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Resumo

Neste trabalho, estudamos um volume Ąnito de controle no espaço-tempo local, em um
marco Lagrangiano-Euleriano com o objetivo de construir um esquema localmente conservativo
que modele o delicado balanço não-linear entre as aproximações numéricas do Ćuxo hiperbólico
e o termo fonte, em problemas de lei de balanço ligados ao caráter puramente hiperbólico da lei
de conservação. Efetuamos a análise de estabilidade e de convergência do método para o caso
linear da lei de conservação hiperbólica e de problemas de lei de balanço em espaços discretos
convenientes. De fato, baseados nesta condição de estabilidade, nós substituímos a equação
da lei de conservação escalar dada por uma aproximação de diferenças Ąnitas que dependente
dos parâmetros da malha, no espaço e no tempo, a Ąm construir uma sequência convergente
para a única solução entrópica da lei de conservação escalar, pelo menos, para o caso em que
a função de Ćuxo é do tipo convexo. Para o melhor de nosso conhecimento, este trabalho é o
primeiro a estabelecer uma prova rigorosa para convergência para da única solução entrópica
construída por tubos integrais em um procedimento Lagrangiano-Euleriano, para leis de conser-
vação hiperbólicas em uma dimensão espacial com Ćuxo convexo. Ressaltamos a importância e
a utilidade de identiĄcar equações modiĄcadas, no escopo das diferencias Ąnitas, associada ao
método Lagrangiano-Euleriano o qual usamos para dar uma explicação sobre a possibilidade
de instabilidade na construção dos tubos integrais longos; tal construção tem sido chamado a
atenção de muitos autores na literatura disponível. O esquema construido é livre de Riemann
solvers, mas se soluções locais de Riemann estão disponíveis para um determinado problema,
estes podem ser incorporados naturalmente no esquema. Um grande conjunto não-trivial, dis-
tinto e bem conhecido de experimentos numéricos tanto para problemas unidimensionais, como
para problemas bidimensionais não-lineares estão disponíveis na literatura especializada, que
inclui leis de conservação escalares hiperbólicas e sistemas escalares de leis de conservação hiper-
bólicas e de leis de balanço, são discutidos para ilustrar o desempenho do novo método, onde
incluímos experimentos numéricos com Ćuxos convexo, não-convexo e funções de Ćuxo descon-
tínuos. Os resultados numéricos são comparados com soluções exatas sempre que possível ou
soluções aproximadas com malha Ąna em outros casos.

Palavras-chave: Enfoque Lagrangiano-Euleriano, Volume Finito, Leis de balanço, Leis de
conservação hiperbólicas, Mecânica dos Ćuidos, Problemas de Ćuxo em meios porosos.



Abstract

In this work, we study a local space-time Ąnite control volume in a Lagrangian-Eulerian
framework in order to design a locally conservative scheme to account the delicate nonlinear
balance between the numerical approximations of the hyperbolic Ćux and the source term for
balance law problems linked to the purely hyperbolic character of conservation laws. We have
performed stability and convergence analysis of the method for linear differential hyperbolic and
balance law problems in convenient discrete spaces. Indeed, based on this stability condition,
we replace the given scalar conservation law equation by a Ąnite difference approximation
depending on mesh parameters in space and in time in order construct a sequence that is
convergent to the unique entropy solution to the scalar conservation law, at least for the case
where Ćux function is of convex type. To the best of our knowledge, this work is the Ąrst to
establish a rigorous convergence proof for the uniqueness of the entropy solution constructed
integral tubes by a Lagrangian-Eulerian procedure for hyperbolic conservation laws in one-
space dimension with convex Ćux. We also add some meaningful comments on the usefulness
of identifying modiĄed equations, which models the behavior of the analogue difference scheme
associated to the Lagrangian-Eulerian method and use it to give a possible explanation on
the possibility of instability in construction of long integral tubes; such construction has been
called the attention of many authors in the available literature. The designed scheme is also
free of Riemann solvers, but if local Riemann solutions are available for a particular problem
it is natural to incorporate such feature into the scheme. Furthermore, by combining ideas
of the new approach, we give a formal construction of a new algorithm for solving several
nonlinear hyperbolic conservation laws in two space dimensions. A set of nontrivial and distinct
well-known one-dimensional as well as two-dimensional numerical experiments for nonlinear
problems available in the specialized literature - scalar and system - of hyperbolic conservation
law and balance law types are discussed to illustrate the performance of the new method,
including numerical experiments with convex, non-convex and discontinuous Ćux functions.
The numerical results are compared with accurate approximate solutions or exact solutions
whenever possible.

Keywords: Lagrangian-Eulerian approach, Finite volume, Balance laws, Hyperbolic con-
servation laws, Ćuid mechanics, porous media Ćow problems
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Chapter 1

Introduction

In this work we explore a locally conservative and divergence space-time Ąnite control volume
in a Lagrangian-Eulerian framework (see [50, 52, 57, 121, 137]), Ąrst developed in the context
of purely hyperbolic conservation laws, in order to design a locally conservative scheme to
account the balance between numerical approximations of the hyperbolic Ćux function and the
source term linked to steady solutions. Our new Lagrangian-Eulerian scheme is aimed to be not
dependent on a particular structure of the source term. The designed scheme is Riemann solver-
free for the resolution of (local) Riemann problems, but, if Riemann solutions are available for
a particular problem it is somewhat natural to incorporate such information into the procedure
and thus yielding Ćexibility to the development of distinct numerical strategies upon the speciĄc
model under consideration. Indeed, the Ćexibility of our Lagrangian-Eulerian scheme allows
its extension for constructing balance laws systems solution approximations, hyperbolic laws
systems solution approximations and multidimensional hyperbolic conservation laws solution
approximations.

A set of representative numerical experiments for nonlinear balance law (scalar and sys-
tems in one-space dimensions, hyperbolic conservation laws, scalar and systems in one-space
dimensions and scalar problems in two-space dimensions) are presented in order to illustrate
the methodŠs performance. The numerical results are compared with accurate approximate
solutions or exact solutions whenever possible.

1.1 Motivation and significance of the research work

We are interested in numerically solving balance law problems linked to the homogeneous
purely hyperbolic conservation law counterpart. In this work, we aim to present a Lagrangian-
Eulerian scheme in a cell-centered framework devoted to this task. This scheme consists on one
more tentative to deal with the difficult issue of the well-balancing between the computation
of the numerical Ćux function and the source term by means of a natural unbiased upwind
approach, which in turn is Riemann-solver-free and it seems to be able to handle nonlinear
scalar and system problems.

A variety of efficient numerical schemes for hyperbolic systems of conservation laws has been
developed in the recent past for different problem settings. These schemes evolved following
the natural understanding of fundamental concepts from the theory of nonlinear hyperbolic
conservation laws concerning the characteristic surfaces properties, existence, uniqueness, and
solution of the Riemann problem; see, e.g, Dafermos [43], LeFloch [107], Bressan [27] and
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Liu [38, 117, 118] and many others [40, 60, 65, 67, 82, 83, 102, 103, 109, 127, 128, 139]. In
addition, for a scalar balance law, the solution strongly depend on certain properties of the
source term (see [27, 38, 43, 67, 107, 117, 118]). For example, when the source term is a non-
increasing function, the total variation of the exact solution of the scalar balance law is also a
non-increasing function, as in the homogeneous case (see, e.g., [67, 43]). In general, however,
the source term might not be decreasing (see [36, 45, 115, 130]) and some semi-implicit and fully
implicit scheme are not applicable, at least in a straightforward manner [36, 45]. Additionally,
it is possible to design well-balanced schemes which are also asymptotically consistent for a
particular system of parabolic equations (e.g., diffusive-dispersive character) [67, 68], but the
resulting scheme is stable under a very restrictive parabolic-like CFL condition Δ𝑡 < 𝒞(Δ𝑥)2.
For instance, the width of the shock layer, in light of a parabolic equation in the spirit of
convection-diffusion transport problems of the form, 𝑢 = 𝑢(𝑥, 𝑡), 𝑢𝑡 + 𝑓𝑥(𝑢) = (𝜖 𝑢𝑥)𝑥, 𝜖 > 0, is
𝑂(𝜖) (see [90, 92]). Using a splitting fractional time step Δ𝑡 for such equations the width of the
numerical shock layer will be 𝑂(

√
Δ𝑡 𝜖) because the nonlinear self-sharpening mechanisms of

the fractional Ćow function 𝑓(𝑢) is thrown away by the unphysical entropy loss due to OleinikŠs
convexiĄcation [127, 128] introduced in the convective step by the hyperbolic scheme for 𝑢𝑡 +
𝑓𝑥(𝑢) = 0. Thus, in order to not overestimate the shock layer (the nonlinear balance between
purely hyperbolic/parabolic terms), the splitting step should not be (signiĄcantly) larger than
𝜖 [90, 92]. Indeed, in constructing Riemann solutions (approximate Riemann solvers), Liu
[116] introduced a shock wave admissibility criterion that encompasses both the Lax criterion
(see [43, 105]) and the Oleinik criterion [127, 128]. It is well known that the Liu criterion is
not general. If one wants to construct approximate solutions of a conservation/balance laws,
then, such solutions must respect the continuous counterparts as well as its properties. For
instance, the only fully satisfactory admissibility criterion for the shock waves occurring in
convection-diffusion immiscible three-phase Ćow transport problems is the viscous (parabolic)
proĄle criterion introduced by GelŠfand [60]; see also Courant and Friedrichs [40]. Furthermore,
the solution of Riemann problems is greatly facilitated by using so-called Riemann invariants
[43, 139]. However, such invariants are guaranteed to exist only for strictly hyperbolic systems
of no more than two equations (see e.g., [43, 139]). Indeed, the presence of an umbilical point
or an elliptic region almost always prohibits the existence of Riemann invariants. This fact is
at the root of the complexity of construction of exact and approximate solutions when strict
hyperbolicity fails (see, e.g., [1, 2, 15, 24, 25, 31, 82, 83, 84, 102, 103, 113] and references
therein). From the view point of the design of constructive algorithms, there seems to be
some evidence of why some numerical formulations are not well suited in order to capture the
correct qualitative approximate solutions. For instance, in [98] the authors showed that a semi-
discrete central scheme may fail to converge to the unique entropy solution of a non-convex
conservation law. On the other hand, the use of the Ąnite element method for the numerical
solution of hyperbolic, or Şnearly hyperbolicŤ problems and other strongly non-self-adjoint PDE
problems is, generally speaking, not satisfactory. These problems do not arise naturally in a
variational setting, namely, they do not arise naturally from minimization of an energy norm
in 𝐿2-spaces. It is worth mentioning that Ąnite element methods for hyperbolic problems such
as the discontinuous Galerkin Ąnite element method are based on semi-discrete approximations
along with assumptions of (local) variable separation in order to write the appropriate basis
functions in the space variable. Moreover, solutions for nonlinear hyperbolic conservation laws
admits discontinuities (shocks) in 𝐿1 [28, 73, 85]; see also [91, 93]. Tveito and Winther [151]
provide numerical examples where methods based on 2 × 2 Riemann solvers may fail since
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the entropy non-classical solution of non-strictly hyperbolic conservation laws is quite difficult
to compute (see also [1, 2]). Splitting strategies to the case of balance law problems of the
form 𝑢 = 𝑢(𝑥, 𝑡), 𝑢𝑡 + 𝑓𝑥(𝑢) = 𝜖⊗1𝑔(𝑢), 𝜖 > 0, typically rely on composition of exact and
approximate solutions to the purely hyperbolic part (Riemann solutions) 𝑢𝑡 + 𝑓𝑥(𝑢) = 0 and
steady (well-balanced) solutions to 𝑢𝑡 = 𝜖⊗1𝑔(𝑢), see, e.g., [32, 58, 65, 67, 68, 106, 115, 131, 148].

We notice that Karlsen and Towers [94] gave a convergence proof for the Lax-Friedrichs
Ąnite difference scheme for non-convex genuinely nonlinear scalar conservation laws of the form
𝑢𝑡 + 𝑓(𝑢, 𝑘(𝑥, 𝑡))𝑥 = 0, 𝑢 = 𝑢(𝑥, 𝑡), where the coefficient 𝑘(𝑥, 𝑡) is allowed to be discontinuous
along curves in the (𝑥, 𝑡)⊗ plane. These authors also proved stability, and uniqueness, for
an extended Kruzhkov entropy solution, provided that the Ćux function satisĄes a so-called
crossing condition, and that strong traces of the solution exist along the curves where 𝑘(𝑥, 𝑡)
is discontinuous. In this direction, they were able to show that a convergent subsequence of
approximations produced by the Lax-Friedrichs scheme to the above equation converges to
such an entropy solution [94]. On the other hand, the celebrated central scheme introduced by
Nessyahu and Tadmor [124] is also based on the classical Lax-Friedrichs scheme in a staggered
grid. Nessyahu and Tadmor proved that the resulting scalar scheme, under a CFL requirement,
satisĄes both the Total Variation Diminishing property and a local cell entropy inequality,
in order to get convergence to the unique entropy solution, at least in the genuinely nonlinear
scalar case. Indeed, in [93] was proposed a Kruzhkov-type entropy condition for scalar nonlinear
degenerate parabolic equations with discontinuous coefficients 𝑢𝑡 + 𝑓(Ò(𝑥), 𝑢)𝑥 = 𝐴(𝑢)𝑥𝑥. They
establish 𝐿1 stability, and thus uniqueness, for weak solutions satisfying the entropy condition,
provided that the Ćux function satisĄes a so-called Şcrossing conditionŤ and the solution satisĄes
a technical condition regarding the existence of traces at the jump points in the coefficients.
Furthermore, [91] analyzed a class of semi-discrete monotone difference schemes for scalar
degenerate convection-diffusion equations in one spatial dimension of the form 𝑢𝑡 + 𝑓(𝑢)𝑥 =
[𝐴(𝑢)]𝑥𝑥. These nonlinear equations are well-posed within a class of (discontinuous) entropy
solutions. Moreover, it was proved [91] that the 𝐿1 error between the approximate solutions
and the unique entropy solution is 𝒪(Δ𝑥1/3), where Δ𝑥 denotes the spatial discretization
parameter; see also [26, 89, 101] for more details. These works are related to the priori (𝐿1,
𝐿∞, 𝐵𝑉 ) estimates discussed in [78, 153]. Therefore, supported on these previous arguments,
we developed our scheme based on a Eulerian central scheme Ąnite volume formulation, but in
a space-time Lagrangian-Eulerian framework.

Additionally, in a splitting approach for balanced laws the most standard way is to treat
the associated purely hyperbolic conservation law with a locally conservative Ąnite volume
scheme, and then the related system of ODE associated to the purely source term with a
robust solver as such as Runge-Kutta or predictor-corrector procedures. These algorithms
employed a splitting technique by means of Ąrst integrating the purely hyperbolic terms of
balance conservation law [27, 38, 43, 102, 103, 107, 117, 118] (see also [32, 58, 67]) and then
integrating the appropriate ODE for the source term in an intermediate step (see [45, 111]).
Of course, the overall accuracy of the full approach rely on the mathematical properties for
each one of these sub-steps. Indeed, Ąrst-order splittings and Strang splittings lead to global
schemes that are neither well-balanced nor asymptotically consistent because the local balance
linked between the numerical hyperbolic Ćux and the numerical source only occurs through
the initial condition of each sub-step [30, 45, 67, 87, 160]. It is worth mentioning that the
high-order splitting scheme proposed in [131] is asymptotically consistent with the stiff limit
and can also reach high order of accuracy in the stiff limit, but it is not uniformly accurate
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in the whole possible range of the stiffness parameter. On the other hand, recently developed
Runge-Kutta schemes overcome these difficulties, providing basically the same advantages of
the splitting schemes, without some of the drawback of the order restriction (see [32, 45, 58, 67]).
The development of efficient numerical schemes for such systems is challenging, since in many
applications the relaxation time varies from values of order one to very small values if compared
to the time scale determined by the characteristic speeds of the system. In this second case
the hyperbolic system with relaxation is said to be stiff and typically its solutions are well
approximated by solutions of a suitable reduced set of conservation laws called equilibrium
system (see [38, 102, 103, 117, 118]). Usually it is extremely difficult, if not impossible, to split
the problem in separate regimes and to use different solvers in the stiff and non stiff regions.
Thus one has to use the original relaxation system in the whole computational domain. The
construction of schemes that work for all ranges of the relaxation time, using coarse grids
that do not resolve the small relaxation time, has been studied mainly in the context of upwind
methods using a method of lines approach combined with suitable operator splitting techniques
[30] and more recently in the context of central schemes [130, 115].

Non-splitting methods (or unsplitting schemes), however, have some advantages and are
sometimes preferred. Nevertheless, when a time-dependent PDE involves terms that need a
different numerical treatment, it is natural to employ alternative discrete strategies for each
one of them. An example of this kind of situation is provided by PDEs of convection-diffusion
type. Another one is the case of balance law problems.

Many other approaches to solve balance laws by means of constructive numerical algorithms
have been proposed up to date, but with no general framework (see, e.g., [27, 38, 43, 65, 67,
102, 103, 106, 107, 117, 118, 148]) since it is a very hard problem. For some other approach, we
have, based on generalized Riemann problems [65, 106, 148], semidiscrete methods discontinuous
Galerkin [119] and semidiscrete central-upwind schemes [97]. However, these methods are not
robust enough in general to deal with stiff source terms. Indeed, it has been shown [97, 98] (see
also [94]) that using semi-discrete central-upwind schemes may fail to converge to the unique
entropy solution of non-convex purely hyperbolic conservation laws, and thus may fail to recover
the Kruzhkov solution (see, e.g., [38, 43, 65, 117, 118]) or the convergence may be so slow that
achieving a proper accuracy would require the use of impractically Ąne meshes [94, 97, 98].
Other semidiscrete-like recent results on the development of high order methods for balance
law problems can be found in [23, 45, 67, 111, 131, 160] such as IMEX Runge-Kutta schemes
and IMEX schemes up to order 3 that are strong-stability-preserving (see, e.g, [69, 131]).

On the other hand, in [19, 50, 52, 57, 80, 121, 137, 154] the authors present distinct
Lagrangian-Eulerian formulations to the case of linear [18, 17, 80] and nonlinear [17, 19, 49,
51, 56, 57, 154] transport Ćow problems; to the purely linear transport problem the space-time
integral curves coincide with characteristic equations [19, 80] (see also [27]). Such Lagrangian-
Eulerian approach provides a very accurate solution to purely advection problems, virtually free
of numerical diffusion. These schemes are derived from the divergence forms of the equations. It
is the use of the divergence form of a parabolic equation that allows relatively easy localization
of desired conservation principles in a form amenable to the application of Ąnite element or Ąnite
volume approaches in a locally conservative fashion. Essentially, this formulation evolves from
the efforts to develop fast, accurate, and stable versions of Modified Method of Characteristics
(see [19, 49, 51, 56, 57] and also [19, 80, 154] and references therein) to numerical methods for
transport-dominated diffusive systems, with the primary objective of incorporating changes in
these procedures to obtain the preservation of desired conservation principles. Here we want to
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follow such idea for balance laws cases. Instead of consider the balance laws in non-divergence
form (see, e.g., [34, 58, 107, 129]) and make use of the characteristics associated with the Ąrst-
order purely hyperbolic transport part of the system in a fractional step procedure that splits
the transport from the source part of the balance law system, the authors, in [57] (see also
[18, 17, 52, 53, 81, 121, 137]), identiĄed the region in space-time domains where the mass Ćux
for two-phase Ćow problems takes place, working with a nonlinear advection equation in integral
form. This point of view produces a new class of numerical methods that locally conserve the
mass, and are very competitive computationally. In contrast, the Lagrangian-Eulerian method
discussed here relates the divergence form (locally conservative) with the full balance equation.
It is the use of the divergence form that allows the localization of the transport so that the
desired conservation property can also be localized. This means that the conservative paths is
treated by a characteristic tracing algorithm from a Ąxed Eulerian space-time control volume
over each time step for evolution. In connection to [33, 44], the choice of the paths family
is important because it determines the speed of propagation of discontinuities. Although it
should be based on the physical aspects of the problem, it is natural from the mathematical
point of view, to require this family to satisfy some hypotheses concerning the relationship of
the paths with the integral curves of the characteristic Ąelds, but with no requirement of ex-
act or approximate solutions of (local) Riemann problems. Our approach is also distinct from
Lagrangian-Eulerian hydrodynamics methods [120] since we do not use any Riemann solutions
for the computation of the numerical Ćuxes at interfaces, but they both share similar ideas such
as cell-centered moving mesh control volumes (see, e.g., [120]).

1.2 Aims and objectives

This thesis focus in developing a numerical method, which is based in the work of Jim
Douglas Jr, Felipe Pereira et al. [52, 57, 121, 137]. Our aim is to construct a numerical method
to hyperbolic conservation laws in two dimensional variables. In the spirit of above works, we
get a way to reach our aim,

• We use the ideas of Douglas Jr, Felipe Pereira et al. in [52, 57, 121, 137] to construct a
numerical scheme in Ąnite difference form to solve linear conservation law and utilize the
Ąnite difference theory to prove consistence, stability and convergence of this scheme by
using the Lax theorem.

• We use the theory of Ąnite difference, and the fundamental concepts in [57, 121, 137], of
the locally conservative and divergence space-time Ąnite control volume, in a Lagrangian-
Eulerian framework, to extend the numerical scheme constructed in the item above to
linear balance laws.

• We deĄne, using the Ąnite difference theory, the CFL-condition and the stability interval
in the linear case which will be extended to our Lagrangian-Eulerian scheme to solve
nonlinear conservation law and will allow the use of the Harten theory in [76, 75], the
Smoller theory in [138, 139] and the Majda and Crandall theory in [42] to prove the con-
vergence to entropic solution of the nonlinear hyperbolic law of the approximate solutions
of our Lagrangian-Eulerian scheme, at least when Ćux is convex. In chapter 16 of the
Smoller book [138, 139] it was proved the convergence to the entropic solution for the
Lax-Friedrichs Ąnite difference scheme. The Ąrst version of this convergence proof appear
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in 1983 (see [138]), for the Ąnite difference scheme of Lax-Friedrichs. We use this same
approach to prove that our Lagrangian-Eulerian scheme converges to the entropic solu-
tion. There are other mathematically different approaches to the existence problem for
a scalar conservation law, along with its pertinent stringent requirements [138, 139]. We
have decided to give a proof via the Ąnite differences approach for several reasons. For
instance, the other methods require several more restrictive hypothesis and a more theo-
retical treatment than we would like to treat, namely, Ąnite difference, or Ąnite volume,
methods are more capable of being generalized to the case of systems of conservation
laws. Indeed, the convergence proof proposed by Smoller [138] will be used here to give
a comprehensive presentation of the key issues embedded in the seminal works of Harten
[75, 76] as well as the theory Majda and Crandall [42] to prove the convergence to entropic
solution of the nonlinear hyperbolic problems.

• We extend the numerical scheme to solve hyperbolic linear conservation laws and the
Ąnite control volume of [57, 121, 137], which in turn now describes a balance law into a
nonlinear balance law, in the same way we work in the linear case. In principle the source
term can be treated as in the linear case, but the integral over the control volume will be
approximated with some basic quadrature rules as such: midpoint rule, trapezoidal rule
and predictor-corrector.

• We extend the Lagrangian-Eulerian scheme for each equation of the scalar balance law
system and scalar hyperbolic law system, we use one Ąnite control volume to each equa-
tion, which represent the conservation law or the balance law in the corresponding case.
In this approach, we use our Lagrangian-Eulerian scheme, for balance law (or conserva-
tion law) in each equation and then we solve each equation explicitly with Δ𝑡 time step.
At this point it is very important to highlight that we are not using a splitting technique,
our scheme is a explicit method and it refreshes every variable in each time step Δ𝑡.

• Finally, we consider the hyperbolic conservation law

𝜕𝑢

𝜕𝑡
+
𝜕𝑓(𝑢)

𝜕𝑥
+
𝜕𝑔(𝑢)

𝜕𝑦
= 0,

which we write in the convenient form of balance law system,
∏︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⨄︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋃︁

𝜕𝑢

𝜕𝑡
+
𝜕𝑓(𝑢)

𝜕𝑥
= ⊗𝜕𝑔(𝑢)

𝜕𝑦
,

𝜕𝑢

𝜕𝑡
+
𝜕𝑔(𝑢)

𝜕𝑦
= ⊗𝜕𝑓(𝑢)

𝜕𝑥
.

Here, we consider one Ąnite control volume for each equation with Δ𝑡/2, where Δ𝑡 is
deĄned by the CFL-condition. Then we solve each balance law sequentially in each
dimensional direction, 𝑥 and 𝑦 or 𝑦 and 𝑥, using the Lagrangian-Eulerian scheme to solve
hyperbolic balance law.

1.3 Preliminary results and ongoing work

Although some mathematical formalism in the construction of Lagrangian-Eulerian methods
for hyperbolic problems can be found in [18, 17, 19, 49, 51, 52, 56, 57, 80, 154], no results in
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the sense of Lax equivalence theorem in ℓ2⊗spaces consistency, stability and convergence for
linear problems was discussed in these works. Such a discussion is presented here for the linear
hyperbolic case, which is further extended to the case of linear balance laws. Furthermore, as
opposed in [20, 21, 22, 80], our Lagrangian-Eulerian framework are explicit schemes designed
on a Ąxed Eulerian grid (staggered mesh grid to use a conservative cell-centered discretization)
along with a (CFL) time step stability restriction (it is possible to derive semi-implicit schemes
naturally from the proposed formulation but this will not be discussed here). Indeed, we do
not make use of any high-order reconstruction in the time and the space discretization or
splitting of the differential equation (see [20, 21, 22, 32, 58, 80]). This class of method follows
the ELLAM-formalism ŞEulerian-Lagrangian Localized Adjoint MethodŤ (see e.g., [35, 134])
as the original ModiĄed Method of Characteristics (MMOC) does [50], to discretize the time
along the characteristic curves associated to the hyperbolic term of the advection diffusion
equation. It is worth mentioning that ELLAM schemes are locally (and global) mass balance
conservative, although extension to nonlinear equations is not easily straightforward. For a
comprehensive review of this approach see papers [20, 21, 22, 35, 80, 134]. As indicated, it was
Ąrst done a formal approach for the numerical analysis of the new method in the linear case
via an interpretation (or somewhat reinterpretation) of the scheme discussed for a parabolic
modiĄed equation [52] of the new method in a Ąnite difference approximation spaces via Fourier
ℓ𝑝⊗space (see [62, 109, 142]), although it is possible to show that the resulting method satisĄes
a conservative version where the numerical Ćux function is consistent with the Ćux function of
the hyperbolic equation and it also satisĄes a Lipschitz continuity condition. Furthermore, it
was possible to obtain a modiĄed equation associated to the method which is useful to perform
an analysis of the dissipation - dispersion relation of the announced method. Indeed, a simple
geometric interpretation of the method was also made to understand the effect of numerical
dissipation at each time step.

Some preliminary results were shown in the following scientiĄc events:

• Lagrangian Approximation Schemes for Balance Laws (Apresentação de Trabalho). In:
VII Encontro Nacional de Matemática e Aplicações (VII ENAMA), 2013, Rio de Janeiro.
see [9, 12].

• Design of a well balanced Lagrangian approximation scheme for balance laws (Apresen-
tação de Trabalho). In: 29º Colóquio Brasileiro de Matemática IMPA, Rio de Janeiro,
21 de julho a 02 de agosto de 2013. see [8, 12].

• A Lagrangian-Eulerian algorithm scheme for Hyperbolic Conservation Laws and Balance
Laws (Apresentação de Trabalho). In: HYP2014- XV International Conference on Hy-
perbolic Problems, 2014, Rio de Janeiro, see [11, 6, 12].

• A new locally Conservative Lagrangian Eulerian method for hyperbolic and Balance laws
(Apresentação de Trabalho). In: VIII Pan-American Workshop Applied and Computa-
tional Mathematics, 2014, Barranquilla-Colombia, see [13, 12].

• Design, analysis, and implementation of a Lagrangian-Eulerian approximation scheme for
hyperbolic conservation laws and balance laws (Apresentação de Trabalho), International
Congress of Mathematicians, August 13 - 21, 2014 Coex , Seoul , Korea. 2014, see [7, 12].

• A Lagrangian-Eulerian algorithm for solving hyperbolic problems and balance laws /
Um método Lagrangiano-Euleriano para aproximação de leis de balanço e de leis de
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conservação hiperbólica (Apresentação de Trabalho/Congresso); I Brazilian Congress of
Young Researchers in Pure and Applied Mathematics (10-12, December 2014); IME/USP.
2014, see [10, 12].

• A Lagrangian-Eulerian algorithm for solving hyperbolic conservation laws with applica-
tions, 6th International Conference on Approximation Methods and Numerical Modelling
in Environment and Natural Resources. Pau, France 2015. Editorial Universidad de
Granada (2015) 600-617 [5, 12]

1.4 Organization of the thesis

We introduced and discussed a motivation, along with the signiĄcance of the current research
work. The rest of the thesis is organized as follows. In chapter 2 we will discuss the Lagrangian-
Eulerian scheme for hyperbolic conservation laws. In particular, we will present some properties
of the Lagrangian-Eulerian scheme for linear hyperbolic conservation laws, namely, consistency,
stability and convergence by means of the Lax equivalence theorem. Moreover, we will also
derive the associated modiĄed equation for the Lagrangian-Eulerian scheme and describe the
dispersive-dissipative relation to explain the one-dimensional numerical experiments results.
We will be able to write the Lagrangian-Eulerian scheme in conservative form for nonlinear
hyperbolic conservation laws, this is explained in chapter 3 and in chapter 4. In chapter 3 we
will include the Lagrangian-Eulerian scheme written in Ąnite difference form, the proof of con-
vergence for entropic solution in sense of Smoller and the proof in the sense of Harten, Crandall
and Majda, while in chapter 4 we will include the Lagrangian-eulerian scheme that arises of the
direct construction proposal in [57, 121, 137]. The numerical Ćuxes in both methods are con-
sistent with the hyperbolic equation and satisfy a Lipschitz continuity condition. Furthermore,
numerical experiments for hyperbolic conservation laws with convex and non-convex Ćux func-
tions will be performed in order to illustrate the qualities of the new scheme. In chapter 5 we
will discuss the Lagrangian-Eulerian scheme for hyperbolic balance laws. In particular, we will
also discuss stability and convergence properties for the Lagrangian-Eulerian scheme for linear
balance laws. Moreover in chapter 6, we will perform and discuss some numerical experiments
for nonlinear scalar balance laws and nonlinear systems of balance laws. Finally, in chapter 7
we will discuss the extension of the Lagrangian-Eulerian scheme for systems of balance laws
in one-space dimension for hyperbolic conservation laws in two-space dimensions, along with
numerical experiments. As an attempt to make our Eulerian-Lagrangian scheme attractive for
the user we decided to implement the full algorithm in the Matlab language programming.

Also, it is easy to understand for engineers and users from industry with maybe less training
in programming. Of course, we naturally expect the Eulerian-Lagrangian code to be consider-
able slower when programmed in Matlab than the analogue codes in C , C++ or Fortran.

Thus, the purpose of this work is to provide another approach to tackle the above mentioned
class of differential equations. In addition, we do not use any special nonlinear reconstruction
( [20, 21, 22, 32, 39, 58, 69, 80, 98, 124]) since our main objective is to show a Lagrangian-
Eulerian based on previous works [19, 27, 57, 80, 154] in a simple setting description. This will
be further addressed in the future. Indeed, several examples for scalar conservation laws with
convex and non-convex Ćux functions are discussed to illustrate the viability of the method.
We also perform numerical experiments for representative systems of balance law available in
the literature.
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Chapter 2

The revisited Lagrangian-Eulerian
scheme for linear hyperbolic
conservation laws

In this section we will deĄne an equivalent Ąnite difference of an Lagrangian-Eulerian
approach based on locally conservative Ąnite volume method and to the hyperbolic linear
constant-coefficient case we will indeed prove its consistency, stability and convergence in the
sense of classical Lax stability (see e.g., [62, 109, 142]). This analysis is not discussed in
[18, 17, 19, 49, 51, 52, 56, 57, 80, 154], First, a locally space-time conservation relation based
on a form of the divergence theorem will be derived (see, e.g., [18, 43, 52, 57, 67]), in terms
where local Ćux balance takes place. The method is suitable for the purely convection by con-
sidering two-level or multilevel time steps for a constant-coefficient difference schemes. Latter
on it will be extended for the case of a balance law equation in the variable space. In addition,
we also address on the usefulness of identifying modiĄed equations which model the behavior of
the difference scheme in connection to the original equation taking into account the regularity
of the initial data. The balance law Ąnite difference analogue based on the locally conservative
Lagrangian-Eulerian will be discussed next.

2.1 Formal construction: statement of the Lagrangian-

Eulerian formulation and notations

Consider the initial value problem for single conservation laws as follows:

𝜕𝑢

𝜕𝑡
+
𝜕𝐻(𝑢)

𝜕𝑥
= 0, 𝑡 > 0, ⊗∞ < 𝑥 < ∞, (2.1.1)

𝑢(𝑥, 0) = Ö(𝑥), ⊗∞ < 𝑥 < ∞, (2.1.2)

where 𝐻(𝑢) is a smooth function of 𝑢, 𝑢 = 𝑢(𝑥, 𝑡). For the construction of the Lagrangian-
Eulerian procedure, we Ąrst consider the equation (2.1.1) written in locally conservative space-
time generalized divergence form, along with 𝑢(𝑥, 0) = Ö(𝑥),

∇𝑡,𝑥

[︃
𝑢

𝐻(𝑢)

⟨
= 0, 𝑡 > 0, ⊗∞ < 𝑥 < ∞. (2.1.3)
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In order to set the Ąnite dimensional function spaces relying on solving the approximate problem
by the Lagrangian-Eulerian method for (2.1.1)-(2.1.2), we now introduce some notation. The
plane region R × R = ¶(𝑥, 𝑡); ⊗∞ < 𝑥 < ∞; 𝑡 ⊙ 0♢ will be replaced by the lattice N × Z =
¶(𝑗, 𝑛); 𝑗 = 0,∘1,∘2, . . . ; 𝑛 = 0, 1, 2, ≤ ≤ ≤♢, and instead of functions 𝑢(≤, 𝑡) ∈ 𝐿𝑝(R) for 𝑡 ⊙ 0,
we will consider the sequences 𝑈𝑛 = (𝑈𝑛)𝑗, 𝑗 ∈ Z for 𝑛 = 0, 1, 2, ≤ ≤ ≤, for a given mesh ℎ > 0
and a time level

𝑡𝑛 =
𝑛∑︁

𝑖=0

Δ𝑡𝑖, (2.1.4)

with 𝑡0 = 0, for non-constant time step Δ𝑡𝑖. In the time level 𝑡𝑛, we have 𝑥𝑛
𝑗 = 𝑗ℎ, 𝑥𝑛

𝑗+ 1

2

= 𝑗ℎ+ ℎ
2

on the uniform local grid or original grid, here ℎ𝑛
𝑗 = Δ𝑥𝑛 = 𝑥𝑛

𝑗+ 1

2

⊗𝑥𝑛
𝑗⊗ 1

2

= ℎ, 𝑗 ∈ Z, where 𝑥𝑛
𝑗∘ 1

2

are endpoint of the cell. For the non-uniform grid we have ℎ𝑛+1
𝑗 = Δ𝑥

𝑛+1
= 𝑥𝑛+1

𝑗+ 1

2

⊗ 𝑥𝑛+1
𝑗⊗ 1

2

, in

the time level 𝑡𝑛+1. Here 𝑥𝑛
𝑗 and 𝑥𝑛+1

𝑗 are the centers of the cells [𝑥𝑛
𝑗⊗ 1

2

, 𝑥𝑛
𝑗+ 1

2

] and [𝑥𝑛+1
𝑗⊗ 1

2

, 𝑥𝑛+1
𝑗+ 1

2

]

respectively, and the numerical approximation of the solution 𝑢 in these cells are deĄned by,

𝑈(𝑥𝑗, 𝑡
𝑛) = 𝑈𝑛

𝑗 = 1
ℎ

∫︁ 𝑥𝑛

𝑗+ 1
2

𝑥𝑛

𝑗−
1
2

𝑢(𝑥, 𝑡𝑛)𝑑𝑥, and 𝑈
𝑛+1
𝑗 = 1

ℎ𝑛+1

𝑗

∫︁ 𝑥𝑛+1

𝑗+ 1
2

𝑥𝑛+1

𝑗−
1
2

𝑢(𝑥, 𝑡𝑛+1)𝑑𝑥 𝑗 ∈ Z,

(2.1.5)
respectively, and the initial condition is 𝑈(𝑥0

𝑗 , 𝑡
0) = 𝑈0

𝑗 in the cells [𝑥0
𝑗⊗ 1

2

, 𝑥0
𝑗+ 1

2

], 𝑗 ∈ Z. Notice,

in the equations (2.1.5), the quantity 𝑢(𝑥, 𝑡) is a solution of (2.1.1). The discrete counterpart
of the space 𝐿𝑝(R) is 𝑙𝑝ℎ, the space of sequences 𝑈 = (𝑈𝑗), with 𝑗 ∈ Z, such that ‖𝑈‖𝑙𝑝

ℎ
=

(︁
ℎ
∑︀

𝑗∈Z♣𝑈𝑗♣𝑝
)︁ 1

𝑝 , 1 ⊘ 𝑝 < ∞ or ‖𝑈‖𝑙∞
ℎ

= sup𝑗∈Z
♣𝑈𝑗♣ where 𝑈 is deĄned in the appropriate

𝑙𝑝 ⊗ 𝑠𝑝𝑎𝑐𝑒 (see, e.g., [142]).

2.1.1 The local Lagrangian-Eulerian conservation relation

Following similar ideas in [17, 52, 57], we consider cell-centered Ąnite-volume in a Lagrangian
framework (see left picture in Figure 2.1) and it reads:

𝐷𝑛
𝑗 = ¶(𝑡, 𝑥) / 𝑡𝑛 ⊘ 𝑡 ⊘ 𝑡𝑛+1, à𝑛

𝑗 (𝑡) ⊘ 𝑥 ⊘ à𝑛
𝑗+1(𝑡)♢, (2.1.6)

where à𝑛
𝑗 (𝑡) is a parameterized curve such that à𝑛

𝑗 (𝑡𝑛) = 𝑥𝑛
𝑗 ; i.e., deĄne the space-time local

control volume 𝐷𝑛
𝑗 (see left picture in Figure 2.1) to be the set contained between [𝑥𝑛

𝑗 , 𝑥
𝑛
𝑗+1]

and [𝑥𝑛+1
𝑗⊗ 1

2

, 𝑥𝑛+1
𝑗+ 1

2

] , and two integral curves given by à𝑛
𝑗 (𝑡) and à𝑛

𝑗+1(𝑡), 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1]. From the

basic calculus we know the divergence theorem states that the outward Ćux of a vector Ąeld
through a closed surface is equal to the volume integral of the divergence over the region inside
the surface. Thus, from the conservation law (2.1.3) we get:

∫︁∫︁

𝐷𝑛
𝑗

∇𝑡,𝑥

[︃
𝑢

𝐻(𝑢)

⟨
𝑑𝑉 = 0 ⇔

⌊︁

𝜕𝐷𝑛
𝑗

[︃
𝑢

𝐻(𝑢)

⟨
≤ n⃗𝑑𝑠 = 0. (2.1.7)

Thus, by naturally enforcing a discrete local conservation over control volumes 𝐷𝑛
𝑗 , which in

turn ŞĄll-upŤ the space-time domain, the scheme then satisĄes global conservation in space-
time.

Equations (2.1.7) implies that the parameterized curves à𝑛
𝑗 (𝑡) and à𝑛

𝑗+1(𝑡) are naturally
impervious zero-Ćux boundaries. Indeed, in order to construct such Şimpervious zero-ĆuxŤ
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Figure 2.1: Geometric design of the local Lagrangian-Eulerian space-time control-volume 𝐷𝑛
𝑗

(left) and its Ąrst order approximation (right).

family of parameterized curves à𝑛
𝑗 (𝑡) governing the space-time 𝐷𝑛

𝑗 , consider Ò𝑛(Ý) = (𝑥(Ý), 𝑡(Ý))
with respect to the oriented left picture Figure 2.1. That is to say, we might formally write down
𝑑Ò𝑛(Ý)

𝑑Ý
= (𝑑𝑥(Ý)

𝑑Ý
, 𝑑𝑡(Ý)

𝑑Ý
). From this follows that for 𝑡𝑛 ⊘ 𝑡 ⊘ 𝑡𝑛+1 we get

𝑑Ò𝑛
𝑗

(Ý)

𝑑Ý
⊥ n⃗ and

𝑑Ò𝑛
𝑗+1

(Ý)

𝑑Ý
⊥ n⃗

since the slope (𝑑𝑥(Ý)
𝑑Ý

, 𝑑𝑡(Ý)
𝑑Ý

) agrees to the slope the vector [𝐻(𝑢), 𝑢)]⊤ over curves à𝑛
𝑗 (𝑡) and

à𝑛
𝑗+1(𝑡), for 𝑗 ∈ Z, which we have assuming the fact [𝐻(𝑢), 𝑢)]⊤ ≤ n⃗ = 0 from (2.1.7). Of course,

for any real number 𝜛 ̸= 0 we write 𝑑𝑥(Ý)
𝑑Ý

= 𝜛𝐻(𝑢) and 𝑑𝑡(Ý)
𝑑Ý

= 𝜛𝑢. For the sake of simplicity

of presentation we shall suppose 𝑢 ̸= 0 (this assumption can be suppressed by introducing
some extra notation in the analysis to deĄne the endpoints [𝑥𝑛+1

𝑗⊗ 1

2

, 𝑥𝑛+1
𝑗+ 1

2

] by analytical straight

lines). Now, consider the suitable change of variable à(𝑡) = 𝑥(Ý(𝑡)), along with the chain rule
𝑑à(𝑡)

𝑑𝑡
= 𝑑𝑥(Ý)

𝑑Ý
𝑑Ý
𝑑𝑡

, to deĄne the following system of ordinary differential equations:

𝑑à𝑛
𝑗 (𝑡)

𝑑𝑡
=
𝐻(𝑢)

𝑢
, à𝑛

𝑗 (𝑡𝑛) = 𝑥𝑛
𝑗 , 𝑡𝑛 ⊘ 𝑡 ⊘ 𝑡𝑛+1, (2.1.8)

From this fact, the region 𝐷𝑛
𝑗 will be called ŞIntegral tubeŤ (see, e.g., [52, 57]). As a natural

consequence of (2.1.7)-(2.1.8), the integrals over the curves à𝑛
𝑗 (𝑡) vanish and then the line

integral over the boundary of the region 𝜕𝐷𝑛
𝑗 in (2.1.7) leads to the (natural) local conservation,

∫︁ 𝑥𝑛+1

𝑗+ 1
2

𝑥𝑛+1

𝑗−
1
2

𝑢(𝑥, 𝑡𝑛+1)𝑑𝑥 =
∫︁ 𝑥𝑛

𝑗+1

𝑥𝑛
𝑗

𝑢(𝑥, 𝑡𝑛)𝑑𝑥, (2.1.9)

where we deĄne 𝑥𝑛+1
𝑗⊗ 1

2

= à𝑛
𝑗 (𝑡𝑛+1) and 𝑥𝑛+1

𝑗+ 1

2

= à𝑛
𝑗+1(𝑡

𝑛+1). Next, we use (2.1.5) with the conser-
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vation law (2.1.9) to get:

𝑈
𝑛+1
𝑗 =

1

ℎ𝑛+1
𝑗

∫︁ 𝑥𝑛+1

𝑗+ 1
2

𝑥𝑛+1

𝑗−
1
2

𝑢(𝑥, 𝑡𝑛+1) 𝑑𝑥

=
1

ℎ𝑛+1
𝑗

∫︁ 𝑥𝑛
𝑗+1

𝑥𝑛
𝑗

𝑢(𝑥, 𝑡𝑛)𝑑𝑥

=
ℎ

ℎ𝑛+1
𝑗

⋃︀
⨄︀1

ℎ

∫︁ 𝑥𝑛

𝑗+ 1
2

𝑥𝑛
𝑗

𝑢(𝑥, 𝑡𝑛)𝑑𝑥+
1

ℎ

∫︁ 𝑥𝑛
𝑗+1

𝑥𝑛

𝑗+ 1
2

𝑢(𝑥, 𝑡𝑛)𝑑𝑥

⋂︀
⋀︀

=
ℎ

ℎ𝑛+1
𝑗

[︂
1

2
𝑈𝑛

𝑗 +
1

2
𝑈𝑛

𝑗+1

]︂
.

(2.1.10)

The resulting local approximations 𝑈𝑛+1
𝑗 , 𝑗 ∈ Z, are deĄned over the original grid as

𝑈𝑛+1
𝑗 =

1

ℎ

[︁
𝑐0𝑗𝑈

𝑛+1
𝑗⊗1 + 𝑐1𝑗𝑈

𝑛+1
𝑗

]︁
. (2.1.11)

Here 𝑐0𝑗 = (ℎ
2

+ 𝑓𝑛
𝑗 𝑘

𝑛), 𝑐1𝑗 = ℎ ⊗ 𝑐0𝑗 = (ℎ
2

⊗ 𝑓𝑛
𝑗 𝑘

𝑛) and we use, in the ordinary differential

system 2.1.8, the approximation 𝑓𝑛
𝑗 =

𝐻(𝑈𝑛
𝑗

)

𝑈𝑛
𝑗

≡ 𝐻(𝑢)
𝑢

and notice that the approximated curve

à𝑛
𝑗 (𝑡) = 𝑥𝑛

𝑗 + 𝑓𝑛
𝑗 𝑘

𝑛 is a straight line for 𝑓𝑛
𝑗 along with 𝑘𝑛 = Δ𝑡𝑛 = 𝑡𝑛+1 ⊗ 𝑡𝑛 (see right picture

in Figure 2.1).
Notice that the nonlinear quantity 𝐻(𝑢)/𝑢 is related to the unknown solution 𝑢, and so

one cannot Ąnd the exact trace lines of the Ćuid particles. Although simple at Ąrst glance, is
not well understood how to deĄne a good, robust and efficient approximations to 𝐻(𝑢)/𝑢 by
means of nonlinear reconstructions (see [17, 19, 20, 21, 22, 52, 80]). Here we use a quite simple

explicit approximation 𝑓𝑛
𝑗 ≡ 𝐻(𝑢)

𝑢
(but with quite good results), for both hyperbolic and balance

equations, which is advantageous to the numerical analysis. Indeed, all machinery developed for
implicit strategies for source terms to the case of balance laws (see [23, 45, 67, 69, 111, 131, 160])
can be used to the family of problems involving ODEs in (2.1.8). Finally, combining equations
(2.1.8) and (2.1.11) produces the basic building block of the new Lagrangian-Eulerian scheme
of approximate solutions to hyperbolic conservation laws and balance laws.

2.1.2 The Lagrangian-Eulerian scheme for linear hyperbolic conser-
vation laws and its mathematical properties

Now we will deĄne a equivalent Ąnite difference of an Lagrangian-Eulerian approach based
on locally conservative Ąnite volume method and to the hyperbolic linear constant-coefficient
case we will indeed prove its consistency, stability and convergence in the sense of classical Lax
stability (see e.g., [62, 109, 142]).

Consider the linear Ćux function 𝐻(𝑢) = 𝑎 𝑢, 𝑎 ∈ R to the conservation law (2.1.3), along
with the Lagrangian-Eulerian approach (2.1.8)-(2.1.11), whose exact well-known solution is
𝑢(𝑥, 𝑡) = Ö(𝑥⊗ 𝑎𝑡). Therefore, we set 𝑓𝑗 = 𝑎 with ℎ𝑛+1

𝑗 = ℎ, 𝑗 ∈ Z. Thus, the solutions of the
family of initial value problem:

𝑑à𝑛
𝑗 (𝑡)

𝑑𝑡
= 𝑎, à𝑛

𝑗 (𝑡𝑛) = 𝑥𝑛
𝑗 , (2.1.12)
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is precisely à𝑛
𝑗 (𝑡) = 𝑎(𝑡 ⊗ 𝑡𝑛) + 𝑥𝑛

𝑗 and, in connection with the deĄnitions above, also reads

that 𝑥𝑛+1
𝑗⊗ 1

2

= à𝑛
𝑗 (𝑡𝑛+1) = 𝑎𝑘 + 𝑥𝑛

𝑗 . Moreover, using a simple mathematical reasoning the above

construction can be viewed as an analogue of Ąnite difference scheme for linear hyperbolic
conservation laws. The procedure for balance laws is quite straightforward. In addition, such
construction for Ąnite difference schemes is distinct to that Lagrangian-Eulerian method based
on mixed Ąnite elements as discussed in [52] for a parabolic equation. Then, we notice from
equations (2.1.9) and (2.1.10) that:

𝑈
𝑛+1
𝑗 =

1

ℎ𝑛+1
𝑗

∫︁ 𝑥𝑛+1

𝑗+ 1
2

𝑥𝑛+1

𝑗−
1
2

𝑢(𝑥, 𝑡𝑛+1) 𝑑𝑥=
1

ℎ𝑛+1
𝑗

∫︁ 𝑥𝑛
𝑗+1

𝑥𝑛
𝑗

𝑢(𝑥, 𝑡𝑛) 𝑑𝑥=
1

ℎ𝑛+1
𝑗

1

2
ℎ
[︁
𝑈𝑛

𝑗 + 𝑈𝑛
𝑗+1

]︁
=

1

2

[︁
𝑈𝑛

𝑗 + 𝑈𝑛
𝑗+1

]︁
,

(2.1.13)
and replacing (2.1.13) into (2.1.11) reads (the one-step or the two-level Ąnite difference scheme):

𝑈𝑛+1
𝑗 =

1

4

[︁
𝑈𝑛

𝑗⊗1 + 2𝑈𝑛
𝑗 + 𝑈𝑛

𝑗+1

]︁
⊗ 𝑎𝑘𝑛

2ℎ

[︁
𝑈𝑛

𝑗+1 ⊗ 𝑈𝑛
𝑗⊗1

]︁
, (2.1.14)

then, with Ąxed 𝑘 = 𝑘𝑛, we get the equivalent difference Ąnite scheme to the linear conservation
laws:

𝑈𝑛+1
𝑗 =

1

4

[︁
𝑈𝑛

𝑗⊗1 + 2𝑈𝑛
𝑗 + 𝑈𝑛

𝑗+1

]︁
⊗ 𝑎𝑘

2ℎ

[︁
𝑈𝑛

𝑗+1 ⊗ 𝑈𝑛
𝑗⊗1

]︁
. (2.1.15)

It was found [18, 19] by only geometrical arguments (see left picture in Figure 2.1) based on
numerical domain of inĆuence and domain of dependence for (2.1.15) the following Courant-
Friedrichs-Lewy CFL-like stability condition 𝑎𝑘/ ℎ < 1/2. For linear PDEs however, the fact
that consistency (for a linear scheme) plus stability is equivalent to convergence is known as the
Lax equivalence theorem (Lax-Richtmyer stability [109, 142]) in the sense of classical stability
of difference schemes in ℓ𝑝 ⊗ 𝑠𝑝𝑎𝑐𝑒𝑠 (see, e.g., [62, 109, 142]). Thus, to prove convergence
we need consistency and a suitable form of stability. The linear Lagrangian-Eulerian scheme
(2.1.15) is designed to a straightforward application of Lax equivalence theory.

Consistency

In order to prove the consistency for the Lagrangian-Eulerian approximation scheme (2.1.15),
we consider the Linear differential equation 𝑃𝑢 = 0, where the operator 𝑃 = 𝜕

𝜕𝑡
+ 𝑎 𝜕

𝜕𝑥
, 𝑎 > 0

and the difference Ąnite scheme 𝑃ℎ,𝑘𝑈 = 0, where:

𝑃ℎ,𝑘ã =
ã𝑛

𝑗 ⊗ 1
4

(︁[︁
ã𝑛

𝑗⊗1 + ã𝑛
𝑗

]︁
+
[︁
ã𝑛

𝑗 + ã𝑛
𝑗+1

]︁)︁

𝑘
+ 𝑎

ã𝑛
𝑗+1 ⊗ ã𝑛

𝑗⊗1

2ℎ
. (2.1.16)

Here ã(𝑥, 𝑡) is any smooth function and ã𝑛
𝑗 = ã(𝑗ℎ, 𝑛𝑘). Thus, the linear difference Ąnite scheme

(2.1.15) is consistent with the Linear PDE 𝑃𝑢 = 0 (in the classical sense of Lax [62, 109, 142])
when (point-wise convergence in ℓ2 ⊗ 𝑠𝑝𝑎𝑐𝑒),

áℎ,𝑘 ⊕ 𝑃ã⊗ 𝑃ℎ,𝑘ã ⊃ 0 𝑎𝑠 ℎ, 𝑘 ⊃ 0. (2.1.17)
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In this case, we have (by Taylor series expansions directly on the local truncation error áℎ,𝑘):

áℎ,𝑘 = 𝑃ã⊗ 𝑃ℎ,𝑘ã

=
1

𝑘

[︃
ã𝑛+1

𝑗 ⊗ 1

4

(︁
ã𝑛

𝑗⊗1 + 2ã𝑛
𝑗 + ã𝑛

𝑗+1

)︁
+
𝑎𝑘

2ℎ

(︁
ã𝑛

𝑗+1 ⊗ ã𝑛
𝑗⊗1

)︁⟨

=

[︃
𝑎2𝑘

2
⊗ ℎ

𝑘

ℎ

4

⟨
ã𝑥𝑥 +𝑂(𝑘2) +𝑂(ℎ2).

(2.1.18)

In (2.1.18) it was used that 𝑢𝑡𝑡 = 𝑎2𝑢𝑥𝑥 +𝑂(𝑘2). Indeed, keeping the ratio ℎ/𝑘 Ąxed we might
write:

áℎ,𝑘 = 𝑂(𝑘 + ℎ), (2.1.19)

and then áℎ,𝑘 ⊃ 0 as ℎ, 𝑘 ⊃ 0; i.e., the analogue Ąnite difference scheme (2.1.15) based on the
locally conservative Lagrangian-Eulerian procedure (2.1.8)-(2.1.11) is consistent.

Stability (Convergence)

By means of the Fourier analysis every one-step like (2.1.15) (or two-level scheme from 𝑡𝑛

to 𝑡𝑛+1) can be recast in a recurrence relation, given by (from the Fourier inversion formula):

̂︀𝑈 𝑛+1 = (𝑔(ℎ Ý)) ̂︀𝑈 𝑛, with ̂︀𝑈 𝑛 = (𝑔(ℎ Ý))𝑛 ̂︀𝑈 0, (2.1.20)

where ̂︀𝑈 𝑛 is the Fourier transform of a grid function 𝑈𝑛, deĄned at grid points 𝑥𝑗 = 𝑗 ℎ for
𝑗 = 0,∘1,∘2, ≤ ≤ ≤ and all crucial information about a scheme is embedded in its ampliĄcation
factor or characteristic function 𝑔(ℎ Ý) for the scheme at wave number Ý. Therefore, replacing
𝑈𝑛

𝑗 by 𝑔𝑛𝑒𝑖Ý𝑗ℎ and plugging this into the Lagrangian-Eulerian scheme (2.1.15) and matching
coefficients reads (with æ ⊕ ℎ Ý for convenience of notation):

𝑔(æ)𝑛+1𝑒𝑖Ý𝑗ℎ =
1

4

(︁
𝑔(æ)𝑛𝑒𝑖Ý(𝑗⊗1)ℎ + 2𝑔(æ)𝑛𝑒𝑖Ý𝑗ℎ+𝑔(æ)𝑛𝑒𝑖Ý(𝑗+1)ℎ

)︁
⊗𝑎𝑘

2ℎ

(︁
𝑔(æ)𝑛𝑒𝑖Ý(𝑗+1)ℎ ⊗ 𝑔(æ)𝑛𝑒𝑖Ý(𝑗⊗1)ℎ

)︁
.

(2.1.21)
From (2.1.21) one easily Ąnd that,

𝑔(æ) =
1

4

(︁
𝑒⊗𝑖Ýℎ + 2 + 𝑒𝑖Ýℎ

)︁
⊗ 𝑎𝑘

2ℎ

(︁
𝑒𝑖Ýℎ ⊗ 𝑒⊗𝑖Ýℎ

)︁
=

1

2
(1 + cos(Ýℎ)) ⊗ 𝑣𝑖 sin(Ýℎ), (2.1.22)

where 𝑣 = 𝑎𝑘ℎ⊗1 is the Courant number. Thus, the Lagrangian-Eulerian Ąnite difference
scheme is stable if there is a positive constant 𝐾 (independent of Ý, ℎ, 𝑘, but ℎ, 𝑘 are in the
stability region) such that, ♣𝑔(æ, 𝑘, ℎ)♣⊘ 1 + 𝐾 𝑘. If ampliĄcation factor does not depend of ℎ
and 𝑘, then 𝑔(æ, 𝑘, ℎ) can be replaced with the restricted stability condition ♣𝑔(æ)♣⊘ 1 (in the
classical sense, see, e.g., [62, 142]). Thus, the ampliĄcation factor of the Lagrangian-Eulerian
scheme (2.1.15) is given by,

♣𝑔(Ý)♣2 =
1

4
(1 + cos(Ýℎ))2 + 𝑣2 sin2(Ýℎ). (2.1.23)

Notice that the restriction ♣𝑔(æ)♣ ⊘ 1 is also true if 𝑣2 ⊘ 1
4
, and then we get,

♣𝑣♣ ⊘ 1

2
. (2.1.24)
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This now gives a support to what was used in [18, 19]. Additionally, a more detailed analysis of
the ampliĄcation factor (2.1.22) shows that the bound in the equation (2.1.24) can be greater.
We consider now the function from (2.1.23),

𝑡(æ, 𝑣) = ♣𝑔(æ)♣2 =
1

4
(1 + cos(æ))2 + 𝑣2 sin2(æ). (2.1.25)

Differentiation of 𝑡(æ, 𝑣) with respect to æ and setting 𝑡æ(æ, 𝑣) = 0 reads,

cos(æ) =
1
2

2𝑣2 ⊗ 1
2

, (2.1.26)

from which we get the following constraint for 𝑣 ̸= 1
2
:

⧹︃⧹︃⧹︃⧹︃⧹︃

1
2

2𝑣2 ⊗ 1
2

⧹︃⧹︃⧹︃⧹︃⧹︃ ⊘ 1. (2.1.27)

Therefore 0 < 𝑣 < 1
2

or
√

2
2
< 𝑣; more about the nature of approximations given by Lagrangian-

Eulerian scheme (2.1.15) within these stability intervals will be addressed further in the next
Section 2.1.2 by using the modiĄed equation framework. Indeed, this function 𝑡(æ, 𝑣) has no

critical points on the interval 1
2
< 𝑣 <

√
2

2
, but 𝑡æ(æ, 𝑣) ⊕ 0 in this interval is zero. This implies

that function 𝑡(æ, 𝑣) is constant there (see left picture in Figure 2.2), but the function is still

limited by one for 𝑣 ∈ ]1
2
,

√
2

2
[. The right picture in Figure 2.2 shows the stability region with

𝑣 = 1
2

and the corresponding stability region to the function 𝑡(æ, 𝑣) along with the interval where
the æ is constant. Now, notice that the function 𝑡(æ, 𝑣) (2.1.27) associated to the analogue linear
Lagrangian-Eulerian scheme (2.1.15) is continuous, even smooth with respect to the variable
𝑣. Therefore, stability condition for the linear Lagrangian-Eulerian scheme (2.1.15) is (see also
the right picture in Figure 2.2, where it is shown the continuous and smooth enlargement of
the stability region of the scheme (2.1.15)),

♣𝑣♣ <
√

2

2
, 𝑣 =

𝑎 𝑘

ℎ
, 𝑎 ∈ R, ℎ, 𝑘 > 0. (2.1.28)

We now are ready to invoke the fundamental theorem of numerical analysis (the Lax-Richtmyer
equivalence theorem). A consistent linear difference Ąnite scheme of the form (2.1.15) for a linear
conservation law of the form (2.1.3), with 𝐻(𝑢) = 𝑎 𝑢, 𝑎 ∈ R is convergent if and only if it is
Lax-Richtmyer stable. Therefore, by the results discussed in Sections 2.1.2 and 2.1.2 we have
convergence for scheme (2.1.15) in ℓ2-space.

The modified equation for the Lagrangian-Eulerian scheme

Insights in the qualitative behavior (see numerical experiments from Figure 2.3 to Figure
2.5) can be obtained by regarding the so-called modiĄed equations of the discretization. It
is worth mentioning that here we will use modiĄed equations aiming the understanding of
qualitative behavior of approximations (related to the two-level Lagrangian-Eulerian scheme
(2.1.15)) in the spirit of critical work of [37] (see also [72, 155]), that related it with the Fourier-
Von Neumann method for the linear stability analysis of the linear initial-value problem (Lax
stability in PDEs as before) of two-level linear difference schemes. Let ã(𝑥, 𝑡) in 𝐶∞, with
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Figure 2.2: It is shown (left) the ampliĄcation factor function 𝑡æ(æ, 𝑣) and (right) the set of
image points of the locus of 𝑔(æ) for the Lagrangian-Eulerian scheme (2.1.15), as for both cases
æ varies along with the limiting Courant number 𝑣 =

√
2/2.

all bounded derivatives with respect to 𝑥 and 𝑡, in the setting of modiĄed equations and plug
this into (2.1.15) along with the stability results pointed out in the previous sections. Further
Taylor series expansion in (2.1.15) gives,

ã𝑡 + 𝑎ã𝑥 =
ℎ2

2𝑘

(︃
1

2
⊗ 𝑎2𝑘2

ℎ2

)︃
ã𝑥𝑥 ⊗ 𝑎ℎ2

3

(︃
1 ⊗ 𝑎2𝑘2

ℎ2

)︃
ã𝑥𝑥𝑥 +𝑂(𝑘3). (2.1.29)

or in a more convenient form (keep in mind 𝑣 =
𝑎 𝑘

ℎ
with ratio 𝑘/ℎ Ąxed),

ã𝑡 + 𝑎ã𝑥 =
𝑎 ℎ

2 𝑣

(︃
1

2
⊗ 𝑎2𝑘2

ℎ2

)︃
ã𝑥𝑥 ⊗ 𝑎ℎ2

3

(︃
1 ⊗ 𝑎2𝑘2

ℎ2

)︃
ã𝑥𝑥𝑥 +𝑂(𝑘3). (2.1.30)

Stability (2.1.28) of the discrete Lagrangian-Eulerian scheme (2.1.15) being analyzed holds as
ℎ ⊃ 0. This ensure that any derivatives appearing in the remainder are bounded as ℎ ⊃ 0 and it
means that modiĄed equation (2.1.30) is a suitable candidate to verify that its solution satisĄes
the discrete equation (2.1.15) for an 𝑂(𝑘3) remainder to approximate the exact linear hyperbolic
PDE (2.1.1) with 𝐻(𝑢) = 𝑎 𝑢. Equation of the form (2.1.30) arise in Ćuid dynamics when both
diffusion (viscosity term ã𝑥𝑥) and dispersion (capillarity term ã𝑥𝑥𝑥) play a role. The diffusion
smooths out the discontinuous solutions of (2.1.1) while the dispersion causes high-frequency
oscillations. The dispersion process is an example of combined convection and diffusion. Thus,
from equation (2.1.30) one might expect numerical solutions by scheme (2.1.15) to the purely
linear hyperbolic PDE be contaminated by both spurious dispersion and diffusion effects. Thus,
let us consider the numerical experiments related to a linear hyperbolic conservation law to the
Lagrangian-Eulerian scheme (2.1.15), which in turn will be the building block to the anologue
Lagrangian-Eulerian balance law approximate scheme. In the linear case, the complicated
behaviors exhibited by the Fourier series sums would serve as a good testing ground for the
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Figure 2.3: Approximate numerical solutions with smooth Gaussian initial condition.

application of numerical methods for diffusive/dispersive waves to rough data. Thus, let us
discuss the application of the Lagrangian scheme (2.1.15) with three type of initial data:

𝒞∞ smooth data (see Figure 2.3). It is shown the smooth initial condition 𝑢(𝑥, 0) ⊕
Ö(𝑥) = 𝑒⊗𝑥2

(top left) and computed solutions at 𝑡 = 4 (top middle) and 𝑡 = 8 (top right)
with CFL number 𝑣 =

√
2/2. As expected from the modiĄed equation analysis the solutions

start to exhibit dispersion since the range of the dominant dispersion regime is controlled by
1/2 < 𝑣 <

√
2/2 which is improved with reĄnement (see Figure 2.3 bottom).

In Section 2.1.2 we establish a convergence proof in ℓ2-space by means of von Neumann
analysis for the Lagrangian-Eulerian scheme 2.1.15. Although the CFL number is in the range
1/2 < 𝑣 <

√
2/2 where the diffusion are in balance or dominates the dispersion, the above

numerical experiments related to those in Figure 2.3 bottom, illustrate the fact of entire trun-
cation error vanishing (see right picture) at all grid points under grid reĄnement, as expected
from previous theoretical analysis. At this point (left and right picture) notice the excellent re-
semblance between the exact and approximate solutions computed by the Lagrangian-Eulerian
scheme with any reminiscence of the spurious effects from the numerical dispersion/diffusion
artifacts.

The following numerical experiment with a Lipschitz initial data illustrates again (see
Figure 2.4) both cases where the diffusion are in balance, or dominates the dispersion as ℎ ⊃ 0
with ratio 𝑘/ℎ Ąxed corresponding essentially to what is shown in Figure 2.3. The Lipschitz
initial condition in this experiment is Ö(𝑥) = 𝑥+ 1, ⊗1 < 𝑥 < 0, Ö(𝑥) = ⊗𝑥+ 1, 0 < 𝑥 < 1 and
Ö(𝑥) = 0 elsewhere.

The following numerical experiment with a discontinuous initial data (see Figure 2.5)
also illustrates both cases above mentioned as ℎ ⊃ 0 with ratio 𝑘/ℎ. Here, a discontinuous
initial condition is Ö(𝑥) = 1, ⊗2 < 𝑥 < 2 and Ö(𝑥) = 0 elsewhere.

In other words, the classical convergence (consistency + stability) property of a numerical
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Figure 2.4: Numerical experiment with a Lipschitz initial condition
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Figure 2.5: Numerical experiment with a discontinuous initial condition
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scheme does not suffice to guarantee its suitability for providing good approximations to the
controls that might be needed in applications. Such nice properties may be lost under numerical
discretization as the mesh size tends to zero due to the existence of high-frequency spurious
solutions for which the group velocity vanishes not fast enough. We will not suggest any
specialized remedies since we are primarily interested in discuss the properties (we have found)
in the most simple framework, which is conducive to analysis and veriĄcation by representative
numerical tests as follow. Furthermore, we can also write the modiĄed equation (2.1.30) for
the Lagrangian-Eulerian scheme as,

𝑢𝑡 + 𝑎𝑢𝑥 = Û(𝑣)𝑑𝑖𝑓𝑢𝑥𝑥 + Û(𝑣)𝑑𝑖𝑠𝑝𝑢𝑥𝑥𝑥, (2.1.31)

where Û(𝑣)𝑑𝑖𝑓 = 𝑎ℎ
2𝑣

(1
2

⊗ 𝑣2) and Û(𝑣)𝑑𝑖𝑠𝑝 = ⊗𝑎ℎ2

3
(1 ⊗ 𝑣2), 𝑣 = 𝑎𝑘

ℎ
. Now, set 𝑢(𝑥, 𝑡) = 𝑒𝑖(Ý𝑥⊗𝑐(Ý)𝑡)

and plug this into the modiĄed equation (2.1.31) to get,

⊗𝑖𝑐(Ý)𝑒𝑖(Ý𝑥⊗𝑐(Ý)𝑡) + (𝑎(𝑖Ý))𝑒𝑖(Ý𝑥⊗𝑐(Ý)𝑡) = Û𝑑𝑖𝑓 (𝑣)(𝑎(𝑖Ý)2𝑒𝑖(Ý𝑥⊗𝑐(Ý)𝑡)) + Û𝑑𝑖𝑠(𝑣)(𝑎(𝑖Ý)3𝑒𝑖(Ý𝑥⊗𝑐(Ý)𝑡)).
(2.1.32)

After a bit of calculation and canceling out common factors reads,

⊗𝑖𝑐(Ý) + 𝑖(𝑎(Ý)) = ⊗Û𝑑𝑖𝑓 (𝑣)(𝑎(Ý)2) ⊗ 𝑖Û𝑑𝑖𝑠𝑝(𝑣)(𝑎(Ý)3). (2.1.33)

Thus, setting 𝑣 =
√

2/2 one can see that Û(𝑣)𝑑𝑖𝑓 = 0. This reveals us that the modiĄed
equation has the only inĆuence of the dispersion term, which in turn is given by 𝑐(Ý) = 𝑎Ý +
Û𝑑𝑖𝑠𝑝(𝑣)(𝑎(Ý)3). Moreover, the group velocity is deĄned by 𝑐𝑔(Ý) = 𝑐′(Ý), and we formally get
𝑐𝑔(Ý) = 𝑎 + 3𝑎Û𝑑𝑖𝑠𝑝Ý

2, where Û𝑑𝑖𝑠𝑝 < 0. Then 𝑐𝑔 < 𝑎, as it was veriĄed in the numerical
experiments from Figure 2.3 to Figure 2.5.

Cells Smooth (‖𝑢 ⊗ 𝑈‖𝑙1
h

(‖𝑢 ⊗ 𝑈‖𝑙2
h

) Continuos (‖𝑢 ⊗ 𝑈‖𝑙1
h

(‖𝑢 ⊗ 𝑈‖𝑙2
h

) NonContinuos (‖𝑢 ⊗ 𝑈‖𝑙1
h

(‖𝑢 ⊗ 𝑈‖𝑙2
h

)

32 5.921 × 10−1(2.980 × 10−1) 7.834 × 10−1(4.521 × 10−1) 1.192 × 10−1(5.454 × 10−1)
64 2.082 × 10−1(1.146 × 10−1) 3.898 × 10−1(2.267 × 10−1) 7.984 × 10−1(4.458 × 10−1)
128 5.571 × 10−2(3.171 × 10−2) 1.428 × 10−1(9.095 × 10−2) 5.639 × 10−1(4.374 × 10−1)
256 1.399 × 10−2(8.006 × 10−3) 6.541 × 10−2(4.869 × 10−2) 3.552 × 10−1(2.887 × 10−1)
𝐸(ℎ) 1.673 * ℎ1.811(0.835 * ℎ1.75) 1.550 * ℎ1.219(0.808 * ℎ1.096) 1.679 * ℎ0.574(0.646 * ℎ0.27)

Table 2.1: Errors between the numerical approximations (𝑈) and exact solutions (𝑢) in 𝑙1ℎ(𝑙2ℎ)
(‖𝑢⊗𝑈‖𝑙1

ℎ
(‖𝑢⊗𝑈‖𝑙2

ℎ
)) by problem 𝑢𝑡 +𝑢𝑥 = 0 with smooth, continuos and noncontinuos initial

condition at time frame 𝑇 = 2 and CFL condition equal to
√

2/2.

2.2 A multiple time-step formulation for the Lagrangian-

Eulerian scheme

In order to argue to the use of multiple steps in the nonlinear Lagrangian-Eulerian scheme
for both hyperbolic conservation laws and balance laws we will Ąrst revisit the linear case. It is
well known [37] that the connection between an ampliĄcation factor 𝑔(æ) and the corresponding
modiĄed equation is only partially valid for schemes involving more than two time levels.

In view of the von Neumann analysis this connection reveals (see also [72, 155]) that the
ampliĄcation factor associated with a wave number generally has (𝑟⊗1) roots for an 𝑟⊗1 level
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scheme. On the other hand, the procedure speciĄed in Warming and HyettŠs interpretation
provides information for only the principal root; indeed, this is all what we needed to the
three-level Leap-Frog scheme). Thus, we will construct a modiĄed equation (2.2.13) for the
three-level Lagrangian-Eulerian scheme (2.2.9) following Warming and HyettŠs interpretation
[72, 155] in a heuristic framework in order to get some insight of the relation between the
numerical dissipation and the CFL condition to argue potential advantages/disadvantages to
the use of multiple steps (see left picture in Figure 2.6). The multiple time step procedure
for Lagrangian-Eulerian scheme is as follows. The Ąrst time step of the Lagrangian-Eulerian
scheme is well known; see (2.1.15). In the time 𝑡𝑛+1, before of the projection, we have the

approximation in the cell
[︂
𝑥𝑛+1

𝑗⊗ 1

2

, 𝑥𝑛+1
𝑗+ 1

2

]︂
,

𝑈
𝑛+1
𝑗 =

ℎ

2ℎ𝑛+1
𝑗

[︁
𝑈𝑛

𝑗 + 𝑈𝑛
𝑗+1

]︁
, (2.2.1)

where ℎ𝑛+1
𝑗 = ℎ+

(︁
𝑓𝑛

𝑗+1 ⊗ 𝑓𝑛
𝑗

)︁
𝑘, 𝑘 = Δ𝑡𝑛 and 𝑓𝑛

𝑗 = 𝑓(𝑈𝑛
𝑗 ) /𝑈𝑛

𝑗 . Thus, from (2.2.1) reads:

𝑈
𝑛+2

𝑗 =
1

2ℎ𝑛+2
𝑗

[︁
ℎ𝑛+1

𝑗 𝑈
𝑛+1
𝑗 + ℎ𝑛+1

𝑗+1𝑈
𝑛+1
𝑗+1

]︁
. (2.2.2)

The second step in time is given by plugging equation (2.2.1) into (2.2.2) and after standard
algebraic manipulation follows the three-level Lagrangian-Eulerian scheme:

𝑈
𝑛+2

𝑗 =
ℎ

4ℎ𝑛+2
𝑗

[︁
𝑈𝑛

𝑗 + 2𝑈𝑛
𝑗+1 + 𝑈𝑛

𝑗+2

]︁
, (2.2.3)

which in turn is deĄned over the cell [𝑥𝑛+2
𝑗⊗ 1

2

, 𝑥
𝑛+2
𝑗+ 1

2

] where, ℎ𝑛+2
𝑗 = 𝑥

𝑛+2
𝑗+ 1

2

⊗ 𝑥
𝑛+2
𝑗⊗ 1

2

and set,

ℎ𝑛+2
𝑗 = 1

2
[ℎ𝑛+1

𝑗 + ℎ𝑛+1
𝑗+1 ] + (𝑓𝑛

𝑗+1 ⊗ 𝑓𝑛
𝑗 )𝑘𝑛 + (𝑓𝑛+1

𝑗+1 ⊗ 𝑓𝑛+1
𝑗 )𝑘𝑛+1

= ℎ+ 1
2

(︁
𝑓𝑛

𝑗+2 ⊗ 𝑓𝑛
𝑗

)︁
𝑘𝑛 +

(︁
𝑓𝑛+1

𝑗+1 ⊗ 𝑓𝑛+1
𝑗

)︁
𝑘𝑛+1.

Next, the approximation (2.2.3) is then projected over the original grid to get,

𝑈𝑛+2
𝑗 =

1

ℎ

[︂
𝑐1𝑗𝑈

𝑛+2

𝑗⊗2 + 𝑐2𝑗𝑈
𝑛+2

𝑗⊗1 + 𝑐3𝑗𝑈
𝑛+2

𝑗

]︂
, (2.2.4)

where the coefficients 𝑐1𝑗, 𝑐2𝑗, 𝑐3𝑗 are deĄned as follows

𝑐1𝑗 =
𝐶⊗

2

(︁
1 + 𝑠𝑔𝑛(𝐶⊗)

)︁
, 𝑐2𝑗 = ℎ⊗ 𝑐1𝑗 ⊗ 𝑐2𝑗, 𝑐3𝑗 =

♣𝐶+♣
2

(︁
1 ⊗ 𝑠𝑔𝑛(𝐶+)

)︁
, (2.2.5)

where

𝐶+ =
ℎ

2
+ 𝑓𝑛

𝑗+1𝑘
𝑛 ⊗ ℎ𝑛+1

𝑗

2
+ 𝑓𝑛+1

𝑗 𝑘𝑛+1, 𝐶⊗ = ⊗ℎ

2
+ 𝑓𝑛

𝑗⊗1𝑘
𝑛 +

ℎ𝑛+1
𝑗⊗1

2
+ 𝑓𝑛+1

𝑗⊗1 𝑘
𝑛+1. (2.2.6)

The three-level time step Lagrangian-Eulerian procedure is as follows. For simplicity of pre-
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Figure 2.6: Three-level time step Lagrangian-Eulerian procedure.

sentation, let us consider the linear hyperbolic PDE 𝜕𝑢
𝜕𝑡

+ 𝜕(𝑎𝑢)
𝜕𝑥

= 0, 𝑎 > 0, when 𝑓𝑛
𝑗 = 𝑎, for

each 𝑛 and each 𝑗 this condition means that the curves à𝑛
𝑗 are parallels straight lines, therefore

ℎ𝑛
𝑗 = ℎ𝑛+1

𝑗 = ℎ and we can take 𝑘𝑛 = 𝑘 with this the equation (2.2.6) can be write as,

𝐶+ =
ℎ

2
+ 𝑎𝑘 ⊗ ℎ

2
+ 𝑎𝑘 = 2𝑎𝑘, 𝐶⊗ = ⊗ℎ

2
+ 𝑎𝑘 +

ℎ

2
+ 𝑎𝑘 = 2𝑎𝑘. (2.2.7)

Notice 𝐶+ and 𝐶⊗ are strictly positive and thus 𝑐1𝑗 = 2𝑎𝑘, 𝑐3𝑗 = 0, 𝑐2𝑗 = ℎ ⊗ 2𝑎𝑘 and Ąnally
the equation (2.2.3) to the linear case give,

𝑈
𝑛+2

𝑗 =
1

4
[𝑈𝑛

𝑗 + 2𝑈𝑛
𝑗+1 + 𝑈𝑛

𝑗+2]. (2.2.8)

Therefore, with the substitution of (2.2.7) in (2.2.4) we get,

𝑈𝑛+2
𝑗 = 1

ℎ
[2𝑎𝑘𝑈

𝑛+2

𝑗⊗2 + (ℎ⊗ 2𝑎𝑘)𝑈
𝑛+2

𝑗⊗1 ]

= 1
4

[︁
𝑈𝑛

𝑗⊗1 + 2𝑈𝑛
𝑗 + 𝑈𝑛

𝑗+1

]︁
⊗ 𝑎𝑘

2ℎ

[︁
(𝑈𝑛

𝑗+1 ⊗ 𝑈𝑛
𝑗⊗1) + (𝑈𝑛

𝑗 ⊗ 𝑈𝑛
𝑗⊗2)

]︁
,

(2.2.9)

whose such Lagrangian-Eulerian numerical scheme (2.2.9) has modiĄed equation,

ã𝑡 + 𝑎ã𝑥 =
ℎ2

𝑘

(︂
1

8
+

1

2
𝑣 ⊗ 𝑣2

)︂
ã𝑥𝑥 ⊗ 5

12
𝑎ℎ2ã𝑥𝑥𝑥 +𝑂(𝑘2) +𝑂(ℎ3). (2.2.10)

To the numerical scheme with three time steps, we have,

𝑈
𝑛+3

𝑗 =
1

2

(︂
𝑈

𝑛+2

𝑗 + 𝑈
𝑛+2

𝑗+1

)︂
, (2.2.11)

then, the numerical scheme by three time level is,

𝑈𝑛+3
𝑗 = (3𝑎𝑘 ⊗ ℎ

2
)𝑈

𝑛+3

𝑗⊗3 + (3
2
ℎ⊗ 3𝑎𝑘)𝑈

𝑛+3

𝑗⊗2

=
1

8

(︂
⊗1

2
𝑈𝑛

𝑗⊗3 + 3𝑈𝑛
𝑗⊗1 + 4𝑈𝑛

𝑗 +
3

2
𝑈𝑛

𝑗+1

)︂
+
𝑎𝑘

8ℎ

[︁
3𝑈𝑛

𝑗⊗3 + 6𝑈𝑛
𝑗⊗2 ⊗ 6𝑈𝑛

𝑗 ⊗ 3𝑈𝑛
𝑗+1

]︁
,

(2.2.12)
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the modiĄed equation by this Lagrangian-Eulerian scheme,

ã𝑡 + 𝑎ã𝑥 =
ℎ2

𝑘

(︂
𝑣 ⊗ 3

2
𝑣2
)︂
ã𝑥𝑥 ⊗ 3

2
𝑘2ã𝑡𝑡𝑡 ⊗ 11

12
𝑎ℎ2ã𝑥𝑥𝑥. (2.2.13)

On the left picture of Figure 2.6 is shown the stencil of the multiple time step version of
the time step Lagrangian-Eulerian scheme. On the right is shown the real stability interval
associated to the diffusion terms of the modiĄed equations to (i) the one step Lagrangian-
Eulerian (2.1.15), the parabolic curve 1

4
⊗ 1

2
v2, and for the two and the three-level time step

Lagrangian-Eulerian scheme (2.2.9) (black), the parabolic curves (ii) two-step 1

8
+ 1

2
v ⊗ v2 and

(ii) three-step v ⊗ 3

2
v2. For comparison purposes it is shown in red the diffusive coefficients of

the associated modiĄed equation 𝜕ã
𝜕𝑡

+ 𝑎𝜕ã
𝜕𝑥

= 𝑎 ℎ
2

[1 ⊗ 𝑎 𝑘
ℎ

]ã𝑥𝑥 + 𝑂(𝑘2) to the upwind difference
scheme 𝑈𝑛+1

𝑗 = 𝑈𝑛
𝑗 ⊗ 𝑎 𝑘

ℎ
[𝑈𝑛

𝑗 ⊗ 𝑈𝑛
𝑗⊗1].

The diffusive term in the above modiĄed equation (2.2.13) seems to be less dominant than
diffusive term in the equation (2.1.15), which in turn the projection step is performed after
evolution of one time step (see right picture in Figure 2.6. This justify delaying the projection
step further as possible in order to reduce spurious numerical dissipation. On the other hand
(see also right picture in Figure 2.6) the modiĄed equation analysis shows that the CFL interval
is more restrictive, which in turn may affect the stability of the three-level Lagrangian-Eulerian
scheme (2.2.12). Our somewhat naive observation may give some light on the issue of an optimal
CFL regime by means of balance between the relative sizes of the diffusion and the dispersion
numerical parameters (see also numerical experiments from Figure 2.3 to Figure 2.5.

The analysis suggests that increasing the number of time levels of the method at hand
without projection on a Ąxed grid leads the stability region to decrease. Moreover, it also
helps to understand how it is not trivial to build long integral tubes as well as discussed in
[18, 17, 20, 21, 22, 57, 80, 159]. This analysis seems to suggest that such construction of the
computational point of view can be infeasible due to the inherent difficulty of predicting a priori
the interaction of the characteristic curves, particularly in the case of systems of conservation
laws. Even in the scalar case, the situation can be very difficult in the case of Ćux functions
that may exhibit discontinuities in their arguments [91, 94].
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Chapter 3

The conservative finite difference
Lagrangian-Eulerian scheme for
nonlinear scalar conservation laws

3.1 Preliminary concepts

In this section we will treat some concepts of convergence to entropic approximate solutions
of Ąnite difference methods, which can be written in conservative form. Some concepts will be
discussed to give a better understanding of our proposed scheme. For that, we will use some
theoretical results from [42, 75, 76, 108, 139].

We consider the following initial data problem

𝜕𝑢

𝜕𝑡
+
𝜕(𝐻(𝑢))

𝜕𝑥
= 0, 𝑢(𝑥, 0) = 𝑢0(𝑥) 𝑥 ∈ R. (3.1.1)

A solution of (3.1.1), in the weak sense, see [108, 147], is a 𝑢 function in 𝐿∞
𝑙𝑜𝑐(R×R

+) such

that for all ã ∈ 𝐶∞
𝑙𝑜𝑐(R × R

+
),

∫︁ ∞

⊗∞

∫︁ ∞

0

(︃
𝑢
𝜕ã

𝜕𝑡
+𝐻(𝑢)

𝜕ã

𝜕𝑥

)︃
𝑑𝑡 𝑑𝑥+

∫︁ ∞

⊗∞
𝑢0(𝑥)ã(𝑥, 0)𝑑𝑥 = 0. (3.1.2)

There are situations in which the weak solution is not unique, and one way of choosing the
correct solution is to choose the solutions that are limits of an associated viscous problem as the
viscosity vanishes (which we shall call vanishing viscosity solutions). There are various reasons
to "want" this solution as our solution. One of the most physically appealing reasons is that
many of the equations that we are solving approximate a physical situation that includes some
sort of dissipation (a sufficiently small amount, which the modeler assumed was negligible).
Hence, the solution that we choose will approximate a solution with a small amount of dissipa-
tion. One of the very important attributes of the vanishing viscosity solution is the following
result, see [108, 147] for more details.

Proposição 3.1.1. (Thomas [147]) If a vanishing viscosity solution of 3.1.1 exists, it is a weak
solution.

Note that, if we consider the viscous equation

𝜕𝑢𝜖

𝜕𝑡
+
𝜕𝐻(𝑢𝜖)

𝜕𝑥
= 𝜖

𝜕2𝑢𝜖

𝜕𝑥2
. (3.1.3)
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If we multiply the above equation by a 𝐶∞
0 test function ã (where ã and ã𝑥 will be zero outside

some closed rectangle [𝑎, 𝑏] × [0, 𝑇𝑛] and perform the integrations plus integration by parts

⊗
∫︁ ∞

0

∫︁ ∞

⊗∞
[𝑢𝜖 ã𝑡 +𝐻(𝑢𝜖)ã𝑥] 𝑑𝑥 𝑑𝑡⊗

∫︁ ∞

⊗∞
𝑢∞

0 ã0𝑑𝑥 = 𝜖
∫︁ ∞

0

∫︁ ∞

⊗∞
𝑢𝜖 ã𝜖

𝑥𝑥𝑑𝑥 𝑑𝑡 (3.1.4)

and we let 𝜖 ⊃ 0, then 𝑢𝜖 ⊃ 𝑢, 𝐻(𝑢𝜖) ⊃ 𝐻(𝑢) and the viscous term tend to zero, and we can
see that the viscous solution is a weak solution to equation (3.1.1).

An additional condition is required to pick out the physically relevant vanishing viscosity
solution, see [108]. The condition which deĄnes this solution is that it should be the limiting
solution of the viscous equation as 𝜖 ⊃ 0. but this is not easy to work with. We want to Ąnd
simpler conditions. In words of [147], before we proceed to decide how to choose the correct
solutions, we introduce two common entropy conditions. It is not clear whether and/or how
the Ąrst condition mimics the physical entropy argument. However, the second condition is
truly taking an approach that Ąnds a new variable that is to act like the ŞentropyŤ for the
given system and the condition is designed to imitate the entropy condition of gas dynamics.
We start with the following entropy condition written in Leveque book form.

Definição 3.1.1. (Leveque [108]) Entropy Condition I: The solution to equation (3.1.1),
𝑢 = 𝑢(𝑥, 𝑡), containing a discontinuity propagating with speed 𝑠 is said to satisfy Entropy
Condition I if

𝐻 ′(𝑢𝐿) > 𝑠 > 𝐻 ′(𝑢𝑅) (3.1.5)

where 𝑢𝐿 and 𝑢𝑅 are the solution values to the left and right of the discontinuity, respectively.

Note that 𝐻 ′(𝑢) is the characteristic speed. For convex 𝐻, the Rankine-Hugoniot speed
𝑠 must lie between 𝐻 ′(𝑢𝐿) and 𝐻 ′(𝑢𝑅), so (3.1.1) reduces to simply the requirement that
𝐻 ′(𝑢𝐿) > 𝐻 ′(𝑢𝑅), which again by convexity requires 𝑢𝐿 > 𝑢𝑅 is.

A more general form of this condition, due to Oleinik, applies also to non-convex scalar Ćux
functions 𝐻:

Definição 3.1.2. (Leveque [108]) (Entropic Condition II): 𝑢(𝑥, 𝑡) is the entropy solution if
all discontinuities have the property that

𝐻(𝑢) ⊗𝐻(𝑢𝐿)

𝑢⊗ 𝑢𝐿

⊘ 𝑠 ⊘ 𝐻(𝑢) ⊗𝐻(𝑢𝑅)

𝑢⊗ 𝑢𝑅

(3.1.6)

for all 𝑢 between 𝑢𝐿 and 𝑢𝑅.

For convex 𝐻, this requirement reduces to (3.1.5). Another form of the entropy condition is
based on the spreading of characteristics in a rarefaction fan. If 𝑢(𝑥, 𝑡) is an increasing function
of 𝑥 in some region, then characteristics spread out if 𝐻 ′′ > 0. The rate of spreading can be
quantiĄed, and gives the following condition, also due to Oleinik.

Definição 3.1.3. (Leveque [108]) (Entropic Condition III) 𝑢(𝑥, 𝑡) is the entropy solution if
there is a constant 𝐸 > 0 such that for all 𝑎 > 0, 𝑡 > 0 and 𝑥 ∈ R,

𝑢(𝑥+ 𝑎, 𝑡) ⊗ 𝑢(𝑥, 𝑡)

𝑎
<
𝐸

𝑡
. (3.1.7)
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The importance of the latter is well justiĄed in [108].
Note that for a discontinuity propagating with constant left and right states 𝑢𝐿 and 𝑢𝑅,

this can be satisĄed only if 𝑢𝑅 ⊗ 𝑢𝐿 < 0, so this agrees with (3.1.5). The form of (3.1.7) may
seem unnecessarily complicated, but it turns out to be easier to apply in some contexts. In
particular, this formulation has advantages in studying numerical methods. One problem we
face in developing numerical methods is guaranteeing that they converge to the correct solution.
Some numerical methods are known to converge to the wrong weak solution in some instances.
The criterion (3.1.5) is hard to apply to discrete solutions - a discrete approximation deĄned
only at grid points is in some sense discontinuous everywhere. If 𝑈𝑗 < 𝑈𝑗+1 at some grid point,
how do we determine whether this is a jump that violates the entropy condition, or is merely
part of a smooth approximation of a rarefaction wave? Intuitively, we know the answer: it is
part of a smooth approximation, and therefore acceptable, if the size of this jump is 𝑂(Δ𝑥) as
we reĄne the grid and Δ𝑥 ⊃ 0. To turn this into a proof that some method converges to the
correct solution, we must quantify this requirement and (3.1.7) gives what we need. Taking
𝑎 = Δ𝑥, we must ensure that there is a constant 𝐸 > 0 such that

𝑈𝑗+1(𝑡) ⊗ 𝑈𝑗(𝑡) <
(︂
𝐸

𝑡

)︂
Δ𝑥

for all 𝑡 > 0 as Δ𝑥 ⊃ 0. This inequality can often be established for discrete methods.
In fact, OleinikŠs original proof that an entropy solution to (3.1.1) satisfying (3.1.7) always
exists proceeds by deĄning such a discrete approximation and then taking limits. This is also
presented in Theorem 16.1 of Smoller [138, 139].

We shall discuss numerical approximations to weak entropic solutions of (3.1.1) using
schemes such that can be write in conservative form

𝑈𝑛+1
𝑗 = ℋ(𝑈𝑛

𝑗⊗𝑞, ..., 𝑈
𝑛
𝑗+𝑞)

= 𝑈𝑛
𝑗 ⊗ Δ𝑡

Δ𝑥

[︁
𝐹𝑗+ 1

2
⊗ 𝐹𝑗⊗ 1

2

]︁ (3.1.8)

where 𝐹𝑗+ 1

2
= 𝐹 (𝑈𝑛

𝑗⊗𝑞+1, ..., 𝑈
𝑛
𝑗+𝑞) is the numerical Ćux and satisĄes the consistent condition

𝐹 (𝑢, ..., 𝑢) = 𝐻(𝑢). If 𝑞 = 1, then 𝐹 is a function of only two variables and (3.1.8) becomes

𝑈𝑛+1
𝑗 = 𝑈𝑛

𝑗 ⊗ Δ𝑡

Δ𝑥

[︁
𝐹 (𝑈𝑛

𝑗 , 𝑈
𝑛
𝑗+1) ⊗ 𝐹 (𝑈𝑛

𝑗⊗1, 𝑈
𝑛
𝑗 )
]︁
, (3.1.9)

which is very natural if we view 𝑈𝑛
𝑗 as cell average deĄned by (2.1.5). We know that the weak

solution 𝑢(𝑥, 𝑡) satisĄes the integral form of the conservation law,
∫︁ 𝑥

𝑗+ 1
2

𝑥
𝑗−

1
2

𝑢(𝑥, 𝑡𝑛+1)𝑑𝑥 =
∫︁ 𝑥

𝑗+ 1
2

𝑥
𝑗−

1
2

𝑢(𝑥, 𝑡𝑛)𝑑𝑥⊗
[︃∫︁ 𝑡𝑛+1

𝑡𝑛
𝐻(𝑢(𝑥𝑛

𝑗+ 1

2

, 𝑡))𝑑𝑡⊗
∫︁ 𝑡𝑛+1

𝑡𝑛
𝐻(𝑢(𝑥𝑛

𝑗⊗ 1

2

, 𝑡))𝑑𝑡

⟨
.

(3.1.10)
Dividing by ℎ and using the cell averages deĄned in (2.1.5), this gives

𝑈𝑛+1
𝑗 = 𝑈𝑛

𝑗 ⊗ 1

Δ𝑥

[︃∫︁ 𝑡𝑛+1

𝑡𝑛
𝐻(𝑢(𝑥𝑛

𝑗+ 1

2

, 𝑡))𝑑𝑡⊗
∫︁ 𝑡𝑛+1

𝑡𝑛
𝐻(𝑢(𝑥𝑛

𝑗⊗ 1

2

, 𝑡))𝑑𝑡

⟨
. (3.1.11)

By comparing the above equation with (3.1.9), we note that 𝐹 (𝑈𝑛
𝑗 , 𝑈

𝑛
𝑗+1) is the following average

Ćux through 𝑥𝑗+ 1

2
over the interval [𝑡𝑛, 𝑡𝑛+1],

𝐹 (𝑈𝑛
𝑗 , 𝑈

𝑛
𝑗+1) =

1

Δ𝑡

∫︁ 𝑡𝑛+1

𝑡𝑛
𝐻(𝑢(𝑥𝑛

𝑗+ 1

2

, 𝑡))𝑑𝑡.
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Definição 3.1.4. (Harten, Hyman and Lax [76]) A Ąnite difference scheme (3.1.8) is said to
be monotone if ℋ is a monotone increasing function of each of its arguments.

Is well known [76], that solutions of hyperbolic conservation laws are not uniquely deter-
mined by their initial values; an entropy condition is needed to pick out the physically relevant
solution. The question arises whether Ąnite-difference approximations converge to this partic-
ular solution, the following result of [76] clarify this done.

Theorem 3.1.1. (Harten, Hyman and Lax, [76]) Let

𝑈𝑛+1
𝑗 = ℋ(𝑈𝑛

𝑗⊗𝑞, ..., 𝑈
𝑛
𝑗+𝑞)

= 𝑈𝑛
𝑗 ⊗ ∆𝑡

∆𝑥

[︁
𝐹𝑗+ 1

2
⊗ 𝐹𝑗⊗ 1

2

]︁ (3.1.12)

be a Ąnite-difference approximation of (3.1.1) in conservation form, i.e., 𝐹 (𝑢, ..., 𝑢) = 𝐻(𝑢),
which is monotone:

𝜕ℋ
𝜕𝑈𝑛

𝑖

(𝑈𝑛
𝑗⊗𝑞, ...𝑈

𝑛
𝑗+𝑞) ⊙ 0, 𝑗 ⊗ 𝑞 ⊘ 𝑖 ⊘ 𝑗 + 𝑞 (3.1.13)

Assume that, as Δ𝑡 and Δ𝑥 tend to zero, Δ𝑡/Δ𝑥 = 𝑐𝑜𝑛𝑠𝑡., 𝑈𝑛 converges boundedly almost
everywhere to some function 𝑢(𝑥, 𝑡). Then according to the theorem of Lax and Wendroff,
𝑢(𝑥, 𝑡) is a weak solution of (3.1.1), and the Oleinik entropy condition,

𝐻(𝑢) ⊗𝐻(𝑢𝐿)

𝑢⊗ 𝑢𝐿

⊘ 𝑆 ⊘ 𝐻(𝑢) ⊗𝐻(𝑢𝑅)

𝑢⊗ 𝑢𝑅

(3.1.14)

is satisĄed for all discontinuities of 𝑢. Here 𝑆 is the velocity obtained by the Rankine-Hugoniot
relation.

Other important concept is Total Variation, of this and using compactness arguments one
can deduce the existence of convergent subsequence, we deĄne this concept in follow. Give a
function 𝑢 = 𝑢(𝑥), the total variation is deĄned by

𝑇𝑉 (𝑢) = lim
Ó⊃0

sup
1

Ó

∫︁ ∞

⊗∞
♣𝑢(𝑥+ Ó) ⊗ 𝑢(𝑥)♣𝑑𝑥 (3.1.15)

If 𝑢 is a smooth function then

𝑇𝑉 (𝑢) =
∫︁ ∞

⊗∞
♣𝑢′(𝑥)♣𝑑𝑥 (3.1.16)

• To 𝑢 = 𝑢(𝑥, 𝑡) the deĄnition can be to extend to 𝑇𝑉 (𝑢(𝑡)).

• If 𝑈𝑛 = ¶𝑈𝑛
𝑗 ♢𝑗 is a grid function, then

𝑇𝑉 (𝑈𝑛
𝑗 ) =

∞∑︁

𝑖=⊗∞
♣𝑈𝑛

𝑗+1 ⊗ 𝑈𝑛
𝑗 ♣. (3.1.17)
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• When 𝑇𝑉 (𝑢0) < ∞, then

𝑇𝑉 (𝑢(𝑡2)) ⊘ 𝑇𝑉 (𝑢(𝑡1)), 𝑡2 ⊙ 𝑡1. (3.1.18)

Definição 3.1.5. (Harten [75]) Scheme (3.1.8) is said to be a Total Variation Diminishing
(TVD) scheme, or Total Variation NonŰIncreasing (TVNI) scheme, if

𝑇𝑉 (𝑈𝑛+1) ⊘ 𝑇𝑉 (𝑈𝑛).

A consequence of the above deĄnition is that

𝑇𝑉 (𝑈𝑛) ⊘ 𝑇𝑉 (𝑈𝑛⊗1) . . . ⊘ 𝑇𝑉 (𝑈0) < ∞ (3.1.19)

where ¶𝑈0
𝑖 ♢ is data at time 𝑡 = 0. Next we deĄne another class of numerical methods.

Theorem 3.1.2. (Harten [75]) Schemes of the form (3.1.8) for the scalar, nonlinear conservation
law (3.1.1) are said to be Monotonicity Preserving Schemes if whenever the data ¶𝑈𝑛

𝑖 ♢ is
monotone the solution set ¶𝑈𝑛+1

𝑖 ♢ is monotone in the same sense. That is, if 𝑈𝑛
𝑖 is monotone

increasing so is ¶𝑈𝑛+1
𝑖 ♢ and if ¶𝑈𝑛

𝑖 ♢ is monotone decreasing so is ¶𝑈𝑛+1
𝑖 ♢.

Theorem 3.1.3. (Harten [75]) In general, the set 𝑆𝑚𝑜𝑛 of monotone schemes is contained in
the set 𝑆𝑡𝑣𝑑 of TVD schemes and this in turn is contained in the set 𝑆𝑚𝑝𝑟 of monotonicity
preserving schemes, that is

𝑆𝑚𝑜𝑛 ⊖ 𝑆𝑡𝑣𝑑 ⊖ 𝑆𝑚𝑝𝑟.

For linear schemes (2.1.15) to solve the linear advection equation 𝜕𝑢/𝜕𝑡 + 𝑎 𝜕𝑢/𝜕𝑥 = 0 it
can be proved that monotone schemes are equivalent to monotonicity preserving schemes.

In 1980 Crandall and Majda ( see [42]), proved that general monotone difference schemes
always converge and that they converge to the physical weak solution satisfying the entropy
condition. Rigorous convergence results follow for dimensional splitting algorithms when each
step is approximated by a monotone difference scheme. The main result of this work establishes
the convergence of general conservation-form, monotone difference approximations to the unique
generalized solution which satisĄes the entropy condition. The result is following, which is
presented in scalar version. Consider the problem,

∏︁
⋁︁⨄︁
⋁︁⋃︁

𝜕𝑢

𝜕𝑡
+
𝜕(𝐻(𝑢))

𝜕𝑥
= 0

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ R,
(3.1.20)

where 𝐻, is a smooth real-value functions and 𝑢 is a scalar function. The difference approxi-
mations of (3.1.1) of interest here are explicit marching schemes of the form,

𝑈𝑛+1
𝑗,𝑘 = ℋ(𝑈𝑛

𝑗⊗𝑝, ..., 𝑈
𝑛
𝑗+𝑞+1)

= 𝑈𝑛
𝑗 ⊗ Ú𝑥Δ𝑥

+𝑔(𝑈
𝑛
𝑗⊗𝑝, ..., 𝑈

𝑛
𝑗+𝑞+1).

(3.1.21)
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In order to the above equation be consistent with (3.1.1), it must have

𝑔(𝑢, 𝑢, ..., 𝑢) = 𝐻(𝑢), 𝑢 ∈ R. (3.1.22)

The functions 𝑔 is the numerical Ćux of the approximation. The difference approximation is
monotone on the interval [𝑎, 𝑏] if 𝒢 a nondecreasing function of each argument 𝑈𝑛

𝑗 so long
as all arguments lie in [𝑎, 𝑏]. Write 𝑢(𝑥, 𝑡) = (𝑆(𝑡)𝑢0)(𝑥), where 𝑆(𝑡) : 𝐿1(R) ∩ 𝐿∞(R) ⊃
𝐿1(R) ∩ 𝐿∞(R) for each 𝑡 ⊙ 0 and 𝑡 ⊃ 𝑆(𝑡)𝑢0 is continuous into 𝐿1(R). To compute this
solution numerically we set

𝑈0
𝑗 =

1

Δ𝑥

∫︁

𝑅𝑗

𝑢0(𝑥) 𝑑𝑥 (3.1.23)

here 𝑅𝑗 =
[︁
(𝑗 ⊗ 1

2
) Δ𝑥, (𝑗 + 1

2
) Δ𝑥

]︁
and deĄne 𝑈𝑛+1 from 𝑈𝑛 by (3.1.1). And Ąnally, put 𝒳 𝑛

𝑗

the characteristic function of 𝑅𝑗 × [𝑛Δ𝑡, (𝑛+ 1)Δ𝑡) and

𝑢∆ 𝑡 =
∞∑︁

𝑛=0

∞∑︁

𝑗=⊗∞
𝑈𝑛

𝑗 𝒳 𝑛
𝑗 (3.1.24)

The main result in [42] is

Theorem 3.1.4. Suppose 𝑢0 ∈ 𝐿1(R)∩𝐿∞(R) and 𝑎 < 𝑢0 < 𝑏 a.e. Let (3.1.21) be a consistent
conservation-form difference approximation to (3.1.1) which is monotone on [𝑎, 𝑏] and which
has Lipschitz continuous numerical Ćux 𝑔. Let 𝑢∆𝑡 be given by (3.1.21), (3.1.23), (3.1.24). Then
as Δ 𝑡 ⊃ 0 with Δ 𝑡/Δ𝑥 Ąxed, 𝑢∆ 𝑡 converges to 𝑆(𝑡)𝑢0 in 𝐿1(R) uniformly for bounded 𝑡 ⊙ 0.
More precisely,

lim
∆ 𝑡⊃0

sup
0⊘𝑡⊘𝑇

∫︁

R

⧹︃⧹︃⧹︃𝑢∆ 𝑡(𝑥, 𝑡) ⊗ 𝑆(𝑡)𝑢0(𝑥)
⧹︃⧹︃⧹︃ 𝑑𝑥 = 0 (3.1.25)

for each 𝑇 > 0.

Reviewing the deĄnitions, (3.1.25) can also be restated as

lim
∆ 𝑡⊃0

sup
0 ⊘ 𝑡 ⊘ 𝑇

𝑛Δ𝑡 ⊘ 𝑡 ⊘ (𝑛+ 1)Δ𝑡

∑︁

𝑗

∫︁

𝑅𝑗

⧹︃⧹︃⧹︃𝑈𝑛
𝑗 ⊗ 𝑆(𝑡)𝑢0(𝑥)

⧹︃⧹︃⧹︃ 𝑑𝑥 = 0. (3.1.26)

3.2 On the construction of a unique entropy solution

based on the Lagrangian-Eulerian scheme for convex

scalar conservation law

A numerical formulation of the Lagrangian-Eulerian scheme model for the nonlinear case,
which we present as a generalization of the Lagrangian-Eulerian scheme (2.1.15), is called in
this work as LEH2 (Lagrangian Eulerian Finite Difference scheme) as the follow scheme,

𝑈𝑛+1
𝑗 =

1

4
(𝑈𝑛

𝑗⊗1 + 2𝑈𝑛
𝑗 + 𝑈𝑛

𝑗⊗1) ⊗ 𝑘

2ℎ
(𝐻(𝑈𝑛

𝑗+1) ⊗𝐻(𝑈𝑛
𝑗⊗1)), (3.2.1)

where 𝑘 = 𝑘𝑛 and with CFL condition

max
𝑗

⧹︃⧹︃⧹︃⧹︃⧹︃𝐻
′(𝑈𝑛

𝑗 )
𝑘

ℎ

⧹︃⧹︃⧹︃⧹︃⧹︃ ⊘
√

2

2
(3.2.2)
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This method results to be conservative, i.e, the scheme (3.2.1) can be written in the conservative
form

𝑈𝑛+1
𝑗 = 𝑈𝑛

𝑗 ⊗ 𝑘

ℎ
(𝐹 (𝑈𝑛

𝑗 , 𝑈
𝑛
𝑗+1) ⊗ 𝐹 (𝑈𝑛

𝑗⊗1, 𝑈
𝑛
𝑗 )), (3.2.3)

where

𝐹 (𝑈𝑛
𝑗 , 𝑈

𝑛
𝑗+1) =

1

4

[︃
ℎ

𝑘
(𝑈𝑛

𝑗 ⊗ 𝑈𝑛
𝑗+1) + 2(𝐻(𝑈𝑛

𝑗+1) +𝐻(𝑈𝑛
𝑗 ))

⟨
. (3.2.4)

and also, this numerical method can be written as,

𝑈𝑛+1
𝑗 ⊗ (𝑈𝑛

𝑗+1 + 2𝑈𝑛
𝑗 + 𝑈𝑛

𝑗⊗1)/4

𝑘
+
𝐻(𝑈𝑛

𝑗+1) ⊗𝐻(𝑈𝑛
𝑗⊗1)

2ℎ
= 0. (3.2.5)

A convergence proof follows in the spirit on the same approach as discussed in the work of Joel
A. Smoller to Lax-Friedrichs scheme. Thus, our result is then similar of that presented in [139]:

Theorem 3.2.1. Let Ö(𝑥) ∈ 𝐿∞(R), and let 𝐻 ∈ 𝐶2(R) with 𝐻 ′′(𝑢) > 0 on ¶𝑢 : ♣𝑢♣⊘
♣♣Ö(𝑥)♣♣∞♢. Then there exits a solution 𝑢 of (3.1.1) with the following properties,

1) ♣𝑢(𝑥, 𝑡)♣⊘ ♣♣Ö(𝑥)♣♣∞⊕ 𝑀, (𝑥, 𝑡) ∈ R × R+.

2) There is a constant 𝐸 > 0, depending only on 𝑀 , 𝜙 = min¶𝐻 ′′(𝑢) : ♣𝑢(𝑥, 𝑡)♣⊘ ♣♣Ö(𝑥)♣♣∞♢
and 𝐴 = max¶𝐻 ′(𝑢) : ♣𝑢(𝑥, 𝑡)♣⊘ ♣♣Ö(𝑥)♣♣∞♢, such that for every 𝑎 > 0, 𝑡 > 0, and 𝑥 ∈ R,

𝑢(𝑥+ 𝑎, 𝑡) ⊗ 𝑢(𝑥, 𝑡)

𝑎
<
𝐸

𝑡
. (3.2.6)

3) 𝑢 is stable and depends continuously on Ö(𝑥) in the following sense: If Ö(𝑥), Ý(𝑥) ∈
𝐿∞(R)∩𝐿1(R) with ♣Ö(𝑥)♣⊘ ♣♣Ý(𝑥)♣♣∞, and 𝑣(𝑥) is the corresponding constructed solution
of (3.1.1) with initial data Ý(𝑥), then for every 𝑥1, 𝑥2 ∈ R, with 𝑥1 < 𝑥2, and every 𝑡 > 0,

∫︁ 𝑥2

𝑥1

♣𝑢(𝑥, 𝑡) ⊗ 𝑣(𝑥, 𝑡)♣ 𝑑𝑥 ⊘
∫︁ 𝑥2+𝐴𝑡

𝑥1⊗𝐴𝑡
♣Ö(𝑥) ⊗ Ý(𝑥)♣ 𝑑𝑥. (3.2.7)

We start the proof by considering the Lagrangian-Eulerian scheme (3.2.1) in the Ąnite difference
form (3.2.5). Based on the stability condition (2.1.28), see [11], established to scheme (3.2.1),
notice that both holds 𝐴 > 0 and 𝜙 > 0, with 𝑘 and ℎ:

𝐴𝑘

ℎ
⊘ 1

2
. (3.2.8)

Following [139], we establish Ąrst the Ąnite difference scheme analogue of item (1) that appears
in Theorem 3.2.1. Next, we will highlight the pertinent modiĄcations to accommodate the
proof to our Lagrangian-Eulerian scheme (3.2.1).

Lemma 3.2.1. For every 𝑛 ∈ Z, 𝑘 ∈ Z+, ♣𝑈𝑛
𝑗 ♣⊘ 𝑀

𝑃𝑟𝑜𝑜𝑓 . Write (3.2.1) as

𝑈𝑛+1
𝑗 =

1

4

(︁
𝑈𝑛

𝑗⊗1 + 2𝑈𝑛
𝑗 + 𝑈𝑛

𝑗+1

)︁
⊗ 𝑘

2ℎ
(𝐻(𝑈𝑗+1) ⊗𝐻(𝑈𝑗⊗1))

=
1

4

(︁
𝑈𝑛

𝑗⊗1 + 2𝑈𝑛
𝑗 + 𝑈𝑛

𝑗+1

)︁
⊗ 𝑘

2ℎ
𝐻 ′(𝜃𝑛

𝑗 )
(︁
𝑈𝑛

𝑗+1 ⊗ 𝑈𝑛
𝑗⊗1

)︁

=
(︁

1
4

+ 𝑘
2ℎ
𝐻 ′(𝜃𝑛

𝑗 )
)︁
𝑈𝑛

𝑗⊗1 + 1
2
𝑈𝑛

𝑗 +
(︁

1
4

⊗ 𝑘
2ℎ
𝐻 ′(𝜃𝑛

𝑗 )
)︁
𝑈𝑛

𝑗+1

(3.2.9)
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where 𝜃𝑛
𝑗 is between 𝑈𝑛

𝑗+1 and 𝑈𝑛
𝑗⊗1. We assume inductively that ♣𝑈𝑛

𝑗 ♣⊘ 𝑀 for all 𝑗 ∈ Z, 𝑛 ∈ Z+,

and that the CFL condition (3.2.8) holds, then 1
4

∘ 𝑘
2ℎ
𝐻 ′(𝜃𝑛

𝑗 ) ⊙ 0, and thus

♣𝑈𝑛+1
𝑗 ♣ ⊘

(︁
1
4

+ 𝑘
2ℎ
𝐻 ′(𝜃𝑛

𝑗 )
)︁
𝑀 + 1

2
𝑀 +

(︁
1
4

⊗ 𝑘
2ℎ
𝐻 ′(𝜃𝑛

𝑗 )
)︁
𝑀 ⊘ 𝑀 (3.2.10)

We now turn our attention to establish a discrete version of the entropy condition (3.2.6)
associated to our nonlinear Lagrangian-Eulerian scheme (3.2.1). It is worth mentioning that
here we used a different stencil with respect to the spatial grid with length ℎ instead of 2ℎ as
used in [139].

Lemma 3.2.2. (Entropy Condition). If 𝑐 = 𝑚𝑖𝑛¶𝜙/2, 𝐴/4𝑀♢, then for 𝑗 ∈ Z, 𝑛 ∈ Z+,

𝑈𝑛
𝑗 ⊗ 𝑈𝑛

𝑗⊗1

ℎ
⊘ 𝐸

𝑛𝑘
, where 𝐸 =

1

𝑐
. (3.2.11)

𝑃𝑟𝑜𝑜𝑓 . Let

𝑧𝑛
𝑗 =

𝑈𝑛
𝑗 ⊗ 𝑈𝑛

𝑗⊗1

ℎ
(3.2.12)

Then, from the Lagrangian-Eulerian scheme follows:

𝑧𝑛+1
𝑗 =

1

4
𝑧𝑛

𝑗⊗1 +
1

2
𝑧𝑛

𝑗 +
1

4
𝑧𝑛

𝑗+1 ⊗ 𝑘

2ℎ2

(︂
𝐻 ′(𝑈𝑛

𝑗 )(𝑈𝑛
𝑗+1 ⊗ 𝑈𝑛

𝑗 ) +
1

2
𝐻 ′′(𝜃1)(𝑈

𝑛
𝑗+1 ⊗ 𝑈𝑛

𝑗 )2
)︂

⊗ 𝑘

2ℎ2

(︂
𝐻 ′(𝑈𝑛

𝑗⊗1)(𝑈
𝑛
𝑗 ⊗ 𝑈𝑛

𝑗⊗1) +
1

2
𝐻 ′′(𝜃2)(𝑈

𝑛
𝑗 ⊗ 𝑈𝑛

𝑗⊗1)
2
)︂

⊗ 𝑘

2ℎ2

(︂
𝐻 ′(𝑈𝑛

𝑗 )(𝑈𝑛
𝑗⊗1 ⊗ 𝑈𝑛

𝑗 ) +
1

2
𝐻 ′′(𝜃3)(𝑈

𝑛
𝑗⊗1 ⊗ 𝑈𝑛

𝑗 )2
)︂

⊗ 𝑘

2ℎ2

(︂
𝐻 ′(𝑈𝑛

𝑗⊗1)(𝑈
𝑛
𝑗⊗2 ⊗ 𝑈𝑛

𝑗⊗1) +
1

2
𝐻 ′′(𝜃4)(𝑈

𝑛
𝑗⊗2 ⊗ 𝑈𝑛

𝑗⊗1)
2
)︂
,

where 𝜃1 is between 𝑈𝑛
𝑗+1 and 𝑈𝑛

𝑗 , 𝜃2 and 𝜃3 is between 𝑈𝑛
𝑗 and 𝑈𝑛

𝑗⊗1, and 𝜃4 is between 𝑈𝑛
𝑗⊗2

and 𝑈𝑛
𝑗⊗1. Write (3.2) as:

𝑧𝑛+1
𝑗 =

(︁
1
4

+ 𝑘
2ℎ
𝐻 ′(𝑈𝑛

𝑗⊗1)
)︁
𝑧𝑛

𝑗⊗1 +
(︁

1
2

+ 𝑘
2ℎ
𝐻 ′(𝑈𝑛

𝑗 ) ⊗ 𝑘
2ℎ
𝐻 ′(𝑈𝑛

𝑗⊗1)
)︁
𝑧𝑛

𝑗

+
(︁

1
4

⊗ 𝑘
2ℎ
𝐻 ′(𝑈𝑛

𝑗 )
)︁
𝑧𝑛

𝑗+1

⊗𝑘
4

(︁
𝐻 ′′(𝜃1)(𝑧

𝑛
𝑗+1)

2 + (𝐻 ′′(𝜃2) +𝐻 ′′(𝜃3))(𝑧
𝑛
𝑗 )2 +𝐻 ′′(𝜃4)(𝑧

𝑛
𝑗⊗1)

2
)︁

(3.2.13)

Now, deĄne 𝑧𝑛
𝑗 = max¶𝑧𝑛

𝑗⊗1, 𝑧
𝑛
𝑗 , 𝑧

𝑛
𝑗+1, 0♢. Take 𝑧𝑛

𝑗 = 0. Then estimate (3.2.2) holds, since 𝑧𝑛
𝑗 ⊘

𝑧𝑛
𝑗 ⊘ 𝐸/𝑛𝑘. Suppose now that 𝑧𝑛

𝑗 ̸= 0 with 𝑧𝑛
𝑗 = 𝑧𝑛

𝑗+1. As in [139], the other possibilities can
be analyzed by means of the same techniques. Using the Lagrangian-Eulerian CFL condition
written as 𝐴𝑘/ℎ ⊘ 1/2 ( see (2.1.28)) we have,

𝑧𝑛+1
𝑗 ⊘

(︁
1
4

+ 𝑘
2ℎ
𝐻 ′(𝑈𝑛

𝑗⊗1)
)︁
𝑧𝑛

𝑗 +
(︁

1
2

+ 𝑘
2ℎ
𝐻 ′(𝑈𝑛

𝑗 ) ⊗ 𝑘
2ℎ
𝐻 ′(𝑈𝑛

𝑗⊗1)
)︁
𝑧𝑛

𝑗

+

(︃
1

4
⊗ 𝑘

2ℎ
𝐻 ′(𝑈𝑛

𝑗 )

)︃
𝑧𝑛

𝑗 ⊗ 𝑐𝑘

4

(︁
4(𝑧𝑛

𝑗+1)
2
)︁

⊘ 𝑧𝑛
𝑗 ⊗𝑐𝑘(𝑧𝑛

𝑗 )2.

(3.2.14)
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By Lemma 3.2.1 we see ♣𝑈𝑛
𝑗 ♣⊘ 𝑀 . This plus CFL condition (3.2.8) for scheme (3.2.5) and the

fact 𝑐 ⊘ 𝐴/4𝑀 reads,

𝑧𝑛
𝑗 ⊘ ♣𝑧𝑛

𝑗 ♣⊘ 𝑀

ℎ
⊘ 𝑀

2𝐴𝑘
⊘
(︂
𝑀

𝑘

)︂(︂
1

2𝐴

)︂
⊘
(︂
𝑀

𝑘

)︂(︂
1

8𝑐𝑀

)︂
=

1

8𝑘𝑐
. (3.2.15)

Take 𝑀𝑛 = max𝑗¶𝑧𝑛
𝑗 ♢ and notice that 𝑀𝑛 ⊙ 0. Next, deĄne ã(𝑦) = 𝑦 ⊗ 𝑐𝑘𝑦2 to perform the

calculation ã′ = 1 ⊗ 2𝑐𝑘𝑦 to see that it is an increasing function if 𝑦 < 1
2𝑐𝑘

. From (3.2.15)

follows that 𝑧𝑛
𝑗 ⊘ 𝑀𝑛 ⊘ (8𝑘𝑐)⊗1 < (2𝑘𝑐)⊗1 such that,

ã(𝑧𝑛
𝑗 ) ⊘ ã(𝑀𝑛), which in turn gives 𝑧𝑛

𝑗 ⊗ 𝑐𝑘(𝑧𝑛
𝑗 )2 ⊘ 𝑀𝑛 ⊗ 𝑐𝑘(𝑀𝑛)2. (3.2.16)

Again, following [139] we use (3.2.14) to conclude that 𝑧𝑛+1
𝑗 ⊘ 𝑀𝑘 ⊗ 𝑐ℎ(𝑀𝑛)2 for all 𝑗 ∈ Z,

and furthermore that,
𝑀𝑛+1 ⊘ 𝑀𝑛 ⊗ 𝑐𝑘(𝑀𝑛)2. (3.2.17)

We suppose1 that for all 𝑛,
𝑀𝑛 ⊘ 𝑤(𝑛𝑘), (3.2.18)

then we get 𝑧𝑛
𝑗 ⊘ 𝑀𝑛 ⊘ 𝑤(𝑛𝑘) ⊘ 1

𝑐𝑛𝑘 + 1
𝑀0

⊘ 1

𝑐𝑛𝑘
=

𝐸

𝑛𝑘
. with this, the Lemma is proved. It

thus remains to prove (3.2.18). This is done by induction. Note that the case 𝑛 = 0 is trivial.
Suppose that (3.2.18) holds for 𝑛; in order to show it for 𝑛+ 1, we need a Lemma.

Lemma 3.2.3. If J is a constant, and

𝐽 ⊗ 𝑤(𝑛𝑘)

𝑘
⊘ 𝑤′(𝑛𝑘), (3.2.19)

then 𝐽 ⊘ 𝑤(𝑛𝑘 + 𝑘).

𝑃 𝑟𝑜𝑜𝑓 . First we note that 𝑤(𝑡) > 0 if 𝑡 > 0, therefore 𝑤′(𝑡) < 0 and 𝑤′′(𝑡) > 0 on 𝑡 ⊘ 0.
then

𝑤(𝑛𝑘 + 𝑘) ⊗ 𝑤(𝑛𝑘)

𝑘
⊙ 𝑤′(𝑛𝑘) ⊙ 𝐽 ⊗ 𝑤(𝑛𝑘)

𝑘
(3.2.20)

so that 𝑤(𝑛𝑘 + 𝑘) ⊙ 𝐽 . With this the lemma is proved.

Completing now the proof of Lemma (3.2.2), we have from (3.2.17) 𝑀𝑛+1 ⊘ 𝑀𝑛 ⊗𝑐𝑘(𝑀𝑛)2,
but also

𝑀𝑛 ⊘ 𝑤(𝑛𝑘) =
1

𝑐𝑛𝑘 + 1/𝑀0
⊘ 1

𝑐𝑛𝑘 + 𝑐𝑘
⊘ 1

2𝑐𝑘
(3.2.21)

since (3.2.18) holds and 𝑛 ⊙ 1. Since ã is monotone on this interval, ã(𝑀𝑛) ⊘ ã(𝑤(𝑛𝑘)), then

𝑀𝑛+1 ⊘ 𝑀𝑛 ⊗ 𝑐𝑘(𝑀𝑛)2 ⊘ 𝑤(𝑛𝑘) ⊗ 𝑐𝑘(𝑤(𝑛𝑘))2. (3.2.22)

With this
𝑀𝑛+1 ⊗ 𝑤(𝑛𝑘)

𝑘
⊘ ⊗𝑐𝑘(𝑤(𝑛𝑘))2 = 𝑤′(𝑛𝑘), (3.2.23)

with the Lemma 3.2.3 gives 𝑀𝑛+1 ⊘ 𝑤(𝑛𝑘 + 𝑘). This completes the proof.

1Here we also include the hint used in [139]: consider the following ordinary differential equation
𝑑𝑤

𝑑𝑡
= ⊗𝑐𝑤2,

𝑡 > 0, with initial condition is 𝑤(0) = 𝑀0, whose solution is given by 𝑤(𝑡) =
1

𝑐𝑡 + 1
𝑀0

.
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Lemma 3.2.4. (Space Estimate). For any 𝑋 > 0 and 𝑛𝑘 ⊙ Ð > 0, there is a constant 𝐶
depending on 𝑋 and Ð, but independent of 𝑘 and ℎ, such that,

∑︁

♣𝑗♣⊘ 𝑋
ℎ

♣𝑈𝑛
𝑗+1 ⊗ 𝑈𝑛

𝑗 ♣⊘ 𝐶. (3.2.24)

𝑃𝑟𝑜𝑜𝑓 . Let 𝑉 𝑛
𝑗 = 𝑈𝑛

𝑗 ⊗ 𝐶1𝑗ℎ, where 𝐶1 is kept as large as needed to hold true 𝐸
Ð
< 𝐶1.

Thus using Lemma 3.2.2 (with a modiĄed stencil to the entropy condition (3.2.6) and (3.2.2)
to our Lagrangian-Eulerian scheme (3.2.5) reads,

𝑉 𝑛
𝑗+1 ⊗ 𝑉 𝑛

𝑗 = 𝑈𝑛
𝑗+1 ⊗ 𝐶1(𝑗 + 1)ℎ⊗ 𝑈𝑛

𝑗 + 𝐶1𝑗ℎ

= 𝑈𝑛
𝑗+1 ⊗ 𝑈𝑛

𝑗 ⊗ 𝐶1ℎ ⊘ ℎ𝐸

𝑛𝑘
⊗ 𝐶1ℎ = ℎ

(︂
𝐸

𝑛𝑘
⊗ 𝐶1

)︂
⊘ ℎ

(︂
𝐸

Ð
⊗ 𝐶1

)︂
< 0,

and

∑︁

♣𝑗♣⊘ 𝑋
ℎ

♣𝑈𝑛
𝑗+1 ⊗ 𝑈𝑛

𝑗 ♣ ⊘
∑︁

♣𝑗♣⊘ 𝑋
ℎ

♣𝑉 𝑛
𝑗+1 ⊗ 𝑉 𝑛

𝑗 ♣+
∑︁

♣𝑗♣⊘ 𝑋
ℎ

𝐶1 ℎ⊗
∑︁

♣𝑗♣⊘ 𝑋
ℎ

(𝑉 𝑛
𝑗+1 ⊗ 𝑉 𝑛

𝑗 ) + 𝐶1 ℎ
(︂

2𝑋

ℎ

)︂

⊘ 2 max
♣𝑗♣ ⊘ ♣𝑉 𝑛

𝑗
♣
+2𝐶1 𝑋⊘2𝑀+2𝐶1 𝑋,

and the desired result is proved. In [139], it was shown that the Ąnite difference approximations
to the entropy solution of the initial value problem (3.1.1) converge to all upper-half plane
⊗∞ < 𝑥 < ∞, 𝑡 > 0. Due to the nature of the stencil of the Lax-Friedrichs scheme, two cases
with respect to the discrete time level were computed independently, namely when 𝑛⊗ 𝑝 > 0 is
even and when 𝑛⊗𝑝 > 0 is odd. Here we will use the same Lagrangian-Eulerian scheme (3.2.5)
with a pertinent change in the proof to account both situations simultaneously, as performed
in the entropy condition (3.2.6) Ű see also (3.2.2) Ű as well as in the previous Space Estimate
Lemma 3.2.4.

Lemma 3.2.5. (Time Estimate). If 𝑘
ℎ

⊘ Ó < 0, and ℎ, 𝑘 ⊘ 1, then there exist an 𝐿 > 0,
independent of 𝑘 and ℎ such that if 𝑛 > 𝑝, 𝑝𝑘 ⊙ Ð > 0,

∑︁

♣𝑗♣⊘ 𝑋
ℎ

♣𝑈𝑛
𝑗 ⊗ 𝑈𝑝

𝑗 ♣⊘ 𝐿(𝑛⊗ 𝑝)𝑘. (3.2.25)

𝑃𝑟𝑜𝑜𝑓 . Let

𝐴 =
1

4
+

ℎ

2𝑘
𝐻 ′(𝜃𝑗), 𝐵 =

1

2
, 𝐶 =

1

4
⊗ ℎ

2𝑘
𝐻 ′(𝜃𝑗). (3.2.26)

We point out that under CFL condition for stability of Ąnite difference Lagrangian-Eulerian
scheme (3.2.5) given by 𝐴𝑘/ℎ ⊘ 1/2 Ű see (2.1.28) Ű that 𝐴, 𝐵 and 𝐶 are non-negative numbers
and satisfy that 𝐴 + 𝐵 + 𝐶 = 1, i.e., the convexity of the Ćux function. We now write the
Lagrangian-Eulerian scheme (3.2.5) as,

𝑈𝑛+1
𝑗 = 𝐴𝑈𝑛

𝑗⊗1 +𝐵𝑈𝑛
𝑗 + 𝐶𝑈𝑛

𝑗+1, (3.2.27)
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and then using the fact that 𝐴+𝐵 + 𝐶 = 1 reads,

♣𝑈𝑛
𝑗 ⊗ 𝑈𝑛⊗1

𝑗 ♣⊘ 𝐴♣𝑈𝑛⊗1
𝑗⊗1 ⊗ 𝑈𝑛⊗1

𝑗 ♣+𝐵♣𝑈𝑛⊗1
𝑗+1 ⊗ 𝑈𝑛⊗1

𝑗 ♣. (3.2.28)

Multiplying by ℎ, by summing, and using Lemma (3.2.4)
∑︁

♣𝑗♣⊘ 𝑋
ℎ

♣𝑈𝑛
𝑗 ⊗ 𝑈𝑛⊗1

𝑗 ♣ ℎ ⊘ 𝐴
∑︁

♣𝑗♣⊘ 𝑋
ℎ

♣𝑈𝑛⊗1
𝑗⊗1 ⊗ 𝑈𝑛⊗1

𝑗 ♣ ℎ + 𝐵
∑︁

♣𝑗♣⊘ 𝑋
ℎ

♣𝑈𝑛⊗1
𝑗+1 ⊗ 𝑈𝑛⊗1

𝑗 ♣ ℎ ⊘ 𝑐 ℎ.
(3.2.29)

If (𝑛⊗ 𝑝) ∈ N, the systematic use of the triangle inequality gives,
∑︁

♣𝑗♣⊘ 𝑋
ℎ

♣𝑈𝑛
𝑗 ⊗ 𝑈𝑝

𝑗 ♣ℎ ⊘
∑︁

♣𝑗♣⊘ 𝑋
ℎ

♣𝑈𝑛
𝑗 ⊗ 𝑈𝑛⊗1

𝑗 + 𝑈𝑛⊗1
𝑗 + ≤ ≤ ≤ + 𝑈𝑝⊗1

𝑗 ⊗ 𝑈𝑝
𝑗 ♣ℎ

⊘
∑︁

♣𝑗♣⊘ 𝑋
ℎ

𝑛⊗1∑︁

𝑖=𝑝

♣𝑈 𝑖
𝑗 ⊗ 𝑈 𝑖+1

𝑗 ♣ℎ ⊘
𝑛⊗1∑︁

𝑖=𝑝

∑︁

♣𝑗♣⊘ 𝑋
ℎ

♣𝑈 𝑖
𝑗 ⊗ 𝑈 𝑖+1

𝑗 ♣ℎ

⊘
𝑛⊗1∑︁

𝑖=𝑝

𝑐 ℎ = 𝑐 ℎ(𝑛⊗ 𝑝) =
𝑐

Ó
(𝑛⊗ 𝑝).

(3.2.30)

The desired proof gives us that the solution of the Ąnite difference Lagrangian-Eulerian scheme
has a Ąnite speed of propagation with Lipschitz constant 𝐿 = 𝑐

Ó
in 𝑡, namely saying that under

the pertinent stability condition ℎ/𝑘 ⊙ Ó > 0 that the discrete values 𝑈𝑛
𝑗 produced by the Ąnite

difference scheme from the values of 𝑈0
𝑗 for a bounded set of values for all involved 𝑗′𝑠.

As in [139] we were also able to show that the difference approximations are 𝐿1 locally
Lipschitz continuous in 𝑡.

Lemma 3.2.6. (Stability) Let ¶𝑈𝑛
𝑗 ♢ and ¶𝑉 𝑛

𝑗 ♢ be solution of the Ąnite difference Lagrangian-
Eulerian scheme (3.2.5), corresponding to the initial values 𝑈0

𝑗 and 𝑉 0
𝑗 , respectively, where

sup𝑗¶♣𝑈0
𝑗 ♣♢ < 𝑀 and sup𝑗¶♣𝑉 0

𝑗 ♣♢ < 𝑀 . Then if 𝑛 > 0,

∑︁

♣𝑗♣ ⊘ 𝑁

♣𝑈𝑛
𝑗 ⊗ 𝑉 𝑛

𝑗 ♣ℎ ⊘
∑︁

♣𝑗♣ ⊘ 𝑁+𝑘

♣𝑈0
𝑗 ⊗ 𝑉 0

𝑗 ♣ℎ. (3.2.31)

𝑃𝑟𝑜𝑜𝑓 . Let 𝑊 𝑛
𝑗 = 𝑈𝑛

𝑗 ⊗ 𝑉 𝑛
𝑗 . Thus from the corresponding Lagrangian-Eulerian scheme

(3.2.5) reads,

𝑊 𝑛+1
𝑗 =

1

4
𝑊 𝑛

𝑗⊗1+
1

2
𝑊 𝑛

𝑗 +
1

4
𝑊 𝑛

𝑗+1⊗ 𝑘

2ℎ
𝐻 ′(𝜃𝑗+1) (𝑈𝑛

𝑗+1⊗𝑉 𝑛
𝑗+1)+

𝑘

2ℎ
𝐻(𝜃𝑗⊗1) (𝑈𝑛

𝑗⊗1⊗𝑉 𝑛
𝑗⊗1), (3.2.32)

where 𝜃𝑗+1 (resp. 𝜃𝑗⊗1) is between 𝑈𝑛
𝑗+1 and 𝑉 𝑛

𝑗+1 (resp. 𝑈𝑛
𝑗⊗1 and 𝑉 𝑛

𝑗⊗1). Therefore,

𝑊 𝑛+1
𝑗 =

(︃
1

4
+

𝑘

2ℎ
𝐻 ′(𝜃𝑗⊗1)

)︃
𝑊 𝑛

𝑗⊗1 +
1

2
𝑊 𝑛

𝑗 +

(︃
1

4
⊗ 𝑘

2ℎ
𝐻 ′(𝜃𝑗+1

)︃
𝑊 𝑛

𝑗+1. (3.2.33)

The coefficients of the scheme (3.2.33) 𝑊 𝑛
𝑗⊗1, 𝑊

𝑛
𝑗 and 𝑊 𝑛

𝑗+1 are non-negative numbers under
the CFL condition (2.1.28); see also the Time Estimate Lemma 3.2.5. Thus,

♣𝑊 𝑛+1
𝑗 ♣⊘

(︃
1

4
+

𝑘

2ℎ
𝐻 ′(𝜃𝑗⊗1)

)︃
♣𝑊 𝑛

𝑗⊗1♣+
1

2
♣𝑊 𝑛

𝑗 ♣+
(︃

1

4
⊗ 𝑘

2ℎ
𝐻 ′(𝜃𝑗+1

)︃
♣𝑊 𝑛

𝑗+1♣. (3.2.34)
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If we sum up for all ♣𝑗♣⊘ 𝑁 ,

∑︁

♣𝑗♣⊘𝑁

♣𝑊 𝑛+1
𝑗 ♣⊘

∑︁

♣𝑗♣⊘𝑁

[︃
1

4
+

𝑘

2ℎ
𝐻 ′(𝜃𝑗⊗1)

⟨
♣𝑊 𝑛

𝑗⊗1♣+
1

2

∑︁

♣𝑗♣⊘𝑁

♣𝑊 𝑛
𝑗 ♣+

∑︁

♣𝑗♣⊘𝑁

[︃
1

4
⊗ 𝑘

2ℎ
𝐻 ′(𝜃𝑗+1

⟨
♣𝑊 𝑛

𝑗+1♣,

or rearranged the index of the sum in convenient form,

∑︁

♣𝑗♣⊘𝑁

♣𝑊 𝑛+1
𝑗 ♣⊘

∑︁

♣𝑗♣⊘𝑁+1

(︃
1

4
+

𝑘

2ℎ
𝐻 ′(𝜃𝑗) +

1

2
+

1

4
⊗ 𝑘

2ℎ
𝐻 ′(𝜃𝑗

)︃
♣𝑊 𝑛

𝑗 ♣=
∑︁

♣𝑗♣⊘𝑁+1

♣𝑊 𝑛
𝑗 ♣.

Thus, by induction arguments (for 𝑛) plus the CFL condition for stability of Ąnite difference
Lagrangian-Eulerian scheme (3.2.5) essentially to assure the convexity, the result of Lemma
3.2.6 is then established. Next, to investigate the convergence of the Lagrangian-Eulerian
approximations we will follow very closely the constructive strategy developed by J. Smoller
[139] (Chapter 16, Lemmas 16.7, 16.8 and 16.9) thanks to an unexpected observation to put
(3.2.1) into the form (3.2.5). For convenience of the reader we recall the key arguments in
what follows, but highlighting the pertinent modiĄcations to accommodate the proofs to our
Lagrangian-Eulerian Ąnite difference scheme (3.2.5). Thus, following the same constructive
approach, we wish to consider the approximations as functions deĄned in the upper-half plane,
i.e., ⊗∞ < 𝑥 < ∞ and 𝑡 ⊙ 0. To this end, we will construct a family of functions ¶𝑈𝑘,ℎ♢
extracted from the ¶𝑈𝑛

𝑗 ♢ by deĄning,

𝑈𝑘,ℎ(𝑥, 𝑡) = 𝑈𝑛
𝑗 , (𝑥, 𝑡) ∈ 𝑅, (3.2.35)

where 𝑅 = ¶(𝑥, 𝑡) : 𝑗ℎ ⊘ 𝑥 ⊘ (𝑗 + 1)ℎ, 𝑛𝑘 ⊘ 𝑡 ⊘ (𝑛 + 1)𝑘♢, thus the value of 𝑈𝑘,ℎ in the
rectangle 𝑅 is the value of the difference approximation at the point (𝑛𝑘, 𝑗ℎ).

Lemma 3.2.7. (Lemma 16.7, Chapter 16 at [139]) There exist a sequence 𝑈𝑘𝑖,ℎ𝑖
⊖ 𝑈𝑘,ℎ which

converge to a measurable function 𝑢(𝑥, 𝑡) in the sense that for any 𝑋 > 0, 𝑡 > 0, and 𝑇 > 0,
both ∫︁

♣𝑥♣⊘𝑋
♣𝑈𝑘𝑖,ℎ𝑖

(𝑥, 𝑡) ⊗ 𝑢(𝑥, 𝑡)♣𝑑𝑥 ⊗⊃ 0, (3.2.36)
∫︁

0⊘𝑡⊘𝑇

∫︁

♣𝑥♣⊘𝑋
♣𝑈𝑘𝑖,ℎ𝑖

(𝑥, 𝑡) ⊗ 𝑢(𝑥, 𝑡)♣𝑑𝑥 𝑑𝑡 ⊗⊃ 0, (3.2.37)

as 𝑖 ⊗⊃ ∞ (i.e., (𝑘𝑖, ℎ𝑖) ⊗⊃ (0, 0)). Furthermore, the limit function satisĄes sup𝑥∈R

𝑡>0
♣𝑢(𝑥, 𝑡)♣⊘ 𝑀

and the stability inequality (3.2.7).

The proof start from Lemmas 3.2.1 and 3.2.4, which in turn we were successful in establishing
the set of functions 𝑈𝑘,ℎ as functions of 𝑥 that are uniformly bounded, and have uniformly
bounded total variation on each bounded interval on any line 𝑡 = 𝑐𝑜𝑛𝑠𝑡. > 0, with respect
to the Ąnite difference computational mesh grid 𝑘 and ℎ. The remaining of the proof is kept
unchanged by invoking HelleyŠs theorem to construct a subsequence 𝑈 ′

𝑘,ℎ which in turn converges
at each point on any bounded interval, but for all time lines 𝑡 = 𝑐𝑜𝑛𝑠𝑡. > 0 in the upper-half
plane. We recall that we have used a different stencil with respect to the spatial grid with
length; see the Ąnite difference form (3.2.5). Thus, Lemma 3.2.8 and Lemma 3.2.41 are our
analogue versions of Lemma 16.8 and Lemma 16.9 of Chapter 16 proved in [139]. It will be
shown that the limit function 𝑢(𝑥, 𝑡) satisĄes the entropy inequality (3.2.6), by using the spatial
distance (𝑥1 ⊗ 𝑥2) > ℎ𝑖 (instead of (𝑥1 ⊗ 𝑥2) > 2ℎ𝑖 in the very beginning) and (𝑈𝑛

𝑗 ⊗ 𝑈𝑛
𝑗⊗1)

(instead of (𝑈𝑛
𝑗 ⊗ 𝑈𝑛

𝑗⊗2) in the r.h.s of (3.2.40)).
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Lemma 3.2.8. The function 𝑢(𝑥, 𝑡) constructed in Lemma 3.2.7 satisĄes an entropic inequality
of the form (2.1.3).

𝑃𝑟𝑜𝑜𝑓 . It suffices to show that if (𝑥1 ⊗ 𝑥2) > ℎ𝑖 and 𝑡 > 𝑘𝑖 that,

𝑈𝑖(𝑥1, 𝑡) ⊗ 𝑈𝑖(𝑥2, 𝑡)

𝑥1 ⊗ 𝑥2

<
𝐸

𝑡⊗ ℎ𝑖

, (3.2.38)

where the 𝑈 ′
𝑖𝑠 are deĄned as in the proof of Lemma 3.2.7, and the constant 𝐸 is deĄned in

Lemma 3.2.2. This is so because if (3.2.38) holds, we get our desired result by passing to the
limit as 𝑖 ⊃ ∞. Thus, let 𝑥1 > 𝑥2, and note that,

𝑈𝑖(𝑥𝑗, 𝑡) = 𝑈𝑖

(︂
𝑥𝑗 ⊗ 𝜀𝑗,

[︂
𝑡

𝑘𝑖

𝑘𝑖

]︂)︂
, 𝑗 = 1, 2, (3.2.39)

for some 𝜀𝑖, where 0 ⊘ 𝜀𝑗 ⊘ ℎ𝑖 thus,

𝑈𝑖(𝑥1, 𝑡) ⊗ 𝑈𝑖(𝑥2, 𝑡)

𝑥1 ⊗ 𝑥2

=
1

𝑥1 ⊗ 𝑥2

∑︁(︁
𝑈𝑛

𝑗 ⊗ 𝑈𝑛
𝑗⊗1

)︁
, (3.2.40)

where 𝑛 = [𝑡/𝑘𝑖]𝑘𝑖 and the sum over all integer in the interval [𝑥2 ⊗ 𝜀2, 𝑥1 ⊗ 𝜀1]. Using Lemma
3.2.2, we have:

𝑈𝑖(𝑥1, 𝑡) ⊗ 𝑈𝑖(𝑥2, 𝑡)

𝑥1 ⊗ 𝑥2

⊘ 𝐸(𝑥1 ⊗ 𝜀1 ⊗ 𝑥2 + 𝜀2)

[(𝑡/𝑘𝑖)] 𝑘𝑖(𝑥1 ⊗ 𝑥2)

⊘ 𝐸(𝑥1 ⊗ 𝜀1 ⊗ 𝑥2 + 𝜀2)

(𝑡⊗ 𝑘𝑖)(𝑥1 ⊗ 𝑥2)

⊘ 𝐸

(𝑡⊗ 𝑘𝑖)
+

𝐸(𝜀2 ⊗ 𝜀1)

(𝑡⊗ 𝑘𝑖)(𝑥1 ⊗ 𝑥2)

⊘ 2𝐸

(𝑡⊗ 𝑘𝑖)
.

since 𝜀2 ⊗𝜀1 ⊘ ℎ𝑖 ⊘ 1, for 𝑖 large, and thus the desired result of the Lemma 3.2.8 is established.
In the next Lemma 3.2.41 we make a direct use of the form Lagrangian-Eulerian Ąnite

difference scheme (3.2.5).

Lemma 3.2.9. Let ℎ𝑖 ⊃ 0 as 𝑖 ⊃ ∞, and suppose that for ã ∈ 𝐶3
0 ,

lim
𝑖⊃∞

∫︁ ∞

⊗∞
[𝑈𝑖(𝑥, 0) ⊗ 𝑢0(𝑥)]ã(𝑥, 0)𝑑𝑥 = 0. (3.2.41)

Then 𝑢 satisĄes ∫︁∫︁

𝑡>0
(𝑢ã𝑡 +𝐻(𝑢)ã𝑥)𝑑𝑥𝑑𝑡+

∫︁

𝑡=0
𝑢0(𝑥)𝑑𝑥 = 0, (3.2.42)

for every test function ã ∈ 𝐶1
0 (associated with the initial value problem (3.1.1)).

𝑃𝑟𝑜𝑜𝑓 . Since ã is bounded and measurable, (3.2.41) holds if for every 𝑋 > 0,

lim
𝑖⊃∞

∫︁ 𝑋

⊗𝑋
♣𝑈𝑖(𝑥, 0) ⊗ 𝑢0(𝑥)♣𝑑𝑥 = 0. (3.2.43)
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However, since 𝑢0 is bounded and measurable, there exist step functions 𝑈ℎ(𝑥, 0), constant on
intervals 𝑗ℎ ⊘ (𝑗 + 1)ℎ, 𝑗 ∈ Z, which converge locally in 𝐿1 to 𝑢0 satisfying (3.2.43). As in
[139], we take these functions to deĄne the initial values of our Lagrangian-Eulerian scheme
(3.2.5). We also note that this scheme can be written in the form,

𝑈𝑛+1
𝑗 ⊗ 𝑈𝑛

𝑗

𝑘
⊗ 𝑈𝑛

𝑗⊗1 ⊗ 2𝑈𝑛
𝑗 + 𝑈𝑛

𝑗+1

4𝑘
+
𝐻(𝑈𝑛

𝑗+1) ⊗𝐻(𝑈𝑛
𝑗⊗1)

2ℎ
= 0. (3.2.44)

Multiplying (3.2.44) by ã𝑛
𝑗 = ã(𝑗ℎ, 𝑛𝑘) reads,

ã𝑛+1
𝑗 𝑈𝑛+1

𝑗 ⊗ ã𝑛
𝑗𝑈

𝑛
𝑗

𝑘
⊗ ã𝑛+1

𝑗 ⊗ ã𝑛
𝑗

𝑘
𝑈𝑛+1

𝑗 +
ℎ2

4𝑘

2ã𝑛
𝑗 ⊗ ã𝑛

𝑗+1 ⊗ ã𝑛
𝑗⊗1

ℎ2
𝑈𝑛

𝑗

+
ã𝑛

𝑗+1𝑈
𝑛
𝑗 ⊗ ã𝑛

𝑗𝑈
𝑛
𝑗⊗1

4𝑘
+
ã𝑛

𝑗⊗1𝑈
𝑛
𝑗 ⊗ ã𝑛

𝑗𝑈
𝑛
𝑗+1

4𝑘
+
ã𝑛

𝑗+1𝐻(𝑈𝑛
𝑗+1) ⊗ ã𝑛

𝑗⊗1𝐻(𝑈𝑛
𝑗⊗1)

2ℎ

⊗𝐻(𝑈𝑛
𝑗+1)

ã𝑛
𝑗+1 ⊗ ã𝑛

𝑗

2ℎ
⊗𝐻(𝑈𝑛

𝑗⊗1)
ã𝑛

𝑗 ⊗ ã𝑛
𝑗⊗1

2ℎ
= 0.

The test function ã has compact support and ã𝑛
𝑗 = 0 if 𝑛 ⊙ [𝑇/𝑘]. Multiply (3.2) by ℎ𝑘 and

sum up for all 𝑗 ∈ Z, 𝑛 ∈ Z+. Using the telescopic property at the Ąrst and fourth to sixth
they cancel out, except for the Ąrst term with 𝑘 = 0. Thus,

⊗ℎ
∑︁

𝑗

𝑈0
𝑗 ã

0
𝑗 + ℎ𝑘

∏︀
∐︁∑︁

𝑗,𝑘

[︃
⊗𝑈𝑛+1

𝑗

ã𝑛+1
𝑗 ⊗ ã𝑛

𝑗

𝑘
⊗ ℎ2

4𝑘

ã𝑛
𝑗+1 ⊗ 2ã𝑛

𝑗 + ã𝑛
𝑗⊗1

ℎ2
𝑈𝑛

𝑗

⟨⎞
⎠

⊗ℎ𝑘
∑︁

𝑗,𝑘

𝐻(𝑈𝑛
𝑗+1)

ã𝑛
𝑗+1 ⊗ ã𝑛

𝑗

2ℎ
⊗ ℎ𝑘

∑︁

𝑗,𝑘

𝐻(𝑈𝑛
𝑗⊗1)

ã𝑛
𝑗 ⊗ ã𝑛

𝑗⊗1

2ℎ
= 0.

Since 𝑈𝑘,ℎ is piecewise constant, ã is smooth, and the integrals are limits of step functions, we
can write:

⊗
∑︁

𝑗

𝑈0
𝑗 ã

0
𝑗ℎ = ⊗

∫︁

𝑡=0
𝑈𝑘,ℎã+ Ó1,

⊗
∑︁

𝑗,𝑘

ℎ2

4𝑘

ã𝑛
𝑗+1 ⊗ 2ã𝑛

𝑗 + ã𝑛
𝑗⊗1

ℎ2
𝑈𝑛

𝑗 ℎ𝑘 = ⊗ℎ2

4𝑘

∫︁∫︁

𝑡⊙0
𝑈𝑘,ℎã𝑥𝑥 + Ó3,

⊗
∑︁

𝑗,𝑘

[︃
𝑈𝑛+1

𝑗

ã𝑛+1
𝑗 ⊗ ã𝑛

𝑗

𝑘

⟨
ℎ𝑘 = ⊗

∫︁∫︁

𝑡⊙0
𝑈𝑘,ℎã𝑡 + Ó2,

⊗ℎ𝑘
∑︁

𝑗,𝑘

𝐻(𝑈𝑛
𝑗+1)

ã𝑛
𝑗+1 ⊗ ã𝑛

𝑗

2ℎ
= ⊗1

2

∫︁∫︁

𝑡⊙0
𝐻(𝑈𝑘,ℎ)ã𝑥 + Ó̂4.

With the above four identities we can write the immediately previous equation in weak form
above as,

⊗
∫︁

𝑡=0
𝑈𝑘,ℎã+ Ó1 ⊗

∫︁∫︁

𝑡⊙0
𝑈𝑘,ℎã𝑡 + Ó2 ⊗ ℎ2

4𝑘

∫︁∫︁

𝑡⊙0
𝑈𝑘,ℎã𝑥𝑥 + Ó3 ⊗

∫︁∫︁

𝑡⊙0
𝐻(𝑈𝑘,ℎ)ã𝑥 + Ó4 = 0,
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where Ó𝑖 ⊃ 0 uniformly, as ℎ, 𝑘 ⊃ 0. We replace 𝑈𝑘,ℎ by 𝑈𝑖 = 𝑈𝑘𝑖,ℎ𝑖
to get:

∫︁∫︁

𝑡⊙0
(𝑈𝑖ã𝑡 +𝐻(𝑈𝑖)ã𝑥) +

ℎ2
𝑖

4𝑘𝑖

∫︁∫︁

𝑡⊙0
𝑈𝑖ã𝑥𝑥 +

∫︁

𝑡=0
𝑈𝑖ã = Ó(𝑘𝑖, ℎ𝑖). (3.2.45)

Notice that Ó(𝑘𝑖, ℎ𝑖) ⊃ 0 as 𝑖 ⊃ ∞. Thus, if 𝑖 ⊃ ∞, 𝑈𝑖 ⊃ 𝑢 locally in 𝐿1 (Lemma 3.2.8), and
ℎ𝑖 ⊃ 0, ℎ2

𝑖 /𝑘𝑖 ⊃ 0 (since ℎ𝑖/𝑘𝑖 is bounded), so that, by choice of the initial data, we have

ℎ2
𝑖

4𝑘𝑖

∫︁∫︁

𝑡⊙0
𝑈𝑖ã𝑥𝑥 ⊗⊃ 0,

∫︁

𝑡=0
𝑈𝑖ã ⊗⊃

∫︁

𝑡=0
𝑢ã,

∫︁∫︁

𝑡⊙0
𝑈𝑖ã𝑡 ⊗⊃

∫︁∫︁

𝑡⊙0
𝑢ã𝑡,

and it Ąnally reads,

⧹︃⧹︃⧹︃⧹︃
∫︁∫︁

𝑡⊙0
[𝐻(𝑈𝑖) ⊗𝐻(𝑢)]ã𝑥

⧹︃⧹︃⧹︃⧹︃ ⊘ ‖ã𝑥‖𝐿∞

∫︁∫︁

𝑠𝑝𝑡 ã
♣𝐻(𝑈𝑖) ⊗𝐻(𝑢)♣⊘ ‖ã𝑥‖𝐿∞

∫︁∫︁

𝑠𝑝𝑡 ã
♣𝐻 ′(Ý)♣ ♣𝑈𝑖 ⊗ 𝑢♣,

where Ý is some point in 𝑠𝑝𝑡 of ã, and there is a constant 𝐶 independent of 𝑖 so that,

⧹︃⧹︃⧹︃⧹︃
∫︁∫︁

𝑡⊙0
[𝐻(𝑈𝑖) ⊗𝐻(𝑢)]ã𝑥

⧹︃⧹︃⧹︃⧹︃ ⊘ 𝐶
∫︁∫︁

𝑠𝑝𝑡 ã
♣𝑈𝑖 ⊗ 𝑢♣, (3.2.46)

Thus, we conclude that ∫︁∫︁

𝑡⊙0
𝐻(𝑈𝑖)ã𝑥 ⊗⊃

∫︁∫︁

𝑡⊙0
𝑓(𝑢)ã𝑥. (3.2.47)

With this, as 𝑖 ⊃ ∞,

∫︁∫︁

𝑡>0
(𝑢ã𝑡 +𝐻(𝑢)ã𝑥)𝑑𝑥𝑑𝑡+

∫︁

𝑡=0
𝑢0(𝑥)𝑑𝑥 = 0, (3.2.48)

and the proof of the Lemma 3.2.9 is now Ąnished.
Thanks to the constructive strategy designed by J. Smoller in [139], we are ready to accomplish
the Ąnal part of Theorem 3.2.1 we recall that (3.2.43) holds, and thus, so does (3.2.44). Notice
that we have used our Lagrangian-Eulerian Ąnite difference scheme (3.2.5) as a building block
in all steps of the proof. But since 𝐶3

0 is dense in 𝐶1
0 it is also true we get that (3.2.44) holds

for all ã ∈ 𝐶1
0 . Thus 𝑢 is indeed solution of our initial value problem (3.1.1) Ű in the sense of

(3.2.42) Ű and, of course, 𝑢 satisĄes (3.2.6) and (3.2.7), and ♣𝑢♣⊘ ‖𝑢0‖𝐿∞
.

Additionally, we mention the uniqueness of the entropy solution 𝑢 to (3.1.1) with respect to
the entropy condition (3.2.6) constructed by means of the Lagrangian-Eulerian Ąnite difference
scheme (3.2.5) also holds as it is described in details in appendix A. The demonstration of the
uniqueness of the Lagragian-Eulerian scheme follows the steps of the demonstration at [139] for
the Lax-Friedrichs scheme. By means of the Theorem 3.2.1 and similar results it is also possible
to beneĄt from the same results concerning the asymptotic behavior of the entropy solution to an
N-wave; see [139], Chapter 16 Sections B and C for further details. Namely, that our scheme is
able to numerically reproduce the expected asymptotic behavior of the entropy solution for long
time simulations, e.g., to the initial value problem with respect to the inviscid Burgers equation.
To conclude, we point out some further additional advantages of the similarity of structure of
the Lagrangian-Eulerian scheme (3.2.5) with respect to the Lax-Friedrichs scheme to get further
convergence proofs based on the very relevant works for conservation laws for construction of
high order schemes [91, 124, 125, 143] and for discontinuous Ćux functions [16, 29, 94]. Indeed,
central differencing based numerical schemes for hyperbolic with staggered-like control volumes
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seems to beneĄt from a natural structure to capture approximate entropy shock solutions (e.g.,
[94, 124, 151]), which have already been successfully applied to balance laws problems [115] and
to the case of numerical simulation of non-classical waves in three-phase problems in porous
media problems [1, 2]. Thus, [124, 125] is viewed as a high-order sequel to the celebrated
Ąrst-order Lax-Friedrichs on a staggered grid, which in turn also exhibit good shock capturing
entropy properties [16, 29, 91, 94, 124, 125, 143, 151].

3.3 The finite difference Lagrangian-Eulerian scheme in

conservative form

We recall that a numerical formulation of the type Lagrangian-Eulerian scheme for nonlinear
case, which we presented as a generalization of the Lagrangian-Eulerian scheme (2.1.15),

𝑈𝑛+1
𝑗 =

1

4
(𝑈𝑛

𝑗⊗1 + 2𝑈𝑗 + 𝑈𝑗⊗1) ⊗ 𝑘

2ℎ
(𝐻(𝑈𝑛

𝑗+1) ⊗𝐻(𝑈𝑛
𝑗⊗1)), (3.3.1)

where 𝑘 = 𝑘𝑛 and with CFL condition

max
𝑗

⧹︃⧹︃⧹︃⧹︃⧹︃𝐻
′(𝑈𝑛

𝑗 )
𝑘

ℎ

⧹︃⧹︃⧹︃⧹︃⧹︃ ⊘
√

2

2
(3.3.2)

with conservative form

𝑈𝑛+1
𝑗 = 𝑈𝑛

𝑗 ⊗ 𝑘

ℎ
(𝐹 (𝑈𝑛

𝑗 , 𝑈
𝑛
𝑗+1) ⊗ 𝐹 (𝑈𝑛

𝑗⊗1, 𝑈
𝑛
𝑗 )), (3.3.3)

where

𝐹 (𝑈𝑛
𝑗 , 𝑈

𝑛
𝑗+1) =

1

4

[︃
ℎ

𝑘
(𝑈𝑛

𝑗 ⊗ 𝑈𝑛
𝑗+1) + 2(𝐻(𝑈𝑛

𝑗+1) +𝐻(𝑈𝑛
𝑗 ))

⟨
. (3.3.4)

We note that the Ćux in the above expression satisĄes a consistency condition 𝐹 (𝑢, 𝑢) = 𝐻(𝑢)
and to make the numerical scheme is consistent with the original conservation law (2.1.1) some
smoothness is also required and it is possible to prove that the Ćux (3.3.4) satisĄes one the
Lipschitz continuous condition as

♣𝐹 (𝑣, 𝑤) ⊗𝐻(𝑢)♣⊘ 𝐾 max(♣𝑣 ⊗ 𝑢♣, ♣𝑤 ⊗ 𝑢♣), (3.3.5)

for all 𝑣, 𝑤 with ♣𝑣 ⊗ 𝑢♣ and ♣𝑤 ⊗ 𝑢♣ sufficiently small. The above observation about the
nonlinear Lagrangian-Eulerian scheme (3.3.3) is that it satisĄes a consistency condition which
is necessary in order to apply the Lax-Wendroff theorem [147], ensuring the convergence for
the weak solution.

Another important observation is that when we write the scheme in explicit form (3.3.1),
and directly calculate,

𝜕𝑈𝑛+1
𝑗

𝜕𝑈𝑛
𝑖

= 0, 𝑖 ̸= 𝑗 ⊗ 1, 𝑗, 𝑗 + 1.,

𝜕𝑈𝑛+1
𝑗

𝜕𝑈𝑛
𝑗⊗1

=
1

2

[︃
1

2
+
𝑘

ℎ
𝐻 ′(𝑈𝑛

𝑗⊗1)

⟨
,

𝜕𝑈𝑛+1
𝑗

𝜕𝑈𝑛
𝑗

=
1

2
,

𝜕𝑈𝑛+1
𝑗

𝜕𝑈𝑛
𝑗+1

=
1

2

[︃
1

2
⊗ 𝑘

ℎ
𝐻 ′(𝑈𝑛

𝑗+1)

⟨ (3.3.6)
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then, we see that all these right-hand sides are nonnegative, therefore the scheme is monotone
and TVD [42, 75, 76], whenever the CFL condition

max
𝑗

⧹︃⧹︃⧹︃⧹︃⧹︃𝐻
′(𝑈𝑗)

𝑘

ℎ

⧹︃⧹︃⧹︃⧹︃⧹︃ ⊘ 1

2
(3.3.7)

is satisĄed. And is well known that for monotone schemes automatically satisfy a Kru𝑧kov-type
discrete entropy inequality, and therefore approximations converge to an entropy solution

Numerical experiments reveal that the scheme (3.3.1) converge for the weak solution, how-
ever this numerical method cannot be derived with what was performed in the linear case.

3.4 Numerical experiments for hyperbolic problems with

convex and nonconvex fluxes

Relaxation is known to provide a subtitle dissipative mechanism for discontinuities against
the destabilizing effect of nonlinear response (see e.g., [38, 67] and references therein).

For any given system of conservation laws, we will construct a corresponding linear hyper-
bolic system with a stiff source term that approximates the original system with a small dissi-
pative correction [38, 143]. The relaxation approximation to balance law problems can also be
used to construct numerical approximations to the equilibrium purely hyperbolic conservation
law problems. In [88], Jin and Xin developed a class of Ąrst- and second-order nonoscillatory
numerical schemes for the conservation laws based on this approach without the need to use a
computational grid within the order of the relaxation parameter.

A general convergence theory for one dimensional scalar convex conservation laws was de-
veloped by Tadmor and coauthors. The central schemes are simple, efficient and numerically
stable with good entropy properties [69, 99, 124, 125, 126, 143] (see also [94, 151]). Additionally,
in the one dimensional case the limiting relaxed numerical Ćux function bears some similarity
with the second-order non-oscillatory central differencing scheme developed by Nessyahu and
Tadmor [124], in the sense that they both are not Riemann-solver based schemes and then
avoiding the costly upwinding on this approach [39, 124, 143]. with applications to correct
approximations of balance laws (see [115, 130]).

Central differencing based numerical schemes for hyperbolic with staggered-like control vol-
umes seem to beneĄt of a natural structure to capture approximate entropy shock solutions
(e.g., [94, 124, 151]), which have already been successfully applied to balance laws problems
[115, 130] and to the case of numerical simulation of non-classical waves in three-phase problems
in porous media problems [1, 2]. Thus, we use classical Nessyahu and Tadmor [124] for com-
parison purposes. This is a high-order sequel to the celebrated Ąrst-order Lax-Friedrichs on a
staggered grid, which in turn also exhibit good shock capturing entropy properties [1, 2, 94, 151].

In order to give a somewhat concrete evidence we are computing Şgood approximationsŤ to
correct entropy solutions, we will illustrate the viability of the proposed Lagrangian-Eulerian
scheme for the numerical simulation of initial value problems for convex and non-convex Ćux-
type functions.

Example 3.4.1. Inviscid BurgersŠ equation with smooth initial data.

We consider inviscid BurgersŠ equation, numerical approximate solutions with scheme LEH2
(3.2.1) are shown in Figure (3.1) to the Cauchy Problem (Initial Value Problem with convex
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Figure 3.1: Pre-shock and post-shock solutions computed with LEH2 scheme (3.2.1).

Ćux function): 𝑢𝑡 +
(︁

𝑢2

2

)︁
𝑥

= 0, along with smooth initial data 𝑢(𝑥, 0) = 0.5 + 𝑠𝑖𝑛(𝑥) (see, e.g.,

[99]). It is well-known the solution of this problem develops a shock discontinuity at the critical
time 𝑇𝑐 = 1, and then it exhibits pre-shock solution for 𝑇𝑐 < 1 and post-shock solution to
𝑇𝑐 > 1. In top pictures of Figures 3.1 are shown the pre-shock solutions and in bottom pictures
are shown post-shock solutions computed with LEH2 scheme (3.2.1) at time simulation 𝑡 = 2
for 128 cells (left), 256 cells (middle) and 512 (right).

Example 3.4.2. Inviscid BurgersŠ equation with discontinuous initial data.

We have also conducted similar numerical experiments to that reported in Figure 3.1, but
to problem 𝑢𝑡 +

(︁
𝑢2

2

)︁
𝑥

= 0 along with discontinuous initial data 𝑢(𝑥, 0) = Ö(𝑥) = 1, 𝑥 < 0

and 𝑢(𝑥, 0) = Ö(𝑥) = 0, 𝑥 > 0. In top pictures are shown snapshot graphs at time 𝑡 = 2.4
of simulation a shock wave moving from left to right. We get a very nice looking numer-
ical approximate solution with scheme LEH2 (3.2.1) propagating at entirely entropy-correct

Rankine-Hugoniot speed. We have also considered BurgersŠ problem 𝑢𝑡 +
(︁

𝑢2

2

)︁
𝑥

= 0 along with

data 𝑢(𝑥, 0) = Ö(𝑥) = 0, 𝑥 < 0 and 𝑢(𝑥, 0) = Ö(𝑥) = 1, 𝑥 > 0. In Figure 3.2, bottom pictures
are shown snapshot graphs at time 𝑡 = 1 of simulation for a moving rarefaction wave from left
to right, where the rarefaction wave is spreading out correctly and matching with the exact
solution there.

Example 3.4.3. Buckley-Leverett equation

Numerical approximate solutions with scheme LEH2 (3.2.1) are shown to the Riemann
Problem (Initial Value Problem with non-convex Ćux function): 𝑢𝑡 + 𝑓𝑥(𝑢) = 0, along with
Riemann initial data 𝑢(𝑥, 0) ⊕ Ö(𝑥) = 1, 𝑥 < 0 and 𝑢(𝑥, 0) ⊕ Ö(𝑥) = 0, 𝑥 > 0. On physical
grounds, such initial data corresponds to waterĆooding of an oil reservoir. The well known
solution for this model comprises a leading shock wave (an oil bank) followed by an attached
rarefaction wave. The smoothing of the saturation proĄle observed at the trailing edge of the
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Figure 3.2: Numerical approximation with discontinuous initial data.

rarefaction wave where 𝑢 = 0.8, is solely the effect of numerical dissipation. The weak solution
satisfying the Oleinik entropy condition is in very good agreement, along with the LEH1 and
LEH2 schemes, propagating at entirely entropy-correct Rankine-Hugoniot speed and with the
precisely post-shock value. In Figure 3.3 are shown numerical solutions with 128 cells (top)
and 256 cells (bottom) avanced at times 𝑡 = 0.3 (left), 𝑡 = 0.6 (middle) and 𝑡 = 1 (right).

Example 3.4.4. Other non-convex Ćux

We have also considered another non-convex Ćux function, approximated with scheme LEH2
(3.2.1), to the scalar conservation law 𝑢𝑡 + 𝑓𝑥(𝑢) = 0, namely 𝑓(𝑢) = 0.5(𝑒⊗25(𝑢⊗0.5)2

+ 8(𝑢 ⊗
0.5)2), and with same Riemann data. Again, the numerical solutions is in agreement with
Oleinik entropy condition, whose approximate left and right shock waves are propagating with
correct Rankine-Hugoniot speed and entropy-correct post-shock values. In Figure 3.4 are shown
numerical approximations with 256 cells (top) and 512 cells (bottom). Snapshot graphs at
simulation times 𝑡 = 0.3 (left), 𝑡 = 0.6 (middle) and 𝑡 = 1 (right).

3.5 Numerical experiments with discontinuous flux func-

tions, model problems Adimurthi, J. Jaffré and V.

Gowda §3.5.1 and R. Burger, K. H. Karlsen and J.

D. Towers §3.5.2

We turn our attention to consider examples for scalar conservation laws with discontinuous
Ćux function as discussed in [14] and [29], which in turn was numerically handled by a Godunov
method and by a Engquist-Osher type scheme, respectively. Here we were able to successfully
reproduce the same qualitative solutions and features with the aid of our Lagrangian-Eulerian
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Figure 3.3: Buckley-Leverett with discontinous inital data.
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Figure 3.4: Numerical approximation with other non-convex Ćux
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scheme with a convenient Ranking-Hugoniot compatibility condition at the discontinuity. In
order to demonstrate the algorithm behavior and its applicability Although with a higher
number of computational grid cells, the new numerical scheme is very easy to code and very
fast to run on basic laptop as a serial code in a single core for the 1D and 2D numerical
experiments. Our interest speciĄcally is over the IVP,

𝜕𝑢

𝜕𝑡
+
𝜕𝐹 (𝑥, 𝑢)

𝜕𝑥
= 0, (𝑥, 𝑡) ∈ R × (0, 𝑇 ), 𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ R, (3.5.1)

𝐹 (𝑥, 𝑢) = 𝐻(𝑥)𝑓(𝑢) + (1 ⊗𝐻(𝑥))𝑔(𝑢) = 𝑓(𝑢), 𝑥 ⊙ 0 (3.5.2)

or
𝐹 (𝑥, 𝑢) = 𝐻(𝑥)𝑓(𝑢) + (1 ⊗𝐻(𝑥))𝑔(𝑢) = 𝑔(𝑢), 𝑥 < 0, (3.5.3)

here (as in [14] and [29]) 𝐻(𝑥) is the Heaviside function, and the functions 𝑔 and 𝑓 are taken as
smooth functions on an interval 𝐼 ⊖ R, with the same endpoints 𝑠 and 𝑆, with 𝑠 < 𝑆. Notice,
the Ćux function 𝐹 (𝑥, 𝑢) into this problem has a spatial dependence of the discontinuous point
𝑥 = 0. As discussed in details in [14], a solution of (3.5.1) Ű in the weak sense Ű is a 𝑢 function

in 𝐿∞
𝑙𝑜𝑐(R × R

+) such that for all ã ∈ 𝐶∞
𝑙𝑜𝑐(R × R

+
),

∫︁ ∞

⊗∞

∫︁ ∞

0

(︃
𝑢
𝜕ã

𝜕𝑡
+ 𝐹 (𝑥, 𝑡)

𝜕ã

𝜕𝑥

)︃
𝑑𝑡 𝑑𝑥+

∫︁ ∞

⊗∞
𝑢0(𝑥)ã(𝑥, 0)𝑑𝑥 = 0, (3.5.4)

then 𝑢 satisĄes (3.5.1) if and only if in the weak sense 𝑢 satisĄes,

𝜕𝑢

𝜕𝑡
+
𝜕𝑔(𝑢)

𝜕𝑥
= 0, 𝑥 < 0, 𝑡 > 0,

𝜕𝑢

𝜕𝑡
+
𝜕𝑓(𝑢)

𝜕𝑥
= 0, 𝑥 > 0, 𝑡 > 0, (3.5.5)

By the examples here treated it is assumed, as in [29], that 𝑓, 𝑔 ∈ 𝐿𝑖𝑝([0.1]), 𝑓(𝑢) = 𝑔(𝑢) for
𝑢 = 0, 1, 𝑓 has a single maximum at 𝑢*

𝑓 ∈ [0, 1], and 𝑔 has a single maximum at 𝑢*
𝑔 ∈ [0, 1]. The

function 𝑓 is strictly increasing on (0, 𝑢*
𝑓 ), and strictly decreasing on (𝑢*

𝑓 , 1), and likewise, 𝑔 is
strictly increasing on (0, 𝑢*

𝑔), and strictly decreasing on (𝑢*
𝑔, 1), and we assume that 𝑓 and 𝑔 are

genuinely nonlinear in the sense that 𝑓 and 𝑔 are nonlinear on any non-degenerate interval. We
also assumed that there is at most one 𝑢ä ∈ (0, 1), where 𝑓(𝑢ä) = 𝑔(𝑢ä), and if there is such
an intersection point 𝑢ä, then the graphs of 𝑓 and 𝑔 are assumed to intersect transversally at
𝑢ä (a Ćux crossing), see e.g [14, 29]. For the initial data, it is assumed that 𝑢0 ∈ 𝐿∞ such that
𝑢0(𝑥) ∈ [0, 1] for a.e. 𝑥 ∈ R. Indeed, when Ąxed 𝑡 ∈ (0, 𝑇 ), it is deĄned 𝑢∘ := 𝑢(0∘, 𝑡). Any
weak solution of (3.5.1) will satisfy the Rankine-Hugoniot condition,

𝑔(𝑢⊗) = 𝑓(𝑢+). (3.5.6)

In [14, 29] are imposed the following requirements, which in turn we reproduce here for the
sake of completeness.

Definição 3.5.1. (strong characteristic condition). Assume that the pair (𝑢⊗, 𝑢+) satisĄes
(3.5.6). We say that (𝑢⊗, 𝑢+) satisĄes the strong characteristic condition if,

min¶0, 𝑔′(𝑢⊗)♢ max¶0, 𝑓 ′(𝑢+)♢ = 0. (3.5.7)

Definição 3.5.2. (connection (𝐴,𝐵)). Assume that the functions 𝑓 and 𝑔 satisfy all assump-
tions stated so far. Then a pair of states (𝐴,𝐵) is called a connection if,

𝑔(𝐴) = 𝑓(𝐵), 𝑢*
𝑔 ⊘ 𝐴 ⊘ 1, 0 ⊘ 𝐵 ⊘ 𝑢*

𝑓 . (3.5.8)
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Definição 3.5.3. ((𝐴,𝐵)-characteristic condition). If (𝑢⊗, 𝑢+) satisĄes (3.5.6) and (𝐴,𝐵) is a
connection, then (𝑢⊗, 𝑢+) is said to satisfy the (𝐴,𝐵)-characteristic condition if,

min¶0, 𝑔′(𝑢⊗)♢ max¶0, 𝑓 ′(𝑢+)♢ = 0, if (𝑢⊗, 𝑢+) ̸= (𝐴,𝐵). (3.5.9)

The Lagrangian-Eulerian scheme for discontinuous flux function. The straightforward
extension of our scheme LEH2 (3.2.1)is given by,

𝑈𝑛+1
𝑗 =

1

4

[︁
𝑈𝑛

𝑗⊗1 + 2𝑈𝑛
𝑗 + 𝑈𝑛

𝑗+1

]︁
⊗ 𝑘

2ℎ

[︁
𝐹 (𝑥𝑗+1, 𝑈

𝑛
𝑗+1) ⊗ 𝐹 (𝑥𝑗⊗1, 𝑈

𝑛
𝑗⊗1)

]︁
, (3.5.10)

where 𝐹 (𝑥𝑗⊗1, 𝑈
𝑛
𝑗⊗1) and 𝐹 (𝑥𝑗+1, 𝑈

𝑛
𝑗+1) are the discontinuous Ćux function described in (3.5.1)

and (3.5.3), which in turn the associated consistent numerical Ćux related to the conservative
form of (2.1.14), can be written as:

𝐹 (𝑈𝑛
𝑗 , 𝑈

𝑛
𝑗+1) =

1

4

{︃
ℎ

𝑘

(︁
𝑈𝑛

𝑗 ⊗ 𝑈𝑛
𝑗+1

)︁
+ 2

[︁
𝐹 (𝑥𝑗+1, 𝑈

𝑛
𝑗+1) + 𝐹 (𝑥𝑗, 𝑈

𝑛
𝑗 )
]︁⨀︀
. (3.5.11)

Model Problem 3.5.1. Adimurthi, Jaffré & V. Gowda, (SINUM, 2004), Flow in porous media
with two rocks types [14].

In the Ąrst numerical experiment, we consider, as [14], an idealized Ćow in which two phases
of different densities are Ćowing in a vertical closed core, in which the porous media is composed
by two different rock types creating a discontinuity, mathematically in 𝑥 = 0. Thus, the core
is made of two rocks types where the upper part is related with 𝑔 function, and the down part
is related with 𝑓 function. Such functions are deĄned as,

𝑓(𝑢) =
1

ã

Ú1

Ú1 + Ú2

(𝑞 + (𝑐1 ⊗ 𝑐2)Ú2) =
10𝑢2 (20(1 ⊗ 𝑢)2)

10𝑢2 + 20(1 ⊗ 𝑢)2
, 𝑥 > 0,

𝑔(𝑢) =
1

ã

Û1

Û1 + Û2

(𝑞 + (𝑐1 ⊗ 𝑐2)Û2) =
50𝑢2 (5(1 ⊗ 𝑢)2)

50𝑢2 + 5(1 ⊗ 𝑢)2
, 𝑥 < 0,

(3.5.12)

where are associated the following porous media data; ã = 1, 𝑞 = 0, 𝑐1 = 2, 𝑐2 = 1, 𝑠 = 0, 𝑆 =
1, Ú1 = 10𝑢2, Ú2 = 20(1 ⊗ 𝑢)2, Û1 = 50𝑢2 and Û2 = 5(1 ⊗ 𝑢)2. Note that here, 𝑓(𝑠) = 𝑔(𝑠) = 0
and 𝑓(𝑆) = 𝑔(𝑆) = 0. In this problem, we will use the Lagrangian-Eulerian scheme along with
the associated numerical Ćux (3.5.10). The 𝐹 𝑛

𝑗 = 𝐹 (𝑥𝑗, 𝑈
𝑛
𝑗 ) approximation is in concordance

with (3.5.5) and (3.5.6) as follows,

𝐹 𝑛
𝑗 =

∏︁
⋁︁⋁︁⨄︁
⋁︁⋁︁⋃︁

𝑔(𝑈𝑛
𝑗 ), 𝑗 < 0,

1
2

[︁
𝑔(𝑈𝑛

𝑗 ) + 𝑓(𝑈𝑛
𝑗 )
]︁

+ 1
2

min¶𝑓max, 𝑔min♢, 𝑗 = 0,

𝑓(𝑈𝑛
𝑗 ), 𝑗 > 0,

(3.5.13)

where 𝑓max = 𝑓(max¶𝑢*
𝑓 , 𝑈

𝑛
1 ♢) and 𝑔𝑚𝑖𝑛 = 𝑔(min¶𝑢*

𝑔, 𝑈
𝑛
⊗1♢). We take the index 𝑗 = 0 as

corresponding to the point 𝑥 = 0 in the mesh grid. The resulting approximate solutions are
shown in Figure 3.5, which in turn shows the numerical solutions at times 𝑡 = 0.5, 1, 2, and
with initial data 𝑢0(𝑥) = 1, 𝑥 < 0, 𝑢0(𝑥) = 0, 𝑥 > 0. In physical grounds this represent
two Ćows, one heavy Ćuid (say phase 1) on the left side of 𝑥 = 0 and one light Ćuid (say
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Figure 3.5: Numerical approximation with initial data 𝑢0(𝑥) = 1, 𝑥 < 0, 𝑢0(𝑥) = 0, 𝑥 > 0
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Figure 3.6: Lagrangian-Eulerian solutions calculated with numerical Ćux (3.5.10) to initial data
𝑢0(𝑥) = 0.5.
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phase 2) on the right side of 𝑥 = 0. Thus, as the time goes from 𝑡 > 0, the heavy Ćuid
will go to occupy bottom (right) region of the repository as well as the light Ćuid will go to
occupy the top (left) region of the same repository, showing agreement with [14]. In Figure
3.5 are shown computed solutions with our scheme (3.5.10) for this problem, approximate
solutions are using a mesh size of 257 cells (left) and 513 cell (right), these approximations
were compared with an approximate reference solution, which was calculated with a mesh size
of 1025 cells with the same numerical, and in a very good qualitative resemblance as in [14]
scheme. The approximations were advanced at times 𝑡 = 0.5, 1, 2 being shown in the top frame,
the approximation at 𝑡 = 0.5, in meddle frame to time 𝑡 = 1 and Ąnally in bottom frame at
𝑡 = 2. In addition, we included the elapsed computation times which are as follows: 0.241466
secs (top left), 0.576391 secs (top right), 0.833043 secs (meddle left), 1.359240 secs (meddle
right), 2.010356 secs (bottom left) and 4.164250 secs (bottom right). In Figure 3.6 are shown
Lagrangian- Eulerian approximation calculated with the same Ćux (3.5.10) and with initial data
𝑢0(𝑥) = 0.5. In the approximations were used a mesh grid of 257 cells (left) and of 513 cells
(right), and again numerical approximations were compared with an reference approximated
solution calculated with 1025 cells and the same numerical scheme.

Model Problem 3.5.2. Burger, Karlsen & Towers, (SINUM, 2009), Lagrangian-Eulerian
scheme with discontinuous Ćux adapted to Ćux connections [29].
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Figure 3.7: Numerical approximation with discontinuous Ćux adapted to Ćux connections.

Based in the numerical results obtained with our new Lagrangian-Eulerian scheme, we can
say that the new method is very efficient computationally because the computational time is
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small given the difficult characteristic of the problem, which have a discontinuous Ćux and,
in addition with very good numerical solutions compared with the obtained in [14] with a
Godunov-type method.

We now consider (3.5.1) and (3.5.3), but following the model problem as considered in
[29]; see [14, 29] for more details and relevant mathematical theory to the underlying model.
As before, we used our Lagrangian-Eulerian scheme (3.5.10), where the discontinuous Ćux
approximation is now given by,

𝐹 𝑛
𝑗 = 𝐹 (𝑥𝑗, 𝑈

𝑛
𝑗 ) =

∏︁
⋁︁⋁︁⨄︁
⋁︁⋁︁⋃︁

𝑔(𝑈𝑛
𝑗 ), 𝑗 < 0,

𝐶(𝐴,𝐵), 𝑗 = 0

𝑓(𝑈𝑗), 𝑗 > 0,

(3.5.14)

where

𝐶(𝐴,𝐵) =
1

2
(𝑓(𝐴) + 𝑔(𝐵)) ⊗ 1

2

[︃∫︁ 𝑈1

𝐵
♣𝑓 ′(𝑤)♣𝑑𝑤 ⊗

∫︁ 𝑈−1

𝐴
♣𝑔′(𝑤)♣𝑑𝑤

⟨
(3.5.15)

and we deĄne the connection (𝐴,𝐵) as being 𝑢𝐿 = 𝑈⊗1 and 𝑢𝑅 = 𝑈1, with initial data 𝑢0 = 0.5
along with Ûä = 0.5. Notice that in the considered examples 𝐴 < Ûä < 𝐵 with 𝑔(𝐴) = 𝑓(𝐵), the
Rankine-Hugoniot condition. Figure 3.7 shows approximations with the Lagrangian-Eulerian
scheme (3.5.10), but based in the numerical Ćux function as proposed in [29] of Engquist-
Osher-Type scheme. The approximate solutions were computed in a mesh size of 129 cells
at times 𝑡 = 0.2, 4, 8 for the same Ćux functions 𝑓(𝑢) = 𝑢2(1 ⊗ 𝑢), 𝑔(𝑢) = 𝑢(1 ⊗ 𝑢)2 and
initial data 𝑢0 = 𝑢ä = 0.5, but for two distinct connections: connection (𝐴,𝐵) = (0.4, 0.6)
at top frames and connection (𝐴,𝐵) = (0.6, 0.4) at bottom frames. To better knowledge of
our numerical scheme we also include the computational times to each simulated example,
the computational times are respectively: 0.020912 secs (top left), 0.404522 secs (top middle),
0.878328 secs (top right), 0.028541 secs (bottom left), 0.554558 secs (bottom middle) and
0.893478 secs (bottom right). Again, the qualitative solutions achieved by our Lagrangian-
Eulerian scheme is comparable with those reported in [29]. Again in this numerical example our
Lagrangian-Eulerian scheme should be very efficient computationally and with good qualitative
properties in its approximations.
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Chapter 4

The Lagrangian-Eulerian approach to
nonlinear hyperbolic conservation laws

In the previous section we studied the Lagrangian-Eulerian scheme for linear and nonlinear
conservation laws of the type (2.1.1 and 2.1.1). Here we will provide a formal construction
to analogue Lagrangian-Eulerian scheme to the nonlinear case. We also will present some
representative numerical experiments, computed by a Lagrangian-Eulerian scheme version for
the nonlinear scalar conservation law along with discontinuous initial data, with convex and
non-convex nonlinear Ćux functions, such as BurgerŠs and Buckley-Leverett Equation in order
to give some numerical evidence we are computing Şgood approximationsŤ to the true entropy
solutions to these problems. To prove the convergence of this scheme, we use some results of
the classical theory, which will be discussed in the next section.

4.1 The Lagrangian-Eulerian scheme in conservative form

We essentially mimic the procedure of the linear case, but now notice that the curves à𝑛
𝑗 (𝑡)

are not straight lines in general but rather solutions of the differential equations system (2.1.8);
we write here again for clarity of presentation:

𝑑à𝑛
𝑗 (𝑡)

𝑑𝑡
=
𝐻(𝑢)

𝑢
, 𝑡𝑛 < 𝑡 ⊘ 𝑡𝑛+1,

with the initial condition à𝑛
𝑗 (𝑡𝑛) = 𝑥𝑛

𝑗 , related to the differential problem:

𝜕𝑢

𝜕𝑡
+
𝜕𝐻(𝑢)

𝜕𝑥
= 0, 𝑢(𝑥, 0) = Ö(𝑥). (4.1.1)

The idea here is to use the linear Lagrangian-Eulerian scheme as building block to construct local

approximations with the natural Ąrst choice to develop a fully explicit scheme 𝑓𝑛
𝑗 =

𝐻(𝑈𝑛
𝑗

)

𝑈𝑛
𝑗

≡
𝐻(𝑢)

𝑢
with the initial condition à𝑛

𝑗 (𝑡𝑛) = 𝑥𝑛
𝑗 (see Figure 4.1 ). Now, the solutions à𝑛

𝑗 (𝑡) of the
differential equations (2.1.8) system are (local) straight lines, but they are not parallel as in
the linear case. In order to start the procedure let us Ąrst revisit the coefficients in the linear
case,

𝑐0𝑗 =
ℎ

2
+𝑓𝑛

𝑗 𝑘
𝑛 and 𝑐1𝑗 =

ℎ

2
⊗𝑓𝑛

𝑗 𝑘
𝑛, with max

𝑗

⧹︃⧹︃⧹︃⧹︃⧹︃
𝑓𝑗Δ𝑡

𝑛

ℎ

⧹︃⧹︃⧹︃⧹︃⧹︃ <
√

2

2
and 𝑘𝑛 = min

𝑛
Δ𝑡𝑛,

(4.1.2)
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where the stability CFL condition in (4.1.2) is given by the construction of the Lagrangian-
Eulerian scheme. Thus, we use equations (2.1.9)-(2.1.10) to write:

Figure 4.1: Lagrangian-Eulerian scheme nonlinear case

𝑈
𝑛+1
𝑗 =

1

ℎ𝑛+1
𝑗

1

2
ℎ
[︁
𝑈𝑛

𝑗 + 𝑈𝑛
𝑗+1

]︁
, (4.1.3)

and plugging this into (2.1.11) reads,

𝑈𝑛+1
𝑗 =

1

ℎ

[︃
𝑐0𝑗

1

ℎ𝑛+1
𝑗⊗1

ℎ

2
(𝑈𝑛

𝑗⊗1 + 𝑈𝑛
𝑗 ) + 𝑐1𝑗

1

ℎ𝑛+1
𝑗

ℎ

2
(𝑈𝑛

𝑗 + 𝑈𝑛
𝑗+1)

⟨

=
𝑐0𝑗

2

1

ℎ𝑛+1
𝑗⊗1

(𝑈𝑛
𝑗⊗1 + 𝑈𝑛

𝑗 ) +
𝑐1𝑗

2

1

ℎ𝑛+1
𝑗

(𝑈𝑛
𝑗 + 𝑈𝑛

𝑗+1).

(4.1.4)

Now, notice that for each 𝑗 ∈ Z,

ℎ𝑛+1
𝑗 = 𝑥𝑛+1

𝑗+ 1

2

⊗ 𝑥𝑛+1
𝑗⊗ 1

2

= 𝑥𝑛
𝑗+1 + 𝑓𝑛

𝑗+1𝑘
𝑛 ⊗ (𝑥𝑛

𝑗 + 𝑓𝑗𝑘
𝑛) = ℎ+ (𝑓𝑛

𝑗+1 ⊗ 𝑓𝑛
𝑗 )𝑘𝑛, (4.1.5)

and, also that:

ℎ𝑛+1
𝑗 = ℎ+ (𝑓𝑛

𝑗+1 ⊗ 𝑓𝑛
𝑗 )𝑘𝑛 = (

ℎ

2
+ 𝑓𝑗+1𝑘

𝑛) + (
ℎ

2
⊗ 𝑓𝑗𝑘

𝑛) = 𝑐0𝑗+1 + 𝑐1𝑗. (4.1.6)

On the other hand we have,

𝑐0𝑗 = ℎ𝑛+1
𝑗⊗1 ⊗ 𝑐1𝑗⊗1 and 𝑐1𝑗 = ℎ𝑛+1

𝑗 ⊗ 𝑐0𝑗+1 (4.1.7)

along with,

𝑐1𝑗⊗1 =
ℎ

2
⊗ 𝑓𝑛

𝑗⊗1𝑘
𝑛

= 1
2
(ℎ𝑛+1

𝑗⊗1 ⊗ 𝑓𝑗⊗1𝑘
𝑛 ⊗ 𝑓𝑛

𝑗 𝑘
𝑛)

𝑐0𝑗+1 =
ℎ

2
+ 𝑓𝑛

𝑗+1𝑘
𝑛

= 1
2
(ℎ𝑛+1

𝑗+1 + 𝑓𝑗+1𝑘
𝑛 + 𝑓𝑛

𝑗 𝑘
𝑛).

Finally, plugging (4.1.7) into (4.1.4) we get, along with W(𝑈𝑛
𝑗 , 𝑈

𝑛
𝑗+1) ⊕ 𝑓𝑛

𝑗
+𝑓𝑛

𝑗+1

ℎ𝑛+1

𝑗

(𝑈𝑛
𝑗 +𝑈𝑛

𝑗+1),

𝑈𝑛+1
𝑗 =

1

4
[𝑈𝑛

𝑗⊗1 + 2𝑈𝑛
𝑗 + 𝑈𝑛

𝑗+1] ⊗ 𝑘𝑛

4

(︁
W(𝑈𝑛

𝑗+1, 𝑈
𝑛
𝑗 ) ⊗ W(𝑈𝑛

𝑗⊗1, 𝑈
𝑛
𝑗 )
)︁
. (4.1.8)
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The Ąnite difference scheme (4.1.8) is the new Lagrangian-Eulerian scheme for the nonlinear
problem (4.1.1). Hereafter this numerical scheme will called LEH1 (Lagrangian Eulerian Hy-
perbolic scheme 1). Notice, if we set 𝑓𝑛

𝑗 = 𝑎 and plug it into (4.1.8) we recover the linear
Lagrangian-Eulerian scheme (2.1.15). Moreover, the scheme (4.1.8) can also be written in
conservative form,

𝑈𝑛+1
𝑗 = 𝑈𝑛

𝑗 ⊗ 𝑘𝑛

ℎ

[︁
𝐹 (𝑈𝑛

𝑗 , 𝑈
𝑛
𝑗+1) ⊗ 𝐹 (𝑈𝑛

𝑗⊗1, 𝑈
𝑛
𝑗 )
]︁
, (4.1.9)

where the Lagrangian-Eulerian numerical flux function is deĄned by,

𝐹 (𝑈𝑛
𝑗 , 𝑈

𝑛
𝑗+1) =

1

4

[︃
ℎ

𝑘𝑛

(︁
𝑈𝑛

𝑗 ⊗ 𝑈𝑛
𝑗+1

)︁
+ ℎW(𝑈𝑛

𝑗 , 𝑈
𝑛
𝑗+1)

⟨
. (4.1.10)

We will next observe that this Lagrangian-Eulerian numerical Ćux function satisfy a Lipschitz
continuous consistency, which in turn is a nice property for conservative numerical methods for
nonlinear conservation law problems.

4.2 A Lipschitz condition to the Lagrangian-Eulerian nu-

merical flux function

Following again the classical theory of conservation (see elsewhere, e.g., [109]) there is a very
simple and natural requirement we can impose on our Lagrangian-Eulerian method which will
guarantee that we do not converge to non-solutions (i.e., non-entropy weak solutions). In other
words, we need an appropriate form of consistency with the weak form of the conservation law,
required if we hope to converge to weak solutions. Therefore, the proposed Lagrangian-Eulerian
method must be consistent with the original conservation law if the numerical flux function 𝐹
reduces to the true flux function 𝐻 for the case of constant Ćow 𝐹 (𝑢, 𝑢) = 𝐻(𝑢). Essentially, for
consistency, it suffices to have numerical Ćux function a Lipschitz continuous function of each
variable. The basic principle underlying such consistency with respect to a conservation law is
that the total quantity of a conserved variable in any region changes only due to Ćux through
the (local) boundaries (a locally conservative principle on the level of the control volumes over
the computational mesh grid. Indeed, Lax-Wendroff Theorem shall light only that we can
hope to correctly approximate discontinuous weak solutions to the conservation law by using
a conservative method, at least in the sense that if we converge to some function 𝑢(𝑥, 𝑡) as
the grid is reĄned, through some sequence 𝑘,ℎ ⊃ 0, then this function will in fact be a weak
solution of the underlying conservation law. The Lax-Wendroff Theorem needs a sequence of
discrete solutions (given by a conservative method) that is convergent (weak sense) to start
with. Roughly speaking, if this solution looks reasonable and has well-resolved discontinuities
(an indication that the method is stable and our grid is sufficiently Ąne), then we can believe
that it is in fact a good approximation to some weak solution. Thus, it is important to show
that the Lagrangian-Eulerian scheme satisfy a consistency condition, meaning the existence of
a numerical Ćux function that is Lipschitz continuous. Notice that for the nonlinear hyperbolic
conservation law (and balance law) problems, unlike the linear advection hyperbolic equation,
the ŞupwindŤ direction depends on the initial and then it may vary from point to point in
the mesh to resemble the original differential problem. Thus, even in the scalar case we want
to avoid the use of a somewhat switch of the directional bias based on the data like upwind
schemes do.
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To prove that the Lagrangian-Eulerian numerical Ćux satisĄes a Lipschitz condition, we will
need Ąrst to prove the following two auxiliary Lemmas.

Lemma 4.2.1. If

⧹︃⧹︃⧹︃𝑓𝑛
𝑗 𝑘

𝑛
⧹︃⧹︃⧹︃ <

ℎ

2
⊗ ℎ

𝑝
, 𝑗, 𝑝 ∈ Z, 𝑘, ℎ > 0, and 𝑝 > 2 then

⧹︃⧹︃⧹︃𝑓𝑛
𝑗+1 ⊗ 𝑓𝑛

𝑗

⧹︃⧹︃⧹︃ 𝑘𝑛 <
𝑝⊗ 2

𝑝
ℎ. (4.2.1)

Proof. From hypothesis of Lemma (4.2.1) we have,

⊗𝑝⊗ 2

2𝑝
ℎ < 𝑓𝑛

𝑗+1𝑘
𝑛 <

𝑝⊗ 2

2𝑝
ℎ and ⊗ 𝑝⊗ 2

2𝑝
ℎ < ⊗𝑓𝑛

𝑗 𝑘
𝑛 <

𝑝⊗ 2

2𝑝
ℎ. (4.2.2)

From (4.2.2) follows,

⊗2
𝑝⊗ 2

2𝑝
ℎ < 𝑓𝑛

𝑗+1𝑘
𝑛 ⊗ 𝑓𝑛

𝑗 𝑘
𝑛 < 2

𝑝⊗ 2

2𝑝
ℎ or

⧹︃⧹︃⧹︃𝑓𝑛
𝑗+1𝑘

𝑛 ⊗ 𝑓𝑛
𝑗 𝑘

𝑛
⧹︃⧹︃⧹︃ <

𝑝⊗ 2

𝑝
ℎ. (4.2.3)

Corollary 4.2.1. With the same hypothesis of the Lemma (4.2.1), then inequality

𝑝

2(𝑝⊗ 1)
<

ℎ

ℎ𝑛+1
𝑗

<
𝑝

2
, (4.2.4)

also holds, where 𝑝 is Ąxed.

Proof. The next inequality follows straightforward from (4.2.3) by adding ℎ,

ℎ⊗ 𝑝⊗ 2

𝑝
ℎ < ℎ+ 𝑓𝑛

𝑗+1𝑘
𝑛 ⊗ 𝑓𝑛

𝑗 𝑘
𝑛 < ℎ+

𝑝⊗ 2

𝑝
ℎ. (4.2.5)

Thus,

ℎ⊗ 𝑝⊗ 2

𝑝
ℎ < ℎ𝑛+1

𝑗 < ℎ+
𝑝⊗ 2

𝑝
ℎ and

2

𝑝
<
ℎ𝑛+1

𝑗

ℎ
<

2𝑝⊗ 2

𝑝
, (4.2.6)

then
𝑝

2(𝑝⊗ 1)
<

ℎ

ℎ𝑛+1
𝑗

<
𝑝

2
. (4.2.7)

Theorem 4.2.1. The numerical Ćux function is deĄned by (4.1.10) is consistent with the
differential equation (4.1.1).

Proof. First, for 𝑣 ̸= 0 we get,

𝐹 (𝑣, 𝑣) =
1

4

⋃︀
⨄︀ ℎ
𝑘𝑛

(𝑣 ⊗ 𝑣) +
ℎ

ℎ+ (𝐻(𝑣)
𝑣

⊗ 𝐻(𝑣)
𝑣

)

(︃
𝐻(𝑣)

𝑣
+
𝐻(𝑣)

𝑣

)︃
(𝑣 + 𝑣)

⋂︀
⋀︀ = 𝐻(𝑣). (4.2.8)

The Lipschitz condition is proved as follow.
Proof. Let us assume 𝑈𝑛

𝑗 ̸= 0, 𝑗 ∈ Z, such that we have,

𝑟 = 𝑗, 𝑗 + 1, 𝑈𝑛
𝑟 =

1

ℎ

∫︁ 𝑥𝑛

𝑟+ 1
2

𝑥𝑛

𝑟−
1
2

𝑢(𝑥, 𝑡𝑛) 𝑑𝑥 < ∞ ⇒
⧹︃⧹︃⧹︃⧹︃⧹︃
𝑈𝑛

𝑗

𝑈𝑛
𝑗+1

⧹︃⧹︃⧹︃⧹︃⧹︃ = 𝑀𝑛 < ∞. (4.2.9)
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For 𝑈𝑗, 𝑈𝑗+1 sufficiently close to 𝑢, we have ♣𝐹 (𝑈𝑗, 𝑈𝑗+1) ⊗𝐻(𝑢)♣ =

=
1

4

⧹︃⧹︃⧹︃⧹︃⧹︃
ℎ

𝑘𝑛
(𝑈𝑗 ⊗ 𝑈𝑗+1) +

ℎ

ℎ𝑛+1
𝑗

(𝑓𝑗+1 + 𝑓𝑗) (𝑈𝑗+1 + 𝑈𝑗) ⊗ 4𝐻(𝑢)

⧹︃⧹︃⧹︃⧹︃⧹︃

⊘ 1

4

⧹︃⧹︃⧹︃⧹︃
ℎ

𝑘𝑛
(𝑈𝑗 ⊗ 𝑢 + 𝑢 ⊗ 𝑈𝑗+1)

⧹︃⧹︃⧹︃⧹︃+

1

4

⧹︃⧹︃⧹︃⧹︃⧹︃
ℎ

ℎ𝑛+1
𝑗

(︂
𝐻(𝑈𝑗+1) +

𝐻(𝑈𝑗+1)

𝑈𝑗+1
𝑈𝑗 + 𝐻(𝑈𝑗) +

𝐻(𝑈𝑗)

𝑈𝑗

𝑈𝑗+1

)︂
⊗ 4𝐻(𝑢)

⧹︃⧹︃⧹︃⧹︃⧹︃

⊘ 1

4

ℎ

𝑘𝑛
♣𝑈𝑗 ⊗ 𝑢♣ +

1

4

ℎ

𝑘𝑛
♣𝑢 ⊗ 𝑈𝑗+1♣ +

1

4

⧹︃⧹︃⧹︃⧹︃⧹︃
ℎ

ℎ𝑛+1
𝑗

(︂
𝐻(𝑈𝑗+1) +

𝐻(𝑈𝑗+1)

𝑈𝑗+1
𝑈𝑗 + 𝐻(𝑈𝑗) +

𝐻(𝑈𝑗)

𝑈𝑗

𝑈𝑗+1

)︂
⊗ 4𝐻(𝑢)

⧹︃⧹︃⧹︃⧹︃⧹︃

⊘ 1

4

ℎ

𝑘𝑛
♣𝑈𝑗 ⊗ 𝑢♣ +

1

4

ℎ

𝑘𝑛
♣𝑢 ⊗ 𝑈𝑗+1♣ +

1

4

⧹︃⧹︃⧹︃⧹︃⧹︃
ℎ

ℎ𝑛+1
𝑗

𝐻(𝑈𝑗+1) ⊗ 𝐻(𝑢)

⧹︃⧹︃⧹︃⧹︃⧹︃+

1

4

⧹︃⧹︃⧹︃⧹︃⧹︃
ℎ

ℎ𝑛+1
𝑗

𝑈𝑗

𝑈𝑗+1
𝐻(𝑈𝑗+1) ⊗ 𝐻(𝑢)

⧹︃⧹︃⧹︃⧹︃⧹︃+
1

4

⧹︃⧹︃⧹︃⧹︃⧹︃
ℎ

ℎ𝑛+1
𝑗

𝐻(𝑈𝑗) ⊗ 𝐻(𝑢)

⧹︃⧹︃⧹︃⧹︃⧹︃+
1

4

⧹︃⧹︃⧹︃⧹︃⧹︃
ℎ

ℎ𝑛+1
𝑗

𝑈𝑗+1

𝑈𝑗

𝐻(𝑈𝑗) ⊗ 𝐻(𝑢)

⧹︃⧹︃⧹︃⧹︃⧹︃ .

(4.2.10)

From (4.2.7) and (4.2.9), and the fact that whether 𝐻(𝑥) ̸= 𝐻(𝑦), there is 𝑀 > 0, such that
♣Ð𝐻(𝑥) ⊗𝐻(𝑦)♣ ⊘ 𝑀 ♣𝐻(𝑥) ⊗𝐻(𝑦)♣ for Ð ∈ R. Thus,

♣𝐹 (𝑈𝑗, 𝑈𝑗+1) ⊗𝐻(𝑢)♣ ⊘ 1

4

ℎ

𝑘𝑛
♣𝑈𝑗 ⊗ 𝑢♣ +

1

4

ℎ

𝑘𝑛
♣𝑢⊗ 𝑈𝑗+1♣ +

1

4
𝑀1 ♣𝐻(𝑈𝑗+1) ⊗𝐻(𝑢)♣ +

1

4
𝑀2 ♣𝐻(𝑈𝑗+1) ⊗𝐻(𝑢)♣ +

1

4
𝑀3 ♣𝐻(𝑈𝑗) ⊗𝐻(𝑢)♣ +

1

4
+𝑀4 ♣𝐻(𝑈𝑗) ⊗𝐻(𝑢)♣ .

(4.2.11)

Indeed, 𝐻 is differentiable we set 𝐻 ′ ⊕ 𝜕𝐻(𝑢)/𝜕𝑢. Then, by the mean value theorem reads,

♣𝐹 (𝑈𝑗, 𝑈𝑗+1) ⊗𝐻(𝑢)♣ ⊘ 1

4

ℎ

𝑘𝑛
♣𝑈𝑗 ⊗ 𝑢♣ +

1

4

ℎ

𝑘𝑛
♣𝑢⊗ 𝑈𝑗+1♣ +

1

4
𝑀1𝑀𝑑 ♣𝑈𝑗+1 ⊗ 𝑢♣ +

1

4
𝑀2𝑀𝑑 ♣𝑈𝑗+1 ⊗ 𝑢♣ +

1

4
𝑀3𝑀𝑑 ♣𝑈𝑗 ⊗ 𝑢♣ +

1

4
𝑀4𝑀𝑑 ♣𝑈𝑗 ⊗ 𝑢♣ ,

(4.2.12)

along with 𝑀𝑑 = max(♣𝐻 ′(𝑐1)♣, ♣𝐻 ′(𝑐2)♣). Thus, we Ąnally we get the Lipschitz condition as
follows,

♣𝐹 (𝑈𝑗, 𝑈𝑗+1) ⊗𝐻(𝑢)♣ ⊘ 𝐾 max(♣𝑈𝑗 ⊗ 𝑢♣, ♣𝑈𝑗+1 ⊗ 𝑢♣), (4.2.13)

where 𝐾 = max
(︁

1
4

(︁
ℎ

𝑘𝑛 + (𝑀1 +𝑀2)𝑀𝑑

)︁
, 1

4

(︁
ℎ

𝑘𝑛 + (𝑀3 +𝑀4)𝑀𝑑

)︁)︁
.

On the other hand, for 𝑥 sufficiently close to 𝑦 and 𝐻(𝑥) = 𝐻(𝑦) we have,
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♣𝑎𝐻(𝑥) ⊗𝐻(𝑦)♣ ⊘ ♣𝑎⊗ 1♣♣𝐻(𝑥)♣ ⊘ ♣𝑎⊗ 1♣
♣𝑥⊗ 𝑦♣ max

𝑧∈[𝑥,𝑦]
♣𝐻(𝑧)♣♣𝑥⊗ 𝑦♣. (4.2.14)

The continuity of 𝐻 allows us to write:

♣𝑎𝐻(𝑥) ⊗𝐻(𝑦)♣⊘ 𝐶♣𝑥⊗ 𝑦♣, where 𝐶 =
♣𝑎⊗ 1♣
♣𝑥⊗ 𝑦♣ max

𝑧∈[𝑥,𝑦]
♣𝐻(𝑧)♣. (4.2.15)

Then, from equations (4.2.10) and (4.2.14)-(4.2.15) one might write,

♣𝐹 (𝑈𝑗 , 𝑈𝑗+1) ⊗ 𝐻(𝑢)♣ ⊘ 1

4

ℎ

𝑘𝑛
♣𝑈𝑗 ⊗ 𝑢♣ +

1

4

ℎ

𝑘𝑛
♣𝑢 ⊗ 𝑈𝑗+1♣ +

1

4

⧹︃⧹︃⧹︃⧹︃⧹︃
ℎ

ℎ𝑛+1
𝑗

𝐻(𝑈𝑗+1) ⊗ 𝐻(𝑢)

⧹︃⧹︃⧹︃⧹︃⧹︃

+
1

4

⧹︃⧹︃⧹︃⧹︃⧹︃
ℎ

ℎ𝑛+1
𝑗

𝑈𝑗

𝑈𝑗+1
𝐻(𝑈𝑗+1) ⊗ 𝐻(𝑢)

⧹︃⧹︃⧹︃⧹︃⧹︃+
1

4

⧹︃⧹︃⧹︃⧹︃⧹︃
ℎ

ℎ𝑛+1
𝑗

𝐻(𝑈𝑗) ⊗ 𝐻(𝑢)

⧹︃⧹︃⧹︃⧹︃⧹︃

+
1

4

⧹︃⧹︃⧹︃⧹︃⧹︃
ℎ

ℎ𝑛+1
𝑗

𝑈𝑗+1

𝑈𝑗

𝐻(𝑈𝑗) ⊗ 𝐻(𝑢)

⧹︃⧹︃⧹︃⧹︃⧹︃

⊘ 1

4

(︂
ℎ

𝑘𝑛
+ 𝐶1 + 𝐶2

)︂
♣𝑈𝑗+1 ⊗ 𝑢♣ +

1

4

(︂
ℎ

𝑘𝑛
+ 𝐶3 + 𝐶4

)︂
♣𝑈𝑗 ⊗ 𝑢♣

⊘ 1

4

(︂
2

ℎ

𝑘𝑛
+ 𝐶1 + 𝐶2 + 𝐶3 + 𝐶4

)︂
max ¶♣𝑈𝑗+1 ⊗ 𝑢♣ , ♣𝑈𝑗 ⊗ 𝑢♣♢ ,

(4.2.16)

where

𝐶1 =

⧹︃⧹︃⧹︃⧹︃
ℎ

ℎ𝑛+1

𝑗

⊗ 1
⧹︃⧹︃⧹︃⧹︃

♣𝑈𝑗+1 ⊗ 𝑢♣ max
𝑧∈[𝑢,𝑈𝑗+1]

♣𝐻(𝑧)♣ , 𝐶2 =

⧹︃⧹︃⧹︃⧹︃
ℎ

ℎ𝑛+1

𝑗

𝑈𝑗

𝑈𝑗+1
⊗ 1

⧹︃⧹︃⧹︃⧹︃

♣𝑈𝑗+1 ⊗ 𝑢♣ max
𝑧∈[𝑢,𝑈𝑗+1]

♣𝐻(𝑧)♣

𝐶3 =

⧹︃⧹︃⧹︃⧹︃
ℎ

ℎ𝑛+1

𝑗

⊗ 1
⧹︃⧹︃⧹︃⧹︃

♣𝑈𝑗 ⊗ 𝑢♣ max
𝑧∈[𝑢,𝑈𝑗+1]

♣𝐻(𝑧)♣ , 𝐶4 =

⧹︃⧹︃⧹︃⧹︃
ℎ

ℎ𝑛+1

𝑗

𝑈𝑗+1

𝑈𝑗
⊗ 1

⧹︃⧹︃⧹︃⧹︃

♣𝑈𝑗 ⊗ 𝑢♣ max
𝑧∈[𝑢,𝑈𝑗 ]

♣𝐻(𝑧)♣

(4.2.17)

Therefore the numerical Ćux function 𝐹 (𝑈𝑗, 𝑈𝑗+1) (4.1.10) is consistent.

4.3 Monotonicity and TVD properties for the Lagrangian-

Eulerian scheme

Harten [75] showed that the set of monotone schemes 𝑆𝑚𝑜𝑛 is contained in the set of TVD
schemes 𝑆𝑡𝑣𝑑, which in turn is contained in the set of monotonicity preserving schemes 𝑆𝑚𝑝𝑟,
i.e., 𝑆𝑚𝑜𝑛 ⊖ 𝑆𝑡𝑣𝑑 ⊖ 𝑆𝑚𝑝𝑟. For explicit linear schemes [75],

𝑢𝑛+1
𝑗 =

𝑘=𝑘𝑟∑︁

𝑘=⊗𝑘𝑙

Ñ𝑘𝑢
𝑛
𝑖+𝑘, (4.3.1)

to solve the linear hyperbolic equation one can prove that monotone schemes are equivalent
to monotonicity preserving schemes. Indeed, Harten [76] has proved that nonlinear solutions
for hyperbolic conservation laws obtained by monotone Ąnite-difference schemes do satisfy an
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entropy condition. Following with the hypothesis of the Lax-Wendroff theorem, we know that
if a Ąnite difference method in conservative form is convergent, then it converges to a weak
solution. In the previous sections, it was shown that the numerical Ćux of our Lagrangian-
Eulerian scheme, written in a conservative form, satisfy both a consistency and a Lipschitz
continuity condition. Here we will see that the Lagrangian-Eulerian method will indeed satisĄes
a monotonicity condition under a proper CFL condition interval. To this end, let us Ąrst start
writing the left hand side of scheme (5.1.2) in the convenient form,

𝑈𝑛+1
𝑗 = 𝐿(𝑈𝑛

𝑗⊗1, 𝑈
𝑛
𝑗 , 𝑈

𝑛
𝑗+1) = Ñ⊗1𝑈

𝑛
𝑗⊗1 + Ñ0𝑈

𝑛
𝑗 + Ñ1𝑈

𝑛
𝑗+1, (4.3.2)

where Ñ⊗1 = 1
2

(︁
1
2

⊗ 𝑣
)︁
, Ñ0 = 1

2
and Ñ1 = 1

2

(︁
1
2

+ 𝑣
)︁

are nonnegative coefficients for 0 ⊘ 𝑣 ⊘ 1
2
,

so that our Lagrangian-Eulerian is monotone in the CFL interval of monotonicity 0 ⊘ 𝑣 ⊘
1
2

and non-monotone for 1
2
< 𝑣 ⊘

√
2

2
. The previous facts do not exclude the possibility

of having nonlinear monotonicity-preserving and total variation non-increasing schemes with
order higher than one [76, 75]. It is worth mentioning that by means of the above arguments
scheme (4.1.9)-(4.1.10) is also monotonicity-preserving scheme and therefore a TVD linear
scheme. Therefore, whether our Lagrangian-Eulerian algorithm converges to a weak solution,
this solution is the entropic solution to CFL interval 0 ⊘ 𝑣𝑛

𝑗 ⊘ 1
2
. A similar argument can be

used to the approximation scheme (4.1.9)-(4.1.10) linked to a scalar nonlinear problem,

𝑈𝑛+1
𝑗 = 𝐿𝑛(𝑈𝑛

𝑗⊗1, 𝑈
𝑛
𝑗 , 𝑈

𝑛
𝑗+1) = Ñ𝑛

⊗1𝑈
𝑛
𝑗⊗1 + Ñ𝑛

0𝑈
𝑛
𝑗 + Ñ𝑛

1𝑈
𝑛
𝑗+1, (4.3.3)

where

Ñ𝑛
⊗1 =

1

2

(︂
1

2
+ 𝑣𝑛

𝑗

)︂
ℎ

ℎ𝑛+1
𝑗⊗1

, Ñ𝑛
0 =

1

2

[︃(︂
1

2
+𝑣𝑛

𝑗

)︂
ℎ

ℎ𝑛+1
𝑗⊗1

+
(︂

1

2
⊗𝑣𝑛

𝑗

)︂
ℎ

ℎ𝑛+1
𝑗

⟨
, Ñ𝑛

1 =
1

2

(︂
1

2
⊗𝑣𝑛

𝑗

)︂
ℎ

ℎ𝑛+1
𝑗

,

here 𝑣𝑛
𝑗 =

𝑓𝑛
𝑗

𝑘𝑛

ℎ
and 𝑓𝑛

𝑗 is the slope of the straight line that approximates the integral curve
à𝑛

𝑗 (𝑡). Notice, the coefficients in (4.3.3) are non-negatives in the CFL interval 0 ⊘ 𝑣𝑛
𝑗 ⊘ 1

2
.

Indeed scheme (4.3.3) can be reduced to (4.3.2) by using 𝑓𝑛
𝑗 = 𝑎. From the above discussion

we also see that the Lagrangian-Eulerian scheme (5.1.2), or (4.1.9)-(4.1.10), is also monotone
for each time step and it converges to a weak entropic solution in the sense of Harten [75, 76].
Such reasoning is essentially the same as used in HartenŠs papers [75, 76] for the monotonicity
property to the nonlinear case, but keeping in mind that actually we used 𝑓𝑛

𝑗 as an approximate
value to be used in the CFL condition.

4.4 Equivalence between finite difference and finite vol-

ume Lagrangian-Eulerian formulations

In above sections, we construct, using the ideas of [57], the Lagrangian-Eulerian scheme
to linear hyperbolic conservation laws (2.1.14) and the Lagrangian-Eulerian schemes to non-
linear hyperbolic conservation laws (3.2.1) and (4.1.8). In [19, 57, 80, 154] the authors present
distinct Lagrangian-Eulerian formulations to the case of linear [18, 17, 80] and non-linear [17,
19, 49, 51, 56, 57, 154] transport Ćow problems; to the purely linear transport problem the
space-time integral curves coincide with characteristic equations [19, 80] (see also [27]). Note
that the scheme (3.2.1) is reduced to scheme (2.1.14), with the substitution 𝐻(𝑢) = 𝑎𝑢, and
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also note that the scheme (4.1.8) is reduced to scheme (2.1.14) with the same substitution
𝐻(𝑢) = 𝑎 𝑢, we see that. With 𝐻(𝑢) = 𝑎 𝑢, we have 𝑓𝑛

𝑗 = 𝐻(𝑈𝑛
𝑗 )/𝑈𝑛

𝑗 = (𝑎𝑈𝑛
𝑗 )/𝑈𝑛

𝑗 = 𝑎, then
W(𝑈𝑛

𝑗 , 𝑈
𝑛
𝑗+1) = 𝑎+𝑎

ℎ+(𝑎⊗𝑎)𝑘
(𝑈𝑛

𝑗 +𝑈𝑛
𝑗+1) = 2 𝑎

ℎ
(𝑈𝑛

𝑗 +𝑈𝑛
𝑗+1), therefore,

𝑈𝑛+1
𝑗 =

1

4
[𝑈𝑛

𝑗⊗1 + 2𝑈𝑛
𝑗 + 𝑈𝑛

𝑗+1] ⊗ 𝑘

4

(︁
W(𝑈𝑛

𝑗 , 𝑈
𝑛
𝑗+1) ⊗ W(𝑈𝑛

𝑗⊗1, 𝑈
𝑛
𝑗 )
)︁

=
1

4
[𝑈𝑛

𝑗⊗1 + 2𝑈𝑛
𝑗 + 𝑈𝑛

𝑗+1] ⊗ 𝑘

4

(︂
2 𝑎

ℎ
(𝑈𝑛

𝑗 +𝑈𝑛
𝑗+1) ⊗ 2 𝑎

ℎ
(𝑈𝑛

𝑗⊗1+𝑈𝑛
𝑗

)︂

=
1

4
[𝑈𝑛

𝑗⊗1 + 2𝑈𝑛
𝑗 + 𝑈𝑛

𝑗+1] ⊗ 𝑎 𝑘

2ℎ

(︁
𝑈𝑛

𝑗+1 ⊗ 𝑈𝑛
𝑗⊗1

)︁

=
1

4
[𝑈𝑛

𝑗⊗1 + 2𝑈𝑛
𝑗 + 𝑈𝑛

𝑗+1] ⊗ 𝑘

2ℎ

(︁
𝐻(𝑈𝑛

𝑗+1) ⊗𝐻(𝑈𝑛
𝑗⊗1)

)︁

(4.4.1)

with this, both schemes (3.2.1) and (4.1.8) are equivalents in the linear case.

4.5 Numerical experiments for hyperbolic problems with

convex and non-convex fluxes

In order to give a somewhat concrete evidence we are computing Şgood approximationsŤ to
correct entropy solutions, we will illustrate the viability of the proposed Lagrangian-Eulerian
scheme for the numerical simulation of initial value problems for convex and non-convex Ćux-
type functions (we show such numerical experiments from Figure 3.1 to Figure 3.3, and Table
4.1, along with comment on the corresponding captions).

Example 4.5.1. Inviscid BurgersŠ equation with smooth inital data.

As in the above section, we consider inviscid BurgerŠs equation. Numerical approximate
solutions with scheme LEH1 (4.1.8) are shown to the Cauchy Problem (Initial Value Problem

with convex Ćux function): 𝑢𝑡 +
(︁

𝑢2

2

)︁
𝑥

= 0, along with smooth initial data 𝑢(𝑥, 0) = 0.5+𝑠𝑖𝑛(𝑥)

(see, e.g., [99]). It is well-known the solution of this problem develops a shock discontinuity
at the critical time 𝑇𝑐 = 1, and then it exhibits pre-shock solution for 𝑇𝑐 < 1 and post-shock
solutions 𝑇𝑐 > 1. In Figure 4.2 top pictures are shown the pre-shock solutions and in bottom
pictures are shown post-shock solutions both computed with LEH1 scheme at time simulation
𝑡 = 2 for 128 cells (left), 256 cells (middle) and 512 right.

Cells LEH2 ‖𝑢⊗ 𝑈‖𝑙∞
ℎ

LEH2 ‖𝑢⊗ 𝑈‖𝑙1
ℎ

LEH1 ‖𝑢⊗ 𝑈‖𝑙∞
ℎ

LEH1 ‖𝑢⊗ 𝑈‖𝑙1
ℎ
)

32 3.264 × 10⊗1 4.557 × 10⊗1 2.783 × 10⊗1 4.163 × 10⊗1

64 1.581 × 10⊗1 2.158 × 10⊗1 1.242 × 10⊗1 1.990 × 10⊗1

128 7.466 × 10⊗2 1.015 × 10⊗1 5.673 × 10⊗2 9.394 × 10⊗2

256 3.615 × 10⊗2 4.625 × 10⊗2 2.645 × 10⊗2 4.217 × 10⊗2

528 1.892 × 10⊗2 1.855 × 10⊗2 1.428 × 10⊗2 1.613 × 10⊗2

LSF 𝐸(ℎ) 1.694 * ℎ1.025 3.00 * ℎ1.136 1.504 * ℎ1.07 2.83496 * ℎ1.149

Table 4.1: Errors between the numerical approximations (𝑈) and exact solutions (𝑢) for problem

𝑢𝑡 +
(︁

𝑢2

2

)︁
𝑥

= 0 with continuous initial condition 𝑢(𝑥, 0) = 0.5 + 𝑠𝑖𝑛(𝑥) at time frame 𝑇 = 0.5

for pre-schok with LEH1 and LEH2 schemes.
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Figure 4.2: Pre-shock and post-shock solutions computed with LEH1

Example 4.5.2. Inviscid BurgersŠ equation with discontinuous initial data.

We have also conducted similar numerical experiments to that reported in Figure 4.2, but
to problem 𝑢𝑡 +

(︁
𝑢2

2

)︁
𝑥

= 0 along with discontinuous initial data 𝑢(𝑥, 0) = Ö(𝑥) = 1, 𝑥 < 0 and

𝑢(𝑥, 0) = Ö(𝑥) = 0, 𝑥 > 0. In top of Figure 4.3 pictures are shown snapshot graphs at time
𝑡 = 2.4 of simulation a shock wave moving from left to right. As above section we get a very
nice looking numerical approximate solution with schemes LEH1 (4.1.8) and 128 cells (left),
256 cells (middle) and 512 right. Shock-wave waves are propagating at entirely entropy-correct

Rankine-Hugoniot speed. We have also considered BurgersŠ problem 𝑢𝑡 +
(︁

𝑢2

2

)︁
𝑥

= 0 along with

data 𝑢(𝑥, 0) = Ö(𝑥) = 0, 𝑥 < 0 and 𝑢(𝑥, 0) = Ö(𝑥) = 1, 𝑥 > 0. In bottom pictures of Figure
4.3 are shown snapshot graphs at time 𝑡 = 1 of simulation for a moving rarefaction wave from
left to right, where the rarefaction wave is spreading out correctly and matching with the exact
solution there.

Example 4.5.3. Buckley-Leverett equation.

Buckley-Leverett equation. Numerical approximate solutions with scheme LEH1 (4.1.8)
are shown to the Riemann Problem (Initial Value Problem with non-convex Ćux function):
𝑢𝑡 + 𝑓𝑥(𝑢) = 0, along with Riemann initial data 𝑢(𝑥, 0) ⊕ Ö(𝑥) = 1, 𝑥 < 0 and 𝑢(𝑥, 0) ⊕ Ö(𝑥) =
0, 𝑥 > 0. On physical ground, such initial data corresponds to waterĆooding of an oil reservoir.
The well known solution for this model comprises a leading shock wave (an oil bank) followed by
an attached rarefaction wave. The smoothing of the saturation proĄle observed at the trailing
edge of the rarefaction wave where 𝑢 = 0.8, is solely the effect of numerical dissipation. The
weak solution satisfying the Oleinik entropy condition is in very good agreement, along with
the LEH1 and LEH2 schemes, propagating at entirely entropy-correct Rankine-Hugoniot speed
and with the precisely post-shock value. In Figure are shown numerical approximation with
scheme LEH1 (4.1.8) advanced at times 𝑡 = 0.3 left, 𝑡 = 0.6 and 𝑡 = 1 with 128 cells (top) and
256 (bottom).
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Figure 4.3: Numerical approximation with discontinuous initial data
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Figure 4.4: Buckley-Leverett with discontinuous initial data
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Example 4.5.4. Other non-convex Ćux type.
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Figure 4.5: Numerical approximations with other non-convex flux

We have also considered another non-convex Ćux function, approximated with schemes
LEH1, to the scalar conservation law 𝑢𝑡+𝑓𝑥(𝑢) = 0, namely 𝑓(𝑢) = 0.5(𝑒⊗25(𝑢⊗0.5)2

+8(𝑢⊗0.5)2),
and with same Riemann data (see Figure 4.5). Again, the numerical solutions is in agreement
with Oleinik entropy condition, whose approximate left and right shock waves are propagating
with correct Rankine-Hugoniot speed and entropy-correct post-shock values. At the two rows
of pictures are shown snapshot graphs at simulation times 𝑡 = 0.3 (left), 𝑡 = 0.6 (middle) and
𝑡 = 1 (right) with 256 cells (top) and 512 cells (bottom). In the table 4.1 are shown the errors
in the 𝑙∞ℎ and 𝑙1ℎ norms as also to the LEH1 and LEH2 methods and the accuracy order in the
approximation, the table 4.1 reveals that the convergence rate is approximately 1. The theory
described in above sections shows that both the methods LEH1 and LEH2 are accurate of order
1.
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Chapter 5

The Lagrangian-Eulerian scheme for
hyperbolic balance laws

So far, we have shown some representative numerical experiments for scalar nonlinear prob-
lems for which we were able to verify the correct (entropy) behavior of the approximations
computed by the new Lagrangian-Eulerian scheme. Nonetheless, as the computational grid is
reĄned the approximate solution looks reasonable and has well-resolved discontinuities. This
give us some conĄdence to speculate that the method is somewhat stable, avoiding the imprac-
tical requirement of extremely very Ąne meshes, to satisfy the task of computing qualitatively
entropy-correct approximations. Thus, we have some hope to use a version of the Lax-Wendroff
theorem in the sense of that discussed in [34, 123] (see also [67] for more details) on the choice
of a family of path-conservative numerical schemes for hyperbolic systems of balance laws, but
in a conservative form of the conservation law; in [34, 123], the authors considered hyperbolic
system in nonconservative form.

We are interested in designing well-balanced conceptually simple schemes, which have a well
balanced property for static and moving equilibrium, applicable to a wide class of systems with
source. One may Ąnd, in a variety of physical problems, source terms that are balanced by
internal forces and this balance supports multiple steady-state solutions that are stable. The
well-balance property can be formally enunciated as follows. Consider the system of balance
laws as such,

𝜕𝑢

𝜕𝑡
+
𝜕(𝐻(𝑢))

𝜕𝑥
= 𝐺(𝑢), (5.0.1)

we denote 𝑢𝑒 the stationary solution, which satisĄes the equation,

𝜕(𝐻(𝑢𝑒))

𝜕𝑥
= 𝐺(𝑢𝑒), (5.0.2)

we say that a numerical scheme is well-balanced, if it fully satisĄes a discrete version of the
equilibrium equation (5.0.2). If a method is not well-balanced, the truncation error of solutions
near of equilibrium state may be larger than 𝑢(𝑥, 𝑡) ⊗ 𝑢𝑒(𝑥). Our numerical experiments for
solving balance laws have shown strong numerical evidence that such well-balanced property
is satisĄed when we applied our novel Lagrangian-Eulerian scheme for several models of balance
laws.

Consider the scalar balance law problem,

𝜕𝑢

𝜕𝑡
+
𝜕𝐻(𝑢)

𝜕𝑥
= 𝐺(𝑢), 𝑡 > 0, ⊗∞ < 𝑥 < ∞, 𝑢(𝑥, 0) = Ö(𝑥) ⊗ ∞ < 𝑥 < ∞, (5.0.3)
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under the assumption
√︃√︃

𝐷𝑛
𝑗
𝐺(𝑢) 𝑑𝑥 𝑑𝑡 < ∞. Now, write (5.0.3) as follows,

∇𝑡,𝑥 ≤
[︃

𝑢
𝐻(𝑢)

⟨
= 𝐺(𝑢) 𝑡 > 0, ⊗∞ < 𝑥 < ∞, 𝑢(𝑥, 0) = Ö(𝑥) ⊗ ∞ < 𝑥 < ∞. (5.0.4)

Now, lets us write (5.0.4) over the local space-time ŞIntegral tubeŤ 𝐷𝑛
𝑗 (see equation (2.1.6)

and the left picture in Figure 2.1),

∫︁∫︁

𝐷𝑛
𝑗

∇𝑡,𝑥 ≤
[︃

𝑢
𝐻(𝑢)

⟨
𝑑𝑥 𝑑𝑡 =

∫︁∫︁

𝐷𝑛
𝑗

𝐺(𝑢) 𝑑𝑥 𝑑𝑡. (5.0.5)

Following the same arguments in Section 2, we apply Ąrst the divergence theorem in (5.0.5)
and, by means of the impervious boundaries given by à𝑛

𝑗 (𝑡), reads:

∫︁ 𝑥𝑛+1

𝑗+ 1
2

𝑥𝑛+1

𝑗−
1
2

𝑢(𝑥, 𝑡𝑛+1)𝑑𝑥 =
∫︁ 𝑥𝑛

𝑗+1

𝑥𝑛
𝑗

𝑢(𝑥, 𝑡𝑛)𝑑𝑥+
∫︁∫︁

𝐷𝑛
𝑗

𝐺(𝑢) 𝑑𝑥 𝑑𝑡. (5.0.6)

This equation can be viewed as the local space-time Lagrangian-Eulerian conservation relation
for the balance law (5.0.6). Finally, we use (5.0.6) then to deĄne,

𝑈
𝑛+1
𝑗 =

1

ℎ𝑛+1
𝑗

∫︁ 𝑥𝑛+1

𝑗+ 1
2

𝑥𝑛+1

𝑗−
1
2

𝑢(𝑥, 𝑡𝑛+1)𝑑𝑥 =
1

ℎ𝑛+1
𝑗

[︃∫︁ 𝑥𝑛
𝑗+1

𝑥𝑛
𝑗

𝑢(𝑥, 𝑡𝑛)𝑑𝑥+
∫︁∫︁

𝐷𝑛
𝑗

𝐺(𝑢)𝑑𝑥𝑑𝑡

⟨
, (5.0.7)

and its associated projection step over the original mesh grid,

𝑈𝑛+1
𝑗 =

1

ℎ

[︃
(
ℎ

2
+ 𝑓𝑛

𝑗 𝑘)𝑈
𝑛+1
𝑗⊗1 + (

ℎ

2
⊗ 𝑓𝑛

𝑗 𝑘)𝑈
𝑛+1
𝑗

⟨
. (5.0.8)

The Lagrangian-Eulerian scheme for balance law (LEB1) is fully deĄned by combining equations
(5.0.7) and (5.0.8). Clearly, the key point here is how to design a discretization in a manner that
an accurate balance between the gradients of the Ćux function and the source term is retained.
Thus, let us now Ąrst extend the designed proposed scheme for linear hyperbolic conservation
laws to the case of balance laws in order to describe the features of the Lagrangian-Eulerian
procedure.

5.1 Linear case for balance laws

For the sake of simplicity, let us start with the following balance law,
∏︁
⋁︁⋁︁⋁︁⋁︁⨄︁
⋁︁⋁︁⋁︁⋁︁⋃︁

𝜕𝑢

𝜕𝑡
+
𝜕(𝑎𝑢)

𝜕𝑥
= 𝐺(𝑥, 𝑡), 𝑡 > 0, ⊗∞ < 𝑥 < ∞,

𝑢(𝑥, 0) = Ö(𝑥), ⊗∞ < 𝑥 < ∞.

(5.1.1)

As in Section 2, the combination of (5.0.7) and (5.0.8) give us,

𝑈𝑛+1
𝑗 ⊗ 1

4

(︁
𝑈𝑛

𝑗⊗1 + 2𝑈𝑛
𝑗 + 𝑈𝑛

𝑗+1

)︁

𝑘
⊗ 𝑎

𝑈𝑛
𝑗+1 ⊗ 𝑈𝑛

𝑗⊗1

2ℎ
=

1

𝑘 ℎ

⋃︀
⋁︀⋁︀⋁︀⋁︀⋁︀⨄︀

1

ℎ

(︂
ℎ

2
+ 𝑎𝑘

)︂∫︁∫︁

𝐷𝑗−1

𝐺(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

+
1

ℎ

(︂
ℎ

2
⊗ 𝑎𝑘

)︂∫︁∫︁

𝐷𝑗

𝐺(𝑥, 𝑡)𝑑𝑥 𝑑𝑡

⋂︀
⎥⎥⎥⎥⎥⋀︀

.

(5.1.2)
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At this point, let us point-out a distinctive aspect of the new Lagrangian-Eulerian approach.
First, let us consider the Şhyperbolic counterpartŤ of the balance law (5.1.1), i.e., 𝐺(𝑢) ⊕ 0 and
𝑢𝑡 + 𝑎𝑢𝑥 = 0, 𝑢(𝑥, 0) = Ö(𝑥), along with the well known exact solution 𝑢(𝑥, 𝑡) = Ö(𝑥 ⊗ 𝑎𝑡). If
we think mesh grid parameters in space ℎ and time 𝑘 obey a CFL condition constraint such as
(2.1.28), then we have the following mesh grid representation of the local approximate solution
given by 𝑢(𝑥𝑗, 𝑡

𝑛+1) = 𝑢(𝑥𝑗 ⊗ 𝑎𝑘, 𝑡𝑛) ⊕ Ö𝑗(ℎ⊗ 𝑎𝑘). By construction of the Lagrangian-Eulerian
scheme ,points (𝑥𝑗, 𝑡

𝑛) and (𝑥𝑗, 𝑡
𝑛+1) are inside the space-time local control Ąnite volume 𝐷𝑛

𝑗 ,

and away from the parameterized curves à𝑛
𝑗 (𝑡) and 𝑢(𝑥𝑗, 𝑡

𝑛+1) = Ö(ℎ⊗𝑎𝑘) is a smooth function
in each 𝐷𝑛

𝑗 . Furthermore, it is worth pointing out that in the linear hyperbolic case the integral
curves (integral tubes) coincide with the characteristic curves. Thus, the source term can be
solved by forward tracking the boundary of grid cells from the parameterized curves à𝑛

𝑗 (𝑡) along
the so-called integral tubes. Thus, we can recast (5.1.2) as follows:

𝑈𝑛+1
𝑗 ⊗ 1

4

(︁
𝑈𝑛

𝑗⊗1 + 2𝑈𝑛
𝑗 + 𝑈𝑛

𝑗+1

)︁

𝑘
⊗ 𝑎

𝑈𝑛
𝑗+1 ⊗ 𝑈𝑛

𝑗⊗1

2ℎ
=

1

𝑘ℎ

⋃︀
⋁︀⋁︀⋁︀⋁︀⨄︀

1

ℎ
[Ö⊗1

𝑗⊗1 (ℎ/2 + 𝑎𝑘)]

∫︁∫︁

𝐷𝑗−1

𝐺(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

+
1

ℎ
[Ö⊗1

𝑗 (ℎ/2 ⊗ 𝑎𝑘)]

∫︁∫︁

𝐷𝑗

𝐺(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

⋂︀
⎥⎥⎥⎥⋀︀

.

(5.1.3)

It is worth mentioning that a characteristic feature of the hyperbolic balance law is the in-
herent existence of non-trivial equilibrium solutions. Then, in order to design a scheme for
inhomogeneous conservation laws a key point is how to discretize the Ćux function and the
source term keeping the proper balance a discrete analogue of this balance linked to equilib-
rium steady state solutions. The basic idea here is to decompose the integral on the right hand
side of (5.1.2) into suitable parts. Equation (5.1.3) means that the dynamic of the impervious
boundaries given by the parameterized curves à𝑛

𝑗 (𝑡) 𝐷𝑛
𝑗 to the ŞIntegral tubeŤ 𝐷𝑛

𝑗 (see (2.1.6)
and left picture in Figure 2.1) naturally provide an unbiased upwinding in a robust fashion
since within this decomposition leads to a quadrature rule for the integral of the source term
𝐺(𝑥, 𝑡) in which is Riemann-solver-free. This is the new view point of the Lagrangian-Eulerian
scheme (5.1.3) to a well-balancing discretization between source term and the hyperbolic Ćux
term. Further, a set of representative numerical experiments based on well known mathemat-
ical models available in the literature to compare and to demonstrate the application of the
Lagrangian-Eulerian method with reasonable accuracy. The idea of the analogue nonlinear
scheme is quite straightforward.

On the other hand, (5.1.3) is the discrete model of equation (5.1.1). Thus, we can write
equation (5.1.2) as,

𝑅ℎ,𝑘𝐺 = 𝑃ℎ,𝑘𝑈 +𝑂(ℎ) +𝑂(𝑘), (5.1.4)

with the operator 𝑃ℎ,𝑘 as such in (2.1.16):

𝑅ℎ,𝑘𝐺 =
1

𝑘 ℎ

[︃
1

ℎ

(︃
ℎ

2
+ 𝑎𝑘

)︃∫︁∫︁

𝐷𝑗−1

𝐺(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡+
1

ℎ

(︃
ℎ

2
⊗ 𝑎𝑘

)︃∫︁∫︁

𝐷𝑗

𝐺(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

⟨
. (5.1.5)

In this linear case, suppose we can perform a exact quadrature rule to the integrals that
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appears in (5.1.5). Thus, if 𝐺 = 𝜕ã
𝜕𝑡

+ 𝑎𝜕ã
𝜕𝑥

= 𝑃ã then (see [142]),

𝑅ℎ,𝑘𝑃ã =
1

𝑘 ℎ

[︃
1

ℎ

(︂
ℎ

2
+ 𝑎𝑘

)︂∫︁∫︁

𝐷j−1

𝑃ã(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡 +
1

ℎ

(︂
ℎ

2
⊗ 𝑎𝑘

)︂∫︁∫︁

𝐷j

𝑃ã(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

⟨

=
1

𝑘 ℎ

[︃
1

ℎ

(︂
ℎ

2
+ 𝑎𝑘

)︂∫︁∫︁

𝐷j−1

(︂
𝜕ã

𝜕𝑡
+ 𝑎

𝜕ã

𝜕𝑥

)︂
𝑑𝑥 𝑑𝑡 +

1

ℎ

(︂
ℎ

2
⊗ 𝑎𝑘

)︂∫︁∫︁

𝐷j

(︂
𝜕ã

𝜕𝑡
+ 𝑎

𝜕ã

𝜕𝑥

)︂
𝑑𝑥 𝑑𝑡

⟨

=
1

𝑘 ℎ

[︃
1

ℎ

(︂
ℎ

2
+ 𝑎𝑘

)︂∫︁∫︁

𝐷j−1

∇𝑡,𝑥

[︂
ã
𝑎ã

]︂
𝑑𝑥 𝑑𝑡 +

1

ℎ

(︂
ℎ

2
⊗ 𝑎𝑘

)︂∫︁∫︁

𝐷j

∇𝑡,𝑥

[︂
ã
𝑎ã

]︂
𝑑𝑥 𝑑𝑡

⟨
,

(5.1.6)

and by the application of the divergence theorem reads,

𝑅ℎ,𝑘𝑃ã =
1

𝑘ℎ

[︃
1

ℎ

(︃
ℎ

2
+ 𝑎𝑘

)︃⌊︁

𝜕𝐷𝑗−1

[︃
ã
𝑎ã

⟨
≤ 𝑛 𝑑𝑥 𝑑𝑡+

1

ℎ

(︃
ℎ

2
⊗ 𝑎𝑘

)︃⌊︁

𝜕𝐷𝑗

[︃
ã
𝑎ã

⟨
≤ 𝑛 𝑑𝑥 𝑑𝑡

⟨
.

(5.1.7)
By construction of integral tubes, we use the fact of curves à𝑛

𝑗 be impervious over regions 𝐷𝑛
𝑗

to get,

𝑅ℎ,𝑘𝑃ã =
1

𝑘ℎ

[︃
1

ℎ

(︃
ℎ

2
+ 𝑎𝑘

)︃(︁
𝐼

𝑛+1
𝑗⊗1 ⊗ 𝐼𝑛

𝑗⊗ 1

2

)︁
+

1

ℎ

(︃
ℎ

2
⊗ 𝑎𝑘

)︃(︁
𝐼

𝑛+1
𝑗 ⊗ 𝐼𝑛

𝑗+ 1

2

)︁⟨
, (5.1.8)

where

𝐼
𝑛+1
𝑗 =

∫︁ 𝑥𝑛+1

𝑗+ 1
2

𝑥𝑛+1

𝑗−
1
2

ã(𝑥, 𝑡𝑛+1) 𝑑𝑥 and 𝐼𝑛
𝑗+ 1

2

=
∫︁ 𝑥𝑛

𝑗+1

𝑥𝑛
𝑗

ã(𝑥, 𝑡𝑛) 𝑑𝑥. (5.1.9)

Notice that all specialized machinery developed like numerical quadrature rule for integrals as
well as nonlinear reconstructions (see, e.g., [20, 21, 22, 32, 58, 80]) can be employed on the
RHS of (5.1.9). But, in order to better account the contribution of new Lagrangian-Eulerian
procedure, namely the balancing between the computation of the numerical Ćux function and
the source term by means of the naturally unbiased upwinding Riemann-solver-free, we use

standard quadrature rules. Indeed, we approximate integrals 𝐼
𝑛+1
𝑗 and 𝐼𝑛

𝑗+ 1

2

that appears in

(5.1.9) with the midpoint rule and the trapezoidal rule, respectively, given by

𝐼
𝑛+1
𝑗 =

∫︁ 𝑥𝑛+1

𝑗+ 1
2

𝑥𝑛+1

𝑗−
1
2

ã(𝑥, 𝑡𝑛+1) 𝑑𝑥 ≡ ℎã(𝑥𝑛+1
𝑗 , 𝑡𝑛+1) +

ã𝑥𝑥(Ý
𝑛

𝑗 )ℎ3

24

= ℎã
𝑛+1

𝑗 +
ã𝑥𝑥(Ý

𝑛

𝑗 )ℎ3

24
,

(5.1.10)

𝐼𝑛
𝑗+ 1

2

=
∫︁ 𝑥𝑛

𝑗+1

𝑥𝑛
𝑗

ã(𝑥, 𝑡𝑛) 𝑑𝑥 ≡ ℎ

2

[︁
ã(𝑥𝑛

𝑗 , 𝑡
𝑛) + ã(𝑥𝑛

𝑗+1, 𝑡
𝑛)
]︁

⊗
ã𝑥𝑥(Ý𝑛

𝑗+ 1

2

)ℎ3

12

=
ℎ

2

(︁
ã𝑛

𝑗 + ã𝑛
𝑗+1

)︁
⊗
ã𝑥𝑥(Ý𝑛

𝑗+ 1

2

)ℎ3

12
,

(5.1.11)

where Ý
𝑛

𝑗 ∈
(︂
𝑥𝑛+1

𝑗⊗ 1

2

, 𝑥𝑛+1
𝑗+ 1

2

)︂
and Ý𝑛

𝑗+ 1

2

∈
(︁
𝑥𝑛

𝑗 , 𝑥
𝑛
𝑗+1

)︁
. Now, plugging (5.1.10) and (5.1.11) into
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(5.1.8) and performing the projection step over the original grid (5.0.8), give us,

𝑅ℎ,𝑘𝑃ã =
1

𝑘ℎ

[︃(︃
ℎ

2
+ 𝑎𝑘

)︃(︂
ã

𝑛+1

𝑗⊗1 ⊗ 1

2

(︁
ã𝑛

𝑗⊗1 + ã𝑛
𝑗

)︁)︂
+

(︃
ℎ

2
⊗ 𝑎𝑘

)︃(︂
ã

𝑛+1

𝑗 ⊗ 1

2

(︁
ã𝑛

𝑗 + ã𝑛
𝑗+1

)︁)︂⟨

+
1

𝑘ℎ

⋃︀
⨄︀
(︃
ℎ

2
+ 𝑎𝑘

)︃∏︀
∐︁ã𝑥𝑥(Ý

𝑛

𝑗⊗1)ℎ
2

24
+
ã𝑥𝑥(Ý𝑛

𝑗⊗ 1

2

)ℎ2

12

⎞
⎠+

(︃
ℎ

2
⊗ 𝑎𝑘

)︃∏︀
∐︁ã𝑥𝑥(Ý

𝑛

𝑗 )ℎ2

24
+
ã𝑥𝑥(Ý𝑛

𝑗+ 1

2

)ℎ2

12

⎞
⎠
⋂︀
⋀︀

=
1

𝑘

[︃
ã𝑛+1

𝑗 ⊗ 1

2ℎ

(︃
ℎ

2
+ 𝑎𝑘

)︃(︁
ã𝑛

𝑗⊗1 + ã𝑛
𝑗

)︁
⊗ 1

2ℎ

(︃
ℎ

2
⊗ 𝑎𝑘

)︃(︁
ã𝑛

𝑗 + ã𝑛
𝑗+1

)︁⟨
+𝑂(ℎ) +𝑂(𝑘).

(5.1.12)
Under assumption of exact integration od the linear source term we can recast (5.1.12) as,

𝑅ℎ,𝑘𝑃ã =
ã𝑛

𝑗 ⊗ 1
4

(︁[︁
ã𝑛

𝑗⊗1 + ã𝑛
𝑗

]︁
+
[︁
ã𝑛

𝑗 + ã𝑛
𝑗+1

]︁)︁

𝑘
+ 𝑎

ã𝑛
𝑗+1 ⊗ ã𝑛

𝑗⊗1

2ℎ
+𝑂(ℎ) +𝑂(𝑘)

= 𝑃ℎ,𝑘ã+𝑂(ℎ) +𝑂(𝑘),

(5.1.13)

and the truncation error (see [142]) of the Lagrangian-Eulerian scheme is 𝑂(ℎ) + 𝑂(𝑘) and
accurate of order (1, 1). As announced, all specialized machinery developed numerical quadra-
ture rule for integrals as well as nonlinear reconstructions (see, e.g., [32, 21, 22, 58, 80, 20])
can be employed on the RHS of (5.1.9). But, in order to better account the contribution of
new Lagrangian-Eulerian procedure, namely the appropriate balancing between the compu-
tation of the numerical Ćux function (i.e., the discrete space-time divergence operator) and
the source term by means of the naturally unbiased upwinding Riemann-solver-free, we use
standard quadrature rules. This will be discussed in what follows.

5.1.1 Midpoint rule

We will start from the Lagrangian-Eulerian scheme (5.1.2)-(5.1.3), which in turn is related to
(5.1.4)-(5.1.5). In addition, for the quadrature rule to make sense, we point out we p erforming
the pertinent computations under the CFL constrain (2.1.28), from time level 𝑡𝑛+1 to 𝑡𝑛 such
that 𝑡𝑛+1 = 𝑡𝑛 + 𝑘 and that

à𝑛
𝑗+1(𝑡) ⊗ à𝑛

𝑗 (𝑡) = 𝑎(𝑡⊗ 𝑡𝑛) + 𝑥𝑛
𝑗+1 ⊗ 𝑎(𝑡⊗ 𝑡𝑛) + 𝑥𝑛

𝑗 = 𝑥𝑛
𝑗+1 ⊗ 𝑥𝑛

𝑗 = ℎ

.
It is sufficient to consider the integration just over one ŞIntegral tubeŤ 𝐷𝑛

𝑗 ; the other case
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𝐷𝑛
𝑗⊗1 is similar. Thus,

∫︁∫︁

𝐷𝑛
𝑗

𝐺(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡 ≡
∫︁ 𝑡𝑛+1

𝑡𝑛

∫︁ à𝑛
𝑗+1

(𝑡)

à𝑛
𝑗

(𝑡)
𝐺(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

=
∫︁ 𝑡𝑛+1

𝑡𝑛

[︁
à𝑛

𝑗+1(𝑡) ⊗ à𝑛
𝑗 (𝑡)

]︁
𝐺

(︃
à𝑛

𝑗+1(𝑡) + à𝑛
𝑗 (𝑡)

2
, 𝑡

)︃
𝑑𝑡

=
∫︁ 𝑡𝑛+1

𝑡𝑛
ℎ𝐺

(︃
à𝑛

𝑗+1(𝑡) + à𝑛
𝑗 (𝑡)

2
, 𝑡

)︃
𝑑𝑡

= ℎ 𝑘 𝐺

∏︀
∐︁à

𝑛
𝑗+1(

𝑡𝑛+1+𝑡𝑛

2
) + à𝑛

𝑗 ( 𝑡𝑛+1+𝑡𝑛

2
)

2
,
𝑡𝑛+1 + 𝑡𝑛

2

⎞
⎠

= ℎ 𝑘 𝐺

(︃
à𝑛

𝑗+1(
2𝑡𝑛+𝑘

2
) + à𝑛

𝑗 (2𝑡𝑛+𝑘
2

)

2
,
𝑡𝑛 + 2𝑘

2

)︃

= ℎ 𝑘 𝐺

(︃
à𝑛

𝑗+1(𝑡
𝑛 + 𝑘

2
) + à𝑛

𝑗 (𝑡𝑛 + 𝑘
2
)

2
, 𝑡𝑛 +

𝑘

2

)︃

= ℎ 𝑘 𝐺

(︃
(𝑡𝑛 + 𝑘

2
⊗ 𝑡𝑛)𝑎+ 𝑥𝑛

𝑗+1 + (𝑡𝑛 + 𝑘
2

⊗ 𝑡𝑛)𝑎+ 𝑥𝑛
𝑗

2
, 𝑡𝑛 +

𝑘

2

)︃
.

(5.1.14)
Equation (5.1.14) can be recast as follows,

∫︁∫︁

𝐷𝑛
𝑗

𝐺(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡 ≡ 𝑘 ℎ𝐺

(︃
𝑥𝑛

𝑗 +
1

2
(𝑎𝑘 + ℎ)𝑡𝑛 +

𝑘

2

)︃
. (5.1.15)

Now, plugging (5.1.15) into the operator (5.1.5) gives,

𝑅ℎ,𝑘𝐺 =
1

ℎ

(︂
ℎ

2
+ 𝑎𝑘

)︂
𝐺

(︂
𝑥𝑛

𝑗−1 +
1

2
(𝑎𝑘 + ℎ), 𝑡𝑛 +

𝑘

2

)︂
+

1

ℎ

(︂
ℎ

2
⊗ 𝑎𝑘

)︂
𝐺

(︂
𝑥𝑛

𝑗 +
1

2
(𝑎𝑘 + ℎ), 𝑡𝑛 +

𝑘

2

)︂
. (5.1.16)

For a smooth function 𝐺(𝑥, 𝑡), we might write from (5.1.16),

𝑅ℎ,𝑘𝐺 = 𝐺⊗ 𝑎𝑘

2
𝑔𝑥 +

𝑘

2
𝐺𝑡 +𝑂(𝑘2) +𝑂(ℎ2), (5.1.17)

and then,

𝑅ℎ,𝑘𝑃ã = ã𝑡 + 𝑎ã𝑥 ⊗ 𝑎𝑘

2
(ã𝑡 + 𝑎ã𝑥)𝑥 +

𝑘

2
(ã𝑡 + 𝑎ã𝑥)𝑡 +𝑂(𝑘2) +𝑂(ℎ2)

= ã𝑡 + 𝑎ã𝑥 ⊗ 𝑎𝑘

2
ã𝑡𝑥 ⊗ 𝑎2𝑘

2
ã𝑥𝑥 +

𝑘

2
ã𝑡𝑡 +

𝑎𝑘

2
ã𝑥𝑡 +𝑂(𝑘2) +𝑂(ℎ2).

(5.1.18)

For a sufficiently smooth ã we have ã𝑡𝑥 = ã𝑥𝑡, and write,

𝑅ℎ,𝑘𝑃ã = ã𝑡 + 𝑎ã𝑥 +
𝑘

2
ã𝑡𝑡 ⊗ 𝑎2𝑘

2
ã𝑥𝑥 +𝑂(𝑘2) +𝑂(ℎ2), (5.1.19)
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or more conveniently in the form,

𝑃ℎ,𝑘ã⊗𝑅ℎ,𝑘𝑃ã = ⊗ℎ2

2𝑘

[︂
1

2
⊗ 𝑣2

]︂
ã𝑥𝑥 +𝑂(𝑘2) +𝑂(ℎ2). (5.1.20)

According to [142], we can say the Lagrangian-Eulerian scheme for balance law (5.0.7)-(5.0.8)
is accurate of order (1, 1) when we use the midpoint rule to approximate the space-time local
integral tube 𝐷𝑛

𝑗 . Yet, in the sense of [142], with the ratio ℎ/𝑘 Ąxed, this imply 𝑃ℎ,𝑘ã⊗𝑅ℎ,𝑘𝑃ã =
𝑂(ℎ).

5.1.2 The trapezoidal rule

The trapezoidal rule is quite similar to the previous Section 5.1.1. Thus, integral over 𝐷𝑛
𝑗

reads,
∫︁∫︁

𝐷n
j

𝐺(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡 ≡ 𝑘 ℎ

4

[︀
𝐺(𝑥𝑛

𝑗 + ℎ + 𝑎𝑘, 𝑡𝑛 + 𝑘) + 𝐺(𝑥𝑛
𝑗 + 𝑎𝑘, 𝑡𝑛 + 𝑘) + 𝐺(𝑥𝑛

𝑗 + ℎ, 𝑡𝑛) + 𝐺(𝑥𝑛
𝑗 , 𝑡𝑛)

⌊︃
(5.1.21)

replacing this equation for 𝐷𝑗⊗1 and 𝐷𝑗 in the operator 𝑅ℎ,𝑘𝐺, we get

𝑅ℎ,𝑘𝐺 = 𝐺⊗ 𝑎𝑘

2
𝐺𝑥 +

𝑘

2
𝐺𝑡 +𝑂(ℎ2) +𝑂(𝑘2). (5.1.22)

As 𝑃ã = ã𝑡 + 𝑎ã𝑥 = 𝐺 we might write,

𝑅ℎ,𝑘𝑃ã = (ã𝑡 + 𝑎ã𝑥) ⊗ 𝑎𝑘

2
(ã𝑡 + 𝑎ã𝑥)𝑥 +

𝑘

2
(ã𝑡 + 𝑎ã𝑥)𝑡 +𝑂(ℎ2) +𝑂(𝑘2). (5.1.23)

Notice, the accuracy 𝑂(1) is equal to the Midpoint rule,

𝑃ℎ,𝑘ã⊗𝑅ℎ,𝑘𝑃ã = ⊗ℎ2

2𝑘

[︂
1

2
⊗ 𝑣2

]︂
ã𝑥𝑥 +𝑂(𝑘2) +𝑂(ℎ2). (5.1.24)

By the above calculations we have consistency with 𝑂(1) for the Lagrangian-Eulerian scheme
(5.0.7)-(5.0.8), with respect to the linear balance law (5.1.1), for both quadratures: mid point
rule and trapezoidal rule. In the light of the modiĄed equation analysis to the purely lin-
ear hyperbolic case, notice the diffusive term in ã𝑥𝑥 suggests that a CFL condition to the
Lagrangian-Eulerian scheme based on (5.1.20) and (5.1.24) is ♣𝑣♣⊘ 1√

2
; 𝑣 = 𝑎𝑘/ℎ. If this is the

case, we would expect to achieve high resolution if we set 𝑣 =
√

2/2. Next, we turn to the
stability analysis.

5.1.3 Stability and convergence for Lagrangian-Eulerian scheme for
linear balance laws

To prove the stability of the Lagrangian-Eulerian scheme (5.0.7)-(5.0.8) for balance law
(5.1.1) we must search the ampliĄcation factor as in the linear hyperbolic linear case. Thus,
set just 𝑈𝑛

𝑗 = 𝑔𝑛𝑒𝑖Ý𝑗ℎ and plug it into (5.1.2) along with 𝑅ℎ,𝑘𝐺 = 0 to get,

𝑔(Ý)𝑛+1𝑒𝑖Ý𝑗ℎ =
1

4

[︁
𝑔(Ý)𝑛𝑒𝑖Ý(𝑗⊗1)ℎ + 2𝑔(Ý)𝑛𝑒𝑖Ý𝑗ℎ + 𝑔(Ý)𝑛𝑒𝑖Ý(𝑗+1)ℎ

]︁
⊗ 𝑎𝑘

2ℎ

[︁
𝑔(Ý)𝑛𝑒𝑖Ý(𝑗+1)ℎ ⊗ 𝑔(Ý)𝑛𝑒𝑖Ý(𝑗⊗1)ℎ

]︁

=
1

4
𝑒𝑖Ý𝑗ℎ𝑔(Ý)𝑛

[︁
𝑒⊗𝑖Ýℎ + 2 + 𝑒𝑖Ýℎ

]︁
⊗ 𝑎𝑘

2ℎ
𝑒𝑖Ý𝑗ℎ𝑔(Ý)𝑛

[︁
𝑒𝑖Ýℎ ⊗ 𝑒⊗𝑖Ýℎ

]︁
.

(5.1.25)



77

From (5.1.25), the ampliĄcation factor now reads,

𝑔(Ý) =
1

4
(2 + 2 cos(Ýℎ)) ⊗ 1

2
𝑣 (2𝑖 sin(Ýℎ)) =

1

2
(1 + cos(Ýℎ)) ⊗ 𝑣𝑖 sin(Ýℎ). (5.1.26)

If ♣𝑣♣⊘
√

2/2 we have ♣𝑔(Ý)♣< 1 and then stability for the Lagrangian-Eulerian scheme (5.0.7)-
(5.0.8) for balance law (5.1.1). Moreover, consistency plus stability means convergence in the
scope of the Lax Equivalence theorem, just in the purely hyperbolic case.
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Figure 5.1: Numerical approximations with the Lagrangian-Eulerian scheme LEB1 (5.0.7)-
(5.0.8) for balance law problem 𝑢𝑡+2𝑢𝑥 = 11𝑐𝑜𝑠(5𝑥+𝑡) subject to the initial condition 𝑢(𝑥, 0) =
4 + sin(5𝑥) at time 𝑇 = 1 of simulation with the limiting Courant number 𝑣 =

√
2/2.

Cells Exact ‖𝑢 ⊗ 𝑈‖𝑙∞

h
(‖𝑢 ⊗ 𝑈‖𝑙1

h
) Midpoint ‖𝑢 ⊗ 𝑈‖𝑙∞

h
(‖𝑢 ⊗ 𝑈‖𝑙1

h
) Trap ‖𝑢 ⊗ 𝑈‖𝑙∞

h
(‖𝑢 ⊗ 𝑈‖𝑙1

h
)

32 3.153 × 10−1(2.526 × 100) 5.590 × 10−1(4.232 × 100) 2.3151 × 10−1(1.997 × 100)
64 7.232 × 10−2(6.634 × 10−1) 1.382 × 10−1(1.231 × 100) 8.484 × 10−2(7.478 × 10−1)
128 1.705 × 10−2(1.574 × 10−1) 4.526 × 10−2(3.898 × 10−1) 3.624 × 10−2(3.106 × 10−1)
256 4.056 × 10−3(3.857 × 10−2) 1.881 × 10−2(1.585 × 10−1) 1.747 × 10−3(1.467 × 10−1)
LSF 𝐸(ℎ) 9.415 * ℎ2.093(69.067 * ℎ2.018) 6.949 * ℎ1.629(51.968 * ℎ1.587) 1.663 * ℎ1.248(14.588 * ℎ1.257)

Table 5.1: Errors between the approximate solution 𝑈 and the exact solution 𝑢.

Next, Figure 5.1 show numerical experiments to a linear balance problem in order to ver-
ify properties discussed just above. Numerical approximations with the Lagrangian-Eulerian
scheme LEB1 (5.0.7)-(5.0.8) for balance law problem 𝑢𝑡 + 2𝑢𝑥 = 11𝑐𝑜𝑠(5𝑥 + 𝑡) subject to the
initial condition 𝑢(𝑥, 0) = 4 + sin(5𝑥) at time 𝑇 = 1 of simulation with the limiting Courant
number 𝑣 =

√
2/2. On the top frames are shown the computed solutions: exact (left), mid-

point (middle) and trapezoidal (right) for the computation of the source term over the local
space-time integral tube 𝐷𝑛

𝑗 .
In Table 5.1 are shown the corresponding errors between the numerical approximations (𝑈)

and exact solutions (𝑢) for the linear balance problem under consideration. It is expected 𝑂(2)
with Courant number 𝑣 =

√
2/2, but it is not observed in the top pictures (see the numbers

at the table) despite of the very good resemblance between the approximate midpoint and
trapezoidal and exact solutions.

In Ągure 5.2 is shown Cauchy problem for linear scalar balance law: On the top row is shown
accurate numerical approximations at times 𝑡 = 0 (left), 𝑡 = 0.5 (meddle) and 𝑡 = 2 (right),
whose computed solutions are in very good agreement in the exact behavior of the analytical
solution, which in turn leads to formation of high gradients as time evolves along with the correct
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Figure 5.2: Cauchy problem for linear scalar balance law: We consider the differential equation
𝑢𝑡 + 𝑢𝑥 = 2𝑥𝑡+ 𝑥2, ⊗∞ < 𝑥 < ∞, 𝑡 > 0, along with smooth initial data (top left) 𝑢(𝑥, 0) = 0,
⊗∞ < 𝑥 < ∞, whose the well know exact solution is 𝑢(𝑥, 𝑡) = 𝑥2𝑡.

Cells Exact ‖𝑢 ⊗ 𝑈‖𝑙∞

h
(‖𝑢 ⊗ 𝑈‖𝑙1

h
) Midpoint ‖𝑢 ⊗ 𝑈‖𝑙∞

h
(‖𝑢 ⊗ 𝑈‖𝑙1

h
) Trap ‖𝑢 ⊗ 𝑈‖𝑙∞

h
(‖𝑢 ⊗ 𝑈‖𝑙1

h
)

32 4.972 × 10−2(5.966 × 10−1) 7.844 × 100(4.201 × 101) 7.658 × 100(4.159 × 101)
64 1.243 × 10−2(1.491 × 10−1) 3.947 × 100(2.094 × 101) 3.902 × 100(2.084 × 101)
128 3.010 × 10−3(3.612 × 10−2) 1.910 × 100(1.011 × 101) 1.897 × 100(1.009 × 101)
256 7.040 × 10−4(8.885 × 10−3) 9.382 × 10−1(4.966 × 100) 9.354 × 10−1(4.96 × 100)
LSF 𝐸(ℎ) 0.37 * ℎ2.025(4.37754 * ℎ2.03) 21.6 * ℎ1.02(116.017 * ℎ1.029) 20.9 * ℎ1.01(114.498 * ℎ1.02)

Table 5.2: Errors between numerical solution 𝑈 and the exact solution 𝑢.

representation of a equilibrium point type, but dissociated from a behavior of stagnation point
at zero position. Only 128 mesh grid was used in this simulations. The unbiased upwinding
Riemann-solver-free Lagrangian-Eulerian framework (5.0.7)-(5.0.8) seems to perform a well-
balancing between the computation of the numerical Ćux function and the source term in order
to capture the correct structure of the solution, which it turn is clearly time dependent of the
source term. On the bottom row is shown superimposed pictures with the analytical solution
(solid line) for the above Cauchy problem and the numerical approximations (with 256 mesh
grids) given by the Lagrangian-Eulerian scheme (5.0.7)-(5.0.8) with discretization rules for the
source term: exact (left), midpoint (middle) and trapezoidal (right). The expected order of
accuracy (see Section 5.1.3) is 𝑂(1) as we can see from the error shown in the Table in 𝑙∞ℎ and
𝑙∞1 norms.

5.2 Nonlinear balance law

Let us now turn out attention to designed the Lagrangian-Eulerian procedure developed
for linear hyperbolic conservation laws to the case of nonlinear scalar and systems of balance
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laws. Again, the key point here is to design well-balanced discretization of the Ćux function
and the source term. From the very beginning of Section 5, we design the Lagrangian-Eulerian
numerical procedure (5.0.7)-(5.0.8), for balance law of type in (5.0.3) given by,

𝑈
𝑛+1
𝑗 =

1

ℎ𝑛+1
𝑗

∫︁ 𝑥𝑛+1

𝑗+ 1
2

𝑥𝑛+1

𝑗−
1
2

𝑢(𝑥, 𝑡𝑛+1)𝑑𝑥 =
1

ℎ𝑛+1
𝑗

[︃∫︁ 𝑥𝑛
𝑗+1

𝑥𝑛
𝑗

𝑢(𝑥, 𝑡𝑛) 𝑑𝑥+
∫︁∫︁

𝐷𝑛
𝑗

𝐺(𝑢) 𝑑𝑥 𝑑𝑡

⟨
,

𝑈𝑛+1
𝑗 =

1

ℎ

[︃
(
ℎ

2
+ 𝑓𝑛

𝑗 𝑘)𝑈
𝑛+1
𝑗⊗1 + (

ℎ

2
⊗ 𝑓𝑛

𝑗 𝑘)𝑈
𝑛+1
𝑗

⟨
.

The combination of the aboves equations (see (5.0.7)-(5.0.8)) gives the Lagrangian-Eulerian
scheme 1 (LEB1):

𝑈𝑛+1
𝑗 =

1

4
(𝑈𝑛

𝑗⊗1 + 2𝑈𝑛
𝑗 + 𝑈𝑛

𝑗 ) ⊗ 𝑘

4

(︁
W(𝑈𝑛

𝑗+1, 𝑈
𝑛
𝑗 ) ⊗ W(𝑈𝑛

𝑗⊗1, 𝑈
𝑛
𝑗 )
)︁

+
1

ℎ

[︃
1

ℎ

(︃
ℎ

2
+ 𝑓𝑛

𝑗 𝑘

)︃∫︁∫︁

𝐷𝑛
𝑗−1

𝐺(𝑢(𝑥, 𝑡)) 𝑑𝑥 𝑑𝑡+
1

ℎ

(︃
ℎ

2
⊗ 𝑓𝑛

𝑗 𝑘

)︃∫︁∫︁

𝐷𝑛
𝑗

𝐺(𝑢(𝑥, 𝑡)) 𝑑𝑥 𝑑𝑡

⟨
,

(5.2.1)
along with CFL condition 4.1.2. where 𝑓𝑛

𝑗 = 𝐻(𝑈𝑛
𝑗 )/𝑈𝑛

𝑗 ≡ 𝐻(𝑈)/𝑈 ; see (5.0.3).
On the other hand, from scheme (3.2.1), it is also possible design a difference finite Lagrangian-

Eulerian scheme 2 (LEB2):

𝑈𝑛+1
𝑗 =

1

4

(︁
𝑈𝑛

𝑗⊗1 + 2𝑈𝑛
𝑗 + 𝑈𝑛

𝑗+1

)︁
⊗ 𝑘

2ℎ

(︁
𝐻(𝑈𝑛

𝑗+1) ⊗𝐻(𝑈𝑛
𝑗⊗1)

)︁

+
1

ℎ

[︃
1

ℎ

(︃
ℎ

2
+ 𝑓𝑛

𝑗 𝑘

)︃∫︁∫︁

𝐷𝑛
𝑗−1

𝐺(𝑢(𝑥, 𝑡)) 𝑑𝑥 𝑑𝑡+
1

ℎ

(︃
ℎ

2
⊗ 𝑓𝑛

𝑗 𝑘

)︃∫︁∫︁

𝐷𝑛
𝑗

𝐺(𝑢(𝑥, 𝑡)) 𝑑𝑥 𝑑𝑡

⟨
.

(5.2.2)
along the CFL condition

max¶max𝑗¶𝐻 ′(𝑈𝑗)♢,max𝑗¶𝑓𝑛
𝑗 ♢♢ 𝑘

ℎ
⊘

√
2

2
. (5.2.3)

The keystone in both methods LEB1 (5.2.1) and LEB2 (5.2.2) is to perform a well-balancing
between the computation of the numerical Ćux function and the source term by means of the
naturally unbiased upwinding Riemann-solver-free for nonlinear problems dictates by the pa-
rameterized curves à𝑛

𝑗 (𝑡) to model the ŞIntegral tubeŤ 𝐷𝑛
𝑗 (see (2.1.6) and (2.1.12), and pictures

in Figure 2.1). The schemes LEB1 (5.2.1) and LEB2 (5.2.2), they admit a conservative numer-
ical Ćux function (4.1.9)-(4.1.10) and (3.2.3)-(3.2.4). Indeed, notice the resemblance between

(5.1.2) for the linear balance law and equation (5.2.1). Quantities
(︁

ℎ
2

+ 𝑓𝑛
𝑗 𝑘
)︁

and
(︁

ℎ
2

⊗ 𝑓𝑛
𝑗 𝑘
)︁

are not the characteristic curves associated with the quasilinear form of the homogeneous coun-
terpart of the balance law, i.e., 𝑢𝑡 +𝐻𝑥(𝑢) = 0, but rather they are precisely an approximation
of the conservative integral tubes that are naturally extracted from the conservative integral
form of the nonlinear balance law given by (5.0.3), which in turn dictates the dynamics of the
local space-time control volume 𝐷𝑛

𝑗 and the position à𝑛
𝑗 (𝑡) to any quadrature rule of the source

term 𝐺(𝑢) of the RHS of (5.0.3). In addition, the balance problem is then solved by forward
tracking the boundary of grid cells along the so-called integral tubes. This is a distinct feature
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of the proposed Lagrangian-Eulerian approach. For instance, the similar Eulerian-Lagrangian
schemes in [22, 21, 20, 80] are designed to handle trace-back integration related to purely hy-
perbolic problems rather then balance laws. Next, let us discuss three quadrature rules, based
on the above framework.

For simplicity of notation in what follows, consider Φ = Φ(𝑥, 𝑡) ∈ 𝐶∞(R) (i.e., under a CFL
constraint) such that Φ𝑡 + 𝑓𝑥(Φ) = 𝐺(Φ) in order to seek the appropriate approximations for
grid functions for Φ(𝑥, 𝑡) in the Ćux and source term for schemes (5.2.1) and (5.2.2).

5.2.1 Predictor-corrector method

First, suppose 𝑈
𝑛+ 1

2

𝑗 as a known predictor value for Φ(𝑥, 𝑡) at space-time point (𝑥𝑗, 𝑡
𝑛).

Thus, write the source term approximation as,

∫︁∫︁

𝐷𝑛
𝑗

𝐺(Φ(𝑥, 𝑡)) 𝑑𝑥 𝑑𝑡 ≡
∫︁∫︁

𝐷𝑛
𝑗

𝐺(𝑈
𝑛+ 1

2

𝑗 ) 𝑑𝑥 𝑑𝑡 = 𝐺(𝑈
𝑛+ 1

2

𝑗 )
∫︁∫︁

𝐷𝑛
𝑗

𝑑𝑥 𝑑𝑡 = 𝐺(𝑈
𝑛+ 1

2

𝑗 ) 𝒜(𝐷𝑛
𝑗 ),

where

𝒜(𝐷𝑛
𝑗 ) =

∫︁ 𝑡𝑛+1

𝑡𝑛

∫︁ à𝑛
𝑗+1

(𝑡)

à𝑛
𝑗

(𝑡)
𝑑𝑥 𝑑𝑡 =

∫︁ 𝑡𝑛+1

𝑡𝑛

(︁
à𝑛

𝑗+1(𝑡) ⊗ à𝑛
𝑗 (𝑡)

)︁
𝑑𝑡.

Since à𝑛
𝑗+1(𝑡) ⊗à𝑛

𝑗 (𝑡) = (𝑡⊗ 𝑡𝑛)𝑓𝑛
𝑗+1 +𝑥𝑛

𝑗+1 ⊗ (𝑡⊗ 𝑡𝑛)𝑓𝑛
𝑗 ⊗𝑥𝑛

𝑗 = (𝑡⊗ 𝑡𝑛)(𝑓𝑛
𝑗+1 ⊗ 𝑓𝑛

𝑗 ) +ℎ, we recast
(5.2.1) as,

𝒜(𝐷𝑛
𝑗 ) = 𝑘

[︃
𝑘

2
(𝑓𝑛

𝑗+1 ⊗ 𝑓𝑛
𝑗 ) + ℎ

⟨
.

Now, in view of the balance law Φ𝑡 + 𝑓𝑥(Φ) = 𝐺(Φ) we might write Φ𝑡 = 𝐺(Φ) ⊗ 𝑓𝑥(Φ) and
thus reads,

𝐺(Φ
𝑛+ 1

2

𝑗 ) ≡ 𝐺(Φ(𝑥𝑛
𝑗 , 𝑡

𝑛) +
𝑘

2
Φ𝑡(𝑥

𝑛
𝑗 , 𝑡

𝑛)) = 𝐺

[︃
Φ𝑛

𝑗 +
𝑘

2
(𝐺(Φ𝑛

𝑗 ) ⊗ (𝑓(Φ))𝑥)𝑛
𝑗

⟨
.

We point out that quantity 𝑓𝑥(Φ(𝑥, 𝑡))𝑛
𝑗 denotes the numerical derivative of function 𝑓(Φ) with

respect to space variable 𝑥 evaluated at point (𝑥𝑗, 𝑡
𝑛). Indeed, a family of slope limiters can be

used here, as such the Mimmod limiter: ((𝑓(Φ))𝑥)𝑛
𝑗 = 𝑀𝑀¶Δ𝑓𝑗+ 1

2
,Δ𝑓𝑗⊗ 1

2
♢ where 𝑀𝑀¶𝑥, 𝑦♢ ⊕

𝑀𝑖𝑛𝑀𝑜𝑑¶𝑥, 𝑦♢ = 1
2
[𝑠𝑔𝑛(𝑥)+𝑠𝑔𝑛(𝑦)]≤𝑀𝑖𝑛(♣𝑥♣, ♣𝑦♣) (see elsewhere, e.g., [2, 39, 99, 109, 115, 124]).

Finally, from equations (5.2.1) and (5.2.1), we might write,

∫︁∫︁

𝐷𝑛
𝑗

𝐺(Φ(𝑥, 𝑡))𝑑𝑥𝑑𝑡 ≡ 𝑘 𝐺

[︃
𝑈𝑛

𝑗 +
𝑘

2
(𝐺(𝑈𝑛

𝑗 ) ⊗ 𝑓𝑥(Φ)𝑛
𝑗

⟨ [︃
𝑘

2
(𝑓𝑛

𝑗+1 ⊗ 𝑓𝑛
𝑗 ) + ℎ

⟨
. (5.2.4)

Next, we turn to more simple quadrature, which in turn requires much less regularity of the
source term.
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5.2.2 Midpoint method

Considering the approximations for the parameterized curves à𝑛
𝑟 (𝑡) at 𝑡 = 𝑡𝑛+ 1

2 associated
to the integral tubes 𝐷𝑛

𝑟 , 𝑟 = 𝑗, 𝑗 + 1 one might write,
∫︁∫︁

𝐷𝑛
𝑗

𝐺(Φ(𝑥, 𝑡))𝑑𝑥𝑑𝑡 ≡
∫︁ 𝑡𝑛+1

𝑡𝑛
(à𝑛

𝑗+1(𝑡) ⊗ à𝑛
𝑗 (𝑡))𝐺

(︃
Φ(
à𝑛

𝑗+1(𝑡) + à𝑛
𝑗 (𝑡)

2
), 𝑡

)︃
𝑑𝑡 ≡

≡ 𝑘 ℎ𝐺

∏︀
∐︁Φ

∏︀
∐︁à

𝑛
𝑗+1(𝑡

𝑛+ 1

2 ) + à𝑛
𝑗 (𝑡𝑛+ 1

2 )

2
, 𝑡𝑛+ 1

2

⎞
⎠
⎞
⎠ ≡ 𝑘 ℎ𝐺

(︃
Φ(𝑥𝑛

𝑗 +
1

2
(𝑓𝑛

𝑗 𝑘 + ℎ), 𝑡𝑛 +
𝑘

2
)

)︃
≡

≡ 𝑘 ℎ𝐺

(︃
Φ(𝑥𝑗, 𝑡

𝑛) +
1

2
(𝑓𝑛

𝑗 𝑘 + ℎ)(Φ𝑥)𝑛
𝑗 +

𝑘

2
(𝐺(Φ𝑛

𝑗 ) ⊗ 𝑓𝑥(Φ)𝑛
𝑗 )

)︃
.

(5.2.5)
Finally, the approximation for the source term by means of the midpoint rule gives:
∫︁∫︁

𝐷𝑛
𝑗

𝐺(𝑢(𝑥, 𝑡))𝑑𝑥𝑑𝑡 ≡ 𝑘ℎ𝐺

(︃
𝑈𝑛

𝑗 +
1

2
(𝑓𝑛

𝑗 𝑘 + ℎ)(𝑢𝑥)𝑛
𝑗 +

𝑘

2
(𝐺(𝑈𝑛

𝑗 ) ⊗ 𝑓𝑥(Φ)𝑛
𝑗 )

)︃
, (5.2.6)

where (𝑢𝑥)𝑛
𝑗 = 𝑀𝑀(Δ𝑢𝑗+ 1

2
,Δ𝑢𝑗⊗ 1

2
) and 𝑓𝑥(Φ)𝑛

𝑗 = 𝑀𝑀(Δ𝑓𝑗+ 1

2
,Δ𝑓𝑗⊗ 1

2
), as before.

5.2.3 Trapezoidal method

Considering the approximations for the parameterized curves à𝑛
𝑟 (𝑡) at 𝑡 = 𝑡𝑛+ 1

2 associated
to the integral tubes 𝐷𝑛

𝑟 , 𝑟 = 𝑗, 𝑗 + 1 one might write,
∫︁∫︁

𝐷𝑛
𝑗

𝐺(Φ(𝑥, 𝑡))𝑑𝑥𝑑𝑡 ≡
∫︁ 𝑡𝑛+1

𝑡𝑛

1

2

(︁
à𝑛

𝑗+1(𝑡) ⊗ à𝑛
𝑗 (𝑡)

)︁ (︁
𝐺
(︁
Φ(à𝑛

𝑗+1(𝑡), 𝑡)
)︁

+𝐺
(︁
Φ(à𝑛

𝑗 (𝑡), 𝑡)
)︁)︁
𝑑𝑡 ≡

≡ 𝑘

2

(︁
à𝑛

𝑗+1(𝑡
𝑛+ 1

2 ) ⊗ à𝑛
𝑗 (𝑡𝑛+ 1

2 )
)︁ (︁
𝐺
(︁
Φ(à𝑛

𝑗+1(𝑡
𝑛+ 1

2 ), 𝑡𝑛+ 1

2 )
)︁

+𝐺
(︁
Φ(à𝑛

𝑗 (𝑡𝑛+ 1

2 ), 𝑡𝑛+ 1

2 )
)︁)︁

=

=
𝑘

2

ℎ𝑛+1
𝑗

2

(︃
𝐺

(︃
Φ(𝑥𝑗+1 +

𝑘

2
𝑓𝑛

𝑗+1, 𝑡
𝑛 +

𝑘

2
)

)︃
+𝐺

(︃
Φ(𝑥𝑗 +

𝑘

2
𝑓𝑛

𝑗 , 𝑡
𝑛 +

𝑘

2
)

)︃)︃
𝑘 ℎ𝑛+1

𝑗

4
(5.2.7)

Finally, the approximation for the source term by means of the trapezoidal rule gives:

∫︁∫︁

𝐷𝑛
𝑗

𝐺(𝑢(𝑥, 𝑡))𝑑𝑥𝑑𝑡 ≡ 𝑘 ℎ𝑛+1
𝑗

4

∏︀
̂︁̂︁̂︁̂︁∐︁

𝐺

(︃
𝑈𝑛

𝑗+1 +
𝑘

2
(𝑓𝑛

𝑗+1)(𝑢𝑥)𝑛
𝑗+1 +

𝑘

2
(𝐺(𝑈𝑛

𝑗+1) ⊗ 𝑓𝑥(𝑢)𝑛
𝑗+1)

)︃

+𝐺

(︃
𝑈𝑛+1

𝑗 +
𝑘

2
(𝑓𝑛

𝑗 )(𝑢𝑥)𝑛
𝑗 +

𝑘

2
(𝐺(𝑈𝑛

𝑗 ) ⊗ 𝑓𝑥(𝑢)𝑛
𝑗 )

)︃

⎞
̂︂̂︂̂︂̂︂⎠
.

(5.2.8)
Other type of approximations for the source term can be performed when the source term

has the form 𝐺(𝑥, 𝑢) = 𝑑𝑎(𝑥)
𝑑𝑥

or 𝐺(𝑥, 𝑢) = 𝑢 𝑑𝑎(𝑥)
𝑑𝑥

. In these cases the approximations to the
integral tubes 𝐷𝑛

𝑟 , 𝑟 = 𝑗, 𝑗 + 1 are as follows,
∫︁∫︁

𝐷𝑛
𝑗

𝐺(𝑥, 𝑢)𝑑𝐴 =
∫︁ 𝑡𝑛+1

𝑡𝑛

∫︁ à𝑛
𝑗+1

(𝑡)

à𝑛
𝑗

(𝑡)

𝑑𝑎(𝑥)

𝑑𝑥
𝑑𝑥𝑑𝑡 =

∫︁ 𝑡𝑛+1

𝑡𝑛

(︁
𝑎(à𝑛

𝑗+1(𝑡)) ⊗ 𝑎(à𝑛
𝑗 (𝑡))

)︁
𝑑𝑡

≡ 𝑘
(︁
𝑎(à𝑛

𝑗+1(𝑡
𝑛+ 1

2 )) ⊗ 𝑎(à𝑛
𝑗 (𝑡𝑛+ 1

2 ))
)︁

= 𝑘
(︁
𝑎(𝑥𝑗+1 + 𝑘

2
𝑓𝑛

𝑗+1)) ⊗ 𝑎(𝑥𝑗 + 𝑘
2
𝑓𝑛

𝑗 ))
)︁
,

(5.2.9)
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by the source term 𝐺(𝑥, 𝑢) = 𝑢 𝑑𝑎(𝑥)
𝑑𝑥

, suppurted in balance law, we use the predictor 𝑈
𝑛+1
𝑗 ≡

ℎ
ℎ𝑛+1

𝑗

(𝑈𝑛
𝑗 + 𝑈𝑛

𝑗+1)

∫︁∫︁

𝐷𝑛
𝑗

𝐺(𝑥, 𝑢)𝑑𝐴 =
∫︁ 𝑡𝑛+1

𝑡𝑛

∫︁ à𝑛
𝑗+1

(𝑡)

à𝑛
𝑗

(𝑡)
𝑢
𝑑𝑎(𝑥)

𝑑𝑥
𝑑𝑥𝑑𝑡 ≡

∫︁ 𝑡𝑛+1

𝑡𝑛

∫︁ à𝑛
𝑗+1

(𝑡)

à𝑛
𝑗

(𝑡)
𝑈

𝑛+1
𝑗

𝑑𝑎(𝑥)

𝑑𝑥
𝑑𝑥𝑑𝑡

=
ℎ

ℎ𝑛+1
𝑗

(𝑈𝑛
𝑗 + 𝑈𝑛

𝑗+1)
∫︁ 𝑡𝑛+1

𝑡𝑛

(︁
𝑎(à𝑛

𝑗+1(𝑡)) ⊗ 𝑎(à𝑛
𝑗 (𝑡))

)︁
𝑑𝑡

≡ 𝑘ℎ

ℎ𝑛+1
𝑗

(𝑈𝑛
𝑗 + 𝑈𝑛

𝑗+1)
(︁
𝑎(à𝑛

𝑗+1(𝑡
𝑛+ 1

2 )) ⊗ 𝑎(à𝑛
𝑗 (𝑡𝑛+ 1

2 ))
)︁

=
𝑘ℎ

ℎ𝑛+1
𝑗

(𝑈𝑛
𝑗 + 𝑈𝑛

𝑗+1)

(︃
𝑎(𝑥𝑗+1 +

𝑘

2
𝑓𝑛

𝑗+1)) ⊗ 𝑎(𝑥𝑗 +
𝑘

2
𝑓𝑛

𝑗 ))

)︃
.

(5.2.10)

5.3 Stability of the Lagrangian Eulerian scheme to non-

linear balance law

In order to prove stability of the numerical method, we will make use of results established
in [142]. We start with the following theorem

Theorem 5.3.1. A one-step Ąnite difference scheme (with constant coefficient) is stable in a
stability region Λ if only if there is a constant 𝐾 (independent of 𝜃, 𝑘 and ℎ) such that

♣𝑔(𝜃, 𝑘, ℎ)♣ ⊘ 1 +𝐾𝑘, with (𝑘, ℎ) ∈ Λ. (5.3.1)

If 𝑔(𝜃, 𝑘, ℎ) is independent of ℎ and 𝑘, the stability condition can be replaced with restricted
stability condition ♣𝑔(𝜃)♣⊘1.

To show stability properties of the Lagrangian-Eulerian scheme (5.2.1) for balance laws (5.0.3),
we make use of a slightly modiĄcation of the linear Lagragian-Eulerian scheme (2.1.15). Indeed,
we will also use the next result also stated in [142].

Corollary 5.3.1. If a scheme as in Theorem 5.3.1 is modiĄed so that the modiĄcations result
only in the addiction to the ampliĄcation factor of terms that are 𝑂(𝑘) uniformly in Ý, then
the modiĄed scheme is stable if and only if the original scheme is stable.

Thus, we might write the nonlinear balance law (5.0.3) in the quasilinear form (e.g., under a
stability condition (4.1.2)),

𝜕𝑢

𝜕𝑡
+ 𝑓 ′(𝑢)

𝜕𝑢

𝜕𝑥
= 𝐺(𝑢). (5.3.2)

Therefore, in view of the local volume 𝐷𝑛
𝑗 equation (5.3.2) can be recast as in the form of the

linear balance law,
𝜕𝑢

𝜕𝑡
+ 𝑎

𝜕𝑢

𝜕𝑥
= 𝐺(𝑢), (5.3.3)
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where we take 𝐺(𝑢) = 𝑢 and 𝑎 = max ♣𝑓 ′(𝑢)♣ over 𝐷𝑛
𝑗 . Thus, the Lagrangian-Eulerian scheme

(5.2.1) to the nonlinear balance law (5.3.2) will be approximate locally in 𝐷𝑛
𝑗 by,

𝑈𝑛+1
𝑗 =

1

4

(︁
𝑈𝑛

𝑗⊗1 + 2𝑈𝑛
𝑗 + 𝑈𝑛

𝑗+1

)︁
⊗ 𝑎𝑘

2ℎ

(︁
𝑈𝑛

𝑗+1 ⊗ 𝑈𝑛
𝑗⊗1

)︁

+
1

ℎ

[︃
1

ℎ

(︃
ℎ

2
+ 𝑎𝑘

)︃∫︁∫︁

𝐷𝑛
𝑗−1

𝑢(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡+
1

ℎ

(︃
ℎ

2
⊗ 𝑎𝑘

)︃∫︁∫︁

𝐷𝑛
𝑗

𝑢(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

⟨
.

(5.3.4)

In what follows we will now show the stability property to the Şpredictor correctorŤ. Indeed,
we will also show in the subsequent section that he same analysis holds to other discretization
as such the Şmidpoint ruleŤ as well as Şthe trapezoidal ruleŤ.

5.3.1 Predictor corrector approximation

Thus, from equation (5.2.4) we have that,

∫︁∫︁

𝐷𝑛
𝑗

𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡 ≡ 𝑘 ℎ

(︃
𝑈𝑛

𝑗 +
𝑘

2
(𝑈𝑛

𝑗 ⊗ 𝑎(𝑢𝑥)𝑛
𝑗 )

)︃
≡ 𝑘 ℎ

[︃
(1 +

𝑘

2
)𝑈𝑛

𝑗 +𝑂(𝑘)

⟨
. (5.3.5)

Plugging equation (5.3.5) in the integral source term in the equation (5.3.4) reads,

𝑆𝑛
𝑗 = 𝑘

(︂
1

2
+ 𝑣

)︂(︃
1 +

𝑘

2

)︃
𝑈𝑛

𝑗⊗1 + 𝑘
(︂

1

2
⊗ 𝑣

)︂(︃
1 +

𝑘

2

)︃
𝑈𝑛

𝑗 +𝑂(𝑘2). (5.3.6)

Replacing (5.3.6) into the Lagrangian-Eulerian scheme (5.3.4) and setting 𝑈𝑛
𝑗 = 𝑔(Ý)𝑛𝑒𝑖Ý𝑗ℎ, it is

an exercise get the the ampliĄcation factor 𝑔(Ý) associated to the Lagrangian-Eulerian scheme
(5.2.1) given by,

𝑔(Ý) =
1

2
(1 + cos(Ýℎ)) + 𝑣𝑖 sin(Ýℎ) + 𝑘

(︂
1

2
+ 𝑣

)︂(︃
1 +

𝑘

2

)︃
𝑒⊗𝑖Ýℎ + 𝑘

(︂
1

2
⊗ 𝑣

)︂(︃
1 +

𝑘

2

)︃
+𝑂(𝑘2).

(5.3.7)
First, remember that 𝑔(Ý) = 1

2
(1 + cos(Ýℎ)) + 𝑣𝑖 sin(Ýℎ) is the ampliĄcation factor of the

Lagrangian Eulerian scheme to the linear case, which in turn we proved to be stable. Therefore,
we might write 𝑔(Ý) in terms as the ampliĄcation factor Lagrangian Eulerian scheme to the
linear case as follows,

𝑔(Ý) = 𝑔(Ý) + 𝑘
(︂

1

2
+ 𝑣

)︂(︃
1 +

𝑘

2

)︃
𝑒⊗𝑖Ýℎ + 𝑘

(︂
1

2
⊗ 𝑣

)︂(︃
1 +

𝑘

2

)︃
+𝑂(𝑘2). (5.3.8)

One can easly see that ♣𝑒⊗𝑖Ýℎ♣= 1 and then,

♣𝑔(Ý)♣ ⊘ ♣𝑔(Ý)♣+𝑂(𝑘) ⊘ 1 +𝑂(𝑘). (5.3.9)

Thus, by (5.3.9) and Corollary 5.3.1 we conclude that the Lagrangian Eulerian scheme (5.2.1)
is ℓ2-stable.
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5.3.2 An approximation of the source term by the Midpoint quadra-
ture rule

Now, consider an approximation of the source term (5.2.6) by the Midpoint quadrature rule,

∫︁∫︁

𝐷𝑛
𝑗

𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡 ≡ 𝑘ℎ

(︃
𝑈𝑛

𝑗 +
1

2
(𝑎𝑘 + ℎ)(𝑢𝑥)𝑛

𝑗 +
𝑘

2
(𝑈𝑛

𝑗 ⊗ 𝑎(𝑢𝑥)𝑛
𝑗 )

)︃
, (5.3.10)

then ∫︁∫︁

𝐷𝑛
𝑗

𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡 ≡ 𝑘ℎ

(︃
(1 +

𝑘

2
)𝑈𝑛

𝑗 +
ℎ

2
(𝑢𝑥)𝑛

𝑗

)︃
. (5.3.11)

Now, from the above, we notice that ℎ = 𝑂(𝑘). Therefore,

∫︁∫︁

𝐷𝑛
𝑗

𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡 ≡ 𝑘ℎ

(︃
(1 +

𝑘

2
)𝑈𝑛

𝑗 +𝑂(𝑘)

)︃
. (5.3.12)

Finally, by plugging the above equation (5.3.12) into the modiĄed linear scheme (5.3.4) reads,

♣𝑔(Ý)♣ ⊘ ♣𝑔(Ý)♣+𝑂(𝑘) ⊘ 1 +𝑂(𝑘). (5.3.13)

Therefore, again by the Corollary 5.3.1 we are able to conclude that the Lagrangian Eulerian
scheme (5.2.1) is ℓ2-stable by means of the approximation of the source term by the Midpoint
quadrature rule.

5.3.3 An approximation of the source term by the Trapezoidal quadra-
ture rule

Now, consider an approximation of the source term (5.2.6) by the Trapezoidal quadrature
rule,

∫︁∫︁

𝐷𝑛
𝑗

𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡 ≡ 𝑘 ℎ

4

∏︀
̂︁̂︁̂︁̂︁∐︁

(︃
𝑈𝑛

𝑗+1 +
𝑘

2
𝑎(𝑢𝑥)𝑛

𝑗+1 +
𝑘

2
(𝑈𝑛

𝑗+1) ⊗ 𝑎(𝑢𝑥)𝑛
𝑗+1)

)︃

+

(︃
𝑈𝑛+1

𝑗 +
𝑘

2
𝑎(𝑢𝑥)𝑛

𝑗 +
𝑘

2
(𝑈𝑛

𝑗 ⊗ 𝑎(𝑢𝑥)𝑛
𝑗 )

)︃

⎞
̂︂̂︂̂︂̂︂⎠

=
𝑘 ℎ

4

(︃(︃
1 +

𝑘

2

)︃
𝑈𝑛

𝑗+1 +

(︃
1 +

𝑘

2

)︃
𝑈𝑛

𝑗

)︃
=
𝑘 ℎ

4

(︃
1 +

𝑘

2

)︃(︁
𝑈𝑛

𝑗+1 + 𝑈𝑛
𝑗

)︁
,

(5.3.14)
By replacing equation (5.3.14) into the source term in the equation (5.3.4) reads,

𝑆𝑛
𝑗 =

1

ℎ

[︃
1

ℎ

(︃
ℎ

2
+ 𝑎𝑘

)︃∫︁∫︁

𝐷𝑛
𝑗−1

𝑢(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡+
1

ℎ

(︃
ℎ

2
⊗ 𝑎𝑘

)︃∫︁∫︁

𝐷𝑛
𝑗

𝑢(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

⟨
.

≡ 1

ℎ

[︃
1

ℎ

(︃
ℎ

2
+ 𝑎𝑘

)︃
𝑘 ℎ

4

(︃
1 +

𝑘

2

)︃(︁
𝑈𝑛

𝑗⊗1 + 𝑈𝑛
𝑗

)︁
+

1

ℎ

(︃
ℎ

2
⊗ 𝑎𝑘

)︃
𝑘 ℎ

4

(︃
1 +

𝑘

2

)︃(︁
𝑈𝑛

𝑗+1 + 𝑈𝑛
𝑗

)︁⟨

= 𝑘
4

(︁
1
2

+ 𝑣
)︁ (︁

1 + 𝑘
2

)︁ (︁
𝑈𝑛

𝑗⊗1 + 𝑈𝑛
𝑗

)︁
𝑘
4

(︁
1
2

⊗ 𝑣
)︁ (︁

1 + 𝑘
2

)︁ (︁
𝑈𝑛

𝑗+1 + 𝑈𝑛
𝑗

)︁
.

(5.3.15)
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Plugging equation (5.3.15), along with 𝑈𝑛
𝑗 = 𝑔(Ý)𝑛𝑒𝑖Ý𝑗ℎ, into the Lagrangian-Eulerian scheme

(5.3.4) we can establish that the ampliĄcation factor 𝑔(Ý) of the Lagrangian-Lagrangian scheme
to nonlinear balance law is given by,

𝑔(Ý) =
1

2
(1 + cos(Ýℎ)) + 𝑣 𝑖 sin(Ýℎ) +

𝑘

4

(︂
1

2
+ 𝑣

)︂(︃
1 +

𝑘

2

)︃(︁
𝑒⊗𝑖Ýℎ + 1

)︁

+
𝑘

4

(︂
1

2
⊗ 𝑣

)︂(︃
1 +

𝑘

2

)︃(︁
1 + 𝑒𝑖Ýℎ

)︁
+𝑂(𝑘2).

(5.3.16)

From (5.3.16) one can get,

♣𝑔(Ý)♣ ⊘ ♣𝑔(Ý)♣+𝑂(𝑘) ⊘ 1 +𝑂(𝑘). (5.3.17)

Therefore, by Corollary 5.3.1 we conclude that the Lagrangian-Eulerian scheme (5.2.1) is ℓ2-
stable.

5.4 Numerical experiments for nonlinear scalar balance

laws

Model Problem 5.4.1. Greenberg and LeRoux (SINUM, 1996) [71].

In [71], they concentrated on the approximation of a Cauchy prototype problem for an
inhomogeneous and genuinely nonlinear balance law endowed with a linear term. There were
an interest in the computation of balance laws with multiple nonnegative equilibria or stable
steady solutions. On physical grounds, this can be motivate for instance by gravity-driven Ćows
such as those described by the shallow water equations over a nonuniform ocean bottom. For
concreteness, Greenberg and LeRoux considered a balance law (5.0.3) with Ćux function 𝑓(𝑢) =
𝑢2/2 and source term of the RHS of (5.0.3) as 𝐺(𝑢) = 𝑢 𝑎𝑥(𝑥) with 𝑎(𝑥) = 0.9(𝑐𝑜𝑠(Þ 𝑥⊗1

2
))30, 0 ⊘

𝑥 ⊘ 2 and 0 otherwise. The Ąrst numerical experiment pictures in Figure 5.3 involves a smooth
steady Ćow that correspond to steady solutions for which 𝑢+𝑎 = 1 which is shown in solid line
at these picture computed with Lagrangian-Eulerian scheme LEB1 (top) and LEB2 (bottom)
at time 𝑡 = 1 with: 256 cells (left), 512 cells (middle) and 1024 cells (right).
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Figure 5.3: Steady solutions for which 𝑢+ 𝑎 = 1 at time 𝑡 = 1

In this numerical experiment are shown on the top picture to LEB1 scheme (5.2.1) and
bottom to LEB2 scheme (5.2.2), where 𝑎(𝑥) is as deĄned above for the Greenberg and LeRoux
problem such that the initial data is the steady state solution 𝑢(𝑥, 0) = ⊗𝑎(𝑥), 𝑥 ∈ R, which in
turn should be maintained for all times of simulation. The mild spurious Ćuctuations generated
by the LEB1 and LEB2 are not physically correct although it is worth remarking the reduction
of the error as the mesh grid is reĄned leading to a qualitatively correct approximation of
the Cauchy problem keeping the horizontal line is the equilibrium solution 𝑢 + 𝑎 = 1 While
the second numerical pictures in Figure 5.4 involves a non-stationary shock wave connecting
two states that correspond to steady solutions for which 𝑢 + 𝑎 = 1.3 left and 𝑢 + 𝑎 = 1
right. In this numerical experiment is shown on the top picture with LEB1 scheme and bottom
with LEB2 scheme, in the numerical test, the initial data is 𝑢(𝑥, 0) = 1 ⊗ 𝑎(𝑥), 𝑥 > 0.2 and
𝑢(𝑥, 0) = 1.3 ⊗ 𝑎(𝑥), 𝑥 < 0.2. Again, both schemes LEB1 and LEB2 give a clearly qualitatively
correct monotone decreasing curve as the mesh grid is reĄned keeping the total height 𝑢+ 𝑎 at
𝑡 = 1.5. 256 cells (left), 512 cells (middle) and 1024 cells (right). So far no high-order upwind
techniques were considered nor nonlinear reconstruction were used. We only use these schemes
in a very simple form. Then, we expect to improve such balance between source term and
Ćux to reduce the error in coarse grids. These Şsimple schemesŤ however provides even better
satisfactory results when computing some speciĄc well known unsteady and steady cases as will
be discussed in what follows

Model Problem 5.4.2. Greenberg, LeRoux, Baraille and Noussair (SINUM, 1997) [70].

In [70], Greenberg et al. continued the study initiated in [71] on the design of robust and
efficient numerical procedures for scalar balance laws of type (5.0.3). In [70], it was proposed
a series of numerical experiments order to observe the transient behavior towards steady-state
equilibrium solutions. Precisely, they conĄned their attention to scalar Cauchy problems of
type 𝑢𝑥 + 𝑓𝑥(𝑢) = 𝑎𝑥(𝑥), ⊗∞ < 𝑥 < ∞, where 𝑓(𝑢) is smooth, even, convex function satisfying
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Figure 5.4: Non-stationary shock wave connecting two states that correspond to steady
solutions for which 𝑢+ 𝑎 = 1.3 left and 𝑢+ 𝑎 = 1 right.

Cells LEB1 ‖𝑢⊗ 𝑈‖𝑙1
ℎ

LEB1 ‖𝑢⊗ 𝑈‖𝑙2
ℎ

LEB2 ‖𝑢⊗ 𝑈‖𝑙1
ℎ

LEB2 ‖𝑢⊗ 𝑈‖𝑙2
ℎ

32 5.62 × 10⊗1 3.17 × 10⊗1 3.23 × 10⊗1 3.58 × 10⊗1

64 2.97 × 10⊗1 1.82 × 10⊗1 1.82 × 10⊗1 1.61 × 10⊗1

128 1.59 × 10⊗1 1.09 × 10⊗1 1.01 × 10⊗1 9.92 × 10⊗2

256 8.45 × 10⊗2 6.59 × 10⊗2 5.47 × 10⊗2 6.05 × 10⊗2

Table 5.3: Errors between the approximate solution 𝑈 and exact solution 𝑢, schemes LEB1 and
LEB2 (test 1).

𝑓(0) = 0 and 𝑓(𝑢) > 0, ⊗∞ < 𝑢 < ∞ and 𝑎(𝑥) is a bounded, piecewise smooth function.
The interested reader is referred to [70] (see also [71]) for a detailed description of analytical
solutions to all design prototype Cauchy problems.

Here we will discuss two case introduced in Greenberg et al. [70] for a balance law of type
(5.0.3) as announced above with Ćux function 𝑓(𝑢) = 𝑢2/2 and two kinds of source term for
the RHS of (5.0.3).

The Ąrst test problem, see pictures in Figures 5.5, is given by 𝐺(𝑢) = 𝑎𝑥(𝑥) with 𝑎(𝑥) =
0, 𝑥 < ⊗1, 𝑎(𝑥) = 𝑐𝑜𝑠2(𝑥 Þ/2)),⊗1 ⊘ 𝑥 ⊘ 1, and 𝑎(𝑥) = 0, 1 < 𝑥. In this example (top and
bottom pictures) includes snapshot plots taken at different times of simulation for transient
solutions. On the top are shown numerical approximations with LEB1 scheme, and on the
bottom are shown numerical approximations with LEB2 scheme. We get a centered expansive
rarefaction waves emerging from positions 𝑥 = ⊗1 and 𝑥 = 1 located at the computational
domain. The schemes LEB1 and LEB2 accurately resolve the rarefaction-shock interactions at
the trailing edges of the support as expected from the analytical analysis reported in [70] (see
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Figure 5.5: A steady state shock solution

Cells LEB1 ‖𝑢⊗ 𝑈‖𝑙ℎ LEB1 ‖𝑢⊗ 𝑈‖𝑙2
ℎ

LEB2 ‖𝑢⊗ 𝑈‖𝑙ℎ LEB2 ‖𝑢⊗ 𝑈‖𝑙2
ℎ

32 3.16 × 10⊗1 1.94 × 10⊗1 6.64 × 10⊗1 3.12 × 10⊗1

64 1.67 × 10⊗1 1.02 × 10⊗1 3.05 × 10⊗1 1.44 × 10⊗1

128 8.59 × 10⊗2 5.25 × 10⊗2 1.48 × 10⊗1 6.97 × 10⊗2

256 4.37 × 10⊗2 2.67 × 10⊗2 7.30 × 10⊗2 3.42 × 10⊗2

Table 5.4: Errors between the approximate solution 𝑈 and exact solution 𝑢, LEB1 and LEB2
schemes (test 2).

also [67]). It also shown a grid reĄnement in which is observed 𝑂(1) for each scheme (see Table
5.3).

The second test problem, see pictures in Figures 5.6, is somewhat similar, but the solution
exhibits a distinct character, and it is given by 𝐺(𝑢) = 𝑎𝑥(𝑥) with 𝑎(𝑥) = 0, 𝑥 < ⊗1, 𝑎(𝑥) =
⊗𝑐𝑜𝑠2(𝑥 Þ/2)),⊗1 ⊘ 𝑥 ⊘ 1, and 𝑎(𝑥) = 0, 1 < 𝑥. All numerical solutions reported in
Figures 5.5 and 5.6 top were computed with the Lagrangian-Eulerian scheme LEB1 (5.2.1),
along with a uniform mesh grid under CFL stability criterion (2.1.28), the numerical solutions
in Figures 5.5 and 5.6 bottom were computed with the Lagrangian-Eulereian scheme LEB2
(5.2.2). A numerical reĄnement study for such test problem are also reported in Figure 5.5, for
the discrete counterparts 𝐿1 and 𝐿2 norms with observed 𝑂(1) (see Table 5.4).

In the approximations of Ągure 5.6, both LEB1 and LEB2 schemes, shown front-type solu-
tions are formed at position located at 𝑥 = ⊗1 and 𝑥 = 1, which in turn move towards to the
left and to the right of the computational domain, at entirely entropy-correct speed and showing
that the steady state is perfectly maintained with no spurious Ćuctuations at the equilibrium
solution as time evolves. Again, so far no high-order upwind techniques were considered nor
nonlinear reconstruction were used. We point out the our Lagrangian-Eulerian scheme LEB2
was used in a very simple form. Indeed, it is well known that numerical schemes for balance



89

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

x

u

CFL = 0.71, T = 2.20971e−01, 8 TIME STEPS, 256 CELLS

Steady state sol

LEB1

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

x

u

CFL = 0.71, T = 3.01073e+00, 109 TIME STEPS, 256 CELLS

Steady state sol

LEB1

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

x

u

CFL = 0.71, T = 5.02709e+00, 182 TIME STEPS, 256 CELLS

Steady state sol

LEB1

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

x

u

CFL = 0.57, T = 2.0397e−01, 13 TIME STEPS, 256 CELL

 

Steady state sol

LEB2

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

x

u

CFL = 0.57, T = 3.0086e+00, 178 TIME STEPS, 256 CELL

 

Steady state sol

LEB2

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

x

u

CFL = 0.57, T = 5.0143e+00, 296 TIME STEPS, 256 CELL

 

Steady state sol

LEB2

Figure 5.6: Front-type solutions are formed at position located at 𝑥 = ⊗1 and 𝑥 = 1

laws need to be able to compute accurately steady state, or nearly steady state, i.e., it means
solutions for which the Ćux gradients are non-zero but are exactly or approximately, balanced
by the source terms. Numerical schemes with respect such balance that occurs on the steady
Ćow are called ŞWell BalancedŤ. Thus, based on the computed solution we can say that our
Lagrangian-Eulerian show some numerical evidence to preserve such nice property [70, 71] (see
also [67]).

Model Problem 5.4.3. Greenberg and LeRoux (SINUM, 1997) [45, 70].

Greenberg and LeRoux also propose an physical grounds, this can be motivated for instance
by gravity-driven Ćows such as those described by the shallow water equations over a nonuniform
ocean bottom.

Greenberg and LeRoux considered a balance law (5.0.3), with Ćux function 𝑓(𝑢) = 𝑢2/2
and source term of the RHS of (5.0.3) as 𝐺(𝑢) = 𝑎𝑥(𝑥) with 𝑎(𝑥) = 𝑐𝑜𝑠2(Þ𝑥

2
),⊗1 ⊘ 𝑥 ⊘ 1

and 0 otherwise, with initial data 𝑢0(𝑥) = 1, ⊗1 ⊘ 𝑥 ⊘ 1 and 0 otherwise, these numerical
experiments, which are calculated with LEB1 scheme, are shown in Figure 5.7). In the numerical
experiment top row of pictures, a shock emerges from 𝑥 = 1, which is correctly captured by
our Lagrangian Eulerian scheme LEB1 without spurious oscillatory behavior, as the transient
solution evolves towards the steady state Ćow, while in bottom row of pictures is shown a grid
reĄnement in three different times 𝑇 = 5, 15, 25 with the aim to show the convergence. Notice,
a ŞN-typeŤ wave solution emerge from 𝑥 = 1, which move slowly to the right and tend to the
steady state solution, as is claimed in [70].
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Figure 5.7: Steady state solution with N-wave
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Figure 5.8: Approximated solution with a smooth source function with multiple equilibria.
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Model Problem 5.4.4. Langseth, Tveito, and Winther (SINUM) [104].

In [104], Langseth et al. conĄned their attention to scalar Cauchy problems of type 𝑢𝑥 +
𝑓𝑥(𝑢) = 𝐺(𝑢), ⊗∞ < 𝑥 < ∞, where 𝑓(𝑢) is smooth, even, convex function satisfying 𝑓(0) = 0
and 𝑓(𝑢) > 0, ⊗∞ < 𝑢 < ∞ and 𝐺(𝑢) = 𝑢(1 ⊗ 𝑢), a smooth source function with multiple
equilibria in the domain of interest, hence it is not a decreasing function. For concreteness,
Langseth et al. considered the Burgers Ćux function 𝑓(𝑢) = 𝑢2/2 along with initial condition
𝑢(𝑥, 0) = 0.1 + 0.1 sin(2Þ𝑥), 0 ⊘ 𝑥 ⊘ 1 and 𝑢(𝑥, 0) = 0.1, elsewhere. In Figure 5.8 it is shown
the numerical approximations by means of the LEB2 scheme 5.2.1 along with the midpoint rule
quadrature rule to the source term that appears in (5.2.6). In the case of no availability of an
analytic solution (see [104]), an approximation to the expected Şexact solutionŤ is computed
using a very Ąne mesh (2048 cells) numerical solution as the reference solution (solid line
in Figure 5.8), for comparison purpose with numerical approximations with 128 cells (left),
256 cells (Middle) and 512 cells (right). Such solutions are in a very good agreement with
that reported in [104], where the initial data give rise into a shock. But due to the balance
between Ćux function and source term, the left and right state of the shock will increase and
asymptotically reach the steady-state equilibrium 𝑢 = 1. Comparing the computed solution
with LEB2 scheme 5.2.1 and that one reported in [104], it is found that the our solution is
quite accurate and capturing all qualitative details, even in a coarse grid (left picture in Figure
5.8). Again, our Lagrangian-Eulerian scheme seems to be well-balanced in the sense that the
method captured the correct steady states entropy-solution as reported in [104].

Model Problem 5.4.5. Leveque and Yee (JCP), [112].

The model problem proposed by LeVeque and Yee is a scalar linear advection problem with
a nonlinear reaction source term, which can be stiff. The governing PDE reads as,

𝜕𝑢

𝜕𝑡
+
𝜕𝑢

𝜕𝑥
= ⊗Ñ𝑢(𝑢⊗ 1)(𝑢⊗ Û), 0 < Û < 1, Ñ > 0, (5.4.1)

As in [112] (see also [45, 58]) we choose Û = 0.5 Indeed, the model problem (5.4.1) with
𝑓(𝑢) = 𝑢 and Û = 0.5 was used in [112] to illustrate a current well-known deĄciency of most
numerical schemes for hyperbolic conservation laws with stiff source terms: the occurrence of
numerical fronts that propagate at non-physical speeds. Notice, the source term in (5.4.1)
has multiple equilibrium points, hence it does not Ąt in the general framework established in
[36]. In general, we cannot expect monotonicity for the 𝐿∞ norm, or the TV semi-norm (see
[36, 45]) of solutions to (5.4.1), and these properties cannot be expected to hold either in the
numerical solutions obtained with the Ąrst or second order schemes considered in [36], which
in turn are based on semi-implicit and fully implicit Runge-Kutta discretization. Remember,
here we are primarily interested in the design the Lagrangian-Framework in the most explicit
setting. In (5.4.1), the parameter Ñ controls the stiffness character of the model. For Ñ > 0, the
associated ODE 𝑢 = Ñ𝑢(𝑢⊗1)(𝑢⊗Û) has stable equilibria at 𝑢 = 0 and 𝑢 = 1, and an unstable
equilibrium precisely at 𝑢 = Û (see, e.g., [36, 45, 109] for more general details). For 𝑓(𝑢) = 𝑢
as above, and under Riemann type data 𝑢𝑙 = 1 (left) and 𝑢𝑟 = 0 (right), the solution is a single
discontinuous proĄle joining the left and right states, that moves with the speed determined
by the homogeneous conservation law equal to 1, as is the case of the linear model under
consideration (5.4.1). Indeed, solutions to the model problem (5.4.1) exhibits the following
property (see, e.g., [36, 45]), If 𝑢0(𝑥) ⊘ 𝑤0(𝑥), then the corresponding entropy solutions satisfy
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Figure 5.9: approximated solutions for linear advection problem with a nonlinear reaction
source term stiff
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𝑢(𝑥, 𝑡) ⊘ 𝑤(𝑥, 𝑡). In light of the invariant region (see [45]) linked to a weak stability concept
for explicit, implicit and semi-implicit first order schemes and D-IMEX schemes, this property
means that for model problem (5.4.1), if 0 ⊘ 𝑢(𝑥, 0) ⊘ 1 then 0 ⊘ 𝑢(𝑥, 𝑡) ⊘ 1, ∀ 𝑡 > 0. In the
sense of [45], this simply states that [0, 1] is an invariant domain for the balance law (5.4.1).
Thus, it seems reasonable to require similar inequalities (0 ⊘ 𝑈𝑛

𝑗 ⊘ 1 for 1 ⊘ 𝑛 and ∀ 𝑗 = 1, ≤ ≤ ≤𝑇
(Ąnal time index). to hold for the discrete counterpart solution of (5.4.1). Furthermore, such
Şweak monotonicityŤ is not ensured (see [109, 112]) by the use of classical Ćux-limiters in the
discretization of the Ćux function counterpart of the balance law (5.4.1).

Hence, we cannot expect this property to hold for higher order classical IMEX schemes
(see [58]). As in [58, 109, 112] no oscillations nor overshoots were observed in our numerical
approximations computed by LEB1 5.2.1 (see Figure 5.9), we recall that LEB1 and LEB2
schemes are equivalent in this problem, but with the good distinct feature that we do not use
any flux function limiter for all cases for Ñ =1, 10, 100 and 1000. Indeed, the numerical solution
remains within interval [0, 1] (or the invariant region property is preserved in the sense of [45]).
Moreover, the LEB1 scheme provide the correct entropy-speed of the jump discontinuity for all
cases considered for Ñ. In Figure 5.9, from top to bottom is shown numerical approximations
computed by LEB1 scheme 5.2.1 to the above discussed problem at time 𝑡 = 0.5, 256 cells
(left), 512 cells (middle) and 1024 cells (right).

Model Problem 5.4.6. A Puzzling Numerical Example, SIMAI Springer Series 2, L. Gosse
Springer-Verlag Italia 2013 [67].
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Figure 5.10: Numerical approximations with 𝐿1-error.

The main goal of the present example is, as in [67], to emphasize the qualitative difference
between time-splitting, (or fractional step methods) and well-balanced numerical schemes when
it comes to computing the entropy solution [96] of a simple scalar, yet non-resonant, balance
law 𝜕𝑡𝑢+ 𝜕𝑥(𝑓(𝑢)) = 𝑘(𝑥)𝑔(𝑢), 0 < 𝑘 ∈ 𝐿1 ∩ 𝐶0(R), 𝑓 is genuinely non-linear and 𝑔 ∈ 𝐶1(R),
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see [67] for more details. In this particular problem it is considered 𝑓(𝑢) = 𝑢2/2, 𝑘(𝑥) = 0.2
and 𝑔(𝑢) = 𝑢 with initial data 𝑢0(𝑥) = 𝑌 (𝑥), 𝑌 the Heaviside function. This results in the
classical Şone-halfŤorder of convergence in 𝐿1, which is known to be optimal for Godunov type
[135, 145], denoting the entropy solution 𝑢 and its numerical approximation by 𝑢∆𝑡; see [145]
that states: ∀𝑡 ∈ [0, 𝑇 ], ‖𝑢∆𝑡(𝑡, .)⊗𝑢(𝑡, .)‖𝐿1(R)⊘ 𝐶

√
Δ𝑡. The analysis discussed in [144] reveals

that the Şconstant CŤ is actually an exponential in time, which results in the more rigorous
statement: ∀𝑡 ∈ [0, 𝑇 ], ‖𝑢∆𝑡(𝑡, .) ⊗ 𝑢(𝑡, .)‖𝐿1(R)⊘ 𝐶 exp(max[𝑔′(𝑢)]𝑡)

√
Δ𝑡. This estimate is

disastrous from a computational standpoint, because in order to keep the absolute error below
a given tolerance, the computational gridŠs parameters are meant to decrease exponentially
with time (except if 𝑔′ ⊘ 0, for which 𝑇𝑉 (𝑢)(𝑡, .) decays exponentially too). In Figure 5.10 are
shown numerical approximation with our Lagrangian Eulerian schemes to balance law LEB1
(5.2.1) top and LEB2 (5.2.2) bottom; grid reĄnement with 𝐿1-error (right) seems to show that
the approximation with our scheme converges to the steady solution. Approximations with 256
cells (left) and 512 cells (middle) are shown in Figure 5.10 as expected from [67].

Model Problem 5.4.7. An Inhomogeneous N-Wave, Youngsoo Ha and Yong Jung Kim (JCP,
2006) & L. Gosse (Numer. Math, 2004) [68, 74].

In [74], it was developed a theoretical tool to examine properties of numerical schemes
designed for advection problems. Based on this framework, [68] proposed further analysis for
balance law problems to account transient regime, which in turn give rise to a similarity-solution
analysis of the balance law model

𝜕𝑢

𝜕𝑡
+
𝜕𝑓(𝑢)

𝜕𝑥
= 𝑢, 𝑓(𝑢) =

𝑢4

4
, 𝑢0(𝑥) = 𝑠𝑔𝑛(𝑥)(3♣𝑥♣) 1

3ä♣𝑥♣< 1

2
, (5.4.2)

where ä𝐴 is the characteristic function of a set 𝐴. And the solution, according with [74], is

𝑢(𝑥, 𝑡) = 𝑠𝑔𝑛(𝑥)(3♣𝑥♣) 1

3ä♣𝑥♣< 1

2
exp( 3𝑡

4
), 𝑡 > 0 (5.4.3)

The numerical scheme (5.2.1) was applied on the above problem, with different mesh sizes
to reproduce the numerical results that are displayed in Figure 5.11, where the mesh grid was
reĄned from 256 cells to 4096 cells into the interval [⊗4, 4] and the simulation time evolves from
time 𝑡 = 0 to 𝑇 = 2.65. In Figure 5.11 (bottom right frame) is displayed an ampliĄcation with
exponential behavior of the absolute 𝐿1 as the grid is reĄned. Notice the resemblance between
the numerical approximation and the exact solution, as well as the decreasing of the error,
as computational grid is reĄned. The overall computational time was less than one minute
in a non-compiled programming language in the Ąnest computational mesh grid. Numerical
computed solutions with Lagrangian-Eulerian scheme LEB1 (5.2.1) and LEB2 (5.2.2), and
predictor corrector by the source term integral, to the model problem announced above and
proposed as one tool to examine the properties of numerical schemes for advection equation in
[74].
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Figure 5.11: Approximated solutions for an Inhomogeneous N-Wave
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Model Problem 5.4.8. Effect for Riccati Source Term in LeVeque-Yee (JCP, 1990) & L.
Gosse (Numer. Math, 2004) problems type [68, 112].

This problem is inspired in [112], where an study for Hyperbolic conservation laws method
was made in the case which the source term is a stiff term. In [68] was taken up again this
problem, but in this time with a Riccati source term, the problem is the following hyperbolic
balance law.

𝜕𝑢

𝜕𝑡
+
𝜕𝑓(𝑢)

𝜕𝑥
= ∘𝑘(𝑥) (1 + 𝑢)(2 ⊗ 𝑢), 𝑘(𝑥) = 2

(︂
1 + 𝑠𝑖𝑛

(︂
Þ𝑥

10

)︂)︂
, 𝑥 ∈ [⊗0.1, 49.9] . (5.4.4)

with initial data 𝑢(𝑥, 0) = 2, 𝑥 ⊘ 0 and 𝑢(𝑥, 0) = ⊗1, 𝑥 > 0. The solution is an entropic
shock at constant speed à = 1

2
, but as a consequence of the viscosity this solution is very

difficult to reproduce numerically in a correct way like is explained in [68]. Agreeing with the
sign before 𝑘, there will be stabilities or instabilities on the points 𝑢 = ⊗1 and 𝑢 = 2. For
example, 2 is stable point and -1 is unstable point when the sign is a positive sign, the values
created by numerical viscosity are increased by the source term thus speeding up the shock.
By other hand, -1 is stable point and 2 is a unstable point in otherwise, the values created by
numerical viscosity are decreased by the source term thus slowing down the shock. In Figure
5.12 are shown numerical computed solutions with Lagrangian-Eulerian scheme LEB1 (5.2.1)
and scheme LEB2 (5.2.2), using trapezoidal rule by the source term integral, to the model
problem announced above in 5.4.4. The exact solution is shown in solid line for comparison
purpose with numerical approximations to positive sign before 𝑘 with 512 cells (left top) and
1024 cells (Middle top) and one study of mesh reĄnement to error in 𝐿1 norm in relation to time
(right top) with time advanced at 𝑇 = 70, it can be noted in this example as the approximation
is speeding up the shock in according to [68] in its analyses of stability points and instability
points. To negative sign before 𝑘 we shown approximations with 512 cells (left bottom) and
1024 cells (Middle bottom) and again one study of mesh reĄnement to error in 𝐿1 norm in
relation to time (right bottom), the velocity of the approximation is now slower than the shock.
In those approximations can be noted as the numerical scheme is convergent to exact solution,
and how the errors are rapidly to zero as the grid is reĄned and very efficient computationally
and without spurious oscillations in regions with sharp fronts and low numerical diffusion.
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Figure 5.12: Approximate solution to effect for Riccati source term
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Chapter 6

The Lagrangian-Eulerian scheme for
systems of hyperbolic conservation
laws and balance laws

We will focus our attention to describe how to extend the scalar Lagrangian-Eulerian pro-
cedure to the one-dimensional system of balance laws 𝑢𝑡 + 𝑓𝑥(𝑢) = 𝐺(𝑢), where now 𝑢(𝑥, 𝑡)
can be viewed as the unknown 𝑛⊗vector of the form 𝑢 = (𝑢1(𝑥, 𝑡), 𝑢2(𝑥, 𝑡), ≤ ≤ ≤𝑢𝑛(𝑥, 𝑡))⊤, and
𝑓(𝑢) is the Ćux vector function such that 𝑓(𝑢) = (𝑓1(𝑢), 𝑓2(𝑢), ≤ ≤ ≤ , 𝑓𝑛(𝑢))⊤. Essentially, the
analogue Lagrangian-Eulerian scheme for system of balance laws retain all the simplicities of
the one single equation case, which in turn is carried out by a straightforward component-wise
application of the scalar framework. Thus, for simplicity of presentation, let us consider the
following prototype 3 × 3 system of balance laws.

6.1 Extension to systems of hyperbolic conservation laws

and balance laws

We consider the system of balance laws

𝑄𝑡 + [𝐹 (𝑄)]𝑥 = 𝐺(𝑄), (6.1.1)

where 𝐹 (𝑄) = [𝑓1(𝑄), 𝑓2(𝑄), 𝑓3(𝑄)], 𝑄 = [𝑢, 𝑣, 𝑤], 𝑢 = 𝑢(𝑥, 𝑡), 𝑣 = 𝑣(𝑥, 𝑡) and 𝑤 = 𝑤(𝑥, 𝑡),
along with 𝐺(𝑄) = [𝑔1(𝑄), 𝑔2(𝑄), 𝑔3(𝑄)]. System (6.1.1) can be written in open form as,

𝑢𝑡 + [𝑓1(𝑢, 𝑣, 𝑤)]𝑥 = 𝑔1(𝑢, 𝑣, 𝑤), 𝑣𝑡 + [𝑓2(𝑢, 𝑣, 𝑤)]𝑥 = 𝑔2(𝑢, 𝑣, 𝑤), 𝑤𝑡 + [𝑓3(𝑢, 𝑣, 𝑤)]𝑥 = 𝑔3(𝑢, 𝑣, 𝑤).
(6.1.2)

As before, we consider the space-time control Ąnite volumes for each variable 𝑢, 𝑣, 𝑤 as follows,

𝐷𝑛
𝑠,𝑗 = ¶(𝑡, 𝑥) / 𝑡𝑛 ⊘ 𝑡 ⊘ 𝑡𝑛+1, à𝑛

𝑠,𝑗(𝑡) ⊘ 𝑥 ⊘ à𝑛
𝑠,𝑗+1(𝑡)♢, 𝑠 = 𝑢, 𝑣, 𝑤, (6.1.3)

where à𝑛
𝑢,𝑗(𝑡), à

𝑛
𝑣,𝑗(𝑡) and à𝑛

𝑤,𝑗(𝑡) are parametrized curves such that à𝑛
𝑢,𝑗(𝑡

𝑛) = 𝑥𝑛
𝑗 , à𝑛

𝑣,𝑗(𝑡
𝑛) = 𝑥𝑛

𝑗

and à𝑛
𝑤,𝑗(𝑡

𝑛) = 𝑥𝑛
𝑗 . These curves à𝑛

𝑠,𝑗(𝑡), 𝑠 = 𝑢, 𝑣, 𝑤 deĄne the Şlateral boundariesŤ of integral
tubes for each primitive variable 𝑢, 𝑣, 𝑤, which in turn will be used to design a balancing
unbiased upwinding Riemann-solver-free discretization between the numerical Ćux functions
and the source terms by forward tracking the boundaries along the so-called integral tubes (see
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Figure 6.1: On the left (resp. right) is shown an illustration of the continuous (resp. discrete)
local space-time domain 𝐷𝑛

𝑠,𝑗, for each 𝑠 = 𝑢, 𝑣, 𝑤.

left picture in the Figure 6.1). Formally, the divergence theorem can be used in the (6.1.3),
the space-time Ąnite volumes 𝐷𝑛

𝑢,𝑗, 𝐷
𝑛
𝑣,𝑗 and 𝐷𝑛

𝑤,𝑗. By construction of the algorithm, as before,
this implies that curves à𝑛

𝑠,𝑗(𝑡) and à𝑛
𝑠,𝑗+1(𝑡), for 𝑠 = 𝑢, 𝑣, 𝑤 are naturally zero-Ćux boundaries.

Similarly, from this fact the space-time 𝐷𝑛
𝑠,𝑗, 𝑠 = 𝑢, 𝑣, 𝑤 are then called as ŞIntegral tubesŤ

for 𝑡𝑛 ⊘ 𝑡 ⊘ 𝑡𝑛+1. As a consequence we get
[︂
1,

𝑑à𝑛
𝑠,𝑗

(𝑡)

𝑑𝑡

]︂
⊥n𝑠 and

[︂
1,

𝑑à𝑛
𝑠,𝑗+1

(𝑡)

𝑑𝑡

]︂
⊥n𝑠 since the

slopes
𝑑à𝑛

𝑠,𝑗
(𝑡)

𝑑𝑡
are one-to-one equal to the slope of the vector [𝑠, 𝑓𝑘(𝑄)], 𝑠 = 𝑢, 𝑣, 𝑤; 𝑘 = 1, 2, 3,

respectively, over the parametrized curves à𝑛
𝑠,𝑗(𝑡) and à𝑛

𝑠,𝑗+1(𝑡), 𝑠 = 𝑢, 𝑣, 𝑤, 𝑗 ∈ Z. Therefore
à𝑛

𝑠,𝑗(𝑡), 𝑠 = 𝑢, 𝑣, 𝑤 are solutions of the set of ODEs,

𝑑à𝑛
𝑠,𝑗(𝑡)

𝑑𝑡
=
𝑓𝑘(𝑢, 𝑣, 𝑤)

𝑠
, à𝑛

𝑠,𝑗(𝑡
𝑛) = 𝑥𝑛

𝑗 , 𝑡𝑛 ⊘ 𝑡 ⊘ 𝑡𝑛+1, for each 𝑠 = 𝑢, 𝑣, 𝑤; 𝑘 = 1, 2, 3,

(6.1.4)
where 𝑢, 𝑣, 𝑤 ̸= 0. As a consequence of the divergence theorem and the above equations
(6.1.3)-(6.1.4), the integrals over curves à𝑛

𝑠,𝑗(𝑡), 𝑠 = 𝑢, 𝑣, 𝑤 vanish and the line integral over the
boundary of the region 𝜕𝐷𝑛

𝑠,𝑗 leads to,

∫︁ 𝑥𝑛+1

𝑗+ 1
2

𝑥𝑛+1

𝑗−
1
2

𝑠(𝑥, 𝑡𝑛+1)𝑑𝑥 =
∫︁ 𝑥𝑛

𝑗+1

𝑥𝑛
𝑗

𝑠(𝑥, 𝑡𝑛)𝑑𝑥+
∫︁∫︁

𝐷𝑛
𝑠,𝑗

𝑔𝑘(𝑢, 𝑣, 𝑤)𝑑𝑥𝑑𝑡, (6.1.5)

where 𝑠 = 𝑢, 𝑣, 𝑤; 𝑘 = 1, 2, 3, respectively, and we can deĄne as before 𝑥𝑛+1
𝑠,𝑗⊗ 1

2

= à𝑛
𝑠,𝑗(𝑡

𝑛+1) and

𝑥𝑛+1
𝑠,𝑗+ 1

2

= à𝑛
𝑠,𝑗+1(𝑡

𝑛+1). Equation (6.1.5) is called Şlocally conservative relationŤ to the system of

balance laws (6.1.2). Thus, the approximations of the variables 𝑢, 𝑣, 𝑤 for system are a rather
component-wise extension of the scalar framework given by,

𝑈𝑛
𝑗 =

1

ℎ

∫︁ 𝑥𝑛

𝑗+ 1
2

𝑥𝑛

𝑗−
1
2

𝑢(𝑥, 𝑡𝑛) 𝑑𝑥, and 𝑈
𝑛+1
𝑗 =

1

ℎ𝑛+1
𝑢,𝑗

∫︁ 𝑥𝑛+1

𝑗+ 1
2

𝑥𝑛+1

𝑗−
1
2

𝑢(𝑥, 𝑡𝑛+1) 𝑑𝑥 𝑗 ∈ Z,

𝑉 𝑛
𝑗 =

1

ℎ

∫︁ 𝑥𝑛

𝑗+ 1
2

𝑥𝑛

𝑗−
1
2

𝑣(𝑥, 𝑡𝑛) 𝑑𝑥, and 𝑉
𝑛+1
𝑗 =

1

ℎ𝑛+1
𝑣,𝑗

∫︁ 𝑥𝑛+1

𝑗+ 1
2

𝑥𝑛+1

𝑗−
1
2

𝑣(𝑥, 𝑡𝑛+1) 𝑑𝑥 𝑗 ∈ Z,

𝑊 𝑛
𝑗 =

1

ℎ

∫︁ 𝑥𝑛

𝑗+ 1
2

𝑥𝑛

𝑗−
1
2

𝑤(𝑥, 𝑡𝑛) 𝑑𝑥, and 𝑊
𝑛+1
𝑗 =

1

ℎ𝑛+1
𝑤,𝑗

∫︁ 𝑥𝑛+1

𝑗+ 1
2

𝑥𝑛+1

𝑗−
1
2

𝑤(𝑥, 𝑡𝑛+1)𝑑 𝑥 𝑗 ∈ Z,

(6.1.6)



100

respectively, and the initial condition is 𝑈(𝑥0
𝑗 , 𝑡

0) = 𝑈0
𝑗 , 𝑉 (𝑥0

𝑗 , 𝑡
0) = 𝑉 0

𝑗 and 𝑊 (𝑥0
𝑗 , 𝑡

0) = 𝑊 0
𝑗 over

the local space-time cells [𝑥0
𝑗⊗ 1

2

, 𝑥0
𝑗+ 1

2

], 𝑗 ∈ Z. Next, we use (6.1.6) into to Şlocally conservative

relationŤ to get,

𝑆
𝑛+1
𝑗 =

1

ℎ𝑛+1
𝑠,𝑗

∫︁ 𝑥𝑛+1

𝑗+ 1
2

𝑥𝑛+1

𝑗−
1
2

𝑠(𝑥, 𝑡𝑛+1) 𝑑𝑥 =
1

ℎ𝑛+1
𝑠,𝑗

[︃∫︁ 𝑥𝑛
𝑗+1

𝑥𝑛
𝑗

𝑠(𝑥, 𝑡𝑛) 𝑑𝑥.+
∫︁∫︁

𝐷𝑛
𝑠,𝑗

𝑔𝑘(𝑢, 𝑣, 𝑤) 𝑑𝑥 𝑑𝑡

⟨
. (6.1.7)

In (6.1.7) 𝑆 = (𝑈, 𝑉,𝑊 ) and 𝑠 = (𝑢, 𝑣, 𝑤) denotes a representation of a component-wise ex-
tension of the scalar case to systems of balance law in compact form (6.1.1). Next, the local

approximations 𝑆
𝑛+1
𝑗 , 𝑗 ∈ Z are projected over the original grid and reads,

𝑆𝑛+1
𝑗 =

1

ℎ

[︁
𝑐𝑠,0𝑗𝑆

𝑛+1
𝑗⊗1 + 𝑐𝑠,1𝑗𝑆

𝑛+1
𝑗

]︁
. (6.1.8)

Here 𝑐𝑠,0𝑗 = (ℎ
2

+ 𝑓𝑛
𝑠,𝑗𝑘

𝑛), 𝑐𝑠,1𝑗 = ℎ ⊗ 𝑐𝑠,0𝑗 = (ℎ
2

⊗ 𝑓𝑛
𝑠,𝑗𝑘

𝑛) and we use the approximation

𝑓𝑛
𝑠,𝑗 =

𝑓𝑘(𝑈𝑛
𝑗

,𝑉 𝑛
𝑗

,𝑊 𝑛
𝑗

)

𝑆𝑛
𝑗

≡ 𝑓𝑘(𝑢,𝑣,𝑤)
𝑠

, 𝑆 = 𝑈, 𝑉,𝑊 , 𝑠 = 𝑢, 𝑣, 𝑤 and 𝑘 = 1, 2, 3, respectively. Notice

that now the curve à𝑛
𝑠,𝑗(𝑡) is a simple straight line for 𝑓𝑛

𝑠,𝑗 (see right picture in Figure 6.1),
along with 𝑘𝑛 = Δ𝑡𝑛 = 𝑡𝑛+1 ⊗ 𝑡𝑛. Finally, combination of equations (6.1.7) and (6.1.8) form
the building-block for the new Lagrangian-Eulerian scheme. Thus, for each discrete variable

𝑆 = 𝑈, 𝑉,𝑊 , we deĄne W𝑠(𝑆
𝑛
𝑗 , 𝑆

𝑛
𝑗+1) ⊕ 𝑓𝑛

𝑠,𝑗
+𝑓𝑛

𝑠,𝑗+1

ℎ𝑛+1

𝑠,𝑗

(𝑆𝑛
𝑗 + 𝑆𝑛

𝑗+1), 𝑠 = 𝑢, 𝑣, 𝑤, we get,

𝑈𝑛+1
𝑗 =

1

4
(𝑈𝑛

𝑗⊗1 + 2𝑈𝑛
𝑗 + 𝑈𝑛

𝑗+1) ⊗ 𝑘𝑛

4

(︁
W𝑢(𝑈𝑛

𝑗 , 𝑈
𝑛
𝑗+1) ⊗ W𝑢(𝑈𝑛

𝑗⊗1, 𝑈
𝑛
𝑗 )
)︁

+
1

ℎ

[︃
1

ℎ

(︃
ℎ

2
+ 𝑓𝑛

𝑢,𝑗𝑘

)︃∫︁∫︁

𝐷𝑛
𝑢,𝑗−1

𝑔1(𝑢, 𝑣, 𝑤) 𝑑𝑥 𝑑𝑡+
1

ℎ

(︃
ℎ

2
⊗ 𝑓𝑛

𝑢,𝑗𝑘

)︃∫︁∫︁

𝐷𝑛
𝑢,𝑗

𝑔1(𝑢, 𝑣, 𝑤) 𝑑𝑥 𝑑𝑡

⟨
,

(6.1.9)

𝑉 𝑛+1
𝑗 =

1

4
(𝑉 𝑛

𝑗⊗1 + 2𝑉 𝑛
𝑗 + 𝑉 𝑛

𝑗+1) ⊗ 𝑘𝑛

4

(︁
W𝑣(𝑉 𝑛

𝑗 , 𝑉
𝑛

𝑗+1) ⊗ W𝑣(𝑉 𝑛
𝑗⊗1, 𝑉

𝑛
𝑗 )
)︁

+
1

ℎ

[︃
1

ℎ

(︃
ℎ

2
+ 𝑓𝑛

𝑣,𝑗𝑘

)︃∫︁∫︁

𝐷𝑛
𝑣,𝑗−1

𝑔2(𝑢, 𝑣, 𝑤) 𝑑𝑥 𝑑𝑡+
1

ℎ

(︃
ℎ

2
⊗ 𝑓𝑛

𝑣,𝑗𝑘

)︃∫︁∫︁

𝐷𝑛
𝑣,𝑗

𝑔2(𝑢, 𝑣, 𝑤) 𝑑𝑥 𝑑𝑡

⟨
,

(6.1.10)

𝑊 𝑛+1
𝑗 =

1

4
(𝑊 𝑛

𝑗⊗1 + 2𝑊 𝑛
𝑗 +𝑊 𝑛

𝑗+1) ⊗ 𝑘𝑛

4

(︁
W𝑤(𝑊 𝑛

𝑗 ,𝑊
𝑛
𝑗+1) ⊗ W𝑤(𝑊 𝑛

𝑗⊗1,𝑊
𝑛
𝑗 )
)︁

+
1

ℎ

[︃
1

ℎ

(︃
ℎ

2
+ 𝑓𝑛

𝑤,𝑗𝑘

)︃∫︁∫︁

𝐷𝑛
𝑤,𝑗−1

𝑔3(𝑢, 𝑣, 𝑤) 𝑑𝑥 𝑑𝑡+
1

ℎ

(︃
ℎ

2
⊗ 𝑓𝑛

𝑤,𝑗𝑘

)︃∫︁∫︁

𝐷𝑛
𝑤,𝑗

𝑔3(𝑢, 𝑣, 𝑤) 𝑑𝑥 𝑑𝑡

⟨
,

(6.1.11)

along with the CFL condition max𝑗¶𝑓𝑛
𝑢,𝑗, 𝑓

𝑛
𝑣,𝑗, 𝑓

𝑛
𝑤,𝑗♢(𝑘/ℎ) ⊘

√︁
(2)/2 and with initials conditions

𝑈0
𝑗 = 𝑢(𝑥0

𝑗 , 0), 𝑉 0
𝑗 = 𝑣(𝑥0

𝑗 , 0) and 𝑊 0
𝑗 = 𝑤(𝑥0

𝑗 , 0).
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The extension of the Lagrangian-Eulerian scheme Ąnite difference (5.2.2) to system of hy-
perbolic balance law can be write as

𝑈𝑛+1
𝑗 =

1

4
(𝑈𝑛

𝑗⊗1 + 2𝑈𝑛
𝑗 + 𝑈𝑛

𝑗+1) ⊗ 𝑘

2ℎ

[︁
𝑓1(𝑈

𝑛
𝑗+1, 𝑉

𝑛
𝑗+1,𝑊

𝑛
𝑗+1) ⊗ 𝑓1(𝑈

𝑛
𝑗⊗1, 𝑉

𝑛
𝑗⊗1,𝑊

𝑛
𝑗⊗1)

]︁

+
1

ℎ

[︃
1

ℎ

(︃
ℎ

2
+ 𝑓𝑛

𝑢,𝑗𝑘

)︃∫︁∫︁

𝐷𝑛
𝑢,𝑗−1

𝑔1(𝑢, 𝑣, 𝑤) 𝑑𝑥 𝑑𝑡+
1

ℎ

(︃
ℎ

2
⊗ 𝑓𝑛

𝑢,𝑗𝑘

)︃∫︁∫︁

𝐷𝑛
𝑢,𝑗

𝑔1(𝑢, 𝑣, 𝑤) 𝑑𝑥 𝑑𝑡

⟨
,

(6.1.12)

𝑉 𝑛+1
𝑗 =

1

4
(𝑉 𝑛

𝑗⊗1 + 2𝑉 𝑛
𝑗 + 𝑉 𝑛

𝑗+1) ⊗ 𝑘

2ℎ

[︁
𝑓2(𝑈

𝑛
𝑗+1, 𝑉

𝑛
𝑗+1,𝑊

𝑛
𝑗+1) ⊗ 𝑓2(𝑈

𝑛
𝑗⊗1, 𝑉

𝑛
𝑗⊗1,𝑊

𝑛
𝑗⊗1)

]︁

+
1

ℎ

[︃
1

ℎ

(︃
ℎ

2
+ 𝑓𝑛

𝑣,𝑗𝑘

)︃∫︁∫︁

𝐷𝑛
𝑣,𝑗−1

𝑔2(𝑢, 𝑣, 𝑤) 𝑑𝑥 𝑑𝑡+
1

ℎ

(︃
ℎ

2
⊗ 𝑓𝑛

𝑣,𝑗𝑘

)︃∫︁∫︁

𝐷𝑛
𝑣,𝑗

𝑔2(𝑢, 𝑣, 𝑤) 𝑑𝑥 𝑑𝑡

⟨
,

(6.1.13)

𝑊 𝑛+1
𝑗 =

1

4
(𝑊 𝑛

𝑗⊗1 + 2𝑊 𝑛
𝑗 +𝑊 𝑛

𝑗+1) ⊗ 𝑘

2ℎ

[︁
𝑓3(𝑈

𝑛
𝑗+1, 𝑉

𝑛
𝑗+1,𝑊

𝑛
𝑗+1) ⊗ 𝑓3(𝑈

𝑛
𝑗⊗1, 𝑉

𝑛
𝑗⊗1,𝑊

𝑛
𝑗⊗1)

]︁

+
1

ℎ

[︃
1

ℎ

(︃
ℎ

2
+ 𝑓𝑛

𝑤,𝑗𝑘

)︃∫︁∫︁

𝐷𝑛
𝑤,𝑗−1

𝑔3(𝑢, 𝑣, 𝑤) 𝑑𝑥 𝑑𝑡+
1

ℎ

(︃
ℎ

2
⊗ 𝑓𝑛

𝑤,𝑗𝑘

)︃∫︁∫︁

𝐷𝑛
𝑤,𝑗

𝑔3(𝑢, 𝑣, 𝑤) 𝑑𝑥 𝑑𝑡

⟨
,

(6.1.14)
along with the CFL condition max𝑗¶‖𝐹 ′(𝑈𝑛

𝑗 , 𝑉
𝑛

𝑗 ,𝑊
𝑛
𝑗 )‖2, 𝑓

𝑛
𝑢,𝑗, 𝑓

𝑛
𝑣,𝑗, 𝑓

𝑛
𝑢,𝑗♢(𝑘/ℎ) ⊘

√
2/2, where 𝐹

is the vector function 𝐹 = [𝑓1, 𝑓2, 𝑓3]. Note that the CFL condition to the Lagrangian-Eulerian
scheme (6.1.12), (6.1.13) and (6.1.14) is a extension of the scalar case (5.2.2), in which is
considered the eigenvalues of Jacobian matrix of 𝐹 .

6.2 Numerical experiments for systems of nonlinear bal-

ance laws

Model Problem 6.2.1. Langseth, Tveito, and Winther (SINUM) [104].

In [104], it was considered a 2 × 2 nonlinear system of balance laws in the form of (6.1.1)
modeling the Ćow of water downing in a channel having a rectangular cross section and inclined
at a constant angle 𝜃 to the horizontal. This is a prototype model for shallow-water Ćow (see
also [71, 109] and reference therein for more details) in an inclined channel with friction the
system may be written as (in dimensionless and scaled variables)

[︃
ℎ
ℎ𝑣

⟨

𝑡

+

⋃︀
⨄︀

ℎ𝑣

𝑣2ℎ+
1

2
ℎ2

⋂︀
⋀︀

𝑥

=

⋃︀
⋁︀⨄︀

0

ℎ⊗ 𝐶
1 + ℎ

tan(𝜃)
𝑣2

⋂︀
⎥⋀︀ , (6.2.1)

where ℎ is the height of the free surface and 𝑣 is the averaged horizontal velocity. Precisely,
as in [104], the friction coefficient 𝐶 is taken to be 0.1, while the inclination angle 𝜃 = Þ/6.
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Figure 6.2: Numerical approximation for shallow water system
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On physical grounds, in model problem it was assumed the hydrostatic balance in the vertical
direction and ignored surface tension. Further, the viscous effects is approximately through
the introduction of a friction force exerted of the Ćuid by the solid boundaries of the channel
(account as a source term that appears on the RHS of (6.2.1)). Indeed, model (6.2.1) correspond
to uniform Ćow (𝑣0=constant and ℎ0=constant) with the frictional and gravitational forces in
perfect balance. In order to study the balance between convective/source in the model (6.2.1),
it is considered as initial conditions a perturbation of a uniform flow, in which the gravitational
and frictional forces balance as expected from the model problem. As in [104], the initial velocity
is taken to be 𝑣0 = 1.699, while the initial height of the free surface consists of a triangular
perturbation of the uniform Ćow level, ℎ0(𝑥) = 𝑥 + 1.5, ⊗0.5 ⊘ 𝑥 ⊘ 0, ℎ0(𝑥) = ⊗𝑥 + 1.5,
0 ⊘ 𝑥 ⊘ 0.5, and 1 elsewhere. In Figure 6.2 it is shown the numerical approximations by means
of the LEB2 scheme 5.2.1 to the initial value problem described just above. As in [104], with
no friction (𝐶 = 0), two symmetrical waves will arise from the announced initial data. On the
other hand, the introduction of friction not only down the velocity of these waves, but also
changes the shape. For instance, if 𝐶 = 0.1 is considered, one can still observe two waves, but
the symmetry is now lost. Here is shown computed solutions for ℎ (height of the free surface
on the top frames (resp. third row)) and for 𝑣 (averaged horizontal velocity in frames on the
second row (resp. bottom frames)) with scheme (6.1.9)-(6.1.11) and scheme (6.1.12)-(6.1.14)
respectively, both extended to system of hyperbolic law and balance law from the scalar cases
LEB1 and LEB2 respectively, as were discussed in above section for each case. The initial
value problem described just above at simulation time 𝑡 = 1, for four computations, one using
2048 cells, namely the reference ŞexactŤ solution and another three: 128 cells (left), 256 cells
(middle), 512 cells (right). The numerical solutions are in a very good agreement to that
reported in [104], corresponding to the balance between the frictional and and gravitational
forces at time evolves. The approximation of the source terms in this example of system of
balance laws was performed by means of the predictor formula (5.2.1).

Model Problem 6.2.2. Pareschi, (SINUM) [130].

In Pareschi [130] (see also [30]), it was considered the Broadwell model of rareĄed gas
dynamics. The kinetic model is characterized by a 2 × 2 balance laws system with relaxation
source term of the form,

𝜕𝑈

𝜕𝑡
+
𝜕𝑓(𝑈)

𝜕𝑥
=

1

𝜖
𝑆𝑡(𝑈), (6.2.2)

where, 𝑈 = [𝜌 𝑚 𝑧]⊤, 𝑓(𝑈) = [𝑚 𝑧 𝑚]⊤ and 𝑆𝑡(𝑈) = [0 0 𝑅(𝑈)]⊤, and𝑅(𝑈) = 1
2

(𝜌2 +𝑚2 ⊗ 2𝜌𝑧).
Following the classical Ćuid dynamics formulation, the primitive variables are the density 𝜌, the
momentum 𝑚, and the velocity 𝑢, deĄned by 𝜌 = 𝑓 + 2ℎ + 𝑔, 𝑚 = 𝑓 ⊗ 𝑔, and 𝑢 = 𝑚/𝜌. The
only conserved quantities are the density 𝜌 and the momentum 𝑚. With respect to balance law
Broadwell equations (6.2.2), 𝜖 is the mean free path, and 𝑓 , ℎ, and 𝑔 denote the mass densities
of gas particles with characteristic speed 1, 0, and ⊗1, respectively, in the space 𝑥 and time 𝑡
coordinate system. In addition, it is well known the if one deĄnes 𝑧 = 𝑓 + 𝑔 then the we get
precisely the the balance law (6.2.2).

Note that if the Ćuid variables 𝜌, 𝑚, and 𝑧 are known then the mass densities of gas particles
𝑓 , 𝑔, and ℎ can be recovered from the above deĄnitions and reads: 𝑓 = 0.5(𝑧+𝑚), 𝑔 = 0.5(𝑧⊗𝑚)
and ℎ = 0.5(𝜌 ⊗ 𝑧). First, we compute the Broadwell equation with the Lagrangian-Eulerian
scheme (6.1.7)-(6.1.8), or (6.1.9)-(6.1.11), along with the Riemann data: 𝜌𝑙 = 3, 𝑚𝑙 = 2 and
𝑧𝑙 = 2, if 𝑥 < 0.2 and 𝜌𝑟 = 2, 𝑚𝑟 = 1.13962, and 𝑧𝑟 = 2 if 0.2 < 𝑥. It is well known (see, e.g.,
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Figure 6.3: Numerical solutions of the Broadwell balance law problem.

[30, 130]), the solution for Broadwell model with such initial data for the relaxation parameter
(the mean free path) for 𝜖 = 100 (top), Ű with the ŞexactŤ reference solution being calculated
with 2048 cells Ű, for 𝜖 = 2 × 10⊗2 (middle), Ű with the ŞexactŤ reference solution calculated
with 2048 cells Ű, and for 𝜖 = 10⊗8 (bottom), with the ŞexactŤ reference calculated with 4096
cells; all such numerical solutions are shown in Figure 6.3. We will Ąrst recast the system
problem of balance laws (6.2.2) by writing 𝜌 = 𝜌+ 1, �̃� = 𝑚+ 1 and 𝑧 = 𝑧 + 1, in open form
as,

𝜕𝜌

𝜕𝑡
+
𝜕�̃�

𝜕𝑥
= 0,

𝜕�̃�

𝜕𝑡
+
𝜕𝑧

𝜕𝑥
= 0,

𝜕𝑧

𝜕𝑡
+
𝜕�̃�

𝜕𝑥
=

1

2𝜖

(︁
(𝜌⊗ 1)2 + (�̃�⊗ 1)2 ⊗ 2(𝜌⊗ 1)(𝑧 ⊗ 1)

)︁

(6.2.3)
and the initial data �̃�𝑙 = [3, 2, 2]𝑇 , 𝑥 < 0.2 and �̃�𝑟 = [2, 1.13962, 2]𝑇 , 𝑥 > 0.2. The Ąnite
volumes in this case are,

𝐷𝑛
𝑠,𝑗 = ¶(𝑥, 𝑡) : 𝑡𝑛 ⊘ 𝑡 ⊘ 𝑡𝑛+1, à𝑛

𝑠,𝑗(𝑡) ⊘ 𝑥 ⊘ à𝑛
𝑠,𝑗+1(𝑡)♢, 𝑠 = 𝜌, �̃�, 𝑧, (6.2.4)

where, à𝑛
𝜌,𝑗(𝑡), à

𝑛
�̃�,𝑗(𝑡) and à𝑛

𝑧,𝑗(𝑡) are solution at 𝑡𝑛 < 𝑡 < 𝑡𝑛+1 of the follows systems equation,

∏︁
⋁︁⋁︁⨄︁
⋁︁⋁︁⋃︁

𝑑à𝜌,𝑗(𝑡)

𝑑𝑡
=
�̃�

𝜌
,

à𝜌,𝑗(𝑡
𝑛) = 𝑥𝑛

𝑗

,

∏︁
⋁︁⋁︁⨄︁
⋁︁⋁︁⋃︁

𝑑à�̃�,𝑗(𝑡)

𝑑𝑡
=

𝑧

�̃�
,

à�̃�,𝑗(𝑡
𝑛) = 𝑥𝑛

𝑗

,

∏︁
⋁︁⋁︁⨄︁
⋁︁⋁︁⋃︁

𝑑à𝑧,𝑗(𝑡)

𝑑𝑡
=
�̃�

𝑧
,

à𝑧,𝑗(𝑡
𝑛) = 𝑥𝑛

𝑗

. (6.2.5)
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The approximated solution to each problem above is à𝑠,𝑗(𝑡) = (𝑡 ⊗ 𝑡𝑛)𝑓𝑛
𝑠,𝑗 + 𝑥𝑛

𝑗 , where 𝑓𝑛
𝜌,𝑗 =

𝑀𝑛
𝑗 /𝑅

𝑛
𝑗 , 𝑓𝑛

�̃�,𝑗 = 𝑍𝑛
𝑗 /𝑀

𝑛
𝑗 and 𝑓𝑛

𝑧,𝑗 = 𝑀𝑛
𝑗 /𝑍

𝑛
𝑗 respectively. The approximations 𝑅

𝑛+1
𝑗 , 𝑀

𝑛+1
𝑗 and

𝑍
𝑛+1
𝑗 in the 𝑡𝑛+1 time are,

𝑅
𝑛+1
𝑗 =

1

2ℎ𝑛+1
𝑗

[︁
ℎ
(︁
𝑅𝑛

𝑗 +𝑅𝑛
𝑗+1

)︁]︁
, 𝑀

𝑛+1
𝑗 =

1

2ℎ𝑛+1
𝑗

[︁
ℎ
(︁
𝑀𝑛

𝑗 +𝑀𝑛
𝑗+1

)︁]︁
,

𝑍
𝑛+1
𝑗 =

1

2ℎ𝑛+1
𝑗

[︃
ℎ
(︁
𝑍𝑛

𝑗 + 𝑍𝑛
𝑗+1

)︁
+
∫︁∫︁

𝐷𝑛
𝑗

𝐺(𝜌, �̃�, 𝑧)𝑑𝐴

⟨
,

(6.2.6)

where,

∫︁∫︁

𝐷𝑛
𝑗

𝐺(𝜌, �̃�, 𝑧)𝑑𝐴 =
∫︁∫︁

𝐷𝑛
𝑗

1

2𝜖

(︁
(𝜌⊗ 1)2 + (�̃�⊗ 1)2 ⊗ 2(𝜌⊗ 1)(𝑧 ⊗ 1)

)︁
𝑑𝐴. (6.2.7)

Next, we perform the following projections for quantities 𝑅𝑛+1
𝑗 , 𝑀𝑛+1

𝑗 and 𝑍𝑛+1
𝑗 , as follows:

𝑅𝑛+1
𝑗 =

1

ℎ

[︂(︂
1

2
ℎ+ 𝑓𝑛

𝜌,𝑗

)︂
𝑅

𝑛+1
𝑗⊗1 +

(︂
1

2
ℎ⊗ 𝑓𝑛

𝜌,𝑗

)︂
𝑅

𝑛+1
𝑗

]︂
,

𝑀𝑛+1
𝑗 =

1

ℎ

[︂(︂
1

2
ℎ+ 𝑓𝑛

�̃�,𝑗

)︂
𝑀

𝑛+1
𝑗⊗1 +

(︂
1

2
ℎ⊗ 𝑓𝑛

�̃�,𝑗

)︂
𝑀

𝑛+1
𝑗

]︂
,

𝑍𝑛+1
𝑗 =

1

ℎ

[︂(︂
1

2
ℎ+ 𝑓𝑛

𝑧,𝑗

)︂
𝑍

𝑛+1
𝑗⊗1 +

(︂
1

2
ℎ⊗ 𝑓𝑛

𝑧,𝑗

)︂
𝑍

𝑛+1
𝑗

]︂
.

(6.2.8)

Furthermore, the solution of problem in the time 𝑡 = 0.5 are given by Ş𝑅𝑛+1
𝑗 ⊗1Ť, Ş𝑀𝑛+1

𝑗 ⊗1Ť and
Ş𝑍𝑛+1

𝑗 ⊗1Ť. To approximate the integral (6.2.7) in time 𝑡 = 𝑡𝑛+1, we consider the approximation
𝑅𝑛

𝑗 , 𝑀𝑛
𝑗 and 𝑍𝑛

𝑗 constants, then,

∫︁∫︁

𝐷𝑛
𝑗

𝐺(𝜌, �̃�, 𝑧)𝑑𝐴 ≡
∫︁∫︁

𝐷𝑛
𝑗

1

2𝜖

(︁
(𝑅𝑛

𝑗 ⊗ 1)2 + (𝑀𝑛
𝑗 ⊗ 1)2 ⊗ 2(𝑅𝑛

𝑗 ⊗ 1)(𝑧 ⊗ 1)
)︁
𝑑𝐴

=
1

2𝜖

(︁
(𝑅𝑛

𝑗 ⊗ 1)2 + (𝑀𝑛
𝑗 ⊗ 1)2

)︁ ∫︁∫︁

𝐷𝑛
𝑗

𝑑𝐴⊗ 1

𝜖
(𝑅𝑛

𝑗 ⊗ 1)
∫︁∫︁

𝐷𝑛
𝑗

(𝑧 ⊗ 1)𝑑𝐴.

(6.2.9)
Notice we have to perform a quadrature rule to compute the quantity,

∫︁∫︁

𝐷𝑛
𝑗

𝑧(𝑥, 𝑡)𝑑𝐴, (6.2.10)

whose integrand 𝑍𝑛
𝑗 is discontinuous in the end points [𝑥𝑛

𝑗⊗ 1

2

, 𝑥𝑛
𝑗+ 1

2

] of the over control volume

𝐷𝑛
𝑗 as well as 𝑍

𝑛+1
𝑗 is discontinuous in the cell [𝑥𝑛+1

𝑗⊗ 1

2

, 𝑥𝑛+1
𝑗+ 1

2

]. This quadrature requires additional

attention with respect to the relaxation scale factor 1
𝜖
. To encompass this difficulty into the

approximation of the source term, we make use of the semi-open Newton-Cotes Formulas to
account the integral (6.2.10). In this case, we use the Newton-Cotes formula along with four
discrete points 𝑎 = 𝑥𝑛

𝑗 = 𝑥0, 𝑥1, 𝑥2, 𝑥3 = 𝑏 = 𝑥𝑛
𝑗+ 1

2

away from the left side endpoint of

discontinuity. In a similar way, we use the discrete points 𝑎 = 𝑥𝑛
𝑗+ 1

2

= 𝑥0, 𝑥1, 𝑥2, 𝑥3 = 𝑏 = 𝑥𝑛
𝑗+1

and we might write, ∫︁ 𝑏

𝑎
𝑓(𝑥)𝑑𝑥 ≡ 3ℎ

4
(𝑦1 + 3𝑦3) (6.2.11)
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where ℎ = 𝑏⊗𝑎
3

. Notice that the endpoint 𝑥𝑗+ 1

2
is not included in the Newton-Cotes formula.

Thus, in order to perform the approximation of the source term we write (6.2.7) as,

∫︁∫︁

𝐷𝑛
𝑗

𝑧(𝑥, 𝑡)𝑑𝐴 =
∫︁ 𝑡𝑛+1

𝑡𝑛

∫︁ à𝑛
𝑗+1

(𝑡)

à𝑛
𝑗

(𝑡)
𝑧(𝑥, 𝑡)𝑑𝑥𝑑𝑡 ≡

∫︁ 𝑡𝑛+1

𝑡𝑛

∫︁ Ò𝑛
𝑗

(𝑡)

à𝑛
𝑗

(𝑡)
𝑧(𝑥, 𝑡)𝑑𝑥𝑑𝑡+

∫︁ 𝑡𝑛+1

𝑡𝑛

∫︁ à𝑛
𝑗+1

(𝑡)

Ò𝑛
𝑗

(𝑡)
𝑧(𝑥, 𝑡)𝑑𝑥𝑑𝑡,

(6.2.12)
where Ò𝑛

𝑗 is the characteristic curve in the control volume 𝐷𝑛
𝑗 . Notice that Ò𝑛

𝑗 (𝑥𝑛
𝑗+ 1

2

) is the

point of discontinuity, therefore we consider the approximate points (Ò𝑛
𝑗 )⊗ and (Ò𝑛

𝑗 )+. Thus, we
approximate Ò𝑛

𝑗 , to the left and to the right, by the straight lines (Ò𝑛
𝑗 )⊗ and (Ò𝑛

𝑗 )+ from such

Şinitial pointsŤ to the same endpoint 𝑥𝑛+1
𝑗+ 1

2

. Thus, we are able to compute the integral by,

∫︁∫︁

𝐷𝑛
𝑗

𝑧(𝑥, 𝑡)𝑑𝐴 ≡
∫︁ 𝑡𝑛+1

𝑡𝑛

∫︁ Ò𝑛
𝑗

(𝑡)−

à𝑛
𝑗

(𝑡)
𝑧(𝑥, 𝑡)𝑑𝑥𝑑𝑡+

∫︁ 𝑡𝑛+1

𝑡𝑛

∫︁ à𝑛
𝑗+1

(𝑡)

Ò𝑛
𝑗

(𝑡)+
𝑧(𝑥, 𝑡)𝑑𝑥𝑑𝑡. (6.2.13)

Then, let 𝐴𝑛
𝑗 (𝑡) = Ò𝑛

𝑗 (𝑡)⊗ ⊗à𝑛
𝑗 (𝑡), 𝐵𝑛

𝑗 (𝑡) = à𝑛
𝑗+1(𝑡)⊗Ò𝑛

𝑗 (𝑡)+ and using the Newton Cotes formula
(6.2.11) to approximate the 𝑥-integrals, we get:

∫︁∫︁

𝐷𝑛
𝑗

𝑧(𝑥, 𝑡)𝑑𝐴 ≡
∫︁ 𝑡𝑛+1

𝑡𝑛

3𝐴𝑛
𝑗 (𝑡)

4

(︁
𝑧(à𝑛

𝑗 (𝑡), 𝑡) + 3𝑧(Ò𝑛
𝑗 (𝑡)⊗, 𝑡)

)︁
𝑑𝑡

+
∫︁ 𝑡𝑛+1

𝑡𝑛

3𝐵𝑛
𝑗 (𝑡)

4

(︁
𝑧(à𝑛

𝑗+1(𝑡), 𝑡) + 3𝑧(Ò𝑛
𝑗 (𝑡)+, 𝑡)

)︁
𝑑𝑡

=

⋃︀
⋁︀⋁︀⋁︀⋁︀⋁︀⋁︀⋁︀⋁︀⋁︀⋁︀⨄︀

0.5Δ𝑡𝑛
3

4

∏︀
∐︁ 0.5ℎ𝑛+1

𝑗

(︁
𝑧(à𝑛

𝑗 (𝑡𝑛+1), 𝑡𝑛+1) + 3𝑧(Ò𝑛
𝑗 (𝑡𝑛+1)⊗, 𝑡𝑛+1)

)︁

+0.5ℎ
(︁
𝑧(à𝑛

𝑗 (𝑡𝑛, 𝑡𝑛)) + 3𝑧(Ò𝑛
𝑗 (𝑡𝑛)⊗, 𝑡𝑛)

)︁
⎞
⎠

0.5Δ𝑡𝑛
3

4

∏︀
∐︁ 0.5ℎ𝑛+1

𝑗

(︁
𝑧(à𝑛

𝑗+1(𝑡
𝑛+1), 𝑡𝑛+1) + 3𝑧(Ò𝑛

𝑗 (𝑡𝑛+1)+, 𝑡𝑛+1)
)︁

+0.5ℎ
(︁
𝑧(à𝑛

𝑗+1(𝑡
𝑛), 𝑡𝑛) + 3𝑧(Ò𝑛

𝑗 (𝑡𝑛)+, 𝑡𝑛)
)︁

⎞
⎠

⋂︀
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⋀︀

=

⋃︀
⋁︀⋁︀⋁︀⋁︀⋁︀⋁︀⨄︀

0.5Δ𝑡𝑛
3

4

(︁
0.5ℎ𝑛+1

𝑗

(︁
𝑍

𝑛+1
𝑗 + 3𝑍

𝑛+1
𝑗

)︁
+ 0.5ℎ

(︁
𝑍𝑛+1

𝑗 + 3𝑍𝑛+1
𝑗

)︁ )︁

0.5Δ𝑡𝑛
3

4

(︁
0.5ℎ𝑛+1

𝑗

(︁
𝑍

𝑛+1
𝑗 + 3𝑍

𝑛+1
𝑗

)︁
+ 0.5ℎ

(︁
𝑍𝑛

𝑗+1 + 3𝑍𝑛
𝑗+1

)︁ )︁

⋂︀
⎥⎥⎥⎥⎥⎥⋀︀
.

(6.2.14)
Thus, we might right,

∫︁∫︁

𝐷𝑛
𝑗

𝑧(𝑥, 𝑡)𝑑𝐴 ≡ 3Δ𝑡𝑛

2

[︁
ℎ𝑛+1

𝑗 𝑍
𝑛+1
𝑗 + 0.5ℎ(𝑍𝑛

𝑗 + 𝑍𝑛
𝑗+1)

]︁
, (6.2.15)
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and replacing this approximation into the integral (6.2.7) reads,

∫︁∫︁

𝐷𝑛
𝑗

𝐺(𝜌, �̃�, 𝑧)𝑑𝐴 ≡
∫︁∫︁

𝐷𝑛
𝑗

1

2𝜖

(︁
(𝑅𝑛

𝑗 ⊗ 1)2 + (𝑀𝑛
𝑗 ⊗ 1)2 ⊗ 2(𝑅𝑛

𝑗 ⊗ 1)(𝑧 ⊗ 1)
)︁
𝑑𝐴

=
1

2𝜖

(︁
(𝑅𝑛

𝑗 ⊗ 1)2 + (𝑀𝑛
𝑗 ⊗ 1)2

)︁
𝐴(𝐷𝑛

𝑗 )

⊗3

2

Δ𝑡𝑛

𝜖
(𝑅𝑛

𝑗 ⊗ 1)
(︁
ℎ𝑛+1

𝑗 𝑍
𝑛+1
𝑗 + 0.5ℎ(𝑍𝑛

𝑗 + 𝑍𝑛
𝑗+1)

)︁

+
1

𝜖
(𝑅𝑛

𝑗 ⊗ 1)𝐴(𝐷𝑛
𝑗 ).

(6.2.16)

Plugging approximation (6.2.16) into the system (6.2.8) to write quantity 𝑍
𝑛+1
𝑗 as a function

of 𝑍
𝑛+1

gives,

𝑍
𝑛+1

=
1

2ℎ𝑛+1
𝑗 (1 + 3∆𝑡𝑛

4𝜖
)(𝑅𝑗 ⊗ 1)

⋃︀
⋁︀⋁︀⋁︀⋁︀⋁︀⋁︀⋁︀⋁︀⋁︀⋁︀⨄︀

(︃
3ℎΔ𝑡𝑛(𝑅𝑛

𝑗 ⊗ 1)

4𝜖
+ ℎ

)︃(︁
𝑍𝑛

𝑗 + 𝑍𝑛
𝑗+1

)︁

+
1

2𝜖
((𝑅𝑛

𝑗 ⊗ 1)2 + (𝑀𝑗 ⊗ 1)2)𝐴(𝐷𝑛
𝑗 )

+1
𝜖
(𝑅𝑛

𝑗 ⊗ 1)𝐴(𝐷𝑛
𝑗 )

⋂︀
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⋀︀

(6.2.17)

We expect the Lagrangian-Eulerian scheme to be Ąrst order accurate based on the analysis to
the scalar case. Although the Ąrst order approximations are not so good in coarse grids (i.e., a
mesh grid with 256 cells) we point out numerical dissipation is reduced as the mesh grid is reĄned
leading to a qualitatively correct solution of the Broadwell model. For the approximations in
Ągure 6.3 we are using an explicit-unsplit algorithm for the numerical integration of hard balance
problems in the most simple setting of discretization, we have some hope to extend such scheme
in a cheap high order scheme with less numerical dissipation following some interest ideas as
such those described in [30, 45, 58, 67, 70, 71, 104, 130], but keeping the same Lagrangian-
Eulerian framework.

6.3 Numerical experiments for systems of nonlinear hy-

perbolic conservation laws

Notice, if we set the RHS of (6.1.1) equal to zero (𝐺(𝑄) ⊕ 0), we will get the prototype
hyperbolic conservation law in the form 𝑄𝑡 +[𝐹 (𝑄)]𝑥 = 0, keeping in mind that the meaning of
the variable must be understood in the new framework. From (6.1.7)-(6.1.8), or (6.1.9)-(6.1.11),
one easily sees that the Lagrangian-Eulerian scheme can be used for systems of conservation laws
in a straightforward manner as follows (for comparison purposes, see the numerical solutions
displayed in Figure 6.4 with respect to the classical initial value problem, whose full solution
is well known in the vast literature of the subject).

Model Problem 6.3.1. Sod, (JCP) [140].
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In this case, we solve the one-dimensional equations system of gas dynamics may be written
in the vector (conservation) form:

𝜕

𝜕𝑡

⋃︀
⋁︀⨄︀
𝜌
𝑚
𝐸

⋂︀
⎥⋀︀+

𝜕

𝜕𝑥

⋃︀
⋁︀⨄︀

𝑚
𝜌𝑢2 + 𝑝
𝑢(𝐸 + 𝑝)

⋂︀
⎥⋀︀ = 0, 𝑝 = (Ò ⊗ 1)

(︁
𝐸 ⊗ 𝜌

2
𝑢2
)︁
, (6.3.1)

where 𝜌, 𝑢, 𝑚 = 𝜌𝑢, 𝑝 and 𝐸 are, respectively, the density, the velocity, the momentum, the
pressure, and the total energy. Here, the conserved quantities are 𝑄 = (𝜌,𝑚,𝐸)𝑇 along with
the Ćux function 𝐹 (𝑄) = (𝑚, 𝜌𝑢2 +𝑝, 𝑢(𝐸+𝑝))𝑇 . We solve this system subject to the Riemann
initial data, 𝑄(𝑥, 0) = 𝑄𝐿, 𝑥 ⊘ 0.5 and 𝑄(𝑥, 0) = 𝑄𝑅, 𝑥 > 0.5. The Riemann problem was
proposed by Sod [140]. The initial data are given by 𝑄𝐿 = (1, 0, 2.5) and 𝑄𝐿 = (0.125, 0, 0.25).
To apply our Lagrangian-Eulerian scheme we consider the system (6.3.1) in the open form as:

𝜕𝜌

𝜕𝑡
+
𝜕𝑚

𝜕𝑥
= 0,

𝜕𝑚

𝜕𝑡
+
𝜕(𝜌𝑢2 + 𝑝)

𝜕𝑥
= 0,

𝜕𝐸

𝜕𝑡
+
𝜕(𝑢𝐸 + 𝑢𝑝)

𝜕𝑥
= 0, (6.3.2)

and still, the system above we can be written in the follow system balance laws,

𝜕𝜌

𝜕𝑡
+
𝜕𝑚

𝜕𝑥
= 0,

𝜕𝑚

𝜕𝑡
+
𝜕(𝜌𝑢2)

𝜕𝑥
= ⊗𝜕𝑝

𝜕𝑥
,

𝜕𝐸

𝜕𝑡
+
𝜕(𝑢𝐸)

𝜕𝑥
= ⊗𝜕(𝑢𝑝)

𝜕𝑥
, (6.3.3)

The assumtion of not Ćow through the integrals curves à𝑛
𝑠,𝑗(𝑡), 𝑠 = 𝜌,𝑚,𝐸, implies that,

∏︁
⋁︁⋁︁⨄︁
⋁︁⋁︁⋃︁

𝑑à𝑠,𝑗(𝑡)

𝑑𝑡
= 𝑢 𝑡𝑛 < 𝑡 < 𝑡𝑛+1,

à𝑠,𝑗(𝑡
𝑛) = 𝑥𝑛

𝑗

(6.3.4)

then, the approximation of the 𝑓𝑛
𝑠,𝑗 = 𝑈𝑛

𝑗 , where 𝑈𝑛
𝑗 is the velocity approximation. With this,

the one integral tube is determined by,

𝐷𝑛
𝑗 = ¶(𝑥, 𝑡) : 𝑡𝑛 ⊘ 𝑡 ⊘ 𝑡𝑛+1, à𝑛

𝑗 (𝑡) ⊘ 𝑥 ⊘ à𝑛
𝑗+1(𝑡)♢ (6.3.5)

where the solutions of the system of ordinary differential equation (6.3.4) are approximate by
à𝑛

𝑗 (𝑡) = (𝑡 ⊗ 𝑡𝑛)𝑓𝑛
𝑗 + 𝑥𝑛

𝑗 . Thus, thanks to the application on the divergence theorem over the
Ąnite volume 𝐷𝑛

𝑠,𝑗, give us the follow approximation at time 𝑡𝑛+1,

𝑅
𝑛+1
𝑗 =

1

2ℎ𝑛+1
𝑗

[︁
ℎ
(︁
𝑅𝑛

𝑗 +𝑅𝑛
𝑗+1

)︁]︁
,

𝑀
𝑛+1
𝑗 =

1

2ℎ𝑛+1
𝑗

[︃
ℎ
(︁
𝑀𝑛

𝑗 +𝑀𝑛
𝑗+1

)︁
+
∫︁∫︁

𝐷𝑛
𝑗

𝑝𝑥𝑑𝐴

⟨
,

𝐸
𝑛+1
𝑗 =

1

2ℎ𝑛+1
𝑗

[︃
ℎ
(︁
𝐸𝑛

𝑗 + 𝐸𝑛
𝑗+1

)︁
+
∫︁∫︁

𝐷𝑛
𝑗

(𝑢𝑝)𝑥𝑑𝐴

⟨
.

(6.3.6)

By applying the fundamental theorem of calculus on the source term into the balance law
and the midpoint rule reads,

∫︁∫︁

𝐷𝑛
𝑗

(𝐺(𝑥, 𝑡))𝑥𝑑𝐴 =
∫︁ 𝑡𝑛+1

𝑡𝑛

(︁
𝐺(à𝑛

𝑗+1(𝑡), 𝑡) ⊗𝐺(à𝑛
𝑗 (𝑡), 𝑡)

)︁
𝑑𝑡

≡ 𝑘𝑛
[︁
𝐺(à𝑛

𝑗+1(𝑡
𝑛+ 1

2 ), 𝑡𝑛+ 1

2 ) ⊗𝐺(à𝑛
𝑗 (𝑡𝑛+ 1

2 ), 𝑡𝑛+ 1

2 )
]︁
,

(6.3.7)
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Figure 6.4: Numerical approximations of the Sod problem (6.3.1) computed with the
Lagrangian-Eulerian scheme (6.1.9)-(6.1.11) (rewritten as (6.3.3))
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Figure 6.5: Numerical approximations of the Sod problem (6.3.1) computed with the
Lagrangian-Eulerian scheme (6.1.12)-(6.1.14) (rewritten as (6.3.3)).
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with 𝐺(𝑥, 𝑡) = 𝑝(𝑥, 𝑡) and 𝐺(𝑥, 𝑡) = 𝑢(𝑥, 𝑡)𝑝(𝑥, 𝑡) in each case. Next, the approximations in
(6.3.6) are then projected on the original grid as follows,

𝑆𝑛+1 =
1

ℎ

(︂(︂
1

2
ℎ+ 𝑓𝑛

𝑗

)︂
𝑆

𝑛+1
𝑗⊗1 +

(︂
1

2
ℎ⊗ 𝑓𝑛

𝑗

)︂
𝑆

𝑛+1
𝑗

)︂
(6.3.8)

for 𝑆 = 𝑅,𝑀,𝐸. The numerical approximations to the Sod problem [140] are shown in Figure
6.4 and in Figure 6.5 from left to right are shown the computed solutions for pressure, velocity
and density Ű with 512 cells (top) and with 1024 cells (bottom) Ű at the simulation time
𝑡 = 0.15. We point out that we were able to easily write the original Sod problem formed by
a one-dimensional 3 by 3 system of hyperbolic conservation laws (6.3.1) as system of balance
laws in order to use the Lagrangian-Eulerian framework (6.3.4)-(6.3.8), yielding an accurate
numerical solutions without any extra computational cost and with simplicity, which in turn
are in very good agreement with the correct qualitative behavior as in the original problem
proposed by Sod [140].
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Chapter 7

The extension of the
Lagragian-Eulerian scheme for
hyperbolic conservation laws in
two-space dimensions

We now turn our attention to introduce a new computational approach for the design of
a new class of approximate solutions for multidimensional hyperbolic conservation laws. As
natural, our Ąrst attempt will be a straightforward extension used in the one-dimensional case,
which was deĄned in Chapter 2, but now applied to three dimensional variables (𝑥, 𝑦 and 𝑡)
as 𝐷𝑛

𝑖,𝑗 ⊆ R
3, see Figure 7.1 (left), where 𝑖 and 𝑗 refer to (𝑥𝑖, 𝑦𝑗) and 𝑛 refers to time level 𝑡𝑛.

The boundary of control volume 𝐷𝑛
𝑖,𝑗 will be denoted by 𝜕𝐷𝑛

𝑖,𝑗 = 𝑅𝑛
𝑖,𝑗 ∪ 𝑆𝑛

𝑖,𝑗 ∪ 𝑅
𝑛+1
𝑖.𝑗 where the

control volume 𝑅𝑛
𝑖,𝑗 = [𝑥𝑛

𝑖⊗ 1

2

, 𝑥𝑛
𝑖+ 1

2

] × [𝑦𝑛
𝑗⊗ 1

2

, 𝑦𝑛
𝑖+ 1

2

] in R
2 is the ŞinĆowŤ of the integral tube, 𝑅

𝑛+1
𝑖.𝑗

in R
2 is the ŞoutĆowŤ of the integral tube, while 𝑆𝑛

𝑖,𝑗, in R
3, is the lateral (impervious) surface

of the tube.

Figure 7.1: Integral tube in 3D

As before, we consider the hyperbolic conservation law in two dimensional variables in
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divergence form,

𝜕𝑢

𝜕𝑡
+
𝜕𝑓(𝑢)

𝜕𝑥
+
𝜕𝑔(𝑢)

𝜕𝑦
= 0 ⇐⇒ ∇𝑡,𝑥,𝑦

⋃︀
⋁︀⨄︀

𝑢
𝑓(𝑢)
𝑔(𝑢)

⋂︀
⎥⋀︀ = 0. (7.0.1)

Again, the integration over the control volume and the application of the divergence theorem
gives,

∫︁∫︁∫︁

𝐷𝑛
𝑖,𝑗

∇𝑡,𝑥,𝑦

⋃︀
⋁︀⨄︀

𝑢
𝑓(𝑢)
𝑔(𝑢)

⋂︀
⎥⋀︀ 𝑑𝑉 = 0 ⇔

∫︁

𝜕𝐷𝑛
𝑗

⋃︀
⋁︀⨄︀

𝑢
𝑓(𝑢)
𝑔(𝑢)

⋂︀
⎥⋀︀ ≤ n⃗ 𝑑(𝜕𝐷𝑛

𝑖,𝑗) = 0. (7.0.2)

The normal vector with respect to 𝑅𝑛
𝑖,𝑗 is, in usual convention, [⊗1 0 0]𝑇 and the vector normal

in the outĆow 𝑅
𝑛+1

𝑖,𝑗 is [1 0 0]. Then, the right side of (7.0.2) can be written as,

∫︁

𝑅𝑛
𝑖,𝑗

⋃︀
⋁︀⨄︀

𝑢
𝑓(𝑢)
𝑔(𝑢)

⋂︀
⎥⋀︀ ≤ [⊗1 0 0]𝑇 𝑑𝐴+

∫︁

𝑆𝑛
𝑖,𝑗

⋃︀
⋁︀⨄︀

𝑢
𝑓(𝑢)
𝑔(𝑢)

⋂︀
⎥⋀︀ ≤ n⃗ 𝑑𝑆 +

∫︁

𝑅
𝑛+1

𝑖,𝑗

⋃︀
⋁︀⨄︀

𝑢
𝑓(𝑢)
𝑔(𝑢)

⋂︀
⎥⋀︀ ≤ [1 0 0]𝑇 𝑑𝐴 = 0. (7.0.3)

We suppose there is not any Ćow through the surface 𝑆𝑛
𝑖,𝑗 (𝑆𝑛

𝑖,𝑗 is impervious). So, the surface
integral of 𝑆𝑛

𝑖,𝑗 is zero and therefore,

⊗
∫︁

𝑅𝑛
𝑖,𝑗

𝑢(𝑥, 𝑦, 𝑡𝑛) 𝑑𝐴+
∫︁

𝑅
𝑛+1

𝑖,𝑗

𝑢(𝑥, 𝑦, 𝑡𝑛+1) 𝑑𝐴 = 0. (7.0.4)

or ∫︁

𝑅
𝑛+1

𝑖,𝑗

𝑢(𝑥, 𝑦, 𝑡𝑛+1) 𝑑𝐴 =
∫︁

𝑅𝑛
𝑖,𝑗

𝑢(𝑥, 𝑦, 𝑡𝑛) 𝑑𝐴, (7.0.5)

which we call conservation identity. The numerical approximations 𝑈𝑛
𝑖,𝑗 and 𝑈

𝑛+1
𝑖,𝑗 can be

deĄned from equation (7.0.5). The difficulty with this approach is to deĄne the normal vector
along with the unique deĄnition of tangent vector to the surface 𝑆𝑛

𝑖,𝑗 in the point (𝑥𝑖, 𝑦𝑗, 𝑡
𝑛) ,

see Figure 7.1 (right). Notice that in this point there is a tangent plane, then integral surfaces
as well as integral curves coming from [𝑢 𝑓(𝑢) 𝑔(𝑢)]𝑇 ≤ n⃗ = 0, as in the scalar case, are not easy
to deĄne (i.e., existence and uniqueness). In this work, we will use an alternative approach
based on the novel Lagrangian-Eulerian framework to overcome this difficult task in order to
solve numerically balance laws. This is achieved thanks to a convenient reformulation of the
original conservation law by means of an equivalent system of balance laws.

In order to establish such connection between multidimensional hyperbolic conservation laws
and system of balance laws, we will Ąrst introduce some notation to the subsequent application
of the Lagrangian-Eulerian framework. For concreteness, and without loss of generality, we
discuss a Lagrangian-Eulerian technique for approximation of the following two-dimensional
initial value problem for hyperbolic of conservation laws,

∏︁
⋁︁⨄︁
⋁︁⋃︁

𝜕𝑢

𝜕𝑡
+
𝜕𝑓(𝑢)

𝜕𝑥
+
𝜕𝑔(𝑢)

𝜕𝑦
= 0, (𝑥, 𝑦, 𝑡) ∈ Ω × (𝑡0, 𝑇 ],

𝑢(𝑥, 𝑦, 𝑡0) = Ö(𝑥, 𝑦), (𝑥, 𝑦) ∈ Ω,
(7.0.6)

where Ω is a interior square domain in R
2, whose boundary we denoted by 𝜕Ω and 𝑇 > 0. For

the Ąnite dimensional function spaces relying on solving the approximate problem associated to
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(7.0.6), by the Lagrangian-Eulerian method for (7.0.6), we will introduce the following standard
notation. The space region, (R × R) × R = ¶(𝑥, 𝑦, 𝑡) : ⊗∞ < 𝑥, 𝑦 < ∞, 𝑡 > 0♢ will replaced
by the lattice (Z × Z) × N = ¶(𝑖, 𝑗, 𝑛) : 𝑖, 𝑗 = 0,∘1,∘2, . . . ; 𝑛 = 0, 1, 2, ≤ ≤ ≤ ♢ and we consider
the sequence 𝑈𝑛 = (𝑈𝑛)𝑖,𝑗, 𝑖, 𝑗 ∈ Z for 𝑛 = 0, 1, 2, ... for a given grid Δ𝑥,Δ𝑦 > 0 and time level

𝑡𝑛 =
𝑛∑︁

𝑖=0

Δ𝑡𝑖, (7.0.7)

with 𝑡0 = 0, for non-constant time step Δ𝑡𝑖. In the time level 𝑡𝑛, we have (𝑥𝑛
𝑖 , 𝑦

𝑛
𝑗 ) = (𝑖ℎ, 𝑗ℎ),

(𝑥𝑛
𝑖+ 1

2

, 𝑥𝑛
𝑖+ 1

2

) = (𝑖Δ𝑥 + ∆𝑥
2
, 𝑗Δ𝑦 + ∆𝑦

2
) on the uniform local grid or original grid, here ℎ𝑛

𝑥,𝑖 =

Δ𝑥𝑛 = 𝑥𝑛
𝑖+ 1

2
,𝑗

⊗ 𝑥𝑛
𝑖⊗ 1

2
,𝑗

, 𝑖, 𝑗 ∈ Z, and ℎ𝑛
𝑦,𝑗 = Δ𝑦𝑛 = 𝑦𝑛

𝑖,𝑗+ 1

2

⊗ 𝑦𝑛
𝑖,𝑗⊗ 1

2

, 𝑖, 𝑗 ∈ Z, where (𝑥𝑛
𝑖∘ 1

2

, 𝑦𝑛
𝑖∘ 1

2

)

are the corner of the cell. For the non-uniform grid we have ℎ
𝑛+ 1

2

𝑥,𝑖 = Δ𝑥
𝑛+ 1

2 = 𝑥
𝑛+ 1

2

𝑖+ 1

2

⊗ 𝑥
𝑛+ 1

2

𝑖⊗ 1

2

in

the time level 𝑡𝑛+ 1

2 and ℎ
𝑛+ 1

2
+ 1

2

𝑦,𝑗 = Δ𝑦
𝑛+ 1

2
+ 1

2 = 𝑦
𝑛+ 1

2
+ 1

2

𝑗+ 1

2

⊗ 𝑦
𝑛+ 1

2
+ 1

2

𝑗⊗ 1

2

, in the time level 𝑡𝑛+1. Here,

the pair of points (𝑥𝑛
𝑖 , 𝑦

𝑛
𝑗 ) are the center of the cells 𝑖, 𝑗 ∈ Z, respectively. The approximate

solution of 𝑢 for (7.0.6), in each cell [𝑥𝑛
𝑖⊗ 1

2

, 𝑥𝑛
𝑖+ 1

2

] × [𝑦𝑛
𝑗⊗ 1

2

, 𝑦𝑛
𝑗+ 1

2

], is deĄned by, 𝑖, 𝑗 ∈ Z,

𝑈(𝑥𝑖, 𝑦𝑗, 𝑡
𝑛) = 𝑈𝑛

𝑖,𝑗 =
1

Δ𝑥Δ𝑦

∫︁ 𝑥𝑛

𝑖+ 1
2

𝑥𝑛

𝑖−
1
2

∫︁ 𝑦𝑛

𝑗+ 1
2

𝑦𝑛

𝑗−
1
2

𝑢(𝑥, 𝑦, 𝑡𝑛) 𝑑𝑥 𝑑𝑦, (7.0.8)

and

𝑈
𝑛+ 1

2

𝑖,𝑗 = 1

ℎ
𝑛+ 1

2
𝑥,𝑖

∆𝑦

∫︁ 𝑦𝑛

𝑗+ 1
2

𝑦𝑛

𝑗−
1
2

∫︁ 𝑥
𝑛+ 1

2

𝑖+ 1
2

𝑥
𝑛+ 1

2

𝑖−
1
2

𝑢(𝑥, 𝑦, 𝑡𝑛+ 1

2 )𝑑𝑥𝑑𝑦,

𝑈
𝑛+1
𝑖,𝑗 = 1

ℎ𝑛+1

𝑦,𝑗
∆𝑥

∫︁ 𝑥
𝑛+ 1

2

𝑖+ 1
2

𝑥
𝑛+ 1

2

𝑖−
1
2

∫︁ 𝑦𝑛+1

𝑗+ 1
2

𝑦𝑛+1

𝑗−
1
2

𝑢(𝑥, 𝑦, 𝑡𝑛+1) 𝑑𝑦 𝑑𝑥,

(7.0.9)

respectively, along with the initial condition 𝑈(𝑥0
𝑗 , 𝑦

0
𝑗 , 𝑡

0) = 𝑈0
𝑖,𝑗 in the cells [𝑥0

𝑖⊗ 1

2

, 𝑥0
𝑖+ 1

2

] ×
[𝑦0

𝑗⊗ 1

2

, 𝑦0
𝑗+ 1

2

], 𝑖, 𝑗 ∈ Z. Notice, in the equations (7.0.8) and (7.0.9), the quantity 𝑢(𝑥, 𝑦, 𝑡) is a

solution of (7.0.6). The discrete counterpart of the space 𝐿𝑝(R2) is 𝑙𝑝∆𝑥,∆𝑦, the space of sequences

𝑈 = (𝑈𝑖,𝑗), with 𝑖, 𝑗 ∈ Z, such that ‖𝑈‖𝑙𝑝
∆𝑥,∆𝑦

=
(︁
Δ𝑥Δ𝑦

∑︀
𝑖∈Z

∑︀
𝑗∈Z♣𝑈𝑖,𝑗♣𝑝

)︁ 1

𝑝 , 1 ⊘ 𝑝 < ∞ where

𝑈 is deĄned in the appropriate 𝑙𝑝 ⊗ 𝑠𝑝𝑎𝑐𝑒 (see, e.g., [110, 142]).
One monotone numerical scheme to (7.0.6) can be written, in sense of [42], as

𝑈𝑛+1
𝑖,𝑗 = 𝒢(𝑈𝑛

𝑖⊗𝑝,𝑗⊗𝑟, ..., 𝑈
𝑛
𝑖+𝑞+1,𝑗+𝑠+1)

= 𝑈𝑛
𝑖,𝑗 ⊗ Ú𝑥Δ𝑥

+𝐹1(𝑈
𝑛
𝑖⊗𝑝,𝑖⊗𝑟, ..., 𝑈

𝑛
𝑖+𝑞+1,𝑗+𝑠+1) ⊗ Ú𝑦Δ𝑦

+𝐹2(𝑈
𝑛
𝑖⊗𝑝,𝑗⊗𝑟, ..., 𝑈

𝑛
𝑖+𝑞+1,𝑗+𝑠+1)

(7.0.10)
In order that above equation be consistent with (7.0.6), it is must have

𝐹1(𝑢, 𝑢, ..., 𝑢) = 𝑓(𝑢) and 𝐹2(𝑢, 𝑢, ..., 𝑢) = 𝑔(𝑢), 𝑢 ∈ R, (7.0.11)

Here, the functions 𝐹1 and 𝐹2, are the numerical Ćuxes of the approximation. The difference
approximation is monotone on the interval [𝑎, 𝑏] if 𝒢 a nondecreasing function of each argument
𝑈𝑛

𝑖,𝑗 so long as all arguments lie in [𝑎, 𝑏]. Write 𝑢(𝑥, 𝑦, 𝑡) = (𝑆(𝑡)𝑢0)(𝑥, 𝑦), where 𝑆(𝑡) : 𝐿1(R2)∩
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𝐿∞(R2) ⊃ 𝐿1(R2) ∩ 𝐿∞(R2) for each 𝑡 ⊙ 0 and 𝑡 ⊃ 𝑆(𝑡)𝑢0 is continuous into 𝐿1(R2). To
compute this solution numerically we set

𝑢∆ 𝑡 =
∞∑︁

𝑛=0

∞∑︁

𝑘=⊗∞
𝑈𝑛

𝑗,𝑘 𝒳 𝑛
𝑗,𝑘 (7.0.12)

where 𝒳 𝑛
𝑗,𝑘 is the characteristic function in the respective cell.

7.1 The Lagrangian-Eulerian relation for hyperbolic con-

servation laws linked to balance laws

Although at very Ąrst glance our new Lagrangian-Eulerian computational strategy seems to
be somewhat a variation, or rather a simple modiĄcation, of the classical dimensional splitting
approach for multidimensional hyperbolic conservation laws [66, 77, 141] (see also [54, 111, 113,
158]), it is worth mentioning that this is not the case. In order to make such point very
clear, we will brieĆy explain the key idea of the classical dimensional splitting, pointing out error
mechanisms and computational aspects in such way to clarify this issue and mainly to avoid any
misunderstood with respect to our framework. Indeed, we precisely use the theory of balance
laws in order to keep the dimensional coupling of the original multidimensional conservation
law as well as design the construction of very good qualitative numerical approximations, which
in turn seems to preserve all good mathematical properties of the good (entropy) solutions in
all computed solutions, at least to the present moment in the current study, as we will discuss
in details in Section 7.2.

Classical dimensional splitting, or fractional steps, has been widely used to extend one-
dimensional numerical methods to multidimensional hyperbolic conservation law problems.
The method was Ąrst introduced by Godunov [66] in connection with gas dynamics and later
extended by Strang [141]. Indeed, GodunovŠs original scheme [66] is the forerunner of all upwind
schemes. Its higher-order and multidimensional generalizations were constructed, analyzed,
and implemented with great success during the 1970s and 1980s, see [32, 54, 66, 77, 109, 111,
113, 141, 150, 148, 158] and the references therein. In the context of the one-dimensional
numerical methods, such schemes evaluate their cell-averages over the same spatial cells at all
time steps. This in turn requires characteristic information along the discontinuous interfaces
of these spatial cells. On this approach, it is necessary to trace the characteristic fans, using
approximate Riemann solvers based on the dimensional splitting framework. The idea is quite
simple.

Consider the two-dimensional nonlinear hyperbolic conservation law with initial data,

∏︁
⋁︁⨄︁
⋁︁⋃︁

𝜕𝑈

𝜕𝑡
+
𝜕𝑓(𝑈)

𝜕𝑥
+
𝜕𝑔(𝑈)

𝜕𝑦
= 0,

𝑈(𝑥, 𝑦, 𝑡𝑛) = 𝑈𝑛.
(7.1.1)

The initial data at a time 𝑡𝑛 is given by the set 𝑈𝑛 of discrete cell average values 𝑈𝑛
𝑖,𝑗, where

𝑖 denotes the 𝑥-direction and 𝑗 denotes the 𝑦-direction. for (𝑥, 𝑡) ∈ Ω × (𝑡0, 𝑡𝑛], such that
Δ𝑡 = 𝑡𝑛 ⊗ 𝑡𝑛⊗1, with 𝑡𝑛 = 𝑛Δ𝑡. Let ä𝑥(𝑡) and ä𝑦(𝑡) denote approximate solutions operators
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respectively of the initial value problems

𝜕𝑈

𝜕𝑡
+
𝜕𝑓(𝑈)

𝜕𝑥
= 0, 𝑈(𝑥, 𝑦, 𝑡𝑛) = 𝑈𝑛,

𝜕𝑈

𝜕𝑡
+
𝜕𝑔(𝑈)

𝜕𝑦
= 0, 𝑈(𝑥, 𝑦, 𝑡𝑛+1) = 𝑈𝑛+ 1

2 ,

(7.1.2)

Then, for the Ąrst-order Godunov splitting method [66] the approximation is deĄned as,

𝑈𝑛+1 = ä𝑦(Δ𝑡)𝑈𝑛+ 1

2 = ä𝑦(Δ𝑡)ä𝑥(Δ𝑡)𝑈𝑛, (7.1.3)

while for StrangŠs second-order splitting method [141] the approximation is deĄned as,

𝑈𝑛+2 = ä𝑦(Δ𝑡/2)ä𝑥(Δ𝑡)ä𝑦(Δ𝑡/2)𝑈𝑛, (7.1.4)

the operators ä𝑥(𝑡) and ä𝑦(𝑡) are second order accuracy.
The two operator splittings (7.1.3) and (7.1.4) are examples of so-called multiplicative oper-

ator splittings. From the historical development point of view (just to mention and honor some
pioneers of the subject), with no ambition of providing a complete survey, the idea of splitting
formula of complicated operators into simpler operators that are treated separately, is both easy
and fundamental, and as such has appeared under various names in different contexts. One of
the Ąrst rigorous results is associated with the name of Trotter [149]. The fundamental question
he asked was: Given two continuous semi-groups with corresponding generators, how can one
deĄne the semi-group corresponding to the sum of the two generators? The result, in the case
of Ąnite-dimensional matrices, goes back to Sophus Lie (1875) and important extensions were
provided by Kato [95]. This result is often denoted as the Lie-Trotter-Kato formula or simply
the Trotter formula. Applications by Trotter and Kato were to quantum mechanics. Several
reĄnements of this method exist, for instance the Baker-Campbell-Hausdorff formula expresses
the operator 𝒜 with the property that 𝑒⊗𝑡𝐴1𝑒⊗𝑡𝐴2 = 𝑒⊗𝑡𝒜

In a more concrete setting (e.g., applied to petroleum reservoir simulation) Ű and prior to
Trotter and Kato Ű Douglas, Peaceman, and Rachford [48, 132] introduced a method called
the alternating direction implicit (ADI) scheme, where multi-dimensional problems were suc-
cessfully reduced to repeated one-dimensional problems. The ADI method was soon applied to
petroleum reservoir simulation. During the period the ADI was being developed in the USA, a
number of Soviet scientists were developing splitting methods (also known as fractional step or
locally one-dimensional (LOD) methods) for solving time-dependent partial differential equa-
tions in two and three dimensions. Key advances were made by Yanenko, Samarskii, Marchuk
and DŠyakonov (see, e.g., english sources [59, 122, 136, 158]) to study a large variety of problems
in mathematical and several applications.

Operator splitting techniques may not always be the right answer. The extent to
which operator splitting will give an effective overall method depends on the coupling of
different elementary operators and the dynamics of the evolution problem. It needs
detailed knowledge of the behavior of the solutions to make a rather powerful method. Most
of the reĄnements depend on further knowledge of properties of the underlying sub-problems.

Of course, for the equations (7.1.1), along with (7.1.2), the composition of the operators
ä𝑥(𝑡) and ä𝑦(𝑡) can commute. For non-commuting operators an alternative splitting formula
is obtained by reversing the order of the operators, but this will in general give a different
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approximation. We remark that Crandall and Majda [41] proved that splitting methods (7.1.3)
produce an approximation that converges to the unique entropy solution as temporal and spatial
discretization tend to zero, when using monotone schemes [109]. Particulary the theorem in
[42]:

Theorem 7.1.1. Suppose 𝑢0 ∈ 𝐿1(R2) ∩ 𝐿∞(R2) and 𝑎 < 𝑢0 < 𝑏 a.e. Let (7.0.10) be a
consistent conservation-form difference approximation to (7.1.1) which is monotone on [𝑎, 𝑏]
and which has Lipschitz continuous numerical Ćuxes 𝑔𝑖, 𝑖 = 1, 2. Let 𝑈𝑛

𝑖,𝑗 be given by (7.0.8),
(7.0.12). Then as Δ 𝑡 ⊃ 0 with Δ 𝑡/Δ𝑥 and Δ 𝑡/Δ 𝑦 Ąxed, 𝑈𝑛

𝑖,𝑗 converges to 𝑆(𝑡)𝑢0 in 𝐿1(R2)
uniformly for bounded 𝑡 ⊙ 0. More precisely,

lim
∆ 𝑡⊃0

sup
0⊘𝑡⊘𝑇

∫︁∫︁

R2

⧹︃⧹︃⧹︃𝑢∆ 𝑡(𝑥, 𝑦, 𝑡) ⊗ 𝑆(𝑡)𝑢0(𝑥, 𝑦)
⧹︃⧹︃⧹︃ 𝑑𝑥 𝑑𝑦 = 0 (7.1.5)

for each 𝑇 > 0.

Thus, our Lagrangian-Eulerian scheme solves hyperbolic problems like a monotone scheme
and converges to entropy solutions when a Godunov type splitting is used.

On the other hand, Teng [146] proved that in the general case (where the solution may
contain discontinuities, i.e., shocks) the 𝐿1 error bound of the splitting method (7.1.3) is of
Ąrst-order 𝒪(Δ𝑡)1/2 (of course, this heavily depends on the underlying funcional space). Fur-
thermore, a similar error bound for the method (7.1.4) was derived in [114], when the one-
dimensional solution operators are approximated by front-tracking; it was shown by means
of a set of numerical examples that the accuracy is close to 𝒪(Δ𝑡). This unconditionally
stable method was proposed by Holden and Risebro [79]; see also [77] for more recent de-
velopments. In our opinion, signiĄcant and relevant publications for this issue can be found
in [150], which also describes a somewhat hybrid method between a front capturing method
[39, 66, 91, 98, 109, 120, 129] and a front tracking method [63, 64, 150] as well as such articles,
in turn, point out to a recent and good survey on the development of such techniques.

In the ŞclassicalŤ dimensional splitting approach, we point out that for each one of both
splitting methods (7.1.4) and (7.1.3) Ű for each time step strategy Ű the numerical solution
computed by means of the composition of the pertinent operator acts purely by one Ąxed
dimension, namely in 𝑥-direction. Once we have that all information, the 𝑦-direction is then
Ąxed and vice-versa with respect to the other case, when we have Ąxed the 𝑥-direction. In
other works, for the computation of the operator ä𝑥(𝑡), no explicit contribution of the operator
ä𝑦(𝑡) is accounted for. This means that for a selected time step for the approximate (or exact
when possible) computation of the purely operator ä𝑥(𝑡) (typically under a CFL condition),
no characteristic information emanating from local interaction of the purely ä𝑦(𝑡) operator is
included in the solution.

Two sources of errors contribute to the total error in dimensional splitting; for more details
we refer to the readers the references [32, 54, 66, 77, 109, 111, 113, 141, 148, 150, 158]. First,
the temporal splitting errors arise since we split the multi-dimensional equation into a sequence
of one-dimensional problems. Loosely speaking, we can say that the temporal error determines
how well we are able to resolve the dynamics of the problem. Obviously, the temporal error
decreases with decreasing splitting steps Δ𝑡 (see, e.g, [77, 79, 114]). This is why it is expected
to have a better results from the StrangŠs splitting (7.1.3) (see [141]). Second, the other source
of error comes from the discretization of each individual subequation (this is the issue we are
pursuing by our new approach). For simplicity of notation, we will henceforth refer to this error



118

as the spatial error following the usual terminology used in the specialized literature. This comes
from the observation that if the discretization method is sufficiently sophisticated to resolve
the dynamics of the one-dimensional subequation, the associated discretization error will be
reĆected in the spatial resolution of the waves (local interation) present in the approximate
solution.

The basic idea of our new strategy is: for each time step we want to account into the
spatial error related to each operator, for instance, 𝒮𝑥 Ű in the 𝑥-direction Ű, an appropriate
contribution that comes from the other operator 𝒮𝑦 Ű namely in the 𝑦-direction, and vice-
versa. We expect from this strategy to balance the local error mechanisms in order to reduce
Ű or eliminate Ű the error that comes from the loss of local information induced by classical
dimensional splitting.

It is well known that for the splitting method Ű in spirit of the approaches in (7.1.4) and
(7.1.3) Ű using front tracking, the main spatial error contribution comes from the projection
onto the regular grid after the evolution by a number of time steps. This error increases with
decreasing Δ𝑡, since the number of times the projection is applied is inversely proportional to
Δ𝑡. The accuracy of the one-dimensional front-tracking algorithm, on the other hand, grows
linearly with Δ𝑡 Ó [77, 79, 91, 90, 92, 114]. Altogether this means that there are two error
mechanisms that work in opposite directions: the temporal error decreases with decreasing
Δ𝑡 and the spatial error increases with decreasing Δ𝑡. To minimize the overall error we must
therefore Ąnd the minimum where the temporal error balances the splitting error. Our aim
is just to reduce the error that comes from the spatial error (discretization of the operator)
since the time step is typically well controlled by a CFL-condition and by the underlying
physics in order to not overestimate the shock layer. For instance, the width of the shock layer
for a parabolic equation in the spirit of convection-diffusion transport problems of the form,
𝑢 = 𝑢(𝑥, 𝑡), 𝑢𝑡 + 𝑓𝑥(𝑢) = (𝜖 𝑢𝑥)𝑥, 𝜖 > 0, is 𝑂(𝜖) (see [90, 92]). Using a splitting fractional time
step Δ𝑡 for such equations, the width of the numerical shock layer will be 𝑂(

√
Δ𝑡 𝜖) because the

nonlinear self-sharpening mechanisms of the fractional Ćow function 𝑓(𝑢) is thrown away by the
unphysical entropy loss due to OleinikŠs convexiĄcation [127, 128] introduced in the convective
step by the hyperbolic scheme for 𝑢𝑡 +𝑓𝑥(𝑢) = 0. Thus, to not overestimate the shock layer (the
nonlinear balance between purely hyperbolic/parabolic terms), the splitting step should not be
(signiĄcantly) larger than 𝜖 [90, 92]. Moreover, when dealing with approximations for balance
laws (as we will discuss next) we will consider only unsplitting schemes in such way to properly
balance the Ćuxes and the source at the discrete level. This means that the key issue is the
Şwell-balancingŤ discretization in order to achieve the proper nonlinear balance between Ćuxes
and source term linked to the original differential system as discussed in details in Section 1.1.

The main idea behind our approach is quite simple. First, consider the two-dimensional
nonlinear hyperbolic conservation law with initial data (7.1.1). Consider now the cell-centered
Ąnite-volume cells,

𝐷𝑛
𝑖,𝑗 =¶(𝑡, 𝑥, 𝑦)/𝑡𝑛 ⊘ 𝑡 ⊘ 𝑡𝑛+ 1

2 , 𝑦𝑛
𝑗⊗ 1

2

⊘𝑦⊘ 𝑦𝑛
𝑗+ 1

2

, à𝑛
𝑖 (𝑡) ⊘𝑥⊘ à𝑛

𝑖+1(𝑡)♢,
𝐷

𝑛+ 1

2

𝑖,𝑗 =¶(𝑡, 𝑥, 𝑦)/𝑡𝑛+ 1

2 ⊘ 𝑡 ⊘ 𝑡𝑛+1, 𝑥
𝑛+ 1

2

𝑖⊗ 1

2

⊘𝑥⊘ 𝑥
𝑛+ 1

2

𝑖+ 1

2

, Ò
𝑛+ 1

2

𝑗 (𝑡) ⊘𝑥⊘ Ò
𝑛+ 1

2

𝑗+1 (𝑡)♢,

where à𝑛
𝑖 (𝑡) and Ò𝑛

𝑗 (𝑡) are parametrized curves such that à𝑛
𝑖 (𝑡𝑛) = 𝑥𝑛

𝑖 and Ò
𝑛+ 1

2

𝑗 (𝑡𝑛+ 1

2 ) = 𝑦
𝑛+ 1

2

𝑗 .
Our approach is based in writing (7.1.1) in the form of a coupled set of two balance laws

along with initial and with numerical approximations
(︁

𝜕𝑔(𝑈)
𝜕𝑦

)︁
𝑗

and
(︁

𝜕𝑓(𝑈)
𝜕𝑥

)︁
𝑖

of the derivatives
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𝜕𝑓(𝑈)
𝜕𝑥

and 𝜕𝑔(𝑈)
𝜕𝑦

respectively,

∏︁
⋁︁⋁︁⨄︁
⋁︁⋁︁⋃︁

𝜕𝑈

𝜕𝑡
+
𝜕𝑓(𝑈)

𝜕𝑥
= ⊗

(︃
𝜕𝑔(𝑈)

𝜕𝑦

)︃

𝑗

, in 𝐷𝑛
𝑖,𝑗 ,

𝑈(𝑥, 𝑦, 𝑡𝑛) = 𝑈𝑛,

(7.1.6a)

∏︁
⋁︁⋁︁⨄︁
⋁︁⋁︁⋃︁

𝜕𝑈

𝜕𝑡
+
𝜕𝑔(𝑈)

𝜕𝑦
= ⊗

(︃
𝜕𝑓(𝑈)

𝜕𝑥

)︃

𝑖

, in 𝐷
𝑛+ 1

2

𝑖,𝑗 ,

𝑈(𝑥, 𝑦, 𝑡𝑛+ 1

2 ) = 𝑈𝑛+ 1

2 .

(7.1.6b)

Denote 𝑆𝑥(𝑡) and 𝑆𝑦(𝑡) as approximate solution operators for (7.1.6a) and (7.1.6b), respectively.
Indeed, such approximate solution operators can be given by scheme (5.2.1) or (5.2.2) in both

directions 𝑥 or 𝑦. Thus, 𝑈
𝑛+ 1

2

𝑖,𝑗 = 𝑆𝑥(Δ𝑡/2)𝑈𝑛
𝑖,𝑗 and 𝑈𝑛+1

𝑖,𝑗 = 𝑆𝑦(Δ𝑡/2)𝑈
𝑛+ 1

2

𝑖,𝑗 , so that the full
scheme is given by,

𝑈𝑛+1
𝑖,𝑗 = 𝑆𝑦(Δ𝑡/2)𝑆𝑥(Δ𝑡/2)𝑈𝑛

𝑖,𝑗, (7.1.7)

along with the CFL condition,
𝑀𝑘/ℎ ⊘

√
2/2, (7.1.8)

with 𝑀 = max¶max𝑗¶𝑓 ′(𝑈𝑛
𝑖,𝑗)♢,max𝑗¶

𝑓(𝑈𝑛
𝑖,𝑗

)

𝑈𝑛
𝑖,𝑗

♢,max𝑗¶𝑔′(𝑈𝑛
𝑖,𝑗)♢,max𝑗¶

𝑔(𝑈𝑛
𝑖,𝑗

)

𝑈𝑛
𝑖,𝑗

♢♢. The equations

appearing in (7.1.6a) and (7.1.6b) can be viewed as a set of local balance laws in the time step
(𝑡𝑛, 𝑡𝑛+1], but coupled via the source terms on the RHS of (7.1.6) and thus linked to the full
problem (7.1.1). Then the procedure to solve (7.1.1) is quite simple as follows: in the time

step from 𝑡𝑛 to 𝑡𝑛+ 1

2 the information of the previous time, say in the 𝑦 coordinate, is accounted
through the source term for the balance law in the 𝑥 coordinate. Similarly, in time step from
𝑡𝑛+ 1

2 to 𝑡𝑛+1, the information in the 𝑥 coordinate is also accounted through of the source term
for the balance law in the 𝑦 coordinate.

Notice now that the one-dimensional system of balance laws operator, say 𝑆𝑥(𝑡), account
simultaneously for contributions in both directions, namely, in the 𝑥⊗direction by the dis-
cretization of the Ćux function 𝑓(𝑣) in the purely hyperbolic operator 𝜕𝑓(𝑣)

𝜕𝑥
as well as in the

𝑦⊗direction by the discretization of the Ćux function 𝑔(𝑤) that appears in the source term

⊗𝜕𝑔(𝑤)
𝜕𝑦

, and vice-versa with respect to the operator 𝑆𝑦(𝑡). Thus, the preceding discussion
makes more clear why it was necessary to revisit the computational mathematics and theoret-
ical mathematics of balance laws in a minimum extent, but with a solid oriented view to our
new approach in order to establish a tightly-linked connection between multidimensional hy-
perbolic conservation laws and system of balance laws. Indeed, such discussion also support the
need to revisit the Lagrangian-Eulerian framework in its original setting for linear hyperbolic
conservation laws and its extension for scalar and system problems balance laws in one-space
dimension, as discuss in details in Section 2 as well as in Section 5.

Of course, for the equations (7.1.1), along with (7.1.6), the composition of the operators 𝑆𝑦(𝑡)
and 𝑆𝑥(𝑡) can commute. We performed preliminary and non exhaustive numerical experiments
(Section 7.2) along with the composition approach in the Lagrangian-Eulerian framework with
very good agreement with the well known solutions of the underlying test problems available
in the vast literature to corroborate our Ąndings.

Let us now turn our attention to the approximation of the two-dimensional hyperbolic
solution operators (7.1.7) written in the form of one-dimensional balance law operators 𝑆𝑥(𝑡)
and 𝑆𝑦(𝑡). Of course, such operators can either be constructed directly (i.e., exactly when
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possible; see, e.g, [77]), or by using dimensional splitting [66, 141] or some kind of physics-based
operator splitting [3, 4]. As announced, we will pursue the construction of unsplitting methods
for the approximation of the equations (7.1.6) in order to preserve the delicate nonlinear balance
between the nonlinear Ćux gradients, and the form of the source terms of the two-dimensional
hyperbolic solution operators linked to the one-dimensional balance law operators 𝑆𝑥(𝑡) and
𝑆𝑦(𝑡) as in (7.1.7).

7.1.1 The locally conservative Lagrangian-Eulerian relation for scalar
multidimensional hyperbolic conservation laws linked to one-
dimensional system of balance laws

We Ąrst consider cell-centered Ąnite-volume cell centers in the Lagrangian-framework as
follows:

𝐷𝑛
𝑖,𝑗 = ¶(𝑡, 𝑥, 𝑦) / 𝑡𝑛 ⊘ 𝑡 ⊘ 𝑡𝑛+ 1

2 , 𝑦𝑛
𝑗⊗ 1

2

⊘ 𝑦 ⊘ 𝑦𝑛
𝑗+ 1

2

, à𝑛
𝑖 (𝑡) ⊘ 𝑥 ⊘ à𝑛

𝑖+1(𝑡)♢, (7.1.9)

and

𝐷
𝑛+ 1

2

𝑖,𝑗 = ¶(𝑡, 𝑥, 𝑦) / 𝑡𝑛+ 1

2 ⊘ 𝑡 ⊘ 𝑡𝑛+1, 𝑥
𝑛+ 1

2

𝑖⊗ 1

2

⊘ 𝑥 ⊘ 𝑥
𝑛+ 1

2

𝑖+ 1

2

, Ò
𝑛+ 1

2

𝑗 (𝑡) ⊘ 𝑦 ⊘ Ò
𝑛+ 1

2

𝑗+1 (𝑡)♢, (7.1.10)

where à𝑛
𝑖 (𝑡) and Ò𝑛

𝑗 (𝑡) is a parametrized curve such that à𝑛
𝑖 (𝑡𝑛) = 𝑥𝑛

𝑖 and Ò
𝑛+ 1

2

𝑗 (𝑡𝑛+ 1

2 ) = 𝑦
𝑛+ 1

2

𝑗 ;

i.e., deĄne the space-time local control volumes 𝐷𝑛
𝑖,𝑗 and 𝐷

𝑛+ 1

2

𝑖,𝑗 . As previously announced,
we now consider the reformulation of (7.1.1) in the space-time local control volumes 𝐷𝑛

𝑖,𝑗 and

𝐷
𝑛+ 1

2

𝑖,𝑗 as two coupled systems of balance law equations which are to be solved simultaneously
along with our locally conservative (by construction) Lagrangian-Eulerian framework as follows.
Thus, write (7.1.1) as,

∏︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⨄︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋃︁

𝜕𝑢

𝜕𝑡
+
𝜕𝑓(𝑢)

𝜕𝑥
= ⊗

(︃
𝜕𝑔(𝑢)

𝜕𝑦

)︃

𝑗

, (𝑥, 𝑦, 𝑡) ∈ 𝐷𝑛
𝑖,𝑗,

𝜕𝑢

𝜕𝑡
+
𝜕𝑔(𝑢)

𝜕𝑦
= ⊗

(︃
𝜕𝑓(𝑢)

𝜕𝑥

)︃

𝑖

, (𝑥, 𝑦, 𝑡) ∈ 𝐷
𝑛+ 1

2

𝑖,𝑗 ,

(7.1.11)

and perform the pertinent Lagrangian-Eulerian integration over the Ąnite volumes 𝐷𝑛
𝑖,𝑗 and

𝐷
𝑛+ 1

2

𝑖,𝑗 for the coupled system of balance laws (7.1.11) to get:

∏︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⨄︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋃︁

∫︁∫︁∫︁

𝐷𝑛
𝑖,𝑗

(︃
𝜕𝑢

𝜕𝑡
+
𝜕𝑓(𝑢)

𝜕𝑥

)︃
𝑑𝑉 = ⊗

∫︁∫︁∫︁

𝐷𝑛
𝑖,𝑗

(︃
𝜕𝑔(𝑢)

𝜕𝑦

)︃

𝑗

𝑑𝑉,

∫︁∫︁∫︁

𝐷
𝑛+ 1

2
𝑖,𝑗

(︃
𝜕𝑢

𝜕𝑡
+
𝜕𝑔(𝑢)

𝜕𝑦

)︃
𝑑𝑉 = ⊗

∫︁∫︁∫︁

𝐷
𝑛+ 1

2
𝑖,𝑗

(︃
𝜕𝑓(𝑢)

𝜕𝑥

)︃

𝑖

𝑑𝑉.

(7.1.12)
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If we write the purely convection counterpart in the conservative divergence form (as introduced
[57] for convection-diffusion problems) then,
∏︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⨄︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋃︁

∫︁ 𝑦𝑛

𝑗+ 1
2

𝑦𝑛

𝑗−
1
2

∫︁ 𝑡𝑛+ 1

2

𝑡𝑛

∫︁ à𝑛
𝑖+1

(𝑡)

à𝑛
𝑖

(𝑡)
∇𝑡,𝑥 ≤

∏︀
∐︁ 𝑢

𝑓(𝑢)

⎞
⎠ 𝑑𝑥𝑑𝑡𝑑𝑦 = ⊗

∫︁ 𝑦𝑛

𝑗+ 1
2

𝑦𝑛

𝑗−
1
2

∫︁ 𝑡𝑛+ 1

2

𝑡𝑛

∫︁ à𝑛
𝑖+1

(𝑡)

à𝑛
𝑖

(𝑡)

(︃
𝜕𝑔(𝑢)

𝜕𝑦

)︃

𝑗

𝑑𝑥𝑑𝑡𝑑𝑦,

∫︁ 𝑥
𝑛+ 1

2

𝑖+ 1
2

𝑥
𝑛+ 1

2

𝑖−
1
2

∫︁ 𝑡𝑛+1

𝑡𝑛+ 1
2

∫︁ Ò
𝑛+ 1

2
𝑖+1

(𝑡)

Ò
𝑛+ 1

2
𝑗

(𝑡)
∇𝑡,𝑦 ≤

∏︀
∐︁ 𝑢

𝑔(𝑢)

⎞
⎠ 𝑑𝑦𝑑𝑡𝑑𝑥 = ⊗

∫︁ 𝑥
𝑛+ 1

2

𝑖+ 1
2

𝑥
𝑛+ 1

2

𝑖−
1
2

∫︁ 𝑡𝑛+1

𝑡𝑛+ 1
2

∫︁ Ò
𝑛+ 1

2
𝑗+1

(𝑡)

Ò
𝑛+ 1

2
𝑗

(𝑡)

(︃
𝜕𝑓(𝑢)

𝜕𝑥

)︃

𝑖

𝑑𝑦𝑑𝑡𝑑𝑥.

(7.1.13)
Now, the application of the divergence theorem in the left-hand side of the coupled system of
balance laws (7.1.13) reads,
∏︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⨄︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋃︁

∫︁ 𝑦𝑛

𝑗+ 1
2

𝑦𝑛

𝑗−
1
2

⌊︁

𝐷𝑛
𝑖

⊗⊃𝑛 𝑥 ≤
∏︀
∐︁ 𝑢

𝑓(𝑢)

⎞
⎠ 𝑑(𝜕𝐷𝑛

𝑖 )𝑑𝑦 = ⊗
∫︁ 𝑦𝑛

𝑗+ 1
2

𝑦𝑛

𝑗−
1
2

∫︁ 𝑡𝑛+ 1

2

𝑡𝑛

∫︁ à𝑛
𝑖+1

(𝑡)

à𝑛
𝑖

(𝑡)

(︃
𝜕𝑔(𝑢)

𝜕𝑦

)︃

𝑗

𝑑𝑥𝑑𝑡𝑑𝑦,

∫︁ 𝑥
𝑛+ 1

2

𝑖+ 1
2

𝑥
𝑛+ 1

2

𝑖−
1
2

⌊︁

𝐷𝑛
𝑗

⊗⊃𝑛 𝑦 ≤
∏︀
∐︁ 𝑢

𝑔(𝑢)

⎞
⎠ 𝑑(𝜕𝐷𝑛

𝑗 )𝑑𝑥 = ⊗
∫︁ 𝑥

𝑛+ 1
2

𝑖+ 1
2

𝑥
𝑛+ 1

2

𝑖−
1
2

∫︁ 𝑡𝑛+1

𝑡𝑛+ 1
2

∫︁ Ò
𝑛+ 1

2
𝑗+1

(𝑡)

Ò
𝑛+ 1

2
𝑗

(𝑡)

(︃
𝜕𝑓(𝑢)

𝜕𝑥

)︃

𝑖

𝑑𝑦𝑑𝑡𝑑𝑥.

(7.1.14)

Subjected to all considered preliminary intrinsic assumptions up to this moment, the fact
(7.1.13) ⇔ (7.1.14), implies that the surface area of the parametric surface ¶(𝑥, 𝑦, 𝑡) : 𝑥 =
à𝑛

𝑖 (𝑡), 𝑦𝑗⊗ 1

2
⊘ 𝑦 ⊘ 𝑦𝑗⊗ 1

2
♢, 𝑖 ∈ Z is naturally zero total Ćux normal to an impervious boundary

of the Ąnite volumes 𝐷𝑛
𝑖 and 𝐷𝑛

𝑗 as respectively depicted in equation (7.1.14). As discussed
before in Chapters 2 and Chapter 5, the quantity à𝑛

𝑖 (𝑡) is a solution of the associated system
of ordinary differential equations related to the Lagrangian-Eulerian formulation of equations
(7.1.14), as follows,

𝑑à𝑛
𝑖 (𝑡)

𝑑𝑥
=
𝑓(𝑢)

𝑢
, à𝑛

𝑖 (𝑡𝑛) = 𝑥𝑛
𝑖 , 𝑡𝑛 ⊘ 𝑡 ⊘ 𝑡𝑛+ 1

2 . (7.1.15)

The same mathematical reasoning/argument can be used in 𝑡𝑛+ 1

2 ⊘ 𝑡 ⊘ 𝑡𝑛+1 to justify that
the surface area of the parametric surface ¶(𝑥, 𝑦, 𝑡) : 𝑥 = Ò𝑛

𝑗 (𝑡), 𝑥𝑖⊗ 1

2
⊘ 𝑦 ⊘ 𝑥𝑖⊗ 1

2
♢, 𝑗 ∈ Z

is naturally zero total Ćux normal to an impervious boundary of the pertinent Ąnite volumes
associated to 𝐷𝑛

𝑖 and 𝐷𝑛
𝑗 along with Ò𝑛

𝑗 (𝑡), with in turn are solutions of the associated system
of ordinary differential equations given by,

𝑑Ò𝑛
𝑗 (𝑡)

𝑑𝑥
=
𝑔(𝑢)

𝑢
, Ò𝑛

𝑗 (𝑡𝑛) = 𝑦𝑛
𝑗 , 𝑡𝑛+ 1

2 ⊘ 𝑡 ⊘ 𝑡𝑛+1. (7.1.16)

The equations (7.1.14) implies that,
∏︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⨄︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋃︁

∫︁ 𝑦n

j+ 1
2

𝑦n

j−
1
2

⋃︀
⨄︀
∫︁ 𝑥

n+ 1
2

i+ 1
2

𝑥
n+ 1

2

i−
1
2

𝑢(𝑥, 𝑦, 𝑡𝑛+ 1
2 )𝑑𝑥 ⊗

∫︁ 𝑥n
i+1

𝑥n
i

𝑢(𝑥, 𝑦, 𝑡𝑛)𝑑𝑥

⋂︀
⋀︀ 𝑑𝑦 = ⊗

∫︁ 𝑦n

j+ 1
2

𝑦n

j−
1
2

∫︁ 𝑡n+ 1
2

𝑡n

∫︁ àn
i+1(𝑡)

àn
i

(𝑡)

(︂
𝜕𝑔(𝑢)

𝜕𝑦

)︂

𝑗

𝑑𝑥𝑑𝑡𝑑𝑦,

∫︁ 𝑥
n+ 1

2

i+ 1
2

𝑥
n+ 1

2

i−
1
2

⋃︀
⨄︀
∫︁ 𝑦

n+1

i+ 1
2

𝑦
n+1

i−
1
2

𝑢(𝑥, 𝑦, 𝑡𝑛+ 1
2 )𝑑𝑥 ⊗

∫︁ 𝑦
n+ 1

2
i+1

𝑦
n+ 1

2
i

𝑢(𝑥, 𝑦, 𝑡𝑛+ 1
2 )𝑑𝑥

⋂︀
⋀︀ 𝑑𝑦 = ⊗

∫︁ 𝑥
n+ 1

2

i+ 1
2

𝑥
n+ 1

2

i−
1
2

∫︁ 𝑡n+1

𝑡
n+ 1

2

∫︁ Ò
n+ 1

2
j+1

(𝑡)

Ò
n+ 1

2
j

(𝑡)

(︂
𝜕𝑓(𝑢)

𝜕𝑥

)︂

𝑖

𝑑𝑦𝑑𝑡𝑑𝑥,

(7.1.17)
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or, (7.1.17) we can written as,
∏︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⨄︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋃︁

∫︁ 𝑦n

j+ 1
2

𝑦n

j−
1
2

∫︁ 𝑥
n+ 1

2

i+ 1
2

𝑥
n+ 1

2

i−
1
2

𝑢(𝑥, 𝑦, 𝑡𝑛+ 1
2 )𝑑𝑥𝑑𝑦 ⊗

∫︁ 𝑦n

j+ 1
2

𝑦n

j−
1
2

∫︁ 𝑥n
i+1

𝑥n
i

𝑢(𝑥, 𝑦, 𝑡𝑛)𝑑𝑥𝑑𝑦 = ⊗
∫︁ 𝑦n

j+ 1
2

𝑦n

j−
1
2

∫︁ 𝑡n+ 1
2

𝑡n

∫︁ àn
i+1(𝑡)

àn
i

(𝑡)

(︂
𝜕𝑔(𝑢)

𝜕𝑦

)︂

𝑗

𝑑𝑥𝑑𝑡𝑑𝑦,

∫︁ 𝑥
n+ 1

2

i+ 1
2

𝑥
n+ 1

2

i−
1
2

∫︁ 𝑦
n+1

i+ 1
2

𝑦
n+1

i−
1
2

𝑢(𝑥, 𝑦, 𝑡𝑛+1)𝑑𝑦𝑑𝑥 ⊗
∫︁ 𝑥

n+ 1
2

i+ 1
2

𝑥
n+ 1

2

i−
1
2

∫︁ 𝑦
n+ 1

2
i+1

𝑦
n+ 1

2
i

𝑢(𝑥, 𝑦, 𝑡𝑛+ 1
2 )𝑑𝑦𝑑𝑥 = ⊗

∫︁ 𝑥
n+ 1

2

i+ 1
2

𝑥
n+ 1

2

i−
1
2

∫︁ 𝑡n+1

𝑡
n+ 1

2

∫︁ Ò
n+ 1

2
j+1

(𝑡)

Ò
n+ 1

2
j

(𝑡)

(︂
𝜕𝑓(𝑢)

𝜕𝑥

)︂

𝑖

𝑑𝑦𝑑𝑡𝑑𝑥.

(7.1.18)
Now, to preserve consistent quantities in the cells of the computational domain, we Ąrstly

multiply the Ąrst equation in (7.1.18) by 1/(ℎ
𝑛+ 1

2

𝑥,𝑗 Δ𝑦) as well as we multiply the second equation

in (7.1.18) by the factor 1/(ℎ𝑛+1
𝑦,𝑖 Δ𝑥) and secondly we make use of (7.0.9) to obtain,

∏︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⨄︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋃︁

𝑈
𝑛+ 1

2

𝑖,𝑗 ⊗ ∆𝑥

ℎ
𝑛+ 1

2

𝑥,𝑗 ∆𝑦∆𝑥

∫︁ 𝑦n

j+ 1
2

𝑦n

j−
1
2

∫︁ 𝑥n
i+1

𝑥n
i

𝑢(𝑥, 𝑦, 𝑡𝑛)𝑑𝑥𝑑𝑦 = ⊗ ∆𝑥

ℎ
𝑛+ 1

2

𝑥,𝑗 ∆𝑦∆𝑥

∫︁ 𝑦n

j+ 1
2

𝑦n

j−
1
2

∫︁ 𝑡n+ 1
2

𝑡n

∫︁ àn
i+1(𝑡)

àn
i

(𝑡)

(︂
𝜕𝑔(𝑢)

𝜕𝑦

)︂

𝑗

𝑑𝑥𝑑𝑡𝑑𝑦,

𝑈
𝑛+1

𝑖,𝑗 ⊗ ∆𝑦

ℎ
𝑛+ 1

2

𝑦,𝑗 ∆𝑦∆𝑥

∫︁ 𝑥
n+ 1

2

i+ 1
2

𝑥
n+ 1

2

i−
1
2

∫︁ 𝑦
n+ 1

2
i+1

𝑦
n+ 1

2
i

𝑢(𝑥, 𝑦, 𝑡𝑛+ 1
2 )𝑑𝑦𝑑𝑥 = ⊗ ∆𝑦

ℎ
𝑛+ 1

2

𝑦,𝑗 ∆𝑦∆𝑥

∫︁ 𝑥
n+ 1

2

i+ 1
2

𝑥
n+ 1

2

i−
1
2

∫︁ 𝑡n+1

𝑡
n+ 1

2

∫︁ Ò
n+ 1

2
j+1

(𝑡)

Ò
n+ 1

2
j

(𝑡)

(︂
𝜕𝑓(𝑢)

𝜕𝑥

)︂

𝑖

𝑑𝑦𝑑𝑡𝑑𝑥.

(7.1.19)
Now, from equation (7.1.19) and by means of relations (7.0.8)-(7.0.9), we Ąnally get the

Lagrangian-Eulerian scheme for the two-dimensional hyperbolic conservation law (7.1.1) is given
by,

∏︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⨄︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋃︁

𝑈
𝑛+ 1

2

𝑖,𝑗 ⊗ ∆𝑥

ℎ
𝑛+ 1

2

𝑥,𝑗

[︀
𝑈𝑛

𝑖,𝑗 + 𝑈𝑛
𝑖,𝑗+1

⌊︃
= ⊗ ∆𝑥

ℎ
𝑛+ 1

2

𝑥,𝑗 ∆𝑦∆𝑥

∫︁ 𝑦n

j+ 1
2

𝑦n

j−
1
2

∫︁ 𝑡n+ 1
2

𝑡n

∫︁ àn
i+1(𝑡)

àn
i

(𝑡)

(︂
𝜕𝑔(𝑢)

𝜕𝑦

)︂

𝑗

𝑑𝑥𝑑𝑡𝑑𝑦,

𝑈
𝑛+1

𝑖,𝑗 ⊗ ∆𝑦

ℎ
𝑛+ 1

2

𝑦,𝑗

[︁
𝑈

𝑛+ 1
2

𝑖,𝑗 + 𝑈
𝑛+ 1

2

𝑖,𝑗+1

]︁
= ⊗ ∆𝑦

ℎ
𝑛+ 1

2

𝑦,𝑗 ∆𝑦∆𝑥

∫︁ 𝑥
n+ 1

2

i+ 1
2

𝑥
n+ 1

2

i−
1
2

∫︁ 𝑡n+1

𝑡
n+ 1

2

∫︁ Ò
n+ 1

2
j+1

(𝑡)

Ò
n+ 1

2
j

(𝑡)

(︂
𝜕𝑓(𝑢)

𝜕𝑥

)︂

𝑖

𝑑𝑦𝑑𝑡𝑑𝑥,

(7.1.20)

where

𝑈
𝑛+ 1

2

𝑖,𝑗 =
1

Δ𝑥

[︂(︁
0.5Δ𝑥+ 𝑓𝑛

𝑥,𝑖

)︁
𝑈

𝑛+ 1

2

𝑖⊗1,𝑗 +
(︁
0.5Δ𝑥⊗ 𝑓𝑛

𝑥,𝑖

)︁
𝑈

𝑛+ 1

2

𝑖,𝑗

]︂
, (7.1.21)

along with 𝑓𝑛
𝑥,𝑗 ≡ 𝑓(𝑈𝑛

𝑖,𝑗
)

𝑈𝑛
𝑖,𝑗

. Finally, the approximate Lagrangian-Eulerian scheme for the two-

dimensional hyperbolic problem (7.1.1) is given by,

𝑈𝑛+1
𝑖,𝑗 =

1

Δ𝑦

[︂(︂
0.5Δ𝑦 + 𝑔

𝑛+ 1

2

𝑖,𝑦

)︂
𝑈

𝑛+1
𝑖,𝑗⊗1 +

(︂
0.5Δ𝑦 ⊗ 𝑔

𝑛+ 1

2

𝑖,𝑦

)︂
𝑈

𝑛+1
𝑖,𝑗

]︂
, (7.1.22)

where 𝑔
𝑛+ 1

2

𝑖,𝑦 ≡ 𝑔(𝑈
𝑛+ 1

2
𝑖,𝑗

)

𝑈
𝑛+ 1

2
𝑖,𝑗

.

We use the following approximation proposed in [124] to approximate the derivatives (𝜕(𝑓(𝑢))/𝜕𝑥)𝑖

and (𝜕(𝑔(𝑢))/𝜕𝑦)𝑗 (︃
𝜕(𝑓(𝑢(𝑥 = 𝑥𝑖, 𝑦, 𝑡)))

𝜕𝑥

)︃

𝑖

=
1

Δ𝑥
𝑓 ′

𝑖 +𝑂(Δ𝑥)

and (︃
𝜕(𝑔(𝑢(𝑥, 𝑦 = 𝑦𝑗, 𝑡)))

𝜕𝑦

)︃

𝑗

=
1

Δ𝑦
𝑔′

𝑗 +𝑂(Δ𝑦)
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that are computed by means of a locally conservative non-oscillatory central differencing slope
limiters. With this, we write

∫︁ 𝑦𝑛

𝑗+ 1
2

𝑦𝑛

𝑗−
1
2

∫︁ 𝑡𝑛+ 1

2

𝑡𝑛

∫︁ à𝑛
𝑖+1

(𝑡)

à𝑛
𝑖

(𝑡)

𝜕𝑔(𝑢)

𝜕𝑦
𝑑𝑥𝑑𝑡𝑑𝑦 ≡ 𝑔′

𝑗

∫︁ 𝑡𝑛+ 1

2

𝑡𝑛

∫︁ à𝑛
𝑖+1

(𝑡)

à𝑛
𝑖

(𝑡)
𝑑𝑥𝑑𝑡

= 𝑔′
𝑗

∫︁ 𝑡𝑛+ 1

2

𝑡𝑛

∫︁ à𝑛
𝑖+1

(𝑡)

à𝑛
𝑖

(𝑡)
𝑑𝑥𝑑𝑡,

(7.1.23)

and
∫︁ 𝑥

𝑛+ 1
2

𝑖+ 1
2

𝑥
𝑛+ 1

2

𝑖−
1
2

∫︁ 𝑡𝑛+1

𝑡𝑛+ 1
2

∫︁ Ò
𝑛+ 1

2
𝑗+1

(𝑡)

Ò
𝑛+ 1

2
𝑗

(𝑡)

𝜕𝑓(𝑢)

𝜕𝑥
𝑑𝑦𝑑𝑡𝑑𝑥 ≡ 𝑓 ′

𝑖

∫︁ 𝑡𝑛+1

𝑡𝑛+ 1
2

∫︁ Ò
𝑛+ 1

2
𝑗+1

(𝑡)

Ò
𝑛+ 1

2
𝑗

(𝑡)
𝑑𝑦𝑑𝑡

= 𝑓 ′
𝑖

∫︁ 𝑡𝑛+1

𝑡𝑛+ 1
2

∫︁ Ò
𝑛+ 1

2
𝑗+1

(𝑡)

Ò
𝑛+ 1

2
𝑗

(𝑡)
𝑑𝑦𝑑𝑡,

(7.1.24)

Thus, the Lagrangian-Eulerian scheme (7.1.21)-(7.1.22) for the two-dimensional hyperbolic
problem (7.1.1), along with the pertinent approximation performed in (7.1.24), takes the form
for implementation in a computer,

∏︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⨄︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋃︁

𝑈
𝑛+ 1

2

𝑖,𝑗 ⊗ Δ𝑥

ℎ
𝑛+ 1

2

𝑥,𝑗

[︁
𝑈𝑛

𝑖,𝑗 + 𝑈𝑛
𝑖+1,𝑗

]︁
= ⊗ 𝑔′

𝑗

ℎ
𝑛+ 1

2

𝑥,𝑗

∫︁ 𝑡𝑛+ 1

2

𝑡𝑛

∫︁ à𝑛
𝑖+1

(𝑡)

à𝑛
𝑖

(𝑡)
𝑑𝑥𝑑𝑡,

𝑈
𝑛+ 1

2

𝑖,𝑗 = 1
∆𝑥

[︂(︁
0.5Δ𝑥+ 𝑓𝑛

𝑥,𝑗

)︁
𝑈

𝑛+ 1

2

𝑖⊗1,𝑗 +
(︁
0.5Δ𝑥⊗ 𝑓𝑛

𝑥,𝑗

)︁
𝑈

𝑛+ 1

2

𝑖,𝑗

]︂
,

𝑈
𝑛+1
𝑖,𝑗 ⊗ Δ𝑦

ℎ
𝑛+ 1

2

𝑦,𝑗

[︂
𝑈

𝑛+ 1

2

𝑖,𝑗 + 𝑈
𝑛+ 1

2

𝑖,𝑗+1

]︂
= ⊗ 𝑓 ′

𝑖

ℎ
𝑛+ 1

2

𝑦,𝑗

∫︁ 𝑡𝑛+1

𝑡𝑛+ 1
2

∫︁ Ò
𝑛+ 1

2
𝑗+1

(𝑡)

Ò
𝑛+ 1

2
𝑗

(𝑡)
𝑑𝑦𝑑𝑡

𝑈𝑛+1
𝑖,𝑗 = 1

∆𝑦

[︂(︂
0.5Δ𝑦 + 𝑔

𝑛+ 1

2

𝑖,𝑦

)︂
𝑈

𝑛+1
𝑖,𝑗⊗1 +

(︂
0.5Δ𝑦 ⊗ 𝑔

𝑛+ 1

2

𝑖,𝑦

)︂
𝑈

𝑛+1
𝑖,𝑗

]︂
.

(7.1.25)

which, we called in this work Lagrangian-Eulerian to Hyperbolic laws in two Dimensional Vari-
ables (LEH2D). We note that the two dimensional Lagrangian-Eulerian scheme is coupled by

the source term in each time step, thus in the time step from 𝑡𝑛 to 𝑡𝑛+ 1

2 the information of
the previous times in the 𝑦 coordinate is taken right through of the source term, and analogue
in the time step from 𝑡𝑛+ 1

2 to 𝑡𝑛+1 the information in the 𝑥 coordinate is also taken of the
source term. Actually, the two dimensional Lagrangian scheme solve one balance law in each
time step, this is why that allows to the numerical scheme couples both directions 𝑥 coordinate
and 𝑦 coordinate in each advance in the time. This important fact makes our two dimensional
Lagrangian-Eulerian scheme to be seen as a numerical method of unsplit type. The scheme
(7.1.25) is an extension of the Lagrangian-Eulerian scheme to the Balance law LEB1 (5.2.1)
shown in previous chapters. Other possibility, to get a Lagrangian-Eulerian scheme for two
Dimensional Variables, is to extend the scheme LEB2 (5.2.2). The extension for this scheme
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gives the following numerical method,

∏︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⨄︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋃︁

𝑈
𝑛+ 1

2

𝑖,𝑗 =
1

4
(𝑈𝑛

𝑖⊗1,𝑗 + 2𝑈𝑛
𝑖,𝑗 + 𝑈𝑛

𝑖⊗1,𝑗) ⊗ 𝑘/2

2ℎ

(︁
𝑓(𝑈𝑛

𝑖+1,𝑗) ⊗ 𝑓(𝑈𝑛
𝑖⊗1,𝑗)

)︁

+
1

ℎ

[︃
1

ℎ

(︃
ℎ

2
+ 𝑓𝑛

𝑥,𝑗𝑘

)︃∫︁∫︁

𝐷𝑛
𝑖−1,𝑗

𝜕𝑔(𝑢𝑗)

𝜕𝑦
𝑑𝑥 𝑑𝑡+

1

ℎ

(︃
ℎ

2
⊗ 𝑓𝑛

𝑥,𝑗𝑘

)︃∫︁∫︁

𝐷𝑛
𝑖,𝑗

𝜕𝑔(𝑢𝑗)

𝜕𝑦
𝑑𝑥 𝑑𝑡

⟨
,

𝑈𝑛+1
𝑖,𝑗 =

1

4
(𝑈

𝑛+ 1

2

𝑖,𝑗⊗1 + 2𝑈
𝑛+ 1

2

𝑖,𝑗 + 𝑈
𝑛+ 1

2

𝑖,𝑗+1) ⊗ 𝑘/2

2ℎ

(︂
𝑔(𝑈

𝑛+ 1

2

𝑖,𝑗+1) ⊗ 𝑔(𝑈
𝑛+ 1

2

𝑖,𝑗⊗1)
)︂

+
1

ℎ

[︃
1

ℎ

(︃
ℎ

2
+ 𝑔

𝑛+ 1

2

𝑖,𝑦

)︃∫︁∫︁

𝐷
𝑛+ 1
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(7.1.26)

where 𝑢𝑛
𝑗 = 𝑢(𝑥, 𝑈𝑛

𝑖,𝑗, 𝑡) with 𝑗 Ąxed, and 𝑢𝑛
𝑗 = 𝑢(𝑈

𝑛+ 1

2

𝑖,𝑗 , 𝑦, 𝑡) with 𝑖 Ąxed. The two dimen-
sional scheme (7.1.26) was called in this work the finite difference two-dimensional Lagrangian-
Eulerian scheme and will denote by LEH2D2. Note that the two dimensional scheme (7.1.26)

resolves numerically one balance law in 𝑡𝑛 < 𝑡 < 𝑡𝑛+ 1

2 using the scheme LEB2 in 𝑥-direction,
and resolves one balance law in 𝑡𝑛+ 1

2 ⊘ 𝑡 ⊘ 𝑡𝑛+1 using the same scheme in 𝑦-direction.
Notice that the two dimensional Lagrangian-Eulerian schemes (7.1.25) and (7.1.26) retain

the coupling between the systems of balance law equations (7.1.6) in order to preserve the
delicate nonlinear balance between the nonlinear Ćux gradients and the form of the source terms
of the two-dimensional hyperbolic solution operators, linked to the one-dimensional balance law
operators 𝒮𝑦 and 𝒮𝑥 as in (7.1.3), or in (7.1.4). Such operators can either be constructed directly
or by using dimensional splitting or some kind of physics-based operator splitting. Again, as
announced, we performed a construction of an unsplitting directly approximation. In other
words, the two dimensional Lagrangian-Eulerian scheme (7.1.25) retain the coupling between
nonlinear Ćux gradients and the source term for each time step. Thus, in the time step from 𝑡𝑛

to 𝑡𝑛+ 1

2 the information of the previous time step in the 𝑦-coordinate is used into the pertinent
source term; the information is also used in a similar way from 𝑡𝑛+ 1

2 to 𝑡𝑛+1, associated to the
𝑥-coordinate. Therefore, our two dimensional Lagrangian-Eulerian scheme (7.1.25) takes the
form of an unsplitting method.

Finally, we turn our attention to discuss performance of the extension of the Lagrangian-
Eulerian scheme for systems of balance laws in one-space dimension for hyperbolic conservation
laws in two-space dimensions, along with numerical experiments for nonlinear two-dimensional
hyperbolic problems. The numerical results are compared with accurate approximate solutions
or exact solutions whenever possible.
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7.2 Numerical experiments for nonlinear hyperbolic law

em 2D

Model Problem 7.2.1. Christov & Popov (JPC), Buckley-LeverettŠs problem with gravity
[39].

In this example, we consider the Ćow model in two-phase immiscible incompressible Ćuid
with gravity, for oil and water. This is the basic mathematical model for the reservoir water-
Ćooding problem in oil recovery in engineering applications (see, e.g., [61]),

⊗∇ ≤ [KÚ𝑡𝑜𝑡(𝑆𝑤)∇𝑝] = 𝑞𝑡𝑜𝑡, (7.2.1)

𝜕ã𝑆𝑤

𝜕𝑡
+
𝜕(𝑢𝑡𝑜𝑡𝑓(𝑆𝑤))

𝜕𝑥
+
𝜕(𝑣𝑡𝑜𝑡𝑔(𝑆𝑤))

𝜕𝑦
= 𝑞𝑤, (7.2.2)

where K is the absolute permeability tensor, Ú𝑡𝑜𝑡 is the total mobility, 𝑝 is the thermodynamic
pressure, ã is the porosity, 𝑆𝑤 ∈ [0, 1], 𝑆𝑤 is the water saturation, and u𝑡𝑜𝑡 = (𝑢𝑡𝑜𝑡; 𝑣𝑡𝑜𝑡) is the
total velocity (i.e., u𝑡𝑜𝑡 = 𝑢𝑤 + 𝑢𝑜). The pressure equation (7.2.1) as written is elliptic in the
absence of compressibility. Because the total mobility depends of saturation, the pressure yields
Ąeld changes as the displacement evolves, this is just a statement of DarcyŠs law combined with
the conservation of mass. Once the pressure is computed from (7.2.1), the total velocity is
given by DarcyŠs law: 𝑢𝑡𝑜𝑡 = KÚ𝑡𝑜𝑡(𝑆𝑤)∇𝑝. The equation (7.2.2) is referred to as the saturation
equation. Finally, in the absence of gravity and capillarity effects the 𝑥- and 𝑦-direction Ćux
functions 𝑓(𝑆𝑤) and 𝑔(𝑆𝑤) are both just the fractional Ćow function of water, i.e., the non-
convex Buckley-Leverett Ćux:

𝑔(𝑆𝑤) = 𝑓(𝑆𝑤) =
𝑆2

𝑤

𝑆2
𝑤 + Û𝑤

Û0
(1 ⊗ 𝐶𝑔(1 ⊗ 𝑆𝑤)2)

, (7.2.3)

here Û𝑤 and Û𝑜 are the water and oil phase viscosities, respectively. For simplicity, in the
simulations discussed here, we have chosen the following values of the parameters: K is the
2 identity matrix, Ú𝑡𝑜𝑡(𝑆𝑤) = 1, ã = 1, 𝑞𝑡𝑜𝑡 = 𝑞𝑤 = 0. Generally, the complete solution
of the system (7.2.1) and (7.2.2) is obtained by the implicit method for the pressure equation
(7.2.1) and the explicit method for the hyperbolic equation. Such approach is called an Implicit
Pressure Explicit saturation (IMPES) sequential solver.

In this example, we consider the Buckley-Leverett problem with gravity proposed in [39,
124]. The equations are signiĄcantly more challenging when gravitational effects are included
in the saturation equation, resulting in different (non-convex) Ćux functions in the 𝑥- and 𝑦-
directions. In this case, the Ćux in the 𝑦-direction, 𝑓(≤), is once again the Buckley-Leverett Ćux
(Ćow). However, for the Ćux in the 𝑦-direction we have,

𝑔(𝑆𝑤) = 𝑓(𝑆𝑤)(1 ⊗ 𝐶𝑔(1 ⊗ 𝑆𝑤)2), (7.2.4)

and we consider
𝜕𝑆𝑤

𝜕𝑡
+
𝜕(𝑓(𝑆𝑤))

𝜕𝑥
+
𝜕(𝑔(𝑆𝑤))

𝜕𝑦
= 0, (7.2.5)
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with (𝑥, 𝑦, 𝑡) ∈ [⊗1.5, 1.5] × [⊗1.5, 1.5] ×
[0, 0.5], and initial condition,

𝑢(𝑥, 𝑦, 0) =

∏︁
⨄︁
⋃︁

1, 𝑥2 + 𝑦2 < 0.5,

0, otherwise.
(7.2.6)
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Finally, we notice that we impose the solid wall (slip) boundary condition u𝑡𝑜𝑡 ≤𝑛 = 0 everywhere
on the boundary 𝜕Ω, where 𝑛 is the outward unit normal to 𝜕Ω, upon the system (7.2.1) and
(7.2.2). This means that there are no inĆow boundaries and, hence, no boundary conditions
on 𝑆𝑤. Here we have two situations we want to test our Eulerian-Lagrangian scheme: (1) a
rudimentar test to address the issue of grid orientation effects (this anomalous phenomenon
is observed when computational grid is rotated and substantially different numerical solutions
are obtained for a similar problem) and (2) accommodation of no Ćow boundary condition,
exact or approximate. Finally, we remark that we will compare our numerical solutions shown
in Figure 7.2 and Figure 7.3 for the Buckley-LeverttŠs problem described above (7.2.1)-(7.2.6),
along with accurate Buckley-LeverttŠs numerical solutions extracted from [39].

In Figure 7.2 and Figure 7.3 are shown the Buckley-LeverettŠs numerical solutions com-
puted with the two-dimensional Lagrangian-Eulerian scheme LEH2D (7.1.25) with respect to
the reservoir waterĆooding problem with gravity described in (7.2.1)-(7.2.6). From top to bot-
tom are shown of the left (resp. right) column a Ş3D-plotŠs view angleŤ (resp. contour curves)
of numerical approximations of the water saturation. For comparison purposes, we are compar-
ing our numerical solutions along with those extracted from [39]. Morerover, for a preliminary
computational efficiency understanding, we also included the time elapsed into a mesh reĄne-
ment study: 0.2990 secs (64 × 64 cells), 1.4259 secs (128 × 128 cells), 7.7959 secs (256 × 256
cells), 52.3522 secs (512 × 512 cells), 937.7651 secs (1024 × 1024 cells) and 3.6905e+03 secs
(2048 × 2048 cells).

Analogously, in Figures 7.4 and 7.5 are shown the Buckley-LeverettŠs numerical solutions
computed with the two-dimensional Lagrangian-Eulerian scheme LEH2D2 (7.1.26). From top
to bottom are shown of the left (resp. right) column a Ş3D-plotŠs view angleŤ (resp. contour
curves) of numerical approximations of the water saturation and the simulation time along
with 64 × 64 cells (top) and 2.4087 sec, 128 × 128 cells (middle) and 2.40 secs and 256 × 256
cells (bottom) 11.41 secs. Based in these experiments, we note that our both Lagrangian-
Eulerian methods, LEH2D 7.1.25 and LEH2D2 7.1.26, to solve hyperbolic conservation laws in
two dimensional variables are very efficient computationally and without spurious oscillations
in regions with sharp fronts, no mesh orientation dependence and low numerical diffusion.
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Figure 7.2: From top to bottom are shown the Buckley-LeverettŠs numerical solutions at 𝑇 = 0.5
computed with the two-dimensional Lagrangian-Eulerian scheme LEH2D (7.1.25); Ş3D-plotŠs
view angleŤ (left) and contour curves (right) with respect to the reservoir waterĆooding problem
with gravity described in (7.2.1)-(7.2.6).
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Figure 7.3: From top to bottom are shown the Buckley-LeverettŠs numerical solutions at 𝑇 = 0.5
computed with the two-dimensional Lagrangian-Eulerian scheme LEH2D (7.1.25); Ş3D-plotŠs
view angleŤ (left) and contour curves (right) with respect to the reservoir waterĆooding problem
with gravity described in (7.2.1)-(7.2.6).
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Figure 7.4: From top to bottom are shown the Buckley-LeverettŠs numerical solutions at 𝑇 = 0.5
computed with the two-dimensional Lagrangian-Eulerian scheme LEH2D2 (7.1.26); Ş3D-plotŠs
view angleŤ (left) and contour curves (right) with respect to the reservoir waterĆooding problem
with gravity described in (7.2.1)-(7.2.6).
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Figure 7.5: From top to bottom are shown the Buckley-LeverettŠs numerical solutions at 𝑇 = 0.5
computed with the two-dimensional Lagrangian-Eulerian scheme LEH2D2 (7.1.26); Ş3D-plotŠs
view angleŤ (left) and contour curves (right) with respect to the reservoir waterĆooding problem
with gravity described in (7.2.1)-(7.2.6).
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Model Problem 7.2.2. Kurganov, Petrova & Popov, (SIAM SISC), a nonlinear model with
nonconvex Ćow function [98].

In order to address the robustness of the Lagrangian-Eulerian scheme (7.1.25), we consider
problem proposed in [98] (see also [39]), whose solution features a composite wave. We numer-
ically solve the following two-dimensional scalar hyperbolic conservation law with nonconvex
Ćuxes (i.e., 𝑓 ′′(𝑢) and 𝑔′′(𝑢) change of sign) given by,

𝜕𝑢

𝜕𝑡
+
𝜕(sin(𝑢))

𝜕𝑥
+
𝜕(cos(𝑢))

𝜕𝑦
= 0 (7.2.7)

with (𝑥, 𝑦, 𝑡) ∈ [⊗2, 2] × [⊗2.5, 1.5] × [0, 1],
and initial condition,

𝑢(𝑥, 𝑦, 0) =

∏︁
⨄︁
⋃︁

3.5Þ, 𝑥2 + 𝑦2 < 1,

0.25Þ, otherwise,
(7.2.8)
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in conjuntion with natural (i.e., inĆow) boundary condition on all of 𝜕Ω. For this initial
condition, the 𝑥-direction Ćux of (7.2.7) has three inĆection points, and the 𝑦-direction Ćux has
four. The solution to the Riemann problem is advanced from 𝑇 = 0 to 𝑇 = 0.5 and is shown
in the Figure 7.6 and Figure 7.7.

In Figure 7.6 and in Figure 7.7, from top to bottom are shown the numerical solutions
computed with the two-dimensional Lagrangian-Eulerian scheme LEH2D (7.1.25) with respect
to the nonlinear model with nonconvex Ćow function described by the Riemann problem (7.2.7)-
(7.2.8). From top to bottom are shown of the left (resp. right) column a Ş3D-plotŠs view
angleŤ (resp. contour curves) of numerical approximations. For comparison purposes, we
are comparing our two-dimensional numerical approximations with approximations , which
in turn were computed with a genuinely multidimensional, non-oscillatory reconstruction the
Minimum-Angle Plane Reconstruction (MAPR) proposed in [39].

Our numerical solutions are comparable with the solutions obtained with the central-upwind
schemes based on the MM1 proposed in [98] and in [39]. Indeed, we believe that our numerical
solutions are better than those obtained with the central-upwind schemes based on the MM2,
SB and WENO5 type-reconstructions since such procedure might fail to accurately resolve
composite wave structures; see [98] to more details. As before, we also included the time
elapsed into a mesh reĄnement study for a preliminary computational efficiency: 2.3586 segs
(64 × 64 cells), 3.8706 segs (128 × 128 cells), 12.7589 segs (256 × 256 cells), 73.2378 segs (512
× 512 cells), 513.3377 segs (1024 × 1024 cells) and 3.8385e+003 segs (2048 × 2048 cells).

Analogously, in Figures 7.6 and 7.9 are shown the numerical solutions computed with the
two-dimensional Lagrangian-Eulerian scheme (7.1.26). From top to bottom are shown on the
left (resp. right) column a Ş3D-plotŠs view angleŤ (resp. contour curves) of numerical approxi-
mations with 64 × 64 cells (top) 0.33 sec, 128 × 128 cells (middle) 1.92 sec and 256 × 256 cells
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(bottom) in 9.94 sec 512 × 512 cells (top) 48.61 sec, 1024 × 1024 cells (middle) 332.81, and
2048 × 2048 cells (bottom) 2712.30 sec.

Again, we highlight no dependence of mesh orientation, particularly in this example where
the Ćux functions are trigonometric functions with high frequencies and a lot roots. However
our numerical method obtained approximations with good resolution despite to be a method of
order one. We also mention that in these approximations we observed no spurious oscillations,
low diffusion in both schemes and very efficient computationally.
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Figure 7.6: From top to bottom are shown the numerical solutions at 𝑇 = 1.0 computed with
the two-dimensional Lagrangian-Eulerian scheme LEH2D (7.1.25) with respect to the nonlinear
model with nonconvex Ćow function described by the Riemann problem (7.2.7)-(7.2.8).
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Figure 7.7: From top to bottom are shown the numerical solutions at 𝑇 = 1.0 computed with
the two-dimensional Lagrangian-Eulerian scheme LEH2D (7.1.25) with respect to the nonlinear
model with nonconvex Ćow function described by the Riemann problem (7.2.7)-(7.2.8).



135

Figure 7.8: From top to bottom are shown the numerical solutions at 𝑇 = 1.0 computed with the
two-dimensional Lagrangian-Eulerian scheme LEH2D2 (7.1.26) with respect to the nonlinear
model with nonconvex Ćow function described by the Riemann problem (7.2.7)-(7.2.8).
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Figure 7.9: From top to bottom are shown the numerical solutions at 𝑇 = 1.0 computed with the
two-dimensional Lagrangian-Eulerian scheme LEH2D2 (7.1.26) with respect to the nonlinear
model with nonconvex Ćow function described by the Riemann problem (7.2.7)-(7.2.8).
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Model Problem 7.2.3. A like quarter-Ąve spot problem, a two-phase immiscible incompress-
ible Buckley-Leverett problem.

We now turn to the discussion of a set of numerical simulations performed in a like Ąve-spot
pattern. In case of a Ąve-spot Ćood problem, discretized by our two-dimensional Lagrangian-
Eulerian scheme LEH2D (7.1.25) with respect to a diagonal grid (from Figure 7.10 to Figure
7.13; see also the right picture of equation 7.2.10), the injection takes place at one corner and
production at the diametrically opposite corner; no Ćow is allowed across the entirety of the
boundary.

In our simulations, we consider a similar model problem as (7.2.1)-(7.2.2), with Buckley-
Leverett fractional Ćow function of water along with the following parameters values u𝑡𝑜𝑡 =
(𝑢𝑡𝑜𝑡; 𝑣𝑡𝑜𝑡) = (1, 1), and diferent values for the viscosity relation Û𝑤/Û𝑜: 0.5 (Figure 7.11), 0.1
(Figure 7.12) and 0.05 (Figure 7.13). The speciĄc problem is as follows,

𝜕𝑆𝑤

𝜕𝑡
+
𝜕(𝑓(𝑆𝑤))

𝜕𝑥
+
𝜕(𝑔(𝑆𝑤))

𝜕𝑦
= 0, (𝑥, 𝑦, 𝑡) ∈ [0, 2] × [0, 2] × [0, 1] (7.2.9)

with initial condition,

𝑢(𝑥, 𝑦, 0) =

∏︁
⨄︁
⋃︁

1, 𝑥 < 0.2, 𝑦 < 0.2,

0, otherwise
(7.2.10)

in conjuntion with exact boundary condition on the inĆow portions of 𝜕Ω. For this initial
condition, we have one rarefaction and one shock.

Mathematically, the conĄguration of the moving wave front in the (𝑥 = 𝑦)-direction corre-
sponds to a shock wave followed by a rarefaction wave (see pictures in Figure 7.10). Indeed,
we highlight that such composite Buckley-Leverett solution is respect to the oblique projection
over the (𝑥 = 𝑦)-direction: this projection is a solution of the one scalar hyperbolic problem
with a vector Ćow sum in 𝑥-direction as well as in 𝑦-direction. In Figure 7.10 are shown a
numerical reĄnement study in order to select a grid mesh resolution to a further numerical
simulation study for the quarter-Ąve spot problem related to model (7.2.1)-(7.2.2).

In Figure 7.10 on the left (resp. right) columns are shown 3D-view and projection with
respect 𝑥 = 𝑦-plane, respectively. The mesh grids and time computation are: 64 × 64 cells
(0.3347 sec), 128×128 (1.6346 sec), cells and 256×256 cells (8.51 sec), 512×512 cells (56.0134
sec), 1024 × 1024 (56.0134 sec) and 2048 × 2048 (2684.8 sec).

The study reported in Figure 7.11 are shown, from top to bottom, the numerical solutions
computed with the two-dimensional Lagrangian-Eulerian scheme LEH2D (7.1.25) with respect
to the quarter-Ąve spot problem for the Riemann problem (7.2.9)-(7.2.10) with viscosity ratio
Û𝑤/Û𝑜 = 0.5 and simulation times 𝑇 = 0.1 (top left), 𝑇 = 0.3 (middle left) and 𝑇 = 0.6 (Bottom
left). We will use the mesh grid 256 × 256 with different values for the viscosity relation Û𝑤/Û𝑜,
described in Figure 7.11 to Figure 7.13. Based in the approximations and on the computational



138

times we observe that the Lagragian-Eulerian scheme shown be very efficient computationally
and without spurious oscillations in regions with sharp fronts, no mesh orientation dependence
and low numerical diffusion.
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Figure 7.10: From top to bottom are shown a mesh reĄnement study of scheme LEH2D (7.1.25)
for the oblique projection over the (𝑥 = 𝑦)-direction at time 𝑇 = 0.5 for the quarter-Ąve spot
problem, with viscosity ratio Û𝑤/Û𝑜 = 0.5.
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Figure 7.11: From top to bottom are shown the numerical solutions for simulation times 𝑇 = 0.1
(top left), 𝑇 = 0.3 (middle left) and 𝑇 = 0.6 (Bottom left). computed with the two-dimensional
Lagrangian-Eulerian scheme LEH2D (7.1.25) with respect to the quarter-Ąve spot problem for
Riemann problem (7.2.9)-(7.2.10) with viscosity ratio Û𝑤/Û𝑜 = 0.5.
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Figure 7.12: From top to bottom are shown the numerical solutions for simulation times 𝑇 = 0.1
(top left), 𝑇 = 0.3 (middle left) and 𝑇 = 0.4 (Bottom left). computed with the two-dimensional
Lagrangian-Eulerian scheme LEH2D (7.1.25) with respect to the quarter-Ąve spot problem for
Riemann problem (7.2.9)-(7.2.10) with viscosity ratio Û𝑤/Û𝑜 = 0.1.
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Figure 7.13: From top to bottom are shown the numerical solutions for simulation times 𝑇 = 0.1
(top left), 𝑇 = 0.2 (middle left) and 𝑇 = 0.3 (Bottom left). computed with the two-dimensional
Lagrangian-Eulerian scheme LEH2D (7.1.25) with respect to the quarter-Ąve spot problem for
Riemann problem (7.2.9)-(7.2.10) with viscosity ratio Û𝑤/Û𝑜 = 0.05.

Model Problem 7.2.4. A like quarter-Ąve spot problem, a two-phase immiscible incompress-
ible Buckley-Leverett problem. Validation with scalar projection over 𝑥𝑦-plane and 𝑥-plane.
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In this problem, we consider again the hyperbolic equation in two spatial dimensions,

𝜕𝑢

𝜕𝑡
+
𝜕(𝑓(𝑆𝑤))

𝜕𝑥
+
𝜕(𝑔(𝑆𝑤))

𝜕𝑦
= 0, (7.2.11)

where 𝑓(𝑆𝑤) = 𝑔(𝑆𝑤) is the Buckley-Leverett fractional Ćow function of water along with
parameters of above problem and with a viscosity ratio of Û𝑤/Û𝑜 = 0.5. To make the validation,
we will compare numerical approximate solution of 𝑟-scalar hyperbolic problems in 𝜃-direction.
For this, we will consider the following non-linear transformation: 𝑥 = 𝑟 cos(𝜃) and 𝑦 = 𝑟 sin(𝜃),
with 0 ⊘ 𝑟 ⊘ 2

√
2 and 0 ⊘ 𝜃 ⊘ Þ/2. With this, 𝑟2 = 𝑥2 + 𝑦2 and tan(𝜃) = 𝑥/𝑦, then

𝜕𝑓(𝑢)

𝜕𝑥
=
𝜕𝑓

𝜕𝑢

𝜕𝑢

𝜕𝑟

𝜕𝑟

𝜕𝑥
+
𝜕𝑓

𝜕𝑢

𝜕𝑢

𝜕𝜃

𝜕𝜃

𝜕𝑥
(7.2.12)

and
𝜕𝑓(𝑢)

𝜕𝑦
=
𝜕𝑓

𝜕𝑢

𝜕𝑢

𝜕𝑟

𝜕𝑟

𝜕𝑦
+
𝜕𝑓

𝜕𝑢

𝜕𝑢

𝜕𝜃

𝜕𝜃

𝜕𝑦
. (7.2.13)

And note that,

𝜕𝑟

𝜕𝑥
=
𝑥

𝑟
=
𝑟 cos(𝜃)

𝑟
= cos(𝜃),

𝜕𝑟

𝜕𝑦
=
𝑦

𝑟
=
𝑟 sin(𝜃)

𝑟
= sin(𝜃)

𝜕𝜃

𝜕𝑥
= ⊗ 𝑦

𝑟2
= ⊗𝑟 sin(𝜃)

𝑟2
= ⊗sin(𝜃)

𝑟
,

𝜕𝜃

𝜕𝑦
=

𝑥

𝑟2
=
𝑟 cos(𝜃)

𝑟2
=

cos(𝜃)

𝑟
,

(7.2.14)

with this, and with substitution in (7.2.12) and (7.2.13), give

𝜕𝑓(𝑢)

𝜕𝑥
=
𝜕𝑓

𝜕𝑢

𝜕𝑢

𝜕𝑟
cos(𝜃) ⊗ 𝜕𝑓

𝜕𝑢

𝜕𝑢

𝜕𝜃

sin(𝜃)

𝑟
(7.2.15)

and
𝜕𝑓(𝑢)

𝜕𝑦
=
𝜕𝑓

𝜕𝑢

𝜕𝑢

𝜕𝑟
sin(𝜃) +

𝜕𝑓

𝜕𝑢

𝜕𝑢

𝜕𝜃

cos(𝜃)

𝑟
. (7.2.16)

Thus,
𝜕(𝑓(𝑢))

𝜕𝑥
+
𝜕(𝑓(𝑢))

𝜕𝑦
=
𝜕𝑓

𝜕𝑢

𝜕𝑢

𝜕𝑟
cos(𝜃) ⊗ 𝜕𝑓

𝜕𝑢

𝜕𝑢

𝜕𝜃

sin(𝜃)

𝑟

+
𝜕𝑓

𝜕𝑢

𝜕𝑢

𝜕𝑟
sin(𝜃) +

𝜕𝑓

𝜕𝑢

𝜕𝑢

𝜕𝜃

cos(𝜃)

𝑟
,

(7.2.17)

then,

𝜕(𝑓(𝑢))

𝜕𝑥
+
𝜕(𝑓(𝑢))

𝜕𝑦
=
𝜕𝑓

𝜕𝑟
(cos(𝜃) + sin(𝜃)) +

𝜕𝑓

𝜕𝜃

(︃
cos(𝜃)

𝑟
⊗ sin(𝜃)

𝑟

)︃
, (7.2.18)

therefore, if 𝜃 = Þ/4 then cos(Þ/4) = sin(Þ/4) =
√

2/2 and with this,

𝜕𝑓(𝑢)

𝜕𝑥
+
𝜕𝑔(𝑢)

𝜕𝑦
= 2

√
2

2

𝜕𝑓(𝑢)

𝜕𝑟
=

√
2
𝜕𝑓(𝑢)

𝜕𝑟
. (7.2.19)
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Figure 7.14: Plot of the solution with Lagragian-Eulerian scheme LEH2D 7.1.25 to the Riemann
problem (7.2.9) and (7.2.10) with relation of water viscosity Û𝑤

Û𝑜
= 0.5; Approximations by the

saturation 𝑆𝑤 at diferent simulation times: at 𝑇 = 0.1 (top), at 𝑇 = 0.2 (middle) and at
𝑇 = 0.3 (Bottom left).
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And Ąnally, we get the 𝑟-scalar hyperbolic conservation law in 𝜃-direction, with 𝜃 = Þ/4, in
function of 𝑟,

𝜕𝑢

𝜕𝑡
+

√
2
𝜕𝑓(𝑢)

𝜕𝑟
= 0. (7.2.20)

Numerical solutions computed with the two-dimensional Lagrangian-Eulerian scheme LEH2D
(7.1.25) with 512 cells, respect to the quarter-Ąve spot problem, for the Riemann problem
(7.2.9)-(7.2.10) are shown in Figure 7.14. In this example we use a viscosity ratio of Û𝑤/Û𝑜 = 0.5
and simulation times of 𝑇 = 0.3 (left), 𝑇 = 0.6 (middle) and 𝑇 = 1 (right). In top Ągures are
shown numerical approximations for Ş3DŤ-solution and in bottom Ągures are shown numerical
approximations in a Ş3D-plotŠs view angleŤ.

In Figure 7.15 are shown the numerical solutions computed with the two-dimensional
Lagrangian-Eulerian scheme LEH2D (7.1.25) with respect to the quarter-Ąve spot problem
for the Riemann problem (7.2.9)-(7.2.10) with a viscosity ratio of Û𝑤/Û𝑜 = 0.5 and simulation
times of 𝑇 = 1 with 128 cells (top left), 256 cells (middle) and 512 cells (Bottom). In Figure
7.16 are shown numerical approximations with 512 cells (top left), 1024 cells (middle) and 2048
cells (Bottom). In Figures 7.15 and 7.16 are shown on the left (resp. right) column a Ş3D-plotŤ-
numerical approximation of the problem (7.2.11), the numerical approximation of the 𝑥-scalar

problem 𝜕𝑢
𝜕𝑡

+ 𝜕(𝑓(𝑢))
𝜕𝑥

= 0 and the numerical approximation of the 𝑟-scalar problem (7.2.20)
and respectively its Ş3D-plotŠs view angleŤ on the right. These approximations shown as the
Ş3DŤ- numerical approximation converges to scalar numerical aproximation in 𝑥-direcction and
𝜃-direction in time simulation 𝑇 = 1.

In Figure 7.17 are shown a reĄnement of the numerical solution from the problem (7.2.11),
where the solution is projected over the plane 𝑦 = 0. Based in approximations quality and on
the computational times, we observe that the Lagragian-Eulerian scheme shows be very efficient
computationally, without spurious oscillations in regions with sharp fronts, it donŠt has mesh
orientation dependence and low numerical diffusion. Yet due to discrepancy in the simulations
when they are compared the projection of the solution in two dimension over the plane 𝑦 = 0,
with the scalar solution of the problem in x direction (see Figure 7.17), in unreĄned mesh, we
can not to declare that the Lagrangian_Eulerian scheme 2D is a conservative method.
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Figure 7.15: Numerical solutions computed with the two-dimensional Lagrangian-Eulerian
scheme LEH2D (7.1.25) with respect to the quarter-Ąve spot problem for Riemann problem
(7.2.9)-(7.2.10) with viscosity ratio Û𝑤/Û𝑜 = 0.5 for simulation time 𝑇 = 1.
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Figure 7.16: Numerical solutions computed with the two-dimensional Lagrangian-Eulerian
scheme LEH2D (7.1.25) with respect to the quarter-Ąve spot problem for Riemann problem
(7.2.9)-(7.2.10) with viscosity ratio Û𝑤/Û𝑜 = 0.5 for simulation times 𝑇 = 1.
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Figure 7.17: Plot of the solution with Lagragian-Eulerian scheme LEH2D 7.1.25 to the Riemann
problem (7.2.9) and (7.2.10) with relation of water viscosity Û𝑤

Û𝑜
= 0.5; Approximations by the

saturation 𝑆𝑤 at time 𝑇 = 0.5 in different mesh size, from 64 cell to 2048 cells.
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Model Problem 7.2.5. Christov & Popov (JPC), two-dimensional BurgersŠs equation [39].

In order to add one more test problem, we will use the two-dimensional Lagrangian-Eulerian
scheme (7.1.25) for the two-dimensional BurgersŠs equation proposed in [39] (see also [39, 114].
We consider the following two-dimensional initial value problem for associated to the inviscid
BurgersŠs equation,

𝜕𝑢

𝜕𝑡
+

𝜕

𝜕𝑥

(︃
𝑢2

2

)︃
+

𝜕

𝜕𝑦

(︃
𝑢2

2

)︃
= 0, (7.2.21)

with (𝑥, 𝑦, 𝑡) ∈ [0, 1] × [0, 1] × [0, 0.5], and
initial condition

𝑢(𝑥, 𝑦, 0) =

∏︁
⋁︁⋁︁⨄︁
⋁︁⋁︁⋃︁

2.0, 𝑥 < 0.25, 𝑦 < 0.25,

3.0, 𝑥 > 0.25, 𝑦 > 0.25,

1.0, otherwise,

(7.2.22)
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in conjuntion with exact boundary condition on the inĆow portions of 𝜕Ω. The solution is
advanced to 𝑡 = 1/12. The problem consists of two shock waves and two rarefaction that meet
towards the middle of the domain to form a cusp. This example is a bit more difficult than
the one considered in [156, 100] to study the convergence of the scheme to a discontinuous
solution. The approximations are show in Figure 7.18 and in Figure 7.19, where we performed
a mesh reĄnement study for six different mesh grid conĄgurations. For comparison purposes,
we compare with approximations of [39], which in turn is shown the exact analytical solution
to the Riemann problem (7.2.21)-(7.2.22) at 𝑡 = 1

12
computed by the method of characteristics.

As before, once more, we also included the time elapsed into a mesh reĄnement study for a
preliminary computational efficiency: 0.3093 segs (64 × 64 cells), 1.3755 segs (128 × 128 cells),
7.0047 segs (256 × 256 cells), 41.2132 segs (512 × 512 cells), 278.6869 segs (1024 × 1024 cells)
and 2.1970e+03 segs (2048 × 2048 cells).

Analogously, in Ągures 7.20 and 7.21, rom top to bottom are shown the numerical solutions
computed with the two-dimensional Lagrangian-Eulerian scheme (7.1.26) with respect to the
nonlinear model with nonconvex Ćow function described by the Riemann problem (7.2.21)-
(7.2.22). In Ągure 7.20 from top to bottom are shown on the left (resp. right) column a
Ş3D-plotŠs view angleŤ (resp. contour curves) of numerical approximations with 64 × 64 cells
(top) 0.3342 sec, 128 × 128 cells (middle) 0.8246 sec and 256 × 256 cells (bottom) 3.7246 sec.
And Ągure 7.21, from top to bottom, are shown of the left (resp. right) column a Ş3D-plotŠs
view angleŤ (resp. contour curves) of numerical approximations with 512 × 512 cells (top)
21.885 sec, 1024 × 1024 cells (middle) 136.77 sec and 2048 × 2048 cells (bottom) 845.9012 sec.

Based in the approximations and on the computational times we observe that the Lagragian-
Eulerian scheme shown be very efficient computationally and without spurious oscillations in
regions with sharp fronts, no mesh orientation dependence and low numerical diffusion.
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Figure 7.18: From top to bottom are shown the numerical solutions at 𝑇 = 1/12 computed
with the two-dimensional Lagrangian-Eulerian scheme (7.1.25) with respect to the nonlinear
model with nonconvex Ćow function described by the Riemann problem (7.2.21)-(7.2.22).
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Figure 7.19: From top to bottom are shown the numerical solutions at 𝑇 = 1/12 computed with
the two-dimensional Lagrangian-Eulerian scheme LEH2D (7.1.25) with respect to the nonlinear
model with nonconvex Ćow function described by the Riemann problem (7.2.21)-(7.2.22).
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Figure 7.20: From top to bottom are shown the numerical solutions at 𝑇 = 1/12 computed
with the two-dimensional Lagrangian-Eulerian scheme LEH2D2 (7.1.26) with respect to the
nonlinear model with nonconvex Ćow function described by the Riemann problem (7.2.21)-
(7.2.22).
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Figure 7.21: From top to bottom are shown the numerical solutions at 𝑇 = 1/12 computed
with the two-dimensional Lagrangian-Eulerian scheme LEH2D2 (7.1.26) with respect to the
nonlinear model with nonconvex Ćow function described by the Riemann problem (7.2.21)-
(7.2.22).
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Model Problem 7.2.6. Jiang & Tadmor, (SIAM SISC), An oblique Riemann problem for
two-dimensional BurgersŠs equation [86]

In order to add another test problem, we will use the two-dimensional Lagrangian-Eulerian
scheme (7.1.25) for the two-dimensional BurgersŠs equation discussed in [39, 86]. Consider the
following initial value problem for the inviscid BurgersŠs equation given by,

𝜕𝑢

𝜕𝑡
+

𝜕

𝜕𝑥

(︃
𝑢2

2

)︃
+

𝜕

𝜕𝑦

(︃
𝑢2

2

)︃
= 0, (7.2.23)

where (𝑥, 𝑦, 𝑡) ∈ [0, 1] × [0, 1] × [0, 0.5], and
with the oblique Riemann problem initial
condition,

𝑢(𝑥, 𝑦, 0) =

∏︁
⋁︁⋁︁⋁︁⋁︁⋁︁⨄︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋃︁

⊗1.0, 𝑥 > 0.5, 𝑦 > 0.5,

⊗0.2, 𝑥 < 0.5, 𝑦 > 0.5,

0.5, 𝑥 < 0.5, 𝑦 < 0.5,

0.8, 𝑥 > 0.5, 𝑦 < 0.5,

(7.2.24)
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in conjunction with exact boundary condition on the inĆow portions of 𝜕Ω. For comparison
purposes, we refer the numerical approximation to the solution of the Riemann problem (7.2.21)-
(7.2) showed in [39], which was considered the following Friedrichs-Keller triangulation with
12.800 (80 × 80 × 2) elements, along with the CFL number 1

3
. In Figure (7.22) and in Figure

(7.23) we report our approximations computed with our new two-dimensional Lagrangian-
Eulerian scheme LEH2D (7.1.25) for the Riemman problem (7.2.21)-(7.2), having performed
a mesh grid reĄnement (along with time elapsed into each simulation): 1.0704 segs (64 × 64
cells), 4.7941 segs (128 × 128 cells), 22.7290 segs (256 × 256 cells), 146.3850 segs (512 × 256
cells), 937.7651 segs (1024 × 1024 cells) and 7.5010e+03 segs (2048 × 2048 cells). The solution
is advanced from 𝑇 = 0 to 𝑇 = 1

12
as in [39]. In Ągure 7.24, from top to bottom, are shown the

numerical solutions computed with the 2D Lagrangian-Eulerian scheme LEH2D2 (7.1.26) with
respect to the Riemann problem (7.2.23)-(7.2.24). It is shown on the left (resp. right) column
a Ş3D-plotŠs view angleŤ (resp. contour curves) of numerical approximations with 64 × 64 cells
and 0.78 sec (top), 128 × 128 cells (middle) and 3.29 sec, and 256 × 256 cells (bottom) and
12.98 sec. And in Ągure 7.25, are shown of the left (resp. right) column a Ş3D-plotŠs view
angleŤ (resp. contour curves) of numerical approximations with 512 × 512 cells and 70.92 sec
(top), 1024 × 1024 cells (middle) in 395.97 sec, and 2048 × 2048 cells (bottom) and 2518.4
sec. Again, we Based in the approximations and on the computational times we observe that
the Lagragian-Eulerian scheme shown be very efficient computationally and without spurious
oscillations in regions with sharp fronts, no mesh orientation dependence and low numerical
diffusion.
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Figure 7.22: From top to bottom are shown the numerical solutions at 𝑇 = 1/2 computed with
the 2D Lagrangian-Eulerian scheme LEH2D (7.1.25) with respect to the Riemann problem
(7.2.23)-(7.2.24).
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Figure 7.23: From top to bottom are shown the numerical solutions at 𝑇 = 1/2 computed with
the 2D Lagrangian-Eulerian scheme LEH2D (7.1.25) with respect to the Riemann problem
(7.2.23)-(7.2.24).
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Figure 7.24: From top to bottom are shown the numerical solutions at 𝑇 = 1/2 computed with
the 2D Lagrangian-Eulerian scheme LEH2D2 (7.1.26) with respect to the Riemann problem
(7.2.23)-(7.2.24).
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Figure 7.25: From top to bottom are shown the numerical solutions at 𝑇 = 1/2 computed with
the 2D Lagrangian-Eulerian scheme LEH2D2 (7.1.26) with respect to the Riemann problem
(7.2.23)-(7.2.24).
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Model Problem 7.2.7. A numerical convergence study of linear two-dimensional Ćow prob-
lem.

We present a preliminary but comprehensive set of convergence numerical experiments which
explore the role of our two-dimensional Lagrangian-Eulerian scheme (7.1.25) to address the
issue of the order of convergence rate. At this moment it is worth mentioning that we expect to
perform a numerical analysis in ℓ2⊗space two the two-dimensional scheme in a similar fashion
as was done to the one-dimensional Lagrangian-Eulerian scheme discussed in details through
the preceding text of the current monograph in progress, which is not yet Ąnished. To this
aim, we consider the following initial value problem associated to the two-dimensional linear
hyperbolic conservation law,

𝜕𝑢

𝜕𝑡
+
𝜕𝑢

𝜕𝑥
+
𝜕𝑢

𝜕𝑦
= 0, in the computational domain (𝑥, 𝑦, 𝑡) ∈ [0, 1] × [0, 1] × [0, 1], (7.2.25)

and initial condition,
𝑢(𝑥, 𝑦, 0) = sin(Þ(𝑥+ 𝑦)), (7.2.26)

subject to exact boundary conditions on the inĆow portions of 𝜕Ω, i.e., along 𝑥 = 0 and 𝑦 = 0
the values of the conserved quantities are prescribed via the exact solution (see also Figure
7.26).
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Figure 7.26: Initial condition for problem (7.2.25)-(7.2.26). On the left (resp. right) picture we
show a Ş3D-plotŠs view angleŤ (resp. a oblique projection over the plane 𝑥 = 𝑦).

It is easy to show that the exact solution of the problem (7.2.25)-(7.2.26), as previously
discussed, is simply 𝑢(𝑥, 𝑦, 𝑡) = sin(Þ(𝑥 + 𝑦 ⊗ 2𝑡)). The numerical solution will be advanced
from 𝑇 = 0 to 𝑡 = 1 and we notice that at this time the solution is merely translated by one
period 2Þ, with respect to the initial condition in the oblique 𝑥 = 𝑦 direction.

Observed numerical convergence rate to (7.2.25) with initial condition 𝑢(𝑥, 𝑦, 0) = sin(Þ(𝑥+
𝑦)) in the 𝑙1ℎ-norm (left), in the 𝑙2ℎ-norm (middle) and in the 𝑙∞ℎ -norm (right). In the tables are
shown errors between the numerical approximations (𝑈) and exact solutions (𝑢) in 𝑙1ℎ, 𝑙2ℎ and 𝑙∞ℎ
norms to problem (7.2.25) with initial condition 𝑢(𝑥, 0) = sin(Þ(𝑥+ 𝑦)), advanced from 𝑇 = 0
to 𝑇 = 1 along with CFL condition 0.67. From the numerical numbers displayed in this table
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as well as from the the numerical convergence rate from the linear regression reported in Figure
7.28, we have Ąrst order convergence in ℓ𝑝-spaces, p=1, 2 and ∞. The numerical approximation
computed with our two-dimensional Lagrangian-Eulerian scheme (7.1.25) to problem (7.2.25)-
(7.2.26) is shown in the Figure 7.27 (left frame) along with the exact solution on the right
frame.
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Figure 7.27: Computed solution by our 2D Lagrangian-Eulerian scheme (7.1.25) to problem
(7.2.25)-(7.2.26) at simulation time 𝑇 = 1 (left) and exact solution (right) both projected over
oblique plane 𝑥 = 𝑦.
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Order ‖𝑢⊗ 𝑈‖𝑙∞
ℎ

Order

64 × 64 0.016 5.156 × 10⊗2 Ű 5.573 × 10⊗2 Ű 1.339 × 10⊗1 Ű
128 × 128 0.007 2.046 × 10⊗2 1.333 2.493 × 10⊗2 1.161 6.509 × 10⊗2 1.040
256 × 256 0.004 1.309 × 10⊗2 0.644 1.467 × 10⊗2 0.765 3.761 × 10⊗2 0.791
512 × 512 0.002 6.090 × 10⊗3 1.103 7.034 × 10⊗3 1.061 1.835 × 10⊗2 1.036
LSF 𝐸(ℎ) 2.911 * ℎ0.989 3.051 * ℎ0.972 6.534 * ℎ0.939

Figure 7.28: In every one of the Figures with differents norms, our two dimensional Lagrangian
Eulerian scheme gets approximately Ąrst order of accuracy when the mesh is reĄned.
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Chapter 8

Concluding remarks and perspectives
for the future

Over the last years, upwind and central (Godunov-type) schemes have gained popularity
due to their simplicity and efficiency for solving nonlinear systems of hyperbolic conservation
laws in several space dimensions. In particular, the last mentioned methods do not require the
solution of a Riemann problem or a characteristic decomposition to compute the inter-cell Ćux.
However, all methods currently in use are derived using the characteristic form of the equations
in one space dimension and most of these algorithms used to be extended to several space
dimensions using operator splitting of fractional steps [111, 113, 141, 158]. Operator splitting
techniques for approximating the solution of partial differential equations systems arise in many
Ąelds of application. The idea of splitting sums of complicated operators into simpler operators
that are treated separately, is both easy and fundamental, and as such has appeared under
various names in different contexts. It has a long history and has been developed with various
objectives in mind. One of the Ąrst rigorous results is associated with the name of Trotter [149].

The earliest of these procedures were introduced to reduce each time step of a multidimen-
sional transient problem to a cycle of one-dimensional calculations. The Ąrst two classes of these
procedures were the alternating-direction (𝐴𝐷) methods as presented by Douglas, Peaceman,
and Rachford [46, 47, 48, 55, 132] and the fractional step methods of DŠjakonov, Marchuk, and
Yanenko [59, 157]. (Half a century after these methods were deĄned, it has been shown [54]
that a modest modiĄcation in any of the splitting produces changes into the others.) These
procedures have been applied in numerical simulation of many physically important problems
either to obtain a more efficient time-stepping algorithm or, in the case of 𝐴𝐷 methods, to
apply an efficient iterator for an elliptic algebraic system. Additionally, in [150], it is described
a somewhat hybrid method between a front capturing method there are other relevant publica-
tions for this issue [39, 66, 91, 98, 109, 120, 129]. For a front tracking method (see [63, 64, 150]).
These articles show a recent survey on the development of such techniques.

It is worth mentioning that adverse effects (ranging from uncontrollable instabilities to dif-
Ąculties in accurately computing gradients near the interface) might limit the calculation of
volume fraction and inter-facial area for dispersed mixing Ćows in the long-time regimes . This
can be a signiĄcant drawback over front-tracking methods for the computations of multiphase
Ćow transport problems. Another major drawback of direct front-tracking is complexity. In
addition to the obvious question of how the interface grid interacts with the stationary grid, and
vice versa, it is generally necessary to restructure the interface grid dynamically as the calcu-



161

lations proceed. Computational points must be added in regions where the grid stretches, and
usually, it is desirable to eliminate points from regions of compression. Additional complica-
tions, to be discussed later, arise in three dimensions. Another major problem for front-tracking
results come from the interaction of a front with another front (or another part of the same
front). Generally, the computational procedure does not recognize more than one front in each
cell of the stationary grid, and therefore, double interfaces have to be merged into one interface
or eliminated. In other words, when two interfaces are very close to each other, or when an
interface folds back on itself, such that two front segments are between the same two Ąxed
grid points; the property value on the Ąxed grid depends on which interface segment is being
considered. Since this situation is fairly common, a more general method is needed.

Only in 1990 a second-order accurate non-oscillatory central Godunov-type scheme was
introduced by Nessyahu and Tadmor (NT) [124], whose work generalized the Ąrst-order accurate
staggered Lax-Friedrichs scheme using a non-oscillatory piecewise-linear reconstruction in the
spirit of van LeerŠs MUSCL [152]. The NT scheme, which is one of the simplest and most
versatile Godunov-type numerical methods, has recently been put on solid theoretical ground
by the proof of the fully-nonlinear schemeŠs convergence to the unique entropy solution of the
problem in the case of strictly convex nonlinear scalar conservation laws [133]. In addition,
over the last decade, the NT scheme has inspired a signiĄcant amount of research on the topic
of non-oscillatory central schemes. Some of the recent work on central schemes includes, but is
not limited to, semi-discrete formulations, less dissipative central-upwind schemes, extensions
to multiple spatial dimensions and non-Cartesian meshes (see, e.g., [34, 39, 86, 97, 98, 99, 100]
and the references therein).

8.1 Concluding remarks

In this work was explored a locally conservative and divergence space-time Ąnite control
volume in a Lagrangian-Eulerian framework, Ąrst developed in the context of purely hyper-
bolic conservation laws, in order to design a locally conservative scheme to account the balance
between numerical approximations of the hyperbolic Ćux function and the source term linked
to steady solutions. Our new Lagrangian-Eulerian scheme is aimed to be not dependent of a
particular structure of the source term. The designed scheme is also non dependent of Rie-
mann problem solutions, but if available for a particular problem it is somewhat natural to
incorporate such information into the procedure and thus yielding Ćexibility to the develop-
ment of distinct numerical strategies upon the speciĄc model under consideration. A set of
representative numerical experiments for nonlinear problems - scalar and system - of hyper-
bolic conservation law and balance law types are presented to illustrate the performance of the
new method. The numerical results are compared with accurate approximate solutions or exact
solutions whenever possible.

We reiterate that, to the best of our knowledge, we have introduced a new approach for
construction of new class of approximate solutions for multidimensional hyperbolic conserva-
tion laws, thanks to an appropriate reformulation of the original differential governing equation
by means of an equivalent system of balance laws. Thus, in order to establish such connection
between multidimensional hyperbolic conservation laws and system of balance laws, it was nec-
essary to revisit the Lagrangian-Eulerian in its original setting for linear hyperbolic conservation
laws and its extension for scalar and balance laws systems in one-space dimension. Indeed, they
were presented, in details, several properties of the the new Lagrangian-Eulerian scheme for
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linear hyperbolic conservation laws, namely, consistency, stability and convergence by means of
the Lax equivalence theorem. Moreover, we also derived the associated modiĄed equation for
the Lagrangian-Eulerian scheme and describe the dispersive-dissipative relation to explain the
one-dimensional numerical experiments results. We were able to write the Lagrangian-Eulerian
scheme in conservative form for nonlinear hyperbolic conservation laws as well as we construct a
Lipschitz continuous consistency condition to the Lagrangian-Eulerian numerical Ćux function.
The Harten theory [75, 76], the Majda and Crandall theory [42] and the ideas in SmollerŠs
book [139] were used to prove the convergence of the approximate solutions, obtained using our
Lagragian-Eulerian scheme for entropic solution of non-linear scalar hyperbolic conservation
law in both numerical methods. Furthermore, numerical experiments for hyperbolic conserva-
tion laws with convex and non-convex Ćux functions were also present to illustrate the qualities
of the new scheme. In particular, it was discussed the stability and convergence issues of the
Lagrangian-Eulerian scheme for linear and nonlinear balance law problems.

We demonstrated the Lagrangian-Eulerian scheme applicability using a standard uniform
cartesian discretization to several tests problems, in 1D and 2D, such as:

• two-phase Buckley-Leverett equations.

• Shallow-water Ćow in an inclined channel

• Rotational Ćows

• Euler equations based on G A SodŠs ŞShock TubeŤ problem Nonequilibrium gas dynamics

• two-dimensional nonlinear inviscid BurgersŠs equation with an oblique Riemann problem

• Porous media problems with convex

• non-convex and discontinuous Ćux functions

• LeVeque-YeeŠs Effect for Riccati source term

• convection-reaction problem with an inhomogeneous N-wave similarity-solution.

We were able to reproduce the expected qualitative behavior with no spurious oscillations
nor grid orientation effects. All numerical experiments were performed with the most simple
Ąrst order version of the Lagrangian-Eulerian scheme.

In Section 6 was discussed a extension of the Lagrangian-Eulerian scheme for systems of
balance laws in one-space dimension. Based on the numerical experiments reported in the
last part of this Section, we observe that our new Eulerian-Lagrangian approach was able to
capture qualitative correct solutions for linear and nonlinear problems as well as for systems in
one-dimensional spaces.

For hyperbolic conservation laws in two-space dimensions, the Crandall and Majda theory
(see [42]) shown that classic splitting of Godunov type converges to the entropic solution when
the numerical method, used in each step of the splitting, converges to the entropic solution, as
was proved for our scheme in one space dimension for hyperbolic conservation laws. Further-
more, we proposed an extension to Ąnd approximated solutions of hyperbolic conservation laws
in two space dimensions. In this case, a balance law system is solved at each step (Δ𝑡/2) aiming
the error to be less than in the classic splitting, in this approach the source term couples the
system of two equations of balance laws. Along numerical experiments for nonlinear hyperbolic
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problems, we observe that our new Eulerian-Lagrangian approach was able to capture quali-
tative correct solutions for linear and nonlinear problems in two space dimensions, and more
important, without any of the sophisticated tools, which makes it easy to be implemented.

8.2 Perspectives for future work

We are working on the extension to higher orders of the Lagrangian-Eulerian scheme for
solving one-dimensional and multidimensional problems (conservation laws and balance laws).
we are also working on designing other strategies for quadrature rules and nonlinear reconstruc-
tion given by slope limiters. We expect to take additional advantage of the similarity between
the structure of the Lagrangian-Eulerian scheme and the Lax-Friedrichs and Nessyahu-Tadmor
schemes to obtain further convergence proofs based on the milestone works for hyperbolic con-
servation laws, including discontinuous Ćux functions.

In Section 6 we discussed a extension of the Lagrangian-Eulerian scheme for systems of
balance laws in one-space dimension to hyperbolic conservation laws in two-space dimensions,
along with numerical experiments for nonlinear hyperbolic problems. We expect to perform the
numerical analysis for the two-dimensional Lagrangian-Eulerian scheme soon. In next future we
expect to amplify and clarify our knowledge on the theory of scalar conservation laws, scalar
hyperbolic balance laws, system of hyperbolic laws, system of hyperbolic balance laws and
hyperbolic conservation laws in two or more space variables; and then we expect to apply all
these knowledge to explain and prove the convergence of approximated solutions of the above
mentioned problems.

In section 7 was discussed an extension of the Lagrangian-Eulerian scheme to solve a hyper-
bolic balance law to one scheme to solve a hyperbolic conservation law in two spatial variables
by using one system of balance laws that is coupled in the source term. The issue of direct
extension of the Lagrangian-Eulerian scheme for approximating solution of scalar nonlinear
hyperbolic conservation laws for numerical scheme to solve hyperbolic conservation law in two
dimensional variables using integral tubes has not yet been replied, because it seems the surface
of the integral tube and the surface normal vector are very difficult to deĄne, as it was discuss
in the chapter 7. This extension is also a perspective for a further work.

8.3 Final Considerations

We establish a rigorous convergence proof for the uniqueness of the entropy solution, con-
structed with the aid of integral tubes by a Lagrangian-Eulerian procedure for hyperbolic
conservation laws, in one-space dimension to the case of convex Ćux. Convergence proofs for
linear hyperbolic law problems and linear balance law problems, were also obtained in the con-
text of the Lax equivalence theorem. To the best of our knowledge, this work is the Ąrst to
establish a rigorous convergence proof for numerical schemes of Lagrangian-Eulerian type for
purely nonlinear hyperbolic conservation laws, and thus yielding a novelty approach.

We proposed an extension of the Lagrangian-Eulerian framework to the case of systems of
one-dimensional hyperbolic problems, and to the case of balance laws. Furthermore, combing
such ideas we also designed a scheme for two-dimensional conservation laws.

We introduced a novel Lagrangian-Eulerian framework for balance laws along with good
numerical evidence to be Şwell-balancedŤ. In particular, we accurately reproduce numerical
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results from those reported in some important journals. The method seems to be promising
and further studies will follow to the case of systems of equations in 2D and 3D. In particular, a
more rigorous numerical analysis is needed to take into account convergence results in the case
of non-linear hyperbolic conservation laws with source terms, which in turn we are interested in
Ąnding the space-time domain region where the mass Ćux takes place for general multi-phase
problems in porous media.
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Appendix A

Uniqueness of the Entropy Solution

In this section as an important information, we include the uniquenes proof makes by Joel
Smoller in [139] in section B of the chapter sixteen that has the same title of this section. It
then follows from theorem (3.2.1). We shall show that solution of

𝜕𝑢

𝜕𝑡
+
𝜕𝐻(𝑢)

𝜕𝑥
= 0, 𝑢(𝑥, 0) = Ö(𝑥) (A.0.1)

which satisfy the entropy condition (3.2.6) are unique. It then follows from theorem (3.2.1) that
the solution which we constructed via the Ąnite-diference, in this case to Lagragian-Eulerian
scheme, is the unique solution of our problem. We call the solution which satisĄes (3.2.6), the
the entropy solution. The method of proof which we shall give is really a non linear version
of the Holmegren method (see chapter 5 of [139]). Recall that for linear operators 𝐴, since
Ö𝐴 ⊆ (ℛ𝐴∗)⊥ (where Ö𝐴 and ℛ𝐴∗ are the null space and range of 𝐴 and 𝐴* respectively), in
order to show that Ö𝐴 = 0, it suffices to show that ℛ𝐴∗ is everywhere dense. Thus if 𝑢 and 𝑣
are solutions of (A.0.1), in order to show 𝑢 = 𝑣 almost everywhere in 𝑡 > 0, it suffices to show

∫︁∫︁

𝑡⊙0
(𝑢⊗ 𝑣)ã = 0 (A.0.2)

for every ã ∈ 𝐶1
0 , we have both

∫︁∫︁

𝑡⊙0
(𝑢å𝑡 + 𝑓(𝑢)å𝑥) +

∫︁

𝑡=0
𝑢0 å = 0 (A.0.3)

and ∫︁∫︁

𝑡⊙0
(𝑣å𝑡 + 𝑓(𝑣)å𝑥) +

∫︁

𝑡=0
𝑢0 å = 0 (A.0.4)

If we subtract these two equations we gets
∫︁∫︁

𝑡⊙0
((𝑢⊗ 𝑣)å𝑡 + [𝑓(𝑢) ⊗ 𝑓(𝑣)]å𝑥) = 0 (A.0.5)

or ∫︁∫︁

𝑡⊙0
(𝑢⊗ 𝑣)

[︃
å𝑡 +

𝑓(𝑢) ⊗ 𝑓(𝑣)

𝑢⊗ 𝑣
å𝑥

⟨
= 0 (A.0.6)

next, if we deĄne 𝐹 by

𝐹 (𝑥, 𝑡) =
𝑓(𝑢) ⊗ 𝑓(𝑣)

𝑢⊗ 𝑣
(A.0.7)
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then (A.0.6) can be written as

∫︁∫︁

𝑡⊙0
(𝑢⊗ 𝑣) [å𝑡 + 𝐹å𝑥] = 0 (A.0.8)

Now if we could solve the linear (adjoint !) equation

å𝑡 + 𝐹å𝑥 = ã, (A.0.9)

for arbitrary ã ∈ 𝐶1
0(𝑡 > 0). then (A.0.8) would imply (A.0.2) and we could conclude that

𝑢 = 𝑣, almost everywhere. There is however an obstruction to this approach; namely, 𝐹 is
not smooth (or even continuos) in general, and so it is not clear that (A.0.9) has a solution
å ∈ 𝐶1

0 . The way around this difficulty is to approximate 𝑢𝑚, 𝑣𝑚 and solve the corresponding
linear equations.

å𝑚
𝑡 + 𝐹𝑚å

𝑚
𝑥 = ã, (A.0.10)

with smooth coeĄcients, for å𝑚 ∈ 𝐶1
0 , where

𝐹𝑚(𝑥, 𝑡) =
𝑓(𝑢𝑚) ⊗ 𝑓(𝑣𝑚)

𝑢𝑚 ⊗ 𝑣𝑚

(A.0.11)

Then ∫︁∫︁

𝑡⊙0
(𝑢⊗ 𝑣)ã =

∫︁∫︁

𝑡⊙0
(𝑢⊗ 𝑣)å𝑚

𝑡 +
∫︁∫︁

𝑡⊙0
(𝑢⊗ 𝑣)𝐹𝑚å

𝑚
𝑥

= ⊗
∫︁∫︁

𝑡⊙0
(𝑓(𝑢) ⊗ 𝑓(𝑣))å𝑚

𝑥 +
∫︁∫︁

𝑡⊙0
(𝑢⊗ 𝑣)𝐹𝑚å

𝑚
𝑥

(A.0.12)

so that ∫︁∫︁

𝑡⊙0
(𝑢⊗ 𝑣)ã =

∫︁∫︁

𝑡⊙0
(𝑢⊗ 𝑣) (𝐹𝑚 ⊗ 𝐹 )å𝑚

𝑥 . (A.0.13)

Then if 𝐹𝑚 ⊃ 𝐹 , locally in 𝐿1, and if å𝑚
𝑥 is bounded, independently of 𝑚, we could pass to

the limit on the right-hand side of this last equantion and conclude that (A.0.2) holds. This
procedure will be carried out below, whereby the entropy condition (3.2.6) will be used to
obtain the uniform bound on å𝑚

𝑥 .

Theorem A.0.1. Let 𝑓 ∈ 𝐶2, 𝑓 ′′ > 0, and let 𝑢 and 𝑣 be two solution satisfying the entropy
condition (3.2.6). Then 𝑢 = 𝑣 almost everywhere in 𝑡 > 0.

𝑃𝑟𝑜𝑜𝑓 . For every positive integer 𝑚, let

𝑢𝑚 = 𝑣𝑚 and 𝑣𝑚 = 𝑣 * 𝑤𝑚 (A.0.14)

where 𝑤𝑚 is the usual averaging kernel of radius 1/𝑚, and * denotes convolution product (see
chapter 5 of ([139])). We deĄne

𝐹𝑚(𝑥, 𝑡) =
∫︁ 1

0
𝑓 ′(𝜃𝑢𝑚 + (1 ⊗ 𝜃𝑣𝑚))𝑑𝜃

=
1

𝑢𝑚 ⊗ 𝑣𝑚

∫︁ 𝑣𝑚

𝑢𝑚

𝑓 ′(𝑠)𝑑𝑠 =
𝑓(𝑢𝑚) ⊗ 𝑓(𝑣𝑚)

𝑢𝑚 ⊗ 𝑣𝑚

(A.0.15)
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We shall next show that 𝐹𝑚 ⊃ 𝐹 , locally in 𝐿1. Let 𝑐 = max¶𝑓 ′′(𝑢) : ♣𝑢♣⊙ 𝑀♢. Then

𝐹 (𝑥, 𝑡) ⊗ 𝐹𝑚(𝑥, 𝑡) =
∫︁ 1

0
[𝑓 ′(𝜃𝑢+ (1 ⊗ 𝜃)𝑣) ⊗ 𝑓 ′(𝜃𝑢𝑚 + (1 ⊗ 𝜃)𝑣𝑚)] 𝑑𝜃

=
∫︁ 1

0
𝑓 ′′(Ý) [𝜃(𝑢⊗ 𝑢𝑚) + (1 ⊗ 𝜃)(𝑣 ⊗ 𝑣𝑚)] 𝑑𝜃,

(A.0.20)

where Ý is between 𝜃𝑢+ (1 ⊗ 𝜃)𝑣 and 𝜃𝑢𝑚 + (1 ⊗ 𝜃)𝑣𝑚, so that ♣Ý♣⊘ 𝑀 . Thus

♣𝐹 (𝑥, 𝑡) ⊗ 𝐹𝑚(𝑥, 𝑡)♣ ⊘ 𝑐
∫︁ 1

0
¶𝜃♣𝑢⊗ 𝑢𝑚♣+(1 ⊗ 𝜃)♣𝑣 ⊗ 𝑣𝑚♣♢𝑑𝜃

= 𝑐¶♣𝑢⊗ 𝑢𝑚♣+♣𝑣 ⊗ 𝑣𝑚♣♢
(A.0.21)

accordingly, if 𝐾 is any compact set in 𝑡 ⊙ 0,
∫︁∫︁

𝑅
♣𝐹 (𝑥, 𝑡) ⊗ 𝐹𝑚(𝑥, 𝑡)♣⊘ 𝑐

∫︁∫︁

𝐾
(♣𝑢𝑚 ⊗ 𝑢♣+♣𝑣𝑚 ⊗ 𝑣♣)

and this later integral tends to zero as 𝑚 ⊃ ∞. It remains to show that we can bound å𝑚
𝑥 . It

is here where we shall use the entropy condition (3.2.6). Thus, let Ð > 0 be arbitrary. Then
for each Ąxed 𝑡 ⊙ Ð, the function 𝑢(𝑥, 𝑡) ⊗ 𝐸𝑥/Ð is non-increasing in 𝑥. This follow from the
entropy condition (3.2.6), since if 𝑎 > 0,

𝑢(𝑥+ 𝑎, 𝑡) ⊗ 𝐸(𝑥+ 𝑎)

Ð
⊗ 𝑢(𝑥, 𝑡) +

𝐸𝑥

Ð
= 𝐸𝑎

(︂
1

𝑡
⊗ 1

Ð

)︂
< 0.

From this we Ąnd that

𝑤𝑛 *
(︂
𝑢⊗ 𝐸𝑥

Ð

)︂
= 𝑢𝑚 ⊗ 𝐸(𝑤𝑚 * 𝑥)

Ð

is also nonincreasing in 𝑥, as one can easily check. Since this latter function is smooth and

𝜕

𝜕𝑥

[︂
𝑤𝑚 *

(︂
𝑢⊗ 𝐸𝑥

Ð

)︂]︂
=
𝜕𝑢𝑚

𝜕𝑥
⊗ 𝐸

Ð
,

we see that the following are true:

𝜕𝑢𝑚

𝜕𝑥
⊘ 𝐸

Ð
and

𝜕𝑣𝑚

𝜕𝑥
⊘ 𝐸

Ð
. (A.0.22)

Next, from (A.0.15),

𝜕𝐹𝑚

𝜕𝑥
=
∫︁ 1

0
𝑓 ′′(𝜃 𝑢𝑚 + (1 ⊗ 𝜃) 𝑣𝑚)

[︃
𝜃
𝜕𝑢𝑚

𝜕𝑥
+ (1 ⊗ 𝜃)

𝜕𝑣𝑚

𝜕𝑥

⟨
𝑑𝜃,

and since 𝑓 ′′ > 0, we get from (A.0.22)

𝜕𝐹𝑚

𝜕𝑥
⊘
∫︁ 1

0
𝑓 ′′(𝜃 𝑢𝑚 + (1 ⊗ 𝜃) 𝑣𝑚)

𝐸

Ð
(𝜃 + 1 ⊗ 𝜃)𝑑𝜃

=
𝐸

Ð

∫︁ 1

0
𝑓 ′′(𝜃 𝑢𝑚 + (1 ⊗ 𝜃) 𝑣𝑚)𝑑𝜃.
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therefore,
𝜕𝐹𝑚

𝜕𝑥
⊘ 𝐾Ð, (A.0.23)

where

𝐾Ð =
𝐸

Ð
max
♣𝑢♣⊘𝑀

𝑓 ′′(𝑢),

so that 𝐾Ð is independent of 𝑚.
Now let

𝑎𝑚(𝑠) =
𝜕𝑥𝑚

𝜕𝑥
(𝑠;𝑥, 𝑡) = 1. (A.0.24)

Thus,
𝜕𝑎𝑚

𝜕𝑠
=

𝜕

𝜕𝑠

𝜕𝑥𝑚

𝜕𝑥
=

𝜕

𝜕𝑥

𝜕𝑥𝑚

𝜕𝑠
=

𝜕

𝜕𝑥
𝐹𝑚(𝑥𝑚, 𝑠)

=
𝜕

𝜕𝑥
𝐹𝑚(𝑥𝑚(𝑠;𝑥, 𝑡), 𝑠) =

𝜕𝐹𝑚

𝜕𝑥

𝜕𝑥𝑚

𝜕𝑥
=
𝜕𝐹𝑚

𝜕𝑥
𝑎𝑚.

Then from (A.0.24), we obtain the formula

𝑎𝑚(𝑠) = exp

(︃∫︁ 𝑠

𝑡

𝜕𝐹𝑚

𝜕𝑥
(𝑥𝑚(á), á)𝑑á

)︃
.

since Ð ⊘ 𝑡 ⊘ 𝑠 ⊘ 𝑇 , we have from (A.0.23),

𝑎𝑚(𝑠) = 𝑎𝑚(𝑠) ⊘ exp𝐾Ð(𝑇 ⊗ Ð)

But from (A.0.16)
𝜕å𝑚

𝜕𝑥
=
∫︁ 𝑡

𝑇

𝜕ã

𝜕𝑥𝑚

𝜕𝑥𝑚

𝜕𝑥
𝑑𝑠 =

∫︁ 𝑡

𝑇

𝜕ã

𝜕𝑥
𝑎𝑚𝑑𝑠

Thus ⧹︃⧹︃⧹︃⧹︃⧹︃
𝜕å𝑚

𝜕𝑥

⧹︃⧹︃⧹︃⧹︃⧹︃ ⊘ 𝐾Ð if 𝑡 ⊙ Ð (A.0.25)

where 𝐾Ð is independent of 𝑚.
We now must investigate the behavior of ã𝑚 in the region 0 ⊘ 𝑡 ⊘ Ð. To this end, we deĄne

𝑉𝑡(å
𝑚) =

∫︁ ∞

⊗∞

⧹︃⧹︃⧹︃⧹︃⧹︃
𝜕å𝑚

𝜕𝑥

⧹︃⧹︃⧹︃⧹︃⧹︃ 𝑑𝑥,

the total variation of å𝑚 as a function of 𝑥, for each Ąxed 𝑡 > 0, From (A.0.25), and the fact
that the å𝑚 are in 𝐶1

0 with their supports being contained in a region independent of 𝑚, we
have

𝑉𝑡(å
𝑚) ⊘ 𝐶Ð if 𝑡 ⊙ Ð (A.0.26)

where 𝐶Ð does not depend on 𝑚.
The last estimate we need is

∃𝑁 ∈ Z+ ∋: 𝑛 > 𝑁 =⇒ 𝑉𝑡(å
𝑚) ⊘ 𝐶1/𝑛, ∀ 𝑡, 0 < 𝑡 ⊘ 1

𝑛
<

1

𝑁
. (A.0.27)
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Now since Ð < 1/𝑛 ⊘ 1/𝑁 ,

∫︁∫︁

𝑡<Ð
♣𝑢⊗ 𝑣♣♣𝐹𝑚 ⊗ 𝐹 ♣♣å𝑚

𝑥 ♣ ⊘ 2𝑀 2𝑀1

∫︁∫︁

𝑡<Ð
♣å𝑚

𝑥 ♣= 4𝑀𝑀1

∫︁ ∞

0

∫︁ ∞

⊗∞
♣å𝑚

𝑥 ♣

= 4𝑀𝑀1

∫︁ ∞

0

∫︁

⊗∞
𝑉𝑡(å

𝑚
𝑥 )𝑑𝑡

= 4𝑀𝑀1 𝐶1/𝑛 Ð (𝐴.0.27)

so that ∫︁∫︁

𝑡<Ð
♣𝑢⊗ 𝑣♣♣𝐹𝑚 ⊗ 𝐹 ♣♣å𝑚

𝑥 ♣< 𝜖

2
. (A.0.32)

Thus using (A.0.30) and (A.0.32) in (A.0.31), we get

⧹︃⧹︃⧹︃⧹︃
∫︁∫︁

𝑡⊙0
(𝑢⊗ 𝑣)ã

⧹︃⧹︃⧹︃⧹︃ < 𝜖

and from arbitrariness of 𝜖, ∫︁

𝑡⊙0
(𝑢⊗ 𝑣)ã = 0

for all ã ∈ 𝐶1
0(𝑡 > 0). Thus 𝑢 = 𝑣 almost everywhere in 𝑡 > 0. This completes the uniqueness

proof. ✷
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