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Resumo

O espaço de moduli das representações do quiver ADHM na categoria de espaços vetoriais

complexos é isomorfo ao espaço de moduli dos feixes livres de torção no plano projetivo.

Em particular, quando são considerados os feixes livres de torção de posto 1, os dados

ADHM dão uma descrição do esquema de Hilbert de 𝑛 pontos no plano complexo, para

algum inteiro 𝑛. De modo semelhante, aĄrmamos e provamos uma relação entre o espaço

de moduli das representações estáveis do quiver ADHM aumentado e o esquema de Hilbert

aninhado.

Palavras-chave: esquemas de Hilbert, quivers, equações ADHM.



Abstract

The moduli space of representations of the ADHM quiver in the category of complex vector

spaces is isomorphic to moduli space of framed torsion-free sheaves on the projective plane.

In particular, when we consider rank 1 torsion-free sheaves, the ADHM data describe the

Hilbert scheme of 𝑛 points in the complex plane, for some given integer 𝑛. Similarly, we

state and prove a relation between the moduli space of stable framed representations of

the enhanced ADHM quiver and the nested Hilbert scheme.

Keywords: Hilbert scheme, quivers, ADHM equations.
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Introduction

The enhanced ADHM quiver is the one of the form:

𝑒2
Ñ2

KK

Ð2
�� ã

// 𝑒1

Ð1

��

Ñ1

WW

Ö ++ 𝑒∞Ý
kk ,

with relations speciĄed by the linear combination of paths

Ð1Ñ1 ⊗Ñ1Ð1 + ÝÖ; Ð1ã⊗ãÐ2; Öã; Ð2Ñ2 ⊗Ñ2Ð2; Ñ1ã⊗ãÑ2; .

The literature, in [2, Section 3], has previously considered the enhanced ADHM

quivers. In particular, omitting the vertex 𝑒2 and all above relations except the Ąrst one,

we obtain the usual ADHM quiver.

It is well-known that moduli spaces of representations of the ADHM quiver in

the category of complex vector spaces are isomorphic to moduli spaces of framed torsion-

free sheaves on the projective plane [11, Chapter 2]. Particularly, when one considers rank

1 torsion-free sheaves, the ADHM data describe the Hilbert scheme of 𝑛 points in C2, for

some given integer 𝑛.

Similarly, this work aims is to provide a relation between the moduli space

of stable framed representations of the enhanced ADHM quiver and the nested Hilbert

scheme. In fact, as Theorem 3.1.1 will show, one obtains a one-to-one correspondence

between the following objects:

• equivalence classes of stable framed representations of the enhanced ADHM quiver

of dimension vector (1,𝑛1,𝑛2).

• closed subschemes (𝑍1,𝑍2) of C2 with Hilbert polynomial 𝑛1 and 𝑛1 ⊗𝑛2 respectively,

and 𝑍2 ⊆ 𝑍1.

10



Introduction 11

Although we only present a set-theoretical bijection in the main theorem, we can conjecture

that this bijection is an isomorphism between schemes. This description intends to motivate

and to be useful to the study of nested Hilbert schemes.

Furthermore, using the above correspondence, we also show that the nested

Hilbert scheme with quotients supported on curves is in one-to-one correspondence with

the equivalence classes of stable framed representations of the enhanced ADHM quiver

which satisĄes some polynomial equation.

Let us summarize the plan of the work. One of the major aims of the Chapter

1 is to introduce the concept of nested Hilbert schemes of points on a surface. For this

we will touch a few aspects of the theory of representable functors and Hilbert schemes.

Chapter 2 assembles basic facts about the representation of quivers, monads and ADHM

data, besides introducing the deĄnition of enhanced ADHM data according to [2, Section

3]. Finally, Chapter 3 conĄrms the authorŠs result, as stated above, which relates the

moduli space of stable framed representations of the enhanced ADHM quiver to the nested

Hilbert scheme.



Chapter 1

Hilbert Schemes

Before starting our construction, we deĄne the objects we shall study in this work and

state some of their properties.

1.1 Representable Functors

For the convenience of the reader, we repeat parts of the relevant material from [5, Section

2.1] without proofs, thus making our exposition self-contained.

Let 𝒞 be a category. Consider functors 𝒞𝑜𝑝 to 𝑆𝑒𝑡. These are the objects of

a category, denoted by Hom(𝒞𝑜𝑝,𝑆𝑒𝑡𝑠), in which the arrows are natural transformations.

From now on we will refer to natural transformations of contravariant functors on 𝒞 as

morphisms.

Let 𝑋 be an object of 𝒞. There is a functor

ℎ𝑋 : 𝒞𝑜𝑝 ⊃ 𝑆𝑒𝑡𝑠

to the category of sets, which sends an object 𝑈 of 𝒞 to the set:

ℎ𝑋𝑈 = Hom𝒞(𝑈,𝑋).

If Ð :𝑈 ′ ⊃𝑈 is an arrow in 𝒞, then ℎ𝑋Ð : ℎ𝑋𝑈 ⊃ ℎ𝑋𝑈
′ is deĄned as composition

with Ð (when 𝒞 is the category of schemes over a Ąxed base scheme, ℎ𝑋 is often called the

functor of points of 𝑋).

Thus, an arrow 𝑓 :𝑋 ⊃ 𝑌 yields a function ℎ𝑓 : ℎ𝑋𝑈 ⊃ ℎ𝑌 𝑈 for each object

12



Chapter 1: Hilbert Schemes 13

𝑈 ∈ 𝒞, derived from 𝑓 through composition. This deĄnes a morphism ℎ𝑋 ⊃ ℎ𝑌 , i.e., for

all arrow Ð : 𝑈 ′ ⊃ 𝑈 the diagram

ℎ𝑋𝑈

ℎXÐ
��

ℎf𝑈
// ℎ𝑌 𝑈

ℎY Ð
��

ℎ𝑋𝑈
′

ℎf𝑈
′

// ℎ𝑌 𝑈
′

is commutative. Sending each object 𝑋 of 𝒞 to ℎ𝑋 , and each arrow 𝑓 : 𝑋 ⊃ 𝑌 of 𝒞 to

ℎ𝑓 : ℎ𝑋 ⊃ ℎ𝑌 deĄnes a functor 𝒞 ⊃ Hom(𝒞𝑜𝑝,𝑆𝑒𝑡𝑠).

Lemma 1.1.1 (Yoneda lemma, weak version). Let 𝑋 and 𝑌 be objects of 𝒞. The function

Hom𝒞(𝑋,𝑌 ) ⊃ Hom𝒞(ℎ𝑋 ,ℎ𝑌 )

which sends 𝑓 : 𝑥⊃ 𝑌 to ℎ𝑓 : ℎ𝑋 ⊃ ℎ𝑌 is bijective.

In other words, the functor 𝒞 ⊃ Hom(𝒞𝑜𝑝,𝑆𝑒𝑡𝑠) is fully faithful. It fails to be

an equivalence of categories, because in general it is not essentially surjective. This means

that not every functor 𝒞𝑜𝑝 ⊃ 𝑆𝑒𝑡𝑠 is isomorphic to a functor of the form ℎ𝑋 . However, if

we restrict it to the full subcategory of Hom(𝒞𝑜𝑝,𝑆𝑒𝑡𝑠) consisting of functors 𝒞𝑜𝑝 ⊃ 𝑆𝑒𝑡𝑠

which are isomorphic to a functor of the form ℎ𝑋 , we do obtain a category which is

equivalent to 𝒞.

Definition 1.1.2. A representable functor on the category 𝒞 is a functor

𝐹 : 𝒞𝑜𝑝 ⊃ 𝑆𝑒𝑡𝑠

which is isomorphic to a functor of the form ℎ𝑋 for some object 𝑋 of 𝒞. If it happens, we

say that 𝐹 is represented by 𝑋.

Given two isomorphisms 𝐹 ♠ ℎ𝑋 and 𝐹 ♠ ℎ𝑌 , the resulting isomorphism

ℎ𝑋 ♠ ℎ𝑌 comes from a unique isomorphism 𝑋 ♠ 𝑌 in 𝒞, because of the weak form

of Yoneda lemma. Hence two objects representing the same functor are canonically

isomorphic.

The condition that a functor be representable is given a new expression with

the more general version of Yoneda lemma. Let 𝑋 be an object of 𝒞 and 𝐹 : 𝒞𝑜𝑝 ⊃ 𝑆𝑒𝑡𝑠
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a functor. Given a natural transformation á : ℎ𝑋 ⊃ 𝐹 , we obtain an element Ý ∈ 𝐹𝑋,

deĄned as the image of the identity map 𝑖𝑑𝑋 ∈ ℎ𝑋𝑋 via the function á𝑋 : ℎ𝑋𝑋 ⊃ 𝐹𝑋,

i.e., Ý = á𝑋(𝑖𝑑𝑋). This construction deĄnes a function Hom(ℎ𝑋 ,𝐹 ) ⊃ 𝐹𝑋.

Conversely, given an element Ý ∈ 𝐹𝑋, we can deĄne a morphism á : ℎ𝑋 ⊃ 𝐹

as follows. Given an object 𝑈 of 𝒞, an element of ℎ𝑋𝑈 is an arrow 𝑓 : 𝑈 ⊃𝑋; this arrow

induces a function 𝐹𝑓 : 𝐹𝑋 ⊃ 𝐹𝑈 . We deĄne a function á𝑈 : ℎ𝑋𝑈 ⊃ 𝐹𝑈 by sending

𝑓 ∈ ℎ𝑋𝑈 to 𝐹𝑓(Ý) ∈ 𝐹𝑈 . It is straightforward to check that á is in fact a morphism. Thus,

we have deĄned the functions

Hom(ℎ𝑋 ,𝐹 ) ⊃ 𝐹𝑋

and

𝐹𝑋 ⊃ Hom(ℎ𝑋 ,𝐹 ).

Lemma 1.1.3 (Yoneda lemma). These two functions are mutually inverse, and therefore,

establish the bijective correspondence

Hom(ℎ𝑋 ,𝐹 ) ♠ 𝐹𝑋

Let us see how this form of Yoneda lemma implies the weak version above.

Assuming that 𝐹 = ℎ𝑌 : the function Hom(𝑋,𝑌 ) = ℎ𝑋𝑌 ⊃ Hom(ℎ𝑋 ,ℎ𝑌 ) sends each arrow

𝑓 :𝑋 ⊃ 𝑌 to

ℎ𝑌 (𝑖𝑑𝑌 ) = 𝑖𝑑◇𝑓 :𝑋 ⊃ 𝑌,

precisely the function Hom(𝑋,𝑌 ) ⊃ Hom(ℎ𝑋 ,ℎ𝑌 ) in the weak form of the result.

One way to consider Yoneda lemma is as follows. The weak form states

that the category 𝒞 is embedded in the category Hom(𝒞𝑜𝑝,𝑆𝑒𝑡𝑠). The strong version

states that, given a functor 𝐹 : 𝒞𝑜𝑝 ⊃ 𝑆𝑒𝑡𝑠, this can be extended to the representable

functor ℎ𝐹 : Hom(𝒞𝑜𝑝,𝑆𝑒𝑡𝑠) ⊃ 𝑆𝑒𝑡𝑠: thus, every functor becomes representable, when

appropriately extended (in practice, the category Hom(𝒞𝑜𝑝,𝑆𝑒𝑡𝑠) is usually much too big,

and we must restrict it appropriately). We can use Yoneda lemma to give a very important

characterization of representable functors.

Definition 1.1.4. Let 𝐹 : 𝒞𝑜𝑝 ⊃ 𝑆𝑒𝑡𝑠 be a functor. A universal object for 𝐹 is a pair

(𝑋,Ý) consisting of an object 𝑋 of 𝒞 and an element Ý ∈ 𝐹𝑋 such that for each object 𝑈

of 𝒞 and each à ∈ 𝐹𝑈 , there exists a unique arrow 𝑓 : 𝑈 ⊃𝑋 such that 𝐹𝑓(Ý) = à ∈ 𝐹𝑈 .
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In other words: the pair (𝑋,Ý) is an universal object if the morphism ℎ𝑋 ⊃ 𝐹

deĄned by Ý is an isomorphism. Since every natural transformation ℎ𝑋 ⊃ 𝐹 is deĄned by

some object Ý ∈ 𝐹𝑋, it leads to the following proposition:

Proposition 1.1.5. A functor 𝐹 : 𝒞𝑜𝑝 ⊃ 𝑆𝑒𝑡𝑠 is representable if and only if it has a

universal object.

Proof. On the one hand, suppose that 𝐹 : 𝒞𝑜𝑝 ⊃ 𝑆𝑒𝑡𝑠 is a representable functor, then

there exists 𝑋 ∈ 𝒞 such that 𝐹 ♠ ℎ𝑋 . Let á : ℎ𝑋 ⊃ 𝐹 be the isomorphism and take

Ý = á𝑋(𝑖𝑑𝑋). We will show (𝑋,Ý) is a universal object for 𝐹 . Let 𝑈 ∈ 𝒞 and à ∈ 𝐹𝑈 . Since

á : ℎ𝑋 ⊃ 𝐹 is an isomorphism, we know that á𝑈 : ℎ𝑋(𝑈) ⊃ 𝐹 (𝑈) is also an isomorphism.

Thus, since à ∈ 𝐹𝑈 , there exists a unique 𝑓 ∈ ℎ𝑋(𝑈) such that á𝑈 (𝑓) = à. Let us see that

á𝑈 (𝑓) = 𝐹 (𝑓)(Ý). Since á is a natural transformation, we have the commutative diagram:

ℎ𝑋𝑋

ℎX(𝑓)
��

áX

// 𝐹𝑋

𝐹 (𝑓)
��

ℎ𝑋𝑈 áU

// 𝐹𝑈

Thus, á𝑈 (ℎ𝑋(𝑓)(𝑖𝑑𝑋)) = 𝐹 (𝑓)(á𝑋(𝑖𝑑𝑋)) ⇒ á𝑈 (𝑓) = 𝐹 (𝑓)(Ý). On the other hand, suppose

(𝑋,Ý) is a universal object for 𝐹 . DeĄne á : ℎ𝑋 ⊃ 𝐹 in the following way: for each

𝑈 ∈ 𝒞 take á𝑈 : ℎ𝑋𝑈 ⊃ 𝐹𝑈 which associates each 𝑓 : 𝑈 ⊃ 𝑋 with the object 𝐹 (𝑓)(Ý),

i.e., á𝑈 (𝑓) = 𝐹 (𝑓)(Ý). Let us see á is an isomorphism. Let 𝑈 ∈ 𝒞 and à ∈ 𝐹𝑈 , by the

property of the universal object, there exists a unique 𝑓 :𝑈 ⊃𝑋 such that 𝐹 (𝑓)(Ý) = à, i.e.,

á𝑈 (𝑓) = à. Thus, á𝑈 is an isomorphism, since 𝑈 is arbitrary and we know that á : ℎ𝑋 ⊃ 𝐹

is an isomorphism. 𝐹 , therefore, is a representable functor.

Also, if 𝐹 has a universal object (𝑋,Ý), then 𝐹 is represented by 𝑋. Yoneda

lemma ensures that the natural functor 𝒞 ⊃ Hom(𝒞𝑜𝑝,𝑆𝑒𝑡𝑠) which sends an object 𝑋 to

the functor ℎ𝑋 is an equivalence of 𝒞 with the category of representable functors.

Example 1.1.6. Here are some examples of representable functors:

1. Let us recall that the product 𝑋×𝑌 of two sets is the set of ordered pairs ¶(𝑥,𝑦) ♣𝑥∈

𝑋, 𝑦 ∈ 𝑌 ♢. We present two deĄnitions of the direct product of two objects𝑋, 𝑌 ∈𝑂𝑏𝒞

of an arbitrary category 𝒞.
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a. The direct product 𝑋×𝑌 ŞisŤ the object 𝑍 representing the functor

𝑈 ↦⊃ ( the direct product ℎ𝑋𝑈 ×ℎ𝑌 𝑈)

(if this functor is representable).

b. The direct product 𝑋×𝑌 ŞisŤ an object 𝑍 together with projection morphisms

𝑋 𝑍
𝑝Xoo

𝑝Y // 𝑌 such that for any pair of morphisms 𝑋 𝑍 ′
𝑝′

Xoo
𝑝′

Y // 𝑌 there

exists a unique morphism 𝑞 : 𝑍 ′ ⊃ 𝑍 such that, 𝑝′
𝑋 = 𝑝𝑋𝑞, and 𝑝′

𝑌 = 𝑝𝑌 𝑞, (again if a

triple (𝑍,𝑝𝑋 ,𝑝𝑌 ) with this property exists).

2. A generalization of the above construction enables us to deĄne the Ąber product in

the category theory language. Let us recall that if 𝜙 :𝑋 ⊃ 𝑆, and å : 𝑌 ⊃ 𝑆 are two

mappings of sets, the Ąber product of 𝑋 and 𝑌 over 𝑆 is the following set of pairs:

𝑋×𝑆 𝑌 = ¶(𝑥,𝑦) ∈𝑋×𝑌 : 𝜙(𝑥) = å(𝑦)♢ ⊆𝑋×𝑌.

The object 𝑋×𝑆 𝑌 in the category can be represented in two ways.

aŠ. 𝑋×𝑆 𝑌 represents the functor: 𝑈 ↦⊃𝑋(𝑈)×𝑆(𝑈) 𝑌 (𝑈).

bŠ. 𝑋×𝑆 𝑌 ŞisŤ the ordinary product in the new category 𝒞𝑆 whose objects are

morphisms 𝜙 :𝑋 ⊃ 𝑆, and morphisms from 𝜙 :𝑋 ⊃ 𝑆 to å : 𝑌 ⊃ 𝑆 are commutative

diagrams:

𝑋

𝜙
��

ä
// 𝑌

å��

𝑆

where ä ∈ Hom𝒞(𝑋,𝑌 ). The diagram 1.b. in the category 𝒞𝑆 is represented by the

following diagram in the category 𝒞:

𝑋×𝑆 𝑌

𝑝X

��

𝑝Y // 𝑌

å
��

𝑋
𝜙

// 𝑆

This category has a universal property and it is called the Cartesian square.
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1.2 General Results on Hilbert Schemes

One of the major aims of this chapter is to introduce the concept of nested Hilbert schemes

of points on a surface. In this regard, we begin with a brief collection of facts on the

Hilbert schemes of points on a surface. Next, we apply these facts to prove the main result

of the last chapter.

Since the deĄnition of the nested Hilbert scheme is similar to the deĄnition of

the Hilbert scheme, we begin with a general description of the latter.

Let 𝑋 be a quasi-projective variety over the Ąeld K and consider the functor:

𝐻𝑖𝑙𝑏𝑋 : 𝑆𝑐ℎ𝑜𝑝
K

⊃ 𝑆𝑒𝑡𝑠

from the category of Noetherian schemes over K to the category of sets deĄned by:

Objects:

𝑈 ↦⊃ 𝐻𝑖𝑙𝑏𝑋(𝑈) :=

⎧
⋁︁⋁︁⋁︁⋁︁⋁︁⨄︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋃︁

𝑍 ⊆𝑋×𝑈

⧹︃⧹︃⧹︃⧹︃⧹︃⧹︃⧹︃⧹︃⧹︃⧹︃⧹︃

𝑍 is a closed subscheme,

𝑍 is Ćat over 𝑈 via

Þ : 𝑍 ⊃˓𝑋×𝑈 ⊃ 𝑈

∫︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋀︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋂︁

Morphisms: for all 𝑓 : 𝑈 ⊃ 𝑉 ∈𝑀𝑜𝑟𝑆𝑐ℎK

𝐻𝑖𝑙𝑏𝑋(𝑓) : 𝐻𝑖𝑙𝑏𝑋(𝑉 ) ⊃ 𝐻𝑖𝑙𝑏𝑋(𝑈) :

𝑍 ↦⊃ 𝑓*(𝑍)

where:

𝑓*(𝑍)

��

// 𝑍

��

𝑋×𝑈

��

𝑖𝑑X×𝑓
// 𝑋×𝑉

��

𝑈
𝑓

// 𝑉

Since a pullback of Ćat morphism is still Ćat and tensor product is a right exact functor

this diagram is reasonable.

For each point 𝑢 ∈ 𝑈 , the Hilbert polynomial in 𝑈 is deĄned by:

𝑃𝑢(𝑚) = ä(𝒪𝑍u ·𝒪𝑋(𝑚))
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where 𝑍𝑢 = Þ⊗1(𝑢) and 𝒪𝑋(𝑚) is an ample line bundle on 𝑋. Since Þ is Ćat, 𝑃𝑢 is locally

constant. DeĄne the subfunctor 𝐻𝑖𝑙𝑏𝑃𝑋 of 𝐻𝑖𝑙𝑏𝑋 , which associates 𝑈 with the subset of

𝐻𝑖𝑙𝑏𝑋(𝑈) with 𝑃 as its Hilbert polynomial. In that case we have:

Theorem 1.2.1. The functor 𝐻𝑖𝑙𝑏𝑃𝑋 is representable by a projective scheme 𝐻𝑖𝑙𝑏𝑃 (𝑋).

Proof. See [7].

In general we have:

Definition 1.2.2. Let 𝑃 be the constant polynomial given by 𝑃 (𝑚) = 𝑛, for all 𝑚 ∈ Z.

We denote by 𝐻𝑖𝑙𝑏𝑛(𝑋) the corresponding Hilbert scheme and call it the Hilbert scheme

of 𝑛 points in 𝑋.

Example 1.2.3. Consider the constant polynomial 𝑝(𝑡) = 1. Then we have the canonical

identiĄcation 𝐻𝑖𝑙𝑏1(𝑌 ) = 𝑌 and the universal family is the diagonal Δ ⊆ 𝑌 ×𝑌 . In fact,

take a scheme 𝑆 and an element of 𝐻𝑖𝑙𝑏𝑌 (𝑆), named

Γ
𝑓
��

�

�

//𝑆×𝑌

𝑆

Then 𝑓 is an isomorphism: indeed, it is a one-to-one morphism and 𝒪𝑆 ⊃ 𝑓*𝒪Γ

is an isomorphism since 𝑓*𝒪Γ is an 𝒪𝑆 - algebra which is locally free of rank 1 over 𝒪𝑆 .

Therefore, we have the well-deĄned morphism 𝑔 = 𝑞 ◇ 𝑓⊗1 : 𝑆 ⊃ Γ ⊃˓ 𝑆×𝑌 ⊃ 𝑌, where

𝑞 : 𝑆×𝑌 ⊃ 𝑌 is the projection. The morphism 𝜃 bellow factors Δ

𝜃 = (𝑔𝑓,𝑞) : Γ ⊃ 𝑌 ×𝑌

(𝑠,𝑦) ↦⊃ (𝑔𝑓(𝑠,𝑦), 𝑞(𝑠,𝑦)) ∈ Δ

and induces a commutative diagram:

Γ
𝜃

��

𝑓

��

Δ

Þ��

𝑆

𝑔 ��

𝑌

Þ ◇ 𝜃(𝑠,𝑦) = Þ(𝑞(𝑠,𝑦), 𝑞(𝑠,𝑦)) = 𝑞(𝑠,𝑦) = 𝑔𝑓(𝑠,𝑦)
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such that Γ ♠ 𝑔*Δ = 𝑆×𝑌 Δ. The family Γ is induced by Δ via the morphism 𝑔. For this

reason, (𝑌,Δ) represents 𝐻𝑖𝑙𝑏1(.) and, therefore, 𝐻𝑖𝑙𝑏1(𝑌 ) = 𝑌 .

It is important to notice that, in general, even if the variety X is nonsingular,

the Hilbert scheme 𝐻𝑖𝑙𝑏𝑛(𝑋) can be singular, if 𝑛⊙ 3. The following result indicates gives

the nonsingularity of the Hilbert scheme for a quasi-projective nonsingular surface.

Theorem 1.2.4. If X is a quasi-projective nonsingular surface, then the Hilbert scheme

𝐻𝑖𝑙𝑏𝑛(𝑋) of n points on X is nonsingular.

Proof. See [6, Theorem 2.4].

We will restrict our attention when 𝑃 is a constant polynomial and 𝑋 is the

affine plane C2. In that case, we have the following handy description:

𝐻𝑖𝑙𝑏𝑛(C2) = ¶𝐼 ⊆ C[𝑋,𝑌 ] ♣𝑑𝑖𝑚C[𝑋,𝑌 ]/𝐼 = 𝑛♢.

Indeed, a closed point of 𝐻𝑖𝑙𝑏𝑛(C2) can be identiĄed with an ideal 𝐼 ⊆ C[𝑋,𝑌 ]

of length 𝑛. This means that the quotient C[𝑋,𝑌 ]/𝐼 is an 𝑛-dimensional vector space over

C.

1.3 General Results on Nested Hilbert Schemes

This section summarizes a few fundamental results concerning nested Hilbert schemes.

We begin with a general deĄnition of a quasi-projective scheme, but for our purposes a

simpler characterization, presented later, will suffice.

Let 𝑋 be a quasi-projective scheme deĄned over the Ąeld K. Fix an integer

𝑟 ⊙ 1 and a 𝑚⊗tuple of numerical polynomials

P(t) = (𝑃1(𝑡), . . . ,𝑃𝑚(𝑡)), 𝑚⊙ 1.

For every scheme 𝑆 we have:

𝐻𝑖𝑙𝑏
P(t)
𝑋 (𝑆) =

⎧
⋁︁⋁︁⋁︁⋁︁⋁︁⨄︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋃︁

(𝒵1, . . . ,𝒵𝑚)

⧹︃⧹︃⧹︃⧹︃⧹︃⧹︃⧹︃⧹︃⧹︃⧹︃⧹︃

𝒵1 ⊆ . . .⊆ 𝒵𝑚 ⊆𝑋×𝑆

𝑆⊗Ćat closed subschemes with

Hilbert polynomials P(t)

∫︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋀︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋂︁
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This deĄnes a contravariant functor:

𝐻𝑖𝑙𝑏
P(t)
𝑋 : 𝑆𝑐ℎ𝑜𝑝

K
⊃ 𝑆𝑒𝑡𝑠

called nested Hilbert functor of 𝑋 relative to P(t). When 𝑚 = 1, the nested Hilbert

functor is just the ordinary Hilbert functor.

Thus, we can state the analogy to Theorem 1.2.1 for nested Hilbert schemes

on 𝑋 = P𝑟:

Theorem 1.3.1. For every 𝑟 ⊙ 1 and P(t) as above, the nested Hilbert functor 𝐻𝑖𝑙𝑏P(t)
Pr

is represented by a projective scheme 𝐻𝑖𝑙𝑏P(t)(P𝑟), called nested Hilbert scheme of P𝑟

relative to P(t), and using a universal family:

𝒲1 ⊆ . . .⊆ 𝒲𝑚
�

�

//P𝑟 ×𝐻𝑖𝑙𝑏P(t)(P𝑟)

��

𝐻𝑖𝑙𝑏P(t)(P𝑟)

Proof. [13, Theorem 4.5.1]

If the polynomial P(t) = (𝑛1, . . . ,𝑛𝑚) is an 𝑚⊗tuple of positive integers, it is

often written 𝐻𝑖𝑙𝑏𝑛1,...,𝑛m(P𝑟) rather than 𝐻𝑖𝑙𝑏P(t)(P𝑟).

From the deĄnition it follows that the closed points of 𝐻𝑖𝑙𝑏P(t)(P𝑟) are in

one-to-one correspondence with the 𝑚-tuples (𝑍1, . . . ,𝑍𝑚) of closed subschemes of P𝑟 such

that 𝑋𝑖 has Hilbert polynomial 𝑃𝑖(𝑡) and 𝑍1 ⊆ 𝑍2 ⊆ . . .⊆ 𝑍𝑚. Moreover, it follows that

𝐻𝑖𝑙𝑏P(t)(P𝑟) is a closed subscheme of

𝑚∏︁

𝑖=1

𝐻𝑖𝑙𝑏𝑃i(𝑡)(P𝑟).

We will denote the projections as:

𝑝𝑟𝑖 :𝐻𝑖𝑙𝑏P(t)(P𝑟) ⊃𝐻𝑖𝑙𝑏𝑃i(𝑡)(P𝑟), 𝑖= 1, . . . ,𝑚.

For every subset I ⊆ ¶1, . . . ,𝑚♢ with cardinality Û we can consider the Û-tuple of polynomials

PI(t) = (𝑃𝑖1 , . . .𝑃𝑖µ) and the nested Hilbert scheme 𝐻𝑖𝑙𝑏PI(t)(P𝑟). We have natural

projection morphisms:

𝑝𝑟I :𝐻𝑖𝑙𝑏P(t)(P𝑟) ⊃𝐻𝑖𝑙𝑏PI(t)(P𝑟),
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whose 𝑝𝑟′
𝑖𝑠 are special cases.

It is of interest to know whether the nested Hilbert scheme is smooth. In fact,

in [3] Cheah proved that:

Theorem 1.3.2. If 𝑋 is a nonsingular quasi-projective 𝑚-dimensional variety, the nested

Hilbert scheme 𝐻𝑖𝑙𝑏𝑛1,...,𝑛r(𝑋) is nonsingular precisely when either:

1. 𝑚⊘ 1 or

2. 𝑚= 2 and 𝐻𝑖𝑙𝑏𝑛1,...,𝑛r(𝑋) is equal to 𝐻𝑖𝑙𝑏𝑛(𝑋) or 𝐻𝑖𝑙𝑏𝑛⊗1,𝑛(𝑋) for some 𝑛 or

3. 𝑚 ⊙ 3 and 𝐻𝑖𝑙𝑏𝑛1,...,𝑛r(𝑋) is equal to one of the spaces 𝐻𝑖𝑙𝑏1(𝑋), 𝐻𝑖𝑙𝑏2(𝑋),

𝐻𝑖𝑙𝑏3(𝑋), 𝐻𝑖𝑙𝑏1,2(𝑋) or 𝐻𝑖𝑙𝑏2,3(𝑋).

Proof. [3, Lemmas 1.1, 1.2, 1.3 and 1.4]

Interestingly, in the theorem above, there are few cases in which the nested

Hilbert scheme is smooth.



Chapter 2

Representations of quivers

2.1 Representations of quivers

A quiver is just a directed graph. A more formal deĄnition goes as follows.

Definition 2.1.1. A quiver is a pair 𝑄= (𝑄0,𝑄1), where 𝑄0 is a Ąnite set of vertices and

𝑄1 is a Ąnite set of arrows between them. If 𝑎 ∈𝑄1 is an arrow, then 𝑡𝑎 and ℎ𝑎 denote its

tail and its head, respectively.

Let us Ąx a quiver 𝑄 and a base Ąeld K. Add a Ąnite-dimensional vector space

to each vertex of 𝑄 and a linear map to each arrow (with the appropriate domain and

codomain). Thus, we obtain what is known as representation of 𝑄. More precisely,

Definition 2.1.2. A representation R of 𝑄 is a collection ¶𝑉𝑖♣𝑖∈𝑄0♢ of Ąnite-dimensional

K-vector spaces together with a collection ¶𝑉𝑎 : 𝑉𝑡𝑎 ⊃ 𝑉ℎ𝑎♣𝑎 ∈ 𝑄1♢ of K-linear maps. If

R is a representation of 𝑄, then its dimension vector or numerical type is the 𝑛-tuple

(dimK𝑉𝑖)𝑖∈𝑄0
, where 𝑛= ♣𝑄0♣.

By path we mean a concatenation of arrows such that each ends where the

next one starts. Formally,

Definition 2.1.3. A path in 𝑄 is a sequence 𝑥= 𝜌1𝜌2...𝜌𝑚 of arrows such that 𝑡𝜌𝑖 = ℎ𝜌𝑖+1

for 1 ⊘ 𝑖⊘𝑚⊗1. A relation is a formal sum of paths which end and start on the same

vertex.

Here are a few interesting examples of quiver representations:

22
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Example 2.1.4. The ADHM quiver is the one of the form:

𝑒1

Ð

��

Ñ

WW

Ö ++ 𝑒∞Ý
kk ,

with relation

ÐÑ⊗ÑÐ+ ÝÖ.

A representation of this quiver is a pair of Ąnite-dimensional vector spaces (𝑉,𝑊 ), assigned

to the vertices (𝑒1, 𝑒∞), together with linear maps (𝐴,𝐵,𝐼,𝐽) assigned to the arrows

(Ð,Ñ,Ý,Ö), which satisĄes the so-called ADHM equation

[𝐴,𝐵]+ 𝐼𝐽 = 0. (2.1.1)

The numerical type of this representation is the pair (dim𝑉,dim𝑊 ) ∈ (Z⊙0)2.

Example 2.1.5. The enhanced ADHM quiver is the one of the form:

𝑒2
Ñ2

KK

Ð2
�� ã

// 𝑒1

Ð1

��

Ñ1

WW

Ö ++ 𝑒∞Ý
kk ,

with relations

Ð1Ñ1 ⊗Ñ1Ð1 + ÝÖ; Ð1ã⊗ãÐ2; Öã; Ð2Ñ2 ⊗Ñ2Ð2; Ñ1ã⊗ãÑ2; .

A representation of this quiver consists of a triple (𝑉1,𝑉2,𝑊 ) of Ąnite-dimensional vector

spaces and linear maps (𝐴1,𝐵1, 𝐼,𝐽,𝐴2,𝐵2,𝑓) which satisfy the following equations and

are assigned, respectively, to the vertices (𝑒1, 𝑒2, 𝑒∞) and the arrows (Ð1,Ñ1, Ý,Ö,Ð2,Ñ2,ã)

⎧
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⨄︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋃︁

[𝐴1,𝐵1]+ 𝐼𝐽 = 0

𝐴1𝑓 ⊗𝑓𝐴2 = 0

𝐵1𝑓 ⊗𝑓𝐵2 = 0

[𝐴2,𝐵2] = 0

𝐽𝑓 = 0

(2.1.2)

named enhanced ADHM equations. The numerical type of this representation is the triple
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(dim𝑊,dim𝑉1,dim𝑉2) ∈ (Z⊙0)3.

Remark 2.1.6. The enhanced ADHM quiver was conceived for the Ąrst time in [2] in a

slightly different way. The authors disregard the existence of a map 𝐵2, although they

take account of the existence of a map 𝑔 : 𝑉1 ⊃ 𝑉2 (see Section 3 of [2] for more details).

Definition 2.1.7. Given R and R′ two representations of the same quiver 𝑄, a morphism

𝑓 : R ⊃ R′ is a collection of K-linear maps

¶𝑓𝑖 : 𝑉𝑖 ⊃𝑊𝑖 : 𝑖 ∈𝑄0♢

such that the diagram commutes for every arrow 𝑎 ∈𝑄1:

𝑉𝑡𝑎

𝑓ta

��

Φa // 𝑉ℎ𝑎

𝑓ha
��

𝑊𝑡𝑎 Ψa

//𝑊ℎ𝑎

i.e., 𝑓ℎ𝑎 ◇Φ𝑎 = Ψ𝑎 ◇𝑓𝑡𝑎, for all 𝑎 ∈𝑄1. A morphism 𝑓 : R ⊃ R′ is an isomorphism if 𝑓𝑖 is

invertible for every 𝑖 ∈𝑄0.

According to the previous deĄnition, we obtain what will be referred to as the

category of representations of a quiver 𝑄 over a Ąeld K, denoted by 𝒜 = RepK(𝑄). It is

the category whose objects are representations of 𝑄 with the morphisms as deĄned above.

Example 2.1.8. Let 𝑄 be the quiver of Example 2.1.4. A morphism between the

representations of 𝑄, R = (𝑉,𝑊,(𝐴,𝐵,𝐼,𝐽)) and R′ = (𝑉 ′,𝑊 ′,(𝐴′,𝐵′, 𝐼 ′,𝐽 ′)), is a pair

(𝑓,𝑔) of linear maps such that

𝑉
𝐴 �� 𝐵

ss

𝐽
		

𝑓
// 𝑉 ′

𝐴′
�� 𝐵′

tt

𝐽 ′





𝑊

𝐼

HH

𝑔
//𝑊 ′

𝐼 ′

HH =⇒

⎧
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⨄︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋃︁

𝑓𝐴= 𝐴′𝑓

𝑓𝐼 = 𝐼 ′𝑔

𝑓𝐵 =𝐵′𝑓

𝑔𝐽 = 𝐽 ′𝑓

or simply,

𝐻𝑜𝑚𝒜(R,R′) =

⎧
⋁︁⨄︁
⋁︁⋃︁

(𝑓,𝑔) ∈𝐻𝑜𝑚(𝑉,𝑉 ′)⊕𝐻𝑜𝑚(𝑊,𝑊 ′)

⧹︃⧹︃⧹︃⧹︃⧹︃⧹︃⧹︃

𝑓𝐴= 𝐴′𝑓 𝑓𝐼 = 𝐼 ′𝑔

𝑓𝐵 =𝐵′𝑓 𝑔𝐽 = 𝐽 ′𝑓

∫︁
⋁︁⋀︁
⋁︁⋂︁
.
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Similarly, a morphism between two representations R = (𝑉1,𝑉2,𝑊,(𝐴1,𝐵1, 𝐼,𝐽,𝐴2,𝐵2,𝑓))

and R′ = (𝑉 ′
1 ,𝑉

′
2 ,𝑊

′,(𝐴′
1,𝐵

′
1, 𝐼

′,𝐽 ′,𝐴′
2,𝐵

′
2,𝑓

′)) of the enhanced ADHM quiver is a triple

(Ý1, Ý2, Ý∞) of linear maps between the vector spaces (𝑉1,𝑉2,𝑊 ) and (𝑉 ′
1 ,𝑉

′
2 ,𝑊

′), respec-

tively, satisfying obvious compatibility conditions with the morphisms attached to the

arrows.

Remark 2.1.9. Sometimes it is useful to look at a representation of the enhanced ADHM

quiver as a pair of representations of the ADHM quiver plus a morphism between them,

i.e., given R = (𝑉1,𝑉2,𝑊,(𝐴1,𝐵1, 𝐼,𝐽,𝐴2,𝐵2,𝑓)) a representation of an enhanced ADHM

quiver, we can write the representations of ADHM quivers R1 = (𝑉1,𝑊,(𝐴1,𝐵1, 𝐼,𝐽)),

R2 = (𝑉2,¶0♢,(𝐴2,𝐵2,0,0)) and a map (𝑓,0) between them.

𝑉2
𝐵2

KK

𝐴2 �� 𝑓
// 𝑉1

𝐴1

��

𝐵1

WW

𝐽 ++𝑊
𝐼

kk or 𝑉2

𝐴2 �� 𝐵2��

0




𝑓
// 𝑉1

𝐴1 �� 𝐵1��

𝐽




¶0♢

0

II

//𝑊

𝐼

II

(2.1.3)

2.2 Monads

We start by recalling the concept of monad, whose best general reference is [12], precisely

±3 and ±4 of Chapter 2.

Let 𝑋 be a smooth projective variety.

Definition 2.2.1. A monad on 𝑋 is a complex of locally free sheaves on 𝑋:

𝑀∙ : 0 //𝐴 Ð //𝐵
Ñ

//𝐶 //0

such that Ñ is surjective and Ð is injective. The sheaf ℋ(𝑀∙) = kerÑ/im Ð is called the

cohomology of the monad 𝑀∙.

It is important to observe that a morphism between two monads is simply a

morphism of complexes.

Theorem 2.2.2. If 𝐸 =𝐻(𝑀∙) and 𝐸′ =𝐻(𝑀 ′
∙) are, respectively, the cohomology sheaves

of two monads:

𝑀∙ : 0 //𝐴
Ð //𝐵

Ñ
//𝐶 //0
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𝑀 ′
∙ : 0 //𝐴′ Ð′

//𝐵′ Ñ′

//𝐶 ′ //0

over a smooth projective variety 𝑋. The mapping

ℎ : Hom(𝑀∙,𝑀
′
∙) ⊃ Hom(𝐸,𝐸′)

which associates the induced homomorphism of cohomology sheaves with each homomor-

phism of monads, is bijective, if the following hypotheses are satisĄed:

Hom(𝐵,𝐴′) = Hom(𝐶,𝐵′) = 0

𝐻1(𝑋,𝐶* ·𝐴′) =𝐻1(𝑋,𝐵* ·𝐴′) =𝐻1(𝑋,𝐶* ·𝐵′) =𝐻2(𝑋,𝐶* ·𝐴′) = 0.

Proof. See [12, Lemma II.4.1.3].

Definition 2.2.3. A monad on P𝑛 of the form:

0 //𝑉1 ·𝒪Pn(⊗1) Ð //𝑉2 ·𝒪Pn
Ñ

//𝑉3 ·𝒪Pn(1) //0

where 𝑉𝑘, 𝑘 = 1,2,3, is a vector space, is called a linear monad.

The next result, which is a special case of Theorem 2.2.2, proved to be extremely

useful in Section 3.1.

Corollary 2.2.4. If 𝐸 and 𝐸′ are, respectively, the cohomology sheaves of two linear

monads 𝑀∙ and 𝑀 ′
∙, then the map which associates the induced homomorphism of

cohomology sheaves with each homomorphism of monads, is bijective.

2.3 ADHM data

In this section, we review some of the recent results about ADHM data. Let 𝑉 and 𝑊 be

complex vector spaces with dimension 𝑛 and 𝑟, respectively. The ADHM data is the set

given by:

B = B(𝑟,𝑛) := End(𝑉 )⊕2 ⊕Hom(𝑊,𝑉 )⊕Hom(𝑉,𝑊 ).
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An element of B is a datum X = (𝐴,𝐵,𝐼,𝐽) with 𝐴, 𝐵 ∈ End(𝑉 ), 𝐼 ∈ Hom(𝑊,𝑉 ) and

𝐽 ∈ Hom(𝑉,𝑊 ). We let 𝐺𝐿(𝑉 ) act on B by deĄning:

[X] = 𝑔.X := (𝑔𝐴𝑔⊗1,𝑔𝐵𝑔⊗1,𝑔𝐼,𝐽𝑔⊗1),

for 𝑔 ∈𝐺𝐿(𝑉 ) and X = (𝐴,𝐵,𝐼,𝐽) ∈ B.

Definition 2.3.1. A datum X = (𝐴,𝐵,𝐼,𝐽) is said to be

i. stable if there is no subspace 𝑆 ( 𝑉 preserved by 𝐴, 𝐵 and containing the image of

𝐼;

ii. costable if there is no subspace ¶0♢ ≠ 𝑆 ⊆ 𝑉 preserved by 𝐴, 𝐵 and contained in

ker𝐽 ;

iii. regular if it is both stable and costable.

A representation of the ADHM quiver S = (𝑉,𝑊,X) is said to be stable (respectively

costable) if X is stable (respectively costable).

Definition 2.3.2. Fix homogeneous coordinates (𝑥 : 𝑦 : 𝑧) in P2. For any representation

R = (𝑉,𝑊,(𝐴,𝐵,𝐼,𝐽)) of the ADHM quiver, deĄne the complex

𝐸∙
R : 𝑉 ·𝒪P2(⊗1) Ð //(𝑉 ⊕𝑉 ⊕𝑊 )·𝒪P2

Ñ
//𝑉 ·𝒪P2(1)

where

Ð=

∏︀
̂︁̂︁̂︁̂︁̂︁∐︁

𝑧𝐴+𝑥1

𝑧𝐵+𝑦1

𝑧𝐽

∫︀
̂︂̂︂̂︂̂︂̂︂̂︀

and
⎤

⊗𝑧𝐵⊗𝑦1 𝑧𝐴+𝑥1 𝑧𝐼

⎣
.

Any complex on P2 obtained in this way will be called an ADHM complex.

Remark 2.3.3. Note that the ADHM equation is equivalent to ÑÐ = 0. Indeed, we have:

ÑÐ =
⎤

⊗𝑧𝐵⊗𝑦1 𝑧𝐴+𝑥1 𝑧𝐼

⎣

∏︀
̂︁̂︁̂︁̂︁̂︁∐︁

𝑧𝐴+𝑥1

𝑧𝐵+𝑦1

𝑧𝐽

∫︀
̂︂̂︂̂︂̂︂̂︂̂︀

= 𝑧2([𝐴,𝐵]+ 𝐼𝐽).

Hence, ÑÐ = 0 ⇔ [𝐴,𝐵]+ 𝐼𝐽 = 0.
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Consider now the category of ADHM complex, denoted by 𝒦𝑜𝑚ADHM(P2),

subcategory of complexes on P2. The assignment:

F : 𝒜 ⊃ 𝒦𝑜𝑚ADHM(P2)

R ↦⊃ 𝐸∙
R

,

provides a functor, where 𝒜 is the category of representations of the ADHM quiver. The

functor acts on morphisms as follows: let (𝑓,𝑔) ∈𝐻𝑜𝑚𝒜(R,R′) be a morphism between

representations R and R′; then we have the morphism 𝑓∙ between the corresponding

ADHM complexes 𝐸∙
R and 𝐸∙

R′ :

𝑉 ·𝒪P2(⊗1)

𝑓·1
��

Ð // (𝑉 ⊕𝑉 ⊕𝑊 )·𝒪P2

(𝑓⊕𝑓⊕𝑔)·1
��

Ñ
// 𝑉 ·𝒪P2(1)

𝑓·1
��

𝑉 ′ ·𝒪P2(⊗1) Ð′

// (𝑉 ′ ⊕𝑉 ′ ⊕𝑊 ′)·𝒪P2

Ñ′

// 𝑉 ′ ·𝒪P2(1)

.

Thus, F((𝑓,𝑔)) is the map 𝑓∙ = (𝑓 ·1,(𝑓 ⊕𝑓 ⊕𝑔)·1,𝑓 ·1).

Proposition 2.3.4. Given the functor

F : 𝒜 ⊗⊃ 𝒦𝑜𝑚ADHM(P2)

R ↦⊗⊃ 𝐸∙
R

(𝑓,𝑔) ↦⊗⊃ (𝑓 ·1,(𝑓 ⊕𝑓 ⊕𝑔)·1,𝑓 ·1)

.

It follows that:

i. F is an exact functor.

ii. F is fully faithful.

Proof. We start our proof by showing that F is exact. Given any exact sequence of

representations of the ADHM quiver

0 ⊃ Z ⊃ S ⊃ Q ⊃ 0, (2.3.1)

we will show that the corresponding sequence of ADHM complexes:

0 ⊃ 𝐸∙
Z ⊃ 𝐸∙

S ⊃ 𝐸∙
Q ⊃ 0, (2.3.2)
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is still exact. The sequence (2.3.1) can be rewritten as:

0 // 𝑉Z

𝐴Z �� 𝐵Z��

𝐽Z

		

𝑓1

// 𝑉S

𝐴S �� 𝐵S��

𝐽S

		

𝑓2

// 𝑉Q

𝐴Q ��
𝐵Q��

𝐽Q

		

// 0

0 //𝑊Z

𝐼Z

II

𝑔1

//𝑊S

𝐼S

II

𝑔2

//𝑊Q

𝐼Q

JJ

// 0

. (2.3.3)

Notice that this sequence provides the following exact sequences:

0 ⊃ 𝑉Z ⊃ 𝑉S ⊃ 𝑉Q ⊃ 0 (𝐼)

0 ⊃ 𝑉Z ⊕𝑉Z ⊕𝑊Z ⊃ 𝑉S ⊕𝑉S ⊕𝑊S ⊃ 𝑉Q ⊕𝑉Q ⊕𝑊S ⊃ 0 (𝐼𝐼)

For every open set 𝑈 ⊆ P2, the module 𝒪P2(𝑈) is free, hence it is Ćat. Tensoring the

sequences (𝐼) and (𝐼𝐼) with 𝒪P2(𝑈) for every open set 𝑈 ⊆ P2 we obtain the following

exact sequences:

0 ⊃ 𝑉Z ·𝒪P2(⊗1) ⊃ 𝑉S ·𝒪P2(⊗1) ⊃ 𝑉Q ·𝒪P2(⊗1) ⊃ 0 (𝐼𝐼𝐼)

0 ⊃ (𝑉Z ⊕𝑉Z ⊕𝑊Z)·𝒪P2 ⊃ (𝑉S ⊕𝑉S ⊕𝑊S)·𝒪P2 ⊃
(︁
𝑉Q ⊕𝑉Q ⊕𝑊S

⎡
·𝒪P2 ⊃ 0 (𝐼𝑉 )

0 ⊃ 𝑉Z ·𝒪P2(1) ⊃ 𝑉S ·𝒪P2(1) ⊃ 𝑉Q ·𝒪P2(1) ⊃ 0 (𝑉 )

Combining (𝐼𝐼𝐼), (𝐼𝑉 ) and (𝑉 ), the result is the exact sequence of ADHM complex:

0

��

0

��

0

��

0

��

𝐸∙
Z :

��

𝑉Z ·𝒪P2(⊗1) //

��

(𝑉Z ⊕𝑉Z ⊕𝑊Z)·𝒪P2
//

��

𝑉Z ·𝒪P2(1)

��

𝐸∙
S :

��

𝑉S ·𝒪P2(⊗1) //

��

(𝑉S ⊕𝑉S ⊕𝑊S)·𝒪P2
//

��

𝑉S ·𝒪P2(1)

��

𝐸∙
Q :

��

𝑉Q ·𝒪P2(⊗1) //

��

(︁
𝑉Q ⊕𝑉Q ⊕𝑊Q

⎡
·𝒪P2

//

��

𝑉Q ·𝒪P2(1)

��

0 0 0 0

and F is an exact functor, as claimed.
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To check that F is faithful, we need to show, for every R,R′ ∈ 𝒜, the map

F :𝐻𝑜𝑚(R,R′) ⊗⊃𝐻𝑜𝑚(𝐸∙
R,𝐸

∙
R′)

is injective. Indeed, given (𝑓,𝑔) ∈𝐻𝑜𝑚(R,R′) such that F(𝑓,𝑔) = 0, we have

(𝑓 ·1,(𝑓 ⊕𝑓 ⊕𝑔)·1,𝑓 ·1) = 0.

Immediately, 𝑓 = 𝑔 = 0 and (𝑓,𝑔) is the zero morphism between representations of the

ADHM quiver.

There remains to prove that F is full. For this purpose, it suffices to show that

for every R,R′ ∈ 𝒜 the map:

F :𝐻𝑜𝑚(R,R′) ⊗⊃𝐻𝑜𝑚(𝐸∙
R,𝐸

∙
R′)

is surjective. Given 𝐸∙
R and 𝐸∙

R′ two ADHM complexes and (𝐹,𝐺,𝐻) a map between

them, we need to Ąnd a map (𝑓,𝑔) ∈𝐻𝑜𝑚(R,R′) such that F(𝑓,𝑔) = (𝐹,𝐺,𝐻).The proof

derives from the analysis of the commutativity of the diagram:

𝑉 ·𝒪P2(⊗1)

𝐹
��

Ð // (𝑉 ⊕𝑉 ⊕𝑊 )·𝒪P2

𝐺
��

Ñ
// 𝑉 ·𝒪P2(1)

𝐻
��

𝑉 ′ ·𝒪P2(⊗1) Ð′

// (𝑉 ′ ⊕𝑉 ′ ⊕𝑊 ′)·𝒪P2

Ñ′

// 𝑉 ′ ·𝒪P2(1)

. (2.3.4)

Highlight that the sheaf morphisms 𝐹, 𝐺, 𝐻 are given by vector spaces maps, which

we will denote similarly, 𝐹,𝐻 : 𝑉 ⊃ 𝑉 ′ and 𝐺 : 𝑉 ⊕𝑉 ⊕𝑊 ⊃ 𝑉 ′ ⊕𝑉 ′ ⊕𝑊 ′. Since 𝐺 ∈

Hom(𝑉 ⊕𝑉 ⊕𝑊,𝑉 ′ ⊕𝑉 ′ ⊕𝑊 ′) we can write 𝐺 into block form:

𝐺=

∏︀
̂︁̂︁̂︁̂︁̂︁∐︁

𝐺1 𝐺2 𝐺3

𝐺4 𝐺5 𝐺6

𝐺7 𝐺8 𝐺9

∫︀
̂︂̂︂̂︂̂︂̂︂̂︀
.

The commutativity of the diagram (2.3.4) gives us the equations:

Ð′𝐹 =𝐺Ð

Ñ′𝐺=𝐻Ñ
(2.3.5)
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and, using the description of Ð, Ð′, Ñ, Ñ′ given by the ADHM construction, we obtain

relations for the maps involved in 𝐺. Namely, from the Ąrst equation of (2.3.5):

Ð′𝐹 =

∏︀
̂︁̂︁̂︁̂︁̂︁∐︁

𝑧𝐴′ +𝑥1

𝑧𝐵′ +𝑦1

𝑧𝐽 ′

∫︀
̂︂̂︂̂︂̂︂̂︂̂︀
𝐹 =

∏︀
̂︁̂︁̂︁̂︁̂︁∐︁

𝑧𝐴′𝐹 +𝑥𝐹

𝑧𝐵′𝐹 +𝑦𝐹

𝑧𝐽 ′𝐹

∫︀
̂︂̂︂̂︂̂︂̂︂̂︀

𝐺Ð =

∏︀
̂︁̂︁̂︁̂︁̂︁∐︁

𝐺1 𝐺2 𝐺3

𝐺4 𝐺5 𝐺6

𝐺7 𝐺8 𝐺9

∫︀
̂︂̂︂̂︂̂︂̂︂̂︀

∏︀
̂︁̂︁̂︁̂︁̂︁∐︁

𝑧𝐴+𝑥1

𝑧𝐵+𝑦1

𝑧𝐽

∫︀
̂︂̂︂̂︂̂︂̂︂̂︀

=

∏︀
̂︁̂︁̂︁̂︁̂︁∐︁

𝑧𝐺1𝐴+𝑥𝐺1 + 𝑧𝐺2𝐵+𝑦𝐺2 + 𝑧𝐺3𝐽

𝑧𝐺4𝐴+𝑥𝐺4 + 𝑧𝐺5𝐵+𝑦𝐺5 + 𝑧𝐺6𝐽

𝑧𝐺7𝐴+𝑥𝐺7 + 𝑧𝐺8𝐵+𝑦𝐺8 + 𝑧𝐺9𝐽

∫︀
̂︂̂︂̂︂̂︂̂︂̂︀

we obtain 𝐺1 =𝐺5 = 𝐹 and 𝐺2 =𝐺4 =𝐺7 =𝐺8 = 0.

The same reasoning applies to the second equation of (2.3.5). Replacing G

with

∏︀
̂︁̂︁̂︁̂︁̂︁∐︁

𝐹 0 𝐺3

0 𝐹 𝐺6

0 0 𝐺9

∫︀
̂︂̂︂̂︂̂︂̂︂̂︀

, gives us:

Ñ′𝐺=
⎤

⊗𝑧𝐵′ ⊗𝑦1 𝑧𝐴′ +𝑥1 𝑧𝐼

⎣

∏︀
̂︁̂︁̂︁̂︁̂︁∐︁

𝐹 0 𝐺3

0 𝐹 𝐺6

0 0 𝐺9

∫︀
̂︂̂︂̂︂̂︂̂︂̂︀

=

=
⎤

⊗𝑧𝐵′𝐹 ⊗𝑦𝐹 𝑧𝐴′𝐹 +𝑥𝐹 ⊗𝑧𝐵′𝐺3 ⊗𝑦𝐺3 + 𝑧𝐴′𝐺6 +𝑥𝐺6 + 𝑧𝐼𝐺9

⎣

𝐻Ñ =𝐻
⎤

⊗𝑧𝐵⊗𝑦1 𝑧𝐴+𝑥1 𝑧𝐼

⎣
=

⎤
⊗𝑧𝐻𝐵⊗𝑦𝐻 𝑧𝐻𝐴+𝑥𝐻 𝑧𝐻𝐼

⎣
.

And this provides 𝐺9 = 𝐹 =𝐻 and 𝐺3 =𝐺6 = 0.

Hence, 𝐺 =

∏︀
̂︁̂︁̂︁̂︁̂︁∐︁

𝐹 0 0

0 𝐹 0

0 0 𝐹

∫︀
̂︂̂︂̂︂̂︂̂︂̂︀

, the map (𝑓,𝑔) = (𝐹,𝐹 ) satisĄes the condition

F(𝑓,𝑔) = (𝐹,𝐺,𝐻) and the proof is complete.

For further references, we list some properties of the ADHM complex proved

in [9, Section 5].

Lemma 2.3.5. Let us Ąx a representation R = (𝑉,𝑊,(𝐴,𝐵,𝐼,𝐽)), and the corresponding

ADHM complex 𝐸∙
R as above. Then:
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1. The sheaf map Ð is injective. The Ąber maps Ð𝑃 are injective for every 𝑃 ∈ P2 if

and only if R is costable.

2. If R is stable, then ℋ1(𝐸∙
R) = 0, and ℋ0(𝐸∙

R) is a torsion free sheaf whose restriction

to 𝑙∞ is trivial of rank 𝑟 = 𝑑𝑖𝑚𝑊 and second Chern class 𝑐= 𝑑𝑖𝑚𝑉 .

3. For any R ∈ 𝒜, 𝐻0(ℋ0(𝐸∙
R)(⊗1)) = 0 holds.

Proof. [9, Lemmas 5.2, 5.3 and 5.4]

Lemma 2.3.6. For any representation R = (𝑉,𝑊,(𝐴,𝐵,𝐼,𝐽)), and the corresponding

ADHM complex 𝐸∙
R as above, we have:

supp ℋ1(𝐸∙
R) = ¶𝑝 ∈ P2 : Ñ(𝑝) is not surjective ♢ ⊆ P2 ∖ 𝑙∞

Proof. To prove these statements we need to do some remarks: Let Ñ : ℱ ⊃ 𝒢 be a

sheaf morphism and Ñ𝑝 : ℱ𝑝 ⊃ 𝒢𝑝 the induced morphism on the stalks. We know that

(ℱ/ℱ ′)𝑝 = ℱ𝑝/ℱ
′
𝑝 and (im Ñ)𝑝 = im Ñ𝑝. So (coker Ñ)𝑝 = (𝒢/im Ñ)𝑝 = 𝒢𝑝/(im Ñ)𝑝 =

𝒢𝑝/im Ñ𝑝 = coker Ñ𝑝. Moreover, the Nakayama lemma says: the map on the stalks

Ñ𝑝 : ℱ𝑝 ⊃ 𝒢𝑝 is surjective precisely when the map on the Ąbers Ñ(𝑝) : ℱ(𝑝) ⊃ 𝒢(𝑝) is

surjective. So, let 𝑝 ∈ P2 then:

ℋ1(𝐸∙
R)𝑝 ̸= 0 ⇔ (coker Ñ)𝑝 ̸= 0 ⇔ coker Ñ𝑝 ̸= 0 ⇔ Ñ𝑝 is nonsurjective ⇔ Ñ(𝑝) is nonsurjective.

So, suppℋ1(𝐸∙
R) = ¶𝑝 ∈ P2 : Ñ(𝑝) is not surjective ♢. To prove the other statement, let

𝑝= (𝑥 : 𝑦 : 0) ∈ 𝑙∞, then:

Ñ(𝑝) =
⎤

⊗𝑦1 𝑥1 0
⎣

is always surjective. Then 𝑝 ̸∈ suppℋ1(𝐸∙
R) and suppℋ1(𝐸∙

R)∩ 𝑙∞ = ∅.

2.4 Nakajima’s description of Hilbert scheme of points

It is well-known that as a set, the Hilbert scheme of n points on C2 is given by:

Hilb𝑛(C2) = ¶𝐼 ⊆ C[𝑋,𝑌 ] ♣𝑑𝑖𝑚C[𝑋,𝑌 ]/𝐼 = 𝑛♢.
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The existence of its schematic structure is a special case of the general result of Grothendieck

[7]. Another explicit construction of the Hilbert scheme of points on the affine plane

is given by Nakajima [11, Chapter 1]. In this section, let us recall some details of this

construction which gives the ADHM description of the Hilbert scheme of 𝑛 points in C2.

Namely,

Theorem 2.4.1. Let ̃︁𝐻 def.=

⎧
⋁︁⨄︁
⋁︁⋃︁

(𝐴,𝐵,𝐼)
⧹︃⧹︃⧹︃⧹︃⧹︃⧹︃⧹︃

(𝑖) [𝐴,𝐵] = 0,

(𝑖𝑖)(𝐴,𝐵,𝐼) is stable

∫︁
⋁︁⋀︁
⋁︁⋂︁
, where𝐴,𝐵 ∈ End(C𝑛)

and 𝐼 ∈ Hom(C,C𝑛). DeĄne an action of 𝐺𝐿(C𝑛) on ̃︁𝐻 by:

𝑔.(𝐴,𝐵,𝐼) = (𝑔𝐴𝑔⊗1,𝑔𝐵𝑔⊗1,𝑔𝐼),

for 𝑔 ∈𝐺𝐿(C𝑛), and consider the quotient space 𝐻 def.= ̃︁𝐻/𝐺𝐿(C𝑛). Then 𝐻 is a nonsingular

variety and represents the functor 𝐻𝑖𝑙𝑏𝑃𝑋 for 𝑋 = C2 and 𝑃 = 𝑛.

Proof. [11, Theorem 1.9]

Although the proof of this theorem is not given here, we point out some

remarkable steps of the proof which are useful later.

According to the hypotheses of Theorem 2.4.1, set X = (𝐴,𝐵,𝐼) an ADHM

datum and deĄne the map ΦX by:

ΦX : C[𝑋,𝑌 ] ⊃ C𝑛

𝑝(𝑋,𝑌 ) ↦⊃ 𝑝(𝐴,𝐵)𝐼(1)
.

Furthermore, denote the class of the ADHM datum X ∈ ̃︁𝐻 by [X] ∈𝐻 = ̃︁𝐻/𝐺𝐿(C𝑛). Thus,

in order to prove the Theorem 2.4.1, it is necessary to consider the map

Ψ : ̃︁𝐻/𝐺𝐿(C𝑛) ⊃ Hilb𝑛(C2)

[X] ↦⊃ kerΦX

which associates the ideal kerΦX with the class [X] of a stable ADHM datum X = (𝐴,𝐵,𝐼).

Let S = (𝑉,𝑊,(𝐴,𝐵,𝐼,𝐽)) be a stable representation of the ADHM quiver of

numerical type (𝑟,𝑛) ∈ (Z⊙0)2.

Proposition 2.4.2. If 𝑟 = 1, then:

i. 𝐽 = 0.
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ii. The sheaf ℐ = kerÑ/im Ð is isomorphic to the ideal 𝐼 = ¶𝑓(𝑋,𝑌 ) ∈ C[𝑋,𝑌 ] ♣𝑓(𝐴,𝐵) = 0♢.

Proof. [11, Proposition 2.8]

From now on we assume that dim𝑊 = 1. From the above proposition 𝐽 = 0,

and the ADHM datum X = (𝐴,𝐵,𝐼,0) will be denoted by X = (𝐴,𝐵,𝐼) to shorten notation.

Moreover, we can do a construction similar to that of the previous Theorem

for both complex vector space 𝑉 with dimensions 𝑛 and representations of the ADHM

quiver of numerical type (1,𝑛). Explicitly, we can state:

Lemma 2.4.3. Let R = (𝑉,C,(𝐴,𝐵,𝐼)) be a stable representations of the ADHM quiver

of numerical type (1,𝑛). If X = (𝐴,𝐵,𝐼) then the map:

ΦX : C[𝑋,𝑌 ] ⊃ 𝑉

𝑝(𝑋,𝑌 ) ↦⊃ 𝑝(𝐴,𝐵)𝐼(1)

is a surjective linear map. In particular, C[𝑋,𝑌 ]/kerΦX is isomorphic to 𝑉 .

Proof. First note that the linear map ΦX is well-deĄned, since [𝐴,𝐵] = 0. Observe also that

im 𝐼 ⊆ im ΦX since the elements of im 𝐼 consist of vectors of the form Ð𝐼(1), for some

constant Ð ∈ C. Moreover, the image im ΦX of the map ΦX is invariant under 𝐴 and 𝐵,

since they commute. By stability of the datum X we must have im ΦX = 𝑉 . Hence, ΦX is

surjective. Straightforwardly, kerΦX ⊆ C[𝑋,𝑌 ] is an ideal. Hence, we get the isomorphism

C[𝑋,𝑌 ]/kerΦX ♠ 𝑉 .

Lemma 2.4.4. Let R = (𝑉1,C,(𝐴1,𝐵1, 𝐼1)) and S = (𝑉2,C,(𝐴2,𝐵2, 𝐼2)) be two stable

representations of the ADHM quiver of numerical type (1,𝑛). If X = (𝐴1,𝐵1, 𝐼1) and

Y = (𝐴2,𝐵2, 𝐼2) satisfy [X] = [Y], then kerΦX ♠ kerΦY.

Proof. Since [X] = [Y], there exists an element 𝑔 ∈ 𝐺𝐿(𝑉 ) such that Y = 𝑔.X. Then

Y = (𝐴2,𝐵2, 𝐼2) = (𝑔𝐴1𝑔
⊗1,𝑔𝐵⊗1

𝑔 ,𝑔𝐼1). Now, for any polynomial 𝑝 ∈ C[𝑋,𝑌 ] we have

𝑝(𝐴2,𝐵2)𝐼2(1) = 𝑝(𝑔𝐴1𝑔
⊗1,𝑔𝐵1𝑔

⊗1)(𝑔𝐼1(1)) = 𝑔𝑝(𝐴1,𝐵1)𝑔⊗1𝑔𝐼1(1) = 𝑔𝑝(𝐴1,𝐵1)𝐼1(1), in

other words, ΦY = 𝑔ΦX. Since 𝑔 is invertible, then it follows that kerΦY = kerΦX, which is

the desired conclusion.

It is clear that in Lemma 2.4.3 kerΦX belongs to 𝐻𝑖𝑙𝑏𝑛(C2) and in Lemma

2.4.4 the map Ψ is well-deĄned.
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2.5 Enhanced ADHM data

Let R = (𝑉1,𝑉2,𝑊,(𝐴1,𝐵1, 𝐼,𝐽,𝐴2,𝐵2,𝑓)) be a representation of numerical type (𝑟,𝑛1,𝑛2) ∈

(Z⊙0)3 of the enhanced ADHM quiver:

𝑉2

𝐴2 �� 𝐵2��

0




𝑓
// 𝑉1

𝐴1 �� 𝐵1��

𝐽




¶0♢

0

II

//𝑊

𝐼

II

with relations: ⎧
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⨄︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋃︁

[𝐴1,𝐵1]+ 𝐼𝐽 = 0

𝐴1𝑓 ⊗𝑓𝐴2 = 0

𝐵1𝑓 ⊗𝑓𝐵2 = 0

[𝐴2,𝐵2] = 0

𝐽𝑓 = 0.

(2.5.1)

In order to construct moduli spaces of framed representations of the enhanced

ADHM quiver, we need to introduce some concepts.

Definition 2.5.1. A framed representation of the enhanced ADHM quiver of numerical

type (𝑟,𝑛1,𝑛2) ∈ (Z⊙0)3 is a pair (R,ℎ) consisting of a representation R and an isomorphism

ℎ :𝑊⊃̃C𝑟. Two framed representations (R,ℎ) and (R′,ℎ′) are isomorphic if there is an

isomorphism of the form (Ý1, Ý2, Ý∞) : R⊃̃R′ such that ℎ′Ý∞ = ℎ.

Definition 2.5.2. Given a representation of an enhanced ADHM quiver R of numerical

type (𝑟,𝑛1,𝑛2) ∈ (Z⊙0)3 and a triple 𝜃 = (𝜃1, 𝜃2, 𝜃∞) ∈ Q3 satisfying the relation

𝑛1𝜃1 +𝑛2𝜃2 + 𝑟𝜃∞ = 0,

we say that R is 𝜃-(semi)stable if the following conditions hold

(i) Any subrepresentation R′ ⊆ R of numerical type (0,𝑛′
1,𝑛

′
2) satisĄes

𝑛′
1𝜃1 +𝑛′

2𝜃2(⊘)< 0,

(ii) Any subrepresentation R′ ⊆ R of numerical type (𝑟,𝑛′
1,𝑛

′
2) satisĄes

𝑛′
1𝜃1 +𝑛′

2𝜃2 + 𝑟𝜃∞(⊘)< 0.
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The following lemma establishes the existence of generic stability parameters

for any given dimension vector (𝑟,𝑛1,𝑛2).

Lemma 2.5.3. Let 𝜃 = (𝜃1, 𝜃2, 𝜃∞) ∈ Q3 with 𝜃2 > 0 and 𝜃1 +𝑛2𝜃2 < 0. For every rep-

resentation R of numerical type (𝑟,𝑛1,𝑛2) ∈ Z3
>0 Ąxed, the following statements are

equivalent:

a) R is 𝜃-stable;

b) R is 𝜃-semistable;

c) the following conditions are satisĄed:

(S.1) 𝑓 : 𝑉2 ⊃ 𝑉1 is injective.

(S.2) The data S = (𝑉1,𝑊,(𝐴1,𝐵1, 𝐼,𝐽)) are stable.

Proof. The affirmation a)⇒b) is straightforward by deĄnition.

b)⇒ c) Let R be a 𝜃-semistable representation. Suppose that 𝑓 is not injective, so ker𝑓 ⊆

𝑉2 is preserved by 𝐴2 and 𝐵2, i.e., 𝐴2(ker𝑓) ⊆ ker𝑓 and 𝐵2(ker𝑓) ⊆ ker𝑓 . The

reason is that, for all 𝑢 ∈ ker𝑓 , we have 𝑓(𝐴2(𝑢)) = 𝐴1(𝑓(𝑢)) = 𝐴1(0) = 0 and

𝑓(𝐵2(𝑢)) = 𝐵1(𝑓(𝑢)) = 𝐵1(0) = 0. Then we can construct a subrepresentation

R′ = (¶0♢,ker𝑓,¶0♢,(0,0,0,0,𝐴2,𝐵2,0)) with 𝑛′
1 = 0, 𝑛′

2 = dimker𝑓 and 𝑟′ = 0. The

𝜃-semistability implies 𝑛′
2𝜃2 ⊘ 0. Since 𝜃2 > 0, we have 0< dimker𝑓 ⊘ 0. Therefore,

𝑓 must be injective. If the condition (𝑆.2) is not true, there is a proper nontrivial

subspace ¶0♢ ⊆ 𝑉 ′
1 ⊆ 𝑉1 such that:

R′ =
(︁
𝑉 ′

1 ,¶0♢,𝑊,(𝐴1♣𝑉 ′

1
,𝐵1♣𝑉 ′

1
, 𝐼,𝐽 ♣𝑉 ′

1
,0,0,0)

⎡

determines a proper nontrivial subrepresentation of R with 𝑟′ = 𝑟. Since,

𝑛1𝜃1 +𝑛2𝜃2 + 𝑟𝜃∞ = 0 ⇒ 𝑟𝜃∞ = ⊗𝑛1𝜃1 ⊗𝑛2𝜃2, (𝑛′
1 ⊗𝑛1)< 0 and 𝜃1 +𝑛2𝜃2 < 0

we have

𝑛′
1𝜃1 +𝑛′

2𝜃2 + 𝑟𝜃′
∞ = 𝑛′

1𝜃1 + 𝑟𝜃∞ = 𝑛′
1𝜃1 ⊗𝑛1𝜃1 ⊗𝑛2𝜃2 = (𝑛′

1 ⊗𝑛1)𝜃1 ⊗𝑛2𝜃2 > 0.

This is a contradiction.
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c)⇒ a) Let R be a subrepresentation satisfying the conditions (𝑆.1) and (𝑆.2), and suppose

R′ =
(︁
𝑉 ′

1 ,𝑉
′

2 ,𝑊
′,(𝐴′

1,𝐵
′
1, 𝐼

′,𝐽 ′,𝐴′
2,𝐵

′
2,𝑓

′)
⎡

⊆ R

is a nontrivial proper subrepresentation of R. We must consider two possibilities:

• 𝑟′ = 𝑟 ⇒𝑊 ′ =𝑊 . In that case, the condition (𝑆.2) implies 𝐼 is not identically

zero. Otherwise, 𝑉 ′
1 violates the stability condition, because 𝐴1(𝑉 ′

1),𝐵1(𝑉 ′
1) ⊆ 𝑉 ′

1

and ¶0♢ = im 𝐼 ⊆ 𝑉 ′
1 . Thus, im 𝐼 ̸= ¶0♢ and 𝑛′

1 > 0. Similarly, if 𝑛′
1 < 𝑛1, the

data (𝑉 ′
1 ,𝐴

′
1,𝐵

′
1, 𝐼

′,𝐽 ′) violates the condition (𝑆.2). Therefore, 𝑛′
1 = 𝑛1. Since

R′ has to be a proper subrepresentation, 𝑛′
2 < 𝑛2. Then:

𝑛′
1𝜃1 +𝑛′

2𝜃2 + 𝑟𝜃∞ = 𝑛1𝜃1 +𝑛′
2𝜃2 + 𝑟𝜃∞ = 𝑛′

2𝜃2 ⊗𝑛2𝜃2 = (𝑛′
2 ⊗𝑛2)𝜃2 < 0.

• 𝑟′ = 0 ⇒𝑊 ′ = 0. If 𝑛1 = 0 as 𝑓 ♣𝑉 ′

2
⊆ 𝑉 ′

1 then 𝑉 ′
2 ⊆ ker𝑓 = ¶0♢ so 𝑛′

2 = 0. This is

impossible, since R′ is assumed nontrivial. Therefore, 𝑛′
1 ⊙ 1. Note that 𝜃1 > 0

is impossible, for in that case 0< 𝜃1 ⊘ 𝜃1 +𝑛2𝜃2 < 0. Thus, 𝜃1 ⊘ 0 and, in this

case, we have:

𝑛′
1𝜃1 ⊘ 𝜃1 ⇒ 𝑛′

1𝜃1 +𝑛′
2𝜃2 ⊘ 𝜃1 +𝑛′

2𝜃2 ⊘ 𝜃1 +𝑛2𝜃2 < 0.

Therefore, R is 𝜃-stable.

This lemma asserts that there exists a special stability chamber, which is

determined by the inequalities 𝜃2 > 0 and 𝜃1 +𝑛2𝜃2 < 0, within which 𝜃-semistability is

equivalent to 𝜃-stability, and to the conditions (S.1) and (S.2) as previously stated.

Definition 2.5.4. Under the assumptions of Lemma 2.5.3, a representation (respectively

a framed representation) of the enhanced ADHM quiver which satisĄes the conditions (S.1)

and (S.2) will be called stable representation (respectively stable framed representation).

In the next section, moduli spaces of 𝜃-semistable framed quiver representations

will be constructed employing GIT techniques, similarly to [10].
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2.6 Moduli spaces of stable enhanced representations

We wish to investigate a relation between the moduli space of stable framed representations

of an enhanced ADHM quiver and the nested Hilbert scheme 𝐻𝑖𝑙𝑏𝑛1⊗𝑛2,𝑛2(C2) which was

introduced in the Ąrst section.

For this purpose, consider 𝑉1, 𝑉2, 𝑊 three vector spaces of dimensions 𝑛1, 𝑛2

and 𝑟 ∈ Z>0, respectively, and the reductive algebraic group 𝐺=𝐺𝐿(𝑉1)×𝐺𝐿(𝑉2). If,

X(𝑟,𝑛1,𝑛2) = End(𝑉1)⊕2 ⊕Hom(𝑊,𝑉1)⊕Hom(𝑉1,𝑊 )⊕End(𝑉2)⊕2 ⊕Hom(𝑉2,𝑉1),

there exists a 𝐺-action on X(𝑟,𝑛1,𝑛2) given by:

(𝑔1,𝑔2)×(𝐴1,𝐵1, 𝐼,𝐽,𝐴2,𝐵2,𝑓) ⊃
(︁
𝑔1𝐴1𝑔

⊗1
1 ,𝑔1𝐵1𝑔

⊗1
1 ,𝑔1𝐼,𝐽𝑔

⊗1
1 ,𝑔2𝐴2𝑔

⊗1
2 ,𝑔2𝐵2𝑔

⊗1
2 ,𝑔1𝑓𝑔

⊗1
2

⎡
.

The closed points of X(𝑟,𝑛1,𝑛2) will be denoted by X = (𝐴1,𝐵1, 𝐼,𝐽,𝐴2,𝐵2,𝑓),

the action of (𝑔1,𝑔2) ∈𝐺 on a point X ∈ X(𝑟,𝑛1,𝑛2) will be denoted by (𝑔1,𝑔2).X, the orbit

of a point X ∈ X(𝑟,𝑛1,𝑛2) will be denoted by 𝐺.X and, Ąnally, the stabilizer of a given

point X will be denoted by 𝐺X ⊆𝐺.

Furthermore, denote by X0(𝑟,𝑛1,𝑛2) the subscheme of X(𝑟,𝑛1,𝑛2) deĄned by

the algebraic equations: ⎧
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⨄︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋃︁

[𝐴1,𝐵1]+ 𝐼𝐽 = 0

𝐴1𝑓 ⊗𝑓𝐴2 = 0

𝐵1𝑓 ⊗𝑓𝐵2 = 0

[𝐴2,𝐵2] = 0

𝐽𝑓 = 0.

(2.6.1)

First observe that, X0(𝑟,𝑛1,𝑛2) is preserved by the 𝐺-action. Note also each

representation R = (𝑉1,𝑉2,𝑊,(𝐴1,𝐵1, 𝐼,𝐽,𝐴2,𝐵2,𝑓)) corresponds to a unique point X =

(𝐴1,𝐵1, 𝐼,𝐽,𝐴2,𝐵2,𝑓) ∈ X0(𝑟,𝑛1,𝑛2) and, two framed representations are isomorphic if

and only if the corresponding points in X0(𝑟,𝑛1,𝑛2) are in the same 𝐺-orbit.

Next, we recover some standard facts on GIT quotients for a reductive algebraic

group G acting on a vector space X(𝑟,𝑛1,𝑛2), whose best reference is Sections 2, 3 and 4

of [10].

Definition 2.6.1. Given an algebraic character ä :𝐺⊃ C× we have:
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(a) A point X0 is called ä-semistable if there exists a polynomial function 𝑝(X) on

X(𝑟,𝑛1,𝑛2) satisfying 𝑝((𝑔1,𝑔2).X) = ä(𝑔1,𝑔2)𝑙𝑝(X) for some 𝑙 ∈ Z⊙1, and such that

𝑝(X0) ̸= 0.

(b) A point X0 is called ä-stable if it is ä-semistable and, further, dim(𝐺.X0) = dim(𝐺/Δ),

where Δ ⊆𝐺 is the subgroup acting trivially on X(𝑟,𝑛1,𝑛2), and the action of 𝐺 on

¶X ∈ X(𝑟,𝑛1,𝑛2) ♣𝑝(X) ̸= 0♢ is closed.

Another way of stating (a) and (b) is given by the next Lemma:

Lemma 2.6.2. Let ä : 𝐺 ⊃ C× be an algebraic character and suppose 𝐺 acts on the

direct product X0(𝑟,𝑛1,𝑛2)×C by:

(𝑔1,𝑔2)× (X, 𝑧) ⊃ ((𝑔1,𝑔2).X,ä(𝑔1,𝑔2)⊗1𝑧).

Then X ∈ X(𝑟,𝑛1,𝑛2) is:

(a′) ä-semistable if and only if the closure of the orbit 𝐺.(X, 𝑧) is disjoint from the zero

section X(𝑟,𝑛1,𝑛2)×¶0♢, for any 𝑧 ̸= 0.

(b′) ä-stable if and only if the orbit 𝐺.(X, 𝑧) is closed in complement of the zero section,

and the stabilizer 𝐺(X,𝑧) is a Ąnite index subgroup of Δ.

Proof. [10, Lemma 2.2]

We can form the quasi-projective scheme:

ℳ𝑠𝑠
𝜃 (𝑟,𝑛1,𝑛2) = X0(𝑟,𝑛1,𝑛2)//ä𝐺 := Proj

∏︀
∐︁⨁︁

𝑛⊙0

𝐴(X0(𝑟,𝑛1,𝑛2))𝐺,ä
n

∫︀
̂︀ ,

where

𝐴(X0(𝑟,𝑛1,𝑛2))𝐺,ä
n

:= ¶𝑓 ∈ 𝐴(X0(𝑟,𝑛1,𝑛2)) ♣𝑓(𝑔.X) = ä(𝑔)𝑛𝑓(X), ∀𝑔 ∈𝐺♢.

Notice that ℳ𝑠𝑠
𝜃 (𝑟,𝑛1,𝑛2) is projective over Spec

(︁
X0(𝑟,𝑛1,𝑛2)𝐺

⎡
, and it is quasi-projective

over C. Geometric invariant theory tells us that ℳ𝑠𝑠
𝜃 (𝑟,𝑛1,𝑛2) is the space of ä-semistable

orbits; moreover, it contains an open subscheme ℳ𝑠
𝜃(𝑟,𝑛1,𝑛2) ⊖ ℳ𝑠𝑠

𝜃 (𝑟,𝑛1,𝑛2) consisting

of ä-stable orbits.

We can now state the analogue of [10, Prop. 3.1, Thm. 4.1].
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Proposition 2.6.3. Suppose 𝜃 = (𝜃1, 𝜃2) ∈ Z2, and let ä𝜃 :𝐺⊃ C× be the character:

ä𝜃(𝑔1,𝑔2) = det(𝑔1)⊗𝜃1 det(𝑔2)⊗𝜃2 .

Then a representation R = (𝑉1,𝑉2,𝑊,(𝐴1,𝐵1, 𝐼,𝐽,𝐴2,𝐵2,𝑓)) of an enhanced ADHM quiver,

of dimension vector (𝑟,𝑛1,𝑛2) ∈ (Z>0)3, is 𝜃-(semi)stable if and only if the corresponding

closed point X ∈ X0 is ä𝜃-(semi)stable.

Proof. See [10, Prop. 3.1, Thm. 4.1].

It follows that ℳ𝑠𝑠
𝜃 (𝑟,𝑛1,𝑛2) parameterizes 𝑆-equivalence classes of 𝜃-semistable

framed representations, while ℳ𝑠
𝜃(𝑟,𝑛1,𝑛2) parameterizes isomorphism classes of 𝜃-stable

framed representations.

The GIT quotient X0(𝑟,𝑛1,𝑛2)//ä𝐺 is isomorphic to the moduli space of

S-equivalence classes of 𝜃-semistable quiver representations ℳ𝑠𝑠
𝜃 (𝑟,𝑛1,𝑛2).

From the above statements, we are able to introduce:

Definition 2.6.4. The moduli space of stable framed representations is:

ℳ(𝑟,𝑛1,𝑛2) =

⎧
⋁︁⋁︁⋁︁⋁︁⋁︁⨄︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋃︁

stable framed representations of

enhanced ADHM quiver of Ąxed

numerical type (𝑟,𝑛1,𝑛2) ∈ Z3
>0

∫︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋀︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋂︁

⧸︃

𝐺 ♠ X0(𝑟,𝑛1,𝑛2)//ä𝐺.

Remark 2.6.5. The Lemma 2.5.3 is a restatement of [2, Lemma 3.1] for enhanced ADHM

quiver with 𝐵2 = 0. There, the moduli space of stable framed representations of the

enhanced ADHM quiver with 𝐵2 = 0 was denoted by 𝒩 (𝑟,𝑛1,𝑛2). The details of the

construction of this moduli space were presented (see Section 3 of [2]).

Theorem 2.6.6. The moduli space 𝒩 (𝑟,𝑛1,𝑛2) of stable framed representations of the

enhanced ADHM quiver of Ąxed numerical invariants (𝑟,𝑛1,𝑛2) ∈ Z3
>0 and 𝐵2 = 0 is a

smooth, quasi-projective variety of dimension (2𝑛1 ⊗𝑛2)𝑟.

Proof. See [2, Theorem 3.2].



Chapter 3

Enhanced ADHM Quiver and

Nested Hilbert Schemes

Our aim in this chapter is to establish a bijection between the moduli space of stable

framed representations of the enhanced ADHM quiver ℳ(1,𝑛1,𝑛2) and the closed points

of the nested Hilbert scheme Hilb𝑛1⊗𝑛2,𝑛2(C2).

3.1 Correspondence between enhanced ADHM data

and nested 0-dimensional ideals

Theorem 3.1.1. There exists a one-to-one correspondence between the following sets:

• equivalence classes of stable framed representations of the enhanced ADHM quiver

of dimension vector (1,𝑛1,𝑛2).

• closed subschemes (𝑍1,𝑍2) of C2 with Hilbert polynomial 𝑛1 and 𝑛1 ⊗𝑛2 respectively,

and 𝑍2 ⊆ 𝑍1.

The proof is constructive and we have divided it into a sequence of steps and

lemmas.

Step 1: In the Ąrst step we will see how to construct closed points of Hilb𝑛1⊗𝑛2,𝑛2(C2) out

of representations of an enhanced ADHM quiver. For this purpose, we deĄne the map:

𝜙 : ℳ(1,𝑛1,𝑛2) ⊗⊃ Hilb𝑛1⊗𝑛2,𝑛1(C2).

41
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Consider R = (𝑉1,𝑉2,𝑊,(𝐴1,𝐵1, 𝐼,0,𝐴2,𝐵2,𝑓)), a stable representation of di-

mension vector (1,𝑛1,𝑛2) ∈ Z3
>0, with 𝑛1 > 𝑛2, of the enhanced quiver:

𝑉2
𝐵2

KK

𝐴2 ��

𝑓 // 𝑉1

𝐴1

��

𝐵1

WW
𝑊𝐼oo .

Remark 3.1.2. According to Proposition 2.4.2, when 𝑟 = 1, we have 𝐽 = 0, and again we

will delete this term of the tuple.

DeĄne 𝑉 := 𝑉1/im 𝑓 , and notice that the linear maps (𝐴1,𝐵1, 𝐼) yield linear

maps

̃︀𝐴1 : 𝑉 ⊃ 𝑉 ̃︀𝐵1 : 𝑉 ⊃ 𝑉 ̃︀𝐼 :𝑊 ⊃ 𝑉

such that,

̃︀𝐴1 ◇Þ = Þ ◇𝐴1
̃︀𝐵1 ◇Þ = Þ ◇𝐵1

̃︀𝐼 = Þ ◇ 𝐼,

where Þ : 𝑉1 ⊃ 𝑉 is the canonical projection.

Lemma 3.1.3. The datum Y = ( ̃︀𝐴1, ̃︀𝐵1, ̃︀𝐼) is stable and satisĄes [ ̃︀𝐴1, ̃︀𝐵1] = 0.

Proof. We Ąrst examine the equation [ ̃︀𝐴1, ̃︀𝐵1]. Let 𝑦 = Þ(𝑥) ∈ 𝑉 and compute:

(︁
[ ̃︀𝐴1, ̃︀𝐵1]

⎡
(Þ(𝑥)) = [ ̃︀𝐴1(Þ(𝑥)), ̃︀𝐵1(Þ(𝑥))] = [Þ(𝐴1(𝑥)),Þ(𝐵1(𝑥))] = Þ ([𝐴1(𝑥),𝐵1(𝑥)]) = 0

since [𝐴1,𝐵1] = 0.

Now, let us prove the stability of Y = ( ̃︀𝐴1, ̃︀𝐵1, ̃︀𝐼). Suppose that there exists

a subspace ̃︀𝑆 ⊆ 𝑉 such that ̃︀𝐴1( ̃︀𝑆), ̃︀𝐵1( ̃︀𝑆), ̃︀𝐼(𝑊 ) ⊆ ̃︀𝑆. DeĄne 𝑆 = Þ⊗1( ̃︀𝑆) ⊆ 𝑉1. Notice

that 𝑆 is nontrivial subspace of 𝑉1. Indeed, if 𝑆 = ¶0♢ then given 𝑦 ∈ ̃︀𝑆 ⊆ 𝑉 there

exists 𝑥 ∈ 𝑉1 such that 𝑦 = Þ(𝑥). Since Þ(𝑥) = 𝑦 ∈ ̃︀𝑆 then 𝑥 ∈ Þ⊗1( ̃︀𝑆) = 𝑆 = ¶0♢. Thus,

𝑥= 0, 𝑦 = Þ(𝑥) = 0 and ̃︀𝑆 = ¶0♢, a contradiction. We claim that 𝐴1(𝑆), 𝐵1(𝑆), 𝐼(𝑆) ⊆ 𝑆.

Indeed, let 𝑥 ∈ 𝑆 = Þ⊗1( ̃︀𝑆) then 𝑦 = Þ(𝑥) ∈ ̃︀𝑆. Since ̃︀𝑆 is preserved by ̃︁𝐴1, ̃︁𝐵1 we have

Þ(𝐴1(𝑥)) = ̃︁𝐴1(Þ(𝑥)) ∈ ̃︀𝑆, Þ(𝐵1(𝑥)) = ̃︁𝐵1(Þ(𝑥)) ∈ ̃︀𝑆 and 𝐴1(𝑥), 𝐵1(𝑥) ∈ Þ⊗1( ̃︀𝑆) = 𝑆. As

̃︀𝑆 contains the image of ̃︀𝐼, given 𝑤 ∈ 𝑊 we have Þ(𝐼(𝑤)) = ̃︀𝐼(𝑤) ∈ ̃︀𝑆. Consequently,

𝐼(𝑤) ∈ Þ⊗1( ̃︀𝑆) = 𝑆. The stability of (𝐴1,𝐵1, 𝐼) forces 𝑉1 = Þ⊗1( ̃︀𝑆) = 𝑆, hence ̃︀𝑆 = 𝑉 and

( ̃︀𝐴1, ̃︀𝐵1, ̃︀𝐼) is stable.

We now have the ADHM data X = (𝐴1,𝐵1, 𝐼) and Y = ( ̃︀𝐴1, ̃︀𝐵1, ̃︀𝐼) which are
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stable and satisfy the ADHM equation. Applying the Lemma 2.4.3 yields the surjective

linear maps:

ΦX : C[𝑋,𝑌 ] ⊃ 𝑉1 and ΦY : C[𝑋,𝑌 ] ⊃ 𝑉 .

Thus, dim(C[𝑋,𝑌 ]/kerΦX) = 𝑛1 and dim(C[𝑋,𝑌 ]/kerΦY) = 𝑛1 ⊗𝑛2. Since 𝑓 is injective

and Þ surjective, we can construct short exact sequences:

0

��

𝑉2

𝑓
��

0 // kerΦX
//

��

C[𝑋,𝑌 ]
ΦX //

1
��

𝑉1

Þ

��

// 0

0 // kerΦY
// C[𝑋,𝑌 ]

ΦY // 𝑉

��

// 0

0

From Snake Lemma, we get the short exact sequence:

0 //kerΦX
//kerΦY

//𝑉2
//0 .

Thus, indeed, (kerΦY,kerΦX) ∈ Hilb𝑛1⊗𝑛2,𝑛1(C2) and 𝜙(R) = (kerΦY,kerΦX).

It is necessary to note that the deĄnition of the map 𝜙 is unambiguous. As

we have mentioned earlier, each representation R = (𝑉1,𝑉2,𝑊,(𝐴1,𝐵1, 𝐼,𝐽,𝐴2,𝐵2,𝑓))

corresponds to a unique point Z = (𝐴1,𝐵1, 𝐼,𝐽,𝐴2,𝐵2,𝑓) ∈ X0(𝑟,𝑛1,𝑛2) and, two framed

representations are isomorphic if and only if the corresponding points in X0(𝑟,𝑛1,𝑛2) are

in the same 𝐺-orbit.

Let R and R′ be two isomorphic stable framed representations of the enhanced

ADHM quiver of numerical type (1,𝑛1,𝑛2). There exists (𝑔1,𝑔2) ∈𝐺=𝐺𝐿(𝑉1)×𝐺𝐿(𝑉2)

such that Z
′ = (𝑔1,𝑔2).Z, where Z, Z′ ∈ X0(𝑟,𝑛1,𝑛2). Suppose Z = (𝐴1,𝐵1, 𝐼,𝐴2,𝐵2,𝑓) then,

Z
′ =

(︁
𝑔1𝐴1𝑔

⊗1
1 ,𝑔1𝐵1𝑔

⊗1
1 ,𝑔1𝐼,𝑔2𝐴2𝑔

⊗1
2 ,𝑔2𝐵2𝑔

⊗1
2 ,𝑔1𝑓𝑔

⊗1
2

⎡
.

It now suffices to note that the pairs of points

• X = (𝐴1,𝐵1, 𝐼) and X
′ = 𝑔1.X =

(︁
𝑔1𝐴1𝑔

⊗1
1 ,𝑔1𝐵1𝑔

⊗1
1 ,𝑔1𝐼

⎡
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• Y = ( ̃︀𝐴1, ̃︀𝐵1, ̃︀𝐼) and Y
′ = 𝑔1.Y =

(︁
𝑔1

̃︀𝐴1𝑔
⊗1
1 ,𝑔1

̃︀𝐵1𝑔
⊗1
1 ,𝑔1

̃︀𝐼
⎡

satisĄes the conditions of Lemma 2.4.4. Then kerΦX ♠ kerΦX′ , kerΦY ♠ kerΦY′ and,

consequently,

𝜙(R) = (kerΦY,kerΦX) = (kerΦY′ ,kerΦX′) = 𝜙(R′).

Therefore the map 𝜙 is well-deĄned.

Remark 3.1.4. Although up to this point of the proof, the condition 𝑟 = 1 has been

essential, we will provide an Şalternative proofŤ, whose the condition over dim𝑊 appears

only at the conclusion. The Şalternative proofŤ becomes more interesting if we realize that,

based on the methods which we have presented here, we are able to state similar link using,

for instance, the usual ADHM construction of instantons or the ADHM construction of

perverse coherent sheaves (see, respectively, [4], [8] and [1] for further details).

ŞAlternative proofŤ: Consider R = (𝑉1,𝑉2,𝑊,(𝐴1,𝐵1, 𝐼,𝐽,𝐴2,𝐵2,𝑓)) a stable representa-

tion of dimension vector (𝑟,𝑛1,𝑛2) ∈ Z3
>0, with 𝑛1 > 𝑛2, of the enhanced quiver:

𝑉2

𝐴2 �� 𝐵2��

0




𝑓
// 𝑉1

𝐴1 �� 𝐵1��

𝐽




¶0♢

0

II

//𝑊.

𝐼

II

Again, let 𝑉 := 𝑉1/𝑖𝑚𝑓 and the linear maps

̃︀𝐴1 : 𝑉 ⊃ 𝑉 ̃︀𝐵1 : 𝑉 ⊃ 𝑉 ̃︀𝐼 :𝑊 ⊃ 𝑉 ̃︀𝐽 : 𝑉 ⊃𝑊

such that

̃︀𝐴1 ◇Þ = Þ ◇𝐴1
̃︀𝐵1 ◇Þ = Þ ◇𝐵1

̃︀𝐼 = Þ ◇ 𝐼 ̃︀𝐽 ◇Þ = 𝐽,

where Þ : 𝑉1 ⊃ 𝑉 is the canonical projection. Similarly to Lemma 3.1.3, we can prove that

the datum Y = ( ̃︀𝐴1, ̃︀𝐵1, ̃︀𝐼, ̃︀𝐽) is stable and satisĄes [ ̃︀𝐴1, ̃︀𝐵1]+ ̃︀𝐼 ̃︀𝐽 = 0.

Moreover, since 𝑓 is injective and Þ surjective, we can construct a short exact
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sequence of representations of the ADHM quiver

0 // 𝑉2

𝐴2 �� 𝐵2��

0




𝑓
// 𝑉1

𝐴1 �� 𝐵1��

𝐽




Þ
// 𝑉

̃︀𝐴1 ��
̃︀𝐵1��

̃︀𝐽




// 0

0 // ¶0♢

0

II

//𝑊

𝐼

II

//𝑊

̃︀𝐼

II

// 0

(3.1.1)

or simply

0 ⊃ Z ⊃ S ⊃ Q ⊃ 0,

if we take Z = (𝑉2,¶0♢,(𝐴2,𝐵2,0)), S = (𝑉1,𝑊,(𝐴1,𝐵1, 𝐼,𝐽)), Q = (𝑉,𝑊,( ̃︀𝐴1, ̃︀𝐵1, ̃︀𝐼, ̃︀𝐽)) in

the category of representations of the ADHM quiver.

As we have already seen, according to Proposition 2.3.4 there exists an exact

functor F : 𝒜 ⊃ 𝒦𝑜𝑚𝐴𝐷𝐻𝑀 (P2) which associates an ADHM complex with each represen-

tation of the ADHM quiver an ADHM complex. Applying this functor to the sequence

3.1.1, we obtain a short exact sequence of complexes on P2:

0 ⊃ 𝐸∙
Z ⊃ 𝐸∙

S ⊃ 𝐸∙
Q ⊃ 0, (3.1.2)

from which we obtain a long sequence of cohomology sheaves:

0 ⊃ ℋ⊗1(𝐸∙
Z) ⊃ ℋ⊗1(𝐸∙

S) ⊃ ℋ⊗1(𝐸∙
Q) ⊃ ℋ0(𝐸∙

Z) ⊃

⊃ ℋ0(𝐸∙
S) ⊃ ℋ0(𝐸∙

Q) ⊃ ℋ1(𝐸∙
Z) ⊃ ℋ1(𝐸∙

S) ⊃ ℋ1(𝐸∙
Q) ⊃ 0.

We can simplify this sequence:

Lemma 3.1.5. Applying the previous conditions, we have:

1. ℋ⊗1(𝐸∙
Z) = ℋ⊗1(𝐸∙

S) = ℋ⊗1(𝐸∙
Q) = 0,

2. ℋ1(𝐸∙
S) = ℋ1(𝐸∙

Q) = 0,

3. ℋ0(𝐸∙
Z) = 0.

Proof. 1. This is true, for the maps Ð′,Ð,Ð′′ which appear, respectively, in the ADHM

complexes 𝐸∙
Z, 𝐸∙

S and 𝐸∙
Q, are injective (see Lemma 2.3.5(i));

2. We conclude from Lemma 2.3.5(ii), since S and Q are stable representations;
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3. Indeed,

𝐸∙
Z : 𝑉2 ·𝒪P2(⊗1) Ð′

//(𝑉2 ⊕𝑉2)·𝒪P2

Ñ′

//𝑉2 ·𝒪P2(1)

and take 𝑃 = (𝑥 : 𝑦 : 0) ∈ 𝑙∞ we can write:

Ð′
𝑃 =

∏︀
̂︁∐︁
𝑥1

𝑦1

∫︀
̂︂̂︀ Ñ′

𝑃 =
⎤

⊗𝑦1 𝑥1

⎣

then 𝑘𝑒𝑟Ñ′
𝑃 = 0, ∀𝑃 ∈ 𝑙∞. Since ℋ0(𝐸∙

Z) = 𝑘𝑒𝑟Ñ′/im Ð′, the stalks of this sheaf

vanish at 𝑃 . Hence, the support of this sheaf is 0-dimensional scheme, because it

does not intersect 𝑙∞. In particular, 𝐻0(ℋ0(𝐸∙
Z)) ♠𝐻0(ℋ0(𝐸∙

Z)(⊗1)) and the right

hand side vanishes by Lemma 2.3.5(iii). Since ℋ0(𝐸∙
Z) is supported at Ąnitely many

points, it follows that ℋ0(𝐸∙
Z) = 0.

Thus, we have :

0 ⊃ ℋ0(𝐸∙
S) ⊃ ℋ0(𝐸∙

Q) ⊃ ℋ1(𝐸∙
Z) ⊃ 0. (3.1.3)

Assuming that 𝑟 = 1, there exists according to item ii. of Proposition 2.4.2,

0-dimensional subschemes 𝑍1,𝑍2 ⊆ P2 ∖ 𝑙∞ ≍= C2 such that:

1. ℋ0(𝐸∙
S) = 𝑘𝑒𝑟Ñ/im Ð= ℐ𝑍1

2. ℋ0(𝐸∙
Q) = 𝑘𝑒𝑟Ñ′′/im Ð′′ = ℐ𝑍2

3. 𝑍2 ⊆ 𝑍1 are 0-dimensional subschemes of length 𝑛1 ⊗𝑛2 and 𝑛1, respectively.

We can rewrite the sequence (3.1.3) and obtain:

0 ⊃ ℐ𝑍1
⊃ ℐ𝑍2

⊃ ℋ1(𝐸∙
Z) ⊃ 0. (3.1.4)

Thus we obtain a point (𝑍2,𝑍1) ∈ Hilb𝑛1⊗𝑛2,𝑛1(C2).

Remark 3.1.6. From the sequence (3.1.4) it follows that ℋ1(𝐸∙
Z) ♠ ℐ𝑍2

/ℐ𝑍1

Step 2: We will do now the inverse construction, i.e., we will build a representation of the

enhanced ADHM quiver out of a closed point Hilb𝑛1⊗𝑛2,𝑛2(C2) using the map:

å : Hilb𝑛1⊗𝑛2,𝑛1(C2) ⊃ ℳ(1,𝑛1,𝑛2).
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Let (𝑍1,𝑍2) ∈ Hilb𝑛1⊗𝑛2,𝑛1(C2), so 𝑍1 ⊆ 𝑍2 ⊆ C2 are subschemes of length

𝑛1 ⊗𝑛2 and 𝑛2 respectively. We know that there exists a short exact sequence

0 ⊃ ℐ𝑍2
⊃ ℐ𝑍1

⊃ 𝒬 ⊃ 0, (3.1.5)

Since C2 is Noetherian and 𝑍1,𝑍2 ⊆ C2 are closed subschemes then ℐ𝑍1
,ℐ𝑍2

are coherent torsion-free sheaves. Then we can follow the Nakajima construction [11, pag.

19-23] and Ąnd monads:

𝐸∙
2 : 𝑉2 ·𝒪P2(⊗1)

Ð2 //(𝑉2 ⊕𝑉2 ⊕𝑊 )·𝒪P2

Ñ2
//𝑉2 ·𝒪P2(1)

where

Ð2 =

∏︀
̂︁̂︁̂︁̂︁̂︁∐︁

𝑧𝐴1 +𝑥1

𝑧𝐵1 +𝑦1

𝑧𝐽

∫︀
̂︂̂︂̂︂̂︂̂︂̂︀

e Ñ2 =
⎤

⊗𝑧𝐵1 ⊗𝑦1 𝑧𝐴1 +𝑥1 𝑧𝐼

⎣
,

and

𝐸∙
1 : 𝑉1 ·𝒪P2(⊗1)

Ð1 //(𝑉1 ⊕𝑉1 ⊕𝑊 ′)·𝒪P2

Ñ1
//𝑉1 ·𝒪P2(1)

where

Ð1 =

∏︀
̂︁̂︁̂︁̂︁̂︁∐︁

𝑧 ̃︀𝐴1 +𝑥1

𝑧 ̃︀𝐵1 +𝑦1

𝑧𝐽

∫︀
̂︂̂︂̂︂̂︂̂︂̂︀

e Ñ1 =
⎤

⊗𝑧 ̃︀𝐵1 ⊗𝑦1 𝑧 ̃︀𝐴1 +𝑥1 𝑧 ̃︀𝐼
⎣
,

such that

i. ℐ𝑍2
♠ ℋ0(𝐸∙

2)

ii. ℐ𝑍1
♠ ℋ0(𝐸∙

1)

iii. dim𝑉2 = 𝑐2(ℐ𝑍2
) = 𝑛1

iv. dim𝑉1 = 𝑐2(ℐ𝑍1
) = 𝑛1 ⊗𝑛2

v. dim𝑊 = dim𝑊 ′ = 1 (since dim ̃︁𝑊 = 2𝑐2(ℐ𝑍2
) + rank (ℐ𝑍2

) and ̃︁𝑊 = 𝑉2 ⊕𝑉2 ⊕𝑊

then dim𝑊 = rank (ℐ𝑍2
) = 1. The same thing happens to 𝑊 ′ ).

So we can rewrite the exact sequence (3.1.5) as follows:

0 // ℋ0(𝐸∙
2)

̃︀𝑓
// ℋ0(𝐸∙

1) // 𝒬 // 0 . (3.1.6)
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Moreover, those monads give us the following stable representations:

Q = (𝑉1,𝑊
′,( ̃︀𝐴1, ̃︀𝐵1, ̃︀𝐼)) and S = (𝑉2,𝑊,(𝐴2,𝐵2, 𝐼)),

which satisfy the ADHM equation.

According to Theorem 2.2.4, we have:

Hom(𝐸∙
2 ,𝐸

∙
1) ♠ Hom(ℋ(𝐸∙

2),ℋ(𝐸∙
1)),

and since ̃︀𝑓 ∈ Hom(ℋ(𝐸∙
2),ℋ(𝐸∙

1)), there exists a corresponding element 𝑓 ∈ Hom(𝐸∙
2 ,𝐸

∙
1).

From Proposition 2.3.4, F : 𝒜 ⊃ 𝒦𝑜𝑚𝐴𝐷𝐻𝑀 (P2) is a fully faithful functor, so F yields a

map (Ý1, Ý2) between the representations S and Q.

Lemma 3.1.7. Considering the previous conditions, the map (Ý1, Ý2) : S ⊃ Q is surjective.

Proof. Since dim𝑊 = dim𝑊 ′ = 1, we have dimim Ý2 = 0 or dimim Ý2 = 1. We claim that

Ý2 ≠ 0. Indeed, suppose Ý2 = 0, as Ý1𝐼 = ̃︀𝐼Ý2 = 0 we have 𝐼(𝑊 ) ⊆ kerÝ1. Notice kerÝ1 is

invariant under 𝐴1 and 𝐵1 because for each 𝑥 ∈ kerÝ1 we have:

Ý1(𝐴1(𝑥)) = ̃︁𝐴1(Ý1(𝑥)) = 0,

Ý1(𝐵1(𝑥)) = ̃︁𝐵1(Ý1(𝑥)) = 0.

Hence, kerÝ1 = 𝑉2, since (𝐴1,𝐵1, 𝐼) is stable and, consequently, Ý1 = 0. However, ̃︀𝑓 ̸= 0

and as it depends on Ý1 and Ý2, it is impossible to have Ý1 = Ý2 = 0. Thus, dimim Ý2 = 1

and im Ý2 =𝑊 ′, then Ý2 is surjective. Consider now the subspace im Ý1 ⊆ 𝑉1 and notice

that im Ý1 is preserved by ̃︀𝐴1 and ̃︀𝐵1. Indeed, let 𝑦 ∈ im Ý1, then there exists 𝑥 ∈ 𝑉2 such

that 𝑦 = Ý1(𝑥). Thus,

̃︀𝐴1(𝑦) = ̃︀𝐴1(Ý1(𝑥)) = Ý1(𝐴1(𝑥)) ∈ im Ý1,

̃︀𝐵1(𝑦) = ̃︀𝐵1(Ý1(𝑥)) = Ý1(𝐵1(𝑥)) ∈ im Ý1.

Moreover, im ̃︀𝐼 ⊆ im Ý1. In fact, let 𝑦 ∈ im ̃︀𝐼 then, there exists 𝑥′ ∈𝑊 ′ such that ̃︀𝐼(𝑥′) = 𝑦.

Since Ý2 is surjective, there exists 𝑥 ∈𝑊 such that 𝑥′ = Ý2(𝑥). Thus,

𝑦 = ̃︀𝐼(𝑥′) = ̃︀𝐼(Ý2(𝑥)) = Ý1(𝐼(𝑥)) ∈ im Ý1
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However, ( ̃︀𝐴1, ̃︀𝐵1, ̃︀𝐼, ̃︀𝐽) is stable, then im Ý1 = 𝑉1 and, therefore, Ý1 is also surjective.

Consider now the subrepresentation Z of S given by:

Z = (𝑁,¶0♢,(𝐴2,𝐵2,0,0))

such that 𝑁 = kerÝ1, 𝐴2 = 𝐴1♣𝑁 and 𝐵2 =𝐵1♣𝑁 . Notice that, since [𝐴1,𝐵1] = 0 we have:

[𝐴2,𝐵2] = [𝐴1♣𝑁 ,𝐵1♣𝑁 ] = [𝐴1,𝐵1]♣𝑁 = 0,

i.e., the maps 𝐴2 and 𝐵2 commutes. Moreover, (𝐴2,𝐵2,0) is stable. Indeed, suppose that

there exists a subspace 𝑆 ⊆𝑁 such that 𝐴2(𝑆), 𝐵2(𝑆) ⊆ 𝑆. Then 𝐴1(𝑆), 𝐵1(𝑆) ⊆ 𝑆 and

im 𝐼 ⊆ 𝑆.

Hence, we construct a stable representation of the enhanced ADHM quiver:

𝑁
𝐵2

MM

𝐴2 ��

𝑖 // 𝑉2

𝐴1

��

𝐵1

WW
𝑊𝐼oo , (3.1.7)

as required.

It is easy to check that the maps previously constructed:

𝜙 : ℳ(1,𝑛1,𝑛2) ⊃ Hilb𝑛1⊗𝑛2,𝑛1(C2) and å : Hilb𝑛1⊗𝑛2,𝑛1(C2) ⊃ ℳ(1,𝑛1,𝑛2)

(3.1.8)

are mutually inverse. This Ąnishes the proof of Theorem 3.1.1. Therefore, our construction

provides a set-theoretical bijection between the set of closed points on Hilb𝑛1⊗𝑛2,𝑛1(C2)

and points of ℳ(1,𝑛1,𝑛2).

3.2 Nested Hilbert schemes with quotients supported

on curves

For any stable representation of an enhanced quiver R = (𝑉1,𝑉2,𝑊,(𝐴1,𝐵1, 𝐼,𝐽,𝐴2,𝐵2,𝑓)) ∈

ℳ(𝑟,𝑛1,𝑛2) and any polynomial 𝐹 (𝑋,𝑌 ) ∈ C [𝑋,𝑌 ], consider the following sets:

Σ =
{︁
(𝑥 : 𝑦 : 1) ∈ P2 ♣𝐹 (𝑥,𝑦) = 0

}︁
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and

ℳ(𝑟,𝑛1,𝑛2)Σ = ¶R ∈ ℳ(𝑟,𝑛1,𝑛2) ♣𝐹 (𝐴2,𝐵2) = 0♢.

Remark 3.2.1. This deĄnition is a somewhat straightforward generalization of 𝒩 (𝑟,𝑛1,𝑛2),

cited in Remark 2.6.5. Indeed, just take 𝐹 (𝑋,𝑌 ) = 𝑌 and we will have, 𝒩 (𝑟,𝑛1,𝑛2) =

ℳ(𝑟,𝑛1,𝑛2)Σ.

We have proved the existence of a set-theoretical bijection:

𝜙 : ℳ(1,𝑛1,𝑛2) ⊃ Hilb𝑛1⊗𝑛2,𝑛1(C2); (3.2.1)

our aim now is to Ąnd a similar set-theoretical bijection between the sets: ℳ(1,𝑛1,𝑛2)Σ

and Hilb𝑛1⊗𝑛2,𝑛1

Σ (C2), where:

Hilb𝑛1⊗𝑛2,𝑛1

Σ (C2) = ¶(𝑍1,𝑍2) ∈ Hilb𝑛1⊗𝑛2,𝑛1(C2) ♣supp (ℐ𝑍1
/ℐ𝑍2

) ⊆ Σ♢.

Theorem 3.2.2. For any representation of the ADHM quiver of type Z = (𝑁,¶0♢,(𝐴2,𝐵2,0,0))

it holds that:

1. supp ℋ1(𝐸∙
Z) =

⎧
⋁︁⨄︁
⋁︁⋃︁

(𝑥 : 𝑦 : 1) ∈ P2

⧹︃⧹︃⧹︃⧹︃⧹︃⧹︃⧹︃

𝑥 and 𝑦 are eigenvalues of 𝐴2 and 𝐵2

relative to the same eigenvector

∫︁
⋁︁⋀︁
⋁︁⋂︁
.

2. If there exists 𝐹 (𝑋,𝑌 ) ∈ C [𝑋,𝑌 ], such that, 𝐹 (𝐴2,𝐵2) = 0 then

supp ℋ1(𝐸∙
Z) =

⎧
⋁︁⨄︁
⋁︁⋃︁

(𝑥 : 𝑦 : 1) ∈ P2

⧹︃⧹︃⧹︃⧹︃⧹︃⧹︃⧹︃

𝑥 and 𝑦 are eigenvalues of 𝐴2 and 𝐵2 relative

to the same eigenvector and (𝑥 : 𝑦 : 1) ∈ Σ

∫︁
⋁︁⋀︁
⋁︁⋂︁

⊆ Σ.

Proof. Notice that:

Ñ(𝑝) is surjective ⇐⇒ 𝑡Ñ(𝑝) :𝑁* ⊃𝑁* ⊕𝑁* is injective,

where

Ñ(𝑝) =
⎤

⊗(𝐵2 +𝑦1) 𝐴2 +𝑥1

⎣
and 𝑡Ñ(𝑝) =

∏︀
̂︁∐︁

⊗(𝑡𝐵2 +𝑦1)

𝑡𝐴2 +𝑥1

∫︀
̂︂̂︀ .

If there exists 𝑝= (𝑥 : 𝑦 : 1) ∈ P2 such that Ñ(𝑝) is not surjective then 𝑡Ñ(𝑝) is not injective.
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Therefore, there exists ã ∈𝑁* such that 𝑡Ñ(𝑝)ã= 0 ⇒ 𝑡𝐴2(⊗ã) = 𝑥(⊗ã) and 𝑡𝐵2(⊗ã) =

𝑦(⊗ã), i.e., 𝑥 and 𝑦 are eigenvalues of 𝑡𝐴2 and 𝑡𝐵2, respectively, relative to the same

eigenvector ã. The same happens to 𝐴2 and 𝐵2. Conversely, take 𝑝= (𝑥 : 𝑦 : 1) such that

𝑥 and 𝑦 are eigenvalues of 𝐴2 and 𝐵2, respectively, relative to the same eigenvector. Then

there exists ã ∈𝑁* such that 𝑡𝐴2ã= 𝑥ã and 𝑡𝐵2ã= 𝑦ã. Thus, 𝑡Ñ(𝑝) is not injective and

Ñ(𝑝) is not surjective.

Let 𝐹 (𝑋,𝑌 ) =
√︁
𝑎𝑖𝑗𝑋

𝑖𝑌 𝑗 ∈ C [𝑋,𝑌 ] and (𝑥 : 𝑦 : 1) ∈ supp ℋ1(𝐸∙
Z), then there

exists 𝑣 ∈𝑁 ∖¶0♢ such that 𝐴2𝑣 = 𝑥𝑣 and 𝐵2𝑣 = 𝑦𝑣. Thus,

𝐹 (𝐴2,𝐵2)𝑣=
∑︁

𝑎𝑖𝑗𝐴
𝑖
2𝐵

𝑗
2𝑣=

∑︁
𝑎𝑖𝑗𝐴

𝑖
2𝑦
𝑗𝑣=

∑︁
𝑎𝑖𝑗𝑦

𝑗𝐴𝑖2𝑣=
∑︁

𝑎𝑖𝑗𝑦
𝑗𝑥𝑖𝑣=

∑︁
𝑎𝑖𝑗𝑥

𝑖𝑦𝑗𝑣=𝐹 (𝑥,𝑦)𝑣.

Since 𝑣 ̸= 0 and 𝐹 (𝐴2,𝐵2) = 0 we have 𝐹 (𝑥,𝑦) = 0.

Consequently, we have proved more than we have intended to. Given the map

𝜙Σ : ℳ(1,𝑛1,𝑛2)Σ ⊃ Hilb𝑛1⊗𝑛2,𝑛1

Σ (C2),

which associates a pair of schemes (𝑍1,𝑍2) ∈ Hilb𝑛1⊗𝑛2,𝑛1(C2) which quotient ℐ𝑍1
/ℐ𝑍2

is

supported in the curve Σ with each stable representation R = (𝑉1,𝑉2,𝑊,(𝐴1,𝐵1, 𝐼,𝐴2,𝐵2,𝑓))

of an enhanced quiver with 𝐹 (𝐴2,𝐵2) = 0, we can state that:

Corollary 3.2.3. There exists an one-to-one correspondence between the sets ℳ(1,𝑛1,𝑛2)Σ

and Hilb𝑛1⊗𝑛2,𝑛1

Σ (C2).

Proof. The correspondence is given by the map:

𝜙Σ : ℳ(1,𝑛1,𝑛2)Σ ⊃ Hilb𝑛1⊗𝑛2,𝑛1

Σ (C2).

Notice that 𝜙Σ is a restriction of the map 3.2.1. Thus, it suffices to apply Theorems 3.1.1

and 3.2.2 together with the observation that ℋ1(𝐸∙
Z) ♠ ℐ𝑍2

/ℐ𝑍1
from Remark 3.1.6.

As an immediate consequence of the results previously proved, we observe that,

at least for the case 𝐹 (𝑋,𝑌 ) = 𝑌 , the subset Hilb𝑛1⊗𝑛2,𝑛1

Σ (C2) is a nonsingular subset of

Hilb𝑛1⊗𝑛2,𝑛1(C2) according to [2, Theorem 3.2].
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