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Resumo

Esta tese ¢ dedicada ao estudo das distribuigdes genéricas de codimensao um e das
folheagoes por curvas sobre as hipersuperficies suaves tridimensionais. Mostramos
que os feixes normais de folheaces por curvas genéricas em P preenchem compo-
nentes irredutiveis dos espacgos de médulos dos feixes reflexivos estaveis de posto
2 e classes de Chern prescritas. Construimos também familias de feixes reflexivos
estaveis de posto 2 sobre hipersuperficies suaves de dimenséo 3 e grau d € {2,3,4,5}
contendo as distribui¢oes genéricas de codimensao um que preenchem componentes
irredutiveis dos espacos de modulos dos feixes reflexivos estaveis de posto 2 e

determinadas classes de Chern.

Estudamos também os feixes localmente livres de posto 2 e classes de Chern ¢; = 0
e ¢y =d- H? que sdo dados como cohomologia de uma ménada linear sobre uma
hipersuperficie suave de dimensao 3 e grau d > 2. Apresentamos uma caracterizacao
cohomolégica destes feixes como também fazemos uma descrigao matricial deles

utilizando representacoes de aljavas.

Palavras-chave: hipersuperficies, feixes reflexivos, folheagoes por curvas, distri-

bui¢oes, monadas, representacoes de aljavas, espago de modulos.



Abstract

This thesis is dedicated to the study of generic codimension one distributions and
foliations by curves on the smooth three dimensional hypersurfaces. We show that
the normal sheaves of a generic foliations by curves on P? fill irreducible components
of the moduli spaces of the stable rank 2 reflexive sheaves with prescribed Chern
classes. We also build families of the stable rank 2 reflexive sheaves on smooth
threefold hypersurfaces of degree d € {2,3,4,5} containing the generic codimension
one distributions which fill an irreducible components of the moduli spaces of stable

rank 2 reflexive sheaves with prescribed Chern classes.

We also study the stable rank 2 locally free sheaves and Chern classes ¢; = 0 e
¢o = d - H? that are given as cohomology sheaves of a linear monads on a smooth
hyperfurfaces of dimension 3 and degree d > 2 . We present a cohomological
characterization of these sheaves as we also make a matrix description of them

using quiver representations.

Keywords: hypersurfaces. reflexive sheaves. foliations by curves. distributions.

monads. quiver representations. moduli spaces.
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Introduction

In [15] Maruyama proved that the rank r stable reflexive sheaves on
a projective variety X with fixed Chern classes ¢y, ..., ¢, can be parametrized
by an algebraic quasi-projective variety, denoted by Mx(r;cy,...,¢.). Although
this result has been known for almost 40 years, there are just a few concrete
examples and established facts about such varieties. When X = P, r = 2 and
prescribed Chern classes, there are several works in this direction in the literature,
see for example [8, 14, 21] . In this work we are particularly interested in the
small degree 3-fold hypersurfaces, namely, the smooth 3-fold hypersurface of degree
d € {1,2,3,4,5}. This class includes an example of Calabi-Yau 3-folds, the 3-fold
hypersurfaces of degree d = 5. We build concrete examples of moduli spaces of

stable rank 2 reflexive sheaves on such projective varieties.

There is a connection between reflexive sheaves and the distributions
and foliations on a projective variety. The mathematicians as Grassmann, Jacobi,
Clebsch, Cartan and Frobenius started the study of the theory of distributions and
foliations in the 19th century. They were motivated by the work due to Pfaff, who
proposed a geometric approach to the study of differential equations, see [3, Chapter
IT1]. The qualitative study of foliations induced by polynomial differential equations
was investigated by Poincaré, Darboux and Painelevé. In modern terminology, this
corresponds to the study of codimension one holomorphic foliations on complex

projective spaces.

Techniques from algebraic geometry have been extremely useful in the
study of distributions and foliations on complex projective spaces, see for instance
[1,2,7,22, 23, 25, 26]. From the point of view of algebraic geometry, a foliation by

curves % on a smooth projective threefold X is a short exact sequence of the form
F 05 0x(—r—7x) 3TX - Nz =0 (1)

where Nz is a torsion free sheaf called the normal sheaf of % and

x =min{t € Z | H(TX(t)) # 0}.
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The non negative integer r above is called the degree of .%. Note that rk(Ng) = 2.

The image of the morphism oV : Q% — Ox(7x + ) is the twisted ideal
sheaf I7(r + 7x) of a subscheme of X of dimension at most 1, called the singular
scheme of Z and denoted by Sing(.%). Thus dualizing the sequence in display (1)
we obtain

0= N%L = Qk T I(r+7x) = 0, (2)
where N3 is called the conormal sheaf of F.

In [1], we prove in section 5 that if the singular scheme has dimension
0, then the conormal sheaves of the foliations on a smooth projective variety X of
dimension 3 and Picard rank 1 are u-stable, whenever the tangent bundle T'X is u-
stable, and apply this fact to the characterization of certain irreducible components
of the moduli space of rank 2 reflexive sheaves on P? and on a smooth quadric

hypersurface Q3 C P*.

Main Theorem 1. 1. The moduli space of stable rank 2 sheaves on P* with

Chern classes

( ) (0,3k® + 4k 4+ 2,8k> + 16k* + 12k +4), k>1
C1,Co,C3) =

b (—1,3K> + k+ 1,8k* + 4k> + 2k + 1), k>0
contains a rational irreducible component whose generic point is the normal

sheaf of a generic foliation by curves on P3.

2. The moduli space of stable rank 2 sheaves on Q3 with Chern classes

( ) (0, (3k* + 6k + 4)H?, (8k® + 24k* + 26k + 6)H®), k>1
C1,Co,C3) =
b (—H, (3k> + 3k + 2)H?, (8k* + 12k* + 8k — 2)H?), k>0

contains a irreducible component containing the family of the generic foliation

by curves on Q)s.
These results are in sections 6 and 7 of article [1] and chapter 2 of this
thesis.

A generic codimension 1 distribution % on a smooth projective threefold

X is given by an exact sequence

F o 02Tz 5TX = Iz(r+2)—0, (3)
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where Tz is a reflexive sheaf of rank 2 called of tangent sheaf of F,r = c,(TX) —
c1(Tz) —2 > 0 is the degree of .# and Iz is an ideal sheaf of a subscheme
Z = Sing(.%), called the singular scheme of %, with Sing(.%#) empty or has

dimension equal to zero.

In [26], it is shown that the codimension one distributions with at
most isolated singularities on certain smooth projective 3-folds with Picard group
rank 1 have u-stable tangent sheaves. Moreover, the authors characterized certain
irreducible components of the moduli space rank 2 reflexive sheaves on P°. In
the following theorem, proved in Chapter 2, we characterize certain irreducible
components of the moduli space rank 2 reflexive sheaves on the 3-folds smooth
hypersurfaces of degree d € {2,3,4,5}.

Main Theorem 2. 1. The moduli space of stable rank 2 reflexive sheaves on

Q3 with Chern classes

(0, (3k* + 6k +4)H? (8K + 24k* + 26k + 6)H?), k>1

C1,C2,C3) =
faren ) {(—H,(3k2+3k+2)H2,(8k3+12k:2+8k—2)H3)a k=0

contains a irreducible component containing the family of the tangent sheaves

of a generic codimension one distributions on Q3.

2. The moduli space of stable rank 2 reflexive sheaves on a smooth cubic threefold

hypersurface X with Chern classes

(0, (3k* + 4k + 4)H?, (8K* 4+ 16k* + 16k + 10)H?), k> 1

C1,Ca,C3) =
faen ) {(—H,(BkQ+7k+7)H2,(8k3+28k:2+38]<:+23)H3)> k=0

contains a irreducible component containing the family of the tangent sheaves

of a generic codimension one distributions on X.

3. The moduli space of stable rank 2 reflexive sheaves on a smooth quartic

threefold hypersurface X with Chern classes

(0, (3k* + 8k + 11)H?, (8k® + 32k? + 54k + 50)H?), k>0

C1,C2,C3) =
o) {(—H,(3k2+5k+8)H2,(8k3+20k2+28k+30)H3), k=0

contains a irreducible component containing the family of the tangent sheaves

of a generic codimension one distributions on X.



Introduction 14

4. The moduli space of stable rank 2 reflexive sheaves on a smooth quintic

threefold hypersurface X with Chern classes

(0, (3k* + 6k + 13)H?, (8k® + 24k* + 44k + 68)H?), k>0

C1,C2,C3) =
(e1,¢2,¢4) {(—HA%?+%HJUH{@H+BM@+W%+9UH%,kZO

contains a irreducible component containing the family of the tangent sheaves

of a generic codimension one distributions on X.

We wish to produce an article based on these results.

We also use two new tools, monads and quiver representations, to study

a family of locally free sheaves on a 3-fold hypersurface of degree d > 2.

A monad over a projective variety X is a complex
M0 ASBEC 0

of locally free sheaves A, B and C' on X which is exact at A and at C'. The coherent
sheaf
E =ker(f)/Im(«)

is called the cohomology sheaf of the monad M, and one also says that M, is a
monad for E. This is one of the simplest ways of constructing sheaves, after kernels
and cokernels. Some authors have presented existence conditions for monads on
a large class of projective varieties, see [10, 17, 32]. In particular, [17] showed the

existence of monads on a 3-fold smooth hypersurface of the form

Me: 0= Ox(=1)% % 09272 5 0 (1)% -0, > 1. (4)

Here we will study the case ¢ = 1, the family of locally free sheaves on
a 3-fold smooth hypersurface of degree d > 2 that arise as a cohomology sheaf of

monad
Me: 0 Ox(=1) 3 0% 5 0y(1) — 0. (5)

Initially, we apply [20, Theorem 3.3] to obtain a cohomological char-
acterization of these locally free sheaves. Later we use the connection between
monads over a projective variety and representations of quivers, see [18, 19, 34], to

give a matrix description of the locally free sheaves that are obtained from (5).
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Definition 0.0.1. Let X be a 3-fold hypersurface. We say that a matrix A €
Matyx5(C) is globally injective on X if for every (A :---: X5) € X, we have

5
SOAA 0,
=1

where A; are the columns of the matrix A. Similarly, we say that a matrix B €

Matsy4(C) is globally surjective on X if for every (A :---: \5) € X, we have
5
i=1

where B; are the lines of the matrix B.

In section 3.2, we prove:

Main Theorem 3. There is a bijective correspondence between pairs (A, B), where

1 0 0 0
0 12 @13 Q14 0A1p 0 1 0 0
A= —ai2 0 Q23  A24 Q25 and B — 0 0 1 0 7
—a13 —azy 0 azn ass 0 0 0 1
—a14 —a —azs 0 ags

Cs51 Cs2 C53 Csa

with A globally injective on X and B globally surjective on X and isomorphism

classes of monads whose cohomology sheaf is locally free as in (5).

As an application of the Ottaviani’s Bertini-type theorem [12, Teorema
2.8], we finish this work showing that this family of locally free sheaves also appears

as a family of distributions and foliations.

We will now give a short overview of the contents of this thesis.
Chapter 1: We introduce some preliminaries necessary through the text. In the
first section we classify the cohomology rings of the invertible sheaves on 3-fold
hypersurfaces. In the second section we recall the definition and we present some
criteria to determine stability in the sense of Mumford-Takemoto and Gieseker-
Maruyama. In the third section we introduce the concept of moduli spaces and

moduli functors. In the fourth section we summarize the main facts abouts monads
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that will be useful in this thesis. In the fifth section we remember the definitions
of quivers and their representations. In the sixth and final section we present an
equivalence between the abelian category of representation of quivers and the
category of the monads.

Chapter 2: This chapter is dedicated to the study of the generic codimension 1
distributions and generic foliations by curves on 3-fold hypersurfaces. To be more
precise, in the first section we present the definition of a generic codimension 1
distribution on a smooth projective 3-fold and we study some properties of its
tangent sheaf. In sections 2, 3,4 and 5 we do the proof of the Main Theorem 2.
The sixth section is dedicated to the study of the generic foliations by curves on P?
and (3. Here it is made the proof of the Main Theorem 1.

Chapter 3: This chapter is dedicated to the study of linear monads on 3-fold
hypersurfaces. In the first section we will give a cohomological characterization of
stable rank 2 locally free sheaves on a 3-fold hypersurface of degree d with Chern
classes ¢; = 0 and ¢y = d- L. In the second section we apply the equivalence between
quiver representations and monads on X to give a matrix description of the locally

free sheaves that are obtained from monads, Main Theorem 3.

As an immediate consequence of the Main Theorem 3, we show that
the family of stable rank 2 locally free sheaves on a 3-fold hypersurface of degree d
with Chern classes ¢; = 0 and ¢y = d - L satisfying certain cohomological conditions
has dimension 9. In the third section, we will give a sufficient condition to the family
of the locally free sheaves on a smooth 3-fold hypersurface of degree d = 3,4, 5 given
as cohomology sheaf of the monad in display (5) to fill a irreducible component
of the moduli space of stable rank 2 locally free sheaves on X with Chern class
c1 =0 and ¢y = d- L. In the last section, we will use these bundles to get examples

of LCI foliations by curves on X, which are defined in the Section 2.6.
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1 Preliminaries

In this chapter we recall some basic concepts and fix the notations that
will be useful for the development of the work. We work over the complex numbers

C.

1.1 The Cohomology of 3-Fold Hypersurfaces

Let X be a smooth projective variety with Picard group Pic(X) = Z.
Let Ox (1) the ample generator of Pic(X), and given a sheaf F' on X we set F'(k) :=
F ® Ox(1)®*, H'(F(k)) as its i-th cohomology group, h'(F(k)) its dimension, i.e
dim H'(F(k)) = h'(F(k)) and HP(F) = @ H"(F(k)).

keZ

Definition 1.1.1. A 3-fold hypersurface X C P* of the degree d is the zero locus

of a homogeneous polynomial f € Clzo, ..., x4)q.
Remark 1.1.2. For a generic f € C[xy,...,x4)q, its zero locus is nonsingular.
Let X denote a smooth hypersurface of degree d in P*. Let H be the
class of a hyperplane section, so that
Pic(X) = H*(X,Z) = ZH .

It is know that the even cohomology ring H?(X,Z) is generated by H, L € H*(X,Z)
and P € H%(X,7Z) with the relations: H> = dL, H.L = P, H* = dP, see [17]. The
dualizing sheaf of X is wx = Ox(d —5).

The main goal here is to make the explicit calculations of the dimensions
of the cohomology groups H'(Ox(k)), where k € Z, 0 <i < 3 and X = Z(f) C P*

is a hypersurface of the degree d > 2. For this, we use the exact sequence
0 — Ope(k — d) 5 Ops(k) = Ox (k) — 0, (1.1)
which induces the long exact sequence in cohomology

0 — HY(Op(k —d)) 5 HY(Ops(k)) — HY(Ox (k) — H (Ops(k — d)) = 0. (1.2)
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If £ <0,
h2(Ox (k) = h°(Ops(k)) — h°(Ops(k — d)) = 0.

f0<k<d,
B(Ox (k) = (O (K)) — h°(Op (s — d)) = (’“ ' 4)
Ik > d,
B(Ox (k) = (O (K)) — h°(Op (s — d)) = (kf) - (k ;fjf)-

Using the long exact sequence in cohomology derived from the sequence
(1.1) and the fact that Ops has no intermediate cohomology it follows that Ox also
has no intermediate cohomology, i.e. H(Ox(k)) =0 for all k € Z and i = 1, 2.

By Serre duality, see for example [24, Chapter I|, being wy = Ox(d —5)

the dualizing sheaf, we have

W’ (Ox(k)) = h*(Ox(~k +d - 5)).

Furthemore, if 0 <7 < 3 and k € Z, we have
k+4 k—d+4
< k) ( k—d) ifi=0and k>0,

ifi=3and k=d -5,
(1.3)

i _
Etd—5 —k—5> ifi=3and k <d-—5,

otherwise.

h(Ox (k) = 1—l<;+d—1 (k-1
-

Note also that, from the sequence (1.2), we have the isomorphisms

0 it k <0,
H°(Ox (k) ~ { H*(Opi(k)) if0<k<d, (1.4)
HO(Opa (k) f H(Ops(k — d)) it k> d.

Whenever we want to calculate the cohomology of the tangent bundle
TX of X we will use the standard normal bundle sequence

0—TX — TPx — Ox(d) =0, (1.5)
see [9, Chapter V.
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1.2 Stability

In this section we introduce the concept of stability of coherent sheaves
on a irreducible smooth projective variety in the sense of Mumford-Takemoto and
Gieseker-Maruyama. We also present some criteria to determine stability. For more

details on stability in general abelian categories, see [5].

Definition 1.2.1. Let X be an irreducible smooth projective variety of dimension
n and fix £ a ample invertible sheaf with ¢;(£) := H. The slope pu(E) with respect

to L of a torsion-free sheaf E on X with respect to £ is defined as follows:

C1 (E)Hnil

HE) = rk(E)

We say that E is p-semistable with respect to L if, for every coherent subsheaf
0# F — FE with 0 <1k(F) < rk(E), we have u(F) < u(E).

Moreover, if for every coherent subsheaf 0 # F' — E with 0 < rk(F') <
rk(E) we have p(F) < p(E), we say that E is p-stable with respect to L.

We have the following simple properties of stability and semistability,
see [24, Lemma 1.2.4].

Lemma 1.2.2. ) Line bundles are p-stable.

it) The sum Ey @ FEy of two p-semistable sheaves is p-semistable if and only if
n(Er) = p(Es).

1) E is p-(semi)stable if and only if E* is.
) E is p-(semi)stable if and only if E(k) is.
We present below a stability criterion for reflexive sheaves of rank 2 on
a projective variety. For this we need the following definition.

Definition 1.2.3. Let F be a torsion-free sheaf of rank 2 on a projective variety
X with Pic(X) = Z. Then there is a uniquely determined integer kg such that
c1(E(kg)) € {—1,0}. We set

Enorm = E<kE')
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and call E normalized if E = E,opm.

We then have the following criterion, see [24, Lemma 1.2.5].

Lemma 1.2.4. A reflexive sheaf E of rank 2 on a smooth projective variety X

with Pic(X) = Z is p-stable if and only if Eynomm has no sections:
HO(Enorm) = 0.
If ¢1(F) is even, then E is u-semi-stable if and only if

HO(Enorm<_1)) =0.

The next theorem characterizes the endomorphisms of a p-stable locally

free sheaf on a irreducible smooth projective variety, see [24, Theorem 1.2.9].

Theorem 1.2.5. u-stables locally free sheaves are simple.

We now present the definition of stability of coherent sheaves on a

smooth irreducible projective variety in the sense of Gieseker-Maruyama.

Let X be a smooth irreducible projective variety of dimension n. Recall

that the Euler characteristic of a coherent sheaf F' is

n

X(F) =3 (=1)'h'(X, F),

=0
where h'(X, F) = dim, H'(X, F).

Definition 1.2.6. Let X be a smooth irreducible projective variety of dimension

n and let H be an ample divisor on X. For a coherent sheaf F' on X we set

_ X(F®Ox(mH))
Pr(m) = rk(F)

The sheaf F' is GM-semistable with respect to the polarization H if and only
Pg(m) < Pp(m) for m>>0

for all non-zero subsheaves F C F' with rtk F < rk F'; if strict inequality holds for
every E then F' is GM-stable with respect to H.
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The following implications occur

1 — stable = GM — stable = GM — semistable = p — semistable

For more details on GM-stability, see [13, 28].

1.3 The moduli spaces

Moduli spaces are geometric objects which arise from classification
problems. Roughly speaking, the moduli space of stable reflexive sheaves on a
smooth projective variety X is a scheme whose points are in natural bijection to
isomorphism classes of stable reflexive sheaves on X. This correspondence is given

in terms of representable functors.

We present below the formal definition of a moduli functor, a fine moduli
space and a coarse moduli space and we gather the results on moduli spaces of

reflexive sheaves on a smooth projective variety. For more details see [28, 31, 33].

1.3.1 Moduli problems

A moduli problem is essentially a classification problem: we have a
collection of objects A with an equivalence relation ~ and we want to classify these

objects up to equivalence.

Let Gc¢bh denote the category of schemes of finite type over C and let
Gets denote the category of sets.

Definition 1.3.1. The functor of points of a scheme X is a contravariant functor
hy := Hom(—, X) : &ch — Sets,

from the category of schemes to the category of sets defined by
hx(Y) := Hom(Y, X)

hx(fi Y — Z) = hx(f) : hX<Z) — hX(Y)

grrgof
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Furthermore, a morphism of schemes f: X — Y induces a natural

transformation of functors hy: hx — hy given by

hﬁzl hx(Z) — hy(Z)

g fog

We denote by Fun(Sch®?, Gets) the category of the contravariant func-
tors from schemes to sets form a category, with morphisms given by natural

transformations.

The above construction can be phrased as follows: there is a functor
h: &ch — Fun(S&ceh?, Sets) given by

X—)hx; (fX%Y)—)hfhx—)hy

Example 1.3.2. For a scheme X, we have hy(Spec C) := Hom(Spec C, X) is the
set of C-points of X.

Definition 1.3.3. A contravariant functor F': Gch — Gets is called representable

if there exists an scheme X and a natural isomorphism F' ~ hx.

Definition 1.3.4. A (naive) moduli problem (in algebraic geometry) is a collection

A of objects (in algebraic geometry) and an equivalence relation ~ on A.

Example 1.3.5. Let A be the collection of vector bundles on a fixed scheme X

and ~ be the relation given by isomorphism of vector bundles.

Our goal is to find a scheme M whose k-points are in bijection with
the set of equivalence classes A/ ~. Furthermore, we want M to encode how these
objects vary in ‘families’. More precisely, we refer to (A,~) as a naive moduli
problem, because there is often a natural notion of families of objects over a scheme
S and an extension of ~ to families over S, such that we can pullback families by

morphisms 7" — S.

Definition 1.3.6. Let (A, ~) be a naive moduli problem. Then an extended moduli

problem (or a moduli problem) is given by
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1. Sets Ag of families over S and an equivalence relation ~g on Ag, for all

schemes S,

2. pullback maps f*: Ag — Ay, for every morphism of schemes T" — S,

satisfying the following properties:

(1) (ASPeC(C> NSpec(C) = (./4, N),
(ii) for the identity Id : S — S and any family F over S, we have Id*F = F;

(iii) for a morphism f : T — S and equivalent families F ~g G over S, we have
[*F ~r [7G;

(iv) for morphisms f : T'— S and g : S — R, and a family F over R, we have an
equivalence (g o f)*F ~p f*g*F.

For a family F over S and a point s: SpecC — S, we write F, := s*F

to denote the corresponding family over Spec C.

Lemma 1.3.7. A moduli problem defines a functor (moduli functor) M : Seh —
Gets given by

M(S) := {families over S}/ ~g5, M(f:T = S)=f*: M(S) = M(T).

We will often refer to a moduli problem simply by its moduli functor.
There can be several different extensions of a naive moduli problem. As it can be

seen in the next example.

Example 1.3.8. Let us consider the naive moduli problem given by vector bundles
on a fixed scheme X up to isomorphism. Then this can be extended in two different
ways. The natural notion for a family over S is a locally free sheaf F over X x §

flat over S, but there are two possible equivalence relations:

FrgGe—F~G
FrgG = F~GRmngl foraline bundle £ — S,

where mg: X x .S — S. For the second equivalence relation, since £ — S' is locally

trivial. there is a cover S; of S such that F|x«s, =~ G|xxs;-
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Definition 1.3.9. Let M: Gch — Gets be a moduli functor. A scheme M is a
fine moduli space for M if it represents M.

The ideal situation is when there is a scheme that represents our given
moduli functor, i.e. there is a fine moduli space. Unfortunately, there are many
natural moduli problems which do not admit a fine moduli space; see for example

[33, Example 2.21 and Example 2.22]. This motivates the following definition:

Definition 1.3.10. A coarse moduli space for a moduli functor M is a scheme M

and a natural transformation of functors 7: M — hj; such that

L. Nspecc: M(SpecC) — hy(Spec C) is bijective;

2. For any scheme N and natural transformation v : M — hy, there exists
a unique morphism of schemes f: M — N such that v = hy o7, where

hy: har — hy is the corresponding natural transformation.

1.3.2 Moduli space of reflexive sheaves

In this subsection we deal with the problem of classifying reflexive

sheaves on smooth irreducible projective varieties.

Let X be a smooth, irreducible projective variety of dimension n over C
and let H be an ample divisor on X. For a fixed polynomial P € Q[z], we consider

the contravariant moduli functor
MEP(2) : &eh — Sets
S = MPP(S)
where
MEF(S) = {S — flat families F — X x S of reflexive sheaves on X all whose

fibers are u-stable with respect to H and have Hilbert polinomial P}/ ~,
with

FrsgG = FxGngl foraline bundle £L — S,
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being m5: X x S — S the natural projection. And if f : S’ — S is a morphism in
Sch, let M (f)(—=) be the map obtained by pulling-back sheaves via = f x idy :

MR (=) : MET(S) = MET(S)
[F] = [fxF)

In 1977, M. Maruyama proved, see [15] :

Theorem 1.3.11. The contravariant moduli functor Mﬁﬁ’P(—) has a coarse moduli
scheme M)]}[’P which is a separated scheme and locally of finite type over C. In ad-
dition, M}?’P decomposes into a disjoint union of schemes M)}([’P(r; C1,- -+ Cmin(rn))
where n = dim X and Mf’P(r; Cly.n. ,cmin(nn)) is the moduli space of rank r p-stable
with respect to H reflexive sheaves on X with Chern classes (ci, ..., Cmin(rn)) Up to

numerical equivalence.

The next proposition gives us an bounds to calculate the dimension of
the Zariski tangent space of the moduli spaces of stable sheaves on a projective
scheme X, see [13, Theorem 4.5.2].

Proposition 1.3.12. Let X be a smooth, irreducible projective variety of dimension
n and let E be a p-stable reflexive sheaf on X with Chern classes ¢;(E) = ¢; €
H*(X,7), representing a point [E) € M (r;c1,. .., Cuin(rny). Then the Zariski

tangent space of M;LP(T; Cl,- - Cmin(rn)) 0t [E)] is canonically given by

T M (rien, .. Coingry) = Ext! (B, E).
If Ext*(E, E) = 0 then M3" (r;cq, . .. ; Cmin(rn)) @5 smooth at [E). In general, there
are bounds

dim Extl(E, E) dimg M)Ig’P(r; €1, -+ Cmin(rn))

>
> dimExt!'(E, E) — dim Ext*(E, E).

1.4 Monads

In this section we establish the notation and gather the most important
facts about monads that will be useful through this text. Let X be a projective

variety with structure sheaf Ox and dualizing sheaf wy.
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Definition 1.4.1. A monad over a projective variety X is a complex
M:05A5BE 00 (1.6)

of locally free sheaves A, B and C' on X which is exact at A and at C'. The coherent
sheaf
E =ker(f)/Im(«)

is called the cohomology sheaf of the monad M, and one also says that M, is a
monad for F.
The set
S ={z € X : a, is not injective},

where a, : A, — B, is the map induced in the stalks, is a subvariety called the
degeneration locus of the monad M,. Note that S is also the locus where the sheaf

FE is not locally-free.

Clearly, the cohomology sheaf E of a monad M, is always a coherent

sheaf, but more can be said in particular cases. In fact, we have

Proposition 1.4.2. Let E be the cohomology sheaf of a monad M,.

(1) E is locally-free if and only if the degeneration locus of M, is empty;

(2) E is reflexive if and only if the degeneration locus of M, is a subvariety of

codimension at least 3;

(3) E is torsion-free if and only if the degeneration locus of M, is a subvariety

of codimension at least 2.

Proof. This result is proved in [16, Proposition 4] when the sheaves A, B and C

are given by
A=0x(-1)%, B=0% and C=0x(1)%.
However the same argument is valid when A, B and C are locally free sheaves. [

Let’s see the following examples:
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Example 1.4.3. Let X C P* be a smooth hypersurface of degree d such that
(0:0:0:0:1) ¢ X. If

a:=(—x11900) and 8 := (zg x1 T2 x3),
then the cohomology sheaf of the monad
Me: 0 Ox(=1) S 0% 5 0x(1) — 0,

is a torsion-free sheaf but it is not a reflexive sheaf. Indeed, by Proposition 1.4.2,
its degeneration locus,
S:{ZEOZZL‘1:O},

has codimension 2.

Example 1.4.4. Let X C P* be a smooth hypersurface of degree d such that
(0:0:0:0:1) ¢ X. If

a:=(—zy g —x423) and 5 := (xg x1 22 x3),
then the cohomology sheaf of the monad
Me: 0= Ox(=1) % 0% 5 0x(1) — 0,
is a locally-free sheaf, since, by Proposition 1.4.2, its degeneration locus is empty.
As we can see, monads give us a rather simple way of obtaining new
sheaves. When the sheaf we get is locally-free, we may consider its associated vector

bundle, and by abuse of language we will not distinguish between one and the
other.

Every monad M, on X can be broken down, using the fact that « is

injective and [ is surjective, into two short exact sequences:
05K—>B2C—0 (1.7)

and

0—-AS3K—E—Q0, (1.8)

where K := ker (3 is also locally-free.

From the exact sequences above one easily deduces that if a coherent

sheaf F on X is the cohomology sheaf of a monad M,, then:
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i) the Chern character of E is given by

ch(E) = ch(B) — ch(A) — ch(C)

ii) and the rank of E is given by
rk(E) = rk(B) — rk(A) — rk(C).

Remark 1.4.5. If E is the cohomology sheaf given by monad in the Example
1.4.3, we have: ch(E) = (2,0, —H? 0) and rk(E) = 2.

Definition 1.4.6. To a given monad M, : 0 — A & B £> C — 0, whose

cohomology F is locally free we can also associate the dual monad
M 0—>C*E>B*°‘—*>A*—>O,
whose cohomology is precisely E*.

A morphism between monads is a morphism of complexes. Two monads

are isomorphic if they are isomorphic as complexes.
Definition 1.4.7. A monad
Me: 05 ASBE 00
on a projective variety X whose cohomology is FE is called Horrocks if
(i) A and C are direct sums of invertible sheaves;

(i) HY(B) = H' *(B) = 0 and if n > 4 then H?(B) ~ HP(E) for 2 < p <n — 2;
if moreover the monad satisfies

(iii) no direct summand of A is isomorphic to a direct summand of B;

(iv) no direct summand of C' is the image of a line subbundle of B;

then it is also called minimal.
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Definition 1.4.8. A projective variety X C P" of pure dimension n is arith-
metically Cohen-Macaulay (ACM) if H?(Ox) = 0 for every 1 < p < n — 1 and
H,(Ix) =0

Examples of ACM projective variety are 3-fold smooth hypersurfaces.

In [20, Theorem 3.3], we find the following correspondence between

locally free sheaves on ACM varieties and classes of monads:

Theorem 1.4.9. Let X be an ACM wvariety of dimension n > 3 and let E be a
locally free sheaf on X. Then there is a 1-1 correspondence between collections
{hi,... hey g1y ..., gs} with h; € H' (E*®@wx(k;)) and g; € H' (E(—1;)) for integers

kys and lj 5 and equivalence classes of monads for E of the form
M. 0= @ wx(k) S F 5 e 0x() =0

This correspondence is such that:

(i) M. is Horrocks if and only if the gjys generate H}(E) and the hys generate
HNE* @ wx) as S(X)-modules;

(1) Ms is minimal Horrocks if and only if the g5 contitute a minimal set of
generators for HN(E) and the hy, constitute a minimal set of generators for
HNE* ® wx) as S(X)-modules.

In [32, Theorem 3.3], we find the following theorem on the existence of

monads on ACM varieties:

Theorem 1.4.10. Let X be a variety of dimension n and let L be a line bundle
on X . Suppose there is a linear sistem V C H°(L), with no base points, defining a
morphism X — P(V') whose image X < P(V) is a projective ACM variety. Then

there exists a monad of type
M 0= (L)L 0% % 1° =0
if and only if one of following conditions holds:

i)b>a+candb>2c+n—1,
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it) b>a+c+n.

In this work we are interested in a special type of monad, called linear.

Definition 1.4.11. A monad on X is called linear if it is of the following form:
0— Ox(—1)% = 0% = Ox(1)® = 0.

Similarly, the cohomology sheaf of a linear monad is called a linear sheaf.

Bundles that can be obtained as the cohomology of a linear monad are
know as linear bundles. Linear monads are often used to build examples of stable

bundles of rank 2 and 3 on hypersurfaces in P*, see [17, Main Theorem).

Theorem 1.4.12. Let X be a 3-dimensional non-singular projective complex variety
with Pic(X) = Z - H, where H 1is the class of a hyperplane section, i.e. H =

c1(Ox(1)). Consider the following linear monad:
M. 0= Ox(=1)% % 02272 5 0 (1) 50 (c>1)
whose cohomology sheaf is locally free.

i) The kernel K = ker (3 is a stable rank c + 2 bundle with ¢,(K) = —c.H and
1
) = 5 +0). I

it) The cohomology E = ker /Im« is a stable rank 2 bundle with c1(E) = 0
and cy(E) = c.H?.

1.5 Representations of quivers

We start this section by recalling the definitions of quivers and their

representations. For this section we will use as main references [4, 18, 30].

Definition 1.5.1. A quiver () is given by a finite set of vertices (Qg, a finite set of
arrows (1 and two maps h,t: Q1 — Qg called head and tail, respectively.

Definition 1.5.2. Let () be a quiver.
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i) A linear representation of a quiver @ is given by R = ({V;}icqo; { fataco:)

where V; is a C-vector space and f, : Vya) — Vi(a) is linear.

ii) A morphism between two representations R and R is given by ¢ = {¢: }icqo

where ¢; : V; — V;-l is linear and for each arrow a we have f;@(a) = On(a) fa-

We denote Repe @) the abelian category of the linear representations of

the quiver Q).

The algebra of the linear quiver @ is the associative C-algebra C(Q)
determined by generators e;, where ¢ € )y, and «, where a € ) and the relations:

eie; = 0if i # j, € = e;, eyayx = aep(a) = .

From the relations above, for any arrows «a, 8 we get a8 = 0 unless
h(a) = t(5). Thus a product of arrows «; - - ay is zero unless the sequence ™ =
(ov1,...,0q) is a path, ie., h(a;) = t(azyq) for i@ = 1,...,0 — 1. We then put
s(m) = s(ay), t(m) = t(oy) and the length of the path m, [(7) = [. For any vertex i

we also view e; as the path of length O at the vertex 7.

Clearly the paths generate the vector space CQ). They also are linearly
independent. Consider the path algebra with basis the set of all paths and multipli-
cation given by concatenation of paths. From the concept of a path algebra we get

following definition of quiver with relations.

Definition 1.5.3. Let () be a quiver.

i) A relation on a quiver () is a linear combination of paths in CQ having a

common tail and a common head and of length at least 2.

ii) A quiver with relations is a pair (@), I) where @ is a quiver and [ is a two-sided

C
ideal of C(@) generated by relations. The quotient algebra IQ is the path
algebra of (Q, ).

In this work, we shall be interested in the quiver Q:

N HEEN
Q= "1 ! ! (1.9)
— —
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with the relations Pj; = f;a; + B0, for 1 <i < j < n.

A representation R = (V_1, Vo, Vi,{fa:}, {95 }) of @ is said to satisfy
the relations P;; when gg, fo, + 95, fa; = 0.

Let X € P"! be a smooth hypersurface of degree d.

Definition 1.5.4. Let R = (V_1, Vo, Vi,{fa:},{9s,}) be a representation of the

quiver ) with relations F;;.

i) R is globally injective on X if for every (A\; : -+ : \,) € X, Z)\ifai is
injective.

ii) R is globally surjective on X if for every (A; : --- : \,) € X, > Aigg, is
surjective.

1.6 Equivalence between categories of monads and quiver rep-

resentations

Throughout this section () denotes the quiver given as in display (3.2)
with the relations P;; and X C P"! a smooth hypersurface of degree d.

Let € be the category of complexes of the form
0— Ox(=1)%" = 0% — Ox(1)% =0,

regarded as a full subcategory of the category of complexes of sheaves on X. We

will also denote by © the abelian category of representations of the quiver Q).

Below we will present an equivalence functor F between € and ®. For

more details on this equivalence functor see [19, 34].

Lemma 1.6.1. Let A and B be two coherent sheaves on X. Then
Hom(A®, B) ~ Matyx, ®c Hom(A, B),

where Matyy, denotes the vector space of b X a matrices of complex numbers.
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Proof. Consider ¢ € Hom(A® B®) a morphism. Let p; : B* — B denote the

projections, for every ¢ = 1,...,b, and n; : A — A“ the inclusions, for j = 1,...,a.

We defined ¢;; : A — B by ¢;; ;== p;o¢pon; foreveryi=1,...,be

7 =1,...,a. Thus, we get the matrix

¢11 ¢12 ¢1a
b Ga= | OO
Go1 P2 0 Dba

Now, fix a basis v = {z1,...,x,} for Hom(A, B). Then
bij = \{xy + Ny 4+ -+ Nz,
where A/ € C and hence
P=01 QT+ P2 @To+ -+ P @ Ty,
where ¢, = ()xfcj)bxa for every k =1,...,n. O

Remark 1.6.2. An immediate consequence of the Lemma 1.6.1 is that the mor-
phisms « and ( in the linear monads can be seen as matrices whose entries are

elements of H°(Ox(1)), i.e. homogeneous polynomials of degree 1.

Proposition 1.6.3. There is an equivalence of categories between € and ©. More-
over, under this equivalence, monads whose cohomology sheaf is locally free are in

1 — 1 correspondence with globally injective and surjective representation of Q.

Proof. Fix homogeneous coordinates [X7 : ... : X, ] of X, and let {X,..., X} be
the corresponding basis of H°(Ox(1)).

By Lemma 1.6.1, we have the isomorphism

Hom(Ox (—1)%%, O ~ Matyr, ©cH*(Ox(1)).

Consider the monad

M. : 0= Ox(=1)% % 0% 5 0y (1) — 0.
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As o and B can be seen as matrices whose entries are linear forms on Xy,..., X,

we have
a=oa1 X +aXo+- -+, X, B=70X1+0Xo+ -+ X,
where «; € Matyy, and 3; € Mat.y;, . So, we can set

F(M') = (Ca’ Cb’ CC? {ai}’ {/6]})

Moreover, we have
foa=0 <= Z(ﬁiag‘ + Ba:) X X; =0

1<j
e Bia/j + Bjai = 0,

for 1 < i < j <mn. Therefore, F(M,) satisfies the relations of Q.

Now, we consider ¢, : M, — N, a morphism between monads. As, by
Lemma (1.6.1), Hom(Ox (i)®*, Ox (i)®*) ~ Matyyq,, we can define F(¢,) as being

the morphism of representations obtained from the above isomorphism.

It is not difficult to see that F is dense, faithfull and full, i.e. F is an

equivalence.

Note also that F(M,) is globally surjective if and only if the morphism
f3 is surjective and F(M,) is globally injective if and only if the degeneration locus
of M, is empty. Therefore, the cohomology sheaf of M, is locally free if and only
if F(M,) is globally injective and globally surjective. O]

Remark 1.6.4. e When X = P?, the category € is equivalent the category
of representations of quiver () satisfing the relations P;; with n = 4, since
dim H°(Ops (1)) = 4.

e When X C P? is a hypersurface of degree d > 2, n = 5 in the quiver Q, since
dim H°(Ox(1)) = 5.
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2 Distributions and foliations on 3-fold

hypersurfaces

Our main objective here is to obtain concrete examples of moduli spaces
of rank 2 stable reflexive sheaves on 3-fold hypersurfaces of degree d = 1,...,5
with prescribed Chern classes. For this we will use the generic codimension 1

distributions and foliations by curves.

In the next section we present the concept of distributions and foliations

on smooth projective threefolds. We use [1, 25, 26] as our main references.

2.1 General definitions

Let X be a smooth projective threefold X of Picard rank 1 and let
Ox (1) denote the ample generator of Pic(X). A codimension | distribution # on a

smooth projective threefold X is given by an exact sequence
F o 0—)T§1>TX—>N§—>O, (2.1)

where T'z is a reflexive sheaf of rank s := 3 —1[ and Nz is a torsion free sheaf; these
are respectively called the tangent and normal sheaves of .#. If .% is a codimension
one distibution, we can rewrite the exact sequence in display (2.1) in the following
manner:

F 0= Ts 5TX = Iz(r+2)—0, (2.2)

where 7 := C1(TX) — 1(T) — 2 > 0, called the degree of .#, and I is an ideal
sheaf of a subscheme Z := Sing(.%), called the singular scheme of .%. In this case,

Tz is a reflexive sheaf of rank 2 on X.

Codimension one distributions .# with the property that Sing(.#) is
either empty or has dimension equal to zero are called generic because they can be
defined by a general 1-form w € H°(Q%(¢)) for some t. Indeed, if we dualize the
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sequence in display (2.2), we get
0= Ox(=2—7)—= Q% = TF—0 (2.3)

since Ext' (Iz(r + 2),0x) = 0; that is, the tangent sheaf can be described as a
quotient of QY. If X C P* is a smooth hypersurface, to according [26, Teorema 1],

the tangent sheaf T% is always a p-stable rank 2 reflexive sheaf on X.

When X = P?, the generic codimension one distribution of degree r
provides a family of p-stable rank 2 reflexive with given Chern classes parametrized
by open subset of P(H®(Qgs(r + 2)). It was shown in [26, Theorem 4] that such
families are dense within an irreducible component of the (Gieseker-Maruyama)

moduli space of stable rank 2 sheaves on the projective space P,

Theorem 2.1.1. For each r > 0, r # 2, the moduli space of stable rank 2 reflexive

sheaves on P? with Chern classes
(c1,¢9,c3) = (2—, 2+ 2,13 +2r% 4 2r)

contains a nonsingular, rational irreducible component of dimension (r + 1)(r +
3)(r+4)/2 — 1 whose generic point is the tangent sheaf of a generic distribution of

degree r on P3.

Our main goal here is to extend this theorem to a smooth hypersurface
X C P* of degree d = 2, ...,5. To be more precise, we build families of the stable
rank 2 reflexive sheaves on X containing the generic codimension one distributions
which fill an irreducible components of the moduli spaces of stable rank 2 reflexive

sheaves with prescribed Chern classes.

Let D(r) denote the family of stable rank 2 reflexive sheaves on X given
by the exact sequence in display (2.3) and let F(r) be the family of the stable rank

2 reflexive sheaves F' on X given by the exact sequence

0— Ox(=2—7)® Ox(—d) > Qu|x = F — 0. (2.4)

Note that each generic codimension one distribution

0= Ox(=2—71) 2 QL = T% =0
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fits into a commutative diagram as follows:

0 0 (2.5)

Ox (—d) === Ox(—d)

©
0—=O0x(=2 1) ® Ox(—d) —— Qulx T 0
0 Ox(—2—7) —2 QL TY 0
0 0
where ¢ is given by the standard normal bundle sequence
0= Ox(—=d) 5 Qh|x — Q% — 0,
and therefore D(r) C F(r).
We also have the following commutative diagram:
0 0 (2.6)
OX(_d) - OX(_d)
©
0—O0x(—2—71) 22— Ql|x Tx 0
0—=Ox(-2—7)—2 QL TY 0
0 0

where Tx is a rank 3 reflexive sheaf on X.

In general, if 0 = (07 09) is generic, we have the following commutative
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diagram

Ox (—d) === Ox(—d)

OHOX<—2—T)EBOX(—(1)L>Q%D4|X —T——-0

O)(<—2—T) G T 0

0 0

where G is a rank 3 reflexive sheaf on X.

So, in order to get the dimension of the family F(r), we must investigate

when bundle monomorphisms
o : OX(—Q - 7“) SY) Ox(—d) — Q%»4|X
define isomorphic quotients. Before, consider the following lemma:

Lemma 2.1.2. The sheaf Qpa|x is simple, i.e. dim Hom(Qpa|x, Qpa|x) = 1.

Proof. Applying the functor Hom(., Q4|x) to the exact sequence
0— Qh(—d) 5 QL — Ql|x — 0, (2.8)
where X = {f = 0} C P* is a hypersurface of degree d, we get
0 — Hom (Qpa|x, Qpa|x) — Hom(Qpa, Qpa|x) — -+ 