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"As long as algebra and geometry have been separated,
their progress have been slow and their uses limited;
but when these two sciences have been united,

they have lent each mutual forces,

and have marched together towards perfection.”

(Joseph-Louis Lagrange)



Resumo

Neste trabalho, construimos familias de 1-parametro de solugoes do problema Yamabe
a partir de submersoes Riemannianas com fibras totalmente geodésicas. Consideramos
como espagos totais dessas submersoes variedades flag maximais munidas de uma métrica
normal. Em seguida, determinamos os instantes de bifurcacao e rigidez local para essas
familias de solugoes olhando para as mudancas do indice de Morse dessas métricas quando
o parametro varia no intervalo (0,1]. Um ponto de bifurcacao para tais familias é um
ponto de acumulacao de outras solucoes para o problema de Yamabe conformes a solugoes
homogéneas. J4 um ponto de rigidez local é uma solucao isolada para este problema em

sua classe conforme, ou seja, nao é um instante de bifurcacao.

Também calculamos o indice Morse das variagoes canonicas sobre as variedades flag
maximais SU(n + 1)/T" e SO(2n + 1)/T™, com o parametro variando no intervalo (0, 1].

Finalmente, obtemos resultados sobre a multiplicidade de solugoes do problema Yamabe
em nossa situacao utilizando resultados de R. G. Bettiol e P. Piccione que garantem um
nimero minimo de solugoes em uma determinada classe conforme se o indice Morse da

métrica correspondente for positivo.

Palavras-chave: Instante de bifurcacao; Instante de rigidez local; Variedade flag; Variagao

canonica; Problema de Yamabe.



Abstract

In this work, we construct 1-parameter families of well known solutions to the Yamabe
problem from Riemannian submersions with totally geodesic fibers. We consider as total
spaces maximal flag manifolds equipped with a normal metric. Thereafter, we determine
bifurcation and local rigidity instants for these families looking for changes of the Morse
index of these metrics when the parameter varies on the interval (0, 1]. A bifurcation point
for such families is an accumulation point of others solutions to the Yamabe problem
conformal to homogeneous solutions. Already a local rigidity point is an isolated solution

to this problem in its conformal class, i.e., it is not a bifurcation instant.

We also compute the Morse index of the canonical variations defined on the maximal flag
manifolds SU(n + 1)/T" and SO(2n + 1)/T", for the parameter varying on the interval
(0,1].

Finally, we obtain results about multiplicity of solutions of the Yamabe problem in our
situation by using results of R. G. Bettiol and P. Piccione that guarantee a minimum
number of solutions in a given conformal class if the Morse index of the corresponding

metric is positive.

Keywords: Bifurcation instant; Local rigidity instant; Flag manifold; Yamabe problem.
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Introduction

Given a compact, orientable Riemannian manifold (M, g), with dimension
m = 3, the Yamabe problem concerns the existence of constant scalar curvature metrics on
M conformal to g. Solutions to this problem, called Yamabe metrics, can be characterized
variationally as critical points of the Hilbert-Einstein functional restricted to the set [g] of
metrics conformal to g. The existence of such solutions are consequence of the successive
works of Yamabe [1960], Trudinger [1968], Aubin [1976] and Schoen [1984].

It is said that g, t € [a, b], is a 1-parameter family of solutions to the Yamabe
problem if
d(Algo1,)(9:) =0V € [a,b],

where §; is the unit volume metric homothetic to ¢;, g1 = g and A is the Hilbert-Einstein
functional. The families that we study in this thesis are formed by homogeneous metrics,

which are trivial solutions to the Yamabe problem.

A classic method to obtain new solutions of a PDE is to use bifurcation theory. In
our main result, we found bifurcation and local rigidity points among certain homogeneous
solutions to the Yamabe problem, namely homogeneous metrics defined on mazimal flag
manifolds. Bifurcation point of a family of such solutions is an accumulation point of other
solutions to the Yamabe problem conformal to homogeneous solutions. Already a local
rigidity point is an isolated solution to this problem in its conformal class, i.e., not a

bifurcation point.

The bifurcation theory applied here is based on finding bifurcation instants for
a given l-parameter family of homogeneous metrics ¢;,0 < t < 1. For this, we analyze
the occurrence of jump in the Morse index of g; by using strongly the expressions of the

Laplacian defined on (M, g;) and the scalar curvature of g;. The Morse index is equal

scal
to the number (counting multiplicity) of positive eigenvalues that are less than (gi),

being scal(g;) scalar curvature of g;. These tools allow to find new examples of positively

curved manifolds.

Given a Riemannian submersion with totally geodesic fibers, a 1-parameter
family of other such submersions can be constructed by scaling the original metric of
the total space in the direction of the fibers. This family is called canonical variation,
and a generalization of this is, for example, the Cheeger deformations. Particular cases of
Riemannian submersion with totally geodesic fibers are Homogeneous fibrations, which we

use in order to construct canonical variations on maximal flag manifolds.

Applying ideas of bifurcation theory, Paolo Piccione and Renato G. Bettiol
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obtained in their work [11] [2013] bifurcation and local rigidity instants for canonical
variations of round metrics on spheres. These families were constructed from homogeneous
metrics on total spaces of Hopf fibrations (the total spaces equipped with such deformed
metrics are also often referred to as Berger spheres). More precisely, they defined on the

total space of each Hopf fibration

1

Sl . S2n+1 N C]P)n, 53 . S4n+3 N HPTL’ S? . 515 N 58(§>

canonical variations depending on one parameter ¢ > 0, obtained by scaling the round
metric by a factor ¢* in the subbundle tangent to the Hopf fibration. It is also proved that
there are classes of the Berger spheres above whose conformal classes contain at least 3

solutions to the Yamabe problem.

Bettiol and Piccione treated in [10]the homogeneous fibrations
H/K---G/K - G/H

with K ¢ H < G compact connected Lie groups, dim H/K > 2, either H is normal in
G or K is normal in H and H/K has positive scalar curvature. From such homogeneous
fibration they construct a canonical variation g; of an initial G-invariant metric ¢ = g; on
the total space G/K. It was proved that in this situation there exists a subset G < (0, 1],
accumulating at 0, such that for each ¢ € G there are at least 2 solutions to the Yamabe
problem in the conformal class [¢;]1, other than §;, where §; is the unit volume metric

homothetic to g;.

For the case of canonical variations on nonhomogeneous fibrations, Bettiol
and Piccione also obtained similar bifurcations results in their work [10]. Indeed, they
proved existence of bifurcations instants accumulating at 0 for the canonical variation of a
Riemannian submersion

F---M—B

with totally geodesic fibers isometrics to F', under assumption of upper boundaries for

Ricei and scalar curvatures.

In this thesis, we deform homogeneous metrics on maximal flag manifolds, total

spaces of the following homogeneous fibrations

(i) SUn)/T" - SU(n + 1)/T" — SU(n + 1)/S(U(1) x U(n)) = CP",n > 2;
(i) SO(2n)/T™---SO(2n +1)/T™ — SO(2n +1)/SO(2n) = S*",n = 2,n # 3;
(iii) SU(n)/T"" - Sp(n)/T" — Sp(n)/U(n),n = 3;

(iv) SU(n)/T™ - SO(2n)/T" — SO(2n)/U(n),n > 4;

(v) SO(4)/T = S2 x S2 - Go/T — G2/SO(4);
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More specifically, we equip each total space above with a normal homogeneous
metric and deform these metrics by shrinking the fibers by a factor ¢2,
0 < t < 1, getting the canonical variations (SU(n + 1)/T",g,),(SO(2n + 1)/T", h,),
(Sp(n)/T", k), (SO(2n)/T", my), (G2/T,n;) in Section 2.2.2. Recall that a normal homo-
geneous metric on GG/K is obtained from the restriction to the tangent space (isotropy
representation) of a bi-invariant inner product on the Lie algebra Lie(G) = g. The max-
imal flag manifolds are homogeneous spaces such that K is compact, hence they admit

bi-invariant metrics and hence normal homogeneous metrics.

A degeneracy point for a given canonical variation g;,t > 0, is a degenerate
critical point g, for the Hilbert-Einstein functional, at some ¢, > 0. It is established in
Section 1.1 that every bifurcation point is a degeneracy point for this canonical variation,
however not all degeneracy point is a bifurcation point. Since the Morse index of each
g,, hy, k;, my, n;, changes as t crosses degeneracy instants t. € (0,1] (Proposition 1.1.9,
Section 1.1), we prove existence of new solutions to the Yamabe problem accumulating
at g, hy,, ke, , my,, my,, respectively. Such instants ¢, are called bifurcation instants and
g, he,, ki, ,my, g, are bifurcation points for the canonical variations g, hy, ky, my, ng,

respectively.

From Proposition 1.1.6 we also determine the local rigidity instants for each
family g,, h;, k;, m;, n; in the interval (0, 1]. Indeed, we obtain in Section 3.2 the following re-
sults.

Theorem A  For the canonical wvariations (SU(n + 1)/T"'.g,) and
(SO(2n +1)/T", hy), there are sequences {t}, {t;‘} < (0,1], of bifurcation instants for g,
and hy, given in (3.14) an (3.16), such that tg,tf; — 0 as ¢ — 0. Moreover, g, and h; are lo-
cally rigid for all t €  (0,1] \ {5} (respectively t €  (0,1] \ {t;‘})
Theorem B For the canonical wvariations (Sp(n)/T",k;),n = 5, and
(SO(2n)/T", my;),n = 4, introduced in 3.2.2, the bifurcation instants are discrete sets

t9 e aoranaezy < (0,1], 1 < 1 < n, with infinite elements accumulating close

to zero as x1,xs,...,x; vary over Z,. Moreover, k; and m; are locally rigid for all t €
g

(O7 1] \ txlxz...:cl}351,9927-~733l€Z+ .

Theorem C The elements of the set {t}.} < (0,1] given by

\/\/(—667“2 — 33rs — 99r — 2252 — 555 + 24)° + 64 — 6612 — 33rs — 99r — 2252 — 555 + 24
tn — i
TS 2\/5

Z 3 r,s =0, are bifurcation instants for (Go/T,n;). Moreover, n, is locally rigid at all
0 <t <1 such that t ¢ {t;.}.

In other words, we proved that for {g,;0 <t < 1} and {hy;0 < t < 1} there
are infinitely many other solutions to the Yamabe problem that accumulate close to the
homogeneous solutions 8s and ht?. For k;, m; and n, the set of bifurcation instants are also

(infinite) discrete, however such bifurcation instants depend on several (integer) indexes. In
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addition, we also determine the sets of local rigidity instants for each canonical variation

g,, h;, k;, m;, n; in the interval (0,1].

Our results also can be understood from the view point of dynamical systems,
where bifurcation means a topological or qualitative change in the structure of the set of
fixed points of a 1-parameter family of systems when we vary this paremeter. Critical points
of the Hilbert-Einstein functional in a conformal class [g] are fixed points of the so-called
Yamabe flow, the corresponding L*-gradient flow of the Hilbert-Einstein functional, which
gives a dynamical system in this conformal class. Hence, the bifurcation results above
mentioned can be interpreted as a local change in the set of fixed points of the Yamabe
flow near homogeneous metrics (which are always fixed points) when varying the conformal
class [g] with g in one of the families g,, h;, k;, m;, n;. An interesting question, proposed by

Bettiol and Piccione in [11], would be to study the dynamics near these new fixed points.

In Section 3.1 we calculate expressions for the scalar curvatures scal(g,), scal(h;),
scal(k;), scal(my), scal(n;) applying the formula for scalar curvature of reductive homo-
geneous spaces due W. Ziller and M. Wang in their work [31]. We also apply the Lie
theoretic description of the flag manifolds to determine these formulae in our situation. The
coeflicients of the invariant homogeneous metrics g,, hy, k;, m; and n; and the structure
constants of the Lie algebras which define each total space in (i)-(v) above were determined

for this purpose.

In order to prove the bifurcation results claimed, we analyze the second variation
of the Hilbert-Einstein functional at every homogeneous metrics g,, hy, k;, m;, n;, defined
on the total spaces in (i)-(v). Given the second variation formula (1.2), Section 1.1, for
this functional, this analysis amounts comparing the eigenvalues A\*(¢) (see expression
(2.3), Corollary 2.2.5) of the Laplacian A, of g,, h;, k;, m;, n;, respectively, with the scalar
curvatures scal(g,), scal(h,), scal(k;), scal(m,), scal(n;). More precisely, a critical point

al(t)

sc
g,, hy, k;, m; or n; is degenerate if and only if scal(t) # 0 and — is an eigenvalue of

AVE

The spectrum of the Laplacian A; of the canonical variations of Riemannian
submersions with totally geodesic fibers is well-understood. Roughly, it consists of linear
combinations (that depends on t) of eigenvalues of the original metric on the total space with
eigenvalues of the fibers. In particular, we compute formulae for the first positive eigenvalues
of Ag and Ay,, in addition to lower and upper bounds for the first positive eigenvalues
of Ay,, Am, and A,,, respectively (Proposition 2.2.22). Combining this knowledge of
the spectra of Ag,, Ayp,, Ay,, Ay, and Ay, with the formulae for the scalar curvatures
scal(g, ), scal(hy), scal(k;), scal(m,), scal(n;) we are able to identify all degeneracy instants
for g,, h;, k;, m;, n; and prove existence of bifurcation at all degeneracy instants in the
interval (0, 1[. The local rigidity instants for these canonical variations are also determined

for all other 0 < ¢t < 1 (by applying our results, namely Proposition 3.2.2, Lemma 3.2.2 and
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Lemma 3.2.3). We also compute the Morse index of each g, and hy, 0 <t < 1 (Proposition
3.2.5 and Proposition 3.2.7).

We remark that the induced metrics on the fibers and on the basis of the
homogeneous fibrations in (i)-(v) are such that the fibers become some type of maximal
flag manifold endowed with a normal homogeneous metric and the basis spaces are compact
isotropy irreducible Hermitian symmetric spaces. The spectra of the Laplacian on these
spaces are described in terms of weights of some irreducible representations. In respect
to spectra of maximal flag manifolds, we use the description of Yamaguchi [1979] [33]
where the spectra of the Laplacian on maximal flag manifolds endowed with a normal
homogeneous metric are specified in terms of the representation theory of the related
compact Lie groups. Already in the case of the spectrum of the Laplacian on compact
isotropy irreducible Hermitian symmetric space G/H, we used in this thesis the description
presented in [30] and [29]. In this case, the spectrum is given in terms of integer coeflicients

of highest weights of spherical representations of the symmetric pair (G, H).

In addition by exploring the existence of infinitely many bifurcations of g, h;, k;,
my,n;,, we obtain in Section 3.3 the following multiplicity result.
Theorem D Let g,, h, k;, m; and n; be the families of homogeneous metrics obtained
as described above. Then, there exists, for each of such families, a subset G < (0,1],
accumulating at 0, such that for each t € G, there are at least 3 solutions to the Yamabe

problem in each conformal class [g,], [h], [k¢], [m¢], [n¢].

Renato G. Bettiol and Paolo Piccione proved in [10] a result that guarantees
existence of other solutions to the Yamabe problem in the conformal class [g;] of a
canonical variation g; if its Morse index is positive over some subset of (0,1). Theorem D

is a consequence of this result.

We have restricted our study to the interval (0,1) since for ¢ > 1 would be
necessary more refinements for the expressions of the eigenvalues A\¥(t) of the Laplacian
A; on the total spaces of the canonical variations g,, h¢, k;, m; and n;, respectively. For the
above mentioned canonical variations of the Hopf fibrations, Bettiol and Piccione in [11]
obtained refinements for expressions of the eigenvalues A*(¢) applying standard theory
of spherical harmonics on spheres. This enabled them obtaining bifurcation results on

spheres for all ¢ > 0.

An extension of the results presented in this thesis consists to find all bifurcation
and local rigidity instants for the canonical variations g, hy, k;, m; and n; in (0, +00).
To do so, it is necessary, in principle, a more detailed description of the spectra of the
Laplacians of such canonical variations. In order to study cononical variations defined
on total spaces more general than maximal flag manifolds, one can consider initially
homogeneous fibrations on partial flag manifolds, as long as the spectra of the Laplacians

on the basis and on the fiber have well-known descriptions. Furthermore, another approach
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is to study homogeneous fibrations without hypothesis of normality of subgroups considered
by Bettiol and Piccione in [10].

This thesis is organized as follows. In Chapter 1 we introduce the variational
characterization of the Yamabe problem and the basic notions of bifurcation and local
rigidity, in addition to establish the definitions of generalized flag manifold, invariant metrics
and isotropy representation. The study of the Laplacian of the Riemannian submersions
with totally geodesic fibers, the definition of the canonical variations and the description
of their spectra, as well as the construction of the canonical variations g,, h;, k;, m; and
n; are studied in Chapter 2. In Chapter 3 we obtain formulae for scalar curvature of
g, h;, k;, m; and n;. We prove also the main results of the thesis, namely Theorems A, B,
C and D, on bifurcation and local rigidity of solutions to the Yamabe problem, for the
families g,, hy, k¢, m; and n; respectively. We also determine the Morse index of g, and h;.
The last section of this chapter contains multiplicity of solutions to the Yamabe problem

for all the families previously introduced.
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1 Preliminaries

In this chapter, we present some necessary prerequisites for the development of

this work.

1.1 Variational Setup For the Yamabe Problem

Before we present the notions of bifurcation and local rigidity instants, we will
describe the set R¥(M) of all C* Riemannian metrics on M, m = dim M > 3, and some
properties of the Hilbert-Einstein functional. For further references and details of the

concepts and properties presented here see, e.g, [11], [14] and [28].

Let gr be a fixed auxiliary Riemannian metric on M; gr and its Levi-Civita
connection V7 induce naturally Riemannian metrics and connections on all tensor bundles
over M, respectively. For each k > 0, denote by I'*(TM* v TM*) the space of symmetric
C* sections of TM* @ TM*, i.e, symmetric (0,2)-tensors of class C¥ on M. This becomes

a Banach space when equipped with the C* norm
R
ITler = max, (max (7R 7()] )

where ||, denote the norms induced by gr on each appropriate space.

Note that the set R*(M) of all C* Riemannian metrics on M is a open convex
cone inside (I*(TM* v TM*), |-| ) and, therefore, contractible. Thus, R¥(M) inheriting
a natural differential structure. We remark also that R*(M) is a open set of a Banach
space and, thus, we can identify its tangent space with the vector space Fk(TM v TM").

From now on, we assume that k£ > 3.

For each g € R¥(M), denote by vol, the volume form on M (we assume that M
is orientable); in this case, L*(M,vol,) will denote the usual Hilbert space of real square

integrable functions on M. Consider over R*(M) the maps
scal : RF(M) — C*2(M) and Vol : RF(M) — R,

the scalar curvature and the volume, that for each Riemannian metric g € R¥(M ) associate,

respectively, its scalar curvature scal(g) : M — R and its volume Vol(g) = | vol,. Define
M
the Hilbert-Einstein functional as the function A : R*(M) — R given by
1
= 1 l,. 1.1
A9) = i | seallapvol (1)

In order to enunciate some properties of the Hilbert-Einstein functional, we will establish

the more appropriate regularity for our manifold of metrics and maps. Denote by R’f(M ) =
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Vol (1) the suset of R¥(M) consisting of unit volume metrics volume. Note that RY(M)

is a smooth embedded codimension 1 submanifold of R*(1).

For each g € R¥(M), the conformal class of g is the set [¢] = R¥(M) formed
by conformal metrics to g. The space I*(TM* v TM*) defined above induces a differential

structure on each conformal class.

Later, some Fredholm’s conditions must be satisfied. For this, it is enough we
introduce the notion of C*® conformal class and, therefore, define on the conformal class
g e RF(M) a Holder C**(M) regularity. Let

gk = {ég: 0 € C(M), >0}

be the C**(M) conformal class of g, which can be identified with the open subset of
C**(M) formed by the positive functions, which allows [g]s.« to have a natural differential
structure. Working with this regularity, the necessary Fredholm’s conditions of the second

variation of the Hilbert-Einstein functional are satisfied. The set
RYY (M, g) = RE(M) A [glka

is a smooth embedded codimension 1 submanifold of [¢] .. Proposition 1.1.1 contains

well-known facts about A and its critical points, see, e.g. [14].

Proposition 1.1.1. The following hold for the functional A:

(i) The functional A is smooth on R*(M) and on the C** conformal class of any metric
g€ RE(M). In particular, A is smooth on the submanifolds R¥*(M, g) and R¥ (M)

(ii) The metric go € RE(M) is a critical point of A on RY(M) if and only if it is a

Einstein metric;

(iii) A metric go € R}f’a(M, g) is a critical point of A on R’f’a(M, g) if and only if it has

constant scalar curvature;

(iv) At a critical point gy € RY* (M, g) of A, the second variation d*>A(go) can be identified

with the quadratic form

_m—2

EAlg) (. 0) = "

JM((m —1)Ag 1 —scal(go))yvoly,, (1.2)

defined on the tangent space at gy = ¢g, given by
T, R (M, g) = {zp € C’W(M);J zvolgo = 0} :
M

Remark 1.1.2. We are considering A, = —div, o grad,, the Laplacian operator of (M, g),

1
—A, e scal(\g) =

acting on C*(M). We observe that, given A € R, one has A, = 3
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1
Xscal(g). Therefore, the negative eigenvalues (respect. positive) of A, remain negative

(respect. positive), that is, we can normalize metrics in order to have unit volume, without

scal(g) Id, m = dim M
1 ’ '

changing the spectral theory of the operator A, —

Now, we will introduce the concepts of bifurcation and local rigidity for a

1-parameter family of solutions to the Yamabe problem. Let
[a.b] 5t g € REQM), k>3,

or simply g¢;, denote a smooth 1-parameter family (smooth path) of Riemannian metrics

on M, such that each g; has constant scalar curvature.

Definition 1.1.3. An instant t, € [a,b] is a bifurcation instant for the family g, if there
exists a sequence {t,} in [a,b] that converges to t, and a sequence {g,} in R*(M) of

Riemannian metrics that converges to g, satisfying

() gr, € [9q], but g4 # g1,
(ii) Vol(g,) = Vol(gt,);

(ili) scal(g,) is constant.

If ¢, € [a, b] is not a bifurcation instant, it is said that the family g, is locally
rigid at t.. More precisely, the family is locally rigid at ¢, € [a, b] if there exists an open
set U < R¥(M) containing g1, such that if g € U is another metric with constant scalar

curvature and there exists ¢ € [a, b] with g, € U and

(a) g€ lg:l;

(b) Vol(g) = Vol(g1),

then g = g;.

In order to identify the occurrence of the above two situations, we must define

degeneracy instant and Morse index of g;.

Definition 1.1.4. An instant t. € [a,b] is a degeneracy instant for the family g, if

p scal(ge, )

scal(gr,) # 0 an is an eigenvalue of the Laplacian operator Ay, of gy, .

Remark 1.1.5. In face of the second variation expression of the Hilbert-Einstein functional,
given in Proposition 1.1.1, item (iv), the above definition is equivalent to the fact that g,
being a degenerate critical point (in the usual sense of Morse theory) of the Hilbert-Einstein
functional on Ry**(M, g).
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The Morse index N(g;) of g; is given by the number of positive eigenvalues

|
Sca(gti‘)- For each t > 0, N(g;) is a
T

non-negative integer number. In other words, N(g;) counts the number of directions which

of A; counted with multiplicity that are less than

the functional decreases, since the second variation is negative definite.

Next, we will present a general criterion for classifying local rigidity instants

for a 1-parameter family g; of solutions to the Yamabe problem.

Proposition 1.1.6 ([11]). Let g, be a smooth path of metrics of class C*, k = 3, such
that scal(gy) is constant for all t € [a,b], and let A, be the Laplacian operator of g;. If t.

s not a degeneracy instant of g;, then g; is locally rigid at t..

Corollary 1.1.7 ([11]). Suppose that, in addition to the hypotheses of Proposition 2, there

scal
exists an instant t, when M

is less than the first positive eigenvalue M\ (t.) of Ay, .
m —
Then g, is a local minimum for the Hilbert-Einstein functional in its conformal class. In

particular, g; locally rigid at t..

Remark 1.1.8. Note that, in fact, the Corollary 1.1.7 is an immediate consequence from
Proposition 1.1.6, since Morse index of the non-degenerate critical point g, is N(g,) = 0.
In addition, we remark that, if t, is a bifurcation instant for g;, then ¢, is necessarily a

degeneracy instant for g;. However, the reciprocal is not true in general.

The next result provides a sufficient condition to determinate if a degeneracy
instant is a bifurcation instant, given in terms of a jump in the Morse index when passing

a degeneracy instant.

Proposition 1.1.9 ([11]). Let g, a smooth path of metrics of class C*, k = 3, such that
scal(g;) is constant for all t € [a,b], A; the Laplacian g; and N(g;) the Morse index of g;.
Assume that a and b are not degeneracy instants for g, and N(g.) # N(gp). Then, there

exists a bifurcation instant t, € |a,b| for the family g,.

1.2 Generalized Flag Manifolds

Let G be a compact semissimple Lie group and let x € g be a regular element,
i.e, its centralizer is equal to a maximal toral subalgebra of g = Lie(G), Lie algebra of G.
The adjoint orbit of z is the set M = G - x = Ad(G)z < g. Let

K=G,={geG:Ad(g)r =2} G

be isotrpy subgroup of z. Then M is diffeomorphic to the left coset G/K.

Let zg be the point which corresponds to the class 1- K € G/K (1 € G is
the identity element of G). If we take T, = exp Rxy, it is well known that Ty, is a toral
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subgroup of G (diffeomorphic to the Lie group S* x S* x ... x S'). Furthermore, one has
K = K, = C(T,), where C(T) is the centralizer of T}, in G. If T}, is maximal, C(T},) = T,.

Using the above notations, we can introduce the concept of generalized flag

manifold which we will consider in this work.

Definition 1.2.1. Let G be a compact semissimple Lie group with Lie algebra g. A
generalized flag manifold is the adjoint orbit of a reqular element in the Lie algebra g.
Equivalently, a generalized flag manifold is a homogeneous space of the form G/C(T),
where T is a torus in G. When T is mazimal, it is said that G/C(T) = G/T is a maximal
flag manifold.

Example 1.2.2 (Maximal flags in C"). Let G = U(n) be unitary Lie group, with g = u(n).
Taking = = diag(i\i, ..., i\,), with A1,..., A, distinct real numbers, we have K = K, =
T, = S*' x ... x S' (n times), a n-torus in U(n). Hence, Ad(U(n))z = U(n)/T,. If F, is
the set of all increasing sequences {V; < Vo < ... < V,,_1} of complex vector spaces of C"
(flags of subspaces), one has U(n) acts on F,, by {¢gV1 < gVa... < gV,_1}, Vg€ U(n), and
the isotropy subgroup on the flag e = {[e1,..., e, ] < [e1,...,en] = ... C [e1,. .60, _,]}
is T,,. Therefore, the adjoint orbit of x can be identified with the homogeneous space
U(n)/U(1) x ... x U(1) (n times). This space is also diffeomorphic to the homogeneous
space SU(n)/S(U(1) x ... x U(1)), where SU(n) is the special unitary Lie group given by
the unitary matrices A with det A = 1.

Example 1.2.3 (Partial Flags in C"). Consider G = SU(n) with g = su(n). Take
x = diag(iAi Ly, ..., i sI,,) with Ayng + ...+ Asng = 0 and I,,, the n; x n; identity matrix.
It Follows that Ad(SU(n))xz =~ SU(n)/S(U(ny) x ... x U(n)), with n = ny + ... 4+ n,.
This adjoint orbit also can be identified with the set F(ni,...ns) of all partial flags
(VicVoc...cVilin C" with dimV; =ny + ...+ n;, 1 <i < s.

Example 1.2.4. Flag manifolds of a Classical Lie group:
A: SU(n)/S(U(ny) x ... x U(ng) x U(1)™),
n=n1+...+Ng+mmny =ng=...2ng>1sm=0
B: SO2n+1)/U(ny) x ... x U(ns) x SO2t + 1) x U(1)™
C: Sp(n)/U(ny) x ... x U(ny) x Sp(t) x U(1)™

D: SO(2n)/U(ny) x ... x U(ng) x Sp(2t) x U(1)™

n=ni+...+ns+m+t,ni=ny=>...2ng>1,sm,t=>0t#1

We will define generalized flag manifold from a complex Lie algebra.
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Let g© be a complex semissimple Lie algebra. Given a Cartan subalgebra h° of
g%, denote by R the set of roots of g© with relation to h®. Consider the decomposition
“=0® ) g,
aceR
where g = {X e g%;VH € h,[X, H] = a(H)X}. Let R" < R be a choice of positive
roots, X the correspondent system of simple roots and © a subset of X. Will be denoted

by (©) the span of O, Ry, = R\ (©) the set of the complementary roots and by Rj;+ the

set of positive complementary roots.

A Lie subalgebra p of g© is called parabolic if it contains a Borel subalgebra of

g® (i.e., a maximal soluble Lie subalgebra of g©). Take

pe =@ > gl@ > gS.@ > 6

ae(@yt ae(@)y* Bell},

the canonical parabolic subalgebra of g© determined by © which contains the Borel
subalgebra b = h @ Z gg.

Bell4
The generalized flag manifold Fe associated with g is defined as the homoge-

neous space
Fo = GC/Po,

where G is the complex compact connected simple Lie group with Lie algebra g and
Po = {g e G%; Ad(g)pe = pe} is the normalizer of pg in G*.

Let G be the real compact form of GE corresponding to g, i.e, G is the connected
Lie Group with Lie algebra g, the compact real form of g&. The subgroup K¢ = G n Pg
is the centralizer of a torus. Furthermore, G acts transitively on Fg. Since G is compact,

we have that Fg is a compact homogeneous space, that is,
Fo = G/Po = G/G n Py = G/Kg,

accordingly characterization given above from adjoint orbits of a regular element of g.

There are two classes of generalized flag manifolds. The first occurs when

© = . Therefore, the parabolic subalgebra is given by pe = h® @ Z gg, that is, is
Belly
equal to the Borel subalgebra of g* and T = Py n G is a maximal torus. In this case,

Fo = G(C/P@ = G/G n Pg = G/T is called mazimal flag manifold. When © # &, Fg is
called partial flag manifold.

We consider now a Weyl basis for g© given by {Xo}aerU{Ha}aes © ot X, € gg.

From this basis we determine a basis for g, the compact real form of g&, putting

g= SpanR{ V _1Hoqum Sa}a
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with Ag = X — X_o, So = V—1(X, + X_,) (Ay = S, = 0if a ¢ R) and H, € h* is such
that a(-) = (Ha,+), @ € R. The structure constants of this basis are determined by the

following relations

[Aa, Ss] = magAass +m_gplas
[Som S,B] = *maﬁAoH-ﬁ - ma,—BAa—,B )
[Aow Sﬂ] = ma,BSa+ﬂ + ma,—ﬂsa—ﬁ

[\/leowAﬂ] = 6(Ha)5’6
[\/leaa SB] = _5(Ha)Aﬁ )
[Aozv Sa] = 2\/T1Ha
where m,, g is such that [X,, Xs| = masXats, with maps =0if a + 5 ¢ R and my 5 =
—M_q —g. We remark that this basis is —B-orthogonal and —B(A,, Ay) = —B(S4, Sa) = 2,
where B Cartan-Killing form of g© (the Cartan-Killing form of g© restricted to g coincides
with the Cartan-Killing form of its compact form g and hr = spang{v/—1H,}acr is a
Cartan subalgebra of g). Moreover, if q and s are the subspaces spanned by {H,, A,} and

{S.} respectively, one has
l[g.a] = q, [9,5] =5, [s,5] =a.

The above construction of the Weyl basis can be found, e.g., in [26], p. 334.

This will be the basis used when dealing with flag manifolds in this work.

Remark 1.2.5 ([1]). An invariant order R}, in Ry, is a choice of a subset R}, such that

(i) R = Rk v R}, U R}, where Ry; = {—a;a € R},},

(i) If a € Rx v R}, B € R © Ry, and a + 8 € R, then a + 3 € R},

where Rg = (©) n R. One has a > f if and only if a — 3 € R},. Note that the choice

Rj; = R\ (6)" determines an invariant order in R, called natural invariant order.

Generalized flag manifolds M = G/K can be classified by mean the Dynkin
diagram of g©, the Lie algebra of G®. Indeed, let T' = I'(X) be the Dynkin diagram of
the set of simple roots of R. Painting black the nodes of I' corresponding to simple roots
in R); we obtain the Dynkin diagram of M = G/K, denotaded here by I'(X\©). The
subdiagram formed by white nodes connected by lines determines the semissimple part of
the Lie algebra of K, and each black node determines a u(1)-summand of this Lie algebra
of K. Therefore, this painted Dynkin diagram determines the reducible decomposition of g,
in addition to determine the flag manifold M. The case where all nodes of I'(X) have been
painted black corresponds to the manifold G/T of maximal flags, where T" is a maximal

torus in G.
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Proposition 1.2.6. ([3]) If G is not SO(2n), and it is not a excepitional Lie group, then
different painted connected Dynkin diagrams I' and 'y define equivalent flag manifolds
G/K and G'/K', i.e, there exists a isomorphism ¢ € Aut(G) such that o(K) = K', if the

subdiagrams T and T} of white roots corresponding to Ry and Ry are isomorphic.

From the above proposition, it is possible to give a complete list of all flag
manifolds G/K, where G is either a classical or an exceptional Lie group (up to isomor-

phism).

Example 1.2.7. Painted Dynkin diagrams of some generalized flag manifolds are given

in the next table.

G/K ¥\ I'(X\0)
SU6)/S(U((2) x U(2) x U(2)) {ag, ay}
SO(2n + 1)/T" {on, e,. .. an} o o oo

SO(2n)/SO(2(n — 2)) x U(1) x U(1) {on, o} —ooor ﬂo{
Es/SO(8) x U(1) x U(1) {an, as) —od o

1.3 Invariant Metrics and Isotropy Representation

Let M = G/K be a homogeneous space, provided with a transitive and
differentiable action G x M — M of the Lie group G over M, where K is the isotropy
subgroup of G' on some point of M. A Riemannian metric m (-,-) on M is said to be
G-invariant by the the action of G or if the elements of this group are isometry of the

metric m, i.e., if for all h e G and x € M

Mz (dhyu, dhv) = my(u,v), Yu,v € T, M.

Note that the G-invariant metric over a homogeneous space M = G/K is
completely determined by its value m,, at the origin zy = 1./, where 1 € G is the identity

of G. In this case, m,, is a inner product over 7, ,M. In fact, we can define for each

r=gKeG/K,

mx(uv U) = mgK<u7 U) = My, (d(gil)gKl% d(gil)gKU%

Vu,veTygM e geG.
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1.3.1 Isotropy Representation

From the notion of isotropy representation we can determine invariant metrics

on certain homogeneous spaces as follows.

Let G x M — M be a defferentiable and transitive action of a Lie group G
on the homogeneous space (M, m) endowed with a G-invariant metric m. Given x € G,
let K = G, be the isotropy subgroup of z. The isotropy representation of K is the
homomorphism g € K — dg, € GI(T,M). Note that m,, is a inner product on 7, (G/K),

invariant by such representation, where zo =1 - K.
A homogeneous space G/K is reducible if G has a Lie algebra g such that
g=tom,

with Ad(K)m < m. If K is compact, this decomposition always exists, namely, if we take

m = ¢+, —B-orthogonal complement to £ in g, where B is the Cartan-Killing form of g.

If G/K is reducible, then the isotropy representation of K is equivalent to

Ad| g, restriction to K of the adjoint representation of G in m:
j(k) = Ad(k)|w, Yk € K.

In particular, the same assertion holds if K is compact. Indeed, for each k € K, if

d
pr (Ad(exp(tX))xo|i=o,

o Ad(k) :m — m,Ad(k)X = d(C)1 X, (Cy, : K — K,Ci(h) = khk™)

e P.m—T,(G/K), X —»P(X)= )?(x0> =

b ](k> : Txo(G/K> - Tmo(G/K)hy(k))? = dkxo)?v

the following diagram commutes

Ad(k)
m m
T (G/K) —= T, (G/K)

being P a linear isomorphism.

A representation of a compact Lie group K is always orthogonal (preserves inner
product) on the representation space. We can conclude that every reductive homogeneous
space G/K has a G-invariant metric, since such a metric is completely determined by an

inner product on the tangent space at the origin 7, (G/K).

We remark that the set of all G-invariant metrics on G/K is in 1-1 correspon-
dence the set of inner products ¢, ) on m, invariant by Ad(k) onm, for each k € K, by

virtue the equivalence between the adjoint and isotropy representations on K cited above:

(Ad(K) X, Ad(K)Y) = (X,Y) VX, Y em ke K.
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The isotropy representation of K leaves m invariant, i.e, Ad(K)m < m and

decomposes it into irreducible submodules
m=m Pmy...Em,.

These submodules are inequivalent each other, which happens when G/K is a generalized

flag manifold. The submodules m; are called isotropy summands.

It follows that a G-invariant metric g on G//K is represented by a inner product

J1.xk = t1Q|m1 + t2Q|m2 + ..+ th|mn

on m, with ¢; positive constants and @ is (the extension of) a inner product on m,
Ad(K)-invariant.
In particular, if @ = (—B), with B Cartan-Killing form of G and ¢; = 1 for all

1 < i < n above, the G-invariant metric g on G/K represented by the inner product

g1k = (=B)lmy + (=B)lm, + - + (= B)m,
on m is called normal metric.
Example 1.3.1. Consider K = T% = S(U(1) x U(1) x U(1)), H = S(U(2) x U(1)),
G = SU(3). By using the above notations, we have the (—B)-orthogonal decomposition of

9,
g=su(3) =tdm,

with B(X,Y) = 6Tr(XY), X,Y € g, being the Cartan-Killing form of g and m =

my @ my &) ms, with

t = {d=diag(ia,ib,—i(a + b)) € 5u(3);a,be R}
m; = spamg (Ep — Ea) < su(3)
my = my = spamg (Fi3 — F31) < su(3)
m3 = mg3 = spamg (Ey — E3p) < su(3)

where E;; is the matrix having 1 in the (7, j) position and 0 elsewhere.

The decomposition of the isotropy representation m of T2 into pairwise

inequivalent irreducible Ad(7?)-modules m; is given by
m=m; O my D ms,
and an invariant metric on SU(3)/T? is determined by an inner product on m of the form
ger2 = (—t1B)|my + (—t2B)|my + (—=t3B)|ms, t1,t2,t3 > 0.

The normal metric on SU(3)/T? corresponds to the above inner product with ¢; = t, =

t3 = 1. Any homothetic metric to this is also called normal metric.

On the other hand, if we take t; = 2,5 = t3 = 1 we have in particular the
Kihler-Einstein metric on SU(3)/T?.
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We will now examine the properties of the isotropy representation of a maximal
flag manifold G/ K, associated with a complex simple Lie algebra g© whose the real compact

form is g. The toral maximal Lie subalgebra of g is denoted by t.

Consider the reductive decomposition g = t®m of g with respect to the negative
of the Cartan-Killing form —B(, ) of g, that is, m = t- and Ad(T)m < m.

Take a Weyl basis {H,,,...,Hy,} U {Xo € g5} with B(X,, X ,) = —1,
[Xo,X_ o] = —H, € tand [X,, Xg] = masXais, with mas = 0 if a + 8 is not root
and mgy g = —m_q _p. The numbers are called structure constants of g® = g with respect

to t. Then, the real subalgebra g is given by

l
0= RV-1H, ® ). (RA. +RS,) =t® Y. (RA, +RSL),

Jj=1 aceRt aeRT
where A, = X, — X_, and S, = vV—1(X, + X _,).

Since t = spang{v —1Hq, 1<j<}, then the reductive decomposition g = t®m
implies that

m= > (RA, +RS,). (1.4)

acR+t
Set m, = RA, + RS, for any a € R*. The linear space m,, is a irreducible Ad(7")—module
which does not depends on the choice of an ordering in R. Furthermore, since the roots of
g© with respect to t© are distinct, and the roots spaces are one-dimensional, it is obvious
that m, % mg as Ad(T)—representations, for any two roots «, f € R". Thus, by using
(1.4), one has the following

Proposition 1.3.2 ([5]). Let M = G/T be a mazimal flag manifold of a compact simple
Lie group G. Then, the isotropy representation of M decomposes into a discrete sum of

2-dimensional pairwise inequivalent irreducible T-submodules m,, as follows:

m= 3 m,

aceRTt

The number of these submodules is equal to the cardinality |R™|.
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Table 1 — The number of isotropy summands for maximal flag manifolds G /T

Maximal flag manifold G/T" Number of roots |R| m = @2:1

SUn+1)/T",n>1 n(n + 1) l=n(n+1)/2
SO(2n +1)/T" n > 2 2n° I =n®
Sp(n)/T",n >3 2n? I =n?
SO(2n)/T",n =4 2n(n — 1) l=n(n-1)
Go)T 12 [=6
Fy/T 48 [ =24
Es/T 72 [ =36
E:/T 126 =63
Es/T 240 [ =120

For n = 1 the maximal flag SU(n + 1)/T" is SU(2)/S(U(1) x U(1)) = CP*,
which is an isotropy irreducible Hermitian symmetric space.
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2 Laplacian and Canonical Variation of
Riemannian Submersions With Totally

Geodesic Fibers

Some useful properties of the spectrum of the Laplacian acting on functions
defined on the total space of a Riemannian submersion will be present here. In particular,
we will consider the family of submersions with totally geodesic fibers. This family includes
many classical examples, among other, the homogeneous fibrations, with the Hopf fibrations

as particular cases.

The Lie theoretic description of flag manifolds is applied in order to obtain the
horizontal and vertical distributions for each homogeneous fibration whose the total space
represents a class of maximal flag manifold G/T provided with a normal metric g, where

G is a compact simple Lie group and T' < G is a maximal torus in G.

The maximal flag manifolds dealt with in this work are associated with one of

the classical complex simple Lie algebras.

2.1 Horizontal and Vertical Laplacians

Let (M, g) and (B, ¢') be two completes Riemannian manifolds of dimensions
m and n, respectively. Let m : M — B be a submersion. The map 7 is called Riemannian
Submersion from (M, g) to (B, g') if at each p € M, dmy|y = (H, gpln) — (Tr(n) B, Gry)) I8

an isometry, where V = ker(dm,) is the vertical space and ‘H = V- is the horizontal space.

A fiber F, = 7 '(z), z € B, is a closed submanifold of M with dimension
r = m — n. The submersion © : M — B has totally geodesic fibers if, for all x € B, the
submanifold F, ¢ M is totally geodesic in M, i.e., if p € F,,, there exists a neighborhood
Q c T,F, of 0 € T, F, such that exp : { — Fj, is injective. This means that geodesics over
a fiber I, are geodesics over M too and that, reciprocally, any geodesic over M tangent

to F, at some point p € F}, is contained in F), for a time interval sufficiently small.

We denote by A, = —div, o grad, the Laplacian operator of (M, g) acting on
C®(M). The operator A,, densely defined on L?(M,vol,), is symmetric (hence closable),
non-negative has compact resolvent. Furthermore, it is well-known that A, is essentially
self-adjoint with this domain. We denote its unique self-adjoint extension also by A,.
Analogously, let A be the unique self-adjoint extension of the Laplacian of the fiber (F k),
where k is the metric induced by (M, g) on F.
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Definition 2.1.1 ([7]). The vertical Laplacian A, acting on L*(M,vol,) is the operator
defined at pe M by

(Aut)(p) = (Art[r,)(p),

and the horizontal Laplacian Ay, acting on the same space, is defined by the difference

Ap =0, — A,

Both Ay, and A, are non-negative self-adjoint unbounded operators on L?(M, voly),
but in general, are not elliptic (unless 7 is a covering). We now consider the spectrum of

such operators.

As remarked above, A, is non-negative and has compact resolvent, that is, its
spectrum is non-negative and discrete. Since the fibers are isometrics, A, also has discrete

spectrum equal to the fibers. However, the spectrum of Ay, need not be discrete.

One of the main observation on which this work is based is given by the

following theorem.

Theorem 2.1.2 ([7]). If the fibers of the Riemannian submersion w : M — B are totally

geodesics the operators Ay, A, e Ay commute with each other.

When A, and A, commute, we have the following decomposition of L*(M,g).

Theorem 2.1.3 ([7]). The Hilbert space L*(M,g) admits a Hilbert basis consisting of

simultaneous eigenfunctions of Ay e A,.

2.2 Canonical Variation

From a Riemannian submersion with totally geodesic fibers, it is possible to
define a 1-parameter family g;, t > 0, of other such submersions by scaling the original

metric of the total space in the direction of the fibers.

This construction, called the canonical variation, will be fundamental in the
determination of bifurcation and local rigid instants. Indeed, the criterion to be applied to
calculate these instants, according to Corollary 1.1.7 enunciated in the previous section,
makes use of the first eigenvalue of the Laplacian A; of the family g;. Furthermore, the

spectrum of A; has description in terms of the vertical and horizontal Laplacians.

Definition 2.2.1 ([7]). Let F'---(M,g) = B be a Riemannian submersion with totally
geodesic fibers. Consider the 1-parameter family of Riemannian submersions given by
{F--(M,g) 5 B,t >0}, where g, € R*(M) is defined by

t*g(v,w), se wv,w are verticals
gi(v,w) = 0, se v 1is wvertical and w is horizontal

g(v,w), se wv,w are horizontals.
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Such family of Riemannian submersions is called the canonical variation of
F---(M,g) > B or, for simplicity, we may also refer to the family of total spaces of

these submersions, i.e., the Riemannian manifolds (M, g;), as the canonical variation of

(M, g).

Proposition 2.2.2 ([7]). The family {F ---(M,g;) > B,t > 0} of Riemannian submer-
sions has totally geodesic fibers, for each t > 0. Furthermore, its fibers are isometrics to
(F,t?k), where (F, k) is the original fiber of 7 : M — B.

Remark 2.2.3. Note that, for a # b, the metrics g, e g, are not conformal. Furthermore,
for each ¢ > 0, g; is the unique Riemannian metric that satisfy the conditions of Definition
2.2.1.

The following shows how to decompose A, in terms of the vertical and horizontal

Laplacians.

Proposition 2.2.4 ([11]). Let A; the Laplacian of (M, g;). Then

1 1
Av= Dyt 58, =4, + (5

Corollary 2.2.5 ([11]). For each t > 0, the following inclusion holds

1A, (2.1)

1
a(Ay) co(A,) + (;2 —1o(A,), (2.2)
where o(Ay), 0(A,) and o(A,) are the respective spectrum of Ay, A, e A,. Since the above

spectra are discrete, this means that every eigenvalue \(t) of A, is of the form

ML) = e+ (o~ 1)y, (23

for some py, € o(A,) and some ¢; € a(Ay).

Proof: By Theorem 2.1.2, A, and A, commute. Hence, by the Spectral The-
orem, such operators are simultaneously diagonalizable, in the sense that there exists
a unitary operator U of L*(M,vol,) such that UA,U ' = fy; and UA,U ' = f, are
multiplication operators by functions fj; and f, respectively. For such multiplication

operators, the spectrum o(7%) is the essential range, ess.Im(f)(< Im(f)), of f. Then, by
the expression of A; in (2.2.5),

o(Ay) = ess.Im(fy + (%2 —1)fy) < ess.Im(fpr) + ess.Im((tl2 —1)fy) =o(Ay) + (t% —1Do(Ay).

Since both spectra are discrete, we may remove the closure and the inclusion (2.2) is

proved.
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Corollary 2.2.6. If A\i(t) is the first positive eigenvalue of Ay, then
)\1(15) = /Ll,v 0<t< 1,

where 1 s the first positive eigenvalue of A,.

1
Proof: Since A\ (t) = ux + (t—2 —1)¢;, for some i, € 0(A,) and ¢; € o(A,), if

1 1 .
0<t<1, (t—2 —1)¢; = 0 and A (t) = pui, + (t—2 —1)¢; = py = p1, where pq € 0(4,) is the
first positive eigenvalue of the operator A,.

O

We remark also that not all possible combinations of i, and ¢; in the expression
(2.3), Corollary 2.2.5, give rise to an eigenvalue of A;. In fact, this only happens when
the total space (M, g) of the submersion is a Riemannian product. Determining which
combinations are allowed is complicated in general and depends on the global geometry of

the submersion. Moreover,the ordering of the eigenvalues of A; may change with .

We have the following important property of A;.

Proposition 2.2.7 ([10]). Using the same notations above, it has that
o(Ap) < o(Ay),
for allt > 0.

Proof: For each ¢ : B — R and its lift zZ =om,

Agiz = (Apy)om+ g(gradgzz, ﬁ), (2.4)

where H is the mean curvature vector field of the fibers. Since we assumed the fibers of 7
are totally geodesics, H = 0 over the fibers. It follows that, if ¢ is a eigenfunction of Ap,
then its lift QZ is an eigenfunction of A, with the same eigenvalue (and constant along the
fibers) and therefore

o(Ap) c a(A,).

Since the fibers of 7 are totally geodesics with respect to g;, the above inclusion above

holds when A, is replaced with Ay, i.e,

o(Ag) co(dy), t>0.
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It follows from (2.4) other property of the spectrum of Ay; o(A}) contains but
not coincides with the spectrum of the basis B. In fact, if f is a C* function on the basis

B, then
(Ag’?) O = Ag(fo T) = Ah(?o ),

where Ay is the Laplacian operator acting on functions in C*(B, ¢').

Corollary 2.2.8. Denoting by 1 the first positive eigenvalue of Ap and by Ai(t) the first
positive eigenvalue of Ay, the following inequality holds

)\1(1&) < 61, Yt > 0.

As consequence of the Corollaries 3 and 4, we have that 1 < A\ (t) < 1, where

1 the first positive eigenvalue of the Laplacian A, on the total space M.

When j = 0 in the expression (2.3), if \*%(t) = ux € o(4A,) remains an
eigenvalue of A; for t # 1, such eigenvalues will be called constant eigenvalue of A, since
they are independent of t. We stress that A*°(¢) is not necessarily a constant eigenvalue of
A, for all k. A simple criterion to determinate when A*°(¢) € o(A,) is consequence of the

following Proposition.

Proposition 2.2.9 ([10]). If 7 : M — B is a Riemannian submersion with totally
geodesic fibers, then the eigenfunction QZ of Ay is constant along the fibers if and only
if Y s the lift of some eigenfunction of Ap, that is, @Z =1 om, for some eigenfunction
¥ : B— R of Agon the basis.

Corollary 2.2.10. p = \*0(t) € 0(A,) fort # 1 = € o(Ap).

Proof: Fixed t # 1, since

. 1 1
NI (t) = py + (t—2 —1)¢p; and A=A, + (t—2 —1)A,,

we have that \*/(¢) € o(A,) if and only if there exists ¢ € C*(M) such that
Ay = and Agih = 650,
with 1, € 0(A,) and ¢; € o(A,). In particular, if we have \*(¢) = iy + (tl2 —1)0ea(A,),
there exists v such that
AgYZ:NkJ and Aviz()-?Z:O.

However, AU@Z = 0 implies that 1; is constant along the fibers. Therefore, by Proposition
2.2.9, there exists a eigenfunction ¢ : B — R in C*(B) such that Ay = pg) and 1; =
pom. It follows that py € o(Ap). The reciprocal results from the fact that o(Ap) < o(Ay).

O
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2.2.1 Homogeneous Fibration

In our main result, the canonical variations g;, obtained from a Riemannian
submersion with totally geodesic fibers, are homogeneous metrics, which are trivial solutions
to the Yamabe problem, since every homogeneous metric has constant scalar curvature.
This makes these metrics good candidates for admitting other solutions in their conformal

class.

The homogeneous fibrations are obtained from the following construction. Let
K < H < G be compact connected Lie groups, such that dim K/H > 2. Consider the

natural fibration
7. G/ K — G/H

akK — o,

with fibers H/K (em eK) and structural group H. More precisely, 7 is the associated
bundle with fiber H/K to the H-principal bundle p: G — G/H.

Let g be the Lie algebra of G and hh o ¢ the Lie algebras of H and K, respectively.
Given a inner product on g, determined by the Cartan-Killing form B of g, since K, H
and G are compacts, we can consider a Adg(H )-invariant orthogonal complement ¢ to
hin g, i.e., [h,q] < q, and a Adg(K)-invariant orthogonal complement p to € in b, i.e.,

[, p] < p. It follows that p @ q is a Adg(K)-invariant orthogonal complement to € in g.

The Adg(H )-invariant inner product (—B)|, on q define a G-invariant Rieman-
nian metric ¢ on G/H, and the inner product (—B)|,, Adg(K)-invariant on p, define on
H/K a H-invariant Riemannian metric § on H/K. Finally, the orthogonal direct sum of

these inner products on p @ q define a G-invariant metric g on G/K, determined by
JX + VY + Wex = (=B)[(X,Y) + (=B)[,(V, W), (2.5)

for all X,Y € q and V,WW € p; ¢ is a normal homogeneous metric on G/K and the
(—B)-orthogonal direct sum m = p @ q is the isotropy representation of K.

Theorem 2.2.11 (([8], p. 257)). The map 7 : (G/K,g9) — (G/H,g) is a Riemannian

submersion with totally geodesic fibers and isometric to (H/K,§).

If we take for each t > 0 the metric g; that corresponds to the inner product

onpdq
(= (=B)lq + (= B)l,, (2.6)
where B is the Cartan-Killing form of g, we have that the map = : (G/K, ¢:) — (G/H, g)
is a Riemannian submersion with totally geodesic fibers and isometric to H/K provided

with the induced metric —>B|,. Hence, we obtain the canonical variation of the original
homogeneous fibration 7 : (G/K, g) — (G/H, g).
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Example 2.2.12. Consider K = T? = S(U(1) x U(1) x U(1)), H = S(U(2) x U(1)),
G = SU(3) and

7 SU(3)/T?* — SU(3)/S(U(2) x U(1)) = CP?
the canonical map defined by 7(zK) = xH, x € G. According 1.3.1, we have the (—B)-

orthogonal decomposition of g,
g=5u3) =t@pDg,
with B(X,Y) = 6Tr(XY), X,Y € g, being the Cartan-Killing form of g and

= {d =+/—1diag(a,b, —(a + b)) € su(3);a,b € R}
= spamg (Ej2 — Ea1) < su(3)

= spamg (E13 — E31, Ea3 — E33) < su(3)

= s(u@)oul)) =top

O T
|

where E;; is the matrix having 1 in the (7, j) position and 0 elsewhere.

It follows that 7 : SU(3)/T* — SU(3)/S(U(2) xU(1)) = CP? is a Riemannian
submersion with totally geodesic fibers isometric to (H/K, §), H/K = SU(2)/S(U(1) x
U(1)) = CP' and § the metric induced by the inner product (—B)|,. The metric g on
SU(3)/T? obtained from the above decomposition, according 2.5, is exactly the normal
metric. In fact, we have that the decomposition of the isotropy representation m of 7% into

pairwise inequivalent irreducible Ad(7?)-modules m; is given by
m=m; @ my;Dms,

with my = p, my = spamg (E13 — E31) and m3 = spamg (Fog — E32). An invariant metric

on SU(3)/T? is determined by an inner product on m of the form
ger2 = (_tlB)|m1 + <—t2B>’m2 + (_t3B)|m37 t1,to,t3 > 0.

The normal metric on SU(3)/T? corresponds to the above inner product with ¢, = t5 =

t3 = 1. Any homothetic metric to this is also called normal metric.

Moreover, note that the metric ¢ on the basis G/H = SU(3)/S(U(1) x U(2))
is determined by the inner product on q given by (—B)|, and

(CP* = SU(3)/S(U1) x U(2)),9)

is a compact isotropy irreducible symmetric space, as well as the fiber (CP' = SU(2)/S(U(1) x
U(1)),9)-

Therefore, the one-parameter family of Riemannian submersions

CP'- .- (SU(3)/T? ¢;) = CP?),
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is the canonical variation of the original submersion
(CP'g)---(SU(3)/T% g) = (CP?, g),

with totally geodesic fibers isometric to (CP',#%§), where g, according (2.6), can be

determined by the following inner product on m,

(9)er2 = (=" B)lm; + (= B)lmy + (=B)lmy, t>0. (2.8)
We remark that at t = 1, g; is the normal metric on SU(3)/T".

Example 2.2.13. Let SO(5) be the special orthogonal group and 7% = U(1) x U(1)
SO(5) maximal torus in SO(5). The space SO(5)/U(1) x U(1) is a maximal flag manifold,
according definition. The Lie algebra so(5) (classical Lie algebra of the type Ds) of
G = SO(5) decomposes into the (—B)-orthogonal direct sum,

s0(b) =tdm,

where B is the Cartan-Killing form of so(5), defined by B(X,Y) = 3Tr(XY), X, Y € s0(5),
t is the Lie algebra of T2, and m is the isotropy representation of K = T2. The Lie
subalgebra ¢ < s0(5) is a maximal abelian Lie subalgebra of s0(5) formed by the diagonal
null trace matrices belonging to so(5). With respect the Cartan Lie subalgebra £C, the
set of positive roots of 50(5)(C is {ag = A\ — Ay, a0 = Ao, 3 = A1, 4 = Ay + Ao}, where the
functional \; is given by diag(ay,...,a4) — A;(diag(ay, ..., a4)) = a;, for each 1 < i < 4.
The space m decomposes into four pairwise inequivalent irreducible Ad(7?)-modules m,,,
1 < i <4, as follows

m=mg, @mag @mag @mau

where each two dimensional irreducible submodule m,, above is generated by {A,, S.},

with A, = X, + X 4, So = V—1(X, — X_,) and X, belongs to the Weyl basis of so(5).

Setting G = SO(5),H = SO(4) = SO(3) x SO(3) and K = T? = U(1) x
U(1) = SO(2)xSO(2), we have that K ¢ H < G, with G, H and K compact connected Lie
groups. Consider the canonical map 7 : SO(5)/T? — SO(5)/SO(4) = S*. Let g = so(5),
h = s0(4) = su(2) @ su(2) and ¢ = {d = diag(0, ia,ib, —ia, —ib)) € s0(5);a,b € R} be
the Lie algebras of G, H and K, respectively. As we saw previously, since K, H and
G are compacts, we can consider a Ad(H )-invariant (—B)-orthogonal complement q to
h =s0(4) = su(2) ®su(2) in so(5), and a Ad(K)-invariant (—B)-orthogonal complement
p to €in b.

The Lie algebra g = so0(5) decomposes as
s50(5) =t@pdq=EtEm,

and therefore, as previously stated, m : (SO(5)/T?, g) — (SO(5)/SO(4) = S* g) is
a Riemannian submersion with totally geodesic fibers isometric to (H/K,§), H/K =
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SO(4)/T* = SO(4)/S0(2) x SO(2) = S? x S?, g the normal metric determined by the
inner product (—B)|w, § the metric given by (—B)|, and ¢ defined by the inner product
(~B)l,

In order to determine the vertical distribution p (tangent space to the fiber)
and the horizontal distribution q (tangent space to the basis), we note that, since m = p@q
and dim SO(5)/SO(4) = S* = 4, by the fact that dimm,, = 2, for each i = 1,2,3,4, we
have that q is equal to the direct sum of two irreducible submodules of m, as well as p.

We will determinate the submodules that form each of these spaces, by using the relations

[b,q] = q,[€,p] = p

and the property of Weyl basis

[Aa, Sﬁ] = ma’ngH_g + m_aﬂAa_g
[Sou S,B] = _ma,,BAa+,3 - ma,fﬁAafﬁ )
[AOH S,B] = ma,ﬁSa-‘r,B + ma,—ﬂ‘s’a—ﬁ

where m, 5 is such that [X,, Xg] = masXats, with mys = 0 if a 4+ 5 is not root and
Mas = —M_q—p. We remark that this basis is (—B)-orthogonal and —B(A,, As) =
—B(Sa,S.) = 2, B Cartan-Killing form of g. This relations allow us conclude that
q = my, ®m,, and p = m,, @ m,,, since h = €D p. Hence, by scaling the normal
metric gerz = (—B)lma, + (—B)lma, + (—B)lma, + (—B)|m,, of the total space SO(5)/T?
in the direction of the fibers, i.e., multiplying by ¢, > 0, (=B)|ma, and (—B)|n,, in the

expression of g we obtain the following canonical variation of the metric ¢
(g)ers = (= B)lma, + (= B)lnay + (=B, + (= B)lina,
according (2.6).

Example 2.2.14. Let gs be the exceptional complex simple Lie algebra of type G,. We
will denote by G5 the compact simple Lie group whose Lie algebra is g, and by T' < G35 a
maximal torus there, where 7' = U(1) x U(1). The full flag manifold associated with gs is
Go/T. The Lie algebra go decomposes into the (—B)-orthogonal direct sum

g2 :E@ma

where B is the Cartan-Killing form of G, defined by B(X,Y) = Tr(ad(X)ad(Y)), X,Y €
go, £ is the Lie algebra of T', maximal abelian Lie subalgebra of g, formed by the diagonal
null trace matrices belonging to g and m its isotropy representation of 7. With respect

the Cartan Lie subalgebra €, the root system of g, can be chosen as by

{iOél, i&g, i(Oél + 062), i(Oél + 2@2), i(Ozl + 3062), i(20&1 + 30&2)},
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and we fix a system of simple roots to be Il = {ay, as}. With respect to II the positive

roots are given by
{an, g, (a1 + ag), (a1 + 2a2), (a1 + 3az), (201 + 3az)}.

The maximal root is @ = 2a; + 3ay. The angle between «; and «y is 57/6 and we have
lon|| = v/3 [z ||. Moreover, the roots of g, form successive angles of 7/6. Since in this case
it has six positive roots, the space m decomposes into six pairwise inequivalent irreducible
Ad(T)-modules as follows

m= mal @ mag @ ma1+a2 @ ma1+2a2 @ ma1+3a2 @ m2a1+3a27

where each two dimensional irreducible submodule m,, above is generated by {A,, S.},
where A, = X, + X_,, So = vV—1(X, — X_,) and X, belongs to the Weyl basis of gs.

Setting G = Gy, H = SO(4) = SO(3) x SO(3) and K =T =U(1) x U(1) =
SO(2) x SO(2), we have that K ¢ H < G, with G, H and K compact connected Lie groups.
Consider the canonical map 7 : Go/T — G5/SO(4). Let g = go, h = s0(4) = su(2)Dsu(2)
and € = {d = diag(ia, ib, —i(a + b)) € sl(3) < g2;a,b € R} be the Lie algebras of G, H and
K, respectively. As we saw since K, H and G are compacts, we can consider a Ad(H)-
invariant (—B)-orthogonal complement q to h = s0(4) = su(2) @ su(2) in go, and a
Ad(K)-invariant (—B)-orthogonal complement p to € in b.

The Lie algebra g, decomposes into the sum
G =tOpDg=tOm,

and follows that
I (GQ/T, g) I (G2/SO(4)7.§)

is a Riemannian submersion with totally geodesic fibers isometric to (H/K, §), H/K =
SO4)/T = SO(4)/SO(2) x SO(2) = S* x S?, g the normal metric determined by the
inner product (—B)|w, ¢ the metric given by (—B)|, and g defined by the inner product
(~B)ls

Since m = p@q and dim SO(4)/T = S* x S? = 4, by the fact that dimm, = 2,
for each positive root a, we have that q is equal to the direct sum of four irreducible
submodules of m while p is the direct sum of two irreducible submodules. In order to find
the submodules that composes each of these distributions we apply the relations [h, q] < q
and [& p] < p and the same property of the Weyl basis in the previous example, obtaining
P =My 10, D Moy i3a, a0d q = My, DMy, B My, 124, D Mo, +3a,, Since h = €D p. Hence,

by scaling the normal homogeneous metric

)er = (=B, + (=B)lmay + (= B)liney oy T (=Bl 120,
+t2<_B)‘ma1+3a2 + (_B)|m2a1+3a27
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defined on the total space G/T in the direction of the fibers, i.e., multiplying by #*,¢ > 0,
the parcel (—B) + (—B)

canonical variation n; of the metric g

in the expression of g we obtain the following

|ma1+a2 |mo¢1+3a2

m)er = (=B)lmay + (= B)lnay + (= Blay 0y + (—B) |y 420
+t2<_B>|ma1+3a2 + (_B)|m2a1+3a27

according (2.6).

2.2.2 Canonical Variations of Normal Metrics on Maximal Flag Manifolds

In this section we will present in detail the construction of the 1-parameter
families of homogeneous metrics from normal homogeneous metrics on maximal flag
manifolds. Such homogeneous spaces are total spaces of a homogeneous fibration with
fibers and basis spaces being well known homogeneous spaces, namely symmetric spaces

or a maximal flag manifold of another type.

Remark 2.2.15. At first, we will consider the following

1. From now on, the total spaces of the original homogeneous fibrations are endowed
with its normal homogeneous metric induced by the Cartan-Killing form of the

respective complex classical simple Lie algebras that determine it;

2. Given K ¢ H < (G, compact connected Lie groups, with Lie algebras ¢, h and g
respectively, the homogeneous fibrations 7 : G/K — G/H are such that the basis
space G/H is a Hermitian symmetric space with irredudcible isotropy representation
and a metric induced by the restriction of the Cartan-Killing form of g to its isotropy
representation (horizontal distribution) and the fiber H/K (with dim H/K > 2) is
some maximal flag manifold, i.e, K is a maximal torus contained in H, and H/K is
provided with the normal metric induced by the Cartan-Killing form of g restricted

to its isotropy representation (vertical distribution).

Proposition 2.2.16. Let g and b be complex classic simple Lie algebras such that h c g,
and let t be a Cartan subalgebra for g with Cartan-Killing form B. If R is the root system
of t associated with g, then there exists a subset R’ of R such that

(a) The subspace t(R') of b spanned by the dual vectors H,, o € R', is a Cartan subalgebra
of b and R’ is a system of roots of t(R').

(b) The Lie algebra b has a (—B)-orthogonal decomposition into direct sum given by

h= t(R/) + Z Has

a€ER/

where the g, are root spaces with o € R'.
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Proof: (a) Since g decomposes as

g:t+zga

and h < g is a Lie subalgebra, the Cartan subalgebra of h must be contained in t. Then,
there are dual vectors H,,,...,H,, € t,a; € R, that span the Cartan subalgebra of b,
with [ equal to its dimension. Take R' = span(ay,...,q;) < R. Thus, we can consider
Y = {ay,..., o} as a simple root system and follows that R’ is a system of roots of the
Cartan subalgebra t(R').

(b) It is a direct consequence of (a).

O

Corollary 2.2.17. Let 7 : G/K — G/H be a homogeneous fibration as above, with totally
geodesic fiber H/K (dim H/K > 2) and let g, and b be the Lie algebras of G, K and H.
Accordingly the current notations, if p and q are the vertical and horizontal distribution, i.e,
p is the tangent space to the fiber H/K and q is the tangent space to the basis space G/H,
then p is equal to the (—B)-orthogonal direct sum of the root spaces g which a € R' and

hence q is equal to the (—B)-orthogonal direct sum of the root spaces gz which € R\R'.

The next lemma will be applied to find vertical and horizontal distributions.

Lemma 2.2.18 ([26]). Let g be a semisimple Lie algebra and ¥ a system of simple roots
of the Cartan subalgebra by. Take a subset © < 3 and denote by (©) the set of roots spanned
by O, i.e., (O) is the set of roots which are linear combinations of © only. Consider the
space

30)=50)+ Y g,

ae(®)
where H(O) is the subspace of b spanned by the dual vectors H,,a € ©. Then, g(0) is a
semisimple Lie subalgebra of g spanned by {g.; ta € ©}. Its Dynkin diagram coincides

with the diagram associated with ©, seen as a subset of 3.

We can now introduce the construction of the canonical variations g, hy, k;, m;, n,,
of the normal metrics on the maximal flag manifolds SU (n+1)/T™, SO(2n+1)/T", Sp(n)/T",
SO(2n)/T", Gy/T, respectively, as in the following Sections.

2221 (SU(n+1)/T" g,),n > 2:

In first, we observe that for n = 1 the maximal flag
SU(n +1)/T™ is SU(2)/S(U(1) x U(1)) = CP', which is an isotropy irreducible Her-

mitian symmetric space.
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We will denote by G = SU(n + 1) the compact simple Lie group whose
Lie algebra is g = su(n + 1) and by 7" < G a maximal torus there, given by 7" =
S(U(1) x...xU(1)) = SU(1)""). The maximal flag manifold associated with su(n + 1)
is SU(n + 1)/T™. The Lie algebra su(n + 1) decomposes into the (—B)-orthogonal direct
sum

su(n+1) =tPdm,

where B is the Cartan-Killing form of su(n + 1), defined by B(X,Y) = 2(n + 1)Tr(XY),
X,Y esu(n + 1), ¢ is the Lie algebra of 7", maximal abelian Lie subalgebra of su(n + 1)

formed by the diagonal matrices of the form

g = {\/jl-diag(al, - ,an+1)§2ai = O}
i=1

and m the Ad(7T")-invariant isotropy representation of 7". With respect the Cartan Lie

subalgebra £, the root system of su(n + 1)© can be chosen as by

where J; is given by diag(ay, . . ., a,1) — Ni(diag(aq, ..., a,41)) = a;, foreach 1 < i < n+1.
We fix a system of simple roots to be ¥ = {a;;11;1 < i < n} and with respect to 3 the

positive roots are given by
Rt = {Oéij = )\z — /\],Z < j}

n(n + 1) .. . n(n+1)
positive roots, hence m decomposes into — 5

In this case it has pairwise

inequivalent irreducible Ad(7™)-modules as follows

m= P m,,, (2.9)

i<j<n+1

where each two dimensional irreducible submodule m,, above is generated by {A,, S.},
where A, = X, + X_o, So = \m(Xa — X_,) and X, belongs to the Weyl basis of
su(n + 1). Remembering that the root vectors {Ha,,, . - ., Ha,,,,} U { X4 € su(n + 1)S} of
this basis satisfy B(X,, X_o) = —1 and [X,, X_o] = —H, € &.

Setting H = S(U(1) x U(n)) and K = T", we have that K < H < G, with

G, H and K compact connected Lie groups. Consider the canonical map
7:S5U(n+1)/T" — SU(n+1)/S(U(1) x U(n)).

Let g = su(n + 1), b = s(u(l) ®u(n)) and € be the Lie algebras of G, H and K,
respectively. As we saw previously, since K, H and G are compacts, we can consider
a Ad(H)-invariant (—B)-orthogonal complement ¢ to b in g, and a Ad(K)-invariant
(—B)-orthogonal complement p to £ in b.
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The Lie algebra g decomposes into the sum
g=sun+1)=tdpdqg=tDm,
and follows that
7:(SUMm+1)/T",9) — (SU(n+1)/S(U(1) x U(n)),q) (2.10)
is a Riemannian submersion with totally geodesic fibers isometric to (H/K, §),
H/K = S(U(1) x U(n))/T" = S(U(1) x U(n))/S(U1)"*) = SU(n)/T",

"' = S(U(1)"), g the normal metric determined by the inner product (—B)|y, § the
metric given by (—B)|, and g defined by the inner product (—B)|;. Since m = p @ g
and dim SU(n)/T"" = n(n — 1), by the fact that dimm, = 2, for each positive root
a, we have that the vertical space p (tangent to the fiber SU(n)/T" ') is equal to the
, n(n —
direct sum of
n(n+1) n(n—-1)

2 2
ton(n +1).

irreducible isotropy summands of m while q is the direct sum of

= n isotropy summands, once dimension of the total space is equal

In order to find the submodules that compose these distributions, observe that

the fiber SU(n)/T™ " of the original fibration is a maximal flag manifold and the space p
n(n —1)

2
pairwise inequivalent irreducible Ad(7"!)-modules equal to the root spaces relative to

is exactly the isotropy representation of 7!, which in turn decomposes into

the positive roots in R’ = R,
R = {Oél'j = )\l—)\],l <]<n}

The Riemannian metric § on the fiber SU(n)/T" !, represented by (—B)|,, is the normal

metric represented by the inner product
g = ) (=B)lm,
1<j<n
and the homogeneous metric ¢ defined by the inner product (—B)|; makes the basis
(SU(n+1)/S(U(1) x U(n)),g) an isotropy irreducible compact symmetric space.
Hence, by scaling the normal metric
grn = Y (=B,

i<j<n+1

on the total space SU(n + 1)/T™ in the direction of the fibers by ¢?, i.e., multiplying
by t*,t > 0, the parcels (—B)]maij, 1 < i < j < n in the expression of g we obtain the

canonical variation g, of the metric g, according (2.6).
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2222 (50(2n+1)/T" hy),n > 4:

For n = 2 we have the maximal flag SO(5)/T? = SO(5)/U(1) x U(1), for which
the canonical fibration already been obtained in Example 2.2.13, 2.2.1.

We will denote by G = SO(2n + 1) the compact simple Lie group whose
Lie algebra is g = s0(2n + 1) and by 7" < G a maximal torus there, given by T" =
U(l) x ... x U(1) = U(1)". The maximal flag manifold associated with so(2n + 1) is
SO(2n + 1)/T™. The Lie algebra so(2n + 1) decomposes into the (—B)-orthogonal direct
sum
so(2n +1) =t@m,

where B is the Cartan-Killing form of so(2n + 1), defined by B(X,Y) = (2n — 1)Tr(XY),
X,Y €s0(2n+1), tis the Lie algebra of 7", maximal abelian Lie subalgebra of so(2n + 1)

formed by the diagonal matrices of the form
t = {\/?1 -diag(0,a1,...,an, —a1,...,—ay);a; € R}

and m the Ad(7T™)-invariant isotropy representation of 7". With respect the Cartan Lie
subalgebra €©, the root system of s50(2n + 1)(C can be chosen as by

R={tN+X, tA;l<i<j<nl<k<n}

where ); is given by diag(ay, ..., a,) — X\;(diag(ay,...,a,)) = a;, for each 1 <i < n. The
system of simple roots is 3 = {A; — Ao, ..., A\y_1 — Ay, Ay} and with respect to X the
positive roots are given by R = {\; — A\;, \i + A\j, \p; 1 <i < j <n,1 <k < n}. In this
case it has n? positive roots, hence m decomposes into n? pairwise inequivalent irreducible
Ad(T™)-modules as follows

m= P m,, (2.11)

aeR+t
where each two dimensional irreducible submodule m,, above is generated by {A,, S.},
where A, = X, + X_4, So = \ﬁ(Xa — X_,) and X, belongs to the Weyl basis of
50(2n + 1)¢. Remembering that the root vectors {Hy,, ..., Ha, } U {X, € 50(2n + 1)5} of
this basis satisfy B(X,, X_o) = —1 and [X,, X _o] = —H, € &

Setting H = SO(2n) and K = T", we have that K ¢ H < G, with G, H and

K compact connected Lie groups. Consider the canonical map
7:502n +1)/T" — SO(2n +1)/50(2n).

Let g = s0(2n+1), h = s0(2n) and € be the Lie algebras of G, H and K, respectively. As we
saw previously, since K, H and G are compacts, we can consider a Ad(H )-invariant (—B)-
orthogonal complement q to b in g, and a Ad(K)-invariant (—B)-orthogonal complement
ptotin b.
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The Lie algebra g decomposes into the sum
g=s0(2n+1)=t@pOq=tOm,
and follows that
7:(SO2n+1)/T", g9) — (SO(2n +1)/S0(2n), g) (2.12)

is a Riemannian submersion with totally geodesic fibers isometric to the maximal flag
manifold (H/K, §),
H/K = SO(2n)/T",

g the normal metric determined by the inner product — By, § the metric given by (—B)]|,
and ¢ defined by the inner product (—B)|,. Since m = p@q and dim SO(2n)/T" = 2n(n—1),
by the fact that dimm, = 2, for each positive root «, we have that the vertical space p
(tangent to the fiber SO(2n)/T") is equal to the direct sum of n(n — 1) irreducible isotropy
summands of m while q is the direct sum of n? — n(n — 1) = n isotropy summands, once

dimension of the total space is 2n°.

Since the fiber SO(2n)/T™ of the original fibration is a maximal flag manifold,
the space p is exactly the isotropy representation of 7", which in turn decomposes into
n(n— 1) pairwise inequivalent irreducible Ad(7™)-modules equal to the root spaces relative

to the positive roots in R’ < R,
R ={+\+)\;1<i<j<nh

The Riemannian metric § on the fiber SO(2n)/T™", represented by (—B)|,, is the normal

metric determined by the inner product

gern = Y (-B)n,

aeER'NnRT

and the homogeneous metric ¢ defined by the inner product (—B)|; makes the basis
(SU((2n + 1)/S0O(2n), §) a irreducible Hermitian symmetric space, isometric to the round

sphere.
Hence, by scaling the normal metric
gern = D (=B,
aERT

on the total space SO(2n + 1)/T™ in the direction of the fibers by #?, i.e., multiplying by
t*,t > 0, all the (—B)|m.,a € R n R" in the expression of g, we obtain the canonical

variation h; of g.
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2223 (Sp(n)/T" ki), n = 3:

Let G = Sp(n) be the compact simple Lie group whose Lie algebra is g = sp(n)
and by T" < G a maximal torus there, given by T" = U(1) x ... x U(1) = U(1)". The
maximal flag manifold associated is Sp(n)/T" and the Lie algebra sp(n) decomposes into
the (—B)-orthogonal direct sum

sp(n) = A m,

where B is its the Cartan-Killing form of defined by B(X,Y) =2(n + 1)Tr(XY), X,Y €
sp(n), € is the Lie algebra of 7", maximal abelian Lie subalgebra of sp(n) formed by the

diagonal matrices of the form
t={v-1-diag(a,...,an, —a1,...,—a,);a; € R}

and m the Ad(7™)-invariant isotropy representation of 7". With respect the Cartan Lie

subalgebra £, the root system of sp(n)® can be chosen as by
R = {i)\ﬂ_r)\],iQ)\k,l <Z<]<n,1 <l€<n},

where )\; is given by diag(ay, ..., a,) — X\;(diag(ay,...,a,)) = a;, for each 1 <i < n. The
system of simple roots is X = {A\; — Ag,..., A1 — Ap, 2, } and with respect to 3 the
positive roots are given by R = {\; — \j, \i + \j,2\; 1 <i < j <n,1 <k <n}. In this
case it has n? positive roots, hence m decomposes into n* pairwise inequivalent irreducible
Ad(T™)-modules as follows

m= P m,, (2.13)

aERt
where each two dimensional irreducible submodule m,, above is generated by {A., S.},
where Ay = Xo+X_a, Sa = vV—1(Xo — X_,) and X, belongs to the Weyl basis of sp(n)®.

Setting H = U(n) and K =T", we have that K ¢ H < G, with G, H and K
compact connected Lie groups. Consider the canonical map

7 :Sp(n)/T" — Sp(n)/U(n).

Let h = u(n) and € be the Lie algebra H. Since K, H and G are compacts, we can consider
a Ad(H)-invariant (—B)-orthogonal complement ¢ to b in g, and a Ad(K)-invariant

— B-orthogonal complement p to € in b.

The Lie algebra g decomposes into the sum

g=s5p(n) =tPPpDq=EtDm,

and follows that
™ (Sp(n)/T", g) — (Sp(n)/U(n), g) (2.14)
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is a Riemannian submersion with totally geodesic fibers isometric to the maximal flag
manifold (H/K, §),

H/K =U(n)/T" = SU(n)/S(UQ) x ... x U(1)) = SU(n)/S(U1)"),

g the normal metric determined by the inner product (—B)|y, § the metric given by
(—B)|, and g defined by the inner product (—B)|,. Since m = p @ q and dim H/K =
U(n)/T" = SU(n)/S(U(1)") = n(n — 1), by the fact that dimm, = 2, for each positive
root «, we have that the vertical space p (tangent to the fiber SU(n)/S(U(1)")) is equal

n(n—1
to the direct sum of (2) irreducible isotropy summands of m while q is the direct
n(n—1 nn+1) . . .
sum of n? — ( 5 ) = ( 5 ) isotropy summands, once dimension of the total space
is 2n2.

Since the fiber SU(n)/S(U(1)") of the original fibration is a maximal flag
manifold, the space p is exactly the isotropy representation of the maximal torus Tglj(ln) =
S(U(1)") of SU(n), which in turn decomposes into n(n—1) pairwise inequivalent irreducible

Ad(Tglj(ln))—modules equal to the root spaces relative to the positive roots in R’ < R,
R ={x(N = )\):1<i<j<n}

The Riemannian metric § on the fiber SU(n)/S(U(1)"), represented by (—B)ly, is the

normal metric rerpesented by the inner product
geTgJ(ln) = Z (=B)lm.
aeR'NR+

and the homogeneous metric ¢ defined by the inner product (—B)|; makes the basis

(Sp(n)/U(n), g) a irreducible Hermitian symmetric space.

By scaling the normal metric
gern = Y (= B)lm,
aeRt

on the total space Sp(n)/T™ in the direction of the fibers by 2, i.e., multiplying by t*,¢ > 0,
all the (—B)|m,,a € R' n R in the expression of g, we obtain the canonical variation k;

of g.

2224 (SO(2n)/T",my;),n = 4

Let G = SO(2n) be the compact simple Lie group whose Lie algebra is
g =50(2n) and by T" < G a maximal torus with 7" = U(1) x ... x U(1) = U(1)". The
maximal flag manifold associated is SO(2n)/T™ and the Lie algebra so(2n) decomposes
into the (—B)-orthogonal direct sum

s0(2n) = tdm,
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where B is its the Cartan-Killing form of defined by B(X,Y) =2(n — 1)Tr(XY), X, Y €
sp(n), € is the Lie algebra of 7™, maximal abelian Lie subalgebra of so(2n) formed by the

diagonal matrices of the form
t = {«/—1 ~diag(ay, ..., an, —a1,...,—ay);a; € ]R}

and m the Ad(7T™)-invariant isotropy representation of 7". With respect the Cartan Lie
subalgebra €©, the root system of 50(271)(C can be chosen as by

R={t\t);l<i<j<n,},
according to the above notation. The system of simple roots is
S={A = A = A A1 A
and with respect to X the positive roots belong to
R ={N =X, N+ X\;1<i<j<n}

It has n(n — 1) positive roots, hence m decomposes into n(n — 1) pairwise inequivalent

irreducible Ad(7T™)-modules as follows

m= P m,, (2.15)

aeRTt

where each two dimensional irreducible submodule m,, above is generated by {A,, S.},
where A, = X, + X_4, So = vV—1(X, — X_,) and X, belongs to the Weyl basis of
s0(2n)C.

Take the canonical map
w:50(2n)/T" — SO(2n)/U(n).

Let h = u(n) and € be the Lie algebras H and K = T", respectively. Since K, H and G
are compacts, we can consider a Ad(H )-invariant (—B)-orthogonal complement q to b in

g, and a Ad(K)-invariant (—B)-orthogonal complement p to € in b.

The Lie algebra g decomposes into the sum
g=502n)=tDpDq==EtDm,

and follows that
m: (S0(2n)/T", g) — (SO(n)/U(n), g) (2.16)

is a Riemannian submersion with totally geodesic fibers isometric to the maximal flag
manifold (H/K,§),

H/K=U(n)/T" = SU(n)/S(U) x ... x U(1)) =SU(n)/S(U(1)"),
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g the normal metric determined by the inner product (—B)|w, § the metric given by (—B)],
and ¢ defined by the inner product (—B)|q. Since m = p @ q and dim H/K = U(n)/T" =
SU(n)/S(U(1)") = n(n—1), by the fact that dim m,, = 2, for each positive root «, we have

that the vertical space p (tangent to the fiber SU(n)/S(U(1)")) is equal to the direct sum

-1

of n(nQ) irreducible isotropy summands of m while g, from the fact that 2n(n—1) is the
-1 -1

dimension of the total space, is equal to the direct sum of n(n —1) — n(n2 ) = n(n2 )

isotropy summands.

Since the fiber SU(n)/S(U(1)") of the original fibration is a maximal flag
manifold, the space p is exactly the isotropy representation of ng(ln) = S(U(1)"), which
in turn decomposes into n(n — 1) pairwise inequivalent irreducible Ad(Tglj(ln))—modules

equal to the root spaces relative to the positive roots in R’ < R,
R={t(N-N\)l<i<j<n}

The Riemannian metric § on the fiber SU(n)/S(U(1)"), represented by (—B)|y, is the
normal metric given by the inner product
geT;f[;(ln) = Z (_B)’ma
aeR'NRt
and the homogeneous metric ¢ on the basis, defined by the inner product —B|,, makes

(Sp(n)/U(n), g) a irreducible Hermitian symmetric space.

By scaling the normal metric

gern = Y (- B)ln,

aeRt
on the total space SO(2n)/T™ in the direction of the fibers by ¢, i.e., multiplying by
t2,t > 0, all the (=B)|m,,a € R n R" in the expression of g, we obtain the canonical

variation my of g.

2.2.3 Spectra of Maximal Flag Manifolds and Symmetric spaces

In [33], S. Yamaguchi describes the spectrum of the Laplacian defined on
C*(G/T,g), where G/T is a maximal flag manifold equipped with a normal metric g. In

this case, we have the following description of o(A,).

Let g be the Lie algebra of GG, g complex and simple Lie algebra. Denote by
h the Cartan subalgebra of g, R the root system of (g,h) and by ¥ = {«,...,q} the
associated system of simple roots. Let (-,-) = —B the inner product on g induced by the
Cartan-Killing form B g. Consider the system of fundamental weights {wq,--- ,w;} of b
and denote by P the set of all integral dominant weights,

l
P = {AZZSiwiE [)*,Sl = O,SiEZ}.
i=1
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Let P the set of all elements of P which are of class one relative to b, i.e., the irreducible
representation (€4, V) of g in V), with the highest weight equal to A € P, has a non zero

&a(h)-invariant vector in the representation space V.

Theorem 2.2.19 (H. Freudenthal [33]). Let (&x, Vi) be the irreducible representation with

!
highest weight A € P (A # 0). Then, A € P if and only if A = Zpiai,pi > 1, p; € Z,
i=1
1<i<l.

!
We identify A = Zpiai e P with P = (P1y--yp1)-
i=1
Theorem 2.2.20 (S. Yamaguchi [33]). If G/T is a mazimal flag manifold associated with
a complex classical simple Lie algebra g of the type A,, By, C,, D, or with the exceptional
Lie algebra of the type Go, the spectrum of the Laplacian A,, g normal metric induced
by the Cartan-Killing form B of g, is determined by the irreducible representations with
highest weight A € 73, in such a way that each eigenvalue p € o(A,) is given by p(A), for
!

some irreducible representation ({5, V) with highest weight A = Zpiozi, as follows:
i=1

Type A,,n > 1:

n

1 n
PiPi+1 + sz} ;
i=1

=1

(1) u(h) = {Zp -

)
2p1—p2 = 0
> 0

—p1+2p2 — p3
(2) A : ,
—Pn—2+ 2pp—1— Dn

—Pn—1+ 2py

A\

\

(3) First positive eigenvalue py = pu(1,...,1) =1,
P=(,...,1)«—> Ay =0a; + ...+ «a, highest root,

&n, =adjoint representation.

Type B,,n = 2:

n—1 n

1 n—1 1
(1) pd) = 1— {2 2p?+pi—22pipi+1+22pi+pn},
i=1

=1 i=1
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2p1 — p2
—p1+ 2pa — p3
(2) + : ,
Pn—2+ 2Pn—1— Pn
—Pn—1 1 Pn

AR\

AR\
o

\
n

(8) First positive eigenvalue pq = pu(1l,...,1) = PP
n J—

P0=(1,...,1)<—>A0=w1=a1+...+an,

&, =representation with highest weight wy .

Type C,,,n > 3:

1 n—1 n—2 n—1
(1) p(A) = 57— {Z pi 4202 = ) pibist — PaciPa + . pi + 2pn} :
i=1

2(n+1) -1 i=1

2p1 — p2

—p1+ 2p2 — p3

(2) - : ,
—Pn-3 + 2pn—2 — Pn—1 0

—DPn—2 + 2pn—1 - 2pn

L —DPn—1 + 2pn

A\

AR\ AR\

4dn — 1

(3) First positive eigenvalue pq = u(1,2,...,2,1) = m,

P(): (17,].> <—>A0=w2,
&, =representation with highest weight ws.

Type D,,n > 4:

n—

2 n
Z DiDi+1 — Pn—2Pn + sz} ;
—~ :

7 =1

(1) u(A) = in_ : {ip?

2p1—p2 = 0
—p1+2p2—p3 = 0

(2) + ~Pn-a+2Ppp3—pna = 0
—Pn-3+2Pp2—DPn1—Pn = 0
—Pn—2+2pp1 = 0
—Ppn—2+2p, = 0
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(3) First positive eigenvalue py = u(1,2,...,2,1,1) =1,
Py=(1,2,...,2,1,1) «—— Ay highest root,

&a, =adjoint representation.
Type Gs:
Loy 2
(1) n(A) = 1 {Pl + 3p; — 3p1p2 + p1 + 3p2},

2p$1 —3p2 = 0
(2) :
—p1+2p2 = 0

1
(3) First positive eigenvalue g = p1(2,1) = 3 Py=(2,1) «— Ay = wy,

&, =representation with highest weight wy .

We note that the basis spaces (G/H, g) of the homogeneous fibrations that have
been studied so far in this work are irreducible Hermitian symmetric space of compact
type. The spectrum of such spaces are well known, and can be determined as follows (see
[30], page 64).

Let G be a compact simply connected simple Lie group, H closed subgroup
of G. Let g,b the Lie algebras of G and H, respectively, and g = b @ g, the Cartan
decomposition. The inner product on q is (—B)|q, where B is the Cartan-Killing form of g.
Let ¢ the G-invariant Riemannian metric on G/H induced by B. Then, it is known that
the spectrum of the Laplacian of (G/H, g) is given by

w(A) = =B(A + 20, A), (2.17)
with multiplicities
—B(A+6,a)
dy = _ . 2.18
= 115 (2.18)

Here, A varies over the set D(G, H) of the highest weights of all spherical representations
of (G, H), § is equal to the sum of the positive roots a € R* of the complexification g
of g relative to the maximal abelian subalgebra £¢ of g€ and d, is the dimension of the

irreducible spherical representation of (G, H) with highest weight A.

For simple compact connected G, Kramer [22] provides a classification of
possible subgroups H along with a set of dominant weights whose integral non-negative

combinations give all spherical representations.

In particular, in Kramer’s classification the basis of the representations in
D(G4,50(4)) is given by
B = {27’(’1, 271'2},
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with {71, m} being the set of fundamental weights of the maximal abelian Lie algebra
Lie(T") = €. Therefore, by applying (2.17) and the fact that all A € D(G,, SO(4)) is linear
combination of the weights in B, follows the case of the spectrum of the Laplacian on the
isotropy irreducible symmetric space Go/SO(4) equipped with the metric determined by
the Cartan-Killing form of Gj.

Proposition 2.2.21. The spectrum of the Laplacian of the isotropy irreducible Hermitian
1
space (G2/SO(4),9g) is given by o(A;) = {6(97“ + 672 + 55+ 6rs +25°);Z 37,5 > 0} ,

with first positive eigenvalue B = g

Assume that B is the Cartan-Killing form of G, G/T total space of the homo-
geneous fibration
m: (G/T,g9) — (G/H,g)
and g is the homogeneous metric given by the inner product (—B)|,, q (—B)-orthogonal
complement to Lie(H) = b in Lie(G) = g, i.e, q is the horizontal distribution relative to
the submersion 7. Moreover, each (G/H, g) below is an isotropy irreducible Hermitian

symmetric space.

In the follow, we will describe the spectrum of the Laplacian on each basis
space (G/H, g) of the homogeneous fribations 7 : (G/T,g) — (G/H, §) constructed in the
previous Section on the maximal flag manifolds SU(n + 1)/T",SO(2n + 1)/T™, Sp(n)/T™",
SO(2n)/T" and Go/T, respectively.

Spectrum of the Complex Projective Space, o(Acp»)

The basis space (G/H, g) = (SU(n+1)/S(U(1) xU(n)), g) of the homogeneous
fibration

7:(SUMn+1)/T" g) — (SU(n+1)/S(U(1) x U(n)),g),n =2,

is the homogeneous realization of the complex projective space CP" endowded with a
homothetical metric to the Fubini-Study metric. In fact, the induced metric (—B)|, on
CP", B Cartan-Killing form given by B(X,Y) = 2(n + 1)Tr(XY), X,Y € su(n + 1), is
n + 1 times the Fubini-Study metric. According [19], the spectra of the Laplacian acting
on functions on the complex projective space CP" = SU(n + 1)/S(U(1) x U(n)) with the
Fubini-Study metric is

0(Aps) = {& = k(k +n); k e N}.

Hence, the spectrum of the Laplacian on CP" = SU(n+1)/S(U(1) x U(n)) provided with

the metric g represented by the inner product —B|, is

o(Ag) = (B = nik1 _ k(::ln);k e NJ. (2.19)

Note that the first positive eigenvalue in this case is §; = 1.
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Spectrum of the Round Sphere, o(Ag2n)

The basis space (G/H,g) = (SO(2n + 1)/S0O(2n)),g) of the homogeneous
fibration
m:(SO(2n+1)/T", g) — (SO(2n +1)/SO(2n), g),n = 2,

is the homogeneous realization of the round sphere S?" provided with a homothetical
metric to the canonical metric. In fact, the metric induced from the Cartan-Killing form
given by

B(X,Y)=(2n—-1)Tr(XY),X,Y € s0(2n + 1),

is 2(2n — 1) times the usual one. According [19], the spectra of the Laplacian acting on
functions on sphere S** = SO(2n + 1)/SO(2n) with the usual metric h is

U(Ah) = {Sk = k(k+n—1)7k:eN}

Hence, the spectrum of the Laplacian on S*" = SO(2n + 1)/SO(2n) provided with the

metric ¢ represented by the inner product —B|, is

&k k(k + 2n — 1)
Ay) = = = : . 2.2
o(Bg) =10 = 55, =7y = Ta@aoy) N (2:20)
Note that the first positive eigenvalue in this case is f; = 5 n T
n J—

Spectrum of the Symmetric Space Sp(n)/U(n), o(Aspm)/vm))

In the case of the basis space (G/H, g) = (Sp(n)/U(n), g) of the homogeneous
fibration 7 : (Sp(n)/T", g) — (Sp(n)/U(n), g),n = 3, Kramer’s classification [22] give us
the basis of the representations in the set D(Sp(n),U(n)) of the highest weights of all
spherical representations of the pair (Sp(n),U(n)), namely

B ={2m;1 <1< n},

with {m;; 1 <1 < n} being the fundamental weights of the maximal abelian Lie algebra
Lie(T") = £%. Therefore, by applying (2.17) and the fact that all A € D(Sp(n),U(n)) is
linear combination of the weights in B, we have the spectrum of the Laplacian on the
isotropy irreducible symmetric space Sp(n)/U(n) provided with the metric determined by
the Cartan-Killing form B of Sp(n), given by

B(X,Y) =2(n+ DTr(XY), X,Y € sp(n).

The first positive eigenvalue in this case, according [30], is 5 = 1.
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Spectrum of the Symmetric Space SO(2n)/U(n), o(Aso@n)/vm))

In the case of the basis space (G/H, g) = (SO(2n)/U(n), g) of the homogeneous
fibration 7 : (SO(2n)/T",g) — (SO(2n)/U(n),g),n = 4, Kramer’s classification [22]
(SO(2n),U(n)) of the highest weights
of all spherical representations of the pair (SO(2n),U(n)), namely

give us the basis of the representations in the set D

By = {mo, T4, ..., Tpn_o,2m,}, if m is even

and

By = {7y, T4y, Tp_3,Tn_1+ m}, if n is odd

with {m;; 1 <1 < n} being the fundamental weights of the maximal abelian Lie algebra
Lie(T™) = €%. Therefore, by applying (2.17) and the fact that all A € D(SO(2n),U(n))
is linear combination of the weights in B; or Bs, according to n is even or odd, we have
the spectrum of the Laplacian on the isotropy irreducible symmetric space SO(2n)/U(n)
provided with the metric determined by the Cartan-Killing form B of SO(2n), given by

B(X,Y) = 2(n — )Tx(XY), X,Y € s0(2n).

The first positive eigenvalue in both of the cases, i.e, when n is even or odd, according
[30], is 1 = 1.

From the above, we obtain the following useful properties of the first positive
eigenvalue \;(t) of the Laplacian A; = A,,, ¢g; canonical variation of the normal metrics

on the flag manifolds in Theorem 2.2.20.

Proposition 2.2.22. Considering the canonical wvariations (SU(n + 1)/T", ¢;),
(SO(2n + 1)/T", g:), (Sp(n)/T", g;), (SO(2n)/T", g;) and (G2/T,g:), one has the follow-
ing estimates for the first positive eigenvalue A\i(t) of the Laplacian A, on the canonical
variations (G/T, g;):

(G/T, g1) M(E),0<t<1
(SUMn+1)/T",g,) M) =1
(SO(2n + 1)/T", hy) M) = 5
(Sp(n)/T" k) f(jj;; <) <1
(SO(2n)/T", my) M(t) =1
(G2/T,ny) ; < M (t) < Z

Proof: By Corollaries 2.2.6 and 2.2.8 in Section 2.2,

w1 < Ai(t) < fy,
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for all 0 < ¢ < 1, where A;(¢), u1 and B, are the first positive eigenvalues of A, A, and
Ay, which are the Laplacians on the total space of the canonical variation, on the original
total space and on the basis, respectively. From the above description of the spectra of
the Laplacians on maximal flag manifolds and isotropy irreducible Hermitian symmetric
spaces, we have all the first positive eigenvalues of the Laplacians both on the original
total spaces and on the basis, i.e, we have the values of $; and u;, which allow us applying
the inequality p; < A\i(t) < Sy in order to obtain the respective values and estimates for

A1(t) given in the table above.
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3 Bifurcation and Local Rigidity Instants for

Canonical Variations on Maximal Flag

Manifolds

In this chapter, we prove the main results of this thesis, determining the
bifurcation and local rigidity instants for the canonical variations which were constructed
in the previous chapter. The criterion used to find such instants is based on comparison
between an expression of the eigenvalues of the Laplacian relative to the respective canonical
variation and a multiple of its scalar curvature. This method is related to the notion of

Morse index.

Firstly, will be determined an expression for the scalar curvature of each
canonical variation described above by mean a general formula obtained by W. Ziller
in [31] that can be applied to calculate the scalar curvature of homogeneous metrics on
reductive homogeneous spaces. From this formula, we can see clearly that these kind of

metrics have constant scalar curvature and are trivial solutions to the Yamabe problem.

Necessary conditions for classifications of bifurcation and local rigidity instants
in the interval (0, 1) can be deduced by using the expressions of the scalar curvature in all

cases.

3.1 Scalar Curvature

As stated, it is necessary an expression for scal(g;) of given 1-parameter family
g of homogeneous metrics on a maximal flag manifold, defined by (2.6) in Section 2.2.1.
The general formula of the scalar curvature for reductive homogeneous spaces which we

use here is obtained in [31].

Let G be a compact connected Lie group and K < G a closed subgroup of G.
Assume that K is connected, which corresponds to the case that G/K is simply connected.
Let m be the (—B)-orthogonal complement to ¢ in g, where g and ¢ are the Lie algebras
of G and K, respectively, and B is the Cartan-Killing form of g. It is known that the
isotropy representation m of K decomposes into a direct sum of inequivalent irreducible

submodules,

m=m POmPD...Om,,

with my, my, ..., m, such that Ad(K)m; € m;, for all i = 1,...,r. Thus, each G-invariant
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metric on G/K can be represented by a inner product on m given by
t1<—B>’m1 + t2(-B>|m2 + ...+ tr<_B>’mr7 t; > 07 1= 17 o, T
Let X, be a (—B)-orthonormal basis adapted to the Ad(K)-invariant decom-

position of m, i.e., X, € m; for some 7, and o < 3 if ¢ < j with X, € m; and Xg € m;. Set
Alg = —B([Xa, X5], X), so that [ X4, Xg]|n ZAWXV, and define

]
where the sum is taken over all indices «, 3,y with X, € m;, Xz € m; and X, € my.

[ " ] = (AL

k
Note that [ N

] is independent of the (—B)-orthogonal basis chosen for m;, m;, my, but it
)

k

depends on the choice of the decomposition of m. In addition, | =~ | is continuous function
L)

on the space of all (—B)-orthogonal ordered decomposition of m into Ad(K’)—irreducible

summands and also is non-negative and symmetric in all 3 indices. The set {X./v/1i; X €

m;} is a orthonormal basis of m with respect to

)= t(=B) |y + ta(=B)lmy + -+ (= B)lm,

Then (see [31]), the scalar curvature of g determined by (-, -) is

k ts
1(g ——— 1
Z [ ..]mj, (3.1)

)

forall x € G/K, d; = dimm;, i =1,...,r

Example 3.1.1. In [20], page 303, was obtained formula (3.1) for a G-invariant metric g
on a homogeneous space G/K for which m has 3 isotropy summands. In this case, g is

determined by a inner product t1(—B)|m, + t2(—B)|m, + t3(—B)|m,; and

Cld 1 ts to ty
g ==Y~ — = . 2
seall "9 ; t [ ] <t1t2 * tts + tots (3:2)

In particular, considering the 1-parameter family g, on SU(3)/T?, given by the inner

product
(9e)erz = (—*B)lmy + (= B)lmy + (= B)lmg> t >0,

from the decomposition of the isotropy representation of K = T2,
m =m; @ my P mg,

commy = p, my = spamg (E13 — F31) and spamg (Ea3 — F3s), we take the (— B)-orthornormal
basis of m, W = {Aia, A13, Asz, S12, S13, Sas},

1 V-1

A = E vy
V12

ij ﬁ( i — Eji), Sij = (Eij + Eji).
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We have that WV is a adapted basis to this decomposition of m, with A, S12 €

3 1
my, A23,Sg3 € Mo and Alg,Slg € mg. Since d1 = d2 = d3 = 2, [ 12 ] = § and t1 = t27t2 =

ts = 1, by (3.2), follows
scal(gy) = 2 + 2. (3.3)
3t2 6
After application of the formula (3.1) in the previous example, we will use
it to exhibit a formula of the scalar curvature scal(t) for each l-parameter family of
homogeneous metrics g; defined on some type of maximal flag manifold associated with

one of the complex classical simple Lie algebras.

First, some observations about the numbers [ . ] are necessary. For a maximal

i
flag manifold G/K, we have the (—B)-orthogonal decomposition Z m,, of its isotropy

acRT

representation m, where B is the Cartan-Killing form of g and m, = RA, + RS, with
the vectors A, and S, defined by the elements of a Weyl basis of g = Lie(G). This
allows us rewrite the above splitting of mas m =m; ® ... ® m,, where s = ‘Rﬂ. Since
B(Aa, An) = B(Sa, Sa) = —2 and B(A,, Sa) = 0, the set

A S
Xo=2Y,=2%aeR}, 3.4
{ V2 oA } (3:4)

is a (—B)-orthonormal basis of m. If we denote for simplicity such a basis by e, = {Aq, Sa},

ij af
orthogonal bases of the modules m,, mg and m~, respectively.

k
then the notation can be rewritten as [ 7 ] where e,, e and e, are the (—B)-

Remark 3.1.2. Recall that, if a, 5 € R such that o + 8 # 0, then root spaces satisfy

(80, 05] = 8a+p and B(ga, gs) = 0. Since 75 # 0 if and only if B([m,, mg], m7y) # 0,
a

f‘)/

5 ] # 0 if and only if the positive roots «, 5 and ~ are such that
a

we can conclude that [

+
a+  —~ = 0. Thus, we have [ “ ﬁﬂ ] # 0, for any «, 8 such that a + 8 € R. Moreover,
«

for [ v ] , we will have in the second summation of (3.1) the following:
o}

1
(a) [ 75 X when t*(—B)|m,, t*(—B)|my, t*(—B)|w, are vertical components and
a
a+f

is a positive root,
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1
(b) Tl x ) when ¢*(—B)|w, is vertical, (—B)|w,, (—B)|m, are horizontal compo-

nents and o + 3 is a positive root,

(c) 5 x t* when (—B)|w, is vertical, (—B)|m,, (—B)|m, are horizontal components
f)/

and a + 3 is a positive root

(d) 7| =0 x * otherwise.
| @f |
" : . . a+f
Proposition 3.1.3 ([5]). For a mazimal flag manifold G/K the triples # 0
a

are given by

[a+B]:2miB,
af ’

where mi,ﬁ are the structure constants of the Weyl basis of g = Lie(G).

Remark 3.1.4 ([5]). If a, 8 € R are such that a — 3 € R, similarly one obtains

-8
[ O!Oéﬁ ] — 2’[’)7,27_5-

Lemma 3.1.5 ([25]). For SU(n + 1)/T", considering the decomposition (2.9) of the

1sotropy representation m of T, one has

1 , .
[aw]: i k#ig 55
af 0, otherwise

where o = X\; — A\ and 8 = A\, — \; are positive roots of the root system
R = {ai; = +(\ = Aj)yi # j}

of the Cartan Lie subalgebra £ relative to su(n+1), \; given by \i(diag(ay, . .., ans1)) = a;,

for each 1 <iv<n+1 and

t = {\/—1 - diag(ay, . .. ,an+1);2ai = O} .
i=1

Proposition 3.1.6. [(SU(n +1)/T", g,),n > 2] Considering the hypothesis of Lemma
3.1.5, let (SU(n + 1)/T",g,) be the canonical variation of (SU(n + 1)/T", g), where g is
the normal metric on SU(n + 1)/T". Then, the function scal(t), that for each t > 0 gives

the scalar curvature of g,, is given by

—2n +n?(n+1) +4n(n + 1)t2 + n(1 — n)tt

scal(t) = in+ 1)

(3.6)
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Proof: The 1-parameter family g, is obtained by multiplying the components

(_B)|maij7]‘ <1<j<m,

by t*, that is, by scaling in the direction of the fibers by ¢* the normal metric g given by

the inner product

Gern = Z (_B>|mai]--

i<j<n+l
; n(n—1 _ .
It is known that one has 5 vertical components, i.e,
C_ n(n —1
\K—Bmwﬁ1<z<]<nﬂz(2)’

and |[{(=B)|m.,,1 <i < j = n+ 1}| = n horizontal components of the normal metric g. In
addition, the dimension of each submodule m,, is equal to 2. Therefore, the first summation

in (3.1) is

1 d, (n—1)n
- Z -_— = T +n.
aeR+ ¢

t
In order to obtain the second summation Z 7 T in (3.1), with t,,ta,t5 > 0
a,B,yeRT CYﬁ to‘tﬁ

coefficients of (—B)|m,, (—B)|m., (—B)|m,, respectively, it is sufficient to know the number

1
of triples [ 75 multiplying ¢* and the number of these constants multiplying ol In fact,
!

t

T —¢2or —,
tats 2
depending on whether the component (—B)|y,, is vertical or horizontal. Furthermore,

since the coefficients of the canonical variation ¢, are t, = t* or t, = 1,

according

the nonzero triples are equal to the same value, namely 0 # 7 ] = o
n

af
Lemma 3.1.5.

Let us now determine the number of triples for each of the cases (a), (b) and
(c) in Remark 3.1.2 above.
CASE (a): Let N; the total number of triples in (a). Using the above notations,
8 Ai — A .
= ,witha=MN =X, 8= N —ANjandy=a+ 8=\ -\,
[aﬁ] [Ai—)\k)\k—)\j] b = A= Ay and 0 g
i <k <j<mn,since (—B)ln,, (—B)|ms, (—B)|m, are vertical components. Fixed i = 1,

-1 —2 A=y
(n—1)(n—2) symbols of the type 1 .

we will have ] # 0; if we fix 1 = 2,

A= N Ak — A
—2)(n — Ao — A
one has (n=2)(n=3) symbols of the type 2 ! # 0, and so on, getting
A2 — N A — A
—)(n—i—1 Ai — A
(n=dn—-i-1) symbols of the type ! #0foreach 1 <i<n-—-2 1t
2 Ai — A Ap — A
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follows that the number of symbols in (a), not counting the permutations, is

2

1
n—i n—i—l)zé(Zn—3n2+n3).

N)\)—t

)\i — )\k)\k — /\j (0%

t
are equal to t?, which implies that Z = a2 and by symmetry of 7 , we must
alp (0%

considering six times the number of symbols above to obtain the total number of these

A=\
Recall that in (a), [ ! ] = [ ’Yﬁ ],Withi < k < j < n. Then, t,,ts,t,

symbols in (a), hence

1
N, =6- 6(271 —3n® +n?) = (2n — 3n® + n?).

Ai — A
CASE (b): Let N the total number of triples in (b); 7 = ! ,
Ofﬂ )\z — )\k)\k — )‘j

witha =X\ =X, =M —-ANjandy=a+8 =X\ -\, i <k <j=n+1, since

(=B)l|m, is vertical and (—B)|m,, (—B)|m, are horizontal components. Fixed i = 1, we will

AL — A
have (n — 1) triples of the type R # 0; if we fix i = 2, one has (n — 2)
A= AN A — A
: A2 — A, , N
triples of the type # 0, and so on, getting (n — 7) triples of the type
Ao — Mgk — A

Ai — A
! # 0 for each 1 < ¢ < n — 1. It follows that the number of triples in
Ai — AR — A

(b), not counting the permutations, is

2 n—l)

Ai — A
In (b), / |7 then, t, = t*,t3 = t, = 1, which implies b _
)\i — /\k/\k — )‘j Ozﬁ tat/g

t t t 1

Y - F_ By symmetry of 7 , we must considering four times the

tota  tyla  laly 12 af

number of triples above to obtain the total number N of these triples in (b), hence

n(n—1)
2

Ny =4 =2n(n —1).

n(n—1)

CASE (c): Similarly to the previous case, not counting the permutations, we have 5

Qo ta ta . . .
symbols multiplying —— = —%~ = ¢?. By symmetry, in this case, we must consider
V6 tts sty

o
two times the number above in order to obtain the total number N3 of triples [ 5 ] ,
v

n(n —1)

5 =n(n—1).

which multiply in (c), i.e, N3 = 2-
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n—+1

Therefore, since [ @ ] =

whenever “ # 0,
ole] ole]

1 1
scal(t) = = da 1 2 Tl
2 ta 4 af | tals

aeRT a,B,7eRt
-1 1 N N. Nst?
_ n=bn 1 Ly 2
2t2 4\ (n+ 12 2(n+1) n+1

—2n +n*(n+1) +4n(n + 1)t* + n(1 — n)t*
A(n + 1)t2 '

O

Let us now to consider the case of the canonical variation (SO(2n + 1)/T", hy)
of the normal metric on SO(2n + 1)/T™.

Lemma 3.1.7 ([25]). For SO(2n + 1)/T", considering the decomposition (2.11) of the

1sotropy representation m of T, one has
Ai — Ak B Ai + A B A RN
i — A — Mg i — Mg+ A i — A i) 2n — 1’

and [ 7 ] = 0 otherwise, where «, 3 and v are positive roots of the root system

R={+Nt )\, t ;1 <i<j<n1<k<n}

of the Cartan Lie subalgebra €© relative to so(2n+1)%, \; given by \;(diag(ay, . .., ani1)) =

a;, for each 1 <i<n and
t = {\/j diag(0,aq, ..., 0y, —A1,...,—Cy); G; € R}.

Proposition 3.1.8. [(SO(2n + 1)/T" hy),n > 4] Considering the hypothesis of Lemma
3.1.7, let SO(2n +1)/T" hy) be the canonical variation of (SO(2n + 1)/T", g), where g is
the normal metric on SO(2n + 1)/T™. Then, the function scal(t), that for each t > 0 gives

the scalar curvature of hy, is given by

5n3 — 2n2t* + 8n?t? — Tn? + 2nt* — 4nt? + 2n

scal(t) = 120 = D)2

(3.8)

Proof: The 1-parameter family h, was obtained multiplying by ¢*,¢ > 0, all
the (—B)|m,,« € R' n R" in the expression of the normal metric g, which on the isotropy

representation m of 7", is represented by the inner product

gern = Y (=Bl

aceRT
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It is known that there are n(n — 1) vertical components in the above expression
(— )’may&eR/ﬁRJrH—nn—l and‘{ B)|m,,a € RT\R'} ‘ = n horizontal

components of the normal metric. Moreover, the dimension of each submodule m,, is equal

of g, i.e,

to 2. Therefore, the first summation in (3.1) is

,Z 7_ﬂ+n,

aceRTt a

To obtain the second summation Z [ 7 ] in (3.1), with ¢,, ., ts > 0 coefficients

a,B,yeRT Ctﬁ t t’B
of (=B)|mys (—B)|ma, (—B)|m, , respectively, we will determine, as well as in the previous

example, the number of factors 7 multiplying t* and the number of these constants
o

multiplying 2

Let us now determine the number of triples for each of the cases (a), (b) and
(c) in Remark 3.1.2 above.

A — A
CASE (a): Let N; the total number of triples in (a). For Tl ,
Ozﬁ /\ — )\lc>\k /\

witha =N =M, 8 =XN—-Nandy=a+8=XN—-X,1i <k <j<n, we

have that (—B)|m,,(—B)lms, (—B)|m, are vertical components. Fixed i = 1, we will
—1)(n—2 AL — A

have (n=Dn=2) symbols of the type ' ! # 0; if we fix 1 = 2, one

2 | A= AAs = A

—N(n—3 A2 — A

has (n=2)(n =3) symbols of the type 2 ! # 0, and so on, getting

2 )\2 — )\k)\k — >\j
—i)(n—i—1 Ai — A

(n—dln—-i-1) symbols of the type ! #0foreach 1 <i<n-—-21t

2 )\z — )\k/\k — )\j

follows that the number such triples, not counting the permutations, is

1
(n—1i n—i—1)=6(2n—3n2+n3).

l\D\H

Ai — A\
Since [ / ] = [ 7 ] the coefficients ¢,,t3,t, are equal to t? and, by

)\i — )\k)\k — >\j Oéﬁ
symmetry of 7 , we must considering six times the number of triples to obtain the
@

=% in this case, hence

1
Ny = 6-6(271*3712 +n%) = (2n — 3n? + n?)

CASE (b): For 7 = Aty , with o = A\ = A\, B = M + A and
0[6 )\z — /\k:/\k + /\j
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y=a—-B=X N+, i<k<nk#j<n,wehave that (=B)|n,, (—B)|ns, (—B)|n, are

vertical components of the normal metric g. Fixed i = 1, one has (n — 2)(n — 1) triples

AL+ A
of the type R # 0; if we fix i = 2, one has (n — 2)(n — 3) symbols of
A= N A+ A
Ao+ A . . . .
the type # 0, and so on, getting (n —i)(n — ¢ — 1) triples of the type
Ao — N A + )\j
A + )\j . .
# (0 for each 1 <7 < n — 1. It follows that the number of such triples,
i — A Ak + A
not counting the permutations, is
n—2
1
Z(n —i)(n—i—1)= §(2n —3n® +n?).
i=1

Ai + A
When T = 7 the coefficients ¢,,%3,1, in the expression of the
)\i - >\k/\k + )‘j Oéﬁ

t 1
canonical fibration are equal to ¢*. It follows that — — and, by symmetry of 75 ] ,
a

taty 12
we must considering six times the number of triples above to obtain the total number Ny

1
of triples multiplying 2 in this case, hence

1
N, = 65(271 —3n* +n?) = 2N,

Ai
CASE (c):For | | | = Jwitha = \i— A, B=Ajandy = a+8 = A i <
CYﬁ )\Z _)\j)\j

J < n, we have that (—B)|n, corresponds to a vertical component and (—B)|m, (—B)|m,

are horizontal components of the normal metric g. Fixed 7 = 1, one has (n — 1) triples

A
of the type ' # 0; if we fix ¢ = 2, one has (n — 2) triples of the type
A= AN
A2 . N Ai
# 0, and so on, getting (n — i) triples of the type # 0
Az — >‘j)‘j i )\j)\j

for each 1 < i < n — 1. It follows that the number of such triples, not counting the

permutations, is
n—1

Z(n—z) = ;n(n— 1).

i=1

Ai : )
When — | 7 | one has to = t*,ts = t, = 1 in the expression of the
)\i — )‘j /\j O[@
, , t, oty tg  ty 1
canonical fibration. It follows that = = = = — and, by symmetry of
tals  tola  loly tyle 12

[ ’yﬂ ] , we must considering four times the number of triples above to obtain the total
!

number N3 of triples multiplying 7 in this case, hence

1
N3 = 4§n(n —1)=2n(n—-1),
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and considering two times this same number in order to obtain the total number of triples

la a
multiplying @ it = t%, hence
1
Ny = 2§n(n —1)=n(n-1).
i + A
| 7| = Tl witha=X\, B=X\andy=a+8=X\+\,1<i<j<n,
CYB )\1/\]

we have that (—B)|n, and (—B)|n, are horizontal components and (—B)|n, is a vertical

component of the normal metric g. Fixed ¢ = 1, one has (n — 1) triples of the type

AL+ A Ao+ A;
R 0; if we fix i = 2, one has (n — 2) triples of the type R 0, and
A1 Ao\
so on, getting (n — ) triples of this type, for each 1 < i < j < n. It follows that the number

of such triples, not counting the permutations, is

Ai A
When [ ! ] = [ 7 ] one hast, =tg =1,t, = t? in the expression of the canonical

Aij af
fibration. It follows that T t? and, by symmetry of 7 , we must considering two
alp (0%
times the number of triples Ehat was been found above to obtain the total number N, of
triples multiplying = — = ¢? in this case, hence
tals  tate

1
N5 = 2§n(n —1)=n(n-1),

and considering four times this same number in order to obtain the total number of triples
te ts tg 1

multiplying t,;g = e =3 in this case, hence Ny = 4§n(n -1) =
2n(n —1).
. « 1 e’ .
Therefore, since = whenever # 0, according Lemma
gl m—1 VB

3.1.7, follows that

scal(t) =

l\)\»—l
A~ =

da _ v Ly
(n 1)7’L 1 < N1 NQ N3 ) _
(

- e\ s e T e - T e -1
Nyt? N5t? Ng
<2n1 2n1)+t2(2n1)>
— 202t + 8n%t? — Tn? + 2nt* — 4nt® + 2n
4(2n — 1)t2 '
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The next case is the scalar curvature scal(t) of the canonical variation of the
maximal flag manifold associated with the complex simple Lie algebra sp(n)®, provided

with the normal metric.

Lemma 3.1.9 ([25]). For Sp(n)/T", considering the decomposition (2.13) of the isotropy

representation m of T", one has
i — A B A + /\j B 1 A+ )\j B 1 (3 9)
i — AN — A i — Mg+ A 2+ 1) | A — A2\ n+1" 7

and [ 7 ] = 0 otherwise, where o, 5 and 7y are positive roots of the root system

af
R={tN £ X, £2 ;1 <i<j<n,1<k<n},

of the Cartan Lie subalgebra € relative to sp(n), \; given by \i(diag(ay, ..., ans1)) = a;,

for each 1 <i<n and
t= {\/jl diag(ay, ..., an, —a1,...,—0y);0; € ]R} )

Proposition 3.1.10. [(Sp(n)/T" k¢),n > 3| Considering the hypothesis of the previous
Lemma, let (Sp(n)/T" k) be the canonical variation of (Sp(n)/T",g), where g is the
normal metric on Sp(n)/T". Then, the function scal(t), that for each t > 0 gives the scalar
curvature of kg, is given by

—2n3t* 4+ 24n3t? + 503 + 48n2t2 + In? + 2nt* + 24nt? — 14n
24(n + 1)t

scal(t) = (3.10)
Proof: The l-parameter family k; was obtained multiplying by ¢*,¢ > 0, all
the (—B)|m,,« € R' n R" in the expression of the normal metric g, which on the isotropy

representation m of 7™, is represented by the inner product

gern = Y (~B)\n,.

aERT

n(n
It is known that there are (7 vertical components in the above expression

(n n(n +1)

-1
(=B)|ma,v€ R0 RT}| = 712)7 and [{(—B)|m,,v€ R\R'}| =

horizontal components of the normal metric. Moreover, the dimension of each submodule

of g, i.e,

m,, is equal to 2. It follows that the first summation in (3.1) is

= 2 fzu—i—(n—i—l)n.

aeR‘*’ a

The second summation Z [ 7 ] n (3.1), with ¢,,t,,t3 > 0 coefficients of

a8, ERF af | tats
(—=B)|mas (—B)|mys (—B)|m., respectively, we will determine, as well as in the previous
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] multiplying ¢* and the number of these constants
«

examples, the number of factors [ 7

multiplying 2

Let us now determine the number of triples for each of the cases (a), (b) and
(c) in Remark 3.1.2 above.
i — A
CASE (a): Let Ny the total number of triples in (a). For Tl = ! ,
056 /\z - )\k)\k — >‘j
witha =N =M, =X —Nandy=a+8=X\N—-X\,7 <k <j<n, we have
that (—B)|n,, (—B)|ms, (—B)|m, are vertical components. Fixed i = 1, we will have
“1)(n -2 A=\ —9)(n -
GV UEE S BPYESY (n—2)n 3
2 A — A Ak — A 2

]7&0;ifweﬁxz'=2,onehas

. A2 — Aj .
triples # 0, and SO on, getting
Ao — Mgk — A

N A — A
(n=in—i=1) triples !
2 i — A — A

t
that the number of triples that multiply " Z =% in this case, not counting permutations,
atp

] # 0 for each 1 < i < n — 2. It follows

18

n—i)(n—i—1)= é(Zn —3n® +n?).

N | —

n—2
i=1

Ai — A .
Since [ ! ] = [ 7 ] the coefficients t,,tg,t, are equal to t? and, by

)\i — )\k)\k — >\j Oéﬁ
symmetry of 7 , we must considering six times the number of such triples to obtain
«

1
the total number N; of triples that multiply e in this case, hence

1
N, =6- 6(271 —3n® +n?) = (2n — 3n® + n?).

s, with o = A\ — A, B = M + A and

A
CASE (b): For [ Tl = [ T

A — Ak + )\j
y=a—-F=XN+X\,i<k<n,k#j<n, we have that (—B)|q, is vertical component

af

and (—B)|ms, (—B)|m, are horizontal components of the normal metric g. Fixed i = 1,

one has (n — 2)(n — 1) triples of the type [ ALt A # 0; if we fix i = 2, one
A= Ao + A
has (n — 2)(n — 3) symbols of the type [ A2t A ] # 0, and so on, getting
Ao — Aode + A
i + A

(n —i)(n —1— 1) triples of the type [ ] #0foreach 1 <i<n-—1. 1t

A= M + A



Chapter 3. Bifurcation and Local Rigidity on Full Flag Manifolds 68

follows that the number of such triples, not counting the permutations, is
n—2 1
dYn—i)n—i-1)= S(2n - 3n% + n).

=1

Ai + A . .
When ! = 7 one has t, = t* t3 = t, = 1 in the expression of
)\i — )\k)\k + )\j «
la
the canonical fibration. It follows that e t? and, by symmetry of 7 , we must
s a

considering two times the number of triples above to obtain the total number Ny of triples

©_ — 2 in this case, hence

i
multiplying —— =
PS4 s T Lot

1 2
N, = 25(271 —3n* +n?) = M,
and in addition, four times the value above to obtain the total number N3 of triples
oty oty tg oty 1.
multiplying = = = = — in this case, hence
tals  tota tola  taly 12

1 4
N3 = 45(271 —3n* +n®) = e

Ai .
CASE () For | | | = Jwitha = \i—)j, 8= Ay andy = at+f = 2\, i <
Oéﬂ )\z - )\j2)\j

J <n, we have that (—B)|w, corresponds to a vertical component and (—B)|w,, (—B)]m,

are horizontal components of the normal metric g. Fixed ¢ = 1, one has (n — 1) triples

of the type ! # 0; if we fix ¢ = 2, one has (n — 2) triples of the type
A — A2,
Ao #0, and tting (n — 7) triples of the t ' £0 f
, and so on, getting (n — 1) triples of the type or
N — A2), seTng P PEL NS 2,

each 1 <7 < n. It follows that the number of such triples, not counting the permutations,

1S
n—1

1
Z(n —1i) = -n(n—1).
. 2
i=1
)\i Y 2 . .
When = one has t, = t°,13 = t, = 1 in the expression of the
)\i — )‘j2)‘j O./B
t
canonical fibration. It follows that ; ; =% and, by symmetry of 7 , we must
atp [0

considering two times the number of triples above to obtain the total number N, of triples
(63 «

= — % in this case, hence
tts  tgt,

multiplying

1
Ny = 2§n(n —1)=n(n-1),

and considering four times the same number in order to obtain the total number Ny of
. ottty tg 1
triples multiplying = = = = —, hence
tals  tota tola  taly 12

1
N5 = 4§n(n —1)=2n(n—-1).
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1 1
Thus, once “ = or whenever
B 2(n+1) n+1

Lemma 3.1.9, follows that

1 do, 1 vy ty
scal(t) = 527_1 Z [aﬁ]tatﬁ

aceRt ¢ a,B,veERT

“ # 0, according
oLt

(n—1)n 1

— —_— 1 -
572 + (n+1)n 4(

zll <(7ivfz1) T iV51)t2>

—2n3t* + 24n3t2 + 5nd + 48n2t2 + 9n? + 2nt* + 24nt? — 14n
24(n + 1)t '

N1 ]\/v2752 + N3
2(n+ 1)t2  2(n+1)  2(n+ 1)t2

O

The last expression for scal(t) of the canonical variations for the maximal flag
manifolds associated with a complex classical simple Lie algebra is the one associated with

50(2n)C provided with its normal metric.

Lemma 3.1.11 ([25]). For SO(2n)/T", considering the decomposition (2.15) of the

1sotropy representation m of T", one has
Ai — A Ai + 1 .
g - 7 - (k#1i,j) (3.11)

and [ 7 ] = 0 otherwise, where «, 3 and v are positive roots of the root system
e

R={ftN+ ) ;l<i<j<n,},

of the Cartan Lie subalgebra €° relative to s0(2n)C, \; given by \i(diag(ay, ..., ans1)) = a;,

for each 1 <i<n and

Proposition 3.1.12. [(SO(2n)/T", m¢),n > 4| Considering the hypothesis of the previ-

ous Lemma, let (SO(2n)/T", m;) be the canonical variation of (SO(2n)/T", g), where g is

the normal metric on SO(2n)/T". Then, the function scal(t), that for each t > 0 gives the

scalar curvature of my, is given by

—2n%t* + 24n%t? + 5n? + dnt* — 24nt* + 2n
2412 '

scal(t) = (3.12)

Proof: The 1-parameter family m,; was obtained multiplying by 2, ¢t > 0, all
the (—B)|m,,® € R' n R" in the expression of the normal metric g, which on the isotropy
representation m of 7", is represented by the inner product

Gerr = Z (_B)|ma-

aeR*
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n(n
It is known that there are (7 vertical components in the above expression

n(n n(n—1)

-1
of g, ie, [{(=B)|m,,a € R nR*}| = 2), and |[{(—B)|m,, € R\R'}| =
horizontal components of the normal metric g. Moreover, the dimension of each submodule

m,, is equal to 2. It follows that the first summation in (3.1) is

= Z f—u+(n—1)n.

ozeRJr a

The second summation Z [ 7 ] n (3.1), with ¢,,t,,t3 > 0 coefficients of

a8 ERF af | tats
(—=B)|mas (—B)|mys (—B)|m., respectively, we will determine, as well as in the previous

examples, the number of factors 7 multiplying ¢* and the number of these constants
«

T |
multiplying 7

Ai — A
CASE (a): For | ' | = J witha = A — A, 8 = Ay — A and
(IB )\z — )\k/\k — /\j
y=a+B=X\—\,i<k<j<n,wehave that (—B)|m,, (—B)|ms, (—B)|m, are vertical
—1)(n—2 AL — A
components. Fixed ¢ = 1, we will have (n=1)n=2) triples ! ! # 0; if
2 )\1 — )\k>\k - )\j
—2)(n — A2 — A
we fix ¢ = 2, one has (n=2)(n =3) triples 2 ’ # 0, and so on, getting
Aoy — Mgk — A
—1)(n—i—1 i — A
(n—dn—i-1) triples ! # 0 for each 1 < i < n — 2. It follows that
2 Ai = M A — A

the number of that multiply el in this case, not counting the permutations, is

23

1
n—1i n—i—1)=6(2n—3n2+n3).

l\')\»—t

Ai — A\
Since ! = 7 the coefficients t,,tg,t, are equal to t* and, by
)\i — )\k)\k — >\j Oéﬁ

symmetry of 7 , we must considering six times the number of such triples to obtain
o

1
the total number N of triples that multiply e in this case, hence

1 .
N, =6- 6(277,— 3n® +n%) = (2n — 3n* + n?).

CASE (b): For , with @ = A\ = X, B = A\ + A and

af

A — Aok + A
y=a—-F0=XN+X\,i<k<nk+#j<n, we have that (—B)|n, is vertical component

y _[ >\i+/\j

and (—B)|ms, (—B)|m, are horizontal components of the normal metric g. Fixed i = 1,
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A+ A
one has (n — 2)(n — 1) triples of the type LY # 0; if we fix i = 2, one
A= Ao + A
Aa + A ,
has (n — 2)(n — 3) symbols of the type # 0, and so on, getting
A2 — Aode + Ay
A + /\j

n —1)(n —i—1) triples of the type
(n —i)( ) trip L Y

follows that the number of such triples, not counting the permutations, is

];«EOforeaChlgién—l.It

E(n—i)(n—i— 1) - ;(Zn— 302 4 n?).

)\i+)\j

When
Ai = AN A A

] = [ 7 ] one has t, = tQ,tﬁ =t, = 1 in the expression of the
Q@

t la
© = % — ¢* and, by symmetry of 7 , We
tits  tgt, af

must considering two times the number of triples above to obtain the total number Ny of

canonical fibration. It follows that

triples multiplying ¢* in this case, hence

1 2
N, = 25(271 —3n* +n®) = =M,

in addition considering four times the value above to obtain the total number N3 of triples
£, oty tg

t 1
multiplying —— = = = = — in this case, hence
tats  tota toly tote 12

1 4
N3 = 43(271 —3n* +n?) = SN

From (3.11), [ “ ] = 2(711_1) whenever [ 70;

] # 0, and it follows that

1 do 1 0% t
(@ = > % fe = !
SCa( ) 2 te 4 2 [ Oéﬂ ] tatﬁ

aERT a,B,7eRt+
(TL — 1)n 1 Nl N2t2 N3
= " 1 — =
o T T e Y a1 T 2 - 1)

—2n2tY + 24n%t% + 5n® + Ant* — 24nt? + 2n
24¢2 '

O

Consider now the formula for scal(t) of the canonical variation described in
Example 2.2.14, section 2.2.1, of the normal metric on the maximal flag manifold associated
with the exceptional simple Lie algebra of the type Gs. Before, we will enunciate the

following useful lemma.
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Lemma 3.1.13 ([5]). According Ezample 2.2.14, Section 2.2, for the isotropy represen-

. 2
tation m = My, @ Mg, @® Moy +as > Moy 4202 @ Moy +3az S Mo +3az Of T ’ pUt m; = My,

My = My, M3 = My 4ay, Mu = Mg 420y, M5 = Mg, 430, and Mg = Mg, 430 - USan the

k
current notation, the non zero triples | | of the maximal flag Go/T? are
([}

BN

Proposition 3.1.14. [(Gy/T,n,)] Let (Go/T? n;) be the canonical variation of (Go/T?, g),
where g is the normal metric on Go/T. Then, the function scal(t), that for each t > 0

gives the scalar curvature of ng, is given by

2 4 12t — 2t4

Proof: We had see that the inner product
(0)er2 = (=B) o, +(=B) ey +1°(=B) ey 40y + (~B )iy 1205+ (—B) ey 250y +(—B) ey 4505
on the isotropy representation
m = Mg, @ Moy @ Maytar D May 200 D May 300 O M2a, 430,

of T, is the canonical variation g, of the normal metric g on G5/T?, where we took, with

respect go = €@ m, the root system of the Cartan Lie subalgebra £ as being
{iOél, iOég, i(Oél + 042), i(Oél + 20(2)7 i(ozl + 30&2), i(20&1 + 30&2)},

and we fix a system of simple roots to be ¥ = {ay, as}. With respect to X the positive

roots are given by

{aq, ag, (a1 + az), (a1 + 2a2), (1 + ), (201 + 3a) }.

By Lemma 3.1.13 and applying the formula (3.1) in this case, since d; =
dimm; = 2, follows that

Sdpo1 k| t
scal(t) = Etl—4Z[ ]tt

=1 bl B AL

1 4 1 4 11 4
= 8+ ) -~ (22+= ) -~ (2 + =

2(+t2) 4( +t2) 1 3( +t2)
241287 -2t
B 3t2 '
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3.2 Bifurcation and Local Rigidity Instants

It is known from Proposition 1.1.9, Section 1.1, that the Morse index changes
when passing a degeneracy instant and thus this is a bifurcation instant. We will determine
these changes in the Morse index in order to find bifurcation instants for the canonical

variations ¢;, 0 <t < 1.

It was defined previously that a degeneracy instant t, > 0 for g, in R¥(M),

scal
with g; = ¢, is an instant such that M € a(Ay,).

Denoting by
D<M <M<...<N<. )

the sequence of positive eigenvalues of A,, the Morse index of a Riemannian metric g is

1
N(g)zmax{jeN;)\?<Sm},

where is the Laplacian A, acting on C*(M), M provide with the Riemannian metric g
and m = dim M.

The following result is a sufficient condition for a degeneracy instant 0 < ¢, < 1
scal(t)

to be a bifurcation instant when is a constant eigenvalue of the Laplacian A, .
m j—

We will apply this in order to obtain the main theorems of this current work, namely the

determination of all bifurcation and local rigidity instants in the interval (0, 1), for each

canonical variation constructed on the maximal flag manifolds in the previous Chapter.

Proposition 3.2.1 ([10]). Let (M, g) be a closed Riemannian manifold with dim M > 3
and 7 : (M, g) — (B, h) a Riemannian submersion with totally geodesic fibers isometric

to (F,k), where dim F' = 2 and scal(F') > 0. Denote by X € o(Ay) < 0(4A,) a constant
scal(g,

m R
Ay, the Laplacian on (M, g, ). If

eigenvalue of A, such that = A, g, canonical variation of g at 0 <t, <1 and

1

<AM(t) = i+ (5 — Do,

scal(ge, )
m—1
w1 € o(Ay) the first positive eigenvalue of Ay and ¢y € o(A,) the first positive eigenvalue

of the vertical Laplacian A,, then t, is a bifurcation instant for g,.

Proof: It is sufficient to show that the Morse index changes when passing the degeneracy
value 0 < t, < 1, i.e, for € > 0 sufficiently small, N (g, ) # N(gt,+c) and, by Proposition

1.1.9, Section 1.1, t, is a bifurcation instant.

Observe that, if the Morse index does not change, there must be a compensation of

eigenvalues. Namely, there must exist nonconstant eigenvalues A9 (t), ... AJn(t) of Ay,
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whose combined multiplicity equals the multiplicity of A, such that,

1 )
A< sca(gi) < Nkdi(t), Wt <t, (closetot,)and 1<i<n,
m J—

scal(gy)
m—1

A > > \Fidi(t), Wt >t, (close to t,) and 1< i < n.

1 1
If scal(gi.) <1+ (= — D1, 1 € 0(A,) first positive eigenvalue of A, and ¢; € o(A,)
m

-1 t2
first positive eigenvalue of the vertical Laplacian A,, then

scal 1 , )
A= m(_gtf) <t (g = D1 < A (ts), VZ3k,j>0,

, 1 1
since N7 (t,) = pp + (=5 — 1)y, i1 < i € 0(A,), 1 < g1 € 0(A,) and (- —1) > 0 when

2 2

0 < t, < 1. It follows that every nonconstant eigenvalue A"/ (t) is strictly greater than
scal

A= M for t sufficiently close to t,, so that there is no compensation of eigenvalue

scallgiy ) =Aeo(Ay), tiisa

m J—
degeneracy instant for g;, and by Proposition 1.1.9, Section 1.1, ¢, is bifurcation instant

and the Morse index must change when passing t,. Since

for g;.

O

Later on, g is the normal homogeneous metric on the maximal flag manifold
G/T, represented by (—B)|n, B Cartan Killing form of the Lie group G, m = p @ q the
isotropy representation of the maximal torus 7' < G, H/T represents the fibers provided
with the induced homogeneous metric § represented by the inner product (—B)|, and the
basis space G/H is provided with the symmetric metric ¢ induced by (—B)l4, p and q

vertical and horizontal distributions, respectively.

For each canonical variation introduced in Section 2.2.2 defined on the maximal
flag manifolds associated with a complex classical simple Lie algebra, we obtain the

following properties

Lemma 3.2.2. Consider the canonical variations (SU(n+1)/T", g,), (SO(2n+1)/T", hy),
(Sp(n)/T" k), (SO(2n)/T", m;) and (Ga/T,n;) constructed in 2.2.2 and in 2.2.14, re-
spectively, from the homogeneous fibrations m : G/T — G/H described below,

() m : (SUMn + 1)/T",9) — (SUMn + 1)/S(U(1) x U(n)),q), n = 2,
(H/T = SU(n)/T"", );

(b) 7 : (SO(2n + 1)/T",g) — (SO(2n + 1)/SO(2n),g), n = 2,n # 3, (H/T =
S0(2n)/T", 9);
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(c) m: (Sp(n)/T",g) — (Sp(n)/U(n),§), n =5, (H/T = SU(n)/T" ", §);

(d) m: (SO(2n)/T", g) — (SO(n)/U(n),g), n =4, (H/T = SU(n)/T""", §);

(e) T (GQ/Tug) - (GQ/SO(4)a§)a (H/T = SO(4>/T = 52 X SQ:@)'
Therefore, for each of the canonical variations g,, hy, k;, m; and n; of the homogeneous
fibrations (a)-(e), with their respective fibers (H/T, §),

scal(t)
m—1

1
<A (#) = + (t2—1> $1,V0 <t <1,

with m = dim G/T, scal(t) the respective scalar curvatures of g,, hy, ky, m; and ny, py the
first positive eigenvalue of the Laplacian A, and ¢, the first positive eigenvalue of the

Laplacian A,.

Proof: For each of the canonical variations g,, hy, k;, m; and n; of the homogeneous

fibrations (a)-(e) we have:

(a) m=dimSU(n +1)/T" = n(n + 1),

—2n +n%(n+1) +4n(n + 1)t2 + n(1 — n)t*
4(n + 1)t ’

scal(t) =

1 1
M1=1,¢1=1and)\1(t):u1_|_<t2_1)¢1:t2;

(b) m = dim SO(2n + 1)/T" = 2n?,

5n3 — 2n2t* + 8n?t? — Tn? + 2nt* — 4nt? + 2n

scal(t) = 12n—1)P )

n

1 n 1
,ulz2n_1,¢1=1and)\1(t)=,u1+(152—1>¢1=2n_1~|—<—1),

(¢) m = dim Sp(n)/T" = 2n?,

=203t + 24n3t? + 5nd + 48n%t% + 9n? + 2nt* + 24nt? — 14n

scal(t) = 24(n + 1)12 ’
dn —1 1 dn —1 1
M1 = 74(n—|—1)’ ¢1 =1 and )\1(15) =,u1+ (252—1) le = m"{' (152—1),

(d) m =dim SO(2n)/T" = 2n(n — 1),

—2n2t* + 24n%t% + 5n® + Ant* — 24nt® + 2n
242 ’

scal(t) =

1 1
u1=1,¢1=1andA1(t):m+(ﬁ—1)¢1:t2_
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(e) m =dimGy/T = 12,

2+ 12t2 — 2t4
() = 2= =
scal(t) a2 :
1 1 1 1
,u1:2,g251:1and)\1(t)=,u1+<t2—1)¢1=2—|—<tQ—1).

In order to prove the inequality

scal(t)
m — 1

1
< AN =g+ <t2 — 1) H,V0 <t <1,

for each of the above (a)-(e) cases we define a function f given by

scal(t)

m—1

scal(t)

- () = 250
=

£t) = -wn—<;—1>%N0<t<L

and we verify that f is strictly negative for 0 <t < 1. Indeed, in the case of the canonical

variation g, on SU(n + 1)/T" we obtain

nd =2t 4+ AP+ +ntt +Ant? —2n 1

) = In+ Dinin+1) = D)2 z

n® + 4n® + 3n

where f(1) = 4n+1)(n(n+1)—1)

—1<0, forall n > 2 and

ﬁ(t) _ —4n2t3 + 8n2t + Ant3 + 8nt n® — n2tr + An2t2 + n? + nt* + nt? — 2n N z 50
"’ 4n+1)(n(n+ 1) — 1) 2(n+ 1) (n(n+1) — )3 £3

for 0 <t < 1. In the other cases, the proof is analogous.

O
Lemma 3.2.3. Every degeneracy instant t, for g,, hy, ki, m; and n, introduced in the

previous lemma 18 such that

scal(ty)
m—1

€o(Ag) = a(Ar,),

with o(Ay,) spectrum of the Laplacians on the total spaces SU(n + 1)/T",
SO(2n +1)/T", Sp(n)/T", SO(2n)/T", Go/T and o(Ay) the spectrum on the basis spaces
(G/H, g), respectively, m = dim G/T. In other words, scal(t.)

only if scal(ty)

is eigenvalue of A, if and

is a constant eigenvalue \*°(t) € o(A,), for some 1 < k € Z.

Proof: It is known that an eigenvalue of A; can be written as

t2

)\k’j(t) = Ui + (1 — 1) (bja
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for some u € 0(4A,) and ¢; € 0(Ay). From Lemma 3.2.2,

| .
m < AVL(E) < ABI(8), Yk, > 0,

scal(t)

and ; can not be equal to an eigenvalue of the type N7 (¢),Vk, j > 0.

m —
Furthermore, it can be shown, by applying elementary differential calculus,

scal(t)

that there is no 0 < ¢ < 1 such that L= A% (), for all integer j > 1. We will present

the proof of this property for the canonical variation g,. The proof of the another cases

are entirely analogous.

From the description of the spectra of maximal flag manifolds and symmetric
spaces in Section 2.2.3, the first positive eigenvalue of the Laplacian A; acting on functions
on the total space (SU(n + 1)/T",g,) is A1 (t) = 1, for all 0 < ¢ < 1. Since

—2n+n?(n+1) +4n(n + 1)t? + n(1 — n)t*

scal(t) = A(n + 1)

771227

for all t > 0, and m = dim SU(n + 1)/T" = n(n + 1), we have

scal(g;)  n® —n?t' + 40Pt + n® + nt' + 4nt®> — 2n
m—1 4(n+1)(n(n+ 1) — 1)t
< )\1(t) =1

<t<1,

- \/\/4n4+17n3+26n2+16n+4 2(n® +2n + 1)
n? n

Thus, we have that g, is locally rigidity at all instant

. ]\/\/4n4+17n3—|—26n2+16n+4 2(n®+2n + 1)
. _

1
n? n 1

accordingly Corolario 1.1.7, Section 1.1. Hence, there are no degeneracy instants for g, in
the interval (b, 1], with

n? n

b_\/\/4n4+17n3+26n2+16n+4 2(n? +2n+1)

The fiber of the canonical fibration (SU(n + 1)/T™,g,) is the maximal flag
manifold (SU(n)/T"', §), with the induced metric §, represented by the inner product
(—B)|p. With this homogeneous metric, according Theorem 2.2.20, Section 2.2.3, the first
positive eigenvalue ¢; of the Laplacian Aj is equal to 1, i.e., if ¢ € 0(4;), then ¢ > 1.

Define ¢, : (0,1) — R by
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for some fixed r > 1. We have that

d ndr —1)+n?(8r —t* — 1)+ n(t* +2) — 4r
%(@r(t)) = 2n+1)(n2+n—1)8 >0,
and
o1 (b) = n((Cp, =5)r+C, —4)—2n*(r+1) —2(r+1) <0,

(Cpp —4)n —2n2 -2

4 16
VOo<t<1l,r>=1n=>2 where C, = \/4n2 + — + 17Tn + — + 26. It follows that ¢, ()
n n

is negative for all 0 < ¢ < b and
scal(gy) _ 1 1)
m —1 t2

1(t , 1
for any r > 1, that is, there is no 0 < ¢ < 1 such that sca(l) =\ (t) = ( — 1> - ¢;,
m

2
for all ¢; € 0(A;) and we complete the proof for the case of the canonical variation g;.

As well as for the case of g,, define for hy, k;, m; and n, the function ¢, (t) as
above with » > 1, since the first positive eigenvalues of the Laplacians on their respective
fibers are also equal to 1. The statement follows by checking that ;i(@r(t)) >0,V0<t<1
and ¢, (b) <0, where 0 < b < 1 is such that

scal(gy)
m —

<M(t),Vb<t<l,

with A;(¢) first positive eigenvalues of the Laplacians, given in Proposition 2.2.22. We

found the following values for b, in addition to the expressions for ¢, (t) for the other cases:

(SO(2n +1)/T", hy))

b:\/\/8n2+5n—2

9
V2 "
0 (2n — 2n?) t2 N —16n3r + 5n® + 8n’r — Tn? + 8nr + 2n — 4r
or 42n—1) (202 — 1) 42n—1)(2n2 — 1)

16n3r — 8n%r + 8n? — 8nr — 4n + 4r
4(2n —1) (2n2 - 1)
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(Sp(n)/T" k)

- 2n (77n® — 351n + 143n® + 747n% + 2120+ 72) + 9 3 (4n® — 100 — 8n + 1)
a 4n?(n? — 1)2 2n(n? — 1) ’

—48n3r + 5n® — 48n?r + 9In? + 24nr — 14n + 24r
24(n+1)(2n%2 —1)¢2
48n T+ 24n3 + 48n%r + 48n? — 24nr + 24n — 24r
24(n + 1) (2n2 — 1)
(2n — 2n®) 12
24(n+1) (2n2—1)

Sor(t) =

(SO(2n)/T", my)

VTTnt — 15203 — 76n° + 144n + 72 6(n® —n —1)
V2(n —2)n (n=2)n

—48n2r + 5n? + 48nr + 2n + 24r  48n®r + 24n? — 48nr — 24n — 24r
erlt) = 24 (2n2 — 2n — 1) 12 " 24 (202 —2n — 1)
N (4n — 2n?) 2
24(2n? —2n—1)

(Go/T,ny)

1 /1 33rt? — 33r — 2t + 12¢2 +2
b= 7(\/14 - ) (1) =

2\/2 5=9), () 3312

Observe that the proof of the last Lemma does not guarantees that the set

1
scafgi) < Ai(t) is equal to the interval |b, 1], for the

of all instants 0 < ¢ < 1 such that
canonical variations k; and n,. In fact, we don’t have expressions of \;(t) in such cases,
therefore we can not determine the interval of rigidity instants, only subintervals of them.
We used the lower bounds of A () in order to determine a subset |b, 1] of local rigidity

instants for the canonical variations k; and n;.

For the canonical variations g,, h;, and m; on SU(n + 1)/T",

|
SO(2n + 1)/T" and SO(2n)/T™ we determined all t € (0, 1] such that S;j (gi) < M (1),

since A (t) is constant on (0, 1] in these cases.

The degeneracy instants for the canonical variation g,, 0 < ¢ < 1, on

SU(n + 1)/T™ are given in our following theorem.
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Theorem 3.2.4. Let g, be the above canonical variation on SU(n + 1)/T" and take

- \/4n4+17n3+26n2+16n+4 C2(n*+2n+1)
B n? n

for g, in (0,1) form a decreasing sequence {t%} = (0,b] such that t& — 0 as ¢ — 0, with

t$ = b and for ¢ > 1,

. Thus, the degeneracy instants

t§ =/ vE&) — (). (3.14)
where
1
= — - . (4 6 2 5 83 82_8 1
£(q) T (4n°¢* +n° (8¢ + 8¢ =8¢ + 1) +
4nt (q4—|—4q3—3q2—4q—|—1)+n3 (8q4—8q3—24q2+5)+
n® (—4q* — 16¢° + 4¢> + 8¢ + 6) + 8ng” (—¢* + ¢ + 1) + 4¢")
2P+ n? (P +q—1D)+n(@—q—1)—¢
() 2 )+ ) )

(n—1)n

scal(t)

Proof: We must determine all ¢ € (0, b] such that € o(Ay), since by the previous

1(¢
theorem g, is locally rigidity for b <t < 1. From Lemma 3.2.3, if scal(t) is a eigenvalue of
1(¢
Ay, then scal(?) e Ay.
m—1
Thus, it remains verify for which instants 0 < ¢t < b < 1 one has
scal(t) — ARO(p),
m—1

From Corollary 2.2.10, Section 2.2, A*%(¢) is eigenvalue of A, if and only if \*°(#)
belongs to the spectrum of the Laplacian on the basis CP" = SU(n 4+ 1)/S(U(1) x U(n)),
provide with the symmetric metric ¢ represented by the inner product (-,-) = —B|g, q
horizontal space of the original fibration. According the spectrum of the complex projective

space given in 2.19, the spectrum of the Laplacian A; on (CP", g) is

o(Ay) =1{B, = W;q e N}.

The degeneracy instants for g, in (0, b] are the real values ¢4, solutions of the

equation
scal(t) 5, = q(qg+n)
m—1 e n+1 "~
The explicit formula for &, which represents the solution of the above equation in ¢, is
. +n
presented in (3.14). Note that the constant eigenvalues 3, = q<q+1) tend to 400 as
n

scal(t)

q — o0 and, since is continuous and tends to +o0 as ¢ — 0, t§ — 0.
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Figure 1 — For n=2, we have the maximal flag manifold SU(3)/T?. The graph of the
al(t)

sc :
function 1 is given in red and of the eigenvalues \*/(t) of the Laplacian

A; are given in blue; the constants eigenvalues have their graphics in black
and correspond to (k,0),1 < k < 6, and non-constants ones to (k,j) where
1 < j < k < 6. The dashed vertical lines mark the first five degeneracy instants
(which are all bifurcation instants) starting at b = t§.

We also compute the Morse index of each g, as a critical point of the Hilbert-

Einstein functional (1.1).

Proposition 3.2.5. The Morse index of g, is given by

N@z{mﬂwmw%ﬁt%j

<8
0, if t§< 1

t
3.15
- , (3.15)
where  my(CP") is the multiplicity of the qth eigenvalue of the basis
CP" = SU(n+1)/S(U(1) x U(n)), see (2.18).
1
>ea (’? < \i(t) for all £ € [b, 1], with b = ¢8,

1(¢
w. Hence, N(t) = 0 for

t € [b,1]. When t — 0, whenever ¢ crosses a degeneracy instant t%, the constant eigenvalue
scal(t)
m—1"

Proof: We established in Lemma 3.2.3 that

m —

so that there are no eigenvalues of A; that are less than

A?0(t) becomes smaller than

It follows that the Morse index increases by the multiplicity of A*°(t), which is
the dimension of the corresponding eigenspace Eg. This dimension is given in (2.18) and
is positive. Thus, dim Eg also coincides with the multiplicity of the complex projective

space CPP", concluding the proof.
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The degeneracy instants for the canonical variation h,, 0 < t < 1, on

SO(2n +1)/T™ are given in our following theorem.

Theorem 3.2.6. Let h; be the above canonical variation on SO(2n + 1)/T" and take

b — V8&n? + 5n — 2
B V2

— 2n. Thus, the degeneracy instants for hy in (0, b] form a decreasing

sequence {t;‘} < (0,b] such that th‘ — 0 as ¢ — 0, with t* = b and for ¢ > 1,

ty =/ fla) + glq). (3.16)

where

1
fla) = m(

(16n° — 8n* — 16n° + 8n” + 4n — 2) ¢* + (—32n° + 32n* + 8n® — 16n° + 4n) ¢ +
(16n° — 16n° — 28n* + 24n® + 8n° — 8n + 1) ¢°)

10n° — 8n* +2n° + (4n" — 4n® + 1) ¢* +

—4n3q —2n%¢® + 2n%q +4n® +2ng —2n + ¢* — q
2(n—1)n ’

and g(q) =

scal(t)

Proof: We must determine all t € (0, ] such that ——— € o(4A,), since by the previous
m —

1(¢
seal( 1) is a eigenvalue of

theorem h, is locally rigidity for b <t < 1. From Lemma 3.2.3, if

1 "
t
Ay, then scal(?) e Ay.

m—1

: : : o scal(t)
Thus, it remains verify for which instants 0 < ¢ < b < 1 one has T =
m J—

ARO(1).

From Corollary 2.2.10, Section 2.2, A*%(¢) is eigenvalue of A, if and only if
A*0(t) belongs to the spectrum of the Laplacian on the basis S*" = SO(2n + 1)/SO(2n),
provide with the symmetric metric ¢ represented by the inner product (-,-) = —B|4, q
horizontal space of the original fibration. According 2.20, the spectrum of the Laplacian
Ay on (S, 7) is

q(q .
o(Ay) = {8, = Ton—1)

The degeneracy instants for h, in (0, b] are the real values t;‘, solutions of the
equation
q(g+2n—1)
w1 T a1y
The explicit formula for ¢4, which represents the solution of the above equation in ¢, is
q(q+2n—1)

tend to +o0
220 —1) end to as

presented in (3.16). Note that the constant eigenvalues [, =
scal(t)

m —

q — o0 and, since is continuous and tends to +o0 as t — 0, tl}; — 0.
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O

By a totally analogous argument, we also have the Morse index N (t) for each

h,, as we obtained for g, above.

Proposition 3.2.7. The Morse index of hy is given by

N(t) - { Spoamg(S), i 15, -

t <18

. , (3.17)
0, if tf<t<1

where  my(S®") is the multiplicity of the qth eigenvalue of the basis

5% = SO(2n +1)/S0(2n), see (2.18).

As consequence of the above results, we have obtained the bifurcation and
rigidity instants for (SU(n+1)/T",g,) and (SO(2n+1)/T", h;),0 < t < 1, in the following

theorem.

Theorem 3.2.8. For the canonical variations (SU(n+1)/T",g,) and (SO(2n+1)/T" h),
constructed above, the elements of the sequences {t8}, {th} < (0,b], of degeneracy instants
for g, and hy, given in (3.14) an (3.16), are bifurcation instants for g, and hy, respectively.
Moreover, g, and h; are locally rigid for all t € (0, 1]\ {t5} (respectively t € (0,1] \ {t(l;})

Proof: From Proposition 1.1.6, Section 1.1, we know that, if t, > 0 is not a degeneracy
instant for g, and hy, then g, and h; are locally rigidity at ¢,. In the previous theorems,
we proved that the degeneracy instants for g, and h; form the sequences ¢%, t;‘, and thus,
if t ¢ {8} or t ¢ {t}'} , t must be a local rigidity instant for g, and hy, respectively.

The fact that each ¢% or t;‘ are a bifurcation instants follows from Proposition
3.2.1 and Lemma 3.2.2.

O

Remark 3.2.9. The spectra of the Laplacian on the basis spaces G/H of the canonical
variations

™ (Sp(n)/T" ki) — (Sp(n)/U(n),§),n =5 and
™ (50(2n)/T", m;) — (SO(2n)/U(n), g),n = 4,
as we introduce in 2.17, Section 2.2.3, are given by
o(8g) = {p(A) = =B(A +20,A); A e D(G, H)},

where A varies over the set D(G, H) of the highest weights of all spherical representations
of (G, H) and ¢ is equal to the sum of the positive roots of the complexification g© of g

relative to the maximal abelian subalgebra €© of g°.
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The set D(Sp(n),U(n)) is spanned by B = {2m;1 < [ < n}, while for
D(S0O(2n),U(n)) one has the generators

By = {mo, T4, ..., Tpn_o,2m,}, if m is even

and

By = {79, T4, ..., Tpn_3,Tn_1 + m,}, if n is odd,

with {m;1 <1 < n} being the fundamental weights of the maximal abelian Lie algebra
Lie(T™) = €©. Therefore, an element A of D(Sp(n),U(n)) or D(SO(2n),U(n)) is linear
combination of elements in some of these basis, with coefficients belonging to the set of
non-negative integers. It is well known that 20 can also be written as linear combination of

fundamental weights (the coefficients of this linear combination are called Koszul numbers.)

Hence, any eigenvalue of the Laplacian on the basis spaces Sp(n)/U(n) and
SO(2n)/U(n) is equal to a polynomial depending on several (integers) variables, so that
we can not to obtain general formulae for bifurcation instants in these cases, as in 3.14 and

3.16, for the canonical variations g, and h; defined on SU(n + 1)/T" and SO(2n + 1)/T",

respectively.

Theorem 3.2.10. For the canonical variations (Sp(n)/T", k;),n = 5, and (SO(2n)/T", m;),
n = 4, introduced in Lemma 3.2.2, the bifurcation instants form discrete sets
t9 onaorazaczy < (0,1], 1 < 1 < n, with infinite elements accumulating close

to zero as x1,To,...,x; vary over Z,. Moreover, k; and m; are locally rigid for all
le (07 ]‘] \ {tg1x2...xl}$17$27---7$ZEZ+ :

1
Proof: We must find the instants 0 < ¢ < 1 such that *)

is a constant eigenvalue,
m —
where m represents the dimension of each spaces Sp(n)/T™ and SO(2n)/T™, while scal(t)

denotes the scalar curvature of k; and my.

From Corollary 2.2.10, Section 2.2, A*%(¢) is eigenvalue of A, if and only if
A*0(t) belongs to the spectrum of the Laplacian on the basis space provide with the
symmetric metric g represented by the inner product (-,-) = —B]|q, q horizontal space of
the original fibration. According 2.17, the spectrum of the Laplacian A; on the basis is
given by
o(2g) = {u(A) = ~B(A + 26, A); A € D(G, H)},

implying that any eigenvalue of the Laplacian on basis spaces Sp(n)/U(n) and SO(2n)/U(n)
is equal to a polynomial expression depending on several (integers) variables, as has been
seen in the above remark. Let u(A) = p(zq,...,2;) € 0(4Ay), for some 1 <1 < n, a con-
stant eigenvalue of the Laplacian A, acting on (Sp(n)/T", k;),n =5, or (SO(2n)/T", m,),

n = 4.
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The degeneracy instants for k; and m; in (0,1) are the real values ¢4 .

which are solutions of the equation

scal(t
m_(]? = M(I‘l,...,ﬁl)‘

The above equations in ¢, both for k; and m;, have infinite solutions, since the functions

scal(t) , .

(0,1)at — 1 are continuous and assume any positive value greater than or equal to
m J—

the first positive eigenvalue of the Laplacian A on the respective basis spaces Sp(n)/U(n)

and SO(2n)/U(n), namely, greater than 1, see Section 2.2.3.

The fact that the degeneracy instants ¢ , . are bifurcation instants follows

from Proposition 3.2.1 and Lemma 3.2.2.
By Proposition 1.1.6, Section 1.1, we know that, if £, > 0 is not a degeneracy
instant for k, and my, then ¢, > 0 is a local rigidity instant for them. Therefore, k; and

my are locally rigid at all
te (Ov 1] \ {tglmz...l'l}1173327-~71'ZEZ+‘

Note that in fact ¢ ., . € (0,1), since we obtain positive numbers 0 < b < 1

in Lemma 3.2.3 such that k; and m; are locally rigid at all ¢ € |b, 1]. Thus,

19 e (0,b[< (0,1).

T1T2...2]

O

Using the notations in Example 2.2.14, 2.2.1, it was established that the
homogeneous fibration
m (GQ/Tv g) - (GQ/SO<4)7§)

is a Riemannian submersion with totally geodesic fibers isometric to (H/K, §), H/K =
SO(4)/T = SO(4)/SO(2) x SO(2) = S* x S?, g the normal metric determined by the
inner product (—B)|w, § the metric given by (—B)|, and ¢ defined by the inner product
(—B)|q. Furthermore, the canonical variation g; of this submersion is represented by the
inner product

(00)er = (=B)lma, +(=B)lmoy (=B lma, oy + (= B)lmay 120, T8 (= B) oy 10y (B maay 0,

according (2.6).

The first positive eigenvalue of the Laplacian A; on the fiber is, according to

[30], equal to ¢1 = 1 and the first positive eigenvalue of the Laplacian A, on the total

1
space is equal to pu; = 5 Hence,

1 1

M) = i+ (g~ 1)or = 5+ (5 — 1)
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In Proposition 3.1.14, Section 3.1, we obtained the expression (3.13) of scal(t),

scalar curvature of the canonical variation n;, namely

2 + 12t — 2t*

scal(t) = 22 :

t> 0.

Since m = dim Gy/T = 12, follows that

scal(t) 24122 —2¢*
m—1 3312

Furthermore, by Proposition 2.2.21, we have that the spectrum of the Laplacian on the
basis space (G/SO(4), ) is

1
o(Ay) = {6(97’+6T2 + 55+ 6rs +25%):Z>7r, 5> O},

Now, we can determine the bifurcation and local rigidity instants for n; in the
interval (0, 1].

Theorem 3.2.11. The elements of the set {ti.} < (0,1] given by

\/\/(—667’2 — 33rs — 99r — 2252 — 555 + 24)% + 64 — 6612 — 33rs — 99r — 2252 — 555 + 24
22

Z > r,s =0, are bifurcation instants for (Gy/T,n;). Moreover, n,; is locally rigid at all
0 <t <1 such that t ¢ {t;.}.

n __
trs_

1(,
Proof: By Proposition 3.2.1, if 0 < ¢, < 1 such that scal( 1) € 0(A;) and
m —
1(, . o
sca(l) < AYY(t,), then t, is a bifurcation instant.
m —
Recall that
scal(t) scal(t) 2+ 12t — 2t 1 1 1 1
= = A(t) = ——1 = — ——1
m—1 11 e N WD =mt g a=g (G-
scal(ty)

for all 0 <t < 1, according 3.2.2. The instants that satisfy

T o(Ay) < o(A,) are
the solutions of

1(¢) 24122 —2¢* 1
SCEil()_ +33t2 :6(9r+67’2—|—58+6rs+232)>0<t<1

which are exactly the ¢}, given above. The elements of the set {t.} are such that

scal(th,)

Al,l tl’l
11 < ( ’I"S)

and t7, is a bifurcation instant for all 0 < r, s € Z. In order to prove that n; is locally rigid
at all 0 <t < 1 such that ¢ ¢ {{;.} we apply Proposition 1.1.6, 1.1.
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O

1(t
Remark 3.2.12. By continuity of % and by the fact that %ir%

the eigenvalues of A goes to +00 when r, s — +00, we have that the sequence tY, obtained

% = +00, since

above is such that ¢, — 0 when r,s — 400 and, then, we determine a sequence of

bifurcation instants accumulating close to zero.

cal(t

(1) in red and A*/(¢) in black, the

m J—
constants corresponding to (k,0),1 < k < 6, and non-constants to (k, j) where
1 < j < k < 6. The dashed vertical lines mark five degeneracy instants (which
are all bifurcation instants) starting at 7.

Figure 2 — For G5/T, graphs of the functions i
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3.3 Multiplicity of Solutions to the Yamabe Problem

We now explain how to obtain multiplicity results for the canonical variations
g, h, k;, m; and n; applying the next proposition due R. G. Bettiol and P. Piccione which
is in their work [10]. We have been interested in determine which conformal classes carry

multiple unit volume metrics with constant scalar curvature.

Proposition 3.3.1 ([10]). Let ¢;, with t € (0,b[, be a family of metrics on M with
N(t) = N(g:) > 0, N(t) the Morse index of g, and suppose there exists a sequence {t,} in
(0,b], that converges to 0, of bifurcation values for g,. Then, there is an infinite subset
G < (0,b] accumulating at 0, such that for each t € G, there are at least 3 solutions to the

Yamabe problem in the conformal class [g:].

Applying the last Proposition and our bifurcation results, we can determine
a lower bound for the number of unit volume metrics with constant scalar curvature in

each conformal class [g;], [h¢], [k¢], [m], [n:], respectively, for instants in a given subset

G < (0,1).

Theorem 3.3.2. Let g,, hy, ki, m; and n; be the families of homogeneous metrics obtained
as described above. Then, there exists, for each of such families, a subset G < (0,1),
accumulating at 0, such that for each t € G, there are at least 3 solutions to the Yamabe

problem in each conformal class [g,], [h:], [Kke], [m:], [1n¢].

Proof: It is only necessary to verify that there exists 0 < b < 1 such that N(¢) > 0 in

(0, b[. For each canonical variation g,, h;, k;, m; and n; take a positive number 0 < b < 1

scal(t)

such that < Ai(t) for all t €]b,1), with m denoting the dimension of the respective
m

total space. This implies that N(t) = 0, for all ¢ €]b, 1), since there are no eigenvalues of

1(t 1(t
Ay less than scal( ) If t = b, one has sea (1) = (1, where [3; is the first positive

m — m —
eigenvalue of the Laplacian on the basis. We proved that ¢ = b is a bifurcation instant and

then the Morse index changes from 0 to a positive integer. Hence, for ¢t € (0,b[< (0, 1), we

have N(t) = N(b— ¢€) > 0, since by definition, the Morse index is equal to the number

scal(t)

, which is strictly
m—1

(counting multiplicity) of positive eigenvalues that are lees than
scal(t)

decreasing for 0 <t < 1 and — w as t — 0., for g;, hy, k;, m; and n,.
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