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Resumo

Por muitos anos, os quatro sorotipos do virus da dengue tém causado doenga variando de
assintomatica a dengue grave e potencialmente fatal em milhdes de pessoas por ano. A
primeira infec¢ao por dengue fornece uma protecao para a vida toda contra a reinfeccao
com 0 mesmo sorotipo, mas apenas protecao parcial contra outros sorotipos. Acredita-se
que os anticorpos existentes contra um sorotipo pode aumentar a gravidade da doenca,
um fendémeno conhecido como Reforco dependente de anticorpo. Nesta tese, nosso foco
foi o tratamento matematico da interacao entre o sistema imunolédgico e virus da dengue.
Primeiramente, desenvolvemos um modelo matematico da resposta imune adaptativa ao
virus da dengue na infec¢ao primaria, onde se considera que a ativagao da resposta imune
celular e humoral é mediada pela diferenciacao de células auxiliadoras Th. Conclui-se que
o virus da dengue ¢é eficazmente eliminado pela resposta imunolégica celular, se ocorrer
uma intensa proliferagdo de células citotéxicas. Caso contrario, em uma proliferacao fraca,
o virus da dengue é removido por uma proliferagdo potente de células B ativadas ou/e a
inibicao da ativacao de células auxiliadoras Th1l. Além disso, as simulagées com dados
clinicos mostram que a atividade citotoxica ¢é inibida no inicio da infec¢ao, enquanto que as
células B ativadas realizam a primeira resposta imunologica, o que pode ser uma estratégia
do virus da dengue para se propagar no corpo. Apods a primeira etapa, formulamos um
modelo matematico para explorar o refor¢o dependente de anticorpos na segunda infecgao
pelo virus da dengue e determinamos um limiar para o parametro de proliferacao das
células B de memoria. E possivel ver que acima deste pardmetro, a elevada proliferacio
dos anticorpos nao neutralizantes aumenta a possibilidade de formagao do complexo
anticorpo-antigéno, levando consequentemente, a uma maior probabilidade de opsonizacao
por células imunitarias, enquanto que abaixo desse parametro ou as particulas virais sao
eliminadas ou atingem o nivel minimo. Finalmente, usamos um método direto de Lyapunov
para estudar a estabilidade global de um modelo de dindmica de virus considerando uma
resposta imune humoral e celular. Observamos que, se o niimero liquido de virus é menor
ou igual a um, o equilibrio livre de virus é globalmente e assintoticamente estavel. A
estabilidade global do equilibrio com presenca de virus foi estabelecida se a taxa de entrada

viral nas células de alvo for menor ou igual a um.

Palavras-chave: Virus da Dengue. Reforco dependente de anticorpos. Sistema imunolégico

adaptativo. Método direto de Lyapunov.



Abstract

For many years, the four serotypes of dengue virus have caused asymptomatic to severe
and potentially fatal dengue disease in millions of individuals each year. The first dengue
infection provides a protection for life against reinfection with the same serotype, but
only partial protection against other serotypes. It is believed that existing antibodies
against one serotype may increase the severity of the disease, a phenomenon known as
antibody dependent enhancement. In this thesis, we focus on the mathematical treatment
of the interaction between the immune system and dengue virus. First, we develop a
mathematical model of the adaptive immune response to dengue virus in the primary
infection, in which it is considered that the differentiation of the helper cell mediates the
activation of the cellular and humoral immune response. We conclude that the dengue
virus is effectively eliminated by the cellular immune response if there exists an intense
proliferation of cytotoxic cells. By contrast, in a weak proliferation, the dengue virus
is removed by a potent proliferation of activated B cells and/or the inhibition of the
activation of Thl helper cells. Further, the simulations with clinical data demonstrate
that cytotoxic activity is inhibited at the beginning of infection, whereas the activated
B cells perform the first immune response, which could be a dengue virus strategy for
spreading throughout the body. Second, we formulate a mathematical model to explore
the antibody-dependent enhancement of dengue disease. We found a threshold for the
proliferation parameter of B memory cells. We can see that above this threshold, the high
proliferation of non-neutralizing antibodies increases the possibility that antibody-antigen
complex will form. Consequently, opsonization by immune cells would become more likely,
whereas those below this threshold or the viral particles are either eliminated or reach the
minimum level. Finally, we use a Lyapunov direct method to study the global stability of
a model of virus dynamics while considering the humoral and cellular immune responses.
We found that if the net number of viruses is less than or equal to one, the virus-free
equilibrium is globally asymptotically stable. By contrast, the global stability of virus-
presence equilibrium is established if the viral entrance rate in the target cells is less than

or equal to one.

Keywords: Dengue virus. Antibody dependent enhancement. Adaptive immune system.

Direct Lyapunov method.
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Introduction

Dengue is an endemic viral disease present in more than 100 countries, with
approximately 50-100 million new infections occurring annually. Dengue exerts a huge
impact on the economy because it directly affects the population and health systems, and
its incidence has increased 30-fold in the past decade [1]. Dengue virus (DENV) is a virus of
the family Flaviviridae that is transmitted by the bite of an infected female mosquito of the
species Aedes aegypti or Aedes albopictus [2],[3]. A dengue infection could be asymptomatic
or symptomatic. When it is symptomatic, it is called dengue fever or severe dengue (dengue
hemorrhagic fever and dengue shock syndrome). Dengue fever includes a high fever and
at least two of the following symptoms: severe headache, pain behind the eyes, muscle
and joint pain, nausea, vomiting, swollen glands or rash. Symptoms usually last for 2-7
days. Severe dengue is most serious manifestation of the disease due to plasma leaking,
fluid accumulation, respiratory distress, severe bleeding, or organ impairment, which need
proper medical care to prevent complications and reduce the risk of death [4],[5]. There
are four serotypes of DENV (DENV-1, DENV-2, DENV-3 and DENV-4), and all can
generate the clinical manifestations described above. A primary dengue infection provides
protection for life against reinfection with the same serotype, but only partial protection
against other serotypes. Generally, most primary infections are dengue fever and few
develop severe dengue, but epidemiological studies suggest that a secondary infection by a
different serotype of DENV could increase the risk of severe dengue [4],[6]. Furthermore,
severe dengue could occur in primary DENV infections of infants born to dengue-immune
mothers [7], [8].

When a DENV-infected female mosquito feeds on a healthy person, it inoculates
some amount of DENV. The initial targets of the virus are the most common skin cells, the
keratinocytes [9],[10]. The virus replicates in the dendritic cells of the skin, the Langerhans
cells [11], [12], [13],[14]. These cells are specialized in antigen presentation. They belong
to the skin’s immune system and transport antigens to regional lymph nodes. In this
journey to the lymph nodes, the white cells—monocytes and macrophages—try to destroy
the pathogen and are consequently infected by DENV [15],[16]. The rise and spread of
the virus results in viremia. Once the innate immune system is unable to stop the DENV,
the immune system looks for another strategy, which is normally called adaptive immune
response, a fundamental immune response to the recovery of any disease. Generally, the
adaptive immune response is activated by the Th helper cells, which are in turn activated
and differentiated by the stimulus of antigen-presenting cells. The infected cells produce
and release cytokines that help the immune system to recognize and protect DENV-infected

and uninfected cells, respectively. Based on the types of cytokine production, Th cells are
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categorized as Thl and Th2. Activated Thl produces IFN-~, IL-2, and IL-12, whereas
Th2 produces 1L-4, IL-5, IL-10, and IL-13 [17]. If the Th cell differentiates into a Thl cell,
it will activate macrophages and cytotoxic T cells, a process known as cellular immune
response that is responsible for eliminating the intracellular pathogens, i.e. killing the
infected cells. However, if a Th helper cell differentiates into a Th2 cell, it can stimulate B
cells to make most classes of antibodies. This is known as a humoral immune response,
and it defends the host from extracellular pathogens. Therefore, getting a cellular and/or
humoral immune response will depend on how Th helper cells are differentiated. The
immunologic responses in dengue disease have been reported in an activated Thl-type
cytokine response in dengue fever and an activated Th2-type cytokine response in severe
dengue [18]. A person previously infected with DENV has antibodies against this serotype
for life. However, for the remaining three serotypes, immunity is lost after a short time
and the person becomes susceptible [19]. Studies show that a person exposed to a different
serotype of DENV a second time is more likely to develop severe dengue compared to
those who have not been exposed [20], [21]. Generally, the B and T memory cells remain in
the body to react to pathogens responsible for earlier infections. However, it seems these
antibodies are not effective against another DENV serotype. By contrast, the infection
is worse. The first researchers who observed this were Dr. Scott Halstead and colleagues
who called this phenomenon as antibody dependent enhancement (ADE) [6]. In vitro
studies show that the ADE works in the following way: the preexistent antibodies from
a previous DENV infection bind to the dengue virus antigens, especially to E or prM
antigens, but these are unable to neutralize the virus. This antigen-antibody complex is
better opsonized via Fc receptor-bearing cells such as monocytes and macrophages, which
are major replication cells in vivo that could increase the titer of the virus in the blood
[22].

In this thesis, the aim is to study the mathematical dynamics of dengue virus
and the immune system by trying to express the principal process of the immune system
to stop the spread of dengue virus in primary and secondary infections. In the chapter 1,
we develop a mathematical model to describe the immune response to dengue virus when
there is no previous infection. In this model, we consider the fact that cellular and humoral
immune responses are activated by the differentiation of helper T cells, and we evaluate
the contribution of each immune response to the clearance of dengue virus. In chapter
2, we propose a mathematical model to study the antibody-dependent enhancement. In
this model, we consider the existence of an immunological memory that defends against
a certain dengue serotype. It is shown when there will be a strong increase in the viral
load and infected cells, which will depend on an immunological threshold. In chapter 3
we propose a mathematical simplification of the model in chapter 1 and study the global
stability using the direct Lyapunov method. Finally, we discuss the conclusions of this

thesis and the future work arising from these studies are discussed in chapter 4.
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1 Mathematical model of the immune re-

sponse to dengue virus

Abstract. Dengue disease is caused by an infected mosquito’s bite and manifests in
different clinical symptoms. The complexity of the pathogenesis of dengue virus and the
limitations of biological models have been barriers to completely understanding this disease.
To address this concern, we developed a mathematical model of the immune response to
dengue virus, which evaluated the impact of cellular and humoral immune responses. We
also performed global sensitivity analysis and parameter estimation using clinical data. We
concluded that to prevent instability and control the viral load, a strong proliferation of
cytotoxic cells must prevail. However, if there exists a weak proliferation of cytotoxic cells,
the way to avoid instabilities is to either inhibit the differentiation of T helper cells into
Th1 cells or increase the proliferation of B cells. In addition, our results based on clinical
data showed that cellular response is inhibited initially but strongly activated later, which
could be a spreading strategy of the virus that is not completely effective because of the

strong proliferation of cytotoxic activity to stop the infection in target cells.

1.1 Introduction

Dengue virus belongs to the virus family Flaviviridae and genus flavivirus, which
includes yellow fever, West Nile virus fever, Japanese encephalitis virus fever, tick-borne
encephalitis virus and Zika virus. There are four DENV serotypes (DENV-1, DENV-2,
DENV-3 and DENV-4), which are transmitted by the bite of an infected female mosquito of
the species Aedes aegypti or Aedes albopictus. After dengue virus is inoculated into the skin,
a small battle to stop the virus is initiated by our innate immune system. Unfortunately,
not all battles are won, and it will depend on many factors influencing the disease, like
host genetics, virulence, the strain of the virus and host immunity [23]. Generally, it
is accepted that the major target cells are dendritic cells and monocytes/macrophages.
Infection of these cells induces cytokine production and cell activation and maturation
24],[25]. The chemical signaling of infected cells activates the humoral and cellular immune
responses, which are crucial in the protection and clearance of DENV. In relation to the
humoral immune response, the process starts when the B cells are activated. Once the
activated B cells improve affinity, they are going to differentiate into plasma cells. These,
in turn, will release the antibodies that are crucial mechanisms in the neutralization of
DENYV infectivity. A similar process occurs for cellular immune response. The activated

T cells proliferate, and these cells will kill the cells infected by dengue virus. These
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cytotoxic cells are necessary and decisive for clearing dengue virus. Actually, there are few
mathematical models of dengue virus that describe the interaction between dengue virus
and the target cells or the interaction of dengue virus, the target cells and the immune
system [26],[27],[28],[29].Beyond taking into account dengue virus and target cells, our
model considers the T helper cells and how their differentiation into Th1 or Th2 influences
the immune response. The aim of this paper is to investigate and asses the implications
of humoral and cellular immune responses in the dengue viral clearance. To do this, we

assume that there are no previous antibodies from a primary dengue infection.

1.2 Model formulation

We consider an infection by DENV and a possible reaction of adaptive immune
response. In this way, the model considers: the target cells S, infected cells I, dengue
virus V', and the cells of immune system, the helper cells ThO, Thl and Th2 denoted
by Ty, T1 and T3, B and CD8+ cells in rest and activated states; B,, T, and B,, T,
represents these states. The target cells S are produced in the bone marrow at rate kg, have
death rate pg, and got infected at rate [3,. These infected cells I have an additional death
rate by apoptosis p,. The dengue virus V' has death rate p,, and its number increases
proportionally to the presence of infected cells I at rate Ny(us + p,), where Nj is the
number of virus particles released on average by a productively infected cell during its
lifetime. Besides, we considerer that more than one particle of virus are trying to infect each
cell. This number is denoted by N;. So the simplest model, considering these descriptions

is

ds

= —k,—B.SV — u.S

L B, %

dl

— =BS5SV — (s I

o =B (ps + 1)

dv

= Nilps + )T = NoB SV = V.

If the innate immune system is not able to stop the disease, then the infected cells travel
to lymph node to activate the adaptive immune response. The different signals emitted
by the infected cells and the innate immune response will differentiate the helper cells
into helper cells Thl or Th2, which in turn will activate a balanced humoral and cellular
immune responses to try stop the dengue infection. The helper cells Tjy are produced in
the bone marrow at rate ky and are capable of differentiating into 77 by the signalization
of cytokine IL-12 and into 75 by the cytokine IL-4. In our model we consider that this
differentiation is possible by the presence and the stimulus of infected cells and virus, at
rates vy, and 7, respectively. The death rate of these helper cells are pg, 111 and pe. The

resting B, cells are produced in the bone marrow at rate k, and are stimulated by the
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signals emitted by the 75 cells at rate «,. and decay at u,. The activated B, cells are
going to proliferate in the presence of dengue virus at rate o, and decay at rate p,. The
proliferation of B, cells allow these cells to improve its affinity, which means that they
are effective to clear the dengue infection, we consider that this happen at rate «,. In the
same way the CD8+ cells T, are activated by the cells T} at rate a,,. and have death rate
ter- The activated cells T, have cloning rate a., and decay at rate p.,; those T, cells
receiving the correct signal will perform the lysis of infected cells at rate «,. Consequently

the model considering a humoral and cellular immune responses is

as

Dk~ B,SV — 1,8

7 B, Iz

dI

i B,SV —a, IT.e — (s + ;)1
av

= Ni(ps + p, )L — Nof, SV — , B,V — 1, V.
dTi

CTtO = ko — nTol — TV — poTo
dT;

ditl = 1ol — T}

K (1.1)

2

— = IV — puT:

di Y210 Mol
dB,

dt = kr - arBrTQ - ,UTBT
dB,

Tl a. BTy + a, B,V — 1, B,
dTy,

dt = kcr - Oéchchl - ,uchcr
dTl,,

dt = achchl + acaTcaI - ,ucaTcw

The set of biological interest is given by

A={Pe]RLO:N15+N]+V+T0+T1+T2+O“’(BT+BG)+0(TCT+TCG)<

a

(1.2)
where P = (S,1,V, Ty, Ty, Ty, By, B, Tor. Tua), N = (Ny + Ny), 6 = ai’, ko= ko +
Niks + zak + 0k and 0 = min {us,uv,Mo,ul,uz,m,ua,umuca, W}
Lemma 1.1. The set A is positively invariant with respect to system (1.1).
Proof. let Py € A be the initial condition of the system (1.1) and
<I>=N18+N]+V+T0+T1+T2+%(BT+BQ)+0(TCT+TCQ). (1.3)

a

Taking the derivative of ® with respect to ¢, we have:
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dd
o Niks — NijtsS — No(ps + p, )1 — po Vo + ko — poTo — paTh — paTh

Qy
+ ; [kr - (/L,«B,,« + /JJzszz)] + 0 [kcr - (/’LCT’TCT + ,U/caTca)] )

a
which can be written as

dd
o + NipsS + No(ps + p ) I + VA4 poTo + pa Ty + poT

+ % (,urBr + H'aBa) + 6 (,uchcr + ,ucaTca) = ];77

a

where k = ko + Nyks + %kr + 0k,
Qg

No(ps
If we choose § = min {ps, Ly 10y 15 425 [y Has Mers Meas Q(MNW}, we conclude that,
dd -
— 4+ 0P <k,
dt
then
k k
o < 5t (cb(()) — 5) e %, forallt >0,
wich implies
k
b < —.
1)

1.3 Mathematical analysis

The immune system is very complex and every disease generates different
immune responses and challenges for the researchers, but there are some well known
reactions, like the inhibition of differentiation between the helper cells T} and T5. This
inhibition occurs by chemical signaling; the T} cells are inhibited by the citokines IL.-4
and [L-10 which are produced by the T3 cells, which in turn, can be inhibited by citokines
[FN-~ produced by the 77 cells. In the model the action of those citokines is not considered
explicitly, instead of, we contemplate its action in the parameters v; and 5. Therefore
in the model (1.1) we study initially two scenarios: a) The T; cells are going to inhibit
completely the differentiation into cells 77, this means that the parameter of differentiation
of T cells into T} has to be zero, i.e. y; = 0 (This situation will generate a type of immune
response which is known as humoral immune response); b) The total inhibition of the T

cells by T7 will happen when the parameter of differentiation of Ty cells into T5 is zero,
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i.e. 2 = 0 (This type of response is known as cellular immune response). This section
is divided into three topics: in the subsection 1.3.1 we present an analysis of the model
considering the humoral immune response, in the subsection 1.3.2 the cellular immune
response is studied, finally in the subsection 1.3.3 we present the mathematical analysis of

the model considering both immune responses.

1.3.1 Humoral immune response to dengue virus

We consider a total inhibition of T} cells, therefore it is considered a humoral

immune response when the parameter v; = 0. The model is

dsS

— =ks— 3,5V — usS

7 B Iz

dl

g = BoSV = (s + )T

dv

o= Ni(ps + p,) I — NofB, SV — v, B,V — 1,V
dT

7; = ko — ToV — woTo (1.4)
dTy

— =TV — T

i Yolo H2la
dB,

dt = kr - aTBTT2 - ,urBr
dB,

7 = OérBTTQ + OéaBaV - /LaBa'

1.3.1.1 Virus-free equilibrium for humoral model

ks oo ko ke

The model has the virus-free equilibrium P,y = (, 0,0,—,0, O). The

s 0 T
characteristic polynomial evaluated at point Py is

5[ ksNQ

S

61 ksNZ B 5[ ksN1>:|

A+ (ps + (Mv +
> ( 2 s 1

) = [ [O+n0) lAQ + (us g
9

with 9 € {0,2,s,7,a}. Observe that the last term of the polynomial inside the brackets
can be written as,
(ks + 1) o (1 = Ro)

N1 — Ny)k
B (M 2) ® . To prove stability at this point, it is necessary that the roots

where Ry =
of previous polynoﬁqi;l at Ppo be negative or have negative real part. Then by the Routh
Hurwitz criteria [30] (pg 230), the virus-free equilibrium Py is locally asymptotically
stable, if the coefficients of polynomial of second degree are positives, i.e. if Ry < 1 and it

is unstable if Ry > 1. We summarize these considerations in the following theorem

Theorem 1.1. The virus-free equilibrium Py is locally asymptotically stable if Ry < 1

and s unstable if Ry > 1.
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1.3.1.2 Virus-presence equilibrium for humoral model

The model has a virus-presence point (S*, I*, V* T}, Ty, B, B)), which exists
if Ry > 1, with

k
gr_ __Ns
B,V* + s
N Bk V*
I* =
(1, + ps) (B, V* + pus)
ko
Tf = —2
RO (1.5)
T YokoV'* .
2 (Vo)
Bt — krpiz2(12V* + pio)
" (anko + popie )RV A popiz iy
« Oér’}/gkokrv*
B, = ” ” .
(tta — aaV*)[(arko + papir)v2V* + popiafer]

Ha

The last equation of (1.5) has biological sense if it is positive, so we need to have V* <
Qg

The values of V* are the roots of the third degree polynomial
Pr(V) = po(pta—aaV) [(rko+piapir ) v2V +propizfir [ 11s (Ro—1) =B, V] —awany2kok, V (B, V + pis).

This polynomial has a unique root in the interval (0, ,ua) To show this, note that the

a

coefficient of term V? is positive. Then P,(V) — +co0 if V — +o0 and P, (V) — —oo if

V — —oo, besides

Py(0) = prspropioptapirtta(Ro — 1) > 0,

and
Ph (“a> = _avar’}/?kokr& (leua + /’LS) < 0.
(6 (6

a a

Therefore, the polynomial P, has one negative root in (—o0,0) and two positive roots, one

in the interval (0, Ma) and the other in <ua, oo).

Qg Qg
Then this virus-presence equilibrium always exists for Ry > 1, besides, in the
polynomial Py, it is possible to observe that if a, — o0, then V' — 0. This means that it

is always possible to decrease the viral load V' when the proliferation of B, cells is big.

Remark 1.1. Note that for Ry < 1, the polynomial Py has no positive roots less than Ha
o
In fact, let’s write ‘

Py = Psj, — Pop,

with Pay = iy (pta — aaV) (ko + piapir) 72V + popiapir][ps(Ro — 1) — 8,V] and
Py, = avya,yokok, V (B, V + ws). It is clear that the polynomial Psp, has two negative roots,
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Ry —1 r » .
s(Fo ) — Hofiai and one positive, Ha Whereas that the polynomial Py, has

B, " (arko + popir) Y2 Qg
the roots —12 and 0. All these considerations implies that the equation Ps,(V') = Py (V)

I

has a positive root greater than &, and two negative, as we can see in the following figure.

Py,
Py,
_ Hot1fh
(ko + papir) 2
B 0 L
ﬁ[ Qg
. . . .- H

Figure 1 — This shows that for Ry < 1, there is no a positive root less than ~=
aa

The stability analysis of virus-presence equilibrium is done by numeric simula-

tions. The characteristic polynomial evaluated at this point is

(z + po)(z + Ty + i) (z + V> + o) (z* + ar2® + apr® + azz + a4),
where

a; = (B, V" +2ps + p, + 5,5 Ny + p1g — V™)
az = (B, V" + ps)(ps + ) + 8,8*Nipis + 8,5*(Ny — No) B, V*
—(aV* — 1) (B V* 4+ 205 + 1, + 5,5 N1) + o B a, V™
as = ag Bro, V* (B, V* + 2us + p,) + 8,5 (s + p1,) (N1 — No) 5, V*
= (V™ = p1a) [(B,V* + p15) (s + ;) + B, 5" Nups + 815 (N1 — N2) B, V7]
ag = ao B, V(BIV" + 215 + ) = (V™ = pa) 8,57 (s + 11,) (N1 — N2) B, V™.

The above polynomial has three negative roots and the others depend on the fourth

degree polynomial. This polynomial satisfies the necessary condition of Ruth-Hurwitz

criteria (a1, ag, ag, ay >0 ), because Ny > Ny and V* < &. For the sufficient condition

aa
(as(aias—as)—ajas > 0) were done numerical simulations varying the principal parameters,
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the parameter of activation of activation of B cells, 75, and the parameter of proliferation
of the activated B cells, a,. Figure 2a shows the values of equilibrium V* when «, varies
and the green (gray) color represents local stability of the virus-presence equilibrium. It is
possible to see that for high values of «,, the viral load is decreased, while in the figure 2b
it is represented the local stability of virus-presence equilibrium when the parameters

and «, vary.

0.08 1
0.07|
0.06|
0.05|
*
> 0.04f > 0
0.03f
0.02f

0.01

. . . . . | N n —
0 2 4 6 8 10 12 14 16 18 2
(03

a a

8 10 12 14 16 18 20
a

(a) (b)

Figure 2 — (a) The figure shows the viral load equilibrium V* as a function of the parameter
of proliferation of B, cells, ;. The green(gray) color represents the local stability
of virus-presence equilibrium for this «a, values. Note that the equilibrium is
always locally asymptotically stable and the viral load is decreased when the
proliferation parameter «, is raised. (b) The figure shows that for whatever
parameters v, and a,, the humoral sub-model is locally asymptotically stable.
The parameters used for this simulations are presented in Table 1 (pg 23).

1.3.1.3 Discussion

In this subsection, it is considered a sub-model of immune response to control
dengue virus, by assuming that there exists a inhibition for the cellular immune response
and consequently, the humoral immune response is activated to fight against dengue virus.
In our simulations we found that the parameter of proliferation «, affects drastically the
viral load but it does not alter the local stability of the virus-presence equilibrium. This
means that the humoral immune response controls effectively the spread of dengue virus,
by rising the action of activated B cells which will assure a greater amount of clones with
better affinity that will differentiate into plasma cells and release antibodies to stop the

spread of dengue virus.
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1.3.2 Cellular immune response to dengue virus

In this subsection we consider the inhibition by chemistry signaling induced by
Ty cells against differentiation of the cells Ty into the cells T5. This means that the model

(1.1) is reduced to the cellular immune response model, given by

ds
— =k, — B,V — u,S
% B, It
dl
E = ﬁISV — aIITca - (:LLS + :uI)I
dVv
= Nilps + )T = NoB, SV — i,V
dT;
dito = ko — 1ol — poTo (1.6)
d1}
— =Tyl — iy T
o Yido M1l
dT,,
i = kc?’ - achcTTl - /"LCTTCT
dT.
d;a = achCTTl + acaTcaI - /’LCGTC‘Z’

1.3.2.1 Virus free equilibrium for the cellular model

The model has a virus-free equilibrium which is denoted

ks ko . ker - . . .
by P,y = (, 0,0, —0, 0, —, 0). The characteristic polynomial evaluated at point P, is
Hs Mo Her

51 ks N2

S

peN) = ] [+ p1o) [AQ + (us + o+ e+ ) A+ (s + py o (1= Ro)] ,

w

B, (N1 — Na)k

with w € {0, 1, s, cr, ca} and Ry = ®. Then, by the Routh Hurwitz criteria [30]
[hofbs

(pg 230), the virus-free equilibrium Pyq is locally asymptotically stable if the coefficients

of polynomial of second degree are positive, i.e., if Ry < 1 and it is unstable if Ry > 1. We

summarize these considerations in the following theorem

Theorem 1.2. The virus-free equilibrium Py is locally asymptotically stable if Ry < 1
and is unstable if Ry > 1.
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1.3.2.2 Virus presence equilibrium for cellular model

The model (1.6) presents a unique virus-presence equilibrium point when
I* < M and Ry > 1. This point is denoted by (S*, I*, V*, T, T¥, T*, T* ), with

Cen 17~ cr)*ca
S* — ks
B V* + s
I* = (N2/BIS* + /“L'U)V*
01
" Kooy
15 =
(N2B,5% + o)1 V* + poo =
T* — WlkO(NQﬁIS* +MU)V* ( . )
b m(NoB,S* + )y VE + o]
T+ _ Eerpin [(N2f3,S* + )i V* + poo]
T (NoB,S* A ) oo VE A o pler o
T+ _ QerY1koker V(N2 B, S* + 1)

[tea — ea *][(N2f3,;S* + 1) 02 V* + propis preror]’
where o1 = Ny (ps + p,), 02 = (Qerko + 1 pter) 71, and V* is a solution of the equation

Fe(V7) = xe(VF) = 9:(V*) = 0, (1.8)
with
Xe(V) = polps(Ro — 1) = B,V ]ha (V) ho(V)
hl(v) = [(,ucaa-l Qg by )(6 V + MS) - acaN26 ksv]
hQ(V) [NQB k U2V + (,U'UO—QV + MOMlMcral)(ﬁ V+ “s)]
gc(v) Oécrf)/lkokcerv(ﬁ V + ,Us)(NZﬁ k + Hs by + Hvﬁ V)

The equation (1.8) has five solutions, but only two are real and positive and just one
Hea
aCCL
ge has three negative roots and ¢.(0) = 0. Besides, the polynomial x. is a product of one

positive solution satisfies Ry > 1 and [* < . To prove this, note that the polynomial

degree polynomial and two second degree polynomial. Then it has five roots, two positive
and three negative because the second degree polynomial hs has all its coefficients positive
which means that all its roots are negatives or has negative real part and the polynomial
hi has one positive root and the other negative. Then the positive roots of y. are

Vi= gj (Ro— 1),

and

]‘ C(lo- S k: cao- S kS 2 cao- S
v, = ul_u_N2+\/<u 1_M_N2> | yHen Tl )
2\ Qe ttv 5, Lo Oeq oy B, Ly Oeq B, oo
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1
note that V5 is always positive (2 (a ++Va? + b> > (0 for all a € R and b > 0 ). Now

remembering that the polynomial g. is always positive for V' > 0, so the positive roots of

P. are between the positive roots of x.. In fact

Pc(o) = Xc(o) - gc(o) = /IJU,US(RO - 1)h(0) > 07
because Ry > 1 and h.(0) > 0. Besides

PC(V;) = XC(V;) - gC(‘/;') = _90(‘/;) < 07 fori = 1a 2.

This means that in the interval (0,V;) for ¢ = 1, 2., exists a positive root of the polynomial
/’I’C(l

P.. Meanwhile if we impose the requirement that I* has to be less than , then from

a

second equation of (1.7), we have V* < V5. It means that in the interval (0, V3) there
exists a positive root of polynomial P.. Additionally, the coefficient of term V?° is positive,
consequently P — +o0 when V' — +oo. Then in the interval (V5, c0) there exists another

positive root, but it is not feasible.

Remark 1.2. Similarity to the remark 1.1, for Ry < 1, the polynomial P. has no positive
roots less than Vy. Because the polynomial x. has just one positive root, Vo and the others
negative. Whereas that the polynomial g. has a zero as root and the others negative. Then

the equation x.(V) = g.(V') has a positive root greater than Vy and the others are negative.

The virus-presence equilibrium (1.7) is locally asymptotically stable for some
parameters. For example in the figure 3a, we can see that if the parameter of proliferation
of Ty, cells, ae,, is low, there exists instability (blue (black) color), but if it is high, the
system is locally asymptotically stable and the viral load decreases as this parameter
raises (see figure 3a green(grey) color). On the other hand, if we vary the differentiation
parameter of the Tj cells into T} cells, v;, and the proliferation parameter a., (see Figure
3b), we can infer that to obtain stability when the parameter ~; is high, the parameter of
proliferation a., has to be high too (green(grey) color). But if the parameter a, is high,

not necessarily the parameter v; has to be high.
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Figure 3 — (a) The figure shows the viral load V* as function of proliferation parameter a.,.

The color indicate the stability in the virus-presence equilibrium, the blue(black)
color designate the unstable region, meanwhile the green(grey) color the stable
region. (b) This sub-figure presents the local stability of the system (1.6) when
the differentiation parameter of Tj cells into 77, 41 and proliferation parameter
Qe are varied. The parameters used for this simulations appear in table 1.

In the figure 4 we observe the rise of oscillations as the parameter ., is

decreased. When the parameter ., is varied, the system loses stability and a periodic

orbit is expected. In the next subsection we proof that there exists a Hopf bifurcation in

relation to the parameter a,.

xi0°

x10* x40

05

0 2000

L L L L L L L L L L L L L
4000 6000 8000 10000 12000 0 500 1000 1500 2000 2500 3000 3500 4000 400 5000 0 05 1 15 25 3 35 4

2
Time Time Time o'

(a) aeq = 190 (b) aeq = 1.9 (¢) aeq =0.19

Figure 4 — The figure shows the viral dynamics in relation to proliferation parameter of

T,, cells. If this parameter is raised, the viral load is reduced to very low levels
and the system is locally asymptotically stable, but if the parameter ., is too
small, the system loses stability and a limit cycle emerges. The parameters
used for this simulations are presented in Table 1
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1.3.2.3 Hopf bifurcation

We can prove the existence of a hopf bifurcation if the transversality condition
(definition 1.1) and the first Lyapunov coefficient (lemma 1.2) are different of zero. To do
this, we start finding the function F' defined in appendix 1.A.1 in equation (1.12). Initially,

the Jacobian is computed at the virus-presence equilibrium (1.7) to obtain

A:<M N))
L Q

with
—BIV* — Us 0 —615* 0 00 0
M = A% —o, T2 — s — BrS* N=100 0 —qa,I"
—Br N2 V™ (s + i) Nio =Br N2 S* — po 000 0
0 5 0 I* — 0 0
I — T dg Q= g! H1
0 0 0 0 —Qo T = TV — pier 0
0 oty O 0 e T2 e T} Oeq I — fhea

Now compute the functions B and C' defined in the appendix 1.A.1 by the equations (1.13)
and (1.14) respectively. Therefore C(z,y,z) = 0 and B(z,y) = (Bi(z,9), ..., B:(z,y))",
with

Bi(z,y) = —B1 (z1ys + x3y1) By(x,y) = Br (w1ys + 31) — o, (T2y7 + T72)
Bs(z,y) = —Nofr (z1ys + w301 Bu(z,y) = = (22ys + 2432)

Bs(x,y) = m (229 + T4y2) Bs(,y) = —0ver (2596 + Z6Ys5)

Br(x,y) = Qca (T2y7 + T7y2) + er (596 + T6ys) -

Using the parameters in table 1, the virus-presence equilibrium of the cellular model (1.6)
is 7o = (1.8998,0.0056,4.2529 x 10™*,0.9949, 0.0051, 0.7294,0.0933) and the Jacobian A

at this point has eigenvalues

A1 = —5.4305 A2 = —0.0471
Az = —0.0171 Ay = —0.0110
As = —0.0110 Ae,7 = 10.0241i.
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From equations (1.15)-(1.17) defined in the appendix 1.A.1, the eigenvectors ¢ and p are

0.1495 + 0.378T¢
0.0530 — 0.08072
0.0039 — 0.0062:

q= 0.0192 + 0.0307¢
—0.0192 — 0.0307%
0.7447

—0.4365 — 0.2776¢

—3.0278 x 10™ — 5.02557 x 10"
8.5927 x 10 — 6.2925 x 10"
2.668 x 10" 4 1.9567 x 10
5.0382 x 10'3 — 1.4947 x 10%3¢
1.6255 x 10'® + 1.8577 x 10'%
1.1371 x 10 + 1.2995 x 10

—3.4652 x 10* + 1.151 x 10'%

Parameter Value Units
Parameters common to both sub-models
ks 0.033 C xd?
ko 0.011 C xd!
B, 0.87 C ' xd!
Lhs 0.017 d!
I, 0.033 d!
[ho 2 d!
Lo 0.011 d!
Ny 8
Ny 2
Parameters for cellular sub-model
ke 0.011 Cxdt
a, 0.8 Cltxdt
0G| 0.01 Clxd!
ey 0.8 C™txd!
Qeq 0.1912001193283 Ctxd?
L1 0.011 d!
Ler 0.011 d-!
Lea 0.033 d!
Parameters for humoral sub-model
k, 0.056 Ctxd?
Qy 0.08 Ctxat
Yo 0.84 Clxd!
Q. 0.7 Ctxdt
Qg 0.04 C™txdt
Lo 0.011 dt
Ly 0.011 dt
I 0.033 d!

Table 1 — Parameter of the humoral and cellular immune response model. For the value of

parameter a., there exists a Hopf bifurcation in cellular sub-model.
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Once we calculate the function F' and the vectors p and ¢, we need to know if
the pair of complex-conjugate eigenvalues crosses the imaginary axis with nonzero speed,
i.e. if the Transversality condition is verified.

Transversality condition From equation (1.18) defined in the appendix 1.A.1, we can

.In

see that we need to compute A’(ay,), and this implies that we need to compute
ca
order to do this, let us consider the equation (1.8) expliciting the dependence on alphda.q,

ie. P.(V(aeq), @eq) = 0, then

0P J Xe
v 0 OO
dae, 0P 0P
A% oV
From this formula we can compute the derivatives of S, Ty, 11, T,.,, T., with respect to a.,,
to obtain
M/ ca N/ ca
Koy — [Wlew) N
L) Q)
and

(p, A'(qeq)qy = —3.4327 x 10" 4 1.1823 x 10'?i.
From the equation (1.18) we have that the trasnversality condition is
1 () = —3.4327 x 10,

First Lyapunov coefficient To find the first Lyapunov coefficient we start calculating

the vectors ¢; and ¢y defined in the lemma 1.2, to obtain

0.2573 0.0243 — 0.0103¢
—0.0446 —0.0539 — 0.12562
—0.0045 —0.0070 — 0.0091¢

1= 0.0375 |, q2 = 0.0022 — 0.0008¢ [,
—0.0375 —0.0022 + 0.0008¢
—0.0718 0.0630 — 0.0398:
0.0084 —0.0564 + 0.0694¢

and from equation (1.19) we have
li(r) = —6.4531 x 10",

Hence the Hopf bifurcation is supercritical and the limit cycle is stable (see figure 5).
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Figure 5 — The figure shows the stable limit cycle in the cellular immune response model.
The red(black) dot is the virus-presence equilibrium point and the green(grey)
dot is the initial condition of the system.

1.3.2.4 Discussion

Here we evaluate a sub-model considering that there is an inhibition of the T3
cells, which means that there is a cellular immune response. In this situation we found that
the proliferation of activated cytotoxic cells T, is the most important parameter of this
sub-model and the model stability and virus presence control depend on this parameter. If
the parameter ., is raised, the local stability is assured. Besides, the infected cells and
viral load are decreased by effect of large number of cytotoxic cells. Meanwhile if the a.,
is small, the model stability is compromised and for a particular value of this parameter
there exists a supercritical Hopf bifurcation. The parameters used in this model are not

necessarily realistic and may have not a specific meaning for dengue virus disease .
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1.3.3 Humoral and cellular immune response to dengue virus

In this section we discuss the joint action of the humoral and the cellular
immune responses of the model (1.1). First we analyze the local stability of virus-free
equilibrium and we give an interpretation for Ry. Second we review the existence of
virus-presence equilibrium, and we use parameters from medical literature to perform
sensitive global analysis and parameter estimation using viral load from dengue patients.
Finally, we analyze the influence in the general model (1.1) of the sub-models considered

in the last two subsections.

1.3.3.1 Stability of virus-free equilibrium

Let Py be the virus-free equilibrium point which is obtained when we assume

that non particle of dengue virus is in the body, i.e., V = 0, then

kfs k kr kcr
PO = <a0)07070707a0)70> .

s Ho T cr

For this point, the local stability is analyzed, and the threshold Ry is obtained. To prove
the local stability at point F,, we show that the eigenvalues of the Jacobian matrix of the
system (1.1) at Py are negative or have negative real part . The characteristic polynomial
evaluated at point Py is p(A) = |A — A3x3||B — Al7x7|, where

ks
_/’LS 0 _51
11
ks
A: 0 —Hs — My 5I )
ks
BksN2
0 (HS""M}) Nl —— — Uy
i
e 0 0 0 0 0 0
— i 0 0o 0 0 0
0 0 s 00 0 0
TkT
0 o X0 0 0
_ Hr
b= o k
0 0 0 —p 0 0
Hor
CTkCT
0 —O‘M 0 0 0 —fer O
aCTkCZT’
0 0 0 0 —fi
MCT

The roots of polynomial p(\) are given by —pis, —pto, —ft1, —fl2, —fhr; —fta, —fers —Hea
and by the solutions of following polynomial of second degree:

ﬂ[ ks N2

S

)‘2+(M5+M[+/Lv+ >A+(M8+M1)Mv(1_R0)'
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B,(N1 — Np)k

where Ry = ®. Then by the Routh Hurwitz criteria [30] (pg 230), the virus-

free equilibrium P, is locally asymptotically stable if the coefficients of polynomial of
second degree are positive, i.e. if Ry < 1 and it is unstable if Ry > 1. We summarize these

considerations in the following theorem.

Theorem 1.3. The virus-free equilibrium Py is locally asymptotically stable if Ry <1 and

s unstable if Ry > 1.

Basic reproduction number of virus We are considering that an infected mosquito
feeds on a healthy person. In this process it inoculates an amount of dengue virus in the
body, and the infection depends on the different reactions of the immune system to stop
or decline the infection, so it’s natural ask if the infection is going to spread or not. The
number R, found in last theorem can tell us when the infection by dengue virus is going
to progress (Ry > 1) or when the virus will be cleared (Ry < 1).

This number can be interpreted as follow: One virus during its average lifetime, i, infects

v

ks . . . s
one target cell, with rate 5, —. This cell releases Ny virus, but N, virus will infect one cell

one or less than the number of virus released by the infected cells Ny, i.e., 1 < Ny < Nj.

k
with rate (ﬁ ,S>. The term of entrance of virus into target cells Ny in general is at least

Then R, is the net number of viruses produced by one virus.

1.3.3.2 Virus presence equilibrium

In the proof of theorem 1.3, it is possible to see that the basic reproductive
number R, is a parameter of bifurcation. When Ry > 1 the system has two more equilibria
which depend on the positive solutions of a function of V', but just one of this solution
is biologically feasible (positive). Let P, = (S*, I*, V* 15,1y, Ty, B:, By, T, T ) be the

cr)
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feasible point, the equations describing this point are:

" ks
o BV + s
BV
Ni(p, + ps)
T = koNy (g, + pos)
Y(V*)
T = Yikop(V*)V*
(V)
o VekoNi(p, + p)V*
T2 = patp (V) (1.9)
B;f B kr#2¢(V*)

B aT’kaONl(ILL] + MS)V* + ﬂrﬂ2¢(V*)
_ eV + VeV 4 4pta — 0aV*)EnV*

@ 2(phg — g V*)EV*
T _ kcrﬂl¢(V*)
v 9¢(V*)V* + Ncr/ﬂ&(‘/*)
T* — acrkcr71k0¢(V*)V*
O (fea — Qe F)OOVEVE + i pna(VF)}
where
§ = prpam10

n= arkTPYZkONI(MI + :us)
0 = (aeryiko + ferpii 1)

(V") = (pa — @aV™) {nV* + prpia[ 1 (N2BS™ 4 1) VE 4+ (2V7 + o) Na sy + us)]}

Ky
w  Qw (_90<V*) + \/SO(V*)Q + 4(pa — aaV*)an*z) Naf, ks
gb(v ) - 2(”(1 - aaV*)SV* * (ﬁIV* + ,us) T

PVF) = no(VIOVE + (V™ + po) Ni(p, + ps)
a(V*) = (72V* + po) Ni(p, + ps),

and the values of V' are solutions of the equation

X(V) = xa(V)xe(V)xs(V) = g(V) = 0, (1.10)
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((Ny = No)Bks = p1s(8,V + 115))2(pta — @aV)EV = a0, Bo(B,V + )]
(HeaN1 (1 + 1) = QeaptaV) (B, V + f1s) — eaN2B, ks V12(pta — 00V )E — qteao Ba(B,V + ps)
X3(V) ={[0(Nof, ks + 1o (B,V + p))V + pierpn (B, V + p15)12(pta — V)€ + O, Ba(B,V + p1s)}
g(V) =€b[(NaB,ky + 10 (B, V + 11))2(t0 — aVIEV + a,Ba(B,V + p1)]” 2010 — V) (B,V + 1)
By =2(jta — 0V)EV B,
b =Nia, ek 1Ko

The equation (1.10) shows two positive points for V', but just one is feasible if we impose

the restrictions V* < £% and I* < £ The next figures show some numeric examples of
Qg a

the function defined in (1.10). We cc;?lsider the next cases: ag, > «, (figure 6), e = aq
(figure 7) and ., < oy (figure 8). In all these three cases, there exists just one feasible

solution.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Figure 6 — Graph of the function defined in (1.10) when «., > «a,. In this case, there exist

two points satisfying V' < &, but just one of these points meets the inequality
Qg

I < Mca. The feasible point is V = 2.594 x 107¢, I = 3.489 x 107>, while the

aca
thresholds are Ha _ 8.25 x 1072 and Pea _ 8.25 x 107°.

aa aca
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0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Figure 7 — Graph of the function defined in (1.10) when a., = «,. There exists just one

point that satisfies the constraints, V' < Ha ond I < M The values of the
Qg Qeq

point are V = 52519 x 1076 < 22 — 825 x 102 and I = 7.87 x 1072 < £ —

aa aCU/

8.25 x 1072

Figure 8 — Graph of the function defined in (1.10) when a., < «,. In this situation

there exists just one possible point satisfying V' < Ha and [ < Hea e
aa aca
point is V' = 5.2512 x 107% and I = 7.0632 x 107°, while the thresholds are

Ha _ g 95 %1072 and X = 8.25 x 1077

aa aca
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1.3.3.3 Numerical simulation

Parameters of the model

The half life of the monocytes/macrophages in vivo is between 1 to 2 months [31], so
we assume the value pgs = 60 0.017. The activated macrophages has a half life of 7
days and because the virus induces apoptosis [32],[33], the death rate of the infected
cells is taken as j, = 0.2. There are in average 4 x 10° monocytes per milliliter of blood
in humans [34], this will be the initial quantity of monocytes S(0), so this implies that
ks = 1tsS(0) = 6.8 x 10°. In healthy humans, the cells C D4+ and C' D8+ survive in average
87 and 77 days, respectively [35], it means that the death rate pg, p1, 2 have the value
0.011 and g, = 0.013. The initial values of Ty(0) and 7..(0) are 1 x 10° per milliliter
of blood, which are the average quantities of 7" cells per milliliter of blood [34], thus
ko = p10Tp(0) = 1.1 x 10* and ke = piey T (0) = 1.3 x 10*. The activated cells C. D8+ have
half life of a month approximately [36], then p., = 0.03. The B cells in rest have half life
between 2 and 4 days and more than 6 weeks if they are activated [17], which implies
- = 0.25 and p, = 0.02 respectively. The quantity of B cells per milliliter of blood is
around of 2 x 10° [34], thus B(0) = 2 x 10°%, and as before we have k, = 1, B(0) = 5 x 10°.
The virus released by one infected cells is Ny = 5 x 10* [37],[31], and we assume that the

value Ny = 2. A summary of these parameters is in the table 2

Parameter Value Units Reference
ks 6.8 x 10° (mL x day)~"  [31], [34]
ko 1.1 x 10* (mL x day)~"  [35], [34]
k. 5 x 10° (mL x day)™" [34]

s 0.017 day™! [31]

i, 0.2 day ™ [32],[33]
Lo 0.011 day ™ [35]

I 0.011 day™* [35]

142 0.011 day™* [35]

Ly 0.25 day™* [17]

La 0.02 day ™ [17]

Lher 0.013 day ™ [35]

Lhea 0.03 day ™ [36]

N 5 x 10* [31], [37]
N, 2

Table 2 — Parameters used in the model
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1.3.3.4 Global uncertainty and sensitivity analysis

In mathematical models there are frequently many unknown parameters, there-
fore an important questions that must be answered concern with relationship of these
parameters with the model outputs, in particular which ones contribute most to output
variability, and which ones require additional research or are insignificant. These questions
can be answered using uncertainty and sensitivity analysis. We use the Latin hypercube
sampling (Lhs) and Partial rank correlation coefficients (Prcc) and extended fourier ampli-
tude sensitivity test (Efast) to assess global uncertainty and sensitivity analysis following
the methodology proposed in [38], a short description of this methods can be found in
the appendix 1.A.2 and 1.A.3. The days analyzed were the second and seventh day after
infection, because these are crucial in dengue infections: the onset of infection and the
clearance. The parameters selected to perform global uncertainty and sensitivity analysis,
were 3,, au, Y1, V2, O, Q¢ and p1,. We do not know the threshold of these parameters
except for the mortality rate of dengue virus pu,. The four serotypes of dengue virus have
half life between 2.5 to 7.5 hours [39]. The results of Lhs/Prcc for variable V' show that in
is positively correlated (0.800394) with the viral

load V. It means that if we increase this parameter then the viral load will rise, while the

the day two, the effect of infection rate 3,
action of antibodies against virus «,,, the differentiation rate of T helper cells into Th2,
~9, and activation of the B cells, «,., have negative correlations —0.78303, —0.62821, and
—0.59711, respectively. The Lhs/Prcc for variable V' in the day seven show an interesting
fact: the infection rate /3,, the cytotoxic action rate o, and the differentiation rate of T
helper cells into Th1l ~; are negatively correlated (see table 3). The negative correlation of
parameters «, and v; is clear because the cytotoxic action rate «, helps to decrease the
infected cells and the differentiation rate v, activates the T3 cells which are crucial for the
activation of cytotoxic activity. While that for the negative correlation of parameter f3,,
we can say that if we increase the infection rate, there are more infected cells helping the
Ty cells to differentiate into Thl cells that are capable of activating the cytotoxic activity
of the T,, cells. This suggest that cytotoxic activity is more important for the clearance
of infection. Similar things happen with the infected cells (see table 4). The results of
sensibility analysis Efast are quite similar to Lhs/Prcc. The parameters with high first
order (5;) and total order St, sensitivity index are 3,, a, and 75 in the second day, and in
the seventh day, three became important «,, 7, and a.. (see table 5 ), the same occur
with the infected cells (data not shown).
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Time B, Qv Yo Q. a, oGl
2 0.800394**  —0.78303** —0.62821** —0.59711**
7 —0.63696™* — — — —0.35573""  —0.42147**
Table 3 — The Lhs with N = 800 and Prcc for the virus V' in the days two and seven.
**p < 0.01
Time 61 Qly Y2 Qy oy T
2 0.90099**  —065448"* —0.5645"* —0.55954**
7 —0.6318"* — — — —0.37803** —0.42181**

Table 4 — The Lhs with N = 800 and Prcc for the infected cells I in the days two and
seven. **p < 0.01

61 Qry "2 Q; M Qler

S

2 0.0124*™ 0.0542** 0.0083* — — —
7 0.0135% 0.0143** 0.0126* 0.0135* 0.0265** 0.0131*

St

k3

2 0.6521** 0.8805** 0.6246* — — —
7 0.8706* 0.8751** 0.8589* 08731** 08694** 0.8538"

Table 5 — The Efast with Ns = 600 for the virus V' in the days two and seven. *p < 0.05 ,
**p < 0.01

1.3.3.5 Parameter estimation

To perform parameter estimations we use real data of primary dengue fever of
patients with DENV1, DENV2 and DENV3. These data show the quantity of dengue virus
RNA in plasma (they can be accessed in the supplementary data of [29]). We used the
parameters of table 2 and genetic algorithm to find the best set of unknown parameters (
B,y Qyy Y1, Y2y Oy Qg Clery Qieq, o) (see the appendix 1.A.4 for a short explanation). The
table 6 shows the parameters estimated from data. In all the estimations we got high values
for the proliferation parameter (a.,) of activated T, cells in relation to the proliferation
parameter (a,) of B, cells, whereas the differentiation of T cells into T} or T; cells is
almost of the same order, which implies that the control of viral load and infected cells
are obtained mostly by the cytotoxic activity but not exclusively. Indeed, we can see in
the fittings of these parameters in the Figures 10 and 11 that there is a little inhibition of
activated T, cells and a strong response of B, cells in the beginning of dengue infection.
This could be a strategy of dengue virus to spread the virions, because it will activate a
greater amount of B cells which will turn into plasma cells and release antibodies with

not high affinity which may facilitate the opsonization of pathogen. The clearance of the
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dengue virus happens when the antibodies improve its affinity and the cytotoxic cells get
the right chemical signal. This allow the infected cells destruction to prevent release of

new virus, this happens approximately in the four day (see Figures 10 and 11).

Parameters DENV-1 DENV-2 DENV-3 Units
By 5x 107 2.37 x 107 5 % 10-° Z;L
X 1.2x107° 2.34 x 107° 1.21 x 1077 Z;g
V2 1.0x 1077 2.48 x 107° 143 x 10-° Z;z
% 1.6 x 1077 1.8 x107° 1.61 x 107° Z;g
Ya 2.94 x 1071 2.1 x 107" 2.0 x 10713 Z;z
a, 1.6 x 107° 9.98 x 1075 1.41 x 107 Zf/
g 113 x 107* 2.38 x 107° 1.3x107° Z;g
Aer 1.21 x 107" 2.2 x 107° 1.41 x 107° Z;g
Qea 4.89 x 107" 3.16 x 107° 4.0 x 1071 sz
o 3.3 3.5 3.3 diy

Table 6 — Parameters estimated from patients data with dengue fever with serotypes 1, 2
and 3 (DENV-1, DENV-2 and DENV-3).
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Figure 9 — The figure shows the virus, infected cells and immune response dynamics of
primary dengue fever with virus serotype 1. The red points indicated the viral
load data. There exists a high response of B cells compared to T cells.
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Figure 10 — The figure shows the virus, infected cells and immune response dynamics of
primary dengue fever with virus serotype 2. The red points indicated the viral
load data. There exists a high response of B cells compared to T cells. It is
possible to observe that the response of T' cells start after the B cells, showing

a possible inhibition of this immune response.
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Figure 11 — The figure shows the virus, infected cells and immune response dynamics of
primary dengue fever with virus serotype 3. The red points indicated the viral
load data. There exists a high response of B cells compared to T cells and
the cellular immune response is inhibited initially but strongly activated in

the end.
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1.3.3.6 Instabilities

In this subsection, we connect the influence in the general model (1.1) of
humoral and cellular sub-models analyzed in subsections 1.3.1 and 1.3.2. In particular,
we discuss how the instability in the sub-model of cellular immune response studied
in the subsection 1.3.2 affects the general model (1.1). In order to do this, we use the
parameters in table 1, and the proliferation parameters of activated B, and T, cells are
varied. In the figure 12a, we can see that high values of parameter a., are enough to avoid
oscillations, while low values of this parameter lead the system to experiment instability
(see Figure 12b) and it is not possible to keep the viral load in low levels. In this situation,
the influence of the cytotoxic activity is fundamental for the control of increase in the
viral load. Then the proliferation parameter T, cell should be large enough compared
to proliferation parameter of B, cell. On the other hand, if there exists a weak cytotoxic
response represented in a fragile proliferation 7T, cells but a high proliferation of B, cells,
we have three situations: first, if the proliferation parameter «, is not too high, it is not
possible to avoid the oscillations (see Figure 12¢). Second, if the parameter «, is big enough,
the oscillations disappear and the infection is controlled (see Figure 13a). Third, there is
another possibility to control the infection when there is a weak cytotoxic activity. This is
the inhibition of T} differentiation into 77, i.e., 72 » 71, with 7, small enough (see Figure
13b). In this situation the general model (1.1) will have the same asymptotic behavior of
the humoral sub-model. All this means that the sub-model of cellular immune response is
that which most affects the dynamics of the general model. Also with a high proliferation
of T, cells, it is possible to decrease the viral load to the level which laboratory tests
can not detect the dengue virus in the body, although mathematically, the viral load will
always be nonzero. However, when the proliferation of B, cells is not high enough, the
humoral immune response will not completely stop the infection by dengue virus and it is
necessary to use different strategies, like a inhibition of differentiation of cells Ty into T}
cells. This means that the dynamics is acting asymptotically as a humoral sub-model. In
figure 14, we show clearly how the stability of the model (1.1) is strongly affect by the
proliferation of cytotoxic activated cells T,,. In figure 14a, we can see that high values of
parameter o, are enough to assure stability. Meanwhile, if this parameter is small, it is
necessary high values of parameter «,. In figure 14b, it is presented the situation where
the proliferation parameter a., of cytotoxic cells is small. Therefore, we can see that, in
order to get stability it is necessary to increase the proliferation parameter of B, cells, ay,
and at the same time it is necessary to decrease the values of activation parameter of T}
cells, 1. This means that, in order to get an effective humoral response, it is necessary a

inhibition of activity cellular or at least a weak activation.
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(a) g =6 > g = 0.5 (b) g = 0.06 < ag = 0.5 (¢) Qg = 6x1073 < ag = 50

Figure 12 — The figure shows the viral dynamics. (a) In this figure we consider that the
proliferation parameter of T, cells is much bigger than proliferation parameter
of B, cells. In this situation the stability of the model is not affected and
the viral load is decreased. (b) This figure shows a drastically reduction of
parameter «,, compared to «,, but still greater. In this case we have instability
and the possibility of a limit cycle. This means that cytotoxic activity cause a
strong influence in the decline of viral load. (c) in this figure, we consider an
increase of proliferation(a,) of B, cells and the parameter a,, remains small.
This increase is not enough to prevent oscillations and control or decrease the

viral load.
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Figure 13 — The figure shows the viral dynamics, and represents the way how the immune
system acts with a weak cellular immune response to control the infection. (a)
In this situation, in order to avoid the oscillations, it is necessary a strong
humoral immune represented in the proliferation of B, cells (b) This case
represents a strategy of the immune system against the non possibility to
reduce the viral load only by the increasing the proliferation of B cells, for
which it is necessary a inhibition of differentiation of Tj cells into T cells.
This implies in a reduction of parameter v; and v, > ;.
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Figure 14 — The figure shows the local stability of general model (1.1). The blue (black)
color represents instability and the green (grey) color represents stability. (a)
The proliferation parameter of B, cells, a,, and proliferation parameter of
T.q, eq, are able to vary. High values of parameter a,, ensure stability in the
model but high values of «, not necessarily generates stability. (b) The figure
shows that to avoid instability with values of parameter «a, it is necessary
small values of parameter v,

1.4 Conclusion

In the present study, we developed a mathematical model of interaction between
the immune system and dengue virus, which is a complex interaction that is little under-
stood. We proposed a model in which the cellular and humoral immune responses depend
on the differentiation of ThO helper cells into Th1l and Th2. Our findings show that the
dynamic of the general model is mostly affected by the cellular immune response. A strong
cellular immune response will be enough to control the viral load and avoid oscillations.
Meanwhile, a weak response in the proliferation of cytotoxic cells will generate oscillations
and the possibility of a limit cycle. There exist two ways to change this behavior. The
first is a strong proliferation of active B cells, which will generate an improvement in the
fitting of antibodies to stop the infection. The second is inhibition of the differentiation of
cells ThO into Th1, which means that activation of cytotoxic cells would be low. In this
way, the immune response would predominantly be the humoral immune response, and

the dynamical system will act as the the humoral sub-model, which has no oscillations.

By using the parameters from the medical literature and performing fittings of
unknown parameters through the use of clinical data on dengue fever, we show that there
is more proliferation of cytotoxic cells than B cells. This is evident in the values of the

proliferation parameter of activated cytotoxic cells, a,,. which are higher than the values
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of the proliferation parameter of activated B cells, «,. These values assure the control of
infection, avoid oscillations and suggest a dominant cellular immune response in relation
to the humoral immune response. Besides, the simulations showed that the initial humoral
immune response is faster than the cellular immune response at the onset of infection, but
the cellular immune response is stronger in clearance. This means that the cellular immune
response is inhibited in the onset of infections as a possible strategy used by the virus
to spread through the body, because the large number of activated B cells will release
low affinity antibodies which may facilitate the opsonization of pathogen and it may be a
clue to answer why the antibodies can help in enhance second infections. In fact, in vitro
studies of dengue infections in dendritric cells reported a notably suppressed proliferation
of T cells [40],[41], and some studies with patients showed an increase CD8+ T cell counts
later in the course of disease [42],[43]. Other models considering the role of cytokines have
to be considered to better analyze the role of the CD8+ T cells in the control of the viral

replication and the balance between humoral and cellular immune responses.
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1.A  Appendix

1.A.1 Hopf bifurcation

Consider the system of ordinary differential equation in the way

T = f(x, ), (1.11)

where x € R" and «,, € R. If we make Taylor expansion of f around the equilibrium point

T = xg, we obtain

Flz) = Az + ;B(m, ) + (1),0(3;, z,2) + O(|z]%), (1.12)

where A = f,(20, ea), B(z, ) and C(z,, x) are functions defined by

*fi(§)
Yk (1.13)
jk‘zl agjagk E=x0 ’
Ci(z,y, 2z Tiyk2, 1=1,...,n. 1.14
s 6@8@6@ | e A

we assume that A = f.(xo, @) has its eigenvalues with the property Re()\;) < 0,
t=3,...,nand A\ o = tiwp.

Once we calculate the function F', we need to know if the pair of complex-conjugate
eigenvalues crosses the imaginary axis with nonzero speed, this condition is named as

Transversality condition and its definition is presented above.

Transversality condition

Definition 1.1. Let A be a real matriz n x n which depends on the parameter a (A(a))
with a simple pair of eigenvalues A\ 2(a) = p(a) + iw(a) and p(ag) = 0, w(ag) > 0. We

define the transversality condition by
W () # 0.

There is another way to compute the transversality condition, by using the Projection
method for center manifold computation [44](pg 175). First, Let ¢ € C" be a complex

eigenvector corresponding to A;
Ag = iwyq, Ag = —iwq. (1.15)
Introduce also the adjoint eigenvector p € C" having the properties

ATp = _iW0p7 ATﬁ = _iwopa (116)
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and satisfying the normalization

P =1, (1.17)

where (p,q) = g = ZE’%’- Once we computed the vectors p and ¢, we can use the

5
next lemma to compute the transversality condition (This result appears in the book [44]

as an exercise in pg 189)

Lemma 1.2. Let A(«) the matriz defined in 1.1 then the transversality condition can be

compute by
# () = Redp, A'(ao)q), (1.18)

where q and p are eigenvectors satisfying the equations (1.15) to (1.17).

Proof. Suppose that g(«) and p(«) are eigenvectors of the eigenvalues A\ 2(a) = p(ar) £

iw(a). Then differentiating with respect to a the equation
Aa)g(a) = M(a)gq(@),
we obtain
Al(@)q(a) + A(a)q'(a) = Xi(@)q(a) + M(a)q'(a).

Computing the scalar product with p in both sides, we have

(p, A'(a)q(a) + Ala)q (@) = (p, Mi(@)q(a) + Ai(@)q (o))
(p, A'(@)q(a)) + (p, A()q () = {p, Mi(a)g(@)) +<{p, M(@)q (o))
(p, A(a)q(a)) + (AT (a)p, ' (@) = Xy(a)p, q(a)) + M (@)(p. ¢ ().

Evaluating the previous equation in @ = g, we obtain
(p, A'(ao)q) + <AT(040)197 ¢ (o)) = N (@0){p, @) + iwo(a){p, ¢'(a0)),

and, from the equations (1.16)-(1.17), results in

(p, A'(a0)g) + (—iwo(a0)p, ¢'()) = i (@) + iwo(0){p, ¢'(a0))
{p, A'()q) + iwo(c){p, ¢'()) = N (ap) + iwo(a){p, ¢' ().

Then

N (ag) = {p, A'(a0)q), and /' (ag) = Relp, A'(a0)q)-
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First Lyapunov coefficient The First Lyapunov coefficient is a number that indicate
that certain combination of Taylor coefficients of the right-hand sides of the system (up to

and including third-order coefficients) does not vanish.

Definition 1.2. The first Lyapunov coefficient is given by

h(ao) = Qio Re [{p,C(q,4,7)) — 2p, B(¢,01)) + », B(q,¢2))] . (1.19)

where ¢ = A™'B(q,q) and g5 = (2iwol, — A) ™' B(q, q).

Remark 1.3. A deduction of the first Lyapunov coefficient ly(c) can be found in [44] (pg
178).

Theorem 1.4 (Hopf bifurcation). Consider the system
= f(z,a), e R", a e R,

with f smooth function of (x,«). For a near to ay, let xg be the equilibrium point with

eigenvalues
Aa(a) = p(a) +iw(a),

which satisfies u(cop) = 0 and w(ag) > 0, and the other eigenvalues are negatives. If the

following conditions hold
e [i(ag) # 0,
b M/(QO) 7 O;

Then, there are invertible coordinate that depends on the parameter o and a time reparam-

eterization transforming, where the system (1.11) can be reduced in the central manifold

" <Z> - (f ‘;) (3) + (7 +33) (z) + Oy, (1.20)

L)

w(a)

to

where f = and s = sgn(li(ap)). [45](pg 353)

Definition 1.3. If [1(ag) < 0(li(cw) > 0), the bifurcation is named supercritical Hopf

bifurcation (subcritical), and the limit cycle is stable (unstable).
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1.A.2 Latin hypercube sampling and Partial rank correlation coefficient

Latin hypercube sampling (LHS) is a stratified sampling without replacement
technique and belongs to the Monte Carlo class of sampling methods. The random
parameter distributions are divided into N equal probability intervals, which are then
sampled. N represents the sample size. The choice for N should be at least k+1, where k
is the number of parameters varied, but usually much larger to ensure accuracy. For each
parameter is chosen a probability density function (pdf) (i.e. normal, uniform, lognormal,
etc.). If biological knowledge exists suggesting a more frequent or expected value for a
parameter, a normal pdf would be the best choice. Otherwise, the choice is a uniform
distribution. The sampling is done by randomly selecting values from each pdf. A matrix
is generated (called LHS matrix) that consists of N rows for the number of simulations
(sample size) and of k columns corresponding to the number of varied parameters. N model
solutions are then simulated, using each combination of parameter values (each row of
the LHS matrix). The model output of interest is collected for each model simulation.

Different model outputs can be studied if more than one model output is of interest [38].

We selected the parameters 3,, ay, 71, V2, @, @ and p, and N = 800 to perform the
LHS. The parameters «, and «., were not selected because they were analyzed in the

subsection 1.3.3.6 and we know the influence in the model.

To define Partial rank correlation coefficient (PRCC), we start defining:
Correlation coefficient: is a number that quantifies some type of correlation and de-
pendence between two or more random variables.

Rank correlation coefficient: the study of relationships between rankings of different
variables or different rankings of the same variable.

Partial correlation coefficient: is a number that measures the degree of association
between two random variables, with the effect of a set of controlling random variables
removed.

Finally we define:

Partial Rank Correlation coefficient: Is the partial correlation on rank-transformed
data.

So in the model (1.1), we are interested to know what is the relationship of
virus load V' and the infected cells I with the parameters [3,, o, 71, 72, @y, @ and p,. In
this way we perform LHS and PRCC to assess the sensitivity of our outcome variable to

parameter variation the results are discussed in subsection 1.3.3.4.
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1.A.3 Extended fourier amplitude sensitivity test

The extended fourier amplitude sensitivity test (efast) is a method to perform
global sensitivity analysis which evaluates the relative importance of input variable and
model parameters on the evolution over time of the model state variables. Efast is a variance
decomposition method and use spectral analysis to decomposes the output variance. The
total number of model simulations made for efast is given by N = N, x k x N,., where
N, is the samples per search curve, k is the number of parameters and NN, is the number
of search curves (resampling). We choose Ns = 600, k = 10, N, = 5, to perform efast to
the model (1.1). The codes that are available in <http://malthus.micro.med.umich.edu/
lab /usadata/>, give us the first-order sensitivity S; and total-order sensitivity Sz, of each

input parameter with the significance for the output variable. [46], [38].

To perform LHS/PRCC and EFAST we used the codes of methodology proposed in [38]
and can be accessed in the link <http://malthus.micro.med.umich.edu/lab/usadata/>

1.A.4 Genetic Algorithm

The function to minimize is f(V,7) = (V — Viara)?, where V is the viral load
solution of the system (1.1), Vyu, are the data of viral load of patients and 1" are the
unknown parameters 1" = (8,, a, 71, V2, O, Qay Qery Qeas o), Where 5. € (Brmin, Brmaz)s
y € (Qumins Qomaz )y - - 5 o € (Homins fomaz ). The first step is transform each parameter in
binary and form a string called chromosome. Let be I" the binary representation of 7.

Then

I' = (512%27127226Yr20éa2acr2aca2ﬂu2)-

will be the chromosome, which has just 1’s and 0’s and 3,2, a2, 712, Y22002, Qa2, Oera, Oea2, fhv2
9

are the binary representation of parameters. This chromosome has length m = Zmi,
i=1
where m; is the smallest integer such that (5,maz — Bymin) X 107 < 2™ —1, my is the smallest

integer such that (ymaz — Qumin) X 107 < 2™2 — 1, ... myg is the smallest integer such
that (fomaz — fomin) X 10P < 2™ — 1 and p is the is the decimal places for the parameters.

Each m; is the length of binary string of parameters. Now we start the algorithm

1. Initial population
We create a random population Py of chromosomes, where each chromosome is a
9
binary string of length m = Z m;. We suppose that this initial population has n

i=1
chromosomes. i.e

Py={Iy,.... I}
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2. Evaluation function
In this step we evaluate the function f at each element of the population F, it

means f(V,7"), where 7" is the decimal representation of Fg, 1=1,...,n.

3. Next Population
In this step we select the next population to apply the genetic operator (crossover

and mutations).

e Selection method
To select the population we apply the tournament selection method, which
consists in select randomly some number k of chromosome and selects the
minimum of the set {f(V,77"),..., f(V,T7)} of k elements, where J is a
subset of k elements (J < {1,2,...,n}), into the next generation. This process
is repeated n times. Obviously, some chromosomes would be selected more than
once. Now, we apply the crossover and mutations operators to this selected

population.

e Crossover operator
This operator apply recombination in the chromosomes. We give the proba-
bility of crossover p.. This probability give us the expected number p. x n of
chromosomes, which undergo the crossover operation. The process of crossover
function in the following way: for each chromosome in the (new) population,
we generate a random number r from the range [0, 1]. If » < p., we select this

chromosome for crossover.

Chromosomes selected for crossover

Chromosomes after crossover

Figure 15 — The one-point crossover in two chromosome.

If the number of selected chromosomes is even, we can pair them easily. If
the number of selected chromosomes were odd, we would either add one extra
chromosome or remove one selected chromosome, this choice is made randomly
as well. The operator explained here is known as one-point crossover. There are
other crossover operator as: Two-point crossover, Uniform crossover and half

uniform crossover.
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e Mutation operator
This operator apply alterations in the elements of chromosomes (changes of 0
for 1 or vice versa). We give the probability of mutation p,,. This probability
give us the expected number of mutated elements p,, x mx,,. The process to
perform the mutation operator is similar to the crossover operator: For each
chromosome in the current (i.e., after crossover) population and for each element
within the chromosome, is generated a random number r from the range [0, 1].

If r < p;, then mutate the element.

1010100001111 1 Chromosomeand element selected for mutation

10101010011111 Chromosomeand element after mutation

Figure 16 — The mutation operator.

4. After all the above steps, we have created the first generation: population P;. Now

just repeat the steps 2 and 3 to Py, and the process goes up to the desired generations.

A detailed explanation of genetic algorithms can be found in [47]. The algorithm adapted
and used in the simulations can be accessed in the link <http://people.csail.mit.edu/
gbezerra/Code/GA /ga.m>
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2 Mathematical model of antibody depen-

dent enhancement in dengue disease

Abstract. We developed a mathematical model to explore the different situations in
which antibody dependent enhancement in dengue disease could occur. The model has a
virus-free equilibrium that is locally asymptotically stable but could be unstable depending
on the region of immune parameters. The instability of this point implies in the rise of
viral load and infected cells. Further, there is a locally asymptotically stable virus-presence
equilibrium. We analyzed when the viral load increases or reaches the minimum viral level.
We found that high proliferation parameter levels of cross-reactive antibodies increases
the viral load, and even if the basic reproductive number is less than one, there exists a
large chance of an increase dependent on the proliferation of cross-reactive antibodies and

the initial viral load.

2.1 Introduction

The mechanism by which the viral production of target cells is altered by the
presence of serotype-cross-reactive antibodies is a serological phenomenon called antibody-
dependent enhancement (ADE) [48]. The first studies about ADE were conducted about
15 years after the World War II by the virologists Kjellen [49] and Hawkes [50], but this
phenomenon only became important when the epidemiologist /virologist Halstead proposed
a relationship between epidemiology, cross-reactive antibodies and dengue disease severity
[51],[52],[53]. Actually there is a very large number of disease that show ADE in vitro
and vivo, including HIV, Influenza A, Measles and Dengue [54]. In dengue disease, the
major target cells are macrophages, monocytes, and dendritic cells. After a primary dengue
infection, the immunological memory will raise cross-reactive antibodies that cannot block
the infection and can enhance the infection by a different virus type. In fact, there is
much evidence that the Fcvy receptors, which are proteins on the surface of some cells like
macrophages and monocytes that bind to the antigen-antibody complex, might facilitate
viral entry in cells and increase dengue viral replication [55]. It was recently inferred that
immunological memory for dengue virus is cross-reactive to Zika virus and might develop

ADE [56], which will be a challenge in research on vaccines against dengue and Zika virus.

Here we propose a mathematical model of ADE in dengue infection based on
the biological mechanism involved in this phenomenon and try to capture the possible
scenarios in which the ADE happens. There exist few mathematical models that consider

the viral dynamics of dengue virus and even fewer that treat the second infections by
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dengue virus [57],(28]. The difference in our mathematical approach is that we considered
the principal actors in the ADE: B memory cells, dengue virus and macrophages. It is
assumed that the antigen-antibody complex will be engulfed by the macrophages and that
a portion of this binding will generate infection. This formulation allowed us to determine
a proliferation parameter threshold of B memory cells in which the ADE does not happen
and represent the scenery when there is no expectation of infection (Ry < 1). However,
with a high level of the parameter of proliferation of B cells and a high initial viral load

will trigger an increase in the viral load.

2.2 Model formulation

In the model, we consider the existence of an immunological memory to one
of the four serotypes of dengue virus. This memory is represented by B memory cells,
that will respond quickly and effectively to the dengue virus encountered previously, but
weakly to the three others. We assume that these cells are maintained in a constant level
rate k, by the immune system, proliferate in the presence of antigen at rate o, and have
death rate p,. Once B memory cells recognize the pathogen, which is denoted by V/,
they differentiate into plasma cells and release antibodies. These antibodies will bind to
the pathogen, and we consider that it happens at rate proportional to the presence of
B cells. Thus, a; BV will be the binding of antibodies to the pathogen which is known
as antigen-antibody complex (or immune complex), where a; is the formation rate of
antigen-antibody complex. The macrophages S are produced by the bone marrow at rate

ks and have half life of —. These cells may react in two ways: by direct phagocytosis of

virus, a slow process pro;noted by pseudopods, or by opsonization of antigen-antibody
complex which facilitate the phagocytosis. Due to imperfect action of antibodies against
another serotypes of dengue virus, some cells became infected, i.e, virus can replicate
in these cells, releasing new virus. The concentration of these infected cells is denoted
by I and has a death rate p,. The direct phagocytosis of virus is described by the term
a, SV, where «, is the slow rate of phagocytosis. The opsonization process is mediated
or facilitated by the receptors Feyr that are present in macrophages. Therefore the
antigen-antibody complex is quickly phagocited when it is bound to the F'eyr receptors.
This process is described by as(ay BV)S, where ay is the fast rate of phagocytosis. We
define a. = a1 X ag as phagocytosis rate of antigen-antibody complex. By a imperfect
cross-reactive immune response to heterologous serotype of dengue virus, a portion of these
effector cells can become infected, i.e. pa.BV' S, with 0 < p < 1. The effective cross-reactive
immune response to homologous serotype of dengue virus is considered when p = 0. It
could happen that some infected macrophages kill the pathogen. It means that these
macrophages are target of the dengue virus again, and this happens at rate o. The other

portion (1 — p)a.BV .S becomes a type of target cells S and these cells quickly transform
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back to the target cells S, with rate a;. The concentration of virus is proportional to
the quantity of virus released by infected cells after its death, v and the virus decay at
rate yu,. Furthermore, once the free virus form the antigen-antibody complex it will be
engulfed by the macrophages. Thus, we assume that the macrophages engulf more than

one immune complex, that is, Na.BV'S. Therefore, the system of differential equations is

dB

E = kB + OZBBV — ILLBB

dsS N
= = ks + 0l — (a.BV + us)S + a3 S
ds .

== (1—-p)a.BVS —ayS

dl

= pa.BVS — (o + p,)I

dv

In the third equation of previous system, we can see that the transition of S to 9 is
instantaneous, so we can consider this equation in equilibrium. This means that aég =

(1 —p)a.BV S and our system becomes

dB

E :kB+aBBV_/’LBB

dsS

— =ky+ ol — (pa.BV + uy)S

at (2.1)
dl '
dV

The solutions of the model (2.1) with initial conditions in R} are always positive and

limited if they are in the set:

N k k
Q={PeR§:75+<7+>I+V<,B<B}, (2.2)
[ fy P 0 ¢
_ ks Ny +
where P = (B,S,I,V), k = 7, 0 = min {us,,uv, p( zl>}, and ( satisfy ( :=
24N
B ! <“I+p)
k
,LLB—OéBg>0.

Lemma 2.1. The set §2 is positively invariant with respect to system (2.1).

N
Proof. Let f: Ry — Ry, the function defined by f(t) = lS(t) + (7 + ) I(t) +V(¢).
T Ky P
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Taking the derivative of function f with respect to ¢, we have
d, N
—f = lkg* 75*—(0+,u1)l a, VS — 1,V
dat e p
N
< lk MS’YS_7<O-+:LLI>I ,uvv
Iy P

this can be write as

d, N

G s Ny 4V < Lk,

dt . I

-k N+ d _
itk = =7 and § = min {us,,uv, R ) then o + 0f < k. Therefore f(t) <
My <l N) dt
~ By p
k
5 fort >0 .
k
The last inequality implies that V() < 5 for t = 0, and it is always possible to choose
the parameters i, a,, and ¢, such that
k

Taking into account this considerations and the first equation of system (2.1) we have

dB k dB
dt+(“B_aB(5)B\ dt + (py —a,V) B =k,

dB
Then — + (B < k,,, where ( = p, — «

k
= which implies B < ?B for t = 0. ]

k
357
2.3 Analysis of the model

2.3.1 Virus-free equilibrium and stability

Corresponding to absence of infection by dengue virus, we have the equilibrium
k ks . . .
point Wy = (By, So,0,0), where By = —£ and Sy = —. We call this point the virus-free
B s
equilibrium. The characteristic polynomial of the Jacobian matrix evaluated at W, has

two negative roots: —j, —p, and two roots that depend on the sign of independent term

of next polynomial:

9

Nacksk ks cksk
Wk (o) (Fobe g,y o ) - 0ot
sHp

sty fis
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ks Nackgk .
where d = (o + p, + pt, + ,— + M). Note that the independent term can be
s Mslly
vks + VS +
written in the form (a Hotts) (1, + 0) (1 — Ro), where
[hs

Fp ke | o v
ui s [p(uﬁff) N]
ks '
(O{vm + /J/'U>
Then by Routh Hurwitz criteria [30] (pg 230), the virus-free point Wy is locally asymptoti-

cally stable if Ry < 1, and unstable if Ry > 1. The local stability of this point is stated in

theorem 2.1.

R(]:Oéc

(2.4)

The number R; can be interpreted in the following way. The average period of time that

one virus survives and circulates freely without being phagocytosed by macrophages is

1
ks '
(Oév I + M'U)

The binding of virus with antibodies produced by all memory cells during this time is

1 k,

o X ——— X 2
(OéU% +Mv> Hp
and
1 k k.
ay X |ag——-—---E2 —,

is the fast phagocytosis of antigen-antibody complex by macrophages which is mediated

B ks
by the Fcyr receptors. Therefore, a. Fp #o , With a. = a; X ag, is the engulfment
av% +
of one virus by macrophages trough antigen-antibody complex during the average time of
B ks
Hp Hs

free circulating. Further, a. p is the fraction of macrophages that will produce

av% + uv>
virus. Consequently the average number of virus produced by productive macrophages

kp ks
during the life span is q,———-2* p 7 However the average number of virus
<avk—5 + ,Uv) (:uz + 0)
Ms
kp ks

Hp Hs

ks
<OZU e + /LU>

Theorem 2.1. The point Wy is locally asymptotically stable if Ry < 1, and unstable if
Ry > 1. Where Ry is given by (2.4)

engulfed by macrophages is . N. Then Ry is the net number of virus produced

by one virus.
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2.3.2 Fold Bifurcation

In the proof of the Theorem 2.1, we can see that when Ry, = 1, the characteristic
polynomial has a zero eigenvalue and the others are negative. Thus the point W} is not
hyperbolic, so we don’t have any information about its stability. For the study of the
stability in this point W, at Ry = 1 we can use theory of central manifold to prove

that there exists a fold bifurcation. To do this we chose p,, as bifurcation parameter,

pya kp ks

C

so Ry =1at p, =p; = - B Ms r— 0. Using the projection method for
Oév,j: + ,UU) + N&c@ ;z

center manifold computation [44] (pg 488), we can prove that the dynamics of system
(2.1) is locally topologically equivalently in the central manifold to the dynamics of the
equation u = ;au2 + O(u*). In the appendix 2.A.1, we prove that a > 0. Therefore the
fold bifurcation warrants the existence of one virus-presence equilibrium near to point Wy,
for u¥ < p, < p7 + € (this situation represents Ry < 1) , € > 0, which is unstable, besides
we can say that for u7 —e < p, < p7 (this situation represents Ry > 1), there will be a

quickly increase of the viral load.

2.3.3  Virus-presence equilibrium

The virus-presence equilibrium is defined by the point Wy = (B*,S* I*, V"),

where
Q - RO Mg
§* = ! Ll
Broepky  (Ro—1)
L+ Lli+oiay @-Fo) 1
o ! |
ps(pp+o)os (Q—Ro)
1+ #Ié‘cpkBB (Ro—1) i
V* _ R() -1 Ml
Q-1a,’
K g pooft, pore
and Q) = A .
o (ks + props) (p; + 0)
kp
Yehup Hr
. . (Oékas“!‘ll«'u)ll/s (M]J’_U) .
The number ) can be written in the form: ) = | i . We can interpreted
B Bpug
its numerator and denominator as follow: ?
e In the numerator, the term
1 k
Ixap x —— x 2 (2.5)

<04U% + NU) Kp
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was described before as the rate at which one virus, during its average period of

time, that survives and circulates freely without being phagocytosed by macrophages

1
, is linked to the antibodies —£, forming the complex antigen-antibody.
<av% + ,uv> Pg
The term
1 k 1
ap —— 2 X ag X —, (2.6)

1
is the rate at which one macrophage in its average life — engulfs the complex

antigen-antibody. Then, the term

1 k 1
2 Qg — X P, (27)

o ——
e

1

is the infection rate of one macrophage that in its average life — have engulfed the
S

complex antigen-antibody and

k

Q.2 m
i p X L. (2.8)
(avﬁ + ,uv> Ibs (1, +0)

will be the death probability of infected macrophages that have not released virus .

1 1
e The denominator —a,, — is the proliferation rate of B memory cells by the stimulus
v B
of antigen.

In the definition of virus-presence equilibrium W7, we can see that it has biological meaning
if ) < Ry<1, or Q> Ry > 1. Furthermore if Ry ~ 1, then

k ks
B~ £ S*~ = I"~0, V*~0. (2.9)
iy n

This situation is the fold bifurcation described in the section 2.3.2, because when we have
Q < Ry <land Ry ~ 1, we really have i, ~ p (7 < p, < pu7 +¢€), which implies that the
point W is unstable and all the solutions converge to free virus point Wy. Observe that, if
Hw, — uf+, the parameter () decrease and Ry increase, so this is not a good situation. On
the other hand, for @ > Ry > 1 and Ry ~ 1, we have that p, ~ u7 (47 —e < pu, < p7), the
point Wy is unstable and the virus-presence W is stable. This situation is ideal because if
p, — w7, the parameter @ increases and Ry decreases and the level of infected cells and

virus is almost zero by the effect of apoptosis increase.
On the other hand, if Q) ~ Ry and Ry # 1, we have

B*—>+OO,S*’@O,]*%E,V*QM—B.
o

I B
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This is the worst case because the infected cells and virus reach the maximum levels.

Besides for Q > Ry > 1, and if () — o0, we can see that

B* ~ kB7 S* A E7 I* ~ 07 V* A (avks + MU”S)(MI + U)MB (RO — 1)
Iy Ls kg by, pore

In this situation there is a benefit for the cross-reactive immune response if () is big and

Ry > 1, because the infected cells reach a minimum level.

From previous considerations, we can see that when () is incremented and
@ > Ry there is always a benefit for immune system; because the infected cells and/or
virus load decrease. In fact we shall see that, in order to eliminate the infection or to

prevent a strong infection, we will require ) > R,.

Let us see which are the situations where we obtain an increment in the
parameter ). The possibilities are: the numerator increases or the denominator decreases.
The numerator can increase if the parameter «. is raised. The problem of this situation is
that Ry will raise too, and this means that the productions of virus increases. So is not
the better idea to rise this parameter, and, similarity the parameter p. Another situation
where the numerator can increase is when the parameter p, is increased. The feature
of this situation is that Ry will decrease. In fact, we discussed this situation after the
equation (2.9). We concluded that if apoptosis parameter j, is increased until 47, then
Q@ will raise until Q* and Ry — 1. This implies in a decrease of dengue virus and the
infected cells by increment of parameter ). The denominator will decrease (which means
that the parameter () increases), if the parameter of proliferation of B memory cells, o,
decreases. In fact we shall show that the parameter o, will have substantial implications

in the increase of the infection.

In the next figure 17, we present a scheme about the existence of equilibrium
points with respect to the parameters ) and Ry. Note that when ) < Ry < 1, there is

coexistence with the point Wj.
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Ry<1<@Q Q>Ry>1 4
There exist the points 7 4
7
7
Wy and Wy >
7
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7 There exist just Wy

Ry<Q@Q<1 s Ry>1>Q

There exist just Wo
J There exist just Wo

7/
7
7
7 Q<Ry<1

7

7
7/ There exist the points

7 Wy and W)

Figure 17 — The figure shows the existence of equilibrium points with respect to parameters
Q and Ry

2.3.4 Stability of virus-presence equilibrium W; when Q < Ry < 1 and
Q > Rg>1

The local stability of the point W is characterized by the roots of the character-
istic polynomial of matrix Jacobian of system (2.1) evaluated at point Wy, this polynomial
is:

Y

M4 Ss (WA + So (WA + S (W)X + So(Wy) (2.10)
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where
— R
53(W1)=MB%_1O+anV*—I—MS—|—A
. Q_RO % Y% * Y7k Q%
Sg(Wl)—,uBﬁ(ach V*+pus+A) +agNa. B*V*S
+ (p, + pw)e p BV + p A

Q — Ry
Q-1

+ [kp (1, + po)pae — ayonpac BF VST VF

+ {popt,p B* — [vp — N(p, + 0)] o, B* S*} a V™

SO(Wl) = Hp (avkﬁ + MUMS><MI + 0)<R0 - 1)7

S1(Wh) = pptis [, + 0+ oy S + o] + pypsNae B S*

and A=pu, +0+ Na. B*S™ + a, S* + p.

2.3.4.1 Stability analysis of the point W; when Q < Ry < 1

As we see in the figure 17, when @) < Ry < 1, there exist two points: the point
Wy which is locally asymptotically stable by Theorem 2.1 and the point W;, which is
unstable by Theorem 2.2 .

Theorem 2.2. The point W1 is unstable if QQ < Ry < 1.

Proof. In the characteristic polynomial (2.10), the coefficients S3(W;), So(W;) are positive
and Sy(W7) is negative for @ < Ry < 1. Therefore, independently of signal of coefficient
S1(W1), the polynomial has just one change of signal. Then the Descartes’ rule of signs

warrants the existence of one positive root, which implies that the point W is unstable if
Q< Ry<1. O]

If Ry remains constant and () is able to vary, we can see that the only way it
Fr

(b, +0)
So if a, is large enough we have ) < IRO and if it is small, we have @) > Ry. We analyze

the stability of system (2.1) when Q@ < Ry <1l and 1 > Q > Ry

happens is when o, varies, because < 1 and the other parameters depend on Rj.

In figure 18, we plot the stability relationship between ) and the equilibrium
V* and B* respectively, when Ry remains constant and () varies. It is possible to observe
that the point W is a separatrix of stability for the point Wj. It means that if we put a
initial condition below this point the infection will be eliminated, but if we put a initial

condition above this point we have a strong increase in the viral load.

The antibodies will help in the elimination of dengue virus, if they are below
of B* or they will help to increase the viral load and infected cells, if they are above of B*

(see figure 18b). There is another problem, if the proliferation parameter, o, is too big,
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the region where cross-reactive immune response can eliminate the dengue virus will be

decreased and there is more likely to rise the viral load by ADE (see figure 18a).

| / | \ ‘
Vv b | B' Q<Ry<1 Ry<Q<1 Ry<1<Q
‘ ‘
‘ ‘

| :

/

Q<Ry<1 1/ Ry<Q<1 1 Ry<1<Q
| i
i

/ AN

) )
Ry 1 [ Q

(a) (b)

Figure 18 — (a) The figure shows the virus-presence point V* as function of parameter @,
when Ry < 1 remains constant. The arrows indicate the dynamic of dengue
virus V. We can see that if parameter @ is small(a, — 0 = @ — 0), the
by any initial viral load above of V*, our immune system will not be able
to eliminate the virus, which means that the antibodies are enhancing the
infection. While that if parameter ) is not too small (the parameter «, is
not too big), the immune system will tolerate greater initial viral load and
will be able to eliminate the virus. (b) The figure shows B* cells as function
of parameter ), when Ry < 1 remains constant. The arrows indicate the
dynamics of B cells. When @) < Ry < 1, the dengue virus will be eliminate
for initial values of B cells below of B*, but if this initial value will be above
of B*, the virus will not be eliminated, and a strong increase of dengue virus
could be happen by ADE. Further, it could be worst if the parameter o, is
too big, because 1 > Ry >> () — and the region where the immune system
eliminate the virus is decreased. For Ry < () < 1 we have total elimination of
the dengue virus, observe that in this situation the parameter o, has not to
be too big.
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2.3.4.2 Stability analysis of the point W} when Q > Ry > 1
Theorem 2.3. The point W1 is locally asymptotically stable if () > Ry > 1.

Proof. To get the local stability of the point W, first we define S;(W;) := S; fori =0, ..., 4.
We have to prove that the coefficients of polynomial characteristic (2.10) satisfy, for

@ > Ry > 1, the following Routh-Hurwitz conditions:

Sg>0752 >O,Sl >07S() >0 (211)
518233 — 512 > SgSQ (212)

The condition (2.11) is easily checked by Ss, S, and Sy. A proof of S; > 0 can be found in
appendix 2.A.2. Since the condition (2.11) is valid for @ > Ry > 1, the inequality (2.12)

can written as

1 (555, Sh

— — 1. 2.1

S ( S + 53) < (2.13)
S350 S S1 5y

For Q > Ry > 1, we have, <22 and 2L < 5 (see a proof in Appendix 2.A.3). This

Sh 2 Ss
implies that the point W is locally asymptotically stable.

]

As in subsection 2.3.4.1, we vary @) and let Ry constant. In figure 19b, we can see

that if the  parameter of proliferation « is  too small, then

B
Q@ increases and therefore B* asymptotically approaches the value By and viral load
avks + MUHS)(MI + U):“B (RO _ 1)

. ks pope, poce
increases up to a threshold &, such that ) — Ry, we will have the greatest value for

is the lowest possible (V* — ( . On the contrary, if o,

viral load V* — 22 and B* — +o (see figure 19a). This is a clear example of antibodies
a

B
mediation in the intensity of infection.
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b i b
Q<1<R 11<Q<R 1<Ry<Q (2<1<Rn3 1<Q<Rnf L<R <@
neb

Figure 19 — (a) The figure shows V* cells as function of parameter (), when Ry > 1 remains
constant. The arrows indicate the dynamics of dengue virus V. In this case
there is no elimination of virus, even there is a possibility of increase the viral
load if @ ~ Ry (which means «, is big). (b) The figure shows B* cells as
function of parameter (), when Ry > 1 remains constant. Arrows indicate
the dynamic of B cells. When ) > Ry > 1, there is not chance of virus
elimination, but if the parameter o, is small, the B cells and the viral load
V* will be smaller. Besides, if the parameter o, grows to a threshold such
that () ~ Ry, the B cells blowup and viral load will increase, and again we
have the antibody dependent enhancement.

2.4 Discussion

2.4.1 Antibody dependent enhancement

We have noticed the importance of parameter () in the increment of viral
load. We analyze three situations in which it happens: QQ < Ry < 1, Ry > ) > 1 and
Q > RO > 1.

In the figure 18a, it is examined the situation @) < Ry < 1. It is possible to
observe that for initial viral load above to V*, the viral load will increase without limit.
This situation is more evident when () is close to zero, which means that o, is too big. It
implies that for a little initial viral load V;, we will have a fast rise of the virus, which
is a clear evidence in the mediation of enhancement of infection by the antibodies. The
problem is that the range of this initial viral load is decreased by action of proliferation
parameter of B cells. Which means that the immune system will tolerate even less initial

viral load.

When @) > Ry > 1, the situation is a little different, by any initial viral load,
the cross-reacive immune response is not able to eliminate the virus and the viral load
will be increased by the action of proliferation of B cells, as we can see in the figure 19a.
It means that while the parameter of proliferation o, is increased, the viral load will

be increased and the situation is worst when @ — Ry", because the viral load and the
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number of infected cells will be the highest possible.

For Ry > @Q > 1, we do not have virus-presence equilibrium, the only thing
we know is that the virus-free equilibrium is unstable. But we can study the asymptotic
behavior of the model (2.1). Initially we show that B — +00, in fact, in this region, the

equation (2.3) is violated for the parameter a,, because to have Ry > @), we need

a, > N’uBu” —
7= Yo+ n)| &
However, from equation (2.3) we have
. %(0""“[)
Hop TN N s, [y, l+ﬂ>
aB < ks Ky P
am
Which is impossible, because
. { Mo+ p,)
Mo 2= TN A [, [y,
<l + N
up op
besides
- N( ) 1 - 1
Y>v——(0+u)= =
p ' v=So )y
Then
min o)
MB MS?MU? (lJrﬂ)
Mgy > [0
I .
[7_%(‘74_“1)]% 7”1

Now we know that B — +00, so we need to know the asymptotic behavior of
the other variables. From the equation one and two of the model (2.1), and remembering
that S, I and V' are limited in the ) set, we have

1dB &k . M
EE:?—FQBV—;LB, 1fB—>+oothenV—>i
1dS_ 1

1 1
Ea = Eks + EO’] — pOéCVS — EILLS

By adding the equation two and three of the model (2.1), we obtain

S, if B — 400 then S — 0.

d(S+1)
dt
d(I)

ks
——= ~ kg — p, I, which implies I — —.
dt I

=ky—pusS —p,I. How S — 0, if B — +00 then
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Then we concluded that for Ry > ) > 1, the viral load and infected cells are drastically
affected by te increment of the parameter of proliferation of B memory cells, which is
another evidence that the our model represent the mediation of antibodies in the increase

of dengue infection.

2.4.2 Effective cross-reactive immune response

In the past sections, it is possible to observe that when () > Ry, there is always
a benefit for an adequate cross-reactive immune response, because the viral load is either
completely cleared (1 > Q) > Ry) or it reaches the lowest level possible (QQ >> Ry > 1).
For Q) > Ry, we need that the proliferation of B cells is not increased up to the threshold

o, it means

< a**

Op B

Hpg ol P

p(ul%g) _N] ks(ﬂf +U)

Besides, if ay, is too close a}* (a, ~ a}F), there will be increase of viral load by the

where oF = [ . But if Ry > 1, there is not chance of elimination.

antibody dependent enhancement, as described in the figure 19a. So to avoid this situation
we need the parameter o, to be small (a, << al*). There is another immune system
strategy to raise the parameter ) and reduce the viral load. This is by the increment in
the apoptosis of infected cells (1, — p7 ™), the effect of this situation is a decline in the
net number of virus Ry ~ 1. It will have an enormous impact in the infected cells and the

virus because I* ~ 0 and V* ~ 0.

Now if Ry < 1 and ) > Ry, there is elimination of virus, but what should be the amount
of proliferation «, of B cells for this to happen?. To answer this question, it is needed
distinguish two cases: 1 > @) > Ry and Q) > 1 > Ry. For 1 > @) > Ry, it is needed that the

proliferation o, of B cells satisfies

* &k
ar <o, << ol

ks fropt, poee

(avks + M’UNS)(MI + U)
rate of B cells has not to be too big and it has to be controlled. In terms of the parameters

where o, = . On the other hand, if ) > 1 > Ry, the proliferation

this happens when

o, <min{a®, a**}.
B B

In this ideal situation (Ry < 1 and @ > Ry), for any initial viral load (V5), the immune

system will eliminate the pathogen, i.e. (B, Sy, 0, Vo) — Wh.
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2.5 Conclusion

In the current study, we proposed a mathematical model to study ADE in
dengue disease at an early stage. The model considers an existing immunological memory
acquired from a past infection by one of the serotypes of dengue virus. We showed that
there exists a high dependence between infection and the proliferation of B cells. There is
a threshold for the parameter of proliferation of B cells at which our immune system will
clear dengue virus and a threshold at which the mediation of antibodies will increase the
infection of cells(antibody-dependent enhancement). If we could control this parameter,
we could stop the infection or avoid a strong increase of viral load and infected cells.
It is interesting to note that even for Ry < 1, there is a probability that the viral load
will increase. In fact, we showed that even for a small initial inoculation of the dengue
virus, a rise in the viral load is always possible and depends on how big is the parameter
of proliferation of B cells, a,,. These observations are in agreement with studies that
suggest that in the second infection by dengue virus, there is a favorable increase of
the serotype-cross-reactive B cells from primary dengue infection [58], [59] that could
contribute to the risk of severe dengue disease [60],[61]. These results have to be read
carefully because this model only takes into account the initial stage and does not consider
the response of adaptive immune response. However, this was our exact goal for this study
because we believe that the initial stage of the second infection is crucial for the course
of dengue infection, and understanding it from different point of view may be will be

important for future research.



Chapter 2. Mathematical model of antibody dependent enhancement in dengue disease 65

2.A  Appendix

2.A.1

The system (2.1) has a fold bifurcation when Ry =1 or u, = p*. To prove this,
it is enough to use the projection method for center manifold computation [44] (pg 488).

Then is necessary compute the sign of a, we start looking for vectors p and ¢, such that

J(Wo)g =0, JWo)'p=0, <p,g>=1,

4
where J is the Jacobian matrix of system (2.1), and < p,q >= Zpi%‘- After some
i=1
calculations we have

1 0
q2 0
s 1
g=1 = , p=——- ) 2.14
U12q2 <p.q> 1 ( )
I Hy + 07
aBkB ,y

f1, (ks + s 12
MgaBkB [7P - N(:u[ + U)]

a =< p,B(q,q) >, where B(x,y) = (By(z,y),..., By(z,y))" is defined in the equation

. Now the sign of a is computing using the formula

where, g5 =

Bl(:c,y) =, (T1ys + 241)

— kg k
By(z,y) = _Pac; (21Ys + ayn1) — poe—" (TaYa + Tayo)

s B

Bs(z,y) = —Bs(x,y)

_ kg k
By(z,y) = —NOéc/T (T1ys + Tay1) — (NCYCB + Oév) (oY + T4Yyo) -

s B

Therefore

_ 2 u N(u, + o) (ks + popes) (i, + o)
—<p,B - 5 N m A ! 0,
a=<p,B(gq) > <p7q>aBBo{[p ; Sy + 2 o >

Then the system has a subcritical fold bifurcation.
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2.A.2

To prove that the coefficient Sy is always positive for () > Ry > 1, first we see

that using the equations of equilibrium W; we have

ks
pozCB*V*S*=(,LLI+U)]*<(/J,+U)M—
* Qo " 1 ks 1
[VP_N(NI_FJ)]B S :(@vs +ﬂv)(ul+0);< O‘vi_‘_,uv (NI_‘_U)OT
B*>k—B
fyg

taking in account this inequalities we have

Q — Ry
01

ks .
; [w, )P e — agan(i, + a>] %

S

S1 = g s [, + 0+ py + @, S*| + pypusNa, B* S*

k ks
+ luvumB - <04v — + m) (ke + 0)%] oV
[t 1 a

B s c

ks
From @ > 1, we have, k,pa. > (av — 4+ uv) (1, +0) % , then
i

s vy

— R
Sp = ,uBusQQ — 10 [, + 0+ py + o S*| + pypusNa. B* S*
+ Uy ks ks %
+ lw <ozv +uv> — ocv] (u, + o),V
Lol 1 s

1
the death rates p, and p, are always less than or equal to one, it means that — > 1 and
Hy
1

— > 1, then 57 > 0.
Hp

2.A3

S35, S, S S,
We are going to prove that for () > Ry > 1, we have 0 22 and 2L < 22,

Sy 2 Sy 2
S350 _ So : .
5 < - we have to prove 25,53 — 5152 < 0. First we start writing
1

S() = S()l + SOQ and Sl = SH + 512, where

To prove that
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Q_ * Y%
Sot = fg—~— O-1 % ftopty e p B¥V
Soa = —a,V*[(aw S + po)ps(pt, + 0) + awp, e p B* VS|
Su = uBus%_ [l + ot ST ]+ ppps Nae B 57

Stz = [kB(MI + Mv)POZC — Oy 0y P0, B*V* S*] V*
+ {twp,p B* = [vp = N(p, + o)), B* 57} a V™.

Note that, S1; and S are positive as shown in 2.A.2, and Sp53 <0 ,
then 25033 — 5152 = 250153 - SHSQ + 250253 — 31252, is equal to

—Ro1?
622_10] [QUU,quszB* V* — pus(p, + 0+ ay S* + py)(ae p B*VF + g + A)]
+ f QQ_ {QMUM,ach* V¥(acpV* + ps + A)

25053 - 5152 = |:[LB

—(p, + 0+ ayS* + p)[ap Nag BEV* S* + (1, + py)ae p B¥ VF + s Al
— pypsNae B¥ S*(ae p B¥ V* + g +A)}

— pypsNae B* S*[ap Na. B* V* S* + (u, + pw)ae p B¥ V* + ps Al + 250255 — S12.52,

From @ > Ry > 1, we have < 1, then

2
9 <1 and (QRO> <QiR0

~-R
Q-1 Q-1 Q-1

Q

R.12
10] (4, + 0+ S* 4+ py) (e p B*V* + pus + A)
QRO{
v
Q-

200, V¥ [(0r S* + po) s (1 + 0) + awpp e p B* VFS]

25085 — 8182 < — i s [Q
- :LLB 1

+ (04 ay S*)[ap Na. B*V* S* + (i, + py)ae p B*V* + ps Al
+ (p; + pw)[ap Nae B¥* V* 8% + p Al

+ py s Nae B¥ S*(ae p B¥* V* + pg +A)}

— pypsNae B* S*[ag Na. B*V* S* + (u, + po)ae p B¥V* + ps Al — 51252 < 0.

Next, to prove that 51 < S— we can see that 51 < 5 < 257 — 5553 < 0 then,
53 27 53 2
Q-

251 — S985 = 2, ps 2 (11, + 0 + S + pio] + 21, s Nae B* S*

Q_

+ 2k, (1, + po)p e — agaypa. BV S*| V*

+ 2{pop, pB* — [yp — N(u, + o) a, B* S*} a . V*

- [uB%_ T (e pB*V* + pg + A) + ap Na, B* V* §*
Q

—R
+ (u, +,UU)O‘CPB*V*+,USA:| [MBQ—IO_FQCPV* +ﬂs+A:|a
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After some calculations we have

251 — 8283 = —2a,0,pa B*VFS*V* — (12 + pi2) e p B*V* = 2[yp — N(p, + 0)]a, ac B¥V*S*
Q- R [ Q—-Ro
H’B Q _ 1 B Q _ 1

—(aepV* + A) [,LLBQRO (us + A) + ap Na. B* V* §* +H3A]

Q-1
— (0 + Na, B* S* + a, S*) [Ms QQ__]?O

R,
_— [’UB%QIO (ae p B*V* + ug) + ap Nae B*V* S* + (u, + p)ae p BXV* +M5A] <0.

(e pB*V* + s+ A) + ap Na, B*V* S*]

+ Hy +,uv] aepB*V*
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3 Global dynamics of humoral and cellular im-

mune responses to virus infection

Abstract. We studied the global stability of a model of virus dynamics with consideration
of humoral and cellular immune responses . We used a Lyapunov direct method to get
sufficient conditions for the global stability of virus-free and virus-presence equilibriums.
First, we analyzed the model without an immune response and found that if the repro-
ductive number of virus is less than or equal to one, the virus-free equilibrium is globally
asymptotically stable. However, for the virus-presence equilibrium, global stability is
obtained if the virus entrance rate in the target cells is less than one. We analyze the model
with humoral and cellular immune responses and found similar results. The difference is
that in the reproductive number of virus and in the virus entrance rate in the target cells
there is the presence or action of humoral and cellular immune response, which means

that the adaptive immune response will stop or control the rise of the infection.

3.1 Introduction

Global stability analysis in models of within-host viral infections has been
addressed in particular cases. In [62], the authors proved global stability using an extension
of the Poincaré—Bendixson theorem for the class of three-dimensional competitive systems.
In [63], the authors used the direct Lyapunov method to demonstrate global stability.
The same was done in a model with a Beddington-DeAngelis functional response [64].
On the other hand, there are models that consider the immune response [65], [66], [67]
showing the global stability analysis. All of these models are just considered humoral or
cellular immune response. In our model, besides considering virus entrance rate in the
target cells, we also study the humoral and cellular immune responses. None of the cited
models consider this approach. In this way, using a direct Lyapunov method, we show
the global stability of a model of virus dynamics without immune response. Further, we
gave conditions for global stability analysis of model considering the humoral and cellular
immune responses. The organization of this paper is as follows. In section 3.2, we present
the model formulation of the model with immune response and the positive invariant set.
The global stability analysis of model without an immune response is presented in section
3.3. Finally, in section 3.4, we study the global stability analysis of model with humoral

and cellular immune responses.
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3.2 Model Formulation

Denote by S, I, V, B and T the target cells, infected cells, dengue virus, B
cells and the cytotoxic T cells, respectively. The cells S are produced in bone marrow by a
constant rate k,. The target cells are chronically infected at rate 3, and die at a rate p,
the lysis of this infected cells occur by action of the cytotoxic CD8+ cells 1" at rate a,
and die by apoptosis at rate p;. We assume that diverse chemical signals will activate the
B cells and the cytotoxic T' cells, these cells in the beginning of this activation have not
high affinity, which means that they are not efficient to clear the dengue infection, so by
somatic hypermutations, they become step by step with better affinity(fit) to stop or kill
the virus. Therefore we consider that after some time, this specialization is maintained at
constant rate k, and k,, and they are going to proliferate in the presence of dengue virus
at rate o, and by the presence of infected cells at rate c,.. The virus amount is considered
proportional to the released virus by the infected cells after its death Ny(us + p1,)1, where
N is the number of virions released by infected cell and more than one particle of virus
will try to infected each cell denoted by Ns, here we assume that this value is less than
half of number of virions released, i.e., Ny < 71, the action of antibodies against the virus
is considered proportional to the amount of B cells at rate «, and finally the virus decay
at rate p,. The differential equations describing the interactions of dengue virus and the

immune system are given by

dS

E = k's — B}SV — /I/SS

dl

a = BISV — O[IIT — (,LLS + ,UI)I

dV

E = Nl(,us+/J/I>I—N2/BISV—OZWBV_MUV (31)
dB

E = kB +OéBBV—/,LBB

dT

E = kT + O{TT] — ILLTT

The positively invariant set for the model (3.1) is given by

N k
Qz{PeRi:NlS+NI+V+%B+ O‘ng}, (3.2)

a, o, o

Na,

where P = (S,I,V,B,T), N = (N, + Na), k = Niky + Yk, + — 2k and § =
«

B Qr
. NQ(M8+MI)
I sy flos Py P = (-

Lemma 3.1. The set §2 is positively invariant with respect to system (3.1).
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Proof. let Py = (S(0),1(0),V(0), B(0),7(0)) € Q the initial condition of the system (3.1)
and O(t) the function defined by

. N
O=NS+NI+V+2py =
aB aT

T,

taking the derivative of © with respect to ¢, we have:

d© Q, Nao
df = les - NLUSS - NQ(NS + /M)I - :uvv +— (kB - MBB) + ! (kT - IUTT)7
t o Q.

this can be written as

de v N
7 NS + Nt + i) + V4 2, B+~ Ly, T =k,
dt o o,
v N No(ps
where k = N1k, + a—kB = k.. If we choose 0 = min {,us,pv,uB,,uT, W},
«
we conclude that, ’
do®
- 66 ~~ k;7
a
then
k k
O < 5t (@(O) - 5) e forall t =0,
wich implies
k
O < —.
5

]

In next sections we analyze the model without immune response and the model considering

humoral and cellular immune responses 3.1.

3.3 Analysis of model without immune response

If there is not immune response, we have the next model

dS

E = ks — BISV _,U/SS

dl

E = B[SV - (:U/S + :Uq)I (33)
dVv

o = Nilus + p )L — N3, SV — p, V.

for this model we studied the global stability of equilibrium points.
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3.3.1 Equilibrium Points for model (3.3)

ks
The virus-free equilibrium is Fy,, = (

P, =(Sy, 1%, V), where

wrTw T w

,0, 0) , and a virus-presence equilibrium

. k1
K
he B (1o 1)
(s + 11,) Ry
Vi = gjmo - 1),
and
R — BN = Nl )

3.3.2 Global stability of virus-free equilibrium Fy,
Theorem 3.1. For Ry, < 1, the virus-free point Py, is globally asymptotically stable.

Proof. We use the direct Lyapunov method in this proof. Let L; the function defined as
follows L; : ; — R, where

O ={(S,I,V):S>0,1>0,V =0}

and

S C_ﬁ
L1=(N1—N2)f T‘“d§+N1[+V

28
Hs

It is easily to check that Li(Py,) = 0 and Ly > 0 in Q; — {Fp,}. Besides the orbital

derivative of L, along solutions of the system 3.3, it is given by

ks
fsS

Ly = (N, — Ny) (1 - ) (k — 3,8V — [LSS) + N {515‘/ — (ps + MI)I]
+ [Nl(,us + ) = Nof3, SV — MV]>

which is equivalent to

. k, 2
Ly = —(N1 = No)ps S <1 - “ S) + (Ro — 1), V.

From last equation L < 0, in Qy — { Py} if and only if Ry, < 1. Then we conclude that

the virus-free point P, is globally asymptotically stable.
O
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3.3.3 Global stability of virus-presence equilibrium P,

The existence of the equilibrium P, is assured if Ry, > 1, and we are going

to prove that P, is globally asymptotically stable if the virus entrance in the target cells

is less than or equal to one i.e, 2215 < 1. For this purpose, we define the function
[ fls
Ly : ]Ri — R, where
Ly = (N; — Ns) - Ld¢ + N, T wd(’ J ¢~ wd( (3.5)
S ¢ Lk %

This type of function was proposed by Goh in [68].

Theorem 3.2. The virus-presence equilibrium P, is globally asymptotically stable if

NQﬁij

< 1. (3.6)
[hofls
Ny kg
Remark 3.1. The conditions Ry, > 1 and ﬂ < 1, give us a threshold for the
Moy s
Ho s Moy s .
t CBF < B, < B, wh f=———— qnd 7 = . Th t
parameter (3,: 37 < f3, ™, where (3] N, — Nyl ke, and (37 Nok. e existence

N-
of values of 3, satisfying this inequality is guaranteed by the condition Ny < 71

Proof. First we start the proof that the orbital derivative of function Ly is negative in

—{P,}. Taking the derivative of function Ly along trajectories of system (3.3), we have

Ly = (Ny — Ny) (1 - 5;) (k — 3,5V — uss) + Ny (1 - F) [5 SV — (s + )1
<1 - VV) [Nl(us + ) — Nof3, SV — uvv]. (3.7)

From the equilibrium equations, we have

ks = BIS:;V@: + /’LSS:;? My = (Nl - N2)BIS’:I:)7 (/JJS + Iu]) =

wiw (3.8)

Substituing the last equations into (3.7), it turns into

w

: Sk S St S VI Vil
L2 = [NzﬂIVUT - (Nl - Ng),us] S < + - - 2) - NlﬁIS;ZVJ (w + — +——=—-3

S S S T SxvEl VI

(3.9)

From the fact that arithmetic mean is greater than or equal to geometric mean, i.e.

ﬂﬁxi, (3.10)

>

3\&

)
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ehae$+i>2and§+ilﬁ+ﬁi>3
WEAE T T g S TSxver TV~

Then Ly < 0, if [Ny, V¥ — (Ny — No)ps] S*

* < 0, in fact, from equations (3.8),

we can write

[NoB, Vi — (N} — Na)pa] S5 = Nalky — 1, 5%) — 2282 < N, — Hofls

w

and by the inequality (3.6), we have

obts [ Naf3 ks
[NoB, V* — (Ny — No)py] S < okt < 2fiks _ 1> <0.
B; v s

Then Ly < 0 in R — {P,}. Besides Ly(P,) = 0 and Ly > 0 in R? — {P,}. Therefore the
point P, is globally asymptotically stable.

]

3.4 Stability analysis of model with immune response

3.4.1 Equilibrium Points for model 3.1

Here we show the existence of virus-free equilibrium and virus-presence equilib-
rium. In fact setting the system (3.1) equal to zero and making some operations we can

write:

ks

S = 751V+Ms (3.11)
et ey (3.12)
V= (NQ;V:S(Mi ;/g)i o) (3.13)
B = eV i{:BOZBV (3.14)
T MTﬁT%I (3.15)

These equations have biological meaning if we have I < Pz and V< Bs Now putting

aT B
the equations (3.11) and (3.12) into equation (3.13) we obtain

ks Nv(py + ps) B,V

V= [NaB ks & (B + 1) (B,V + 1), T + (o + 1)1
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from this equation we obtain

V=0 (3.16)
or

[NQBII{:S + (a/vB + H”U)(/BIV + :us)] [(azT + (,us + :u[)] = kle(:u[ + ,us)ﬁz' (317>

V' = 0 implies the existence of a virus-free point which can be call F,, and has the

ks k., k
PO: <7070737T)'
sy by

For the existence of virus-presence equilibrium, we have to show that the equation (3.17)
have one solution such that V < 22 In fact, let’s rewrite the equation (3.17), and call ¢
a

coordinates

B

the polynomial:

q(V) = [(NQBII{:S + Hofts + Mvﬁzv)(ﬂB - aBV) + Oéka (6[‘/ + ,us)] [OZIT + s + [LI]
- kSNl (:U“S + “1)61 (:U“B - aBV)’ (318)

it is easy to see that

k k
q(0) = (1 - Ro> <06,NT + s + M,) <aUMB + /Lv) pspt, < 0,if Ry > 1,
B

T
q <MB) > 0,
aB

where Ry is defined in the equation (3.33) in the appendix 3.A.1. Then there is one solution

V such that 0 < V < "2 We can write the equations (3.11)-(3.15) in function of V', for
a

B
this purpose, we substitute the equation (3.15) into the equation (3.12) to obtain

61[2 — C2I +c3 = 0, (319)

where ¢; = o (ps+11,), c2 = (kpa, +p, (s +p,) + . 8,5V), c5 = .5, SV. This equation

has two solutions but just one satisfies our requirements, in fact

[ C +4/c3 — 4cics

261



Chapter 3. Global dynamics of humoral and cellular immune responses to virus infection 76

These two solutions have to be real, positive and less than Hr First, they are real because
aT

the term inside of root is always positive, in fact

[k, + g (ps + 11,) + B, SVT = douy (s + 10,1008, SV = (ko) + 2kp0, iy (s + 12,
+ 2k, a0, 8,5V

+ [aTﬁISV = Mg (H’s + MI)]2 )

Second, they are positive, because ¢5 > ¢3 — 4cics, for ¢; > 0, ¢3 > 0. So they are real, and

positive. To show that just one meet the condition I < 'U—T, we see that this is true if
T

[kTaI B /’LT(/’LS + :uf) + aTﬁISV] + C% - 46163
&1

<0, (3.20)

so the unique possibility for I is

7 Cy — A/C —dcicy

201

Then there exists the virus-presence point P* = (S*, I*, V* T* B*), for Ry > 1, where:

k
S* = ° 3.21
B V* + ps (3.21)
7
. Ca—/cy—4cics
I* = 3.22
S (3.22)
k
Bf= —3F5 3.23
e (323
k
y I — (3.24)
oy — 0 I*
and the root of the polynomial (3.18) such that 0 < V* < Bs and 1* < Pz
aB aT

3.4.2 Stability of virus-free equilibrium

Here we present the stability of virus-free point F,

Theorem 3.3. For Ry < 1, the virus-free point Py is globally asymptotically stable.

Proof. Let Q3 = {(S,1,V,B,T):5>0,1>0,V>0,B>0,T7>0}and L3: Q3 —> R be
the function defined as follow:

kr kp

S (ks T (—-L B (—-&
ngalf ¢ “Sd<+a21+agv+o"a2ﬁ ’“‘ng+o‘”a3ﬁ P8 d¢, (3.25)
H'—S C Q. ul C Op H—B C
s T B
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. k k
with ay = Ny(ps+pu,)—No <O‘1MT + s + ul>,a2 = Ni(ps+u,), ag = (ozIMT + s + ,ul).

T T

It is clear that L3(Fy) = 0 and Lz > 0 in Q3 — Fy. Now we prove that Ly < 0, in fact

ks
Ls = ay (1 — g) (k:s - B,SV — ,uSS) + a lﬁISV — o IT — (ps + ,uI)I]

+ as lNI(MS + M[)I — NQ/BISV - OéUBV — MUV:|

kr kp
+%a2 —“?T (kT +ozTTI—,uTT) +%a3 —%‘ (kB +ozBBV—,uBB>.
B

T

After some calculations, we have that

ks \ 2 I kp \ 2
Lg = —aipsS <1 — ”S> + as (avB + ,uv> VlRO - 1] - &aguTT
S Ly a, T
ka 2
Qly H
m o, BB\ 1=

B

Then Lj is negative in 3 — Py if Ry < 1. Therefore the point F is globally asymptotically
stable for Ry < 1. ]

3.4.3 Global stability of virus-presence equilibrium

In this section, we proved the global stability of virus-presence equilibrium P*

using a direct Lyapunov method. Let L, : Ri — R defined as follows

S * 1 L] \%4 /%
L4=af <_Scm+bf ¢ Idg+ ¢ Vr@
I*

T _ T* v B _ B* .
+%4‘< @+“J< dc.
O T* C Op Jpx* C
N I* N I*
where a = ( L (gj St‘l;i) - N2> b=t <ng St"l;i) . This type of function was proposed

by Goh in [68].
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Theorem 3.4. The virus-presence equilibrium P* is globally asymptotically stable if
NQﬁjks
k
(avi + uu) Hs

<1 (3.27)

NQ/BIkS
k
(ot + o)
k
(i +1m)

[(;EMWNl _ N2] k.

T
Oélﬁ‘f'lts'i‘#[

Remark 3.2. The conditions Ry > 1 and < 1, give us a threshold for

the parameter 3,: 37 < B, < B7*, where 37 =

and 37 = < i . The existence of 3, satisfying this inequality is guaranteed by

N
the condition Ny < ?1

Proof. we start showing that the derivative of function L, defined in (3.26) is negative
along trajectories of system (3.1), if (3.27) holds. In fact, taking the derivative of function

L, along trajectories of system (3.1), we have

Ly=a < — 5;) <ks - B,SV — MSS) +0b (1 - ]> [BISV —a 1T — (ps + uI)I]
V*
+ ( - V) [Nl(,us + p, )l — N3, SV — a, BV — ,qu]
+21p (1 - T) (kT +a,TI— MTT) + 2o (1 - B) (kB +a,BV — ;LBB).
o, T o, B

(3.28)

From the equilibrium equations (3.11)-(3.15), we have

Ny — No)B,S*V* — Nyay T*I* — a, B*V*
ks = /BIS*V* + ﬂsS*a My = ( ! 2)ﬁ1 107 «Q ’

V*
S*V* — o T*T*
(,US + ,LLI) = 61 ar s kT = ,LLTT* — CYTT*[*, l{B = ,UBB* — O_/BB*V*.

[*
(3.29)
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Substituing the last equations into (3.28), it turns into,

S S* S I S*Vv+I VUV

r svir v S
+ Nofs, S*V* (— — oo+ )

b (S0 2 ) v (2o S L STLL )

I Srver Ty g
IV IV 1)

VoI Ve (3:30)
wfme Mo\ (T T7
ba,T (1~ P ) (2 o
o (=) (7207 )
KB B B*
BNV == | = —2
o (2 (5 )
From equation (3.12) we have
(s + 1) 1" a/T*I*
a = <N1615’*‘;*_N2 :Nl—NQ—N:lW, (331)
taking the equation (3.31) into (3.30) implies
- s* S
Ly = (N2B,V* —aps) S* <S t o T 2>
S* SVt VeI
(o )N [ = 3
(hs + 1) l(s eI TV )
(3.32)

* % /“LT T T*
boyT* (1* =22 ) [ = + 2= — 2
et (=) (720 7 -2)

s(ve BB\ (B B
BV EB)V (242 o)
co (v =) (5 5 )

Now note that, from the equations (3.29), the first term of equation (3.32) can be written

as

Nof3,S*V* — apsS*™ = No(ks — pusS™) —

k
and in view of B* = —£ and the inequality (3.27), we have
Hg

k k
avi + avi—k,uy Ny, ks
Hs = Hs k
Bi Pi (ozva + uv) It
B

Nof,S*V* — apsS* < Noks —
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Due to the fact Nof,S*V* —ausS* < 0, V¥ < 'u—B, < oang remembering that

B

aT
arithmetic mean is greater than or equal geometric mean <Z - H T ), we have
n
i=1 i=1

Ly < 0 in R% — {P*}. Additionally, we have that L,(P*) = 0 and L, > 0 in R — {P*}.
Then P* is globally asymptotically stable in Ri.

]

Remark 3.3. If in the model we assume that the number of virus entry in the target
cells Nyf3,SV is included into the virus loss p,V, i.e., assume Ny = 0. Then we avoid the
restriction (3.27) and the virus-presence equilibrium P* is globally asymptotically stable if

Ry > 1, with the same Lyapunov function (3.26) and the same proof.

3.5 Discussion

In this study, we determined the global stability of a mathematical model of a
viral dynamic when there is no immune response and when there are humoral and cellular
immune responses. Using the direct Lyapunov method, we showed that the virus-free point
of the model with or without immune response is globally asymptotically stable, if the
reproductive number of virus is less than or equal to one—i.e. whatever the initial viral load,
the virus will be cleared. In the first case, we can argue that the innate immune response
is acting to stop the viral load from increasing. Of course, in the second case, we can argue
that the adaptive immunity is an effective response to control the virus and infected cells.
Further, we determined the global stability of the virus-presence equilibrium whenever
the viral entrance rate in the healthy cells is less than or equal to one. This condition is
almost the same for the two models. The difference is that the immune response controls
the rise of this viral entrance rate. In this situation not matter how much is the initial

viral load the result will be always a virus persistence.
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3.A  Appendix

3.A1

To compute the basic reproductive number of the model (3.1) with immunity,

we use [69], [70] to form the next generation matrix, then

ks k
0 B,— o, — + (p, + i) 0
F = 'uSk 5 V = 'U/T k’ 5
Ni(p, + ps) —Nof,— 0 ozv/TB + fo
S B
ks
0 I
AT (O‘UE + o) ths
(1, + ps) ks
Ny w —Nsf3, W
Yy + (p, + ps) (O‘vg + o) s

From last matrix we have that the polynomial characteristic is

k's 1+s ks
i Ao N (1, + ps) 3

N — | =Ny, - — :
(w4 po) s o B (g + ps) (o o+ ) s
B T B

We can not use [70], but we can use an extended conjecture which is in the appendix 3.A.2.
Then we have
B, | =Ny — Ny | Ky
(a Iﬁﬂtsﬂx 7
Ry = ; . (3.33)
(aufB + uv> s
Hp

Similarity, if the humoral and cellular immune response is not present, the basic reproductive

number of the model 3.3 is

Ny — Ny kg
Rszﬁf[ 1= Nalks (3.34)
P fhs

The unique difference with the before number Ry, is that the immune activity is not

present in the control of free viral particles and infected cells.

3.A.2

Conjeture 3.1. Let the characteristic polynomial of order n corresponding to the next

generation matriz FV ™ be written as
AN = A" —ap N — o —a A — ay,

witha; 2 0,1=0,...,kanda; <0, j=k+1,...,n—1. Let Ry denote the spectral radius
of the next generation matriz, that is, Ry = p(FV ') and
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Ry =ap+ -+ ap1.
Then Ry is a threshold value for the disease to take off or die out in the sense that:
1. R§ < 1if and only if Ry <1
2. Ry =1 if and only if Ry =1

3. R; > 1if and only if Ry > 1

Proof. Ts the same proof of conjecture 1 in [70] (pg 103) O
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4 Conclusions and future work

This chapter presents the conclusions of the thesis and outlines directions for

future research.

In the chapter 1, we proposed a mathematical model describing the adaptive
immune response to dengue virus in primary infection. In this model, the infected cells
and viruses send chemical signals to facilitate the differentiation of helper cells into helper
cells Th1 and T'h2, which are crucial to the activation and balance of cellular and humoral
immune responses. The viral load and the infected cells are greatly reduced when an intense
cellular immune response occurs. On the other hand, if there is an inadequate proliferation
of cytotoxic cells, it is impossible to stop the viral increase with a cellular immune response
alone. This situation can be controlled by a powerful proliferation of activated B cells or a
reduction in the activation of Thl cells, which perform a balanced humoral and cellular
immune response to stop the infection. Based on clinical data, the fitting process suggests a
predominant cellular immune response by the strongest proliferation of cytotoxic activated
cells, which assures the control of the dengue viral load. The dynamic of humoral and
cellular immune response represented in the activated B and T cells indicates an initial
reaction from antibodies in early states of infection but a strong cytotoxic activity in
the clearance period. We conclude that this situation is a strategy of dengue virus uses
to spread throughout the body because the inhibition of cytotoxic activity allows the

antibodies without good fit to bind to the pathogen and maybe facilitate opsonization.

In the chapter 2, we discussed the secondary infection by a heterogeneous
dengue virus and the antibody dependent enhancement by formulating a mathematical
model. This model tries to explain when the antibody dependent enhancement could take
place or what situations it can happen in. We found a threshold for the proliferation
parameter of B memory cells at which it is possible to see the intervention of antibodies in
clearing or increasing the viral load. With a few inoculations of dengue virus, it is possible
to develop a strong disease. We believe that this happens because a huge proliferation
of these non-neutralizing antibodies increases the possibility that an antibody-antigen
complex will form. This would make opsonization by immune cells more likely. Therefore,

the control of this threshold is fundamental to the evolution of the disease.

In the chapter 3, we proposed a simplification of the model in chapter 1 . We
used the direct Lyapunov method to show the stability analysis and established the global
stability of virus-free equilibrium provided that the net number of virus is less than or equal
to one. This means that the humoral and cellular immune responses are acting in complete

balance to stop the disease. The global stability of disease equilibrium is established if the
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viral entrance rate in the healthy cells is less than or equal to one. However, in a situation
where virus-presence always mathematically exists, it is possible to increase the humoral

and cellular immune response to reduce the viral load and number of infected cells
Future work

About direct Lyapunov method. In the proof of Lemma 1.1, we defined a function

(1.3), if we use this function to construct the function L, : A — R in the form

L

P

* * @
=0 0F — I

or

1
L, =-(®— 0"

Py

Then we can prove that in the next two sets

a)
A ={PeA:S<S I<I* V<V T, <Ty T <T},To < Ty,
B, < BB, <B: T, <T: T.<T.}

a?’ cry = C

Ay ={PeA:S=S5*1=>I"V=2V" T, =TT =T}, T» > Ty,
B, = B! B, =BT, >T5 T > T5}.

a cry —C

we have L, (P1) =0, L, >0in A, — {P},i=1,2 and LPI < 0, where P, is the disease
equilibrium of model (1.1). From last deduction and from all the attempts to prove the
global stability or local stability for disease equilibrium of model (1.1), we prove the next

theorem
Theorem 4.1. Let f be a function Lipschitz and

z = f(x), zeR" (4.1)
Suppose that there exists a point x* # 0, such that f(x*) = 0 and there exists a; > 0 such
that ® = z“: a;r; and P = z": a;T; = o — Zn: bix;, where b; = 0 and at least one is different
of zero. 15:]157@6 the functiolﬁzlL by -

1
L= 5(@ — P*)? (4.2)
or
®
Ly=®—®* —d*In —. (4.3)

(D*
then the orbital derivative of function L along the trajectories of system (4.1) is negative

in the sets )y ={r; e R:0<x; <af} or Qy={x;e R:z; >z}
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Proof. Taking the derivative of (4.2) along the trajectories of the system (4.1) we have

Ly =® (®—d%). (4.4)

) 1. ) n
We perform the proof just for (4.2), because Ly = ELl. Note that & = o — Z b;x; and
i=1

a = Z bz, then & = —Zbi(xi — z7). Besides
i=1 i=1

Ly = _Zaibz‘(xi —x7)? - Z aj(z; — ) Z bii — 7)
i=1 j=1 '

The first finite series in the last equation is always negative, meanwhile the last finite series

is negative for 0 < z; <z or x; =z}, i =1,...,n. Then L; <0 in the sets Q; or y. O

For example consider the general ST system

S = ks _g(Saj) - /’LSS
I=g(S,1)—p,l.
If a nontrivial equilibrium point (S, I*) exists, then the function ® in theorem is ® = S+1,

because ® = k, — tsS — p, I . The most interesting thing is that to get L < 0 in the regions

Q1 and 29, there is not restriction for the function g .
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Another example can be

S =ks—g(5,I) — psS
I=g(S8,1) = p,p(I)

Vi =ap(l) = pV

The function @ is given by & = S+ 1+ H1V/ The theorem suggest a geometric characteristic
!
of this kind of models which could be explored to get a global stability.

Genetic algorithm. Develop a possible algorithm similar or better than genetic algorithm
(ga) based in the immune system. The ga uses the idea of mutation and crossover for
improve the optimization process. My idea is to use the mechanism of adaptive immune
system to develop an algorithm. If we see the adaptive immune system as a machine
making some task. This machine is trying to learn which is the best way to develop it,
by using the adaptive immune response. The challenge is how insert the differentiation
process of helper cells as well as the proliferation and affinity of B and T cytotoxic cells in

the algorithm.

Control theory. It is interesting to see that in all the immune response, the adaptive
process is the best instrument to stop any disease, although this tool is not always effective.
In this way we could use the control theory to look for the best or more efficient cellular
and humoral immune response against a viral infection. Besides in the model of antibody
dependent enhancement, we can insert a control to prevent that the non neutralizing
antibodies for the E and prM antigens bind the virus and maybe stop or avoid this

phenomenon.

Stochastic model. In the implementation of adaptive immune response is evident the
participation of Th helper cells in the balance a humoral and cellular immune responses.
If we consider the chemical signals for differentiation of Th helper cells into Th1 and Th2

as a probabilistic process, maybe we could get a more realistic adaptive immune response.
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Glossary

adaptive immune response : Part of the immune system that uses antigen receptors
and adapts or "learns' to recognize specific antigens, and retains a memory of
those antigens to speed up future responses.

affinity : A measure of the degree of interaction between two molecules, such as an antigen
and antibody or a hormone and its receptor.

antibody : Protein produced by the immune system in response to the presence in the body
of antigens: foreign proteins or polysaccharides such as bacteria, bacterial toxins,
viruses, or other cells or proteins. Such antigens are capable of inflicting damage
by chemically combining with natural substances in the body and disrupting the
body’s processes. The body contains hundreds of thousands of different white
blood cells called B lymphocytes, each capable of producing one type of antibody
and each bearing sites on its membrane that will bind with a specific antigen.
When such a binding occurs, it triggers the B lymphocyte to reproduce itself,
forming a clone that manufactures vast amounts of its antibody.

antigen : Any substance that causes the production of antibodies; now, more gener-
ally, anything that is recognized by antibodies or by the antigen receptors of
lymphocytes.

antigen-antibody complex : A complex of antibody with its specific antigen, which
forms when antigen and antibody come together. It is in this form that foreign
antigens are most effectively scavenged by phagocytic cells and thus removed from
the body.

antigen-presenting cells : Cells that process protein antigens into peptides and present
them on their surface in a form that can be recognized by lymphocytes.

apoptosis : Death of cells triggered by extracellular signals or genetically programmed

events. Also known as programmed cell death.

cytokine : Signal molecules secreted by various cell types, which regulate the intensity
and duration of immune response and mediate cell-to-cell communication.

cytotoxic cells : T cells that are activated to kill target cells.

Fc receptor-bearing cells : An Fc receptor is a protein found on the surface of certain
cells, that contribute to the protective functions of the immune system. A Fc

receptor-bearing cells are cells with this protein.

immunological memory : The capacity of the immune system to respond more rapidly

and vigorously to a pathogen that has been encountered previously.
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innate immune system : That part of the immune system that that is relatively

nonspecific and immediate: it does not change or adapt to specific pathogens.

lymph node : Small organs, distributed throughout the body, in which an adaptive
immune response can develop.
lysis : The dissolution or destruction of cells, including microorganisms; disruption of

tissue structure under the influence of enzymes and other lytic agents.

macrophages : White blood cells (activated monocytes) that protect the body against
infection and foreign substances by breaking them down into antigenic peptides

recognized by circulating T cells.

opsonization : The process by which bacteria and other cells are altered in such a manner

that they are more readily and more efficiently engulfed by phagocytes .

phagocytosis : The process of ingestion and digestion by cells of solid substances, for

example, other cells, bacteria, bits of necrotic tissue, foreign particles .
serotype : Microorganisms differing in the type of surface antigens.

T helper cell : A type of lymphocyte that matures in the thymus and "helps" other
lymphocytes by providing a second signal for costimulation.

Th1 cells : T helper cells that secrete a characteristic set of cytokines (such as interleukin-2
and interferon gamma) and tend to encourage a cellular response.

Th2 cells : T helper cells that secrete a characteristic set of cytokines (such as interleukin-4

and interleukin-10) and tend to encourage a humoral response.

viremia : The presence of a virus in the bloodstream.
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