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Damião de Sousa Lima e Ivânia Nascimento de Sousa Lima.



Acknowledgements

• I thank my family for the unconditional support, especially my parents Damião
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”As long as algebra and geometry have been separated,

their progress have been slow and their uses limited;

but when these two sciences have been united,

they have lent each mutual forces,

and have marched together towards perfection.”

(Joseph-Louis Lagrange)



Resumo

Neste trabalho, construimos famı́lias de 1-parâmetro de soluções do problema Yamabe

a partir de submersões Riemannianas com fibras totalmente geodésicas. Consideramos

como espaços totais dessas submersões variedades flag maximais munidas de uma métrica

normal. Em seguida, determinamos os instantes de bifurcação e rigidez local para essas

famı́lias de soluções olhando para as mudanças do ı́ndice de Morse dessas métricas quando

o parâmetro varia no intervalo p0, 1s. Um ponto de bifurcação para tais famı́lias é um

ponto de acumulação de outras soluções para o problema de Yamabe conformes a soluções

homogêneas. Já um ponto de rigidez local é uma solução isolada para este problema em

sua classe conforme, ou seja, não é um instante de bifurcação.

Também calculamos o ı́ndice Morse das variações canônicas sobre as variedades flag

maximais SUpn ` 1q{T n e SOp2n ` 1q{T n, com o parâmetro variando no intervalo p0, 1s.

Finalmente, obtemos resultados sobre a multiplicidade de soluções do problema Yamabe

em nossa situação utilizando resultados de R. G. Bettiol e P. Piccione que garantem um

número mı́nimo de soluções em uma determinada classe conforme se o ı́ndice Morse da

métrica correspondente for positivo.

Palavras-chave: Instante de bifurcação; Instante de rigidez local; Variedade flag; Variação

canônica; Problema de Yamabe.



Abstract

In this work, we construct 1-parameter families of well known solutions to the Yamabe

problem from Riemannian submersions with totally geodesic fibers. We consider as total

spaces maximal flag manifolds equipped with a normal metric. Thereafter, we determine

bifurcation and local rigidity instants for these families looking for changes of the Morse

index of these metrics when the parameter varies on the interval p0, 1s. A bifurcation point

for such families is an accumulation point of others solutions to the Yamabe problem

conformal to homogeneous solutions. Already a local rigidity point is an isolated solution

to this problem in its conformal class, i.e., it is not a bifurcation instant.

We also compute the Morse index of the canonical variations defined on the maximal flag

manifolds SUpn ` 1q{T n and SOp2n ` 1q{T n, for the parameter varying on the interval

p0, 1s.

Finally, we obtain results about multiplicity of solutions of the Yamabe problem in our

situation by using results of R. G. Bettiol and P. Piccione that guarantee a minimum

number of solutions in a given conformal class if the Morse index of the corresponding

metric is positive.

Keywords: Bifurcation instant; Local rigidity instant; Flag manifold; Yamabe problem.
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Introduction

Given a compact, orientable Riemannian manifold pM, gq, with dimension

m ě 3, the Yamabe problem concerns the existence of constant scalar curvature metrics on

M conformal to g. Solutions to this problem, called Yamabe metrics, can be characterized

variationally as critical points of the Hilbert-Einstein functional restricted to the set rgs of
metrics conformal to g. The existence of such solutions are consequence of the successive

works of Yamabe [1960], Trudinger [1968], Aubin [1976] and Schoen [1984].

It is said that gt, t P ra, bs, is a 1-parameter family of solutions to the Yamabe

problem if

dpA|rg0s1
qpĝtq “ 0 @ t P ra, bs,

where ĝt is the unit volume metric homothetic to gt, g1 “ g and A is the Hilbert-Einstein

functional. The families that we study in this thesis are formed by homogeneous metrics,

which are trivial solutions to the Yamabe problem.

A classic method to obtain new solutions of a PDE is to use bifurcation theory. In

our main result, we found bifurcation and local rigidity points among certain homogeneous

solutions to the Yamabe problem, namely homogeneous metrics defined on maximal flag

manifolds. Bifurcation point of a family of such solutions is an accumulation point of other

solutions to the Yamabe problem conformal to homogeneous solutions. Already a local

rigidity point is an isolated solution to this problem in its conformal class, i.e., not a

bifurcation point.

The bifurcation theory applied here is based on finding bifurcation instants for

a given 1-parameter family of homogeneous metrics gt, 0 ă t ď 1. For this, we analyze

the occurrence of jump in the Morse index of gt by using strongly the expressions of the

Laplacian defined on pM, gtq and the scalar curvature of gt. The Morse index is equal

to the number (counting multiplicity) of positive eigenvalues that are less than
scalpgtq
m ´ 1

,

being scalpgtq scalar curvature of gt. These tools allow to find new examples of positively

curved manifolds.

Given a Riemannian submersion with totally geodesic fibers, a 1-parameter

family of other such submersions can be constructed by scaling the original metric of

the total space in the direction of the fibers. This family is called canonical variation,

and a generalization of this is, for example, the Cheeger deformations. Particular cases of

Riemannian submersion with totally geodesic fibers are Homogeneous fibrations, which we

use in order to construct canonical variations on maximal flag manifolds.

Applying ideas of bifurcation theory, Paolo Piccione and Renato G. Bettiol
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obtained in their work [11] [2013] bifurcation and local rigidity instants for canonical

variations of round metrics on spheres. These families were constructed from homogeneous

metrics on total spaces of Hopf fibrations (the total spaces equipped with such deformed

metrics are also often referred to as Berger spheres). More precisely, they defined on the

total space of each Hopf fibration

S1 ¨ ¨ ¨S2n`1 Ñ CP
n, S3 ¨ ¨ ¨S4n`3 Ñ HP

n, S7 ¨ ¨ ¨S15 Ñ S8p1

2
q

canonical variations depending on one parameter t ą 0, obtained by scaling the round

metric by a factor t2 in the subbundle tangent to the Hopf fibration. It is also proved that

there are classes of the Berger spheres above whose conformal classes contain at least 3

solutions to the Yamabe problem.

Bettiol and Piccione treated in [10]the homogeneous fibrations

H{K ¨ ¨ ¨G{K Ñ G{H

with K Ĺ H Ĺ G compact connected Lie groups, dimH{K ě 2, either H is normal in

G or K is normal in H and H{K has positive scalar curvature. From such homogeneous

fibration they construct a canonical variation gt of an initial G-invariant metric g “ g1 on

the total space G{K. It was proved that in this situation there exists a subset G Ă p0, 1r,
accumulating at 0, such that for each t P G there are at least 2 solutions to the Yamabe

problem in the conformal class rgts1, other than ĝt, where ĝt is the unit volume metric

homothetic to gt.

For the case of canonical variations on nonhomogeneous fibrations, Bettiol

and Piccione also obtained similar bifurcations results in their work [10]. Indeed, they

proved existence of bifurcations instants accumulating at 0 for the canonical variation of a

Riemannian submersion

F ¨ ¨ ¨M Ñ B

with totally geodesic fibers isometrics to F , under assumption of upper boundaries for

Ricci and scalar curvatures.

In this thesis, we deform homogeneous metrics on maximal flag manifolds, total

spaces of the following homogeneous fibrations

(i) SUpnq{T n´1 ¨ ¨ ¨SUpn ` 1q{T n Ñ SUpn ` 1q{SpUp1q ˆ Upnqq “ CP
n, n ě 2;

(ii) SOp2nq{T n ¨ ¨ ¨SOp2n ` 1q{T n Ñ SOp2n ` 1q{SOp2nq “ S2n, n ě 2, n ‰ 3;

(iii) SUpnq{T n´1 ¨ ¨ ¨Sppnq{T n Ñ Sppnq{Upnq, n ě 3;

(iv) SUpnq{T n´1 ¨ ¨ ¨SOp2nq{T n Ñ SOp2nq{Upnq, n ě 4;

(v) SOp4q{T – S2 ˆ S2 ¨ ¨ ¨G2{T Ñ G2{SOp4q;
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More specifically, we equip each total space above with a normal homogeneous

metric and deform these metrics by shrinking the fibers by a factor t2,

0 ă t ď 1, getting the canonical variations pSUpn ` 1q{T n,gtq, pSOp2n ` 1q{T n,htq,
pSppnq{T n,ktq, pSOp2nq{T n,mtq, pG2{T,ntq in Section 2.2.2. Recall that a normal homo-

geneous metric on G{K is obtained from the restriction to the tangent space (isotropy

representation) of a bi-invariant inner product on the Lie algebra LiepGq “ g. The max-

imal flag manifolds are homogeneous spaces such that K is compact, hence they admit

bi-invariant metrics and hence normal homogeneous metrics.

A degeneracy point for a given canonical variation gt, t ą 0, is a degenerate

critical point gt˚ for the Hilbert-Einstein functional, at some t˚ ą 0. It is established in

Section 1.1 that every bifurcation point is a degeneracy point for this canonical variation,

however not all degeneracy point is a bifurcation point. Since the Morse index of each

gt,ht,kt,mt,nt, changes as t crosses degeneracy instants t˚ P p0, 1r (Proposition 1.1.9,

Section 1.1), we prove existence of new solutions to the Yamabe problem accumulating

at gt˚
,ht˚ ,kt˚ ,mt˚ ,nt˚ , respectively. Such instants t˚ are called bifurcation instants and

gt˚
,ht˚ ,kt˚ ,mt˚ ,nt˚ are bifurcation points for the canonical variations gt,ht,kt,mt,nt,

respectively.

From Proposition 1.1.6 we also determine the local rigidity instants for each

family gt,ht,kt,mt,nt in the interval p0, 1s. Indeed, we obtain in Section 3.2 the following re-

sults.

Theorem A For the canonical variations pSUpn ` 1q{T n`1,gtq and

pSOp2n ` 1q{T n,htq, there are sequences ttgq u, tthq u Ă p0, 1s, of bifurcation instants for gt

and ht, given in (3.14) an (3.16), such that tgq , t
h
q Ñ 0 as q Ñ 0. Moreover, gt and ht are lo-

cally rigid for all t P p0, 1s z ttgq u(respectively t P p0, 1s z tthq uq.
Theorem B For the canonical variations pSppnq{T n,ktq, n ě 5, and

pSOp2nq{T n,mtq, n ě 4, introduced in 3.2.2, the bifurcation instants are discrete sets

ttgx1x2...xl
ux1,x2,...,xlPZ` Ă p0, 1s, 1 ď l ď n, with infinite elements accumulating close

to zero as x1, x2, . . . , xl vary over Z`. Moreover, kt and mt are locally rigid for all t P
p0, 1s z ttgx1x2...xl

ux1,x2,...,xlPZ`.

Theorem C The elements of the set ttnrsu Ă p0, 1s given by

tnrs “

cb
p´66r2 ´ 33rs ´ 99r ´ 22s2 ´ 55s ` 24q2 ` 64 ´ 66r2 ´ 33rs ´ 99r ´ 22s2 ´ 55s ` 24

2
?

2
,

Z Q r, s ě 0, are bifurcation instants for pG2{T,ntq. Moreover, nt is locally rigid at all

0 ă t ď 1 such that t R ttnrsu.

In other words, we proved that for tgt; 0 ă t ă 1u and tht; 0 ă t ă 1u there

are infinitely many other solutions to the Yamabe problem that accumulate close to the

homogeneous solutions gt
g
q
and hthq

. For kt,mt and nt the set of bifurcation instants are also

(infinite) discrete, however such bifurcation instants depend on several (integer) indexes. In
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addition, we also determine the sets of local rigidity instants for each canonical variation

gt,ht,kt,mt,nt in the interval p0, 1s.

Our results also can be understood from the view point of dynamical systems,

where bifurcation means a topological or qualitative change in the structure of the set of

fixed points of a 1-parameter family of systems when we vary this paremeter. Critical points

of the Hilbert-Einstein functional in a conformal class rgs are fixed points of the so-called

Yamabe flow, the corresponding L2-gradient flow of the Hilbert-Einstein functional, which

gives a dynamical system in this conformal class. Hence, the bifurcation results above

mentioned can be interpreted as a local change in the set of fixed points of the Yamabe

flow near homogeneous metrics (which are always fixed points) when varying the conformal

class rgs with g in one of the families gt,ht,kt,mt,nt. An interesting question, proposed by

Bettiol and Piccione in [11], would be to study the dynamics near these new fixed points.

In Section 3.1 we calculate expressions for the scalar curvatures scalpgtq, scalphtq,
scalpktq, scalpmtq, scalpntq applying the formula for scalar curvature of reductive homo-

geneous spaces due W. Ziller and M. Wang in their work [31]. We also apply the Lie

theoretic description of the flag manifolds to determine these formulae in our situation. The

coefficients of the invariant homogeneous metrics gt,ht,kt,mt and nt and the structure

constants of the Lie algebras which define each total space in (i)-(v) above were determined

for this purpose.

In order to prove the bifurcation results claimed, we analyze the second variation

of the Hilbert-Einstein functional at every homogeneous metrics gt,ht,kt,mt,nt, defined

on the total spaces in (i)-(v). Given the second variation formula (1.2), Section 1.1, for

this functional, this analysis amounts comparing the eigenvalues λkjptq (see expression

(2.3), Corollary 2.2.5) of the Laplacian ∆t of gt,ht,kt,mt,nt, respectively, with the scalar

curvatures scalpgtq, scalphtq, scalpktq, scalpmtq, scalpntq. More precisely, a critical point

gt,ht,kt,mt or nt is degenerate if and only if scalptq ‰ 0 and
scalptq
m ´ 1

is an eigenvalue of

∆t.

The spectrum of the Laplacian ∆t of the canonical variations of Riemannian

submersions with totally geodesic fibers is well-understood. Roughly, it consists of linear

combinations (that depends on t) of eigenvalues of the original metric on the total space with

eigenvalues of the fibers. In particular, we compute formulae for the first positive eigenvalues

of ∆gt
and ∆ht

, in addition to lower and upper bounds for the first positive eigenvalues

of ∆kt
, ∆mt

and ∆nt
, respectively (Proposition 2.2.22). Combining this knowledge of

the spectra of ∆gt
, ∆ht

, ∆kt
, ∆mt

and ∆nt
with the formulae for the scalar curvatures

scalpgtq, scalphtq, scalpktq, scalpmtq, scalpntq we are able to identify all degeneracy instants

for gt,ht,kt,mt,nt and prove existence of bifurcation at all degeneracy instants in the

interval p0, 1r. The local rigidity instants for these canonical variations are also determined

for all other 0 ă t ă 1 (by applying our results, namely Proposition 3.2.2, Lemma 3.2.2 and
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Lemma 3.2.3). We also compute the Morse index of each gt and ht, 0 ă t ď 1 (Proposition

3.2.5 and Proposition 3.2.7).

We remark that the induced metrics on the fibers and on the basis of the

homogeneous fibrations in (i)-(v) are such that the fibers become some type of maximal

flag manifold endowed with a normal homogeneous metric and the basis spaces are compact

isotropy irreducible Hermitian symmetric spaces. The spectra of the Laplacian on these

spaces are described in terms of weights of some irreducible representations. In respect

to spectra of maximal flag manifolds, we use the description of Yamaguchi [1979] [33]

where the spectra of the Laplacian on maximal flag manifolds endowed with a normal

homogeneous metric are specified in terms of the representation theory of the related

compact Lie groups. Already in the case of the spectrum of the Laplacian on compact

isotropy irreducible Hermitian symmetric space G{H, we used in this thesis the description

presented in [30] and [29]. In this case, the spectrum is given in terms of integer coefficients

of highest weights of spherical representations of the symmetric pair pG,Hq.

In addition by exploring the existence of infinitely many bifurcations of gt,ht,kt,

mt,nt, we obtain in Section 3.3 the following multiplicity result.

Theorem D Let gt,ht,kt,mt and nt be the families of homogeneous metrics obtained

as described above. Then, there exists, for each of such families, a subset G Ă p0, 1r,
accumulating at 0, such that for each t P G, there are at least 3 solutions to the Yamabe

problem in each conformal class rgts, rhts, rkts, rmts, rnts.

Renato G. Bettiol and Paolo Piccione proved in [10] a result that guarantees

existence of other solutions to the Yamabe problem in the conformal class rgts of a

canonical variation gt if its Morse index is positive over some subset of p0, 1q. Theorem D

is a consequence of this result.

We have restricted our study to the interval p0, 1q since for t ą 1 would be

necessary more refinements for the expressions of the eigenvalues λkjptq of the Laplacian

∆t on the total spaces of the canonical variations gt,ht,kt,mt and nt, respectively. For the

above mentioned canonical variations of the Hopf fibrations, Bettiol and Piccione in [11]

obtained refinements for expressions of the eigenvalues λkjptq applying standard theory

of spherical harmonics on spheres. This enabled them obtaining bifurcation results on

spheres for all t ą 0.

An extension of the results presented in this thesis consists to find all bifurcation

and local rigidity instants for the canonical variations gt,ht,kt,mt and nt in p0,`8q.
To do so, it is necessary, in principle, a more detailed description of the spectra of the

Laplacians of such canonical variations. In order to study cononical variations defined

on total spaces more general than maximal flag manifolds, one can consider initially

homogeneous fibrations on partial flag manifolds, as long as the spectra of the Laplacians

on the basis and on the fiber have well-known descriptions. Furthermore, another approach
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is to study homogeneous fibrations without hypothesis of normality of subgroups considered

by Bettiol and Piccione in [10].

This thesis is organized as follows. In Chapter 1 we introduce the variational

characterization of the Yamabe problem and the basic notions of bifurcation and local

rigidity, in addition to establish the definitions of generalized flag manifold, invariant metrics

and isotropy representation. The study of the Laplacian of the Riemannian submersions

with totally geodesic fibers, the definition of the canonical variations and the description

of their spectra, as well as the construction of the canonical variations gt,ht,kt,mt and

nt are studied in Chapter 2. In Chapter 3 we obtain formulae for scalar curvature of

gt,ht,kt,mt and nt. We prove also the main results of the thesis, namely Theorems A, B,

C and D, on bifurcation and local rigidity of solutions to the Yamabe problem, for the

families gt,ht,kt,mt and nt respectively. We also determine the Morse index of gt and ht.

The last section of this chapter contains multiplicity of solutions to the Yamabe problem

for all the families previously introduced.
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1 Preliminaries

In this chapter, we present some necessary prerequisites for the development of

this work.

1.1 Variational Setup For the Yamabe Problem

Before we present the notions of bifurcation and local rigidity instants, we will

describe the set RkpMq of all Ck Riemannian metrics on M , m “ dimM ě 3, and some

properties of the Hilbert-Einstein functional. For further references and details of the

concepts and properties presented here see, e.g, [11], [14] and [28].

Let gR be a fixed auxiliary Riemannian metric on M ; gR and its Levi-Civita

connection ∇R induce naturally Riemannian metrics and connections on all tensor bundles

over M , respectively. For each k ě 0, denote by ΓkpTM˚ _ TM˚q the space of symmetric

Ck sections of TM˚ b TM˚, i.e, symmetric p0, 2q-tensors of class Ck on M . This becomes

a Banach space when equipped with the Ck norm

}τ}Ck “ max
j“1,...,k

´
max
xPM

››p∇Rqjτpxq
››

R

¯
,

where }¨}R denote the norms induced by gR on each appropriate space.

Note that the set RkpMq of all Ck Riemannian metrics on M is a open convex

cone inside pΓkpTM˚ _ TM˚q, }¨}Ckq and, therefore, contractible. Thus, RkpMq inheriting

a natural differential structure. We remark also that RkpMq is a open set of a Banach

space and, thus, we can identify its tangent space with the vector space ΓkpTM˚ _ TM˚q.
From now on, we assume that k ě 3.

For each g P RkpMq, denote by volg the volume form on M (we assume that M

is orientable); in this case, L2pM, volgq will denote the usual Hilbert space of real square

integrable functions on M . Consider over RkpMq the maps

scal : RkpMq ÝÑ Ck´2pMq and Vol : RkpMq ÝÑ R,

the scalar curvature and the volume, that for each Riemannian metric g P RkpMq associate,
respectively, its scalar curvature scalpgq : M ÝÑ R and its volume Volpgq “

ż

M

volg. Define

the Hilbert-Einstein functional as the function A : RkpMq ÝÑ R given by

Apgq “ 1

Volpgq

ż

M

scalpgqvolg. (1.1)

In order to enunciate some properties of the Hilbert-Einstein functional, we will establish

the more appropriate regularity for our manifold of metrics and maps. Denote by Rk
1pMq “
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Vol´1p1q the suset of RkpMq consisting of unit volume metrics volume. Note that Rk
1pMq

is a smooth embedded codimension 1 submanifold of RkpMq.

For each g P RkpMq, the conformal class of g is the set rgs Ă RkpMq formed

by conformal metrics to g. The space ΓkpTM˚ _TM˚q defined above induces a differential

structure on each conformal class.

Later, some Fredholm’s conditions must be satisfied. For this, it is enough we

introduce the notion of Ck,α conformal class and, therefore, define on the conformal class

g P RkpMq a Hölder Ck,αpMq regularity. Let

rgsk,α “
 
φg;φ P Ck,αpMq, φ ą 0

(

be the Ck,αpMq conformal class of g, which can be identified with the open subset of

Ck,αpMq formed by the positive functions, which allows rgsk,α to have a natural differential

structure. Working with this regularity, the necessary Fredholm’s conditions of the second

variation of the Hilbert-Einstein functional are satisfied. The set

R
k,α
1 pM, gq “ Rk

1pMq X rgsk,α

is a smooth embedded codimension 1 submanifold of rgsk,α. Proposition 1.1.1 contains

well-known facts about A and its critical points, see, e.g. [14].

Proposition 1.1.1. The following hold for the functional A:

(i) The functional A is smooth on RkpMq and on the Ck,α conformal class of any metric

g P RkpMq. In particular, A is smooth on the submanifolds R
k,α
1 pM, gq and Rk

1pMq

(ii) The metric g0 P Rk
1pMq is a critical point of A on Rk

1pMq if and only if it is a

Einstein metric;

(iii) A metric g0 P R
k,α
1 pM, gq is a critical point of A on R

k,α
1 pM, gq if and only if it has

constant scalar curvature;

(iv) At a critical point g0 P R
k,α
1 pM, gq of A, the second variation d2

Apg0q can be identified

with the quadratic form

d2
Apg0qpψ, ψq “ m ´ 2

2

ż

M

ppm ´ 1q∆g0
ψ ´ scalpg0qψqψvolg0

, (1.2)

defined on the tangent space at g0 “ φg, given by

Tg0
R

k,α
1 pM, gq –

"
ψ P Ck,αpMq;

ż

M

ψ

φ
volg0

“ 0

*
.

Remark 1.1.2. We are considering ∆g “ ´divg ˝ gradg, the Laplacian operator of pM, gq,
acting on C8pMq. We observe that, given λ P R

`, one has ∆λg “ 1

λ
∆g e scalpλgq “
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1

λ
scalpgq. Therefore, the negative eigenvalues (respect. positive) of ∆g remain negative

(respect. positive), that is, we can normalize metrics in order to have unit volume, without

changing the spectral theory of the operator ∆g ´ scalpgq
m ´ 1

¨ Id, m “ dimM .

Now, we will introduce the concepts of bifurcation and local rigidity for a

1-parameter family of solutions to the Yamabe problem. Let

ra, bs Q t ÞÑ gt P RkpMq, k ě 3,

or simply gt, denote a smooth 1-parameter family (smooth path) of Riemannian metrics

on M , such that each gt has constant scalar curvature.

Definition 1.1.3. An instant t˚ P ra, bs is a bifurcation instant for the family gt if there

exists a sequence ttqu in ra, bs that converges to t˚ and a sequence tgqu in RkpMq of

Riemannian metrics that converges to gt˚ satisfying

(i) gtq
P rgqs, but gq ‰ gtq

;

(ii) Volpgqq “ Volpgtq
q;

(iii) scalpgqq is constant.

If t˚ P ra, bs is not a bifurcation instant, it is said that the family gt is locally

rigid at t˚. More precisely, the family is locally rigid at t˚ P ra, bs if there exists an open

set U Ă RkpMq containing gt˚ such that if g P U is another metric with constant scalar

curvature and there exists t P ra, bs with gt P U and

(a) g P rgts;

(b) Volpgq “ Volpgtq,

then g “ gt.

In order to identify the occurrence of the above two situations, we must define

degeneracy instant and Morse index of gt.

Definition 1.1.4. An instant t˚ P ra, bs is a degeneracy instant for the family gt if

scalpgt˚q ‰ 0 and
scalpgt˚q
m ´ 1

is an eigenvalue of the Laplacian operator ∆t˚ of gt˚.

Remark 1.1.5. In face of the second variation expression of the Hilbert-Einstein functional,

given in Proposition 1.1.1, item (iv), the above definition is equivalent to the fact that gt˚

being a degenerate critical point (in the usual sense of Morse theory) of the Hilbert-Einstein

functional on R
k,α
1 pM, gq.
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The Morse index Npgtq of gt is given by the number of positive eigenvalues

of ∆t counted with multiplicity that are less than
scalpgt˚q
m ´ 1

. For each t ą 0, Npgtq is a

non-negative integer number. In other words, Npgtq counts the number of directions which

the functional decreases, since the second variation is negative definite.

Next, we will present a general criterion for classifying local rigidity instants

for a 1-parameter family gt of solutions to the Yamabe problem.

Proposition 1.1.6 ([11]). Let gt be a smooth path of metrics of class Ck, k ě 3, such

that scalpgtq is constant for all t P ra, bs, and let ∆t be the Laplacian operator of gt. If t˚

is not a degeneracy instant of gt, then gt is locally rigid at t˚.

Corollary 1.1.7 ([11]). Suppose that, in addition to the hypotheses of Proposition 2, there

exists an instant t˚ when
scalpgt˚q
m ´ 1

is less than the first positive eigenvalue λ1pt˚q of ∆t˚.

Then gt˚ is a local minimum for the Hilbert-Einstein functional in its conformal class. In

particular, gt locally rigid at t˚.

Remark 1.1.8. Note that, in fact, the Corollary 1.1.7 is an immediate consequence from

Proposition 1.1.6, since Morse index of the non-degenerate critical point gt˚ is Npgt˚q “ 0.

In addition, we remark that, if t˚ is a bifurcation instant for gt, then t˚ is necessarily a

degeneracy instant for gt. However, the reciprocal is not true in general.

The next result provides a sufficient condition to determinate if a degeneracy

instant is a bifurcation instant, given in terms of a jump in the Morse index when passing

a degeneracy instant.

Proposition 1.1.9 ([11]). Let gt a smooth path of metrics of class Ck, k ě 3, such that

scalpgtq is constant for all t P ra, bs, ∆t the Laplacian gt and Npgtq the Morse index of gt.

Assume that a and b are not degeneracy instants for gt and Npgaq ‰ Npgbq. Then, there
exists a bifurcation instant t˚ P sa, br for the family gt.

1.2 Generalized Flag Manifolds

Let G be a compact semissimple Lie group and let x P g be a regular element,

i.e, its centralizer is equal to a maximal toral subalgebra of g “ LiepGq, Lie algebra of G.

The adjoint orbit of x is the set M “ G ¨ x “ AdpGqx Ă g. Let

K “ Gx “ tg P G : Adpgqx “ xu Ă G

be isotrpy subgroup of x. Then M is diffeomorphic to the left coset G{K.

Let x0 be the point which corresponds to the class 1 ¨ K P G{K (1 P G is

the identity element of G). If we take Tx0
“ expRx0, it is well known that Tx0

is a toral
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subgroup of G (diffeomorphic to the Lie group S1 ˆ S1 ˆ . . . ˆ S1). Furthermore, one has

K “ Kx “ CpTxq, where CpTxq is the centralizer of Tx in G. If Tx is maximal, CpTxq “ Tx.

Using the above notations, we can introduce the concept of generalized flag

manifold which we will consider in this work.

Definition 1.2.1. Let G be a compact semissimple Lie group with Lie algebra g. A

generalized flag manifold is the adjoint orbit of a regular element in the Lie algebra g.

Equivalently, a generalized flag manifold is a homogeneous space of the form G{CpT q,
where T is a torus in G. When T is maximal, it is said that G{CpT q “ G{T is a maximal

flag manifold.

Example 1.2.2 (Maximal flags in C
n). Let G “ Upnq be unitary Lie group, with g “ upnq.

Taking x “ diagpiλ1, . . . , iλnq, with λ1, . . . , λn distinct real numbers, we have K “ Kx “
Tn “ S1 ˆ . . . ˆ S1 (n times), a n-torus in Upnq. Hence, AdpUpnqqx – Upnq{Tn. If Fn is

the set of all increasing sequences tV1 Ă V2 Ă . . . Ă Vn´1u of complex vector spaces of Cn

(flags of subspaces), one has Upnq acts on Fn by tgV1 Ă gV2 . . . Ă gVn´1u, @g P Upnq, and
the isotropy subgroup on the flag e “ tre1, . . . , er1

s Ă re1, . . . , er2
s Ă . . . Ă re1, . . . ern´1

su
is Tn. Therefore, the adjoint orbit of x can be identified with the homogeneous space

Upnq{Up1q ˆ . . .ˆ Up1q (n times). This space is also diffeomorphic to the homogeneous

space SUpnq{SpUp1q ˆ . . .ˆUp1qq, where SUpnq is the special unitary Lie group given by

the unitary matrices A with detA “ 1.

Example 1.2.3 (Partial Flags in C
n). Consider G “ SUpnq with g “ supnq. Take

x “ diagpiλ1In1
, . . . , iλsIns

q with λ1n1 ` . . .`λsns “ 0 and Ini
the ni ˆni identity matrix.

It Follows that AdpSUpnqqx – SUpnq{SpUpn1q ˆ . . . ˆ Upnsqq, with n “ n1 ` . . . ` ns.

This adjoint orbit also can be identified with the set F pn1, . . . nsq of all partial flags

tV1 Ă V2 Ă . . . Ă Vsu in C
n with dimVi “ n1 ` . . . ` ni, 1 ď i ď s.

Example 1.2.4. Flag manifolds of a Classical Lie group:

A: SUpnq{SpUpn1q ˆ . . . ˆ Upnsq ˆ Up1qmq,

n “ n1 ` . . . ` ns ` m,n1 ě n2 ě . . . ě ns ą 1, s,m ě 0

B: SOp2n ` 1q{Upn1q ˆ . . . ˆ Upnsq ˆ SOp2t ` 1q ˆ Up1qm

C: Sppnq{Upn1q ˆ . . . ˆ Upnsq ˆ Spptq ˆ Up1qm

D: SOp2nq{Upn1q ˆ . . . ˆ Upnsq ˆ Spp2tq ˆ Up1qm

n “ n1 ` . . . ` ns ` m ` t, n1 ě n2 ě . . . ě ns ą 1, s,m, t ě 0, t ‰ 1

We will define generalized flag manifold from a complex Lie algebra.
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Let gC be a complex semissimple Lie algebra. Given a Cartan subalgebra hC of

gC, denote by R the set of roots of gC with relation to hC. Consider the decomposition

gC “ hC ‘
ÿ

αPR

gCα,

where gCα “ tX P gC; @H P hC, rX,Hs “ αpHqXu. Let R` Ă R be a choice of positive

roots, Σ the correspondent system of simple roots and Θ a subset of Σ. Will be denoted

by xΘy the span of Θ, RM “ Rz xΘy the set of the complementary roots and by RM` the

set of positive complementary roots.

A Lie subalgebra p of gC is called parabolic if it contains a Borel subalgebra of

gC (i.e., a maximal soluble Lie subalgebra of gC). Take

pΘ “ hC ‘
ÿ

αPxΘy`

gCα ‘
ÿ

αPxΘy`

gC´α ‘
ÿ

βPΠ`
M

gCβ

the canonical parabolic subalgebra of gC determined by Θ which contains the Borel

subalgebra b “ hC ‘
ÿ

βPΠ`

gCβ .

The generalized flag manifold FΘ associated with gC is defined as the homoge-

neous space

FΘ “ GC{PΘ,

where GC is the complex compact connected simple Lie group with Lie algebra g and

PΘ “ tg P GC;AdpgqpΘ “ pΘu is the normalizer of pΘ in GC.

Let G be the real compact form of GC corresponding to g, i.e, G is the connected

Lie Group with Lie algebra g, the compact real form of gC. The subgroup KΘ “ GX PΘ

is the centralizer of a torus. Furthermore, G acts transitively on FΘ. Since G is compact,

we have that FΘ is a compact homogeneous space, that is,

FΘ “ GC{PΘ “ G{G X PΘ “ G{KΘ,

accordingly characterization given above from adjoint orbits of a regular element of g.

There are two classes of generalized flag manifolds. The first occurs when

Θ “ H. Therefore, the parabolic subalgebra is given by pΘ “ hC ‘
ÿ

βPΠ`

gCβ , that is, is

equal to the Borel subalgebra of gC and T “ PΘ X G is a maximal torus. In this case,

FΘ “ GC{PΘ “ G{G X PΘ “ G{T is called maximal flag manifold. When Θ ‰ H, FΘ is

called partial flag manifold.

We consider now aWeyl basis for gC given by tXαuαPRYtHαuαPΣ Ă gC, Xα P gCα.

From this basis we determine a basis for g, the compact real form of gC, putting

g “ spanRt
?

´1Hα, Aα, Sαu,
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with Aα “ Xα ´X´α, Sα “
?

´1pXα `X´αq (Aα “ Sα “ 0 if α R R) and Hα P hC is such

that αp¨q “ xHα, ¨y, α P R. The structure constants of this basis are determined by the

following relations

$
’&
’%

rAα, Sβs “ mα,βAα`β ` m´α,βAα´β

rSα, Sβs “ ´mα,βAα`β ´ mα,´βAα´β

rAα, Sβs “ mα,βSα`β ` mα,´βSα´β

,

$
’&
’%

“?
´1Hα, Aβ

‰
“ βpHαqSβ“?

´1Hα, Sβ

‰
“ ´βpHαqAβ

rAα, Sαs “ 2
?

´1Hα

,

where mα,β is such that rXα, Xβs “ mα,βXα`β, with mα,β “ 0 if α ` β R R and mα,β “
´m´α,´β. We remark that this basis is ´B-orthogonal and ´BpAα, Aαq “ ´BpSα, Sαq “ 2,

where B Cartan-Killing form of gC (the Cartan-Killing form of gC restricted to g coincides

with the Cartan-Killing form of its compact form g and hR “ spanRt
?

´1HαuαPR is a

Cartan subalgebra of g). Moreover, if q and s are the subspaces spanned by tHα, Aαu and

tSαu respectively, one has

rq, qs Ă q, rq, ss Ă s, rs, ss Ă q.

The above construction of the Weyl basis can be found, e.g., in [26], p. 334.

This will be the basis used when dealing with flag manifolds in this work.

Remark 1.2.5 ([1]). An invariant order R`
M in RM is a choice of a subset R`

M such that

(i) R “ RK Y R`
M Y R´

M , where R´
M “ t´α;α P R`

M u,

(ii) If α P RK Y R`
M , β P RK Ă R`

M and α ` β P R, then α ` β P R`
M ,

where RK “ xΘy X R. One has α ą β if and only if α ´ β P R`
M . Note that the choice

R`
M “ R`z xΘy` determines an invariant order in R, called natural invariant order.

Generalized flag manifolds M “ G{K can be classified by mean the Dynkin

diagram of gC, the Lie algebra of GC. Indeed, let Γ “ ΓpΣq be the Dynkin diagram of

the set of simple roots of R. Painting black the nodes of Γ corresponding to simple roots

in RM we obtain the Dynkin diagram of M “ G{K, denotaded here by ΓpΣzΘq. The
subdiagram formed by white nodes connected by lines determines the semissimple part of

the Lie algebra of K, and each black node determines a up1q-summand of this Lie algebra

of K. Therefore, this painted Dynkin diagram determines the reducible decomposition of g,

in addition to determine the flag manifold M . The case where all nodes of ΓpΣq have been

painted black corresponds to the manifold G{T of maximal flags, where T is a maximal

torus in G.
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Proposition 1.2.6. ([3]) If G is not SOp2nq, and it is not a excepitional Lie group, then

different painted connected Dynkin diagrams Γ and Γ1 define equivalent flag manifolds

G{K and G1{K 1, i.e, there exists a isomorphism ϕ P AutpGq such that ϕpKq “ K 1, if the

subdiagrams Γ1 and Γ1
1 of white roots corresponding to RK and RK1 are isomorphic.

From the above proposition, it is possible to give a complete list of all flag

manifolds G{K, where G is either a classical or an exceptional Lie group (up to isomor-

phism).

Example 1.2.7. Painted Dynkin diagrams of some generalized flag manifolds are given

in the next table.

G{K ΣzΘ ΓpΣzΘq
SUp6q{SpUp2q ˆ Up2q ˆ Up2qq tα2, α4u

SOp2n ` 1q{T n tα1, α2, . . . , αnu

SOp2nq{SOp2pn ´ 2qq ˆ Up1q ˆ Up1q tα1, α2u

E6{SOp8q ˆ Up1q ˆ Up1q tα1, α5u

1.3 Invariant Metrics and Isotropy Representation

Let M “ G{K be a homogeneous space, provided with a transitive and

differentiable action G ˆ M ÝÑ M of the Lie group G over M , where K is the isotropy

subgroup of G on some point of M . A Riemannian metric m p¨, ¨q on M is said to be

G-invariant by the the action of G or if the elements of this group are isometry of the

metric m, i.e., if for all h P G and x P M

mhxpdhxu, dhxvq “ mxpu, vq, @u, v P TxM.

Note that the G-invariant metric over a homogeneous space M “ G{K is

completely determined by its value mx0
at the origin x0 “ 1.K, where 1 P G is the identity

of G. In this case, mx0
is a inner product over Tx0

M . In fact, we can define for each

x “ gK P G{K,

mxpu, vq “ mgKpu, vq “ mx0
pdpg´1qgKu, dpg´1qgKvq,

@u, v P TgKM e g P G.
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1.3.1 Isotropy Representation

From the notion of isotropy representation we can determine invariant metrics

on certain homogeneous spaces as follows.

Let G ˆ M ÝÑ M be a defferentiable and transitive action of a Lie group G

on the homogeneous space pM,mq endowed with a G-invariant metric m. Given x P G,
let K “ Gx be the isotropy subgroup of x. The isotropy representation of K is the

homomorphism g P K ÞÑ dgx P GlpTxMq. Note that mx0
is a inner product on Tx0

pG{Kq,
invariant by such representation, where x0 “ 1 ¨ K.

A homogeneous space G{K is reducible if G has a Lie algebra g such that

g “ k ‘ m,

with AdpKqm Ă m. If K is compact, this decomposition always exists, namely, if we take

m “ kK, ´B-orthogonal complement to k in g, where B is the Cartan-Killing form of g.

If G{K is reducible, then the isotropy representation of K is equivalent to

Ad|K , restriction to K of the adjoint representation of G in m:

jpkq “ Adpkq|m, @k P K.

In particular, the same assertion holds if K is compact. Indeed, for each k P K, if

• P : m ÝÑ Tx0
pG{Kq, X ÞÑ PpXq “ rXpx0q “ d

dt
pAdpexpptXqqx0|t“0,

• Adpkq : m ÝÑ m,AdpkqX “ dpCkq1X, pCk : K ÝÑ K,Ckphq “ khk´1q

• jpkq : Tx0
pG{Kq ÝÑ Tx0

pG{Kq, jpkq rX “ dkx0

rX,

the following diagram commutes

m
Adpkq

//

P

��

m

P

��

Tx0
pG{Kq

jpkq
// Tx0

pG{Kq

being P a linear isomorphism.

A representation of a compact Lie group K is always orthogonal (preserves inner

product) on the representation space. We can conclude that every reductive homogeneous

space G{K has a G-invariant metric, since such a metric is completely determined by an

inner product on the tangent space at the origin Tx0
pG{Kq.

We remark that the set of all G-invariant metrics on G{K is in 1-1 correspon-

dence the set of inner products x, y on m, invariant by Adpkq onm, for each k P K, by

virtue the equivalence between the adjoint and isotropy representations on K cited above:

xAdpkqX,AdpkqY y “ xX, Y y , @X, Y P m, k P K.
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The isotropy representation of K leaves m invariant, i.e, AdpKqm Ă m and

decomposes it into irreducible submodules

m “ m1 ‘ m2 . . . ‘ mn.

These submodules are inequivalent each other, which happens when G{K is a generalized

flag manifold. The submodules mi are called isotropy summands.

It follows that a G-invariant metric g on G{K is represented by a inner product

g1¨K “ t1Q|m1
` t2Q|m2

` . . . ` tnQ|mn

on m, with ti positive constants and Q is (the extension of) a inner product on m,

AdpKq-invariant.

In particular, if Q “ p´Bq, with B Cartan-Killing form of G and ti “ 1 for all

1 ď i ď n above, the G-invariant metric g on G{K represented by the inner product

g1¨K “ p´Bq|m1
` p´Bq|m2

` . . . ` p´Bq|mn

on m is called normal metric.

Example 1.3.1. Consider K “ T 2 “ SpUp1q ˆ Up1q ˆ Up1qq, H “ SpUp2q ˆ Up1qq,
G “ SUp3q. By using the above notations, we have the p´Bq-orthogonal decomposition of

g,

g “ sup3q “ k ‘ m,

with BpX, Y q “ 6TrpXY q, X, Y P g, being the Cartan-Killing form of g and m “
m1 ‘ m2 ‘ m3, with

$
’’’’&
’’’’%

k “ td “ diagpia, ib,´ipa ` bqq P sup3q; a, b P Ru
m1 “ spamC pE12 ´ E21q Ă sup3q
m2 “ m2 “ spamC pE13 ´ E31q Ă sup3q
m3 “ m3 “ spamC pE23 ´ E32q Ă sup3q

, (1.3)

where Eij is the matrix having 1 in the pi, jq position and 0 elsewhere.

The decomposition of the isotropy representation m of T 2 into pairwise

inequivalent irreducible AdpT 2q-modules mi is given by

m “ m1 ‘ m2 ‘ m3,

and an invariant metric on SUp3q{T 2 is determined by an inner product on m of the form

geT 2 “ p´t1Bq|m1
` p´t2Bq|m2

` p´t3Bq|m3
, t1, t2, t3 ą 0.

The normal metric on SUp3q{T 2 corresponds to the above inner product with t1 “ t2 “
t3 “ 1. Any homothetic metric to this is also called normal metric.

On the other hand, if we take t1 “ 2, t2 “ t3 “ 1 we have in particular the

Kähler-Einstein metric on SUp3q{T 2.
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We will now examine the properties of the isotropy representation of a maximal

flag manifold G{K, associated with a complex simple Lie algebra gC whose the real compact

form is g. The toral maximal Lie subalgebra of g is denoted by t.

Consider the reductive decomposition g “ t‘m of g with respect to the negative

of the Cartan-Killing form ´Bp , q of g, that is, m “ tK and AdpT qm Ă m.

Take a Weyl basis tHα1
, . . . , Hαl

u Y tXα P gCαu with BpXα, X´αq “ ´1,

rXα, X´αs “ ´Hα P k and rXα, Xβs “ mα,βXα`β, with mα,β “ 0 if α ` β is not root

and mα,β “ ´m´α,´β. The numbers are called structure constants of gC “ g with respect

to tC. Then, the real subalgebra g is given by

g “
lÿ

j“1

R
?

´1Hαj
‘

ÿ

αPR`

pRAα ` RSαq “ t ‘
ÿ

αPR`

pRAα ` RSαq,

where Aα “ Xα ´ X´α and Sα “
?

´1pXα ` X´αq.

Since t “ spanRt
?

´1Hαj ;1ďjďlu, then the reductive decomposition g “ t ‘ m

implies that

m “
ÿ

αPR`

pRAα ` RSαq. (1.4)

Set mα “ RAα `RSα for any α P R`. The linear space mα is a irreducible AdpT q´module

which does not depends on the choice of an ordering in R. Furthermore, since the roots of

gC with respect to tC are distinct, and the roots spaces are one-dimensional, it is obvious

that mα fl mβ as AdpT q´representations, for any two roots α, β P R`. Thus, by using

(1.4), one has the following

Proposition 1.3.2 ([5]). Let M “ G{T be a maximal flag manifold of a compact simple

Lie group G. Then, the isotropy representation of M decomposes into a discrete sum of

2-dimensional pairwise inequivalent irreducible T -submodules mα as follows:

m “
ÿ

αPR`

mα.

The number of these submodules is equal to the cardinality |R`|.
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Table 1 – The number of isotropy summands for maximal flag manifolds G{T
Maximal flag manifold G{T Number of roots |R| m “ ‘l

j“1

SUpn ` 1q{T n, n ě 1 npn ` 1q l “ npn ` 1q{2

SOp2n ` 1q{T n, n ě 2 2n2 l “ n2

Sppnq{T n, n ě 3 2n2 l “ n2

SOp2nq{T n, n ě 4 2npn ´ 1q l “ npn ´ 1q

G2{T 12 l “ 6

F4{T 48 l “ 24

E6{T 72 l “ 36

E7{T 126 l “ 63

E8{T 240 l “ 120

For n “ 1 the maximal flag SUpn ` 1q{T n is SUp2q{SpUp1q ˆ Up1qq – CP
1,

which is an isotropy irreducible Hermitian symmetric space.
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2 Laplacian and Canonical Variation of

Riemannian Submersions With Totally

Geodesic Fibers

Some useful properties of the spectrum of the Laplacian acting on functions

defined on the total space of a Riemannian submersion will be present here. In particular,

we will consider the family of submersions with totally geodesic fibers. This family includes

many classical examples, among other, the homogeneous fibrations, with the Hopf fibrations

as particular cases.

The Lie theoretic description of flag manifolds is applied in order to obtain the

horizontal and vertical distributions for each homogeneous fibration whose the total space

represents a class of maximal flag manifold G{T provided with a normal metric g, where

G is a compact simple Lie group and T Ă G is a maximal torus in G.

The maximal flag manifolds dealt with in this work are associated with one of

the classical complex simple Lie algebras.

2.1 Horizontal and Vertical Laplacians

Let pM, gq and pB, g1q be two completes Riemannian manifolds of dimensions

m and n, respectively. Let π : M ÝÑ B be a submersion. The map π is called Riemannian

Submersion from pM, gq to pB, g1q if at each p P M , dπp|H : pH, gp|Hq ÝÑ pTπppqB, g
1
πppqq is

an isometry, where V “ kerpdπpq is the vertical space and H “ VK is the horizontal space.

A fiber Fx “ π´1pxq, x P B, is a closed submanifold of M with dimension

r “ m ´ n. The submersion π : M ÝÑ B has totally geodesic fibers if, for all x P B, the
submanifold Fx Ă M is totally geodesic in M , i.e., if p P Fx, there exists a neighborhood

Ω Ă TpFx of 0 P TpFx such that exp : Ω ÝÑ Fx is injective. This means that geodesics over

a fiber Fx are geodesics over M too and that, reciprocally, any geodesic over M tangent

to Fx at some point p P Fx is contained in Fx for a time interval sufficiently small.

We denote by ∆g “ ´divg ˝ gradg the Laplacian operator of pM, gq acting on

C8pMq. The operator ∆g, densely defined on L2pM, volgq, is symmetric (hence closable),

non-negative has compact resolvent. Furthermore, it is well-known that ∆g is essentially

self-adjoint with this domain. We denote its unique self-adjoint extension also by ∆g.

Analogously, let ∆k be the unique self-adjoint extension of the Laplacian of the fiber pF, kq,
where k is the metric induced by pM, gq on F .
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Definition 2.1.1 ([7]). The vertical Laplacian ∆v acting on L2pM, volgq is the operator

defined at p P M by

p∆vψqppq “ p∆kψ|Fp
qppq,

and the horizontal Laplacian ∆h, acting on the same space, is defined by the difference

∆h “ ∆g ´ ∆v.

Both ∆h and ∆v are non-negative self-adjoint unbounded operators on L2pM, volgq,
but in general, are not elliptic (unless π is a covering). We now consider the spectrum of

such operators.

As remarked above, ∆g is non-negative and has compact resolvent, that is, its

spectrum is non-negative and discrete. Since the fibers are isometrics, ∆v also has discrete

spectrum equal to the fibers. However, the spectrum of ∆h need not be discrete.

One of the main observation on which this work is based is given by the

following theorem.

Theorem 2.1.2 ([7]). If the fibers of the Riemannian submersion π : M ÝÑ B are totally

geodesics the operators ∆g, ∆v e ∆g1 commute with each other.

When ∆g and ∆v commute, we have the following decomposition of L2pM, gq.

Theorem 2.1.3 ([7]). The Hilbert space L2pM, gq admits a Hilbert basis consisting of

simultaneous eigenfunctions of ∆g e ∆v.

2.2 Canonical Variation

From a Riemannian submersion with totally geodesic fibers, it is possible to

define a 1-parameter family gt, t ą 0, of other such submersions by scaling the original

metric of the total space in the direction of the fibers.

This construction, called the canonical variation, will be fundamental in the

determination of bifurcation and local rigid instants. Indeed, the criterion to be applied to

calculate these instants, according to Corollary 1.1.7 enunciated in the previous section,

makes use of the first eigenvalue of the Laplacian ∆t of the family gt. Furthermore, the

spectrum of ∆t has description in terms of the vertical and horizontal Laplacians.

Definition 2.2.1 ([7]). Let F ¨ ¨ ¨ pM, gq πÑ B be a Riemannian submersion with totally

geodesic fibers. Consider the 1-parameter family of Riemannian submersions given by 
F ¨ ¨ ¨ pM, gtq πÑ B, t ą 0

(
, where gt P RkpMq is defined by

gtpv, wq “

$
’&
’%

t2gpv, wq, se v, w are verticals

0, se v is vertical and w is horizontal

gpv, wq, se v, w are horizontals.
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Such family of Riemannian submersions is called the canonical variation of

F ¨ ¨ ¨ pM, gq πÑ B or, for simplicity, we may also refer to the family of total spaces of

these submersions, i.e., the Riemannian manifolds pM, gtq, as the canonical variation of

pM, gq.

Proposition 2.2.2 ([7]). The family
 
F ¨ ¨ ¨ pM, gtq πÑ B, t ą 0

(
of Riemannian submer-

sions has totally geodesic fibers, for each t ą 0. Furthermore, its fibers are isometrics to

pF, t2kq, where pF, kq is the original fiber of π : M ÝÑ B.

Remark 2.2.3. Note that, for a ‰ b, the metrics ga e gb are not conformal. Furthermore,

for each t ą 0, gt is the unique Riemannian metric that satisfy the conditions of Definition

2.2.1.

The following shows how to decompose ∆t in terms of the vertical and horizontal

Laplacians.

Proposition 2.2.4 ([11]). Let ∆t the Laplacian of pM, gtq. Then

∆t “ ∆h ` 1

t2
∆v “ ∆g ` p 1

t2
´ 1q∆v. (2.1)

Corollary 2.2.5 ([11]). For each t ą 0, the following inclusion holds

σp∆tq Ă σp∆gq ` p 1

t2
´ 1qσp∆vq, (2.2)

where σp∆tq, σp∆gq and σp∆vq are the respective spectrum of ∆t, ∆g e ∆v. Since the above

spectra are discrete, this means that every eigenvalue λptq of ∆t is of the form

λk,jptq “ µk ` p 1

t2
´ 1qφj, (2.3)

for some µk P σp∆gq and some φj P σp∆vq.

Proof: By Theorem 2.1.2, ∆g and ∆v commute. Hence, by the Spectral The-

orem, such operators are simultaneously diagonalizable, in the sense that there exists

a unitary operator U of L2pM, volgq such that U∆gU
´1 “ fM and U∆vU

´1 “ fv are

multiplication operators by functions fM and fv respectively. For such multiplication

operators, the spectrum σpTf q is the essential range, ess.ImpfqpĂ Impfqq, of f . Then, by
the expression of ∆t in (2.2.5),

σp∆tq “ ess.ImpfM ` p 1

t2
´ 1qfvq Ă ess.ImpfM q ` ess.Impp 1

t2
´ 1qfvq “ σp∆gq ` p 1

t2
´ 1qσp∆vq.

Since both spectra are discrete, we may remove the closure and the inclusion (2.2) is

proved.

✷
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Corollary 2.2.6. If λ1ptq is the first positive eigenvalue of ∆t, then

λ1ptq ě µ1, @ 0 ă t ď 1,

where µ1 is the first positive eigenvalue of ∆g.

Proof: Since λ1ptq “ µk ` p 1

t2
´ 1qφj, for some µk P σp∆gq and φj P σp∆vq, if

0 ă t ď 1, p 1

t2
´ 1qφj ě 0 and λ1ptq “ µk ` p 1

t2
´ 1qφj ě µk ě µ1, where µ1 P σp∆gq is the

first positive eigenvalue of the operator ∆g.

✷

We remark also that not all possible combinations of µk and φj in the expression

(2.3), Corollary 2.2.5, give rise to an eigenvalue of ∆t. In fact, this only happens when

the total space pM, gq of the submersion is a Riemannian product. Determining which

combinations are allowed is complicated in general and depends on the global geometry of

the submersion. Moreover,the ordering of the eigenvalues of ∆t may change with t.

We have the following important property of ∆t.

Proposition 2.2.7 ([10]). Using the same notations above, it has that

σp∆Bq Ă σp∆tq,

for all t ą 0.

Proof: For each ψ : B ÝÑ R and its lift rψ :“ ψ ˝ π,

∆g
rψ “ p∆Bψq ˝ π ` gpgradg

rψ, ~Hq, (2.4)

where ~H is the mean curvature vector field of the fibers. Since we assumed the fibers of π

are totally geodesics, ~H ” 0 over the fibers. It follows that, if ψ is a eigenfunction of ∆B,

then its lift rψ is an eigenfunction of ∆g with the same eigenvalue (and constant along the

fibers) and therefore

σp∆Bq Ă σp∆gq.

Since the fibers of π are totally geodesics with respect to gt, the above inclusion above

holds when ∆g is replaced with ∆t, i.e,

σp∆Bq Ă σp∆tq, t ą 0.

✷
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It follows from (2.4) other property of the spectrum of ∆h; σp∆hq contains but

not coincides with the spectrum of the basis B. In fact, if f is a C8 function on the basis

B, then

p∆g1fq ˝ π “ ∆gpf ˝ πq “ ∆hpf ˝ πq,

where ∆g1 is the Laplacian operator acting on functions in C8pB, g1q.

Corollary 2.2.8. Denoting by β1 the first positive eigenvalue of ∆B and by λ1ptq the first

positive eigenvalue of ∆t, the following inequality holds

λ1ptq ď β1, @ t ą 0.

As consequence of the Corollaries 3 and 4, we have that µ1 ď λ1ptq ď β1, where

µ1 the first positive eigenvalue of the Laplacian ∆g on the total space M .

When j “ 0 in the expression (2.3), if λk,0ptq “ µk P σp∆gq remains an

eigenvalue of ∆t for t ‰ 1, such eigenvalues will be called constant eigenvalue of ∆t, since

they are independent of t. We stress that λk,0ptq is not necessarily a constant eigenvalue of

∆t for all k. A simple criterion to determinate when λk,0ptq P σp∆tq is consequence of the

following Proposition.

Proposition 2.2.9 ([10]). If π : M ÝÑ B is a Riemannian submersion with totally

geodesic fibers, then the eigenfunction rψ of ∆g is constant along the fibers if and only

if ψ is the lift of some eigenfunction of ∆B, that is, rψ “ ψ ˝ π, for some eigenfunction

ψ : B ÝÑ R of ∆Bon the basis.

Corollary 2.2.10. µk “ λk,0ptq P σp∆tq for t ‰ 1 ô µk P σp∆Bq.

Proof: Fixed t ‰ 1, since

λk,jptq “ µk ` p 1

t2
´ 1qφj and ∆t “ ∆g ` p 1

t2
´ 1q∆v,

we have that λk,jptq P σp∆tq if and only if there exists rψ P C8pMq such that

∆g
rψ “ µk

rψ and ∆v
rψ “ φj

rψ,

with µk P σp∆gq and φj P σp∆vq. In particular, if we have λk,0ptq “ µk ` p 1

t2
´ 1q0 P σp∆tq,

there exists rψ such that

∆g
rψ “ µk

rψ and ∆v
rψ “ 0 ¨ rψ “ 0.

However, ∆v
rψ “ 0 implies that rψ is constant along the fibers. Therefore, by Proposition

2.2.9, there exists a eigenfunction ψ : B ÝÑ R in C8pBq such that ∆Bψ “ µkψ and rψ “
ψ ˝π. It follows that µk P σp∆Bq. The reciprocal results from the fact that σp∆Bq Ă σp∆tq.

✷
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2.2.1 Homogeneous Fibration

In our main result, the canonical variations gt, obtained from a Riemannian

submersion with totally geodesic fibers, are homogeneous metrics, which are trivial solutions

to the Yamabe problem, since every homogeneous metric has constant scalar curvature.

This makes these metrics good candidates for admitting other solutions in their conformal

class.

The homogeneous fibrations are obtained from the following construction. Let

K Ĺ H Ĺ G be compact connected Lie groups, such that dimK{H ě 2. Consider the

natural fibration
π : G{K ÝÑ G{H

αK ÞÑ αH,

with fibers H{K pem eKq and structural group H. More precisely, π is the associated

bundle with fiber H{K to the H-principal bundle p : G ÝÑ G{H.

Let g be the Lie algebra of G and h Ą k the Lie algebras ofH andK, respectively.

Given a inner product on g, determined by the Cartan-Killing form B of g, since K,H

and G are compacts, we can consider a AdGpHq-invariant orthogonal complement q to

h in g, i.e., rh, qs Ă q, and a AdGpKq-invariant orthogonal complement p to k in h, i.e.,

rk, ps Ă p. It follows that p ‘ q is a AdGpKq-invariant orthogonal complement to k in g.

The AdGpHq-invariant inner product p´Bq|q on q define a G-invariant Rieman-

nian metric ğ on G{H, and the inner product p´Bq|p, AdGpKq-invariant on p, define on

H{K a H-invariant Riemannian metric ĝ on H{K. Finally, the orthogonal direct sum of

these inner products on p ‘ q define a G-invariant metric g on G{K, determined by

gpX ` V, Y ` W qeK “ p´Bq|qpX, Y q ` p´Bq|ppV,W q, (2.5)

for all X, Y P q and V,W P p; g is a normal homogeneous metric on G{K and the

p´Bq-orthogonal direct sum m “ p ‘ q is the isotropy representation of K.

Theorem 2.2.11 (([8], p. 257)). The map π : pG{K, gq ÝÑ pG{H, ğq is a Riemannian

submersion with totally geodesic fibers and isometric to pH{K, ĝq.

If we take for each t ą 0 the metric gt that corresponds to the inner product

on p ‘ q

x¨, ¨yt “ p´Bq|q ` p´t2Bq|p, (2.6)

where B is the Cartan-Killing form of g, we have that the map πt : pG{K, gtq ÝÑ pG{H, ğq
is a Riemannian submersion with totally geodesic fibers and isometric to H{K provided

with the induced metric ´t2B|p. Hence, we obtain the canonical variation of the original

homogeneous fibration π : pG{K, gq ÝÑ pG{H, ğq.
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Example 2.2.12. Consider K “ T 2 “ SpUp1q ˆ Up1q ˆ Up1qq, H “ SpUp2q ˆ Up1qq,
G “ SUp3q and

π : SUp3q{T 2 ÝÑ SUp3q{SpUp2q ˆ Up1qq “ CP
2

the canonical map defined by πpxKq “ xH, x P G. According 1.3.1, we have the p´Bq-
orthogonal decomposition of g,

g “ sup3q “ k ‘ p ‘ q,

with BpX, Y q “ 6TrpXY q, X, Y P g, being the Cartan-Killing form of g and

$
’’’’&
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k “
 
d “

?
´1diagpa, b,´pa ` bqq P sup3q; a, b P R

(

p “ spamC pE12 ´ E21q Ă sup3q
q “ spamC pE13 ´ E31, E23 ´ E32q Ă sup3q
h “ spup2q ‘ up1qq “ k ‘ p

, (2.7)

where Eij is the matrix having 1 in the pi, jq position and 0 elsewhere.

It follows that π : SUp3q{T 2 ÝÑ SUp3q{SpUp2qˆUp1qq “ CP
2 is a Riemannian

submersion with totally geodesic fibers isometric to pH{K, ĝq, H{K “ SUp2q{SpUp1q ˆ
Up1qq “ CP

1 and ĝ the metric induced by the inner product p´Bq|p. The metric g on

SUp3q{T 2 obtained from the above decomposition, according 2.5, is exactly the normal

metric. In fact, we have that the decomposition of the isotropy representation m of T 2 into

pairwise inequivalent irreducible AdpT 2q-modules mi is given by

m “ m1 ‘ m2 ‘ m3,

with m1 “ p, m2 “ spamC pE13 ´ E31q and m3 “ spamC pE23 ´ E32q. An invariant metric

on SUp3q{T 2 is determined by an inner product on m of the form

geT 2 “ p´t1Bq|m1
` p´t2Bq|m2

` p´t3Bq|m3
, t1, t2, t3 ą 0.

The normal metric on SUp3q{T 2 corresponds to the above inner product with t1 “ t2 “
t3 “ 1. Any homothetic metric to this is also called normal metric.

Moreover, note that the metric ğ on the basis G{H “ SUp3q{SpUp1q ˆ Up2qq
is determined by the inner product on q given by p´Bq|q and

pCP2 “ SUp3q{SpUp1q ˆ Up2qq, ğq

is a compact isotropy irreducible symmetric space, as well as the fiber pCP1 “ SUp2q{SpUp1qˆ
Up1qq, ĝq.

Therefore, the one-parameter family of Riemannian submersions

CP
1 ¨ ¨ ¨ pSUp3q{T 2, gtq πÑ CP

2q,
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is the canonical variation of the original submersion

pCP1ĝq ¨ ¨ ¨ pSUp3q{T 2, gq πÑ pCP2, ğq,

with totally geodesic fibers isometric to pCP1, t2ĝq, where gt according (2.6), can be

determined by the following inner product on m,

pgtqeT 2 “ p´t2Bq|m1
` p´Bq|m2

` p´Bq|m3
, t ą 0. (2.8)

We remark that at t “ 1, g1 is the normal metric on SUp3q{T 2.

Example 2.2.13. Let SOp5q be the special orthogonal group and T 2 “ Up1q ˆ Up1q Ă
SOp5q maximal torus in SOp5q. The space SOp5q{Up1q ˆUp1q is a maximal flag manifold,

according definition. The Lie algebra sop5q (classical Lie algebra of the type D2) of

G “ SOp5q decomposes into the p´Bq-orthogonal direct sum,

sop5q “ k ‘ m,

where B is the Cartan-Killing form of sop5q, defined by BpX, Y q “ 3TrpXY q, X, Y P sop5q,
k is the Lie algebra of T 2, and m is the isotropy representation of K “ T 2. The Lie

subalgebra k Ă sop5q is a maximal abelian Lie subalgebra of sop5q formed by the diagonal

null trace matrices belonging to sop5q. With respect the Cartan Lie subalgebra kC, the

set of positive roots of sop5qC is tα1 “ λ1 ´ λ2, α2 “ λ2, α3 “ λ1, α4 “ λ1 ` λ2u, where the

functional λi is given by diagpa1, . . . , a4q ÞÑ λipdiagpa1, . . . , a4qq “ ai, for each 1 ď i ď 4.

The space m decomposes into four pairwise inequivalent irreducible AdpT 2q-modules mαi
,

1 ď i ď 4, as follows

m “ mα1
‘ mα2

‘ mα3
‘ mα4

,

where each two dimensional irreducible submodule mα above is generated by tAα, Sαu,
with Aα “ Xα `X´α, Sα “

?
´1pXα ´X´αq and Xα belongs to the Weyl basis of sop5q.

Setting G “ SOp5q, H “ SOp4q – SOp3q ˆ SOp3q and K “ T 2 “ Up1q ˆ
Up1q – SOp2qˆSOp2q, we have thatK Ĺ H Ĺ G, withG,H andK compact connected Lie

groups. Consider the canonical map π : SOp5q{T 2 ÝÑ SOp5q{SOp4q “ S4. Let g “ sop5q,
h “ sop4q – sup2q ‘ sup2q and k “ td “ diagp0, ia, ib,´ia,´ibqq P sop5q; a, b P Ru be

the Lie algebras of G, H and K, respectively. As we saw previously, since K,H and

G are compacts, we can consider a AdpHq-invariant p´Bq-orthogonal complement q to

h “ sop4q – sup2q ‘ sup2q in sop5q, and a AdpKq-invariant p´Bq-orthogonal complement

p to k in h.

The Lie algebra g “ sop5q decomposes as

sop5q “ k ‘ p ‘ q “ k ‘ m,

and therefore, as previously stated, π : pSOp5q{T 2, gq ÝÑ pSOp5q{SOp4q “ S4, ğq is

a Riemannian submersion with totally geodesic fibers isometric to pH{K, ĝq, H{K “
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SOp4q{T 2 – SOp4q{SOp2q ˆ SOp2q – S2 ˆ S2, g the normal metric determined by the

inner product p´Bq|m, ĝ the metric given by p´Bq|p and ğ defined by the inner product

p´Bq|q.

In order to determine the vertical distribution p (tangent space to the fiber)

and the horizontal distribution q (tangent space to the basis), we note that, since m “ p‘q

and dimSOp5q{SOp4q “ S4 “ 4, by the fact that dimmαi
“ 2, for each i “ 1, 2, 3, 4, we

have that q is equal to the direct sum of two irreducible submodules of m, as well as p.

We will determinate the submodules that form each of these spaces, by using the relations

rh, qs Ă q, rk, ps Ă p

and the property of Weyl basis

$
’&
’%

rAα, Sβs “ mα,βAα`β ` m´α,βAα´β

rSα, Sβs “ ´mα,βAα`β ´ mα,´βAα´β

rAα, Sβs “ mα,βSα`β ` mα,´βSα´β

,

where mα,β is such that rXα, Xβs “ mα,βXα`β, with mα,β “ 0 if α ` β is not root and

mα,β “ ´m´α,´β. We remark that this basis is p´Bq-orthogonal and ´BpAα, Aαq “
´BpSα, Sαq “ 2, B Cartan-Killing form of g. This relations allow us conclude that

q “ mα2
‘ mα3

and p “ mα1
‘ mα4

, since h “ k ‘ p. Hence, by scaling the normal

metric geT 2 “ p´Bq|mα1
` p´Bq|mα2

` p´Bq|mα3
` p´Bq|mα4

of the total space SOp5q{T 2

in the direction of the fibers, i.e., multiplying by t2, t ą 0, p´Bq|mα1
and p´Bq|mα4

in the

expression of g we obtain the following canonical variation of the metric g

pgtqeT 2 “ t2p´Bq|mα1
` p´Bq|mα2

` p´Bq|mα3
` t2p´Bq|mα4

,

according (2.6).

Example 2.2.14. Let g2 be the exceptional complex simple Lie algebra of type G2. We

will denote by G2 the compact simple Lie group whose Lie algebra is g2 and by T Ă G2 a

maximal torus there, where T “ Up1q ˆ Up1q. The full flag manifold associated with g2 is

G2{T . The Lie algebra g2 decomposes into the p´Bq-orthogonal direct sum

g2 “ k ‘ m,

where B is the Cartan-Killing form of G2, defined by BpX, Y q “ TrpadpXqadpY qq, X, Y P
g2, k is the Lie algebra of T , maximal abelian Lie subalgebra of g2 formed by the diagonal

null trace matrices belonging to g2 and m its isotropy representation of T . With respect

the Cartan Lie subalgebra k, the root system of g2 can be chosen as by

t˘α1,˘α2,˘pα1 ` α2q,˘pα1 ` 2α2q,˘pα1 ` 3α2q,˘p2α1 ` 3α2qu,
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and we fix a system of simple roots to be Π “ tα1, α2u. With respect to Π the positive

roots are given by

tα1, α2, pα1 ` α2q, pα1 ` 2α2q, pα1 ` 3α2q, p2α1 ` 3α2qu.

The maximal root is α “ 2α1 ` 3α2. The angle between α1 and α2 is 5π{6 and we have

}α1} “
?

3 }α2}. Moreover, the roots of g2 form successive angles of π{6. Since in this case

it has six positive roots, the space m decomposes into six pairwise inequivalent irreducible

AdpT q-modules as follows

m “ mα1
‘ mα2

‘ mα1`α2
‘ mα1`2α2

‘ mα1`3α2
‘ m2α1`3α2

,

where each two dimensional irreducible submodule mα above is generated by tAα, Sαu,
where Aα “ Xα ` X´α, Sα “

?
´1pXα ´ X´αq and Xα belongs to the Weyl basis of g2.

Setting G “ G2, H “ SOp4q – SOp3q ˆ SOp3q and K “ T “ Up1q ˆ Up1q –
SOp2qˆSOp2q, we have thatK Ĺ H Ĺ G, with G,H andK compact connected Lie groups.

Consider the canonical map π : G2{T ÝÑ G2{SOp4q. Let g “ g2, h “ sop4q – sup2q‘sup2q
and k “ td “ diagpia, ib,´ipa ` bqq P slp3q Ă g2; a, b P Ru be the Lie algebras of G, H and

K, respectively. As we saw since K,H and G are compacts, we can consider a AdpHq-
invariant p´Bq-orthogonal complement q to h “ sop4q – sup2q ‘ sup2q in g2, and a

AdpKq-invariant p´Bq-orthogonal complement p to k in h.

The Lie algebra g2 decomposes into the sum

g2 “ k ‘ p ‘ q “ k ‘ m,

and follows that

π : pG2{T, gq ÝÑ pG2{SOp4q, ğq

is a Riemannian submersion with totally geodesic fibers isometric to pH{K, ĝq, H{K “
SOp4q{T – SOp4q{SOp2q ˆ SOp2q – S2 ˆ S2, g the normal metric determined by the

inner product p´Bq|m, ĝ the metric given by p´Bq|p and ğ defined by the inner product

p´Bq|q.

Since m “ p‘ q and dimSOp4q{T – S2 ˆS2 “ 4, by the fact that dimmα “ 2,

for each positive root α, we have that q is equal to the direct sum of four irreducible

submodules of m while p is the direct sum of two irreducible submodules. In order to find

the submodules that composes each of these distributions we apply the relations rh, qs Ă q

and rk, ps Ă p and the same property of the Weyl basis in the previous example, obtaining

p “ mα1`α2
‘ mα1`3α2

and q “ mα1
‘ mα2

‘ mα1`2α2
‘ m2α1`3α2

, since h “ k ‘ p. Hence,

by scaling the normal homogeneous metric

pntqeT “ p´Bq|mα1
` p´Bq|mα2

` t2p´Bq|mα1`α2
` p´Bq|mα1`2α2

`t2p´Bq|mα1`3α2
` p´Bq|m2α1`3α2

,
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defined on the total space G2{T in the direction of the fibers, i.e., multiplying by t2, t ą 0,

the parcel p´Bq|mα1`α2
` p´Bq|mα1`3α2

in the expression of g we obtain the following

canonical variation nt of the metric g

pntqeT “ p´Bq|mα1
` p´Bq|mα2

` t2p´Bq|mα1`α2
` p´Bq|mα1`2α2

`t2p´Bq|mα1`3α2
` p´Bq|m2α1`3α2

,

according (2.6).

2.2.2 Canonical Variations of Normal Metrics on Maximal Flag Manifolds

In this section we will present in detail the construction of the 1-parameter

families of homogeneous metrics from normal homogeneous metrics on maximal flag

manifolds. Such homogeneous spaces are total spaces of a homogeneous fibration with

fibers and basis spaces being well known homogeneous spaces, namely symmetric spaces

or a maximal flag manifold of another type.

Remark 2.2.15. At first, we will consider the following

1. From now on, the total spaces of the original homogeneous fibrations are endowed

with its normal homogeneous metric induced by the Cartan-Killing form of the

respective complex classical simple Lie algebras that determine it;

2. Given K Ĺ H Ĺ G, compact connected Lie groups, with Lie algebras k, h and g

respectively, the homogeneous fibrations π : G{K ÝÑ G{H are such that the basis

space G{H is a Hermitian symmetric space with irredudcible isotropy representation

and a metric induced by the restriction of the Cartan-Killing form of g to its isotropy

representation (horizontal distribution) and the fiber H{K (with dimH{K ě 2) is

some maximal flag manifold, i.e, K is a maximal torus contained in H, and H{K is

provided with the normal metric induced by the Cartan-Killing form of g restricted

to its isotropy representation (vertical distribution).

Proposition 2.2.16. Let g and h be complex classic simple Lie algebras such that h Ă g,

and let t be a Cartan subalgebra for g with Cartan-Killing form B. If R is the root system

of t associated with g, then there exists a subset R1 of R such that

(a) The subspace tpR1q of h spanned by the dual vectors Hα, α P R1, is a Cartan subalgebra

of h and R1 is a system of roots of tpR1q.

(b) The Lie algebra h has a p´Bq-orthogonal decomposition into direct sum given by

h “ tpR1q `
ÿ

αPR1

gα,

where the gα are root spaces with α P R1.
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Proof: (a) Since g decomposes as

g “ t `
ÿ

αPR

gα

and h Ă g is a Lie subalgebra, the Cartan subalgebra of h must be contained in t. Then,

there are dual vectors Hα1
, . . . , Hαl

P t, αi P R, that span the Cartan subalgebra of h,

with l equal to its dimension. Take R1 “ spanpα1, . . . , αlq Ă R. Thus, we can consider

Σ “ tα1, . . . , αlu as a simple root system and follows that R1 is a system of roots of the

Cartan subalgebra tpR1q.

(b) It is a direct consequence of (a).

✷

Corollary 2.2.17. Let π : G{K ÝÑ G{H be a homogeneous fibration as above, with totally

geodesic fiber H{K (dimH{K ě 2) and let g, k and h be the Lie algebras of G,K and H.

Accordingly the current notations, if p and q are the vertical and horizontal distribution, i.e,

p is the tangent space to the fiber H{K and q is the tangent space to the basis space G{H,

then p is equal to the p´Bq-orthogonal direct sum of the root spaces gα which α P R1 and

hence q is equal to the p´Bq-orthogonal direct sum of the root spaces gβ which β P RzR1.

The next lemma will be applied to find vertical and horizontal distributions.

Lemma 2.2.18 ([26]). Let g be a semisimple Lie algebra and Σ a system of simple roots

of the Cartan subalgebra h. Take a subset Θ Ă Σ and denote by xΘy the set of roots spanned

by Θ, i.e., xΘy is the set of roots which are linear combinations of Θ only. Consider the

space

gpΘq “ hpΘq `
ÿ

αPxΘy

gα,

where hpΘq is the subspace of h spanned by the dual vectors Hα, α P Θ. Then, gpΘq is a

semisimple Lie subalgebra of g spanned by tgα; ˘α P Θu. Its Dynkin diagram coincides

with the diagram associated with Θ, seen as a subset of Σ.

We can now introduce the construction of the canonical variations gt,ht,kt,mt,nt,

of the normal metrics on the maximal flag manifolds SUpn`1q{T n, SOp2n`1q{T n, Sppnq{T n,

SOp2nq{T n, G2{T , respectively, as in the following Sections.

2.2.2.1 pSUpn ` 1q{T n,gtq, n ě 2:

In first, we observe that for n “ 1 the maximal flag

SUpn ` 1q{T n is SUp2q{SpUp1q ˆ Up1qq – CP
1, which is an isotropy irreducible Her-

mitian symmetric space.
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We will denote by G “ SUpn ` 1q the compact simple Lie group whose

Lie algebra is g “ supn ` 1q and by T n Ă G a maximal torus there, given by T n “
SpUp1q ˆ . . .ˆUp1qq “ SpUp1qn`1q. The maximal flag manifold associated with supn` 1q
is SUpn ` 1q{T n. The Lie algebra supn ` 1q decomposes into the p´Bq-orthogonal direct
sum

supn ` 1q “ k ‘ m,

where B is the Cartan-Killing form of supn ` 1q, defined by BpX, Y q “ 2pn ` 1qTrpXY q,
X, Y P supn ` 1q, k is the Lie algebra of T n, maximal abelian Lie subalgebra of supn ` 1q
formed by the diagonal matrices of the form

k “
#

?
´1 ¨ diagpa1, . . . , an`1q;

nÿ

i“1

ai “ 0

+

and m the AdpT nq-invariant isotropy representation of T n. With respect the Cartan Lie

subalgebra kC, the root system of supn ` 1qC can be chosen as by

R “ tαij “ ˘pλi ´ λjq; i ‰ ju,

where λi is given by diagpa1, . . . , an`1q ÞÑ λipdiagpa1, . . . , an`1qq “ ai, for each 1 ď i ď n`1.

We fix a system of simple roots to be Σ “ tαii`1; 1 ď i ď nu and with respect to Σ the

positive roots are given by

R` “ tαij “ λi ´ λj; i ă ju.

In this case it has
npn ` 1q

2
positive roots, hence m decomposes into

npn ` 1q
2

pairwise

inequivalent irreducible AdpT nq-modules as follows

m “
à

iăjďn`1

mαij
, (2.9)

where each two dimensional irreducible submodule mα above is generated by tAα, Sαu,
where Aα “ Xα ` X´α, Sα “

?
´1pXα ´ X´αq and Xα belongs to the Weyl basis of

supn ` 1q. Remembering that the root vectors tHα12
, . . . , Hαnn`1

u Y tXα P supn ` 1qCαu of

this basis satisfy BpXα, X´αq “ ´1 and rXα, X´αs “ ´Hα P k.

Setting H “ SpUp1q ˆ Upnqq and K “ T n, we have that K Ĺ H Ĺ G, with

G,H and K compact connected Lie groups. Consider the canonical map

π : SUpn ` 1q{T n ÝÑ SUpn ` 1q{SpUp1q ˆ Upnqq.

Let g “ supn ` 1q, h “ spup1q ‘ upnqq and k be the Lie algebras of G, H and K,

respectively. As we saw previously, since K,H and G are compacts, we can consider

a AdpHq-invariant p´Bq-orthogonal complement q to h in g, and a AdpKq-invariant
p´Bq-orthogonal complement p to k in h.
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The Lie algebra g decomposes into the sum

g “ supn ` 1q “ k ‘ p ‘ q “ k ‘ m,

and follows that

π : pSUpn ` 1q{T n, gq ÝÑ pSUpn ` 1q{SpUp1q ˆ Upnqq, ğq (2.10)

is a Riemannian submersion with totally geodesic fibers isometric to pH{K, ĝq,

H{K “ SpUp1q ˆ Upnqq{T n “ SpUp1q ˆ Upnqq{SpUp1qn`1q “ SUpnq{T n´1,

T n´1 “ SpUp1qnq, g the normal metric determined by the inner product p´Bq|m, ĝ the

metric given by p´Bq|p and ğ defined by the inner product p´Bq|q. Since m “ p ‘ q

and dimSUpnq{T n´1 “ npn ´ 1q, by the fact that dimmα “ 2, for each positive root

α, we have that the vertical space p (tangent to the fiber SUpnq{T n´1) is equal to the

direct sum of
npn ´ 1q

2
irreducible isotropy summands of m while q is the direct sum of

npn ` 1q
2

´ npn ´ 1q
2

“ n isotropy summands, once dimension of the total space is equal

to npn ` 1q.

In order to find the submodules that compose these distributions, observe that

the fiber SUpnq{T n´1 of the original fibration is a maximal flag manifold and the space p

is exactly the isotropy representation of T n´1, which in turn decomposes into
npn ´ 1q

2
pairwise inequivalent irreducible AdpT n´1q-modules equal to the root spaces relative to

the positive roots in R1 Ă R,

R1 “ tαij “ λi ´ λj; i ă j ď nu.

The Riemannian metric ĝ on the fiber SUpnq{T n´1, represented by p´Bq|p, is the normal

metric represented by the inner product

geT n´1 “
ÿ

iăjďn

p´Bq|mαij

and the homogeneous metric ğ defined by the inner product p´Bq|q makes the basis

pSUpn ` 1q{SpUp1q ˆ Upnqq, ğq an isotropy irreducible compact symmetric space.

Hence, by scaling the normal metric

geT n “
ÿ

iăjďn`1

p´Bq|mαij

on the total space SUpn ` 1q{T n in the direction of the fibers by t2, i.e., multiplying

by t2, t ą 0, the parcels p´Bq|mαij
, 1 ď i ă j ď n in the expression of g we obtain the

canonical variation gt of the metric g, according (2.6).
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2.2.2.2 pSOp2n ` 1q{T n,htq, n ě 4:

For n “ 2 we have the maximal flag SOp5q{T 2 “ SOp5q{Up1qˆUp1q, for which
the canonical fibration already been obtained in Example 2.2.13, 2.2.1.

We will denote by G “ SOp2n ` 1q the compact simple Lie group whose

Lie algebra is g “ sop2n ` 1q and by T n Ă G a maximal torus there, given by T n “
Up1q ˆ . . . ˆ Up1q “ Up1qn. The maximal flag manifold associated with sop2n ` 1q is

SOp2n ` 1q{T n. The Lie algebra sop2n ` 1q decomposes into the p´Bq-orthogonal direct
sum

sop2n ` 1q “ k ‘ m,

where B is the Cartan-Killing form of sop2n` 1q, defined by BpX, Y q “ p2n´ 1qTrpXY q,
X, Y P sop2n` 1q, k is the Lie algebra of T n, maximal abelian Lie subalgebra of sop2n` 1q
formed by the diagonal matrices of the form

k “
 ?

´1 ¨ diagp0, a1, . . . , an,´a1, . . . ,´anq; ai P R
(

and m the AdpT nq-invariant isotropy representation of T n. With respect the Cartan Lie

subalgebra kC, the root system of sop2n ` 1qC can be chosen as by

R “ t˘λi ˘ λj,˘λk; 1 ď i ă j ď n, 1 ď k ď nu,

where λi is given by diagpa1, . . . , anq ÞÑ λipdiagpa1, . . . , anqq “ ai, for each 1 ď i ď n. The

system of simple roots is Σ “ tλ1 ´ λ2, . . . , λn´1 ´ λn, λnu and with respect to Σ the

positive roots are given by R` “ tλi ´ λj, λi ` λj, λk; 1 ď i ă j ď n, 1 ď k ď nu. In this

case it has n2 positive roots, hence m decomposes into n2 pairwise inequivalent irreducible

AdpT nq-modules as follows

m “
à

αPR`

mα, (2.11)

where each two dimensional irreducible submodule mα above is generated by tAα, Sαu,
where Aα “ Xα ` X´α, Sα “

?
´1pXα ´ X´αq and Xα belongs to the Weyl basis of

sop2n ` 1qC. Remembering that the root vectors tHα1
, . . . , Hαn

u Y tXα P sop2n ` 1qCαu of

this basis satisfy BpXα, X´αq “ ´1 and rXα, X´αs “ ´Hα P k.

Setting H “ SOp2nq and K “ T n, we have that K Ĺ H Ĺ G, with G,H and

K compact connected Lie groups. Consider the canonical map

π : SOp2n ` 1q{T n ÝÑ SOp2n ` 1q{SOp2nq.

Let g “ sop2n`1q, h “ sop2nq and k be the Lie algebras of G, H and K, respectively. As we

saw previously, since K,H and G are compacts, we can consider a AdpHq-invariant p´Bq-
orthogonal complement q to h in g, and a AdpKq-invariant p´Bq-orthogonal complement

p to k in h.
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The Lie algebra g decomposes into the sum

g “ sop2n ` 1q “ k ‘ p ‘ q “ k ‘ m,

and follows that

π : pSOp2n ` 1q{T n, gq ÝÑ pSOp2n ` 1q{SOp2nq, ğq (2.12)

is a Riemannian submersion with totally geodesic fibers isometric to the maximal flag

manifold pH{K, ĝq,
H{K “ SOp2nq{T n,

g the normal metric determined by the inner product ´B|m, ĝ the metric given by p´Bq|p
and ğ defined by the inner product p´Bq|q. Sincem “ p‘q and dimSOp2nq{T n “ 2npn´1q,
by the fact that dimmα “ 2, for each positive root α, we have that the vertical space p

(tangent to the fiber SOp2nq{T n) is equal to the direct sum of npn´ 1q irreducible isotropy
summands of m while q is the direct sum of n2 ´ npn ´ 1q “ n isotropy summands, once

dimension of the total space is 2n2.

Since the fiber SOp2nq{T n of the original fibration is a maximal flag manifold,

the space p is exactly the isotropy representation of T n, which in turn decomposes into

npn´1q pairwise inequivalent irreducible AdpT nq-modules equal to the root spaces relative

to the positive roots in R1 Ă R,

R1 “ t˘λi ˘ λj; 1 ď i ă j ď nu.

The Riemannian metric ĝ on the fiber SOp2nq{T n, represented by p´Bq|p, is the normal

metric determined by the inner product

geT n “
ÿ

αPR1XR`

p´Bq|mα

and the homogeneous metric ğ defined by the inner product p´Bq|q makes the basis

pSUp2n ` 1q{SOp2nq, ğq a irreducible Hermitian symmetric space, isometric to the round

sphere.

Hence, by scaling the normal metric

geT n “
ÿ

αPR`

p´Bq|mα

on the total space SOp2n ` 1q{T n in the direction of the fibers by t2, i.e., multiplying by

t2, t ą 0, all the p´Bq|mα
, α P R1 X R` in the expression of g, we obtain the canonical

variation ht of g.
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2.2.2.3 pSppnq{T n,ktq, n ě 3:

Let G “ Sppnq be the compact simple Lie group whose Lie algebra is g “ sppnq
and by T n Ă G a maximal torus there, given by T n “ Up1q ˆ . . . ˆ Up1q “ Up1qn. The

maximal flag manifold associated is Sppnq{T n and the Lie algebra sppnq decomposes into

the p´Bq-orthogonal direct sum
sppnq “ k ‘ m,

where B is its the Cartan-Killing form of defined by BpX, Y q “ 2pn ` 1qTrpXY q, X, Y P
sppnq, k is the Lie algebra of T n, maximal abelian Lie subalgebra of sppnq formed by the

diagonal matrices of the form

k “
 ?

´1 ¨ diagpa1, . . . , an,´a1, . . . ,´anq; ai P R
(

and m the AdpT nq-invariant isotropy representation of T n. With respect the Cartan Lie

subalgebra kC, the root system of sppnqC can be chosen as by

R “ t˘λi ˘ λj,˘2λk; 1 ď i ă j ď n, 1 ď k ď nu,

where λi is given by diagpa1, . . . , anq ÞÑ λipdiagpa1, . . . , anqq “ ai, for each 1 ď i ď n. The

system of simple roots is Σ “ tλ1 ´ λ2, . . . , λn´1 ´ λn, 2λnu and with respect to Σ the

positive roots are given by R` “ tλi ´ λj, λi ` λj, 2λk; 1 ď i ă j ď n, 1 ď k ď nu. In this

case it has n2 positive roots, hence m decomposes into n2 pairwise inequivalent irreducible

AdpT nq-modules as follows

m “
à

αPR`

mα, (2.13)

where each two dimensional irreducible submodule mα above is generated by tAα, Sαu,
where Aα “ Xα `X´α, Sα “

?
´1pXα ´X´αq and Xα belongs to the Weyl basis of sppnqC.

Setting H “ Upnq and K “ T n, we have that K Ĺ H Ĺ G, with G,H and K

compact connected Lie groups. Consider the canonical map

π : Sppnq{T n ÝÑ Sppnq{Upnq.

Let h “ upnq and k be the Lie algebra H. Since K,H and G are compacts, we can consider

a AdpHq-invariant p´Bq-orthogonal complement q to h in g, and a AdpKq-invariant
´B-orthogonal complement p to k in h.

The Lie algebra g decomposes into the sum

g “ sppnq “ k ‘ p ‘ q “ k ‘ m,

and follows that

π : pSppnq{T n, gq ÝÑ pSppnq{Upnq, ğq (2.14)
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is a Riemannian submersion with totally geodesic fibers isometric to the maximal flag

manifold pH{K, ĝq,

H{K “ Upnq{T n – SUpnq{SpUp1q ˆ . . . ˆ Up1qq “ SUpnq{SpUp1qnq,

g the normal metric determined by the inner product p´Bq|m, ĝ the metric given by

p´Bq|p and ğ defined by the inner product p´Bq|q. Since m “ p ‘ q and dimH{K “
Upnq{T n – SUpnq{SpUp1qnq “ npn ´ 1q, by the fact that dimmα “ 2, for each positive

root α, we have that the vertical space p (tangent to the fiber SUpnq{SpUp1qnq) is equal
to the direct sum of

npn ´ 1q
2

irreducible isotropy summands of m while q is the direct

sum of n2 ´ npn ´ 1q
2

“ npn ` 1q
2

isotropy summands, once dimension of the total space

is 2n2.

Since the fiber SUpnq{SpUp1qnq of the original fibration is a maximal flag

manifold, the space p is exactly the isotropy representation of the maximal torus T n´1
SUpnq “

SpUp1qnq of SUpnq, which in turn decomposes into npn´1q pairwise inequivalent irreducible
AdpT n´1

SUpnqq-modules equal to the root spaces relative to the positive roots in R1 Ă R,

R1 “ t˘pλi ´ λjq; 1 ď i ă j ď nu.

The Riemannian metric ĝ on the fiber SUpnq{SpUp1qnq, represented by p´Bq|p, is the

normal metric rerpesented by the inner product

geT n´1

SUpnq
“

ÿ

αPR1XR`

p´Bq|mα

and the homogeneous metric ğ defined by the inner product p´Bq|q makes the basis

pSppnq{Upnq, ğq a irreducible Hermitian symmetric space.

By scaling the normal metric

geT n “
ÿ

αPR`

p´Bq|mα

on the total space Sppnq{T n in the direction of the fibers by t2, i.e., multiplying by t2, t ą 0,

all the p´Bq|mα
, α P R1 X R` in the expression of g, we obtain the canonical variation kt

of g.

2.2.2.4 pSOp2nq{T n,mtq, n ě 4:

Let G “ SOp2nq be the compact simple Lie group whose Lie algebra is

g “ sop2nq and by T n Ă G a maximal torus with T n “ Up1q ˆ . . . ˆ Up1q “ Up1qn. The

maximal flag manifold associated is SOp2nq{T n and the Lie algebra sop2nq decomposes

into the p´Bq-orthogonal direct sum

sop2nq “ k ‘ m,
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where B is its the Cartan-Killing form of defined by BpX, Y q “ 2pn ´ 1qTrpXY q, X, Y P
sppnq, k is the Lie algebra of T n, maximal abelian Lie subalgebra of sop2nq formed by the

diagonal matrices of the form

k “
 ?

´1 ¨ diagpa1, . . . , an,´a1, . . . ,´anq; ai P R
(

and m the AdpT nq-invariant isotropy representation of T n. With respect the Cartan Lie

subalgebra kC, the root system of sop2nqC can be chosen as by

R “ t˘λi ˘ λj; 1 ď i ă j ď n, u,

according to the above notation. The system of simple roots is

Σ “ tλ1 ´ λ2, . . . , λn´1 ´ λn, λn´1 ` λnu

and with respect to Σ the positive roots belong to

R` “ tλi ´ λj, λi ` λj; 1 ď i ă j ď nu.

It has npn ´ 1q positive roots, hence m decomposes into npn ´ 1q pairwise inequivalent

irreducible AdpT nq-modules as follows

m “
à

αPR`

mα, (2.15)

where each two dimensional irreducible submodule mα above is generated by tAα, Sαu,
where Aα “ Xα ` X´α, Sα “

?
´1pXα ´ X´αq and Xα belongs to the Weyl basis of

sop2nqC.

Take the canonical map

π : SOp2nq{T n ÝÑ SOp2nq{Upnq.

Let h “ upnq and k be the Lie algebras H and K “ T n, respectively. Since K,H and G

are compacts, we can consider a AdpHq-invariant p´Bq-orthogonal complement q to h in

g, and a AdpKq-invariant p´Bq-orthogonal complement p to k in h.

The Lie algebra g decomposes into the sum

g “ sop2nq “ k ‘ p ‘ q “ k ‘ m,

and follows that

π : pSOp2nq{T n, gq ÝÑ pSOpnq{Upnq, ğq (2.16)

is a Riemannian submersion with totally geodesic fibers isometric to the maximal flag

manifold pH{K, ĝq,

H{K “ Upnq{T n – SUpnq{SpUp1q ˆ . . . ˆ Up1qq “ SUpnq{SpUp1qnq,
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g the normal metric determined by the inner product p´Bq|m, ĝ the metric given by p´Bq|p
and ğ defined by the inner product p´Bq|q. Since m “ p ‘ q and dimH{K “ Upnq{T n –
SUpnq{SpUp1qnq “ npn´1q, by the fact that dimmα “ 2, for each positive root α, we have

that the vertical space p (tangent to the fiber SUpnq{SpUp1qnq) is equal to the direct sum

of
npn ´ 1q

2
irreducible isotropy summands of m while q, from the fact that 2npn´1q is the

dimension of the total space, is equal to the direct sum of npn´ 1q ´ npn ´ 1q
2

“ npn ´ 1q
2

isotropy summands.

Since the fiber SUpnq{SpUp1qnq of the original fibration is a maximal flag

manifold, the space p is exactly the isotropy representation of T n´1
SUpnq “ SpUp1qnq, which

in turn decomposes into npn ´ 1q pairwise inequivalent irreducible AdpT n´1
SUpnqq-modules

equal to the root spaces relative to the positive roots in R1 Ă R,

R1 “ t˘pλi ´ λjq; 1 ď i ă j ď nu.

The Riemannian metric ĝ on the fiber SUpnq{SpUp1qnq, represented by p´Bq|p, is the

normal metric given by the inner product

geT n´1

SUpnq
“

ÿ

αPR1XR`

p´Bq|mα

and the homogeneous metric ğ on the basis, defined by the inner product ´B|q, makes

pSppnq{Upnq, ğq a irreducible Hermitian symmetric space.

By scaling the normal metric

geT n “
ÿ

αPR`

p´Bq|mα

on the total space SOp2nq{T n in the direction of the fibers by t2, i.e., multiplying by

t2, t ą 0, all the p´Bq|mα
, α P R1 X R` in the expression of g, we obtain the canonical

variation mt of g.

2.2.3 Spectra of Maximal Flag Manifolds and Symmetric spaces

In [33], S. Yamaguchi describes the spectrum of the Laplacian defined on

C8pG{T, gq, where G{T is a maximal flag manifold equipped with a normal metric g. In

this case, we have the following description of σp∆gq.

Let g be the Lie algebra of G, g complex and simple Lie algebra. Denote by

h the Cartan subalgebra of g, R the root system of pg, hq and by Σ “ tα1, . . . , αlu the

associated system of simple roots. Let p¨, ¨q “ ´B the inner product on g induced by the

Cartan-Killing form B g. Consider the system of fundamental weights tω1, ¨ ¨ ¨ , ωlu of h

and denote by P the set of all integral dominant weights,

P “ tΛ “
lÿ

i“1

siωi P h˚; si ě 0, si P Zu.
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Let pP the set of all elements of P which are of class one relative to h, i.e., the irreducible

representation pξΛ, VΛq of g in VΛ, with the highest weight equal to Λ P P , has a non zero

ξΛphq-invariant vector in the representation space VΛ.

Theorem 2.2.19 (H. Freudenthal [33]). Let pξΛ, VΛq be the irreducible representation with

highest weight Λ P P (Λ ‰ 0). Then, Λ P pP if and only if Λ “
lÿ

i“1

piαi, pi ě 1, pi P Z,

1 ď i ď l.

We identify Λ “
lÿ

i“1

piαi P pP with P “ pp1, . . . , plq.

Theorem 2.2.20 (S. Yamaguchi [33]). If G{T is a maximal flag manifold associated with

a complex classical simple Lie algebra g of the type An, Bn, Cn, Dn or with the exceptional

Lie algebra of the type G2, the spectrum of the Laplacian ∆g, g normal metric induced

by the Cartan-Killing form B of g, is determined by the irreducible representations with

highest weight Λ P pP, in such a way that each eigenvalue µ P σp∆gq is given by µpΛq, for

some irreducible representation pξΛ, VΛq with highest weight Λ “
lÿ

i“1

piαi, as follows:

Type An, n ě 1:

(1) µpΛq “ 1

n ` 1

#
nÿ

i“1

p2
i ´

n´1ÿ

i“1

pipi`1 `
nÿ

i“1

pi

+
,

(2)

$
’’’’’’’&
’’’’’’’%

2p1 ´ p2 ě 0

´p1 ` 2p2 ´ p3 ě 0
...

´pn´2 ` 2pn´1 ´ pn ě 0

´pn´1 ` 2pn ě 0

,

(3) First positive eigenvalue µ1 “ µp1, . . . , 1q “ 1,

P0 “ p1, . . . , 1q ÐÑ Λ0 “ α1 ` . . . ` αn highest root,

ξΛ0
=adjoint representation.

Type Bn, n ě 2:

(1) µpΛq “ 1

4n ´ 2

#
n´1ÿ

i“1

2p2
i ` p2

n ´ 2

n´1ÿ

i“1

pipi`1 ` 2

n´1ÿ

i“1

pi ` pn

+
,
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(2)

$
’’’’’’’&
’’’’’’’%

2p1 ´ p2 ě 0

´p1 ` 2p2 ´ p3 ě 0
...

pn´2 ` 2pn´1 ´ pn ě 0

´pn´1 ` pn ě 0

,

(3) First positive eigenvalue µ1 “ µp1, . . . , 1q “ n

2n ´ 1
,

P0 “ p1, . . . , 1q ÐÑ Λ0 “ ω1 “ α1 ` . . . ` αn,

ξΛ0
=representation with highest weight ω1.

Type Cn, n ě 3:

(1) µpΛq “ 1

2pn ` 1q

#
n´1ÿ

i“1

p2
i ` 2p2

n ´
n´2ÿ

i“1

pipi`1 ´ pn´1pn `
n´1ÿ

i“1

pi ` 2pn

+
,

(2)

$
’’’’’’’’’&
’’’’’’’’’%

2p1 ´ p2 ě 0

´p1 ` 2p2 ´ p3 ě 0
...

´pn´3 ` 2pn´2 ´ pn´1 ě 0

´pn´2 ` 2pn´1 ´ 2pn ě 0

´pn´1 ` 2pn ě 0

,

(3) First positive eigenvalue µ1 “ µp1, 2, . . . , 2, 1q “ 4n ´ 1

4pn ` 1q ,

P0 “ p1, . . . , 1q ÐÑ Λ0 “ ω2,

ξΛ0
=representation with highest weight ω2.

Type Dn, n ě 4:

(1) µpΛq “ 1

2n ´ 1

#
nÿ

i“1

p2
i ´

n´2ÿ

i“1

pipi`1 ´ pn´2pn `
nÿ

i“1

pi

+
,

(2)

$
’’’’’’’’’’’’&
’’’’’’’’’’’’%

2p1 ´ p2 ě 0

´p1 ` 2p2 ´ p3 ě 0
...

´pn´4 ` 2pn´3 ´ pn´2 ě 0

´pn´3 ` 2pn´2 ´ pn´1 ´ pn ě 0

´pn´2 ` 2pn´1 ě 0

´pn´2 ` 2pn ě 0

,
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(3) First positive eigenvalue µ1 “ µp1, 2, . . . , 2, 1, 1q “ 1,

P0 “ p1, 2, . . . , 2, 1, 1q ÐÑ Λ0 highest root,

ξΛ0
=adjoint representation.

Type G2:

(1) µpΛq “ 1

12

 
p2

1 ` 3p2
2 ´ 3p1p2 ` p1 ` 3p2

(
,

(2)

#
2p1 ´ 3p2 ě 0

´p1 ` 2p2 ě 0
,

(3) First positive eigenvalue µ1 “ µp2, 1q “ 1

2
, P0 “ p2, 1q ÐÑ Λ0 “ ω1,

ξΛ0
=representation with highest weight ω1.

We note that the basis spaces pG{H, ğq of the homogeneous fibrations that have

been studied so far in this work are irreducible Hermitian symmetric space of compact

type. The spectrum of such spaces are well known, and can be determined as follows (see

[30], page 64).

Let G be a compact simply connected simple Lie group, H closed subgroup

of G. Let g, h the Lie algebras of G and H, respectively, and g “ h ‘ q, the Cartan

decomposition. The inner product on q is p´Bq|q, where B is the Cartan-Killing form of g.

Let ğ the G-invariant Riemannian metric on G{H induced by B. Then, it is known that

the spectrum of the Laplacian of pG{H, ğq is given by

µpΛq “ ´BpΛ ` 2δ,Λq, (2.17)

with multiplicities

dΛ “
ź

αPR`

´BpΛ ` δ, αq
´Bpδ, αq . (2.18)

Here, Λ varies over the set DpG,Hq of the highest weights of all spherical representations

of pG,Hq, δ is equal to the sum of the positive roots α P R` of the complexification gC

of g relative to the maximal abelian subalgebra kC of gC and dΛ is the dimension of the

irreducible spherical representation of pG,Hq with highest weight Λ.

For simple compact connected G, Krämer [22] provides a classification of

possible subgroups H along with a set of dominant weights whose integral non-negative

combinations give all spherical representations.

In particular, in Krämer’s classification the basis of the representations in

DpG2, SOp4qq is given by

B “ t2π1, 2π2u,



Chapter 2. Riemannian Submersions With Totally Geodesic Fibers 52

with tπ1, π2u being the set of fundamental weights of the maximal abelian Lie algebra

LiepT q “ k. Therefore, by applying (2.17) and the fact that all Λ P DpG2, SOp4qq is linear

combination of the weights in B, follows the case of the spectrum of the Laplacian on the

isotropy irreducible symmetric space G2{SOp4q equipped with the metric determined by

the Cartan-Killing form of G2.

Proposition 2.2.21. The spectrum of the Laplacian of the isotropy irreducible Hermitian

space pG2{SOp4q, ğq is given by σp∆ğq “
"

1

6
p9r ` 6r2 ` 5s ` 6rs ` 2s2q;Z Q r, s ě 0

*
,

with first positive eigenvalue β1 “ 7

6
.

Assume that B is the Cartan-Killing form of G, G{T total space of the homo-

geneous fibration

π : pG{T, gq ÝÑ pG{H, ğq
and ğ is the homogeneous metric given by the inner product p´Bq|q, q p´Bq-orthogonal
complement to LiepHq “ h in LiepGq “ g, i.e, q is the horizontal distribution relative to

the submersion π. Moreover, each pG{H, ğq below is an isotropy irreducible Hermitian

symmetric space.

In the follow, we will describe the spectrum of the Laplacian on each basis

space pG{H, ğq of the homogeneous fribations π : pG{T, gq ÝÑ pG{H, ğq constructed in the

previous Section on the maximal flag manifolds SUpn` 1q{T n, SOp2n` 1q{T n, Sppnq{T n,

SOp2nq{T n and G2{T , respectively.

Spectrum of the Complex Projective Space, σp∆CP
nq

The basis space pG{H, ğq “ pSUpn`1q{SpUp1qˆUpnqq, ğq of the homogeneous

fibration

π : pSUpn ` 1q{T n, gq ÝÑ pSUpn ` 1q{SpUp1q ˆ Upnqq, ğq, n ě 2,

is the homogeneous realization of the complex projective space CP
n endowded with a

homothetical metric to the Fubini-Study metric. In fact, the induced metric p´Bq|q on
CP

n, B Cartan-Killing form given by BpX, Y q “ 2pn ` 1qTrpXY q, X, Y P supn ` 1q, is
n` 1 times the Fubini-Study metric. According [19], the spectra of the Laplacian acting

on functions on the complex projective space CP
n “ SUpn ` 1q{SpUp1q ˆ Upnqq with the

Fubini-Study metric is

σp∆F Sq “ tξk “ kpk ` nq; k P Nu.
Hence, the spectrum of the Laplacian on CP

n “ SUpn` 1q{SpUp1q ˆUpnqq provided with

the metric ğ represented by the inner product ´B|q is

σp∆ğq “ tβk “ ξk

n ` 1
“ kpk ` nq

n ` 1
; k P Nu. (2.19)

Note that the first positive eigenvalue in this case is β1 “ 1.
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Spectrum of the Round Sphere, σp∆S2nq

The basis space pG{H, ğq “ pSOp2n ` 1q{SOp2nqq, ğq of the homogeneous

fibration

π : pSOp2n ` 1q{T n, gq ÝÑ pSOp2n ` 1q{SOp2nq, ğq, n ě 2,

is the homogeneous realization of the round sphere S2n provided with a homothetical

metric to the canonical metric. In fact, the metric induced from the Cartan-Killing form

given by

BpX, Y q “ p2n ´ 1qTrpXY q, X, Y P sop2n ` 1q,

is 2p2n ´ 1q times the usual one. According [19], the spectra of the Laplacian acting on

functions on sphere S2n “ SOp2n ` 1q{SOp2nq with the usual metric h is

σp∆hq “ tξk “ kpk ` n ´ 1q; k P Nu.

Hence, the spectrum of the Laplacian on S2n “ SOp2n ` 1q{SOp2nq provided with the

metric ğ represented by the inner product ´B|q is

σp∆ğq “ tβk “ ξk

2p2n ´ 1q “ kpk ` 2n ´ 1q
2p2n ´ 1q ; k P Nu. (2.20)

Note that the first positive eigenvalue in this case is β1 “ n

2n ´ 1
.

Spectrum of the Symmetric Space Sppnq{Upnq, σp∆Sppnq{Upnqq

In the case of the basis space pG{H, ğq “ pSppnq{Upnq, ğq of the homogeneous

fibration π : pSppnq{T n, gq ÝÑ pSppnq{Upnq, ğq, n ě 3, Krämer’s classification [22] give us

the basis of the representations in the set DpSppnq, Upnqq of the highest weights of all

spherical representations of the pair pSppnq, Upnqq, namely

B “ t2πl; 1 ď l ď nu,

with tπl; 1 ď l ď nu being the fundamental weights of the maximal abelian Lie algebra

LiepT nq “ kC. Therefore, by applying (2.17) and the fact that all Λ P DpSppnq, Upnqq is

linear combination of the weights in B, we have the spectrum of the Laplacian on the

isotropy irreducible symmetric space Sppnq{Upnq provided with the metric determined by

the Cartan-Killing form B of Sppnq, given by

BpX, Y q “ 2pn ` 1qTrpXY q, X, Y P sppnq.

The first positive eigenvalue in this case, according [30], is β1 “ 1.
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Spectrum of the Symmetric Space SOp2nq{Upnq, σp∆SOp2nq{Upnqq

In the case of the basis space pG{H, ğq “ pSOp2nq{Upnq, ğq of the homogeneous

fibration π : pSOp2nq{T n, gq ÝÑ pSOp2nq{Upnq, ğq, n ě 4, Krämer’s classification [22]

give us the basis of the representations in the set DpSOp2nq, Upnqq of the highest weights

of all spherical representations of the pair pSOp2nq, Upnqq, namely

B1 “ tπ2, π4, . . . , πn´2, 2πnu, if n is even

and

B2 “ tπ2, π4, . . . , πn´3, πn´1 ` πnu, if n is odd

with tπl; 1 ď l ď nu being the fundamental weights of the maximal abelian Lie algebra

LiepT nq “ kC. Therefore, by applying (2.17) and the fact that all Λ P DpSOp2nq, Upnqq
is linear combination of the weights in B1 or B2, according to n is even or odd, we have

the spectrum of the Laplacian on the isotropy irreducible symmetric space SOp2nq{Upnq
provided with the metric determined by the Cartan-Killing form B of SOp2nq, given by

BpX, Y q “ 2pn ´ 1qTrpXY q, X, Y P sop2nq.

The first positive eigenvalue in both of the cases, i.e, when n is even or odd, according

[30], is β1 “ 1.

From the above, we obtain the following useful properties of the first positive

eigenvalue λ1ptq of the Laplacian ∆t “ ∆gt
, gt canonical variation of the normal metrics

on the flag manifolds in Theorem 2.2.20.

Proposition 2.2.22. Considering the canonical variations pSUpn ` 1q{T n, gtq,
pSOp2n ` 1q{T n, gtq, pSppnq{T n, gtq, pSOp2nq{T n, gtq and pG2{T, gtq, one has the follow-

ing estimates for the first positive eigenvalue λ1ptq of the Laplacian ∆t on the canonical

variations pG{T, gtq:

pG{T, gtq λ1ptq, 0 ă t ď 1

pSUpn ` 1q{T n,gtq λ1ptq “ 1

pSOp2n ` 1q{T n,htq λ1ptq “ n

2n ´ 1

pSppnq{T n,ktq
4n ´ 1

4pn ` 1q ď λ1ptq ď 1

pSOp2nq{T n,mtq λ1ptq “ 1

pG2{T,ntq
1

2
ď λ1ptq ď 7

6

Proof: By Corollaries 2.2.6 and 2.2.8 in Section 2.2,

µ1 ď λ1ptq ď β1,
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for all 0 ă t ď 1, where λ1ptq, µ1 and β1 are the first positive eigenvalues of ∆t,∆g and

∆h, which are the Laplacians on the total space of the canonical variation, on the original

total space and on the basis, respectively. From the above description of the spectra of

the Laplacians on maximal flag manifolds and isotropy irreducible Hermitian symmetric

spaces, we have all the first positive eigenvalues of the Laplacians both on the original

total spaces and on the basis, i.e, we have the values of β1 and µ1, which allow us applying

the inequality µ1 ď λ1ptq ď β1 in order to obtain the respective values and estimates for

λ1ptq given in the table above.

✷
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3 Bifurcation and Local Rigidity Instants for

Canonical Variations on Maximal Flag

Manifolds

In this chapter, we prove the main results of this thesis, determining the

bifurcation and local rigidity instants for the canonical variations which were constructed

in the previous chapter. The criterion used to find such instants is based on comparison

between an expression of the eigenvalues of the Laplacian relative to the respective canonical

variation and a multiple of its scalar curvature. This method is related to the notion of

Morse index.

Firstly, will be determined an expression for the scalar curvature of each

canonical variation described above by mean a general formula obtained by W. Ziller

in [31] that can be applied to calculate the scalar curvature of homogeneous metrics on

reductive homogeneous spaces. From this formula, we can see clearly that these kind of

metrics have constant scalar curvature and are trivial solutions to the Yamabe problem.

Necessary conditions for classifications of bifurcation and local rigidity instants

in the interval p0, 1q can be deduced by using the expressions of the scalar curvature in all

cases.

3.1 Scalar Curvature

As stated, it is necessary an expression for scalpgtq of given 1-parameter family

gt of homogeneous metrics on a maximal flag manifold, defined by (2.6) in Section 2.2.1.

The general formula of the scalar curvature for reductive homogeneous spaces which we

use here is obtained in [31].

Let G be a compact connected Lie group and K Ă G a closed subgroup of G.

Assume that K is connected, which corresponds to the case that G{K is simply connected.

Let m be the p´Bq-orthogonal complement to k in g, where g and k are the Lie algebras

of G and K, respectively, and B is the Cartan-Killing form of g. It is known that the

isotropy representation m of K decomposes into a direct sum of inequivalent irreducible

submodules,

m “ m1 ‘ m2 ‘ . . . ‘ mr,

with m1,m2, . . . ,mr such that AdpKqmi Ă mi, for all i “ 1, . . . , r. Thus, each G-invariant
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metric on G{K can be represented by a inner product on m given by

t1p´Bq|m1
` t2p´Bq|m2

` . . . ` trp´Bq|mr
, ti ą 0, i “ 1, . . . , r.

Let Xα be a p´Bq-orthonormal basis adapted to the AdpKq-invariant decom-

position of m, i.e., Xα P mi for some i, and α ă β if i ă j with Xα P mi and Xβ P mj. Set

A
γ
αβ “ ´BprXα, Xβs, Xγq, so that rXα, Xβsm “

ÿ

γ

A
γ
αβXγ, and define

«
k

ij

ff
“
ÿ

pAγ
αβq2,

where the sum is taken over all indices α, β, γ with Xα P mi, Xβ P mj and Xγ P mk.

Note that

«
k

ij

ff
is independent of the p´Bq-orthogonal basis chosen for mi,mj,mk, but it

depends on the choice of the decomposition of m. In addition,

«
k

ij

ff
is continuous function

on the space of all p´Bq-orthogonal ordered decomposition of m into AdpKq´irreducible

summands and also is non-negative and symmetric in all 3 indices. The set tXα{
?
ti;Xα P

miu is a orthonormal basis of m with respect to

x¨, ¨y “ t1p´Bq|m1
` t2p´Bq|m2

` . . . ` trp´Bq|mr
.

Then (see [31]), the scalar curvature of g determined by x¨, ¨y is

scalpgq “ 1

2

rÿ

l“1

dl

tl
´ 1

4

ÿ

i,j,k

«
k

ij

ff
tk

titj
, (3.1)

for all x P G{K, di “ dimmi, i “ 1, . . . , r.

Example 3.1.1. In [20], page 303, was obtained formula (3.1) for a G-invariant metric g

on a homogeneous space G{K for which m has 3 isotropy summands. In this case, g is

determined by a inner product t1p´Bq|m1
` t2p´Bq|m2

` t3p´Bq|m3
and

scalpgq “ 1

2

3ÿ

i“1

di

ti
´ 1

2

«
3

12

ffˆ
t3

t1t2
` t2

t1t3
` t1

t2t3

˙
. (3.2)

In particular, considering the 1-parameter family gt on SUp3q{T 2, given by the inner

product

pgtqeT 2 “ p´t2Bq|m1
` p´Bq|m2

` p´Bq|m3
, t ą 0,

from the decomposition of the isotropy representation of K “ T 2,

m “ m1 ‘ m2 ‘ m3,

comm1 “ p,m2 “ spamC pE13 ´ E31q and spamC pE23 ´ E32q, we take the p´Bq-orthornormal

basis of m, W “ tA12, A13, A23, S12, S13, S23u,

Aij “ 1?
12

pEij ´ Ejiq, Sij “
?

´1?
12

pEij ` Ejiq.
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We have that W is a adapted basis to this decomposition of m, with A12, S12 P

m1, A23, S23 P m2 and A13, S13 P m3. Since d1 “ d2 “ d3 “ 2,

«
3

12

ff
“ 1

3
and t1 “ t2, t2 “

t3 “ 1, by (3.2), follows

scalpgtq “ 2

3t2
´ t2

6
` 2. (3.3)

After application of the formula (3.1) in the previous example, we will use

it to exhibit a formula of the scalar curvature scalptq for each 1-parameter family of

homogeneous metrics gt defined on some type of maximal flag manifold associated with

one of the complex classical simple Lie algebras.

First, some observations about the numbers

«
k

ij

ff
are necessary. For a maximal

flag manifold G{K, we have the p´Bq-orthogonal decomposition
ÿ

αPR`

mα of its isotropy

representation m, where B is the Cartan-Killing form of g and mα “ RAα ` RSα, with

the vectors Aα and Sα defined by the elements of a Weyl basis of g “ LiepGq. This
allows us rewrite the above splitting of m as m “ m1 ‘ . . . ‘ ms, where s “

ˇ̌
R`

ˇ̌
. Since

BpAα, Aαq “ BpSα, Sαq “ ´2 and BpAα, Sαq “ 0, the set

"
Xα “ Aα?

2
, Yα “ Sα?

2
;α P R`

*
, (3.4)

is a p´Bq-orthonormal basis of m. If we denote for simplicity such a basis by eα “ tAα, Sαu,

then the notation

«
k

ij

ff
can be rewritten as

«
γ

αβ

ff
where eα, eβ and eγ are the p´Bq-

orthogonal bases of the modules mα, mβ and mγ, respectively.

Remark 3.1.2. Recall that, if α, β P R such that α ` β ‰ 0, then root spaces satisfy

rgα, gβs “ gα`β and Bpgα, gβq “ 0. Since

«
γ

αβ

ff
‰ 0 if and only if Bprmα,mβs,mγq ‰ 0,

we can conclude that

«
γ

αβ

ff
‰ 0 if and only if the positive roots α, β and γ are such that

α` β ´ γ “ 0. Thus, we have

«
α ` β

αβ

ff
‰ 0, for any α, β such that α` β P R. Moreover,

for

«
γ

αβ

ff
, we will have in the second summation of (3.1) the following:

(a)

«
γ

αβ

ff
ˆ 1

t2
when t2p´Bq|mα

, t2p´Bq|mβ
, t2p´Bq|mγ

are vertical components and

α ` β is a positive root,
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(b)

«
γ

αβ

ff
ˆ 1

t2
when t2p´Bq|mα

is vertical, p´Bq|mβ
, p´Bq|mγ

are horizontal compo-

nents and α ` β is a positive root,

(c)

«
α

γβ

ff
ˆ t2 when p´Bq|mα

is vertical, p´Bq|mβ
, p´Bq|mγ

are horizontal components

and α ` β is a positive root

(d)

«
γ

αβ

ff
“ 0 ˆ t2 otherwise.

Proposition 3.1.3 ([5]). For a maximal flag manifold G{K the triples

«
α ` β

αβ

ff
‰ 0

are given by «
α ` β

αβ

ff
“ 2m2

α,β,

where m2
α,β are the structure constants of the Weyl basis of g “ LiepGq.

Remark 3.1.4 ([5]). If α, β P R are such that α ´ β P R, similarly one obtains

«
α ´ β

αβ

ff
“ 2m2

α,´β.

Lemma 3.1.5 ([25]). For SUpn ` 1q{T n, considering the decomposition (2.9) of the

isotropy representation m of T n, one has

«
α ` β

αβ

ff
“

$
&
%

1

n ` 1
, if k ‰ i, j

0, otherwise
, (3.5)

where α “ λi ´ λk and β “ λk ´ λj are positive roots of the root system

R “ tαij “ ˘pλi ´ λjq; i ‰ ju

of the Cartan Lie subalgebra kC relative to supn`1qC, λi given by λipdiagpa1, . . . , an`1qq “ ai,

for each 1 ď i ď n ` 1 and

k “
#

?
´1 ¨ diagpa1, . . . , an`1q;

nÿ

i“1

ai “ 0

+
.

Proposition 3.1.6. [pSUpn ` 1q{Tn,g
t
q,n ě 2] Considering the hypothesis of Lemma

3.1.5, let pSUpn ` 1q{T n,gtq be the canonical variation of pSUpn ` 1q{T n, gq, where g is

the normal metric on SUpn ` 1q{T n. Then, the function scalptq, that for each t ą 0 gives

the scalar curvature of gt, is given by

scalptq “ ´2n ` n2pn ` 1q ` 4npn ` 1qt2 ` np1 ´ nqt4
4pn ` 1qt2 . (3.6)
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Proof: The 1-parameter family gt is obtained by multiplying the components

p´Bq|mαij
, 1 ď i ă j ď n,

by t2, that is, by scaling in the direction of the fibers by t2 the normal metric g given by

the inner product

geT n “
ÿ

iăjďn`1

p´Bq|mαij
.

It is known that one has
npn ´ 1q

2
vertical components, i.e,

ˇ̌
tp´Bq|mαij

, 1 ď i ă j ď nu
ˇ̌

“ npn ´ 1q
2

,

and
ˇ̌
tp´Bq|mαij

, 1 ď i ă j “ n ` 1u
ˇ̌

“ n horizontal components of the normal metric g. In

addition, the dimension of each submodule mα is equal to 2. Therefore, the first summation

in (3.1) is
1

2

ÿ

αPR`

dα

tα
“ pn ´ 1qn

2t2
` n.

In order to obtain the second summation
ÿ

α,β,γPR`

«
γ

αβ

ff
tγ

tαtβ
in (3.1), with tγ, tα, tβ ą 0

coefficients of p´Bq|mα
, p´Bq|mα

, p´Bq|mα
, respectively, it is sufficient to know the number

of triples

«
γ

αβ

ff
multiplying t2 and the number of these constants multiplying

1

t2
. In fact,

tγ

tαtβ
“ t2 or

1

t2
, since the coefficients of the canonical variation gt are tα “ t2 or tα “ 1,

depending on whether the component p´Bq|mα
is vertical or horizontal. Furthermore,

the nonzero triples are equal to the same value, namely 0 ‰
«

γ

αβ

ff
“ 1

n ` 1
according

Lemma 3.1.5.

Let us now determine the number of triples for each of the cases (a), (b) and

(c) in Remark 3.1.2 above.

CASE (a): Let N1 the total number of triples in (a). Using the above notations,«
γ

αβ

ff
“
«

λi ´ λj

λi ´ λkλk ´ λj

ff
, with α “ λi ´ λk, β “ λk ´ λj and γ “ α ` β “ λi ´ λj,

i ă k ă j ď n, since p´Bq|mα
, p´Bq|mβ

, p´Bq|mγ
are vertical components. Fixed i “ 1,

we will have
pn ´ 1qpn ´ 2q

2
symbols of the type

«
λ1 ´ λj

λ1 ´ λkλk ´ λj

ff
‰ 0; if we fix i “ 2,

one has
pn ´ 2qpn ´ 3q

2
symbols of the type

«
λ2 ´ λj

λ2 ´ λkλk ´ λj

ff
‰ 0, and so on, getting

pn ´ iqpn ´ i ´ 1q
2

symbols of the type

«
λi ´ λj

λi ´ λkλk ´ λj

ff
‰ 0 for each 1 ď i ď n ´ 2. It
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follows that the number of symbols in (a), not counting the permutations, is

n´2ÿ

i“1

1

2
pn ´ iqpn ´ i ´ 1q “ 1

6
p2n ´ 3n2 ` n3q.

Recall that in (a),

«
λi ´ λj

λi ´ λkλk ´ λj

ff
“

«
γ

αβ

ff
,with i ă k ă j ď n. Then, tα, tβ, tγ

are equal to t2, which implies that
tγ

tαtβ
“ 1

t2
, and by symmetry of

«
γ

αβ

ff
, we must

considering six times the number of symbols above to obtain the total number of these

symbols in (a), hence

N1 “ 6 ¨ 1

6
p2n ´ 3n2 ` n3q “ p2n ´ 3n2 ` n3q.

CASE (b): Let N2 the total number of triples in (b);

«
γ

αβ

ff
“

«
λi ´ λj

λi ´ λkλk ´ λj

ff
,

with α “ λi ´ λk, β “ λk ´ λj and γ “ α ` β “ λi ´ λj, i ă k ă j “ n ` 1, since

p´Bq|mα
is vertical and p´Bq|mβ

, p´Bq|mγ
are horizontal components. Fixed i “ 1, we will

have pn ´ 1q triples of the type

«
λ1 ´ λj

λ1 ´ λkλk ´ λj

ff
‰ 0; if we fix i “ 2, one has pn ´ 2q

triples of the type

«
λ2 ´ λj

λ2 ´ λkλk ´ λj

ff
‰ 0, and so on, getting pn ´ iq triples of the type

«
λi ´ λj

λi ´ λkλk ´ λj

ff
‰ 0 for each 1 ď i ď n ´ 1. It follows that the number of triples in

(b), not counting the permutations, is

n´1ÿ

i“1

i “ npn ´ 1q
2

.

In (b),

«
λi ´ λj

λi ´ λkλk ´ λj

ff
“

«
γ

αβ

ff
then, tα “ t2, tβ “ tγ “ 1, which implies

tγ

tαtβ
“

tγ

tβtα
“ tβ

tγtα
“ tβ

tαtγ
“ 1

t2
. By symmetry of

«
γ

αβ

ff
, we must considering four times the

number of triples above to obtain the total number N2 of these triples in (b), hence

N2 “ 4 ¨ npn ´ 1q
2

“ 2npn ´ 1q.

CASE (c): Similarly to the previous case, not counting the permutations, we have
npn ´ 1q

2

symbols

«
α

γβ

ff
multiplying

tα

tγtβ
“ tα

tβtγ
“ t2. By symmetry, in this case, we must consider

two times the number above in order to obtain the total number N3 of triples

«
α

γβ

ff
,

which multiply in (c), i.e, N3 “ 2 ¨ npn ´ 1q
2

“ npn ´ 1q.
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Therefore, since

«
α

γβ

ff
“ 1

n ` 1
whenever

«
α

γβ

ff
‰ 0,

scalptq “ 1

2

ÿ

αPR`

dα

tα
´ 1

4

ÿ

α,β,γPR`

«
γ

αβ

ff
tγ

tαtβ

“ pn ´ 1qn
2t2

` n ´ 1

4

ˆ
N1

pn ` 1qt2 ` N2

t2pn ` 1q ` N3t
2

n ` 1

˙

“ ´2n ` n2pn ` 1q ` 4npn ` 1qt2 ` np1 ´ nqt4
4pn ` 1qt2 .

✷

Let us now to consider the case of the canonical variation pSOp2n` 1q{T n,htq
of the normal metric on SOp2n ` 1q{T n.

Lemma 3.1.7 ([25]). For SOp2n ` 1q{T n, considering the decomposition (2.11) of the

isotropy representation m of T n, one has

«
λi ´ λk

λi ´ λjλj ´ λk

ff
“
«

λi ` λj

λi ´ λkλk ` λj

ff
“
«

λi

λi ´ λjλj

ff
“
«
λi ` λj

λiλj

ff
“ 1

2n ´ 1
,

(3.7)

and

«
γ

αβ

ff
“ 0 otherwise, where α, β and γ are positive roots of the root system

R “ t˘λi ˘ λj,˘λk; 1 ď i ă j ď n, 1 ď k ď nu,

of the Cartan Lie subalgebra kC relative to sop2n`1qC, λi given by λipdiagpa1, . . . , an`1qq “
ai, for each 1 ď i ď n and

k “
 ?

´1 ¨ diagp0, a1, . . . , an,´a1, . . . ,´anq; ai P R
(
.

Proposition 3.1.8. [pSOp2n ` 1q{Tn,htq,n ě 4] Considering the hypothesis of Lemma

3.1.7, let SOp2n` 1q{T n,htq be the canonical variation of pSOp2n` 1q{T n, gq, where g is

the normal metric on SOp2n` 1q{T n. Then, the function scalptq, that for each t ą 0 gives

the scalar curvature of ht, is given by

scalptq “ 5n3 ´ 2n2t4 ` 8n2t2 ´ 7n2 ` 2nt4 ´ 4nt2 ` 2n

4p2n ´ 1qt2 . (3.8)

Proof: The 1-parameter family ht was obtained multiplying by t2, t ą 0, all

the p´Bq|mα
, α P R1 X R` in the expression of the normal metric g, which on the isotropy

representation m of T n, is represented by the inner product

geT n “
ÿ

αPR`

p´Bq|mα
.
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It is known that there are npn´ 1q vertical components in the above expression

of g, i.e,
ˇ̌
tp´Bq|mα

, α P R1 X R`u
ˇ̌

“ npn´ 1q, and
ˇ̌
tp´Bq|mα

, α P R`zR1u
ˇ̌

“ n horizontal

components of the normal metric. Moreover, the dimension of each submodule mα is equal

to 2. Therefore, the first summation in (3.1) is

1

2

ÿ

αPR`

dα

tα
“ pn ´ 1qn

t2
` n.

To obtain the second summation
ÿ

α,β,γPR`

«
γ

αβ

ff
tγ

tαtβ
in (3.1), with tγ, tα, tβ ą 0 coefficients

of p´Bq|mα
, p´Bq|mα

, p´Bq|mα
, respectively, we will determine, as well as in the previous

example, the number of factors

«
γ

αβ

ff
multiplying t2 and the number of these constants

multiplying
1

t2
.

Let us now determine the number of triples for each of the cases (a), (b) and

(c) in Remark 3.1.2 above.

CASE (a): Let N1 the total number of triples in (a). For

«
γ

αβ

ff
“
«

λi ´ λj

λi ´ λkλk ´ λj

ff
,

with α “ λi ´ λk, β “ λk ´ λj and γ “ α ` β “ λi ´ λj, i ă k ă j ď n, we

have that p´Bq|mα
, p´Bq|mβ

, p´Bq|mγ
are vertical components. Fixed i “ 1, we will

have
pn ´ 1qpn ´ 2q

2
symbols of the type

«
λ1 ´ λj

λ1 ´ λkλk ´ λj

ff
‰ 0; if we fix i “ 2, one

has
pn ´ 2qpn ´ 3q

2
symbols of the type

«
λ2 ´ λj

λ2 ´ λkλk ´ λj

ff
‰ 0, and so on, getting

pn ´ iqpn ´ i ´ 1q
2

symbols of the type

«
λi ´ λj

λi ´ λkλk ´ λj

ff
‰ 0 for each 1 ď i ď n ´ 2. It

follows that the number such triples, not counting the permutations, is

n´2ÿ

i“1

1

2
pn ´ iqpn ´ i ´ 1q “ 1

6
p2n ´ 3n2 ` n3q.

Since

«
λi ´ λj

λi ´ λkλk ´ λj

ff
“

«
γ

αβ

ff
the coefficients tα, tβ, tγ are equal to t2 and, by

symmetry of

«
γ

αβ

ff
, we must considering six times the number of triples to obtain the

total number N1 multiplying
tγ

tαtβ
“ 1

t2
in this case, hence

N1 “ 6 ¨ 1

6
p2n ´ 3n2 ` n3q “ p2n ´ 3n2 ` n3q

.

CASE (b): For

«
γ

αβ

ff
“

«
λi ` λj

λi ´ λkλk ` λj

ff
, with α “ λi ´ λk, β “ λk ` λj and
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γ “ α ´ β “ λi ` λj, i ă k ď n, k ‰ j ď n, we have that p´Bq|mα
, p´Bq|mβ

, p´Bq|mγ
are

vertical components of the normal metric g. Fixed i “ 1, one has pn ´ 2qpn ´ 1q triples

of the type

«
λ1 ` λj

λ1 ´ λkλk ` λj

ff
‰ 0; if we fix i “ 2, one has pn ´ 2qpn ´ 3q symbols of

the type

«
λ2 ` λj

λ2 ´ λkλk ` λj

ff
‰ 0, and so on, getting pn ´ iqpn ´ i ´ 1q triples of the type

«
λi ` λj

λi ´ λkλk ` λj

ff
‰ 0 for each 1 ď i ď n ´ 1. It follows that the number of such triples,

not counting the permutations, is
n´2ÿ

i“1

pn ´ iqpn ´ i ´ 1q “ 1

3
p2n ´ 3n2 ` n3q.

When

«
λi ` λj

λi ´ λkλk ` λj

ff
“

«
γ

αβ

ff
the coefficients tα, tβ, tγ in the expression of the

canonical fibration are equal to t2. It follows that
tγ

tαtβ
“ 1

t2
and, by symmetry of

«
γ

αβ

ff
,

we must considering six times the number of triples above to obtain the total number N2

of triples multiplying
1

t2
in this case, hence

N2 “ 6
1

3
p2n ´ 3n2 ` n3q “ 2N1.

CASE (c): For

«
γ

αβ

ff
“
«

λi

λi ´ λjλj

ff
, with α “ λi ´λj, β “ λj and γ “ α`β “ λi, i ă

j ď n, we have that p´Bq|mα
corresponds to a vertical component and p´Bq|mβ

, p´Bq|mγ

are horizontal components of the normal metric g. Fixed i “ 1, one has pn ´ 1q triples

of the type

«
λ1

λ1 ´ λjλj

ff
‰ 0; if we fix i “ 2, one has pn ´ 2q triples of the type

«
λ2

λ2 ´ λjλj

ff
‰ 0, and so on, getting pn ´ iq triples of the type

«
λi

λi ´ λjλj

ff
‰ 0

for each 1 ď i ď n ´ 1. It follows that the number of such triples, not counting the

permutations, is
n´1ÿ

i“1

pn ´ iq “ 1

2
npn ´ 1q.

When

«
λi

λi ´ λjλj

ff
“

«
γ

αβ

ff
one has tα “ t2, tβ “ tγ “ 1 in the expression of the

canonical fibration. It follows that
tγ

tαtβ
“ tγ

tβtα
“ tβ

tαtγ
“ tβ

tγtα
“ 1

t2
and, by symmetry of

«
γ

αβ

ff
, we must considering four times the number of triples above to obtain the total

number N3 of triples multiplying
1

t2
in this case, hence

N3 “ 4
1

2
npn ´ 1q “ 2npn ´ 1q,
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and considering two times this same number in order to obtain the total number of triples

multiplying
tα

tγtβ
“ tα

tβtγ
“ t2, hence

N4 “ 2
1

2
npn ´ 1q “ npn ´ 1q.

If

«
γ

αβ

ff
“

«
λi ` λj

λiλj

ff
, with α “ λi, β “ λj and γ “ α ` β “ λi ` λj, 1 ď i ă j ď n,

we have that p´Bq|mα
and p´Bq|mβ

are horizontal components and p´Bq|mγ
is a vertical

component of the normal metric g. Fixed i “ 1, one has pn ´ 1q triples of the type«
λ1 ` λj

λ1λj

ff
‰ 0; if we fix i “ 2, one has pn ´ 2q triples of the type

«
λ2 ` λj

λ2λj

ff
‰ 0, and

so on, getting pn´ iq triples of this type, for each 1 ď i ă j ď n. It follows that the number

of such triples, not counting the permutations, is

n´1ÿ

i“1

pn ´ iq “ 1

2
npn ´ 1q.

When

«
λi ` λj

λiλj

ff
“
«

γ

αβ

ff
one has tα “ tβ “ 1, tγ “ t2 in the expression of the canonical

fibration. It follows that
tγ

tαtβ
“ t2 and, by symmetry of

«
γ

αβ

ff
, we must considering two

times the number of triples that was been found above to obtain the total number N4 of

triples multiplying
tγ

tαtβ
“ tγ

tβtα
“ t2 in this case, hence

N5 “ 2
1

2
npn ´ 1q “ npn ´ 1q,

and considering four times this same number in order to obtain the total number of triples

multiplying
tα

tγtβ
“ tα

tβtγ
“ tβ

tγtα
“ tβ

tαtγ
“ 1

t2
in this case, hence N6 “ 4

1

2
npn ´ 1q “

2npn ´ 1q.

Therefore, since

«
α

γβ

ff
“ 1

2n ´ 1
whenever

«
α

γβ

ff
‰ 0, according Lemma

3.1.7, follows that

scalptq “ 1

2

ÿ

αPR`

dα

tα
´ 1

4

ÿ

α,β,γPR`

«
γ

αβ

ff
tγ

tαtβ

“ pn ´ 1qn
t2

` n ´ 1

4

ˆ
N1

p2n ´ 1qt2 ` N2

t2p2n ´ 1q ` N3

t2p2n ´ 1q

˙
´

1

4

ˆ
N4t

2

p2n ´ 1q ` N5t
2

p2n ´ 1q ` N6

t2p2n ´ 1q

˙

“ 5n3 ´ 2n2t4 ` 8n2t2 ´ 7n2 ` 2nt4 ´ 4nt2 ` 2n

4p2n ´ 1qt2 .

✷
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The next case is the scalar curvature scalptq of the canonical variation of the

maximal flag manifold associated with the complex simple Lie algebra sppnqC, provided
with the normal metric.

Lemma 3.1.9 ([25]). For Sppnq{T n, considering the decomposition (2.13) of the isotropy

representation m of T n, one has
«

λi ´ λk

λi ´ λjλj ´ λk

ff
“
«

λi ` λj

λi ´ λkλk ` λj

ff
“ 1

2pn ` 1q ,
«

λi ` λj

λi ´ λj2λj

ff
“ 1

n ` 1
, (3.9)

and

«
γ

αβ

ff
“ 0 otherwise, where α, β and γ are positive roots of the root system

R “ t˘λi ˘ λj,˘2λk; 1 ď i ă j ď n, 1 ď k ď nu,

of the Cartan Lie subalgebra kC relative to sppnqC, λi given by λipdiagpa1, . . . , an`1qq “ ai,

for each 1 ď i ď n and

k “
 ?

´1 ¨ diagpa1, . . . , an,´a1, . . . ,´anq; ai P R
(
.

Proposition 3.1.10. [pSppnq{Tn,ktq,n ě 3] Considering the hypothesis of the previous

Lemma, let pSppnq{T n,ktq be the canonical variation of pSppnq{T n, gq, where g is the

normal metric on Sppnq{T n. Then, the function scalptq, that for each t ą 0 gives the scalar

curvature of kt, is given by

scalptq “ ´2n3t4 ` 24n3t2 ` 5n3 ` 48n2t2 ` 9n2 ` 2nt4 ` 24nt2 ´ 14n

24pn ` 1qt2 . (3.10)

Proof: The 1-parameter family kt was obtained multiplying by t2, t ą 0, all

the p´Bq|mα
, α P R1 X R` in the expression of the normal metric g, which on the isotropy

representation m of T n, is represented by the inner product

geT n “
ÿ

αPR`

p´Bq|mα
.

It is known that there are
npn ´ 1q

2
vertical components in the above expression

of g, i.e,
ˇ̌
tp´Bq|mα

, α P R1 X R`u
ˇ̌

“ npn ´ 1q
2

, and
ˇ̌
tp´Bq|mα

, α P R`zR1u
ˇ̌

“ npn ` 1q
2

horizontal components of the normal metric. Moreover, the dimension of each submodule

mα is equal to 2. It follows that the first summation in (3.1) is

1

2

ÿ

αPR`

dα

tα
“ pn ´ 1qn

2t2
` pn ` 1qn.

The second summation
ÿ

α,β,γPR`

«
γ

αβ

ff
tγ

tαtβ
in (3.1), with tγ, tα, tβ ą 0 coefficients of

p´Bq|mα
, p´Bq|mα

, p´Bq|mα
, respectively, we will determine, as well as in the previous
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examples, the number of factors

«
γ

αβ

ff
multiplying t2 and the number of these constants

multiplying
1

t2
.

Let us now determine the number of triples for each of the cases (a), (b) and

(c) in Remark 3.1.2 above.

CASE (a): Let N1 the total number of triples in (a). For

«
γ

αβ

ff
“
«

λi ´ λj

λi ´ λkλk ´ λj

ff
,

with α “ λi ´ λk, β “ λk ´ λj and γ “ α ` β “ λi ´ λj, i ă k ă j ď n, we have

that p´Bq|mα
, p´Bq|mβ

, p´Bq|mγ
are vertical components. Fixed i “ 1, we will have

pn ´ 1qpn ´ 2q
2

triples

«
λ1 ´ λj

λ1 ´ λkλk ´ λj

ff
‰ 0; if we fix i “ 2, one has

pn ´ 2qpn ´ 3q
2

triples

«
λ2 ´ λj

λ2 ´ λkλk ´ λj

ff
‰ 0, and so on, getting

pn ´ iqpn ´ i ´ 1q
2

triples

«
λi ´ λj

λi ´ λkλk ´ λj

ff
‰ 0 for each 1 ď i ď n ´ 2. It follows

that the number of triples that multiply
tγ

tαtβ
“ 1

t2
in this case, not counting permutations,

is
n´2ÿ

i“1

1

2
pn ´ iqpn ´ i ´ 1q “ 1

6
p2n ´ 3n2 ` n3q.

Since

«
λi ´ λj

λi ´ λkλk ´ λj

ff
“

«
γ

αβ

ff
the coefficients tα, tβ, tγ are equal to t2 and, by

symmetry of

«
γ

αβ

ff
, we must considering six times the number of such triples to obtain

the total number N1 of triples that multiply
1

t2
in this case, hence

N1 “ 6 ¨ 1

6
p2n ´ 3n2 ` n3q “ p2n ´ 3n2 ` n3q.

CASE (b): For

«
γ

αβ

ff
“

«
λi ` λj

λi ´ λkλk ` λj

ff
, with α “ λi ´ λk, β “ λk ` λj and

γ “ α ´ β “ λi ` λj, i ă k ď n, k ‰ j ď n, we have that p´Bq|mα
is vertical component

and p´Bq|mβ
, p´Bq|mγ

are horizontal components of the normal metric g. Fixed i “ 1,

one has pn ´ 2qpn ´ 1q triples of the type

«
λ1 ` λj

λ1 ´ λkλk ` λj

ff
‰ 0; if we fix i “ 2, one

has pn ´ 2qpn ´ 3q symbols of the type

«
λ2 ` λj

λ2 ´ λkλk ` λj

ff
‰ 0, and so on, getting

pn ´ iqpn ´ i ´ 1q triples of the type

«
λi ` λj

λi ´ λkλk ` λj

ff
‰ 0 for each 1 ď i ď n ´ 1. It
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follows that the number of such triples, not counting the permutations, is

n´2ÿ

i“1

pn ´ iqpn ´ i ´ 1q “ 1

3
p2n ´ 3n2 ` n3q.

When

«
λi ` λj

λi ´ λkλk ` λj

ff
“

«
γ

αβ

ff
one has tα “ t2, tβ “ tγ “ 1 in the expression of

the canonical fibration. It follows that
tα

tγtβ
“ t2 and, by symmetry of

«
γ

αβ

ff
, we must

considering two times the number of triples above to obtain the total number N2 of triples

multiplying
tα

tγtβ
“ tα

tβtγ
“ t2 in this case, hence

N2 “ 2
1

3
p2n ´ 3n2 ` n3q “ 2

3
N1,

and in addition, four times the value above to obtain the total number N3 of triples

multiplying
tγ

tαtβ
“ tγ

tβtα
“ tβ

tγtα
“ tβ

tαtγ
“ 1

t2
in this case, hence

N3 “ 4
1

3
p2n ´ 3n2 ` n3q “ 4

3
N1.

CASE (c) For

«
γ

αβ

ff
“
«

λi

λi ´ λj2λj

ff
, with α “ λi´λj, β “ λj and γ “ α`β “ 2λi, i ă

j ď n, we have that p´Bq|mα
corresponds to a vertical component and p´Bq|mβ

, p´Bq|mγ

are horizontal components of the normal metric g. Fixed i “ 1, one has pn ´ 1q triples

of the type

«
λ1

λ1 ´ λj2λj

ff
‰ 0; if we fix i “ 2, one has pn ´ 2q triples of the type

«
λ2

λ2 ´ λj2λj

ff
‰ 0, and so on, getting pn ´ iq triples of the type

«
λi

λi ´ λj2λj

ff
‰ 0 for

each 1 ď i ď n. It follows that the number of such triples, not counting the permutations,

is
n´1ÿ

i“1

pn ´ iq “ 1

2
npn ´ 1q.

When

«
λi

λi ´ λj2λj

ff
“

«
γ

αβ

ff
one has tα “ t2, tβ “ tγ “ 1 in the expression of the

canonical fibration. It follows that
tγ

tαtβ
“ 1

t2
and, by symmetry of

«
γ

αβ

ff
, we must

considering two times the number of triples above to obtain the total number N4 of triples

multiplying
tα

tγtβ
“ tα

tβtγ
“ t2 in this case, hence

N4 “ 2
1

2
npn ´ 1q “ npn ´ 1q,

and considering four times the same number in order to obtain the total number N5 of

triples multiplying
tγ

tαtβ
“ tγ

tβtα
“ tβ

tγtα
“ tβ

tαtγ
“ 1

t2
, hence

N5 “ 4
1

2
npn ´ 1q “ 2npn ´ 1q.
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Thus, once

«
α

γβ

ff
“ 1

2pn ` 1q or
1

n ` 1
whenever

«
α

γβ

ff
‰ 0, according

Lemma 3.1.9, follows that

scalptq “ 1

2

ÿ

αPR`

dα

tα
´ 1

4

ÿ

α,β,γPR`

«
γ

αβ

ff
tγ

tαtβ

“ pn ´ 1qn
2t2

` pn ` 1qn ´ 1

4

ˆ
N1

2pn ` 1qt2 ` N2t
2

2pn ` 1q ` N3

2pn ` 1qt2
˙

´

1

4

ˆ
N4t

2

pn ` 1q ` N5

pn ` 1qt2
˙

“ ´2n3t4 ` 24n3t2 ` 5n3 ` 48n2t2 ` 9n2 ` 2nt4 ` 24nt2 ´ 14n

24pn ` 1qt2 .

✷

The last expression for scalptq of the canonical variations for the maximal flag

manifolds associated with a complex classical simple Lie algebra is the one associated with

sop2nqC provided with its normal metric.

Lemma 3.1.11 ([25]). For SOp2nq{T n, considering the decomposition (2.15) of the

isotropy representation m of T n, one has
«

λi ´ λk

λi ´ λjλj ´ λk

ff
“
«

λi ` λj

λi ´ λkλk ` λj

ff
“ 1

2pn ´ 1q , pk ‰ i, jq (3.11)

and

«
γ

αβ

ff
“ 0 otherwise, where α, β and γ are positive roots of the root system

R “ t˘λi ˘ λj; 1 ď i ă j ď n, u,

of the Cartan Lie subalgebra kC relative to sop2nqC, λi given by λipdiagpa1, . . . , an`1qq “ ai,

for each 1 ď i ď n and

k “
 ?

´1 ¨ diagpa1, . . . , an,´a1, . . . ,´anq; ai P R
(
.

Proposition 3.1.12. [pSOp2nq{Tn,mtq,n ě 4] Considering the hypothesis of the previ-

ous Lemma, let pSOp2nq{T n,mtq be the canonical variation of pSOp2nq{T n, gq, where g is

the normal metric on SOp2nq{T n. Then, the function scalptq, that for each t ą 0 gives the

scalar curvature of mt, is given by

scalptq “ ´2n2t4 ` 24n2t2 ` 5n2 ` 4nt4 ´ 24nt2 ` 2n

24t2
. (3.12)

Proof: The 1-parameter family mt was obtained multiplying by t2, t ą 0, all

the p´Bq|mα
, α P R1 X R` in the expression of the normal metric g, which on the isotropy

representation m of T n, is represented by the inner product

geT n “
ÿ

αPR`

p´Bq|mα
.
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It is known that there are
npn ´ 1q

2
vertical components in the above expression

of g, i.e,
ˇ̌
tp´Bq|mα

, α P R1 X R`u
ˇ̌

“ npn ´ 1q
2

, and
ˇ̌
tp´Bq|mα

, α P R`zR1u
ˇ̌

“ npn ´ 1q
2

horizontal components of the normal metric g. Moreover, the dimension of each submodule

mα is equal to 2. It follows that the first summation in (3.1) is

1

2

ÿ

αPR`

dα

tα
“ pn ´ 1qn

2t2
` pn ´ 1qn.

The second summation
ÿ

α,β,γPR`

«
γ

αβ

ff
tγ

tαtβ
in (3.1), with tγ, tα, tβ ą 0 coefficients of

p´Bq|mα
, p´Bq|mα

, p´Bq|mα
, respectively, we will determine, as well as in the previous

examples, the number of factors

«
γ

αβ

ff
multiplying t2 and the number of these constants

multiplying
1

t2
.

CASE (a): For

«
γ

αβ

ff
“

«
λi ´ λj

λi ´ λkλk ´ λj

ff
, with α “ λi ´ λk, β “ λk ´ λj and

γ “ α` β “ λi ´ λj, i ă k ă j ď n, we have that p´Bq|mα
, p´Bq|mβ

, p´Bq|mγ
are vertical

components. Fixed i “ 1, we will have
pn ´ 1qpn ´ 2q

2
triples

«
λ1 ´ λj

λ1 ´ λkλk ´ λj

ff
‰ 0; if

we fix i “ 2, one has
pn ´ 2qpn ´ 3q

2
triples

«
λ2 ´ λj

λ2 ´ λkλk ´ λj

ff
‰ 0, and so on, getting

pn ´ iqpn ´ i ´ 1q
2

triples

«
λi ´ λj

λi ´ λkλk ´ λj

ff
‰ 0 for each 1 ď i ď n ´ 2. It follows that

the number of that multiply
1

t2
in this case, not counting the permutations, is

n´2ÿ

i“1

1

2
pn ´ iqpn ´ i ´ 1q “ 1

6
p2n ´ 3n2 ` n3q.

Since

«
λi ´ λj

λi ´ λkλk ´ λj

ff
“

«
γ

αβ

ff
the coefficients tα, tβ, tγ are equal to t2 and, by

symmetry of

«
γ

αβ

ff
, we must considering six times the number of such triples to obtain

the total number N1 of triples that multiply
1

t2
in this case, hence

N1 “ 6 ¨ 1

6
p2n ´ 3n2 ` n3q “ p2n ´ 3n2 ` n3q.

CASE (b): For

«
γ

αβ

ff
“

«
λi ` λj

λi ´ λkλk ` λj

ff
, with α “ λi ´ λk, β “ λk ` λj and

γ “ α ´ β “ λi ` λj, i ă k ď n, k ‰ j ď n, we have that p´Bq|mα
is vertical component

and p´Bq|mβ
, p´Bq|mγ

are horizontal components of the normal metric g. Fixed i “ 1,
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one has pn ´ 2qpn ´ 1q triples of the type

«
λ1 ` λj

λ1 ´ λkλk ` λj

ff
‰ 0; if we fix i “ 2, one

has pn ´ 2qpn ´ 3q symbols of the type

«
λ2 ` λj

λ2 ´ λkλk ` λj

ff
‰ 0, and so on, getting

pn ´ iqpn ´ i ´ 1q triples of the type

«
λi ` λj

λi ´ λkλk ` λj

ff
‰ 0 for each 1 ď i ď n ´ 1. It

follows that the number of such triples, not counting the permutations, is

n´2ÿ

i“1

pn ´ iqpn ´ i ´ 1q “ 1

3
p2n ´ 3n2 ` n3q.

When

«
λi ` λj

λi ´ λkλk ` λj

ff
“
«

γ

αβ

ff
one has tα “ t2, tβ “ tγ “ 1 in the expression of the

canonical fibration. It follows that
tα

tγtβ
“ tα

tβtγ
“ t2 and, by symmetry of

«
γ

αβ

ff
, we

must considering two times the number of triples above to obtain the total number N2 of

triples multiplying t2 in this case, hence

N2 “ 2
1

3
p2n ´ 3n2 ` n3q “ 2

3
N1,

in addition considering four times the value above to obtain the total number N3 of triples

multiplying
tγ

tαtβ
“ tγ

tβtα
“ tβ

tαtγ
“ tβ

tγtα
“ 1

t2
in this case, hence

N3 “ 4
1

3
p2n ´ 3n2 ` n3q “ 4

3
N1.

From (3.11),

«
α

γβ

ff
“ 1

2pn ´ 1q whenever

«
α

γβ

ff
‰ 0, and it follows that

scalptq “ 1

2

ÿ

αPR`

dα

tα
´ 1

4

ÿ

α,β,γPR`

«
γ

αβ

ff
tγ

tαtβ

“ pn ´ 1qn
2t2

` pn ` 1qn ´ 1

4

ˆ
N1

2pn ´ 1qt2 ` N2t
2

2pn ´ 1q ` N3

2t2pn ´ 1q

˙

“ ´2n2t4 ` 24n2t2 ` 5n2 ` 4nt4 ´ 24nt2 ` 2n

24t2
.

✷

Consider now the formula for scalptq of the canonical variation described in

Example 2.2.14, section 2.2.1, of the normal metric on the maximal flag manifold associated

with the exceptional simple Lie algebra of the type G2. Before, we will enunciate the

following useful lemma.
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Lemma 3.1.13 ([5]). According Example 2.2.14, Section 2.2, for the isotropy represen-

tation m “ mα1
‘ mα2

‘ mα1`α2
‘ mα1`2α2

‘ mα1`3α2
‘ m2α1`3α2

of T 2, put m1 “ mα1
,

m2 “ mα2
, m3 “ mα1`α2

, m4 “ mα1`2α2
, m5 “ mα1`3α2

and m6 “ m2α1`3α2
. Using the

current notation, the non zero triples

«
k

ij

ff
of the maximal flag G2{T 2 are

«
3

12

ff
“
«

5

24

ff
“
«

6

34

ff
“
«

6

15

ff
“ 1

4
, and

«
k

ij

ff
“ 1

3
.

Proposition 3.1.14. [pG2{T,ntq] Let pG2{T 2,ntq be the canonical variation of pG2{T 2, gq,
where g is the normal metric on G2{T . Then, the function scalptq, that for each t ą 0

gives the scalar curvature of nt, is given by

scalptq “ 2 ` 12t2 ´ 2t4

3t2
. (3.13)

Proof: We had see that the inner product

pntqeT 2 “ p´Bq|mα1
`p´Bq|mα2

`t2p´Bq|mα1`α2
`p´Bq|mα1`2α2

`t2p´Bq|mα1`3α2
`p´Bq|m2α1`3α2

,

on the isotropy representation

m “ mα1
‘ mα2

‘ mα1`α2
‘ mα1`2α2

‘ mα1`3α2
‘ m2α1`3α2

of T , is the canonical variation gt of the normal metric g on G2{T 2, where we took, with

respect g2 “ k ‘ m, the root system of the Cartan Lie subalgebra k as being

t˘α1,˘α2,˘pα1 ` α2q,˘pα1 ` 2α2q,˘pα1 ` 3α2q,˘p2α1 ` 3α2qu,

and we fix a system of simple roots to be Σ “ tα1, α2u. With respect to Σ the positive

roots are given by

tα1, α2, pα1 ` α2q, pα1 ` 2α2q, pα1 ` 3α2q, p2α1 ` 3α2qu.

By Lemma 3.1.13 and applying the formula (3.1) in this case, since di “
dimmi “ 2, follows that

scalptq “
6ÿ

l“1

dl

tl
´ 1

4

ÿ

i,j,k

«
k

ij

ff
tk

titj

“ 1

2

ˆ
8 ` 4

t2

˙
´ 1

4

ˆ
2t2 ` 4

t2

˙
´ 1

4
¨ 1

3

ˆ
2t2 ` 4

t2

˙

“ 2 ` 12t2 ´ 2t4

3t2
.

✷
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3.2 Bifurcation and Local Rigidity Instants

It is known from Proposition 1.1.9, Section 1.1, that the Morse index changes

when passing a degeneracy instant and thus this is a bifurcation instant. We will determine

these changes in the Morse index in order to find bifurcation instants for the canonical

variations gt, 0 ă t ă 1.

It was defined previously that a degeneracy instant t˚ ą 0 for gt in RkpMq,
with g1 “ g, is an instant such that

scalpgt˚q
m ´ 1

P σp∆t˚q.

Denoting by

t0 ă λ
g
1 ď λ

g
2 ď . . . ď λ

g
j ď . . .u

the sequence of positive eigenvalues of ∆g, the Morse index of a Riemannian metric g is

Npgq “ max

"
j P N;λ

g
j ă scalpgq

m ´ 1

*
,

where is the Laplacian ∆g acting on C8pMq, M provide with the Riemannian metric g

and m “ dimM.

The following result is a sufficient condition for a degeneracy instant 0 ă t˚ ă 1

to be a bifurcation instant when
scalpt˚q
m ´ 1

is a constant eigenvalue of the Laplacian ∆t˚ .

We will apply this in order to obtain the main theorems of this current work, namely the

determination of all bifurcation and local rigidity instants in the interval p0, 1q, for each
canonical variation constructed on the maximal flag manifolds in the previous Chapter.

Proposition 3.2.1 ([10]). Let pM, gq be a closed Riemannian manifold with dimM ě 3

and π : pM, gq ÝÑ pB, hq a Riemannian submersion with totally geodesic fibers isometric

to pF, κq, where dimF ě 2 and scalpF q ą 0. Denote by λ P σp∆hq Ă σp∆gq a constant

eigenvalue of ∆t˚ such that
scalpgt˚q
m ´ 1

“ λ, gt˚ canonical variation of g at 0 ă t˚ ă 1 and

∆t˚ the Laplacian on pM, gt˚q. If

scalpgt˚q
m ´ 1

ă λ1,1pt˚q “ µ1 ` p 1

t2˚
´ 1qφ1,

µ1 P σp∆gq the first positive eigenvalue of ∆g and φ1 P σp∆vq the first positive eigenvalue

of the vertical Laplacian ∆v, then t˚ is a bifurcation instant for gt.

Proof: It is sufficient to show that the Morse index changes when passing the degeneracy

value 0 ă t˚ ă 1, i.e, for ǫ ą 0 sufficiently small, Npgt˚´ǫq ‰ Npgt˚`ǫq and, by Proposition

1.1.9, Section 1.1, t˚ is a bifurcation instant.

Observe that, if the Morse index does not change, there must be a compensation of

eigenvalues. Namely, there must exist nonconstant eigenvalues λk1,j1ptq, . . . , λkn,jnptq of ∆t,
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whose combined multiplicity equals the multiplicity of λ, such that,

λ ă scalpgtq
m ´ 1

ă λki,jiptq, @t ă t˚ (close to t˚) and 1 ď i ď n,

λ ą scalpgtq
m ´ 1

ą λki,jiptq, @t ą t˚ (close to t˚) and 1 ď i ď n.

If
scalpgt˚q
m ´ 1

ă µ1 ` p 1

t2˚
´ 1qφ1, µ1 P σp∆gq first positive eigenvalue of ∆g and φ1 P σp∆vq

first positive eigenvalue of the vertical Laplacian ∆v, then

λ “ scalpgt˚q
m ´ 1

ă µ1 ` p 1

t2˚
´ 1qφ1 ă λk,jpt˚q, @Z Q k, j ą 0,

since λk,jpt˚q “ µk ` p 1

t2˚
´ 1qφj , µ1 ă µk P σp∆gq, φ1 ă φk P σp∆vq and p 1

t2˚
´ 1q ą 0 when

0 ă t˚ ă 1. It follows that every nonconstant eigenvalue λk,jptq is strictly greater than

λ “ scalpgt˚q
m ´ 1

for t sufficiently close to t˚, so that there is no compensation of eigenvalue

and the Morse index must change when passing t˚. Since
scalpgt˚q
m ´ 1

“ λ P σp∆t˚q, t˚ is a

degeneracy instant for gt, and by Proposition 1.1.9, Section 1.1, t˚ is bifurcation instant

for gt.

✷

Later on, g is the normal homogeneous metric on the maximal flag manifold

G{T , represented by p´Bq|m, B Cartan Killing form of the Lie group G, m “ p ‘ q the

isotropy representation of the maximal torus T Ă G, H{T represents the fibers provided

with the induced homogeneous metric ĝ represented by the inner product p´Bq|p and the

basis space G{H is provided with the symmetric metric ğ induced by p´Bq|q, p and q

vertical and horizontal distributions, respectively.

For each canonical variation introduced in Section 2.2.2 defined on the maximal

flag manifolds associated with a complex classical simple Lie algebra, we obtain the

following properties

Lemma 3.2.2. Consider the canonical variations pSUpn`1q{T n,gtq, pSOp2n`1q{T n,htq,
pSppnq{T n,ktq, pSOp2nq{T n,mtq and pG2{T,ntq constructed in 2.2.2 and in 2.2.14, re-

spectively, from the homogeneous fibrations π : G{T ÝÑ G{H described below,

(a) π : pSUpn ` 1q{T n, gq ÝÑ pSUpn ` 1q{SpUp1q ˆ Upnqq, ğq, n ě 2,

pH{T “ SUpnq{T n´1, ĝq;

(b) π : pSOp2n ` 1q{T n, gq ÝÑ pSOp2n ` 1q{SOp2nq, ğq, n ě 2, n ‰ 3, pH{T “
SOp2nq{T n, ĝq;
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(c) π : pSppnq{T n, gq ÝÑ pSppnq{Upnq, ğq, n ě 5, pH{T “ SUpnq{T n´1, ĝq;

(d) π : pSOp2nq{T n, gq ÝÑ pSOpnq{Upnq, ğq, n ě 4, pH{T “ SUpnq{T n´1, ĝq;

(e) π : pG2{T, gq ÝÑ pG2{SOp4q, ğq, pH{T “ SOp4q{T – S2 ˆ S2, ĝq.

Therefore, for each of the canonical variations gt,ht,kt,mt and nt of the homogeneous

fibrations (a)-(e), with their respective fibers pH{T, ĝq,

scalptq
m ´ 1

ă λ1,1ptq “ µ1 `
ˆ

1

t2
´ 1

˙
φ1, @ 0 ă t ď 1,

with m “ dimG{T , scalptq the respective scalar curvatures of gt,ht,kt,mt and nt, µ1 the

first positive eigenvalue of the Laplacian ∆g and φ1 the first positive eigenvalue of the

Laplacian ∆ĝ.

Proof: For each of the canonical variations gt,ht,kt,mt and nt of the homogeneous

fibrations (a)-(e) we have:

(a) m “ dimSUpn ` 1q{T n “ npn ` 1q,

scalptq “ ´2n ` n2pn ` 1q ` 4npn ` 1qt2 ` np1 ´ nqt4
4pn ` 1qt2 ,

µ1 “ 1, φ1 “ 1 and λ1ptq “ µ1 `
ˆ

1

t2
´ 1

˙
φ1 “ 1

t2
;

(b) m “ dimSOp2n ` 1q{T n “ 2n2,

scalptq “ 5n3 ´ 2n2t4 ` 8n2t2 ´ 7n2 ` 2nt4 ´ 4nt2 ` 2n

4p2n ´ 1qt2 ,

µ1 “ n

2n ´ 1
, φ1 “ 1 and λ1ptq “ µ1 `

ˆ
1

t2
´ 1

˙
φ1 “ n

2n ´ 1
`
ˆ

1

t2
´ 1

˙
;

(c) m “ dimSppnq{T n “ 2n2,

scalptq “ ´2n3t4 ` 24n3t2 ` 5n3 ` 48n2t2 ` 9n2 ` 2nt4 ` 24nt2 ´ 14n

24pn ` 1qt2 ,

µ1 “ 4n ´ 1

4pn ` 1q , φ1 “ 1 and λ1ptq “ µ1 `
ˆ

1

t2
´ 1

˙
φ1 “ 4n ´ 1

4pn ` 1q `
ˆ

1

t2
´ 1

˙
;

(d) m “ dimSOp2nq{T n “ 2npn ´ 1q,

scalptq “ ´2n2t4 ` 24n2t2 ` 5n2 ` 4nt4 ´ 24nt2 ` 2n

24t2
,

µ1 “ 1, φ1 “ 1 and λ1ptq “ µ1 `
ˆ

1

t2
´ 1

˙
φ1 “ 1

t2
.
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(e) m “ dimG2{T “ 12,

scalptq “ 2 ` 12t2 ´ 2t4

3t2
,

µ1 “ 1

2
, φ1 “ 1 and λ1ptq “ µ1 `

ˆ
1

t2
´ 1

˙
φ1 “ 1

2
`
ˆ

1

t2
´ 1

˙
.

In order to prove the inequality

scalptq
m ´ 1

ă λ1,1ptq “ µ1 `
ˆ

1

t2
´ 1

˙
φ1, @ 0 ă t ď 1,

for each of the above (a)-(e) cases we define a function f given by

fptq “ scalptq
m ´ 1

´ λ1,1ptq “ scalptq
m ´ 1

´ µ1 ´
ˆ

1

t2
´ 1

˙
φ1, @ 0 ă t ď 1,

and we verify that f is strictly negative for 0 ă t ď 1. Indeed, in the case of the canonical

variation gt on SUpn ` 1q{T n we obtain

fptq “ n3 ´ n2t4 ` 4n2t2 ` n2 ` nt4 ` 4nt2 ´ 2n

4pn ` 1qpnpn ` 1q ´ 1qt2 ´ 1

t2
,

where fp1q “ n3 ` 4n2 ` 3n

4pn ` 1qpnpn ` 1q ´ 1q ´ 1 ă 0, for all n ě 2 and

df

dt
ptq “ ´4n2t3 ` 8n2t ` 4nt3 ` 8nt

4pn ` 1qpnpn ` 1q ´ 1qt2 ´ n3 ´ n2t4 ` 4n2t2 ` n2 ` nt4 ` 4nt2 ´ 2n

2pn ` 1qpnpn ` 1q ´ 1qt3 ` 2

t3
ą 0

for 0 ă t ď 1. In the other cases, the proof is analogous.

✷

Lemma 3.2.3. Every degeneracy instant t˚ for gt,ht,kt,mt and nt introduced in the

previous lemma is such that

scalpt˚q
m ´ 1

P σp∆ğq Ă σp∆t˚q,

with σp∆t˚q spectrum of the Laplacians on the total spaces SUpn ` 1q{T n,

SOp2n` 1q{T n, Sppnq{T n, SOp2nq{T n, G2{T and σp∆ğq the spectrum on the basis spaces

pG{H, ğq, respectively, m “ dimG{T. In other words,
scalpt˚q
m ´ 1

is eigenvalue of ∆t˚ if and

only if
scalpt˚q
m ´ 1

is a constant eigenvalue λk,0ptq P σp∆t˚q, for some 1 ď k P Z.

Proof: It is known that an eigenvalue of ∆t can be written as

λk,jptq “ µk `
ˆ

1

t2
´ 1

˙
φj,
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for some µk P σp∆gq and φj P σp∆ĝq. From Lemma 3.2.2,

scalptq
m ´ 1

ă λ1,1ptq ă λk,jptq, @k, j ą 0,

and
scalptq
m ´ 1

can not be equal to an eigenvalue of the type λk,jptq, @k, j ą 0.

Furthermore, it can be shown, by applying elementary differential calculus,

that there is no 0 ă t ă 1 such that
scalptq
m ´ 1

“ λ0,jptq, for all integer j ě 1. We will present

the proof of this property for the canonical variation gt. The proof of the another cases

are entirely analogous.

From the description of the spectra of maximal flag manifolds and symmetric

spaces in Section 2.2.3, the first positive eigenvalue of the Laplacian ∆t acting on functions

on the total space pSUpn ` 1q{T n,gtq is λ1ptq “ 1, for all 0 ă t ď 1. Since

scalptq “ ´2n ` n2pn ` 1q ` 4npn ` 1qt2 ` np1 ´ nqt4
4pn ` 1qt2 , n ě 2,

for all t ą 0, and m “ dimSUpn ` 1q{T n “ npn ` 1q, we have

scalpgtq
m ´ 1

“ n3 ´ n2t4 ` 4n2t2 ` n2 ` nt4 ` 4nt2 ´ 2n

4pn ` 1qpnpn ` 1q ´ 1qt2
ă λ1ptq “ 1

ô

dc
4n4 ` 17n3 ` 26n2 ` 16n ` 4

n2
´ 2 pn2 ` 2n ` 1q

n
ă t ď 1,

Thus, we have that gt is locally rigidity at all instant

t˚ P s

dc
4n4 ` 17n3 ` 26n2 ` 16n ` 4

n2
´ 2 pn2 ` 2n ` 1q

n
, 1s,

accordingly Corolário 1.1.7, Section 1.1. Hence, there are no degeneracy instants for gt in

the interval pb, 1s, with

b “

dc
4n4 ` 17n3 ` 26n2 ` 16n ` 4

n2
´ 2 pn2 ` 2n ` 1q

n
.

The fiber of the canonical fibration pSUpn ` 1q{T n,gtq is the maximal flag

manifold pSUpnq{T n´1, ĝq, with the induced metric ĝ, represented by the inner product

p´Bq|p. With this homogeneous metric, according Theorem 2.2.20, Section 2.2.3, the first

positive eigenvalue φ1 of the Laplacian ∆ĝ is equal to 1, i.e., if φ P σp∆ĝq, then φ ě 1.

Define ϕr : p0, 1q ÝÑ R by

ϕrptq “ scalpgtq
m ´ 1

´
ˆ

1

t2
´ 1

˙
¨ r,
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for some fixed r ě 1. We have that

d

dt
pϕrptqq “ n3p4r ´ 1q ` n2 p8r ´ t4 ´ 1q ` n pt4 ` 2q ´ 4r

2pn ` 1q pn2 ` n ´ 1q t3 ą 0,

and

ϕrpbq “ nppCn ´ 5qr ` Cn ´ 4q ´ 2n2pr ` 1q ´ 2pr ` 1q
pCn ´ 4qn ´ 2n2 ´ 2

ă 0,

@ 0 ă t ă 1, r ě 1, n ě 2, where Cn “
c

4n2 ` 4

n2
` 17n ` 16

n
` 26. It follows that ϕrptq

is negative for all 0 ă t ă b and

scalpgtq
m ´ 1

ă
ˆ

1

t2
´ 1

˙
¨ r,

for any r ě 1, that is, there is no 0 ă t ă 1 such that
scalptq
m ´ 1

“ λ0,jptq “
ˆ

1

t2
´ 1

˙
¨ φj,

for all φj P σp∆ĝq and we complete the proof for the case of the canonical variation gt.

As well as for the case of gt, define for ht,kt,mt and nt the function ϕrptq as

above with r ě 1, since the first positive eigenvalues of the Laplacians on their respective

fibers are also equal to 1. The statement follows by checking that
d

dt
pϕrptqq ą 0, @ 0 ă t ă 1

and ϕrpbq ă 0, where 0 ă b ă 1 is such that

scalpgtq
m ´ 1

ă λ1ptq, @ b ă t ă 1,

with λ1ptq first positive eigenvalues of the Laplacians, given in Proposition 2.2.22. We

found the following values for b, in addition to the expressions for ϕrptq for the other cases:

pSOp2n ` 1q{T n,htq)

b “
d?

8n2 ` 5n ´ 2?
2

´ 2n,

ϕrptq “ p2n ´ 2n2q t2
4p2n ´ 1q p2n2 ´ 1q ` ´16n3r ` 5n3 ` 8n2r ´ 7n2 ` 8nr ` 2n ´ 4r

4p2n ´ 1q p2n2 ´ 1q t2

`16n3r ´ 8n2r ` 8n2 ´ 8nr ´ 4n ` 4r

4p2n ´ 1q p2n2 ´ 1q .
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pSppnq{T n,ktq)

b “

gffe
d

2n p77n5 ´ 351n4 ` 143n3 ` 747n2 ` 212n ` 72q ` 9

4n2pn2 ´ 1q2
´ 3 p4n3 ´ 10n2 ´ 8n ` 1q

2npn2 ´ 1q ,

ϕrptq “ ´48n3r ` 5n3 ´ 48n2r ` 9n2 ` 24nr ´ 14n ` 24r

24pn ` 1q p2n2 ´ 1q t2

`48n3r ` 24n3 ` 48n2r ` 48n2 ´ 24nr ` 24n ´ 24r

24pn ` 1q p2n2 ´ 1q

` p2n ´ 2n3q t2
24pn ` 1q p2n2 ´ 1q .

pSOp2nq{T n,mtq

b “
d?

77n4 ´ 152n3 ´ 76n2 ` 144n ` 72?
2pn ´ 2qn ´ 6 pn2 ´ n ´ 1q

pn ´ 2qn ,

ϕrptq “ ´48n2r ` 5n2 ` 48nr ` 2n ` 24r

24 p2n2 ´ 2n ´ 1q t2 ` 48n2r ` 24n2 ´ 48nr ´ 24n ´ 24r

24 p2n2 ´ 2n ´ 1q

` p4n ´ 2n2q t2
24 p2n2 ´ 2n ´ 1q .

pG2{T,ntq

b “ 1

2

c
1

2

´?
145 ´ 9

¯
, ϕrptq “ 33rt2 ´ 33r ´ 2t4 ` 12t2 ` 2

33t2
.

✷

Observe that the proof of the last Lemma does not guarantees that the set

of all instants 0 ă t ă 1 such that
scalpgtq
m ´ 1

ă λ1ptq is equal to the interval sb, 1s, for the
canonical variations kt and nt. In fact, we don’t have expressions of λ1ptq in such cases,

therefore we can not determine the interval of rigidity instants, only subintervals of them.

We used the lower bounds of λ1ptq in order to determine a subset sb, 1s of local rigidity
instants for the canonical variations kt and nt.

For the canonical variations gt, ht and mt on SUpn ` 1q{T n,

SOp2n ` 1q{T n and SOp2nq{T n we determined all t P p0, 1s such that
scalpgtq
m ´ 1

ă λ1ptq,
since λ1ptq is constant on p0, 1s in these cases.

The degeneracy instants for the canonical variation gt, 0 ă t ă 1, on

SUpn ` 1q{T n are given in our following theorem.
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Theorem 3.2.4. Let gt be the above canonical variation on SUpn ` 1q{T n and take

b “

dc
4n4 ` 17n3 ` 26n2 ` 16n ` 4

n2
´ 2 pn2 ` 2n ` 1q

n
. Thus, the degeneracy instants

for gt in p0, 1q form a decreasing sequence ttgq u Ă p0, bs such that tgq Ñ 0 as q Ñ 0, with

t
g
1 “ b and for q ą 1,

tgq “
ba

ξpqq ´ ηpqq. (3.14)

where

ξpqq “ 1

n2pn ´ 1q2
¨ p4n6q2 ` n5

`
8q3 ` 8q2 ´ 8q ` 1

˘
`

4n4
`
q4 ` 4q3 ´ 3q2 ´ 4q ` 1

˘
` n3

`
8q4 ´ 8q3 ´ 24q2 ` 5

˘
`

n2
`
´4q4 ´ 16q3 ` 4q2 ` 8q ` 6

˘
` 8nq2

`
´q2 ` q ` 1

˘
` 4q4q

and ηpqq “ 2 pn3q ` n2 pq2 ` q ´ 1q ` n pq2 ´ q ´ 1q ´ q2q
pn ´ 1qn .

Proof: We must determine all t P p0, bs such that
scalptq
m ´ 1

P σp∆tq, since by the previous

theorem gt is locally rigidity for b ă t ă 1. From Lemma 3.2.3, if
scalptq
m ´ 1

is a eigenvalue of

∆t, then
scalptq
m ´ 1

P ∆ğ.

Thus, it remains verify for which instants 0 ă t ă b ă 1 one has
scalptq
m ´ 1

“ λk,0ptq.

From Corollary 2.2.10, Section 2.2, λk,0ptq is eigenvalue of ∆t if and only if λk,0ptq
belongs to the spectrum of the Laplacian on the basis CPn “ SUpn ` 1q{SpUp1q ˆ Upnqq,
provide with the symmetric metric ğ represented by the inner product p¨, ¨q “ ´B|q, q
horizontal space of the original fibration. According the spectrum of the complex projective

space given in 2.19, the spectrum of the Laplacian ∆ğ on pCPn, ğq is

σp∆ğq “ tβq “ qpq ` nq
n ` 1

; q P Nu.

The degeneracy instants for gt in p0, bs are the real values tgq , solutions of the

equation
scalptq
m ´ 1

“ βq “ qpq ` nq
n ` 1

.

The explicit formula for tgq , which represents the solution of the above equation in t, is

presented in (3.14). Note that the constant eigenvalues βq “ qpq ` nq
n ` 1

tend to `8 as

q Ñ 8 and, since
scalptq
m ´ 1

is continuous and tends to `8 as t Ñ 0, tgq Ñ 0.

✷
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Figure 1 – For n=2, we have the maximal flag manifold SUp3q{T 2. The graph of the

function
scalptq
m ´ 1

is given in red and of the eigenvalues λk,jptq of the Laplacian

∆t are given in blue; the constants eigenvalues have their graphics in black
and correspond to pk, 0q, 1 ď k ď 6, and non-constants ones to pk, jq where
1 ď j ď k ď 6. The dashed vertical lines mark the first five degeneracy instants
(which are all bifurcation instants) starting at b “ t

g
1 .

We also compute the Morse index of each gt as a critical point of the Hilbert-

Einstein functional (1.1).

Proposition 3.2.5. The Morse index of gt is given by

Nptq “
#

Σr
q“1mqpCPnq, if t

g
r`1 ď t ă tgr

0, if t
g
1 ď t ď 1

, (3.15)

where mqpCPnq is the multiplicity of the qth eigenvalue of the basis

CP
n “ SUpn ` 1q{SpUp1q ˆ Upnqq, see (2.18).

Proof: We established in Lemma 3.2.3 that
scalptq
m ´ 1

ď λ1ptq for all t P rb, 1s, with b “ t
g
1 ,

so that there are no eigenvalues of ∆t that are less than
scalptq
m ´ 1

. Hence, Nptq “ 0 for

t P rb, 1s. When t Ñ 0, whenever t crosses a degeneracy instant tgq , the constant eigenvalue

λq,0ptq becomes smaller than
scalptq
m ´ 1

.

It follows that the Morse index increases by the multiplicity of λq,0ptq, which is

the dimension of the corresponding eigenspace E0
q . This dimension is given in (2.18) and

is positive. Thus, dimE0
q also coincides with the multiplicity of the complex projective

space CP
n, concluding the proof.

✷
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The degeneracy instants for the canonical variation ht, 0 ă t ď 1, on

SOp2n ` 1q{T n are given in our following theorem.

Theorem 3.2.6. Let ht be the above canonical variation on SOp2n ` 1q{T n and take

b “
d?

8n2 ` 5n ´ 2?
2

´ 2n. Thus, the degeneracy instants for ht in p0, bs form a decreasing

sequence tthq u Ă p0, bs such that thq Ñ 0 as q Ñ 0, with th1 “ b and for q ą 1,

thq “
ba

fpqq ` gpqq. (3.16)

where

fpqq “ 1

pn ´ 1q2n2
p10n5 ´ 8n4 ` 2n3 `

`
4n4 ´ 4n2 ` 1

˘
q4 `

`
16n5 ´ 8n4 ´ 16n3 ` 8n2 ` 4n ´ 2

˘
q3 `

`
´32n5 ` 32n4 ` 8n3 ´ 16n2 ` 4n

˘
q `

`
16n6 ´ 16n5 ´ 28n4 ` 24n3 ` 8n2 ´ 8n ` 1

˘
q2q

and gpqq “ ´4n3q ´ 2n2q2 ` 2n2q ` 4n2 ` 2nq ´ 2n ` q2 ´ q

2pn ´ 1qn .

Proof: We must determine all t P p0, bs such that
scalptq
m ´ 1

P σp∆tq, since by the previous

theorem ht is locally rigidity for b ă t ă 1. From Lemma 3.2.3, if
scalptq
m ´ 1

is a eigenvalue of

∆t, then
scalptq
m ´ 1

P ∆ğ.

Thus, it remains verify for which instants 0 ă t ă b ă 1 one has
scalptq
m ´ 1

“
λk,0ptq.

From Corollary 2.2.10, Section 2.2, λk,0ptq is eigenvalue of ∆t if and only if

λk,0ptq belongs to the spectrum of the Laplacian on the basis S2n “ SOp2n ` 1q{SOp2nq,
provide with the symmetric metric ğ represented by the inner product p¨, ¨q “ ´B|q, q
horizontal space of the original fibration. According 2.20, the spectrum of the Laplacian

∆ğ on pS2n, ğq is

σp∆ğq “ tβq “ qpq ` 2n ´ 1q
2p2n ´ 1q ; q P Nu.

The degeneracy instants for ht in p0, bs are the real values thq , solutions of the

equation
scalptq
m ´ 1

“ βq “ qpq ` 2n ´ 1q
2p2n ´ 1q .

The explicit formula for tgq , which represents the solution of the above equation in t, is

presented in (3.16). Note that the constant eigenvalues βq “ qpq ` 2n ´ 1q
2p2n ´ 1q tend to `8 as

q Ñ 8 and, since
scalptq
m ´ 1

is continuous and tends to `8 as t Ñ 0, thq Ñ 0.
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✷

By a totally analogous argument, we also have the Morse index Nptq for each

ht, as we obtained for gt above.

Proposition 3.2.7. The Morse index of ht is given by

Nptq “
#

Σr
q“1mqpS2nq, if t

g
r`1 ď t ă tgr

0, if t
g
1 ď t ď 1

, (3.17)

where mqpS2nq is the multiplicity of the qth eigenvalue of the basis

S2n “ SOp2n ` 1q{SOp2nq, see (2.18).

As consequence of the above results, we have obtained the bifurcation and

rigidity instants for pSUpn`1q{T n,gtq and pSOp2n`1q{T n,htq, 0 ă t ď 1, in the following

theorem.

Theorem 3.2.8. For the canonical variations pSUpn`1q{T n,gtq and pSOp2n`1q{T n,htq,
constructed above, the elements of the sequences ttgq u, tthq u Ă p0, bs, of degeneracy instants

for gt and ht, given in (3.14) an (3.16), are bifurcation instants for gt and ht, respectively.

Moreover, gt and ht are locally rigid for all t P p0, 1s z ttgq u(respectively t P p0, 1s z tthq uq.

Proof: From Proposition 1.1.6, Section 1.1, we know that, if t˚ ą 0 is not a degeneracy

instant for gt and ht, then gt and ht are locally rigidity at t˚. In the previous theorems,

we proved that the degeneracy instants for gt and ht form the sequences tgq , t
h
q , and thus,

if t R ttgq u or t R tthq u , t must be a local rigidity instant for gt and ht, respectively.

The fact that each tgq or thq are a bifurcation instants follows from Proposition

3.2.1 and Lemma 3.2.2.

✷

Remark 3.2.9. The spectra of the Laplacian on the basis spaces G{H of the canonical

variations

π : pSppnq{T n,ktq ÝÑ pSppnq{Upnq, ğq, n ě 5 and

π : pSOp2nq{T n,mtq ÝÑ pSOp2nq{Upnq, ğq, n ě 4,

as we introduce in 2.17, Section 2.2.3, are given by

σp∆ğq “ tµpΛq “ ´BpΛ ` 2δ,Λq; Λ P DpG,Hqu,

where Λ varies over the set DpG,Hq of the highest weights of all spherical representations

of pG,Hq and δ is equal to the sum of the positive roots of the complexification gC of g

relative to the maximal abelian subalgebra kC of gC.
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The set DpSppnq, Upnqq is spanned by B “ t2πl; 1 ď l ď nu, while for

DpSOp2nq, Upnqq one has the generators

B1 “ tπ2, π4, . . . , πn´2, 2πnu, if n is even

and

B2 “ tπ2, π4, . . . , πn´3, πn´1 ` πnu, if n is odd,

with tπl; 1 ď l ď nu being the fundamental weights of the maximal abelian Lie algebra

LiepT nq “ kC. Therefore, an element Λ of DpSppnq, Upnqq or DpSOp2nq, Upnqq is linear

combination of elements in some of these basis, with coefficients belonging to the set of

non-negative integers. It is well known that 2δ can also be written as linear combination of

fundamental weights (the coefficients of this linear combination are called Koszul numbers.)

Hence, any eigenvalue of the Laplacian on the basis spaces Sppnq{Upnq and

SOp2nq{Upnq is equal to a polynomial depending on several (integers) variables, so that

we can not to obtain general formulae for bifurcation instants in these cases, as in 3.14 and

3.16, for the canonical variations gt and ht defined on SUpn` 1q{T n and SOp2n` 1q{T n,

respectively.

Theorem 3.2.10. For the canonical variations pSppnq{T n,ktq, n ě 5, and pSOp2nq{T n,mtq,
n ě 4, introduced in Lemma 3.2.2, the bifurcation instants form discrete sets

ttgx1x2...xl
ux1,x2,...,xlPZ` Ă p0, 1s, 1 ď l ď n, with infinite elements accumulating close

to zero as x1, x2, . . . , xl vary over Z`. Moreover, kt and mt are locally rigid for all

t P p0, 1s z ttgx1x2...xl
ux1,x2,...,xlPZ`.

Proof: We must find the instants 0 ă t ă 1 such that
scalptq
m ´ 1

is a constant eigenvalue,

where m represents the dimension of each spaces Sppnq{T n and SOp2nq{T n, while scalptq
denotes the scalar curvature of kt and mt.

From Corollary 2.2.10, Section 2.2, λk,0ptq is eigenvalue of ∆t if and only if

λk,0ptq belongs to the spectrum of the Laplacian on the basis space provide with the

symmetric metric ğ represented by the inner product p¨, ¨q “ ´B|q, q horizontal space of

the original fibration. According 2.17, the spectrum of the Laplacian ∆ğ on the basis is

given by

σp∆ğq “ tµpΛq “ ´BpΛ ` 2δ,Λq; Λ P DpG,Hqu,

implying that any eigenvalue of the Laplacian on basis spaces Sppnq{Upnq and SOp2nq{Upnq
is equal to a polynomial expression depending on several (integers) variables, as has been

seen in the above remark. Let µpΛq “ µpx1, . . . , xlq P σp∆ğq, for some 1 ď l ď n, a con-

stant eigenvalue of the Laplacian ∆t acting on pSppnq{T n,ktq, n ě 5, or pSOp2nq{T n,mtq,
n ě 4.
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The degeneracy instants for kt and mt in p0, 1q are the real values tgx1x2...xl

which are solutions of the equation

scalptq
m ´ 1

“ µpx1, . . . , xlq.

The above equations in t, both for kt and mt, have infinite solutions, since the functions

p0, 1q Q t ÞÑ scalptq
m ´ 1

are continuous and assume any positive value greater than or equal to

the first positive eigenvalue of the Laplacian ∆ğ on the respective basis spaces Sppnq{Upnq
and SOp2nq{Upnq, namely, greater than 1, see Section 2.2.3.

The fact that the degeneracy instants tgx1x2...xl
are bifurcation instants follows

from Proposition 3.2.1 and Lemma 3.2.2.

By Proposition 1.1.6, Section 1.1, we know that, if t˚ ą 0 is not a degeneracy

instant for kt and mt, then t˚ ą 0 is a local rigidity instant for them. Therefore, kt and

mt are locally rigid at all

t P p0, 1s z ttgx1x2...xl
ux1,x2,...,xlPZ` .

Note that in fact tgx1x2...xl
P p0, 1q, since we obtain positive numbers 0 ă b ă 1

in Lemma 3.2.3 such that kt and mt are locally rigid at all t P sb, 1s. Thus,

tgx1x2...xl
P p0, brĂ p0, 1q.

✷

Using the notations in Example 2.2.14, 2.2.1, it was established that the

homogeneous fibration

π : pG2{T, gq ÝÑ pG2{SOp4q, ğq

is a Riemannian submersion with totally geodesic fibers isometric to pH{K, ĝq, H{K “
SOp4q{T – SOp4q{SOp2q ˆ SOp2q – S2 ˆ S2, g the normal metric determined by the

inner product p´Bq|m, ĝ the metric given by p´Bq|p and ğ defined by the inner product

p´Bq|q. Furthermore, the canonical variation gt of this submersion is represented by the

inner product

pntqeT “ p´Bq|mα1
`p´Bq|mα2

`t2p´Bq|mα1`α2
`p´Bq|mα1`2α2

`t2p´Bq|mα1`3α2
`p´Bq|m2α1`3α2

,

according (2.6).

The first positive eigenvalue of the Laplacian ∆ĝ on the fiber is, according to

[30], equal to φ1 “ 1 and the first positive eigenvalue of the Laplacian ∆g on the total

space is equal to µ1 “ 1

2
. Hence,

λ1,1ptq “ µ1 ` p 1

t2
´ 1qφ1 “ 1

2
` p 1

t2
´ 1q.
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In Proposition 3.1.14, Section 3.1, we obtained the expression (3.13) of scalptq,
scalar curvature of the canonical variation nt, namely

scalptq “ 2 ` 12t2 ´ 2t4

3t2
, t ą 0.

Since m “ dimG2{T “ 12, follows that

scalptq
m ´ 1

“ 2 ` 12t2 ´ 2t4

33t2
.

Furthermore, by Proposition 2.2.21, we have that the spectrum of the Laplacian on the

basis space pG2{SOp4q, ğq is

σp∆ğq “
"

1

6
p9r ` 6r2 ` 5s ` 6rs ` 2s2q;Z Q r, s ě 0

*
.

Now, we can determine the bifurcation and local rigidity instants for nt in the

interval p0, 1s.

Theorem 3.2.11. The elements of the set ttnrsu Ă p0, 1s given by

tnrs “

cb
p´66r2 ´ 33rs ´ 99r ´ 22s2 ´ 55s ` 24q2 ` 64 ´ 66r2 ´ 33rs ´ 99r ´ 22s2 ´ 55s ` 24

2
?

2
,

Z Q r, s ě 0, are bifurcation instants for pG2{T,ntq. Moreover, nt is locally rigid at all

0 ă t ď 1 such that t R ttnrsu.

Proof: By Proposition 3.2.1, if 0 ă t˚ ă 1 such that
scalpt˚q
m ´ 1

P σp∆ğq and

scalpt˚q
m ´ 1

ă λ1,1pt˚q, then t˚ is a bifurcation instant.

Recall that

scalptq
m ´ 1

“ scalptq
11

“ 2 ` 12t2 ´ 2t4

33t2
ă λ1,1ptq “ µ1 ` p 1

t2
´ 1qφ1 “ 1

2
` p 1

t2
´ 1q,

for all 0 ă t ď 1, according 3.2.2. The instants that satisfy
scalpt˚q

11
P σp∆ğq Ă σp∆tq are

the solutions of

scalptq
11

“ 2 ` 12t2 ´ 2t4

33t2
“ 1

6
p9r ` 6r2 ` 5s ` 6rs ` 2s2q, 0 ă t ď 1

which are exactly the tnrs given above. The elements of the set ttnrsu are such that

scalptnrsq
11

ă λ1,1ptnrsq

and tnrs is a bifurcation instant for all 0 ď r, s P Z. In order to prove that nt is locally rigid

at all 0 ă t ă 1 such that t R ttnrsu we apply Proposition 1.1.6, 1.1.
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✷

Remark 3.2.12. By continuity of
scalptq

11
and by the fact that lim

tÑ0

scalptq
11

“ `8, since

the eigenvalues of ∆ğ goes to `8 when r, s Ñ `8, we have that the sequence tgrs obtained

above is such that tnrs Ñ 0 when r, s Ñ `8 and, then, we determine a sequence of

bifurcation instants accumulating close to zero.

Figure 2 – For G2{T , graphs of the functions
scalptq
m ´ 1

in red and λk,jptq in black, the

constants corresponding to pk, 0q, 1 ď k ď 6, and non-constants to pk, jq where
1 ď j ď k ď 6. The dashed vertical lines mark five degeneracy instants (which
are all bifurcation instants) starting at tn1,0.
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3.3 Multiplicity of Solutions to the Yamabe Problem

We now explain how to obtain multiplicity results for the canonical variations

gt,ht,kt,mt and nt applying the next proposition due R. G. Bettiol and P. Piccione which

is in their work [10]. We have been interested in determine which conformal classes carry

multiple unit volume metrics with constant scalar curvature.

Proposition 3.3.1 ([10]). Let gt, with t P p0, br, be a family of metrics on M with

Nptq “ Npgtq ą 0, Nptq the Morse index of gt, and suppose there exists a sequence ttqu in

p0, br, that converges to 0, of bifurcation values for gt. Then, there is an infinite subset

G Ă p0, br accumulating at 0, such that for each t P G, there are at least 3 solutions to the

Yamabe problem in the conformal class rgts.

Applying the last Proposition and our bifurcation results, we can determine

a lower bound for the number of unit volume metrics with constant scalar curvature in

each conformal class rgts, rhts, rkts, rmts, rnts, respectively, for instants in a given subset

G Ă p0, 1q.

Theorem 3.3.2. Let gt,ht,kt,mt and nt be the families of homogeneous metrics obtained

as described above. Then, there exists, for each of such families, a subset G Ă p0, 1q,
accumulating at 0, such that for each t P G, there are at least 3 solutions to the Yamabe

problem in each conformal class rgts, rhts, rkts, rmts, rnts.

Proof: It is only necessary to verify that there exists 0 ă b ă 1 such that Nptq ą 0 in

p0, br. For each canonical variation gt,ht,kt,mt and nt take a positive number 0 ă b ă 1

such that
scal(t)

m ´ 1
ă λ1ptq for all t P sb, 1q, with m denoting the dimension of the respective

total space. This implies that Nptq “ 0, for all t P sb, 1q, since there are no eigenvalues of

∆t less than
scal(t)

m ´ 1
. If t “ b, one has

scal(t)

m ´ 1
“ β1, where β1 is the first positive

eigenvalue of the Laplacian on the basis. We proved that t “ b is a bifurcation instant and

then the Morse index changes from 0 to a positive integer. Hence, for t P p0, brĂ p0, 1q, we
have Nptq ě Npb ´ ǫq ą 0, since by definition, the Morse index is equal to the number

(counting multiplicity) of positive eigenvalues that are lees than
scalptq
m ´ 1

, which is strictly

decreasing for 0 ă t ă 1 and
scalptq
m ´ 1

Ñ 8 as t Ñ 0., for gt,ht,kt,mt and nt.

✷
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