the average quantities of T cells per milliliter of blood [34], thus

k0 “ µ0T0p0q “ 1.1 ˆ 104 and kcr “ µcrTcrp0q “ 1.3 ˆ 104. The activated cells CD8` have

half life of a month approximately [36], then µca “ 0.03. The B cells in rest have half life

between 2 and 4 days and more than 6 weeks if they are activated [17], which implies

µr “ 0.25 and µa “ 0.02 respectively. The quantity of B cells per milliliter of blood is

around of 2 ˆ 106 [34], thus Bp0q “ 2 ˆ 106, and as before we have kr “ µrBp0q “ 5 ˆ 105.

The virus released by one infected cells is N1 “ 5 ˆ 104 [37],[31], and we assume that the

value N2 “ 2. A summary of these parameters is in the table 2

Parameter Value Units Reference

ks 6.8 ˆ 103 pmL ˆ dayq´1 [31], [34]
k0 1.1 ˆ 104 pmL ˆ dayq´1 [35], [34]
kr 5 ˆ 105 pmL ˆ dayq´1 [34]
µs 0.017 day´1 [31]
µ

I
0.2 day´1 [32],[33]

µ0 0.011 day´1 [35]
µ1 0.011 day´1 [35]
µ2 0.011 day´1 [35]
µr 0.25 day´1 [17]
µa 0.02 day´1 [17]
µcr 0.013 day´1 [35]
µca 0.03 day´1 [36]
N1 5 ˆ 104 [31], [37]
N2 2

Table 2 – Parameters used in the model
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1.3.3.4 Global uncertainty and sensitivity analysis

In mathematical models there are frequently many unknown parameters, there-

fore an important questions that must be answered concern with relationship of these

parameters with the model outputs, in particular which ones contribute most to output

variability, and which ones require additional research or are insignificant. These questions

can be answered using uncertainty and sensitivity analysis. We use the Latin hypercube

sampling (Lhs) and Partial rank correlation coefficients (Prcc) and extended fourier ampli-

tude sensitivity test (Efast) to assess global uncertainty and sensitivity analysis following

the methodology proposed in [38], a short description of this methods can be found in

the appendix 1.A.2 and 1.A.3. The days analyzed were the second and seventh day after

infection, because these are crucial in dengue infections: the onset of infection and the

clearance. The parameters selected to perform global uncertainty and sensitivity analysis,

were β
I
, αv, γ1, γ2, αr, αcr and µv. We do not know the threshold of these parameters

except for the mortality rate of dengue virus µv. The four serotypes of dengue virus have

half life between 2.5 to 7.5 hours [39]. The results of Lhs/Prcc for variable V show that in

the day two, the effect of infection rate β
I

is positively correlated (0.800394) with the viral

load V . It means that if we increase this parameter then the viral load will rise, while the

action of antibodies against virus αv, the differentiation rate of T helper cells into Th2,

γ2, and activation of the B cells, αr, have negative correlations ´0.78303, ´0.62821, and

´0.59711, respectively. The Lhs/Prcc for variable V in the day seven show an interesting

fact: the infection rate β
I
, the cytotoxic action rate α

I
and the differentiation rate of T

helper cells into Th1 γ1 are negatively correlated (see table 3). The negative correlation of

parameters α
I

and γ1 is clear because the cytotoxic action rate α
I

helps to decrease the

infected cells and the differentiation rate γ1 activates the T1 cells which are crucial for the

activation of cytotoxic activity. While that for the negative correlation of parameter β
I
,

we can say that if we increase the infection rate, there are more infected cells helping the

T0 cells to differentiate into Th1 cells that are capable of activating the cytotoxic activity

of the Tca cells. This suggest that cytotoxic activity is more important for the clearance

of infection. Similar things happen with the infected cells (see table 4). The results of

sensibility analysis Efast are quite similar to Lhs/Prcc. The parameters with high first

order (Si) and total order STi
sensitivity index are β

I
, αv and γ2 in the second day, and in

the seventh day, three became important α
I
, γ1 and αcr (see table 5 ), the same occur

with the infected cells (data not shown).
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Time β
I

αv γ2 αr α
I

γ1

2 0.800394˚˚ ´0.78303˚˚ ´0.62821˚˚ ´0.59711˚˚

7 ´0.63696˚˚ — — — ´0.35573˚˚ ´0.42147˚˚

Table 3 – The Lhs with N “ 800 and Prcc for the virus V in the days two and seven.
˚˚p ă 0.01

Time β
I

αv γ2 αr α
I

γ1

2 0.90099˚˚ ´065448˚˚ ´0.5645˚˚ ´0.55954˚˚

7 ´0.6318˚˚ — — — ´0.37803˚˚ ´0.42181˚˚

Table 4 – The Lhs with N “ 800 and Prcc for the infected cells I in the days two and
seven. ˚˚p ă 0.01

β
I

αv γ2 α
I

γ1 αcr

Si

2 0.0124˚˚ 0.0542˚˚ 0.0083˚ — — —
7 0.0135˚ 0.0143˚˚ 0.0126˚ 0.0135˚ 0.0265˚˚ 0.0131˚

STi

2 0.6521˚˚ 0.8805˚˚ 0.6246˚ — — —
7 0.8706˚ 0.8751˚˚ 0.8589˚ 08731˚˚ 08694˚˚ 0.8538˚

Table 5 – The Efast with Ns “ 600 for the virus V in the days two and seven. ˚p ă 0.05 ,
˚˚p ă 0.01

1.3.3.5 Parameter estimation

To perform parameter estimations we use real data of primary dengue fever of

patients with DENV1, DENV2 and DENV3. These data show the quantity of dengue virus

RNA in plasma (they can be accessed in the supplementary data of [29]). We used the

parameters of table 2 and genetic algorithm to find the best set of unknown parameters (

β
I
, αv, γ1, γ2, αr, αa, αcr, αca, µv) (see the appendix 1.A.4 for a short explanation). The

table 6 shows the parameters estimated from data. In all the estimations we got high values

for the proliferation parameter (αca) of activated Tca cells in relation to the proliferation

parameter (αa) of Ba cells, whereas the differentiation of T0 cells into T1 or T2 cells is

almost of the same order, which implies that the control of viral load and infected cells

are obtained mostly by the cytotoxic activity but not exclusively. Indeed, we can see in

the fittings of these parameters in the Figures 10 and 11 that there is a little inhibition of

activated Tca cells and a strong response of Ba cells in the beginning of dengue infection.

This could be a strategy of dengue virus to spread the virions, because it will activate a

greater amount of B cells which will turn into plasma cells and release antibodies with

not high affinity which may facilitate the opsonization of pathogen. The clearance of the
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dengue virus happens when the antibodies improve its affinity and the cytotoxic cells get

the right chemical signal. This allow the infected cells destruction to prevent release of

new virus, this happens approximately in the four day (see Figures 10 and 11).

Parameters DENV-1 DENV-2 DENV-3 Units

β
I

5 ˆ 10´8 2.37 ˆ 10´8 5 ˆ 10´8 mL

day

αv 1.2 ˆ 10´5 2.34 ˆ 10´5 1.21 ˆ 10´5 mL

day

γ2 1.0 ˆ 10´7 2.48 ˆ 10´5 1.43 ˆ 10´5 mL

day

αr 1.6 ˆ 10´7 1.8 ˆ 10´5 1.61 ˆ 10´5 mL

day

αa 2.94 ˆ 10´10 2.1 ˆ 10´12 2.0 ˆ 10´13 mL

day

α
I

1.6 ˆ 10´5 2.28 ˆ 10´5 1.41 ˆ 10´5 mL

day

γ1 1.13 ˆ 10´4 2.38 ˆ 10´5 1.3 ˆ 10´5 mL

day

αcr 1.21 ˆ 10´7 2.2 ˆ 10´5 1.41 ˆ 10´5 mL

day

αca 4.89 ˆ 10´7 3.16 ˆ 10´9 4.0 ˆ 10´11 mL

day

µv 3.3 3.5 3.3
1
day

Table 6 – Parameters estimated from patients data with dengue fever with serotypes 1, 2
and 3 (DENV-1, DENV-2 and DENV-3).
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Figure 9 – The figure shows the virus, infected cells and immune response dynamics of
primary dengue fever with virus serotype 1. The red points indicated the viral
load data. There exists a high response of B cells compared to T cells.
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Figure 10 – The figure shows the virus, infected cells and immune response dynamics of
primary dengue fever with virus serotype 2. The red points indicated the viral
load data. There exists a high response of B cells compared to T cells. It is
possible to observe that the response of T cells start after the B cells, showing
a possible inhibition of this immune response.
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Figure 11 – The figure shows the virus, infected cells and immune response dynamics of
primary dengue fever with virus serotype 3. The red points indicated the viral
load data. There exists a high response of B cells compared to T cells and
the cellular immune response is inhibited initially but strongly activated in
the end.
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1.3.3.6 Instabilities

In this subsection, we connect the influence in the general model (1.1) of

humoral and cellular sub-models analyzed in subsections 1.3.1 and 1.3.2. In particular,

we discuss how the instability in the sub-model of cellular immune response studied

in the subsection 1.3.2 affects the general model (1.1). In order to do this, we use the

parameters in table 1, and the proliferation parameters of activated Ba and Tca cells are

varied. In the figure 12a, we can see that high values of parameter αca are enough to avoid

oscillations, while low values of this parameter lead the system to experiment instability

(see Figure 12b) and it is not possible to keep the viral load in low levels. In this situation,

the influence of the cytotoxic activity is fundamental for the control of increase in the

viral load. Then the proliferation parameter Tca cell should be large enough compared

to proliferation parameter of Ba cell. On the other hand, if there exists a weak cytotoxic

response represented in a fragile proliferation Tca cells but a high proliferation of Ba cells,

we have three situations: first, if the proliferation parameter αa is not too high, it is not

possible to avoid the oscillations (see Figure 12c). Second, if the parameter αa is big enough,

the oscillations disappear and the infection is controlled (see Figure 13a). Third, there is

another possibility to control the infection when there is a weak cytotoxic activity. This is

the inhibition of T0 differentiation into T1, i.e., γ2 " γ1, with γ1 small enough (see Figure

13b). In this situation the general model (1.1) will have the same asymptotic behavior of

the humoral sub-model. All this means that the sub-model of cellular immune response is

that which most affects the dynamics of the general model. Also with a high proliferation

of Tca cells, it is possible to decrease the viral load to the level which laboratory tests

can not detect the dengue virus in the body, although mathematically, the viral load will

always be nonzero. However, when the proliferation of Ba cells is not high enough, the

humoral immune response will not completely stop the infection by dengue virus and it is

necessary to use different strategies, like a inhibition of differentiation of cells T0 into T1

cells. This means that the dynamics is acting asymptotically as a humoral sub-model. In

figure 14, we show clearly how the stability of the model (1.1) is strongly affect by the

proliferation of cytotoxic activated cells Tca. In figure 14a, we can see that high values of

parameter αca are enough to assure stability. Meanwhile, if this parameter is small, it is

necessary high values of parameter αa. In figure 14b, it is presented the situation where

the proliferation parameter αca of cytotoxic cells is small. Therefore, we can see that, in

order to get stability it is necessary to increase the proliferation parameter of Ba cells, αa,

and at the same time it is necessary to decrease the values of activation parameter of T1

cells, γ1. This means that, in order to get an effective humoral response, it is necessary a

inhibition of activity cellular or at least a weak activation.
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(c) αca “ 6ˆ10´3 ă αa “ 50

Figure 12 – The figure shows the viral dynamics. (a) In this figure we consider that the
proliferation parameter of Tca cells is much bigger than proliferation parameter
of Ba cells. In this situation the stability of the model is not affected and
the viral load is decreased. (b) This figure shows a drastically reduction of
parameter αca compared to αa, but still greater. In this case we have instability
and the possibility of a limit cycle. This means that cytotoxic activity cause a
strong influence in the decline of viral load. (c) in this figure, we consider an
increase of proliferation(αa) of Ba cells and the parameter αca remains small.
This increase is not enough to prevent oscillations and control or decrease the
viral load.
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(b) αca “ 6 ˆ 10´3 ă αa “ 50, with 0.01 ˆ γ1

Figure 13 – The figure shows the viral dynamics, and represents the way how the immune
system acts with a weak cellular immune response to control the infection. (a)
In this situation, in order to avoid the oscillations, it is necessary a strong
humoral immune represented in the proliferation of Ba cells (b) This case
represents a strategy of the immune system against the non possibility to
reduce the viral load only by the increasing the proliferation of B cells, for
which it is necessary a inhibition of differentiation of T0 cells into T1 cells.
This implies in a reduction of parameter γ1 and γ2 " γ1.
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Figure 14 – The figure shows the local stability of general model (1.1). The blue (black)
color represents instability and the green (grey) color represents stability. (a)
The proliferation parameter of Ba cells, αa, and proliferation parameter of
Tca, αca, are able to vary. High values of parameter αca ensure stability in the
model but high values of αa not necessarily generates stability. (b) The figure
shows that to avoid instability with values of parameter αa it is necessary
small values of parameter γ1

1.4 Conclusion

In the present study, we developed a mathematical model of interaction between

the immune system and dengue virus, which is a complex interaction that is little under-

stood. We proposed a model in which the cellular and humoral immune responses depend

on the differentiation of Th0 helper cells into Th1 and Th2. Our findings show that the

dynamic of the general model is mostly affected by the cellular immune response. A strong

cellular immune response will be enough to control the viral load and avoid oscillations.

Meanwhile, a weak response in the proliferation of cytotoxic cells will generate oscillations

and the possibility of a limit cycle. There exist two ways to change this behavior. The

first is a strong proliferation of active B cells, which will generate an improvement in the

fitting of antibodies to stop the infection. The second is inhibition of the differentiation of

cells Th0 into Th1, which means that activation of cytotoxic cells would be low. In this

way, the immune response would predominantly be the humoral immune response, and

the dynamical system will act as the the humoral sub-model, which has no oscillations.

By using the parameters from the medical literature and performing fittings of

unknown parameters through the use of clinical data on dengue fever, we show that there

is more proliferation of cytotoxic cells than B cells. This is evident in the values of the

proliferation parameter of activated cytotoxic cells, αca. which are higher than the values
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of the proliferation parameter of activated B cells, αa. These values assure the control of

infection, avoid oscillations and suggest a dominant cellular immune response in relation

to the humoral immune response. Besides, the simulations showed that the initial humoral

immune response is faster than the cellular immune response at the onset of infection, but

the cellular immune response is stronger in clearance. This means that the cellular immune

response is inhibited in the onset of infections as a possible strategy used by the virus

to spread through the body, because the large number of activated B cells will release

low affinity antibodies which may facilitate the opsonization of pathogen and it may be a

clue to answer why the antibodies can help in enhance second infections. In fact, in vitro

studies of dengue infections in dendritric cells reported a notably suppressed proliferation

of T cells [40],[41], and some studies with patients showed an increase CD8+ T cell counts

later in the course of disease [42],[43]. Other models considering the role of cytokines have

to be considered to better analyze the role of the CD8+ T cells in the control of the viral

replication and the balance between humoral and cellular immune responses.
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1.A Appendix

1.A.1 Hopf bifurcation

Consider the system of ordinary differential equation in the way

9x “ fpx, αcaq, (1.11)

where x P R
n and αca P R. If we make Taylor expansion of f around the equilibrium point

x “ x0, we obtain

F pxq “ Ax ` 1
2
B̄px, xq ` 1

6
Cpx, x, xq ` Op}x}4q, (1.12)

where A “ fxpx0, αcaq, B̄px, xq and Cpx, x, xq are functions defined by

B̄ipx, yq “
nÿ

j,k“1

B2fipξq
BξjBξk

ˇ̌
ˇ̌
ˇ
ξ“x0

xjyk (1.13)

Cipx, y, zq “
nÿ

j,k,l“1

B3fipξq
BξjBξkBξl

ˇ̌
ˇ̌
ˇ
ξ“x0

xjykzl, i “ 1, . . . , n. (1.14)

we assume that A “ fxpx0, αcaq has its eigenvalues with the property Repλiq ă 0,

i “ 3, . . . , n and λ1,2 “ ˘i ω0.

Once we calculate the function F , we need to know if the pair of complex-conjugate

eigenvalues crosses the imaginary axis with nonzero speed, this condition is named as

Transversality condition and its definition is presented above.

Transversality condition

Definition 1.1. Let A be a real matrix n ˆ n which depends on the parameter α (Apαq)
with a simple pair of eigenvalues λ1,2pαq “ µpαq ˘ iωpαq and µpα0q “ 0, ωpα0q ą 0. We

define the transversality condition by

µ1pα0q ‰ 0.

There is another way to compute the transversality condition, by using the Projection

method for center manifold computation [44](pg 175). First, Let q P C
n be a complex

eigenvector corresponding to λ1

Aq “ iω0q, Aq̄ “ ´iω0q̄. (1.15)

Introduce also the adjoint eigenvector p P C
n having the properties

ATp “ ´iω0p, AT p̄ “ ´iω0p̄, (1.16)
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and satisfying the normalization

xp, qy “ 1, (1.17)

where xp, qy “ pT ¨ q “
ÿ

i

piqi. Once we computed the vectors p and q, we can use the

next lemma to compute the transversality condition (This result appears in the book [44]

as an exercise in pg 189)

Lemma 1.2. Let Apαq the matrix defined in 1.1 then the transversality condition can be

compute by

µ1pα0q “ Rexp,A1pα0qqy, (1.18)

where q and p are eigenvectors satisfying the equations (1.15) to (1.17).

Proof. Suppose that qpαq and ppαq are eigenvectors of the eigenvalues λ1,2pαq “ µpαq ˘
iωpαq. Then differentiating with respect to α the equation

Apαqqpαq “ λ1pαqqpαq,

we obtain

A1pαqqpαq ` Apαqq1pαq “ λ1
1pαqqpαq ` λ1pαqq1pαq.

Computing the scalar product with p in both sides, we have

xp,A1pαqqpαq ` Apαqq1pαqy “ xp, λ1
1pαqqpαq ` λ1pαqq1pαqy

xp,A1pαqqpαqy ` xp,Apαqq1pαqy “ xp, λ1
1pαqqpαqy ` xp, λ1pαqq1pαqy

xp,A1pαqqpαqy ` xAT pαqp, q1pαqy “ λ1
1pαqxp, qpαqy ` λ1pαqxp, q1pαqy.

Evaluating the previous equation in α “ α0, we obtain

xp,A1pα0qqy ` xAT pα0qp, q1pα0qy “ λ1
1pα0qxp, qy ` iω0pα0qxp, q1pα0qy,

and, from the equations (1.16)-(1.17), results in

xp,A1pα0qqy ` x´iω0pα0qp, q1pα0qy “ λ1
1pα0q ` iω0pα0qxp, q1pα0qy

xp,A1pα0qqy ` iω0pα0qxp, q1pα0qy “ λ1
1pα0q ` iω0pα0qxp, q1pα0qy.

Then

λ1
1pα0q “ xp,A1pα0qqy, and µ1pα0q “ Rexp,A1pα0qqy.
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First Lyapunov coefficient The First Lyapunov coefficient is a number that indicate

that certain combination of Taylor coefficients of the right-hand sides of the system (up to

and including third-order coefficients) does not vanish.

Definition 1.2. The first Lyapunov coefficient is given by

l1pα0q “ 1
2ω0

Re
“
xp, Cpq, q, q̄qy ´ 2xp, B̄pq, q1qy ` xp, B̄pq̄, q2qy

‰
, (1.19)

where q1 “ A´1B̄pq, q̄q and q2 “ p2iω0In ´ Aq´1B̄pq, qq.

Remark 1.3. A deduction of the first Lyapunov coefficient l1pαq can be found in [44] (pg

178).

Theorem 1.4 (Hopf bifurcation). Consider the system

9x “ fpx, αq, x P R
n, α P R,

with f smooth function of px, αq. For α near to α0, let x0 be the equilibrium point with

eigenvalues

λ1,2pαq “ µpαq ˘ iωpαq,

which satisfies µpα0q “ 0 and ωpα0q ą 0, and the other eigenvalues are negatives. If the

following conditions hold

• l1pα0q ‰ 0,

• µ1pα0q ‰ 0,

Then, there are invertible coordinate that depends on the parameter α and a time reparam-

eterization transforming, where the system (1.11) can be reduced in the central manifold

to

d

d τ

˜
y1

y2

¸
“
˜
β ´1

1 β

¸˜
y1

y2

¸
` spy2

1 ` y2
2q
˜
y1

y2

¸
` Op}y}4q, (1.20)

where β “ µpαq
ωpαq and s “ sgnpl1pα0qq. [45](pg 353)

Definition 1.3. If l1pα0q ă 0pl1pα0q ą 0q, the bifurcation is named supercritical Hopf

bifurcation (subcritical), and the limit cycle is stable (unstable).
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1.A.2 Latin hypercube sampling and Partial rank correlation coefficient

Latin hypercube sampling (LHS) is a stratified sampling without replacement

technique and belongs to the Monte Carlo class of sampling methods. The random

parameter distributions are divided into N equal probability intervals, which are then

sampled. N represents the sample size. The choice for N should be at least k+1, where k

is the number of parameters varied, but usually much larger to ensure accuracy. For each

parameter is chosen a probability density function (pdf) (i.e. normal, uniform, lognormal,

etc.). If biological knowledge exists suggesting a more frequent or expected value for a

parameter, a normal pdf would be the best choice. Otherwise, the choice is a uniform

distribution. The sampling is done by randomly selecting values from each pdf. A matrix

is generated (called LHS matrix) that consists of N rows for the number of simulations

(sample size) and of k columns corresponding to the number of varied parameters. N model

solutions are then simulated, using each combination of parameter values (each row of

the LHS matrix). The model output of interest is collected for each model simulation.

Different model outputs can be studied if more than one model output is of interest [38].

We selected the parameters β
I
, αv, γ1, γ2, αr, αcr and µv and N “ 800 to perform the

LHS. The parameters αa and αca were not selected because they were analyzed in the

subsection 1.3.3.6 and we know the influence in the model.

To define Partial rank correlation coefficient (PRCC), we start defining:

Correlation coefficient: is a number that quantifies some type of correlation and de-

pendence between two or more random variables.

Rank correlation coefficient: the study of relationships between rankings of different

variables or different rankings of the same variable.

Partial correlation coefficient: is a number that measures the degree of association

between two random variables, with the effect of a set of controlling random variables

removed.

Finally we define:

Partial Rank Correlation coefficient: Is the partial correlation on rank-transformed

data.

So in the model (1.1), we are interested to know what is the relationship of

virus load V and the infected cells I with the parameters β
I
, αv, γ1, γ2, αr, αcr and µv. In

this way we perform LHS and PRCC to assess the sensitivity of our outcome variable to

parameter variation the results are discussed in subsection 1.3.3.4.
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1.A.3 Extended fourier amplitude sensitivity test

The extended fourier amplitude sensitivity test (efast) is a method to perform

global sensitivity analysis which evaluates the relative importance of input variable and

model parameters on the evolution over time of the model state variables. Efast is a variance

decomposition method and use spectral analysis to decomposes the output variance. The

total number of model simulations made for efast is given by N “ Ns ˆ k ˆ Nr, where

Ns is the samples per search curve, k is the number of parameters and Nr is the number

of search curves (resampling). We choose Ns “ 600, k “ 10, Nr “ 5, to perform efast to

the model (1.1). The codes that are available in <http://malthus.micro.med.umich.edu/

lab/usadata/>, give us the first-order sensitivity Si and total-order sensitivity STi
of each

input parameter with the significance for the output variable. [46], [38].

To perform LHS/PRCC and EFAST we used the codes of methodology proposed in [38]

and can be accessed in the link <http://malthus.micro.med.umich.edu/lab/usadata/>

1.A.4 Genetic Algorithm

The function to minimize is fpV, Υ q “ pV ´ Vdataq2, where V is the viral load

solution of the system (1.1), Vdata are the data of viral load of patients and Υ are the

unknown parameters Υ “ pβ
I
, αv, γ1, γ2, αr, αa, αcr, αca, µvq, where β

I
P pβ

Imin, βImaxq,
αv P pαvmin, αvmaxq, . . . , µv P pµvmin, µvmaxq. The first step is transform each parameter in

binary and form a string called chromosome. Let be Γ the binary representation of Υ .

Then

Γ “ pβ
I2αv2γ12γ22αr2αa2αcr2αca2µv2q.

will be the chromosome, which has just 1’s and 0’s and β
I2, αv2, γ12, γ22αr2, αa2, αcr2, αca2, µv2

are the binary representation of parameters. This chromosome has length m “
9ÿ

i“1

mi,

where m1 is the smallest integer such that pβ
Imax´β

Iminqˆ10p ă 2m1 ´1, m2 is the smallest

integer such that pαvmax ´ αvminq ˆ 10p ă 2m2 ´ 1, . . . , m9 is the smallest integer such

that pµvmax ´ µvminq ˆ 10p ă 2m9 ´ 1 and p is the is the decimal places for the parameters.

Each mi is the length of binary string of parameters. Now we start the algorithm

1. Initial population

We create a random population P0 of chromosomes, where each chromosome is a

binary string of length m “
9ÿ

i“1

mi. We suppose that this initial population has n

chromosomes. i.e

P0 “ tΓ 1
0 , . . . , Γ

n
0 u
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• Mutation operator

This operator apply alterations in the elements of chromosomes (changes of 0

for 1 or vice versa). We give the probability of mutation pm. This probability

give us the expected number of mutated elements pm ˆ mˆn. The process to

perform the mutation operator is similar to the crossover operator: For each

chromosome in the current (i.e., after crossover) population and for each element

within the chromosome, is generated a random number r from the range r0, 1s.
If r ă pm, then mutate the element.

Figure 16 – The mutation operator.

4. After all the above steps, we have created the first generation: population P1. Now

just repeat the steps 2 and 3 to P1, and the process goes up to the desired generations.

A detailed explanation of genetic algorithms can be found in [47]. The algorithm adapted

and used in the simulations can be accessed in the link <http://people.csail.mit.edu/

gbezerra/Code/GA/ga.m>
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2 Mathematical model of antibody depen-

dent enhancement in dengue disease

Abstract. We developed a mathematical model to explore the different situations in

which antibody dependent enhancement in dengue disease could occur. The model has a

virus-free equilibrium that is locally asymptotically stable but could be unstable depending

on the region of immune parameters. The instability of this point implies in the rise of

viral load and infected cells. Further, there is a locally asymptotically stable virus-presence

equilibrium. We analyzed when the viral load increases or reaches the minimum viral level.

We found that high proliferation parameter levels of cross-reactive antibodies increases

the viral load, and even if the basic reproductive number is less than one, there exists a

large chance of an increase dependent on the proliferation of cross-reactive antibodies and

the initial viral load.

2.1 Introduction

The mechanism by which the viral production of target cells is altered by the

presence of serotype-cross-reactive antibodies is a serological phenomenon called antibody-

dependent enhancement (ADE) [48]. The first studies about ADE were conducted about

15 years after the World War II by the virologists Kjellen [49] and Hawkes [50], but this

phenomenon only became important when the epidemiologist/virologist Halstead proposed

a relationship between epidemiology, cross-reactive antibodies and dengue disease severity

[51],[52],[53]. Actually there is a very large number of disease that show ADE in vitro

and vivo, including HIV, Influenza A, Measles and Dengue [54]. In dengue disease, the

major target cells are macrophages, monocytes, and dendritic cells. After a primary dengue

infection, the immunological memory will raise cross-reactive antibodies that cannot block

the infection and can enhance the infection by a different virus type. In fact, there is

much evidence that the Fcγ receptors, which are proteins on the surface of some cells like

macrophages and monocytes that bind to the antigen-antibody complex, might facilitate

viral entry in cells and increase dengue viral replication [55]. It was recently inferred that

immunological memory for dengue virus is cross-reactive to Zika virus and might develop

ADE [56], which will be a challenge in research on vaccines against dengue and Zika virus.

Here we propose a mathematical model of ADE in dengue infection based on

the biological mechanism involved in this phenomenon and try to capture the possible

scenarios in which the ADE happens. There exist few mathematical models that consider

the viral dynamics of dengue virus and even fewer that treat the second infections by
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dengue virus [57],[28]. The difference in our mathematical approach is that we considered

the principal actors in the ADE: B memory cells, dengue virus and macrophages. It is

assumed that the antigen-antibody complex will be engulfed by the macrophages and that

a portion of this binding will generate infection. This formulation allowed us to determine

a proliferation parameter threshold of B memory cells in which the ADE does not happen

and represent the scenery when there is no expectation of infection (R0 ă 1). However,

with a high level of the parameter of proliferation of B cells and a high initial viral load

will trigger an increase in the viral load.

2.2 Model formulation

In the model, we consider the existence of an immunological memory to one

of the four serotypes of dengue virus. This memory is represented by B memory cells,

that will respond quickly and effectively to the dengue virus encountered previously, but

weakly to the three others. We assume that these cells are maintained in a constant level

rate k
B

by the immune system, proliferate in the presence of antigen at rate α
B

and have

death rate µ
B
. Once B memory cells recognize the pathogen, which is denoted by V ,

they differentiate into plasma cells and release antibodies. These antibodies will bind to

the pathogen, and we consider that it happens at rate proportional to the presence of

B cells. Thus, α1BV will be the binding of antibodies to the pathogen which is known

as antigen-antibody complex (or immune complex), where α1 is the formation rate of

antigen-antibody complex. The macrophages S are produced by the bone marrow at rate

ks and have half life of
1
µs

. These cells may react in two ways: by direct phagocytosis of

virus, a slow process promoted by pseudopods, or by opsonization of antigen-antibody

complex which facilitate the phagocytosis. Due to imperfect action of antibodies against

another serotypes of dengue virus, some cells became infected, i.e, virus can replicate

in these cells, releasing new virus. The concentration of these infected cells is denoted

by I and has a death rate µ
I
. The direct phagocytosis of virus is described by the term

αvSV , where αv is the slow rate of phagocytosis. The opsonization process is mediated

or facilitated by the receptors Fcγr that are present in macrophages. Therefore the

antigen-antibody complex is quickly phagocited when it is bound to the Fcγr receptors.

This process is described by α2pα1BV qS, where α2 is the fast rate of phagocytosis. We

define αc “ α1 ˆ α2 as phagocytosis rate of antigen-antibody complex. By a imperfect

cross-reactive immune response to heterologous serotype of dengue virus, a portion of these

effector cells can become infected, i.e. ραcBV S, with 0 ă ρ ă 1. The effective cross-reactive

immune response to homologous serotype of dengue virus is considered when ρ “ 0. It

could happen that some infected macrophages kill the pathogen. It means that these

macrophages are target of the dengue virus again, and this happens at rate σ. The other

portion p1 ´ ρqαcBV S becomes a type of target cells Ŝ and these cells quickly transform
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back to the target cells S, with rate α
Ŝ
. The concentration of virus is proportional to

the quantity of virus released by infected cells after its death, γI and the virus decay at

rate µv. Furthermore, once the free virus form the antigen-antibody complex it will be

engulfed by the macrophages. Thus, we assume that the macrophages engulf more than

one immune complex, that is, NαcBV S. Therefore, the system of differential equations is

dB

dt
“ k

B
` α

B
BV ´ µ

B
B

dS

dt
“ ks ` σI ´ pαcBV ` µsqS ` α

Ŝ
Ŝ

dŜ

dt
“ p1 ´ ρqαcBV S ´ α

Ŝ
Ŝ

dI

dt
“ ραcBV S ´ pσ ` µ

I
qI

dV

dt
“ γI ´ NαcBV S ´ pαvS ` µvqV.

In the third equation of previous system, we can see that the transition of Ŝ to S is

instantaneous, so we can consider this equation in equilibrium. This means that α
Ŝ
Ŝ “

p1 ´ ρqαcBV S and our system becomes

dB

dt
“ k

B
` α

B
BV ´ µ

B
B

dS

dt
“ ks ` σI ´ pραcBV ` µsqS

dI

dt
“ ραcBV S ´ pσ ` µ

I
qI

dV

dt
“ γI ´ NαcBV S ´ pαvS ` µvqV.

(2.1)

The solutions of the model (2.1) with initial conditions in R
4
` are always positive and

limited if they are in the set:

Ω “
"
P P R

4
` :

γ

µ
I

S `
ˆ
γ

µ
I

` N

ρ

˙
I ` V ď k̄

δ
, B ď k

B

ζ

*
, (2.2)

where P “ pB, S, I, V q, k̄ “ ksγ

µ
I

, δ “ min

#
µs, µv,

N
ρ

pσ ` µ
I
q´

γ

µ
I

` N
ρ

¯
+

, and ζ satisfy ζ :“

µ
B

´ α
B

k̄

δ
ą 0.

Lemma 2.1. The set Ω is positively invariant with respect to system (2.1).

Proof. Let f : R` Ñ R`, the function defined by fptq “ γ

µ
I

Sptq `
ˆ
γ

µ
I

` N

ρ

˙
Iptq ` V ptq.
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Taking the derivative of function f with respect to t, we have

df

dt
“ γ

µ
I

ks ´ µs

γ

µ
I

S ´ N

ρ
pσ ` µ

I
qI ´ αvV S ´ µvV

ď γ

µ
I

ks ´ µs

γ

µ
I

S ´ N

ρ
pσ ` µ

I
qI ´ µvV,

this can be write as

df

dt
` µs

γ

µ
I

S ` N

ρ
pσ ` µ

I
qI ` µvV ď γ

µ
I

ks.

If k̄ “ ksγ

µ
I

and δ “ min

#
µs, µv,

N
ρ

pσ ` µ
I
q´

γ

µ
I

` N
ρ

¯
+

, then
df

dt
` δf ď k̄. Therefore fptq ď

k̄

δ
, for t ě 0.

The last inequality implies that V ptq ď k̄

δ
, for t ě 0, and it is always possible to choose

the parameters µ
B

, α
B

, and δ, such that

µ
B

´ α
B

k̄

δ
ą 0. (2.3)

Taking into account this considerations and the first equation of system (2.1) we have

dB

dt
`
ˆ
µ

B
´ α

B

k̄

δ

˙
B ď dB

dt
` pµ

B
´ α

B
V qB “ k

B
.

Then
dB

dt
` ζB ď k

B
, where ζ “ µ

B
´ α

B

k̄

δ
, which implies B ď k

B

ζ
for t ě 0.

2.3 Analysis of the model

2.3.1 Virus-free equilibrium and stability

Corresponding to absence of infection by dengue virus, we have the equilibrium

point W0 “ pB0, S0, 0, 0q, where B0 “ k
B

µ
B

and S0 “ ks

µs

. We call this point the virus-free

equilibrium. The characteristic polynomial of the Jacobian matrix evaluated at W0 has

two negative roots: ´µs, ´µ
B

and two roots that depend on the sign of independent term

of next polynomial:

λ2 ` dλ ` pµ
I

` σq
ˆ
NαckskB

µsµB

` µv ` αv

ks

µs

˙
´ αckskB

ργ

µsµB

,
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where d “
ˆ
σ ` µ

I
` µv ` αv

ks

µs

` NαckskB

µsµB

˙
. Note that the independent term can be

written in the form
pαvks ` µvµsqpµ

I
` σq

µs

ˆ
1 ´ R0

˙
, where

R0 “ αc

k
B

µ
B

ks

µs

”
ρ γ

pµ
I

`σq
´ N

ı

´
αv

ks

µs
` µv

¯ . (2.4)

Then by Routh Hurwitz criteria [30] (pg 230), the virus-free point W0 is locally asymptoti-

cally stable if R0 ă 1, and unstable if R0 ą 1. The local stability of this point is stated in

theorem 2.1.

The number R0 can be interpreted in the following way. The average period of time that

one virus survives and circulates freely without being phagocytosed by macrophages is

1´
αv

ks

µs
` µv

¯ .

The binding of virus with antibodies produced by all memory cells during this time is

α1 ˆ 1´
αv

ks

µs
` µv

¯ ˆ k
B

µ
B

and

α2 ˆ

»
–α1

1´
αv

ks

µs
` µv

¯ kB

µ
B

fi
fl ks

µs

,

is the fast phagocytosis of antigen-antibody complex by macrophages which is mediated

by the Fcγr receptors. Therefore, αc

k
B

µ
B

ks

µs´
αv

ks

µs
` µv

¯ , with αc “ α1 ˆ α2, is the engulfment

of one virus by macrophages trough antigen-antibody complex during the average time of

free circulating. Further, αc

k
B

µ
B

ks

µs´
αv

ks

µs
` µv

¯ ρ is the fraction of macrophages that will produce

virus. Consequently the average number of virus produced by productive macrophages

during the life span is αc

k
B

µ
B

ks

µs´
αv

ks

µs
` µv

¯ ρ γ

pµ
I

` σq . However the average number of virus

engulfed by macrophages is αc

k
B

µ
B

ks

µs´
αv

ks

µs
` µv

¯ N . Then R0 is the net number of virus produced

by one virus.

Theorem 2.1. The point W0 is locally asymptotically stable if R0 ă 1, and unstable if

R0 ą 1. Where R0 is given by (2.4)
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2.3.2 Fold Bifurcation

In the proof of the Theorem 2.1, we can see that when R0 “ 1, the characteristic

polynomial has a zero eigenvalue and the others are negative. Thus the point W0 is not

hyperbolic, so we don’t have any information about its stability. For the study of the

stability in this point W0 at R0 “ 1 we can use theory of central manifold to prove

that there exists a fold bifurcation. To do this we chose µ
I
, as bifurcation parameter,

so R0 “ 1 at µ
I

“ µ˚
I

“
ργαc

k
B

µ
B

ks

µs´
αv

ks

µs
` µv

¯
` Nαc

k
B

µ
B

ks

µs

´ σ. Using the projection method for

center manifold computation [44] (pg 488), we can prove that the dynamics of system

(2.1) is locally topologically equivalently in the central manifold to the dynamics of the

equation 9u “ 1
2
au2 ` Opu3q. In the appendix 2.A.1, we prove that a ą 0. Therefore the

fold bifurcation warrants the existence of one virus-presence equilibrium near to point W0,

for µ˚
I

ă µ
I

ă µ˚
I

` ǫ (this situation represents R0 ă 1) , ǫ ą 0, which is unstable, besides

we can say that for µ˚
I

´ ǫ ă µ
I

ă µ˚
I

(this situation represents R0 ą 1), there will be a

quickly increase of the viral load.

2.3.3 Virus-presence equilibrium

The virus-presence equilibrium is defined by the point W1 “ pB˚, S˚, I˚, V ˚q,
where

B˚ “ Q ´ 1
Q ´ R0

k
B

µ
B

S˚ “ 1

1 ` µ
I

αcρk
B

µspµ
I

`σqα
B

pR0´1q
pQ´R0q

ks

µs

I˚ “ 1

1 ` µspµ
I

`σqα
B

µ
I

αcρk
B

pQ´R0q
pR0´1q

ks

µ
I

V ˚ “ R0 ´ 1
Q ´ 1

µ
B

α
B

,

and Q “ k
B
µvµI

ραc

α
B

pαvks ` µvµsqpµ
I

` σq .

The number Q can be written in the form: Q “

αc
k

B
µ

B

pαv
ks
µs

`µvqµs
ρ

µ
I

pµ
I

`σq

1
µv
α

B

1
µ

B

. We can interpreted

its numerator and denominator as follow:

• In the numerator, the term

1 ˆ α1 ˆ 1´
αv

ks

µs
` µv

¯ ˆ k
B

µ
B

, (2.5)
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was described before as the rate at which one virus, during its average period of

time, that survives and circulates freely without being phagocytosed by macrophages
1´

αv
ks

µs
` µv

¯ , is linked to the antibodies
k

B

µ
B

, forming the complex antigen-antibody.

The term

α1

1´
αv

ks

µs
` µv

¯ k
B

µ
B

ˆ α2 ˆ 1
µs

, (2.6)

is the rate at which one macrophage in its average life
1
µs

engulfs the complex

antigen-antibody. Then, the term

α1

1´
αv

ks

µs
` µv

¯ k
B

µ
B

α2

1
µs

ˆ ρ, (2.7)

is the infection rate of one macrophage that in its average life
1
µs

have engulfed the

complex antigen-antibody and

αc
k

B

µ
B´

αv
ks

µs
` µv

¯
µs

ρ ˆ µ
I

pµ
I

` σq , (2.8)

will be the death probability of infected macrophages that have not released virus .

• The denominator
1
µv

α
B

1
µ

B

is the proliferation rate of B memory cells by the stimulus

of antigen.

In the definition of virus-presence equilibrium W1, we can see that it has biological meaning

if Q ă R0 ă 1, or Q ą R0 ą 1. Furthermore if R0 « 1, then

B˚ « k
B

µ
B

, S˚ « ks

µs

, I˚ « 0, V ˚ « 0. (2.9)

This situation is the fold bifurcation described in the section 2.3.2, because when we have

Q ă R0 ă 1 and R0 « 1, we really have µ
I

« µ˚
I

(µ˚
I

ă µ
I

ă µ˚
I

`ǫ), which implies that the

point W1 is unstable and all the solutions converge to free virus point W0. Observe that, if

µ
I

Ñ µ˚
I

`, the parameter Q decrease and R0 increase, so this is not a good situation. On

the other hand, for Q ą R0 ą 1 and R0 « 1, we have that µ
I

« µ˚
I

(µ˚
I

´ ǫ ă µ
I

ă µ˚
I
), the

point W0 is unstable and the virus-presence W1 is stable. This situation is ideal because if

µ
I

Ñ µ˚
I

´, the parameter Q increases and R0 decreases and the level of infected cells and

virus is almost zero by the effect of apoptosis increase.

On the other hand, if Q « R0 and R0 ‰ 1, we have

B˚ Ñ `8, S˚ « 0, I˚ « ks

µ
I

, V ˚ « µ
B

α
B

.
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This is the worst case because the infected cells and virus reach the maximum levels.

Besides for Q ą R0 ą 1, and if Q Ñ 8, we can see that

B˚ « k
B

µ
B

, S˚ « ks

µs

, I˚ « 0, V ˚ « pαvks ` µvµsqpµ
I

` σqµ
B

pR0 ´ 1q
k

B
µvµI

ραc

.

In this situation there is a benefit for the cross-reactive immune response if Q is big and

R0 ą 1, because the infected cells reach a minimum level.

From previous considerations, we can see that when Q is incremented and

Q ą R0 there is always a benefit for immune system; because the infected cells and/or

virus load decrease. In fact we shall see that, in order to eliminate the infection or to

prevent a strong infection, we will require Q ą R0.

Let us see which are the situations where we obtain an increment in the

parameter Q. The possibilities are: the numerator increases or the denominator decreases.

The numerator can increase if the parameter αc is raised. The problem of this situation is

that R0 will raise too, and this means that the productions of virus increases. So is not

the better idea to rise this parameter, and, similarity the parameter ρ. Another situation

where the numerator can increase is when the parameter µ
I

is increased. The feature

of this situation is that R0 will decrease. In fact, we discussed this situation after the

equation (2.9). We concluded that if apoptosis parameter µ
I

is increased until µ˚
I
, then

Q will raise until Q˚ and R0 Ñ 1. This implies in a decrease of dengue virus and the

infected cells by increment of parameter Q. The denominator will decrease (which means

that the parameter Q increases), if the parameter of proliferation of B memory cells, α
B

,

decreases. In fact we shall show that the parameter α
B

will have substantial implications

in the increase of the infection.

In the next figure 17, we present a scheme about the existence of equilibrium

points with respect to the parameters Q and R0. Note that when Q ă R0 ă 1, there is

coexistence with the point W0.
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where

S3pW1q “ µ
B

Q ´ R0

Q ´ 1
` αc ρ V

˚ ` µs ` A

S2pW1q “ µ
B

Q ´ R0

Q ´ 1
pαc ρB

˚ V ˚ ` µs ` Aq ` αB Nαc B
˚ V ˚ S˚

` pµ
I

` µvqαc ρB
˚ V ˚ ` µsA

S1pW1q “ µ
B
µs

Q ´ R0

Q ´ 1
rµ

I
` σ ` αv S

˚ ` µvs ` µ
B
µsNαc B

˚ S˚

` rk
B

pµ
I

` µvqραc ´ α
B
αvραc B

˚ V ˚ S˚s V ˚

` tµvµI
ρB˚ ´ rγρ ´ Npµ

I
` σqsα

B
B˚ S˚u αcV

˚

S0pW1q “ µ
B

pαvks ` µvµsqpµ
I

` σqpR0 ´ 1q,

and A “ µ
I

` σ ` Nαc B
˚ S˚ ` αv S

˚ ` µv.

2.3.4.1 Stability analysis of the point W1 when Q ă R0 ă 1

As we see in the figure 17, when Q ă R0 ă 1, there exist two points: the point

W0 which is locally asymptotically stable by Theorem 2.1 and the point W1, which is

unstable by Theorem 2.2 .

Theorem 2.2. The point W1 is unstable if Q ă R0 ă 1.

Proof. In the characteristic polynomial (2.10), the coefficients S3pW1q, S2pW1q are positive

and S0pW1q is negative for Q ă R0 ă 1. Therefore, independently of signal of coefficient

S1pW1q, the polynomial has just one change of signal. Then the Descartes’ rule of signs

warrants the existence of one positive root, which implies that the point W1 is unstable if

Q ă R0 ă 1.

If R0 remains constant and Q is able to vary, we can see that the only way it

happens is when α
B

varies, because
µ

I

pµ
I

` σq ă 1 and the other parameters depend on R0.

So if α
B

is large enough we have Q ă R0 and if it is small, we have Q ą R0. We analyze

the stability of system (2.1) when Q ă R0 ă 1 and 1 ą Q ą R0

In figure 18, we plot the stability relationship between Q and the equilibrium

V ˚ and B˚ respectively, when R0 remains constant and Q varies. It is possible to observe

that the point W1 is a separatrix of stability for the point W0. It means that if we put a

initial condition below this point the infection will be eliminated, but if we put a initial

condition above this point we have a strong increase in the viral load.

The antibodies will help in the elimination of dengue virus, if they are below

of B˚ or they will help to increase the viral load and infected cells, if they are above of B˚

(see figure 18b). There is another problem, if the proliferation parameter, α
B

, is too big,
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the region where cross-reactive immune response can eliminate the dengue virus will be

decreased and there is more likely to rise the viral load by ADE (see figure 18a).

(a)
(b)

Figure 18 – (a) The figure shows the virus-presence point V ˚ as function of parameter Q,
when R0 ă 1 remains constant. The arrows indicate the dynamic of dengue
virus V . We can see that if parameter Q is small(α

B
Ñ 8 ñ Q Ñ 0), the

by any initial viral load above of V ˚, our immune system will not be able
to eliminate the virus, which means that the antibodies are enhancing the
infection. While that if parameter Q is not too small (the parameter α

B
is

not too big), the immune system will tolerate greater initial viral load and
will be able to eliminate the virus. (b) The figure shows B˚ cells as function
of parameter Q, when R0 ă 1 remains constant. The arrows indicate the
dynamics of B cells. When Q ă R0 ă 1, the dengue virus will be eliminate
for initial values of B cells below of B˚, but if this initial value will be above
of B˚, the virus will not be eliminated, and a strong increase of dengue virus
could be happen by ADE. Further, it could be worst if the parameter α

B
is

too big, because 1 ą R0 ąą Q ÝÑ and the region where the immune system
eliminate the virus is decreased. For R0 ă Q ă 1 we have total elimination of
the dengue virus, observe that in this situation the parameter α

B
has not to

be too big.
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2.3.4.2 Stability analysis of the point W1 when Q ą R0 ą 1

Theorem 2.3. The point W1 is locally asymptotically stable if Q ą R0 ą 1.

Proof. To get the local stability of the point W1, first we define SipW1q :“ Si for i “ 0, . . . , 4.

We have to prove that the coefficients of polynomial characteristic (2.10) satisfy, for

Q ą R0 ą 1, the following Routh–Hurwitz conditions:

S3 ą 0, S2 ą 0, S1 ą 0, S0 ą 0 (2.11)

S1S2S3 ´ S2
1 ą S2

3S0. (2.12)

The condition (2.11) is easily checked by S3, S2, and S0. A proof of S1 ą 0 can be found in

appendix 2.A.2. Since the condition (2.11) is valid for Q ą R0 ą 1, the inequality (2.12)

can written as

1
S2

ˆ
S3S0

S1

` S1

S3

˙
ă 1. (2.13)

For Q ą R0 ą 1, we have,
S3S0

S1

ă S2

2
and

S1

S3

ă S2

2
(see a proof in Appendix 2.A.3). This

implies that the point W1 is locally asymptotically stable.

As in subsection 2.3.4.1, we vary Q and let R0 constant. In figure 19b, we can see

that if the parameter of proliferation α
B

is too small, then

Q increases and therefore B˚ asymptotically approaches the value B0 and viral load

is the lowest possible
ˆ
V ˚ Ñ pαvks ` µvµsqpµ

I
` σqµ

B
pR0 ´ 1q

k
B
µvµI

ραc

˙
. On the contrary, if α

B

increases up to a threshold xα
B
, such that Q Ñ R0, we will have the greatest value for

viral load V ˚ Ñ µ
B

α
B

and B˚ Ñ `8 (see figure 19a). This is a clear example of antibodies

mediation in the intensity of infection.
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(a) (b)

Figure 19 – (a) The figure shows V ˚ cells as function of parameter Q, when R0 ą 1 remains
constant. The arrows indicate the dynamics of dengue virus V . In this case
there is no elimination of virus, even there is a possibility of increase the viral
load if Q « R0 (which means α

B
is big). (b) The figure shows B˚ cells as

function of parameter Q, when R0 ą 1 remains constant. Arrows indicate
the dynamic of B cells. When Q ą R0 ą 1, there is not chance of virus
elimination, but if the parameter α

B
is small, the B cells and the viral load

V ˚ will be smaller. Besides, if the parameter α
B

grows to a threshold such
that Q « R0, the B cells blowup and viral load will increase, and again we
have the antibody dependent enhancement.

2.4 Discussion

2.4.1 Antibody dependent enhancement

We have noticed the importance of parameter Q in the increment of viral

load. We analyze three situations in which it happens: Q ă R0 ă 1, R0 ą Q ą 1 and

Q ą R0 ą 1.

In the figure 18a, it is examined the situation Q ă R0 ă 1. It is possible to

observe that for initial viral load above to V ˚, the viral load will increase without limit.

This situation is more evident when Q is close to zero, which means that α
B

is too big. It

implies that for a little initial viral load V0, we will have a fast rise of the virus, which

is a clear evidence in the mediation of enhancement of infection by the antibodies. The

problem is that the range of this initial viral load is decreased by action of proliferation

parameter of B cells. Which means that the immune system will tolerate even less initial

viral load.

When Q ą R0 ą 1, the situation is a little different, by any initial viral load,

the cross-reacive immune response is not able to eliminate the virus and the viral load

will be increased by the action of proliferation of B cells, as we can see in the figure 19a.

It means that while the parameter of proliferation α
B

is increased, the viral load will

be increased and the situation is worst when Q Ñ R0
`, because the viral load and the
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number of infected cells will be the highest possible.

For R0 ą Q ą 1, we do not have virus-presence equilibrium, the only thing

we know is that the virus-free equilibrium is unstable. But we can study the asymptotic

behavior of the model (2.1). Initially we show that B Ñ `8, in fact, in this region, the

equation (2.3) is violated for the parameter α
B

, because to have R0 ą Q, we need

α
B

ą µ
B
µv”

γ ´ N
ρ

pσ ` µ
I
q
ı

ks

µ
I

.

However, from equation (2.3) we have

α
B

ă
µ

B
min

#
µs, µv,

N
ρ

pσ`µ
I

qˆ
γ

µ
I

` N
ρ

˙

+

γ ks

µ
I

.

Which is impossible, because

µv ě min

#
µs, µv,

N
ρ

pσ ` µ
I
q´

γ

µ
I

` N
ρ

¯
+

besides

γ ą γ ´ N

ρ
pσ ` µ

I
q ùñ 1

γ ´ N
ρ

pσ ` µ
I
q ą 1

γ
.

Then

µ
B
µv”

γ ´ N
ρ

pσ ` µ
I
q
ı

ks

µ
I

ą
µ

B
min

#
µs, µv,

N
ρ

pσ`µ
I

qˆ
γ

µ
I

` N
ρ

˙

+

γ ks

µ
I

.

Now we know that B Ñ `8, so we need to know the asymptotic behavior of

the other variables. From the equation one and two of the model (2.1), and remembering

that S, I and V are limited in the Ω set, we have

1
B

dB

dt
“ k

B

B
` α

B
V ´ µ

B
, if B Ñ `8 then V Ñ µ

B

α
B

1
B

dS

dt
“ 1
B
ks ` 1

B
σI ´ ραcV S ´ 1

B
µsS, if B Ñ `8 then S Ñ 0.

By adding the equation two and three of the model (2.1), we obtain

dpS ` Iq
dt

“ ks ´ µsS ´ µ
I
I. How S Ñ 0, if B Ñ `8 then

dpIq
dt

« ks ´ µ
I
I, which implies I Ñ ks

µ
I

.
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Then we concluded that for R0 ą Q ą 1, the viral load and infected cells are drastically

affected by te increment of the parameter of proliferation of B memory cells, which is

another evidence that the our model represent the mediation of antibodies in the increase

of dengue infection.

2.4.2 Effective cross-reactive immune response

In the past sections, it is possible to observe that when Q ą R0, there is always

a benefit for an adequate cross-reactive immune response, because the viral load is either

completely cleared (1 ą Q ą R0) or it reaches the lowest level possible (Q ąą R0 ą 1).

For Q ą R0, we need that the proliferation of B cells is not increased up to the threshold

α˚˚
B

, it means

α
B

ă α˚˚
B
,

where α˚˚
B

“ µ
B
µvµI

ρ”
ρ γ

pµ
I

`σq
´ N

ı
kspµ

I
` σq

. But if R0 ą 1, there is not chance of elimination.

Besides, if α
B

is too close α˚˚
B

(α
B

« α˚˚
B

), there will be increase of viral load by the

antibody dependent enhancement, as described in the figure 19a. So to avoid this situation

we need the parameter α
B

to be small (α
B

ăă α˚˚
B

). There is another immune system

strategy to raise the parameter Q and reduce the viral load. This is by the increment in

the apoptosis of infected cells (µ
I

Ñ µ˚
I

´), the effect of this situation is a decline in the

net number of virus R0 « 1. It will have an enormous impact in the infected cells and the

virus because I˚ « 0 and V ˚ « 0.

Now if R0 ă 1 and Q ą R0, there is elimination of virus, but what should be the amount

of proliferation α
B

of B cells for this to happen?. To answer this question, it is needed

distinguish two cases: 1 ą Q ą R0 and Q ą 1 ą R0. For 1 ą Q ą R0, it is needed that the

proliferation α
B

of B cells satisfies

α˚
B

ă α
B

ăă α˚˚
B
,

where α˚
B

“ k
B
µvµI

ραc

pαvks ` µvµsqpµ
I

` σq . On the other hand, if Q ą 1 ą R0, the proliferation

rate of B cells has not to be too big and it has to be controlled. In terms of the parameters

this happens when

α
B

ă min
 
α˚

B
, α˚˚

B

(
.

In this ideal situation (R0 ă 1 and Q ą R0), for any initial viral load (V0), the immune

system will eliminate the pathogen, i.e. pB0, S0, 0, V0q Ñ W0.
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2.5 Conclusion

In the current study, we proposed a mathematical model to study ADE in

dengue disease at an early stage. The model considers an existing immunological memory

acquired from a past infection by one of the serotypes of dengue virus. We showed that

there exists a high dependence between infection and the proliferation of B cells. There is

a threshold for the parameter of proliferation of B cells at which our immune system will

clear dengue virus and a threshold at which the mediation of antibodies will increase the

infection of cells(antibody-dependent enhancement). If we could control this parameter,

we could stop the infection or avoid a strong increase of viral load and infected cells.

It is interesting to note that even for R0 ă 1, there is a probability that the viral load

will increase. In fact, we showed that even for a small initial inoculation of the dengue

virus, a rise in the viral load is always possible and depends on how big is the parameter

of proliferation of B cells, α
B
. These observations are in agreement with studies that

suggest that in the second infection by dengue virus, there is a favorable increase of

the serotype-cross-reactive B cells from primary dengue infection [58], [59] that could

contribute to the risk of severe dengue disease [60],[61]. These results have to be read

carefully because this model only takes into account the initial stage and does not consider

the response of adaptive immune response. However, this was our exact goal for this study

because we believe that the initial stage of the second infection is crucial for the course

of dengue infection, and understanding it from different point of view may be will be

important for future research.
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2.A Appendix

2.A.1

The system (2.1) has a fold bifurcation when R0 “ 1 or µ
I

“ µ˚
I
. To prove this,

it is enough to use the projection method for center manifold computation [44] (pg 488).

Then is necessary compute the sign of a, we start looking for vectors p and q, such that

JpW0qq “ 0, JpW0qTp “ 0, ă p, q ą“ 1,

where J is the Jacobian matrix of system (2.1), and ă p, q ą“
4ÿ

i“1

piqi. After some

calculations we have

q “

¨
˚̊
˚̊
˚̊
˝

1

q2
µs

µ
I

q2

µ2
B

α
B
k

B

˛
‹‹‹‹‹‹‚
, p “ 1

ă p, q ą

¨
˚̊
˚̊
˚̋

0

0

1
µ

I
` σ

γ
,

˛
‹‹‹‹‹‚
, (2.14)

where, q2 “ µ
I
ρpαvks ` µvµsqµ2

B

µ2
sαB

k
B

rγρ ´ Npµ
I

` σqs . Now the sign of a is computing using the formula

a “ă p,Bpq, qq ą, where B̄px, yq “ pB̄1px, yq, . . . , B̄4px, yqqT is defined in the equation

(1.13).Then

B̄1px, yq “ α
B

px1y4 ` x4y1q

B̄2px, yq “ ´ραc

ks

µs

px1y4 ` x4y1q ´ ραc

k
B

µ
B

px2y4 ` x4y2q

B̄3px, yq “ ´B2px, yq

B̄4px, yq “ ´Nαc

ks

µs

px1y4 ` x4y1q ´
ˆ
Nαc

k
B

µ
B

` αv

˙
px2y4 ` x4y2q .

Therefore

a “ă p, B̄pq, qq ą“ 2
ă p, q ą

µ
B

α
B
B0

"„
ρ ´ Npµ

I
` σq
γ


αcS0 ` q2

„pαvks ` µvµsqpµ
I

` σq
γks

*
ą 0,

Then the system has a subcritical fold bifurcation.
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2.A.2

To prove that the coefficient S1 is always positive for Q ą R0 ą 1, first we see

that using the equations of equilibrium W1 we have

ραc B
˚ V ˚ S˚ “ pµ

I
` σqI˚ ď pµ

I
` σqks

µs

rγρ ´ Npµ
I

` σqsB˚ S˚ “ pαv S
˚ ` µvqpµ

I
` σq 1

αc

ď
ˆ
αv

ks

µs

` µv

˙
pµ

I
` σq 1

αc

B˚ ą k
B

µ
B

,

taking in account this inequalities we have

S1 ě µ
B
µs

Q ´ R0

Q ´ 1
rµ

I
` σ ` µv ` αv S

˚s ` µ
B
µsNαc B

˚ S˚

`
„
k

B
pµ

I
` µvqραc ´ α

B
αvpµ

I
` σqks

µs


V ˚

`
„
µvµI

ρ
k

B

µ
B

´
ˆ
αv

ks

µs

` µv

˙
pµ

I
` σqαB

αc


αcV

˚.

From Q ą 1, we have, k
B
ραc ą

ˆ
αv

ks

µs

` µv

˙
pµ

I
` σq α

B

µvµI

, then

S1 ě µ
B
µs

Q ´ R0

Q ´ 1
rµ

I
` σ ` µv ` αv S

˚s ` µ
B
µsNαc B

˚ S˚

`
„pµ

I
` µvq
µvµI

ˆ
αv

ks

µs

` µv

˙
´ αv

ks

µs


pµ

I
` σqα

B
V ˚

`
„

1
µ

B

Q ´ 1
ˆ

αv

ks

µs

` µv

˙
pµ

I
` σqαB

αc

αcV
˚,

the death rates µ
I

and µ
B

are always less than or equal to one, it means that
1
µ

I

ě 1 and

1
µ

B

ě 1, then S1 ą 0.

2.A.3

We are going to prove that for Q ą R0 ą 1, we have
S3S0

S1

ă S2

2
and

S1

S3

ă S2

2
.

To prove that
S3S0

S1

ă S2

2
, we have to prove 2S0S3 ´ S1S2 ă 0. First we start writing

S0 “ S01 ` S02 and S1 “ S11 ` S12, where
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S01 “ µ
B

Q ´ R0

Q ´ 1
µvµI

αc ρB
˚ V ˚

S02 “ ´α
B
V ˚rpαv S

˚ ` µvqµspµ
I

` σq ` αvµI
αc ρB

˚ V ˚S˚s

S11 “ µ
B
µs

Q ´ R0

Q ´ 1
rµ

I
` σ ` αv S

˚ ` µvs ` µ
B
µsNαc B

˚ S˚

S12 “ rk
B

pµ
I

` µvqραc ´ α
B
αvραc B

˚ V ˚ S˚s V ˚

` tµvµI
ρB˚ ´ rγρ ´ Npµ

I
` σqsα

B
B˚ S˚u αcV

˚.

Note that, S11 and S12 are positive as shown in 2.A.2, and S02S3 ă 0 ,

then 2S0S3 ´ S1S2 “ 2S01S3 ´ S11S2 ` 2S02S3 ´ S12S2, is equal to

2S0S3 ´ S1S2 “

„
µ

B

Q ´ R0

Q ´ 1

2 „
2µvµ

I
αc ρ B˚ V ˚ ´ µspµ

I
` σ ` αv S˚ ` µvqpαc ρ B˚ V ˚ ` µs ` Aq



` µ
B

Q ´ R0

Q ´ 1

"
2µvµ

I
αc ρ B˚ V ˚pαc ρ V ˚ ` µs ` Aq

´ pµ
I

` σ ` αv S˚ ` µvqrαB Nαc B˚ V ˚ S˚ ` pµ
I

` µvqαc ρ B˚ V ˚ ` µsAs

´ µ
B

µsNαc B˚ S˚pαc ρ B˚ V ˚ ` µs ` Aq

*

´ µ
B

µsNαc B˚ S˚rαB Nαc B˚ V ˚ S˚ ` pµ
I

` µvqαc ρ B˚ V ˚ ` µsAs ` 2S02S3 ´ S12S2,

From Q ą R0 ą 1, we have
Q ´ R0

Q ´ 1
ă 1 and

ˆ
Q ´ R0

Q ´ 1

˙2

ă
Q ´ R0

Q ´ 1
ă 1, then

2S0S3 ´ S1S2 ď ´µ2

B
µs

„
Q ´ R0

Q ´ 1

2

pµ
I

` σ ` αv S˚ ` µvqpαc ρ B˚ V ˚ ` µs ` Aq

´ µ
B

Q ´ R0

Q ´ 1

"
2α

B
V ˚rpαv S˚ ` µvqµspµ

I
` σq ` αvµ

I
αc ρ B˚ V ˚S˚s

` pσ ` αv S˚qrαB Nαc B˚ V ˚ S˚ ` pµ
I

` µvqαc ρ B˚ V ˚ ` µsAs

` pµ
I

` µvqrαB Nαc B˚ V ˚ S˚ ` µsAs

` µ
B

µsNαc B˚ S˚pαc ρ B˚ V ˚ ` µs ` Aq

*

´ µ
B

µsNαc B˚ S˚rαB Nαc B˚ V ˚ S˚ ` pµ
I

` µvqαc ρ B˚ V ˚ ` µsAs ´ S12S2 ă 0.

Next, to prove that
S1

S3

ă
S2

2
, we can see that

S1

S3

ă
S2

2
ðñ 2S1 ´ S2S3 ă 0 then,

2S1 ´ S2S3 “ 2µ
B

µs

Q ´ R0

Q ´ 1
rµ

I
` σ ` αvS˚ ` µvs ` 2µ

B
µsNαcB˚S˚

` 2 rk
B

pµ
I

` µvqρ αc ´ α
B

αvραc B˚ V ˚ S˚s V ˚

` 2 tµvµ
I
ρ B˚ ´ rγρ ´ Npµ

I
` σqs α

B
B˚ S˚u αcV ˚

´

„
µ

B

Q ´ R0

Q ´ 1
pαc ρ B˚ V ˚ ` µs ` Aq ` αB Nαc B˚ V ˚ S˚

` pµ
I

` µvqαc ρ B˚ V ˚ ` µsA

„
µ

B

Q ´ R0

Q ´ 1
` αc ρ V ˚ ` µs ` A


,
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After some calculations we have

2S1 ´ S2S3 “ ´2α
B

αvραcB˚V ˚S˚V ˚ ´ pµ2

I
` µ2

v
qαc ρ B˚V ˚ ´ 2rγρ ´ Npµ

I
` σqsα

B
αc B˚V ˚S˚

´ µ
B

Q ´ R0

Q ´ 1

„
µ

B

Q ´ R0

Q ´ 1
pαc ρ B˚ V ˚ ` µs ` Aq ` αB Nαc B˚ V ˚ S˚



´ pαc ρ V ˚ ` Aq

„
µ

B

Q ´ R0

Q ´ 1
pµs ` Aq ` αB Nαc B˚ V ˚ S˚ ` µsA



´ pσ ` Nαc B˚ S˚ ` αv S˚q

„
µ

B

Q ´ R0

Q ´ 1
` µ

I
` µv


αc ρ B˚ V ˚

´ µs

„
µ

B

Q ´ R0

Q ´ 1
pαc ρ B˚ V ˚ ` µsq ` αB Nαc B˚ V ˚ S˚ ` pµ

I
` µvqαc ρ B˚ V ˚ ` µsA


ă 0.



69

3 Global dynamics of humoral and cellular im-

mune responses to virus infection

Abstract. We studied the global stability of a model of virus dynamics with consideration

of humoral and cellular immune responses . We used a Lyapunov direct method to get

sufficient conditions for the global stability of virus-free and virus-presence equilibriums.

First, we analyzed the model without an immune response and found that if the repro-

ductive number of virus is less than or equal to one, the virus-free equilibrium is globally

asymptotically stable. However, for the virus-presence equilibrium, global stability is

obtained if the virus entrance rate in the target cells is less than one. We analyze the model

with humoral and cellular immune responses and found similar results. The difference is

that in the reproductive number of virus and in the virus entrance rate in the target cells

there is the presence or action of humoral and cellular immune response, which means

that the adaptive immune response will stop or control the rise of the infection.

3.1 Introduction

Global stability analysis in models of within-host viral infections has been

addressed in particular cases. In [62], the authors proved global stability using an extension

of the Poincaré–Bendixson theorem for the class of three-dimensional competitive systems.

In [63], the authors used the direct Lyapunov method to demonstrate global stability.

The same was done in a model with a Beddington-DeAngelis functional response [64].

On the other hand, there are models that consider the immune response [65], [66], [67]

showing the global stability analysis. All of these models are just considered humoral or

cellular immune response. In our model, besides considering virus entrance rate in the

target cells, we also study the humoral and cellular immune responses. None of the cited

models consider this approach. In this way, using a direct Lyapunov method, we show

the global stability of a model of virus dynamics without immune response. Further, we

gave conditions for global stability analysis of model considering the humoral and cellular

immune responses. The organization of this paper is as follows. In section 3.2, we present

the model formulation of the model with immune response and the positive invariant set.

The global stability analysis of model without an immune response is presented in section

3.3. Finally, in section 3.4, we study the global stability analysis of model with humoral

and cellular immune responses.



Chapter 3. Global dynamics of humoral and cellular immune responses to virus infection 70

3.2 Model Formulation

Denote by S, I, V , B and T the target cells, infected cells, dengue virus, B

cells and the cytotoxic T cells, respectively. The cells S are produced in bone marrow by a

constant rate ks. The target cells are chronically infected at rate β
I

and die at a rate µs,

the lysis of this infected cells occur by action of the cytotoxic CD8+ cells T at rate α
I

and die by apoptosis at rate µI . We assume that diverse chemical signals will activate the

B cells and the cytotoxic T cells, these cells in the beginning of this activation have not

high affinity, which means that they are not efficient to clear the dengue infection, so by

somatic hypermutations, they become step by step with better affinity(fit) to stop or kill

the virus. Therefore we consider that after some time, this specialization is maintained at

constant rate k
B

and k
T
, and they are going to proliferate in the presence of dengue virus

at rate α
B

and by the presence of infected cells at rate α
T
. The virus amount is considered

proportional to the released virus by the infected cells after its death N1pµs ` µ
I
qI, where

N1 is the number of virions released by infected cell and more than one particle of virus

will try to infected each cell denoted by N2, here we assume that this value is less than

half of number of virions released, i.e., N2 ă N1

2
, the action of antibodies against the virus

is considered proportional to the amount of B cells at rate αv and finally the virus decay

at rate µv. The differential equations describing the interactions of dengue virus and the

immune system are given by

dS

dt
“ ks ´ β

I
SV ´ µsS

dI

dt
“ β

I
SV ´ α

I
IT ´ pµs ` µ

I
qI

dV

dt
“ N1pµs ` µ

I
qI ´ N2βI

SV ´ αvBV ´ µvV

dB

dt
“ k

B
` α

B
BV ´ µ

B
B

dT

dt
“ k

T
` α

T
TI ´ µ

T
T.

(3.1)

The positively invariant set for the model (3.1) is given by

Ω “
"
P P R

5
` : N1S ` NI ` V ` αv

α
B

B ` Nα
I

α
T

T ď k

δ

*
, (3.2)

where P “ pS, I, V, B, T q, N “ pN1 ` N2q, k “ N1ks ` αv

α
B

k
B

` Nα
I

α
T

k
T

and δ “

min
"
µs, µv, µB

, µ
T
,
N2pµs ` µ

I
q

N

*
.

Lemma 3.1. The set Ω is positively invariant with respect to system (3.1).
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Proof. let P0 “ pSp0q, Ip0q, V p0q, Bp0q, T p0qq P Ω the initial condition of the system (3.1)

and Θptq the function defined by

Θ “ N1S ` NI ` V ` αv

α
B

B ` Nα
I

α
T

T,

taking the derivative of Θ with respect to t, we have:

dΘ
dt

“ N1ks ´ N1µsS ´ N2pµs ` µ
I
qI ´ µvV ` αv

α
B

pk
B

´ µ
B
Bq ` Nα

I

α
T

pk
T

´ µ
T
T q ,

this can be written as

dΘ
dt

` N1µsS ` N2pµs ` µ
I
qI ` µvV ` αv

α
B

µ
B
B ` Nα

I

α
T

µ
T
T “ k,

where k “ N1ks ` αv

α
B

k
B

` Nα
I

α
T

k
T
. If we choose δ “ min

"
µs, µv, µB

, µ
T
,
N2pµs ` µ

I
q

N

*
,

we conclude that,

dΘ
dt

` δΘ ď k,

then

Θ ď k

δ
`
ˆ

Θp0q ´ k

δ

˙
e´δt, for all t ě 0,

wich implies

Θ ď k

δ
.

In next sections we analyze the model without immune response and the model considering

humoral and cellular immune responses 3.1.

3.3 Analysis of model without immune response

If there is not immune response, we have the next model

dS

dt
“ ks ´ β

I
SV ´ µsS

dI

dt
“ β

I
SV ´ pµs ` µ

I
qI

dV

dt
“ N1pµs ` µ

I
qI ´ N2βI

SV ´ µvV.

(3.3)

for this model we studied the global stability of equilibrium points.
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3.3.1 Equilibrium Points for model (3.3)

The virus-free equilibrium is P0w “
ˆ
ks

µs

, 0, 0
˙

, and a virus-presence equilibrium

Pw “ pS˚
w, I

˚
w, V

˚
w q, where

S˚
w “ ks

µs

1
R0

I˚
w “ ks

pµs ` µ
I
q

ˆ
1 ´ 1

R0

˙

V ˚
w “ µs

β
I

pR0 ´ 1q,

and

R0w “ β
I

rN1 ´ N2s ks

µvµs

. (3.4)

3.3.2 Global stability of virus-free equilibrium P0w

Theorem 3.1. For R0w ď 1, the virus-free point P0w is globally asymptotically stable.

Proof. We use the direct Lyapunov method in this proof. Let L1 the function defined as

follows L1 : Ω1 Ñ R, where

Ω1 “ tpS, I, V q : S ą 0, I ě 0, V ě 0u

and

L1 “ pN1 ´ N2q
ż S

ks
µs

ζ ´ ks

µs

ζ
dζ ` N1I ` V.

It is easily to check that L1pP0wq “ 0 and L1 ą 0 in Ω1 ´ tP0wu. Besides the orbital

derivative of L1 along solutions of the system 3.3, it is given by

9L1 “ pN1 ´ N2q
ˆ

1 ´ ks

µsS

˙ˆ
ks ´ β

I
SV ´ µsS

˙
` N1

„
β

I
SV ´ pµs ` µ

I
qI


`
„
N1pµs ` µ

I
qI ´ N2βI

SV ´ µvV


,

which is equivalent to

9L1 “ ´pN1 ´ N2qµsS

ˆ
1 ´ ks

µsS

˙2

` pR0 ´ 1qµvV.

From last equation 9L1 ă 0, in Ω1 ´ tP0wu if and only if R0w ď 1. Then we conclude that

the virus-free point P0w is globally asymptotically stable.
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3.3.3 Global stability of virus-presence equilibrium Pw

The existence of the equilibrium Pw is assured if R0w ą 1, and we are going

to prove that Pw is globally asymptotically stable if the virus entrance in the target cells

is less than or equal to one i.e,
N2βI

ks

µvµs

ď 1. For this purpose, we define the function

L2 : R3
` Ñ R, where

L2 “ pN1 ´ N2q
ż S

S˚
w

ζ ´ S˚
w

ζ
dζ ` N1

ż I

I˚
w

ζ ´ I˚
w

ζ
dζ `

ż V

V ˚
w

ζ ´ V ˚
w

ζ
dζ. (3.5)

This type of function was proposed by Goh in [68].

Theorem 3.2. The virus-presence equilibrium Pw is globally asymptotically stable if

N2βI
ks

µvµs

ď 1. (3.6)

Remark 3.1. The conditions R0w ą 1 and
N2βI

ks

µvµs

ď 1, give us a threshold for the

parameter β
I
: β˚

I
ă β

I
ď β˚˚

I
, where β˚

I
“ µvµs

rN1 ´ N2s ks

and β˚˚
I

“ µvµs

N2ks

. The existence

of values of β
I

satisfying this inequality is guaranteed by the condition N2 ă N1

2
.

Proof. First we start the proof that the orbital derivative of function L2 is negative in

R
3
` ´ tPwu. Taking the derivative of function L2 along trajectories of system (3.3), we have

9L2 “ pN1 ´ N2q
ˆ

1 ´ S˚
w

S

˙ˆ
ks ´ β

I
SV ´ µsS

˙
` N1

ˆ
1 ´ I˚

w

I

˙„
β

I
SV ´ pµs ` µ

I
qI


`
ˆ

1 ´ V ˚
w

V

˙„
N1pµs ` µ

I
qI ´ N2βI

SV ´ µvV


. (3.7)

From the equilibrium equations, we have

ks “ β
I
S˚

wV
˚

w ` µsS
˚
w, µv “ pN1 ´ N2qβ

I
S˚

w, pµs ` µ
I
q “ β

I
S˚

wV
˚

w

I˚
w

. (3.8)

Substituing the last equations into (3.7), it turns into

9L2 “ rN2βI
V ˚

w ´ pN1 ´ N2qµssS˚
w

ˆ
S˚

w

S
` S

S˚
w

´ 2
˙

´ N1βI
S˚

wV
˚

w

ˆ
S˚

w

S
` S

S˚
w

V

V ˚
w

I˚
w

I
` V ˚

w

V

I

I˚
w

´ 3
˙
.

(3.9)

From the fact that arithmetic mean is greater than or equal to geometric mean, i.e.

nÿ

i“1

xi

n
ě n

d
nź

i“1

xi, (3.10)
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we have
S˚

w

S
` S

S˚
w

ě 2 and
S˚

w

S
` S

S˚
w

V

V ˚
w

I˚
w

I
` V ˚

w

V

I

I˚
w

ě 3.

Then 9L2 ă 0, if rN2βI
V ˚

w ´ pN1 ´ N2qµssS˚
w ď 0, in fact, from equations (3.8),

we can write

rN2βI
V ˚

w ´ pN1 ´ N2qµssS˚
w “ N2pks ´ µsS

˚
wq ´ µvµs

β
I

ď N2ks ´ µvµs

β
I

,

and by the inequality (3.6), we have

rN2βI
V ˚

w ´ pN1 ´ N2qµssS˚
w ď µvµs

β
I

ˆ
N2βI

ks

µvµs

´ 1
˙

ď 0.

Then 9L2 ă 0 in R
3
` ´ tPwu. Besides L2pPwq “ 0 and L2 ą 0 in R

3
` ´ tPwu. Therefore the

point Pw is globally asymptotically stable.

3.4 Stability analysis of model with immune response

3.4.1 Equilibrium Points for model 3.1

Here we show the existence of virus-free equilibrium and virus-presence equilib-

rium. In fact setting the system (3.1) equal to zero and making some operations we can

write:

S “ ks

β
I
V ` µs

(3.11)

I “ β
I
SV

α
I
T ` pµs ` µ

I
q (3.12)

V “ N1pµ
I

` µsqI
pN2βI

S ` αvB ` µvq (3.13)

B “ k
B

µ
B

´ α
B
V

(3.14)

T “ k
T

µ
T

´ α
T
I
, (3.15)

These equations have biological meaning if we have I ă µ
T

α
T

and V ă µ
B

α
B

. Now putting

the equations (3.11) and (3.12) into equation (3.13) we obtain

V “ ksN1pµ
I

` µsqβ
I
V

rN2βI
ks ` pαvB ` µvqpβ

I
V ` µsqsrpα

I
T ` pµs ` µ

I
qs ,
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from this equation we obtain

V “ 0 (3.16)

or

rN2βI
ks ` pαvB ` µvqpβ

I
V ` µsqsrpα

I
T ` pµs ` µ

I
qs “ ksN1pµ

I
` µsqβ

I
. (3.17)

V “ 0 implies the existence of a virus-free point which can be call P0, and has the

coordinates

P0 “
ˆ
ks

µs

, 0, 0,
k

B

µ
B

,
k

T

µ
T

˙
.

For the existence of virus-presence equilibrium, we have to show that the equation (3.17)

have one solution such that V ă µ
B

α
B

. In fact, let’s rewrite the equation (3.17), and call q

the polynomial:

qpV q “ rpN2βI
ks ` µvµs ` µvβI

V qpµ
B

´ α
B
V q ` αvkB

pβIV ` µsqs rα
I
T ` µs ` µ

I
s

´ ksN1pµs ` µ
I
qβ

I
pµ

B
´ α

B
V q, (3.18)

it is easy to see that

qp0q “
ˆ

1 ´ R0

˙ˆ
α

I

k
T

µ
T

` µs ` µ
I

˙ˆ
αv

k
B

µ
B

` µv

˙
µsµB

ă 0, if R0 ą 1,

q

ˆ
µ

B

α
B

˙
ą 0,

where R0 is defined in the equation (3.33) in the appendix 3.A.1. Then there is one solution

V such that 0 ă V ă µ
B

α
B

. We can write the equations (3.11)-(3.15) in function of V , for

this purpose, we substitute the equation (3.15) into the equation (3.12) to obtain

c1I
2 ´ c2I ` c3 “ 0, (3.19)

where c1 “ α
T

pµs `µ
I
q, c2 “ pk

T
α

I
`µ

T
pµs `µ

I
q`α

T
β

I
SV q, c3 “ µ

T
β

I
SV . This equation

has two solutions but just one satisfies our requirements, in fact

I “ c2 ˘
a
c2

2 ´ 4c1c3

2c1

.
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These two solutions have to be real, positive and less than
µ

T

α
T

. First, they are real because

the term inside of root is always positive, in fact

rk
T
α

I
` µ

T
pµs ` µ

I
q ` α

T
β

I
SV s2 ´ 4α

T
pµs ` µ

I
qµ

T
β

I
SV “ pk

T
α

I
q2 ` 2k

T
α

I
µ

T
pµs ` µ

I
q

` 2k
T
α

I
α

T
β

I
SV

` rα
T
β

I
SV ´ µ

T
pµs ` µ

I
qs2

,

Second, they are positive, because c2
2 ą c2

2 ´ 4c1c3, for c1 ą 0, c3 ą 0. So they are real, and

positive. To show that just one meet the condition I ă µ
T

α
T

, we see that this is true if

rk
T
α

I
´ µ

T
pµs ` µ

I
q ` α

T
β

I
SV s ˘

a
c2

2 ´ 4c1c3

c1

ă0, (3.20)

so the unique possibility for I is

I “ c2 ´
a
c2

2 ´ 4c1c3

2c1

.

Then there exists the virus-presence point P ˚ “ pS˚, I˚, V ˚, T ˚, B˚q, for R0 ą 1, where:

S˚ “ ks

β
I
V ˚ ` µs

(3.21)

I˚ “ c2 ´
a
c2

2 ´ 4c1c3

2c1

(3.22)

B˚ “ k
B

µ
B

´ α
B
V ˚

(3.23)

T ˚ “ k
T

µ
T

´ α
T
I˚
, (3.24)

and the root of the polynomial (3.18) such that 0 ă V ˚ ă µ
B

α
B

and I˚ ă µ
T

α
T

.

3.4.2 Stability of virus-free equilibrium

Here we present the stability of virus-free point P0

Theorem 3.3. For R0 ď 1, the virus-free point P0 is globally asymptotically stable.

Proof. Let Ω3 “ tpS, I, V, B, T q : S ą 0, I ě 0, V ě 0, B ą 0, T ą 0u and L3 : Ω3 Ñ R be

the function defined as follow:

L3 “ a1

ż S

ks
µs

ζ ´ ks

µs

ζ
dζ ` a2I ` a3V ` α

I

α
T

a2

ż T

k
T

µ
T

ζ ´ k
T

µ
T

ζ
dζ ` αv

α
B

a3

ż B

k
B

µ
B

ζ ´ k
B

µ
B

ζ
dζ, (3.25)



Chapter 3. Global dynamics of humoral and cellular immune responses to virus infection 77

with a1 “ N1pµs`µ
I
q´N2

ˆ
α

I

k
T

µ
T

` µs ` µ
I

˙
, a2 “ N1pµs`µ

I
q, a3 “

ˆ
α

I

k
T

µ
T

` µs ` µ
I

˙
.

It is clear that L3pP0q “ 0 and L3 ą 0 in Ω3 ´ P0. Now we prove that 9L3 ă 0, in fact

9L3 “ a1

˜
1 ´

ks

µs

S

¸ˆ
ks ´ β

I
SV ´ µsS

˙
` a2

„
β

I
SV ´ α

I
IT ´ pµs ` µ

I
qI


` a3

„
N1pµs ` µ

I
qI ´ N2βI

SV ´ αvBV ´ µvV



` α
I

α
T

a2

¨
˝1 ´

k
T

µ
T

T

˛
‚
ˆ
k

T
` α

T
TI ´ µ

T
T

˙
` αv

α
B

a3

¨
˝1 ´

k
B

µ
B

B

˛
‚
ˆ
k

B
` α

B
BV ´ µ

B
B

˙
.

After some calculations, we have that

9L3 “ ´a1µsS

˜
1 ´

ks

µs

S

¸2

` a3

ˆ
αv

k
B

µ
B

` µv

˙
V

„
R0 ´ 1


´ α

I

α
T

a2µT
T

¨
˝1 ´

k
T

µ
T

T

˛
‚

2

´ αv

α
B

a3µB
B

¨
˝1 ´

k
B

µ
B

B

˛
‚

2

.

Then 9L3 is negative in Ω3 ´P0 if R0 ď 1. Therefore the point P0 is globally asymptotically

stable for R0 ď 1.

3.4.3 Global stability of virus-presence equilibrium

In this section, we proved the global stability of virus-presence equilibrium P ˚

using a direct Lyapunov method. Let L4 : R5
` Ñ R defined as follows

L4 “ a

ż S

S˚

ζ ´ S˚

ζ
dζ ` b

ż I

I˚

ζ ´ I˚

ζ
dζ `

ż V

V ˚

ζ ´ V ˚

ζ
dζ

` α
I

α
T

b

ż T

T ˚

ζ ´ T ˚

ζ
dζ ` αv

α
B

ż B

B˚

ζ ´ B˚

ζ
dζ.

(3.26)

where a “
ˆ
N1pµs ` µ

I
qI˚

β
I
S˚V ˚

´ N2

˙
, b “ N1pµs ` µ

I
qI˚

β
I
S˚V ˚

. This type of function was proposed

by Goh in [68].
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Theorem 3.4. The virus-presence equilibrium P ˚ is globally asymptotically stable if

N2βI
ks´

αv
k

B

µ
B

` µv

¯
µs

ď 1. (3.27)

Remark 3.2. The conditions R0 ą 1 and
N2βI

ks´
αv

k
B

µ
B

` µv

¯
µs

ď 1, give us a threshold for

the parameter β
I
: β˚

I
ă β

I
ď β˚˚

I
, where β˚

I
“

´
αv

k
B

µ
B

` µv

¯
µs«

pµs`µ
I

qˆ
α

I

k
T

µ
T

`µs`µ
I

˙N1 ´ N2

ff
ks

and β˚˚
I

“

´
αv

k
B

µ
B

` µv

¯
µs

N2ks

. The existence of β
I

satisfying this inequality is guaranteed by

the condition N2 ă N1

2
.

Proof. we start showing that the derivative of function L4 defined in (3.26) is negative

along trajectories of system (3.1), if (3.27) holds. In fact, taking the derivative of function

L4 along trajectories of system (3.1), we have

9L4 “ a

ˆ
1 ´ S˚

S

˙ˆ
ks ´ β

I
SV ´ µsS

˙
` b

ˆ
1 ´ I˚

I

˙„
β

I
SV ´ α

I
IT ´ pµs ` µ

I
qI


`
ˆ

1 ´ V ˚

V

˙„
N1pµs ` µ

I
qI ´ N2βI

SV ´ αvBV ´ µvV



` α
I

α
T

b

ˆ
1 ´ T ˚

T

˙ˆ
k

T
` α

T
TI ´ µ

T
T

˙
` αv

α
B

ˆ
1 ´ B˚

B

˙ˆ
k

B
` α

B
BV ´ µ

B
B

˙
.

(3.28)

From the equilibrium equations (3.11)-(3.15), we have

ks “ β
I
S˚V ˚ ` µsS

˚, µv “ pN1 ´ N2qβ
I
S˚V ˚ ´ N1αIT

˚I˚ ´ αvB
˚V ˚

V ˚
,

pµs ` µ
I
q “ β

I
S˚V ˚ ´ αIT

˚I˚

I˚
, kT “ µTT

˚ ´ αTT
˚I˚, kB “ µBB

˚ ´ αBB
˚V ˚.

(3.29)
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Substituing the last equations into (3.28), it turns into,

9L4 “ ´aµsS
˚

ˆ
S˚

S
` S

S˚
´ 2

˙
` aβ

I
S˚V ˚

ˆ
2 ´ S˚

S
´ I

I˚
´ S

S˚

V

V ˚

I˚

I
` V

V ˚

˙

` N2βI
S˚V ˚

ˆ
´ I

I˚
´ S

S˚

V

V ˚

I˚

I
` V

V ˚
` S

S˚

˙

` N1βI
S˚V ˚

ˆ
I

I˚
´ V

V ˚
´ I

I˚

V ˚

V
` 1

˙

` N1αIT
˚I˚

ˆ
V

V ˚
´ I

I˚
´ 1 ` V ˚

V

I

I˚

˙

` bαIT
˚

ˆ
I˚ ´ µ

T

α
T

˙ˆ
T

T ˚
` T ˚

T
´ 2

˙

` αvB
˚

ˆ
V ˚ ´ µB

α
B

˙ˆ
B

B˚
` B˚

B
´ 2

˙
.

(3.30)

From equation (3.12) we have

a “
ˆ
N1

pµs ` µ
I
qI˚

β
I
S˚V ˚

´ N2

˙
“ N1 ´ N2 ´ N1

αIT
˚I˚

β
I
S˚V ˚

, (3.31)

taking the equation (3.31) into (3.30) implies

9L4 “ pN2βI
V ˚ ´ aµsqS˚

ˆ
S˚

S
` S

S˚
´ 2

˙

´ pµs ` µiqI˚N1

ˆ
S˚

S
` S

S˚

V

V ˚

I˚

I
` V ˚

V

I

I˚
´ 3

˙

` bαIT
˚

ˆ
I˚ ´ µ

T

α
T

˙ˆ
T

T ˚
` T ˚

T
´ 2

˙

` αvB
˚

ˆ
V ˚ ´ µB

α
B

˙ˆ
B

B˚
` B˚

B
´ 2

˙
.

(3.32)

Now note that, from the equations (3.29), the first term of equation (3.32) can be written

as

N2βI
S˚V ˚ ´ aµsS

˚ “ N2pks ´ µsS
˚q ´ αvB

˚ ` µv

β
I

µs ď N2ks ´ αvB
˚ ` µv

β
I

µs,

and in view of B˚ ě k
B

µ
B

and the inequality (3.27), we have

N2βI
S˚V ˚ ´ aµsS

˚ ď N2ks ´
αv

k
B

µ
B

` µv

βi

µs “
αv

k
B

µ
B

` µv

βi

µs

»
– N2βI

ks´
αv

k
B

µ
B

` µv

¯
µs

´ 1

fi
fl ď 0.
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Due to the fact N2βI
S˚V ˚ ´ aµsS

˚ ď 0, V ˚ ă µB

α
B

, I˚ ă µ
T

α
T

and remembering that

arithmetic mean is greater than or equal geometric mean
ˆ nÿ

i“1

xi

n
ě n

d
nź

i“1

xi

˙
, we have

9L4 ă 0 in R
5
` ´ tP ˚u. Additionally, we have that 9L4pP ˚q “ 0 and L4 ą 0 in R

5
` ´ tP ˚u.

Then P ˚ is globally asymptotically stable in R
5
`.

Remark 3.3. If in the model we assume that the number of virus entry in the target

cells N2βI
SV is included into the virus loss µvV , i.e., assume N2 “ 0. Then we avoid the

restriction (3.27) and the virus-presence equilibrium P ˚ is globally asymptotically stable if

R0 ą 1, with the same Lyapunov function (3.26) and the same proof.

3.5 Discussion

In this study, we determined the global stability of a mathematical model of a

viral dynamic when there is no immune response and when there are humoral and cellular

immune responses. Using the direct Lyapunov method, we showed that the virus-free point

of the model with or without immune response is globally asymptotically stable, if the

reproductive number of virus is less than or equal to one–i.e. whatever the initial viral load,

the virus will be cleared. In the first case, we can argue that the innate immune response

is acting to stop the viral load from increasing. Of course, in the second case, we can argue

that the adaptive immunity is an effective response to control the virus and infected cells.

Further, we determined the global stability of the virus-presence equilibrium whenever

the viral entrance rate in the healthy cells is less than or equal to one. This condition is

almost the same for the two models. The difference is that the immune response controls

the rise of this viral entrance rate. In this situation not matter how much is the initial

viral load the result will be always a virus persistence.
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3.A Appendix

3.A.1

To compute the basic reproductive number of the model (3.1) with immunity,

we use [69], [70] to form the next generation matrix, then

F “

»
—–

0 β
I

ks

µs

N1pµ
I

` µsq ´N2βI

ks

µs

fi
ffifl , V “

»
——–
α

I

k
T

µ
T

` pµ
I

` µsq 0

0 αv

k
B

µ
B

` µv

fi
ffiffifl ,

FV ´1 “

»
———–

0 β
I

ks

pαv
k

B

µ
B

` µvqµs

N1

pµ
I

` µsq
α

I

k
T

µ
T

` pµ
I

` µsq
´N2βI

ks

pαv
k

B

µ
B

` µvqµs

fi
ffiffiffifl .

From last matrix we have that the polynomial characteristic is

λ2 ´

¨
˝´N2βI

ks

pαv
k

B

µ
B

` µvqµs

˛
‚λ ´ N1

pµ
I

` µsq
α

I

k
T

µ
T

` pµ
I

` µsq
β

I

ks

pαv
k

B

µ
B

` µvqµs

.

We can not use [70], but we can use an extended conjecture which is in the appendix 3.A.2.

Then we have

R0 “
β

I

«
pµs`µ

I
qˆ

α
I

k
T

µ
T

`µs`µ
I

˙N1 ´ N2

ff
ks

´
αv

k
B

µ
B

` µv

¯
µs

. (3.33)

Similarity, if the humoral and cellular immune response is not present, the basic reproductive

number of the model 3.3 is

R0w “ β
I

rN1 ´ N2s ks

µvµs

. (3.34)

The unique difference with the before number R0, is that the immune activity is not

present in the control of free viral particles and infected cells.

3.A.2

Conjeture 3.1. Let the characteristic polynomial of order n corresponding to the next

generation matrix FV ´1 be written as

Λpλq “ λn ´ an´1λ
n´1 ´ ¨ ¨ ¨ ´ a1λ ´ a0,

with ai ě 0, i “ 0, . . . , k and aj ď 0, j “ k` 1, . . . , n´ 1. Let R0 denote the spectral radius

of the next generation matrix, that is, R0 “ ρpFV ´1q and
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R˚
0 “ a0 ` ¨ ¨ ¨ ` an´1.

Then R˚
0 is a threshold value for the disease to take off or die out in the sense that:

1. R˚
0 ă 1 if and only if R0 ă 1

2. R˚
0 “ 1 if and only if R0 “ 1

3. R˚
0 ą 1 if and only if R0 ą 1

Proof. Is the same proof of conjecture 1 in [70] (pg 103)
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4 Conclusions and future work

This chapter presents the conclusions of the thesis and outlines directions for

future research.

In the chapter 1, we proposed a mathematical model describing the adaptive

immune response to dengue virus in primary infection. In this model, the infected cells

and viruses send chemical signals to facilitate the differentiation of helper cells into helper

cells Th1 and Th2, which are crucial to the activation and balance of cellular and humoral

immune responses. The viral load and the infected cells are greatly reduced when an intense

cellular immune response occurs. On the other hand, if there is an inadequate proliferation

of cytotoxic cells, it is impossible to stop the viral increase with a cellular immune response

alone. This situation can be controlled by a powerful proliferation of activated B cells or a

reduction in the activation of Th1 cells, which perform a balanced humoral and cellular

immune response to stop the infection. Based on clinical data, the fitting process suggests a

predominant cellular immune response by the strongest proliferation of cytotoxic activated

cells, which assures the control of the dengue viral load. The dynamic of humoral and

cellular immune response represented in the activated B and T cells indicates an initial

reaction from antibodies in early states of infection but a strong cytotoxic activity in

the clearance period. We conclude that this situation is a strategy of dengue virus uses

to spread throughout the body because the inhibition of cytotoxic activity allows the

antibodies without good fit to bind to the pathogen and maybe facilitate opsonization.

In the chapter 2, we discussed the secondary infection by a heterogeneous

dengue virus and the antibody dependent enhancement by formulating a mathematical

model. This model tries to explain when the antibody dependent enhancement could take

place or what situations it can happen in. We found a threshold for the proliferation

parameter of B memory cells at which it is possible to see the intervention of antibodies in

clearing or increasing the viral load. With a few inoculations of dengue virus, it is possible

to develop a strong disease. We believe that this happens because a huge proliferation

of these non-neutralizing antibodies increases the possibility that an antibody-antigen

complex will form. This would make opsonization by immune cells more likely. Therefore,

the control of this threshold is fundamental to the evolution of the disease.

In the chapter 3, we proposed a simplification of the model in chapter 1 . We

used the direct Lyapunov method to show the stability analysis and established the global

stability of virus-free equilibrium provided that the net number of virus is less than or equal

to one. This means that the humoral and cellular immune responses are acting in complete

balance to stop the disease. The global stability of disease equilibrium is established if the
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viral entrance rate in the healthy cells is less than or equal to one. However, in a situation

where virus-presence always mathematically exists, it is possible to increase the humoral

and cellular immune response to reduce the viral load and number of infected cells

Future work

About direct Lyapunov method. In the proof of Lemma 1.1, we defined a function

(1.3), if we use this function to construct the function L
P1

: A Ñ R in the form

L
P1

“ Φ ´ Φ˚ ´ Φ˚ ln
Φ
Φ˚

or

L
P1

“ 1
2

pΦ ´ Φ˚q2.

Then we can prove that in the next two sets

a)

A1 “
 
P P A : S ď S˚, I ď I˚, V ď V ˚, T0 ď T ˚

0 , T1 ď T ˚
1 , T2 ď T ˚

2 ,

Br ď B˚
r , Ba ď B˚

a , Tcr ď T ˚
cr, Tca ď T ˚

ca

(
.

b)

A2 “
 
P P A : S ě S˚, I ě I˚, V ě V ˚, T0 ě T ˚

0 , T1 ě T ˚
1 , T2 ě T ˚

2 ,

Br ě B˚
r , Ba ě B˚

a , Tcr ě T ˚
cr, Tca ě T ˚

ca

(
.

we have L
P1

pP1q “ 0 , L
P1

ą 0 in Ai ´ tP1u, i “ 1, 2 and 9L
P1

ă 0, where P1 is the disease

equilibrium of model (1.1). From last deduction and from all the attempts to prove the

global stability or local stability for disease equilibrium of model (1.1), we prove the next

theorem

Theorem 4.1. Let f be a function Lipschitz and

9x “ fpxq, x P R
n. (4.1)

Suppose that there exists a point x˚ ‰ 0, such that fpx˚q “ 0 and there exists ai ą 0 such

that Φ “
nÿ

i“1

aixi and 9Φ “
nÿ

i“1

ai 9xi “ α ´
nÿ

i“1

bixi, where bi ě 0 and at least one is different

of zero. Define the function L by

L1 “ 1
2

pΦ ´ Φ˚q2 (4.2)

or

L2 “ Φ ´ Φ˚ ´ Φ˚ ln
Φ
Φ˚
. (4.3)

then the orbital derivative of function L along the trajectories of system (4.1) is negative

in the sets Ω1 “ txi P R : 0 ă xi ď x˚
i u or Ω2 “ txi P R : xi ě x˚

i u
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Another example can be

9S “ ks ´ gpS, Iq ´ µsS

9I “ gpS, Iq ´ µ
I
ppIq

9V “ αppIq ´ µvV

The function Φ is given by Φ “ S`I`µ
I

α
V . The theorem suggest a geometric characteristic

of this kind of models which could be explored to get a global stability.

Genetic algorithm. Develop a possible algorithm similar or better than genetic algorithm

(ga) based in the immune system. The ga uses the idea of mutation and crossover for

improve the optimization process. My idea is to use the mechanism of adaptive immune

system to develop an algorithm. If we see the adaptive immune system as a machine

making some task. This machine is trying to learn which is the best way to develop it,

by using the adaptive immune response. The challenge is how insert the differentiation

process of helper cells as well as the proliferation and affinity of B and T cytotoxic cells in

the algorithm.

Control theory. It is interesting to see that in all the immune response, the adaptive

process is the best instrument to stop any disease, although this tool is not always effective.

In this way we could use the control theory to look for the best or more efficient cellular

and humoral immune response against a viral infection. Besides in the model of antibody

dependent enhancement, we can insert a control to prevent that the non neutralizing

antibodies for the E and prM antigens bind the virus and maybe stop or avoid this

phenomenon.

Stochastic model. In the implementation of adaptive immune response is evident the

participation of Th helper cells in the balance a humoral and cellular immune responses.

If we consider the chemical signals for differentiation of Th helper cells into Th1 and Th2

as a probabilistic process, maybe we could get a more realistic adaptive immune response.
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Glossary

adaptive immune response : Part of the immune system that uses antigen receptors

and adapts or "learns" to recognize specific antigens, and retains a memory of

those antigens to speed up future responses.

affinity : A measure of the degree of interaction between two molecules, such as an antigen

and antibody or a hormone and its receptor.

antibody : Protein produced by the immune system in response to the presence in the body

of antigens: foreign proteins or polysaccharides such as bacteria, bacterial toxins,

viruses, or other cells or proteins. Such antigens are capable of inflicting damage

by chemically combining with natural substances in the body and disrupting the

body’s processes. The body contains hundreds of thousands of different white

blood cells called B lymphocytes, each capable of producing one type of antibody

and each bearing sites on its membrane that will bind with a specific antigen.

When such a binding occurs, it triggers the B lymphocyte to reproduce itself,

forming a clone that manufactures vast amounts of its antibody.

antigen : Any substance that causes the production of antibodies; now, more gener-

ally, anything that is recognized by antibodies or by the antigen receptors of

lymphocytes.

antigen-antibody complex : A complex of antibody with its specific antigen, which

forms when antigen and antibody come together. It is in this form that foreign

antigens are most effectively scavenged by phagocytic cells and thus removed from

the body.

antigen-presenting cells : Cells that process protein antigens into peptides and present

them on their surface in a form that can be recognized by lymphocytes.

apoptosis : Death of cells triggered by extracellular signals or genetically programmed

events. Also known as programmed cell death.

cytokine : Signal molecules secreted by various cell types, which regulate the intensity

and duration of immune response and mediate cell-to-cell communication.

cytotoxic cells : T cells that are activated to kill target cells.

Fc receptor-bearing cells : An Fc receptor is a protein found on the surface of certain

cells, that contribute to the protective functions of the immune system. A Fc

receptor-bearing cells are cells with this protein.

immunological memory : The capacity of the immune system to respond more rapidly

and vigorously to a pathogen that has been encountered previously.
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innate immune system : That part of the immune system that that is relatively

nonspecific and immediate: it does not change or adapt to specific pathogens.

lymph node : Small organs, distributed throughout the body, in which an adaptive

immune response can develop.

lysis : The dissolution or destruction of cells, including microorganisms; disruption of

tissue structure under the influence of enzymes and other lytic agents.

macrophages : White blood cells (activated monocytes) that protect the body against

infection and foreign substances by breaking them down into antigenic peptides

recognized by circulating T cells.

opsonization : The process by which bacteria and other cells are altered in such a manner

that they are more readily and more efficiently engulfed by phagocytes .

phagocytosis : The process of ingestion and digestion by cells of solid substances, for

example, other cells, bacteria, bits of necrotic tissue, foreign particles .

serotype : Microorganisms differing in the type of surface antigens.

T helper cell : A type of lymphocyte that matures in the thymus and "helps" other

lymphocytes by providing a second signal for costimulation.

Th1 cells : T helper cells that secrete a characteristic set of cytokines (such as interleukin-2

and interferon gamma) and tend to encourage a cellular response.

Th2 cells : T helper cells that secrete a characteristic set of cytokines (such as interleukin-4

and interleukin-10) and tend to encourage a humoral response.

viremia : The presence of a virus in the bloodstream.


	First page
	Title page
	Cataloguing data
	Approval
	Acknowledgements
	Resumo
	Abstract
	Contents
	Introduction
	Mathematical model of the immune response to dengue virus
	Introduction
	Model formulation
	Mathematical analysis
	Humoral immune response to dengue virus
	Virus-free equilibrium for humoral model
	Virus-presence equilibrium for humoral model
	Discussion

	Cellular immune response to dengue virus
	Virus free equilibrium for the cellular model
	Virus presence equilibrium for cellular model
	Hopf bifurcation
	Discussion

	Humoral and cellular immune response to dengue virus
	Stability of virus-free equilibrium
	Virus presence equilibrium
	Numerical simulation
	Global uncertainty and sensitivity analysis 
	Parameter estimation
	Instabilities


	Conclusion
	Appendix
	Hopf bifurcation
	Latin hypercube sampling and Partial rank correlation coefficient
	Extended fourier amplitude sensitivity test
	Genetic Algorithm


	Mathematical model of antibody dependent enhancement in dengue disease
	Introduction
	Model formulation
	Analysis of the model
	Virus-free equilibrium and stability
	Fold Bifurcation
	Virus-presence equilibrium
	Stability of virus-presence equilibrium W1 when Q<R0<1 and Q>R0>1
	Stability analysis of the point W1 when Q<R0<1
	Stability analysis of the point W1 when Q>R0>1 


	Discussion
	Antibody dependent enhancement
	Effective cross-reactive immune response

	Conclusion
	Appendix
	
	
	


	Global dynamics of humoral and cellular immune responses to virus infection
	Introduction
	Model Formulation
	Analysis of model without immune response
	Equilibrium Points for model (3.3)
	Global stability of virus-free equilibrium P0w
	Global stability of virus-presence equilibrium Pw

	Stability analysis of model with immune response
	Equilibrium Points for model 3.1
	Stability of virus-free equilibrium
	Global stability of virus-presence equilibrium

	Discussion
	Appendix
	
	


	Conclusions and future work
	Bibliography
	Glossary

