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“All that you touch
And all that you see
All that you taste

All you feel

And all that you love
And all that you hate
All you distrust

All you save

And all that you give
And all that you deal
And all that you buy
Beg, borrow or steal
And all you create

And all you destroy
And all that you do
And all that you say
And all that you eat
And everyone you meet
And all that you slight
And everyone you fight
And all that is now
And all that is gone
And all that’s to come
And everything under the sun is in tune
But the sun is eclipsed by the moon”

(Eclipse, Pink Floyd)



Resumo

Neste trabalho encontramos subvariedades Lagrangianas de érbitas coadjuntas semisimples
em dois casos. Para o primeiro, o caso compacto, que sdo as chamadas variedades flag
generalizadas, provamos que as variedades flag reais podem ser vistas como subvariedades
lagrangianas (na verdade ‘tight’ infinitesimais) com respeito da forma simplética Konstant—
Kirillov—Souriau e uma classificacdo completa foi obtida. Para o segundo caso, o caso
complexo, provamos que as Orbitas de formas reais sao subvariedades Lagrangianas com
respeito da forma simplética Hermitiana, onde aplicamos um difeomorfismo de deformacao
entre a 6rbita coadjunta semisimples classica e a érbita coadjunta de um produto semi-
direto dado por uma decomposicao de Cartan. Além do mais, usando essa deformacao

construimos secoes lagrangianas com respeito a forma Hermitiana.

Palavras-chave: Espacos homogéneos, Estruturas simpléticas, Variedades bandeira,

Subvariedades Lagrangeanas.



Abstract

In this work, we found some Lagrangian submanifolds of the coadjoint semisimple orbit in
two cases. For the first one, the compact case, also known as the generalized flag manifolds,
we prove that the real flags can be seen as (infinitesimally tight) Lagrangian submanifolds
with respect to the KonstantKirillov-Souriau symplectic form and we give a complete
classification. And for the second one, the complex case, we prove that the orbits of real
forms are Lagrangian submanifolds with respect to the Hermitian symplectic form, where
we apply a coadjoint orbit’s diffeomorphic deformation between the classical semisimple
case and the semi-direct product given by a Cartan decomposition. Furthermore, using

that deformation we build some Lagrangian sections with respect to the Hermitian form.

Keywords: Homogeneous spaces, Symplectic structures, Flag manifolds, Lagrangian

submanifolds.
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Introduction

The main theme of this thesis is the study of Lagrangian submanifolds in
symplectic homogeneous spaces. Symplectic homogeneous manifolds have been studied by
many authors, see for instance [32] for a classification of compact symplectic homogeneous
manifolds. In particular, we focus on the (co)adjoint’ orbits of semisimple Lie groups.
However, finding Lagrangian submanifolds is a classic research topic in symplectic geometry
that goes back to Darboux’s theorem about the existence of trivializing neighborhoods that
preserve the symplectic form and therefore the existence of local Lagrangian submanifolds.
We study some applications of the semisimple Lie theory to symplectic geometry, in
particular to find Lagrangian submanifolds on adjoint orbits. Our motivation to study
Lagrangian submanifolds and their classification comes from questions related to the
homological mirror symmetry conjecture and especially from concepts of objects and
morphisms in the so called Fukaya—Seidel categories, which are generated by Lagrangian
vanishing cycles (and their thimbles) with prescribed behavior inside of symplectic fibrations

(see [10] and [12]).

The symplectic structures and Lagrangian submanifolds of the coadjoint orbit
was studied and developed by renowned mathematicians such as Kirillov, Arnold, Kostant,
and Souriau in the early to mid 1960s, although it had important roots going back to the
work of Lie, Borel, and Weyl. (See [3], [18], [19], [20], [21], [30]). Alternatively, there are
several theories and applications to physics using general reduction theory, as in [7], [22],

(23] and [24], among others.

For instance, the most studied symplectic form in such manifolds is the Konstant—
Kirillov—Souriau symplectic form (briefly KKS), which for adjoint orbits of compact Lie
groups (better known as flag manifolds) is the only possible Ad-invariant symplectic form.
In Chapter 1, we give a preliminary chapter where we introduce all the relevant elements
and notations for this thesis, such as semisimple Lie theory and symplectic structures

studied: the KKS form and the Hermitian symplectic form.

Taking in emphasis the recent papers [8] and [13], where the authors characterized

1 We write (co)adjoints because in the semisimple case those orbits can be identified.
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the isotropic submanifolds through the moment map of a Hamiltonian action, which for the
flag manifolds is the adjoint action. Then, with that tool in Chapter 2, we can characterize
the complex flag manifolds that admit as Lagrangian submanifold a real flag manifold. To
prove that, we endow the complex flag manifolds with the KKS symplectic form and look
at compact orbits of the real forms of the complex group. We provide a classification of the
complex flag manifolds and real forms having Lagrangian compact orbits. This is done in
a case by case analysis via the Satake diagrams of the real forms. The result is presented
at Table 1 at the end of Section 2.2 and the case by case proof is done in Subsection
2.2.1. All these results are part of the paper [5], where we focus on the construction
of Lagrangian submanifolds determined by real forms. In particular, we prove that the
real flag manifolds can be seen as infinitesimally tight submanifolds of the correspondent
complex flag manifold. In order not to deviate the objective of the thesis, the discussion

regarding this type of Lagrangian submanifolds is given in Appendix A.

To conclude the Chapter 2, we describe the Lagrangian orbits given by the
adjoint action of U with respect to the Hermitian form on Ad (G)- H, where G is a complex

semisimple Lie group and U its compact form.

Additionally, in [6] we follow the next construction: let g be a non-compact
semisimple Lie algebra with Cartan decomposition g = €@ s and Iwasawa decomposition
g=t®ad®n with a € s maximal Abelian. In the underlying vector space g there is
another Lie algebra structure £,4 = € x,q 5§ given by the semi-direct product defined
by the adjoint representation of ¢ in s, which is viewed as an Abelian Lie algebra. Let
G = Autgg be the adjoint group of g (identity component of the automorphism group)
and put K = expt < G. The semi-direct product K,q = K xaq s obtained by the adjoint
representation of K in s has Lie algebra €, = € x,4 5, that orbit was studied in Chapter
3. Then, we consider coadjoint orbits for both Lie algebras g and £,5. These orbits are
submanifolds of g* that we identify with g via the Cartan—Killing form of g, so that the
orbits are seen as submanifolds of g. These are just the adjoint orbits for the Lie algebra g
while for £,4 they are the orbits in g of the representation of K,q obtained by transposing
its coadjoint representation. The orbits through H € g are denoted by Ad (G) - H and
Ka.q - H, respectively.

We consider the orbits through H € a < s. In this case the compact orbit
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Ad (K) - H (contained in s) is a flag manifold of g, say Fg. In [11] it was proved that
Ad (G) - H is diffeomorphic to the cotangent bundle T*Fy of Fy = Ad (K) - H. We prove
here that the same happens to the semi-direct product orbit K,q - H (as foreseen by [17]).
So that Ad (G) - H and K,q - H diffeomorphic to each other.

In Chapter 4, we define a deformation g, of the original Lie algebra g. The
deformation is parameterized by r > 0 and satisfies g; = g. For each r the Lie algebra g, is
isomorphic to g (hence semisimple) and g, = €¢@®s is a Cartan decomposition as well with £ a
subalgebra of g,. Furthermore as r — oo the Lie algebra £,4 is recovered. (The deformation
amounts essentially to change the brackets [X,Y], X,Y € s, by (1/r) [X,Y] and keeping
the other brackets unchanged.) A Lie algebra g,, r > 0, has its own automorphism group
whose identity component is denoted by G,. Thus the adjoint orbits in g, are Ad(G,.) - H
and by the isomorphism g, ~ g it follows that Ad(G,)- H is diffeomorphic to Ad(G)- H and
hence to the cotangent space T*Fy. Thus, the Lie algebra deformation yields a continuous
one parameter family of embeddings of T*Fy into the vector space underlying g. The
family is parameterized in (0, + o], where +0o0 is the embedding given by the semi-direct

product orbit K,q - H.

The example with g = s[(2,R), presented in Subsection 4.1.1, is elucidative of
this deformation. In s[(2, R) ~ R? the semi-direct product orbit is the cylinder %+ y* = 1
while the adjoint orbit is the one-sheet hyperboloid z? 4+ y* — 2% = 1. In the deformation,
the adjoint orbit in g, is the hyperboloid 22 + y* — z*/r = 1 that converges to the cylinder
as r — 400. The hyperboloids as well as the cylinder are unions of straight lines in R*
crossing the circle 2% +y* = 1 with z = 0. As it is well known the hyperboloids are obtained

by twisting the generatrices of the cylinder.
This picture of “twisting generatrices” holds in a general Lie algebra g: the
semi-direct product orbit K,q - H has the cylindrical shape

Ka-H= |]) (X+ad(X)s)
XeAd(K)H

where ad (X)) s is a subspace of €. While the adjoint orbit Ad(G) - H has the hyperboloid

shape
Ad(G) - H = ] Ad (k) (H +nfy)

ke K

where n}; is the nilpotent subalgebra which is the sum of the eigenspaces of ad (H)
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associated to positive eigenvalues. The deformation of g into g, has the effect of twisting
the generatrix H + ad (H)s < € into H + n[;, where n} is the nilpotent Lie subalgebra
of g, defined the same way as n* from the adjoint ad, (H) of H in g,. The deformation of
orbits allows to transfer geometric properties from semi-direct product orbit K,q - H to
the adjoint orbit Ad (G) - H. This can be useful since in several aspects the geometry of
K.q - H is more manageable than that of Ad (G) - H.

In that chapter, we apply this transfer approach to adjoint orbits in a complex

semisimple Lie algebra g. In the complex case g is endowed with a Hermitian metric
H, (X,Y)=(X,)Y)+iQ(X,Y)

where (-,-) is an inner product and € is a symplectic form. The form €2 restricts to
symplectic forms on the orbit Ad (G) - H since this is a complex submanifold. Since it is
not immediate that the form in U,q - H is symplectic, we prove that the restriction of €2 to
the semi-direct product orbit U,q - H (because g = u + iu is the Cartan decomposition
of g complex semisimple) is also a symplectic form. By construction the diffeomorphisms
between the coadjoint orbits are symplectomorphisms. Based on these facts, in Section 4.2,
we construct Lagrangian submanifolds in U,q - H and then transport them to Ad, (G) - H
through the deformation.
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1 Adjoint orbits of semisimple Lie groups

The first chapter of this thesis will be focused on studying the (co)adjoint orbits
of semisimple Lie groups and the symplectic structures they admit. In order to do that,
we based on the following references [4], [15], [26], [28] and [29]. In the first part we study
the compact case, also known as ‘generalized flag manifolds’, for which we provide the
classical constructions and the respective differences between the real and the complex
situations. Then, we focus on the non-compact case, in particular on the case presented in
[11]. Finally, we state the symplectic forms on adjoint orbits that we will study throughout
this thesis, i.e., the KKS and the Hermitian symplectic forms.

Let G be a connected Lie group with Lie algebra g. The adjoint orbit of G
passing through H e g is the set

My =Ad(G)-H={Ad(g)-H: geG}cg.

Let Ky = {ge G: Ad(g)- H = H} be the isotropy subgroup of H of the
adjoint action of G. Then My is diffeomorphic to the homogeneous space G/ Ky, because
the action of G on My is transitive. The tangent space of Ad(G) - H at by = 1 Ky is
given by

Ty, (Ad(G) - H) ={ad(X)-H: X €g}.

Analogously, the coadjoint action of G on the dual space g* is given by

Ad*(g) -a=aocAd(g"), geG, aeg"

That orbit can be identified as an homogeneous space G/Z,, where Z, is a

closed subgroup

Zo={g9eG: aoAd(g™") = a}.

The tangent space of Ad*(G) -« at b, = 1- Z, is given by
Ty, (Ad*(G) - ) = {ad™(X) - a: X € g},

where ad*(X) - a = —a o ad(X).
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The coadjoint orbit Ad*(G) - @ admits as symplectic form the Konstant—
Kirillov—Souriau form (briefly KKS form), given by

~

ws (X(8),7(8)) = BIX,Y] X,V eg, feAd(G) a (1.1)

where X = ad*(X). In this situation, the action of G on g* by the representation Ad* is

Hamiltonian with respect to w, such that:

o If X € g, then the induced field X is a Hamiltonian field which is determined by the
Hamiltonian function fx : Ad*(G) - @ — R, such that

fx(B) =B(X) BeAd*(G)-a.
o 4 = id is the moment map, which is Ad*-equivariant.

In fact, we are interested in studying the adjoint orbits of semisimple Lie groups.
Let G be a semisimple Lie group with Lie algebra g, take the isomorphism I' : g — g*
given by

(X)) () = (X, g,

where (-, -); is the Cartan Killing form of g. This isomorphism interchanges the adjoint
and the coadjoint representations, that is I' Ad(g) = Ad*(¢)T for all g € G, which allows
us to transport the symplectic form w on coadjoint orbits to the symplectic form I'w
on adjoint orbits. Therefore the adjoint action of GG is a Hamiltonian action, where the
induced vector fields are X = ad(X) with Hamiltonian function Hy(-) = (X, -). Hence,
the adjoint orbit Ad(G) - H admits the KKS symplectic form, given by

Wy ()”((x),ff(a;)) — (0, [X.Y]), X.Yeg zecAdG)-H. (1.2)

Other properties of this type of manifolds will depend on the properties of the
Lie algebra g or the Lie group G. In particular, we will see what happens in the compact

and the non-compact cases.

1.1 Compact case

Let U be a compact semisimple Lie group with Lie algebra u. The adjoint orbit

of U is known as flag manifolds, which can be defined as follows:
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Definition 1.1. Let g = uc be a semisimple non-compact Lie algebra and take G a

connected Lie group with Lie algebra g. The flag manifold Fy is a homogeneous space
Fy = G/Py,

where Py is a parabolic subgroup of G, which is determined by H € g, that can be chosen

in the closure of a positive Weyl chamber of g.

The construction of the parabolic subgroup Py and the choice of the compact
group U (such that the flag manifold can be seen as an adjoint orbit) will depend on the
fact that g is a real or complex Lie algebra. Next we will present the constructions using

tools of semisimple Lie theory.

1.1.1 Complex flag manifolds

Let g be a semisimple complex Lie algebra. Given § a Cartan subalgebra of g,

set the following
o II a root system, such that there exist H, € b given by
a(H)=(H,, H); VYHeh, aell,
where (-, )y is the Cartan Killing form of g.

« Y asimple root system, such that IT" is the set of positive roots on [T and {H, : « € 3}

is a basis of h.

o a’ its corresponding positive Weyl chamber, given by
at ={Hebh: a(H)>0Vae X}

Therefore,

g:b@Zgaa

aell
the root space decomposition, such that

0o = {Xeg: [H X]=a(H) X YH € b}

is a root space of « € II. Then the Borel subalgebra b is the maximal solvable subalgebra,

given by
b= h@ Z Ja-

a€ellt
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Definition 1.2. A subalgebra p of g is called parabolic when p contains a Borel sub-

algebra.

If Hecl(a®), then O < X is defined by

Oy ={aeX: a(H) =0}, (1.3)

that is, the set of simple roots vanishing at H. Conversely, given © < > we can choose an
element H € cl(a™), such that © = O, where O is as in equation 1.3. In particular

H= ) H;

Bex\(©)

Then the parabolic subalgebra generated by H (or by ©y < ) is defined by
pH = b@ Z Jas (14)
a(H)=0

or equivalently

P =b® > 0D D, fa (1.5)

oellt ae(©)~
such that (©) is the set of roots determined by linear combinations of elements on © and

(O)* = (0) A 1%

Remark 1.3. In some papers, the parabolic subalgebra defined in the equation 1.5 is

denoted by peo.

Let G be a connected Lie group with Lie algebra g. The parabolic subgroup

Py is the normalizer of py in G, that is

Then the complex flag manifold associated to H is Fg, and it is given by the
quotient G/ Pp.

Furthermore, we will see that the complex flag manifold can be seen as an
adjoint orbit of a compact Lie group. For instance, choose a Weyl basis given by H, for

a € X and X, € g, for a € II, which satisfies

° [XouX—a] = Ha;
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o [Xa, Xs] = mapXatp with my s € R, such that m, 3 = 0 when a + 3 is not a root
and my g = —M_q _p.
If A, = X, — X_, and S, = (X, + X_,), we have that
u = spang{iH,, Ay, S : aellt}
is a compact real form of g.
Let U = expu be a compact real form of G, then we set
Uy = Py nU.
The adjoint action of the Lie group U is transitive on Fy with isotropy subgroup
at H is Uy and therefore we have that
Fy~U/Uy ~Ad(U) - H.

Additionally, we will denote by by = 1 - Uy the origin of the flag Fy, then its tangent
space at by is

Ty, Fu = spang{A,, S : a(H) > 0} = Z Uy

a(H)>0

where t, = (go @ g-a) N u = spang{Aa, Sa}
1.1.2 Real flag manifolds
Let g be a semisimple non-compact real Lie algebra. To see the construction of
real flags we will consider the following elements of real semisimple Lie theory:
o Let 6 be a Cartan involution, that is, its associated bilinear form
By(X,Y) = (X, 0Y);, X, Yeg

is an inner product on g, where (-, ), is the Cartan Killing form of g. The Cartan

involution induces a Cartan decomposition g = £@® s, such that
t={Xeg: X=X} and s={Yeg: 0Y =-Y}.
Then, the subspaces £ and s are orthogonal with respect to By and the Cartan—Killing

form. In fact, € is called the compact component of Cartan decomposition, but ¢ is

not necessarily compact.
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Furthermore, we define the maps x: g — € and o : g — s, given by

X +0X
B 2

X - 0X

K(X) 5

and o(X)
the parallel projections of € and s, respectively.
e Let a © s be the maximal Abelian subalgebra. Then there is h a Cartan

subalgebra of g which contains a. Moreover, h¢ is a Cartan subalgebra of gc.

Given a pair (0, a), take II the set of roots associated to (6, a), where the roots are

linear functionals o : @ — R, so that for any « € II there exists H, € a such that

By(H., H) = o(H), Hea.

Those roots can be seen as a restriction of roots on he (see Chapter 14 of [28]).

» The Weyl chambers associated to (6, a) are the connected components of {H € a:
a(H) # 0,Va € IT}. Choosing one of them as the positive Weyl chamber a*, we
can define the set of positive roots associated with respect to a™ as II" = {a e II :
ale+ > 0} and we can define

n= Z Ja and n = Z O_as
aell+ aell+
where g, = g_, and fn = n”. Consequently, there exists > a simple root system

associated to a™, such that {H, € a: a € ¥} is a basis of a.

Moreover, s = a@® o(n) is a By-orthogonal decomposition.

The trio (0, a,a™) is called admissible trio of g, then we have the decomposition
g=tPadn,

called the Iwasawa decomposition. Let G' be a connected Lie group with Lie algebra g
(for example, G = Autgg). If K, A and N are connected subgroups generated by &, a and
n, respectively, then G is diffeomorphic to K x A x N, the decomposition G = KAN is

called the global Iwasawa decomposition.

For H € cl(a®), then

ny = Z g and ng = Z G- (1.6)

a(H)>0 a(H)<0
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Remark 1.4. When H € a™, that is, H is a reqular element, then we have that n = n};

and w~ = ny. In some papers, the subalgebra nj; is denoted by ng, where © = Oy.

Let g(H) be a semisimple algebra generated by nj; and ny, as we saw above
0|g(m) is a Cartan involution of g(H), and has the Cartan decomposition g(H) = ¢(H) @
s(H). Let a(H) be a subalgebra generated by {H, : «(H) # 0}, that is a(H) = g(H) na
is its maximal Abelian subalgebra and there exists ag, such that ag = a© a(H). Then we

can define
by = 3e(an) (1.7)

the centralizer of agy in €.

Definition 1.5. Let (0, a,a") be an admissible trio of g, then the parabolic subalgebra
associated to H € cl(a™) is

g =tg Dadn.

Moreover, if G is a connected Lie group with Lie algebra g, the parabolic

subgroup associated to H is the normalizer of py in G.

By the global Iwasawa decomposition G = K - A- N, we have that

Ky ={ke K: Ad(k)|qs, = ida,} (1.8)
thus
Py =Ky-A-N. (1.9)
Therefore
G/Py = % ~ K/Ky,

and we can conclude that

K/Ky ~ Ad(K) - H.

Remark 1.6. Given H € s, we have that Ad(K) - H ncl(at) # &, and as the action of K

is transitive, we can choose an element H € cl(a™) which determines the same manifold.

Remark 1.7. We will denote by Fy the flag manifolds passing through H € cl(a™) when
there is not confusion about what compact group is acting on, in the other cases we will

denote it as an adjoint orbit. In fact, in Section 2.2 we only denote by Fy the complex

flags.
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1.2 Non-compact case

Let g be a non-compact semisimple Lie algebra. The adjoint orbit of a connected
Lie group G with Lie algebra g has additional structures to be described by some tools of Lie
theory. Take a Cartan decomposition g = €@ s and its respective Iwasawa decomposition
g = E@ a® n, which induces a global Iwasawa decomposition G = KAN. If a® is a positive

Weyl chamber and H € cl(a™), then
g =1y @35 Dny,
where 35 is the centralizer of H in g. Thus
Zy ={9eG: Ad(g)-H = H}
is the centralizer in G of H, whose Lie algebra is 3. Therefore

AA(G) - H = G/ Zy.

For H € cl(a™), the adjoint orbit Ad(G) - H is a C -vector bundle over
Fy = Ad(K) - H isomorphic to the cotangent bundle 7*Fy. Moreover, the diffeomorphism
Is
t:Ad(G)-H - T*Fy

such that

i. ¢ is equivariant with respect to the action of K, that is, for all k € K,
o Ad(k) = kot
where & is the lifting to T*Fy of the action of k on Fy.

ii. The pullback of the canonical symplectic form on T*Fy by ¢ is the KKS form on
the adjoint orbit.

The diffeomorphism ¢ : Ad(G) - H — T*Fy was proved on [11] as follows:

« Firstly, the authors proved that Ad(G) - H is diffeomorphic to a vector bundle
V — K/Ky associated to the principal bundle K — K /Ky, determined by the

representation of Ky.
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o After that, the authors proved that V — K /Ky is isomorphic to T*Fpy.

We are interested in the construction of the diffeomorphism between Ad(G) - H
and the C'“-vector bundle over Fp, because in chapter 4 we use a variation of this

difeomorphism for our deformation diffeomorphism.

For that, the structure of vector bundle is associated with the principal bundle
K — K /Ky with structural group Kp. Moreover, the adjoint representation of Ky on g
leaves invariant the subspace nj;, because if k € Ky then Ad(k) commutes with ad(H),
and consequently Ad(k) takes eigenspaces of ad(H) into the same eigenspaces. Therefore
Ad(k) leaves invariant nj;, then the restriction of Ad defines a representation p of Ky
on nj;, and we can define the vector bundle K x,nj}; associated to the principal bundle

K — K/Kpy. In fact, we have to emphasize the following details.
To begin with, the elements of K x, nj; are equivalent classes of pairs (k, X)

of the equivalence relation

(ka,p(a™)X) ~ (k,X), ae Kg.

)

Then the group K acts on K x, nj; by left translations.

Furthermore, the adjoint orbit Ad(G) - H is a union of affine subspaces, that is
the consequence of the global Iwasawa decomposition G = K AN, where AN < Py and
the adjoint action of Py on H is given by Ad(Py) - H = H + n};. Thus

Ad(G)-H = Ad(K) (H +n})

= | JAd(k) (H +nj).

ke K

Therefore the diffeomorphism between Ad(G) - H and K x, nj; may be stated

as follows.
Proposition 1.8. The map v : Ad(G) - H — K x,nj; defined by
Y = Ad(k)(H + X) — (k,X) e K x,n};

is a diffeomorphism satisfying

1. v is equivariant with respect to the actions of K.
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2. v maps fibers onto fibers.

3. v maps the orbit Ad(K) - H onto the zero section of K x,nj.

By the map v we endow Ad(G) - H with a structure of a vector bundle coming
from K x,nj;, and its fibers are the affine subspaces Ad(k)(H + nj;) that have the
vector space structure of Ad(k)(n};). To conclude, we want to see an example that will be

fundamental in the chapter 4.

Example 1.9. Let g = sl (2,R) with basis {H,S, A} given by
1 0 01 0 1

H = S = A=
0 —1 1 0 -1 0

such that [H, S| = 2A, [H, A] = 2S and [A,S] = 2H.
This algebra is isomorphic to R® and can be expressed in coordinates as

(x,y,2) = xH +yS + zA and has a Cartan decomposition €@ s given by € = (A) ~ s0 (2)
and s = (H,S). The adjoint representation with respect to the basis {H, S, A} are given by

0 0 O 0 0 =2t
t-ad(H) = 0 0 2t t-ad(S) = 0 0 0
0 2t 0 =2t 0 0
0 2t 0
t-ad(A) = “2% 0 0
0 0 0

Then by exponentials we have that
cosh (2t) 0 —sinh(2t)
et-ad(S) _ 0 1 0 7
—sinh (2¢) 0 cosh (2¢)

1 0 0
e 4H) =1 0 cosh (2t) sinh (2t) [,
0 sinh (2t) cosh (2t)
cos(2t) sen(2t) 0
e (2t) cos(2t) 0 |,
1

0 0

therefore, the adjoint orbit of G = SI(2,R) passing through X € s is an hyperboloid.
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1.3 Symplectic structures

As we have seen above, the adjoint orbit of a semisimple Lie group admits the

KKS form. One of the most important results for adjoint orbits is the following (see [2]):

Theorem 1.10 (Konstant—Kirillov—Souriau). Let M = U/K be an homogeneous
space of a compact semisimple Lie group U with Lie algebra u. If M admits a symplectic

form w, then K is the centralizer of some element H € u and hence, M can be identified

with the adjoint orbit Ad(U) - H. Moreover, the form w is the KKS form given by (1.2).

Therefore, in the adjoint orbits of compact Lie groups there is only one possible
symplectic form. When g is a complex semisimple Lie algebra and GG a connected semisimple
Lie group with Lie algebra g, the adjoint orbit of G admits at least two symplectic structures
such as the KKS form and the imaginary part of the Hermitian metric H, (see [28]), which
is a symplectic form on g (see [1] and [9]) and its restriction on Ad (G) - H is a symplectic

form. This symplectic form was studied on [10] and [11].

Let g be a complex semisimple Lie algebra and u its compact real form with

Cartan involution 7, such that
H(X,Y)=—(X,7Y), X, Yeg

is a Hermitian form of g, where (:,-); is the complex Cartan-Killing form of g. The

imaginary part of ., will be denoted by 27, that is
QT('?') = im (HT(,)) (1'10)
and will be called symplectic Hermitian form determined by 7, then

2Re (H-(X,Y)) = 2Re (—(X, 7Y )y)
= —2Re ((X, 7Y ),)
= ~<X, 7'Y>R,

where (-, -)r is the Cartan-Killing form of the realification (sometimes called decomplexifi-

cation) of g. As we have

BT(X7 Y) - _<X7 TY>R7
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the inner product is identified with 2Re (H,(X,Y")). Moreover, the multiplication by i on

g is an isometry with respect to B, as follows

B.(iX,iY) = —(X,7(iY))r
= (X, itY )R
= 2Re(i X, iTY ),
= —2Re(X, 7Y ),
= (X, 7Y )r

— B.(X,Y).

Hence

B.(iX,Y) = —GX, 7Y g
= —i(X, 7Y g
— 2 (Re(X, TY'),)
= 2 (im(~(X, 7Y)y).

1
Therefore, up to a factor of 3 the symplectic Hermitian form is

O(X,Y) = B, (iX,Y) = —(iX, 7Y ). (1.11)

As g is a complex Lie algebra, the tangent spaces T, (Ad(G) - H) of Ad(G) - H
are complex subspaces of g, since if [A, x] is a tangent vector then i[A, x] = [iA, z] is also
a tangent vector. This implies that each adjoint orbit Ad(G) - H is a complex manifold,
as it is endowed with an almost complex structure (multiplication by i in each tangent
space) which is integrable, simply because this almost complex structure is the restriction
of a complex structure on g, because the Nijenhuis tensor vanishes (for instance, see [29,
Chapter 14]). Then the pullback of the symplectic form Q7 by the inclusion Ad(G)-H < g
defines a symplectic form on Ad(G) - H.
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2 Lagrangian submanifolds given by Lie

group actions

This chapter aims to study Lagrangian submanifolds given by the action of
a Lie subgroups L < G on the adjoint orbit Ad(G) - H. This method was studied on [8]
where the authors found all Lagrangian submanifolds of CP" (minimal flag manifold)
determined by actions of compact Lie groups, and it was studied on [13] where the authors
proved that there is a Lagrangian submanifold given by the diagonal action on the product
of flag manifolds if and only if the product of flag manifolds is Fg x Fg«, where OF is
the dual of ©. To begin, we prove that the real flag manifolds can be seen as Lagrangian
submanifolds of their respective complex flag and we give the complete classification of
complex flag manifolds that admit, as Lagrangian submanifold, each real flag manifold
determined by the different symmetric pairs, as we can see in [5]. After that, we prove
that the complex flag manifolds are Lagrangian submanifolds of adjoint orbits of complex

semisimple Lie groups with respect to the Hermitian symplectic form, as we can see in [6].

2.1 Isotropic orbits

In this section, we establish the tools that we use throughout this chapter to

find Lagrangian submanifolds.

Let (M,w) be a connected symplectic manifold and G x M — M a Hamiltonian
action of a Lie group G on M. If g is the Lie algebra of G and g* its dual space, then

there exists a smooth map p: M — g*, called the moment map, such that for all X € g
dHyx = 13w,

where X is the Hamiltonian vector field associated to X given by

> d
X(x) = %(etx‘x) xe M,

t=0

and Hx : M — R its Hamiltonian function, that satisfies
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Furthermore, the moment map p is called Ad*-equivariant, when

u(g-z) =Ad*(gu(z)  geG, xeM.

We will assume that the moment map p is Ad*-equivariant. Let L be a Lie
subgroup of G with Lie algebra [. Our interest is to describe those orbits L -z, x € M,
of L that are Lagrangian submanifolds of M, or more generally isotropic. The following
arguments use the moment map p to give necessary and sufficient conditions for the orbit

L - x to be isotropic. For XY € g we have
X -Hy =w(X,Y)=-Y - Hy, (2.1)

because if p e M, then

Therefore, for x € M, we have that

Y Hy(z) = —p() ([Y. X]), (2.2)
because
v d tYy
Y- Hx(z) = - . Hx (" ()
d LY\ *
= G| A u 0

By (2.1) and (2.2)

~

w (X@).¥@) =0 it p@) ([v.X]) 0.
On the other hand, the tangent space of L - x at x is given by
T,(L-z)={X(z): Xel},

then w, vanishes on T, (L - x) if and only if u(x) ([Y, X]) =0 for all X,Y € L.
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Proposition 2.1. An orbit Lz is isotropic if and only if u(x) belongs to the annihilator

([’)0 of the derived algebra I of L.

Proof. Take y € L -z, as seen above T, (L-x) = T, (L -y) is isotropic if and only if
p(y)[Y, X] =0 for all X,Y €. But, as [V, X] € ', then

p([Y, X] =0 iff p(y)e ()",

or equivalently p(z) € (I')°, because y = g - x for some g € L.

Therefore p(y) = Ad(g)*u(x) and p(y) annihilates ' if and only if

p(x) (Ad(g) - 1) = p(=) - (') = 0,
because [' is invariant by automorphism on . O

Remark 2.2. If G be a compact Lie group. Then, there exists an invariant inner product
(+,+) on g, and the moment map can be inlerpreted as a map with values in g. For instance,
the set (I')° becomes the orthogonal complement of I with respect to the inner product.
Therefore L - x is isotropic if and only if u(x) € ([/)L, with respect to the inner product
(.’ )

When G is a semisimple Lie group, we can replace the inner product by the

Cartan-Killing form.

As we saw in Section 1.2, if U is a compact semisimple Lie group with Lie
algebra u, then the adjoint orbits of U in u are the flags of the complex group Uc which
has the Lie algebra uc.

The KonstantKirillov-Souriau (KKS) symplectic form on Ad(U) - H is given

by
W ()”((x), f/(x)) — (2 [X, YD XY e, (2.3)
where (-, ), is the Cartan-Killing form on u and X = ad(X) is the Hamiltonian vector

field of Hx(x) = {(x, X ),. Therefore, the moment map p of the U-adjoint action is the

identity map, which is (evidently) equivariant.

Then we can use the Proposition 2.1 to determine some isotropic submanifolds

of Ad(U) - H.
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Example 2.3. Choose u = su(3) and H = idiag(2,—1 —1). Then

—it 0
ug ={Xeu: [H,X]=0}=  Aeu(2), and t=trA;,
0 A

is a Lie subalgebra of u. Therefore

()" = —z —it 0 |:teRezweCy,. (2.4)

Let Hy = diag {1,0,—1} be a regular element on u. Then (u})" ~ Ad (U) (iHy)

is the set of matrices

with eigenvalues 0 and +i. Since Ad (U) (iHy) = F3(1,2) is the set of matrices in su(3)
which have the same eigenvalues as iHy. As 0 is an eigenvalue of X € (u'H)L NnAd (U) (iH,),
we have that

det X = —it (26> + |w|* + |2[?)

which vanishes if and only if t = 0, because t € R. Thus, the characteristic polynomial of

X becomes

A+ (Jw]? + [2]%) A

This implies that [w|> + 2> = 1, then (W)™ ~ Ad (U) (iHy) is formed by the
matrices satisfying

wf? + [2* =1,
describing the sphere S* in the space of matrices ~ C*. And
dim S® = 3 = %dimRFg(l,Q),
that is, S* is a Lagrangian submanifold of F5(1,2).
The Lagrangian submanifold S® in the example above can be seen as a real flag

of su(1,2). In particular, it is the classic example of the Lagrangian immersion of real flags

in complex flags. In the following subsection we will classify all those possible immersions.
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2.2 Lagrangian immersion of real flags on complex flags

Let U be a compact semisimple Lie group with Lie algebra u and € < u a Lie

subalgebra. We say that (u, £) is a symmetric pair if
[e,5] c & and [Eh €] ¢,

where | is with respect to the Cartan-Killing form on .

In particular, given the symmetric pair (u,£) and K = {expt), then U/K
is a symmetric space. The dual symmetric pair is (g, %), where g is a non-compact
semisimple Lie algebra (real form of u®) with a Cartan decomposition g = €@ s, such that
s = ¢t cu®.

By the section 1.1.2, the K-isotropy representation orbits on s (or El) are the
flag manifolds of g. For H € & we have the usual construction of Lagrangian immersion
of real flags on the (corresponding) complex flag in the following sense: Let a < s be a
maximal Abelian subalgebra, then there exists a Cartan subalgebra b in g, such that a < b

and hc is a Cartan subalgebra of gc = uc (in fact, a < bg).

Thus if H € a:

K/Ky = A(K) - H < Ad(U) -ill = U/Uy = Fy. (2.5)

Therefore the flags of g are determined by the adjoint action of K through H
and are immersed in the flags of g¢ given by the adjoint action of U through ¢H. Moreover,
as u is compact we have that (¢)° corresponds to the orthogonal complement of ¢ with

respect to the invariant scalar product of u. Then we can conclude:

Proposition 2.4. Given a symmetric pair (u,€) and H € a i€, the real flag manifold

Ad(K) - H is a Lagrangian submanifold of Fy with respect to the KKS form.

Proof. Since ¥ < €, then &- < (¢)" and Ad(K)-H < &~ = is, then Ad(K)-H  (¢)" # &
and by Proposition 2.1 the adjoint K-orbit (real flag) is an isotropic submanifold.

Furthermore, if by = 1 - K, we have that

dim(TbHAd(K)-H)zdim( Z ga> =#{aellc: a(H) <0},

a(H)<0
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and as the root spaces of gc are 1-dimensional complex spaces (i.e., 2-dimensional real
spaces), then

Hence Ad(K) - H is a Lagrangian submanifold of Fy. O

Now, our interest is to determine the complex flags of gc that admit, as
Lagrangian submanifold, a real flag given by the action of K = {exp ) for the symmetric
pair (u, t). Take a s a maximal Abelian subalgebra and h a Cartan subalgebra of g such
that a < h. Take Il¢ the set of roots of he such that the roots of a are the restrictions on
be. If 6 is a Cartan involution associated with the Cartan decomposition g = €@ s, then

exists an involutive extension of # in g¢, which will also be denoted by 6.

Therefore as we can seen in [28], the restriction of Il¢ on a is given by

P=—(1-0%), where 0*a=a«aof.

N | —

Let II;,, < Il¢ be the set of imaginary roots, such that « € II;,, if and only if
P(a) = 0. Set I, = I¢\ITiy, then the set of restricted roots is given by P(Il,). Given a
adequate proper order (with respect to the lexicographic order in a*), take ¥y, the system
of imaginary simple roots and X, its complement such that the projection of ¥, on a* is
a system of restricted roots X and a® the positive Weyl chamber of g determined by

3.

For H e cl (a*)
Ou = {fex: BH) =0} 3.
Define éH c X, given by
On = P~ HOp) U Sin, (2.6)
i.e., Oy is determined by the Satake diagram of g (see [28]).
Proposition 2.5. Oy = {a € X¢ : a(H) = 0}.
Proof. If H € a, then for all a € ¥¢

0*a(H) = a0 0(H) = —a(H), (2.7)
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because 0|, = —id. Also, if a € ¥, then 0*a = «, and by (2.7) we have that o(H) = 0,
therefore it is enough to see for roots in Y. If o € P71(Og), then (a — 0*a)(H) =
0 implies that a(H) = 6*a(H), and by (2.7) we have that o(H) = 0. Thus Oy <
{ae¥c: a(H) =0}

Conversely, if a € X, such that a(H) = 0, then 0*a(H) = —a(H) = 0, thus
P(a)(H) = 0 and implies that P(a) € Oy, i.e. a € P71(Op). O
Therefore,

Theorem 2.6. Given a symmetric pair (u,t), the complex flags of uc of type 0 c ¢
admit, as Lagrangian submanifold, the real flag of g = €@ it of type © < X if and only if

é = Pﬁl((_')) ) Zim-
That is, O is determined by the Satake diagram of g.

In particular,

Corollary 2.7. A maximal flag F of gc admits a real flag Ad(K) - H as Lagrangian
submanifold if and only if ¥y, = & and & = Og.

Example 2.8. Let u = su(7), € = S(u(2) x u(5)) and g = su(2,5) that determine the

symmetric pair (u,€) and its respective dual symmetric pair (g,%). The Satake diagram of

su(2,5) is
(&3] (%) (0%
©) @) T
©) @) @
(673 (675 Qi

By Theorem 2.6, the flags of type Oc Y.c that admit as Lagrangian submanifold a real
flag of type © < ¥ = {1 = P(a1) = P(ag), f2 = P(az) = P(as)} are

o If @0 = @, then éo = Zim = {043,044}.
e IfO, = {B1}, then ©, = {a1, a3, a4, ag}.

e If ©y = {Ba}, then (:)2 = {, a3, ag, as}.
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Analogously, this is equivalent to that given in the table 1, forn = T7:

O

e Yy = E(C\{Oél,OémOénfz,Oénq};

. O = Yc\{ag, s},
e 0, = c\{ar, a1}

Hence, using the Satake diagrams we can determine which are the complex

flags of type 0c Y.c, for which there exists © such that Theorem 2.6 is satisfied.

Corollary 2.9. The complex flags of type 0c Y.c admits as Lagrangian submanifold a
real flag given by the K-adjoint orbit if and only if &) appears in Table 1.

The proof of this result is given in the following subsection. For that we will
use a convenient notation of partitioning an integer, that is, we define b(n) for n € N, as
the set of ordered I-tuples of integers (ny,...,n;) such that 0 < ny < --- <mn; < n, for

example:
I)(3) = {(1)7 (2)7 (3)7 (17 2)7 (173)7 (27 3)7 (17 2, 3)}

Using this notation, we build the Table 1.

Remark 2.10. In [5] we prove that this Lagrangian submanifolds are infinitesimally tight
submanifolds. Tight submanifolds is detailed in Appendiz A.

2.2.1 Case by case

By the Satake diagrams, we can determine all the complex flags that admit the
Lagrangian immersion of the corresponding real flag, given by the possible symmetric pairs.
We will see the construction of the table 1, where for normal cases (also known as split

Lie algebras): AI, CI, G2, FAI, F6I, E7I and E8I all possible Oc Yc are admissible.

2.2.1.1 Classical algebras

Type AIl

In this case g = sl(n, H), such that gc = sl(2n, C). Then the Satake diagram is
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Table 1 — Complex flags that admit a Lagrangian immersion of the real flag determined

by the action of K = exp#.
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e—0—0— —@—0—@

a €%) a3 Qp—3 Ap—2 Op_1

As iy = {agj_1 1 1 < j<n}and ¥ = {f; = Play;) : 1< j <n—1}. Therefore the

possible O that satisfy the Theorem 2.6 are:

O = Yc\{ags,, ... ot (s1,....8)€b(n—1)}. (2.8)

Type AIII
In this case g = su(k,n — k)

o If £ <n — k, the Satake diagram is

aq 2 A k1
O O O |
}
?
O O O ()
Q1 Ap—2 Ak Qp—f—1

As ¥ ={aj: k<j<n—Fk}and ¥ = {f; = P(aj) = Plan—;) : 1 <j <k}
Therefore the possible O that satisfy the Theorem 2.6 are:

O = Sc\{gy, - Qs Qg ooy Oy ¢ (515, 51) €D (K)}. (2.9)

o If kK =n — k, the Satake diagram is

aq (D) Ap—1
O O o O\
[ 5
/ "
O O O
Qp—1 Qp—2 Qk41

As ¥, = Fand ¥ = {5; = P(aj) = Plon—j), B = Plag) : 1 <j < k-—1}
Therefore the possible O that satisfy the Theorem 2.6 are:

O = Ye\{as Qs Qg oy Qg 0 (S1,. .., 81) €0 (K — 1)}, (2.10)

or

O = Sc\{a,, .. ey Oy Oy Oy e oy Q)+ (S1,...,81) €b (b —1)}. (2.11)
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Type B

In this case g = so(k,2n + 1 — k), then the Satake diagram is

o— —0—0— —@&=0

aq Q. Oy Qp—2 Op_1

As Y = {aj: k<j<n}and ¥ ={f; = P(a;): 1<j <k} If k=n then g is normal,
but in general the possible O that satisfy the Theorem 2.6 are:

O =Yc\{ag, .. aq: (s1,....8)€b(k)}. (2.12)
Type CI1

In this case g = sp(k,n — k).

o If kK <n — k, the Satake diagram is

e—0—0— —0—0—  —O@<=0

(€51 Qo (0%} Aok Qok41 Qp—1 Qp

As ¥y = {agjo1,00 0 1 < j <k, ¢>2k}and ¥ = {f; = P(ag;) : 1 <j <k}
Therefore the possible O that satisfy the Theorem 2.6 are:

O = Sc\{ang,, ... ag t (s1,....8) €b(k)}. (2.13)

o If n =2m and k = m, the Satake diagram is

—0—0—  —O0—@<&0

Qq Q2 Qs Qp_9 Qp—1 Oy

As Yy = {agj_1 0 1 <j<m}and ¥ = {f5; = P(ay;) : 1 <j <m}. Therefore the
possible O that satisfy the Theorem 2.6 are:

O = B\ {Qas,, - g, ¢ (515-...5) €b(k)}. (2.14)
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Type DI
In this case g = so(k,2n — k).

e If kK =n then g is a normal form.

o If K <n —1 then the Satake diagram is

ay Q. Qgyl )

Qn

As iy ={oj: j>k}and ¥ = {f; = P(a;) : 1< j <k}. Therefore the possible &)
that satisfy the Theorem 2.6 are:

O =S\t .yt (s1,....8) b (k). (2.15)

o If K =n — 1 then the Satake diagram is

&73
k-1
O—O— - —O0— I
g &%) Q2
an

As ¥y, = P and X = {; = P(o;), B = P(ag) = P(ay,) : 1 < j < k}. Therefore
the possible O that satisfy the Theorem 2.6 are:

O =Sc\{ag, ... ag: (s1,....8)eb(k—1)}, (2.16)

or

O = B \ays s Qs st (51,...,5) €b(k— 1)} (2.17)



Chapter 2. Lagrangian submanifolds given by Lie group actions 40

Type DII

In this case g = s0*(2n).

o If n is even, the Satake diagram is

e—0—0— —O0—

(@3] %) ] Op—3

As Yy = {aj : jisodd} and ¥ = {f; = P(ag;) : 1 < j < n}. Therefore the
possible O that satisfy the Theorem 2.6 are:

O = Sc\{ans,, ... ag t (s1,....8) €b(k)}. (2.18)

o If n is odd, the Satake diagram is

A1
Ap—2
e—0—0—  —O0— I
(€31 &%) ag Op—3
Qp

As ¥y, = {a; : jisodd and j < n} and ¥ = {8; = P(aw;), Bx = Play_1) =
Pla,) : 1 <j <k, k= (n—1)/2}. Therefore the possible © that satisfy the

Theorem 2.6 are:

o= Ec\{agsl,...,agsl D (S1,...,8) €D (7123)}7 (2.19)

or

~ -3
O = EC\{agsl,...,agsl,an_l,an D (S1,...,8) €D (n 5 )} (2.20)

2.2.1.2 Exceptional algebras

Type FAIT

In this case g = F; %, then the Satake diagram is
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—0—=>0—O
ap Q2 Q3 Oy
Therefore the only non-trivial possibility of O that satisfies the Theorem 2.6 is
O = {1, az, a3} = Y. (2.21)

Type E6IT

In this case g = EZ, then the Satake diagram is

Therefore the non-trivial possibilities for O that satisfy the Theorem 2.6 are:

° é = @7 ° é = {0427063,044},
+ 6= {Oé6}’ ° é = {&1,0[3,0{5},
° é = {013}, ~
L4 @ = {Oél,OéQ,CY4,0Z5},

e O= {0427014}, -

~ ° @ = {062706370547046},
. @ = {041,045},

~ ° (:) = {O[l,Oé3,0é5,0[6},
s O= {0637046},
° (:j = {06270447066}, * @ - {al’a27a4’a5’a6}’
° é = {a17a57a6}7 ° é = {@1,0(2,0[3,0[4,0{5}.

Type E6II]

In this case g = E; ', then the Satake diagram is
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Therefore the non-trivial possibilities for O that satisfy the Theorem 2.6 are:
° @ = {05270637054}, ° @ = {O[l,()é27053,054,055 }
M @ = {062704370647046},

Type E61V

In this case g = E;?°, then the Satake diagram is

@ o5
O—e—0—0—0oO

a &%) (&% Oy Qs

Therefore the non-trivial possibilities for O that satisfy the Theorem 2.6 are:

e é = {a27043044,a6}7 ° (:) = {062,C¥3,Oé470457046 }

~

« O = {a170527a370547a6}7
Type ET11

In this case g = E-°, then the Satake diagram is

Q@ oy
—O—0—0O0—0O0—-—0

(0%} Q9 Q3 QY (0731 Qg

Therefore the non-trivial possibilities for O that satisfy the Theorem 2.6 are:
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e O ={a,as,ar}, o O ={ai,as,a4,a5,07}.
° @ = {Ofl,OéQ,O{Z;,Oé?}, ° é = {a17a37(14’a6,(){7}7
i (:):{Ch as, o, Q7 f ~
7 ’ ’ ’ A @ = {()[1,0(2,0(3,0[4,0(7},

¢ ©={ai,a3,a4,a7}, ~

N « O = {05170527053704470557047}7
e O= {051705370557047}7

~ ° @ = {al,OéQ,Oég,a4,Oé67a7},
e O= {0517042705370447057}7

e O ={a, . a;, a5 ar}, * O = {1,504, 05,06, a7},

O = {01170527043, 045,0467047}-

O = {aly Qg, a3, Og, a7}7

Type E7TII1

In this case g = %5 then the Satake diagram is
@ oy
oO—O0—0—0—0—oO

(€51 (%) Q3 Oy 0% Qg

Therefore the non-trivial possibilities for O that satisfy the Theorem 2.6 are:

o O ={as,ay,as ar}, o O = {ai,a, a3, 04,05, 07},
e O= {0617043706470457067}, ~

~ o O ={a,a3,ay,as, a6, a7},
d @ = {062704370647045,067},

o @ = {0637044,064,045,067}7 @ = {a27a37a47a57a6a7}'

Type E8II

In this case g = E3?*, then the Satake diagram is
Q@ s

O—O0—0—0—0—0—™0

aq &%) Q3 Gy Qs Qg Q7

Therefore the non-trivial possibilities for O that satisfy the Theorem 2.6 are:
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o O ={ay,as,ag as}, o O = {a, au, a5, ag, a7, g},
o O = {a1,qy,as,a4,as}, o O = {ay,ay,as, a4, a7, a3},
« O= {0427044,045,046,048}7 ~
° @ = {063,0647055,046,0577048},

« O= {0437044,045,046,048}7 N

~ « O= {041,052,053,044,055,046,058},
« ©= {%70457066,0477068},

~ e 0= {a1,@2;a4,a5,a67a7,a8},
s O= {0617042,()64_,045,()66,048},

o O ={a,as, a4, a5, ag, as}, * O ={on 05 04,0506, 07, a5},

O = {OzQ,Oég,Oé4,0é5,0é6,0[8}, e O= {O[Q,(Ig,()é4,0(5,0567047,0{8}.

2.3 lsotropic submanifolds on complex adjoint orbit

As we saw in Section 1.3, the adjoint orbit of a complex semisimple Lie group
G with Lie algebra g admits at least two symplectic structures. Let w be a KKS symplectic
form on Ad(G) - H, where H can be chosen in a positive Weyl chamber of g. To apply the

Proposition 2.1, we have the following subgroups that are isotropic submanifolds:

e Let L = U be a compact form of G, with Lie algebra u. Then U has isotropic orbit
on Ad(G) - H if and only if H € s, since (v')* = u* = iu = 5.

Therefore, the orbit of U is isotropic on Ad(G) - H, for all H € cl(a™).
o Let L = P be a parabolic subgroup of G, determined by the parabolic subalgebra p.
Then, there exist © < ¥ such that P = Pg and p = h@ng, such that (p')" = hDng.

Therefore, the orbit of P is isotropic on Ad(G) - H, for all H € cl(a™).

In fact, the problem is to determine the subgroups such that the orbits are
Lagrangian. Next, we show that the adjoint action of U is Lagrangian with respect to the

Hermitian symplectic form.
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2.3.1 Adjoint action with respect to the Hermitian form

In this subsection we will apply the Proposition 2.1 to find Lagrangian sub-
manifolds on the adjoint orbit with respect to the Hermitian symplectic form, when G
is a complex semisimple Lie group. In fact, the action of U is symplectic in relation to
Q7 because the adjoint representation of u is anti-symmetric with respect to B,. We can
describe the action in terms of the moment map in g, and we can specify it in an adjoint
orbit. As we demonstrated in Section 1.3, the Hermitian symplectic form on g can be seen

as:

O (X,Y) = B.(iX,Y) = (X, 7Y )g.

For this, we will describe the action in terms of the moment map in g and then

specifying for the adjoint orbits. So for A € u, define the bilinear form:
Ba(X,Y)=Q" (ad(A)- X,Y) = B, (iad(4) - X,Y),
which we can see is symmetric:
paY,X) =B, (iad(A) Y, X)
= B, (ad(A) - 1Y, X)
= —B, (1Y,ad(A) - X)
= B, (Y,iad(A) - X)
= B, (Y,ad(A) - iX)
= B, (ad(A) -iX,Y)
= Ba(X,Y),
because ad(A) is anti-symmetric with respect to B;,. Then define the quadratic form
Q(X) = fa(X, X) = Q7 (ad(A) X, X).

Proposition 2.11. If A € u then ad(A) is a Hamiltonian field with Hamiltonian function
Q)

—Q(x).

2

Proof. Let «(t) be any curve, then

2 (xae) = 4 (3o w.00)
~ Ba(a'(0)a(t)
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1
therefore a vector field = — ad(A) - z is Hamiltonian with function EQ(x) O
From this Hamiltonian function we can write the moment map u : g — u, for

nl), A = 5Q(a), (2.22)

where (-, ), is the Cartan—Killing form of u. Therefore we have

la), Ay = 5QU)
— 297 (ad(4) -, )
_ %BT (iad(A) - z,2)
= Ciad(4) -z, 7o),
_ %<ad(A) -, iTad,
= (Lo, Al rin),

= %@4, [Tiz, x])g,
Hence p(x) is the orthogonal projection on u of [riz, z], that is
() = 5 ([riz, ] + 7lriz, «))
% ([riz, x] + [z, iTz])
% ([riz, x| — [z, Tix])

= [rixz,x] € u.

Corollary 2.12. The moment map p for the adjoint action of U in g (and thus for the
action in each orbit Ad(G) - H) is given to A € u by

pu(x) = [riz,z] = —i[tz,x] €eu T Eg.

From this expression for p and [13, Prop. 4], it follows that the orbit Ad(U)-x is
isotropic for Q7 if and only if [Tz, 2] = 0, since u is semisimple. Put another way, Ad(U) -z

is isotropic if and only if £ commutes with 7.

Example 2.13. Let g = sl(n,C), we have

therefore the isotropic orbits are the orbits of normal transformations.
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One case where the adjoint orbit Ad(U) - H is isotropic is when H € s = qu. In
this case, Ad(U) - H = Fy is a flag manifold of g. Moreover, we have dim (Ad(G) - H) =
2dim Fy, hence Fy is Lagrangian submanifold of Ad(G) - H with respect to Q7. Then

Theorem 2.14. The only isotropic Ad(U)-orbit in Ad(G) - H is the flag manifold Fy, it
1
is the only orbit with dimension less or equal to 5 dim (Ad(G) - H).

In fact, it is a Lagrangian submanifold.

Proof. Tt should be proved that if 0 # X € n};, then the isotropy subgroup Uy, x on

H + X has a strictly smaller dimension than the dimension of Uy on H, as this shows that

dim Ad(U)(H + X) > dimFyy — %dim (Ad(G) - H).

For this it is observed that if
Ad(u)(H+ X) =Ad(u)-H +Ad(u) - X =H+ X

then Ad(u) - H = H and Ad(u) - X = X. The first equality means that Uy, x < Uy. Take
the torus Ty = cl{eitH : t € R} which has dimension greater than 0, then Ty < Uy but
Ad(v) - X # X for some v € Ty since Ad(Ty) has no fixed points in nj;, because the

eigenvalues of ad(H) in nj; are strictly positive.

This shows that ad(iH) is not in the isotropy algebra H + X and in consequence

dimUH+X<dimUH. ]
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3 Coadjoint orbits of semi-direct products

and their symplectic structures

This chapter presents one of our main results, with the objective of constructing
a wider variety of Lagrangian submanifolds of any adjoint semisimple orbit. For this, we
are going to change the usual structure of semisimple Lie algebras, i.e., with a new Lie
bracket given by a convenient semi-direct product determined by a Cartan decomposition

of this Lie algebra. This construction was inspired by [17].

In this way, the first part of this chapter is focused on the general construction
of coadjoint orbits of this semi-direct structure. After that, we adapt those general results
to the mentioned semi-direct product given by a Cartan decomposition. Therefore, given
g a semisimple Lie algebra, with Cartan decomposition g = €@ s, we can determine two
types of coadjoint orbits: The usual semisimple and the semi-direct orbit. Finally, we study
the Hermitian symplectic form in the semi-direct orbit for a complex semisimple case.

These results are part of [6].

3.1 Coadjoint semi-direct orbit

Let G be a connected Lie group with Lie algebra g and take a representation
p: G — GI(V) on a vector space V' (with dim V' < c0). The infinitesimal representation of
g on gl(V) is also going to be denoted by p. The vector space V' can be seen as an Abelian
Lie group (or Abelian Lie algebra). In this way, we can take the semi-direct product G x,V
which is a Lie group whose underlying manifold is the cartesian product G x V. This

group is going to be denoted by G, and its Lie algebra g, is the semi-direct product
g, =9 %, V.
The vector space of g, is g x V with bracket

[(X,0), (Yw)] = ([X, Y], p(X)w = p(Y)0).

Our purpose is to describe the coadjoint orbit on the dual g: of g,. To begin with,

let’s see how to determine the p-adjoint representation ad, (X, v), where (X,v) e g x, V.
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Thus, take a basis of g x V' denoted by B = By u By with By = {X;,...,X,} and
By = {v1,...,vq} basis of g and V, respectively. On this basis the matrix of ad, (X, v) is

given by

ad(X) 0
[ad, (X, v)]5 = : (3.1)
Av)  p(X)
where ad (X) is the adjoint representation of g while for each v € V', A (v) is the linear

map g — V defined by

The dual space g can be identified with g* ® V*, where g* is immersed on
(g x V) by extensions of linear functionals on g to g x V by the zero functional on
V' (in the same way, V* is immersed on (g x V)*). Therefore, the dual basis of B is
B* = By u By, where B} and By, are the dual basis of By and By, respectively. Then, the
coadjoint representation ad: (X,v), for (X,v) € g,, with respect to B*, is transpose with a

negative sign on the off diagonal term of 3.1, that is

ad® (X) —A(v)*
ad’ (X, 0) |, = : .
[ad} (X, 0)], . I (3.2)

In this matrix, ad® is the coadjoint representation of g, p* is the dual repre-

sentation of p, that is
PP X)a=—-aop(X), aeV* Xeg

and A(v)* : V* — g* is the transpose of A(v) for v € V| which by the above equation can

be seen as follows:
A) (@) (X) = a(A(v) (X)) =a(p(X)(v) = —p" (X) (@) (v).

The adjoint representation Ad, and coadjoint representation Adz of G, are

obtained by exponentials of representations in g,. In particular, the following matrices are
obtained (on the basis B and B*):

1 0

5 tA(v) 1 7

[etadjj(o,v)] _ L —tA (o) ) (3.3)

dp(0,0)
[etaPOU] . . )

On the other hand, for g € G the restriction of Ad,(g) to V coincides with
p (g) and the restriction of Adj (g) to V* coincides with p* (g), where we are seeing V' and
V" as subspaces of g, = g@®V and g; = g" @ V", respectively.
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To describe the map A(v)* it is convenient to define the momentum map of

the representation p.

Definition 3.1. The momentum map of the representation p is the map
o= VRV — g,

given by
pv®a)(X)=a(p(X)v) veV, aeV* Xeg. (3.4)

Then
A a=pve®a)e g

because we have the following identifications

A@)" () (X) = a (A (v) (X)) = a(p(X) (v) = p(v®a) (X).

Lemma 3.2. The momentum map is equivariant, in the sense that we can exchange the

representation p ® p* with the coadjoint representation, i.e., forge G, veV and a € V*
1 ((p(g)v) ® (p*(g))) = Ady(g) - u(v @ ). (3.5)

Proof. Let g € G, as the restriction of Ad, (g) and Ad} (g) to V and V* coincides with

p(g) and p* (g), respectively. For X € g

AdS (9) (mv®a)) (X) = (A(v)*a) (Ad, (¢71)) (X)
= a-A@v) (Ad, (97) (X))
= a-p(Ad, (¢7) (X)) (v)
= a(Ad,(97")) (p(X) Ad,(g)(v))
= Adj(9)(@) (p(X) (Ady(9)(v)))
= p(9)(@) (p(X) (p(g)(v)))
= u((p(9)v) ® (p*(9)a)) (X). O

Additionally, the momentum map p is bilinear in V' x V*, then setting av € V'*
implies that the map p, : V' — g* given by p(v) = p(v® ) is a linear map and its
image i, (V') is a subspace of g*. Let a € V*, the coadjoint orbit of G, through a will be
denoted by

G, a:=Ad} (G,)-a,
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that is, we are identifying the coadjoint representation of G, as a G ,-action on g:. The
following proposition shows that the coadjoint orbit for a € V* is the union of subspaces

p(V).
Proposition 3.3. For a € V*, the coadjoint orbit is given by

Gora= |J mV)x{grcg <V,

pep*(G)a

and writing g* x V* as g* @ V* (with the proper identifications)

U 5+Mﬁ

Bep* (G

where B+ pg(V') is an affine subspace of g* @ V*.

Proof. Firstly, if g € G we can then identify Ad;(g) with p*(g) on the subspace V* <
g* x V*. Therefore p* (G) a = Adj (G,) @, and as we saw before

[6tad;k(0,v):| _ 1 —tA (U)*
B 0 1

which shows that if 5 e V* < g*® V™ = g* x V*, then

995005 — 5 44 (v)* (B)

which in terms of the momentum map is

B—tAW)" (B) =B — ns(tv).

Varying v € V, shows that the affine subspace g + ug(V') is contained in the coadjoint
orbit of 3, for § € V*. Next to the fact that p*(G) - a = Ad}(G)) - a, we conclude that

U 5+M,8 )< G, a.
Bep*(

Conversely, if ge G and f e V*

Ad} (9) (B + pp (V) p* (9) B+ Ad} () ps (V)
= " (9) B+ pox(gs (V)

where the last equality is a consequence of the fact that u is equivariant. For h € G, there

are g € G and v € V, such that
Ad? (h) oo = Ad? (9) Ad2 (")) .

As Adj (et(o’“)) a € a+ o (V) implies Ad? (h) a € p* (9) a + p1px(g)a (V). O



Chapter 3. Coadjoint orbits of semi-direct products and their symplectic structures 52

The action of G, is obviously transitive on G, - «, then it is an homogeneous

space given by
Gp-a=Gy/Z,(a) with Zy()=1{(g.0)cC,: (g,v)-a=a},
the isotropy subgroup at o € V* < g, with Lie algebra
3p(a) ={(X,v)eg,: adZ(X,v) ~a = 0}.
Then in terms of the basis B*

ad3(X,0) -0 = —pa(0) + p*(X)ar

therefore
ad)(X,v) - a=0 < p"(X)a=0 and p.(v)=0.
Thus
3p(0) = {X g p*(X)a = 0} x kerp, (3.6)
and
Zy(a) ={ge G: p*(g)a = a} x ker pq. (3.7)

As T,(G, - a) ~ g,/3,(c), for any (X,v) € g, we can compute a vector field

(X,v) at £ = 5+ pg(w) € G, - a with 8 = p*(g)a, g€ G and w € V, that is

(X,v)e = 4 (exppt(X,v)) -

dt £ 0
W (e, v) - €
a7 ’ —0
= ¢oad,(X,v)
= —ad;(X,v) - £

Hence

Tu(G,-a) ={—ad)(X,v)-a: (X,v) € g,}.

By Proposition 3.3, the coadjoint orbit GG, - o is the union of vector spaces

and fibers over p* (G)x of the representation p*. This union is disjoint because given

e (B+ps(V))n (v + py (V)) then

(=0+X=9+Y X=p3(v), Y =p,(w)
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with X, Y € g. Since the sum g = g* @ V" is direct, it follows that § = v and X =Y.
Therefore there is a fibration

G, -a—p"(G)a,

such that an element £ = §+ X € 5+ pug (V) associates € p* (G) a, and its fibers are

vector spaces. The following proposition shows that this fibration is the cotangent space of

" (G)a.

Proposition 3.4. G-« is diffeomorphic to the cotangent bundle T* (p* (G) ) of p* (G) a,
by the diffeomorphism

6:Gp-a—T* (o (G)a),
that satisfies

¢B+us (V) =T5 (0" (G)a), Bep™(G)a

The restriction of ¢ to a fiber B + g (V') is given by a linear isomorphism
ps (V) = T5 (0" (G) @) -

Proof. Take £ € G, - a, there is a unique 5 € p* (G) «, such that £ € pug (V'), then there is
veV with £ = B+ p(v® ). The vector v € V defines a linear functional f, on V*, and

of course their respective restriction to T (p* (G) @), therefore f, € Tj (p* (G) ). Set
(&) =foeTg(p"(G)e),  E=F+p(®p).

A map ¢ is a linear injective map and the linear map p (v A w) — f,, is surjective.
Furthermore, the restriction of ¢ to a fiber w + pu,, (V') is given by the isomorphism:

tw (V) — T (p(G) z). It follows that ¢ is a bijection.

Finally ¢ is diffeomorphism because both ¢ and ¢~* are differentiable as follows
by construction: ¢ is the identity map at the base of the bundles of p* (G) z and ¢ is linear
on the fibers. O

In fact, the diffeomorphism ¢ of the Proposition 3.4 can be seen as a symplec-
tomorphism. In the coadjoint orbit G, - o we can define the Konstant-Kirillov-Souriau

(KKS) symplectic form, denoted by w and defined as

we (X e (Xn ) = € [(X,w),(v.2)], (Xjv) € g, €€Gyoa
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where (X, v) = ad} (X, v) is the Hamiltonian vector field of the function H(x,): M — R
given by
Hix)(€) = E(X,0) (X 0) € gp.

In the same way for the cotangent bundle 7™ (p* (G) o) we can define the
canonical symplectic form @. The following proposition shows that these symplectic forms

are related by ¢.

Proposition 3.5. Let w and & be the KKS symplectic form on G, - a and the canonical
symplectic form on T* (p (G) «), respectively. If ¢ is the diffeomorphism of the Proposition
3.4, then ¢*w = Q. In other words, the diffeomorphism ¢ is symplectic.

The best way to relate these symplectic forms is through the action of the semi-
direct product G, = G x V on the cotangent bundle of p* (G) . This action is described
in Proposition 3.6 (in a general case), the action of G, on T (p (G) «) is Hamiltonian and

then it defines a moment map

m:T% (p* (G) a) — g,,.

The construction of m shows that it is the inverse of the diffeomorphism ¢ of
the Proposition 3.4. Moreover, m is equivariant, that is, it interchanges the actions on

T* (p (G) a) and the adjoint orbit, which implies that m is a symplectic morphism.

Representations and symplectic geometry

Let M < W be an immersed submanifold of the vector space W (real, that is,
W = RY). The cotangent bundle 7 : T*M — M is provided with the canonical symplectic
form w. Given a function f : T'"M — R denote by X the corresponding Hamiltonian field,
such that df (-) = w (Xy,-). If @« € W*, the height function f, : M — R is given by

fo () = o ()

and also denote by f, its lifting f, o m which is constant on the fibers of 7. Denote by
X, the Hamiltonian field of this function. Since f, is constant in the fibers, the field X,
is vertical and the restriction to the fiber 7' M is constant in the direction of the vector

(df,), € Ty M. Furthermore, if o, f € W*, the vector fields X, and Xz commutes. In terms
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of the action of Lie groups and algebras, the commutativity [X,, X3] = 0 means that
the map a — X, is an infinitesimal action of W*, seen as an Abelian Lie algebra. This
infinitesimal action can be extended to an action of W™ (seen as an Abelian Lie group

because the fields X, are complete).

Now, let R : L - GI(W) be a representation of the Lie group L on W and
take an L-orbit given by M = {R (g) z : g € L}. The action of G on M lifts to an action in
the cotangent bundle T M by linearity. If [ is the Lie algebra of L, then the infinitesimal
action of [ in the orbit M is given by the fields y € M — R (X)y, where X € [ and R (X)
also denotes the infinitesimal representation associated to R. The infinitesimal action of
the lifting in T M is given by X € [ — Hx, where Hy is the Hamiltonian field on 7% M,
such that the Hamiltonian function is F'x : T*M — R given by

Fx(a) =a(R(X)y) aeTyM.

The actions of L and W* in T*M are going to define an action of the semi-direct product
LxW*, defined by the dual representation R*. The action of L x W™ on T*M is Hamiltonian
in the sense that the corresponding infinitesimal action of [ x W* is formed by Hamiltonian
fields. When we have a Hamiltonian action we can define its moment map (See [29, Section

14.4]). In this case, a map

m:T*M — (I x W*)* = [* x W.

In the action on T% M, the field induced by X € [is the Hamiltonian field Hx of
the function Fy (o) = a (R (X)y), while the field induced by « € W* is the Hamiltonian
field of the function f,. So if vy € T)M, y € M < W then for Xeland ae W*

m(7) (X) =~ (R(X)y) and m(y)(a) = a(y)

The first term coincides with the momentum p : W & W* — [* of the repre-
sentation R, that is, m () = u (y ® ) such that the restriction of 7 € W* to the tangent
space T, M is equal to . The second term shows that the linear functional m (y) restricted

to W* is exactly y. Consequently,

Proposition 3.6. The moment map m : T*M — [* x W = [*® W is given by

m(vy) = p(y®7) + v,
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where 7y, € Ty M and 5 € W*, such that its restriction to T,M = {R(X)y : X € ["} is

equal to 7.

3.1.1 Compact case

Let U be a compact connected Lie group with Lie algebra u and take a
representation p : U — GI(V). We will denote by U, the semi-direct Lie group U x, V,
with Lie algebra u, = u x, V. Since U is compact, then V admits a U-invariant inner
product (-, when V is a real vector space and an Hermitian inner product when V' is a

complex vector space. That inner product allows us to identify V' with V* by
veV (v, yeV*
and we can also identify p with p* by

p (X)) (w) = =(p(X)w,v) v,weV, Xeu

Now, analogously to the discussion for the general case we can characterize the

coadjoint orbit of U, in terms of the momentum map p: V ® V — u* given by

pv@w)(X)={X)v,w), vweV, Xeu

Again, as U is compact we have that p(u) is an isometry for all u € U, then

p(X) is an skew-symmetric linear map with respect to (-, -) for all X € u and we have

po @ w)(X) = {p(X)v,w) = =(p(X)w,v) = —p(w @ v)(X),

that is, p is anti-symmetric. Therefore, the momentum map p is defined in the exterior
product A%V =V A V. Furthermore, the compact Lie algebra u admits an ad-invariant

inner product such that we can identify u* with u, then

pw:VaAaV—-u

Similarly, the dual u* x V* of u, = u x V is identified by its inner product
which is a direct sum of ad-invariant inner products of u and V. In that identification,
the coadjoint representation of u can be seen as the adjoint representation of u because

its inner product is u-invariant, but the inner product of V' is not invariant under the
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adjoint representation of V', then the coadjoint representation of that Abelian algebra is
the transpose of its adjoint representation. This means that the coadjoint representation

of u x V' is written in u x V' as type matrices on orthonormal bases:

ad’ (X,v) = ad(X) —A() Xeu veV,
' 0 p(X)

where for each v € V; A(v) : V — u can be identified by A (v) (w) = p (v A w).

Then the representations Ad, and Ad; of U, are obtained by exponentials of

representations in u,, take v € V< u x V' and by Theorem 3.3

Up-v:=Ad(U,) v = U w+ A(w) (V).

wep(U)v

3.1.2 Examples on so(n) x R" and u(n) x C"

We will see some interesting examples of semi-direct coadjoint orbits in order
to compare them with the usual orbits. To begin with, take the canonical representation

of u=so0(n)in (R",{,-)). The momentum map with values in u is given by
(v Aw)(B)={(Bv,w) Beso(n),
and as we know the invariant inner product on so(n) is
(A,B) = tr ABT = —tr AB.
To describe the orbit, take the isomorphism I : A*R™ — 50 (n) given by
I(vAw)(z) = v,2)w—{w,x)v,

which satisfies

T(waw) =—-T(warw)=1I(wAv).
If A e so(n) we have

I(vAw)(ATz) =, ATeyw — (w, ATz)v
= (Av, x)w — (Aw, T )v.
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Let {e1,...,e,} be an orthonormal basis on R", then
tr (I (vaw)A") = Z<I vAw)Ale;, e
Z<Av eiXw, e;) — Z<Aw ei v, e;)

= <Av Z<w €€y — <Aw Z<v €i)€;)
= (Av, w> (Aw,v)

= 2(Av,w).

1
Therefore identifying V* with V' = R" by (-, -) and so(n)* with so(n) by 5(, ),

the momentum map is pu(v A w) = I(v A w), that is
p(vAw)(z)=<v,x)w—<{w,z)v  pwArw)eso(n).

For simplicity of notation, we will denote I(w A v) for v,w e R" as v A w. If v

and w are n x 1 column vectors, we have
VAW =vw —wv

which is an n x n matrix.

As we saw above, the coadjoint representation of so(n) x R is given by
* n
ad) (B,v) = Beso(n), veR",

where for each v € R", A(v) : R" — so (n) is the map

A ) (w) = vwl —wo?.

The representation so(n) x R™ defines a representation of the semi-direct
product U, = SO (n) x R" on so (n) x R" by exponentials. As discussed earlier a U,-orbit
of v e R" < s0(n) x R" is given by

Jw+ A ®)  0=50(n)-v
weO

In this case, the orbits of SO (n) in R™ are the (n — 1)-dimensional spheres

centered at the origin.
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Example 3.7. For n = 2, we have that so (2) x R? is isomorphic (as vector space) with R
and for all w € R? the image A (w) (R?) = so0(2), therefore the coadjoint semi-direct orbits

are the circular cylinders with azis on the line generated by so0 (2) in so (2) x R? ~ R%.

Let b be a subalgebra of so(n). We can induce the canonical representation of

b in R" as a restriction on so(n), then
0 nw)(B) = (Buwy  Beb,

because the inner product of R" is invariant by h. The trace form —tr AB provides (by
restriction) an inner invariant product in b, that allows us to identify h with h*.

Let p : so(n) — b be the orthogonal projection in relation with the trace form.
By the identification above of h* and § we can define the h-momentum map

fy 2 A*R™ — b given by py = pop,

where p is the momentum map of so(n). Then

(v A w) = plow” —wol).

For u(n), we can take a canonical representation in C" = R*" and see u(n) as
an immersed subalgebra of so(2n) by matrices 2n x 2n of the form

A —-B
B A

AT = —A, BT = B.
Then h = u(n) and p : s0(2n) — u(n) is the orthogonal projection with respect
to the trace form. Hence the momentum map is

fuiny (2 A w) = plzw” —w2"),  z,weR™

3.2 Coadjoint semi-direct orbit given by a Cartan decomposition

In this section, we will apply the results of the section 3.1 in the structure of
any semisimple non-compact Lie algebra determined by a given Cartan decomposition.
With this, we will determine a new coadjoint orbit of a semisimple algebra called the

semi-direct orbit.



Chapter 3. Coadjoint orbits of semi-direct products and their symplectic structures 60

Let g be a non-compact semisimple Lie algebra with Cartan decomposition
g = t@s given by the Cartan involution 6. As [¢,s] < s, the subalgebra € can be represented

on s by the adjoint representation, we can define the semi-direct product
t.a =t x,5 where p= ad|,,

where s can be seen as an Abelian algebra. This is a new Lie algebra structure on the
same vector space g where the brackets [ X, Y] are the same when X or Y are in £, but
the bracket changes when X,Y € s. The identification between £,4 = € x s and its dual

£*, = € x s is given by the inner product
BQ<X7Y>:_<X79Y> vaega

where (-, -) is the Cartan-Killing form of g and we have that ad (A) is skew-symmetric
with respect to By for A € £ while ad (B) is symmetric with respect to By for B € s. Then

in this situation the momentum map is given by
(X AY)(A) = Byp(ad (A) X,Y) Aet XY es,
the second part of that equality is
By ([A, X],Y) = =By ([X,A],Y) = =By (A, [X,Y]) = (A, [X,Y])

because [X, Y] € €. Therefore the momentum map of the adjoint representation of € on s
can be identified as

p(XAY)=[X,Y]et X,Y €5,

where [+, ] is the usual bracket of g. Therefore, the coadjoint representation of the semi-

direct product € x s in an orthonormal basis is given by

" [ ad(x) A(Y)
ad) (X,Y) = . 2d(X) Xet Yes (3.8)

where for each Y € s, we have that

A(Y):s >t isthemap A(Y)(Z)=1[Y,Z].

Let GG be a connected semisimple Lie group with lie algebra g and take K < GG
the subgroup given by K = {(exp £). The semi-direct product of K and s will be denoted
by

Ko = K xXaq5.
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The coadjoint orbit of X € § © £ x s is the union of the fibers E(Y) (s)
with Y passing through the K-coadjoint orbit of X in s. As A(Y) (Z) =Y, Z], then
A(Y)(s) = ad (Y) (s) where ad is the adjoint representation in g. To detail the coadjoint
orbits of the semi-direct product, take a maximal Abelian subalgebra a < 5. The Ad (K)-
orbits in s are passing through a, thus are the flags on g. Take a positive Weyl chamber
a* < a. If H € cl (a¥) then the orbit Ad (K) H is the flag manifold Fy. By Proposition
3.4, the K,q-orbit in H € cl(at) is diffeomorphic to the cotangent bundle of Fy, thus the
K ,4-orbit itself is the union of the fibers ad (Y') (s), with Y € Fg. In conclusion

Ko -H= | Y+ad(Y)(s). (3.9)
YeFy
In this union the fiber over H is H + ad (H) (s) with ad (H) (s) < ¢. With the

notations above this subspace of £ is given by

1 0 0 1 0 1
H == 5 S - ) A = 9
0 —1 10 -1 0
and coordinates (x,y,z) = vH +yS + zA. The Cartan decomposition €@ s is given by
t = s0(2) = span{A} and s = span{H, S}.

The adjoint representation of so(2) in s coincides with its canonical repre-
sentation in R*. Hence, the coadjoint orbits of the semi-direct product are the cylinders
? +y* = r, with r > 0 and on the z-axis (generated by A) the orbits degenerate into

points.

For H € cl(a™), as Kaq - H = Kaa/Z,(H) we have that
ker py = ker ad(H)|, then 3,(H) = 3¢(H)®ker ad(H)|, ,

and implies that
Z,(H) = Ky @ker ad(H)|, (3.10)

is the isotropy subgroup at H.
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If X € g, we have that

% = ads(ar) - [ 0E0) adlo(x)

ad (k(X)) 0
ad(0(X)) ad(k(X))

In fact
ad) (X) - H = ad(x(X)) - H +ad(c0(X)) - H = ad(X)(H),

then
Ty(Kaa - H) = {Xy =ad(X) H: X eg},

and

T (Koa - H) = {X, = [ad,(X)]T -p: Xeg}, pe K- H.

Furthermore, we can define the Konstant—Kirillov—Souriau symplectic form at
z e K ad * H
W ()?x?x) = By(x,[X,Y],) X.Yeaq.

3.2.1 Hermitian symplectic form on U,q - H

Now, we will see the Hermitian symplectic form on coadjoint semi-direct orbits.
For that, as g = u@®iu is a Cartan decomposition with Cartan involution 7, for g semisimple
complex Lie algebra. If U < G is the compact subgroup with Lie algebra u. Then, we will
denote by U,q its respective semi-direct product (described in Section 3.2 for the general

case).
If H € s = iu, then its semi-direct orbit is denoted by U,q - H.
To begin with, we will prove that the restriction of 7 is a symplectic form on

Uaa - H.

Proposition 3.9. The form Q7 of g restricted to U,q - H is a symplectic form, for
H e cl(a™).
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Proof. The restriction is a closed 2-form because it is the pull-back of the imaginary part
of H, by inclusion. Hence, it remains to be seen that the restriction is a non-degenerate
2-form. Take a semi-direct coadjoint orbit
0= |J (V+ad(Y)(iw), Hedl(a").
YeAd(U)H

The tangent space to a fiber Y + ad (Y) (iu) is ad (Y) (7u) which is a subspace
of u, and a Lagrangian subspace of g. Hence the tangent spaces to the fibers are isotropic
subspaces for the restriction of €2”. The dimension of a fiber is half the dimension of
the total orbit. Therefore, by Proposition 3.10 to prove that the restriction of 2" is non-
degenerate, it is enough to show that the tangent spaces to fibers are maximal isotropic.
Take an element & = H + X in the fiber over the origin H with X € ad (H) (iu). In terms

of root spaces

ad (H) (in) = ) u,

aell

where u, = (go @ g-o) N u. The tangent space T:O of the orbit O in & = H + X is
generated by this vertical space ad (H) (iu) and by the vectors ad (A) £, with A € u, such
that

[A,H+ X]=[A H]+[A X] X ead(H) (iu) c u.

The component [A, X] € u, so if v € ad (H) (iu) is a vector of the vertical tangent space
then
Q" (v, [A,H + [A, X]) = Q7 (v, [A, H])

since the Hermitian form . is real in u, that is, u is a Lagrangian subspace for {2". Then,
to show that the tangent space to the fiber is maximal isotropic it must be shown that
given [A, H] with A € u, there is an element v of the tangent space to the fiber such that
Q7 (v,[A, H]) # 0. Now, the subspace

{[A,H]: Acu}

is nothing less than the tangent space to the orbit Ad (U) - H and is given by ad (H) (u) =
iad (H) (iu). Therefore, it all comes down to verify that given Z € ad (H) (u) < s = iu,
Z # 0, there is v € ad (H) (iu) such that Q7 (v,Z) # 0. But this is immediate as
H,(Z,Z) > 0 since H, is positively defined in s. Hence if v = iZ € ad (H) (iu) then

H.(v,2) =M, (iZ,2) = iH, (2, 2)
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is imaginary and # 0 which means that Q7 (v, Z) # 0.

In short, it was shown that (the restriction of) Q7 is a symplectic form along
the fiber H + ad (H) (iu) over the origin H. In the other fibers the result is obtained
by using the fact that 27 is invariant by U and taking into account that the fiber over
Y =Ad(u) - H,ueU,is given by Ad (u) (H + ad (H) (iu)). O

Skew-symmetric bilinear form

Let V be a vector space (over R and dimV' < o) and w a skew-symmetric

bilinear form in V. The radical R* of w is given by
R ={veV YweV, w(,w)=0}

By definition, w is non-degenerate if and only if R = {0}. In this case dim V' is even and

w is called a linear symplectic form.

Proposition 3.10. w is non-degenerate if and only if there is a mazimal isotropic subspace

W, with 2dim W = dim V.

Proof. As it is well known, if w is a symplectic form then the dimension of the maximal
isotropic subspaces (Lagrangian subspaces) is half the dimension of V. Furthermore, every
isotropic subspace is contained in some Lagrangian subspace. For the converse, take the
quotient space V/R* and define the form @ in V/R* by @ (7,W) = w (v, w) which is a
skew-symmetric bilinear form in V/R“. The radical R” of @ vanishes, because if 7 € R¥
then w (v, w) = @ (v,w) = 0, for all w e V. Hence if w is not identically null, then @ is a

symplectic form.

Now let W < V be an isotropic subspace. So, the projection W < V/R¥ is
isotropic subspace for @. If W is maximal isotropic then R“ < W and as follows from
the definition, W is maximal isotropic and therefore dim V /R* = 2dim . In this case

dim W = dim W + dim R“, then

2dimW = 2dimW 4+ 2dim R¥ = dimV — dim R¥ + 2dim R¥

= dimV + dim R“.

Hence, if w is degenerate then dim R* > 0 and in consequence 2dim W > dim V. O
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4 Deformations of coadjoint orbits

In this chapter, inspired by the comparison between the semisimple and semi-
direct orbits on s[(2, R), we provide a diffeomorphic deformation between these orbits, as
can be seen in [6]. In addition, we applied this deformation to find Lagrangian submanifolds

of the adjoint semisimple orbit with respect to the Hermitian symplectic form.

4.1 Deformations’ diffeomorphism

Let g be a non-compact semisimple Lie algebra, we will provide a compatible
structure that allows us to deform the adjoint orbit of GG in the coadjoint orbit of K.q4.
The two orbit structures of g = €@ s (semisimple and semi-direct product) through
s are diffeomorphic to the cotangent bundle of the Flags manifolds of g and therefore

diffeomorphic from each other.

As previously stated, the idea is based on the case sl(2,R) (Example 3.8),

where we obtain a cylinder as an orbit, while in the usual case the result is an hyperboloid.

4.1.1 Deformed orbits of s[(2,R)

In this section, we will deform the classic adjoint semisimple orbit of s[(2, R)
into the coadjoint semi-direct orbit studied in Section 3.2. In Example 3.8 was shown that
the semi-direct orbit of s{(2,R) given by the Cartan decomposition sl(2,R) = so(n) ®s
is the cylinder 2 + y? = 1 (which in s[(2,R) is the only one except up to conjugation),

while the coadjoint semisimple orbit is an hyperboloid a2 + y* — 2% = 1.

The idea is to deform the semisimple orbit into a family of hyperboloids
v +9? — 2%/r* = 1, such that when r — o converges to the cylinder z* + y* = 1. Let
5[(2,R) ~ R? such that in coordinates we can identify it as (z,y,2) = 2H + yS + zA,

where

10 0 1 0 1
H= ., S= . A=
0 1 10 -1 0

As we saw in Example 3.8, the coadjoint semi-direct orbits are cylinders



Chapter 4. Deformations of coadjoint orbits 66

2? + y? = r with r > 0 and the axis z points. But, the coadjoint semisimple orbits are the

hyperboloids z? + y* — 2* = r, with 7 > 0.

In both cases, the orbits passing through H and S have the property that » = 1,
and both surfaces can be seen as the union of straight lines. In the cylinder, we have that
the lines are vertical and obtained by rotations with respect to the axis z of the vertical

straight line passing through H, and the hyperboloid is obtained by rotations of the lines
H+{(z,y,2) 1 2 = y}.

Let H (g) be the family of surfaces parameterized by € = 0 of the form

2’ +y’ — % = 1.

That family can be seen as a continuous “deformation” of H (0) (semi-direct
orbit) into H (1) (semisimple orbit). For € > 0, the hyperboloid H (¢) is the union of lines
obtained by the rotation of the line

H+{(a:,y7z):z:i }

2

Next, the hyperboloids H (¢) will be seen in terms of the coadjoint representation
with the aim of generalizing them to the usual semisimple Lie algebras. For this we first
note that the vertical lines in the cylinder 2 + y* = 1 are the orbits of Abelian algebras

generated by linear transformations in 3.8.

On the other hand, the line H + {(z,y,2) : 2 = y} generates (by rotations)
the other lines of the hyperboloid z? + y* — 2% = 1 can bee seen as a nilpotent (in this

situation, Abelian) algebra orbit. In fact, we have that

0 1
X = e sl(2,R)
0 0

)

then ad (X)* = 0, [H, X] = 2X and that implies that ¢!*XH = H—-2tX. As2X = S+ A
(in coordinates is (0,1,1)) consequently it follows that {e!*®)H : t € R} coincides with
the line H + {(z,y,2) : =
are elements in {etad(xk) (H*) : t € R} with k& € SO(2), where X* = Ad (k) X and
H* = Ad (k) H.

= y}. Another lines that can generate the hyperboloid H (1)

The surfaces H (), for € > 0 can be seen as coadjoint orbits of the following Lie

algebras, over the same vector space g = s0 (2) @ s. Set r > 0, the linear transformation
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T, :g — gis given by

and we can define

(X,Y], =T, [T7'X, T 'Y]. (4.1)

By Lemma 4.1, the equation 4.1.2 is a Lie bracket. Furthermore, the linear
transformation
TT : (gv ['a ]) - (gv ['a ]r)

is a Lie algebra isomorphism and satisfies
(XY, = (T7X,T0YY)

where (-,-), and (-, -) are the Cartan Killing forms of (g, [-,-].) and (g, [-,-]), respectively.

Thus
4
ﬁ .

(HHy, =4 (S,S), =4 (A A), =-
Hence, if X = 2H + yS + zA then
X X — 4 2 42 4 2
< 5 >r* r° + 4y _7”_22’

1 1
and we have that (X, X), = 1 is the hyperboloid H (¢) with ¢ = -

In the Lie algebra (g, [+, -],.) the brackets between the basis elements {H, S, A}

are given by

[H,S], =2rA  [H, A] = %s (S, A] = —%H.

r =

Therefore, the r-adjoint representation ad, on (g,[-,].) can be represented in

terms of the basis {H, S, A} by matrices

0 0 0
adr (H) = 0 0 2/7ﬂ )
0 2r 0
0 0 —=2/r
ad, (S) = 0 0 0 :

—2r 0 0
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0 2/r 0
ad, (A) = —2/r 0 0
0 0 O

To see the r-coadjoint representation ad, of the Lie algebra (g, [-,],), its dual
. 1
Lie algebra g* will be identified with g by the inner product ZBg. That normalization of By

can be done because the basis {H, S, A} in relation to that inner product is orthonormal.

Then the r-coadjoint representation ad; of (g, [-,-],) is the transpose of the

matrices above, that is

0 0 O
ad: (H) = 0 0 2r )
0 2/r 0
0 0 —2r
ad) (S) = 0 0 0 .
—2/r 0 0

0 —2/r 0
ad’ (A) = 2/r 0 0
0 0 0

And its exponentials are given by

cosh (2¢) 0 —rsinh (2t)

etadr(8) — 0 1 0 :
1
——sinh (2¢) 0  cosh (2t)
,
1 0 0
et — 10 cosh(2t) rsinh(2t) |,

1
0 —sinh (2¢t) cosh (2t)
r

Qt) Qt)
cos | — —sen | — 0
r r

ad¥(A) _ 2t 2t
et i) — sen —> cos (—) 0 |
r r

0 0 1
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from this we can see the r-adjoint orbit passing through H or S is the hyperboloid denoted
1

by H <—)
r

4.1.2 General construction

Geometrically, the aim of the construction given in Section 4.1.1 can be
interpreted as follows: Lie algebras g, corresponds to different normalization of the metrics
on the symmetric space G/K. We can see that in the limit » — o0, we get the flat symmetric
space with the isometry group Kaq. Moreover, the Lie algebras g, of the family (including
0o = £.q) parameterized the embeddings of the orbits T*Fy into the Lie algebra g. In
this sense, we attribute the term ‘deformation’ to the diffeomorphism determined by this
variation in the metric, that will be defined in this section. In fact, a deformation is a

1-parameter family of immersed manifolds in a given semisimple Lie algebra g.

Let (g, [-,-]) be a non-compact semisimple Lie algebra, fixing g = ¢®s a Cartan

decomposition, with # its Cartan involution. Set » > 0 and define the linear map
T,:g—g suchthat 7T.(X)=rX VXet and T,(Y)=Y VY e€s,
which induces the Lie bracket
(XY, - T [1X, T
such that (g,[-,-],) is a Lie algebra. In general we have:

Lemma 4.1. For r > 0, denote by g, the Lie algebra (g, [-,],) and by (-,-), its Cartan—
Killing form. Then

1. T, : g — g, is an isomorphism of Lie algebras.

2. ({X,Y), ={T' X, T7Y) for all X,Y € g.

Proof. The isomorphism between those Lie algebras is immediate because
[,X.T.Y], =T.|[T,'T. X, T,'T,Y]| = T, [X,Y],

that is, 7, is a homomorphism of Lie algebras. Denote by ad, : g, — g, the r-adjoint

representation, given by

ad (X)(Y) = [X,Y], X.Yeg,
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In relation to the Cartan—Killing form, as 7, is an isomorphism, then

ad, (X) =T,oad (T, 'X) o T, "

Hence
(X, XY, = tr(ad, (X))? = tr (ad (T7'X))* = (T7'X, T7'X)
showing the last statement. O

Now, an interesting question is how this transformation affects our given Cartan

decomposition. The following Lemma shows that the Cartan decomposition doesn’t change:

Lemma 4.2. The map 0 = T, 00 0T " is a Cartan involution and it gives us the same

Cartan decomposition (as sets), i.e., g, = €@ s is a Cartan decomposition.

Proof. As By is an inner product, then

Bj(X,Y) = —(X,6Y),
= (T7'X, T7'9Y)
= (T7'X, T T.0T 1Y)
= By(T' X, 1Y)

is an inner product because 7! is an isomorphism. Furthermore, by definition of 7} and

0 we have that
t={Xeg:0X=X} ¢ s={Yeg :0Y =Y},
then @ determines the same Cartan decomposition. |
As a consequence of the previous Lemma, the fact that g, has the same Cartan
decomposition and the structure of the bracket restricted to s implies that we can choose
the same maximal Abelian subalgebra a < s and the same simple root system X, and also

the same root system II and positive Weyl chamber a®. But the root spaces are going to

change, and will be called the r-root spaces.

Then, for a € II, the corresponding r-root space is defined by

gh ={Xeg : ad(H)X = a(H)X VH e a}.
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If g, is the usual root space (of g). Then, we can define the map ¢, : g — g

given by
r—1
r+1

V(Z2)=Z + 07, (4.2)

such that gl, = ¥, (ga), for all a € 11

The construction of ¢, is obtained by the following argument: suppose that g
is a split semisimple Lie algebra and take a Weyl basis H, € h, Xz € gg, for « € ¥ and
g € 11, such that X, = —X_,. Then, we want to build the correspondent X that spans
g, ft Hea

adT(H)XOt = [H, Xa]r
=T,[T7'H, T X,]

= T, [H, T (5 (Xa) + 0 (Xa))]
= LI H, k(X)) + T[H. 0 (X.)]

r

_ %[H, K (Xo)] + r[H, o (Xo)]

1+ r? 21
_ad(H)< 2: Xo+ o o X_a>.

As a(H)X, = ad(H)X,, we have that:

1 2 21
ad, (H) Xy = a(H) [ —Lx, - —2x ),
2r 2r
analogously
r?—1 r?+1
d.(H)X_o = a(H o — X_o
(1) = alir) (5 )
Hence,
a(H) ( Xo+ 2= x () (X0 + (4.3)
ady @ —a | =« @ —a | .
+1 r+1
then
1—
XM= Xo+ ——X_,
+1
In terms of the Cartan involution 6, we have
1— —1
X = Xo+ —— X 0= Xo+ ——0X.,
r+1 r+1

such that 5Xg =-X"

o
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This construction can be generalized for all non-compact semisimple algebra in

the following sense: If X € g, and H € a

T T+1[
1 T r—1/1 T
= I —— = H X
(<2r+2>+r+1(2r 2) [, X]
1 r r—1/1 T
—_— = — 4+ = H.0X
((2r 2)+T+1(2T+2>)[’ J
where
1+r +r—1 1 T _1
2 2 r+1\2r 2) 7
and

1 r +r—1 1+r *7’—1
o 2 r+1\2r 2) r+1

ad, (H) (4, X) = o(H) (¢, X).

Then

As it is known, the importance of determining the root spaces is that we can

describe the adjoint orbits by nilpotent subalgebras.

Ifn* = Z g, We have:

a>0

0= > gh = D (ga) = U (n),

a>0 a>0

thus, given H € cl(a™)

ny = Z g and nfy =4, (nf).
a(H)>0

Let GG, be a connected Lie group with Lie algebra g,, that is, GG, is semisimple
and diffeomorphic to G, whose adjoint orbits are manifolds in g. The r-adjoint repre-

sentation of G, is going to be defined (identified) by:

Ad,(G) - H = Ad(K) (H + ¥, (nf)).

Now, let’s see some results that will allow us to describe the r-adjoint orbit:
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Lemma 4.3. Forr >0, X et and Y € g, then
Ad, (%) Y = Ad (e7¥) Y,

Proof. Forr >0, X e tand Y € g, then

1

1/1(Y) + O'(Y)] = ad(X) Y,

ad (X)-Y =T, [lx, -
T T

where o and k are the projections onto s and €, respectively.

Inductively ad®(X)-Y = — adk(X) .Y, then

K
Zta ~(X) —Z ( )Y—Ad(e%x>'Y.
k>0 k>0

Therefore, given H € cl (a™) and X € &
Ad, (etX) -H = Ad (e%X> - H,
that is, they determine the same flag manifold. In addition, given « € II

Ad, (etX) CXT = 6%ad(X) <wr (Xa>)

«

O adk (X
= Z %(wr (Xa))
k>0 :
L kadk X
=, Z %(Xa)
k>0 ’

— ¢, (Ad (e%X) . Xa) .

Thus, for all k€ K
Ad, (k) (nfy) = Ad,(k) - ¥y (nfy) = & (Ad(k) (n)) -
Hence, we conclude:
Proposition 4.4. Forr >0 and H € cl (a™)

G)-H = JAd(k) (H + ¢, (n};)).

keK

that is, the r-adjoint orbit of G is a r-deformation of the adjoint orbit of G.

(4.4)
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Remark 4.5. If g is a semisimple complex Lie algebra, then g = u + 1 is a Cartan
decomposition with T its Cartan decomposition and a = ibg, where b is the Cartan

subalgebra of g. In this situation
o(X) = X+ (1) 7x
Dy = — )
r+1 g
Therefore, the Proposition 4.4 is true for the complex case.

In addition, the representation of Ky in g, makes invariant the subspace n;f I
because if k € K, then Ad,. (k) commutes with ad, (H). Therefore, Ad,.(k) takes eigenspaces
of ad,.(H) into the same eigenspaces. Thus, we can induce the representation p, of Ky in

n', and by (4.4), we have
¢r(p(k)'X>:pr(k)'wr(X) ke Ku, XGHIE,

where p is the representation in the case r = 1 (that is, the usual representation Ad).

Therefore,

K xp nty =K x, ¢, (nf).

So we will induce a diffeomorphism between Ad(G) - H and Ad,(G) - H using

the following map (this construction was proved in the Proposition 2.4 of [11])
Yro: AdT(G> -H— K Xp wr (Tl;_}) s

such that
Y = Ad,(k)(H + X) — (k, X) € K x, ¢, (nf;)

is a diffeomorphism that satisfies:

1. 7, X is equivariant with respect to the action of K.
2. 7, leads fibers into fibers.

3. 7, leads the orbit Ad,(K') - H in the null section of K x, 1, (n;})

It’s easy to see that (dv,), = id, for z = Ad,(k)(H +Y) € Ad,.(G) - H.
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Furthermore, diffeomorphism -, is defined by the vector bundle K x, 1, (n};)
associated with the main bundle K — K/Ky of Ad,.(G) - H, which is a homogeneous

space. Using this diffeomorphism for » > 0 we define the map 1@ as follows:

AG) - H — 5 Ad(G) - H

yl l% (4.5)

K x,nj S N K x, 1, (nf;)

which is a diffeomorphism, because 1, is linear (in the complex is the sum of linear and

anti-linear maps) and 7, is a diffeomorphism, as seen above. We conclude
(d&) — v, reAd(Q) H.

Hence, joining these constructions, we conclude that

Theorem 4.6. Let H € cl(a™) and r > 0, then the manifolds Ad(G) - H and Ad,.(G) - H
are diffeomorphic by JT.

In addition, our intention is to take the diffeomorphism @Zr to a similar

diffeomorphism between Ad,.(G) - H and K,q - H. To do this define the map
v:g—g givenby ¥(X)=X+0X, (4.6)

and notice that when r — o0

Ur = .

Lemma 4.7. For the map v = 2k defined in (4.6), it holds that:

1. The image of ¥ is in € and ils kernel in s.
2. Let X € &, we have ¢ oad(X) = ad(X) o 9.
3. If X € ¢ and a € 11, then

Ad (e") ¥ Xy = ¥ (Ad () X,) .

Proof. Ttem 1 is immediate from the definition of .



Chapter 4. Deformations of coadjoint orbits 76

2. Let Xetand Y eg

Y[X,Y] = [X, Y] +0[X,Y]
= [X, Y] +[0X,0Y]
= [X, Y]+ [X,0Y]
= [X,9Y].

3. Let X € ¢ and a € II, note that for Y € g
ad(Y) - 0X, = [Y,0X,] = 0[0Y, X,] = 0ad(0Y)X,,
inductively, we have ad*Y - X, = #ad"(0Y) - X,, then
tFad®(X)

tad(X) _ .
e (0Xa) = ), —— 0Xa

k>0

t*o ad"’(QX)

Sy,

because 0. X = X and we have

Ad () - X, = €1 (X,) + 0 - 1 (X,)
_ w (etad(X) . Xa)

=1 (Ad (") X,) . O
Hence, we can define
G)-H:= | JAd(k) (H + ¢ (nfy)), (4.7)
keK

when r — o we have

Ad(G) - H — Ad(G) - H.

It is convenient to define the co-root spaces by g’ = 1 (g, ), and consequently

= D o= D) Y(ga) =¥ (nf).

a(H)>0 a(H)>0
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Therefore, analogous to the diffeomorphism ~,., define
Yoo : Ads(G) - H — K x, 1 (nf;)

such that
Y =Ad(k)(H+ X)— (k,X)e K xpzb(n}}).

So we have that the map v, is a diffeomorphism for vector bundles. The map
Y is well defined as a consequence of v, the bijectivity is a consequence of the way in
which the manifold Ad(G)y, - H was defined, and the differentiability is given by the idea
of making r — o0, in the diffeomorphism +,. Then, we can define the diffeomorphism 7;,
given by:

AG) H —2—— AdL(G) - H

yl l% (4.8)

K x,n}; SN prw(n}})

in the same way as for Jr. So using r — o
(dy), = id  and (qu) — 9.

Now, we can conclude that

Theorem 4.8. The manifolds Ady(G) - H and Ad,.(G) - H are diffeomorphic for r > 0,
the diffeomorphisms are given by LZ and QZT defined in (4.5) and (4.8).

Moreover

Kaa- H = | J Ad(k) (H) + [Ad(F) - H, 5],

keK
the fiber in H is H + [H, s], but s = a® o(n), then [H,s] = [H,o(n)] because [H,a] = 0.
In addition, for a € IIT

[Ha Xa] = O‘(H)Xaa

such that

e a(H)=0if a ¢ (Oy)", then a(H)g, = 0, for a ¢ (Oy)".

e a(H)>0if a e (Oy)*, then a(H)gy = ga, for a € (Og)™.
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Thus [H,o(n)] = = ([H, Xa] — [H,0X.]), but

N |

[H,0X,] = 0[0H, X,] = 0[—H, Xo] = —0[H, X, ],
because H € a c s, then
[H,0(Xa)] = 5 ([H, Xo] + 0[H, X,])
U ([H, Xa])

(a(H) - Xa),

N RN~ —

and as [H, X,] # 0 if and only if a € (O )", we have
[H.s] =9 (nfy) .
So the fibers in H of K,q - H and Ad,(G) - H coincide. In an equivalent way,
we can identify the other fibers of these spaces for each k € K.

Ad(k) (H) + [Ad(k) - H,s] — Ad(k) (H) + % (Ad(k) - nj;).
R —

So we can identify the manifolds K,q- H and Ad,(G)- H that are diffeomorphic

from the bundle T*Fy. We can conclude:

Corollary 4.9. The adjoint orbit Ad(G) - H deforms in K.q - H, by 1;

4.1.3 Symplectomorphism of deformation

To conclude, we will see that the diffeomorphisms given in (4.5) and (4.8) are
symplectomorphisms with respect to the Hermitian symplectic form. For that, consider

the following proposition
Proposition 4.10. Forr > 0 we have
Ur () =,
that is JT is symplectomorphism for r > 0.
Proof. 1f z € Ad(G) - H and ¥ = t,(z), then

(9 97) (0Y) = 0F (). X, (d0,),Y)

= O (X, 9,Y),
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for X, Y € ng ~ T, Ad(G)-H and their corresponding v,.(X), ¢, (Y) inn, g ~ T3 Ad,(G)-H,

as seen above ¥,.(X,) = X[ are the generators for a € (Op). O

Similarly, taking r» — <, in the manifold Ad,(G) - H we have

~

¢* (Q’T) — Q’T’
where Q7 is a symplectic form of Ad,(G) - H, because as seen above and by Proposition

3.9 it coincides with U,q - H. Then, we have that

Theorem 4.11. The manifolds U,q - H and Ad(G) - H are symplectomorphic, with respect

to the symplectic form 7.

4.2 Lagrangian submanifolds

In this section, we will apply the results obtained Chapter 3 to find some
isotropic and Lagrangian submanifolds of adjoint orbits with respect to the Hermitian

symplectic form.

4.2.1 Lagrangian sections

We will build some Lagrangian submanifolds given by sections of U,q - H, and

we want to transport them to the adjoint orbits by the symplectomorphism 1;

The restriction of H, on s = iu is the CartanKilling form, which is an inner

product on s and induces a U-invariant Riemannian metric on Ad(U)H.

Proposition 4.12. Given Y € s = iu and Z € Ad (U) - H, suppose thatY € T, Ad(U)-H.
Then iY € ad (Z) (iu), that is, Z + 1Y is in the fiber over Z of the semi-direct coadjoint

orbit.

Proof. Take first Z = H € a < 5. Then,

Ty Ad(U)-H= ). s,

while
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By these expressions, it is immediate that 1Y is tangent to the fiber if Y is tangent to the
orbit Ad(U) - H. For Z = Ad (u) - H, u € U, we get the same result applying Ad (u). O

A vector field in the orbit Ad (U) H is a map = — Y (z) € s that takes values
in the tangent space to z. By the Proposition 4.12, iY (z) € u is tangent to the fiber over
the semi-direct orbit. Thus, given a vector field Y in Ad (U) - H, the vector field ¢Y (x) is

defined in the semi-direct orbit, such that on the fiber x + ad (z) (s) is a constant field.

Proposition 4.13. Let Y = gradf be a gradient field in Ad(U) - H. Thus iY is the

Hamiltonian vector field of the function f: f om, with respect to the symplectic form Q7.

Proof. If W is a vertical vector then df (W) = 0 and Q7 (W,iY (z)) = 0, because both W
and 7Y (z) are in u. On the other hand, take a vector of type [A,x + X]| = [A, z] + [4, X],
with X € ad (z) (iu) < u (these vectors, together with the vertical space, generate the
tangent space as in Proposition 3.9). The component [4, X] € u, so that df ([A, X]) =0
and Q" ([A4, X],iY (z)) = 0.

Since the component v = [A, z] is the tangent space to x, hence

df (v) = df (v) = Y (2) ,v),
because Y = grad f. But,

O (Y (x),0) = H, (Y (x),0) = iY (x), ),

I

because in this sequence of equality all terms are purely imaginary. Consequently, for
vectors of type w = [A,z + X]| = [A, 2] + [A, X], holds df (w) = Q7 (iY (z),v), as this
equality is also true for vertical vectors, it is shown that 7Y (x) is the Hamiltonian vector

field of f. O

Corollary 4.14. Let Y be a gradient field on the flag manifold Fy = Ad(U) - H, and for
t € R we define the map

o (x) =z + tiY (x).
This map is a section of Usq - H. Then, the image of oy is a Lagrangian submanifold of

Uaq - H, with respect to the symplectic form §27.
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Proof. By Proposition 4.13, 1Y (z) is a Hamiltonian vector field that is constant in each

fiber, which means that if o,y is its flow, then
oy (x+X) =2+ X +tiY ().

In particular, the image of o,y on Fy (0-section) is a Lagrangian submanifold because the

0-section is Lagrangian. O

Denote by L,y the image of section oy, which is Lagrangian submanifold of
Usaq - H. The next step is to find the tangent space to the section x — x + Y (z). If 1Y ()
is a section of U,q - H — Fpg, then the tangent space T,Fy is generated by the vectors
A(z) = [A, x] with A € u. Therefore, to determine the space tangent to the section we
have to compute the differential of ¥ in the direction of A (x) = [A, z]. By the formula of
the Lie bracket of vector fields we have dY, (ﬁ (:v)) = [Y, ﬁ] (z) + dA, (Y (x)) and since
A(z) = [A, z] is a linear field it follows that

dy, (ﬁ (x)) _ [Y, ﬁ] (@) + [A,Y (2)]. (4.9)

Multiplying this differential by 7 and adding the base vector, we get a vector tangent to

the image of the section as
(A, 2]+ [Y, Zx] (@) +i[A,Y ()] Aeu

These vectors are in fact tangent to the orbit U,q - H because [Y, E] (x) € T,Fy and,
therefore, 7 [Y, /Nl] (x) is tangent to the fiber over z. The sum

[A,z] +i[A)Y (2)] = [A,x +1iY (2)]

is tangent to the orbit because A € u. This last equality is written as ad (A) (oy (x)) where
oy () = x +1iY (x) is the section defined by the field Y. Thus, the tangent vectors to the

section oy are

ad (A) (oy (2)) + i [Y, 21] () Aeu
This proves the following characterization of the tangent spaces to the sections.

Proposition 4.15. The tangent space to Ly on the section o (x) = x + itY (x) of

Usa - H — Fy is generated by
(A, z] + ti [Y, ,Z] (@) + i [A,Y ()] = ad (A) (ouy (x)) + ti [Y, ,Z] (),

with A € u.
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By the construction of the symplectomorphism zZ, we conclude that

Corollary 4.16. The manifolds QZ_I (Lyy) are Lagrangian submanifolds of Ad(G) - H with

respect to the symplectic form Q7.

4.2.2 Real immersion

Let g be a real semisimple non-compact Lie algebra, such that is a real form of

gc, and u a compact real form of gc with Cartan involution 7, such that

g=(gnu)®(gniu)
HE/_/ H;_J

is a Cartan decomposition of g.

Lemma 4.17. The restriction of H, to g is real.

(4.10)

Proof. For X,Y € g, there are X;,Y; € g nuand Xy, Y5 € g nau such that X = X; + X

and Y =Y] + Y5. Then
TX1 =X, 7Xo=-Xy, Y1 =Y, 7Y=-Y5,.
As we have that
H(X,Y) = (X, 7Y)c = (X1 + Xp, Y1 — Ya)c

where (-, )¢ is the Cartan—Killing form of g¢, then

HT(X7 Y) = _<X17 }/1>(C - <X27 }/1>(C + <X1a Y’2>C + <X2a Y72>(C

However

H (Y, X) = Y, 7X e

=M+ Y, X: — Xo)e

= (X1 — X9, Y1 + Yo)c

= —(X1,Y1)c — (X, Yo)c + (Xa, Yi)c + +( X2, Ya)c,

as H, is an Hermitian form, we have that H.(X,Y) = H,(Y, X), thus,

<X27 Y1>(C = <X17 }/2>(C7

(4.11)
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and by equation 4.11, we have that
HT(X; Y) = _<X17 }/1>(C + <X2a Yv2>(Ca

but Xi,Y),iX5,1Ys € u, and the restriction of (-, )¢ to u is negative-definite, we can

conclude that H,[; is real. O

Corollary 4.18. Q.| =0.

Moreover, let G be a Lie group with Lie algebra ge. Then,

Proposition 4.19. Given any submanifold M of Ad.(G) - H or U, - H contained on g.
Then M is an isotropic submanifold of Adr(GC) - H or U, - H, respectively.

Now, our purpose is to apply the last results for a non-trivial immersion on
the coadjoint semi-direct orbit to find some Lagrangian submanifolds. With the Cartan

decomposition of g given in (4.10), then

g = € Xoq 6 S U Xoq iU = Uyg.

Take K = {expt), then K,q - H is an immersed submanifold on U,q - H, for
H € a. Moreover,

T, K.q H <ty VxEKad'H,

where £,4 can be identified with g as a vector space and by Corollary 4.18; the restriction
of H, to g is real, thus,
= 0.

T Ead

Therefore, K,q - H is an isotropic submanifold of U,q - H, we want to see that

K.q - H is a Lagrangian submanifold of U,q - H, as we can see in the following example.

Example 4.20. For g =sl(2,R), ¢ = s0(2) and u = su(2). Given

H = € a,
0 -1

we have that K,q - H (cylinder) is a 2 dimensional isotropic submanifold of Usq - H, a

4-dimensional manifold.

Hence, the cylinder K,q - H is a Lagrangian submanifold of U,q - H.
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Let o be an anti-linear involutive conjugation on gc¢, such that g is the

subspace of fixed points of o, that is

g={Xegec:0(X)=X}.

Thence, if we have that A := {X € Uyq-H : 0(X) = X} coincides with K,q- H,
then we can conclude that K,q - H is a Lagrangian submanifold of U,q - H, with respect to

the Hermitian symplectic form, for H € a.

As K,q - H is contained on g and it is a submanifold of U,q - H, we have that

K.q - H < A. For the opposite inclusion, by equation 3.9 we have that

Uw-H= | Y+adY)(u),

YeAd(U)-H

then given an element x € U, - H implies that

x=_Y +][Y,iZ], where Y =Ad(u)-H, uelU, Zeu.
—_ =

€iu cu

As u = t@ s, we have the following possibilities:

o Take X €&, then e e U

o(x) = o (Ad(eX) - H) + o (i[Ad(eX) - H, Z])
[

€5

= Ad(e"™)-H —i([c Ad(e"Y) - H,0Z])

= Ad(e"™) - H —i ([Ad(e"Y) - H,0Z]) ,
if Z € ¢, we have that o(Z) = Z and if Z € is, we have that ¢(Z) = —Z, then
o(x) = x if and only if Z € is.

Thus, x is a fixed point if and only if x € K,q - H.
o Take X €is, then e!* e U

o(z) = o(Ad(e"™) - H) + o (i[Ad(e"Y) - H, Z])
it

= —Ad(e"X) - H —i ([0 Ad(e!Y) - H,0Z])
= —Ad(e™) - H +i ([Ad(e"™) - H,0Z]),

for Z € u, we have that o(x) # z, then in this case it is impossible to have fixed

points.
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o Any other possible choice of X € u, we do not have fixed points because it would be

a combination of the cases above.

Therefore, A = K,q-H, and K,q- H is the set of fixed points of ¢, its dimension

is half the dimension of U,q - H. Hence,

Proposition 4.21. For H € a, the coadjoint orbit K.q - H is a Lagrangian submanifold
of Uaq - H, with respect to the Hermilian symplectic form.

By Corollary 4.9, the coadjoint orbit K,q deforms into Ad(G) - H and U,q
deforms into Ad(G®) - H. Then, we can conclude that

Corollary 4.22. For H € a, the orbit Ad(G)-H is a Lagrangian submanifold of Ad(G®)-H,

with respect to the Hermitian symplectic form.

Furthermore, the coadjoint orbit U,q - H is invariant by automorphism of 1,
because any automorphism of u leaves invariant its Cartan subalgebra (see [28] or [31]).
Given k € Aut(t) we know that the k-action on g leaves invariant the Cartan decomposition
of g, its maximal Abelian subalgebra and u (because € is contained in u). If exp is the
exponential between the Lie algebra u and the Lie group Aut(u), then for any X € is we
have that g'* = exp(tX)-g is a real form of g* with Cartan decomposition g"* = €X ®s'*.

Take G** a Lie group with Lie algebra g* — u, then we can conclude that

Corollary 4.23. For X €is c u, the adjoint orbit Ad(G*™Y) - H, where H = exp(tX) - H
is a Lagrangian submanifold of Ad(G) - H, with respect to the Hermitian symplectic form.

In fact, we have associated a family of Lagrangian submanifolds of U determined

by g, and given by the is-conjugated real forms of g.
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APPENDIX A - Tight submanifolds

This appendix is dedicated to studying the locally, global and infinitesimally
tight Lagrangian submanifolds on adjoint orbits. Such class of submanifolds was introduced
in 1991, by Y.-G. Oh (see [25]). In this paper the author studied the notion of tightness
of closed Lagrangian submanifolds in compact Hermitian symmetric spaces and it was

defined as follows:

Definition A.1. Let (M,w,J) be a Hermitian symmetric space of a compact type and L
be a closed embedded Lagrangian submanifold of M. Then L is said to be globally tight
(resp. tight ) if it satisfies

4(LAg L) =SB(LZ)

for any isometry g € G (resp. close to identity) such that L transversely intersects with

g- L. Here SB(L,Z5) denotes the sum of Zs-Belti numbers of L.

In that paper, the author showed that the standard RP" inside CPP" is tight and
has the least volume among all its Hamiltonian deformations. Then the concept of tightness
has applications to the problem of Hamiltonian volume minimization. Furthermore, the
famous Arnold—Givental conjecture predicts that the number of intersection points of
a Lagrangian £ and its image ¢(L£) by the flow of a Hamiltonian vector field can be

estimated from below by the sum of its Zs-Betti numbers, that is:
LA o(L)] =D bk(L; Zs).

Then the concepts of tightness address those Lagrangians which attain the
lower bound, and are therefore of general interest in symplectic geometry. Besides, Oh

posed the following open problem:

Problem. Classify all possible tight Lagrangian submanifolds in other Hermitian symmet-

ric spaces. Are the real forms on them the only possible tight Lagrangian submanifolds?

This problem is strictly related to our result given in the Section 2.2, where we

have proven that the real flags can be seen as Lagrangian submanifolds of the complex flag
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manifolds, that is, its respective real form is Lagrangian. Then, our goal in this appendix

is to see that the Oh’s conjecture is satisfied for the complex flag manifolds case.

With the same aim, Iriyeh and Sakai studied and classified the Tight submani-
folds on S? x S? (see [16]), where the authors proved that if £ is a closed embedded tight

Lagrangian surface on S? x S?, then £ must be one of the following cases:

o L=1{(z,~x)e S*xS*: zeS? (global tight submanifold).

o L =S"a)x S"b) = S* x 5?, where S*(a) stands for the round circle with radius

0 < a < 1. (locally tight submanifold).

This is a particular case of tight submanifolds in the product of flag manifolds,
that was studied in [13]. In this paper, the authors showed that a product of flag manifolds
Fo, x Fo, admits a Lagrangian orbit by the diagonal action (and shifted diagonal action)
if and only if ©y = O7F, that is ©y = 0©; where o is the symmetry of the Dynkin diagram
given by o = —wy and wy is the main involution (element of greatest length) of the Weyl

group W. Such Lagrangian orbit is given by the graph of
—id: Ad(U)(iH) — Ad(U)(ic(H)),
or the graph of — Ad(m), m € U for the shifted diagonal action.

But perhaps the most important fact given in that paper was the concept of
infinitesimally Tight submanifold, where the authors prove that the Lagrangian orbits

given by the diagonal (shifted diagonal) action are infinitesimally tight.

This new concept is defined as follows:
Definition A.2. Let £ in M = G/H be a submanifold. An element X € g = Lie(G) is
called transversal to L if it satisfies the following two conditions:
1. foranyx e L, if )N((x) € T,N then )?(a:) =0, and

2. the set

~

Fu(X) = {x eN: 0=X(z) eTxN}

is finite.

That is, X is only tangent to L at most at finitely many points where it vanishes.
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A Lagrangian submanifold £ in M = G/H is called infinitesimally tight if
the equality
# (fe(X)) = SB(L, Zy)

holds for any X € g such that X is transversal to L.

Example A.3. As was showed in Example 2.3, the sphere L = S* given by the action of
Un ~ U(2) is a Lagrangian submanifold of Fs(1,2). We have that

g
T

(up) =< X5 = _
3" 0

: 52(21,22)6((:2 s

then £ = Ad(U)(iHy) n (ug)™, where Hy = diag{1,0, —1}.

If X3, X, € (uy)", we have that
7 ImvBT 0

Xy X, = B
o 0 FyeqTs

Given x = X, € L and X € u then X(z) = ad(X)(X,), take the decomposition
X =Y + X4, for Y € uy and Xz € (uy)". Then, X is transversal if )?5(37) = 0 and
[Y, X3] =0, because the singularities of )N(B on S* are the elements in the set RXz n S*
(a finite set).

As we only have 2 points (antipodals) in RXz N S3, and the sum of Z,-Betti
numbers of S* is 2, we can conclude that S* is an infinitesimally tight submanifold of

Fs(1,2).

Furthermore, in [13] was given the following Theorem:

Theorem A.4. Let M = G/H a homogeneous space with a G-invariant symplectic form
w. Then a Lagrangian submanifold L < M is infinitesimally tight if and only if L is locally
tight.

Thus, the manifold S® is a local tight submanifold of F3(1,2).

To generalize the Example A.3 for the complex flag manifolds given in Table 1,
we need to compute the sum of Zs-Betti numbers of the real flag manifolds and to find

the transversal elements.
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To begin with, by the paper [27] we have the following:

Let H € cl(a’), the Zs-homology of Ad(K) - H is freely generated by the
Schubert cells S[(iﬁ] , for [w] € W/We,,. Therefore

SB(AA(K) - H,Zs) = # (W/Wae,,). (A.1)

And, as Ad(K) - H € s = it*, for x € Ad(K) - H we have that:
T, (AA(K) - H) = {21@:) . Ae e},
where A = ad(A). Then
e If X € ¢ then X = ad(X) is a Hamiltonian field of the function Hx = (X, z). Thus

the singularities of X are the singularities of Hx, and their number is finite, if and

only if X is regular.

Therefore, the transversal elements are the regular elements X, and they satisfies
# (faa)u(X)) = # W/ We,,) -

e IfY €t then Y is tangent, thus it cannot be transversal.

« IfZ=X+Y for XectrandY et then Z(z) ¢ T, Ad(K) - H if X(x) # 0, so for
Z to have singularity in = we need that X(z) = Y (z) = 0 in a finite quantity. But
this only happens for X regular, such that [X,Y] = 0. Thus:

# (faau-u(2)) = # W/ Wey) -

Hence:

Theorem A.5. The real flags are infinitesimally Tight submanifolds of their corresponding
complex flag, given in the Table 1.

Therefore, as a consequence of Theorem A.4:

Corollary A.6. The real flags are local Tight submanifolds of their corresponding complex
flag.
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Remark A.7. There are several articles related to this kind of Lagrangian submanifold.
For instance, in [14], for any irreducible compact homogeneous Kdihler manifold were
classified the compact tight Lagrangian submanifolds which have the Zo-homology of a
sphere. In this article, the authors gave a brief discussion about the tight Lagrangian

submanifolds on the complex flag manifolds.
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