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Resumo

O espacgo de moduli das representacoes do quiver ADHM na categoria de espacos vetoriais
complexos é isomorfo ao espago de moduli dos feixes livres de tor¢ao no plano projetivo.
Em particular, quando sao considerados os feixes livres de torcao de posto 1, os dados
ADHM dao uma descricao do esquema de Hilbert de n pontos no plano complexo, para
algum inteiro n. De modo semelhante, afirmamos e provamos uma relacido entre o espaco
de moduli das representacoes estaveis do quiver ADHM aumentado e o esquema de Hilbert

aninhado.

Palavras-chave: esquemas de Hilbert, quivers, equacoes ADHM.



Abstract

The moduli space of representations of the ADHM quiver in the category of complex vector
spaces is isomorphic to moduli space of framed torsion-free sheaves on the projective plane.
In particular, when we consider rank 1 torsion-free sheaves, the ADHM data describe the
Hilbert scheme of n points in the complex plane, for some given integer n. Similarly, we
state and prove a relation between the moduli space of stable framed representations of

the enhanced ADHM quiver and the nested Hilbert scheme.

Keywords: Hilbert scheme, quivers, ADHM equations.
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Introduction

The enhanced ADHM quiver is the one of the form:

aq
Qg
9 e
B2t ( 617

with relations specified by the linear combination of paths

a181 = Brar +&n; a1 —daz; ng; agfa— oy Bro— ¢f; -

The literature, in [2, Section 3], has previously considered the enhanced ADHM
quivers. In particular, omitting the vertex es and all above relations except the first one,
we obtain the usual ADHM quiver.

It is well-known that moduli spaces of representations of the ADHM quiver in
the category of complex vector spaces are isomorphic to moduli spaces of framed torsion-
free sheaves on the projective plane [11, Chapter 2]. Particularly, when one considers rank
1 torsion-free sheaves, the ADHM data describe the Hilbert scheme of n points in C2, for
some given integer n.

Similarly, this work aims is to provide a relation between the moduli space
of stable framed representations of the enhanced ADHM quiver and the nested Hilbert
scheme. In fact, as Theorem 3.1.1 will show, one obtains a one-to-one correspondence

between the following objects:

e equivalence classes of stable framed representations of the enhanced ADHM quiver

of dimension vector (1,n1,n2).

« closed subschemes (Z1, Z) of C? with Hilbert polynomial n; and nj —ns respectively,

and Zy C Z7.

10



INTRODUCTION 11

Although we only present a set-theoretical bijection in the main theorem, we can conjecture
that this bijection is an isomorphism between schemes. This description intends to motivate
and to be useful to the study of nested Hilbert schemes.

Furthermore, using the above correspondence, we also show that the nested
Hilbert scheme with quotients supported on curves is in one-to-one correspondence with
the equivalence classes of stable framed representations of the enhanced ADHM quiver
which satisfies some polynomial equation.

Let us summarize the plan of the work. One of the major aims of the Chapter
1 is to introduce the concept of nested Hilbert schemes of points on a surface. For this
we will touch a few aspects of the theory of representable functors and Hilbert schemes.
Chapter 2 assembles basic facts about the representation of quivers, monads and ADHM
data, besides introducing the definition of enhanced ADHM data according to [2, Section
3]. Finally, Chapter 3 confirms the author’s result, as stated above, which relates the
moduli space of stable framed representations of the enhanced ADHM quiver to the nested

Hilbert scheme.



Chapter 1

Hilbert Schemes

Before starting our construction, we define the objects we shall study in this work and

state some of their properties.

1.1 Representable Functors

For the convenience of the reader, we repeat parts of the relevant material from [5, Section
2.1] without proofs, thus making our exposition self-contained.

Let C be a category. Consider functors C°? to Set. These are the objects of
a category, denoted by Hom(C, Sets), in which the arrows are natural transformations.
From now on we will refer to natural transformations of contravariant functors on C as
morphisms.

Let X be an object of C. There is a functor
hx :C? — Sets
to the category of sets, which sends an object U of C to the set:
hxU = Hom¢ (U, X).

Ifa: U — Uisanarrow in C, then hxa: hxU — hxU’ is defined as composition
with o (when C is the category of schemes over a fixed base scheme, hx is often called the
functor of points of X).

Thus, an arrow f: X — Y yields a function hy: hxU — hyU for each object

12



CHAPTER 1: HILBERT SCHEMES 13

U € C, derived from f through composition. This defines a morphism hx — hy, i.e., for

all arrow «: U’ — U the diagram

th%hyU

hU
thJ lhya

hXU/WhYU/

is commutative. Sending each object X of C to hx, and each arrow f: X — Y of C to

hy:hx — hy defines a functor C — Hom(C, Sets).

Lemma 1.1.1 (Yoneda lemma, weak version). Let X and Y be objects of C. The function
HomC(X,Y) — Homc(hX, hy)

which sends f:x —Y to hy:hx — hy is bijective.

In other words, the functor C — Hom(C, Sets) is fully faithful. It fails to be
an equivalence of categories, because in general it is not essentially surjective. This means
that not every functor C? — Sets is isomorphic to a functor of the form hx. However, if
we restrict it to the full subcategory of Hom(C, Sets) consisting of functors C? — Sets
which are isomorphic to a functor of the form hx, we do obtain a category which is

equivalent to C.

Definition 1.1.2. A representable functor on the category C is a functor
F:C% — Sets

which is isomorphic to a functor of the form hx for some object X of C. If it happens, we

say that F' is represented by X.

Given two isomorphisms F ~ hx and F =~ hy, the resulting isomorphism
hx ~ hy comes from a unique isomorphism X ~ Y in C, because of the weak form
of Yoneda lemma. Hence two objects representing the same functor are canonically
isomorphic.

The condition that a functor be representable is given a new expression with

the more general version of Yoneda lemma. Let X be an object of C and F': C? — Sets
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a functor. Given a natural transformation 7: hx — F', we obtain an element £ € F' X,
defined as the image of the identity map idx € hx X via the function 7x : hx X — F X,
i.e., £ = 7x(idx). This construction defines a function Hom(hx, F) — FX.

Conversely, given an element £ € F.X, we can define a morphism 7: hxy — F
as follows. Given an object U of C, an element of hxU is an arrow f:U — X; this arrow
induces a function F'f : FX — FU. We define a function 7y : hxU — FU by sending
fehxUto Ff(&) e FU. It is straightforward to check that 7 is in fact a morphism. Thus,
we have defined the functions

Hom(hy,F) - FX

and

FX — Hom(hx, F).

Lemma 1.1.3 (Yoneda lemma). These two functions are mutually inverse, and therefore,

establish the bijective correspondence

Hom(hx,F)~ FX

Let us see how this form of Yoneda lemma implies the weak version above.
Assuming that F'= hy: the function Hom(X,Y) = hxY — Hom(hx, hy) sends each arrow
f: X—=Y to
hy (idy) =ido f: X =Y,

precisely the function Hom(X,Y) — Hom(hx,hy) in the weak form of the result.

One way to consider Yoneda lemma is as follows. The weak form states
that the category C is embedded in the category Hom(C%, Sets). The strong version
states that, given a functor F': C°? — Sets, this can be extended to the representable
functor hp : Hom(C, Sets) — Sets: thus, every functor becomes representable, when
appropriately extended (in practice, the category Hom(C, Sets) is usually much too big,
and we must restrict it appropriately). We can use Yoneda lemma to give a very important

characterization of representable functors.

Definition 1.1.4. Let F': C°? — Sets be a functor. A wuniversal object for F is a pair
(X,€) consisting of an object X of C and an element £ € F'X such that for each object U
of C and each o € FU, there exists a unique arrow f:U — X such that Ff({) =0 € FU.
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In other words: the pair (X&) is an universal object if the morphism hx — F
defined by £ is an isomorphism. Since every natural transformation hx — F' is defined by

some object £ € F'X, it leads to the following proposition:

Proposition 1.1.5. A functor F': C? — Sets is representable if and only if it has a

universal object.

Proof. On the one hand, suppose that F' : C°? — Sets is a representable functor, then
there exists X € C such that FF'~ hx. Let 7:hx — F be the isomorphism and take
¢ =7x(idx). We will show (X&) is a universal object for F.. Let U € C and o € FU. Since
7:hx — F is an isomorphism, we know that 7¢7 : hx (U) — F(U) is also an isomorphism.
Thus, since o € FU, there exists a unique f € hx(U) such that 77(f) = 0. Let us see that

Tu(f)=F(f)(&). Since 7 is a natural transformation, we have the commutative diagram:

hx (f)l JF(f)

Thus, 77 (hx (f)(idx)) = F(f)(tx(idx)) = 7o (f) = F(f)(§). On the other hand, suppose
(X,€) is a universal object for F. Define 7: hyxy — F in the following way: for each
U € C take 1y : hxU — FU which associates each f:U — X with the object F(f)(&),
ie, y(f) =F(f)(€). Let us see 7 is an isomorphism. Let U € C and o € FU, by the
property of the universal object, there exists a unique f: U — X such that F(f)(§) =0, i.e.,
Ty (f) = 0. Thus, 7y is an isomorphism, since U is arbitrary and we know that 7: hx — F

is an isomorphism. F', therefore, is a representable functor. O

Also, if F' has a universal object (X,€), then F is represented by X. Yoneda
lemma ensures that the natural functor C — Hom(C, Sets) which sends an object X to

the functor hx is an equivalence of C with the category of representable functors.
Example 1.1.6. Here are some examples of representable functors:

1. Let us recall that the product X x Y of two sets is the set of ordered pairs {(z,y) |z €
X,y €Y}. Wepresent two definitions of the direct product of two objects X, Y € ObC

of an arbitrary category C.
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a. The direct product X xY “is” the object Z representing the functor
U — ( the direct product hxU X hyU)

(if this functor is representable).
b. The direct product X x Y “is” an object Z together with projection morphisms

X2 7 Py such that for any pair of morphisms X X7 Yy there

exists a unique morphism ¢ : Z’ — Z such that, p'y = px¢, and p} = pyq, (again if a

triple (Z,px,py) with this property exists).

2. A generalization of the above construction enables us to define the fiber product in
the category theory language. Let us recall that if p: X — S, and ¢ : Y — S are two
mappings of sets, the fiber product of X and Y over S is the following set of pairs:

XxgY ={(z,y) e X XY : p(z)=1(y)} CX xY.

The object X xgY in the category can be represented in two ways.
a’ X xgY represents the functor: U X(U) X gy Y (U).

b’ X xgY “is” the ordinary product in the new category Cg whose objects are
morphisms ¢ : X — S, and morphisms from ¢ : X — S to¢:Y — S are commutative

diagrams:
X—>X .y
N
S
where y € Home(X,Y). The diagram 1.b. in the category Cg is represented by the
following diagram in the category C:
X xgY 2y

pX)J( gz)

This category has a universal property and it is called the Cartesian square.

©
—Y
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1.2 General Results on Hilbert Schemes

One of the major aims of this chapter is to introduce the concept of nested Hilbert schemes
of points on a surface. In this regard, we begin with a brief collection of facts on the
Hilbert schemes of points on a surface. Next, we apply these facts to prove the main result
of the last chapter.

Since the definition of the nested Hilbert scheme is similar to the definition of
the Hilbert scheme, we begin with a general description of the latter.

Let X be a quasi-projective variety over the field IK and consider the functor:

Hilby : Schyy — Sets

from the category of Noetherian schemes over K to the category of sets defined by:

Objects:

Z is a closed subscheme,
U — Hilbx(U):={ ZcC XxU | Z is flat over U via
m:Z—=>XxU—=U

Morphisms: for all f:U — V € Morgeny

Hilbx (f): Hilbx(V) — Hilbx(U):
Z = f*(Z)

where:

Since a pullback of flat morphism is still flat and tensor product is a right exact functor
this diagram is reasonable.

For each point u € U, the Hilbert polynomial in U is defined by:

Py(m) = x(Oz, ® Ox(m))



CHAPTER 1: HILBERT SCHEMES 18

where Z, = 7~ !(u) and Ox(m) is an ample line bundle on X. Since 7 is flat, P, is locally

constant. Define the subfunctor Hilby of Hilby, which associates U with the subset of

Hilbx (U) with P as its Hilbert polynomial. In that case we have:

Theorem 1.2.1. The functor Hilb is representable by a projective scheme Hilb" (X).

Proof. See [7]. O
In general we have:

Definition 1.2.2. Let P be the constant polynomial given by P(m) =n, for all m € Z.
We denote by Hilb"(X) the corresponding Hilbert scheme and call it the Hilbert scheme

of n points in X.

Example 1.2.3. Consider the constant polynomial p(¢) = 1. Then we have the canonical
identification Hilb'(Y) =Y and the universal family is the diagonal A CY x Y. In fact,

take a scheme S and an element of Hilby (S), named

I'——9SxY

f
S

Then f is an isomorphism: indeed, it is a one-to-one morphism and Og — f,Or
is an isomorphism since f,Or is an Og - algebra which is locally free of rank 1 over Og.
Therefore, we have the well-defined morphism g =qgo f~1: S =T < SxY — Y, where

q:SxY —Y is the projection. The morphism 6 bellow factors A

0= (gf,q): I — Y xY

(s,y) = (9f(s,9),q(s,y) €A

and induces a commutative diagram:

Sf/F\GA
N

mo0(s,y) =m(q(s,9),q(s,9)) = q(s,y) = 9f(5,y)
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such that I' >~ g* A = S xy A. The family IT" is induced by A via the morphism g. For this
reason, (Y,A) represents Hz’lbl(.) and, therefore, Hilb'(Y) =Y.

It is important to notice that, in general, even if the variety X is nonsingular,
the Hilbert scheme Hilb™(X) can be singular, if n > 3. The following result indicates gives

the nonsingularity of the Hilbert scheme for a quasi-projective nonsingular surface.

Theorem 1.2.4. If X is a quasi-projective nonsingular surface, then the Hilbert scheme

Hilb™(X) of n points on X is nonsingular.
Proof. See [6, Theorem 2.4]. O

We will restrict our attention when P is a constant polynomial and X is the

affine plane C2. In that case, we have the following handy description:
Hilb"(C?) = {I ¢ C[X,Y]|dimC[X,Y]/I =n}.

Indeed, a closed point of Hilb"™(C?) can be identified with an ideal I C C[X,Y]
of length n. This means that the quotient C[X,Y]/I is an n-dimensional vector space over

C.

1.3 General Results on Nested Hilbert Schemes

This section summarizes a few fundamental results concerning nested Hilbert schemes.
We begin with a general definition of a quasi-projective scheme, but for our purposes a
simpler characterization, presented later, will suffice.

Let X be a quasi-projective scheme defined over the field K. Fix an integer

r > 1 and a m—tuple of numerical polynomials
P(t) = (Pi(t),.... Pu()),  m>1.
For every scheme S we have:

Z1C...CZ,CXxS
ME’((”(S) =4 (Z4,...,25) | S—flat closed subschemes with
Hilbert polynomials P(t)
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This defines a contravariant functor:
HitY" . Sch® - Sets

called nested Hilbert functor of X relative to P(t). When m =1, the nested Hilbert
functor is just the ordinary Hilbert functor.

Thus, we can state the analogy to Theorem 1.2.1 for nested Hilbert schemes

on X =P

Theorem 1.3.1. For every r > 1 and P(t) as above, the nested Hilbert functor H ilbgt)
is represented by a projective scheme H ile(t)(]Pr), called nested Hilbert scheme of P"

relative to P(t), and using a universal family:
Wi C ... C Wye——TP" x Hilb®®) (PT)

HilbP®) (P
Proof. [13, Theorem 4.5.1] O

If the polynomial P(t) = (n1,...,n,,) is an m—tuple of positive integers, it is
often written Hilb™»"m(P") rather than HilbP®) (P").

From the definition it follows that the closed points of HilbP®)(P") are in
one-to-one correspondence with the m-tuples (Z1,...,Z,,) of closed subschemes of P" such
that X; has Hilbert polynomial P;(t) and Z1 C Zy C ... C Zy,. Moreover, it follows that
HilbP®(PT) is a closed subscheme of

[T Hits" O (Pr).
=1

We will denote the projections as:

pri - Hilb®®(P) = HibP Py, i=1,...,m.

For every subset I C {1,...,m} with cardinality u we can consider the u-tuple of polynomials
Pi(t) = (P;,... P;,) and the nested Hilbert scheme HilbP1®) (PT). We have natural

projection morphisms:

pri: Hilb®® (PT) — Hilp®1® (pr),



CHAPTER 1: HILBERT SCHEMES 21

whose pris are special cases.

It is of interest to know whether the nested Hilbert scheme is smooth. In fact,

in [3] Cheah proved that:

Theorem 1.3.2. If X is a nonsingular quasi-projective m-dimensional variety, the nested

Hilbert scheme Hilb"!~"(X) is nonsingular precisely when either:

1. m<1or
2. m =2 and Hilb" " (X) is equal to Hilb"(X) or Hilb""(X) for some n or

3. m >3 and Hilb""(X) is equal to one of the spaces Hilb'(X), Hilb*(X),
Hilb3(X), Hilb"?(X) or Hilb>3(X).

Proof. [3, Lemmas 1.1, 1.2, 1.3 and 1.4] ]

Interestingly, in the theorem above, there are few cases in which the nested

Hilbert scheme is smooth.



Chapter 2

Representations of quivers

2.1 Representations of quivers

A quiver is just a directed graph. A more formal definition goes as follows.

Definition 2.1.1. A quiver is a pair Q = (Qo,Q1), where Qg is a finite set of vertices and
(21 is a finite set of arrows between them. If a € ()1 is an arrow, then ta and ha denote its

tail and its head, respectively.

Let us fix a quiver () and a base field K. Add a finite-dimensional vector space
to each vertex of () and a linear map to each arrow (with the appropriate domain and

codomain). Thus, we obtain what is known as representation of ). More precisely,

Definition 2.1.2. A representation R of @ is a collection {V;|i € Qp} of finite-dimensional
K-vector spaces together with a collection {V, : Vi — Viula € @1} of K-linear maps. If
R is a representation of @), then its dimension vector or numerical type is the n-tuple

(dimg V;)icq,, where n = |Qo.

By path we mean a concatenation of arrows such that each ends where the

next one starts. Formally,

Definition 2.1.3. A path in @) is a sequence x = pypa...pm of arrows such that tp; = hp; 1
for 1 <i<m—1. A relation is a formal sum of paths which end and start on the same

vertex.

Here are a few interesting examples of quiver representations:

22
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Example 2.1.4. The ADHM quiver is the one of the form:

§:>/—17N e
1 &g_/ o0

(5)

with relation

af —Ba+E&n.

A representation of this quiver is a pair of finite-dimensional vector spaces (V, W), assigned
to the vertices (e1,ex), together with linear maps (A, B,I,J) assigned to the arrows

(o, 8,€,m), which satisfies the so-called ADHM equation
[A,B]+1J=0. (2.1.1)

The numerical type of this representation is the pair (dimV,dim W) € (Zx¢)?.

Example 2.1.5. The enhanced ADHM quiver is the one of the form:

o1
s

>}2 L}ﬁ,@ 1)<Z: €o0
BT ( 17

with relations

a181 = o +8n; a1¢p—daz; ng; agfa— oy Bro— ¢f; -

A representation of this quiver consists of a triple (V1, V2, W) of finite-dimensional vector
spaces and linear maps (A1, By, 1,J, A, Bo, f) which satisfy the following equations and

are assigned, respectively, to the vertices (e1,e2,6e+) and the arrows (a1, 51,€,m, a2, B2, d)

(A1, B +1J=0

Af—fA2=0

Buf— By =0 (212)
[Ag, Bo] =0

Jf=0

named enhanced ADHM equations. The numerical type of this representation is the triple
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(dim W,dim Vi,dim V3) € (Z>0)>.

Remark 2.1.6. The enhanced ADHM quiver was conceived for the first time in [2] in a
slightly different way. The authors disregard the existence of a map Bs, although they

take account of the existence of a map g: Vi — Vi (see Section 3 of [2] for more details).

Definition 2.1.7. Given R and R’ two representations of the same quiver Q, a morphism

f:R — R/ is a collection of K-linear maps
{fi: Vi=>W;:i€Qo}

such that the diagram commutes for every arrow a € Q)1:

P
Vta — Vha

fml tha

Wia T) Wha
a

i.e., frao®q=W,0 fiq, for all @ € Q1. A morphism f:R — R’ is an isomorphism if f; is

invertible for every i € Q).

According to the previous definition, we obtain what will be referred to as the
category of representations of a quiver @ over a field K, denoted by A = Repg(Q). It is

the category whose objects are representations of () with the morphisms as defined above.

Example 2.1.8. Let Q be the quiver of Example 2.1.4. A morphism between the
representations of @, R = (V,W,(A,B,1,J)) and R' = (VW' (A", B',I',J')), is a pair
(f,g) of linear maps such that

fA=Af
B I !
CFI Ay =1
f —
I()J I’(\)J' fB=B'f
W—— w’ gJ=Jf

or simply,

fA=Af fI=1Tyg

Homs(R,R') =< (f,9) € Hom(V, V') ® Hom(W,W’)
fB=B'f gJ=JFf



CHAPTER 2: REPRESENTATIONS OF QUIVERS 25

Similarly, a morphism between two representations R = (V1,Va, W, (A1, By, 1, J, A2, Ba, f))
and R' = (V{, Vi, W' (A}, B}, I',J', A,, By, f')) of the enhanced ADHM quiver is a triple
(£1,€2,€x) of linear maps between the vector spaces (V1, V2, W) and (V{, V4, W'), respec-
tively, satisfying obvious compatibility conditions with the morphisms attached to the

arrows.

Remark 2.1.9. Sometimes it is useful to look at a representation of the enhanced ADHM
quiver as a pair of representations of the ADHM quiver plus a morphism between them,
i.e., given R = (V1,Vo, W, (A1, By,1,J, A2, Ba, f)) a representation of an enhanced ADHM
quiver, we can write the representations of ADHM quivers Ry = (V1,W, (41, B1,1,J)),
Ra = (V2,{0}, (A2, B2,0,0)) and a map (f,0) between them.

Ay
A2X, L Ao B AlyB
Sl or SR
bt (7 (2.1.3)
By 0 0 I

2.2 Monads

We start by recalling the concept of monad, whose best general reference is [12], precisely
§3 and §4 of Chapter 2.

Let X be a smooth projective variety.

Definition 2.2.1. A monad on X is a complex of locally free sheaves on X:

Me: 0 A—25B C 0

such that J is surjective and « is injective. The sheaf H(M,) =ker f/im « is called the

cohomology of the monad M,.

It is important to observe that a morphism between two monads is simply a

morphism of complexes.

Theorem 2.2.2. If E= H(M,) and E' = H(M) are, respectively, the cohomology sheaves
of two monads:

Me: 0 A—25B C 0
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ML 0—— A

c’ 0

over a smooth projective variety X. The mapping
h : Hom(M,, M_) — Hom(E,E")

which associates the induced homomorphism of cohomology sheaves with each homomor-

phism of monads, is bijective, if the following hypotheses are satisfied:
Hom(B, A’) = Hom(C,B") =0

HYX,C*9A)=H (X,B*® A')= H{(X,C*®B') = H*(X,C* @ A') = 0.
Proof. See [12, Lemma 11.4.1.3]. O

Definition 2.2.3. A monad on P" of the form:
0— V1 ®Opn(—1)— 2515 @ Opn—V3® Opn(1)——0

where V3., k=1,2,3, is a vector space, is called a linear monad.

The next result, which is a special case of Theorem 2.2.2, proved to be extremely

useful in Section 3.1.

Corollary 2.2.4. If ¥ and E’ are, respectively, the cohomology sheaves of two linear
monads M, and M., then the map which associates the induced homomorphism of

cohomology sheaves with each homomorphism of monads, is bijective.

2.3 ADHM data

In this section, we review some of the recent results about ADHM data. Let V and W be
complex vector spaces with dimension n and r, respectively. The ADHM data is the set
given by:

B = B(r,n) := End(V)®? & Hom(W, V) @ Hom(V, W).
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An element of B is a datum X = (A4, B,1,J) with A, B € End(V'), I € Hom(W,V') and
J € Hom(V,W). We let GL(V') act on B by defining:

X]=gX:=(gAg ', gBg ' ql,Jg7 "),

for g€ GL(V) and X = (A,B,I,J) € B.
Definition 2.3.1. A datum X = (A, B,I,J) is said to be

i. stable if there is no subspace S C V preserved by A, B and containing the image of
I

ii. costable if there is no subspace {0} # .S C V preserved by A, B and contained in
ker J;

iii. regular if it is both stable and costable.

A representation of the ADHM quiver S = (V,W,X) is said to be stable (respectively

costable) if X is stable (respectively costable).

Definition 2.3.2. Fix homogeneous coordinates (z: % : z) in P?. For any representation

R=(V,W,(A,B,1,J)) of the ADHM quiver, define the complex
ER: V®OPQ(—1)L(V@V@W)®OP2LV®OPQ(1)

where
zA+2x1

a=| zB+yl and (—zB—yl zA+xl zI)-
zJ

Any complex on P? obtained in this way will be called an ADHM complex.

Remark 2.3.3. Note that the ADHM equation is equivalent to Sa = 0. Indeed, we have:

zA+xl
ﬁCY:(—zB—yl zA+x1 z[) zB+yl 222([A,B]+IJ).
zJ

Hence, fa =0« [A,B]+1J=0.
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Consider now the category of ADHM complex, denoted by Kompuy(P?),

subcategory of complexes on P2. The assignment:

F: A — IComADHM(IPZ)
R — By

provides a functor, where A is the category of representations of the ADHM quiver. The
functor acts on morphisms as follows: let (f,g) € Hom4(R,R’) be a morphism between
representations R and R/; then we have the morphism f® between the corresponding

ADHM complexes Ep and Eg;:

V@ Opa(—1) —2 5 (VOVEW)®Ops —2— V @ Ops(1)
lf@@l l(f@f@g)@i)l lf®1
V'@ Op2(—1) —2 (V'@ V & W)@ Ops — V' @ Opa (1)

Thus, F((f,9)) is the map f* = (f@1,(f& f@g)@1,f@1).

Proposition 2.3.4. Given the functor

F: A — ICom pi (P?)
R — Ex

(f,9) — (fel(fofog el fol)

It follows that:

i. IF is an exact functor.

ii. I is fully faithful.

Proof. We start our proof by showing that IF is exact. Given any exact sequence of

representations of the ADHM quiver
0-Z—-S—-Q—0, (2.3.1)
we will show that the corresponding sequence of ADHM complexes:

0— Bz — E§— Eg — 0, (2.3.2)
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is still exact. The sequence (2.3.1) can be rewritten as:

Az Bz As\/Bs AqQ\vBq
0— SV 2 vs)S SV 2—0. (2.3.3)

J ]

0—— Wz —— Ws ——Wgq ——0

Notice that this sequence provides the following exact sequences:

0—=Vz—=>Vs—=Vqg—0 (1)

0=>Vz®VzdWz = Vs®Vs®Ws = V@ Vq®Ws —0 (I1)

For every open set U C P2, the module Op2(U) is free, hence it is flat. Tensoring the

sequences (1) and (IT) with Op2(U) for every open set U C P? we obtain the following

exact sequences:

0—=Vz®0p2(—1) = Vs ®@Op2(—1) = Va®Op2(—1) =0 (I11)
0= (VzaVzgeWz)0p2: — (Vs Vs Ws) ® Op2 — (VQ@VQ@Ws)@)O]pz —0 (IV)

0—=Vz®0p2(1) > Vs @O0p2(1) = Vo ® Op2(1) = 0 (V)

Combining (I11), (IV) and (V'), the result is the exact sequence of ADHM complex:

0 0 0 0
Ej: Vz®@Op2(—1) —— (Vz @ Vz @ Wz) ® Op2 —— Vz® Op2(1)
ES: Vs ®Op2(—1) —— (Vs ® Vs ® Ws) ® Op2 —— Vg ® Op2(1)
Ey: VQ® Opa(—1) —— (V@ Vq © Wq) © Op2 —— Vo ® Ope(1)
0 0 0 0

and IF is an exact functor, as claimed.
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To check that IF is faithful, we need to show, for every R, R’ € A, the map
F: Hom(R,R') — Hom(ER, Eq/)
is injective. Indeed, given (f,g) € Hom(R,R’) such that F(f,g) =0, we have
(fel(fofeogel,fel)=0.

Immediately, f =g =0 and (f,g) is the zero morphism between representations of the
ADHM quiver.
There remains to prove that IF is full. For this purpose, it suffices to show that

for every R, R’ € A the map:
F: Hom(R,R') — Hom(FER, Eq)

is surjective. Given Eg{ and ER, two ADHM complexes and (F,G, H) a map between
them, we need to find a map (f,g) € Hom(R,R/') such that F(f,g) = (F,G, H).The proof

derives from the analysis of the commutativity of the diagram:

V@ 0ps(—1) — 2 (VEVaW)00p — V@ 0p(1) . (2.3.4)

R

V/ ®OIP2<—1) L> (V/@ V’ @W/> ®OIP2 —_— Vl® OIP2(].)

Highlight that the sheaf morphisms F, G, H are given by vector spaces maps, which
we will denote similarly, F,H:V = V' and G:VOVOW — V' V' @W’. Since G €
Hom (Ve Ve W,V e V' & W’') we can write G into block form:

G1 G2 Gj3
G= G4 G5 GG
G7 Gg Gy

The commutativity of the diagram (2.3.4) gives us the equations:

o' F=Ga
F'G=Hp

(2.3.5)
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and, using the description of a, o/, 3, ' given by the ADHM construction, we obtain

relations for the maps involved in G. Namely, from the first equation of (2.3.5):

zA +xl zA'F+aF
odF=| 2B'+yl |F=| 2:BF+yF
zJ! zJ'F
Gi1 Go Gs zA+x1 2G1A+ 212G+ 2GoB+yGo + 2G3J
Ga=| Gy G5 Gg 2B+yl | =| 2G4A+ 2G4+ 2G5B+yGs+2GgJ
Gr Gg Gy zJ 2GrA+1Gr 4+ 2GgB+yGs+ 2GoJ

we obtain G =G5 =F and Go =G4 =G7 = Gg = 0.
The same reasoning applies to the second equation of (2.3.5). Replacing G

F 0 Gs
with 0 F Gg |, gives us:
0 0 Gy
F 0 Gs
5/G=<—ZB’—y1 zA' + 21 z]) 0 F Gg | =
0 0 Gy

= ( —ZB/F—yF 2A'F+2F —ZB/G:J,—ng—I—ZA/GG—i-xGG—i-ZIGg )

HB:H( —zB—yl zA+zxl zI)Z(—zHB—yH cHA+xH zHI)-

And this provides Gg = F = H and G3 = Gg = 0.
F 0 0
Hence, G=| 0 F 0 |, the map (f,g) = (F,F) satisfies the condition

0 0 F
F(f,9) = (F,G,H) and the proof is complete. O

For further references, we list some properties of the ADHM complex proved

in [9, Section 5].

Lemma 2.3.5. Let us fix a representation R = (V, W, (A, B,I,J)), and the corresponding
ADHM complex Ep as above. Then:
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1. The sheaf map « is injective. The fiber maps ap are injective for every P € P? if

and only if R is costable.

2. If R is stable, then H!(Eg) =0, and HY(Eg) is a torsion free sheaf whose restriction

to ls is trivial of rank r = dimW and second Chern class ¢ = dimV .
3. For any R € A, H'(H"(E&)(—1)) =0 holds.
Proof. [9, Lemmas 5.2, 5.3 and 5.4] O
Lemma 2.3.6. For any representation R = (V,W,(A,B,I,J)), and the corresponding
ADHM complex Eg as above, we have:

supp Hl(Eﬁ) ={pe P2 . B(p) is not surjective } C IPQ\ZOO

Proof. To prove these statements we need to do some remarks: Let J:F — G be a

sheaf morphism and 3, : 7, — G, the induced morphism on the stalks. We know that
(F/F)p = p/}—;g and (im B), =im S,. So (coker B), = (G/im B)p = Gp/(im B), =
Gp/im (3, = coker [,. Moreover, the Nakayama lemma says: the map on the stalks
Bp : Fp — Gp is surjective precisely when the map on the fibers () : F(p) — G(p) is

surjective. So, let p € P? then:
HY(ER)p# 04 (coker (), #0< coker f,# 0« B, is nonsurjective < B(p) is nonsurjective.

So, suppH'(ER) = {p € P*: B(p) is not surjective }. To prove the other statement, let
p=(2:y:0) € ly, then:
Bip) = ( —y1 21 0 )

is always surjective. Then p € suppH'(Eg) and supp H}(ER) Nl = 0. O

2.4 Nakajima’s description of Hilbert scheme of points

It is well-known that as a set, the Hilbert scheme of n points on C? is given by:

Hilb"(C?) = {I ¢ C[X,Y]|dimC[X,Y]/I =n}.
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The existence of its schematic structure is a special case of the general result of Grothendieck
[7]. Another explicit construction of the Hilbert scheme of points on the affine plane
is given by Nakajima [11, Chapter 1]. In this section, let us recall some details of this
construction which gives the ADHM description of the Hilbert scheme of n points in C2.

Namely,
== def. (A>Ba[) (Z) [AvB] =0,

Theorem 2.4.1. Let H = , where A, B € End(C")
(17) (A, B,I) is stable

and I € Hom(C,C"). Define an action of GL(C™) on H by:
9-(A.B,1)=(9Ag~",9Bg~" gI),

for g € GL(C"), and consider the quotient space H 7] /GL(C"). Then H is a nonsingular

variety and represents the functor H ilb§ for X = C? and P =n.
Proof. [11, Theorem 1.9 O

Although the proof of this theorem is not given here, we point out some
remarkable steps of the proof which are useful later.

According to the hypotheses of Theorem 2.4.1, set X = (A,B,I) an ADHM
datum and define the map ®x by:

dy: C[X,Y]— C
p(X,Y)— p(A,B)I(1)

Furthermore, denote the class of the ADHM datum X € H by [X] € H = H/GL(C™). Thus,

in order to prove the Theorem 2.4.1, it is necessary to consider the map

U: H/GL(C") — Hilb"(C?)
X] — ker ®x

which associates the ideal ker @y with the class [X] of a stable ADHM datum X = (A, B, I).
Let S= (V,W,(A,B,1,J)) be a stable representation of the ADHM quiver of

numerical type (r,n) € (Zx0)?.
Proposition 2.4.2. If r =1, then:

i. J=0.



CHAPTER 2: REPRESENTATIONS OF QUIVERS 34

ii. The sheaf Z =ker 3/im « isisomorphic to theideal I ={f(X,Y) € C[X,Y]|f(A, B) = 0}.
Proof. [11, Proposition 2.8] O

From now on we assume that dimW = 1. From the above proposition J =0,
and the ADHM datum X = (A, B,1,0) will be denoted by X = (A, B,I) to shorten notation.
Moreover, we can do a construction similar to that of the previous Theorem
for both complex vector space V with dimensions n and representations of the ADHM

quiver of numerical type (1,n). Explicitly, we can state:

Lemma 2.4.3. Let R = (V,C, (A, B,I)) be a stable representations of the ADHM quiver
of numerical type (1,n). If X= (A, B,I) then the map:

y: CIX,Y]—> V
p(X,Y) = p(A,B)I(1)

is a surjective linear map. In particular, C[X,Y]/ker ®x is isomorphic to V.

Proof. First note that the linear map ®y is well-defined, since [A, B] = 0. Observe also that
im [ Cim Py since the elements of im [ consist of vectors of the form al(1), for some
constant « € C. Moreover, the image im ®x of the map ®y is invariant under A and B,
since they commute. By stability of the datum X we must have im ®x = V. Hence, ¥y is
surjective. Straightforwardly, ker ®x C C[X,Y] is an ideal. Hence, we get the isomorphism
C[X,Y]/ker®x ~ V. O

Lemma 2.4.4. Let R = (V1,C,(A1,B1,11)) and S = (V5,C, (A, B2, 12)) be two stable
representations of the ADHM quiver of numerical type (1,n). If X = (A, B1,11) and
Y = (Ag, By, I5) satisfy [X] = [Y], then ker &y ~ ker ®y.

Proof. Since [X] = [Y], there exists an element g € GL(V) such that Y = ¢g.X. Then
Y = (Ag,Bo, 1) = (gAlg_l,ng_l,gll). Now, for any polynomial p € C[X,Y]| we have
p(A2, B2)I2(1) = p(gA1g~",gBig ) (911 (1)) = gp(Ar, B1)g~gL1(1) = gp(A1, Bi) 1 (1), in
other words, &y = g®x. Since g is invertible, then it follows that ker &y = ker &y, which is

the desired conclusion. O

It is clear that in Lemma 2.4.3 ker ®x belongs to Hilb"(C?) and in Lemma
2.4.4 the map V is well-defined.
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2.5 Enhanced ADHM data

Let R=(Vq,Va, W, (A1, Bi1,1,J,As, Ba, f)) be arepresentation of numerical type (r,n1,n2) €
(Z>0)? of the enhanced ADHM quiver:

AQ\[B Al\[B
Sy Sy

(1)

{0} — W

with relations:
[Al,Bl] +1J=0

Aif—fA2=0

Bif—fB2=0 (2.5.1)
[Ag, Bo] =0

JF=0.

In order to construct moduli spaces of framed representations of the enhanced

ADHM quiver, we need to introduce some concepts.

Definition 2.5.1. A framed representation of the enhanced ADHM quiver of numerical
type (r,n1,n2) € (Z>0)? is a pair (R, h) consisting of a representation R and an isomorphism
h: W-=C". Two framed representations (R,h) and (R, h') are isomorphic if there is an

isomorphism of the form (£1,£2,6x) : R=R/ such that h'¢s = h.

Definition 2.5.2. Given a representation of an enhanced ADHM quiver R of numerical

type (r,n1,n2) € (Z>0)? and a triple 0 = (01,02,0) € Q> satisfying the relation
n101 +n9bls + 1l = 0,

we say that R is 0-(semi)stable if the following conditions hold

(7) Any subrepresentation R’ C R of numerical type (0,n},n}) satisfies

n’191 +nl292(§> <0,

(7) Any subrepresentation R’ C R of numerical type (r,n,n5) satisfies

nI191 +n'282 + 7105 (<) < 0.
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The following lemma establishes the existence of generic stability parameters

for any given dimension vector (r,m1,n2).

Lemma 2.5.3. Let § = (01,02,05) € Q® with 6y > 0 and 01 +n26s < 0. For every rep-
resentation R of numerical type (r,n1,n2) € Zio fixed, the following statements are

equivalent:
a) R is f-stable;
b) R is f-semistable;
¢) the following conditions are satisfied:
(S.1) f:Va— V) is injective.
(S.2) The data S = (V4,W, (A1, B1,1,J)) are stable.
Proof. The affirmation a)=b) is straightforward by definition.

b)= ¢) Let R be a #-semistable representation. Suppose that f is not injective, so ker f C
Vo is preserved by Ag and Bs, i.e., As(ker f) C ker f and Ba(ker f) C ker f. The
reason is that, for all u € ker f, we have f(Aa(u)) = A1(f(u)) = A1(0) =0 and
f(Ba(u)) = B1(f(u)) = B1(0) = 0. Then we can construct a subrepresentation
R’ = ({0},ker f,{0},(0,0,0,0, A2, By,0)) with n} =0, ny = dimker f and ' =0. The
O-semistability implies nbs < 0. Since fo > 0, we have 0 < dimker f < 0. Therefore,
f must be injective. If the condition (5.2) is not true, there is a proper nontrivial

subspace {0} C V{ C Vj such that:
R’ = (V{, {0}, W, (Aily;, Bilys. T, T]y;,0,0,0))
determines a proper nontrivial subrepresentation of R with ' = r. Since,
n101 +n20s + 1000 = 0 = 1o = —n161 —naobs, ()] —n1) <0 and 01 +nafby < 0
we have
n01 +nhls + 10, =nl01 +1r0s = n\ 01 —n16) —nobe = (0] —n1)01 —naby > 0.

This is a contradiction.
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c)= a) Let R be a subrepresentation satisfying the conditions (S.1) and (S.2), and suppose
R'= (VI VLW, (AL By, T Ay B ) C R

is a nontrivial proper subrepresentation of R. We must consider two possibilities:

o r'=r=W'=W. In that case, the condition (S5.2) implies I is not identically
zero. Otherwise, V] violates the stability condition, because A1 (VY), B1(V{) C V{
and {0} =im I C V{. Thus, im I # {0} and n} > 0. Similarly, if n| < ny, the
data (V{, A}, B}, I',J") violates the condition (S.2). Therefore, n}| =n;. Since

R’ has to be a proper subrepresentation, n5 < ng. Then:
n101 +nh0s + oo = n101 +nhls + o = nhs —nobly = (nh —nsg)he < 0.

« '=0=W'=0.1f ny =0as fly; CV{ then V3 Cker f = {0} so ny =0. This is
impossible, since R’ is assumed nontrivial. Therefore, n] > 1. Note that 61 > 0
is impossible, for in that case 0 < 61 < 01 +nof2 < 0. Thus, #; <0 and, in this

case, we have:
n'191 <0 = n391 +7”L/292 <6 +n'292 < 01 +ngby <O.

Therefore, R is #-stable.
O

This lemma asserts that there exists a special stability chamber, which is
determined by the inequalities #2 > 0 and 01 +n9fs < 0, within which #-semistability is

equivalent to #-stability, and to the conditions (S.1) and (S.2) as previously stated.

Definition 2.5.4. Under the assumptions of Lemma 2.5.3, a representation (respectively
a framed representation) of the enhanced ADHM quiver which satisfies the conditions (S.1)

and (S.2) will be called stable representation (respectively stable framed representation).

In the next section, moduli spaces of #-semistable framed quiver representations

will be constructed employing GIT techniques, similarly to [10].
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2.6 Moduli spaces of stable enhanced representations

We wish to investigate a relation between the moduli space of stable framed representations
of an enhanced ADHM quiver and the nested Hilbert scheme Hilb™ ~"2"2(C?) which was
introduced in the first section.

For this purpose, consider V;, Vo, W three vector spaces of dimensions ni, ng

and 1 € Z~g, respectively, and the reductive algebraic group G = GL(V1) x GL(V3). If,
X(r,n1,n2) = End(V1)®? @ Hom(W, V1) @ Hom(Vi, W) @ End(V2)®2 & Hom(V5, V1),
there exists a G-action on X(r,n1,n2) given by:

(,91792) X (AlthIa J’ A2a327f) — (glAlgl_lvnglgl_lagll7 ng_la92A292_1a92B292_17g1f92_1) .

The closed points of X(r,n1,n2) will be denoted by X = (A1, B1,1,J, A2, B, f),
the action of (g1,92) € G on a point X € X(r,n1,n2) will be denoted by (g1, ¢2).X, the orbit
of a point X € X(r,n1,n2) will be denoted by G.X and, finally, the stabilizer of a given
point X will be denoted by Gy C G.

Furthermore, denote by Xg(r,n1,n2) the subscheme of X(r,n1,n2) defined by

the algebraic equations:
[Al,Bl] +I1J=0

A1f—fA2=0

Buf— By =0 (261)
[Ag, Ba] =0

JF=0.

First observe that, Xo(r,n1,n2) is preserved by the G-action. Note also each
representation R = (V1, Vo, W, (A1, B1,1,J, A2, By, f)) corresponds to a unique point X =
(A1,B1,1,J,A2,Ba, f) € Xo(r,n1,n2) and, two framed representations are isomorphic if
and only if the corresponding points in Xq(r,n1,n2) are in the same G-orbit.

Next, we recover some standard facts on GIT quotients for a reductive algebraic
group G acting on a vector space X(r,ni,ng), whose best reference is Sections 2, 3 and 4

of [10].

Definition 2.6.1. Given an algebraic character x : G — C* we have:
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(a) A point Xg is called y-semistable if there exists a polynomial function p(X) on

X (r,n1,n2) satisfying p((g1,92)-X) = x(g1,92)'p(X) for some [ € Z>1, and such that
p(Xo) # 0.

(b) A point Xp is called x-stable if it is x-semistable and, further, dim(G.Xg) = dim (G/A),
where A C G is the subgroup acting trivially on X(r,n1,n2), and the action of G on
{X e X(r,n1,n2)|p(X) # 0} is closed.

Another way of stating (a) and (b) is given by the next Lemma:

Lemma 2.6.2. Let x : G — C* be an algebraic character and suppose G acts on the

direct product Xq(r,n1,n2) x C by:

(g91,92) % (X,2) = ((g1,92)-X, x(g1,92) " '2).

Then X € X(r,n1,n2) is:

(a’) x-semistable if and only if the closure of the orbit G.(X,z) is disjoint from the zero
section X(r,n1,n2) x {0}, for any z # 0.

(b") x-stable if and only if the orbit G.(X,z) is closed in complement of the zero section,

and the stabilizer G (x ) is a finite index subgroup of A.
Proof. [10, Lemma 2.2 O

We can form the quasi-projective scheme:

Mg¥(r,n1,n2) = Xo(r,n1,n2)/ /G = Proj (@ A(Xo(r,nl,ng))G’X”) |

n>0

where

A(Xo(r,n1,n2)) X" = {f € A(Xo(r,n1,n2)) | f(9:X) = x(9)"F(X), ¥g € G}

Notice that Mj*(r,n1,n2) is projective over Spec (Xg(r, nl,ng)G), and it is quasi-projective
over C. Geometric invariant theory tells us that Mg*(r,n1,n2) is the space of x-semistable
orbits; moreover, it contains an open subscheme Mj(r,n1,n2) € Mg*(r,n1,n2) consisting
of x-stable orbits.

We can now state the analogue of [10, Prop. 3.1, Thm. 4.1].
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Proposition 2.6.3. Suppose 6§ = (61,65) € Z?, and let xg : G — C* be the character:

Xo(g1,92) = det(g1) % det(ga) 2.

Then a representation R = (V1,Va, W, (A1, B1,1,J, A, Ba, f)) of an enhanced ADHM quiver,
of dimension vector (r,n1,n2) € (Z0)?, is 6-(semi)stable if and only if the corresponding

closed point X € X is xg-(semi)stable.
Proof. See [10, Prop. 3.1, Thm. 4.1]. ]

It follows that Mp*(r,n1,n2) parameterizes S-equivalence classes of f-semistable
framed representations, while Mj(r,n1,n2) parameterizes isomorphism classes of f-stable
framed representations.

The GIT quotient Xq(r,n1,n2)//yG is isomorphic to the moduli space of
S-equivalence classes of f-semistable quiver representations Mp®(r,n1,n2).

From the above statements, we are able to introduce:

Definition 2.6.4. The moduli space of stable framed representations is:

stable framed representations of
M(r,n1,n2) =4 enhanced ADHM quiver of fixed / G =~ XO(T7n17n2>//XG-

numerical type (r,n1,n2) € Z3,

Remark 2.6.5. The Lemma 2.5.3 is a restatement of [2, Lemma 3.1] for enhanced ADHM
quiver with Bs = 0. There, the moduli space of stable framed representations of the
enhanced ADHM quiver with By = 0 was denoted by N (r,n1,n2). The details of the

construction of this moduli space were presented (see Section 3 of [2]).

Theorem 2.6.6. The moduli space N (r,n1,n2) of stable framed representations of the
enhanced ADHM quiver of fixed numerical invariants (r,n1,n2) € Z3>0 and By =01is a

smooth, quasi-projective variety of dimension (2n; —na)r.

Proof. See [2, Theorem 3.2]. O



Chapter 3

Enhanced ADHM Quiver and
Nested Hilbert Schemes

Our aim in this chapter is to establish a bijection between the moduli space of stable
framed representations of the enhanced ADHM quiver M(1,n1,n2) and the closed points
of the nested Hilbert scheme Hilb™ ~"2"2((C?).

3.1 Correspondence between enhanced ADHM data
and nested 0-dimensional ideals

Theorem 3.1.1. There exists a one-to-one correspondence between the following sets:

« equivalence classes of stable framed representations of the enhanced ADHM quiver

of dimension vector (1,n1,n2).

o closed subschemes (Z1, Z) of C? with Hilbert polynomial n; and nj —ns respectively,

and Zy C Z7.

The proof is constructive and we have divided it into a sequence of steps and

lemmas.
Step 1: In the first step we will see how to construct closed points of Hilb™ ~"2"2(C?) out

of representations of an enhanced ADHM quiver. For this purpose, we define the map:

@ : M(1,n1,n9) — Hilb™ "2 (C?),

41
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Consider R = (V1,Va, W, (A1, B1,1,0,A2,Ba, f)), a stable representation of di-

mension vector (1,n1,n9) € Z3>07 with nj > ng, of the enhanced quiver:

A
@, N
Vs f 1 T %%

Remark 3.1.2. According to Proposition 2.4.2, when r =1, we have J =0, and again we

will delete this term of the tuple.

Define V :=V;/im f, and notice that the linear maps (A, By, I) yield linear
maps

AV =V  B:V=V W=V

such that,

ﬁloﬂzﬂoAl éloﬂ':ﬂ'OBl f:Wo[,
where 7 : V] — V is the canonical projection.
Lemma 3.1.3. The datum Y = (A;, By, I) is stable and satisfies [A;, By] = 0.

Proof. We first examine the equation [A;, By]. Let y = () € V and compute:
([A1, B1]) (w()) = [As(w (), Bi(w(2))] = [7(A1(2)),7(Bi(2))] = 7 ([ (), Ba(x)]) = 0

since [A1,B1] = 0.

Now, let us prove the stability of Y = (Al,él,f). Suppose that there exists
a subspace S C V such that A1(S), Bi(S), I(W) c S. Define S =71(5) c V4. Notice
that S is nontrivial subspace of V;. Indeed, if S = {0} then given y € S C V there
exists z € V; such that y = 7(z). Since n(z) =y € S then z € 771(5) = S = {0}. Thus,
r=0,y=mn(z)=0and S = {0}, a contradiction. We claim that A(S), B1(S), I(S) C S.
Indeed, let z € S = 771(S) then y = w(x) € S. Since S is preserved by Ay, By we have
m(A1(z)) = A1(n(z)) € S, n(Bi(x)) = Bi(n(z)) € S and A (z), Bi(z) e 7 1(S) = S. As
S contains the image of I, given w € W we have 7(I(w)) = I(w) € S. Consequently,
I(w) € 7~ 1(S) = S. The stability of (Ay, By, I) forces Vi = 7~1(S) = S, hence S =V and
(A1, By,1) is stable. O

We now have the ADHM data X = (A1,B1,]) and Y = (ﬁl,él,f) which are
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stable and satisfy the ADHM equation. Applying the Lemma 2.4.3 yields the surjective

linear maps:

Ox:CX,)Y]—=V1 and Oy:CX)Y]—>V .

Thus, dim (C[X,Y]/ker ®x) = ny and dim (C[X,Y]/ker &y) = n1 —na. Since f is injective

and 7 surjective, we can construct short exact sequences:

Va
f

0——kerdy —— C[X,Y] P51, — 0

T,

0——ker &y —— C[X,Y] —5 1V ——0

From Snake Lemma, we get the short exact sequence:

0——ker &% ker Oy Vo 0.

Thus, indeed, (ker ®y,ker ®x) € Hilb™ "2 (C2) and ¢(R) = (ker ®y, ker $x).

It is necessary to note that the definition of the map ¢ is unambiguous. As
we have mentioned earlier, each representation R = (Vq,Va, W, (A1, B1,1,J, A2, Ba, f))
corresponds to a unique point Z = (A, By, 1, J, A, Bo, f) € Xo(r,n1,n2) and, two framed
representations are isomorphic if and only if the corresponding points in Xq(r,n1,n2) are
in the same G-orbit.

Let R and R’ be two isomorphic stable framed representations of the enhanced
ADHM quiver of numerical type (1,n1,n2). There exists (g1,92) € G = GL(V1) x GL(V3)
such that Z' = (g1, g2).Z, where Z, Z' € Xo(r,n1,n2). Suppose Z= (A1, B1,I, Az, By, f) then,

zZ' = (91A1gf1,91B1gf1791[,92A295179232951791f951> :

It now suffices to note that the pairs of points

« X=(A1,Bi,T) and X' = 1. X = (91419, ", 91B1gy 911
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e« Y=(A;,B;,])and Y = g1.Y = (glﬁlgfl,glélgfluma

satisfies the conditions of Lemma 2.4.4. Then ker ®x ~ ker &y, ker &y ~ ker Py and,

consequently,

©(R) = (ker @y, ker y) = (ker Py, ker @y/) = (R/).
Therefore the map ¢ is well-defined.

Remark 3.1.4. Although up to this point of the proof, the condition » = 1 has been
essential, we will provide an “alternative proof”, whose the condition over dim W appears
only at the conclusion. The “alternative proof” becomes more interesting if we realize that,
based on the methods which we have presented here, we are able to state similar link using,
for instance, the usual ADHM construction of instantons or the ADHM construction of

perverse coherent sheaves (see, respectively, [4], [8] and [1] for further details).

“Alternative proof”: Consider R = (V1,Va, W, (A1, B1,1,J, A2, By, f)) a stable representa-

tion of dimension vector (r,ni,n2) € Zio, with ny > ng, of the enhanced quiver:

AQVB Al\[B
St Sy

oo o)

{0} — W.

Again, let V :=V)/imf and the linear maps
A:V=V BV V LWV J VoW
such that

ﬁloﬂ:WoAl éloﬂ':ﬂ'oBl I=nol jOﬂ':J,

where 7 : V] — V is the canonical projection. Similarly to Lemma 3.1.3, we can prove that
the datum Y = (Ay, By, 1,.J) is stable and satisfies [Ay, By]+1.J = 0.

Moreover, since f is injective and 7 surjective, we can construct a short exact
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sequence of representations of the ADHM quiver

A By A BA
2 %1

o[ o s IQJ

O{O}W

(3.1.1)

or simply

0—-Z—-S—-Q—0,

if we take Z = (Va,{0}, (As, Bs,0)), S = (Vi,W, (A1, B1,1,J)), Q= (V,W, (A1, By,1,J)) in
the category of representations of the ADHM quiver.

As we have already seen, according to Proposition 2.3.4 there exists an exact
functor I : A — Kom apmar(P?) which associates an ADHM complex with each represen-
tation of the ADHM quiver an ADHM complex. Applying this functor to the sequence

3.1.1, we obtain a short exact sequence of complexes on P2
0— Bz — E§— E§ — 0, (3.1.2)

from which we obtain a long sequence of cohomology sheaves:

0—H 1 (Ey) = H (ES) = H 1 (EY —H(EY) —
— HO(ES) — HO(EQ) — H (Ey) = H (ES) — H(Eg) — 0.

We can simplify this sequence:
Lemma 3.1.5. Applying the previous conditions, we have:
L (By) = M (Bg) = H\(By) = 0,
2. HY(ES) =H'(Eg) =0,
3. HO(Ey) =0.

Proof. 1. This is true, for the maps o', «,a” which appear, respectively, in the ADHM

complexes E7, E§ and Eg), are injective (see Lemma 2.3.5(i));

2. We conclude from Lemma 2.3.5(ii), since S and Q are stable representations;
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3. Indeed,
By Va®Opa(—1)—2 (V@ V3) @ Opa—— V3 @ Opa (1)

and take P = (z:y:0) € [, we can write:

! rl !
ap = ﬂP:(—yl l'].)
yl

then kerfp =0, VP € lo. Since HO(EY) = ker'/im o, the stalks of this sheaf
vanish at P. Hence, the support of this sheaf is 0-dimensional scheme, because it
does not intersect loo. In particular, H'(H(ES)) ~ H(H(Eg)(—1)) and the right
hand side vanishes by Lemma 2.3.5(iii). Since H°(ES) is supported at finitely many
points, it follows that H(Eg) = 0.

Thus, we have :

0— H(ES) —» H(EQ) — H' (Ey) — 0. (3.1.3)
Assuming that r = 1, there exists according to item ii. of Proposition 2.4.2,
0-dimensional subschemes Z;, Zy C P? \ loo = C? such that:
1. HUES) = kerB/im a =Ty,
2. HU(Eg) = kerf" /im o =1,
3. Z9 C Zj are O-dimensional subschemes of length n; —ng and ny, respectively.

We can rewrite the sequence (3.1.3) and obtain:
0TIy — Lz, — HY(EY) 0. (3.1.4)

Thus we obtain a point (Z3, Z1) € Hilb™ "2 (C?).
Remark 3.1.6. From the sequence (3.1.4) it follows that H'(EY) ~Zy,/Tz,

Step 2: We will do now the inverse construction, i.e., we will build a representation of the

enhanced ADHM quiver out of a closed point Hilb™ ~"2"2(C?2) using the map:

Y Hilb™ 2" (C2) — M(1,n1,7n2).
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Let (Z1,%5) € Hilb™ "™ (C?), so Z; C Zs C C? are subschemes of length

n1 —ng and ng respectively. We know that there exists a short exact sequence
022z, =TIz —Q—0, (3.1.5)

Since C? is Noetherian and Z;, Zy C C? are closed subschemes then 1z,,1z,
are coherent torsion-free sheaves. Then we can follow the Nakajima construction [11, pag.

19-23] and find monads:

B3 Va®Op2(—1)— 25 (Vad Vo ® W) ® Opa— 2513 @ Opa(1)

where
zA1+x1
a2=| zBi+yl e ﬁ2=(—z31—y1 zA1+x1 zI) ;
zJ
and
B i ®Opa(~1)-25 (& Vi 8 W) © Opa—"51 © Opa(1)
where
zA1+l
o= | 2B +yl e 512(—z§1—y1 ZA+ 121 zf) ,
zJ
such that

i. Ty, ~HO(ES)
ii. Ty, ~HO(E})
ili. dimVe =c2(Zyz,) =m1
iv. dimVj =ca(Zyz,) =n1 —n2

v. dimW = dim W’ =1 (since dimW = 2¢5(Zz,) 4+ rank (Zz,) and W = Vo @ Vo W
then dimW = rank (Zz,) = 1. The same thing happens to W' ).

So we can rewrite the exact sequence (3.1.5) as follows:

0——HO(ES) 51BN ——Q——0. (3.1.6)
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Moreover, those monads give us the following stable representations:
Q= (Vi,W',(A1,B1,1)) and S = (Va,W, (A2, B2, 1)),

which satisfy the ADHM equation.

According to Theorem 2.2.4, we have:
Hom(E3, E7) ~ Hom(H(E3), H(ET)),

and since f € Hom(H(E3),H(E?)), there exists a corresponding element f € Hom(E3, E}).
From Proposition 2.3.4, F: A — IComADHM(]P2) is a fully faithful functor, so IF yields a
map (£1,&2) between the representations S and Q.

Lemma 3.1.7. Considering the previous conditions, the map (£1,&2) : S — Q is surjective.

Proof. Since dimW = dim W’ =1, we have dimim & =0 or dimim & = 1. We claim that
€9 # 0. Indeed, suppose & =0, as &1 = I€, = 0 we have I(W) C keré&;. Notice ker¢; is

invariant under Ay and B because for each = € ker&; we have:
&1 (A1 (2)) = A1(&1(2)) =0,

&1(Bi(x)) = Bi(&(z)) =0.

Hence, ker&; = Va, since (Ag, By, 1) is stable and, consequently, £ = 0. However, f#0
and as it depends on &1 and &9, it is impossible to have £ = & = 0. Thus, dimim & =1
and im & = W/, then & is surjective. Consider now the subspace im &; C V4 and notice
that im & is preserved by Ay and B. Indeed, let y € im &, then there exists € V5 such
that y =& (z). Thus,

Ai(y) = Ai(&1(2)) = &a(Ai(x) € im &,

Bi(y) = B1(&(z)) = &(Bi(z)) € im &.

Moreover, im I Cim &;. In fact, let y € im I then, there exists ' € W’ such that I(z') =1.

Since & is surjective, there exists € W such that 2/ = & (x). Thus,

y=1(2")=1(&(@) =&(I(2)) €im &
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However, (;ll,él,f, j) is stable, then im & = V; and, therefore, & is also surjective. [

Consider now the subrepresentation Z of S given by:
Z = (N,{0}, (A2, B2,0,0))
such that N =ker¢;, Ay = Ay|y and By = By|y. Notice that, since [A1, B1] =0 we have:
[A2, Bo] = [A1|n, Bi|n] = [A1, Bi]|n =0,

i.e., the maps Az and By commutes. Moreover, (Asz, B2,0) is stable. Indeed, suppose that
there exists a subspace S C N such that Ay(S), Ba(S) C S. Then A1(S), B1(S) C S and
im I CS.

Hence, we construct a stable representation of the enhanced ADHM quiver:

gy )
N s Vo i— W, (3.1.7)
b7 G

as required.

It is easy to check that the maps previously constructed:

¢ M(1,n1,n9) — Hilb™7"2"(C2)  and 1« : Hilb""2™(C?) — M(1,n1,n)
(3.1.8)
are mutually inverse. This finishes the proof of Theorem 3.1.1. Therefore, our construction
provides a set-theoretical bijection between the set of closed points on Hilb™ ~"2"1(C?)

and points of M(1,n1,n2).

3.2 Nested Hilbert schemes with quotients supported
on curves

For any stable representation of an enhanced quiver R = (V1, Vo, W, (A1, B1,1,J, A2, Ba, f)) €
M(r,n1,n2) and any polynomial F(X,Y) € C[X,Y], consider the following sets:

Y={(x:y:1) € P?|F(z,y) =0}
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and

M(T,Tll,ng)z = {R S M(T,n1,n2)|F(A2,BQ) = 0}

Remark 3.2.1. This definition is a somewhat straightforward generalization of N'(r,n1,ns),
cited in Remark 2.6.5. Indeed, just take F(X,Y) =Y and we will have, N (r,n1,ns) =

M(r,ni,n9)y.

We have proved the existence of a set-theoretical bijection:
¢ : M(1,n1,n2) — Hilb™ 271 (C?); (3.2.1)

our aim now is to find a similar set-theoretical bijection between the sets: M(1,n1,n2)x

and Hilby! "2 (C?), where:

Hilby! "2 (C?) = {(Z1, Z2) € Hilb™ "2 (C?) |supp (Zz,/Zz,) C X}

Theorem 3.2.2. For any representation of the ADHM quiver of type Z = (N, {0}, (A2, B2,0,0))
it holds that:

x and y are eigenvalues of As and Bo

1. supp HY(Eg) = (z:y:1) € P?
relative to the same eigenvector

2. If there exists F'(X,Y) € C[X,Y], such that, (A, By) =0 then

1 o| = and y are eigenvalues of Ay and By relative
supp H (Ez)=<(x:y:1)eP C .
to the same eigenvector and (z:y:1) €2

Proof. Notice that:

B(py is surjective = tﬁ(p) :N* — N*@® N™ is injective,

where

—(*By+y1)

B(p):< —(B2+y1) Az—I—a:l) and 'S, = N
2+

If there exists p = (x :y : 1) € P? such that B(p) 18 not surjective then tﬂ(p) is not injective.
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Therefore, there exists ¢ € N* such that tﬁ(p)¢ = 0= 'Ay(—¢) = 2(—¢) and 'By(—¢) =
y(—¢), i.e.,  and y are eigenvalues of 'Ay and !By, respectively, relative to the same
eigenvector ¢. The same happens to Az and Bz. Conversely, take p = (x : y : 1) such that
x and y are eigenvalues of Ao and Bo, respectively, relative to the same eigenvector. Then
there exists ¢ € N* such that * Ay = 2¢ and *Bag = y¢. Thus, tﬁ(p) is not injective and
B(p) is not surjective.

Let F(X,Y)=%0a;;X'Y7 € C[X,Y] and (z:y:1) € supp H'(EY), then there
exists v € N\ {0} such that Ayv = zv and Byv = yv. Thus,

F(Ag, Bo)v =" aijAbBjv =" aijAby’v =" aijy! Ao =Y aiy/a'v =3 ayja'y’v = F(a,y)v.

Since v # 0 and F(Az, By) =0 we have F(z,y) =0. ]

Consequently, we have proved more than we have intended to. Given the map
os : M(1,n1,n2)x — Hilby! ~"™ (C?),

which associates a pair of schemes (Z, Z2) € Hilb™ ~"2"(C?) which quotient Zz, /Z, is
supported in the curve ¥ with each stable representation R = (V1, Vo, W, (A1, B1,1, A9, Ba, f))

of an enhanced quiver with F'(Asg, B2) = 0, we can state that:

Corollary 3.2.3. There exists an one-to-one correspondence between the sets M(1,n1,n2)x

and Hilbg! """ (C?).
Proof. The correspondence is given by the map:
oy M(1,ny,n2)y — Hﬂbglinz’n1 (Cz)
Notice that py is a restriction of the map 3.2.1. Thus, it suffices to apply Theorems 3.1.1

and 3.2.2 together with the observation that H!(E$) ~ Tz, /I, from Remark 3.1.6. [

As an immediate consequence of the results previously proved, we observe that,
at least for the case F(X,Y) =Y, the subset Hilbs' "*"(C?) is a nonsingular subset of
Hilb™ ~"2"(C?) according to [2, Theorem 3.2].
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