IMPORTANCIA DO PRODUTO "WREATH" PARA A TEORIA DE GRUPOS

SONIA GABRIELINA PASCHOLATI CARILE

ORIENTADOR

PROF. DR. JOHN EDMONDS DAVID

Dissertação apresentada ao Instituto de Matemática, Estatistica e Ciencia da Computação da Universidade Estadual de Campinas como requisito parcial para obtenção do titulo de Mestre em Matemática.

Este trabalho foi realizado com o auxílio financeiro da CAPES e FINEP;

NET THE CANAL SERVERAL

A meus pais

е

José Archangelo

AGRADECIMENTOS

Ao Prof. John Edmonds David que, com sua segura orientação, permitiu a realização deste trabalho.

A meus pais, professores e colegas por seus estímulos e ensinamentos.

A meu irmão Sergio, pelo auxílio prestado na datilo - grafia dos manuscritos.

Aos funcionários da UNICAMP que colaboraram na impressão desta dissertação.

A CAPES e FINEP que, com seu apoio financeiro, torna - ram possível a realização deste trabalho.

INDICE

INTRODUÇÃO
CAPITULO 1. Discussão Introdutória sobre o produto wreath01
CAPITULO 2. Semigrupos
CAPITULO 3. Ações de semigrupos
CAPITULO 4. Produto semidireto
CAPITULO 5. Produto "wreath"27
CAPITULO 6. Propriedades de ações de semigrupos e grupos34
CAPITULO 7. Considerações sobre S^{Y} e S wr T^{*}
CAPITULO 8. Esquema de decomposição
CAPITULO 9. Decomposição de ações de grupos60
BIBLIOGRAFIA :::

INTRODUÇÃO

Segundo entrevista dada à imprensa pelo professor D. Gorenstein, da Universidade de Rugters, a principal linha de pesquisa, para a qual estão voltados os matemáticos que trabalham em grupos finitos, é a classificação dos grupos finitos simples. Acredita ele que nos próximos dez anos este problema estará solucionado.

Nesta dissertação contribuímos para mostrar a importância dessa linha de pesquisa para toda a teoria de grupos finites, pois demonstramos que cada grupo finito pode ser imerso num produto "wreath" clássico de grupos simples.

Nosso principal objetivo neste trabalho foi criar condições para a prova do teorema de Kaloujnine - Krasner.

Nos capítulos iniciais apresentamos um resumo de conceitos e resultados básicos sobre semigrupos. Depois desenvolvemos a teoria de semigrupos agindo sobre conjuntos e semigrupos agindo sobre semigrupos. Nos capítulos 4 e 5, com base em ações de semigrupos, definimos produto direto e produto "wreath". No capítulo 6 apresentamos propriedades de ações de grupos e semigrupos, algumas envolvendo produto "wreath". Finalmente temos a decomposição de ações de semigrupo em produto "wreath", culminando com o teorema de Ka-

loujnine-Krasner, que trata da imersão de grupos finitos num produto "wreath" de grupos simples.

Tomamos como ponto de partida do nosso traba - lho o artigo "Some Applications of the wreath product construction", de Charles Wells, usando uma notação uniformizada.

Demonstramos as proposições, observações e lemas seguintes, apenas enunciados por Wells:

Proposições: (6.7), (6.8), (6.9), (7.1), (9.2).

Observações: (5.9), (7.2.iv).

Lemas: (3.2), (3.7.14), (4.5), (4.6), (6.4).

Fizemos correção no enunciado de teorema (8.4), "Esquema de Decomposição", e corolários do mesmo. Detalhamos as demonstrações deles.

No capitulo 9 completamos a demonstração do corolário (9.13) e da proposição (9.2). Detalhamos a demonstração do teorema de Kaloujnine-Krasner e damos uma aplicação, usando o grupo dos quatérnios.

CAPITULO 1

DISCUSSÃO INTRODUTORIA SOBRE O PRODUTO "WREATH"

Nas situações a serem estudadas estarão envolvidos um conjunto X, um semigrupo S e uma função ϕ , onde $\phi:S$ —— ϕ peradores de X ϕ , tal que, s— ϕ s ϕ .

(1.1.) Exemplos:

- (1.1.1.) Em teoria de grupos, X é um espaço vetorial complexo e S um grupo, olhando-se s∮ como uma matriz inversível.
- (1.1.2.) Em muitas aplicações da teoria abstrata de grupos, X é o "conjunto por trás" de um grupo S e s¢ é a multiplicação à direita por s.
- (1.1.3.) Em combinatória, X é frequentemente uma estrutura combinatória (um gráfico por exemplo) e S é seu grupo de automorfismos.

Costuma-se parametrizar o conjunto X, de tal

modo que a ação de S é analisada dentro de ações mais simples sobre os parâmetros, isto é, pode-se olhar X como um conjunto de vetores, no sentido mais amplo de n-uplas de algum produto cartesiano de conjuntos e descrever a ação de S, através das mudanças que faz nas coordenadas.

Em geral, o efeito de so, sobre uma dada coordenada, depende de alguma ou todas as outras coordenadas. Frequentemente, pode acontecer que estas coordenadas estejam ordenadas de tal modo que o efeito de so em uma dada coordenada depende somente daquela coordenada e das coordenadas que a seguem. A ação é dita, então, triangular.

Em muitas aplicações é conveniente tomar S como um semigrupo. Se S não é semigrupo ele é, usualmente, representado por um semigrupo livre ou, às vezes, pelo semigrupo po gerado pelo conjunto de funções so, com a composição funcional como operação.

O produto "wreath", como veremos, é descrito através de ações de semigrupos.

CAPITULO 2

SEMIGRUPOS

(2.1.) Definições:

- (2.1.1.) Semigrupo. Um semigrupo é um conjunto S, munido de uma multiplicação associativa sobre S.
- (2.1.2.) Unidade. Uma unidade em S é um elemento $1 \in S$, satisfazendo 1s = s1 = s, para todo $s \in S$.
- (2.1.3.) Monoide. Um monoide é um semigrupo com unidade.
- (2.1.4.) Subsemigrupo. Um subsemigrupo de um semigrupo S é um subconjunto de S, fechado para a multiplicação.
- (2.1.5.) $S^1 = S \cup 1$, onde S é semigrupo sem unidade e 1 é um elemento que não pertence a S, tal que, ls = sl = s, para todo s \in S. Se S tem unidade $S^1 = S$.
- (2.1.6.) Trans X. Seja X um conjunto. Trans X é o conjunto de todas as funções de X em X, juntamente com uma operação

- binária, composição de funções. Uma função em Trans X é chamada uma transformação de X.
- (2.1.7.) Subgrupo. Seja S um semigrupo. G é subgrupo de S se G é subsemigrupo de S e G é grupo.
- (2.1.8.) Sim X. É o subgrupo unitário de Trans X, constituído de todas as permutações de X, isto é, $1_{\text{Sim X}} = 1_{\text{Trans X}}$.
- (2.1.9.) PF(X). É o monóide, constituído de todas as funções f: $A \subset X \longrightarrow X$. Trans $X \subset PF(X)$.
- (2.1.10.) Zero de S. Seja S um semigrupo. Se $z \in S$ satisfaz zs = sz = z, para todo $s \in S$, então z é um zero de S.
- (2.1.11.) Idempotente. Seja S um semigrupo. O elemento $e \in S$ é idempotente se $e^2 = e$.
- (2.1.12.) Ideal à direita. Seja S um semigrupo. Um subconjunto I S é um ideal à direita se is \in I, para todo i \in I e s \in S. Ideal à esquerda é definido de modo semelhante.
- (2.1.13.) Homomorfismo de semigrupos. Sejam S e T, semigrupos. Uma função $\phi:S_{-}$ T é um homomorfismo se $(s.s')\phi = s\phi$. $s'\phi$, para todo $s,s' \in S$.
- (2.1.14.) Imagem homomórfica. Seja Ø:S_____T homomorfismo

de semigrupos. T é imagem homomórfica de S, se ϕ é sobrejetora.

(2.1.15.) S "divide" T. Sejam S e T semigrupos. Dizemos que S "divide" T(S/T), se S é imagem homomórfica de um subsemigrupo de T.

(2.2.) Lema. Se ja S um semigrupo finito e s \in S. Então alguma potência de s é idempotente.

Prova:

Sejam k e n os inteiros mínimos, tal que 0 < k < n e $s^k = s^n$. Então $s^{k+n-k} = s^k$.

Suponhamos que para algum inteiro m > 0, $s^{k+m(n-k)} = s^k$.

Então $s^{k+(m+1)(n-k)} = s^{k+m(n-k)} \cdot s^{(n-k)} = s^k \cdot s^{(n-k)} =$ $= s^{k+n-k} = s^k \cdot s^{(n-k)} = s^{k+m(n-k)} \cdot s^{(n-k)} = s^k \cdot$

Assim, por indução, $s^{k+m(n-k)} = s^k$, para todos os inteiros m > 0.

Seja p um inteiro positivo, para o qual k+p = m(n-k), para algum m.

Então sk+p é idempotente, pois:

 $s^{k+p} = s^k \cdot s^p = s^{k+m(n-k)} \cdot s^p = s^{k+p} \cdot s^{m(n-k)} =$ $= s^{k+p} \cdot s^{k+p} = (s^{k+p})^2.$

(2.2.1.) Corolário. Seja G'um semigrupo finito com um único elemento idempotente, e. Se e for identidade de G, então G é um grupo.

Prova:

Seja e∈G o único idempotente de G e seja x∈G.

Pelo lema 3.2., $x^k = e$ para algum k.

Então x é o inverso de k, pois:

$$x = x \cdot x^{k-1} = x^{k-1} \cdot x = e$$

Logo G é grupo.

(2.3.) Lema. Sejam: S um semigrupo finito, ϕ um homomorfismo de semigrupo, com domínio S e S ϕ um grupo. Então há um subgrupo G de S, tal que G ϕ = S ϕ . (Por definição G é subgrupo de S se G é subsemigrupo de S e G é grupo).

Prova:

Seja G um subsemigrupo minimal de S, tal que G ϕ = S ϕ .

Vamos mostrar que G é grupo.

Seja e∈G um idempotente arbitrário, cuja existência é garantida por 3.2.

Então e é idempotente em S :

$$e\phi$$
 . $e\phi$ = (e.e) ϕ = $e\phi$

e ϕ é, portanto, a unidade de S ϕ , pois o único idempotente num grupo é sua unidade.

Temos então que:

 $(eGe) \varphi = e \varphi \cdot G \varphi \cdot e \varphi = e \varphi \cdot S \varphi \cdot e \varphi = S \varphi \cdot e \text{ assim pe}$ la minimalidade de G , eGe = G.

Como (ege) = e(ege) = (ege)e = ege , temos que G é um monóide com unidade e .

Como \underline{e} é um idempotente arbitrário, então \underline{e} é o único idempotente de G.

Pelo corolário 3.2.1., G é um grupo.

CAPITULO 3

AÇÕES DE SEMIGRUPOS

(3.1.) <u>Definição</u>. Uma ação à direita, por um semigrupo S em um conjunto X, é uma função:

 $X \times S \longrightarrow X$, satisfazendo: (x,s) \longrightarrow xs.

x(st) = (xs)t, para todo $x \in X$, s, $t \in S$.

- (3.2.) Lema. i) Uma ação determina um homomorfismo $\phi : S \longrightarrow Trans X$, definido por $x(s\phi) = xs$, $(x \in X, s \in S)$.
- ii) Qualquer homomorfismo ϕ : S \longrightarrow Trans X, determina uma ação em X por S , dada por $(x,s)\longrightarrow x(s\phi)$.

Prova:

i) ϕ \in um homomorfismo, pois $x(s\phi \circ s^{\dagger}\phi) =$ $= (xs\phi) s^{\dagger}\phi = (xs) s^{\dagger}\phi = (xs) s^{\dagger}\phi = x (ss^{\dagger}\phi) = x (ss^{\dagger}\phi).$

$$x (st) = x (st\phi) = x (s\phi \circ t\phi) = (xs\phi) t\phi = (xs) t$$

para todo $x \in X$, $s,t \in S$.

(3.3.) Notação:

Ações serão denotadas por S^* ou (S, ϕ, X) , onde

\$: S Trans X.

(Trans X)* e (Sim X)* denotam as ações de

Trans X e Sim X sobre X.

- (3.4.) <u>Definição</u>: Uma ação à esquerda, por um semigrupo S, em um conjunto X, é uma função de S_X X em X, satisfazendo:
 - (st) x = s (tx), para todo $s, t \in S$, $x \in X$.

(3.5.) Observações:

Consideraremos apenas ações à direita, exceto quando especificado o contrário.

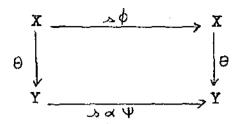
Se S^* = (S, ϕ, X) é uma ação, S é também chamado semi-autômato ou máquina e X pode ser chamado um S-conjunto ou S-operando.

(3.6.) Exemplos de ações:

- (3.6.1.) Qualquer semigrupo de transformações de um conjunto X, age sobre X. Em particular qualquer grupo de permutações em X é exemplo de uma ação.
- (3.6.2.) Qualquer semigrupo S age sobre seu próprio conjunto de elementos, pela multiplicação à direita. Esta ação será denotada por $S_{\rm g}$.
- (3.6.3.) Se I é um ideal à direita de S, então S age sobre I, pela multiplicação à direita. Esta ação será denotada por $S_{\bar{t}}$.
- (3.6.4.) Um grupo G, com subgrupo normal N, age sobre N à direita, colocando-se $n^g = g^{-1}ng$, para todo $g \in G$ e $n \in N$.

(3.7.) Morfismo de ações.

- (3.7.1.) <u>Definição</u>. Sejam: $S^* = (S, \phi, X)$ e $T^* = (T, \Psi, Y)$. Um par (ω, θ) é um morfismo de ações de S^* para T^* se:
 - i) &: S _____ T é homomorfismo.
 - ii) 0 : X _____ Y é função.
 - iii) Para todo seS , o diagrama abaixo comuta:



Para todo $x \in X$, $s \in S$, $(x\theta)(s \propto) = (xs) \theta$.

Dizemos, então, que (S, $\alpha\Psi$, X0) é uma ação de S sobre X0.

- (3.7.3.) Definição. S^* é uma subação de T^* , se α e θ são inclusões.
- (3.7.4.) <u>Definição</u>. Té imagem homomórfica de um subsemigr<u>u</u> po de S, se há um morfismo sobrejetivo de ações, de uma subação de S em T, onde S* e T* são ações.
- (3.7.5.) Definição. Um S-morfismo ou mapa equivariante de (S, ϕ , X) para (S, Ψ ,Y) é um morfismo (α , θ), tal que:
 - i) (xs) $\theta = (x\theta)$ s, para todo $x \in X$, seS.
 - ii) \preced = ids.

- (3.7.6.) <u>Definição</u>. Morfismo de $G^* = (G, \phi, X)$, (Morf G^*), é morfismo de G^* para G^* .
- (3.7.7.) Lema. O conjunto dos morfismos de $G^* = (G, \phi, X)$ é um semigrupo, com a operação de composição de funções: (α_1, θ_1) o $(\alpha_2, \theta_2) = (\alpha_1 \circ \alpha_2, \theta_1 \circ \theta_2)$, para todo (α_1, θ_1) , $(\alpha_2, \theta_2) \in Morf G^*$.
- i) A propriedade de fechamento é válida para todos os morfismos de G^* , isto é:

$$(\alpha_1, \theta_1) \circ (\alpha_2, \theta_2) = (\alpha_1 \circ \alpha_2, \theta_1 \circ \theta_2)$$
, para todo (α_1, θ_1) , $(\alpha_2, \theta_2) \in Morf G^*$.

- _ θ, ο θ, é função como composição de funções.

Verifiquemos que $(xg)(\theta_1, \theta_2) = x(\theta_1, \theta_2) \cdot g(\alpha_1, \alpha_2)$, para todo $x \in X$, $g \in G$.

Como
$$(\alpha_1, \theta_1)$$
 e $(\alpha_2, \theta_2) \in Morf G^*$ temos:
$$(xg)(\theta_1 \circ \theta_2) = ((xg)\theta_1)\theta_2 = ((x\theta_1)(g_1\alpha_1))\theta_2 = ((x\theta_1)(g_2\alpha_1))\theta_2 = ((x\theta_1)(g_2\alpha_1))\theta_2 = ((x\theta_1)(g_2\alpha_1))g_2 = ($$

ii) É válida a propriedade associativa para os morfismos de G * .

Para todo (α_1, θ_1) , (α_2, θ_2) , $(\alpha_3, \theta_3) \in Morf G^* temporal mos:$

 $((\alpha_1, \theta_1) \circ (\alpha_3, \theta_2)) \circ (\alpha_3, \theta_3) = (\alpha_1 \circ \alpha_2, \theta_1 \circ \theta_2) \circ (\alpha_3, \theta_3) =$

 $= (\alpha_4, \theta_4) \circ ((\alpha_2, \theta_2) \circ (\alpha_3, \theta_3)).$

(3.7.8.) <u>Definição</u>. Aut G^* , onde $G^* = (G, \phi, X)$, é o conjunto dos pares (α, θ) , tal que, $\alpha : G \longrightarrow G$ é isomo<u>r</u> fismo, $\theta : X \longrightarrow X$ é bijeção e $(xg)\theta = (x\theta)(g\alpha)$, para todo $x \in X$, $g \in G$.

(3.7.9.) <u>Definição</u>. G-Aut $G^* = \{ (id_{G}, \theta) \in Aut G^* \}$.

(3.7.10.) Lema. Os automorfismos de G* formam um grupo sob a operação de composição.

- i) Propriedade associativa-trivialmente válida
- ii) Existência do elemento neutro

 $-(\mathrm{id}_{\mathrm{G}}$, $\mathrm{id}_{\mathrm{X}}) \in \mathrm{Aut}\ \mathrm{G}^*$, pois, id_{G} é isomorfismo e id é bijeção.

- (id_G, id_X) é o elemento neutro de Aut G*, pois, para todo (lpha, heta) \in Aut G* temos:

 $(id_{G}, id_{X}) (\alpha, \theta) = (id_{G} \circ \alpha, id_{X} \circ \theta) = (\alpha, \theta)$.

 (α, θ) (id_G, id_X) = (α o id_G, θ o id_X) = (α , θ).

iii) Existência do elemento inverso

Mostraremos que $(\alpha^{-1}, \theta^{-1}) = (\alpha, \theta)^{-1}$.

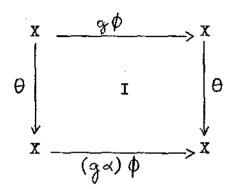
iii.l.) Primeiramente verificaremos que $(\vec{\alpha}^{1}, \theta^{-1}) \in \text{Aut } G^{*}$.

 $_ \propto : G \longrightarrow G$, isomorfismo, $\Longrightarrow \ni \exists \propto^{-1} : G \longrightarrow G$, isomorfismo.

 $\theta: X \longrightarrow X$, bijeção , $\Longrightarrow \exists \ \theta^{-1}: X \longrightarrow X$, bijeção.

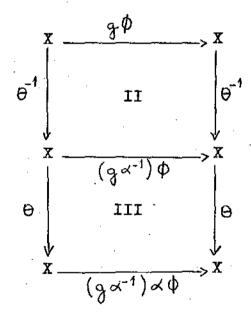
_ Provaremos que $(xg)\theta^{-1} = (x\theta^{-1}) (g \checkmark^{-1})$, para todo $x \in X$, $g \in G$.

 $(\alpha, \theta) \in \text{Aut } G^* \Longrightarrow \text{diagrama I comuta:}$



 $(xg)\theta = (x\theta)(g \bowtie)$, para todo $x \in X$ e $g \in G$.

Consideremos os diagramas abaixo:



O diagrama III comuta:

$$(x (g a^{-1}))\theta = (x\theta) ((g a^{-1})a) = (x\theta)g$$
, para todo $x \in X \in g \in G$.

Verifiquemos que o diagrama II comuta, isto é,

$$(x \theta^{-1}) (g \propto^{-1}) = (xg) \theta^{-1}$$
, para todo $x \in X$ e $g \in G$.
 $(xg \theta^{-1}) \theta = xg$, para todo $x \in X$ e $g \in G$.

Seja
$$x \theta^{-1} = y$$
.

Como o diagrama III comuta, então:

$$(yg \checkmark^{-1}) \theta = (y \theta)g \Longrightarrow (x \theta^{-1} g \checkmark^{-1}) \theta = (x \theta^{-n} \theta)g = xg,$$

para todo $x \in X \in g \in G.$

Então $(x \theta^{-1} g < x^{-1}) = (xg) \theta^{-1}$, para todo $x \in X$ e $g \in G$.

Logo
$$(\alpha^{-1}, \theta^{-1}) \in \text{Aut } G^*$$
.

iii.2.) Para todo $(\alpha, \theta) \in \text{Aut } G^*$, temos: $(\alpha, \theta) \circ (\alpha^{-1}, \theta^{-1}) = (\alpha \circ \alpha^{-1}, \theta \circ \theta^{-1}) = (\text{id}_{G}, \text{id}_{X}).$

$$(\alpha^{-1}, \theta^{-1}) \circ (\alpha, \theta) = (\overline{\alpha} \circ \alpha, \overline{\theta} \circ \theta) = (id_{G}, id_{X}).$$

Por (iii.1.) e (iii.2.) concluimos que $(\alpha, \theta)^{-1} = (\alpha^{-1}, \theta^{-1})$.

(3.7.11.) Corolário. O morfismo (\angle , Θ) tem inverso, se e somente se, \angle e Θ são embas bijetivas.

(3.7.12.) Os G-automorfismos de G^* formam um subgrupo dos automorfismos de G^* .

Prova:

Sejam $(1, \theta_1)$ e $(1, \theta_2)$ \in G - Aut G*.

Então:

$$(1, \theta_1) \circ (1, \theta_2^{-1}) = (1 \circ 1, \theta_1 \circ \theta_2^{-1}) = (1, \theta_1 \circ \theta_2^{-1}) \in G-Aut G^*.$$

Logo G - Aut G* Aut - G*, como subgrupo.

- - i) Se $(1,\theta) \in G$ -Aut $G^* \longrightarrow \theta$ é bijeção $\longrightarrow \theta \in Sim X$.
 - ii) Y é homomorfismo

Para todo
$$(1,\theta_1)$$
, $(1,\theta_2)$ \in G - Aut G*,

$$((1,\theta_1) \circ (1,\theta_2)) \Psi = (1, \theta_1 \circ \theta_2) \Psi = \theta_1 \circ \theta_2$$

$$(1, \theta_1) \Psi$$
 o $(1, \theta_2) \Psi = \theta_1 \circ \theta_2$

Logo: $((1, \theta_1) \circ (1, \theta_2)) \Psi = (1, \theta_1) \Psi \circ (1, \theta_2) \Psi$.

iii) Y é injeção

Se $(1, \theta_1)\Psi = (1, \theta_2)\Psi \Longrightarrow \theta_1 = \theta_2 \Longrightarrow (1, \theta_1) = (1, \theta_2)$.

iv) Im 4 ⊆ c(G)

Seja Θ & Jm (Ψ).

 $(1, \theta) \in G$ -Aut $G^* \longrightarrow xg\theta = x\theta g$, $\forall x \in x$, $\forall g \in G$.

Pará todo $g \in G$, $g \Theta = \Theta$ g. Então $\Theta \in C(G)$.

 $v) \int_{M} \Psi = C(G).$

Basta mostrar que C(G) C Im Ψ.

Se $\theta \in C(G)$, $g\theta = \theta g \xrightarrow{} xg\theta = x\theta g$, $\forall x \in X$ e $g \in G$.

Então (1, θ) \in G - Aut G* e (1, θ) Ψ = θ .

(3.7.14.) Lema. Seja G um grupo de permutações. Os automorfismos de G^* podem ser identificados com o normalizador de G em Sim X , isto é, Aut- $G^* \cong N(G)$.

Prova:

Seja
$$\Psi$$
: Aut - G*______ Sim X . (α, θ) ______ θ

i) Ψ é homomorfismo.

$$((\alpha_1, \theta_1) \circ (\alpha_2, \theta_2)) \Psi = (\alpha_1 \circ \alpha_2, \theta_1 \circ \theta_2) \Psi = \theta_1 \circ \theta_2 =$$

=
$$(\alpha_1, \theta_1) \forall \circ (\alpha_2, \theta_2)$$
, $\forall (\alpha_1, \theta_1)$, $(\alpha_2, \theta_2) \in \text{Aut} - G^*$.

ii) Im $\Psi \subseteq N(G)$.

Seja θε ImΨ.

 $xg \theta = x \theta g \varnothing$, para todo $x \in X$ e $g \in G$.

Logo
$$g\theta = \theta g \prec \Rightarrow \theta' g\theta = \theta'(\theta g \prec)$$

$$\theta^{-1}g\theta = g \bowtie e g : \theta \in N(G) \implies Im \subseteq N(G).$$

iii) Im
$$\Psi = N(G)$$
.

Basta mostrar que $N(G) \subseteq Im \ \Psi$.

Seja $\theta \in N(G)$ e $\varnothing : G \longrightarrow G$, o automorfismo de finido por $g \varnothing = \theta^{-1}g \Theta$.

Para todo $x \in X$, $(x \theta) (g x) = x (\theta g x) = x(\theta \theta^{-1} g \theta) =$

= $xg\theta$. Então (\propto , θ) \in Aut - G.

Portanto, $\theta \in \text{Im } \Psi$.

· iv) Y é injeção.

Para todo $x \in X$ e $g \in G_p$, $xg\theta = x\theta g \propto_q e$

 $xg\theta = x\theta g \propto_{\mathcal{A}}$.

Logo $x\theta g \ll_1 = x\theta g \ll_2 \Longrightarrow \theta g \ll_1 = \theta g \ll_2 \Longrightarrow g \ll_1 = g \ll_2 \Longrightarrow \ll_1 = 2 \approx_2 = 2 \approx_1 = 2 \approx_2 =$

CAPITULO 4

PRODUTO SEMI-DIRETO

(4.1.) Definição:

i) Um semigrupo S age sobre um semigrupo E , à direita, se existe uma função f: E × S ____ > E , que leva (e , s) ____ > es , tal que:

$$e (st) = (es)t$$
, $(s,t \in S; e \in E)$,

$$(e+f)s = es+fs$$
, $(s \in S ; e, f \in E)$.

ii) Um semigrupo S age sobre um semigrupo E, à esquerda, se existe uma função $f: S \times E \longrightarrow E$, que leva $(s, e) \longrightarrow se$, tal que:

$$(st)e = s(te)$$
, $(s,t \in S; e,f \in E)$.

$$s(e+f) = se + sf$$
, $(s \in S ; e, f \in E)$.

(4.2.) Definição: Se o semigrupo S age sobre o semigrupo E,

à esquerda, um novo semigrupo pode ser construido: o produto semi-direto de E por S , (E sd S) , onde o conjunto sob (E sd S) é (E x S) e a multiplicação é definida por:

(e,s) (f,t) = (e+sf, st), para todo $e,f \in E$ $e s,t \in S$.

Observação: (E sd S) é semigrupo, pois, para todo e,f,g∈E e s,t,u∈S temos:

$$[(e,s) (f,t)] (g,u) = (e+sf, st) (g,u) =$$

$$= ((e+sf) + (st)g, (st)u).$$

Como E e S são semigrupos e S age sobre E à esquerda, \Longrightarrow $\left((e + sf) + (st)g , (st)u \right) =$ $= \left(e + sf + s(tg) , s(tu) \right) = \left(e + s(f + tg) , s(tu) \right) =$ $= (e,s) (f + tg , tu) = (e,s) \left[(f,t) . (g,u) \right] .$

(4.3.) <u>Definição</u>. Sejam: S semigrupo, E monóide e O_E , elemento neutro de E. Dizemos que S age sobre E, à esquerda, se S age sobre E, considerando apenas E como semigrupo, e $SO_E = O_E$, para todo s \in S.

(4.4.) <u>Definição</u>. Seja $S^* = (S, \phi, X)$, ação à direita, onde S é monóide, com unidade 1_S e X é conjunto. Dizemos que a ação S^* é unitária, se:

 $x l_s = x$, para todo $x \in X$.

Então $1_{S} \phi = id_{X}$.

Vamos assumir que se S é grupo a ação por S é unitária.

Nota: Se S* é ação à esquerda \longrightarrow $1_S x = x$, para todo $x \in X$.

(4.5.) Lema.

i) Se S e E são monóides, com unidades l_s e 0_E , respectivamente, e a ação de S sobre E é unitária, então $(0_E$, l_s) é a unidade de (E sd S), que é também um monóide.

Prova:

Já foi verificado em 4.2. que (E sd S) é semigru-

Basta, portanto, mostrar que $(o_E$, $l_s)$ é a unidade de $(E \ sd \ S)$.

Para todo (e,s)
$$\in E \times S$$
, (e,s) $(0_E, 1_S) = (e+s0_E, s1_S) = (e+s0_E, s1_S) = (e+s0_E, s1_S) = (e,s) = (e,s) = (0_E, 1_S) (e,s) = (0_E, 1_S, s1_S) = (0_E, e,s) = (0_E, e,$

= (e,s).

ii) (E sd S) tem submonóides:

ii.1.)
$$\mathbb{E} \times \{1_s\} \cong \mathbb{E}$$
, $\mathbb{E} \times \{1_s\} \subseteq (\mathbb{E} \text{ sd } \mathbb{S})$.

ii.2.)
$$\{o_E\} \times S \cong S$$
, $\{o_E\} \times S \subseteq (E \text{ sd } S)$.

Prova:

ii.1.)
$$\mathbf{E} \times \{\mathbf{1}_{\mathbf{s}}\} \cong \mathbf{E}$$
.

A função
$$\ll$$
 : E \longrightarrow E \times $\{1_s\}$ é isomorfismo. e \longrightarrow (e , 1_s)

Como S* é unitária e S monóide, temos:

$$- \propto (e_1) + \propto (e_2) = (e_1, l_s) (e_2, l_s) = (e_1 + l_s \cdot e_2, l_s \cdot l_s) =$$

$$= (e_1 + e_2, l_s) = \propto (e_1 + e_2)$$

$$- \ll (0_E) = (0_E, 1_S) = unidade de E $\times \{1_S\}$.$$

 $\underline{\hspace{0.2cm}}$ \propto é injetiva e sobrejetiva - trivialmente se verifica.

ii.2.)
$$\{o_{\mathbb{R}}\} \times s \cong s$$
.

A função
$$\beta: S \longrightarrow \{0_E\} \times S$$
 é isomorfismo.
 $S \longrightarrow (0_E, S)$

$$-\beta(s_1) \cdot \beta(s_2) = (0_E, s_1)(0_E, s_2) = (0_E + s_1 \cdot 0_E, s_1 \cdot s_2) =$$

$$= (0_E + 0_E, s_1 \cdot s_2) = (0_E, s_1 \cdot s_2) = \beta(s_1 \cdot s_2)$$

$$-\beta(1_S) = (0_E, 1_S) = \text{unidade de } \{0_E\} \times S.$$

_ β é injetiva e sobrejetiva - trivial

(4.6.) Lema. Se s é inversível em S , então:

i) (O_E, s^{-1}) é o elemento inverso de (O_E, s) em (E sd S).

Prova:

$$(0_{E}, s) (0_{E}, s^{-1}) = (0_{E} + s.0_{E}, s.s^{-1}) = (0_{E} + 0_{E}, 1_{S}) = (0_{E} + 0$$

=
$$(0_E, 1_S)$$
. Também,

$$(0_{E}, s^{-1}) (0_{E}, s) = (0_{E} + s^{-1}, 0_{E}, s^{-1}s) = (0_{E} + 0_{E}, 1_{s}) = (0_{E}, 1_{s})$$

ii) Para todo $e \in E$, conjugando (e, l_s) por $(0_E, s)$ temos:

$$(0_{E}, s) (e, 1_{S}) (0_{E}, s)^{-1} = (0_{E} + se, sl_{S}) (0_{E}, s^{-1}) =$$

$$= (se, s) (0_{E}, s^{-1}) = (se + s0_{E}, ss^{-1}) = (se, 1_{S}).$$

Podemos, portanto, concluir que a ação à esquerda de um monóide sobre um monóide pode ser imerso em um monóide maior, em que os elementos inversíveis agem por conjugação.

(4.7.) Corolário. Sejam G e N grupos. A ação de G sobre N , à esquerda é o mesmo que conjugação em N sd G , de $(O_N$, G) sobre (N , 1_G).

Então a ação de grupos sobre grupos esta contida no produto semi-direto de grupos.

CAPITULO 5

PRODUTO "WREATH"

- (5.1.) Definição. Sejam S semigrupo e Y conjunto. $S^{Y} = \text{conjunto das funções de Y em S.}$
- (5.2.) <u>Definição</u>. Para todo $y \in Y$, $F,G \in S^{Y}$, definimos $F+G \in S^{Y}$ como y(F+G) = yF. yG.
- (5.3.) Lema. SY é semigrupo sob a operação (+).
 - i) S^{Y} é fechado para a operação (+), (def. 5.2).
 - ii) y((F+G)+H)=y(F+G).yH=(yF.yG).yH=
- = yF . (yG . yH) = yF . [y(G+H)] = y (F+(G+H)).
- (5.4.) Definição. Sejam: $T^* = (T, \psi, Y)$ e S semigrupo.

y (tG) = (yt) G , para todo y \in Y, t \in T e G \in SY.

5.5. <u>Lema</u>. S^Yx T , com a multiplicação abaixo definida, é semigrupo:

(F,t) . (G,u) = (F+tG, tu) , para todo F,G \in S^Y, t, u \in T.

Prova:

i) SYX T é fechado para a operação acima definida.

Para todo $y \in Y$; $t,u \in T$; $F,G \in S^Y$ mostraremos que:

$$(F,t)$$
 . $(G,u) = (F + tG, tu) \in S^{Y} \times T$.

Como yt \in Y e $G \in S^Y \longrightarrow tG \in S^Y$.

 $tG \in S^{Y}$ e $F \in S^{Y} \longrightarrow F + tG \in S^{Y}$.

 $u,t \in T$, semigrupo, \longrightarrow tu $\in T$.

Logo (F + tG, tu) \in $S^{Y} \times T$.

ii) Propriedade associativa

Para todo F, G, H \in S^Y e t,u,v \in T, temos:

 $[(F,t) \cdot (G,u)] \cdot (H,v) = (F + tG, tu) \cdot (H,v) =$

=
$$((F + tG) + (tu)H, (tu) v)$$
. Também,

$$(F,t) \cdot [(G,u) \cdot (H,v)] = (F,t) \cdot (G+uH,uv) =$$

$$= (F + t(G + uH), t(uv)).$$

i) Para todo $y \in Y$, temos:

$$y (t(G + uH)) = (yt) (G + uH) = (yt)G \cdot (yt) (uH) =$$

=
$$y(tG)$$
 . $y(t(uH))$ = $y(tG)$. $y(tu)H$).

ii) T semigrupo \Rightarrow (tu)v = t(uv).

Logo:

$$[(F,t) \cdot (G,u)] (H,v) = (F,t) [(G,u) \cdot (H,v)].$$

- (5.6.) <u>Definição</u>. S wr $T^* = (S^Y \text{ sd } T)$, com a multiplicação acima definida, onde S é semigrupo, Y conjunto, T semigrupo e $T^* = (T, \phi, Y)$.
- (5.7.) <u>Definição</u>. Uma ação de semigrupo $S^* = (S, \phi, X)$ é leal se ϕ é injetiva, isto é: $(xs_1 = xs_2 \text{ para todo } x \in X) \Longrightarrow s_1 = s_2.$
- (5.8.) Lema. Se S* é uma ação leal, então, a multiplicação em S é determinada por composição de funções.

Se ϕ : S_______ Trans X é injeção, então ϕ é isomor-fismo sobre (S ϕ , o).

(5.9.) Observação.

Seja Y = 1,2,...,n . Então S wr T^* pode ser representado por um semigrupo de matrizes com a operação de multiplicação. Se $(F,t) \in S$ wr T^* , define-se a n x n matriz M(F,t), por:

$$M(F,t)_{i,j} =$$
 if se $j = it$
0 se $j \neq it$

Seja $M(S^Y \times T) = \{M(F,t) \text{ tal que } (F,t) \in S \text{ wr } T^*\}$.

i) A função $S: S^Y \times T \longrightarrow M(S^Y \times T)$ é homomorfismo $(F,t) \longrightarrow M(F,t)$

de semigrupos.

Sejam M(F,t) e M(G,u) \in M(S Y x T).

Então:

$$M(F,t)_{i,j} = \begin{cases} iF & se \ j = it \\ \\ 0 & se \ j \neq it \end{cases}$$

$$M(G,u)_{i,j} = \begin{cases} iG & \text{se } j = iu \\ 0 & \text{se } j \neq iu \end{cases}$$

Verifiquemos que $\gamma(F,t)$. $\gamma(G,u) = \gamma((F,t) \cdot (G,u))$ $\gamma(F,t) \cdot \gamma(G,u) = M(F,t) \cdot M(G,u)$. Logo: $\left(M(F,t) \cdot M(G,u)\right)_{i,j} = iF \cdot M(G,u)_{it,j}$.

Mas iF . $M(G,u)_{it,j} =$ $\begin{cases} iF \cdot (it)G & \text{se } j = (it)u \\ \\ 0 & \text{se } j \neq (it)u \end{cases}$

Então M(F,t) . M(G,u) $_{i,j}=$ $\begin{cases} i(F+tG) & \text{se } j=i(tu) \\ \\ 0 & \text{se } j\neq i(tu) \end{cases}$

Logo $\mathcal{T}(F,t) \cdot \mathcal{T}(G,u) = M(F,t) \cdot M(G,u) = M(F+tG,tu)$.

Tambem $\mathcal{T}((F,t) \cdot (G,u)) = M((F,t) \cdot (G,u)) = M(F+tG,tu)$.

Portanto $\mathcal{T}(F,t) \cdot \mathcal{T}(G,u) = \mathcal{T}((F,t) \cdot (G,u))$.

ii) 8 é isomorfismo se T* é leal.

 $Se\ M(F,t)\ =\ M(G,u) \quad ent \ \tilde{ao} \quad M(F,t)_{i,j}\ =\ M(G,u)_{i,j}\ ,$ $1\leqslant i,j\leqslant n.$

Na linha i o unico elemento diferente de Q é o que está na coluna (it) para M(F,t) e o que está na coluna

(iu) para M(G,u).

Como O não pertence a S, então it = iu e iF = iG, para todo i. Portanto F = G.

Como T* é leal então t = u.

Logo $\forall (F,t) = \forall (G,u) \Longrightarrow \forall \text{ \'e injetora.}$

(5.10.) Definição. Produto "wreath".

Sejam : S = (S, ϕ , X) e T = (T, ψ , Y) ações.

S wr T = produto "wreath" de S por T .

Por definição $S^*wr T^* = (S wr T^*, A, X x Y), onde:$

 \triangle : (X x Y) x (S wr T) \longrightarrow X x Y

(x,y) . (F,t) _____ (x(yF),yt), para todo

 $x \in X$, $y \in Y$, $t \in T$, $e F \in S^{Y}$.

(5.11.) Lema. O produto "wreath" é uma ação de (S wr T*) sobre X x Y.

Basta verificar que (x,y) (F,t) . (G,u) =

 $= (\bar{x}, y)(F, t) (G, u).$

((x,y)(F,t))(G,u) = (x(yF),yt)(G,u) =

= (x(yF) (yt)G, (yt)u)

Por outro lado (x,y)((F,t)(G,u)) =

= (x,y) (F + tG,tu) = (x(y(F + tG),y(tu)) =

= (x (yF), y(tG), y(tu))

 S^* e T^* ações $\longrightarrow (x(yF \cdot y(tG), y(tu)) =$ $= (x(yF) \cdot (yt)G, (yt)u) \cdot$ Logo $((x,y) \cdot (F,t)) \cdot (G,u) = (x,y) \cdot ((F,t) \cdot (G,u)) = 0$ produto "wreath", portanto, é ação.

(5.12.) Definição. Produto "wreath" clássico.

S wr T^* é chamado produto "wreath" clássico, quando T = Y e a ação de T sobre Y é a multiplicação à esquerda.

CAPITULO 6

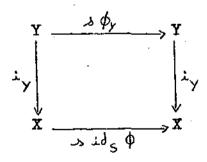
PROPRIEDADES DE AÇÕES DE SEMIGRUPOS E GRUPOS

(6.1.) Definição. Constituinte de S.

Seja S = (S, ϕ , X) uma ação de semigrupo. Constituinte de S é o semigrupo S ϕ de transformações sobre X .

(6.2.) Observação.

Se S* = (S, ϕ , X) é uma ação de semigrupo e Y um subcenjunto estável de X, então há uma natural ação (S, ϕ_Y ,Y) e um morfismo (id_S, i_Y) de (S, ϕ_Y , Y) para (S, ϕ , X) que é uma injeção. Definimos $\phi_Y = \phi/Y$.



(6.3.) Definição. S^* é transitiva se para todo par ordenado $(x,x') \in X \times X$, há algum $s \in S$, tal que, xs = x'. Se

 $x \in X$, então : $xS = \{xs \mid s \in S\}$.

(6.4.) Lema. S^* é transitiva, se e sómente se, xS = X, para todo x.

Prova:

i) xS = X.

 $X \subset XS$

 S^* transitiva $\Longrightarrow \forall x' \in X , \exists s \in S , tal que, <math>x' = xs \in xS$.

xS⊆X, pois, S* é ação de S sobre X.

ii) s* é transitiva.

Seja $(x, x') \in X \times X$.

Como xS = X, $\exists s \in S$, tal que, $x' = xs \longrightarrow S^*$ é transitiva.

- (6.5.) <u>Definição</u>. Seja X um conjunto e $z \in X$. A função constante c_z é dada por: $c_z : X \longrightarrow X$ $X \longrightarrow X c_z = z$.
- (6.6.) <u>Definição</u>. Seja $S^* = (S, \phi, X)$ uma ação leal de semigrupo.

 S_X^c é o semigrupo $\langle S \varphi$, $CX \rangle \subseteq Trans\ X$, onde CX é o semigrupo de funções constantes sobre X. Como S^* é leal pode-se identificar os elementos de S e $S \varphi$. A ação natural de S_X^c sobre X é denotada por $(S_X^c)_X^*$.

 S_X^{-c} é o subsemigrupo de $S\phi$, gerado pelas funções não constantes em $S\phi$. Se toda função em $S\phi$ é constante, $S_X^{-c} = id_X$, por convenção.

- (6.7.) Proposição. Se S é um grupo e S* = (S, ϕ , I) uma ação então:
- i) S^* é leal \Longleftrightarrow o único elemento de S , fixando tudo em X é a unidade de S .
- ii) S^* é transitiva $\Longrightarrow xS = X$ para pelo menos um $x \in X$.

Prova:

i) \longrightarrow S grupo \longrightarrow S* unitária \longrightarrow xl_s = x , \forall x \in X .

Seja s \in S , tal que, xs = x , \forall x \in X .

$$x1_s = x = xs$$
.
 $S^* leal \Longrightarrow s = 1_s$.

Se $xs = xs' \longrightarrow x(s s'^{-1}) = x \longrightarrow s s'^{-1} = 1_s \longrightarrow s = s' \longrightarrow s^* \text{ \'e leal.}$

ii) \(\int\) \(\text{S* transitiva} \(\text{XS} = \text{X} \), para todo \(\text{x} \in \text{X} \). \(\text{(lema 6.4.)} \)

Por hipótese, $\exists x \in X$, tal que, xS = X.

Seja $(x', x'') \in X \times X$. Então existe s'e s'', tal que, x' = xs' e x'' = xs''. $x' = xs' \Longrightarrow x = x' s'^{-1}$. $x'' = xs' \Longrightarrow x'' = (x's'^{-1}) s'' = x' (s'^{-1} s'') = x's$.

(6.8.) <u>Proposição</u>. Se S é um semigrupo e a multiplicação à direita é transitiva, então S¹ é grupo.

Basta verificar a existência do elemento inverso Seja (s , l_s) \in S \times S .

 S^* transitive $\Longrightarrow \exists s' \in S$, tal que, $s s' = l_s$.

Por outro lado, (s s') (s' s) = s's e existe

$$s' \in S$$
, tal que, $(s' s) s'' = 1_s$.

..
$$s^*s = (s^*s) (s^*s s^{**}) = s^*s s^{**} = 1_s$$
.

(6.9.) Proposição. Sejam
$$S^* = (S, \phi, X)$$
 e $T^* = (T, \psi, Y)$

- i) Se S* e T* são unitárias _____ S* wr T* é unitária.
- ii) Se S* e T* são ambas leais -> S* wr T* é leal.
- iii) Se S* e T* são ambas transitivas \Longrightarrow S* wr T* é transitiva.
 - iv) Se S e T são ambos grupos -> S wr T* é grupo.

Prova:

i) Por definição S* wr T* = (S
Y
 SJ T, \triangle , X×Y).

i.l.) Verifiquemos que para qualquer $(F,t) \in S^{Y}_{5}dT$, $(F,t) \cdot (C_{S}, 1_{T}) = (F,t)$, sendo $C_{S} : Y \longrightarrow S$, tal que, $C_{S}(y) = 1_{S}$.

$$(F,t) (C_S, 1_m) = (F + tC_S, t 1_m)$$
.

Para todo $y \in Y$, $y(F + tC_S) = yF \cdot y(tC_S) =$

=
$$yF$$
 . (yt) $C_S = yF$. $1_S = yF$.

Logo
$$F + tC_S = F \Longrightarrow (F,t) \cdot (C_S, I_T) = (F, t.I_T)$$
.

$$T^*$$
 unitaria $\Longrightarrow t.1_T = t \Longrightarrow (F, t.1_T) = (F,t)$.

Verifica-se facilmente que (C_s, l_T) . (F,t) = (F,t).

i.2.) Verifiquemos que (x,y) $(C_S, I_T) = (x,y)$, para todo $(x,y) \in X \times Y$.

$$(x,y) (c_S, 1_T) = (x (yc_S), y 1_T) = (x1_S, y 1_T).$$

$$S^* \in T^* \text{ unitarias} \Longrightarrow (xl_S, yl_T) = (x,y).$$

Logo 5* wr T* é unitária.

ii) Mostraremos que S*wr T* é leal, se S* e T* são leais.

Suponhamos que para todo $(x,y) \in X \times Y$, $F \in S^{Y}$ e $t \in T$, (x,y) (F,t) = (x,y) (G,u).

$$\therefore (x (yF) , yt)) = (x (yG) , yu) .$$

Como S* e T* são leais, se para todo x,y , $x (yF) = x (yG) \Longrightarrow yF = yG \Longrightarrow F = G$.

Para todo y , yt = yu \Longrightarrow t = u , pois T* é leal.

... para todo $(x,y) \in X \times Y$, (F,t) = (G,u)

S* wr T* é leal .

iii) S^* e T^* transitivas $\Longrightarrow S^*$ wr T^* transitiva.

Mostraremos que para todo (x_1, y_1) , (x_2, y_2)

 $\in X \times Y$, $\exists (F,t) \in S^{Y} \times T$, tal que, $(x_{1},y_{1}) (F,t) =$

 $= (x_2, y_2)$.

 S^* e T^* transitivas $\Rightarrow \exists s \in S$, tal que, $x_1 s = x_2$ e

 $\exists t \in T$, tal que, $y_1 t = y_2$.

Seja $F: Y \longrightarrow S$, tal que, F(y) = s, $\forall y \in Y$.

$$(x_1,y_1)(F,t) = (x_1(y_1F), y_1t) = (x_1S, y_1t) = (x_2, y_2).$$

iv) Mostraremos que são válidas as propriedades de grupo para S wr T^* .

Propriedade associativa - trivialmente válida, pois S{Sd}^{Y} T é semigrupo .

Existência do elemento neutro Provado em (6.9. i.l.) que o elemento neutro é (C_S, L_T) .

_Existência do elemento inverso

Seja (F,t)
$$\in S^{Y} \times T$$
.

Definimos
$$G \in S^Y$$
 como $yG = ((yt^{-1})F)^{-1}$.

Portanto se
$$y \in Y \longrightarrow y(F + tG) = yF \cdot (yt)G =$$

= yF
$$((yt)t^{-1}F)^{-1}$$
 = yF $(yF)^{-1}$ = 1_S.

Logo (F,t) (G,t⁻¹) =
$$id_{SY_{sd} T}$$
.

$$(G,t^{-1})$$
 $(F,t) = (G + t^{-1}F, 1_m)$.

Se
$$y \in Y$$
, $y(G + t^{-1}F) = yG$, $yt^{-1}F =$

=
$$((yt^{-1})F)^{-1}$$
. $(yt^{-1}F) = 1_S$.

CAPITULO:7

CONSIDERAÇÕES SOBRE SY e S war T*

(7.1.) Lema. Seja Y um conjunto e S um semigrupo. Se (T, Ψ, Y) é uma ação de semigrupo à direita, há uma ação canônica à esquerda de T sobre S^Y , semigrupo, assim definida:

y(tG) = (yt)G, para todo $y \in Y$, $t \in T$ e $G \in S^{Y}$.

Verifiquemos que, realmente, temos uma ação.

- i) Para todo $t_1, t_2 \in T$ e $F \in S^Y$, $(t_1t_2)F =$
- $= t_1(t_2F) : y(t_1t_2)F = (yt_1t_2)F = (yt_1)t_2 F = (yt_1)(t_2F),$

para $y \in Y$.

ii) Para todo yey, ter e F,Ges Y ,

$$y(t(F+G)) = (yt)(F+G) = (yt)F \cdot (yt)G = y(tF+tG)$$
.

(7.1.1.) Exemplo:

Suponhamos
$$Y = \{1, 2, ..., n\}$$
.

 S^{Y} pode ser identificado com S^{n} , olhando $F:Y\longrightarrow S$, como uma n-upla (1F,2F,...,nF).

A ação de T sobre S^Y pode ser escrita como:

$$tF = t(s_1, s_2, ..., s_n) = (s_{1t}, s_{2t}, ..., s_{nt})$$
, para

todo $s_1, s_2, \dots, s_n \in S$ e $t \in T$.

Então:

Seja
$$s_i = s_{it}$$
.

$$(s_{1t}, s_{2t}, \ldots, s_{nt}) = t(s_1, s_2, \ldots, s_n) =$$

$$=\left(s_{1t}^{\prime},\ s_{2t}^{\prime},\ \ldots,\ s_{nt}^{\prime}\right)\ =\left(s_{1tt}^{\prime},\ s_{2tt}^{\prime},\ \ldots,\ s_{ntt}^{\prime}\right)\ .$$

$$(s_1,...,s_n) = (s_{1tt}, s_{2tt}, ..., s_{ntt}) =$$

(7.2.) Observações:

Sejam (S, ϕ , X) e (T, Ψ , Y) ações. Consideremos S wr T*. Então:

- i) S é chamado semigrupo de baixo de S wr T* e T semigrupo de cima.
- ii) SY é chemado semigrupo de base.
- iii) Quando S e T são monóides, S e T são canonicamente subsemigrupos de S wr T e S está encaixado em S wr T de várias maneiras. Um particular exemplo disto é o "encaixe diagonal", levando s e S sobre M(F, l_T). O "encaixe diagonal" leva S sobre as matrizes escalares, onde S wr T é escrito como um semigrupo de matrizes. S corresponde à matriz diagonal.

$$s \longrightarrow F_s \longrightarrow (F_s, 1_T) \longrightarrow M(F_s, 1_T)$$
, onde:

$$M(F_{s}, l_{T})_{i,i} = iF_{s} = s, j = i$$

$$M(F_{s}, l_{T})_{i,j} = 0 , i \neq j$$

Então M
$$(F_s, l_{r}) = s.I$$

- iv) Quando S e T são grupos, então SY é um subgrupo normal de S wr T*= SY sd T e a ação Ψ é conjugação de SY pela cópia canônica de T em S wr T*. (T \cong {0_S} \times T).
- _ sY C SY sd T

$$s^Y\cong\ s^Y\times\ \{1_T^Y\}\subseteq\ s^Y$$
 ad T .

_ s^Y \triangle s wr T*

Afirmamos que (G,t) (F,1_T) (G,t)^{-1} \in SY, para to-do G,F \in SY, t , 1_T \in T .

$$(G,t)^{-1} = ((t^{-1} G)^{-1}, t^{-1}), G \in S^{\Upsilon}, t \in T.$$

$$(G,t) (F,1_T) (G,t)^{-1} = (G,t) (F,1_T) ((t^{-1} G)^{-1}, t^{-1}) =$$

$$= (G + tF, tl_{T}) ((t^{-1}G)^{-1}, t^{-1}) = ((G + tF) + t(t^{-1}G)^{-1}, tt^{-1}) \Longrightarrow$$

$$\longrightarrow ((G + tF) + t(t^{-1}G)^{-1}) \in S^{Y}.$$

_ A ação Ψ de S Pela cópia canônica de T em S wr T é conjugação de S Pela cópia canônica de T .

Para todo $F \in S^{Y}$ e t,t⁻¹, $1_{T} \in T$, temos: $(\frac{1}{5},t)$ $(F,1_{T})$ $(\frac{1}{5},t^{-1})$ = $(\frac{1}{5}+tF,t1_{T})$ $(\frac{1}{5},t^{-1})$ =

= $((\frac{1}{5}+tF)+t\frac{1}{T},tt^{-1})$.

Para todo y, y $((\frac{1}{5}+tF)+t\frac{1}{T})$ = $(y\frac{1}{T})$ · (y(tF)) · $y(t\frac{1}{T})$ =

= $\frac{1}{5}$ · y(tF) · $\frac{1}{5}$ = y(tF) ·

Logo: $((\frac{1}{5}+tF)+\frac{1}{T},tt^{-1})$ = $(tF,1_{T})$ ·

CAPITULO 8

ESQUEMA DE DECOMPOSIÇÃO

(8.1.) Decomposição de S^* ou imersão de S^* em M^* wr N^* .

Sejam: $S^* = (S, \phi, X)$, $M^* = (M, \psi, Y)$ e $N^* = (N, \rho, P)$, ações.

 S^* é dita imersa em M^* wr N^* se divide M^* wr N^* , isto é, se existe um morfismo sobrejetivo, $(\varnothing,\theta):T^*_{\longrightarrow}S^*$, onde T^* é alguma subação de M^* wr N^* .

Se (α, θ) é morfismo injetivo dizemos que S* está homomorficamente imerso em M* wr N*.

(8.2.) Definição. S* - partição de X.

Seja $S^* = (S, \phi, X)$. Uma S^* partição de X

é uma partição de X, tal que:

$$T = \left\{ X_{i} \subseteq X, \text{ tal que, } \mathring{\cup} X_{i} = X \text{ e para } \forall i, \right.$$

$$j \mid X_{i}S = X_{j} \right\}.$$

(8.3.) Definição. Sistema de coordenadas.

Seja S* = (S, ϕ , X) uma ação de semigrupo e Π uma $S^* = \text{partição de } X \ .$

Um sistema de coordenadas para T é um par ordenado $(M^* , W) , \text{ onde } M^* = (M, \Psi, Y) e W = \left\{\beta_B\right\}_{B \in T}, \beta_B : B \longrightarrow Y,$

injeção, tal que, dado ses e BeT:

$$M_B^S = \{ m \in M \mid (x \beta_B) m = (xs) \beta_{BS}, x \in B \} \neq \emptyset$$

(8.4.) Teorema. Esquema de Decomposição.

Sejam: $S^* = (S, \phi, X)$ uma ação leal de semigrupo, com T uma S^* partição de X e (M^*, W) um sistema de coordenadas.

Então S* divide M* wr S*, onde \overline{S} é, por definição, o constituinte de $(S^{T})^*$ e \overline{S}^* = $(\overline{S}, \text{ trans}, T)$.

Para provar este teorema basta, então, encontrar um morfismo sobrejetivo $(\alpha, \theta): T^* \longrightarrow S^*$, onde T^* é alguma subação de M^* wr $\overline{S}^* = (M \text{ wr } \overline{S}^*, \triangle$, $Y \times \Pi$).

Prova:

Parte I - Definiremos $T \subseteq M \times S$; T^* e mostrare-mos que T^* é subação de M^* wr \overline{S}^* .

Parte II - Mostraremos que (α, Θ) , definido na parte I, é morfismo sobrejetivo de ações.

Parte I

i) Sejam as funções:

i.1.)
$$\lambda : X \longrightarrow Y \times \Pi$$

 $x \longrightarrow (x \beta, B), x \in B \in \Pi$.

$$\lambda$$
 é injetiva : $(x \beta_B, B) = (y \beta_B, B) \Longrightarrow B = B' \Longrightarrow A$

$$x = y, pois \beta_B \text{ é injetiva.}$$

i.2.)
$$\theta = \lambda^{-1} : \operatorname{Im} \lambda \longrightarrow X$$
.

ii) Seja
$$M_B^S = \{ m \in M \mid (x \beta_B) m = xs \beta_{BS}, x \in B \}.$$

Sejam: $s \in S$, $F_s : \pi \longrightarrow M$, tal que, $BF_s \in M_B^s$

e \overline{s} é o correspondente de s em \overline{s} . (\overline{s} \in Trans \overline{t} , com

B s B s).

Para todo $x \in B$, $B \in \Pi$, mostraremos que:

ii.l.)
$$\left[(x \binom{3}{B}, B) (F_{s}, \overline{s}) \right] \in Im \lambda$$
.

ii.2.)
$$[(x \beta_B, B) (F_S, \bar{S})] \theta = xs$$
.

Usando a definição de produto "wreath", definição F_s e definição S^* partição temos:

$$(x \beta_B, B)(F_S, \overline{S}) = (x \beta_B (BF_S), B \overline{S}) \in Y \times T$$
 e
$$BF_S \in M_B^S.$$

UNICAMP
BIBLIOTECA CONTRAL

$$\left(x\beta_{B}(BF_{S}), B\bar{S}\right) = \left((xs)\beta_{BS}, B\bar{S}\right) =$$

=
$$((xs) \beta_{Bs}, Bs) \in Im \lambda$$
, o que prova (ii.l.).

Como $\theta = \lambda^{-1}$ temos:

$$(xs)\beta_{Bs}$$
, $Bs\theta = xs$.

Portanto:

$$((x\beta_B, B) (F_S, \bar{s}))\theta = xs$$
, o que prova (ii.2.).

iii) Lema. Seja
$$T = \{(F,z) \mid z \in \overline{S} \in \exists s \in S \mid \overline{s} = z \in F; T \longrightarrow M, com BF \in M_B^S \}$$
. Dado $(F,z) \in T$, $\exists \mid s \in S \mid \overline{s} = z \in BF \in M_B^S$, $B \in T$.

Prova:

Suponhamos $\overline{s} = \overline{s}' = z$ com $BF \in M_B^S$, $BF \in M_B^{S'}$, $B \in \mathcal{T}$.

$$(x \beta_B, B) (F, \bar{s}) \Theta = xs e (x \beta_B, B) (F, \bar{s}) \Theta = xs'$$

para todo $x \in B$. Como $\bigcup B = X$, $xs = xs^*, \forall x \in X$.

Como S^* é leal \Longrightarrow s = s'.

iv) T^* é subação de M^* wr S^* , onde $T^*=(T, \delta, Im <math>\wedge$) , $Im \ \wedge \subseteq Y \times W \qquad e \qquad \delta = \triangle \mid_{T} \qquad .$

Prova:

iv.l.)
$$M_B^s \cdot M_{Bs}^{s^*} \subseteq M_B^{ss^*}$$
 , onde:

$$M_B^S = \{ m \in M \mid (x \beta_B) m = (xs) \beta_{BS'} \} x \in B \},$$

$$M_{Bs}^{s'} = \left\{ m' \in M \mid (x \beta_B) m' = (xs') \beta_{Bss'} x \in B \right\},$$

$$M_B^{ss'} = \left\{ m'' \in M \mid (x \beta_B) m'' = (xss') \beta_{Bss'} x \in B \right\}.$$

Sejam $m \in M_B^S$ e $m' \in M_B^{S'}$.

$$(x \beta_B)$$
 (mm') = $(xs)\beta_{Bs}$ m' = $(xss')\beta_{Bss}$.

Logo $m \cdot m' \in M_B^{ss'}$.

iv.2.) T é fechado em relação à multiplicação.

 $(F,\overline{s}) \cdot (F',\overline{s}') = (F+\overline{s}F',\overline{s}.\overline{s}')$, para todo

(F,s) , (F',s') ϵ T , BF ϵ MB , BF' ϵ MB .

 $B(F + \bar{s}F') = BF \cdot B \bar{s} F' \in M_B^s \cdot M_{Bs}^{s'} \subseteq M_B^{ss'}$, para

todo B € TT .

Logo:

 $(F,\overline{s}) \cdot (F',\overline{s}') = (F+\overline{s}F',\overline{s}\overline{s}') \in T.$

iv.3.) Conclusão: T é subsemigrupo de M wr 5*.

T age sobre $\operatorname{Im} \lambda$. (ii.1).

Logo T* é subação de M* wr S*.

Parte II

- i) &:T-----S é homomorfismo sobrejetivo.

ø é homomorfismo.

- ii) θ é sobrejetiva pois $\theta = \lambda^{-1}$.
- iii) Mostraremos, agora, que o diagrama abaixo comuta, isto é, $(x \beta_B, B) \theta$. $(F,z) \not =$
- = $(x\beta_B, B) \cdot (F,z)\theta$, $z = \bar{s}$, para todo $x \in B$,

e $(F,z) \in T$.

$$\begin{array}{c|c}
\operatorname{Im} \lambda & (F,3) & \operatorname{Im} \lambda \\
\theta & & \theta \\
X & & X
\end{array}$$

$$(x\beta_B, B)\theta$$
 . $(F,z) \triangleleft = xs$, pois $(x\beta_B, B) =$
= $\lambda(x)$ e $\theta = \lambda^{-1}$ e $(F,z) \triangleleft = s$.

Em (ii.2) já foi provado que:

$$(x\beta_B, B) (F,z) \theta = xs.$$

Logo o diagrama acima comuta.

Conclusão:

Logo S* é imagem homomórfica de T* e

S* divide M* wr S*.

(8.5.) Corolário. Seja $S^* = (S, \phi, X)$ uma ação leal de se migrupo, com T uma S^* partição e sistema de coordenadas (M^*, W) , M^* leal, $M^* = (M, \Psi, Y)$ e as β_B bijeções. Então há uma imersão homomórfica de S^* em M^* wr S^* .

Prova:

Basta verificar que (๙,Ә) é morfismo injetivo.

i) Verifiquemos que
$$\left| M_{B}^{S} \right| = 1$$
.

Sejam m' e m''
$$\in M_B^S$$
.

Para $x \in B$ e $B \in \Pi$, temos:

$$(x \beta_B) m' = xs \beta_{Bs}$$
 e $(x \beta_B) m'' = xs \beta_{Bs}$.

$$\therefore (x \beta_B) m^* = (x \beta_B) m^*.$$

Como $\beta_B : B \longrightarrow Y$ é sobre $\Longrightarrow m \cdot \Psi = m \cdot \cdot \Psi$.

$$M^*$$
 leal \longrightarrow $m' = m''$. $\left| M_B^S \right| = 1$.

ii) & é injetiva.

 α é injetiva, pois, $\alpha^{-1}(s) = \{ (F, \bar{s}) \mid BF \in M_B^s \} \subseteq T$

e como
$$\left| \mathbf{M}_{B}^{S} \right| = 1$$
, $\exists | \mathbf{F}, \text{ tal que, } \mathbf{BF} \in \mathbf{M}_{B}^{S}$.

$$\left| \begin{array}{c} 1 \\ \end{array} \right| = 1$$

iii) θ é injetiva, pois $\theta = \lambda^{-1}$.

(8.6.) Corolário. Seja S* uma ação leal de semigrupo onde Y é subconjunto estável de S e o conjunto $\mathbb{T} = \{Y\} \cup \{\{x\} \ , \ x \in X - Y\} \ \text{\'e} \ \text{uma} \ \text{S}^* \ _ \ \text{partição} \ .$ Então S* divide M* wr \$\overline{S}^*\$, onde M = (\$\langle \overline{S}_Y, \overline{CY} \rangle\$, trans, Y).

Prova:

Y estável \Longrightarrow para todo $s \in S$, $ys \in Y$.

Seja $y_o \in Y$ e seja $\beta_Y = id_Y$, $x \beta_{\{x\}} = y_o$, para $x \in X - Y$.

Se s \in S e B \in T , definimos :

$$m_B^S = \begin{cases} s \rlap/ w_Y \text{ , se } B = Y \text{ , } \not/ w_Y = a \varsigma \~ao \ de \ S \text{ sobre } Y \text{ .} \end{cases}$$

$$C_{XS} \text{ , se } B = \{x\} \text{ , } x \in X - Y \text{ , } xs \in Y \text{ .} \end{cases}$$

$$C_{y_O} \text{ , se } B = \{x\} \text{ , } x \in X - Y \text{ , } xs \in X - Y \text{ .} \end{cases}$$

Verifiquemos que $m_{\tilde{B}}^{S}$ satisfaz as condições do teorema da decomposição.

i) $m_B^S \in S_Y^C = S\phi_Y \cup CY$, onde CY é o semigrupo das funções constantes de Y . Isso acontece pela própria definição de m_B^S .

ii)
$$m_B^S$$
 satisfaz $(x \beta_B) m_B^S = (xs) \beta_{BS}$.

 $B = Y \Longrightarrow m_B^S = s \phi_Y \Longrightarrow (y \beta_Y) s \phi_Y = ys$ e

 $(ys) \beta_{YS} = ys \beta_Y = ys$.

 $B = \{x\}$, $x \in X - Y$ e $xs \in Y$, $m_{\{x\}}^S = C_{xs}$.

 $(x \beta_{\{x\}}) m_{\{x\}}^S = (x \beta_{\{x\}}) C_{xs} = y_o C_{xs} = xs = xs \beta_{BS}$.

 $B = \{x\}$, $x \in X - Y$ e $xs \in X - Y$, $m_{\{x\}}^S = C_{yo}$.

 $(x \beta_{\{x\}}) C_{yo} = y_o$, $xs \beta_{xs} = y_o$, $xs \in X - Y$.

Estamos, portanto, nas condições do teorema da decomposição. Logo S* divide M* wr \overline{S}^* .

CAPITULO 9

DECOMPOSIÇÃO DE AÇÕES DE GRUPOS

Demonstraremos uma série de proposições que culminam no importante teorema de Kaloujnine - Krasner.

(9.1.) Proposição. Seja $G^* = (G, \phi, X)$ uma ação leal de grupo e \mathbb{T} uma G^* partição. Suponhamos que a ação induzida por G sobre \mathbb{T} é transitiva. Seja $Y \in \mathbb{T}$ e G(Y), $G(Y) \neq \emptyset$, o subgrupo de G que fixa Y como conjunto.

Seja $G_{(Y)}^* = (G_{(Y)}, \text{ trans } Y, Y)$ uma ação leal. Então G^* está homomórficamente imerso em $G_{(Y)}^*$ wr $(G^{(Y)})^*$.

Prova:

i) Verifiquemos que se $Bg \subseteq B' \Longrightarrow Bg = B'$ (B,B' $\in TTe$ $g \in G$).

 $Bg \subseteq B' \Longrightarrow Bgg^{-1} \subseteq B'g^{-1} \Longrightarrow B \subseteq B'g^{-1} \subseteq B'' \therefore B = B'' e$ $B'g^{-1} = B \therefore B' = Bg.$

ii) $\beta_{\rm B}$: B \longrightarrow Y , abaixo definida, é bijeção.

Como a ação de G sobre Π é transitiva , dados $B \in Y \in \Pi$, sempre $\exists g_B tq \cdot Bg_B \subseteq Y$. Por (i) $\Longrightarrow Bg_B = Y$.

Para cada $B \in \Pi$, fixemos $g_B \in G$ tq. $Bg_B = Y$. Definimos então $\beta_B : B \longrightarrow Y$, por $x \beta_B = xg_B$, $x \in B$.

 $\beta_{\rm B}$ é sobre (Bg_B = Y)e é injetive, pois, G é grupo .

iii) Mostraremos que $(g_B^{-1} \ h \ g_{Bh}) \in (G_Y)_B^h$, onde $h \in G$, $B \in T$.

Se $x \in B \in T$ \Longrightarrow $xh \in Bh \in T$. Então:

$$(xh) \beta_{Bh} = (xh)g_{Bh} = xg_B g_B^{-1} h g_{Bh} = (x \beta_B) (g_B^{-1} h g_{Bh})$$
.

$$(xh)\beta_{Bh} \in Y \Longrightarrow (x\beta_B) (g_B^{-1} h g_{Bh}) \in Y$$
.

 $\beta_{\rm B}$ sobre $\Rightarrow \forall y \in Y$, $\exists x \in B \text{ tq. } x \beta_{\rm B} = y$.

Logo, se $y \in Y$, $y(g_B^{-1} h g_{Bh}) \in Y$ \Longrightarrow $g_B^{-1} h g_{Bh} \in (G_{(Y)})_B^h = (G_{(Y)})_B^h \neq \emptyset$, $\forall h \in G$.

Então $\left\{G_{(Y)}^*, \left\{\beta_B\right\}_{B \in \Pi}\right\}$ é sistema de coordena das que satisfaz as condições requeridas pelo Corolário (8.5.).

Portanto G* está homomórficamente imerso em $G_{(Y)}^*$ wr \overline{G}^* . (9.1.1.) <u>Lema</u>. Se a ação $G^* = (G, \phi, X)$ é transitiva então a ação de G sobre π é transitiva. (G = grupo).

Prova:

Seja (B,B') $\in \mathbb{T} \times \mathbb{T}$.

 G^* transitiva $\longrightarrow \forall (x,x') \in B \times B'$, $\exists g \in G \mid xg = x'$.: $Bg \subseteq B'$.

Logo a ação de G sobre T é transitiva.

(9.1.2.) Observações:

i) Se G é um grupo com subgrupo H , então G age transitivamente sobre o conjunto de cossets à direita Hg de H, por (Hg)g' = Hgg'.

Para qualquer $(Hg, Hg') \in G/H$ temos: $(Hg)(g^{-1}g') = Hg'$.

- ii) $G_G^* = (G, \text{ trans, } G) = G$ agindo sobre si mesmo, pela multiplicação à direita.
- (9.1.3.) Corolário. Seja G um grupo com subgrupo H . Então G_G^* está homomórficamente imerso em

 H_H^* wr \overline{G}^* , onde \overline{G}^* é o constituinte de G agindo sobre

 Π , sendo Π = G/H .

Prova:

Verifiquemos que estão satisfeitas todas as condições exigidas pela proposição (9.1.).

- G_{G}^{*} é leal.

 Sejam g' e g'' \in G . Se gg' = gg'', para todo $g \in G \Longrightarrow g = g'.$
- $-\overline{G}^* \text{ \'e transitiva .}$ Sejam (Hg , Hg') \in G/H . Como G 'e grupo $\Longrightarrow g'' = g^{-1} g' \text{ . Logo (Hg) } g'' = \text{Hg' .}$

_ Seja Y = H , que é um bloco de G_G^* . O subgrupo de G que fixa H como conjunto é H mesmo. Então $G_{(Y)} = H$. Portanto $G_{(Y)}^* = (H, trans, H) = H_H^*$, que é leal.

Logo, pela proposição (9.1.) G_G^* está homomórfica mente imerso em H_H^* wr G^* .

Notemos que o corolário acima emerge G em H wr \overline{G}^* , que é o grupo "atrás" de H_H^* wr \overline{G}^* .

Como H wr G* = $\binom{G/H}{H}$ sd \overline{G}^* , temos que G está imerso em $\binom{H}{H}$ sd \overline{G}^* .

Se H age sobre X, como $(H^{G/H})$ sd \overline{G}^* age sobre X x G/H.

(9.2.) Proposição. Seja G um grupo com subgrupo normal H. Então $(\overline{G})^*\cong (G/H)_{G/H}^*$ e portanto $\overline{G}\cong G/H$.

Para isto basta verificar que o morfismo abaixo definido é isomorfismo sobre, isto é, \varkappa e θ são bijeções:

 $(\alpha, \theta) : \overline{G}^* \longrightarrow (G/H)_{G/H}^*$, tal que :

- i) $\theta = ia_{G/H} \longrightarrow \theta$ é bijeção.
- ii) $\alpha: \overline{G} \longrightarrow G/H$, $\overline{G} \subseteq Trans G/H$, tal que :

 $\bar{g} \propto = Hg$, sendo que (Ha) $\bar{g} = Hag$.

o está bem definida.

Se a, f, g \in G e $\overline{f} = \overline{g}$, então Ha $\overline{f} = \text{Ha } \overline{g}$, isto é, Haf = Hag . Se a=1 \Longrightarrow Hf = Hg . Portanto $\overline{f} \not\sim = \overline{g} \not\sim$.

_ & é injetiva.

Sejam $\overline{\mathbf{f}}$ e $\overline{\mathbf{g}} \in \overline{\mathbf{G}}$.

Se $\overline{f} \varnothing = \overline{g} \varnothing \Longrightarrow Hf = Hg \Longrightarrow gf^{-1} \in H$.

Seja a \in G . Como H \triangle G , (a (gf⁻¹) a⁻¹) \in H .

Então Hag f^{-1} $a^{-1} = H \Longrightarrow Hag = Haf \Longrightarrow \vec{g} = \vec{I}$.

_ & é sobre.

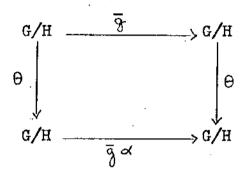
Seja $Hg \in G/H$. Para todo $g \in G$, $\exists \ \overline{g} \in \overline{G} \subseteq Trans G/H$. Portanto $\not < e$ sobre.

∠ é homomorfismo.

 $(\bar{g} \circ \bar{h}) \propto = \bar{g} h \propto = H g h$.

$$(\overline{g} \propto) \cdot (\overline{h} \propto) = Hg \cdot Hh = Hgh$$

_ O diagrama abaixo comuta:



$$(\text{Ha})\overline{g}\theta = \text{Hag} = \text{Ha} \cdot \text{Hg} = (\text{Ha}\theta) \cdot (\overline{g} \propto) \cdot$$

(9.2.1.) Corolário. Seja G um grupo com subgrupo normal H. Então G é isomorfo a um subgrupo do produto "wreath" clássico H wr $(G/H)_{G/H}^* = H^{G/H}$ sd $(G/H)_{G/H}^*$.

Pelo corolário (9.1.3.) e pela proposição anterior

$$\Longrightarrow$$
 G_G^* está homomorficamente imerso em H_H^* wr $(G/H)_{G/H}^*$ \Longrightarrow

______ G é isomorfo a algum subgrupo do produto "wreath"

$$H \text{ wr } (G/H)_{G/H}^* = H^{G/H} \text{ sd } (G/H)_{G/H}^*$$
.

(9.2.2.) Observações:

i) Um grupo G é uma extensão de H por B se existe uma sequência exata l H G B 1 . Isto significa que há um monomorfismo de H em G e um epimorfismo de G sobre B , tal que a imagem do monomorfismo é exatamente o Kernel do epimorfismo.

O corolário anterior afirma que toda extensão G de H por B está imersa no produto "wreath" de H por B , isto é,

$$G \longrightarrow H \text{ wr } (B_B)^* = H^B \text{ sd } (B_B)^*, \text{ pois } (B_B)^* \cong (G/H)_{G/H}^*.$$

ii) Seja G um grupo finito. Sabemos que existe uma sequência, não necessáriamente única, de subgrupo de G, l = No, No, No, No, No, No, com a propriedade que para i = 0,1,..., k-l, No, é um subgrupo normal de No, l e No, l e simples (não tem subgrupos normais não triviais). Além disso, o número de grupos simples, de um dado tipo de isomorfismo, é únicamente determinado. Esta se quência é chamada uma série de composição para G.

Então G é uma extensão de N_{k-1} por N_k / N_{k-1},

 N_{k-1} é uma extensão de N_{k-2} por N_{k-1} / N_{k-2} e , em geral , N_{i} é uma extensão de N_{i-1} por N_{i} / N_{i-1} para i = 1,2,3,...,k .

O teorema de Kaloujnine - Krasner segue-se do corol<u>á</u> rio (9.2.1.) por indução.

(9.3.) Teorema de Kaloujnine - Krasner

Um grupo finito pode ser imerso em um produto "wreath" clássico de grupo simples.

Prova:

Seja
$$N_k = G \triangle N_{k-1} \triangle N_{k-2} \triangle N_{k-3} \triangle \cdots \triangle \{1\}$$
.

 $0 \longrightarrow N_{k-1} \longrightarrow G \longrightarrow N_k / N_{k-1} \longrightarrow 0$

Pelo corolário anterior (9.2.1.) G está imerso em

Se
$$0 \longrightarrow N_{k-2} \longrightarrow N_{k-1} \longrightarrow N_{k-1} \xrightarrow{N_{k-2}} 0$$
, então :

Então G está imerso em
$$N_{k-1}$$
 wr $\left(N_k \middle|_{N_{k-1}} \right)_{N_k}^*$

e
$$N_{k-1}$$
 wr $\left(N_{k}\right)_{N_{k-1}}$ está imerso em N_{k}

pois se s_1 , s_2 , s_3 são conjuntos, s_3^* é ação, então $s_1 \text{ wr } s_3^* \subseteq s_2 \text{ wr } s_3^*.$

Então se
$$N_{k-1} \subseteq N_{k-3}$$
 wr $\left(N_{k-2} \setminus N_{k-3} \right) \Longrightarrow$

$$N_{k-2} \text{ wr} \left(N_{k-1} \Big|_{N_{k-2}}\right)^* \subseteq \left(N_{k-3} \text{ wr} \left(N_{k-2} \Big|_{N_{k-1}}\right)^*\right) \text{ wr} \left(N_{k-1} \Big|_{N_{k-2}}\right)^*.$$

Continua-se o processo por indução.

Exemplo: Consideremos o grupo dos quatérnios Q, que tem 8 elementos e geradores i, j, k, tal que ij = k, jk = i, ki = j, $i^2 = j^2 = k^2$.

Sabemos que $\{1\} \triangle \{1,-1\} \triangle \{1,-1,i,-i\} \triangle Q$. Seja $N_0 = \{1\}$, $N_1 = \{1,-1\}$, $N_2 = \{1,-1,i,-i\}$ e $N_3 = Q$.

Então:
$$N_3 / N_2 \cong \mathbb{Z}_2$$
, $N_2 / N_1 \cong \mathbb{Z}_2$, $N_0 / N_1 \cong \mathbb{Z}_2$.

 $N_3 / N_2 = \{1N_2, jN_2\} \cong \mathbb{Z}_2$.

 $N_2 / N_1 \cong \mathbb{Z}_2$ e $N_0 / N_1 \cong \mathbb{Z}_2$.

 $N_0 \text{ wr } \mathbb{Z}_2 \cong \mathbb{Z}_2$.

Logo Q $\mathbb{Z}_2 \text{ wr } \mathbb{Z}_2^*$ wr \mathbb{Z}_2^* \mathbb{Z}_2^* \mathbb{Z}_2^* \mathbb{Z}_2^*

$$\mathbb{Z}_{2}$$
 wr \mathbb{Z}_{2}^{*} = $\mathbb{Z}_{2}^{\mathbb{Z}_{2}}$ sd \mathbb{Z}_{2} , de ordem 8.

portanto $\tilde{G} = \begin{pmatrix} \mathbb{Z} & 2 \\ \mathbb{Z} & 2 \end{pmatrix}$ sd \mathbb{Z}_2 e tem, portanto, ordem 128.

(9.3.1.) Corolário. Conhecendo-se o produto "wreath" e os grupos simples estarão conhecidos todos o grupos finitos.

BIBLIOGRAFIA

- [1] DEAN, R.A., Elementos de algebra abstrata, Livros
 Técnicos e Científicos Editora S.A. (1971).
- [2] GINZBURG, A., Algebraic Theory of Automata, Academic Press, New York, (1968).
- [3] HERSTEIN, I.M., Tópicos de Álgebra, Editora da Universidade de São Paulo (1970).
- [4] NEUMANM, B.H., Embedding theorems for semigroups, J.
 London Math. Soc., 34(1959).
- [5] NEUMANM, P., On the structure of the standard wreath products of groups, Math. Z,,84(1964).
- [6] PETRICH, M., Introduction to Semigroups, Columbus, Ohio, (1973).
- [7] WELLS, CHARLES; Some applications of the wreath product construction, The American Math. Monthly, 83(1975).