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Abstract

We study finite-dimensional representations for a quantum affine algebra from two different points
of view. In the first part of this work we study the graded limit of a certain subclass of irreducible
representations. Let V' be a finite-dimensional representation for a quantum affine algebra of
type A and assume that V' is isomorphic to the tensor product of a minimal affinization by parts
whose highest weight is a sum of distinct fundamental weights by Kirillov-Reshetkhin modules
whose highest weights are twice a fundamental weight. We prove that V' admits a graded limit L
and that L is isomorphic to a level-two Demazure module as well as to the fusion product of the
graded limits of each of the aforementioned tensor factors of V. We also prove that if the quantum
affine algebra is of classical type (resp. type Gs), the graded limit of (regular) minimal affinizations
(resp. Kirillov—Reshetkin modules) are isomorphic to CV-modules for some RT—partition explicitly
described.

In the second part we show that a module for the quantum affine algebra of type B, is tame
if and only if it is thin. In other words, the Cartan currents are diagonalizable if and only if all
joint generalized eigenspaces have dimension one. We classify all such modules and describe their
g-characters. In some cases, the g-characters are described by super standard Young tableaux of

type (2n|1).

Resumo

Estudamos representagoes de dimensao finita para uma &algebra afim quantizada a partir de
dois pontos de vista distintos. Na primeira parte deste trabalho estudamos o limite graduado de
uma certa subclasse de representagoes irredutiveis. Seja V' uma representacao de dimensao finita
para uma &lgebra do tipo A e suponha que V' é isomorfa ao produto tensorial de uma afinizagao
minimal por partes cujo peso maximo ¢ a soma de distintos pesos fundamentais por médulos de
Kirillov—Reshetikhin cujos pesos méximos sao o dobro de um peso fundamental. Provamos que V'
admite limite graduado L e que L é isomorfo a um médulo de Demazure de nivel dois bem como ao
produto de fusao dos limites graduados de cada um dos supramencionados fatores tensoriais de V.
Provamos ainda que, se a algebra for do tipo classica (resp. Gsq), o limite graduado das afinizac¢oes
minimais (regulares) (resp. moédulos de Kirillov—Reshetikhin) séo isomorfos ao médulos CV para
alguma R*—particao descrita explicitamente.

Na segunda parte provamos que um moédulo para a algebra afim quantizada do tipo B, é
manso se, e somente se, ele é fino. Em outras palavras, os geradores da subélgebra de Cartan
afim sao diagonalizaveis se, e somente se, os autoespacos generalizados associados tém dimensao
um. Classificamos tais modulos e descrevemos seus respectivos g-caracteres. Em alguns casos, o
g-caracter ¢ descrito por super standard Young tableaux do tipo (2n|1).
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Introduction

The finite-dimensional representation theory of Kac-Moody algebras and its quantizations has
been the subject of intense research for almost three decades partially motivated by its applications
to Mathematical-Physics but, by now, the rich and intricate structure of the underlying category
of modules and its interconnections with other areas such as Combinatorics draws attention to it as
a worthy object of study by itself. One of the standard goals when studying such representations
is to understand the simple objects in that category. In the case of affine Lie algebras, it was
relatively easy to describe the simple objects [CP86.

In the quantum situation, it was shown in [CP91, CP94b]| that the irreducible objects are
parametrized by the multiplicative monoid P* of n—tuples of polynomials with constant term one
(also referred to as Drinfeld polynomials), where n denotes the rank of the associated simple finite-
dimensional complex Lie algebra g. Although the classification in terms of Drinfeld polynomials
is analogous to the classical context, understanding the structure of the irreducible module has
proved to be a very difficult task and an extensive list of references dedicated to studying them
can be found in [CH10|. However, there are families of irreducible representations which are better
understood. For example, in type A, one has evaluation representations. Their analogs in other
types, called minimal affinizations, received a lot of attention and, for g of types B and C, the
structure of all members of the family is understood, see [Cha95, CP95, CP96a, CP96b, Her07,
LM13, MTZ04, Moul0, Naol3, Naol4].

An important tool in the study of finite-dimensional representations is the g-character map.
The quantum affine algebra contains an infinite-dimensional commutative subalgebra which plays
a role similar to that of the Cartan subalgebra of g in the study of finite-dimensional represen-
tations. Hence, when we restrict the action, on a representation V', to this subalgebra we have a
decomposition of V' in generalized eigenspaces for the joint action of this subalgebra. The gen-
eralized eigenvalues (linear functionals on this subalgebra) associated to this decomposition are
called ¢-weights and the g-character of V' is then the collection of the dimension of the generalized
eigenspace associated to the (-weights of V. In particular, in many cases the g-character of a
simple module V' can be computed recursively by an algorithm [FMO1] starting from its highest
(-weight, i.e., the (-weight associated to the Drinfeld polynomial of V. The algorithm works for
the class of Kirillov—Reshetikhin modules (minimal affinizations whose highest weight is a positive
integer of a fundamental weight) see [Nak11| for ADE types, [Her06] for other types. It also works
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for some minimal affinizations [Her07]. However, the straightforward application of the algorithm
is known to fail in some cases — see for instance Example 5.6 of [HL10].

Another method used to study the simple objects in the quantum case is to understand the
classical limit of these representations, i.e., their specialization at 1 of the quantum parameter
q associated to the quantum algebra. The more general philosophy behind this approach is that
many interesting families of irreducible representations of the quantum affine algebra (associated to
g), when we consider their classical limit, give rise to indecomposable representations of a certain
maximal parabolic subalgebra of the affine Lie algebra g, namely, g[t] = g ® C[t], the current
algebra associated to g.

The families of representations satisfying the aforementioned property include the Kirillov-
Reshetikhin modules, the minimal affinizations and the more general modules studied in [MY12].
The defining relations of the classical limit of Kirillov-Reshetikhin modules were given in [CMO0G6]
and it is clear from the definition that they are graded by the non-negative integers. The graded
g-module decomposition was also given in that paper, and it is remarkable that the Hilbert series
of this decomposition coincides with the deformed character formulae for the Kirillov-Reshetikhin
modules given in [HKOTY99| where the powers of ¢ appear for entirely different reasons from
the study of solvable lattice models. As a consequence of this approach, it was proved in [CMO06|
and also in [FLO7|, that these graded limits of the Kirillov-Reshetikhin modules are isomorphic to
certain Demazure modules in positive level representations of the affine Lie algebra.

Towards the study of the general minimal affinizations there still is no such results in gen-
eral type. In [Moul0|, the author presented several conjectures for the graded limits of minimal
affinizations and partially proved them. Years later, graded limits of minimal affinizations in types
ABC and D (regular case) were further studied in [Naol3, Naol4|, where it was proved that they
are isomorphic to some generalization of Demazure modules. We take another step in this direc-
tion and prove that a certain subclass of simple finite-dimensional modules for the quantum affine
algebras U,(g) with g of type A can be studied by considering such limit construction and that
the resulting modules are isomorphic to level-two g-stable Demazure modules (Theorem 4.1.1). It
is interesting to note that every g-stable Demazure module appears in this way.

Assume that g is of type A,. We now describe the subclass of simple U,(g)-modules that
we consider in the first part of this work. To each quiver whose underlying graph is the Dynkin
diagram of g, Hernandez and Leclerc [HL10, HL13| associated a subcategory of that of finite-
dimensional representations of U,(g) which gives rise to a monoidal categorification of certain
cluster algebras (see also [Nakll]|). We consider quivers such that the orientation of the arrows
change exactly on the nodes of J, for a fixed subset J of the set {1,...,n}. For each J there are
only two such quivers, determined by the orientation of the first arrow. The prime objects of the
Hernandez-Leclerc subcategories are either Kirillov-Reshetikhin modules whose highest weight is
twice a fundamental weight or its highest weight is the sum of fundamental weights associated to
the set J and its Drinfeld polynomial satisfies condition (ii) of [CMY13, Theorem 2|. The prime
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objects of this latter type can be naturally regarded as minimal affinizations by parts. Our subclass
of simple modules consists exactly of those which are tensor products of the prime objects of some
Hernandez-Leclerc subcategory with at most one tensor factor being a minimal affinizations by
parts.

Let D be a g-stable level-two Demazure module and V' be a simple U,(g)-module in some
Hernandez-Leclerc subcategory giving rise to D in the sense described in the last paragraph (The-
orem 4.1.1). It follows from [CL06, CSVW14| that D is isomorphic to the fusion product of the
graded limits of the prime tensor factors of V' (Theorem 4.2.8). We also show (Theorem 4.2.1)
that there exists an injective map of D in a tensor product of appropriate level-one Demazure
modules. More precisely, the map is determined by sending the highest weight vector of D in
the tensor product of the highest-weight vectors of the two level-one Demazure modules. The
submodule generated by the top weight space of a tensor product of g-stable Demazure modules
was referred to as a generalized Demazure module in [Naol3]. Thus, Theorem 4.2.1 says that all
level-two g-stable Demazure modules can be constructed as a generalized Demazure module from
level-one Demazure modules. The results of this first part of the Thesis are part of the upcoming
paper [BCM].

Before moving to the second part of the Thesis, we address two other questions related to the
above. First, we establish a connection between graded limits of minimal affinizations and a new
class of modules defined in [CV14], which we shall refer to as CV-modules. The CV-modules are
defined by generators and relations encoded by R*-tuples of partitions attached to a dominant
weight. Since it was shown in [CV14] that all g-stable affine Demazure modules are CV-modules,
the CV-modules can also be regarded as a generalization of Demazure modules. Based on the
aforementioned results of [Naol3, Naol4|, we prove that, for g of classical type, the graded limits of
(regular) minimal affinizations are isomorphic to CV-modules for an explicitly described partition.
The second question we address was actually the original goal of this project. Namely, to describe
the structure (graded character) of the graded limits of the minimal affinizations in the case that
g is of type Gy. We first approached the problem by using the techniques of [Moul0|, at first,
and [Naol3, Naol4| later. However, these techniques were not sufficient to reach our goal so far.
As other papers with new techniques for related problems were surfacing ([CV14, LM13, LQ14)),
we started studying them and, eventually, we were lead to the questions that became the core of
the present work. The original goal of describing the structure of minimal affinizations for type
(G remains incomplete, but we present here all the partial results we have obtained and state a
conjecture relating them to CV-modules.

The motivation for our second object of study comes from the works [NT98|, [MY12]| and
[KOS95]. It is shown in [NT98] in type A, that if the Cartan generators are diagonalizable on
an irreducible module (we call this property “tame”), then their joint spectrum is necessarily
simple (that is “thin”). Moreover, all such modules are pull-backs with respect to the evaluation
homomorphism from a natural class of U, (s1,41)-modules and their g-characters are described by
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the semistandard Young tableaux corresponding to fixed skew Young diagram. We extend these
results to algebras of type B,,. We are assisted by [MY12], where the g-characters of a large family
of thin B,, modules are described combinatorially in terms of certain paths and by [KOS95|, where
some of the ¢g-characters are given in terms of certain Young tableaux.

We define explicitly a family of sets of Drinfeld polynomials which we call “extended snakes”,
and consider the corresponding irreducible finite-dimensional modules of quantum affine algebra of
type B,. This family contains all snake modules of [MY12], in particular, it contains all minimal
affinizations. We extend the methods of [MY12| and describe the g-characters of the extended
snake modules via explicit combinatorics of paths, see Theorem 5.1.2. This is done by using the
recursive algorithm of [FMO1|, since the extended snake modules are thin and special (meaning
that there is only one dominant (-weight).

From this we show that a simple tame module of B,, type has to be an extended snake module
(more precisely, a tensor product of extended snake modules), see Theorem 5.1.3. This is done
by the reduction to the results of [NT98| and by induction on n. It turns out that it is sufficient
to control only a small part of the ¢g-character near the highest /-weight associated to its Drinfeld
polynomial. Therefore, we obtain the main result of the second part of this Thesis: an irreducible
module in type B is tame if and only if it is thin. All such modules are special and antispecial
(meaning that there is only one anti-dominant (-weight). Moreover, thin modules are (tensor
products of ) extended snake modules and their g-characters are described explicitly.

Finally, we study the combinatorics of the g-character of tame B,-modules in terms of Young
tableaux. We observe a curious coincidence with the representation theory of the superalgebra
gl(2n|1). The irreducible representations of the latter algebra are parametrized by Young di-
agrams which do not contain the box with coordinates (2n + 1,2). More generically, one can
construct representations of gl(2n|1) corresponding to skew Young diagrams which do not contain
a rectangle with vertical side of length 2n + 1 and horizontal side of length 2. The character of
such representations is given by super semistandard Young tableaux, see [BR83]. We find that
each such skew Young diagram also corresponds to an irreducible snake module of the affine quan-
tum algebra of type B,,. Moreover, the g-character of this module is described by the same super
standard Young tableaux, see Theorem 7.3.2. We note that not all snake modules appear that
way and there are cases when two different skew Young diagrams correspond to the same snake
module, see Section 7.4. We have no conceptual explanation for this coincidence.

We expect that a similar analysis by the same methods can be done in other types and that the
properties of being thin and tame are equivalent in general. In particular, one has Young tableaux
description of certain modules in types C' and D, see [NN06, NNO7a, NNO7b|. However, in other
types, minimal affinizations are neither thin nor special in general, see [Her07, LM13|. This part
of the Thesis was submitted to publication [BM14].

This work is divided in seven chapters. In the first chapter we briefly review the classical and
quantum algebras as well as its affine versions. In the second chapter we review the basic concepts



of Lie algebra representation theory and recall the definition of Demazure and CV modules which
will play an important role along this text. In the third chapter we turn to the representation
theory of the quantum affine algebra. We review the main results such as classification of finite-
dimensional simple objects, main properties and tools such as the g-character and the classical limit
(¢ = 1 limit). We also recall the definition of minimal affinizations by parts. In the fourth chapter
we state and prove our main results which involve the graded limit of modules. In chapter 5 we
define the extended snake modules and prove the classification theorem of tame modules for type
B. In the sixth chapter we follow the techniques of [MY12| to compute their g-characters in terms
of non-overlapping paths. Finally, in Chapter 7 we study the bijection between non-overlapping
paths associated to snakes and super standard skew Young tableaux.
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Index of notation

We provide for the reader’s convenience a brief index of the notation which is used repeatedly
in this thesis:

§7g[t]7/g\767ai737 ﬁv ﬁ-"_,A,f? 67 h07a07x6ta@7@+7mwa thu (lu’ € P)7w07
t(w) (we W), A (i ), P, Pt

1.1 g, f),ni,[,R*',ozi,wi,Q,Q’L,P, P+7:C:t hon ('7 ')>Supp(a>767rvvdiadaadvavc = (CiJ')i:J'GI?

1.2 F,qi, [ml,. [ 7], Uy(9), Ug(@), Ug(D), Uy(8%), 2, b, 6F (w);
1.3 A, (z;,)®), Un(8), Un(9);

2.1 V(A),V,,ch(V),V(A),V[r] (r € Z),V(\1);

2.2 D(T), D((, \);

2.3 D(Vy,...,U,,),chg, D; (i € I);

2.4 W(A), & = (§%)acr+, V(€). ,S(r,5), S(r, 8)k, 1 Xa™ (1, 8), X5 (1, )k
2.5 £(0,\);

2.6 VW,

3.1 Vo(A);

3.2 V,,Yi., P, Pt M(V), L,(7);

3.3 Xg:Wt, A0, Q, Q" ww < w4, By, Uy(gy), Py, resy;

3.4 PL, Pt L(w) ;

3.5 Wi am,

4.1 P(1)*;

51 X W, P%, X(m);
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5.3 Sk(a),Sy(m);
6.1 @i,kvc’p,:l:ap?,:kam;
6.2 poyil

gl o

6.3 @(it,kthgng;
6.4 top(p,p’), Z(p,p');
7.1 A BM B R, R, S, 5, (p € Pi);

7.2 (\/p), T, M(T), T,
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Chapter 1

Definitions and Notations

Throughout the thesis, let C,R,Z,Z>,, denote the sets of complex numbers, reals, integers,
and integers bigger or equal to m, respectively. Given any complex Lie algebra a we let U(a) be
the universal enveloping algebra of a.

1.1 Classical Lie algebras

Let g be a simple finite-dimensional Lie algebra over C with a fixed triangular decomposition
g=n"®hdn". Let I be an indexing set of the vertices of the Dynkin diagram of g and R* the
set of positive roots. The simple roots and fundamental weights are denoted by «; and w;,7 € I,
respectively, while @, P,Q", PT denote the root and weight lattices with corresponding positive
cones.

We identify h and h* by means of the invariant inner product (-,-) on g normalized such that
the square length of the maximal root equals 2. Notice that

2, if v is long,
(, @) =
2/rY, if « is short,

where 7V € {1,2,3} is the lacing number of g. Let also

. 2 1
do = ——, do==r"(a,a), and d;=d,,, i€ I.
(o, ) 2 '

We fix a Chevalley basis of the Lie algebra g consisting of z£ € g.,, for each a € R*, and h; € b,
for each i € I. We also define h, € h,ao € R™, by h, = [2], 2] (in particular, h; = h,,,i € I).
We often simplify notation and write z;" in place of zZ ,i € I.

If a =5 ,.,nia; € R, the height of o is defined by hta = ) n; and the support of a by

supp(a) = {i € I|n; > 0}. Note that

ha = Z (ai7 ai)”ihia

iel (a, a)



Recall that, if C' = (¢;;) is the Cartan matrix of g, i.e., ¢;; = a;(h;), then d;c;; = djc;;.
Consider the loop algebra g = g ® C[t,t!], with Lie bracket given by

2@ f(t),y@g(t)] = [z,y] ® f(t)g(t), =,yegq, fgeC[tt ]

We identify g with the subalgebra g ® 1 of g. The subalgebra g[t] = g ® C[t] is the current algebra
of g. If a is a subalgebra of g, let a[t] = a ® C[t] and a[t]s := a @ (t*'C[t*']). In particular, as
vector spaces,

dg=n @bhent and glt]=n[]@blt]nt[.

The affine Kac-Moody algebra g is the Lie algebra with underlying vector space g & Cc @ Cd
equipped with the Lie bracket given by

[zt Yyt ] =z, y] @t +71 65 (x,y) ¢, [c,8) =40}, and [dz@t]|=rzxat

for any x,y € g,r, s € Z. In particular, g is naturally a Z-graded Lie algebra. Notice that g, glt],
and g[t]+ remain subalgebras of g. Set

-~

h=hPCc®Cd, n* =nT@g[t]. and b=han'

The root system, positive root system, and set of simple roots associated to the triangular decompo-
sitiong =1n"~ @E@ﬁ* will be denoted by R, R* and A, respectively. Let [ = I I_I{O} and hy = c—hy,
so that {hs]i € T} U {d} is a basis of b. Identify b* with the subspace {\€e b 1 Ac ) = A(d) = 0}.
Let also & € §* be such that §(d) =1 and &(h;) = 0, for all i € I, and define ag = & — 6. Then
A ={a;li € I} and Rt = R* U{a +rdla € RU{0},r € Z=o}.

Set xir =2E 1" hoyp = ha @t",a € RT,r € Z. We often simplify notation and write :Efr and
hi, in place of xiﬂ, and hg, .t € 1,7 € Z. Set also

Ty = x;f I

Then, [:ES’ ,x5] = ho and n* is generated by i, i € T, respectively.

Let Q = @ZGIZOQ and Q+ ®,c7L>00;;. Equip b* with the partial order A < i iff u — A € Q.

Define also A; € f)*,z € I, by the requirement A;(d) = 0,A;(h;) = ¢;;, for all 4, € I. Notice
that

A —w; = wi(hg)Ny, foralliel. (1.1.1)

Let P =ZAy @ P ® Z5 and P+ = ®,_;Z>oM; ® Z3. Given A € P, the number A(c) is called the
level of A.

Let W denote the affine Weyl group, which is generated by the simple reflections {s;,i € T }
which are defined by s;u = p — u(h;)a; for all p € H* The subgroup generated by s;,7 € I, the
Weyl group of g, will be denoted by W and its longest element by wy. In general, the length of
w € W will be denoted by l(w).



Recall that the coroot lattice M (resp. coweight lattice L) is the sublattice of @ (resp. P)
spanned by the elements d;o; (resp. diwi), 1 <7 < n. The group W preserves M and L and we
have an isomorphism of groups

W~W x M.

The extended affine Weyl group W is the semi-direct product W x L. The affine Weyl group is a
normal subgroup of W and if T is the group of diagram automorphisms of g, we have
W=TxW.

Since T preserves P and ﬁ+, we see that W preserves P. The following formulae make explicit
the action of u € L on h*:

1
t#()\) =A- ()‘mu)éa A€ h* D (C57 t#(AO) = AO U 5(“7 ,u)d (112)

For any ¥ € P and i € P we have
#WUNPY) <1 and #WpunPH) =1 (1.1.3)

1.2 Quantum affine algebra

Let ¢ be a formal parameter and let F be the algebraic closure of C(q), field of rational functions
on q. For p=¢*, k € Z>,, define

pm _ p—m

p_p1 [mlp! = [ml| Up. o 2[4, 7 ]p Nt

[m], =

for r,m € Zsg, m >r. Let ¢; := q% for i € I.
The quantum loop algebra U,(g) in Drinfeld’s new realization, [Dri88], is the F-associative
algebra with unit given by generators :Bf,,, kF, his, fori € I,r € Z and s € Z\ {0}, subject to the

following relations:
kiki ' =k ki =1, kiky = kjk,
kilj, = hjrk,
kixfrk:i_ 1 — qii cid :E;-l?r,

1
[Mims hjm] = 0 [hip 2] = i;[rczﬂqifi

j,’l"+5’
+ + tej 4+ 4 _ Fei 4+ 4+ + =+
Lirt1ljs — 4y Tl = Gy "5, L5601 = L1018 49
+ _ p—
+ -1 _ 5  Tirts 7,r+s
[‘ri,ﬂ xj,s] - 51] —1 )
q; — g,
m
E kim + + + .+ + _ o .
( 1) [ k ]qixivno'(l) o xizno(k)$jzsxizng(k+l) e xivno'(m) - 0’ lf t # ‘]’



for all sequences of integers ny, ..., n,,, where m =1 —¢;;, 4,7 € I, Sy, is the symmetric group on
m letters, and the gbiim are determined by equating powers of u in the formal power series

o (u) = Z gbfﬂur = ki exp <:i:(q —q Z hi,isus) . (1.2.1)
r=0 s=1

Remark 1.2.1. The algebra U,(g) is isomorphic to the quotient of the quantum affine algebra
U,(g') by the ideal generated by some central element [Dri88, Bec94|, where g’ = [g, g]. Therefore
the study of finite-dimensional U,(g’) reduces to that of U,(g)-modules.

Consider the subalgebras U,(n*) and U, (E) of U,(g) generated, respectively, by (:L’f,,)ze rrez and

(his)ier,sezfoys (ki)ier and ¢t/2. As vector space we have the following isomorphism

Uy(g) = Uy(n7) ®@ Uy(h) @ Ug(n7).
There exist coproduct, counit, and antipode making U,(g) a Hopf algebra. Moreover, the
subalgebra of U,(g) generated by (k;)icr, (x;to)ie 1 is a Hopf sublagebra of U,(g) and is isomorphic
as a Hopf algebra to U,(g), the quantized enveloping algebra of g. On U,(g) we have, for all i € I,

Alzfy) =af @1+ k@), Al =z,0k ' +1@x,, A(k) =k k.

An explicit formula for the comultiplication of the current generators of U,(g) is not known.
However, we have the following useful lemma.

Lemma 1.2.2 ([Dam98]). Modulo U,(g)X~ @ U,(g)X ™, we have
A(¢5(w) = 67 (u) ® 67 (u),

where X* is the F-span of the elements x;%r, jel,relZ. O

1.3 Restricted Specialization

In this section we recall the definition of restricted specialization of U,(g) and U,(g). Let
A =Clq,¢ '], and for i € I,r € Z, k € Z>, define (xfr)(k) = (?g—;"),k

Let Ua(g) be the A-subalgebra of U,(g) generated by elements (z)®, kf fori € I,r € Z
and k € Zxo. Define Uy(g) similarly and notice that Ua(g) = Ua(g) N Uy(g). Set Up(n®) =

Un(g) N U,(n%) and Ux(h) = Ux(g) N U,(h). The multiplication establishes an isomorphism of
A-modules

Proposition 1.3.1 ([Cha0l], Lemma 2.1). We have U,(g) = F®4 Ua(g) and U,(g) = F @4 Un(g).
Moreover, the multiplication establishes an isomorphism of A-modules

Un(g) = Un(n™) @ Up(h) @ Ups(n").



Given ¢ € C*, denote by € the evaluation map A — C sending ¢ to £ and by C¢ the A-module

obtained by pulling-back €. Set
Ue(a) = Ce @ U (a),
for a = g, n*, b, g, 7, b.

The algebra Ug(a) is called the restricted specialization of Uy(a) at ¢ = £. We shall denote an
element of the form 1 ® z € Ug(a) with x € Uy(a) simply by z. If £ is not a root of unity, the
algebra Ug(g) is isomorphic to the algebra given by generators and relations analogous to those of
U,(g) with & in place of ¢ and its representation theory is parallel to that of U,(g). In this work we
shall be particularly interested in the case that £ = 1, for which we have the following proposition.

Proposition 1.3.2 ([CP94a], Proposition 9.2.3). The algebra U(g) is isomorphic to the quotient
of U1(g) by the ideal generated by k; — 1, i € 1. In particular, the category of Ui(g)-modules on
which k; acts as the identity operator, for all i € I, is equivalent to the category of all g-modules.

The following partial information about the comultiplication will suffice for us.
Lemma 1.3.3 ([Moul0|, Lemma 1.6). Leti € I. Then
Alzy) =2, @k + 1@z, +,

for some x € Up(g) @ Un(g) such that T = 0.






Chapter 2

Representations of Lie algebras

In this chapter we first state the basic properties of the representation theory of g and g. In a
second moment, we recall the definition of Demazure modules and its generalizations along with
the recent class of modules for the current algebra introduced in [CV14]|. We also collect several
known results about both class of representations which will be useful for our main theorems.

2.1 Basic definitions

Given A € PT, we denote by V(\) the associated finite-dimensional simple highest weight g-
module with highest weight . If V' is a g-module and ;1 € P, V,, will denote the associated weight
space of V. If V is a finite-dimensional g-module, then

V — @HGPV/“

and the character of V' is given by ch(V) =3 pdimV), - e € Z[P].

Similarly, for A € ﬁ*, we denote by ‘7(/\) the simple integrable g-module with highest weight
A and Vg, U € ﬁ, will denote the weight space of the g-module V' associated to W. Then, if V is
integrable, we have Vg # 0 only if U € P+ Cs. Henceforth, when we say integrable g-module, we
will assume that the weights are in P.

The following proposition is well-known (see [Kac83, Chapters 10,11| for instance).

Proposition 2.1.1. (i) Let A € P*. We have
dim V(A)U,A =1, forall weW.
(i1) Given N';\" € P+, we have

V()@ V(") 2 @ dimHomg (?(A),?(A') ® \7(/\”)) V(A).

AeP+



Moreover,

(Mﬁmg&@”%ﬁ@WN»—{;i;iiﬁ;@h (2.1.1)
In particular, if A=A + A", and w € W, we have
(Ve V) =V, (2.1.2)
where we have identified V(A) with its image in V(A') @ V(A").
[

Recall that the action of d € g on an integrable g-module V' induces a Z-gradation on V. Then,
if V is an integrable g-module, we have

Vr] = {v € V|dv = rv}.

In particular, R R
Ug)V(A)a = V(A)[A(d)] =g V(Aly).

Let also 74 be the grading shift functor by s. More precisely, 7,V has the same underlying vector
space V with graded shift by
(1sV)[r] = Vir+ 5.

Any g-module V can be turned into a g[t]-module by letting g[t], act trivially. Then, given
A€ Pt and r € Z, regard V(A) as a g[t]-module in this manner and set

V(A1) =7V(N).

Every simple Z-graded finite-dimensional g[t|-module is isomorphic to a unique module of the form
V(A,r) [CKR12, Proposition 2.3|.

2.2 Demazure modules

Given A € P+ and wr € W, where w € W and 7 € T, the Demazure module D(wtA) is the
b-submodule of V(rA) generated by a non—zero element vyrp of V(7A)wra. We say that D(wrA)
is a level /~Demazure module if A(c) = /.

The following is immediate from Proposition 2.1.1(ii).

Lemma 2.2.1. Let wr € W and N N € P*. We have an isomorphism ofﬁfmodules,

D(wr (A 4+ A")) 2 U(6)(vurar @ vurar) C V(TA) @ V(TA).



Let A € P*, 7 € T and w € W such that wtA(h;) <0, for all ¢ € I. In this case, we have
N vy,ra = 0 and D(wTA) is a module for the parabolic subalgebra bon ,le.,

D(wrA) = U(b ®n vgra = U(a[t]) vira.

We shall also refer to such modules as the g-stable Demazure modules. Notice that we can write
wrTA = woX + A(c)Ag + 79 for a unique A € P* and r € Z. The action of d defines a Z-grading
on these modules which is compatible with the g[t|-action. Moreover, for fixed A and A(c) the
modules for varying r € Z are just graded shifts. Hence we shall denote the module corresponding
to woA + A by D(¢, \); the module for arbitrary r is then 7" D(¢, \). Moreover,

D6, \)[r] = D, \) NV (A)]r], forall reZ.
In particular,
D(& /\)[0] = U(Q)D(€> /\)A gg (>‘>7

and
soc(D(C, ) = D6, \)[r] = V(A)[r] = U(g)V(A)s = V (), (2.2.1)

where r = A(d) and p = Alg.

2.3 Generalized Demazure modules

A natural generalization of the Demazure modules is as follows. Let m € Z~q. Given (w,, A") €
W x Pt 1<r<m,let

DAY, .. wpnA™) = U(B) (v 00 @+ @ Vg, am) € V(A @ -+ @ V(A™).

These modules are referred to as generalized Demazure modules in [Nao13|. Evidently, D(w;Al, ... w,A™)
is g-stable if each D(w,A") is so.
Let Z[P] be the group ring of P with basis {er, A € P} The action of W on P defines an
action of W on Z[P ] Given any finite-dimensional weight module V' for f) such that V = ©pcpVa,
set
chiV = dimV, et € Z[P).

AeP
For i € I, the Demazure operator D; : Z[ﬁ] — Z[ﬁ] is defined by
f—evsi(f
Di(f) = —() (2.3.1)

1 —e

If w=sj s, is a reduced expression for w € W, it is well-known that the operator D,, =

Dj, ...Dj, is independent of the choice of the reduced expression and

E(wlwg) = ﬁ(wl) -+ E(wg) = lewz = Dw1Dw2- (232)



The following is [Naol3, Theorem 2.2| and gives the character of a generalized Demazure
modules under certain conditions on (w,,A”), 1 <r < m.

Theorem 2.3.1. Let m € Z>y and (w,,A") € W x ﬁ*, for 1 < r < m. Assume moreover that
l(w,) = (w,—1) + (ww,), for all 1 <r < m. Then

che D(wiA', -+ wn,A™) = Dy, (‘BAI (DwzeAZ ( + Dy (eAm_lp@m@Am)) - ))) ’

where W, = wy and W, = w,f_llwr forl<r<m.

2.4 CV-modules

To present the definition of CV-modules, introduced in [CV14|, we first recall the definition of
graded local Weyl modules.

Given A € P, the graded local Weyl module W () is the g[t]-module generated by a vector w)
satisfying the following defining relations:

nt[tJwy = b[tlowy =0, hwy = A(h)wy, (7)), =0,

(2

for all h € h,7 € I. It is clear from the definition that W (\) can be equipped with a Z-grading
by setting the degree of w, to be zero. Moreover, it follows from [CP01| that W () is finite-
dimensional and that every Z-graded finite-dimensional g[t]-module generated by a vector v of
weight A satisfying n'[tjv = p[t] v = 0 is a quotient of W (A). We also recall that the following
relations holds in W (\):

Tipywr =0, forall i€l (2.4.1)

Let & be an RT-tuple of partitions & = (£*)ncr+- We use the notation £* = (£¢,£2,...) with
& > €8 > -+ > 0. Given A € PT, say that € is A-compatible if £* is a partition of \(h,) for
every @ € RT. For each such R*-tuple of partitions &, let V(&) be the quotient of W (\) by the
submodule generated by

(€5 (200) "W, @ € RY, 5,7 € Loy, s+r > 147k+ Y & forsome k € Zor.  (24.2)
j>k+1

We denote by ve the image of w) in V().

Other two presentations of the modules V'(§) in terms of generators and relations were obtained
in [CV14]. These other presentations played an important role in the proof of Theorem 2.5.4 below
— which establishes the relation of these modules with Demazure modules — and will also be used
in the proof of Theorems 4.1.2 and 4.5.1. Thus, we now recall them.

Let S be the set of sequences of nonnegative integers. Given b € S we will use the notation
b = (b,)p>0, where b, € Z>, for all p > 0. For k € Z>, let

Sy ={beS|b,=0forp>k} and ,S={beSb,=0forp<kl}.
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For s,7 € Z>g, let

S(T, S) = {b - S|bp € ZZO, pr =T, Zp bp = S} .

p=0 p=0
Set also
S(r,s)r =Sk NS(r,s) and ,S(r,s) =,SNS(r,s).
Then, for each a € R, define the following elements of U(g[t]):

Xy (r,8)) = Z (xai,o)(bo) e (x(:xt,kfl)(bk_l)7
bES(T‘,S)k
walrs)= ) (@)™ @),
bEkS(T,s)
where () = 2% /p!.
Given A € PT and a A-compatible partition &, let M (&) be the submodule of W (\) defined by
(2.4.2). Let also M'(&) be the submodule generated by

x, (r,s)wy, « € RY, r,s € Loy, s+r>1+kr+ Z &', for some k € Z>, (2.4.3)
Jj=k+1

and M" (&) be the submodule generated by

WX (ros)wy, @ € RY, ros,k € Loy, s+r 214 hr+ ) & (2.4.4)
JZk+1

It was proved in [CV14] (see Equation (2.10) and Proposition 2.7) that
M(&) = M'(§) = M"(&).

In fact, the proof shows the following stronger statement. For each fixed o € R™, let sl,[t] be the
subalgebra of g[t] generated by =, r € Zsq. Let also M,(€) be the sl,[t]-submodule of W ())

a,r’

generated by the corresponding elements in (2.4.2) and similarly define M/ (&) = M (€). Then
Mo (&) = Mg (&) = M(§). (2.4.5)

2.5 Connection between CV and Demazure modules

In the remainder of this section, we review several results on the modules V(&) and how such
modules are connected with g—stable Demazure modules.

For a partition & = (&1, &, ... ), let #£ be the number of nonzero parts of £. Given kj,s; €
Z>o,1 < j < m, such that k;; < k;, for all j, the notation (k7', k5%, ..., kJm) will stand for the
partition whose first s; parts are equal to k; and so on. Recall that a partition of the form (k*)
is said to be rectangular. Following [CV14|, we will refer to a partition of the form (k* k) with
0#k #kand s # 0 as a special fat hook.

11



Theorem 2.5.1 ([CV14, Theorem 1]). Let A € P and suppose & is A\-compatible such that, for
each o € R*, £~ is either rectangular or a special fat hook. Set s, = #&“. Then V(€) is the
quotient of W(X) by the submodule generated by

{a,, wilo € RTYU{(z,,, )% wy|a € RT with £ a special fat hook}. (2.5.1)

Remark 2.5.2. Let & be A-compatible. In the spirit of (2.4.5), for each @ € R™ such that & is
either rectangular or a special fat hook, define M(&) as the sl [t]-submodule of W () generated by
the elements in (2.5.1). Then the proof of the above theorem actually shows that M, (&) = M2 (&),
for every such .

The case of special fat hooks of the form £ = (k*,1) will be of relevance for us. We will say
that a partition is essentially rectangular if it is either rectangular or a special fat hook of this
form. The following proposition is a corollary of [CV14, Theorem 1].

Proposition 2.5.3. Let A\ € P" and suppose € is \-compatible such that, for each o« € R,
£ is essentially rectangular. Then V(&) is the quotient of W(\) by the submodule generated by

{og, wila € RT} where s, = #£°. O
Given ¢ € Z-0 and A € PT, consider the element &(¢, \) defined in the following way [CV14,
Section 3.2]. For each a € R™, let s,,my € Z~o be determined by
AMha) = (84 — 1)da€ +mg and 1<m, <d,l.

Now, let £(£,\) = (£€%)aers with €% = ((da0)%~', my), if s, > 1, and £€* = (m,,), otherwise. In
particular, Theorem 2.5.1 applies to &€(¢, ). Notice that

dof =1 = &%= (1)), (2.5.2)

and

df =2 = £°is essentially rectangular. (2.5.3)

The relation between Demazure modules and the modules V' (€) is established by:

Theorem 2.5.4 ([CV14, Theorem 2|). For every A\ € Pt and { € Z>o, we have V(&(¢, \)) =
DL, \). O

In particular, Theorem 2.5.1 gives a simple presentation of D(¢, \) by generator and relations
and, if d,¢ < 2 for all & € R*, Proposition 2.5.3 gives an even simpler one. We also recall the
following special case.

Proposition 2.5.5 ([CV14, Lemma 3.3]). Suppose d;¢ divides \(h;) for alli € I, say M(h;) = s;idiL.
Then, V(&(€, N)) is the quotient of W(X) by the submodule generated by ;w1 € I. O

In particular, together with (2.4.1), Proposition 2.5.5 recovers the following result proved orig-
inally in [FLO7]:

A(h;) = 0 for all i such that d; > 1 = D(1,\) = W(\).

12



2.6 Fusion Products

We recall the notion of the fusion product of g[t|-modules introduced in [FL99|. Let V be a
finite-dimensional cyclic g[t|-module generated by an element v and, for r € Z>, set

PV = ( - U(gm)[s]>

0<s<r

Clearly F"V is a g—submodule of V' and we have a finite g-module filtration
0OCFVCFVC---CFV=YV,

for some p € Z>o. The associated graded vector space grV" acquires a graded g[t|-module structure
in a natural way and is generated by the image of v in grV.
Given a g[t}-module V' and z € C, let V* be the g[t]-module with action

(z@t"hw=(®(t+2)")w, ve€g, re€ls, wel.

If Vi, 1 < s <k, are cyclic finite-dimensional g[t|-modules with cyclic vectors vg, 1 < s < k and
21, , 2z, are distinct complex numbers, then the fusion product Vi * --- % V™ is defined to be
grV(z), where V(z) is the tensor product

V(z) = Vit e @ U

It was proved in [FL99| that in fact V'(z) is cyclic and generated by v; ® - -+ ® vy, and hence the
fusion product is cyclic on the image vy * - - - % v,, of this element. Clearly the definition of the
fusion product depends on the parameters z;, 1 < s < k. However it is conjectured in [FL99|
and proved in certain cases (see [CL06|, [FF02|, [FL99] [FLO7]|, [Ked11], for instance) that under
suitable conditions on V, and vy, the fusion product is independent of the choice of the complex
numbers. For ease of notation we shall often suppress the dependence on the complex numbers
and write V; * -+ % Vj for Vi % -« % V75,

13
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Chapter 3

Representations of quantum algebras

This chapter is dedicated to recall the basic of the finite-dimensional representation theory
of the quantum algebra along with the description of some tools used in their study, such as
g—character and classical limit of representations.

3.1 Representations of U,(g)

To fix notation, we review some basic facts about the representation theory of U,(g). For details
see |CP94a] for instance.
Given a U,(g)-module V' and p € P, the weight space of V' of weight p is the subspace

V, = {v € Vl|textrmforall i € I, kv = qf(hi)v}. (3.1.1)

A nonzero vector v € V), is called a weight vector of weight p. If v is a weight vector such that
zfv = 0, for all i € I, then v is called a highest-weight vector. If V is generated by a highest
weight vector of weight A, then V' is said to be a highest-weight module of highest-weight . An
Uy(g)-module V' is called a weight module if V' = €P,,.p V,. The following theorem summarizes
the basic facts about finite-dimensional U,(g)-modules.

Theorem 3.1.1. Let V be a finite-dimensional U,(g)-module. Then:
(1) dimV,, = dimV,,,, for allw e W,
(11) V is completely reducible,
(1it) for each A € P*, the U,(g)-module V,(\) generated by a vector v satisfying
ziv=0, kv= M), (x;)’\(hi)ﬂv =0, foralliel,

is irreducible and finite-dimensional. Moreover, if V' is irreducible then V =2 V,(\), for some
A e Pt
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3.2 Representations of U,(g)

Let V be a finite-dimensional representation of U,(g). Regarding V" as a representation of Uy(g),
it has a decomposition in weight spaces. Such decomposition can be refined by decomposing it
into Jordan subspaces of mutually commuting ¢;t ., defined in (1.2.1), [FR98|:

V= @ V’ya Y= (/yi:t:j:r)iéf, T€L>0> ’Yz;l,::tr € C? (321)
vy

where
i,Em

V7:{06V|3keN,Vi€], m >0, (¢ —%:'fim)kv:O}.

If dim(V5) > 0, = is called an (-weight of V.
For every finite-dimensional representation of U,(g), according to [FR9§|, the (-weights are
known to be of the form

- r e ;—de Qz U9;1 R’L ugq;
7E = 3 kT = e (ug; ) Ri( _1),
—0 Qi(ug) Ri(ug; ")

where the right hand side is to be treated as a formal series in positive (resp. negative) integer
powers of u, and (); and R; are polynomials of the form

Qz(u) = H (1 — ua)wi’a, RZ(U/) = H (1 _ ua)mi,a’

a€eFx acFx

for some w; 4, i q > 0,7 € I. For alli € I,a € F*, define the fundamental (-weights Y;, to be the
n-tuple of polynomials
Y;‘,a = (]. — 5ijau)j€1.

Let P denote the free abelian multiplicative group of monomials in the variables (Y;,)icr, acr-
The group P is in bijection with the set of /-weights v of the form above according to

vy [ v (3.2.2)

i€l,a€Fx

We identify elements of P with (-weights of finite-dimensional representations in this way, and
henceforth write an /-weight « as an element of P.

For each j € I, an (-weight @ = [].c; ,cr
dominant) if and only if u;, > 0 (resp. u;, < 0), for all a € F*. An (-weight is (anti-)dominant
if and only if it is i-(anti-)dominant, for all i € I. Let P C P denote the set of all dominant
(-weights. The elements of P are also called Drinfeld polynomials.

Y;ua“‘ is said to be j-dominant (resp. j-anti-

For any finite-dimensional representation V of U,(g), define
M(V) :={w € P|dim(Vy) > 0}.
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If # € M(V) is dominant, then a non-zero vector v € V. is called a highest (-weight vector, with
highest (-weight ™ = (Wz'j,[is)iGI,kGsz if

¢iiv=myv and zfv=0, forallicl,reZ,sc Ls.

A finite-dimensional representation V' of U,(g) is said to be a highest (-weight representation if
V = U,(g)v, for some highest (-weight vector v € V.

For every € P* there is a unique finite-dimensional irreducible higest /-weight representation
of U,(g) with highest ¢-weight 7, and moreover every finite-dimensional irreducible U, (g)-module
is of this form, for some w € P [CP94b|. We denote the irreducible module corresponding to
w € P* by L,(m). Moreover in the case when g is of type sl,,; (see [CP95] and also [FMO01] for
the general statement) we have

Ly(m)* 2 L(w*), = (7}, ,7m), 7 (u)=m1 (¢ ), (3.2.3)

3.3 g-characters

Let RepU,(g) be the Grothendieck ring of finite-dimensional representations of U,(g), and

+1

Z [Y;a ]ZGI,aGIFX
The g-character map x,, defined in [FR9S], is the injective homomorphism of rings

be the ring of Laurent polynomials in the variables Y; , with integer coefficients.

Xq : RepUy(8) = Z [Y;3]

i€l,aeF* "’

defined by

= Z dim(V,

Definition 3.3.1. An U,(g)-module V is said to be special if x,(V) has exactly one dominant
(-weight. It is anti-special if x,(V') has exactly one anti-dominant ¢-weight. It is tame if the action
of Uq(H) on V' is semisimple. It is thin if dim(Vy) < 1, for all (-weights zo. We observe that if V/
is thin, then it is also tame.

We let wt : P — P be the group homomorphism defined by wt(Y;,) = w;, i € I,a € F*. Define
Aig€P,i€l,aeF* by

1 1 1
7, ;045 ’Laq H H Y] aq}/; aq— Yj aq }/.; a Y7 aq— (331)

cji=—1 Cji=72 cji=—3

Ai,a

Let Q be the subgroup of P generated by A, ., i € I,a € F*. Let QF be the monoid generated by
A;tal, i€ l,a € F*. Notethat wt(4;,) =, for all i € I,a € F*. There is a partial order < on P

in which w < 7 implies wzo~! € Q. Moreover, this partial order is compatible with the partial
order on P in the sense that o < 7 implies wt(zo) < wt(m).
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According to [FMO01], we have, for all A € P,
M(Ly(X)) CTAQ™. (3.3.2)
For alli € I,a € F*, let u;, be the homomorphism of abelian groups P — Z such that

1, i=7and a =0,

wia(Yip) = { 0 (3.3.3)

otherwise.

For each J C I, we denote by U,(gs) the subalgebra of U,(g) generated by (z M)]ehez,
(qﬁj +r)jelrezs, and let P be the subgroup of P generated by (Y Yjesacrx and PY C Py, the set
of J-dominant /-weights. Let

resy : Rep U,(g) — Rep U,(gs)

be the restriction map and ; be the homomorphism P — P sending YjE to itself, for i € J, and
to 1, for i ¢ J. It is well known [FR98| that the following diagram is commutative

Rep U, (g )—>Z[Yil]iel,aeﬁ‘x
resy ng
Rep U,(g.7) S Z[Y ]]ereIFX
The following result will be useful for us and can be found in [CP96a].

Lemma 3.3.2. Let ) # J C I be a connected subdiagram of the Dynkin diagram of g. Let m € P*
and v be the highest weight of Ly(m). Then Uy(gs)v Zu,q,) Lq(B1(m)). O

For each J C I, by [FMO01], there exists a ring homomorphism
P = PrRZ kc]keI\JceFX
where (ngc) kel\Jeerx are certain new formal variables, with the following properties:
(i) 7 is injective,
(ii) 7, refines (s in the sense that §; is the composition of 7; with the homomorphism
P;® Z[Zék,i]kefu,cew — Py,

which sends Zy . +— 1, for all k ¢ J, ¢ € F*. Moreover, the restriction of 7; to the image of

Rep U, (g) in Z[YE - Yicr.acrx is a refinement of the restriction homomorphism resy,
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(iii) in the diagram
7

Z[Y;‘il]iEI,aEFX — Z[Yfl:;]jEJ,belFX ® Z[Z;fc]kel\mew (3.3.4)

| |

Zm,j;l]iel,aew —> Z[Y},ib]jeJ,beFX ® Z[Z]ic]kel\.],celﬁ‘x

if the right vertical arrow is multiplication by 3; (Aj_cl) ® 1, then the diagram commutes if

and only if the left vertical arrow is multiplication by A:!

ie» Where 7; = 75, for some j € I.

The following lemma is a straightforward consequence of the above properties of 7;, when J = {j}.

Lemma 3.3.3. Let V be a Uy(g)-module, @ € x4(V) such that §;(zw) € PJ, and v € V,, \ {0}
such that v is a highest (-weight vector for the action of Uy(g;). Then yo € x,(V), for alla € Q

such that B;(yer) € xq(Lq(B;(7)))-

In what follows we often use the following lemma which follows from properties of 3; described
above together with (3.3.2) and the algebraic independence of A;,.

Lemma 3.3.4. Let m € PT and {iy,ia,...,in} = I. Letk € {1,...,n — 1} and o € Q.
j=1,...,k. Letw:ﬂ'H?:laj. Thenx;‘;m-vzo, forallv e Ly(m)w, j =k+1,...,n, and
r e . ]

3.4 Classical limits

An A-lattice of an F-vector space V is a free A-submodule L of V such that F ®, L = V.
If V is a U,(g)-module, a Ux(g)-admissible lattice of V is an A-lattice of V' which is also an
Ua(g)-submodule of V. Given an Uy (g)-admissible lattice of U,(g)-module V', define

L=C®,L, (3.4.1)

where C is regarded as an A-module by letting ¢ act as 1, which is called the classical limit of V.
Let P} (resp. P5) be the subset of P consisting of n-tuples of polynomials & = (7, ..., m,),
where ;(u) has its roots in A (resp. ¢%) for all i € I, i.e., P} (resp. P5) is the monoid generated
by the fundamental ¢-weights Y; ., i € I, a € A (resp. a € ¢%).
The following was proved in [CP01, Section 4|, [Cha01l, Section 2| if g is not of type G5 and
[JM14, Section 2.4] for g of any type.

Proposition 3.4.1. Let w € P}.

(1) The U,(g)-module L,(7) admits a A-lattice and hence Ly() is a module for U(g) on which
the center acts trivially.
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(ii) If # = (mi(u),- -+ ,m,(u)) € P4 then there exists N € N such that L,(m) is a module for
the finite-dimensional Lie algebra g @ C[t,t7]/(t — 1)Y. Moreover L () is generated as an

g @ Clt, t™-module by an element v, which satisfies the (not necessarily defining) relations:

(n* @ Clt,t )vg =0, (hi @ (t = 1)")vg = 0y (degm;) Vg, 1 <0 <,
- @1)deemtly —0, 1<i<n.

]

The Lie algebras g ® C[t,t7']/(t — 1) and g ® C[t]/(t — 1)" are isomorphic. Hence if w € P}
we can regard L, () as a g[t]-module and we let L(7) be the g[t|-module obtained by pulling back
L,() by the Lie algebra automorphism g[t] — glt] given by 2 ® f — = ® f(t — 1). We continue
denoting by v, the generator of L(7r) as g[t]-module. The following is immediate.

Corollary 3.4.2. For w € P, we have a surjective map of g[t]-modules W (wt(m)) — L(m) — 0
mapping Wyi(x) — V- O]

Remark 3.4.3. The defining relations of L(7) are not known in general. However, in the cases
treated in this work (see Chapter 4) we will obtain them and, moreover, L(7) admits a Z-grading
compatible with the grading on g[t] and, hence, we refer to the module L(7) as the graded limit
of L,(m).

3.5 Affinizations of U, (g)-modules

Given A € PT, a finite dimensional U,(g)-module V is said to be an affinization of V() if
V Ve =1 and [V :Vo(u)] #0 = p <A, (3.5.1)

where [V : V,(1)] denotes the multiplicity of V,(u) as a simple factor of V.

Two affinizations V' and W are said to be equivalent if they are isomorphic as U,(g)-modules.
The partial order on P* induces a natural partial order on the set of (equivalence classes of)
affinizations of V() as follows. Say V' < W if one of the following conditions hold:

(1) [V 2 Vy(u)] < (W 2 V()] for all € P,

(ii) for all u € P* such that [V : V,(u)] > [W : V,(u)], there exists v > p such that [V : V (v)] <
W V()

A minimal element with respect to this partial order is said to be a minimal affinization. Clearly,
a minimal affinization of V() must be irreducible as an U,(g)-module and, hence, is of the form
L,(m), for some 7w € P such that wt(s) = A\. The notion of minimal affinizations was originally
introduced in [Cha95]. The classification of the Drinfeld polynomials of the minimal affinizations
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is still not complete when g is of type E. For the other types the classification was obtained in
[CP95, CP96a, CPI6b, Perl4].
Given i € I,a € F*,m € Z>y, define w; 4, € P* by

Wiam = H g1 (3.5.2)

Notice that wt(w; ;) = mw;. The modules L,(w; 4.m) are called Kirillov-Reshetikhin modules.
We now review the classification of minimal affinizations for g not of types D or FE.

Theorem 3.5.1. [/ Let w € Pt X\ = wt(w), and V = Ly(7). Then, V is a minimal affinization
if and only if there exist a € F* and € € {+1} such that

_ : _ _ e(diA(hi)+dip1A(hit1)+di—1—c;;
™= Hwi,%;\(hi), with a1 =a and a;4 —aiq( (ha)Fdit1A(hit1) ,+1)’

for alli € I,i <n. Moreover, all minimal affinizations of V,(\) are equivalent. [

In particular, Kirillov-Reshetikhin modules are minimal affinizations of simple highest weight
U,(g)-modules whose highest weight is an integer multiple of a fundamental weight.

Notice that d;\(h;) + dit1A(hiv1) +di — 1 — ¢ 41 € Zsy, for all 1 < i < n. Because of this, we
shall say that L,(7) is an increasing minimal affinization if 7 is as in Theorem 3.5.1, with € = 1.
Otherwise, if € = —1, we say that V,(7) is a decreasing minimal affinization .

Lemma 3.5.2. /| Let g be of type A,. Let X € PT and m € P be such that L,(w) is a minimal
affinization of Vy(X). Then
L(m) =t V(A,0).

In particular, v v =0, for all v € Z>1, o € R™. ]

We shall say that L,(7) is a minimal affinization by parts if, for every connected subdiagram
J C I such that # J Nsupp(A) < 2, either L,(8;(7)) is a minimal affinization for U,(g,) or there
exist connected subdiagrams .J;, J, satisfying:

(i
(ii) # JinJoNsuppp(A) =1,

=(LinJ)u(nlJ),
(iv) # JNJ;Nsuppp(A) =1 fori=1,2,

) J
)
(i) # Ji Nsuppp(N) = 2 for i = 1,2,
)
) L

(v
where suppp(A) = {i € I|A(h;) # 0}.

¢(BJ.()) is a minimal affinization for U,(g,,) for i = 1,2,

21



Remark 3.5.3. If either suppp(A) does not bound a subdiagram of type D (which is the case
if g is not of types D or E) or supp(A) contains the trivalent node, then subdiagrams J; and J,
satisfying conditions (i)-(v) do not exist. In that case, every minimal affinization of L,()\) is a
minimal affinization by parts. Otherwise, there exist minimal affinizations which are not minimal
affinizations by parts (cf. [CP96b, Perl4]|).

An U,(g)-module V is said to be prime if V' is not the trivial representation and
VeV, = =V o W=V
The following is a consequence of the main results of [CMY13].
Theorem 3.5.4. /| Every minimal affinization by parts is prime. [

For i,j € I, let [i,j] be the minimal connected subdiagram containing 7, j. Suppose w € P+
is such that L,(7) is a minimal affinization by parts and let A\ = wt(w). We say that L,(7) is
alternating if, for every i, j € suppp(A) such that #suppp(A) N[i, j] = 3, say suppp(N) N [i, ] =
J1 U Jy with Jy = [i, k], Jo = [k, j], k € suppp()), we have

L,(By(m)) increasing = L,(f8;,(mw)) decreasing, or vice-versa.
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Chapter 4

Graded limit of affinizations

In this chapter we prove the main results of this work related to the study of modules for the

quantum affine algebra by means of their classical limit.

4.1 Statement of results and motivations

Set
PH(1)={xe P*|A(h;) <1, forall 1<i<n}

Theorem 4.1.1. Let g be of type A,,. Let p =2v+ X\ € PT, with v € PT and A € P(1)". Let
also 1,y € P be such that:

(i) wt(my) = 2v and wt(ms) = A,
(ii) there exists js € I and z, € ¢, for all 1 < s <1 = v(hy), such that

Lq(ﬂ-l) qu(ﬁ) LQ(wj172172) - ® Lq(""jr,ZmQ)v

(1it) Ly(m2) is an alternating minimal affinization by parts of Vy(\),
(i) Lo(m172) Sy, ) Lg(m1) © Lo ().

Then
L(mye) Sqi D(2, ).

Theorem 4.1.2. Let g be of classical type, ® € Py, and A = wt(w). Suppose that L,(m) is a
minimal affinization and X is reqular. Then there exists a A\-compatible & such that L(w) = V().

We now explain our motivation for restricting our attention to the modules considered in
Theorem 4.1.1.
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In [HL10] and [HL13] the authors identified certain interesting subcategories with motivations
coming from cluster algebras and monoidal categorification. For this, they consider the notion of
a height function, k : I — Z, i.e., a function satisfying |x(i + 1) — x(¢)| < 1. (Here we continue to
assume that g is of type A, and that I = {1,--- ,n} is the standard enumeration of the vertices
of the Dynkin diagram). The objects of the category C, are finite-dimensional representations of
U,(g), whose Jordan—Holder series have composition factors of the form L,(), where w € P* is
a product of elements of the form Y; ,«) and Y, jxi+2, for 1 <i < n.

Let Q, be the quiver where the vertices are the elements of [ with edge i — i+ 1, if k(i +1) <
k(i), and i + 1 — 4, otherwise. It is shown in [HL10, HL13, HL14] that the prime representations
in C, are of the following form:

Lq<}/;'7qn(i)>, Lq(Y;’qn(in), Lq(n7qn(i)}/i’qm(i)+2)7 (4.1.1)
L, H Y;-anm H }?7q~(j)+2 , (4.1.2)
je€l, < NS SN

where 1 < i < n, I is a connected subset of I and I; - (resp. I; ~) is the set of sinks (resp. sources)
of the subquiver of Q, associated to I;. It is known that the objects in (4.1.1) are irreducible as
U,(g)-modules and more generally, the g—characters of these representations are also known. On
the other hand very little is known about the objects in (4.1.2). Note that these modules are easily
identified with alternating minimal affinizations by parts of the module V,(A), for A =", w;.

It is not difficult to write down all possible height functions and we describe this here. Given
an arbitrary subset J = {i1,--- ,ix} of I with 1 <y < --- < < n consider the quiver with edges

1=2 =i+l -9 —=>0+1- —igé---.

For r € Z and setting k;,(1) = 0, one can define the corresponding height function x;, and it
is trivially seen that any height function is of this form. For a fixed J the categories Cy,, are all
essentially the same: they are obtained from each other by pulling back by a suitable automorphism

of U,(g). Hence it suffices to understand the category C; =C where k; = K.

KJ,09
The main object of this chapter is understanding the ¢ — 1 specialization of the objects in

(4.1.1) an (4.1.2).

Remark 4.1.3. As noted in [HL13, Remark 1(c)|, the sink-source and monotonic quivers give rise
to nonequivalent subcategories (with the same number of prime objects).

Regarding the last two theorems, it is well-known that, in general, even graded limits of
Kirilov-Reshetkhin modules are not isomorphic to Demazure modules. However, recent results
(see [Naol3, Naol4]) identify the graded limit of (regular) minimal affinizations with generalized
Demazure modules, when g is of classical type. Since CV-modules can also be regarded as a
generalization of (g-stable) affine Demazure modules, it is natural to raise the question whether
such modules are also isomorphic to CV-modules.
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4.2 Level two g-stable Demazure modules

Assume that g is of type A,. Our primary focus in this chapter is the study of level two
g-stable Demazure modules. In this section we prove several properties of these modules which
will be fundamental in the proof of Theorem 4.1.1.

4.2.1 A realization of level two g—stable Demazure modules

The goal of this section is to prove the following:

Theorem 4.2.1. Let g be of type A,. Given p € P there exists u°, ¢ € Pt with p = p° + p°
such that we have an injective map of b ® n~ —modules

D(2,p) = D(1,1°) @ D(1, %), vy = Uyo @ Upge.
Given A\ = Z§:1 wi; € PH(1), with 1 <4y <y < --- < i < n, define A%, \° € P*(1) by:

AOz{wil+%+”.+%’ bodd A= A — A%,

Wi, FWig + -+ w;,_,, keven,
We shall prove
Proposition 4.2.2. Given A € P*(1) and v € P* there exists w € W such that
A =w(v+ X+ Ao) € P, A°=w(v+ A +Ay) € P*.

Assuming Proposition 4.2.2 the proof of Theorem 4.2.1 is completed as follows. Write u =
2v + A, where v € PT and A € PT(1), and set u° = v+ \° and p® = v+ A°. Choose A° and A° to
be as in Proposition 4.2.2 and take A = w(\ + 2Ag) = A° + A® € P*. Then

D(2,)\) = D(wow'A), D(1,)°) = D(wow 'A°), D(1,\¢) = D(wow *A°).
Theorem 4.2.1 is now immediate from Lemma 2.2.1.

Proof of Proposition 4.2.2. We claim that for a fixed A, it suffices to prove the result when v = 0.
Thus suppose that we have chosen w € W such that w(A° + Ag) and w(A®+ Ag) are in PT. Since
(A2 +Ao)(c) =1 = (A~ Ag)(c), we may write

WA+ Ag) = w; + Ao + %8, w(A + Ag) = wj + Ag + p°d,

for some p°,p® € Z and 0 < 4,5 < n, where we have the convention that wy = 0 = w,,11. Using the
formulae in (1.1.2), we get

1
tfwuw()‘o + AO + V) = w; + AO + (po + 5(”7 V) + (wiawy))57
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L) + (wp )8,

t_wy’w()\e + Ay + V) =wj + Ay + (pe + 5

and the claim is established.

Consider the partial order on P*(1) given by p < v if and only if v — u € @*. The minimal
elements of this order are w;, 1 <17 < n, and w; + Ay € ﬁ*, i.e., the proposition is trivially true
for these elements. Let A € P*(1) and suppose that we have proved the result for all elements
p € PT(1) with 4 < A. To prove the result for X it suffices to show that there exists w € W and
€ PT with u < X and p°, p® € Z such that

w(A + Ag) = u° + Ao + p°0, w(A+ Ag) = p® + Ao + p°o. (4.2.1)

This is done as follows: writing A = 2521 Wi, 11 < -0 < i, we take

w — SigSig+1 """ SnSip_s—15ip_o—2 """ 5150, k> 3, or k= 3, 11 > 1,
SigSig+1° " SnSo, k=3, i1 =1,
and
w1 Fwiy Wi, k=3,
Wip—1 T+ Wip—1 + Wiy +- -+ Wy, Wi, 41+ Wi g1, k> 3.

Note that u < A, since
k=3 = A—pu=a; + -+, k>3 = A—p=(, + - +a;)+ (a+ +a, )

It remains to establish that equation (4.2.1) is satisfied. For this, it is more convenient to deal
with the cases k = 2, 3, 4 separately. If kK = 2 then taking w = Id gives the result.
If k=4orif k=3 and i; > 1, a simple calculation gives

i1—1

WA+ No) = w(A;, + Ay — Ag) = Ay, + Ay, — Ao—i-Zozj—l—Zon 10+ Ao + 0.

J=i3
Moreovoer, if kK = 3, we have
w(A®+ Ao) = w(Ay,) = Aiy = p° + Ao,
while if £ = 4, we have
12—1 n
w()\e—i—Ao) :w(Am +Ai4 _AO) :Ai2+Ai4 —A0+Zaj+ Z OZj :[LE—FA()—}—(S.
=0 j=ia+1

The case k = 3 and i; = 1 is identical and we omit the details. For £ > 5. we write

w(X’ + Ag) = w(A° 4 Ag)(d 5+Z (X + Ao), a;)A,
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and similarly for A + Ag. We have
WX+ Ao)(d) = (A + o) (w™'d) = (A + No)(d — ho) = \°(hg) — 1.
To prove that (w(A° + Ag), ;) = (1° + Ao, ¢;) it is enough to prove that
(A2 + o) (w™"hy) = (1 + Ao) (hy)
and this is done by using the following easily established formulae:

w_l(ag) =+ a1 + a, w 1(aj) =y, I3 <j<ipo,
1

U)_I(Oéj> = Oj+1, 0<j<iz—1, w (Oéj) = Q -1, 7> 0k o+ 1,

w N (1) = Qg + -+ + i + an, w N, y41) =y, + -+ o + ag,
wH @i, _,) = (a0 +an + - i),
and
o —(Qigp1 + -+ oy +ag), k>5,
w (ais) =
—(a1 + -+ a, +20g), k=05.
The case of w(A® + Ag) is identical and the proof of Proposition 4.2.2 is complete. ]

4.2.2 A presentation of level two g—stable Demazure modules.

In this section, we show that in the case of / = 2 one can further whittle down the set of
defining relations given in Theorem 2.5.4. This will be crucial for our study of graded limits of
representations of quantum affine sl,, ;.

Recall our assumption that g is of type A,. Set

J
Qig=Y oy 1<i<j<n,
p=t

and note that RT = {a; j|1 <7 < j <n}. This section is devoted to prove

Proposition 4.2.3. For u =2v+ X € P, with A € PT(1) and v € P*, we have that D(2, u) is
the U(g[t])-module generated by an element v, with defining relations:

whve =0, (h @), = daop(hi)vy, (g, )"+, = 0, (4.2.2)

where 1 <i<mn and 0<s < pu(h;), and if \ =w;, +---+w;,, 1 <iy <--- < i <n, then

v(h

Vipipg1 )+1)

(z,, ® t(”+’\)(hi))vu =0, 1<i<n, (z, ®t

aip,ierl

v, =0, 1<p<k  (42.3)
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The following is straightforward.

Lemma 4.2.4. For all ¢ € Z>o and p € Ptwe have wtD(¢, ), # {0} only if v € p— QF.
Moreover,
dim Homgy(V (1), D(¢, 1)) = dim Homgp (D(€, 1), V (11, 0)) = 1.

Finally, if A(hg) < ¢ then
D(¢,\) =t V(A,0).

O

In the case when ¢ = 2, a further simplification of Theorem 2.5.4 is possible and this uses the
following consequence of [CV14, Theorem 5].

Proposition 4.2.5. Assume that g is of type sly, let u € P and consider the local Weyl module
W (). For all1 < s < u(hy), we have (z~ @ t571) 2w, € U(g[t]) (2~ ® t5)w,.

Proof. We indicate briefly how to obtain this proposition from [CV14, Theorem 5|. In the case when
s = pu(hq), the result is a consequence of the identification of W (x) with D(1, ). The quotient of
W (p) by the submodule generated by the element (z~ ® t#(*=)=1)q, is denoted as V/(2, 1#(h)=2)
in [CV14] and it is shown that (z~ @ t#e)=2)2, = 0 in V/(2, 1#h)=2). Using [CV14, Theorem 5|,
we have an inclusion V (2, 1#(he)=4) <y 1/ (2, 1#(he)=2) which maps w,_» — (2~ @ t*")"2)w, whose
quotient is denoted as V/(221#(he)=4) and (= @ t#(he)=3)2y, = 0 in V (22, 1#(t=)=4) Repeating this,
we get the proposition. O

Given any proper connected subset J of I, we let g; be the simple subalgebra of g generated
by the elements acz-i, i € J, and let h; and P} be defined in the obvious way. Given u € P*, let
g € P; be the restriction to h; and denote by D;(¢, ;) the level /~Demazure module for g,|t]
associated to p ;. It follows from Theorem 2.5.4 that there exists a non—zero map of g;[t]-modules
from D;(¢, ;) — D(¢, ) which maps v,, — v,. Taking J = {a}, we see that the following

Lemma is immediate from Proposition 4.2.5 and Theorem 2.5.4.

Lemma 4.2.6. For j € Pt the module D(2, 11) is the quotient of W (u) by the additional relations
(x5 @ tIrh)/2), =0, for all a € R*. O

Proof of Proposition 4.2.3. Let D(2,u) be the U(g[t])-module generated by an element v, with
defining relations given by (4.2.2) and (4.2.3). By Lemma 4.2.6, the proposition follows if we prove
that

(z; @ tIMhea)/2)y =0, 1<i<j<n. (4.2.4)

We proceed by induction on ¢ — j, with induction beginning at i = j by equation (4.2.3). Assume
that we have proved the result for all a; ; with ¢ — j < s and consider the case when j = ¢ + s.
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Suppose first that there does not exist 1 < p < k such that ¢ <14, < i+ s. In this case, we have
p(ha, ;) = 2v(he, ;) = 2v(hi) + 2v(hq,.,, ,,). The induction hypothesis implies

(w5, @ " "w, =0 = (ar,,, ,, @tV

Qjt1,i4s e

Since [z, x5, . | =, . , weget (4.2.4) in this case. We consider the other case, when we can
choose 1 < p < k be minimal and 1 <7 < k maximal so that i <1, <14, <i+s. If i <1, we have
again by the inductive hypothesis that

(zo, ® t”(hi))w” =0=(z, ® t(”+’\)(h“i+17i+s))w#,

Qif1its

and the inductive step is completed as before. If j > i, then the proof is similar where we write
Qivs = Qits—1 + Qits. Finally, suppose ¢ =4, and i + s = ¢,. If » = p + 1 then the inductive
step is the hypothesis in equation (4.2.3). If r > p 4 2, then we write a;1s = Qi ip0y + Vipri 4154, -
This time the induction hypothesis gives,

(I;ipjp*—l ®tu(haip’ip+1)+1>wu — 0 — ( — t(u+)\)(haip+l+1’iT)>w“’

and the inductive step is completed as before. O

4.2.3 Fusion products and a characterization
of g—stable level two Demazure modules

Our goal in this section is to prove a result which will help us to study that the graded limit of
a tensor product of certain prime representations of quantum affine sl,,,; is a level two Demazure
module. As we have remarked before, it is very difficult to check relations in the classical limit of
representations of quantum affine algebras and the result in this section circumvents this difficulty.
Another interesting feature of this result is that it provides a new family of examples with the
following property. Suppose that Vi, --- |V, are modules for quantum affine sl,,,; each admitting a
graded limit. Then the tensor product has a graded limit which is the fusion product in the sense
of [FL99| of the graded limits. This section is devoted to prove

Proposition 4.2.7. Let p € Pt and let V be a (not necessarily graded) g[t]-module quotient of
W(u) such that V' is isomorphic to D(2,u) as g—modules. Then V is isomorphic to D(2,u) as
g[t]-modules and hence Z—graded.

This result will be used to prove that a level two Demazure module is isomorphic to the graded
limit of an irreducible module for quantum affine sl,,;; and also that the graded limit of certain
tensor products of quantum affine algebras give rise to fusion products of representations of glt].

The first isomorphism in the next result was proved in [CL06] and the second is a special case
of [CSVW14, Theorem 1]. These isomorphisms give two families of examples where the fusion
product is independent of the parameters which will be needed in this chapter.
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Theorem 4.2.8. Let p=2v+ X\ € PT wherev =31 1w, € Pt and A = Z?leij € Pt(1),
for some 1 <iy < --- <ip <n. We have isomorphisms of g[t]-modules, as follows:
D(1,p1) g V(wr)™™ koo V(wn )™« Viwg, ) %% V(wg,) (4.2.5)
D(2, 1) Zqi V(2w1)™ 5 -+ % V(2w,,)"™ % D(2, A).

We shall need the following corollary.

Corollary 4.2.9. For y=2v+ X € Pt withv € PT and \ = 25:1 wi; with 1 < j <k, we have,

dim D(2, 1) y—e0; = (v + A)(hy), 1<i<n, (4.2.7)
dim D(L, N a, | = g1 —ip +2. dimD(2,\) —i —iy b1, 1<p<k (4.28)

A*Oéz‘p,ip_,,_l
Proof. Since dim V' (2w;)aw, —a; = 05,5, by using the isomorphism in (4.2.6), we have
dim D(2, pt) y—a, = 15 + dim D(2, M) x_, -

Moreover, by Lemma 4.2.4, we have dim Homg(V (), D(2, X)) = 1, hence
k
dim D(2, \)s—q, = dim V(M)r_a, = Y _ dis,.

On the other hand,
k
dim D(2, M) y—a, < dim D(1, ), Z i

where the first inequality is by Theorem 2.5.4 and the second 1nequahty follows from (4.2.5). The
first equality in (4.2.8) is also a simple consequence of (4.2.5); note moreover that it also proves
that (:15;1_%2_?+1 ® t)w, along with elements from the g—submodule V(\) of D(1, A) forms a basis for
D(1,M)x-ay,.,,,- On the other hand since A(hq,,, ) = 2, it follows in the language of Theorem
2.5.4 that s, = 1 and hence (x;iw,p+1 ® t)wy = 0 in D(2,A). The second equality in (4.2.8) is
established. O

Let V be as in Proposition 4.2.7 and ¢ : W(u) — V' — 0 be a map of g[t|-modules. We
shall prove that v, = p(w,) satisfies (4.2.3). Proposition 4.2.3 thus implies that ¢ factors through
D(2, 1) to give a surjective map D(2, u) — V of g[t]-modules. Since V' = D(2, i) as g—modules it
follows that ¢ induces an isomorphism of g[t]-modules as required.

Write g = 2v 4+ X with v = Y, rw; € PT and A = Z?Zl wi; € P*(1). To prove that v,
satisfies the first equality in (4.2.3), observe that

(h @ ) (2, ® °)0, = 2(z,, @)y,
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Hence if (z,, ® t*)v, = 0, then (z;, ® t*"')5, = 0. In particular, if (z,, ® t* V")), =£ 0 then
Corollary 4.2.9 gives that the non-zero elements {(x, ®t*)v,|0 < s < (v+X)(h;)} must be linearly
dependent. Choose m < (v + A)(h;) so that

(v+A)(hs)
Z zs(7,, ®@t°)v, =0, 2, €C, 2, #0.

Since (z,, ® t""))w, = 0 we have (z, @ t*"))5, = 0. Applying (h; ® t"")="~1) to the preceding
equation we get (z, ® ¢"")~1)g, = 0. Repeating this argument with (h; ® ¢"(")="2) then gives
(z, @ t"h)=2)g, = 0 and further iterations eventually gives

(zg, ®1")v, =0

which contradicts our assumptions. Hence we have (z; ® t¢tN"))5, =0, as required.
Denote by V' the graded quotient of W (u) by the g[t]-submodule generated by the set

{(g, @ VI, 1 <i < n}.
We denote the image of w, in V by v, , and
— v+ (hi)\ =
(z,, ® t NGB = 0.

The previous discussion shows that ¢ factors through to a surjective map (which we continue to
denote by ¢) from V' to V. The standard argument of writing z, ,, asa commutator of simple
ipyip

root vectors gives
(= @t Mwna) )5 — o (4.2.9)

aipvierl 1%
for all 1 < p < k. More generally, it also proves that if & = a;, + ;41 + -+ + o, with s < i,
orif o = a, +apq1 + -y, withr >4, and 8 = a, + -+ + a, with 7, <r < s <y, for some
1 <p <k, then
(2, @ "5, =0 = (25 @ t*"))5, = 0. (4.2.10)

We shall prove

Proposition 4.2.10. (i) We have

dimV,_, > dimV,

p—a
foralloo =a;, +-- -+, withl<p<k.

(ii) Let U be any submodule of V with Uji—a #0, for some a = o, + -+~ + 0, with1 <p <k.
Then
(z, @ ") g, € U.
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Assuming this proposition, the proof of Proposition 4.2.7 is completed as follows. Consider the
submodule ker ¢ of V. The first assertion of Proposition 4.2.10 shows that (ker ¢),_, # 0, for all

a=q;, + - +a;,, with1l<p<Ek, and the second assertion proves that for such a,we have

(z, @ "), € kerg, ie., (z, @ "Mt )g, =0,
as needed.

Proof of Proposition 4.2.10. We first prove item (i).
Let {z] 1 <s<ri+---+r,+k=(v+A\)(hg)} be a set of distinct complex numbers and
consider the fusion product

Vi=V(2w) ™ %% V(2w,) ™ Vi) % % Viwg,),

defined by these parameters. In other words, V; is the graded module associated as in Section 2.6
to the tensor product

Sj+1 (v+2)(he)
® R Ve |® ® Ve,
Jj=1 r=s;+1 s=v(6V)+1

where s; =0 and s; =r; +---+rj_; for 2 < j <n. For 1 <i <mn, define f; € C[t] by,
f,:{<t—zsi+l>-~<t—z&“> i#i, 1<j <k,
(t_ Zsi-‘rl)"'(t_zsi-q-l)(t _ZV(he)-‘rj)v i = ij? 1<j<k.

It is trivial to check that
(e @ f) (V50 @ @ uSr @, @@, ) =0,
which implies that

— v+ (hi) *7 L. T L -
(z,, @t )(v A EEEE USROS *vwik)_O,

2w1 2wn

as needed. Summarizing, we have proved: there exists a non—zero surjective map of g[t|-modules
o:V—=V.
By Propositon 4.2.3 we have that D(2,)\) is a g[t]-quotient of D(1,\) (or equivalently by

Theorem 4.2.8 of V(w;,) -+ - % V(w;, )) by the submodule U generated by the elements of the subset
{(z;, . ®@t)wy} of D(1,A). In particular we have a splitting of g—modules

ip,ipt1
D(1,)\) 2, D(2,\) & U.
Using Theorem 4.2.8, it follows that the assumption V = D(2, 1) as g—modules implies that V is
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a g-module quotient of Vi, hence we have a splitting of g-modules
Vi =, V@(V(%}l)*” s -k V(2w )T % U).
Since equation (4.2.8) implies that Us—q,,, ., 7 0 for all 1 <p <k, we get

dimV,_, > dim(V}),_o > dimV,

u—a p—a

for all @ = a, + -+ + ay,,,, with 1 <p < k as required.

For Proposition 4.2.10(ii) we fix 1 < p < k and set i, =4, ip41 = j and o = q;,,, The result

ipt1-
follows if we prove the implication

VEV v #0 = (v, @t"") N5, € Uht])o.

We shall need a spanning set for V,_,. For this, we take S to be the subset of U(n~[t]) consisting
of linearly independent monomials of the form

{(z, ®1t")] 0 < s <v(hy) + 1},
(we call these monomials of length one) and the following monomials of length s > 1,
(x5, @17) - (x5 &17),

where 8; € RY, p; € Z> satisfy:

(i) iy = i + g1 + -+, for some p > 4, B +---+f, € Rt forall 1 < r < s and

B+ + B =aq,

(i) 0 <p, <wv(hg,) for all 1 <r < s with both inequalities being strict if 1 < r < s.

Lemma 4.2.11. The elements {xt,|x € S} span V,,_,.

Proof. A straightforward application of the Poincare-Birkhoff-Witt theorem shows that the mono-
mials of the form given above with no restriction on the powers of ¢ span f/#,a. The restriction
on r in the case of monomials of length one and on p; for monomials of length s > 1 comes
from equations (4.2.9) and (4.2.10). Suppose that §; + S = a. Then, by (4.2.10), we have
(x5, ® t""2) )5, = 0 and

(25, ® t"Po) ) (2 @ t" o)t G, = (x) @ t7PF2)5, =0,
and the bound on p, is established in this case. On the other hand, if 8; + 2 # « and py > v(hg,)
then (4.2.10) gives (75, ® ")), = 0 and we get
(x/gs Q1) - - - (mES ® tps)<x/§2 ® tpz)@El ® t"(hﬁl)ﬂ)f}“
= (25, @ 17) - (w5, ® 1) (w5, 5, @ PP )5,

Therefore, by induction on s, it follows (x5 ® t7°)--- (5, @ t7) (x5 4 @ t""s)tPHg, — 0,
and thus the bound on ps is established. An iteration of the argument establishes the bounds in
general. O]
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Let m =)

xes 2xX be a non-trivial linear combination of elements of S and let

S(m) = {x € S|zx # 0}.

Assume that the maximal length of a monomial in S(m) is s. We proceed by induction on s to

prove that
(z, @ ") Ng, € U(h[t])mi,. (4.2.11)
If s =1, then
v(ha)+1
m = zp(xy, @tF), z,€C.
p=0

Let 7 be minimal such that z. # 0. If r = v(h,) + 1 there is nothing to prove. Otherwise, by using
(4.2.9), we get
(he @ t" ") H="ymp, = Az @ ")),

for some non—zero A € C which shows that induction begins. For the inductive step, let S be the
subset of S consisting of monomials

g @0} U (2, @) - (w5, @ 0)| 5 2 2},
If S(m) is not a subset of S, we claim that there exists r € Z>; such that

[(wz\/ & tT)a m]ﬁu = Z CacXﬁua

xXES1

for some ¢y € C not all zero. For the claim, note that there must exist
(x5, @) (15, @) (x5 @) € S(m),

with v(hg,) —p1 > 0if s > 1 or v(hg,)+1—p; > 0if s =1 and take r to be the maximum of
these numbers. Then we have

(Wi @17, (25, @1P) -+ (25, @ 72) (x5, @ )]0, = (x5, @) -+ (15, @ 172) (x5 @ "17)0,,
where w,’ is such that o;(w;) = §;; for all 1 < 4,5 < n. The right hand side is zero unless
(z5, @tF*) - (25, @1P?) (x5 @tP77) € Sp. This proves that the element [wy ®¢", m] acts on 9, by
a non—trivial linear combination of elements from Si; i.e. there exists m; = er 5, CxX with not
all cx = 0 so that m;9, € U(h[t])m7,. Define S(m;) in the obvious way. If the maximal length of
a monomial in S(m;) is less than the maximal length in S(m) the inductive hypothesis applies to
m; and hence we get the inductive step for m.

Otherwise, choose j; > ¢ minimal so that there exists an element in S(m;) with 5 = «; +
-+ 4+ aj,_1. Since the maximal length of a monomial in S(m;) is s > 1, we also have j; — 1 < j.
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If (v @ t(ha) 1) € S(my,), or if x € S(my) with 8 = a; + -+ + @, with j; — 1 < jy < j, then for
all » > 0 we have,
(Wj\‘/1 ® tr)(I; ® ty(h”)+1)’l~)u _ (IE; ® ty(h“)+1+r)l~}u _ 0’
(W), @ t") (x5, @) -« (25, @ 'P0))5, = (x5 @ %) - (x5, @ "o FT)5, = 0.

This means that we can write

(wjvl ® t”)mlf)u = (ws/l ® tT)mQ(:p;i’jl_l ® tl’(hai,ﬂ*l))ﬁ'u

= W), @ 1", ma)(ay,  , ® )i,

Here my is a non-trivial linear combination of terms of the form (x5 ® tP<)--- (x5, ® t#2), where
the p,, are such that p,, < v(hg, ) with equality only if m is equal to the length of the monomial.
Choose 19 so that ro+py > v(fs) for all the terms occurring in my, if s > 3, and ro+py > v(Fa)+1,
if s = 2, with equality holding for at least one term, and note that ro > 0. We have

[(wj\/l ® t?“z)’ (x[; ® tps) .. (x§2 ® th)](,CL’_ . ® tl’(hai,jl—l))?"ju

ai,jl,

= (q;gs ® tps) ce (xgz ® tszrTz)(x* - ® tl’(ho‘i,jlfl)),ﬁu

Qg5

— (ZEES (24 tpS) e (x52+0¢i,j171 ® tp2+r2+y(h°‘i,j1—1))1~)m

where the last equality is because the choice of 7 gives (x[}Q ®tP>172)g, = 0. Moreover if py +ry >
v(hg,) the right hand side is zero and when equality holds the right hand side is a monomial in
S acting on ¥,. To summarize, this argument proves that (wj, ® t"2)m;?, can be written as a
non-trivial linear combination of terms of the form xv, with x € S, where the maximal length of
the monomials is one less than that of m which completes the inductive step. O

4.3 Proof of Theorem 4.1.1

We now turn to the proof of Theorem 4.1.1. The next result is simple but very useful and is a
consequence of [Moul0, Lemma 2.20].

Lemma 4.3.1. Let w,w € P;. Assume that there exists a map of U,(g)-modules
Ly(mww) = Ly(m) ® Ly(w@).
Then there ezists a map of g[t]-modules L(mwwo) — L(w) ® L(to) mapping Vpw — Vg @ Ug. [

We first prove that it suffices to prove the theorem in the case when w; = 1. To see this,
assume that 7r; is as in Theorem 4.1.1, in which case, since L(wj,2) =, V,(2w;), j € I, a € C*,
by Lemma 3.5.2, we have

L(ﬂ-lﬁQ) gg V(ijl) - ® V(2wjr> X D(27 /\)
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Since L(m7ry) is a quotient of W (u) by Proposition 3.4.1, Theorem 4.1.1 follows from Proposition
4.2.7 and Theorem 4.2.8.

Proposition 4.3.2. Let g be of type A,. Then if ™ € P} is such that
Lq(ﬂ-) qu(a) Lq(}/}lyal) ® o ® Lq(Y}ryar)7
for somer € Z>y and 1 < jy,---,jr < n, then
L(T&') ggm W(Wt(ﬂ')) gg[t] D(l,Wt(ﬂ')).

Proof. It was shown in [CLO06| that dim W (wt(7)) = dim [],_, dim V' (w;,). Since dim¢ L(7) =
dimp L,(7) the proposition is immediate from Corollary 3.4.1. O

From now on, let 7 = my as in Theorem 4.1.1. Let w° w° € P, be such that wt(mw°) = \° and
7 = )\ in the notations of Section 4.2.1.

Proposition 4.3.3. Let 7, w° and 7° be as in the preceding discussion.
(i) The module L,(7) is isomorphic to a submodule of either Ly(7°)®@ Ly (7€) or L (7¢)® L,(7°).

(ii) We have
L(7?) gy W(A%),  L(7) Zgpg W(AY).

We prove Proposition 4.3.3 in the next section. Assuming the result, the proof of Theorem
4.1.1 is completed as follows. By Lemma 4.3.1 there exists a map of g[t]-modules

L(m) = W) @ W),  vr — vre @ vye.

We claim that there exists a surjective map of g[t|-modules D(2,\) — L(7) mapping vy — vn
and hence we have a non—zero map D(2, \) — W(A°) ® W (A°), mapping vy — vye @ vxe. This map
is injective by Theorem 4.2.1 and hence so is the surjective map D(2, A\) — L(7) which proves the
theorem.

To prove the claim it suffices to show that v, satisfies the relations given in Proposition 4.2.3.
Let 1 <p < kandlet J, = {ip,ip +1,... 9541} € I. Then Lemma 3.3.2 implies that L,(8;, (7))
is a minimal affinization of V;(w;, + wi,+1) (as Uy(gs)-module), and, hence, the aforementioned
relations follows by Lemma 3.5.2.

4.3.1 Cyclicity criteria of the tensor product
Let A = Z;‘le wi, € P(1)", with 4, < iy < --- < ;. Define integers r;, 1 < j <k by

r1 =0, rg=13—1; +2,
Tost1 = —i1 + 2(ig — g + - -+ — las—1 + las) — last1, S > 1,

Tost2 = —i1 + 2(ia — i3+ -+ - + los — G2s11) + losy2 + 2, s> 1.
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For e € {£1}, let Ac = [[, Y}, s € Pz. Observe that, if 7 € P is such that L,(7) is an
alternating minimal affinization by parts of V, (), then

™ =T\, forsomeee€ {1}, be qZ7

where 7, is the shift of spectral parameters, defined by the homomorphism of rings 7, : ZP — ZP
sending Y, to Y; 4, ¢ € I, a € F*. In particular, we have

L(m) =g L(A),

and, hence, there is no loss of generality in assuming that w = A, for some € € {#+1}. For the
remainder of the section we suppose € = 1. Similar arguments prove the case ¢ = —1.

Observe that the dual 7* of 7r is also of the same kind, i.e., L(7*) is a minimal affinization by
parts. In fact, by (3.2.3) it follows that

Y,

Jkobk s

*
™ = Y}l,bly}

2,b2 *
where j, =n+ 1 —iy_pp1 and b, = ¢ "*+1-» g "1 forall 1 < p < k. It is straightforward to check
that
g i-1+t2 |oodd ¢~ 2+172 L odd
bj2p/bj2p71 = om 1 —Gap—2 ’ bj2p+l /bj2p - j jopt+2 ’
qr2r—17J2 k even, qI2p+17I2p k even.

In particular, we have (7*)° = (w°)* if k is odd, and (#w*)° = (w°)* if k is even. Similar
statements hold for (7*)°.

Hence, it suffices to prove the dual statement in Proposition 4.3.3; namely to show that L,(7)
is a quotient of L,(7°®) ® L(7°) (see the proof of [Moul0, Corollary 4.4]).

Theorem 4.3.4. Assume that k is even. We have isomorphisms of Uq(glnﬂ)fmodules

Ly(m°) =2 Lg(Yiqn) ® - @ Lg(Y;, | g5-1)s and  Ly(7®) =2 Ly(Yi, qm2) ® -+ @ Ly(Yi g7 )-
Moreover L,(m) is a quotient of Ly(7®) ® L,(w°). Analogous statements hold if k is odd.
Remark 4.3.5. For ¢ = —1 one proves that L,(7) is a quotient of L,(7°) ® L,(7°).

Assuming Theorem 4.3.4, Proposition 4.3.3 is immediate from Proposition 4.3.2 and Lemma
4.3.1.

The proof of the theorem depends on Theorem 3 and Corollary 5.1 of [Cha02| and we recall
the result in the case of interest to us.

Proposition 4.3.6. Let m > 1 and suppose that 1 < j1,-++ , jm < n and by, -+ ,b,, € C* are such

s<r = b /by ¢ {¢" 7 [ max{jr, js} < p+1 < min{j, +js,n+ 11} (4.3.1)
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Then Ly(Yj, p,)®- - -@Ly(Y;,, b,,) has a unique irreducible quotient Ly(m) where @ =Y, 5, -+ Y, b,
Moreover, if (4.3.1) holds for all 1 < r,s < m, then we have an isomorphism

LCI(}/}lybl) ® to ® LQ(%mybm) = LQ(T‘-)
[

The proof of Theorem 4.3.4 is now a straightforward checking to see that the conditions of
Proposition 4.3.6 are satisfied. We first prove that L,(7°) is irreducible. For this, assume that
s > j and note that

Tost1 — Toj41 = —loj41 + 2(lojpe — foj43 + -+ — las—1 + las) — last1.
If in addition we have
Tos41 — Toj41 = 2P + 2 — dagy1 — 2541, p+ 1> 9.1,
then we get
P41 =rtgjio —igjyz+ - — los_1 + los = tog — (log—1 — G2s—2) — -+ — (igj43 — laj42) < i,
which is an absurd since i9s < i9511. On the other hand, if
Tost1 — T2j41 = —2P — 2+ lgeq1 + l2j41, p+ 1>y,

then we get
G951 + loj41 =D+ 1+ (Ggj40 — lojps + -+ - — dos—1 + l2s).

Since p 4+ 1 > 19511, it follows that
log — lgg—1 + ++ + lgjp0 — lgj41 <0,

which is an absurd. Hence L,(7°) is irreducible, as required. A similar argument proves the result
for L,(m®).

To prove that L,(7¢) ® L,(7°) has L,(7) as its quotient it is enough now to check that (4.3.1)
is satisfied for pairs of the form ¢ /¢™i- for all s and j. This amounts to proving

T2j—1 — Tos ¢ {2 + 2p — igs — igj_1| max{i2j_1, ’igs} < P + 1 S min{igj_l + 7:25, n—+ 1}} (432)

For clarity, we prove this by breaking up the checking into several cases. If s > j > 1 and
iQS -+ ’igj_l S n + 1, we have

Tos — Toj—1 = los + loj—1 + 2 — 2(igj_1 — G5 + -+ — Gas—2 + l2s_1),
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ie.,
Toj—1 — Tos = —log — d9j—1 + 2(—1 4 (lgj—1 — d2;) + - - - + (las—1 — d2s) + fas).

Since (=1 + (igj—1 — t9;) + + -+ + (i2s—1 — Q2s) + i25) < las, We see that (4.3.2) is satisfied. On the
other hand, if j > s > 1 and i9, +i2;—1 < n + 1, we have

Tos — Toj—1 = las + dgj—1 — 2(—1 + (los — dos41) + - -+ + (lgj—2 — d2j—1) + l2j-1),

and this time we need the expression in parentheses to be bigger than is;_; and this is clearly not
the case. The other two cases are similar and we omit the details.

4.4 Proof of Theorem 4.1.2

In this section we prove Theorem 4.1.2. For convenience we split the proof in cases, depending
on the type of g. We first fix some notations and recall the main results of [Naol3] and [Naol4].

For n =Y. mya; € Q, let €;(n) = m;. Recall that if g is of classical type, then ¢;(a) < 2 for
every « € R and i € I. Set

Rf ={a € R*|e(a) < lforalliei} and R = R*\Rf.

4.4.1 Types B and C

Assume that g is either of type B, or C,. Then Rf = {a;; : 1 < i < j < n} where

a;; = a; + a1 + - + ;. For g of type B,,, we have
Ry ={Bi;]l1 <i<j<n}, where Bi;=ai,+ ajn.
For g of type C,,, we have
Ry ={Bi;l1<i<j<n}, where Bi;=ai,+ aj,1.
Let 7 and A be as in Theorem 4.1.2. The following is

Theorem 4.4.1 (|[Naol3, Theorem 4.6]). The module L(7) is isomorphic to the quotient of W(\)
by the submodule generated by x,, wy, o € RY. O

In order to explicitly describe the partition & mentioned in the statement of Theorem 4.1.2, we
will need the function p : RT X Zs¢ — Z>( defined as follows (cf. [Naol3, Section 5.1]). Set

pla,0) = A(hq), for all « € RT.
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We shall use the following notation in the remaining definitions. Given a connected subdiagram
J C 1, set

Al = ARy

jed
For i,j € I, let [i, j] be the minimal connected subdiagram containing 4, j. Then, for g of type B,
and r > 0, set

IAjn-1 + [A(hy)/2], ifr=1and o = §;; for some i < j < n,
pla,r) = 4 [AMha)/2], if r =1 and a = f3;,, for some 4,

0, otherwise.

If g is of type C,,, set

\‘D\‘[],anl]J , le — j’
p(Bigs1) = Moy — 1, if i <, [Npna_1y is odd and |[A|y;_1 = 0,
|Aljn—1> otherwise,

and p(a,r) = 0, if (o, r) does not satisfy any of the above listed conditions. Finally, let € be the
R*-tuple of partitions defined by

& =pla,j—1)—pla,j) forall j>1. (4.4.1)

J

Equivalently,
& = Aha) — pla,1), & =pla,1), &=0 forall j>2.

j
One easily checks that £ > £2, for all @ € RT and that

a€eRf = & =0.

In particular, by Theorems 2.5.1 and 4.4.1, we have an epimorphism of g[t]-module L(7w) — V(£).
Furthermore, these theorems also imply that Theorem 4.1.2 follows if one shows that

(z; )P+ =0, forall o€ RJ.

a,l

But this was proved in [Naol3, Proposition 5.1| which is part of the proof of [Nao13, Theorem 4.6]
mentioned in Section 4.1.2.

Before moving to type D,,, we examine some basic examples for type B,. A straightforward
but tedious computation using the previous subsection shows that, if g is of type By, then

L(m) 2V (&, N), where = Xhy)+ [Ahs)/2].

Therefore, by Theorem 2.5.4, L(7) is a Demazure module. Let us now show that this property
disappears in higher rank. Let g be of type B3, A = w; + 2ws, and & as in (4.4.1). One then checks
that we have the following table:
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| Root | & | &(1,\) | €(2,)) |

o | M @O [ O
Qo 0 0 0

a (2) (2) (2)
a[1,2] (1> (1) (1)
a[2,3] (2) (2) (2)
Q1,3) (4) (27 2) (4)
Bos | (L) | (L,1) | (2)
BI,S (27 1) (17 17 1) (27 1)
Bre | (2,1) | (LL1) ] (21)

Using Proposition 2.5.3, we see from the line corresponding to a3 in the above table that L(7r)
is a quotient of D(1,\). On the other hand, the line corresponding to (3 implies that D(2, \) is
a quotient of L(7). However, L(7r) is not isomorphic to either of these modules. Indeed, it follows
from [Moul0, Proposition 5.7] (see also [Naol3, Example 4.4|) that L(7)[r] =0 for > 1 and

L(m)[1] =g V(w2, 1) ® V(2wy, 1).

Hence, the socle of L(7r) is not simple showing it cannot be a Demazure module (see (2.2.1)). It
may also be interesting to recall that, by [Naol3, Theorem 4.5|, we have

L(m) & D(wy®,, wo®,), where ®; = Ag+w; and ®y = Ay + 2ws.

4.4.2 Type D

Henceforth, assume that g is of type D, and let E = {1,n — 1,n} C I. Given a connected
subdiagram J of I, let Q; be the subgroup of @ generated by «;,j € J, and set R = RTNQ,

and
QJ:ZO&J' GR}_

jeJ
Rf ={apgli,j € I} U{Bi|1 <i<n—2}, where f; = aqjn + a1,
Observe that and
Ry ={Bij1 <i<j<n—2}, where B;; =1+ ¥jn.
The hypothesis of regularity of A means that one of the following holds:
A suppp(A) C [i, 4], for some i, 5 € E,

B suppp(A) intersects all three connected components of I\ {n — 2} and n — 2 € supp(}\),
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where suppp(A) := {i € I|A\(h;) > 0}. We will say that A is of type A or D according to whether
(A) or (B) holds .

It was proved in [CP96a| that there is one equivalence class of minimal affinizations if A is of
type A while there are three equivalence classes of minimal affinizations if A is of type D. For our
purposes, it will suffice to recall the following characterization of the Drinfeld polynomials 7r such
that L,(7) is a minimal affinization of L,(\).

Theorem 4.4.2. Let w € P be such that wt(mw) = \.

a If X is of type A, then Ly(m) is a minimal affinization of V4(X) if and only if Ly(B (7)) is a
manimal affinization for Uy(gp ), for alli,j € E,i # 5.

b If X is of type D, then Ly() is a minimal affinization of V,(X) if and only if there exists i € E
such that Lq(B}; j(7)) is a minimal affinization for Uy(gp ), for both j € E\ {i}. Moreover,
two minimal affinizations Ly(7) and Ly(wo) of Vy(N) are equivalent if and only if © and w
satisfy this property for the same i € E. O

Remark 4.4.3. This theorem was proved in [CP96a| and it holds also for algebras of type E, with
the obvious modifications: n — 2 is replaced by the trivalent node, say iy, and the set F is replaced
by the set of extreme nodes of the diagram (or any set containing one node for each connected
component of I\ {ip}). The classification of minimal affinizations for irregular A is not complete.
It was mostly obtained for g of type D, in [CP96b|. In the upcoming paper [HMP], the authors
completed the classification of minimal affinizations for algebras of type D,,,n > 4. We shall study
the classical limits of the minimal affinizations for irregular \ from the perspective of generalized
Demazure modules elsewhere.

Assume ) is of type D and, given i € E, fix a polynomial 7 satisfying the property described
in part (b) of Theorem 4.4.2. If X is of type A, we fix 7w such that L,(7) is a minimal affinization
of V,(\) and, for convenience, we set (") = 7, for all i € E.

Define

R = |J R{,CR
JeE\{i}

The following is proved in [Naol4].

Theorem 4.4.4 ([Naol4, Theorem 3.2|). The module L(mw®) is isomorphic to the quotient of
W () by the submodule N () generated by x, jwy, o0 € RY. O

As in the previous cases, we define a map p : R* x Zso — Zs as follows. For r = 0 we define

pD(a,0) = A(hy), forall ae R*.
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Otherwise, if ¢+ = 1, define

Mg +min{A(hn_1), A(hy)}, if r =1 and B;; for some j, k,
pD(a, ) = min{A(hn_1), A(hn)}, if r =1 and a = f3; for some j or a = ap_1,4),

0, otherwise.

Ifie B\ {1}, let ¢ € E'\ {1,i} and define

| Ml pkn—g) + min{|A|j g, A(hsr)},  if o= B for some j <k <n—2,

p(i)(aa 1) = min{‘A’[k,nf?)]? )\(h’l/>}7 if a= Qlk,i'] for some & <n — 27 (442)
0, otherwise,

(e 2) = min{ | A|k,n—3), A(hir) }, if o= fj for some j <k <n -2, (4.4.3)
0, otherwise,

pD(a,r) =0 if r>2.

We now fix i € E and simplify notation writing p, 7, N()\) in place of p@, 7@ N@()). We
then define & by (4.4.1) as before. This time, this is equivalent to

& = Aha) = ple 1), & = plo,1) = p(e,2), & =p(e,2), & =0 forall j>3.
One easily checks that & > &5 > &5, for all @ € RT, and that
a€RY = & =0

In particular, Remark 2.5.1 and Theorem 4.4.4 imply that we have an epimorphism of g[t]-modules
L(mw) — V(&). (4.4.4)

On the other hand, it follows from [Naol4, Proposition 4.3 and Theorem 3.1 that
(z5,)7 @ wy € N(A), a€R", r>0. (4.4.5)

If X\ is of type A, one easily checks using (4.4.2) and (4.4.3) that
pla,1) =0, forallae R}, and #£*<2 forall aeR'.

In particular, together with (4.4.5), it follows that N(X) is generated by z,wx, a € Rf. The
proof of Theorem 4.1.2 is completed as in the previous cases by another application of Remark
2.5.1 and Theorem 4.4.4.

For the remainder of this section we assume that A is of type D. We prove Theorem 4.1.2 for
each choice of i € E. Assume first that ¢ = 1, in which case #£* < 2, for all & € RT. In light of
(4.4.5), the proof of Theorem 4.1.2 is completed by the same arguments used before.
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In what follows we will prove Theorem 4.1.2 in the case that 7 is a spin node. In that case, one
can easily check that, if n > 4, there always exists a € R such that #£“ = 3. In particular, £*
may not be rectangular nor a special fat hook and the completion of the proof of Theorem 4.1.2
cannot be performed using Theorem 2.5.1 (or its remark) as in the previous cases. For n =4, it is
easy to see that the definition of p(® is obtained from that of p" by rotational symmetry of the
diagram and, hence, we can consider that Theorem 4.1.2 is proved for n = 4 as well. Thus, we
assume n > 4 from now on.

Remark 4.4.5. The fact that #£* < 2, for any a € R, and any A when ¢ = 1 while there
always exists o € RT with #£* = 3 when i is a spin node suggests that the minimal affinization
corresponding to (V) is, from a certain point of view, more minimal than those corresponding to
7w and 7"~ Y.

For simplicity, we assume i = n in (4.4.2) and (4.4.3). Although, as mentioned at the of the
previous subsection, the proof of Theorem 4.1.2 requires extra steps in this case, the spirit of the
proof will be the same. Namely, by Theorem 4.4.4 and (4.4.4), Theorem 4.1.2 follows if we prove
the inclusion

M(E) € N(A).

Observe the implication
a¢ Ry = F#£2<2

Therefore, by an application of Remark 2.5.2 as in the previous cases, it follows
M,(&) C N()\), forall o¢ Ry.
Since M (&) is generated by Uyep+ Mo (€), it remains to show
M,(&) T N(\), forall a€ Rf. (4.4.6)

Evidently, if #£* < 2, the proof can be completed as in the previous cases. Thus, henceforth we
fix & € R such that #£* = 3.
To prove (4.4.6), in light of (2.4.5), it suffices to show that, for all k, s, € Z>; such that

str>l+rk+ Y & (4.4.7)
JjZk+1
one of the following holds:
(24,1)"(200)""wx € N(N), (4.4.8)
x,, (r,s)wy € N(N), (4.4.9)
KXo (1, 8)wy € N(A). (4.4.10)

We split the argument in the following (intersecting) list of subcases:
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(i
(i
(iii

i
(iv

Vv

S
&5,

£ <r <&tk >2,

ﬁ
IN

r
k=1

)
)
)
)

We prove that (4.4.8) is satisfied in case (i), (4.4.9) is satisfied in cases (ii) and (iii), and (4.4.10)
is satisfied in case (iv).
Suppose we are in case (i). Then

sHr>l4rk+ Y E2148k+ > & >1+[€ =1+ Aha).

j>k+1 j>k+1

Hence, (7,4)°""wx = 0 by definition of W (\) and (4.4.8) holds.
For cases (ii)-(iv) we will make use of the following argument: (4.4.5) implies 2wy € N(A)
for all @« € R™ and r > 3. Therefore, if b = (b,),>0 € S(r, s) is such that

by, >0, forsome m >3, then ((x_)(b") . (m;,m)(bm) .. Jwy € N(A). (4.4.11)

«

From this, one easily deduces that
(x5 (r,s) — x, (1, 8)3) wx € N(A). (4.4.12)
Suppose we are in case (ii). Then,

str>1+kr+ > & >14kr+(3—kr=1+3"
j>k+1

This means that, if b € S(r, s), we must have b,,, > 0 for some m > 3 since, otherwise, we would
have s = 3" _spb, < 2r. In particular, x; (r, s)3 = 0 and (4.4.12) simplifies to (4.4.9).
For case (iii), we claim that it suffices to prove that

by > &8 +1=p(a,2)+1, forall beS(rs);. (4.4.13)

Indeed, together with (4.4.5), this implies x;, (7, s)3wy € N(X) which, together with (4.4.12), implies
(4.4.9). Thus, let b € S(r, s); and note that

2y +by=s>1+r(k—1)+ Y &,

j>k+1

where the equality follows from the definition of S(r, s); and the inequality follows from (4.4.7).
Since by + by < r, by definition of S(r, s)3, we get

bo>1+r(k—2)+ Y & (4.4.14)

j>k+1

45



Under the assumptions of (iii), it is clear that (4.4.14) implies (4.4.13).
Finally, we consider case (iv). Notice that, in this case, (4.4.10) simplifies to

1X, (1, s)wy € N(A), forall s>14&+&5 =1+ p(a,l).

Recall that

1%, (1, s)wy = Z (xa_?l)(bl) . (x;s)(bs)w,\
b€1S(r,s)

and that (4.4.11) implies that the summands corresponding to b € 1S(r, s) \ S(r, s) are in N(A).
It remains to consider the summands corresponding to S(r, s) N S(r, s)9, i.e., to consider
b:(O,bl,bz,O,...), with b1+b2:T, b1—|—2b228,

or, equivalently, with

by =2r—s and by=s—r.
In particular, if either 2r < s or s < r, then S(r,s) N S(r,s); = @ and we are done. Otherwise, if
r < s < 2r, we are left to show that

(x;,l)%_s(xga)s_rw/\ € N(N).

We will prove this by induction on ¢t = s — . For convenience, we rewrite the above as

(251)" H(w50) wy € N(A), forall s>1+p(a,1), 0<t<s/2. (4.4.15)

a,2

Note that (4.4.5) implies that induction starts when ¢ = 0.
Recall that, since o € Ry, we must have a = Qip—1 + ap, for some 1 <7 <7 <n-2 To
simplify notation, we set a = o ,—1 and 3 = «;,. We claim that, for m € Z-, and ¢ € Z>,

(2" P(g) Twn € Cafal(eg,)" (25 wn + NV. (4.4.16)

Assuming (4.4.16), we finish the proof of (4.4.15) as follows. Let ¢ > 0 and suppose that (4.4.15)
holds for ¢ — 1. Setting m = s —2(t — 1) and £ = ¢ — 1 in (4.4.16), the right-hand-side is in N(\)
by the induction hypothesis while the left-hand-side is the element in (4.4.15).

It remains to prove (4.4.16). Since [z, ,, 7, | = 0, for all p,q € Z>o, there exists ¢, € C such
that
(5, (wap)"] = p(2ap)™ Tays P E L0
Therefore,
xg(x;,l)m(xa_,zyw/\ = CI<I;,1)m_1(x;,2)%;1w>\ + C2(x;;)m(x;,z)g_lx;,zwk
Since z, 5wy € N(A) by (4.4.5), it follows that
x;(xa_,1>m<$a_,2)ew/\ S C(x;,l)m_l(xg,z)zxa_,lw/\ + N(A). (4.4.17)
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Similar arguments show that

x;(l';,l)m_l(zgg)%;Jw/\ = Cl(55;,1)m_Q(x;,z)%ng;,lw/\

+ 02(%,1)’”*1(%,2)571335,237;,1% + (x;,l)mil(mgz)%zx;,lw/\a

for some 1, ¢ € C. Using the commutators [z, 2,,] € Cx,,, (75,7, ,] € Cx, 5, and 2], 2,,] =
ha,1, we get

2)€+1 m72(

wy + ¢ (x;,l) 33;2)51';713351110)\

e_lx;ﬂfé,zwx + Clz(xa,l)m_l(xa_,zy_lx;,:sw/\

362(56;,1)’”*1(%;2)%;,1% =ci(x

for some ¢/, ¢, € C. The definition of W (A) implies that h, 1wy = 0 while (4.4.5) implies that
T Wy, Ty, Tyawy € N(A).

Therefore,
xl_(xa_,1>m_l(xa_,2)€x;1w>\ € C(x;,l)m_Q(mgg)eHw/\ + N(A).

Combining this with (4.4.17) we get (4.4.16). Theorem 4.1.2 is proved.

4.5 Appendix: Minimal affinizations of G,

As mentioned in Introduction, the original goal of this project was the study of the structure
of minimal affinizations when the underlying Lie algebra is of type G. In [CMO07]|, Chari and
Moura gave an explicit graded decomposition of the graded limit of Kirillov-Reshetkhin modules.
Moreover, they found a presentation by generator and relations for these objects. Motivated by
this work, our project aimed to extended their methods to general minimal affinizations in the
spirit of [Moul0]. However, these techniques were not sufficient to reach our goal so far, even with
the advances in this theory ([CV14, LM13, LQ14, Naol3, Naol4|) and, the original goal remains
incomplete. Nevertheless, we present in this section the partial results we have obtained towards
the study of these modules and state a conjecture relating them with CV-modules (see Conjecture
4.5.10).

Assume that g is of type G. Let a; € RT be the simple short root. Then d; = 3 and d, = 1.
Recall that
R+ = {Oél, 9, O -+ Q9, 2@1 -+ Qlg, 3@1 + A9, 30&1 + 20&2}.

4.5.1 Graded limit of KR-modules as CV-modules

In this section we connect the well-known graded limits of Kirillov-Reshetkhin modules, or
KR-modules for short, with CV-modules, by the following theorem.
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Theorem 4.5.1. Let g be of type Gy. Let m € Zs1, i € I and set X = mw;. Assume that ® € P

is such that L,(7) is a minimal affinization of Vy(mw;). Then there exists a A-compatible & such
that L(m) = V(€).

Let 7 be as in Theorem 4.5.1. Write m = d;mq +mq, 0 <my < d;. The following is well known
(see [FLO7], for instance).

Proposition 4.5.2. If m; =0, then
L() 2y Dlmo, mey)
O

In particular, if m; = 0 Theorem 4.5.1 follows from Proposition 4.5.2 and Theorem 2.5.4 by
setting & = &(mo, mw;). Therefore it remains to study the cases when ¢ = 1 and m = 3mg + my,
my = 1,2.

Define the g[t]-module M (mw;) to be the quotient of W (mw;) by the submodule generated
by x,. jwy, and denote by v;,, the image of wy,, on M(mw;). Let also D(mw;) be the g-stable
generalized Demazure module defined by

D(—mlwi -+ Ao, —dimowi —+ mvo), if my > O,
D(mw;) =

D(—Jimgwi + moAy), otherwise.
It follows from Proposition 4.5.2 and Lemma 2.2.1 that,
D(mw;) =g U(g[t])(vfgo ® Vim,) © M (diw;)®™ @ M (maw;), (4.5.1)
and, moreover

Theorem 4.5.3 ([CMO07, Corollary 2.3|). The g[t]-modules L(w), M(mw;) and D(mw;) are all
1somorphic. O

The following lemma will be very helpful in the proof of Theorem 4.5.1.
Lemma 4.5.4 ([CM07, Lemma 4.4]). Let « € Rt and r,s € Z>1. Then
(i) (z5,)"v21 =0, if and only if (a,r,s) # (0,1,1),
(i4) (v3,)%v11 =0, for allao € R*, 1,5 € L3y,
(i4) (x,)*v12 =0, if and only if,

(a,7r,8) & {(201 + g, 1, 1), (Bay + v, 1, 1), (3 + 200, 1, 1)},
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(iv) (v,,)%v13 =0, if and only if,

(a,7,8) ¢ {(201 + a0, 1, k)0 < k <3} U{(B,1,2),(5,2,1)|8 = 3a1 + a2, 31 + 203 }.

Define the following A-compatible partitions &, for m; = 1 and m; = 2, respectively

’ Root ‘ mp =1 ‘ my =2 ‘
aq (m) (m)
(6] (Z) (Z)
a4 s (m) (m)

200 +az | (3mg+2,3mg) | (3mo+3,3mo+1)
3ag + g | (mg+ 1,mg,mg) | (mo + 1,mg+ 1,myg)
3@1 +2062 (m0+ 1,m0,m0) (m0+1,m0+1,m0)

It is straightforward from the definitions that V(&) is a quotient of M (). Using the identifi-
cation (4.5.1)We prove that exists a homomorphism of g[t]-modules

V(E) — D(mwi)7 Vg —» Up ‘= ®;'n:011)1,3 ® V1,mq, (452)

and, hence, by Theorem 4.5.3, the proof of Theorem 4.5.1 is complete. We show that vp satisfies
the defining relations of V(&).
Recall from Proposition 2.5.3 that, if £€* is essentially rectangular, it suffices to show that

- - et

xa,savD = (xa,safl) Up = 07

where s, = #£%. This is proved by inspection, using comultiplication rules and Lemma 4.5.4, for
each « € RT, such that £* is essentially rectangular. In particular this argument proves (4.5.2)
when my; = 2.

Remark 4.5.5. The above discussion together with Theorem 2.5.4 proves that L(7) is isomorphic
to the Demazure module D(mg + 1, mw,) if my = 2.

The only case not covered by the previous argument is when m; = 1 and «a € {3y + g, 31 +
2a5}. For the remainder of this section let o be one of those roots. If we prove that, for each
k€ Z>,

kX, (r,s)up =0, s,r€Zsy, s+r>1+kr+ Z £, (4.5.3)
j>k+1
by Remark 2.5.2, Proposition 2.4.2 and (2.4.5), we prove (4.5.2).

Let k € Z>y and (by),>0 €k S(r,s). Then (b,) = (0,...,0,bg, bgs1,...). In particular, since
r,3vr = 0, by Lemma 4.5.4, it implies that ,x_ (r,s)vp = 0, k > 3, r,s € Z>;. Suppose k < 2.
Using the previous argument, it suffices to consider the sum over the sequences (by,),>0 € S(r, s)
such that b, # 0 only if £ < p < 2. We split the argument in cases, depending on k.
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Case k = 2.
Let (0,0,b9,0,...) € ,S(r,s). Then r = by and s = 2by. Therefore, we are left to prove that

oX,, (1, 2r)vp =0, r=s5—712>14 my,

or equivalently,

(h2)vp =0, r>1+my,
which follows by Lemma 4.5.4.

Case k = 1.
Let (0,b1,b9,0,...) € {S(r,s). Then r = by 4+ by and s = by + 2b,. Equivalently, b; = 2r — s and
by = s — r. Therefore, we have to prove that

(x;71)2’""9(3:;2)5’er =0, fors>142mg, r € Z>.
This is proved by induction on ¢t = s — r. For convenience, we rewrite the above as follows

(x, )S_Qt(l';Q)tUD =0. (4.5.4)

a,l

Note that the induction starts for ¢t = 0, by Lemma 4.5.4, since s > 1 + 2my.
We claim that

(@) (=

_72)“11),3 € Cx;“(:v;l)p(x;Q)evD, p, b€ Lo, p> 2. (4.5.5)

o

Assuming the claim we finish the proof as follows. Let ¢ > 0 and suppose that (4.5.4) holds for
t —1. Setting p=s—2(t—1) and ¢ =t — 1 in (4.5.5) we have that (4.5.4) follows for t.

To prove the claim we make use of the following Lemma, which is straightforward from the
relations of glt].

Lemma 4.5.6. Let o« € R, k,r € Zo, k > 2. There exists c1,cy € C such that

[‘T+7 (xa_,r)k] = 1T, (xa_,r)k_z + CQ(I;,T)k_lhOﬂ" O

e a,2r

By the above lemma we have that
$I($;,1)p(x;,2)eUD = (015’7;,2@;,1)%2 + 02(1’;,1)p71ha,1 - (x;,l)px;r) ($;,2)€UD- (4.5.6)

Taking proper commutators it follows that ha,1(z, ,) vp = 0, and then, (4.5.6) is equivalent to

— — \+1 _ ( -2

v (201)" (w50) vp = e1(2g 1) (20 2) 1) (ea(15,) Paga + a5 )  haz) vp

for some c3,cq € C*. Since (c3(z,,) 2254 + ca(@,5) " hag2) vp = 0, the claim follows.
Remark 4.5.7. By Theorem 2.5.4, Lemma 4.5.4 and Theorem 4.5.1 it is quite clear to prove that,

if m; = 1, L(7) cannot be isomorphic g-stable Demazure module of any level (unless my = 0, in
which case it is isomorphic (as g-module) to a simple g-module).
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4.5.2 General minimal affinations

In this section we present the advances obtained towards the study of the structure of the
graded limit of general minimal affinizations. For all ¢ € I, € Z>( and r € Z>; let

R(Zv m7T) = {Oé € R+|x;,rviam = 0}7

where we recall that v;,, is the image of wy,,, in M (mw;). Let A € P* and define

RO\, ) = ()R, A(ha), 7).

i€l
Since th[tjwy = 0, we have R(\,r) C R(\,s) for all » > s. Let M () be the quotient of W(\) by
the submodule generated by

To,wy, fora€ RN T), 1€ Zs,
and denote by w, the image of wy in M(\). Also, define
D) = U8t (viam) @ v2ama)) © MA(h1)wr) @ M(A(hz)ws)-

Note that D()) is isomorphic to a g-stable generalized Demazure module. In fact, write A(h;) =
3mg +mq, 0 < my < 3 and, then Theorem 4.5.1 implies

M()\(hl)wl) gg[t] D(—m1w1 +A0, —3m0w1 —|—m0A0) and M(A(hg)(ﬂg) gg[t] D(—)\(hz)WQ+)\(h2)A0)
Therefore, it is clear that
D(/\) gg[t] D(—m1w1 + Ao, —=3mow; + moAy, —)\(h2)w2 + /\(h2)A0)-

Quite easily we check that there exists an epimorphism of g[t]-modules M (\) — D(\) which
maps Wy to V1 A(n;) ® V2 \(hy)-
Our goal was to prove [Moul0, Conjecture 3.20|, which we recall now for our case of interest.

Conjecture 4.5.8. Let A € PT and w € P} such that L,(w) is a minimal affinization of V().
Then
M) S L(m) =gy D(N). (4.5.7)

Let 7 as in Conjecture 4.5.8. Since L, () is a minimal affinization of V,(\) it follows that exists
a1, as € g% such that w = W1 a1 A(h)W2,a0,0(he)- Moreover, as a consequence of [Cha02, Theorem 3,
we have that exists a homomorphism of U,(g)-modules

Lq(") - LQ(wU(l)zaU(l)’A(hv(l))) ® Lq(wU(Q),%(z),A(ha@)))v

for some permutation o € Ss. Since, Lg(w; q; 2(hs)) 18 @ minimal affinization of V;(A(h;)), Proposi-
tion 4.3.1 and Theorem 4.5.3 implies that there exists an epimorphism of g[t]-modules

L(m) = D(\), (4.5.8)

mapping vz t0 vy x(ny) @ V2 \(hy)-
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Lemma 4.5.9 ([Moul0|, Lemma 4.1.8). Let g be any simple Lie algebra. Leti € I,a € F* and
m € Zsg. Suppose that v is a highest (-weight vector of Ly(wiam). Then

T
T; 0 = ag; T; v.

For each A € P* write A = (3¢ + k)w; + mwy, for some ¢, k,m € Zsq, with 0 < k < 3, and
define a A\-compatible partition & according the following table.

Root | k=0 | k=1 | k=2 |
o (30) (3¢+1) (3¢ +2)
a (m) (m) (m)
a1 + oy (3¢ + 3m) (3¢ +3m+1) (30 + 3m + 2)
201 + g (3¢ + 3m, 3() (30 + 3m + 2, 3() (30 +3m+3,30+1)
3aq + ay (L+m,0,0) (l+m+1,0,0) (l+m+1,0+1,0)
3ag +2ay | (U+m,l+m,l) | {4+m+1,0+m, )| ({+m+1,0+m+110)

Conjecture 4.5.10. Let A € P and m € P be such that L,(w) is a minimal affinizations of
Vy(N). Then
L(m) S V(€).

Observe that Conjecture 4.5.10 holds for Kirrilov-Reshetkhin modules by Theorem 4.5.1.

In what follows we show the advances towards the proof of Conjectures 4.5.8 and 4.5.10 for
general minimal affinizations. It will be convenient to break the argument in cases A(hy) = 1,2
and A(hy) > 3.

Case A(hy) = 1. We prove Conjectures 4.5.8 and 4.5.10 in this case.

We show that there exists an epimomorphism of g[t]-modules
M(\) — L(w), (4.5.9)
and that D(\) =g M (A). Those together with (4.5.8) prove the Conjecture 4.5.8 in this case.
We start proving (4.5.9). By Lemma 4.5.4, it follows
R\ 1) =R\ {0}, R(\,s)=R", s>2.
Since Ty, = [T30, 1as> Tai+as), it suffices to show that
To,0x =0, forallae RT\ {6}. (4.5.10)

This is clear for the simple roots, by Lemma 3.5.2. For non simple roots a, & € R\ {6}, it suffices
find elements X, 1, X,,Y € Ux(g) such that

Xoav € " Xov+Yv, Xoi=u,,, Xo=ua,, and Y =0, (4.5.11)
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where v is the highest ¢-weight of L, ()

Let m = Yijwy gsm+a,, € Py It follows by Theorem 3.5.1 that L,(w) is a (increasing) minimal
affinization of V(). Let v; and vy be the highest (-weight vectors of L, (Y1) and Ly(ws gsm+4,,),
respectively. By [Cha02, Theorem 3|, we have

Ly(m) = Uy(@) (01 @ v2) C Lg(Y1,1) @ Ly(wagomsan)-

Let a = a1 + as, and set X, = [27,7,] and X4 = [2,25,] in Ux(g). Then

Xo(v1 ®v2) = x725 (v ®va) — 2527 (V1 ® U3)
71 (U1 @ T3 v2) — @y (27 V1 @ v2)
T7U @ k' ry vy + U1 ® T 5 V9 — Ty T U1 ® KPvg — 270 @ X5 s

-3 _ — - —3m - —
= (¢ —1Dajv Qv+ v @] X502 — ¢ “"Ty 7 V1 @ V.

On the other hand, by Lemma 1.3.3 modulo elements of the form z(v; ®vq) with Y € Uy (g)@Ux(g)
such that Y = 0, we have

Xop(t1 @ v) = xya5;(01 ®v2) — 25527 (V1 @ v2)
] (v ® mg’lvg) — $2_,1($1_U1 ® vs)
_ 1 - I - _ _
T3 U1 @ Ky Ty 09 + U1 @ 27 Ty Vg — Ty 1Ty U1 ® kv — X7 U1 © Ty 402

-3 - — — 3m, — .-
= (¢ =Dy ® 15,09 +v1 @ 1175102 — ¢4 177 V1 @ Vg,

Since Ly(fa(7)) is a minimal affinization of V,(nwy) with respect the subalgebra U,(g2) (which
is isomorphic to Ug(sly)), Lemma 4.5.9 implies

3m+4 _m 6m—+4,,—

Ty V2 = (¢ Q5 Ty U2 = (¢ Ty Ua.
Therefore,
Xoi(v1 ®vg) = (¢° - 1)(16m+4l’fU1 ® 25 Vg + ¢*" v @ 225 V9 — q3mxi1val & Vg
= " Xo (01 ® v2) — Mg 7 @ vz + ¢ ey rT v @ v (4.5.12)

We claim that ¢*"z5 2701 @ va = ¢*" x5 2701 ® vg, and then (4.5.11) follows from (4.5.12)
for the root . For the claim, note that a:;rxl_vl = 0, for all » > 0. In particular, Lemma 3.3.3
implies

UQ(§2)xIU1 qu(§2) Lq<Y2,q>’
and, hence, z5,77 v; = q*xy x7 vy, by Lemma 4.5.9. The claim is immediate now.

Similar arguments work for ¥ = 2ay + an, by setting Xy = [z7, X,] and Xy = [27, Xaa], and
for § = 3y + ag, by setting Xz = [z7, Xy] and X1 = [z7, Xy1], which proves (4.5.11) for all
elements of R\ {#}. We omit the details.
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We now prove that D(X) = M (A). By the defining relations of M () it follows

M) = 3 Ulg)(ag,) on.

TEZEO

In particular, M()) is a graded quotient of W (), thus finite-dimensional. Since n*(z, )" w) = 0,
for each r € Zs, it follows that M (A)[r] =, V(A — r8)®™, for m, < 1. Therefore,

A=710 ¢& PT = (x5,)"w, = 0.

Since € = ws, it follows (x;l)“w# #0only if 0 <r <m.
On the other hand, by Lemma 4.5.4, we have

T (V11 @ Vo) =0, 25, (V11 @vaym) =0, a€R\{0}, r>1, s>2,

and then
DO = 3 Ulg)(7,)" (011 @ va.m) = 0.

r>0

Also by Lemma 4.5.4, we have
(251)" (V11 ® Vam) = V11 @ (25,) V2 #0 0 <1 <m,

and, hence, together with (4.5.7), M(X\) Zgq D()), as desired, which proves Conjecture 4.5.8 in
this case. Then, the proof of Conjecture 4.5.10 in this case follows by observing that we have a
chain of epimorphisms of g[t]-modules

M(X) = V(&) = D(X),
since vg and vp satisfy the defining relations of M () and V(§), respectively.
Remark 4.5.11. It follows, by Theorem 2.5.4, that

L(Tr) gg[t] D(m + 1, )\)

Case A(hy) = 2. In this case we have
R\ 1) ={ai, a0, a1 + g, }, and R(\2) = R*.

Therefore,
M()\) = Z U(g) (I5a1+a2,1)T(x§a1+a2,l)S<x5a1+2012,1>tu_))\' (4513)

(r,s,t)EZ%o

By similar arguments used in [CMO07] based on the study of Heisenberg subalgebras of g and the
fact that M () is finite-dimensional we can restrict the sum of (4.5.13) to the set

{(r,0,t) € Z%OH <m, r<1}.
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Similarly to the previous case, we use these restrictions to prove that D(X) =gy M(\).

To prove Conjecture 4.5.8 in this case it remains to show that v, satisfies the defining relations
of M(N). As usual, 2,0, = 0, ¢ € I, by Lemma 4.5.9. Similarly to the previous case we show
that x, ., 1vx = 0. Then we have x,, ,,, oUx, since x5, .o € C*[z, 1, 1,71 ,]. Therefore, it
remains to show that

T30, 4002V = 0 = T34 100, 2Un (4.5.14)
Moreover, we also have that the proof of Conjecture 4.5.8 implies the proof of Conjecture 4.5.10,
by similar arguments as in the previous case.

Differently form the case A(h;) = 1, in this case the relations involving elements of g[t] with
degree 2 do not follow immediate from the degree 1 ones. Therefore, the challenge imposed to
prove (4.5.14) demands a deeper study of the module Ly (7), which we do not have enough tools
to deal with.

Case A\(hy) > 3. Note that in this case we have
R\ 1) ={aq, a0, 01 + aa, },  R(\,2) = {201 + a2}, and R(\,3) = R".

Lemma 3.5.2 implies

Ty U = 0 =2y, Ur.
Since
_ X — _ _ X — _
x2a1+a272 € C [‘ral—l—ag,l? Cqu,l]7 x3a1+a2,3 € C [x2a1+a2,27ma1,1]
— >< f— —
and ‘r3a1+2a2,3 S (C [x2a1+a2,27$a1+a2,1]7

we prove that exists an epimorphism of g[t|-modules
M(A) = L(m),

if we show that z .., ;9= = 0. The proof the latter is analogous of the case m = 1.
Therefore, together with (4.5.8), we have the following chain of epimorphisms of g[t]-modules

M(\) — L(w) — D()).

To prove Conjecture 4.5.8 in this case it remains to show that M (\) =gy D(A). Differently from
the previous case, the challenge here is to find a restriction of M(\), similar to (4.5.13) as in the
case A\(hy) = 2, so we can identify each simple g-module in the decomposition of M (A) to one of
D()).
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Chapter 5

Tame modules

Recall the definitions of tame, thin, special and anti-special modules given in Section 3.3. In
this chapter we define explicitly a family of sets of Drinfeld polynomials which we call “extended
snakes”, and consider the corresponding irreducible finite-dimensional modules of a quantum affine
algebra of type B,,. We show that a simple tame module of B,, type has to be an extended snake
module (more precisely, a tensor product of snake modules, see Remark 5.2.5), see Theorem 5.1.3.

Thus, we obtain the main result of the chapter: an irreducible module in type B is tame if and
only if it is thin. All such modules are special and antispecial.

Throughout this chapter we work only with simple finite-dimensional representations of U,(g),
for g of types A, and B,.

5.1 Statement of results

Define the subset X C I X Z by
Type A X :={(i,k) € I XxZ| i— k=1 mod 2}.
Type B X :={(n,2k+1)| ke Z}| {(i,k) € I xZ| i <n and k =0 mod 2}.

Let ¢ € C* and consider only the representations whose g-characters lie in the subring Z[Yi;k] (i,k)EX -

Recall that we have d; = 1, for type A, and, for type B,, we have d; = 2, i < n, and d,, = 1.
We also define
W = {(i,k)|(i, k — d;) € X}

in order to have a refinement of (3.3.2), such that M(L,(m)) C ﬂZ[Ai_’Clqk](m)eW, for all m €

Z[}/i,ch](i,k)ek“
Henceforth, by an abuse of notation, we write

Y;,k = Y;,cq’ﬁ Ai,k = Ai,cha Ui e 7= Uy cqhy
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for all (i,k) € X.
We denote by Py (resp. P%) the subgroup (resp. submonoid) of P generated by Y;x, (i,k) € X.
Given w € 77;, we always write m = Hthl Yi, r, in such a way that k1 > Kk and 4441 > 4
whenever ki1 = k;. We denote the ordered sequence (i, k¢)1<i<7 by X (7).

Definition 5.1.1. Let g be of type B,, and let (i, k) € X. A point (', k') € X is in extended snake
position with respect to (7, k) if one of the following holds.

() K —k >4+ 2" —i| — 6ps — 6y and k' —k = 2|’ — | — 6p; — On mod 4,

Pictorially, the extended snake position is shown in Figure 6.1 under the image of ¢+ defined in
(6.0.1).

Let (i, k), 1 <t < T, T € Zs>1, be a sequence of points in X. The sequence (i, ki)1<i<r 18
said to be an extended snake if (i, k;) is in extended snake position to (i;_1,k;1) forall 2 <¢ < T.
We call the simple module L,(7) an extended snake module if X (7) is an extended snake.

We now state the main theorems of the second part of this Thesis.

Theorem 5.1.2. Let g be of type B,. Let (i;, k) € X, 1 <t <T be an extended snake of length
T €Z> and T := Hle Yi, k- Then Ly(m) is thin, tame, special and anti-special.

Theorem 5.1.3. Let g be of type B, and let ®# € P¥. The module L,(m) is tame if and only
if X(m) is an extended snake. In particular, all irreducible tame modules are thin, special and
anti-special.

The following is immediate from the specialty property.

Corollary 5.1.4. Let V be a tame representation. For all m# € M(V) NPT, L,(w) is a tame
subfactor of V. O

We prove Theorem 5.1.3 in this chapter. The proof of Theorem 5.1.2 is essentially combinatorial
and, therefore, it will be treated in the following chapter.

5.2 First properties

The main objects of this chapter are the irreducible tame representations. In all cases they
turn out to be also thin. We start with simple remarks about tame and thin modules.

Lemma 5.2.1. The restriction of a tame module to any diagram subalgebra is tame. A subfactor
of a tame module is tame. [

Lemma 5.2.2. A subfactor of a thin module is thin. [
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Next we consider tensor products.

Lemma 5.2.3. Let w1, w9 € Pt. If the module L,(71) ® Ly(7s) is thin, then both L,(m1) and
L,(m3) are thin. N

We also have the tame analogue.

Lemma 5.2.4. Let wy, 7y € PT. If the module L,(71) @ L,(2) is tame, then both L,(m1) and
L,(m3) are tame.

Proof. Let {v;}7L, be a basis of Ly(m) and {w;}}2, be a basis of L,(my) such that ¢F(u),iel,
act diagonally in the basis v; ® wi. We also assume that w; is the highest weight vector and vy,
is the lowest weight vector.

Let f*(u) and g (u) be series in u*" defined by ¢ (u)w, = f*(u)w; and ¢ (u)v,, = g (u)v,, .
By Lemma (1.2.2), we have

fE(u) (67 (W) @ wi = ¢5 (u) (v; @ wy) € Cllu™]] v; @ wy,
rel, j=1,...,ny, and
g5 () v, @ (¢ (Ww;y) = 67 (u)(vay @ wy) € Cllu™]] vy, ® wy,

iE[,jzl,...,ng.
The lemma follows. O]

The converse statements of Lemma 5.2.3 and Lemma 5.2.4 are false. For example, a two
dimensional irreducible evaluation module of U, (;[2) is tame and thin, but its tensor square is not
tame nor thin.

The statements similar to Lemma 5.2.3 and Lemma 5.2.4, for tensor products with more than
two factors easily follow by induction.

It is known that for all w € P*, the module L, () can be written as a tensor product L,(7) =
®qecr Ly(m,) where each Ly(7,) is a module such that

Xo(Lo(ma)) € ZIY il men- (5.2.1)

i,aq®

Remark 5.2.5. By Lemma 5.2.3 and (5.2.1), L,(7) is thin if and only if each L,(7,) is thin.
Therefore, to classify all tame modules, it is sufficient to classify all tame modules for modules
L,(m,) satisfying (5.2.1) and to show that these modules are thin. Then it follows that L, () is
tame if and only if all L,(7,) are tame.
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5.3 Thin special g-characters and tame modules

5.3.1 Thin U,(sl,)-modules

In this subsection we assume g = sly and let [ = {1}.

Recall the definition of w; .k, ¢ € [,a € F*.k € Z>y, (see (3.5.2)). The set Si(a) :=
{ag=* 1 ag7**3 ... ag""'} is called the g-string of length k € Zs( centered on a € F*. Two
g-strings are said to be in general position if one contains the other or their union is not a g-string.
For each m € P" there is a unique multiset of ¢-strings in pairwise general position, denoted by
S,(7), such that

Sy(m) = {Sk ()L <t <m} and m=[]wipn. (5.3.1)

t=1

for some m € Z>;. Moreover,

LQ<7F) = ®Lq<w17bt7kt)’
t=1
where L,(wq ) is an evaluation module, and
k—1
Xq(Lg(Wiak)) = Wi ak (1 + Z Al_,nlzq’“Al_,zlzq’“‘2 o 'Al_,tlzq’“‘”) ' (5.3.2)
t=0

The module L,(7) is a thin simple finite-dimensional representation if and only if each two
¢-strings in S,(7) are in pairwise position and pairwise disjoint, see [NT98|. Moreover, we have
the following.

Lemma 5.3.1 ([NT98, Theorem 4.1]). Let V' be a finite-dimensional simple Uq(f/a\lg)—module. Then
the V' is tame if and only if V' is thin. All thin modules are special. O

The following useful lemma describes the /-weights which can be found in a simple thin module.

Lemma 5.3.2 ([MY12, Lemma 3.1]). Let v € P. There exists @ € P" such that L,() is thin and
v € M(Ly(m)) if and only if, for all a € C*, |u1o(7v)| <1 and w1 (Y) — w1 4g2(7y) # 2. Moreover,
~yALL, is a L-weight of Ly(m) if and only if uy o(v) =1 and uy 4g2(y) = 0. O

1l,aq

Remark 5.3.3. It follows from the previous discussions that if V' is a thin U,(g)-module such that
M(V) C Z[Ylialq%]kez, for some a € C*, and w0 € M(V), then all {-weight of V' can be obtained
from zo by several applications of Lemma 5.3.2.

5.3.2 Sufficient criteria for a correct thin special ¢g-character.

Given a set of {-weights M, the followig result gives sufficient conditions to guarantee it corre-
sponds to the g-character of a thin special finite-dimensional U,(g)-module.
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Theorem 5.3.4 ([MY12, Theorem 3.4|). Let w € P*. Suppose that M C P is a finite set of
distinct (-weights such that

(i) {m} =Pt N M,
(ii) for allw € M and all (i,a) € I XC*, if wA; ] & M then wA;  A;, ¢ M unless (j,b) = (i,a),
(111) for allw € M and all i € I there exists o € M, i-dominant, such that
Xq(Ly(Bi(w))) = > pi(v).
'yEwZ[Afé]aec*ﬂM

Then
Xq(Lg(m)) = Z w,

weM

and in particular Ly(7) is thin and special.

We use this theorem below to compute g-characters of all thin irreducible modules for types A
and B.

5.3.3 The sl, ., case.

In this subsection we assume g = sl,,;. We recall well-known results about tame simple
representations of U,(g).
A point (7, k") € X is said to be in snake position to (i,k) € X if

K —k>2+ | —i|

A sequence of points (i, k;) € X, 1 <t <T,T € Z>, is called a snake if (i, k;) is in snake position
to (i4—1, k1), for all 2 < ¢ < T. The following is essentially a result of [NT98|, see also [MY12,
Theorem 6.1].

Theorem 5.3.5 (|[NT98, Theorem 4.1]). Let g = sl,y1. Let w € P% and let X(w) be a snake.
Then Ly(7) is special, thin and therefore tame. N

This theorem can be proved by explicit computation of the g-character. The converse statement
is also essentially [NT98, Theorem 4.1]. We give a proof to illustrate methods we use in the proof
of Theorem 5.1.3.

Theorem 5.3.6 ([NT98, Theorem 4.1]). Let g = sl,.1. Let @ € Py. Then L,(w) is a tame
representation if and only if X () is a snake.
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Proof. The if part follows from Theorem 5.3.5. For the only if part we proceed by induction on
n which begins in n = 2, by Lemma 5.3.1.

Write m = H;‘FZI Yi, ki, where T € Zsq, (it, k) € X, t = 1,...,T. For simplicity write V' =
L,(m). Let J ={1,2,...,n— 1} and K = {2,3,...,n} be subsets of I. By Lemma 5.2.1, the
U,(gs)-module L,(3;(7)) is tame. Note that U,(g,) is isomorphic to U,(sl,_;). Therefore by the
induction hypothesis,

kir — ke > 24 |iger — 4],

whenever N ¢ {i;, 4,11}
Similar arguments applied to resgxV show that

kepgr — ke > 2+ |it+1 — 4,

whenever 1 ¢ {i;, 1.1}
Therefore it remains to consider the case when {i;,i;11} = {1,n}. Suppose, by contradiction,
0 < ki1 — ky <2+ |n — 1|. By the definition of the set X, this is equivalent to k; 1 — ky < n — 1.
By Lemma 3.3.3, we have
m = m+A;}kt+1 € xq(V).

Explicitly,
—1x—1 P .
w - Y 0 Y ko Yo ki1 if i, =1and 4411 =n
= 1xr—1 cp - .
”Yn,thn,kt+2Yn—1,kt+1 if % =n and 4,11 = 1.

In the first case, by Lemma 3.3.4, L,(8;(w)) is a subfactor of res;V. However,
kg — (ke+1)<|n—1]—1=|n—2]|,

yields a contradiction with the inductive hypothesis. A similar argument proves that the second
case cannot hold either. O

Since all simple tame U, (;[n)—modules are special, the following is immediate from the previous
theorem.

Corollary 5.3.7. Let V' be a tame Uq(;[nﬂ)—module. Then, for each dominant (-weight 7 €
M(V), L,(7) is a subfactor of V. O

5.4 Proof of Theorem 5.1.3

Assume that g is of type B,, and recall the definition of extended snake (Definition 5.1.1). We
observe that if we drop the condition (ii), we have the definition of snake position given in [MY12].
A point (i, k) € X is said to be in minimal snake position to (i, k") if it is in snake position and
k — k' is equal to the given lower bound in (i).
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We extend the definition of snakes to include all cases where the ¢g-character formula of Theorem
6.1 in [MY12] pertains, see Theorem 6.4.8.

Let (i, k), 1 <t < T, T € Zs>1, be a sequence of points in X. The sequence (i, ki)1<i<r 18
said to be a snake (resp. minimal snake) if (i, k) is in snake (resp. minimal snake) position to
(44—1,ki—1) for all 2 < ¢t <T. We call the simple module L,(7) an snake module (resp. minimal
snake module) if X'(7) is a snake (resp. minimal snake).

Observe that the minimal affinizations (see Section 3.5) are minimal snake modules where the
sequence of 4;, t = 1,...,T, is monotone. Finally recall that the Kirillov-Reshetikhin modules
are minimal affinizations where the sequence i;, t = 1,...,T, is constant. Therefore we have the
following families of representations, in order of increasing generality:

KR modules C minimal affinizations C minimal snakes C snakes C extended snakes.

Note also that, in the definition of extended snake position, there is no upper bound on the gap
k' — k. Suppose (it, kt)1<t<r € X is an extended snake and ksy1 — ks is sufficiently large for some s.
Then we have a tensor product decomposition: Ly([T1_, Yi, k) = Lo(TT5; Yiie) <§§>Lq(HtT:8Jr1 Yiik)s
see Corollary 6.4.9 bellow.

Remark 5.4.1. The extended snake position is not a transitive concept. Namely, if (i, k') is in
extended snake position to (7, k) and (i”, k") is in extended snake position to (', k'), then it does
not follow in general that (i”, k”) is in snake position to (¢, k). However, in the cases when not, we
necessarily have ¢/ =n, i +1i" > n — 2, (', k') is in snake position to (i,k) and (", k") is in snake
position to (i', k).

Assume Theorem 5.1.2 for a moment and let us prove Theorem 5.1.3. We first prove the case
n = 2.

Proposition 5.4.2. Let g be of type By and let w € PL. The module L,() is tame if and only
if X(m) is an extended snake.

Proof. The if part follows by Theorem 5.1.2. We prove the only if part. Let V = L,(7) be tame.
Let X(Tl') = (?:t, kt)1§t§T7 T e ZZI, (it, ]{ft) c X, 1<t <T.
By Lemma 5.2.1, the U,(g;)-module L,(53;()) is tame, j = 1,2. Note that U,(g;) is isomorphic

to Uy, (;[;])) Therefore, by Theorem 5.3.6, ki1 # k;, whenever 4,1 = i;, 1 <t <T — 1. Hence, it
remains to discard the cases

(1) th = it+1 =1 and ]{Zt+1 — kt = 2,
(11) it = it+1 =2 and kt—i—l — k’t = 4,

(111) it # it+1 and kft+1 - kt € {1,3}
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where 1 <t <7T — 1.

Suppose, by contradiction, that ¢ is maximal such that one of the above conditions holds. In
each case, using Lemma 3.3.3 and (5.3.2), we find an (-weight @ € x,(V) such that w is j-
dominant and w;;(w) > 2 for some (j,/) € X. By Corollary 5.3.7, L,(5;(w)) is a subfactor of
res;V and not tame, by Theorem 5.3.6, which yields a contradiction with Lemma 5.2.1.

Suppose that (i) holds. Let r € Z>, be maximal such that w; y,  44;(7) > 0, for all 0 < j <.
Then

@ = TA (H Al_,ilct+1+4(r—j)+2> € Xq(V).
=0
One easily checks using (3.3.1) that = is 2-dominant and wug g, 3(zo) > 2.
Suppose that (ii) holds. Then

—1 —1
w=7Ay 1A ks € Xa(V),

where =o is 2-dominant and us g, 14(w) > 2.
Suppose that (iii) holds. Set

w = wA;}kterit € xq(V).

Explicitly,

“1xv—1 . .
o = W}/thyyl7kt+4}/2,kt+l}/2,kt+3 lf L = 17
= Z1y1 e
Y5 1 Yo 42 Y 1 k41 if i =2

If i, = 1, then w is 2-dominant and either ugy,1(ww) > 2 or usy,+3(ww) > 2. If 44 = 2 and
ki1 = ki + 1 then wo is 1-dominant and wuy 4, 11(@@) > 2. Therefore, it remains to consider the
case when i, = 2 and ki = ky + 3. Let r € Z>o be maximal such that uy, ,y4;(z@) > 0, for all
0<j5<r. Then

-1 -1
w=wA 3 (H Al,kt+1+4(rj)+2> € xq(V),

J=0

w is 2-dominant and ug g, , ,+1(w) > 2. O

We now prove Theorem 5.1.3 by induction on n, beginning on n = 2, which is Proposition
5.4.2.

Assume n > 3. Let V = Ly(m) and X (7) = (i, ki )1<e<r, T € Z>1.

Set J;1 = {2,3,...,n} and J, = {1,2,...,n — 1}, subsets of I, and consider the subalgebras
U,(9.,) and U,(g.,) of Uy(g). These subalgebras are isomorphic to quantum affine algebras of type
B, _1 and A,,_1, respectively.

By Lemma 5.2.1, L,(8, (7)) is a subfactor of res; V', and by induction hypothesis,

Kipr —ke > 442]ip0q —i| =6

n,ite1 —5,,1’% if kt+1 — ]{ft = 2|it+1 —Zt| -0 5717% mod 4, (541)

nit41
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or

ktJrl — k't 2 2n + 2’” — it+1 — it —+ 1| — (Sn — 5n,it (542)

Jit+1

forall t, 1 <t <T —1, such that 1 & {4z, 411}
Similarly, L,(8,(7)) is a subfactor of res;, V', hence, by Theorem 5.3.6,

kt—l—l — kt Z 4+2|it+1 — Ztl — (571 5n7it if kt+1 — kt = 2|it+1 _Zt| — 571 571,1}5 mod 47 (543)

41 41

forall ¢, 1 <t < T — 1, such that n & {is, i1}

Suppose, by contradiction, that (i1, k+1) is not in extended snake position to (i, k¢ ), for some
t,1 <t <T—1. Without loss of generality, we can assume that (i5y1, ksy1) is in extended snake
position to (is, ks), for t < s <T — 1. For convenience, denote

(i,k) = (it, ky) and (', k") = (411, kegr)-
We divide the argument in the following two cases.
(i) ¥ —k=2|i" —i| = dp — 0y mod 4,
(i) ¥ —k=2+2 —i| — 0ps — 6n; mod 4.

In each case, using Lemma 3.3.3 and (5.3.2), we find a Jy-dominant /-weight ©o € x,(V),
for some ¢ = 1,2, and consecutive points (j,1), (j',I") € X(B8,,(w)), I! > [, such that one of the
following holds:

e (=1and (j/,!') is not in extended snake position to (j, ) with respect to the algebra U,(g,, ),
e (=2 and (j/,0') is not in snake position to (j,1) with respect to the algebra U,(g,)-

By induction hypothesis and Corollary 5.1.4, if £ = 1, and by Theorem 5.3.6 and Corollary 5.3.7, if
¢ =2, L,(B;,) is a subfactor of res;,V which is not tame, thus a contradiction with Lemma 5.2.1.

Let (i) hold. By (5.4.1) and (5.4.3), it remains to consider the case {i,7} = {1,n}. Our
assumption implies 0 < k' — k < 24 2|n — 1|. By the definition of X', this is equivalent to

1<K —-k<2n-3.

Therefore,
i_,lirdi € XQ(V)

If i =1, then w is Ji-dominant and let (j,1) = (2,k 4+ 2) and (5/,I') = (n,k’). If i = n, then o is
Jo-dominant and let (j,1) = (n — 1,k + 1) and (5', k') = (1,k"). In each case we have u;;(w) = 1,
uj (o) =1 and

w=mA

—1<U—1<2)f =l
This finishes the case (i).
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Let (ii) hold. Our assumption implies

0<K-—-k<2n+2+42n—i—1i]—0n;i— Onir-

By the definition of X this is equivalent to
0<K—k<2n—2+2n—14 —i] —0pi — Ons.

We split the argument further in the following subcases:

ai#landi=1,

b i #1andi#1,

ci =1

Counsider the case a. Set
-1
w=1Ay . € Xg(V).

(5.4.4)

Let (4,0) = (2,k+2) and (j',I') = (¢',k"). Then w is Ji-dominant, u;,;(ww) = 1, u; (™) = 1.

Moreover, (5.4.4) implies
—2<U—=1<2n—4+42n—j —j+1] = 0ny,

completing the proof in this subcase.
Consider the case b. By (5.4.2) and (5.4.4) it follows that

2n4+2n—i' —i+ 1] =0y —0ni <K —k<2n—242n—i' —i| =0, —

(5.4.5)

If n—4" —i >0, there is no k and £’ satisfying (5.4.5). On the other hand, if n — ¢ — i < 0, then

(5.4.5) is equivalent to
K — k=20 + 2 — 2 — 8,5 — On.

In particular, (5.4.6) implies

i—1
_ —1
w=r HAi—j,k+di+2j € xq(V),
=0
Explicitly, by (3.3.1),
-1 -1 . .
TrY;’k }/ti+1,k+2}/17k+2+2i if ¢ S n — 2’
WYnTIglyn,k+4}/v1Tk1+1+2i if 1=n.

Let

(G.l) = (i+1,k+2+0,1) ifi<n,
’ (n,k +4) if i =n,
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One readily checks that = is Ji-dominant, u;;(w) = 1, u; (@) = 1 and, by (5.4.6), it follows
that
U—l=2n—4+2n—3 —j+1] = 0uy — 0nj,

finishing the proof in this subcase.
Consider the case c. Let r € Z>( be maximal such that (1,k" +4j) € X (), for all 0 < j <.
Then
{ Hgl 0Ag, k’+4 (r— ])+2 € xq(V) ?f Z > 1, (5.4.8)
TA g o 1k’+4(r 2 € xg(V) ifi=1.
Let
‘ (i, k) if i >1, g ,
3, l) = and (5,0') = (2,k" + 2).
G- {(2,k—|—2) if i =1, 7.5 = )
One easily checks that w is Ji-dominant, u;;(w) = 1 and u; y(w) = 1. By induction hypothesis,
it follows that
l'—1>2n+2n—j5 —j5+1]—

Equivalently,
K—k>2n—242n—i—2+1]-46,, ifi>1, (5.4.9)
K —k>4n—6 if 1 = 1.
Relations (5.4.4) and (5.4.9) together are equivalent to
K —k=2n—2+2n—i—1] - d,. (5.4.10)

If i <n, (5.4.10) implies

=7 <H Az+] k+2+23) An}€+2(n 1-i) € Xq(V).

Explicitly,
-1 — 1
w = ﬂ-}/i,k: Y;—17k+2Yn—1ak+2(”_1_i)+2Yn k+2(n—1— 7,)+3Yn k+2(n—1—1)+1"

Let (j,l) = (n — 1,k +2(n —1)) and (5,I') = (1,£"). Then w is Jy-dominant, u;;(ww) = 1,
uj y(wo) =1 and

U—l=2]j —jl.

If i =n, (5.4.10) implies

=7 H An —J,k+1+2j H Al K H4A(r—7)+2 = XQ<V)
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Let (4,1) = (n,k+4) and (j',1") = (2, k'4+2). One easily checks using (3.3.1) that zo is J;-dominant,
u;i(w) =1, uyp(wo) = 1. Moreover, (5.4.10) implies

!'—1l=2n—442n—j5 —j+1 -1

This completes the proof in this subcase. The proof of Theorem 5.1.3 is finished. m
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Chapter 6

Combinatorics of paths and moves

In this chapter we recall the combinatorial system of non-overlapping paths, introduced in
[MY12, Section 5] and extend their results to one which our extended snakes will pertain. Then,
we use such results to prove Theorem 6.4.8 bellow, which proves, in particular, Theorem 5.1.2 and
gives a closed formulae for the g-character of extended snake modules in terms of non-overlapping
paths.

Assume the notations and definitions given in the previous chapters. We draw the images of
points in X under the injective map ¢ : X — Z x Z defined as follows

(21, k), ifi<nand2n+k—2i=2 mod4
v:(i, k)= (4n—2-2ik), ifi<nand2n+k—2i=0 mod 4 (6.0.1)
(2n —1,k), if i = n.

6.1 Paths and corners

A path p is a finite sequence of points in the plane R?. We write (i, k) € p, if (i, k) is a point
of the path p. In our diagrams, we connect consecutive points of the path by line segments, for
illustrative purposes only. For each (i,k) € X, we define a set &, of paths. Pick and fix an e,
0 < €< 1/2. Define &, for all k € 2Z + 1 in the following way

e For all k =3 mod 4,

yn,k = {((0790)7 (27y1)a ey (2TL - 4ayn—2)7 (277’ - Zayn—l)a (Qn - 1ayn)) |
yo=k+2n—1y —y;€{2,—2}forall0<j<n-—2
and y, —yn—1 € {1 +¢€,—1—¢€}}.
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Figure 6.1: Each of the points «, 0 and m are, respectively, in extended snake, snake and minimal
snake position to the point marked o.

1 2 3 45 4 3 2 1 1 2 3 4 5 4 3 2 1

0 0

2 2

4 4

6 6

8 8

10 10

12 12

14 ¢ 14

16 16 ]
18 ¢ 18

20 20 ]
27 i 2 T T

e Forall k=1 mod 4,

l@n,k = {((47’L - 27?-/0)7 (47’L - 47y1)7 ey (2n + 27?/71—2)’ <2n7yn—1)) (277/ - 1;yn>) ’
y=k+2n—1y;1—y;€{2, -2} forall0 < j <n—2
and Yn — YUn—1 € {1 + ¢ —-1- 6}}

Next, & is defined, for all (i,k) € X, as follows.

gzi,k = {(CLOval?' .- 7an7m7' .- 7a_17&_0) |
(CLO; ai..., an) S gzn,k—(Qn—%—l)y (a_07 a_la s 7@) S ‘@n,k—k(Qn—Qi—l)?

and a,, — @, = (0,y) where y > 0}.

For all (i, k) € X, we define the sets of upper and lower corners Cy, 4 of a path p = ((jr, 1)) o<r<pp-1 €
P, as follows:

Copi =0 (G l,) €pljr € {0,2n — 1,40 — 2}, 1,y > L 1y > 1}
L{(n,l) e X|(2n —1,l —¢) € pand (2n — 1,1 +¢€) ¢ p},

Cp =1 (G l) €pldr € {0,2n — 1,40 — 2}, 1,y <l 1y <1}
L{(n,l) € X|(2n —1,l+¢€) €pand (2n — 1,1 —€) ¢ p},
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Figure 6.2: In type Bj illustration of the paths in 55 (left) and &, (right).

1 2 3 4 5 4 3 2 1 1 2 3 4 5 4 3 2 1
O0—O0——O0—O000——0—0O0—0 O—O0—O0—000——O0—0—O0
0 0
2 2
4 4
X
6 \/ 6 /
8 8
10 10
12 12
14 14
16 16
18 18
20 20

We define a map m sending paths to ¢-weights, as follows:

m: |_| Py — LY

(i,k)ex

(J,hex

p = mp):= ] vu JI Yi"

(j:l)ecp,“' (J:l)ec s

(6.1.1)

For all (i, k) € X we define ka) the highest path to be the unique element of &7; ;, with no lower
corners. Equivalently, pxk is the unique path such that ¢(i, k) — 0,,;(0,€) € pfk

Analogously, we define p; ., the lowest path, to be the unique element of ;. with no upper
corners. Equivalently, p;, is the unique path such that ¢(i, k + 4n — 2) + 6,,:(0, €) € p; .

6.2 Lowering and raising moves

Let (i,k) € X and (j,1) € W. We say a path p € &, can be lowered at (7,1) if (j,l—d;) € C, 4+
and (7,1 +d;) ¢ Cp+. If so, a new path is defined, called the lowering move on p at (j,1) and
denoted by p;z%jjl, as follows.

We first define the lowering moves on paths in &,;, k = 3 mod 4. For any path p =
((0,90), (2,91), .-, (2n — 1,y,)) in Py, we define the lowering moves case-by-case.
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Figure 6.3: In type By, the paths corresponding to the (-weights of x,(L4(Y1,0)), by Theorem 6.4.8.

1 2 343 2 1 1 2 343 2 1 1 2 343 2 1
0 0 0
% , L 8 , L i
4 i - 4 / - 4 s
6 \\ . R\ 6 \\ . N\ 6 g N\
8 8 8
10 : S 10 - N 10 \ -
12 - 12 - 12 :
Yio : T — Y2,2Yl7_41 : T — 5@,4}3};1 1
H 1 ML ML
1 2 343 2 1 1 2 343 2 1 1 2 343 2 1
0 0 0
, L T , L S , L T
\ N \ \ N \ ) - \
6 - 6 - 6 5
8 AN 8 X\ 8 N\
10 A 10 A 10 : -
12 — . - - 12 = - - 1z . 7 :
" B Yzl,5Y4,7Y3,8 ~ - " B Y4,5 4,9 ~ - u B Y4,7 Y4,9 Y3,6 N
[ B L] 0 R O
1 2 343 2 1 1 2 343 2 1 1 2 343 2 1
0 0 0
, L S , L T , L T
\ N \ \ N \ \ - \
6 6 6
8 - : 8 . s 8 - =K
10 RV 10 - - 10 : - -
2T voly: T 2T vly, 3 112 vl /
W S T FHe
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(i) If (4,1—2) € C, 4 for some j < n—1, we have | = y;_; = y;+2 = y,41 and we define pa%j’_ll =
((07 y0>7 (27%), ceey (2.7 - 27 yjfl)a <2j7 yj + 4)7 (2] + 27yj+1)7 o (2Tl - 273/7171)7 (2n - 17 yn))

(i) If (n—1,1—-2) € Cp4, we have | = y,_o = yp—1 +2 = y, + 1 — € and we define pﬁ/jjl =
((Oa y0)7 (2,?/1), s (27’L - 4a yn—2)7 (277’ - 2a Yn—1 + 4)7 (27’L - 17 Yn + 2— 26))

(iii) If (n,l —1) € Cp 4, we have | = y,_1 = y, + 1 + € and we define
p'%jll = ((O7y0)7 (27 y1>a R (2n - 2a yn—1)7 (2’)’L - 17 Yn + 2+ 26))

In each case, p,xzfjjll € P, . Pictorially, these moves are

=1 J  j+1 N—2 N—1N N—-1 N-2 N-2 N—1 N N-1 N-2
- - ---O0—O00—0O - - - ---O0—O0x0—O0O - --
) ' ; i) o« i) N'g
/ »
42 L 42 ¥ +2

When £ = 1 mod 4 we define the lowering moves on %, simply as mirror images of the
moves above. Formally, for any path p = ((4n — 2,v0),(4n —4,11),..., (2n,yn_1), 2n — 1,y,)) in
P, we define the lowering move case-by-case

(i) If (4,1—2) € C, 4 for some j < n—1, we have | = y;11 = y;+2 = y,;_1 and we define p;zfjf =
((47’L - 27y0)7 sy (2] + 2a yj—l)v (2]7 yj + 4)7 (2] - 2a yj—i—l)a teey (271, yn—l)a (277' - 17yn))

(i) f (n—1,1—2) € Cp4, we have [ = y,, + 1 — € = y,_1 + 2 = y,,_2 and we define
p'%jll = ((47’L - 27y0)a (47’L - 47 ?/1), SR (2’]1 + Qayn—2)7 (2’)17 Yn—1 + 4)7 (27’L - 1ayn +2- 26))

(iii) If (n,l) € Cp4, we have [ =y, + 1 + € = y,—1 and we define
p@{]jll = ((4n - 27 yO)u (4n - 47 yl)u R (2”7 yn—l)a (2n - 17 Yn T+ 2+ 26))

In each case pszfjjl € ;. Pictorially, these moves are

j+1 g -1 N-2 N-1 N N—1 N-2 N—-2 N—1 N N—1 N—2
-- - - -O0—OE0—O - - - - - 0—OEO0—O - - -
-2 e 1-2 e 1-2 l
I ' ; i) i) <+
L
[ 4
1+2 v 142 v 142

Finally, for (i, k) € & such that i < n, we have that every path p € &, is equivalent to a pair
(a,@) € Py i—(2n-2i-1) X P i+(2n—2i-1)- Since a and @ can share no upper corners the set of upper
corners of p is a subset of disjoint union of the sets of upper corners of a and @. Therefore, if p
can be lowered at (7,1), either a or @ can be lowered at (j,1), and we define pxz/j’_ll to be the given
by whichever of the pairs (a@fjjl,a) and (a, E;zfjjll) is defined.

Analogously, given (i,k) € X and (j,1) € W we say that a path p € &, can be raised at (j,1)

ifp=9p 42%]._[1 for some p’ € & ;. If such p’ exists it is unique, and we define p.a7;; := p'.
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6.3 Non-overlapping paths
A path p is said to be strictly above a path p', and p’ strictly bellow p, if
(v,y) €p and (m,2)€p =y <z

If a path p is strictly above a path p/, then we also say p’ is strictly bellow p. A T-tuple of paths
(p1, ..., pr) is said non-overlapping if p; is strictly above p; for all s < ¢. Otherwise, for some s < ¢
there exist (z,y) € ps and (z,2) € p; such that y > z, and we say ps overlaps p; in column z.

Let (i, k) € X,1 <t < T, be an extended snake. Define

P i ki)icrer = {(p1,-.-,pr)lpt € Py 1 <t <T,(p1,...,pr) is non-overlapping}.

Lemma 6.3.1. If (i, k) € X,1 <t <T, T € Z>y, is an extended snake, then (pj;kl, o ,pjTykT) €
‘@(it»kt)lgtST and (p’;,]fl’ ... ’pi_TJfT) € gz(it,kt)lgtgr

Proof. We argue about highest weight paths. Lowest weight paths are treated similarly.
It
K—k=2+42"—1)—0py —6,; mod 4, (6.3.1)

then pxk is strictly above p;k, because of the inequality
K —k>4n+42—2i— 2" — 0, — Opir. (6.3.2)

And if
K — k=2 —i) — 0py — 6, mod 4, (6.3.3)

then p, is strictly above pj ,,, because of the inequality

K —k>4+42)d —i] —0pi — Onar (6.3.4)
Therefore p;;ks and pitHJ%H are non-overlapping, for s = 1,...,7 — 1. The proof that non-
adjacent paths are non-overlapping, see Remark 5.4.1, is also straightforward. O

Lemma 6.3.2. Let (i, k) € X,1 < t < T, be an extended snake of length T € Zs, and

(p1,...,p1) € @(it,kt)lgtST' Suppose (i,k) € Cp, +, for some 1 <t <T. Then
(1) (i,k) ¢ Cp, 1, forany s #t, 1 <s<T, and

(i1) if (i,k) € Cp, %, for some s, 1 <s<T, thens=t+1 andi=n.

Proof. This follows from the definitions of non-overlapping paths, cf. Figure 6.4. Examples of (ii)
can be shown in Figure 6.5 O
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Figure 6.4:

[llustration of the definition of overlapping paths in type Bj.

By Theorem

5.1.2, L,(Y31Y33) contains the (-weight (Y14Y5;)(Ysg YasYi o) (left) but not the (-weight

Vig Yoo Yie = (YVig YoeYsr ) (YarYsg Vi) (right).

10

oh

10

(6.3.5)

Figure 6.5: Illustration of Lemma 6.3.2. By Theorem 5.1.2, L,(Y50Y5¢) contains the (-weight
Y315V Y00 = (Y515Ya11) (YirYanYsio) (left) and Ly(Ys1Yas) contains the f-weight Y56Y5 ), =
(Y2,6Y;1,_91)(m,9Y2,_112)(right)-
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It follows that for any (pi,...,pr) € Pk)ierer and (j,1) € W, at most one of the paths
can be lowered at (j,1) and at most one path can be raised at (j,1). Therefore, there is no
ambiguity in performing a raising or a lowering move at (j,[) on a non-overlapping tuple of paths
(p1,...,pr) € ﬁ(it,kt)lﬁg, to yield a new tuple (py, . .. ,pT),fzfﬁl.

The following lemma easily follows from the definitions.

Lemma 6.3.3. Let (iy,k:) € X, 1 < t < T, be an extended snake of length T € Z>1 and
(P1s--s07) € Pliski)rcren- Then HtT:1 m(p;) is dominant if and only if p; is the highest path of
P, foralll <t < T. Analogously, Hthl m(p;) is anti-dominant if and only if p; is the lowest
path of Pk, for all1 <t <T. O

The following lemma gives information about how overlaps arise when performing a lowering
move on a tuple of non-overlapping paths.

Lemma 6.3.4. Let (i, ki)1<t<r € X an exstended snake of length T € Z>y and (p1,...,pr) €
@(it,kt)qu. Let 1 <t < T and (j,l) € X be such that the path p; can be lowered at (j,1). This
move introduces an overlap if and only if there is an s, t < s < T, such that ps has an upper
corner at (j,1 + d;) or a lower corner at (j,1 — d;).

Proof. This is seen by inspection of the definitions above of paths and moves. We illustrate the
distinct cases, up to symmetry. In the most cases the overlap occurs at an upper corner (j,! + d;)
of p,:

n—1 n n—1 n—1 n n—1 n-—2 J+1 J j—1
0040 O90&0—0 O——0O0——=O0
y (.
L
» \'g v

The exception is when the upper corner (j,l — d;) of p; is also a lower corner of p,, which can
happen only when j = n, cf. Lemma 6.3.2(ii):
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The only other possible overlapping scenario is as shown.

n—1 p n—-1 n-2

O0&0—0
.‘.T..’..i

This situation occurs if and only if (n — 1, k) is an upper corner of some path p, (n—1,k+4) € p’
for some p’ and (n — 1, k+4) is not an upper corner of p’. However, we claim this does not happen
for extended snakes.

Indeed, let (i, k) € X and (i, k') € X such that ¥’ > k. Let p € P, p € Py
If the extended snake also has a point (i,k”) with & > k” > k then the overlap above is
impossible. Otherwise, we use the definition of the extended snake modules. In the case of (6.3.1),
we have:
K —k>242i"+2i—0p; — Onar (6.3.7)

It follows that if, for some ¢ € Z, (n — 1,¢) € C, 4, for some p € &, then (n,¢ + 3) ¢ p', for all
P E Py
The case of (6.3.3), is similar with the use of the equation

K o=k > 4420 —2— 0, — 6pa. (6.3.8)
0

The property of the tuples of paths described by this lemma is used for the proof of Theorem
5.1.2. Informally, it means that the first overlap between paths always corresponds, in the ¢-
character, to an illegal lowering step in some U,(sly) evaluation module.

Remark 6.3.5. The definition of the extended snakes is exactly the combination of (6.3.2), (6.3.7)
in the case of (6.3.1) and of (6.3.4) in the case of (6.3.3). Observe that (6.3.4) implies (6.3.8) in
the latter case.

Our definitions of paths and moves are so constructed that we have the following.

Lemma 6.3.6. Let (i, k) € X, 1 <t <T be an extended snake and (p,...,pr) € @(it,k‘t)lgth‘ If
Py, 0) = (p1,- - ,pT)gngﬁl, where (7,1) € W is any point at (p1, ..., pr) that can be raised/low-

ered, then Hle m(p,) = A;-%ll HtT:1 m(p;).
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6.4 Properties of paths and moves

Given two paths p = (2., Yy )1<r<m and p’ = (T, Y. )1<r<m, M € Z>1, in P we say p is weakly
above (resp. weakly below) p', if y, <yl (resp. y, > y.), for all 1 <r < m. Let

top(p, p') := (2r, min(yr, y;))1<r<m-
The following lemma gives properties of paths and moves that can be checked by inspection.
Lemma 6.4.1. Let p and p’ be paths in ;. Then
(i) p is uniquely defined by its set of lower corners,

(11) suppose p is weakly below p'. If p # p', then there is a (j,1) € W such that p can be raised at
7,0) and pat;; is weakly below p/,
Js

(111) top(p,p') € P and top(p,p) is weakly above both p and p'.

Lemma 6.4.2. Letp and p' be paths in ;. Then the path p can be obtained from p’ by a sequence
of moves containing no inverse pair of raising/lowering moves.

Proof. By applying Lemma 6.4.1(ii) a finite number of times we construct a sequence Z(p,p’) of
distinct points in W such that, starting with p, performing raising moves at these points, in order,
yields top(p, p’). Similarly, we construct a sequence Z(p', p) of raising moves taking p’ to top(p, p’).
By reversing the sequence Z(p', p) we have a sequence of lowering moves taking top(p, p’) to p’. It
suffices to show that Z(p,p’) and Z(p', p) have no element in common.

Suppose for a contradiction that (j,1) € W occurs in both sequences Z(p,p’) and Z(p, p). Let
p be the path obtained from p, by performing raising moves at the points in Z(p,p’) preceding
(7,1), in order. Similarly, let p’ be the path obtained from p’ by performing raising moves at the
points in Z(p', p) preceding (7,1), in order. Observe that top(p,p’) = top(p,p’). But both paths
p and p' have a lower corner at (j,! 4+ d;). Therefore, top(p,p’) has a lower corner at (j,! + d;),
while top(p, p’) does not, hence a contradiction. ]

Lemma 6.4.3. Let (i, k) € X, 1 <t < T, be an extended snake and let (py,...,pr) and
(p1,...,D7) paths in @(it,kt)lgth' Then (p1, ..., pr) can be obtained from (p',...,pr) by a sequence
of moves containing no inverse pair of raising/lowering moves, such that no move introduces any
overlaps.

Proof. For each 1 <t < T, consider the sequences Z(p;, p;) and Z(p;, p;) of points of W as in the
previous lemma. We claim that the following is a sequence of moves obeying the requirements of the
lemma. We first perform raising moves on p; at the points in Z(py, p}), in order to reach top(py, p}),
then on p, we perform raising moves at the points in Z(ps, pj), in order to reach top(ps, py) and so
on until we raise pr to top(pr, pr). We now perform lowering moves on top(pr, p) at the points
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in Z(p/r, pr), in reverse order to reach p/., then on top(pr_1,pr_;) at the points in Z(py_,, pr—1),
in reverse order to reach p’._; and so on until we lower top(py,p}) to p}. In fact, by Lemma 6.4.2,
R (pe,0}) NZ(p,,pr) =0 for all t, 1 <t < T. It remains to check that Z(p, p}) NZ(p.,, p.) = O for
all 1 <t +# u <T. Suppose, by contradiction, (j,1) € Z(p:, p,) NZ(p.,, pu), for some 1 <t £ u<T
and, without loss of generality, suppose t < u. Let (x,y) := ¢(j,l+d;). Then p!, has a lower corner
at (j,! + d;) and top(py,p),) does not. So p, contains a point (z,y’), ¥ < y. But p, also has a
lower corner at (j,!+ d;) and then, p, and p, overlap in a column z which is a contradiction since
p and p, are non-overlapping. O

Lemma 6.4.4. Let (i, k) € X, 1 <t < T be an extended snake and (j,,1,), 1 <r < R be a
sequence of points in W. For all (p1,...,pr) € @(it,kt)lgth and (py,...,pp) € @(z‘t,kt)lgtg; the
following are equivalent:

(i) Tz m(p) = TT2 mp) TLL A,

(ii) there is a permutation o € g such that ((ja(l),la(l)),...,(jU(R),lU(R))) is a sequence of
lowering moves that can be performed on (p1,...,pr), without ever introducing overlaps, to
yield (py, ... pr)-

Proof. 1t is clear that (ii) implies (i), by Lemma 6.3.6. To see that (i) implies (ii), note that since
(p1s---,pr) and (pi,...,py) are elements of P ;, x,),.,.,» by Lemma 6.4.3, there is a sequence of
moves that takes (py,...,pr) to (p,..., %) without i_ntroducing overlaps and without ever per-
forming a move and its inverse. By Lemma 6.3.6 and the fact that the (A;;)(;)ew are algebraically
independent, these moves must indeed be lowering moves at the points (j,,l.)1<,<r arranged in

some order. O

Corollary 6.4.5. Let (i;, k) € X, 1 <t <T be an extended snake. The map
ﬁ(it,kt)lgth — Z’[’I}fi?‘]:ql](i,k)e?fa
(p17"'7pT) = Ht:lm(pt)v

18 1njective.

Lemma 6.4.6. Let (i;, k) € X, 1 <t < T be an extended snake and (py,...,pr) €

Let o = Hthl m(p;). If wAz_,i is not of the form Hthl m(p,), for any (p},...,pf) €
then neither wAi_,,iAjyl is so, unless (j,1) = (i, k).

(it,kt)1<e<T

NAY

(it,kt)1<e<T7

Proof. Tf wA;,iAjJ = [, m(p,) for some (p},...,ph) € ﬁ(ihkt)lgtST then, by Lemma 6.4.4,

(p,...,pr) can be obtained from (pi,...,pr) without ever introducing overlaps. Since wAl_kl
does not correspond to a non-overlapping path, either it is not possible to lower (pi,...,pr) at
(1, k) or this is a valid lowering move but one which introduces an overlap. Therefore, (p}, ..., p})

is obtained by raising (p1,...,pr) at (j,{) and then lowering at (i,k). Suppose the raising move
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is on py and the lowering move is on p;, 1 < s,¢t < T. If s # ¢, then this requires that p; can be
lowered at (i, k), so we must have r such that when we lower p; at (i,k) it overlaps with p,. If
s ¢ {t,r} then, after the rising move at (j,[) on ps, it is still true that when p, is lowered at (i, k)
it overlaps with p,.. If s = r, then note that p, lowered at (i, k) overlaps with p, raised at (j,1).
Therefore, in fact, s = ¢, i.e. both moves must be on the same path. By inspection we see that it
is necessary that (j,1) = (i, k). ]

Lemma 6.4.7. Let (i, k) € X, 1 <t < T be an extended snake and (p1,...,p1) € Py k)rren-
Pick and fix ani € I. Let & C ﬁ(it,kt) be the set of those non-overlapping tuples of gga_ths
that can be obtained from (p1,...,pr) by performing a sequence of raising or lowering moves at
points of the form (i,l) € W. Then >, 7 Bi(IT, m(py)) is the q-character of a simple

finite-dimensional Uq(sAIQ)—module.

1<t<T

Proof. Let © = [[,_, m(p,). It follows that u;;(zo) < 1, by Lemma 6.3.2; since there cannot be
an upper corner at (i,! — d;) and a lower corner at (i, + d;) without paths overlapping, we have
Ui, (T0) — Ui a; (o) # 2. By Lemma 5.3.2, these two conditions imply that (;(wo) is part of a
thin simple finite-dimensional U,, (f?[él))—module. Let us call it V.

We now prove that the elements of & are in bijection with the set M(V). By Lemma 6.3.4, it

is possible to lower (py,...,pr) at (i,1) without introducing an overlap, if and only if
(i) (4,1 — d;) is an upper corner of some path in (py,...,pr), and
(i) (4,1 — d;) is not a lower corner of any path in (p,...,pr), and

(iii) (¢,{ + d;) is not an upper corner of any path in (py,...,pr).

By Lemma 6.4.4,
T
wA;] € Z H m(p})
(p’l,..A,p’T)Gﬁ t=1
if and only if (i)-(iii) hold; that is, cf (6.1.1), if and only if w;;_4, () = 1 and w;4q4,(w) = 0.
These are precisely the conditions of Lemma 5.3.2 under which

Bi(wA;l) e M(V).

Similar statements hold for raising moves. Moreover, by a finite sequence of moves of this type we
obtain every element of M(V') and no others, by Remark 5.3.3. We also generate all elements of
2 and no other tuple of paths. O

We are now prepared to state the main result of this chapter, which proves in particular
Theorem 5.1.2.
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Theorem 6.4.8. Let (i, k) € X, 1 <t < T be an extended snake of length T € Z>; and set
T
7w =[[,_, Yi, k- Then

T
Yol Lo(m)) = > [ m().
(P1y--es PT)eﬁm,kthgth =1

In particular Ly(7) is thin, special and anti-special.

Proof. By Lemma 6.3.3 and the definition of highest path, we have w = Hthl m(p;';kt). Define

T
M = {H m(pt)l(pla s apT) € ﬁ(it,kt)1<t<T}
t=1

and observe that M has exactly one anti-dominant ¢-weight, by Lemma 6.3.3. We shall show that
the conditions of Theorem 5.3.4 apply to the pair (m, M). In fact, property (i) of Theorem 5.3.4
follows from Lemma 6.3.3. Property (ii) is Lemma 6.4.6 and property (iii) is Lemma 6.4.7. Since,
by Corollary 6.4.5,

> = 2 L[ meo).

weM (pl ..... pT)Eﬁ“t’kt)lgtST t=1
the theorem follows from Theorem 5.3.4. O]
Corollary 6.4.9. Let (it, k) € X, 1 <t < T be an extended snake of length T € Z>, and

T o= Hthl Yigo Let 1 < s <T and let w1 = [[;_, Vi, 5, ™2 = Hthsﬂ Yiik,- Then Ly(my) =
L,(m1) ® Ly(73) if and only if

ko1 — ks >4+ 205 + 20501 — Onyy — Onirrs (6.4.1)
when ki1 — ks = 2(is — i541) — Onyi, — Onyiy,, mod 4, or
ks+1 — ]{ZS Z 4n =+ 2 — 2|ZS — ’is+1| — 5,171'8 — 5n,i5+17 (642)

when ki1 — kg =2+ 2(is — i531) — Onjg, — Ony,,, mod 4.
In particular, the extended snake module is prime if and only if (6.4.1) and (6.4.2) fails for all
s=1,..., 7T —1.

Proof. The inequalities (6.4.1) and (6.4.2) are equivalent to the requirement that any path p €
P;, i, is strictly above any path p’ € & k..., in their respective parity cases. The corollary
follows from Theorem 6.4.8. ]
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Chapter 7

Tableaux description of snake modules

In this section we define a bijection between super standard skew Young tableaux and paths
of some associated snake. We freely use the notation of the previous chapters.

7.1 Combinatorial properties of non-overlapping paths
Define a set A (the alphabet) equipped with a total ordering < (alphabetical ordering) as follows:
A:={1,2,...,n,0,m,...,2,1}, 1<2<---<n<0<n<---<2<1,

Given a subset B C A, assume B = {a; < ay < ... < a,,} for some m € Z>q. For k € Z>, define
the subsets of B

kB .= {aki1, aks2, ..., an} and Bl .= {ai, a2, ..., am_r}, (7.1.1)

with the convention WB = B¥ = () if k > m.
Let (i,k) € X and p € P . If i =n and p =: ((z,,Yr))o<r<n, define

R, ={rl1<r<n, y,—y,_1 <0} CA, and }_%p::{ﬂlgrgn, Yr — yp—1 > 0} CA.
If 1 < n, recall that p is given by a pair (a,a), where
a € Ppj—(an—2i—1) and @ E Py i (on—2i-1)-

Let

a=: (($r7yr))0§r§n and @ =: ((Tﬁyr))oﬁrﬁna

and define

By:={rll<r<n 3, -9, <0} CA and Ry:={7l<r<mn, y.—y1>0}CA
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If ©+ < n, we also define
S,={rl1<r<n, y,—y1 <0} CA and S,={F[1<r<n, ¥y -7, >0} CA.

Note that
S,={rli<r<n, 7¢R,} and S,={F[1<r<n, r¢R,}.
Clearly p is completely described by the pair of sets Rp,}_%p, and equally so by Sp,gp, when ¢ < n.
Example. If p = p;fk, for some (i,k) € X, i < n, then S, = {1,2,...,i}, S, = 0, R, =
{1,2,...,n}and R, = {i + 1,...,m}. 3

We denote cardinality of a finite set A by #A. The next lemma follows from the definition of
paths.

Lemma 7.1.1. Let (i,k) € X and let p € P, ;. Then
#R,+#R,>2n—i and #S, + #S, <. (7.1.2)
[

Let (i',k") € X be in snake position to (i, k) € X. We say that (i', k') and (i, k) are shifted by
o€ ZZO if
k/ —k= 4+ 2’ZI - Z‘ +40' — 5n,i — (Sn,i“

Observe that o = 0 corresponds to the minimal snake position. If (is, kt)1<t<1, T € Z>1 is a snake,
we denote by oy the shift between (i, k;) and (4441, kit1).

Lemma 7.1.2. Let (¢,k') € X be in snake position to (i,k) € X shifted by o € Zso. Let
pE Pk, 0 € Py If pis strictly above p’ then

#R,+#Ry <2n —i+max{i —i,0} + 0, (7.1.3)
YR T R < 4R, N{T,...F), r=1,....n—1 (7.1.4)
#R,N{1,... 1} > #lotmadi=lOp A1}, r=1,...,n—1. (7.1.5)

Proof. Let y € Z + € be such that (2n — 1,y) € pand (2n —1,2) € p for z > y. Let y € Z + € be
such that (2n — 1,9/) € p’ and (2n — 1, z2) & p’ for z < y.
Let s,s" such that 0 < s <4, 0< s <7/,

4s—1)<y—k—-2n—i+1)+06,;<4s and 4(s—1)<y — K —2(n—4¢'4+1)+ 0, < 4s".

Since p and p’ do not overlap, we have y' > y. It follows that s — s’ < o + max{i —i',0}. We
also have #R) =n — s’ and R, = n — i + s. Therefore, (7.1.3) follows.
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Suppose that 7 is the minimal integer such that (7.1.4) does not hold. Let s = #R,N{1,...,7}.
Then
#R,N{1,....,7} = s+ o0 +max{i' —i,0} + 1.

In particular, it follows that
v(ry k420 —0p; +4(s+o+max{i —7,0} +1)—2r) €p and o(r,k'+2i' =5, +4s—2r) € p.

Then paths p and p’ overlap at r, hence, a contradiction.
Equation (7.1.5) is proved similarly. O

Corollary 7.1.3. Let (i',k') € X be in snake position to (i,k) € X shifted by 0 € Z>y. Let
pE Pk, p € Py and assume 1,1 <n. If p and p' do not overlap, then

#S, +#S, > i —max{i —i',0} — o, (7.1.6)

#5,N{1,...,r} > lotmadi =g nf  r} r=1,...,n—1, and (7.1.7)
pGme I T Ry <4, (T, F r=1, . n— 1. (7.1.8)

O

7.2 Tableaux

In this chapter a skew diagram (A/u) is a finite subset (A/u) C Z x Z~q such that

(i) if (A\/p) # 0, then there is a j € Z such that (j,1) € (A/p), and,

(if) if (¢,7) & (A/p), then either Vi' > ¢,Vj' > j, (', j') & (M) or Vi' < i,¥5" < j, (', j') & (A ).

If (4,7) € (\/p) we say (A/p) has a box in row i, column j. For each j € Z-y, let b; = max{i €
Z\|(i,7) € (A/p)}, be the bottom box in the column j and ¢; = min{i € Z|(7,7) € (A\/p)} be the top
box in the column j. Define also the length of the column j by I; = #{i € Z|(i,j) € (A\/p)}, and
observe that [; = b; —t; + 1.

A skew tableau T with shape (A/p) is then any function 7 : (A\/u) — A that obeys the following
horizontal rule (H) and vertical rule (V):

(H) T(i,5) <T@, j+1) and (T(5,5), T(i, 7 +1)) # (0,0),
(V) T(i,j) < T(i+1,5) or (T(i,), T(i+1,5)) = (0,0).

Let Tab(\/u) denote the set of tableaux of shape (A\/u). If a skew diagram contains a rectangle
of size (2N + 1) x 2 then horizontal rule implies that there exists no skew tableau of shape (A/p).

We call a skew diagram super skew diagram if #{i € Z|(i,j) € (A\/n), (4,7+1) € (\/p)} < 2n,
for all j € Z+o.
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From now on we consider only super skew diagrams (A/u).

We call a skew diagram generic super skew diagram if #{i € Z|(i,j) € (N ), (i,j+1) €
(M)} < 2n, for all j € Z-o. In other words, a generic skew diagram contains no rectangles of
size 2n X 2.

Let (A/p) be a super skew diagram. For each 7 € Tab(\/u), we associate an (-weight in P,
as follows:

Ty = T w7040 - 1), (72.1)
(1.9)EN 1

where the contribution of each box is given by

m:AXZ — Z[Y3awerxz,
(i,k) — Y;:%,Qi—l—ky;,%—?-i—k? l<i<n-—1,
(n,k) Yn:11,2n+kYna2”—3+k’Yn,2nf1+k7
(0,k) = Yn_,21n+l+kYn,2n73+k7
(7, k) Y;,an—1+kYnT21n+1+kYn—1,2n—2+k’
(i, k) }/;,_41;—2i+ky;—1,4n—2—2i+k7 I<i<n-—1,

with convention, Yy :=1 and Y,,41 4 := 1 for all £ € Z. Note that

Xa(Lq(Yi0)) = ) m(i,0).

€A

Given a super skew diagram (A/u), define 71 : (A/u) — A, by filling up the boxes of (\/u) with
letters in A according to the following rule. Starting from column 1 and going from the column j
to the column j+ 1 in (A/u), always from the most top empty box and working downwards in the
alphabetical order, fill up the column j as follows:

(i) enter letters 1,...,r < n, for the maximum r possible,

(ii) enter as many successive 0’s as possible, respecting the horizontal rule for the column j — 1,
(iii) enter letters 7, ..., 7, for the maximum 7 possible.
By construction, one easily checks that
Lemma 7.2.1. The map T4 is a skew tableau. O

The tableau 7 is called the dominant tableau of shape (A\/u). Let w = w(\/pu) = M(T )
obtained by (7.2.1). We give an alternative way of computing 7. For each column j of (\/u) such
that [; > n, let s; = t; +n — 1, and observe that 7 (s;,j) =n. A column j of (A\/u) is said to be
special if [; > N and (s; + 1,5+ 1) ¢ (A/u). Define

S =S (N ) :={j| the column j of (\/u) is special}.
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Figure 7.1: A non-generic super skew diagram and its dominant tableau in type B,.

1234 1234
-5 -5 1
—4 —4 112
-3 -3 210
-2 -2 1/1]0
N 1 [2[2]0
0 0 [0 212
1 and 1 [0[1
Lemma 7.2.2. Let (A\/u) be a skew diagram. Then
w(\p) = [ b(T+(;,9).4G — b)) [] b(n. 4G — 55) +2), (7.2.2)
JE€Z>0 jes
where b : A X Z — Z[Y; k) ik)erxz maps
(1, k) = Yig gy 1<i<n—1,
(n7 k) — Yn,2n—3+k7
(0_7 k) = Yn,2n73+k7
(i,k) = Y an—o—oip 1L S0 <1
In particular, w(A/p) € Py. O

Example. In type By, the non-generic super skew diagram shown in Figure 7.1 has . = {3, 4},
the column 2 is non-generic (cf. Section 7.4), and the dominant ¢-weight associated to T is

Y51Y1,14Y597Y5229Y5 35.

Later we will show that, for each 7 € Tab(\/u), M(T) € P if and only if T = T, see
Theorem 7.3.2.

Note that a super skew diagram is non-generic if and only if there exist j such that 7(b;, j) = 1.
We now focus on generic skew diagrams. The non-generic ones are treated in Section 7.4.

Let (A/p) be a generic super skew diagram and let column j be non-empty. Define

G=J+#kec SN | k<j})

Then the column j contributes to mw(A/u) the fundamental (-weight Y;_ ., and if column j is
special then it also contributes Ymk(j oy
The following lemma is a consequence of Lemma 7.2.2.
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Lemma 7.2.3. Let (A\/p) be a generic super skew diagram and j,j" columns of (A u). If i/ > j
then
ko, = koan > k.

Moreover, the equality holds only if 7' = j + 1 and j is not special. [

Lemma 7.2.4. Let (A\/u) be a generic super skew diagram. Then the sequence X (mw(\/p)) is a
snake.

Proof. By Lemmas 7.2.2 and 7.2.3, it suffices to prove that the /-weights corresponding to two
consecutive columns are in snake position. Let j and j + 1 two columns of (A/u). Using the
definition of 7., by inspection we prove that:

If j is not special, then (i, ,, k) is in snake position to ( k...), and

Z§j+17 Si+1

bj — bjy1 — max{ig, —ig,,,0} if l; <n,
.. =
N bj — bj+1 — max{igjﬂ - igj,O} if lj > n.

If j is special, then (i, k. ) is in snake position to (n, k1), and the latter is in snake
position to (i, k;). Moreover,

oy =1l —2n+1i; and oy 11 =8;—bjy1—n+tig,,.

7.3 Bijection between paths and tableaux

Let (A/p) be a generic super skew diagram. Let (i, kt)1<i<7 := X' (w(A/p)). By Lemma 7.2.2,
T is the number of non-empty columns plus the number of special columns. Given (py,...,pr) €

'@(it,kt)
For (p1,...,pr) € @(itykt)1§t§T7 we define the map T, ) 0 (A/p) — A by filling up the boxes
of (A\/u). Each column j is filled up by the following way:

\<i<r> We write simply R; instead of R, and similarly so for R, S, and S,.

(i) if I; < n, starting from the box (t;, j) and working downwards, enter the letters of S, in
alphabetical order. Then starting from the box (b;, j) and working upwards enter the letters
of ggj in reverse alphabetical order. Enter the letter 0 into all the boxes in the ;' column
that remain unfilled,

(ii) if I; > n, start from the box (¢;,j) and working downwards, enter the letters of R, in
alphabetical order. Then starting from the box (b;, j) and working upwards enter the letters
of ﬁgj in reverse alphabetical order. Enter the letter 0 into all the boxes in column j that
remain unfilled.
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Figure 7.2: Non-overlapping paths and its associated non-generic skew tableau in type Bs.
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Example Figure 7.3 corresponds to the non-generic skew tableau obtained from the non-
overlapping paths in the same figure by using Proposition 7.4.3. In particular, the (-weight
Y2T71Y2,15Y2,’119Y1,30Y1T;2Y17361/'27’317 belongs to the g-character of L,(Y21Y]14Y227Y229Y535), for g is of
type Bs, by Theorem 7.3.2.

Proposition 7.3.1. The map P, k) c,cr — Tab(A/p) sending (p1,....pr) = Tpr,.pr) @5 @

-----

bijection and

m((py, -, pr)) = M(T (pr...or)- (7.3.1)

Proof. Let for brevity T = Ty, pr)- We show that T is, in fact, a skew tableau. First, observe
that no box of the column j is filled up twice. If [; < n, it follows from (7.1.2). If [; > n, it follows
from (7.1.3) and from relation

lj = 2n — iy, + max{i;, — 41,0} + 0.

Moreover, T respects the vertical rule (V), by construction. To prove that 7T respects the
horizontal rules (H), it suffices to study 7 (4, j) and T (i, 5 + 1) for each (4, j) € (A/u). We split the
analysis in the following cases:

(a) [; <nand lj4 <n,
(b) l; >nand j ¢ .7,
(c) je & and l; > n,
(d) j e~ and ;11 <n,
(e) [; <nand iy >n.

Let B; C {1,...,n} and B; C {1,...,7} (vesp. Bj;, and Bj,;) be the sets which fill up the
column j (resp. j + 1) by the above procedure. In each case, we prove that

Q) #B;N{1,....r} >#bL=tnlp, N {1l,... r},r=1,...,n—1,
(i) #B " {T,.. T} < #Ba n{T,... P r =1, n—1,
(iii) #B;j +#Bjr1 = bjpr —t; + L.
In particular, (i)-(iii) implies that j and j + 1 respect the horizontal rule.
Consider the case (a). By Lemma 7.2.4, we have b; — b;;1 = o, + max{i;, —i4+1,0}. Then

tj—tjp1 =05, + max{ic, 1 — i, 0}, and b1 — t; = i, — max{ig, —ic 41,0} — o, — 1. Therefore

(i), (ii) and (iii) follow, respectively, by (7.1.7), (7.1.8) and (7.1.6).
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Consider the case (b). By Lemma 7.2.4, we see that b; — bj;1 = o + max{ig,, — ig,0},
tj —tjp1 = 041 +max{ic,, —i,,,0}, and bj, —t; = 2n — i, — 1. Therefore, (i), (ii) and (iii)
follow, respectively, by (7.1.5), (7.1.4) and (7.1.2).

Consider the case (¢). By Lemma 7.1.2, we have
#RO {1, Ty < #Ron 0 {L,. . T (7.3.2)

and
n{1,...,7}, (7.3.3)

Si+1

4RI AT, T < #R
for r =1,...,n — 1. Therefore, inequalities (7.3.2) and (7.3.3) combined imply

AR AT <HR,L 0T, T r=1 -1 (7.3.4)

St
Moreover, since [; = b; —t; +1 and s; —t; = n — 1, Lemma 7.2.4 implies
oy t0og 1 +n—i,="b;—bj,
hence, (ii) is proved in this case. We prove (i) similarly, using
#Ro 1 N1, ..oy > glowotogutnisanlp on{l,...r), r=1,...,n—1, (7.3.5)

and O'gj+1 + O'gj+1 +n— i§j+1+1 = tj — tj+1' .
Since i¢,41 = ig,,, = n, by (7.1.3) it follows that #R 1 + #R.,,, > n+ o.,11. Therefore (iii)
follows by observing that b ;1 —t; <n — 1.

Consider the case (d). By Lemma 7.1.2, we have

#Ro (L. P <#R, N {L..7 r=1..n-1

Sj+1
However, since i, 11 = n, the above inequality is equivalent to
#Ro i N{L,..ry > #9vIs  n{l,... ), r=1,...,n—1. (7.3.6)

Moreover, by Lemma 7.2.4, we prove that t;—t; 11 = 0,41, using s; = t;+n—1, bj 1 —ig,,, = tjp1—1.
Item (i) follows in this case.
By Lemma 7.1.2, we also have

#qu-ﬁ-n—iq] N {1 .. ,F} < #Egj—i-l N {T, . ,F}, (737)

and
#Ro N1, ... 1} > #losntignlp {1, (7.3.8)
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forr=1,...,n— 1. Since i¢,y1 = n, (7.3.8) is equivalent to

_[O—<j+1+n_i<j+1

4RV "N, <#S, . 0.7 r=1..n-1 (7.3.9)
Inequalities (7.3.7) and (7.3.9) combined imply
HROT Tl (T ) < #8
Moreover, by Lemma 7.2.4, we have
bj —bjy1 =0y +n—ig+og1+tn—1ig,,

using l; = b; —t; + 1 and s; = t; +n — 1, and then, (ii) holds in this case.
By (7.1.3), we have

#}_%gj-i-l + #R§j+1 <2n-— i§j+1 + (7’L - i§j+1) + O¢i+1,
which is equivalent to
n— #R§j+1 +n— #§§j+1 <2n— Z.'§j+1 + (n - Z.'§j+1> + Og+1-

Since i, 41 = n, we have
# R0 + #5600 2 g — g4

Since bjy1 —t; + 1 =i, — 0,41, (iii) holds in this case

Case (e) is proved similarly to case (d).

Thus, for (p1,---,07) € Plisk)rcrer, the map T = Ty o), as defined above, is a skew
tableau. Since each path p; is complétély described by the pair of sets R, and R;, and the above
description can be made backwards in order to obtain the sequence (p1,...,pr); from a tableaux
T, we have a bijection between &, 1,),.,., and Tab(\/p).

It remains to show that (7.3.1) hold;._By Lemma 6.3.3 and the definition of highest path we
have w(\/p) = Hthl m(p; ,)- Since each path (pi,...,pr) is obtained from (p; , ,...,p; . ) by
applying a sequence of lowering moves ijzlls, 0 <s<S, for some S € Zs, it suffices to check that
if (i,k) € W is such that (py,....pr) @3 € P, then

1<¢<T?

M(T

Y2 RITES

+
pryert) = M(T o) Ai-

It is easily done by inspection.
The proof of the proposition is finished.
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Theorem 7.3.2. Let (A\/u) be a generic super skew diagram and 7 = 7(\/p). Then

XalLo(m) =Y M(T).

T€Tab((A/ 1))
Proof. Given Proposition 7.3.1, this is immediate from Theorem 5.1.2. O

7.4 Non-generic super skew diagrams

In this section we discuss non-generic skew diagrams.
We call a column j of diagram (\/u) non-generic if

{1 € Z|(i,j) € (M), (6,5 +1) € (A/p)} = 2n. (7.4.1)

Let (A/p) be a non-generic super skew diagram. Let column j' be such that it is non-generic
and all columns j with 7 > j" are generic. Define

(/') =A{@.4) € (A/p)lj <530
(g —r )1 <7 <lppr =20+ 13 U{(i — 1,5 —1)|(4,5) € (M p),j > j' +1}.

The following lemma is straightforward.

Lemma 7.4.1. The shape (N /') is a super skew diagram. The number of non-empty columns of
(N/') is one less than that of (A\/p). The number of boxes of (N /i) is 2n — 1 less than that of
(A ). The number of non-generic columns of (N'/1') is one less than that of (A\/p). N

We call the super skew diagram (X' /u') closely related to (A/p). We call a generic super skew
diagram (X' /u') related to a non-generic super skew diagram (A/p) if there exists a sequence of
super skew diagrams (\;/p;), 1 < i < S, S € Z>q, such that (A /1) = (A/p), (As/ps) = (N/u')
and (\;/p;) is closely related to (A\;_1/pi—1) for 2 <i < S.

Corollary 7.4.2. Let (\/u) be a non-generic super skew diagram. Then there exist unique generic
skew diagram related to (\/p). O

Finally, we observe that the related super skew diagrams correspond to the same module over
the affine quantum algebra.

Proposition 7.4.3. Let super skew diagram (X /i) be related to super skew diagram (\/p). Then
there exist a bijection T : Tab(A/u) — Tab(N /i) such that M(T) = M(7T) for all T € Tab(\/u).
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Proof. 1t is sufficient to give such a bijection for closely related super skew diagrams. Let (\/u)
be related to a non-generic super skew diagram (A/u) and let 7 € Tab(A/u). We define 77 as

follows:

T(i,79), j<jorj=j,i>¥b-n,
(TT)(@,7) =T+ 1,j+1), j>jorj=j, i<tp+n,
07 j:j’andtj/+N§i§bj/—n,

where ¢; and b; are, respectively, the top and the bottom box of the column j’ in (X' /y').
All the checks are straightforward. m

94



Bibliography

[Bec94| J. Beck, Braid group action and quantum affine algebras, Commun. Math. Phys. 165
(1994), 555-568.

[BCM]| M. Brito, V. Chari and A. Moura, Demazure modules of level two and prime representations
of quantum affine sl,,. 1, in preparation.

[BCP99| J. Beck, V. Chari, and A. Pressley, An algebraic characterization of the affine canonical
basis, Duke Math. J. 99 (1999), no. 3, 455-487.

[BM14] M. Brito and E. Mukhin, Representations of quantum affine algebras of type By,
arXiv:1411.0562.

[BR83] A. Berele and A. Regev, Hook Young diagrams, combinatorics and representations of Lie
superalgebras. Bull. Amer. Math. Soc. (N.S.) 8 (1983), no. 2, 337-339.

[Cha95] V. Chari, Minimal affinizations of representations of quantum groups: the rank-2 case,
Publ. Res. Inst. Math. Sci. 31 (1995), 873-911.

[Cha01] V. Chari, On the fermionic formula and the Kirillov-Reshetikhin conjecture, Int. Math.
Res. Notices 12 (2001), 629-654.

[Cha02] V. Chari, Braid group actions and tensor products, Int. Math. Res. Notices (2002), 357
382.

[CH10] V. Chari and D. Hernandez, Beyond Kirillov-Reshetikhin modules, Contemp. Math. 506
(2010), 49-81.

[CKR12] V. Chari, A. Khare, and T. Ridenour, Faces of polytopes and Koszul algebras, J. Pure
Appl. Algebra 216 (2012), 1611-1625, DOI: 10.1016/j.jpaa.2011.10.014.

[CLO6| V. Chari and S. Loktev, Weyl, Demazure and fusion modules for the current algebra of
sl.41. Adv. Math. 207 (2006), 928-960.

[CMO5] V. Chari and A. Moura, Character and blocks for finite-dimensional representations of
quantum affine algebras, Int. Math. Res. Not. 5, (2005), 257-298.

95



[CMO06] V. Chari and A. Moura, The restricted Kirillov-Reshetikhin modules for the current and
twisted current algebras, Comm. Math. Phys. 266 (2006), no. 2, 431-454.

[CMO7] V. Chari and A. Moura, Kirillov-Reshetikhin modules associated to Gy, Contemp. math.,
442, (2007), 41-59.

[CMY13] V. Chari, A. Moura, and C. Young, Prime representations from a homological perspective,
Math. Z. 274 (2013), 613-645.

[CP86] V. Chari and A. Pressley, New unitary representations of loop groups, Math. Ann. 275
(1986), no. 1, 87 - 104.

[CPI1| V. Chari and A. Pressley, Quantum affine algebras, Comm. Math. Phys. 142 (1991), 261
283.

[CP94a| V.Chari and A. Presley, A guide to quantum groups, Cambridge, UK: Univ. Pr., 1994

[CP94b] V.Chari and A. Presley, Quantum affine algebras and their representations, CMS Conlf.
Proc. 16 (1994), 59-78.

[CP95] V. Chari and A. Pressley, Minimal affinizations of representations of quantum groups: the
nonsimply laced case, Lett. Math. Phys. 35 (1995), 99-114.

[CP96a] V. Chari and A. Pressley, Minimal affinizations of representations of quantum groups:
the simply laced case, J. Algebra 184 (1996), no. 1, 1-30.

[CP96b| V. Chari and A. Pressley, Minimal affinizations of representations of quantum groups:
the irreqular case, Lett. Math. Phys. 36 (1996), 247-266.

[CPO1] V. Chari and A. Pressley, Weyl modules for classical and quantum affine algebras, Repre-
sent. Theory 5 (2001), 191-223.

[CSVW14] V. Chari, P. Shereen, R. Venkatesh and J. Wand, A Steinberg type decomposition
theorem for higher level Demazure modules, arXiv:1408.4090.

[CV14] V. Chari and R. Venkatesh, Demazure modules, fusion products and g-systems,
arXiv:1305.2523.

[Dam98| I. Damiani, La R-matrice pour les algebres quantiques de type affine non tordu, Ann. Sci.
Ecole Norm. Sup. (4) 31 (1998), no. 4, 493-523.

[Dri88] V. G. Drinfeld, A new realization of Yangians and quantized affine algebras, Sov. Math.
Dokl. 36 (1988), 212-216.

96



[FF02| B. L. Feigin and E. Feigin, g-characters of the tensor products in sly-case, Mosc. Math. J.
2 (2002), no. 3, 567-588, math.QA /0201111.

[FL99] B. Feigin and S. Loktev, On generalized Kostka polynomials and the quantum Verlinde rule,
In Differential topology, infinite-dimensional Lie algebras, and applications, Amer. Math. Soc.
Transl. Ser. 2 194 (1999), 61-79.

. Fourier and P. Littelmann, Weyl modules, Demazure modules, -modules, crystals,
FLO7| G. Fouri d P. Littel Weyl modules, D dules, KR-modul [
fusion products and limit constructions, Adv. Math. 211 (2007), 566-593.

[FMO1] E. Frenkel and E. Mukhin, Combinatorics of q-character of finite dimensional representa-
tions of quantum affine algebras, Commun. Math. Phys. 216 (2001), 23-57.

[FMO02] E. Frenkel and E. Mukhin, The Hopf algebra Rep Uq(gA[oo). Selecta Math. (N.S.) 8 (2002),
no. 4, 537-635.

[FRO8] E. Frenkel and N. Reshetikhin, The g-characters of representations of quantum affine al-
gebras and deformations of W-algebras, Contem. Math. 248 (1998), 163-205.

[Her06] D. Hernandez, The Kirillov—Reshetikhin conjecture and solutions of T—-systems, J. Reine
Angew. Math. 2006 (2006). 63-87.

[Her07] D. Hernandez, On minimal affinizations of representations of quantum groups, Comm.
Math. Phys. 276 (2007), no. 1, 221-259.

[Her10] D. Hernandez, Simple tensor products, Invent. Math. 181 (2010), 649-675.

[HKOTY99| G. Hatayama, A. Kuniba, M. Okado, T. Takagi and Y. Yamada, Remarks on
fermionic formula in Recent developments in quantum affine algebras and related topics
(Raleigh, NC, 1998), 243-291, Contemp. Math., 248, Amer. Math. Soc., Providence, RI
(1999).

[HL10] D. Hernandez and B. Leclerc, Cluster algebras and quantum affine algebras, Duke Math.
J. 154 (2010), 265-341, DOI 10.1215/00127094-2010-040.

[HL13] D. Hernandez and B. Leclerc, Monoidal categorifications of cluster algebras of type A and D,
Symmetries, Integrable Systems and Representations, Springer Proceedings in Mathematics
& Statistics 40 (2013), 175-193.

[HL14] D. Hernandez and B. Leclerc, Quantum Grothendieck rings and derived Hall algebras, to
appear in Crelle, arXiv:1109.0862.

[HMP]| D. Hernandez, A. Moura, and F. Pereira, Minimal affinizations of type D, preprint.

97



[JM11] D. Jakeli¢ and A. Moura, Tensor products, characters, and blocks of finite-dimensional
representations of quantum affine algebras at roots of unity, Int. Math. Res. Notices (2011),
no. 18, 4147-4199.

[JM14] D. Jakeli¢ and A. Moura, On Weyl modules for quantum and hyper loop algebras, Contemp.
Math., 623 2014, 99-133.

[Kac83] V. Kac, Infinite Dimensional Lie Algebras, Cambridge University Press, Cambridge, 1983.

[Ked11] R. Kedem, A pentagon of identities, graded tensor products, and the Kirillov—Reshetikhin
congecture, New trends in quantum integrable systems, 173-193, World Sci. Publ., Hackensack,
NJ, 2011.

[Kni95] H. Knight, Spectra of tensor products of finite-dimensional representations of Yangians,
J. Algebra 174 (1995) 187-196.

[KOS95] A. Kuniba, Y. Ohta and J. Suzuki, Quantum Jacobi-Trudi and Giambelli formulae for
Uq(Bﬁl)) from the analytic Bethe ansatz, J. Phys. A: Math. Gen. 28 (21) (1995) 6211.

[LLMO02] V. Lakshmibai, P. Littelmann, and P. Magyar, Standard monomial theory for Bott-
Samelson varieties, Compositio Math. 130, (2002), no. 3, 293-318.

[LM13] J.R. Li and E. Mukhin, Extended T-system of type G2, SIGMA 9 (2013), Paper 054, 28
pp.

[LQ14] J.R. Li and L. Qiao Cluster algebras and minimal affinizations of representations of the
quantum group of type G, arXiv:1412.3884.

[MoulO] A. Moura, Restricted limits of minimal affinizations, Pacific J. Math. 244 (2010), 359—
397.

[MTZ04] A. Molev, V. Tolstoy and R. Zhang, On irreducibility of tensor products of evaluation
modules for the quantum affine algebra, J. Phys. A 37 (2004), no. 6, 2385-2399.

[MY12] E.Mukhin and C. A. S. Young, Path descriptions of type B q-characters, Adv. Math. 231
(2012), no. 2, 1119-1150.

[Nak11] H. Nakajima, Quiver varieties and cluster algebras, Kyoto J. Math. 51 (2011), 71-126.

[Naol12| K. Naoi, Weyl modules, Demazure modules and finite crystals for non—simply laced type.
Adv. Math. 229 (2012), no. 2, 875-934.

[Naol3] K. Naoi, Demazure modules and graded limits of minimal affinizations, Rep. Theory 17
(2013), 524-556.

98



[Naol4| K. Naoi, Graded limits of minimal affinizations in type D, SIGMA 10 (2014), 047, 20
pages.

[NN06] W. Nakai and T. Nakanishi, Paths, tableaux and q-characters of quantum affine algebras:
the C,, case, J. Phys. A: Math. Gen. 39 (9) (2006) 2083-2115. (in English).

[NNO7a] W. Nakai and T. Nakanishi, Paths and tableaux descriptions of Jacobi-Trudi determinant
associated with quantum affine algebra of type C,, SIGMA 3 (2007) 078-098.

[NNO7b] W. Nakai and T. Nakanishi, Paths and tableauz descriptions of Jacobi-Trudi determinant
associated with quantum affine algebra of type D,,, J. Algebraic Combin. 26 (2) (2007) 253-290.

[NS13| E. Neher and A. Savage, A survey of equivariant map algebras with open problems,
arXiv:1211.1024.

[NSS13] E. Neher, A. Savage and P. Senesi, Irreducible finite-dimensional representations of equiv-
ariant map algebras, Trans. Amer. Math. Soc. (to appear).

[NT98] M. Nazarov and V. Tarasov, Representations of Yangians with Gelfand-Zetlin bases, J.
Reine Angew. Math. 496 (1998), 181-212.

[Perl4| F. Pereira, Classification of the type D irregular minimal affinizations, Ph.D. Thesis, Uni-
versidade Estadual de Campinas - Brasil, (2014).

99



100



Index

(-weight, 16
j-anti-dominant, 16
j-dominant, 16
anti-dominant, 16
dominant, 16
fundamental, 16

A-compatible partition, 10

g-character, 17

g-string, 60
general position, 60

affine Kac-Moody algebra, 2
alphabet, 83

character, 7
current algebra, 2

Demazure module
generalized, 9

Demazure operator, 9

Drinfeld polynomials, 16

extended snake, 58
module, 58
position, 58

graded limit, 20

height, 1
highest /-weight representation, 17
highest ¢-weight vector, 17

Kirillov-Reshetikhin modules, 21

level, 2
local Weyl module, 10

loop algebra, 2

lower corners, 70

minimal affinization, 20

by parts, 21
alternating, 22

decreasing, 21

increasing, 21

non-overlapping paths, 74

partition

essentially rectangular, 12
rectangular, 11
special fat hook, 11

path, 69
highest, 71
lowest, 71

strictly above, 74
strictly bellow, 74
weakly above, 78
weakly bellow, 78

prime module, 22

quantum loop algebra, 3

representation

anti-special, 17
special, 17
tame, 17

thin, 17

restricted specialization, 5

skew diagram, 85

101

super, 85



generic, 86
snake position, 62
minimal, 62

upper corners, 70

weight module
highest, 15
weight space, 15
weight vector, 15
highest, 15
Weyl group, 2
affine, 2

102



	Acknowledgement
	Introduction
	Background
	Definitions and Notations
	Classical Lie algebras
	Quantum affine algebra
	Restricted Specialization

	Representations of Lie algebras
	Basic definitions
	Demazure modules
	Generalized Demazure modules
	CV-modules
	Connection between CV and Demazure modules
	Fusion Products

	Representations of quantum algebras
	Representations of Uq(g)
	Representations of Uq(g"0365g)
	q-characters
	Classical limits
	Affinizations of Uq(g)–modules


	Part I
	Graded limit of affinizations
	Statement of results and motivations
	Level two g-stable Demazure modules
	A realization of level two g–stable Demazure modules
	A presentation of level two g–stable Demazure modules.
	Fusion products and a characterization  of g–stable level two Demazure modules

	Proof of Theorem 4.1.1
	Cyclicity criteria of the tensor product

	Proof of Theorem 4.1.2
	Types B and C
	Type D

	Appendix: Minimal affinizations of G2
	Graded limit of KR-modules as CV-modules
	General minimal affinations



	Part II
	Tame modules
	Statement of results
	First properties
	Thin special q-characters and tame modules
	Thin Uq(sl"0365sl2)-modules
	Sufficient criteria for a correct thin special q-character.
	The sln+1 case.

	Proof of Theorem 5.1.3

	Combinatorics of paths and moves
	Paths and corners
	Lowering and raising moves
	Non-overlapping paths
	Properties of paths and moves

	Tableaux description of snake modules
	Combinatorial properties of non-overlapping paths
	Tableaux
	Bijection between paths and tableaux
	Non-generic super skew diagrams

	Bibliography
	Index


