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Abstract

We analyse two problems in this work. In the Ąrst part we study the existence of solutions

to a semilinear elliptic equation in the whole space and with dependence on the gradient and

where no restriction is imposed on the behavior of the nonlinearity at inĄnity. We prove that

there exists a solution which is locally unique and inherits many of the symmetry properties

of the nonlinearity. Positivity and asymptotic behavior of the solution are also addressed.

Our results can be extended to other domains like half-space and exterior domains and also

to some fractional operators. For the second part, we analyse the asymptotic behavior of

solutions to the one dimensional fractional version of the porous medium equation introduced

by Caffarelli and Vázquez and where the pressure is obtained as the inverse of the fractional

Laplacian of the density. Due to the convexity of the kernel of the Riesz potential in one

dimension, we show that the entropy associated with the equation is displacement convex

and satisĄes a functional inequality involving also entropy dissipation and the Euclidean

transport distance. An argument by approximation shows that this functional inequality is

enough to deduce the exponential convergence, in the entropy level, of solutions to the unique

steady state. A new interpolation inequality is also proved in order to obtain the exponential

decay also in 𝐿p spaces.

Keywords: Semilinear elliptic equation; Existence of solutions; Asymptotic behavior of

solutions; Fractional Laplacian; Optimal Transport.

Resumo

Analisaremos dois problemas neste trabalho. Na primeira parte, estudaremos a existên-

cia de soluções para uma equação elíptica semilinear no espaço euclidiano todo e com de-

pendência do gradiente e onde nenhuma restrição é imposta sobre o comportamento da não

linearidade no inĄnito. Provaremos que existe uma solução que é localmente única e que

herda muitas das propriedades de simetria da não linearidade. A positividade da solução

e seu comportamento assintótico também são analisados. Os resultados obtidos também
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podem ser estendidos para outros casos como o de domínios exteriores ou o semiespaço e

também para alguns operadores fracionários. Na segunda parte, analisaremos o comporta-

mento assintótico das soluções da versão fracionária unidimensional da equações de meios

porosos introduzida por Caffarelli e Vázquez e onde a pressão é obtida como a inversa do

laplaciano fracionário da densidade. Devido à convexidade do núcleo do potencial de Riesz

em dimensão um, mostraremos que a entropia associada à equação é displacement convex

e satisfaz uma desigualdade funcional envolvendo a dissipação da entropia e a distância de

transporte euclidiana. Um argumento por aproximação mostra que essa desigualdade fun-

cional é suĄciente para deduzir que a entropia das soluções converge exponencialmente para a

entropia do estado estacionário. Também provaremos uma nova desigualdade de interpolação

que permitirá obter a convergência exponencial das soluções em espaços 𝐿p.

Keywords: Equações semilineares elípticas; Existência de soluções; Comportamento

assintótico de soluções; Laplaciano fracionário; Transporte Ótimo.
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Notation

𝐸k space 𝐿∞(𝑑𝑥) ∩ 𝐿∞(♣𝑥♣k𝑑𝑥)

𝐹k subspace of 𝐶1(Rd) where 𝑢, 𝜕x𝑖
𝑢 ∈ 𝐸k

𝑘d,s kernel of the Riesz potential of order 2𝑠 in R
d

𝒩 (𝑢) Riesz potential of order 1 of 𝑢 in R
d

𝐶α(Rd) bounded Hölder continuous functions of order Ð

[𝑢]CÐ Hölder seminorm of order Ð

𝐶k,α(Rd) subspace of 𝐶k(Rd) s.t. the k-th derivatives are 𝐶α

𝐶b(Rd) space of continuous bounded functions on R
d

𝐻γ(Rd) fractional Sobolev space of order Ò

[𝑢]HÒ fractional Sobolev seminorm of order Ò

ℳ+(Rd) space of Borelian measures on R
d

𝒫(Rd) space of probability measures on R
d

𝒫2(Rd) space of 𝜌 ∈ 𝒫(Rd) such that
∫︀
R𝑑 ♣𝑥♣2𝑑𝜌 < ∞

𝒫ac(Rd) space of 𝜌 ∈ 𝒫(Rd) which are absolutely

continuous w.r.t Lebesgue measure

𝑇#𝜌 push-forward of 𝜌 through 𝑇

𝜌n ⇀ 𝜌 convergence of 𝜌n to 𝜌 in 𝑃2(R) under the

topology generated by 𝐶b(R)

𝑊2(Û, Ü) Euclidean Wasserstein distante between Û and Ü

𝒰 , 𝒱 , 𝒲 , ℰ , ℐ functionals deĄned on 𝒫2,ac(R)

(⊗Δ)⊗s𝑢 inverse of the fractional Laplacian of 𝑢

𝑇 ν
µ optimal transport map between Û and Ü
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Introduction

This work is devoted to the analysis of two different types of partial differential equations

involving nonlinearities which arise from many applications such as conformal geometry,

Chern-Simons-Higgs theory, stochastic control theory, long-range diffusive phenomena, con-

vective process and so on.

The Ąrst model which shall be studied in Chapter 1 is a semilinear elliptic equation where

no restriction is imposed on the behavior of the nonlinearity at inĄnity. More explicitly we

will study the existence, symmetry and asymptotic behavior of solutions to the following

nonlinear elliptic PDE:

Δ𝑢 + 𝑔(𝑥, 𝑢, ∇𝑢) = 0 in R
n (0.0.1)

𝑢 ⊃ 0 as ♣𝑥♣ ⊃ ∞, (0.0.2)

with 𝑛 ⊙ 3 and where 𝑔 : Rn ×R×R
n ⊃ R veriĄes 𝑔(𝑥, 0, 0) ̸⊕ 0 and belong to a large class

of nonlinear functions which include, for example, polynomial and exponential type growths

on 𝑢 or ∇𝑢.

If on one hand the literature about problems with polynomial behavior is wide and very

well understood in many cases, on the other hand the same is not true for the exponential

case since many embedding results become hard to apply when dealing with this type of

nonlinearity, specially in this case where the domain is the whole space R
n. And in spite

of this apparent lack of results, exponential-type nonlinearities appear naturally in many

contexts like, as said before, in geometry or in Chern-Simons gauge theory.

Nonlinear gradient terms also appear naturally in models connected with convective pro-

cesses, in the physical theory of growth and roughening of surfaces or in stochastic control

theory. These nonlinearities involving the gradient introduce new difficulties when combined

with unbounded domains and strong-growth nonlinearities, preventing the use of variational
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and sub-super solutions methods, Ladyzenskaya-UralŠtseva conditions, Banach Ąxed point

theorem in Sobolev spaces, implicit function theorem, compactness arguments, and Leray-

Schauder theory, among others.

In smooth bounded domains Ω ⊆ R
n, there is a rich literature for (0.0.1)-(0.0.2) with gen-

eral conditions on 𝑔(𝑥, 𝑢, ∇𝑢) for existence of solutions, including polynomial or exponential-

type growths. In this case existence results have been studied by means of different ap-

proaches involving the aforementioned arguments and techniques. For that matter, the reader

is referred to [5, 4, 36, 35, 50, 48, 66, 67] and their bibliographies. As pointed out in [35]

and [48], the use of techniques based on maximum principles in most cases imposes that the

nonlinearity grows at most quadratically in ∇𝑢. This kind of restriction appears in the works

[5, 18, 40, 60], and was overcame in [68] for a logistic equation with ♣∇𝑢♣q with 𝑞 > 1 and in

bounded domains by combining bifurcation methods and 𝐶1-a priori bounds.

For the case of explosive boundary conditions, that is 𝑢 ⊃ ∞ as 𝑥 ⊃ 𝜕Ω (or as ♣𝑥♣ ⊃ ∞),

existence of solutions for (0.0.1) have been addressed in bounded domains Ω and in R
n by

considering at most polynomial growth at inĄnity on the gradient ∇𝑢 (see e.g. [2], [53],

and [42] in R
n). For example, the authors of [42] assumed ⊗𝑔(𝑢, ∇𝑢) = 𝑓1(𝑢) ∘ 𝑓2(∇𝑢)

with increasing continuous 𝑓 and 𝑔 having at most power growth at inĄnity and 𝑔(𝑥, 0, 0) =

𝑓1(0) = 𝑓2(0) = 0. We also mention the work [3] for existence of distributional solutions in

R
n with polynomial growth on both 𝑢 and ∇𝑢, and without prescribing conditions on 𝑢 as

♣𝑥♣ ⊃ ∞.

Even when 𝑔 is independent of ∇𝑢, the problem (0.0.1)-(0.0.2) in the whole space R
n

with exponential-type growths on 𝑢 has been considered in dimension 𝑛 = 2 in the majority

of papers. Usually it is used Trudinger-Moser type inequalities and variational methods for

proving existence of solutions (see e.g. results of [82] with 𝑛 = 2 and its references). In the

case of bounded domains, a well known problem arises particularly when

𝑔(𝑥, 𝑢, ∇𝑢) = Ú𝑉 (𝑥)𝑒u, (0.0.3)

which was studied e.g. in [36, 65, 72, 80] (see also their references) with 𝑉 being a positive

bounded smooth function, where the parameter Ú is assumed to be positive and sufficiently

small.

One of the goals of the work on chapter 1 is to provide existence results by using a

relatively simpler strategy but new for this prototypical situation. We will overcome this
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problem on arbitrary growth at inĄnity and on the noncompactness of the domain by looking

for controlled solutions 𝑢 in the space 𝐹k (deĄned on Section 1.2) which already have a good

decay in ♣𝑢♣ and also in ♣∇𝑢♣. This choice on the space of functions is going to be enough to

prove that the functional associated with the nonlinearity 𝑔 is an operator on 𝐹k. A further

smallness condition is imposed on 𝑔(𝑥, ., .) in order to make the operator a contraction on a

subset of 𝐹k. The solution is then obtained as a Ąxed point of this operator. It is worthy

of note that this existence result is only local. There are no signs about when this solution

might be unique or about any kind of multiplicity.

Several symmetry and asymptotic behavior results are also addressed, showing that the

solutions inherit many of the properties of the nonlinearity 𝑔.

This Ąrst part was done under the supervision of Prof. Lucas C. F. Ferreira and Prof.

Marcelo Montenegro at the State University of Campinas - Unicamp and was funded with

scholarships from Capes and CNPq. The results will also appear in [43].

The Chapter 2 is dedicated to the analysis of the long-time asymptotics of the nonlinear

nonlocal equation

𝜕t𝜌 = ∇ ≤
(︁
𝜌(∇(⊗Δ)⊗s𝜌 + Ú𝑥)

⎡
, Ú > 0, 𝑥 ∈ R

d , (0.0.4)

obtained from the fractional version of the porous medium equation introduced by Caffarelli

and Vázquez [20, 21]

𝜕τ 𝑢 = ∇ ≤ (𝑢∇(⊗Δ)⊗s𝑢) , (0.0.5)

by passing to self-similar variables.

The equation (0.0.5) is one of the two fractional variations of the classical porous medium

equation and the existence of solutions was Ąrst studied by Caffarelli and Vázquez in [20]. In

that work, the authors proved that whenever an initial data 𝑢0 belongs to 𝐿1(Rd) ∩ 𝐿∞(Rd)

with the following decay:

0 6 𝑢0(𝑦) 6 𝐴𝑒⊗a♣y♣ , for some 𝐴, 𝑎 > 0 , (0.0.6)

then there exist a weak solution 𝑢 such that 𝑢 ∈ 𝐶([0, ∞); 𝐿1(Rn)). The following other

properties were also obtained in [21, 20, 19]:
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• The mass of any solution is preserved, i.e.,

∫︁

R𝑑
𝑢(á, 𝑦) 𝑑𝑦 =

∫︁

R𝑑
𝑢0(𝑦) 𝑑𝑦 , for all 𝑡 > 0 ;

• Regularity: the weak solutions are 𝐶α(Rd) for some Ð < 1;

• The sign is conserved: if 𝑢0(𝑦) > 0 for all 𝑦 ∈ R
d then 𝑢(á, 𝑦) > 0 for all á > 0 and

𝑦 ∈ R
d;

• The positivity is conserved: if 𝑢0(𝑦0) > 0 for some 𝑦0 then 𝑢(á, 𝑦0) > 0 for all á > 0.

• Compactness of the support: if supp 𝑢0 is compact then supp 𝑢(á, .) is also compact

for all á > 0.

• Exponential decay: If 𝑢0 satisĄes the condition (0.0.6), then there exist a function

𝐶 = 𝐶(𝑡), which is increasing when 1/2 6 𝑠 6 1 and constant when 0 < 𝑠 < 1/2, such

that

𝑢(á, 𝑦) 6 𝐴𝑒C(τ)τ⊗a♣y♣ ;

• There exist constants 𝐶, Ð1 and Ð2 depending on 𝑑 and 𝑠 such that

sup
y∈R𝑑

♣𝑢(á, 𝑦)♣ 6 𝐶

áα
‖𝑢0‖γ

L1 , for all á > 0

• Stationary solution: for each initial mass 𝑚 :=
∫︀

𝜌0(𝑥)𝑑𝑥 of the rescaled equation (0.0.4)

there exists only one stationary solution 𝜌m,∞. This solution is 𝐶1⊗s with compact

support and the solution 𝜌(𝑡, 𝑥) with 𝜌(0, .) = 𝜌0 satisĄes

‖𝜌(𝑡, .) ⊗ 𝜌m,∞‖L1 , ‖𝜌(𝑡, .) ⊗ 𝜌m,∞‖L∞ ⊃ 0 as 𝑡 ⊃ ∞ .

• Asymptotic behavior: for each initial mass 𝑀 :=
∫︀

𝑢0(𝑦)𝑑𝑦 there exists a weak solution

𝑈M(á, 𝑦) of (0.0.5) such that, for every solution 𝑢(á, 𝑦) with 𝑢(0, .) = 𝑢0, we have

‖𝑢(á, .) ⊗ 𝑈M(á, .)‖L1 ⊃ 0 and áα ‖𝑢(á, .) ⊗ 𝑈M(á, .)‖L∞ ⊃ 0

as á ⊃ ∞.
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In spite of the asymptotic behavior given by the last two items above, no rate of conver-

gence was established for these results in [21] and thus, we shall show in the Chapter 2 that

in some cases we actually have an exponential decay for the difference ‖𝑢(á) ⊗ 𝑈M(á)‖L𝑝 and

‖𝜌(𝑡) ⊗ 𝜌m,∞‖Ł𝑝 .

Due to the divergence structure of the equation (0.0.4), it is possible to identify its

solutions (at least when 𝑑 = 1) as gradient Ćows of the associate entropy ℰ on the space

𝒫2(R) of probability measures when this one is equipped with the Wasserstein distance.

This idea was presented by Otto in [63] and has been extensively studied and used to obtain

quantitative and qualitative properties of solutions to equations of this kind. With respect

to long time behavior, there is two approaches which has appeared in the literature and both

take advantage of the entropy functional associated to the equation. In our case we can

deĄne the entropy of a solution 𝜌 in the instant 𝑡 as

ℰ(𝜌(𝑡)) =
1
2

∫︁

R𝑑

{︁
(⊗Δ)⊗s𝜌(𝑡, 𝑥) + Ú♣𝑥♣2

}︁
𝜌(𝑡, 𝑥) 𝑑𝑥 ,

and its dissipation as

ℐ(𝜌) =
∫︁

R𝑑
𝜌

⧹︃⧹︃⧹︃⧹︃⧹︃∇
(︃

(⊗Δ)⊗s𝜌 +
Ú

2
♣𝑥♣2

⎜⧹︃⧹︃⧹︃⧹︃⧹︃

2

𝑑𝑥 ,

It is known that rates of convergence for the functional ℰ lead to rates in some 𝐿p spaces,

as one can see by results like Csiszár-Kullback-Pinsker Inequality and its variants. Thus, in

order to estimate the behavior of ℰ we can proceed in two ways: for the Ąrst one, known

as Bakry-Émery method and used in [8], we Ąrst note that, at least formally, for sufficiently

smooth solutions 𝜌 we have

𝑑

𝑑𝑡
(ℰ(𝜌(𝑡)) ⊗ ℰ(𝜌m,∞)) = ⊗ℐ(𝜌(𝑡)) , (0.0.7)

and also
𝑑

𝑑𝑡
ℐ(𝜌(𝑡)) = ⊗2Úℐ(𝜌(𝑡)) ⊗ ℛ(𝜌(𝑡)) (0.0.8)

with ℛ > 0. Therefore this last relation together with the GronwallŠs Inequality imply that

ℐ(𝜌(𝑡)) 6 ℐ(𝜌0)𝑒⊗2λt ,
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and thus ℐ(𝜌(𝑡)) ⊃ 0 as 𝑡 ⊃ ∞. Now, integrating (0.0.8) on [𝑡, ∞) and using (0.0.7) we

obtain

⊗ℐ(𝜌(𝑡)) =
∫︁ ∞

t

𝑠

𝑑𝑠
ℐ(𝜌(𝑠)) 𝑑𝑠 6 ⊗2Ú

∫︁ ∞

t
ℐ(𝜌(𝑠)) 𝑑𝑠

= 2Ú
∫︁ ∞

t

𝑠

𝑑𝑠
ℰ(𝜌(𝑠)) 𝑑𝑠 = 2Ú (ℰ(𝜌m,∞) ⊗ ℰ(𝜌(𝑡))) . (0.0.9)

i.e.,

ℰ(𝜌) ⊗ ℰ(𝜌m,∞) 6
1

2Ú
ℐ(𝜌). (0.0.10)

This inequality and the relation (0.0.7) imply

𝑑

𝑑𝑡
(ℰ(𝜌(𝑡)) ⊗ ℰ(𝜌m,∞)) 6 ⊗2Ú (ℰ(𝜌(𝑡)) ⊗ ℰ(𝜌m,∞)) (0.0.11)

and, by Gronwall again, we obtain that

ℰ(𝜌(𝑡)) ⊗ ℰ(𝜌m,∞) 6 𝑒⊗2λt (ℰ(𝜌0) ⊗ ℰ(𝜌m,∞)) .

Another way of obtaining this decay is trying to establish the inequality (0.0.10) directly

and so applying it to the relation (0.0.7) to obtain (0.0.11). This approach usually requires

less regularity from the solutions and can be done by optimal transportation methods since

what we want is a functional inequality for measures. In the Chapter 2 we shall use this

second approach and we shall obtain rigorously a generalized version of (0.0.10) for a good

set of measures in 𝒫2(R) and apply it to the solutions of (0.0.4). The inequality (0.0.10)

appears in [21] as an open question about the spectral gap. We also prove that the decay in

the entropy level implies a rate of convergence of the solutions towards the stationary state

in some 𝐿p spaces.

The inequality (0.0.10) is usually called, in the context of optimal transport, log-Sobolev

inequality in the linear diffusion case or generalized log-Sobolev inequalities otherwise. In

particular, it becomes the logarithmic Sobolev inequality [46] for linear Fokker-Planck equa-

tion [7, 28, 73], and a special family of Gagliardo-Nirenberg inequalities for nonlinear Fokker-

Planck equations with porous medium type diffusion [37, 26, 29]. This inequality is closely

related with the notion of displacement convexity of functionals over 𝒫2(R) which will be

deĄned and explored in the Sections 2.2 and 2.3.

All the results proved in this work about the rate of convergence of solution to (0.0.4) are
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valid only in dimension 1. This restriction is due to the fact that we need to use the convexity

of the kernel 𝑐d,s♣𝑥♣2s⊗d, used in the deĄnition of (⊗Δ)⊗s, in order to obtain a generalized

version of the log-Sobolev inequality. It is worth of note to say that the problem of obtaining

any rate for the long-time asymptotic behavior of 𝜌(𝑡, .) is still an open problem.

This second work was done under the supervision of Prof. José A. Carrillo at Imperial

College London during a PhD Sandwich Program from Nov/2013 till Oct/2014 and was

funded with a Capes/Science Without Borders scholarship. The results will also appear in

[30].
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Chapter 1

Semilinear elliptic equations in R
𝑛

with arbitrary growth

We analyse the existence, symmetry and asymptotic behavior of the solutions to a nonlin-

ear elliptic equation in R
n where the nonlinear term 𝑔(𝑥, 𝑢, ∇𝑢) can depend on the unknown

𝑢 and its Ąrst order derivatives ∇𝑢. No restriction is imposed on the behavior of 𝑔 at inĄnity

except in the variable 𝑥, and thus, our results cover nonlinearities with arbitrary growth in

𝑢 and ∇𝑢, including in particular exponential type behavior. Using a Ąxed point argument

we obtain a solution 𝑢 that is locally unique, 𝐶1 and with polynomial decay which inherits

many of the symmetry properties of 𝑔. Positivity and asymptotic behavior of the solution

are also addressed. The techniques, and even most of the arguments used in our results, can

also be applied to the case where the domain is the half-space or an exterior domain and also

to the case involving certain ranges of the fractional Laplacian.

1.1 Introduction

In this chapter we analyse the existence, symmetry and asymptotic behavior of solutions

to the following nonlinear elliptic PDEs

Δ𝑢 + 𝑔(𝑥, 𝑢, ∇𝑢) = 0 in R
n (1.1.1)

𝑢 ⊃ 0 as ♣𝑥♣ ⊃ ∞, (1.1.2)
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with 𝑛 ⊙ 3 and 𝑔 : Rn ×R×R
n ⊃ R verifying 𝑔(𝑥, 0, 0) ̸⊕ 0 and belonging to a large class of

nonlinear functions which include, for example, polynomial and exponential type growths on

𝑢 or ∇𝑢. Since we are interested in 𝑔 depending on 𝑢 and ∇𝑢, we write 𝑔(𝑥, 𝑧, 𝑝) for 𝑧 ∈ R,

𝑝 ∈ R
n and the gradient of 𝑔 with respect to the (𝑛 + 1)-last variables will be denoted by

∇(z,p)𝑔(𝑥, 𝑧, 𝑝). Throughout the paper, we frequently consider (1.1.1) with either 𝑔(𝑥, 𝑢, ∇𝑢),

𝑔(𝑥, 𝑢, ♣∇𝑢♣), 𝑔(𝑥, ♣𝑢♣, ∇𝑢), or 𝑔(𝑥, ♣𝑢♣, ♣∇𝑢♣) with the same hypotheses on 𝑔, except for the

symmetry results.

Exponential-type nonlinearities appear naturally in many contexts like: conformal ge-

ometry and the prescribed curvature problem in 2 dimensions, where one is interested on

determining the class of functions 𝐾 : 𝑀 ⊃ R on the manifold 𝑀 with curvature 𝑘 such

that the problem

⊗Δ𝑢 = 𝐾𝑒2u + 𝑘 , on 𝑀 ,

admits a solution and hence, this solution leads to metric on 𝑀 which is pointwise conformal

to the original one and has 𝐾 as its Gaussian curvature (see [34], [33], [49]); condensate

or multivortex solutions of the (2+1)-dimensional Chern-Simons gauge theory, where one is

interested on the existence and multiplicity of solutions to the equation

Δ𝑢 =
4
Ù2

𝑒u(𝑒u ⊗ 1) + 4Þ
N∑︁

j=1

Ój , on R
2/Z × Z ,

where Ù is a constant called Chern-Simons coupling parameter and Ój are the Dirac measures

at the prescribed zeros 𝑝j of the Higgs scalar (see [22, 31, 71, 75]);

On the other hand, nonlinear gradient terms appear naturally in models connected with

convective processes, in the physical theory of growth and roughening of surfaces or in stochas-

tic control theory. One of the most widely studied examples is the following equation

⊗Δ𝑢 = 𝑔(𝑢)♣∇𝑢♣2 + Ú𝑓(𝑥) , on R
d , (1.1.3)

where Ú > 0, 𝑔 is a positive continuous function and 𝑓 is a positive measurable one. The

parabolic version of this equation was proposed by Kardar, Parisi and Zhang in [47] as a

model for the evolution of the proĄle of a growing interface, which appears in the growth of

smoke, Ćame fronts or tumors,

𝜕t𝑢 = ÜΔ𝑢 + Û♣∇𝑢♣2 + 𝑓(𝑥) .
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Also, for suitable choices of 𝑔 and 𝑓 , one can view (1.1.3) as the equation for the stationary

states of the following model

𝜕t𝑢 = 𝜀Δ𝑢 + ♣∇𝑢♣2

which is the viscosity approximation of some Hamilton-Jabobi type equations (see the stan-

dard reference [58]). The classical references in the treatment of (1.1.3) are [55] and [51],

while many other results in that direction were also obtained by L. Boccardo, F. Murat, A.

Porreta, J.-P. Puel and others.

As we said in the Introduction, the combination of the exponential growth, gradient terms

and noncompact domains let the problem very hard to handle with standard methods since

the natural spaces where they look for solutions are 𝐿p spaces and generalizations. Here we

will overcome all these difficulties by searching for solutions in a space where the functions

have an polynomial decay which will be enough to control the nonlinearity.

The organization of this chapter is as follows. We Ąrst present an integral equivalent

form for the problem (1.1.1)-(1.1.2) in the Section 1.2 together with the spaces where we

shall look for the solutions. Due to this integral formulation, we need to prove some lemmas

about convolutions and regularity of the Newtonian potential that will be used in the proof

of the main theorem. On Section 1.3 we state our main result and we prove it by using

a Ąxed point argument in the spaces deĄned on section 1.2. Two concrete examples where

our hypothesis are satisĄed are presented, and Ąnally we show that the solutions obtained

for this method inherit many of the properties of the nonlinearity 𝑔, like the positivity and

symmetry, as well as the asymptotic behavior of 𝑢 and its gradient. It is worthy of note to

point out that by slight modiĄcations on the proofs, our approach can be employed for other

unbounded domains like half-space and exterior domains, with either Dirichlet or Neumann

homogeneous boundary conditions.

1.2 Integral Formulation, Lemmas and Known Results

This section we present the integral formulation, using GreenŠs function, which will be

used to prove the existence of solution to (1.1.1)-(1.1.2). We shall also prove some Lemmas

about the Newtonian potential on the spaces used in the next section and remind some

well known results about regularity of elliptic equations. Let us start deĄning the following
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weighted spaces: for a Ąxed 𝑘 ∈ R, let

𝐸k ⊕
∮︁

𝑢 measurable : ess sup
x∈R𝑛

(1 + ♣𝑥♣)k♣𝑢(𝑥)♣ < ∞
⨀︀

and

𝐹k ⊕
∮︁

𝑢 ∈ 𝐶1(Rn) : sup
x∈R𝑛

(1 + ♣𝑥♣)k (♣𝑢(𝑥)♣ + ♣∇𝑢(𝑥)♣) < ∞
⨀︀

,

which are Banach spaces with respective norms

‖𝑢‖E𝑘
= ess sup

x∈R𝑛
(1 + ♣𝑥♣)k♣𝑢(𝑥)♣

and

‖𝑢‖F𝑘
= sup

x∈R𝑛
(1 + ♣𝑥♣)k (♣𝑢(𝑥)♣ + ♣∇𝑢(𝑥)♣) .

Spaces like above with the homogeneous weight ♣𝑥♣k have been used in [44] to treat the

equation Δ𝑢 + 𝑢♣𝑢♣p⊗2 + 𝑉 (𝑥)𝑢 + 𝑓(𝑥) = 0 for 𝑝 > 𝑛/(𝑛 ⊗ 2) with 𝑛 ⊙ 3.

As we will see in the proof of Theorem 1.3.3, the choice of a proper value for 𝑘 in the

above spaces depends uniquely on the spaces where the function 𝑥 ↦⊃ 𝑔(𝑥, 0, 0) is deĄned and

how ♣∇(z,p)𝑔(≤, 𝑢, ∇𝑢)♣ behaves with ♣(𝑢, ∇𝑢)♣.
The problem (1.1.1)-(1.1.2) is formally equivalent to the following integral equation

𝑢(𝑥) =
1

(𝑛 ⊗ 2)æn

∫︁

R𝑛

1
♣𝑥 ⊗ 𝑦♣n⊗2

𝑔(𝑦, 𝑢(𝑦), ∇𝑢(𝑦)) 𝑑𝑦, (1.2.1)

where æn is the area of the unit sphere. Therefore, it will be convenient for our purposes to

denote the Newtonian potential of a function 𝑓 : Rn ⊃ R by

𝒩 (𝑓)(𝑥) :=
1

(𝑛 ⊗ 2)æn

∫︁

R𝑛

1
♣𝑥 ⊗ 𝑦♣n⊗2

𝑓(𝑦) 𝑑𝑦,

and consider the nonlinear integral operator

ℬ(𝑢)(𝑥) := 𝒩 (𝑔(≤, 𝑢, ∇𝑢))(𝑥) =
1

(𝑛 ⊗ 2)æn

∫︁

R𝑛

1
♣𝑥 ⊗ 𝑦♣n⊗2

𝑔(𝑦, 𝑢(𝑦), ∇𝑢(𝑦)) 𝑑𝑦,

acting in the space 𝐹k.

Therefore, in order to solve the mild version (1.2.1) of (1.1.1)-(1.1.2) we just need to look
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for Ąxed points of the operator ℬ in some appropriate subset of 𝐹k.

We start by analyzing an integral that will be useful for our needs.

Lemma 1.2.1. Let Ð, Ñ > 0 and 0 < 𝑛 ⊗ Ð < Ñ, then

sup
x∈R𝑛

∫︁

R𝑛

1
♣𝑥 ⊗ 𝑦♣α

1
(1 + ♣𝑦♣)β

𝑑𝑦 < ∞.

Proof. Let us deĄne, for every 𝑥 ∈ R
n, the functions 𝑘x(𝑦) = ♣𝑥⊗𝑦♣⊗α and 𝑟(𝑦) = (1+ ♣𝑦♣)⊗β.

Now, using the simplest rearrangement inequality theorem in [57, p. 82], one has

∫︁

R𝑛

1
♣𝑥 ⊗ 𝑦♣α

1
(1 + ♣𝑦♣)β

𝑑𝑦 =
∫︁

R𝑛
𝑘x(𝑦)𝑟(𝑦) 𝑑𝑦 6

∫︁

R𝑛
𝑘*

x(𝑦)𝑟*(𝑦) 𝑑𝑦 (1.2.2)

where 𝑘*
x and 𝑟* are the symmetric-decreasing rearrangements of 𝑘x and 𝑟 respectively. For

𝑘*
x we have that

𝑘*
x(𝑦) =

∫︁ ∞

0
ä¶♣k𝑥♣>t♢*(𝑦) 𝑑𝑡 ,

where ¶♣𝑘x♣ > 𝑡♢* is the ball centered at the origin with the same measure as ¶♣𝑘x♣ > 𝑡♢.

Thus, we can compute

♣𝑘x(𝑦)♣ > 𝑡 ⇔ ♣𝑥 ⊗ 𝑦♣⊗α > 𝑡 ⇔ 𝑦 ∈ 𝐵(𝑥, 𝑡⊗1/α) .

and conclude that ¶♣𝑘x♣ > 𝑡♢* = 𝐵(0, 𝑡⊗1/α). Hence

∫︁ ∞

0
ä¶♣k𝑥♣>t♢*(𝑦) 𝑑𝑡 =

∫︁ ∞

0
äB(0,t⊗1/Ð)(𝑦) 𝑑𝑡 =

∫︁ ♣y♣⊗Ð

0
1 𝑑𝑡

=
1

♣𝑦♣α

and 𝑘*
x(𝑦) = ♣𝑦♣⊗α for all 𝑦 and independently of 𝑥. In the same way we can compute 𝑟*(𝑦)

and obtain that 𝑟*(𝑦) = 𝑟(𝑦) for all 𝑦 ∈ R
n. Therefore, from (1.2.2) we have

∫︁

R𝑛

1
♣𝑥 ⊗ 𝑦♣α

1
(1 + ♣𝑦♣)β

𝑑𝑦 6

∫︁

R𝑛

1
♣𝑦♣α

1
(1 + ♣𝑦♣)β

𝑑𝑦 , for all 𝑥 ∈ R
n ,

which is Ąnite, due to the conditions on Ð and Ñ.

The following convolution lemma will be useful for some estimates and its proof can be
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found in [57, p. 124].

Lemma 1.2.2. Let 0 < Ð, Ñ < 𝑛 with 0 < Ð + Ñ < 𝑛. Then

∫︁

R𝑛

1
♣𝑦♣n⊗α

1
♣𝑥 ⊗ 𝑦♣n⊗β

𝑑𝑦 =
𝐶(Ð, Ñ, 𝑛)
♣𝑥♣n⊗α⊗β

where 𝐶(Ð, Ñ, 𝑛) = cÐcÑc𝑛⊗Ð⊗Ñ

cÐ+Ñc𝑛⊗Ðc𝑛⊗Ñ
and 𝑐γ = Þ⊗γ/2Γ(γ

2
).

Let us recall the following version of the Dominated Convergence Theorem which will be

used in the proof of the next lemma.

Lemma 1.2.3. Let 𝑓n, 𝑓 , 𝑔n and 𝑔 be measurable functions on R
n such that 𝑓n ⊃ 𝑓 a.e.

and 𝑔n ⊃ 𝑔 a.e. as well. If ♣𝑓n♣ 6 𝑔n a.e and 𝑔n ∈ 𝐿1(Rn) for all 𝑛, and
∫︀

𝑔n ⊃ ∫︀
𝑔 as

𝑛 ⊃ ∞ then,
∫︀

𝑓n ⊃ ∫︀
𝑓 .

The next result gives the necessary regularity we will need for the Newtonian potential

of a function in the space 𝐸k.

Lemma 1.2.4. Let 0 < 𝑘 < 𝑛 ⊗ 2 and 𝑓 ∈ 𝐸k+2. Then 𝒩 (𝑓) ∈ 𝐹k and there exists a

constant 𝐶k > 0 satisfying

‖𝒩 (𝑓)‖F𝑘
6 𝐶k ‖𝑓‖E𝑘+2

, for all 𝑓 ∈ 𝐸k+2. (1.2.3)

Proof. First we show that 𝒩 (𝑓) ∈ 𝐶1(Rn). For Ąxed 𝑥, 𝑧 ∈ R
n with ♣𝑧♣ = 1 and 0 < 𝑡 < 1,

we deĄne the function ℎy(𝑠) = ♣𝑥 ⊗ 𝑦 + 𝑠𝑧♣2⊗n on [0, 𝑡]. Note that ℎy is differentiable on [0, 𝑡]

if and only if 𝑦 ̸∈ 𝐿 := ¶𝑥 + 𝑠𝑧 ♣ 𝑠 ∈ [0, 𝑡]♢. If this is the case, we may write

ℎ′
y(𝑠) = (2 ⊗ 𝑛)

𝑧 ≤ (𝑥 ⊗ 𝑦 + 𝑠𝑧)
♣𝑥 ⊗ 𝑦 + 𝑠𝑧♣n , for all 𝑠 ∈ (0, 𝑡).

By Mean Value Theorem, for each 𝑦 ∈ R
n∖𝐿 there exists 𝑡y ∈ (0, 𝑡) such that

ℎy(𝑡) ⊗ ℎy(0)
𝑡

= (2 ⊗ 𝑛)
𝑧 ≤ (𝑥 ⊗ 𝑦 + 𝑡y𝑧)
♣𝑥 ⊗ 𝑦 + 𝑡y𝑧♣n . (1.2.4)

Since 𝐿 is a measure-zero set, we may write

𝒩 (𝑓)(𝑥 + 𝑡𝑧) ⊗ 𝒩 (𝑓)(𝑥)
𝑡

=
1

(𝑛 ⊗ 2)𝑤n

∫︁

R𝑛∖L

(︃
ℎy(𝑡) ⊗ ℎy(0)

𝑡

⎜
𝑓(𝑦) 𝑑𝑦
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= ⊗ 1
𝑤n

∫︁

R𝑛

𝑧 ≤ (𝑥 ⊗ 𝑦 + 𝑡y𝑧)
♣𝑥 ⊗ 𝑦 + 𝑡y𝑧♣n 𝑓(𝑦) 𝑑𝑦.

For each 𝑦 ∈ R
n∖𝐿, let 𝐻t be the function

𝐻t(𝑦) = ⊗ 1
𝑤n

𝑧 ≤ (𝑥 ⊗ 𝑦 + 𝑡y𝑧)
♣𝑥 ⊗ 𝑦 + 𝑡y𝑧♣n 𝑓(𝑦) ,

where 𝑡y ∈ (0, 𝑡) and satisĄes (1.2.4). In spite of the fact that 𝑡y may be not unique, the

deĄnition of 𝐻t(𝑦) ensures that a different 𝑡 satisfying (1.2.4) gives the same value to the

expression of 𝐻t(𝑦). Thus 𝐻t is well deĄned. Furthermore, we have that 𝐻t ⊃ 𝐻0 a.e in R
n

as 𝑡 ⊃ 0. Note that

♣𝐻t(𝑦)♣ 6 1
𝑤n

♣𝑓(𝑦)♣
♣𝑥 ⊗ 𝑦 + 𝑡y𝑧♣n⊗1

6 𝐺t(𝑦) , (1.2.5)

where

𝐺t(𝑦) =
‖𝑓‖E𝑘+2

𝑤n

1
♣𝑥 ⊗ 𝑦 + 𝑡y𝑧♣n⊗1

1
(1 + ♣𝑦♣)k+2

∈ 𝐿1(Rn) ,

by Lemma 1.2.1. We also have

𝐺t(𝑦) ⊃ 𝐺0(𝑦) a.e. in R
n and

∫︁

R𝑛
𝐺t(𝑦) 𝑑𝑦 =

∫︁

R𝑛

̃︀𝐺t(𝑦) 𝑑𝑦 (1.2.6)

as 𝑡 ⊃ 0, where

̃︀𝐺t(𝑦) =
‖𝑓‖E𝑘+2

𝑤n

1
♣𝑦♣n⊗1

1
(1 + ♣𝑥 + 𝑡y𝑧 ⊗ 𝑦♣)k+2

6
‖𝑓‖E𝑘+2

𝑤n

1
♣𝑦♣n⊗1

𝐶1

(1 + ♣𝑦♣)k+2
∈ 𝐿1(Rn) , (1.2.7)

where 𝐶1 depends on 𝑥 but not on 𝑡 since we took 𝑡 < 1. Therefore, since ̃︀𝐺t(𝑦) ⊃ ̃︀𝐺0(𝑦)

a.e in R
n as 𝑡 ⊃ 0, we have from (1.2.6), (1.2.7) and the Dominated Convergenge Theorem

that ∫︁

R𝑛
𝐺t(𝑦) 𝑑𝑦 =

∫︁

R𝑛

̃︀𝐺t(𝑦) 𝑑𝑦 ⊃
∫︁

R𝑛

̃︀𝐺0(𝑦) 𝑑𝑦 =
∫︁

R𝑛
𝐺0(𝑦) 𝑑𝑦. (1.2.8)

Then, from (1.2.5) and (1.2.8) and the Lemma 1.2.3, we conclude that

lim
t⊃0+

𝒩 (𝑓)(𝑥 + 𝑡𝑧) ⊗ 𝒩 (𝑓)(𝑥)
𝑡

= lim
t⊃0+

∫︁

R𝑛
𝐻t(𝑦) 𝑑𝑦 =

∫︁

R𝑛
𝐻0(𝑦) 𝑑𝑦.
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Thus,

∇𝒩 (𝑓)(𝑥) ≤ 𝑧 = ⊗ 1
𝑤n

∫︁

R𝑛

𝑧 ≤ (𝑥 ⊗ 𝑦)
♣𝑥 ⊗ 𝑦♣n 𝑓(𝑦) 𝑑𝑦 , for all ♣𝑧♣ = 1,

∇𝒩 (𝑓)(𝑥) = ⊗ 1
𝑤n

∫︁

R𝑛

𝑥 ⊗ 𝑦

♣𝑥 ⊗ 𝑦♣n 𝑓(𝑦) 𝑑𝑦.

For a Ąxed 𝑥0 ∈ R
n we have

♣∇𝒩 (𝑓)(𝑥0) ⊗ ∇𝒩 (𝑓)(𝑥)♣ 6

∫︁

R𝑛

1
𝑤n

⧹︃⧹︃⧹︃⧹︃⧹︃
𝑥0 ⊗ 𝑦

♣𝑥0 ⊗ 𝑦♣n ⊗ 𝑥 ⊗ 𝑦

♣𝑥 ⊗ 𝑦♣n
⧹︃⧹︃⧹︃⧹︃⧹︃ ♣𝑓(𝑦)♣ 𝑑𝑦

and the continuity of ∇𝒩 (𝑓) in 𝑥0 follows from the same arguments as above applied to the

new functions

𝐻x(𝑦) :=
1

𝑤n

⧹︃⧹︃⧹︃⧹︃⧹︃
𝑥0 ⊗ 𝑦

♣𝑥0 ⊗ 𝑦♣n ⊗ 𝑥 ⊗ 𝑦

♣𝑥 ⊗ 𝑦♣n
⧹︃⧹︃⧹︃⧹︃⧹︃ ♣𝑓(𝑦)♣;

𝐺x(𝑦) :=
‖𝑓‖E𝑘+2

𝑤n

(︃
1

♣𝑥0 ⊗ 𝑦♣n⊗1
+

1
♣𝑥 ⊗ 𝑦♣n⊗1

⎜
1

(1 + ♣𝑦♣)k+2
;

̃︀𝐺x(𝑦) :=
‖𝑓‖E𝑘+2

𝑤n

1
♣𝑦♣n⊗1

(︃
1

(1 + ♣𝑥0 ⊗ 𝑦♣)k+2
+

1
(1 + ♣𝑥 ⊗ 𝑦♣)k+2

⎜

and the estimate

̃︀𝐺x(𝑦) 6
𝐶 ‖𝑓‖E𝑘+2

𝑤n♣𝑦♣n⊗1(1 + ♣𝑥0 ⊗ 𝑦♣)k+2
∈ 𝐿1(Rn) , if ♣𝑥 ⊗ 𝑥0♣ <

1
2

.

For the existence of 𝐶k satisfying (1.2.3), we Ąrst note from the deĄnition of ‖.‖F𝑘
that

‖𝒩 (𝑓)‖F𝑘
= sup

x∈R𝑛

{︁
(1 + ♣𝑥♣)k♣𝑓(𝑥)♣ + (1 + ♣𝑥♣)k♣∇𝑓(𝑥)♣

}︁

6 sup
x∈R𝑛

(1 + ♣𝑥♣)k♣𝑓(𝑥)♣ + sup
x∈R𝑛

(1 + ♣𝑥♣)k♣∇𝑓(𝑥)♣

= ‖𝒩 (𝑓)‖E𝑘
+ ‖∇𝒩 (𝑓)‖E𝑘

.

Let us then estimate these two terms. Beginning with the Ąrst one, we have that for every

0 < 𝑘 < 𝑛 ⊗ 2, we can apply the Lemma 1.2.2 with Ð = 2 and Ñ = 𝑛 ⊗ 𝑘 ⊗ 2 and obtain, for

every 𝑥 ∈ R
n,

♣𝒩 (𝑓)(𝑥)♣ 6
1

(𝑛 ⊗ 2)𝑤n

∫︁

R𝑛

1
♣𝑥 ⊗ 𝑦♣n⊗2

♣𝑓(𝑦)♣ 𝑑𝑦
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=
1

(𝑛 ⊗ 2)𝑤n

∫︁

R𝑛

♣𝑦♣k+2

♣𝑥 ⊗ 𝑦♣n⊗2

♣𝑓(𝑦)♣
♣𝑦♣k+2

𝑑𝑦

6
1

(𝑛 ⊗ 2)𝑤n

sup
y∈R𝑛

(︁
♣𝑦♣k+2♣𝑓(𝑦)♣

⎡ ∫︁

R𝑛

1
♣𝑥 ⊗ 𝑦♣n⊗2

1
♣𝑦♣k+2

𝑑𝑦

=
𝐶(𝑛 ⊗ 𝑘 ⊗ 2, 2, 𝑛)

(𝑛 ⊗ 2)𝑤n

sup
y∈R𝑛

(︁
♣𝑦♣k+2♣𝑓(𝑦)♣

⎡ 1
♣𝑥♣k

6
𝐶(𝑛 ⊗ 𝑘 ⊗ 2, 2, 𝑛)

(𝑛 ⊗ 2)𝑤n

‖𝑓‖E𝑘+2

1
♣𝑥♣k

=: 𝐿k ‖𝑓‖E𝑘+2

1
♣𝑥♣k .

Now, using the Lemma 1.2.1 with Ð = 𝑛 ⊗ 2 and Ñ = 𝑘 + 2 we obtain

♣𝒩 (𝑓)(𝑥)♣ 6
1

(𝑛 ⊗ 2)𝑤n

∫︁

R𝑛

1
♣𝑥 ⊗ 𝑦♣n⊗2

♣𝑓(𝑦)♣ 𝑑𝑦

=
1

(𝑛 ⊗ 2)𝑤n

∫︁

R𝑛

(1 + ♣𝑦♣)k+2

♣𝑥 ⊗ 𝑦♣n⊗2

♣𝑓(𝑦)♣
(1 + ♣𝑦♣)k+2

𝑑𝑦

6

(︃
1

(𝑛 ⊗ 2)𝑤n

∫︁

R𝑛

1
♣𝑥 ⊗ 𝑦♣n⊗2

1
(1 + ♣𝑦♣)k+2

𝑑𝑦

⎜
‖𝑓‖E𝑘+2

6

(︃
1

(𝑛 ⊗ 2)𝑤n

∫︁

R𝑛

1
♣𝑦♣n⊗2

1
(1 + ♣𝑦♣)k+2

𝑑𝑦

⎜
‖𝑓‖E𝑘+2

=: 𝑀k ‖𝑓‖E𝑘+2
.

Therefore, for every 𝑥 ∈ R
n,

(1 + ♣𝑥♣)k♣𝒩 (𝑓)(𝑥)♣ 6 2k
(︁
♣𝒩 (𝑓)(𝑥)♣ + ♣𝑥♣k♣𝒩 (𝑓)(𝑥)♣

⎡

6 2k(𝑀k + 𝐿k) ‖𝑓‖E𝑘+2
,

which implies that

‖𝒩 (𝑓)‖E𝑘
6 2k(𝑀k + 𝐿k) ‖𝑓‖E𝑘+2

.

The estimates for the term ‖∇𝒩 (𝑓)‖E𝑘
are similar but we will include them here just for

the sake of completeness. In this case for 0 < 𝑘 < 𝑛 ⊗ 2, we can apply Lemma 1.2.2 with

Ð = 1 and Ñ = 𝑛 ⊗ 𝑘 ⊗ 2 and obtain, for every 𝑥 ∈ R
n,

♣∇𝒩 (𝑓)(𝑥)♣ 6
1

𝑤n

∫︁

R𝑛

1
♣𝑥 ⊗ 𝑦♣n⊗1

♣𝑓(𝑦)♣ 𝑑𝑦
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=
1

𝑤n

∫︁

R𝑛

♣𝑦♣k+2

♣𝑥 ⊗ 𝑦♣n⊗1

♣𝑓(𝑦)♣
♣𝑦♣k+2

𝑑𝑦

6
1

𝑤n

sup
y∈R𝑛

(︁
♣𝑦♣k+2♣𝑓(𝑦)♣

⎡ ∫︁

R𝑛

1
♣𝑥 ⊗ 𝑦♣n⊗1

1
♣𝑦♣k+2

𝑑𝑦

=
𝐶(𝑛 ⊗ 𝑘 ⊗ 2, 1, 𝑛)

𝑤n

sup
y∈R𝑛

(︁
♣𝑦♣k+2♣𝑓(𝑦)♣

⎡ 1
♣𝑥♣k+1

6
𝐶(𝑛 ⊗ 𝑘 ⊗ 2, 1, 𝑛)

𝑤n

‖𝑓‖E𝑘+2

1
♣𝑥♣k+1

=: ̃︀𝐿k ‖𝑓‖E𝑘+2

1
♣𝑥♣k+1

.

Applying Lemma 1.2.1 with Ð = 𝑛 ⊗ 1 and Ñ = 𝑘 + 2, we conclude

♣∇𝒩 (𝑓)(𝑥)♣ 6
1

𝑤n

∫︁

R𝑛

1
♣𝑥 ⊗ 𝑦♣n⊗1

♣𝑓(𝑦)♣ 𝑑𝑦

=
1

𝑤n

∫︁

R𝑛

(1 + ♣𝑦♣)k+2

♣𝑥 ⊗ 𝑦♣n⊗1

♣𝑓(𝑦)♣
(1 + ♣𝑦♣)k+2

𝑑𝑦

6

(︃
1

𝑤n

∫︁

R𝑛

1
♣𝑥 ⊗ 𝑦♣n⊗1

1
(1 + ♣𝑦♣)k+2

𝑑𝑦

⎜
‖𝑓‖E𝑘+2

6

(︃
1

𝑤n

∫︁

R𝑛

1
♣𝑦♣n⊗1

1
(1 + ♣𝑦♣)k+2

𝑑𝑦

⎜
‖𝑓‖E𝑘+2

=: ̃︁𝑀k ‖𝑓‖E𝑘+2
.

Thus we obtain that for every 𝑥 ∈ R
n,

(1 + ♣𝑥♣)k+1♣∇𝒩 (𝑓)(𝑥)♣ 6 2k+1
(︁
♣∇𝒩 (𝑓)(𝑥)♣ + ♣𝑥♣k+1♣∇𝒩 (𝑓)(𝑥)♣

⎡

6 2k+1(̃︁𝑀k + ̃︀𝐿k) ‖𝑓‖E𝑘+2
.

Therefore, taking the sup in the above expression yields

‖∇𝒩 (𝑓)‖E𝑘+1
6 2k+1(𝑀k + 𝐿k) ‖𝑓‖E𝑘+2

.

We conclude by putting all these estimates together:

‖𝒩 (𝑓)‖F𝑘
6 ‖𝒩 (𝑓)‖E𝑘

+ ‖∇𝒩 (𝑓)‖E𝑘

6 ‖𝒩 (𝑓)‖E𝑘
+ 2 ‖∇𝒩 (𝑓)‖E𝑘+1
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6 2k(𝑀k + 𝐿k) ‖𝑓‖E𝑘+2
+ 2k+2(̃︁𝑀k + ̃︀𝐿k) ‖𝑓‖E𝑘+2

6 2k+2(̃︁𝑀k + ̃︀𝐿k + 𝑀k + 𝐿k) ‖𝑓‖E𝑘+2

and thus we can take 𝐶k = 2k+2(𝑀k + 𝐿k + ̃︁𝑀k + ̃︀𝐿k) for the constant in the theorem.

To Ąnish this section, we shall include here the following two regularity theorems for

elliptic equations whose proof can be found in [45].

Lemma 1.2.5 (𝐿p Regularity). Let 𝑣 ∈ 𝑊 1,2(Ω) be a weak solution of Δ𝑣 = 𝑓 in a domain

Ω ⊖ R
n with 𝑓 ∈ 𝐿p(Ω) for some 1 < 𝑝 < ∞. Then 𝑣 ∈ 𝑊 2,p

loc (Ω).

Lemma 1.2.6 (𝐶α Regularity ). Let 𝑘 > 0, 0 < Ð < 1 and 1 < 𝑝 < ∞. If Ω ⊖ R
n be

a 𝐶k+2,1 domain, 𝑓 ∈ 𝐶k,α(Ω) and 𝑣 ∈ 𝑊 2,p
loc (Ω) is a weak solution to Δ𝑣 = 𝑓 in Ω, then

𝑣 ∈ 𝐶k+2,α(Ω).

1.3 Existence and symmetries

The Ąxed point method which will be used in this section needs an appropriate choice of

a subset 𝐴 ⊖ 𝐹k where the operator ℬ can be seen as a contraction, and this contraction

depends uniquely on how large the functions 𝑔(., 0, 0) and ∇(z,p)𝑔(., 𝑧, 𝑝) are. Therefore, we

shall solve the problem (1.2.1) under the following hypotheses on 𝑔:

H1) 𝑔(𝑥, ≤, ≤) belongs to 𝐶1((R × R
n)∖(0, 0)) ∩ 𝐶(R × R

n), for all 𝑥 ∈ R
n;

H2) There exists 0 < 𝑘 < 𝑛 ⊗ 2 such that the function 𝑥 ↦⊃ 𝑔(𝑥, 0, 0) belongs to 𝐸k+2;

H3) For the same 𝑘 in (H2), there exists Ó > 0 such that

sup
0<‖w‖𝐹𝑘

⊘δ

⧸︁⧸︁⧸︁∇(z,p)𝑔(≤, 𝑤, ∇𝑤)
⧸︁⧸︁⧸︁

E2

< ∞,

and a further smallness condition on this sup.

Note that, by the choice of spaces we are dealing with, it follows from this approach that

the solution given by this method is already 𝐶1(Rn).
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Remark 1.3.1. For 𝑤 ∈ 𝐹k, (𝑤, ∇𝑤) ⊕ 0 iff 𝑤 ⊕ 0. In spite of the fact that 𝑔(𝑥, ≤, ≤) is not

differentiable at the point (0, 0), we are assuming with (H3) that ∇(z,p)(𝑥, ≤, ≤) is bounded near

to the origin. Notice that the supremum of ‖.‖E2
in (H3) is computed by excluding 𝑤 ⊕ 0.

The assumptions (H1), (H2) and (H3) cover many types of nonlinearities with strong

growth and gradient dependence. In what follows, we give some examples.

Example 1.3.2. Recall first that (1.1.1) is also being defined with 𝑢 or ∇𝑢 replaced respec-

tively by ♣𝑢♣ or ♣∇𝑢♣ in the arguments of 𝑔.

• 𝑔(𝑥, 𝑢, ♣∇𝑢♣) = Ú𝑉 (𝑥)𝑒u +Û𝑊 (𝑥)𝑒♣∇u♣ or Ú𝑉 (𝑥)𝑒e...𝑒
𝑢

+Û𝑊 (𝑥)𝑒e...𝑒
♣∇𝑢♣

, for every 𝑉, 𝑊 ∈
𝐸k+2 with 0 < 𝑘 < 𝑛 ⊗ 2, and Ú, Û ∈ R;

• 𝑔(𝑥, ♣𝑢♣, ♣∇𝑢♣) = 𝑊 (𝑥)𝑒♣u♣𝑚1 +♣∇u♣𝑚2 , ♣𝑢♣m1 + 𝑊 (𝑥)𝑒♣∇u♣𝑚2 , 𝑊 (𝑥)𝑒♣u♣𝑚1 + ♣∇𝑢♣m2,

𝑊 (𝑥)𝑒♣u♣𝑚1 ♣∇𝑢♣m2 + 𝑓 or 𝑊 (𝑥)♣𝑢♣m1𝑒♣∇u♣𝑚2 + 𝑓 , for 𝑚1, 𝑚2 > 1 and 𝑊, 𝑓 ∈ 𝐸k+2 with

0 < 𝑘 < 𝑛 ⊗ 2;

• 𝑔(𝑥, ♣𝑢♣, ♣∇𝑢♣) = 𝑒♣u♣𝑚1 +♣∇u♣𝑚2 ⊗ 1 + 𝑓(𝑥) or 𝑔(𝑥, 𝑢, ∇𝑢) = 𝑒e(♣𝑢♣𝑚1 +♣∇𝑢♣𝑚2 ) ⊗ 1 + 𝑓(𝑥), for

𝑚1, 𝑚2 > 1 and 𝑓 ∈ 𝐸k+2 with 0 < 𝑘 < 𝑛 ⊗ 2;

• 𝑔(𝑥, ♣𝑢♣, ♣∇𝑢♣) = ♣𝑢♣m1 + ♣∇𝑢♣m2 + 𝑓(𝑥) or ♣𝑢♣m1♣∇𝑢♣m2 + 𝑓(𝑥), for 𝑚1, 𝑚2 > 1 and

𝑓 ∈ 𝐸k+2 with 0 < 𝑘 < 𝑛 ⊗ 2.

We will show existence of solutions for (1.1.1)-(1.1.2) in R
n with 𝑛 ⊙ 3 and conditions

on 𝑔 (see (H1)-(H3)) covering polynomial and exponential type growths on 𝑢 and ∇𝑢, see

Examples 1.3.2, 1.3.6 and 1.3.7. In particular, since 𝑔(𝑥, 0, 0) does not need to be continu-

ous, the nonlinearity (0.0.3) can be treated with singular potentials 𝑉 (non-continuous and

bounded) and ♣Ú♣ close to zero, including also negative values (see Example 1.3.6 below).

From now on we assume that 𝑛 > 3 and that 𝑔 : Rn × R × R
n ⊃ R satisĄes (H1)-(H3).

We begin with existence and local uniqueness of solutions for the integral equation (1.2.1).

Theorem 1.3.3. There exists a constant 𝑄k > 0 such that if 𝑔 : Rn × R × R
n ⊃ R satisfies

(H1)-(H3) for some 0 < 𝑘 < 𝑛 ⊗ 2 and the following inequalities

sup
0<‖w‖𝐹𝑘

⊘ε

⧸︁⧸︁⧸︁∇(z,p)𝑔(., 𝑤, ∇𝑤)
⧸︁⧸︁⧸︁

E2

< 𝑄k
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and

‖𝑔(., 0, 0)‖E𝑘+2
6 𝜀𝑄k,

are satisfied for some 𝜀 > 0, then the integral equation (1.2.1) has a unique solution 𝑢 ∈ 𝐹k

with ‖𝑢‖F𝑘
6 𝜀, which is in particular a weak solution for (1.1.1)-(1.1.2). Furthermore, if

𝑔 ∈ 𝐶m,α
loc (Rn × R × R

n) for an integer 𝑚 ⊙ 0 with 0 < Ð < 1, then 𝑢 ∈ 𝐶m+2,α
loc (Rn) and 𝑢

verifies (1.1.1)-(1.1.2) classically.

Remark 1.3.4. In the statement of Theorem 1.3.3, the constant 𝑄k can be taken as 1
2C𝑘

where 𝐶k is as in Lemma 1.2.4 in the previous section, as we can see from the proof below.

In fact, in view of the proof of Lemma 1.2.4, it is possible to estimate 𝐶k and 𝑄k explicitly.

Proof. Let 𝑥 ∈ R
n, (𝑥, 𝑧1, 𝑝1), (𝑥, 𝑧2, 𝑝2) ∈ R

n × R × R
n and [(𝑧1, 𝑝1), (𝑧2, 𝑝2)] be the closed

line segment between (𝑧1, 𝑝1) and (𝑧2, 𝑝2) in R
n+1. If (0, 0) /∈ [(𝑧1, 𝑝1), (𝑧2, 𝑝2)] then, from the

hypothesis (H1), we have

♣𝑔(𝑥, 𝑧1, 𝑝1) ⊗ 𝑔(𝑥, 𝑧2, 𝑝2)♣ 6 sup
(z,p)∈[(z1,p1),(z2,p2)]

♣∇(z,p)𝑔(𝑥, 𝑧, 𝑝)♣♣(𝑧1 ⊗ 𝑧2, 𝑝1 ⊗ 𝑝2)♣ .

Now, if (0, 0) ∈ [(𝑧1, 𝑝1), (𝑧2, 𝑝2)], then we have that ♣(𝑧1, 𝑝1)♣ + ♣(𝑧2, 𝑝2)♣ = ♣(𝑧1, 𝑝1) ⊗ (𝑧2, 𝑝2)♣
and, by (H1)

♣𝑔(𝑥, 𝑧1, 𝑝1) ⊗ 𝑔(𝑥, 𝑧2, 𝑝2)♣ 6 ♣𝑔(𝑥, 𝑧1, 𝑝1) ⊗ 𝑔(𝑥, 0, 0)♣ + ♣𝑔(𝑥, 0, 0) ⊗ 𝑔(𝑥, 𝑧2, 𝑝2)♣
6 sup

(z,p)∈[(z1,p1),(0,0))

♣∇(z,p)𝑔(𝑥, 𝑧, 𝑝)♣♣(𝑧1, 𝑝1)♣

+ sup
(z,p)∈((0,0),(z2,p2)]

♣∇(z,p)𝑔(𝑥, 𝑧, 𝑝)♣♣(𝑧2, 𝑝2)♣

6 sup
(z,p)∈[(z1,p1),(z2,p2)]∖(0,0)

♣∇(z,p)𝑔(𝑥, 𝑧, 𝑝)♣(♣(𝑧1, 𝑝1)♣ + ♣(𝑧2, 𝑝2)♣)

= sup
(z,p)∈[(z1,p1),(z2,p2)]∖(0,0)

♣∇(z,p)𝑔(𝑥, 𝑧, 𝑝)♣♣(𝑧1 ⊗ 𝑧2, 𝑝1 ⊗ 𝑝2)♣ .

Thus, for a Ąxed Ó > 0 and 𝑢, 𝑣 ∈ 𝐹k with 0 < ‖𝑢‖F𝑘
, ‖𝑣‖F𝑘

< Ó, we write (𝑢, ∇𝑢) =

(𝑢(𝑥), ∇𝑢(𝑥)) to obtain

♣𝑔(𝑥, 𝑢, ∇𝑢) ⊗ 𝑔(𝑥, 𝑣, ∇𝑣)♣ 6 sup
(z,p)∈[(u,∇u),(v,∇v)]∖(0,0)

♣∇(z,p)𝑔(𝑥, 𝑧, 𝑝)♣♣(𝑢 ⊗ 𝑣, ∇𝑢 ⊗ ∇𝑣)♣

6 sup
0<‖w‖𝐹𝑘

6δ
♣∇(z,p)𝑔(𝑥, 𝑤, ∇𝑤)♣♣(𝑢 ⊗ 𝑣, ∇𝑢 ⊗ ∇𝑣)♣ ,
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because for every (𝑧, 𝑝) with ♣𝑧♣, ♣𝑝i♣ < Ó, 𝑖 = 1, . . . , 𝑛, we can Ąnd a function 𝑤 ∈ 𝐹k such

that ‖𝑤‖F𝑘
< Ó and (𝑧, 𝑝) = (𝑤, ∇𝑤) at a point 𝑥. Hence, we have that

(1 + ♣𝑥♣)k+2♣𝑔(𝑥, 𝑢, ∇𝑢) ⊗ 𝑔(𝑥, 𝑣, ∇𝑣)♣ 6
sup

0<‖w‖𝐹𝑘
6δ

(1 + ♣𝑥♣)2♣∇(z,p)𝑔(𝑥, 𝑤, ∇𝑤)♣(1 + ♣𝑥♣)k♣(𝑢 ⊗ 𝑣, ∇𝑢 ⊗ ∇𝑣)♣ ,

and by (H3), it follows that

‖𝑔(., 𝑢, ∇𝑢) ⊗ 𝑔(., 𝑣, ∇𝑣)‖E𝑘+2
6 sup

0<‖w‖𝐹𝑘
6δ

⧸︁⧸︁⧸︁∇(z,p)𝑔(., 𝑤, ∇𝑤)
⧸︁⧸︁⧸︁

E2

‖𝑢 ⊗ 𝑣‖F𝑘
.

Now, take 𝑄k = 1
2C𝑘

where 𝐶k is the constant given by the Lemma 1.2.4 and, by hypothesis,

let 𝜀 > 0 be such that

𝐺ε := sup
0<‖w‖𝐹𝑘

6ε

⧸︁⧸︁⧸︁∇(z,p)𝑔(., 𝑤, ∇𝑤)
⧸︁⧸︁⧸︁

E2

<
1

2𝐶k

.

We will show that ℬ is a contraction in the ball 𝐴ε = ¶𝑢 ∈ 𝐹k : ‖𝑢‖F𝑘
6 𝜀♢. Fix 𝑢, 𝑣 ∈ 𝐴ε

and note that

ℬ(𝑢) ⊗ ℬ(𝑣) = 𝒩 (𝑔(., 𝑢, ∇𝑢) ⊗ 𝑔(., 𝑣, ∇𝑣)) ,

so we can use Lemma 1.2.4 and estimate

‖ℬ(𝑢) ⊗ ℬ(𝑣)‖F𝑘
= ‖𝒩 (𝑔(., 𝑢, ∇𝑢) ⊗ 𝑔(., 𝑣, ∇𝑣))‖F𝑘

6 𝐶k ‖𝑔(., 𝑢, ∇𝑢) ⊗ 𝑔(., 𝑣, ∇𝑣)‖E𝑘+2

6 𝐶k𝐺ε ‖𝑢 ⊗ 𝑣‖F𝑘

6
1
2

‖𝑢 ⊗ 𝑣‖F𝑘
.

Thus for 𝑢 ∈ 𝐴ε and 𝑣 = 0 in the above inequality, we have

‖ℬ(𝑢)‖F𝑘
6 ‖ℬ(𝑢) ⊗ ℬ(0)‖F𝑘

+ ‖ℬ(0)‖F𝑘

6
1
2

‖𝑢‖F𝑘
+ ‖𝒩 (𝑔(., 0, 0))‖F𝑘

6
1
2

‖𝑢‖F𝑘
+ 𝐶k ‖𝑔(., 0, 0)‖E𝑘+2
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6
𝜀

2
+ 𝐶k

𝜀

2𝐶k

= 𝜀 ,

which shows that ℬ(𝐴ε) ⊖ 𝐴ε. Therefore ℬ is a contraction in 𝐴ε and the result follows by

applying the Banach Ąxed point theorem.

The regularity of 𝑢 will follow from the fact that 𝑢 is also a solution in the weak sense to

(1.1.1) and the classical regularity results. Indeed, since 𝑢 ∈ 𝐶1(Rn), 𝑔(., 𝑢, ∇𝑢) ∈ 𝐿∞(Rn)

and the kernel ♣𝑥♣2⊗n is locally integrable, we have for all ã ∈ 𝐶∞
c (Rn) that,

∫︁

R𝑛
∇𝑢 ≤ ∇ã 𝑑𝑥 = ⊗

∫︁

R𝑛
𝑢(𝑥)Δã(𝑥) 𝑑𝑥

= ⊗ 1
(𝑛 ⊗ 2)𝑤n

∫︁

R𝑛

∫︁

R𝑛

1
♣𝑥 ⊗ 𝑦♣n⊗2

𝑔(𝑦, 𝑢(𝑦), ∇𝑢(𝑦))Δã(𝑥) 𝑑𝑦𝑑𝑥

= ⊗
∫︁

R𝑛
𝑔(𝑦, 𝑢(𝑦), ∇𝑢(𝑦))

(︃
1

(𝑛 ⊗ 2)𝑤n

∫︁

R𝑛

1
♣𝑥 ⊗ 𝑦♣n⊗2

Δã(𝑥) 𝑑𝑥

⎜
𝑑𝑦

=
∫︁

R𝑛
𝑔(𝑦, 𝑢(𝑦), ∇𝑢(𝑦))ã(𝑦) 𝑑𝑦.

Therefore, 𝑢 is a weak solution. Moreover, 𝑢 is a weak solution of (1.1.1) on every ball

Ω in R
n and 𝑢 ∈ 𝑊 1,2(Ω). Therefore, since we have 𝑔(., 𝑢, ∇𝑢) ∈ 𝐿s(Ω) for all 𝑠 > 1 and

for every ball Ω, we can use Lemma 1.2.5 and conclude that 𝑢 ∈ 𝑊 2,s(Ω) for every 𝑠 > 1.

Therefore, for 𝑠 > 𝑛 we have the embedding 𝑊 2,s(Ð) ⊃˓ 𝐶1,α(Ω), for Ð = 1 ⊗ n
s

and we

conclude that 𝑢 ∈ 𝐶1,γ(Ω) for every 0 < Ò < 1.

Now, if 𝑔 ∈ 𝐶α
loc(R

n × R × R
n) then 𝑔(., 𝑢, ∇𝑢) ∈ 𝐶0,αγ(Ω) for all 0 < Ò < 1 and, by

Lemma 1.2.6, we have that 𝑢 ∈ 𝐶2,αγ(Ω). Hence 𝑔(., 𝑢, ∇𝑢) ∈ 𝐶α(Ω) and we can perform

the previous argument once more and conclude that 𝑢 ∈ 𝐶2,α(Ω).

Therefore, if 𝑔 ∈ 𝐶1,α
loc (Rn × R × R

n) we now have that 𝑔(., 𝑢, ∇𝑢) ∈ 𝐶1,αγ(Ω) and we can

conclude that 𝑢 ∈ 𝐶3,α(Ω).

Repeating the argument above we can infer that whenever 𝑔 ∈ 𝐶m,α
loc (Rn × R × R

n) with

𝑚 > 1 then 𝑔(., 𝑢, ∇𝑢) ∈ 𝐶m,α(Ω) and, by Lemma 1.2.6, we have that 𝑢 ∈ 𝐶m+2,α(Ω) for

every ball Ω. In view of the fact that 𝑢 is a solution of (1.1.1) in the sense of distributions

and 𝑢 ∈ 𝐹k ∩ 𝐶m+2,α
loc (Rn), then 𝑢 is a classical solution of (1.1.1)-(1.1.2).

Remark 1.3.5. The fixed point theorem applied above gives an iterative method to construct
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the solution 𝑢, which is the limit in the norm ‖.‖F𝑘
of the following sequence

𝑢1 = ℬ(0) = 𝒩 (𝑔(., 0, 0)) and 𝑢m = ℬ(𝑢m⊗1) , 𝑚 ∈ N.

Moreover, all elements of this sequence verify ‖𝑢m‖F𝑘
⊘ 𝜀.

In the sequel we present two examples.

Example 1.3.6. Let 𝑄k = 1
2C𝑘

where 𝐶k is as in Lemma 1.2.4 (see Remark 1.3.4). Let Ú

and Û be real parameters and let

𝑔(𝑥, 𝑢, ∇𝑢) = Ú𝑉 (𝑥)𝑒u + Û𝑊 (𝑥)𝑒♣∇u♣,

where 𝑉, 𝑊 ∈ 𝐸k+2 for some 0 < 𝑘 < 𝑛 ⊗ 2. The case Û = 0 is the so-called Liouville

equation which arises, as pointed out above, in many physical situations and has produced

a rich mathematical theory when 𝑛 = 2 (see e.g. [10], [41], [65], [72]). Here we solve the

problem for all dimension 𝑛 ⊙ 3. We have that

(1 + ♣𝑥♣)2♣∇(z,p)𝑔(𝑥, 𝑤, ∇𝑤)♣ =

=
⎤(︁

♣Ú♣(1 + ♣𝑥♣)2♣𝑉 (𝑥)♣𝑒w(x)
⎡2

+
(︁
♣Û♣(1 + ♣𝑥♣)2♣𝑊 (𝑥)♣𝑒♣∇w(x)♣

⎡2
⎣1/2

6

(︁
♣Ú♣ ‖𝑉 ‖E𝑘+2

+ ♣Û♣ ‖𝑊‖E𝑘+2

⎡
𝑒‖w‖𝐹𝑘 ,

for all 0 ̸= 𝑤 ∈ 𝐹k, and

(1 + ♣𝑥♣)k+2♣𝑔(𝑥, 0, 0)♣ = ♣Ú♣(1 + ♣𝑥♣)k+2♣𝑉 (𝑥)♣ + ♣Û♣(1 + ♣𝑥♣)k+2♣𝑊 (𝑥)♣
6 ♣Ú♣ ‖𝑉 ‖E𝑘+2

+ ♣Û♣ ‖𝑊‖E𝑘+2
.

Then, Theorem 1.3.3 allows us to solve the problem of the present example if we can find

𝜀 > 0 such that (︁
♣Ú♣ ‖𝑉 ‖E𝑘+2

+ ♣Û♣ ‖𝑊‖E𝑘+2

⎡
𝑒ε

6
1

2𝐶k

and

♣Ú♣ ‖𝑉 ‖E𝑘+2
+ ♣Û♣ ‖𝑊‖E𝑘+2

6
𝜀

2𝐶k
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We see from these inequalities that if we take

𝜀 = 2𝐶k

(︁
♣Ú♣ ‖𝑉 ‖E𝑘+2

+ ♣Û♣ ‖𝑊‖E𝑘+2

⎡
,

the problem will have a solution if Ú and Û are such that

2𝐶k

(︁
♣Ú♣ ‖𝑉 ‖E𝑘+2

+ ♣Û♣ ‖𝑊‖E𝑘+2

⎡
𝑒

2C𝑘

(︁
♣λ♣‖V ‖𝐸𝑘+2

+♣µ♣‖W ‖𝐸𝑘+2

⎡

6 1

The continuous dependence of the solution with respect to Ú and Û follows by using that the

solution 𝑢 satisfies

‖𝑢‖F𝑘
6 𝜀.

This means that the equation Δ𝑢 + Ú𝑉 (𝑥)𝑒u + Û𝑊 (𝑥)𝑒♣∇u♣ = 0 has a bounded solution in R
n

if the parameters ♣Ú♣ and ♣Û♣ are small enough, regardless the sign of Ú, Û, 𝑉, 𝑊 , and allowing

to consider non-continuous coefficients 𝑉 and 𝑊 .

Example 1.3.7. According to Remark 1.3.4, let us take 𝑄k = 1
2C𝑘

where 𝐶k is as in Lemma

1.2.4. Take 𝑔 of the form 𝑔(𝑥, 𝑧, 𝑝1, . . . , 𝑝n) = ℎ(𝑥, 𝑧r0 , 𝑝r1
1 . . . , 𝑝r𝑛

n ), where 𝑟i > 1 for all 𝑖. If

𝑟 = min¶𝑟0, . . . , 𝑟n♢ and 𝑘 = 2
r⊗1

, suppose that ℎ(𝑥, 0, 0) ∈ 𝐸k+2 and there exists 𝑚 > 0 such

that ∇(z,p)ℎ(𝑥, 𝑤, ∇𝑤) ∈ 𝐸m for all 𝑤 ∈ 𝐹k. Then, differentiating we obtain

∇(z,p)𝑔(𝑥, 𝑧, 𝑝) =
(︁
𝑟0𝑧

r0⊗1𝜕zℎ, 𝑟1𝑝
r1⊗1
1 𝜕p1ℎ, . . . , 𝑟n𝑝r𝑛⊗1

n 𝜕p𝑛ℎ
⎡

.

If 𝑤 ∈ 𝐹k with ‖𝑤‖F𝑘
6 1 then

(1 + ♣𝑥♣)2♣∇(z,p)𝑔(𝑥, 𝑤, ∇𝑤)♣ 6

6

⧹︃⧹︃⧹︃⧹︃⧹︃

(︃
𝑟0

⎦
(1 + ♣𝑥♣)

2
𝑟0⊗1 ♣𝑤♣

⎢r0⊗1

♣𝜕zℎ(𝑥, 𝑤, ∇𝑤)♣, . . . , 𝑟n

[︁
(1 + ♣𝑥♣) 2

𝑟𝑛⊗1 ♣𝑤♣
]︁r𝑛⊗1

♣𝜕p𝑛ℎ(𝑥, 𝑤, ∇𝑤)♣
⎜⧹︃⧹︃⧹︃⧹︃⧹︃

6 𝑅

⧹︃⧹︃⧹︃⧹︃⧹︃

(︃
‖𝑤‖r0⊗1

F 2
𝑟0⊗1

⧸︁⧸︁⧸︁∇(z,p)ℎ(., 𝑤, ∇𝑤)
⧸︁⧸︁⧸︁

E𝑚
, . . . , ‖𝑤‖r𝑛⊗1

F 2
𝑟𝑛⊗1

⧸︁⧸︁⧸︁∇(z,p)ℎ(., 𝑤, ∇𝑤)
⧸︁⧸︁⧸︁

E𝑚

⎜⧹︃⧹︃⧹︃⧹︃⧹︃

6
√

𝑛 + 1𝑅 ‖𝑤‖r⊗1
F 2

𝑟⊗1

⧸︁⧸︁⧸︁∇(z,p)ℎ(., 𝑤, ∇𝑤)
⧸︁⧸︁⧸︁

E𝑚
,
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where 𝑅 = max¶𝑟0, . . . , 𝑟n♢. Thus, for 𝜀 6 1,

sup
‖w‖𝐹 2

𝑟⊗1

⊘ε

⧸︁⧸︁⧸︁∇(z,p)𝑔(≤, 𝑤, ∇𝑤)
⧸︁⧸︁⧸︁

E2

6
√

𝑛 + 1𝑅𝜀r⊗1 sup
‖w‖𝐹𝑘

⊘ε

⧸︁⧸︁⧸︁∇(z,p)ℎ(≤, 𝑤, ∇𝑤)
⧸︁⧸︁⧸︁

E𝑚
.

If ℎ is such that ‖ℎ(., 0, 0)‖E𝑘+2
⊘ ε

2C𝑘
and

√
𝑛 + 1𝑅(2𝐶k)r ‖ℎ(., 0, 0)‖r⊗1

E𝑘+2
sup

‖w‖𝐹𝑘
⊘ε

⧸︁⧸︁⧸︁∇(z,p)ℎ(≤, 𝑤, ∇𝑤)
⧸︁⧸︁⧸︁

E𝑚

< 1,

then there exists a solution 𝑢 ∈ 𝐹k such that ‖𝑢‖F𝑘
6 2𝐶k ‖ℎ(≤, 0, 0)‖E𝑘+2

.

A natural question is whether 𝑢 presents qualitative properties according to 𝑔. The

following results show that the solution obtained by the previous theorem inherits indeed

many properties from the nonlinearity 𝑔.

Theorem 1.3.8. Under the hypotheses of Theorem 1.3.3, the solution 𝑢 satisfies:

(i) If 𝑔 > 0, then 𝑢 > 0;

(ii) If 𝑔(𝑥, 𝑧, 𝑝) > 0 for all (𝑥, 𝑧, 𝑝) ∈ R
n ×R×R

n, with 𝑔(𝑥, 𝑧, 𝑝) ̸⊕ 0 when ♣(𝑧, 𝑝)♣R×R𝑛 ⊘ 𝜀,

then 𝑢 > 0;

(iii) 𝑢 is radially symmetric provided that 𝑔(≤, 𝑧, 𝑝) is radially symmetric for each fixed

(𝑧, 𝑝) ∈ R × R
n such that ♣(𝑧, 𝑝)♣R×R𝑛 ⊘ 𝜀.

Proof. The item (i) follows from the fact that the Newtonian potential of a nonnegative func-

tion is nonnegative. To prove item (ii), notice that ‖𝑢‖F𝑘
⊘ 𝜀 implies that ♣(𝑢(𝑥), ∇𝑢(𝑥))♣R×R𝑛 ⊘

𝜀, for all 𝑥 ∈ R
n. It follows that 𝑔(𝑥, 𝑢(𝑥), ∇𝑢(𝑥)) ̸⊕ 0, and then 𝑢 = 𝒩 (𝑔(𝑥, 𝑢, ∇𝑢)) is posi-

tive. To establish item (iii), recall Ąrst that the solution 𝑢 is the limit under the norm ‖.‖F𝑘

of the sequence 𝑢m (see Remark 1.3.5). Notice that 𝑢1 is radially symmetric if and only if

𝑔(𝑥, 0, 0) is radially symmetric. Since ‖𝑢1‖F𝑘
⊘ 𝜀, we have that ♣(𝑢1(𝑥), ∇𝑢1(𝑥))♣R×R𝑛 ⊘ 𝜀,

for all 𝑥 ∈ R
n, and then 𝑢2 = 𝒩 (𝑔(𝑥, 𝑢1, ∇𝑢1)) is radially symmetric provided that 𝑢1 is

radially symmetric. By induction, 𝑢m is radially symmetric. Since the convergence in 𝐹k

preserves radial symmetry, we conclude that 𝑢 is radially symmetric.

More results about symmetry as in item (iii) of Theorem 1.3.8 can be proved by consid-

ering orthogonal transformations in the space. Let 𝒢 be a subset of the orthogonal matrix

group 𝒪(𝑛) of R
n. We say that a function 𝑢 is symmetric under the action of 𝒢 when
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𝑢(𝑥) = 𝑢(𝑇𝑥), for all 𝑇 ∈ 𝒢. Similarly we say that 𝑢 is antisymmetric under the action of 𝒢
when 𝑢(𝑥) = ⊗𝑢(𝑇𝑥), for all 𝑇 ∈ 𝒢.

Theorem 1.3.9. Assume the hypotheses of Theorem 1.3.3 and let 𝑢 be the solution given by

it. Let 𝒢 be a subset of 𝒪(𝑛) and suppose that by the action of 𝒢, the function 𝑔 = 𝑔(𝑥, 𝑧, 𝑝)

satisfies

(i) 𝑔 is symmetric in 𝑥 and 𝑝. Then 𝑢 is symmetric under 𝒢;

(ii) 𝑔 is antisymmetric in 𝑝. Then 𝑢 ⊕ 0;

(iii) 𝑔 is antisymmetric in 𝑥, even in 𝑧 (𝑖.𝑒. 𝑔(≤, 𝑧, ≤) = 𝑔(≤, ⊗𝑧, ≤)) and symmetric in 𝑝. Then

𝑢 is antisymmetric.

Proof. (𝑖) Given 𝑇 ∈ 𝒢, we have that 𝑔(𝑇𝑥, 0, 0) = 𝑔(𝑥, 0, 0), then

𝑢1(𝑇𝑥) =
1

(𝑛 ⊗ 2)æn

∫︁

R𝑛

1
♣𝑇𝑥 ⊗ 𝑦♣n⊗2

𝑔(𝑦, 0, 0) 𝑑𝑦

=
1

(𝑛 ⊗ 2)æn

∫︁

R𝑛

1
♣𝑥 ⊗ 𝑇 ⊗1𝑦♣n⊗2

𝑔(𝑦, 0, 0) 𝑑𝑦

=
1

(𝑛 ⊗ 2)æn

∫︁

R𝑛

1
♣𝑥 ⊗ 𝑧♣n⊗2

𝑔(𝑇𝑧, 0, 0) 𝑑𝑧

=
1

(𝑛 ⊗ 2)æn

∫︁

R𝑛

1
♣𝑥 ⊗ 𝑧♣n⊗2

𝑔(𝑧, 0, 0) 𝑑𝑧 = 𝑢1(𝑥)

by the change of variables 𝑦 = 𝑇𝑧. Thus, 𝑢1 is symmetric under 𝒢.

To prove that 𝑢2 is symmetric, notice that ∇𝑢1(𝑥) = ∇(𝑢1(𝑇𝑥)) = 𝑇 ⊤ ≤ ∇𝑢1(𝑇𝑥). We

compute

𝑢2(𝑇𝑥) =
1

(𝑛 ⊗ 2)æn

∫︁

R𝑛

1
♣𝑇𝑥 ⊗ 𝑦♣n⊗2

𝑔(𝑦, 𝑢1(𝑦), ∇𝑢1(𝑦)) 𝑑𝑦

=
1

(𝑛 ⊗ 2)æn

∫︁

R𝑛

1
♣𝑥 ⊗ 𝑇 ⊗1𝑦♣n⊗2

𝑔(𝑦, 𝑢1(𝑦), ∇𝑢1(𝑦)) 𝑑𝑦

=
1

(𝑛 ⊗ 2)æn

∫︁

R𝑛

1
♣𝑥 ⊗ 𝑧♣n⊗2

𝑔(𝑇𝑧, 𝑢1(𝑇𝑧), ∇𝑢1(𝑇𝑧)) 𝑑𝑧

=
1

(𝑛 ⊗ 2)æn

∫︁

R𝑛

1
♣𝑥 ⊗ 𝑧♣n⊗2

𝑔(𝑇𝑧, 𝑢1(𝑧), 𝑇 ≤ ∇𝑢1(𝑧)) 𝑑𝑧

=
1

(𝑛 ⊗ 2)æn

∫︁

R𝑛

1
♣𝑥 ⊗ 𝑧♣n⊗2

𝑔(𝑧, 𝑢1(𝑧), ∇𝑢1(𝑧)) 𝑑𝑧 = 𝑢2(𝑥),
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by the symmetry of 𝑔. Then 𝑢2 is symmetric as well. Using an induction argument, we see

that 𝑢m is symmetric under 𝒢, for all 𝑚 ∈ N. Since 𝑢 is the limit of 𝑢m in the norm of 𝐹k,

it preserves the symmetry.

(𝑖𝑖) Since 𝑔 antisymmetric in 𝑝, then 𝑔(𝑥, 0, 0) = 𝑔(𝑥, 0, 𝑇0) = ⊗𝑔(𝑥, 0, 0) implies 𝑔(., 0, 0) ⊕
0. Therefore, the Ąxed point of ℬ is 𝑢 ⊕ 0.

(𝑖𝑖𝑖) One has 𝑔(𝑇𝑥, 0, 0) = ⊗𝑔(𝑥, 0, 0), and the computations above give us 𝑢1(𝑇𝑥) =

⊗𝑢1(𝑥). Thus, it follows for 𝑢2

𝑢2(𝑇𝑥) =
1

(𝑛 ⊗ 2)æn

∫︁

R𝑛

1
♣𝑥 ⊗ 𝑧♣n⊗2

𝑔(𝑇𝑧, 𝑢1(𝑇𝑧), ∇𝑢1(𝑇𝑧)) 𝑑𝑧

=
1

(𝑛 ⊗ 2)æn

∫︁

R𝑛

1
♣𝑥 ⊗ 𝑧♣n⊗2

𝑔(𝑇𝑧, ⊗𝑢1(𝑧), 𝑇 ≤ ∇𝑢1(𝑧)) 𝑑𝑧

= ⊗ 1
(𝑛 ⊗ 2)æn

∫︁

R𝑛

1
♣𝑥 ⊗ 𝑧♣n⊗2

𝑔(𝑧, 𝑢1(𝑧), ∇𝑢1(𝑧)) 𝑑𝑧 = ⊗𝑢2(𝑥).

By induction one has 𝑢m(𝑇𝑥) = ⊗𝑢m(𝑥). Therefore, one concludes that 𝑢 is antisymmetric.

It follows from the deĄnition of the space 𝐹k that the solution given by Theorem 1.3.3

satisĄes 𝑢 = 𝒪((1 + ♣𝑥♣)⊗k) and ∇𝑢 = 𝒪((1 + ♣𝑥♣)⊗k) as ♣𝑥♣ ⊃ ∞, if 𝑔(𝑥, 0, 0) = 𝒪((1 +

♣𝑥♣)⊗k⊗2). In the next theorem, we improve this behavior by assuming a natural condition,

namely if 𝑔(𝑥, 0, 0) = 𝑜((1 + ♣𝑥♣)⊗k⊗2) then the solution 𝑢 and its gradient are 𝑜((1 + ♣𝑥♣)⊗k)

as well.

The following lemma was proved in [44] and it will be necessary for the next theorem.

Lemma 1.3.10. Let 0 < 𝑘 < 𝑛 ⊗ 2. If 𝑓 ∈ 𝐸k+2, then

lim sup
♣x♣⊃∞

♣𝑥♣k♣𝒩 (𝑓)(𝑥)♣ 6 𝐿k lim sup
♣x♣⊃∞

♣𝑥♣k+2♣𝑓(𝑥)♣ ,

where 𝐿k = C(n⊗k⊗2,1,n)
(n⊗2)w𝑛

.

Theorem 1.3.11. Let 𝑔 be as in Theorem 1.3.3. If lim
♣x♣⊃∞

(1 + ♣𝑥♣)k+2♣𝑔(𝑥, 0, 0)♣ = 0, then

lim
♣x♣⊃∞

(1 + ♣𝑥♣)k (♣𝑢(𝑥)♣ + ♣∇𝑢(𝑥)♣) = 0. (1.3.1)
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Proof. First recall that the solution given by Theorem 1.3.3 satisĄes ‖𝑢‖F𝑘
⊘ 𝜀. Note also

that, by the proof of Theorem 1.3.3, if 𝑢 ∈ 𝐹k, then 𝑔(𝑥, 𝑢, ∇𝑢) ∈ 𝐸k+2 and therefore

∇𝑢 = ∇𝒩 (𝑔(𝑥, 𝑢, ∇𝑢)) ∈ 𝐸k+1. Thus, one concludes that

lim sup
♣x♣⊃∞

(1 + ♣𝑥♣)k♣∇𝑢(𝑥)♣ = lim sup
♣x♣⊃∞

(1 + ♣𝑥♣)k+1♣∇𝑢(𝑥)♣
1 + ♣𝑥♣ 6 lim sup

♣x♣⊃∞

‖∇𝑢‖E𝑘+1

1 + ♣𝑥♣ = 0.

Splitting the expression (1.3.1) into two ones, one only needs to check lim
♣x♣⊃∞

(1+♣𝑥♣)k♣𝑢(𝑥)♣ = 0.

For that matter, one estimates

♣𝑔(𝑥, 𝑢, ∇𝑢)♣ 6 ♣𝑔(𝑥, 𝑢, ∇𝑢) ⊗ 𝑔(𝑥, 0, 0)♣ + ♣𝑔(𝑥, 0, 0)♣
6 sup

0<‖w‖𝐹𝑘
⊘ε

♣∇(z,p)𝑔(𝑥, 𝑤, ∇𝑤)♣♣(𝑢, ∇𝑢)♣ + ♣𝑔(𝑥, 0, 0)♣.

Using the hypotheses, one has

lim sup
♣x♣⊃∞

♣𝑥♣k+2♣𝑔(𝑥, 𝑢, ∇𝑢)♣ 6 lim sup
♣x♣⊃∞

♣𝑥♣k+2 sup
0<‖w‖𝐹𝑘

⊘ε
♣∇(z,p)𝑔(𝑥, 𝑤, ∇𝑤)♣♣(𝑢, ∇𝑢)♣.

By Lemma 1.3.10, one concludes

lim sup
♣x♣⊃∞

♣𝑥♣k♣𝑢(𝑥)♣ = lim sup
♣x♣⊃∞

♣𝑥♣k♣ℬ(𝑢)♣

= lim sup
♣x♣⊃∞

♣𝑥♣k♣𝒩 (𝑔(𝑥, 𝑢, ∇𝑢))♣

6 𝐿k lim sup
♣x♣⊃∞

♣𝑥♣k+2♣𝑔(𝑥, 𝑢, ∇𝑢)♣

6 𝐿k lim sup
♣x♣⊃∞

♣𝑥♣k+2 sup
0<‖w‖𝐹𝑘

⊘ε
♣∇(z,p)𝑔(𝑥, 𝑤, ∇𝑤)♣♣(𝑢, ∇𝑢)♣

6 𝐿k sup
0<‖w‖𝐹𝑘

⊘ε

⧸︁⧸︁⧸︁∇(z,p)𝑔(., 𝑤, ∇𝑤)
⧸︁⧸︁⧸︁

E2

lim sup
♣x♣⊃∞

♣𝑥♣k♣(𝑢, ∇𝑢)♣

6 𝐿k𝐺ε lim sup
♣x♣⊃∞

♣𝑥♣k(♣𝑢(𝑥)♣ + ♣∇𝑢(𝑥)♣)

6 𝐿k𝐺ε

(︃
lim sup

♣x♣⊃∞
♣𝑥♣k♣𝑢(𝑥)♣ + lim sup

♣x♣⊃∞
♣𝑥♣k♣∇𝑢(𝑥)♣

⎜

6 𝐿k𝐺ε lim sup
♣x♣⊃∞

♣𝑥♣k♣𝑢(𝑥)♣

28



and, since 𝐿k𝐺ε 6 𝐶k𝐺ε < 1
2
, the result follows.

Remark 1.3.12. It is worthy of note that many results in this chapter remain true in prob-

lems where the associated Green’s function 𝐺(𝑥, 𝑦) satisfies the following estimate:

♣𝐺(𝑥, 𝑦)♣ 6 𝐶

♣𝑥 ⊗ 𝑦♣n⊗2s
,

for some constant 𝐶 = 𝐶(𝑛, 𝑠) with 1/2 < 𝑠 6 1. This includes cases like bounded domains

with Dirichlet’s condition and also fractional Laplacians.
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Chapter 2

Asymptotic Behavior for the 1D

Porous Medium Equation with

Fractional Pressure

We analyze the rate of convergence towards the stationary state of solutions to the one

dimensional fractional version of the porous medium equation, where the pressure is obtained

as the inverse of the fractional Laplacian of the density. Using self-similar variables and

the convexity of the interaction potential in dimension one, it is possible to show that the

associated entropy is displacement convexity and therefore, satisĄes a functional inequality

originated from optimal transport theory which involves also the entropy dissipation and the

Euclidean transport distance. An argument by approximation on the equation assures that

this functional inequality is enough to deduce the exponential convergence of solutions to the

unique steady state.

2.1 Introduction

In this chapter, we analyse the long-time asymptotics of the nonlinear nonlocal equation

𝜕t𝜌 = ∇ ≤
(︁
𝜌(∇(⊗Δ)⊗s𝜌 + Ú𝑥)

⎡
, Ú > 0, 𝑥 ∈ R

d , (2.1.1)
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obtained from the fractional version of the porous medium equation introduced by Caffarelli

and Vázquez [20, 21]

𝜕τ 𝑢 = ∇ ≤ (𝑢∇(⊗Δ)⊗s𝑢) , (2.1.2)

by passing to self-similar variables. Indeed, by adding the Fokker-Planck conĄning term

∇≤(𝑥𝑢), solutions to (2.1.1) will characterize the long-time asymptotic behaviour of solutions

to (2.1.2). This connection will be further explained below.

The equation (2.1.2) is one of the two fractional variations of the classical porous medium

equation

𝜕τ 𝑢 = Δ𝑢m (2.1.3)

= ∇ ≤ (𝑢∇𝑝) , 𝑝 =
𝑚

𝑚 ⊗ 1
𝑢m⊗1 (2.1.4)

for 𝑚 > 1. The Ąrst version can be recovered from (2.1.3) by replacing the ordinary Laplacian

by its fractional version

𝜕τ 𝑢 = ⊗(⊗Δ)s𝑢m

and appears, for example, in stochastic equations when jump processes are introduced into

the modelling of heat conduction, known as anomalous diffusion, (see [1, 79, 81]). The

mathematical theory behind it can be checked in the surveys [76, 77] and references therein.

The other version, which is the one of our interest here, follows from (2.1.4) and can be

viewed as a continuity equation, 𝜕τ 𝑢 + ∇ ≤ (𝑢v) = 0, for a density or concentration 𝑢(á, 𝑦)

with velocity v = ⊗∇𝑝, where the velocity potential or pressure 𝑝 is related to 𝑢 by the

inverse of a fractional Laplacian operator 𝑝 = m
m⊗1

(⊗Δ)⊗s𝑢m⊗1, 0 < 𝑠 < 1. The standard

porous medium equation is recovered for 𝑠 = 0 and the equation (2.1.2) when 𝑚 = 2. This

model appears when one has nonlocal effects as long-range diffusive interactions and it has

been studied by an extensive list of authors.

We assume that the unknown 𝑢(á, 𝑦), representing a density or concentration, is deĄned

for 𝑦 ∈ R
d and á > 0 and supply initial data 𝑢(𝑦, 0) = 𝑢0(𝑦), a nonnegative mass distribution

in 𝐿1(Rd) ∩ 𝐿∞(Rd). We also point out that the pressure can be represented as

𝑝 = (⊗Δ)⊗s𝑢 = 𝑘d,s * 𝑢,
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with the singular convolution kernel

𝑘d,s(𝑦) = 𝑐d,s♣𝑦♣2s⊗d, 𝑐d,s =
𝑠2⊗2sΓ(𝑑/2 ⊗ 𝑠)

Þd/2Γ(1 + 𝑠)
, (2.1.5)

and 0 < 𝑠 < min(1, 𝑑/2), called the Riesz potential of 𝑢 as in the standard textbooks [52,

70]. This representation also makes sense for 𝑠 = 𝑑/2 with the logarithm kernel

𝑘d, 𝑑
2
(𝑦) = ⊗21⊗dÞ⊗d/2Γ(𝑑/2)⊗1 log ♣𝑦♣

(see [23, 54] in one dimension) and for 1/2 < 𝑠 < 1 in one dimension with the negative

coefficient 𝑐1,s and the positive exponent 2𝑠 ⊗ 1 in 𝑘d,s(𝑦). As a result, the kernel 𝑘d,s(𝑦)

does not necessarily decay to zero at inĄnity in the last two cases, but the magnitude of the

gradient ∇𝑘d,s(𝑦) does. When the kernel 𝑘d,s(𝑦) is replaced by a less singular radially sym-

metric function, the same equation appeared in granular Ćow [12, 74, 56, 25] and biological

swarming [61, 14, 13].

To describe the long time behaviour of solutions to (2.1.2), it is more convenient to study

the corresponding transformed equation (2.1.1) as discussed in [26, 21], by deĄning

𝜌(𝑡, 𝑥) := (1 + á)α𝑢(á, 𝑦), (2.1.6)

with the similarity variables 𝑥 = 𝑦(1 + á)⊗β and 𝑡 = log(1 + á). The exponents Ð and Ñ can

be determined from dimensional analysis and the mass conservation [11], which are given by

Ð =
𝑑

𝑑 + 2 ⊗ 2𝑠
, Ñ =

1
𝑑 + 2 ⊗ 2𝑠

. (2.1.7)

In this way, the rescaled density 𝜌(𝑡, 𝑥) satisĄes (2.1.1) with Ú = Ñ = 1/(𝑑 + 2 ⊗ 2𝑠). We will

keep Ú > 0 arbitrary in (2.1.1) as a parameter to characterize the convexity of the energy

deĄned below and the convergence rate to the steady state later on. As a result, the long time

behaviour of the original density 𝑢(á, 𝑦) is completely speciĄed if we establish the behavior

of 𝜌(𝑡, 𝑥) with Ú = Ñ. Furthermore, due to the change of variables 𝑡 = log(1 + á), any

convergence of 𝑢(á, . ) as 𝑡 ⊃ ∞ is going to be slower than the one for 𝜌(𝑡, . ).

Let us point out that the fractional porous medium equation (2.1.1) can be viewed as a
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particular case of a much more general aggregation-diffusion equation [25, 14, 9] written as

𝜕t𝜌 = ∇ ≤
(︁
𝜌∇

(︁
𝒲 * 𝜌 + 𝑉 + 𝑈 ′(𝜌)

⎡⎡
, 𝑥 ∈ R

d , (2.1.8)

where 𝑉, 𝑊 : Rd ⊃ R ∪ ¶∞♢ and 𝑈 : [0, ∞) ⊃ R and we recover (2.1.1) for 𝑉 (𝑥) = λ
2
♣𝑥♣2

and 𝑊 (𝑥) = 𝑐d,s♣𝑥♣2s⊗d, 0 < 𝑠 < 1 and 𝑈 = 0.

During the past Ąfteen years, several important techniques [63, 26, 37, 25, 78, 6] have been

developed for the convergence of linear or nonlinear Fokker-Planck equations to their steady

states with sharp rate. These techniques can also be employed to prove the convergence of

solutions of (2.1.1) as 𝑡 ⊃ ∞ by realizing that the free energy ℰ(𝜌) deĄned as

ℰ(𝜌) =
1
2

∫︁

R𝑑

{︁
(⊗Δ)⊗s𝜌(𝑥) + Ú♣𝑥♣2

}︁
𝜌(𝑥) 𝑑𝑥 (2.1.9)

=
𝑐d,s

2

∫︁

R𝑑

∫︁

R𝑑

𝜌(𝑥)𝜌(𝑦)
♣𝑥 ⊗ 𝑦♣d⊗2s

𝑑𝑦𝑑𝑥 + Ú
∫︁

R𝑑

♣𝑥♣2
2

𝜌(𝑥) 𝑑𝑥,

is a Lyapunov functional for 0 < 𝑠 < min(1, 𝑑/2). One can similarly deĄne the Lyapunov

functional for 1/2 ⊘ 𝑠 < 1 in one dimension, assuming that 𝜌 satisĄes a growth condition at

inĄnity, namely 𝜌 log ♣𝑥♣ ∈ 𝐿1(R) if 𝑠 = 1/2 and 𝜌♣𝑥♣2s⊗1 ∈ 𝐿1(R) if 1/2 < 𝑠 < 1. In fact,

(2.1.1) is a gradient Ćow of the free energy functional (2.1.9) with respect to the Euclidean

transport distance in the metric space of probability measures [6, 24].

The basic properties of the energy ℰ(𝜌) and its dissipation ℐ(𝜌) deĄned below, together

with the long-time asymptotics of solutions to (2.1.1), are already derived in [21]. More

precisely, along the evolution governed by (2.1.1), one can obtain the formal relation

𝑑

𝑑𝑡
ℰ
(︁
𝜌(𝑡, .)

⎡
= ⊗ℐ

(︁
𝜌(𝑡, .)

⎡
, (2.1.10)

where we denote by ℐ(𝜌) the entropy production or entropy dissipation of ℰ given by

ℐ(𝜌) =
∫︁

R𝑑
𝜌 ♣∇Ý♣2 𝑑𝑥 , with Ý =

Óℰ
Ó𝜌

= (⊗Δ)⊗s𝜌 +
Ú

2
♣𝑥♣2.

Using this relation, the solution of (2.1.1) is shown to converge towards a function 𝜌∞ (which

coincides with the respective stationary state) in [21], but no rate of convergence is obtained.

To be more precise, they show that solutions of the fractional porous medium equation (2.1.1)
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satisfy the energy inequality

ℰ
(︁
𝜌(𝑡, ≤)

⎡
+
∫︁ t

0
ℐ
(︁
𝜌(á, ≤)

⎡
𝑑á ⊘ ℰ

(︁
𝜌(0, ≤)

⎡

that is enough to conclude the converge of 𝜌(𝑡, 𝑥) to the steady state 𝜌∞(𝑥).

Let us now say a few words about the function 𝜌∞ of (2.1.1) and its characterizations.

The existence and uniqueness of the steady state were initially characterized in [21] by the

following obstacle problem for the pressure 𝑃 = (⊗Δ)⊗s𝜌∞

𝑃 (𝑥) > Φ(𝑥) for 𝑥 ∈ R
d ,

(⊗Δ)s𝑃 (𝑥) > 0 for 𝑥 ∈ R
d ,

(⊗Δ)s𝑃 (𝑥) = 0 for 𝑃 (𝑥) > Φ(𝑥) ,

where the obstacle is the quadratic function Φ(𝑥) = 𝐶* ⊗ λ
2
♣𝑥♣2. The self-similar solution

of (2.1.2) were also obtained and given by

𝑢(á, 𝑦) = (1 + á)⊗d/(d+2⊗2s)𝜌∞

(︁
𝑦(1 + á)⊗1/(d+2⊗2s)

⎡
.

The explicit expression for 𝜌∞ was then obtained by Biler, Imbert and Karch in [15, 16] for

even more general nonlinear dependence of the pressure 𝑝 = (⊗Δ)⊗s𝑢m⊗1, 𝑚 > 1. In case

𝑚 = 2 of our interest here, they obtained that

𝜌∞(𝑥) = 𝐾d,s

(︁
𝑅2 ⊗ ♣𝑥♣2

⎡1⊗s

+
(2.1.11)

where

𝐾d,s =
22s⊗1Γ(𝑑/2 + 1)

Γ(2 ⊗ 𝑠)Γ(𝑑/2 + 1 ⊗ 𝑠)
Ú .

The radius 𝑅 of the support is determined by the conservation of mass, that is,

1 =
∫︁

R𝑑
𝑢(á, 𝑦)𝑑𝑦 =

22sÞd/2Γ(𝑑/2 + 1)Ú
(𝑑 + 2 ⊗ 2𝑠)Γ(𝑑/2 + 1 ⊗ 𝑠)2

𝑅d+2⊗2s. (2.1.12)

The expression (2.1.11) allow us to check directly that 𝜌∞ is in fact the minimum for the

energy ℰ by a recent result of Chafaï, Gozlan and Zitt in [32, Theorem 1.2] where it was proved

that ℰ restricted to 𝒫(Rd) is strictly convex in the classic sense for 0 < 𝑠 < min(1, 𝑑/2), and
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it has a unique compactly supported minimizer 𝜌∞ characterized by

(⊗Δ)⊗s𝜌∞(𝑥) + Ú
♣𝑥2♣
2

= 𝐶* , for all 𝑥 ∈ supp (𝜌∞) (2.1.13a)

(⊗Δ)⊗s𝜌∞(𝑥) + Ú
♣𝑥2♣
2

> 𝐶* , a.e. R
d , (2.1.13b)

for some constant 𝐶* determined by the total mass. This formulation is equivalent to the

obstacle problem in [21]. Using the following relation (see [15, 16])

(⊗Δ)⊗s(𝑅2 ⊗ ♣𝑥♣2)1⊗s
+ =

2⊗2sΓ(2 ⊗ 𝑠)Γ(𝑑/2 ⊗ 𝑠)
Γ(𝑑/2)

(︃
𝑅2 ⊗ 𝑑 ⊗ 2𝑠

𝑑
♣𝑥♣2

⎜

=
Ú

2𝐾d,s

(︃
𝑑

𝑑 ⊗ 2𝑠
𝑅2 ⊗ ♣𝑥♣2

⎜
, for all ♣𝑥♣ 6 𝑅, (2.1.14)

it is easy to verify that 𝜌∞ = 𝐾d,s(𝑅2 ⊗ ♣𝑥♣2)1⊗s
+ is indeed the minimizer for ℰ for 0 < 𝑠 <

min(1, 𝑑/2). Similar computations can be done in the range 1/2 ⊘ 𝑠 < 1, see [23, 9] for

instance.

In this chapter, we will focus on obtaining the sharp convergence rate for the solutions

of the Cauchy problem for (2.1.1) towards the equilibrium 𝜌∞, for all 0 < 𝑠 < 1/2 in one

dimension, although many of the calculations presented also hold in general dimensions.

In the particular case of 𝑠 = 1/2 in one dimension, the kernel is given by the logarithmic

potential and it was treated in [23], see also [54] for related functional inequalities. In fact, it

is shown in [23] that the energy ℰ(𝜌) is displacement convex, which can not be derived directly

from the criteria given in the seminal paper by McCann [59]. We will take advantage of these

techniques in [23] to prove certain functional inequalities, in particular the HWI inequalities as

introduced in [64] (also obtained in [54] for the logarithmic case 𝑠 = 1/2). This displacement

convexity and related inequalities are then used to show the convergence towards equilibrium

in one dimension, through the exponential decay of the transport distances and the relative

energy, for general 𝑠 ∈ (0, 1). Roughly speaking, the strategy will be as follow: since we

already have the relation (2.1.10) for the solutions of (2.1.1), we will prove that the following

generalized log-Sobolev inequality

ℰ(𝜌) ⊗ ℰ(𝜌∞) 6
1

2Ú
ℐ(𝜌)

holds for a class of probability measures 𝜌. This inequality appears in [21] as an open problem
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with some of its equivalences. Hence, the result will follow from the GronwallŠs inequality

since, for any solution 𝜌(𝑡, 𝑥) satisfying an initial condition 𝜌(0, .) = 𝜌0, we have

𝑑

𝑑𝑡
(ℰ(𝜌(𝑡, .)) ⊗ ℰ(𝜌∞)) = ⊗ℐ(𝜌(𝑡, .)) 6 ⊗2Ú (ℰ(𝜌(𝑡, .)) ⊗ ℰ(𝜌∞)) ,

and therefore

ℰ(𝜌(𝑡, .)) ⊗ ℰ(𝜌∞) 6 𝑒⊗2λt (ℰ(𝜌0) ⊗ ℰ(𝜌∞)) .

This inequality is the main result of this chapter and will be proved in Theorem 2.4.1.

The organization of this chapter is as follows. We Ąrst remind the reader in Section 2.2

about the basics of optimal transport theory and we prove two lemmas about the energies ℰ
and ℰε that will be used in the later sections. Section 2.3 will be devoted to the functional

inequalities that we will prove in one dimension. In fact, in order to obtain our main result

we will follow closely the strategy developed for nonlinear diffusion equations in [8, 7, 26, 37,

29, 25] to reduce the prove of the convergence to the proof of a Log-Sobolev type inequality.

This inequality is then proved as a consequence of the HWI inequality which crucially uses

the displacement convexity of the functionals involved. Finally, on section 2.4 we obtain

the rate of convergence towards equilibrium of the solutions to (2.1.1) by an approximation

method using the construction of solutions in [20]. This convergence is proved for the energy

of solutions and for the spaces 𝐿1 and 𝐿2.

Finally, we point out that the problem of sharp convergence rates in several space dimen-

sions is still open. Moreover, it could be interesting to prove or disprove analogous functional

inequalities involving nonlocal operators in several space dimensions corresponding to the

ones established here in one dimension; see more comments at the end of Section 2. New

techniques or inequalities have to be developed. Showing asymptotic convergence when the

conĄning term ∇ ≤ (Ú𝑥𝜌) is replace by the general drift ∇ ≤ (𝜌∇𝑉 ) is another interesting

problem, see [32, 25].

2.2 Optimal transport results

We use optimal transport techniques to prove the Log-Sobolev, the Talagrand, and the

HWI inequalities for both the energies ℰ and ℰε for smooth probability measures 𝜌 ∈ 𝒫2,ac(R).

Therefore, in order to make this chapter more self-contained, this section will be devoted to

review some results in optimal transport theory that shall be required later. The section
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Ąnishes with some simple but new properties about the above mentioned energies.

Firstly, let us deĄne the metric that is going to be used on the probability space. The

Wasserstein distance 𝑊2 on 𝒫2(R) is deĄned for any 𝜌1, 𝜌2 ∈ 𝒫2(R) by

𝑊2(𝜌1, 𝜌2) :=

(︃
inf

π∈Π(ρ1,ρ2)

∫︁

R×R

♣𝑥 ⊗ 𝑦♣2 𝑑Þ(𝑥, 𝑦)

⎜ 1
2

,

where Π(𝜌1, 𝜌2) be the set of all nonnegative Radon measures Þ on R × R such that

Þ(𝐴 × R) = 𝜌1(𝐴) and Þ(R × 𝐵) = 𝜌2(𝐵), for all 𝐴, 𝐵 ⊖ R. (2.2.1)

If a measure Þ satisĄes (2.2.1) we say that it has marginals (projections) 𝜌1 and 𝜌2. The

inĄmum in the deĄnition of 𝑊2 is actually a minimum, and in the case we are dealing with

in this chapter, it is unique and can be characterized by the following:

Theorem 2.2.1 (see, for example, [78] for a proof). Given 𝜌1, 𝜌2 ∈ 𝒫2(R) with 𝜌1 absolutely

continuous with respect to the Lebesgue measure, there exists a Borel map 𝑇 ρ2
ρ1

: R ⊃ R such

that 𝑇 ρ2
ρ1

#𝜌1 = 𝜌2, i.e.,

∫︁

R

𝜙(𝑥) 𝑑𝜌2(𝑥) =
∫︁

R

𝜙(𝑇 ρ2
ρ1

(𝑥)) 𝑑𝜌1(𝑥), for every 𝜌2-integrable function 𝜙,

and 𝑇 ρ2
ρ1

also satisfies

𝑊2(𝜌1, 𝜌2) =
⎤∫︁

R

♣𝑥 ⊗ 𝑇 ρ2
ρ1

(𝑥)♣2 𝑑𝜌1(𝑥)
⎣ 1

2

,

It is well known that the optimal map 𝑇 ρ2
ρ1

is nondecreasing on R and increasing on supp (𝜌1).

Furthermore, if 𝐹1 and 𝐹2 are, respectively, the cumulative distribution functions of 𝜌1 and

𝜌2, defined by

𝐹i(𝑥) :=
∫︁ x

⊗∞
𝑑𝜌i = 𝜌i

(︁
(⊗∞, 𝑥]

⎡
,

then we can write 𝑇 ρ2
ρ1

in terms of them, that is 𝑇 ρ2
ρ1

(𝑥) = 𝐹 ⊗1
2 ◇ 𝐹1(𝑥).

One can use the previous theorem to deĄne a very convenient set of curves in 𝒫2,ac(R) in

the following way: given 𝜌0, 𝜌1 ∈ 𝒫2,ac(R) and 𝑇 ρ1
ρ0

the optimal map such that 𝑇 ρ1
ρ0

#𝜌0 = 𝜌1,

let us write

𝜌t :=
(︁
(1 ⊗ 𝑡)Id + 𝑡𝑇 ρ1

ρ0

⎡
#𝜌0 , for all 𝑡 ∈ [0, 1].
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The curve (𝜌t)06t61 is called displacement interpolation between 𝜌0 and 𝜌1. It is not hard

to see that 𝜌t also belongs to 𝒫2,ac(R) for all 𝑡 ∈ [0, 1], and with this one can deĄne the

following:

Definition 2.2.2. For a functional ℱ : 𝒫2,ac(R) ⊃ (⊗∞, +∞], we are going to say that

• ℱ is displacement convex if, given any 𝜌0, 𝜌1 ∈ 𝒫2,ac(R) with (𝜌t)06t61 their displacement

interpolation, the function 𝑡 ↦⊃ ℱ(𝜌t) is convex on [0, 1].

• ℱ is strictly displacement convex if 𝑡 ↦⊃ ℱ(𝜌t) is strictly convex on [0, 1].

• ℱ is Ò-displacement convex, for some Ò ∈ R, if for all 𝑡 ∈ [0, 1]

(1 ⊗ 𝑡)ℱ(𝜌0) + 𝑡ℱ(𝜌1) ⊗ ℱ(𝜌t) > Ò
𝑡(1 ⊗ 𝑡)

2
𝑊2(𝜌0, 𝜌1)2,

or equivalentely
𝑑2

𝑑𝑡2
ℱ(𝜌t) > Ò𝑊2(𝜌0, 𝜌1)2.

Some of the functionals we are going to use in the rest of the chapter are combinations

of the following ones:

𝒰(𝜌) =
∫︁

R

𝜌(𝑥) log 𝜌(𝑥) 𝑑𝑥 , (2.2.2)

𝒱(𝜌) =
1
2

∫︁

R

𝑥2 𝑑𝜌(𝑥) and (2.2.3)

𝒲s(𝜌) =
1
2

∫︁

R

∫︁

R

𝑐1,s

♣𝑥 ⊗ 𝑦♣1⊗2s
𝑑𝜌(𝑥) 𝑑𝜌(𝑦) , (2.2.4)

where we are committing an abuse of notation by identifying every absolutely continuous

measure with its density. So we shall write 𝑑𝜌(𝑥) and 𝜌(𝑥)𝑑𝑥 meaning the same thing

throughout the rest of the chapter. Therefore, we can write the energy functional ℰ as

ℰ(𝜌) = Ú𝒱(𝜌) + 𝒲s(𝜌)

and besides this one, we are also going to need the following approximate functional: for

every 𝜀 > 0 and every measure 𝜌 ∈ 𝒫2,ac(R) we deĄne:

ℰε(𝜌) := ℰ(𝜌) + 𝜀 𝒰(𝜌) ,
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and associated with it we have a respective energy dissipation

ℐε(𝜌) :=
∫︁

R

⧹︃⧹︃⧹︃𝜕x(⊗𝜕xx)⊗s𝜌(𝑥) + Ú𝑥 + 𝜀𝜕x log 𝜌(𝑥)
⧹︃⧹︃⧹︃
2

𝑑𝜌(𝑥) .

These two functionals are associated to the regularized equation (2.4.2) in the next section.

The metric 𝑊2 on 𝒫2(R) is related with a very known notion of convergence. We say that

the a sequence (𝜌n)n∈N ⊖ 𝒫2(R) is narrowly convergent to 𝜌 ∈ 𝒫(R) (denoted by 𝜌n ⇀ 𝜌) if

lim
n⊃∞

∫︁
𝜙(𝑥) 𝑑𝜌n(𝑥) =

∫︁
𝜙(𝑥) 𝑑𝜌(𝑥) , (2.2.5)

for all 𝜙 ∈ 𝐶b(R), the space of bounded and continuous functions.

With this deĄnition in hand, we can characterize the notion of convergence in 𝒫2(R):

Theorem 2.2.3. The pair (𝒫2(R), 𝑊2) is a complete metric space and the convergence under

the distance 𝑊2 is stronger than the convergence in the narrow sense. In fact, the following

three facts are equivalent for any (𝜌n)n∈N ⊖ 𝒫2(R) and 𝜌 ∈ 𝒫(R):

∙ 𝑊2(𝜌n, 𝜌) ⊃ 0 as 𝑛 ⊃ +∞;

∙ 𝜌n ⇀ 𝜌 and

lim
n⊃∞

∫︁
𝑥2 𝑑𝜌n(𝑥) =

∫︁
𝑥2 𝑑𝜌(𝑥);

∙ 𝜌n ⇀ 𝜌 and

lim
R⊃∞

lim sup
n⊃∞

∫︁

♣x♣>R
𝑥2 𝑑𝜌n(𝑥) = 0. (2.2.6)

The convergence in the narrow sense can be characterized using the notion of tightness

of a set of measures. We say that a set 𝑆 ⊖ 𝒫(R) is tight if the following condition holds:

for all 𝜀 > 0 there exists a compact 𝐾ε ⊖ R such that sup
µ∈S

Û(R∖𝐾ε) 6 𝜀. (2.2.7)

The condition (2.2.7) is equivalent to the following integral and easier-to-verify condition:

there exists 𝜙 : R ⊃ [0, ∞] such that

for all 𝑐 > 0, ¶𝑥 ∈ R ♣ 𝜙(𝑥) 6 𝑐♢ is compact and sup
µ∈S

∫︁

R

𝜙(𝑥) 𝑑Û(𝑥) < ∞ (2.2.8)
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Now we can state the following Euclidean version of the ProkhorovŠs compactness theo-

rem:

Theorem 2.2.4 (Prokhorov). A set 𝑆 ⊖ 𝒫(R) is tight if and only if it is relatively compact

(under the narrow convergence).

For a detailed proof of the above theorems and generalizations, the reader may check the

standard references [6], [78] (for the results involving the Wasserstein distance) and [38] (for

a proof of the ProkhorovŠs Theorem).

Let us now prove a lemma that shall be used in the last section for the convergence in

entropy of the solutions of the approximate problems. The proof uses similar arguments

given in the Theorem 1.4 of [69].

Lemma 2.2.5. The entropy ℰε is narrow lower semicontinuous and Ú-displacement convex,

for all 𝜀, Ú > 0. In the case Ú = 0, ℰε is strictly displacement convex.

Proof. We already know from [59] that the functional 𝒰 is narrow lower semicontinuous and

also strictly displacement convex, so we just need to show the result for ℰ . For this, Ąrstly

let us show the semicontinuity by writing the energy in the following way:

ℰ(𝜌) =
∫︁

R2
𝐹 (𝑥, 𝑦) 𝑑𝜌(𝑥)𝑑𝜌(𝑦),

where

𝐹 (𝑥, 𝑦) =

∏︁
⋁︁⨄︁
⋁︁⋃︁

Ú

4
(𝑥2 + 𝑦2) +

𝑐1,s

2
1

♣𝑥 ⊗ 𝑦♣1⊗2s
, if 𝑥 ̸= 𝑦

+∞ , if 𝑥 = 𝑦
.

Since 𝐹 is non-negative and smooth outside the diagonal 𝑥 = 𝑦, we can Ąnd a sequence

¶𝐹k♢k∈N ⊆ 𝐶b(R2) such that 𝐹k(𝑥, 𝑦) ≻ 𝐹 (𝑥, 𝑦) for all (𝑥, 𝑦) ∈ R
2. Therefore, if ¶𝜌n♢n∈N ⊖

𝒫2,ac(R) is such 𝜌n ⇀ 𝜌 for some 𝜌 ∈ 𝒫(R), by the monotone convergence theorem and the

fact that 𝜌n × 𝜌n ⇀ 𝜌 × 𝜌, we have that

ℰ(𝜌) =
∫︁

𝐹 (𝑥, 𝑦) 𝑑𝜌(𝑥)𝑑𝜌(𝑦) = lim
k⊃∞

∫︁
𝐹k(𝑥, 𝑦) 𝑑𝜌(𝑥)𝑑𝜌(𝑦)

= lim
k⊃∞

lim
n⊃∞

∫︁
𝐹k(𝑥, 𝑦) 𝑑𝜌n(𝑥)𝑑𝜌n(𝑦) 6 lim inf

n⊃∞

∫︁
𝐹 (𝑥, 𝑦) 𝑑𝜌n(𝑥)𝑑𝜌n(𝑦)

= lim inf
n⊃∞

ℰ(𝜌n) .
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Now, for the convexity property, we also know from [59] or [78] that the functional Ú𝒱(𝜌)

is Ú-displacement convex. Therefore we just need to show that 𝒲 is displacement convex.

For this, let 𝜌0, 𝜌1 ∈ 𝒫2,ac(R) and, to simplify the notation, 𝜃 := 𝑇 ρ1
ρ0

the optimal map given by

(2.2.1) such that 𝜃#𝜌0 = 𝜌1 and let (𝜌t)06t61 be their displacement interpolant. To simplify

the notation, let us call

𝑘s(𝑥) =
𝑐1,s

♣𝑥♣1⊗2s

the kernel of the Riesz potential. Then we have the following for each 𝑡 ∈ [0, 1]

𝒲(𝜌t) =
1
2

∫︁ ∫︁
𝑘s(𝑥 ⊗ 𝑦) 𝑑𝜌t(𝑥)𝑑𝜌t(𝑦)

=
1
2

∫︁ ∫︁
𝑘s((1 ⊗ 𝑡)(𝑥 ⊗ 𝑦) + 𝑡(𝜃(𝑥) ⊗ 𝜃(𝑦))) 𝑑𝜌0(𝑥)𝑑𝜌0(𝑦). (2.2.9)

Also by (2.2.1) we know that 𝜃 is nondecreasing on R and increasing outside a set 𝑁 such

that 𝜌0(𝑁) = 0. Therefore, for all 𝑥, 𝑦 ∈ 𝑁 c with 𝑥 ̸= 𝑦 we have that 𝑥 ⊗ 𝑦 and 𝜃(𝑥) ⊗ 𝜃(𝑦)

are both either on the negative or on the positive semi-line, where we can use the convexity

of 𝑘s and write

𝑘s((1 ⊗ 𝑡)(𝑥 ⊗ 𝑦) + 𝑡(𝜃(𝑥) ⊗ 𝜃(𝑦))) 6 (1 ⊗ 𝑡)𝑘s(𝑥 ⊗ 𝑦) + 𝑡𝑘s(𝜃(𝑥) ⊗ 𝜃(𝑦)). (2.2.10)

The only care we need to take is to avoid the singularity of the function 𝑘s by proving that

(1 ⊗ 𝑡)(𝑥 ⊗ 𝑦) + 𝑡(𝜃(𝑥) ⊗ 𝜃(𝑦)) ̸= 0,

for all 𝑡 ∈ [0, 1] and forall 𝑥, 𝑦 ∈ 𝑁 c with 𝑥 ̸= 𝑦. For this, let us suppose that there exist

𝑡* ∈ (0, 1] and 𝑥*, 𝑦* ∈ 𝑁 c with 𝑥* ̸= 𝑦* such that

(1 ⊗ 𝑡*)(𝑥* ⊗ 𝑦*) + 𝑡*(𝜃(𝑥*) ⊗ 𝜃(𝑦*)) = 0, (2.2.11)

then we obtain that
𝜃(𝑥*) ⊗ 𝜃(𝑦*)

𝑥* ⊗ 𝑦*

= ⊗1 ⊗ 𝑡*

𝑡*

6 0,

which contradicts the strict monotonicity of 𝜃. If 𝑡* = 0 then the only way to have (2.2.11)
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is if 𝑥* = 𝑦*. Finally, from (2.2.9) and (2.2.10) we can deduce

𝒲(𝜌t) 6
(1 ⊗ 𝑡)

2

∫︁ ∫︁
𝑘s(𝑥 ⊗ 𝑦) 𝑑𝜌0(𝑥)𝑑𝜌0(𝑦) +

𝑡

2

∫︁ ∫︁
𝑘s(𝜃(𝑥) ⊗ 𝜃(𝑦)) 𝑑𝜌0(𝑥)𝑑𝜌0(𝑦)

= (1 ⊗ 𝑡)𝒲(𝜌0) + 𝑡𝒲(𝜌1)

which gives the displacement convexity of the functional 𝒲 .

The next lemma shows that the functional ℰε also admits a unique minimum. This result

is going to allow us to obtain the same desired asymptotic behavior for the solutions of the

approximate problem.

Lemma 2.2.6. Let 𝜀, Ú > 0 and 𝜛ε := inf¶ℰε(𝜌) ♣ 𝜌 ∈ 𝒫2(R)♢. Then:

1) 𝜛ε is finite;

2) There exists a unique 𝜌ε
∞ ∈ 𝒫2,ac(R) such that ℰε(𝜌ε

∞) = 𝜛ε.

Proof. Note that for every 𝜌 ∈ 𝒫2,ac(R) we have the following estimate:

𝜀𝒰(𝜌) +
Ú

2
𝒱(𝜌) = 𝜀

∫︁
𝜌(𝑥) log 𝜌(𝑥) 𝑑𝑥 +

Ú

4

∫︁
𝑥2𝜌(𝑥) 𝑑𝑥

= 𝜀
∫︁

𝜌(𝑥)

∮︁
log 𝜌(𝑥) +

Ú

4𝜀
𝑥2

⨀︀
𝑑𝑥

= 𝜀
∫︁

𝜌(𝑥) log

(︃
𝜌(𝑥)

𝑒⊗ Ú
4𝜀

x2

⎜
𝑑𝑥

= 𝜀𝑀
∫︁ 𝜌(𝑥)

𝑒⊗ Ú
4𝜀

x2
log

(︃
𝜌(𝑥)

𝑒⊗ Ú
4𝜀

x2

⎜
𝑒⊗ Ú

4𝜀
x2

𝑀
𝑑𝑥, (2.2.12)

where 𝑀 :=
∫︀

𝑒⊗ Ú
4𝜀

x2
𝑑𝑥 =

√︁
4πε
λ

. Therefore, since 𝑠 ↦⊃ 𝑠 log 𝑠 in convex, we can use the

JensenŠs Inequality on the last expression and obtain

𝜀𝑀
∫︁ 𝜌(𝑥)

𝑒⊗ Ú
4𝜀

x2
log

(︃
𝜌(𝑥)

𝑒⊗ Ú
4𝜀

x2

⎜
𝑒⊗ Ú

4𝜀
x2

𝑀
𝑑𝑥 > 𝜀𝑀

(︃∫︁ 𝜌(𝑥)
𝑀

𝑑𝑥

⎜
log

(︃∫︁ 𝜌(𝑥)
𝑀

𝑑𝑥

⎜

= 𝜀 log
1

𝑀
= 𝜀 log

Ú

4Þ𝜀
. (2.2.13)
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In particular, this also implies that for all 𝜌 ∈ 𝒫2,ac(R):

ℰε(𝜌) > 𝜀𝒰(𝜌) +
Ú

2
𝒱(𝜌) > 𝜀 log

Ú

2Þ𝜀
> 𝜀 log

Ú

4Þ𝜀
; ,

which proves the item (i).

Now, let ¶𝜌n♢n∈N ⊖ 𝒫2,ac(R) such that ℰε(𝜌n) 6 𝜛 + 1
n
. By the inequalities (2.2.12)

and (2.2.13) above, we have the following estimate for the second moments

0 6
Ú

4

∫︁
𝑥2𝜌n(𝑥) 𝑑𝑥

=
Ú

2
𝒱(𝜌n)

6 𝜀𝒰(𝜌n) +
Ú

2
𝒱(𝜌n) ⊗ 𝜀 log

Ú

4Þ𝜀
+

Ú

2
𝒱(𝜌n)

< ℰε(𝜌n) ⊗ 𝜀 log
Ú

4Þ𝜀

6 𝜛 + 1 ⊗ 𝜀 log
Ú

4Þ𝜀
.

Therefore we have that the sequence ¶𝜌n♢n∈N satisĄes

sup
n∈N

∫︁
𝑥2𝜌n(𝑥) 𝑑𝑥 < ∞

and, for the condition (2.2.8) together with the ProkhorovŠs Theorem 2.2.4, we can extract

a subsequence, still denoted by ¶𝜌n♢n∈N, such that 𝜌n ⇀ 𝜌*, for some 𝜌* ∈ 𝒫(R). It is easy

to check that 𝜌* ∈ 𝒫2(R) for, by the Lemma 2.2.5, we know that

ℰε(𝜌*) 6 lim inf
n∈N

ℰε(𝜌n) = 𝜛 < ∞,

which means that 𝜌* ∈ 𝐷(ℰε) ⊖ 𝒫2(R) and that 𝜌* is a minimum for ℰε.

The uniqueness of the ground state follows from the Lemma 2.2.5 for, if 𝜌1
* and 𝜌2

* are

two different minimums in 𝒫2,ac(R) to ℰε we can deĄne 𝜌 1
2

= (1
2
𝐼𝑑 + 1

2
𝜃)#𝜌1

*, where 𝜃 := 𝑇
ρ2

*

ρ1
*
,

the optimal transport map 𝑇
ρ2

*

ρ1
*
#𝜌1

* = 𝜌2
*. Therefore, by the Ú-displacement convexity of ℰε

we have

ℰε(𝜌 1
2
) 6

1
2

ℰε(𝜌1
*) +

1
2

ℰε(𝜌2
*) ⊗ Ú

2

⎤1
2

⎣2

𝑊2(𝜌1
*, 𝜌2

*)
2
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<
1
2

ℰε(𝜌1
*) +

1
2

ℰε(𝜌2
*) = 𝜛

which contradicts the deĄnition of 𝜛. If Ú = 0, we also know from the Lemma 2.2.5 that ℰε

is strictly displacement convex, and in this case we also obtain

ℰε(𝜌 1
2
) <

1
2

ℰε(𝜌1
*) +

1
2

ℰε(𝜌2
*) = 𝜛.

Therefore, there exists a unique ground state for ℰε.

2.3 Transport inequalities in dimension 1

We know from Section 2.1 that ℰ(𝜌∞) is the minimum value for the energy ℰ and therefore,

we can use the difference ℰ(𝜌) ⊗ ℰ(𝜌∞) as a measure of distance between any 𝜌 ∈ 𝒫2,ac(R)

and the ground state 𝜌∞. So in this section, we are going to derive several inequalities

originated from optimal transportation theory that will be used in the next section to show

the exponential convergence of ℰ(𝜌) ⊗ ℰ(𝜌∞) to zero in dimension one.

We also know from the relation (2.1.10) that, once we have the following inequality for a

sufficiently large class of functions

ℰ(𝜌) ⊗ ℰ(𝜌∞) 6
1

2Ú
ℐ(𝜌), (2.3.1)

we can prove the exponential convergence of ℰ(𝜌) ⊗ ℰ(𝜌∞) to zero with exponential rate ⊗2Ú

(but not necessarily the exponential convergence of ℐ(𝜌)).

The inequality (2.3.1) is usually called, in the context of optimal transport, Log-Sobolev

inequality in the linear diffusion case or generalized Log-Sobolev inequalities otherwise. We

will revisit (2.3.1) in the next section by investigating the displacement convexity of the

energy ℰ(𝜌). In particular, it becomes the logarithmic Sobolev inequality [46] for linear

Fokker-Planck equation [7, 28, 73], and a special family of Gagliardo-Nirenberg inequalities

for nonlinear Fokker-Planck equations with porous medium type diffusion [37, 26, 29].

Thus for the rest of this section, we shall prove a generalization of (2.3.1) and use it in

the following section to obtain the desired decay for ℰ(𝜌) ⊗ ℰ(𝜌∞).

Now, let us begin with the following technical lemma about the derivative of the Riesz

potential.

44



Lemma 2.3.1. Let 0 < 𝑠 6 1 and 𝜌 ∈ 𝐿1(R) ∩ 𝐿∞(R) ∩ 𝐶α(R) with Ð > max(1 ⊗ 2𝑠, 0).

Then (⊗𝜕xx)⊗s𝜌 ∈ 𝐶1(R) and for any 𝑥 ∈ R,

𝜕x(⊗𝜕xx)⊗s𝜌(𝑥) = ⊗𝑐1,s(1 ⊗ 2𝑠)
∫︁

R

𝑥 ⊗ 𝑦

♣𝑥 ⊗ 𝑦♣3⊗2s

⎤
𝜌(𝑦) ⊗ 𝜌(𝑥)

⎣
𝑑𝑦 , if 𝑠 ∈ (0, 1/2) ,

𝜕x(⊗𝜕xx)⊗s𝜌(𝑥) = ⊗𝑐1, 1
2

∫︁

R

𝑥 ⊗ 𝑦

♣𝑥 ⊗ 𝑦♣2
⎤

𝜌(𝑦) ⊗ 𝜌(𝑥)
⎣

𝑑𝑦 , if 𝑠 =
1
2

,

or

𝜕x(⊗𝜕xx)⊗s𝜌(𝑥) = ⊗𝑐1,s(1 ⊗ 2𝑠)
∫︁

R

𝑥 ⊗ 𝑦

♣𝑥 ⊗ 𝑦♣3⊗2s
𝜌(𝑦) 𝑑𝑦 , if 𝑠 ∈ (1/2, 1].

Proof. Firstly, let us assume that 𝑠 ∈ (0, 1/2). To simplify the notation, we write 𝑘s(𝑥) :=

𝑐1,s♣𝑥♣2s⊗1. Hence, we note that under the hypothesis on 𝜌, we have that

us(𝑥) := ⊗𝑐1,s(1 ⊗ 2𝑠)
∫︁

R

(𝑥 ⊗ 𝑦)
♣𝑥 ⊗ 𝑦♣3⊗2s

⎤
𝜌(𝑦) ⊗ 𝜌(𝑥)

⎣
𝑑𝑦 = 𝑘′

s * (𝜌 ⊗ 𝜌(𝑥))

is well deĄned for all 𝑥 ∈ R.

Now, let Ö ∈ 𝐶1(R) be a radial function such that 0 6 Ö 6 1, Ö(𝑥) = 0 if ♣𝑥♣ 6 1, Ö(𝑥) = 1

if ♣𝑥♣ > 2 and ♣Ö′♣ 6 2. DeĄne Öε(𝑥) := Ö(𝜀⊗1𝑥) and

𝑝(𝑥) := (⊗𝜕xx)⊗s𝜌(𝑥) = 𝑘s * 𝜌(𝑥) ,

𝑝ε(𝑥) := (𝑘sÖε) * 𝜌(𝑥).

Since 𝜌 is bounded, we have that 𝑝ε ⊃ 𝑝 uniformly on R as 𝜀 ⊃ 0 for

♣𝑝(𝑥) ⊗ 𝑝ε(𝑥)♣ 6
∫︁

♣x⊗y♣62ε
𝑘s(𝑥 ⊗ 𝑦)

(︁
1 ⊗ Öε(𝑥 ⊗ 𝑦)

⎡
𝜌(𝑦) 𝑑𝑦

6 ‖𝜌‖∞

∫︁

♣y♣62ε

1
♣𝑦♣1⊗2s

𝑑𝑦 = 𝐶‖𝜌‖∞𝜀2s

for all 𝑥 ∈ R, where 𝐶 depends on 𝑠.

By the smoothness of 𝑘sÖε we know that 𝑝ε ∈ 𝐶1 and 𝑝′
ε(𝑥) = (𝑘sÖε)′ * 𝜌(𝑥), and since

𝑘sÖε is radial, we can write

𝑝′
ε(𝑥) =

∫︁

R

(𝑘sÖε)′(𝑥 ⊗ 𝑦)
⎤

𝜌(𝑦) ⊗ 𝜌(𝑥)
⎣

𝑑𝑦 .
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Therefore,

♣us(𝑥) ⊗ 𝑝′
ε(𝑥)♣ =

⧹︃⧹︃⧹︃⧹︃⧹︃

∫︁

♣x⊗y♣62ε
(𝑘s(1 ⊗ Öε))′(𝑥 ⊗ 𝑦)

⎤
𝜌(𝑦) ⊗ 𝜌(𝑥)

⎣
𝑑𝑦

⧹︃⧹︃⧹︃⧹︃⧹︃

6

∫︁

♣x⊗y♣62ε

⎤
♣𝑘′

s(𝑥 ⊗ 𝑦)♣♣1 ⊗ Öε(𝑥 ⊗ 𝑦)♣ + 𝑘s(𝑥 ⊗ 𝑦)♣Ö′
ε(𝑥 ⊗ 𝑦)♣

⎣⧹︃⧹︃⧹︃⧹︃𝜌(𝑦) ⊗ 𝜌(𝑥)
⧹︃⧹︃⧹︃⧹︃ 𝑑𝑦

6

∫︁

♣x⊗y♣62ε

⎤
𝑐1,s(1 ⊗ 2𝑠)
♣𝑥 ⊗ 𝑦♣2⊗2s

+
2
𝜀

𝑐1,s

♣𝑥 ⊗ 𝑦♣1⊗2s

⎣⧹︃⧹︃⧹︃⧹︃𝜌(𝑦) ⊗ 𝜌(𝑥)
⧹︃⧹︃⧹︃⧹︃ 𝑑𝑦 (2.3.2)

6 𝐶
∫︁

♣x⊗y♣62ε

(︃
1

♣𝑥 ⊗ 𝑦♣2⊗2s⊗α
+

1
𝜀

1
♣𝑥 ⊗ 𝑦♣1⊗2s⊗α

⎜
𝑑𝑦

6 𝐶1𝜀
α+2s⊗1,

where the constant 𝐶1 only depends on 𝑠, Ð and on the Hölder constant of 𝜌. Thus, we also

have that 𝑝′
ε converges uniformly to us as 𝜀 ⊃ 0, and therefore 𝑝′ = us.

Now, if 𝑠 ∈ (1/2, 1] , we only need to adapt the argument in formula (2.3.2) for the

function

us(𝑥) := ⊗𝑐1,s(1 ⊗ 2𝑠)
∫︁

R

𝑥 ⊗ 𝑦

♣𝑥 ⊗ 𝑦♣3⊗2s
𝜌(𝑦) 𝑑𝑦 = 𝑘′

s * 𝜌

and using that 𝑝′
ε = (𝑘sÖε)′ * 𝜌 in the following way

♣us(𝑥) ⊗ 𝑝′
ε(𝑥)♣ = 𝐶 ‖𝜌‖∞

∫︁

♣x⊗y♣62ε

(︃
1

♣𝑥 ⊗ 𝑦♣2⊗2s
+

1
𝜀

1
♣𝑥 ⊗ 𝑦♣1⊗2s

⎜
𝑑𝑦

= 𝐶2𝜀
2s⊗1,

where the constant 𝐶2 only depends on 𝑠 and on the 𝐿∞ norm of 𝜌.

Finally, if 𝑠 = 1/2 we have that

(⊗𝜕xx)⊗ 1
2 𝜌(𝑥) = 𝑐1, 1

2

∫︁

R

log ♣𝑥 ⊗ 𝑦♣𝜌(𝑦) 𝑑𝑦

and

u 1
2
(𝑥) = ⊗𝑐1, 1

2

∫︁

R

(𝑥 ⊗ 𝑦)
♣𝑥 ⊗ 𝑦♣2

⎤
𝜌(𝑦) ⊗ 𝜌(𝑥)

⎣
𝑑𝑦.

Arguing as above for 𝑘 1
2
(𝑥) := 𝑐1, 1

2
log ♣𝑥♣ we arrive at the following estimates:

♣𝑝(𝑥) ⊗ 𝑝ε(𝑥)♣ 6 ‖𝜌‖∞

∫︁

♣y♣62ε

⧹︃⧹︃⧹︃ log ♣𝑦♣
⧹︃⧹︃⧹︃𝑑𝑦 = 𝐶‖𝜌‖∞𝜀

(︁⧹︃⧹︃⧹︃ log 2𝜀
⧹︃⧹︃⧹︃+ 1

⎡
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and

♣u 1
2
(𝑥) ⊗ 𝑝′

ε(𝑥)♣ 6 𝐶
∫︁

♣x⊗y♣62ε

⎤ 1
♣𝑥 ⊗ 𝑦♣ +

1
𝜀

⧹︃⧹︃⧹︃ log ♣𝑥 ⊗ 𝑦♣
⧹︃⧹︃⧹︃
⎣⧹︃⧹︃⧹︃⧹︃𝜌(𝑦) ⊗ 𝜌(𝑥)

⧹︃⧹︃⧹︃⧹︃ 𝑑𝑦

6 𝐶
∫︁

♣x⊗y♣62ε

⎤ 1
♣𝑥 ⊗ 𝑦♣1⊗α

+
1
𝜀

♣𝑥 ⊗ 𝑦♣α
⧹︃⧹︃⧹︃ log ♣𝑥 ⊗ 𝑦♣

⧹︃⧹︃⧹︃
⎣

𝑑𝑦

6 𝐶𝜀α
⎤

1 + 𝜀 + 𝜀
⧹︃⧹︃⧹︃ log 2𝜀

⧹︃⧹︃⧹︃
⎣

.

Therefore, since all these estimates are uniform in 𝑥, we conclude that the lemma is true for

all 𝑠 ∈ (0, 1].

Remark 2.3.2. With this expression for the derivative of (⊗𝜕xx)⊗s𝜌 for 𝑠 < 1
2
, we obtain

the following equality that shall be used in the next proposition:

𝜕x(⊗𝜕xx)⊗s𝜌(𝑥)
𝑐1,s(2𝑠 ⊗ 1)

= lim
r⊃0

∫︁

♣x⊗y♣>r

𝑥 ⊗ 𝑦

♣𝑥 ⊗ 𝑦♣3⊗2s

⎤
𝜌(𝑦) ⊗ 𝜌(𝑥)

⎣
𝑑𝑦

= lim
r⊃0

∫︁

♣x⊗y♣>r

𝑥 ⊗ 𝑦

♣𝑥 ⊗ 𝑦♣3⊗2s
𝜌(𝑦) 𝑑𝑦 ⊗ lim

r⊃0
𝜌(𝑥)

∫︁

♣x⊗y♣>r

𝑥 ⊗ 𝑦

♣𝑥 ⊗ 𝑦♣3⊗2s
𝑑𝑦

= lim
r⊃0

∫︁

♣x⊗y♣>r

𝑥 ⊗ 𝑦

♣𝑥 ⊗ 𝑦♣3⊗2s
𝜌(𝑦) 𝑑𝑦,

where we only used the fact that 𝑘s is radial and 𝑘′
s is integrable at the inĄnity. For 𝑠 > 1

2
,

the expression is valid without taking the limit, as the kernel is locally integrable.

The generalization of (2.3.1) that we are going to show is the so called HWI inequality

which is called so because it was Ąrst established in [64] and it relates the relative Kullback

information (denoted by 𝐻), the Wasserstein distance 𝑊2 and the relative Fisher information

(also denoted by 𝐼).

The next theorems show that the HWI inequality holds for ℰ and ℰε at least for a class of

bounded and Hölder continuous functions on R. The proof follows the arguments given in [54]

where the same inequality is proved for the case of the logarithmic interaction (𝑠 = 1/2) and

strongly relies on the fact that the optimal transport map with respect to the Wasserstein

distance is a monotone nondecreasing function on R. We point out that the convexity of the

conĄnement due to the drift measured by Ú > 0 appears explicitly in the inequalities as in

[25].

Theorem 2.3.3. Let 𝑠 ∈ (0, 1], Ú ∈ R and 𝜌 ∈ 𝒫2,ac(R) such that its density (also denoted
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by 𝜌) satisfies 𝜌 ∈ 𝐿∞(R) ∩ 𝐶α(R) with Ð > max(1 ⊗ 2𝑠, 0). Then, if 𝜌∞ the minimum point

of ℰ on 𝒫2(R), we have

ℰ(𝜌) ⊗ ℰ(𝜌∞) 6
√︁

ℐ(𝜌)𝑊2(𝜌, 𝜌∞) ⊗ Ú

2
𝑊 2

2 (𝜌, 𝜌∞).

Proof. For 𝑠 = 1/2 this result was proven at [54]. So, let us suppose that 𝑠 ∈ (0, 1/2) and,

to simplify, let us denote 𝐾𝜌(𝑥) = 𝜕x(⊗𝜕xx)⊗s𝜌(𝑥). Since 𝜌 is absolutely continuous with

respect to the Lebesgue measure, by Theorem 2.2.1 there exists an nondecreasing transport

map 𝑇 ρ∞
ρ such that 𝑇 ρ∞

ρ #𝜌 = 𝜌∞. In order to simplify the notation let us call 𝜃 := 𝑇 ρ∞
ρ .

Then, we can write

√︁
ℐ(𝜌)𝑊2(𝜌, 𝜌∞) ⊗ Ú

2
𝑊 2

2 (𝜌, 𝜌∞) ⊗ ℰ(𝜌) + ℰ(𝜌∞) = 𝑇1 + 𝑇2 + 𝑇3 ,

where

𝑇1 :=

(︃∫︁ ⧹︃⧹︃⧹︃⧹︃𝐾𝜌(𝑥) + Ú𝑥

⧹︃⧹︃⧹︃⧹︃
2

𝑑𝜌(𝑥)

⎜1/2 ⎤∫︁
♣𝑥 ⊗ 𝜃(𝑥)♣2𝑑𝜌(𝑥)

⎣1/2

⊗
∫︁ ⎤

𝐾𝜌(𝑥) + Ú𝑥
⎣

(𝑥 ⊗ 𝜃(𝑥)) 𝑑𝜌(𝑥)

𝑇2 :=
∫︁ ⎭

Ú𝑥(𝑥 ⊗ 𝜃(𝑥)) ⊗ Ú

2
𝑥2 +

Ú

2
𝜃(𝑥)2 ⊗ Ú

2
♣𝑥 ⊗ 𝜃(𝑥)♣2

}︂
𝑑𝜌(𝑥)

𝑇3 :=
𝑐1,s

2

∫︁ 𝑑𝜌(𝑥)𝑑𝜌(𝑦)
♣𝜃(𝑥) ⊗ 𝜃(𝑦)♣1⊗2s

⊗ 𝑐1,s

2

∫︁ 𝑑𝜌(𝑥)𝑑𝜌(𝑦)
♣𝑥 ⊗ 𝑦♣1⊗2s

⊗
∫︁

𝐾𝜌(𝑥)(𝜃(𝑥) ⊗ 𝑥)𝑑𝜌(𝑥) ,

where we added and subtracted several terms. This allows us to show that 𝑇1 > 0 by the

Cauchy-Schwarz inequality and 𝑇2 = 0 for all Ú ∈ R. Now, for 𝑇3 let us call 𝑘s(𝑥) = 𝑐1,s♣𝑥♣2s⊗1.

Then, by the Remark 2.3.2

𝐾𝜌(𝑥) = lim
r⊃0

∫︁

♣y⊗x♣>r
𝑘′

s(𝑥 ⊗ 𝑦)𝑑𝜌(𝑦).

And, since 𝑘′
s(𝑥) = ⊗𝑘′

s(⊗𝑥), we can write

∫︁
𝐾𝜌(𝑥)

(︁
𝜃(𝑥) ⊗ 𝑥

⎡
𝑑𝜌(𝑥)

= lim
r⊃0

∫︁

♣y⊗x♣>r

(︁
𝜃(𝑥) ⊗ 𝑥

⎡
𝑘′

s

(︁
𝑥 ⊗ 𝑦

⎡
𝑑𝜌(𝑦)𝑑𝜌(𝑥)
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=
1
2

lim
r⊃0

∫︁

♣y⊗x♣>r

(︁
𝜃(𝑥) ⊗ 𝜃(𝑦) ⊗ 𝑥 + 𝑦)𝑘′

s

(︁
𝑥 ⊗ 𝑦

⎡
𝑑𝜌(𝑦)𝑑𝜌(𝑥).

Furthermore,

𝑐1,s

∫︁ 𝑑𝜌(𝑥)𝑑𝜌(𝑦)
♣𝑥 ⊗ 𝑦♣1⊗2s

= lim
r⊃0

∫︁

♣y⊗x♣>r
𝑘s(𝑥 ⊗ 𝑦)𝑑𝜌(𝑥)𝑑𝜌(𝑦)

𝑐1,s

∫︁ 𝑑𝜌(𝑥)𝑑𝜌(𝑦)
♣𝜃(𝑥) ⊗ 𝜃(𝑦)♣1⊗2s

= lim
r⊃0

∫︁

♣y⊗x♣>r
𝑘s(𝜃(𝑥) ⊗ 𝜃(𝑦))𝑑𝜌(𝑥)𝑑𝜌(𝑦)

and then,

𝑇3 = lim
r⊃0

1
2

∫︁ ⎭
𝑘s

(︁
𝜃(𝑥)⊗𝜃(𝑦)

⎡
⊗𝑘s(𝑥⊗𝑦)⊗𝑘′

s

(︁
𝜃(𝑥)⊗𝜃(𝑦)

⎡(︁
𝜃(𝑥)⊗𝜃(𝑦)⊗𝑥+𝑦

⎡}︂
𝑑𝜌(𝑥)𝑑𝜌(𝑦).

The integrand is nonnegative by the convexity of 𝑘s on the positive real line and by the

monotonicity of 𝜃, so 𝑇3 > 0 as well.

If 𝑠 ∈ (1/2, 1], we still have 𝑘s(𝑥) = 𝑐1,s♣𝑥♣2s⊗1 convex because 𝑐1,s is negative in this

range. Thus, the previous computations still apply.

Remarks. 1) It is known that, if the HWI inequality holds for some Ú > 0, then the Log-

Sobolev inequality also holds. One just needs to maximize the right-hand side for 𝑊2 > 0 or

use the YoungŠs inequality for (Ú⊗ 1
2

√
ℐ)(Ú

1
2 𝑊2). Then we have that

ℰ(𝜌) ⊗ ℰ(𝜌∞) 6
1

2Ú
ℐ(𝜌), (2.3.3)

for all 𝜌 satisfying the assumptions of the theorem above.

2) Note that in the proof of the Theorem 2.3.3 we did not use the fact that 𝜌∞ is the

minimum of ℰ , only the fact that ℰ(𝜌∞) < ∞. In fact, the same inequality holds for any

𝜌0 in the place of 𝜌∞ as long as 𝜌0 ∈ 𝐷(ℰ), and also with 𝜌∞ in the place of 𝜌, since 𝜌∞ is

absolutely continuous with respect to the Lebesgue measure, which allows the existence of

the map 𝜃 by the Theorem 2.2.1 from page 37. Therefore, if we exchange 𝜌 and 𝜌∞ in the

HWI we obtain the fractional version of the so called Talagrand inequality or transportation

cost inequality

𝑊2(𝜌, 𝜌∞) 6

√︃
2
Ú

⎤
ℰ(𝜌) ⊗ ℰ(𝜌∞)

⎣
. (2.3.4)

We can derive similar results for the 𝜀 functionals.

Theorem 2.3.4. Let 𝑠 ∈ (0, 1], Ú > 0, 0 < 𝜀 < Ú/2Þ, 𝜌 ∈ 𝒫2,ac(R) such that its density (also
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denoted by 𝜌) satisfies 𝜌 ∈ 𝐿∞(R) ∩ 𝐶α(R) with Ð > max(1 ⊗ 2𝑠, 0), and 𝜌ε
∞ the minimum

point of ℰε on 𝒫2(R). Then

ℰε(𝜌) ⊗ ℰε(𝜌ε
∞) 6

√︁
ℐε(𝜌)𝑊2(𝜌, 𝜌ε

∞) ⊗ Ú

2
𝑊 2

2 (𝜌, 𝜌ε
∞).

Proof. The proof is basically the same, but since we have a new term inside the respective

diffusion, we shall include it for completeness.

As in the previous theorem, let 𝐾𝜌(𝑥) = 𝜕x(⊗𝜕xx)⊗s𝜌(𝑥) and 𝜃 be such that 𝜃#𝜌 = 𝜌ε
∞.

Then, we decompose the inequality as

√︁
ℐε(𝜌)𝑊2(𝜌, 𝜌ε

∞) ⊗ Ú

2
𝑊 2

2 (𝜌, 𝜌ε
∞) ⊗ ℰε(𝜌) + ℰε(𝜌ε

∞) = 𝑇1 + 𝑇2 + 𝑇3; ,

where

𝑇1 :=

(︃∫︁ ⧹︃⧹︃⧹︃⧹︃𝐾𝜌(𝑥) + Ú𝑥 + 𝜀𝜕x log 𝜌(𝑥)
⧹︃⧹︃⧹︃⧹︃
2

𝑑𝜌(𝑥)

⎜1/2 ⎤∫︁
♣𝑥 ⊗ 𝜃(𝑥)♣2𝑑𝜌(𝑥)

⎣1/2

⊗
∫︁ ⎤

𝐾𝜌(𝑥) + Ú𝑥 + 𝜀𝜕x log 𝜌(𝑥)
⎣

(𝑥 ⊗ 𝜃(𝑥)) 𝑑𝜌(𝑥); ,

𝑇2 := ⊗
∫︁ ⎤

𝜀𝜕x log 𝜌(𝑥) + Ú𝑥
⎣

(𝜃(𝑥) ⊗ 𝑥) 𝑑𝜌 ⊗
∫︁ ⎤

Ú

2
𝑥2 + 𝜀 log 𝜌

⎣
𝑑𝜌

+
∫︁ ⎤

Ú

2
𝑥2 + 𝜀 log 𝜌ε

∞

⎣
𝑑𝜌ε

∞ ⊗ Ú

2

∫︁
♣𝑥 ⊗ 𝜃(𝑥)♣2𝑑𝜌(𝑥)

and

𝑇3 :=
𝑐1,s

2

∫︁ 𝑑𝜌(𝑥)𝑑𝜌(𝑦)
♣𝜃(𝑥) ⊗ 𝜃(𝑦)♣1⊗2s

⊗ 𝑐1,s

2

∫︁ 𝑑𝜌(𝑥)𝑑𝜌(𝑦)
♣𝑥 ⊗ 𝑦♣1⊗2s

⊗
∫︁

𝐾𝜌(𝑥)(𝜃(𝑥) ⊗ 𝑥)𝑑𝜌(𝑥).

By the same arguments, we conclude that 𝑇1, 𝑇3 > 0. Now, for 𝑇2, let us deĄne the

following functional

𝐻(𝑓 ♣𝑔) :=
∫︁

𝑓(𝑥) log

(︃
𝑓(𝑥)
𝑔(𝑥)

⎜
𝑑𝑥

for all nonnegative 𝑓, 𝑔 ∈ 𝐿1(R) with 𝑔 > 0. Then we can re-write 𝑇2 in the following way

𝑇2 =
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𝜀

(︃
⊗
∫︁

𝜕x log

(︃
𝜌(𝑥)
𝑒⊗πx2

⎜
(𝜃(𝑥) ⊗ 𝑥) 𝑑𝜌(𝑥) ⊗ 𝐻(𝜌♣𝑒⊗πx2

) + 𝐻(𝜌ε
∞♣𝑒⊗πx2

) + Þ
∫︁

♣𝜃(𝑥) ⊗ 𝑥♣2 𝑑𝜌

⎜

+
⎤

1 ⊗ 2Þ

Ú
𝜀
⎣ ∫︁ ∮︁

⊗Ú𝑥(𝜃(𝑥) ⊗ 𝑥) ⊗ Ú

2
𝑥2 +

Ú

2
𝜃(𝑥)2 +

Ú

2
(𝜃(𝑥) ⊗ 𝑥)2

⨀︀
𝑑𝜌(𝑥).

Note that the second line is equal to (Ú ⊗ 2Þ𝜀)
∫︀ ♣𝜃(𝑥) ⊗ 𝑥♣2 𝑑𝑥, which is nonnegative

for 𝜀 < Ú/2Þ. For the Ąrst line, we can use the proof of the HWI inequality made in [64].

Actually, Otto and Villani showed that whenever 𝜌, 𝜌ε
∞ ∈ 𝐶∞

c (R) ∩ 𝒫(R) and 𝑉 ∈ 𝐶2(R) is

such that
∫︀

𝑒⊗V 𝑑𝑥 = 1 and 𝑉 ′′ > Ò for some constant Ò ∈ R, then

𝐻(𝜌ε
∞♣𝑒⊗V ) ⊗ 𝐻(𝜌♣𝑒⊗V ) ⊗

∫︁
𝜕x log

𝜌(𝑥)
𝑒⊗V (x)

(𝜃(𝑥) ⊗ 𝑥)𝜌(𝑥) 𝑑𝑥 ⊗ Ò

2

∫︁
♣𝜃(𝑥) ⊗ 𝑥♣2𝜌(𝑥) 𝑑𝑥 > 0,

and for the density argument given in the proof of the Theorem 9.17 of [78], we have that

this inequality holds for all 𝜌, 𝜌ε
∞ ∈ 𝐿1(R) ∩ 𝒫2(R). So, applying this for 𝑉 (𝑥) = Þ𝑥2 we have

that Ò = 2Þ and we conclude that 𝑇2 > 0.

Remark 2.3.5. By the same arguments given for (2.3.3) and (2.3.4), we conclude that

the following Log-Sobolev and Talagrand inequalities hold for ℰε, as long as 𝜌 satisfies the

assumptions of proposition 2.3.4:

ℰε(𝜌) ⊗ ℰε(𝜌ε
∞) 6

1
2Ú

ℐε(𝜌), (2.3.5)

𝑊2(𝜌, 𝜌ε
∞) 6

√︃
2
Ú

⎤
ℰε(𝜌) ⊗ ℰε(𝜌ε

∞)
⎣

.

Remark 2.3.6. These results also work for a general confinement potential 𝑉 : R ⊃ R

instead of the quadratic one λ
2
𝑥2, as long as 𝑉 ⊗ λ

2
𝑥2 is convex.

2.4 Exponential Convergence

In this section we shall prove that the energy of the solution decays exponentially fast

for the regularized equation with molliĄed initial data, and then passing the limit on these

regularizing parameters we shall be able to prove the same property for the original problem.

We conclude the section showing that this exponential decay in the energy implies also a

exponential convergence in 𝐿2(R).
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Let us begin stating our main result.

Theorem 2.4.1. Let 𝜌0 ∈ 𝐿1(R) ∩ 𝐿∞(R) such that

0 6 𝜌0(𝑥) 6 𝐴𝑒⊗a♣x♣ ,

for some constants 𝑎, 𝐴 > 0. Then, for each 0 < 𝑠 < 1/2, the solution 𝜌(𝑡, ≤) of (2.1.1) with

initial data 𝜌0 satisfies

ℰ(𝜌(𝑡)) ⊗ ℰ(𝜌∞) 6 𝑒⊗2λt
⎤

ℰ(𝜌0) ⊗ ℰ(𝜌∞)
⎣

.

We could try to prove this theorem directly since we know from the previous section

that the respective Log-Sobolev inequality holds for the energy ℰ and then, using the re-

lation (2.1.10) the result would follow by the GronwallŠs inequality. The only problem of

making this argument fully rigorous is that both results demand some smoothness from the

solution and a classic regularity theory for the equation (2.1.1) is still an open problem. In

spite of the result proved in [19] that the weak solutions are Hölder continuous, no esti-

mate was given for the Hölder exponent, and since the Theorem 2.3.3, and consequently the

Log-Sobolev inequality (2.3.3), is valid only for measures whose density belongs to 𝐶α with

Ð > 1 ⊗ 2𝑠, the argument above cannot be implemented at the moment. One possible way

of circumventing this regularity issue would be extending the class of measures for which the

HWI inequality holds, but this requires passing limits in the argument of the dissipation term

ℐ, which is delicate, specially for two reasons: Ąrstly because it is still not clear for which

set of measures 𝜌 the quantity ℐ(𝜌) is Ąnite; and secondly, the dissipation is, in general, only

lower semicontinuous, which makes the approximation process hard to implement since this

functional appears on the right hand side of both HWI and Log-Sobolev inequalities. There-

fore, in order to prove the theorem above we will proceed by an approximation argument as

follows: Ąrst we will obtain a similar result for an approximate version of the equation (2.1.1)

with an small extra linear diffusion for which we have a good regularity result, and then pass

the limit on the respective exponential decay as this small diffusion term goes to zero. This

approximate equation was also used in [20] to show the existence of weak solutions of the

equation (2.1.2).

Proof of Theorem 2.4.1. In order to use the results of Section 2.3, Ąrstly we shall assume
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that

𝜌0 ∈ 𝐶∞(R) and
∫︁

R

𝜌0(𝑥) 𝑑𝑥 = 1. (2.4.1)

Let 𝜌∞, 𝜌ε
∞ ∈ 𝒫(R) be the minimizers for ℰ and ℰε respectively. By the assumption on 𝜌0 we

know from the proofs of Theorems 4.1 and 4.2 in [20] that the solutions 𝜌 and 𝜌ε to

∏︁
⨄︁
⋃︁

𝜕t𝜌 = 𝜕x(𝜌𝜕x(⊗𝜕xx)⊗s𝜌 + Ú𝑥𝜌) , in R × (0, ∞)

𝜌(0) = 𝜌0 , in R,
(2.4.2)

and ∏︁
⨄︁
⋃︁

𝜕t𝜌
ε = 𝜕x(𝜌ε𝜕x(⊗𝜕xx)⊗s𝜌ε + Ú𝑥𝜌ε) + 𝜀𝜕xx𝜌ε , in R × (0, ∞)

𝜌ε(0) = 𝜌0 , in R
(2.4.3)

satisfy 𝜌 ∈ 𝐶([0, ∞); 𝐿1(R)) and 𝜌ε ∈ 𝐶1((0, ∞) × R) for all 𝜀 > 0 sufficiently small. It is

also proved in the above mentioned reference that, because of the 𝜀-regularization in (2.4.3)

with a heat term, 𝜌ε(𝑡, .) is in fact in 𝐶2(R) for all Ąxed time 𝑡 > 0, and moreover, there exist

𝐶(𝑡), 𝑎(𝑡) > 0, such that

0 6 𝜌(𝑡, 𝑥) , 𝜌ε(𝑡, 𝑥) 6 𝐶(𝑡)𝑒⊗a(t)♣x♣. (2.4.4)

The energy ℰε is related to the equation (2.4.3) in the same way as ℰ is related to (2.4.2).

For example, in both cases the respective energy is nonincreasing with respect to the time

and the steady state solutions coincide with the minimums of the energies.

Since 𝜌ε(𝑡) is smooth, we can apply the Log-Sobolev Inequality (2.3.5) for ℰε and obtain

that for all 𝑡 > 0,

ℰε(𝜌ε(𝑡)) ⊗ ℰε(𝜌ε
∞) 6

1
2Ú

ℐε(𝜌ε(𝑡)).

Furthermore, making use of the fact that

𝑑

𝑑𝑡
ℰε(𝜌ε(𝑡)) = ⊗ℐε(𝜌ε(𝑡)), (2.4.5)

we conclude that

ℰε(𝜌ε(𝑡)) ⊗ ℰε(𝜌ε
∞) 6 𝑒⊗2λt

⎤
ℰε(𝜌0) ⊗ ℰε(𝜌ε

∞)
⎣

. (2.4.6)

The equality (2.4.5) is easy to show in this case for 𝜌ε(𝑡) is a classical solution to (2.4.3)

which decays to zero at inĄnity and hence, deĄning Ýε = 𝜀 log 𝜌 + λ
2
𝑥2 + 𝑘s * 𝜌 to simplify the
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notation, we can write the equation as 𝜕t𝜌
ε = 𝜕x(𝜌ε𝜕xÝε) and we can compute

𝑑

𝑑𝑡
ℰε(𝜌ε) =

∫︁ (︃
𝜀 log 𝜌ε𝜕t𝜌

ε +
Ú

2
𝑥2𝜕t𝜌

ε + 𝜕t𝜌
ε 𝑘s

2
* 𝜌ε + 𝜌ε 𝑘s

2
* 𝜕t𝜌

ε

⎜
𝑑𝑥

=
∫︁ (︃

𝜀 log 𝜌ε +
Ú

2
𝑥2 + 𝑘s * 𝜌ε

⎜
𝜕t𝜌

ε 𝑑𝑥

=
∫︁

Ýε(𝑥)𝜕x(𝜌ε(𝑥)𝜕xÝε(𝑥)) 𝑑𝑥

= ⊗
∫︁

𝜌ε(𝑥)♣𝜕xÝε(𝑥)♣2 𝑑𝑥

= ⊗ℐ(𝜌ε).

Now, in order to obtain the desired inequality for the original functional ℰ we need to

take the limits as 𝜀 ⊃ 0+ in (2.4.6). For this, let us analyze each one of the three terms

on (2.4.6) separately:

i) The easiest one is the limit ℰε(𝜌0), since lim
ε⊃0+

ℰε(𝜌0) = ℰ(𝜌0) holds as long as 𝒰(𝜌0) < ∞
for some, which is true by the assumptions on 𝜌0.

ii) For the term ℰε(𝜌ε
∞), let us Ąrst deĄne the following auxiliary functional on 𝒫2,ac(R):

ℋ(𝜌) := 𝐻(𝜌♣𝑒⊗πx2

) = Þ
∫︁

𝑥2𝜌 +
∫︁

𝜌 log 𝜌.

Since
∫︀

𝑒⊗πx2
𝑑𝑥 = 1, we can write

ℋ(𝜌) =
∫︁ 𝜌

𝑒⊗πx2 log
⎤

𝜌

𝑒⊗πx2

⎣
𝑒⊗πx2

𝑑𝑥 =
∫︁ ⎦

𝜌

𝑒⊗πx2 log
⎤

𝜌

𝑒⊗πx2

⎣
⊗ 𝜌

𝑒⊗πx2 + 1
⎢

𝑒⊗πx2

𝑑𝑥,

which is nonnegative since the function 𝑟 ↦⊃ 𝑟 log 𝑟 ⊗ 𝑟 + 1 is nonnegative as well.

Let us prove that lim supε⊃0 ℰε(𝜌ε
∞) 6 ℰ(𝜌∞). Using the fact that 𝜌ε

∞ is the minimum

for ℰε, we obtain the following inequality

ℰε(𝜌ε
∞) 6 ℰε(𝜌∞) = ℰ(𝜌∞) + 𝜀

∫︁
𝜌∞ log 𝜌∞. (2.4.7)

By the characterization of the minimum 𝜌∞ in [21, 32], we know that 𝜌∞ ∈ 𝒫2
ac(R) ∩

𝐿∞(R), and hence the second term on the right hand side of (2.4.7) is Ąnite. Thus, we

can take the limit 𝜀 ⊃ 0 and obtain that lim supε⊃0+ ℰε(𝜌ε
∞) 6 ℰ(𝜌∞).
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For the opposite inequality lim infε⊃0+ ℰε(𝜌ε
∞) > ℰ(𝜌∞), we can use the fact that 𝜌∞ is

the minimum for ℰ and write

ℰ(𝜌∞) 6 ℰ(𝜌ε
∞)

= ℰε(𝜌ε
∞) + 𝜀𝒰(𝜌ε

∞) ⊗ 𝜀
⎤

𝒰(𝜌ε
∞) + Þ

∫︁
𝑥2𝜌ε

∞

⎣
+ 𝜀Þ

∫︁
𝑥2𝜌ε

∞

= ℰε(𝜌ε
∞) ⊗ 𝜀ℋ(𝜌ε

∞) + 𝜀Þ
∫︁

𝑥2𝜌ε
∞

6 ℰε(𝜌ε
∞) + 𝜀Þ

∫︁
𝑥2𝜌ε

∞. (2.4.8)

So, it is sufficient to prove that the second moments of 𝜌ε
∞ are uniformly bounded for

𝜀 > 0 sufficiently small. For this, note that for all 0 < 𝜀 < min¶Ú/4Þ, 1♢ we have

0 6
Ú

4

∫︁
𝑥2𝜌ε

∞ =
Ú

2
𝒱(𝜌ε

∞)

6
Ú

2
𝒱(𝜌ε

∞) + 𝜀ℋ(𝜌ε
∞)

=
Ú

2
𝒱(𝜌ε

∞) + 2Þ𝜀𝒱(𝜌ε
∞) + 𝜀 𝒰(𝜌ε

∞)

6 Ú𝒱(𝜌ε
∞) + 𝜀 𝒰(𝜌ε

∞) + 𝒲(𝜌ε
∞)

= ℰε(𝜌ε
∞) 6 ℰε(𝜌∞) 6 ℰ(𝜌∞) +

⧹︃⧹︃⧹︃⧹︃
∫︁

𝜌∞ log 𝜌∞

⧹︃⧹︃⧹︃⧹︃ .

Therefore, taking the limit as 𝜀 ⊃ 0+ in (2.4.8) we obtain

ℰ(𝜌∞) 6 lim inf
ε⊃0+

ℰε(𝜌ε
∞) + lim

ε⊃0+
𝜀Þ
∫︁

𝑥2𝜌ε
∞ = lim inf

ε⊃0+
ℰε(𝜌ε

∞).

Hence, as 𝜀 goes to zero from above, we have that the minimum of ℰε(𝜌) indeed converge

to the minimum of ℰ(𝜌), i.e., ℰ(𝜌∞) = lim
ε⊃0+

ℰε(𝜌ε
∞).

iii) Finally, let us prove that ℰ(𝜌(𝑡)) 6 lim infε⊃0+ ℰε(𝜌ε(𝑡)) as a consequence of the con-

vergence of 𝜌ε(𝑡) to 𝜌(𝑡) in 𝒫2,ac(R) and the lower semi-continuity of the energy ℰε. For

this we can use the bound (2.4.4) to obtain

lim
R⊃∞

sup
n∈N

∫︁

♣x♣>R
𝜌ε𝑛(𝑡, 𝑥)𝑑𝑥 6 lim

R⊃∞
𝐶(𝑡)

∫︁

♣x♣>R
𝑒⊗a(t)♣x♣𝑑𝑥 = 0,

for every sequence 𝜀n ⊃ 0, which means that 𝜌ε𝑛(𝑡) is a tight family of probability
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measures and by ProkhorovŠs Theorem 2.2.4, there exist a subsequence, still denoted

by 𝜀n, that such that 𝜌ε𝑛(𝑡) ⇀ 𝜌(𝑡), i.e.,

∫︁

R

𝜙(𝑥)𝜌ε𝑛(𝑡, 𝑥) 𝑑𝑥 ⊃
∫︁

R

𝜙(𝑥)𝜌(𝑡, 𝑥) 𝑑𝑥 , for all 𝜙 ∈ 𝐶b(R) (2.4.9)

Moreover, due to uniform exponential bound, we also have that

lim
R⊃∞

sup
n∈N

∫︁

♣x♣>R
𝑥2𝜌ε𝑛(𝑡, 𝑥)𝑑𝑥 6 lim

R⊃∞
𝐶(𝑡)

∫︁

♣x♣>R
𝑥2𝑒⊗a(t)♣x♣𝑑𝑥 = 0. (2.4.10)

Therefore, by (2.2.6) from the Theorem 2.2.3 we have that (2.4.9) and (2.4.10) imply

that 𝜌ε𝑛(𝑡) converges to 𝜌(𝑡) in (𝒫2(R), 𝑊2). Note that, by (2.4.4), the second moments

are uniformly bounded w. r. t. 𝑛 so, from the following inequality

ℰ(𝜌ε𝑛(𝑡)) = ℰε𝑛(𝜌ε𝑛(𝑡)) ⊗ 𝜀nℋ(𝜌ε𝑛(𝑡)) + Þ𝜀n

∫︁
𝑥2𝜌ε𝑛(𝑡, 𝑥) 6 ℰε𝑛(𝜌ε𝑛) + Þ𝜀n

∫︁
𝑥2𝜌ε𝑛(𝑡, 𝑥),

and by the fact that ℰ is lower semi-continuous in (𝒫2(R), 𝑊2), we obtain

ℰ(𝜌(𝑡)) 6 lim inf
n⊃∞

ℰ(𝜌ε𝑛(𝑡)) 6 lim inf
n⊃∞

ℰε𝑛(𝜌ε𝑛(𝑡)).

Putting all the limits together as 𝜀 goes to zero, we can conclude the exponential convergence

of ℰ(𝜌(𝑡)) ⊗ ℰ(𝜌∞), that is,

ℰ(𝜌(𝑡)) ⊗ ℰ(𝜌∞) 6 lim inf
n⊃∞

ℰε𝑛(𝜌ε𝑛(𝑡)) ⊗ lim
n⊃∞

ℰε𝑛(𝜌ε𝑛
∞)

= lim inf
n⊃∞

⎤
ℰε𝑛(𝜌ε𝑛(𝑡)) ⊗ ℰε𝑛(𝜌ε𝑛

∞)
⎣

6 𝑒⊗2λt lim inf
n⊃∞

⎤
ℰε𝑛(𝜌0) ⊗ ℰε𝑛(𝜌ε

∞)
⎣

= 𝑒⊗2λt
⎤

ℰ(𝜌0) ⊗ ℰ(𝜌∞)
⎣

.

If the regularity assumption in (2.4.1) is not true, we can proceed the above argument

with the molliĄed initial data 𝜌0,δ = Öδ * 𝜌0, which has the same bound and mass as 𝜌0. Since

we still have the same exponential bounds for the respective solutions 𝜌δ(𝑡), we can argue as

above and conclude that ℰ(𝜌(𝑡)) 6 lim infδ⊃0 ℰ(𝜌δ(𝑡)) holds for all 𝑡 > 0. For 𝑡 = 0 we can

use the exponential bound of the initial data and the Dominated Convergence Theorem to

conclude that limδ⊃0 ℰ(𝜌δ,0) = ℰ(𝜌0).
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As a direct consequence of the Talagrand inequality in (2.3.4), we also obtain the expo-

nential decay in Wasserstein distance.

Corollary 2.4.2. Assume that 𝜌0 satisfies 0 6 𝜌0(𝑥) 6 𝐴𝑒⊗a♣x♣ for all 𝑥 ∈ R and some

𝑎, 𝐴 > 0. Then, for each 0 < 𝑠 < 1/2, the solution of (2.1.1) with initial data 𝜌0 satisfies

𝑊2(𝜌(𝑡), 𝜌∞) 6 𝑒⊗λt

√︃
2
Ú

⎤
ℰ(𝜌0) ⊗ ℰ(𝜌∞)

⎣
.

For the Fokker-Planck equation or the classic Porous Medium Equations, exponential

convergence of the relative entropy ℰ(𝜌) ⊗ ℰ(𝜌∞) implies convergence of 𝜌 to the steady

states 𝜌∞ in some classical 𝐿p norms, using for this the classical Csiszár-Kullback-Pinsker

inequality as in [7, 29]. Here we can show that the convergence in the relative entropy implies

the convergence of the norm ‖(⊗𝜕xx)⊗ 𝑠
2 (𝜌 ⊗ 𝜌∞)‖L2 .

Lemma 2.4.3. Let 𝜌∞ be the unique minimizer of ℰ, then for any 𝜌 ∈ 𝒫2(R),

1
2

‖(⊗𝜕xx)⊗ 𝑠
2 (𝜌 ⊗ 𝜌∞)‖2

L2 ⊘ ℰ(𝜌) ⊗ ℰ(𝜌∞).

Proof. The characterization (2.1.13a) and (2.1.13b) of the global minimizer 𝜌∞ and the non-

negativity of 𝜌 ⊗ 𝜌∞ outside of the support of 𝜌∞ imply that

0 = 𝐶*

∫︁

R

(𝜌 ⊗ 𝜌∞) ⊘
∫︁

R

(︃
(⊗Δ)⊗s𝜌∞(𝑥) + Ú

♣𝑥2♣
2

⎜
(𝜌 ⊗ 𝜌∞).

Therefore, we deduce

ℰ(𝜌) ⊗ ℰ(𝜌∞) =
1
2

∫︁

R

𝜌(⊗𝜕xx)⊗s𝜌 ⊗ 1
2

∫︁

R

𝜌(⊗𝜕xx)⊗s𝜌∞ +
Ú

2

∫︁

R

♣𝑥♣2(𝜌 ⊗ 𝜌∞)

⊙ 1
2

∫︁

R

𝜌(⊗𝜕xx)⊗s𝜌 ⊗ 1
2

∫︁

R

𝜌(⊗𝜕xx)⊗s𝜌∞ ⊗
∫︁

R

(𝜌 ⊗ 𝜌∞)(⊗𝜕xx)⊗s𝜌∞

=
1
2

∫︁

R

(𝜌 ⊗ 𝜌∞)(⊗𝜕xx)⊗s(𝜌 ⊗ 𝜌∞) =
1
2

‖(⊗𝜕xx)⊗ 𝑠
2 (𝜌 ⊗ 𝜌∞)‖2

L2 .

Since ‖(⊗𝜕xx)⊗ 𝑠
2 (𝜌 ⊗ 𝜌∞)‖L2 is the 𝐻⊗s/2-norm of 𝜌 ⊗ 𝜌∞, it is unlikely to produce a

bound on any stronger 𝐿p norm for the difference 𝜌 ⊗ 𝜌∞. One way to show the exponential

convergence of 𝜌(𝑡) to 𝜌∞ is to assume a uniform bound on a higher order norm of 𝜌 ⊗ 𝜌∞.
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For example, if ‖(⊗𝜕xx)
𝑠
2 (𝜌 ⊗ 𝜌∞)‖L2 is uniformly bounded, then we have (easy to establish

in Fourier space)

‖𝜌 ⊗ 𝜌∞‖2
L2 ⊘ ‖(⊗𝜕xx)

𝑠
2 (𝜌 ⊗ 𝜌∞)‖L2‖(⊗𝜕xx)⊗ 𝑠

2 (𝜌 ⊗ 𝜌∞)‖L2

and ‖𝜌 ⊗ 𝜌∞‖L2 converges to zero also exponentially fast, but with a smaller rate.

Let us prove that in fact the exponential convergence also holds in 𝐿2 without any addi-

tional hypothesis. For this, since (⊗𝜕xx)⊗ 𝑠
2 𝑢 usually has more regularity than 𝑢, we need to

look for an interpolation inequality containing some sort of fractional differentiation, which in

our case, it seems natural to be a Hölder semi-norm, i.e., for every Ð ∈ (0, 1] and 𝑣 ∈ 𝐶α(R)

we denote the Ð-Hölder semi-norm of 𝑣 by

[𝑣]CÐ := sup
x ̸=y

♣𝑣(𝑥) ⊗ 𝑣(𝑦)♣
♣𝑥 ⊗ 𝑦♣α .

Therefore, to obtain the desired decay in 𝐿2 we shall use the following new interpolation

inequality, that we will prove for any dimension 𝑑 > 1. The idea for this result was given by

Carrillo and Vázquez.

Theorem 2.4.4. Let 0 < Ð 6 1 and 0 < 𝑠 < 𝑑/2 and 0 < 𝑟 < Ð/2. There exists a constant

𝐶 = 𝐶(𝑑, 𝑠, Ð) such that

‖𝑢‖L2 6 𝐶‖(⊗Δ)⊗ 𝑠
2 𝑢‖σ1

L2 [𝑢]σ2
α ‖𝑢‖σ3

L1 ; , (2.4.11)

for all 𝑢 ∈ 𝐿1(Rd) ∩ 𝐶α(Rd) with

à1 =
𝑟

𝑠 + 𝑟
, à2 =

𝑠(𝑑 + 2𝑟)
2(𝑑 + Ð)(𝑠 + 𝑟)

, à3 =
𝑠(𝑑 + 2Ð ⊗ 2𝑟)
2(𝑑 + Ð)(𝑠 + 𝑟)

.

In order to prove the Theorem above we are going to need the following result about

fractional Sobolev Spaces:

Proposition 2.4.5 (See propositions 3.4 and 3.6 of [39]). Let Ò ∈ (0, 1) and 𝐻γ(Rd) the

Banach space defined by

𝐻γ(Rd) :=

∮︁
𝑢 ∈ 𝐿2(Rd)

⧹︃⧹︃⧹︃⧹︃⧹︃

∫︁

R𝑑

∫︁

R𝑑

♣𝑢(𝑥) ⊗ 𝑢(𝑦)♣2
♣𝑥 ⊗ 𝑦♣d+2γ

𝑑𝑥𝑑𝑦 < ∞
⨀︀
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with norm given by ‖𝑢‖2
HÒ = ‖𝑢‖2

L2 + [𝑢]2HÒ where [.]HÒ is a seminorm defined by

[𝑢]2HÒ :=
∫︁

R𝑑

∫︁

R𝑑

♣𝑢(𝑥) ⊗ 𝑢(𝑦)♣2
♣𝑥 ⊗ 𝑦♣d+2γ

𝑑𝑥𝑑𝑦.

Then, there exists a constant 𝐶(𝑑, Ò) depending only on 𝑑 and Ò such that

[𝑢]2HÒ = 𝐶(𝑑, Ò)⊗1
∫︁

R𝑑
♣̂︀𝑢(Ý)♣2♣Ý♣2γ 𝑑Ý = 𝐶(𝑑, Ò)⊗1‖(⊗Δ)

Ò
2 𝑢‖L2 ; , (2.4.12)

for all 𝑢 ∈ 𝐻γ(Rd), where ̂︀𝑢 is the Fourier transform of 𝑢.

Proof of Theorem 2.4.4. For all 0 < 𝑠 < 𝑑/2, 𝑟 > 0 and à1 = 𝑟/(𝑠 + 𝑟), we can use Fourier

variables, PlancherelŠs formula, the HölderŠs inequality with the conjugate pair
(︁

1
σ1

, 1
1⊗σ1

⎡

and (2.4.12) to interpolate between [𝑢]H𝑟 and (⊗Δ)⊗ 𝑠
2 𝑢 ∈ 𝐿2(Rd) obtaining

‖𝑢‖2
L2 =

∫︁

R𝑑
♣̂︀𝑢(Ý)♣2 𝑑Ý =

∫︁

R𝑑
♣̂︀𝑢(Ý)♣2σ1♣Ý♣⊗2sσ1 ♣̂︀𝑢(Ý)♣2(1⊗σ1)♣Ý♣2r(1⊗σ1)𝑑Ý

6

⎤∫︁

R𝑑
♣̂︀𝑢(Ý)♣2♣Ý♣⊗2s𝑑Ý

⎣σ1
⎤∫︁

R𝑑
♣̂︀𝑢(Ý)♣2♣Ý♣2r𝑑Ý

⎣1⊗σ1

= 𝐶(𝑑, 𝑟)‖(⊗Δ)⊗ 𝑠
2 𝑢‖2σ1

L2 [𝑢]2(1⊗σ1)
H𝑟 . (2.4.13)

Our aim now is to bound [𝑢]H𝑟 by [𝑢]CÐ and ‖𝑢‖L1 . Using (2.4.12) again we can split the

seminorm [𝑢]H𝑟 for any 𝑅 > 0 as

[𝑢]H𝑟 = 𝐶(𝑑, 𝑟)⊗1
∫︁

R𝑑

∫︁

R𝑑

♣𝑢(𝑥) ⊗ 𝑢(𝑦)♣2
♣𝑥 ⊗ 𝑦♣d+2r

𝑑𝑥𝑑𝑦

= 𝐶(𝑑, 𝑟)⊗1

(︃∫︁∫︁

♣x⊗y♣6R

♣𝑢(𝑥) ⊗ 𝑢(𝑦)♣2
♣𝑥 ⊗ 𝑦♣d+2r

𝑑𝑥𝑑𝑦 +
∫︁∫︁

♣x⊗y♣>R

♣𝑢(𝑥) ⊗ 𝑢(𝑦)♣2
♣𝑥 ⊗ 𝑦♣d+2r

𝑑𝑥𝑑𝑦

⎜

=: 𝐶(𝑑, 𝑟)⊗1 ( 𝐼1 + 𝐼2 ) .

To estimate 𝐼1, we make use of ♣𝑢(𝑥) ⊗ 𝑢(𝑦)♣ ⊘ [𝑢]α ♣𝑥 ⊗ 𝑦♣α to get, by the change of variables

𝑧 = 𝑥 ⊗ 𝑦, that

𝐼1 =
∫︁∫︁

♣x⊗y♣⊘R

♣𝑢(𝑥) ⊗ 𝑢(𝑦)♣2
♣𝑥 ⊗ 𝑦♣d+2r

𝑑𝑥𝑑𝑦

6 [𝑢]α
∫︁∫︁

♣x⊗y♣6R

♣𝑢(𝑥) ⊗ 𝑢(𝑦)♣
♣𝑥 ⊗ 𝑦♣d+2r⊗α

𝑑𝑥𝑑𝑦
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6 [𝑢]CÐ

∫︁

♣z♣6R

1
♣𝑧♣α⊗2r⊗d

∫︁

R𝑑
(♣𝑢(𝑧 + 𝑦)♣ + ♣𝑢(𝑦)♣) 𝑑𝑦 𝑑𝑧

= 2[𝑢]CÐ ‖𝑢‖L1

∫︁

♣z♣6R
♣𝑧♣α⊗2r⊗d 𝑑𝑧

6 2[𝑢]α‖𝑢‖L1𝑅α⊗2r ,

where the last step is allowed since 2𝑟 < Ð. On the other hand, we can similarly estimate

the far Ąeld term as

𝐼2 =
∫︁∫︁

♣x⊗y♣⊙R

(𝑢(𝑥) ⊗ 𝑢(𝑦))2

♣𝑥 ⊗ 𝑦♣d+2r
𝑑𝑥𝑑𝑦 6 4

∫︁

R𝑑
♣𝑢(𝑦)♣2𝑑𝑦

∫︁

♣z♣⊙R

𝑑𝑧

♣𝑧♣d+2r
6 4‖𝑢‖2

L2𝑅⊗2r .

Joining the two integrals and choosing the optimal value

𝑅 = [𝑢]
1
Ð
CÐ ‖𝑢‖

2
Ð

L2 ‖𝑢‖⊗ 1
Ð

L1 ,

we infer

[𝑢]2H𝑟 = 𝐶(𝑑, 𝑟)⊗1
(︁
2[𝑢]CÐ‖𝑢‖L1𝑅α⊗2r + 4‖𝑢‖2

L2𝑅⊗2r
⎡

= 𝐶(𝑑, 𝑟)⊗1
(︁
2[𝑢]α‖𝑢‖L1 [𝑢]⊗(α⊗2r)/α

CÐ ‖𝑢‖(2α⊗4r)/α
L2 ‖𝑢‖⊗(α⊗2r)/α

L1

+ 4‖𝑢‖2
L2 [𝑢]2r/α

CÐ ‖𝑢‖⊗4r/α
L2 ‖𝑢‖2r/α

L1

⎡

= ̃︀𝐶(𝑑, 𝑟, Ð)‖𝑢‖2(1⊗2r/α)
L2 ‖𝑢‖2r/α

L1 [𝑢]2r/α
α (2.4.14)

We Ąnally use the classical interpolation results between 𝐿p(Rd) and 𝐶α(Rd) spaces due to

L. Nirenberg in [62], see also [17] for a full statement. This interpolation inequality ensures

the existence of a constant depending on Ð and 𝑑 such that

‖𝑢‖2
L2 6 𝐶 ‖𝑢‖(d+2α)/(α+d)

L1 [𝑢]d/(α+d)
CÐ .

Putting it together with (2.4.14), it yields

[𝑢]2H𝑟 6 𝐶(𝑑, 𝑟, Ð) ‖𝑢‖2r/α
L1 [𝑢]2r/α

CÐ

(︁
‖𝑢‖(d+2α)/(α+d)

L1 [𝑢]d/(α+d)
CÐ

⎡1⊗2r/α

6 𝐶(𝑑, 𝑟, Ð) ‖𝑢‖(d+2α⊗2r)/(d+α)
L1 [𝑢](d+2r)/(d+α)

CÐ .
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Finally, we plug this into (2.4.13) and we obtain

‖𝑢‖2
L2 6 𝐶(𝑑, 𝑟)‖(⊗Δ)⊗ 𝑠

2 𝑢‖2σ1

L2 [𝑢]2(1⊗σ1)
H𝑟

6 𝐶‖(⊗Δ)⊗ 𝑠
2 𝑢‖2σ1

L2

(︁
‖𝑢‖(d+2α⊗2r)/(d+α)

L1 [𝑢](d+2r)/(d+α)
CÐ

⎡1⊗σ1

= 𝐶‖(⊗Δ)⊗ 𝑠
2 𝑢‖2σ1

L2 ‖𝑢‖s(d+2α⊗2r)/(d+α)(s+r)
L1 [𝑢]s(d+2r)/(d+α)(s+r)

CÐ ,

which concludes the proof.

Therefore, from Theorem 2.4.1 and Theorem 2.4.4, we derive the following decay towards

the stationary state under the 𝐿2 norm.

Corollary 2.4.6. Assume that 𝜌0 satisfies 0 6 𝜌0(𝑥) 6 𝐴𝑒⊗a♣x♣ for all 𝑥 ∈ R and some

𝑎, 𝐴 > 0. Then, for each 0 < 𝑠 < 1/2, the solution of (2.1.1) with initial data 𝜌0 satisfies

‖𝜌(𝑡) ⊗ 𝜌∞‖L2 6 𝐶 (1 + [𝜌∞]α)σ2 (ℰ(𝜌0) ⊗ ℰ(𝜌∞))
à1
2 𝑒⊗λσ1t .

Proof. Given 𝜌0 under the conditions above, we know from Theorem 5.1 of [19] that there

exists an Ñ ∈ (0, 1) such that the solution 𝜌 of (2.1.1) satisĄes 𝜌(𝑡) ∈ 𝐶β(R) ∩ 𝐿∞(R) for all

𝑡 > 0 with a uniform bound in time. Since 𝜌∞ is bounded and (1 ⊗ 𝑠)-Hölder continuous,

we have that 𝑢(𝑡) := 𝜌(𝑡) ⊗ 𝜌∞ ∈ 𝐶α(R) for all 𝑡 > 0 with Ð ∈ min¶Ñ, 1 ⊗ 𝑠♢. So we can

use inequality (2.4.11) for 𝑢 and 0 < 2𝑟 < Ð, the Lemma 2.4.3 and the Theorem 2.4.1 to

conclude

‖𝜌(𝑡) ⊗ 𝜌∞‖L2 6 𝐶‖(⊗Δ)⊗ 𝑠
2 (𝜌(𝑡) ⊗ 𝜌∞)‖σ1

L2 ‖𝜌(𝑡) ⊗ 𝜌∞‖σ3

L1 [𝜌(𝑡) ⊗ 𝜌∞]σ2
CÐ

6 𝐶 (ℰ(𝜌(𝑡)) ⊗ ℰ(𝜌∞))σ1/2 ([𝜌(𝑡)]CÐ + [𝜌∞]CÐ)σ2

6 𝐶𝑒⊗λσ1t (ℰ(𝜌0) ⊗ ℰ(𝜌∞))σ1/2 (1 + [𝜌∞]CÐ)σ2 .

Let us point out that the decay of the entropy in Theorem 2.4.1 implies a uniform in time

control of the second moment of the solutions trivially at least for 0 < 𝑠 < 1/2. Otherwise,

one has to work a bit due to the sign of the constant in the fractional operator. In any case,

a uniform in time control of the second moments together with the 𝐿2-decay rates implies

𝐿1-decay rates. For the next result, a similar calculation was performed in [27, Lemma 2.24].
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Corollary 2.4.7. Assume that 𝜌0 satisfies 0 6 𝜌0(𝑥) 6 𝐴𝑒⊗a♣x♣ for all 𝑥 ∈ R and some

𝑎, 𝐴 > 0. Then, for each 0 < 𝑠 < 1/2, the solution of (2.1.1) with initial data 𝜌0 satisfies

‖𝜌(𝑡) ⊗ 𝜌∞‖L1 6 𝐶 (ℰ(𝜌0) + ℰ(𝜌∞))
1
5 (1 + [𝜌∞]α)

4à2
5 (ℰ(𝜌0) ⊗ ℰ(𝜌∞))

4à1
10 𝑒⊗

4Úà1
5

t.

Proof. For every 𝑅 > 0 we can split the 𝐿1 norm as

‖𝜌(𝑡) ⊗ 𝜌∞‖L1 6

∫︁

♣x♣<R
♣𝜌(𝑡, 𝑥) ⊗ 𝜌∞(𝑥)♣𝑑𝑥 +

∫︁

♣x♣⊙R
♣𝜌(𝑡, 𝑥) ⊗ 𝜌∞(𝑥)♣𝑑𝑥

6 𝐶

(︃
𝑅1/2 ‖𝜌(𝑡) ⊗ 𝜌∞‖L2 +

∫︁

R

𝑥2

𝑅2

(︁
𝜌(𝑡, 𝑥) + 𝜌∞(𝑥)

⎡
𝑑𝑥

⎜

6 𝐶

(︃
𝑅1/2 ‖𝜌(𝑡) ⊗ 𝜌∞‖L2 +

Ú

𝑅2
(𝒱(𝜌(𝑡)) + 𝒱(𝜌∞))

⎜

6 𝐶
⎤

𝑅1/2 ‖𝜌(𝑡) ⊗ 𝜌∞‖L2 +
1

𝑅2
(ℰ(𝜌(𝑡)) + ℰ(𝜌∞))

⎣

6 𝐶
⎤

𝑅1/2 ‖𝜌(𝑡) ⊗ 𝜌∞‖L2 +
1

𝑅2
(ℰ(𝜌0) + ℰ(𝜌∞))

⎣
(2.4.15)

where the last inequality follows from the fact that the energy ℰ is decreasing. Now, choosing

the optimal value

𝑅 =

(︃
ℰ(𝜌0) + ℰ(𝜌∞)
‖𝜌(𝑡) ⊗ 𝜌∞‖L2

⎜2/5

we obtain from the (2.4.15)

‖𝜌(𝑡) ⊗ 𝜌∞‖L1 6 𝐶

∏︀
∐︁
(︃

ℰ(𝜌0) + ℰ(𝜌∞)
‖𝜌(𝑡) ⊗ 𝜌∞‖L2

⎜1/5

‖𝜌(𝑡) ⊗ 𝜌∞‖L2

+

(︃
ℰ(𝜌0) + ℰ(𝜌∞)
‖𝜌(𝑡) ⊗ 𝜌∞‖L2

⎜⊗4/5

(ℰ(𝜌0) + ℰ(𝜌∞))

⎞
⎠

= 𝐶 (ℰ(𝜌0) + ℰ(𝜌∞))1/5 ‖𝜌(𝑡) ⊗ 𝜌∞‖4/5
L2 .

Therefore, by the Corollary 2.4.6 we conclude that

‖𝜌(𝑡) ⊗ 𝜌∞‖5
L1 6 𝐶 (ℰ(𝜌0) + ℰ(𝜌∞)) (1 + [𝜌∞]α)4σ2 (ℰ(𝜌0) ⊗ ℰ(𝜌∞))

4à1
2 𝑒⊗4λσ1t.
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We Ąnally remark that the decay in 𝐿p-norms obtained via Corollary 2.4.6 and 2.4.7 are

translated through the change of variables (2.1.6)-(2.1.7) into algebraic decay rates toward

self-similar solutions of the original fractional porous medium equation (2.1.2).
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